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Not so long ago, irregular objects were considered to be erratic and pathological, thus, unworthy
to be studied from a mathematical point of view. This changed drastically in the the 1970’s.

It was, first, Benoît B. Mandelbrot, who introduced, in 1975, the new word fractal, derived from
the Latin fractus, to qualify a class of irregular sets: according to him, an object is considered to
be fractal if its topological dimension is strictly lower than its fractal dimension [Man77a], a first
definition of a fractal dimension, by means of its Hausdorff-Besicovitch dimension. We will see below
that this definition does not always hold.

New improvements then came with the introduction, in 1981, of iterated function systems (I.F.S.),
by John E. Hutchinson in [Hut81]. As explained in [Dav19], an I.F.S. is a finite set of contractive
maps, each defined on a compact metric set K of the euclidean space Rd, d ∈ N?:

S = {T1, . . . , TN} , N ∈ N?

where N? denotes the set of strictly positive integers, such that

K =
N⋃

i=1

Ti(K)

The compact set K is then said to be “invariant” with respect to the set S (one often refer to this
result as the “Gluing Lemma”).

A prequel occurrence of such maps, under the form of similarities, can already be found in the
Mandelbrot books of 1977 [Man77b], [Man77c].

The novelty of the work of John E. Hutchinson is to consider not the compact K itself, but the
set S = {T1, . . . , TN}: not only the invariant compact K is fully determined by this set, but it is, also,
the limit of a sequence of prefractal graphs that can be built, in an iterative way, thanks to the maps
that constitute the set S .

Iterated function systems were taken up and even more developed by Michael F. Barnsley et al.
(see, for instance, [BD85a]), as “a unified way of generating and classifying a broad class of fractals”.
As explained by the authors, fractals were “traditionally viewed as being produced by a process
of successive microscopic refinement taken to the limit”, which, of course, makes sense with the
geometric representation one may have of fractal sets, since, when looking at smaller and smaller
scales, one finds, again and again, the same form. Of course, at stake are specific and classical types
of fractals, as Sierpiński gaskets, dragon curves, Cantor sets, Julia curves, ... Michael F. Barnsley,
along with Stephen Demko, layed the emphazis upon the fact that those fractals are to be seen as the
attractors of iterated function systems.

The first fractal object to be formally studied was the Sierpiński Gasket, originally, by physicists
– one may refer to the work of Rammal Rammal and Gérard Toulouse [RT83], or to the paper by
Rammal Rammal [Ram84], where the author investigates the density of states and the nature of
the eigenmodes of the vibrating d-dimensional Sierpiński Gasket; very interestingly, and as is often
the case, both papers present results that would be later proved by mathematicians. Among them,
and non-exhaustively, Sheldon Goldstein [Gol87], Shigeo Kusuoka [Kus87], Martin T. Barlow and
Edwin A. Perkins [BP88], who developped a probabilistic approach, based on random walks across
prefractals (a sequence of finite graphs that converge towards the fractal). In this approach, the
Laplacian stands as the infinitesimal generator of the semigroup associated to the diffusion process.
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Those substantial advances were followed by a second kind of approach, an analytical one,
initiated by Jun Kigami [Kig89], [Kig93]. It has been, then, taken up, developped and popularized
by Robert S. Strichartz (see, among numerous references, the book [Str06]). New developments
came with the theory of Complex Dimensions, as laid by Michel L. Lapidus and his collaborators
in [Lap91], [Lap92], [Lap93], [LP93], [LM95], [LF00], [LP06], [Lap08], [LPW11], [ELMR15] [LF13],
[LRŽ17a], [LRŽ18], [Lap19], [HL21] and [Lap22], in particular. The theory provides a very natural
and intuitive way to characterize fractal strings or drums, in relation with their intrinsic vibrational
properties.

Thus far, the definition of fractality by Benoît B. Mandelbrot is not widely accepted by mathemati-
cians. For instance, according to this definition, the Devil’s Staircase – or graph of the Cantor-Lebesgue
function (see Figure 1), would not be fractal.

Figure 1: The Devil’s Staircase.

To this point, an interesting point of view is the one of Kenneth Falconer [Fal14]:

“My personal feeling is that the definition of a ’fractal’ should be regarded in the same way
as a biologist regards the definition of ’life’. There is no hard and fast definition, but just a list of
properties characteristic of a living thing, such as the ability to reproduce or to move or to exist to
some extent independently of the environment. Most living things have most of the characteristics
on the list, though there are living objects that are exceptions to each of them. In the same way, it
seems best to regard a fractal as a set that has properties such as those listed below, rather than to
look for a precise definition which will almost certainly exclude some interesting cases. From the
mathematician’s point of view, this approach is no bad thing. ”

Kenneth Falconer claims that the name fractal should be usued to qualify a more general class of
sets F ⊂ Rd, which possess all or at most one of the following properties [Fal97]:

• F has a fine structure, that is irregular detail at arbitrarily small scales.

• F is too irregular to be described by calculus or traditional geometrical language, either locally
or globally.
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• Often F has some sort of self-similarity or self-affinity, perhaps in a statistical or approximate
sense.

• Usually the fractal dimension of F is strictly greater than its topological dimension.

• In many cases of interest F has a very simple, perhaps recursive, definition.

• Often F has a natural appearance.

Recent work, by Michel L. Lapidus [LF13] and [LRŽ17b], gave a more accurate definition of
fractality: a geometric object is then said to be fractal if it admits at least one nonreal Complex
Dimension.

Note that motivations to study fractals from a mathematical point of view appeared in the 1980’s-
1990’s, when physicists put the light on the strange diffusion and vibrational properties of disordered
media (one may refer to the works of the physicists Samuel H. Liu [Liu86], or Shlomo Havlin and
Daniel Ben-Avraham [HBA87]). Recall that the Koch Curve was used as a model for chains of
polymers, and the Menger Sponge as a model for porous media.

The vibrational modes of those disordered media of Rd, d > 2, seemed to satisfy an asymptotic
law of the form

λk ≈ k
2

DS , k� 1

where, contrary to the Weyl law [Wey12], the spectral dimension DS was not equal to the Euclidean
Dimension,

DS 6= d ·

The hint was that this unusual diffusion would come from “a ramification at all scales”, as
explained, this time, by the mathematician Umberto Mosco [Mos02].

As is explained by Robert S. Strichartz in [Str01],“A theory of analysis on fractals is now emerging
and is perhaps poised for the kind of explosive and multilayered expansion that has characterized
analysis on manifolds ”. The natural question that one may ask then is: how can one define differen-
tial operators on fractals? Again, as also explained by Robert S. Strichartz in [Str01], “The central
character in the theory of analysis on manifolds is the Laplacian. Thus the starting point for analysis
on fractals will be the construction of an analogous operator on a class of fractals”.

This is the starting point of this thesis, based upon the seminal work of Jun Kigami. Our work is
organized as follows:

i. Chapter one is a general introduction to J. Kigami’s theory, as presented by R. S. Strichartz in
his book [Str06]. The notions of Dirichlet form, Laplacian, normal derivative ... are introduced
for the class of post critical finite sets. Spectral analysis of the Laplacian and an equivalent
Weyl formula are given. We present a result about general partial differential equations on
fractals, in particular, the solution of heat problem is described in terms of heat semigroup.

ii. In chapter two, we present numerical methods on fractals. The finite difference method, intro-
duced in [DSV99], and rigorously analysed in [RD19] is exposed, as well as the finite volume
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method, which we developed in [RD21a]. We conclude the chapter by a breve presentation of
the finite element method.

iii. Chapter three summarizes our articles [RD21d] and [RD21c]. In the first one, we give necessary
condition and a numerical algorithm to find extrema of functions on self-similar domains. The
second one establishes a controllability result for the heat equation on self-similar domains.

iv. In chapter four we analyze a different type of problems, where the set is an open domain
with fractal boundary. By implementing the finite element method, we solve an optimal shape
problem on this domain.

v. Chapter five is an application of the general theory of Krein-Feller-Stieljes to finance, leading,
in particular, the Black-Scholes formula. Using the fractal Laplacian we construct a self-similar
Black-Scholes equation, and we establish the existence and uniqueness of the solution with
numerical simulations.

The Sierpiński Gasket. The Minkowski Island.

The Koch Snowflake. The Vicsek Set.

Figure 2: Examples of fractal sets.
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F Fractal object
SG Sierpiński gasket
ST Sierpiński tetrahedron
SS Sierpiński simplex
SC Sierpiński carpet
MC Minkowski curve
KC Koch curve
KS Koch Snowflake
DH Hausdorff-Besicovitch dimension - similarity dimension
DS Spectral dimension
DW Walk dimension
µ Self-similar measure
E Dirichlet form
r Energy normalization constant
∆µ Self-similar Laplacian
∂n Normal derivative
FDM Finite difference method
FVM Finite volume method
FEM Finite element method
PGA Projected gradient algorithm
BS Black-Scholes operator
BSµ Self-similar Black-Scholes operator
ψ
(m)
Xm

Harmonic spline function of order m
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1.1 general considerations

The Laplacian plays a major role in the mathematical analysis of partial differential equations.
Recently, the work of Jun Kigami [Kig89], [Kig93], taken up by Robert S. Strichartz [DSV99], [Str99],
allowed the construction of an operator of the same nature, defined locally, on graphs having a
fractal character: the Sierpiński Gasket, the Sierpiński Carpet, the Diamond Fractal, the Julia sets, the
Barnsley Fern.

Jun Kigami starts from the definition of the Laplacian on the unit segment of the real line. For a
double-differentiable function u on [0, 1], the Laplacian ∆ u is obtained as a second derivative of u
on [0, 1]. For any pair (u, v) belonging to the space of functions that are differentiable on [0, 1], such
that

v(0) = v(1) = 0

he puts the light on the fact that, taking into account that

∫ 1

0
(∆u) (x) v(x) dx = −

∫ 1

0
u′(x) v′(x) dx = − lim

n→+∞

n

∑
k=1

∫ k
n

k−1
n

u′(x) v′(x) dx ·

If ε > 0, the continuity of u′ and v′ shows the existence of a natural rank n0 such that, for any

integer n > n0, and any real number x of
[

k− 1
n

,
k
n

]
, 1 6 k 6 n:∣∣∣∣∣∣∣∣u

′(x)−
u
(

k
n

)
− u

(
k− 1

n

)
1
n

∣∣∣∣∣∣∣∣ 6 ε ,

∣∣∣∣∣∣∣∣v
′(x)−

u
(

k
n

)
− v

(
k− 1

n

)
1
n

∣∣∣∣∣∣∣∣ 6 ε

The relation

∫ 1

0
(∆u) (x) v(x) dx = − lim

n→+∞
n

n

∑
k=1

(
u
(

k
n

)
− u

(
k− 1

n

)) (
v
(

k
n

)
− v

(
k− 1

n

))
(1)

enables one to define, under a weak form, the Laplacian of u, while avoiding first derivatives. It thus
opens the door to Laplacians on fractal domains.

Concretely, the weak formulation is obtained by means of Dirichlet forms, built by induction on a
sequence of graphs that converges towards the considered domain. For a continuous function on this
domain, its Laplacian is obtained as the renormalized limit of the sequence of graph Laplacians.

In this chapter, we present the foundation of the theory of Laplacian on fractals and related fields,
with examples from self-similar sets, starting from the spectral analysis of the induced Laplacian to
the general theory of partial differential equations on fractals.
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1.2 a few recalls

For the benefit of the reader who may not be familiar with mathematical notions devoted to
fractals, we shall first recall several definitions.

Definition 1.2.1. Hausdorff Measure [Fal14]

Let E ⊂ Rn and s > 0. The s-dimensional Hausdorff measure Hs(E) of E is defined as

Hs(E) = lim
δ→0
Hs

δ(E)

= lim
δ→0

inf

{
∞

∑
i=1
|Ui|s : {Ui} is a δ-cover of E

}
·

A δ-cover of a set E is a countable collection of sets {Ui} with diameter 0 6 |Ui| 6 δ that cover E.

Definition 1.2.2. Hausdorff-Besicovitch Dimension [Fal14]

Given E ⊂ Rn and s > 0, the Hausdorff-Besicovitch dimension DH(E) of E is defined as

DH(E) = inf {s > 0 : Hs(E) = 0}
= sup {s > 0 : Hs(E) = ∞} ·

Next, we present methods associated to a subclass of fractal sets, the so-called self-similar sets.
John E. Hutchinson [Hut81] was the first to give a rigorous study of those objects.

Theorem 1.2.1. Gluing Lemma [BD85a]

Given a complete metric space (E, δ), a strictly positive integer N, and a set { fi}16i6N of contractions
on E with respect to the metric δ, there exists a unique non-empty compact subset K ⊂ E such that

K =
N⋃

i=1

fi (K) ·

The set K is said self-similar with respect to the family { f1, . . . , fN}, and called attractor of the iterated
function system (IFS) { f1, . . . , fN}.
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1.3 post-critically finite fractals

Notation.

In the sequel, F denotes a fractal domain of Hausdorff dimension DH (F ) such that

F =
N⋃

i=1

fi(F ) , (2)

where N denotes a strictly positive integer, and { f1, . . . , fN} is a set of contractive maps, where, for
any integer i of {1, . . . , N}, Ri ∈ ]0, 1[ is the contraction ratio of fi, and Pi ∈ Rd is the fixed point
of fi.

Jun Kigami’s analytic approach [Kig01] consists in the construction of an increasing sequence
of finite graphs which approximate the self-similar set F ; this enables the definition of Dirichlet
form as the limit of Dirichlet forms on the sequence of finite graphs that approximate the fractal, as
presented below.

Definition 1.3.1. Boundary (or initial) Graph

We denote by V0 the ordered set of the fixed points {P1, . . . , PN0}.

The set of points V0 – where, for any integer i in {1, . . . , N0 − 1}, the point Pi is linked to the
point Pi+1 – constitutes a finite graph, which we will denote by F0. Then, V0 is called the set of vertices
of the graph F0.

The set V0 is called the boundary of F .

Remark 1.3.1.

i. As pointed by Strichartz in [Str06], the choice of the boundary is not necessarily unique.
Moreover, in some cases, F0 is not complete, but this choice is made to rule out finding a
non-degenerate solution to the renormalization equation as it will be detailed next.

ii. The topological notion of boundary is irrelevant in our case since Post-critically Finite fractals
have no interior in general.

iii. We will give below a systematic definition of the boundary.

Definition 1.3.2. Word

Given a strictly positive integer m, we will call number-letter any integerWi of {1, . . . , N}, and
word of length |W| = m, any set of number-letters of the form
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W = (W1, . . . ,Wm) ·
We will write

fW = fW1 ◦ · · · ◦ fWm ·

Definition 1.3.3. Edge Relation

For any m ∈ N, the prefractal graph ΓWm is equipped with an edge relation ∼
m

, as follows: two
vertices X and Y of Fm (i.e. two points belonging to Vm) will be said to be adjacent (i.e., neighboring
or junction points) if and only if the line segment [X, Y] is an edge of ΓWm ; we then write X ∼

m
Y.

Note that this edge relation depends on m, which means that points adjacent in Vm might not remain
adjacent in Vm+1.

Note that, equivalently, two points X and Y are adjacent if and only if there exist a wordW = (W1, . . . ,Wm)
of length m, such that X and Y both belong to the iterate

fW V0 = ( fW1 ◦ . . . ◦ fWm) V0 ·

Definition 1.3.4. Addresses

Given a natural integer m, a word W of length m, a point Pi ∈ V0, we will call address of the
vertex X an expression of the form

X = fW (Pi)

Definition 1.3.5. Prefractal Graph of Order m, m ∈ N?

For any strictly positive integer m, we set

Vm =
N⋃

i=1

fi (Vm−1) · (3)

The set of points Vm, where the points of an mth-order cell are connected using the edge relation ∼
m

,
is called the prefractal graph of order m and will be denoted by Fm.

By extension, we will write

Fm =
N⋃

i=1

fi (Fm−1) · (4)

We can prove that the sequence {Vm}m∈N is increasing and that its limit is dense in F , as it can
be found in Jun Kigami’s book [Kig01]:
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Property 1.3.1.

For any natural integer m,
Vm ⊂ Vm+1 ·

Property 1.3.2. Density [Hut81]

The set V? =
⋃

m∈N

Vm is dense in F .

Note that the graph Fm is the union of N copies fi(Fm−1) for some i ∈ {1, . . . , N}. This gives an
alternative way to view this construction, as explained below.

Property 1.3.3. Subcell - Junction Points

Given a natural integer m, the graph Fm can be written as the finite union of Nm subgraphs,

Fm =
⋃
|W|=m

fW (F0) ·

For any wordW of length m, fW (F0) will be called mth-order cell, or subcell.

Figure 3: SG1 of the Sierpiński Gasket Figure 4: SG2 of the Sierpiński Gasket

Figure 5: ST1 of the Sierpiński Tetrahedron Figure 6: ST2 of the Sierpiński Tetrahedron
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In the following, we give a rigorous definition of the central object of this thesis: Post-critically
finite sets. We refer the reader to the book of J. Kigami [Kig01] for more details.

Notation.

i. Given a strictly positive integer m, we will denote by Σm to be the set of wordsW ∈ {1, . . . , N}m

of length m.

ii. We then set

Σ? =
⋃

m∈N?

Σm ·

and we define Σ to be the collection of one-sided infinite words.

Notation.

For the sake of clarity, we will, from now on, refer to a self-similar set either by F or by the
self-similar structure

L =
(
F , S, ( fi)i∈S

)
·

Remark 1.3.2.

The index set S contributes to the identification of the structure L by building sets of words and
addresses.

Notation.

We will denote by:

i. σ, the shift map from Σ to Σ which, for any wordW , deletes the first "letter", i.e.,

σ(12233 . . .) = 2233 . . .

ii. π, the unique continuous surjective map from Σ to F defined for every infinite "word"
W =W1W2 . . . ∈ Σ, by:

π(W) =
⋂

m∈N?

fW1 ...Wm(F )

where fW1 ...Wm = fW1 ◦ . . . ◦ fWm .
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iii.
CL,F =

⋃
(i,j)∈Σ2, i 6=j

(
Fi ∩ Fj

)

Remark 1.3.3.

i. We can think of a word W ∈ Σ as a limit of some increasing sequence of finite words
(Wm)m∈N? ∈ Σ?, this induce a decreasing sequence of compacts in the sense of inclusion
fWm+1(F ) ⊂ fWm(F ) converging to a singleton. The definition of π follows

π(W) = fW (F ) = lim
m→+∞

fWm(F ) =
⋂

m∈N?

fW1 ...Wm(F )

ii. To visualize how the map π works, we use in the following figure the notation fW (F ) = FW

ℱ1 ℱ2

ℱ3

ℱ11 ℱ12

ℱ13

ℱ22ℱ21

ℱ23

ℱ33

ℱ31 ℱ32

ℱ111 ℱ112

ℱ113

ℱ122ℱ121

ℱ123

ℱ133

ℱ131 ℱ132

ℱ222ℱ221

ℱ223

ℱ211 ℱ212

ℱ213

ℱ233

ℱ232ℱ231

ℱ333

ℱ331 ℱ332

ℱ311

ℱ313

ℱ312 ℱ322

ℱ323

ℱ321

Figure 7: Topological structure of the Sierpiński gasket.

iii. The set CL,F contains ramification points.

Definition 1.3.6. Critical Set, Post-Critical Set (See [Kig01], Chapter 1, Section 1.3., Definition 1.3.13,
page 23.)

We define:

i. The critical set,

CL = π−1 (CL,F ) ·

ii. The post-critical set,

P =
⋃

m∈N?

σm(CL) ·
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The critical set CL and the post-critical set P play an important role in the topology of
(
F , Σ, ( fi)

M
i=1

)
,

in so far as:

i. If the post-critical set P is finite, then the set
(
F , S, ( fi)i∈S

)
is called post-critically finite or

sometimes finitely ramified. We have to notice that finitely ramified sets are post-critically
finite but the inverse is not true [Kig01].

ii. finitely ramified fractal means that the fractal may become a disconnected set by removing a
finite number of points.

iii. The post-critically finite sets (P.C.F. sets) plays an important role in the theory of partial
differential on fractals and constitute the principal domain of applications.

iv. If CL is empty, then L is homeomorphic to the Cantor set.

Property 1.3.4.

V0 = π

( ⋃
m∈N?

σm(CL)

)

In the sequel, we give an equivalent definition of neighborhood in the case of self-similar set:

Definition 1.3.7. System of Neighborhood [Kig01]

Let us denote by
(
F , S, ( fi)i∈S

)
a self-similar structure. For any X ∈ F , and any natural integer m,

we set:

Fm,X =
⋃

W∈Σm, X ∈ fW (F )
fW (F )

which will be called system of neighborhood of X.

Example 1.3.1. Sierpiński Gasket

Let us denote by SG the Sierpiński Gasket (see figure 8). It is defined as the self-similar set with
respect to the contractions family

f1(X) =
X + P1

2
, f2(X) =

X + P2

2
, f3(X) =

X + P3

2

where P1 = (0, 0), P2 = (1, 0), P3 = ( 1
2 ,
√

3
2 ) and S = {1, 2, 3}. SG is a post-critical finite set

with CL,F = { f2(P1), f3(P2), f1(P3)}, CL = {1222 . . . , 2111 . . . , 2333 . . . , 3222 . . . , 1333 . . . , 3111 . . .},
P = {111 . . . , 222 . . . , 333 . . .} and V0 = {P1, P2, P3}.
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Figure 8: The Sierpiński Gasket.

Example 1.3.2. The Sierpiński Carpet

Let us denote by SC the Sierpiński Carpet (see figure 9). It is defined as the self-similar set with
respect to the contractions family

f1(X) =
X + 2P1

3
f2(X) =

X + 2P2

3
f3(X) =

X + 2P3

3
f4(X) =

X + 2P4

3

f5(X) =
X + 2P5

3
f6(X) =

X + 2P6

3
f7(X) =

X + 2P7

3
f8(X) =

X + 2P8

3

where P1 = (0, 0), P2 =
(
0, 1

2

)
, P3 = (0, 1), P4 =

( 1
2 , 1
)
, P5 = (1, 1), P6 =

(
1, 1

2

)
, P7 = (1, 0),

P2 =
( 1

2 , 0
)

and S = {1, ..., 8}. SC is a post-critical infinite set with V0 the boundary of the unit
square [0, 1]× [0, 1].

Figure 9: The Sierpiński Carpet.

In the sequel, we recall the notions of connectivity and arcwise connectivity.
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Definition 1.3.8 (Connected Set ([Kig01], Chapter 1, Section 1.6., Definition 1.6.1, page 33)).

A metric space (E, d) is said to be connected if and only if any closed and open subset of E is E or
the empty set ∅.

Definition 1.3.9 (Arcwise Connected Set ([Kig01], Chapter 1, Section 1.6., Definition 1.6.1, page 33)).

A subset A of a metric space (E, d) is said to be arcwise connected if and only if, for all (x, y) ∈ A2,
there exists a path between x and y; i.e., there exists a continuous map γ : [0, 1]→ A such
that γ(0) = x and γ(1) = y.

Theorem 1.3.5 ( [Kig01] (Chapter 1, Section 1.6., Theorem 1.6.2, page 33)).

Arcwise connectivity and connectivity are equivalent in the case of self-similar sets.

Throughout this work, we exclusively deal with connected P.C.F. sets.

1.4 self-similar measure

Differential operators on fractals are deduced from the integration by part formula, which calls
for the definition of an appropriate integration on fractals. To this purpose, we need to introduce an
appropriate measure theory on self-similar sets; see [Hut81].

Definition 1.4.1. Self-Similar Measure on F [Hut81]

Given a family of strictly positive weights (µi)16i6N such that

N

∑
i=1

µi = 1 ,

there exist a unique measure µ with full support on Rd which is called self-similar measure

on F =
N⋃

i=1
fi (F ) if,

µ =
N

∑
i=1

µi µ ◦ f−1
i · (5)

Definition 1.4.2. The Open Set Condition – Similarity Dimension

The set of maps{ f1, . . . , fN} satisfies the open set condition if there exists a non-empty bounded
open set O such that
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∪N
i=1 fi(O) ⊂ O and fi(O) ∩ f j(O) = ∅ for i 6= j

Therefore, there exists a real number DH (F ) satisfying

N

∑
i=1

RDH(F )
i = 1 (6)

which is called the similarity dimension of F (see [Fal14]); it is also the Hausdorff dimension of F .

Property 1.4.1. Building of a Self-similar Measure on F

We set, for any integer i belonging to {1, . . . , N}, where Ri ∈ ]0, 1[ is the contraction ratio of fi,

µi = RDH(F )
i ·

Under the O.S.C. 1.4.2, one has, then,

N

∑
i=1

RDH(F )
i = 1.

which enables us to define a self-similar measure µ on F through

µ =
N

∑
i=1

µi µ ◦ f−1
i ·

Note that the measure µ corresponds to the normalized DH (F )-dimensional Hausdorff measure (HDH(F ))
(we refer to [Fal85]):

µ(E) =
HDH(F )(E ∩ F )
HDH(F )(F )

for any subset E ⊂ Rd.

Remark 1.4.1.

It is clear that µ(F ) = 1.

Definition 1.4.3. Integration on F [Str06]

Given a self-similar measure µ and a continuous function u on F , we define the integral:∫
F

u dµ = lim
m→+∞ ∑

W∈Σm

u(XW )µ( fW (F ))

for XW ∈ fW (F ). Moreover, using self-similarity of the measure we have that

∫
F

u dµ =
N

∑
i=1

µi

∫
F

u ◦ f−1
i dµ · (7)
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Proof.

The function f is bounded on the compact F and by definition of µ

0 < µ( fW (F )) = Πi∈Wµi < 1

for allW ∈ Σm, thus

∣∣∣∣∣ ∑
W∈Σm

u(XW )µ( fW (F ))
∣∣∣∣∣ 6‖ u ‖C(F )

m

∑
i=1

(max
j

µj)
i

The convergence of the integral is guaranteed by the geometric criterion.

1.5 dirichlet forms on p.c .f . sets

Following the construction of the first section, given a natural integer m, and two real valued
functions u and v, defined on the set Vm of the vertices of Fm, we introduce the energy, on the
graph Fm, of the pair of functions (u, v), as

EFm(u, v) = ∑
(X,Y)∈V2

m, X∼Y
(u (X)− u (Y)) (v (X)− v (Y)) ·

For the sake of simplicity, we will write it under the form

EFm(u, v) = ∑
X∼

m
Y
(u(X)− u(Y)) (v(X)− v(Y)) ·

Moving from the order m to m + 1, there exists a unique harmonic extension ũ of u to the graph
Fm+1 which minimize the energy EFm+1(u) = EFm+1(u, u) [Kig01]. It may happen that

EFm+1(ũ) = r EFm(u) · (8)

for some normalization constant 0 < r < 1 independent of m, which leads to the definition of
normalized energy EFm ,

EFm(u) = r−m EFm(u) ·

This definition guarantees that the sequence {EFm}m∈N is an non-decreasing sequence for any
function u on Fm, and it can be shown that it is a sequence of Dirichlet forms:

Definition 1.5.1. Dirichlet Form, on a Finite Set (see [Kig03])

Let us denote by V a finite set V, equipped with the usual inner product which, to any pair (u, v)
of functions defined on V, associates

(u, v) = ∑
p∈V

u(p) v(p) ·

A Dirichlet form on V is a symmetric bilinear form E , such that:
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1. For any real valued function u defined on V: E(u, u) > 0.

2. E(u, u) = 0 if and only if u is constant on V.

3. For any real-valued function u defined on V, if: u? = min (max(u, 0), 1), i.e.,

∀ p ∈ V : u?(p) =


1 if u(p) > 1

u(p) si 0 < u(p) < 1
0 if u(p) 6 0

then: E(u?, u?) 6 E(u, u) (Markov property).

Property 1.5.1.

Given a natural integer m, and a real-valued function u, defined on the set Vm of vertices of Fm, the map,
which, to any pair of real-valued, continuous functions (u, v) defined on Vm, associates

EFm(u, v) = r−m ∑
X∼

m
Y
(u(X)− u(Y)) (v(X)− v(Y))

is a Dirichlet form on Fm.

Moreover,

EFm(u, u) = 0⇔ u is constant

It makes sense to define

E(u) = lim
m→+∞

EFm(u) · (9)

We can check that [Str06]:

Theorem 1.5.2.

If u ∈ dom E then u ◦ fi ∈ dom E for all i and

E(u) =
N

∑
i=1

r−1E(u ◦ fi) ·

Notation.

We will denote by:

i. dom E the subspace of continuous functions defined on F , such that

E(u) < ∞ ·
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ii. dom0 E the subspace of continuous functions defined on F , which take the value zero on V0,
and such that:

E(u) < ∞ ·

Let us now introduce the notion of Dirichlet form on a measured space.

Definition 1.5.2. Dirichlet Form on a Measured Space ([BD85b],[FOT94])

Given a measured space (E, µ), a Dirichlet form on E is a bilinear symmetric form, that we will
denote by E , defined on a vectorial subspace D dense in L2

µ(E), such that:

1. For any real-valued function u defined on D: E(u, u) > 0.

2. D, equipped with the inner product which, to any pair (u, v) of D× D, associates:

(u, v)E = (u, v)L2
µ(E) + E(u, v)

is a Hilbert space.

3. For any real-valued function u defined on D, if

u? = min (max(u, 0), 1) ∈ D

then, E(u?, u?) 6 E(u, u) (Markov property, or lack of memory property).

We refer to the book of Robert S. Strichartz [Str06] for a proof of the following results:

Lemma 1.5.3.

We have that: dom E ⊂ C(F ). Moreover, it can be shown that dom E are the space of Hölder continuous
functions on F .

Lemma 1.5.4.

The map:
dom E

/
Constants× dom E

/
Constants → R

(u, v) 7→ E(u, v)

defines an inner product on dom E
/

Constants.
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Theorem 1.5.5.

The space
(
dom E

/
Constants, E(·, ·)

)
is a complete Hilbert space.

Definition 1.5.3.

The space S(H0, Vm) of piecewise harmonic splines of level m is defined to be the space of
continuous functions u such that u ◦ fW is harmonic for all |W| = m.

Definition 1.5.4.

We say that the sequence {un}n∈N converges to u in energy if these following two conditions
hold:

1. lim
n→+∞

E(u− un) = 0.

2. lim
n→+∞

‖ u− un ‖C(F )= 0.

Proposition 1.5.6.

Any function u ∈ C(F ) may be approximated uniformly by a sequence {un}n∈N ⊂ S(H0, Vm), with
un |Vm = u|Vm . Moreover, if u ∈ domE then um converges to u in energy.

In more general cases, the normalized equality

EFm+1(ũ) = r EFm(u)

fails to be satisfied. This implies a general definition of the Dirichlet form if such a form exist.

Definition 1.5.5. Dirichlet Form on P.C.F. sets

Given the sequence of graphs (Fm)m∈N, and a pair (u, v) of continuous function defined on F ,
we define the following Dirichlet form

EF (u, v) = lim
m→+∞

EFm(u, v) (10)

= lim
m→+∞ ∑

X∼
m

Y
cm(X, Y) (u(X)− u(Y)) (v(X)− v(Y)) (11)

for some sequence {cm(X, Y)}m∈N, satisfying

1. EFm+1(ũ) = EFm(u), if ũ is the harmonic extension of u.
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2. EFm+1(u) =
N

∑
i=1

r−1
i EFm(u ◦ fi), for suitable resistance renormalization factors ri satisfying 0 < ri < 1.

A P.C.F. fractal satisfying these conditions is said to have a regular harmonic structure.

1.6 laplacian on p.c .f . sets

The Dirichlet form E on P.C.F. sets can be seen as an analogous of the following Dirichlet form, in
the case of an open subset Ω ⊂ Rn, and two smooth functions u and v on Ω,

E(u, v) =
∫

Ω
∇u∇v dx ·

It is known via the integration by parts formula that∫
Ω
∇u∇v dx = −

∫
Ω

∆u v dx +
∫

∂Ω
∂nu v dx ·

Now, if we consider the case u ∈ C2(Ω) and v ∈ C1
c (Ω) we get∫

Ω
∇u∇v dx = −

∫
Ω

∆u v dx

We can use this correspondence to define the Laplacian using a suitable choice of v.

Theorem 1.6.1. Correspondence between Dirichlet Forms and Laplacians [FOT94]

Let us denote by H a Hilbert space, equipped with a scalar product 〈., .〉H , and by E a Dirichlet form on H.
There exists a natural correspondence between the Dirichlet form E and the Laplacian ∆ in the following way,

E(u, v) = − 〈∆u, v〉H ·

The above correspondence enables us to build a Laplacian (with respect to µ) via the following
definition.

Definition 1.6.1. Laplacian on P.C.F. Sets

Let us consider u ∈ domE . Then, u belongs to dom∆µ, with ∆µu = f , if

E(u, v) = −
∫
F

f v dµ, ∀v ∈ dom0E

In the case where f ∈ L2
µ(F ), the same definition holds, this time with u ∈ domL2

µ
∆µ.

We have the following theorem:
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Theorem 1.6.2.

(u ∈ dom ∆ and ∆ u = 0) if and only if u is harmonic

For an appropriate choice of the function v, we can deduce the Laplacian formula, by exploiting
the nature of the Dirichlet form E :

Theorem 1.6.3. Pointwise Formula

Let us denote by m be a strictly positive integer, X ∈ V? \V0, and ψm
X ∈ S (H0, Vm) a spline function

such that

ψm
X (Y) =

{
δXY ∀ Y ∈ Vm

0 ∀ Y /∈ Vm
, where δXY =

{
1 if X = Y
0 else

i. For any function u of dom ∆, such that its Laplacian exists, the sequence(
r−m

{∫
F

ψm
X dµ

}−1

∆mu(X)

)
m∈N

converges uniformly towards

∆µu(X) ,

where

∆mu(X) = ∑
Y∼

m
X
(u(Y)− u(X)) , ·

ii. Conversely, given a continuous function u on F such that the sequence(
r−m

{∫
F

ψm
X dµ

}−1

∆mu(X)

)
m∈N

converges uniformly towards a continuous function on V? \V0, we have that

u ∈ dom ∆µ and ∆µ u(X) = lim
m→+∞

r−m
{∫
F

ψm
X dµ

}−1

∆mu(X) ·

Corollary 1.6.4. [Str06]

For an arbitrary point X ∈ F and a sequence (Xm)m∈N in Vm converging to X, the pointwise formula of
theorem 1.6.3 holds by density (theorem 1.3.2) and uniform continuity extension, and it becomes:

∆µ u(X) = lim
m→+∞

r−m
{∫
F

ψm
Xm

dµ

}−1

∆mu(Xm) · (12)
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Remark 1.6.1.

The extension described in the corollary is more complicated that it may seem, the process goes
through three stages:

i. Construct a (resistance) metric on V? (denoted by RMF ) and establish Hölder continuity: for
X, Y ∈ V? and u ∈ dom(E)

|u(X)− u(Y)| 6
√
E(u)

√
RMF (X, Y)

ii. Define (Ω,RMF ) the completion of the metric space (V∗,RMF ), extend u by uniform
continuity on (Ω,RMF ), then think of (domE , E) as a subset of C(Ω,RMF ).

iii. Identify Ω with F in the case of regular harmonic structures (definition 1.5.5).

We refer the reader to [Kig01] for a detailed proof.

Remark 1.6.2. Hölder Continuity and domE

The result of lemma 1.5.3 can be improved in light of remark 1.6.1: the Hölder continuity exponent

with respect to the resistance metric RMF is
1
2

, and according to [Str06], it is equivalent to Hölder

continuity constant α =
ln(r)

2 ln(R)
with respect to the euclidean metric, where R = maxi Ri is the

maximum contraction ratio.

Integration by part induces a definition on the normal derivative on fractals, this definition is
valid either on boundary V0 or in the interior of the self-similar set F . In addition, we can deduce
an equivalent to the Gauss-Green formula:

Definition 1.6.2. Normal Derivative

Given a boundary point X = fW (Pi) of a cell fW (F ), 1 6 i 6 N0, W ∈ {1, . . . , d}`, and a
continuous function u on F , we will say that the normal derivative ∂nu exists if the limit

∂nu(Pi) = lim
m→+∞

r−m ∑
Y∼

m
Pi

Y∈ fW (F )

(u(Pi)− u(Y)) (13)

exists. The local normal derivative satisfies

∂nu(X) = r−` ∂n(u ◦ fW )(Pi) ·
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Theorem 1.6.5. Green-Gauss Formula

Given u ∈ dom∆µ
for a measure µ, ∂nu exists for all X ∈ V0, and

E(u, v) = −
∫
F

∆µu v dµ + ∑
X∈V0

∂nu(X) v (14)

holds for all v ∈ dom E .

Corollary 1.6.6.

Given u ∈ dom∆µ for a measure µ:

∫
F

∆µu v dµ−
∫
F

u ∆µv dµ = ∑
V0

(∂nu(X) v− u ∂nv(X)) (15)

holds for all v ∈ dom E .

Theorem 1.6.7. Matching Condition

Given u ∈ dom∆µ, at each junction point

X = fW (Pi) = fW ′(Pj) , (i, j),∈ {1, . . . , N0}2 ,
(
W ,W ′

)
∈ {1, . . . , N}m × {1, . . . , N}m

the local normal derivative exists, and

∂nu( fW (Pi)) + ∂nu( fW ′(Pj)) = 0 (16)

holds for all v ∈ dom E .

Example 1.6.1. Sierpiński Gasket

In the case of Sierpiński gasket SG, we can check that the normalization constant r =
3
5

, the
Dirichlet form, the Laplacian and the normal derivative are given respectively by

E(u, v) = lim
m→+∞

(
5
3

)m

∑
X∼

m
Y
(u(X)− u(Y)) (v(X)− v(Y))

∆µ u(X) = lim
m→+∞

(
3
2

)
× 5m ∑

Y∼
m

X
(u(Y)− u(X)) ,

∂nu(Pi) = lim
m→+∞

(
5
3

)m

∑
Y∼

m
Pi

Y∈ fW (SG)

(u(Pi)− u(Y)) ·
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Example 1.6.2. Sierpiński Tetrahedron

In the case of the Sierpiński Tetrahedron ST, the normalization constant equals to r =
2
3

, the
Dirichlet form, the Laplacian and the normal derivative are given respectively by

E(u, v) = lim
m→+∞

(
3
2

)m

∑
X∼

m
Y
(u(X)− u(Y)) (v(X)− v(Y))

∆µ u(X) = lim
m→+∞

2× 6m ∑
Y∼

m
X
(u(Y)− u(X)) ,

∂nu(Pi) = lim
m→+∞

(
3
2

)m

∑
Y∼

m
Pi

Y∈ fW (ST)

(u(Pi)− u(Y)) ·

Example 1.6.3. Minkowski Curve

In the case of Minkowski Curve MC, the normalization constant equals to r =
1
3

, the Dirichlet
form, the Laplacian and the normal derivative are given respectively by

E(u, v) = lim
m→+∞

3m ∑
X∼

m
Y
(u(X)− u(Y)) (v(X)− v(Y))

∆µ u(X) = lim
m→+∞

32m ∑
Y∼

m
X
(u(Y)− u(X))

∂nu(Pi) = lim
m→+∞

3m ∑
Y∼

m
Pi

Y∈ fW (MC)

(u(Pi)− u(Y))

1.7 generalized combinatorial laplacian

The Laplacian can be represented in a different way, through discrete Laplacian matrix. For more
details we refer to [Shi96]. This combinatorial construction allows one to define Dirichlet form and
Laplacian on the general class of P.C.F. sets and to sketch out spectral results:

Definition 1.7.1. Real valued function on a graph

Let U and V denote two finite sets. The set of real valued functions on U is denoted by l(U) and

l0(V) = { f ∈ l(U) : f (Pi) = 0 for Pi ∈ V0}
L(U, V) = {A : l(U)→ l(V) and A is linear} ·

We shall write L(U) = L(U, U).
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Let us denote by ∆0 be the Laplacian matrix on F0. We consider the bijection

fW : V0 → fW (V0)

for any word W ∈ {1, . . . , N}m. This allows one to identify V0 with fW (V0) and hence regard
∆0 ∈ L ( fW (V0)). Let again define the restriction map to fW (V0):

RW ∈ L (Vm, fW (V0))

RW (u) = u| fW (V0)

Then the graph Laplacian matrix ∆m ∈ L(Vm) is given by

∆m = ∑
W∈Σm

RT
W∆0RW , ·

In the general case, one chooses ρ =
(

ρ−1
1 , . . . , ρ−1

N

)
∈ l(S) with S = {1, . . . , N}. The num-

ber ρ−1
0 =

N

∑
i=1

ρ−1
i is called measure factor.

We can then define (∆̃m, ρ), the generalized Laplacian with weight ρ on the graph Fm, through

∆̃m = ∑
W∈Σm

ρ−1
W RT

W∆0RW · (17)

It can be discomposed into

∆̃m =

(
Tm JT

m
Jm Xm

)
where Tm ∈ L(V0), Jm ∈ L(V0, Vm \V0) and Xm ∈ L(Vm \V0).

We define next the discrete generalized measure on Vm,

µ̂m = ∑
X∈Vm

(
∑
W∈Σm

ρ−1
W RT

W (−T1)RW

)
X,X

δX

where δ is the Dirac measure, and the normalized Laplacian on Fm,

∆̂m =
∆̃m

µ̃m(X)
·

Note that if we define µm =
ρm

0
−trace(T1)

µ̃m, then the sequence {µm}m∈N converges weakly to the

self-similar measure µ with weights
ρi

ρ0
[Shi96].



1.8 spectral decimation function 30

1.8 spectral decimation function

In this section, we consider connected P.C.F sets F with

1. # fi(V0) ∩V0 6 1 (V0 vertices are not neighbors in Vm, for m > 1).

2. F is connected.

We set

T = T1, X = X1, J = J1 M = −diag(X), D = ∆0

where M = −diag(X) means that M is a diagonal matrix with Mi,i = −Xi,i.

We are hereafter interested in the solution of the following spectral problems:

The Dirichlet problem

{
∆µu = λu

u|V0
= 0

and the Neumann problem

{
∆µu = λu

∂nu|V0
= 0 ·

The solution λ of the first (resp. the second) problem is called the Dirichlet eigenvalue (resp.
Neumann eigenvalue) corresponding to the Dirichlet eigenfunction (resp. Neumann eigenfunc-
tion) u.

Set N (x) = # {i : λi 6 x}.

Definition 1.8.1. Strong harmonic structure [Shi96]

The generalized Laplacian (∆̃m, ρ) is said to have a strong harmonic structure if there exist
rational functions KD(λ) and KT(λ) such that X + λM is invertible; then,

T − JT(X + λM)−1 J = KD(λ)D + KT(λ)T

where KD(0) is the energy renormalization constant. We denote by

F = {λ ∈ R : KD(λ) = 0 or det(X + λM) = 0}

the set of forbidden eigenvalues. Moreover, we introduce

Fk =
{

λ ∈ F : λ is an eingenvalue of − ∆̃k
}

as the set of forbidden eigenvalues at step k.

We define the spectral decimation through

R(λ) = λ− KT(λ)

KD(λ)
· (18)
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Remark 1.8.1.

i. In the general case, the Dirichlet form is given by

E(u) = lim
m→+∞

−
(

1
KD(0)

)m

〈u, ∆mu〉 (19)

By analogy to the previous section, it can be shown that ([Kum93])

EF (u) =
N

∑
i=1

(KD(0)ρ)
−1
i EF (u ◦ fi)

=
N

∑
i=1

r−1
i EF (u ◦ fi)

ii. In the case of the Sierpiński Gasket SG:

ρ1 = ρ2 = ρ3 = 1, ρ0 = 3, KD(0) = r =
3
5

and

E(u) = lim
m→+∞

−
(

1
KD(0)

)m

〈u, ∆mu〉

= lim
m→+∞

−
(

5
3

)m

∑
X

u(X) ∑
Y∼

m
X
(u(Y)− u(X))

= lim
m→+∞

(
5
3

)m

∑
X∼

m
Y
(u(X)− u(Y))2 ·

iii. Observe that the Laplacian ∆µ in the case of the Sierpiński Gasket SG is just the limit

∆µu(X) = lim
m→+∞

(
1

KD(0)ρ0

)m

∆̃mu(X)

= lim
m→+∞

r−m µm(X)−1∆mu(X) ·

Theorem 1.8.1. Spectral Decimation Property [Shi96]

Suppose the generalized Laplacian has a strong harmonic structure. We have the following results:

i. If f is an eigenfunction of −∆̃m+1 with eigenvalue λ, i.e., −∆̃m+1 f = λ f , and λ 6∈ F, then
−∆̃m f|Vm = R(λ) f .
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ii. Conversely, If −∆̃m f|Vm = R(λ) f and λ 6∈ F, then there exists a unique extension f̃ of f such that
−∆̃m+1 f̃ = λ f̃ .

Proposition 1.8.2. [Shi96]

The spectral decimation function R satisfies

R(0) = 0 and R′(0) = 1
KD(0) ρ0

·

Thus, 0 is a repealing fixed point of R.

Proposition 1.8.3. [Zho07]

If a Laplacian has the strong harmonic structure and all ρi = 1, then it admits spectral decimation.

1.9 einstein relation and weyl’s formula for p.c .f . sets

In order to establish an analogous result to the Weyl asymptotic law in smooth analysis, we need
to introduce some notions relatives to fractal analysis:

Definition 1.9.1. Spectral Dimension [Kig98]

Let F be a self-similar set. We call spectral dimension the unique real number DS(F ) which
satisfies

N

∑
i=1

(
ρiµi

KD(0)

) DS(F )
2

= 1 · (20)

Definition 1.9.2. Walk Dimension [HKK02]

Let us denote by τ(B(X, R)) the time taken for the diffusion, whose infinitesimal generator is the
Laplace operator ∆µ on self-similar set F , to exit a ball centered at X with radius R. We call walk
dimension the limit DW(F ) of

DW(F ) = lim
R→+∞

sup
log(EX(τ(B(X, R)))

log(R)
(21)

when it exists independently of X, where EX stands for expectation conditioned on starting at X ∈ F .

Next, we present the Einstein relation which connects three fundamental numbers associated to
fractal objects.
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Theorem 1.9.1. Einstein Relation on Fractals [Bar98]

The similarity dimension DH(F ), the spectral dimension DS(F ) and the walk dimension DW(F ), of a
self-similar object F are related by the so called Einstein relation

2 DH(F ) = DS(F )× DW(F ) · (22)

We recall next the Weyl formula for ordinary Laplacians on bounded domains Ω in Rn.

Theorem 1.9.2. Weyl’s Formula [Kig01]

Let Ω be a bounded domain in Rn. Let λi be the i-th eigenvalue of the Dirichlet eigenvalue problem of −∆
on Ω, that is {

∆u = λu

u|∂Ω = 0

Then, as x→ +∞,

N (x) =
1

(2π)nBn|Ω|nx
n
2 + o(x

n
2 )

where |.| is n-dimensional Lebesgue measure and Bn is the Lebesgue measure n-dimensional ball.

In the case of fractal objects, the physicist Michael V. Berry made the following conjecture in [Ber80]:

N (x) = CHDH(F )(Ω)x
DH (F )

2 + o(x
DH (F )

2 ) ·

By replacing n by the Hausdorff dimension DH(F ). Unfortunately, this is wrong. The right
formula is given by the theorem below:

Theorem 1.9.3. Weyl’s Formula [Kig01]

In the case of self-similar set F , set γi =
√

riµi, the eigenvalues counting function satisfies

0 < lim
x→+∞

inf
N (x)

x
DS(F )

2

6 lim
x→+∞

sup
N (x)

x
DS(F )

2

< +∞

for Dirichlet and Neumann Eigenvalues. Moreover,

i. Non-lattice case : If
N

∑
i=1

Z log(γi) is a dense subgroup of R. Then, the limit lim
x→+∞

N (x)

x
DS(F )

2

exists and

is independent of the boundary conditions.
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ii. Lattice case : If
N

∑
i=1

Z log(γi) is a discrete group of R, let us denote by T its generator. Then,

when x → +∞, we have that

N (x) =
(

G log
( x

2

)
+ o(1)

)
x

DS(F )
2

where Gdenotes a right-continuous, T-periodic function satisfying 0 < inf G(x) < sup G(x) < ∞,
and o(1) a term which vanishes as x → +∞. Moreover, the periodic function G is independent of the
boundary conditions.

Example 1.9.1. Sierpiński Tetrahedron

According to [RD17a], the Sierpiński Tetrahedron is characterized by DH(ST) = 2, DS(ST) = 2
ln(4)
ln(6)

and DW(ST) = 2
ln(6)
ln(4)

according to Einstein’s relation. The spectral decimation function is given

by R(λ) = λ(6− λ) and the eigenvalues are given by the limit λ = 2 lim
m→+∞

6m λm. Moreover, the

eigenvalue counting function follow the modified Weyl law:

NST(x) =
(

G
(

ln x
2

)
+ o(1)

)
x

ln(4)
ln(6) ·

Example 1.9.2. Minkowski Curve [RD17b]

For the Minkowski Curve, we respectively have that DH(MC) =
3
2

, DS(MC) = 1 and DW(MC) = 3,

according to Einstein’s relation. The spectral decimation function is given byR(λ) = −λ (λ− 4) (λ− 2)2(λ(λ− 4) + 2)2,
and the eigenvalues are given by the limit λ = 2 lim

m→+∞
82mλm. According to the result of Jun Kigami

in [Kig98], one has the modified Weyl formula:

NMC(x) =
(

G
(

ln x
2

)
+ o(1)

)
x

1
2 ·

1.10 partial differential equations on fractals

In this section, we deal with the construction of PDE’s on P.C.F. fractals. Since the Laplacian has
been formerly introduced, we are now able to ask the following questions:

1. Can we define PDE’s on fractals?

2. Can we establish existence and uniqueness of the solution?

3. The solution is it local or global?

We shall try next to answer these questions in the case of static and dynamical PDE’s.
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1.10.1 Solvability of partial differential equations

Let us denote by F a P.C.F. fractal with regular harmonic structure, and ∆µ the Laplacian with
respect to the self similar measure µ. We consider the general partial differential equation on F

−∆µu(X) = F(X, u(X))

where F is a continuous function on F ×R and u a real valued function. We state next local existence
and uniqueness of the solution.

Theorem 1.10.1. Local Solvability [Str05]

Let us assume that −∆µu(X) = F(X, u(X)) holds on the m-cell fW (F ), for |W| = m, with boundary
fW (V0), and that

i. F satisfies a local Lipschitz condition in the u-variable,

∀ T > 0 , ∃MT < ∞ such that :

|F(X, u)− F(X, v)| 6 MT |u− v| provided |u|, |v| 6 T ·

ii. u satisfies the boundary condition

u( fW (Pi)) = ai for i = 1, . . . , N ·

Then, for every A > 0, there exists m such that for all choices of {ai} with |ai| 6 A, the equation has a
unique solution.

Theorem 1.10.2. Peano Existence Theorem [Str05]

Let us assume that −∆µu(X) = F(X, u(X)) holds on the m-cell fW (F ), for |W| = m, with boundary
fW (V0), and that:

i. F is continuous.

ii. u satisfies the boundary condition

u( fW (Pi) = ai for i = 1, . . . , N ·

Then, for every A there exists m such that for all choices of {ai} with |ai| 6 A, the equation has a solution.

Note that the global solvability can fail in some situation, even for linear constant coefficient like

−∆µu(X) = λu(X) + F(X)

where F is continuous, and λ is an eigenvalue. We have the following counter-example in the case of
the Sierpiński Gasket SG:
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Theorem 1.10.3. [Str05]

The equation

−∆µu(X) = λu(X) + F(X)

is not solvable if and only if λ is a joint Dirichlet-Neumann eigenvalue,.

We have the following result on open sets of F :

Theorem 1.10.4. Existence on Open Sets[Str05]

Let Ω be an open set of F not containing any points of V0. The equation

−∆µu(X) = F(X)

is solvable for any continuous function F.

1.10.2 The heat equation

As previously, given a P.C.F. set F with regular harmonic structure, and T > 0. We are interested
in the solution of

∂tu− ∆µu = g in ]0, T[×F
u(0, X) = u0(X) in F

with Dirichlet (resp. Neumann) boundary conditions,

u = 0 on V0 (resp. ∂nu = 0 on V0) ·

Definition 1.10.1. Heat Kernel [Kig01]

For the Dirichlet (resp. Neumann) case, let us define the heat kernel H on ]0,+∞[×F ×F as

K(t, X, Y) =
∞

∑
i=1

e−λitφi(X)φi(Y)

where φi and λi are respectively Dirichlet (resp. Neumann) eigenfunctions and eigenvalues of the
Laplacian.

Definition 1.10.2. Heat Operator [Kig01]

For g ∈ L1
µ(F ), let us define
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St g(X) =
∫
F
K(t, X, Y)g(Y)dµ(Y)

for t > 0 and X ∈ F .

We recall that Lp
µ(F ) ⊆ L1

µ(F ) for p ∈ [1,+∞].

Theorem 1.10.5. Heat Semigroup [Kig01]

1. St is a bounded operator from Lp
µ(F ) −→ C(F ) ⊂ L2

µ(F ), for any t > 0 and p ∈ [1,+∞].

2. St ◦ Ss = St+s for any s, t > 0.

3. St(L1
µ(F )) ⊂ dom∆µ for any t > 0.

4. Let u0 ∈ L1(F , µ) and u(t, X) = Stu0(X) for ]0, ∞[ × F , then u(., X) ∈ C∞(]0,+∞[) for any
X ∈ F . Moreover,

∂tu(t, X) = ∆µu(t, X) for any (t, X) ∈ ]0, ∞[×F

5. The semigroup (St)t>0 is strongly continuous on L2
µ(F ), its generator is −∆µ, and

lim
t→0
‖ Stu0 − u0 ‖L2(K,µ)= 0

6. The C0 semigroup (St)t>0 is a semigroup of contractions.

Proof.
1)2)3)4)5) See [Kig01].
6)Note first that we can extend by continuity the semigroup (St)t>0 to zero. Let us then set

u0(x) =
∞

∑
i=1

ai φi(x) in the eigenfunctions base, we have, thus,

‖ Stu0 ‖ = sup
u0∈L2

µ(F ), u0 6=0

‖ Stu0 ‖L2
µ(F )

‖ u0 ‖L2
µ(F )

=

‖
∞

∑
i=1

e−λit aiφi(x) ‖L2
µ(F )

‖ u0 ‖L2
µ(F )

6 1 ·
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Theorem 1.10.6. Weak Solution of the Heat Problem

Let us consider u0 ∈ L2
µ(F ).

1. For the homogeneous problem:

• There is a unique solution of the homogeneous heat problem (g = 0) given by


u(t, X) = St u0

=
∫
F
K(t, X, Y)u0(Y)dµ(Y)

u(0, X) = u0

where

lim
t→0
‖ ut − u0 ‖L2

µ(F ) = 0

u(t, Pi) = 0 (resp. ∂nu(t, Pi) = 0) for Pi ∈ V0

• The regularity of the solution is u ∈ C1(]0, T[ ; L2
µ(F )) ∩ C(]0, T[ ; domL2

µ(F )∆µ).

2. For the Nonhomogeneous problem:

• There is a unique solution of the non-homogeneous heat problem given by the Duhamel formula,


u(t, X) = St u0 +

∫ t

0
St−s g(s) ds

=
∫
F
K(t, X, Y)u0(Y)dµ(Y) +

∫ t

0

∫
F
K(t− s, X, Y)g(s, Y) dµ(y) ds

u(0, x) = u0(x)

where

lim
t→0
‖ ut − u0 ‖L2

µ(F ) = 0

u(t, Pi) = 0 (resp. ∂nu(t, Pi) = 0) for Pi ∈ V0

• The regularity of the solution is u ∈ C1(]0, T[ ; L2
µ(F )) ∩ C(]0, T[ ; domL2

µ(F )∆µ).

Proof.

1. We refer to [Kig01].

2. It is clear that the Duhamel formula solves the non-homogeneous problem, the uniqueness can
also be deduced by considering two solutions u1 and u2, the difference Z = u1 − u2 leads to an
homogeneous problem
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∂tZ = ∆µZ in ]0, T[×F
Z = 0 (resp. ∂nu(t, Pi) = 0) on ]0, T[×V0

Z(0, X) = 0 in F

with null solution Z = 0, which implies the uniqueness.

The regularity of the solution is a consequence of the homogeneous case.

Theorem 1.10.7. Parabolic Maximum Principle [Kig01]

Let us denote by u : [0, ∞[×F −→ R the solution of homogeneous heat problem. Then, for any T > 0,

max
UT

u(t, X) = max
∂UT

u(t, X)

min
UT

u(t, X) = min
∂UT

u(t, X)

where UT = [0, T]×F and ∂UT = {0} × F ∪ [0, T]×V0.



Chapter 2

Numerical Analysis on Fractals and Applications
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Following the seminal work of Jun Kigami [Kig89], [Kig93], [Kig01], [Kig03] in the field of analy-
sis on fractals, the natural step was to explore the numerical related areas.

It has been initiated, in the case of he Sierpiński gasket, by Kyallee Dalrymple, Robert S. Strichartz,
and Jade Vinson [DSV99], who gave an equivalent method for the finite difference approximation.
More precisely, the authors use the spectral shape of the solution (heat kernel), which involves
eigenvalues and eigenvectors, an therefore calls for an approximation of the eigenvalues. This work
has been followed by the one of Nizare Riane and Claire David in [RD17b], [RD19], [RD20b], where
they establish numerical analysis of the finite difference method in the case of Sierpiński simplices.

On the other hand, Michael Gibbons, Arjun Raj and Robert S. Strichartz [GRS01] described how
one can build approximate solutions, by means of piecewise harmonic, or biharmonic, splines, again
in the case of SG. They go so far as giving theoretical error estimates, through a comparison with
experimental numerical data.

Finally, The finite volume method was introduced by Nizare Riane and Claire David [RD21a] by
exploiting the average method defined by Robert S. Strichartz in [Str01].

2.1 the finite difference method

As in the smooth case, numerical methods can be used to approximate solutions of partial differ-
ential equations. The first method discussed in the fractal case is the finite difference method.

The principle of the method is simple: given the self-similar Laplacian with respect to the measure
µ, on a self similar set F , we exploit the pointwise formula

∆µu(X) = lim
m→+∞

δm ∆mu(X)

for some normalization constant δm. The idea is to use the sequence of graph approximations (Fm)m∈N,
and the sequence of associated graph Laplacians, as an approximation of ∆µ which can lead to:

∆µu(X) ≈ δm ∆mu(X) ·

The goal is to prove that the induced scheme is consistent, stable and then convergent.

2.1.1 The Finite Difference Method, for the Heat Equation on Sierpiński Simplices

In the sequel, we place ourselves in the Euclidean space of dimension d− 1 for a strictly positive
integer d, referred to a direct orthonormal frame. The usual Cartesian coordinates will be denoted
by (x1, x2, . . . , xd−1).

Let us introduce the family of contractions fi, 1 6 i 6 d, of fixed point Pi such that, for any X ∈ Rd−1,
and any integer i belonging to {1, . . . , d},

fi(X) =
1
2
(X + Pi) ·
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According to [Hut81], there exists a unique subset SS ⊂ Rd−1 such that

SS =
d⋃

i=1

fi(SS)

which will be called the Sierpiński Simplex.

Following the construction of chapter 1, we denote by V0 the boundary set of points

{P1, . . . , Pd} ·

and the prefractal graph of order 0 to be the complete graph on V0, that we will denote by SS0.

For any strictly positive integer m, we set

Vm =
d⋃

i=1

fi (Vm−1) ·

The sequence of prefractal graphs (SSm)m∈N? is constituted according to definition 1.3.5. We
will denote, in the following, by Nm the number of vertices of the graph SSm.

Proposition 2.1.1.

Given a natural integer m, we will denote by Nm the number of vertices of the graph SSm. One has

N0 = d

and, for any strictly positive integer m,

Nm = dNm−1 −
d (d− 1)

2
·

Proof.

For any strictly positive integer m, the graph SSm is the union of d copies of the graph SSm−1.
Each copy shares a vertex with the other ones. So, one may consider the copies as the vertices of a

complete graph Kd, the number of edges is equal to
d (d− 1)

2
, which leads to

d (d− 1)
2

vertices to
take into account.

Remark 2.1.1.

One may check that Nm =
dm+1 + d

2
.



2.1 the finite difference method 43

Formulation of the Problem

Let us denote by T a strictly positive real number, by N0 the cardinal of V0, and by Nm the cardinal
of Vm. We may now consider a solution u of the problem:

∂u
∂t

(t, X)− ∆µu(t, X) = 0 ∀ (t, X) ∈ ]0, T[×SS

u(t, X) = 0 ∀ (t, X) ∈ [0, T[× ∂SS

u(0, X) = g(x) ∀X ∈ SS

In order to define a numerical scheme, one may use a first order forward difference scheme to

approximate the time derivative
∂u
∂t

. The Laplacian is approximated by means of the sequence of

graph Laplacians (∆m u)m∈N? , defined on the sequence of graphs (SSm)m∈N? .

To this purpose, we fix a strictly positive integer N, and set

h =
T
N
·

One has, for any integer k belonging to {0, . . . , N − 1}:

∀X ∈ SS :
∂u
∂t

(kh, X) =
1
h
(u((k + 1) h, X)− u(kh, X)) +O(h)

According to [Str06], the Laplacian on Sierpiński simplices SS is given by

∀X ∈ SS : ∆µu(t, X) = lim
m→+∞

r−m
(∫

SS
ψ
(m)
Xm

dµ

)−1
 ∑

Xm∼m Y
u(t, Y)− u(t, Xm)


where, for any natural integer m, Xm ∈ Vm \V0, ψ

(m)
Xm

a piecewise harmonic function as in theorem
1.6.3, 0 < r < 1 the normalization constant in equation 8, and where

lim
m→∞

Xm = X ·

This enables one to approximate the Laplacian, at a mth order, m ∈ N?, using the graph
normalized Laplacian as follows:

∀ k {0, . . . , N − 1} , ∀X ∈ SS : ∆u(t, X) ≈ r−m
(∫

SS
ψ
(m)
Xm

dµ

)−1
 ∑

Xm∼m Y
u(kh, Y)− u(k h, Xm)

 ·
By combining those two relations, one gets the following scheme, for any integer k belonging

to {0, . . . , N − 1}, any point Pj of V0, 1 6 j 6 N0, and any X in the set Vm \V0,

(SH)


um

h ((k + 1) h, X)− um
h (k h, X)

h
= r−m

(∫
SS

ψ
(m)
Xm

dµ
)−1

 ∑
X∼

m
Y

um
h (k h, Y)− um

h (kh, X)


um

h (k h, Pj) = 0
um

h (0, X) = g(X)

Let us define the approximate equation as
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um
h ((k + 1) h, X) = um

h (k h, X) + h r−m
(∫

SS
ψ
(m)
Xm

dµ

)−1
 ∑

X∼
m

Y
um

h (k h, Y)− um
h (k h, X)

 · (23)

∀ k ∈ {0, . . . , N − 1} , ∀X ∈ Vm \ V0. We now fix m ∈ N, and consider any X ∈ Vm \ V0 in the
addresses form X = fW (Pi) = {W , Pi}, where W ∈ Σm = {1, . . . , d}m is a word of length m, and
where Pi, 1 6 i 6 N0 belongs to V0.

This induce a natural ordering of the vertices in Vm, and enables one to introduce, for any integer k
belonging to {0, . . . , N − 1}, the solution vector U(k) as

Um
h (k) =

 um
h (k h, X1)

...
um

h (k h, XNm−d)



which satisfies the recurrence relation:

Um
h (k + 1) = A Um

h (k) (24)

where

A = INm−d − h ∆̃m (25)

and where INm−d denotes the (Nm − d)× (Nm − d) identity matrix, and ∆̃m the (Nm − d)× (Nm − d)
normalized Laplacian matrix.

Remark 2.1.2. Natural order

The natural order induced by the couple {W , Pi} is perturbed by the fact that a point may
have multiple addresses, we solve the problem by assigning to a vertex an address of the lowest
lexicographic order.

Theoretical Study of the Error, for Hölder Continuous Functions

In the spirit of the work of Robert S. Strichartz [Str99], [Str12], it is interesting to consider the
case of Hölder continuous functions. Why? First, Hölder continuity implies continuity, which is a
required condition for functions in the domain of the Laplacian (we refer to our work [RD17b] for
further details).

Second, a Hölder condition for such a function will result in fruitful estimates for its Laplacian,
which is a limit of difference quotients.
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Let us thus consider a function u in the domain of the Laplacian, and the nonnegative real

constant α =
ln(r)

2 ln(R)
given in remark 1.6.2, such that

∀ (X, Y) ∈ SS2, ∀ t > 0 : |u(t, X)− u(t, Y)| 6 C(t) |X−Y|α

where C denotes a positive function of the time variable t.

Given a strictly positive integer m, due to

∆mu(t, X) = ∑
Y∈Vm, Y∼

m
X
(u(t, Y)− u(t, X)) ∀ t > 0, ∀X ∈ Vm \V0

thus, given a strictly positive integer m, its Laplacian is defined as the limit

∆µu(t, X) = lim
m→+∞

r−m
(∫

SS
ψ
(m)
Xm

dµ

)−1

∆mu(t, Xm) ∀ t > 0, ∀X ∈ SS

where (Xm ∈ Vm \V0)m∈N is a sequence a points such that:

lim
m→+∞

Xm = X

and where r denotes the normalization constant, ψ
(m)
Xm

a harmonic spline function, and where

∆mu(t, X) = ∑
Y∈Vm, Y∼

m
X
(u(t, Y)− u(t, X)) ∀ t > 0, ∀X ∈ Vm \V0 ·

Let us now introduce a strictly positive number δij = |Pi − Pj|, for any Pi belonging to the set V0,
and any Pj such that Pj∼Pi. On the one hand, we set: δ = maxi,j δij.

On the other hand, we define R as the maximum contraction ratio of the similarities fi (note that,

in the case of Sierpiński simplices, R =
1
2

).

One has then, for any X belonging to the set Vm \V0, any integer k belonging to {0, . . . , N − 1},
and any strictly positive number h,

∣∣∣∣∣r−m
(∫

SS
ψ
(m)
Xm

dµ

)−1
∣∣∣∣∣ h |∆mu(k h, X)| 6

∣∣∣∣∣r−m
(∫

SS
ψ
(m)
xm dµ

)−1
∣∣∣∣∣ h ∑

Y∈Vm, Y∼
m

X
|u(k h, Y)− u(k h, X)|

6

∣∣∣∣∣r−m
(∫

SS
ψ
(m)
Xm

dµ

)−1
∣∣∣∣∣ h C(k h) ∑

Y∈Vm, Y∼
m

X
|X−Y|α

6

∣∣∣∣∣r−m
(∫

SS
ψ
(m)
Xm

dµ

)−1
∣∣∣∣∣ h C(k h) ∑

m |Y∈Vm, Y∼
m

X
δα Rm α

6

∣∣∣∣r−m
(∫

SS
ψ
(m)
Xm

dµ
)−1

∣∣∣∣ h C(k h)
+∞

∑
p=0

δα Rp α

= δα

∣∣∣∣∣r−m
(∫

SS
ψ
(m)
Xm

dµ

)−1
∣∣∣∣∣ h C(k h)

(1− Rα)
·

We have used the fact that, for X ∼
m

Y, X and Y have addresses such that:
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X = fW (Pi) , Y = fW (Pj)

for some Pi and Pj in V0 andW ∈ Σm. May one set

R(W) = RW1 RW2 . . . RWm = Rm

we then obtain that

|X−Y| =
∣∣ fW (Pi)− fW (Pj)

∣∣ = R(W)
∣∣Pi − Pj

∣∣ 6 Rm δ ·
The scheme (SH) enables us to write

|u((k + 1) h, X)− u(k h, X)| 6 δα

∣∣∣∣∣r−m
(∫

SS
ψ
(m)
Xm

dµ

)−1
∣∣∣∣∣ h C(k h)

(1− 1
2

α
)

·

One may note that a required condition for the convergence of the scheme is

lim
m→+∞, h→0+

∣∣∣∣∣r−m
(∫

SS
ψ
(m)
Xm

dµ

)−1
∣∣∣∣∣ h C(k h) = 0 ·

We take C = supk C(kh), it reduces to the necessary condition

lim
m→+∞, h→0+

∣∣∣∣∣r−m
(∫

SS
ψ
(m)
Xm

dµ

)−1
∣∣∣∣∣ h = 0 · (26)

According to [FS92], in the case of Sierpiński simplices, rm =

(
d

d + 2

)m

, α = −
ln
(

d
d+2

)
2 ln(2)

, a

simple calculus as in [Str06] shows that
∫
SS

(
ψ
(m)
Xm

dµ
)
=

2
dm+1 , the relation reduces to

lim
m→+∞, h→0+

d(d + 2)m

2
h = 0 · (27)

Consistency, Stability and Convergence

the scheme error

Let us consider a continuous function u defined on SS. On the one hand, for all k in {0, . . . , N − 1},
we have that

∀X ∈ SS :
∂u
∂t

(k h, X) =
1
h
(u((k + 1) h, X)− u(k h, X)) +O(h) ·

On the other hand, given a strictly positive integer m, X ∈ Vm \V0, and a harmonic function ψ
(m)
X

on the mth-order cell, taking the value 1 on X and 0 on the others vertices (see [Str99]):

∫
SS

ψ
(m)
X (y) (∆u(X)− ∆u(Y)) dµ(Y) =

2
d

d−m∆u(X)−
(

d + 2
d

)m

∆mu(X)
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Then,

∆u(X)− d
2
(d + 2)m∆mu(X) =

d
2

dm
∫
SS

ψ
(m)
X (Y)(∆u(X)− ∆u(Y)) dµ(Y) ·

Let us now consider the case of Hölder continuous functions, as in the above,

∀ (X, Y) ∈ SS2 : |u(X)− u(Y)| 6 C |X−Y|α

where C and α are nonnegative real constants.

Given a strictly positive integer m, since

∆mu(X) = ∑
Y∈Vm, Y∼

m
X
(u(Y)− u(X)) ∀ t > 0, ∀X ∈ Vm \V0

we obtain that

|∆mu(X)| . |Y− X|α ∀X ∈ Vm \V0 ,

and, thus,

|∆u(X)| . |Y− X|α ∀X ∈ SS \V0 ·

One may note that

d
2

dm
∫
SS

ψ
(m)
X (Y) (∆u(X)− ∆u(Y)) dµ(Y)

is the mean value of ∆u(X) − ∆u(Y) over the mth-order cell containing X, and ∆u is a Hölder-
continuous function, so we can apply the mean value formula for integrals; there exists cm in the
mth-order cell containing X such that :

∣∣∣∣∆u(X)− d
2
(d + 2)m ∆mu(X)

∣∣∣∣ = ∆u(X)− ∆u(cm)

. |X− cm|α

.
(

1
2

)m α

·

In the end,

∆u(x) =
d
2
(d + 2)m ∆mu(x) +O(2−m α)

consistency

Definition 2.1.1 (Consistency Error - Consistent Scheme).

The consistency error of our scheme is given by
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εm
k,i = O(h) +O(2−mα) 0 6 k 6 N − 1, 1 6 i 6 Nm − d ·

The scheme is said to be consistent if the consistency error go to zero when h→ 0 and m→ +∞,
for some norm.

One may check that

lim
h→0, m→+∞

εm
k,i = 0 ·

The scheme is then consistent.

stability

Definition 2.1.2.

Let us recall that the spectral norm ρ is defined as the induced norm of the norm ‖ · ‖2. It is
given, for a square matrix A, by:

ρ(A) =
√

λmax (AT A)

where λmax stands for the spectral radius.

Proposition 2.1.2.

Let us denote by R the spectral decimation function in definition 1.8.1 such that:

∀ x 6= 0 : R(x) = x (d + 2− x).

According to [FS92], the eigenvalues λm, m ∈ N, of the discrete Laplacian ∆m are related recursively

∀m > 1 : λm−1 = R(λm) ·

Remark 2.1.3.

The eigenvalues λ of the self-similar Laplacian ∆µ are obtained as limits of the eigenvalues λm of
the discrete Laplacian ∆m:

λ = lim
m→+∞

r−m
(∫

SS
ψ
(m)
Xm

dµ

)−1

λm ·
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We deduce that, for any strictly positive integer m,

λ±m =
(d + 2)±

√
(d + 2)2 − 4 λm−1

2

We introduce the functions φ− and φ+ such that, for any x in
]
−∞,

(d + 2)2

4

]
,

φ−(x) =
(d + 2)−

√
(d + 2)2 − 4 x
2

, φ+(x) =
(d + 2) +

√
(d + 2)2 − 4 x
2

·

We have that:

φ+(0) = d + 2 , φ−
(
(d + 2)2

4

)
=

d + 2
2

, φ−(0) = 0 and φ+

(
(d + 2)2

4

)
=

d + 2
2
·

The function φ− is increasing. Its fixed point is x−,? = 0.

The function φ+ is non increasing. Its fixed point is x+,? = (d + 2)− 1.

One may also check that the following two maps are contractions, since:∣∣∣∣ d
dx

φ−(0)
∣∣∣∣ = 1√

(d + 2)2
=

1
d + 2

< 1

and: ∣∣∣∣ d
d x

φ+ ((d + 2)− 1)
∣∣∣∣ = 1√

(d + 2)2 − 4 (d + 2) + 4
=

1
d
< 1.

In [Shi91], Tadashi Shima shows that the discrete Laplacien ∆1 on V1 has Dirichlet eigenvalues
d + 2 with multiplicity d− 1, and 2 with multiplicity 1, and gives the complete spectrum for m > 1.

The complete Dirichlet spectrum, for m > 2, is generated by the recurrent stable maps (convergent
towards the fixed points) φ+ and φ− with initial values 2, d + 2 and 2 d.

One may finally conclude that, for any natural integer m,

0 6 λm 6 2 d · (28)

Definition 2.1.3.

The scheme is said to be:

• unconditionally stable if there exist a constant C < 1 independent of h and m such that:

ρ(Ak) 6 C ∀ k ∈ {1, . . . , N}

• conditionally stable if there exist three constants α > 0, C1 > 0 and C2 < 1 such that:

h 6 C1 ((d + 2)−m)α =⇒ ρ(Ak) 6 C2 ∀ k ∈ {1, . . . , N}
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Proposition 2.1.3.

Let us denote by γi, i = 1, . . . ,Nm − d, the eigenvalues of the matrix A of equation 37. Then,

∀ i = 1, . . . ,Nm − d : h (d + 2)m 6
2
d2 =⇒ |γi| 6 1 · (29)

We designate this result by Courant–Friedrichs–Lewy (CFL) stability condition.

Proof.
Let us recall our scheme can be written, for any integer k belonging to {1, . . . , N}:

(SH)


um

h ((k + 1) h, Xi)− um
h (k h, Xi)

h
=

d
2
(d + 2)m ∑

Xi∼m Y
(um

h (k h, Y)− um
h (kh, Xi)) ∀ 1 6 i 6 Nm − d

um
h (k h, Pj) = 0 Pj ∈ V0

um
h (0, Xi) = g(Xi) 1 6 i 6 Nm − d

i.e., under matrix form,

Um
h (k) =

 um
h (k h, X1)

...
um

h (k h, XNm−d)

 ∀ k ∈ {1, . . . , N} .

It satisfies the recurrence relation:

Um
h (k + 1) = A Um

h (k) ∀ k ∈ {1, . . . , N}

where

A = INm−d − h ∆̃m. ·

One may use the recurrence to obtain

Um
h (k) = Ak Um

h (0) ∀ k ∈ {1, . . . , N} ·

The eigenvalues γi of A are related to the discrete Laplacian eigenvalues λi, i = 1, . . . ,Nm − d, by
the formula

γi = 1− h (
d
2
(d + 2)m)λi ·

Using the spectral bound in equation 28, one has, for any integer i belonging to {1, . . . ,Nm − d} :

1− h
d
2
(d + 2)m (2 d) 6 γi 6 1

which leads to

h (d + 2)m 6
2
d2 =⇒ |γi| 6 1 ·
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Remark 2.1.4.

We can compare the CFL condition 29 on Sierpiński simplices with the classical CFL condition on
a smooth domains of Rd. To this purpose, we set δt = h, δx = 2−m, we then have that

δt . (d + 2)−m = 2
− ln(d + 2)

ln(2)
m

= (δx)DW (SS)

where DW (SS) designate the Walk dimension.

convergence

Definition 2.1.4.

• The scheme is said to be convergent for the matrix norm ‖ · ‖ if:

lim
h→0, m→+∞

∥∥∥(u(kh, Xi)− um
h (k h, Xi))06k6N, 16i6Nm

∥∥∥ = 0 ·

• The scheme is said to be conditionally convergent for the matrix norm ‖ · ‖ if there exist two
real constants α and C such that :

lim
h6C((d+2)−m)α, m→+∞

∥∥∥(u(k h, Xi)− um
h (k h, Xi))06k6N, 16i6Nm

∥∥∥ = 0 ·

Theorem 2.1.4. Lax-Richtmyer for linear scheme

If the scheme is stable and consistent, then it is also convergent for the norm ‖ · ‖2,∞, such that:

∥∥∥(um
h (k h, Xi))06k6N,16i6Nm

∥∥∥
2,∞

= max
06k6N

(
d−m ∑

16i6Nm

|um
h (k h, Xi)|2)

) 1
2

·

Proof.
Let us set:

wk
i = u(k h, Xi)− uh

m(k h, Xi), 0 6 k 6 N, 1 6 i 6 Nm ·

One may check that,

wk
Nm−d+1 = · · · = wk

Nm
= 0 0 6 k 6 N

w0
i = 0 1 6 i 6 Nm − d ·

Let us now introduce, for any integer k belonging to {0, . . . , N},
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Wk =

 wk
1

...
wk
Nm−d

 , Ek =

 εm
k,1
...

εm
k,Nm−d


One has then W0 = 0, and, for any integer k belonging to {1, . . . , N − 1}:

Wk+1 = A Wk + h Ek ·

One finds recursively, for any integer k belonging to {0, . . . , N − 1},

Wk+1 = AkW0 + h
k−1

∑
j=0

Aj Ek−j−1 = h
k−1

∑
j=0

Aj Ek−j−1

Since the matrix A is a symmetric one, the CFL stability condition h (d + 2)m 6
2
d2 yields, for any

integer k belonging to {0, . . . , N},

|Wk| 6 h

(
k−1

∑
j=0
‖ A ‖j

) (
max

06k6j−1
|Ek|

)
6 h k

(
max

06k6j−1
|Ek|

)
6 h N

(
max

06k6j−1
|Ek|

)

6 T

 max
06k6j−1

(
Nm−d

∑
i=1
|εm

k,i|2
) 1

2
 ·

One deduces, then,

max
06k6N

(
d−m

Nm−d

∑
i=1
|wk

i |2)
) 1

2

= d−
m
2 max

16k6N
|Wk|

6
(

d−
m
2

)
T

 max
06k6N−1

(
Nm−d

∑
i=1
|εm

k,i|2
) 1

2


6
(

d−
m
2

)
T
(
(Nm − d)

1
2 max

06k6N−1, 16i6Nm−d
|εm

k,i|
)

=

√(
d−m dm+1 − d

2

)
T
(

max
06k6N−1, 16i6Nm−d

|εm
k,i|
)

= O(h) +O(2−mα)

= O((d + 2)−m) +O(2−mα)

= O(2−mα).

The scheme is thus convergent.
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Remark 2.1.5.

One has to bear in mind that, for piecewise constant functions u on the mth-order cells:

‖(um
h (k h, Xi))‖2 =

(
d−m ∑

16i6Nm

|um
h (kh, Xi)|2)

) 1
2

= ‖(um
h (k h, Xi))‖L2(SS) .

The Specific Case of the Implicit Euler Method

Let consider the implicit Euler scheme, for any integer k belonging to {0, . . . , N − 1}, any point Pj
of V0, 1 6 j 6 N0, and any X in the set Vm \V0 :

(SH)


um

h (k h, X)− um
h ((k− 1) h, X)

h
= r−m

(∫
SS

ψ
(m)
Xm

dµ
)−1

 ∑
X∼

m
Y

um
h (k h, Y)− um

h (kh, X)


um

h (k h, Pj) = 0
um

h (0, X) = g(X)

Let us define the approximate equation as:

um
h (k h, X)− h× r−m

(∫
SS

ψ
(m)
Xm

dµ

)−1
 ∑

X∼
m

Y
um

h (k h, Y)− um
h (k h, X)

 = um
h ((k− 1)h, X) · (30)

∀ k ∈ {0, . . . , N − 1} , ∀X ∈ Vm \V0. As previously done, we fix m ∈ N, and we use the natural
order (remark 2.1.2) to obtain, for any integer k belonging to {0, . . . , N − 1}, the solution vector U(k)
as before,

Um
h (k) =

 um
h (k h, X1)

...
um

h (k h, XNm−d)



It satisfies the recurrence relation:

Ã Um
h (k) = Um

h (k− 1) (31)

where

Ã = INm−d + h× ∆̃m (32)

and where INm−d denotes the (Nm − d)× (Nm − d) identity matrix, and ∆̃m the (Nm − d)× (Nm − d)
normalized Laplacian matrix.

Notice that the scheme is well defined: using the spectral bound 28, and designate the eigenvalues
of the matrix Ã by γ̃i, i = 1, . . . ,Nm − d, we get:
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1 6 γ̃i 6 1 +
d(d + 2)m

2
(2d)

Thus

1 6 |γ̃i| (33)

and the matrix Ã is invertible and

|γ̃−1
i | 6 1 · (34)

consistency, stability and convergence

i. The Scheme Error Let us denote by u a function defined on SS. On the one hand, for all k
in {0, . . . , N − 1},

∀X ∈ SS :
∂u
∂t

(kh, X) =
1
h
(u(kh, X)− u((k− 1)h, X)) +O(h) ·

On the other hand, for X ∈ Vm \V0, we have that

∆u(x) =
d
2
(d + 2)m∆mu(x) +O(2−mα) ·

ii. Consistency The consistency error of the implicit Euler scheme is given by :

εm
k,i = O(h) +O(2−mα) 0 6 k 6 N − 1, 1 6 i 6 Nm − d

We can check that

lim
h→0,m→∞

εm
k,i = 0

The scheme is then consistent.

iii. Stability Under the definition 2.1.3, the implicit scheme is unconditionally stable thanks to
the spectral bound 34.

iv. Convergence

Theorem 2.1.5.

The implicit euler scheme is convergent for the norm ‖ . ‖2,∞ of theorem 2.1.4.
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Proof.
Let us set

wk
i = u(kh, Xi)− uh

m(kh, Xi), 0 6 k 6 N, 1 6 i 6 Nm ·

One can check that

wk
Nm−d+1 = · · · = wk

Nm
= 0 0 6 k 6 N

w0
i = 0 1 6 i 6 Nm − d ·

We set

Wk =

 wk
1

...
wk
Nm−d

 , Ek =

 εm
k,1
...

εm
k,Nm−d

 ·
Thus, W0 = 0, and, for 0 6 k 6 N − 1,

Wk+1 = Ã−1Wk + h Ek 0 6 k 6 N − 1 ·

We find, by induction, for 0 6 k 6 N − 1, that

Wk+1 = Ã−kW0 + h
k−1

∑
j=0

Ã−jEk−j−1

= h
k−1

∑
j=0

Ã−jEk−j−1 ·

Due to the stability of the scheme, for k = 0, . . . , N, we have that

|Wk| 6 h

(
k−1

∑
j=0
‖ Ã−1 ‖j

)(
max

06k6j−1
|Ek|

)
6 h k

(
max

06k6j−1
|Ek|

)
6 h N

(
max

06k6j−1
|Ek|

)

6 T

 max
06k6j−1

(
Nm−d

∑
i=1
|εm

k,i|2
) 1

2
 ·
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One deduces, then, that

max
06k6N

(
d−m

Nm−d

∑
i=1
|wk

i |2)
) 1

2

= (d)−
m
2 max

16k6N
|Wk|

6
(

d−
m
2

)
T

 max
06k6N−1

(
Nm−d

∑
i=1
|εm

k,i|2
)1/2


6
(

d−
m
2

)
T
(
(Nm − d)

1
2 max

06k6N−1, 16i6Nm−d
|εm

k,i|
)

=

√(
d−m dm+1 − d

2

)
T
(

max
06k6N−1, 16i6Nm−d

|εm
k,i|
)

=
(
O(h) +O(2−mα)

)
·

The scheme is thus convergent thanks again to equation 27.

Numerical Results - Gasket and Tetrahedron

recursive construction of the matrix associated to the sequence of graph lapla-
cians

We describe next our recursive algorithm used to construct matrix, related to the sequence of
graph Laplacians, in the case of Sierpiński Gasket and Tetrahedron.

C1(n,m) C2(n,m)

C3(n,m)

Figure 10: mth-order cell of the Sierpiński Gasket.

i. The Sierpiński Gasket. One may note, first, that, given a strictly positive integer m, a mth-
order triangle has three corners, that we will denote by C1, C2 and C3 ; the (m + 1)th-order triangle
is then constructed by connecting three m copies T(n) with n = 1, 2, 3.

The initial triangle is labeled such that C1 ∼ 1, C2 ∼ 2 and C3 ∼ 3 (see figure 10).
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C1(3,m) C2(3,m)

C3(3,m)

The third copy T(3)

C1(1,m) C2(1,m)

C3(1,m)

The first copy T(1)

C1(2,m) C2(2,m)

C3(2,m)

The second copy T(2)

Figure 11: The three copies.

The fusion is done by connecting C2(1, m) ∼ C1(2, m), C3(1, m) ∼ C1(3, m), and C3(2, m) ∼
C2(3, m) (see figure 11).

The label of the corner vertex can be obtained by means of the following recursive sequence, for
any strictly positive integer m,

C1(n, m) = 1 + (n− 1)Nm−1

C2(n, m) = I2(m) + (n− 1)Nm−1

C3(n, m) = nNm−1

where

N−1 = 3 , I2(0) = 0

I2(m) = I2(m− 1) +Nm−2 − 1.

1. One may start with the initial triangle with the set of vertices V0. The corresponding matrix is
given by:

A0 =

 2 −1 −1
−1 2 −1
−1 −1 2
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2. If m = 0, the Laplacian matrix is A0, else, Am is constructed recursively from three copies of the
Laplacian matrices Am−1 of the graph Vm−1. First, we build, for any strictly positive integer m,
the block diagonal matrix:

Bm =

Am−1 0 0
0 Am−1 0
0 0 Am−1


3. One may then introduce, for any strictly positive integer m, the connection matrix as in [FL04]:

Cm =

(
C2(1, m) C3(1, m) C3(2, m)

C1(2, m) C1(3, m) C2(3, m)

)
4. One has then to sum the rows (resp. the columns) Cm(2, j) and Cm(1, j), and delete the row

and the column Cm(2, j).

Figure 12: mth-order cell of the Sierpiński Tetrahedron.

ii. The Sierpiński Tetrahedron. One may note, first, that, given a strictly positive integer m,
a mth-order tetrahedron has four corners C1, C2, C3 and C4 (see figure 5), and that the (m+ 1)th-order
triangle is constructed by connecting four m copies T(n), with n = 1, 2, 3, 4 (see figure 6, 7, 8, 9).

As in the case of the triangle, the initial tetrahedron is labeled such that C1 ∼ 1, C2 ∼ 2, C3 ∼ 3
and C4 ∼ 4.

The fusion is done by connecting C2(1, m) ∼ C1(2, m), C3(1, m) ∼ C1(3, m), C4(1, m) ∼ C1(4, m),
C3(2, m) ∼ C2(3, m), C4(2, m) ∼ C2(4, m), C4(3, m) ∼ C3(4, m).
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The fourth copy T(4).

The first copy T(1). The second copy T(2). The third copy T(3).

Figure 13: The four copies.

The number of corners can be obtained by means of the following recursive sequence, for any
strictly positive integer m,

C1(n, m) = 1 + (n− 1)Nm−1

C2(n, m) = I2(m) + (n− 1)Nm−1

C3(n, m) = I3(m) + (n− 1)Nm−1

C4(n, m) = nNm−1

where:

N−1 = 3

I2(0) = 0

I2(m) = I2(m− 1) +Nm−2 − 1

I3(1) = 3

I3(m) = I3(m− 1) + 2×Nm−2 − 3

1. One starts with initial tetrahedron with the set of vertices V0. The corresponding matrix is
given by:



2.1 the finite difference method 60

A0 =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 ·

2. If m = 0 the Laplacian matrix is A0, else, for any strictly positive integer m, Am is constructed
recursively from three copies of the Laplacian matrices Am−1 of the graph Vm−1. Thus, we
build the block diagonal matrix

Bm =


Am−1 0 0 0

0 Am−1 0 0
0 0 Am−1 0
0 0 0 Am−1

 ·

3. We then write the connection matrix:

Cm =

(
C2(1, m) C3(1, m) C3(2, m) C4(1, m) C4(2, m) C4(3, m)

C1(2, m) C1(3, m) C2(3, m) C1(4, m) C2(4, m) C3(4, m)

)
·

4. One then has to sum the rows (resp. the columns) Cm(2, j) to Cm(1, j), and delete the row and
the column Cm(2, j).

numerical results

i. The Sierpiński Gasket

In the sequel, we present the numerical results for m = 6, T = 1 and N = 2× 105.
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The graph of the approached solution of the heat equation for k = 0.

The graph of the approached solution of the heat equation for k = 10.
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The graph of the approached solution of the heat equation for k = 100.

The graph of the approached solution of the heat equation for k = 500.
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The graph of the approached solution of the heat equation for k = 1000.

ii. The Sierpiński Tetrahedron

In the sequel, we present the numerical results for m = 5, T = 1 and N = 105.

Our heat transfer simulation consists in a propagation scenario, where the initial condition is a
harmonic spline g, the support of which being a m-cell, such that it takes the value 1 on a vertex x,
and 0 otherwise.

The color function is related to the gradient of temperature, high values ranging from red to blue.
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The graph of the approached solution of the heat equation for k = 0.

The graph of the approached solution of the heat equation for k = 10.
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The graph of the approached solution of the heat equation for k = 50.

The graph of the approached solution of the heat equation for k = 100.

An interesting feature in our work is that, contrary to existing ones, we do not rely on heat kernel
estimates. Using a direct method has thus enabled us to discuss the choices of parameters as the
integer m, the step h, and the convergence.

As expected, the numerical scheme is unstable and diverges until one respects the stability
condition between h and m. Also, the propagation process evolves with time, directed from hot
regions, towards cold ones.
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The graph of the approached solution of the heat equation for k = 500.

2.2 the finite volume method

The finite volume method on fractals consists on local integration of the partial differential
equation over a region fW (F ), and use matching conditions to glue the solution. The solution is
then given as a mean value over the region fW (F ).

2.2.1 The Finite Volume Method on Sierpiński Simplices

In order to define the finite volume method on Sierpiński simplices, we need to introduce a new
sequence of graphs.

Definition 2.2.1.

For any natural integer m, we introduce the graph SSm, built from SSm in the following way:

i. a cell in SSm becomes a vertex in SSm;

ii. two vertices are linked in SSm if the corresponding cells in SSm have a vertex in common.

iii. The vertices set of SSm is Vm and their number is dm.
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Example 2.2.1. In the case of the Sierpiński Gasket:

Figure 14: SS1 Figure 15: SS1

Figure 16: SS2 Figure 17: SS2

Formulation of the Problem

Notation. Let us again denote by T a strictly positive real number, and by N a strictly positive
integer. We set:

h =
T
N

, tn = n× h , n = 0, 1, . . . , N − 1

We consider again the solution u of the problem:
∂u
∂t

(t, X)− ∆u(t, X) = 0 ∀(t, X) ∈ ]0, T[×SS

u(t, X) = 0 ∀ (t, X) ∈ [0, T[× ∂SS

u(0, X) = g(X) ∀X ∈ SS
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Definition 2.2.2.

Given a natural integer m, we define the mth-control volume as the mth-order cell

Cj
m = fW j(SS) , W j ∈ Σm = {1, . . . , d}m

whereW j is some word of length m, and whose mth-order cells neighbors are

C`(j)
m = fW `(j)(SS) , W `(j) ∈ {1, . . . , d}m , `(j) = 1, . . . , d− 1 ·

Remark 2.2.1.

One may check that

dm⋃
j=1

Cj
m = SS ·

We define, then,

u0
j =

1

µ(Cj
m)

∫
Cj

m

g(x)dµ(x) ·

The local version of Gauss-Green formula 15 enables one to write∫
Cj

m

∆µu dµ = ∑
x∈∂Cj

m

∂nu(x)

where ∂Cj
m stands for the boundary points FW j(V0), and, given a natural integer n, to integrate the

heat equation over Cj
m × ]tn, tn+1[:

∫
Cj

m

u(tn+1, x)− u(tn, x) dµ =
∫ tn+1

tn
∑

x∈∂Cj
m

∂nu(t, x) dt (35)

The boundary points admit a double writing

fW j(Pi) = fW `(j)(Pk)

for some (i, k) ∈ {1, . . . , d}2, and `(j) ∈ {1, . . . , d− 1}. One may use the approximation
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∂nu(t, X) ≈ r−m ∑
Y∼

m
X

Y∈Cj
m

(u(t, X)− u(t, Y))

= r−m

(d− 1)u(t, X)− ∑
Y∼

m
X

Y∈Cj
m

u(t, Y)



= r−m

d u(t, X)− u(t, X)− ∑
Y∼

m
X

Y∈Cj
m

u(t, Y)


≈ r−m d

(
u(t, X)− ut

j

)
in conjunction with

1
d ∑

Y∈∂Cj
m

u(t, Y) ≈ 1

µ(Cj
m)

∫
Cj

m

u(t, x)dµ(x) = ut
j ·

We then introduce the matching condition 1.6.7

∂nu(t, fW j(Pi)) = −∂nu(t, fW `(j)(Pk)) ,

i.e.,

r−m d
(

u(t, X)− ut
j

)
= −r−m d

(
u(t, X)− ut

`(j)

)
·

This implies that

u(tn, X) =

(
un

j + un
`(j)

)
2

·

The normal derivative writes then

∂nu(t, X) = r−md


(

ut
j + ut

`(j)

)
2

− ut
j


= r−m d

2

(
ut
`(j) − ut

j

)
.

Thus, back to the equation 35, we have that

un+1
j = un

j +
h

µ(Cj
m)

∑
X∈∂Cj

m

∂nu(tn, X) ·

One may now build the finite volume scheme:

un+1
j = un

j +
h

µ(Cj
m)

r−m d
2 ∑

j∼
m
`(j)

(
ut
`(j) − ut

j

)
(36)

where j ∼
m
`(j) means that the cell fW j(SS) and fW `(j)(SS) are neighbors.
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Remark 2.2.2.

i. One may note that we have found miraculously the finite difference scheme.

ii. We can also define the backward scheme:

un
j = un−1

j +
h

µ(Cj
m)

r−m d
2 ∑

j∼
m
`(j)

(
ut
`(j) − ut

j

)

Let us now fix m ∈ N, and denote again any mth control volume Cj
m as Cj

m = fW j(SS),
W j ∈ Σm = {1, . . . , d}m.

This enables us to introduce, for any integer n belonging to {0, . . . , N − 1}, the solution vector
U(n) as

U(n) =

 un
1
...

un
dm



by using the fact that the number of mth-order cells is dm. It satisfies the recurrence relation:

U(n + 1) = A U(n) (37)

where

A = Idm − h
d
2

∆̃m

and where Idm denotes the dm × dm identity matrix, and ∆̃m the dm × dm Laplacian normalized matrix.

Consistency, Stability and Convergence

theoretical study of the error

Let us consider a continuous function u defined on SS. On the one hand, for all n in {0, . . . , N − 1},

∀X ∈ SS :
∫ tn+1

tn

u(t, X)dt = h u(tn, X) +O(h2) ·

On the other hand, given a strictly positive integer m, X ∈ Vm \V0, and a harmonic function ψ
(m)
X

on the mth-order cell, taking the value 1 on X = FW j(Pi) = FW l (Pk) and 0 on the others vertices (see
[Str99]), and using the corollary of the Gauss-Green formula 15:∫

fW j (SS)
∆µu ψ

(m)
X dµ = ∂nu(X)− r−m ∑

Y∼
m

X

Y∈ fW j (SS)

(u(t, X)− u(t, Y))
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We add the same relation on the neighbor cell fW l (SS) and we use the matching condition 1.6.7
to obtain

∫
SS

∆µu ψ
(m)
X dµ = r−m ∆mu(X)

= O
(∫

SS
ψ
(m)
X dµ

)
We just proved that

∂nu(X)− r−m ∑
Y∼

m
X

Y∈ fW j (SS)

(u(t, X)− u(t, Y)) = O
(∫

SS
ψ
(m)
X dµ

)
·

In the end, for the discrete average, on a mth-order cell fW j(SS):

1
µ( fW j (SS))

∫
FW j (SS)

u(t, X) dµ(X)− 1
d ∑

Y∈∂ fW j (SS)

u(t, Y) =
1

µ( fW j (SS))

∫
fW j (SS)

u(t, X)− 1
d ∑

Y∈∂ fW j (SS)

u(t, Y) dµ(X)

=
1

µ( fW j (SS))

∫
fW j (SS)

 1
d ∑

Y∈∂ fW j (SS)

u(t, X)− u(t, Y)

 dµ(X)

6 max
Y∈∂ fW j (SS)

‖ u(t, X)− u(t, Y) ‖∞

= δu(2−m)

where δu(·) is the continuity modulus of u (which is O(2−αm) if u is α-Hölderian, α > 0).

consistency

Proposition 2.2.1.

The scheme is consistent, because the consistency error tends towards zero when h→ 0 and m→ +∞,
for a given norm.

Proof.

For 0 6 n 6 N − 1, 1 6 i 6 dm, the consistency error of our scheme is given by:

εm
n,i = O(h2) +O

(∫
SS

ψ
(m)
X dµ

)
+ δ(2−m)

= O(h2) +O
(
d−m)+O(2−αm)

= O(h2) +O
(
2−αm) if u ∈ C0,α(SS)

One may check that

lim
h→0, m→+∞

εm
k,i = 0 ·

The scheme is then consistent.
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stability

Proposition 2.2.2.

Let us denote by R the real valued function, defined on R, through:

∀ x 6= 0 : R(x) = x (d + 2− x) ·

The eigenvalues λm, m ∈ N of the discrete Laplace operator on the sequence of graphs (SSm)m>1 satisfy
the recurrence relation:

∀m > 1 : λm−1 = R(λm) ·

Remark 2.2.3.

The eigenvalues in Proposition 2.2.2 just above are not to be confused with the eigenvalues of the
Laplace operator on the considered fractal. See, for instance, [Str06], Chapter 3, for further details.

Proof. of Proposition 2.2.2

Let us consider the sequence of graphs (SSm)m>1 related to the sequence of vertices (Vm)m>1.
The initial graph SS1 is just a d-simplex, and one may construct the next graph as the union of d
copies which are linked in the same manner as SS1; and so on.

We now fix m ∈ N, and choose a vertex X1 of SSm, of neighbors X2, . . . , Xd, Y, such that Y
belongs to another m-simplex (we can remark that the graph SSm is composed by d m-simplices).

We denote by u the eigenfunction related to the eigenvalue λm. On the one hand, we have that

(d− λm)u(X) =
d−1

∑
i=1

u(Xi) + u(Y) · (38)

On the other hand, with the same idea for the graph SSm+1: by considering the vertex ak
1 and

its neighbors ak
2, . . . , ak

d, al
h in the graph SSm+1, where al

h belongs to another m-simplex, we have for
every interior (non-boundary) vertex:

(d− λm+1)u(ak
i ) = ∑

j 6=i
u(ak

j ) + u(al
h) ·

Using the mean property

u(Xk) =
1
d

d

∑
i=1

u(ak
i )

one obtains, by adding ak
i to both sides of the eigenfunction relation

(d + 1− λm+1)u(ak
i ) = d u(Xk) + u(al

h) , (d + 1− λm+1)u(al
h) = d u(Xh) + u(ak

i )

which leads to
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Figure 18: SSm for the Sier-
piński triangle.

Figure 19: SSm+1 for the Sierpiński trian-
gle.

u(ak
i ) = d

((d + 1)− λm+1)u(Xk) + u(Xh)

(d + 2− λm+1)(d− λm+1)
·

Now, given a boundary vertex ci, we have that

((d− 1)− λm+1)u(ci) = ∑
j 6=i

u(cj)

(d− λm+1)u(ci) = d u(Xl) ,

u(ci) =
d u(Xl)

(d− λm+1)
·

Finally, by summation over all the u(ak
i ) and using the equation 38, we obtain that

λm = λm+1 (d + 2− λm+1) ·

We deduce that, for any strictly positive integer m,

λ±m =
(d + 2)±

√
(d + 2)2 − 4 λm−1

2
With a similar argument to paragraph 2.1.1, we get for any natural integer m, the spectral bound:

0 6 λm 6 2 d

and the following CFL stability condition:
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Proposition 2.2.3.

Let us denote by γi, i = 1, . . . , dm, the eigenvalues of the matrix A of the equation 37. Then:

∀ i = 1, . . . , dm : h (d + 2)m 6
2
d2 =⇒ |γi| 6 1.

convergence

Definition 2.2.3.

i. The scheme is said to be convergent for the matrix ‖ · ‖ if:

lim
h→0, m→+∞

∥∥∥∥∥∥
(

uk
j −

1

µ(Cj
m)

∫
Cj

m

g(x)dµ(x)

)
06k6N, 16j6dm

∥∥∥∥∥∥ = 0

ii. The scheme is said to be conditionally convergent for the matrix norm ‖ · ‖ if there exist two real
constants α and C such that :

lim
h6C((d+2)−m)α, m→+∞

∥∥∥∥∥∥
(

uk
j −

1

µ(Cj
m)

∫
Cj

m

g(x)dµ(x)

)
06k6N, 16j6dm

∥∥∥∥∥∥ = 0

Theorem 2.2.4.

If the scheme is stable and consistent, then it is also convergent for the norm ‖ · ‖2,∞, such that

∥∥∥∥(uk
j

)
06k6N,16j6dm

∥∥∥∥
2,∞

= max
06k6N

(
d−m ∑

16i6dm

∣∣∣uk
i

∣∣∣2) 1
2

·

Proof.

Let us set

wk
i = uk

j −
1

µ(Cj
m)

∫
Cj

m

g(x)dµ(x), 0 6 k 6 N, 1 6 j 6 dm ·

We now introduce, for any integer k belonging to {0, . . . , N}:

Wk =

 wk
1

...
wk

dm

 , Ek =

 εm
k,1
...

εm
k,dm

 ·
One has then W0 = 0, and, for any integer k belonging to {1, . . . , N − 1},
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Wk+1 = A Wk + h Ek ·

One finds recursively, for any integer k belonging to {0, . . . , N − 1}:

Wk+1 = AkW0 + h
k−1

∑
j=0

Aj Ek−j−1 = h
k−1

∑
j=0

Aj Ek−j−1 ·

Since the matrix A is a symmetric one, the CFL stability condition h (d + 2)m 6
2
d2 yields, for any

integer k belonging to {0, . . . , N − 1},

|Wk| 6 h

(
k−1

∑
j=0
‖ A ‖j

) (
max

06k6j−1
|Ek|

)
6 h k

(
max

06k6j−1
|Ek|

)
6 h N

(
max

06k6j−1
|Ek|

)

6 T

 max
06k6j−1

(
dm

∑
i=1
|εm

k,i|2
) 1

2
 ·

One deduces, then,

max
06k6N−1

(
d−m

dm

∑
i=1
|wk

i |2
) 1

2

= d−
m
2 max

16k6N−1
|Wk|

6
(

d−
m
2

)
T

 max
06k6N−1

(
dm

∑
i=1
|εm

k,i|2
) 1

2


6
(

d−
m
2

)
T
(
(dm)

1
2 max

06k6N−1, 16i6dm
|εm

k,i|
)

=

√(
d−m dm+1 − d

2

)
T
(

max
06k6N−1, 16i6dm

|εm
k,i|
)

= O(h2) +O(d−m) +O(2−αm)

= O((d + 2)−2m) +O(d−m) +O(2−αm)

= O(2−αm) ·

The last equality holds if we assume that the function u is Hölder-continuous. The scheme is
thus convergent.

The Specific Case of the Implicit Euler Method

Let consider the implicit Euler scheme, for any integer k belonging to {0, . . . , N − 1}:
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un
j = un−1

j +
h

µ(Cj
m)

r−m d
2

d−1

∑
l=1

(
ut

l − ut
j

)
It satisfies the recurrence relation

Ã U(n) = U(n− 1) ,

where

Ã = Idm + h× ∆̃m

and where Idm denotes the (dm)× (dm) identity matrix, and ∆̃m the (dm)× (dm) normalized Laplacian
matrix.

consistency, stability and convergence

i. Consistency

For 0 6 n 6 N − 1, 1 6 i 6 dm, the consistency error of our implicit Euler scheme is given by:

εm
n,i = O(h2) +O

(
d−m)+O(2−αm)

= O(h2) +O
(
2−αm) if u ∈ C0,α(SS) ·

We can check that

lim
h→0,m→∞

εm
k,i = 0 ·

The scheme is then consistent.

ii. Stability The arguments of the implicit finite difference method 2.1.1 are still valid: the matrix
Ã is invertible, its eigenvalues γ̃i satisfies the spectral bound

|γ̃−1
i | 6 1 ·

and the scheme is unconditionally stable.

iii. Convergence

Theorem 2.2.5.

The implicit Euler scheme is convergent for the norm ‖ · ‖2,∞.
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Proof.
Let us set

wk
i = uk

j −
1

µ(Cj
m)

∫
Cj

m

g(x)dµ(x), 0 6 k 6 N, 1 6 j 6 dm

and

Wk =

 wk
1

...
wk

dm

 , Ek =

 εm
k,1
...

εm
k,dm

 ·
Thus, W0 = 0, and, for 0 6 k 6 N − 1, we have that

Wk+1 = Ã−1Wk + h Ek 0 6 k 6 N − 1 ·

We find, by induction, for 0 6 k 6 N − 1,

Wk+1 = Ã−kW0 + h
k−1

∑
j=0

Ã−j Ek−j−1

= h
k−1

∑
j=0

Ã−jEk−j−1 ·

Due to the stability of the scheme, for k = 0, . . . , N, we have that

|Wk| 6 h

(
k−1

∑
j=0
‖ Ã−1 ‖j

)(
max

06k6j−1
|Ek|

)
6 h k

(
max

06k6j−1
|Ek|

)
6 h N

(
max

06k6j−1
|Ek|

)

6 T

 max
06k6j−1

(
dm

∑
i=1
|εm

k,i|2
) 1

2
 ·

One deduces, then, that
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max
06k6N

(
d−m

dm

∑
i=1
|wk

i |2)
) 1

2

= (d)−
m
2 max

16k6N
|Wk|

6
(

d−
m
2

)
T

 max
06k6N−1

(
dm

∑
i=1
|εm

k,i|2
)1/2


6
(

d−
m
2

)
T
(
(dm)

1
2 max

06k6N−1, 16i6dm
|εm

k,i|
)

=

√(
d−m dm+1 − d

2

)
T
(

max
06k6N−1, 16i6dm

|εm
k,i|
)

= O(h2) +O(d−m) +O(2−αm)

= O((d + 2)−2m) +O(d−m) +O(2−αm)

= O(2−αm) ·

The last equality holds if one assumes that u is Hölder-continuous. The scheme is thus convergent.

Numerical Results - Gasket and Tetrahedron

recursive construction of the matrix associated to the sequence of graph lapla-
cians

In the sequel, we describe our recursive algorithm used to construct the matrices related to the
sequence of graph Laplacians, in the case of Sierpiński Gasket and Tetrahedron.

C1(n,m) C2(n,m)

C3(n,m)

Figure 20: mth-order cell of the Sierpiński Gasket.

i. The Sierpiński Gasket. One may note, first, that, given a strictly positive integer m, a mth-
order triangle has three corners, that we will denote by C1, C2 and C3 ; the (m + 1)th-order triangle
is then constructed by connecting three m copies T(n) with n = 1, 2, 3.

The initial triangle is labelled such that C1 ∼ 1, C2 ∼ 2 and C3 ∼ 3 (see figure 1).
The fusion is done by connecting C2(1, m) ∼ C1(2, m), C3(1, m) ∼ C1(3, m), and C3(2, m) ∼

C2(3, m) (see figures 2, 3, 4).
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C1(3,m) C2(3,m)

C3(3,m)

The third copy T(3)

C1(1,m) C2(1,m)

C3(1,m)

The first copy T(1)

C1(2,m) C2(2,m)

C3(2,m)

The second copy T(2)

Figure 21: The three copies.

The label of the corner vertex can be obtained by means of the following recursive sequence, for
any strictly positive integer m,

C1(n, m) = 1 + (n− 1) 3m−1

C2(n, m) = I2(m) + (n− 1) 3m−1

C3(n, m) = n 3m−1

where

I2(1) = 2

I2(m) = I2(m− 1) + 3m−2 ·

1. One may start with the initial triangle with the set of vertices V0. The corresponding matrix is
given by:

A0 =

 2 −1 −1
−1 2 −1
−1 −1 2
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2. If m = 0, the Laplacian matrix is A0, else, Am is constructed recursively from three copies of the
Laplacian matrices Am−1 of the graph Vm−1. First, we build, for any strictly positive integer m,
the block diagonal matrix:

Bm =

Am−1 0 0
0 Am−1 0
0 0 Am−1


3. One may then introduce, for any strictly positive integer m, the connection matrix as in [FL04]:

Cm =

(
C2(1, m) C3(1, m) C3(2, m)

C1(2, m) C1(3, m) C2(3, m)

)
4. One has then to set ACm(2,j),Cm(1,j) = ACm(1,j),Cm(2,j) = −1, and ACm(2,j),Cm(2,j) = ACm(1,j),Cm(1,j) = 3.

Figure 22: mth-order cell of the Sierpiński Tetrahedron.

ii. The Sierpiński Tetrahedron. One may note, first, that, given a strictly positive integer m,
a mth-order tetrahedron has four corners C1, C2, C3 and C4 (see figure 5), and that the (m+ 1)th-order
triangle is constructed by connecting four m copies T(n), with n = 1, 2, 3, 4 (see figure 6, 7, 8, 9).

As in the case of the triangle, the initial tetrahedron is labeled such that C1 ∼ 1, C2 ∼ 2, C3 ∼ 3
and C4 ∼ 4.

The fusion is done by connecting C2(1, m) ∼ C1(2, m), C3(1, m) ∼ C1(3, m), C4(1, m) ∼ C1(4, m),
C3(2, m) ∼ C2(3, m), C4(2, m) ∼ C2(4, m), C4(3, m) ∼ C3(4, m).

The number of corners can be obtained by means of the following recursive sequence, for any
strictly positive integer m,
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The fourth copy T(4).

The first copy T(1). The second copy T(2). The third copy T(3).

Figure 23: The four copies.

C1(n, m) = 1 + (n− 1) 4m−1

C2(n, m) = I2(m) + (n− 1) 4m−1

C3(n, m) = I3(m) + (n− 1) 4m−1

C4(n, m) = n 4m−1

where

I2(1) = 2

I2(m) = I2(m− 1) + 4m−2

I3(1) = 3

I3(m) = I3(m− 1) + 2× 4m−2 ·

1. One starts with initial tetrahedron with the set of vertices V0. The corresponding matrix is
given by:
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A0 =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 ·

2. If m = 0 the Laplacian matrix is A0, else, for any strictly positive integer m, Am is constructed
recursively from three copies of the Laplacian matrices Am−1 of the graph Vm−1. Thus, we
build the block diagonal matrix:

Bm =


Am−1 0 0 0

0 Am−1 0 0
0 0 Am−1 0
0 0 0 Am−1

 ·

3. We then write the connection matrix

Cm =

(
C2(1, m) C3(1, m) C3(2, m) C4(1, m) C4(2, m) C4(3, m)

C1(2, m) C1(3, m) C2(3, m) C1(4, m) C2(4, m) C3(4, m)

)
·

4. One then has to set

ACm(2,j),Cm(1,j) = ACm(1,j),Cm(2,j) = −1

and

ACm(1,j),Cm(1,j) = ACm(2,j),Cm(2,j) = 4 ·

numerical results

i. The Sierpiński Gasket

In the sequel, we present the numerical results for

m = 6 , T = 1 , N = 70.5× 103 ·

Each point represents a m-cell of the Sierpiński Gasket.
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The numerical solution for the initial condition n = 0.

The numerical solution, in the case n = 100.
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The numerical solution, in the case n = 200.

The numerical solution, in the case n = 500.
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ii. The Sierpiński Tetrahedron

In the sequel , we present the numerical results for

m = 5 , T = 1 , N = 60× 103 ·

The numerical solution for the initial condition.

The numerical solution, in the case n = 10.
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The numerical solution, in the case n = 50.

The numerical solution, in the case n = 100.

The numerical solution, in the case n = 200.
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The numerical solution, in the case n = 500.

discussion

Our heat transfer simulation consists in a propagation scenario, where the initial condition is a
harmonic spline g, the support of which being an m-cell of SS, such that it takes the value 1 on a
vertex X, and 0 otherwise. This implies that g is everywhere null except the cell containing X, which
a vertex of the graph SSm.

Each point represents a m-cell as before. The color function is related to the gradient of tempera-
ture, high values ranging from red to blue.

By comparing the explicit finite difference method (FDM) and the finite volume method (FVM),
one may deduce from the theoretical results that there are some similarities:

i. The FDM is based on the sequence of graphs (SSm)m∈N, and the FVM is based on the sequence
of graphs (SSm)m∈N, but both generate the same spectral decimation function.

ii. The theoretical errors of both methods are the same for Hölder continuous functions.

iii. The time theoretical error is of order h in the case of the FDM, and of order h2 in the case of
the FVM (the convergence is faster).

iv. The stability conditions are the same.

v. Finally, the numerical simulation shows the same behavior in both approaches.

An interesting question is to compare the diffusion on the Sierpiński Tetrahedron, and on a plain
three-dimensional one. In fact, following the results of Robert S. Strichartz in [Str99] concerning
localization phenomena, a challenging and original experiment was conducted in summer 2009 in
Miraikan (Japan), where a rooftop, the so-called Sierpiński Forest, was installed just outside the
National Museum of Emerging Science and Innovation. It appeared that this fractal shaped rooftop
was much more effective in heat dissipation than a flat one; i.e., the diffusion was slower than in
a non-fractal case. See [SNF+

12]. This is in perfect agreement with the feeling that the presence
of many holes implies a slower diffusion. Hence, one could envision improving the insulation
properties of a given material by making it fractal.
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Sierpiński Forest, National Museum of Emerging Science and Innovation,
Miraikan, Japan, Summer 2009. Source: [SNF+

12].



Chapter 3

Optimal Control and Optimization on Fractals
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In 1636, in a correspondence with Martin Mersenne, Pierre de Fermat established a necessary
condition for the existence of the minimum and the maximum of a function [dF36]:

“When a quantity, for example the ordinate of a curve, reached its maximum or its minimum, in a situation
infinitely close, his increase or decrease is null.”

Since then, many results have been obtained, ranging from free and constraint conditions, giving
birth to numerical algorithms that enable one to find the extrema of a function.

But, until now, optimization has mainly concerned regular domains, without there being really
specific results for fractal sets. The following citation of Godfrey H. Hardy [Har16], on a close subject,
and even if some may here call it a truism, perfectly reflects the fact that it was “in consequence of
the methods employed”.

As is evoked in the end of Chapter 2, fractal shaped roofs are very effective when it comes
to reduce surface temperature and provide a cool environment without strong heat radiation;
see [SNF+

12], where Sierpiński tetrahedrons are involved. In these lines, it appears of great interest
to go further, in terms of optimization or control.

In the spirit of the Fermat paper, we have generalized the results of smooth analysis on extrema
to the case of fractals in [RD21d]. We present, next this analysis. Local extremas are obtained by
using the discrete gradient method.

Our results concerning optimization on fractals are followed by an extension of optimal control
theory of partial differential equations to fractal sets; it is similar to the classical one that can be
found in [Zua06] or [Tré15].

The mathematical framework is that of chapter 1, i.e. post-critically finite fractals with regular
harmonic structure (definition 1.5.5).

3.1 optimization on fractal sets

3.1.1 Existence of Extrema

In the sequel, we present an equivalent theory to the smooth case, which enable one to study the
existence of extrema on fractal sets.

Definition 3.1.1. Extrema

Given a continuous function u defined on the fractal set F , and X ∈ F , we will say that u:

i. has a global minimum (resp. a global maximum) at X if:

∀Y ∈ F : u(X) 6 u(Y) (resp. u(X) > u(Y)) :

ii. a local minimum (resp. a local maximum) at X if there exist a neighborhood V of X such that

∀Y ∈ V : u(X) 6 u(Y) (resp. u(X) > u(Y)) ·
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Theorem 3.1.1.

Given a continuous function u defined on the compact fractal set

F =
N⋃

i=1

fi (F )

the Weierstrass extreme value theorem ensures the existence of

min
X∈F

u and max
X∈F

u ·

Theorem 3.1.2. Laplacian test for fractals [Kig01]

Given a continuous, real-valued function u defined on F , and belonging to dom∆µ
(definition 1.6.1):

i. If u admits a local maximum at X0 ∈ F , then,

∆µu(X0) 6 0 · (39)

ii. If u admits a local minimum at X0 ∈ F , then,

∆µu(X0) > 0 · (40)

3.1.2 Numerical Algorithm and Dynamic Programming

In the sequel, we present a numerical algorithm, based on discrete gradient, to find a local
maximizer (resp. local minimizer) of a function continuous u on F .

The Algorithm

We recall that, given a natural integer m, Fm = (Vm, Am) is the prefractal graph approximation of
F of order m (definition 1.3.5), where Vm is the vertices set and Am is the oriented edge set. We can
check that the distance between two connected vertices is of order at most Rm, where R = maxi Ri
the maximum contraction ratio.

In order to find the local maximizer, we will provide every oriented edge {XY} with the weight
DXY = u(Y)− u(X). In order to find an appropriate approximation of the maximizer X?, we fix a
degree of tolerance ε = δ0 Rm, for some m ∈N, where δ0 = max

(Pi ,Pj)∈V0×V0

d(Pi, Pj).

Starting at an arbitrary point X0 in Vm, we follow the direction of the maximal positive gradient
at X0, i.e.,

max
X0∼m Y
{DX0Y |DX0Y > 0} ·
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We replace the initial point by arg maxX0∼m Y{DX0Y |DX0Y > 0}, with the smallest addressW(Pj)

(definition 2.1.1) in the lexicographic order, and repeat the same operation until

max
X0∼m Y
{DX0Y |DX0Y > 0} = 0

In this case, the algorithm stops and we have the approximation of X?. We can summarize the
algorithm in the following steps :

Discrete gradient algorithm

1. Fix m ∈ N, define the tolerance degree ε = δ0 Rm and choose X = X0 ∈ Vm for some address
X0 = fW (Pi).

2. While max
X∼

m
Y
{DXY |DXY > 0} > 0:

Update X = arg min
W(Pj) |Y= fW (Pj)

arg max
X∼

m
Y
{DXY |DXY > 0}.

3. Return X.

Numerical Analysis and Dynamic Programming

The algorithm presented above can be viewed as a dynamical programming algorithm on the
directed graph Fm, m ∈ N? (we refer to [BG15]). Values of the function can be calculated recursively,
as follows:

v0
X = 0 , ∀X ∈ Vm vm

X = B
(

vm−1
)

X
= sup

Y∈Vm

(
DXY + vn−1

X

)
where B denotes the Bellman operator:

B : R̄Vm → R̄Vm

B (v)X = sup
Y∈Vm

(DXY + vX)

where DXY is the weight associated to the oriented edge XY ∈ Am and DXY = −∞ if XY 6∈ Am.

As shown in [RD21d], #Am = O(Nm) and #Vm = O(Nm), where Nm is the vertices number, the
number of possible transitions is at most of order #Am = O(Nm). Since

#Vm = O(Nm) ,

we can deduce that the calculation time of the maximum is at most of order O(N 2
m).
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Sierpiński Simplices

Sierpiński Simplices are sparse graph. Thus, the calculation time required for the gradient algo-
rithm can be optimized: each vertex has a finite number of neighbors, which ensures a calculation
time at any step m ∈ N? which is of order O(Nm).

Moreover, computations can be simplified using the fact that every vertex X has two addresses:

X = fW1(Pi) = fW2(Pj)

where (W1,W2) ∈ Σ2 and
(

Pi, Pj
)
∈ V2

0 , with i 6= j. Thus, the neighbors of X are given by⋃
k 6=i

fW2(Pk)

 ⋃ ⋃
` 6=j

fW2(P`)

 ·

the sierpiński gasket

In the case of Sierpiński Gasket, we can optimize the calculation time of the gradient algorithm.
Indeed, for any natural integer m,

#Vm =
3m+1 + 3

2
and #Am = 2× 3m+1

and since every vertex X ∈ Vm \V0 has four neighbors, it follows that the calculation time of the
maximum at step m ∈ N? is thus of order O(3m).

In the sequel, we present results of our algorithm in the case of Sierpiński Gasket with vertices:

P0 = (0, 0) , P1 = (1, 0) , P2 =

(
1
2

,

√
3

2

)
for the value m = 6.

The color is related to the gradient of the function involved, high values ranging from red to blue.
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Figure 24: The graph of the function X 7→ f (X) =‖ X ‖2.

Figure 25: The algorithm path from X0 =

(
5
8

,

√
3

8

)
to X?.

For this first example, the algorithm starts with X0 =

(
5
8

,

√
3

8

)
, following the largest gradient

(red points), the algorithm converges to the local maximum 1 at (1, 0).

Figure 26: The graph of the function X 7→ g(X) = − ‖ X−
(

1
2

,

√
3

4

)
‖2.
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Figure 27: The algorithm path from X0 =

(
3
4

,

√
3

4

)
to X?.

In the second example, the algorithm starts with X0 =

(
3
4

,

√
3

4

)
, and converges to the global

maximum 0 at

(
1
2

,

√
3

4

)
.

the sierpiński tetrahedron

The Sierpiński Tetrahedron requires a calculation time for the maximum at step m ∈ N? which
is of order O(4m).

In the sequel, we present results of our algorithm in the case of Sierpiński Tetrahedron, with
vertices:

P0 = (0, 0, 0) , P1 = (1, 0, 0) , P2 =

(
1
2

,

√
3

2
, 0

)
, P3 =

(
1
2

,
1

2
√

3
,

√
2
3

)

for the value m = 6.

The color function is related to the gradient of the one at stake, high values ranging from red to
blue.
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Figure 28: The graph of the function X 7→ f (X) =‖ X ‖2.

Figure 29: The algorithm path from X0 =

(
41
64

,
1
64

+

√
3

8
,

1
64

)
to X?.

For this first example, the algorithm start with X0 =

(
41
64

,
1

64
+

√
3

8
,

1
64

)
, following the largest

gradient (red points), the algorithm converges to the local maximum 1 at (1, 0, 0).

Self-similar Curves

Self-similar curves require a calculation time which is, at a given step m ∈ N?, of order O(Nm),
due to the fact that every vertex has only two neighbors. In such cases: V0 = {P0, P1}. Thus, every
vertex X has exactly two addresses:

X = fWi(P0) = fWi+1(P1)

where
(
Wi,Wj

)
∈ Σ2. The neighbors of X are thus given by:

fWi−1(P0) and fWj+1(P1)

whereWi−1 (resp. Wj+1) is the next (resp. the past) address ofWi (resp. Wj) in the lexicographical
order.
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In the sequel (see figures 7 and 8), we present results of our algorithm in the case of the Minkowski
Curve, with V0 = {(0, 0); (1, 0)}, for the value m = 3.

The color function is related to the gradient of the one at stake, high values ranging from red to
blue.

Figure 30: The graph of the function X 7→ f (X) =‖ X ‖2.

Figure 31: The algorithm path from X0 = (0, 0) to X?.

For this example, the algorithm starts with X0 = (0, 0) ; following the largest gradient (red points),

the algorithm converges to the local maximum
(

5
4096

)
at
(

1
32

,
1

64

)
.
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3.2 optimal control of partial differential equation on fractal sets

3.2.1 Distributed Control of the Heat Equation

Admissible control

Let us set Ω ⊂ F . We consider the general problem

(HC)


∂tY− ∆µY = 1Ω u in ]0, T[×F

Y = 0 on ]0, T[× ∂F
Y(0, x) = Y0(x) in F

where ∂F = V0 and u ∈ L2
µ(Ω). Using Duhamel formula, we know that the solution of this problem

is given by

Y(t, x) = StY0 +
∫ t

0
St−s 1Ω u(s) ds

= StY0 + Lt u ·

For the sake of simplicity, we will write Y(T) for Y(T, x), where x ∈ F .

In order to have a solution Y ∈ L2
µ(F ), we now need to introduce the following definition:

Definition 3.2.1. Admissible Control

A control B is said to be admissible for the semigroup (St)t>0 if there exists a time T such that

RangeLT ⊂ L2
µ(F ) ·

In our case, B = 1Ω, and following the solution existence theorem, the control is admissible.

Controllability

We introduce the following definitions (see [Zua06]):

Definition 3.2.2. Reachable States

For any initial data Y0 ∈ L2
µ(F ), define the set of reachable states to be

R(T; Y0) = {Y(T) : Y is a solution of the control problem with u ∈ L2((0, T)× (Ω, µ))}
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Definition 3.2.3. System Exactly Controllable in Time T

The control system is said to be exactly controllable in time T if for every initial data Y0 ∈ L2
µ(F ),

the set of reachable states verify R(T; Y0) = L2
µ(F ).

Definition 3.2.4. System Approximately Controllable in Time T

The control system is said to be approximately controllable in time T if for every initial data
Y0 ∈ L2

µ(F ), the set of reachable states is dense in L2
µ(F ).

Definition 3.2.5. System Null Controllable in Time T

The control system is said to be null controllable in time T if for every initial data Y0 ∈ L2
µ(F ),

the set of reachable states contains the element 0.

Remark 3.2.1. [Zua06]

1. Null controllability in time implies approximate controllability.

2. The problem of approximate controllability may be reduced to the case Y0 = 0.

Definition 3.2.6. Cost Function

Given a final target Y1 ∈ L2
µ(F ), and a strictly positive number ε, we are presently looking for a

control u of our heat problem (HC) such that:∥∥∥Y(T)−Y1
∥∥∥

L2
µ(F )

6 ε ·

To this purpose, for uT ∈ L2
µ(F ), we introduce the adjoint problem:

∂tu + ∆u = 0 in ]0, T[×F
u = 0 in ∂F

u(T) = uT in F
(AH)

and introduce the cost function Jε such that:

Jε : L2
µ(F ) −→ R

uT 7→ 1
2

∫ T

0

∫
Ω

u2 dµ dt +
ε

2
‖uT‖2

L2
µ(F ) −

∫
F

Y1uT dµ
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Theorem 3.2.1. Variational Approach to the Approximate Controllability

Given a strictly positive number ε, if ũT is a minimum of the cost function Jε on the closed unit
ball BL2

µ(F ) = {v ∈ L2
µ(F ) , ‖v‖L2

µ(F ) 6 1}, and ũ a solution of the adjoint equation (AH) with initial
data ũT, then the solution Y satisfies the following inequality∥∥∥Y(T)−Y1

∥∥∥
L2

µ(F )
6 ε ·

Proof.

Thanks to Remark 3.2.1, we can take Y0 = 0.

Let us suppose then that Jε hits the minimal value at ũT in S . Then, for any ψ0 ∈ L2
µ(F ), and

any real number h such that ũT + h ψ0 ∈ BL2
µ(F ):

Jε(ũT) 6 Jε (ũT + h ψ0) ·

Moreover,

Jε(ũT + h ψ0) =
1
2

∫ T

0

∫
Ω
|ũ + h ψ|2 dµ dt +

ε

2
‖ũT + h ψ0‖2

L2
µ(F ) −

∫
F

Y1(ũT + h ψ0) dµ

=
1
2

∫ T

0

∫
Ω
|ũ|2 dµdt +

1
2

∫ T

0

∫
Ω
|h ψ|2 dµdt + h

∫ T

0

∫
Ω

ũ ψ dµdt

+
ε

2
‖ũT + h ψ0‖2

L2
µ(F ) −

∫
F

Y1(ũT + h ψ0) dµ, ·

This implies

Jε(ũT + h ψ0)− Jε(ũT) =
ε

2

(
‖ũT + h ψ0‖2

L2
µ(F ) − ‖ũT‖2

L2
µ(F )

)
+

h2

2

∫ T

0

∫
Ω
|ψ|2 dµdt + h

(∫ T

0

∫
Ω

ũ ψ dµ dt−
∫
F

Y1 ψ0 dµ dt
)

> 0 ·

Now, since (
‖ũT + h ψ0‖2

L2
µ(F ) − ‖ũT‖2

L2
µ(F )

)
= 2 h

∫
F

ũTψ0dµ + h2 ‖ψ0‖2
L2

µ(F )

we obtain, for h, and ψ0,

ε h
∫
F

ũT ψ0 dµ + ε
h2

2
‖ψ0‖2

L2
µ(F ) +

h2

2

∫ T

0

∫
Ω
|ψ|2 dµ dt + h

(∫ T

0

∫
Ω

ũ ψ dµ dt−
∫
F

Y1 ψ0 dµ dt
)
> 0 ·

In the case where h > 0 , going through the limit when h tends towards 0 yields

ε
∫
F

ũTψ0dµ +

(∫ T

0

∫
Ω

ũ ψ dµ dt−
∫
F

Y1 ψ0 dµ dt
)
> 0 ·
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In the case where h < 0, one obtains

ε
∫
F

ũTψ0dµ +

(∫ T

0

∫
Ω

ũ ψ dµ dt−
∫
F

Y1 ψ0 dµdt
)
6 0 ·

Thus,

ε
∫
F

ũT ψ0 dµ =
∫
F

Y1 ψ0 dµdt−
∫ T

0

∫
Ω

ũ ψ dµ dt · (41)

Given a solution ψ of the adjoint problem (AH), i.e., such that,
∂tψ + ∆ψ = 0 in ]0, T[×F

ψ = 0 in ∂F
ψ(T) = ψ0 in F

multiplication term by term with ψ of the initial heat equation

∂tY− ∆Y = 1Ω ũ

Integration, and the specially designed Gauss-Green formula for fractals 1.6.5 yield:

∫ T

0

∫
Ω

ũ ψ dµ dt =
∫ T

0

∫
F
(∂tY− ∆Y) ψ dµ dt

= −
∫ T

0

∫
F
(∂tψ + ∆ψ) Y dµ dt +

[∫
F

Yψ dµ

]T

0
+
∫ T

0

∫
∂F

(∂nYψ− ∂nψY) dµ dt

=
∫
F

Y(T)ψ0 dµ ·

After substitution in 41, one deduces, then, that

∫
F

(
Y1 −Y(T)

)
ψ0 dµ = ε

∫
F

ũTψ0dµ ∀ψ0 ∈ L2
µ(F )

6 ε ‖ũT‖L2
µ(F ) ‖ψ0‖L2

µ(F ) ·

Finally, ∥∥∥Y(T)−Y1
∥∥∥

L2
µ(F )

6 ε ·

Since ‖ũT‖L2
µ(F ) 6 1.

Theorem 3.2.2. Existence of a Minimum for the Cost Function

Given a strictly positive number ε, the cost function Jε reaches a unique minimum at some ũT ∈ BL2
µ(F ).



3.2 optimal control of partial differential equation on fractal sets 102

Proof.

The proof requires the following preliminary results:

Theorem 3.2.3. [Bre99]

Given a Banach space E, a non-empty closed convex subset A of E, and a proper, convex, lower semi-
continuous function J : A→ ]−∞,+∞[, such that

lim
x∈A
‖x‖→∞

J(x) = +∞

then, J reaches its minimum on A.

Lemma 3.2.4. [BC11]
Given a strictly positive real number β, a Hilbert space E, and a proper function f : E→ ]−∞,+∞], such

that f − β

2
‖ · ‖2

E is convex.

Then, the function f is strongly convex.

Proposition 3.2.5. [BC11]

A strongly convex, lower semi-continuous, proper function J on E is also supercoercive, i.e.,

lim
‖u‖E→∞

J(u)
‖u‖E

= +∞ ·

and it has exactly one minimizer over E.

Back to our cost function

Jε : L2
µ(F ) −→ R

uT 7→ 1
2

∫ T

0

∫
Ω

u2 dµ dt +
ε

2
‖uT‖2

L2
µ(F ) −

∫
F

Y1uT dµ

The continuity is a consequence of the continuity of the solution operator of the adjoint equation
uT −→ u (see for example [LM68]):

|Jε(uT)| =
∣∣∣∣12
∫ T

0

∫
Ω

u2 dµ dt +
ε

2
‖uT‖2

L2
µ(F ) −

∫
F

Y1uT dµ

∣∣∣∣
6 C ‖uT‖2

L2
µ(F ) +

ε

2
‖uT‖2

L2
µ(F ) + ‖Y1‖2

L2
µ(F ) ‖uT‖L2

µ(F )

6 C̃ ‖uT‖L2
µ(F )

The strongly convexity follows from lemma 3.2.4 for β = ε. Proposition 3.2.5 applied on the closed,
bounded, convex set BL2

µ(F ) yields the supercoercivity and the existence of a unique minimum.
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Definition 3.2.7. Bang-bang Control

Given a final target Y1 ∈ L2
µ(F , µ), and a strictly positive number ε, we are still looking for a

control u of our heat problem (HC) such that the solution Y satisfies the following inequality:∥∥∥Y(T)−Y1
∥∥∥

L2
µ(F )

6 ε ·

The adjoint problem (AH) is the same as previously introduced in Definition 3.2.6. We now
change the cost function Jε into a new bang-bang cost one Jbb such that:

Jbb : L2
µ(F ) −→ R

Jbb(uT) =
1
2

(∫ T

0

∫
Ω
|u| dµ dt

)2

+
ε

2
‖uT‖2

L2
µ(F ) −

∫
F

Y1uT dµ ·

The change from the previous one Jε comes from the term
1
2

(∫ T

0

∫
Ω
|u| dµ dt

)2

instead of
1
2

∫ T

0

∫
Ω

u2 dµ dt.

Such a control is called bang-bang in so far that not only the control function is restricted between
a lower and an upper bound, but, also, that it only switches between those two extremes.

Remark 3.2.2.

The heat equation is a very well suited candidate for bang-bang controls. In every day’s life,
boiling milk when cooking and some bit in a hurry, one applies full heat and turn off just before the
milk spills all over the hob which was spotless before !

Theorem 3.2.6. Existence of a minimum for the bang-bang cost function

Given a strictly positive number ε, the bang-bang cost function Jbb reaches a unique minimum at
some ũT ∈ BL2

µ(F ), where BL2
µ(F ) = {v ∈ L2

µ(F ) , ‖v‖L2
µ(F ) 6 1}.

Proof.

The proof is obtained in a similar manner as in the L2
µ case, using proposition 3.2.5.
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Theorem 3.2.7.

Given a strictly positive number ε, if ũT is a minimum of the bang-bang cost function Jbb on BL2
µ(F ), and ũ

a solution of the adjoint equation (AH) with initial data ũT, then

u = sgn(ũ)
∫

Ω

∫ T

0
|ũ|dµdt

and the solution Y of the heat problem satisfies the following inequality∥∥∥Y(T)−Y1
∥∥∥

L2
µ(F )

6 ε ·

Proof.

As previously, we can take Y0 = 0.

Let us suppose then that the bang-bang cost function Jbb hits its minimal value at ũT ∈ L2
µ(F ).

Then, for any ψ0 ∈ L2
µ(F ), and any real number h such that ũT + h ψ0 ∈ BL2

µ(F ):

Jbb (ũT) 6 Jbb (ũT + h ψ0) ·

Moreover,

Jbb(ũT + h ψ0)− Jbb(ũT) =
ε

2

(
‖ũT + h ψ0‖2

L2
µ(F ) − ‖ũT‖2

L2
µ(F )

)
+

1
2

((∫ T

0

∫
Ω
|ũ + hψ| dµdt

)2

−
(∫ T

0

∫
Ω
|ũ| dµdt

)2
)
− h

∫
F

Y1 ψ0 dµdt

> 0

Since (
‖ũT + h ψ0‖2

L2
µ(F ) − ‖ũT‖2

L2
µ(F )

)
= 2 h

∫
F

ũT ψ0 dµ + h2 ‖ψ0‖2
L2

µ(F )

we obtain that

ε h
∫
F

ũT ψ0 dµ++ε
h2

2
‖ψ0‖2

L2
µ(F )+

1
2

((∫ T

0

∫
Ω
|ũ + hψ| dµdt

)2

−
(∫ T

0

∫
Ω
|ũ| dµdt

)2
)
− h

∫
F

Y1 ψ0 dµ dt > 0 ·

In the case where h > 0, going through the limit when h tends towards 0 yields:

ε
∫
F

ũT ψ0 dµ +

(∫ T

0

∫
Ω
|ũ| dµ dt

)
sgn (ũ)

(∫ T

0

∫
Ω

ψ dµ dt
)
−
∫
F

Y1 ψ0 dµ dt > 0 ·

In the case where h < 0, we obtain that

ε
∫
F

ũT ψ0 dµ +

(∫ T

0

∫
Ω
|ũ| dµ dt

)
sgn (ũ)

(∫ T

0

∫
Ω

ψ dµ dt
)
−
∫
F

Y1 ψ0 dµ dt 6 0 ·

We then deduce that
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ε
∫
F

ũT ψ0 dµ =
∫
F

Y1 ψ0 dµ dt−
(∫ T

0

∫
Ω
|ũ| dµ dt

)
sgn (ũ)

(∫ T

0

∫
Ω

ψ dµ dt
)
·

Given a solution ψ of the adjoint problem (AH), i.e., such that
∂tψ + ∆ψ = 0 in ]0, T[×F

ψ = 0 in ∂F
ψ(T) = ψ0 in F

multiplication term by term with ψ of the initial heat equation

∂tY− ∆Y = 1Ω ũ

Integration using the Gauss-Green formula for fractals 1.6.5 yield:

(∫ T

0

∫
Ω
|ũ| dµdt

)
sgn(ũ)

(∫ T

0

∫
Ω

ψ dµ dt
)
=
∫ T

0

∫
F
(∂tY− ∆Y) ψ dµ dt

= −
∫ T

0

∫
F

Y(∂tψ + ∆ψ) dµ dt +
[∫
F

Yψ dµ

]T

0

+
∫ T

0

∫
∂F

(∂nYψ− ∂nψY) dµ dt

=
∫
F

Y(T)ψ0 dµ ·

We then deduce that

∫
F

(
Y1 −Y(T)

)
ψ0 dµ = ε

∫
F

ũT ψ0 dµ ∀ψ0 ∈ L2
µ(F )

6 ε ‖ũT‖L2
µ(F ) ‖ψ0‖L2

µ(F ) ·

Finally, ∥∥∥Y(T)−Y1
∥∥∥

L2
µ(F )

6 ε ·

3.3 the specific case of the sierpiński gasket

Optimal control problems can be discretized according the following paradigms:

i. Discretization of the continuous control problem, and resolution in a finite dimensional space:

MODEL→ DISCRETIZATION → CONTROL

ii. Solving of the continuous control problem, and discretization of the solution:

MODEL→ CONTROL→ DISCRETIZATION

We hereafter choose the second one, which appeared as best fitted to our study.
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Formulation of the Problem

We hereafter consider the specific case when our fractal set F is the Sierpiński Gasket SG.
Further details on the gasket, and the related Laplacian can be found in [RD21a]. One simply
requires here to know that the boundary set V0 is:

V0 = {P1, P2, P3}

where:

P1 = (0, 0) , P2 = (1, 0) , P3 =

(
1
2

,

√
3

2

)
·

As for the contractive maps, they are defined, for any x of R2, through

fi(x) =
1
2
(x + Pi) , 1 6 i 6 3 ·

The coefficients of the self-similar measure are

µ1 = µ2 = µ3 =
1
3
·

One also requires the normalization factor. It is presently given by

r =
3
5
·

As for the Laplacian, it is approximated by means of the sequence of graph Laplacians (∆m)m∈N? .
Since, for any strictly positive integer m,∫

SG
ψ
(m)
xm dµ =

2
3m+1

this yields, for any sequence of points (xm)m∈N such that, for any natural integer m, xm ∈ Vm:

∆Y(t, lim
m→+∞

xm) = lim
m→+∞

r−m
(∫

SG
ψ
(m)
xm dµ

)−1

∑
xm∼m y

(Y(t, y)−Y(t, xm))

= lim
m→+∞

3
2

5m ∑
xm∼m y

(Y(t, y)−Y(t, xm))

The adjoint problem introduced in Definition 3.2.6 can be solved by means of the transformation
defined through:

∀ (t, x) ∈ [0, T]×SG : κ(t, x) = u(T − t, x) ·

Notations.

i. In the following, T is the strictly positive real number. NT is a non-zero natural integer. We
introduce:

h =
T

NT
, tn = k× h , k = 0, 1, . . . , NT − 1 ·
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ii. For the sake of simplicity, we set:

∀ x ∈ SG : u(T, x) = uT(x) ·

At a given step m ∈ N? of the prefractal graph approximation, and a given one k ∈ {0, 1, . . . , NT − 1}
of the discretization, our scheme can be written, for any point Pj, 1 6 j 6 3 of the boundary set V0,
and any vertex x = fW (Pi) of Vm \V0:

Yk+1
m (x)−Yk

m(x)
h

= 5m

∑
x∼

m
y

Yk
m(y)−Yk

m(x)

+ uk
m(x)

Yk
m(Pj) = 0

Y0
m(x) = 0

and: 
κk+1

m (x)− κk
m(x)

h
= 5m

∑
X∼

m
y

κk
m(y)− κk

m(x)


κk

m(Pj) = 0
κ0

m(x) = uT(x)

Let us set:

Y0 =

0
...
0

 , K0 =

 u(T, x1)
...

u(T, xNm−3)


This enables one to introduce, for k ∈ {0, 1, . . . , NT − 1}, the solution vectors Yk and Kk:

Yk =

 Y(k h, x1)
...

Y(k h, xNm−3)

 , Kk =

 κ(k h, x1)
...

κ(k h, xNm−3)


They satisfy the linear system

(SH)
{

Yk+1 = A Yk + Bk

Kk+1 = A Kk

where

A = INm−3 − h ∆̃m

and where INm−3 denotes the (Nm − 3) × (Nm − 3) identity matrix, ∆̃m the (Nm − 3) × (Nm − 3)
normalized Laplacian matrix, and Bk is the matrix of the form
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Bk = h

 um(k h, x1)
...

um(k h, xNm−3)



We hereafter describe a discrete iterative projected gradient algorithm (D.P.G.A.) with optimal
stepsize, starting with an initial control value:

u(0)
m,T = 0

and, for any strictly positive integers j:

∇J(u(j)
m,T) = ε u(j)

m,T + Y(j)
m (T)−Y1

ũ(j+1)
m,T = u(j)

m,T − ρj∇J(u(j)
m,T)

u(j+1)
m,T =

ũ(j+1)
m,T∥∥∥ũ(j+1)
m,T

∥∥∥
ρj = arg inf

ρ
J(u(j+1)

m,T )

Numerical Analysis

In the spirit of [EG67], we give a convergence proof of the D.P.G.A., let introduce the following
controls and the corresponding trajectories:

u?
m,T

FDM−−→ Y?
m(t)

ũ?
T

Continuous−−−−−−→ Ỹ?(t)

ū?
m,T

FDM−−→ Ȳ?
m(t)

u?
T

Continuous−−−−−−→ Y?(t)

where u?
m,T and u?

T stand respectively for the optimal control of the discrete and continuous heat
problem, ũ?

T is the piecewise constant control obtained from u?
m,T, and ū?

m,T is the discretized version
of u?

T. One has, ∀ε > 0

−ε < J(u?
m,T)− J(ũ?

T) 6 J(u?
m,T)− J(u?

T) 6 J(ū?
m,T)− J(u?

T) < ε

Since ũ?
T is not better than u?

T and ū?
m,T is better than u?

m,T. The convergence of the both sides is
ensured by theorem 2.1.4.

The discrete projected gradient algorithm (DPGA) is based on the approximation scheme

u?
T

FDM−−→ u?
m,T

PGA−−→ u(j?)
m,T
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where j? is the optimal stopping iteration. Remark that

‖∇J(φ1)−∇J(φ2)‖ = ‖ε (φ1 − φ2) + (Y1(T)−Y2(T))‖
6 C ‖φ1 − φ2‖

from the continuity of the solution operator in 1.10.5.

Theorem 3.3.1. [All07]
Suppose that J is differentiable and strongly convex for some constant β, and J′ is Lipschitz continuous for

some constant C. Then the projected gradient algorithm converge if 0 < ρ <
2α

C2 .

The convergence of the DPGA follows since:

∥∥∥J(u?
T)− J(u(j?)

m,T)
∥∥∥ 6 ∥∥J(u?

T)− J(u?
m,T)

∥∥+ ∥∥∥J(u?
m,T)− J(u(j?)

m,T)
∥∥∥

Numerical Results

We hereafter expose the results obtained by applying a heat control to reach a target state Y1 on
the Sierpiński gasket. This is done with an approximation error ε. The control is a L2-one.

Numerical results are given in the case where m = 4, T = 1, and NT = 2850. Figures 32, 33

and 34 respectively display the target Y1, the controlled solutions and the control uT, obtained
after iMax = 2000 iterations.

Figure 32: The target Y1. Figure 33: The controlled solution.
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Figure 34: The control uT .



Chapter 4

Domains with Fractal Boundaries
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Analysis on domains with fractal boundaries constitute a different branch of analysis on
fractals. The set of interest is an open subset of Rn, but the frontier is supposed to be a fractal set.
The existence of the Laplacian is not problematic, but the smooth calculus results of trace theorem,
integration by parts and Poincaré inequality needs to be adapted.

This theory is older than the Kigami one, and has interested many authors, with a variety of
contributions, from related functional analysis [HN92], [JW84], [Joh61], [CRW13], [Jon81] passing
by numerical analysis [LNRG96] to the applications in the domains of wave propagation and heat
diffusion [LN10],[LV10] ... etcetera

In this chapter, we expose our non published results about the vibration of the Koch drum. We
present in the first section the theory of existence and uniqueness of the solution, and we present in
the next section a shape optimization problem, related to the choice of the membrane thickness that
minimizes an objective criterion.

4.1 the membrane problem on open subsets with fractal boundaries

In the following, we deal with the elastic membrane problem, solution of the non-autonomous
Poisson equation :

(PH)
{
−div (h∇u) = f in Ω

u = 0 in ∂Ω

where Ω is an open subset of R2 with fractal boundary ∂Ω which is taken as a fractal curve.

In the classical case where Ω is a smooth domain, if we take h ∈ L∞(Ω) such that hmin 6 h 6 hmax,
this equation admits a weak solution in W1

2 (Ω) = H1(Ω) : we multiply the equation by v ∈ D(Ω)

and use integration by parts formula

∫
Ω

h∇u∇v dx =
∫

Ω
f v dx

The existence and uniqueness of the problem can be established using Lax-Milgram theorem (see
[All12] for example), and the existence of weak solution can be used to prove the existence of the
strong one.

Next, we will be concerned with the existence and uniqueness of the solution of the variational
problem in the case of the Koch Snowflake. This require some results of the theory of analysis on
fractal sets, which will be introduced in the next section. We refer the reader to K. Falconer books
[Fal14], [Fal97] and [Fal85].

Let us consider a family of similarities fi for i ∈ {1, ..., N}, with contraction ratio Ri, {P0, P1} two
(boundary) points of the two-dimensional Euclidean plane, and X ∈ R2.
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We define the self-similar curve F to be the unique curve of R2 such that (see [Hut81])

F =
N⋃

i=1

fi(F ) ·

Let V0 = {P0, P1}. Connect P0 to P1 to constitute a segment, that we will denote by F0, as
before, V0 is the boundary set.

We then set, for any strictly positive integer m, Vm =
N⋃

i=1
fi (Vm−1), and link the points of an m-cell

in the same way as F0, to form the oriented graph Fm. Again, Vm is the set of vertices of the graph Fm.

We set V? = ∪
m>0

Vm, and recall that

F = V? ·

4.1.1 The Koch Snowflake

The Koch Snowflake as a Self-Similar Set

The Koch Snowflake KS is the domain delimited by the union of three copies of Koch curves KC,
each curve is a self similar set of the similarities family { f1, f2, f3, f4}, where

f1(X) =
1
3
RO,0 X +

(
− 1√

3
1
3

)
, f2(X) =

1
3
RO, π

3
X +

(
0
2
3

)
, f3(X) =

1
3
RO,−π

3
X +

(
0
2
3

)

f4(X) =
1
3
RO,0 X +

(
1√
3

1
3

)
and where RO,θ is the following rotation matrix,

RO,θ =

(
cos θ − sin θ

sin θ cos θ

)
·

The two other copies are obtained by rotating the Koch curve, i.e.,

∂KS = KC∪ h1(KC) ∪ h2(KC)

where h1 and h2 are given by

h1(X) = RO,− 2π
3

X

h2(X) = RO, 2π
3

X·
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Figure 35: Koch Snowflake.

The Koch Snowflake has a very interesting property: it is itself self-similar for the family of
contractions {g1, . . . , g7}, such that

g1(X) =
1
3
RO,0 X +

(
− 1√

3
− 1

3

)
, g2(X) =

1
3
RO,0 X +

(
0
− 2

3

)
, g3(X) =

1
3
RO,0 X +

(
1√
3
− 1

3

)

g4(X) =
1√
3
RO, π

6
X

g5(X) =
1
3
RO,0 X +

(
− 1√

3
1
3

)
, g6(X) =

1
3
RO,0 X +

(
0
2
3

)
, g7(X) =

1
3
RO,0 X +

(
1√
3

1
3

)
·

Proposition 4.1.1.

We have that

DH(KC) =
ln(4)
ln(3)

, DH(KS) = 2 ·

Proof.

This directly follows from the definition of the similarity dimension 1.4.2, since:
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Figure 36: Koch Snowflake as the union of seven copies.

i.
4

∑
i=1

(
1
3

)DH(KC)

= 1 ·

ii.
6

∑
i=1

(
1
3

)DH(KS)

+

(
1√
3

)DH(KS)

= 1 ·

The Koch Snowflake as a Limit Set

On the one hand, the Koch Curve KC can be considered as the limit of the sequence (KCm)m∈N

such that

KC0 = [P0P1]

KCm =
⋃
W∈Σm

fW (KC0) , W ∈ Σm = {1, 2, 3, 4}m

where [P0P1] is the initial segment.

On the other hand, the Koch Snowflake is the limit of the sequence (KSm)m∈N where KSm is the
so-called prefractal set delimited by the three copies {KCm; h1(KCm); h2(KCm)}.
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Figure 37: KS0, KS1 and KS2.

4.1.2 Integration and Function Spaces

Next, we will establish some analysis results on the Koch Snowflake. For the sake of clarity, we set

Ω = KS, Ωm = KSm (42)

Ω =
◦

KS, Ωm =
◦

KSm (43)

∂Ω = ∂KS, ∂Ωm = ∂KSm · (44)

Integration on the Koch Snowflake

In order to define integration on KS, we will use properties of Jordan integrable sets. First, let us
note that, for any natural integer m,

area(KCm) = 0 ·

Moreover,

KC ⊂
∞⋃

m=0

KCm ·

Then,

area (KC) 6 area
(
∪

m∈N
KCm

)
6

∞

∑
m=0

area (KCm) = 0 ·

Since the boundary ∂Ω = KC∪ h1(KC) ∪ h2(KC) is Lebesgue negligible, the set Ω = KS is Jordan
measurable, and then Lebesgue measurable.

Accordingly, every characteristic function is integrable on KS :∫
KS

1A dX = λ(A ∩ KS)

for any subset A ⊂ R2 and Lebesgue measure λ. Moreover, by the fundamental theorem of
approximation, we can define Lebesgue integrable functions over KS if
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∫
KS
| f | dX < ∞

The definition of Lp(KS) spaces, p ∈ [1,+∞], follows.

integration by parts formula

Let us recall the following identity for smooth functions over a smooth domain Ω

∫
Ω

div(u) dX =
∫

∂Ω
u ·~n dσ

and its corollary

∫
Ω
∇u∇v dX =

∫
∂Ω

(∇u ·~n) v dσ−
∫

Ω
∆u v dX ·

Let us also recall that the set Ω := KS is a compact set. As a consequence, every continuous
function is bounded on it.

Let f be a continuous function on KS. We introduce the sequence of functions

( fm)m∈N = (1Ωm f )m∈N

where Ωm is the set introduced in 42. We can check that

lim
m→+∞

fm = 1Ω f

| fm| 6‖ f ‖C(Ω) ·

From the dominated convergence theorem, we have that

lim
m→+∞

∫
fmdX = lim

n→+∞

∫
Ωm

f dX =
∫

1Ω f dX =
∫

Ω
f dX ·

Let us consider two C2(Ω) functions u and v. The integration by parts formula on the prefractal
set enables us to obtain

∫
Ωm

∇u∇v dX =
∫

∂Ωm

(∇u ·~n) v dσ−
∫

Ωm

∆u v dX ·

We then apply the dominated convergence argument to obtain

∫
Ω
∇u∇v dX =

∫
∂Ω

(∇u ·~n) v dσ−
∫

Ω
∆u v dX (45)

Consequently, the classical formula holds, provided that we give a suitable definition of normal
derivative over KC.
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normal derivative

In order to derive the explicit normal derivative ∂nu = ∇u ·~n we use and recursive definition
of the Dirichlet form E(u, v) =

∫
Ω∇u∇v dX, to this end, we need the sequence of points (V ′m)m∈N

from a uniform discretization of the boundary (∂KSm)m∈N such that V ′m = Vm ∪ h1(Vm) ∪ h2(Vm):

Figure 38: V′1, V′2 and V′3.

and a sequence of points (V”m)m∈N from a uniform discretization mesh of the sets (KSm)m∈N (see
the FEM section ):

Figure 39: V”1, V”2 and V”3.

Every interior point has six neighbors forming a hexagon, where every point has a distance
δm = O(3−m) with his neighbors:
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P5
m

P3
m

P1
m

P6
m

P2
m

P4
m

P0
m

Figure 40: Hexagonal neighbor of interior point P0.

We define the operator carré du champs as the limit:

γ [u, v] (X) = lim
m→+∞

1
3 ∑

Y∼
m

X

(u(X)− u(Y)) (v(X)− v(Y))
δ2

m

where ∑
Y∼

m
X

means the sum over the neighbors of X. If we take the example of the figure 40, and two

differentiable functions u and v, we can show that

lim
m→+∞

(u(P0)− u(Pm
1 )) (v(P0)− v(Pm

1 ))

δ2
m

= lim
m→+∞

(u(P0)− u(Pm
4 )) (v(P0)− v(Pm

4 ))

δ2
m

=
〈
∇u,~ey

〉 〈
∇v,~ey

〉

lim
m→+∞

(u(P0)− u(Pm
3 )) (v(P0)− v(Pm

3 ))

δ2
m

= lim
m→+∞

(u(P0)− u(Pm
6 )) (v(P0)− v(Pm

6 ))

δ2
m

=
〈
∇u, cos(α)~ex + sin(α)~ey

〉 〈
∇v, cos(α)~ex + sin(α)~ey

〉

lim
m→+∞

(u(P0)− u(Pm
2 )) (v(P0)− v(Pm

2 ))

δ2
m

= lim
m→+∞

(u(P0)− u(Pm
5 )) (v(P0)− v(Pm

5 ))

δ2
m

=
〈
∇u, cos(α)~ex − sin(α)~ey

〉 〈
∇v, cos(α)~ex − sin(α)~ey

〉
Since α =

π

6
, we obtain, after simplification,

γ [u, v] (X) = lim
m→+∞

1
3 ∑

Y∼
m

X

(u(X)− u(Y)) (v(X)− v(Y))
δ2

m

=
1
3
(3 〈∇u(X),∇v(X)〉)

= 〈∇u(X),∇v(X)〉 ·
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Let us now introduce the Dirichlet form

E(u, v) =
∫

Ω
γ [u, v] dX

=
∫

Ω
∇u · ∇v dX ·

For a continuous function f , it is known that∫
Ω

f dX = lim
m→+∞ ∑

i
f (Xi)λ(Ti

m) ·

for Xi ∈ Ti
m, where Ti

m is a triangle of the mesh and λ the Lebesgue measure. To derive the limit
expression of E , we use the mean value over the vertices on the boundary of every triangle Ti

m,

∫
Ω

f dX = lim
m→+∞ ∑

i

1
3

3

∑
k=1

f (Xi
k)λ(T

i
m)

= lim
m→+∞ ∑

i

1
3

3

∑
k=1

f (Xi
k)

δ2
m
2

= lim
m→+∞ ∑

X∈V”m

f (X) δ2
m

by using the fact that the measure of every triangle Tm is
δ2

m
2

, and that every vertex X appears in six
triangles. Back to the Dirichlet form, we obtain that

E(u, v) =
∫

Ω
γ [u, v] dX

= lim
m→+∞ ∑

X∈Vm

γ [u, v] (X) δ2
m

= lim
m→+∞ ∑

X∈Vm

1
3 ∑

Y∼
m

X

(u(X)− u(Y)) (v(X)− v(Y))
δ2

m

 δ2
m

= lim
m→+∞ ∑

X∈Vm

1
3 ∑

Y∼
m

X
(u(X)− u(Y)) (v(X)− v(Y))

= lim
m→+∞

2
3 ∑

X∼
m

Y
(u(X)− u(Y)) (v(X)− v(Y))

where ∑
Y∼

m
X

means the sum over the neighbours of X, and ∑
X∼

m
Y

the sum over all the couple (X, Y). In

particular, we have that

E(u) = lim
m→+∞

2
3 ∑

X∼
m

Y
(u(X)− u(Y))2 ·
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Let us now define the mth Dirichlet form on Ωm, as

Em(u) =
2
3 ∑

X∼
m

Y
(u(X)− u(Y))2 ·

By splitting the terms, we can show that

Em(u, v) =
2
3 ∑

X∼
m

Y
(u(X)− u(Y)) (v(X)− v(Y))

= −2
3 ∑

X∈V”m, X 6∈V′m

v(X) ∑
Y∼

m
X
(u(Y)− u(X))

+
2
3 ∑

X∈V′m

v(X) ∑
Y∼

m
X
(u(X)− u(Y))

= − ∑
X∈V”m, X 6∈V′m

v(X)

 ∑
Y∼

m
X

2
3δ2

m
(u(Y)− u(X))

 δ2
m

+
1
3 ∑

X∈V′m

v(X)

 ∑
Y∼

m
X

(u(X)− u(Y))
δm

 δm ·

By passing through the limit, we then obtain that

E(u, v) = − lim
m→+∞ ∑

X∈V”m, X 6∈V′m

v(X)

 ∑
Y∼

m
X

2
3δ2

m
(u(Y)− u(X))

 δ2
m

+ lim
m→+∞

1
3 ∑

X∈V′m

v(X)

 ∑
Y∼

m
X

(u(X)− u(Y))
δm

 δm

= −
∫

Ω
∆u v dX +

∫
∂Ω

∂nu v dX ·

We have the following theorem:

Theorem 4.1.2. Normal Derivatives on a Fractal Boundary

If u ∈ C2(Ω), then the normal derivative of u on the boundary exists as a linear continuous functional on
C1(Ω) defined by ∫

∂Ω
∂nu v dX =

∫
Ω

∆u v dX +
∫

∂Ω
∇u∇v dX , ∀v ∈ C1(Ω)·
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Proof.

The continuity follows from

∣∣∣∣∫
∂Ω

∂nu v dX
∣∣∣∣ 6 ‖∆u‖L2(Ω) ‖v‖L2(Ω) + ‖∇u‖L2(Ω) ‖∇v‖L2(Ω)

6 C
(
‖∆u‖L2(Ω) + ‖∇u‖L2(Ω)

)
‖v‖C1(Ω)

4.1.3 Sobolev Spaces, Trace and Weak Formulation

(ε, δ)-Domains, John Domains and d-sets

To solve the weak formula, we need results from integration, Sobolev spaces, and traces of
functions on domains with fractal boundary. Since the boundary is not Lipschitz, we cannot apply
the traditional calculus, and especially the Gauss-Green formula.

Alf Jonsson and Hans Wallin give in [JW84] a panoply of theorems on so-called d-sets, including
self-similar curves:

Definition 4.1.1. (ε, δ)-Domains [Jon81]

An open connected subset Ω ⊂ Rn is an (ε, δ)-domain, 0 < ε, 0 < δ 6 ∞, if whenever X, Y ∈ Ω
and |X−Y| < δ, there is a rectifiable arc γ ∈ Ω with length l(γ) joining X to Y and satisfying

1. l(γ) 6
|X−Y|

ε
.

2. d(Z, ∂Ω) >
ε|X− Z||Y− Z|
|X−Y| for all Z ∈ γ.

Definition 4.1.2. John Domains [Joh61]

An open connected subset Ω ⊂ Rn is a John domain, if there exists α, β > 0, and a point X ∈ Ω
called the center of Ω such that for every Y ∈ Ω we can find a rectifiable arc γ ∈ Ω with length
l(γ) 6 β joining X to Y and satisfying

d(Z, ∂Ω) > α l(γ(Z, Y)) for all Z ∈ γ ·

Remark 4.1.1. [JW84]

(ε, δ)-domains are John domains.
The Koch Snowflake KS is an (ε, δ)-domain, and a John domain.
See figure 41 for an illustration.



4.1 the membrane problem on open subsets with fractal boundaries 123

(ε, δ) condition. John condition.

Figure 41: (ε, δ) domain and John domain.

Definition 4.1.3. d-Measure [JW84]

Let us denote by F be a closed non-empty subset of Rn and d a real number such that 0 < d 6 n.
The closed ball with center X and radius r is denoted by B(x, r). A positive Borel measure µ with
support F, is called a d-measure on F if, for some constants c1, c2 > 0,

c1rd 6 µ(B(X, r)) 6 c2rd for X ∈ F, 0 < r 6 1 ·

Definition 4.1.4. d-Set [JW84]

A closed, non-empty subset F of Rn is a d-set (0 < d 6 n) if there exists a d-measure on F.

Theorem 4.1.3. [JW84]

The self-similar sets of Rn with Hausdorff dimension DH are d-sets for the invariant measure µ, where
d = DH.

Function Spaces and Trace Theorem

In the following, we recall the definition of some functional spaces:

Definition 4.1.5. Sobolev spaces [Eva10]

Let us denote by Ω an open subset of Rn, by α an integer. Let us consider 1 6 p 6 ∞. The
Sobolev space Wα

p (Ω) is the space of locally summable functions f such that for each multi-index k
with |k| 6 α, Dk f exists in the weak sens and belongs to Lp(Ω).
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Definition 4.1.6. Hölder Spaces [Eva10]

Let us denote by Ω an open subset of Rn, α > 0 and k an integer such that k < α 6 k + 1. The
Hölder space Ck,α−k(Ω) is the space of Ck(Ω) functions f for which the norm

‖ f ‖Ck,α−k= ∑
|j|6k
‖ Dj f ‖C(Ω) + ∑

|j|=k
sup
h∈Ω

|Dj f (X + h)− Dj f (X)|
|h|α−k

is finite.

Definition 4.1.7. Besov Spaces [JW84]

Given an open subset Ω of Rn, α > 0, 1 6 p, q 6 ∞, along with an integer k such that
0 6 k < α 6 k + 1, the Besov space, or (Hölder spaces in Lp-norm) Bp,q

α (Ω) is the set of Lp(Ω)

functions f for which the norm

‖ f ‖Bp,q
α
= ∑
|j|6k
‖ Dj f ‖Lp + ∑

|j|=k

(∫
Rn

‖ Dj f (X + h)− Dj f (X) ‖q
Lp

|h|n+(α−k)q
dh

) 1
q

is finite.

Proposition 4.1.4. [JW84]

The space Bp,q
α (Ω) is a Banach space for the norm ‖ . ‖Bp,q

α
and if If l 6 p, q < ∞, then D(Ω), the space of

infinitely differentiable functions with compact support on Ω, is dense in Bp,q
α (Ω).

Definition 4.1.8. Besov Spaces on d-Sets [JW84]

Let 0 < α < 1, 1 6 p 6 ∞ and F a d-set with respect to the d-measure µ. A function f belongs to
the Besov space Bp,p

α (F) if and only if it has finite norm

‖ f ‖Bp,p
α
=‖ f ‖Lp

µ
+

(∫ ∫
|X−Y|<1

| f (X)− f (Y)|p
|h|d+αp dµ(X)dµ(Y)

) 1
p

·

Theorem 4.1.5. Rellich Embedding Theorem for John Domains [CRW13]

If 1 6 p < ∞ and Ω a John domain of Rn, then the injection

W1
p(Ω)→Lp(Ω)

is compact.

As a consequence, we have the following Poincaré inequality (for a more general result, we refer
to [CDMP19]):
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Theorem 4.1.6. Poincaré Inequality for John Domains

Let us denote by Ω a John domain of Rn. Then, there exists a constant C > 0 such that

‖ f ‖L2(Ω)6 C ‖ ∇ f ‖L2(Ω)

for every f ∈ H1
0(Ω).

Proof.

Let us assume that the Poincaré inequality is not verified, then we can find (un)n∈N in H1
0(Ω)

such that, for every n ∈N

‖ un ‖L2(Ω) = 1

‖ un ‖L2(Ω) > n ‖ ∇un ‖L2(Ω)

On the one hand, ‖ ∇un ‖L2(Ω)6
1
n and ∇un → 0 in L2(Ω).

In particular, the sequence (un)n∈N is bounded in H1(Ω). By using the Rellich theorem, we can
extract a sub-sequence (unk)k∈N

converging in L2(Ω) to a function u ∈ L2(Ω).

In the other hand, by continuity of derivation in the distribution sense, this means that

uk → u in D′(Ω)

∇uk → ∇u in D′(Ω) ·

By uniqueness of the weak limit ∇u = 0, since Ω is connected and u ∈ H1
0(Ω), we deduce that

u = 0.

Now, we introduce a trace theorem theorem for d-sets. Let us recall that the trace operator of a
function f on a set F is the operator

R : f → f|F

and that the extension operator of a function g, defined on F, to Rn, yields

E : g→ Eg such that (Eg)|F = g ·
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Theorem 4.1.7. Trace of Sobolev Spaces on d-Sets [JW84]

Let us denote by F a d-set with respect to the d-measure µ, α an integer, 0 < d < n, 0 < β = α− n− d
p

and 1 < p < ∞. Then, the restriction operator

Wα
p (R

n)|F = Bp,p
β (F)

where Wα
p (R

n) is the Sobolev space on Rn, is a linear bounded operator.

Theorem 4.1.8. Jones Extension Theorem of Sobolev Spaces [Jon81]

If Ω ⊂ Rn is an (ε, δ)-domain, then there exists a linear bounded extension operator

Wα
p (Ω)→Wα

p (R
n)

for 1 6 p 6 ∞ and α > 0.

Corollary 4.1.9. Trace operator [Wal91]

Let Ω ⊂ Rn be an (ε, δ)-domain, ∂Ω a d-set with respect to a d-measure µ, α an integer, 0 < d < n,

0 < β = α− n− d
p

and 1 < p < ∞. If ∂Ω preserves Markov’s inequality, that is d > n− 1, Then

Wα
p (Ω)|∂Ω = Bp,p

β (∂Ω)

and the trace operator is a linear bounded surjection; (see [Wal91], Proposition 4, page 120).

Integration by Parts Formula

Now, we have all the ingredients necessary to obtain the integration by parts. Recall from remark

4.1.1 that Koch snowflake Ω = KS is an (ε, δ)-domain with a d-set boundary ∂Ω, with d =
ln(4)
ln(3)

since

DH(∂Ω) =DH (KC∪ h1(KC) ∪ h2(KC))

= max (DH(KC), DH(h1(KC)), DH(h2(KC)))

= DH(KC)

=
ln(4)
ln(3)

where we used countable stability of Hausdorff dimension [Fal14].

Theorem 4.1.10. Density

Let us denote by Ω the Koch Snowflake set introduced before. For every u ∈ H1(Ω), there exists a sequence
of functions (uk)k∈N ⊂ C∞(Ω) such that
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lim
k→+∞

‖ u− uk ‖H1(Ω)= 0 ·

Proof.
From the Jones extension theorem, there exist an extension ū ∈ H1(R2) such that ū|Ω = u and
‖ ū ‖H1(R2)6‖ u ‖H1(Ω). So we can choose a function ρ ∈ C∞(R2) such that

ρ(x) > 0 for x ∈ R2

ρ(x) = 0 for ‖ x ‖> 1∫
R2

ρ dx = 1 ·

and define the mollifier ρk = k2ρ(kx), then the sequence of terms uk = (ū ? ρk) verify the theorem.

Now, we obtain the main theorem of this section.

Theorem 4.1.11. Integration by Parts

Let us denote by u and v two functions in H1(Ω) with fractal boundary ∂Ω, and ∆u ∈ L2(Ω). Then the
following integration by parts holds:∫

Ω
∆u v dx = −

∫
Ω
∇u∇v dx +

∫
∂Ω

∂nu|∂Ω v|∂Ω dx

Proof.

It follows immediately from the density theorem 4.1.10 that there exists two sequences (uk)k∈N

and (vk)k∈N of C∞(Ω) such that

lim
k→+∞

‖ u− uk ‖H1(Ω)= 0, lim
k→+∞

‖ v− vk ‖H1(Ω)= 0 ·

The integration by parts result 45 gives∫
Ω

∆uk vk dx = −
∫

Ω
∇uk∇vk dx +

∫
∂Ω

∂nuk vk dx ·

By using the trace theorem 4.1.9, for p = 2, α = 1 and β =
DH

2
, passing through the limit using

dominated convergence, we obtain that∫
Ω

∆u v dx = −
∫

Ω
∇u∇v dx +

∫
∂Ω

∂nu|∂Ω v|∂Ω dx ·
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Theorem 4.1.12. Normal Derivatives on a Fractal Boundary [Lan02]

If u ∈ H1(Ω) and ∆u ∈ L2(Ω), then the normal derivative of u on the boundary exists as a linear
continuous functional on B2,2

DH (∂Ω)
2

(∂Ω), where Bp,p
α is the Besov space introduced in definition 4.1.8 with

DH(∂Ω) =
ln(4)
ln(3)

, and defined by〈
∂nu, v|∂Ω

〉
=
∫

Ω
∆u v dX +

∫
Ω
∇u∇v dX , ∀v ∈ H1(Ω) ·

4.1.4 Solution of the Membrane Problem on a Domain with Fractal Boundary

We can now consider the variational Dirichlet problem, by taking v ∈ D(Ω)

∫
Ω

h∇u∇v dX =
∫

Ω
f v dX (46)

for h ∈ L∞(Ω) such that hmin 6 h 6 hmax, and Ω a (ε, δ)-domain delimited by a d-set, in particular,
the Koch Snowflake. We can now show that this equation admits a weak solution in H1(Ω).

The bilinear form a(u, v) =
∫

Ω h∇u∇v dX is symmetric and continuous:

a(u, v) =
∫

Ω
h∇u∇v dX

6 hmax ‖ ∇u ‖L2(Ω)‖ ∇v ‖L2(Ω)

6 C1 ‖ u ‖H1(Ω)‖ v ‖H1(Ω)

where C1 = hmax, and coercive

a(u, u) =
∫

Ω
h|∇u|2 dX

> hmin ‖ ∇u ‖2
L2(Ω)

> C2 ‖ u ‖2
H1(Ω)

where C2 =
hmin

(C + 1)
and C is Poincaré constant.

It is clear that the form
∫

Ω f v dX is linear and continuous. So we can deduce by Lax-Milgram
theorem that the problem admits a unique solution in the Hilbert space H1

0(Ω).

4.2 the finite element method for the koch snowflake

Let us again consider the Dirichlet membrane problem in the variational form:

∫
Ω

h∇u∇v dX =
∫

Ω
f v dX (47)

For the benefit of the reader who may not be familiar with mathematical notions devoted to
Lagrange finite elements, we shall first recall several definitions (see [All12] for further details).
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Definition 4.2.1. Lagrange finite element

A Lagrange finite element is a triplet (K, Σ, P) such that

• K is a compact, convex, and non empty interior.

• Σ = {a1, ..., aN}, N ∈ N?, is a finite set of (distinct) points of K.

• P is a function vector space of finite dimension defined on K, such that Σ is unisolvent in the
sens of definition 4.2.2.

Definition 4.2.2. Local Basic Function

Let us denote by (K, Σ, P) a Lagrange finite element. We call local basic functions the N functions
ei (i = 1, ..., N) of P such that

ei(aj) = δij 1 6 i, j 6 N

The N-uplet (e1, ..., eN) is a base of P.

We call the P-interpolation operator on Σ the operator πK which, for every function g on K,
gives πK g defined as

πK g =
N

∑
i=1

g(ai)ei

This function (πK g) is the unique element of P taking the same values as g on Σ.

Definition 4.2.3. Triangular Mesh

Given a polyhedral, connected, open Ω ⊂ Rn, a triangular mesh of Ω is a set Tδ of N-simplices
(Ti)16i6N such that

• Ti ⊂ Ω and ∪
16i6N

Ti = Ω.

• Ti ∩ Tj is an m-simplex, 0 6 m 6 n− 1, whose vertices are vertices of Ti and Tj.

• δ = max
i=1,...,N

|Ti| is the maximum diameter.

Definition 4.2.4. Triangular Lagrange Finite Element

Given a triangular mesh Tδ of a polyhedral, connected, open Ω ⊂ Rn. The Triangular Lagrange
finite element of k-order, associated to this mesh, is defined by the discrete spaces

Vδ =
{

v ∈ C(Ω) | v|Ti
∈ Pk ∀Ti ∈ Tδ

}
Ṽδ =

{
v ∈ Vδ | v|∂Ω = 0

}
·

where Pk is the space of polynomials of order 6 k.
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The problem of applying the triangular Lagrange finite element is that the boundary ∂Ω is a
self-similar set, which implies that the triangulation mesh is not an easy task. A solution of this
problem is to approximate ∂Ω by an increasing sequence of regular curves which converges towards
it.

4.2.1 P1 Finite Element on a Uniform Mesh

Let us start with a finite set of points:

P1 = (0,−1) , P2 =

(
−
√

3
2

,−1
2

)
, P3 =

(
− 1

2
√

3
,−1

2

)
, P4 =

(
1

2
√

3
,−1

2

)

P5 =

(√
3

2
,−1

2

)
, P6 =

(
− 1√

3
, 0
)

, P7 = (0, 0) , P8 =

(
1√
3

, 0
)

P9 =

(
−
√

3
2

,
1
2

)
, P10 =

(
− 1

2
√

3
,

1
2

)
, P11 =

(
1

2
√

3
,

1
2

)
, P12 =

(√
3

2
,

1
2

)
P13 = (0, 1)

We then obtain the initial triangular mesh KS1; see Figure 42.

P5

P1

P2

P6

P3 P4

P8P7

P10P9 P11 P12

P13

Figure 42: KS1.
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This provides us with the first set of vertices V”1.

Next, we use the successive discretization of the Koch Curve to fix the discretization diameter, so
we can construct a uniform triangulation mesh of the whole Koch Snowflake (we plot in the next
figure the vertices sequence Vm of this triangulation).

The Koch Curve discretization sequence (KCm)m∈N? is generated by starting with five points

P9 =

(
−
√

3
2

,
1
2

)
, P10 =

(
− 1

2
√

3
,

1
2

)
, P11 =

(
1

2
√

3
,

1
2

)
, P12 =

(√
3

2
,

1
2

)
, P13 = (0, 1)

and by using the similarities in section 4.1.1 to construct the recursion

KCm = ∪
16i64

fi (KCm−1) ·

P9 P10 P11 P12

P13

Figure 43: KC1.

By using the two rotations h1 and h2, we obtain the sequence of boundary points (V ′m)m∈N.

Figure 44: V′1, V′2 and V′3.
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Using a uniform diameter δ = δm =
1

3m , we obtain the points of the discretization of the

Snowflake (V”m)m∈N ·

Figure 45: V”1, V”2 and V”3.

Proposition 4.2.1. [LNRG96]

Given a natural integer m, let us denote respectively by N ′m, the number of vertices of the triangulation of
the boundary, and by N (KS)m and Nm, the numbers of triangles and vertices of the Snowflake triangulation.
We have that

N ′1 = 12 , N (KS)1 = 12, N1 = 13 ,

and, for any strictly positive integer m:

N ′m = 3× 4m

N (KS)m =

(
9m +

3
5
(9m − 4m)

)
Nm =

N ′m +N (KS)m

2
+ 1 ·

First, we calculate the respective areas (|T m
i |)16i6N (KS)m of the m-order triangles (T m

i )16i6N (KS)m

(see Definition 4.2.3)

|T 0| = |P2P5P13| =
1
2

(√
3

2
+

√
3

2

)
×
(

1 +
1
2

)
=

3
√

3
4

|T 1
i | =

|T 0|
9

=

√
3

12

|T m
i | =

|T 0|
9m ·
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Given the discretization points V”m, m ∈N, let T m
l = PaPbPc, 1 6 l 6 N (KS)m, be a triangle of

the mesh, we define the barycentric coordinates λm
i ([Luc04]), i = {a, b, c}, such that, for all X ∈ R2

∑
i∈{a,b,c}

λm
i (X) = 1 , ∑

i∈{a,b,c}
Piλ

m
i (X) = X

For the initial triangle T 0 = P2P5P13, we compute

∇λ0
2(X, Y) =

2
3
√

3

(
− 1

2 − 1
0−

√
3

2

)
=

(
− 1√

3
− 1

3

)

∇λ0
5(X, Y) =

2
3
√

3

(
1 + 1

2

−
√

3
2 − 0

)
=

(
1√
3
− 1

3

)

∇λ0
13(X, Y) =

2
3
√

3

(
− 1

2 +
1
2√

3
2 +

√
3

2

)
=

(
0
2
3

)
·

∫
T0

|∇λ0
2|2 dX dY =

1√
3∫

T0

|∇λ0
5|2 dX dY =

1√
3∫

T0

|∇λ0
13|2 dX dY =

1√
3∫

T0

∇λ0
2∇λ0

5 dX dY = −
√

3
6∫

T0

∇λ0
2∇λ0

13 dX dY = −
√

3
6∫

T0

∇λ0
5∇λ0

13 dX dY = −
√

3
6
·

Next, we can compute the integrals on the triangle T 1
2 = P2P3P6, for P2 =

(
−
√

3
2 ,− 1

2

)
, P3 =

(
− 1

2
√

3
,− 1

2

)
and P6 =

(
− 1√

3
, 0
)

:

∇λ1
2(X, Y) = 2

√
3

(
− 1

2 − 0
− 1√

3
+ 1

2
√

3

)
=

(
−
√

3
−1

)
= 3∇λ0

2(X, Y)

∇λ1
3(X, Y) = 2

√
3

(
0 + 1

2

−
√

3
2 + 1√

3

)
=

(√
3
−1

)
= 3∇λ0

3(X, Y)

∇λ1
6(X, Y) = 2

√
3

(
− 1

2 +
1
2

− 1
2
√

3
+
√

3
2

)
=

(
0
2

)
= 3∇λ0

6(X, Y) ·
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Thus,

∫
T 1

2

|∇λ1
2|2 dX dY =

1√
3
=
∫
T 0
|∇λ0

2|2 dX dY∫
T 1

2

|∇λ1
3|2 dX dY =

1√
3
=
∫
T 0
|∇λ0

5|2 dX dY∫
T 1

2

|∇λ1
6|2 dX dY =

1√
3
=
∫
T 0
|∇λ0

13|2 dX dY

∫
T 1

2

∇λ1
2∇λ1

3 dX dY = −
√

3
6

=
∫
T0

∇λ0
2∇λ0

5 dX dY

∫
T 1

2

∇λ1
2∇λ1

6 dX dY = −
√

3
6

=
∫
T0

∇λ0
2∇λ0

13 dX dY

∫
T 1

2

∇λ1
3∇λ1

6 dX dY = −
√

3
6

=
∫
T0

∇λ0
5∇λ0

13 dX dY

In general, given the set KSm, consider a triangle T m
l = PiPjPk, 1 6 l 6 N (KS)m, for some

vertices Pi = (Xi, Yi), Pj = (Xj, Yj), Pk = (Xk, Yk). The barycentric coordinates are given by:

λm
i (X, Y) =

1
2|T m

l |
(
X(Yj −Yk) + Y(Xk − Xj) + XjYk −YjXk

)
λm

j (X, Y) =
1

2|T m
l |

(X(Yk −Yi) + Y(Xi − Xk) + XkYi −YkXi)

λm
k (X, Y) =

1
2|T m

l |
(
X(Yi −Yj) + Y(Xj − Xi) + XiYj −YiXj

)

and the corresponding gradients by

∇λm
i (X, Y) =

1
2|T m

l |

(
Yj −Yk
Xk − Xj

)
=

2× 9m

3
√

3

(
Yj −Yk
Xk − Xj

)
=

2× 9m

3
√

3
3−m

(
Y5 −Y13

X13 − X5

)
= 3m∇λ0

2(X, Y)

∇λm
j (X, Y) =

1
2|T m

l |

(
Yk −Yi
Xi − Xk

)
=

2× 9m

3
√

3

(
Yk −Yi
Xi − Xk

)
=

2× 9m

3
√

3
3−m

(
Y13 −Y1

X1 − X13

)
= 3m∇λ0

5(X, Y)

∇λm
k (X, Y) =

1
2|T m

l |

(
Yi −Yj
Xj − Xi

)
=

2× 9m

3
√

3

(
Yi −Yj
Xj − Xi

)
=

2× 9m

3
√

3
3−m

(
Y1 −Y5

X5 − X1

)
= 3m∇λ0

13(X, Y)
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We can deduce that

∫
T m

l

|∇λm
i |2 dX dY = 9−m

∫
T 0

9m|∇λ0
2|2 dX dY =

1√
3∫

T m
l

|∇λm
j |2 dX dY = 9−m

∫
T 0

9m|∇λ0
5|2 dX dY =

1√
3∫

T m
l

|∇λm
k |2 dX dY = 9−m

∫
T 0

9m|∇λ0
13|2 dX dY =

1√
3∫

T m
l

∇λm
i ∇λm

j dX dY = 9−m
∫
T 0

9m∇λ0
2∇λ0

5 dX dY = −
√

3
6∫

T m
l

∇λm
i ∇λm

k dX dY = 9−m
∫
T 0

9m∇λ0
2∇λ0

13 dX dY = −
√

3
6∫

T m
l

∇λm
j ∇λm

k dX dY = 9−m
∫
T 0

9m∇λ0
5∇λ0

13 dX dY = −
√

3
6
·

Now, we can compute the cross product involving the local basic functions. The function h is
taken as constant on every triangle T m

l , and given a local basic function ei (definition 4.2.2) associated
to a point Pi, we designate by l(S) the triangle number l containing vertex Pi, i ∈ S. The following
two configurations may occur:

1. The point Pi is an interior point, in which case

∫
KS

h |∇ei|2 dX dY =
6

∑
l=1

hl(i)

∫
T m

l

|∇λi|2 dX dY =

(
6

∑
l=1

hl(i)

)
1√
3∫

KS
h∇ei∇ej dX dY =

{
(h1(i,j) + h2(i,j))

∫
T m

l
∇λi∇λj dX dY = (h1(i,j) + h2(i,j))

−
√

3
6

0 If Supp(ei) ∩ Supp(ej) = ∅

2. The point Pi is a boundary point, two situations have then to be considered:

(a) The point Pi has two adjacent vertices, in which case

∫
KS

h |∇ei|2 dX dY = hl

∫
T m

l

|∇λi|2 dX dY = hl
1√
3∫

KS
h∇ei∇ej dX dY =

{
hl
∫
T m

l
∇λi∇λj dX dY = hl

−
√

3
6

0 If Supp(ei) ∩ Supp(ej) = ∅

(b) The point Pi has five adjacent vertices, in which case

∫
KS

h |∇ei|2 dX dY =
5

∑
l=1

hl(i)

∫
T m

l

|∇λi|2 dX dY =

(
5

∑
k=1

hk

)
1√
3

∫
KS

h∇ei∇ej dX dY =


(h1(i, j) + h2(i, j))

∫
T m

l
∇λi∇λj dX dY = (hk + hl)

−
√

3
6 If Pj is an interior point

hl
∫
T m

l
∇λi∇λj dX dY = hl

√
−3
6 If Pj is a boundary point

0 If Supp(ei) ∩ Supp(ej) = ∅
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4.2.2 Convergence and Error Estimates

Recall the notations Ω =
◦

KS and Ω = KS. Given an integer m, we consider Ωm = KSm as the
uniform triangulation of the Koch snowflake at the order m. The main object of this section is to
estimate the convergence of the finite element method at the order m. We adopt the methodology of
[RT04].

First, let us observe that

Ωm = ∪iT m
i ⊂ Ω ·

The triangulation is regular, since

δm =

√
3

3m ,

ρm =
1

3m ,

δm

ρm
=
√

3, lim
m→∞

δm = 0 ,

∀X ∈ ∂Ωm ∩ T m
l , d(X, ∂Ω) 6 C0 δm · (48)

where δm and ρm are respectively the triangle diameter and roundness (incircle diameter). Let us
consider the discrete spaces

Vδm =
{

v ∈ C(Ωm); v|T m
l
∈ Pk ∀T m

l ∈ Tδm , v|∂Ωm = 0
}

and the natural extension by zero on the unresolved features

Ṽδm =
{

ṽ ∈ C(Ω); ṽ|Ωm ∈ Vδm , ṽ|Ω\Ωm = 0
}
·

Now, let us consider the solution ũm of the variational Dirichlet problem defined in 4.1.4

∀ṽm ∈ Ṽδm , a(ũm, ṽm) = L(ṽm) ·

It follows by symmetry of the bilinear form that

‖ u− ũm ‖H1
0 (Ωm)

6

√
C1

C2
inf

ṽm∈Ṽδm

‖ u− ṽm ‖H1
0 (Ωm)

·

Indeed, by using the fact that
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∀ṽm ∈ Ṽδm , a(u, ṽm − ũm) = L(ṽm − ũm)

∀ṽm ∈ Ṽδm , a(ũm, ṽm − ũm) = L(ṽm − ũm)

we show that

∀ṽm ∈ Ṽδm , a(u− ũm, ṽm − ũm) = 0 , (49)

i.e.,

∀ṽm ∈ Ṽδm , a(u− ũm, u− ũm) = a(u− ũm, u− ṽm) · (50)

Using the regularity of the bilinear form a(·, ·) we can write

‖ u− ũm ‖H1
0 (Ωm)

6
C1

C2
‖ u− ṽm ‖H1

0 (Ωm)
·

With this result and equation 49 we deduce that ũm is the orhtogonal projection of u with respect
to the norm ‖ . ‖a the scalar product defined by the bilinear form on H1

0(Ωm), i.e. ∀ṽm ∈ Ṽδm

‖ u− ũm ‖2
a6‖ u− ṽm ‖2

a ·

We use the regularity of a(., .) on this expression

C1 ‖ u− ũm ‖2
H1

0 (Ωm)
6 C2 ‖ u− ṽm ‖2

H1
0 (Ωm)

· (51)

to finally obtain that

‖ u− ũm ‖H1
0 (Ωm)

6

√
C1

C2
inf

ṽm∈Ṽδm

‖ u− ṽm ‖H1
0 (Ωm)

· (52)

We take into account the fact that

‖ u− ũm ‖H1
0 (Ω)=

(
‖ u− ũm ‖2

H1
0 (Ωm)

+ ‖ u ‖2
H1

0 (Ω\Ωm)

) 1
2 · (53)

We will get rid of the remainder term later, but let us prove first the following result:

Theorem 4.2.2.

If Ω ⊂ Rn is an (ε, δ)-domain and if k > n
p , then Wk

p(Ω) is a subset of C0(Ω).
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Proof.

According to theorem 4.1.8, there exists a linear bounded extension operator E : Wk
p(Ω)→Wk

p(R
n)

such that

(Eg)|Ω = g

‖Eg‖Wk
p(R

n) . ‖g‖Wk
p(Ω)

One can then use the following classical result to conclude:

Lemma 4.2.3. [Bre99]

The injection ι : Wk
p(R

n)→C0(Rn) is compact, for k > n
p .

Now, let us consider the interpolation operator πm on Ωm, which for every continuous function
on Ω, associate the function πmu continuous on Ωm, for which the restriction (πmu)|T m

l
for T m

l ∈ Tδm

is the Lagrange interpolation on T m
l , and null on ∂Ωm vertices.

Lemma 4.2.4. [RT04]

Let T m
l be a triangle and an interpolation order k > 1. There exists a constant C independent of k, for

every function u ∈ H2(Ω) ∩ H1
0(Ω), such that, for all 0 6 n 6 k + 1, ∀v ∈ Hk+1(T m

l ),

‖ v− πmv ‖Hn(T m
l ) 6 C

δk+1
m
ρn

m
‖ v ‖Hk+1

0 (T m
l ) ·

• The case k = 1:

In that case, the function πmu belongs to Vδm . We have the following lemma:

Lemma 4.2.5. [RT04]

Let us assume that k = 1. There exists a constant C2 independent of δm, for every function u ∈ H2(Ω) ∩ H1
0(Ω),

such that

inf
vm∈Vδm

‖ u− vm ‖H1
0 (Ωm)

6 C2 δm ‖ u ‖H2
0 (Ω) ·
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• The case k > 2:

In that case, the function πmu 6∈ Vδm . We need to prove the following lemma:

Lemma 4.2.6. [RT04]

Let us assume that k > 2. There exists a constant C3 independent of δm, for every function
u ∈ H3(Ω) ∩ H1

0(Ω), such that

inf
vm∈Vδm

‖ u− vm ‖H1
0 (Ωm)

6 C3
√

δm ‖ u ‖H3
0 (Ω) ·

Proof.

We give here an adaptation of the proof in [RT04]. Let π0
m be the interpolation function such

that π0
mu ∈ Vδm . The support of πmu− π0

mu is the set of boundary triangles T m
l ∩ ∂Tδm 6= ∅.

We can use the decomposition

inf
vm∈Vδm

‖ u− vm ‖H1
0 (Ωm)

6‖ u− π0
mu ‖H1

0 (Ωm)

6‖ u− πmu ‖H1
0 (Ωm)

+ ‖ πmu− π0
mu ‖H1

0 (Ωm)
·

In one hand, lemma 4.2.4 allows us to write

‖ u− πmu ‖H1
0 (T m

l ).
δ3

m
ρm
‖ u ‖H3

0 (T m
l ) ·

Then

‖ u− πmu ‖H1
0 (Ωm)

. δ2
m ‖ u ‖H3

0 (Ω) ·

In the other hand, let T m
l = PiPjPk be a triangle from the boundary such that {Pi, Pj} ∈ ∂Ω, let

Pij =
Pi + Pj

2
and Pij? to be the intersection of the bisector of [Pi, Pj] with ∂Ω :

Pi PjPij

Pij*

The edge {Pi, Pj} ∈ ∂Ω of the boundary triangle T m
l .
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We get, given the basic function el associated to T m
l ,

(πmu− π0
mu)|T m

l
= u(Pij)el

Using the mean value formula, theorem 4.2.2 and regularity 48

∣∣u(Pij)
∣∣ = ∣∣u(Pij)− u(Pij?)

∣∣
6
∣∣Pij − Pij?

∣∣ ∣∣∣∣∂u
∂η

∣∣∣∣
. δm ‖ u ‖H3

0 (Ω)

Consequently, ∀T m
l ∈ ∂Ωm,

‖ πmu− π0
mu ‖H1

0 (T m
l ) . δm ‖ u ‖H3

0 (Ω)

Finally

‖ πmu− π0
mu ‖H1

0 (Ωm)
=

 ∑
T m

l ∈∂Ωm

‖ πmu− π0
mu ‖2

H1
0 (T m

l )

 1
2

.
√

δm ‖ u ‖H3
0 (Ω)

The result follows.

Now, we need to give an upper bound of ‖ u ‖2
H1

0 (Ω\Ωm)
. Given a triangle T m

l = PiPjPk from the

boundary ∂Ωm, where {Pi, Pj} ∈ ∂Ω, we can represent the open Ω \Ωm in the neighborhood of the
segment

[
Pi, Pj

]
:

This boundary part is just a copy of the Koch self-similar curve, for a function v ∈ H1(Ω), we can
exploit the density theorem 4.1.10 and choose v ∈ D(Ω), then we write for some z(x) ∈ ∂Ω

v(x, y) = v(x, z(x)) +
∫ y

z(x)
∂yv(x, s)ds

then,
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The open set Ω \Ωm for m = 1.

Pi Pj

The open set Oi of Ω \Ωm delimited by
[
Pi, Pj

]
.

v2(x, y) 6 2v2(x, z(x)) + 2|
∫ y

z(x)
∂yv(x, s)ds|2

6 2v2(x, z(x)) + 2|y− z(x)|
∫ y

z(x)
|∂yv(x, s)|2ds

6 2v2(x, z(x)) + C0 δm

∫ y

z(x)
|∂yv(x, s)|2ds

by using the boundary regularity 48, and, by integration over Oi, the subset of Ω \Ωm delimited by[
Pi, Pj

]
,

‖ v ‖2
L2(Oi)

.
(

δm ‖ v ‖2
L2(Oi∩∂Ω) +δ2

m ‖ ∂yv ‖2
L2(Oi)

)
·

By summation, this yields

‖ v ‖2
L2(Ω\Ωm)

.
(

δm ‖ v ‖2
L2(∂Ω) +δ2

m ‖ v ‖2
H1

0 (Ω\Ωm)

)
·

We conclude that

‖ v ‖L2(Ω\Ωm) .
(√

δm ‖ v ‖L2(∂Ω) +δm ‖ v ‖H1
0 (Ω\Ωm)

)

by using the trace theorem 4.1.9
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‖ v ‖L2(Ω\Ωm) .
√

δm ‖ v ‖H1(Ω) ·

By applying this inequality to ∂xu and ∂yu, we obtain the following lemma:

Lemma 4.2.7.

There exists a constant C5 independent of δm, for every function u ∈ H2(Ω), such that

‖ u ‖H1
0 (Ω\Ωm)

6 C5
√

δm ‖ u ‖H2(Ω)

This lemma enables one to compute the solution on Ωm and ignore Ω \Ωm, for m sufficiently
high. Now, by combining those results with equation 53 and 52, we obtain the following theorem
about the convergence of the finite element method:

Theorem 4.2.8.

There exist constants C̃ independent of δm, such that

‖ u− ũm ‖H1
0 (Ω) 6 C̃

√
δm ‖ u ‖H2(Ω) if k = 1 and u ∈ H1

0(Ω) ∩ H2(Ω)

‖ u− ũm ‖H1
0 (Ω) 6 C̃

√
δm ‖ u ‖H3(Ω) if k > 2 and u ∈ H1

0(Ω) ∩ H3(Ω) ·

4.2.3 Numerical Results

In the following, we report the finite element solution of the Dirichlet membrane problem

−div (h∇u) = f in Ω

u = 0 in ∂Ω

for h = 1 and f = e−(x2+y2). The solution are generated by using the package NDSolve‘FEM‘ of
Mathematica:

Next, we report a P2 solution for m = 4 with a uniform mesh.
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m = 1. m = 2. m = 3.

Figure 46: The meshes.
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The contour plot of the so-
lution.

The meshed solution. The solution.

Figure 47: The solution.

4.3 parametric optimization

4.3.1 An Alternative Definition

Let us recall the Poisson equation with Dirichlet condition

(PH)
{
−div (h∇u) = f in Ω

u = 0 in ∂Ω

for f ∈ L2(Ω), h ∈ L∞(Ω) such that hmin 6 h 6 hmax, and Ω a (ε, δ)-domain delimited by a d-set
(The Koch Snowflake for example). As proved before, this equation admits a weak solution in
W1

2 (Ω) = H1(Ω).

Moreover, the bilinear form a(·, ·) is symmetric, which enables us to deduce that [Bre99]:

u = min
v∈H1

0 (Ω)

{
Φ(v) =

1
2

∫
Ω

h∇v∇v dX−
∫

Ω
f v dX

}
·

By taking e = ∇v, this is equivalent to
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min
v∈H1

0 (Ω), e∈L2(Ω)2

e=∇v

{
Φ(v, e) =

1
2

∫
Ω

h e · e dX−
∫

Ω
f v dX

}
·

The intermediary Lagrangian of the problem is

L̃(e, v, λ) = Φ(v, e) +
∫

Ω
λ · (∇v− e) dX ·

The Lagrangian of the problem is then

L(v, λ) = min
e∈L2(Ω)

L̃(e, v, λ) ·

The function e→ L̃(e, v, λ) is strongly convex, and then admits a unique minimum given by the
Euler equation e? = h−1λ, which implies that

L(v, λ) = −1
2

∫
Ω

h−1λ · λ dX−
∫

Ω
f v dX +

∫
Ω

λ · ∇v dX

= −1
2

∫
Ω

h−1λ · λ dX−
∫

Ω
v (div(λ) + f ) dX ·

The dual problem is then

max
λ∈L2(Ω)2

−div(λ)= f

{
Ψ(λ) =

1
2

∫
Ω

h−1λ · λ dX
}
·

Thus, we can establish the following theorem:

Theorem 4.3.1. [All12]

There exists a unique saddle point (u, σ) of the Lagrangian L(v, λ) on H1
0(Ω)× L2(Ω)

2

L(u, σ) = max
λ∈L2(Ω)2

min
v∈H1

0 (Ω)
L(v, λ) = min

v∈H1
0 (Ω)

max
λ∈L2(Ω)2

L(v, λ)

with σ = h∇u.

4.3.2 Optimization Thickness of an Elastic Membrane on Fractals

In the following, we consider the problem of the optimal thickness h(X) of a membrane deformed
by a force f . We will proceed as in [All07] to prove the existence of a solution of this problem. The
thickness satisfy 0 < hmin 6 h(X) 6 hmax and the behavior of the membrane is described by the
Dirichlet problem:
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(PH)
{
−div (h∇u) = f in Ω

u = 0 in ∂Ω

where Ω is a domain with a fractal boundary ∂Ω. The problem is to find h ∈ H which minimizes the
compliance

J(h) =
∫

Ω
j(uh)dX (54)

=
∫

Ω
f uhdX (55)

where

H =

{
h ∈ L∞(Ω) such that 0 < hmin 6 h(X) 6 hmax and

∫
Ω

h(X)dX = h0|Ω|
}

and where uh is the solution of the weak problem

∫
Ω

h∇u∇v dX =
∫

Ω
f v dX ·

The operator T : h → uh is linear and continuous, indeed, let (hn)n∈N an L∞(Ω)-sequence
converging to some h in L∞(Ω), by the reciprocate Lebesgue theorem, there exist a subsequence
(hnk)k∈N

such that hnk → h a.e. on Ω and ∀k ∈ N, |hnk(X)| 6 C a.e. on Ω, for some constant C.
Passing to the limit in the weak formula

lim
k→∞

∫
Ω

hnk∇u∇v dX−
∫

Ω
f v dX =

∫
Ω

h∇u∇v dX−
∫

Ω
f v dX

We conclude that lim
n→∞

T(hn) = T(h), since

∣∣∣∣( lim
k→∞

∫
Ω

hnk∇u∇v dX−
∫

Ω
f v dX

)
−
(

lim
n→∞

∫
Ω

hn∇u∇v dX−
∫

Ω
f v dX

)∣∣∣∣
6

∣∣∣∣∫Ω
∇u∇v dX

∣∣∣∣ ‖ lim
k→∞

hnk − lim
n→∞

hn ‖L∞(Ω)

6 0 ·

We can now conclude that the form J is continuous and linear: if f ∈ L2(Ω), the function
u →

∫
Ω f udX is continuous linear form from L2(Ω) to R, the continuity and linearity of J is a

consequence of composition of linear continuous applications.

In addition, the theorem of the last section allows us to write

∫
Ω

f uhdX = min
λ∈L2(Ω)2

−div(λ)= f

1
2

∫
Ω

h−1|λ|2 dX ·

The optimization problem is then
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inf
h∈H

min
λ∈L2(Ω)2

−div(λ)= f

1
2

∫
Ω

h−1|λ|2 dX = inf
(h,λ)∈H×J

1
2

∫
Ω

h−1|λ|2 dX (56)

where J =
{

λ ∈ L2(Ω)2, −div(λ) = f in Ω
}

. The set H×J is closed and convex as a product
of two closed convex sets, and the function Ψ(h, λ) = 1

2

∫
Ω h−1|λ|2 is convex, since the associated

Hessian matrix is positive, and coercive,

lim
‖(h,λ)‖H×J→∞

Ψ(h, λ) = ∞

and since H is bounded. The existence of the solution is ensured by the following theorem:

Theorem 4.3.2. [Bre99]

Let us denote by E a reflexive Banach space, and by A ⊂ E a convex closed non-empty subset of E, and
by J : A→ ]−∞,+∞] a convex function, lower semi-continuous with J 6= +∞ such that

lim
x∈A
‖x‖→∞

J(x) = +∞ ·

Then, J reaches its minimum on A, i.e., ∃x0 ∈ A such that J(x0) = minx∈A J(x).

We have the following result:

Theorem 4.3.3. [All12]

Given λ ∈ L2(Ω)
2, the problem

min
h∈H

1
2

∫
Ω

h−1|λ|2 dX

has a minimum h(λ) in H given by

h(λ)(x) =


h?(x) =

|λ(x)|√
l

if hmin < h? < hmax

hmin if h? 6 hmin

hmax if hmax 6 h?

where l ∈ R+ is the unique value such that
∫

Ω h dX = h0|Ω|. This value is unique as l 6= 0.

4.3.3 Resolution by the Discrete Projected Gradient Algorithm (D.P.G.A.)

This section is based on the algorithm introduced by A. M. Toader in [Toa97] and described G.
Allaire in his book [All07]. Since the convergence of the finite element approximation has been proved,
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we can build a projected gradient algorithm on this approximation. We give next a convergence
result for P1 approximation. Set

Vδm =
{

v ∈ C(Ωm); v|T m
l
∈ P1 ∀T m

l ∈ Tδm , v|∂Ωm = 0
}

Ṽδm =
{

ṽ ∈ C(Ω); ṽ|Ωm ∈ Vδm , ṽ|Ω\Ωm = 0
}
·

Ψ(h, λ) =
1
2

∫
Ω

h−1|λ|2 dX

Hm =

{
h ∈ L∞(Ω) : 0 < hmin 6 h(X) 6 hmax on Ωm, h(X) = 0 on Ω \Ωm,

∫
Ωm

h(X)dX = h0|Ωm|
}

Jm =
{

λ = h∇u, (h, u) ∈ Hm × Ṽδm , −div(h∇u) = f in Ωm, u = 0 in ∂Ωm
}

Define the restriction operator

R : H → {h ∈ L∞(Ω) : 0 < hmin 6 h(X) 6 hmax on Ωm, h(X) = 0 on Ω \Ωm}
h→ 1Ωm h|Ωm

and the extension operator

E : Hm → H
h→ h̃ s.t.

(
h̃
)
|Ωm

= h and
(
h̃
)
|Ω\Ωm

= PH(h)

where

PH(h) = max(hmin, min(hmax, h− l)) ·

and l is the solution of: ∫
Ω

PH(h) dX = h0|Ω|

Let use the finite element discretization to define

min
(h,λ)∈Hm×Jm

Ψ(h, λ) (57)

Given m ∈N?, the D.P.G.A. is as follows:
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Numerical algorithm:

1. Fix hm
0 ∈ Hm.

2. For n > 0 :

(a) Compute λm
n = hm

n∇um
n , where um

n ∈ Ṽδm is the unique solution of:

(PHm)

{
−div(hm

n∇um
n ) = f in Ωm

um
n = 0 in ∂Ωm

(b) Update h:

hm
n+1 = PHm(h

m
n − µ ∂hΨ(hm

n , λm
n ))

where

PHm(h) = max(hmin, min(hmax, h− l)) ·

l is the solution of: ∫
Ωm

PHm(h) dX = h0|Ωm|

µ > 0 and

∂hΨ(h, λm
n ) = −

|λm
n |2

h2 ·

3. Stop when

|hm
n − PHm(h

m
n − µ Ψ′(hm

n , λm
n ))| < ε µ hmax ·

The update can be written more explicitly

hm
n+1 = PHm

(
hm

n + µ
|λm

n |2
(hm

n )
2

)
· (58)

The discrete projected gradient approximation is done in two steps:

h? FEM−−→ h?,m PGA−−→ hm
n?

where we denote respectively by h?, h?,m and hm
n? , the solutions of 56, 57 and 58. Let’s introduce

h?,m FEM−−→ λ?,m

h̃? Continuous−−−−−−→ λ̃?

h̄?,m FEM−−→ λ̄?,m

h? Continuous−−−−−−→ λ?
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where h?,m and h? stand respectively for the optimal thickness of discrete and continuous problems,
h̃? = E(h?,m) is the extension of h?,m to Ω, and h̄?,m = PHm (R(h?)) is the projected restriction of h?

on Hm, we can check that

∣∣h̄?,m − h?
∣∣ 6 ∣∣h̄?,m − PHm(h

?)
∣∣+ |PHm(h

?)− h?|
6 |R(h?)− h?|+ |PHm(h

?)− h?|
−→ 0

since h? = PH(h?), and

∥∥h?,m − h̃?
∥∥

L∞(Ω)
=
∥∥h̃?
∥∥

L∞(Ω\Ωm)

−→ 0

and we got L∞(Ω) convergences. One has, ∀ε > 0

−ε < Ψ(h?,m, λ?,m)−Ψ(h̃?, λ̃?) 6 Ψ(h?,m, λ?,m)−Ψ(h?, λ?) 6 Ψ(h̄?,m, λ̄?,m)−Ψ(h?, λ?) < ε

Since Ψ(h?, λ?) 6 Ψ(h̃?, λ̃?) and Ψ(h?,m, λ?,m) 6 Ψ(h̄?,m, λ̄?,m). To get convergence of the bounds,
consider the general case hm ∈ Hm and h ∈ H such that hm → h in L∞(Ω), um ∈ Ṽδm the cor-
responding solution of (PHm), through the variational equality by choosing vm = um, one can
write

hmin ‖∇um‖2
L2(Ω) 6

∫
Ω

hm|∇um|2 dX =
∫

Ω
f umdX 6 ‖ f ‖L2(Ω) ‖u

m‖L2(Ω)

Using Poincaré inequality 4.1.6,

‖∇um‖L2(Ω) 6
C

hmin
‖ f ‖L2(Ω) (59)

um is bounded in H1
0(Ω), we can extract a subsequence um ⇀ u weakly in H1

0(Ω). Now let
v ∈ H1

0(Ω), there exists a sequence vm ∈ Ṽδm converging to v in H1
0(Ω), by the inequality 59 we

found

∣∣∣∣∫Ω
h∇u∇v dX−

∫
Ω

hm∇um∇vm dX
∣∣∣∣ 6 ∣∣∣∣∫Ω

h(∇u−∇um)∇v dX
∣∣∣∣+ ∣∣∣∣∫Ω

h∇um(∇v−∇vm) dX
∣∣∣∣

+

∣∣∣∣∫Ω
(h− hm)∇um∇vm dX

∣∣∣∣
6 hmax

∣∣∣∣∫Ω
(∇u−∇um)∇v dX

∣∣∣∣+ hmax ‖∇um‖L2(Ω) ‖∇(v− vm)‖L2(Ω)

+ ‖h− hm‖L∞(Ω) ‖∇um‖L2(Ω) ‖∇vm‖L2(Ω)

−→ 0

and
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∫
Ω

f vm dX −→
∫

Ω
f v dX

Thus, um ⇀ u in H1
0(Ω), the unique solution of (PH). To prove strong convergence, let ‖·‖a be

the norm on H1
0(Ω) introduced in section 4.2.2, and defined for all v ∈ H1

0(Ω) by

‖v‖a =

√∫
Ω

h|∇v|2 dX

Then

‖um‖2
a =

∫
Ω

h|∇um|2 dX

=
∫

Ω
(h− hm)|∇um|2 dX +

∫
Ω

hm|∇um|2 dX

=
∫

Ω
(h− hm)|∇um|2 dX +

∫
Ω

f um dX

6 ‖h− hm‖L∞(Ω) ‖∇um‖2
L2(Ω) +

∫
Ω

f um dX

−→
∫

Ω
f u dX

=
∫

Ω
h|∇u|2 dX

= ‖u‖2
a

Proposition 4.3.4. [Toa97]

For fixed domain Ωm, m ∈N, the projected gradient algorithm converges to the optimal solution h?,m.

We have proved that

Corollary 4.3.5.
The discrete projected gradient algorithm 4.3.3 converges to the optimal solution h?.

Proof.

It follows from the decomposition

‖Ψ(h?, λ?)−Ψ(hm
n? , λm

n?)‖ 6 ‖Ψ(h?, λ?)−Ψ(h?,m, λ?,m)‖+ ‖Ψ(h?,m, λ?,m)−Ψ(hm
n? , λm

n?)‖

where n? is the optimal stopping iteration.
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4.3.4 Numerical Results

In the sequel, we represent the optimal solution of the compliance problem for the Koch Snowflake
domain Ω:

min
h∈H

J(h) =
∫

Ω
f uh dX

where

H =

{
h ∈ L∞(Ω) such that 0.1 6 h(X) 6 1 and

∫
Ω

h(X)dX =
1
2
|Ω|
}

and u is the solution of

−div (h∇u) = e−(x2+y2) in Ω

u = 0 in ∂Ω ·

The approximation parameters are m = 4, ε = 0.05 and µ = 0.05 :

Figure 48: The approximated domain KS4.
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Figure 49: Contour plot and 3D representation of the optimal thickness.
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Figure 50: Contour plot and 3D representation of the optimal solution.
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The Black-Scholes model arises as one of the most important application of mathematics to
economics and finance of the 20

th century, allowing the emergence of the theory of financial partial
differential equations and the related numerical analysis.

Yet, despite its phenomenal success in the financial market, the model suffers from deficiencies,
for instance, when it comes to the modeling of real market options, with erratic behaviors.

Interestingly, the Black-Scholes equation can be transformed into a linear heat one (see, for
instance [Dav17]), which makes it a good candidate for techniques involving scale invariance. Know-
ing that stochastic behaviors, of erratic appearance, are involved, it was natural to consider an
alternative model, based on the theory of partial differential equations on fractals, as introduced by
J. Kigami (see [Kig01], [Str06]). So far, this had not been done. In [RD20a], we thus introduced the
so called self-similar Black-Scholes equation, emerging from a transformation of the self-similar
heat equation. Our results showed that this model can handle a multitude of behaviors, and that the
associated solution can be non-standard, depending on the self-similar measure.

In this chapter, we give a direct derivation of the self-similar Black-Scholes model, based on the
theory of non-symmetric Dirichlet forms, and prove the existence of a self-similar Black-Scholes
operator and we give an explicit formula to calculate this operator for some function in his domain.

After establishing the CFL convergence condition for the finite difference scheme, we simulate
the solution as a function of the weights. The results confirm our previous ones exposed in [RD20a],
and we can detect some specific behaviors characteristic of risk aversion and risk loving.

5.1 the self-similar black-scholes model

5.1.1 The Black-Scholes Operator

Notation (Space of test functions).

Given a continuous subset E of R, we will denote by D(E) the space of test functions on E, i.e.
the space of smooth functions with compact support in E.

Definition 5.1.1 (Self-Similar Black-Scholes Equation).

We introduce the self-similar Black-Scholes equation [RD20a], for European options, in the sense
of distributions:


∂u
∂t

(t, x) dµ =

(
−r(t) x

∂u
∂x

(t, x)− σ2(t)
2

x2 ∆u(t, x) + r(t) u(t, x)
)

dx ∀ (t, x) ∈ [0, T]× ]L, M[

u(T, x) = h(x) ∀ x ∈ [L, M]

where the variable 0 < L < x < M is the price of the underlying financial instrument, σ denotes the
volatility, r the risk-free interest rate, T the maturity of the option, µ a self-similar measure and u
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represents the option price. The real valued function h takes the values h(x) = (x− K)+ for a call1,
and h(x) = (K− x)+ for a put2, given a constant K: “the strike".

In order to prove that the problem has a solution, technical results related to the classical
Black-Scholes model are required. We refer to [AP05] for the proof of the following assertions:

Notation (Black-Scholes Bilinear Form).

For any pair (u, v) ∈ (D(R+))
2, we set:

B(u, v) =
∫

R+

σ2x2

2
∂u
∂x

∂v
∂x

dx +
∫

R+

(
σ2 − r

)
x

∂u
∂x

v dx +
∫

R+

r u v dx ·

Property 5.1.1.

The bilinear form B(·, ·) is non-symmetric.

We define its symmetric part, for any pair (u, v) ∈ (D(R+))
2, through:

B̃(u, v) =
1
2
(B(u, v) + B(v, u))

=
∫

R+

σ2x2

2
∂u
∂x

∂v
∂x

dx +
1
2

∫
R+

(
σ2 − r

)
x
(

∂u
∂x

v + u
∂v
∂x

)
dx +

∫
R+

r u v dx

=
σ2

2

∫
R+

x2 ∂u
∂x

∂v
∂x

dx +
3r− σ2

2

∫
R+

u v dx

Notations.

We set

V =

{
v ∈ L2(R+) , x

∂v
∂x
∈ L2(R+)

}
, W =

{
v ∈ L2(R+) , x2 ∂2v

∂x2 ∈ L2(R+)

}
·

1 The call is an option on a financial instrument, which consists in a right to buy. Concretely, it consists in a contract which
allows the subscriber to get the targeted financial product, at a price fixed in advance - the strike price - at a given date -
the expiry one, or maturity of the call.

2 As for the put, it is this time a right to sell - or not - at the maturity date.
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Property 5.1.2.

The space

V =

{
v ∈ L2(R+) , x

∂v
∂x
∈ L2(R+)

}
endowed with the inner product

(u, v) 7→ 〈u, v〉V = 〈u, v〉L2(R+)
+

〈
x

du
dx

, x
dv
dx

〉
L2(R+)

·

is a Hilbert space.

Definition 5.1.2 (Black-Scholes Weak Formula).

The Black-Scholes variational formula reads: find u ∈ C([0, T]; L2(R+)) ∩ L2((0, T); V) such that
∂tu ∈ L2((0, T); V?), satisfying:

B(u, v) = d
dt

∫
R+

u(t, x) v(x) dx , ∀v ∈ D(R+)

u(T, x) = h(x)

where V? is the dual space of V.

Proposition 5.1.3 (Black-Scholes Operator).

There exists a unique linear bounded operator BS : V → V ′, which will be called Black-Scholes operator,
such that:

∀ (u, v) ∈ V2 : B(u, v) = 〈BS(u), v〉L2(R+)
·

Definition 5.1.3.

The Black-Scholes operator is given, for any v in W, by

BS(v) = − x2σ2

2
∂2v
∂x2 − r x

∂v
∂x

+ r v ·

Proposition 5.1.4.

The set

W =

{
v ∈ V , x2 ∂2v

∂x2 ∈ L2(R+)

}
is dense in V.
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Theorem 5.1.5 (Black-Scholes Weak Solution).

For h in L2(R+), the Black-Scholes problem has a unique weak solution.

Remark 5.1.1.

Given two strictly positive numbers L < M, replacing R+ by [L, M] does not have a dramatic
effect on the mathematical nor the economical foundations of the model from two points of view:

1. Financial stability: One can suppose, in short run, boundedness of the underlying financial
instrument price.

2. Numerical analysis: It is well known that infinite boundaries are replaced with finite ones for
numerical simulations (See [KN01] for error estimates).

5.2 non-symmetric dirichlet forms and the self-similar black-scholes operator

Definition 5.2.1 (Self-Similar Measure on a Real Interval, Associated to a Set of Contractions [Str06]).

We hereafter consider an arbitrary real interval M = ]L, M[ ⊂ R+, and denote by f1 and f2 the
contractions defined, for any real number x, by:

f1(x) =
1
2
(x + L) , f2(x) =

1
2
(x + M) ·

A measure µ with full support onM will be called self-similar measure onM, relatively to the set
of contractions ( f1, f2) if, given a family of strictly positive pounds (µ1 , µ2) such that

µ1 + µ2 = 1 ,

one has, then,

µ = µ1 µ ◦ f−1
1 + µ2 µ ◦ f−1

2 ·

Notations.

In the sequel, we keep the notations introduced in Definition 5.2.1.

Remark 5.2.1.

i. µ can be replaced by any positive finite Borel measure onM with full support included inM.

ii. This thus enable one to build more exotic self-similar behaviours.
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Notations.

We introduce the spaces:

VM =

{
v ∈ L2(M) , x

∂v
∂x
∈ L2(M)

}
,

L2
µ(M) =

{
v ,

∫ M

L
v2 dµ < ∞

}
·

The dual space of VM will be denoted by V?
M and the closure of D(M) in VM by V0,M.

Proposition 5.2.1.

The space D(M) is dense in L2
µ(M).

As in [HLN06], the fundamental conditions under which the solution exist are obtained thanks
to the following assumptions:

Assumptions 5.2.2.

For any u in D(M), there exists a positive constant C0:

‖u‖L2
µ(M) 6 C0

∥∥∥∥x
∂u
∂x

∥∥∥∥
L2(M)

, (60)

σ2 < 4r · (61)

Proposition 5.2.3.

Under the first condition in conjecture 5.2.2, there exists a unique L2
µ(M)-representative ũ of each

equivalence class of functions u in VM such that the above condition holds. There also exists a D(M)

sequence (un)n∈N which converges towards ũ both in VM and in L2
µ(M), since D(M) is dense in VM

and L2
µ(M) [Kil94].

Let us consider the bilinear form B(·, ·) with domain dom (B) on the Hilbert space VM. We
introduce the bilinear form:

B?(·, ·) = B(·, ·) + 〈·, ·〉L2
µ(M)

and the symmetric one:

B̃?(·, ·) = B̃(·, ·) + 〈·, ·〉L2
µ(M) ·

We refer to[MR92] for more details on the theory of non-symmetric Dirichlet forms.
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Definition 5.2.2 (Symmetric Closed Form).

A pair (B, dom (B)) is symmetric closed form (on H) if dom (B) is a dense linear subspace of H
and B : dom (B)× dom (B) → R is a positive definite bilinear which is symmetric and closed on H
(i.e., dom (B) is complete with respect to the norm B?(·, ·)

1
2 ).

Definition 5.2.3 (Sector Condition).

Let us denote by B a bilinear form on the Hilbert space H, and by dom (B)) its domain. The
pair (B, dom (B) is said to satisfy:

i. The weak sector condition if there exists K > 0 such that:

∀ (u, v) ∈ dom (B)× dom (B) : |B?(u, v)| 6 K
√

B?(u, u) B?(v, v)· (62)

ii. The strong sector condition if there exists K > 0 such that

∀ (u, v) ∈ dom (B)× dom (B) : |B(u, v)| 6 K
√

B(u, u) B(v, v) ·

Remark 5.2.2.

A coercive continuous bilinear form satisfies both conditions.

Definition 5.2.4 (Coercive Closed Form).

A pair (B, dom (B)) will be called a coercive closed form (on H) if dom (B) is a dense linear
subspace of H and B : dom (B)× dom (B) → R is a bilinear form such that the following two
conditions hold:

i. Its symmetric part (B̃, dom (B)) is a symmetric closed form on H.

ii. (B, dom (B)) satisfies the weak sector condition inequality 62.

Definition 5.2.5 (Symmetric Vs Non-Symmetric Dirichlet Form).

A coercive closed form (B, dom (B)) on L2
µ(M), for a given measure µ, will be called a Dirichlet

form if, for any u in dom (B), one has:

ũ ∈ dom (B) and
{

B(u + ũ, u− ũ) > 0
B(u− ũ, u + ũ) > 0

where ũ = max(0, min(u, 1)). If (B, dom (B)) is in addition symmetric, this is equivalent to:

B(ũ, ũ) 6 B(u, u) ·

B will be called a symmetric Dirichlet form.
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Theorem 5.2.4. [MR92]

Let us denote by (B, dom (B)) a coercive closed form on H, and J a continuous linear functional on
dom (B). Then, there exists a unique u ∈ dom (B) such that

∀ v ∈ dom (B) : B?(u, v) = J(v) ·

Definition 5.2.6 (Non-Symmetric Dirichlet Forms).

Let us consider a coercive closed form on H, (B, dom (B)). There exists a one-to-one correspon-
dence with a pair of linear bounded operators (L, L̃):

∀ (u, v) ∈ dom (L)× dom (L) : B(u, v) = (−Lu, v) = (u,−L̃v)

where dom (L) is the domain of L. Also, dom (L) is a dense subset of dom (B).
The operator L (respectively L̃) is the generator of a strongly continuous contraction semi-group (Tt)t>0

(respectively (T̃)t>0).

The following result follows from [AP05].

Proposition 5.2.5 (Poincaré Inequality ).

The space D(M) is dense in VM, and, for any v ∈ D(M), the following inequality is satisfied:

‖v‖L2(M) 6 2
∥∥∥∥x

dv
dx

∥∥∥∥
L2(M)

This inequality induces a second norm on VM, given, for any v in VM, by:

|v|VM =

∥∥∥∥x
dv
dx

∥∥∥∥
L2(M)

·

Proposition 5.2.6. (Continuity and Gårding Inequality)

The bilinear form B(·, ·) is continuous on VM, and satisfies the Gårding inequality:

∀ u ∈ VM : B(u) >
σ2

2
|u|2VM − λ ‖ u ‖2

L2(M)

where λ =

(
σ2 − 3r

)
2

. Moreover, B(·, ·) is coercive under the second assumption 5.2.2.

Proof.
For any pair (u, v) ∈ (D(M))2, using Poincaré inequality we get:
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|B(u, v)| =
∣∣∣∣∫ M

L

σ2x2

2
∂u
∂x

∂v
∂x

dx +
∫ M

L

(
σ2 − r

)
x

∂u
∂x

v dx +
∫ M

L
r u v dx

∣∣∣∣
6

σ2

2
|u|VM |v|VM +

(
σ2 − r

)
|u|VM ‖ v ‖L2(M) + r ‖ u ‖L2(M)‖ v ‖L2(M)

6 C1 |u|VM |v|VM

where C1 = 2r +
5σ2

2
. For the coercivity, we use again Poincaré inequality:

B(u) =
σ2

2
|u|2VM +

∫ M

L

(
σ2 − r

)
x

∂u
∂x

u dx + r ‖ u ‖2
L2(M)

=
σ2

2
|u|2VM −

(
σ2 − 3r

)
2

‖ u ‖2
L2(M)

> C2 |u|2VM

where C2 = 6r− 3σ2

2
.

Definition 5.2.7.

We define the mapping ι : VM → L2
µ(M) by

ι(u) = ū

where ū is the unique L2
µ(M)-representative of u, and the closed set:

N =
{

v ∈ VM : ‖v‖L2
µ(M) = 0

}
·

Theorem 5.2.7. The Black-Scholes Non-Symmetric Dirichlet Form

Under the conditions 5.2.2:

i. dom(B) = VM is dense in L2
µ(M).

ii.
(

B̃?, VM
)

is a Hilbert space.

iiii. (B, dom(B)) is a (non-symmetric) Dirichlet form.
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Proof.

• Let us consider a sequence (un)n∈N of D(M), which converges towards u in L2
µ(M).

We then consider two sequences, (an)n∈N ∈ NN, and (bn)n∈N ∈ VMN such that, for any
natural integer n:

un = an + bn ·

Then, the sequence (bn)n∈N converges towards u in L2
µ(M).

• Under the first condition 5.2.2, the induced norm B̃?(·, ·)
1
2 is equivalent to the norm | · |VM .

Hence, (B?, dom(B)) is complete.

• It follows from the coercivity of B that:

0 6 C2 |u2 − ũ2|2VM 6 B(u± ũ, u∓ ũ) ·

Theorem 5.2.8 (Self-Similar Black-Scholes Operator).

Under the conjecture 5.2.2, there exists a linear bounded operator BSµ, that we will call self-similar
Black-Scholes operator, such that, for any pair (u, v) ∈ dom(BSµ)× dom(B):

B(u, v) =
〈
BSµ(u), v

〉
L2

µ(M)

Moreover, we will say that u ∈ dom(BSµ) and BSµ(u) = f if and only if

B(u, v) =
∫
M

f v dµ , ∀v ∈ V0,M

Remark 5.2.3.

The self-similar Black-Scholes operator is bounded from VM to V?
M since, ∀v ∈ V0,M

∣∣∣〈BSµ(u), v
〉

L2
µ(M)

∣∣∣ = |B(u, v)|

6 C1 |u|VM |v|VM

by continuity of B(·, ·).

Notations (Sobolev Spaces). Given a strictly positive integer d, an open bounded subset E of Rd, k ∈
N, and p > 1, we recall that the classical Sobolev spaces on E are
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Wk
p (E) =

{
f ∈ Lp (E) , ∀ j 6 k : Dj f ∈ Lp (E)

}
and

Hk (E) = Wk
2 (E) =

{
f ∈ L2 (E) , ∀ j 6 k : Dj f ∈ L2 (E)

}
·

The subspace Hk
0 of functions which vanish on ∂E is

Hk
0 (E) =

{
f ∈ L2 (E) , f|∂E = 0 and ∀ j 6 k : Dj f ∈ L2 (E)

}
·

It directly comes form the abstract theory of partial differential equations [Zei90], [Wlo87], [LM68]
that:

Theorem 5.2.9 (Self-Similar Black-Scholes Weak Solution).

Let us define the Gelfand triple (or equipped Hilbert space) VM ⊂ L2
µ(M) ⊂ V?

M. For h in L2
µ(M), the

self-similar Black-Scholes problem admits, under the assumption 5.2.2, a unique weak solution. Moreover,
for k > 1, the solution map:

L2
µ(M)→Wk

2 ([0, T]; VM)

h 7→ u

is continuous.

5.3 pointwise formula

Let us consider u ∈ dom(BSµ). We set: BSµ(u) = f .

In order to compute the explicit formula of BSµ, we set M = M− L and we recall the self similar
construction ofM (chapter 1):

M =
2

∑
i=1

fi(M) ·

Definition 5.3.1 (Prefractal Graph Approximation).

We denote by V0 the ordered set of the (boundary) points:

{L, M}

We build the graphM0 by connecting the two extremities of V0.
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For any strictly positive integer m, we set:

Vm =
2⋃

i=1

fi (Vm−1) ·

The set of points Vm, where consecutive points are connected, will be denoted byMm.

The set Vm is called the set of vertices of the graphMm. By extension, we will write that

Mm =
2⋃

i=1

fi (Mm−1) ·

One can prove that the sequence {Vm}m∈N is increasing and its limit dense inM (property 1.3.2).

Proposition 5.3.1.

Given a natural integer m, we will denote by Nm the number of vertices of the graphMm. One has:

N0 = 2

and, for any strictly positive integer m:

Nm = 2m + 1 ·

We recall the following definitions:

Definition 5.3.2 (Word).

Given a strictly positive integer m, we will call number-letter any integerWi of {1, 2}, and word
of length |W| = m, on the graphMm, any set of number-letters of the form:

W = (W1, . . . ,Wm) ·

We will write:

fW = fW1 ◦ . . . ◦ fWm ·

Definition 5.3.3 (Addresses).

Given a natural integer m, and a vertex X of Mm, we will call address of the vertex X an
expression of the form

X = fW (L) or X = fW ′ (M)

whereW andW ′ denote words of length m. The vertex X has thus a double address.
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Property 5.3.2 (Space of Harmonic Splines [RD20a]).

Given a strictly positive integer m, we introduce the space of harmonic splines of order m, denoted
by Hm([L, M]), as the space of functions ψm

X , X ∈ [L, M], such that:

∀Y ∈ Mm ψm
X (Y) = δXY ·

For k ∈ {1, . . . , 2m − 1}, and Y ∈ [L, M]:

ψm
L+ k M

2m
(Y) =


2m

M
(Y− L)− (k− 1) L +

(k− 1)M
2m 6 Y 6 L +

k M

2m

−2m

M
(Y− L) + (k + 1) L +

k M

2m 6 Y 6 L +
(k + 1)M

2m

0 otherwise

and

ψm
L (Y) =

−
2m

M
(Y− L) + 1 L 6 Y 6 L +

M

2m

0 otherwise
,

ψm
M(Y) =


2m

M
(Y−M) + 1 M− M

2m 6 Y 6 M

0 otherwise

Proposition 5.3.3 (Integration of Harmonic Splines [RD20a]).

Let us consider a strictly positive integer m. For k ∈ {1, . . . , 2m − 1}, we denote by VMk and Wk the
unique indices such that

fVMk ([L, M]) =

[
L +

(k− 1)M
2m , L +

k M

2m

]
and fWk ([L, M]) =

[
L +

k M

2m , L +
(k + 1)M

2m

]
·

Then, ∫ M

L
ψm

L+ k M
2m

dµ = µ1
sVMk µ2

m+1−sVMk + µ
sWk

+1
1 µ

m−sWk
2

and ∫ M

L
ψm

L dµ = µ1
m+1

∫ M

L
ψm

M dµ = µ2
m+1 ·

In addition, if µ1 <
1
2

:

∫ M

L
ψm

L dµ <
∫ M

L
ψm

L+ k M
2m

dµ <
∫ M

L
ψm

M dµ ·
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Property 5.3.4. Given a strictly positive integer m, we set, for any integer k ∈ {0, . . . , 2m}:

xk = L +

(
k

M

2m

)
and, for any u ∈ dom(BSµ):

B(u, ψm
xk
) =

∫ M

L

(
−σ2x2

2
∂2u
∂x2 − rx

∂u
∂x

+ r u
)

ψm
xk

dx

= lim
m→+∞

2m

∑
j=0
BSm (u(t, xj))ψm

xk

(
M

2m

)
= lim

m→+∞
BSm (u(t, xk))

(
M

2m

)

where BSm is the Black-Scholes discrete operator defined, for any t in [0, T], by:

BSm u(t, xk) = −
σ2

2
x2

k

(
u(t, xk+1)− 2 u(t, xk) + u(t, xk−1)(

M
2m

)2

)

− r xk

(
u(t, xk+1)− u(t, xk−1)

2
(

M
2m

) )
+ r C(t, xk)

= −σ2

2
k2 (u(t, xk+1)− 2 u(t, xk) + u(t, xk−1))

− r k
(

u(t, xk+1)− u(t, xk−1)

2

)
+ r C(t, xk)

The mean value formula yields asymptotically

∫ M

L
BSµu(x)ψm

xk
dµ ≈ BSµu(xk)

∫ M

L
ψm

xk
dµ ·

Theorem 5.3.5 (Self-Similar Black-Scholes Operator Pointwise Formula).

Let us consider u ∈ dom(BSµ). Then, for any x ∈ M, and any sequence (xm)m∈N of Vm \V0 which
uniformly converges towards x:

BSµ(u)(x) = lim
m→+∞

2−m
(∫ M

L
ψm

xm
dµ

)−1

BSm(u)(xm) ·

Proof.
The uniform convergence directly comes from the fact that
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(
M

2m

)(∫ M

L
ψm

xm
dµ

)−1

BSm(u)(xm) = C

∫ M

L
BSµ ψm

xm
dµ∫ M

L
ψm

xm
dµ

= CBSµ(u)(x) ·

The extension toM is done according to remark 1.6.1.

For µ1 = µ2 =
1
2

, one recovers the classical Black-Scholes operator, which implies that: C =

M.

5.4 proof of the assumption

5.4.1 First Assumption 5.2.2

Notation (Space of Weighted Continuous Functions).

We will denote by C(M) the space of weighted continuous functions onM endowed with the
norm

‖u‖η,∞ = max
x∈M

|x u(x)| ·

Proof. of the first assumption

Let us consider u ∈ V0,M. In one hand:

|x u(x)| =
∣∣∣∣∫ x

L
(su(s))′ ds

∣∣∣∣
=

∣∣∣∣∫ x

L
u(s) ds +

∫ x

L
su′(s) ds

∣∣∣∣
6
√

M (‖u‖L2 + |u|VM)

6
√

M‖u‖VM

We deduce the continuity of the injection ι : (VM, ‖ · ‖VM) → (Cη(M), ‖ · ‖η,∞). In the other
hand, for u ∈ Cη(M):

‖u‖L2
µ(M) =

(∫ M

L

1
x2 (x u)2 dµ

) 1
2

6 ‖u‖η,∞

(∫ M

L

1
x2 dµ

) 1
2

6 ‖u‖η,∞
µ(M)

1
2

L

the injection ι : (Cη(M), ‖ · ‖η,∞)→ (L2
µ(M), ‖ · ‖L2

µ(M)) is continuous, so we got finally

‖u‖L2
µ(M) 6 C0 ‖u‖VM

for C0 =

√
M µ(M)

L
.
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5.4.2 Commentary on the Second Assumption 5.2.2

The assumption 4r > σ2 is not that restrictive as it may seem in the first sight, for example, if
we give a look to sample from Vance L. Martin data [LMM05]. The sample consist of N = 269
observations on the European call options written on the S&P500 stock index on the 4th of April,
1995. We can calculate (see [RD21b])

• The interest rate r = 0.0591.

• The volatility σ = 0.076675.

which means that

4r = 0.2364� 0.00587906 = σ2 ·

5.5 numerical simulation of self-similar european options

Let us consider as in the above, the self-similar Black-Scholes equation, for a call European options,
defined by the system:

∂C
∂t

(t, S) = BSµ(C)(t, S) ∀ t ∈ [0, T] , ∀ S ∈ M

C(T, S) = h(S) ∀ S ∈ M
C(t, L) = 0 ∀ t ∈ [0, T]

C(t, M) = g(t) ∀ t ∈ [0, T]

for a self-similar measure µ onM, under the condition

4 r > σ2 ·

where h(S) = (S− K)+ and g(t) = M− K exp(−r(T − t)), and where the constant σ is the volatility,
r the risk-free interest rate, T the maturity of the option and C represents the call price.

We will use the following change of variables: τ = T − t, which leads to the following equation
(with the same notations):

−∂C
∂t

(t, S) = BSµ(C)(t, S) ∀ t ∈ [0, T] , ∀ S ∈ M

C(0, S) = h(S) ∀ S ∈ M
C(t, L) = 0 ∀ t ∈ [0, T]

C(t, M) = g(t) ∀ t ∈ [0, T]

for g(t) = M− K exp(−r t).
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Remark 5.5.1.

The results of section 5.2 still hold, if we write C̃ = C− g̃, where g̃(t, x) = (x− L)
(

M− K exp(−r t)
M− L

)
,

and replace the space VM by V0,M, then we solve the non homogeneous problem

∫ M

L

∂C̃
∂t

v dµ + B(C̃, v) =
∫ M

L

dg̃
dt

v dµ

applying abstract theory of partial differential equations [Wlo87].

5.5.1 The Finite Difference Method

In the spirit of our previous work [RD19], we fix a strictly positive integer N, and set:

h =
T
N

We will write, for a function f , n ∈ {0, . . . , N} and k ∈ {0, . . . , 2m}:

f (h, k) = f (n h, L + k
M

2m ) ·

We use the Euler implicit scheme, for any integer n belonging to {0, . . . , N − 1}:

∀ k ∈ {0, . . . , 2m} :
∂C
∂t

(n, k) ≈ 1
h
(C(n + 1, k)− C(n, k))

The self-similar Black-Scholes operator for k = {0, . . . , 2m} is approximated through

BSµ C(n, k) ≈
(

2−m

µ1
sVMµ2

m−sVM+1 + µ1
sW+1µ2m−sW

)
BSm C(n, k)

≈ δm BSm C(n, k)

where BSm is the Black-Scholes discretized operator given by

BSm C(n, k) = −σ2

2

(
k M

2m

)2
(

C(n, k + 1)− 2 C(n, k) + C(n, k− 1)(
M
2m

)2

)

− r
(

k M

2m

)(
C(n, k + 1)− C(n, k− 1)

2
(

M
2m

) )
+ r C(n, k) ·

For 0 6 n 6 N − 1, and 1 6 k 6 2m − 1, we define the following scheme:

(SBS)


−Ch,m(n + 1, k)− Ch,m(n, k)

h
= δm BSm Ch,m(n, k)

Ch,m(n, 0) = 0
Ch,m(n, 2m) = g(n)
Ch,m(0, k) = h(k) ·

For n ∈ {0, . . . , N − 1}, we set:
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C(n) =

 Ch,m(n, 1)
...

Ch,m(n, 2m − 1)

 =

 Ch,m(n, fW1(M))
...

Ch,m(n, fW2m−1(M))

 ,
{
W1, . . . ,W2m−1

}
∈ {1, 2}m ·

We have the following recurrence relation:

C(n + 1) = A C(n) + B(n)

where the (2m − 1)× (2m − 1) matrix A is given by:

A = I2m−1 − h 2−m Ψ−1
m BSm

and where I2m−1 denotes the (2m − 1)× (2m − 1) identity matrix, Ψm and BSm the (2m − 1)× (2m − 1)
matrices:

Ψm =


. . . 0

µ1
sVMµ2

m+1−sVM + µ1
sW+1µ2

m−sW

0
. . .



BSm =


−σ2 − r σ2

2 + r
2 0 . . . 0 0

2 σ2 − r −4σ2 − r 2 σ2 + r . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −(2m − 2)2σ2 − r (2m − 2)2 σ2

2 + (2m − 2) r
2

0 0 0 . . . (2m − 1)2 σ2

2 − (2m − 1) r
2 −(2m − 1)2σ2 − r



and

B(n) = h 2−m µ2
−(m+1)

(
(2m − 1)2 σ2

2
+ (2m − 1)

r
2

)
0
...
0

g(n)

 ·
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5.5.2 Numerical Analysis

the scheme error and consistency

Let us consider a function VM defined onM. For any integer n in {0, . . . , N − 1}, and any X
inM:

∂v
∂t

(nh, X) =
1
h
(v((n + 1)h, X)− v(nh, X)) +O(h)

As in [RD19], for any strictly positive integer m, and any X in Vm \V0, one can prove that:

2−m
(∫ M

L
ψm

X dµ

)−1

BSm v(X) =

∫ M
L BSµ ψm

X dµ∫ M

L
ψm

X dµ

and that there exists a vertex Z in the m-cell fW ([L, M]) containing X such that

∣∣∣∣∣BSµ v(X)− 2−m
(∫ M

L
ψm

X dµ

)−1

BSm v(X)

∣∣∣∣∣ = ∣∣BSµ v(X)−BSµ v(Z)
∣∣

. |v(X)− v(Z)|

. |X− Z|

.
(

1
2

)m

·

using remark 5.2.3 and the uniform continuity of v ∈ VM. Thus,

BSµ v(X) = 2−m
(∫ M

L
ψm

X dµ

)−1

BSm v(X) +O(2−m) ·

The consistency error of our scheme is given by :

εh,m
n,k = O(h) +O(2−m) 0 6 n 6 N, 0 6 k 6 2m ·

We can check that the scheme is consistent:

lim
h→0,m→∞

εh,m
n,k = 0 ·

stability

We hereafter prove that the scheme is conditionally stable for the ‖ · ‖∞ norm.

Let us recall that, for 0 6 n 6 N, and 0 6 k 6 2m:
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Ch,m(n + 1, k) = Ch,m(n, k)
(
1− h δm σ2 k2)

+ Ch,m(n, k + 1)
(

h δm
σ2

2
k2 + h δm

r
2

k
)

+ Ch,m(n, k− 1)
(

h δm
σ2

2
k2 − h δm

r
2

k
)

− Ch,m(n, k) h δm r

= Ch,m(n, k) (1− αk) + Ch,m(n, k + 1)
(αk

2
+ βk

)
+ Ch,m(n, k− 1)

(αk

2
− βk

)
− Ch,m(n, k) γ

If we consider γ = 0, this is just an affine combination. Moreover, we have:

1− αk > 1− σ2 h 22m

2m
(∫ M

L
ψm

X dµ

) > 0 ,
αk

2
− βk > 0 , 1− γ > 0 ·

May we suppose that σ2 > r and that the following CFL condition

h 2m(∫ M

L
ψm

X dµ

) 6
1
σ2

is satisfied, the combination is then convex, and the scheme is stable for the norm ‖ · ‖∞.

For γ 6= 0, one has:

(1− γ) min
06j62m

Ch,m(n, j) 6 Ch,m(n + 1, k) 6 max
06j62m

Ch,m(n, j)− γ min
06j62m

Ch,m(n, j)

6 max
06j62m

Ch,m(n, j)− γ (1− γ)n min
06j62m

Ch,m(0, j)

6 max
06j62m

Ch,m(n, j)

and the scheme is ‖ · ‖∞-stable under the same conditions.

convergence

Theorem 5.5.1.

If the above CFL condition holds, the scheme is convergent for the norm ‖ · ‖2,∞ given by:

‖ (Ch,m(n, k))06n6N, 06k62m ‖2,∞ = max
06n6N

(
∑

06k62m

µ( fW k(M)) (Ch,m(n, k))2)

) 1
2

where µ ( fW k(M)) is the measure of the fW k(M).



5.5 numerical simulation of self-similar european options 173

Proof.

For 0 6 n 6 N and 0 6 k 6 2m, we set:

wn
k = C(n, k)− Ch,m(n, k)

and:

BSm C(n, k) = −σ2

2

(
k M

2m

)2
(

C(n, k + 1)− 2 C(n, k) + C(n, k− 1)(
M
2m

)2

)

− r
(

k M

2m

)(
C(n, k + 1)− C(n, k)(

M
2m

) )
+ r C(n, k) ·

One may check that:

wn+1
k − wn

k
h

− σ2

2
k2 δm

(
wn

k+1 − 2wn
k + wn

k−1
)
− r k δm

(
wn

k+1 − wn
k
)
+ r δm wn

k = εh,m
n,k 0 6 n 6 N − 1, 1 6 k 6 2m − 1

wn
0 = wn

2m = 0 0 6 n 6 N

w0
k = 0 1 6 k 6 2m − 1 ·

Let us set, for any integer n in {0, . . . , N}:

Wn =

 wn
1

...
wn

2m−1

 , En =

 εh,m
n,1
...

εh,m
n,2m−1

 ·
One has:

W0 = 0 and ∀ n ∈ {0, . . . , N − 1} : Wn+1 = A Wn + h En ·

By induction, this yields, for any integer n in {0, . . . , N − 1}:

Wn+1 = An W0 + h
n

∑
j=0

Aj En−j = h
n

∑
j=0

Aj En−j

Since A is a symmetric matrix, the CFL stability condition yields, for any integer n in {0, . . . , N}:

|Wn| 6 h

(
n−1

∑
j=0
‖A‖j

)(
max

06j6n−1
|Ej|
)

6 h n
(

max
06j6n−1

|Ej|
)

6 h N
(

max
06j6n−1

|Ej|
)

6 T

 max
06j6n−1

(
2m−1

∑
k=1
|εh,m

j,k |
2

) 1
2
 ·
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By assuming µ1 >
1
2

(the same result holds for µ1 6
1
2

by changing µ1 into µ2), we deduce then
that:

max
06n6N

(
2m−1

∑
k=1

µ ( fW k(M)) |wn
k |2
) 1

2

6 max
16k62m−1

(µ ( fW k(M)))
1
2 max

16n6N
|Wn|

6 max
16k62m−1

(µ ( fW k(M)))
1
2 T

 max
06n6N−1

(
2m−1

∑
k=1
|εh,m

n,k |
2

)1/2


6 max
16k62m−1

(µ ( fW k(M)))
1
2 T

(
(2m − 1)

1
2 max

06n6N−1, 16k62m−1
|εh,m

n,k |
)

6
√
(µ1 × 2)mT

(
max

06n6N−1, 16k62m−1
|εh,m

n,k |
)

=
√
(µ1 × 2)m (O(h) +O(2−m)

)
= O

((√
µ1

2

)m)

The scheme is then convergent.

5.5.3 Self-Similar Pricing

In the sequel, we give a numerical simulation of the self-similar pricing, in the case of a call:

∂C
∂t

(t, S) = BSµ(C)(t, S) ∀ t ∈ [0, T] , ∀ S ∈ [L, M[

C(T, S) = (S− K)+ ∀ x ∈ [L, M[

C(t, L) = 0 ∀ t ∈ v [0, T]

C(t, M) = M− K exp(−r(T − t)) ∀ t ∈ [0, T]

for a self-similar measure µ on [L, M]. The solutions are generated using the finite difference method,
for

T = 1 , K = 150 , σ = 0.3 , r = 0.1 ·

1. The region x > 230: the option price records its lowest level for µ1 <
1
2

, with slight difference
with the classical model.

2. The region 100 6 x 6 230: the alternative models overprice the option, µ1 <
1
2

records the
highest level.
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50 100 150 200 250 300
x

50

100

150

u(0, x)

μ1=0.5

μ1=0.2

μ1=0.8

Final condition

Figure 51: Black-Scholes solution u(0, x) for different values of the weights.

3. The region x 6 100: µ1 <
1
2

is the highest price, followed by µ1 >
1
2

, then the classical model.

There are differences with the curves given in [RD20a]: this is due to the exponential transforma-
tion of the solution in our previous study.

µ1 = 1
2 .

µ1 = 0.2.
µ1 = 0.8.

Figure 52: The call value for different values of the weights.

5.5.4 The Greeks

As in [Dav17], we recall that, in finance, the sensitivity of a portfolio to changes in parameters
values can be measured through what commonly call “the Greeks", i.e.:

i. The Delta, ∆ =
∂C
∂S
∈ [0, 1], which enables one to quantify the risk, and is thus the most

important Greek. It can also be interpreted as a probability that the option will expire in the
money.

ii. The Gamma, Γ =
∂2C
∂S2 > 0, which measures the rate of the acceleration of the option price, with

respect to changes in the underlying price.
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iii. The Vega (the name of which comes from the form of the Greek letter ν), ν =
∂C
∂σ

, which
measures the sensitivity to volatility.

iv. The Theta Θ =
∂C
∂t

, which is the time cost of holding an option.

v. The rho, ρ =
∂C
∂r

, which measures the sensitivity to the risk-free interest rate.

The good strategy, for traders, is to have delta-neutral positions at least once a day, and, whenever
the opportunity arises, to improve the Gamma and the Vega.

The Delta

µ1 = 1
2 . µ1 = 1

3 . µ1 = 2
3 .

Figure 53: The ∆, for different values of the weights.

The Gamma

µ1 = 1
2 . µ1 = 1

3 . µ1 = 2
3 .

Figure 54: The Γ, for different values of the weights.
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The Theta

µ1 = 1
2 .

µ1 = 1
3 . µ1 = 2

3 .

Figure 55: The Θ, for different values of the weights.

The Vega

µ1 = 1
2 . µ1 = 1

3 . µ1 = 2
3 .

Figure 56: The ν, for different values of the weights.

The rho

µ1 = 1
2 . µ1 = 1

3 . µ1 = 2
3 .

Figure 57: The ρ, for different values of the weights.
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5.5.5 Discussion

Let us make a few remarks about the behavior of the solution with respect to the weight µ at
t = 0:

i. For µ1 =
1
3

: the premium is greater than that of the classical model under the strike and smaller
above. The Greeks value shows a drastic increase in the strike neighbor, and self-similarity
clearly affects in the money region. The Theta shows a slower premium expected decrease.

ii. For µ1 =
2
3

: the premium is everywhere greater than that of the classical model. The Greeks
value increases progressively in the strike neighbor, and self-similarity affects in the money
region. The Theta indicates a slower premium expected decrease in the money and a greater
decrease deep in the money.

The dynamic generated by the self-similar Black-Scholes model is exotic and enables the emer-
gence of non-standard behaviors, the parameter µ1 can capture the behavior of non confident
investors under uncertainty and other factors influencing their perception of future.

The self-similar Black-Scholes equation can be understood as a diffusion equation with a time
change through a self-similar probability µ, where the cumulative distribution function satisfies for
x ∈ ]0, 1[, [0, x] = fW ([0, 1]) for some wordW ,

µ [0, x] = Πi∈W µi

depending on the address (path) of x.

According to this remark, one can create more exotic behavior using a self-similar measure µ

with many weights or enable the weights to change over time.

One last question remains: how to choose M and L ? to answer this question, one can use the
law of St, the underlying asset price, then choose M(α) (respectively L(α)) using the rule:

1−P (L(α) 6 St 6 M(α)) 6 α , 0 6 t 6 T

for some tolerance level α.
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.1 the finite element method

In the following, we present the works of Strichartz [SU00] [GRS01] for the construction of splines
and finite element method on fractals.

.1.1 Multiharmonic splines

Multiharmonic function spaces

In order to approximate solutions on fractals as in [GRS01], we need to introduce the space of
multiharmonic spline. To do this we follow the construction of [SU00].
On the unit interval, the space of polynomials is the solution space of ∆ku = 0 for some k. In the
case of a self-similar set F , the solution of this equation is an harmonic function.
Let Hk = {u : ∆k+1u = 0} be the space of multiharmonic functions of level k + 1. Setting N0 = #(V0),
the number of vertices in the initial graph V0, we can verify that the dimension of Hk is (k + 1)N0.
According to Strichartz and Usher [SU00] there exist two basis for this space, the first type of basis is
the so called the easy basis.

Definition .1.1.

For 0 6 j and 1 6 k 6 N0, we define the easy basis of Hj to be the family { f jk}06m6j,16k6N0 solution
of ∆j+1 f jk = 0 satisfying the boundary conditions :

∆m f jk(Pn) = δmjδkn for 1 6 n 6 N0, m > 0 and Pn ∈ V0

Every f ∈ Hj has the explicit representation :

f =
j

∑
m=0

N0

∑
k=1

(∆m f (Pk)) fmk

Proposition .1.1.

The solution f jk satisfies ∆ f jk = f(j−1)k and is given by :

f jk = −
∫

G(x, y) f(j−1)k(y)dµy for j > 1

where G(x, y) is the Green function.

We define a inner product for this basis :

Proposition .1.2.

For all j, k, j′, k′, we have :
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I(jk, j′k′) :=
∫

f jk f j′k′dµ

=
N

∑
i=1

j

∑
l=0

N0

∑
n=1

j′

∑
l′=0

N0

∑
n′=1

µi(riµi)
l+l′ f(j−l)k(Fi(Pn)) f(j′−l′)k′(Fi(Pn′))I(ln, l′n′)

And for j = j′ = 0 :

I(0k, 0k′) =
N0

∑
n=1

N0

∑
n′=1

A(kk′, nn′)I(0n, 0n′)

with A(kk′, nn′) = ∑N
i=1 µi f0k(Fi(Pn))(Fi(Pn′)). And we can verify that

I(jk, j′k′) = I((j + j′)k, 0k′)

Theorem .1.3.

Assume that the matrix A(kk′, nn′) is irreducible. If the values of fml(Fi(Pn)) are known for m 6
max(j, j′), then we can uniquely determine I(jk, j′k′) by imposing :

N0

∑
k=0

N0

∑
k′=0

I(0k, 0k′) = 1

Proposition .1.4.

We can write the Green function explicitly as :

G(Fi(Pn), Fi(Pn′)) =
N0

∑
n′=1

γ(i, i′, n, n′) f0n′(y)

where γ(i, i′, n, n′) = Gpq for p = Fi(Pn) q = Fi(Pn′), ans the matrix Gpq is given by G = −X−1, where
X denotes the restriction to (V1 \V0)× (V1 \V0) of the Dirichlet form E1 on V1 ×V1.

Proposition .1.5.

For all j, k, i, n, we have :

f jk(Fi(Pn)) = −
N

∑
i′=1

j−1

∑
l=0

N0

∑
n′=1

N0

∑
k′=l

µi′(ri′µi′)
lγ(i, i′, n, n′)I(lk′, 0n′) f(j′−1−l′)k(Fi′(Pk′))

Proposition .1.6.

For every j, k, l, m, with l < j we have :

∂n(∆l f jk(Pm)) = I((j− 1− l)k, 0m)
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The easy basis for Hj don’t give an information about the normal derivatives, Strichartz and Usher
[SU00] suggest a better basis involving it :

Theorem .1.7.

Consider the space Hj of multiharmonic functions.

1. Case 1 : j is odd.

For n 6 (j− 1)/2 and l 6 (j− 1)/2, we construct a basis of Hj consisting of functions f (j)
nk and g(j)

nk
satisfying :

∆l f (j)
nk (Pm) = δlnδkm ∂n∆l f (j)

nk (Pm) = 0 (63)

∆l g(j)
nk (Pm) = 0 ∂n∆l g(j)

nk (Pm) = δlnδkm (64)

2. Case 2 : j is even.

We construct a basis consisting of functions f (j)
nk for n 6 j/2 and g(j)

nk for n < j/2 satisfying :

∆l f (j)
nk (Pm) = δlnδkm ∆l g(j)

nk (Pm) = 0

for n 6 j/2 and

∂n∆l f (j)
nk (Pm) = 0 ∂n∆l g(j)

nk (Pm) = δlnδkm

for n < j/2.

Splines

A multiharmonic harmonic spline is a continuous function that are multiharmonic on each m-cell.
Let denote by Jm(x) the set of all pairs (w, k) such that x = Fw(vk). We reintroduce now the space of
multiharmonic splines S(Hj, Vm) of functions belonging to Hj when restricted to FwK for all words
of length m, and satisfying matching conditions at junction points :

Definition .1.2.

We say f ∈ S(Hj, Vm) if f ◦ Fw ∈ Hj for all words with | w |= m, and for all junction points x in Vm

the following matching conditions hold :

(rwµw)
−l∆l( f ◦ Fw)(Pk)

is the same for all (w, k) ∈ Jm(x), for each l 6 j/2, and
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∑
(w,k)∈Jm(x)

r−1
w (rwµw)

−l∂n∆l( f ◦ Fw)(Pk) = 0

for each l < j/2.

Remark .1.1.

For each vertex y ∈ Vm we will have functions φ
(j)
ly for j 6 j

2 , and ψ
(j)
ly for j < j

2 .

A function u ∈ S(Hj, Vm) can be written as :

u = ∑
y∈Vm

∑
l6 j

2

∆lu(y)φ(j)
ly + ∑

l< j
2

∂n∆lu(y)ψ(j)
ly



Definition .1.3.

We define S0(Hj, Vm) the subspace of S(Hj, Vm) consisting of function vanishing on V0.

Theorem .1.8.

If the inner product for the easy basis is uniquely determined, the space S(Hj, Vm) for j odd has dimension :

(1 + [j/2])(#Vm) + [(j + 1)/2] (NmN0 − #Jm)

where Jm denotes the set of junction points in Vm, and each element of S(Hj, Vm) is uniquely determined by
specifying

∆l f (x) for x ∈ Vm and l 6 j/2

and

∂n∆l( f ◦ Fw)(Pk) for | w |= m, Pk ∈ V0 and l < j/2

subject to the matching condition for all x ∈ Jm and l < j/2.

The same result holds for j even when the construction of the better basis is possible.

In order to construct a finite element approximation to the solution of a partial differential equation
on fractal, we need some numerical properties about the approximation of a solution using the
splines space S(Hj, Vm).
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Proposition .1.9.

If u ∈ domL2(∆) and u |∂K= 0, then

E(u, u)
1
2 6 c ‖ ∆u ‖2

for some constant c.

Proposition .1.10.

Suppose u ∈ domL2(∆2n), ∆lu |∂K= 0 and ∂n∆lu |∂K= 0 for all l 6 2n−1 − 1. Then

E(u, u)
1
2 6 cn ‖ ∆2nu ‖2

Proposition .1.11.

For j = 2n − 1 there exists a constant Cj such that for any u ∈ domL2(∆j+1) and any m there exists
um ∈ S(Hj, Vm) with :

E(u− um, u− um)
1
2 6 Cj ‖ ∆j+1u ‖2 ρ(j+ 1

2 )m

where ρ = max{riµi : 1 6 i 6 N}.

Theorem .1.12.

According to the last proposition, and for u ∈ domL2(∆j+1) we have:

‖ u− um ‖∞6 Cj ‖ ∆j+1u ‖∞ ρ(j+1)m

.1.2 The finite element method

Now that we are done with the multiharmonic spline space, we can transform the resolution of a
PDE to a problem of finite dimensional algebraic system, this is what we call Galerkin method.

In the sequel, we use the approach of [GRS01]. Let recall a fundamental theorem :

Theorem .1.13. [All12]

Let (X,< . >) a Hilbert space. Let a : X× X → R a bilinear, continue and coercive form, and let l : X → R

a continuous linear function satisfying, for u ∈ X :

a(u, v) = l(v) for all v ∈ X
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this problem has a unique solution via the Lax-Milgram theorem.

1. Let Xh a finite dimensional subspace of X. Then the variational problem :

uh ∈ Xh

a(uh, vh) = l(vh) for all vh ∈ Xh

satisfies the Lax-Milgram theorem and has in consequence a unique solution uh.

2. u and uh satisfies :

dist(u, Xh) 6‖ u− uh ‖X6
C
α

dist(u, Xh)

with C the constant of ellipticity and α the constant of continuity corresponding to a.

3. Let {e1, ..., ed} a base of Xh. Then:

Uh =


uh,1

.

.

.
uh,d


satisfies the system AhUh = Fh, with :

Ah =



a(e1, e1) a(e2, e1) . . . a(ed, e1)

a(e1, e2) a(e2, e2) . . . a(ed, e2)

. . . .

. . . .

. . . .
a(e1, ed) a(e2, ed) . . . a(ed, ed)


and

Fh =


l(e1)

.

.

.
l(ed)



This theorem the foundation of the finite element method. In the sequel we present the method for
two classes of PDE : a static PDE and a dynamical one.
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The Dirichlet problem

The first class of equation we consider is the Dirichlet problem :

−∆u + qu = f

u|V0
= 0

where q and f are given continuous function. We multiply the first equation by a specific function v
such that v|V0

= 0 and integrate, we obtain the weak formulation :

E(u, v) +
∫

K
quvdµ =

∫
K

f vdµ ∀v ∈ domE0

By choosing the spline space S0(Hj, Vm) instead of domE0, we obtain the finite element approxima-
tion.

Recall that every function u of S0(Hj, Vm) has a unique representation : u = ∑i ciφi for φi the elements
of the better basis. We replace u by his expression in the weak formulation and we take v to be an
element φk of the basis, we obtain :

−∑
i

ci

∫
K
(∆φi)φkdµ + ∑

i
ci

∫
K

qφiφkdµ =
∫

K
f φkdµ

which leads to the system of equations :

−EC + QC = F

where

Eki = E(φi, φk)

Qki =
∫
F

qφiφkdµ

Fk =
∫
F

f φkdµ

Ci = ci

The heat equation

In a second time we consider the heat problem :

∂tu(t, x) = ∆u(t, x) ∀(t, x) ∈ ]0, T[×F
u(t, x) = 0 for x ∈ ∂F and ∀t ∈ [0, T[

u(0, x) = g(x) ∀x ∈ F

Again, we multiply the first equation by a specific function v(x) such that v|V0
= 0 and integrate, we

obtain : ∫
F

∂tuvdµ =
∫
F

∆uvdµ

using the fact that nor K or v depends on t we can write :
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d
dt

∫
F

uvdµ = −E(u, v) ∀v ∈ domE0

We choose again the spline space S0(Hj, Vm) instead of domE0 to obtain the finite element approxi-
mation.

We look for a function u(t, x) in S0(Hj, Vm) of the form : u = ∑i ci(t)φi for φi the elements of the
better basis. We replace u by his expression in the weak formulation and we take v to be a element
φk of the basis, we obtain :

∑
i

d
dt

ci(t)
∫

K
φiφkdµ = −∑

i
ci(t)E(φi, φk)

which leads to the system of equations :

Q
d
dt

C(t) = −EC(t)

where

Eki = E(φi, φk)

Qki =
∫
F

φiφkdµ

Ci(t) = ci(t)

We can use a first finite difference in time to obtain a discrete version of the equation. So let fix

N ∈N and define h to be h :=
T
N

, we know that :

∂u
∂t

(kh, x) =
1
h
(u((k + 1)h, x)− u(kh, x)) + O(h)

We find the following scheme :

C(t + h) = (I − h ∗Q−1E)C(t)

Assuming Q is invertible.
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Analyse sur les fractales et applications

Résumé :

Cette thèse explore la théorie et les applications de l’analyse sur les fractales. Dans le premier
chapitre, on présente la théorie générale, en particulier, les opérateurs différentiels spécifiques sur
une classe particulière de ces objets singuliers (ensembles p.c.f., i.e., post-critiques finis : laplacien,
dérivée normale. Dans le second chapitre, on introduit des méthodes numériques pour la résolution
des équations aux dérivées partielles sur ces objets. Deux méthodes sont exposées : la méthode des
différences finies et la méthode des volumes finis. Le troisième chapitre traite dans un premier temps
du problème de la recherche des extremas d’une fonction, définie sur un objet singulier/ fractal, et
l’obtention d’un résultat analogue à la règle de Fermat; dans un second temps, nous résolvons, sur
le plan théorique, et numérique, un problème de contrôle optimal de l’équation de la chaleur. Le
chapitre quatre est une brève introduction à la théorie des EDP sur des domaines à frontière fractale.
Dans le cas particulier de l’équation de Poisson, nous démontrons l’existence et l’unicité des solutions.
Nous présentons également la solution numérique. Le dernier chapitre présente de nouvelle pistes
de recherche, pour appliquer la théorie de Krein-Feller-Stieljes au modèle de Black-Scholes, dans
le cas de mesures auto-similaires. Nos résultats montrent, en particulier, que le nouveau modèle
auto-similaire ainsi obtenu ne surestime pas le prix des options at the money (i.e., lorsque les options
commencent à avoir une certaine valeur intrinsèque).

Mots-clefs: Fractales – Laplacien – Analyse Numérique – Optimisation – Contrôle Optimal –
Évaluation des Options Financières.

Analysis on Fractals and Applications

Abstract:

This thesis explores the theory and applications of analysis on fractals. In the first chapter, we
present the general theory, in particular, the specific differential operators on a particular class
of these singular objects (p.c.f. sets, i.e., finite post-critical: Laplacian, normal derivative. In the
second chapter, numerical methods are introduced for solving partial differential equations on these
objects.Two methods are exposed: the finite difference method and the finite volume method.The
third chapter deals initially with the problem of finding the extrema of a function, defined on
a singular/fractal object, and obtaining a result analogous to Fermat’s rule; secondly, we solve,
theoretically and numerically, a problem of optimal control of the heat equation. Chapter four is
a brief introduction to the theory of PDEs on domains with a fractal boundary . In the particular
case of the Poisson equation, we prove the existence and uniqueness of solutions. We also present
the associated numerical solution. The last chapter presents new perspectives of research, where
we plan to apply the Krein-Feller-Stieljes theory to the financial Black-Scholes model, in the case of
self-similar measures. Our results show, in particular, that the new self-similar model thus obtained
does not overestimate the price of options at the money (i.e., when the options begin to have a certain
intrinsic value).

Keywords: Fractals – Laplacian – Numerical Analysis – Optimization – Optimal Control –
Option Pricing.
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