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Résumé: Le sujet de cette thése consiste a développer une méthode de calcul numérique permettant de
superposer dans un modéle global, un modéle numérique local afin d'introduire des détails géométriques
n'existant pas dans le modéle global. Cette méthode s'applique a des écoulements de natures variées
(monophasique, multi-composants, réactifs) dans un contexte d'interaction fluide-structure en grands
déplacements.

Dans un premier temps, une méthode de grilles superposées appelée méthode Chimére a été im-
plémentée dans un cadre volumes finis avec des milieux fluides. Cette implémentation s'appuie sur des
cellules de maillage du fluide pour échanger de I'information entre plusieurs grilles. Une reconstruction
de la solution est effectuée en utilisant des cellules dites envoyeuses. La solution fluide transférée est
évaluée avec une reconstruction au premier ordre utilisant une moyenne de la solution sur les volumes
des cellules envoyeuses intersectées par chaque cellule receveuse. Cette approche a été améliorée avec
un passage au deuxiéme ordre utilisant une reconstruction linéaire de la solution au sein des cellules
envoyeuses. Les deux approches ont été testées sur des cas test analytiques dont I'advection d'une
perturbation sinusoidale, le tube a choc de Sod, une onde de choc stationnaire et enfin I'advection d'un
vortex isentropique. Ces différents cas ont démontré la capacité de la méthode Chimére & transférer
des structures fluides compressibles simples telles que des ondes de choc ou des ondes de détente sans
introduire de perturbations a I'échelle globale. La méthode Chimére de second ordre s'est montrée plus
proche d’une solution monogrille et moins dépendante de la configuration géométrique des grilles que
la méthode de premier ordre en présence de maillages présentant des résolutions trés différentes.

La méthode de Chimére de second ordre a été évaluée sur des cas tests de la littérature en 2D
dont I'écoulement supersonique autour d'un cylindre circulaire, un cas d'interaction choc-bulle (Hélium
et R22) et enfin le cas de la double réflexion de Mach (DMR). Dans chacun de ces cas, la méthode
Chimeére de second ordre fournit des résultats comparables a une solution monogrille avec une erreur
liee & I'utilisation de la méthode Chimére négligeable pour des ratios de taille de cellule entre grilles
inférieurs a 8. La méthode Chimére de second ordre permet d'augmenter localement la précision de la
solution, autour d'un détail geométrique d'intérét, sans impacter lourdement le temps de calcul comparé
a une approche monogrille raffinée.

Enfin, la méthode Chimére de second ordre a été couplée & une méthode d'interaction fluide-
structure, appelée Mediating Body Method (MBM). Afin de rendre la méthode Chimére compatible
avec la MBM, le couplage Chimére-MBM, s'appuie sur une extrapolation de la solution de part et dautre
de la structure lorsque cette derniére traverse une zone d'échange Chimére. La méthode Chimére-MBM
est évaluée sur un cas test analytique de piston libre séparant deux cavités fluides au repos avec des
pressions différentes. L'impact de la méthode Chimére-MBM sur la solution fluide est négligeable pour
des ratios de taille de cellule entre grilles inférieurs 3 8. Un exemple en 3D, s’appuyant sur une cavité
haute pression séparée d'une cavité basse pression par une plaque perforée, est présenté. Ce cas test
utilise trois grilles fluides indépendantes et sollicite les méthodes Chimeére et Chimére-MBM dans le
méme calcul, démontrant la flexibilité d'usage des méthodes développées. L'utilisation conjointe de
ces méthodes permet d'obtenir des niveaux de précision des solutions numériques équivalents a une
approche monogrille fine avec des temps de calculs et des contraintes de maillage réduits.

Ce couplage apporte une plus-value notable dans le contexte de |'énergie nucléaire, pour des simula-
tions de situations accidentelles a I'échelle du circuit primaire d'un réacteur nucléaire a eau pressurisée.
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Title: Fast transient dynamic multi-model coupling with fluid-structure interaction for complex
flows in a finite volume framework

Keywords: Fast dynamics, overlapping grids, Chimera, fluid-structure interaction, compressible flows,
multicomponent flows

Abstract: This thesis topic aims to develop a numerical strategy that allows refined local models (mesh
size, geometry details, physical models) to be patched on a global model to account for modelling details
that are not captured by the larger scale model. This approach is developed in the context of the fluid-
structure interaction.

To do so, a method of overlapping grids, referred as the Chimera method, was implemented in a
finite volume framework with fluid media only. This implementation relies on grid cells to exchange
information between several grids. A reconstruction of the solution is carried out using grid cells
marked as sending cells. In this work, the transmitted fluid solution is interpolated with a first order
reconstruction by averaging the solution on the volumes of the sending cells intersected by each receiving
cell. This approach has been improved using a linear reconstruction of the solution within the sending
cells. This improved version is referred to as the second order Chimera method. Both approaches were
tested on analytical test cases, including the advection of a sinusoidal perturbation, the Sod shock tube,
a stationary shock wave and finally the advection of an isentropic vortex. These different cases have
demonstrated the ability of the Chimera method to transfer simple compressible flow structures such
as shock waves or rarefaction waves without introducing perturbations on the global scale solution.
Overall, the second order Chimera method solution is equivalent to a single grid solution in terms of
accuracy. It is also less dependent on the geometric configuration of the grids, compared to the first
order Chimera method, in the presence of grid size discrepancies.

The second order Chimera method has been evaluated on two-dimensional test cases from the
literature, including the supersonic flow around a circular cylinder, a shock-bubble interaction (Helium
and R22) and the Double Mach Reflection (DMR) test case. In each of these cases, the second-order
Chimera method provides results comparable to a single grid solution with a Chimera error negligible
for cell size ratios between grids lower than 8. The second order Chimera method allows to locally
increase the accuracy of the solution, around a geometric detail of interest, without heavily impacting
CPU time compared to a refined single grid approach. Finally, the second-order Chimera method was
coupled with a fluid-structure interaction method, called Mediating Body Method (MBM). To make
the Chimera method compatible with the MBM method, the Chimera-MBM coupling is based on an
extrapolation of the solution on both sides of the structure when it crosses a Chimera exchange zone.

The Chimera-MBM s assessed on an analytical test case based on a free piston separating two fluid
cavities at rest at different pressures. The impact of the Chimera-MBM on the fluid solution is negligible
for cell size ratios between grids lower than 8. A 3D example based on a high-pressure chamber separated
from a low-pressure chamber by a perforated plate is presented. This test involves three independent
fluid grids and uses both the Chimera method and Chimera-MBM in the same calculation demonstrating
the flexibility of the developed methods. Indeed, the combination of these methods makes it possible
to obtain levels of accuracy of numerical solutions equivalent to a fine single grid approach with much
lower CPU times and less grid constraints.

This multi-model approach provides a significant added value in the context of nuclear energy for
brutal accidental situations modelling at the scale of the primary fluid circuit of a pressurized water
reactor.
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Nomenclature

Finite volume and Chimera important notations

U Discretized domain or grid represented as a set of cells.

Qu Set of indices of the cells belonging to U/.

K; Fluid cell with 7 € €.

~v(i)  Index set of the cells adjacent to K;, i € Q.

|K;|  Volume of the fluid cell K;.

FY  Interface separating the cell K; to the cell Kj, (i,7) € Qu x v(i).

(z,y,z) Global cartesian coordinate system.

(n,€,¢) Local coordinate system in the frame of a face ]-"f}’

UY" JWH4" Vector of conservative/ primitive variables of the cell K; € U at the discrete time .

Q%ﬁ/ﬂ%ﬁ Interface state based on conservative/ primitive variables at ]-'f]{ at the discrete time ¢".

—am M
Qlfj /EZ Reconstructed interface state based on conservative/ primitive variables at ]-"fj at the
discrete time ¢".

u Fluid velocity vector.
W/V  Global/Local grid referred as Substrate/Patch.
Ty Patch boundary.

W/V  Substrate/Patch cells that receive information from the other grid. They are referred as ghost
cells.

W?# /V* Substrate/Patch cells that send information to the other grid. They are referred as sending
cells.

Ncells Number of grid points over a specified length that determine the grid resolution on the
substrate.

X Ratio of the minimum cell size of the substrate to the minimum cell size of the patch in the
exchange zone.

W, /V. Substrate/Patch cells that do not belong to the ghost cell sets. They are referred as resolved
cells and the resulting set is called cleaned substrate/patch. In the case of the cleaned
substrate, it also includes the cells that are fully overlapped by the cleaned patch.

W,  Substrate cells belonging to W \ W fully overlapped by the cleaned patch V<.

' Interface between the ghost cell set V' and the cleaned patch Ve.

v
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NOMENCLATURE

ECSM Equivalent coarse single mesh of a Chimera configuration involving grids with different reso-
lutions. The ECSM corresponds to a single grid configuration with a uniform grid resolution
equivalent to the coarsest grid in the Chimera configuration.

EFSM Equivalent fine single mesh of a Chimera configuration involving grids with different resolu-
tions. The EFSM corresponds to a single grid configuration with a uniform grid resolution
equivalent to the finest grid in the Chimera configuration.

Fluid-structure interaction important notations

S Discretized structural domain represented as a set of elements.
T's Structure midsurface defined as the mediane plane to the structure meshed using S.
C; Structure element with i € Qgs.

u,u, i Structure displacement, velocity and acceleration vectors.

Sy Structure element set containing elements fully immersed inside V°.
Ns  Structure node set.

Ng Structure nodes located inside V¢,

Ur,  Mediating Body defined using fluid cells from the grid U.

U, Active fluid cells of the grid U/ defined as U \ Ur,.

U, inaet  Indefinite active fluid cells of the grid U.
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Introduction

Studying accidental situations involving highly pressurized systems or explosive transients in large
and complex geometries is of importance for dimensioning facilities and for safety issues in industrial
environments. Such accidental situations can be found in the nuclear framework of Pressurized Water
Reactor (PWR) when Loss of Primary Coolant Accidents (LOCAs) [132] or Hy explosions [99] occur.
PWRs involve high temperature and pressure conditions (= 153 atm and 275 — 315°C [153]) that
make accidental situations of such systems abrupt with severe possible consequences.

The brutal accidental context implies compressible flow features such as discontinuities (shock
waves or contact discontinuities), rarefaction fans or acoustic waves travelling at high speeds. These
flow features interact with each other resulting in complex flows with vortical structures from baroclinic
effect when multi-phasic or multicomponent mixtures are at play. Fast transient energetic flows may
also finally interfere with deformable structures inducing coupled phenomena at very small time scales
(1076 —1073s [56]). Considering the scale discrepencies and the high pressures involved, deformable
structural elements can also undergo displacements of finite amplitude.

Due to the risks and the general difficulty to perform tests with fully representative geometry and
initial conditions in the range described above, numerical simulation appears to be a powerful way
to characterize the response of the systems during such transients. Producing accurate and reliable
results in these configurations represents a challenging task since the computational domain must
account simulaneously for the largest scale of the geometry and for small geometrical details inducing
local flow patterns with significant influence on the global solution. Dealing with all the scales within
one mesh classically yields huge numbers of grid points and complex meshing procedures that can end
up with poor quality grids. The geometrical complexity and the scale discrepencies of such systems is
illustrated in Figure 1 representing the internals (a) and the support structure (b) of a PWR core. In
addition to the geometrical complexity constraint, the single mesh approach is also restrictive when
fluid and structural domains are modelled with conformant meshes for immersed structures. The
meshing procedure difficulty increases and the displacement of structural components is restricted to
preserve the shape of the cells in the connected fluid mesh.

One elegant solution to adress those two folds is then to associate, within one composite sim-
ulation, independent numerical models, in terms of both geometry and mesh, each adapted to the
physical phenomena of interest at different time and space scales. This helps decomposing the com-
plex geometry into simpler parts and allows for modular meshing that helps reducing the overall
computational cost of the simulation while being more fitted to the problem geometry. With a com-
posite grid approach, structural components can undergo large displacements without altering the
grid of the fluid domains. In the mean time, local fluid grids can be added to take into account the
local flow features generated by the moving structures.

Despite the many benefits that characterize the composite approach, it rises several concerns that
do not exist with a single grid approach and that need to be adressed. One of them is the impact of
a coupling between different fluid grids or between different structural grids on the global solution.
Another one is the compatibility of the coupling process for fluid-structure interactions (FSI) with
the fluid grid coupling mentioned above. In most cases, the use of composite grids in a large scale
simulation also involves non-matching grids with different cell sizes and different critical time steps.
If a unique time step is chosen, it is based on the smallest cell size and its impact on the stability of
global domain remains to be assessed.

In this thesis, we adress the need for a numerical tool able to improve global complex simulations
of fast transient dynamics by adding local geometrical details that can be deformable. This numerical
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Figure 1: Reactor vessel internals (left) and lower core support structure (right). Examples of complex
multi scale geometries. (source: [175]).

strategy is based on a composite grid approach and proposes a solution to the concerns mentioned

above. As a result, the proposed numerical strategy must fulfil the following requirements:

1.

It must allow the introduction of localized geometrical alterations or details in a large scale
global numerical model.

As compressible flow features such as shock waves, contact discontinuities and rarefaction fans
are at play and can interact with each others, a particular attention is paid to system mass,
momentum and total energy conservation of the numerical scheme for the fluid domains.
Therefore, the proposed approach is chosen to be developed in the framework of the finite
volume method.

In readiness for an industrial usage, this strategy should offer a high flexibility and user-
friendliness. In particular, the proposed method must be as unconstrained from the grid used
as possible and the local grid must not require any modification of the large scale one. This is
why, the proposed approach relies on the introduction of the considered alteration in a local
grid which is overlaid over the global one.

The local model can be meshed finer than the global grid to increase the accuracy of the
solution near the introduced alteration. Therefore, the proposed approach must be able to
deal with multiple grids, each one having its own refinement.

It must be fully compatible with fluid-structure interactions (FSI) and more specifically with
deformable structural components that undergo large displacements.

An example of the targeted approach is illustrated in Figure 2 with a global scale grid representing
the core vessel and a patched overlaid grid that can contain a geometrical detail like the perforation
of a retaining plate with an adapted local grid. In this configuration, the core vessel can be modelled
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with a coarse grid containing the retaining plates wihtout any perforation that is referred as global
model. A local fluid patch containing a local perforation of the retaining plate can be patched onto
this global model. It is referred as local model. The local fluid grid aims to capture local fluid
phenomena generated by the local perforation.

Multi-Model Coupling
Overlapping zone

Scale 2
Geometrical detail impacting wave
propagation

Scale 1
Core vessel model

Figure 2: The retaining plate perforations (circled in black) and the core vessel are independently
meshed. The proposed strategy is to superimpose local alterations (mesh on the right) of the plates
in the domain representing the reactor (mesh on the left) in order to improve the accuracy of the global
calculation without altering the grids of the global parts.

Now that the characteristics of the numerical strategy are specified, we review existing methods
that aim to tackle similar issues. In order to give a comprehensive review, we chose to go through
known composite grid methods and underline if and how they are compatible with the requirements
that we outlined.

Bibliography

Composite grid methods have been a topic of interest since 1960s with initial work from Volkov
[180, 181] on the use of additional grids to smooth the high order finite difference solution of the
Laplace equation and the Poisson equation at the boundaries of the domain. Composite grid meth-
ods have been mainly developed from a finite difference framework for both elliptic and hyperbolic
problems [163, 164, 117] with an important interest for aircraft applications [9, 10]. Since then, the
composite grid field has been closely related to multi-model methods and multi-scale methods as it
allows the use of different models on different grids with possibly large spatial scale discrepencies
[105]. In the following, we consider two families of composite grid methods : the hierarchical grid
techniques and the overlapping grid techniques. Both categories use multiple grids and allow local
numerical zooms.

Hierarchical grid techniques

The first category of composite grid techniques that we review gathers various methods under the
name of hierarchical grid techniques. Each of these methods use multiple grid hierarchically organized
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to model different scales of the same physical problem. These methods are usually designed to model
a two-scale physical phenomenon with a macroscopic grid and a microscopic one. Other methods
use several scale levels to provide a smooth and modular grid refinement. The different grid levels
are coupled through operators able to transfer information between grids of different levels. This
type of methods has often been used for heterogeneous media modelling [186] and often rely on
homogenisation techniques to ensure compatibilty between the large and small scale domains as used
in [152].

The first hierachical grid methods considered are the multi-grid methods. Multi-grid methods have
initially been used for elliptic problems [76] using an implicit finite difference method and rely on high
wave number filtering of elliptical operators. The use of coarse and fine grids allows a better capture
of the frequency components of the discrete solutions in a reduced number of iterations compared
to a single grid approach. The transfer of the solution happens through restriction operators or
prolongation operators [26]. As demonstrated by Fish and Belsky, multi-grid methods are adapted
to study the behavior of periodical composite structures [65, 66]. The multi-grid methods have been
extended to hyperbolic systems [102, 5] and specifically to the Euler equations with implicit [128]
and explicit [90] schemes. The main idea is to increase the order of the numerical scheme using a
refined version of a base coarse grid for steady state applications [91]. However, multi-grid methods
have been mainly used to model steady state problems [124, | and they have not been designed
to introduce local geometrical alterations.

Following this idea of a localized increased accuracy, Adaptive Mesh Refinement (AMR) has been
developed jointly by Berger, Oliger and Colela [22, 20]. The method consists in adapting the accuracy
of a solution within certain sensitive or turbulent regions of a simulation, dynamically and during the
time the solution is being calculated. The global mesh ends up as a composite grid with different
levels of grids adjusting dynamically to the flow. However, with the AMR approach, the introduction
of a localized alteration of the geometry in the large scale numerical model is not straightforward.
Also it does not provide the flexibility of using non-matching grids. Then the proposed approach does
not involve AMR, even though it could certainly be used in a complementary way.

The same conclusion can be drawn for the Multi-Scale Finite Volume Method (MSFV) [95].
Initially developed for incompressible flows and transport in porous media, the MSFV method consists
in using a coarse Cartesian grid with a finite volume conservative scheme and to reconstruct from
the coarse pressure field, a local fine velocity field using two sets of basis functions and transmission
operators. This method has been extended to multiphase porous media [96] and compressible flows
[116] but also poroelasticity [161]. Regarding composite grid methods, the MSFV method has been
adapted to a multi-levels of grids [103] instead of two and has been used similarly to AMR as an
adaptive refinement tool in [127]. As mentioned earlier, even though this type of methods allows for
local adaptive refinement, it does not allow the use of independently meshed grids.

Some multi-grid methods using independent grids have been experimented. The Hierarchical
Dirichlet Projection Method (HDPM) [129] is one of them and uses a hierarchical set of grids
corresponding to the level of physical description of the problem. Sorted from the coarsest to the
finest level, a first coarse solution is computed. A user-based error criteria is used to estimate the
quality of the solution. Areas where the error criteria is not matched are refined with the coarse
solution as a boundary value. Once, the error criteria is met on the entirety of the domain, the
fine solutions are projected back onto the coarse grid. This method has mainly been used to model
the behavior of composite structures [131, ]. Like the HDPM, various techniques have been
developed using independent grids to model multi-scale phenomena like the Two-scale Finite Element
(FE?) method [63] that uses microscopic grids at key integration points of a coarse grid in order
the get a more accurate physical description of the problem. This method allowed Feyel et al. to
model elastoviscoplastic behavior of composite materials [62] and Ramiére et al. to approximate the
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behavior of heterogeneous nuclear fuel [146]. Similar approaches with independent grids have been
developed for incompressible inviscid flow in [3, 4] with the use of a secondary grid, representing a
fixed obstacle, patched onto a cartesian global mesh. However, it is more comparable to a restricted
fluid-structure interaction (FSI) method with non-deformable solid than a multi-grid fluid method as
the secondary grid does not model fluid.

Even though some of these multi-grid methods use independent grids to model different scales or
to model local geometrical details, they have mainly been designed and validated for the computations
of steady state solutions which is a limiting factor for our brutal accidental context. Also, they mainly
focus on the multi-scale aspect which is not the primary objective of our work. The solution that suits
our need is a composite grid method with non-matching grids allowing for geometrical details to be
added on a global finite volume simulation through a local grid. This is the objective of overlapping
grid techniques.

Overlapping grid techniques
The Arlequin Method

The first overlapping grid method that we are interested in is the so-called Arlequin method that has
been introduced by H. Ben Dhia [37]. He conceived an approach for the resolution of superimposed
models with non conforming meshes and/or different modelling for static and quasi-static cases [38].
The main idea of the Arlequin method is to use a partition of unity to superimpose models with
weights parameters to split the total energy between each model and to use a coupling operator
defined over a volumic area on the periphery of the local model. It has been applied to a large panel
of problems starting from structural problems like beam study [151, 43, 27, 39], crack propagation
[41] and contact problems [40]. In [42, |, the Arlequin method is extended to a 3D framework
with plates and hulls. More recently, the Arlequin method has been used with an explicit-implicit time
integration allowing the modelling of rotating machinery with multiple time stepping [69, 68]. Even
though we are not interested in multi-scale methods, the Arlequin method has been extensively used in
multi-scale modelling with a global continuum model and a local atomistic model [142, , 13, 30].

Regarding fluid dynamics, the Arlequin method has been applied to fast transient problems [61]
as well as some incompressible flow problems [93, 45]. The present work also benefits from the
previous work carried out by Fernier et al. [60], in which the relevance of the Arlequin method for
structural fast transient dynamic simulations with explicit-explicit time integration is demonstrated.
However, the Arlequin method shows some limitations with fluid fast transient dynamics in [59] with
the appearance of ghost forces and numerical artifacts that require a filtering procedure. Also, it has
been designed for a finite-element framework and would require a conversion to our framework as,
to the best of our knowledge, the Arlequin method has not been used in a finite volume context.

The Chimera Method

The second method considered is the Chimera method developed by Steger and Benek [166] and
further extended in [17] and [165]. The main idea of the Chimera method is to allow independent and
non-matching grids to transfer information using existing cells or nodes as a receiving container. Like
the Arlequin method, the Chimera method requires an overlapping zone for the information to be
transferred. It also presents the same flexibility but has been designed for a finite difference framework
and has been translated to a finite volume framework. The Chimera method has been extensively
reviewed with a finite difference framework for compressible turbulent flows with the code Overture
[82, 83, 84, 32, ] and NASA [119, , , 12], mostly for aircraft applications as the Chimera
method can be used to simplify mesh generation with independent composite grid assemblies. The
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method has also been used for wave propagation [7], incompressible flows [174, 50] and inviscid
compressible flows [184, ]. In each case, the Chimera method provides a good solution for
overlapping grids apart from introducing an interpolation error which can be compensated by using
a higher order interpolation for the exchange procedure than the order of the numerical scheme.
Recently, the Chimera method has been transposed to a finite volume framework and has been tested

for various aircraft applications with compressible turbulent flows with the codes elsA [64, ] and
TAU [154, 187] but also in [8].

The Chimera method has also been used with inviscid compressible flows in [19] where the time
integration is implicit as they are not dealing with fast transient dynamics. In [86, 87], the Chimera

method is combined with AMR for reactive flows. Several references can be found on the use of a
Chimera method combined with moving cartesian grids [19], [150] for rotor computations or complex
aircraft geometries [104]. In this thesis, the topic of moving grids is not of primary importance and
will not be investigated. In other words, we are focusing on applications in which a geometrical detail
contained inside a local grid generates compressible flow structures such as shock waves, contact
discontinuities or rarefaction fans. These local flow structures propagate from the local grid and
cross the overlapping grid interface to spread over the global grid and eventually affect the global
grid solution. Without a local grid, these flow structures would not be captured by a coarse global
grid and a fine global grid would dramatically increase computational costs. More recently, high order
Chimera methods have also been developed like in [107] with global to local frame transformations
and in [148, | with a Moving Least Squares reconstruction technique.

When dealing with overlapping grids and compressible transient flows, system mass, momentum
and total energy conservation must be ensured for capturing discontinuities involved in shock waves
and contact discontinuities. Berger gave a definition of the concept of global conservation for
multi-grid hyperbolic systems [21]. This definition states that an overlapping grid system is globally
conservative if, for a steady state flow, on the outside boundary of the global domain, the numerical

approximation of / u(z,t)dS, is independent of time, with u(z, t) the exact solution of the hyperbolic

system. In [133] gnd [18], conservative interpolation schemes are reviewed. It is stated that the
only way to achieve a conservative interpolation is to use a flux interpolation scheme. However,
it is pointed out that schemes based on flux interpolation are not stable. Therefore, a compromise
between stability and conservation has to be made. Also, it is advised to avoid discontinuities crossing
the overlapping interface. However, Part and Sjégreen [133], obtained a strongly stable and nearly
conservative interface condition which is based on conservative variables. In [188], Wu demonstrated
using the stability theory of Gustafsson Kreiss Sundstrom (GKS) [74] that a conservative treatment
of overlapping exchange zone leads to weakly stable solutions. In [189, |, Lerat and Wu also
concluded that stablity with non-conservative interpolations should be favored instead of conservative
interpolations with unstable solutions.

Other approaches have bypassed the interpolation problem by modifying the discretization in the
overlapping region. In [184, , 25], the overlapping grid interface is intersected by the global grid
and fluxes are splitted accordingly forcing local conservation. In [101, , 23], the entire overlapping
zone is remeshed with unstructured grids. Remeshing the overlapping zone has been proven to be
conservative and stable but computationally expensive [183].

In most of the mentioned applications, if the Chimera method is not used as a flexible mesh
generation tool it is often used to improve the accuracy around a patched geometrical detail for
a better capture of the boundary layer for instance [150, 87]. In this thesis, the local grid aims
to improve the geometrical complexity by introducing geometrical details that will generate flow
features like shock waves, contact discontinuities or rarefaction fans. These flow features can remain
inside the patch but they can also cross the overlapping grid boundary. Either way, they impact the
global solution and could only be captured with a complex and fine grid with a standard single mesh
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approach. Even if Péron [136] stated that it is more desirable to have similar cell sizes, few works have
been found to thoroughly assess the Chimera method with variable cell sizes between the grids. As
a result, the Chimera method seems the most promising method for adding local geometrical details
in a finite volume framework even though some properties of the method still need to be tested in
the context of fast transient dynamics.

The review made on the composite grid techniques only includes fluid-fluid or structure-structure
cases. As the Chimera method has been retained as the solution for our finite volume framework, we
now focus on the coupling of the Chimera method with fluid-structure interaction (FSI) methods.

Fluid-Structure Interaction methods for large displacements and
coupling with Chimera methods

Fast transient phenomena involve compressible flow structures like shock waves, contact discon-
tinuities and rarefaction waves. These flow components interact with structural deformable compo-
nents. As a result, structures can undergo large displacements and rotations. Non-linear behaviors
like plasticity and/or damage can be associated to the various structural components of the system.
As a consequence, well-known Arbitrary Lagrangian Eulerian (ALE) approaches [44, 85, 123] reach
a limit where it is not possible for the fluid to follow the displacements of the structures without im-
pacting the fluid solution due to extremely low quality cells. It often induces a remeshing of the fluid
domain. In the case of fixed complex 3D geometries, the meshing procedures are already extremely
difficult for single mesh fluid simulation and become even more complex for ALE simulations due to
conformity constraints. These constraints generally increase the number of grid points and can cause
low quality elements that will impact the numerical fluid solution. The grid constraint between fluid
and structural components can be lifted by using an Immersed Boundary (IB) method [138, 139, 36].
Initially proposed by Peskin, the IB method breaks the topological connection between the fluid and
structure grids and provides the flexibility and robustness to handle complex structural geometries
in motion for industrial applications [55, 94]. Since then, immersed boundary approaches have been
extended with immersed interface methods [109, , |, Fictitious Domain approaches [71, 72],
Ghost Fluid methods [58, 57, 54, |, Direct Forcing approaches [122, , b1, |, cut-cell meth-
ods [135, 52, 34, 46, , 81, 88, , , | or Discrete Interface methods [29, 14, , 92].
The immersed boundary type of method is often preferred where ALE methods fails. However, im-
mersed boundary methods can be used with ALE fluid meshes to enforce a Lagrangian behavior of
an interface or to track a particular region [53].

Among the immersed boundary methods, cut-cell methods have been specifically developped for
hyperbolic problems like compressible flows. They consist in subdividing fluid cells that are intersected
by the structural mesh to conform to the fluid-structure interface which naturally cope with the fluid
cells passing form one side of an obstacle to the other. With this type of approach, merging techniques
for the small cells are required to preserve stability. Even though cut-cell methods can ensure system
mass, momentum and total energy conservation, they are not designed to work with thin structures.
Also, they are incompatible with non-manifold and non-connex structure parts within a cell. This
makes cut-cell methods difficult to use in a context of large scale fluid simulation where structural
parts like plates are often modelled using shells.

Discreted Interface methods like the Mediating Body Method (MBM) [14, 92] use fluid cells
crossed by the structure interface as a mediating body between the fluid and the structure. In
[92], the structure geometry is averaged within each crossed fluid cell through the introduction of
an averaged normal pseudo-projection operator. This operator allows a virtual remeshing of the
mediating body cell faces to decompose each face into an impermeable wall part acting as a moving
wall for the fuid and a permeable wall that will absorb part of the fluxes. This virtual remeshing
allows for an accurate estimation of the pressure force exerted by the fluid on the structure. A
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particular treatment is applied to fluid cells which cross the embedded structure i.e., which lie at
a given time on one side of the structure and lie on the other side at further time. This problem
was initially adressed in [115] under the name "extrapolation of the solution" and further extended in
[193] as "ghost to real". In [182], an extrapolation based on the work of [54] is done while in [92], the
extrapolation is done using neighboring cells that are not crossed by the structure. An ALE emulation
technique is detailed in [92] to take into account the fluid volume swept by the structure when it
remains contained inside the same fluid cell set between two discrete time steps. The ALE emulation
reduces the impact of the method on system mass, momentum and total energy conservation when
the structure undergoes small displacements.

The extrapolation problem is still under development with recent work from [156] that uses a
hybrid cartesian immersed boundary method [70] with ghost cells for solution reconstruction near
immersed boundary interface. As they are dealing with sharp edges, an interface tracking procedure
based on ray tracing algorithm and a new three step solution reconstruction has been developed.
Such procedures provide accurate results but require heavy reconstruction procedures and geometrical
computations.

In a framework of large scale system involving fast transient FSI, the coupling of an immersed
boundary (IB) technique like the Mediating Body Method [92] and an overlapping grid technique like
the Chimera method for the finite volume fluid simulation is interesting for several reasons which can
be illustrated with the example of the separated chambers shown in Figure 3. The global fluid mesh
W contains the outer geometry of the chambers. The global mesh is chosen coarse as it covers a
large geometrical domain. A local grid referred as first patch V; brings with it the separating wall S
independently meshed from the fluid. The coupling between the first patch and the structure is made
using an IB method such as the MBM [92] while the coupling between the first patch V; and the
global grid W is made using a Chimera method. The separating wall S contains a perforation that
is smaller than the first patch grid cell size. Therefore, the perforation is not captured by the fluid
model and the chambers remain sealed. Using a coupling between the IB method and the Chimera
method that we call Chimera-IB method, a second patch Vs finer than the first one can be added in
order to capture the perforation and generate a leak between the two chambers.

Global grid W Separating wall S Global grid W

First patch W Separating wall S

Y Second patch Vy

Y
zl_’:(;

Figure 3: Separated chambers example: The global fluid mesh (W) is represented in black, the sepa-
rating wall (S) in green, the first patch (V1) that contains the structure is in blue while the finer second
patch (V) that captures the perforation is represented in red.

S(,‘('Ollld patch Vs T zZ First patch V;

This example is a direct simplification of the problematics involved in brutal accidents like LOCAs
or Hy explosions with complex geometries like the one presented in Figure 2. Large and geometrically
complex systems cannot be modelled with a single grid with a reasonable amount of time. A numerical
tool that allows a set of simpler local grids compatible with fluid-structure interactions (FSI) to be
patched onto a coarser global grid can drastically improve the workflow of the numerical modelling
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of complex systems. First, a Chimera-IB method can improve the global solution with local grids
that fit the geometry of the problem or the flow physics but with a reduced impact on computational
cost compared to a fine single grid approach as it uses less total grid points. Secondly, as the
Chimera method is coupled with an immersed boundary (IB) method, the structure deformations
and displacements do not impact the fluid grid which preserves its inital quality unlike a Chimera-
ALE approach[67, 121]. Finally, a Chimera-IB method could offer the flexibility to easily change the
interior layout of the large model reducing the time currently required for grid generation process.
Even though it is not the primary objective of this thesis, a possible feature of a Chimera-IB method
could be to follow the motion of each structure component with a local moving fluid grid attached
to it. This would be particularly useful if small structural components undergo large displacements
like in debris modelling.

The topic of Chimera-IB coupling techniques is relatively new with inital work on incompressible
flow from [126] and more recent works like [140, 168, 137] on compressible turbulent flows for aircraft
applications. All of those works use a direct forcing IB method. To the best of our knowledge, very
few references are available on the Chimera-IB coupling for inviscid compressible flows in transient
regimes and we have not been able to find any work on a Chimera-IB coupling using a discrete
interface immersed boundary method like the MBM [92].

Partial conclusion

A wide variety of methods have been used to superimpose local geometrical alterations onto a
global domain. As we are mainly interested in the flexibility of the method and the independence
between the grids employed, the composite grid techniques like the Arlequin method and the Chimera
method appear as a promising solution. They allow local grids to be patched onto global models
without modifying the large scale grids. The Arlequin method has already been experimented with an
equivalent context but in a finite element framework in [59]. It has shown limitations regarding fast
transient fluid dynamics and the translation to a finite volume framework is not straightforward. On
the contrary, the Chimera method has been widely investigated and is used as an industrial meshing
tool for aircraft applications. Therefore, the Chimera method has been retained in our work and
needs to be implemented and assessed for different fast transient dynamic applications with industrial
accuracy requirements, user-friendliness and robustness constraints. Various aspects of the Chimera
method still need to be examined from a finite volume perspective like the compatibility with high
cell ratios between the grids or the impact of the interpolation used in a context of fast transient
dynamics involving shock waves, contact discontinuities and rarefaction waves but also interfaces
between different fluid components.

In a framework of brutal accidental situations with fast transient dynamics involving large struc-
tural displacements, immersed boundary methods are widely used for complex geometries involved
in industrial applications. As conservation is key when dealing with compressible flow structures like
shock waves and contact discontinuities, cut-cell methods [123, , | are promising regarding
total system mass, momentum and total energy conservation but they involve computationally heavy
geometrical procedures at each iterations. On the other hand, discrete interface methods like the
Mediating Body Method [92], require less geometrical intersections and benefits from an ALE emula-
tion that improves conservation properties of the method. As a result, it is an interesting compromise
between conservation and computational cost that suits industrial specifications. To the best of our
knowledge, the coupling of an IB method like the MBM with an overlapping grid technique like the
Chimera method has not been done yet.

These shortcomings justify the work presented in this thesis. It consists in developing a numerical
tool able to superimpose different grids when simulating fast transient phenomena in a finite volume
framework with an explicit time integration. This tool aims to improve the workflows of large and

9
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complexe fast transient systems modelling such as LOCAs or Hy explosions. Therefore, it must be
compatible with fluid-structure interaction (FSI) through the use of an immersed boundary method
such as the MBM [92]. This numerical strategy must be user-friendly and flexible as it must use
independent grids and must be robust enough to handle large cell ratios between the grids. The
proposed strategy is automated and implemented inside the MANTA software designed for explicit
dynamics and currently in development at the DYN laboratory in the Service d’étude mécaniques et
thermiques (SEMT) at the Commissariat a |'Energie Atomique et aux Energies Alternatives.

Presentation of the scientific approach of this work

The present manuscript is organised as follows:

In chapter 1, we introduce the fluid models and the finite volume framework that we will be
using including the spatial and time integration schemes and the type of limiters for high order finite
volume schemes considered in this work.

In chapter 2, we detail the development of a finite volume Chimera method for fast transient
dynamics. We start by introducing the concepts invoved in the framework of Chimera methods such
as cell detection, marking and interpolation. As our version of the Chimera method relies on the
injection of information from one grid to the other using existing fluid cells as receiving containers, we
detail the detection and marking procedure that we have chosen. The impact of boundary conditions
is examined in order to ensure that the border of the patched grid does not interfere with the interior
of the domain. Then, a first order interpolation method in space is initially proposed and has been
improved to a second order interpolation method. The second order interpolation is limited using
a modified version of a well-known finite volume limiter. This modification allows the second order
reconstruction to be used with high cell ratios between the grids. The implementation in the MANTA
software is detailed with the inclusion of the Chimera procedure within the integration scheme. The
differences between the first and second order Chimera methods are reviewed using analytical test
cases like a sinus advection, a stationary shock wave, a Sod shock tube and finally an isentropic
vortex advection. These test cases have been chosen as they highlight the differences between the
two methods including the improvements that the second order reconstruction brings. Finally, a
reference configuration is provided for using our finite volume Chimera method.

In chapter 3, the impact of the reference configuration of the developed Chimera method on the
physics of fast transient dynamics is assessed using three well known test cases from the literature. A
patched cylinder is used to exhibit the ability of the Chimera method to transfer discontinuities like
shock waves from one grid to another. Then, a patched Helium bubble hit by a shock wave allows
us to evaluate the ability of the method to tranfert two-component interfaces from one domain to
another. This case in then tested in a different version with an R22 bubble hit by a shock wave.
Finally, a Double Mach reflection is used to assess the impact of the Chimera transfer on transient
fast dynamics when shock waves, triple points, Mach stems and slip lines cross the overlapping grid
interface. The Chimera versions of those test cases are compared to standard single grid versions.

In chapter 4, the developped Chimera method is extended to FSI applications using a coupling
with the Mediating Body Method (MBM) [92] introduced above in this section. The base MBM
is presented and extended to work with the Chimera method. The idea is to ensure valid coupling
conditions in the presence of multiple fluid grids. The MBM affects the Chimera method as cells that
are used to send information between grids become unusable because of the MBM. An extrapolation
technique based on a two-side reconstruction is proposed to ensure the compatibility of the Chimera
method when the immersed structure crosses mutliple fluid grids. The method is then assessed on
two test cases. The first test case is a free moving piston that separates two chambers with a pressure
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jump. This test case allows us to assess the impact of a structure crossing multiple grid on the flow
field. An analytical solution can be derived for this case enabling a comprehensive analysis of the
method. Finally, a 3D case is proposed as a combination of the developped features and gives an
idea of the industrial applications of the method.

The developements achieved during this thesis can be found inside the MANTA software. It is
an object oriented C++ code for explicit and implicit fast transient dynamics.

In this work, we adopt the following writting convention: every vector is expressed through the
column matrix of its components in a fixed orthonormal basis of the 3D Euclidian space {€;};c(1,2.3}-
Such a column matrix is denoted with a single single underline. The second order tensors are expressed
through the matrix of their components in the basis {¢; ® e}}%i7j)e{1,273}. Such a matrix is denoted
with a double underline. For the sake of clarity, we adopt the following notations : a - b = a'b and
a®b=ab’, where the right superscript "t" corresponds to the matrix transposition.
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problems
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In this chapter, we present the equation models that are used in this work. The equations are
discretized using a second order Godunov-type finite volume method with explicit time integration.
The time integration is explicit as it is more adapted to simulate fast transient phenomena with small
time scales. As we are focusing on the addition of geometrical details instead of multi-modelling, the
equation sets and discretization methods are identical across a set of overlapping grids even though
each grid is meshed independently. This framework is used in chapters 2 and 3. It is then combined
with an immersed boundary (IB) method for FSI problems in the last chapter.

1.1 - Governing equations for fast transient inviscid
flow problems

In fast transient dynamics, the flows are characterized by the predominance of inertial phenomena
and acoustic waves induced by the compressibility of the fluids. The physics of such systems is
governed by wave propagations generated by high pressure gradients as well as high velocity gradients.
As viscosity time scale is higher than the fast transient dynamics problem time scale, focusing on
fast transient flows allows us to neglect viscous effects in favor of convective transport and more
specifically wave propagation. Therefore, the flows considered in this work are inviscid.
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CHAPTER 1. FINITE VOLUME FRAMEWORK FOR FAST DYNAMIC PROBLEMS

1.1.1 - Inviscid compressible flow model: the Euler equations

A . Presentation of the Euler equations for single phase flows

The problem is governed by the Euler system of equations for compressible flows. The fluid occupies
a fixed open set 7. The governing equations written in a local conservative vectorial form, express
the conservation of mass, momentum and total energy for a single fluid medium as follows:

Q(Q)%-Y'E(Q):Q (1.1)

with the vector of conservative variables (U) and the Euler fluxes (F(U)):

p pu
U=|pu]|, EU)=|pru@utpls (1.2)
pE (PE + p)u

where I; stand for d x d identity matrix with d the space dimension. Here we consider d = 3. We

also note W = (p,u,v,w,p)" the vector of primitive variables. In these equations, p is the density,
p the pressure, u = (u, v, w)! the velocity vector, and E the total energy per unit of mass.

B . Five equation model for inviscid interface problems

In the context of brutal accidents, fast transient dynamics involve multiphase flows with liquid-gas
phase changes and multicomponent reactive flows with gas-gas mixing interfaces like in Hy explosions
for example. Multiphase flows are often considered when one phase only occupies a fraction of the
total volume [47] whereas multicomponent flows are considered for fluid components with comparable
densities. In multicomponent flows, different chemical species are mixed and generally share the same
velocity and temperature. The chemical species may also interact through chemical reactions making
the resulting multicomponent flow reactive.

In this work, we do not take into account thermodynamics of phase changes nor chemical re-
actions between species as they are not the main governing physical phenomena involved in the
considered problems. Also the purpose of this work is not to investigate multiphase or multicompo-
nent reactive flows but to provide a numerical strategy compatible with multicomponent flows. As
a result, multicomponent flows are modelled based on species interface tracking. To do so, we use
the compressible version of the reduced five-equation two-component flow model proposed by Allaire
et al. [2], specially designed for interface problems. This model preserves system mass and total
energy while ensuring the absence of oscillations near the interface. It has been primarily designed
for compressible flow problems involving two-components and it applies to the Euler equations. The
governing equations in a vectorial form are written as follows:

0

SHU)+ Y- E(U) = BU)Y -, (1.3
where the modified vector of independent variables (U), the modified Euler fluxes (F(U)), and the
source terms (B(U)) write:

p1o1 pLa1y 0
P22 p202U 0
U=| pu |, FU)=|pu®u+ply| and, BU)=| 0 |, (1.4)
pE (pE + p)u 0
ai a1y aq
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1.1. GOVERNING EQUATIONS FOR FAST TRANSIENT INVISCID FLOW PROBLEMS

In these equations, p, p, u = (u,v,w)! and E are respectively the density, the pressure, the

velocity vector and the total energy per unit of mass of the two-fluid mixture. «y is the volume
fraction of the component k. Thus for a two-component fluid, the following constraint has to be
considered ar; = 1 — . py; is the density of the component &k (k = 1,2), and the density of the
mixture (p) is defined as: p = p1ag + pacg to recover mass conservation. The two components of
the fluid are supposed to have the same velocity u. In addition to an equation of state (EOS) an
additional closure law is required with this model. In this work, an isobaric closure is chosen so that:

P=p1=D2 (1.5)

The isobaric closure is preferable to the isothermal closure as it does not introduce spurious pressure
oscillations at the interface as shown in [2].

1.1.2 - Perfect gas equation of state

The model presented for both single phase and multicomponent flows requires a thermodynamic
closure ensured by an equation of state of the form:

p=p(p,T), and e = e(p, T), (1.6)

where T is the fluid temperature and e its specific internal energy. For the development of our
numerical strategy, we focus on simple thermodynamic situations with calorically perfect gas knowing
that such asumption is only valid up to certain temperature levels [6]. 1 A calorically perfect gas is
characterized by the fact that the specific internal energy (e) and the specific enthalpy (h) are linear
functions with respect to temperature (T). The specific internal energy and the specific enthalpy are
defined as follows :

e=E — ||ul?/2, h=e+?2. (1.7)
p
For a calorically perfect gas, e and h write:
e=c¢,T, h=¢,T, (1.8)
where ¢, and ¢, are the specific heats respectively at constant volume and constant pressure. Also,
the specific heats are assumed constant and as a consequence, the specific heat ratio v = @ i
Cy
- Oe oh i
constant. The specific heats ¢, = | == | and ¢, = ( 5= | can be expressed using the Mayer
aT ), ar),
relationship:
R
Cp— Cy = i (1.9)

where, R = 8.314K - K~! - mol™! is the ideal gas constant and M is the molar mass of the gas.
For Air in normal temperature and pressure (NTP) conditions, the molar mass is approximately
M 2291072 kg - mol~!. It can be approximated as a diatomic gas (N3 and O) with a specific

7 .
heat ratio () equal to £ Using the specific heat ratio () and the Mayer relation 1.9 leads to :

YR R

szi Cyzm.

, 1.10
(v —1)M (110

Using the definition of the specific enthalpy and equation 1.8, the equation of state for a calorically
perfect gas writes:

p=(y—1)pe. (1.11)

"More complex EOS could be tested with the proposed method.
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CHAPTER 1. FINITE VOLUME FRAMEWORK FOR FAST DYNAMIC PROBLEMS

This equation also known as the ideal gas equation of state is the only equation of state considered
in this work. The isentropic sound speed for an ideal gas writes :

c=,/—. (1.12)

In the case of a multicomponent flow with two species, the pressure (p = p; = p2) is related
to the conservative quantities through the previously introduced ideal gas equation of state. In this
context, each fluid k is characterized by its equation of state:

p= (v — 1)prex, (1.13)

where 7, is the heat capacity ratio, and ey is the internal energy relative to phase k. The speed of
YkP

Pk
Regarding the mixture, the specific internal energy e is defined as pe = piaie; + poases. The

speed of sound (c) associated to the mixture is defined in [2] by:

sound in the phase k is ¢, =

pEc? = pran€ict + paanbach, (1.14)

with & = pi(Oer/Opx) and £ = &1 ag + &aa. In the following, this model is referred as to two-
component model.

1.2 - Explicit Total Variation Diminishing discretiza-
tion of the inviscid equation model

In this section, we present the finite volume discretization that we have used in our work. The
discretization is illustrated on the Euler system of conservative equations. The non-conservative term
introduced by the two-component model is detailed separately. The finite volume method is a natural
choice when dealing with conservative equations as it has been designed to ensure conservation.

1.2.1 - The Godunov method

The integration of the system of equations 1.1 is based on an explicit finite volume method. The
computational domain of interest is divided in 3D-polygonal control volumes (K;) € U, where U,
is the ensemble of control volumes. We denote by (), the number of cells within the domain U.
We write |K;| the volume of K;. We note (i) the set of adjacent cells? to K;. We introduce the
discrete times: V n > 0, t"t! = " + At,, where At,, is the variable time step at the n-th time
iteration. By integrating equation 1.1 over the cell |K;| between the times t” and t"*!, we get the
integral form of the Euler equation:

tntl g+l

[ Elavas [ | voE@@)ava-o (1.15)
tn KZ at tn Kz o

to which we can apply the Green-Ostrogradski theorem:

tn+1

/ U, 1) — Uz, ") dV + /
K; t

n

/ F(U(z,1) - ndSdt =0, (1.16)
OK;

2a cell K; is adjacent to the cell K;, i # j, if they share a common face in 3D, edge in 2D and node in
1D.
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1.2. DISCRETIZATION OF THE INVISCID EQUATION MODEL

with 0K the boundary of the cell K;. We introduce U} the mean cell conservative variables at the
cell K; and at the time ¢" defined as:

’_]K|/ U(z,t™)d (1.17)

U7 is a numerical approximation of the conservative variables, solution of equation 1.1. For all
cells Kj, j € ¥(i), the interface that separates K; from Kj is denoted indifferently F;; or Fj;. n;;
is the normal of F;; directed from K; to K and |F;;| is the surface of the face F;;. Using 1.17 in
1.16, we have:

tn+1

Uttt =ur - / 1)) - n;; dS dt. (1.18)
IKI in

Using the Godunov method, we introduce the numerical flux function:

t"+1

Aty (U n;) ~ ‘f| t / -n;; dSdt, (1.19)
1] n

where Q*Z- is the approximate solution at the interface F;; at the time ¢". It is the solution of
the Riemann problem RP(UU,U ) along the ray 2/t = 0 in the local frame of the interface F;;,
with U and U ; the interface states at the face F;;. As demonstrated in [170], if the time step At,

sat|sf|es the CFL condition:

h.
Aty < minjeq, —— (1.20)
Smax
with h; the characteristic length of the cell K; and S7,. the maximum wave velocity present through

the domain at time t", the Riemann problem solution Q*?j is constant in the local frame of the
interface JF;;, between ¢ and t"1. Equation 1.18 can be written using the numerical flux function
1.19 as:

urtt =y - ijng*g, i) (1.21)

]G’Y
This equation results from the well-known Godunov scheme presented in [73] with an explicit
time integration. In the following, we detail the Riemann problem with the approximate Riemann
solver that we use for providing an expression to the numerical flux function 1.19. The numerical
flux function can also be written with the interface states QZ and EZ used in the computation of
the approximate solution (U*},) as F (U;;, Uy, 1)
1.2.2 - Riemann problem for the one-dimensional Euler equations

As presented in equation 1.21, a flux function F(Q*Z, ;;) needs to be computed at every face
Fij of the cell K;. This flux requires the solution U™/ that results from the resolution of a Riemann
problem (RP) at the face F;j;, in the normal dlrectlon n;; that is referred as local frame. The
local frame of the interface F;; is defined by the normal vector n;; and two vectors tangent to the
interface Fj;, denoted t}; and t7;, such that n;; - t}; = 0 and 3, = n;; x t;;. As a result, multiple
one-dimensional Rlemann problems need to be solved - one for each face of the cell K; - in the
direction normal to the interface of interest. This problem is referred as z-split three-dimensional
Riemann problem. In this section, the normal direction n;; is assimilated to the n-axis and the time
indices are ignored as all the numerical variables considered here are expressed at the time ™.
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CHAPTER 1. FINITE VOLUME FRAMEWORK FOR FAST DYNAMIC PROBLEMS

A Riemann problem is defined by a system of hyperbolic conservation laws with simple but
non-trivial initial conditions. The Riemann problem for the one-dimensional time-dependant Euler
equations is the initial value problem (IVP) for the conservation laws

oU  OF(U)

oY =) _ 1.22
8t+ on 0, ( )

t
where U = (p, ptin, pus, , pusy, pE)* and F(U) = (pun, pus, + p, punus,, pinus,, un(pE + p))’,
with u,, the velocity component normal to the face F;; of the cell K; and (uy,,u,) the tangential

velocity components. The initial conditions (IC) of this problem are defined by:

U(n,0) = Yr !fn<0’ (1.23)
Ur ifn>0.

The domain of interest in the n — t plane are points (n,t) with —oo < 7 < oo and t > 0. In
practice, n varies in a finite interval [—h;/2, h;/2], with h; the characteristic length of the cell Kj.
Initial conditions consist of two constant states U, for n < 0 and Uy for n > 0 in the local frame
of the face F;;. These states correspond to the interface states Eij and E]Z Instead of solving

U*i(n,0) = RP(U,;,Uj;), we solve U*;;(n/t) = RP(Uj,Ug) and we evaluate the similarity

solution of the Riemann probem defined by equation 1.22 and 1.23 at 7/t = 0.
tﬂ

Star | region
A1 = Uy _/ )\2731,,1 m‘ A5 = Uy + ¢

QL h UR

»
|

Ui

Figure 1.1: Structure of the solution of the Riemann problem for the one-dimensional Euler equations
on the n — ¢ plane. Unknown waves (shock waves or rarefaction fans) are depicted by a pair of rays
emanating from the origin.

for the z-split three-dimensional Euler equations. It corresponds to a Riemann problem in the local
frame and takes into account the tangential velocity components u;, and wuy,.

This three dimensional Riemann problem has five waves associated to the eigen values A\; = u,—c,
X234 = up and A5 = u, + c and the characteristic fields corresponding to the right eigenvectors
RYW, i =1,2,3,4,5. We choose the convention of representing unknown waves by a pair of rays
emanating from the origin and the middle wave by a dashed line. Each wave is depicted along with
the corresponding eigen value. It can be proven that the Ay, A3 and )4 fields are linearly degenerate,
ie. YA(U)-ROWU) =0, i =2,3,4 (see [78]). As a result, the middle wave associated with

the R® characteristic field is always a contact discontinuity. The characteristic fields associated to
A3 = up and Ay = u, (R®) and RY characteristic fields) correspond to two shear waves across

Figure 1.1 illustrates the structure of the similarity solution U*;;(n/t) of the Riemann problem

which the tangential velocities us, and wuy, are discontinuous. The RW and R®) characteristic fields
are genuinely nonlinear, i.e. V;(U) - RW (U) #0,4i=1,5. As a result, they are associated with
rarefactions or shock waves.
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1.2. DISCRETIZATION OF THE INVISCID EQUATION MODEL

The three waves associated to the eigen values A1, Ao and A5 separate four constant states. From
left to right, we find the left constant state U, the star region between the A;-wave and A\s-wave
and the right constant state Uy, on the right-hand side of the A5-wave. The star region is composed
of two subregions U} and U}, separated by the contact discontinuity associated to Ay. Both pressure
(p) and normal velocity (uy,) are constant in the star region.

Figure 1.2: Possible wave patterns in the solution of the Riemann problem: (a) left rarefaction, contact,
right shock, (b) left shock, contact, right rarefaction, (c) left rarefaction, contact, right rarefaction, (d) left
shock, contact, right shock.

While the Riemann problem definition is relatively simple, it contains fundamental wave propa-
gation physics and it ensures conservation in the context the Godunov scheme. In [73], a numerical
iterative solver called exact Riemann solver is presented. This solver identifies the wave among the
four possibilities shown in Figure 1.2 and computes the entirety of the states over the star region.
Even though the exact Riemann solver has been extensively reviewed [170], it is not advised for
practical applications as only a small portion of the solution is required in the Godunov method. In
practice, less computationally expensive approximate Riemann solvers are preferred instead of the
exact solver. In this work, we use the HLLC solver as it is able to capture contact discontinuities and
shear waves unlike the HLL solver and does not require as much computational time as the exact
Riemann solver. In return, the HLLC is somewhat more dissipative while being robust3.

1.2.3 - An approximate Riemann solver: the HLLC solver

The HLLC solver is an improved version of the HLL scheme introduced by Harten, Lax and van
Leer in [79] in which the contact and shear waves are missing. Introduced in [172], the HLLC solver is
built considering a control volume [y, nr] x [0, T] as illlustrated in Figure 1.3 with the signal speeds
Sr., S* and Sk corresponding to the eigen values A\; = u,, — ¢, A2 34 = up, and A5 = u,, + c.

The approximate Riemann solution U*(n,t) in the local frame (@ij,g}j,ﬁj) of the face Fj is
given as follows:

Qb if 2 < SL
RUDEE e
Up, ifS*<
QR, if 2 P SR7

<
(1.24)
<

3By robust, we mean that the solver does not generate non-physical waves nor negative pressures
even with complex wave interactions.
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»
>

nL TS; TS* TSy nr "

Figure 1.3: Control volume [nr,ng] x [0,T] on the n — ¢ plane. S;, and Sk are respectively the extreme
characteristic velocity for the left-hand side wave and the right-hand side wave from the solution of the
Riemann problem. Unknown waves (shock waves or rarefaction fans) are depicted by a pair of rays
emanating from the origin.

and the corresponding HLLC numerical flux is defined by:

F;, if0<Sg
FMC(U*(n,t)) = Ep, i#S,<0<5 (1.25)
= = F, if S* <0< Sp

We see that U7, Up, F7 and F', are the unknown of this problem. Integrating equation 1.22
over the control volume [nr,ng] x [0,T] gives:

TSk — -
1 / _ SrRUR — SLU + F, ER7 (1.26)

T TRY Un,T)dzx
T(Sr —SL) Jrs, ’ Sr— 5L

which is known as the consistency condition. The consistency condition ensures that the approx-
imate Riemann solver preserves the integral form of the conservation laws. An approximate solution
U(n,t) is consistent with the integral form of the conservation laws if, when substituted to the exact
solution U(n,t) in the left-hand side of the consistency condition 1.26, the right-hand side remains
unaltered.

By decomposing the left-hand side integral, according to the two star regions:

1 TSR 1 TS*
- U, T)de = ——— U(n. T) da
T(Sr— SL) / Y1) T(Sgp—SL) / . T)

TSL TSL

. T5n (1.27)
+ U(n,T)dz,
T(Sr — Sr) /TS* uim 1)
and using the integral averages:
1 TS*
Ui= g5 ). UnDds
T(S*-S

( L) Jrs, (1.28)

1 TSgr
U= — - U(n,T) da,
i T(Sp—5%) /TS* gl 1)

the consistency condition 1.26, can be written:

(S*_SL>7*L+ (SR_S*>Q§: SrUp = SLUp + Fp — Fp.

S -_— 1.29
Sk—5: Sr— 51 Sr— 51 (1.29)
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1.2. DISCRETIZATION OF THE INVISCID EQUATION MODEL

Applying the Rankine-Hugoniot conditions across each of the waves A1, A2 and A5 of speeds Sy, S*
and Sg, gives:

F; =F; +S.(U; —Uy;) (1.30)
Fh=F; +S*(Uy - U3) (1.31)
FL=Fp+Sr(Ur—Up). (1.32)

These relations can also be used to recover the consistency condition 1.26. As a result, we
have four unknowns and three equations. Combination of equations 1.30-1.32 can be done to find
Ui (Ugk,S*), (K = R,L). However, some additional conditions need to be imposed in order to
close this system and find S* and then '}, (K = R, L). As we have seen before, the exact solution
imposes constant pressure and constant normal velocity in the star region i.e.

* ok ok
{ PL=PR=E (1.33)

Up, = Upp, = Uy
The tangential velocity components are continuous across the genuinely nonlinear characteristic fields
R™M and R®), associated to the left-hand side and right-hand side waves, imposing:

* *
u = U u = U
t1L t1L7 th t1R7

(1.34)

* *
Uu. = U Uu. = U
tzL tzLa t2R tzRa

We also have S* = u}. Using equation 1.30 and 1.32, we can extract the following solutions for
pressure in the star regions:

{pz = pr+ pr(SL — tn )(S™ = tny ), (1.35)

Pk = PR+ PR(SR — Uunp)(S™ — Unp).
The use of the condition 1.33 into equation 1.35, gives an expression for the speed S* in terms of
known speeds Sy, and Sg:

~ PR—PL+ prUn; (SL — Un;) — PRURR (SR — Unp)
B pL(SL —uny) — prR(SR — Ung) '
Finally, using equation 1.25 and manipulations of 1.30 and 1.32 allows us to compute the intermediate
fluxes F'7 and F; when needed:

S*

(1.36)

Fie =Fg + Sg(Uk — Uk), (1.37)
with K = R, L, with the intermediate states given as:
_ . )
S*
Sk — un Uty
Uk =pK (q—ar K 1.38
=K pK( Sk — 5* ) s (1.38)
Eg +(S* —up,. )| S*+ —BK |,

For completeness, some variants of the HLLC approximate solver have been developped but are not
considered in this work (see [170]).

Remark. With the HLLC approximate Riemann solver, the flux F™“(U*}", n;;) is provided in the
local reference frame of the face F;;. In equation 1.21, the fluxes are expressed in a global frame
defined by the orthonormal basis of the three-dimensional Euclidian space {€;}ic 12,3} AS a result,
the flux F""C (U™}, n;;) is transformed from the local reference frame of the face F;; to the global
reference frame and the global frame flux is referred as EHLLC(i*” n,:) or EHLLC (Un U, @w)

157 224 =ijr =]
using the interface states.
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CHAPTER 1. FINITE VOLUME FRAMEWORK FOR FAST DYNAMIC PROBLEMS

1.2.4 - The second order MUSCL reconstruction

The spatial and time order of the finite volume framework based on the Godunov method pre-
sented in equation 1.21 depends on the expression of the fluxes. For industrial applications, high
order methods are preferable. Various high order methods have been developed like the Essentially
Non-Oscillatory method (ENO) [30] or the improved Weighted ENO method (WENO) [114] which
are based on a polynomial reconstruction of the derivatives in addition to a smoothing criteria to
avoid spurious oscillations. We can also cite the Weighted Average Flux (WAF) method [171] where
the intercell flux results from an integral average of the flux across the entire local Riemann problem
solution. In this work, we focus on the second order MUSCL method [171] as it provides a robust
second order approximation in space for developping our overlapping grid method while maintaining
a reasonable computational cost.

A . The MUSCL reconstruction

The Monotone Upwind Scheme for Conservation Laws or MUSCL method [176, 11, 110] is based on
equation 1.21 which can be written:

A HLLC

n+1 n T

Uttt = pyn — il Z | B (U, Uiy, (1.39)
Je(i

C . . .
where the numerical HLLC flux FHLL (UU, Uﬂ, n; ) at the face F;; is computed using the interface
states Qij and jS. We recall that the Godunov method is based on a constant approximation of

the solution U over each cell {Ki}ieﬂu at the discrete time t™:

1
Ui = / Ul(z,t")dV. (1.40)
] e et

The MUSCL method consists in reconstructing a linear approximation of the solution U over each cell
{K},cq,, in order to interpolate the interface states U and U ; at each face F;;. The reconstruction
is used to improve the flux computation. The reconstructlon can be done on the numerical solution

expressed in terms of primitive variables W or conservative variables U. In our case, the reconstruction
is carried out on the primitive variables W, . We define V(IW7) the constant approximation of
the gradient in the cell K; at the time ¢". Using the discrete gradient approximation, the linear
reconstruction of the solution W7 inside the cell K; writes:

Wi(z) =W7+VYWP) - (z— ), (1.41)

where z, is the position of the barycenter of the cell K; and z € K;. The linear reconstruction
preserves the mean value of the reconstructed field as:

z)dV = W (1.42)
IK | /K

The interface states are reconstructed based on the primite variables W while the Riemann
problems are solved using the conservative variables U. In any case, we note the interface states
resulting from the reconstruction at the face Fi;, W, /W ; defined as:

Wii(z) = Wi+ V(WP - (2(tace)s; — )5 (1.43)

with Z(f,ce),; the barycenter of the face F;j. The corresponding conservative states are written

Ez’j/ﬁji-
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1.2. DISCRETIZATION OF THE INVISCID EQUATION MODEL

B . The gradient reconstruction: least squares method

In equation 1.43, the gradient needs to be approximated. To do so, we use a least squares method
[118] which approximates the gradient V(W) of the cell K; using the solution W7 defined inside
the cell K; and solutions {E}‘}jew) inside the neighbors of K, with (i) the index set of cells
adjacent to K;. The least squares method has the benefit of being compatible with any cell type.
The gradient tensor is defined by ensuring the condition:

Vi € y(i), Wi (z;) = W (1.44)

This system of equations is overloaded and needs to be solved componentwise. We introduce [wﬂk
and [wﬂk respectively the k-th component of W and Eg‘ [Z(E?)]k is the gradient of [Eﬂk
That is to be the k-th line of the gradient matrix V(IW7). Finding the solution to the problem 1.44,
is equivalent to minimizing for each component & the function:

=) <[W?<wj>]k— [W?]k>2 -> 3 (([Wﬂk— Wi, + [v<wzl>]k<xj—xi>)2. (1.45)
jev(@) 7€ (i)

The solution to this problem writes:

VW), =M D (g — ) (7], - W3], (1.46)
je€v(4)

where 1M . is the matrix defined by :

M =Y (z;—z)® (- ). (1.47)
jev(@)
M. is a 3 x 3 matrix in 3D and a 2 x 2 matrix in 2D. M. is a positive definite matrix and is
therefore inversible. As a result, the tensor V(W) is well defined.

C . The K-Dubois slope limiter

One way to ensure that the second order MUSCL scheme on the Euler equation (see equation 1.41)
does not introduce spurious oscillations is to use flux limiters [169] or slope limiters to build non-
linear solutions respecting TVD constraints [170]. In this work we focus on limited slopes using
the K-Dubois limiter [162] which is based on the Barth and Jespersen limiter [97] and is therefore
compatible with unstructured grids. In each cell K;, i € €y, the slope limiter ¥; needs to be
computed at every time step. The reconstructed solution from equation 1.41 becomes:

W, =W+ U,V(W?) - (z — ;). (1.48)

The limiters are built per component in order to properly limit the slope V(IW7). For the sake of
clarity, the time step reference is willingly omitted in this section as every quantity involved in the
slope limiter computation corresponds to the n-th time step. As the purpose of the limiter is to avoid
the appearance of local extrema, for all j € ~(7), we have for each component k:

W, < (W (2 ey, )| < W], (1.49)

k

with,
), = maxies (0], 0],

_ (1.50)
), = mingery (), ], )
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The K-Dubois limiter [162] formulation is relatively close to that of the Barth and Jespersen
limiter [97]. However, it introduces a parameter K that allows the user to modify the behavior of
the limiter (that can be more or less compressive*). The k-th component of the K-Dubois limiter is
expressed as:

min ( [E;:nax - E@} k? [wz - E?ﬂn] k)

[¥;], =min | 1,K - (1.51)

MmMaX;eq(i) <[V(Wz) ’ (Q(face)ij - Qz)] k>

where the quantity (Z(gace),; — ;) represents the distance between the center of the cell face 7;; and

the cell center z;. Taking the maximum value of (g( — x;) among all faces of the considered

face);;
cell ensures that the solution is limited in the sense of equation 1.49. This implies that the limited
reconstructed solution can be searched inside a neighborhood (i.e. a circle in 2D, and a sphere in
3D) with a typical radius of R = max;c. (g(face)ij — z;) as shown in Figure 1.4. In [162], the
parameter K is recommended to be set to 0.75 which is the value used in this work.

K;
) Standard K-Dubois limiter
Lj
T
| K,
| Ki !
! .
Kn - *ji‘ - = = FZ(face)yy L
-~ V<
L(fac \
z,° (face)in \
L(tdce)
° im
Ky,

‘ o Cell barycenter‘

‘ x Face barycenter‘

Figure 1.4: Area where the solution is limited with the K-Dubois limiter in a single model approach. The
area is identical for the Barth and Jespersen limiter [97].

1.2.5 - Time discretization: the second order MUSCL-Hancock
method (MHM)

From equation 1.39, the limited MUSCL reconstruction provides a second order accurate scheme
in space. However, the explicit time integration inherited from the Godunov method is first order
accurate in time. Several methods like the Piecewise Linear Method (PLM) [33] or the Generalized
Riemann Problem (GRP) [16, 15] propose a second order generalization of the Godunov method. In
this work, we focus on the MUSCL-Hancock Method (MHM) [177]. The MHM provides a second
order accurate scheme in time advancing fluxes at half time step. It is based on the MUSCL recon-
struction which ensures second order accuracy in space. For the cell K; at the discrete time ", the
method can be decomposed into four steps:

4By more compressive, we mean that the limiter is capable of better capturing a contact discontinuity
or a shock wave with less numerical scheme diffusivity
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1.2. DISCRETIZATION OF THE INVISCID EQUATION MODEL

1. Linear data reconstruction of the primite variables at the interfaces F;; with boundary extrap-
olated values, namely:

Wi = W3+ UV (WF) - (Z(tace)s; — i)- (1.52)

) 1 )
2. Evolution of the conservative variables UU, at a half time step <2Atn> according to:

—n+i —n A
Qij ’ UU + o 2K ez: |]:2J‘F( 7,]) SNy (1.53)
J '7

3. Solution of the piecewise constant data Riemann problems in the normal frames of the interfaces

Fij:

ou OF

ot 877
—n+4 (1.54)
U, ? n<o0
Ui * n

4. Evolution of U7, at a time t + Atn according to:
n+l n HLLC n+ n+
Uttt =us ‘K| S FGE (TR T R ). (1.55)

J€(3)

The time step At,, is set using the already introduced Courant—Friedrichs-Lewy (CFL) condition (see
equation 1.20). The numerical flux function P (U Un+2,n”) is evaluated using the HLLC

apprOX|mate Riemann solver detailed in section 1.2.3 while the flux F(UZ) can be directly evaluated
from UU.

1.2.6 - Discretization of the non-conservative term for multicom-
ponent flows

So far, the numerical methods presented are valid for conservative equations like the Euler equa-
tions (see equation 1.1). When the right-hand side of the equation is not equal to the null vector (0)
like the five-equation model presented in equation 1.3, the non-conservative term needs a specific
discretization. In our case, the term B(U) is approximated at the first order in time and space which,
using the Green-Ostrogradski theorem leads to:

tn+1 tn+1

/ /v wdVdt = / Z/ B(U)u - n,; dS dt. (1.56)
R EYORSE
We introduce the numerical function,
tn+1
Atnaij(g*jg, n;;) ~ / u-n;; dSdt, (1.57)
!J'"ml n

whose purpose is to approximate the normal velocity over the interface F;;. The interface velocity
uj; = (U}, m;;) is given by the modified HLLC Riemann solver for the advection equation
presented in [98]. As a result, the non-conservative term 1.56 can then be added to the fourth step
of the MHM given by equation 1.55 which then writes:

n n ~ HLLC —n +i —n+i At, n
Ut =up - | S RE (T ) - ETBED > 1Pl (1.58)
Jev (i) JEY(E)
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1.3 - Chapter conclusion

The finite volume framework has been chosen as it ensures conservation of the Euler system
of equation. We have detailed the different models that will be used in this work to assess the
developped overlapping grid method. The numerical scheme is based on a Godunov type method
with a limited MUSCL-Hancock scheme which is second order accurate in time and space. This
method has been chosen as it corresponds to industrial standard of accuracy and robustness. The
time integration is explicit as it is more adapted to simulate fast transient phenomena with small
time scales. The particular treatment for the non-conservative term in the case of multicomponent
flows has also been reviewed. In the next chapter, we detail the development of an overlapping grid
method within the finite volume framework presented.
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2 - Development of a finite volume multi-grid
Chimera method in a fast dynamic frame-
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In this chapter, we present the different implementations of the Chimera method that we can find
in the literature and we explain the main differences with the Chimera method that we developped.
Then, we detail the development of a Chimera method for fast transient dynamics in a finite volume
framework. The method relies on a local conservation hypothesis using actual cells called ghost cells
acting as receiving containers. We provide a detection and marking procedure to identify potential
ghost cells given a set of two overlapping grids. An extended version of the marking procedure is
provided. Then, a first and second order interpolation formulas are proposed to reconstruct a solution
that will be sent from one grid to the other and vice versa. The second order interpolation uses a
modified slope limiter that prevents the appearance of spurious oscillations especially when using
high cell size discrepencies between the sending grid and the receiving grid. The different versions
of the developped Chimera method are assessed using one-dimensional test cases like the advection
of a sinusoidal density perturbation, the Sod shocktube and a stationary shock wave as well as a
two-dimensional isentropic vortex advection. An optimal configuration for the developped Chimera
method is provided as a reference.
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2.1 - The Chimera method principle

In this work, we are interested in superimposing local geometrical alterations onto a large global
fluid domain. The local geometrical alterations can generate local flow perturbations that will impact
the fluid solution at the global domain scale. As the numerical approach that we want to develop
must rely on independent grids with different refinements on each grid, we have chosen to focus
on composite grid techniques that allow information transfer in both directions!. The multi-model
method that we have developed falls within the framework of the Chimera method [166, 17, 165].
It is a multi-model approach that allows overlapping grids to exchange information. In this chapter,
we consider two grids: a baseline grid W = {Kj}icq,, that is referred as substrate and a secondary
grid V = {Kz{}iGQV that is referred as patch (see Fig. 2.1). The substrate refers to the global grid
while the patch is a local grid, partially or completely, superimposed onto the substrate.

The various implementations of the Chimera method found in the literature require a pre-
processing grid treatment called hole cutting on the substrate. This step prepares the substrate
by disabling the redondant cells located under the patch. As shown in Figure 2.1, the hole cutting
step can be done in order to define a transition zone [101, , 23], which corresponds to the first
category of Chimera methods, or to reduce the amount of overlapped cells between the grids to
the bare minimum [82, 83, 84, 32, . ] which corresponds to the second category of Chimera
methods. The first category requires a remeshing of the transition zone and solves the system of
equation on a single grid. It is referred as method 1 in Figure 2.1 and it is not considered here as an
overlapping grid technique.

The second category of Chimera methods deactivates substrate cells that are completely located
under the patch and are not necessary to transfer information between the grids. The substrate with
its overlapped cells disabled is referred as cut substrate. In many applications, the second category of
Chimera methods is preferred to the first category, as it has shown to be less computationally expensive
and more flexible regarding high cell size discrepencies between the patch and the substrate. Indeed,
with the first hole cutting approach, the transition zone uses cells conforming to both the patch and
the substrate. Using high cell size discrepencies between the grids would require a larger transition
zone to ensure high quality cells in this region. Two versions of the Chimera method derive from the
second category and are shown in Figure 2.1:

* The first version is referred as method 2 and imposes transmission conditions at the outer
boundary of the patch and at the inner boundary of the cut substrate. Using a finite volume
scheme, the transmission conditions often relate to the fluxes imposed at the boundaries of
the domains.

* The second method is referred as method 3 and uses extension cells called ghost cells. The
ghost cells are usually virtual cell extensions that can receive information interpolated from
the sending grid exclusively [36, 19] or from both grids using a combination of the numerical
solutions [48]. Here we focus on information coming exculsively from the other grid. As we are
focusing on independent grids that are non-coincident and may have different grid resolutions,
the information received by the ghost cells needs to be interpolated using an appropriate set
of sending cells located on the sending grid but in the same area as the ghost cell. This step
is referred as interpolation in the following. The interpolation of the information can be based
on conservative variables or primitive variables and can be achieved using various techniques
like multi-linear interpolations [32, 83, 84, 32, ], multi-linear interpolations with global to
local frame transformations [107] or least square based methods [147].

"From the local grid to the global grid and from the global grid to the local grid
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Even though imposing an interpolated flux at the borders of the domains through method 2 is the
most physically accurate approach due to ensured conservation, it is not recommended for industrial
applications as it involves stability issues [133]. As a consequence, we focus on method 3 as it offers
minimal intrusiveness and stability.

4%
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remesh v conditions extension
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e e

\ \
=F s
Elements to fill in the gap Impose transmission Example of ghost cell
conditions

Method 1 Method 2 Method 3

Figure 2.1: Three main implementations of the Chimera method found in the literature.

Method 3 presents two variants regarding the interpolation of the solution across the domains
referred as explicit and implicit interpolations in the literature. For the sake of clarity, we denote,
V the set of patch ghost cells and W the set of substrate ghost cells. Figure 2.2 illustrates the
differences between an explicit interpolation and an implicit interpolation: the explicit interpolation
is defined by an empty intersection between the two sets of ghost cells. Therefore, the exchange of
information is independent between the grids as the ghost cells are only receiving information from
cells that are not ghost cells. With an implicit coupling, the intersection of the sets of ghost cells
Y and W is no longer empty resulting in a dependence of the ghost cell solutions across the two
grids. Considering that the time integration of the numerical scheme is explicit, we have chosen an
explicit coupling between grids for the Chimera procedure [82, 86] as its implementation in an explicit
time-integration context is straightforward.
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Figure 2.2: Explicit and Implicit Chimera coupling.

2.2 - Development of a finite volume Chimera method

In this work, we present a version of the Chimera method that slightly differs from the method 3
as it uses actual cells from the grid as ghost cells instead of virtual cell extensions and does not use a
hole cutting grid pre-processing which means that we do not deactivate any cells from the substrate.
These choices have been made in order to design the method as less intrusive as possible regarding
the substrate as we do not want to modify the grids when introducing the patch. Actual cells are
identified and marked as ghost cells using geometrical criteria to ensure that the ghost cell support is
compatible with the explicit Chimera interpolation. Also, the number of ghost cell layers needs to be
sufficiently large to ensure hermeticity between the outer region of the substrate and the inner region
of the substrate located under the patch. By hermetic, we mean that the numerical solution of the
substrate cells located under the patch must not impact the numerical solution of the non-overlapped
substrate cells.

2.2.1 - Chimera framework and notations

Our finite volume Chimera method relies on the injection inside ghost cells of conservative vari-
ables interpolated using the corresponding neighbor cells on the other mesh, at every time step. We
note {U;" }icq,, . the conservative variables resolved on the substrate and {U} };cq,, the conservative
variables resolved on the patch. The set of ghost cells are denoted VCcVand W CW. The interpo-
lated solutions are written {ﬁw}ieg~ for the substrate and {ﬁv}ieg for the patch as represented
in Figure 2.3. The sending cells are denoted WS CWand V¥CV and are intersected by the ghost
cell sets V and W respectively. The interface between two adjacent cells (Kis K) (i) eu x (i) 1S
denoted 7Y, U = {W,V}.

1!
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Sending cell : | | o ! 1 | | I I T

Figure 2.3: Sketch of the transfer procedure in the developped Chimera method.

Given a substrate W, an immersed patch V and their respective sets of ghost cells W and V as
shown in Figure 2.4, we define the cleaned patch and cleaned substrate cell sets respectively W, and
V., as:

Ve=V\V, and W. = W\ W,, 2.1)

where, N
W, ={K; e W\ W, |K; N V.| = |Ki|}, (2.2)
is the set containing substrate cells that are not ghost cells and that are fully overlapped by the
cleaned patch. The cell sets W, and V. contain cells with a valid solution after each iteration of
the MUSCL-Hancock scheme applied to the fluid domains VW and V. These cells are referred as
resolved cells as their values result from the resolution of the MUSCL-Hancock scheme detailed in
section 1.2.5. We define the cleaned patch Chimera boundary denoted T';, the interface between the

ghost cell set V and the resolved cells set V.. Similarly, we define the substrate Chimera boundary
denoted I'j5;.

Figure 2.4: Definition of the resolved cells set for an immersed patch (V).

Using the notations introduced in Figure 2.3 and Figure 2.4, we note hY and h}/v, respectively,

characteristic lengths of the cells K; € V and K; € W. For each ghost cell from the patch K;,
i€ Qﬁ, we define the local cell ratio between the patch and the substrate as :

hv
The equivalent definition can be made for a local cell ratio between the substrate and the patch and
is the inverse of the previous definition:

hY
Y = maxjeoz . <hf/\,> (2.4)
1
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In our multi-model approach, we are interested in adding local models to the baseline model, thus
the local cell ratio between the patch and the substrate is more adapted to our approach. We define
the cell ratio () as a global grid parameter for both models using the definition:

X = maxica,, (X)) (2.5)

The global definition makes sense in the case of regular grid spacing inside each model.

2.2.2 - Ildentification and marking of the ghost cells allowing two
grid communication

Compared to the original and previous Chimera methods described in [32, 83, 48, 86, 87], we
modified the ghost cell detection since we do not want to deactivate any cell nor modify grids.
The proposed Chimera procedure is designed to be as flexible and independent as possible from the
baseline simulation. The detection of ghost cells happens only once because the patch is considered
fixed during calculation. The steps of the detection procedure that is referred as standard detection
in the following are illustrated in Figure 2.5.

1. Given a set of two overlapping grids W (substrate) and V (patch) (see Fig. 2.5-1), we prescribe
a number of ghost cell layers (denoted kgc) required to calculate the numerical fluxes at the
cleaned patch boundary I'y; without any influence of the boundary condition at the boundary
I'y. We will see hereafter how to choose kgc.

2. Then, given the boundary I'y, of the patch domain (see Fig. 2.5-2), the procedure identifies
cells from the patch that will be marked as ghost cells V (see Fig. 2.5-3).

3. Once ghost cells V are identified, the geometrical intersection VAW is calculated to mark the
corresponding sending cells WW* (see Fig. 2.5-4).

4. Symetrically, W is defined by searching the closest kcc ghost cell layers to % (see Fig. 2.5-5)
that respects the following condition for an explicit Chimera interpolation [32]:

WAV =0 and WNYV 0. (2.6)

5. Similarly to the patch, once substrate ghost cells (W) are identified, the intersection W NV,
is computed to mark the corresponding sending cells V* (see Fig. 2.5-5).
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1) Initial grid configuration 2) Patch boundary input
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Figure 2.5: Standard detection procedure of the developped Chimera method.

As we are interested in the effect of the cell ratio (x) within the framework of the Chimera
exchange, we need to define the exchange zone gap as:

dge = minjeq <minjen\~,(!93j - $i|)>' (2.7)

The exchange zone gap (dgc) corresponds to the minimal distance separating the substrate ghost
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cell set (W) to the patch ghost cell set (V). We also define the exchange zone shift as:

W Vv
55 = dac — (max M B i (2.8)
which corresponds to the minimum gap between the the patch Chimera boundary (T'j;) (illustrated
as a thick red line in Fig. 2.7) and the substrate Chimera boundary (I';3;) (illustrated as a thick black
line in Fig. 2.7). In a one-dimensional case with uniform grid spacing on each independent grid,
ds = 0 implies that the patch and the substrate have coincident Chimera interfaces.
Using Figure 2.6, we can see that with high enough cell ratios like y = 10, we can have dgc >

% W
Rmax, Where hpax = max(hmax, h

max)
and the substrate within the exchange zone and

is the maximum characteristic cell measure between the patch

Wt o = maxica, . (BY), U={v,wh. (2.9)

As shown in Figure 2.6, high cell ratios involve the appearance of group of cells located inside the
exchange zone while neither being sending cells nor a ghost cells. We call these groups, recirculation
zones. Using the configuration in Figure 2.6, in the case of a very high cell ratio (y > 4), if a
flow perturbation, like a shock wave, initially located outside the patch travels from the substrate
to the patch (left to right in Fig. 2.6), it is transferred to the substrate using the ghost cells V.
Using a unique time step for both grids respecting the CFL condition on the finest one (the patch),
the shock wave propagates simultaneously in the patch and in the substrate which have different
resolutions. Therefore, the solution on the patch diverges from the original solution in the substrate
as it propagates in the recirculation zone. Once the pertubration reaches the sending cells V4, the
perturbation is transferred back to the substrate which could potentially create numerical instabilities
at the substrate Chimera interface (I';;). As the Chimera exchange is performed in both directions,
the presence of a recirculation zone could introduce numerical artifacts generated in the exchange
zone. The impact of the recirculation zones on the global solution will be assessed in the next
sections.
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Figure 2.6: Schema of an overlapping grid configuration with a recirculation zone (V*°).

Sending cell : l:l ‘

‘ Ghost cell :vvis ‘ Recirculation zone :

One way to avoid the presence of recirculation zones is to ensure that dgc < hmax. It can be
achieved from the standard detection by marking additional cells as ghost cells if they geometrically
lie in between the ghost cell layers of the patch and the ghost cell layers of the substrate, without
breaking the condition 2.6. As a result, the ghost cell layers of the patch are extended to fit the
ghost cell layers of the substrate as shown in Figure 2.7 and the recirculation zones are minimized as
seen in Figure 2.8. This ghost cell extension step combined with the standard detection procedure is
referred as extended detection in the following.
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2.2.3 - Derivation of a first and second order Chimera interpola-
tion
A . First order interpolation
As we are using a conservative finite volume approach, the present Chimera method is based on local

conservation hypothesis when the transfer occurs between opposite grids. Indeed as it is shown in
Figure 2.9, the method relies on the intersection of ghost cells with the opposite grid.

K ! K.
N\ . i
K { Ko

W #nr NN\ &k
W//ﬂiﬁﬂfﬁ- N:Eﬂ&n

Figure 2.9: Example of a ghost cell intersection f{; with W for a first order interpolation.

From a finite volume framework, considering the substrate ghost cell K; i€ O we suppose

that:
/~ U av = /~ Uvav. (2.10)
K; K;NnyY
The local conservation hypothesis can be recast in a piecewise constant approximation which gives:
oy KiNnK;
v’ =3 Ki 0 Kl ]‘Q}’”, 2.11)
||

JEQY

In the case of equivalent cell size between the grids (x =~ 1) and non-coincident grids, this interpola-
tion formula is comparable to the linear interpolations done in [133, 32, 82, 83] with finite difference
schemes. In the literature it is considered as a polynomial interpolation, and the order of the approx-
imation depends on the number of patch cells intersected by K; i€ Q. However, with x > 1,
different ghost cells can end up receiving the same constant state from the same sending cell. As a
consequence, this method is referred as first order Chimera method in the followings.

B . Second order interpolation

We propose to improve the first order interpolation for configurations where x # 1. Similarly to what
is done in the MUSCL reconstruction, a piecewise linear reconstruction of the transferred solution
is adequate to achieve the suitable order of accuracy independently from the grid configuration
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compared to a constant piecewise approximation of the solution. We define the barycenter position
of the intersection K; N KJ/ inside the ghost cell K;, denoted Z;; as shown in Figure 2.10.

K| [ N '
e m
i . Ly E ZTik . i
N i
K MANN K.,
: &y WLy .
| | | ! i
1 il 1 im :
V = {Kl(}iEQV

N:KﬂKj N:Kmm
%:R;mm N:K;m[(m

Figure 2.10: Example of a ghost cell intersection K, with W for a second order interpolation.

Then, we discretize equation 2.10 with a piecewise linear reconstruction: V i € €y,

|B§rjjgﬂ47v” ~
WQ]‘ (Ly) = Z
(A

JEQY

B K '
in = Z ‘K];‘KA <U;}n + ‘I’}}Y(Q};n) (Zy; — xj))a (2.12)
JEQY t

where Z(Q}’n) is the gradient of the solution Q}’n based on conservative variables. The gradient
is calculated for each sending cell set (WW* and V*) using the presented centered least squares method
[118]. \Il}’ is a slope limiter employed to avoid spurious oscillations and to keep the TVD property of
the solution when transfer on the grid model is performed like for the MUSCL reconstruction 1.48.
The present formulation ensures a spatial second order accurate interpolation in ghost cells without
any constraint on the grids, i.e. meshes can either be structured or unstructured. Equations 2.11
and 2.12, can reciprocally be written for ¢ € Qg.

Even though these interpolations result from a conservative assumption, the resulting procedure
is not fully conservative as it has been demonstrated that the only conservative approach is based
on flux interpolation [184, , ]. Nonetheless, using an integral formulation on conservative

variables for transferring solutions remains consistent with the finite volume approach.

Remark. The proposed reconstructions are based on volume intersections between the ghost cells
and the sending cells. As a result, intersection volumes are used to reconstruct the solution inside
each ghost cell with both the first order and the second order interpolations. Additionally, the center
of the intersection volumes is used to evaluate the linearly reconstructed state inside the sending cells
forthe second order interpolation. In the literature, the finite volume implementations of the Chimera
method do not use grid intersections volumes. Instead, each ghost cell state is linearly interpolated
using the positions of the centers of the sending cells acting like an interpolation molecule. These
implementations can be found inside the codes like elsA [64, ] or TAU [154, ] and derive from
the finite difference version of the Chimera method. Found inside codes like Overture [82, 83, 84, 32,

37



CHAPTER 2. THE FINITE VOLUME CHIMERA METHOD FOR FAST DYNAMICS

Jor NASA[119, 120, 141, 12], these finite difference implementations of the Chimera method use
grid points acting as sending nodes to build an interpolation molecule that surrounding a receiving
node. Therefore, our implmementation is more inline with a finite volume approach as it is built
around local conservation of conservative quantities instead of distances.

C . Impact of the second order interpolation on the detection procedure

When using a second order interpolation (see equation 2.12), for any sending cell K; € W?, a
gradient Z(Q}-Nn) needs to be reconstructed at every time step. As we want the Chimera gradient
reconstruction to be independent from the numerical scheme reconstruction, we define a reconstruc-
tion cell set W" as a subset of the domain cell set W. The gradient being interpolated inside each
sending cell of WW?* using a centered least squares method (see section 1.2.4 B), we define W" as:

W =W Uy (W?), (2.13)

where

YW?) = {Ki,i e Qw\ K; ¢ W} N {Kj,j €7(i),i € Qs }, (2.14)
is the set of cells adjacent to the sending cell set W?*. As illustrated in Figure 2.11, each sending cell
set W* and V* has an associated reconstruction set W™ and V". The reconstruction sets allow the
use of a different gradient interpolation or a different limiter compared to the one used within the

numerical scheme. It makes the Chimera method less intrusive but requires additional computations.
This additional cost will be measured later on.

Figure 2.11: Definition of the reconstruction sets W™ and V" given the ghost cell sets W and V.

Using Figure 2.11, we can see that even though WNYV = ), we have WNW" # () and VNV" £ ).
As a result, the ghost cells are involved in the gradient reconstruction of the sending cells. The values
of the ghost cells between the grids VW and V become coupled which involves solving a system. One
way to adress this issue would be to add the following geometrical criteria on top of the criterion 2.6
during the ghost cell detection and marking steps:

WAW' =0, and WNW" = §. (2.15)

This additional criteria effects on the exchange zone are illustrated in Figure 2.12 using the same grid
configuration as in Figure 2.11. The exchange zone is enlarged and the Chimera method becomes
more restrictive on the grid configuration which is not what we are looking for.

In order to keep the exchange zone contained as in Figure 2.11 while maintaining a second order
explicit interpolation, we propose a solution that uses information already available:

* First, a first order Chimera exchange is used to interpolate the value of the ghost cell sets %
and W.
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Figure 2.12: Hypothetical extension of the exchange zone to ensure empty intersections between the
ghost cell sets and the reconstruction sets (with the same grid configuration as in Fig. 2.11).

+ Second, the gradient is interpolated inside the reconstruction sets WW" and V".
* Third, the solution is reconstructed inside the sending cell sets W* and V.

+ Finally, the values of the ghost cell sets Vand W are updated using the second order interpo-
lation.

This solution ensures an appropriate gradient interpolation inside the sending cell sets WW* and V*
with a contained exchange zone, even with a second order exchange.

D . Modified K-Dubois limiter for Chimera interpolation

The second order Chimera method (see equation 2.12) requires a limiting procedure to satisfy total
variation diminishing (TVD) constraints and avoid the occurence of local extrema when reconstructing
the solution inside the sending cells. To avoid a possible limitation on mesh constructions and to
make the method suitable for both structured and unstructured meshes, we have privileged the K-
Dubois limiter [162] applied to the primitive variables as detailed in section 1.2.4.C. Let us underline
that the well-known Barth and Jespersen limiter [97] could also be used with the present method.

The standard utilization of the K-Dubois limiter uses coordinates of the barycenter of the cells
K;,i € Qu and the center of the faces J;; respectively denoted z; and z (), with i € Qy,
U={W,W} and j € 7(i). Taking the maximum value of (Z(g.c),, — 2;) ensures that the limited
reconstructed solution can be searched inside a neighborhood (i.e. a circle in 2D, and a sphere in
3D) with a typical radius of R = max;c,;) (g(face)ij — z;) (see Fig. 2.13).

When several overlapping grids are at play, the previous constraint apply to the solution is not
restrictive enough to enforce non-oscillatory property, and the search zone must be enlarged to recover
TVD properties as it is shown in Figure 2.14. In fact, when refining the patch V = {K];}kegv, ghost
cells can be intersected by a cell portion that is outside of the search region, K; in this example. The
reconstruction then gives:

~yn [? ﬂK/ n n ~
7" = BB (pon  gmwo@™y - @ - w)
| K|
’f? K ‘ (2.16)
k n n —~
+ Z T’p (U;v +UINV(UY) - (T — xp)) :
pEQW\{i} k

Here, we can see that |z, — z;| can be greater than |z - L)‘ depending on the location of

face);;
the cells. It is even more emphasized when x increases. In those particular cases, the limiter is not
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Modified K-Dubois limiter Standard K-Dubois limiter

‘ I : Unqueryable zone

- = -: New queryable zone

Figure 2.13: Search areas for the K-Dubois limiter in a single model approach and the modified K-Dubois
limiter used in the Chimera method. The searchable area in the single model approach is identical to
the Barth and Jespersen limiter searchable area [97].

adapted as the solution will be searched outside the search zone described in Figure 2.13. Thus, the
transfer can generate local extrema. We propose to recast the previous limiter to make it work with

ZL; : Center x of the cell K;

- - — - : New queryable zone ~ -,
L : Center @ of the cell K, N K;

- - — - : Old queryable zone
L(node), : Position 0 of the node [ of the cell K;

L(face),, : Center O of the face s;;

ij
Figure 2.14: Evolution of the positions between the center of the intersection with the sending cell and
the center of the sending cell.

the present Chimera method. The k-th component of the modified K-Dubois limiter writes:

. max min
m.n<[U;v —uy),, [uy -uw ]k>
1, K-

(], =min | 1, , (2.17)
moxiccy ([LU2) - oo ~ 2], )

)

where z(,,qc), is the cell corner position, and ((i) is the corner set of the cell K; (see Fig. 2.13).
The modified version of the K-Dubois limiter adapted to the present Chimera method is based on the
radius calculated from the cell corners instead of centers of cell faces. The radius of the search region
is now enlarged with an extended radius R = max;cc(s) (g(nodeh — z;). This extends the research
zone of the limited solution so as to be valid whatever the geometric configuration of the ghost cells
as well as the cell ratio are.
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2.2.4 - Study of the number of ghost cell layers dependency on
the discretization scheme

As we indicated above, we need to prescribe a number of ghost layers (kgc) before labeling
the ghost cells. As mentioned in [178], a second order accurate evaluation of the numerical flux
at the interface between two consecutive cells needs a stencil over a neighborhood of at least two
consecutive cells from each side of the interface.

When a resolved cell K;,z' € Qy,, belonging to V., is close to the boundary of the resolved
domain I'y;, the number of ghost cell layers (kgc) must be large enough to ensure that the numerical
flux evaluation at the interface I';; does not intercept the patch boundary (I'y) (see K, and a flux
evaluation at the interface F}, in Fig. 2.15 for reference). If kqc is large enough, the Chimera
exchange zone is considered hermetic as the patch boundary condition on I'y, has no impact on
the solution of the patch resolved cell set (V). The reasoning is equivalent for substrate fluid cells
located under the patch (W, \ W) that must not impact the solution of the substrate resolved cell
set (We).
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: |
0 X

Figure 2.15: Chimera boundary condition.

In this section, we provide a minimum value for kgc depending on the order of the Chimera
method that is used. Using the configuration illustrated in Figure 2.15, a second order MUSCL-
Hancock scheme is applied to an advection equation in Appendix A. A constant advection velocity a
is considered such that @ > 0. As a result, we assume that the information travels from the substrate
to the patch, this analysis exhibits that the solution in the resolved cell K; € V. depends on the
solutions of the cells K; € V and K, € V due to gradient reconstruction. The situation is illustrated
in Figure 2.16. This study shows that with a second order MUSCL-Hancock scheme, kgc > 2 is
required to ensure the hermeticity of the domains. For a first order scheme, the same analysis gives
kac > 1.

If this condition is respected, as values inside ghost cells are updated at each time step from the
opposite model, the boundary condition at I'y, has no impact on the solution in the resolved patch
cells (V;). In a similar way, cells that belong to the substrate portion covered by the patch (WP\VNV)
but are not ghost cells have no impact on the solution inside the cleaned substrate (W,). As a
conclusion, when a first order interpolation is used, kgc > 1 is required while kgc > 2 is necessary
for a second order interpolation.
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Figure 2.16: Neighbor dependency near the cleaned patch boundary (I'};).

2.2.5 - Impact of the Chimera method on the time step

The Chimera method involves a communication process between different grids with a cell ratio
(x) that can be different to 1. In this case, the critical time step At defined by the CFL condition
(see equation 1.20) will be different between the grids, with a smaller one for the finest grid. Using
the same notation previously introduced in section 2.2.4, a Von Neumann stability analysis [31] is
carried out in Appendix B for a scalar hyperbolic equation with overlapping grids (see Fig. 2.17).

v
4>

Wn Wn
Wome oo

Figure 2.17: Chimera configuration with the exchange zone gap (dcc) and the exchange zone shift (dg).

The Von Neumann stability analysis highlights that very high cell ratios (x) between grids and
obviously time step discrepencies between domains can lead to unstable behavior as advised in [136].
The influence of the grid size on the stability of the Chimera exchange is investigated experimentally
later on. As a conlusion, we have chosen to carry out our investigations with a unique time step
chosen in order to respect the CFL condition on both domains which translates into:

At, = min(AtY, AtY), (2.18)

where At)V and AtY are respectively the time steps computed at the time " for the substrate
and for the patch. This restrictive condition on the time step allows us to experiment various grid
configurations with different cell ratios and different test cases without worrying about time stability.
For industrial applications, a decoupled time step would need to be implemented in order to optimize
the computational time with a smaller time step on the finest domain only.

42



2.3. IMPLEMENTATION OF THE CHIMERA METHOD IN MANTA SOFTWARE

2.3 - Implementation of the Chimera method in MANTA
software

2.3.1 - Presentation of MANTA software

The presented Chimera method is implemented inside a C++ in-house code currently in devel-
opment at the Service d'Etudes Mécaniques et Techniques at the CEA called MANTA (Mechanical
Analysis Numerical Toolbox and Applications). This code aims to tackle several issues raised by
legacy codes written with older languages like factorization, memory management and performance
requirements. The code structure is illustrated in Figure 2.18 with a layer based organization. The
code is organized around a generic core that handles the 1/O (Input/Output) procedures, mesh han-
dling, data format and the linear system assembly and resolution. Some of these elements have been
developped internally while others use external librairies with dedicated interfaces. This ensures a
high modularity of the code thanks to encapsulation. The numerical methods like finite elements or
finite volumes are developped above the core layer and interact with it through formulations.

< End User Interface
{Mediating Body } [ Chimera }
n
Cg) I Explicit Integration l ¥ ¢
=1 P .
4% [ Finite Elements Finite Volumes } Maﬁ?ﬁor?\?gels'
—|
Implicit Integration . .
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o
LT-l ILinear algebra: Eigenl Core
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( G ) . Spatial ) Linear output:
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’k J J
|
\i |_+ \4 \4
Geometry: Baiiiom Distributed mesh Distributed linear
Tetgen manager: Zoltan backend: solver: .
PUMI/MOAB/pdest| |PETSc/Trilinos/Alien

Figure 2.18: Structure of the code MANTA.

Finally, the end user interface is currently a main C++ file to compile containing the initialization,
the time loop and the output of the computation. It is worth mentioning that MANTA is still in early
development with important features in development at the time of writing. In this work, we focus
on the modelization layer containing the numerical methods.

2.3.2 - Implementation of the Chimera procedure within the solver

The main programming contribution to MANTA from this work are two folds: the first one is
the implementation of the Chimera framework (see Fig. 2.18) that allows any cell based field to
transfert information using identified ghost cells. This framework includes the ghost cell detection
and marking, the sending procedure with the presented interpolation methods, the modified limiter
and tools to compute any fields or quantities like the system mass, momentum or total energy over
an overlapped domain. The second fold is the coupling of the Chimera method with an immersed
boundary method called the Mediating Body Method [92] that will be detailed later on.
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In this section we present the computational steps added to a standard calculation using the
Chimera method. Starting with the first order interpolation, Figure 2.19 shows that only two steps
(coloured in red) are added compared to single grid computation. The first step is the geometrical
detection and marking procedures of the ghost cell sets W,}j and their respective sending cell sets
V3, W? detailed in section 2.2.2. This step is performed before the initialization of the domains and
does not need to be executed again if the grids are fixed which is the case in our work. It mainly
consists in computing the grid intersections W* = Vaw given Ty, and kgc using tetrahedral de-
composition of polyhedron volumes. The resulting barycenters and volumes of the intersections are
stored along with the cell indexes of the intersected sending cells inside a container called exchange-
Data. The storage of these data allows us to build our first order interpolation without computing
the intersections at each sending.

The second step is the Chimera sending. For a first order sending, this steps only consists in
building the interpolated values using exchangeData and setting the corresponding ghost cells values.
The order of the sendings does not matter and this step is repeated at every time iteration.

Let us emphasize that the integration of the solution is performed everywhere except on the ghost
cells that are only used for computing the numerical fluxes at sending cell interfaces. The solution on
ghost cells is only updated through the Chimera procedure at every time step. Let us also underline
that the procedure is built as symmetrical, meaning that the way to transfer information from the
patch to the substrate is identical as to transfer information from substrate to the patch.

44



2.3. IMPLEMENTATION OF THE CHIMERA METHOD IN MANTA SOFTWARE

Input variable reading
Mesh reading (W, V)
Fields declaration ({U"};cq,.» {U7 }ica, )

v

Chimera geometrical detection
Input : {Q;/V}ieQVw {Q;;}iEQV’ 'y, kac

Fields initialization
w _ w
{Qz i€Qy T Ql i€

{Q;}}ier = {Q;}O }ieszv

" ~§
" ~§
. . . ~
-7 While time<tEnd_>-«¢
~§ ﬂ‘
~~~~. "— -
“a”

}

Chimera sending
Patch receives W* —V
Substrate receives V¥ — W

v
Boundary conditions update
Gradient update

4
Time step computation (At, =min(At)Y, AtY))

n o’

v
Interface state reconstruction (MHM Step 1)
Half time step flux update (MHM Step 2)

A4

Interface Riemann problem solving (MHM Step 3)

A
Field update (MHM Step 4) |

time+= At}

[
]

] ]
beccccccccaa '

Chimera procedures | Single execution

Doubled execution

(for V and W)

Figure 2.19: Implementation of the Chimera procedures within the fluid solver for a first order sending.

Figure 2.20 illustrates the computational steps of the second order Chimera exchange. For a
second order interpolation, the first step is very similar to the first order interpolation. The ghost
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cell sets )/NV, V and their respective sending cell sets V¥, W?* detection procedure is identical given I'y,
and kgc. The main difference is the addition of the reconstruction supports W' = WU 7()7\//) and
V' =Vu 7(17) detailed in section 2.2.3.C. As for the first order Chimera exchange, if the grids are
fixed, these steps need to be executed only once.

Within the time loop, the single Chimera step for the first order exchange is kept as explained
in section 2.2.3.C. Two additional steps are added with the gradient interpolation step in each cell
belonging to the reconstruction sets and finally, the reconstruction and sending of the values inside
the ghost cells.

Regarding the Chimera framework implementation, it consists in a Chimera class with two different
constructors (one for the patched grid and the other for the overlapped grid). For every instance of
the Chimera class, the corresponding ghost cell set, the reconstruction set, sending cell set and the
exchangeData container are computed. The first constructor requires a patch (V), a substrate (W),
a patch boundary (I'y) and a number of ghost cell layers (kgc) as inputs. The second constructor
only requires a patch Chimera instance as an input as it corresponds to a substrate Chimera instance.

As a result, the implemented Chimera method is symmetrical and modular as it can send in-
formation only one-way or both-ways and requires very few constraints on the input meshes apart
from overlapping each other. For each sending direction, one Chimera instance needs to be declared
and therefore, the implementation is fully compatible with configuration involving several grids. Also
implementation keeps a certain level of independence between the grids as the methods for the nu-
merical scheme remain the same as for a single grid configuration. Therefore, the standard numerical
scheme steps shown in Figure 2.19 and Figure 2.20 like the boundary conditions update or the time
step computations need to be executed for each grid. This is possible thanks to the update of the
values inside the ghost cells at the beginning of every iteration.
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Figure 2.20: Implementation of the Chimera procedures within the fluid solver for a second order send-
ing.
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2.4 - Validation of the finite volume Chimera method
on one-dimensional test cases

In the previous sections, we have presented our implementation of the finite volume Chimera
method. In the following, we check the impact of the Chimera sending on one-dimensional analytical
test cases. The first and second order Chimera sendings are reviewed for both the standard detection
procedure and the extended detection procedure presented in section 2.2.2. For each case, the
assessed Chimera configurations will be specified. However, the finite volume method set-up is kept
constant across all the cases tested which corresponds to a MUSCL-Hancock scheme with an HLLC
Riemann solver and the K-Dubois limiter with £ = 0.75 (see section 1.2 for details on the numerical
scheme configuration). The scheme is second order accurate in both time and space. The CFL
number is set to 0.9 for the one-dimensional test cases.

2.4.1 - Solution reconstruction over overlapping grid domains

When using overlapping grid methods, it is difficult to compare the overlapped fields to a single
grid solution as the solution is duplicated on the overlapped regions. In this section, we propose a grid
merging approach to post-process the solution obtained using an overlapping grid method. Given a
substrate (W), an immersed patch (V) and their respective sets of ghost cells (W and V) as shown
in Figure 2.21, we use the resolved cell sets (W, and V) defined in equation 2.1 to reconstruct a
unique solution over the computational domain.

‘ Overlapping grid conﬁguration‘

s
Ve . Ghost cel

oy
1%
‘Merged grid conﬁguration‘ ‘
W\ (V.0 W)

W+V

I I e e e e e e

\\V//

Figure 2.21: Field merging of overlapping grid configurations for comparisons with single grid cases.
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We consider the conservative variable field U over the physical domain &. This field is dis-
cretized as.{QZV}Z.EQW and {Q}’}Z_GQV respectively on the substrate (1) and the patch (V). As a
result the field U is duplicated in the overlapped regions. In order to post process overlapping grid
configurations, we define the composite conservative variable field:

U= [1 - a(x)]UW +a(2)U”, (2.19)

where « is a weighting function of space. As the patch is used to improve the accuracy of a global
computation, we choose the following formulation for a:

{1 ifz eV,

0 otherwise.

alz) = (2.20)

This formulation favors the patch solution and is equivalent to merging grids by cutting the overlapped
cells of the substrate as shown in Figure 2.21. The resulting merged grid is used for error computations
only and is referred as W + V in the following. In equation 2.19, the composite field is based on
conservative variables U. This definition can also be derived for error fields computed with analytical
solutions as done in equation 2.23 in the followings.

2.4.2 - Sinus advection

In order to assess the order of accuracy of the numerical scheme, and the impact of the inter-
polation used in the Chimera exchange on the global order of convergence, the linear advection of a
smooth analytical solution is considered similarly as in [113, 35, 89]. This test case is also useful to
assess the impact of the exchange zone shift (dg) combined with the different ghost cell detection
procedures. We superimpose a regular fluctuation on a one-dimensional density field that is convected

with a constant velocity:

p = po(l+6p)
u = uo = 100 m.s™! (2.21)
p = Do = 10° Pa

with the normalized density fluctuation given by,

(2.22)
0 elsewhere,

{AsinQ(ﬂ(xl_xS)) if0<z—ux; <l
dp =

where A = 0.1 is the amplitude of the perturbation, py = 1kg.m™2 is the inital constant density
field, I = L/5 is the length on which the density is perturbed, T is the period of the perturbation and
L =wuyT = 10m is the length of the computational domain [0, L]. x5 = 0.5m is the perturbation
shift set to ensure that the initial center of the perturbed density region is located at z.(0) = 0.15 L,
as seen in Figure 2.22. The simulation stops at ¢y = 0.6 7" which is the time for which the center of
the density fluctuation is located at z.(tf) = 0.75 L.
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Figure 2.22: Scalar advection test case: initial solution of a square sinus distribution (see equation 2.22).

A . Split domain

The first configuration tested is called split domain and consists in a single grid split into a substrate
and a patch whose left interface is located at z; = 1/2 L as shown in Figure 2.23. The cleaned patch
domain boundary (I';) is kept fixed across the various Chimera configurations and one or two ghost
cells are added on top of the boundary I';; depending on the order of the Chimera sending. Given
Jds, the substrate is positioned in accordance with the geometrical criteria given in equation 2.6.

The sinus advection test case with the split domain configuration allows us to accurately review
the impact of the Chimera exchange as the patch (V) receives information coming from the substrate
at only one region of the patch grid. This is compared to a fully immersed patch which receives
information from both regions corresponding to the extremities of the patch (V). As the information
is only going in one direction, we can quantify the impact of the exchange zone shift (dg), measure
the impact of a coarse-to-fine grid transfer and vice versa, but first, we focus on the impact of the
Chimera sending on the global order of convergence.

‘Coincident grid configuration ‘

-------- : Ghost cells

Figure 2.23: Sinus advection test case: grid arrangements for the split Chimera configuration.
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A.1 - Impact of the Chimera sending on the order of convergence

For the grid convergence study with the split domain case, we have tested two different configura-
tions: one with coincident grids (ds = 0) and the other one with non-coincident grids (ds = 0.3 hyy).
We review the first and the second order Chimera sending with the standard detection procedure.
Computations have been performed on both a single grid domain (without any patch) and on the
split domain with a patch. For both cases, we used 6 different grids from the coarsest Ncells = 100
cells regularly distributed over L to the finest using Ncells = 3200 cells, i.e. the grid spacing evolves
with power of 2 between two meshes. We note Ncells the number of grid cells over L. As we would
like to highlight the spatial accuracy, whatever the grid is, a constant time step At = 107°s giving
a very low CFL number (0.03 — 0.3) has been used for lowering the time integration error.

We set the cell ratio between the patch and the substrate to x = 1. This allows us to study the
grid convergence as well as the impact of the Chimera interpolation on the global accuracy. At the
final time ¢7, we compare numerical solutions obtained on both the single grid configuration and the
Chimera configuration, to the analytical solution which is the simple convection of the initial density
profile without any diffusion. To measure numerical errors, we calculate the L; norm of the density
error, computed as follows:

1 [F 1] [F
Li(ep) = I /0 lep|da = 7 [/0 ]a(w)ey + [1 - a(az)]ezw dz
Qv

> 1pi = pen(i)| A,
i=0

(2.23)
1

N ERY

with py, the analytical density profile, o the weighting function introduced in equation 2.20 and
5); = pY - — pw with p¥  the numerical density solution on V. The equivalent definition applies to
z—:p}. The total volume of the domain is written: |U| for the single grid cases and |[WW + V)| for the
Chimera configurations.

The coincident grid results (0g = 0) reported on Table 2.1 are identical between the single mesh
configuration and both Chimera methods. This is expected by design of the developped method as
coincident grid cases combined with our version of the Chimera method are equivalent to a single
grid configuration. For the coincident grid configurations (single grid and Chimera), the second order
of accuracy is clearly recovered for finest grids (at least from 400 grid points over L) by using the
MUSCL-Hancock scheme.

Therefore, even though the first order Chimera method is a lower order method than the numerical

scheme, it does not alter the overall order of convergence.

Table 2.1: Grid convergence analysis of the split configuration: results on density (p) errors obtained
with a single grid configuration as well as with the present Chimera approach using a patch with same
grid spacing as the substrate (xy = 1) and coincident grids (ds = 0).

L1(gp)( x10%) Order of convergence p
Ncells _ Chimera . Chimera
Single Single
First order Second order First order Second order
100 9.093 9.093 9.093 1.34 1.34 1.34
200 3.584 3.584 3.584 1.72 1.72 1.72
400 1.091 1.091 1.091 1.95 1.95 1.95
800 2.825e-1 2.825e-1 2.825e-1 2.12 2.12 2.12
1600 6.462e-2 6.462e-2 6.462e-2 2.37 2.37 2.37
3200 1.242e-2 1.242e-2 1.242e-2 - - -

The evolution of the L1 norm of density errors versus the grid spacing is plotted in Figure 2.24 for
the non-coincident grid configuration (0 = 0.3 hyy). Using the present Chimera method on a split
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Figure 2.24: Grid convergence analysis of the sinus advection case for the split domain with equivalent
cell sizes between the patch and the substrate (y = 1) and non-coincident grids (ds = 0.3 hyy). h = hyy =
hy and hg corresponds to Ncells = 3200.

domain configuration with equivalent cell sizes (x = 1) does not seem to notably deteriorate the order
of accuracy of the original method. The global order of accuracy is almost recovered although small
discrepancies compared to single grid results can hardly be noticed in the coarsest grid configurations
(see Fig. 2.24). To judge the very low intensity of these differences, we report in Table 2.2 the L,
density errors as well as the measured order of accuracy. Even when using the first order Chimera
method, the order of convergence is not notably altered.

Table 2.2: Grid convergence analysis of the split configuration: results on density (p) errors obtained
with a single grid configuration as well as with the present Chimera approach using a patch with same
grid spacing as the substrate (xy = 1) and non-coincident grids (6s = 0.3 hyy).

L1(gp)( x10%) Order of convergence p
Ncells - -
) Chimera . Chimera
Single Single
First order Second order First order Second order
100 9.093 9.257 9.100 1.34 1.37 1.34
200 3.584 3.577 3.595 1.72 1.71 1.72
400 1.091 1.090 1.093 1.95 1.95 1.95
800 2.825e-1 2.820e-1 2.827e-1 212 2.12 2.13
1600 6.462e-2 6.452e-2 6.466e-2 2.37 2.37 2.38
3200 1.242e-2 1.242e-2 1.242e-2 - - -

A.2 - Impact of the exchange zone shift (ds) on the solution

Keeping the same split configuration, notations and time step parameter as above, we assess the
impact of the geometrical configuration and more specifically the exchange zone shift (dg) by setting
Ncells = 200 and x = 1. As the patch domain boundary remains fixed at 1/2 L, increasing the
value of dg from 0 (coincident grid configuration) to 0.9hyy (non-coincident grid configuration) is
equivalent to shifting the substrate in the positive direction of the x-axis by a value dg (see Fig. 2.23).

The L density errors are plotted in Figure 2.25. When ds = 0, the ghost cells have only one
sending cell. When 0 < ds # hyy, each ghost cell receives information from two sending cells as
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shown in Figure 2.23. The first order Chimera exchange and the second order Chimera exchange
exhibit different behaviors. The first order sending cell is a convex function of the exchange zone shift
with a minimum reached for 6g = 0.4. From this point, the error increases as one moves further away.
As seen in Table 2.2, the peculiar behavior of the first order Chimera is confirmed in Figure 2.25 with
lower errors compared to both the second order sending and the equivalent single grid configuration
with Necells = 200 and x = 1.

In Figure 2.26, we can see that both Chimera and single grid cases present a symmetry breaking
of the density profile compared to the analytical solution. Therefore, the first order Chimera exchange
compensates the symmetry breaking which slighlty improves the overall accuracy of the solution. For
the second order Chimera method, the maximum error is obtained with the largest exchange zone
shift and the smallest error is obtained with matching grids. It is worth noting that the second
order exchange error amplitude is lower compared to the first order Chimera method making it less
dependent on the grid configuration. As a result, the second order Chimera method seems preferable
as it is more predicable regarding the grid configurations when y = 1.

x10~*
3.600 —»*—  Chimera 1st order
—e—  Chimera 2nd order
3.595
©3.590
=
3.585
3.580
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.25: Exchange zone shift analysis: results on density (p) errors obtained with with the present
Chimera approach using a patch with same grid spacing as the substrate (Ncells = 200, x = 1.0) with
variable exchange zone shift (ds) and the standard detection procedure.
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Figure 2.26: Density profile at ¢t = t; for the single grid case and the first order Chimera sending with
matching grids (ds = 0) and non-matching grids (ds = 0.9 hyy) with Ncells = 200 and y = 1, compared
to the analytical solution. The markers on the plots are not representative of the number of points of
the numerical solution.

A.3 - Impact of the cell ratio (x) on the solution

In more geometrically complex cases, the condition y = 1 is restrictive for composite large scale
domains and may become a constraint for our approach. Therefore, this part focuses on the impact of
the cell ratio () between the patch and the substrate for both coincident (ds = 0) and non-coincident
(6s # 0) grid interfaces. We keep the same parameters and notations previously introduced. For
each configuration (coincident and non-coincident), the study is based on two folds: the first one
assesses the transfer from a base grid with Ncells = 200 (substrate) to a finer one (patch) as x > 1.
The second one reviews the transfer from a base grid with Ncells = 3200 (substrate) to a coarser
one (patch) as y < 1.

Let us recall that solution errors are calculated at ¢y = 0.67" once the density profile passed
through the exchange zone region and is completely arrived inside the patch. That way, errors
obtained must mainly be compared to the ones of single grid configurations corresponding to the
coarsest equivalent Ncells between the patch and the substrate, i.e., for the coarse-to-fine transfers,
errors must be compared to the single grid case with Ncells = 200 whereas for the fine-to-coarse
transfers, errors must be compared to the single grid cases where Ncells is equal to equivalent Ncells
on the patch. We call these single grid configurations equivalent coarse single mesh (ECSM).

Similarly, we define the equivalent fine single mesh (EFSM) of a Chimera configuration, the single
grid configuration with the same grid resolution as the finest mesh of the Chimera grid configuration.

A.3.1 - Coincident grid interfaces (ds = 0)

Starting with the coincident interface case and x > 1 (coarse-to-fine transfer), the L; norm of
the density errors are reported in Table 2.3. We can see that the first order Chimera sending is not
relevant as it generates a higher error than the single grid configuration while using a finer patch for
every cell ratio tested. The second order Chimera sending on the other hand is promising as it allows
an increase in the overall accuracy while it is obvious that the solution errors are mostly dominated
by the ones generated on the coarser substrate as the Chimera error is closer to ECSM error than the
EFSM error. As an example, while being lower, the Chimera errors with Ncells = 200 and x = 4
have the same order of magnitude as the single grid with Ncells = 200 but cannot be compared to
the error of the single with Ncells = 800. As a conclusion, unlike the first order Chimera exchange,
the second order Chimera exchange between two facing grids does not deteriorate the global solution
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error when the patch is finer than the substrate.

When x < 1 (fine-to-coarse transfer), the fine substrate compensates the induced error of the
first order Chimera method as the errors of the first order Chimera case are lower than the coarse
equivalent single grid cases (see Table 2.4). However, the first order errors are higher than the
second order Chimera method which remains preferrable when y varies. The difference between the
two Chimera methods drops when x decreases. This is caused by the increasing spatial errors involved
by the coarser patches. As a conclusion, the fine-to-coarse transfer is not heavily impacted by the
Chimera methods as the Chimera errors are blended with the spatial error of the coarsest grids.

Table 2.3: Cell ratio analysis of the split configuration: results on density (p) errors obtained with with the
present Chimera approach using a patch with a coincident Chimera interface (6 = 0) and variable cell
ratios (x) with the standard detection procedure. The transfer occurs from a coarse substrate (Ncells =
200) to a finer patch. We have also reported the errors of the equivalent coarse single mesh (ECSM) and
the equivalent Ncells on the patch for equivalent fine single mesh (EFSM) comparisons.

Li(ep)( x 104) Equivalent Ncells on the patch
X .
for EFSM
First order Second order Equivalent coarse single mesh (ECSM) (for comparison)
1 3.584 3.584 3.584 200
2 5.371 2.741 /1 400
4 5.066 2.526 /! 800
8 4.959 2.481 /1 1600
16 4.948 2.477 /1 3200

Table 2.4: Cell ratio analysis of the split configuration: results on density (p) errors obtained with with
the present Chimera approach using a patch with a coincident Chimera interface (6 = 0) and variable
cell ratios (x) with the standard detection procedure. The transfer occurs from a fine substrate (Ncells =
3200) to a coarser patch. We have also reported the errors of the equivalent coarse single mesh (ECSM)
and the equivalent Ncells on the patch for equivalent coarse single mesh (ECSM) comparison.

Li(ep)( x10%) Equivalent Ncells on the patch
X .

for ECSM comparisons

First order Second order Equivalent coarse single mesh (ECSM) ( part )
1 1.242e-2 1.242e-2 1.242e-2 3200
0.5 6.216e-2 3.431e-2 6.462e-2 1600
0.25 1.487e-1 1.306e-1 2.825e-1 800
0.125 5.159%e-1 5.080e-1 1.091 400
0.0625 1.824 1.821 3.584 200

A.3.2 - Non-coincident grid interfaces (dg = 0.6 hyy)

We now focus on the impact of x on the overall solution but with non-coincident grid interfaces
(6s = 0.6 hyy). Apart from the exchange zone shift, the grid configuration remains the same as
before with Ncells = 200 for coarse-to-fine transfers and Ncells = 3200 for fine-to-coarse transfers.
We review the impact of the ghost cell detection procedure (standard and extended) in addition to
the order of the Chimera method, for various cell ratios (x).

Table 2.5, contains the L; norm of the density error for y > 1 (coarse-to-fine transfer). Using the
extended detection procedure reduces dg when possible and ensures ds < 0.6 hyy. Therefore, for the
first order Chimera method, the standard detection provides lower errors compared to the extended
detection procedure as we have seen with Figure 2.25, especially when increasing x as it makes dg
tend to 0. For the second order Chimera method, the extended detection procedure improves slighlty
the accuracy of the method compared to the standard detection but deteriorates it a little when using
high cell ratios x > 10.

When x < 1 (fine-to-coarse transfer), the Chimera methods behave similarly to the coincident
grid case with an increasing error due to the coarsening of the patch. The extended detection has
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no effect on the solution as the ghost cell configurations are identical to the standard detection.
Also, the Chimera errors are blent in with the spatial error induced by the coarse patch reducing
significantly the gap between the first and the second order Chimera sendings. Therefore, we can
conclude that the order of the Chimera method and the detection procedure do not matter when
transferring information from a baseline grid to a coarser one.

Table 2.5: Cell ratio analysis of the split configuration: results on density (p) errors obtained with with
the present Chimera approach using a patch with non-coincident Chimera interface (ds = 0.6 hyy) and
variable cell ratios (x) for both the standard and extended detection procedures. The transfer occurs
from a coarse substrate (Vcells = 200) to a finer patch. Equivalent Ncells on the patch are reported for
equivalent fine single mesh (EFSM) comparison.

Ly(ep)( x10%) Equivalent Ncells
X ) on the patch
First order Second order (for EFSM comparison)
Standard detection Extended detection Standard detection Extended detection
1 3.582 3.582 3.599 3.599 200
2 2.438 3.944 2.785 2.756 400
4 2.519 4.614 2.537 2.531 800
8 2.115 4,538 2.475 2.481 1600
16 2.107 4,855 2.466 2.489 3200

Table 2.6: Cell ratio analysis of the split configuration: results on density (p) errors obtained with with
the present Chimera approach using a patch with non-coincident Chimera interface (s = 0.6 hyy) and
variable cell ratios (x) for both the standard and extended detection procedures. The transfer occurs
from a fine substrate (Vcells = 3200) to a coarser patch. Equivalent Ncells on the patch are reported
for equivalent coarse single mesh (ECSM) comparison.

4
Li(gp)( x10%) Equivalent Ncells on the patch
X First order Second order (for ECSM comparison)

Standard detection Extended detection Standard detection Extended detection

1 1.243e-2 1.243e-2 1.243e-2 1.243e-2 3200
0.5 3.266e-2 3.266e-2 3.219e-2 3.219%e-2 1600
0.25 1.356e-1 1.356e-1 1.402e-1 1.402e-1 800
0.125 5.103e-1 5.103e-1 5.129-1 5.129-1 400
0.0625 1.822 1.822 1.823 1.823 200
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B . Patched domain

The previous configurations involve a single transfert from one substrate toward a patch. We consider
now a patch immersed inside a substrate. As illustrated in Figure 2.27, this configuration is closer
to real life use cases as the method aims to bring locally geometrical details thanks to the patch.
Computations have already been performed on a single grid domain (without any patch) for the
previous configurations and are now performed with a patch that is located centered on the substrate
of length L, from 21 = 1/3L to x5 = 2/3L as shown in Figure 2.27. This configuration allows us
to assess the effect of the method when a perturbation completely crosses a patched domain. The
initialization of the fields remains the same.

w Necells

........ : Ghost cells|

Figure 2.27: Sinus advection test case: grid arrangements for the patched Chimera configuration.

On the substrate, we used 6 different grids from the coarsest Ncells = 100 cells regularly
distributed on L to the finest using Ncells = 3200 cells, i.e. the grid spacing evolves with power of 2
between two meshes. We note Ncells the number of grid cells along the substrate. As we would like
to highlight the spatial accuracy, whatever the grid is, a constant time step At = 1075 s has been
used for lowering the time integration error which corresponds to small CFL numbers (0.03 — 0.3).

B.1 - Impact of the Chimera sending on the order of convergence

First, we set the cell ratio between the patch and the substrate () to 1. The mesh on the patch
is not coincident with the mesh on the substrate (see Fig. 2.27 for a sketch). At the final time ¢,
we compare numerical solutions obtained on both the single grid configuration (only the substrate is
considered) and the configuration with the patch superimposed on the substrate, to the analytical
solution. To measure numerical errors, we calculate the Ly norm of the density error, computed as
in equation 2.23. The evolution of the L1 norm of density errors versus the grid spacing is plotted in
Figure 2.28.

On the one hand, for the single mesh configuration (without any patch), the second order of
accuracy is clearly recovered for finest grids (at least from 800 grid points over L) by using the
second order MUSCL-Hancock scheme. On the other hand, the two Chimera sendings on a patched
configuration on 1/3 length of the computational domain do not seem to notably deteriorate the
order of accuracy compared to a single grid case. Even with the first order Chimera sending, the
global order of accuracy is almost recovered although slight discrepancies compared to single grid
results can hardly be noticed in the coarsest grid configurations (see Fig. 2.28). To judge the very low
intensity of these discrepancies, we report in Table 2.7 the L, density errors as well as the measured
order of accuracy.
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Figure 2.28: Grid convergence analysis of the sinus advection case for the patched configuration with
equivalent cell sizes between the patch and the substrate (x = 1). h = hyy = hy and hg corresponds to
Ncells = 3200.

Table 2.7: Grid convergence analysis of the patched configuration: results on density (p) errors obtained
with a single grid configuration as well as with the present Chimera approach using a patch with same
grid spacing as the substrate (xy = 1).

L1(ep)( x10%) Order of convergence p
Ncells ) )
) Chimera . Chimera
Single Single
First order Second order First order Second order
100 9.093 9.223 9.074 1.34 1.37 1.32
200 3.584 3.567 3.630 1.72 1.72 1.73
400 1.091 1.083 1.096 1.95 1.94 1.95
800 2.825e-1 2.828e-1 2.837e-1 212 2.13 2.13
1600 6.462e-2 6.445e-2 6.472e-2 2.37 2.37 2.38
3200 1.242e-2 1.250e-2 1.241e-2 - - -

B.2 - Impact of the cell ratio () on the solution

Secondly, we prescribe the cell number on the substrate to Ncells = 200 and we refine the grid
on the patch in order to assess the impact of the transfer between a coarse substrate and a finer
patch which seems to be the most sought-after configuration. Cell ratios between the patch and the
substrate spread from x = 1 to y = 16 where the grid spacing on the patch is 16 times smaller than
on the substrate. Results on the normalized L; norm of density errors are reported in Table 2.8.

The last column reports the equivalent number of cells (Ncells) that would be needed on the
substrate to recover the same grid refinement as used in the patched region. Let us recall that
solution errors are calculated at ¢y = 0.67 once the density profile passed through the patch and
completely left the patch. That way, errors obtained must mainly be compared to the ones of single
grid configuration with Ncells = 200 cells.

For the first order sending, refining the patch slighlty improves the accuracy of the overall solution
up to x = 4 using the standard detection procedure and y = 2 for the extended detection procedure.
This is coherent with the results obtained with the split configuration and comes from the coarse-to-
fine sending. We can see here that this effect persists with a patched configuration.
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Table 2.8: Cell ratio analysis of the patched configuration: results on density (p) errors obtained with the
present Chimera approach using a patch and variable cell ratios (x) for both the standard and extended
detection procedures. The substrate comprises Ncells = 200 grid cells. Equivalent Ncells on the patch
are reported for equivalent fine single mesh (EFSM) comparison.

Li(p)( ><104) Equivalent Ncells
X ) on the patch
First order Second order (for EFSM comparison)
Standard detection Extended detection Standard detection Extended detection
1 3.567 3.567 3.630 3.630 200
2 2.905 2.905 2.370 2.370 400
4 2.714 5.155 2.112 2.142 800
8 5.094 5.095 2.023 2.023 1600
16 4.405 5.358 1.994 2.023 3200

As a result, the first order sending is not recommended for cell ratios higher than 2. On the
contrary, the second order sending always improves the accuracy of the solution compared to the
single grid with Ncells = 200. The standard detection is preferable in this one-dimensional case as
it allows slightly lower errors compared to the extended detection. Using the second order exchange,
this emphasizes that errors due to Chimera exchange between the two facing grids do not impact the
global solution error when the patch is finer than the substrate.

C . Summary of the findings on the advection case

With the sinus advection test case, various configurations have been tested in order to assess key
aspects of the different versions of the developped Chimera method:

+ A split domain configuration has been tested as it represents the simplest configuration to
assess the Chimera method with one localized exchange zone at the end of the substrate
which corresponds to the beginning of the patch. Each configuration depends on the number
of cells (Ncells), the exchange zone shift (dg) and the cell ratio ().

1. First, with coincident grids and equivalent cell size between the patch and the substrate
(x = 1 and ds = 0) we have verified that both the first order and the second order
Chimera methods give identical results to the single grid configuration.

2. With non-coincident grids and equivalent cell size between the patch and the substrate
(x =1 and s = 0.3 hyy), we showed that the impact of both the first and second order
Chimera methods on the global order of convergence is negligible.

3. Then, we assessed the impact of the exchange zone shift (ds) with equivalent cell size
between the patch and the substrate (x = 1) and Ncells = 200. The analysis showed
that the second order Chimera method is preferrable as it is less dependent on the grid
configuration and has a more predicable behavior regarding the Chimera error generated.

4. The impact of the cell ratio () has been assessed using Ncells = 200 with coincident
grids (6g = 0). In a coarse-to-fine transfer (x > 1), the second order Chimera method
systematically improves the overall solution which is not the case for the first order
Chimera method. In a fine-to-coarse transfer (xy < 1), the Chimera method errors are
blended with the spatial error generated by the coarse grids.

5. Finally, the impact of the cell ratio (x) has been assessed using Ncells = 200 with
non-coincident grids (6s = 0.6 hyy). In a coarse-to-fine transfer (x > 1), the second
order Chimera method with the extended detection does not systematically lower the
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error when  increases unlike the first order Chimera method. On the other hand, the
second order Chimera method with the standard detection procedure is the most accurate
configuration when Y increases. In a fine-to-coarse transfer (x < 1), the Chimera method
errors are blended with the spatial error generated by the coarse grids and the extended
detection does not improve the global solution.

+ A patched domain configuration has been tested as it represents a simplified configuration
of the targeted applications with immersed patched grids. The grids are non-coincident and
each configuration depends on the number of cells (Ncells) and the cell ratio (x). When
X = 1, the impact of both Chimera methods on the order of convergence is negligible. With
Ncells = 200, the second order method with the standard detection procedure systematically
improves the overall solution when  increases and provides the most accurate results among
all the tested configurations of the Chimera method.
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2.4.3 - Split Sod shocktube

We now consider a non-linear test case which is the well known Sod shocktube [160, 170]. This
test is relevant in the assessement of the developped Chimera method as its solution consists of a left
expansion wave, a contact discontinuity and a right shock wave separated by constant states. This
test allows us to examine the impact of the Chimera method when an expansion wave or a shock
wave crosses the Chimera exchange zone which will be reviewed in two distinct sections. This test
is relevant for the assement of the developped Chimera method as it consists in solving the Euler
equations and allows us to review the ability of the Chimera method to transfer non-linearities from
one grid to the other. A tube of length L = 1 m contains a left state and a right state separated by
an interface located at o = 0.5 m. The states are respectively given by:

oL 1kg.m™3 PR 0.125kg.m 3
up, | = 0 , ug | = 0 , (2.24)
L 10* Pa PR 103 Pa

with (pr,ur,pr) the left state and (pr,ugr,pr) the right state. The simulation stops at the
time ty = 2.3 X 10~3s. The computational domains are similar to the ones in section 2.4.2.A and
are illustrated in Figure 2.29.

For the Chimera configuration, the domain is composed of a substrate of length L = z; + kgchyy
with x; the position of the substrate Chimera interface, kg the number of ghost cell layers and hyy
the substrate cell size. The patch is positioned from x; according to dg as shown in Figure 2.29. We
note Ncells the number of grid cells over L which gives the substrate grid resolution (hyy). The
patch cell size (hy) is set given x. The Chimera interface position (x;) will vary depending on the
solution component (expansion wave, shock wave) we are focusing on. The single grid configuration
is identical to the Chimera configuration with g = 0. This will allow us to test the impact of
the Chimera procedure on an expansion wave or a shock wave and to compare the results to an
equivalent single grid configuration, especially when x increases given Ncells. As a result, the single
grid configuration also depends on Ncells, x; and x. The CFL number is set to 0.9

‘Single grid configuration ‘

W Ncells

______________ >
——trtt———t —t
1%
X =2
Chimera grid configuration ‘
w
——————————f o
--(Sg—().ShW" V
[} x=2
; N —

........ : Ghost cells

Figure 2.29: Shocktube test case: grid arrangements for the single grid and Chimera configurations.

The results are compared to the analytical solution of the Sod shocktube. The L; norm of the
density error is computed as in equation 2.23.
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A . Focus on the expansion wave

In this first section, we focus on the expansion wave crossing the Chimera interface. As we want
to keep the grid configurations and notations as simple as possible across the various cases, the left
and right states of the Sod shocktube are inverted in order to make the expansion wave travel from
left to right. The Chimera interface (z;) is set to 0.6m. As a result, the expansion wave starts
from the substrate and at ¢t = ¢, the head of the expansion wave is located inside the patch. The
objective is to assess the behavior of the Chimera method compared to the single grid configuration
when an expansion wave crosses the Chimera interface and to monitor the appearance of oscillations
or perturbations induced by the Chimera method.

A.1 - Impact of the Chimera sending on the order of convergence

In this first study, x is set to 1 and ds = 0.6 hyy. The Chimera results have been obtained with
the standard detection procedure. We use 6 different grids from the coarsest Ncells = 100 to the
finest Ncells = 3200.

1.0 —s— Single, Ncells=200
—e— Chimera, 1st order, Ncells=200
—=— Chimera, 2nd order, N cells=200
0.8 . .
5 A Analytical solution
0“3
=
206
=
04
0.2
Ly
0.0 0.2 0.4 0.6 0.8 1.0

x (m)

Figure 2.30: Shocktube test case - focus on the expansion wave: density profile at ¢t = ¢; for both the
Chimera methods and the single grid configurations with Ncells = 200, x = 1 and ds = 0.6 hyy. The
markers on the plots are not representative of the number of points of the numerical solution.

Figure 2.30 shows the density profile obtained with Ncells = 200 and x = 1. We can see
that the crossing of the Chimera exchange zone by the expansion wave does not generate visible
perturbations. The results of the L; norm of the density error are reported on Table 2.9. Starting
with the orders of convergence, we can clearly see that the non-smoothness of the solution prevents the
single grid configurations to reach an order of convergence of 2. Unlike the previous sinus advection
case, the Chimera methods contribute to the error and slightly degrade the overall solution. The
Chimera method impacts the global solution by 1.9% for the coarsest grid with the first order Chimera
exchange and by 0.28% for the coarsest grid with the second order Chimera exchange, compared to
the equivalent single grid configuration. When refining the grids, the Chimera error decreases and
becomes lower than 0.1% for the finest grids. The difference between the first and the second order
Chimera methods also decreases.
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Table 2.9: Grid convergence analysis of the Sod shocktube - focus on the expansion wave: results on
density (p) errors obtained with a single grid configuration as well as with the present Chimera approach
using a patch with same grid spacing as the substrate (xy = 1) and non-coincident grids (ds = 0.6 hyy).

L1(gp)( x10%) Order of convergence p
Ncells - -
. Chimera . Chimera
Single Single
First order Second order First order Second order
100 3.604 3.674 3.614 0.78 0.80 0.78
200 2.095 2.115 2.099 0.72 0.73 0.72
400 1.271 1.276 1.272 0.98 0.98 0.98
800 6.433e-1 6.446e-1 6.435e-1 0.71 0.71 0.71
1600 3.925e-1 3.929%e-1 3.926e-1 0.83 0.83 0.83
3200 2.209e-1 2.210e-1 2.209%e-1 - - -

A.2 - Impact of the cell ratio () on the solution

Now we set Ncells = 200 on the substrate and y varies. For the Chimera cases, ds = 0.6 .
The single grid configuration is also refined from the patch Chimera interface location (x;) to the
end of the domain as shown in Figure 2.29. The results of the L; norm of the density error are
reported on Table 2.10. The single grid case with a local refinement deteriorates the quality of the
overall solution as the patch region gets refined. It is illustrated in Figure 2.31 with the appearance
of a small oscillation near the location of the brutal refinement (z;).

The same trend is observed with the Chimera cases as seen in Figure 2.32, nonetheless, the
second order Chimera method limits the error growth unlike the first order Chimera method and
the single grid configuration. This is visible as the second order Chimera exchange does not have
an oscillation in its solution. With the rarefaction wave crossing the Chimera exchange zone, the
extended detection procedure does not improve the quality of the solution and even deteriorates the
solution with the first order Chimera method when x > 2. This highlights the difficulties of the first
order method when dealing with high cell ratios and also exhibits some difficulties of standard single
grid methods to deal with brutal spatial refinements.
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Figure 2.31: Shocktube test case - focus on the expansion wave: density profile at t = ¢4 for single
grid configurations with Ncells = 200 and different values of x. The markers on the plots are not
representative of the number of points of the numerical solution.

Table 2.10: Cell ratio analysis of the Sod shocktube - focus on the expansion wave: results on density (p)
errors obtained with the single grid configuration as well as with the present Chimera approach using
a patch with non-coincident Chimera interface (6s = 0.6 hyy) and variable cell ratios (x) for both the
standard and extended detection procedures. The transfer occurs from a coarse substrate (Ncells =
200) to a finer patch. Equivalent Ncells on the patch are reported for equivalent fine single mesh (EFSM)
comparison.

3
Li(gp)( x10°%) Equivalent Ncells

X Chimera on the patch
Singl for EFSM comparison
neie First order Second order ( P )
Standard detection  Extended detection  Standard detection  Extended detection
1 2.095 2.115 2.115 2.099 2.099 200
2 2.096 2.240 2.118 2.094 2.112 400
4 2.109 2.250 2.403 2.102 2111 800
8 2.138 2.147 2.403 2.106 2.110 1600
16 2.158 2.147 2.489 2.106 2.107 3200
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Figure 2.32: Shocktube test case - focus on the expansion wave: density profile at ¢t = ¢+ for single grid

and Chimera configurations with Ncells = 200, x = 16 and ds = 0.6 hyy. The markers on the plots are
not representative of the number of points of the numerical solution.
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B . Focus on the shock wave

In this second section, we focus on the shock wave crossing the Chimera interface. The Chimera
interface position (x;) is set to 0.8 m. Using the inital conditions described in equation 2.24, the
shock wave naturally crosses the Chimera interface and is located inside the patch at t = t¢. The
objective is to assess the behavior of the Chimera method compared to the single grid configuration
and monitor the appearance of oscillations or perturbations induced by the Chimera method when
discontinuities are at play.

B.1 - Impact of the Chimera sending on the order of convergence

We start by reviewing the impact of refinement with equivalent cell size between the patch and
the substrate (x = 1). In this configuration the cells of the single grid cases are uniformly distributed
along the domain of length L. The results of the L; norm of the density error are reported on
Table 2.11. We can see for that for discontinuities, the Chimera method is more impactful on the
overall solution with relative Chimera errors of 14% on the coarsest grids compared to the coarsest
single grid. The Chimera error decreases when refining the grids and reaches 5% of relative error
compared to the equivalent single grid configuration with Ncells = 3200. Figure 2.33 shows the
absence of local oscillations induced by the Chimera method on the density profile at ¢ = .

—=— Single, Ncells=200
—e— Chimera, 1st order, Ncells=200
—=— Chimera, 2nd order, Ncells=200

------ Analytical solution

0.0 02 04 0.6 08 10
X (m)

Figure 2.33: Shocktube test case - focus on the shock wave: density profile at¢ = ¢, for both the Chimera

methods and the single grid configurations with Ncells = 200, x = 1 and ds = 0.6 hyy. The markers on
the plots are not representative of the number of points of the numerical solution.
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Table 2.11: Grid convergence analysis of the Sod shocktube - focus on the shock wave: results on density
(p) errors obtained with a single grid configuration as well as with the present Chimera approach using
a patch with same grid spacing as the substrate (x = 1) with non-coincident grids (ds = 0.6 hyy).

L1(gp)( x10%) Order of convergence p
Ncells - -
. Chimera . Chimera
Single Single
First order Second order First order Second order
100 3.604 4138 4132 0.78 0.86 0.86
200 2.095 2.281 2.283 0.72 0.88 0.88
400 1.271 1.243 1.237 0.98 0.82 0.82
800 6.433e-1 7.022e-1 7.007e-1 0.71 0.94 0.94
1600 3.925e-1 3.647e-1 3.655e-1 0.83 0.65 0.65
3200 2.209e-1 2.329%e-1 2.330e-1 - - -

B.2 - Impact of the cell ratio () on the solution

Focusing on the impact of the cell ratio (), we set Ncells = 200 on the substrate portion.
For the Chimera cases, ds = 0.6 hyy which means that the grids are non-coincident. The single grid
configuration is also refined from the patch Chimera interface location x = x; to the end of the
domain as shown in Figure 2.29. The two Chimera detection procedures (standard and extended)
have been tested and the results of the L1 norm of the density error are reported on Table 2.12. When
using different cell ratios between the grids, the local refinement improves the overall error compared
to the cases where y = 1. However, for both the single grid and the Chimera cases, the error is not
a linear function of x as the minimum of the error is not reached for the highest value of y. We can
also see that the extended detection procedure slighlty helps decreasing the error compared to the
standard detection procedure for both Chimera methods when dealing with discontinuities but not in
a significant way.

Figure 2.34 shows the density profile of single grid cases when x varies. We can see that a
brutal refinement generates oscillations that propagate in the flow direction. These oscillations are
also present in the Chimera configurations with a very similar behavior of the pertubation between
the first order Chimera method and the single grid configuration. When dealing with discontinuities,
the second order Chimera method does not mitigate the perturbation but slows it down. Also, the
second order Chimera method provides a good estimate of the shock wave velocity whereas the first
order method overshoots the shock wave position.

As a result, the second order Chimera method with the standard detection procedure is the most
suitable configuration for dealing with shocks and high cell ratios as the extended method does not
bring significant improvements to the solution while increasing the number of ghost cells.
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Table 2.12: Cell ratio analysis of the Sod shocktube - focus on the shock wave: results on density (p)
errors obtained with the single grid configuration as well as with the present Chimera approach using
a patch with non-coincident Chimera interface (0s = 0.6 hyy) and variable cell ratios (x) for both the
standard and extended detection procedures. The transfer occurs from a coarse substrate (Ncells =

200) to a finer patch. Equivalent Ncells on the patch are reported for equivalent fine single mesh (EFSM)
comparison.

3
L1(ep)( x10%) Equivalent Ncells

Chimera on the patch
Single for EFSM comparison
J First order Second order ( P )
Standard detection  Extended detection  Standard detection  Extended detection
1 2.095 2.281 2.281 2.283 2.283 200
2 2.090 2.099 2.008 1.966 1.946 400
4 1.922 2.155 2.040 2.032 1.991 800
8 1.960 2.054 2.050 1.997 1.927 1600
16 1.939 2.072 2.085 2.013 1.928 3200
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Figure 2.34: Shocktube test case - focus on the shock wave: density profile at ¢t = ¢ for single grid con-
figurations with Ncells = 200 and different values of x. The markers on the plots are not representative
of the number of points of the numerical solution.
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Figure 2.35: Shocktube test case - focus on the shock wave: density profile at ¢t = ¢ for single grid and
Chimera configurations with Ncells = 200, x = 16 and ds = 0.6 hyy. The markers on the plots are not
representative of the number of points of the numerical solution.
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C . Summary of the findings on the Sod shocktube case

With the Sod shocktube test case, we have been able to assess the behavior of the different Chimera
configurations transferring an expansion wave or a shock wave from the substrate to the patch. These
waves result from the non-linearity of the Euler equations which was not present with the advection
test case. Various configurations have been tested in order to assess key aspects of the different
versions of the Chimera method:

* A split domain configuration with Chimera interface located at x; = 0.6 m and inverted left
and right initial states have been used in order to review the impact of the Chimera method on
the solution when an expansion wave crosses the exchange zone. Both first and second order
Chimera methods have a negligible impact on the order of convergence compared to a single
grid approach. When refining the patch while maintaining Ncells constant, the second order
Chimera method with the standard detection procedure provides the more accurate solution
compared to the other configurations. However, the refinement slighlty deteriorates the solution
even for the single grid case because of a small oscillation generated near the brutal refinement
region.

* A split domain configuration with a Chimera interface located at x; = 0.6 m has been used
in order to assess the impact of the Chimera method on the solution when a shock wave
crosses the exchange zone. At an equivalent cell size between the patch and the substrate,
both first and second order Chimera methods do not generate visible oscillations and the
Chimera error reduces with refinement. When refining the patch at a constant Ncells, an
oscillation is generated near the brutal refinement zone. This oscillation also apprears with the
single grid configuration and prevent the error from decreasing when using a finer patch. The
second order extended detection procedure does not bring significant improvements compared
to the standard detection procedure which remains the best compromise between shock wave
propagation speed estimation, overall accuracy and number of ghost cells.
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2.4.4 - Conservation properties of the present Chimera method

Although our local conservation hypothesis is not sufficient to ensure global conservation of
the system [184, . |, we verify in this section that the Chimera method does not introduce
conservation error with coincident grid interfaces. Then, we verify that the conservation error due
to the Chimera exchange with non-coincident grid interfaces and variable cell ratios meet acceptable
levels for industrial requirements.

To this end, we study the behavior of the finite volume Chimera formulation when a steady shock
wave is located at the patch interface. This one-dimensional test case is taken from [183] and [148].

The full computational domain x € [—5,5] m, is discretized in two regions of Ncells = 25 each
for the single grid configuration. The interface between the two regions is located at z = 0 and
the Chimera configurations are depicted in Figure 2.36 with coincident grid interfaces (dg = 0) and
non-coincident grid interfaces (0g = 0.3 hyy) with x = 2. For every Chimera grid configuration,
the patch interface is fixed and coincides with the shock wave discontinuity at x = 0. The variable
Necells corresponds to the number of cells on the substrate while the number of cells on the patch
is defined by the cell ratio (x). The Chimera cases are tested for both the first and the second
order Chimera method with the standard detection procedure. The flow states on each side of the
discontinuity are the following:

PL 1kg.m™3 PR 1.8621 kg.m 3
ur, | = [ 1.5ms™t |, ur | = | 0.8055m.s™t |, (2.25)
I, 0.71429 Pa PR 1.7559 Pa

As the shock wave discontinuity coincides with the patch interface, the patch contains exclusively
the right state of the shock wave. All simulations are performed up to a dimensionless time t* =
tur/L = 100, using a prescribed CFL = 0.9 on both the single grid configuration and the Chimera
grids. This time ensures a converged solution with residuals of density, momentum and total energy
lower than 10~ on every case. The relative error on system conservation is computed for each
conservative variable as the following:

_ |setr @y dv—f o) av]

e(p(t)) To0m) dvV
. (pu)(t*,z) dV — [(pu)(0,z) dV'
(e = L D0 ] (2.26)
* | J(eE)(t*2) dV— [ (pE)(0,z) AV
e(pE(Y)) = | T(E)(0.0) dV |

In Figure 2.37, we show the results of the Chimera configurations (first and second order) with
coincident grid interfaces (ds = 0) and non-coincident grid interfaces (ds = 0.3 hyy) with equivalent
cell size compared to the single mesh configuration (Ncells = 25, x = 1) and the analytical solution.

As highlighted by Table 2.13, system mass, momentum and total energy are conserved for both
Chimera methods with the coincident grid interface configuration (ds = 0) as seen in Figure 2.37
with identical errors compared to the single mesh case.

The Chimera method with non-coincident grid interfaces (ds = 0.3 hyy) introduces conservation
error since a maximum of respectively 0.5% and 0.6% is recorded on the conservation error of mass
for the first order Chimera method and on the conservation error of momentum for the second order
Chimera method. In fact, the shock wave is still located at the patch interface but at the same time,
is also diffused upstream, in a coarse cell of the substrate that induces higher error levels.
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Figure 2.36: Stationary shock wave grid configuration for coincident grids and non-coincident grids with
the shock wave located at x = 0.

—=— Single
1.8 . .
—<—  Chimera, 1st order, coincident
—e—  Chimera, 1st order, non-coincident
—~16 —=— Chimera, 2nd order, coincident
[ap] . . . .
- _ —=— Chimera, 2nd order, non-coincident
- e e e e e e e e e e e mmmmmmmmm a2 A . . < N -
) 11.88 e Analytical solution
= ! '
— G]: '
=14 \ :
= ! e
7 11.86 '
=) ' :
) ! s =
[ E f—o—6——o65:
1.9 11.84 :
E
'
1.0

Figure 2.37: Density profile of the stationary shock wave converged solution in a single grid configura-
tion with Ncells = 25 and Chimera configurations (first and second order exchanges) with coincident
and non-coincident grids for Ncells = 25 and x = 1 compared to the reference solution. The markers
on the plots are not representative of the number of points of the numerical solution.

Table 2.13: System mass, momentum and energy relative error computed on the converged solution
with a single grid configuration as well as with the present Chimera approach using a patch with the
same grid spacing as the substrate (Ncells = 25, x = 1) with a stationary shock wave matching the
patch boundary.

Chimera
Single . - s :
Coincident interfaces Non-coincident interfaces
First order Second order First order Second order
e(p(t*))in % 5.971e-4 5.971e-4 5.971e-4 5.276e-1 4.359%e-1
e((pu)(t*)) in % 2.449e-3 2.449e-3 2.449¢e-3 4.996e-1 6.336e-1
e((pE)(t*)) in % 4.463e-3 4.463e-3 4.463e-3 1.904e-1 4.608e-1

When refining the patch (x = 2,4,8 and 16) with coincident grids (6s = 0), we can observe
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from Table 2.14 and Figure 2.38a, that system mass, momentum and total energy are preserved
with the first order Chimera method with an error of the same order of magnitude as the single grid
configuration which is 1074%. On the other hand, the second order method has more impact on
conservation with a jump of two orders of magnitude when refining the patch. This is caused by
the linear reconstruction of the solution that blunts the shock wave interface which translates into a
difference in system mass, momentum and total energy. As seen in Figure 2.38b, the error is relatively
low as it does not exceed 0.02%.

With non-coincident grid interfaces (ds = 0.3 hyy), the shock wave diffuses upstream in the
substrate grid. As a result, refining the patch has only a weak effect on error levels for both the
first order and second order Chimera methods (see Table 2.15). The error magnitude is however
relatively low since it does not exceed 1%. To put those results in perspective, Figure 2.38c and
Figure 2.38d show the impact of the Chimera method on the post-shock state with non-matching
grids. The loss on the density jump is at most 0.39% of the reference post-shock state for the
first order Chimera method and 0.4% for the second order Chimera method which is acceptable for
industrial applications.

As a result, the first and second order Chimera methods have a very similar behavior with non-
coincident grid interfaces with a small advantage for the second order method. This was expected
from the Sod shocktube study as the second order Chimera method captures correctly the shock
wave speed compared to the first order method.
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Figure 2.38: Density profile of the stationary shock wave converged solution of Chimera configurations
with coincident (6s = 0) and non-coincident (ds = 0.3 hyy) grids for Ncells = 25 and x varying from 2 to
16 compared to the reference solution. The markers on the plots are not representative of the number
of points of the numerical solution.
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Table 2.14: System mass, momentum and energy relative error computed on the converged solution
with a single grid configuration as well as with the present Chimera approach using a patch with different
grid spacings and a stationary shock wave matching the patch boundary and coincident interfaces (6s =
0).

Chimera (Coincident interfaces)

X First order Second order
spt)in%  e((pw)t)in%  ((pE)*)in%  (p(t)in%  c((pw)(t*)in%  e((pE)(t))in %
1 5.970e-4 2.449e-3 4.463e-3 5.970e-4 2.449e-3 4.463e-3
2 4.171e-4 2.271e-3 4.375e-3 1.111e-2 1.113e-2 3.345e-3
4 5.583e-4 2.421e-3 4.446e-3 1.154e-2 1.175e-2 3.815e-3
8 6.254e-4 2.491e-3 4.480e-3 1.177e-2 1.209e-2 4.062e-3
16 6.582e-4 2.526e-3 4.497e-3 1.118e-2 1.226e-2 4.189e-3

Table 2.15: System mass, momentum and energy relative error computed on the converged solution
with a single grid configuration as well as with the present Chimera approach using a patch with different
grid spacings and a stationary shock wave matching the patch boundary and non-coincident interfaces
(ds = 0.3 hyy).

Chimera (Non-coincident interfaces)

X First order Second order
spt)in%  e((pu)E)in%  e((pE)t*)in% () in% (o)) in%  <((pE)(t*)in%
1 5.276e-1 4.996e-1 1.904e-1 4.359%-1 6.336e-1 4.608e-1
2 3.609e-1 5.685e-1 4.397e-1 1.330e-1 3.218e-1 3.179e-1
4 2.253e-1 5.591e-1 5.564e-1 1.131e-1 3.894e-1 4.284e-1
8 2.319e-1 5.647e-1 5.573e-1 2.173e-1 5.590e-1 5.639%e-1
16 2.352e-1 5.674e-1 5.578e-1 2.418e-1 5.988e-1 5.955e-1

2.5 - Advection of an isentropic vortex

The last test case of this chapter is an isentropic vortex which is one of the exact solutions for the
compressible Euler equations [192]. This test involves convection of an isentropic vortex throughout
an inviscid flow. It is often used to illustrate the ability of numerical schemes to capture vortical flows.
The mean flow velocities us and v, pressure ps and density ps. are considered to be free stream.
This test is a diagonally convecting vortex with (tso, Vo) = (Im.s™, 1m.s7!) and po, = 1 Pa,
Poo = 1kg.m™3. As an initial condition, an isentropic vortex is added to the mean flow field. The
pertubation values are given by:

(2.27)

where (3 is the vortex strength and v = 1.4. Here, T = %, Too = 1.0, (Z,7) = (v — z¢, Y — Ye),
where (7., y.) are the coordinates of the initial vortex center equal to (0,0) and r? = 7% + 7%, The
entire flow is assumed to be isentropic, so for a perfect gas, p/p” = constant. From the relations,

P = poc + 0p,

= 5
U = Yoo + 0, (2.28)
V= Vs + 00,

T = T + 6T,
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and the isentropic relation, the resulting state for conservative variables is given by:

0 [1 _ (”78;;)252 6(177“2)] 1/(v-1)
pu p[l - %e%(liﬂ)] 2.29
v | B o317 ' (229
P p[l + 2%62 ]
pE 5+ Tp(u? +0?)

The exact solution with the given initial state is a convection of the vortex with the mean velocity
comparable to the results shown in Figure 2.39. Therefore, it provides a good measure of the accuracy
of the schemes for relatively smooth solutions of the Euler equations. The computational domain for
the vortex is a centered square (z x y) € [~5,5]°m x m. Periodic boundary conditions are used at
the boundary of the domain. The single mesh simulation uses a uniform cartesian grid with Ncells
cells on the side. The same grid is used as the substrate in the Chimera configuration. The patch is
a centered rotated square of a side 5m at a 45° angle as shown in Figure 2.40. The grid resolution
of the patch is set using the cell ratio ().

1.0e+00
0.9

— 0.8

— 0.7
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— 0.5

[3.79—01

Pressure p (Pa)

X (m)

Figure 2.39: Resulting pressure field of the isentropic vortex case at t* = ¢ for the single grid configu-
ration with Ncells = 640.

. t\/ugo+v§o

All simulations are performed up to a dimensionless time % = ¢t ~—>2—>=
! V2

prescribed CFL number of 0.6 on both the single grid configuration and the Chimera configurations.
The finite volume method is identical to the one-dimensional test cases presented in the previous
section and corresponds to a MUSCL-Hancock scheme with an HLLC Riemann solver and the K-
Dubois limiter with k£ = 0.75.

= 1, using a
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Figure 2.40: Isentropic vortex grid configuration for the Chimera case with x = 2.

2.5.1 - Impact of the Chimera sending on the order of convergence

First, the cell ratio () is kept constant and equal to 1. Several grid resolutions are employed
from Ncells = 50 to Ncells = 400, to study grid convergence of the Chimera method compared to
the single grid approach. At the final dimensionless time t}, we compare numerical solutions obtained
on both the single grid configuration and the Chimera configuration, to the analytical solution. To
measure numerical errors, we calculate the L; norm of the pressure error written L (e;,), computed
as shown in equation 2.23

Figure 2.41 illustrates the grid convergence results over the 5 grids for both the single grid and
the Chimera configurations. Even though the orders of convergence are higher than 1, the single
grid solution error does not decrease as expected with smooth solutions. The Chimera configurations
follow the same trend.

On a two-dimensional case such as the isentropic vortex, the first order Chimera method slighlty
deflects from the single grid results and the difference between the latter and the second order
Chimera method is invisible to the naked eye. Using the pressure profile over the centerline y = 0
shown in Figure 2.42, we can see that the second order Chimera method and the single grid results are
matching but the vortex is no longer symmetrical compared to the analytical solution. This explains
why the first order Chimera method gives, in some configurations, a lower error compared to the
single grid configuration and the second order Chimera method.

This is confirmed by Table 2.16 where both the first order Chimera and the second order Chimera
methods have a lower error compared to the single grid case for Ncells = 320 and Ncells = 160.
A this level of accuracy, the difference is negligible and can be attributed to a grid combination that
better fits the solution. Nonetheless, the second order Chimera method seems the better choice here
as it remains the closest to the single grid solution across refinement.
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Figure 2.41: Grid convergence analysis of the isentropic vortex case with equivalent cell sizes between
the patch and the substrate (x = 1). h = hyy = hy and hg corresponds to Ncells = 640.
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Figure 2.42: Pressure profile at t* = 3 along y = 0 for the single grid configuration as well as the
Chimera cases with Ncells = 80 and x = 1. The markers on the plots are not representative of the
number of points of the numerical solution.

79



CHAPTER 2. THE FINITE VOLUME CHIMERA METHOD FOR FAST DYNAMICS

Table 2.16: Grid convergence analysis of the vortex case: results on pressure (p) errors obtained with

a single grid configuration as well as with the present Chimera approach using a patch with same grid
spacing as the substrate (y = 1).

L1(gp)( x10%) Order of convergence p
Ncells
. Chimera . Chimera
Single Single
First order Second order First order Second order
40 5.010 5.325 5.046 1.51 1.62 1.55
80 1.757 1.730 1.722 1.18 1.14 1.17
160 7.713e-1 7.874e-1 7.656e-1 1.06 1.17 1.06
320 3.702e-1 3.500e-1 3.662e-1 1.02 1.03 1.02
640 1.828e-1 1.713e-1 1.809e-1 - - -
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2.5.2 - Impact of the cell ratio (x) on the solution

In the following, Ncells is set to 40 and y varies. The two detection procedures (standard and
extended) are tested for both the first order and the second order Chimera methods. The results are
reported on Table 2.17. For both Chimera methods, refining the patch does not improve the overall
accuracy but deteriorates it. This deterioration is due to oscillations caused by the transfer from the
coarse substrate to the fine patch as shown in Figure 2.43. These oscillations are exacerbated with
high values of x as shown in Figure 2.44. However, this deterioration is reduced when using the
second order Chimera method compared to the first order method (see Fig. 2.43a and Fig. 2.43b).
Overall, the extended detection does not seem to improve the solution. Therefore, the most accurate
configuration is the second order Chimera method with the standard detection procedure.

Table 2.17: Cell ratio analysis of the vortex case: results on pressure (p) errors obtained with with the
present Chimera approach using a variable cell ratios (x) and Ncells = 80. Equivalent Ncells on the
patch are reported for equivalent fine single mesh (EFSM) comparison.

L1(ep)( x10%) Equivalent Ncells
X - on the patch
First order Second order (for EFSM comparison)
Standard detection Extended detection Standard detection Extended detection
1 5.325 5.325 5.046 5.046 40
2 5.426 5.487 5.073 5.157 80
4 5.806 6.791 5.482 5.573 160
8 6.188 7.623 5.698 5.889 320
16 6.457 8.116 5.812 6.078 640
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Figure 2.43: Resulting pressure field of the isentropic vortex case at t* = ¢} for the Chimera case using
the first order sending (a) and the second order sending (b) with Ncells = 40 and x = 16 both using the
standard detection procedure.

Table 2.18 contains the ratio of the CPU times and memory cost of each equivalent fine single
grid configuration to the CPU times and memory of the corresponding Chimera configurations. If
X = 1, the equivalent fine single grid of a Chimera configuration is a single grid configuration with
the same grid resolution as the patch. Therefore, if the time ratio is higher than 1, it means that the
Chimera case takes less time than its equivalent fine single mesh. Similarly, a memory ratio higher
than 1, means that the Chimera configuration memory footprint is lower than its equivalent fine
single mesh.
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Figure 2.44: Pressure profile at t* = 3 along y = 0 for the single grid configuration as well as the
Chimera cases with Ncells = 40 and y = 16. The markers on the plots are not representative of the
number of points of the numerical solution.

Overall, the Chimera method is very interesting using cell ratios as it divides the CPU time by
more than 4 in some cases and divide the memory requirements by more than 3. As expected, the
first order method is the fastest Chimera configuration and the second order Chimera method with
the extended detection procedure is the slowest. Even though the second order Chimera method
is not as fast as the first order method, it brings significant gains with up to 3.8 less CPU time
than the equivalent single grid configuration. For the second order Chimera method, even though,
the extended detection procedure does not significantly deteriorate the CPU time, the gains on the
accuracy of the solution are not important enought to justify its utilization compared to the standard
detection.

Table 2.18: Time an memory cost of the Chimera method: time and memory ratio of the present
Chimera approach using a variable cell ratios (x) compared to the equivalent fine single mesh (EFSM).
The higher the better. Equivalent Ncells on the patch are reported for equivalent fine single mesh (EFSM)
comparison.

CPU Time Ratio Equivalent Ncells
X Memory on the patch
i Ratio
First order Second order (for EFSM comparison)
Standard detection Extended detection Standard detection Extended detection
1 0.81 0.79 0.69 0.63 0.79 40
2 2.43 2.40 1.98 1.67 1.90 80
4 4.47 4.26 3.61 3.26 3.08 160
8 4.83 4,75 3.80 3.73 3.61 320
16 4.48 4.42 3.62 3.61 3.76 640
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2.6 - Chapter conclusion

In this chapter, we have detailed the development of a Chimera method based on a finite
volume approach using two grids respectively named substrate and patch. The method uses ghost
cells as receiving containers and relies on a local conservation hypothesis from which we derived a
first order and a second order interpolation formulas of the conservative variables. The geometrical
identification procedures have been detailed along with the dependency of the ghost cell layer number
upon the order of numerical scheme such as the MUSCL-Hancock scheme. A modified version of
the K-Dubois limiter [162] has been presented in order to prevent the appearance of local extrema
when using the second order Chimera method. In order to minimize the appearance of unstabilities,
a unique time step is chosen for the both domains based on the finest grid. A solution reconstruction
from composite domains is proposed in order to compare Chimera configurations to single grid ones.

The developed Chimera method with the two interpolation formulas and the two detection proce-
dures has been tested on reference one-dimensional and two-dimensional test cases from the literature
like a sinus pertubation advection, the well known Sod shocktube, a stationary shock wave and an
isentropic vortex advection. The first and second order Chimera sendings do not alter the order of con-
vergence of linear one-dimensional solutions like advections or non-linear, continous one-dimensional
solutions like expansion fans. Using high cell ratios allow an increase in the global accuracy of the
solution due to the use of finer grids on localized regions. This improvement is limited by the coarsest
grid.

When a discontinuous solution like a shock wave is transferred from a substrate to a patch, the
second order Chimera method is able to correctly capture shock wave speeds but oscillations are
generated due to abrupt refinements which deteriorates the quality of the solution. These oscillations
appear with a coarse-to-fine transfer as well as single grids with abrupt refinement and remain local
phenomena as the overall profile is preserved which must but be pointed out. This type of oscillations
is also observed when using high cell ratios with solutions sensitive to conservation like the isentropic
vortex. However, the second order Chimera method tends to mitigate the perturbations which could
potentially be blent in larger cases for industrial applications. Also, the objective of the developped
Chimera method is to add local geometrical details that can alter the flow locally which would then
impact the larger scale. Therefore, even though the fine-to-coarse perturbations must be taken into
account, they do not prevent the developped Chimera method to be used for industrial applications.

Finally, The extended detection procedure does not seem relevant in any of the cases tested with
no relevant gains in acccuracy and slight additional cost in CPU time and memory. The second order
Chimera method with a standard detection procedure is an interesting compromise which combined
with a reasonable cell ratio (up to x = 8), can bring relevant CPU time optimizations while improving
the accuracy of the global solution.

In the following, the first order Chimera method is no longer considered and we focus on
the second order method. The standard detection is the default configuration and if the extended
detection procedure is used, it will be explicitly specified.
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The second order Chimera method has been assessed on one-dimensional and two-dimensional,
reference but relatively simple test cases. In this chapter, we extend the assessment of the method
with the standard detection procedure as a default configuration. To evaluate the present approach,
we select three well-known two-dimensional test cases from the literature. Each test case is chosen
to stress the method on one particular aspect in order to highlight capabilities and limitations of the
present Chimera method. The finite volume method set-up is kept constant across all the cases tested
which corresponds to a MUSCL-Hancock scheme with an HLLC Riemann solver and the K-Dubois
limiter with k = 0.75 (see section 1.2 for details on the scheme configuration). The scheme is second
order accurate in both time and space. By default the CFL number is set to 0.6. A supersonic flow
around a 2D cylinder is undertaken with an overlapping grid in the vicinity of the cylinder. This
allows us to check that the present Chimera method is able to transfer a shock wave from the global
grid to a patch containing a geometrical detail that will alter the global solution of the flow before
reaching a steady state. The second test case concerns the interaction of a shock wave in Air with
a bubble initially cylindrical with two variants. In the first one, the bubble is filled with Helium while
in the second one, the bubble is filled with R22. This allows us to stress the behavior of the present
method to deal with moving interfaces between components in multicomponent flows. At last, the
well known test case of the double Mach reflection is undertaken with overlapping grids. We can thus
check the ability of the method to account for multiple interactions between discontinuities even if
they move across overlapping grid boundaries.
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3.1 - Flow around a circular cylinder at Mach = 3

3.1.1 - Presentation of the case

A circular cylinder with a radius D = 1m, is initially placed in Air (v = 1.4) which is assumed
as a perfect gas. A shock wave is initially located 8 cylinder diameters in front of the cylinder with a
flow at Mach M., = 3 upstream of the shock wave. Upstream pressure and density are prescribed,
respectively at P, = 96774 Pa, and poe = 0.519kg.m™3 upstream of the shock wave. Initial
conditions downstream this shock wave, around the cylinder, are prescribed by using the Rankine-
Hugoniot relationships assuming that the front shock wave moves towards the cylinder with a Mach
number equal to Mg, = 1. The initial state of this test case is shown in Figure 3.1 where we see the
computational domain (z x y) € [~10,10]* m x m.
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Figure 3.1: Circular cylinder test case: computational domain and initial solution.

A grid that fits both the body and external domain boundaries is first built to serve as a single
grid configuration. A zoom-in view in the vicinity of the cylinder is provided in Figure 3.2a, where
we see the transition between an O-grid very close to the cylinder towards an H-grid far away. In
the followings, we use the number of grid cells (Ncells) distributed along the cylinder perimeter as
the parameter to refer as refinement. We then built the grid of the patch, attached to the cylinder
with an O-grid that at most coincides with the single grid configuration very close to the cylinder
to facilitate comparisons with the single grid model (see in Fig. 3.2b the grid in red superimposed
to the single grid configuration). Then the substrate model employed in the Chimera computation
is a Cartesian grid that fits the external boundaries of the computational domain, as we can see in
Figure 3.2b, where a zoom-in close to the cylinder is presented showing the patch grid superimposed
to the substrate model. Let us remark that, when considering the problem with overlapping domains,
the cylinder only belongs to the patch domain and does not explicitly appears in the substrate model.

All simulations are performed up to a dimensionless time t* = t uo, /L = 52.5 (where uq is the

infinite velocity), using a prescribed CFL number CFL = 0.6 on both the single grid configuration
and the overlapping grids.
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Figure 3.2: Grid configuration for the single mesh case and the Chimera case.

At first, we keep the cell ratio between the patch and the substrate close to unity, meaning that
the minimum grid spacing used in the patch (along the cylinder perimeter) is the same as the one
used in the substrate although meshes are not coincident away from the cylinder, as we can see in
Figure 3.2b. Several grid resolutions are employed from Ncells = 50 along the cylinder perimeter to
Necells = 400, to study grid convergence.

Steady state solutions are presented in Figure 3.3, with the comparison of density contours
obtained at a dimensionless time t* = 52 for Ncells = 200 grid cells along the cylinder perimeter,
between the single grid configuration (see Fig. 3.3b), and the overlapping grids (see Fig. 3.3a). As
we can see, results seem to be similar, and it is hard to differentiate them following the density
contours. Let us first remark that in the Chimera case, when the front shock wave passes through
the interface from the substrate to the patch, no spurious reflection is generated, meaning that the
present Chimera method is able to deal with wave propagation across grid interfaces.

To get a better validation of results obtained with the Chimera method, we use an integral
quantity based on the pressure drag force exerted by the flow on the cylinder, calculated at each time
step. Time history of this pressure drag force is plotted in Figure 3.4.

3.1.2 - Steady state horizontal pressure force analysis

When the moving front shock wave interacts with the cylinder, a peak on the pressure drag force
occurs, followed by a relaxation period during which the front shock wave becomes established as
a bow shock in front of the cylinder. Then a steady state solution occurs. The initial peak is well
captured by the Chimera method which gives equivalent results compared to the single grid case (see
Fig. 3.4). Whatever the grid spacing is, a statistically converged steady state solution is achieved
from at most a dimensionless time t* = 35. When the grid becomes finer, this time increases. As we
can see, for the coarsest grids the drag force converges towards a constant value while for the finer
grids oscillations around a converged value appear due to the high resolution of the cylinder wake.
Compared to the single grid computations, the Chimera method gives comparables results on the
drag force while some weak discrepancies can be recorded for the coarsest grids. Very similar results
have however been recovered for the finest grid tested with the Chimera method. By zooming in on
the steady state region between dimensionless times 40 and 52.5 as shown in Figure 3.5, we can see
that the average force seems to converge toward the value F' ~ 202 x 103> N. We can observe that
the Chimera case captures oscillations around the cylinder with a coarser grid refinement than the
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Figure 3.3: Steady state density field for both Chimera case (on the left), and the single grid case (on the
right) with a cell ratio of unity (x = 1), obtained at a dimensionless time t* = 52 and for Ncells = 200
grid cells along the cylinder perimeter.

single grid configuration. Considering that grids between the single mesh case and the Chimera case
are similar but not identical, differences might be caused by a difference in the grid resolution as well
as a better grid regularity of the mesh in the Chimera case.

On Table 3.1, we have reported the averaged force calculated for several number of cells over the
cylinder perimeter (Ncells), over the time interval t* € [40,52.5] for both the single mesh case and
the Chimera case. Relative differences, w.r.t. the single grid case, between the Chimera case and
the single grid configuration are reported in the last column as percentages. Discrepancies between
the single mesh case and the Chimera case do not exceed 2% and the Chimera case converges
monotonously as the grids are refined.

Table 3.1: Average resulting pressure force over t* € [40, 52.5] for the first study cases (x = 1).

L [[2 F(t)dt(N)

Necells ta—t1 % difference with Single
Single Chimera
50 207728 211312 1.7%
100 203404 203120 0.14 %
200 201719 202204 0.24 %
400 203059 202161 0.44 %

Secondly, we set the resolution on the substrate model equivalent to Ncells = 100 and the
patch is refined (x = 1,2, and 4) with respectively Ncells = 100,200, and 400 along the cylinder
perimeter. It corresponds to a patch refinement over a constant grid spacing on the substrate. With
the definition of the parameters Ncells and x provided for this case, we get the following Chimera
configurations: (Ncells = 100, x = 1), (Ncells = 200, x = 2) and (Ncells = 400, x = 4). In
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Figure 3.4: Time history of the pressure drag force for several number of grid cells (N cells) obtained on
both the single grid configuration, and the overlapping grids with however similar grid spacings (x = 1).
The markers on the plots are not representative of the number of points of the numerical solution.

Figure 3.6, we plot histories of the drag force on the cylinder obtained on several refined overlapping
grids compared with the equivalent fine single mesh (EFSM) with the same number of cells along the
cylinder perimeter. Refining the patch does not introduce local perturbation but instead increases
the accuracy of the resulting force as the regularity of the mesh is better ensured than in a single
case for the same Ncells (see Fig. 3.2).

To better examine predicted converged values of the drag force, we plot a zoom in of histories
in between t* € [45,52.5] obtained with both the overlapping grids with cell several ratios and the
equivalent fine single mesh (Fig. 3.7). Similar results as with the Chimera case with x = 1 are obtained
that compare very well with the equivalent fine single grid cases. In fact, as reported in Table 3.2,
comparable discrepancies with respect to the equivalent single grid computations are recorded by the
refined Chimera case (x # 1) compared to the results obtained with x = 1. Nevertheless, the force
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Figure 3.5: Zoom in the interval dimensionless times t* € [45,52.5] of the pressure drag force history for
several number of grid cells (Ncells), obtained on both the single grid configuration and the ovelapping
grids with however similar grid spacings (x = 1). The markers on the plots are not representative of the
number of points of the solution.

of the Chimera method allows to predict results with the similar accuracy at however a much less
computational cost since less grid points are necessary for the same grid spacing. This is confirmed in

Table 3.2: Results obtained with the Chimera cases when the patch is refined and the substrate resolu-
tion is fixed (equivalent to Ncells = 100), compared with their equivalent fine single mesh computations

(EFSM).
Chimera Error (%) CPU time CPU memory
X Average F’ Neells EFSM compared to EFSM ratio ratio
1 203120 100 147 % 0.97 0.97
2 202204 200 0.24 % 2.3 2.41
4 202180 400 0.43% 35 3.8

Table 3.2, where we report the ratios of the CPU times for the equivalent fine single grid to the CPU
time of the corresponding Chimera configuration when x varies. The ratios of the memory usage
for the equivalent fine single grid to the memory usage of the corresponding Chimera configuration
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Figure 3.6: Resulting pressure force over time for the second study cases (Ncells = 100, x = 1),
(Ncells = 200, x = 2) and (Ncells = 400, x = 4). The markers on the plots are not representative
of the number of points of the numerical solution.
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Figure 3.7: Resulting pressure force over time for the second study cases (Ncells = 100, x = 1),
(Ncells = 200, x = 2) and (Ncells = 400, x = 4) zoomed in the time interval [45,52.5]. The mark-
ers on the plots are not representative of the number of points of the numerical solution.

when x varies are also reported. When y = 1, the CPU time ratio is less than 1 expressing that the
Chimera method costs more than the single grid computation because of a higher number of grid cells,
interpolation and transfer of ghost cell solutions. However, compared to single mesh computations
with same grid resolutions, once we increase , equivalent results are obtained at a much lower cost,
mainly coming from the gain in the number of cells since the time step is equivalent because the grid
spacing is the same. Even though the present Chimera method is not intended for grid optimization,
the method allows significant gains in time and memory without impacting the resulting solution.
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3.1.3 - Shock standoff measurements

To have a better local insight in present results, we measure the detachment distance of the bow
shock wave in front of the cylinder. A sketch of the flow structure in front of the cylinder is proposed
in Figure 3.8, where the detachment distance (J) of the bow shock wave is defined. An analytical
measurement of the shock wave standoff distance has been proposed by Sinclair and Cui [159], which
provides § = 0.3649D at an upstream Mach number M., = 3.

Y

Figure 3.8: Geometric illustration of the flow structure in front of the cylinder.

From our results, we measured the detachment distance (9) along the horizontal axis of symmetry
(y = 0) as the first point encountered from infinity where the pressure rise exceeds 50 % of the
theoretical pressure jump across the shock wave. Detachment values (&) recorded on Chimera results
are reported in Table 3.3. The left side of the table refers to overlapping grids with similar cell
ratio (x = 1) while the right side relates on results obtained by increasing the cell ratio (x) while
maintaining the substrate resolution fixed and equivalent to Ncells = 100 resulting in the following
Chimera configurations: (Ncells = 100, x = 1), (Ncells = 200, x = 2) and (Ncells = 400,

x =4).

Table 3.3: Detachment distance of the bow shock wave in front of the cylinder: overlapping grids with
the proposed Chimera cases. On the left side, number of cells are increased keeping the cell ratio (y = 1)
constant. Ontheright side, cell ratio () is varied with a prescribed number of cells in the substrate model
(equivalent to Ncells = 100).

Overlapping grids with x = 1, and Ncells is varied: Substrate resolution fixed and x is varied (patch refined):

4 . ,
Ncells 6/D relative error E (%) w.r.t. analytical value - =y )/ §/D  relative error E (%) w.r.t. analytical value
50 0.433 18.66 1100 0.428 17.29
100 0.428 17.29
2 200 0.395 8.25

200 0.398 9.07 4 400 0.372 1.95
400 0.372 1.95 : :

Numerical values of § converge towards the analytical value 6 = 0.3649 [159] as grids are

progressively refined with a discrepancy close to 2% of the analytical value obtained for the finest
grid. It is important to underline that, compared to overlapping grids with equivalent cell ratio
(x = 1), same 0 values have been recorded by using a refined patch model keeping a rather coarse
substrate grid at a much smaller computational cost which is promising for target applications.
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3.2 - Interaction of a shock wave moving in air with a
bubble

3.2.1 - Presentation of the case

In order to assess the Chimera method with two-component flow interfaces, we have numerically
reproduced one of the emblematic experiments originally proposed by Haas and Sturtevant [75] and
more recently conducted by Layes et al. [106], where a shock wave moving at a Mach number
M, = 1.22 in Air interacts with a cylindrical bubble initially filled of Helium or chlorodifluoromethane
also known as R22. The interaction between the shock and the bubble is different depending on
the bubble composition as Helium is less dense than air while R22 is denser resulting on different
bubble deformation. The problem is modelled using the compressible version of the reduced five-
equation two-component flow model proposed by Allaire et al. [2] presented in section 1.1.1.B. The
initial configuration is depicted in Figure 3.9. The computational domain is defined as (z x y) €

B L,=17cm R
A T
E\TI
2 —
Il
= | Bubble
4 : A]l”
S
(O
g
= E "~ D=5cm
v :

L,=89cm

Figure 3.9: Shock wave / Bubble interaction: initial conditions taken from Layes et al. experiments [106]
and computational domain.

[0,170 x 1073] x [~44.5 x 1073,44.5 x 107%] m2. The initial center of the bubble, having an initial
diameter of D = 50 x 1073 m, is located at ; = 52.5 x 1073 m, and y, = 0 m. The shock wave
is initially positioned at 2, = 10 x 103 m and moves to the right towards the bubble with a Mach
number M, = 1.22. Flow is then initialized by using the Rankine-Hugoniot relationships, and the
corresponding initial conditions [28] on density, streamwise velocity, pressure, and heat capacity ratio
are:

(1.66kg.m=3, 114m.s~%, 159080 Pa, 1.4) in air, for z < z,
(1.2062kg.m ™3, 0, 101325 Pa, 1.4) in air, for z > x,
(pO,UO,pO,'Y) = -3 .. (31)
(0.2204kg.m~>, 0, 101325Pa, 1.6451) inside the He bubble,
(3.5965kg.m~3, 0, 101325 Pa, 1.1847) inside the R22 bubble.

Helium, R22 and air are all considered as perfect gases. Cartesian grids are employed in these
simulations. The arrangements for the overlapping grids is presented in Figure 3.10. In the followings,
meshes are dimensioned with the parameter Ncells that is the number of cells along the bubble
diameter (D). The patch model is a 6 x 1072 m side square grid, centered on the initial bubble
location, and deliberatly rotated at # = 45° (w.r.t. the horizontal axis) in order to stress the
geometrical intersections of the Chimera exchange. Let us note that the single grid configuration is
equivalent to the substrate model used in the Chimera case.
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Figure 3.10: Bubble shock test case numerical configuration.

Simulations are performed on both the single grid configuration and the overlapping grid case,
using a constant CFL number CFL = 0.4, over a dimensionless time of ¢} =t ug/D = 1.6, with
up = 114m.s~!. Three grids are considered with respectively Ncells = 50,100, and 200.

3.2.2 - Helium bubble-shock wave interaction

When the shock wave interacts with the Helium bubble, the bubble is severely deformed and
globally moves downstream as we can see in Figure 3.11 where the Helium volume fraction field is
plotted at two dimensionless times t* = 0.24, and t* = 1.6 for the single grid configuration with
Ncells = 200. As Helium is less dense than the surrounding Air, the bubble acts as a divergent
acoustic lens explaining deformations. In fact, as the gradient of pressure induced by the shock wave
is not always aligned with the gradient of density imposed by the Air/Helium interface, vorticity
is locally produced by baroclinic effect explaining the deformation and the interface coiling. This
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Y (m)0.00
-0.01
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0.00 0.02 0.04 0.06 O'(g?(m) 0.10 0.12 0.14 0.16

Figure 3.11: Helium volume fraction field obtained with a single grid configuration with Ncells = 200 at
two different dimensionless times t* = 0.24 and t* = 1.6.

present single mesh solution using the finest grid (Ncells = 200) fits experimental results from
[106]. This grid resolution allows the capture of anti-symmetrical vortices as well as oscillations of
the interface on the bubble front. Although vortices are locally produced by baroclinic effect, perfectly
anti-symmetrical vortices are produced since the integral of vorticity must stay to zero as no vorticity
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is present at the initial state. The present single grid simulation allows to account for this physical
aspect.

Regarding the Chimera configuration, let us notice that the bubble is only prescribed inside the
patch grid and so, does not initially exist in the substrate model. As the patch grid is kept fixed,
the bubble moves away from the patch to the substrate during simulations, and at the final time,
the bubble is completely located on the right hand side of the substrate mesh and is no longer inside
the patch. This allows us to study the robustness of the present Chimera method to deal with a
moving two-component interface through the external patch boundary where the local grid spacing
may change abruptly. That way, a particular attention will be devoted to examine the field of the
Helium volume fraction over time.

In a first step, we keep the ratio x = 1 while grids in both the patch and the substrate models
are refined using the three resolutions previously considered Ncells = 50,100, and 200. The Helium
volume fraction field is plotted, at a dimensionless time t* = 1.6, for both the single grid configuration
(see Fig. 3.12), and the overlapping grid configuration (see Fig. 3.13) with x = 1. Very good
agreement is achieved by the present Chimera method on overlapping grids with the same cell ratio
(x = 1), compared to the single grid configuration. The Chimera exchange does not alter the
shape of the bubble nor induces sensible perturbations but provides a better description of the bubble
curvature. This means that with the coarser grids (Ncells = 50 and 100), the Chimera impact is
minimal and on the finest grid (Ncells = 200), it helps capturing the bubble front. We can conclude
that the impact of the Chimera exchange on the two-component interface can help improving the
solution with a better fitted grid when y = 1, fulfilling our requirements.
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Figure 3.12: Helium volume fraction field obtained in the single mesh case at t* = 1.6, for a number of
cells along the bubble diameter of Ncells = 50 (on the left), 100 (in the middle), and 200 (on the right).

Secondly, we keep the number of grid cells (along the bubble diameter) Ncells = 50 constant in
the substrate model and increase the ratio x = 1,2,4, and 8, which respectively correspond to an
equivalent mesh refinement of Ncells = 50,100,200, and 400 in the patch model. We plot results
in Figure 3.14 obtained by using these refinements in the patch, at a dimensionless time t* = 1.6,
after the bubble has crossed the external patch boundary and is fully embedded in the substrate. By
using cell ratios greater than 1, we can see that the solution has been improved compared to the single
grid solution with the same resolution as the one used in the substrate (Ncells = 50). However,
although the higher the cell ratio () the better the quality of the final solution, the quality of the
solution is mainly impacted by the resolution used in the substrate, and it is obviously impossible and
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Figure 3.13: Helium volume fraction field obtained with the present Chimera method with overlapping
grids with the same cell ratio (y = 1) at t* = 1.6, for a number of cells along the bubble diameter of
Ncells = 50 (on the left), 100 (in the middle), and 200 (on the right).

irrelevant to recover the quality obtained with the equivalent grid refinement. What it is important
to note is that the use of high cell ratios does not introduce numerical artifact but on the contrary
improves the quality thanks to the increased grid resolution in the patch. Unlike what Part-Enander
and Sjogreen [133] observed, we show that refining a patch model in a overlapping grid strategy
improves the quality of the solution without any discernable numerical damage on the solution.
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Figure 3.14: Helium volume fraction field obtained with the present Chimera approach, at a dimension-
less time t* = 1.6, by using several cell ratios (x = 1, 2,4, 8).

3.2.3 - R22 bubble-shock wave interaction

Moving on to the R22 bubble, when the shock wave interacts with the R22 bubble, the latter
is severely deformed and globally moves downstream as we can see in Figure 3.15 where the R22
volume fraction field is plotted at two dimensionless times t* = 0.23, and t* = 2.28 for the single
grid configuration with Ncells = 200. As R22 is denser than the surrounding Air, the bubble acts
as a convergent acoustic lens explaining deformations. Like the Helium bubble, the gradient of
pressure induced by the shock is not always aligned with the gradient of density imposed by the
Air/R22 interface. Unlike the Helium bubble, the upstream interface of the R22 bubble remains
almost unaltered while the downstream interface presents a spike at the center of the downstream
interface. This shape is due to a reverted vorticity field compared to the Helium bubble. This present
single mesh solution using the finest grid (Ncells = 200) fits numerical results from [190]. This grid
resolution allows the capture of anti-symmetrical vortices as well as oscillations of the interface on
the bubble front.

Regarding the Chimera configuration, the patch grid is still kept fixed and the bubble moves away
from the patch to the substrate during simulations, and at the final time, the bubble is completely
located on the right hand side of the substrate mesh and is no longer inside the patch.
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Figure 3.15: R22 volume fraction field obtained with a single grid configuration with Ncells = 200 at
two different dimensionless times ¢t* = 0.23 and ¢t* = 2.28.

In a first step, we keep the ratio Y = 1 while grids in both the patch and the substrate models are
refined using the three resolutions previously considered Ncells = 50, 100, and 200. The R22 volume
fraction field is plotted, at a dimensionless time t* = 2.28, for both the single grid configuration (see
Fig. 3.16), and the overlapping grids (see Fig. 3.17) with x = 1. A good agreement is achieved by
the present Chimera method on overlapping grids with the same cell ratio (x = 1), compared to the
single grid configuration for Ncells = 50 and 100. The Chimera exchange does not alter the shape
of the bubble nor induces sensible perturbations but provides an equivalent description of the bubble
curvature. On the finest grid however, the Chimera transfer seems to alter the vorticity field quite
significantly with more described upstream bubble interface but generates a splitting of the bubble
tails. However, symmetry is preserved and although vortices are locally produced by baroclinic effect,
perfectly anti-symmetrical vortices are produced to preserve the integral of vorticity at zero.

With the coarser grids (Ncells = 50 and 100), the Chimera impact is minimal and on the finest
grid (Ncells = 200), the different grid configuration associated to the Chimera transfer alter the
shape of the bubble compared to the single grid solution as it induces additional vorticity.
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Figure 3.16: R22 volume fraction field obtained in the single mesh case at t* = 2.28, for a number of
cells along the bubble diameter of Ncells = 50 (on the left), 100 (in the middle), and 200 (on the right).
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Figure 3.17: R22 volume fraction field obtained with the present Chimera method with overlapping
grids with the same cell ratio (y = 1) at t* = 2.28, for a number of cells along the bubble diameter of
Ncells = 50 (on the left), 100 (in the middle), and 200 (on the right).

Secondly, we keep the number of grid cells (along the bubble diameter) Ncells = 50 constant in
the substrate model and increase the ratio x = 1,2,4, and 8, which respectively corresponds to an
equivalent mesh refinement of Ncells = 50,100,200, and 400 in the patch model. We plot results
in Figure 3.18 obtained by using these refinements in the patch, at a dimensionless time t* = 2.28
after the bubble has crossed the external patch boundary and is fully embedded in the substrate.
By using cell ratio greater than 1, we can see that the solution has been improved regarding the
complexity of the bubble shape compared to the single grid solution with the same resolution as the
one used in the substrate (Ncells = 50). As for the Helium bubble, the quality of the solution is
mainly impacted by the resolution used in the substrate, and it is obviously hard to recover the quality
obtained with the equivalent grid refinement. Nonetheless, the spike of the downstream interface
located along the x-axis is improved when using a refined patch.
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Figure 3.18: R22 volume fraction field obtained with the present Chimera approach, at a dimensionless
time t* = 2.28, by using several cell ratios (x = 1, 2,4, 8).

3.2.4 - Summary of the findings on the behavior of the Chimera
method with multicomponent flows

The shock wave interaction with an Helium/R22 bubble test case allowed us to assess the behvior
of the Chimera method when a multicomponent interface crosses the Chimera exchange zone. The
Helium bubble configuration has shown, that the Chimera method does not impact the solution when
x = 1 and even allows to use finer patches in order to improve the accuracy of the overall solution.
The R22 bubble case has shown that the impact of the Chimera exchange on the two-component
interface is minimal with coarse and medium grid but can induce additional vorticity on sensitive
cases with fine grids. Using finer patches does not notably alter the global solution while capturing
local key features of the flow like a spike.
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3.3 - Double Mach Reflection problem

3.3.1 - Presentation of the case

The last problem concerns the emblematic test case of the Double Mach Reflection (DMR)
originally proposed by Woodward and Colella [134] as a benchmark for assessing Euler codes that
contains vortical flows. The problem consists in a front shock wave that hits a 30 degree inclined
ramp. Going up the ramp, a self similar structure with two triple points develops. A sketch of the flow
structure is displayed in Figure 3.19. More detailed explanations of the flow structure can be found
in [134, |. It is a difficult test case, involving both strong shocks and multiple stems. This case
is thus relevant to assess the present Chimera method to deal with complex transient flow structures
where multiple shock waves and their interactions creating slip lines occur over time (see Fig. 3.19).
The idea here is to check the ability of the present method to account for multiple discontinuities
and their interactions to pass through the external patch boundary where a drastic change of grid
spacings can occur.

: incident shock wave

: primary Mach stem

: secondary Mach stem

: primary reflected shock wave

: secondary reflected shock wave
: primary slip line

: secondary slip line

: first triple point

: second triple point

4—4nw-~1=-33—

Figure 3.19: Sketch of the self-similar structure of the Double Mach Reflexion (DMR) problem

The numerical configuration of the single mesh case is shown in Figure 3.20a, where the 30° ramp
starts at 2; = 1/6 m with an overall computational domain length L, =4 m, and height L, =1 m.
The number of cells in the single mesh configuration is parametrized by Ncells which is the number
of cells in the height of the domain. Let us say that the single grid case uses 4Ncells x Ncells grid
points in the (x x y) directions. The shock wave is initially located at x5 = 1/10 m. Initial conditions
are defined with a driven shock wave moving at a high mach number Mg = 10 in Air (v = 1.4)
initially at rest. Thanks to the Rankine-Hugoniot relationships, initial conditions on primitive variables
are:

(p,u,v,p)o = (1.4kg.m~3,0,0,1Pa), 3.2)
(p,u,v,p)1 = (8kg.m3,8.25m.s~1,0,116.5Pa). '

As we know in such configuration, the driven shock wave (i, in Fig. 3.19) reflects on the wall of the
ramp leading to a diffracted bow shock wave (m') that stays ahead of the ramp. This interaction
also creates several Mach stems (m, m'). with reflected shock waves (r, r'), triple points (T, T')
and subsequent slip lines (s, s'). Issued from the contact discontinuity flow (s), a jet forms along the
wall, which is also very difficult to properly predict.
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Figure 3.20: Computational domains and initial conditions: configurations of the single mesh case (a),
and the Chimera case (b) displayed with a cell ratio x = 4.

Regarding the Chimera configuration as shown in the Figure 3.20b, the substrate is a standard
Cartesian H-grid (L, = 4m long and L, = 3m high) configured with the parameter Ncells in
order to respect the same grid resolution as the single mesh case. Let us notice that the substrate
comprises Ncells grid points over 1 meter. The patch uses the same geometry as the one of the
single grid configuration, that is however positioned so that the bottom surface coincides with that
of the substrate. The patch model can be refined using the parameter x measuring the cell ratio
between grid spacings from the substrate and the patch models. As we can see in Figure 3.20b, the
driven shock wave is initially located ahead of the patch grid, unlike the original test case of [134].
The dimension of the patch is then chosen so as to allow multiple strong shock waves and the related
triple points and slip lines to pass through the external boundary of the patch to study the robustness
of the present Chimera method when grid spacings abruptly change. Therefore, the patch extends
from 2 = 0.12 m to the end of the substrate, and is 1/4m high. This grid configuration has been
chosen in order to assess the impact of the proposed Chimera method on flow structures generated
inside the patch that cross the overlapping grid interface. The single mesh configuration has then
been adapted to be as close as possible to the Chimera configuration.

Simulations are performed on the overlapping grid configuration as well as the single mesh case
to allow validation. The Chimera configurations are based on the second order Chimera exchange
with the standard detection procedure. The CFL number is constant and equal to 0.4. At first, we
keep the cell ratio between the patch and the substrate at y = 1 and use Ncells = 160 grid points
over 1 meter. We consider the initial time ¢} ~ 8.081 - 1073 which is the dimensionless time needed
for the shock to go from zs = 0.1m to x = 1/6m. Results obtained at the dimensionless time
t* —t5 = 0.2 are plotted in Figure 3.21 where the Chimera case (black iso-contour lines) is compared
to the single grid configuration (red iso-contour lines). The patch boundary is materialized with the
dashed white line.
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3.3.2 - Comparison of the Chimera case with the single grid case
(x=1)
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Figure 3.21: Density contours obtained with the present Chimera approach (black iso-contour lines)
with the standard detection compared to the single mesh case (red iso-contour lines) at an equivalent
dimensionless time t* — ¢§ = 0.2 for Ncells = 160 and x = 1. 30 density contours from p = 1.4 to 21.4.
Dashed white line materializes the patch boundary.

Compared to the single grid configuration, a very good agreement is achieved by the present
Chimera method since Mach stems, reflected shock waves as well as slip lines are coincident. The
jet located at the end of the ramp is also similarly described with the Chimera method since it is
always located inside the patch. These results can also be compared to results from Stone et al.
[167] (Fig. 16) obtained using a second order accurate scheme in both time and space, that can be
taken as reference solutions. Concerning the Chimera case, few oscillations can be observed in the
substrate part that may result from solution transfers between overlapping grids that might interfere
with acoustic waves.

3.3.3 - Comparison of the Chimera case with the equivalent fine
single mesh (EFSM) for various values of x

Secondly, we check the influence of the cell ratio parameter () as well as the detection procedure.
The number of grid cells in the substrate is kept constant and equal to Ncells = 80 cells over 1 meter.
The cell ratio is varied using four values xy = 2,4, 8 and 16 which correspond to an equivalent single
mesh resolution respectively using Ncells = 160, 320, 640 and 1280 grid cells over 1 meter. Results
on the density contours (black iso-contour lines) obtained with the present Chimera method with the
standard detection procedure and the extended detection procedure are presented in Figure 3.22 for
x = 2, Figure 3.23 for x = 4, Figure 3.24 for x = 8, and Figure 3.25 for y = 16 compared to their
equivalent fine single grid solution (red iso-contour lines) obtained with respectively Ncells = 160,
320 and 640. The Chimera case with y = 16 is compared to the single grid case with Ncells = 640
which already gives a good representation of the numerical solution.

At moderate cell ratio values (x = 2,4), the overall comparison is very good, although oscilla-
tions present inside the substrate are slightly accentuated when the refinement increases but these
oscillations do not seem to interfere with what occurs in the patch. In contrast, flow patterns inside
the patch are better predicted as the cell ratio has been increased, mainly the jet that forms at the end
of the ramps that has an equivalent description to the equivalent fine single mesh solution. The jet is
better depicted with the extended procedure than the standard detection. However, when increasing
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the ratio to higher values like x = 8 (see Fig. 3.24) and x = 16 (see Fig. 3.25), the abrupt change in
grid spacing at the external boundary of the patch induces perturbations. As shear layers are likely to
develop instabilities, oscillations are mainly visible in the slip line that also alter the jet flow structure.
Nonetheless, the extended detection procedure tends to limit these oscillations maintaining a certain
level of quality of the solution.

vy |

14

(a) Standard detection, x = 2
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T2 14 Toy '8

(b) Extended detection, y = 2

Figure 3.22: Density contours obtained with the present Chimera approach (black iso-contour lines) by
using Ncells = 80 cells on the substrate and a cell ratio x = 2 on the patch, compared to the single
mesh case (red iso-contour lines) with Ncells = 160, at an equivalent dimensionless time t* — t} = 0.2.
30 density contours from p = 1.4 to 21.4. Standard detection procedure (a) compared to the extended
detection procedure (b).

In Table 3.4, we report the ratios of the CPU times for the equivalent fine single grid to the CPU
time of the corresponding Chimera configuration when x varies. The ratios of the memory usage
for the equivalent fine single grid to the memory usage of the corresponding Chimera configuration
when x varies are also reported. When x = 1, the CPU time ratio is lower than 1 expressing that the
Chimera method costs more compared to the single grid approach because of a higher number of grid
cells, interpolation procedures and the transfer of ghost cell solutions. However, once we increase
X, equivalent results are obtained at a much lower cost compared to single mesh computations with
equivalent grid resolutions. These gains mainly come from the smaller number of cells for the Chimera
configuration since the time step is equivalent between the fine single grid and the Chimera case with
a fine patch.
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Figure 3.23: Density contours obtained with the present Chimera approach (black iso-contour lines) by
using Ncells = 80 cells on the substrate and a cell ratio x = 4 on the patch, compared to the single
mesh case (red iso-contour lines) with Ncells = 320, at an equivalent dimensionless time t* — t} = 0.2.
30 density contours from p = 1.4 to 21.4. Standard detection procedure (a) compared to the extended
detection procedure (b).

Even though the present Chimera method is not intended to grid optimization, the method allows
significant gains in time and memory without impacting the resulting solution. When the cell ratio
is lower than 4, the gains in quality of the solution are worth the cost in CPU time as it remains
negligible compared to the equivalent single grid cost. Nevertheless, when strong waves pass through
the patch/substrate interface some numerical actifacts can be recorded when the value of the cell
ratio (x) is greater than 4 which imposes an abrupt grid spacing change.
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(a) Standard detection, x = 8

(b) Extended detection, x = 8

Figure 3.24: Density contours obtained with the present Chimera approach (black iso-contour lines) by
using Ncells = 80 cells on the substrate and a cell ratio x = 8 on the patch, compared to the single
mesh case (red iso-contour lines) with Ncells = 640, at an equivalent dimensionless time t* — t§ = 0.2.
30 density contours from p = 1.4 to 21.4. Standard detection procedure (a) compared to the extended
detection procedure (b).
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(a) Standard detection, y = 16

(b) Extended detection, y = 16

Figure 3.25: Density contours obtained with the present Chimera approach (black iso-contour lines) by
using Ncells = 80 cells on the substrate and a cell ratio x = 16 on the patch, compared to the single
mesh case (red iso-contour lines) with Ncells = 640, at an equivalent dimensionless time t* — t§ = 0.2.
30 density contours from p = 1.4 to 21.4. Standard detection procedure (a) compared to the extended
detection procedure (b).
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Table 3.4: Results obtained with the Chimera cases (Ncells = 80) for different values of y, compared
with their equivalent fine single mesh (EFSM) computations.

Equivalent Ncells on the patch CPU Time Ratio Memory

b% . )

for EFSM Ratio

(for comparison) Extended detection Standard detection
1 80 0.45 - 0.43
2 160 1.15 1.13 1.30
4 320 2.51 2.49 2.67
8 640 3.38 3.20 3.62

3.4 - Chapter conclusion

In this chapter, the second order Chimera method with the standard detection procedure has
been assessed on reference two-dimensional test cases.

A supersonic flow around a circular cylinder has shown that the proposed Chimera method allows
inclusion of a geometrical detail inside a global calculation. The Chimera method favorably affects
the final results compared to the single mesh case as it uses local grids more adapted to the solution.
Also, equivalent results are obtained at a much lower computational cost when high cell ratios in the
patch are employed because of the gain realized on the number of cells.

The interaction of a shock wave with an Helium/R22 bubble has demonstrated the ability of
the proposed Chimera method to account for multi-component flows where a shock wave interacts
with a two-fluid interface. We demonstrated that refining patch cells in an overlapping grid strategy
improves the quality of the solution without any discernable numerical damage on the solution on
the coarsest grids. When the flow involves a more sensitive vorticity field, the impact of the Chimera
method is visible but the method is still able to capture key details of the flow.

The Double Mach Reflection, showed that the proposed Chimera method, with reasonable cell
ratios (x < 4), improves the quality of the solution compared to a single grid computation, with useful
gains in the CPU time and memory usage. Last but not least, the extended detection procedure has
shown to be able to smooth oscillations caused by high cell ratios when the triple point and the
diffracted bow shock wave cross the Chimera interface, without a major impact on CPU time.

The validation of the method has been made on reference two-dimensional cases but the grid
intersections are already 3D compatible for industrial applications. Until now, we only studied the
ability of the present Chimera method to deal with fast transient dynamics with wave propagations
in compressible flows as well as contact discontinuities usually present in multi-component flows.
However, interactions of moving strong discontinuities with flexible structures often occur in accidental
configurations involving explosions. Therefore, if one wants to include geometrical details that could
influence the Fluid-Structure Interaction (FSI), we must extent the Chimera method to deal with
moving deformable structures which is the objective of the next chapter.
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In the previous chapter, we showed strong capabilities of the Chimera method to transfer informa-
tion over two separated domains. In large scale transient computations, one must take into account
local interactions between the fluid and structural components. In the case of accidental situations,
deformable structural parts can undergo large displacements at the local scale generated by local scale
flow phenomena. In this context, having an overlapping grid method like the developped Chimera
method compatible with immersed boundary methods like the Mediating Body Method [92] can help
composing a large scale model with local additions of structural parts and adapted local grids. In
this chapter, we extend the presented Chimera method in order to work with the Mediating Body
Method presented in [92]. The resulting method is referred as Chimera-Mediating Body Method
(Chimera-MBM) and is assessed using one-dimensional and three-dimensional test cases.
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4.1 - Governing equations, discretization and integra-
tion of the problem

As the hypothesis on the flow in the fluid-structure interaction framework remain the same as
in the fluid only problems, the equation model for the fluid has been given in chapter 1. The same
notations are kept in the following.

4.1.1 - Structural system of equations

We consider an isentropic thin wall structure of a thickness i that is immersed in a fluid 7. The
structure occupies a moving open set 7, C 7. The evolution of the structure is given by the following
equilibrium equation, written in local form:

P @1
where p; is the density of the structure material, u is the displacement of the structure, 1 its velocity,
g is the Cauchy stress tensor and f is the density of body forces.

The equilibrium equation is completed by nonlinear constitutive equations. In this work, we
assume the structure undergoing finite displacements to be elastic using the Saint Venant-Kirchhoff

model [24]. The second Piola-Kirchhoff stress tensor S is given by:
S=C:E, 4.2)

where C is the fourth order stiffness tensor and E is the Green-Lagrangian strain given by,

1
E= B [(yig)t + (Vxu) + (ZXE)t . (yxu)}; (4.3)
with V xu, the material displacement gradient tensor.
The Cauchy stress tensor (o) can be expressed using the second Piola-Kirchhoff stress tensor (.5)

as:
o=J"GSG", (4.4)

where G is the material deformation gradient tensor and J its determinant (see [77] for additional
details).

Remark. The finite displacement elastic model is a hypothesis from this work but other nonlinear
constitutive laws such as plasticity models could have been used with the developped method.

The structure mid-surface is denoted I's and corresponds to the mediane plane of the structure.
The structure being thin, its outer boundary is assimilated to its mid-surface (I's) and the structure
is considered as a nonlinear geometrically exact shell [158, 194]. Therefore, the structure is modelled
as a curved plane (2D), corresponding to its mid-surface (I's), with a virtual thickness k. This curved
plane can undergo finite displacements and elastic deformations in a three-dimensional space.

4.1.2 - Coupling conditions

The Rankine-Hugoniot conditions are applied at the inviscid fluid-structure interface in the di-
rection normal to this interface. The first coupling condition ensures equality betwen the velocity of
the flow (u) normal to the structure (I';) and the normal velocity of the structure denoted 1 - nr,
where np_ is the unit normal to the structure (I';). The second coupling condition ensures equality
between the pressure exerted by the flow on the structure and the resulting structure stresses. The

set of conditions writes:
1—u) n =0,
On T, (i~ u) - o (4.5)
(¢ —ply) -npr, =0.
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4.1.3 - Structure discretization : the finite element method

A Lagrangian unstructured conformal mesh S of the mid-surface (T';) is constructed using 4-node
quadrilateral elements. We denote by Qs the number of cells of the set S. The element indexed
1 of this mesh is written C;. The structure equilibrium presented in equation 4.1, is treated using
MITC4 shell finite elements [49] (Mixed Interpolation of Tensorial Components). The finite element
discretization of the equation 4.1 leads to :

MU = Fex + Fy + Fiui, (4.6)

where M is the mass matrix of the global system. U and U are respectively the vector of generalized
displac;nents of the finite element system and the acceleration vector. Fi, is the vector of nonlinear
internal forces computed according to [49]. Fuy is the force vector due to the other external forces
applied to the structure and F is the force vector exerted by the fluid on the structure. The global

system vectors contain known quantities at the nodes of the structure grid (S).

4.1.4 - Explicit time integration of the structure

Like for the fluid, the structure equation set is integrated using an explicit time integration scheme.
The fluid is integrated using the second order MUSCL-Hancock integration scheme [170] whereas
the structure equation 4.1 is integrated using a central difference scheme:

B>

ln

gl . .
Explicit velocity predition at half time step: Hn+2 =U"+ Tﬂn,
gL
Explicit displacement predition: yntt =U"+ AthM_Q, (4.7)
. . 1 At -
Implicit velocity correction: QnH = Qn+2 + THQM—I,

where indices n and n + % indicate time step increments and At,, is the variable time step. The
time step is the same for the fluid and the structure. It is defined as:

At, = min(AtY, AtV At5), (4.8)

where AtY and At)Y are the stability time steps of the patch and the substrate model at the n-th
time step while AtS is the critical time step of the structure model. The critical time steps for the
fluid are defined by the CFL condition given in equation 1.20. The structure stability condition for
the time step writes:

h.
AtS < miniegs—l, (4.9)
cs
where cg is the maximum speed of sound of the structure computed as follows:
)
cs =4[ —, (4.10)
Ps

with E the Young modulus of the structure.
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4.2 - Discretization of the coupling conditions: the
Chimera Mediating Body Method (Chimera-MBM)

The coupling procedure proposed in this work is based on a mediating entity between the fluid
and the structure discrete models [92]. The main objective of our work is to combine the previously
developped finite-volume Chimera method with the Mediating Body Method (MBM).

In this section, we first present the Mediating Body Method with a single fluid grid &/ € T as
in [92] from the construction of the mediating entity to the time integration scheme. Then we detail
the improvements that have been applied in order to couple the Mediating Body Method with the
second order developped Chimera method. A new time integration scheme is presented to make the
MBM compatible with overlapping grids.

4.2.1 - Presentation of the Mediating Body Method

In the Mediating Body Method (MBM), the coupling is based on the construction of a mediating
entity between the fluid and the structure discrete models. This mediating entity is called the
mediating body in the following. For the time integration, a staggered scheme is used. At each time
step, the structure imposes its normal velocity to the fluid (through the mediating body), fulfilling the
first condition in equation 4.5 whereas the fluid imposes the normal flux momentum (also through the
mediating body), fulfilling the second condition in equation 4.5. A simplified version of the coupling
algorithm is illustrated in Figure 4.1.

.. . Structure (4) Structure update . .
Un, Un, Uy, > U1 Uni1s U
(1) Computation of the velocities (3) Computation of the forces
Coupling vu prescribed by the U due to the fluid
' - ~Ts ' = the struct
structure S to the fluid U on the structure
(see 4.2.1 §B) (see 4.2.1 §C)
{pm Ups pn} > {,0n+1, Upi1s pn—H}
Fluid (2) Computation of the fluxes

at the fluid/mediating-body
interfaces and fluid update
using prescribed velocities
(see 4.2.1 §D)

Figure 4.1: Simplified flow chart of the coupling algorithm.

A . Construction of the mediating body

The mediating body is made of fluid cells intersected by the structure. It occupies a volume which
approximates the geometry of the structure midsurface (I's). The mediating body volume is defined
as the union of all the cells of the fluid (1{) intersected by the struture cells (S) (see Fig. 4.2). The
mediating body cell set is denoted :

Ur, = {K; €U, K;NS # 0} 4.11)
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If the structure undergoes large displacement, the set of fluid cells composing the mediating body
changes over time and needs to be indexed by the time step n, which writes U . However, for the
sake of brievety, the time step reference is willingly omitted refering to an arbitrary time step.

Structure S Fluid U Structure S Fluid U

7 7
i i

e N

|:| : Mediating body Ur,

Figure 4.2: mediating body construction for a single grid.

For the i-th cell K; of the mediating body (Ur,), an averaged normal pseudo-projection operator

to the structure written llf{, is computed:
Irs,
- :fKiﬂSﬂFa‘@ﬂFs da (4.12)
=Ts;, ’Kl N S‘ ’ '

with np the unit normal to I's.
The normal pseudo-projection operator (glfs
i
depend on an arbirary choice of the normal for non-manifold structures (see [92] for additional
details). In the following, the set of fluid cells, which do not belong to the mediating body is called

active fluid and is denoted:

) is averaged instead of the normal itself not to

U, = {KZ ceU,K; €Z/{FS} (4.13)

With the Mediating Body Method, only the cells in the active fluid (i) contribute to the fluid
calculation.

Remark. for the sake of clarity, the figures represent two-dimensional fluid meshes. However, the
method is designed for three-dimensional unstructured meshes.

Remark. At a given time step, values of the state vector of the cells composing the mediating body
cannot be used as they are bypassed by the fluid computation functions. The values inside the me-
diating body cells are not used at all. The Riemann problems at the interface of the mediating body
are detailed in [92].

B . Velocity exchanges

In the Mediating Body Method, the structure imposes at each time steps its normal velocity to the
fluid through the mediating body. Each face Fij shared by the cells K; € Ur; and K; € U, ie,
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at the interface between the active fluid ({/) and the mediating body (Ur,), is partially treated as
a moving wall boundary condition for the active fluid. An averaged normal velocity of the structure
inside the cell K denoted uf'_ is computed:

j

u ijﬁS (Q'ﬂps)ﬂps dz
Up, = 3
S5 ’Kj ﬂS’

with |K; N S| the surface of the intersection between K; and S as illustrated in Figure 4.3.

Structure S

Fluid U /-

K,NSA

A

(4.14)

K;

e

: Substrate mediating body Ur

Figure 4.3: Fluid cell intersection with the structure.

he vector V¥ denotes the vector in which the {u“ }
LA Ur, .
Jj ) Kj€Ur;

finite element shape functions such that 1 = N,(z) - U, and Xx"(z) the matrix such that,

are stacked, Ny(z) the matrix of

uf,
Ug) V¥ = —T _if K.. 4.1
X" (z) - V¥, ’ijS’,lge ] (4.15)

As a more generalized expression, one can write
t .
v, = | [t o) ae] G
= MY - U. (4.16)

The integrand of 4.16 is polynomial only on the intersections ‘713’ =C,NK;, C; €S8, Kj € Ur,
(surfaces in 3D, segments in 2D). Then, in order to use standard Gauss quadratures, the integral is
computed in the following way:

t
(i b TH A0} 7

Remark. For a 3D problem, the matrix x“(x) writes:

=

u _ X1(x) xa(z) x3(x)
() = [KlﬁS:S’ Konsh K3ﬂ8§7m]’ (4.18)

where I3 is the 3 x 3 identity matrix and x; the indicator function of the cell K}, i.e.

1 ifzeK;
Xi(z) = o (4.19)
0 elsewhere.

114



4.2. DISCRETIZATION OF THE COUPLING CONDITIONS: THE CHIMERA-MBM

C . Momentum exchanges

At each time step, the fluid imposes a flux momentum to the structure though the mediating body
(Ur,). Each mediating body cell K; € Ur,, gathers the momentum flow rates passing through its
faces shared with the active fluid (U,). Then, it applies the normal component of this flux to the
structure on the section of S that it intersects. This way, the second equation of 4.5 is fulfilled.

In the following, the momentum (pu) is written g for the sake of clarity in the equations. The
gathered momentum flow rate between the times t and ¢ + At for the cell K; € Ur, of the substrate
mediating body writes :

o= > (4.20)

where szjq is the momentum flow rate at the face 7. The gathered momentum flow rate is projected
onto the unit normal to I's, denoted nr_, and turned into a force density f applied to the structure,

(@?q ) EFS)@FS

f4= %NS ,on K;NS,

j

= (np, ®np,)x" - 2, (4.21)
where ®* is a vector in which the {@’f'}KEL{F are stacked and x¥(z), is the matrix such that,
J S ja
g1

X(z) @ = g feek (4.22)
= j

This force density is then multiplied by the finite element shape function of the structure discrete
model, integrated over the surface S,

EL{: %t.fudx’
= =

t u
> [, g
{i} 740" 7

(/Nst(”rs ®EFS)XM dﬂ?) U
o == S

= MY v, (4.23)

D . Computations at the mediating body/active fluid interface

In this paragraph, we focus on a face .7-";; = .7-']“1 K; € Ur,, K; € U,. Between the times ¢ and
t+ At, F}; acts as a boundary condition for the active fluid domain (/.). We consider the normal
n;; of the face F; belonging to the cell K; € Ur,. If n;; is parallel to the local averaged normal
to the thin structure, the interface is impermeable and the fluid cannot cross it. If these vectors are
perpendicular, this interface is permeable and the flow is not affected by the structure.

D.1 - Virtual remeshing of the face

We apply the averaged normal pseudo-projection operator 4.12 to the normal n;; of the face F;

. . R . .
inside the cell K;. As shown in [92], HEF%’ n|| is zero if np_ is orthogonal to the constant vector n;;

everywhere within the cell K. If the value of ||z}t ni%|| is smaller than a given tolerance € (10712
I,
J
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)

the structure denoted nf‘ is defined as follows:
ij

for instance), the treatment of the face 7% is fully permeable. Otherwise, a unit normal vector to

(4.24)

Figure 4.4: Example of virtual remeshing of a two-dimensional face.

In this case, the face ]-';l; is virtually remeshed into two parts, shown in Figure 4.4:

* The first part of the face is denoted 7! and acts as a moving wall in the direction nf .~ (red
ij ij
in Fig. 4.4). Geometrically, 7!  is the orthogonal projection of F}% onto the plane defined by
*ij
the normal n'. and containing the center of the face Fii. The area of F{  is defined as:
ij iJ
FH, = (0175, (4.25)
where | 71| is the area of F1.

* The second part is denoted f“, and acts as a set of permeable faces orthogonal to nf_
Sij
(green in Fig. 4.4). The geometrlcal support of .7-“j{z,j is the set of lateral faces of the crossed

truncated prism whose bases are ffij and Ff .

ij

Figure 4.5 illustrates the virtual remeshing for two-dimensional simple meshes. Denoting {L% }

the set of lateral faces and {n%.} their unit normal vectors, the divergence theorem applied to the
crossed truncated prism gives:

Pty = > 168 nih, = | gl — | Ik (4.26)
{£h

116



4.2. DISCRETIZATION OF THE COUPLING CONDITIONS: THE CHIMERA-MBM

Structure S Structure S
) \\\\ / b, ///f_ -\_\\\ N
o r
T/ \NEED
// / N 1 N
/ 7 \;\ N7 //
Fluid mesh U Fluid mesh U

Figure 4.5: Examples of virtual remeshing of the faces at the interface between the active fluid (¢.)
and the mediating body (Ur,), whose cells are represented in yellow shade, for two-dimensional sim-
ple meshes. The permeable interfaces are represented by thin green lines while the moving walls are
represented by thin red lines.

D.2 - Flux computation

In the following, we consider that the fluid domain is solved using the second order MUSCL
reconstruction detailed in section 1.2.4. The interface states are reconstructed based on the primitive
variables WY, U = {W,V}. We note the interface states resulting from the reconstruction at the
face }'Z WZ/WJMZ and the corresponding conservative states QZ/E;/{Z As the fluid time integration
uses a second order MUSCL-Hancock integration, the Riemann problems are solved using half time

. By R . . . .
step interface states U,;; /U (see section 1.2.5). In the following the time step reference is
willingly omitted for clarity as the states used in the flux computation are unequivocal.

Remark. All the flux computations presented in section 4.2.1 D.2 are performed during the fourth
step of the MUSCL-Hancock method (see section 1.2.5). The objective is to overload the HLLC flux
fonction presented in section 1.2.3 at the mediating body interface.

U U : : : U U U
The part ]:Fsij of the face 7% acts as a moving wall translating at velocity Usi; = Qst ﬂr‘sij in
the direction nf' . This boundary condition is enforced using a virtual cell technique. We consider
ij
: . = . ~u
the Riemann problem between the interface state Q?j and the virtual state Uj;in the local frame of

the face .T-Z

EZ-, ifn-nf. <0
U= ~u .. "7 (4.27)
- Uji, ifn-nf >0,
ij
“P1 (@)
74| u o u uu =ij | u o u o u =ij _ ~u
where U;; = Pij> 455> PijCij T 20 CUj = Pij> 4550 Pigeiz + 20 : g’{j = (PE)% and % =
¢ —2(q¢" -nf. — ptadll Inft. . The flux related to this Riemann problem on the characteristic
=ij =] Sij A MY

line /t = ( is denoted gZR(()
The remainder of the face 7 (]:i‘”) acts as a permeable interface with an area ]]—"fij| and a

unit normal vector Qﬁflj defined as in equation 4.26. On ]-“fjij, the flux is simply the flux related to

the reconstructed state QZ
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Finally, the flux at the face F7% is given by:

FYIE (T Ui = @5(0) = | FE |2 () it o+ [P |EWTS) - o (4.28)

where E(QZ) is the flux related to the interface state QZ

Note that conservation is lost at the faces ]—'ffij as the fluid contribution is not transmitted to
the fluid nor the structure. The impact of this loss of conservation is negligible and does not affect
significantly the accuracy of the solution according to the numerical experiments in [92].

Additional treatments at the mediating body/active fluid interface are detailed in [92] and provide

values for the Riemann solver parameter ¢ depending on the structure displacements:

* First, in order to prevent the MBM from generating motion in the case of a structure at rest,
immersed in a still fluid, a corrective pressure term is added during the computation of the

momentum flow rate @I{jq at the face F; from the transmitted flux U ().
=ij ij

* Finally, an ALE emulation is developed in order to take into account small displacements
of the structure that does not involves changes in the mediating body definition during the
computations of the fluxes.

These treatments are not detailed in this work for the sake of clarity as they do not impact the
coupling between the Chimera method and the Mediating Body Method.

E . Large structure displacement: handling of the indefinite active cells

When the structure undergoes large displacements, the mediating body set (Ur,) changes. Therefore,
some cells belonging to the mediating body at the time step n — 1 become part of the active fluid
at time step n. At t = t™, we call these cells indefinite active cells and their set is denoted U, indet,
omitting the time step reference:

U, indet = U:mdef = {KZ c UF;l, K, € Z/{f}, (4.29)

where the exponents n and n — 1 refer to time steps.

Figure 4.6 provides an illustration of the indefinite active cells. At a given time t", before any
flux computations, a state vector must be attributed to these indefinite cells. For a given indefinite
active cell K; € U, naer, an extrapolated state is computed using the definite cells adjacent to it which
contain a valid solution. To do so, we define for each cell K; € U, inaer another set of cells £ defined
as:

£ ={K;,j € (i), K; ¢ Uynacr }. (4.30)

Then, the indefinite active cell K; is attributed the extrapolated state:

> KUY

JEQ U
Ul = —————. (4.31)
> 1K
JEQ U

It can occur, as in Figure 4.6, that the set £ is empty. In this case, the indefinite cells are attributed
a state in successive passes until all the indefinite cells are attributed a state: the indefinite cells, for
which LY is not empty, are attributed a state and removed from the list of indefinite cells. Then a
new attribution pass is done and so forth until all the indefinite cells requiring an extrapolation are
attributed a state.
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. Indefinite active cells U, inder

. Mediating body cells Urg

Figure 4.6: Indefinite active cells in grey shade

F . Time integration scheme for the MBM

A staggered time integration scheme is used in the MBM with a single fluid grid:

regarding the

fluid-structure coupling, at each time step, the structure imposes its velocity to the fluid interface
and the fluid exerts a force on the structure. This detailed scheme is depicted in Figure 4.7.

7 : : @ 1
~ QZ QnJrl = Hn 1 —|—At7,U n A
Structure > _U 4 AL .
, + tn U, ”+1 . n+%
U,
= n+1
. Ui
Indefinite active cells Mediating }.)()(LV
extrapolation @ construction
MU = Fox + Fy + Fine
Computations of the moving
("1( 30 )1 ] no wall boundary condition
U U
- ] o) Uy = U s; ny sij Ef
Computation of ,m(\ Computation of the
f‘!nxvs at t:h(‘; active force from the fluid to
fluid / mediating body the structure
interface — - v
1 t
n+3
| @ un+1
4 1 | = s n —u"T2
Fluid 1=,|7; ‘ Z FUIET ) U z Fe(m T ) L

Figure 4.7: Time integration scheme for the Mediating Body Method with a MUSCL-Hancock integration
for the fluid and a central difference scheme for the structure.

At a given discrete time t™, every quantity on every grid is known and indexed by its time step

n. In order to advance from t” to t"*! the following steps are done:

i1 1 . . L
1. The structure velocity U""2 at ¢"*2 and its position U™t at t"T1 are computed explicitly
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from its acceleration U™ at ¢ using the central difference scheme presented in section 4.1.4.

. The mediating body L{Fjl is computed using the structure position U"*! following the pro-
cedure described in section 4.2.1.A. If needed, the indefinite active cells are extrapolated as
detailed in section 4.2.1.E.

. The velocities at the interfaces of the mediating body are computed from the structure velocity
. 1
U"™*2 following the procedure described in section 4.2.1.B.

. The fluid interface states El;: (i,7) € Qu, x 7(i), are reconstructed and updated by half a
time step % using the first two steps of the MUSCL-Hancock time integration i.e. the steps
1 and 2 presented in section 1.2.5.

. . . . nt+3
. The fluid variables U*" are updated to the time t"*! from the interface states U ° using

the fluxes presented in section 4.2.1.D.2, the HLLC solver presented in section 1.2.3 and the
ALE emulation detailed in [92].

. The force vector I imposed by the fluid to the structure is computed from the flux momentum
of the fluid problem between ¢" and t"*! following the procedure detailed in section 4.2.1.C.

. Finally, the structure acceleration U*! is computed using the finite element equilibrium equa-
tion presented in section 4.1.3 (see equation 4.6).
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4.2.2 - Coupling of the Mediating Body Method with the Chimera
method: the Chimera-MBM

The MBM has been presented for a unique fluid grid &4 C 7. We now consider, a set of two
overlapping grids: a global grid referred as the substrate denoted W C T and a local superimposed
grid referred as patch denoted V), fully immersed inside the substrate. In this section, we detail
the numerical strategy that we have developped to couple the presented MBM and the developped
Chimera method. Therefore, we use the notations and the terminology introduced in section 2 and
in section 4.2.1.

At each time step, the structure imposes its normal velocity to the fluid through the mediating
body whereas the fluid imposes the normal flux momentum also through the mediating body. Simul-
taneously, the sending cells {W* V*} and ghost cells {17\7, V1 of both the patch and the substrate
exchange information in order to ensure up-to-date fluid information across the grids.

To present the coupling of the MBM with the Chimera method, we detail the aspects of the MBM
that are modified by the presence of overlapping grids starting from the mediating body construction.

A . Construction of the mediating body in an overlapping grid framework

With overlapping grids, the construction of the mediating body is distributed between the patch grid
(V) and the substrate grid (W) as seen in Figure 4.8.

Structure S Substrate W

O3
<

A\
KT
Y%

S 2§< 1 SaaV)N
LXK AKX ||,
S Q< >§2 " Ve Patch V
X\\ y, >§>\ //X
AV L2 7
RUXIN
A X " - X
I3/ X
x|+ Patch ghost cell V . Patch mediating body (Vry)
e | . Substrate ghost cell W : Substrate mediating body (Wr,)

L] NLEN‘%;

Figure 4.8: Mediating body construction with an overlapping grid configuration.

In order to surround the structure and to avoid redundancy in the overlapped regions, the priority
is given to the patch grid which means that the mediating body will be constructed using patch cells
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in priority before using substrate cells while minimizing overlapped cells in the mediating body. To
do so, we recall the following set of cells : V. =V \ V and W, = W\ W,, where

Wy ={Kii€Qw/ > |KNKj|=|Ki}. (4.32)
JEQY,

V, corresponds to the set of cells of the patch V deprived of its ghost cells V also called cleaned
patch and W, corresponds to the set of cells of the substrate deprived of its cells fully covered by
the cleaned patch W,. W, is called cleaned substrate. These different sets of cells are represented
in Figure 4.9. It is worth noting that YW C W,, and therefore, W, does not contain any substrate
ghost cell. If W and V are non-matching grids, V. U W, covers the entirety of the fluid domain T
with minimized overlapped regions.

We also define the set of cells WZVGC =W.U W which comprises the cleaned substrate cells
(W,) with the addition of the substrate ghost cells (W). W¥CC is referred as cleaned substrate with
ghost cells. The definition of an equivalent set for the patch is not relevant as V., U V=V.

Substrate W

HERLS >+ Patch V
llllll X : Patch ghost cell (V) . Cleaned patch cell (V,)
° © Substrate ghost cell (W) . Cleaned substrate cell (W,)

Figure 4.9: Cleaned patch (V,) and cleaned substrate (W,) sets of cells.

The structure cell set S, is intersected with the cleaned patch in order to define the following set
of cells:
Sy = {CZ,Z € Qg, |CZ N VC’ = ‘CZ‘} (4.33)

Sy corresponds to the structure cells that are fully included inside the cleaned patch (V.). We note
Ns = {NZ’}Z’GQNS, the node set of the structure grid (S). For each element C;,i € Qg, we note
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N (i) = {Nj}jeqy, its node set. From Sy, we extract the nodes composing each cell avoiding
duplications:
N¥ ={Nj,j € Qi € sy} (4.34)

which corresponds to the nodes of the structure S located inside the cleaned patch (V.).

The mediating body cell set, denoted Mr,, is defined as the union of all the cells of the fluid
from the patch grid (V) and cleaned substrated grid with ghost cells (WY¥G€) intersected by the
struture cell set (S) as represented in Figure 4.8. The set of these intersected cells can be seen as
the union of two seperate mediating bodies written Wr_ and Vr:

MFS = VFS U WFS (4.35)
= {K; e WCC K;NS 40} U{K, e V,K; NS #0}. (4.36)

If the structure undergoes large displacements, the set of fluid cells composing the mediating
body Mr, changes over time and needs to be indexed by the time step n, referred as M{. . For the
sake of clarity, the time step reference is willingly omitted corresponding to an arbitrary time step.

As the mediating body for overlapping grids (Mr,) is composed of two distincts mediating bodies
namely Vr, and Wr,, the single grid MBM is applied independently to both entities. For each cell
K; € Vr, and KJ, € Wry, with (4,7) € Qy.. x Q. , averaged normal pseudo-projection operators
to the structure denoted EF and g?’ are computed according to equation 4.12. Also the active

761’ —L S,

fluid cell sets V. and W, are defined using equation 4.13.

B . Impact of overlapping grids on the Mediating Body Method numerical func-
tions

As the mediating bodies Vi, and Wr, are independent cell sets, the coupling conditions 4.5 are
applied independently. Starting with the first coupling condition, velocity exchanges for the fluid
moving wall boundary condition are treated with structure velocity vectors V¥, V" computed for
each grid using equation 4.16. Similarly, the operators x*”, x" are computed using equation 4.15
and the operators MY, MY’ are computed using equation 4.17.

For the second coupling condition, the quantities ®** and F” are computed for the patch us-
ing equation 4.20 and equation 4.23. Similarly the quantities ®"* and F"Y are computed for the
substrate. Then the two force vectors F*Y and FV are summed up with an overlapping ponderation
matrix to form the finite element force vector oy exerted by the fluid to the structure,

Fy=P-F" +(Iny,, — P)- EY, (4.37)

where I, . is the Nqor X Ngof identity matrix with Ngof = s x k, the number of degrees of freedom

of the structural system and & the number of unknown per node. P is a diagonal matrix defined as:

PO - 0 b 0 0
0 P . , :

r=|= = . where P, = 0 Pi2 : (4.38)
: . .. Q T : e . 0

and p;; = 1, if the i-th node of the structure S denoted N; € NY, 0 otherwise, (i, j) € Qs x k.

Remark. As illustrated in Figure 4.10, this approach can lead to an underestimation of the fluid
force exherted on the structural elements partially immersed inside the patch V. The mediating
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body definitons of Vr, and Wr, respectively include the ghost cell sets Y and W. The fluid pressure
force is integrated over the intersections between the structure and the mediating bodies. On the
structural elements straddling the patch V and the cleaned substrate with ghost cells W¥ GC the fluid
integration is performed for the patch mediating body Vr, as well as for the substrate mediating body
Wr,. Then the ponderation matrix P prevents redundancy by favorising the nodes fully included
inside the cleaned patch V. using the node set Sy.

If a structural element C;, i € Q) protrudes from the cleaned patch V. but is stillimmersed inside the
patchV, the value inside the ghost cells V ensures a fluid force integration over the entire element C;.
However, if the element C; protrudes from the patch V (see Figure 4.10), the fluid force integration
is partially carried out over the element C; as it is not completely immersed inside the patch fluid
domain. As a result, the fluid force F¥ can be underestimated if the structural cell characteristic size
h; is much higher the characteristic cell size of the patch hy (h; > hY).

If kac = n, it is recommended to use h; < nhY to ensure that the fluid force is integrated on
the entire element C;. This underestimation can also happen favorising nodes fully included inside
the cleaned substrate with ghost cells W' GC qgs seen in Figure 4.10. In this case, if kac = n, it is
recommended to use h; < nh"” to ensure that the fluid force is integrated on the entire element C;.

Underestimated computed fluid force

applied to C; from the substrate

C; N WYece

Structure &

V

Underestimated computed fluid force

o applied to C; from the patch
: Ghost cell V/W

D : Mediating body Vrs/Wr

L :Nie./\@)

o o N\ANY
Figure 4.10: Underestimation of the fluid forces computed using the mediating bodies Wr, and Vr,.

Regarding the conservation improvements, the ALE emulation is performed like for the single

grid MBM (see [92]) as the value inside the ghost cell sets W and V is supposed to be valid at

the beginning of each time iteration. Finally, the indefinite resolved cell sets V,indet and W, indet are
defined by equation 4.29 without any change coming from the overlapping grids.
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C . Impact of the Mediating Body Method on the Chimera method

In the following, we focus on a patch (V) for the sake of simplicity. The Chimera method involves
two categories of cells: the ghost cells (V) and the sending cells (V*). On the other hand, the MBM
involves two main categories of cells: the mediating body cells (Vr,) and the active fluid cells (V).
As the Chimera method and the MBM coexist in the overlapping grid context, a patch cell can be
simultaneously a ghost cell for the Chimera method and an active cell for the MBM.

Four types of cells are reviewed in order to idenfify potential conflicts between the MBM and the

Chimera method. These cell type combinations are summarized in Table 4.1:

* Ghost cell and mediating body cell: A ghost cell receives information at the beginning of
every iteration to ensure a valid flux at its interfaces. A mediating body cell is used to compute
particular fluxes at its interfaces resulting from the structure displacements and not depending
on the mediating body cell solution. In the case of a ghost cell that is also a mediating body
cell, the ghost cell does not need to receive information as the value inside a mediating body
cell does not matter. This type of cell is referred as indefinite ghost cell and is reviewed later
on.

* Ghost cell and active cell: A ghost cell that is also an active cell does not impact the
Chimera method as the value inside the active cell will be overwritten by the Chimera method.
Therefore, an active cell that is also a ghost cell is referred as ghost cell because the behavior
of the ghost cell remains unaltered compared to the standard Chimera method (without the
MBM).

* Sending cell and mediating body cell: The solution inside a mediating body cell is not
physically valid and cannot be used for a sending cell. Therefore, a sending cell that is also
a mediating body cell cannot send any information which impact the Chimera method. This
type of cell is referred as indefinite sending cell and a strategy to reconstruct a solution inside
this type of cell is detailed in the next section.

+ Sending cell and active cell: The solution of an active cell is computed by the numerical
scheme (MUSCL-Hancock in our case). The resulting solution is physically valid and can be
used for a sending cell. Therefore, a sending cell that is also an active cell does not cause any
problem for the Chimera method. This type of cell is referred as valid cell.

Table 4.1: Cell type combinations for the coupling of the Chimera method with the MBM.

K, eV Ghost cell (V) Sending cell (V)
Mediating body cell (Vr,) Indefinite ghost cell Indefinite sending cell
Active cell (V..) Ghost cell Valid cell

Among the identified types of cells, only two require a particular attention: the indefinite sending
cells and the indefinite ghost cells. The first one requires a numerical strategy to recover a usable
solution that can be sent to the other grid through the Chimera method. The second type of cell
needs to be considered in order to assess the impact of the Mediating Body Method on ghost cells.
The two types of cells are represented in Figure 4.11.
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Structure S

+ Ghost cell V/W . Indefinite ghost cell Vy,/ Wr,

: Mediating body Vrg/Wr : Indefinite sending cell V¢ / WE_

Figure 4.11: Indefinite sending cells and indefinite ghost cells when using the Mediating Body Method
combined with the Chimera method with a number of ghost cell layers kg = 1 and a Chimera cell ratio

X = 2.

C.1 - Handling of indefinite sending cells: the 4+ /— extrapolation

We consider a substrate indefinite sending cell K; € WW?* belonging to the mediating body (K €
Wr,), therefore, K; € W* N Wr,. The same reasoning applies to any patch cell K; e V*NVr,. As
K; belongs to the substrate mediating body (Wr,), it does not contain a usable solution. Because
of the Chimera method, K has to transfer information to the patch. As K; € Wr,, the structure
crosses K;. Therefore, K; can be split into two subcells Kj and K, located on either side of the
structure as shown in Figure 4.12. The objective is to reconstruct two solutions for the cell Kj,
one for K" and one for K, using different sets of neighboring cells located on either side of the
structure. This method is referred as +/— extrapolation in the following.

In order to extrapolate a value for the subcells K" and K, we need to explore the neighboring
cells of K;. We define the +/— adjacent crossed cell index sets:

£ (0) = {j € (i), K; € Wiy, d(S,z;) > o}, (4.39)
L3 (0) = {j € 7(0), K; € Wr, d(S,;) <0}. (4.40)

where d(z;,S) is the signed distance between the structure S and the barycenter z; of the cell Kj.
7(4) is the index set of the cells adjacent to K. LEFV:JF (0) and £§F‘2’7 (0) contain the indices of the
cells adjacent to K; that are crossed by the structure with respectively a positive signed distance to
the structure and a negative signed distance to the structure. Those two sets contain the indices of
mediating body cells.

As a mediating body cell do not contain a usable solution, we define the +/— adjacent active
cell index sets:

v o) = {j € (i), K; € W, d(S,z;) > 0} (4.41)
L3 (0) = {j €0, K; € W, d(8,z;) <0} (4.42)
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Substrate W d(z,,,S) >0 Structure S

d(z,,,S) <0

E|: Sending cell W?* IE’: Indefinite sending cell
[ ]: Mediating body Wr

Figure 4.12: Indefinite sending cells subcell decomposition and extrapolation

Lj-*WJr(O) and £:¥ (0) correspond to the indices of the active fluid cells adjacent to K with re-
spectively a positive signed distance to the structure and a negative signed distance to the structure
S.

The +/— extrapolation relies on the solution of the active cells sets EZS.*W+(0) and £V (0).

However, it can occur, that the set Ef-*W+ (0) (or the set £:» (0)) is empty, meaning that no
adjacent cells to K; with a postivive (or negative) signed distance to the structure (S) is an active
cell.

In this case, successive exploration passes are performed until active neighboring cells with a
positive (or negative) signed distance to the structure (S) are found. Starting from, Efr‘;"Jr(O) and

L’;‘F"S"_(O), these passes are performed avoiding repetitions in the neighboring cells explored. To do
so, we define the crossed cell sets of the n-th pass (n € N*) as:

£ ) = {k€7(), 5 € LT (1), b g LT (n-1), Ky € Wi, d(S,2)) > 0}, (4.43)

LV (n) = {k €v(), 5 € LYY (n-1), k ¢ L3 (n-1), Ky, € Wry,d(S,z;) < 0}. (4.44)

which correspond to the indices of the cells adjacent to K; that are mediating body cells with a
positive (or negative) signed distance to the structure whose index dot not belong to Efr":Jr (n-1)

(or Efr‘;"f (n—l)). In this definition, K; is a mediating body cell neighboring K; detected during the
n-1-th pass (j € £33 (n-1), orj € L3 (n-1)).
Then, the active cell index sets of the n-th pass (n € N*) are defined as:

£ () = {k € v().3 € £ (n-1), Ky € W d(S.z)) > 0}, (4.45)

£ () = {k € 7(i).s € LY (n-1), Ky € Wa,d(S.z;) <0}, (4.46)

which correspond to the indices of the cells adjacent to K; that are active cells with a positive (or
negative) signed distance to the structure. In this definition, K is a mediating body cell neighboring
K; detected during the n-1-th pass (j e Lot (n-1), orj € £§F"S"_ (n—l)). On each side of the

irg
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structure, passes are performed independenlty, until

InT €N, £§f+(n+) #{0}and, Vn e N, n <nt = £SW+(n)

Tk

and, In” eN, L (n7)# {0} and, Vn e N, n<n™ = L (n)

0} (4.47)

={
= {0}. (4.48)

The independence of the sets reduces the amount of neighbors explored. Indeed, on each side,
the exploration stops as soon as at least one active cell is found. At the n-th pass (n € N), LfF"YJr (n)
and Ejrvrf(n) are explored only if an n 4 1-th pass is needed.

Figure 4.13, illustrates the different steps of the +/— extrapolation procedure and its contribution

to the Chimera sending. Once E;:"H_ (n*/~) are filled, +/— states can be extrapolated for both

subcells Kj/f (see Figure 4.13-3) based on the conservative variables as the following:

Z |1 U Z | KUY
et () o eLsVT (o)
pwt =T , g = o . (4.49)

S K - LS

. + . -
]Gﬁf*w (nT) ]G[lf*w (n™)

As a result, the indefinite sending cells have two different values that can be sent to their corresponding
ghost cells.

Let KJ/ € V be a ghost cell receiving from K;. As detailed in section 2.2, the intersection KJIﬂKi
is computed with the resulting barycenter of the intersection z ;. The signed distance of the center
of the intersection to the structure, written d(S,2;;), is computed in order to decide which +/—
state K; will provide to [N(; (see Figure 4.13-4). If d(S,Z;;) > 0, then U is provided and if
d(S,z;;) <0, then U is provided. If the mediating body remains constant over time, the +/—
neighbor detection does not need to be repeated as the definitions of ,C;*W+/_(n+/_) are directly
dependent from the mediating body definition.

Remark. The orientation of the normal to the structure S is arbitrary and needs to be set at the
beginning of the computation. As long as the orientations of the surfaces are not inverted during the
calculation, the procedure is not impacted by the orientation of the normal to the structure (S).

Remark. While the second order Chimera method and more specifically the gradient reconstruction
has been adapted to work with the Mediating Body Method on active sending cells U;, U = {V, W}
even near the mediating body region, the extrapolated sending cell contribution is limited to first
order due to the complexity of computing a gradient within an undefined area. Also, due to the +/—
subcell decomposition, two gradients would be required.
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1) Mediating body construction + ghost cells
and sending cells identification

Structure S
: Ghost cell V/W
|E| : Sending cell V*/W*
|:| : Mediating body Wr,/Vr,

2) Detection of W* N Wr,

Substrate W

. : Low pressure state

- : High pressure state

3) +/- state extrapolation for W?* N Wr,

-+ state

4) Chimera sending with appropriate + /- state
depending on the sign of d(Z;, S)

CE

Figure 4.13: Indefinite sending cells complete treatment.
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C.2 - Handling of indefinite ghost cells

The next cells that we are interested in are the indefinite ghost cells. In this section, we consider
a patch ghost cell IN(; € V that also belongs to the patch mediating body (Vr,), therefore, IN(Z, €
vn Vr, is an indefinite ghost cell. The same reasoning applies to any substrate indefinite ghost
cell K; € WN Wr,. We consider K, € V. such that K, € ~(i) is adjacent to K, as shown in
Figure 4.14. The ghost cell I?; is intersected by a sending cell K; € W?. As a ghost cell, I?; is used
to ensure an appropriate flux FY, = F(U,;,, Uy, nyy,) at the interface F C I';; of the resolved fluid
domain (see Fig. 4.14) which corresponds to the cleaned patch V.. As we have IN(Z/ € Vr,, the face
]-?fg also acts as a boundary condition of the active fluid domain V), as detailed in section 4.2.1.D.

In the Chimera method, the flux computation is carried out by the numerical scheme itself
(MUSCL-Hancock in this work, see section 1.2.5). In the MBM, the flux computation at the active
fluid/mediating body interface is overloaded by numerical functions. Therefore, the flux at the
interface ]-"Z)Ié will be computed using the MBM instead of the solution sent by the Chimera method
which results in a non-issue.

Ky
Substrate W &
X / <
\‘ Lk Patch V
o Xo
K2 )

Structure S o %

x| : Ghost cell V x| . Indefinite ghost cell K

x| : Mediating body Vr,

Figure 4.14: Indefinite ghost cell impact on the fluid domain.

One could think about preventing the appearance of indefinite ghost cells by enforcing the con-
dition:
Unip, = {0}, U=1{v,wl, (4.50)

during the construction of the mediating body, which would result in the absence of indefinite
ghost cells and would reduce the number of mediating body cells. This solution is considered in the
following example (see Fig. 4.15). We suppose that the structure S separates two fluid cavities at
rest in one dimension but with a pressure jump Ap.

If the cell I?; is treated as a ghost cell instead of a mediating body cell, part or all of its solution
comes from an extrapolated sending cell K; € WW*°. When the structure crosses the barycenter z,;

of the intersection I?; N Kj, the intersection distance to the structure, d(Z;;,S) changes sign and
therefore the ghost cell KZ’ will start receiving the high pressure state whereas the cell K,; contains
the low pressure state. At the interface ‘7:212 hermeticity of the system breaks as the high pressure

state leaks into the low pressure one. However, if the ghost cell IN(; is treated as a mediating body
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Figure 4.15: Indefinite ghost cell treatment possibilities.

cell, the leak disappears as the face .7-"% is handled by the mediating body flux functions. As a results,
including the ghost cells inside the mediating body ensures that the Chimera-Mediating Body Method
preserves hermeticity of overlapping grid system.

D . Time integration scheme of the Chimera-MBM

After introducing the indefinite sending cells and the indefinite ghost cells which result from the
coupling of the Chimera method with the MBM, we have provided a numerical strategy to reconstruct
a solution inside the sending cells. We also have reviewed the benefit of the indefinite ghost cells
which preserve the hermeticity of the Chimera-Mediating Body Method. In this section, we present
the modifications made to the integration scheme presented in section 4.2.1.F for the MBM only.
We detail the time integration scheme for a pair of fluid grids, a substrate (W) and a patch (V).
The fluid integration is performed using the second order MUSCL-Hancock integration presented in
section 1.2.5. The Chimera sending is based on the second order sending presented in section 2.2.3.B.
The time integration scheme of the Chimera-MBM, depicted, in Figure 4.16, is carried out using the
following steps:

o gl 1 . . .
1. The structure velocity U""2 at "2 and its position U"*! at t"*! are computed explicitly
from its acceleration U™ at t", using the central different scheme presented in section 4.1.4.

2. The mediating bodies Wffjl and V{f:’l are computed using the structure position U™+ fol-
lowing the procedure described in section 4.2.2.A. If needed, the indefinite active cells are
extrapolated as detailed in section 4.2.1.E

3. The velocities at the interfaces of the mediating bodies are computed from the structure
o il . . ) .
velocity U""2 following the procedure described in section 4.2.1.B.

4. The ghost cells W and V are updated using the first order Chimera exchange detailed in
section 2.2.3.A. This step is called uninformed sendi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>