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Titre: Couplage multi-modèle en dynamique rapide avec interaction fluide-structure pour des
écoulements complexes calculés par une approche volumes finis

Mots clés: Dynamique rapide, grilles superposées, Chimère, interaction fluide-structure, écoulements
compressibles, multi-composants.
Résumé: Le sujet de cette thèse consiste à développer une méthode de calcul numérique permettant de
superposer dans un modèle global, un modèle numérique local afin d’introduire des détails géométriques
n’existant pas dans le modèle global. Cette méthode s’applique à des écoulements de natures variées
(monophasique, multi-composants, réactifs) dans un contexte d’interaction fluide-structure en grands
déplacements.

Dans un premier temps, une méthode de grilles superposées appelée méthode Chimère a été im-
plémentée dans un cadre volumes finis avec des milieux fluides. Cette implémentation s’appuie sur des
cellules de maillage du fluide pour échanger de l’information entre plusieurs grilles. Une reconstruction
de la solution est effectuée en utilisant des cellules dites envoyeuses. La solution fluide transférée est
évaluée avec une reconstruction au premier ordre utilisant une moyenne de la solution sur les volumes
des cellules envoyeuses intersectées par chaque cellule receveuse. Cette approche a été améliorée avec
un passage au deuxième ordre utilisant une reconstruction linéaire de la solution au sein des cellules
envoyeuses. Les deux approches ont été testées sur des cas test analytiques dont l’advection d’une
perturbation sinusoïdale, le tube à choc de Sod, une onde de choc stationnaire et enfin l’advection d’un
vortex isentropique. Ces différents cas ont démontré la capacité de la méthode Chimère à transférer
des structures fluides compressibles simples telles que des ondes de choc ou des ondes de détente sans
introduire de perturbations à l’échelle globale. La méthode Chimère de second ordre s’est montrée plus
proche d’une solution monogrille et moins dépendante de la configuration géométrique des grilles que
la méthode de premier ordre en présence de maillages présentant des résolutions très différentes.

La méthode de Chimère de second ordre a été évaluée sur des cas tests de la littérature en 2D
dont l’écoulement supersonique autour d’un cylindre circulaire, un cas d’interaction choc-bulle (Hélium
et R22) et enfin le cas de la double réflexion de Mach (DMR). Dans chacun de ces cas, la méthode
Chimère de second ordre fournit des résultats comparables à une solution monogrille avec une erreur
liée à l’utilisation de la méthode Chimère négligeable pour des ratios de taille de cellule entre grilles
inférieurs à 8. La méthode Chimère de second ordre permet d’augmenter localement la précision de la
solution, autour d’un détail géométrique d’intérêt, sans impacter lourdement le temps de calcul comparé
à une approche monogrille raffinée.

Enfin, la méthode Chimère de second ordre a été couplée à une méthode d’interaction fluide-
structure, appelée Mediating Body Method (MBM). Afin de rendre la méthode Chimère compatible
avec la MBM, le couplage Chimère-MBM, s’appuie sur une extrapolation de la solution de part et d’autre
de la structure lorsque cette dernière traverse une zone d’échange Chimère. La méthode Chimère-MBM
est évaluée sur un cas test analytique de piston libre séparant deux cavités fluides au repos avec des
pressions différentes. L’impact de la méthode Chimère-MBM sur la solution fluide est négligeable pour
des ratios de taille de cellule entre grilles inférieurs à 8. Un exemple en 3D, s’appuyant sur une cavité
haute pression séparée d’une cavité basse pression par une plaque perforée, est présenté. Ce cas test
utilise trois grilles fluides indépendantes et sollicite les méthodes Chimère et Chimère-MBM dans le
même calcul, démontrant la flexibilité d’usage des méthodes développées. L’utilisation conjointe de
ces méthodes permet d’obtenir des niveaux de précision des solutions numériques équivalents à une
approche monogrille fine avec des temps de calculs et des contraintes de maillage réduits.

Ce couplage apporte une plus-value notable dans le contexte de l’énergie nucléaire, pour des simula-
tions de situations accidentelles à l’échelle du circuit primaire d’un réacteur nucléaire à eau pressurisée.



Title: Fast transient dynamic multi-model coupling with fluid-structure interaction for complex
flows in a finite volume framework

Keywords: Fast dynamics, overlapping grids, Chimera, fluid-structure interaction, compressible flows,
multicomponent flows
Abstract: This thesis topic aims to develop a numerical strategy that allows refined local models (mesh
size, geometry details, physical models) to be patched on a global model to account for modelling details
that are not captured by the larger scale model. This approach is developed in the context of the fluid-
structure interaction.

To do so, a method of overlapping grids, referred as the Chimera method, was implemented in a
finite volume framework with fluid media only. This implementation relies on grid cells to exchange
information between several grids. A reconstruction of the solution is carried out using grid cells
marked as sending cells. In this work, the transmitted fluid solution is interpolated with a first order
reconstruction by averaging the solution on the volumes of the sending cells intersected by each receiving
cell. This approach has been improved using a linear reconstruction of the solution within the sending
cells. This improved version is referred to as the second order Chimera method. Both approaches were
tested on analytical test cases, including the advection of a sinusoidal perturbation, the Sod shock tube,
a stationary shock wave and finally the advection of an isentropic vortex. These different cases have
demonstrated the ability of the Chimera method to transfer simple compressible flow structures such
as shock waves or rarefaction waves without introducing perturbations on the global scale solution.
Overall, the second order Chimera method solution is equivalent to a single grid solution in terms of
accuracy. It is also less dependent on the geometric configuration of the grids, compared to the first
order Chimera method, in the presence of grid size discrepancies.

The second order Chimera method has been evaluated on two-dimensional test cases from the
literature, including the supersonic flow around a circular cylinder, a shock-bubble interaction (Helium
and R22) and the Double Mach Reflection (DMR) test case. In each of these cases, the second-order
Chimera method provides results comparable to a single grid solution with a Chimera error negligible
for cell size ratios between grids lower than 8. The second order Chimera method allows to locally
increase the accuracy of the solution, around a geometric detail of interest, without heavily impacting
CPU time compared to a refined single grid approach. Finally, the second-order Chimera method was
coupled with a fluid-structure interaction method, called Mediating Body Method (MBM). To make
the Chimera method compatible with the MBM method, the Chimera-MBM coupling is based on an
extrapolation of the solution on both sides of the structure when it crosses a Chimera exchange zone.

The Chimera-MBM is assessed on an analytical test case based on a free piston separating two fluid
cavities at rest at different pressures. The impact of the Chimera-MBM on the fluid solution is negligible
for cell size ratios between grids lower than 8. A 3D example based on a high-pressure chamber separated
from a low-pressure chamber by a perforated plate is presented. This test involves three independent
fluid grids and uses both the Chimera method and Chimera-MBM in the same calculation demonstrating
the flexibility of the developed methods. Indeed, the combination of these methods makes it possible
to obtain levels of accuracy of numerical solutions equivalent to a fine single grid approach with much
lower CPU times and less grid constraints.

This multi-model approach provides a significant added value in the context of nuclear energy for
brutal accidental situations modelling at the scale of the primary fluid circuit of a pressurized water
reactor.
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VII



LIST OF FIGURES

2.17 Chimera configuration with the exchange zone gap (δGC) and the exchange zone shift
(δS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.18 Structure of the code MANTA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.19 Implementation of the Chimera procedures within the fluid solver for a first order

sending. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.20 Implementation of the Chimera procedures within the fluid solver for a second order

sending. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.21 Field merging of overlapping grid configurations for comparisons with single grid cases. 48
2.22 Scalar advection test case: initial solution of a square sinus distribution (see equa-

tion 2.22). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.23 Sinus advection test case: grid arrangements for the split Chimera configuration. . . . 50
2.24 Grid convergence analysis of the sinus advection case for the split domain with equiv-

alent cell sizes between the patch and the substrate (χ = 1) and non-coincident grids
(δS = 0.3hW). h = hW = hV and h0 corresponds to Ncells = 3200. . . . . . . . . 52

2.25 Exchange zone shift analysis: results on density (ρ) errors obtained with with the
present Chimera approach using a patch with same grid spacing as the substrate
(Ncells = 200, χ = 1.0) with variable exchange zone shift (δS) and the standard
detection procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.26 Density profile at t = tf for the single grid case and the first order Chimera sending
with matching grids (δS = 0) and non-matching grids (δS = 0.9hW) with Ncells =

200 and χ = 1, compared to the analytical solution. The markers on the plots are
not representative of the number of points of the numerical solution. . . . . . . . . . 54

2.27 Sinus advection test case: grid arrangements for the patched Chimera configuration. . 57
2.28 Grid convergence analysis of the sinus advection case for the patched configuration

with equivalent cell sizes between the patch and the substrate (χ = 1). h = hW = hV
and h0 corresponds to Ncells = 3200. . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.29 Shocktube test case: grid arrangements for the single grid and Chimera configurations. 61
2.30 Shocktube test case - focus on the expansion wave: density profile at t = tf for both

the Chimera methods and the single grid configurations with Ncells = 200, χ = 1

and δS = 0.6hW . The markers on the plots are not representative of the number of
points of the numerical solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.31 Shocktube test case - focus on the expansion wave: density profile at t = tf for single
grid configurations with Ncells = 200 and different values of χ. The markers on the
plots are not representative of the number of points of the numerical solution. . . . . 64

2.32 Shocktube test case - focus on the expansion wave: density profile at t = tf for single
grid and Chimera configurations with Ncells = 200, χ = 16 and δS = 0.6hW . The
markers on the plots are not representative of the number of points of the numerical
solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.33 Shocktube test case - focus on the shock wave: density profile at t = tf for both
the Chimera methods and the single grid configurations with Ncells = 200, χ = 1

and δS = 0.6hW . The markers on the plots are not representative of the number of
points of the numerical solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.34 Shocktube test case - focus on the shock wave: density profile at t = tf for single
grid configurations with Ncells = 200 and different values of χ. The markers on the
plots are not representative of the number of points of the numerical solution. . . . . 68

VIII



LIST OF FIGURES

2.35 Shocktube test case - focus on the shock wave: density profile at t = tf for single
grid and Chimera configurations with Ncells = 200, χ = 16 and δS = 0.6hW . The
markers on the plots are not representative of the number of points of the numerical
solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.36 Stationary shock wave grid configuration for coincident grids and non-coincident grids
with the shock wave located at x = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.37 Density profile of the stationary shock wave converged solution in a single grid con-
figuration with Ncells = 25 and Chimera configurations (first and second order
exchanges) with coincident and non-coincident grids for Ncells = 25 and χ = 1

compared to the reference solution. The markers on the plots are not representative
of the number of points of the numerical solution. . . . . . . . . . . . . . . . . . . . 72

2.38 Density profile of the stationary shock wave converged solution of Chimera con-
figurations with coincident (δS = 0) and non-coincident (δS = 0.3hW) grids for
Ncells = 25 and χ varying from 2 to 16 compared to the reference solution. The
markers on the plots are not representative of the number of points of the numerical
solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.39 Resulting pressure field of the isentropic vortex case at t? = t?f for the single grid
configuration with Ncells = 640. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.40 Isentropic vortex grid configuration for the Chimera case with χ = 2. . . . . . . . . . 78
2.41 Grid convergence analysis of the isentropic vortex case with equivalent cell sizes be-

tween the patch and the substrate (χ = 1). h = hW = hV and h0 corresponds to
Ncells = 640. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.42 Pressure profile at t? = t?f along y = 0 for the single grid configuration as well as
the Chimera cases with Ncells = 80 and χ = 1. The markers on the plots are not
representative of the number of points of the numerical solution. . . . . . . . . . . . 79

2.43 Resulting pressure field of the isentropic vortex case at t? = t?f for the Chimera case
using the first order sending (a) and the second order sending (b) with Ncells = 40

and χ = 16 both using the standard detection procedure. . . . . . . . . . . . . . . . 81
2.44 Pressure profile at t? = t?f along y = 0 for the single grid configuration as well as

the Chimera cases with Ncells = 40 and χ = 16. The markers on the plots are not
representative of the number of points of the numerical solution. . . . . . . . . . . . 82

3.1 Circular cylinder test case: computational domain and initial solution. . . . . . . . . 86
3.2 Grid configuration for the single mesh case and the Chimera case. . . . . . . . . . . 87
3.3 Steady state density field for both Chimera case (on the left), and the single grid case

(on the right) with a cell ratio of unity (χ = 1), obtained at a dimensionless time
t? = 52 and for Ncells = 200 grid cells along the cylinder perimeter. . . . . . . . . . 88

3.4 Time history of the pressure drag force for several number of grid cells (Ncells)
obtained on both the single grid configuration, and the overlapping grids with however
similar grid spacings (χ = 1). The markers on the plots are not representative of the
number of points of the numerical solution. . . . . . . . . . . . . . . . . . . . . . . 89

3.5 Zoom in the interval dimensionless times t? ∈ [45 , 52.5] of the pressure drag force
history for several number of grid cells (Ncells), obtained on both the single grid
configuration and the ovelapping grids with however similar grid spacings (χ = 1).
The markers on the plots are not representative of the number of points of the solution. 90

3.6 Resulting pressure force over time for the second study cases (Ncells = 100, χ = 1),
(Ncells = 200, χ = 2) and (Ncells = 400, χ = 4). The markers on the plots are
not representative of the number of points of the numerical solution. . . . . . . . . . 91

IX



LIST OF FIGURES

3.7 Resulting pressure force over time for the second study cases (Ncells = 100, χ = 1),
(Ncells = 200, χ = 2) and (Ncells = 400, χ = 4) zoomed in the time interval
[45 , 52.5]. The markers on the plots are not representative of the number of points
of the numerical solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8 Geometric illustration of the flow structure in front of the cylinder. . . . . . . . . . . 92
3.9 Shock wave / Bubble interaction: initial conditions taken from Layes et al. experi-

ments [106] and computational domain. . . . . . . . . . . . . . . . . . . . . . . . . 93
3.10 Bubble shock test case numerical configuration. . . . . . . . . . . . . . . . . . . . . 94
3.11 Helium volume fraction field obtained with a single grid configuration with Ncells =

200 at two different dimensionless times t? = 0.24 and t? = 1.6. . . . . . . . . . . . 94
3.12 Helium volume fraction field obtained in the single mesh case at t? = 1.6, for a

number of cells along the bubble diameter of Ncells = 50 (on the left), 100 (in the
middle), and 200 (on the right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.13 Helium volume fraction field obtained with the present Chimera method with overlap-
ping grids with the same cell ratio (χ = 1) at t? = 1.6, for a number of cells along
the bubble diameter of Ncells = 50 (on the left), 100 (in the middle), and 200 (on
the right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.14 Helium volume fraction field obtained with the present Chimera approach, at a di-
mensionless time t? = 1.6, by using several cell ratios (χ = 1, 2, 4, 8). . . . . . . . . . 97

3.15 R22 volume fraction field obtained with a single grid configuration with Ncells = 200

at two different dimensionless times t? = 0.23 and t? = 2.28. . . . . . . . . . . . . . 98
3.16 R22 volume fraction field obtained in the single mesh case at t? = 2.28, for a number

of cells along the bubble diameter of Ncells = 50 (on the left), 100 (in the middle),
and 200 (on the right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.17 R22 volume fraction field obtained with the present Chimera method with overlapping
grids with the same cell ratio (χ = 1) at t? = 2.28, for a number of cells along the
bubble diameter of Ncells = 50 (on the left), 100 (in the middle), and 200 (on the
right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.18 R22 volume fraction field obtained with the present Chimera approach, at a dimen-
sionless time t? = 2.28, by using several cell ratios (χ = 1, 2, 4, 8). . . . . . . . . . . 100

3.19 Sketch of the self-similar structure of the Double Mach Reflexion (DMR) problem . . 101
3.20 Computational domains and initial conditions: configurations of the single mesh case

(a), and the Chimera case (b) displayed with a cell ratio χ = 4. . . . . . . . . . . . . 102
3.21 Density contours obtained with the present Chimera approach (black iso-contour lines)

with the standard detection compared to the single mesh case (red iso-contour lines)
at an equivalent dimensionless time t? − t?0 = 0.2 for Ncells = 160 and χ = 1.
30 density contours from ρ = 1.4 to 21.4. Dashed white line materializes the patch
boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.22 Density contours obtained with the present Chimera approach (black iso-contour lines)
by using Ncells = 80 cells on the substrate and a cell ratio χ = 2 on the patch,
compared to the single mesh case (red iso-contour lines) with Ncells = 160, at an
equivalent dimensionless time t?−t?0 = 0.2. 30 density contours from ρ = 1.4 to 21.4.
Standard detection procedure (a) compared to the extended detection procedure (b). 104

3.23 Density contours obtained with the present Chimera approach (black iso-contour lines)
by using Ncells = 80 cells on the substrate and a cell ratio χ = 4 on the patch,
compared to the single mesh case (red iso-contour lines) with Ncells = 320, at an
equivalent dimensionless time t?−t?0 = 0.2. 30 density contours from ρ = 1.4 to 21.4.
Standard detection procedure (a) compared to the extended detection procedure (b). 105

X



LIST OF FIGURES

3.24 Density contours obtained with the present Chimera approach (black iso-contour lines)
by using Ncells = 80 cells on the substrate and a cell ratio χ = 8 on the patch,
compared to the single mesh case (red iso-contour lines) with Ncells = 640, at an
equivalent dimensionless time t?−t?0 = 0.2. 30 density contours from ρ = 1.4 to 21.4.
Standard detection procedure (a) compared to the extended detection procedure (b). 106

3.25 Density contours obtained with the present Chimera approach (black iso-contour lines)
by using Ncells = 80 cells on the substrate and a cell ratio χ = 16 on the patch,
compared to the single mesh case (red iso-contour lines) with Ncells = 640, at an
equivalent dimensionless time t?−t?0 = 0.2. 30 density contours from ρ = 1.4 to 21.4.
Standard detection procedure (a) compared to the extended detection procedure (b). 107

4.1 Simplified flow chart of the coupling algorithm. . . . . . . . . . . . . . . . . . . . . 112
4.2 mediating body construction for a single grid. . . . . . . . . . . . . . . . . . . . . . 113
4.3 Fluid cell intersection with the structure. . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4 Example of virtual remeshing of a two-dimensional face. . . . . . . . . . . . . . . . . 116
4.5 Examples of virtual remeshing of the faces at the interface between the active fluid

(U∗) and the mediating body (UΓS ), whose cells are represented in yellow shade, for
two-dimensional simple meshes. The permeable interfaces are represented by thin
green lines while the moving walls are represented by thin red lines. . . . . . . . . . . 117

4.6 Indefinite active cells in grey shade . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.7 Time integration scheme for the Mediating Body Method with a MUSCL-Hancock

integration for the fluid and a central difference scheme for the structure. . . . . . . 119
4.8 Mediating body construction with an overlapping grid configuration. . . . . . . . . . 121
4.9 Cleaned patch (Vc) and cleaned substrate (Wc) sets of cells. . . . . . . . . . . . . . 122
4.10 Underestimation of the fluid forces computed using the mediating bodies WΓS and VΓS .124
4.11 Indefinite sending cells and indefinite ghost cells when using the Mediating Body

Method combined with the Chimera method with a number of ghost cell layers kGC =

1 and a Chimera cell ratio χ = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.12 Indefinite sending cells subcell decomposition and extrapolation . . . . . . . . . . . . 127
4.13 Indefinite sending cells complete treatment. . . . . . . . . . . . . . . . . . . . . . . 129
4.14 Indefinite ghost cell impact on the fluid domain. . . . . . . . . . . . . . . . . . . . . 130
4.15 Indefinite ghost cell treatment possibilities. . . . . . . . . . . . . . . . . . . . . . . . 131
4.16 Time integration scheme for the Chimera-Mediating Body Method with a MUSCL-

Hancock integration for the fluid and a central difference scheme for the structure. . 132
4.17 Free piston case presentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.18 Free piston split configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.19 Free piston density (ρ), velocity (u) and pressure (p) profiles of the split configuration

for the Chimera-MBM case as well as the single grid MBM case when χ = 1 and
Ncells = 300 at t = t?f . The markers on the plots are not representative of the
number of points of the numerical solution. . . . . . . . . . . . . . . . . . . . . . . 136

4.20 Free piston density (ρ), velocity (u) and pressure (p) profiles of the split configuration
for the Chimera-MBM case as well as the single grid MBM case when χ = 1 and
Ncells = 1200 at t = t?f . The markers on the plots are not representative of the
number of points of the numerical solution. . . . . . . . . . . . . . . . . . . . . . . 137

4.21 Grid convergence analysis of the free piston test case with the split configuration and
equivalent cell sizes between the patch and the substrate (χ = 1). . . . . . . . . . . 137

XI



LIST OF FIGURES

4.22 Free piston density (ρ) profile of the split configuration for the Chimera-MBM as well
as the single grid MBM when Ncells = 300 and χ = 1, 2, 4 at t = t?f . The markers
on the plots are not representative of the number of points of the numerical solution. 139

4.23 Free piston density (ρ) profile of the split configuration for the Chimera-MBM as well
as the single grid MBM when Ncells = 300 and χ = 4, 8, 16 at t? = t?f . The markers
on the plots are not representative of the number of points of the numerical solution. 139

4.24 Free piston density (ρ) profile of the split configuration for the Chimera-MBM as
well as the single grid MBM when Ncells = 4800 and χ = 0.25, 0.125, 0.0625 at
t? = t?f . The markers on the plots are not representative of the number of points of
the numerical solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.25 Free piston system mass relative error of the split configuration for the Chimera-MBM
as well as the single grid MBM when Ncells varies and χ = 1 over time. The markers
on the plots are not representative of the number of points of the numerical solution. 142

4.26 Explanation of the variations in system total mass at the patch boundaries when the
structure enters the patch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.27 Free piston system mass relative error of the split configuration for the Chimera-MBM
as well as the single grid MBM when Ncells = 300 and χ = 1, 2 and 4 (finer patch)
over time. The markers on the plots are not representative of the number of points
of the numerical solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.28 Free piston system mass relative error of the split configuration for the Chimera-MBM
as well as the single grid MBM when Ncells = 300 and χ = 4, 8 and 16 (finer patch)
over time. The markers on the plots are not representative of the number of points
of the numerical solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.29 Free piston system mass relative error of the split configuration for the Chimera-MBM
as well as the single grid MBM when Ncells = 300 and χ = 1, 0.5 and 0.25 (coarser
patch) over time. The markers on the plots are not representative of the number of
points of the numerical solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.30 Free piston system mass relative error of the split configuration for the Chimera-MBM
as well as the single grid MBM when Ncells = 300 and χ = 0.25, 0.125 and 0.0625

(coarser patch) over time. The markers on the plots are not representative of the
number of points of the numerical solution. . . . . . . . . . . . . . . . . . . . . . . 145

4.31 Free piston patched configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.32 Free piston density (ρ), velocity (u) and pressure (p) profiles of the patched con-

figuration for the Chimera-MBM as well as the single grid MBM when χ = 1 and
Ncells = 300 at t = t?f . The markers on the plots are not representative of the
number of points of the numerical solution. . . . . . . . . . . . . . . . . . . . . . . 147

4.33 Grid convergence analysis of the free piston case with the patched configuration and
equivalent cell sizes between the patch and the substrate (χ = 1). . . . . . . . . . . 148

4.34 Free piston density (ρ) profile of the patched configuration for the Chimera-MBM as
well as the single grid MBM when Ncells = 300 and χ = 1, 2, 4 at t = t?f . The
markers on the plots are not representative of the number of points of the numerical
solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.35 Free piston density (ρ) profile of the patched configuration for the Chimera-MBM as
well as the single grid MBM when Ncells = 1200 and χ = 4, 8, 16 at t? = t?f . The
markers on the plots are not representative of the number of points of the numerical
solution. The markers on the plots are not representative of the number of points of
the numerical solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

XII



LIST OF FIGURES

4.36 Free piston system mass relative error of the patched configuration for the Chimera-
MBM case as well as the single grid MBM case when Ncells varies and χ = 1 over
time. The markers on the plots are not representative of the number of points of the
numerical solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.37 Free piston system mass relative error of the patched configuration for the Chimera-
MBM case as well as the single grid MBM case when Ncells = 300 and χ = 1, 2

and 4 (finer patch) over time. The markers on the plots are not representative of the
number of points of the numerical solution. . . . . . . . . . . . . . . . . . . . . . . 151

4.38 Free piston system mass relative error of the patched configuration for the Chimera-
MBM case as well as the single grid MBM case when Ncells = 300 and χ = 4, 8

and 16 (finer patch) over time. The markers on the plots are not representative of
the number of points of the numerical solution. . . . . . . . . . . . . . . . . . . . . 152

4.39 3D chambers case presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.40 3D chambers grid configuration for the plate. The first row of cells around the

perimeter of the hole contains square cells of a side hU = 0.04 m. . . . . . . . . . . . 155
4.41 Three-dimensional chambers grid configuration for the Chimera-MBM case. The

computational domain contains a coarse substrate (in black), a finer first patch (in
blue) that contains the perforated membrane (in green) and an even finer second
patch (in red) that helps improving the accuracy around the perforation . . . . . . . 156

4.42 x-displacement of the plate extremity around the perforation perimeter at z = 0. The
monitored node is initially located at (x, y, z) = (0., rc, 0.) . . . . . . . . . . . . . . 157

4.43 y-displacement of the plate extremity around the perforation perimeter at z = 0. The
monitored node is initially located at (x, y, z) = (0., rc, 0.) . . . . . . . . . . . . . . 157

4.44 Velocity magnitude field (‖u‖) obtained with the coarse single grid MBM case (a), the
Chimera-MBM case (b) and the fine single grid MBM case (c) at the dimensionless
time t? = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.45 Velocity magnitude field (‖u‖) obtained with the coarse single grid MBM case (a), the
Chimera-MBM case (b) and the fine single grid MBM case (c) at the dimensionless
time t? = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.46 Velocity magnitude field (‖u‖) obtained with the coarse single grid MBM case (a), the
Chimera-MBM case (b) and the fine single grid MBM case (c) at the dimensionless
time t? = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.47 Velocity magnitude field (‖u‖) obtained with the coarse single grid MBM case (a), the
Chimera-MBM case (b) and the fine single grid MBM case (c) at the dimensionless
time t? = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.48 Velocity magnitude field (‖u‖) obtained with the coarse single grid MBM case (a), the
Chimera-MBM case (b) and the fine single grid MBM case (c) at the dimensionless
time t? = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.49 Velocity magnitude field (‖u‖) obtained with the coarse single grid MBM case (a), the
Chimera-MBM case (b) and the fine single grid MBM case (c) at the dimensionless
time t? = t?f = 3.75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.1 Chimera boundary condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.1 Chimera configuration with exchange zone gap (δGC) and exchange zone shift (δS). . 173
C.1 Problematic configuration where the indefinite sending cell Kj extrapolates from a

ghost cell Kl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
XIII



LIST OF FIGURES

C.2 Problematic configuration where the ghost cell K̃m belongs to the +/− neighoring
of Kj but receives from indefinite sending cells K

′
p and K

′
m. . . . . . . . . . . . . . 179

C.3 Problematic configuration where the indefinite active cell K
′
k uses the ghost cell K̃

′
i

to extrapolate its value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
D.1 Free piston case presentation with an infinite domain. . . . . . . . . . . . . . . . . . 181
D.2 Wave pattern of the free piston case. . . . . . . . . . . . . . . . . . . . . . . . . . . 183
D.3 Characteristics of the left hand side domain of the free piston solution. . . . . . . . . 184
D.4 Characteristics of the right hand side domain of the free piston solution. . . . . . . . 185
D.5 Piston position xs and velocity u̇ over time. . . . . . . . . . . . . . . . . . . . . . . 186
D.6 Description of the characteristics in the expansion fan region. . . . . . . . . . . . . . 187
D.7 Description of the characteristics in the compression wave region. . . . . . . . . . . . 189
D.8 Free piston density ρ, velocity u and pressure p profiles at t? = t?f of the analytical

solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.9 Les perforations des plaques de cloisonnement (entourées en noir) et la cuve du réac-

teur sont maillés indépendamment. La stratégie proposée consiste à superposer des
altérations locales (maillage de droite) sur plaques de cloisonnement au sein d’un
modèle global à grande échelle représentant la cuve du réacteur (maillage de gauche)
dans le but d’améliorer la qualité des résultats numériques sans altérer les grilles du
modèle global. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.10 Exemple simplifié représentatif des applications visées. Chambres séparées par une
paroi hermétique à l’échelle globale. Une chambre contenant de l’eau liquide sous
haute pression en bleu foncé et une chambre contenant de la vapeur d’eau sous basse
pression en bleu clair. Perforation locale de la paroi ajoutée à l’aide d’un patch
induisant une fuite entre les deux chambres à l’échelle locale. . . . . . . . . . . . . . 192

5.11 Exemple de méthode Adaptive Mesh Refinement appliquée à une grille typiquement
utilisée pour modéliser un écoulement fluide autours d’un cylindre ou bien une perfo-
ration de plaque. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.12 Exemple d’utilisation de la Méthode Arlequin avec une grille de fond appelée substrat
(en noir) et une grille locale appelée patch (en rouge). La zone de couplage est ici
représentée en vert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.13 Exemple d’utilisation de la Méthode Chimère avec une grille de fond appelée sub-
strat (en noir) et une grille locale appelée patch (en rouge). La zone d’échange est
matérialisée par les deux contours fermés définis par les points d’interpolations. . . . 194

5.14 Interpolation Chimère de premier ordre basée sur les volumes d’intersection entre
chaque cellule fantôme et ses cellules envoyeuses. . . . . . . . . . . . . . . . . . . . 196

5.15 Interpolation Chimère de second ordre basée sur une reconstruction linéaire de la
solution au sein de chaque cellule envoyeuse. Chaque solution est ensuite évaluée au
centre de l’intersection entre la cellule fantôme et la cellule envoyeuse correspondante. 197

5.16 Présentation schématique de la Mediating Body Method. Le mediating body est
représenté en jaune. Lorsque la structure subit de grands déplacements, les anciennes
cellules du mediating body désormais cellules de fluide sont appelée cellules de fluide
indéfinies et sont représentées en gris. . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.17 Exemple de configuration de grille dans le cadre de la méthode Chimère-MBM. Le
mediating body du patch est représenté en bleu tandis que le mediating body du
substrat est représenté en jaune. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

XIV



LIST OF FIGURES

5.18 Schéma de l’extrapolation +/- executée pour une cellule envoyeuse intersectée par
la structure. Deux états sont reconstruits pour cette cellule de part et d’autre de la
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

XV





List of Tables

2.1 Grid convergence analysis of the split configuration: results on density (ρ) errors
obtained with a single grid configuration as well as with the present Chimera approach
using a patch with same grid spacing as the substrate (χ = 1) and coincident grids
(δS = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Grid convergence analysis of the split configuration: results on density (ρ) errors
obtained with a single grid configuration as well as with the present Chimera approach
using a patch with same grid spacing as the substrate (χ = 1) and non-coincident
grids (δS = 0.3hW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Cell ratio analysis of the split configuration: results on density (ρ) errors obtained
with with the present Chimera approach using a patch with a coincident Chimera
interface (δS = 0) and variable cell ratios (χ) with the standard detection procedure.
The transfer occurs from a coarse substrate (Ncells = 200) to a finer patch. We
have also reported the errors of the equivalent coarse single mesh (ECSM) and the
equivalent Ncells on the patch for equivalent fine single mesh (EFSM) comparisons. 55

2.4 Cell ratio analysis of the split configuration: results on density (ρ) errors obtained
with with the present Chimera approach using a patch with a coincident Chimera
interface (δS = 0) and variable cell ratios (χ) with the standard detection procedure.
The transfer occurs from a fine substrate (Ncells = 3200) to a coarser patch. We
have also reported the errors of the equivalent coarse single mesh (ECSM) and the
equivalent Ncells on the patch for equivalent coarse single mesh (ECSM) comparison. 55

2.5 Cell ratio analysis of the split configuration: results on density (ρ) errors obtained
with with the present Chimera approach using a patch with non-coincident Chimera
interface (δS = 0.6hW) and variable cell ratios (χ) for both the standard and extended
detection procedures. The transfer occurs from a coarse substrate (Ncells = 200) to
a finer patch. Equivalent Ncells on the patch are reported for equivalent fine single
mesh (EFSM) comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6 Cell ratio analysis of the split configuration: results on density (ρ) errors obtained
with with the present Chimera approach using a patch with non-coincident Chimera
interface (δS = 0.6hW) and variable cell ratios (χ) for both the standard and extended
detection procedures. The transfer occurs from a fine substrate (Ncells = 3200) to
a coarser patch. Equivalent Ncells on the patch are reported for equivalent coarse
single mesh (ECSM) comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7 Grid convergence analysis of the patched configuration: results on density (ρ) errors
obtained with a single grid configuration as well as with the present Chimera approach
using a patch with same grid spacing as the substrate (χ = 1). . . . . . . . . . . . . 58

2.8 Cell ratio analysis of the patched configuration: results on density (ρ) errors obtained
with the present Chimera approach using a patch and variable cell ratios (χ) for both
the standard and extended detection procedures. The substrate comprises Ncells =

200 grid cells. Equivalent Ncells on the patch are reported for equivalent fine single
mesh (EFSM) comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

XVII



LIST OF TABLES

2.9 Grid convergence analysis of the Sod shocktube - focus on the expansion wave: results
on density (ρ) errors obtained with a single grid configuration as well as with the
present Chimera approach using a patch with same grid spacing as the substrate
(χ = 1) and non-coincident grids (δS = 0.6hW). . . . . . . . . . . . . . . . . . . . . 63

2.10 Cell ratio analysis of the Sod shocktube - focus on the expansion wave: results on
density (ρ) errors obtained with the single grid configuration as well as with the
present Chimera approach using a patch with non-coincident Chimera interface (δS =

0.6hW) and variable cell ratios (χ) for both the standard and extended detection
procedures. The transfer occurs from a coarse substrate (Ncells = 200) to a finer
patch. Equivalent Ncells on the patch are reported for equivalent fine single mesh
(EFSM) comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.11 Grid convergence analysis of the Sod shocktube - focus on the shock wave: results on
density (ρ) errors obtained with a single grid configuration as well as with the present
Chimera approach using a patch with same grid spacing as the substrate (χ = 1) with
non-coincident grids (δS = 0.6hW). . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.12 Cell ratio analysis of the Sod shocktube - focus on the shock wave: results on den-
sity (ρ) errors obtained with the single grid configuration as well as with the present
Chimera approach using a patch with non-coincident Chimera interface (δS = 0.6hW)
and variable cell ratios (χ) for both the standard and extended detection procedures.
The transfer occurs from a coarse substrate (Ncells = 200) to a finer patch. Equiv-
alent Ncells on the patch are reported for equivalent fine single mesh (EFSM) com-
parison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.13 System mass, momentum and energy relative error computed on the converged so-
lution with a single grid configuration as well as with the present Chimera approach
using a patch with the same grid spacing as the substrate (Ncells = 25, χ = 1) with
a stationary shock wave matching the patch boundary. . . . . . . . . . . . . . . . . 72

2.14 System mass, momentum and energy relative error computed on the converged so-
lution with a single grid configuration as well as with the present Chimera approach
using a patch with different grid spacings and a stationary shock wave matching the
patch boundary and coincident interfaces (δS = 0). . . . . . . . . . . . . . . . . . . 76

2.15 System mass, momentum and energy relative error computed on the converged so-
lution with a single grid configuration as well as with the present Chimera approach
using a patch with different grid spacings and a stationary shock wave matching the
patch boundary and non-coincident interfaces (δS = 0.3hW). . . . . . . . . . . . . . 76

2.16 Grid convergence analysis of the vortex case: results on pressure (p) errors obtained
with a single grid configuration as well as with the present Chimera approach using a
patch with same grid spacing as the substrate (χ = 1). . . . . . . . . . . . . . . . . 80

2.17 Cell ratio analysis of the vortex case: results on pressure (p) errors obtained with
with the present Chimera approach using a variable cell ratios (χ) and Ncells = 80.
Equivalent Ncells on the patch are reported for equivalent fine single mesh (EFSM)
comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.18 Time an memory cost of the Chimera method: time and memory ratio of the present
Chimera approach using a variable cell ratios (χ) compared to the equivalent fine
single mesh (EFSM). The higher the better. Equivalent Ncells on the patch are
reported for equivalent fine single mesh (EFSM) comparison. . . . . . . . . . . . . . 82

3.1 Average resulting pressure force over t? ∈ [40, 52.5] for the first study cases (χ = 1). 88
XVIII



LIST OF TABLES

3.2 Results obtained with the Chimera cases when the patch is refined and the substrate
resolution is fixed (equivalent to Ncells = 100), compared with their equivalent fine
single mesh computations (EFSM). . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3 Detachment distance of the bow shock wave in front of the cylinder: overlapping
grids with the proposed Chimera cases. On the left side, number of cells are increased
keeping the cell ratio (χ = 1) constant. On the right side, cell ratio (χ) is varied with
a prescribed number of cells in the substrate model (equivalent to Ncells = 100). . . 92

3.4 Results obtained with the Chimera cases (Ncells = 80) for different values of χ,
compared with their equivalent fine single mesh (EFSM) computations. . . . . . . . . 108

4.1 Cell type combinations for the coupling of the Chimera method with the MBM. . . . 125
4.2 Grid convergence analysis of the free piston with the split configuration: results on

density (ρ) errors obtained with a single grid MBM as well as with the present Chimera-
MBM using a patch with same grid spacing as the substrate (χ = 1.0) but with
non-coincident grids (δS = 0.6hW). . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.3 Cell ratio analysis of the free piston with the split configuration: results on density
(ρ) errors obtained with a single grid MBM as well as with the present Chimera-MBM
using a finer grid in the patch region (Ncells = 300, χ > 1). . . . . . . . . . . . . . 140

4.4 Cell ratio analysis of the free piston case with the split configuration: results on density
(ρ) errors obtained with a single grid MBM as well as with the present Chimera-MBM
using a coarser grid in the patch region (Ncells = 4800, χ 6 1). . . . . . . . . . . . 141

4.5 Grid convergence analysis of the free piston with the patched configuration: results
on density (ρ) errors obtained with a single grid MBM as well as with the present
Chimera-MBM using a patch with same grid spacing as the substrate (χ = 1.0) but
with non-coincident grids (δS = 0.3hW). . . . . . . . . . . . . . . . . . . . . . . . . 148

4.6 Cell ratio analysis of the free piston with the patched configuration: results on density
(ρ) errors obtained with the present Chimera-mediating body approach using a finer
grid in the patch (Ncells = 300, χ > 1). . . . . . . . . . . . . . . . . . . . . . . . . 150

4.7 Fluid mass variation of the low pressure chamber between t? = 0 and t? = t?f = 3.75. 165
4.8 CPU time ratio and memory usage ratio of the fine single grid MBM configuration to

the coarse single grid MBM configuration and the Chimera-MBM configuration. . . . 166
.

XIX





Nomenclature

Finite volume and Chimera important notations

U Discretized domain or grid represented as a set of cells.

ΩU Set of indices of the cells belonging to U .

Ki Fluid cell with i ∈ ΩU .

γ(i) Index set of the cells adjacent to Ki, i ∈ ΩU .

|Ki| Volume of the fluid cell Ki.

FUij Interface separating the cell Ki to the cell Kj , (i, j) ∈ ΩU × γ(i).

(x, y, z) Global cartesian coordinate system.

(η, ξ, ζ) Local coordinate system in the frame of a face FUij .

UU
n
i /W Un

i Vector of conservative/ primitive variables of the cell Ki ∈ U at the discrete time tn.

UU
n
ij /W

Un
ij Interface state based on conservative/ primitive variables at FUij at the discrete time tn.

U
Un

ij /W
Un

ij Reconstructed interface state based on conservative/ primitive variables at FUij at the
discrete time tn.

u Fluid velocity vector.

W/V Global/Local grid referred as Substrate/Patch.

ΓV Patch boundary.
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Introduction

Studying accidental situations involving highly pressurized systems or explosive transients in large
and complex geometries is of importance for dimensioning facilities and for safety issues in industrial
environments. Such accidental situations can be found in the nuclear framework of Pressurized Water
Reactor (PWR) when Loss of Primary Coolant Accidents (LOCAs) [132] or H2 explosions [99] occur.
PWRs involve high temperature and pressure conditions (≈ 153 atm and 275 − 315◦C [153]) that
make accidental situations of such systems abrupt with severe possible consequences.

The brutal accidental context implies compressible flow features such as discontinuities (shock
waves or contact discontinuities), rarefaction fans or acoustic waves travelling at high speeds. These
flow features interact with each other resulting in complex flows with vortical structures from baroclinic
effect when multi-phasic or multicomponent mixtures are at play. Fast transient energetic flows may
also finally interfere with deformable structures inducing coupled phenomena at very small time scales
(10−6− 10−3s [56]). Considering the scale discrepencies and the high pressures involved, deformable
structural elements can also undergo displacements of finite amplitude.

Due to the risks and the general difficulty to perform tests with fully representative geometry and
initial conditions in the range described above, numerical simulation appears to be a powerful way
to characterize the response of the systems during such transients. Producing accurate and reliable
results in these configurations represents a challenging task since the computational domain must
account simulaneously for the largest scale of the geometry and for small geometrical details inducing
local flow patterns with significant influence on the global solution. Dealing with all the scales within
one mesh classically yields huge numbers of grid points and complex meshing procedures that can end
up with poor quality grids. The geometrical complexity and the scale discrepencies of such systems is
illustrated in Figure 1 representing the internals (a) and the support structure (b) of a PWR core. In
addition to the geometrical complexity constraint, the single mesh approach is also restrictive when
fluid and structural domains are modelled with conformant meshes for immersed structures. The
meshing procedure difficulty increases and the displacement of structural components is restricted to
preserve the shape of the cells in the connected fluid mesh.

One elegant solution to adress those two folds is then to associate, within one composite sim-
ulation, independent numerical models, in terms of both geometry and mesh, each adapted to the
physical phenomena of interest at different time and space scales. This helps decomposing the com-
plex geometry into simpler parts and allows for modular meshing that helps reducing the overall
computational cost of the simulation while being more fitted to the problem geometry. With a com-
posite grid approach, structural components can undergo large displacements without altering the
grid of the fluid domains. In the mean time, local fluid grids can be added to take into account the
local flow features generated by the moving structures.

Despite the many benefits that characterize the composite approach, it rises several concerns that
do not exist with a single grid approach and that need to be adressed. One of them is the impact of
a coupling between different fluid grids or between different structural grids on the global solution.
Another one is the compatibility of the coupling process for fluid-structure interactions (FSI) with
the fluid grid coupling mentioned above. In most cases, the use of composite grids in a large scale
simulation also involves non-matching grids with different cell sizes and different critical time steps.
If a unique time step is chosen, it is based on the smallest cell size and its impact on the stability of
global domain remains to be assessed.

In this thesis, we adress the need for a numerical tool able to improve global complex simulations
of fast transient dynamics by adding local geometrical details that can be deformable. This numerical

1



INTRODUCTION

Figure 1: Reactor vessel internals (left) and lower core support structure (right). Examples of complexmulti scale geometries. (source: [175]).

strategy is based on a composite grid approach and proposes a solution to the concerns mentioned
above. As a result, the proposed numerical strategy must fulfil the following requirements:

1. It must allow the introduction of localized geometrical alterations or details in a large scale
global numerical model.

2. As compressible flow features such as shock waves, contact discontinuities and rarefaction fans
are at play and can interact with each others, a particular attention is paid to system mass,
momentum and total energy conservation of the numerical scheme for the fluid domains.
Therefore, the proposed approach is chosen to be developed in the framework of the finite
volume method.

3. In readiness for an industrial usage, this strategy should offer a high flexibility and user-
friendliness. In particular, the proposed method must be as unconstrained from the grid used
as possible and the local grid must not require any modification of the large scale one. This is
why, the proposed approach relies on the introduction of the considered alteration in a local
grid which is overlaid over the global one.

4. The local model can be meshed finer than the global grid to increase the accuracy of the
solution near the introduced alteration. Therefore, the proposed approach must be able to
deal with multiple grids, each one having its own refinement.

5. It must be fully compatible with fluid-structure interactions (FSI) and more specifically with
deformable structural components that undergo large displacements.

An example of the targeted approach is illustrated in Figure 2 with a global scale grid representing
the core vessel and a patched overlaid grid that can contain a geometrical detail like the perforation
of a retaining plate with an adapted local grid. In this configuration, the core vessel can be modelled
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with a coarse grid containing the retaining plates wihtout any perforation that is referred as global
model. A local fluid patch containing a local perforation of the retaining plate can be patched onto
this global model. It is referred as local model. The local fluid grid aims to capture local fluid
phenomena generated by the local perforation.

Figure 2: The retaining plate perforations (circled in black) and the core vessel are independentlymeshed. The proposed strategy is to superimpose local alterations (mesh on the right) of the platesin the domain representing the reactor (mesh on the left) in order to improve the accuracy of the globalcalculation without altering the grids of the global parts.
Now that the characteristics of the numerical strategy are specified, we review existing methods

that aim to tackle similar issues. In order to give a comprehensive review, we chose to go through
known composite grid methods and underline if and how they are compatible with the requirements
that we outlined.

Bibliography

Composite grid methods have been a topic of interest since 1960s with initial work from Volkov
[180, 181] on the use of additional grids to smooth the high order finite difference solution of the
Laplace equation and the Poisson equation at the boundaries of the domain. Composite grid meth-
ods have been mainly developed from a finite difference framework for both elliptic and hyperbolic
problems [163, 164, 117] with an important interest for aircraft applications [9, 10]. Since then, the
composite grid field has been closely related to multi-model methods and multi-scale methods as it
allows the use of different models on different grids with possibly large spatial scale discrepencies
[105]. In the following, we consider two families of composite grid methods : the hierarchical grid
techniques and the overlapping grid techniques. Both categories use multiple grids and allow local
numerical zooms.

Hierarchical grid techniques
The first category of composite grid techniques that we review gathers various methods under the

name of hierarchical grid techniques. Each of these methods use multiple grid hierarchically organized
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to model different scales of the same physical problem. These methods are usually designed to model
a two-scale physical phenomenon with a macroscopic grid and a microscopic one. Other methods
use several scale levels to provide a smooth and modular grid refinement. The different grid levels
are coupled through operators able to transfer information between grids of different levels. This
type of methods has often been used for heterogeneous media modelling [186] and often rely on
homogenisation techniques to ensure compatibilty between the large and small scale domains as used
in [152].

The first hierachical grid methods considered are the multi-grid methods. Multi-grid methods have
initially been used for elliptic problems [76] using an implicit finite difference method and rely on high
wave number filtering of elliptical operators. The use of coarse and fine grids allows a better capture
of the frequency components of the discrete solutions in a reduced number of iterations compared
to a single grid approach. The transfer of the solution happens through restriction operators or
prolongation operators [26]. As demonstrated by Fish and Belsky, multi-grid methods are adapted
to study the behavior of periodical composite structures [65, 66]. The multi-grid methods have been
extended to hyperbolic systems [102, 5] and specifically to the Euler equations with implicit [128]
and explicit [90] schemes. The main idea is to increase the order of the numerical scheme using a
refined version of a base coarse grid for steady state applications [91]. However, multi-grid methods
have been mainly used to model steady state problems [124, 125] and they have not been designed
to introduce local geometrical alterations.

Following this idea of a localized increased accuracy, Adaptive Mesh Refinement (AMR) has been
developed jointly by Berger, Oliger and Colela [22, 20]. The method consists in adapting the accuracy
of a solution within certain sensitive or turbulent regions of a simulation, dynamically and during the
time the solution is being calculated. The global mesh ends up as a composite grid with different
levels of grids adjusting dynamically to the flow. However, with the AMR approach, the introduction
of a localized alteration of the geometry in the large scale numerical model is not straightforward.
Also it does not provide the flexibility of using non-matching grids. Then the proposed approach does
not involve AMR, even though it could certainly be used in a complementary way.

The same conclusion can be drawn for the Multi-Scale Finite Volume Method (MSFV) [95].
Initially developed for incompressible flows and transport in porous media, the MSFV method consists
in using a coarse Cartesian grid with a finite volume conservative scheme and to reconstruct from
the coarse pressure field, a local fine velocity field using two sets of basis functions and transmission
operators. This method has been extended to multiphase porous media [96] and compressible flows
[116] but also poroelasticity [161]. Regarding composite grid methods, the MSFV method has been
adapted to a multi-levels of grids [103] instead of two and has been used similarly to AMR as an
adaptive refinement tool in [127]. As mentioned earlier, even though this type of methods allows for
local adaptive refinement, it does not allow the use of independently meshed grids.

Some multi-grid methods using independent grids have been experimented. The Hierarchical
Dirichlet Projection Method (HDPM) [129] is one of them and uses a hierarchical set of grids
corresponding to the level of physical description of the problem. Sorted from the coarsest to the
finest level, a first coarse solution is computed. A user-based error criteria is used to estimate the
quality of the solution. Areas where the error criteria is not matched are refined with the coarse
solution as a boundary value. Once, the error criteria is met on the entirety of the domain, the
fine solutions are projected back onto the coarse grid. This method has mainly been used to model
the behavior of composite structures [131, 130]. Like the HDPM, various techniques have been
developed using independent grids to model multi-scale phenomena like the Two-scale Finite Element
(FE2) method [63] that uses microscopic grids at key integration points of a coarse grid in order
the get a more accurate physical description of the problem. This method allowed Feyel et al. to
model elastoviscoplastic behavior of composite materials [62] and Ramière et al. to approximate the
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behavior of heterogeneous nuclear fuel [146]. Similar approaches with independent grids have been
developed for incompressible inviscid flow in [3, 4] with the use of a secondary grid, representing a
fixed obstacle, patched onto a cartesian global mesh. However, it is more comparable to a restricted
fluid-structure interaction (FSI) method with non-deformable solid than a multi-grid fluid method as
the secondary grid does not model fluid.

Even though some of these multi-grid methods use independent grids to model different scales or
to model local geometrical details, they have mainly been designed and validated for the computations
of steady state solutions which is a limiting factor for our brutal accidental context. Also, they mainly
focus on the multi-scale aspect which is not the primary objective of our work. The solution that suits
our need is a composite grid method with non-matching grids allowing for geometrical details to be
added on a global finite volume simulation through a local grid. This is the objective of overlapping
grid techniques.

Overlapping grid techniques
The Arlequin Method

The first overlapping grid method that we are interested in is the so-called Arlequin method that has
been introduced by H. Ben Dhia [37]. He conceived an approach for the resolution of superimposed
models with non conforming meshes and/or different modelling for static and quasi-static cases [38].
The main idea of the Arlequin method is to use a partition of unity to superimpose models with
weights parameters to split the total energy between each model and to use a coupling operator
defined over a volumic area on the periphery of the local model. It has been applied to a large panel
of problems starting from structural problems like beam study [151, 43, 27, 39], crack propagation
[41] and contact problems [40]. In [42, 149], the Arlequin method is extended to a 3D framework
with plates and hulls. More recently, the Arlequin method has been used with an explicit-implicit time
integration allowing the modelling of rotating machinery with multiple time stepping [69, 68]. Even
though we are not interested in multi-scale methods, the Arlequin method has been extensively used in
multi-scale modelling with a global continuum model and a local atomistic model [142, 143, 13, 30].

Regarding fluid dynamics, the Arlequin method has been applied to fast transient problems [61]
as well as some incompressible flow problems [93, 45]. The present work also benefits from the
previous work carried out by Fernier et al. [60], in which the relevance of the Arlequin method for
structural fast transient dynamic simulations with explicit-explicit time integration is demonstrated.
However, the Arlequin method shows some limitations with fluid fast transient dynamics in [59] with
the appearance of ghost forces and numerical artifacts that require a filtering procedure. Also, it has
been designed for a finite-element framework and would require a conversion to our framework as,
to the best of our knowledge, the Arlequin method has not been used in a finite volume context.

The Chimera Method

The second method considered is the Chimera method developed by Steger and Benek [166] and
further extended in [17] and [165]. The main idea of the Chimera method is to allow independent and
non-matching grids to transfer information using existing cells or nodes as a receiving container. Like
the Arlequin method, the Chimera method requires an overlapping zone for the information to be
transferred. It also presents the same flexibility but has been designed for a finite difference framework
and has been translated to a finite volume framework. The Chimera method has been extensively
reviewed with a finite difference framework for compressible turbulent flows with the code Overture
[82, 83, 84, 32, 157] and NASA [119, 120, 141, 12], mostly for aircraft applications as the Chimera
method can be used to simplify mesh generation with independent composite grid assemblies. The
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method has also been used for wave propagation [7], incompressible flows [174, 50] and inviscid
compressible flows [184, 185]. In each case, the Chimera method provides a good solution for
overlapping grids apart from introducing an interpolation error which can be compensated by using
a higher order interpolation for the exchange procedure than the order of the numerical scheme.
Recently, the Chimera method has been transposed to a finite volume framework and has been tested
for various aircraft applications with compressible turbulent flows with the codes elsA [64, 136] and
TAU [154, 187] but also in [8].

The Chimera method has also been used with inviscid compressible flows in [19] where the time
integration is implicit as they are not dealing with fast transient dynamics. In [86, 87], the Chimera
method is combined with AMR for reactive flows. Several references can be found on the use of a
Chimera method combined with moving cartesian grids [19], [150] for rotor computations or complex
aircraft geometries [104]. In this thesis, the topic of moving grids is not of primary importance and
will not be investigated. In other words, we are focusing on applications in which a geometrical detail
contained inside a local grid generates compressible flow structures such as shock waves, contact
discontinuities or rarefaction fans. These local flow structures propagate from the local grid and
cross the overlapping grid interface to spread over the global grid and eventually affect the global
grid solution. Without a local grid, these flow structures would not be captured by a coarse global
grid and a fine global grid would dramatically increase computational costs. More recently, high order
Chimera methods have also been developed like in [107] with global to local frame transformations
and in [148, 147] with a Moving Least Squares reconstruction technique.

When dealing with overlapping grids and compressible transient flows, system mass, momentum
and total energy conservation must be ensured for capturing discontinuities involved in shock waves
and contact discontinuities. Berger gave a definition of the concept of global conservation for
multi-grid hyperbolic systems [21]. This definition states that an overlapping grid system is globally
conservative if, for a steady state flow, on the outside boundary of the global domain, the numerical

approximation of
∫

Γ
u(x, t)dS, is independent of time, with u(x, t) the exact solution of the hyperbolic

system. In [133] and [18], conservative interpolation schemes are reviewed. It is stated that the
only way to achieve a conservative interpolation is to use a flux interpolation scheme. However,
it is pointed out that schemes based on flux interpolation are not stable. Therefore, a compromise
between stability and conservation has to be made. Also, it is advised to avoid discontinuities crossing
the overlapping interface. However, Pärt and Sjögreen [133], obtained a strongly stable and nearly
conservative interface condition which is based on conservative variables. In [188], Wu demonstrated
using the stability theory of Gustafsson Kreiss Sundström (GKS) [74] that a conservative treatment
of overlapping exchange zone leads to weakly stable solutions. In [189, 108], Lerat and Wu also
concluded that stablity with non-conservative interpolations should be favored instead of conservative
interpolations with unstable solutions.

Other approaches have bypassed the interpolation problem by modifying the discretization in the
overlapping region. In [184, 184, 25], the overlapping grid interface is intersected by the global grid
and fluxes are splitted accordingly forcing local conservation. In [101, 100, 23], the entire overlapping
zone is remeshed with unstructured grids. Remeshing the overlapping zone has been proven to be
conservative and stable but computationally expensive [183].

In most of the mentioned applications, if the Chimera method is not used as a flexible mesh
generation tool it is often used to improve the accuracy around a patched geometrical detail for
a better capture of the boundary layer for instance [150, 87]. In this thesis, the local grid aims
to improve the geometrical complexity by introducing geometrical details that will generate flow
features like shock waves, contact discontinuities or rarefaction fans. These flow features can remain
inside the patch but they can also cross the overlapping grid boundary. Either way, they impact the
global solution and could only be captured with a complex and fine grid with a standard single mesh
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approach. Even if Péron [136] stated that it is more desirable to have similar cell sizes, few works have
been found to thoroughly assess the Chimera method with variable cell sizes between the grids. As
a result, the Chimera method seems the most promising method for adding local geometrical details
in a finite volume framework even though some properties of the method still need to be tested in
the context of fast transient dynamics.

The review made on the composite grid techniques only includes fluid-fluid or structure-structure
cases. As the Chimera method has been retained as the solution for our finite volume framework, we
now focus on the coupling of the Chimera method with fluid-structure interaction (FSI) methods.

Fluid-Structure Interaction methods for large displacements and
coupling with Chimera methods

Fast transient phenomena involve compressible flow structures like shock waves, contact discon-
tinuities and rarefaction waves. These flow components interact with structural deformable compo-
nents. As a result, structures can undergo large displacements and rotations. Non-linear behaviors
like plasticity and/or damage can be associated to the various structural components of the system.
As a consequence, well-known Arbitrary Lagrangian Eulerian (ALE) approaches [44, 85, 123] reach
a limit where it is not possible for the fluid to follow the displacements of the structures without im-
pacting the fluid solution due to extremely low quality cells. It often induces a remeshing of the fluid
domain. In the case of fixed complex 3D geometries, the meshing procedures are already extremely
difficult for single mesh fluid simulation and become even more complex for ALE simulations due to
conformity constraints. These constraints generally increase the number of grid points and can cause
low quality elements that will impact the numerical fluid solution. The grid constraint between fluid
and structural components can be lifted by using an Immersed Boundary (IB) method [138, 139, 36].
Initially proposed by Peskin, the IB method breaks the topological connection between the fluid and
structure grids and provides the flexibility and robustness to handle complex structural geometries
in motion for industrial applications [55, 94]. Since then, immersed boundary approaches have been
extended with immersed interface methods [109, 111, 112], Fictitious Domain approaches [71, 72],
Ghost Fluid methods [58, 57, 54, 173], Direct Forcing approaches [122, 191, 51, 137], cut-cell meth-
ods [135, 52, 34, 46, 155, 81, 88, 123, 144, 145] or Discrete Interface methods [29, 14, 182, 92].
The immersed boundary type of method is often preferred where ALE methods fails. However, im-
mersed boundary methods can be used with ALE fluid meshes to enforce a Lagrangian behavior of
an interface or to track a particular region [53].

Among the immersed boundary methods, cut-cell methods have been specifically developped for
hyperbolic problems like compressible flows. They consist in subdividing fluid cells that are intersected
by the structural mesh to conform to the fluid-structure interface which naturally cope with the fluid
cells passing form one side of an obstacle to the other. With this type of approach, merging techniques
for the small cells are required to preserve stability. Even though cut-cell methods can ensure system
mass, momentum and total energy conservation, they are not designed to work with thin structures.
Also, they are incompatible with non-manifold and non-connex structure parts within a cell. This
makes cut-cell methods difficult to use in a context of large scale fluid simulation where structural
parts like plates are often modelled using shells.

Discreted Interface methods like the Mediating Body Method (MBM) [14, 92] use fluid cells
crossed by the structure interface as a mediating body between the fluid and the structure. In
[92], the structure geometry is averaged within each crossed fluid cell through the introduction of
an averaged normal pseudo-projection operator. This operator allows a virtual remeshing of the
mediating body cell faces to decompose each face into an impermeable wall part acting as a moving
wall for the fuid and a permeable wall that will absorb part of the fluxes. This virtual remeshing
allows for an accurate estimation of the pressure force exerted by the fluid on the structure. A
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particular treatment is applied to fluid cells which cross the embedded structure i.e., which lie at
a given time on one side of the structure and lie on the other side at further time. This problem
was initially adressed in [115] under the name "extrapolation of the solution" and further extended in
[193] as "ghost to real". In [182], an extrapolation based on the work of [54] is done while in [92], the
extrapolation is done using neighboring cells that are not crossed by the structure. An ALE emulation
technique is detailed in [92] to take into account the fluid volume swept by the structure when it
remains contained inside the same fluid cell set between two discrete time steps. The ALE emulation
reduces the impact of the method on system mass, momentum and total energy conservation when
the structure undergoes small displacements.

The extrapolation problem is still under development with recent work from [156] that uses a
hybrid cartesian immersed boundary method [70] with ghost cells for solution reconstruction near
immersed boundary interface. As they are dealing with sharp edges, an interface tracking procedure
based on ray tracing algorithm and a new three step solution reconstruction has been developed.
Such procedures provide accurate results but require heavy reconstruction procedures and geometrical
computations.

In a framework of large scale system involving fast transient FSI, the coupling of an immersed
boundary (IB) technique like the Mediating Body Method [92] and an overlapping grid technique like
the Chimera method for the finite volume fluid simulation is interesting for several reasons which can
be illustrated with the example of the separated chambers shown in Figure 3. The global fluid mesh
W contains the outer geometry of the chambers. The global mesh is chosen coarse as it covers a
large geometrical domain. A local grid referred as first patch V1 brings with it the separating wall S
independently meshed from the fluid. The coupling between the first patch and the structure is made
using an IB method such as the MBM [92] while the coupling between the first patch V1 and the
global grid W is made using a Chimera method. The separating wall S contains a perforation that
is smaller than the first patch grid cell size. Therefore, the perforation is not captured by the fluid
model and the chambers remain sealed. Using a coupling between the IB method and the Chimera
method that we call Chimera-IB method, a second patch V2 finer than the first one can be added in
order to capture the perforation and generate a leak between the two chambers.

x

y

z x

y

z

Global grid W

First patch V1

Second patch V2

Separating wall S Global grid W

First patch V1

Second patch V2

Separating wall S

Figure 3: Separated chambers example: The global fluid mesh (W) is represented in black, the sepa-rating wall (S) in green, the first patch (V1) that contains the structure is in blue while the finer secondpatch (V2) that captures the perforation is represented in red.

This example is a direct simplification of the problematics involved in brutal accidents like LOCAs
or H2 explosions with complex geometries like the one presented in Figure 2. Large and geometrically
complex systems cannot be modelled with a single grid with a reasonable amount of time. A numerical
tool that allows a set of simpler local grids compatible with fluid-structure interactions (FSI) to be
patched onto a coarser global grid can drastically improve the workflow of the numerical modelling
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of complex systems. First, a Chimera-IB method can improve the global solution with local grids
that fit the geometry of the problem or the flow physics but with a reduced impact on computational
cost compared to a fine single grid approach as it uses less total grid points. Secondly, as the
Chimera method is coupled with an immersed boundary (IB) method, the structure deformations
and displacements do not impact the fluid grid which preserves its inital quality unlike a Chimera-
ALE approach[67, 121]. Finally, a Chimera-IB method could offer the flexibility to easily change the
interior layout of the large model reducing the time currently required for grid generation process.
Even though it is not the primary objective of this thesis, a possible feature of a Chimera-IB method
could be to follow the motion of each structure component with a local moving fluid grid attached
to it. This would be particularly useful if small structural components undergo large displacements
like in debris modelling.

The topic of Chimera-IB coupling techniques is relatively new with inital work on incompressible
flow from [126] and more recent works like [140, 168, 137] on compressible turbulent flows for aircraft
applications. All of those works use a direct forcing IB method. To the best of our knowledge, very
few references are available on the Chimera-IB coupling for inviscid compressible flows in transient
regimes and we have not been able to find any work on a Chimera-IB coupling using a discrete
interface immersed boundary method like the MBM [92].

Partial conclusion
A wide variety of methods have been used to superimpose local geometrical alterations onto a

global domain. As we are mainly interested in the flexibility of the method and the independence
between the grids employed, the composite grid techniques like the Arlequin method and the Chimera
method appear as a promising solution. They allow local grids to be patched onto global models
without modifying the large scale grids. The Arlequin method has already been experimented with an
equivalent context but in a finite element framework in [59]. It has shown limitations regarding fast
transient fluid dynamics and the translation to a finite volume framework is not straightforward. On
the contrary, the Chimera method has been widely investigated and is used as an industrial meshing
tool for aircraft applications. Therefore, the Chimera method has been retained in our work and
needs to be implemented and assessed for different fast transient dynamic applications with industrial
accuracy requirements, user-friendliness and robustness constraints. Various aspects of the Chimera
method still need to be examined from a finite volume perspective like the compatibility with high
cell ratios between the grids or the impact of the interpolation used in a context of fast transient
dynamics involving shock waves, contact discontinuities and rarefaction waves but also interfaces
between different fluid components.

In a framework of brutal accidental situations with fast transient dynamics involving large struc-
tural displacements, immersed boundary methods are widely used for complex geometries involved
in industrial applications. As conservation is key when dealing with compressible flow structures like
shock waves and contact discontinuities, cut-cell methods [123, 144, 145] are promising regarding
total system mass, momentum and total energy conservation but they involve computationally heavy
geometrical procedures at each iterations. On the other hand, discrete interface methods like the
Mediating Body Method [92], require less geometrical intersections and benefits from an ALE emula-
tion that improves conservation properties of the method. As a result, it is an interesting compromise
between conservation and computational cost that suits industrial specifications. To the best of our
knowledge, the coupling of an IB method like the MBM with an overlapping grid technique like the
Chimera method has not been done yet.

These shortcomings justify the work presented in this thesis. It consists in developing a numerical
tool able to superimpose different grids when simulating fast transient phenomena in a finite volume
framework with an explicit time integration. This tool aims to improve the workflows of large and
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complexe fast transient systems modelling such as LOCAs or H2 explosions. Therefore, it must be
compatible with fluid-structure interaction (FSI) through the use of an immersed boundary method
such as the MBM [92]. This numerical strategy must be user-friendly and flexible as it must use
independent grids and must be robust enough to handle large cell ratios between the grids. The
proposed strategy is automated and implemented inside the MANTA software designed for explicit
dynamics and currently in development at the DYN laboratory in the Service d’étude mécaniques et
thermiques (SEMT) at the Commissariat à l’Energie Atomique et aux Energies Alternatives.

Presentation of the scientific approach of this work

The present manuscript is organised as follows:
In chapter 1, we introduce the fluid models and the finite volume framework that we will be

using including the spatial and time integration schemes and the type of limiters for high order finite
volume schemes considered in this work.

In chapter 2, we detail the development of a finite volume Chimera method for fast transient
dynamics. We start by introducing the concepts invoved in the framework of Chimera methods such
as cell detection, marking and interpolation. As our version of the Chimera method relies on the
injection of information from one grid to the other using existing fluid cells as receiving containers, we
detail the detection and marking procedure that we have chosen. The impact of boundary conditions
is examined in order to ensure that the border of the patched grid does not interfere with the interior
of the domain. Then, a first order interpolation method in space is initially proposed and has been
improved to a second order interpolation method. The second order interpolation is limited using
a modified version of a well-known finite volume limiter. This modification allows the second order
reconstruction to be used with high cell ratios between the grids. The implementation in the MANTA
software is detailed with the inclusion of the Chimera procedure within the integration scheme. The
differences between the first and second order Chimera methods are reviewed using analytical test
cases like a sinus advection, a stationary shock wave, a Sod shock tube and finally an isentropic
vortex advection. These test cases have been chosen as they highlight the differences between the
two methods including the improvements that the second order reconstruction brings. Finally, a
reference configuration is provided for using our finite volume Chimera method.

In chapter 3, the impact of the reference configuration of the developed Chimera method on the
physics of fast transient dynamics is assessed using three well known test cases from the literature. A
patched cylinder is used to exhibit the ability of the Chimera method to transfer discontinuities like
shock waves from one grid to another. Then, a patched Helium bubble hit by a shock wave allows
us to evaluate the ability of the method to tranfert two-component interfaces from one domain to
another. This case in then tested in a different version with an R22 bubble hit by a shock wave.
Finally, a Double Mach reflection is used to assess the impact of the Chimera transfer on transient
fast dynamics when shock waves, triple points, Mach stems and slip lines cross the overlapping grid
interface. The Chimera versions of those test cases are compared to standard single grid versions.

In chapter 4, the developped Chimera method is extended to FSI applications using a coupling
with the Mediating Body Method (MBM) [92] introduced above in this section. The base MBM
is presented and extended to work with the Chimera method. The idea is to ensure valid coupling
conditions in the presence of multiple fluid grids. The MBM affects the Chimera method as cells that
are used to send information between grids become unusable because of the MBM. An extrapolation
technique based on a two-side reconstruction is proposed to ensure the compatibility of the Chimera
method when the immersed structure crosses mutliple fluid grids. The method is then assessed on
two test cases. The first test case is a free moving piston that separates two chambers with a pressure
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jump. This test case allows us to assess the impact of a structure crossing multiple grid on the flow
field. An analytical solution can be derived for this case enabling a comprehensive analysis of the
method. Finally, a 3D case is proposed as a combination of the developped features and gives an
idea of the industrial applications of the method.

The developements achieved during this thesis can be found inside the MANTA software. It is
an object oriented C++ code for explicit and implicit fast transient dynamics.

In this work, we adopt the following writting convention: every vector is expressed through the
column matrix of its components in a fixed orthonormal basis of the 3D Euclidian space {~ei}i∈{1,2,3}.
Such a column matrix is denoted with a single single underline. The second order tensors are expressed
through the matrix of their components in the basis {~ei ⊗ ~ej}2(i,j)∈{1,2,3}. Such a matrix is denoted
with a double underline. For the sake of clarity, we adopt the following notations : a · b = atb and
a⊗ b = abt, where the right superscript "t" corresponds to the matrix transposition.
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problems
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In this chapter, we present the equation models that are used in this work. The equations are
discretized using a second order Godunov-type finite volume method with explicit time integration.
The time integration is explicit as it is more adapted to simulate fast transient phenomena with small
time scales. As we are focusing on the addition of geometrical details instead of multi-modelling, the
equation sets and discretization methods are identical across a set of overlapping grids even though
each grid is meshed independently. This framework is used in chapters 2 and 3. It is then combined
with an immersed boundary (IB) method for FSI problems in the last chapter.

1.1 - Governing equations for fast transient inviscid
flow problems

In fast transient dynamics, the flows are characterized by the predominance of inertial phenomena
and acoustic waves induced by the compressibility of the fluids. The physics of such systems is
governed by wave propagations generated by high pressure gradients as well as high velocity gradients.
As viscosity time scale is higher than the fast transient dynamics problem time scale, focusing on
fast transient flows allows us to neglect viscous effects in favor of convective transport and more
specifically wave propagation. Therefore, the flows considered in this work are inviscid.
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CHAPTER 1. FINITE VOLUME FRAMEWORK FOR FAST DYNAMIC PROBLEMS

1.1.1 - Inviscid compressible flow model: the Euler equations
A . Presentation of the Euler equations for single phase flows

The problem is governed by the Euler system of equations for compressible flows. The fluid occupies
a fixed open set T . The governing equations written in a local conservative vectorial form, express
the conservation of mass, momentum and total energy for a single fluid medium as follows:

∂

∂t
(U) +∇ · F (U) = 0 (1.1)

with the vector of conservative variables (U) and the Euler fluxes
(
F (U)

)
:

U =

 ρ
ρu
ρE

 , F (U) =

 ρu
ρu⊗ u+ pId

(ρE + p)u

 (1.2)

where Id stand for d × d identity matrix with d the space dimension. Here we consider d = 3. We
also note W = (ρ, u, v, w, p)t the vector of primitive variables. In these equations, ρ is the density,
p the pressure, u = (u, v, w)t the velocity vector, and E the total energy per unit of mass.

B . Five equation model for inviscid interface problems

In the context of brutal accidents, fast transient dynamics involve multiphase flows with liquid-gas
phase changes and multicomponent reactive flows with gas-gas mixing interfaces like in H2 explosions
for example. Multiphase flows are often considered when one phase only occupies a fraction of the
total volume [47] whereas multicomponent flows are considered for fluid components with comparable
densities. In multicomponent flows, different chemical species are mixed and generally share the same
velocity and temperature. The chemical species may also interact through chemical reactions making
the resulting multicomponent flow reactive.

In this work, we do not take into account thermodynamics of phase changes nor chemical re-
actions between species as they are not the main governing physical phenomena involved in the
considered problems. Also the purpose of this work is not to investigate multiphase or multicompo-
nent reactive flows but to provide a numerical strategy compatible with multicomponent flows. As
a result, multicomponent flows are modelled based on species interface tracking. To do so, we use
the compressible version of the reduced five-equation two-component flow model proposed by Allaire
et al. [2], specially designed for interface problems. This model preserves system mass and total
energy while ensuring the absence of oscillations near the interface. It has been primarily designed
for compressible flow problems involving two-components and it applies to the Euler equations. The
governing equations in a vectorial form are written as follows:

∂

∂t
(U) +∇ · F (U) = B(U)∇ · u, (1.3)

where the modified vector of independent variables (U), the modified Euler fluxes
(
F (U)

)
, and the

source terms (B(U)) write:

U =


ρ1α1

ρ2α2

ρu
ρE
α1

 , F (U) =


ρ1α1u
ρ2α2u

ρu⊗ u+ pId

(ρE + p)u
α1u

 and, B(U) =


0
0
0
0
α1

 , (1.4)
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1.1. GOVERNING EQUATIONS FOR FAST TRANSIENT INVISCID FLOW PROBLEMS

In these equations, ρ, p, u = (u, v, w)t and E are respectively the density, the pressure, the
velocity vector and the total energy per unit of mass of the two-fluid mixture. αk is the volume
fraction of the component k. Thus for a two-component fluid, the following constraint has to be
considered α1 = 1 − α2. ρk is the density of the component k (k = 1, 2), and the density of the
mixture (ρ) is defined as: ρ = ρ1α1 + ρ2α2 to recover mass conservation. The two components of
the fluid are supposed to have the same velocity u. In addition to an equation of state (EOS) an
additional closure law is required with this model. In this work, an isobaric closure is chosen so that:

p = p1 = p2 (1.5)
The isobaric closure is preferable to the isothermal closure as it does not introduce spurious pressure
oscillations at the interface as shown in [2].

1.1.2 - Perfect gas equation of state
The model presented for both single phase and multicomponent flows requires a thermodynamic

closure ensured by an equation of state of the form:

p = p(ρ,T), and e = e(ρ,T), (1.6)
where T is the fluid temperature and e its specific internal energy. For the development of our
numerical strategy, we focus on simple thermodynamic situations with calorically perfect gas knowing
that such asumption is only valid up to certain temperature levels [6]. 1 A calorically perfect gas is
characterized by the fact that the specific internal energy (e) and the specific enthalpy (h) are linear
functions with respect to temperature (T). The specific internal energy and the specific enthalpy are
defined as follows :

e = E − ‖u‖2/2, h = e+
p

ρ
. (1.7)

For a calorically perfect gas, e and h write:

e = cvT, h = cpT, (1.8)
where cv and cp are the specific heats respectively at constant volume and constant pressure. Also,
the specific heats are assumed constant and as a consequence, the specific heat ratio γ =

cp
cv

is

constant. The specific heats cv =

(
∂e

∂T

)
v

and cp =

(
∂h

∂T

)
p

can be expressed using the Mayer

relationship:

cp − cv =
R

M , (1.9)
where, R = 8.314 K ·K−1 ·mol−1 is the ideal gas constant and M is the molar mass of the gas.
For Air in normal temperature and pressure (NTP) conditions, the molar mass is approximately
M ≈ 29 · 10−3 kg ·mol−1. It can be approximated as a diatomic gas (N2 and O2) with a specific

heat ratio (γ) equal to
7

5
. Using the specific heat ratio (γ) and the Mayer relation 1.9 leads to :

cp =
γR

(γ − 1)M , cv =
R

(γ − 1)M . (1.10)
Using the definition of the specific enthalpy and equation 1.8, the equation of state for a calorically
perfect gas writes:

p = (γ − 1)ρe. (1.11)
1More complex EOS could be tested with the proposed method.
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This equation also known as the ideal gas equation of state is the only equation of state considered
in this work. The isentropic sound speed for an ideal gas writes :

c =

√
γp

ρ
. (1.12)

In the case of a multicomponent flow with two species, the pressure (p = p1 = p2) is related
to the conservative quantities through the previously introduced ideal gas equation of state. In this
context, each fluid k is characterized by its equation of state:

p = (γk − 1)ρkek, (1.13)
where γk is the heat capacity ratio, and ek is the internal energy relative to phase k. The speed of

sound in the phase k is ck =

√
γkp

ρk
.

Regarding the mixture, the specific internal energy e is defined as ρe = ρ1α1e1 + ρ2α2e2. The
speed of sound (c) associated to the mixture is defined in [2] by:

ρξc2 = ρ1α1ξ1c
2
1 + ρ2α2ξ2c

2
2, (1.14)

with ξk = ρk(∂ek/∂pk) and ξ = ξ1α1 + ξ2α2. In the following, this model is referred as to two-
component model.

1.2 - Explicit Total Variation Diminishing discretiza-
tion of the inviscid equation model

In this section, we present the finite volume discretization that we have used in our work. The
discretization is illustrated on the Euler system of conservative equations. The non-conservative term
introduced by the two-component model is detailed separately. The finite volume method is a natural
choice when dealing with conservative equations as it has been designed to ensure conservation.

1.2.1 - The Godunov method
The integration of the system of equations 1.1 is based on an explicit finite volume method. The

computational domain of interest is divided in 3D-polygonal control volumes (Ki) ∈ U , where U ,
is the ensemble of control volumes. We denote by ΩU the number of cells within the domain U .
We write |Ki| the volume of Ki. We note γ(i) the set of adjacent cells2 to Ki. We introduce the
discrete times: ∀ n > 0, tn+1 = tn + ∆tn where ∆tn is the variable time step at the n-th time
iteration. By integrating equation 1.1 over the cell |Ki| between the times tn and tn+1, we get the
integral form of the Euler equation:∫ tn+1

tn

∫
Ki

∂U(x, t)

∂t
dV dt+

∫ tn+1

tn

∫
Ki

∇ · F
(
U(x, t)

)
dV dt = 0, (1.15)

to which we can apply the Green-Ostrogradski theorem:∫
Ki

U(x, tn+1)− U(x, tn) dV +

∫ tn+1

tn

∫
∂Ki

F
(
U(x, t)

)
· n dS dt = 0, (1.16)

2a cellKj is adjacent to the cellKi, i 6= j, if they share a common face in 3D, edge in 2D and node in1D.
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with ∂Ki the boundary of the cell Ki. We introduce Uni the mean cell conservative variables at the
cell Ki and at the time tn defined as:

Uni =
1

|Ki|

∫
Ki

U(x, tn)dV. (1.17)
Uni is a numerical approximation of the conservative variables, solution of equation 1.1. For all

cells Kj , j ∈ γ(i), the interface that separates Ki from Kj is denoted indifferently Fij or Fji. nij
is the normal of Fij directed from Ki to Kj and |Fij | is the surface of the face Fij . Using 1.17 in
1.16, we have:

Un+1
i = Uni −

1

|Ki|

∫ tn+1

tn

∑
j∈γ(i)

∫
Fij

F
(
U(x, t)

)
· nij dS dt. (1.18)

Using the Godunov method, we introduce the numerical flux function:

∆tn F̂ (U∗nij , nij) ≈
1

|Fij |

∫ tn+1

tn

∫
Fij

F
(
U(x, t)

)
· nij dS dt, (1.19)

where U∗nij is the approximate solution at the interface Fij at the time tn. It is the solution of
the Riemann problem RP

(
U
n
ij , U

n
ji

)
along the ray x/t = 0 in the local frame of the interface Fij ,

with Unij and U
n
ji the interface states at the face Fij . As demonstrated in [170], if the time step ∆tn

satisfies the CFL condition:

∆tn 6 mini∈ΩU

hi
Snmax

, (1.20)
with hi the characteristic length of the cell Ki and Snmax the maximum wave velocity present through
the domain at time tn, the Riemann problem solution U∗nij is constant in the local frame of the
interface Fij , between tn and tn+1. Equation 1.18 can be written using the numerical flux function
1.19 as:

Un+1
i = Uni −

∆tn
|Ki|

∑
j∈γ(i)

|Fij |F̂ (U∗nij , nij). (1.21)

This equation results from the well-known Godunov scheme presented in [73] with an explicit
time integration. In the following, we detail the Riemann problem with the approximate Riemann
solver that we use for providing an expression to the numerical flux function 1.19. The numerical
flux function can also be written with the interface states Unij and Unji used in the computation of
the approximate solution (U∗nij) as F̂

(
U
n
ij , U

n
ji, nij

)
.

1.2.2 - Riemann problem for the one-dimensional Euler equations

As presented in equation 1.21, a flux function F̂ (U∗nij , nij) needs to be computed at every face
Fij of the cell Ki. This flux requires the solution U∗nij that results from the resolution of a Riemann
problem (RP) at the face Fij , in the normal direction nij that is referred as local frame. The
local frame of the interface Fij is defined by the normal vector nij and two vectors tangent to the
interface Fij , denoted t1ij and t2ij , such that nij · t1ij = 0 and t2ij = nij × t1ij . As a result, multiple
one-dimensional Riemann problems need to be solved - one for each face of the cell Ki - in the
direction normal to the interface of interest. This problem is referred as x-split three-dimensional
Riemann problem. In this section, the normal direction nij is assimilated to the η-axis and the time
indices are ignored as all the numerical variables considered here are expressed at the time tn.
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A Riemann problem is defined by a system of hyperbolic conservation laws with simple but
non-trivial initial conditions. The Riemann problem for the one-dimensional time-dependant Euler
equations is the initial value problem (IVP) for the conservation laws

∂U

∂t
+
∂F (U)

∂η
= 0, (1.22)

where U = (ρ, ρun, ρut1 , ρut2 , ρE)t and F (U) =
(
ρun, ρu

2
n + p, ρunut1 , ρunut2 , un(ρE + p)

)t,
with un the velocity component normal to the face Fij of the cell Ki and (ut1 , ut2) the tangential
velocity components. The initial conditions (IC) of this problem are defined by:

U(η, 0) =

{
UL if η < 0,

UR if η > 0.
(1.23)

The domain of interest in the η − t plane are points (η, t) with −∞ < η < ∞ and t > 0. In
practice, η varies in a finite interval [−hi/2, hi/2], with hi the characteristic length of the cell Ki.
Initial conditions consist of two constant states UL for η < 0 and UR for η > 0 in the local frame
of the face Fij . These states correspond to the interface states U ij and U ji. Instead of solving
U∗ij(η, 0) = RP

(
U ij , U ji

)
, we solve U∗ij(η/t) = RP(UL, UR) and we evaluate the similarity

solution of the Riemann probem defined by equation 1.22 and 1.23 at η/t = 0.

η

t

UL

U ∗

L U ∗

R

Star region

λ1 = un − c λ2,3,4 = un λ5 = un + c

UR

Figure 1.1: Structure of the solution of the Riemann problem for the one-dimensional Euler equationson the η − t plane. Unknown waves (shock waves or rarefaction fans) are depicted by a pair of raysemanating from the origin.
Figure 1.1 illustrates the structure of the similarity solution U∗ij(η/t) of the Riemann problem

for the x-split three-dimensional Euler equations. It corresponds to a Riemann problem in the local
frame and takes into account the tangential velocity components ut1 and ut2 .

This three dimensional Riemann problem has five waves associated to the eigen values λ1 = un−c,
λ2,3,4 = un and λ5 = un + c and the characteristic fields corresponding to the right eigenvectors
R(i), i = 1, 2, 3, 4, 5. We choose the convention of representing unknown waves by a pair of rays
emanating from the origin and the middle wave by a dashed line. Each wave is depicted along with
the corresponding eigen value. It can be proven that the λ2, λ3 and λ4 fields are linearly degenerate,
i.e. ∇λi(U) · R(i)(U) = 0, i = 2, 3, 4 (see [78]). As a result, the middle wave associated with
the R(2) characteristic field is always a contact discontinuity. The characteristic fields associated to
λ3 = un and λ4 = un (R(3) and R(4) characteristic fields) correspond to two shear waves across
which the tangential velocities ut1 and ut2 are discontinuous. The R(1) and R(5) characteristic fields
are genuinely nonlinear, i.e. ∇λi(U) · R(i)(U) 6= 0, i = 1, 5. As a result, they are associated with
rarefactions or shock waves.
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1.2. DISCRETIZATION OF THE INVISCID EQUATION MODEL

The three waves associated to the eigen values λ1, λ2 and λ5 separate four constant states. From
left to right, we find the left constant state UL, the star region between the λ1-wave and λ5-wave
and the right constant state UR on the right-hand side of the λ5-wave. The star region is composed
of two subregions U∗L and U∗R separated by the contact discontinuity associated to λ2. Both pressure
(p) and normal velocity (un) are constant in the star region.

(a)

η

t

(c)

η

t

(b)

(d)

η

t

η

t

Figure 1.2: Possible wave patterns in the solution of the Riemann problem: (a) left rarefaction, contact,right shock, (b) left shock, contact, right rarefaction, (c) left rarefaction, contact, right rarefaction, (d) leftshock, contact, right shock.
While the Riemann problem definition is relatively simple, it contains fundamental wave propa-

gation physics and it ensures conservation in the context the Godunov scheme. In [73], a numerical
iterative solver called exact Riemann solver is presented. This solver identifies the wave among the
four possibilities shown in Figure 1.2 and computes the entirety of the states over the star region.
Even though the exact Riemann solver has been extensively reviewed [170], it is not advised for
practical applications as only a small portion of the solution is required in the Godunov method. In
practice, less computationally expensive approximate Riemann solvers are preferred instead of the
exact solver. In this work, we use the HLLC solver as it is able to capture contact discontinuities and
shear waves unlike the HLL solver and does not require as much computational time as the exact
Riemann solver. In return, the HLLC is somewhat more dissipative while being robust3.

1.2.3 - An approximate Riemann solver: the HLLC solver
The HLLC solver is an improved version of the HLL scheme introduced by Harten, Lax and van

Leer in [79] in which the contact and shear waves are missing. Introduced in [172], the HLLC solver is
built considering a control volume [ηL, ηR]× [0, T ] as illlustrated in Figure 1.3 with the signal speeds
SL, S∗ and SR corresponding to the eigen values λ1 = un − c, λ2,3,4 = un and λ5 = un + c.

The approximate Riemann solution U∗(η, t) in the local frame (nij , t
1
ij , t

2
ij) of the face Fij is

given as follows:

U∗(η, t) =


UL, if ηt 6 SL

U∗L, if SL 6 η
t 6 S∗

U∗R, if S∗ 6 η
t 6 SR

UR, if ηt > SR,

(1.24)

3By robust, we mean that the solver does not generate non-physical waves nor negative pressureseven with complex wave interactions.
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η

t

ηRTSRTSL
ηL

SL SR
S
∗

TS
∗

T

Figure 1.3: Control volume [ηL, ηR]× [0, T ] on the η − t plane. SL and SR are respectively the extremecharacteristic velocity for the left-hand side wave and the right-hand side wave from the solution of theRiemann problem. Unknown waves (shock waves or rarefaction fans) are depicted by a pair of raysemanating from the origin.

and the corresponding HLLC numerical flux is defined by:

FHLLC(U∗(η, t)) =


FL, if 0 6 SL

F ∗L, if SL 6 0 6 S∗

F ∗R, if S∗ 6 0 6 SR

FR, if 0 > SR.

(1.25)

We see that U∗L, U
∗
R, F

∗
L and F ∗R are the unknown of this problem. Integrating equation 1.22

over the control volume [ηL, ηR]× [0, T ] gives:

1

T (SR − SL)

∫ TSR

TSL

U(η, T ) dx =
SRUR − SLUL + FL − FR

SR − SL
, (1.26)

which is known as the consistency condition. The consistency condition ensures that the approx-
imate Riemann solver preserves the integral form of the conservation laws. An approximate solution
Û(η, t) is consistent with the integral form of the conservation laws if, when substituted to the exact
solution U(η, t) in the left-hand side of the consistency condition 1.26, the right-hand side remains
unaltered.

By decomposing the left-hand side integral, according to the two star regions:

1

T (SR − SL)

∫ TSR

TSL

U(η, T )dx =
1

T (SR − SL)

∫ TS∗

TSL

U(η, T ) dx

+
1

T (SR − SL)

∫ TSR

TS∗
U(η, T ) dx,

(1.27)

and using the integral averages:
U∗L =

1

T (S∗ − SL)

∫ TS∗

TSL

U(η, T ) dx,

U∗R =
1

T (SR − S∗)

∫ TSR

TS∗
U(η, T ) dx,

(1.28)

the consistency condition 1.26, can be written:(S∗ − SL
SR − SL

)
U∗L +

(SR − S∗
SR − SL

)
U∗R =

SRUR − SLUL + FL − FR
SR − SL

. (1.29)
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Applying the Rankine-Hugoniot conditions across each of the waves λ1, λ2 and λ5 of speeds SL, S∗

and SR, gives:

F ∗L =FL + SL(U∗L − UL) (1.30)
F ∗R =F ∗L + S∗(U∗R − U∗L) (1.31)
F ∗R =FR + SR(U∗R − UR). (1.32)

These relations can also be used to recover the consistency condition 1.26. As a result, we
have four unknowns and three equations. Combination of equations 1.30-1.32 can be done to find
U∗K(UK , S

∗), (K = R,L). However, some additional conditions need to be imposed in order to
close this system and find S∗ and then F ∗K , (K = R,L). As we have seen before, the exact solution
imposes constant pressure and constant normal velocity in the star region i.e.{

p∗L = p∗R = p∗,

u∗nL = u∗nR = u∗n.
(1.33)

The tangential velocity components are continuous across the genuinely nonlinear characteristic fields
R(1) and R(5), associated to the left-hand side and right-hand side waves, imposing:u

∗
t1L

= ut1L
, u∗t1R

= ut1R
,

u∗t2L
= ut2L

, u∗t2R
= ut2R

,
(1.34)

We also have S∗ = u∗n. Using equation 1.30 and 1.32, we can extract the following solutions for
pressure in the star regions: {

p∗L = pL + ρL(SL − unL)(S∗ − unL),

p∗R = pR + ρR(SR − unR)(S∗ − unR).
(1.35)

The use of the condition 1.33 into equation 1.35, gives an expression for the speed S∗ in terms of
known speeds SL and SR:

S∗ =
pR − pL + ρLunL(SL − unL)− ρRunR(SR − unR)

ρL(SL − unL)− ρR(SR − unR)
. (1.36)

Finally, using equation 1.25 and manipulations of 1.30 and 1.32 allows us to compute the intermediate
fluxes F ∗L and F ∗R when needed:

F ∗K = FK + SK(U∗K − UK), (1.37)
with K = R,L, with the intermediate states given as:

U∗K = ρK

(SK − unK
SK − S∗

)


1
S∗

ut1K
ut2K

EK + (S∗ − unK )

[
S∗ + pK

ρK

(
SK−unK

)].


(1.38)

For completeness, some variants of the HLLC approximate solver have been developped but are not
considered in this work (see [170]).

Remark. With the HLLC approximate Riemann solver, the flux FHLLC(U∗nij , nij) is provided in the
local reference frame of the face Fij . In equation 1.21, the fluxes are expressed in a global frame
defined by the orthonormal basis of the three-dimensional Euclidian space {~ei}i∈{1,2,3}. As a result,
the flux FHLLC(U∗nij , nij) is transformed from the local reference frame of the face Fij to the global
reference frame and the global frame flux is referred as F̂HLLC

(U∗nij , nij) or F̂
HLLC(

U
n
ij , U

n
ji, nij

)
,

using the interface states.

21



CHAPTER 1. FINITE VOLUME FRAMEWORK FOR FAST DYNAMIC PROBLEMS

1.2.4 - The second order MUSCL reconstruction
The spatial and time order of the finite volume framework based on the Godunov method pre-

sented in equation 1.21 depends on the expression of the fluxes. For industrial applications, high
order methods are preferable. Various high order methods have been developed like the Essentially
Non-Oscillatory method (ENO) [80] or the improved Weighted ENO method (WENO) [114] which
are based on a polynomial reconstruction of the derivatives in addition to a smoothing criteria to
avoid spurious oscillations. We can also cite the Weighted Average Flux (WAF) method [171] where
the intercell flux results from an integral average of the flux across the entire local Riemann problem
solution. In this work, we focus on the second order MUSCL method [171] as it provides a robust
second order approximation in space for developping our overlapping grid method while maintaining
a reasonable computational cost.

A . The MUSCL reconstruction

The Monotone Upwind Scheme for Conservation Laws or MUSCL method [176, 11, 110] is based on
equation 1.21 which can be written:

Un+1
i = Uni −

∆tn
|Ki|

∑
j∈γ(i)

|Fij |F̂
HLLC(

U
n
ij , U

n
ji, nij

)
, (1.39)

where the numerical HLLC flux F̂
HLLC(

U
n
ij , U

n
ji, nij

)
at the face Fij is computed using the interface

states Unij and Unji. We recall that the Godunov method is based on a constant approximation of
the solution U over each cell {Ki}i∈ΩU

at the discrete time tn:

Uni =
1

|Ki|

∫
Ki

U(x, tn)dV. (1.40)
The MUSCL method consists in reconstructing a linear approximation of the solution U over each cell
{Ki}i∈ΩU

in order to interpolate the interface states Unij and U
n
ji at each face Fij . The reconstruction

is used to improve the flux computation. The reconstruction can be done on the numerical solution
expressed in terms of primitive variablesW or conservative variables U . In our case, the reconstruction
is carried out on the primitive variables Wn

i . We define ∇(Wn
i ) the constant approximation of

the gradient in the cell Ki at the time tn. Using the discrete gradient approximation, the linear
reconstruction of the solution Wn

i inside the cell Ki writes:

W
n
i (x) = Wn

i +∇(Wn
i ) ·

(
x− xi

)
, (1.41)

where xi is the position of the barycenter of the cell Ki and x ∈ Ki. The linear reconstruction
preserves the mean value of the reconstructed field as:

1

|Ki|

∫
Ki

W
n
i (x) dV = Wn

i . (1.42)
The interface states are reconstructed based on the primite variables W while the Riemann

problems are solved using the conservative variables U . In any case, we note the interface states
resulting from the reconstruction at the face Fij , W ij/W ji defined as:

W
n
ij(x) = Wn

i +∇(Wn
i ) ·

(
x(face)ij − xi

)
, (1.43)

with x(face)ij the barycenter of the face Fij . The corresponding conservative states are written
U ij/U ji.
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B . The gradient reconstruction: least squares method

In equation 1.43, the gradient needs to be approximated. To do so, we use a least squares method
[118] which approximates the gradient ∇(Wn

i ) of the cell Ki using the solution Wn
i defined inside

the cell Ki and solutions
{
Wn

j

}
j∈γ(i)

inside the neighbors of Ki, with γ(i) the index set of cells
adjacent to Ki. The least squares method has the benefit of being compatible with any cell type.
The gradient tensor is defined by ensuring the condition:

∀j ∈ γ(i), W
n
i (xj) = Wn

j . (1.44)
This system of equations is overloaded and needs to be solved componentwise. We introduce

[
Wn

i

]
k

and
[
Wn

j

]
k
respectively the k-th component of Wn

i and Wn
j .
[
∇(Wn

i )
]
k
is the gradient of

[
Wn

i

]
k
.

That is to be the k-th line of the gradient matrix ∇(Wn
i ). Finding the solution to the problem 1.44,

is equivalent to minimizing for each component k the function:

Ik =
∑
j∈γ(i)

1

2

([
W

n
i (xj)

]
k
−
[
Wn

j

]
k

)2

=
∑
j∈γ(i)

1

2

(([
Wn

i

]
k
−
[
Wn

j

]
k
+
[
∇(Wn

i )
]
k
(xj−xi)

)2

. (1.45)

The solution to this problem writes:[
∇(Wn

i )
]
k

= M−1
i

∑
j∈γ(i)

(xj − xi)(
[
Wn

i

]
k
−
[
Wn

j

]
k
), (1.46)

where M
i
is the matrix defined by :

M
i

=
∑
j∈γ(i)

(xj − xi)⊗ (xj − xi). (1.47)
M

i
is a 3 × 3 matrix in 3D and a 2 × 2 matrix in 2D. M

i
is a positive definite matrix and is

therefore inversible. As a result, the tensor ∇(Wn
i ) is well defined.

C . The K-Dubois slope limiter

One way to ensure that the second order MUSCL scheme on the Euler equation (see equation 1.41)
does not introduce spurious oscillations is to use flux limiters [169] or slope limiters to build non-
linear solutions respecting TVD constraints [170]. In this work we focus on limited slopes using
the K-Dubois limiter [162] which is based on the Barth and Jespersen limiter [97] and is therefore
compatible with unstructured grids. In each cell Ki, i ∈ ΩU , the slope limiter Ψi needs to be
computed at every time step. The reconstructed solution from equation 1.41 becomes:

W
n
i = Wn

i + Ψi∇(Wn
i ) ·

(
x− xi

)
. (1.48)

The limiters are built per component in order to properly limit the slope ∇(Wn
i ). For the sake of

clarity, the time step reference is willingly omitted in this section as every quantity involved in the
slope limiter computation corresponds to the n-th time step. As the purpose of the limiter is to avoid
the appearance of local extrema, for all j ∈ γ(i), we have for each component k:[

Wmin
i

]
k
<
[
W i

(
x(face)ij

)]
k
<
[
Wmax

i

]
k
, (1.49)

with, 
[
Wmax

i

]
k

= maxj∈γ(i)

([
W i

]
k
,
[
W j

]
k

)
[
Wmin

i

]
k

= minj∈γ(i)

([
W i

]
k
,
[
W j

]
k

)
.

(1.50)
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The K-Dubois limiter [162] formulation is relatively close to that of the Barth and Jespersen
limiter [97]. However, it introduces a parameter K that allows the user to modify the behavior of
the limiter (that can be more or less compressive4). The k-th component of the K-Dubois limiter is
expressed as:

[
Ψi

]
k

= min

 1,K ·
min

([
Wmax

i −W i

]
k
,
[
W i −Wmin

i

]
k

)
maxj∈γ(i)

([
∇(W i) · (x(face)ij − xi)

]
k

)
 , (1.51)

where the quantity (x(face)ij −xi) represents the distance between the center of the cell face Fij and
the cell center xi. Taking the maximum value of (x(face)ij − xi) among all faces of the considered
cell ensures that the solution is limited in the sense of equation 1.49. This implies that the limited
reconstructed solution can be searched inside a neighborhood (i.e. a circle in 2D, and a sphere in
3D) with a typical radius of R = maxj∈γ(i)

(
x(face)ij − xi

)
as shown in Figure 1.4. In [162], the

parameter K is recommended to be set to 0.75 which is the value used in this work.

Ki

Kj

Kl

Km

Kn x(face)il

x(face)im

x(face)in

x(face)ij

xi

Standard K-Dubois limiter

xn

xj

xl

xm

Cell barycenter

Face barycenter

Figure 1.4: Area where the solution is limited with the K-Dubois limiter in a single model approach. Thearea is identical for the Barth and Jespersen limiter [97].

1.2.5 - Time discretization: the second order MUSCL-Hancock
method (MHM)

From equation 1.39, the limited MUSCL reconstruction provides a second order accurate scheme
in space. However, the explicit time integration inherited from the Godunov method is first order
accurate in time. Several methods like the Piecewise Linear Method (PLM) [33] or the Generalized
Riemann Problem (GRP) [16, 15] propose a second order generalization of the Godunov method. In
this work, we focus on the MUSCL-Hancock Method (MHM) [177]. The MHM provides a second
order accurate scheme in time advancing fluxes at half time step. It is based on the MUSCL recon-
struction which ensures second order accuracy in space. For the cell Ki at the discrete time tn, the
method can be decomposed into four steps:

4Bymore compressive, wemean that the limiter is capable of better capturing a contact discontinuityor a shock wave with less numerical scheme diffusivity
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1. Linear data reconstruction of the primite variables at the interfaces Fij with boundary extrap-
olated values, namely:

W
n
ij = Wn

i + Ψi∇(Wn
i ) ·

(
x(face)ij − xi

)
. (1.52)

2. Evolution of the conservative variables Unij , at a half time step
(

1

2
∆tn

)
according to:

U
n+ 1

2
ij = U

n
ij +

∆tn
2|Ki|

∑
j∈γ(i)

|Fij |F
(
U
n
ij

)
· nij . (1.53)

3. Solution of the piecewise constant data Riemann problems in the normal frames of the interfaces
Fij :

∂U

∂t
+
∂F (U)

∂η
= 0,

U(η, 0) =

U
n+ 1

2
ij , η < 0

U
n+ 1

2
ji , η > 0

(1.54)

4. Evolution of Uni , at a time t+ ∆tn according to:

Un+1
i = Uni +

∆t

|Ki|
∑
j∈γ(i)

|Fij |F̂
HLLC(

U
n+ 1

2
ij , U

n+ 1
2

ji , nij
)
. (1.55)

The time step ∆tn is set using the already introduced Courant-Friedrichs-Lewy (CFL) condition (see

equation 1.20). The numerical flux function F̂
HLLC(

U
n+ 1

2
ij , U

n+ 1
2

ji , nij
)
is evaluated using the HLLC

approximate Riemann solver detailed in section 1.2.3 while the flux F
(
U
n
ij

)
can be directly evaluated

from U
n
ij .

1.2.6 - Discretization of the non-conservative term for multicom-
ponent flows

So far, the numerical methods presented are valid for conservative equations like the Euler equa-
tions (see equation 1.1). When the right-hand side of the equation is not equal to the null vector (0)

like the five-equation model presented in equation 1.3, the non-conservative term needs a specific
discretization. In our case, the term B(U) is approximated at the first order in time and space which,
using the Green-Ostrogradski theorem leads to:∫ tn+1

tn

∫
Ki

∇ · udV dt =

∫ tn+1

tn

∑
j∈γ(i)

∫
Fij

B(U)u · nij dS dt. (1.56)
We introduce the numerical function,

∆tnûij(U
∗n
ij , nij) ≈

1

|Fij |

∫ tn+1

tn

∫
Fij

u · nij dS dt, (1.57)
whose purpose is to approximate the normal velocity over the interface Fij . The interface velocity
u∗ij = ûij(U

∗n
ij , nij) is given by the modified HLLC Riemann solver for the advection equation

presented in [98]. As a result, the non-conservative term 1.56 can then be added to the fourth step
of the MHM given by equation 1.55 which then writes:

Un+1
i = Uni −

∆tn
|Ki|

∑
j∈γ(i)

|Fij |F̂
HLLC(

U
n+ 1

2
ij , U

n+ 1
2

ji , nij
)
− ∆tn
|Ki|

B(Uni )
∑
j∈γ(i)

|Fij |u∗ij . (1.58)
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1.3 - Chapter conclusion

The finite volume framework has been chosen as it ensures conservation of the Euler system
of equation. We have detailed the different models that will be used in this work to assess the
developped overlapping grid method. The numerical scheme is based on a Godunov type method
with a limited MUSCL-Hancock scheme which is second order accurate in time and space. This
method has been chosen as it corresponds to industrial standard of accuracy and robustness. The
time integration is explicit as it is more adapted to simulate fast transient phenomena with small
time scales. The particular treatment for the non-conservative term in the case of multicomponent
flows has also been reviewed. In the next chapter, we detail the development of an overlapping grid
method within the finite volume framework presented.
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In this chapter, we present the different implementations of the Chimera method that we can find
in the literature and we explain the main differences with the Chimera method that we developped.
Then, we detail the development of a Chimera method for fast transient dynamics in a finite volume
framework. The method relies on a local conservation hypothesis using actual cells called ghost cells
acting as receiving containers. We provide a detection and marking procedure to identify potential
ghost cells given a set of two overlapping grids. An extended version of the marking procedure is
provided. Then, a first and second order interpolation formulas are proposed to reconstruct a solution
that will be sent from one grid to the other and vice versa. The second order interpolation uses a
modified slope limiter that prevents the appearance of spurious oscillations especially when using
high cell size discrepencies between the sending grid and the receiving grid. The different versions
of the developped Chimera method are assessed using one-dimensional test cases like the advection
of a sinusoidal density perturbation, the Sod shocktube and a stationary shock wave as well as a
two-dimensional isentropic vortex advection. An optimal configuration for the developped Chimera
method is provided as a reference.
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2.1 - The Chimera method principle

In this work, we are interested in superimposing local geometrical alterations onto a large global
fluid domain. The local geometrical alterations can generate local flow perturbations that will impact
the fluid solution at the global domain scale. As the numerical approach that we want to develop
must rely on independent grids with different refinements on each grid, we have chosen to focus
on composite grid techniques that allow information transfer in both directions1. The multi-model
method that we have developed falls within the framework of the Chimera method [166, 17, 165].
It is a multi-model approach that allows overlapping grids to exchange information. In this chapter,
we consider two grids: a baseline grid W = {Ki}i∈ΩW that is referred as substrate and a secondary
grid V = {K ′i}i∈ΩV that is referred as patch (see Fig. 2.1). The substrate refers to the global grid
while the patch is a local grid, partially or completely, superimposed onto the substrate.

The various implementations of the Chimera method found in the literature require a pre-
processing grid treatment called hole cutting on the substrate. This step prepares the substrate
by disabling the redondant cells located under the patch. As shown in Figure 2.1, the hole cutting
step can be done in order to define a transition zone [101, 100, 23], which corresponds to the first
category of Chimera methods, or to reduce the amount of overlapped cells between the grids to
the bare minimum [82, 83, 84, 32, 157, 136] which corresponds to the second category of Chimera
methods. The first category requires a remeshing of the transition zone and solves the system of
equation on a single grid. It is referred as method 1 in Figure 2.1 and it is not considered here as an
overlapping grid technique.

The second category of Chimera methods deactivates substrate cells that are completely located
under the patch and are not necessary to transfer information between the grids. The substrate with
its overlapped cells disabled is referred as cut substrate. In many applications, the second category of
Chimera methods is preferred to the first category, as it has shown to be less computationally expensive
and more flexible regarding high cell size discrepencies between the patch and the substrate. Indeed,
with the first hole cutting approach, the transition zone uses cells conforming to both the patch and
the substrate. Using high cell size discrepencies between the grids would require a larger transition
zone to ensure high quality cells in this region. Two versions of the Chimera method derive from the
second category and are shown in Figure 2.1:

• The first version is referred as method 2 and imposes transmission conditions at the outer
boundary of the patch and at the inner boundary of the cut substrate. Using a finite volume
scheme, the transmission conditions often relate to the fluxes imposed at the boundaries of
the domains.

• The second method is referred as method 3 and uses extension cells called ghost cells. The
ghost cells are usually virtual cell extensions that can receive information interpolated from
the sending grid exclusively [86, 19] or from both grids using a combination of the numerical
solutions [48]. Here we focus on information coming exculsively from the other grid. As we are
focusing on independent grids that are non-coincident and may have different grid resolutions,
the information received by the ghost cells needs to be interpolated using an appropriate set
of sending cells located on the sending grid but in the same area as the ghost cell. This step
is referred as interpolation in the following. The interpolation of the information can be based
on conservative variables or primitive variables and can be achieved using various techniques
like multi-linear interpolations [82, 83, 84, 32, 157], multi-linear interpolations with global to
local frame transformations [107] or least square based methods [147].

1From the local grid to the global grid and from the global grid to the local grid
28



2.1. THE CHIMERA METHOD PRINCIPLE

Even though imposing an interpolated flux at the borders of the domains through method 2 is the
most physically accurate approach due to ensured conservation, it is not recommended for industrial
applications as it involves stability issues [133]. As a consequence, we focus on method 3 as it offers
minimal intrusiveness and stability.

Hole cutting

Partial
remesh

Transmission
conditions

Ghost cells
extension

Elements to fill in the gap Impose transmission
conditions

Example of ghost cell

Method 1 Method 2 Method 3

W

V

Figure 2.1: Three main implementations of the Chimera method found in the literature.

Method 3 presents two variants regarding the interpolation of the solution across the domains
referred as explicit and implicit interpolations in the literature. For the sake of clarity, we denote,
Ṽ the set of patch ghost cells and W̃ the set of substrate ghost cells. Figure 2.2 illustrates the
differences between an explicit interpolation and an implicit interpolation: the explicit interpolation
is defined by an empty intersection between the two sets of ghost cells. Therefore, the exchange of
information is independent between the grids as the ghost cells are only receiving information from
cells that are not ghost cells. With an implicit coupling, the intersection of the sets of ghost cells
Ṽ and W̃ is no longer empty resulting in a dependence of the ghost cell solutions across the two
grids. Considering that the time integration of the numerical scheme is explicit, we have chosen an
explicit coupling between grids for the Chimera procedure [82, 86] as its implementation in an explicit
time-integration context is straightforward.

29



CHAPTER 2. THE FINITE VOLUME CHIMERA METHOD FOR FAST DYNAMICS
W

V

Ũ
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Ũ

W
n

1
U

W
n

2
U

W
n

3
U

W
n

4

Ũ
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Figure 2.2: Explicit and Implicit Chimera coupling.

2.2 - Development of a finite volume Chimera method

In this work, we present a version of the Chimera method that slightly differs from the method 3
as it uses actual cells from the grid as ghost cells instead of virtual cell extensions and does not use a
hole cutting grid pre-processing which means that we do not deactivate any cells from the substrate.
These choices have been made in order to design the method as less intrusive as possible regarding
the substrate as we do not want to modify the grids when introducing the patch. Actual cells are
identified and marked as ghost cells using geometrical criteria to ensure that the ghost cell support is
compatible with the explicit Chimera interpolation. Also, the number of ghost cell layers needs to be
sufficiently large to ensure hermeticity between the outer region of the substrate and the inner region
of the substrate located under the patch. By hermetic, we mean that the numerical solution of the
substrate cells located under the patch must not impact the numerical solution of the non-overlapped
substrate cells.

2.2.1 - Chimera framework and notations
Our finite volume Chimera method relies on the injection inside ghost cells of conservative vari-

ables interpolated using the corresponding neighbor cells on the other mesh, at every time step. We
note {UWi }i∈ΩW , the conservative variables resolved on the substrate and {UVi }i∈ΩV the conservative
variables resolved on the patch. The set of ghost cells are denoted Ṽ ⊂ V and W̃ ⊂ W. The interpo-
lated solutions are written {ŨWi }i∈ΩW̃

for the substrate and {ŨVi }i∈ΩṼ
for the patch as represented

in Figure 2.3. The sending cells are denoted Ws ⊂ W and Vs ⊂ V and are intersected by the ghost
cell sets Ṽ and W̃ respectively. The interface between two adjacent cells (Ki,Kj)(i,j)∈ΩU×γ(i), is
denoted FUij , U = {W,V}.
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Figure 2.3: Sketch of the transfer procedure in the developped Chimera method.
Given a substrate W, an immersed patch V and their respective sets of ghost cells W̃ and Ṽ as

shown in Figure 2.4, we define the cleaned patch and cleaned substrate cell sets respectively Wc and
Vc as:

Vc = V \ Ṽ, and Wc =W \Wp, (2.1)
where,

Wp =
{
Ki ∈ W \ W̃, |Ki ∩ Vc| = |Ki|

}
, (2.2)

is the set containing substrate cells that are not ghost cells and that are fully overlapped by the
cleaned patch. The cell sets Wc and Vc contain cells with a valid solution after each iteration of
the MUSCL-Hancock scheme applied to the fluid domains W and V. These cells are referred as
resolved cells as their values result from the resolution of the MUSCL-Hancock scheme detailed in
section 1.2.5. We define the cleaned patch Chimera boundary denoted ΓṼ , the interface between the
ghost cell set Ṽ and the resolved cells set Vc. Similarly, we define the substrate Chimera boundary
denoted ΓW̃ .

V

W

: Ghost cell

˜
V

˜
W

Wc

Vc

Wp
Γ ˜V

Γ˜W

Figure 2.4: Definition of the resolved cells set for an immersed patch (V).
Using the notations introduced in Figure 2.3 and Figure 2.4, we note hVi and hWj , respectively,

characteristic lengths of the cells K̃
′
i ∈ Ṽ and K̃j ∈ W̃. For each ghost cell from the patch K̃

′
i ,

i ∈ ΩṼ , we define the local cell ratio between the patch and the substrate as :

χVi = maxj∈Ω
K̃
′
i
∩Ws

(
hWj

hVi

)
. (2.3)

The equivalent definition can be made for a local cell ratio between the substrate and the patch and
is the inverse of the previous definition:

χWi = maxj∈Ω
K̃i∩Vs

(
hVj

hWi

)
. (2.4)

31



CHAPTER 2. THE FINITE VOLUME CHIMERA METHOD FOR FAST DYNAMICS

In our multi-model approach, we are interested in adding local models to the baseline model, thus
the local cell ratio between the patch and the substrate is more adapted to our approach. We define
the cell ratio (χ) as a global grid parameter for both models using the definition:

χ = maxi∈ΩṼ

(
χVi
)
. (2.5)

The global definition makes sense in the case of regular grid spacing inside each model.

2.2.2 - Identification and marking of the ghost cells allowing two
grid communication

Compared to the original and previous Chimera methods described in [82, 83, 48, 86, 87], we
modified the ghost cell detection since we do not want to deactivate any cell nor modify grids.
The proposed Chimera procedure is designed to be as flexible and independent as possible from the
baseline simulation. The detection of ghost cells happens only once because the patch is considered
fixed during calculation. The steps of the detection procedure that is referred as standard detection
in the following are illustrated in Figure 2.5.

1. Given a set of two overlapping gridsW (substrate) and V (patch) (see Fig. 2.5-1), we prescribe
a number of ghost cell layers (denoted kGC) required to calculate the numerical fluxes at the
cleaned patch boundary ΓṼ without any influence of the boundary condition at the boundary
ΓV . We will see hereafter how to choose kGC.

2. Then, given the boundary ΓV of the patch domain (see Fig. 2.5-2), the procedure identifies
cells from the patch that will be marked as ghost cells Ṽ (see Fig. 2.5-3).

3. Once ghost cells Ṽ are identified, the geometrical intersection Ṽ ∩W is calculated to mark the
corresponding sending cells Ws (see Fig. 2.5-4).

4. Symetrically, W̃ is defined by searching the closest kGC ghost cell layers to Ṽ (see Fig. 2.5-5)
that respects the following condition for an explicit Chimera interpolation [82]:

W̃ ∩ Ṽ = ∅ and W̃ ∩ V 6= ∅. (2.6)
5. Similarly to the patch, once substrate ghost cells (W̃) are identified, the intersection W̃ ∩ V,

is computed to mark the corresponding sending cells Vs (see Fig. 2.5-5).
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Figure 2.5: Standard detection procedure of the developped Chimera method.

As we are interested in the effect of the cell ratio (χ) within the framework of the Chimera
exchange, we need to define the exchange zone gap as:

δGC = mini∈ΩW̃

(
minj∈ΩṼ

(|xj − xi|)
)
. (2.7)

The exchange zone gap (δGC) corresponds to the minimal distance separating the substrate ghost
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cell set (W̃) to the patch ghost cell set (Ṽ). We also define the exchange zone shift as:

δS = δGC −
h̃Wmax + h̃Vmax

2
, (2.8)

which corresponds to the minimum gap between the the patch Chimera boundary (ΓṼ) (illustrated
as a thick red line in Fig. 2.7) and the substrate Chimera boundary (ΓW̃) (illustrated as a thick black
line in Fig. 2.7). In a one-dimensional case with uniform grid spacing on each independent grid,
δS = 0 implies that the patch and the substrate have coincident Chimera interfaces.

Using Figure 2.6, we can see that with high enough cell ratios like χ = 10, we can have δGC >
hmax, where hmax = max

(
h̃Vmax, h̃

W
max

)
is the maximum characteristic cell measure between the patch

and the substrate within the exchange zone and

h̃Umax = maxi∈ΩŨ∪Us

(
hUi
)
, U = {V,W} . (2.9)

As shown in Figure 2.6, high cell ratios involve the appearance of group of cells located inside the
exchange zone while neither being sending cells nor a ghost cells. We call these groups, recirculation
zones. Using the configuration in Figure 2.6, in the case of a very high cell ratio (χ > 4), if a
flow perturbation, like a shock wave, initially located outside the patch travels from the substrate
to the patch (left to right in Fig. 2.6), it is transferred to the substrate using the ghost cells Ṽ.
Using a unique time step for both grids respecting the CFL condition on the finest one (the patch),
the shock wave propagates simultaneously in the patch and in the substrate which have different
resolutions. Therefore, the solution on the patch diverges from the original solution in the substrate
as it propagates in the recirculation zone. Once the pertubration reaches the sending cells Vs, the
perturbation is transferred back to the substrate which could potentially create numerical instabilities
at the substrate Chimera interface (ΓW̃). As the Chimera exchange is performed in both directions,
the presence of a recirculation zone could introduce numerical artifacts generated in the exchange
zone. The impact of the recirculation zones on the global solution will be assessed in the next
sections.
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Figure 2.6: Schema of an overlapping grid configuration with a recirculation zone (Vrc).

One way to avoid the presence of recirculation zones is to ensure that δGC 6 hmax. It can be
achieved from the standard detection by marking additional cells as ghost cells if they geometrically
lie in between the ghost cell layers of the patch and the ghost cell layers of the substrate, without
breaking the condition 2.6. As a result, the ghost cell layers of the patch are extended to fit the
ghost cell layers of the substrate as shown in Figure 2.7 and the recirculation zones are minimized as
seen in Figure 2.8. This ghost cell extension step combined with the standard detection procedure is
referred as extended detection in the following.
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2.2.3 - Derivation of a first and second order Chimera interpola-
tion

A . First order interpolation

As we are using a conservative finite volume approach, the present Chimera method is based on local
conservation hypothesis when the transfer occurs between opposite grids. Indeed as it is shown in
Figure 2.9, the method relies on the intersection of ghost cells with the opposite grid.
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Figure 2.9: Example of a ghost cell intersection K̃ ′

i withW for a first order interpolation.
From a finite volume framework, considering the substrate ghost cell K̃i, i ∈ ΩW we suppose

that: ∫
K̃i

Ũ
W

dV =

∫
K̃i∩V

UVdV. (2.10)
The local conservation hypothesis can be recast in a piecewise constant approximation which gives:

Ũ
Wn

i =
∑
j∈ΩV

|K̃i ∩K ′j |
|K̃i|

UV
n
j , (2.11)

In the case of equivalent cell size between the grids (χ ≈ 1) and non-coincident grids, this interpola-
tion formula is comparable to the linear interpolations done in [133, 32, 82, 83] with finite difference
schemes. In the literature it is considered as a polynomial interpolation, and the order of the approx-
imation depends on the number of patch cells intersected by K̃i, i ∈ ΩW . However, with χ � 1,
different ghost cells can end up receiving the same constant state from the same sending cell. As a
consequence, this method is referred as first order Chimera method in the followings.

B . Second order interpolation

We propose to improve the first order interpolation for configurations where χ 6= 1. Similarly to what
is done in the MUSCL reconstruction, a piecewise linear reconstruction of the transferred solution
is adequate to achieve the suitable order of accuracy independently from the grid configuration
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compared to a constant piecewise approximation of the solution. We define the barycenter position
of the intersection K̃i ∩K ′j inside the ghost cell K̃i, denoted x̃ij as shown in Figure 2.10.

Kj Kk

Kl Km

V = {K ′

i}i∈ΩV

W = {Ki}i∈ΩW

:
˜K

′

i ∩Kj

:
˜K

′

i ∩Kk

:
˜K

′

i ∩Kl

:
˜K

′

i ∩Km

xj xk

xmxl

Figure 2.10: Example of a ghost cell intersection K̃ ′

i withW for a second order interpolation.
Then, we discretize equation 2.10 with a piecewise linear reconstruction: ∀ i ∈ ΩW̃ ,

Ũ
Wn

i =
∑
j∈ΩV

|K̃i ∩K ′j |
|K̃i|

U
Vn

j (x̃ij) =
∑
j∈ΩV

|K̃i ∩K ′j |
|K̃i|

(
UV

n
j + ΨVj∇(UV

n
j ) · (x̃ij − xj)

)
, (2.12)

where ∇(UV
n
j ) is the gradient of the solution UV

n
j based on conservative variables. The gradient

is calculated for each sending cell set (Ws and Vs) using the presented centered least squares method
[118]. ΨVj is a slope limiter employed to avoid spurious oscillations and to keep the TVD property of
the solution when transfer on the grid model is performed like for the MUSCL reconstruction 1.48.
The present formulation ensures a spatial second order accurate interpolation in ghost cells without
any constraint on the grids, i.e. meshes can either be structured or unstructured. Equations 2.11
and 2.12, can reciprocally be written for i ∈ ΩṼ .

Even though these interpolations result from a conservative assumption, the resulting procedure
is not fully conservative as it has been demonstrated that the only conservative approach is based
on flux interpolation [184, 185, 133]. Nonetheless, using an integral formulation on conservative
variables for transferring solutions remains consistent with the finite volume approach.

Remark. The proposed reconstructions are based on volume intersections between the ghost cells
and the sending cells. As a result, intersection volumes are used to reconstruct the solution inside
each ghost cell with both the first order and the second order interpolations. Additionally, the center
of the intersection volumes is used to evaluate the linearly reconstructed state inside the sending cells
for the second order interpolation. In the literature, the finite volume implementations of the Chimera
method do not use grid intersections volumes. Instead, each ghost cell state is linearly interpolated
using the positions of the centers of the sending cells acting like an interpolation molecule. These
implementations can be found inside the codes like elsA [64, 136] or TAU [154, 187] and derive from
the finite difference version of the Chimera method. Found inside codes like Overture [82, 83, 84, 32,
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157] or NASA [119, 120, 141, 12], these finite difference implementations of the Chimera method use
grid points acting as sending nodes to build an interpolation molecule that surrounding a receiving
node. Therefore, our implmementation is more inline with a finite volume approach as it is built
around local conservation of conservative quantities instead of distances.

C . Impact of the second order interpolation on the detection procedure

When using a second order interpolation (see equation 2.12), for any sending cell Kj ∈ Ws, a
gradient ∇(UW

n
j ) needs to be reconstructed at every time step. As we want the Chimera gradient

reconstruction to be independent from the numerical scheme reconstruction, we define a reconstruc-
tion cell set Wr as a subset of the domain cell set W. The gradient being interpolated inside each
sending cell of Ws using a centered least squares method (see section 1.2.4 B), we define Wr as:

Wr =Ws ∪ γ
(
Ws
)
, (2.13)

where
γ
(
Ws
)

=
{
Ki, i ∈ ΩW \Ki /∈ Ws

}
∩
{
Kj , j ∈ γ(i), i ∈ ΩWs

}
, (2.14)

is the set of cells adjacent to the sending cell set Ws. As illustrated in Figure 2.11, each sending cell
set Ws and Vs has an associated reconstruction set Wr and Vr. The reconstruction sets allow the
use of a different gradient interpolation or a different limiter compared to the one used within the
numerical scheme. It makes the Chimera method less intrusive but requires additional computations.
This additional cost will be measured later on.
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Figure 2.11: Definition of the reconstruction setsWr and Vr given the ghost cell sets W̃ and Ṽ .
Using Figure 2.11, we can see that even though W̃∩Ṽ = ∅, we have W̃∩Wr 6= ∅ and Ṽ ∩Vr 6= ∅.

As a result, the ghost cells are involved in the gradient reconstruction of the sending cells. The values
of the ghost cells between the grids W and V become coupled which involves solving a system. One
way to adress this issue would be to add the following geometrical criteria on top of the criterion 2.6
during the ghost cell detection and marking steps:

W̃ ∩Wr = ∅, and W̃ ∩Wr = ∅. (2.15)
This additional criteria effects on the exchange zone are illustrated in Figure 2.12 using the same grid
configuration as in Figure 2.11. The exchange zone is enlarged and the Chimera method becomes
more restrictive on the grid configuration which is not what we are looking for.

In order to keep the exchange zone contained as in Figure 2.11 while maintaining a second order
explicit interpolation, we propose a solution that uses information already available:

• First, a first order Chimera exchange is used to interpolate the value of the ghost cell sets Ṽ
and W̃.
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Figure 2.12: Hypothetical extension of the exchange zone to ensure empty intersections between theghost cell sets and the reconstruction sets (with the same grid configuration as in Fig. 2.11).

• Second, the gradient is interpolated inside the reconstruction sets Wr and Vr.

• Third, the solution is reconstructed inside the sending cell sets Ws and Vs.

• Finally, the values of the ghost cell sets Ṽ and W̃ are updated using the second order interpo-
lation.

This solution ensures an appropriate gradient interpolation inside the sending cell sets Ws and Vs
with a contained exchange zone, even with a second order exchange.

D . Modified K-Dubois limiter for Chimera interpolation

The second order Chimera method (see equation 2.12) requires a limiting procedure to satisfy total
variation diminishing (TVD) constraints and avoid the occurence of local extrema when reconstructing
the solution inside the sending cells. To avoid a possible limitation on mesh constructions and to
make the method suitable for both structured and unstructured meshes, we have privileged the K-
Dubois limiter [162] applied to the primitive variables as detailed in section 1.2.4.C. Let us underline
that the well-known Barth and Jespersen limiter [97] could also be used with the present method.

The standard utilization of the K-Dubois limiter uses coordinates of the barycenter of the cells
Ki, i ∈ ΩU and the center of the faces Fij respectively denoted xi and x(face)ij , with i ∈ ΩU ,
U = {W,W} and j ∈ γ(i). Taking the maximum value of (x(face)ij − xi) ensures that the limited
reconstructed solution can be searched inside a neighborhood (i.e. a circle in 2D, and a sphere in
3D) with a typical radius of R = maxj∈γ(i)

(
x(face)ij − xi

)
(see Fig. 2.13).

When several overlapping grids are at play, the previous constraint apply to the solution is not
restrictive enough to enforce non-oscillatory property, and the search zone must be enlarged to recover
TVD properties as it is shown in Figure 2.14. In fact, when refining the patch V = {K ′k}k∈ΩV , ghost
cells can be intersected by a cell portion that is outside of the search region, Ki in this example. The
reconstruction then gives:

Ũ
Vn

k =
|K̃k ∩K

′
i |

|K̃k|

(
UW

n
i + ΨWi ∇(UW

n
i ) · (x̃ki − xi)

)

+
∑

p∈ΩW\{i}

|K̃k ∩K
′
p|

|K̃k|

(
UW

n
p + ΨWp ∇(UW

n
p ) · (x̃kp − xp)

)
.

(2.16)

Here, we can see that |x̃ki − xi| can be greater than |x(face)ij − xi)
∣∣ depending on the location of

the cells. It is even more emphasized when χ increases. In those particular cases, the limiter is not
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Figure 2.13: Search areas for the K-Dubois limiter in a singlemodel approach and themodified K-Duboislimiter used in the Chimera method. The searchable area in the single model approach is identical tothe Barth and Jespersen limiter searchable area [97].

adapted as the solution will be searched outside the search zone described in Figure 2.13. Thus, the
transfer can generate local extrema. We propose to recast the previous limiter to make it work with
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Figure 2.14: Evolution of the positions between the center of the intersection with the sending cell andthe center of the sending cell.
the present Chimera method. The k-th component of the modified K-Dubois limiter writes:

[
ΨWi
]
k

= min

 1,K ·
min
([
UW

max
i − UWi

]
k
,
[
UWi − UW

min
i

]
k

)
maxl∈ζ(i)

([
∇(UWi ) · (x(node)l

− xi)
]
k

)
 , (2.17)

where x(node)l
is the cell corner position, and ζ(i) is the corner set of the cell Ki (see Fig. 2.13).

The modified version of the K-Dubois limiter adapted to the present Chimera method is based on the
radius calculated from the cell corners instead of centers of cell faces. The radius of the search region
is now enlarged with an extended radius R = maxl∈ζ(i)

(
x(node)l

− xi
)
. This extends the research

zone of the limited solution so as to be valid whatever the geometric configuration of the ghost cells
as well as the cell ratio are.
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2.2.4 - Study of the number of ghost cell layers dependency on
the discretization scheme

As we indicated above, we need to prescribe a number of ghost layers (kGC) before labeling
the ghost cells. As mentioned in [178], a second order accurate evaluation of the numerical flux
at the interface between two consecutive cells needs a stencil over a neighborhood of at least two
consecutive cells from each side of the interface.

When a resolved cell K
′
i , i ∈ ΩVc , belonging to Vc, is close to the boundary of the resolved

domain ΓṼ , the number of ghost cell layers (kGC) must be large enough to ensure that the numerical
flux evaluation at the interface ΓṼ does not intercept the patch boundary (ΓV) (see K

′
2 and a flux

evaluation at the interface FV12 in Fig. 2.15 for reference). If kGC is large enough, the Chimera
exchange zone is considered hermetic as the patch boundary condition on ΓV has no impact on
the solution of the patch resolved cell set (Vc). The reasoning is equivalent for substrate fluid cells
located under the patch (Wp \ W̃) that must not impact the solution of the substrate resolved cell
set (Wc).
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Figure 2.15: Chimera boundary condition.
In this section, we provide a minimum value for kGC depending on the order of the Chimera

method that is used. Using the configuration illustrated in Figure 2.15, a second order MUSCL-
Hancock scheme is applied to an advection equation in Appendix A. A constant advection velocity a
is considered such that a > 0. As a result, we assume that the information travels from the substrate
to the patch, this analysis exhibits that the solution in the resolved cell K

′
2 ∈ Vc depends on the

solutions of the cells K̃
′
1 ∈ Ṽ and K̃

′
0 ∈ Ṽ due to gradient reconstruction. The situation is illustrated

in Figure 2.16. This study shows that with a second order MUSCL-Hancock scheme, kGC > 2 is
required to ensure the hermeticity of the domains. For a first order scheme, the same analysis gives
kGC > 1.

If this condition is respected, as values inside ghost cells are updated at each time step from the
opposite model, the boundary condition at ΓV has no impact on the solution in the resolved patch
cells (Vc). In a similar way, cells that belong to the substrate portion covered by the patch (Wp \ W̃)
but are not ghost cells have no impact on the solution inside the cleaned substrate (Wc). As a
conclusion, when a first order interpolation is used, kGC > 1 is required while kGC > 2 is necessary
for a second order interpolation.
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2.2.5 - Impact of the Chimera method on the time step
The Chimera method involves a communication process between different grids with a cell ratio

(χ) that can be different to 1. In this case, the critical time step ∆tcrit defined by the CFL condition
(see equation 1.20) will be different between the grids, with a smaller one for the finest grid. Using
the same notation previously introduced in section 2.2.4, a Von Neumann stability analysis [31] is
carried out in Appendix B for a scalar hyperbolic equation with overlapping grids (see Fig. 2.17).

V

˜
U

V
n

1

U
W
n

N−1

h
W

h
V

W ˜
U

W
n

N
U

W
n

N−3

U
V
n

2
U

V
n

3
U

V
n

7

δS

U
W
n

N−2

δGC

Figure 2.17: Chimera configuration with the exchange zone gap (δGC) and the exchange zone shift (δS).
The Von Neumann stability analysis highlights that very high cell ratios (χ) between grids and

obviously time step discrepencies between domains can lead to unstable behavior as advised in [136].
The influence of the grid size on the stability of the Chimera exchange is investigated experimentally
later on. As a conlusion, we have chosen to carry out our investigations with a unique time step
chosen in order to respect the CFL condition on both domains which translates into:

∆tn = min(∆tWn ,∆t
V
n), (2.18)

where ∆tWn and ∆tVn are respectively the time steps computed at the time tn for the substrate
and for the patch. This restrictive condition on the time step allows us to experiment various grid
configurations with different cell ratios and different test cases without worrying about time stability.
For industrial applications, a decoupled time step would need to be implemented in order to optimize
the computational time with a smaller time step on the finest domain only.
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2.3 - Implementation of the Chimera method in MANTA
software

2.3.1 - Presentation of MANTA software
The presented Chimera method is implemented inside a C++ in-house code currently in devel-

opment at the Service d’Études Mécaniques et Techniques at the CEA called MANTA (Mechanical
Analysis Numerical Toolbox and Applications). This code aims to tackle several issues raised by
legacy codes written with older languages like factorization, memory management and performance
requirements. The code structure is illustrated in Figure 2.18 with a layer based organization. The
code is organized around a generic core that handles the I/O (Input/Output) procedures, mesh han-
dling, data format and the linear system assembly and resolution. Some of these elements have been
developped internally while others use external librairies with dedicated interfaces. This ensures a
high modularity of the code thanks to encapsulation. The numerical methods like finite elements or
finite volumes are developped above the core layer and interact with it through formulations.

Figure 2.18: Structure of the code MANTA.
Finally, the end user interface is currently a main C++ file to compile containing the initialization,

the time loop and the output of the computation. It is worth mentioning that MANTA is still in early
development with important features in development at the time of writing. In this work, we focus
on the modelization layer containing the numerical methods.

2.3.2 - Implementation of the Chimera procedure within the solver
The main programming contribution to MANTA from this work are two folds: the first one is

the implementation of the Chimera framework (see Fig. 2.18) that allows any cell based field to
transfert information using identified ghost cells. This framework includes the ghost cell detection
and marking, the sending procedure with the presented interpolation methods, the modified limiter
and tools to compute any fields or quantities like the system mass, momentum or total energy over
an overlapped domain. The second fold is the coupling of the Chimera method with an immersed
boundary method called the Mediating Body Method [92] that will be detailed later on.
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In this section we present the computational steps added to a standard calculation using the
Chimera method. Starting with the first order interpolation, Figure 2.19 shows that only two steps
(coloured in red) are added compared to single grid computation. The first step is the geometrical
detection and marking procedures of the ghost cell sets W̃, Ṽ and their respective sending cell sets
Vs,Ws detailed in section 2.2.2. This step is performed before the initialization of the domains and
does not need to be executed again if the grids are fixed which is the case in our work. It mainly
consists in computing the grid intersections Ws = Ṽ ∩ W given ΓV and kGC using tetrahedral de-
composition of polyhedron volumes. The resulting barycenters and volumes of the intersections are
stored along with the cell indexes of the intersected sending cells inside a container called exchange-
Data. The storage of these data allows us to build our first order interpolation without computing
the intersections at each sending.

The second step is the Chimera sending. For a first order sending, this steps only consists in
building the interpolated values using exchangeData and setting the corresponding ghost cells values.
The order of the sendings does not matter and this step is repeated at every time iteration.

Let us emphasize that the integration of the solution is performed everywhere except on the ghost
cells that are only used for computing the numerical fluxes at sending cell interfaces. The solution on
ghost cells is only updated through the Chimera procedure at every time step. Let us also underline
that the procedure is built as symmetrical, meaning that the way to transfer information from the
patch to the substrate is identical as to transfer information from substrate to the patch.
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Figure 2.19: Implementation of the Chimera procedures within the fluid solver for a first order sending.

Figure 2.20 illustrates the computational steps of the second order Chimera exchange. For a
second order interpolation, the first step is very similar to the first order interpolation. The ghost
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cell sets W̃, Ṽ and their respective sending cell sets Vs,Ws detection procedure is identical given ΓV
and kGC. The main difference is the addition of the reconstruction supports Wr = W̃ ∪ γ

(
W̃
)
and

Vr = Ṽ ∪ γ
(
Ṽ
)
detailed in section 2.2.3.C. As for the first order Chimera exchange, if the grids are

fixed, these steps need to be executed only once.
Within the time loop, the single Chimera step for the first order exchange is kept as explained

in section 2.2.3.C. Two additional steps are added with the gradient interpolation step in each cell
belonging to the reconstruction sets and finally, the reconstruction and sending of the values inside
the ghost cells.

Regarding the Chimera framework implementation, it consists in a Chimera class with two different
constructors (one for the patched grid and the other for the overlapped grid). For every instance of
the Chimera class, the corresponding ghost cell set, the reconstruction set, sending cell set and the
exchangeData container are computed. The first constructor requires a patch (V), a substrate (W),
a patch boundary (ΓV) and a number of ghost cell layers (kGC) as inputs. The second constructor
only requires a patch Chimera instance as an input as it corresponds to a substrate Chimera instance.

As a result, the implemented Chimera method is symmetrical and modular as it can send in-
formation only one-way or both-ways and requires very few constraints on the input meshes apart
from overlapping each other. For each sending direction, one Chimera instance needs to be declared
and therefore, the implementation is fully compatible with configuration involving several grids. Also
implementation keeps a certain level of independence between the grids as the methods for the nu-
merical scheme remain the same as for a single grid configuration. Therefore, the standard numerical
scheme steps shown in Figure 2.19 and Figure 2.20 like the boundary conditions update or the time
step computations need to be executed for each grid. This is possible thanks to the update of the
values inside the ghost cells at the beginning of every iteration.
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Figure 2.20: Implementation of the Chimera procedures within the fluid solver for a second order send-ing.
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2.4 - Validation of the finite volume Chimera method
on one-dimensional test cases

In the previous sections, we have presented our implementation of the finite volume Chimera
method. In the following, we check the impact of the Chimera sending on one-dimensional analytical
test cases. The first and second order Chimera sendings are reviewed for both the standard detection
procedure and the extended detection procedure presented in section 2.2.2. For each case, the
assessed Chimera configurations will be specified. However, the finite volume method set-up is kept
constant across all the cases tested which corresponds to a MUSCL-Hancock scheme with an HLLC
Riemann solver and the K-Dubois limiter with k = 0.75 (see section 1.2 for details on the numerical
scheme configuration). The scheme is second order accurate in both time and space. The CFL
number is set to 0.9 for the one-dimensional test cases.

2.4.1 - Solution reconstruction over overlapping grid domains
When using overlapping grid methods, it is difficult to compare the overlapped fields to a single

grid solution as the solution is duplicated on the overlapped regions. In this section, we propose a grid
merging approach to post-process the solution obtained using an overlapping grid method. Given a
substrate (W), an immersed patch (V) and their respective sets of ghost cells (W̃ and Ṽ) as shown
in Figure 2.21, we use the resolved cell sets (Wc and Vc) defined in equation 2.1 to reconstruct a
unique solution over the computational domain.

V

W

: Ghost cell

˜V

˜W

Wc

Vc

Wp

Vc

Wc \ (Vc ∩Wc)
W + V

Merged grid configuration

Overlapping grid configuration

Figure 2.21: Field merging of overlapping grid configurations for comparisons with single grid cases.
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We consider the conservative variable field U over the physical domain U . This field is dis-
cretized as

{
UWi
}
i∈ΩW

and
{
UVi
}
i∈ΩV

respectively on the substrate (W) and the patch (V). As a
result the field U is duplicated in the overlapped regions. In order to post process overlapping grid
configurations, we define the composite conservative variable field:

U =

[
1− α(x)

]
UW + α(x)UV , (2.19)

where α is a weighting function of space. As the patch is used to improve the accuracy of a global
computation, we choose the following formulation for α:

α(x) =

{
1 if x ∈ Vc,
0 otherwise.

(2.20)
This formulation favors the patch solution and is equivalent to merging grids by cutting the overlapped
cells of the substrate as shown in Figure 2.21. The resulting merged grid is used for error computations
only and is referred as W + V in the following. In equation 2.19, the composite field is based on
conservative variables U . This definition can also be derived for error fields computed with analytical
solutions as done in equation 2.23 in the followings.

2.4.2 - Sinus advection
In order to assess the order of accuracy of the numerical scheme, and the impact of the inter-

polation used in the Chimera exchange on the global order of convergence, the linear advection of a
smooth analytical solution is considered similarly as in [113, 35, 89]. This test case is also useful to
assess the impact of the exchange zone shift (δS) combined with the different ghost cell detection
procedures. We superimpose a regular fluctuation on a one-dimensional density field that is convected
with a constant velocity:

ρ = ρ0(1 + δρ)
u = u0 = 100 m.s−1

p = p0 = 105 Pa
(2.21)

with the normalized density fluctuation given by,

δρ =

{
A sin2(π(x−xs)

l ) if 0 ≤ x− xi ≤ l
0 elsewhere,

(2.22)
where A = 0.1 is the amplitude of the perturbation, ρ0 = 1 kg.m−3 is the inital constant density
field, l = L/5 is the length on which the density is perturbed, T is the period of the perturbation and
L = u0 T = 10 m is the length of the computational domain [0, L]. xs = 0.5 m is the perturbation
shift set to ensure that the initial center of the perturbed density region is located at xc(0) = 0.15L,
as seen in Figure 2.22. The simulation stops at tf = 0.6T which is the time for which the center of
the density fluctuation is located at xc(tf ) = 0.75L.
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Figure 2.22: Scalar advection test case: initial solution of a square sinus distribution (see equation 2.22).

A . Split domain

The first configuration tested is called split domain and consists in a single grid split into a substrate
and a patch whose left interface is located at xi = 1/2L as shown in Figure 2.23. The cleaned patch
domain boundary (ΓṼ) is kept fixed across the various Chimera configurations and one or two ghost
cells are added on top of the boundary ΓṼ depending on the order of the Chimera sending. Given
δS, the substrate is positioned in accordance with the geometrical criteria given in equation 2.6.

The sinus advection test case with the split domain configuration allows us to accurately review
the impact of the Chimera exchange as the patch (V) receives information coming from the substrate
at only one region of the patch grid. This is compared to a fully immersed patch which receives
information from both regions corresponding to the extremities of the patch (V). As the information
is only going in one direction, we can quantify the impact of the exchange zone shift (δS), measure
the impact of a coarse-to-fine grid transfer and vice versa, but first, we focus on the impact of the
Chimera sending on the global order of convergence.
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Figure 2.23: Sinus advection test case: grid arrangements for the split Chimera configuration.
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A.1 - Impact of the Chimera sending on the order of convergence

For the grid convergence study with the split domain case, we have tested two different configura-
tions: one with coincident grids (δS = 0) and the other one with non-coincident grids (δS = 0.3hW).
We review the first and the second order Chimera sending with the standard detection procedure.
Computations have been performed on both a single grid domain (without any patch) and on the
split domain with a patch. For both cases, we used 6 different grids from the coarsest Ncells = 100

cells regularly distributed over L to the finest using Ncells = 3200 cells, i.e. the grid spacing evolves
with power of 2 between two meshes. We note Ncells the number of grid cells over L. As we would
like to highlight the spatial accuracy, whatever the grid is, a constant time step ∆t = 10−5 s giving
a very low CFL number (0.03− 0.3) has been used for lowering the time integration error.

We set the cell ratio between the patch and the substrate to χ = 1. This allows us to study the
grid convergence as well as the impact of the Chimera interpolation on the global accuracy. At the
final time tf , we compare numerical solutions obtained on both the single grid configuration and the
Chimera configuration, to the analytical solution which is the simple convection of the initial density
profile without any diffusion. To measure numerical errors, we calculate the L1 norm of the density
error, computed as follows:

L1(ερ) =
1

L

∫ L

0
|ερ|dx =

1

L

[ ∫ L

0
|α(x)εVρ +

[
1− α(x)

]
εWρ |dx

]

≈ 1

|W + V|

ΩW+V∑
i=0

|ρi − ρth(xi)|∆xi,
(2.23)

with ρth the analytical density profile, α the weighting function introduced in equation 2.20 and
εVρ = ρVnum − ρth with ρVnum the numerical density solution on V. The equivalent definition applies to
εWρ . The total volume of the domain is written: |U| for the single grid cases and |W + V| for the
Chimera configurations.

The coincident grid results (δS = 0) reported on Table 2.1 are identical between the single mesh
configuration and both Chimera methods. This is expected by design of the developped method as
coincident grid cases combined with our version of the Chimera method are equivalent to a single
grid configuration. For the coincident grid configurations (single grid and Chimera), the second order
of accuracy is clearly recovered for finest grids (at least from 400 grid points over L) by using the
MUSCL-Hancock scheme.

Therefore, even though the first order Chimera method is a lower order method than the numerical
scheme, it does not alter the overall order of convergence.

Table 2.1: Grid convergence analysis of the split configuration: results on density (ρ) errors obtainedwith a single grid configuration as well as with the present Chimera approach using a patch with samegrid spacing as the substrate (χ = 1) and coincident grids (δS = 0).

Ncells L1(ερ)(×104) Order of convergence p
Single Chimera Single Chimera

First order Second order First order Second order
100 9.093 9.093 9.093 1.34 1.34 1.34200 3.584 3.584 3.584 1.72 1.72 1.72400 1.091 1.091 1.091 1.95 1.95 1.95800 2.825e-1 2.825e-1 2.825e-1 2.12 2.12 2.121600 6.462e-2 6.462e-2 6.462e-2 2.37 2.37 2.373200 1.242e-2 1.242e-2 1.242e-2 - - -

The evolution of the L1 norm of density errors versus the grid spacing is plotted in Figure 2.24 for
the non-coincident grid configuration (δS = 0.3hW). Using the present Chimera method on a split
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Figure 2.24: Grid convergence analysis of the sinus advection case for the split domain with equivalentcell sizes between the patch and the substrate (χ = 1) and non-coincident grids (δS = 0.3hW ). h = hW =
hV and h0 corresponds to Ncells = 3200.

domain configuration with equivalent cell sizes (χ = 1) does not seem to notably deteriorate the order
of accuracy of the original method. The global order of accuracy is almost recovered although small
discrepancies compared to single grid results can hardly be noticed in the coarsest grid configurations
(see Fig. 2.24). To judge the very low intensity of these differences, we report in Table 2.2 the L1

density errors as well as the measured order of accuracy. Even when using the first order Chimera
method, the order of convergence is not notably altered.

Table 2.2: Grid convergence analysis of the split configuration: results on density (ρ) errors obtainedwith a single grid configuration as well as with the present Chimera approach using a patch with samegrid spacing as the substrate (χ = 1) and non-coincident grids (δS = 0.3hW ).

Ncells L1(ερ)(×104) Order of convergence p
Single Chimera Single Chimera

First order Second order First order Second order
100 9.093 9.257 9.100 1.34 1.37 1.34200 3.584 3.577 3.595 1.72 1.71 1.72400 1.091 1.090 1.093 1.95 1.95 1.95800 2.825e-1 2.820e-1 2.827e-1 2.12 2.12 2.131600 6.462e-2 6.452e-2 6.466e-2 2.37 2.37 2.383200 1.242e-2 1.242e-2 1.242e-2 - - -

A.2 - Impact of the exchange zone shift (δS) on the solution

Keeping the same split configuration, notations and time step parameter as above, we assess the
impact of the geometrical configuration and more specifically the exchange zone shift (δS) by setting
Ncells = 200 and χ = 1. As the patch domain boundary remains fixed at 1/2L, increasing the
value of δS from 0 (coincident grid configuration) to 0.9hW (non-coincident grid configuration) is
equivalent to shifting the substrate in the positive direction of the x-axis by a value δS (see Fig. 2.23).

The L1 density errors are plotted in Figure 2.25. When δS = 0, the ghost cells have only one
sending cell. When 0 < δS 6= hW , each ghost cell receives information from two sending cells as
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shown in Figure 2.23. The first order Chimera exchange and the second order Chimera exchange
exhibit different behaviors. The first order sending cell is a convex function of the exchange zone shift
with a minimum reached for δS = 0.4. From this point, the error increases as one moves further away.
As seen in Table 2.2, the peculiar behavior of the first order Chimera is confirmed in Figure 2.25 with
lower errors compared to both the second order sending and the equivalent single grid configuration
with Ncells = 200 and χ = 1.

In Figure 2.26, we can see that both Chimera and single grid cases present a symmetry breaking
of the density profile compared to the analytical solution. Therefore, the first order Chimera exchange
compensates the symmetry breaking which slighlty improves the overall accuracy of the solution. For
the second order Chimera method, the maximum error is obtained with the largest exchange zone
shift and the smallest error is obtained with matching grids. It is worth noting that the second
order exchange error amplitude is lower compared to the first order Chimera method making it less
dependent on the grid configuration. As a result, the second order Chimera method seems preferable
as it is more predicable regarding the grid configurations when χ = 1.
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Figure 2.25: Exchange zone shift analysis: results on density (ρ) errors obtained with with the presentChimera approach using a patch with same grid spacing as the substrate (Ncells = 200, χ = 1.0) withvariable exchange zone shift (δS) and the standard detection procedure.

53



CHAPTER 2. THE FINITE VOLUME CHIMERA METHOD FOR FAST DYNAMICS

5 6 7 8 9
x (m)

1.00

1.02

1.04

1.06

1.08

1.10

D
en

si
ty

(k
g.

m
−

3 )

Single grid

Chimera 1st order, δS=0

Chimera 1st order, δS=0.9hW
Analytical solution

Figure 2.26: Density profile at t = tf for the single grid case and the first order Chimera sending withmatching grids (δS = 0) and non-matching grids (δS = 0.9hW ) with Ncells = 200 and χ = 1, comparedto the analytical solution. The markers on the plots are not representative of the number of points ofthe numerical solution.

A.3 - Impact of the cell ratio (χ) on the solution

In more geometrically complex cases, the condition χ = 1 is restrictive for composite large scale
domains and may become a constraint for our approach. Therefore, this part focuses on the impact of
the cell ratio (χ) between the patch and the substrate for both coincident (δS = 0) and non-coincident
(δS 6= 0) grid interfaces. We keep the same parameters and notations previously introduced. For
each configuration (coincident and non-coincident), the study is based on two folds: the first one
assesses the transfer from a base grid with Ncells = 200 (substrate) to a finer one (patch) as χ > 1.
The second one reviews the transfer from a base grid with Ncells = 3200 (substrate) to a coarser
one (patch) as χ 6 1.

Let us recall that solution errors are calculated at tf = 0.6T once the density profile passed
through the exchange zone region and is completely arrived inside the patch. That way, errors
obtained must mainly be compared to the ones of single grid configurations corresponding to the
coarsest equivalent Ncells between the patch and the substrate, i.e., for the coarse-to-fine transfers,
errors must be compared to the single grid case with Ncells = 200 whereas for the fine-to-coarse
transfers, errors must be compared to the single grid cases where Ncells is equal to equivalent Ncells
on the patch. We call these single grid configurations equivalent coarse single mesh (ECSM).

Similarly, we define the equivalent fine single mesh (EFSM) of a Chimera configuration, the single
grid configuration with the same grid resolution as the finest mesh of the Chimera grid configuration.

A.3.1 - Coincident grid interfaces (δS = 0)

Starting with the coincident interface case and χ > 1 (coarse-to-fine transfer), the L1 norm of
the density errors are reported in Table 2.3. We can see that the first order Chimera sending is not
relevant as it generates a higher error than the single grid configuration while using a finer patch for
every cell ratio tested. The second order Chimera sending on the other hand is promising as it allows
an increase in the overall accuracy while it is obvious that the solution errors are mostly dominated
by the ones generated on the coarser substrate as the Chimera error is closer to ECSM error than the
EFSM error. As an example, while being lower, the Chimera errors with Ncells = 200 and χ = 4

have the same order of magnitude as the single grid with Ncells = 200 but cannot be compared to
the error of the single with Ncells = 800. As a conclusion, unlike the first order Chimera exchange,
the second order Chimera exchange between two facing grids does not deteriorate the global solution
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error when the patch is finer than the substrate.
When χ < 1 (fine-to-coarse transfer), the fine substrate compensates the induced error of the

first order Chimera method as the errors of the first order Chimera case are lower than the coarse
equivalent single grid cases (see Table 2.4). However, the first order errors are higher than the
second order Chimera method which remains preferrable when χ varies. The difference between the
two Chimera methods drops when χ decreases. This is caused by the increasing spatial errors involved
by the coarser patches. As a conclusion, the fine-to-coarse transfer is not heavily impacted by the
Chimera methods as the Chimera errors are blended with the spatial error of the coarsest grids.

Table 2.3: Cell ratio analysis of the split configuration: results on density (ρ) errors obtainedwithwith thepresent Chimera approach using a patch with a coincident Chimera interface (δS = 0) and variable cellratios (χ) with the standard detection procedure. The transfer occurs from a coarse substrate (Ncells =
200) to a finer patch. We have also reported the errors of the equivalent coarse single mesh (ECSM) andthe equivalent Ncells on the patch for equivalent fine single mesh (EFSM) comparisons.
χ

L1(ερ)(×104) EquivalentNcells on the patch
(for EFSM comparison)First order Second order Equivalent coarse single mesh (ECSM)

1 3.584 3.584 3.584 2002 5.371 2.741 // 4004 5.066 2.526 // 8008 4.959 2.481 // 160016 4.948 2.477 // 3200

Table 2.4: Cell ratio analysis of the split configuration: results on density (ρ) errors obtained with withthe present Chimera approach using a patch with a coincident Chimera interface (δS = 0) and variablecell ratios (χ) with the standard detection procedure. The transfer occurs from a fine substrate (Ncells =
3200) to a coarser patch. We have also reported the errors of the equivalent coarse single mesh (ECSM)and the equivalent Ncells on the patch for equivalent coarse single mesh (ECSM) comparison.
χ

L1(ερ)(×104) EquivalentNcells on the patch
(for ECSM comparisons)First order Second order Equivalent coarse single mesh (ECSM)

1 1.242e-2 1.242e-2 1.242e-2 32000.5 6.216e-2 3.431e-2 6.462e-2 16000.25 1.487e-1 1.306e-1 2.825e-1 8000.125 5.159e-1 5.080e-1 1.091 4000.0625 1.824 1.821 3.584 200

A.3.2 - Non-coincident grid interfaces (δS = 0.6 hW)

We now focus on the impact of χ on the overall solution but with non-coincident grid interfaces
(δS = 0.6 hW). Apart from the exchange zone shift, the grid configuration remains the same as
before with Ncells = 200 for coarse-to-fine transfers and Ncells = 3200 for fine-to-coarse transfers.
We review the impact of the ghost cell detection procedure (standard and extended) in addition to
the order of the Chimera method, for various cell ratios (χ).

Table 2.5, contains the L1 norm of the density error for χ > 1 (coarse-to-fine transfer). Using the
extended detection procedure reduces δS when possible and ensures δS 6 0.6hW . Therefore, for the
first order Chimera method, the standard detection provides lower errors compared to the extended
detection procedure as we have seen with Figure 2.25, especially when increasing χ as it makes δS

tend to 0. For the second order Chimera method, the extended detection procedure improves slighlty
the accuracy of the method compared to the standard detection but deteriorates it a little when using
high cell ratios χ > 10.

When χ < 1 (fine-to-coarse transfer), the Chimera methods behave similarly to the coincident
grid case with an increasing error due to the coarsening of the patch. The extended detection has
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no effect on the solution as the ghost cell configurations are identical to the standard detection.
Also, the Chimera errors are blent in with the spatial error induced by the coarse patch reducing
significantly the gap between the first and the second order Chimera sendings. Therefore, we can
conclude that the order of the Chimera method and the detection procedure do not matter when
transferring information from a baseline grid to a coarser one.

Table 2.5: Cell ratio analysis of the split configuration: results on density (ρ) errors obtained with withthe present Chimera approach using a patch with non-coincident Chimera interface (δS = 0.6hW ) andvariable cell ratios (χ) for both the standard and extended detection procedures. The transfer occursfrom a coarse substrate (Ncells = 200) to a finer patch. EquivalentNcells on the patch are reported forequivalent fine single mesh (EFSM) comparison.

χ
L1(ερ)(×104) EquivalentNcells

on the patch
(for EFSM comparison)First order Second order

Standard detection Extended detection Standard detection Extended detection
1 3.582 3.582 3.599 3.599 2002 2.438 3.944 2.785 2.756 4004 2.519 4.614 2.537 2.531 8008 2.115 4.538 2.475 2.481 160016 2.107 4.855 2.466 2.489 3200

Table 2.6: Cell ratio analysis of the split configuration: results on density (ρ) errors obtained with withthe present Chimera approach using a patch with non-coincident Chimera interface (δS = 0.6hW ) andvariable cell ratios (χ) for both the standard and extended detection procedures. The transfer occursfrom a fine substrate (Ncells = 3200) to a coarser patch. Equivalent Ncells on the patch are reportedfor equivalent coarse single mesh (ECSM) comparison.

χ
L1(ερ)(×104) EquivalentNcells on the patch

(for ECSM comparison)First order Second order
Standard detection Extended detection Standard detection Extended detection

1 1.243e-2 1.243e-2 1.243e-2 1.243e-2 32000.5 3.266e-2 3.266e-2 3.219e-2 3.219e-2 16000.25 1.356e-1 1.356e-1 1.402e-1 1.402e-1 8000.125 5.103e-1 5.103e-1 5.129-1 5.129-1 4000.0625 1.822 1.822 1.823 1.823 200
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B . Patched domain

The previous configurations involve a single transfert from one substrate toward a patch. We consider
now a patch immersed inside a substrate. As illustrated in Figure 2.27, this configuration is closer
to real life use cases as the method aims to bring locally geometrical details thanks to the patch.
Computations have already been performed on a single grid domain (without any patch) for the
previous configurations and are now performed with a patch that is located centered on the substrate
of length L, from x1 = 1/3L to x2 = 2/3L as shown in Figure 2.27. This configuration allows us
to assess the effect of the method when a perturbation completely crosses a patched domain. The
initialization of the fields remains the same.
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χ = 1

Figure 2.27: Sinus advection test case: grid arrangements for the patched Chimera configuration.

On the substrate, we used 6 different grids from the coarsest Ncells = 100 cells regularly
distributed on L to the finest using Ncells = 3200 cells, i.e. the grid spacing evolves with power of 2
between two meshes. We note Ncells the number of grid cells along the substrate. As we would like
to highlight the spatial accuracy, whatever the grid is, a constant time step ∆t = 10−5 s has been
used for lowering the time integration error which corresponds to small CFL numbers (0.03− 0.3).

B.1 - Impact of the Chimera sending on the order of convergence

First, we set the cell ratio between the patch and the substrate (χ) to 1. The mesh on the patch
is not coincident with the mesh on the substrate (see Fig. 2.27 for a sketch). At the final time tf ,
we compare numerical solutions obtained on both the single grid configuration (only the substrate is
considered) and the configuration with the patch superimposed on the substrate, to the analytical
solution. To measure numerical errors, we calculate the L1 norm of the density error, computed as
in equation 2.23. The evolution of the L1 norm of density errors versus the grid spacing is plotted in
Figure 2.28.

On the one hand, for the single mesh configuration (without any patch), the second order of
accuracy is clearly recovered for finest grids (at least from 800 grid points over L) by using the
second order MUSCL-Hancock scheme. On the other hand, the two Chimera sendings on a patched
configuration on 1/3 length of the computational domain do not seem to notably deteriorate the
order of accuracy compared to a single grid case. Even with the first order Chimera sending, the
global order of accuracy is almost recovered although slight discrepancies compared to single grid
results can hardly be noticed in the coarsest grid configurations (see Fig. 2.28). To judge the very low
intensity of these discrepancies, we report in Table 2.7 the L1 density errors as well as the measured
order of accuracy.
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Figure 2.28: Grid convergence analysis of the sinus advection case for the patched configuration withequivalent cell sizes between the patch and the substrate (χ = 1). h = hW = hV and h0 corresponds to
Ncells = 3200.
Table 2.7: Grid convergence analysis of the patched configuration: results on density (ρ) errors obtainedwith a single grid configuration as well as with the present Chimera approach using a patch with samegrid spacing as the substrate (χ = 1).

Ncells L1(ερ)(×104) Order of convergence p
Single Chimera Single Chimera

First order Second order First order Second order
100 9.093 9.223 9.074 1.34 1.37 1.32200 3.584 3.567 3.630 1.72 1.72 1.73400 1.091 1.083 1.096 1.95 1.94 1.95800 2.825e-1 2.828e-1 2.837e-1 2.12 2.13 2.131600 6.462e-2 6.445e-2 6.472e-2 2.37 2.37 2.383200 1.242e-2 1.250e-2 1.241e-2 - - -

B.2 - Impact of the cell ratio (χ) on the solution

Secondly, we prescribe the cell number on the substrate to Ncells = 200 and we refine the grid
on the patch in order to assess the impact of the transfer between a coarse substrate and a finer
patch which seems to be the most sought-after configuration. Cell ratios between the patch and the
substrate spread from χ = 1 to χ = 16 where the grid spacing on the patch is 16 times smaller than
on the substrate. Results on the normalized L1 norm of density errors are reported in Table 2.8.

The last column reports the equivalent number of cells (Ncells) that would be needed on the
substrate to recover the same grid refinement as used in the patched region. Let us recall that
solution errors are calculated at tf = 0.6T once the density profile passed through the patch and
completely left the patch. That way, errors obtained must mainly be compared to the ones of single
grid configuration with Ncells = 200 cells.

For the first order sending, refining the patch slighlty improves the accuracy of the overall solution
up to χ = 4 using the standard detection procedure and χ = 2 for the extended detection procedure.
This is coherent with the results obtained with the split configuration and comes from the coarse-to-
fine sending. We can see here that this effect persists with a patched configuration.
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Table 2.8: Cell ratio analysis of the patched configuration: results on density (ρ) errors obtained with thepresent Chimera approach using a patch and variable cell ratios (χ) for both the standard and extendeddetection procedures. The substrate comprises Ncells = 200 grid cells. Equivalent Ncells on the patchare reported for equivalent fine single mesh (EFSM) comparison.

χ
L1(ερ)(×104) EquivalentNcells

on the patch
(for EFSM comparison)First order Second order

Standard detection Extended detection Standard detection Extended detection
1 3.567 3.567 3.630 3.630 2002 2.905 2.905 2.370 2.370 4004 2.714 5.155 2.112 2.142 8008 5.094 5.095 2.023 2.023 160016 4.405 5.358 1.994 2.023 3200

As a result, the first order sending is not recommended for cell ratios higher than 2. On the
contrary, the second order sending always improves the accuracy of the solution compared to the
single grid with Ncells = 200. The standard detection is preferable in this one-dimensional case as
it allows slightly lower errors compared to the extended detection. Using the second order exchange,
this emphasizes that errors due to Chimera exchange between the two facing grids do not impact the
global solution error when the patch is finer than the substrate.

C . Summary of the findings on the advection case

With the sinus advection test case, various configurations have been tested in order to assess key
aspects of the different versions of the developped Chimera method:

• A split domain configuration has been tested as it represents the simplest configuration to
assess the Chimera method with one localized exchange zone at the end of the substrate
which corresponds to the beginning of the patch. Each configuration depends on the number
of cells (Ncells), the exchange zone shift (δS) and the cell ratio (χ).

1. First, with coincident grids and equivalent cell size between the patch and the substrate
(χ = 1 and δS = 0) we have verified that both the first order and the second order
Chimera methods give identical results to the single grid configuration.

2. With non-coincident grids and equivalent cell size between the patch and the substrate
(χ = 1 and δS = 0.3hW), we showed that the impact of both the first and second order
Chimera methods on the global order of convergence is negligible.

3. Then, we assessed the impact of the exchange zone shift (δS) with equivalent cell size
between the patch and the substrate (χ = 1) and Ncells = 200. The analysis showed
that the second order Chimera method is preferrable as it is less dependent on the grid
configuration and has a more predicable behavior regarding the Chimera error generated.

4. The impact of the cell ratio (χ) has been assessed using Ncells = 200 with coincident
grids (δS = 0). In a coarse-to-fine transfer (χ > 1), the second order Chimera method
systematically improves the overall solution which is not the case for the first order
Chimera method. In a fine-to-coarse transfer (χ < 1), the Chimera method errors are
blended with the spatial error generated by the coarse grids.

5. Finally, the impact of the cell ratio (χ) has been assessed using Ncells = 200 with
non-coincident grids (δS = 0.6hW). In a coarse-to-fine transfer (χ > 1), the second
order Chimera method with the extended detection does not systematically lower the
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error when χ increases unlike the first order Chimera method. On the other hand, the
second order Chimera method with the standard detection procedure is the most accurate
configuration when χ increases. In a fine-to-coarse transfer (χ < 1), the Chimera method
errors are blended with the spatial error generated by the coarse grids and the extended
detection does not improve the global solution.

• A patched domain configuration has been tested as it represents a simplified configuration
of the targeted applications with immersed patched grids. The grids are non-coincident and
each configuration depends on the number of cells (Ncells) and the cell ratio (χ). When
χ = 1, the impact of both Chimera methods on the order of convergence is negligible. With
Ncells = 200, the second order method with the standard detection procedure systematically
improves the overall solution when χ increases and provides the most accurate results among
all the tested configurations of the Chimera method.
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2.4.3 - Split Sod shocktube
We now consider a non-linear test case which is the well known Sod shocktube [160, 170]. This

test is relevant in the assessement of the developped Chimera method as its solution consists of a left
expansion wave, a contact discontinuity and a right shock wave separated by constant states. This
test allows us to examine the impact of the Chimera method when an expansion wave or a shock
wave crosses the Chimera exchange zone which will be reviewed in two distinct sections. This test
is relevant for the assement of the developped Chimera method as it consists in solving the Euler
equations and allows us to review the ability of the Chimera method to transfer non-linearities from
one grid to the other. A tube of length L = 1 m contains a left state and a right state separated by
an interface located at x0 = 0.5 m. The states are respectively given by:ρL

uL

pL

 =

1 kg.m−3

0
104 Pa

 ,

ρR

uR

pR

 =

0.125 kg.m−3

0
103 Pa

 , (2.24)
with (ρL, uL, pL) the left state and (ρR, uR, pR) the right state. The simulation stops at the

time tf = 2.3 × 10−3 s. The computational domains are similar to the ones in section 2.4.2.A and
are illustrated in Figure 2.29.

For the Chimera configuration, the domain is composed of a substrate of length L = xi + kGChW
with xi the position of the substrate Chimera interface, kGC the number of ghost cell layers and hW
the substrate cell size. The patch is positioned from xi according to δS as shown in Figure 2.29. We
note Ncells the number of grid cells over L which gives the substrate grid resolution (hW). The
patch cell size (hV) is set given χ. The Chimera interface position (xi) will vary depending on the
solution component (expansion wave, shock wave) we are focusing on. The single grid configuration
is identical to the Chimera configuration with δS = 0. This will allow us to test the impact of
the Chimera procedure on an expansion wave or a shock wave and to compare the results to an
equivalent single grid configuration, especially when χ increases given Ncells. As a result, the single
grid configuration also depends on Ncells, xi and χ. The CFL number is set to 0.9
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Figure 2.29: Shocktube test case: grid arrangements for the single grid and Chimera configurations.
The results are compared to the analytical solution of the Sod shocktube. The L1 norm of the

density error is computed as in equation 2.23.
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A . Focus on the expansion wave

In this first section, we focus on the expansion wave crossing the Chimera interface. As we want
to keep the grid configurations and notations as simple as possible across the various cases, the left
and right states of the Sod shocktube are inverted in order to make the expansion wave travel from
left to right. The Chimera interface (xi) is set to 0.6 m. As a result, the expansion wave starts
from the substrate and at t = tf , the head of the expansion wave is located inside the patch. The
objective is to assess the behavior of the Chimera method compared to the single grid configuration
when an expansion wave crosses the Chimera interface and to monitor the appearance of oscillations
or perturbations induced by the Chimera method.

A.1 - Impact of the Chimera sending on the order of convergence

In this first study, χ is set to 1 and δS = 0.6hW . The Chimera results have been obtained with
the standard detection procedure. We use 6 different grids from the coarsest Ncells = 100 to the
finest Ncells = 3200.

Figure 2.30: Shocktube test case - focus on the expansion wave: density profile at t = tf for both theChimera methods and the single grid configurations with Ncells = 200, χ = 1 and δS = 0.6hW . Themarkers on the plots are not representative of the number of points of the numerical solution.

Figure 2.30 shows the density profile obtained with Ncells = 200 and χ = 1. We can see
that the crossing of the Chimera exchange zone by the expansion wave does not generate visible
perturbations. The results of the L1 norm of the density error are reported on Table 2.9. Starting
with the orders of convergence, we can clearly see that the non-smoothness of the solution prevents the
single grid configurations to reach an order of convergence of 2. Unlike the previous sinus advection
case, the Chimera methods contribute to the error and slightly degrade the overall solution. The
Chimera method impacts the global solution by 1.9% for the coarsest grid with the first order Chimera
exchange and by 0.28% for the coarsest grid with the second order Chimera exchange, compared to
the equivalent single grid configuration. When refining the grids, the Chimera error decreases and
becomes lower than 0.1% for the finest grids. The difference between the first and the second order
Chimera methods also decreases.
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Table 2.9: Grid convergence analysis of the Sod shocktube - focus on the expansion wave: results ondensity (ρ) errors obtained with a single grid configuration as well as with the present Chimera approachusing a patch with same grid spacing as the substrate (χ = 1) and non-coincident grids (δS = 0.6hW ).

Ncells L1(ερ)(×104) Order of convergence p
Single Chimera Single Chimera

First order Second order First order Second order
100 3.604 3.674 3.614 0.78 0.80 0.78200 2.095 2.115 2.099 0.72 0.73 0.72400 1.271 1.276 1.272 0.98 0.98 0.98800 6.433e-1 6.446e-1 6.435e-1 0.71 0.71 0.711600 3.925e-1 3.929e-1 3.926e-1 0.83 0.83 0.833200 2.209e-1 2.210e-1 2.209e-1 - - -

A.2 - Impact of the cell ratio (χ) on the solution

Now we set Ncells = 200 on the substrate and χ varies. For the Chimera cases, δS = 0.6hW .
The single grid configuration is also refined from the patch Chimera interface location (xi) to the
end of the domain as shown in Figure 2.29. The results of the L1 norm of the density error are
reported on Table 2.10. The single grid case with a local refinement deteriorates the quality of the
overall solution as the patch region gets refined. It is illustrated in Figure 2.31 with the appearance
of a small oscillation near the location of the brutal refinement (xi).

The same trend is observed with the Chimera cases as seen in Figure 2.32, nonetheless, the
second order Chimera method limits the error growth unlike the first order Chimera method and
the single grid configuration. This is visible as the second order Chimera exchange does not have
an oscillation in its solution. With the rarefaction wave crossing the Chimera exchange zone, the
extended detection procedure does not improve the quality of the solution and even deteriorates the
solution with the first order Chimera method when χ > 2. This highlights the difficulties of the first
order method when dealing with high cell ratios and also exhibits some difficulties of standard single
grid methods to deal with brutal spatial refinements.
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Figure 2.31: Shocktube test case - focus on the expansion wave: density profile at t = tf for singlegrid configurations with Ncells = 200 and different values of χ. The markers on the plots are notrepresentative of the number of points of the numerical solution.
Table 2.10: Cell ratio analysis of the Sod shocktube - focus on the expansion wave: results on density (ρ)errors obtained with the single grid configuration as well as with the present Chimera approach usinga patch with non-coincident Chimera interface (δS = 0.6hW ) and variable cell ratios (χ) for both thestandard and extended detection procedures. The transfer occurs from a coarse substrate (Ncells =
200) to a finer patch. EquivalentNcells on the patch are reported for equivalent fine single mesh (EFSM)comparison.

χ
L1(ερ)(×103) EquivalentNcells

on the patch
(for EFSM comparison)Single Chimera

First order Second order
Standard detection Extended detection Standard detection Extended detection

1 2.095 2.115 2.115 2.099 2.099 2002 2.096 2.240 2.118 2.094 2.112 4004 2.109 2.250 2.403 2.102 2.111 8008 2.138 2.147 2.403 2.106 2.110 160016 2.158 2.147 2.489 2.106 2.107 3200
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Figure 2.32: Shocktube test case - focus on the expansion wave: density profile at t = tf for single gridand Chimera configurations with Ncells = 200, χ = 16 and δS = 0.6hW . The markers on the plots arenot representative of the number of points of the numerical solution.
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B . Focus on the shock wave

In this second section, we focus on the shock wave crossing the Chimera interface. The Chimera
interface position (xi) is set to 0.8 m. Using the inital conditions described in equation 2.24, the
shock wave naturally crosses the Chimera interface and is located inside the patch at t = tf . The
objective is to assess the behavior of the Chimera method compared to the single grid configuration
and monitor the appearance of oscillations or perturbations induced by the Chimera method when
discontinuities are at play.

B.1 - Impact of the Chimera sending on the order of convergence

We start by reviewing the impact of refinement with equivalent cell size between the patch and
the substrate (χ = 1). In this configuration the cells of the single grid cases are uniformly distributed
along the domain of length L. The results of the L1 norm of the density error are reported on
Table 2.11. We can see for that for discontinuities, the Chimera method is more impactful on the
overall solution with relative Chimera errors of 14% on the coarsest grids compared to the coarsest
single grid. The Chimera error decreases when refining the grids and reaches 5% of relative error
compared to the equivalent single grid configuration with Ncells = 3200. Figure 2.33 shows the
absence of local oscillations induced by the Chimera method on the density profile at t = tf .

Figure 2.33: Shocktube test case - focus on the shockwave: density profile at t = tf for both the Chimeramethods and the single grid configurations with Ncells = 200, χ = 1 and δS = 0.6hW . The markers onthe plots are not representative of the number of points of the numerical solution.
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Table 2.11: Grid convergence analysis of the Sod shocktube - focus on the shockwave: results on density(ρ) errors obtained with a single grid configuration as well as with the present Chimera approach usinga patch with same grid spacing as the substrate (χ = 1) with non-coincident grids (δS = 0.6hW ).

Ncells L1(ερ)(×104) Order of convergence p
Single Chimera Single Chimera

First order Second order First order Second order
100 3.604 4.138 4.132 0.78 0.86 0.86200 2.095 2.281 2.283 0.72 0.88 0.88400 1.271 1.243 1.237 0.98 0.82 0.82800 6.433e-1 7.022e-1 7.007e-1 0.71 0.94 0.941600 3.925e-1 3.647e-1 3.655e-1 0.83 0.65 0.653200 2.209e-1 2.329e-1 2.330e-1 - - -

B.2 - Impact of the cell ratio (χ) on the solution

Focusing on the impact of the cell ratio (χ), we set Ncells = 200 on the substrate portion.
For the Chimera cases, δS = 0.6hW which means that the grids are non-coincident. The single grid
configuration is also refined from the patch Chimera interface location x = xi to the end of the
domain as shown in Figure 2.29. The two Chimera detection procedures (standard and extended)
have been tested and the results of the L1 norm of the density error are reported on Table 2.12. When
using different cell ratios between the grids, the local refinement improves the overall error compared
to the cases where χ = 1. However, for both the single grid and the Chimera cases, the error is not
a linear function of χ as the minimum of the error is not reached for the highest value of χ. We can
also see that the extended detection procedure slighlty helps decreasing the error compared to the
standard detection procedure for both Chimera methods when dealing with discontinuities but not in
a significant way.

Figure 2.34 shows the density profile of single grid cases when χ varies. We can see that a
brutal refinement generates oscillations that propagate in the flow direction. These oscillations are
also present in the Chimera configurations with a very similar behavior of the pertubation between
the first order Chimera method and the single grid configuration. When dealing with discontinuities,
the second order Chimera method does not mitigate the perturbation but slows it down. Also, the
second order Chimera method provides a good estimate of the shock wave velocity whereas the first
order method overshoots the shock wave position.

As a result, the second order Chimera method with the standard detection procedure is the most
suitable configuration for dealing with shocks and high cell ratios as the extended method does not
bring significant improvements to the solution while increasing the number of ghost cells.
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Table 2.12: Cell ratio analysis of the Sod shocktube - focus on the shock wave: results on density (ρ)errors obtained with the single grid configuration as well as with the present Chimera approach usinga patch with non-coincident Chimera interface (δS = 0.6hW ) and variable cell ratios (χ) for both thestandard and extended detection procedures. The transfer occurs from a coarse substrate (Ncells =
200) to a finer patch. EquivalentNcells on the patch are reported for equivalent fine single mesh (EFSM)comparison.

χ
L1(ερ)(×103) EquivalentNcells

on the patch
(for EFSM comparison)Single Chimera

First order Second order
Standard detection Extended detection Standard detection Extended detection

1 2.095 2.281 2.281 2.283 2.283 2002 2.090 2.099 2.008 1.966 1.946 4004 1.922 2.155 2.040 2.032 1.991 8008 1.960 2.054 2.050 1.997 1.927 160016 1.939 2.072 2.085 2.013 1.928 3200

Figure 2.34: Shocktube test case - focus on the shock wave: density profile at t = tf for single grid con-figurations withNcells = 200 and different values of χ. The markers on the plots are not representativeof the number of points of the numerical solution.
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Figure 2.35: Shocktube test case - focus on the shock wave: density profile at t = tf for single grid andChimera configurations with Ncells = 200, χ = 16 and δS = 0.6hW . The markers on the plots are notrepresentative of the number of points of the numerical solution.
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C . Summary of the findings on the Sod shocktube case

With the Sod shocktube test case, we have been able to assess the behavior of the different Chimera
configurations transferring an expansion wave or a shock wave from the substrate to the patch. These
waves result from the non-linearity of the Euler equations which was not present with the advection
test case. Various configurations have been tested in order to assess key aspects of the different
versions of the Chimera method:

• A split domain configuration with Chimera interface located at xi = 0.6 m and inverted left
and right initial states have been used in order to review the impact of the Chimera method on
the solution when an expansion wave crosses the exchange zone. Both first and second order
Chimera methods have a negligible impact on the order of convergence compared to a single
grid approach. When refining the patch while maintaining Ncells constant, the second order
Chimera method with the standard detection procedure provides the more accurate solution
compared to the other configurations. However, the refinement slighlty deteriorates the solution
even for the single grid case because of a small oscillation generated near the brutal refinement
region.

• A split domain configuration with a Chimera interface located at xi = 0.6 m has been used
in order to assess the impact of the Chimera method on the solution when a shock wave
crosses the exchange zone. At an equivalent cell size between the patch and the substrate,
both first and second order Chimera methods do not generate visible oscillations and the
Chimera error reduces with refinement. When refining the patch at a constant Ncells, an
oscillation is generated near the brutal refinement zone. This oscillation also apprears with the
single grid configuration and prevent the error from decreasing when using a finer patch. The
second order extended detection procedure does not bring significant improvements compared
to the standard detection procedure which remains the best compromise between shock wave
propagation speed estimation, overall accuracy and number of ghost cells.
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2.4.4 - Conservation properties of the present Chimera method
Although our local conservation hypothesis is not sufficient to ensure global conservation of

the system [184, 185, 133], we verify in this section that the Chimera method does not introduce
conservation error with coincident grid interfaces. Then, we verify that the conservation error due
to the Chimera exchange with non-coincident grid interfaces and variable cell ratios meet acceptable
levels for industrial requirements.

To this end, we study the behavior of the finite volume Chimera formulation when a steady shock
wave is located at the patch interface. This one-dimensional test case is taken from [183] and [148].

The full computational domain x ∈ [−5, 5] m, is discretized in two regions of Ncells = 25 each
for the single grid configuration. The interface between the two regions is located at x = 0 and
the Chimera configurations are depicted in Figure 2.36 with coincident grid interfaces (δS = 0) and
non-coincident grid interfaces (δS = 0.3hW) with χ = 2. For every Chimera grid configuration,
the patch interface is fixed and coincides with the shock wave discontinuity at x = 0. The variable
Ncells corresponds to the number of cells on the substrate while the number of cells on the patch
is defined by the cell ratio (χ). The Chimera cases are tested for both the first and the second
order Chimera method with the standard detection procedure. The flow states on each side of the
discontinuity are the following:ρL

uL

pL

 =

 1 kg.m−3

1.5 m.s−1

0.71429 Pa

 ,

ρR

uR

pR

 =

1.8621 kg.m−3

0.8055 m.s−1

1.7559 Pa

 , (2.25)
As the shock wave discontinuity coincides with the patch interface, the patch contains exclusively

the right state of the shock wave. All simulations are performed up to a dimensionless time t? =

t uL/L = 100, using a prescribed CFL = 0.9 on both the single grid configuration and the Chimera
grids. This time ensures a converged solution with residuals of density, momentum and total energy
lower than 10−9 on every case. The relative error on system conservation is computed for each
conservative variable as the following:

ε(ρ(t?)) =

∣∣ ∫ ρ(t?,x) dV−
∫
ρ(0,x) dV

∣∣∫
ρ(0,x) dV

ε((ρu)(t?)) =

∣∣ ∫ (ρu)(t?,x) dV−
∫

(ρu)(0,x) dV
∣∣∫

(ρu)(0,x) dV

ε(ρE(t?)) =

∣∣ ∫ (ρE)(t?,x) dV−
∫

(ρE)(0,x) dV
∣∣∫

(ρE)(0,x) dV

(2.26)

In Figure 2.37, we show the results of the Chimera configurations (first and second order) with
coincident grid interfaces (δS = 0) and non-coincident grid interfaces (δS = 0.3hW) with equivalent
cell size compared to the single mesh configuration (Ncells = 25, χ = 1) and the analytical solution.

As highlighted by Table 2.13, system mass, momentum and total energy are conserved for both
Chimera methods with the coincident grid interface configuration (δS = 0) as seen in Figure 2.37
with identical errors compared to the single mesh case.

The Chimera method with non-coincident grid interfaces (δS = 0.3hW) introduces conservation
error since a maximum of respectively 0.5% and 0.6% is recorded on the conservation error of mass
for the first order Chimera method and on the conservation error of momentum for the second order
Chimera method. In fact, the shock wave is still located at the patch interface but at the same time,
is also diffused upstream, in a coarse cell of the substrate that induces higher error levels.
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Figure 2.36: Stationary shock wave grid configuration for coincident grids and non-coincident grids withthe shock wave located at x = 0.

Figure 2.37: Density profile of the stationary shock wave converged solution in a single grid configura-tion with Ncells = 25 and Chimera configurations (first and second order exchanges) with coincidentand non-coincident grids for Ncells = 25 and χ = 1 compared to the reference solution. The markerson the plots are not representative of the number of points of the numerical solution.
Table 2.13: System mass, momentum and energy relative error computed on the converged solutionwith a single grid configuration as well as with the present Chimera approach using a patch with thesame grid spacing as the substrate (Ncells = 25, χ = 1) with a stationary shock wave matching thepatch boundary.

Single Chimera
Coincident interfaces Non-coincident interfaces

First order Second order First order Second order
ε(ρ(t?)) in % 5.971e-4 5.971e-4 5.971e-4 5.276e-1 4.359e-1

ε((ρu)(t?)) in % 2.449e-3 2.449e-3 2.449e-3 4.996e-1 6.336e-1
ε((ρE)(t?)) in % 4.463e-3 4.463e-3 4.463e-3 1.904e-1 4.608e-1

When refining the patch (χ = 2, 4, 8 and 16) with coincident grids (δS = 0), we can observe
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from Table 2.14 and Figure 2.38a, that system mass, momentum and total energy are preserved
with the first order Chimera method with an error of the same order of magnitude as the single grid
configuration which is 10−4%. On the other hand, the second order method has more impact on
conservation with a jump of two orders of magnitude when refining the patch. This is caused by
the linear reconstruction of the solution that blunts the shock wave interface which translates into a
difference in system mass, momentum and total energy. As seen in Figure 2.38b, the error is relatively
low as it does not exceed 0.02%.

With non-coincident grid interfaces (δS = 0.3hW), the shock wave diffuses upstream in the
substrate grid. As a result, refining the patch has only a weak effect on error levels for both the
first order and second order Chimera methods (see Table 2.15). The error magnitude is however
relatively low since it does not exceed 1%. To put those results in perspective, Figure 2.38c and
Figure 2.38d show the impact of the Chimera method on the post-shock state with non-matching
grids. The loss on the density jump is at most 0.39% of the reference post-shock state for the
first order Chimera method and 0.4% for the second order Chimera method which is acceptable for
industrial applications.

As a result, the first and second order Chimera methods have a very similar behavior with non-
coincident grid interfaces with a small advantage for the second order method. This was expected
from the Sod shocktube study as the second order Chimera method captures correctly the shock
wave speed compared to the first order method.
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(a) Chimera first order, δS = 0

(b) Chimera second order, δS = 0

(c) Chimera first order, δS = 0.3hW
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(d) Chimera second order, δS = 0.3hW

Figure 2.38: Density profile of the stationary shock wave converged solution of Chimera configurationswith coincident (δS = 0) and non-coincident (δS = 0.3hW ) grids for Ncells = 25 and χ varying from 2 to
16 compared to the reference solution. The markers on the plots are not representative of the numberof points of the numerical solution.
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Table 2.14: System mass, momentum and energy relative error computed on the converged solutionwith a single grid configuration aswell as with the present Chimera approach using a patchwith differentgrid spacings and a stationary shock wave matching the patch boundary and coincident interfaces (δS =
0).

χ
Chimera (Coincident interfaces)

First order Second order
ε(ρ(t?)) in % ε((ρu)(t?)) in % ε((ρE)(t?)) in % ε(ρ(t?)) in % ε((ρu)(t?)) in % ε((ρE)(t?)) in %

1 5.970e-4 2.449e-3 4.463e-3 5.970e-4 2.449e-3 4.463e-32 4.171e-4 2.271e-3 4.375e-3 1.111e-2 1.113e-2 3.345e-34 5.583e-4 2.421e-3 4.446e-3 1.154e-2 1.175e-2 3.815e-38 6.254e-4 2.491e-3 4.480e-3 1.177e-2 1.209e-2 4.062e-316 6.582e-4 2.526e-3 4.497e-3 1.118e-2 1.226e-2 4.189e-3

Table 2.15: System mass, momentum and energy relative error computed on the converged solutionwith a single grid configuration aswell as with the present Chimera approach using a patchwith differentgrid spacings and a stationary shock wave matching the patch boundary and non-coincident interfaces(δS = 0.3hW ).

χ
Chimera (Non-coincident interfaces)

First order Second order
ε(ρ(t?)) in % ε((ρu)(t?)) in % ε((ρE)(t?)) in % ε(ρ(t?)) in % ε((ρu)(t?)) in % ε((ρE)(t?)) in %

1 5.276e-1 4.996e-1 1.904e-1 4.359e-1 6.336e-1 4.608e-12 3.609e-1 5.685e-1 4.397e-1 1.330e-1 3.218e-1 3.179e-14 2.253e-1 5.591e-1 5.564e-1 1.131e-1 3.894e-1 4.284e-18 2.319e-1 5.647e-1 5.573e-1 2.173e-1 5.590e-1 5.639e-116 2.352e-1 5.674e-1 5.578e-1 2.418e-1 5.988e-1 5.955e-1

2.5 - Advection of an isentropic vortex

The last test case of this chapter is an isentropic vortex which is one of the exact solutions for the
compressible Euler equations [192]. This test involves convection of an isentropic vortex throughout
an inviscid flow. It is often used to illustrate the ability of numerical schemes to capture vortical flows.
The mean flow velocities u∞ and v∞, pressure p∞ and density ρ∞ are considered to be free stream.
This test is a diagonally convecting vortex with (u∞, v∞) = (1 m.s−1, 1m.s−1) and p∞ = 1 Pa,
ρ∞ = 1 kg.m−3. As an initial condition, an isentropic vortex is added to the mean flow field. The
pertubation values are given by:{

(δu, δv) = β
2πe

1
2

(1−r2)(−y, x),

δT = − (γ−1)β2

8γπ2 e(1−r2),
(2.27)

where β is the vortex strength and γ = 1.4. Here, T = p
ρ , T∞ = 1.0, (x, y) = (x − xc, y − yc),

where (xc, yc) are the coordinates of the initial vortex center equal to (0, 0) and r2 = x2 + y2. The
entire flow is assumed to be isentropic, so for a perfect gas, p/ργ = constant. From the relations,

ρ = ρ∞ + δρ,

u = u∞ + δu,

v = v∞ + δv,

T = T∞ + δT,

(2.28)
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and the isentropic relation, the resulting state for conservative variables is given by:
ρ

ρu

ρv

ρE

 =


[
1− (γ−1)β2

8γπ2 e(1−r2)
]1/(γ−1)

ρ
[
1− β

2πe
1
2

(1−r2)
]

ρ
[
1 + β

2πe
1
2

(1−r2)
]

p
γ−1 + 1

2ρ(u2 + v2)

 . (2.29)

The exact solution with the given initial state is a convection of the vortex with the mean velocity
comparable to the results shown in Figure 2.39. Therefore, it provides a good measure of the accuracy
of the schemes for relatively smooth solutions of the Euler equations. The computational domain for
the vortex is a centered square (x× y) ∈ [−5, 5]2 m×m. Periodic boundary conditions are used at
the boundary of the domain. The single mesh simulation uses a uniform cartesian grid with Ncells
cells on the side. The same grid is used as the substrate in the Chimera configuration. The patch is
a centered rotated square of a side 5 m at a 45◦ angle as shown in Figure 2.40. The grid resolution
of the patch is set using the cell ratio (χ).

Figure 2.39: Resulting pressure field of the isentropic vortex case at t? = t?f for the single grid configu-ration with Ncells = 640.

All simulations are performed up to a dimensionless time t?f = t

√
u2
∞ + v2

∞
L
√

2
= 1, using a

prescribed CFL number of 0.6 on both the single grid configuration and the Chimera configurations.
The finite volume method is identical to the one-dimensional test cases presented in the previous
section and corresponds to a MUSCL-Hancock scheme with an HLLC Riemann solver and the K-
Dubois limiter with k = 0.75.
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Figure 2.40: Isentropic vortex grid configuration for the Chimera case with χ = 2.

2.5.1 - Impact of the Chimera sending on the order of convergence
First, the cell ratio (χ) is kept constant and equal to 1. Several grid resolutions are employed

from Ncells = 50 to Ncells = 400, to study grid convergence of the Chimera method compared to
the single grid approach. At the final dimensionless time t?f , we compare numerical solutions obtained
on both the single grid configuration and the Chimera configuration, to the analytical solution. To
measure numerical errors, we calculate the L1 norm of the pressure error written L1(εp), computed
as shown in equation 2.23

Figure 2.41 illustrates the grid convergence results over the 5 grids for both the single grid and
the Chimera configurations. Even though the orders of convergence are higher than 1, the single
grid solution error does not decrease as expected with smooth solutions. The Chimera configurations
follow the same trend.

On a two-dimensional case such as the isentropic vortex, the first order Chimera method slighlty
deflects from the single grid results and the difference between the latter and the second order
Chimera method is invisible to the naked eye. Using the pressure profile over the centerline y = 0

shown in Figure 2.42, we can see that the second order Chimera method and the single grid results are
matching but the vortex is no longer symmetrical compared to the analytical solution. This explains
why the first order Chimera method gives, in some configurations, a lower error compared to the
single grid configuration and the second order Chimera method.

This is confirmed by Table 2.16 where both the first order Chimera and the second order Chimera
methods have a lower error compared to the single grid case for Ncells = 320 and Ncells = 160.
A this level of accuracy, the difference is negligible and can be attributed to a grid combination that
better fits the solution. Nonetheless, the second order Chimera method seems the better choice here
as it remains the closest to the single grid solution across refinement.
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Figure 2.41: Grid convergence analysis of the isentropic vortex case with equivalent cell sizes betweenthe patch and the substrate (χ = 1). h = hW = hV and h0 corresponds to Ncells = 640.

Figure 2.42: Pressure profile at t? = t?f along y = 0 for the single grid configuration as well as theChimera cases with Ncells = 80 and χ = 1. The markers on the plots are not representative of thenumber of points of the numerical solution.
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Table 2.16: Grid convergence analysis of the vortex case: results on pressure (p) errors obtained witha single grid configuration as well as with the present Chimera approach using a patch with same gridspacing as the substrate (χ = 1).

Ncells L1(ερ)(×104) Order of convergence p
Single Chimera Single Chimera

First order Second order First order Second order
40 5.010 5.325 5.046 1.51 1.62 1.5580 1.757 1.730 1.722 1.18 1.14 1.17160 7.713e-1 7.874e-1 7.656e-1 1.06 1.17 1.06320 3.702e-1 3.500e-1 3.662e-1 1.02 1.03 1.02640 1.828e-1 1.713e-1 1.809e-1 - - -
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2.5.2 - Impact of the cell ratio (χ) on the solution
In the following, Ncells is set to 40 and χ varies. The two detection procedures (standard and

extended) are tested for both the first order and the second order Chimera methods. The results are
reported on Table 2.17. For both Chimera methods, refining the patch does not improve the overall
accuracy but deteriorates it. This deterioration is due to oscillations caused by the transfer from the
coarse substrate to the fine patch as shown in Figure 2.43. These oscillations are exacerbated with
high values of χ as shown in Figure 2.44. However, this deterioration is reduced when using the
second order Chimera method compared to the first order method (see Fig. 2.43a and Fig. 2.43b).
Overall, the extended detection does not seem to improve the solution. Therefore, the most accurate
configuration is the second order Chimera method with the standard detection procedure.

Table 2.17: Cell ratio analysis of the vortex case: results on pressure (p) errors obtained with with thepresent Chimera approach using a variable cell ratios (χ) and Ncells = 80. Equivalent Ncells on thepatch are reported for equivalent fine single mesh (EFSM) comparison.

χ
L1(εp)(×103) EquivalentNcells

on the patch
(for EFSM comparison)First order Second order

Standard detection Extended detection Standard detection Extended detection
1 5.325 5.325 5.046 5.046 402 5.426 5.487 5.073 5.157 804 5.806 6.791 5.482 5.573 1608 6.188 7.623 5.698 5.889 32016 6.457 8.116 5.812 6.078 640

(a) First order Chimera
(b) Second order Chimera

Figure 2.43: Resulting pressure field of the isentropic vortex case at t? = t?f for the Chimera case usingthe first order sending (a) and the second order sending (b) withNcells = 40 and χ = 16 both using thestandard detection procedure.
Table 2.18 contains the ratio of the CPU times and memory cost of each equivalent fine single

grid configuration to the CPU times and memory of the corresponding Chimera configurations. If
χ > 1, the equivalent fine single grid of a Chimera configuration is a single grid configuration with
the same grid resolution as the patch. Therefore, if the time ratio is higher than 1, it means that the
Chimera case takes less time than its equivalent fine single mesh. Similarly, a memory ratio higher
than 1, means that the Chimera configuration memory footprint is lower than its equivalent fine
single mesh.
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Figure 2.44: Pressure profile at t? = t?f along y = 0 for the single grid configuration as well as theChimera cases with Ncells = 40 and χ = 16. The markers on the plots are not representative of thenumber of points of the numerical solution.

Overall, the Chimera method is very interesting using cell ratios as it divides the CPU time by
more than 4 in some cases and divide the memory requirements by more than 3. As expected, the
first order method is the fastest Chimera configuration and the second order Chimera method with
the extended detection procedure is the slowest. Even though the second order Chimera method
is not as fast as the first order method, it brings significant gains with up to 3.8 less CPU time
than the equivalent single grid configuration. For the second order Chimera method, even though,
the extended detection procedure does not significantly deteriorate the CPU time, the gains on the
accuracy of the solution are not important enought to justify its utilization compared to the standard
detection.

Table 2.18: Time an memory cost of the Chimera method: time and memory ratio of the presentChimera approach using a variable cell ratios (χ) compared to the equivalent fine single mesh (EFSM).The higher the better. EquivalentNcellson the patch are reported for equivalent fine singlemesh (EFSM)comparison.

χ
CPU Time Ratio MemoryRatio

EquivalentNcells
on the patch

(for EFSM comparison)First order Second order
Standard detection Extended detection Standard detection Extended detection

1 0.81 0.79 0.69 0.63 0.79 402 2.43 2.40 1.98 1.67 1.90 804 4.47 4.26 3.61 3.26 3.08 1608 4.83 4.75 3.80 3.73 3.61 32016 4.48 4.42 3.62 3.61 3.76 640
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2.6 - Chapter conclusion

In this chapter, we have detailed the development of a Chimera method based on a finite
volume approach using two grids respectively named substrate and patch. The method uses ghost
cells as receiving containers and relies on a local conservation hypothesis from which we derived a
first order and a second order interpolation formulas of the conservative variables. The geometrical
identification procedures have been detailed along with the dependency of the ghost cell layer number
upon the order of numerical scheme such as the MUSCL-Hancock scheme. A modified version of
the K-Dubois limiter [162] has been presented in order to prevent the appearance of local extrema
when using the second order Chimera method. In order to minimize the appearance of unstabilities,
a unique time step is chosen for the both domains based on the finest grid. A solution reconstruction
from composite domains is proposed in order to compare Chimera configurations to single grid ones.

The developed Chimera method with the two interpolation formulas and the two detection proce-
dures has been tested on reference one-dimensional and two-dimensional test cases from the literature
like a sinus pertubation advection, the well known Sod shocktube, a stationary shock wave and an
isentropic vortex advection. The first and second order Chimera sendings do not alter the order of con-
vergence of linear one-dimensional solutions like advections or non-linear, continous one-dimensional
solutions like expansion fans. Using high cell ratios allow an increase in the global accuracy of the
solution due to the use of finer grids on localized regions. This improvement is limited by the coarsest
grid.

When a discontinuous solution like a shock wave is transferred from a substrate to a patch, the
second order Chimera method is able to correctly capture shock wave speeds but oscillations are
generated due to abrupt refinements which deteriorates the quality of the solution. These oscillations
appear with a coarse-to-fine transfer as well as single grids with abrupt refinement and remain local
phenomena as the overall profile is preserved which must but be pointed out. This type of oscillations
is also observed when using high cell ratios with solutions sensitive to conservation like the isentropic
vortex. However, the second order Chimera method tends to mitigate the perturbations which could
potentially be blent in larger cases for industrial applications. Also, the objective of the developped
Chimera method is to add local geometrical details that can alter the flow locally which would then
impact the larger scale. Therefore, even though the fine-to-coarse perturbations must be taken into
account, they do not prevent the developped Chimera method to be used for industrial applications.

Finally, The extended detection procedure does not seem relevant in any of the cases tested with
no relevant gains in acccuracy and slight additional cost in CPU time and memory. The second order
Chimera method with a standard detection procedure is an interesting compromise which combined
with a reasonable cell ratio (up to χ = 8), can bring relevant CPU time optimizations while improving
the accuracy of the global solution.

In the following, the first order Chimera method is no longer considered and we focus on
the second order method. The standard detection is the default configuration and if the extended
detection procedure is used, it will be explicitly specified.
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The second order Chimera method has been assessed on one-dimensional and two-dimensional,
reference but relatively simple test cases. In this chapter, we extend the assessment of the method
with the standard detection procedure as a default configuration. To evaluate the present approach,
we select three well-known two-dimensional test cases from the literature. Each test case is chosen
to stress the method on one particular aspect in order to highlight capabilities and limitations of the
present Chimera method. The finite volume method set-up is kept constant across all the cases tested
which corresponds to a MUSCL-Hancock scheme with an HLLC Riemann solver and the K-Dubois
limiter with k = 0.75 (see section 1.2 for details on the scheme configuration). The scheme is second
order accurate in both time and space. By default the CFL number is set to 0.6. A supersonic flow
around a 2D cylinder is undertaken with an overlapping grid in the vicinity of the cylinder. This
allows us to check that the present Chimera method is able to transfer a shock wave from the global
grid to a patch containing a geometrical detail that will alter the global solution of the flow before
reaching a steady state. The second test case concerns the interaction of a shock wave in Air with
a bubble initially cylindrical with two variants. In the first one, the bubble is filled with Helium while
in the second one, the bubble is filled with R22. This allows us to stress the behavior of the present
method to deal with moving interfaces between components in multicomponent flows. At last, the
well known test case of the double Mach reflection is undertaken with overlapping grids. We can thus
check the ability of the method to account for multiple interactions between discontinuities even if
they move across overlapping grid boundaries.
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3.1 - Flow around a circular cylinder at Mach = 3

3.1.1 - Presentation of the case
A circular cylinder with a radius D = 1 m, is initially placed in Air (γ = 1.4) which is assumed

as a perfect gas. A shock wave is initially located 8 cylinder diameters in front of the cylinder with a
flow at Mach M∞ = 3 upstream of the shock wave. Upstream pressure and density are prescribed,
respectively at P∞ = 96774 Pa, and ρ∞ = 0.519 kg.m−3 upstream of the shock wave. Initial
conditions downstream this shock wave, around the cylinder, are prescribed by using the Rankine-
Hugoniot relationships assuming that the front shock wave moves towards the cylinder with a Mach
number equal to Msh = 1. The initial state of this test case is shown in Figure 3.1 where we see the
computational domain (x× y) ∈ [−10, 10]2 m×m.

Figure 3.1: Circular cylinder test case: computational domain and initial solution.
A grid that fits both the body and external domain boundaries is first built to serve as a single

grid configuration. A zoom-in view in the vicinity of the cylinder is provided in Figure 3.2a, where
we see the transition between an O-grid very close to the cylinder towards an H-grid far away. In
the followings, we use the number of grid cells (Ncells) distributed along the cylinder perimeter as
the parameter to refer as refinement. We then built the grid of the patch, attached to the cylinder
with an O-grid that at most coincides with the single grid configuration very close to the cylinder
to facilitate comparisons with the single grid model (see in Fig. 3.2b the grid in red superimposed
to the single grid configuration). Then the substrate model employed in the Chimera computation
is a Cartesian grid that fits the external boundaries of the computational domain, as we can see in
Figure 3.2b, where a zoom-in close to the cylinder is presented showing the patch grid superimposed
to the substrate model. Let us remark that, when considering the problem with overlapping domains,
the cylinder only belongs to the patch domain and does not explicitly appears in the substrate model.

All simulations are performed up to a dimensionless time t? = t u∞/L = 52.5 (where u∞ is the
infinite velocity), using a prescribed CFL number CFL = 0.6 on both the single grid configuration
and the overlapping grids.
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(a) Single mesh case vs Patch (b) Chimera case
Figure 3.2: Grid configuration for the single mesh case and the Chimera case.

At first, we keep the cell ratio between the patch and the substrate close to unity, meaning that
the minimum grid spacing used in the patch (along the cylinder perimeter) is the same as the one
used in the substrate although meshes are not coincident away from the cylinder, as we can see in
Figure 3.2b. Several grid resolutions are employed from Ncells = 50 along the cylinder perimeter to
Ncells = 400, to study grid convergence.

Steady state solutions are presented in Figure 3.3, with the comparison of density contours
obtained at a dimensionless time t? = 52 for Ncells = 200 grid cells along the cylinder perimeter,
between the single grid configuration (see Fig. 3.3b), and the overlapping grids (see Fig. 3.3a). As
we can see, results seem to be similar, and it is hard to differentiate them following the density
contours. Let us first remark that in the Chimera case, when the front shock wave passes through
the interface from the substrate to the patch, no spurious reflection is generated, meaning that the
present Chimera method is able to deal with wave propagation across grid interfaces.

To get a better validation of results obtained with the Chimera method, we use an integral
quantity based on the pressure drag force exerted by the flow on the cylinder, calculated at each time
step. Time history of this pressure drag force is plotted in Figure 3.4.

3.1.2 - Steady state horizontal pressure force analysis
When the moving front shock wave interacts with the cylinder, a peak on the pressure drag force

occurs, followed by a relaxation period during which the front shock wave becomes established as
a bow shock in front of the cylinder. Then a steady state solution occurs. The initial peak is well
captured by the Chimera method which gives equivalent results compared to the single grid case (see
Fig. 3.4). Whatever the grid spacing is, a statistically converged steady state solution is achieved
from at most a dimensionless time t? = 35. When the grid becomes finer, this time increases. As we
can see, for the coarsest grids the drag force converges towards a constant value while for the finer
grids oscillations around a converged value appear due to the high resolution of the cylinder wake.
Compared to the single grid computations, the Chimera method gives comparables results on the
drag force while some weak discrepancies can be recorded for the coarsest grids. Very similar results
have however been recovered for the finest grid tested with the Chimera method. By zooming in on
the steady state region between dimensionless times 40 and 52.5 as shown in Figure 3.5, we can see
that the average force seems to converge toward the value F ≈ 202 × 103 N. We can observe that
the Chimera case captures oscillations around the cylinder with a coarser grid refinement than the
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(a) Chimera case (b) Single mesh case
Figure 3.3: Steady state density field for both Chimera case (on the left), and the single grid case (on theright) with a cell ratio of unity (χ = 1), obtained at a dimensionless time t? = 52 and for Ncells = 200grid cells along the cylinder perimeter.

single grid configuration. Considering that grids between the single mesh case and the Chimera case
are similar but not identical, differences might be caused by a difference in the grid resolution as well
as a better grid regularity of the mesh in the Chimera case.

On Table 3.1, we have reported the averaged force calculated for several number of cells over the
cylinder perimeter (Ncells), over the time interval t? ∈ [40, 52.5] for both the single mesh case and
the Chimera case. Relative differences, w.r.t. the single grid case, between the Chimera case and
the single grid configuration are reported in the last column as percentages. Discrepancies between
the single mesh case and the Chimera case do not exceed 2% and the Chimera case converges
monotonously as the grids are refined.

Table 3.1: Average resulting pressure force over t? ∈ [40, 52.5] for the first study cases (χ = 1).
Ncells

1
t2−t1

∫ t2
t1
F (t) dt (N)

% difference with Single
Single Chimera

50 207728 211312 1.7 %100 203404 203120 0.14 %200 201719 202204 0.24 %400 203059 202161 0.44 %

Secondly, we set the resolution on the substrate model equivalent to Ncells = 100 and the
patch is refined (χ = 1, 2, and 4) with respectively Ncells = 100, 200, and 400 along the cylinder
perimeter. It corresponds to a patch refinement over a constant grid spacing on the substrate. With
the definition of the parameters Ncells and χ provided for this case, we get the following Chimera
configurations: (Ncells = 100, χ = 1), (Ncells = 200, χ = 2) and (Ncells = 400, χ = 4). In
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(a) Ncells = 50, 100

(b) Ncells = 200, 400

Figure 3.4: Time history of the pressure drag force for several number of grid cells (Ncells) obtained onboth the single grid configuration, and the overlapping grids with however similar grid spacings (χ = 1).The markers on the plots are not representative of the number of points of the numerical solution.

Figure 3.6, we plot histories of the drag force on the cylinder obtained on several refined overlapping
grids compared with the equivalent fine single mesh (EFSM) with the same number of cells along the
cylinder perimeter. Refining the patch does not introduce local perturbation but instead increases
the accuracy of the resulting force as the regularity of the mesh is better ensured than in a single
case for the same Ncells (see Fig. 3.2).

To better examine predicted converged values of the drag force, we plot a zoom in of histories
in between t? ∈ [45 , 52.5] obtained with both the overlapping grids with cell several ratios and the
equivalent fine single mesh (Fig. 3.7). Similar results as with the Chimera case with χ = 1 are obtained
that compare very well with the equivalent fine single grid cases. In fact, as reported in Table 3.2,
comparable discrepancies with respect to the equivalent single grid computations are recorded by the
refined Chimera case (χ 6= 1) compared to the results obtained with χ = 1. Nevertheless, the force
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(a) Ncells = {50, 100} (b) Ncells = {100, 200}

(c) Ncells = {200, 400}

Figure 3.5: Zoom in the interval dimensionless times t? ∈ [45 , 52.5] of the pressure drag force history forseveral number of grid cells (Ncells), obtained on both the single grid configuration and the ovelappinggrids with however similar grid spacings (χ = 1). The markers on the plots are not representative of thenumber of points of the solution.

of the Chimera method allows to predict results with the similar accuracy at however a much less
computational cost since less grid points are necessary for the same grid spacing. This is confirmed in

Table 3.2: Results obtained with the Chimera cases when the patch is refined and the substrate resolu-tion is fixed (equivalent toNcells = 100), compared with their equivalent fine single mesh computations(EFSM).

χ
Chimera

Ncells EFSM Error (%) CPU time CPU memoryAverage F compared to EFSM ratio ratio
1 203120 100 1.47 % 0.97 0.972 202204 200 0.24 % 2.3 2.414 202180 400 0.43 % 3.5 3.8

Table 3.2, where we report the ratios of the CPU times for the equivalent fine single grid to the CPU
time of the corresponding Chimera configuration when χ varies. The ratios of the memory usage
for the equivalent fine single grid to the memory usage of the corresponding Chimera configuration
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Figure 3.6: Resulting pressure force over time for the second study cases (Ncells = 100, χ = 1),(Ncells = 200, χ = 2) and (Ncells = 400, χ = 4). The markers on the plots are not representativeof the number of points of the numerical solution.

(a) χ = {1, 2} (b) χ = {2, 4}

Figure 3.7: Resulting pressure force over time for the second study cases (Ncells = 100, χ = 1),(Ncells = 200, χ = 2) and (Ncells = 400, χ = 4) zoomed in the time interval [45 , 52.5]. The mark-ers on the plots are not representative of the number of points of the numerical solution.

when χ varies are also reported. When χ = 1, the CPU time ratio is less than 1 expressing that the
Chimera method costs more than the single grid computation because of a higher number of grid cells,
interpolation and transfer of ghost cell solutions. However, compared to single mesh computations
with same grid resolutions, once we increase χ, equivalent results are obtained at a much lower cost,
mainly coming from the gain in the number of cells since the time step is equivalent because the grid
spacing is the same. Even though the present Chimera method is not intended for grid optimization,
the method allows significant gains in time and memory without impacting the resulting solution.
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3.1.3 - Shock standoff measurements
To have a better local insight in present results, we measure the detachment distance of the bow

shock wave in front of the cylinder. A sketch of the flow structure in front of the cylinder is proposed
in Figure 3.8, where the detachment distance (δ) of the bow shock wave is defined. An analytical
measurement of the shock wave standoff distance has been proposed by Sinclair and Cui [159], which
provides δ = 0.3649D at an upstream Mach number M∞ = 3.

Figure 3.8: Geometric illustration of the flow structure in front of the cylinder.
From our results, we measured the detachment distance (δ) along the horizontal axis of symmetry

(y = 0) as the first point encountered from infinity where the pressure rise exceeds 50 % of the
theoretical pressure jump across the shock wave. Detachment values (δ) recorded on Chimera results
are reported in Table 3.3. The left side of the table refers to overlapping grids with similar cell
ratio (χ = 1) while the right side relates on results obtained by increasing the cell ratio (χ) while
maintaining the substrate resolution fixed and equivalent to Ncells = 100 resulting in the following
Chimera configurations: (Ncells = 100, χ = 1), (Ncells = 200, χ = 2) and (Ncells = 400,
χ = 4).

Table 3.3: Detachment distance of the bow shock wave in front of the cylinder: overlapping grids withthe proposed Chimera cases. On the left side, number of cells are increased keeping the cell ratio (χ = 1)constant. On the right side, cell ratio (χ) is variedwith a prescribed number of cells in the substratemodel(equivalent to Ncells = 100).
Overlapping grids with χ = 1, andNcells is varied:

Ncells δ/D relative error E (%) w.r.t. analytical value
50 0.433 18.66100 0.428 17.29200 0.398 9.07400 0.372 1.95

Substrate resolution fixed and χ is varied (patch refined):
χ Ncells δ/D relative error E (%) w.r.t. analytical value
1 100 0.428 17.292 200 0.395 8.254 400 0.372 1.95

Numerical values of δ converge towards the analytical value δ = 0.3649 [159] as grids are
progressively refined with a discrepancy close to 2% of the analytical value obtained for the finest
grid. It is important to underline that, compared to overlapping grids with equivalent cell ratio
(χ = 1), same δ values have been recorded by using a refined patch model keeping a rather coarse
substrate grid at a much smaller computational cost which is promising for target applications.

92



3.2. INTERACTION OF A SHOCK WAVE MOVING IN AIR WITH A BUBBLE

3.2 - Interaction of a shock wave moving in air with a
bubble

3.2.1 - Presentation of the case
In order to assess the Chimera method with two-component flow interfaces, we have numerically

reproduced one of the emblematic experiments originally proposed by Haas and Sturtevant [75] and
more recently conducted by Layes et al. [106], where a shock wave moving at a Mach number
Ma = 1.22 in Air interacts with a cylindrical bubble initially filled of Helium or chlorodifluoromethane
also known as R22. The interaction between the shock and the bubble is different depending on
the bubble composition as Helium is less dense than air while R22 is denser resulting on different
bubble deformation. The problem is modelled using the compressible version of the reduced five-
equation two-component flow model proposed by Allaire et al. [2] presented in section 1.1.1.B. The
initial configuration is depicted in Figure 3.9. The computational domain is defined as (x × y) ∈
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Figure 3.9: Shock wave / Bubble interaction: initial conditions taken from Layes et al. experiments [106]and computational domain.
[0, 170× 10−3]× [−44.5× 10−3, 44.5× 10−3] m2. The initial center of the bubble, having an initial
diameter of D = 50 × 10−3 m, is located at xb = 52.5 × 10−3 m, and yb = 0 m. The shock wave
is initially positioned at xs = 10× 10−3 m and moves to the right towards the bubble with a Mach
number Ma = 1.22. Flow is then initialized by using the Rankine-Hugoniot relationships, and the
corresponding initial conditions [28] on density, streamwise velocity, pressure, and heat capacity ratio
are:

(ρ0, u0, p0, γ) =


(1.66 kg.m−3, 114 m.s−1, 159080 Pa, 1.4 ) in air, for x ≤ xs,
(1.2062 kg.m−3, 0, 101325 Pa, 1.4) in air, for x > xs,

(0.2204 kg.m−3, 0, 101325 Pa, 1.6451) inside the He bubble,
(3.5965 kg.m−3, 0, 101325 Pa, 1.1847) inside the R22 bubble.

(3.1)

Helium, R22 and air are all considered as perfect gases. Cartesian grids are employed in these
simulations. The arrangements for the overlapping grids is presented in Figure 3.10. In the followings,
meshes are dimensioned with the parameter Ncells that is the number of cells along the bubble
diameter (D). The patch model is a 6 × 10−3 m side square grid, centered on the initial bubble
location, and deliberatly rotated at θ = 45◦ (w.r.t. the horizontal axis) in order to stress the
geometrical intersections of the Chimera exchange. Let us note that the single grid configuration is
equivalent to the substrate model used in the Chimera case.
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Figure 3.10: Bubble shock test case numerical configuration.

Simulations are performed on both the single grid configuration and the overlapping grid case,
using a constant CFL number CFL = 0.4, over a dimensionless time of t?f = t u0/D = 1.6, with
u0 = 114 m.s−1. Three grids are considered with respectively Ncells = 50, 100, and 200.

3.2.2 - Helium bubble-shock wave interaction
When the shock wave interacts with the Helium bubble, the bubble is severely deformed and

globally moves downstream as we can see in Figure 3.11 where the Helium volume fraction field is
plotted at two dimensionless times t? = 0.24, and t? = 1.6 for the single grid configuration with
Ncells = 200. As Helium is less dense than the surrounding Air, the bubble acts as a divergent
acoustic lens explaining deformations. In fact, as the gradient of pressure induced by the shock wave
is not always aligned with the gradient of density imposed by the Air/Helium interface, vorticity
is locally produced by baroclinic effect explaining the deformation and the interface coiling. This

Figure 3.11: Helium volume fraction field obtained with a single grid configuration withNcells = 200 attwo different dimensionless times t? = 0.24 and t? = 1.6.
present single mesh solution using the finest grid (Ncells = 200) fits experimental results from
[106]. This grid resolution allows the capture of anti-symmetrical vortices as well as oscillations of
the interface on the bubble front. Although vortices are locally produced by baroclinic effect, perfectly
anti-symmetrical vortices are produced since the integral of vorticity must stay to zero as no vorticity
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is present at the initial state. The present single grid simulation allows to account for this physical
aspect.

Regarding the Chimera configuration, let us notice that the bubble is only prescribed inside the
patch grid and so, does not initially exist in the substrate model. As the patch grid is kept fixed,
the bubble moves away from the patch to the substrate during simulations, and at the final time,
the bubble is completely located on the right hand side of the substrate mesh and is no longer inside
the patch. This allows us to study the robustness of the present Chimera method to deal with a
moving two-component interface through the external patch boundary where the local grid spacing
may change abruptly. That way, a particular attention will be devoted to examine the field of the
Helium volume fraction over time.

In a first step, we keep the ratio χ = 1 while grids in both the patch and the substrate models
are refined using the three resolutions previously considered Ncells = 50, 100, and 200. The Helium
volume fraction field is plotted, at a dimensionless time t? = 1.6, for both the single grid configuration
(see Fig. 3.12), and the overlapping grid configuration (see Fig. 3.13) with χ = 1. Very good
agreement is achieved by the present Chimera method on overlapping grids with the same cell ratio
(χ = 1), compared to the single grid configuration. The Chimera exchange does not alter the
shape of the bubble nor induces sensible perturbations but provides a better description of the bubble
curvature. This means that with the coarser grids (Ncells = 50 and 100), the Chimera impact is
minimal and on the finest grid (Ncells = 200), it helps capturing the bubble front. We can conclude
that the impact of the Chimera exchange on the two-component interface can help improving the
solution with a better fitted grid when χ = 1, fulfilling our requirements.

(a) Ncells = 50 (b) Ncells = 100 (c) Ncells = 200

Figure 3.12: Helium volume fraction field obtained in the single mesh case at t? = 1.6, for a number ofcells along the bubble diameter of Ncells = 50 (on the left), 100 (in the middle), and 200 (on the right).
Secondly, we keep the number of grid cells (along the bubble diameter) Ncells = 50 constant in

the substrate model and increase the ratio χ = 1, 2, 4, and 8, which respectively correspond to an
equivalent mesh refinement of Ncells = 50, 100, 200, and 400 in the patch model. We plot results
in Figure 3.14 obtained by using these refinements in the patch, at a dimensionless time t? = 1.6,
after the bubble has crossed the external patch boundary and is fully embedded in the substrate. By
using cell ratios greater than 1, we can see that the solution has been improved compared to the single
grid solution with the same resolution as the one used in the substrate (Ncells = 50). However,
although the higher the cell ratio (χ) the better the quality of the final solution, the quality of the
solution is mainly impacted by the resolution used in the substrate, and it is obviously impossible and
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(a) Ncells = 50 (b) Ncells = 100 (c) Ncells = 200

Figure 3.13: Helium volume fraction field obtained with the present Chimera method with overlappinggrids with the same cell ratio (χ = 1) at t? = 1.6, for a number of cells along the bubble diameter of
Ncells = 50 (on the left), 100 (in the middle), and 200 (on the right).

irrelevant to recover the quality obtained with the equivalent grid refinement. What it is important
to note is that the use of high cell ratios does not introduce numerical artifact but on the contrary
improves the quality thanks to the increased grid resolution in the patch. Unlike what Pärt-Enander
and Sjögreen [133] observed, we show that refining a patch model in a overlapping grid strategy
improves the quality of the solution without any discernable numerical damage on the solution.
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(a) Ncells = 50, χ = 1 (b) Ncells = 50, χ = 2 (c) Ncells = 50, χ = 4

(d) Ncells = 50, χ = 8

Figure 3.14: Helium volume fraction field obtained with the present Chimera approach, at a dimension-less time t? = 1.6, by using several cell ratios (χ = 1, 2, 4, 8).

3.2.3 - R22 bubble-shock wave interaction
Moving on to the R22 bubble, when the shock wave interacts with the R22 bubble, the latter

is severely deformed and globally moves downstream as we can see in Figure 3.15 where the R22
volume fraction field is plotted at two dimensionless times t? = 0.23, and t? = 2.28 for the single
grid configuration with Ncells = 200. As R22 is denser than the surrounding Air, the bubble acts
as a convergent acoustic lens explaining deformations. Like the Helium bubble, the gradient of
pressure induced by the shock is not always aligned with the gradient of density imposed by the
Air/R22 interface. Unlike the Helium bubble, the upstream interface of the R22 bubble remains
almost unaltered while the downstream interface presents a spike at the center of the downstream
interface. This shape is due to a reverted vorticity field compared to the Helium bubble. This present
single mesh solution using the finest grid (Ncells = 200) fits numerical results from [190]. This grid
resolution allows the capture of anti-symmetrical vortices as well as oscillations of the interface on
the bubble front.

Regarding the Chimera configuration, the patch grid is still kept fixed and the bubble moves away
from the patch to the substrate during simulations, and at the final time, the bubble is completely
located on the right hand side of the substrate mesh and is no longer inside the patch.
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Figure 3.15: R22 volume fraction field obtained with a single grid configuration with Ncells = 200 attwo different dimensionless times t? = 0.23 and t? = 2.28.

In a first step, we keep the ratio χ = 1 while grids in both the patch and the substrate models are
refined using the three resolutions previously considered Ncells = 50, 100, and 200. The R22 volume
fraction field is plotted, at a dimensionless time t? = 2.28, for both the single grid configuration (see
Fig. 3.16), and the overlapping grids (see Fig. 3.17) with χ = 1. A good agreement is achieved by
the present Chimera method on overlapping grids with the same cell ratio (χ = 1), compared to the
single grid configuration for Ncells = 50 and 100. The Chimera exchange does not alter the shape
of the bubble nor induces sensible perturbations but provides an equivalent description of the bubble
curvature. On the finest grid however, the Chimera transfer seems to alter the vorticity field quite
significantly with more described upstream bubble interface but generates a splitting of the bubble
tails. However, symmetry is preserved and although vortices are locally produced by baroclinic effect,
perfectly anti-symmetrical vortices are produced to preserve the integral of vorticity at zero.

With the coarser grids (Ncells = 50 and 100), the Chimera impact is minimal and on the finest
grid (Ncells = 200), the different grid configuration associated to the Chimera transfer alter the
shape of the bubble compared to the single grid solution as it induces additional vorticity.

(a) Ncells = 50 (b) Ncells = 100 (c) Ncells = 200

Figure 3.16: R22 volume fraction field obtained in the single mesh case at t? = 2.28, for a number ofcells along the bubble diameter of Ncells = 50 (on the left), 100 (in the middle), and 200 (on the right).
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(a) Ncells = 50 (b) Ncells = 100 (c) Ncells = 200

Figure 3.17: R22 volume fraction field obtained with the present Chimera method with overlappinggrids with the same cell ratio (χ = 1) at t? = 2.28, for a number of cells along the bubble diameter of
Ncells = 50 (on the left), 100 (in the middle), and 200 (on the right).

Secondly, we keep the number of grid cells (along the bubble diameter) Ncells = 50 constant in
the substrate model and increase the ratio χ = 1, 2, 4, and 8, which respectively corresponds to an
equivalent mesh refinement of Ncells = 50, 100, 200, and 400 in the patch model. We plot results
in Figure 3.18 obtained by using these refinements in the patch, at a dimensionless time t? = 2.28

after the bubble has crossed the external patch boundary and is fully embedded in the substrate.
By using cell ratio greater than 1, we can see that the solution has been improved regarding the
complexity of the bubble shape compared to the single grid solution with the same resolution as the
one used in the substrate (Ncells = 50). As for the Helium bubble, the quality of the solution is
mainly impacted by the resolution used in the substrate, and it is obviously hard to recover the quality
obtained with the equivalent grid refinement. Nonetheless, the spike of the downstream interface
located along the x-axis is improved when using a refined patch.
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(a) Ncells = 50, χ = 1 (b) Ncells = 50, χ = 2 (c) Ncells = 50, χ = 4

(d) Ncells = 50, χ = 8

Figure 3.18: R22 volume fraction field obtained with the present Chimera approach, at a dimensionlesstime t? = 2.28, by using several cell ratios (χ = 1, 2, 4, 8).

3.2.4 - Summary of the findings on the behavior of the Chimera
method with multicomponent flows

The shock wave interaction with an Helium/R22 bubble test case allowed us to assess the behvior
of the Chimera method when a multicomponent interface crosses the Chimera exchange zone. The
Helium bubble configuration has shown, that the Chimera method does not impact the solution when
χ = 1 and even allows to use finer patches in order to improve the accuracy of the overall solution.
The R22 bubble case has shown that the impact of the Chimera exchange on the two-component
interface is minimal with coarse and medium grid but can induce additional vorticity on sensitive
cases with fine grids. Using finer patches does not notably alter the global solution while capturing
local key features of the flow like a spike.
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3.3 - Double Mach Reflection problem

3.3.1 - Presentation of the case
The last problem concerns the emblematic test case of the Double Mach Reflection (DMR)

originally proposed by Woodward and Colella [134] as a benchmark for assessing Euler codes that
contains vortical flows. The problem consists in a front shock wave that hits a 30 degree inclined
ramp. Going up the ramp, a self similar structure with two triple points develops. A sketch of the flow
structure is displayed in Figure 3.19. More detailed explanations of the flow structure can be found
in [134, 179]. It is a difficult test case, involving both strong shocks and multiple stems. This case
is thus relevant to assess the present Chimera method to deal with complex transient flow structures
where multiple shock waves and their interactions creating slip lines occur over time (see Fig. 3.19).
The idea here is to check the ability of the present method to account for multiple discontinuities
and their interactions to pass through the external patch boundary where a drastic change of grid
spacings can occur.
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Figure 3.19: Sketch of the self-similar structure of the Double Mach Reflexion (DMR) problem

The numerical configuration of the single mesh case is shown in Figure 3.20a, where the 30◦ ramp
starts at xi = 1/6 m with an overall computational domain length Lx = 4 m, and height Ly = 1 m.
The number of cells in the single mesh configuration is parametrized by Ncells which is the number
of cells in the height of the domain. Let us say that the single grid case uses 4Ncells×Ncells grid
points in the (x×y) directions. The shock wave is initially located at xs = 1/10 m. Initial conditions
are defined with a driven shock wave moving at a high mach number MS = 10 in Air (γ = 1.4)
initially at rest. Thanks to the Rankine-Hugoniot relationships, initial conditions on primitive variables
are: {

(ρ, u, v, p)0 = (1.4 kg.m−3, 0, 0, 1 Pa),

(ρ, u, v, p)1 = (8 kg.m−3, 8.25 m.s−1, 0, 116.5 Pa).
(3.2)

As we know in such configuration, the driven shock wave (i, in Fig. 3.19) reflects on the wall of the
ramp leading to a diffracted bow shock wave (m’) that stays ahead of the ramp. This interaction
also creates several Mach stems (m, m’). with reflected shock waves (r, r’), triple points (T, T’)
and subsequent slip lines (s, s’). Issued from the contact discontinuity flow (s), a jet forms along the
wall, which is also very difficult to properly predict.
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Figure 3.20: Computational domains and initial conditions: configurations of the single mesh case (a),and the Chimera case (b) displayed with a cell ratio χ = 4.

Regarding the Chimera configuration as shown in the Figure 3.20b, the substrate is a standard
Cartesian H-grid (Lx = 4 m long and Ly = 3 m high) configured with the parameter Ncells in
order to respect the same grid resolution as the single mesh case. Let us notice that the substrate
comprises Ncells grid points over 1 meter. The patch uses the same geometry as the one of the
single grid configuration, that is however positioned so that the bottom surface coincides with that
of the substrate. The patch model can be refined using the parameter χ measuring the cell ratio
between grid spacings from the substrate and the patch models. As we can see in Figure 3.20b, the
driven shock wave is initially located ahead of the patch grid, unlike the original test case of [134].
The dimension of the patch is then chosen so as to allow multiple strong shock waves and the related
triple points and slip lines to pass through the external boundary of the patch to study the robustness
of the present Chimera method when grid spacings abruptly change. Therefore, the patch extends
from x = 0.12 m to the end of the substrate, and is 1/4 m high. This grid configuration has been
chosen in order to assess the impact of the proposed Chimera method on flow structures generated
inside the patch that cross the overlapping grid interface. The single mesh configuration has then
been adapted to be as close as possible to the Chimera configuration.

Simulations are performed on the overlapping grid configuration as well as the single mesh case
to allow validation. The Chimera configurations are based on the second order Chimera exchange
with the standard detection procedure. The CFL number is constant and equal to 0.4. At first, we
keep the cell ratio between the patch and the substrate at χ = 1 and use Ncells = 160 grid points
over 1 meter. We consider the initial time t?0 ≈ 8.081 · 10−3 which is the dimensionless time needed
for the shock to go from xs = 0.1 m to x = 1/6 m. Results obtained at the dimensionless time
t?− t?0 = 0.2 are plotted in Figure 3.21 where the Chimera case (black iso-contour lines) is compared
to the single grid configuration (red iso-contour lines). The patch boundary is materialized with the
dashed white line.
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3.3.2 - Comparison of the Chimera case with the single grid case
(χ = 1)

Figure 3.21: Density contours obtained with the present Chimera approach (black iso-contour lines)with the standard detection compared to the single mesh case (red iso-contour lines) at an equivalentdimensionless time t? − t?0 = 0.2 for Ncells = 160 and χ = 1. 30 density contours from ρ = 1.4 to 21.4.Dashed white line materializes the patch boundary.
Compared to the single grid configuration, a very good agreement is achieved by the present

Chimera method since Mach stems, reflected shock waves as well as slip lines are coincident. The
jet located at the end of the ramp is also similarly described with the Chimera method since it is
always located inside the patch. These results can also be compared to results from Stone et al.
[167] (Fig. 16) obtained using a second order accurate scheme in both time and space, that can be
taken as reference solutions. Concerning the Chimera case, few oscillations can be observed in the
substrate part that may result from solution transfers between overlapping grids that might interfere
with acoustic waves.

3.3.3 - Comparison of the Chimera case with the equivalent fine
single mesh (EFSM) for various values of χ

Secondly, we check the influence of the cell ratio parameter (χ) as well as the detection procedure.
The number of grid cells in the substrate is kept constant and equal to Ncells = 80 cells over 1 meter.
The cell ratio is varied using four values χ = 2, 4, 8 and 16 which correspond to an equivalent single
mesh resolution respectively using Ncells = 160, 320, 640 and 1280 grid cells over 1 meter. Results
on the density contours (black iso-contour lines) obtained with the present Chimera method with the
standard detection procedure and the extended detection procedure are presented in Figure 3.22 for
χ = 2, Figure 3.23 for χ = 4, Figure 3.24 for χ = 8, and Figure 3.25 for χ = 16 compared to their
equivalent fine single grid solution (red iso-contour lines) obtained with respectively Ncells = 160,
320 and 640. The Chimera case with χ = 16 is compared to the single grid case with Ncells = 640

which already gives a good representation of the numerical solution.
At moderate cell ratio values (χ = 2, 4), the overall comparison is very good, although oscilla-

tions present inside the substrate are slightly accentuated when the refinement increases but these
oscillations do not seem to interfere with what occurs in the patch. In contrast, flow patterns inside
the patch are better predicted as the cell ratio has been increased, mainly the jet that forms at the end
of the ramps that has an equivalent description to the equivalent fine single mesh solution. The jet is
better depicted with the extended procedure than the standard detection. However, when increasing
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the ratio to higher values like χ = 8 (see Fig. 3.24) and χ = 16 (see Fig. 3.25), the abrupt change in
grid spacing at the external boundary of the patch induces perturbations. As shear layers are likely to
develop instabilities, oscillations are mainly visible in the slip line that also alter the jet flow structure.
Nonetheless, the extended detection procedure tends to limit these oscillations maintaining a certain
level of quality of the solution.

(a) Standard detection, χ = 2

(b) Extended detection, χ = 2

Figure 3.22: Density contours obtained with the present Chimera approach (black iso-contour lines) byusing Ncells = 80 cells on the substrate and a cell ratio χ = 2 on the patch, compared to the singlemesh case (red iso-contour lines) with Ncells = 160, at an equivalent dimensionless time t? − t?0 = 0.2.30 density contours from ρ = 1.4 to 21.4. Standard detection procedure (a) compared to the extendeddetection procedure (b).
In Table 3.4, we report the ratios of the CPU times for the equivalent fine single grid to the CPU

time of the corresponding Chimera configuration when χ varies. The ratios of the memory usage
for the equivalent fine single grid to the memory usage of the corresponding Chimera configuration
when χ varies are also reported. When χ = 1, the CPU time ratio is lower than 1 expressing that the
Chimera method costs more compared to the single grid approach because of a higher number of grid
cells, interpolation procedures and the transfer of ghost cell solutions. However, once we increase
χ, equivalent results are obtained at a much lower cost compared to single mesh computations with
equivalent grid resolutions. These gains mainly come from the smaller number of cells for the Chimera
configuration since the time step is equivalent between the fine single grid and the Chimera case with
a fine patch.
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(a) Standard detection, χ = 4

(b) Extended detection, χ = 4

Figure 3.23: Density contours obtained with the present Chimera approach (black iso-contour lines) byusing Ncells = 80 cells on the substrate and a cell ratio χ = 4 on the patch, compared to the singlemesh case (red iso-contour lines) with Ncells = 320, at an equivalent dimensionless time t? − t?0 = 0.2.30 density contours from ρ = 1.4 to 21.4. Standard detection procedure (a) compared to the extendeddetection procedure (b).

Even though the present Chimera method is not intended to grid optimization, the method allows
significant gains in time and memory without impacting the resulting solution. When the cell ratio
is lower than 4, the gains in quality of the solution are worth the cost in CPU time as it remains
negligible compared to the equivalent single grid cost. Nevertheless, when strong waves pass through
the patch/substrate interface some numerical actifacts can be recorded when the value of the cell
ratio (χ) is greater than 4 which imposes an abrupt grid spacing change.
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(a) Standard detection, χ = 8

(b) Extended detection, χ = 8

Figure 3.24: Density contours obtained with the present Chimera approach (black iso-contour lines) byusing Ncells = 80 cells on the substrate and a cell ratio χ = 8 on the patch, compared to the singlemesh case (red iso-contour lines) with Ncells = 640, at an equivalent dimensionless time t? − t?0 = 0.2.30 density contours from ρ = 1.4 to 21.4. Standard detection procedure (a) compared to the extendeddetection procedure (b).
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(a) Standard detection, χ = 16

(b) Extended detection, χ = 16

Figure 3.25: Density contours obtained with the present Chimera approach (black iso-contour lines) byusing Ncells = 80 cells on the substrate and a cell ratio χ = 16 on the patch, compared to the singlemesh case (red iso-contour lines) with Ncells = 640, at an equivalent dimensionless time t? − t?0 = 0.2.30 density contours from ρ = 1.4 to 21.4. Standard detection procedure (a) compared to the extendeddetection procedure (b).
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Table 3.4: Results obtained with the Chimera cases (Ncells = 80) for different values of χ, comparedwith their equivalent fine single mesh (EFSM) computations.

χ
EquivalentNcells on the patch

(for EFSM comparison) CPU Time Ratio MemoryRatioExtended detection Standard detection
1 80 0.45 - 0.432 160 1.15 1.13 1.304 320 2.51 2.49 2.678 640 3.38 3.20 3.62

3.4 - Chapter conclusion

In this chapter, the second order Chimera method with the standard detection procedure has
been assessed on reference two-dimensional test cases.

A supersonic flow around a circular cylinder has shown that the proposed Chimera method allows
inclusion of a geometrical detail inside a global calculation. The Chimera method favorably affects
the final results compared to the single mesh case as it uses local grids more adapted to the solution.
Also, equivalent results are obtained at a much lower computational cost when high cell ratios in the
patch are employed because of the gain realized on the number of cells.

The interaction of a shock wave with an Helium/R22 bubble has demonstrated the ability of
the proposed Chimera method to account for multi-component flows where a shock wave interacts
with a two-fluid interface. We demonstrated that refining patch cells in an overlapping grid strategy
improves the quality of the solution without any discernable numerical damage on the solution on
the coarsest grids. When the flow involves a more sensitive vorticity field, the impact of the Chimera
method is visible but the method is still able to capture key details of the flow.

The Double Mach Reflection, showed that the proposed Chimera method, with reasonable cell
ratios (χ 6 4), improves the quality of the solution compared to a single grid computation, with useful
gains in the CPU time and memory usage. Last but not least, the extended detection procedure has
shown to be able to smooth oscillations caused by high cell ratios when the triple point and the
diffracted bow shock wave cross the Chimera interface, without a major impact on CPU time.

The validation of the method has been made on reference two-dimensional cases but the grid
intersections are already 3D compatible for industrial applications. Until now, we only studied the
ability of the present Chimera method to deal with fast transient dynamics with wave propagations
in compressible flows as well as contact discontinuities usually present in multi-component flows.
However, interactions of moving strong discontinuities with flexible structures often occur in accidental
configurations involving explosions. Therefore, if one wants to include geometrical details that could
influence the Fluid-Structure Interaction (FSI), we must extent the Chimera method to deal with
moving deformable structures which is the objective of the next chapter.

108



4 - An overlapping grid embedded boundary
method for compressible flows coupled to
deformable thin structures: the Chimera
Mediating Body Method

Contents
4.1 Governing equations and discretization of the problem . . . . 110

4.1.1 Structural system of equations . . . . . . . . . . . . . . . . . . 110

4.1.2 Coupling conditions . . . . . . . . . . . . . . . . . . . . . . . . 110

4.1.3 Structure discretization : the finite element method . . . . . . . 111

4.1.4 Explicit time integration of the structure . . . . . . . . . . . . . 111

4.2 Discretization of the coupling conditions: the Chimera-MBM 112

4.2.1 Presentation of the Mediating Body Method . . . . . . . . . . . 112

4.2.2 Coupling of the Mediating Body Method with the Chimera
method: the Chimera-MBM . . . . . . . . . . . . . . . . . . . . 121

4.3 Numerical validation of the method and applications . . . . . 134

4.3.1 One-dimensional free piston . . . . . . . . . . . . . . . . . . . . 134

4.3.2 Three-dimensional separated chambers with a perforated plate 154

4.4 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 166

In the previous chapter, we showed strong capabilities of the Chimera method to transfer informa-
tion over two separated domains. In large scale transient computations, one must take into account
local interactions between the fluid and structural components. In the case of accidental situations,
deformable structural parts can undergo large displacements at the local scale generated by local scale
flow phenomena. In this context, having an overlapping grid method like the developped Chimera
method compatible with immersed boundary methods like the Mediating Body Method [92] can help
composing a large scale model with local additions of structural parts and adapted local grids. In
this chapter, we extend the presented Chimera method in order to work with the Mediating Body
Method presented in [92]. The resulting method is referred as Chimera-Mediating Body Method
(Chimera-MBM) and is assessed using one-dimensional and three-dimensional test cases.
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4.1 - Governing equations, discretization and integra-
tion of the problem

As the hypothesis on the flow in the fluid-structure interaction framework remain the same as
in the fluid only problems, the equation model for the fluid has been given in chapter 1. The same
notations are kept in the following.

4.1.1 - Structural system of equations
We consider an isentropic thin wall structure of a thickness h that is immersed in a fluid T . The

structure occupies a moving open set Ts ⊂ T . The evolution of the structure is given by the following
equilibrium equation, written in local form:

ρS
Du̇

Dt
+∇ · σ = f, (4.1)

where ρS is the density of the structure material, u is the displacement of the structure, u̇ its velocity,
σ is the Cauchy stress tensor and f is the density of body forces.

The equilibrium equation is completed by nonlinear constitutive equations. In this work, we
assume the structure undergoing finite displacements to be elastic using the Saint Venant-Kirchhoff
model [24]. The second Piola-Kirchhoff stress tensor S is given by:

S = C : E, (4.2)
where C is the fourth order stiffness tensor and E is the Green-Lagrangian strain given by,

E =
1

2

[
(∇Xu)t + (∇Xu) + (∇Xu)t · (∇Xu)

]
, (4.3)

with ∇Xu, the material displacement gradient tensor.
The Cauchy stress tensor (σ) can be expressed using the second Piola-Kirchhoff stress tensor (S)

as:
σ = J−1GS Gt, (4.4)

where G is the material deformation gradient tensor and J its determinant (see [77] for additional
details).

Remark. The finite displacement elastic model is a hypothesis from this work but other nonlinear
constitutive laws such as plasticity models could have been used with the developped method.

The structure mid-surface is denoted ΓS and corresponds to the mediane plane of the structure.
The structure being thin, its outer boundary is assimilated to its mid-surface (ΓS) and the structure
is considered as a nonlinear geometrically exact shell [158, 194]. Therefore, the structure is modelled
as a curved plane (2D), corresponding to its mid-surface (ΓS), with a virtual thickness h. This curved
plane can undergo finite displacements and elastic deformations in a three-dimensional space.

4.1.2 - Coupling conditions
The Rankine-Hugoniot conditions are applied at the inviscid fluid-structure interface in the di-

rection normal to this interface. The first coupling condition ensures equality betwen the velocity of
the flow (u) normal to the structure (ΓS) and the normal velocity of the structure denoted u̇ · nΓS ,
where nΓS is the unit normal to the structure (ΓS). The second coupling condition ensures equality
between the pressure exerted by the flow on the structure and the resulting structure stresses. The
set of conditions writes:

On ΓS,

{(
u̇− u

)
· nΓS = 0,(

σ − pId
)
· nΓS = 0.

(4.5)
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4.1.3 - Structure discretization : the finite element method
A Lagrangian unstructured conformal mesh S of the mid-surface (ΓS) is constructed using 4-node

quadrilateral elements. We denote by ΩS the number of cells of the set S. The element indexed
i of this mesh is written Ci. The structure equilibrium presented in equation 4.1, is treated using
MITC4 shell finite elements [49] (Mixed Interpolation of Tensorial Components). The finite element
discretization of the equation 4.1 leads to :

M Ü = Fext + Ff + Fint, (4.6)
where M is the mass matrix of the global system. U and Ü are respectively the vector of generalized
displacements of the finite element system and the acceleration vector. Fint is the vector of nonlinear
internal forces computed according to [49]. Fext is the force vector due to the other external forces
applied to the structure and Ff is the force vector exerted by the fluid on the structure. The global
system vectors contain known quantities at the nodes of the structure grid (S).

4.1.4 - Explicit time integration of the structure
Like for the fluid, the structure equation set is integrated using an explicit time integration scheme.

The fluid is integrated using the second order MUSCL-Hancock integration scheme [170] whereas
the structure equation 4.1 is integrated using a central difference scheme:

Explicit velocity predition at half time step: U̇
n+ 1

2 = U̇
n

+
∆tn

2
Ü
n
,

Explicit displacement predition: Un+1 = Un + ∆tnU̇
n+ 1

2 ,

Implicit velocity correction: U̇
n+1

= U̇
n+ 1

2 +
∆tn

2
Ü
n+1

,

(4.7)

where indices n and n+ 1
2 indicate time step increments and ∆tn is the variable time step. The

time step is the same for the fluid and the structure. It is defined as:

∆tn = min(∆tVn ,∆t
W
n ,∆t

S), (4.8)
where ∆tVn and ∆tWn are the stability time steps of the patch and the substrate model at the n-th
time step while ∆tS is the critical time step of the structure model. The critical time steps for the
fluid are defined by the CFL condition given in equation 1.20. The structure stability condition for
the time step writes:

∆tS < mini∈ΩS

hi
cS
, (4.9)

where cS is the maximum speed of sound of the structure computed as follows:

cS =

√
E

ρS
, (4.10)

with E the Young modulus of the structure.
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4.2 - Discretization of the coupling conditions: the
Chimera Mediating Body Method (Chimera-MBM)

The coupling procedure proposed in this work is based on a mediating entity between the fluid
and the structure discrete models [92]. The main objective of our work is to combine the previously
developped finite-volume Chimera method with the Mediating Body Method (MBM).

In this section, we first present the Mediating Body Method with a single fluid grid U ∈ T as
in [92] from the construction of the mediating entity to the time integration scheme. Then we detail
the improvements that have been applied in order to couple the Mediating Body Method with the
second order developped Chimera method. A new time integration scheme is presented to make the
MBM compatible with overlapping grids.

4.2.1 - Presentation of the Mediating Body Method
In the Mediating Body Method (MBM), the coupling is based on the construction of a mediating

entity between the fluid and the structure discrete models. This mediating entity is called the
mediating body in the following. For the time integration, a staggered scheme is used. At each time
step, the structure imposes its normal velocity to the fluid (through the mediating body), fulfilling the
first condition in equation 4.5 whereas the fluid imposes the normal flux momentum (also through the
mediating body), fulfilling the second condition in equation 4.5. A simplified version of the coupling
algorithm is illustrated in Figure 4.1.

Figure 4.1: Simplified flow chart of the coupling algorithm.

A . Construction of the mediating body

The mediating body is made of fluid cells intersected by the structure. It occupies a volume which
approximates the geometry of the structure midsurface (ΓS). The mediating body volume is defined
as the union of all the cells of the fluid (U) intersected by the struture cells (S) (see Fig. 4.2). The
mediating body cell set is denoted :

UΓS = {Ki ∈ U ,Ki ∩ S 6= 0}. (4.11)
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If the structure undergoes large displacement, the set of fluid cells composing the mediating body
changes over time and needs to be indexed by the time step n, which writes UnΓS . However, for the
sake of brievety, the time step reference is willingly omitted refering to an arbitrary time step.

Fluid UStructure S

: Mediating body UΓS

Fluid UStructure S

Figure 4.2: mediating body construction for a single grid.
For the i-th cell Ki of the mediating body (UΓS ), an averaged normal pseudo-projection operator

to the structure written πU
ΓSi

is computed:

πU
ΓSi

=

∫
Ki∩S nΓS ⊗ nΓS dx

|Ki ∩ S|
, (4.12)

with nΓS the unit normal to ΓS .
The normal pseudo-projection operator

(
πU

ΓSi

)
is averaged instead of the normal itself not to

depend on an arbirary choice of the normal for non-manifold structures (see [92] for additional
details). In the following, the set of fluid cells, which do not belong to the mediating body is called
active fluid and is denoted:

U∗ = {Ki ∈ U ,Ki 6∈ UΓS } (4.13)
With the Mediating Body Method, only the cells in the active fluid (U∗) contribute to the fluid
calculation.

Remark. For the sake of clarity, the figures represent two-dimensional fluid meshes. However, the
method is designed for three-dimensional unstructured meshes.

Remark. At a given time step, values of the state vector of the cells composing the mediating body
cannot be used as they are bypassed by the fluid computation functions. The values inside the me-
diating body cells are not used at all. The Riemann problems at the interface of the mediating body
are detailed in [92].

B . Velocity exchanges

In the Mediating Body Method, the structure imposes at each time steps its normal velocity to the
fluid through the mediating body. Each face FUij shared by the cells Ki ∈ UΓS and Kj ∈ U∗ i.e.,
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at the interface between the active fluid (U∗) and the mediating body (UΓS ), is partially treated as
a moving wall boundary condition for the active fluid. An averaged normal velocity of the structure
inside the cell Kj denoted uUΓSj

is computed:

uUΓSj
=

∫
Kj∩S

(
u̇ · nΓS

)
nΓS dx

|Kj ∩ S|
, (4.14)

with |Kj ∩ S| the surface of the intersection between Kj and S as illustrated in Figure 4.3.

: Substrate mediating body UΓS

Fluid U

Structure S

Figure 4.3: Fluid cell intersection with the structure.
The vector V UΓS denotes the vector in which the

{
uUΓSj

}
Kj∈UΓS

are stacked, Ns(x) the matrix of

finite element shape functions such that u̇ = Ns(x) · U̇, and χU(x) the matrix such that,

χU(x) · V UΓS =
uUΓSj
|Kj ∩ S|

, if x ∈ Kj . (4.15)
As a more generalized expression, one can write

V UΓS =

[ ∫
S
χU

t
(nΓS ⊗ nΓS )Ns dx

]
· U̇,

= MU
S · U̇. (4.16)

The integrand of 4.16 is polynomial only on the intersections J Uij = Ci ∩ Kj , Ci ∈ S, Kj ∈ UΓS

(surfaces in 3D, segments in 2D). Then, in order to use standard Gauss quadratures, the integral is
computed in the following way:

MU
S =

∑
{i,j},J Uij 6={∅}

∫
J Uij

χU
t
(nΓS ⊗ nΓS )Ns dx. (4.17)

Remark. For a 3D problem, the matrix χU(x) writes:

χU(x) =
[ χ1(x)

K1 ∩ S
I3,

χ2(x)

K2 ∩ S
I3,

χ3(x)

K3 ∩ S
I3, ...

]
, (4.18)

where I3 is the 3× 3 identity matrix and χj the indicator function of the cellKj , i.e.

χj(x) =

{
1 if x ∈ Kj

0 elsewhere.
(4.19)
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C . Momentum exchanges

At each time step, the fluid imposes a flux momentum to the structure though the mediating body
(UΓS ). Each mediating body cell Kj ∈ UΓS , gathers the momentum flow rates passing through its
faces shared with the active fluid (U∗). Then, it applies the normal component of this flux to the
structure on the section of S that it intersects. This way, the second equation of 4.5 is fulfilled.

In the following, the momentum (ρu) is written q for the sake of clarity in the equations. The
gathered momentum flow rate between the times t and t+ ∆t for the cell Kj ∈ UΓS of the substrate
mediating body writes :

ΦU
q

j =
∑

i∈γ(j),∃Ki∈U∗

ΦU
q

ij , (4.20)

where ΦU
q

ij is the momentum flow rate at the face FUij . The gathered momentum flow rate is projected
onto the unit normal to ΓS , denoted nΓS , and turned into a force density fU applied to the structure,

fU =

(
ΦU

q

j · nΓS

)
nΓS

|Kj ∩ S|
, on Kj ∩ S,

=
(
nΓS ⊗ nΓS

)
χU · ΦUq , (4.21)

where ΦU
q
is a vector in which the

{
ΦU

q

j

}
Kj∈UΓS

are stacked and χU(x), is the matrix such that,

χU(x) · ΦUq =
ΦU

q

j

|Kj ∩ S|
, if x ∈ Kj . (4.22)

This force density is then multiplied by the finite element shape function of the structure discrete
model, integrated over the surface S,

F U =

∫
S
Ns

t · fU dx,

=
∑

{i,j},J Uij 6=∅

∫
J Uij

Ns
t · fU dx,

=

(∫
S
Ns

t
(
nΓS ⊗ nΓS

)
χU dx

)
· ΦUq ,

= MUt
S · ΦU

q
. (4.23)

D . Computations at the mediating body/active fluid interface

In this paragraph, we focus on a face FUij = FUji, Kj ∈ UΓS , Ki ∈ U∗. Between the times t and
t + ∆t, FUij acts as a boundary condition for the active fluid domain (U∗). We consider the normal
nij of the face FUij belonging to the cell Kj ∈ UΓS . If nij is parallel to the local averaged normal
to the thin structure, the interface is impermeable and the fluid cannot cross it. If these vectors are
perpendicular, this interface is permeable and the flow is not affected by the structure.

D.1 - Virtual remeshing of the face

We apply the averaged normal pseudo-projection operator 4.12 to the normal nij of the face FUij
inside the cell Kj . As shown in [92], ‖πU

ΓSi
nUij‖ is zero if nΓS is orthogonal to the constant vector nij

everywhere within the cell Kj . If the value of ‖πU
ΓSj

nUij‖ is smaller than a given tolerance ε (10−12
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for instance), the treatment of the face FUij is fully permeable. Otherwise, a unit normal vector to
the structure denoted nUΓSij

is defined as follows:

nUΓSij
=

πU
ΓSi

nUij

‖πU
ΓSi

nUij‖
. (4.24)

x

y
z

xy

z

x y

z
z x

y

nU

ij

nU

ΓSij

nU

∗ij nU

ij

nU

ΓSij

nU

∗ij

nU

∗ij

nU

ij
nU

ΓSij

nU

ij
nU

ΓSij

Figure 4.4: Example of virtual remeshing of a two-dimensional face.
In this case, the face FUij is virtually remeshed into two parts, shown in Figure 4.4:

• The first part of the face is denoted FUΓSij and acts as a moving wall in the direction nUΓSij
(red

in Fig. 4.4). Geometrically, FUΓSij is the orthogonal projection of FUij onto the plane defined by

the normal nUΓSij
and containing the center of the face FUij . The area of FUΓSij is defined as:

|FUΓSij | =
(
nUΓSij

· nUij
)
|FUij |, (4.25)

where |FUij | is the area of FUij .

• The second part is denoted FU∗ij and acts as a set of permeable faces orthogonal to nUΓSij
(green in Fig. 4.4). The geometrical support of FU∗ij is the set of lateral faces of the crossed
truncated prism whose bases are FU∗ij and FUΓSij .

Figure 4.5 illustrates the virtual remeshing for two-dimensional simple meshes. Denoting {LUik}
the set of lateral faces and {nUik} their unit normal vectors, the divergence theorem applied to the
crossed truncated prism gives:

|FU∗ij |n
U
∗ij =

∑
{LUik}

|LUik |nUik = |FUij |nUij − |FUΓSij |n
U
ΓSij

. (4.26)
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Structure S

Fluid mesh U

Structure S

Fluid mesh U

Figure 4.5: Examples of virtual remeshing of the faces at the interface between the active fluid (U∗)and the mediating body (UΓS ), whose cells are represented in yellow shade, for two-dimensional sim-ple meshes. The permeable interfaces are represented by thin green lines while the moving walls arerepresented by thin red lines.

D.2 - Flux computation

In the following, we consider that the fluid domain is solved using the second order MUSCL
reconstruction detailed in section 1.2.4. The interface states are reconstructed based on the primitive
variables W U , U = {W,V}. We note the interface states resulting from the reconstruction at the
face FUij , W

U
ij/W

U
ji and the corresponding conservative states UUij/U

U
ji. As the fluid time integration

uses a second order MUSCL-Hancock integration, the Riemann problems are solved using half time

step interface states UU
n+ 1

2

ij /UU
n+ 1

2

ji (see section 1.2.5). In the following the time step reference is
willingly omitted for clarity as the states used in the flux computation are unequivocal.

Remark. All the flux computations presented in section 4.2.1 D.2 are performed during the fourth
step of the MUSCL-Hancock method (see section 1.2.5). The objective is to overload the HLLC flux
fonction presented in section 1.2.3 at the mediating body interface.

The part FUΓSij of the face FUij acts as a moving wall translating at velocity uUwij = uUΓSj
·nUΓSij in

the direction nUΓSij
. This boundary condition is enforced using a virtual cell technique. We consider

the Riemann problem between the interface state UUij and the virtual state Ũ
U
ji in the local frame of

the face FUij :

U(η) =

U
U
ij , if η · nUΓSij < 0

Ũ
U
ji, if η · nUΓSij > 0,

(4.27)

where UUij =

[
ρUij , q

U
ij
, ρUije

U
ij +

(qU
ij

)2

2ρUij

]
, Ũ

U
ji =

[
ρUij , q̃

U
ij
, ρUije

U
ij +

(q̃U
ij

)2

2ρUij

]
, qU

ij
= (ρu)Uij and q̃U

ij
=

qU
ij
− 2(qU

ij
· nUΓSij − ρ

U
iju
U
wij

)nUΓSij
. The flux related to this Riemann problem on the characteristic

line η/t = ζ is denoted ΦU
R

ij
(ζ).

The remainder of the face FUij (FU∗ij ), acts as a permeable interface with an area |FU∗ij | and a
unit normal vector nU∗ij defined as in equation 4.26. On FU∗ij , the flux is simply the flux related to

the reconstructed state UUij .
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Finally, the flux at the face FUij is given by:

|FUij |F̂
(
U
U
ij , Ũ

U
ji, n

U
ij

)
= ΦUij(ζ) = |FUΓS ij |Φ

UR

ij
(ζ) · nUΓSij + |FU∗ij |F (U

U
ij) · nU∗ij , (4.28)

where F (U
U
ij) is the flux related to the interface state UUij .

Note that conservation is lost at the faces FU∗ij as the fluid contribution is not transmitted to
the fluid nor the structure. The impact of this loss of conservation is negligible and does not affect
significantly the accuracy of the solution according to the numerical experiments in [92].

Additional treatments at the mediating body/active fluid interface are detailed in [92] and provide
values for the Riemann solver parameter ζ depending on the structure displacements:

• First, in order to prevent the MBM from generating motion in the case of a structure at rest,
immersed in a still fluid, a corrective pressure term is added during the computation of the
momentum flow rate ΦU

q

ij at the face FUij from the transmitted flux ΦU
R

ij
(uUwij ).

• Finally, an ALE emulation is developed in order to take into account small displacements
of the structure that does not involves changes in the mediating body definition during the
computations of the fluxes.

These treatments are not detailed in this work for the sake of clarity as they do not impact the
coupling between the Chimera method and the Mediating Body Method.

E . Large structure displacement: handling of the indefinite active cells

When the structure undergoes large displacements, the mediating body set (UΓS ) changes. Therefore,
some cells belonging to the mediating body at the time step n − 1 become part of the active fluid
at time step n. At t = tn, we call these cells indefinite active cells and their set is denoted U∗indef ,
omitting the time step reference:

U∗indef ≡ Un∗indef =
{
Ki ∈ Un−1

ΓS
,Ki ∈ Un∗

}
, (4.29)

where the exponents n and n− 1 refer to time steps.
Figure 4.6 provides an illustration of the indefinite active cells. At a given time tn, before any

flux computations, a state vector must be attributed to these indefinite cells. For a given indefinite
active cell Ki ∈ U∗indef , an extrapolated state is computed using the definite cells adjacent to it which
contain a valid solution. To do so, we define for each cell Ki ∈ U∗indef another set of cells LUi defined
as:

LUi =
{
Kj , j ∈ γ(i),Kj /∈ U∗indef

}
. (4.30)

Then, the indefinite active cell Ki is attributed the extrapolated state:

UUi =

∑
j∈ΩLU

i

|Kj |UUj

∑
j∈ΩLU

i

|Kj |
. (4.31)

It can occur, as in Figure 4.6, that the set LUi is empty. In this case, the indefinite cells are attributed
a state in successive passes until all the indefinite cells are attributed a state: the indefinite cells, for
which LUi is not empty, are attributed a state and removed from the list of indefinite cells. Then a
new attribution pass is done and so forth until all the indefinite cells requiring an extrapolation are
attributed a state.
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: Indefinite active cells U
∗
indef

: Mediating body cells UΓS

u̇∆tn

Figure 4.6: Indefinite active cells in grey shade

F . Time integration scheme for the MBM

A staggered time integration scheme is used in the MBM with a single fluid grid: regarding the
fluid-structure coupling, at each time step, the structure imposes its velocity to the fluid interface
and the fluid exerts a force on the structure. This detailed scheme is depicted in Figure 4.7.

Figure 4.7: Time integration scheme for the Mediating Body Method with a MUSCL-Hancock integrationfor the fluid and a central difference scheme for the structure.
At a given discrete time tn, every quantity on every grid is known and indexed by its time step

n. In order to advance from tn to tn+1 the following steps are done:

1. The structure velocity U̇n+ 1
2 at tn+ 1

2 and its position Un+1 at tn+1 are computed explicitly

119



CHAPTER 4. THE CHIMERA MEDIATING BODY METHOD

from its acceleration Ün at tn using the central difference scheme presented in section 4.1.4.

2. The mediating body Un+1
ΓS

is computed using the structure position Un+1 following the pro-
cedure described in section 4.2.1.A. If needed, the indefinite active cells are extrapolated as
detailed in section 4.2.1.E.

3. The velocities at the interfaces of the mediating body are computed from the structure velocity
U̇n+ 1

2 following the procedure described in section 4.2.1.B.

4. The fluid interface states UU
n

ji , (i, j) ∈ ΩU∗ × γ(i), are reconstructed and updated by half a
time step ∆tn

2 using the first two steps of the MUSCL-Hancock time integration i.e. the steps
1 and 2 presented in section 1.2.5.

5. The fluid variables UU
n
are updated to the time tn+1 from the interface states UU

n+ 1
2 using

the fluxes presented in section 4.2.1.D.2, the HLLC solver presented in section 1.2.3 and the
ALE emulation detailed in [92].

6. The force vector F f imposed by the fluid to the structure is computed from the flux momentum
of the fluid problem between tn and tn+1 following the procedure detailed in section 4.2.1.C.

7. Finally, the structure acceleration Ün+1 is computed using the finite element equilibrium equa-
tion presented in section 4.1.3 (see equation 4.6).
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4.2.2 - Coupling of the Mediating Body Method with the Chimera
method: the Chimera-MBM

The MBM has been presented for a unique fluid grid U ⊂ T . We now consider, a set of two
overlapping grids: a global grid referred as the substrate denoted W ⊂ T and a local superimposed
grid referred as patch denoted V, fully immersed inside the substrate. In this section, we detail
the numerical strategy that we have developped to couple the presented MBM and the developped
Chimera method. Therefore, we use the notations and the terminology introduced in section 2 and
in section 4.2.1.

At each time step, the structure imposes its normal velocity to the fluid through the mediating
body whereas the fluid imposes the normal flux momentum also through the mediating body. Simul-
taneously, the sending cells {Ws,Vs} and ghost cells {W̃, Ṽ} of both the patch and the substrate
exchange information in order to ensure up-to-date fluid information across the grids.

To present the coupling of the MBM with the Chimera method, we detail the aspects of the MBM
that are modified by the presence of overlapping grids starting from the mediating body construction.

A . Construction of the mediating body in an overlapping grid framework

With overlapping grids, the construction of the mediating body is distributed between the patch grid
(V) and the substrate grid (W) as seen in Figure 4.8.

Substrate W

Patch V

Structure S

: Patch ghost cell ˜

V

: Substrate ghost cell ˜

W

: Patch mediating body (VΓS
)

: Substrate mediating body (WΓS
)

: Ni ∈ N V
S

Figure 4.8: Mediating body construction with an overlapping grid configuration.
In order to surround the structure and to avoid redundancy in the overlapped regions, the priority

is given to the patch grid which means that the mediating body will be constructed using patch cells
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in priority before using substrate cells while minimizing overlapped cells in the mediating body. To
do so, we recall the following set of cells : Vc = V \ Ṽ and Wc =W \Wp, where

Wp = {Ki, i ∈ ΩW/
∑
j∈ΩVc

|Ki ∩K
′
j | = |Ki|}. (4.32)

Vc corresponds to the set of cells of the patch V deprived of its ghost cells Ṽ also called cleaned
patch and Wc corresponds to the set of cells of the substrate deprived of its cells fully covered by
the cleaned patch Wp. Wc is called cleaned substrate. These different sets of cells are represented
in Figure 4.9. It is worth noting that W̃ ⊂ Wp, and therefore, Wc does not contain any substrate
ghost cell. If W and V are non-matching grids, Vc ∪Wc covers the entirety of the fluid domain T
with minimized overlapped regions.

We also define the set of cells WwGC
c = Wc ∪ W̃ which comprises the cleaned substrate cells

(Wc) with the addition of the substrate ghost cells (W̃). WwGC
c is referred as cleaned substrate with

ghost cells. The definition of an equivalent set for the patch is not relevant as Vc ∪ Ṽ = V.

Substrate W

Patch V

: Patch ghost cell (˜

V)

: Substrate ghost cell ( ˜

W)

: Cleaned patch cell (Vc)

: Cleaned substrate cell (Wc)

: Fully overlapped substrate cell (Wp)

Figure 4.9: Cleaned patch (Vc) and cleaned substrate (Wc) sets of cells.

The structure cell set S, is intersected with the cleaned patch in order to define the following set
of cells:

SV = {Ci, i ∈ ΩS , |Ci ∩ Vc| = |Ci|}. (4.33)
SV corresponds to the structure cells that are fully included inside the cleaned patch (Vc). We note
NS = {Ni}i∈ΩNS

, the node set of the structure grid (S). For each element Ci, i ∈ ΩS , we note
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N (i) = {Nj}j∈ΩN (i)
its node set. From SV , we extract the nodes composing each cell avoiding

duplications:
N VS = {Nj , j ∈ ΩN (i), i ∈ ΩSV}, (4.34)

which corresponds to the nodes of the structure S located inside the cleaned patch (Vc).
The mediating body cell set, denoted MΓS , is defined as the union of all the cells of the fluid

from the patch grid (V) and cleaned substrated grid with ghost cells (WwGC
c ) intersected by the

struture cell set (S) as represented in Figure 4.8. The set of these intersected cells can be seen as
the union of two seperate mediating bodies written WΓS and VΓS :

MΓS = VΓS ∪ WΓS (4.35)
= {Ki ∈ WwGC

c ,Ki ∩ S 6= 0} ∪ {K ′i ∈ V,K
′
i ∩ S 6= 0}. (4.36)

If the structure undergoes large displacements, the set of fluid cells composing the mediating
bodyMΓS changes over time and needs to be indexed by the time step n, referred asMn

ΓS
. For the

sake of clarity, the time step reference is willingly omitted corresponding to an arbitrary time step.
As the mediating body for overlapping grids (MΓS ) is composed of two distincts mediating bodies

namely VΓS and WΓS , the single grid MBM is applied independently to both entities. For each cell
K
′
i ∈ VΓS and K

′
j ∈ WΓS , with (i, j) ∈ ΩVΓS

× ΩWΓS
, averaged normal pseudo-projection operators

to the structure denoted πV
ΓSi

and πW
ΓSj

are computed according to equation 4.12. Also the active

fluid cell sets V∗ and W∗ are defined using equation 4.13.

B . Impact of overlapping grids on the Mediating Body Method numerical func-
tions

As the mediating bodies VΓS and WΓS are independent cell sets, the coupling conditions 4.5 are
applied independently. Starting with the first coupling condition, velocity exchanges for the fluid
moving wall boundary condition are treated with structure velocity vectors V VΓS , V

W
ΓS computed for

each grid using equation 4.16. Similarly, the operators χW , χV are computed using equation 4.15
and the operators MV

S , M
W
S are computed using equation 4.17.

For the second coupling condition, the quantities ΦV
q
and F V are computed for the patch us-

ing equation 4.20 and equation 4.23. Similarly the quantities ΦW
q
and FW are computed for the

substrate. Then the two force vectors FW and F V are summed up with an overlapping ponderation
matrix to form the finite element force vector F f exerted by the fluid to the structure,

F f = P · FW + (INdof
− P ) · F V , (4.37)

where INdof
is the Ndof×Ndof identity matrix with Ndof = ΩS×k, the number of degrees of freedom

of the structural system and k the number of unknown per node. P is a diagonal matrix defined as:

P =


P1 0 · · · 0

0 P2
. . .

...
...

. . . . . . 0

0 · · · 0 PΩS

 , where Pi =


pi1 0 · · · 0

0 pi2
. . .

...
...

. . . . . . 0
0 · · · 0 pik

 , (4.38)

and pij = 1, if the i-th node of the structure S denoted Ni ∈ N VS , 0 otherwise, (i, j) ∈ ΩS × k.

Remark. As illustrated in Figure 4.10, this approach can lead to an underestimation of the fluid
force exherted on the structural elements partially immersed inside the patch V . The mediating

123



CHAPTER 4. THE CHIMERA MEDIATING BODY METHOD

body definitons of VΓS andWΓS , respectively include the ghost cell sets Ṽ and W̃ . The fluid pressure
force is integrated over the intersections between the structure and the mediating bodies. On the
structural elements straddling the patchV and the cleaned substrate with ghost cellsWwGC

c , the fluid
integration is performed for the patchmediating bodyVΓS as well as for the substratemediating body
WΓS . Then the ponderation matrix P prevents redundancy by favorising the nodes fully included
inside the cleaned patch Vc using the node set SV .
If a structural elementCi, i ∈ ΩS protrudes from the cleaned patch Vc but is still immersed inside the
patch V , the value inside the ghost cells Ṽ ensures a fluid force integration over the entire elementCi.
However, if the element Ci protrudes from the patch V (see Figure 4.10), the fluid force integration
is partially carried out over the element Ci as it is not completely immersed inside the patch fluid
domain. As a result, the fluid force FV can be underestimated if the structural cell characteristic size
hi is much higher the characteristic cell size of the patch hV (hi � hV ).
If kGC = n, it is recommended to use hi < nhV to ensure that the fluid force is integrated on
the entire element Ci. This underestimation can also happen favorising nodes fully included inside
the cleaned substrate with ghost cells WwGC

c as seen in Figure 4.10. In this case, if kGC = n, it is
recommended to use hi < nhW to ensure that the fluid force is integrated on the entire element Ci.

Substrate W

Patch V

Structure S

: Ghost cell ˜V/˜W

: Mediating body VΓS
/WΓS

Ci

Ci

Underestimated computed fluid force

applied to Ci from the substrate

Underestimated computed fluid force

applied to Ci from the patch

Ci ∩WwGC
c

Ci ∩ Vc

: Ni ∈ N V
S

: N \N V
S

Figure 4.10: Underestimation of the fluid forces computed using the mediating bodiesWΓS and VΓS .
Regarding the conservation improvements, the ALE emulation is performed like for the single

grid MBM (see [92]) as the value inside the ghost cell sets W̃ and Ṽ is supposed to be valid at
the beginning of each time iteration. Finally, the indefinite resolved cell sets V∗indef and W∗indef are
defined by equation 4.29 without any change coming from the overlapping grids.
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C . Impact of the Mediating Body Method on the Chimera method

In the following, we focus on a patch (V) for the sake of simplicity. The Chimera method involves
two categories of cells: the ghost cells (Ṽ) and the sending cells (Vs). On the other hand, the MBM
involves two main categories of cells: the mediating body cells (VΓS ) and the active fluid cells (V∗).
As the Chimera method and the MBM coexist in the overlapping grid context, a patch cell can be
simultaneously a ghost cell for the Chimera method and an active cell for the MBM.

Four types of cells are reviewed in order to idenfify potential conflicts between the MBM and the
Chimera method. These cell type combinations are summarized in Table 4.1:

• Ghost cell and mediating body cell: A ghost cell receives information at the beginning of
every iteration to ensure a valid flux at its interfaces. A mediating body cell is used to compute
particular fluxes at its interfaces resulting from the structure displacements and not depending
on the mediating body cell solution. In the case of a ghost cell that is also a mediating body
cell, the ghost cell does not need to receive information as the value inside a mediating body
cell does not matter. This type of cell is referred as indefinite ghost cell and is reviewed later
on.

• Ghost cell and active cell: A ghost cell that is also an active cell does not impact the
Chimera method as the value inside the active cell will be overwritten by the Chimera method.
Therefore, an active cell that is also a ghost cell is referred as ghost cell because the behavior
of the ghost cell remains unaltered compared to the standard Chimera method (without the
MBM).

• Sending cell and mediating body cell: The solution inside a mediating body cell is not
physically valid and cannot be used for a sending cell. Therefore, a sending cell that is also
a mediating body cell cannot send any information which impact the Chimera method. This
type of cell is referred as indefinite sending cell and a strategy to reconstruct a solution inside
this type of cell is detailed in the next section.

• Sending cell and active cell: The solution of an active cell is computed by the numerical
scheme (MUSCL-Hancock in our case). The resulting solution is physically valid and can be
used for a sending cell. Therefore, a sending cell that is also an active cell does not cause any
problem for the Chimera method. This type of cell is referred as valid cell.

Table 4.1: Cell type combinations for the coupling of the Chimera method with the MBM.
Ki ∈ V Ghost cell (Ṽ) Sending cell (Vs)

Mediating body cell (VΓS ) Indefinite ghost cell Indefinite sending cell
Active cell (V∗) Ghost cell Valid cell

Among the identified types of cells, only two require a particular attention: the indefinite sending
cells and the indefinite ghost cells. The first one requires a numerical strategy to recover a usable
solution that can be sent to the other grid through the Chimera method. The second type of cell
needs to be considered in order to assess the impact of the Mediating Body Method on ghost cells.
The two types of cells are represented in Figure 4.11.
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Substrate W

Patch V

Structure S

: Ghost cell ˜V/˜W

: Mediating body VΓS
/WΓS

: Indefinite ghost cell ˜VΓS
/ ˜WΓS

: Indefinite sending cell Vs

ΓS
/ Ws

ΓS

Figure 4.11: Indefinite sending cells and indefinite ghost cells when using the Mediating Body Methodcombined with the Chimera method with a number of ghost cell layers kGC = 1 and a Chimera cell ratio
χ = 2.

C.1 - Handling of indefinite sending cells: the +/− extrapolation

We consider a substrate indefinite sending cell Ki ∈ Ws belonging to the mediating body (Ki ∈
WΓS ), therefore, Ki ∈ Ws ∩WΓS . The same reasoning applies to any patch cell K

′
j ∈ Vs ∩ VΓS . As

Ki belongs to the substrate mediating body (WΓS ), it does not contain a usable solution. Because
of the Chimera method, Ki has to transfer information to the patch. As Ki ∈ WΓS , the structure
crosses Ki. Therefore, Ki can be split into two subcells K+

i and K−i located on either side of the
structure as shown in Figure 4.12. The objective is to reconstruct two solutions for the cell Ki,
one for K+

i and one for K−i , using different sets of neighboring cells located on either side of the
structure. This method is referred as +/− extrapolation in the following.

In order to extrapolate a value for the subcells K+
i and K−i , we need to explore the neighboring

cells of Ki. We define the +/− adjacent crossed cell index sets:

LsW+
iΓS

(0) =
{
j ∈ γ(i), Kj ∈ WΓS , d(S, xj) > 0

}
, (4.39)

LsW−iΓS
(0) =

{
j ∈ γ(i), Kj ∈ WΓS , d(S, xj) 6 0

}
. (4.40)

where d(xj ,S) is the signed distance between the structure S and the barycenter xj of the cell Kj .
γ(i) is the index set of the cells adjacent to Ki. LsW+

iΓS
(0) and LsW−iΓS

(0) contain the indices of the
cells adjacent to Ki that are crossed by the structure with respectively a positive signed distance to
the structure and a negative signed distance to the structure. Those two sets contain the indices of
mediating body cells.

As a mediating body cell do not contain a usable solution, we define the +/− adjacent active
cell index sets:

LsW+
i∗ (0) =

{
j ∈ γ(i), Kj ∈ W∗, d(S, xj) > 0

} (4.41)
LsW−i∗ (0) =

{
j ∈ γ(i), Kj ∈ W∗, d(S, xj) 6 0

}
, (4.42)
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Substrate W Structure S

: Sending cell Ws

: Mediating body WΓS

: Indefinite sending cell

Km Km

d(x
m
,S) > 0

d(x
m
,S) < 0

Figure 4.12: Indefinite sending cells subcell decomposition and extrapolation

LsW+
i∗ (0) and LsW−i∗ (0) correspond to the indices of the active fluid cells adjacent to Ki with re-

spectively a positive signed distance to the structure and a negative signed distance to the structure
S.

The +/− extrapolation relies on the solution of the active cells sets LsW+
i∗ (0) and LsW−i∗ (0).

However, it can occur, that the set LsW+
i∗ (0) (or the set LsW−i∗ (0)) is empty, meaning that no

adjacent cells to Ki with a postivive (or negative) signed distance to the structure (S) is an active
cell.

In this case, successive exploration passes are performed until active neighboring cells with a
positive (or negative) signed distance to the structure (S) are found. Starting from, LsW+

iΓS
(0) and

LsW−iΓS
(0), these passes are performed avoiding repetitions in the neighboring cells explored. To do

so, we define the crossed cell sets of the n-th pass (n ∈ N∗) as:

LsW+
iΓS

(n) =
{
k ∈ γ(j), j ∈ LsW+

iΓS
(n-1), k /∈ LsW+

iΓS
(n-1), Kk ∈ WΓS , d(S, xj) > 0

}
, (4.43)

LsW−iΓS
(n) =

{
k ∈ γ(j), j ∈ LsW−iΓS

(n-1), k /∈ LsW−iΓS
(n-1), Kk ∈ WΓS , d(S, xj) 6 0

}
. (4.44)

which correspond to the indices of the cells adjacent to Kj that are mediating body cells with a
positive (or negative) signed distance to the structure whose index dot not belong to LsW+

iΓS
(n-1)(

or LsW−iΓS
(n-1)

)
. In this definition, Kj is a mediating body cell neighboring Ki detected during the

n-1-th pass
(
j ∈ LsW+

iΓS
(n-1), or j ∈ LsW−iΓS

(n-1)
)
.

Then, the active cell index sets of the n-th pass (n ∈ N∗) are defined as:

LsW+
i∗ (n) =

{
k ∈ γ(j), j ∈ LsW+

iΓS
(n-1),Kk ∈ W∗, d(S, xj) > 0

}
, (4.45)

LsW−i∗ (n) =
{
k ∈ γ(j), j ∈ LsW−iΓS

(n-1),Kk ∈ W∗, d(S, xj) 6 0
}
, (4.46)

which correspond to the indices of the cells adjacent to Kj that are active cells with a positive (or
negative) signed distance to the structure. In this definition, Kj is a mediating body cell neighboring
Ki detected during the n-1-th pass

(
j ∈ LsW+

iΓS
(n-1), or j ∈ LsW−iΓS

(n-1)
)
. On each side of the
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structure, passes are performed independenlty, until

∃n+ ∈ N,LsW+
i∗ (n+) 6= {∅} and, ∀n ∈ N, n < n+ ⇒ LsW+

i∗ (n) = {∅} (4.47)
and, ∃n− ∈ N,LsW−i∗ (n−) 6= {∅} and, ∀n ∈ N, n < n− ⇒ LsW−i∗ (n) = {∅}. (4.48)

The independence of the sets reduces the amount of neighbors explored. Indeed, on each side,
the exploration stops as soon as at least one active cell is found. At the n-th pass (n ∈ N), LsW+

iΓS
(n)

and LsW−iΓS
(n) are explored only if an n+ 1-th pass is needed.

Figure 4.13, illustrates the different steps of the +/− extrapolation procedure and its contribution
to the Chimera sending. Once LsW+/−

i∗ (n+/−) are filled, +/− states can be extrapolated for both

subcells K+/−
i (see Figure 4.13-3) based on the conservative variables as the following:

UW
+

i =

∑
j∈LsW+

i∗ (n+)

|Kj |UWj

∑
j∈LsW+

i∗ (n+)

|Kj |
, UW

−
i =

∑
j∈LsW−i∗ (n−)

|Kj |UWj

∑
j∈LsW−i∗ (n−)

|Kj |
. (4.49)

As a result, the indefinite sending cells have two different values that can be sent to their corresponding
ghost cells.

Let K̃
′
j ∈ Ṽ be a ghost cell receiving from Ki. As detailed in section 2.2, the intersection K̃

′
j∩Ki

is computed with the resulting barycenter of the intersection x̃ji. The signed distance of the center
of the intersection to the structure, written d(S, x̃ji), is computed in order to decide which +/−
state Ki will provide to K̃

′
j (see Figure 4.13-4). If d(S, x̃ji) > 0, then UW

+

i is provided and if
d(S, x̃ji) 6 0, then UW

−
i is provided. If the mediating body remains constant over time, the +/−

neighbor detection does not need to be repeated as the definitions of LsW+/−
i∗ (n+/−) are directly

dependent from the mediating body definition.

Remark. The orientation of the normal to the structure S is arbitrary and needs to be set at the
beginning of the computation. As long as the orientations of the surfaces are not inverted during the
calculation, the procedure is not impacted by the orientation of the normal to the structure (S).

Remark. While the second order Chimeramethod andmore specifically the gradient reconstruction
has been adapted to work with the Mediating Body Method on active sending cells Us∗ , U = {V,W}
even near the mediating body region, the extrapolated sending cell contribution is limited to first
order due to the complexity of computing a gradient within an undefined area. Also, due to the +/−
subcell decomposition, two gradients would be required.
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Figure 4.13: Indefinite sending cells complete treatment.
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C.2 - Handling of indefinite ghost cells

The next cells that we are interested in are the indefinite ghost cells. In this section, we consider
a patch ghost cell K̃

′
i ∈ Ṽ that also belongs to the patch mediating body (VΓS ), therefore, K̃

′
i ∈

Ṽ ∩ VΓS is an indefinite ghost cell. The same reasoning applies to any substrate indefinite ghost
cell K̃j ∈ W̃ ∩ WΓS . We consider K

′
k ∈ Vc such that K

′
k ∈ γ(i) is adjacent to K̃

′
i as shown in

Figure 4.14. The ghost cell K̃
′
i is intersected by a sending cell Kj ∈ Ws. As a ghost cell, K̃

′
i is used

to ensure an appropriate flux FVik = F̂ (U
V
ik, U

V
ki, nik) at the interface FVik ⊂ ΓṼ of the resolved fluid

domain (see Fig. 4.14) which corresponds to the cleaned patch Vc. As we have K̃
′
i ∈ VΓS , the face

FVik also acts as a boundary condition of the active fluid domain V∗ as detailed in section 4.2.1.D.
In the Chimera method, the flux computation is carried out by the numerical scheme itself

(MUSCL-Hancock in this work, see section 1.2.5). In the MBM, the flux computation at the active
fluid/mediating body interface is overloaded by numerical functions. Therefore, the flux at the
interface FVik will be computed using the MBM instead of the solution sent by the Chimera method
which results in a non-issue.

Substrate W

Patch V

Structure S

: Ghost cell ˜
V

: Mediating body VΓS

: Indefinite ghost cell K
′

i

˜
K

′

i

Γ
Ṽ

K
′

k

F
V

Figure 4.14: Indefinite ghost cell impact on the fluid domain.

One could think about preventing the appearance of indefinite ghost cells by enforcing the con-
dition:

Ũ ∩ UΓS = {∅}, U = {V,W}, (4.50)
during the construction of the mediating body, which would result in the absence of indefinite

ghost cells and would reduce the number of mediating body cells. This solution is considered in the
following example (see Fig. 4.15). We suppose that the structure S separates two fluid cavities at
rest in one dimension but with a pressure jump ∆p.

If the cell K̃
′
i is treated as a ghost cell instead of a mediating body cell, part or all of its solution

comes from an extrapolated sending cell Kj ∈ Ws. When the structure crosses the barycenter x̃ij
of the intersection K̃

′
i ∩ Kj , the intersection distance to the structure, d(x̃ij ,S) changes sign and

therefore the ghost cell K̃
′
i will start receiving the high pressure state whereas the cell K

′
k contains

the low pressure state. At the interface FVik, hermeticity of the system breaks as the high pressure
state leaks into the low pressure one. However, if the ghost cell K̃

′
i is treated as a mediating body
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Figure 4.15: Indefinite ghost cell treatment possibilities.

cell, the leak disappears as the face FVik is handled by the mediating body flux functions. As a results,
including the ghost cells inside the mediating body ensures that the Chimera-Mediating Body Method
preserves hermeticity of overlapping grid system.

D . Time integration scheme of the Chimera-MBM

After introducing the indefinite sending cells and the indefinite ghost cells which result from the
coupling of the Chimera method with the MBM, we have provided a numerical strategy to reconstruct
a solution inside the sending cells. We also have reviewed the benefit of the indefinite ghost cells
which preserve the hermeticity of the Chimera-Mediating Body Method. In this section, we present
the modifications made to the integration scheme presented in section 4.2.1.F for the MBM only.
We detail the time integration scheme for a pair of fluid grids, a substrate (W) and a patch (V).
The fluid integration is performed using the second order MUSCL-Hancock integration presented in
section 1.2.5. The Chimera sending is based on the second order sending presented in section 2.2.3.B.
The time integration scheme of the Chimera-MBM, depicted, in Figure 4.16, is carried out using the
following steps:

1. The structure velocity U̇n+ 1
2 at tn+ 1

2 and its position Un+1 at tn+1 are computed explicitly
from its acceleration Ün at tn, using the central different scheme presented in section 4.1.4.

2. The mediating bodies Wn+1
ΓS

and Vn+1
ΓS

are computed using the structure position Un+1 fol-
lowing the procedure described in section 4.2.2.A. If needed, the indefinite active cells are
extrapolated as detailed in section 4.2.1.E

3. The velocities at the interfaces of the mediating bodies are computed from the structure
velocity U̇n+ 1

2 following the procedure described in section 4.2.1.B.

4. The ghost cells W̃ and Ṽ are updated using the first order Chimera exchange detailed in
section 2.2.3.A. This step is called uninformed sending and allows ghost cells to be part of a
+/− neighboring active cell set if these ghost cell receive from active cells (see Appendix C.1).
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Figure 4.16: Time integration scheme for the Chimera-Mediating Body Method with a MUSCL-Hancockintegration for the fluid and a central difference scheme for the structure.

5. The +/− states are extrapolated using the procedure detailed in section 4.2.2.C.1.

6. The ghost cells W̃ and Ṽ are re-updated using the first order Chimera exchange (section 2.2.3.A).
It is called informed sending (see Appendix C.1).

7. Steps 5 and 6 are performed a second time to allow ghost cells to be part of a +/− neighboring
active cell set even if these ghost cells receive from indefinite sending cells as detailed in
Appendix C.2.

8. The solution gradient is computed and limited inside Vr and Wr for ghost cell solution recon-
struction.

9. The ghost cells W̃ and Ṽ are updated using the second order Chimera exchange presented in
section 2.2.3.B.

10. The MBM extrapolation as well as steps 3 to 9 are performed a second time as a correction
loop in case indefinite active cells use ghost cells for the MBM extrapolation as explained in
Appendix C.3.

11. The fluid interface states UU
n

ji , (i, j) ∈ ΩU∗×γ(i), U = {V,W}, are reconstructed and updated
by half a time step ∆tn

2 using the first two steps of the MUSCL-Hancock time integration i.e.
the steps 1 and 2 presented in section 1.2.5.

12. The fluid variables UU
n
, U = {V,W} are updated to the time tn+1 from the interface states

UU
n+ 1

2 using the fluxes presented in section 4.2.1.D.2, the HLLC solver presented in sec-
tion 1.2.3 and the ALE emulation as detailed in [92].

13. The force vector F f imposed by the fluid to the structure is computed from the patch and
substrate flux momentum computed in the fluid problem between tn and tn+1 following the
procedure detailed in section 4.2.1.C and section 4.2.2.B.
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14. Finally, the structure acceleration Ün+1 is computed using the finite element equilibrium equa-
tion presented in section 4.1.4 (see equation 4.6).

The Chimera-MBM method has been implemented inside the C++ in-house code MANTA. The
developped method has the benefit of being flexible as no additional contraints on the grids are
added appart from those due to the Chimera method or the MBM which are already designed to be
as flexible as possible. In the next section, we assess the method on validation test cases.
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4.3 - Numerical validation of the method and applica-
tions

In the previous sections, we have presented a coupling of the developed Chimera method in a finite
volume context with the Mediating Body Method for large fluid-structure displacements in overlapping
grid computations. In the following, the impact of the coupling of the Chimera method with the
Mediating Body Method is assessed using two different test cases. Each test case involves a structure
crossing the Chimera boundary. The first test is a free piston separating two cavities at rest with a
pressure jump. This test allows us to compare the numerical results to an analytical solution for both
the piston displacements and the fluid dynamics. The last test is a "large scale" three-dimensional
problem involving three fluid grids including two patches and a deformable structure.

For both test cases, the Chimera-MBM configuration is compared to single grid configurations
using the Mediating Body Method for fluid-structure interactions. The finite volume method set-up
is kept constant across all the cases which corresponds to a MUSCL-Hancock scheme with the HLLC
Riemann solver and the K-Dubois limiter with k = 0.75 presented in section 1.2. The integration
scheme is second order accurate in both time and space and the second order Chimera sending is
used with the standard detection as the default configuration.

4.3.1 - One-dimensional free piston
This test is a simple configuration involving fluid-structure interactions with large structure dis-

placements. It consists in a free membrane of thickness e = 1.35 · 10−3 m and height l = 0.2 m

referred as piston separating two fluid chambers initially at rest inside a closed tube of length L = 60 m

and height l as shown in Figure 4.17. The computational domain extends from −L
2 to L

2 and the
membrane is initially located at xs = −1.8 m. The left and right states of the fluid chambers on
each sides of the piston are given by:ρL

uL

pL

 =

0.2 kg.m−3

0
0.2 Pa

 ,

ρR

uR

pR

 =

0.125 kg.m−3

0
0.1Pa

 , (4.51)
The chambers have a pressure jump ∆p = pL − pR = 0.1 Pa initiating the displacement of

the membrane that generates a compression wave on the right-hand side, in the low pressure region
and a rarefaction wave on the left-hand side, in the high pressure region of the tube. The pressure
values have been chosen in order to keep the flow isentropic in the compression wave region and
to prevent the formation of a shock wave (see Appendix D). The membrane parameters are the
following: ρs = 2710 kg ·m−3, E = 10−4 GPa and ν = 0.33, where ρs, E and ν are respectively
the piston density, Young modulus and Poisson ratio. The piston is modelled with a single four-node
quadrilateral MITC4 shell element as mentioned in section 4.1.3.

In order to measure the impact of the Chimera-MBM locally, the free piston case is assessed using
two different grid configurations respectively referred as split configuration and patched configuration
like the advection test case presented in section 2.4.2. Computations are performed up to the
dimensionless time t?f = t u̇∞/L = 0.106, where u̇∞ ≈ 0.277 m.s−1 is the asymptotic speed of the
piston in an infinite domain. The CFL number is set to 0.9. The analytical solution of the problem
is presented in Appendix D. At t? = t?f , the piston barycenter is located at x = xs ≈ 2.04327 m. The
computational domain is long enough so that the boundary conditions of the domain do not impact
the solution.
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Figure 4.17: Free piston case presentation.

A . Split configuration

The first assessed configuration is the split grid configuration and it is illustrated in Figure 4.18. The
computational domain is split at xi = 0 with a substrate on the left-hand side and a patch on the
right-hand side. For the Chimera grid configurations, the parameter Ncells is used to set the cell
size on the substrate (hW) with Ncells corresponding to the number of grid cells over the length L.
On the patch, the cell size hV is obtained from hW with the cell ratio χ. Finally, for the Chimera
configurations, the patch is shifted by the value δS set to 0.6hW in order to avoid coincident grids
between the patch (V) and the substrate (W) as shown in Figure 4.18. In order to monitor potential
oscillations caused by a brutal refinement, when χ varies, the single grid configurations are set-up like
Chimera configurations with δS = 0 (see Fig. 4.18). In the presence of oscillations in the solution,
single grid configurations allow us to determine if the perturbations are caused by the Chimera-MBM
or by the brutal refinement as we have seen in section 2.4.3.B. As a result, single grid configurations
also depend on Ncells and χ.

0 x

W

V
δS = 0.6 hW

U

Lxi

Single grid configuration

Chimera grid configuration

: Ghost cells

Ncells

χ = 2

χ = 2

l

xs

l

S

S

Figure 4.18: Free piston split configuration.
The results are compared to the analytical solution presented in Appendix D and the L1 norm of

the density error is computed as in equation 2.23.
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A.1 - Impact of the Chimera-Mediating Body Method on the order of convergence

To begin with, we study the impact of the Chimera-Mediating Body Method (Chimera-MBM) on
the order of convergence compared to the standard Mediating Body Method (MBM). Five different
grids are used from the coarsest with Ncells = 300 to the finest with Ncells = 4800. The cell ratio
(χ) is set to 1 meaning that cell sizes between the patch and the substrate are equal (hW = hV)
for the Chimera configurations. For the single grid configurations, χ = 1 means that the cell size is
uniform over the domain.

Figure 4.19 and Figure 4.20 represent the fluid density, velocity and pressure profiles over the
entire domain with respectively Ncells = 300 and Ncells = 1200 for both the Chimera-MBM and
the MBM with the split configuration. The Chimera method combined with the Mediating Body
Method does not alter the solution profile as the two solutions are superimposed to the naked eye.

Figure 4.19: Free piston density (ρ), velocity (u) and pressure (p) profiles of the split configuration forthe Chimera-MBM case as well as the single grid MBM case when χ = 1 andNcells = 300 at t = t?f . Themarkers on the plots are not representative of the number of points of the numerical solution.
The grid convergence results for both the MBM and Chimera-MBM are plotted on Figure 4.21.

Overall, the use of mutliple fluid grids does not seem to affect the order of convergence. This is
confirmed by Table 4.2 where the values of L1(ερ) are reported. Overall, when χ = 1, the Chimera-
MBM is equivalent to the single grid MBM with a difference between the two configurations lower
than 1% for every value of Ncells tested. As a result, the Chimera-MBM does not alter the order
of convergence of the solution compared to the single grid MBM.
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Figure 4.20: Free piston density (ρ), velocity (u) and pressure (p) profiles of the split configuration for theChimera-MBM case as well as the single grid MBM case when χ = 1 and Ncells = 1200 at t = t?f . Themarkers on the plots are not representative of the number of points of the numerical solution.
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Figure 4.21: Grid convergence analysis of the free piston test case with the split configuration and equiv-alent cell sizes between the patch and the substrate (χ = 1).
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Table 4.2: Grid convergence analysis of the free piston with the split configuration: results on density(ρ) errors obtained with a single grid MBM as well as with the present Chimera-MBM using a patch withsame grid spacing as the substrate (χ = 1.0) but with non-coincident grids (δS = 0.6hW ).
Ncells L1(ερ) error (×105) Order of convergence p

Single Chimera Single Chimera
300 7.266 7.226 1.03 1.03600 3.549 3.530 0.96 0.961200 1.819 1.817 1.04 1.032400 8.843e-1 8.886e-1 0.95 0.944800 4.586e-1 4.619e-1 - -

A.2 - Impact of the cell ratio (χ)

Now we focus on the impact of cell size discrepencies bewteen the patch and the substrate (χ 6=
1). We review successively configurations where the piston is transferred from a coarse grid to a finer
one and when the piston is transferred from a fine grid to a coarser one. In both configurations, the
Chimera results are compared to an equivalent single grid one with a brutal refinement or coarsening
at x = xi.

A.2.1 - Impact of the Chimera-MBM on a coarse-to-fine transfer

First, we consider a finer patch with Ncells = 300 and χ goes from 1 up to 16. In Figure 4.22,
the density profiles are plotted for χ = 1, χ = 2, and χ = 4 for both the Chimera-MBM and the
MBM while Figure 4.22 contains the density profile of both configurations for χ = 4, χ = 8 and
χ = 16. We can see that a brutal refinement generates a perturbation that is transported with the
flow for both the Chimera-MBM and MBM solutions. This perturbation is generated inside the flow
when the piston crosses the Chimera interface (or the refinement interface for the MBM single grid
configuration). However, the Chimera-MBM oscillation is more pronounced even though it does not
seem to affect the global shape of the density profile.

For the Chimera configuration, this perturbation is generated by indefinite sending cells extrap-
olating a value using the +/− extrapolation when the piston enters the patch. The perturbation
is generated as long as indefinite sending cells are sending the +/− extrapolated solutions to ghost
cells. However, once the structure is completely immersed inside the patch, pertubations are no
longer emitted but the perturbations already present are transported in the coarse-to-fine direction
which corresponds to the positive x-direction in this grid configuration.
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Figure 4.22: Free piston density (ρ) profile of the split configuration for the Chimera-MBM as well asthe single grid MBM when Ncells = 300 and χ = 1, 2, 4 at t = t?f . The markers on the plots are notrepresentative of the number of points of the numerical solution.

Figure 4.23: Free piston density (ρ) profile of the split configuration for the Chimera-MBM as well asthe single grid MBM when Ncells = 300 and χ = 4, 8, 16 at t? = t?f . The markers on the plots are notrepresentative of the number of points of the numerical solution.

In Table 4.3, the values of L1(ερ) are reported for both the Chimera-MBM and the MBM with
Ncells = 300 and χ = 1−16. Refining the patch does improve the overall solution for the Chimera-
MBM as the error decreases when χ increases up to 8. The single grid follows the same trend which
means that the Chimera-MBM does not impact the global solution significantly when compared to
the single grid MBM. However, the improvement on the solution is limited by the coarse part of the
mesh (see Table 4.2 for reference). When χ = 16, the quality of the solution is slightly deteriorated

139



CHAPTER 4. THE CHIMERA MEDIATING BODY METHOD

but remains equivalent to the single grid MBM. It is worth noting that the Chimera-MBM method
behaves in a similar way as the second order Chimera method for fluid simulations when refining the
patch.

Table 4.3: Cell ratio analysis of the free piston with the split configuration: results on density (ρ) errorsobtained with a single grid MBM as well as with the present Chimera-MBM using a finer grid in the patchregion (Ncells = 300, χ > 1).

χ
L1(ερ)(×105) EquivalentNcellson the patchSingle mesh MBM Chimera-MBM

1 7.266 7.226 3002 6.672 6.420 6004 6.386 6.104 12008 6.126 5.899 240016 6.054 6.073 4800

A.2.2 - Impact of the Chimera-MBM on a fine-to-coarse transfer

Finally, we consider a coarser patch by setting Ncells = 4800 and χ goes from 1 up to
0.0625 (1/16) which corresponds to a patch 16 times coarser than the substrate. In Figure 4.24, we
can see that a similar perturbation to the one observed with a finer patch occurs with a coarser patch
in the Chimera-MBM configurations. However, the oscillation is located inside the substrate which
is finer than the patch and the perturbation is not generated by the single grid MBM. Therefore,
the perturbation is generated at the interface of the finest grid and transported in the coarse-to-fine
direction which corresponds to the negative x-direction in this grid configuration.

This perturbation impacts the values of L1(ερ) reported in Table 4.4 as we can observe a growing
difference between the Chimera-MBM results and the MBM results when χ decreases (the patch
becomes coarser).

Figure 4.24: Free piston density (ρ) profile of the split configuration for the Chimera-MBM as well as thesingle grid MBM when Ncells = 4800 and χ = 0.25, 0.125, 0.0625 at t? = t?f . The markers on the plotsare not representative of the number of points of the numerical solution.
From the two studies carried out, we can see that a perturbation is generated at the interface

of the finest grid between the patch and the substrate and then transported in the coarse-to-fine
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Table 4.4: Cell ratio analysis of the free piston case with the split configuration: results on density (ρ)errors obtained with a single grid MBM as well as with the present Chimera-MBM using a coarser gridin the patch region (Ncells = 4800, χ 6 1).

χ
L1(ερ)(×106) EquivalentNcellson the patchSingle mesh Chimera

1 4.586 4.619 400.5 5.216 5.197 800.25 6.767 7.274 1600.125 10.662 13.095 3200.0625 20.599 29.860 640

direction. For the study involving a finer patch, the coarse-to-fine direction is the positive x-direction
whereas for the study involving a coarser patch, the coarse-to-fine direction is the negative x-direction.

This indicates that the perturbation results from a coarse-to-fine transfer. As a result, the
Chimera-Mediating Body Method can be used with cell ratios higher than 8 but local perturbations
will be generated at the interface of the finest of the two grids and transported along the coarse-to-fine
direction.

A.3 - Discussion on conservation

We now focus on the impact on mass conservation of the Chimera method coupled with the
Mediating Body Method for different values of Ncells and cell ratio (χ). The impact on conservation
is monitored using the relative error on total mass of the system over time which is computed at each
time step as the following:

ε(ρ(t?)) =

∣∣ ∫ ρ(t?, x) dV −
∫
ρ(0, x) dV

∣∣∫
ρ(0, x) dV

. (4.52)
Figure 4.25 illustrates the variation of the system mass over time for different mesh resolution from
Ncells = 300 up to Ncells = 4800 with χ = 1. We can see that mass conservation is not altered
compared to the single grid configuration up to t? ≈ 0.06 which corresponds to the time the piston
enters the patch. When the piston transitions from the substrate to the patch, a drop followed by a
peak in the total mass relative error occurs.

This trend is explained by Figure 4.26. As we are reconstructing a merged domainW+V from a
composite domain with non-matching grids (a patch and a substrate), the last resolved cell on the left
side of the substrate is cut by the first resolved cell on the right side of the patch. Therefore, when
the structure intersects the last cell of the substrate but not the patch yet, the system mediating
body occupies a smaller volume compared to the previous intersected substrate cells and the system
mass relative error decreases (left side of Fig. 4.26).

When the structure progresses and enters the first resolved cell of the patch, it is still in the last
cell of the substrate, therefore, the perceived system mediating body volume on the merged domain
W +V is higher compared the previous intersected substrate cells and the system mass relative error
increases (right side of Fig. 4.26).

When the piston leaves the Chimera exchange zone, the levels of system mass relative error are
equivalent to the corresponding single grid configuration with equal Ncells but with a constant shift
in the variation due to the grid shift δS = 0.6hW .

In the end, the grid merging procedure of the Chimera-Mediating Body Method for post processing
captures the variations in the total mass of the system induced by structure crossing the Chimera
interface. However, these variations are negligible as they disappear once the structure is fully
immersed inside the patch (or the substrate) and the system comes back to levels of error equivalent
to the single grid configuration.
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Figure 4.25: Free piston system mass relative error of the split configuration for the Chimera-MBM aswell as the single grid MBM when Ncells varies and χ = 1 over time. The markers on the plots are notrepresentative of the number of points of the numerical solution.
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Smaller mediating body = higher total system mass Larger mediating body = lower total system mass
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Figure 4.26: Explanation of the variations in system total mass at the patch boundaries when the struc-ture enters the patch.

In the following, Ncells is kept fixed at 300 and the patch is refined (χ increases from 1 to
16). Refining the patch allows to lower the mass conservation defect as seen in Figure 4.27 and
Figure 4.28 where the variation of the system mass are plotted for both the single grid MBM and
the Chimera-MBM with different values of χ. Appart from the transition, no particular impact on
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system mass is observed from the Chimera-MBM configuration as it remains equivalent to the single
grid MBM case for every value of χ tested.

Figure 4.27: Free piston system mass relative error of the split configuration for the Chimera-MBM aswell as the single grid MBM when Ncells = 300 and χ = 1, 2 and 4 (finer patch) over time. The markerson the plots are not representative of the number of points of the numerical solution.

Figure 4.28: Free piston system mass relative error of the split configuration for the Chimera-MBM aswell as the single grid MBM whenNcells = 300 and χ = 4, 8 and 16 (finer patch) over time. The markerson the plots are not representative of the number of points of the numerical solution.
Finally, Ncells is kept fixed at 4800 and the patch is coarsened (χ decreases from 1 to 1

16).
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Figure 4.29 and Figure 4.30 represent the relative system mass error over time for both the single
grid MBM and the Chimera-MBM configurations when the piston travels from a fine grid to a coarser
one. The coarser portion deteriorates the total mass relative error for both the Chimera-MBM and
the single grid MBM configurations. Similarly to the coarse-to-fine mass conservation study, the
Chimera-Mediating Body Method does not seem to alter mass conservation of the system when a
fine-to-coarse grid transition is at play compared to an equivalent single grid configuration.

Figure 4.29: Free piston system mass relative error of the split configuration for the Chimera-MBM aswell as the single grid MBM when Ncells = 300 and χ = 1, 0.5 and 0.25 (coarser patch) over time. Themarkers on the plots are not representative of the number of points of the numerical solution.
As a conclusion, the Chimera-MBM does not add significant additional error on system mass

conservation compared to a single grid MBM in a split grid configuration. The system mass errors
are equivalent between the Chimera-MBM and the single grid MBM. The system mass error is related
to the grid resolution which is lowered when using a finer patch. The Chimera exchange zone can
generate temporary perturbations in the system mass but these perturbations do not remain once
the piston has crossed the exchange zone.
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Figure 4.30: Free piston system mass relative error of the split configuration for the Chimera-MBM aswell as the single grid MBMwhenNcells = 300 and χ = 0.25, 0.125 and 0.0625 (coarser patch) over time.The markers on the plots are not representative of the number of points of the numerical solution.
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B . Patched configuration

The second configuration tested is the patched domain and it is illustrated in Figure 4.31. The
computational domain is based on a one-dimensional domain of length L such that x ∈

[
−L

2 ,
L
2

]
.

For the single grid configuration, the domain is decomposed into three sections: the left section
corresponds to the interval

[
−L

2 ,− L
50

]
and the right section corresponds to the interval

[
L
50 ,

L
2

]
.

The cell size in both sections is set using the parameter Ncells which corresponds to the number
of cells over the length L. The middle section is located bewteen x = − L

50 and x = L
50 and is set

using the cell ratio (χ). For the Chimera configuration, the substrate (W) corresponds to a standard
one-dimensional domain of length L such that x ∈

[
−L

2 ,
L
2

]
containing Ncells cells. The patch (V)

is built as the middle section of the single grid configuration but two ghost cells are added at each
ends of the patched grid. Then the patch is shifted by the value δS = 0.3hW in order to ensure
non-coincident grids between the patch and the substrate. This Chimera configuration allows us to
assess the impact of a moving structure entering and leaving a patched domain.

−L/2 x

W

V

δS = 0.3 hW

U

L/2−L/50

Single grid configuration

Chimera grid configuration

: Ghost cells

Ncells

χ = 2

l

xs

S

S

l

0 L/50

Ncells

χ = 2

Figure 4.31: Free piston patched configuration.

B.1 - Impact of the Chimera-Mediating Body Method on the order of convergence

Firstly, we focus on the impact of the Chimera-Mediating Body Method on the order of con-
vergence when χ = 1 and we increase Ncells. Five different grids are used from the coarsest with
Ncells = 300 to the finest with Ncells = 4800. The cell ratio (χ) is set to 1. Figure 4.32 represents
the fluid density, velocity and pressure profiles over the entire domain with Ncells = 300 for both the
Chimera-MBM and the MBM with the patched grid configuration. The Chimera method combined
with the Mediating Body Method does not alter the solution profile as the two solutions remain
superimposed to the naked eye.

Figure 4.33 represents the results of the L1 error on density when the parameter Ncells increases
for a constant cell ratio χ = 1. The Chimera-Mediating Body Method does not present a significant
difference compared to the single grid mediating body case. When the grid resolution increases, the
spatial error decreases and the error caused by the Chimera exchange is exhibited. Looking at the
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Figure 4.32: Free piston density (ρ), velocity (u) and pressure (p) profiles of the patched configuration forthe Chimera-MBM as well as the single grid MBM when χ = 1 and Ncells = 300 at t = t?f . The markerson the plots are not representative of the number of points of the numerical solution.

error figures presented in Table 4.5, the Chimera-Mediating Body Method error remains acceptable
as it does not exceed ±5% compared to the single grid configuration. Also, it is worth noting that the
Chimera-Mediating Body Method does not impact the order of convergence significantly but tends
to reduce it by 1 − 2% compared to the single mesh results. Overall the Chimera-MBM provides
equivalent results to the single grid MBM when χ = 1.

147



CHAPTER 4. THE CHIMERA MEDIATING BODY METHOD

100 101

h/h0

10−5

L
1(
ε ρ

) sl
op

e
=

2

slo
pe =

1
Single mesh MBM

Chimera-MBM

Figure 4.33: Grid convergence analysis of the free piston case with the patched configuration and equiv-alent cell sizes between the patch and the substrate (χ = 1).

Table 4.5: Grid convergence analysis of the free pistonwith the patched configuration: results on density(ρ) errors obtained with a single grid MBM as well as with the present Chimera-MBM using a patch withsame grid spacing as the substrate (χ = 1.0) but with non-coincident grids (δS = 0.3hW ).

Ncells L1(ερ) error (×105) Order of convergence p
Single Chimera Single Chimera

300 7.266 7.189 1.03 1.03600 3.549 3.512 0.96 0.961200 1.820 1.806 1.04 1.022400 8.843e-1 8.913e-1 0.95 0.904800 4.586e-1 4.781e-1 - -

B.2 - Impact of the cell ratio (χ)

We now focus on the impact of the Chimera-Mediating Body Method when the patch is refined.
The parameter Ncells is set to 300 and the cell ratio (χ) is doubled from 1 up to 16. Figure 4.34
and Figure 4.35 show the density profiles for both the Chimera-MBM and the single grid MBM for
different values of χ. The profile is preserved even for the highest values of χ but refining the patch
generates two perturbation which have been observed separately with the split configuration study.

In the compression wave region, around x = 18 m (see right hand side zoom in Fig. 4.34 and
Fig. 4.35), a perturbation can be observed and results from the piston entering the patch. This
perturbation is the equivalent to the perturbation observed in section 4.3.1.A.2.1. It is generated
at the left hand side patch interface (near x = − L

50) when the piston enters the patch and it is
transported in the positive x-direction (which corresponds to the local coarse-to-fine direction for the
left hand side patch interface). Then, the perturbation is transferred back to the right hand side
portion of the substrate (near x = L

50) and it is smoothed out during the transfer due to the coarser
susbtrate. Therefore, the perturbation is difficult to discern in the final global solution which means
that structural components entering a finer domain do not significantly impact the global solution.
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The second perturbation is located in the expansion wave region at t? = t?f . Around x = −1.1 m

(see left hand side zoom in Fig. 4.34 and Fig. 4.35), a perturbation can be observed and results
from the piston leaving the patch. This perturbation is equivalent to the perturbation observed
in section 4.3.1.A.2.2. It is generated at the right hand side patch interface (near x = L

50) when
the piston leaves the patch. This perturbation is transported in the negative x-direction (which
corresponds to the local coarse-to-fine direction for the right hand side patch interface). At t? = t?f ,
the perturbation is located at the left hand side patch interface and is being transferred back to the
left hand side portion of the substrate (near x = − L

50) but it is still partially located inside the patch.
For t? > t?f , the perturbation is fully transmitted to the substrate and will be smoothed out due to
the coarser substrate like the perturbation located in the compression wave.

Figure 4.34: Free piston density (ρ) profile of the patched configuration for the Chimera-MBM as wellas the single grid MBM when Ncells = 300 and χ = 1, 2, 4 at t = t?f . The markers on the plots are notrepresentative of the number of points of the numerical solution.
When looking at the L1 error values summarized in Table 4.6, we can see that refining the patch

helps improving the accuracy of the solution as the error decreases when χ increases up to 8. The
single grid MBM follows the same trend but the error keeps decreasing for χ > 8. For the Chimera-
MBM, if this value is exceeded, the inherant perturbation deteriorates the accuracy compared to a
lower cell ratio while using more grid cells. However, the relative difference between the Chimera-
MBM and the single grid MBM does not exceed ±5% for χ 6 8 and is equal to 6% for χ = 16

which emphasizes the local character of the induced perturbations.
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Figure 4.35: Free piston density (ρ) profile of the patched configuration for the Chimera-MBM as wellas the single grid MBM when Ncells = 1200 and χ = 4, 8, 16 at t? = t?f . The markers on the plots arenot representative of the number of points of the numerical solution. The markers on the plots are notrepresentative of the number of points of the numerical solution.
Table 4.6: Cell ratio analysis of the free piston with the patched configuration: results on density (ρ)errors obtained with the present Chimera-mediating body approach using a finer grid in the patch(Ncells = 300, χ > 1).

χ
L1(ερ)(×105) EquivalentNcellson the patchSingle mesh Chimera

1 7.266 7.189 3002 6.016 5.731 6004 5.394 5.138 12008 4.965 4.972 240016 4.859 5.166 4800

B.3 - Impact on conservation

As for the split configuration, we are interested in measuring the impact of the Chimera-MBM
on mass conservation of the system over time. Using equation 4.52, we have monitored the relative
error on system mass over time for χ = 1 with different values of Ncells and we have plotted the
results in Figure 4.36. When the structure enters the patch (see Fig. 4.36), the relative error on
system mass drops and then increases before returning to its "standard" variation mode as explained
in Figure 4.26. This trend is inverted when the structure leaves the patch as the relative error on
system mass increases and then drops before returning to a more standard variation trend. Overall,
the Chimera-MBM provides an equivalent level of mass conservation compared to the single grid
MBM. Also, refining the domains helps reducing the system mass variations.

The same conclusion can be drawn when the cell ratio (χ) varies as illustrated in Figure 4.37 and
in Figure 4.38. Indeed, using a finer patch helps improving the global conservation when combined
with the Mediating Body Method. The finer the patch the lower the system mass varies without
visible conservation impact from the Chimera-Mediating Body Method.
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Figure 4.36: Free piston system mass relative error of the patched configuration for the Chimera-MBMcase as well as the single grid MBM case when Ncells varies and χ = 1 over time. The markers on theplots are not representative of the number of points of the numerical solution.

Figure 4.37: Free piston system mass relative error of the patched configuration for the Chimera-MBMcase as well as the single grid MBM case when Ncells = 300 and χ = 1, 2 and 4 (finer patch) over time.The markers on the plots are not representative of the number of points of the numerical solution.
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Figure 4.38: Free piston system mass relative error of the patched configuration for the Chimera-MBMcase as well as the single grid MBM case whenNcells = 300 and χ = 4, 8 and 16 (finer patch) over time.The markers on the plots are not representative of the number of points of the numerical solution.
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C . Summary of the findings on the one-dimensional free piston test case

The free piston has demonstrated that the developed Chimera-Mediating Body Method provides very
comparable results to its single grid counterpart when the cell size are equivalent bewteen the grids.
The impact on mass conservation is negligible and the method is fully functional.

When the cell ratio χ increases or decreases, perturbations are generated when the structure
crosses the Chimera exchange zone. Equivalent perturbations do not exist in the single grid Mediating
Body Method. However, these perturbations remain small and contained with cell ratios up to 8 and
we have not observed any stability issues with the computations, even at high cell ratios. The free
piston is a one-dimensional test case with moderate stress on the numerical methods with relatively
simple flow dynamics. In the following, we propose a more complex test case to demonstrate the
capabilities of the method when using larger scale flow phenomena.
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4.3.2 - Three-dimensional separated chambers with a perforated
plate

As a final test case, we consider a three-dimensional test involving two chambers separated by
a perforated membrane (see Fig. 4.39). This test aims to demonstrate an example of application of
the Chimera-Mediating Body Method when modelling a three-dimensional problem involving localized
geometrical details that heavily impact the physcis of the problem. This test also exhibits the flexibility
of the implementation that allows the use of multiple patched grids within the same computation.
The objective of this test is not to provide a reference solution of the Chimera-Mediating Body
Method on a well-known test case but to show the benefits of the Chimera-MBM when used in a
large scale simulation involving fluid-structure interactions.

In this test, a square membrane of a side H = 8 m is perforated at the center by a circular hole
with a radius equal to rc = 0.25 m. The membrane perforation is centered on a parallelepiped fluid
domain with the dimensions (L×H ×D) = (12 m, 8 m, 8 m) where L is the length of the domain
in the x-direction, H is the height of the domain in the y-direction, D is the width of the domain in
the z-direction. As the geometry benefits from symmetry axis, we have decided to model a quarter
of the domain as shown in Figure 4.39.
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ρL
pL

ρR
pR

D/2

H/2

0

L/2
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Figure 4.39: 3D chambers case presentation
The membrane separates two chambers filled with fluids at rest with respectively a left state L

(x < 0) and a right state R (x > 0) which are given by:ρL

uL

pL

 =

0.125 kg.m−3

0
0.1 Pa

 ,

ρR

uR

pR

 =

0.5 kg.m−3

0
0.5 Pa

 . (4.53)
For the single grid configuration, the fluid domain is fully covered by a unique 3D cartesian grid
with cubic cells of a side hU . The single grid configuration is derived in a coarse configuration with
hU = hcoarse

U = 0.2 m and a fine configuration with hU = hfine
U = 0.05 m. The perforated plate grid

is set using an O-grid with a first row of square cells of a side hU = 0.04 m around the hole perimeter
as shown in Figure 4.40.

The membrane grid configuration does not change between the single grid cases and the Chimera
cases in order to focus on the differences between the Chimera-MBM and the single grid MBM. The
Chimera case is composed of three distinct grids serving different purposes as shown in Figure 4.41.

A substrate grid, denoted W, is used as a global large scale model with a coarse resolution. The
substrate grid (W) is equivalent to the single grid case with cubic cells of a side hW and corresponds
to the domain (x, y, z) =

[
−L

2 ,
L
2

]
×
[
0, H2

]
×
[
0, D2

]
.
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Figure 4.40: 3D chambers grid configuration for the plate. The first row of cells around the perimeterof the hole contains square cells of a side hU = 0.04 m.

A first patch grid, denoted V1, is used to insert the membrane inside the domain. The membrane
is assumed to remain contained inside the first patch (V1) which is modelled using a 3D cartesian grid
with cubic cells of a side hV1 = 0.1 m. V1 covers the domain (x, y, z) =

[
−L1

2 ,
L1
2

]
×
[
0, H2

]
×
[
0, D2

]
with L1 = 3 m. The first patch grid (V1) is finer than the substrate grid (W) in order to better
capture the flow physics near the membrane.

Around the perforation of the membrane, a second patch grid, denoted V2, is used to better
capture the flow interactions between the two chambers. As we are using the MBM as a fluid-
structure interaction method, using a finer grid near a structural geometrical detail makes sense as it
allows better capturing of the impact of the structure on the flow. The second patch (V2) is modelled
using a 3D cartesian grid, finer than the first patch grid (V1), with cubic cells of a side hV2 = 0.05 m.
V2 covers the domain (x, y, z) =

[
−L2

2 ,
L2
2

]
×
[
0, H2

2

]
×
[
0, D2

2

]
with L2 = 1.2 m, H2 = 1.2 m and

D2 = 1.2 m.
As both the first patch and the second patch are used to improve local accuracy and to bring

better fitted fluid grids around structural details, we have hW = hcoarse
U > hV1 > hV2 = hfine

U . The
outer boundaries (y = H

2 and z = D
2 ) of the membrane are clamped to the fluid domain. The

exterior walls of the domain (x = −L
2 , x = L

2 , y = H
2 and z = D

2 ) are set with slip wall boundary
conditions while the interior faces of the domain (y = 0 and z = 0) are set using symmetry boundary
conditions.
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Figure 4.41: Three-dimensional chambers grid configuration for the Chimera-MBM case. The computa-tional domain contains a coarse substrate (in black), a finer first patch (in blue) that contains the perfo-rated membrane (in green) and an even finer second patch (in red) that helps improving the accuracyaround the perforation

Computations are performed up to the dimensionless time step t?f = tf
cR
L = 3.75 where cR =√

γ pR
ρR

is the right hand side sound speed (γ = 1.4). We recall that the plate is modelled using

quadrilateral MITC4 shell elements with an elastic Saint Venant-Kirchhoff nonlinear behavior [24].
The membrane parameters are the following: the density is equal to 2710 kg.m−3, the thickness e is
equal to 2 · 10−2 m, Young modulus E is equal to 10−2 GPa and Poisson coefficient ν is equal to
0.33. The CFL number is taken equal to 0.3.

The first patch (V1) and the substrate (W) exchange information using the second order Chimera
method presented in section 2.2.3.B while the second patch (V2) and the first patch (V1) interact
using the Chimera-MBM presented in section 4.2.2.

At t? > 0, the high pressure chamber (x > 0) leaks into the low pressure chamber with a
shock wave propagating along the x axis, in the negative direction and an expansion wave in the
positive direction. Simultaneously, the high pressure chamber pushes the membrane in the negative
x-direction. The membrane region around the perimeter of the performation oscillates bewteen its
initial position and its maximum absolute displacement. The high pressure cavity expands into the
low pressure cavity and eventually creates Mach diamonds along the x-axis due to the plate acting
as a slighlty over-expanded nozzle. At x = −L

2 , the flow is reflected on the wall and is redirected in
the positive y-direction and z-direction before being reflected back toward the plate corner located
at (x, y, z) = (0, H2 ,

D
2 ), opposed to the perforation creating a low velocity recirculation region or

mixing region in the low pressure cavity.
The displacements of the plate along the x-axis and the y-axis are monitored over time. We

focus on one particular node at the edge of the plate perforation with z = 0 which corresponds to
the node initially located at (x, y, z) = (0., rc, 0.). The x-displacement and the y-displacement of
this node are plotted respectively in Figure 4.42 and Figure 4.43 for the coarse and fine single grid
MBM cases as well as the Chimera-MBM case.

The Chimera-MBM matches the fine single grid MBM x-displacement and y-displacement profiles
very closely. Compared to the coarse single grid MBM, the Chimera-MBM is more accurate from a
structural dynamics point of view. These results exhibit the strong capabilities of the Chimera-MBM
to improve global computations with localized refined patches around structural components. Over
time, the Chimera-MBM and the fine single grid profiles remain superimposed while the coarse single
grid starts diverging from the other two due to growing discrepencies in the fluid solution that alter
the structural dynamics of the plate.

The fluid solution has been monitored for the three configurations (coarse single grid MBM,
Chimera-MBM and fine single grid MBM) and the resulting velocity magnitude fields (‖u‖) are
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Figure 4.42: x-displacement of the plate extremity around the perforation perimeter at z = 0. Themonitored node is initially located at (x, y, z) = (0., rc, 0.)

Figure 4.43: y-displacement of the plate extremity around the perforation perimeter at z = 0. Themonitored node is initially located at (x, y, z) = (0., rc, 0.)

compared at the dimensionless times 0.1, 0.5, 1, 2, 3 and 3.75 in respectively Figure 4.44, Figure 4.45,
Figure 4.46, Figure 4.47, Figure 4.48 and Figure 4.49.

Between t? = 0 and t? = 0.5 (see Fig. 4.44 and Fig. 4.45), the fine single grid MBM captures the
perforation and the high pressure cavity starts leaking into the low pressure one. In the coarse single
grid MBM configuration, the resolution of the grid does not allow the capture of the perforation
and therefore the fluid physics are very different between the two single grid MBM cases. The use
of the second patch (V2) allows the Chimera-Mediating Body Method to capture the perforation at
every instant. Even though the Chimera-MBM configuration is limited by the coarse resolution of the
substrate, flow structures equivalent to the fine single grid MBM such as the shock wave propagating
inside the low pressure chamber are captured which is not the case for the coarse single grid MBM.
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(a) Coarse single grid - MBM

(b) Chimera - MBM

(c) Fine single grid - MBM
Figure 4.44: Velocity magnitude field (‖u‖) obtained with the coarse single grid MBM case (a), theChimera-MBM case (b) and the fine single grid MBM case (c) at the dimensionless time t? = 0.1.

158



4.3. NUMERICAL VALIDATION OF THE METHOD AND APPLICATIONS

(a) Coarse single grid - MBM

(b) Chimera - MBM

(c) Fine single grid - MBM
Figure 4.45: Velocity magnitude field (‖u‖) obtained with the coarse single grid MBM case (a), theChimera-MBM case (b) and the fine single grid MBM case (c) at the dimensionless time t? = 0.5.
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At t? = 1, (see Fig. 4.46), the displacement of the membrane is important enough for the coarse
single grid MBM to capture the starting leak whereas in the fine single grid MBM case and in the
Chimera-MBM case, the shock front has already reached the boundary of the domain at x = −12 m.
Around the perforation, due to an equivalent grid resolution between the fine single grid and the
second patch (V2), the first Mach diamond is captured by the Chimera-MBM and transmitted to the
first patch (V1). However, the coarse resolution of the substrate does not allow the Chimera-MBM
configuration to hold a sufficent level of accuracy to capture Mach diamonds downstream unlike the
fine single grid MBM configuration.

From t? = 2 to t? = t?f = 3.75 (see Fig. 4.47, Fig. 4.48 and Fig. 4.49), for both the fine single
grid MBM and the Chimera-MBM, the flow is reflected onto the wall normal to the x-axis located
at x = −12 m. Because of the reflection, the flow becomes perpendicular to the x-axis before
recirculating toward the perforated plate which creates a mixing region at a lower velocity compared
to the fluid velocity near the perforation. Even though the mixing of the fluid is not as well captured
as the fine single grid MBM, the recirculation toward the perforated plate can clearly be identified
with the Chimera-MBM. For the coarse single grid MBM configuration, the resolution of the grid
does not allow the capture of the perforation and therefore the fluid physics are very different from
the fine single grid MBM and the Chimera-MBM.
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(a) Coarse single grid - MBM

(b) Chimera - MBM

(c) Fine single grid - MBM
Figure 4.46: Velocity magnitude field (‖u‖) obtained with the coarse single grid MBM case (a), theChimera-MBM case (b) and the fine single grid MBM case (c) at the dimensionless time t? = 1.
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(a) Coarse single grid - MBM

(b) Chimera - MBM

(c) Fine single grid - MBM
Figure 4.47: Velocity magnitude field (‖u‖) obtained with the coarse single grid MBM case (a), theChimera-MBM case (b) and the fine single grid MBM case (c) at the dimensionless time t? = 2.
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(a) Coarse single grid - MBM

(b) Chimera - MBM

(c) Fine single grid - MBM
Figure 4.48: Velocity magnitude field (‖u‖) obtained with the coarse single grid MBM case (a), theChimera-MBM case (b) and the fine single grid MBM case (c) at the dimensionless time t? = 3.
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(a) Coarse single grid - MBM

(b) Chimera - MBM

(c) Fine single grid - MBM
Figure 4.49: Velocity magnitude field (‖u‖) obtained with the coarse single grid MBM case (a), theChimera-MBM case (b) and the fine single grid MBM case (c) at the dimensionless time t? = t?f = 3.75.
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In order to quantify the impact of the capture of the perforation at a larger scale with global
quantities, we measure the fluid mass variation of the low pressure chamber between t? = 0 and
t? = t?f = 3.75. The fluid mass variation of the low pressure chamber at the dimensionless time t?

is denoted ∆mL(t?) and is defined as:

∆mL(t?) =
mL(t?)−mL(0)

mL(0)
, (4.54)

with,

mL(t?) =

∫ 0

−L/2

∫ D/2

0

∫ H/2

0
ρ(x, t?) dx dy dz. (4.55)

mL(t?) is the fluid mass of the left hand side chamber (x < 0) which corresponds to the low pressure
cavity.

Remark. As the chambers are surrounded by impermeable walls except for the perforated region
of the plate. We assume that between t? = 0 and t? = t?f , the average pressure in the high pressure
chamber does not change significantly resulting in equivalent fluxes between t? = 0 and t? = t?f at
the perforation. As a result, the mass variation of the low pressure chamber can be approximated
with the integral difference of the density fields between t? = 0 and t? = t?f .

The low pressure chamber mass variations are reported in Table 4.7 for the single grid MBM
configurations as well as the Chimera-MBM. As the perforation is not captured by the coarse single
grid MBM, the high pressure chamber does not leak immediately into the low pressure one which
results in a fluid mass increase in the low pressure cavity of 0.2%. The Chimera-MBM and the fine
single grid MBM being able to capture the perforation, the mass of the low pressure cavity increases
at an equivalent rate as both provide a gain of ≈ 2.45% of fluid mass inside the low pressure chamber.

Table 4.7: Fluid mass variation of the low pressure chamber between t? = 0 and t? = t?f = 3.75.
Coarse singlegrid MBM Chimera-MBM Fine singlegrid MBM

∆mL(t?f ) 0.20 % 2.47 % 2.44 %

To put those results in perspective, we compare the computational cost of each configuration
including memory footprint and CPU time. To do so, we report the CPU time ratio and memory usage
ratio of the single grid MBM case to every configuation tested from the coarse single grid MBM case
to the Chimera-MBM case (see Table 4.8). The coarse single grid MBM configuration is 27 times
faster than the fine single grid MBM configuration. Part of this is due to 36 times less number of fluid
cells. The Chimera-MBM configuration is 7 times faster than the fine single grid MBM configuration
with 14 times less fluid cells. This gap will increase with the ratio of the large scale domain size to
the small geometrical detail size. Therefore, in a large scale computation, the Chimera-Mediating
Body Method is a relevant alternative for capturing flow components generated by small geometrical
details without impacting the computational cost of the global calculation. Also, the first patch which
brought the structure makes the FSI component of the computation independent from the substrate
grid. This flexibility exhibits the advantages of the Chimera-Mediating Body Method compared to a
fine single grid configuration as the Chimera-MBM allows to reduce the computational time for an
equivalent level of accuracy on the dynamics of structural components.
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Table 4.8: CPU time ratio and memory usage ratio of the fine single grid MBM configuration to thecoarse single grid MBM configuration and the Chimera-MBM configuration.

CPU Time ratio Memory ratio
Coarse singlegrid MBM Chimera-MBM Fine singlegrid MBM Coarse singlegrid MBM Chimera-MBM Fine singlegrid MBM

26.57 7.3 1 35.88 13.99 1

4.4 - Chapter conclusion

In this chapter, we have developed a coupling method bewteen the previously introduced fi-
nite volume Chimera method and an immersed boundary method known as the Mediating Body
Method [92]. The objective of the resulting method called Chimera-Mediating Body Method is to
allow the modelling of large scale fluid-structure interations involving small structural details that can
impact the flow field in a non-negligible way.

The method has been developed in order to be fully compatible with the previously introduced
second order finite volume Chimera method. Therefore, the Chimera-Mediating Body Method is
compatible with large structural displacements over multiple and independent fluid grids.

Tested on a one-dimensional free piston test case, the Chimera-Mediating Body Method provides
equivalent results as a single mesh configuration and remains adequate when using high cell ratios
bewteen the fluid grids even though it can introduce local perturbation when the structure crosses
the Chimera exchange zone with cell ratios (χ) higher that 8. Therefore, it is not recommended to
have structural components mainly located inside the fluid exchange zone for an extended period of
time as the quality of the solution will deteriorate locally and propagates over time.

As a conclusion, the method allows to capture local flow phenomena generated by structural
components equivalent to fine single grid models at a global scale while preserving a reasonable
computational cost compared to a fine grid model. Last but not least, the Chimera-MBM does not
deteriorate the dynamics of structural components but is able to reach levels of accuracy equivalent
to fine single grid models using localized refined patches.
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The objective of this thesis was to develop a numerical tool able to add local geometrical details
and local refinements in large scale brutal accidental simulations. These numerical simulations often
involve complex fast transient and coupled phenomena with different spatial and time scales within the
same physical domain such as fluid-structure interaction. Taking into account these different scales
with industry standard methods like the finite volume method (FVM) or the finite element method
(FEM) often results in a large number of grid points and becomes computationally expensive. The
numerical strategy that we have developed aims to capture physical phenomena of interest and/or to
add geometrical details that significantly impacts the flow with less computing resources compared
to single grid FVM/FEM approaches.

In order to achieve this objective, we focus on fast transient flows in a first place with a finite vol-
ume framework and explicit time integration, with the perspective of adding fluid-structure coupling
to the developped method. After a thorough study of composite grid methods, we chose an overlap-
ping grid method known as the Chimera method as a basis of our numerical strategy. The Chimera
method uses grid cells as a support for the exchange of information and is compatible with a finite
volume framework and with explicit time integration by design compared to other overlapping grid
methods. As the Chimera method requires few constraints on the superimposed grids, the method is
very suitable for coupling with fluid-structure interaction methods. On the topic of FSI, the Chimera
method is able to capture local flow phenomena using ALE methods and structures connected to the
fluid mesh. In this work, we are interested in structural components undergoing large deformations
and displacements, therefore, we chose to couple the Chimera method with FSI methods such as
immersed boundary method, more adapted to this type of structural dynamics.

The first step of this work was to develop an overlapping grid technique for fast transient dynamics.
A Chimera method has been developped in a finite volume framework with as little constraints
on the overlapping grids as possible. Initially, the information sent between overlapping grids is
interpolated using a first order method that uses cell intersections to build an average solution. This
interpolation is simple and computationally effective but tends to deteriorate the global solution of the
flow when the ratio of the sending cell size to the receiving cell size exceeds an order of magnitude
(≈ 10). To limit this effect, the first order interpolation method has been extended to a second
order method using finite volume reconstruction techniques with a modified limiter to avoid spurious
oscillations while using grids with different refinements. The second order Chimera method allows
an improvement of the solution using composite domains with finer grids at specific locations and
does not deteriorates the solution on one-dimensional reference test cases compared to an equivalent
single grid computation.

The second step was to assess the reference configuration of the second order finite volume
Chimera method on two-dimensional test cases from the litterature involving flow structures crossing
the Chimera grid interfaces that cannot be reproduced with one-dimensional configurations. Examples
of such structures are bow shocks, shock-bubble interactions, Mach stems, triple points or jets. The
developped Chimera method has proven to preserve the solution when grids have an equivalent cell
size. Using finer local grids onto a coarser global one can help capturing local flow phenomena up to a
certain point as the resolution on the coarser grid is a limiting factor. Finally, using fine patched grids
allows global improvement on the solution with largely reduced computational resources compared
to an equivalent fine single grid configuration.

The final step of this work was to couple the developped Chimera method with an FSI method
compatible with large structure displacements such as the Mediating Body Method (MBM) [92].
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The use of an immersed boundary method like the MBM allows the fluid grid and the structure grid
to be meshed independently and provides the same flexibility as the Chimera method does. With
such methods, the perception of the structure by the fluid is conditioned by the fluid grid resolution.
Therefore, small details on the structure require a fine fluid grid around it to have an impact on the
fluid. With the developped Chimera-Mediating Body Method, local fine fluid grids can be added
around geometrical details present on the structure without overburdening computational costs. The
method allows the capture of fluid phenomena that would not be perceived by the fluid with a coarse
global grid. Nonetheless, due to limits of the method, perturbations are generated if the structure
remains static in the Chimera exchange zone. If the structure only crosses the exchange zone, the
error generated is negligible which makes the Chimera-Mediating Body Method fully usable.

With the work carried out in this thesis, a detailed analysis has been provided for the developped
Chimera method applied to fast transient flows with variable grid configurations as well as a coupling
for FSI with an immersed boundary method. With the developped method the structure is modelled
by a single grid. One way to continue this work would be to extend the overlapping grid approach
to structural transient dynamics as it has been done in [60] with the Arlequin method. With the
Chimera-Mediating Body Method coupled with the Arlequin method, a local geometrical detail could
be patched onto the global structure. Both structure grids would be immersed inside a global fluid
grid and the local structure patch could be associated with a local fluid grid patched onto the global
fluid grid in order to capture the effect of the structural detail on the fluid. To make this work, the
Chimera method must be extended to moving local grids as the local fluid grid would be attached to
the local structural grid.

As an additional solution to the first prospect but with different applications, one could use
the developped Chimera method in order to improve grid dependent FSI methods like the Arbitrary
Lagrangian Eulerian (ALE) method. Inside a global fluid grid, small structural components could be
added using local moving ALE fluid-structure grids. This application also requires the developped
Chimera method to be compatible with moving grids but is more suitable for small moving structural
parts. For large moving structures with equivalent sizes as the fluid domain, the first prospect is
preferable.

The Chimera-Mediating Body Method extended via the two prospects could provide a complete
tool for modeling large and geometrically complex systems involving fluid-structure interactions.

Also, the Chimera-MBM could be coupled with Adaptive Mesh Refinement methods [22, 20] with
the idea of using AMR methods on patched grid containing a geometrical detail. The combination
of the Chimera-MBM with AMR could allow for a very fine tuning of the grid resolution in local-
ized regions of interest of a global model. Finally, the Chimera-Mediating Body Method could be
computationally optimized using decoupled time steps for each fluid grid and for the structure. This
improvement could lead to major gains in CPU times as all the results provided in this work were
constrained by the finest grid of the domain.
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A - Ghost cell layer dependency for an advec-
tion equation using a second order MUSCL-
Hancock scheme
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Figure A.1: Chimera boundary condition.
Using the notation introduced in Figure A.1, we demonstrate using a simple numerical example,

the ghost cell layer requirements using a MUSCL Hancock method. To do so, we consider the linear
scalar hyperbolic equation of a quantity q:

∂q

∂t
+∇F (q) = 0, (A.1)

with F (q) = aq where a is the constant advection speed. We discretize this equation on the discrete
domain U using the Godunov first order upwind method and a Rusanov flux [170]:

qU
n+1

i = qU
n

i − CnU (uU
n
i − uU

n+1
i−1 ), if a > 0,

qU
n+1

i = qU
n

i − CnU (uU
n
i+1 − uU

n
i ), if a < 0,

(A.2)
where qUni is the numerical approximation of q in the cell Ki, i ∈ ΩU , U = {W,V}, and CnU is the
CFL number of the discretized domain U at the discrete time tn that writes in this case:

CnU =
a∆tn
hU

, U = {W,V} . (A.3)
As we are using the overlapped grid configuration shown in Figure 2.15 with W and V, we note
respectively qWni and qVni , the numerical solutions of q at the discrete time tn over Ki ∈ W and
K
′
i ∈ V. For the sake of simplicity, we assume that a > 0. This implies that the information comes

from W and needs to be transferred to V. As a result, we focus on the cell K
′
2 ∈ V containing

the numerical solution qV
n

2 at the time tn. We apply the MUSCL Hancock scheme to this cell,
the objective being to quantify the number of ghost cells kGC required to avoid any impact of the
boundary ΓV , we use a Rusanov flux instead of the HLLC for the sake of simplicity. We recall that
the gradient computation is performed using the least square method presented in section 1.2.4 B
and is centered.

• We first reconstruct the interface states at FV12 and FV23:
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• Then we update the interface solutions by half a time step:
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• Riemann problems are solved at the interfaces FV1 2 and FV2 3 with the interface states respec-

tively (qV
n+ 1
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3 2 ). Using a Rusanov flux gives:
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where sign(a) = 1 if a > 0, and sign(a) = −1 if a < 0. We recall that F (qV

n
j ) = a qV

n
j for

j ∈ ΩV .

• Finally, the solution is updated using the Godunov scheme with the intermediate fluxes:
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which can be written explicitly as:

qV
n+1

2 = qV
n

2 + CnV
[
(q̃V

n
1 − qV

n
2 ) +

1

2
(1− CnV)(ΦV

n
1 ∇q̃V

n
1 − ΦV

n
2 ∇qV

n
2 )
]
. (A.8)

Knowing that ∇q̃Vn1 = ∇q̃Vn1

(
q̃V
n

0 , q̃V
n

1 , qV
n

2

)
, equation A.8 exhibits the numerical dependency of the

cell K
′
2 regarding its neighbors.
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B - Von Neumann stability analysis of the
Chimera method

We carry out a Von Neumann stability analysis [31] for the scalar hyperbolic equation of a quantity
q:

∂q

∂t
+∇F (q) = 0, (B.1)

with F (q) = aq where a is the constant advection speed. Using the configuration illustrated in
Figure B.1, we discretize this equation on the discrete domain U using the Godunov first order
upwind method and a Rusanov flux [170]:

qU
n+1
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n

i − CnU (uU
n
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i−1 ), if a > 0,

qU
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n

i − CnU (uU
n
i+1 − uU

n
i ), if a < 0,

(B.2)
where qUni is the numerical approximation of q in the cell Ki, i ∈ ΩU , U = {W,V}, and CnU is the
CFL number of the discretized domain U at the discrete time tn that writes in this case:

CnU =
a∆tn
hU

, U = {W,V} . (B.3)
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Figure B.1: Chimera configuration with exchange zone gap (δGC) and exchange zone shift (δS).
We focus on the first order Chimera method with a first order upwind Godunov method. We

define the rounding error at the cell K
′
j ∈ V and at the discrete time tn as:

ε
′n
j = vnj − ϑnj , (B.4)

where ϑnj is the hypothetical solution of the discretized hyperbolic scalar equation B.1 without round-
ing error and vnj is the numerical approximation of the solution with a finite arithmetic accuracy. The
equivalent definition can be made for any cell Ki ∈ W and the corresponding rounding error εni . We
assume that a > 0. Considering that the solution ϑn2 verifies equation B.2, the rounding error also
verifies the discretized equation B.2:

ε
′n+1
i = ε

′n
i − CnV

[
ε
′n
i − ε

′n
i−1

]
. (B.5)

Equation B.5 shows that the error and the numerical solution have the same behaviour over time.
If we assume periodic boundary conditions at the boundaries of the domain V, the variation of the
spatial error can be decompose using Fourier series on the interval L by:

ε
′
(x, t) =

M∑
m=1

Am(t) expikmx, (B.6)
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where the wave number km = πm
LV

with m = 1, 2, ...,MV and MV = LV/h
V ∈ N. The time

dependence is included in the error amplitude Am. Knowing that the error tends to grow or decrease
exponentially over time, it is reasonable to suppose that the amplitude also varies exponentially over
time which gives:

ε
′
(x, t) =

M∑
m=1

expαt expikmx, (B.7)
where α is a constant. Equation B.1 is linear, so it is possible to study one specific term m:

ε
′
m(x, t) = expαt expikmx . (B.8)

The same asumptions can be done for W as it is possible to study one specific term p:

εp(x, t) = expβt expikpx, (B.9)
where β is constant and kp = πp

LW
with p = 1, 2, ...,MW and MW = LW/h

W ∈ N. As we are using
a first order Chimera interpolation, we have:

Ũ
Vn

1 = UW
n

N−1. (B.10)
As a result, inside the ghost cell K

′
1, we enforce:

ε
′n
1 = εnN−1. (B.11)

Given these notations, we focus on the cell K
′
2 and rewrite equation B.5 taking into account the

Chimera exchange:

expα(t+∆tn) expikmx = expαt expikmx−CnV
[

expαt expikmx− expβt expikp(x− 1
2

(hW+hV )+δS)
]
,

(B.12)
with

δS = δGC −
hW + hV

2
, (B.13)

which can be simplified as:

expα∆tn = 1− CnV

[
1− exp(β−α)t︸ ︷︷ ︸

A

exp
i

B︷ ︸︸ ︷(
(kp − km)x+ kp(δS −

1

2

(
hW + hV)

)) ]
. (B.14)

The amplitude factor Gn is defined by :

Gn =
εn+1
j

εnj
. (B.15)

The necessary and sufficient condition for the error to be bounded is |G| ≤ 1. Considering that

Gn = expα∆tn , (B.16)
we have,

Gn = 1− CnV
[
1−A expiB

]
. (B.17)

The modulus of the amplitude factor becomes:

|Gn| =
√

1− 2CnV
(
1−A cos(B)

)(
1− CnV

)
. (B.18)
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As a result, stability is ensured if
CnV < 1, (B.19)

and if, ∣∣ cos

(
(kp − km)x+ kp(δS −

1

2

(
hW + hV)

))∣∣ < 1

exp(β−α)t
. (B.20)

Condition B.19 is the CFL condition for the grid V whereas condition B.20 results from the use of
overlapping grids and depends on the wavenumbers km and kp, the cell sizes hW and hV and the
amplitude constants α and β.

In the case of α > β,
1

exp(β−α)t
→
t→∞
∞ which means that the Chimera exchange does not alter

the stability of the scheme. If α < β,
1

exp(β−α)t
→
t→∞

0, therefore, the scheme can become unstable

over time. However, the values α and β depend on the grid size as they correspond to the amplitude
time variation coefficient of the error.
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C - Problematic configurations using the Chimera-
MBM

During the implementation of the Chimera-Mediating Body Method with the staggered integra-
tion scheme presented in section 4.2.2.D, different problematic configurations have been encountered
and have been solved with improvements made to the integration scheme improving the robustness
and the flexbility of the Chimera-MBM. These different problematic configurations are reviewed in
this section.

C.1 - Ghost cells belonging to a +/− neighboring ac-
tive cell set and receiving from an active cell

The first problematic configuration is illustrated in Figure C.1 and comes from the fact that ghost
cells can be used as a support for the +/− extrapolation due to the minimized size of the Chimera
exchange zone. At the beginning of the n-th time step, as the +/− extrapolation provides a value to
the indefinite sending cells, it must be carried out before the Chimera sending operations. However,
before the Chimera operations, the values inside the ghost cells cannot be used as they result from
the fluid integration carried out during the previous time iteration (n− 1-th time step).

Using the grid configuration represented in Figure C.1, if the +/− extrapolation is performed
before the Chimera sending, the − extrapolated state of the indefinite sending cell Kj is not usable
as the cell Kl does not have received information yet. Therefore, performing the +/− extrapolation
followed by the Chimera sending procedure (see section 2.3.2) will result in the propagation of incorrect
values within the fluid domains.

Substrate W

Patch V

1) Naive Chimera sending

K̃
′

i

+

: Ghost cell

: Positive extrapolated state (d(x̃ij ,S) > 0)

: Negative extrapolated state (d(x̃ij ,S) < 0)

Structure S

2) +/- extrapolation

KlKm

K̃
′

i

KlKm

K̃
′

h

3) Informed Chimera sending

K̃
′

i

KlKm

W

V

S

W

V

S

: Invalid Chimera solution

: Valid Chimera solution

Figure C.1: Problematic configuration where the indefinite sending cell Kj extrapolates from a ghostcellKl.
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To solve this issue, we propose the following solution: before the +/− extrapolation, a first
order Chimera sending is performed (first step in Figure C.1). This step is referred as naive Chimera
sending. A first order naive Chimera sending makes sense considering that the +/− extrapolation
is mostly used on the coarsest grid between the patch and the substrate as seen in Figure C.1.
Therefore, the naive Chimera sending provides a solution to coarse ghost cells like Kl which, in the
case of a high cell ratio χ � 1, are not significantly impacted by the order of the Chimera sending
(see fine-to-coase Chimera sendings in section 2.4)

After the +/− extrapolation (second step in Figure C.1), a first order Chimera sending is per-
formed and it corresponds to the first order sending step required in the second order Chimera
sending procedure (see section 2.2.3.C). This step is referred as informed Chimera sending (third
step in Fig. C.1).

C.2 - Ghost cells belonging to a +/− neighboring ac-
tive cell set and receiving from an indefinite send-
ing cell

The second problematic configuration is an extension of the first problem that can happen with
2D and 3D grids as represented in Figure C.2. It comes from the fact that a ghost cell K̃m can
belong to the +/− active cell neighboring of a cell Kj (K̃m ∈ LsW+/−

j∗ (0)) and can propagate an
unusable solution. Unlike the situation presented in section C.1, the ghost cell K̃m, belonging to a
+/− active cell neighboring of Kj receives information from indefinite sending cells K

′
m and K

′
p.

As Chimera operations like the naive Chimera sending, the +/− extrapolation or the informed
Chimera sending are performed by pair (one operation for the patch V and one for the substrateW),
the order in the pair must not impact the method. In the case of Figure C.2, we see that after the
naive Chimera sending (for both the patch V and substrate W), K̃m has received an invalid value
from the indefinite sending cells K

′
p and K

′
m as the +/− extrapolation has not been performed yet.

Then, during the +/− extrapolation (for both the patch V and substrate W), the indefinite sending
cell Kj uses the solution of the ghost cell K̃m to reconstruct a + state or a − state as it is an active
cell adjacent to Kj . At this moment, the +/− extrapolated value inside Kj coming from K̃m is not
usable. Then, the informed Chimera sending will spread the unusable +/− value from to Kj to the
ghost cells K̃

′
j and K̃

′
k.

A possible cure to this problem would be to forbid the use of ghost cells as +/− extrapolation
neighbors but this would cause problems when a structure enters or leaves the patch. The chosen
solution is to perform the +/− extrapolation and the informed Chimera sending steps twice in a row.
This way, during the first +/− extrapolation, the indefinite cells K

′
p and K

′
m extrapolate +/− values

that are sent to K̃m during the first informed sending. During the second +/− extrapolation, the
indefinite sending cell Kj can extrapolate +/− states using K̃m which contains a usable solution.
This first improvement on the time integration scheme is illustrated in Figure 4.16 by a small dotted-
line red loop.
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C.3. INDEFINITE ACTIVE CELLS USING GHOST CELLS (MBM EXTRAPOLATION)

Substrate W

Patch V

K̃
′

i

K̃
′

l

K̃
′

o
K

′

q

Ki Kk

K̃n

K̃q

: Sending cell Ws/Vs

: Ghost cell W̃/Ṽ

: Susbtrate mediating body (WΓS
)

: Patch mediating body (VΓS
)

Figure C.2: Problematic configuration where the ghost cell K̃m belongs to the +/− neighoring of Kjbut receives from indefinite sending cellsK ′

p andK ′

m.

C.3 - Indefinite active cells using ghost cells for the
MBM extrapolation

The last configuration, illustrated in Figure C.3, comes from the possibility for the structure
to cross fluid grid boundaries in an overlapping grid context (patch boundaries in particular). As
we have seen in section 4.2.1.E, when the mediating body changes, indefinite active cells require an
extrapolation referred as MBM extrapolation. Because of the Chimera method, ghost cells are used at
the borders of the patch. As illustrated in Figure C.3, when the structure enters the patch, indefinite
active cells like K

′
k can use ghost cells like K̃

′
i as valid MBM extrapolation neighbors (LVk ∩Ṽ 6= {∅}).

However, with the Chimera-MBM time integration scheme presented in section 4.2.2.D, the MBM
extrapolation is performed before the update of the ghost cells Ṽ and W̃ which do not contain a
usable solution at this step due to the previous time integration performed over the fluid domain.
This problem is adressed with a repetition of the steps 2 to 8 in the Chimera-MBM time integration
scheme presented in section 4.2.2.D which will perform a first loop referred as prediction loop from
steps 2 to 8 using with the indefinite active cells U∗indef , U = {W,V} not updated correctly. At the
end of this loop, the MBM extrapolation is carried out with valid ghost cell solutions. Then a second
loop from steps 2 to 8 referred as correction loop is carried out to set the values of the ghost cells
that were dependent on indefinite active cells U∗indef , U = {W,V} during the prediction loop. This
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Patch V

K
′

k

: Ghost cell HP : High pressure state

LP : Low pressure state

HP LPStructure S

Patch V

K
′

k
∈ LV

iindef

HP LPStructure S

K̃
′

i
K̃

′

i

: Indefinite resolved cell

Extrapolation of the indefinite resolved cell K
′

k

using the ghost cell ˜K
′

i

Figure C.3: Problematic configuration where the indefinite active cell K ′

k uses the ghost cell K̃ ′

i to ex-trapolate its value.

improvement on the time integration scheme is illustrated in Figure 4.16 by a long dotted-line red
loop.
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D - Analytical solution for the free piston test
case

D.1 - Presentation of the problem

In this section, we detail the steps to derive an analytical solution for a one-dimensional free
moving piston used to assess the Chimera-MBM in section 4.3.1. A cuboid non-deformable piston P
initially at rest, with a thickness e = 1.35 · 10−3 m and a side l = 0.2 m, separates two fluid cavities
also at rest inside an infinite tube of height l as shown in Figure D.1. The boundary of the piston is
written ΓP . The initial fluid states are given by:ρL

uL

pL

 =

0.2 kg.m−3

0
0.2 Pa

 ,

ρR

uR

pR

 =

0.125 kg.m−3

0
0.1 Pa

 , (D.1)
The cavities have a pressure jump ∆P = 0.1 initiating the displacement of the piston that

generates a compression wave on the right-hand side, in the low pressure region and a rarefaction
wave on the left-hand side, in the high pressure region of the tube. The pressure values have been
chosen in order to keep the flow isentropic in the compression wave region and to prevent the formation
of a shock wave. The piston parameters are the following: ρs = 2710 kg ·m−3, e = 1.35 · 10−3 m,
l = 0.2 m.

y

x

l
ρ0, P0 ρ1, P1

xs

u̇(0) = 0

0

P0 = 2P1

Figure D.1: Free piston case presentation with an infinite domain.

The analytical solution of the free piston problem is computed in two steps: first, the motion of
the piston is obtained using the fundamental principle of dynamics applied to the piston combined
with the method of characteristics [1] applied to the fluid domain as a one-dimensional system.
Finally, knowing the motion of the piston, the fluid solution is computed over the entire domain
using the method of characteristics. In this problem, we assume the absence of discontinuities inside
each cavity which ensures entropy conservation and we treat the cavities as two separate simple wave
regimes. This problem is one-dimensional along the x-axis.
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D.2 - Study of the piston dynamics

D.2.1 - Fundamental principle of dynamics applied to the piston
To study piston dynamics, we use the notations already introduced in section 4.1.1 for the

structure. The fundamental principle of dynamics applied to the piston at the time t gives:∫
P
ρsü(x, t) dV =

∫
ΓP

p(x, t) dS, (D.2)
Considering the piston as a rigid-body and assuming that the pressure exherted on the piston is
uniform on each side, we can write equation D.2 as:

msü(t)dV =
[
p(xs − e/2, t)− p(xs + e/2, t)

]
S, (D.3)

with ms = ρs e S the piston total mass, S the piston surface, normal to the x-axis, in contact with
the fluid on either side of the piston such that S = ‖S‖ = l2 and xs the piston barycenter position
along the x-axis. The thickness of the piston e being negligible compared to the other dimensions of
the problem (e � l), we assume p(xs − e/2, t) ≈ p(xLs , t) and p(xs + e/2, t) ≈ p(xRs , t). We note
the left hand side of the piston, the side such that x −−−→

x<xs
xs, corresponding to xLs . Reciprocally, we

note the right hand side of the piston, the side such that x −−−→
x>xs

xs, corresponding to xRs . Also the

problem being one-dimensional, we can limit the study to the x-component of Equation D.3, which
writes:

msü(t) =
[
p(xLs , t)− p(xRs , t)

]
S, (D.4)

with ü the x-component of the acceleration ü.
Knowing the initial fluid states (ρL, uL, pL), (ρR, uR, pR) and assuming two simple wave regimes

on either side of the piston, we can compute values for p(xLs , t) and for p(xRs , t) using the method
of characteristics [1]. The free piston solution, represented in Figure D.2, can be decomposed into
four different regions: the L region corresponding to the constant left state, the L? region, on the
left hand side of the piston, corresponding to the expansion wave, the R? region, on the righ hand
side of the piston, corresponding to the compression wave, and the R region which corresponds to
the constant right state.

The L region and the L? regions are separated by the characteristic Γ−L (0) such that
∂x

∂t
= −cL.

Symmetrically, the R region and the R? regions are separated by the characteristic Γ+
R(0) such that

∂x

∂t
= cR.
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x
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Γ
+
R(0)

Γ
−

L (0)

Figure D.2: Wave pattern of the free piston case.
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D.2.2 - Computation of the left fluid pressure p(xLs , t) exherted on
the piston

Starting with the left fluid pressure p(xLs , t), we focus on the domain to the left of the piston.
This region corresponds to the expansion wave. As for any simple wave regime, we have

J± = u± 2

γ − 1
c = constant, (D.5)

the constant being identical across the region. c is the sound speed which for a perfect gas is defined

as
√
γ p

ρ
, with γ the specific heat ratio.

A

x

t

B

0

Γ
−

L
(A)

Γ
+

L
(A)Γ

+

L
(B)

Piston

Figure D.3: Characteristics of the left hand side domain of the free piston solution.
As represented in Figure D.3, for the left hand side expansion wave, for any point A(xLs , t), J

+

is constant along the characteristic Γ+
L (A), therefore,

J+
A (t) = J+

A (0)⇔ u̇(t) +
2

γ − 1
cA =

2

γ − 1
cL. (D.6)

Equation D.6, provides the following relation for cA,

cA = cL −
γ − 1

2
u̇(t). (D.7)

Using the sound speed definiton cA =

√
γPA
ρA

with the isentropic flow relation
pL

(ρL)γ
=

pA
(ρA)γ

,

we find the following expression for pA(t) depending on u̇(t) and the left constant state (ρL, uL, pL):

pA(t) = p(xLs , t) = pL

[
1− γ − 1

2 cL
u̇(t)

] (D.8)
D.2.3 - Computation of the right fluid pressure p(xRs , t) exherted

on the piston
The equivalent reasoning is performed to find an expression for the right fluid pressure p(xRs , t)

exherted on the piston.
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Figure D.4: Characteristics of the right hand side domain of the free piston solution.

As represented in Figure D.4, for the right hand side compression wave, for any point A(xRs , t),
J− is constant along the characteristic Γ−R(A), therefore,

J−A (t) = J−A 0⇔ u̇(t)− 2

γ − 1
cA = − 2

γ − 1
cR. (D.9)

Equation D.9, provides the following relation for cA,

cA = cR +
γ − 1

2
u̇(t). (D.10)

Using the sound speed definiton cA =

√
γPA
ρA

with the isentropic relation
pR

(ρR)γ
=

pA
(ρA)γ

, we

find the following expression for pA(t) depending on u̇(t) and the right constant state (ρR, uR, pR):

pA(t) = p(xRs , t) = pR

[
1 +

γ − 1

2 cR
u̇(t)

]
. (D.11)

Finally, the motion equation of the piston can be written,

ü(t) =
S

ms

[
pL

(
1− γ − 1

2 cL
u̇(t)

)
− pR

(
1 +

γ − 1

2 cR
u̇(t)

)] (D.12)
D.2.4 - Time integration of the piston dynamics

Equation D.12, is integrated numerically using a central difference scheme similar to the one
presented in section 4.1.4 except that the velocity does not have an implicit correction. Knowing,
the piston displacement un, velocity u̇n and acceleration ün at the discrete time tn, the quantities
un+1, u̇n+1 and ün+1 at the discrete time tn+1 = t+ ∆tn are computed using the following scheme:

1. Explicit velocity predition at half time step:

u̇n+ 1
2 = u̇n +

∆tn
2

ün, (D.13)
2. Explicit displacement predition:

un+1 = un + ∆tnu̇n+ 1
2 , (D.14)
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3. Explicit acceleration update at half time step:

ün+ 1
2 =

S

ms

[
pL

(
1− γ − 1

2 cL
u̇n+ 1

2

)
− pR

(
1 +

γ − 1

2 cR
u̇n+ 1

2

)]
, (D.15)

4. Explicit velocity prediction:

u̇n+1 = u̇n+ 1
2 +

∆tn
2

ün+ 1
2 . (D.16)

5. Explicit acceleration update:

ün+1 =
S

ms

[
pL

(
1− γ − 1

2 cL
u̇n+1

)
− pR

(
1 +

γ − 1

2 cR
u̇n+1

)]
, (D.17)

∆tn is chosen depending on the number of solution points that is necessary in order for the
analytical solution to be accurate enough (see Equation D.22). Due to the low computational time
of such a solution, we have chosen to use a value for ∆tn = 10−8, lower than the finer grid used
for the numerical solutions (≈ 10−3 − 10−4). This high accuracy of the piston solution is necessary
for the computation of the fluid solution. The final dimensionless time of the analytical solution is
identical to the numerical test case which is t?f = tf u̇∞/L = 0.106, where u̇∞ ≈ 0.277 m.s−1 is the
asymptotic speed of the piston in an infinite domain and tf = 23 s. The analytical solution of the
piston dynamics is represented in Figure D.5 with the piston displacement and velocity profiles.
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Figure D.5: Piston position xs and velocity u̇ over time.

186



D.3. COMPUTATION OF THE FLUID SOLUTION

D.3 - Computation of the fluid solution

Knowing the piston solution at every t? ∈
[
0, t?f

]
, we can compute the fluid solution using the

method of characteristics [1].
If x

t < −cL, the fluid state is equal to the constant left state (ρL, uL, pL). If x
t > cR, the fluid

state is equal to the constant right state (ρR, uR, pR). The remaining unknown states correspond
to the L? region on the left hand side of the piston and the R? region on the right hand side of the
piston.

D.3.1 - L? region
Starting with the L? region, the fluid solution in the expansion fan region is computed using the

method of characteristics [1]. Using Figure D.6, we search the fluid state of a point B(x, tf ) located
in the expansion fan. Along the Γ+

L (B) characteristic, J+ is constant, therefore,

J+
B (tf ) = J+

B (0)⇔ uB +
2

γ − 1
cB =

2

γ − 1
cL. (D.18)

From Equation D.18, the relation between cB and uB writes,

cB = cL −
γ − 1

2
uB. (D.19)
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Figure D.6: Description of the characteristics in the expansion fan region.
Along the Γ−L (B) characteristic,

∂x

∂t
= uB − cB =

γ + 1

2
uB − cL. (D.20)

Integrating Equation D.20 along Γ−L (B) between B(x, tf ) and C(xLs , tC), provides the following
expression for uB,

uB =
2

γ + 1

(
x− xC
tf − tC

+ cL

)
. (D.21)

The point C(xLs , tC) is searched numerically using the discrete piston solution such that,

|
(
x− xC

)
−
(
u̇(tC) + cC)

)(
t− tC

)
| 6 ε, (D.22)
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with cC = cL −
γ − 1

2
u̇(tC) using J+

C (tC) = J+
C (0) and ε = 10−10 is a numerical tolerance to

approximate zero which determines the level of accuracy of the analytical solution. The chosen value
for ε alters the values of the error computed in the numerical test cases in section 4.3.1 from 10−10

which is well below the errors induced by the Chimera method compared to a single grid method
(10−5 − 10−6) and does not change the conclusions that can be drawn from the results. The point
C(xLs , tC), corresponds to the piston position and to the time when the Γ−L (B) characteristic is
emitted.

Using Equation D.19,

cB = uB −
x− xC
tf − tC

. (D.23)
Using the sound speed definiton cB =

√
γpB
ρB

with the isentropic relation
pL

(ρL)γ
=

pB
(ρB)γ

, we

find the following expression for pB:

pB = pL

[
1

cL

(
uB −

x− xC
tf − tC

)] 2γ
(γ−1)

. (D.24)
Finally,

ρB = ρL

[
1

cL

(
uB −

x− xC
tf − tC

)] 2
(γ−1)

. (D.25)
As a result, for a given point B(x, tf ) located in the expansion fan region (−cL < x

tf
<

xLs (tf )
tf

),
the state (ρB, uB, pB) is fully defined.

D.3.2 - R? region
The same reasoning is applied to the R? region. Using Figure D.7, we search the fluid state

of a point B(x, tf ) located in the compression wave region. Along the Γ−L (B) characteristic, J− is
constant, therefore,

J−B (tf ) = J−B (0)⇔ uB −
2

γ − 1
cB = − 2

γ − 1
cR. (D.26)

From Equation D.26, the relation between cB and uB writes,

cB = cR +
γ − 1

2
uB. (D.27)

Along the Γ+
R(B) characteristic,

∂x

∂t
= uB + cB =

γ + 1

2
uB + cR. (D.28)

Integrating Equation D.28 along Γ+
R(B), between B(x, tf ) and C(xRs , tC), provides the following

expression for uB,

uB =
2

γ + 1

(
x− xC
tf − tC

− cR
)
. (D.29)

The point C(xLs , tC) is searched numerically using the discrete piston solution such that,

|
(
x− xC

)
−
(
u̇(tC) + cC)

)(
t− tC

)
| 6 ε, (D.30)

with cC = cR +
γ − 1

2
u̇(tC) using J−C (tC) = J−C (0) and ε = 10−10 is the numerical tolerance to

approximate zero. The point C(xLs , tC), corresponds to the piston position and to the time when
the Γ+

R(B) characteristic is emitted.
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D.3. COMPUTATION OF THE FLUID SOLUTION
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Figure D.7: Description of the characteristics in the compression wave region.

Using Equation D.27,

cB =
x− xC
tf − tC

− uB. (D.31)
Using the sound speed definiton cB =

√
γpB
ρB

with the isentropic relation
pR

(ρR)γ
=

pB
(ρB)γ

, we

find the following expression for pB:

pB = pR

[
1

cR

(x− xC
tf − tC

− uB
)] 2γ

(γ−1)

. (D.32)
Finally, the density ρB is defined as:

ρB = ρR

[
1

cR

(x− xC
tf − tC

− uB
)] 2

(γ−1)

. (D.33)

As a result, for a given point B(x, tf ) located in the compression wave region (x
R
s (tf )
tf

< x
tf
< cR),

the state (ρB, uB, pB) is fully defined. The analytical density ρ, velocity u and pressure p profiles for
the fluid are represented in Figure D.8. Those profiles are used in section 4.3.1 for the assessment
of the Chimera-MBM in Figure 4.19 and Figure 4.20 for a split grid configuration and in Figure 4.32
for a patched grid configuration.

189



APPENDIX D. ANALYTICAL SOLUTION FOR THE FREE PISTON TEST CASE

Figure D.8: Free piston density ρ, velocity u and pressure p profiles at t? = t?f of the analytical solution.
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Introduction et contexte scientifique

L’étude des situations accidentelles impliquant des systèmes à grande échelle sous haute pression
dans le cadre de géométries complexes est d’une importance critique pour le dimensionnement et la
sécurité des installations dans un environnement industriel. Dans le contexte de l’énergie nucléaire, on
retrouve ces conditions extrêmes lorsqu’un réacteur à eau pressurisé (REP) est touché par un Accident
de Perte de Réfrigérant Primaire (APRP) ou une explosion H2 par exemple. Le fonctionnement
opérationnel des REP implique des conditions de température et de pression élevées ce qui rend les
transitoires accidentels de tels systèmes abruptes avec des conséquences potentiellement sévères.

Ce contexte accidentel brutal implique des écoulements compressibles à haute vitesse se propageant
dans les internes du système. Ces écoulements transitoires rapides interagissent alors avec des struc-
tures déformables induisant des phénomènes physiques couplés à très petite échelle temporelle. Étant
donné les différences d’échelle spatiale et temporelle ainsi que les différences de pressions intervenant
dans les transitoires rapides de ces systèmes, des composantes structurelles peuvent subir des dé-
placements d’amplitude finie.

À cause des risques et de la difficulté à reproduire ces conditions accidentelles avec une échelle
géométrique et des conditions initiales représentatives des situations d’intérêt, la simulation numérique
se présente comme une alternative permettant de caractériser les réponses de ces systèmes transitoires.
La production de résultats numériques précis et fiables dans de telles configurations est une tâche
compliquée car le domaine de calcul doit prendre en compte les échelles les plus grandes mais aussi
les plus petites. En effet, des détails géométriques de petite échelle peuvent induire des perturbations
locales altérant la nature globale de l’écoulement. Cette disparité des échelles est représentée par la
Figure 5.9, illustrant le caractère local des perforations des plaques de cloisonnement par rapport à
la taille d’une cuve de REP. Généralement négligées dans les modèles à grande échelle de REP, ces
perforations impactent pourtant la propagation des ondes dans le cadre de la simulation d’un APRP.

La prise en compte de l’ensemble des échelles au sein d’une même et unique grille implique des
procédures de maillage complexes susceptibles de produire un très grand nombre de points et des grilles
de qualité moyenne. En plus de la contrainte de maillage induite par la complexité géométrique, une
approche monogrille est restrictive lorsque les domaines de fluide et les composantes structurelles sont
modélisées à l’aide de maillages topologiquement connectés: la procédure de maillage se complexifie
et le déplacement des structures est restreint pour préserver la qualité des cellules fluides connectées.

Pour répondre à ces problématiques, nous proposons d’associer au sein d’une même simulation,
des modèles numériques indépendants à la fois en termes de maillage et de géométrie sous la forme
d’un ensemble de grilles composites. Chaque modèle peut être adapté à un détail géométrique ou un
phénomène physique d’intérêt avec sa propre échelle spatiale et temporelle. Une approche composite
permet de découper la géométrie complexe d’un système sous la forme de multiples composantes
géométriques plus simples tout en réduisant le coût du modèle en temps de calcul et en utilisation
mémoire. Avec une approche composite, les composantes structurelles peuvent subir de grands
déplacements sans altérer les grilles du domaine fluide. En parallèle, des grilles de fluide locales
peuvent être ajoutées pour prendre en compte des écoulements locaux générés par les déplacements
des composantes structurelles.

L’objectif de cette thèse est de développer un outil de modélisation multi-modèle robuste et flex-
ible permettant d’ajouter des détails géométriques dans le cadre d’une simulation à grande échelle.
En vue d’une utilisation industrielle, la stratégie numérique que l’on cherche à développer doit être
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Figure 5.9: Les perforations des plaques de cloisonnement (entourées en noir) et la cuve du réacteursont maillés indépendamment. La stratégie proposée consiste à superposer des altérations locales(maillage de droite) sur plaques de cloisonnement au sein d’unmodèle global à grande échelle représen-tant la cuve du réacteur (maillage de gauche) dans le but d’améliorer la qualité des résultats numériquessans altérer les grilles du modèle global.

modulaire et compatible avec des ratios de cellules relativement élevés entre les différentes grilles
utilisées. Enfin, cet outil doit être compatible avec des écoulements multi-composants en dynamique
rapide dans le cadre de la modélisation de phénomènes d’interaction fluide-structure. Dans le cadre
du développement de notre approche numérique, nous nous appuyons sur des cas tests simplifiés
qui se focalisent sur certains aspects physiques de l’APRP afin de tester rigoureusement la méthode
développée. Un exemple est donné par la Figure 5.10 illustrant un cas test simplifié en deux dimen-
sions. Deux cavités sont hermétiquement séparées par une paroi déformable. Une cavité contenant
de l’eau sous haute pression (bleu foncé) et une cavité basse pression contenant de la vapeur d’eau
(bleu clair). Une perforation locale est ajoutée à la paroi à l’aide d’un patch. Cette perforation induit
une fuite de la cavité haute pression dans la cavité basse pression altérant la physique du modèle
global.

Figure 5.10: Exemple simplifié représentatif des applications visées. Chambres séparées par une paroihermétique à l’échelle globale. Une chambre contenant de l’eau liquide sous haute pression en bleufoncé et une chambre contenant de la vapeur d’eau sous basse pression en bleu clair. Perforation localede la paroi ajoutée à l’aide d’un patch induisant une fuite entre les deux chambres à l’échelle locale.
Dans un premier temps, une étude bibliographique a permis de mettre en évidence des méthodes

multi-grilles comme l’Adaptive Mesh Refinement qui consiste à raffiner localement un modèle global
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en subdivisant des cellules existantes du maillage (voir Fig. 5.11). Ce type de méthode altère le
modèle global et ne permet pas de superposer des modèles indépendants. Par conséquent, les
méthodes AMR ne sont pas retenues dans le cadre de ce travail mais peuvent être envisagée comme
un outil complémentaire à l’approche visée.

Figure 5.11: Exemple de méthode Adaptive Mesh Refinement appliquée à une grille typiquement utiliséepour modéliser un écoulement fluide autours d’un cylindre ou bien une perforation de plaque.

On s’intéresse plutôt aux méthodes de grilles superposées qui utilisent des grilles indépendantes
pouvant se chevaucher. De manière générale, ce type de méthode s’appuie sur une grille de fond
appelée substrat et une ou plusieurs grilles locales appelées patchs. La méthode Arlequin [37] est une
méthode de grilles superposées développée dans un cadre éléments finis qui s’appuie sur la définition
d’une zone de couplage et l’utilisation de fonctions de pondération pour superposer plusieurs modèles
indépendants (voir Fig. 5.12).

Figure 5.12: Exemple d’utilisation de la Méthode Arlequin avec une grille de fond appelée substrat (ennoir) et une grille locale appelée patch (en rouge). La zone de couplage est ici représentée en vert.

Dans le cadre de ce travail de thèse, nous bénéficions des conclusions du travail de Fernier [59] sur
l’implémentation et la validation de la méthode Arlequin en éléments finis pour l’étude de systèmes
transitoires rapides. En présence d’écoulements compressibles, la méthode Arlequin est susceptible de
générer des perturbations impactant la solution globale. De plus, la méthode Arlequin a été conçue
à partir d’une approche par éléments finis. La transposition de la méthode à un cadre volumes
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finis étant non-triviale, la méthode Arlequin n’est pas retenue comme approche multi-grilles dans ce
travail.

La deuxième méthode de grilles superposées considérée est appelée méthode Chimère [166]. Il
s’agit d’une méthode de superposition de grilles initialement utilisée pour faciliter le processus de
maillage en utilisant un assemblage de grilles superposées pour des calculs en différences finies. La
méthode Chimère s’appuie sur la définition d’une zone d’échange entre la frontière extérieure du patch
et un contour fermé à l’intérieur du substrat ainsi que l’utilisation d’une "molécule" d’interpolation
(voir Fig. 5.13). Cette dernière est consituée de nœuds envoyeurs voisins du nœud receveur. Une
interpolation multi-linéaire basée sur les distances entre les nœuds de la molécule d’interpolation
est calculée pour chaque nœud receveur. Dans un cadre volumes finis, la molécule d’interpolation
s’appuie sur des barycentres de cellules à la place des nœuds du maillage.

Figure 5.13: Exemple d’utilisation de la Méthode Chimère avec une grille de fond appelée substrat (ennoir) et une grille locale appelée patch (en rouge). La zone d’échange est matérialisée par les deuxcontours fermés définis par les points d’interpolations.

La transposition de la méthode Chimère à un cadre volumes finis a déjà été effectuée dans plusieurs
codes industriels comme les codes elsA [64, 136] et TAU [154, 187]. Malgré tout, la méthode Chimère
appliquée à des écoulements compressibles en dynamique rapide est un sujet relativement peu traitée
dans la littérature avec notamment peu de résultats concernant l’étude de l’impact des ratios de
cellules entre les différentes grilles. La méthode Chimère est donc retenue comme l’approche multi-
grille pour ces travaux. Cependant, un travail d’implémentation et de validation de la méthode
Chimère dans le cadre d’écoulements compressibles en dynamique rapide calculés par une approche
volumes finis est nécessaire et représente une partie conséquente de cette thèse.

Étant donné que nous souhaitons traiter des problèmes d’interaction fluide-structure (IFS) dans
le cadre de la modélisation de systèmes transitoires rapides à grande échelle, la méthode Chimère
retenue doit être rendue compatible avec des phénomènes d’interaction fluide-structure impliquant
des structures subissant des grands déplacements et des grandes déformations. La modélisation
des phénomènes d’interaction fluide-structure s’appuie sur l’établissement d’un couplage entre un
domaine fluide et un domaine structure dont les modèles, les maillages, les schémas de discrétisations
ainsi que les critères de stabilités peuvent êtres indépendants.

On distingue deux catégories de méthodes utilisées pour la modélisation de phénomènes d’IFS.
D’une part, les méthodes Arbitrary Lagrangian Eulerian (ALE) qui s’appuient sur une connexion
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topologique entre les maillages fluide et structure. Lorsque la structure se déplace, le maillage fluide
se déforme en conséquence. Ce type de méthode n’est donc pas adapté aux problèmes d’interaction
fluide-structure impliquant des structures en grands déplacements. D’autre part, les méthodes de
frontières immergées qui utilisent des maillages fluide et structure indépendants et utilisent des infor-
mations sur la position de la structure par rapport aux cellules du maillage fluide intersectées par cette
dernière afin d’appliquer des conditions de couplage entre le fluide et la structure. Ce type de méthode
est généralement plus flexible et compatible avec des structures subissant de grands déplacements.
Au CEA, nous disposons d’une méthode de frontières immergées en volumes finis appelée Mediating
Body Method (MBM)[92], testée et validée en interne, qui a donc été retenue pour ce travail. Le
couplage de la MBM avec une méthode multi-maillage comme la méthode Chimère n’a pas encore
été étudié et fera donc l’objet d’un travail d’implémentation et de validation dans le cadre de cette
thèse.

A partir d’une étude bibliographique dont nous avons résumé les principales conclusions, nous
pouvons définir les objectifs de cette thèse comme les suivants:

• Nous cherchons à développer une méthode multi-modèle en volumes finis adaptée à la mod-
élisation d’écoulements compressibles en dynamique rapide. Pour des raisons détaillées lors de
l’étude bibliographique, cette méthode est basée sur une approche Chimère et doit être:

– Compatible avec des écoulements multi-constituants.

– Assez robuste pour supporter des variations de taille de maille raisonnables entre les
différentes grilles.

– Compatible avec des problèmes d’interaction fluide-structure en grands déplacements
modélisés à l’aide d’une méthode de frontières immergées telle que la Mediating Body
Method.

Le développement de cette stratégie numérique s’est déroulé en deux phases distinctes:

1. À partir d’un code de calcul de dynamique rapide interne au CEA compatible éléments finis et
volumes finis appelé MANTA, nous avons développé une méthode Chimère en volumes finis.
Cette méthode a ensuite été validée sur des cas tests analytiques à une dimension et évaluée
par la suite sur des cas tests de référence de la littérature à deux dimensions.

2. La MBM étant déjà disponible et validée au sein du code MANTA. Nous avons développé et
implémenté un couplage la méthode Chimère avec la MBM. Ce couplage a été validé sur un
cas test analytique à une dimension puis évalué sur un cas représentatif des applications visées
en trois dimensions.

Cette synthèse suit la chronologie des travaux de thèse. Dans une première étape, nous résumons
le développement d’une méthode de grilles superposées dans un cadre volumes finis basé sur une
approche Chimère. Dans une seconde étape, nous présentons le développement d’un couplage de
la méthode Chimère en volumes finis avec une méthode d’interaction fluide-structure en frontières
immergées appelée MBM.

Le premier chapitre de cette thèse introduit le modèle des équations d’Euler pour des écoulements
compressibles non-visqueux utilisé dans ces travaux ainsi que le schéma d’intégration en volumes finis
d’ordre deux en temps et en espace de MUSCL-Hancock. Ce modèle fluide est utilisé comme cadre
de travail dans l’ensemble des développement détaillés dans le manuscrit.
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Développement d’une méthode de grille superposée
dans un cadre volumes finis: la méthode Chimère

Dans le deuxième chapitre, une méthode de grilles superposées appelée méthode Chimère a été
implémentée dans un cadre volumes finis avec des milieux fluides uniquement. La présentation de la
méthode s’appuie sur une grille de fond appelée substrat et sur une grille locale appelée patch. Le
nombre de grille se limite à deux pour des raisons de compréhension dans le cadre de la présentation de
la méthode mais celle-ci est compatible avec plusieurs grilles de fluide. Cette implémentation s’appuie
sur des cellules de maillage du fluide appelées cellules fantômes pour échanger de l’information entre
plusieurs grilles.

La première étape de notre implémentation consiste à identifier les cellules fantômes du patch
utilisées pour recevoir la solution transférée entre les maillages ainsi que les cellules chargée d’envoyer
de l’information. Cette détection utilise la frontière extérieure du patch ainsi que le nombre de rangées
de cellules fantômes fixé par l’ordre du schéma numérique choisi pour l’intégration du domaine fluide.
Une zone d’échange constituée de cellules fantômes est définie pour chaque maillage recevant de
l’information (deux zones d’échanges pour un envoi symétrique du substrat vers le patch et du patch
vers le substrat). Pour chaque ensemble de cellules fantômes d’une grille receveuse, un ensemble de
cellules envoyeuses est défini comme étant les cellules fluide du maillage envoyeur intersectées par les
cellules fantômes du maillage receveur.

Une fois les cellules fantômes et les cellules envoyeuses identifiées pour chaque grille, une recon-
struction de la solution est effectuée en utilisant des cellules fluide envoyeuses. Cette implémentation
se distingue des différentes versions de la méthode Chimère présentent dans la littérature car elle
s’appuie sur des volumes d’intersection entre les cellules envoyeuses et les cellules fantômes et non
des distances entre les barycentres des cellules envoyeuses et des cellules fantômes.

La solution fluide transférée est évaluée avec une reconstruction au premier ordre utilisant une
moyenne des solutions contenues dans les cellules envoyeuses intersectées par chaque cellule fantôme,
pondérée par le volume des intersections (voir Fig. 5.14).

Figure 5.14: Interpolation Chimère de premier ordre basée sur les volumes d’intersection entre chaquecellule fantôme et ses cellules envoyeuses.
Appelée méthode Chimère d’ordre un, cette approche a été améliorée avec un passage au deux-
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ième ordre utilisant une reconstruction linéaire de la solution au sein des cellules envoyeuses. Cette
approximation linéaire de la solution dans chaque cellule envoyeuse est ensuite évaluée au barycen-
tre des intersections entre les cellules envoyeuses et les cellules fantômes (voir Fig. 5.15). Cette
amélioration est appelée méthode Chimère d’ordre deux.

Figure 5.15: Interpolation Chimère de second ordre basée sur une reconstruction linéaire de la solutionau sein de chaque cellule envoyeuse. Chaque solution est ensuite évaluée au centre de l’intersectionentre la cellule fantôme et la cellule envoyeuse correspondante.
Les deux approches (ordre un et ordre deux) ont été testées sur des cas test analytiques dont

l’advection d’une perturbation sinusoïdale, le tube à choc de Sod, une onde de choc stationnaire et
enfin l’advection d’un vortex isentropique. Ces différents cas ont démontré la capacité de la méthode
Chimère à transférer des structures fluides compressibles simples telles que des ondes de choc ou des
ondes de détente sans introduire de perturbations à l’échelle globale.

En présence d’écoulements continus et de tailles de mailles semblables entre les grilles, les deux
méthodes Chimère offrent des résultats très proches de configurations monogrilles et ne semblent
pas impacter l’ordre de convergence du schéma numérique d’ordre deux. Cependant, la méthode
Chimère de second ordre s’est montrée plus proche d’une solution monogrille et moins dépendante
de la configuration géométrique des grilles que la méthode de premier ordre en présence de maillages
présentant des résolutions très différentes.

De plus, lors du transfert d’une onde de choc d’un maillage grossier vers un maillage plus fin, la
méthode Chimère d’ordre deux capture précisément la vitesse de choc de manière équivalente à une
méthode monogrille standard, ce qui n’est pas le cas de la méthode Chimère d’ordre un qui surestime
la vitesse de choc. Enfin, la traversée d’une zone de raffinement de grille brutale par une onde de
choc génère une oscillation locale dans les différentes configurations Chimère traitées mais aussi dans
des configurations monogrilles standard. La méthode Chimère d’ordre deux limite l’amplitude de ces
oscillations et montre un comportement plus robuste en vue d’une utilisation industrielle.

La méthode Chimère d’ordre un est abandonnée dans la suite des travaux et on s’intéresse,
dans le troisième chapitre, au comportement de la méthode Chimère d’ordre deux confrontée à des
écoulements plus complexes que les cas tests analytiques traités jusque là. La méthode de Chimère
de second ordre a été évaluée sur des cas tests de la littérature en 2D dont l’écoulement supersonique
autour d’un cylindre, un cas d’interaction choc-bulle (Hélium et R22) et enfin le cas de la double
réflexion de Mach (DMR). Dans chacun de ces cas, la méthode Chimère de second ordre fournit
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des résultats comparables à une solution monogrille avec une erreur liée à l’utilisation de la méthode
Chimère négligeable pour des ratios de taille de cellule entre les grilles inférieurs à 8. La méthode
Chimère de second ordre permet d’augmenter localement la précision de la solution, autour d’un
détail géométrique d’intérêt, sans impacter lourdement le temps de calcul comparé à une approche
monogrille raffinée. Dans le cas d’écoulements multi-composants, la méthode Chimère d’ordre deux,
permet de transférer des interfaces bi-fluides d’une grille fine vers une grille grossière. La méthode
Chimère d’ordre deux ne semble pas générer d’altération visible de la solution numérique par rapport à
une solution monogrille grossière mais permet de capturer certains détails de l’écoulement uniquement
perçus avec une grille fine dans le cadre d’une approche monogrille.

A l’issue des chapitres 2 et 3, nous avons développé une méthode de grilles superposées compatible
avec des écoulements transitoires en dynamique rapide calculés par une approche volumes finis.
La simulation de transitoires brutaux implique très souvent des interactions entre des écoulements
présentant de fortes discontinuités avec des structures déformables. Par conséquent, afin d’ajouter
des détails géométriques susceptibles d’impacter le comportement de systèmes transitoires brutaux,
la méthode Chimère développée doit être rendue compatible avec des problèmes d’interaction fluide-
structure.
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Couplage de la méthode Chimère à une méthode de
frontières immergées: The Chimera Mediating Body
Method

Dans le dernier chapitre, la méthode Chimère de second ordre a été couplée à une méthode
d’interaction fluide-structure en frontières immergées, appelée Mediating Body Method (MBM). La
MBM est une méthode de frontières immergées s’appuyant sur la définition d’un mediating body
composé des cellules de maillage du fluide intersectées par le maillage de la structure (représenté en
jaune dans la Figure 5.16). Le maillage fluide est ainsi décomposé en deux ensembles de cellules: les
cellules du mediating body intersectées par la structures et les cellules de fluide actives qui ne sont
pas intersectées par la structure. Particulièrement adaptée aux éléments de coque, la MBM s’appuie
sur un calcul des intersections des cellules du mediating body avec la structure. L’orientation de la
structure au sein de chaque cellule du mediating body est utilisée pour calculer les efforts transmis
par le fluide à la structure à chaque interface entre les cellules du mediating body et les cellules de
fluide actives. Inversement, des fonctions de flux prenant en compte le volume de fluide déplacé par
la structure sont utilisées aux mêmes interfaces pour calculer les efforts de la structure transmis au
fluide.

Figure 5.16: Présentation schématique de la Mediating Body Method. Le mediating body est représentéen jaune. Lorsque la structure subit de grands déplacements, les anciennes cellules du mediating bodydésormais cellules de fluide sont appelée cellules de fluide indéfinies et sont représentées en gris.
Afin de rendre la méthode Chimère compatible avec la MBM, le développement du couplage

Chimère-MBM se décompose en trois parties. Dans un premier temps, l’utilisation de plusieurs grilles
pour le fluide implique la définition de plusieurs mediating bodies comme illustré par la Figure 5.17.

Pour réduire le nombre d’intersections à calculer, les mediating bodies sont définis en minimisant
les zones de recouvrement. Dans un deuxième temps, une affectation des efforts transmis par le
fluide à la structure est effectué pour éviter que plusieurs grilles de fluide ne transmettent des efforts
à la structure dans les zones de recouvrement de grilles de fluide. Dans le cadre de notre travail,
l’affectation privilégie les grilles patchées généralement plus fines. Enfin, la MBM comme la méthode
Chimère attribue des rôles spécifiques à des cellules du maillage fluide. Dans certaines configurations
de grilles, ces rôles entrent en conflit notamment lorsqu’une cellule envoyeuse pour la méthode
Chimère est aussi une cellule du mediating body pour la MBM. Une extrapolation de la solution
fluide de part et d’autre de la structure est alors effectuée pour chaque cellule envoyeuse lorsque la
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Figure 5.17: Exemple de configuration de grille dans le cadre de laméthode Chimère-MBM. Lemediating
body du patch est représenté en bleu tandis que lemediating body du substrat est représenté en jaune.

structure traverse une zone d’échange Chimère. Cette extrapolation appelée extrapolation +/- permet
de reconstruire deux solutions (appelées solution + et solution -) pour chaque cellule envoyeuse aussi
cellule du mediating body comme illustré par la Figure 5.18. En fonction de la position du centre de
l’intersection cellule envoyeuse/cellule fantôme par rapport à la structure, la solution + ou la solution
- est utilisée pour l’envoi Chimère.

Figure 5.18: Schéma de l’extrapolation +/- executée pour une cellule envoyeuse intersectée par la struc-ture. Deux états sont reconstruits pour cette cellule de part et d’autre de la structure.
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La méthode Chimère-MBM est évaluée sur un cas test analytique de piston libre séparant deux
cavités fluides au repos avec des pressions différentes. L’impact de la méthode Chimère-MBM sur la
solution fluide est négligeable pour des ratios de taille de cellule entre grilles inférieurs à 8. Lorsque
les ratios de taille de cellule entre les grilles excèdent cette valeur, des perturbations locales issues
de l’extrapolation +/- sont générées. Cependant, ces perturbations n’altèrent en aucun cas le profil
global de la solution sur ce cas test. Pour terminer, un exemple en trois dimensions, s’appuyant sur
une cavité haute pression séparée d’une cavité basse pression par une plaque perforée, est présenté. Ce
cas test utilise trois grilles fluides indépendantes et sollicite les méthodes Chimère et Chimère-MBM
dans le même calcul, démontrant la flexibilité d’usage des méthodes développées. La configuration
Chimère à trois grilles de fluide est comparée à deux approches monogrilles: la première possède
une grille grossière de même résolution que le substrat de la configuration Chimère et la seconde
possède une grille fine de même résolution que le plus fin des patchs de la configuration Chimère.
L’utilisation conjointe de la méthode Chimère et de la MBM permet d’obtenir des niveaux de précision
des solutions numériques comparables à une approche monogrille fine avec des temps de calculs et
des contraintes de maillage réduits. Ce couplage permet notamment de capturer des phénomènes
locaux impactant la solution à l’échelle globale sans altérer la grille de fond.

201



SYNTHÈSE DU MANUSCRIT EN FRANÇAIS

Conclusions et perspectives

Au cours de ces travaux, nous avons développé un outil de modélisation multi-modèle fluide
robuste et flexible permettant d’ajouter localement des détails géométriques au sein d’une simula-
tion à grande échelle sans altérer le modèle global. Cet outil est compatible avec des écoulements
compressibles multi-constituants en dynamique rapide.

La compatibilité de cet outil a été étendue à des problèmes d’interaction fluide-structure grâce
au développement d’un couplage de la méthode multi-modèle avec une méthodes de frontières im-
mergées. Cet outil est une étape importante dans le déblocage de nouvelles capacités de modélisation
de phénomènes d’interaction fluide-structure pour des structures complexes à grande échelle. En ef-
fet, la méthode Chimère-MBM permet de prendre en compte des détails géométriques ou bien des
phénomènes physiques locaux qui impactent la solution numérique à l’échelle globale. Sans cet outil,
la capture de détails géométriques ou de phénomènes physiques locaux est coûteuse en temps de
maillage et en temps de calcul. Ce couplage apporte une plus-value notable dans le contexte de
l’énergie nucléaire, pour des simulations de situations accidentelles à l’échelle du circuit primaire d’un
réacteur nucléaire à eau pressurisée.

Malgré tout, cet outil présente certaines limitations comme la génération de perturbations locales
en présences de grilles avec des ratios de taille de maille élevés. Dans l’ensemble des cas traîtés, ces
perturbation n’ont pas été impactantes à l’échelle globale mais elles sont à prendre en compte lors
du dimensionnement des grilles locales.

Afin de poursuivre ces investigations nous proposons quelques pistes d’approfondissement des
travaux menés avec notamment, une poursuite des investigations dans le but de déterminer l’origine
des perturbations locales aussi observées en présence d’un raffinement brutal au sein d’une configu-
ration monogrille standard. De la même manière que la méthode Chimère d’ordre un a été améliorée
avec une reconstruction linéaire aboutissant à la méthode Chimère d’ordre deux, l’extrapolation +/-
peut être améliorée en utilisant une reconstruction linéaire pour extrapoler deux états de part et
d’autre de la structure.

L’impact de l’affection des efforts fluides dans le cadre du couplage Chimère-MBM pourrait être
examiné en détail et cette dernière pourrait être remplacée par une pondération pour une transition
progressive dans la transmission des efforts fluides provenant de plusieurs grilles de fluide.

Dans l’ensemble des cas traités, le pas de temps global est fixé par le plus petit pas de temps
des domaines fluides et structure confondus. Le découplage des pas de temps pourrait permettre un
gain non-négligeable en temps de calcul.

Pour terminer, le couplage Chimère-MBM pourrait permettre d’ajouter des détails structurels
locaux en utilisant des patchs structure locaux associés à des grilles fluides locales. La méthode
Chimère développée doit être rendue compatible avec des grilles fluides mobiles ainsi qu’avec une
méthode multi-modèle structure telle que la méthode Arlequin.
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