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Couture, reconstruction et Schauder en analyse rugueuse et structures de régularité

Résumé

Dans cette thèse, nous obtenons des résultats analytiques liés aux théories des chemins rugueux et des structures de régularité, du point de vue des germes, c'est-à-dire des familles d'approximations locales de fonctions ou distributions. D'abord, nous établissons un lemme de couture dans le régime 0 < γ ≤ 1, donnant une construction qui n'est pas unique ni canonique mais tout de même continue. En corollaire, nous exhibons une paramétrisation bicontinue de l'ensemble des chemins rugueux par un produit d'espaces de Hölder, généralisant à la fois le théorème d'extension de Lyons-Victoir et un résultat récent de Tapia-Zambotti.

Ensuite, nous proposons un théorème de reconstruction dans le contexte des espaces de Besov, généralisant des résultats de Hairer-Labbé et Caravenna-Zambotti. En corollaire, nous donnons une nouvelle preuve du théorème de multiplication dans les espaces de Besov, sans utiliser de paraproduits.

Enfin, nous étudions les propriétés régularisantes des noyaux singuliers contre les germes. Un premier résultat est la construction d'une application de convolution qui agit sur les germes cohérents et homogènes. Nous revisitons ensuite les estimées de Schauder multiniveaux de Hairer, donnant une présentation et une preuve qui font référence aussi peu que possible au formalisme des structures de régularité.

Chapter 1 Introduction

Many physical systems can be modelised by mathematical equations in a satisfactory way. In some cases, it happens that the system is perturbed by some random noise, and that the physicist must take into account its inherent randomness and irregularity when writing the corresponding equation. It is then the role of the mathematician to elaborate tools in order to solve and discuss them.

In recent decades, many such tools have been developed. This thesis is concerned with some analytical aspects of two of them: the theory of Rough Paths and the theory of Regularity Structures.

While the theory of Rough Paths, introduced by Terry Lyons [START_REF] Lyons | Differential equations driven by rough signals[END_REF], is concerned with controlled differential equations of the form dy t = F (y t )dx t , for some noise dx t , the theory of Regularity Structures, introduced by Martin Hairer [START_REF] Hairer | A theory of regularity structures[END_REF], tackles stochastic partial differential equations (SPDEs) of the form

Lf = F (f, ξ),
where L is a differential operator, F is a non-linearity, and ξ is a forcing noise. In both cases, one must face the analytical difficulty that some of the objets in the equations are not properly defined in general: in the first case, the integral F (y t )dx t cannot be canonically defined by Young-Kondurar integration as soon as the Hölder exponents of F • y and x do not sum to a value strictly greater than 1; in the second case, the non-linearity F may formally introduce products of (Schwartz) distributions in the equation, which are notoriously ill-defined as soon as their corresponding Hölder exponents do not sum to a strictly positive value.

In order to overcome these difficulties, both theories adopt the point of view of not working with usual functions or distributions, but rather with families of local approximations, which will be called germs in both cases although their form and their role slightly differ in the two theories: on the one hand, in the theory of Rough Paths, germs take the form of two-parameter functions A : [0, T ] 2 → R, where A s,t is intended to be a local description of the increments of some integral, i.e. typically A s,t ≃ t s f u dg u = I t -I s where one is interested in the integral I t = t 0 f u dg u . On the other hand, in the context of Regularity Structures, germs take the form of families of (Schwartz) distributions indexed by the space R d for some d ∈ N, that is, families F = (F x ) x∈R d , where each F x ∈ D ′ (R d ) is a distribution: F x is intended to be a local description of some distribution f ∈ D ′ (R d ) when tested against test-functions which are concentrated around x.

Note that in some sense, the second point of view corresponds to a "differentiated" version of the first one: heuristically the theory of Rough Paths is concerned with defining ill-posed integrals t s f u dg u , while the theory of Regularity Structures would rather be concerned with the ill-posed integrand f u ġu (where the derivative ġ is understood in the distributional sense). As such, similarities will be noted between some of the results of the theories.

In both cases, the first natural general questions one can ask about germs are the following:

1. given a germ, can one construct a suitable global function or distribution which corresponds to the germ in the way hinted above?

2. what operations can one perform on germs in a way that is consistent with respect to the aforementioned construction?

In this thesis, we study some properties of germs in the light of those two questions. The purpose of this introduction is threefold. First, we shall properly present (some) historical ideas which motivate the introduction of germs in the theories of Rough Paths and Regularity Structures. Second, we shall describe the pertaining tools and known results which will be useful in this thesis. Third, we shall introduce our contributions to this thesis.

Germs: motivations from Rough Paths

The Sewing problem

Let us start by discussing some ideas from the theory of Rough Paths, which is concerned with (controlled) differential equations of the form dy t = F (y t )dx t , for functions F, x, y : R → R, where y is the solution to find, and x is a given forcing noise which may be "rough", by which we mean that it might satisfy Hölder conditions

|x t -x s | ≲ |t -s| α ,
for a possibly very small Hölder exponent α > 0. As a typical example, sample paths of Brownian motion almost surely satisfy such bounds with α = 1 2 -κ for any κ > 0. To give a meaning to the equation above, one can start by rewriting it in an integral form

y t = y 0 + t 0 F (y s )dx s ,
and now solving such a fixed-point problem requires to propose a strong meaning to integrals of the form t 0 f s dg s ,

(1.1.1)

where the functions f and g might admit very small Hölder exponents. Of course, if f ∈ C 0 and g ∈ C 1 , then (1.1.1) has a natural meaning via Riemann integration. On the other hand, when we can not make such assumptions, it is not clear how to define (1.1.1); however we can easily postulate a local approximation for the increments of the integral by simply expressing the fact that when u ∈ [s, t], f u ≃ f s and thus t s f u dg u ≃ t s f s dg u = f s (g t -g s ).

(1.1.2)

Remarkably, when f ∈ C 0 and g ∈ C1 , the increments of the integral actually correspond to the best approximation of the two parameter function (s, t) → f s (g t -g s ), in the following sense:

Observation 1.1.1. Let f, g : [0, T ] → R be functions such that f ∈ C 0 , g ∈ C 1 , then the (Riemann) integral I : t → t 0 f s dg s is the unique function I : [0, T ] → R such that I 0 = 0 and I t -I s -f s (g t -g s ) = o(|t -s|).

Proof. On one hand, f s (g t -g s ) = t s f s dg u , so that I t -I s -f s (g t -g s ) = t s (f u -f s )dg u , which is indeed a o(|t -s|). Furthermore, if there exists another such function Ĩ, then by substraction, (I -Ĩ) t -(I -Ĩ) s = o(|t -s|), so I -Ĩ is differentiable with vanishing derivative, thus it is identically equal to its initial value (I -Ĩ) 0 = 0: this establishes the uniqueness.

This assertion highlights the fact that two-parameter functions may play an important role in theories of integration; and replacing the function (s, t) → f s (g t -g s ) by arbitrary functions (s, t) → A s,t motivates the following general question:

Given a two-parameter function A : [0, T ] 2 → R, does there exist a (unique) one-parameter function I : [0, T ] → R such that I t -I s -A s,t is "small" as s → t?

Such functions A shall be called germs, and the problem above of retrieving the integral I from the germ A the sewing problem. In a sense, the question is to recover the integral from a family of local approximations.

The classical Sewing Lemma

An elegant answer to this problem is provided by the following Sewing Lemma, due to Gubinelli [START_REF] Gubinelli | Controlling rough paths[END_REF], see also Feyel-De la Pradelle [START_REF] Feyel | Curvilinear integrals along enriched paths[END_REF] Theorem 1.1.2 (Sewing Lemma). Let γ > 1 and A : [0, T ] 2 → R be a continuous function such that |A s,t -A s,u -A u,t | ≲ |t -s| γ over 0 ≤ s ≤ u ≤ t ≤ T , (1.1.3) then there exists a unique function I : [0, T ] → R such that I 0 = 0 and

|I t -I s -A s,t | ≲ |t -s| γ over 0 ≤ s ≤ t ≤ T .
Furthermore, the "integral" I in this theorem is constructed as limit of Riemann-type sums:

I t = lim |P|→0 [t k ,t k+1 ]∈P A t k ,t k+1 , (1.1.4)
where the limit runs over partitions

P = {0 = t 0 < t 1 < • • • < t n = t} of [0, t] whose mesh |P| := max k=0,••• ,n-1 |t k+1 -t k | vanish.
Let us stress that the assumption γ > 1 is not purely cosmetic and in fact plays an essential part in the proof of this theorem 1 .

Before proposing a few examples of applications of Theorem 1.1.2, we would like to mention that similar "sewing" results have been developed in a number of contexts, see for instance [FLPM08; DS13; Lê20; FS21; BL19; BL21; BL20].

Example 1: Young-Kondurar integration

The Sewing Lemma is a tool which permits the construction of many objects in Rough Path theory. Let us shortly illustrate its power by recovering the classical Young-Kondurar theory [You36; Kon37] of integration for functions whose Hölder exponents sum to a value strictly greater than 1. Let 0 < α, β < 1 with α + β > 1, and let f ∈ C α ([0, T ]), g ∈ C β ([0, T ]), that is, f and g admit Hölder exponents α and β respectively. As suggested by the Observation 1.1.1, set A s,t := f s (g t -g s ),

then for 0 ≤ s ≤ u ≤ t ≤ T ,

A s,t -A s,u -A u,t = (f s -f u )(g t -g u ),
which is a O(|t -s| α+β ) by the Hölder assumptions. Since α + β > 1, the condition (1.1.3) is fulfilled and one can define t 0 f s dg s := I t = lim

P partition of [0,t] |P|→0 [t k ,t k+1 ]∈P f t k (g t k+1 -g t k ),
where the convergence of the Riemann sum is guaranteed by the Sewing Lemma.

Example 2: Integration in lower regularity

In some cases however we want to consider functions whose Hölder exponents sum to a value smaller than 1. Let 0 < α, β < 1 with α + β ≤ 1, and let f ∈ C α ([0, T ]), g ∈ C β ([0, T ]). From the calculation above, one observes that the germ A s,t := f s (g t -g s ) is not sufficient to define a canonical integral f s dg s via an application of the Sewing Lemma. The solution proposed by the theory of Rough Paths is to assume that f has a further Taylor-type expansion with respect to g: more precisely, we assume that there exists a "Gubinelli derivative" f ′ ∈ C α ([0, T ]) such that f t = f s + f ′ s (g t -g s ) + O(|t -s| γ ), for some γ > α. Then inserting this expansion in the integral as in (1.1.2) suggests that we should refine our germ by setting

A s,t := f s (g t -g s ) + f ′ s t s (g u -g s )dg u ,
where of course we need to ensure that the integral of g against itself indeed makes sense in some way. For this purpose, let us assume for the moment that g admits a Hölder exponent β > 1 2 so that t s (g u -g s )dg u has a meaning as a Young-Kondurar integral. Now for 0 ≤ s ≤ u ≤ t ≤ T ,

A s,t -A s,u -A u,t = (f s -f u -f ′ u (g s -g u ))(g t -g u ) + (f ′ s -f ′ u ) t u (g r -g s )dg r ,
which, by our assumptions, is a O(|t -s| min(γ+β,α+2β) ) where the exponent here is an actual improvement over α + β and thus may become strictly greater than 1, in which case the Sewing Lemma provides a natural and canonical notion of integral as2 t 0 f s dg s := I t = lim

P partition of [0,t] |P|→0 [t k ,t k+1 ]∈P f t k (g t k+1 -g t k ) + f ′ t k t k+1 t k (g u -g t k )dg u .
On the other hand, if the obtained exponent is still less or equal than 1, then the discussion above suggests that we should pursue the Taylor expansion of f against the signature of g, i.e. the sequence of its iterated integrals

s≤u 1 ≤•••≤un≤t dg u 1 ⊗ • • • ⊗ dg un n∈N ,
and that the signature itself should play an important role.

Of course, if g is not regular enough, in particular when the Hölder exponent of g is β ≤ 1 2 (which is the case for the important example of Brownian motion), the theory of Young-Kondurar integration alone is not sufficient in general to define the aforementioned sequence of iterated integrals.

The solution proposed by the theory of Rough Paths is to replace the signature here by a rough path, i.e. any sequence of two-parameter functions satisfying the nice algebraic and analytic properties which are enjoyed by the actual signature of smooth functions. This insight turns out to permit the construction of a strong integration theory.

Rough Paths and Hopf algebras

It has been known since the works of Chen [START_REF] Chen | Iterated integrals and exponential homomorphisms[END_REF] that the theory of signatures is algebraically rich. For instance, one can encode the signature of a smooth path X : [0, T ] → R d as a biprocess X acting on words over the alphabet {1, • • • , d} via

⟨X s,t , i 1 i 2 • • • i n ⟩ := s≤u 1 ≤•••≤un≤t dX i 1 u 1 • • • dX in un ,
which satisfies the following Chen's relation for words w ⟨X s,t , w⟩ -⟨X s,u , w⟩ -⟨X u,t , w⟩ = ⟨X s,u ⊗ X u,t , ∆ ′ w⟩, (where ∆ ′ denotes the reduced deconcatenation coproduct and is defined by

∆ ′ (i 1 • • • i n ) = n-1 k=1 i 1 • • • i k ⊗ i k+1 • • • i n ),
as well as the integration by parts formula, which takes the form for words w 1 , w 2 , ⟨X s,t , w 1 ¡ w 2 ⟩ = ⟨X s,t , w 1 ⟩⟨X s,t , w 2 ⟩, (where ¡ denotes the shuffle product and is recursively defined for words w 1 , w 2 and letter i 1 , i 2 by w 1 i 1 ¡ w 2 i 2 = (w 1 ¡ w 2 i 2 )i 1 + (w 1 i 1 ¡ w 2 )i 2 ). It turns out that these algebraic properties can be encoded in the more general framework of Hopf algebras, which we will not rigorously introduce here for the sake of simplicity (see for instance [START_REF] Cartier | A primer of Hopf algebras[END_REF][START_REF] Cartier | Classical Hopf Algebras and Their Applications[END_REF] for general treatments of Hopf algebras).

Thus, we will consider H = ⊕ n∈N H n a graded Hopf algebra with product • and reduced coproduct ∆ ′ . Inspired by the above discussion, we say that a biprocess X : [0, T ] 2 → H ⋆ is a (H, α)-rough path if ⟨X s,t , σ • τ ⟩ = ⟨X s,t , σ⟩⟨X s,t , τ ⟩ for σ, τ ∈ H, ⟨X s,t , σ⟩ -⟨X s,u , σ⟩ -⟨X u,t , σ⟩ = ⟨X s,u ⊗ X u,t , ∆ ′ σ⟩ for σ ∈ H, |⟨X s,t , σ⟩| ≲ |t -s| αn for σ ∈ H n .

A few example of Hopf algebras of interest in this context are:

1. The shuffle algebra on the alphabet {1, . . . , d}, which gives rise to the theory of (weakly) geometric rough paths on R d [START_REF] Lyons | Differential equations driven by rough signals[END_REF]. In this case, H n corresponds to (linear combinations of) words of length n.

2. The Butcher-Connes-Kreimer algebra of rooted forests with nodes decorated by {1, . . . , d}, which gives rise to the theory of branched rough paths on R d [START_REF] Gubinelli | Ramification of rough paths[END_REF].

3. Quasi-shuffle algebras, which gives rise to the theory of quasi-geometric rough paths [START_REF] Bellingeri | Quasi-geometric rough paths and rough change of variable formula[END_REF].

4. The Hopf algebra of Lie group integrators, which gives rise to the theory of planarly branched rough paths [START_REF] Curry | Planarly branched rough paths and rough differential equations on homogeneous spaces[END_REF].

The question of extending rough paths

One important question is the following: given an α-rough path X defined on ⊕ N n=0 H n , can one extend it to ⊕ N +1 n=0 H n while still preserving the three properties above? Or informally: "given a function X : [0, T ] → R d , does there exist a suitable sequence of iterated integrals of X?".

The positive answer was provided in 2007 by Lyons and Victoir [START_REF] Lyons | An extension theorem to rough paths[END_REF] with an argument relying on the Lie structure of the characters on H.

Let us however suggest a (seemingly) more direct approach in terms of sewing: let σ ∈ H N +1 , we are looking for a biprocess ⟨X s,t , σ⟩ satisfying ⟨X s,t , σ⟩ -⟨X s,u , σ⟩ -⟨X u,t , σ⟩ = ⟨X s,u ⊗ X u,t , ∆ ′ σ⟩, |⟨X s,t , σ⟩| ≲ |t -s| α(N +1) . (1.1.5) It is not difficult to define a biprocess satisfying the first condition: setting A s,t := ⟨X 0,s ⊗X s,t , ∆ ′ σ⟩ (which is well-defined because ∆ ′ σ only depends on H ≤N ), a straightfoward computation gives A s,t -A s,u -A u,t = ⟨X s,u ⊗ X u,t , ∆ ′ σ⟩, but A will not in general satisfy |A s,t | ≲ |t -s| α(N +1) . On the other hand, A satisfies the assumption of the Sewing Lemma, Theorem 1.1.2, for γ = α(N +1), since it is straightforward to obtain the bound |⟨X s,u ⊗ X u,t , ∆ ′ σ⟩| ≲ |t -s| α(N +1) , and now ⟨X, σ⟩ s,t := A s,t -(I t -I s ), where I is the function provided by the Sewing Lemma, satisfies both constraints of (1.1.5), thus allowing to extend the rough path as wanted.

The catch here is that the Sewing Lemma as stated in Theorem 1.1.2 requires γ > 1, and thus the argument sketched above is valid only for the levels N ≥ ⌊1/α⌋: novel ideas are required for the lower levels.

Contribution I: the Sewing Lemma for 0 < γ ≤ 1

In this work written in collaboration with Lorenzo Zambotti, we prove that the Sewing Lemma, Theorem 1.1.2, can be extended to the regime 0 < γ ≤ 1: Theorem 1.1.3 (L.B.-L.Zambotti, [BZ22, Theorem 2.2]). Let 0 < γ ≤ 1 and A : [0, T ] 2 → R be a continuous function such that

|A s,t -A s,u -A u,t | ≲ |t -s| γ over 0 ≤ s ≤ u ≤ t ≤ T ,
then there exists a (non-unique) function I : [0, T ] → R such that I 0 = 0 and

|I t -I s -A s,t | ≲ |t -s| γ if 0 < γ < 1, |t -s|(1 + | log |t -s||) if γ = 1, over 0 ≤ s ≤ t ≤ T .
Let us comment briefly on some aspects of this result. First, notice that the integral I here can not be unique anymore: let J : [0, T ] → R be any non-vanishing function such that J 0 = 0 and |J t -J s | ≲ |t -s| γ if 0 < γ < 1, |J t -J s | ≲ |t -s|(1 + | log |t -s||) if γ = 1 (and such functions do exist), then I + J ̸ = I is another solution to Theorem 1.1.3.

Second, notice that the integral I can not be constructed as a limit of Riemann sums as in (1.1.4) anymore. A simple counterexample is given by the function A s,t := √ t -s, which satisfies

|A s,t -A s,u -A u,t | ≲ |t -s| 1 2 , yet if P = {0 = t 0 < t 1 < • • • < t n = t} is a partition of [0, t] of mesh |P| := max k=0,••• ,n-1 |t k+1 -t k |, then the immediate estimate √ t k+1 -t k ≥ (t k+1 -t k )/ |P | yields [t k ,t k+1 ]∈P A t k ,t k+1 ≥ t |P | ,
which diverges as |P| → 0. Indeed, the construction of I in Theorem 1.1.3 relies on a different approach: we define I recursively on the dyadics, then extend I on [0, T ] by continuity. Third, notice the great similarity between Theorem 1.1.3 and the Reconstruction Theorem (see Theorem 1.2.1 below), where the case γ ≤ 0 provides a non-unique reconstruction which is built with different approximations as in the case γ > 0 (and where a logarithmic factor appears in the case γ = 0). Indeed, we prove that (a slightly weaker version) of Theorem 1.1.3 can be obtained as a corollary of the reconstruction theorem by considering the germ F t := ∂ 2 A t,• where the differentiation in the second variable is understood in the distributional sense.

Finally, notice that -as motivated in Section 1.1.4 above -it is natural for Theorem 1.1.3 to admit applications in the context of the theory of Rough Paths, which is concerned with the study of (possibly non-canonical) iterated integrals. In particular, Theorem 1.1.3 permits to provide a simple proof of the Lyons-Victoir extension theorem [START_REF] Lyons | An extension theorem to rough paths[END_REF], which states that given any α-Hölder path X for some α ∈ (0, 1), α -1 / ∈ N, there exists a (non-canonical) α-rough path lying above X. Our construction is furthermore continuous (with respect to the natural topologies).

In fact, we establish a slightly more general result of parametrisation of rough paths, stated in the general framework of Hopf algebras.

Theorem 1.1.4 (L.B.-L.Zambotti [START_REF] Broux | The Sewing lemma for 0 < γ ≤ 1[END_REF]Theorem 4.7]). Let H be a commutative graded connected locally finite Hopf algebra. Let α ∈ (0, 1), α -1 / ∈ N and denote RP α (H) the set of (H, α)-rough paths. Then there exists a finite subset B of H such that RP α (H) is homeomorphic to the vector space

C α B := {(f h ) h∈B : f h ∈ C |h|α , f h (0) = 0}.
More precisely, one such homeomorphism P : RP α (H) → C α B is explicitly produced in terms of the map A → I from Theorem 1.1.3. The interest of this parametrisation can be illustrated by the following applications: the map f → P -1 (f ) yields a continuous Lyons-Victoir extension; and the map (f, X) → P -1 (f + P(X)) yields a continuous free transitive action of C α B on RP α (H), which retrieves a result from [START_REF] Tapia | The geometry of the space of branched rough paths[END_REF].

Germs: motivations from Regularity Structures 1.2.1 Singular SPDEs

The theory of Regularity Structures is concerned with stochastic partial differential equations of the form

Lf = F (f, ξ),
where L is a differential operator, F is a non-linearity, ξ is a forcing noise, and f is the solution to find. Let us heuristically motivate the interest of germs, following a similar discussion from [START_REF] Chevyrev | Hopf and pre-Lie algebras in regularity structures[END_REF], by considering the example of the Φ 4 d equation, for which the differential operator L = ∂ t -∆ is the heat operator and the non-linearity F (f, ξ) = -f 3 + ξ involves the cube of f , that is, we consider

∂ t f = ∆f -f 3 + ξ, where f = f (t, x), t ∈ R, x ∈ R d .
This equation appears naturally in quantum field theory [START_REF] Parisi | Perturbation theory without gauge fixing[END_REF]. To solve it, one strategy is to start by rewriting it through a mild formulation

f = H * (-f 3 + ξ), (1.2.1)
where H denotes the heat kernel, and now one wants to find such a fixed point f as limit of the Picard iteration

f 0 := 0, f n+1 := H * (-f 3 n + ξ), (1.2.2) that is, f 1 := H * ξ, f 2 := H * (-(H * ξ) 3 + ξ), etc.
It turns out that a nice framework in general to set up such fixed-point problems is provided by the Hölder spaces C α , which can be generalised for negative exponents as spaces of distributions.

Hölder and Zygmund spaces

In general, we will work in the space D ′ (R d ) of (Schwartz) distributions, i.e. the topological dual of the space of test-functions D(R d ) := C ∞ c (R d ). Within this framework one can generalise the notion of Hölder regularity to any real α ∈ R by testing the behaviour of distributions f ∈ D ′ (R d ) against suitable rescaled test-functions ψ λ x (recall that if ψ ∈ D(R d ), we define ψ λ x (•) := λ -d ψ(λ -1 (y -x))): more precisely, we say that f ∈ C α (R d ) if sup x∈R d ,λ∈(0,1],ψ∈B r |f (ψ x )| < +∞, and sup

x∈R d ,λ∈(0,1],ψ∈B r α |f (ψ λ x )| λ α < +∞, (1.2.3)
where r denotes any integer r > -α; B r corresponds to the space of test-functions ψ ∈ D(R d ) such that supp(ψ) ⊂ B(0, 1), and ∥ψ∥ C r := max |k|≤r ∥∂ k ψ∥ ∞ ≤ 1; and where B r α denotes the space of test-functions ψ ∈ B r such that x k ψ(x)dx = 0 for 0 ≤ |k| ≤ α.

When α ∈ (0, 1), such distributions f can be shown to coincide (as the terminology "Hölder space" suggests) with actual functions satisfying |f y -f x | ≲ |y -x| α .

At this point, one can propose some remarks. First, observe that the definition above subtly depends on the way we define the scaling ψ λ x of a test-function. In some cases it is convenient to slightly modify this notion: for instance when working with the heat operator ∂ t -∆ it is useful to encode the fact that time counts "twice as much" as space, by defining rather

ψ λ x (•) := λ -(d+1) ψ(λ -2 (y 1 -x 1 ), λ -1 (y 2 -x 2 ), • • • , λ -1 (y d -x d ))
, where the first variable is the time-variable.

Another remark is that this definition gives rise to a slight conflict of notation at integer exponents, since for n ∈ N the space C n as defined just above does not coincide with the space of n-times continuously differentiable functions (as an example, observe that x → log |x| ∈ C 0 with the definition above). For this reason, the spaces as defined in (1.2.3) are also sometimes noted Z α and called the (Hölder)-Zygmund spaces, see [FH20, Section 14.3] for a presentation and Chapter 4 of this manuscript where we use this notation. For the sake of simplicity, we keep the notation C α throughout this introduction.

The spaces C α enjoy many nice properties, in particular:

1. (White noise) one can show that gaussian space-time white noise ξ in (space) dimension d almost surely belongs to C -d/2+1-κ (R d+1 ) for any κ > 0 (where the Hölder regularity is measured here with the parabolic scaling), see [START_REF] Furlan | A tightness criterion for random fields, with application to the Ising model[END_REF]; β) , if and only if α + β > 0 (see Section 1.2.4 below for a discussion and a sketch of proof using the reconstruction theorem).

C ∞ ×C ∞ → C ∞ to C α ×C β → C min(α,

The example of the Φ 4 d equation and germs

Let us return to the fixed point problem (1.2.1), we heuristically discuss the Picard iteration (1.2.2) in (space) dimensions d = 1, 2, 3 successively. When d = 1, the space-time dimension is 2 and so ξ ∈ C -3/2 -, whence (by the Schauder estimates) H * ξ ∈ C 1/2 -, thus (by Young multiplication) its cube (H * ξ) 3 is properly defined and we can follow the Picard iteration (1.2.2) to solve (1.2.1) in the space C 1/2 -.

When d = 2, ξ ∈ C -2 -thus H * ξ ∈ C 0 -which is unfortunately not sufficient for the cube (H * ξ) 3 to be properly defined, and so the Picard iteration (1.2.2) can not be performed. One idea going back to Da Prato and Debussche [START_REF] Da Prato | Strong solutions to the stochastic quantization equations[END_REF] is to remark that in this Picard iteration, the term ξ := H * ξ ∈ C 0 -should be the one with lowest regularity, suggesting that g := f -ξ should have better regularity than C 0 -. Indeed, observe that the equation (1.2.1) implies (formally) on g:

g = -H * (g 3 + 3 ξg 2 + 3 ξ2 g + ξ3 ), (1.2.4)
which can be solved via Picard iteration in C 2 -, as soon as one gives a sensible meaning to the powers ξ2 ∈ C 0 -and ξ3 ∈ C 0 -, but this can be done by so-called Wick calculus techniques, exploiting probabilistic properties of the noise ξ. , whose cube is still ill-defined by Young multiplication. However, one can try the Da-Prato-Debusche trick above and it is still possible to define ξ2 ∈ C -1 -and ξ3 ∈ C -3/2 -in a sensible way via Wick calculus. A further problem arises though when performing the Picard iteration for (1.2.4), i.e.

When d = 3, ξ ∈ C -3/2 -thus ξ := H * ξ ∈ C -1/2
g 0 := 0, g n+1 := -H * (g 3 n + 3 ξg 2 n + 3 ξ2 g n + ξ3 ).
Indeed,

g 1 = -H * ξ3 ∈ C 1/2 -,
whence the product ξ2 g 1 in g 2 is an ill-defined product of a C -1 -distribution with a C 1/2 -function. Here, one may still hope to pursue the Da Prato-Debussche technique and iteratively remove the term of worst regularity. However, upon writing the calculations, one ends up in an infinite loop: the reason is that one can not expect to multiply a C -1 - distribution with a C 1/2 -function and obtain a distribution of regularity better than C -1 - in general, as the regularity of a product is the minimum of the regularities. An important remark here is that on the other hand, the regularity of the product of local approximations around a point x should be the sum of the local regularities around x: as an illustration of this principle, observe that if

|f x (y)| ≲ |y -x| α and |g x (y)| ≲ |y -x| β then |f x g x (y)| ≲ |y -x| α+β .
This suggests that if, instead of working with distributions, we start to work with families of local approximations of distributions, then we could "improve" the regularities that appear in the Picard iterations, and successfully perform (iterated) Da Prato-Debussche type tricks for the equation Φ 4 d in dimension d = 3 as discussed above (and also for many more similar singular SPDEs). This is one of the (many) ideas which were successfully implemented by Hairer in his theory of Regularity Structures [START_REF] Hairer | A theory of regularity structures[END_REF].

In general, we define a germ to be any such family

(F x ) x∈R d of distributions F x ∈ D ′ (R d ).
(For technical reasons we will also add the condition that for any test-function φ ∈ D(R d ), the function x → F x (φ) is measurable). Of course, if we choose to work with germs rather than distributions, then we need to ensure that the germs we work with indeed correspond to local approximations of distributions of interest. In other words, the question of retrieving a distribution given a suitable family of local approximations needs to be adressed.

The Reconstruction Theorem

The discussion above thus motivates the following general question, called the reconstruction problem:

Given a germ F = (F x ) x∈R d , does there exist a (unique) distribution f ∈ D ′ (R d ) such that
f is "sufficiently close to" F x locally around x?

An elegant answer to this problem is provided by the following Reconstruction Theorem, originally established by Hairer [START_REF] Hairer | A theory of regularity structures[END_REF] and later stated in the following formulation by Caravenna and Zambotti [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF].

Theorem 1.2.1 (Reconstruction Theorem). Let F = (F x ) x∈R d be a germ such that there exist reals α ≤ γ and a test-function φ ∈ D(R d ) with φ ̸ = 0, such that the following estimate of "coherence"

|(F z -F y )(φ λ y )| ≲ λ α (|y -z| + λ) γ-α , (1.2.5) holds uniformly over z, y in compact sets, λ ∈ (0, 1]. Then there exists a distribution R(F ) ∈ D ′ (R d ) such that |(R(F ) -F x )(ψ λ x )| ≲ λ γ , (1.2.6) uniformly over x in compact sets, λ ∈ (0, 1], ψ ∈ B r := {ψ ∈ D(R d ), supp(ψ) ⊂ B(0, 1), ∥ψ∥ C r := max |k|≤r ∥∂ k ψ∥ ∞ ≤ 1}, for any integer r > -α. Furthermore, such a distribution R(F ) is unique if and only if γ > 0.
See also [HL17; MW20; RS21; BL22; ZK21] for similar "reconstruction" results in different contexts.

Note that the theorem as stated just above does not specify whether f admits Hölder regularity. However, one can establish that R(F ) ∈ C β for some β ≤ γ, β < 0, as soon as the further condition of "homogeneity"

|F y (φ λ y )| ≲ λ β , (1.2.7)
holds uniformly over y in compacts and λ ∈ (0, 1], where φ is the same test-function as in (1.2.5).

It is now convenient to introduce the notation G β;α,γ to denote the set of germs satisfying (1.2.5) and (1.2.7) ( which can in fact be shown to be a vector space), as one can reformulate the Reconstruction Theorem as the existence (and uniqueness iff γ > 0) of a linear continuous operator R :

G β;α,γ → C β , such that R(F ) -F ∈ G γ;α,γ for all F ∈ G β;α,γ .
Let us shortly illustrate the power of the Reconstruction Theorem in two elementary situations: we refer to [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF] for more details.

Example 1: Taylor germs

Let α > 0, α / ∈ N, and f ∈ C α be a α-Hölder function. Then by the usual properties of Hölder functions, f admits derivatives up to degree α and we can introduce the Taylor germ

T f x (y) := 0≤|k|<α f (k) (x) (y -x) k k! , (1.2.8)
which furthermore satisfies |f (y) -T f x (y)| ≲ |y -x| α and as such provides a natural local approximation of f around x. Now an elementary calculation establishes

T f ∈ G 0;0,α , and R(T f ) = f (as expected).

Example 2: Young multiplication

Another elegant application of the Reconstruction Theorem permits to recover the celebrated result of multiplication of distributions whose Hölder exponents sum to a strictly positive value. Note that this can be seen as a "differentiated" version of the theory of Young-Kondurar integration, here constructing the integrand rather than the integral.

Let α > 0, α / ∈ N, and f ∈ C α be a α-Hölder function, so that we can consider its Taylor germ T f as defined in (1.2.8). Now if β ≤ 0 and g ∈ C β , we can postulate that the (to-be-defined) product gf should be approximated around x by gT f x , i.e. the (well-defined) product of the distribution g with the C ∞ function T f

x . This motivates the introduction of the germ F x := gT f x , for which a straightforward calculation establishes

F ∈ G β;β,α+β ,
and setting gf := R(F ) continuously extends the product from

C β ×C ∞ → C β to C β ×C α → C β in
a canonical way as soon as α + β > 0.

Contribution II: a Besov Reconstruction Theorem

In this work, written in collaboration with David Lee, we establish a reconstruction theorem with a Besov flavour.

Besov spaces are spaces of distributions which generalise the Hölder spaces, and the literature proposes (many) different equivalent ways of defining them. One possible way to measure Besov regularity of a distribution f is -similarly to the Hölder case -to consider the behaviour of f (ψ λ x )/λ α , but now instead of assuming this quantity to be bounded, we rather impose assumptions of integrability in x and λ. More precisely, let p, q ∈ [1, +∞] and α ∈ R, we define the Besov space B α p,q as the space of distributions f ∈ D ′ (R d ) such that:

sup ψ∈B r |f (ψ x )| L p (x) + sup ψ∈B r α f (ψ 2 -n x ) 2 -nα L p (x) ℓ q (n) < +∞,
where we denote B r α the space of test-functions ψ ∈ B r such that x k ψ(x)dx = 0 for 0 ≤ |k| ≤ α. Note that taking p = q = +∞ in this definition retrieves the Hölder-Zygmund space C α .

Introducing the integrability exponents p and q permits greater flexibility in some applications. One example is the fact that for any p ∈ [1, +∞] the Dirac mass

δ 0 at 0 is in B -d+d/p p,∞
, and thus one can modulate the regularity exponent by "playing" with the integrability exponent. Another example is the fact that the spaces B α 2,2 -also known as the (fractional) Sobolev spaces -enjoy a natural Hilbert structure and are well-studied in the context of Malliavin calculus. See [START_REF] Labbé | The continuous Anderson Hamiltonian in d ≤ 3[END_REF][START_REF] Gassiat | Existence of densities for the dynamic Φ 4 3 model[END_REF] for examples of applications in the context of SPDEs which were motivated by such ideas, and also [ST18; LPT21; FS21] for some works involving Besov-type spaces in the context of Rough Paths and Regularity Structures.

A reconstruction theorem in the framework of Besov spaces has been previously established by Hairer and Labbé in [START_REF] Hairer | The reconstruction theorem in Besov spaces[END_REF], where the reconstruction bound (1.2.6) is replaced by a version which takes into account integrability in x and λ. However, this theorem [HL17, Theorem 3.1] is presented in the formalism of regularity structures and proved using wavelet techniques.

We provide a generalisation (both of [HL17, Theorem 3.1] and of the "Hölder" reconstruction theorem of Caravenna-Zambotti [CZ20, Theorem 5.1]) which we state in the framework of distribution theory, and which we also prove using elementary techniques as in [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF]: Theorem 1.2.2 (L.B.-D.Lee, [BL22, Theorem 3.2]). Let F = (F x ) x∈R d be a germ such that there exist reals p, q ∈ [1, +∞], α, β ≤ γ, and a test-function φ ∈ D(R d ) with φ ̸ = 0, such that for all K ⊂ R d ,

(F x+h -F x )(φ 2 -n x ) 2 -nα (2 -n + |h|) γ-α L p (K,dx) ℓ ∞ (n∈N) L q (B(0,2), dh |h| d ) < +∞, and 
F x (φ 2 -n x ) 2 -nβ L p (K,dx) ℓ ∞ (n∈N) < +∞, then there exists a distribution R (F ) ∈ D ′ (R d ) such that for any integer r > max(-α, -β) and any K ⊂ R d , sup ψ∈B r (R(F ) -F x )(ψ λ x ) k(λ) L p (K,dx) L q (B(0,1), dλ λ ) < +∞,
where

k(λ) = λ γ if γ ̸ = 0; k(λ) = 1 + | log λ| if γ = 0, q = +∞; k(λ) = 1 + | log λ| 1+κ for any κ > 0 if γ = 0, q < +∞.
Furthermore, such a distribution R (F ) is unique if and only if γ > 0. Also, as soon as

β < 0, R(F ) ∈ B β p,∞ .
In fact, our main theorem [BL22, Theorem 4.5] is slightly stronger, but we refrain from presenting it here because it demands the introduction of heavier notations. At this point, we also would like to mention the paper [START_REF] Zorin-Kranich | Reconstruction theorem in quasinormed spaces[END_REF] which provides a reconstruction result in the general case of quasi-normed spaces (including the case of the Besov spaces).

As in the case of the Hölder reconstruction theorem, see our discussion in Section 1.2.4, it is natural to expect Theorem 1.2.2 to retrieve a result of Young multiplication, this time in the more general Besov spaces. Indeed, the same approach as in Section 1.2.4 recovers the following result (which is already known in the literature, see e.g. [START_REF] Martin | Refinements of the Solution Theory for Singular SPDEs[END_REF]Corollary 2.1.35] or [START_REF] Van Zuijlen | Theory of function spaces[END_REF]Theorem 19.7] for alternative proofs using paraproduct techniques).

Theorem 1.2.3 (L.B.-D.Lee, [BL22, Theorem 3.12]). Let p 1 , p 2 , q 1 , q 2 ∈ [1, +∞] and let p ∈ [1, +∞] be defined by

1 p = 1 p 1 + 1 p 2 . Let α, β ∈ R be such that α < 0 < β, α + β > 0.
Then there exists a bilinear continuous map M : B α p 1 ,q 1 × B β p 2 ,q 2 → B α p,q 1 which extends the usual (pointwise) product, i.e. when g ∈ B α p 1 ,q 1 and f ∈ C ∞ , M (g, f ) = gf .

Contribution III: Schauder estimates for germs

In this work in preparation with Francesco Caravenna and Lorenzo Zambotti, we establish Schauder estimates in the context of coherent germs. The celebrated "classical" Schauder estimates state that kernels with integrable singularities on the diagonal enjoy regularising properties. More precisely, let K :

R d × R d → R be such that for all multi-indices k, l ∈ N d , |∂ k 1 ∂ l 2 K(x, y)| ≲ |y -x| -d-|k|-|l|+β ,
for some β > 0, then (assuming further technical assumptions, see Section 4.2.3 below for a more precise discussion), for all α ∈ R the convolution with K is a well-defined continuous map from C α to C α+β : we say that K is β-regularising. This is a powerful tool in the context of partial differential equations as it allows to perform fixed-point arguments . Now in the context of stochastic partial differential equations, as suggested above one may want to argue at the level of germs rather than distributions, and it is natural to wonder whether one can "lift" the convolution operator in a meaningful way at the level of the spaces G ᾱ;α,γ . More precisely, given ᾱ, α, γ ∈ R, does there exist a "nice" continuous linear map K (and exponents ᾱ′ , α ′ , γ ′ ∈ R) such that the following diagram commutes?

G ᾱ;α,γ G ᾱ′ ;α ′ ,γ ′ Z ᾱ Z ᾱ+β K R R K (1.2.9)
In Chapter 4, we show that a natural answer to this question is provided by convolving the germ F with K pointwise then subtracting a suitable "Taylor germ":

Theorem 1.2.4 (L.B.-F.Caravenna-L.Zambotti). Let ᾱ, α, β, γ ∈ R satisfying ᾱ ≤ min γ, α ≤ γ, γ ̸ = 0, β > 0, ᾱ + β ̸ = 0, α + β ̸ = 0, γ + β /
∈ N, and let K be a β-regularising kernel. Then the map

K : G ᾱ;α,γ -→ G ( ᾱ+β)∧0;(α+β)∧0,γ+β F -→ K * F x + |k|<γ+η (K * (R (F ) -F x )) (k) (x) (•-x) k k! x∈R d
, is well-defined and when γ > 0 the diagram in (1.2.9) commutes i.e. for all F ∈ G ᾱ;α,γ ,

R (K (F )) = K * R (F ) .
This statement is in some sense similar to that of Hairer's multilevel Schauder estimates [Hai14, Theorem 5.12], which are however slightly more subtle. The reason is that in the context of SPDEs and Regularity Structures, we furthermore need to impose that the germs should admit further structure with respect to a given finite generating family of germs (which end up in practice containing the required "data" of the noise governing the equation). More precisely let Π 1 , • • • , Π n be a family of germs, germs of interest will be of the form

F x = n i=1 f i (x)Π i x ,
where of course there is a priori no guarantee that such germs should satisfy the properties of coherence and homogeneity that are required for the reconstruction to exist. However, in practice the germs Π i are stable by expansion and we have identities of the form

Π i y = n j=1 Π j x Γ i,j x,y ,
for some functions Γ. The couple (Π, Γ) is called a model in Hairer's terminology. This allows to express

(F y -F x )(φ λ x ) = n i=1 n j=1 Γ i,j x,y f j (y) -f i (x) Π i x (φ λ x ),
and a straighforward calculation now shows that if Π i satisfies the property of homogeneity (1.2.7) for some exponent ᾱi and if there exists γ > max i ( ᾱi ) such that

|f i (x)| ≲ 1, n j=1 Γ i,j x,y f j (y) -f i (x) ≲ |y -x| γ-ᾱi , (1.2.10)
then F ∈ G α;α,γ , where α = min i ᾱi . Functions f = (f i ) i satisfying (1.2.10) are called "modelled distributions" in Hairer's terminology and their space is denoted D γ . Our calculations permit to recover Hairer's multilevel Schauder estimates, the statement of which we now sketch (see the original theorem [Hai14, Theorem 5.12] or Theorem 4.4.10 below for a precise statement): Theorem 1.2.5 (Multilevel Schauder estimates). Under suitable (but not constraining) assumptions, the map K defined in Theorem 1.2.4 induces a continuous linear map from D γ to Dγ+β where this last space is the space of modelled distributions with respect to a new3 (but explicit) model.

Note that this kind of statement is stronger than Theorem 1.2.4 as the "condition of levels" (1.2.10) is stronger than requiring coherence and homogeneity.

Introduction

Rough paths were introduced by T. Lyons in [START_REF] Lyons | Differential equations driven by rough signals[END_REF] in order to give a robust theory for controlled ordinary differential equations: for Y :

[0, T ] → R k of class C 1 and σ : R d → R d ⊗ R k smooth, one studies the equation X t = X 0 + t 0 σ(X s ) dY s , t ≥ 0,
and the aim is to extend the map Y → X to paths Y of class C α with α ∈ (0, 1), in order to include the case of Brownian motion and therefore stochastic differential equations.

A few years later, a new analytical tool was introduced to study such rough differential equations: the Sewing lemma [START_REF] Gubinelli | Controlling rough paths[END_REF][START_REF] Feyel | Curvilinear integrals along enriched paths[END_REF], which allows to define uniquely a notion of integral I t = t 0 X s dY s in situations where X and Y may be paths of low regularity. For example, in the so called Young regime, i.e. when X and Y have Hölder regularity α resp. β with α + β > 1, it is a classical result due to Young [START_REF] Young | An inequality of the Hölder type, connected with Stieltjes integration[END_REF] and Kondurar [Kon37] that a canonical integration theory exists for I t = t 0 X s dY s . The Sewing Lemma recovers this setting by showing that there exists one and only one I : [0, T ] → R such that

I 0 = 0, |I t -I s -Y s (X t -X s )| ≲ |t -s| α+β .
This raises the following general question: given A : [0, T ] 2 → R and γ > 0, does there exist

I : [0, T ] → R satisfying |I t -I s -A s,t | ≲ |t -s| γ uniformly over s ≤ t ∈ [0, T ]?
The Sewing lemma gives a simple answer to this question when γ > 1: it asserts that such an I exists (uniquely if

I 0 = 0) as soon as |A s,t -A s,u -A u,t | ≲ |t -s| γ uniformly over s ≤ u ≤ t ∈ [0, T ]
. This generalises Young-Kondurar's integration theory, and allows to build a well-posedness theory for rough differential equations.

Surprisingly, the Sewing lemma has not been extended yet to cover the case γ ∈ (0, 1]. It is clear that the situation is different, because this time the relation |I t -I s -A s,t | ≲ |t -s| γ does not characterise I anymore: indeed, any other Ĩ has the same property if and only if I -Ĩ is γ-Hölder. However, existence of I under the hypothesis that |A s,t -A s,u -A u,t | ≲ |t -s| γ is not known. The aim of this paper is to fill this gap, including the case γ = 1 for which the result is slightly different.

As in the case of γ > 1, the Sewing lemma for γ ≤ 1 is an analytic tool which can nicely interact with algebraic structures. The link between algebra, analysis and probability was already clear in Terry Lyons' seminal paper [START_REF] Lyons | Differential equations driven by rough signals[END_REF], where geometric rough paths were defined in terms of tensor algebras, following the work of Kuo-Tsai Chen on iterated integrals [START_REF] Chen | Iterated integrals and exponential homomorphisms[END_REF]. Later Massimiliano Gubinelli pushed this beautiful interaction further by defining branched rough paths in terms of the Butcher-Connes-Kreimer Hopf algebra [START_REF] Gubinelli | Ramification of rough paths[END_REF].

In this paper we show that the Sewing lemma, both for γ > 1 and γ ≤ 1, allows to extend this framework to rough paths on a general (commutative graded connected locally finite) Hopf algebra. This includes geometric and branched rough paths and also other notions introduced recently, like quasi-geometric rough paths [START_REF] Bellingeri | Quasi-geometric rough paths and rough change of variable formula[END_REF], planarly branched rough paths [START_REF] Curry | Planarly branched rough paths and rough differential equations on homogeneous spaces[END_REF] and the (so far un-named) Hopf algebra of [LOT21, Section 6].

In particular, the main application of the Sewing lemma for γ ≤ 1 is the construction of rough paths over a Hölder path. The fact that one can always lift an α-Hölder path for α ∈ (0, 1) to a α-geometric rough path has been long known, at least since the paper by Lyons-Victoir [START_REF] Lyons | An extension theorem to rough paths[END_REF]. However their construction was based on a (beautiful) geometric and algebraic construction, which famously mentioned the axiom of choice and was therefore considered as non-constructive.

In Section 2.4 we show that the Sewing lemma in the case γ < 1 allows to construct inductively in a simple way rough paths on a Hopf algebra over a α-Hölder path for α ∈ (0, 1), up to level N := ⌊1/α⌋ (higher levels are uniquely determined by the Sewing lemma for γ > 1). Even more, this construction is continuous with respect to the relevant metrics. This was already known for the second level of a geometric rough path, which can be reduced to an integral of the form t 0 X s dY s in a case where the Young condition is not satisfied. Here we extend this to a general result.

Such a Sewing lemma in the regime γ ∈ (0, 1] is proved in Theorem 2.2.8 below. Contrary to the case γ > 1, the constructed integral I is not unique and is not defined by Riemann-type sums. However, I can be chosen to be linear in A and continuous in an appropriate topology. Note that in the context of regularity structures this is very close to the Reconstruction Theorem [Hai14; CZ20; ZK21] in the negative exponent case, where uniqueness is lost and different approximations are used, see Section 2.5 below for a discussion.

Another application of the Sewing lemma for γ ∈ (0, 1) is the bicontinuity of a natural bijection between the set of rough paths on a Hopf algebra and a linear space of Hölder functions. This also extends to a general result the content of [TZ20, Corollary 1.3], where a natural bijection between these spaces, in the context of branched rough paths, had been constructed using a constructive Lyons-Victoir extension technique, but no proof of the continuity of this map was available. We mention that the continuity of this action and of a Lyons-Victoir extension in the context of branched rough paths has been obtained using paraproducts in [BH21a, Theorem 21] and [BH21b, Corollary 3].

We note that other extensions results have been obtained since [START_REF] Lyons | An extension theorem to rough paths[END_REF], see e.g. the renormalization method of [Unt10; Unt13], and [START_REF] Nualart | A construction of the rough path above fractional Brownian motion using Volterra's representation[END_REF], which uses probabilistic techniques in the case of the fractional Brownian motion. Finally, we mention that it should be possible to extend our method to the Besov setting [START_REF] Friz | Besov rough path analysis[END_REF]. Future extensions might involve the framework of the Stochastic Sewing Lemma [START_REF] Lê | A stochastic sewing lemma and applications[END_REF], the rough paths approach to non-commutative stochastic calculus [DS13; BG21] and the rough paths approach to McKean-Vlasov equations [START_REF] Delarue | Probabilistic rough paths I Lions trees and coupled Hopf algebras[END_REF].
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Sewing lemmas

In the following we consider a time horizon T > 0. We note

∆ n T := {(x 1 , . . . , x n ) ∈ R n : 0 ≤ x 1 ≤ • • • ≤ x n ≤ T }.
We denote C (∆ n T ) the space of R-valued continuous functions on ∆ n T ; and C n the space of R-valued continuous functions on [0, T ] n .

Note well that here the subscript n corresponds to the dimension of the domain (and not the regularity of the function).

Presentation of the result

Recall the usual Sewing lemma:

Theorem 2.2.1 (Sewing lemma for γ > 1 [Gub04, Proposition 1], [FLP06, Lemma 2.1]). Let γ > 1 and A : ∆ 2 T → R be a continuous function such that |A s,t -A s,u -A u,t | ≲ |t -s| γ ,
uniformly over 0 ≤ s ≤ u ≤ t ≤ T . Then there exists a unique function I : [0, T ] → R such that I 0 = 0 and:

|I t -I s -A s,t | ≲ |t -s| γ ,
uniformly over 0 ≤ s ≤ t ≤ T . Moreover I is the limit of Riemann-type sums

I t = lim |P|→0 #P-1 i=0 A t i t i+1 (2.2.1)
along arbitrary partitions P of [0, T ] with vanishing mesh |P| → 0.

In (2.2.1), a partition of the interval [a, b] is a finite sequence of ordered points P = {a = t 0 < t 1 < . . . < t k = b}; moreover we denote #P = k and |P| := max i=1,...,#P |t i -t i-1 |.

In this section, we establish the following theorem, extending the scope of the Sewing lemma to the regime 0 < γ ≤ 1. Theorem 2.2.2 (Sewing lemma for 0 < γ ≤ 1). Let 0 < γ ≤ 1 and A : ∆ 2 T → R be a continuous function such that

|A s,t -A s,u -A u,t | ≲ |t -s| γ , (2.2.2)
uniformly over 0 ≤ s ≤ u ≤ t ≤ T . Then there exists a (non-unique) function I : [0, T ] → R such that I 0 = 0 and:

|I t -I s -A s,t | ≲ |t -s| γ if 0 < γ < 1, |t -s| (1 + |log |t -s||) if γ = 1, (2.2.3) 
uniformly over 0 ≤ s ≤ t ≤ T , and the map A → I is linear.

In fact, we shall show a more general result in Theorem 2. [START_REF] Hairer | A theory of regularity structures[END_REF][START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF], where different approximations are used depending on the sign of the exponent (named also γ), and where uniqueness is lost in the case of non-positive exponents. See Section 2.5 below for a discussion.

The main technical result

Now we turn to the statement and proof of our main technical result, Theorem 2.2.8 below. As in [START_REF] Feyel | A non-commutative sewing lemma[END_REF], we introduce a (new) notion of control function for our purposes. We do not have a natural interpretation for this definition. Rather, it corresponds to the quantity that appears in our proof below.

Definition 2.2.6 (Control function). If

V : [0, T ] → R + , we set for r, k 0 ∈ N: V(k 0 ) T 2 -r := (k 0 + 1) +∞ m=0 2 m+1 V T 2 -(r+mk 0 ) + +∞ m=0 k 0 k=0 r+mk 0 +k l=1 2 m+1-r-mk 0 -k+l V T 2 -(l-1) .
We say that V is a k 0 -control function if V (0) = 0, V is increasing and for each r ∈ N, V(k 0 ) (T 2 -r ) < +∞. We extend V(k 0 ) : [0, T ] → R + as follows: set V(k 0 ) (0) := 0, and for u ∈

(0, 1], set V(k 0 ) (u) := V(k 0 ) (T 2 -r ) where r ∈ N is uniquely defined by T 2 -(r+1) < u ≤ T 2 -r .
Example 2.2.7. Let γ > 0, V (u) := u γ . Then for any integer k 0 > 1 γ , V is a k 0 -control function and there exists a constant C = C k 0 ,γ such that:

V(k 0 ) (u) ≤        Cu γ if 0 < γ < 1, C (1 + | log(T )|) (1 + |log (u)|) u if γ = 1, CT γ-1 u if γ > 1.
We need the operators δ defined as follows:

1. δ : C 1 → C 2 : for I : [0, T ] → R, we define δI : [0, T ] 2 → R, δI s,t := I t -I s . 2. δ : C 2 → C 3 : for A : [0, T ] 2 → R, we define δA : [0, T ] 3 → R, δA s,u,t := A s,t -A s,u -A u,t .
It is easy to see that δ • δ = 0, so that these operators form a cochain complex, which is moreover exact: if δZ = 0 for Z ∈ C 2 , then Z = δz for some z ∈ C 1 (see [START_REF] Gubinelli | Controlling rough paths[END_REF]). We will work with dyadic numbers: for m ∈ N, denote D m := {k2 -m , k ∈ 0, 2 m }, and D := m∈N D m . Our main technical result is the following. Theorem 2.2.8. Let A : ∆ 2 T → R be a function and V be a k 0 -control function for some k 0 ∈ N. Assume that for all 0 ≤ s ≤ u ≤ t ≤ T , (δA) s,u,t ≤ V (t -s).

Then:

1. (Sewing on dyadics) There exists I : T D → R such that I 0 = 0 and for all 0 ≤ s ≤ t ≤ T with s/T, t/T ∈ D,

|I t -I s -A s,t | ≤ V(k 0 ) (t -s). (2.2.4)
2. (Sewing on [0, T ]) Assume furthermore that A is continuous and that

V(k 0 ) (u) → u→0 0.
Let W be a continous function such that V(k 0 ) ≤ W . Then there exists I : [0, T ] → R such that I 0 = 0 and for all 0 ≤ s ≤ t ≤ T ,

|I t -I s -A s,t | ≤ W (t -s).
Remark 2.2.9. Given a general control function V as in Definition 2.2.6, it is not clear in general whether the further condition V(k 0 ) (u) → u→0 0 holds. However, note that the condition is satisfied when V (u) = u γ for some γ > 0, see Example 2.2.7.

Proof. We prove the items in the announced order. Without loss of generality we can suppose that T = 1: if T ̸ = 1, consider à : ∆ 2 1 → R defined by Ãs,t := A sT,tT . Proof of 1. First we introduce a sequence u k,n defined for n ∈ N and k ∈ 0, 2 n -1 by the recurrence relations:

             u 0,0 := 0, u 2k,n+1 := 1 2 u k,n , u 2k+1,n+1 := 1 2 u k,n + (δA) k2 -n ,(k+ 1 2 )2 -n ,(k+1)2 -n
. Now note that in order to define recursively I on D, it is enough for each n ∈ N to define I on elements of D n of the form k2 -n where k = 2l + 1 is odd. Indeed, when k is even, k2 -n belongs to D n-1 . Thus, we set I 0 := 0 and then recursively:

I (2l+1)2 -n := I 2l2 -n + A 2l2 -n ,(2l+1)2 -n + u 2l,n .
(2.2.5) (Notice that for each dyadic number s ∈ D, I s is actually defined as a finite linear combination of the A u,v and there is no question of convergence here. Note also that this definition is linear in A.) We claim that R s,t := I t -I s -A s,t can be expressed on consecutive elements of D n by: R k2 -n ,(k+1

)2 -n = u k,n . (2.2.6)
This is not clear a priori as (2.2.5) only establishes this property when k = 2l is even. However, when k = 2l + 1 is odd, we argue by recurrence on n, and this is where we exploit the definition of u. Indeed, by definition of R, it holds that δR = -δA so that:

R (2l+1)2 -n ,(2l+2)2 -n = R (2l)2 -n ,(2l+2)2 -n -R (2l)2 -n ,(2l+1)2 -n + (δA) 2l2 -n ,(2l+1)2 -n ,(2l+2)2 -n .
By recurrence on n, R (2l)2 -n ,(2l+2)2 -n = u l,n-1 . By (2.2.5), we have R (2l)2 -n ,(2l+1)2 -n = u 2l,n . By definition of u, u 2l,n = 1 2 u l,n-1 , thus:

R (2l+1)2 -n ,(2l+2)2 -n = 1 2 u l,n-1 + (δA) 2l2 -n ,(2l+1)2 -n ,(2l+2)2 -n ,
and by definition of u this in turn equals u 2l+1,n , which establishes (2.2.6). Now let us turn to the Sewing bound (2.2.4). For r, M ∈ N, set:

v r,M := max t,s∈D M ,0≤t-s≤2 -r |R s,t | .
Note that when r > M , no distinct values t, s ∈ D M satisfy 0 ≤ t-s ≤ 2 -r , so that v r,M = 0. When r = M , the only elements t, s ∈ D r satisfying 0 ≤ t -s ≤ 2 -r are consecutive, i.e. of the form s = k2 -r , t = (k + 1) 2 -r so that from (2.2.6),

v r,r = max k∈ 0,2 r -1 |u k,r | .
According to the recursive definition of u, and the hypothesis on A,

v r,r ≤ 1 2 v r-1,r-1 + V 2 -(r-1) .
Iterating and since v 0,0 = 0, we get:

v r,r ≤ r l=1 2 -(r-l) V 2 -(l-1) . (2.2.7)
Now we establish a first (recursive) estimate of v r,r+k for r, k ∈ N. Let t, s ∈ D r+k be such that 0 ≤ t -s ≤ 2 -r . Note that if t = s then R s,t = 0, so that now we assume t -s > 0.

Remembering that δR = -δA, we decompose:

R s,t = R s,s 1 + R s 1 ,t 1 + R t 1 ,t -(δA) s 1 ,t 1 ,t -(δA) s,s 1 ,t . (2.2.8)
where 

s 1 := min (u ∈ D r+k-1 , u ≥ s), t 1 := max (u ∈ D r+k-1 , u ≤ t). Note that s 1 , t 1 are correctly defined, that s 1 , t 1 ∈ D r+k-1 ⊂ D r+k , s ≤ s 1 , t 1 ≤ t,
v r,r+k -v r,r+k-1 ≤ 2 V 2 -r + r+k l=1 2 -(r+k-l) V 2 -(l-1) .
Summing from k = 1 to K and reusing (2.2.7), we obtain for r, k ∈ N:

v r,r+K ≤ 2KV 2 -r + 2 K k=0 r+k l=1 2 -(r+k-l) V 2 -(l-1) .
(2.2.9)

Now fix k 0 ∈ N * , and let r, M ∈ N with r ≤ M . Let 0 ≤ t -s ≤ 2 -r with s, t ∈ D M . We consider several cases. If r + k 0 ≥ M , then using (2.2.9):

v r,M ≤ 2k 0 V 2 -r + 2 k 0 k=0 r+k l=1 2 -(r+k-l) V 2 -(l-1) . (2.2.10) If r + k 0 < M and 0 ≤ t -s ≤ 2 -(r+k 0 ) then by definition of v: |R s,t | ≤ v r+k 0 ,M . (2.2.11) If r + k 0 < M and 2 -(r+k 0 ) < t -s ≤ 2 -r
, then we consider

s 1 := min (u ∈ D r+k 0 , u ≥ s) , t 1 := max (u ∈ D r+k 0 , u ≤ t) .
Observe that s 1 , t 1 are correctly defined,

s ≤ s 1 , t 1 ≤ t, s 1 , t 1 ∈ D r+k 0 ⊂ D M . Also, since t -s > 2 -(r+k 0 ) , it holds that D r+k 0 ∩ [s, t] ̸ = ∅, whence s 1 ≤ t 1 . Finally, the definition of s 1 , t 1 implies s 1 -s ≤ 2 -(r+k 0 ) , t -t 1 ≤ 2 -(r+k 0 ) . Thus from (2.2.8): |R s,t | ≤ 2v r+k 0 ,M + v r,r+k 0 + 2V 2 -r .
(2.2.12)

We denote:

W (k 0 ) (r) := 2 (k 0 + 1) V 2 -r + 2 k 0 k=0 r+k l=1 2 -(r+k-l) V 2 -(l-1) ,
so that combining (2.2.10), (2.2.11), (2.2.12), and (2.2.9) gives for r ≤ M ∈ N:

v r,M ≤ 2v r+k 0 ,M + W (k 0 ) (r) if r + k 0 < M, W (k 0 ) (r) if r + k 0 ≥ M.
Iterating this recursive estimate, we obtain:

v r,M ≤ +∞ m=0 2 m W (k 0 ) (r + mk 0 ) .
Note that from Definition 2.2.6, the right-hand term equals V(k 0 ) (2 -r ), and thus this implies:

sup t,s∈D,2 -(r+1) <t-s≤2 -r |R s,t | ≤ V(k 0 ) 2 -r .
Recall that by definition,

V(k 0 ) (2 -r ) = V(k 0 ) (t -s) when 2 -(r+1) < t -s ≤ 2 -r . This is enough to conclude that for all s, t ∈ D with t ̸ = s, |R s,t | ≤ V(k 0 ) (t -s). When t = s, |R t,t | = |A t,t | = | -(δA) t,t,t | ≤ V (0) = 0 ≤ V(k 0 ) (0)
, whence the announced result. (Note that this is the only time in the proof where we use the assumption that V (0) = 0.) Proof of 2. We extend I on [0, T ] by density, setting for t ∈ [0, T ]:

I t := lim s→t s∈D I s .
This is correctly defined, because for any choice of (s n ) n∈N ∈ D N with s n → t, the Sewing estimate: 

|I sn -I sm | ≤ |A sn∧sm,sn∨sm | + V(k 0 ) (|s n -s m |) ,
I 3/4 = 1 2 A 0,1/2 + 1 2 A 0,1 + A 1/2,3/4 -1 2 A 1/2,1 . Since I 0 = 0, it follows that I 3/4 -I 0 depends on the value of A 0,1 .
Another sewing map I could possibly satisfy a locality property, but this would clearly require novel ideas. We point out that in the case of the Reconstruction Theorem it is also well known that in the regime γ ≤ 0 (which corresponds to γ ≤ 1 for the Sewing Lemma) the Reconstruction map is non-local, see e.g. [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF]Section 11].

Remark 2.2.11 (Lyons-Victoir). The construction in the proof of Theorem 2.2.8 is reminiscent of the Lyons-Victoir extension technique [LV07], although it is not clear whether the extension we construct in Section 2.4 below does coincide with the Lyons-Victoir extension in general.

Remark 2.2.12. In the case of a smooth path or a Brownian motion, one can build a sewing map with the Riemann or (respectively) the Itô integral, but the results are bound to be different from that of our construction; the merit of our sewing map is of course its wider range of applicability.

Continuity of the Sewing map

The Sewing Lemma for γ > 1 given in Theorem 2.2.1 finds its main applications in the theory of rough integration and rough differential equations [START_REF] Gubinelli | Controlling rough paths[END_REF]. In this setting it is useful to introduce some function spaces and interpret the Sewing Lemma in terms of operators having nice properties on these spaces. Then we introduce for all γ > 0, A ∈ C(∆ 2 T ) and

B ∈ C(∆ 3 T ) ∥A∥ C γ 2 (∆ 2 
T ) := sup 0≤s<t≤T |A s,t | |t -s| γ , ∥B∥ C γ 3 (∆ 3 T ) := sup 0≤s<u<t≤T |B s,u,t | |t -s| γ ,
with the associated normed spaces

C γ 2 (∆ 2 T ) := {A ∈ C(∆ 2 T ) : ∥A∥ C γ 2 (∆ 2 
T ) < +∞}, C γ 3 (∆ 3 T ) := {B ∈ C(∆ 3 T ) : ∥B∥ C γ 3 (∆ 3 
T ) < +∞}. Then we can reformulate the Sewing Lemma for γ > 1 with a quantitative estimate as follows

Theorem 2.3.1 (Sewing map for γ > 1, see [Gub04; FLP06]). Let γ > 1 and A ∈ C(∆ 2 T ) satisfy δA ∈ C γ 3 (∆ 3 T ). Then there exists a unique R ∈ C γ 2 (∆ 2 T ) such that δR = δA. Moreover we have the estimate ∥R∥ C γ 2 (∆ 2 T ) ≤ C γ ∥δA∥ C γ 3 (∆ 3 T ) (2.3.1) with C γ = (2 γ -2) -1 .
The two statements in Theorem 2.2.1 and Theorem 2.3.1 are essentially equivalent if we establish the correspondence (A, R) ↔ (I, R) in such a way that

I : [0, T ] → R, I 0 = 0, δI = A -R.
The uniqueness statement in Theorem 2.3.1 implies that if A ∈ C(∆ 2 T ) satisfies δA = 0, then the corresponding R is also equal to zero. We obtain that in Theorem 2.3.1 R is in fact a function of δA only. In other words, Theorem 2.3.1 allows to define the Sewing map

Λ : δ(C(∆ 2 T )) ∩ C γ 3 (∆ 3 T ) → C γ 2 (∆ 2 T ), B = δA → R = ΛB,
and the bound (2.3.1) yields the continuity property in the case γ > 1

∥ΛB∥ C γ 2 (∆ 2 
T ) ≤ (2 γ -2) -1 ∥B∥ C γ 3 (∆ 3 T ) , ∀B ∈ δ(C(∆ 2 T )) ∩ C γ 3 (∆ 2 T ). Since δR = δA, or equivalently since δ • δI = 0, we note that δΛ = Id δ(C(∆ 2 T ))∩C γ 3 (∆ 2 
T ) , namely we can interpret Λ as a right inverse of δ.

We now state the Sewing Lemma for 0 < γ ≤ 1 with a quantitative estimate.

Theorem 2.3.2 (Sewing map for 0 < γ ≤ 1). Let 0 < γ ≤ 1 and A ∈ C(∆ 2 T ) with δA ∈ C γ 3 (∆ 3 T ).
Then there exists R ∈ C(∆ 2 T ) such that δR = δA, the map δA → R =: Λ(δA) is linear and for some constant C γ ≥ 0 we have the estimate

∥R∥ C γ 2 (∆ 2 T ) ≤ C γ ∥δA∥ C γ 3 (∆ 3 T ) if γ < 1, (2.3.2) sup 0≤s<t≤T |R s,t | (1 + |log |t -s||) |t -s| ≤ C 1 ∥δA∥ C 1 3 (∆ 3 T ) if γ = 1. (2.3.3)
One can actually bound the constants in Example 2.2.7 and observe that one can take:

C γ = 2 γ+1 1 -2 1-γ 1 γ +1 2 + 1 γ + 2 (2 1-γ -1) (1 -2 -γ ) if 0 < γ < 1, C 1 = 96 log 2 (1 + | log T |) if γ = 1.
We have therefore another Sewing map for γ < 1

Λ : δ(C(∆ 2 T )) ∩ C γ 3 (∆ 3 T ) → C γ 2 (∆ 2 T ), B = δA → R = ΛB.
The fact that R is in fact a function of δA follows from the construction in Theorem 2. 

(C(∆ 2 T )) ∩ C γ 3 (∆ 3 T ) → C γ 2 (∆ 2 
T ). For γ = 1 this is also true, but the norm C γ 2 has to be slightly modified in accordance with (2.3.3), but we refrain from introducing a notation for this.

We define the classical space of β-Hölder functions on [0, T ] for β ∈ (0, 1]:

C β 1 := {f ∈ C([0, T ]) : ∥δf ∥ C β 2 < +∞}.
Then the choice of R in Theorem 2.3.2 can not be unique for γ ≤ 1, since R + δf for any f ∈ C γ 1 also satisfies the desired properties. Remark 2.3.3. Note that there are two different Sewing maps: one for γ > 1 and one for γ ≤ 1. We denote both by Λ, since it is always clear from the context which of the two is used.

The integration map

We have seen above that the Sewing map allows to define an integration map A → I, for all

A ∈ C(∆ 2 T ) such that δA ∈ C γ 3 (∆ 3 T )
, where I ∈ C 1 is defined by

I 0 = 0, δI -A = -Λ(δA) ∈ C γ 2 (∆ 2 T ). (2.3.4)
We note this linear map by

I : {A ∈ C(∆ 2 T ) : δA ∈ C γ 3 (∆ 3 T )} → C 1 , I(A) := I.
A natural question in this context is under which conditions I belongs to a space of β-Hölder functions.

Proposition 2.3.4. Let β ∈ (0, 1) and

A ∈ C(∆ 2 T ) such that δA ∈ C β∨γ 3 (∆ 3 T ). Then I := I(A) ∈ C β 1 if and only if A ∈ C β 2 (∆ 2 T )
, and in this case

∥δI∥ C β 2 (∆ 2 
T ) ≤ ∥A∥ C β 2 (∆ 2 
T ) + C β∨γ ∥δA∥ C β∨γ 3 (∆ 3 T ) . Proof. Let A ∈ C(∆ 2 T ) with δA ∈ C β∨γ 3 (∆ 3 T ). Since δI = A -Λ(δA)
we obtain for β ∈ (0, 1):

∥δI∥ C β 2 (∆ 2 
T ) ≤ ∥A∥ C β 2 (∆ 2 
T ) + ∥Λ(δA)∥ C β 2 (∆ 2 T ) ≤ ∥A∥ C β 2 (∆ 2 T ) + ∥Λ(δA)∥ C β∨γ 2 (∆ 2 T ) ≤ ∥A∥ C β 2 (∆ 2 T ) + C β∨γ ∥δA∥ C β∨γ 3 (∆ 3 
T ) . On the other hand we have

∥A∥ C β 2 (∆ 2 T ) ≤ ∥δI∥ C β 2 (∆ 2 T ) + ∥Λ(δA)∥ C β 2 (∆ 2 T ) ≤ ∥δI∥ C β 2 (∆ 2 
T ) + ∥Λ(δA)∥ C β∨γ 2 (∆ 2 T ) ≤ ∥δI∥ C β 2 (∆ 2 
T ) + C β∨γ ∥δA∥ C β∨γ 3 (∆ 3 T ) . The proof is complete.
In the terminology of [CZ20]:

• δA ∈ C β∨γ 3 (∆ 3 T ) is a "coherence" condition, • A ∈ C β 2 (∆ 2
T ) is a "homogeneity" condition. See Section 2.5 below for further discussions.

Optimality of the case

γ ∈ ]0, 1[.
Let us fix γ ∈ ]0, 1[. The following example shows that the growth rate |t -s| γ from Theorem 2.2.2 in the case γ < 1 is optimal. Let us set A s,t := |t -s| γ . Then for s ≤ u ≤ t,

δA s,u,t = |t -s| γ -|u -s| γ -|t -u| γ ∈ [-|t -s| γ , |t -s| γ ]. Therefore δA ∈ C γ 3 (∆ 3 T ).
Let us suppose now that we can improve the bound (2.2.3) in the sense that there exists I ∈ C 1 such that I 0 = 0 and

lim ε↓0 sup |t-s|≤ε |I t -I s -A s,t | |t -s| γ = 0.
Then, denoting R s,t := I t -I s -A s,t we must have δR s,u,t = o(|t -s| γ ) as s ≤ u ≤ t, |t -s| → 0. However, taking u = s+t 2 , observe that δR s,u,t = -δA s,u,t = (2 1-γ -1)|t -s| γ , which cannot be a o(|t -s| γ ) and thus provides a contradiction.

Optimality of the case γ = 1.

The following example shows that the growth rate |t -s|| log |t -s|| from Theorem 2.2.2 in the case γ = 1 is optimal. Let us set A s,t := |t -s| log |t -s|. Then for s ≤ u ≤ t, where p = |t-u| |t-s| ∈ [0, 1]. Therefore δA ∈ C 1 3 (∆ 3 T ). Let us suppose now that we can improve the bound (2.2.3) in the sense that there exists I ∈ C 1 such that I 0 = 0 and

lim ε↓0 sup |t-s|≤ε |I t -I s -A s,t | |t -s|| log |t -s|| = 0.
Then there exists δ n → 0 such that

sup |t-s|≤ 1 n |I t -I s -A s,t | ≤ δ n log n n .
Let us set t = i/n and s = (i -1)/n. Then A s,t = -log n/n and

-(1 + δ n ) log n n ≤ I i n -I i-1 n ≤ -(1 -δ n ) log n n ,
and summing over i

-(1 + δ n )(log n)t ≤ I t ≤ -(1 -δ n )(log n)t, t = i n .
Since t = im nm for all m ≥ 1, we obtain

-(1 + δ nm )(log n + log m)t ≤ I t ≤ -(1 -δ nm )(log n + log m)t, t = i n ,
Letting m → +∞ we obtain I t = -∞, which is a contradiction.

Unordered times

For the applications to rough paths of Section 2.4, it is important to extend the Sewing Lemmas to functions A : [0, T ] 2 → R rather than A : ∆ 2 T → R. For this, we consider continuous functions A : [0, T ] 2 → R such that for some γ > 0

|A s,t -A s,u -A u,t | ≲ (|t -u| ∨ |u -s|) γ , s, u, t ∈ [0, T ].
This implies in particular 

|A s,t -A s,u -A u,t | ≲ |t -s| γ , 0 ≤ s ≤ u ≤ t ≤ T. Thus, δA ∈ C γ 3 (∆ 3 T ),
so that for γ ̸ = 1 |Λ(δA) s,t | |t -s| γ ≤ ∥Λ(δA)∥ C γ 2 (∆ 2 T ) + |δA s,t,s | ≤ (C γ + 1)∥δA∥ C γ 3 (∆ 3 T ) , with C γ as in (2.3.1)-(2.3.2), respectively.
Thus, if we introduce for all γ > 0,

A ∈ C 2 and B ∈ C 3 ∥A∥ C γ 2 := sup s,t∈[0,T ], s̸ =t |A s,t | |t -s| γ , ∥B∥ C γ 3 := sup s,u,t∈[0,T ], s̸ =t |B s,u,t | (|t -u| ∨ |u -s|) γ ,
with the associated normed spaces

C γ 2 := {A ∈ C 2 : ∥A∥ C γ 2 < +∞}, C γ 3 := {B ∈ C 3 : ∥B∥ C γ
3 < +∞}, then the above argument combined with Theorem 2.3.1, Theorem 2.3.2, and Proposition 2.3.4, give the following sewing lemma for unordered times: Theorem 2.3.5 (Sewing lemma for γ > 0 and unordered times). Let γ > 0. There exist linear maps

Λ : δ(C 2 ) ∩ C γ 3 → C 2 , I : {A ∈ C 2 : δA ∈ C γ 3 } → C 1 , such that for A ∈ C 2 with δA ∈ C γ 3 : δΛ(δA) = δA, I (A) 0 = 0, δI (A) -A = -Λ(δA).
Such maps are unique when γ > 1 but not when 0 < γ ≤ 1. Furthermore:

1. (Regularity of Λ) For A ∈ C 2 with δA ∈ C γ 3 ∥Λ(δA)∥ C γ 2 ≤ (C γ + 1) ∥δA∥ C γ 3 if γ ̸ = 1, sup s,t∈[0,T ],s̸ =t |Λ(δA) s,t | (1 + |log |t -s||) |t -s| ≤ (C 1 + 1)∥δA∥ C 1 3 if γ = 1.

(Regularity of

I) Let 0 < β < 1 then: ∥δI(A)∥ C β 2 ≤ ∥A∥ C β 2 + (C β∨γ + 1)∥δA∥ C β∨γ 3 .

A continuous Lyons-Victoir extension

One of the most important ideas of rough paths theory is that one can build strong integration theories involving non-smooth paths X : [0, T ] → R d , under the condition that one "enriches" X with a collection of "iterated integrals of X against itself". When X is not smooth, such iterated integrals can not be defined classically: therefore one enriches X rather with a collection of functions which retain some of the algebraic and analytic properties valid in the smooth case. The algebraic properties of the collection of its iterated integrals (also called its signature) were first discovered by Chen [START_REF] Chen | Iterated integrals and exponential homomorphisms[END_REF], and the theory of rough paths builds on this algebraic formalism.

In this section we show that the Sewing Lemma (Theorem 2.3.5) for γ ∈ (0, 1) allows to construct rough paths over Hölder paths X : [0, T ] → R d in a continuous way, extending Lyons-Victoir's result [START_REF] Lyons | An extension theorem to rough paths[END_REF] to the setting of a general commutative graded conneted locally finite Hopf algebra (see below). Let us discuss for example the case of (weakly) geometric rough paths. In this context, we have 1. a parameter α ∈ (0, 1), and the associated integer N := ⌊1/α⌋, 2. the finite set S := ∪ N n=1 {1, . . . , d} n endowed with the degree function

S ∋ (i 1 , . . . , i n ) → |(i 1 , . . . , i n )| := n ∈ {1, . . . , N }, 3. a family (⟨X • , τ ⟩) τ ∈S ⊂ C 2 such that for all (i 1 , . . . , i n ) ∈ S and s, u, t ∈ [0, T ], one has |⟨X s,t , (i 1 , . . . , i n )⟩| ≲ |t -s| αn , (2.4.1) δ⟨X, (i 1 , . . . , i n )⟩ s,u,t = n-1 k=1 ⟨X s,u , (i 1 , . . . , i k )⟩⟨X u,t , (i k+1 , . . . , i n )⟩. (2.4.2)
Then by (2.4.1)-(2.4.2) we have the estimate for all τ ∈ S and s, u, t ∈ [0, T ]

|(δ⟨X, τ ⟩) s,u,t | ≲ |τ |-1 k=1 |u -s| αk |t -u| α(|τ |-k) ≲ (|s -u| ∨ |t -u|) α|τ | . (2.4.3) By definition, α|τ | ≤ αN ≤ 1. The extension problem is the following: suppose that 1. k ∈ {1, . . . , N -1}, 2. we have (⟨X, τ ⟩) τ ∈S,|τ |≤k ⊂ C 2 satisfying (2.4.1)-(2.4.2), 3. we have τ 0 ∈ S with |τ 0 | = k + 1.
Is it then possible to find ⟨X, τ 0 ⟩ ∈ C 2 which satisfies (2.4.1)-(2.4.2) as well?

It is now clear that the Sewing Lemma (Theorem 2.3.5) for γ < 1 yields a positive answer to this problem for all k ∈ {1, . . . , N -1} as long as αN < 1, by applying the Sewing map Λ to the right-hand side of (2.4.2) for τ = τ 0 and calling the result ⟨X, τ 0 ⟩. If αN = 1 then for k + 1 = N we can construct ⟨X, τ 0 ⟩ similarly but in the right-hand side of (2.4.1) we have |t -s|| log |t -s|| instead of |t -s|.

We note that for

|τ | = 1 formula (2.4.2) implies δ⟨X, τ ⟩ = 0, namely ⟨X, τ ⟩ st = f τ t -f τ s
for some α-Hölder function f . Therefore one starts with a family of α-Hölder functions (f τ ) τ ∈S,|τ |=1 on [0, T ], and applying recursively Theorem 2.3.5 one can construct a family (⟨X, τ ⟩) τ ∈S satisfying (2.4.1)-(2.4.2). Moreover (⟨X, τ ⟩) τ ∈B can be seen to depend in a continuous way on (f τ ) τ ∈B,|τ |=1 . This is the basis of the extension theorem that we prove in Theorem 2.4.4 below.

Rough paths and Hopf algebras

In what follows, we consider

H = ( n∈N H n , m, 1, ∆, ϵ, S), a graded, connected (H 0 = span (1)), locally finite (0 < dim (H n ) < +∞), commutative Hopf algebra on R with antipode S. The degree |τ | of τ ∈ ∪ n H n is defined by |τ | = n if τ ∈ H n .
The structure of Hopf algebra relies on many properties of compatibility between the operations (see e.g. [Car07; CP21] for more details on Hopf algebras). For instance, we will use the compatibility of the product m and the coproduct ∆, which reads (where we note τ 2,3 to be the operator defined by

τ 2,3 (a ⊗ b ⊗ c ⊗ d) := a ⊗ c ⊗ b ⊗ d): ∆ • m = (m ⊗ m) • τ 2,3 (∆ ⊗ ∆) .
(2.4.4)

We will also work with the reduced coproduct ∆ ′ : H → H ⊗ H defined as

∆ ′ τ := ∆τ -τ ⊗ 1 -1 ⊗ τ.
Recall that for n ≥ 1, ∆ ′ : H n → p,q≥1,p+q=n H p ⊗ H q , and that ∆ ′ satisfies the coassociativity property:

Id ⊗ ∆ ′ ∆ ′ = ∆ ′ ⊗ Id ∆ ′ . (2.4.5)
All those constraints on H are somehow quite restrictive. In fact, the following result, due to Milnor and Moore, asserts that such an H necessarily has a polynomial structure. 

3]). Let H be a graded connected commutative Hopf algebra. Then H is a free polynomial algebra, whose indeterminates can be chosen to be homogeneous elements of H.

This polynomial structure will be useful for the construction of linear maps on H that are also multiplicative, which we will call characters. More precisely: Definition 2.4.2 (Characters). Let H be a real algebra on R.

1. Let n ≥ 1. We say that a nonzero linear map X ∈ L (H ≤n , R) is a truncated character of order n on H if for all σ, τ ∈ H ≤n with στ ∈ H ≤n , it holds that ⟨X, στ ⟩ = ⟨X, σ⟩ ⟨X, τ ⟩. We note G n the set of truncated characters on H of order n.

We say that a nonzero linear map

X ∈ L (H, R) is a character on H if for all σ, τ ∈ H, ⟨X, στ ⟩ = ⟨X, σ⟩ ⟨X, τ ⟩.
We note G the set of characters on H.

We will be interested in rough paths, which we define now. Heuristically, a rough path is a collection of biprocesses having the nice analytical and algebraic properties of iterated integrals.

Definition 2.4.3 (Rough paths).

Let H be a graded connected locally finite Hopf algebra on R. Let α ∈ (0, 1) and

N := ⌊1/α⌋. A (H, α)-rough path is a map X : [0, T ] 2 → G N such that: 1. for all τ ∈ ∪ n≤N H n we have ⟨X, τ ⟩ ∈ C α|τ | 2 , i.e. sup s̸ =t∈[0,T ] |⟨X s,t , τ ⟩| |t -s| α|τ | < +∞.
(2.4.6)

(Chen's relation) for all

τ ∈ H ≤N and s, u, t ∈ [0, T ], one has ⟨X s,t , τ ⟩ = ⟨X s,u ⊗ X u,t , ∆τ ⟩ . (2.4.7)
We note RP α (H) the set of all (H, α)-rough paths.

Then our main result will be the following generalisation of the Lyons-Victoir extension theorem [LV07]:

Theorem 2.4.4 (A continuous extension). Let α ∈ (0, 1) with α -1 / ∈ N. Let us set C α H * 1 := {f : [0, T ] → H * 1 : f 0 = 0, ∥f t -f s ∥ ≲ |t -s| α } .
There exists a continuous "extension map" E :

C α H * 1 → RP α (H) such that for all h ∈ H 1 and f ∈ C α H * 1 , ⟨E (f ) , h⟩ = ⟨f, h⟩.
In other words, every α-Hölder path with values in the finite dimensional space H * 1 can be lifted to a α-rough path on H, and this extension can be made in a continuous way. Theorem 2.4.4 will be proved as a corollary of Theorem 2.4.7 below.

Extension to levels higher than N

By the definition of ∆ ′ , the Chen relation (2.4.7) is equivalent to 

(δ ⟨X, τ ⟩) s,u,t = X s,u ⊗ X u,t , ∆ ′ τ . ( 2 
| X s,u ⊗ X u,t , ∆ ′ τ | ≲ (|s -u| ∨ |t -u|) α(N +1) ,
where by definition α(N + 1) > 1. In order to apply Theorem 2.3.5 to (s, u, t) → ⟨X s,u ⊗ X u,t , ∆ ′ τ ⟩, we still have to check that this function belongs to δ(C 2 ). This is true since, if we consider the function

F ∈ C 2 , defined by F s,t := ⟨X 0,s ⊗ X s,t , ∆ ′ τ ⟩, then (δF ) s,u,t = ⟨X 0,s ⊗ (δX) s,u,t -(δX) 0,s,u ⊗ X u,t -X s,u ⊗ X u,t , ∆ ′ τ ⟩ = ⟨X 0,s ⊗ X s,u ⊗ X u,t , Id ⊗ ∆ ′ ∆ ′ τ -∆ ′ ⊗ Id ∆ ′ τ ⟩ -⟨X s,u ⊗ X u,t , ∆ ′ τ ⟩ = -⟨X s,u ⊗ X u,t , ∆ ′ τ ⟩, by coassociativity of ∆ ′ , recall (2.4.5). Therefore by Theorem 2.3.5 for γ = α(N + 1) > 1 there is a unique ⟨X, τ ⟩ ∈ C γ 2 with the desired properties (2.4.6)-(2.4.8), given by ⟨X, τ ⟩ = Λ ((s, u, t) → ⟨X s,u ⊗ X u,t , ∆ ′ τ ⟩)
. By recurrence, one constructs in the same way ⟨X, τ ⟩ for all τ ∈ ⊕ n≥N +1 H n .

However we still have to prove that this construction gives an element of G, namely that

⟨X, στ ⟩ = ⟨X, τ ⟩⟨X, σ⟩ for all σ, τ ∈ H. It is enough to assume στ ∈ ⊕ n≥N +1 H n . By (2.4.4) we have ∆ ′ (στ ) = (m ⊗ m) • τ 2,3 (∆σ ⊗ ∆τ -1 ⊗ σ ⊗ 1 ⊗ τ -σ ⊗ 1 ⊗ τ ⊗ 1) . By (2.4.8) (δ ⟨X, στ ⟩) s,u,t = X s,u ⊗ X u,t , ∆ ′ (στ ) .
On the other hand

δ (⟨X, σ⟩ ⟨X, τ ⟩) s,u,t = = ⟨X s,t , σ⟩ ⟨X s,t , τ ⟩ -⟨X s,u , σ⟩ ⟨X s,u , τ ⟩ -⟨X u,t , σ⟩ ⟨X u,t , τ ⟩
and by the Chen relation (2.4.7)

⟨X s,t , σ⟩ ⟨X s,t , τ ⟩ = ⟨X s,u ⊗ X u,t , (m ⊗ m) • τ 2,3 (∆σ ⊗ ∆τ )⟩ , ⟨X s,u , σ⟩ ⟨X s,u , τ ⟩ = ⟨X s,u ⊗ X u,t , 1 ⊗ σ ⊗ 1 ⊗ τ ⟩ , ⟨X u,t , σ⟩ ⟨X u,t , τ ⟩ = ⟨X s,u ⊗ X u,t , σ ⊗ 1 ⊗ τ ⊗ 1⟩ . We obtain δ ⟨X, στ ⟩ = δ (⟨X, σ⟩ ⟨X, τ ⟩) ∈ C α(N +1) 3
. Since ⟨X, στ ⟩ and ⟨X, σ⟩ ⟨X, τ ⟩ are both in C γ 2 , we conclude by Theorem 2.3.5.

Since H is locally finite, the same can be said of the corresponding set of indeterminates. Hence from Theorem 2.4.1, for each n ≥ 1, there exists a finite set B n ⊂ H n such that:

H = R   1 ∪ n≥1 B n   .
We denote

H ≤n := ⊕ n k=0 H k , B ≤n := ∪ n k=1 B k .
We also note B := n≥1 B n , to be the set of generating monomials, so that

H = R [1 ∪ B].
The Milnor-Moore theorem asserts the existence of such a basis of generating monomials, but B is neither unique nor canonical in general, see Example 2.4.6 below for some examples in usual cases. We note that B 1 is always a linear basis for H 1 .

Example 2.4.6 (Examples of (H, α)-rough paths).

Here are some examples of Hopf algebras to which the above applies:

1. The shuffle algebra on the alphabet {1, . . . , d}, and the theory of (weakly) geometric rough paths on R d ; in this case, one can take as a basis B the set of Lyndon words [START_REF] Reutenauer | Free Lie algebras[END_REF].

The Butcher-Connes-Kreimer algebra of rooted forests with {1, • • • , d}-decorated nodes, and the theory of branched rough paths on R d ; in this case, one can take as basis B

the set of trees [START_REF] Gubinelli | Ramification of rough paths[END_REF].

See [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF], [TZ20, Section 4] and [START_REF] Boedihardjo | An isomorphism between branched and geometric rough paths[END_REF] for more details on geometric and branched rough paths.

3. Quasi-shuffle algebras and quasi-geometric rough paths, see [START_REF] Bellingeri | Quasi-geometric rough paths and rough change of variable formula[END_REF].

4. The Hopf algebra of Lie group integrators and planarly branched rough paths, see [START_REF] Curry | Planarly branched rough paths and rough differential equations on homogeneous spaces[END_REF]. 

The recently introduced (and so far un-named) Hopf algebra of [LOT21, Section 6].

An isomorphism

h∈B ≤|τ |-1 . However, since α|τ | ≤ 1, the function ⟨X, τ ⟩ is determined by δ⟨X, τ ⟩ ∈ C α|τ | 3 only up to a (α|τ |)-Hölder function f τ : [0, T ] → R such that f τ 0 = 0, see Remark 2.2.3. It was indeed shown in [TZ20] that, in the case of branched rough paths, RP α (H) is in a bijective correspondence with C α B := f h h∈B ≤N : for all h ∈ B ≤N , f h ∈ C |h|α 1 and f h 0 = 0 .
While the construction of [START_REF] Tapia | The geometry of the space of branched rough paths[END_REF], restricted to the Butcher-Connes-Kreimer Hopf algebra, used the Hairer-Kelly map [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF] and a Lyons-Victoir extension technique, the approach of this paper, based on the Sewing Lemma (Theorem 2.3.5) for γ < 1, is more elementary and more general at the same time. For a general (graded, connected, locally finite, commutative) Hopf algebra H we introduce the map

P : RP α (H) -→ C α B X -→ P (X) := (I (⟨X, h⟩)) h∈B ≤N , (2.4.9) 
where I is the integration map defined in Theorem 2.3.5 and N = ⌊1/α⌋. We prove that P is bijective and furthermore we show that P is bicontinuous with respect to the distances defined for X, Y ∈ RP α (H) resp. f, g ∈ C α B by:

         d RP α (H) (X, Y ) := h∈B ≤N ∥⟨X -Y, h⟩∥ C |h|α 2 , d C α B (f, g) := h∈B ≤N g h -f h C |h|α 1
.

The main result of this section is the following.

Theorem 2.4.7. Let α ∈ (0, 1) with α -1 / ∈ N. The map P in (2.4.9) is a locally bi-Lipschitz homeomorphism between RP α (H) , d RP α (H) and C α B , d C α B .
Before proving this result, let us discuss some corollaries. First we prove Theorem 2.4.4.

Proof of Theorem 2.4.4. It suffices to identify

C α H * 1 with C α B 1 , where C α B 1 := (f h ) h∈B 1 : for all h ∈ B 1 , f h ∈ C α 1 and f h 0 = 0 and then take E = P -1 • ι, where ι : C α B 1 → C α B is the canonical injection obtained by defining f h := 0 for all h ∈ B ≤N \ B 1 .
Corollary 2.4.8 (An action on Rough Paths, see [START_REF] Tapia | The geometry of the space of branched rough paths[END_REF]). Let α ∈ (0, 1) with α -1 / ∈ N and define:

T : C α B × RP α (H) -→ RP α (H) (g, X) -→ gX := P -1 (g + P (X)) .
(2.4.10)

Then:

1. T is an action: for each g, g ′ ∈ C α B and X ∈ RP α (H), g ′ (gX) = (g + g ′ ) X.

T is free and transitive

: for each X, X ′ ∈ RP α (H), there exists a unique g ∈ C α B such that X ′ = gX. 3. T is continuous. 4. Let g ∈ C α
B be such that there exists a unique h ∈ B such that g h ̸ = 0. Then ⟨gX, h⟩ = ⟨X, h⟩ + δg h . Furthermore, let B ⊂ B \ {h} be a set of monomials such that

∆ ′ R B ⊂ R B ⊗ R B . Then for any τ ∈ R B , ⟨gX, τ ⟩ = ⟨X, τ ⟩.
Proof. Items 1., 2., 3. are straightforward from (2.4.10) and Theorem 2.4.7. Also, one obtains 4. recursively by using the explicit definition of T in (2.4.10) and the recursive construction of P -1 from the proof of Theorem 2.4.7.

Remark 2.4.9 (Link with [START_REF] Tapia | The geometry of the space of branched rough paths[END_REF]). When H is the Butcher-Connes-Kreimer algebra, RP α (H) corresponds to the set of branched rough paths, also denoted BRP α in [START_REF] Tapia | The geometry of the space of branched rough paths[END_REF]. In that case, let h ∈ H and B be the set of trees not containing h. By definition of the coproduct from admissible cuts,

∆ ′ R B ⊂ R B ⊗ R B and Corollary 2.4.8 generalises [TZ20, Theorem 1.2].

Proof

Now we turn to the proof of Theorem 2.4.7.

Proof of Theorem 2.4.7. We organise this proof in five different steps.

Step 1: P is well-defined. Indeed, if X ∈ RP α (H) and h ∈ B ≤N , by ( 2 

∥I (⟨X -Y, h⟩)∥ C |h|α 1 ≲ ∥⟨X -Y, h⟩∥ C |h|α 2 + ∥δ ⟨X -Y, h⟩∥ C |h|α 3 . Observe that ∥δ ⟨X -Y, h⟩∥ C |h|α 3 ≤ 3 ∥⟨X -Y, h⟩∥ C |h|α 2
. Also, by definition, one has

∥⟨X -Y, h⟩∥ C |h|α 2 ≤ d RP α (H) (X, Y ), thus we obtain d C α B (P (X) , P (Y )) ≲ d RP α (H) (X, Y
), which establishes the Lipschitz continuity of P.

Step 3: injectivity of P. In this step, we use the following general fact: if A, Ã ∈ C 2 are such that δA = δ Ã and I(A) = I( Ã), then A = Ã. Indeed, this follows immediately from the defining property (2.3.4) of I:

δ • I = id -Λ • δ.
Let X, Y ∈ RP α and assume P (X) = P (Y ). That is, for all h ∈ B, I(⟨X, h⟩) = I(⟨Y, h⟩). We prove by recurrence that for all h ∈ B, ⟨X, h⟩ = ⟨Y, h⟩. If h ∈ B 1 , then by definition of the reduced coproduct ∆ ′ and Chen's relation, it holds that δ ⟨X, h⟩ = δ ⟨Y, h⟩ = 0 and thus from the remark just above, ⟨X, h⟩ = ⟨Y, h⟩, whence the initialisation of the recurrence. Now let n ∈ N and assume that X and Y coincide on B ≤n . Let h ∈ B n+1 . Once again using Chen's relation, the definition of the reduced coproduct, and the fact that X and Y are characters, one gets by the recurrence hypothesis that δ ⟨X, h⟩ = δ ⟨Y, h⟩. Applying again the remark just above, it follows that ⟨X, h⟩ = ⟨Y, h⟩. By recurrence, this yields the injectivity of P.

Step 4: surjectivity of P. In this step, we construct a right-inverse P -1 of P (which is also an actual inverse thanks to the previous step). For this purpose, we proceed recursively. Fix f ∈ C α B . We first define X := P -1 (f ) on H 1 by setting for h ∈ B 1 : ⟨X, h⟩ := f h , then extending X to H 1 by linearity. Now let n ≥ 1 and assume that X is defined on H ≤n . We start by defining X on the monomials i.e. on B n+1 . Fix h ∈ B n+1 and let us show that there exists ⟨X, h⟩ : [0, T ] 2 → R such that:

1. |⟨X s,t , h⟩| ≲ |t -s| α(n+1) , 2. (δ ⟨X, h⟩) s,u,t = ⟨X s,u ⊗ X u,t , ∆ ′ h⟩.
For this purpose, arguing as in the proof of Proposition 2.4.5 we consider the function F ∈ C 2 defined for s, t ∈ [0, T ] by:

F s,t := X 0,s ⊗ X s,t , ∆ ′ h .
Then by the coassociativity of ∆ ′ , the Chen relation and the recurrence hypothesis, for s, u, t ∈ [0, T ] we have (δF ) s,u,t = -⟨X s,u ⊗ X u,t , ∆ ′ h⟩. Also, from the definition of ∆ ′ and the analytic constraint (2.4.6) on (⟨X, τ ⟩) τ ∈Hn , one observes that δF ∈ C (n+1)α 3

. Then, from the properties of the Sewing map, it suffices to set:

⟨X, h⟩ := -Λ (δF ) + f h . (2.4.11)
Note that (2.4.11) can be rewritten as I (⟨X, h⟩) = f h , i.e. P (X) h = f h , as wanted for the construction of the inverse. Now it remains to suitably extend X to the whole of H ≤n+1 , which we do "polynomially": if P is a polynomial, we set X, P (h) h∈B ≤n+1 := P (⟨X, h⟩) h∈B ≤n+1 .

It is straightforward to observe that this correctly defines an element of G n+1 and enforces the estimate |⟨X s,t , τ ⟩| ≲ |t -s| α(n+1) for all τ ∈ H n+1 . To conclude the recursive step, it suffices to establish Chen's relation on H n+1 , knowing that it is satisfied on H n and on B n+1 (by the construction just above). Observe that if Chen's relation is satisfied on τ and σ, then it is also satisfied on τ + σ. Now because we define X polynomially, it suffices to prove that if Chen's relation is satisfied for σ ∈ H l and τ ∈ H k where k + l ≤ n + 1, 1 ≤ k, l ≤ n, then it is also satisfied for στ . For this, it is enough to prove that δ ⟨X, στ ⟩ = δ (⟨X, σ⟩ ⟨X, τ ⟩). This can be done arguing as in Proposition 2.4.5. (While in Proposition 2.4.5 we had to verify that the extension was multiplicative, here this property is enforced by the "polynomial" definition). This concludes the recursive step, so that we have constructed X =:

P -1 (f ) ∈ RP α (H).
Step 5: continuity of P -1 . We first show that P -1 maps bounded sets to bounded sets. For this purpose, let C > 0, we shall show that there exists

C ′ > 0 such that for all f ∈ C α B with h∈B ∥f h ∥ C |h|α 1 ≤ C, one has h∈B P -1 (f ) , h C |h|α 2 ≤ C ′ .
We proceed recursively: when h ∈ B 1 , by construction of P -1 , it holds that P -1 (f ) , h = f h , and thus

P -1 (f ) , h C |h|α 2 = ∥f ∥ C |h|α 1 ≤ C. Now fix n ≥ 1 and assume that for all b ∈ B ≤n , P -1 (f ) , b C |b|α 2 ≤ C ′ for some constant C ′ . Let h ∈ B n+1
, so that by the construction above:

P -1 (f ) , h = Λ δ P -1 (f ) , h + f h .
(2.4.12) Using Chen's relation, we obtain a decomposition:

δ P -1 (f ) , h s,u,t = σ∈H k ,τ ∈H l k,l≥1,k+l=|h| P -1 (f ) s,u , σ P -1 (f ) u,t , τ .
The definition of B implies that for all σ, there exists a polynomial P = P σ such that σ = P σ (B ≤|σ| ). As a consequence, note that:

P -1 (f ) s,u , σ = |s -u| |σ|α P σ      P -1 (f ) s,u , b |s -u| |b|α   b∈B ≤|σ|    .
This yields:

δ P -1 (f ) , h C |h|α 3 ≤ σ,τ P σ P τ P -1 (f ) , b C |b|α 2 b∈B ≤n ,
which is bounded by the recurrence hypothesis. We conclude the recurrence step using (2.4.12) and the continuity of the Sewing map Λ, so that P -1 does indeed map bounded sets to bounded sets. Now let us tackle the continuity of P -1 . We reason as above: we fix f, g ∈ C α B and set ζ := P -1 (f ) -P -1 (g). We estimate recursively ∥⟨ζ, h⟩∥

C |h|α 2 for monomials h ∈ B ≤N . When h ∈ B 1 , by construction of P -1 , it holds that ⟨ζ, h⟩ = f h -g h , thus we have ∥⟨ζ, h⟩∥ C |h|α 2 ≤ d C α B (f, g) .
Fix n ≥ 1, and h ∈ B n+1 . By the construction above, ⟨ζ, h⟩ = Λ (δ ⟨ζ, h⟩)

+ f h -g h . Using
Chen's relation and the notations above, one obtains a decomposition of the form, denoting

X := P -1 (f ), Y := P -1 (g): δ ⟨X -Y, h⟩ s,u,t (|t -u| + |u -s|) α ≤ σ,τ P σ ⟨X s,u , b⟩ |s -u| |b|α b P τ ⟨X u,t , b⟩ |t -u| |b|α b - -P σ ⟨Y s,u , b⟩ |s -u| |b|α b P τ ⟨Y u,t , b⟩ |t -u| |b|α b .
Using the fact that polynomials are locally Lipschitz, the fact established above that P -1 maps bounded sets to bounded sets, and the continuity of Λ, one propagates the locally Lipschitz bound over h ∈ B n+1 , so that the theorem is proved by recurrence.

Sewing versus Reconstruction

In this section, we discuss the link between the Sewing Lemma (Theorem 2.2.1, Theorem 2.2.2) and the Reconstruction Theorem [Hai14, Theorem 3.10]-[CZ20, Theorem 5.1] in Regularity Structures. It is often claimed that the latter is a generalisation of the former. Here we want to test this claim in details, and show that it is correct only up to a point. We are going to see that the Sewing Lemma is actually slightly stronger than the 1-dimensional version of the Reconstruction Theorem, see Remark 2.5.6 below.

The take-home message is the following: if one wants to prove the Sewing Lemma (for any γ > 0) via the Reconstruction Theorem, then the "coherence" condition δA ∈ C γ 3 (∆ 3 T ) is not enough, and one needs the "homogeneity" condition A ∈ C β 2 (∆ 2 T ) for some β > 0. The original Sewing Lemma on the other hand holds with the coherence condition only.

The reason for that is the following: given A s,t , one defines the distribution F s := ∂ t A s,• depending on the parameter s; the Reconstruction Theorem gives the existence of a distribution f with a desired property; in order to obtain the integral I = I(A), one need now to find a "primitive" of f , and this is the point where one need the homogeneity condition A ∈ C β 2 (∆ 2 T ). In other words, by Proposition 2.3.4, the Reconstruction Theorem yields the Sewing Lemma only in the case where the primitive I = I(A) belongs to a Hölder space C β 1 . The Sewing Lemma on the other hand does not need to differentiate A and the final integration step with the associated homogeneity condition is therefore unnecessary, see Remark 2.5.6.

Reconstruction

The Reconstruction Theorem is a result in analysis which was first established in the context of the theory of regularity structures [START_REF] Hairer | A theory of regularity structures[END_REF]. It has later been revisited in [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF], where it was stated and proved in a more elementary fashion, using only the language of distribution theory.

The Reconstruction Theorem in Hölder spaces is stated in the following way, see [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF] for a proof and a discussion of this result. For r ∈ N we define

B r := {φ ∈ D (B (0, 1)) , ∥φ∥ C r ≤ 1}. For φ ∈ D(R d ), x ∈ R d , λ > 0, we denote φ λ
x the scaled and recentered version of φ, defined as follows:

φ λ x (•) := λ -d φ λ -1 (• -x) . Theorem 2.5.1 (Reconstruction Theorem [CZ20, Theorem 5.1]). Let (F x ) x∈R d be a germ in the sense of [CZ20] i.e. for all x, F x ∈ D ′ (R d ) and for all φ ∈ D(R d ), x → F x (φ) is measurable. Let a, c ∈ R with a ≤ 0 ∧ c. Assume there exists a test-function φ ∈ D(R d ) with φ ̸ = 0 such that for all compact K ⊂ R d : (F x+h -F x ) φ λ x ≲ λ a (|h| + λ) c-a ,
(2.5.1)

uniformly over x ∈ K, h ∈ B (0, 1), λ ∈ (0, 1]. Then there exists a distribution R(F ) ∈ D(R d )
such that for all compact K ⊂ R d there exists an integer r K such that:

(R(F ) -F x ) ψ λ x ≲ λ c if c ̸ = 0, 1 + |log |λ|| if c = 0, (2.5.2)
uniformly over x ∈ K, λ ∈ (0, 1], ψ ∈ B r K . Furthermore, assume that there exists b < 0 ∧ c and a test-function φ ∈ D(R d ) with φ ̸ = 0 such that for all compact K ⊂ R d :

F x φ λ x ≲ λ b , (2.5.3) uniformly over x ∈ K, λ ∈ (0, 1]. Then one can take r K = max (-a, -b) in (2.5.2), and it holds that R(F ) ∈ C b 1 , in the sense that for all integer s > -b and K ⊂ R d : R(F ) ψ λ x ≲ λ b , uniformly over x ∈ K, λ ∈ (0, 1], ψ ∈ B s .
Let us briefly comment on the relevance of this result. The Reconstruction Theorem states that one can retrieve a distribution R(F ) from a collection (F x ) x∈R d of "local approximations", under a suitable assumptions of "coherence" (2.5.1) on F . If we furthermore assume a condition of "homogeneity" (2.5.3) on F , then we have information on the regularity of R(F ) as a distribution.

The similarity with the Sewing Lemma is evident, and we will indeed show that these two results are intimately related to each other. Let 0 < γ < 1 and A : [0, T ] → R be a continuous function satisfying 

|A s,t -A s,u -A u,t | ≲ (|t -u| ∨ |u -s|) γ ,
F s (φ) = - R A s,t φ ′ (t) dt.
Observe that F satisfies the coherence condition (2.5.1) with parameters

a = -1, c = γ -1 because if φ ∈ D (R) is any test-function, s, u, t ∈ R, λ ∈ (0, 1], then (note that p is 1- Lipschitz): (F t -F s ) φ λ s = λ -1 δA p(t),p(s),p(s+λv) φ ′ (v) dv ≲ λ -1 (λ + |t -s|) γ .
Thus, we can apply Theorem 2.5.1, so that there exists R(F ) ∈ D ′ (R) and integers r K , such that for all compact K ⊂ R:

sup x∈K sup λ∈(0,1] sup ψ∈B r K (F s -R(F )) ψ λ s λ γ-1 < +∞. (2.5.5)
Now in order to obtain the sewing bound (2.5.4) on A, we want to "integrate" the reconstruction bound (2.5.5) just above.

Heuristically, this "integration" can be performed by testing the reconstruction bound against indicator functions: notice that (1

[0,1] ) λ s = λ -1 1 [s,s+λ] , and if I denotes a primitive of R(F ), one should have (R(F ) -F s ) (1 [s,s+λ] ) = -(I -A) s,s+λ . Taking ψ := 1 (0,1) in the reconstruction bound above would then yield | (I -A) s,s+λ | ≲ λ γ , which is the expected sewing bound because (I -A) s,t = I t -I s -A s,t .
However, this heuristic argument fails for two reasons:

1. 1 (0,1) is not a test-function (because it is not smooth) and thus cannot be plugged into the reconstruction bound, 2. without further assumptions it is not clear in general whether R(F ) admits a primitive I which is a function.

Approximating an indicator function

We will solve the first point above by suitably approximating 1 (0,1) . Specifically, we shall exploit the following decomposition, see [FH20, Exercise 13.10] for a similar statement.

Lemma 2.5.2 (Dyadic approximation of indicator functions).

There exist smooth functions φ n , ψ n , n ∈ N such that:

1. for all n ∈ N, supp (φ n ) ⊂ 1 16 2 -n , 15 16 2 -n , 2. for all n ∈ N, supp (ψ n ) ⊂ 1 -15 16 2 -n , 1 -1 16 2 -n , 3. for all r ∈ N, sup n∈N sup k∈ 0,r ∥D k φn∥ ∞ +∥D k ψn∥ ∞ 2 kn < +∞, 4. 1 (0,1) = n≥0 (φ n + ψ n ).
Proof. It is well known [BCD11, Proposition 2.10] that there exists a function

φ ∈ C ∞ c ([1/2, 2]) such that for all x ∈ R, 1 R * + (x) = n∈Z φ (2 n x). For x ∈ R, set η (x) := 1 (0,1) (x) - n≥3 (φ (2 n x) + φ (2 n (1 -x))) .
Observe that η is a test-function supported in [1/16, 15/16], whence the announced decomposition.

As a consequence:

Proposition 2.5.3 (Approximation argument). In the setting above, assume that there exists a continuous function I such that I 0 = 0 and

I ′ = R(F ) in the sense of distributions. Set, for n ∈ N, s ∈ [0, T ], λ > 0: ∆ N s,λ := N n=0 (R(F ) -F s ) λ (φ n + ψ n ) λ s .
Then:

1. for all s ∈ R, λ > 0, lim N →∞ ∆ N s,λ = (I -A) s,s+λ , 2. For all compact K ⊂ R, |∆ N s,λ | ≲ λ γ uniformly over s ∈ K, N ∈ N, λ ∈ (0, 1].
Proof. Let us establish those points separately. On the one hand, since for s ∈ R, R(F )-F s = (I • -A s,• ) ′ , we have for N ∈ N:

∆ N s,λ = -(I u -A s,u ) N n=0 (φ n + ψ n ) ′ λ s (u) du.
By construction of φ n and

ψ n , for all x ∈ [2 -N , 1 -2 -N ] one has N n=0 (φ n (x) + ψ n (x)) = 1. Hence, setting for N ∈ N and u ∈ R:              η N (u) := 2 -N N n=0 (φ n + ψ n ) ′ 2 -N u 1 [0,T ] (u) , ηN (v) := -2 -N N n=0 (φ n + ψ n ) ′ 1 + 2 -N u 1 [-1,0] (u) , then it follows that η N , ηN ∈ D (B (0, 1)), and N n=0 (φ n + ψ n ) ′ = (η N ) 2 -N 0 -(η N ) 2 -N 1 . Note that ∥η N ∥ L ∞ , ∥η N ∥ L ∞ ≲ 1 and R η N (u) du = R ηN (u) du = 1. Hence: ∆ N s,λ = -I s+λ2 -N u η N (u) du + A s,s+λ2 -N u η N (u) du + I s+λ+λ2 -N u ηN (u) du -A s,s+λ+λ2 -N u ηN (u) du.
Let us treat the first term. We write:

I s+λ2 -N u η N (u) du = I s + I s+λ2 -N u -I s η N (u) du. (2.5.6)
Because I is continuous, the integrand in the right-hand side converges pointwise to 0 and is bounded by a constant. By the dominated convergence theorem, it follows that the sequence of integrals in (2.5.6) converges to 0. Reasoning similarly for the other terms, one obtains as announced that ∆ N s,λ = I s+λ -I s -A s,s+λ + o N →+∞ (1). Now let us bound |∆ N s,λ |. For n ∈ N and x ∈ R, set:

η n (x) := φ n 2 -n x , ηn (x) := ψ n 2 -n x + 1 . Then (φ n ) λ s = 2 -n (η n ) 2 -n λ s , and (ψ n ) λ s = 2 -n (η n ) 2 -n λ s+λ .
Also, note that the quantity

C K := sup n∈N (∥η n ∥ C r K + ∥η n ∥ C r K ) is finite, so that η n /C K , ηn /C K ∈ B 2 .
Then we have the decomposition:

∆ N s,λ = N n=0 (R(F ) -F s ) λ2 -n (η n ) λ2 -n s =:∆ N ;1 s,λ + N n=0 (R(F ) -F s+λ ) λ2 -n (η n ) λ2 -n s+λ =:∆ N ;2 s,λ + N n=0 (F s+λ -F s ) λ2 -n (η n ) λ2 -n s+λ =:∆ N ;3 s,λ
.

Using the reconstruction bound (2.5.5) on the 1-enlargement of K, one has ∆

N ;1 s,λ ≲ N n=0 λ2 -n (λ2 -n ) γ-1 ≲ λ γ .
Similarly, ∆ N ;2 s,λ ≲ λ γ , so that it only remains to treat ∆ N ;3 s,λ . For this purpose, we rewrite:

∆ N ;3 s,λ = -λ R δA s+λ,s,u N n=0 2 -n (η n ) λ2 -n s+λ ′ (u) du. Note that supp (η n ) λ2 -n s+λ ⊂ [s + λ, s + λ + 2 -n λ],
and thus:

∆ N ;3 s,λ ≤ sup u∈[s+λ,s+2λ] |δA s+λ,s,u | R N n=0 λ2 -n (η n ) λ2 -n s+λ ′ (u) du.

Now, the hypothesis on

A implies that for u ∈ [s + λ, s + 2λ], we have |δA s+λ,s,u | ≲ (|u -s| + |s -(s + λ)|) γ ≲ λ γ
. Now it remains to establish that the sequence of integrals above is bounded. We write:

R N n=0 λ2 -n (η n ) λ2 -n s+λ ′ (u) du = R f ′ N (v) dv.
where we set

f N : v → N n=0 ψ n (1 -v). Note by definition of ψ that supp (f N ) ⊂ [0, T ], and that f N converges pointwise to f := +∞ n=0 ψ n (1 -v).
From the definition of φ n , ψ n , one has f = 1 (0,1) -+∞ n=0 φ n (1 -•) so that from the properties of the supports of φ n , ψ n , one has f 1 (0, 1 16 ) = 1 (0, 1 16 ) , and thus ∥f ′ ∥ L ∞ (0,1) < +∞. Also, by construction, supp (

ψ n (1 -•)) ⊂ 1 16 2 -n , 15 16 2 -n . Thus: R f ′ N (v) dv = 2 -N 0 N n=N -4 ψ ′ n (1 -v) dv + 1 2 -N f ′ (v) dv ≤ 5 sup n∈N 2 -n ∥ψ n ∥ C 1 + f ′ L ∞ (0,1) ≲ 1.
Thus we have established that ∆ N s,λ ≲ λ γ . This concludes the proof.

Recall that the calculations above assume the existence of a continuous primitive I of R(F ), which is far from clear in general. However, assume now that there exists 0 < β < 1∧γ such that A furthermore satisfies:

|A s,t | ≲ |t -s| β , uniformly over s, t ∈ [0, T ]. Then, note that F satisfies the homogeneity condition (2.5.7) with parameter b = β -1, because if φ ∈ D (R) is any test-function, s, t ∈ R, λ ∈ (0, 1], then: F s φ λ s = λ -1 A p(s),p(s+λv) φ ′ (v)dv ≲ λ β-1 .
Thus, the Reconstruction Theorem 2.5.1 asserts that R(F ) ∈ C β-1 1 , and it is then a well-known fact that there exists a function I ∈ C β 1 such that I 0 = 0 and I ′ = R(F ). Remark 2.5.4. A rigorous proof of the latter fact can be found for example in [START_REF] Brault | Solving rough differential equations with the theory of regularity structures[END_REF]Lemma 3.10] where the author uses wavelets, but let us briefly and informally present an alternative approach in the spirit of the calculations above. Indeed, one wishes to set I t := R (F ) (1 (0∧t,0∨t] ), which is not possible because the indicator function is not a test-function. However, recalling Lemma 2.5.2, one can define for t ≥ 0:

I t := n≥0 R (F ) t (φ n ) (t) + (ψ n ) (t) ,
where the sum is absolutely convergent because the fact that R(F ) ∈ C β-1 1 and the properties of φ n and ψ n imply that the absolute value of the summand is bounded by a constant times 2 -nβ , which is summable because β > 0. Now one can verify that indeed I ∈ C β 1 and that

I ′ = R (F ).
Hence, one retrieves the following weaker version of the Sewing Lemma (Theorem 2.2.1, Theorem 2.2.2) above. Note that the same arguments can be adapted to the case γ = 1. Corollary 2.5.5 (Sewing via the Reconstruction Theorem 2.5.1). Let β, γ > 0 with β < 1, and let A : [0, T ] 2 → R be a function satisfying:

|A s,t -A s,u -A u,t | ≲ (|t -u| ∨ |u -s|) γ , |A s,t | ≲ |t -s| β , (2.5.7) uniformly over s, u, t ∈ [0, T ].
Then there exists a function I ∈ C β 1 such that: 

|I t -I s -A s,t | ≲ |t -s| γ if γ ̸ = 1, |t -s| (1 + |log |t -s||) if γ =

Chapter 3 Besov Reconstruction

Abstract

This chapter contains the results of [START_REF] Broux | Besov Reconstruction[END_REF]. The reconstruction theorem tackles the problem of building a global distribution, on R d or on a manifold, for a given family of sufficiently coherent local approximations. This theorem is a critical tool within Hairer's theory of Regularity Structures. In this paper, we establish a reconstruction theorem in the Besov setting, extending recent results of Caravenna and Zambotti. A Besov reconstruction theorem was first formulated by Hairer and Labbé in the context of regularity structures, exploiting nontrivial results from wavelet analysis. Our calculations follow the more elementary approach of coherent germs due to Caravenna and Zambotti. With this formulation our results are both stated and proved with tools from the theory of distributions without the need of the theory of Regularity Structures. As an application, we present an alternative proof of a (Besov) Young multiplication theorem which does not require the use of para-differential calculus. 

Motivation and Background

Multiplying two distributions in a general setting is a notoriously difficult problem in many situations in PDEs and mathematical analysis. Recently this problem has motivated an intensive activity in stochastic analysis. Inspired by the theory of Rough Paths [START_REF] Lyons | Differential equations driven by rough signals[END_REF], two approaches to singular SPDEs have been developed in the last decade: regularity structures [Hai14; BHZ19; CH18; BCCH21] and paracontrolled distributions [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]. These new theories allow to give a meaning and also a well-posedness result for PDEs with stochastic forcing terms which would be ill-defined using classical tools; indeed, due to the wild oscillations of the noise, the solutions are expected to be distributions; if the equations contain polynomial or analytical non-linearities, then such terms are ill-defined and require new ideas.

It is not our aim to enter into the details of regularity structures. On the contrary, we want to present one of its main results, the reconstruction theorem in Besov spaces, in a more elementary way.

One of the main ideas of the theory is to lift the equation to a space of "local approximations" of the solutions, rather than to work directly in the space of Schwartz distributions. The reconstruction theorem allows to retrieve a genuine distribution from such a family of local approximations. Note that although the theory permits deep results in stochastic analysis, this theorem is purely deterministic.

More precisely, we consider the following "reconstruction problem":

Given the data, for all x ∈ R d , of a distribution F x ∈ D ′ (R d ), is there a distribution f on R d which is well approximated by F x around each point x ∈ R d ? Of course, if for all x ∈ R d , F x is an actual continuous function, then the function f : x → F x (x)
is a natural answer to this question.

For instance, if F x (•) is the Taylor polynomial of order r ∈ N, at the point x ∈ R d , of some smooth function f : R d → R, then it indeed holds that f (x) = F x (x); furthermore f is well approximated by F x around x, with the following estimate: |f (y) -F x (y)| ≲ |y -x| r+1 for y close to x. Note that in this situation one also has |F z (w) -F y (w) | ≲ |l|<r |w -y| |l| |y -z| r-|l| , which asserts that the family (F x ) x∈R d is sufficiently "coherent".

The situation becomes more subtle when the objects at play are actual distributions, which is the case in the previously mentioned context of stochastic PDEs, where distributional terms arise from the white noise governing the equation.

The reconstruction theorem [Hai14, Theorem 3.10], which solves the above problem in the context of Hölder spaces, was originally stated in the formalism of regularity structures, and proved using wavelet analysis. Alternative proofs, within the context of regularity structures, were later established in [GIP15; OW19; FH20].

More recently, the theorem was revisited in [CZ20, Theorem 5.1], where it was stated and proven in an elementary and more general setting. In particular, [CZ20] exhibits a sufficient condition on (F x ) x∈R d , dubbed coherence, under which such a reconstruction f exists. The reconstruction f is then built from a custom-made dyadic decomposition inspired by mollification, which replaces the wavelet decomposition of the original theorem. See also [START_REF] Rinaldi | Reconstruction theorem for germs of distributions on smooth manifolds[END_REF] for a version of this result over smooth manifolds (still in the Hölder setting).

Unfortunately, it turns out that working in Hölder spaces may not be enough for many purposes, and it is desirable to consider the more general Besov spaces B α p,q (R d ) with p, q ∈ [1, ∞], as they allow for finer analysis of distributions. For instance, it is natural to consider the Dirac mass δ 0 on R d as an initial condition for some stochastic PDEs. In such cases, one may benefit from the fact that not only does δ 0 ∈ C -d , it also holds that

δ 0 ∈ B -d+d/p p,∞
for any p ∈ [1, +∞], thus allowing to work with improved regularity (at the expense of integrability); see [START_REF] Hairer | Multiplicative stochastic heat equations on the whole space[END_REF] for an application of this idea.

Another useful property of Besov spaces is that when p = q = 2, they match with (fractional) Sobolev spaces, which are the natural framework in many situations. For instance, this allows to construct random differential operators and study their spectral properties [START_REF] Labbé | The continuous Anderson Hamiltonian in d ≤ 3[END_REF], or to apply Malliavin calculus to solutions of stochastic PDEs [START_REF] Gassiat | Existence of densities for the dynamic Φ 4 3 model[END_REF].

This motivates the need for a reconstruction theorem in the more general context of Besov spaces, which, as it turns out, has already been established in the formalism of regularity structures in [HL17, Theorem 3.1], using once again wavelets in its proof, and later in [START_REF] Singh | An elementary proof of the reconstruction theorem[END_REF]. See also [START_REF] Liu | A Sobolev rough path extension theorem via regularity structures[END_REF], where a similar reconstruction result is proposed and applied to the problem of lifting Sobolev paths to Sobolev rough paths. Note that a Besov sewing lemma -an analogous result in the context of Rough Paths theory -has recently been established in [START_REF] Friz | Besov rough path analysis[END_REF] and applied to rough differential equations.

In this article, we provide a version of this Besov reconstruction theorem, in the spirit of [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF]. In particular, our result generalises both [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF] and [START_REF] Hairer | The reconstruction theorem in Besov spaces[END_REF], in the sense that plugging p = q = +∞ in our condition retrieves [CZ20, Theorem 5.1], and applying our condition to germs appearing in regularity structures retrieves [HL17, Theorem 3.1], see Example 3.3.8 and Example 3.3.9 for a more precise comparison. Furthermore, our result is independent of the theory of regularity structures and can be formulated in the language of distributions: note that we will not talk about regularity structures in this paper, except in comparing our results to [START_REF] Hairer | The reconstruction theorem in Besov spaces[END_REF].

We present our main results, Theorem 3.3.2 and Theorem 3.4.5, as sufficient conditions on the family (F x ) x∈R d for a reconstruction to exist in a prescribed Besov sense. Interestingly, in Theorem 3.3.2, we exhibit simple notions of "coherence" and "homogeneity", which generalise the results of [HL17, Theorem 3.1] and [CZ20, Theorem 5.1]. It actually turns out that the conditions of Theorem 3.3.2 can be refined, and we propose a more general reconstruction result as Theorem 3.4.5, which we discuss in a later section because its statement is more technical. Remarkably, Theorem 3.4.5 allows us to tackle the classical problem of constructing a product between suitable Besov spaces, as stated in Theorem 3.3.12. Contrary to usual approaches, Theorem 3.3.12 does not require paraproducts, and to the best of our understanding our conditions on the parameters of the spaces are quite optimal, see Section 3.6 for a short review of the literature. See also [CZ20, Section 14] for a similar application in the Hölder case.

We would also like to mention the paper [START_REF] Zorin-Kranich | Reconstruction theorem in quasinormed spaces[END_REF], which has appeared after the first version of this manuscript was written, and proposes a reconstruction result in the general context of quasi-normed spaces (of which the Besov spaces are a particular case), with the slight difference that the condition of [START_REF] Zorin-Kranich | Reconstruction theorem in quasinormed spaces[END_REF] relies on integral averages and bypasses the need for homogeneity.

Outline

This paper is organised as follows. In Section 3.2, we set the main notations that will be used in the remainder of the paper.

In Section 3.3, we discuss the problem of reconstruction that we consider, state an important reconstruction result as Theorem 3.3.2, and compare it to the results of [CZ20; HL17]. We also discuss the problem of building a Young multiplication in Besov spaces, that is, a continuous bilinear map extending the usual pointwise product between smooth functions. We construct such a product in Theorem 3.3.12.

Section 3.4 is devoted to the proof of a general reconstruction result, Theorem 3.4.5, following an approach similar to [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF].

In Section 3.5, we prove Theorem 3.3.2 and Theorem 3.3.7 as a corollary of Theorem 3.4.5. Finally, in Section 3.6, we prove Theorem 3.3.12 as a corollary of Theorem 3.4.5.

Notations

In We shall work extensively in the following Lebesgue spaces, where the variables and domain of integration will usually be clear from context:

1. The variable x ∈ R d will usually correspond to a space variable and we denote:

L p = L p (x) := L p R d , dx .
2. The variable h ∈ R d will usually correspond to a space variable and we denote:

L q h = L q h (h) := L q B(0, 1), dh |h| d .
We might also integrate on a domain K rather than B (0, 1). In this case, we will denote:

L q h (h ∈ K) := L q K, dh |h| d .
3. The variable λ ∈ (0, 1] will usually correspond to a scaling variable and we denote:

L q λ = L q λ (λ) := L q (0, 1] , dλ λ
4. The variable n ∈ N will usually correspond to a scaling variable and we denote:

ℓ q = ℓ q (n) := ℓ q (n ∈ N) .
We might also sum on n ≥ n 0 rather than N. For n 0 ∈ Z, we will denote ℓ q (n ≥ n 0 ) the corresponding space.

In the case where p or q are equal to ∞ then the associated norm corresponds to the usual supremum norm. The space of test-functions is denoted D = D(R d ) and is defined as the space of C ∞ (R d ) functions with compact support. More generally, if K is a compact set of R d , D(K) will denote the space of test-functions supported in K.

If φ : R d → R is a sufficiently differentiable function, we will denote its partial derivatives by, for a multi-index k

= (k 1 , • • • , k d ) ∈ N d : ∂ k φ := ∂ k 1 1 • • • ∂ k d d φ.
Let r ∈ N, the C r norm of a sufficiently differentiable function φ is defined by:

∥φ∥ C r := max |k|≤r ∂ k φ ∞ . Let φ ∈ D(R d ), x ∈ R d , λ > 0, we denote φ λ
x the scaled and recentered version of φ, defined as follows: φ λ x (•) := λ -d φ λ -1 (• -x) . We will denote the multinomial x k = i x k i i . Often we will use the notation

|k| := k 1 + ... + k d .
For r, s ∈ N and K a compact set of R d we define:

     B r (K) := {φ ∈ D (K) , ∥φ∥ C r ≤ 1} , B r s (K) := φ ∈ D (K) , ∥φ∥ C r ≤ 1 and x k φ (x) dx = 0, 0 ≤ |k| ≤ s .
Most of the time, K will be B (0, 1), so for simplicity of notation, we will denote:

B r := B r (B (0, 1)) , B r s := B r s (B (0, 1)) .
Recall that a (Schwartz) distribution is a linear functional f :

D(R d ) → R such that for all compact K ⊂ R d , there exists r = r K ∈ N and C = C K < +∞ such that for all φ ∈ D(R d ) supported in K, |f (φ)| ≤ C ∥φ∥ C r .
When r does not depend on K, we say that f is a distribution of order r. We denote D ′ (R d ) the space of distributions. When f : D(R d ) → R is a linear functional satisfying the above condition, for a given compact set K, we say that f is a distribution on K and we note the corresponding space D ′ (K).

We will denote B α p,q = B α p,q (R d ) the (nonhomogeneous) Besov spaces of exponent α ∈ R and integrability parameters p, q ∈ [1, +∞], on the whole space R d . We will denote B α p,q,loc the corresponding local Besov space. See Section 3.A for the definition and properties of Besov spaces.

The reader might be surprised that we work in D ′ rather than in the space of tempered distributions S ′ , which is more natural in the context of Besov spaces. However, this is not really problematic, see Remark 3.A.3 below.

Main Results

The problem of reconstruction

To begin, let us properly define the notion of a germ.

Definition 3.3.1 (Germ). A germ is a family of distributions (F x ) x∈R d , i.e. for all x ∈ R d , F x ∈ D ′ (R d ). We also assume that for all test-functions φ ∈ D(R d ), the map x → F x (φ) is measurable.
This technical assumption is due to the fact that all the objects required for the reconstruction will be defined by integration over x; for this reason it will also be sufficient to know F x only for almost every x ∈ R d .

For simplicity, we will denote (F x ) x∈R d as F .

We think of a germ as a family of local approximations for a global distribution R(F ) that is to be reconstructed in a suitable Besov sense. For this purpose, we shall consider in our main result the following scaling functions. Fix ϵ > 0 arbitrary. For γ ∈ R, q ∈ [0, +∞], and λ ∈ (0, 1], set:

k (λ) := k γ,q,ϵ (λ) :=        λ γ if γ ̸ = 0, 1 + |log (λ)| if γ = 0, q = +∞, 1 + |log (λ)| 1+ϵ if γ = 0, q < +∞. (3.3.1)
One important result that we prove in this paper (but not our most general, see Remark 3.3.3 below) is the following. Theorem 3.3.2 (Besov reconstruction). Let F be a germ, p, q ∈ [1, +∞], and α, β, γ ∈ R be such that α ≤ γ. Assume that there exists a test-function φ such that φ ̸ = 0 and that for all K ⊂ R d , the following "homogeneity" property is satisfied:

∥F ∥ hom p,β,K,φ := F x φ 2 -n x 2 -nβ L p (K,dx) ℓ ∞ (n∈N) < +∞. (3.3.2)
Assume also that the following "coherence" property is satisfied:

∥F ∥ coh p,q,α,γ,K,φ := (F x+h -F x ) φ 2 -n x 2 -nα (2 -n + |h|) γ-α L p (K,dx) ℓ ∞ (n∈N) L q B(0,2), dh |h| d < +∞. (3.3.3)
Then there exists R (F ) ∈ D ′ (R d ) satisfying the following reconstruction bound for any integer r > max(-α, -β) and any

K ⊂ R d (recall that k is defined in (3.3.1)): sup ψ∈B r (R (F ) -F x ) ψ λ x k (λ) L p (K,dx) L q (B(0,1), dλ λ ) < +∞. (3.3.4)
In fact, the quantity on the left-hand side of (3.3.4) can be bounded by a constant times ∥F ∥ coh p,q,α,γ, K2 ,φ . Furthermore, such an R (F ) is unique when γ > 0 but not when γ ≤ 0.

Let us propose a few remarks before giving more precise results on the reconstruction map.

Remark 3.3.3. Theorem 3.3.2 is interesting because, as we will establish in Example 3.3.8 and Example 3.3.9, it is a generalisation of [HL17, Theorem 3.1] and [CZ20, Theorem 5.1] (in the case of global exponents). However, note that it is not clear whether the condition (3.3.3) is canonical, in particular regarding the order of integration in the Lebesgue norms. This suggests that (3.3.3) is not the "optimal" condition. Indeed, we actually establish a more general result of reconstruction, which we state in Theorem 3.4.5. However, the conditions of Theorem 3.4.5 require heavier notations, which is why we postpone its statement and proof to Section 3.4. In the remainder of this paper, we shall first prove Theorem 3.4.5, in Section 3.4. Then, in Section 3.5, we shall establish Theorem 3.3.2 as a corollary of Theorem 3.4.5. Remark 3.3.4. The case γ = 0 appears as a critical case. Recall that this is the case also in [CZ20, cf. Theorem 5.1].

Remark 3.3.5. Note that in condition (3.3.3), we require integration over h ∈ B (0, 2), while in the reconstruction bound (3.3.4) one integrates over λ ∈ B (0, 1). It would be more natural to impose the constraint of integrability over h ∈ B (0, 1), as one would expect the estimates to propagate from B (0, 1) to B (0, 2), similarly to [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF]. However, in our context, the asymmetry between the roles of the variables x and h, and the fact that the variables x, h, n are "linked" by the integration, prevent the same argument as in [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF] to be applied. Of course, in practical situations it is usually equivalent to check the conditions for B(0, 1) or for B(0, 2). Remark 3.3.6. Note also that contrary to [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF], here we do not consider the converse problem of whether the existence of a reconstruction implies any coherence condition such as (3.3.3).

We shall also show that the reconstruction map R admits the following properties (and see Theorem 3.4.5 for a more general version).

Theorem 3.3.7 (Properties of the reconstruction map). In the context of Theorem 3.3.2:

1. (Global version) if (3.3.2), (3.3.3) are satisfied for K = R d , then: (a) If β ∧ γ > 0, then R(F ) = 0. (b) If β ∧ γ = 0, then for all κ > 0, R (F ) ∈ B -κ p,1 . (c) If β ∧ γ < 0, then R (F ) ∈ B β∧γ p,∞ . 2. (Local version) if (3.3.2), (3.3.3) are satisfied for all K ⊂ R d , then: (a) If β ∧ γ > 0, then R(F ) = 0. (b) If β ∧ γ = 0, then for all κ > 0, R (F ) ∈ B -κ p,1,loc . (c) If β ∧ γ < 0, then R (F ) ∈ B β∧γ p,∞,loc .
The reconstruction map is continuous in the following sense: let B denote the Besov space

B -κ p,1,K if β ∧ γ = 0 and B β∧γ p,∞,K if β ∧ γ < 0, then: ∥R (F )∥ B ≲ ∥F ∥ hom p,β, K2 ,φ + ∥F ∥ coh p,q,α,γ, K4 ,φ .

A comparison with the literature

Now let us compare Theorem 3.3.2 and Theorem 3.3.7 above with the existing literature.

Example 3.3.8 (Caravenna-Zambotti). Taking p = q = +∞ in the previous theorem (in its local version) retrieves [CZ20, Theorem 5.1] in the situation where the coherence and homogeneity exponents α and β do not depend on the compact K. Recall also that in the context of [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF], the property of (local) homogeneity is implied by the property of (local) coherence, cf. [CZ20, Lemma 4.12]. However, it is not clear whether this generalises to the case of global exponents i.e. when α, β, γ do not depend on the choice of K, which is why we assume both homogeneity and coherence.

Example 3.3.9 (Hairer-Labbé). Let us shortly discuss how Theorem 3.3.2 (in its global version) generalises [HL17, Theorem 3.1], in the case of the canonical scaling s = (1, . . . , 1).

Here we assume that the reader is familiar with the framework and notations of [START_REF] Hairer | The reconstruction theorem in Besov spaces[END_REF]. Let (A , T , G ) be a regularity structure over R d , endowed with a model (Π, Γ). Let γ > 0, p, q ∈ [1, +∞] and let f ∈ D γ p,q be a Besov modelled distribution. We define a germ F by setting for x ∈ R d , F x := Π x (f (x)). Then we claim that F satisfies the homogeneity property (3.3.2) and the coherence property (3.3.3), so that R (F ) coincides with R HL (f ), the Hairer-Labbé reconstruction of f . Let us only discuss the coherence, as the homogeneity is obtained with a similar argument. One can observe that for any test-function φ ∈ D(R d ),

(F x+h -F x )(φ 2 -n x ) = (Π x+h f (x + h) -Π x f (x))(φ 2 -n x ) = a∈Aγ Π x+h (f (x + h) -Γ x+h,x f (x)) a (φ 2 -n x ) = a∈Aγ Π x Γ x,x+h (f (x + h) -Γ x+h,x f (x)) a (φ 2 -n x ).
Using the analytic bounds on Π and Γ, it holds:

|(F x+h -F x )(φ 2 -n x )| ≲ a∈Aγ 2 -na |f (x + h) -Γ x+h,x f (x)| a ,
which implies that for α := inf A γ ≤ a < γ and n ∈ N:

|(F x+h -F x )(φ 2 -n x )| 2 -nα (2 -n + |h|) γ-α ≲ a∈Aγ 2 -n(a-α) |f (x + h) -Γ x+h,x f (x)| a |h| γ-a .
Recall that the D γ p,q -norm of the modelled distribution f is given by:

∥f ∥ D γ p,q = a∈Aγ   ∥|f (x)| a ∥ L p (x) + |f (x + h) -Γ x+h,x f (x)| a |h| γ-a L p (x) L q h (h)   .
Thus after integration over h ∈ B (0, 1):

(F x+h -F x ) φ 2 -n x 2 -nα (2 -n + |h|) γ-α L p (x) ℓ ∞ (n) L q h (h∈B(0,1)) ≲ a∈Aγ |f (x + h) -Γ x+h,x f (x)| a |h| γ-a L p (x) L q h (h) ≲ ∥f ∥ D γ p,q < +∞,
Also, when h ∈ B (1, 2), using the analytic bound on Γ it is straightforward to establish:

(F x+h -F x ) φ 2 -n x 2 -nα (2 -n + |h|) γ-α L p (x) ≲ a∈Aγ ∥|f (x)| a ∥ L p (x) ≤ ∥f ∥ D γ p,q ,
whence the property of coherence (3.3.3). Recall that in [START_REF] Hairer | The reconstruction theorem in Besov spaces[END_REF] it is announced when q < +∞ that for any κ > 0, R HL (f ) ∈ B α-κ p,q , while our result yields the seemingly different R(F ) ∈ B α p,∞ . Our result is actually stronger than those presented in [START_REF] Hairer | The reconstruction theorem in Besov spaces[END_REF] since

B α p,∞ ⊂ B α-κ p,1 ⊂ B α-κ p,q .
Example 3.3.10 (Taylor germ). Let us add one more pedagogical example of germs related to classical Taylor expansions, which have been discussed in [CZ20, Examples 4.11 & 5.4] in the Hölder case. Fix γ > 0 with γ / ∈ N, p, q ∈ [1, +∞], and f ∈ B γ p,q . Proposition 3.A.5 implies that for 0 ≤ |k| < γ, ∂ k f coincides with an L p function (up to a set of Lebesgue measure 0). Thus we define, for x, z ∈ R d the following germ, called the Taylor germ of f :

F x (z) := 0≤|k|<γ ∂ k f (x) (z -x) k k! .
Then, F satisfies the properties of coherence and homogeneity in the sense that for all test-functions φ with φ ̸ = 0:

∥F ∥ hom p,0,R d ,φ + ∥F ∥ coh p,q,0,γ,R d ,φ < +∞.
Indeed, this corresponds to a particular case of the calculations in Section 3.6 (taking g ≡ 1). Using Proposition 3.A.5, Item (2) and the uniqueness part in Theorem 3.3.2, it is straightforward to observe that R (F ) = f . Remark 3.3.11 (Sewing Lemma). The sewing lemma [START_REF] Gubinelli | Controlling rough paths[END_REF][START_REF] Feyel | Curvilinear integrals along enriched paths[END_REF] is a result of Rough Path theory which plays a role similar to that of the reconstruction theorem in the theory of Regularity Structures. In fact, it is known that the (Hölder) reconstruction theorem can be understood as a "generalisation" of the (Hölder) sewing lemma, see for instance [START_REF] Broux | The Sewing lemma for 0 < γ ≤ 1[END_REF]Section 4] for a rigorous discussion. It is thus interesting to wonder if this is still the case in the Besov setting, where a sewing lemma was recently obtained in [START_REF] Friz | Besov rough path analysis[END_REF].

For a result in this direction, see [ZK21, Section 4] where Zorin-Kranich's general reconstruction theorem in quasi-normed spaces is shown to imply the Besov sewing lemma of [START_REF] Friz | Besov rough path analysis[END_REF], though only in the particular case of smooth functions.

However, it is still an open question whether our results Theorem 3.3.2-Theorem 3.4.5 can be shown to generalise the Besov sewing lemma of [START_REF] Friz | Besov rough path analysis[END_REF].

The problem of Young multiplication in Besov spaces

Now let us discuss the classical problem of multiplying two distributions, provided they belong to suitable Besov spaces, mirroring a similar discussion from [CZ20, Section 14] in the Hölder case. We will construct such a multiplication as a consequence of our general result Theorem 3.4.5.

The question can be formulated as follows: given α, β, γ ∈ R, p 1 , p 2 , p 3 , q 1 , q 2 , q 3 ∈ [1, +∞], does there exist a continuous bilinear application M : B α p 1 ,q 1 × B β p 2 ,q 2 → B γ p 3 ,q 3 that extends the canonical pointwise multiplication between smooth functions?

Usually, such multiplication maps are constructed with tools from the theory of paraproducts, and it is sometimes claimed in the literature that it is enough to assume:

α < 0 < β, α + β > 0, γ = α, 1 p 3 = 1 p 1 + 1 p 2 , 1 q 3 = 1 q 1 + 1 q 2 .
However, it turns out that only the "resonant" term of the paraproduct decomposition is well-defined under these conditions. In fact, the last condition on q 3 is incorrect as [Joh95, Theorem 4.2] exhibits sequences of smooth functions f n , g n such that for any such α, β, p 1 , p 2 , p 3 , q 1 , q 2 :

   ∥g n ∥ B α p 1 ,q 1 , ∥f n ∥ B β p 2 ,q 2 = 1, ∥g n • f n ∥ B α p 3 ,q -----→ n→+∞ +∞ when q < q 1 .
In this article, we construct a suitable multiplication map M under the conditions:

α < 0 < β, α + β > 0, γ = α, 1 p 3 = 1 p 1 + 1 p 2 , q 3 = q 1 .
That is, we build a multiplication:

M : B α p 1 ,q 1 × B β p 2 ,q 2 → B α (p -1 1 +p -1 2 ) -1 ,q 1 .
Note that it is known that such a map M can be built with paraproducts, see [Joh95, Theorem 6.6], [Mar18, Corollary 2.1.35] or [Zui20, Theorem 19.7]. However, our construction does not require paraproducts and relies instead on Theorem 3.4.5 below. We will provide a proof in Section 3.6, but let us outline the strategy here.

Recalling the embedding B β p 2 ,q 2 ⊂ B β-ϵ p 2 ,q 2 for any ϵ > 0, we can assume without loss of generality that β / ∈ N. Thus, we shall fix α < 0, β > 0 with α + β > 0 and β / ∈ N, as well as p 1 , p 2 , q 1 , q 2 , p, q ∈ [1, +∞] with

1 p = 1 p 1 + 1 p 2 , 1 q = 1 q 1 + 1 q 2 . Fix distributions g ∈ B α p 1 ,q 1 , f ∈ B β p 2 ,q 2 .
Note that our conventions for the sign of α and β are interverted with those of [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF].

Since f ∈ B β p 2 ,q 2 with β > 0 and β / ∈ N, we know from Proposition 3.A.5 that for 0 ≤ |k| < β, ∂ k f coincides with an L p 2 function (up to a set of Lebesgue measure 0), so that we can define, for x, z ∈ R d :

F x (z) := 0≤|k|<β ∂ k f (x) (z -x) k k! . (3.3.5)
This is the Taylor germ of f . Now we define a germ P by setting for x ∈ R d and φ ∈ D(R d ):

P x (φ) := g (φF x ) . (3.3.6)
Recall that this is the same germ as considered in [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF] in the case of Young multiplication for Hölder distributions. Note also that here, P x is only correctly defined for x away from a null set, which is not a problem since all the objects required for the reconstruction are defined by integration over x, recall Definition 3.3.1.

In Section 3.6 we will prove that the germ P satisfies the hypotheses of the more general Reconstruction Theorem 3.4.5 below, and that P admits a unique reconstruction R (P ). Therefore the following result will follow by setting M (g, f ) := R (P ): Theorem 3.3.12 (Young multiplication in Besov spaces). Let p 1 , p 2 , q 1 , q 2 ∈ [1, +∞] and let p, q ∈ [1, +∞] be defined by

1 p = 1 p 1 + 1 p 2 , 1 q = 1 q 1 + 1 q 2 . Let α, β ∈ R be such that α < 0 < β, α + β > 0.
Then there exists a bilinear continuous map M : B α p 1 ,q 1 × B β p 2 ,q 2 → B α p,q 1 that extends the usual product, i.e. when g ∈ B α p 1 ,q 1 and f ∈ C ∞ , M (g, f ) = g • f , where the product in the right-hand side is understood as the product of a distribution against a smooth function.

Furthermore, when β / ∈ N, our map M is characterised by the following property: for any r ∈ N with r > -α: 

sup ψ∈B r (M (g, f ) -g • F x ) ψ λ x λ α+β L p (x) L q λ (λ) < +∞. ( 3 
= p 2 = q 1 = q 2 .

A general Besov reconstruction theorem

Now let us turn to the statement and proof of our most general reconstruction result, Theorem 3.4.5 below.

Statement of the result

Let us introduce the following notations.

Definition 3.4.1 (Besov reconstruction of a Germ). Let F be a germ, p, q ∈ [1, +∞], and r ∈ N. Let k : (0, 1] → R + be a function (which we will call a scaling function). Let K ⊂ R d . We say that a distribution R (F ) ∈ D ′ ( K1 ) is a k, p, q-reconstruction of F on K if the following estimate, called the reconstruction bound, holds for any test-function

ψ ∈ D(B(0, 1)): (R (F ) -F x ) ψ λ x k (λ) L p (x∈K) L q λ (λ) < +∞.
We say that the reconstruction R (F ) is r-uniform if the reconstruction bound is uniform in ψ in the following sense:

sup ψ∈B r (R (F ) -F x ) ψ λ x k (λ) L p (x∈K) L q λ (λ) < +∞.
Finally, if γ ∈ R, we say that a distribution is a γ, p, q-reconstruction of F on K if it is a k γ,q,ϵ , p, q-reconstruction of F on K, where k is defined by (3.3.1).

The reconstruction bound quantifies how close R (F ) is to F x locally in space (the x variable) and scale (the λ variable), in a way similar to the definition of Besov spaces, see Section 3.A.

It is interesting to note that this definition already guarantees some properties of the reconstruction: Proposition 3.4.2. In the context of the previous definition, let k 1 , k 2 : (0, 1] → R + be two scaling functions.

1. Assume there exists C > 0 such that k 1 ≤ Ck 2 pointwise, then a k 1 , p, q-reconstruction of F is also a k 2 , p, q-reconstruction of F .

2. Assume there exists C > 0 such that for all λ ∈ (0, 1],

C -1 k (λ) ≤ k 2 ⌊log 2 (λ)⌋ ≤ Ck (λ). Then a distribution R (F ) ∈ D ′ ( K1 ) is a r-uniform k, p, q-reconstruction of F on K if and only if: sup ψ∈B r (R (F ) -F x ) ψ 2 -n x k (2 -n ) L p (x∈K) ℓ q (n) < +∞. (3.4.1)
3. Assume that k 1 , k 2 are two scaling functions such that Item (2) just above applies, and k 1 , k 2 (λ) → λ→0 0. Then any k 1 , p, q-reconstruction of a germ F on all K ⊂ R d must coincide with any k 2 , p, q-reconstruction of F on all K ⊂ R d . In particular, when k (λ) → λ→0 0, a germ F can have at most one k, p, q-reconstruction.

Proof. ( 1) and (2) are elementary to check. Now let us tackle (3). Denote T the difference of the two reconstructions. The embedding ℓ q ⊂ ℓ ∞ , Hölder's inequality, and the triangle inequality, yield lim n→+∞ K |T (φ ϵn x )|dx = 0 for any compact K ⊂ R d and any test-function φ. Now we fix a test-function φ such that φ = 1. Let η ∈ D(R d ) and let us show that T (η) = 0. By mollification, T (η) = lim n→+∞ T n (η) where

T n (η) := supp(η) T (φ ϵn x )η(x)dx. Now |T n (η)| ≤ ∥η∥ ∞ supp(η) |T (φ ϵn x )|dx = o n→+∞ (1)
, hence T (η) = 0 as announced, so that the two reconstructions coincide.

Notation 3.4.3. If F is a germ, p ∈ [1, +∞], α, β, γ ∈ R, K ⊂ R d , and φ ∈ D(R d ) is a test-function, we denote:                    f K (n, h) := f F,φ,α,γ,p,K (n, h) := (F x+h -F x ) φ 2 -n x 2 -nα (2 -n + |h|) γ-α L p (x∈ K2) , g K (n) := g F,φ,β,p,K (n) := F x φ 2 -n x 2 -nβ L p (x∈ K2)
.

We will usually drop the subscripts when the dependence in F, φ, α, β, γ, p is clear from the context.

The following sequences, corresponding to averaged versions of f , will play an important role in our calculations. Note that these quantities will appear naturally in our calculations, but we do not really have an interpetation of what they represent.

Notation 3.4.4. For any function

f : N × R d → R + and real c ∈ R, set for n ∈ N:                                    m (1) f (n) := h∈B(0,2 -n+1 ) 2 nd f (n, h) dh, m (2) c,f (n) := +∞ k=n h∈B(0,2 -k ) 2 -(k-n)c+kd f (k, h) dh, m (3) c,f (n) := +∞ k=n h∈B(0,2 -n+1 ) 2 -(k-n)c+nd f (k, h) dh, m (4) c,f (n) := n-1 k=0 h∈B(0,2 -k+1 ) 2 -(k-n)c+kd f (k, h) dh. (3.4.2)
Once again, we will drop the subscripts when the dependence in the parameters is clear from context.

We will establish the following general version of the Besov reconstruction theorem.

Theorem 3.4.5 (Besov reconstruction, general case). Let F be a germ, p, q ∈ [1, +∞], and α, β, γ ∈ R be such that α ≤ γ. Let r ∈ N be an integer such that r > -β. Let K ⊂ R d and φ ∈ D(B(0, 1/2)) be a test-function such that φ = 1 and x k φ (x) dx = 0 for 1 ≤ |k| ≤ r -1. For simplicity of notation, denote:

       f K = f F, φ,α,γ,p,K , g K = g F, φ,β,p,K , m (1) K = m (1) f K ,        m (2) K = m (2) γ,f K , m (3) K = m (3) α+r,f K , m (4) K = m (4) γ,f K . (3.4.3)
For any q 1 ∈ [1, +∞], we denote:

∥F ∥ G α,β,γ p,q,q 1 ,K,φ :=            ∥g K ∥ ℓ q 1 + m (1) K ℓ q + m (2) K ℓ q + m (3) K ℓ q if γ > 0, ∥g K ∥ ℓ q 1 + m (3) K ℓ q + m (4) K ℓ q if γ < 0, ∥g K ∥ ℓ q 1 + m(3) K ℓ q + m(4) K ℓ q if γ = 0,
where in the case γ = 0, we define, for n ∈ N and i ∈ {3, 4}, m(i)

K (n) := m (i) (n) /k (2 -n ), where k is any scaling function such that (1/k (2 -n )) n∈N ∈ ℓ q .
Assume that:

∥F ∥ G α,β,γ p,q,q 1 ,K,φ < +∞. (3.4.4)
Then there exists a k, p, q-reconstruction of F on K, noted R (F ) or R K (F ), that is also r-uniform.

Furthermore:

1. (Global version) if (3.4.4) holds for K = R d , then:

(a) Such an R (F ) is unique when γ > 0 but not when γ ≤ 0.

(b) If β ∧ γ > 0, then R(F ) = 0. (c) If β ∧ γ = 0, then for all κ > 0, R (F ) ∈ B -κ p,1 . (d) If β ∧ γ < 0, then R (F ) ∈ B β∧γ p,q 1 ∨q .

(Local version) if (3.4.4) holds for all

K ⊂ R d , then there exists a global distribution R (F ) ∈ D ′ (R d
) that is a r-uniform k, p, q-reconstruction of F on all K ⊂ R d and:

(a) Such an R (F ) is unique when γ > 0 but not when γ ≤ 0.

(b) If β ∧ γ > 0, then R(F ) = 0. (c) If β ∧ γ = 0, then for all κ > 0, R (F ) ∈ B -κ p,1,loc . (d) If β ∧ γ < 0, then R (F ) ∈ B β∧γ p,q 1 ∨q,loc .
The reconstruction map is continuous in the following sense: let B denote B -κ p,1,K if β ∧ γ = 0 and B β∧γ p,q 1 ∨q,K if β ∧ γ < 0, then:

∥R (F )∥ B ≲ ∥F ∥ G α,β,γ p,q,q 1 , K2 ,φ .
Remark 3.4.6. The cases γ ̸ = 0 could also be slightly modified to consider general scaling functions k as in the case of γ = 0.

Let us turn to the proof of Theorem 3.4.5. In the remainder of this section, we consider a germ F , reals p, q ∈ [1, +∞], α, β, γ ∈ R such that α ≤ γ, an integer r ∈ N, K ⊂ R d , and a single test-function φ ∈ D(B(0, 1/2)) such that φ = 1 and x k φ (x) dx = 0 for 1 ≤ |k| ≤ r -1. We denote f , g, m (1) , m (2) , m (3) , m (4) to be the functions defined in (3.4.3).

We break up the proof into several sections.

Uniqueness of reconstruction

Recall from Proposition 3.4.2, Item (3), that when γ > 0, the reconstruction, if it exists, is unique. Nevertheless, when γ ≤ 0, the reconstruction is not unique in general. We now focus on the existence of R (F ).

Existence for γ > 0

We now construct a reconstruction in the case γ > 0. First, let us recall the strategy of [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF].

In order to establish the existence of the reconstruction, we proceed by mollification. Recall that if ρ ∈ D(R d ) is any test-function such that ρ = 1, and if ξ ∈ D ′ (R d ) is any distribution, then we have an approximation of ξ provided for ψ ∈ D(R d ) by:

ξ(ψ) = lim n→∞ ξ ρ 2 -n * ψ = lim n→∞ R d ξ ρ 2 -n z ψ(z) dz.
This yields a natural candidate for the reconstruction of the germ F , as we would like to set by analogy: R (F ) (ψ)

? := lim n→∞ R d F z ρ 2 -n z ψ(z) dz.
Of course, the convergence of such a sequence is a priori far from obvious. However, as our goal is an existence result for R(F ), it is enough for us to exhibit just one choice of ρ such that this sequence converges. For this purpose, we follow the strategy of [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF] i.e. construct a specific mollifier ρ from the single test-function φ provided by the assumption of the theorem.

Explicitly, define as in [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF]:

ρ := φ2 * φ. (3.4.5)
The motivation behind this choice is that it allows us to rewrite the difference ρ 1/2 -ρ as a convolution, paving the way for a nice dyadic decomposition. Explicitly, set φ := φ1/2 -φ2 , then:

ρ 1/2 -ρ = φ * φ.
This directly implies that for n ∈ N,

ρ 2 -(n+1) -ρ 2 -n = φ2 -n * φ2 -n .
Notice that by assumption on φ, it holds that supp ( φ) ⊂ B (0, 1), and that φ cancels all polynomials of degree less that r -1:

x k φ (x) dx = 0 for 0 ≤ |k| ≤ r -1.
Now we can exploit the dyadic structure of our mollifier: for all n 0 , n ∈ N,

ρ 2 -n = ρ 2 -n 0 + n-1 k=n 0 φ2 -k * φ2 -k .
This gives us a natural definition of approximating our reconstruction.

Definition 3.4.7. Let F = (F x ) x∈R d be a germ. For simplicity of notation, denote ϵ n := 2 -n . We define a sequence of approximating distributions R n (F ) ∈ D ′ (R d ) by setting, for n ∈ N, ψ ∈ D(R d ), and any n 0 ∈ N:

R n (F ) (ψ) := R d F z (ρ ϵn z ) ψ(z) dz = R d F z φϵn 0 * φ2ϵn 0 z ψ(z) dz + n-1 k=n 0 R d F z ( φϵ k * φϵ k z ) ψ(z) dz.
where ρ is defined as in (3.4.5). Note that as explained above, this definition does not depend on the choice of n 0 ∈ N. If the sequence converges, then we denote for ψ ∈ D(R d ):

R(F )(ψ) := lim n→∞ R n (F ) (ψ).
Now, we want to establish whether this limit lim n→∞ R n (F ) exists. For this, we shall pursue even further the decomposition of R n (F ). Recall that for any distribution ξ ∈ D ′ (R d ) and any two test-functions η, η ∈ D(R d ),

ξ (η * η) = R d ξ (η x ) η (x) dx.
(3.4.6)

From Definition 3.4.7, it follows that the existence of R(F ) is implied by the absolute convergence of the series k u k , where we set for k ∈ N:

u k := R d F z ( φϵ k * φϵ k z ) ψ(z) dz = R d R d F z ( φϵ k x ) φϵ k (x -z)ψ(z) dx dz. Writing F z = F x + (F z -F x ), we decompose u k = u ′ k + u ′′ k
, where:

u ′ k := R d R d F x ( φϵ k x ) φϵ k (x -z)ψ(z) dx dz = R d F x ( φϵ k x ) ( φϵ k * ψ) (x) dx,
and:

u ′′ k := R d R d (F z -F x ) ( φϵ k x ) φϵ k (x -z)ψ(z) dx dz = R d R d (F x+h -F x ) ( φϵ k x ) φϵ k (-h)ψ(x + h) dx dh.
Hence, the existence of the reconstruction R(F ) can be determined by the absolute convergence of

k u ′ k , k u ′′ k .
The following lemma from [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF] will also be useful for us here. For completeness, we concisely recall its proof. Note that [CZ20, Lemma 9.2] states the bound in the L 1 case but its proof actually treats the L ∞ case.

Lemma 3.4.8. [CZ20, Lemma 9.2] Assume that φ ∈ D(R d ) is a test-function that cancels polynomials of degree r -1 ∈ N i.e. for all 0 ≤ k ≤ r -1, R d x k φ (x) dx = 0. Then for any test-function η ∈ D(R d ) and λ > 0: ∥ φλ * η∥ L ∞ ≤ ∥η∥ C r ∥ φ∥ L 1 λ r .
Proof. We fix y ∈ R d and denote p y (•) := |k|≤r-1

∂ k η(y)
k! (• -y) k to be the Taylor polynomial of η of order r -1 based at y, so that |η(z) -p y (z)| ≤ ∥η∥ C r |z -y| r . As noted above, φ cancels polynomials of degree r -1, so that R d φλ (y -z)p y (z)dz = 0, thus:

( φλ * η)(y) = R d φλ (y -z){η(z) -p y (z)} dz. Hence, |( φλ * η)(y)| ≤ R d | φλ (y -z)||η(z) -p y (z)| dz ≤ ∥η∥ C r R d | φλ (y -z)||z -y| r dz = λ r ∥η∥ C r ∥ φ∥ L 1 ,
which gives us our result. Proposition 3.4.9 (Convergence of approximating distributions). In the setting of this section:

1. Suppose that β + r > 0 and that g K ∈ ℓ ∞ . Then k u ′ k is absolutely convergent as soon as supp (ψ) ⊂ K1 . andm (1) K ∈ ℓ q . Then k u ′′ k is absolutely convergent as soon as supp (ψ) ⊂ K1 . 2) just above apply. Then R(F ) ∈ D ′ ( K1 ) is a distribution of order r.

Suppose that

γ > 0, γ ≥ α,

Suppose that assumptions (1) and (

Proof. We start with (1). Denote p to be the Hölder conjugate of p. By Hölder's inequality, and since supp (

φϵ k * ψ) ⊂ K2 |u ′ k | ≤ K2 |F x ( φϵ k x ) ( φϵ k * ψ) (x)| dx ≤ ∥F x ( φϵ k x )∥ L p (x∈ K2 ) ∥ φϵ k * ψ∥ L p .
Applying Lemma 3.4.8, we obtain:

∥ φϵ k * ψ∥ L p ≲ ∥ψ∥ C r ∥ φ∥ L 1 2 -kr .
Thus, recalling the definition of g K , and since β + r > 0,

k |u ′ k | ≲ ∥ψ∥ C r ∥ φ∥ L 1 k ∥F x ( φϵ k x )∥ L p (x∈ K2 ) 2 -kβ 2 -k(β+r) ≲ ∥ψ∥ C r ∥ φ∥ L 1 ∥g K ∥ ℓ ∞ k 2 -k(β+r) < ∞.
This yields the announced result. Now we prove (2). By definition:

|u ′′ k | ≤ R d R d |(F x+h -F x ) ( φϵ k x ) φϵ k (-h)ψ(x + h)| dx dh
Because of the supports of φ and ψ, we have that h runs over B (0, ϵ k ) and x runs over K2 . If we denote p to be the Hölder conjugate of p, then by Hölder's inequality, with respect to the x variable,

|u ′′ k | ≤ B(0,ϵ k ) ∥(F x+h -F x ) ( φϵ k x )∥ L p (x∈ K2 ) ∥ψ(x + h)∥ L p(x) | φϵ k (-h)| dh. By substitution, ∥ψ(x + h)∥ L p(x) = ∥ψ∥ L p . Also, | φϵ k (-h)| ≤ 2 dk ∥ φ∥ L ∞ , so that: |u ′′ k | ≤ 2 dk ∥ φ∥ L ∞ ∥ψ∥ L p B(0,ϵ k ) ∥(F x+h -F x ) ( φϵ k x )∥ L p (x) dh.
Recall that by definition of f K (k, h):

∥(F x+h -F x ) ( φϵ k x )∥ L p (x∈ K2 ) = f K (k, h) 2 -kα (2 -k + |h|) γ-α ,
and since here |h| ≤ 2 -k and γ ≥ α, we bound 2 -kα (2 -k + |h|) γ-α ≤ 2 -kγ . Thus:

|u ′′ k | ≤ ∥ψ∥ L p ∥ φ∥ L ∞ 2 -kγ B(0,ϵ k ) f K (k, h)2 kd dh ≤ ∥ψ∥ L p ∥ φ∥ L ∞ 2 -kγ m (1) K (k).
Denoting q to be the Hölder conjugate of q, we have by Hölder's inequality

k |u ′′ k | ≤ ∥ψ∥ L p ∥ φ∥ L ∞ 2 -kγ k∈N ℓ q m (1) K ℓ q ,
which is finite because γ > 0 and m

(1) K ∈ ℓ q . Finally, (3) follows immediately from the established estimates.

Reconstruction bound for γ > 0

In Proposition 3.4.9 just above, we have established the existence of a distribution R(F ) ∈ D ′ ( K1 ) that is a natural candidate for the reconstruction of the germ F . In this section we focus on establishing that R(F ) does indeed satisfy the following reconstruction bound (recall the discussion of Definition 3.4.1 and Proposition 3.4.2):

sup ψ∈B r (R (F ) -F x ) ψ 2 -n x 2 -nγ L p (x∈K) ℓ q (n) < +∞.
(3.4.7)

In fact, we shall show that the left-hand term of (3.4.7) is bounded by a constant times ∥F ∥ G α,β,γ p,q,q 1 , K2 ,φ . For simplicity of notation, we denote:

G w (ψ) := (R(F ) -F w )(ψ) for w ∈ R d and ψ ∈ D( K1 ).
As in the previous section, we shall be able to discuss G thanks to the dyadic decomposition provided by the mollifier (3.4.5). Remember that we defined R(F ) as:

R(F ) (ψ) := R d F z φϵn 0 * φ2ϵn 0 z ψ(z) dz + +∞ k=n 0 R d F z ( φϵ k * φϵ k z ) ψ(z) dz,
where the right-hand term does not depend on the choice of n 0 ∈ Z. Now for any fixed w ∈ R d , it holds by classical mollification of the distribution F w (with the mollifier ρ defined as (3.4.5)) that for any n 0 ∈ Z:

F w (ψ) = R d F w φϵn 0 * φ2ϵn 0 z ψ(z) dz + +∞ k=n 0 R d F w ( φϵ k * φϵ k z ) ψ(z) dz.
Thus, we can decompose G as:

G w (ψ) = R d (F z -F w ) φϵn 0 * φ2ϵn 0 z ψ(z) dz + +∞ k=n 0 R d (F z -F w ) ( φϵ k * φϵ k z ) ψ(z) dz Recalling (3.4.6), writing F z -F w = (F z -F x ) + (F x -F w )
and taking into consideration the support of φϵn z and ψ λ w (recall that supp( φ) ⊂ B(0, 1/2) and supp( φ) ⊂ B(0, 1)), we obtain, for ψ ∈ B r , λ ∈ (0, 1] and any n ∈ N, the more refined decomposition:

G w (ψ λ w ) = B(w,λ) B(z,ϵn) (F z -F x ) ( φϵn x ) φϵ n-1 z (x)ψ λ w (z) dx dz + B(w,λ) B(z,ϵn) (F x -F w ) ( φϵn x ) φϵ n-1 z (x)ψ λ w (z) dx dz + ∞ k=n B(w,λ) B(z,ϵ k ) (F z -F x ) ( φϵ k x ) φϵ k z (x)ψ λ w (z) dx dz + ∞ k=n B(w,λ) B(z,ϵ k ) (F x -F w ) ( φϵ k x ) φϵ k z (x)ψ λ w (z) dx dz.
Choosing λ = 2 -n = ϵ n gives us four terms which we define in the following way for n ∈ N and w ∈ R d :

a n (w) := sup ψ∈B r B(w,ϵn) B(z,ϵn) (F z -F x ) ( φϵn x ) φϵ n-1 z (x)ψ ϵn w (z) dx dz , b n (w) := sup ψ∈B r B(w,ϵn) B(z,ϵn) (F x -F w ) ( φϵn x ) φϵ n-1 z (x)ψ ϵn w (z) dx dz , c n (w) := sup ψ∈B r ∞ k=n B(w,ϵn) B(z,ϵ k ) (F z -F x ) ( φϵ k x ) φϵ k z (x)ψ ϵn w (z) dx dz , d n (w) := sup ψ∈B r ∞ k=n B(w,ϵn) B(z,ϵ k ) (F x -F w ) ( φϵ k x ) φϵ k z (x)ψ ϵn w (z) dx dz ,
Now, the reconstruction bound is established in the following proposition.

Proposition 3.4.10. Assume that m

(1)

K , m (2) 
K , m

(3) K ∈ ℓ q and that γ ≥ α. Then

∥a n (w)∥ L p (w∈K) 2 -nγ n∈N , ∥b n (w)∥ L p (w∈K) 2 -nγ n∈N , ∥c n (w)∥ L p (w∈K) 2 -nγ n∈N , ∥d n (w)∥ L p (w∈k) 2 -nγ n∈N ∈ ℓ q .
As an immediate consequence, (3.4.7) holds, i.e. R (F ) is a r-uniform γ, p, q-reconstruction of F on K.

Proof. To begin, we focus on

∥an(w)∥ L p (w∈K) 2 -nγ n∈N . By definition of a n , a n (w) ≤ sup ψ∈B r B(w,ϵn) B(z,ϵn) |(F z -F x ) ( φϵn x )| | φϵ n-1 z (x)| |ψ ϵn w (z)| dx dz. Using the estimates | φϵ n-1 z (x)| ≤ 2 nd ∥ φ∥ L ∞ and |ψ ϵn w (z)| ≤ 2 nd ∥ψ∥ C r , we get: a n (w) ≲ 2 2nd B(w,ϵn) B(z,ϵn) |(F z -F x ) ( φϵn x )| dx dz.
We apply the substitution x = -(x -z) then z = z -w in this integral, which yield:

a n (w) ≲ 2 2nd B(0,ϵn) B(0,ϵn) (F z+w -F -x+z+w ) φϵn -x+z+w
dx dz. Now Minkowski's inequality implies:

∥a n (w)∥ L p (w∈K) ≲ 2 2nd
B(0,ϵn) B(0,ϵn)

(F z+w -F -x+z+w ) φϵn -x+z+w L p (w∈K) dx dz.
Applying the substitution w = w + zx in the L p norm yields:

∥a n (w)∥ L p (w∈K) ≲ 2 2nd B(0,ϵn) B(0,ϵn) ∥(F w+x -F w) ( φϵn w )∥ L p ( w∈ K2) dx dz = 2 nd B(0,ϵn) ∥(F w+x -F w) ( φϵn w )∥ L p ( w∈ K2) dx.
By definition of f ,

∥(F w+x -F w) ( φϵn w )∥ L p ( w∈ K2) = f K (n, x) 2 -nα 2 -n + |x| γ-α .
Since |x| ≤ 2 -n in the integral and γ ≥ α, this implies:

∥a n (w)∥ L p (w∈K) ≲ 2 nd B(0,ϵn) f K (n, x) 2 -nγ dx ≤ 2 -nγ m (1) K (n) .
The assertion on a n follows.

We now focus on 

|(F x -F w ) ( φϵn x )| | φϵ n-1 z (x)| |ψ ϵn w (z)| dx dz. Once again, since | φϵ n-1 z (x)| ≤ 2 nd ∥ φ∥ L ∞ and |ψ ϵn w (z)| ≤ 2 nd ∥ψ∥ C r , we obtain: b n (w) ≲ 2 2nd B(w,ϵn) B(z,ϵn) |(F x -F w ) ( φϵn x )| dx dz.
Observe that for every z ∈ B(w, ϵ n ), we have B(z, ϵ n ) ⊂ B (w, 2ϵ n ). In turn we have

b n (w) ≲ 2 nd B(w,ϵ n-1 ) |(F x -F w ) ( φϵn x )| dx.
Substituting x = -(x -w) then applying Minkowski's inequality yields:

∥b n (w)∥ L p (w∈K) ≲ 2 nd B(0,ϵ n-1 ) (F w-x -F w ) φϵn w-x L p (w∈K) dx.
Substituting w = w -x in the L p norm yields:

∥b n (w)∥ L p (w∈K) ≲ 2 nd B(0,ϵ n-1 ) ∥(F w+x -F w) ( φϵn w )∥ L p ( w∈ K2) dx.
Recalling the definition of f K and using the facts that |x| ≤ ϵ n-1 and γ ≥ α:

∥b n (w)∥ L p (w∈K) ≲ 2 -nγ B(0,ϵ n-1 ) 2 nd f K (n, x) dx = 2 -nγ m (1) K (n) .
The assertion on b n follows.

Let us now consider

∥cn(w)∥ L p (w∈K) 2 -nγ n∈N
. By definition of c n :

c n (w) ≤ sup ψ∈B r ∞ k=n B(w,ϵn) B(z,ϵ k ) |(F z -F x ) ( φϵ k x )| | φϵ k z (x)| |ψ ϵn w (z)| dx dz.
Once again, since | φϵ k z (x)| ≤ 2 kd ∥ φ∥ L ∞ and |ψ ϵn w (z)| ≤ 2 nd ∥ψ∥ C r , we obtain:

c n (w) ≲ 2 nd ∞ k=n 2 kd B(w,ϵn) B(z,ϵ k ) |(F z -F x ) ( φϵ k x )| dx dz.
Reasoning as for a n we obtain:

∥c n (w)∥ L p (w∈K) ≲ ∞ k=n 2 kd B(0,ϵ k ) 2 -kγ f K (k, x) dx. Thus, ∥c n (w)∥ L p (w∈K) ≲ 2 -nγ m (2) K (n) . The assertion on c n follows. Let us now consider ∥dn(w)∥ L p (w) 2 -nγ n∈N
. Applying the substitution z = z -w then x = -(x -w), and remarking that the obtained integrand is supported in z ∈ B (0, ϵ n ), x ∈ B (-z, ϵ k ), we can integrate over z ∈ B (0, ϵ n ), x ∈ B (0, ϵ n-1 ) without changing the value of the integral so that:

d n (w) = sup ψ∈B r ∞ k=n B(0,ϵn) B(0,ϵ n-1 ) (F -x+w -F w ) φϵ k -x+w φϵ k z (-x)ψ ϵn (z) dx dz = sup ψ∈B r ∞ k=n B(0,ϵ n-1 ) (F -x+w -F w ) φϵ k -x+w ( φϵ k * ψ ϵn (-x)) dx ≤ sup ψ∈B r ∞ k=n B(0,ϵ n-1 ) (F -x+w -F w ) φϵ k -x+w | φϵ k * ψ ϵn (-x)| dx. Now from Lemma 3.4.8, | φϵ k * ψ ϵn (-x)| ≤ 2 n(r+d)-kr ∥ψ∥ C r ∥ φ∥ L 1 so that: d n (w) ≲ ∞ k=n 2 n(r+d)-kr B(0,ϵ n-1 ) (F -x+w -F w ) φϵ k -x+w dx.
Taking the L p (w) norm, applying Minkowski's inequality and substituting w = w -x yields:

∥d n (w)∥ L p (w∈K) ≲ ∞ k=n 2 n(r+d)-kr B(0,ϵ n-1 ) ∥(F w+x -F w) ( φϵ k w )∥ L p ( w∈ K2) dx.
By definition of f K :

∥d n (w)∥ L p (w∈K) ≲ ∞ k=n 2 n(r+d)-kr B(0,ϵ n-1 ) f K (k, x) 2 -kα 2 -n(γ-α) dx = 2 -nγ m (3) K (n)
. This is enough to conclude. Remark 3.4.11. Note that we did not use the assumption γ > 0 in establishing the reconstruction bound (Proposition 3.4.10) above.

The reconstruction for γ ≤ 0

Now that we have treated the case γ > 0, let us discuss the problem of reconstruction when γ ≤ 0. It is very natural a priori to consider the same sequence of approximating distributions as in Definition 3.4.7. However, note from Proposition 3.4.9, Item (2), that the convergence of those approximating distributions fundamentally requires γ > 0. Namely, in this case, we cannot control the series k u ′′ k . The idea, as in [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF], is to simply remove the term u ′′ k from the approximating sequence of Definition 3.4.7. In particular, from Proposition 3.4.9 we can still define:

R(F )(ψ) := R d F z φ * φ2 z ψ(z) dz + ∞ k=0 u ′ k , (3.4.8)
where we recall that u ′ k is defined as:

u ′ k := R d F x ( φϵ k x ) ( φϵ k * ψ) (x) dx, for k ∈ N.
Note that without the term u ′′ k , there is no simplification allowing to start the decomposition at a scale 2 -n 0 for any n 0 . Hence we need to take into account the fact that the sum starts at index k = 0 in (3.4.8).

It remains to establish the reconstruction bound. As in the previous section, define for w ∈ R d and ψ ∈ D(R d ), G w (ψ) := (R(F ) -F w )(ψ). Then, in a similar way to the previous section, it is straightforward to obtain the following decomposition:

G w (ψ ϵn w ) = B(w,ϵn) B(z,1) (F z -F x ) ( φx ) φ2 z (x) ψ ϵn w (z) dx dz + B(w,ϵn) B(z,1) (F x -F w ) ( φx ) φ2 z (x) ψ ϵn w (z) dx dz + n-1 k=0 B(w,ϵn) B(z,ϵ k ) (F x -F w ) ( φϵ k x ) φϵ k z (x) ψ ϵn w (z) dx dz + +∞ k=n B(w,ϵn) B(z,ϵ k ) (F x -F w ) ( φϵ k x ) φϵ k z (x) ψ ϵn w (z) dxdz,
so that checking the reconstruction bound follows from estimating the following quantities:

a n (w) := sup ψ∈B r B(w,ϵn) B(z,1) (F z -F x ) ( φx ) φ2 z (x) ψ ϵn w (z) dx dz , b n (w) := sup ψ∈B r B(w,ϵn) B(z,1) (F x -F w ) ( φx ) φ2 z (x) ψ ϵn w (z) dx dz , c n (w) := sup ψ∈B r n-1 k=0 B(w,ϵn) B(z,ϵ k ) (F x -F w ) ( φϵ k x ) φϵ k z (x) ψ ϵn w (z) dx dz , d n (w) := sup ψ∈B r +∞ k=n B(w,ϵn) B(z,ϵ k ) (F x -F w ) ( φϵ k x ) φϵ k z (x) ψ ϵn w (z) dx dz .
Note that these quantities are different from those named with the same letters in the section corresponding to γ > 0. The reconstruction bound is established in the following proposition: Proposition 3.4.12. In the setting of this section, assume that m(3) K , m(4) K ∈ ℓ q and that γ ≥ α, γ ≤ 0. Let k be the scaling function defined in (3.3.1). Then:

∥a n (w)∥ L p (w∈K) k (2 -n ) n∈N , ∥b n (w)∥ L p (w∈K) k (2 -n ) n∈N , ∥c n (w)∥ L p (w∈K) k (2 -n ) n∈N , ∥d n (w)∥ L p (w∈K) k (2 -n ) n∈N ∈ ℓ q .
As an immediate consequence, R (F ) is a r-uniform γ, p, q-reconstruction of F on K.

Remark 3.4.13. The proof below actually works for any scaling function k such that

1 k(2 -n ) n∈N ∈ ℓ q .
Proof. The proof follows similarly as in Proposition 3.4.10. The same calculations as in Proposition 3.4.10 allow to establish:

         ∥a n (w)∥ L p (w∈K) ≲ m (1) K (0), ∥b n (w)∥ L p (w∈K) ≲ m (1) K (0), ∥d n (w)∥ L p (w∈K) ≲ 2 -nγ m (3) K (n).
Let us now focus on c n . By definition of c n :

c n (w) ≤ sup ψ∈B r n-1 k=0 B(w,ϵn) B(z,ϵ k ) |(F x -F w ) ( φϵ k x )| | φϵ k z (x)| |ψ ϵn w (z)| dx dz. Using the estimates | φϵ k z (x)| ≤ 2 kd ∥ φ∥ L ∞ and |ψ ϵn w (z)| ≤ 2 nd ∥ψ∥ C r , we get: c n (w) ≲ n-1 k=0 2 nd 2 kd B(w,2 -n ) B(z,2 -k ) (F x -F w ) φ2 -k x dx dz.
In this integral, B z, 2 -k ⊂ B w, 2 -k+1 so that:

c n (w) ≲ n-1 k=0 2 kd B(w,2 -k+1 ) (F x -F w ) φ2 -k x dx.
Substituting x = -(x -w) in this integral:

c n (w) ≲ n-1 k=0 2 kd B(0,2 -k+1 ) (F w-x -F w ) φ2 -k w-x dx.
Now we take the L p norm in w, apply Minkowski's inequality and change variable w = w -x in the L p norm:

∥c n (w)∥ L p (w∈K) ≲ n-1 k=0 2 kd B(0,2 -k+1 ) (F w+x -F w) φ2 -k w L p ( w∈ K2) dx.
Finally, remembering the definition of f K and using the fact that |x| ≤ 2 -k+1 in this integral:

∥c n (w)∥ L p (w∈K) ≲ 2 -nγ m (4) K (n) .
This is enough to conclude, even for the case γ = 0. Indeed, for the terms a and b, we use the fact that

1 k(2 -n ) n∈N
∈ ℓ q . And for the terms c and d, we have just established that:

         ∥c n (w)∥ L p (w∈K) k (2 -n ) ≲ m(4) K (n), ∥d n (w)∥ L p (w∈K) k (2 -n ) ≲ m(3) K (n).

The reconstruction is Besov

We now show that R(F ) lies in a suitable Besov space.

Proposition 3.4.14. In the setting of this section:

1. (Global version) Assume that ∥F ∥ G α,β,γ p,q,q 1 ,R d ,φ < +∞. Then: (a) If β ∧ γ > 0, then R(F ) = 0. (b) If β ∧ γ = 0, then for all κ > 0, R (F ) ∈ B -κ p,1 . (c) If β ∧ γ < 0, then R (F ) ∈ B β∧γ p,q 1 ∨q .

(Local version) Assume that for all

K ⊂ R d , ∥F ∥ G α,β,γ p,q,q 1 ,K,φ < +∞. Then there exists a global distribution R (F ) ∈ D ′ (R d ) satisfying (3.4.1) over all K ⊂ R d and: (a) If β ∧ γ > 0, then R(F ) = 0. (b) If β ∧ γ = 0, then for all κ > 0, R (F ) ∈ B -κ p,1,loc . (c) If β ∧ γ < 0, then R (F ) ∈ B β∧γ p,q 1 ∨q,loc .
Furthermore, the reconstruction map is continuous in the following sense: let B denote B -κ p,1,K if β ∧ γ = 0 and B β∧γ p,q 1 ∨q,K if β ∧ γ < 0, then:

∥R (F )∥ B ≲ ∥F ∥ G α,β,γ p,q,q 1 , K2 ,φ
.

(3.4.9)

Proof. Let us first prove the global version of the result. The item (a) follows from Proposition 3.4.2, Item (3). Now we turn to (c). Recall, from the equivalent definition of a Besov space Proposition 3.A.5, Item (1), that it is sufficient to show, denoting r := q 1 ∨ q:

R (F ) φ2 -n x 2 -n(β∧γ) L p (x∈R d ) ℓ r (n) < +∞.
By the assumption and the reconstruction bound obtained in the previous sections, we know that:

F x ( φϵn x ) 2 -nβ L p (x) ℓ q 1 (n) + (R (F ) -F x ) ( φϵn x ) 2 -nγ L p (x) ℓ q (n) ≲ ∥F ∥ G α,β,γ p,q,q 1 ,R d ,φ .
Using the fact that β, γ ≥ β ∧ γ and the embeddings ℓ q 1 ⊂ ℓ r , ℓ q ⊂ ℓ r :

F x ( φϵn x ) 2 -n(β∧γ) L p (x) ℓ r (n) + (R (F ) -F x ) ( φϵn x ) 2 -n(β∧γ) L p (x) ℓ r (n) ≲ ∥F ∥ G α,β,γ p,q,q 1 ,R d ,φ .
The triangle inequality yields the announced result.

Finally, (b) immediately follows from (c) after noticing that the condition of homogeneity g ∈ ℓ q 1 for some β > 0 implies g ∈ ℓ 1 for any β ′ < β; that the reconstruction bound for γ implies the reconstruction bound for any γ ′ < γ, see Proposition 3 

Proof of Theorems 3.3.2 and 3.3.7 from Theorem 3.4.5

In this section, we prove Theorem 3.3.2 and Theorem 3.3.7 from Theorem 3.4.5.

The case γ ≤ 0 is treated similarly to the case γ > 0 so we only treat the case γ > 0 for concision.

Thus, we consider a germ F , and reals p, q ∈ [1, +∞], α, β, γ ∈ R with α ≤ γ and γ > 0. We let K ⊂ R d and we assume that there is a test-function φ ∈ D(R d ) with φ ̸ = 0 such that (3.3.2) and (3.3.3) hold. Let r ∈ N be an integer such that r > max (-α, -β).

We shall show that the hypotheses of Theorem 3.4.5 are satisfied. First, notice that this requires us to exhibit a test-function φ ∈ D(B(0, 1/2)) such that φ = 1 and

x k φ (x) dx = 0 for 1 ≤ |k| ≤ r -1.
For this purpose, we tweak the test-function φ as presented in [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF]. Then there exists constants c 0 , c 1 , ...., c r-1 ∈ R such that the tweaked test-function φ, defined by

φ := 1 φ r-1 i=0 c i φ λ i ,
has the following properties:

1. R d φ = 1,
2. φ annihilates monomials of degree 1 to r -1, specifically

R d y k φ(y) dy = 0, for all k ∈ N d 0 : 1 ≤ |k| ≤ r -1, 3. moreover, if 0 < λ i < 1 2Rφ for i = 0, 1..., r -1, then: supp φ ⊂ B(0, 1/2).
Remark 3.5.2. Whilst we direct the reader to [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF]Lemma 8.1] for the proof we outline the approach here. The main idea is to consider an arbitrary φ := (1/ φ) r-1 i=0 c i φ λ i and write a system of linear equations in c i from the relations given by Item 1 and Item 2 of Lemma 3.5.1. The obtained system of equations involves the Vandermonde matrix of (λ i ) 0≤i≤r-1 . Since the λ i are distinct, this system is invertible, and one can even provide explicit expressions for c i [CZ20, see Equation (8.1)].

Remark 3.5.3. In [CZ20], the authors choose the specific values λ

i := 2 -i-1
1+Rφ for i = 0, 1..., r -1. The reason for this choice is that it allows for explicit quantitative bounds throughout their calculations. In this paper however, we do not track the precise constants that appear in the estimates, which is why we do not pick explicit values for λ i . Now we show that the properties of homogeneity and coherence are stable by tweaking. Proof. Let us only present the proof for the coherence condition (3.3.3) as the other case is similar to treat. Thus, assume that φ ∈ D(R d ) is such that φ ̸ = 0 and:

(F x+h -F x ) φ 2 -n x 2 -nα (2 -n + |h|) γ-α L p (x∈ K2) ℓ ∞ (n) L q h (h∈B(0,2)) < +∞.
As in Lemma 3.5.1, let R φ > 0 be such that supp (φ) ⊂ B (0, R φ ). Let r ∈ N and fix distinct m 0 , . . . , m r-1 ∈ N such that for 0 ≤ |k| ≤ r -1, 2 -m k < 1 2Rφ . We apply Lemma 3.5.1 to

λ k := 2 -m k . Let us denote φ := 1 φ r-1 i=0 c i φ 2 -m i ,
the obtained test-function, then φ ∈ D(B (0, 1/2)) and φ = 1, x k φ(x)dx = 0 for 1 ≤ |k| ≤ r -1. To conclude, it is enough by triangle inequality to show that for any m ∈ N:

(F x+h -F x ) φ 2 -n-m x 2 -nα (2 -n + |h|) γ-α L p (x∈ K2) ℓ ∞ (n) L q h (h∈B(0,2)) < +∞.
But this follows immediately from the estimate:

2 -nα 2 -n + |h| γ-α ≥ 2 mα 2 -(n+m)α 2 -(n+m) + |h| γ-α .
(Remember that γ ≥ α from our hypotheses).

We still have to translate the conditions of Theorem 3.3.2 into the conditions of Theorem 3.4.5. This is possible thanks to the Lemma 3.B.1, which implies the following result. Note that Lemma 3.B.1 is a purely elementary result. However, as its proof is a bit technical, we state it and prove it in the appendix. 

f , m (2) c,f , m (3) c,f as in (3.4.2). Assume that: ∥f (k, x)∥ ℓ ∞ (k) L q x (x∈B(0,2)) < +∞.
(3.5.1)

Then m

(1)

f , m (2) c,f , m (3) c,f are in ℓ q . Proof. Applying Lemma 3.B.1 to a k,n := δ k,n resp. a k,n := 2 -(k-n)c
1 {k≥n} immediately gives the result for m

(1)

f resp. m (2) c,f . Now let us treat m (3) c,f . For n ∈ N, h ∈ R d , set: f (n, h) := +∞ k=0 2 -(k-n)c 1 {k≥n} f (k, h) , so that m (3) c,f = m (1)
f . It is straightforward to see that if (3.5.1) is satisfied for f , then (3.5.1) is also satisfied for f . We conclude by applying lemma Lemma 3.B.1 to a k,n := δ k,n and the function f . Combining Proposition 3.5.4, Corollary 3.5.5 and Theorem 3.4.5 yields Theorem 3.3.2 and Theorem 3.3.7 (in the case γ > 0).

Proof of Theorem 3.3.12 from Theorem 3.4.5

Let us now prove Theorem 3.3.12 from Theorem 3.4.5. In the remainder of this section, we consider the setting of Section 3.3.3. That is, we let α < 0, β > 0 with α + β > 0 and β / ∈ N, as well as p 1 , p 2 , q 1 , q 2 , p, q ∈ [1, +∞] with 1 p = 1 p 1 + 1 p 2 , 1 q = 1 q 1 + 1 q 2 ; we fix distributions g ∈ B α p 1 ,q 1 , f ∈ B β p 2 ,q 2 ; and we define germs F and P as in (3.3.5) resp. (3.3.6). Fix any test-function φ ∈ D(R d ). Recalling the statement of Theorem 3.4.5, Theorem 3.3.12 holds as soon as the following quantities are finite (recall that ϵ n := 2 -n ):

                                           v 1 := P x (φ ϵn x ) 2 -nα L p (x) ℓ q 1 (n) , v 2 := h∈B(0,ϵ n-1 ) 2 nd (P x+h -P x ) (φ ϵn x ) 2 -nα (2 -n + |h|) β L p (x) dh ℓ q (n) , v 3 := +∞ k=n h∈B(0,ϵ k ) 2 -(k-n)(α+β)+kd (P x+h -P x ) (φ ϵ k x ) 2 -kα (2 -k + |h|) β L p (x) dh ℓ q (n) , v 4 := +∞ k=n h∈B(0,ϵ n-1 ) 2 -(k-n)(α+r)+nd (P x+h -P x ) (φ ϵ k x ) 2 -kα (2 -k + |h|) β L p (x) dh ℓ q (n)
. This is the content of the following proposition.

Proposition 3.6.1. v 1 , v 2 , v 3 , v 4 < +∞. As a consequence, Theorem 3.3.12 holds.

Proof. We start with v 1 . For x ∈ R d , φ ∈ D(R d ) we have:

P x (φ) = 0≤|k|<β ∂ k f (x) k! g (• -x) k φ (•) .
Thus by triangle inequality and Hölder's inequality:

P x (φ ϵn x ) 2 -nα L p (x) ≤ 0≤|k|<β ∂ k f L p 2 k! g (• -x) k φ ϵn x (•) L p 1 (x) 2 -nα .
Now summing in n:

v 1 ≤ 0≤|k|<β ∂ k f L p 2 k! g (• -x) k φ ϵn x (•) L p 1 (x) 2 -αn ℓ q 1 (n)
.

Considering the test-function ψ : z → z k ϕ (z) and recalling the definition of Besov spaces, Definition 3.A.1, one obtains:

g (• -x) k φ ϵn x (•) L p 1 (x) 2 -(α+|k|)n ℓ q 1 (n) ≲ ∥g∥ B α p 1 ,q 1 .
Recall also that since β > |k| in the sum above, one has

∥∂ k f ∥ L p 2 ≲ ∥∂ k f ∥ B β-|k| p 2 ,q 2 ≲ ∥f ∥ B β p 2 ,q 2
, and thus:

v 1 ≲ ∥g∥ B α p 1 ,q 1 ∥f ∥ B β p 2 ,q 2 < +∞.
Now we consider the quantities v 2 , v 3 , v 4 . Let us use the following notation for the Taylor expansions: if f is a sufficiently regular function, α ∈ R and

x, h ∈ R d , set T α f (x, h) := f (x + h) -0≤|l|<α 1 l! ∂ l f (x) h l . Let x, h, z ∈ R d then a straightforward calculation establishes (recall that F is defined in (3.3.5)): (F x+h -F x ) (z) = - 0≤|k|<β (z -x) k k! T β-|k| ∂ k f (x, h) .
For simplicity of notations, denote

T k (x, h) := T β-|k| ∂ k f (x, h)
for the remainder of this proof. Let φ ∈ D(R d ) be any test-function. We deduce that for x, h ∈ R d :

(P x+h -P x ) (φ) = g (φ (•) (F x+h -F x ) (•)) = - 0≤|k|<β 1 k! T k (x, h) g (• -x) k φ (•) .
Applying the triangle inequality then Hölder's inequality:

∥(P x+h -P x ) (φ)∥ L p (x) ≤ 0≤|k|<β g (• -x) k φ (•) L p 1 (x) ∥T k (x, h)∥ L p 2 (x) k! .
For 0 ≤ |k| < β, it holds that λ α (λ + |h|) β ≳ λ α+|k| |h| β-|k| , so that:

(P x+h -P x ) φ λ x λ α (λ + |h|) β L p (x) ≲ 0≤|k|<β 1 k! g (• -x) k φ λ x (•) L p 1 (x) λ α+|k| ∥T k (x, h)∥ L p 2 (x) |h| β-|k| .
For 0 ≤ |k| < β, set :

             µ k (n) := 1 k! g (• -x) k φ λ x (•) L p 1 (x) λ α+|k| , ν k (h) := ∥T k (x, h)∥ L p 2 (x) |h| β-|k|
Reasoning as above, it holds that µ k ∈ ℓ q 1 (n ∈ N). Also, recalling Proposition 3.A.5, one observes that ν k ∈ L q 2 h (h ∈ B(0, 2)). We conclude by applying Lemma 3.B.1, Item (ii) to the quantities v 2 , v 3 , v 4 in the same way as in the proof of Corollary 3.5.5.

We obtain Theorem 3.3.12 by setting M (g, f ) := R (P ). Note that by collecting all the inequalities, we even obtain the following continuity estimate:

∥M (g, f )∥ B α p,q 1 ≲ ∥g∥ B α p 1 ,q 1 ∥f ∥ B β p 2 ,q 2 .

Appendices to Chapter 3

3.A Besov spaces

In this section, we define Besov spaces, and recall some of their properties. There are many different equivalent norms used in the literature to define and study Besov spaces. In our context, the following definition "by local means" from [START_REF] Hairer | The reconstruction theorem in Besov spaces[END_REF] will be the most useful.

Definition 3.A.1 (Besov spaces). Let α ∈ R, p, q ∈ [1, +∞]. Let r ∈ N be such that r > -α, and let n 0 ∈ Z. We define B α p,q = B α p,q (R d ) to be the space of distributions f ∈ D ′ (R d ) such that:                      sup ψ∈B r f ψ 2 -n x 2 -nα L p (x) ℓ q (n≥n 0 ) < +∞ if α < 0, sup ψ∈B r |f (ψ x )| L p (x) + sup ψ∈B r ⌊α⌋ f ψ 2 -n x 2 -nα L p (x) ℓ q (n≥n 0 ) < +∞ if α ≥ 0.
Here, recall that B r ⌊α⌋ denotes the space of test-functions ψ ∈ B r such that x k ψ (x) dx = 0 for 0 ≤ |k| ≤ ⌊α⌋. Remark 3.A.2. In [HL17, Proposition 2.4], it is established (in the case n 0 = 0) that this definition does not depend on the choice of r > -α and that it is equivalent to the usual definition "by wavelets". It is also straightforward to establish that the definition does not depend on the choice of n 0 ∈ Z, so that unless specified, n 0 is taken to be 0.

Remark 3.A.3. From Definition 3.A.1, we a priori only have B α

p,q ⊂ D ′ (the space of Schwartz distributions), while usual definitions of Besov spaces impose B α p,q ⊂ S ′ (the space of tempered distributions). However, the latter inclusion is actually a consequence of our definition, which can be seen for instance from the wavelet characterisation [HL17, Proposition 2.4].

In some situations, it is useful to have local versions of the spaces B α p,q (R d ). In this case, the bounds of Definition 3.A.1 are required to hold on L p (x ∈ K) for all compact K, rather than on

L p (x ∈ R d ). Definition 3.A.4 (Local Besov spaces). Let α ∈ R, p, q ∈ [1, +∞]. Let r ∈ N be such that r > -α. We define B α p,q,loc = B α p,q,loc (R d ) to be the space of distributions f ∈ D ′ (R d ) such that for all compact K ⊂ R d :                      sup ψ∈B r f ψ 2 -n x 2 -nα L p (x∈K) ℓ q (n) < ∞ if α < 0, sup ψ∈B r |f (ψ x )| L p (x∈K) + sup ψ∈B r ⌊α⌋ f ψ 2 -n x 2 -nα L p (x∈K) ℓ q (n) < ∞ if α ≥ 0.
We note ∥f ∥ B α p,q,K the norm provided by the quantity just above. Using the same argument as in Remark 3.A.2, this definition does not depend on the choice of r > -α.

The following equivalent norms will be useful for us.

Proposition 3.A.5. Let α ∈ R, p, q ∈ [1, +∞], and f ∈ D ′ (R d ).
1. If α < 0, then f ∈ B α p,q (R d ) if and only if there exists a test-function φ ∈ D(R d ) such that φ ̸ = 0 and:

f φ 2 -n x 2 -nα L p (x∈R d ) ℓ q (n) < +∞.
The same statement holds for the local Besov spaces B α p,q,loc (R d ), when one replaces

L p (x ∈ R d ) by L p (x ∈ K) for all compact K ⊂ R d in the condition above.

If α > 0 and α /

∈ N, then f ∈ B α p,q (R d ) if and only if for all 0 ≤ |k| < α, ∂ k f ∈ L p and for any h 0 > 0,

∂ k f (x + h) - 0≤|l|<α-|k| 1 l! ∂ k+l f (x) h k h α-|k| L p (x) L q h (h∈B(0,h 0 )) < +∞. (3.A.1)
The same statement holds for the local Besov spaces B α p,q,loc (R d ), when one replaces

L p (x ∈ R d ) by L p (x ∈ K) for all compact K ⊂ R d in the condition above.
We choose to provide a proof of this proposition for the sake of completeness, although we believe that these properties are well-known in the literature of Besov spaces. For instance, Item (1) is proven to be equivalent to the usual "Littlewood-Paley" definition of Besov spaces in [Tri06, Corollary 1.12]. Also, see [START_REF] Jonsson | A Whitney extension theorem in Lp and Besov spaces[END_REF][START_REF] Martin | A Littlewood-Paley description of modelled distributions[END_REF] for examples of papers using a definition of Besov spaces similar to Item (2).

The techniques used in the proof below are very reminiscent of those used in the remainder of this paper, which is another reason for us to include it.

Proof. We prove the assertions separately. The local versions of the results are established with similar calculations so we only prove the global versions.

(1) The direct implication is straightforward. Now let us concentrate on the converse. Let f ∈ D ′ (R d ) and φ ∈ D(R d ) be a test-function as in the statement, we shall show that f ∈ B α p,q . We "tweak" the test-function φ as in Lemma 3.5.1. Let r ∈ N be such that r > -α, and fix distinct λ 0 , • • • λ r-1 small enough so that we can define φ ∈ B r ⌊α⌋ as in Lemma 3.5.1. Note that also:

f φ2 -n x 2 -nα L p (x) ℓ q (n) < +∞.
As above, set φ := φ1/2 -φ2 so that by mollification we have the following decomposition for all ψ ∈ D(R d ) (see Definition 3.4.7):

f ψ 2 -n x = R d f φ2 -n z φ2 -n+1 * ψ 2 -n (z -x) dz + m≥n R d f φ2 -m z φ2 -m * ψ 2 -n (z -x) dz.
Substituting z := z -x and integrating only on the support of the integrand:

f ψ 2 -n x = z∈B(0,2 -n+1 ) f φ2 -n z+x φ2 -n+1 * ψ 2 -n (z) dz + m≥n z∈B(0,2 -n+1 ) f φ2 -m z+x φ2 -m * ψ 2 -n (z) dz.
Now we use the estimates (see Lemma 3.4.8):

     φ2 -n+1 * ψ 2 -n L ∞ ≤ 2 nd ∥ψ∥ L ∞ ∥ φ∥ L 1 ≤ 2 nd ∥ψ∥ C r ∥ φ∥ L 1 , φ2 -m * ψ 2 -n L ∞ ≤ 2 n(r+d)-mr ∥ψ∥ C r ∥ φ∥ L 1 .
This yields:

sup ψ∈B r f ψ 2 -n x ≤ 2 nd ∥ φ∥ L 1 z∈B(0,2 -n+1 ) f φ2 -n z+x dz + m≥n 2 n(r+d)-mr ∥ φ∥ L 1 z∈B(0,2 -n+1 ) f φ2 -m z+x dz.
In order to simplify notations, denote B n := B (0, 2 -n ) Thus, integrating over x:

sup ψ∈B r f ψ 2 -n x L p (x) ≤ 2 nd ∥ φ∥ L 1 z∈B n-1 f φ2 -n z+x L p (x) dz + m≥n 2 n(r+d)-mr ∥ φ∥ L 1 z∈B n-1 f φ2 -m z+x L p (x)
dz.

In those integrals in z, the integrand is actually constant so that after integration, we obtain:

sup ψ∈B r f ψ 2 -n x L p (x) ≲ f φ2 -n x L p (x) + m≥n 2 (n-m)r f φ2 -m x L p (x)
.

Then:

∥f ∥ B α p,q ≲ f φ2 -n x 2 -nα L p (x) ℓ q (n) + m≥n 2 (n-m)(r+α) f φ2 -m x 2 -mα L p (x) ℓ q (n)
.

Since we chose r + α > 0, applying Jensen's inequality then interverting the sums in m and n in the second term of the right-hand side yields as announced ∥f ∥ B α p,q < +∞.

(2) For simplicity, we reason with h 0 = 1 (but the same arguments generalise to any h 0 > 0). Let us first concentrate on the direct statement. Let f ∈ B α p,q . By definition of the Besov space and the distributional definition of ∂ k f , it holds that for 0 ≤ |k| < α, ∂ k f ∈ B α-|k| p,q (R d ), so it suffices to prove the claim for |k| = 0. First, let us show that f ∈ L p , in the sense that there exists f ∈ L p such that f = f as distributions. We reason by mollification. Fix φ ∈ B r a single test-function such that φ = 1 and

x l φ (x) dx = 0 for 1 ≤ |l| < α. For m, n ∈ N, define fm,n (x) := f (φ 2 -m-n x
). Using the embedding ℓ q ⊂ ℓ ∞ , it holds that: fm,n (x) -fm,n+1 (x)

2 -nα L p (x) l ∞ (n) ≤ fm,n (x) -fm,n+1 (x) 2 -nα L p (x) l q (n) = f φ 2 -m-n x -φ 2 -m-n-1 x 2 -nα L p (x) l q (n)
.

Let ψ := φ -φ 1 2 . Note that 1 C ψ ∈ B r ⌊α⌋ for a suitable C > 0.
In particular, we have:

f φ 2 -m-n x -φ 2 -m-n-1 x 2 -nα L p (x) l q (n) = f ψ 2 -m-n x 2 -nα L p (x) l q (n) ≤ 2 -mα ∥f ∥ B α p,q . We deduce that ∥ fm,n (x) -fm,n+1 (x) ∥ L p (x) ≤ 2 -(m+n)α ∥f ∥ B α p,q .
This implies that for each m ∈ N, the sequence ( fm,n ) n∈N is Cauchy in L p . Hence it has a limit, which we call fm ∈ L p , satisfying: fmfm,n L p -----→ n→+∞ 0.

By summation of a geometric series, we even have ∥ fmfm,n ∥ L p ≲ 2 -(m+n)α . And for any n 0 ∈ N, the following series converges in L p : fm = fm,n 0 + +∞ n=n 0 fm,n+1 -fm,n .

Also, since for any m, n ∈ N, fm,n = fm+1,n-1 , we deduce by triangle inequality that:

fm+1 -fm L p ≤ fm+1 -fm+1,n-1 L p + fm -fm,n L p -----→ n→+∞ 0.
Thus for all m ∈ N, fm = fm+1 =: f , where this equality holds in L p (hence also in

D ′ ) . Now let us show that f = f in D ′ . Let ψ ∈ D(R d ). By mollification, f -f (ψ) = lim n→+∞ R d f (x) -f φ 2 -n x ψ (x) dx.
But for n ∈ N, Hölder's inequality:

R d f (x) -f φ 2 -n x ψ (x) dx ≲ f (x) -f φ 2 -n x L p (x) = f -f0,n L p -----→ n→+∞ 0.
This establishes the announced equality. Now we establish (3.A.1) for |k| = 0, which, according to our previous remark, suffices to establish (3.A.1). For x, h ∈ R d , set

T α f (x, h) := f (x + h) -0≤|l|<α 1 l! ∂ l f (x) h l
, so that we shall show:

T α f (x, h) |h| α L p (x) L q h (h) < +∞.
For each h ∈ R d we consider m h ∈ Z defined to be explicited later. We write with the notations of the previous item:

T α f (x, h) = T α fm h (x, h) = T α f m h ,0 (x, h) + T α fm h (x, h) -T α f m h ,0 (x, h) .
More explicitly:

T α f (x, h) = f   φ 2 -m h x+h - 0≤|l|<α (-1) |l| h l l! ∂ l φ 2 -m h x   + +∞ n=0 f φ 2 -m h -n-1 x+h -φ 2 -m h -n x+h - 0≤|l|<α +∞ n=0 h l l! ∂ l f φ 2 -m h -n-1 x -φ 2 -m h -n x .
Now we bound each of these terms using our definition of Besov spaces. For h ∈ B (0, 1) and z ∈ R d , define:

         ψ (z) := φ (z -2 m h h) - 0≤|l|<α (-2 m h h) l l! ∂ l φ (z) , ψ (z) := φ 1 2 (z) -φ (z) .
Then:

T α f (x, h) |h| α L p (x) L q h (h) ≤ f ψ 2 -m h x |h| α L p (x) L q h (h) + +∞ n=0 f ψ2 -m h -n x+h |h| α L p (x) L q h (h) + 0≤|l|<α 1 l! +∞ n=0 ∂ l f ψ2 -m h -n x |h| α-|l| L p (x) L q h (h)
.

Changing variable x = x + h in the second term and noting that there exists a constant C > 0 such that 1 C ψ, 1 C ψ ∈ B r ⌊α⌋ (note that actually supp (ψ) ⊂ B (0, 2) rather than B (0, 1), but this is not a problem after invoking the definition of Besov spaces Definition 3.A.1 for n 0 = -1; note also that this is where we require α to be non-integer), we obtain:

T α f (x, h) |h| α L p (x) L q h (h) ≤ C sup ψ∈B r ⌊α⌋ f ψ 2 -m h x |h| α L p (x) L q h (h) + 0≤|l|<α 2C l! +∞ n=0 sup ψ∈B r ⌊α⌋ ∂ l f ψ2 -m h -n x |h| α-|l| L p (x) L q h (h)
.

To conclude, it is enough to prove that if f ∈ B α p,q , then:

v (f ) := sup ψ∈B r ⌊α⌋ f ψ 2 -m h x |h| α L p (x) L q h (h) < +∞.
We cut the integral in h along the annuli:

for n ∈ N, set B n := B 2 -(n+1) , 2 -n then: v (f ) = sup ψ∈B r ⌊α⌋ f ψ 2 -m h x |h| α L p (x) L q h (h∈Bn) ℓ q (n)
. Now we choose m h so that for h ∈ B n , m h = n. Using the fact that 1

|h| α L q h (h∈Bn) ≲ 2 nα uniformly in n ∈ N, we get v (f ) ≲ ∥f ∥ B α p,q < +∞
, which concludes the direct statement of the proposition. Now let us turn to the converse. Assume that for all 0 ≤ |k| < α, ∂ k f ∈ L p and that (3.A.1) holds, we shall prove that f ∈ B α p,q . On the one hand, when ψ ∈ B r it holds that f (ψ x ) = supp(ψ) f (y -x) ψ (y) dy, so that:

sup ψ∈B r |f (ψ x )| L p (x) ≤ sup ψ∈B r ∥ψ∥ B r B(0,1) |f (y -x)| dy L p (x) ≤ B(0,1) ∥f ∥ L p dy < +∞.
On the other hand, when ψ ∈ B r ⌊α⌋ , by subtracting a suitable Taylor polynomial it

holds that f ψ 2 -n x = R d T α f (x, y -x) ψ y-x 2 -n 2 nd dy, so that: sup ψ∈B r ⌊α⌋ f ψ 2 -n x 2 -nα L p (x) ℓ q (n) ≤ sup ψ∈B r ⌊α⌋ B(x,2 -n ) T α f (x, y -x) ∥ψ∥ B r ⌊α⌋ dy 2 -n(α+d) L p (x) ℓ q (n) ≤ B(0,2 -n )    T α f (x, h) L p (x) |h| α    |h| α 2 -n(α+d) dh ℓ q (n) . Since sup n∈N B(0,2 -n ) |h| α
2 -n(α+d) dh < +∞, we have by applying Jensen's inequality as well as switching summations,

B(0,2 -n )    T α f (x, h) L p (x) |h| α    |h| α 2 -n(α+d) dh ℓ q (n) ≲    +∞ n=0 B(0,2 -n )    T α f (x, h) L p (x) |h| α    q |h| α 2 -n(α+d) dh    1 q =    B(0,1) ⌊-log 2 (|h|)⌋ n=0    T α f (x, h) L p (x) |h| α    q |h| 2 -n α+d dh |h| d    1 q . Since sup h∈B(0,1) ⌊-log 2 (|h|)⌋ n=0 |h| 2 -n α+d
< +∞, we deduce:

sup ψ∈B r ⌊α⌋ f ψ 2 -n x 2 -nα L p (x) ℓ q (n) ≲ T α f (x, h) |h| α L p (x) L q h (h) < +∞.
Hence, f ∈ B α p,q .

3.B A technical lemma on series

In this section, we establish the following technical result, used in Section 3.5 for the proof of Theorem 3.3.2, and in Section 3.6 for the proof of Theorem 3.3.12.

Lemma 3.B.1. Let (f k : R d → R + ) k∈N be a family of positive functions, and

(a k,n ) k,n∈N ∈ R N 2
+ be a sequence of positive reals. Consider the sequence defined by:

u n := +∞ k=0 a k,n |x|≤2 -k+1 2 kd f k (x) dx for n ∈ N.
Assume that there exists A > 0 such that:

             for all n ∈ N : +∞ k=0 a k,n ≤ A, for all k ∈ N : +∞ n=0 a k,n ≤ A.
(3.B.1)

Fix q ∈ N and assume also that either of the following conditions is satisfied:

(i) ∥f k (x)∥ ℓ ∞ (k) L q x (x∈B(0,2)) < +∞, or (ii) There exists µ ∈ ℓ q 1 (n ∈ N), ν ∈ L q 2 h (h ∈ B(0, 2)) for some q 1 , q 2 ∈ [1, +∞] satisfying 1 q = 1 q 1 + 1 q 2 , and such that f k (x) ≤ µ (k) ν (x)
.

Then (u n ) n∈N ∈ ℓ q .
Proof. Let us first prove the result under the assumption (i). For simplicity, we assume that q < +∞ since the case for q = ∞ is straightforward. For a fixed n ∈ N, we apply Jensen's inequality on u n and we obtain:

|u n | ∞ k=0 a k,n q ≤ 1 ∞ k=0 a k,n +∞ k=0 a k,n |x|≤2 -k+1 2 kd f k (x) dx q .
Hence, we have

|u n | q ≤ +∞ k=0 a k,n q-1 +∞ k=0 a k,n |x|≤2 -k+1 2 kd f k (x) dx q ≤ A q-1 +∞ k=0 a k,n |x|≤2 -k+1
2 kd f k (x) dx q from (3.B.1). Applying Jensen's inequality, on the integral, with the probability measure:

c d 2 kd 1 |x|≤2 -k+1 dx, where c d = 1 Vol(B(0, 2)) , we obtain |x|≤2 -k+1 2 kd f k (x) dx q ≤ c 1-q d |x|≤2 -k+1 2 kd |f k (x)| q dx.
which yields:

∥(u n ) n∈N ∥ q ℓ q ≤ c 1-q d A q-1 ∞ n=0 +∞ k=0 a k,n |x|≤2 -k+1 2 kd |f k (x) | q dx.
Note that the integral can be decomposed over annuli:

|x|≤2 -k+1 2 kd |f k (x) | q dx = ∞ l=k-1 2 -(l+1) ≤|x|≤2 -l 2 kd |f k (x) | q dx.
By applying Tonelli's theorem and rearranging sequences we obtain:

∥u∥ q ℓ q ≤ c 1-q d A q-1 +∞ n=0 +∞ k=0 +∞ l=k-1 a k,n 2 -(l+1) ≤|x|≤2 -l 2 kd |f k (x) | q dx = c 1-q d A q-1 +∞ n=0 0≤k≤l+1<+∞ a k,n 2 -(l+1) ≤|x|≤2 -l 2 kd |f k (x) | q dx = c 1-q d A q-1 +∞ l=-1 l+1 k=0 +∞ n=0 a k,n 2 -(l+1) ≤|x|≤2 -l 2 kd |f k (x) | q dx = c 1-q d A q-1 +∞ l=-1 2 -(l+1) ≤|x|≤2 -l l+1 k=0 2 kd |f k (x) | q +∞ n=0 a k,n dx.
Applying assumption (3.B.1) we obtain

∥u∥ q ℓ q ≤ c 1-q d A q +∞ l=-1 2 -(l+1) ≤|x|≤2 -l l+1 k=0 2 kd |f k (x) | q dx.
For l fixed, we can obtain the following

l+1 k=0 2 kd |f k (x) | q ≤ 2 dl+2d -1 2 d -1 ∥f k (x)∥ q l ∞ ≤ 2 2d 2 d -1 2 ld ∥(f k (x)) k∈N ∥ q l ∞ .
Hence:

∥u∥ q ℓ q ≤ c 1-q d A q 2 2d 2 d -1 +∞ l=-1 2 -(l+1) ≤|x|≤2 -l 2 ld ∥f k (x)∥ q ℓ ∞ (k) dx ≤ c 1-q d A q 2 2d 2 d -1 +∞ l=-1 2 -(l+1) ≤|x|≤2 -l ∥f k (x)∥ q ℓ ∞ (k) dx |x| d = c 1-q d A q 2 2d 2 d -1 0≤|x|≤2 ∥f k (x)∥ q ℓ ∞ (k) dx |x| d = c 1-q d A q 2 2d 2 d -1 ∥f k (x)∥ ℓ ∞ (k) q L q x (x∈B(0,2)) < +∞, from (i) 
. Now let us prove the result under the assumption (ii). By Jensen's inequality:

|u n | q ≲ +∞ k=0 a k,n |µ (k)| q |x|≤2 -k+1 2 kd |ν (x)| q dx.
We sum over n ∈ N and intervert summations in k and n by Fubini:

n∈N |u n | q ≲ +∞ k=0 +∞ n=0 a k,n |µ (k)| q |x|≤2 -k+1 2 kd |ν (x)| q dx.
By assumption, the sum of a k,n is bounded, hence:

n∈N |u n | q ≲ +∞ k=0 |µ (k)| q |x|≤2 -k+1 2 kd |ν (x)| q dx.
We now apply Hölder's inequality with the conjugate exponents q 1 q , q 2 q :

n∈N |u n | q ≲ +∞ k=0 |µ (k)| q q 1 q q q 1   +∞ k=0 |x|≤2 -k+1 2 kd |ν (x)| q dx q 2 q   q q 2
. Applying Jensen's in the integral:

∥u∥ q ℓ q ≲ ∥µ∥ q ℓ q 1 +∞ k=0 |x|≤2 -k+1 2 kd |ν (x)| q 2 dx q q 2 .
We decompose the domain of the integral as an union of dyadic annuli:

∥u∥ q ℓ q ≲ ∥µ∥ q ℓ q 1   +∞ k=0 +∞ l=k-1 2 -(l+1) ≤|x|≤2 -l 2 kd |ν (x)| q 2 dx   q q 2 .
Interverting the sums: ∥u∥ q ℓ q ≲ ∥µ∥ q ℓ q 1 ∥ν∥ q L q 2

∥u∥ q ℓ q ≲ ∥µ∥ q ℓ q 1   +∞ l=-1 2 -(l+1) ≤|x|≤2 -l l+1 k=0 2 kd |ν (x)| q 2 dx   q q 2 .

Now in this integral

x (x∈B(0,2)) . By assumption, this is finite, and thus our assertion is proved. 

Introduction

It is well-known that the convolution of a (Schwartz) distribution against a kernel admitting an integrable singularity on the diagonal will result in a distribution with improved Hölder-Besov regularity: this is the content of the celebrated Schauder estimates, and is a fundamental result in analysis, since examples of such regularising kernels include the Heat kernel and the Green's function of many differential operators.

One of the key insights of Hairer's theory of regularity structures [Hai14; BHZ19; CH18; BCCH21] is that this phenomenon of regularisation still occurs when one rather works at the level of families of distributions, which one should think of as local approximations to a distribution of interest. In the framework of regularity structures, this is formalised by the notion of "modelled distribution", and the resulting multilevel Schauder estimates [Hai14, Theorem 5.12] admit powerful consequences, as they are one of the crucial steps to set up fixed point results at the level of modelled distributions in order to study singular stochastic partial differential equations. See [FH20; BH20; Ber22] for expository works containing sections on the multilevel Schauder estimates. We would also like to mention the works [OSSW18; OW19; MW20; OSSW21], where similar (though kernel-free) Schauder estimates are established at the level of families of distributions for the analysis of SPDEs.

On the other hand, there has recently been an effort, see e.g. [OSSW21; MW20; CZ20; ZK21], to isolate the other key analytic result of regularity structures -the reconstruction theorem [Hai14, Theorem 3.10] -as a standalone result in distribution theory, whithout any reference to the formalism of regularity structures. More precisely, consider a germ, i.e. a family F = (F x ) x∈R d of distributions indexed by R d , then the reconstruction theorem as presented in [CZ20, Theorem 5.1] states that under simple conditions on F named coherence and homogeneity, there exists a distribution R(F ) which is best-approximated by the germ F in a suitable sense. See also [HL17; RS21; BL22; ZK21] for similar results of reconstruction in this direction.

The purpose of the present paper is to revisit Hairer's multilevel Schauder estimates in the light of [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF], with minimal references to the formalism of regularity structures. Our first main result concerns integration of coherent and homogeneous germs with respect to a regularizing kernel, and can be loosely stated as follows.

Theorem 4.1.1. Let F be an (α, γ)-coherent germ. Let K be a β-regularising kernel. Then the germ

K γ+β (F ) x := K * F x - |k|<γ+β (K * {F x -R(F )}) (k) (x) k! ( • -x) k , is well-defined, ((α + β) ∧ 0, γ + β)-coherent, and R(K γ+β (F )) = K * R(F ). If furthermore F is ᾱ-homogeneous, then K γ+β (F ) is (ᾱ + β) ∧ 0-homogeneous.
The convolution map K γ+β is furthermore continuous for the natural topologies, see Theorem 4.3.12 for a precise formulation of the result.

However, this result in itself does not recover the multilevel Schauder estimates of regularity structures. The reason is that modelled distributions encode more structural constraints than coherent and homogeneous germs: notably, they arise as (finite) linear combinations of basis germs (Π i ) i∈I which can be "reexpanded" by a certain operator Γ. The data of M = (Π, Γ) is called a model in the terminology of regularity structures and naturally induce spaces D γ M of functions f such that the germ ⟨f, M ⟩ x := i∈I f i (x)Π i x is α-homogeneous and (α, γ)-coherent, see section 4.4.1 below for more precise definitions.

As the second main result of the present paper, we propose a proof of Hairer's multilevel Schauder estimates [Hai14, Theorem 5.12], which can loosely be stated as follows. 

) modelled distribution f ∈ D γ+β M such that R( f ) = K * R(f ).
Furthermore, the maps M → M , f → f are continuous in natural topologies, and ⟨ f , M ⟩ = K γ+β (⟨f, M ⟩), see Theorem 4.4.10 below for a precise formulation of the result. In fact, it turns out that there are some small differences between [Hai14, Theorem 5.12] and our Theorem 4.4.10 below, which we highlight now:

1. [Hai14, Theorem 5.12] is established under the assumption that K = n K n with K n (x, y)y k dy = 0 for all |k| ≤ γ. We replace this constraint by the slightly more general assumption that K n (x, y)y k dy is polynomial of degree ≤ |k| for all |k| ≤ γ, see assumption 4.2.6 below. This is an improvement as this new assumption is automatically satisfied if K is translation invariant i.e. K(x, y) = K(y -x).

2. Our definition of model slightly differs from the one in [START_REF] Hairer | A theory of regularity structures[END_REF], as we impose neither a group property, a Hölder bound, nor a triangular structure, on the reexpansion operator Γ, see remark 4.4.2. However, we prove that those properties are preserved by the operation M → M , see theorem 4.4.13.

3. We define the pointwise evaluations (K * {F x -R(F )}) (k) (x) appearing in the convolution map in a different, more canonical way. Indeed, while in [START_REF] Hairer | A theory of regularity structures[END_REF] this quantity is defined as

n {F x -R(F )}(∂ k 1 K n (x, •))
, seemingly relying on the choice of the decomposition K = n K n , we show that it can be defined in a more general way as the limit lim λ→0 (K * {F x -R(F )}) (k) (η λ x ) where η denotes any (suitable) mollifier, see Lemma 4.3.11. This paper is organised as follows. In section 4.2, we recall notations and classical results. In section 4.3, we present our first main result of convolution of coherent and homogeneous germs, Theorem 4.3.12. In section 4.4, we present our second main result of convolution of modelled distributions, Theorem 4.4.10. In section 4.5, we prove Theorem 4.3.12. In section 4.6, we prove Theorem 4.4.10.

Classical results (revisited)

We will work in R d where d ≥ 1 is a fixed integer.

Test functions

For a test-function φ ∈ D(R d ), x ∈ R d , λ > 0 we denote by φ λ

x its scaled and centered version:

φ λ x (•) := λ -d φ(λ -1 (• -x)). Note that φ λ x = φ.
Given r ∈ N 0 , we denote by C r the space of functions φ : R d → R which admit partial derivatives of order k for all |k| ≤ r. The corresponding norm is

∥φ∥ C r := max |k|≤r ∥∂ k φ∥ ∞ ,
where for a multi-index k ∈ N d 0 we set |k| = k 1 + . . . + k d . Similarly, given r, m ∈ N 0 , we denote by C m,r the space of functions ψ :

R d × R d → R which admit partial derivatives of order (k 1 , k 2 ) for all multi-indices |k 1 | ≤ m, |k 2 | ≤ r.

Hölder-Zygmund spaces

For γ ∈ R we denote by Z γ := B γ ∞,∞,loc the (local) Hölder-Zygmund spaces, see [FH20, Section 14.3], which coincide with the usual (local) Hölder-Besov spaces C γ when γ is not an integer. To recall their definition, we first introduce for r ∈ N 0 and γ ∈ R the families of test-functions

B r := φ ∈ D(B(0, 1)) : ∥∂ k φ∥ ∞ ≤ 1 for all 0 ≤ |k| ≤ r (i.e. ∥φ∥ C r ≤ 1) , B γ := φ ∈ D(B(0, 1)) : R d φ(z)z k dz = 0 for all 0 ≤ |k| ≤ γ , (4.2.1)
and we denote their intersection by

B r γ := B r ∩ B γ . ( 4.2.2) 
Note that we have B r γ = B r m where m = ⌊γ⌋ is the largest integer m ≤ γ. Also note that for γ < 0 the constraint 0 ≤ |k| ≤ γ is empty and we have B r γ = B r . We can now define the spaces Z γ . Note that for γ < 0 we denote by r = ⌊-γ + 1⌋ the smallest positive integer r > -γ. Definition 4.2.1 (Hölder-Zygmund spaces Z γ ). Let γ ∈ R, we define Z γ as the set of

distributions f ∈ D ′ (R d ) such that ∥f ∥ Z γ K, λ < +∞
for all compacts K ⊂ R d and for some (hence any) λ ∈ (0, ∞), where

∥f ∥ Z γ K, λ =                        sup x∈K, λ∈(0, λ], φ∈B r with r=⌊-γ+1⌋ f (φ λ x ) λ γ if γ < 0, sup x∈K φ∈B 0 |f (φ x )| + sup x∈K, λ∈(0, λ], φ∈B 0 γ f (φ λ x ) λ γ if γ ≥ 0. ( 4 

.2.3)

We often set λ = 1 and omit it from notation.

Singular kernels

Intuitively, we consider kernels K(x, y) such that

|K(x, y)| ≲ 1 |y -x| d-β 1 {|y-x|≤c}
for some β, c > 0 (4.2.4)

We call such kernels β-regularising, for reasons that will soon be clear. In practice, it is convenient to assume a suitable decomposition for K(x, y) inspired by (4.2.4), as in [Hai14, Assumption 5.1]. Then we discuss the precise relation with (4.2.4).

Main result I: Schauder estimate for germs 4.3.1 Germs and reconstruction

Our first goal is to extend Theorem 4.2.10 in the context of germs, that is, families of distributions indexed by R d .

Definition 4.3.1 (Germs). A germ is a family F = (F x ) x∈R d of distributions F x ∈ D ′ (R d ),
such that for all φ ∈ D(R d ), the map x → F x (φ) is measurable.

We will denote G the vector space of germs. In general, we will see a germ F ∈ G as a family of local approximations of a global distribution f . The reconstruction problem, i.e. the problem of constructing a suitable f from F , has been previously considered in a number of different contexts, see [START_REF] Hairer | A theory of regularity structures[END_REF][START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF]. In [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF], it was established that this reconstruction can be performed under the assumption that F satisfies properties named coherence and homogeneity, which we recall now.

Definition 4.3.2 (Coherence and homogeneity [CZ20]

). Let ᾱ, α, γ ∈ R with ᾱ, α ≤ γ. Let r ᾱ,α ∈ N 0 be the smallest non-negative integer r > max{-ᾱ, -α}.

We say that a germ F is (α, γ)-coherent with homogeneity ᾱ if it satisfies the following two conditions, for any given compact

K ⊂ R d , with r = r ᾱ,α : 1. (homogeneity) uniformly over x ∈ K, λ ∈ (0, 1], φ ∈ B r : |F x (φ λ x )| ≲ λ ᾱ; (4.3.1) 2. (coherence) uniformly over x, y ∈ K, λ ∈ (0, 1], φ ∈ B r : |(F y -F x )(φ λ x )| ≲ λ α (|y -x| + λ) γ-α . (4.3.2)
The vector space of such germs will be denoted by G ᾱ;α,γ , or simply by G γ .

Remark 4.3.3 (Monotonicity). For ᾱ′ ≥ ᾱ, α ′ ≥ α, γ ′ ≥ γ we have G ᾱ′ ;α ′ ,γ ′ ⊆ G ᾱ;α,γ .
Remark 4.3.4 (Uniformity). The uniformity of (4.3.1) and (4.3.2) over φ ∈ B r needs not be required beforehand. Indeed, leaving aside the case γ = 0 for simplicity, it was shown in [CZ20, Propositions 13.1 and 13.2] that if (4.3.1) and (4.3.2) hold for a single (arbitrary) test function φ ∈ D with φ ̸ = 0, then they actually hold uniformly over φ ∈ B r , for an arbitrary choice1 of r > max{-ᾱ, -α}.

Remark 4.3.5 (General scales). For coherent and homogeneous germs F ∈ G ᾱ;α,γ , relations (4.3.1) and (4.3.2) hold uniformly for λ ∈ (0, λ], for any given λ ∈ (1, ∞). To this goal, it is enough to show that

|F y (φ λ x )| ≲ 1 uniformly in λ ∈ [1, λ], x, y ∈ K, φ ∈ B r (because for λ ∈ [1, λ] we have 1 ≲ λ ᾱ and also 1 ≲ λ α (|y -x| + λ) γ-α ).
By (4.3.1) and (4.3.2) we can bound, uniformly over x, y ∈ K, λ ∈ (0, 1] and φ ∈ B r ,

|F y (φ λ x )| ≤ |(F y -F x )(φ λ x )| + |F x (φ λ x )| ≲ λ α + λ ᾱ ≲ λ min{ ᾱ,α} . (4.3.3) If λ ∈ [1, λ]
, then φ λ x may not be as in (4.3.3), however (using for instance a partition of unity) one can perform a decomposition φ λ x = n k=1 ( φk ) 1

x k where x k ∈ K, φk ∈ B r , and n is bounded by a value depending only on λ and of the compact K. It follows that relation 

∥F ∥ G ᾱ hom;K, λ,r := sup x∈K, λ∈(0, λ] φ∈B r |F x (φ λ x )| λ ᾱ , (4.3.4) ∥F ∥ G α,γ coh;K, λ,r := sup x,y∈K, λ∈(0, λ] φ∈B r |(F y -F x )(φ λ x )| λ α (|y -x| + λ) γ-α , (4.3.5)
and define the joint semi-norm, with r = r ᾱ,α , as in Definition 4.3.2,

∥F ∥ G ᾱ;α,γ K, λ := ∥F ∥ G ᾱ hom;K, λ,r ᾱ,α + ∥F ∥ G α,γ coh;K, λ,r ᾱ,α . (4.3.6)
We usually fix λ = 1 and omit it from notation. In particular, a germ F is G ᾱ;α,γ if and

only if ∥F ∥ G ᾱ;α,γ K < ∞ for any compact set K ⊂ R d .
Now we can state the reconstruction theorem. The following result is a reformulation of [CZ20, Theorem 5.1] in the case of a nonzero exponent γ (we exclude the case γ = 0 for simplicity, as this case requires to introduce a logarithmic term), see also [START_REF] Zorin-Kranich | Reconstruction theorem in quasinormed spaces[END_REF].

Theorem 4.3.7 (Reconstruction for γ ̸ = 0). Let α, γ ∈ R with α ≤ γ and assume that γ ̸ = 0. For any germ F which is (α, γ)-coherent, there exists a distribution R(F ) ∈ D ′ (R d ) which is "locally approximated by F " in the following sense: for any integer r ∈ N 0 with r > -α and any compact K ⊂ R d we have

|(F x -R(F ))(φ λ x )| ≲ λ γ uniformly over λ ∈ (0, 1], x ∈ K, φ ∈ B r . (4.3.7)
Such a distribution R(F ) is unique if and only if γ > 0; and for any γ one can construct it in such a way that

F → R(F ) is linear. If furthermore, F has homogeneity ᾱ ≤ γ, then R(F ) ∈ Z ᾱ. That is, R defines a linear map R : G ᾱ;α,γ → Z ᾱ. Remark 4.3.8 (Reconstruction bounds). Note that since F is (α, γ)-coherent, the bound (4.3.7) shows that F -R(F ) = (F x -R(F )) x∈R d ∈ G γ;α,γ , more precisely ∥F -R(F )∥ G γ;α,γ K, λ ≲ ∥F ∥ G α,γ coh;K ′ ,1 , for the enlarged compact K ′ = K ⊕ B(0, λ).
If furthermore F has homogeneity ᾱ, then

∥R(F )∥ Z ᾱ K, λ ≲ ∥F ∥ G ᾱ;α,γ K ′ ,1
. Remark 4.3.9. If ᾱ > 0 then R = 0. Indeed, it follows by (4.3.1) and (4.3.7) that we have

|R(F )(φ λ x )| ≲ λ ᾱ + λ γ ≲ λ ᾱ, since ᾱ ≤ γ. If ᾱ > 0, this implies that R(F ) = 0.

Schauder estimate for coherent germs

A natural and interesting problem is to find a "nice" continuous linear map K which "lifts the convolution with K on the space of coherent and homogeneous germs". To be more precise, given ᾱ, α, γ ∈ R, we are looking for a continuous linear map K such that the following diagram commutes, for suitable ᾱ′ , α ′ , γ ′ ∈ R:

G ᾱ;α,γ G ᾱ′ ;α ′ ,γ ′ Z ᾱ Z ᾱ+β K R R K * • (4.3.8)
A naive guess would be to define K(F ) x as

K * F x (4.3.9)
but this choice of germ is typically neither coherent nor homogeneous. However, it turns out that we can nicely modify (4.3.9) by subtracting a suitable polynomial term.

Remark 4.3.10. One "trivial" solution would be to define K(F ) x as

K * R(F ) .
However, such a germ is independent of x and does not contain F x . This is not useful for applications, e.g. to stochastic equations, where one needs modelled distributions which do depend on x (see below), to reflect the local fluctuations of the noise.

As a first ingredient, we canonically define the "pointwise derivatives" of a germ, provided it is locally homogeneous on test functions which annihilate polynomials. (we recall that functions in B δ annihilate polynomials up to degree δ, see (4.2.1)). Then, for any multi-index k with 0 ≤ |k| < δ, we can define the pointwise derivative

f (k) (x) := lim λ→0 f (k) (η λ x ) ∈ R ,
where η ∈ D is any test function with η = 1 and η(x) x l dx = 0 for all 1 ≤ |l| < δ (the limit does not depend on the choice of η).

Consider now a coherent and homogeneous germ F ∈ G ᾱ;α,γ with γ > 0, so that the reconstruction R(F ) is unique and the germ F -R(F ) = (F x -R(F )) x∈R d has homogeneity and coherence exponents both equal to γ, see (4.3.7):

F -R(F ) = (F x -R(F )) x∈R d ∈ G γ;α,γ .
Given a β-regularizing kernel K, we will show that K * {F x -R(F )} satisfies (4.3.10) with δ = γ + β, hence we can define K = K γ+β as follows:

K γ+β (F ) x := K * F x - |k|<γ+β (K * {F x -R(F )}) (k) (x) k! ( • -x) k , (4.3.11)
that is, we subtract a "Taylor-like polynomial" of K * {F x -R(F )} of order γ + β.

We can now state our first main result.

Theorem 4.3.12 (Schauder estimate for coherent germs). Consider:

• an (α, γ)-coherent germ F with γ > 0;

• a β-regularising kernel K of order (m, r) large enough:

m > γ + β, r > -α , (4.3.12)
where β > 0 is such that

α + β ̸ = 0, γ + β / ∈ N,
Then, if we define K γ+β (F ) as in (4.3.11), we have that:

1. the germ K γ+β (F ) is well-defined and is

((α + β) ∧ 0, γ + β)-coherent, 2. R(K γ+β (F )) = K * R(F ).
If furthermore F has homogeneity ᾱ with ᾱ + β ̸ = 0, then K γ+β (F ) has homogeneity (ᾱ + β) ∧ 0.

In conclusion, if F ∈ G ᾱ;α,γ , then K γ+β (F ) ∈ G ᾱ′ ;α ′ ,γ ′ , i.e. the diagram (4.3.8) commutes, with (ᾱ ′ , α ′ , γ ′ ) = ((ᾱ+β)∧0, (α+β)∧0, γ +β); and furthermore the map K γ+β is continuous.

Main result II: multi-level Schauder estimate

In some applications, the space G ᾱ;α,γ of all coherent and homogeneous germs is "too big". This happens for instance when one wants to define singular operations on germs, such as the product with a non smooth function, or even a distribution: one can sometimes make sense of such a product for a restricted family of germs Π i and the best one can hope is to extend it to those germs that locally look like the Π i 's, in a suitable sense. This leads to the notion of models and modelled distributions, which are cornerstones of the theory of regularity structures [START_REF] Hairer | A theory of regularity structures[END_REF].

Models and modelled distributions

We fix a "basis" Π = (Π i ) i∈I of germs Π i = (Π i x ) x∈R d on R d , indexed by a finite set I. We look at germs F = ⟨f, Π⟩ given by linear combinations of the germs in Π with real coefficients f i (x), that is

F x = ⟨f, Π⟩ x := i∈I f i (x) Π i x . (4.4.1)
We will call the basis Π a model and the family of coefficients f a modelled distribution, provided they satisfy assumptions that we now discuss.

To define a model Π = (Π i ) i∈I , we require that each germ Π i is homogeneous (i.e. it satisfies condition (4.3.1) for some exponent α i ∈ R) and furthermore that the vector space Span{Π i

x : i ∈ I} ⊂ D ′ (R d ) does not depend on x (i.e. each distribution Π i x is a linear combination of (Π j y ) j∈I , for any x, y ∈ R d and i ∈ I). This leads to: 

1. Π = (Π i ) i∈I is a family of germs on R d such that ∥Π i ∥ G α i hom;K,1,r < ∞ for any i ∈ I and K ⊂ R d compact, that is |Π i x (φ λ x )| ≲ λ α i (4.4.2)
uniformly over x ∈ K, λ ∈ (0, 1], φ ∈ B r ;

2. Γ = (Γ ji xy ) j,i∈I for x, y ∈ R d are real numbers such that, for all i ∈ I,

Π i y = j∈I Π j x Γ ji xy . (4.4.3)
With an abuse of notation, we also call Π alone a model (as it often determines Γ). We denote by M α the class of models with homogeneities α and we set, see (4.3.4), 

∥Π∥ M α K, λ := sup i∈I ∥Π i ∥ G α i hom;K, λ,r Π . ( 4 
X k x := (• -x) k k! , k ∈ N d 0 . (4.4.5)
More precisely, if we fix any ℓ ∈ N 0 , the polynomial model at level ℓ is defined by

Π poly ≤ℓ := Π k = X k k∈N d 0 : |k|≤ℓ .
It is an exercise to check that Π poly ≤ℓ is indeed a model, as in Definition 4.4.1, with

α k := |k| , (Γ poly ) lk xy := (x -y) k-l (k -l)! 1 {l≤k} , (4.4.6)
where by l ≤ k we mean

l 1 ≤ k 1 , l 2 ≤ k 2 , . . . , l d ≤ k d .
We next define modelled distributions. Consider a germ F = ⟨f, Π⟩ as in (4.4.1), for some model Π = (Π i ) i∈I . Applying (4.4.3), for any x, y ∈ R d we can write

F y -F x = i∈I j∈I Γ ij xy f j (y) -f i (x) Π i x . (4.4.7)
In order to ensure that F is coherent, it is natural to require scaling properties of the quantities in brackets. This leads to the following definition: A function f = (f i (x)) i∈I : R d → R I is called modelled distribution of order γ if for any compact set K ⊂ R d we have, for i ∈ I and uniformly for x, y ∈ K,

|f i (x)| ≲ 1 and j∈I Γ ij xy f j (y) -f i (x) ≲ |y -x| γ-α i .
We denote by D γ = D γ M = D γ Γ,α the space of modelled distributions of order γ, relative to a model M = (Π, Γ) with homogeneities α. This is a vector space with a Fréchet structure through the semi-norms • property (2) (triangular structure) ensures that the truncation M ′ := (Π i , Γ ji ) i,j∈I ′ is also a model;

~f ~Dγ K = ~f ~Dγ Γ,α;K := sup x∈K, i∈I |f i (x)| + sup x,y∈K, i∈I j∈I Γ ij xy f j (y) -f i (x) |y -x| γ-α i . ( 4 
• property (3) (Hölder bound) ensures that if f = (f i ) i∈I ∈ D γ is a modelled distribution (of order γ relative to M ), the truncation f ′ = (f i ) i∈I ′ ∈ D γ ′ is also a modelled distribution (of order γ ′ relative to M ′ ).
Given a model (Π, Γ) and a related modelled distribution f , we now check that the germ For any modelled distribution f of order γ, the germ F = ⟨f, Π⟩ in (4.4.1) is γ-coherent, more precisely (ᾱ, γ)-coherent with homogeneity ᾱ:

F = ⟨f, Π⟩ in (4.
f ∈ D γ =⇒ F = ⟨f, Π⟩ ∈ G ᾱ; ᾱ,γ ,
and the map f → F = ⟨f, Π⟩ is continuous:

∥F ∥ G ᾱ; ᾱ,γ K, λ ≤ |I| ∥Π∥ M α K, λ ~f ~Dγ K . ( 4 
.4.9)

Proof. By (4.3.4), the homogeneity semi-norm of F can be bounded by 

∥F ∥ G ᾱ hom;K, λ,r ≤ |I| sup x∈K,i∈I |f i (x)| ∥Π i ∥ G α i hom;K, λ,r ≤ |I| c f 1 ∥Π∥ M α K, λ , ( 4 
|(F y -F x )(φ λ x )| ≤ |I| c f 2 ∥Π∥ M α K, λ (λ + |y -x|) γ-ᾱ λ ᾱ ,
where c f 2 denotes the second term in the r.h.s. of (4.4.8). Then, by (4.3.5), we obtain

∥F ∥ G ᾱ,γ coh;K, λ,r ≤ |I| c f 2 ∥Π∥ M α K, λ ,
which together with (4.4.10) yields (4.4.9). 

F x (•) := |k|≤ℓ ∂ k f (x) X k x (•)
= (f k (x)) |k|≤ℓ,x∈R d is defined by f k (x) := ∂ k f (x).
If the function f is Hölder continuous with exponent γ ∈ (ℓ, ℓ + 1), it is an exercise to show that f is a modelled distribution of order γ, see e.g. [START_REF] Caravenna | Hairer's reconstruction theorem without regularity structures[END_REF]Example 4.11]. In particular, by Proposition 4.4.6, the germ F = (F x ) x∈R d = ⟨f , Π poly ≤ℓ ⟩ of Taylor polynomials of f is γ-coherent (more precisely: (0, γ)-coherent with homogeneity 0).

Schauder estimate for modelled distributions

Given a model (Π, Γ) and a modelled distribution f ∈ D γ , by Proposition 4.4.6 we have that

F = ⟨f, Π⟩ in (4.4.1) is γ-coherent .
If γ > 0, we can apply our Schauder estimate in Theorem 4.3.12: given a β-regularising kernel K with β > 0, we have that

K γ+β (F ) in (4.3.11) is (γ + β)-coherent and R(K γ+β (F )) = K * R(F ) .
Since the germ F = ⟨f, Π⟩ comes from a modelled distribution f , a natural question arises: do we have K γ+β (F ) = ⟨ f , Π⟩ for some model Π and modelled distribution f ? Our next main result shows that the answer is positive: see Theorem 4.4.10 below, which is a version of Hairer's multi-level Schauder estimate [Hai14, Theorem 5.12] in our context. We first need to define the extended model ( Π, Γ) and the modelled distribution f . A key role will be played by polynomials. where we stress that the first sum runs over j ∈ I = I sing ∪ I poly . (We also note that Γla xy ̸ = 0 only for |l| ≤ max j∈I α j + β.)

I poly = k ∈ N d 0 : |k| ≤ ℓ for some ℓ ∈ N 0 , ( 4 
x :=        K * Π a x - k∈N d 0 : |k|<αa+β (K * Π a x ) (k) (x) X k x if i = a ∈ Îsing , X k x if i = k ∈ Îpoly , ( 4 
0 • • • (Γ poly ) lk xy =              Γ ba xy if (j, i) = (b, a) ∈ Îsing × Îsing , 0 if (j, i) = (b, k) ∈ Îsing × Îpoly , • • • if (j, i) = (l, a) ∈ Îpoly × Îsing , (Γ poly ) lk xy if (j, i) = (l, k) ∈ Îpoly × Îpoly ,
We will check by direct computation that condition (4.4.3) in the definition of a model is satisfied by Π and Γ, see Section 4.6.2.

Extended modelled distribution Given a modelled distribution f = (f i (x)) i∈I relative to the original model (Π, Γ), we define for i ∈ Î = Îsing ∪ Îpoly We point out that the three lines in the r.h.s. of (4.4.18) correspond precisely to the three terms I, J , N in the setting of Regularity Structures, see [START_REF] Hairer | A theory of regularity structures[END_REF](5.15)].

f i (x) :=                    f a (x) if i = a ∈ Îsing , j∈I : α j +β>|k| f j (x) (K * Π j x ) (k) (x) -(K * {⟨f, Π⟩ x -R⟨f, Π⟩}) (k) (x) if i = k ∈ Îpoly .
Remark 4.4.9. For t ∈ R, we define the restriction Q ≤t f of a modelled distribution f = (f j (x)) j∈I where we only keep the components f j (x) with α j ≤ t, that is

Q ≤t f (x) := f j (x) 1 {α j ≤t} j∈I .
We can then rewrite (4.4.18) more compactly as follows: 

f i (x) :=      f a (x) if i = a ∈ Îsing , K * R⟨f, Π⟩ -⟨Q ≤|k|-β f, Π⟩ x (k) (x) if i = k ∈ Îpoly .

Multi-level

f i (x) Π i x x∈R d is a γ-coherent germ .
Let K be a β-regularising kernel of order (m, r) large enough:

m > γ + β, r ≥ r Π ,
with β > 0 such that

α i + β / ∈ N 0 for i ∈ I sing , γ + β / ∈ N 0 .
Assume that K preserves polynomials at level ℓ, given in (4.4.11).

Then we can define: 

• a new model M = ( Π,
λ x = n k=1 (φ k ) 1 x k where x k ∈ K, φ k ∈ B r
, and n is bounded by a value depending only on the choice of λ and K. Then, by applying (4.5.3), we see that for a germ F ∈ Ǧ ᾱ;α,γ , hence satisfying (4.5.1) and (4.5.2), the same estimates are actually satisfied uniformly over λ ∈ (0, λ].

Conditional proof of Theorem 4.3.12

We state two basic results on (weakly) coherent and homogeneous germs, which yield Theorem 4.3.12 as a corollary.

The first result describes how convolution with a kernel K acts on germs. This will be proved in Section 4.5.4 below. Theorem 4.5.5 (Convolution of germs). Let ᾱ, α, γ ∈ R with ᾱ, α ≤ γ.

If K is a β-regularising kernel with β > 0 of order (m, r) large enough:

r > max{-ᾱ, -α} , m > γ + β ,
convolution by K, see (4.3.9), is a continuous linear map from G ᾱ;α,γ to Ǧ ᾱ+β;α+β,γ+β . If furthermore K preserves polynomials at level γ, see Assumption 4.2.6, then convolution by K is also a continuous linear map from Ǧ ᾱ;α,γ to Ǧ ᾱ+β;α+β,γ+β . Remark 4.5.6 (Classical Schauder estimate). Given any ᾱ ∈ R and any distribution f ∈ Z ᾱ, see Definition 4.2.1, we can consider the constant germ (F x = f ) which is clearly coherent for any exponents α, γ and weakly homogeneous with exponent ᾱ, that is F ∈ Ǧ ᾱ;α,γ . By Theorem 4.5.5, we see that (K * F x ) ∈ Ǧ ᾱ+β;α+β,γ+β , which means that K * f ∈ Z ᾱ+β (compare (4.5.1) and (4.5.3) with (4.2.3)). We thus obtain the classical Schauder Theorem 4.2.10 as a corollary of our approach.

Our second basic result links weakly coherent and homogeneous germs with ordinary ones, in the special case when homogeneity and coherence exponents coincide ᾱ = γ. This will be proved in Section 4.5.6 below. Then, for any germ F ∈ Ǧγ;α,γ (i.e. with ᾱ = γ), the germ

G x := F x - |k|<γ F (k) x (x) k! ( • -x) k
is well defined and belongs to G γ;α∧0,γ . The map F → G is linear and continuous.

The terminology "positive renormalisation" is inspired by [START_REF] Bruned | Algebraic renormalisation of regularity structures[END_REF], where this notion is related to an operator called ∆ + which yields an algebraic description of the subtraction of Taylor polynomials, see [BHZ19, Lemma 6.10 and Remark 6.11].

We can now deduce Theorem 4.3.12 from Theorems 4.5.5 and 4.5.7.

Proof of Theorem 4.3.12. Let F be an (α, γ)-coherent germ for some γ > 0, α ≤ γ. Applying the reconstruction Theorem 4.3.7, there exists a unique R(F ) ∈ D ′ (R d ) with:

F -R(F ) ∈ G γ;α,γ .
Note that F -R(F ) is both coherent and homogeneous, even though we do not assume a priori that F satisfies a homogeneity bound. By Theorem 4.5.5, using the assumptions (4.3.12), it follows that

(K * {F x -R(F )}) x∈R d ∈ Ǧγ+β;α+β,γ+β .
Since α + β ̸ = 0, γ + β / ∈ N 0 , we can apply Theorem 4.5.7 to (K * {F x -R(F )}) x , which implies that K(F ) as in (4.3.11) is well-defined and:

K(F ) -K * R(F ) ∈ G γ+β;(α+β)∧0,γ+β .
(4.5.4)

It follows that K(F ) is ((α + β) ∧ 0, γ + β)-coherent and its reconstruction is unique, since γ + β > 0. In fact, by the property of homogeneity in (4.5.4), we recognize

R(K(F )) = K * R(F ).
Now assume that F is also ᾱ-homogeneous, and let us establish the homogeneity of K(F ). By the reconstruction Theorem 4.3.7, we know that R(F ) ∈ Z ᾱ, hence K * R(F ) ∈ Z ᾱ+β by the classical Schauder estimate, see Theorem 4.2.10. If we view K * R(F ) as a constant germ, then it is trivially (α ′ , γ ′ )-coherent for arbitrary α ′ , γ ′ , therefore The rest of this section is devoted to the proof of Theorems 4.5.5 and 4.5.7. These will be preceded by some technical tools, which will also yield the the proof of Proposition 4.2.9 (convolution of K with a sufficiently nice distribution f is well-defined) and Theorem 4.2.10 (classical Schauder estimate).

K * R(F ) ∈ G ( ᾱ+β)∧0;α ′ ,γ ′ . ( 4 

Preliminary tools (I)

A key ingredient of our proofs is the following lemma which is similar to [FH20, Proposition 14.11] (though this reference only considers the translation invariant case K n (x, y) = K n (y -x)), and which quantifies the behaviour of the convolution K * n φ λ x . Let us heuristically suggest the expected answer. We start by remarking that since K is β-regularising, we expect K n to behave like K n ≃ 2 -βn ψ 2 -n for some test-function ψ ∈ D, and thus K * n φ λ x ≃ 2 -βn ψ 2 -n * φ λ x . For this type of convolution, we heuristically approximate the test-function corresponding to the lower scale max(2 -n , λ) to be constant compared to the other one, so that we expect in general

K * n φ λ x ≃ 2 -βn η max(2 -n ,λ)
x for some test-function η ∈ D.

In fact, it turns out that we can improve this approximation when φ is assumed to annihilate polynomials of degree up to some integer c ∈ N 0 : by substracting the Taylor expansion of ψ at order c in the integral defining the convolution, we obtain the improved approximation in the regime λ ≤ 2 -n :

K * n φ λ x ≃ (2 n λ) c+1 2 -βn ζ 2 -n
x for some test-function ζ ∈ D.

We can now state the precise result. Its proof is given in Appendix 4.A and proceeds as in [START_REF] Friz | A course on rough paths. Second. Universitext. With an introduction to regularity structures[END_REF]Proposition 14.11]. Lemma 4.5.8 (Convolving K n against test-functions). Let K be a β-regularising kernel of order (m 0 , r 0 ) for some β > 0, m 0 , r 0 ∈ N 0 , and let c ∈ N 0 ∪ {-1}. Then there exists a constant cst > 0 and a real λ > 1 depending only on the kernel K (and

d), such that for n ∈ N 0 , x ∈ R d , λ ∈ (0, 1], φ ∈ B r 0 c , one can write K * n φ λ x =    2 -βn (η [n,λ,x,φ] ) λλ x for 2 -n ≤ λ, 2 -βn (2 n λ) m 0 (ζ [n,λ,x,φ] ) λ2 -n x for 2 -n ≥ λ, c ≥ m 0 -1, (4.5.6)
for some test-functions

η [n,λ,x,φ] ∈ cstB r 0 for 2 -n ≤ λ, ζ [n,λ,x,φ] ∈ cstB r 0 for 2 -n ≥ λ, c ≥ m 0 -1. (4.5.7)
If furthermore K satisfies Assumption 4.2.6 for some c 0 ∈ N 0 , then the same conclusion holds replacing (4.5.7) by η [n,λ,x,φ] ∈ cstB r 0 min(c,c 0 ) , ζ [n,λ,x,φ] ∈ cstB r 0 min(c,c 0 ) . (4.5.8) Remark 4.5.9 (The new scale λ). It follows from the proof of this result that one can take λ := 1 + cst where cst > 0 is the constant that appears in item 1 of the Definition 4.2.2 of the regularising kernel K.

We can now prove Proposition 4.2.9 and Theorem 4.2.10.

Proof of Proposition 4.2.9. Let r ∈ N 0 , K be a β-regularising kernel of order (0, r) for some β > 0, and let f be a distribution of order less or equal to r. In particular, for any compact

K ⊂ R d , sup η∈B r (K) |f (η)| < +∞. Now let φ ∈ D(R d
) be a test-function supported in some compact K ⊂ R d . Applying Lemma 4.5.8, there exists λ > 0 and a constant cst > 0, which depend only on the kernel K and the compact K, such that

K * n φ = 2 -βn (η [n,φ] ) λ, for some test-function η [n,φ] ∈ cstB r . As a consequence, |f (K * n φ)| ≲ 2 -βn
, where the multiplicative constant depends only on the compact K, the distribution f , the kernel K and the dimension d. Thus, the sum in (4.2.10) converges so that the convolution is well-defined, and furthermore sup

η∈B r (K) |K * f (η)| < +∞,
where the compact K is arbitrary, so that K * f is of order less or equal than r.

Proof of Theorem 4.2.10. Using the estimate of Lemma 4.5.8 more precisely, we can now also give a simple proof of Theorem 4.2.10, in the same manner as in [FH20, Section 14]. We will also perform similar calculations when proving Theorem 4.5.5 below. We fix γ ∈ R, K a β-regularising kernel of order (m, r) for some β > 0 and m, r ∈ N 0 such that m > γ + β, r > -γ; and (when γ ≥ 0), we also assume that K preserves polynomials at level γ, see Assumption 4.2.6.

Let f ∈ Z γ . It is straightforward from definition 4.2.1 that f is a distribution of order r so that from Theorem 4.2.9 the convolution K * f is well-defined.

Fix K ⊂ R d compact, x ∈ K, λ ∈ (0, 1], and φ ∈ B r γ+β . Set N λ := min{n ∈ N, 2 -n ≤ λ}, we cut the sum in two regimes and apply Lemma 4.5.8 to obtain for some λ > 1 and test-functions η [n,λ,x,φ] , ζ [n,λ,x,φ] ∈ cstB r γ (note that this is where we use the assumption m > γ + β):

K * f (φ λ x ) = N λ -1 n=0 f (K * n φ λ x ) + +∞ n=N λ f (K * n φ λ x ) = N λ -1 n=0 2 -βn (2 n λ) m f ((ζ [n,λ,x,φ] ) λ2 -n x ) + +∞ n=N λ 2 -βn f ((η [n,λ,x,φ] ) λλ x ).
From (4.5.7), the assumption f ∈ Z γ (this is where we use the assumption r > -γ), and summing the geometric series:

K * f (φ λ x ) ≲ N λ -1 n=0 2 -βn (2 n λ) m 2 -nγ + +∞ n=N λ 2 -βn λ γ ≲ λ γ+β , ( 4.5.9) 
where the multiplicative constant depends only on the kernel K, the compact K, and the distribution f . Now let φ ∈ B r , which may not annihilate polynomials. By definition, and from (4.5.6),

K * f (φ x ) = n∈N f (K * n φ x ) = n∈N 2 -βn f ((η [n,λ,x,φ] ) λ x ).
From (4.5.7) and the assumption f ∈ Z γ this yields as announced: By tracking the constants in the estimates,

|K * f (φ x )| ≲ n∈N 2 -βn ≲ 1. ( 4 
∥K * f ∥ Z γ+β K ≲ ∥f ∥ Z γ K ′ ,
where the compact K ′ ⊃ K on the right-hand side depends only on K and the kernel K, whence the continuity of the map Z γ → Z γ+β , f → K * f .

Proof of Theorem 4.5.5 (convolution of germs)

Before proceeding with the proof of Theorem 4.5.5, let us give more precise notations for weakly homogeneous and coherent germs. As in Remark 4.3.6, introduce the semi-norms corresponding to (4.5.1), (4.5.2), (4.5.3):

∥F ∥ Ǧ ᾱ hom;K, λ,r := sup x∈K, λ∈(0, λ] φ∈B r ᾱ |F x (φ λ x )| λ ᾱ + sup x∈K, φ∈B r |F x (φ x )| , ∥F ∥ Ǧα,γ coh;K, λ,r := sup x,y∈K, λ∈(0, λ] φ∈B r γ |(F y -F x )(φ λ x )| λ α (|y -x| + λ) γ-α + sup x,y∈K, φ∈B r |(F y -F x )(φ x )| ,
and define the joint semi-norm, with r = r ᾱ,α , as in Definition 4.3.2, Proof of Theorem 4.5.5. We only prove the first statement, that is convolution by K is continuous from G ᾱ;α,γ to Ǧ ᾱ+β;α+β,γ+β . The second part, i.e. continuity on Ǧ ᾱ;α,γ , is proved essentially in the same way, with the only difference that in this case one uses the conclusion (4.5.8) rather than (4.5.7) of Lemma 4.5.8. Let F ∈ G ᾱ;α,γ . We prove that (K * F x ) x satisfies (4.5.1)-(4.5.2)-(4.5.3) for ᾱ+β, α+β, γ + β, and r := r ᾱ,α . Note that by the Proposition 4.B.1 of Appendix 4.B, the same estimates will automatically hold also for r ᾱ+β,α+β , which completely establishes (K * F x ) x ∈ Ǧ ᾱ+β;α+β,γ+β .

∥F ∥ Ǧ ᾱ;α,γ K, λ := ∥F ∥ Ǧ ᾱ hom;K, λ,r ᾱ,α + ∥F ∥ Ǧα,γ coh;K, λ,r ᾱ,α . ( 4 
In the remainder of this proof, we fix a compact K ⊂ R d , x, y ∈ K, λ0 > 0, λ ∈ (0, λ0 ]. The decomposition argument is the same as in the proof of Theorem 4.2.10. We prove the three estimates separately.

(Weak homogeneity) Let φ ∈ B r

ᾱ+β . By the assumption m 0 > ᾱ + β, this implies φ ∈ B r m 0 -1 . Set N λ := min{n ∈ N, 2 -n ≤ λ}. We cut the sum in two regimes:

K * F x (φ λ x ) = N λ -1 n=0 F x (K * n φ λ x ) + +∞ n=N λ F x (K * n φ λ x ).
From (4.5.6), one has for some λ > 1,

K * F x (φ λ x ) = N λ -1 n=0 2 -βn (2 n λ) m 0 F x ((ζ [n,λ,x,φ] ) λ2 -n x ) + +∞ n=N λ 2 -βn F x ((η [n,λ,x,φ] ) λλ x ).
From (4.5.7) and the assumption of homogeneity on F ,

K * F x (φ λ x ) ≲ N λ -1 n=0 2 -βn (2 n λ) m 0 2 -n ᾱ + +∞ n=N λ 2 -βn λ ᾱ,
where the multiplicative constant depends only on the kernel K, the compact K, and the germ F . Summing the geometric series yields as announced:

K * F x (φ λ x ) ≲ λ ᾱ+β . 2. (Weak coherence) Let φ ∈ B r γ+β . By the assumption m 0 > γ + β, this implies φ ∈ B r m 0 -1 . By definition, (K * F y -K * F x )(φ λ x ) = n∈N (F y -F x )(K * n φ λ x ).
As previously we cut the sum using (4.5.6):

(K * F y -K * F x )(φ λ x ) = N λ -1 n=0 2 -βn (2 n λ) m 0 (F y -F x )((ζ [n,λ,x,φ] ) λ2 -n x ) + +∞ n=N λ 2 -βn (F y -F x )((η [n,λ,x,φ] ) λλ x ).
From (4.5.7) and the assumption of coherence on F ,

(K * F y -K * F x )(φ λ x ) ≲ N λ -1 n=0 2 -βn (2 n λ) m 0 2 -nα (|y -x| + 2 -n ) γ-α + +∞ n=N λ 2 -βn λ α (|y -x| + λ) γ-α ,
where the multiplicative constant depends only on the kernel K, the compact K, and the germ F . Summing the geometric series yields as announced

(K * F y -K * F x )(φ λ x ) ≲ λ α+β (|y -x| + λ) (γ+β)-(α+β) .
3. (Boundedness) Now let φ ∈ B r , which possibly does not annihilate polynomials. By definition, and from (4.5.6),

K * F y (φ x ) = n∈N 2 -βn F y ((η [n,λ,x,φ] ) λ x + 2 -βn (F x -F y )((η [n,λ,x,φ] ) λ x ).
From (4.5.7) and the assumption of homogeneity and coherence on F , this yields as announced:

|K * F y (φ x )| ≲ n∈N 2 -βn ≲ 1.
In fact, by tracking the constants in the estimates, one obtains the continuity estimate:

∥K * F ∥ Ǧ ᾱ+β;α+β,γ+β K ≲ ∥F ∥ G ᾱ;α,γ K ′ ,
where the compact K ′ ⊃ K on the right-hand side depends only on the compact K on the left-hand side, the kernel K and the exponents ᾱ, α.

Remark 4.5.10. In the proof just above, the property of homogeneity on K * F did not require the assumption of coherence on F and inversely. Indeed, under the assumption that K is β-regularising of order (m, r) for some r ∈ N 0 and m > ᾱ + β resp. m > γ + β, the same calculations as in the proof just above establish that convolution with K defines a linear map G ᾱ hom;r → Ǧ ᾱ+β hom;r resp. G α,γ coh;r → G α+β,γ+β coh;r , with continuity estimates

∥K * F ∥ Ǧ ᾱ+β hom;K, λ,r ≲ ∥F ∥ G ᾱ hom;K, λ′ ,r , resp. ∥K * F ∥ Ǧα+β,γ+β coh;K, λ,r ≲ ∥F ∥ G α,γ coh;K, λ′ ,r .
where λ′ > λ depends only on λ and the kernel K.

Preliminary tools (II)

The following lemma will be useful to perform decompositions involving test-functions which annihilate polynomials. Lemma 4.5.11 (Some test-functions which annihilate polynomials). Let r ∈ N 0 , c ∈ N 0 ∪ {-1}, and η ∈ D(B(0, 1)) with η(x)dx = 1 and η(x)x l dx = 0 for 1 ≤ |l| ≤ c.

Then there exists a constant cst > 0 depending only on r, c, η, d, such that for all multi-indices k with 0 ≤ |k| ≤ c and all test-functions ψ ∈ B r , one has

       2 |k| (η (k) ) 2 -1 -η (k) ∈ cstB r c+|k| , ψ - |k|≤c (-1) |k| X k 0 (ψ)η (k) ∈ cstB r c .
Proof. This is straighforward.

As a consequence of Lemma 4.5.11, we provide a proof of the existence of pointwise derivatives for weakly homogeneous germs, as announced in Lemma 4.3.11. R d ) such that η(x)dx = 1 and η(x)x l dx = 0 for all multi-indices l with 1 ≤ |l| < ᾱ, the limit

F (k) x (x) := lim λ→0 F (k) x (η λ x ), (4.5 
.12) exists and does not depend on the choice of such an η. Furthermore, one has the following estimate: there exists a constant cst > 0 depending only on ᾱ, r, d such that for k ∈ N d 0 with |k| < ᾱ: Proof. Without loss of generality, let us assume that supp(η) ⊂ B(0, 1). Observe first that the definition (4.5.12) does not depend on such an η because if η is another such function, then (ηη) (k) annihilates polynomials of degree less or equal than ᾱ, and thus by assumption of homogeneity and the distributional definition of the derivative,

|F (k) x (x)| ≤ cst∥F ∥ Ǧ ᾱ hom;K, λ=1,r , ( 4 
F (k) x (η λ x ) -F (k) x (η λ x ) = (-λ) -|k| F x ((η -η) (k) ) λ x = O λ→0 (λ ᾱ-|k| ) = o λ→0 (1).
Now let us establish the convergence of (4.5.12). For any λ ∈ (0, 1] and N ∈ N 0 ,

F (k) x (η λ2 -(N +1) x ) = F (k) x (η λ x ) + N n=0 F (k) x (η λ2 -(n+1) x -η λ2 -n x ). ( 4 

.5.14)

By the distributional definition of the derivative,

F (k) x (η λ2 -(n+1) x -η λ2 -n x ) = (-λ -1 2 n+1 ) |k| F x ((η (k) ) 2 -(n+1) x ) -(-λ -1 2 n ) |k| F x ((η (k) ) 2 -n x ) = (-λ -1 2 n ) |k| F x ((φ (k) ) λ2 -n x ),
where φ (k) := 2 |k| (η (k) ) 2 -1 -η (k) . From Lemma 4.5.11, there exists a constant cst > 0 depending only on ᾱ, r, d, η such that for |k| < ᾱ,

φ (k) ∈ cstB r ᾱ.
Thus, by the assumption of homogeneity of the germ F ,

(-λ -1 2 n ) |k| F x ((φ (k) ) λ2 -n x ) ≲ λ ᾱ-|k| 2 -n( ᾱ-|k|) .
(4.5.15)

By assumption, |k| < ᾱ, whence the sum in (4.5.14) converges, which justifies the wellposedness of F (k)

x (x). In fact, (4.5.14) yields the following useful decomposition: for any λ ∈ (0, 1] and any such η,

F (k) x (x) = (-λ -1 ) |k| F x ((η (k) ) λ x ) + +∞ n=0 (-λ -1 2 n ) |k| F x ((φ (k) ) λ2 -n x
). (4.5.16)

Finally, the estimate (4.5.13) follows immediately from the above calculations (taking λ = 1).

Using a similar decomposition argument, one obtains also the following decomposition result. Lemma 4.5.13 (Decomposition at lower scale). Let r, d ∈ N 0 , c ∈ N 0 ∪ {-1}. There exists a constant cst > 0 depending only on r, c, d, such that for all M ∈ N 0 and all ψ ∈ B r , there exist test-functions

ψ[M] ∈ cstB r , ψ[n] ∈ cstB r c for 0 ≤ n ≤ M, such that one has the decomposition ψ = ( ψ[M] ) 2 M + M n=0 ( ψ[n] ) 2 n .
Proof. We fix a test-function η ∈ D(B(0, 1)) such that η(x)dx = 1 and x k η(x)dx = 0 for multi-indices k with |k| ≤ c.

We start by defining:

ψ := ψ - |k|≤c (-1) |k| X k 0 (ψ)η (k) ,
From Lemma 4.5.11, there exists a constant cst > 0 depending only on c (and d), such that ψ ∈ cstB r c . Perform the following telescoping sum, for any |k| ≤ c:

η (k) = 2 -M |k| (η (k) ) 2 M + M -1 n=0 2 -n|k| (η (k) ) 2 n -2 -(n+1)|k| (η (k) ) 2 n+1 = 2 -M |k| (η (k) ) 2 M + M -1 n=0 2 -(n+1)|k| (φ (k) ) 2 n+1 .
where φ (k) := 2 |k| (η (k) ) 2 -1 -η (k) . From Lemma 4.5.11, there exists a constant cst > 0 depending only on d, r, c such that for |k| ≤ c, φ (k) ∈ cstB r c . Thus, we have decomposed:

ψ = ψ + |k|≤c (-1) |k| X k 0 (ψ)2 -M |k| (η (k) ) 2 M + M -1 n=0 |k|≤c (-1) |k| X k 0 (ψ)2 -(n+1)|k| (φ (k) ) 2 n+1 . Define:                ψ[M] := |k|≤c (-1) |k| X k 0 (ψ)2 -M |k| η (k) , ψ[n] := |k|≤c (-1) |k| X k 0 (ψ)2 -n|k| φ (k) for n = 1, • • • , M, ψ[0] := ψ.
Then there exists a constant cst > 0 depending only on d, r, c such that:

ψ[M] ∈ cstB r , ξ[n] ∈ cstB r c over 1 ≤ n ≤ M.
Also:

ψ = ( ψ[M] ) 2 M + M n=0 ( ξ[n] ) 2 n .
This provides the announced decomposition.

Proof of Theorem 4.5.7 (positive renormalisation)

We first establish the following result which considers the case of germs which admit only the property of (weak) homogeneity.

Theorem 4.5.14. Let ᾱ ∈ R + \ N, r ∈ N, and F be a germ. The following assertions are equivalent:

(i) F ∈ Ǧ ᾱ hom;r , (ii) Let G be defined by G x := F x -|k|< ᾱ F (k) x (x) X k x .
Then G is correctly defined and G ∈ G ᾱ hom;r . Furthermore, we have the following continuity estimate for compacts K ⊂ R d and reals λ > 0: 

∥G∥ G ᾱ hom;K, λ,r ≲ ∥F ∥ Ǧ ᾱ hom;K, λ,r . ( 4 
(i) f ∈ C α i.e. |f (φ λ x )| ≲ λ α over x in compacts, λ ∈ (0, 1], φ ∈ B 0 α . (ii) f is a C ⌊α⌋ function and f (y) -|k|<α f (k) (x) x! (y -x) k ≲ |y -x| α .
In the case of integer exponents, only the implication (ii) ⇒ (i) holds.

Proof of Theorem 4.5.14. (ii) ⇒ (i) is straightforward. Let us now prove (i) ⇒ (ii). Let F ∈ Ǧ ᾱ hom;r . Thanks to Lemma 4.5.12, we know that the germ G is well-defined. Now let us prove that G ∈ G ᾱ hom;r . Let K ⊂ R d be compact and ψ ∈ B r be a test-function (which does not necessarily annihilate polynomials). Let λ ∈ (0, 1], x ∈ K, we shall estimate G x (ψ λ x ). By definition,

G x (ψ λ x ) = F x (ψ λ x ) - |k|< ᾱ F (k) x (x)X k x (ψ λ x ).
Note that X k x (ψ λ x ) = λ |k| X k 0 (ψ). Now we fix η ∈ D(B(0, 1)) such that η(x)dx = 1 and η(x)x l dx = 0 for all multi-indices l with 1 ≤ |l| ≤ ⌊ᾱ⌋. Thus, (4.5.16) yields the decomposition

G x (ψ λ x ) = F x (ψ λ x ) - |k|< ᾱ λ |k| X k 0 (ψ)(-λ -1 ) |k| F x ((η (k) ) λ x ) =:A - |k|< ᾱ λ |k| X k 0 (ψ) +∞ n=0 (-λ -1 2 n ) |k| F x ((φ (k) ) λ2 -n x ) =:B .
Recalling (4.5.15), and summing the geometric series, we obtain |B| ≲ λ ᾱ. Furthermore, denote ψ := ψ -

|k|< ᾱ(-1) |k| X k 0 (ψ)η (k) ,
so that from Lemma 4.5.11, there exists a constant cst > 0 depending only on ᾱ (and d), such that ψ ∈ cstB r ᾱ. As a consequence, using the homogeneity property of the germ F :

|A| = |F x ( ψλ x )| ≲ λ ᾱ.
This concludes the proof. Finally, the estimate (4.5.17) follows from keeping track of the constants in the calculations just above. Now we are in position to provide a proof for Theorem 4.5.7.

Proof of Theorem 4.5.7. Let F ∈ Ǧγ;α,γ . We know from Lemma 4.5.12 that G is well-defined and from Theorem 4.5.14 that G ∈ G γ hom;r where r := r γ,α is fixed for the remainder of this proof, see Definitions 4.3.2-4.5.1. Thus, it remains to obtain the property of coherence on the germ G.

Let K ⊂ R d be compact and ψ ∈ B r be a test-function (which does not necessarily annihilate polynomials). Let λ ∈ (0, 1], x, y ∈ K, we shall estimate (G y -G x )(ψ λ x ). A first heuristic observation is that when λ ∼ |y -x|, then ψ λ x ≃ ψλ y can also be seen as a test-function centered in y with scale λ, and thus using the fact established in Theorem 4.5.14 that G ∈ G γ hom;r is γ-homogeneous (even against test-functions which do not annihilate polynomials),

|(G y -G x )(ψ λ x )| ≲ |G y ( ψλ y )| + |G x (ψ λ x )| ≲ λ γ ≃ λ 0 (|y -x| + λ) γ-0 , implying (0, γ)-coherence on G.
However, in general λ and |y -x| are not at comparable scales, which is why we resort to the result of decomposition at lower scale Lemma 4.5.13. More precisely, define:

M := M x,y,λ := min n ∈ N 0 , 2 -n ≤ λ λ + |y -x| ,
and apply Lemma 4.5.13 to obtain the existence of test-functions

ψ[M] ∈ cstB r , ψ[n] ∈ cstB r γ for 0 ≤ n ≤ M,
where the constant cst > 0 depends only on γ, r, d, and such that

ψ = ( ψ[M] ) 2 M + M n=0 ( ψ[n] ) 2 n .
Hence:

(G y -G x )(ψ λ x ) = (G y -G x )(( ψ[M] ) λ2 M x ) =:A + M n=0 (G y -G x )(( ψ[n] ) λ2 n x ) =:B .
We now estimate A and B separately. 

Estimate of

( ψ[M] ) λ2 M x = ( ψ[M] ) 1 2 x-y λ2 M +1 =: ψ[M,y,x,λ] λ2 M +1 y . By construction of M , |(λ2 M +1 ) -1 (y -x)| ≤ 1 so that ψ[M,y,x,λ] ∈ cstB r .
As a consequence, using the fact that G ∈ G γ hom;r , and noting that λ2 M +1 ≤ 4(λ+Diam(K)) =: λ′ by definition of M :

|A| = |G y (( ψ[M,y,x,λ] ) λ2 M +1 y ) -G x (( ψ[M] ) λ2 M x )| ≤ |G y (( ψ[M,y,x,λ] ) λ2 M +1 y )| + |G x (( ψ[M] ) λ2 M x )| ≤ cst∥G∥ G γ hom;K, λ′ ,r (λ2 M ) γ ≤ cst∥F ∥ Ǧγ hom;K, λ′ ,r λ 0 (λ + |y -x|) γ-0 ,
where in the last estimate we used (4.5.17) and the definition of M .

Estimate of B. By construction, ψ[n] annihilates polynomials up to degree γ, so (G

y - G x )(( ψ[n] ) λ2 n x ) = (F y -F x )(( ψ[n] ) λ2 n x )
. Using the coherence assumption on F :

|B| ≲ M n=0 (λ2 n ) α (λ2 n + |y -x|) γ-α ≲ λ γ M n=0 2 nγ + λ α |y -x| γ-α M n=0 2 nα .
By assumption, γ > 0 so λ γ M n=0 2 nγ ≲ (λ2 M ) γ ≲ (λ + |y -x|) γ by the definition of M . Furthermore, there are two possibilities for α.

If α > 0 then λ α |y -x| γ-α M n=0 2 nα ≲ (λ2 M ) α |y -x| γ-α ≲ (λ + |y -x|) γ . If α < 0 then λ α |y -x| γ-α M n=0 2 nα ≲ λ α |y -x| γ-α ≲ λ α (|y -x| + λ) γ-α .
The case α = 0 is not considered in the statement of the theorem. In all cases:

|B| ≲ λ α∧0 (|y -x| + λ) γ-α∧0 .
This concludes the proof. Note finally that keeping track of the constants in the calculations just above yields the continuity estimate for λ′ := 4( λ + Diam(K)):

∥G∥ G γ hom;K, λ,r ≲ ∥F ∥ Ǧγ hom;K, λ,r , ∥G∥ G α∧0,γ coh;K, λ,r ≲ ∥F ∥ Ǧγ;α∧0,γ K, λ′ ,r
, where the implicit multiplicative constant depends only on α, γ, d, whence the announced continuity of the map F → G.

Proofs for of our Main Result II

Preliminary lemma

The following lemma will be useful in order to establish the multi-level Schauder estimate of section 4.4. 

ψ = ψ [x,y,n] ∈ cstB r c ,
such that for such x, y, n,

φ 2 -n x - |k|≤c (x -y) k k! (-2 n ) |k| (φ (k) ) 2 -n y = (2 n (x -y)) c+1 (ψ [x,y,n] ) 2 -n+1 y .
Remark 4.6.2. Note that the scale 2 -n+1 may be greater than 1 for n = 0.

Proof. The test-function ψ [x,y,n] is defined by:

ψ [x,y,n] (•) := 2 d (2 n (x -y)) -c-1   φ(2 • +2 n (y -x)) - |k|≤c (2 n (y -x)) k k! φ (k) (2•)   .
The required properties on ψ follow from this expression, in particular after applying Taylor-Lagrange's formula.

Proof of Theorem 4.4.10 (multi-level Schauder estimate)

In this section, we prove Theorem 4.4.10.

Proof that ( Π, Γ) is a model

There are two properties to establish. Property of reexpansion. Let us first check that condition (4.4.3) in the definition of a model is satisfied by Π and Γ, defined in (4.4.13)-(4.4.17):

Πi y = j∈ Î Πj x Γji xy .
This condition is immediate when i = k ∈ Îpoly , because Πi is a polynomial. We then fix i = a ∈ Îsing = I sing and write

Πa y = K * Π a y - k∈N d 0 : |k|<αa+β (K * Π a y ) (k) (y) X k y .
We can expand Π a y = j∈I Π j x Γ ja xy and X k y = l∈ Îpoly : l≤k X l x (Γ poly ) lk xy , then we split the sum over j = b ∈ I sing and j = k ∈ I poly , to get We next write (K * Π b x ) = Πb x -|l|<α b +β (K * Π b x ) (l) (x) X l x , see (4.4.14). Moreover, since we require that K preserves polynomials, see Assumption 4.2.6, we have that K * X k

x is a polynomial of degree at most |k| < γ + β, hence it coincides with its Taylor expansion and we can write K * X k x = l∈ Îpoly (K * X k x ) (l) (x) X l x . This yields Finally, we insert the constraint α k + β > α l in the second sum, because when this is violated we have |l| ≥ |k| + β > |k| and the derivative (K * X k x ) (l) (x) vanishes, since K * X k x is a polynomial of degree at most |k|. We can thus rewrite the first two sums as a single sum over j ∈ I = I sing ∪ I poly , which leads exactly to (4.4.17).

Property of homogeneity. Now let us prove that each Πi

x (i ∈ Î = Îsing ∪ Îpoly ) satisfies the homogeneity relation (4.4.2) with exponent αi . On the one hand, if i ∈ Îpoly , this is straightforward, recall Example 4.4.3.

On the other hand, if i ∈ Îsing , then since K is regularising of order (m, r) for some m > α i + β and since Π i x ∈ G α i hom;r , applying the content of Remark 4.5.10 yields K * Π i ∈ Ǧ αi hom;r . Now applying Theorem 4.5.14 to K * Π i using the assumption αi / ∈ N, and recalling the definition (4.4.13) of Πi

x , one obtains as announced Πi ∈ G αi hom;r .

Proof of relation (4.4.19) We need to show that 

⟨ f , Π⟩ x = i∈ Î f i (x) Πi x = K γ+β (
(K * Π j x ) (k) (x) X k x ,
which follows by (4.4.14) and (4.4.18) for i = a ∈ Îsing = I sing , because the parenthesis vanishes for j ∈ I poly : indeed, Π j x = X k x is a polynomial for j = k ∈ I poly , see (4.4.12), hence K * Π j

x is a polynomial of degree at most α j = |k|, by Assumption 4.2.6, which then coincides with its Taylor development at level α j + β. We thus obtain for some λ′ ≥ λ, so that from Lemma 4.5.12, the pointwise evaluations (K * Π j x ) (k) (x) are well-defined with the estimates |(K * Π j x ) (k) (x)| ≲ ∥Π∥ M α K,1 . Similarly, exploiting Lemma 4.5.12, Remark 4.5.10, the reconstruction theorem and the estimate (4.4.9), one obtains (x -y) j-i (j -i)! (K * {⟨f, Π⟩ y -R⟨f, Π⟩}) (j) (y).

|(K * {⟨f, Π⟩ x -R⟨f, Π⟩}) (k) (x)| ≲ ∥Π∥ M α K ′ ,1 ~f ~Dγ Γ,α;K ′ ,
In order to simplify our expressions it is convenient to define G x := K * {⟨f, Π⟩ x -R⟨f, Π⟩}. Recalling (4.6.2), ( 4 for some enlarged compact K ′ ⊃ K and λ′ ≥ λ. We now replace the pointwise evaluations in the expression above by their corresponding multi-scale decompositions as in (4.5.16). More precisely, fix η ∈ D(B(0, 1)) such that η(x)dx = 1 and η(x)x l dx = 0 for 1 ≤ |l| < γ + β, and let φ := 2η 2 -1 -η so that there exists a constant cst > 0 such that φ (l) ∈ cstB r γ+β for all |l| < γ + β; then (K * Π j x ) (l) (x) = (-1) |l| K * Π j x ((η (l) ) x ) + 

(-2 n ) |i| K * Π j x ((ψ (i) ) 2 -n x )   k∈I Γ j,k x,y f k (y) -f j (x)   + (-2 n ) |i| G x ((ψ (i) ) 2 -n x ) - j∈N d 0 i≤j,|j|<γ+β (x -y) j-i (j -i)! (-2 n ) |j| G y ((ψ (j) ) 2 -n y ).
We bound this quantity differently depending on whether |y -x| ≶ 2 -n . For this purpose, denote N = N x,y = min{n ∈ N 0 , 2 -n ≤ |y -x|}. On the one hand, using the properties of homogeneity (4.6.4) and the fact that f is a modelled distribution in the expression above, one obtains 

(-2 n ) |l| K * Π j x ((φ (i) ) 2 -n x )   k∈I Γ j,k x,y f k (y) -f j (x)   + (-2 n ) |l| G y (φ (i) ) 2 -n x - j∈N d 0 i≤j,|j|<γ+β (x -y) j-i (j -i)! (-2 n ) |j|-|i| (φ (j) ) 2 -n y .
Thus, using the properties of homogeneity (4.6.4), Lemma 4.6.1 and the fact that f is a modelled distribution in the expression above, one obtains 

Proof of Theorem 4.4.13 (properties of reexpansion)

In this section we prove Theorem 4.4.13. The first two properties follow from direct calculations and the definition (4.4.16)-(4.4.17) of Γ.

Let us prove the third property, i.e. the Hölder bound: assume we have estimates |Γ i,j

x,y | ≲ |y -x| α j -α i . Inspecting the definition (4.4.16)-(4.4.17) of Γ, the following bound | Γi,j x,y | ≲ |y -x| αj -αi , over x, y ∈ K, i, j ∈ Î, is straightforward except when i ∈ Îpoly , j ∈ Îsing , which is the case we tackle now, arguing as in the proof that f is a modelled distribution, see Section 4.6.2: recall from (4.6.2) that K * Π j ∈ Ǧ αj hom;r with the continuity estimates (4.6.4). We then replace the pointwise evaluations in the expression (4.4.17) of Γ by their corresponding multi-scale decompositions as in (4.5.16). More precisely, fix η ∈ D(B(0, 1)) such that η(x)dx = 1 and η(x)x l dx = 0 for 1 ≤ |l| < γ + β, and let φ := 2η 2 -1 -η so that there exists a constant cst > 0 such that φ (l) ∈ cstB r γ+β for all |l| < γ + β; then we obtain a decomposition: Γi,j

x,y = Γi,j;0 x,y (η) + |Γ i,j x,y | |x -y| α j -α i , one gets the continuity estimate

∥ Γ∥ M α K ≲ ∥Π∥ M α K ′ ∥Γ∥ M α K ,
for some enlarged compact K ′ ⊃ K.

In this integral, we substract and add the Taylor polynomial of φ at λy of order |k| -1: Bound on C r 0 norm of ζ [n,λ,x,φ] . Let k ∈ N d 0 be a multi-index with |k| ≤ r 0 , and y ∈ R d , then by differentiation under the integral,

∂ k η [n,
∂ k ζ [n,λ,x,φ] (y) = 2 βn (2 n λ) -m 0 ( λ2 -n ) d+|k| R d φ(z)∂ k 2 K n (x + λz, x + 2 -n y)dz.
Recall that by assumption, φ annihilates polynomials of degree c ≥ m 0 -1 so in this integral we can substract the Taylor polynomial of ∂ k 2 K n (•, x + λ2 -n y) at x of order m 0 -1: let us denote: R [m 0 -1] n,λ,x,y,k (z) := ∂ k 2 K n (x + λz, x + λ2 -n y) -

|l|≤m 0 -1 ∂ l 1 ∂ k 2 K n (x, x + λ2 -n y) (λz) l l! , then ∂ k ζ [n,λ,x,φ] (y) = 2 βn (2 n λ) -m 0 ( λ2 -n ) d+|k| R d φ(z)R [m 0 -1]
n,λ,x,y,k (z)dz.

By Taylor-Lagrange's formula,

R [m 0 -1] n,λ,x,y,k (z) ≤ |l|=m 0 1 l! ∂ l 1 ∂ k 2 K n ∞ |λz| m 0 .
• in the case of G, we exploit the decomposition (4.B.1) starting from n 0 ∈ Z with 2 -n 0 ∼ λ,

• in the case of Ǧ, we exploit the decomposition (4.B.1) starting from n 0 = 0.

Let α, ᾱ, γ ∈ R be such that α ≤ γ, ᾱ ≤ γ, and define r α, ᾱ := min{r ∈ N 0 , r > max{-α, -ᾱ}}.

For any r ∈ N 0 arbitrary, we denote G ᾱ;α,γ r the space of germs corresponding to the family of seminorms given by ( 4 . Thus, collecting these estimate:

|F x (η λ x )| ≲ 2 -N λ d ∥η∥ ∞ 2 N λ d 2 -N λ ᾱ + +∞ n=N λ 2 -nd 2 (n-N λ )d ∥η∥ C r+1 λ -d 2 -n λ r+1 2 -n ᾱ + 2 -nα λ γ-α .
Recalling that by choice of r one has r + 1 > -α and r + 1 > -ᾱ, by summing the geometric series one obtains the wanted homogeneity estimate

|F x (η λ x )| ≲ ∥η∥ C r α, ᾱ λ ᾱ.
We establish the estimate of coherence similarly. Let again φ, Ψ be as in Theorem 4.B.2 applied to r. Let K ⊂ R d be compact, x, y ∈ K, λ ∈ (0, 1], η ∈ B rα,ᾱ , we want to estimate (F y -F x )(η λ x ). As above, set N := N λ := min{n ∈ N, 2 -n ≤ λ}, from the decomposition (4.B.1) starting at N λ , we have:

(F y -F x )(η λ x ) = k∈2 -N λ Z 2 -N λ d ⟨η λ x , φ 2 -N λ k ⟩(F y -F x )(φ 2 -N λ k ) + +∞ n=N λ k∈2 -n Z ψ∈Ψ 2 -nd ⟨η λ x , ψ 2 -n k ⟩(F y -F x )(ψ 2 -n k ).
We perform the same estimate as above except this time from the assumption of coherence on the germ F (and the fact that |x -k| ≲ λ for reasons of support 

|(F y -F x )(η λ x )| ≲ 2 -N λ d ∥η∥ ∞ 2 N λ d λ α (|y -x| + λ) γ-α + +∞ n=N λ 2 -nd 2 (n-N λ )d ∥η∥ C r+1 λ -d 2 -n λ r+1
2 -nα (|y -x| + λ) γ-α , so that using the fact that r + 1 > -α one obtains after summing the geometric series

|(F y -F x )(η λ x )| ≲ ∥η∥ C r α, ᾱ λ α (|y -x| + λ) γ-α .
This concludes the proof of (4.B.2).

Proof of (4.B. , we start with the estimate of homogeneity. Let again φ, Ψ be as in Theorem 4.B.2 applied to r. Let K ⊂ R d be compact, x ∈ K, λ ∈ (0, 1], η ∈ B rα,ᾱ , η ∈ B rα,ᾱ ᾱ . We want to estimate F x (η x ) and F x (η λ x ). From the decomposition (4.B.1) starting at 0, we have:

F x (η x ) = k∈Z ⟨η x , φ k ⟩F x (φ k ) + +∞ n=0 k∈2 -n Z ψ∈Ψ 2 -nd ⟨η x , ψ 2 -n k ⟩F x (ψ 2 -n k ).
In the first line, for reasons of support one has |x -k| ≲ 1 and only a finite number of k contribute to the sum. In the second line, for reasons of support one has |x -k| ≲ 1 and ∼ 2 nd values of k contribute to the sum. Thus, because of the coherence and homogeneity of the germ F , one has |F x (φ k )| ≲ 1 in the first line, and |F x (ψ 2 -n k )| ≲ 2 -n ᾱ + 2 -nα in the second line. Also, since the functions ψ cancel polynomials of degree up to r ≥ r α, ᾱ, by substracting a Taylor polynomial of degree r := r α, ᾱ -1 in the integral one obtains |⟨η x , ψ 2 -n k ⟩| ≲ ∥η∥ C r+1 2 -n(r+1) . Thus, collecting these estimates:

|F x (η x )| ≲ ∥η∥ ∞ + +∞ n=0
2 -nd 2 nd ∥η∥ C r+1 2 -n(r+1) 2 -n ᾱ + 2 -nα , so that summing the geometric series and recalling that r + 1 > -α, r + 1 > -ᾱ, one obtains |F x (η x )| ≲ ∥η∥ C r α, ᾱ .

Similarly:

F x (η λ x ) = k∈Z ⟨η λ x , φ k ⟩F x (φ k ) + N λ n=0 k∈2 -n Z ψ∈Ψ 2 -nd ⟨η λ x , ψ 2 -n k ⟩F x (ψ 2 -n k ) + +∞ n=N λ +1 k∈2 -n Z ψ∈Ψ 2 -nd ⟨η λ x , ψ 2 -n k ⟩F x (ψ 2 -n k ).
In the first line, for reasons of support one has |x -k| ≲ 1 and only a finite number of k contribute to the sum. Also, since η annihilate polynomials of degree up to ⌊ᾱ⌋, by substracting a Taylor polynomial of φ of degree ⌊ᾱ⌋ in the integral one obtains |⟨η λ

x , φ k ⟩| ≲ ∥η∥ ∞ λ ⌊ ᾱ⌋+1 ≲ ∥η∥ ∞ λ ᾱ. Furthermore, because of the coherence and homogeneity of the germ F , |F x (φ k )| ≲ 1.

In the second line, for reasons of support one has |x -k| ≲ 2 -n and only a finite number of k contribute to the sum. Also, since η annihilate polynomials of degree up to ⌊ᾱ⌋, by substracting a Taylor polynomial of φ of degree ⌊ᾱ⌋ in the integral one obtains

|⟨η λ x , ψ 2 -n k ⟩| ≲ ∥η∥ ∞ 2 nd λ 2 -n ⌊ ᾱ⌋+1
. Furthermore, because of the coherence and homogeneity of the germ F , |F x (ψ 2 -n k )| ≲ 2 -nγ + 2 -n ᾱ ≲ 2 -n ᾱ (since we assume ᾱ ≤ γ). In the third line, for reasons of support one has |x -k| ≲ λ and ∼ 2 (n-N λ )d values of k contribute to the sum. Also, since the functions ψ cancel polynomials of degree up to r ≥ r α, ᾱ, by substracting a Taylor polynomial of η of degree r := r α, ᾱ -1 in the integral one obtains |⟨η λ x , ψ 2 -n k ⟩| ≲ ∥η∥ C r+1 2 -n(r+1) . Furthermore, because of the coherence and homogeneity of the germ F , |F x (ψ 2 -n k )| ≲ 2 -nα λ γ-α + 2 -n ᾱ. Collecting these estimates yields:

|F x (η λ x )| ≲ ∥η∥ ∞ λ ᾱ + N λ n=0 2 -nd ∥η∥ ∞ 2 nd λ 2 -n ⌊ ᾱ⌋+1 2 -n ᾱ + +∞ n=N λ +1
2 -nd 2 (n-N λ )d ∥η∥ C r+1 2 -n(r+1) 2 -nα λ γ-α + 2 -n ᾱ , so that summing the geometric series and recalling that r + 1 > -α, r + 1 > -ᾱ, ⌊ᾱ⌋ + 1 > ᾱ, one obtains:

|F x (η λ x )| ≲ ∥η∥ C r α, ᾱ λ ᾱ. Once again, we establish the property of coherence similarly. Let φ, Ψ be as in Theorem 4.B.2 applied to r. Let K ⊂ R d be compact, x, y ∈ K, λ ∈ (0, 1], η ∈ B rα,ᾱ , η ∈ B rα,ᾱ γ , we want to estimate (F y -F x )(η x ) and (F y -F x )(η λ x ). From the decomposition (4.B.1) starting at 0, we have:

(F y -F x )(η x ) = k∈Z ⟨η x , φ k ⟩(F y -F x )(φ k ) + +∞ n=0 k∈2 -n Z ψ∈Ψ 2 -nd ⟨η x , ψ 2 -n k ⟩(F y -F x )(ψ 2 -n k ).
We perform the same estimates as in the case of the homogeneity, except for the fact that in the first line |(F y -F x )(φ k )| ≲ 1 because of the assumption of coherence of F (and the fact that |x -k| ≲ 1 for reasons of support); and the fact that in the second line, |(F y -F x )(ψ 2 -n k )| ≲ 2 -nα because of the assumption of coherence of F (and the facts that x, y ∈ K for a compact K and |x -k| ≲ 1 for reasons of support). Thus this yields for r := r α, ᾱ -1:

|(F y -F x )(η x )| ≲ ∥η∥ ∞ + +∞ n=0
2 -nd 2 nd ∥η∥ C r+1 2 -n(r+1) 2 -nα , so that summing the geometric series yields |(F y -F x )(η x )| ≲ 1.

Similarly:

(F y -F x )(η λ x ) = k∈Z ⟨η λ x , φ k ⟩(F y -F x )(φ k ) + N λ n=0 k∈2 -n Z ψ∈Ψ 2 -nd ⟨η λ x , ψ 2 -n k ⟩(F y -F x )(ψ 2 -n k ) + +∞ n=N λ +1 k∈2 -n Z ψ∈Ψ 2 -nd ⟨η λ x , ψ 2 -n k ⟩(F y -F x )(ψ 2 -n k ).
We perform the same estimates as in the case of the homogeneity above except that here, in the first line |(F y -F x )(φ k )| ≲ 1; in the second line |(F y -F x )(ψ 2 

|(F y -F x )(η λ x )| ≲ ∥η∥ ∞ λ γ + N λ n=0 2 -nd ∥η∥ ∞ 2 nd λ 2 -n ⌊γ⌋+1 2 -nα (|y -x| + 2 -n ) γ-α + +∞ n=N λ +1
2 -nd 2 (n-N λ )d ∥η∥ C r+1 2 -n(r+1) 2 -nα (|y -x| + λ) γ-α , so that after summing the geometric series and recalling that r +1 > -α and ⌊γ⌋+1 > γ ≥ α, we obtain:

|(F y -F x )(η λ x )| ≲ ∥η∥ C r α, ᾱ λ α (|y -x| + λ) γ-α . This concludes the proof.

  δA s,u,t = |t -s| log |t -s| -|u -s| log |u -s| -|t -u| log |t -u| = |t -s| p log 1 p + (1 -p) log 1 1 -p ∈ [0, (log 2)|t -s|],

Theorem 2 .

 2 4.1 (Milnor-Moore, see [MM65], [Car07, Theorem 3.8.

  .4.6)-(2.4.8) ⟨X, h⟩ ∈ C |h|α 2 and δ⟨X, h⟩ ∈ C |h|α 3 , so that by Theorem 2.3.5 we obtain I(⟨X, h⟩) ∈ C |h|α 1 . Step 2: continuity of P. Let X, Y ∈ RP α (H), and h ∈ B ≤N . By linearity of I, (P (X)) h -(P (Y )) h = I (⟨X -Y, h⟩). Now by continuity of I (Theorem 2.3.5),
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  this paper, we consider an integer d ∈ N and work in the space R d , equipped with its canonical Euclidean norm |•|. If x ∈ R d and r ∈ R + , we will denote B (x, r) := {z ∈ R d , |z -x| ≤ r} to be the closed ball of center x and radius r. When K ⊂ R d , and R > 0 we will denote KR := K + B(0, R) its R-enlargement.

  ∥bn(w)∥ L p (w∈K) 2 -nγ n∈N . By definition of b n : b n (w) ≤ sup ψ∈B r B(w,ϵn) B(z,ϵn)

  .4.2, Item (1); and that B -κ/2 p,∞ ⊂ B -κ p,1 for any κ > 0. Now let us discuss the local version of the result. A global reconstruction R(F ) can be built by localization, as in [CZ20, Section 11]. Then, properties (a), (b), (c), and (3.4.9) follow from the same arguments as in the global case, using the local version of Proposition 3.A.5, Item (1).

Lemma 3.5. 1 .

 1 [Tweaking a test-function, [CZ20, Lemma 8.1]] Fix r ∈ N, distinct reals λ 0 , λ 1 , ..., λ r-1 ∈ (0, ∞) and a test-function φ ∈ D(R d ) such that φ ̸ = 0 and supp φ ⊂ B(0, R φ ).

Proposition 3.5. 4 .

 4 Assume that there exists φ ∈ D(R d ) such that φ ̸ = 0 and (3.3.2) resp. (3.3.3) is satisfied for φ. Then, for any r ∈ N, there exists φ ∈ D(B (0, 1/2)) such that φ = 1, x k φ(x)dx = 0 for 1 ≤ |k| ≤ r -1 and (3.3.2) resp. (3.3.3) is satisfied for φ.

Corollary 3.5. 5 .

 5 Let f : N × R d → R + be a positive function, and c > 0. Define m (1)

l+1 k=0 2

 2 kd ≲ 1 |x| d and thus:
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Theorem 4 .

 4 1.2 ([Hai14, Theorem 5.12]). Let M be a model and f ∈ D γ M be a modelled distribution. Let K be a β-regularising kernel. Then there exists a new (explicit) model M and a new (explicit

  (4.3.3) holds uniformly for λ ∈ (0, λ], in particular |F y (φ λ x )| ≲ 1 as claimed.

Remark 4 . 3 . 6 .

 436 Let us introduce the semi-norms corresponding to (4.3.1) and (4.3.2): given a compact set K ⊂ R d , r ∈ N and λ ∈ (0, ∞), we set

Lemma 4 .

 4 3.11 (Pointwise derivatives).Let f ∈ D ′ be a distribution. Assume that for some x ∈ R d and δ > 0 the following holds, uniformly for λ ∈ (0, 1]:|f (φ λ x )| ≲ λ δfor any φ ∈ B δ (4.3.10)

Definition 4 . 4 . 1 (

 441 Model). Fix a finite set I and a family α = (α i ) i∈I of real numbers. A pair M = (Π, Γ) is called a model on R d with homogeneities α if there exists r = r Π ∈ N 0 such that:

Definition 4 . 4 . 4 (

 444 Modelled distribution). Consider a model M = (Π, Γ) with homogeneities α = (α i ) i∈I and fix a real number γ > max{α i : i ∈ I}.

  4.1) is coherent and homogeneous, see [CZ20, Example 4.10]. Proposition 4.4.6 (Modelled distribution yield coherent germs). Let (Π, Γ) be a model with homogeneities α = (α i ) i∈I and set ᾱ := min i∈I α i .

  .4.10) where c f 1 denotes the first term in the r.h.s. of (4.4.8), see (4.4.4). Turning to coherence, by (4.4.7) we can bound, arguing as in [CZ20, Example 4.10],

Example 4 . 4 . 7 (

 447 Polynomial modelled distributions). Let f : R d → R be a function of class C ℓ , for some ℓ ∈ N 0 . Its Taylor polynomial of order ℓ based at x is

Remark 4 .

 4 4.8 (Polynomials). Some germs in the model Π = (Π i ) i∈I may be monomials, see (4.4.5). It is then useful to write I as the disjoint union I = I sing ∪ I poly where I poly labels the monomial germs (possibly I poly = ∅) and I sing := I \ I poly . Without loss of generality, we fix the natural parametrization

( 4 .

 4 4.16) where Γ refers to the original model and Γ poly refers to the polynomial model, see (4.4.6). It only remains to define • • • = Γla xy for l ∈ Îpoly and a ∈ Îsing : Γla xy := j∈I : α j +β>|l| (K * Π j x ) (l) (x) Γ ja xy -k∈N d 0 : k≥l, |k|<αa+β (K * Π a y ) (k) (y) (Γ poly ) lk xy , (4.4.17)

Theorem 4 .

 4 5.7 (Positive renormalisation). Let α, γ ∈ R with α ≤ γ and α ̸ = 0, γ / ∈ N 0 .

  .5.5) Since ᾱ ≤ γ, summing (4.5.4) and (4.5.5) we obtain K(F ) ∈ G ( ᾱ+β)∧0;(α+β)∧0,γ+β , which completes the proof.

  .5.10) From the calculations above, the estimate (4.5.9)-(4.5.10) hold uniformly over x ∈ K, λ ∈ (0, 1], φ ∈ B r γ+β for any r > -γ. In fact, from the results of Appendix 4.B, see Proposition 4.B.1, this remains true even for r > -γ -β, and thus f ∈ Z γ+β .

  .5.11) By Remark 4.5.4, we may fix λ = 1 in (4.5.11) and omit it from the notation.

Lemma 4 .

 4 5.12 (Existence of pointwise evaluations). Let ᾱ ∈ R, r ∈ N 0 , and F ∈ Ǧ ᾱ hom;r . Then for any multi-index k ∈ N d 0 with |k| < ᾱ, any x ∈ R d and any test-function η ∈ D(

  .5.13) for any x ∈ R d and K ⊂ R d containing x.

  A. Because the choice of M implies λ2 M ∼ λ + |y -x|, we are at the correct scale to apply the argument sketched above. Let us recenter ( ψ[M] ) λ2 M x at point y: observe that

Lemma 4 .

 4 6.1 (Test-functions and Taylor expansions). Let r ∈ N 0 , c ∈ N 0 ∪ {-1}. Then there exists a constant cst > 0 depending only on r, c, d, such that for all test-functions φ ∈ B r+c+1 c and x, y ∈ R d , n ∈ N 0 with |y -x| ≤ 2 -n , there exists a test-function

  Πa y = b∈I sing (K * Π b x ) Γ ba xy + k∈I poly (K * X k x ) Γ ka xy -k∈N d 0 : |k|<αa+β (K * Π a y ) (k) (y)l∈ Îpoly : l≤k X l x (Γ poly ) lk xy .

b∈I sing l∈N d 0 :

 0 |l|<α b +β (K * Π b x ) (l) (x) X l x Γ ba xy + k∈I poly l∈ Îpoly (K * X k x ) (l) (x) X l x Γ ka xy -k∈N d 0 : |k|<αa+β (K * Π a y ) (k) (y) l∈ Îpoly : l≤k X l x (Γ poly ) lk xy .Switching the sums, we can write Πa y = b∈I sing Πb x Γ ba xy + l∈ Îpoly X l x Γla xy where Γla xy = b∈I sing : α b +β>|l|(K * Π b x ) (l) (x) Γ ba xy + k∈I poly (K * X k x ) (l) (x) Γ ka xy -k∈N d 0 : k≥l, |k|<αa+β(K * Π a y ) (k) (y) (Γ poly ) lk xy .

  {⟨f, Π⟩ x -R⟨f, Π⟩}) (k) (x) X k x = K * ⟨f, Π⟩ x -k∈N d 0 : |k|<γ+β (K * {⟨f, Π⟩ x -R⟨f, Π⟩}) (k) (x) X k x ,which shows that (4.6.1) holds.Proof that f is a modelled distributionWe now prove that f defined in (4.4.18) is a modelled distribution of order γ + β relative to the model ( Π, Γ). Recalling Definition 4.4.4, we have to bound| f i (x)|, | j∈ Î Γi,j x,y f j (y) -f i (x)|, for i ∈ Î, x, y in compacts K ⊂ R d . Estimate of | f i (x)|. One the one hand, if i ∈ Îsing then | f i (x)| = |f i (x)| ≤ ~f ~Dγ Γ,α;K .On the other hand, if i = k ∈ Îpoly , then by constructionf k (x) = j∈I=I sing ∪I poly : α j +β>|k| f j (x) (K * Π j x ) (k) (x) -(K * {⟨f, Π⟩ x -R⟨f, Π⟩}) (k) (x).Now recall that for j ∈ I, since K is regularising of order (m, r) for some m > α j + β and since Π jx ∈ G α j hom;r , applying the content of Remark 4.5.10 yields K * Π j ∈ Ǧ αj hom;r , with the continuity estimate ∥K * Π j ∥ Ǧ ᾱ+β hom;K, λ,r ≲ ∥Π j ∥ G ᾱ hom;K, λ′ ,r ≲ ∥Π∥ M α

( 4 .

 4 6.3)for some K ′ ⊃ K. Thus collecting the estimates above we have established for all i ∈ Î,x ∈ K, | f i (x)| ≲ ∥Π∥ M α K ′ ,1 ~f ~Dγ Γ,α;K ′ . Estimate of | j∈ Î Γi,j x,y f j (y) -f i (x)|.Once again we distinguish the cases i ∈ Îsing and i ∈ Îpoly . If i ∈ Îsing then by construction| j∈ Î Γi,j x,y f j (y) -f i (x)| = | j∈I Γ i,j x,y f j (y) -f i (x)| ≤ ~f ~DγNow fix i = k ∈ Îpoly , i.e. k denotes some multi-index with |k| < γ + β. Replacing Γ and f with their definition and simplifying the expression yields j∈ Î Γi,jx,yf j (y) -f i (x) = = j∈I,α j +β>|i| (K * Π j x ) (i) (x) k∈I Γ j,k x,y f k (y) -f j (x) + (K * {⟨f, Π⟩ x -R⟨f, Π⟩}) (i) (x) -j∈N d 0 ,i≤j,|j|<γ+β

+∞ n=0 (- 2 n(- 2 n

 n=022 ) |l| K * Π j x ((φ (l) ) 2 -n x ) for |l| < αj , G (l) x (x) = (-1) |l| G x ((η (l) ) x ) + +∞ n=0 ) |l| G x ((φ (l) ) 2 -n x ) for |l| < γ + β,This yields a decomposition: j∈ Î Γi,jx,yf j (y) -f i (x) = ∆ i;0 x,y (η) + +∞ n=0 ∆ i;n x,y (φ),where for a test-function ψ ∈ D and n ∈ N 0 we set ∆ i;n x,y (ψ) := j∈I, ᾱi +β>|i|

  |∆ i;n x,y (φ)| ≲ j∈I, αi >|i| 2 -n(-|i|+ αi ) |y -x| γ-α i + j∈N d 0 i≤j,|j|<γ+β |x -y| j-i 2 -n(-|j|+γ+β) ∥Π∥ M α K ′ ~f ~Dγ Γ,α;K ′ ,so that summing the geometric series yields +∞ n=Nx,y∆ i;n x,y (φ) ≲ ∥Π∥ M α K ′ ~f ~Dγ Γ,α;K ′ |y -x| γ+β-αi .On the other hand, observe that by definition of the reexpansion operator Γ, f k (y) -f j (x)  K * Π j x = F y -F x = G y -G x ,whence we can rewrite ∆ i;n x,y (φ) = -j∈I,α j +β<|l|

  |∆ i;n x,y (φ)| ≲ j∈I,α j +β<|l| 2 n(|i|-αi ) |y -x| γ-α i + 2 n(|i|-γ-β) (2 n |y -x|) ⌊γ+β⌋+1-|i| ∥Π∥ M α K ′ ~f ~Dγ Γ,α;K ′ ,and similarly for ∆ i;0 x,y (η), so that summing the geometric series,∆ i;0 x,y (η) + Nx,y n=0 ∆ i;n x,y (φ) ≲ ∥Π∥ M α K ′ ~f ~Dγ Γ,α;K ′ |y -x| γ+β-αi ,which concludes the proof that f is a modelled distribution with the continuity estimate (4.4.21).

  test-function ψ ∈ D and n ∈ N 0 we set Γi,j;nx,y (ψ) := k∈I=I sing ∪I poly :α k +β>|i| (-2 n ) |i| (K * Π k x )((ψ (i) ) 2 -n x ) Γ k,j x,y -k∈N d 0 : k≥i, |k|<α j +β (-2 n ) |k| (K * Π j y )((ψ (k) ) 2 -n y )(Γ poly ) i,k x,y .Again, we produce different bounds depending on whether |y -x| ≶ 2 -n , so that we denote N = N x,y = min{n ∈ N 0 , 2 -n ≤ |y -x|}. On the one hand, using the properties of homogeneity (4.6.4) and the Hölder assumption on Γ,| Γi,j;n x,y (φ)| ≲ k∈I : α k +β>|i| 2 -n( αk -|i|) |y -x| α j -α k + k∈N d 0 : k≥i, |k|<α j +β 2 -n(α j -|k|) |y -x| |k|-|i| ,so that summing the geometric series yields +∞ n=Nx,y Γi,j;n x,y (φ) ≲ |y -x| αj -|i| .On the other hand, observe that by the reexpansion property (4.4.3),k∈I (K * Π k x )Γ k,j x,y = K * Π j y ,so that we can rewrite Γi,j;n x,y (φ) :=k∈I : α k +β<|i| (-2 n ) |i| (K * Π k x )((φ (i) ) 2 -n x ) Γ k,j x,y + (-2 n ) |l| (K * Π j y ) (φ (i) ) 2 -n x -k∈N d 0 : k≥i, |k|<α j +β (x -y) k-i (k -i)! (-2 n ) |k|-|i| (φ (k) ) 2 -n y ,hence using the properties of homogeneity (4.6.4), the Hölder assumption on Γ, and Lemma 4.6.1,| Γi,j;n x,y (φ)| ≲ k∈I : α k +β<|i| 2 n(|i|-αk ) |y -x| α j -α k + 2 n(|l|-αj ) (2 n |y -x|) ⌊ αj ⌋+1-i ,and similarly for Γi,j;0x,y (η), so that summing the geometric series, Γi,j;0 x,y (η) + Nx,y n=0 Γi,j;n x,y (φ) ≲ |y -x| αj -|i| , which gives the announced Hölder bound. In fact, keeping track of the constants in the estimates above, if one defines ∥Γ∥ M α K := sup x,y∈K, i,j∈I

  |∂ k η [n,λ,x,φ] (y)| ≲ 2 βn λ d+|k| ∥φ∥ C |k| 2 (d-β+|k|)n z∈B( λy,cst 2 -n λ ) |z -λy| |k| dz + 2 βn λ d+|k| |l|≤|k|-1 ∥φ∥ C |k| λ -d-|l| 2 -βn .As a consequence:∥η [n,λ,x,φ] ∥ C |r 0 | ≲ ∥φ∥ C |r 0 | ≤ 1.

  .3.6); and similarly Ǧ ᾱ;α,γ r corresponding to the family of seminorms(4.5.11).Let r ∈ N 0 with r ≥ r α, ᾱ, we shall show thatG ᾱ;α,γ r = G ᾱ;α,γ rα,ᾱ , (4.B.2) Ǧ ᾱ;α,γ r = Ǧ ᾱ;α,γ rα,ᾱ . (4.B.3)Proof of (4.B.2). It suffices to show the inclusionG ᾱ;α,γ r ⊂ G ᾱ;α,γ rα,ᾱ ,because the other one follows from the definitions. Let F ∈ G ᾱ;α,γ r , we start with the estimate of homogeneity. Let φ, Ψ be as in Theorem 4.B.2 applied to r.Let K ⊂ R d be compact, x ∈ K, λ ∈ (0, 1], η ∈ B rα,ᾱ , we want to estimate F x (η λ x ). Set N := N λ := min{n ∈ N, 2 -n ≤ λ}.From the decomposition (4.B.1) starting at N λ , we have:F x (η λ x ) = k∈2 -N λ Z 2 -N λ d ⟨η λ x , φ 2 -N λ k ⟩F x (φ 2 -N λ k ) + +∞ n=N λ k∈2 -n Z ψ∈Ψ 2 -nd ⟨η λ x , ψ 2 -n k ⟩F x (ψ 2 -n k ).In the first line, for reasons of support one has |x -k| ≲ λ and only a finite number of k contribute to the sum. In the second line, for reasons of support one has |x -k| ≲ λ and ∼ 2 (n-N λ )d values of k contribute to the sum. Thus, because of the coherence and homogeneity of F , one has|F x (φ 2 -N λ k )| ≲ λ ᾱ + λ γ ≲ λ ᾱ in the first line, and |F x (ψ 2 -n k )| ≲ 2 -n ᾱ + 2 -nα λ γ-αin the second line. Also, since the functions ψ cancel polynomials of degree up to r ≥ r α, ᾱ, by substracting a Taylor polynomial of degree r := r α, ᾱ -1 in the integral one obtains |⟨η λ x , ψ 2 -n k ⟩| ≲ ∥η∥ C r+1 λ -d 2 -n λ r+1

  ) one has |(F y -F x )(φ 2 -N λ k )| ≲ λ α (|y -x| + λ) γ-αin the first line, and similarly in the second line|(F y -F x )(ψ 2 -n k )| ≲ 2 -nα (|y -x| + λ) γ-α .Thus, collecting all the estimate, one obtains for r := r α, ᾱ -1:

  3). It suffices to show the inclusion Ǧ ᾱ;α,γ r ⊂ Ǧ ᾱ;α,γ rα,ᾱ , because the other one follows from the definitions. Let F ∈ Ǧ ᾱ;α,γ r

  -n k )| ≲ 2 -nα (|y -x| + 2 -n ) γ-α ; and in the third line |(F y -F x )(ψ 2 -n k )| ≲ 2 -nα (|y -x| + λ) γ-α .Thus this yields for r := r α, ᾱ -1:

  2. (Schauder estimates) the heat kernel is 2-regularising i.e. the convolution with H is a continuous linear map from C α to C α+2 for all α ∈ R (this is an instance of the so-called Schauder estimates, see Chapter 4 below for a general discussion);

3. (Young multiplication) given α, β ∈ R, one can extend (in a canonical way) the usual pointwise multiplication of smooth functions

Remark 2.2.3 (Non-uniqueness). It is straightforward to observe by the triangle inequality

  

	2.8 below, where we replace the
	right-hand side of (2.2.2) with V (t -s) for general control functions V , see Definition 2.2.6.
	Note that then, Theorem 2.2.2 is an immediate consequence of Theorem 2.2.8 and Exam-
	ple 2.2.7. Before turning to the statement and proof of Theorem 2.2.8, let us propose a few
	remarks.
	that any I satisfying (2.2.3) for some A : ∆ 2 T → R and γ ∈ (0, 1) is determined up to a γ-Hölder function, i.e. if I satisfies (2.2.3), then Ĩ also satisfies (2.2.3)

if and only if Ĩ -I is γ-Hölder. Remark 2.2.4. In the usual Sewing lemma Theorem 2.2.1, I is constructed as limit of

  

	Riemann-type sums, see (2.2.1). In the case of Theorem 2.2.2, we define I with a different
	construction, namely I is defined explicitly (via a recursive formula) on the set of dyadic
	numbers and then extended to [0, T ] by density. Note that this approach is reminiscent of
	some constructive results of [LV07; TZ20].

Remark 2.2.5. The situation is similar to the setting of the Reconstruction Theorem

  

  and that s 1 -s ≤ 2 -(r+k) , t -t 1 ≤ 2 -(r+k) . Furthermore, since t -s > 0 and t, s ∈ D r+k , it holds that t -s ≥ 2 -(r+k) and thus D r+k-1 ∩ [s, t] ̸ = ∅, whence s 1 ≤ t 1 . Thus from (2.2.8) and the definition of v: v r,r+k ≤ 2v r+k,r+k + v r,r+k-1 + 2V 2 -r .

	Recalling (2.2.7), this yields:

Remark 2.2.10 (Non-locality). Note that our construction of I in the theorem above is non- local, in the sense that I t -I s may depend on the value of A outside of

  

	implies that the sequence (I sn ) n∈N is Cauchy. If W is a continuous function such that V(k 0 [s, t] 2 . As an example,
	observe from the definition (2.2.5) of I that

) ≤ W , then |I t -I s -A s,t | ≤ W (t -s) for all s, t ∈ [0, T ].

  and in particular we can apply Theorem 2.3.1 and Theorem 2.3.2, so that we can consider Λ(δA) ∈ C γ 2 ∆ 2 T and I (A) ∈ C 1 . However, this gives us information on Λ(δA) s,t only when s ≤ t. Still, we can recover information on Λ(δA) s,t when s > t by writing from (2.3.4): Λ(δA) s,t + Λ(δA) t,s = -δA s,t,s ,

  What characterizes a (H, α)-rough path? Since B is a set of generators of H as an algebra, by linearity and multiplicativity, X ∈ RP α (H) is uniquely determined by the values of ⟨X, h⟩ for h ∈ B. In fact, by Proposition 2.4.5, the values of ⟨X, h⟩ for h ∈ ∪ n>N H n are uniquely determined by the values for h ∈ ∪ n≤N B n . It remains to characterize the family (⟨X, h⟩) h∈B ≤N . For all τ ∈ B ≤N , by the Chen relation (2.4.8), δ⟨X, τ ⟩ is characterized by (⟨X, h⟩)

  uniformly over s, u, t ∈ [0, T ]. Let us try to construct a function I satisfying the sewing bound |I t -I s -A s,t | ≲ |t -s| γ , (2.5.4) uniformly over s, t ∈ [0, T ], by invoking the Reconstruction Theorem. We first define a germ F by differentiating A in the second variable. More precisely, we extend A to R 2 by setting for s, t ∈ R 2 , A s,

t := A p(s),p

(t) 

, where p : s → max (0, min (s, T )); then we consider the germ defined for s ∈ R by F s := ∂ t A s,• , where the partial derivative is understood in the sense of distributions. That is, for test-functions φ ∈ D (R):

  Hölder Bound: |Γ ij xy | ≲ |y -x| α j -α i . Property (1) is natural, in view of (4.4.3) (indeed, when the Π i 's are linearly independent, the coefficients Γ ji xy are univocally determined by (4.4.3) and (1) holds automatically). The role of the other properties (2) and (3) is discussed below, see Remark 4.4.5. (Polynomial model). The simplest choice of a model is obtained taking as basis of germs the usual (normalized) monomials X k = (X k x ) x∈R d , where

	.4.4)
	Remark 4.4.2 (Models in Regularity Structures). In our definition of a model we do not
	enforce the following requirements, which are present in Hairer's original definition [Hai14,
	Definition 2.17]:
	1. Group Property: Γ xy Γ yz = Γ xz (that is k∈I Γ jk xy Γ ki yz = Γ ji xz );
	2. Triangular Structure: Γ ii xy = 1, Γ ij xy = 0 if α i > α j ;
	3. Example 4.4.3

  [START_REF] Hairer | A theory of regularity structures[END_REF], see Remark 4.4.2, ensure that the spaces D γ contain non-zero elements f ̸ ≡ 0 and that they are ordered. More precisely, given a model M = (Π i , Γ ji ) i,j∈I with index set I and homogeneities α = (α i ) i∈I , let us fix γ > max{α i : i ∈ I} and, for γ ′ < γ, denote by I ′ := {i ∈ I : α i < γ ′ } the truncation of I at level γ ′ . Then:

	.4.8)
	Remark 4.4.5 (Modelled distributions in Regularity Structures). Our definition of modelled
	distributions mimics Hairer's original one [Hai14, Definition 3.1]. The additional properties
	of the models enforced in [

  , where X k x are normalized monomials, see (4.4.5). The germ F = (F x ) x∈R d of Taylor polynomials can be expressed as F = ⟨f , Π poly ≤ℓ ⟩, see (4.4.1), where Π poly ≤ℓ is the polynomial model in Example 4.4.3 and f

  We make no assumptions on the germs Π i for i ∈ I sing . In concrete examples, they often consist of singular functions or distributions which play a special role in the problem under investigation, such as e.g. the noise in stochastic equations.Extended modelThe extended model Π = ( Πi ) i∈ Î is labelled by a new set Î, obtained enlarging I poly to include all multi-indexes of homogeneity up to γ + β:2 

	Î := Îsing ∪ Îpoly	where	Îsing := I sing , Îpoly := {k ∈ N d 0 : |k| < γ + β} ⊇ I poly .	(4.4.13)
	The germs Πi in the extended model are defined by	
	Πi			
				.4.11)
	and we assume that Π| I poly = Π poly ≤ℓ , see (4.4.6), that is	
	for k ∈ I poly :	Π k x = X k x , α k = |k| , Γ lk xy = (Γ poly ) lk xy 1 {l∈I poly } .	(4.4.12)

  We will show that Πi is well defined, thanks to Lemma 4.3.11, and it satisfies the homogeneity condition (4.4.2) with exponent αi , provided we assume that αi ̸ ∈ N 0 .We next define the coefficients Γ = ( Γji xy ) j,i∈ Î . Using labels a, b ∈ Îsing and k, l ∈ Îpoly for clarity, we have the triangular structure

					.4.14)
	with homogeneities α = (α i ) i∈ Î given by
		αi :=	  	α a + β if i = a ∈ Îsing , |k| if i = k ∈ Îpoly .	(4.4.15)
	Γji xy :=	Γ ba xy		

  Schauder estimateWe can finally state our second main result. ) i∈I and a real number γ > max{α i : i ∈ I} with γ > 0. We decompose I = I sing ∪ I poly , see (4.4.11)-(4.4.12).

	Theorem 4.4.10 (Multi-level Schauder estimate). Fix a model M = (Π, Γ) with homo-
	geneities α = (α i Let f ∈ D γ M be a modelled distribution of order γ relative to M = (Π, Γ), hence
	⟨f, Π⟩ :=
	i∈I

  B r for (4.5.3). In the special case when ᾱ < 0 and γ < 0, conditions (4.5.1), (4.5.2) and (4.5.3) reduce to the usual homogeneity and coherence conditions (4.3.1) and (4.3.2), because B r ᾱ = B r γ = B r .

	Remark 4.5.2. Each condition (4.5.1), (4.5.2), (4.5.3) involves a different class of test
	functions: B r ᾱ for (4.5.1), B r γ for (4.5.2), Remark 4.5.3. For the usual space G ᾱ;α,γ of coherent and homogeneous germs, see Def-
	inition 4.3.2, we do not impose the boundedness condition (4.5.3) because it follows by
	(4.3.1) and (4.3.2): it suffices to apply (4.3.3) for λ = 1. This shows that coherent and homogeneous germs are weakly coherent and homogeneous: more precisely G ᾱ;α,γ ⊆ Ǧ ᾱ;α,γ ,
	and the inclusion is an equality when both ᾱ < 0 and γ < 0.
	Remark 4.5.4 (General scales). As in the Remark 4.3.5, if we fix λ ∈ (1, ∞) and consider λ ∈ [1, λ], then we can decompose φ
		Γ), see (4.4.14) and (4.4.16)-(4.4.17), indexed by Î in (4.4.13)
	with homogeneities α = (α i ) i∈ Î in (4.4.15);
	• a modelled distribution f ∈ D γ+β M	of order γ + β relative to M = ( Π, Γ), see (4.4.18),
	hence				
	⟨ f , Π⟩ :=	i∈	Î f i (x) Πi x	x∈R d	is a (γ + β)-coherent germ ;
	such that the following equality holds, with K γ+β as in (4.3.11):
			⟨ f , Π⟩ = K γ+β ⟨f, Π⟩ .	(4.4.19)
	In particular, by Theorem 4.3.12, we have	
			R ⟨ f , Π⟩ = K * R ⟨f, Π⟩ .	(4.4.20)
	The proof of Theorem 4.4.10 is given in Section 4.6.2, and we proceed as follows.
	• In Section 4.6.2, we prove that M = ( Π, Γ) is indeed a model: we first check the condition of reexpansion (4.4.3) for Π and Γ by a direct computation; then we show that each Πi x satisfies the homogeneity relation (4.4.2) with exponent αi .
	• In Section 4.6.2, we prove (4.4.19) by a simple calculation; then, as an immediate
	consequence of (4.4.19) and Theorem 4.3.12, relation (4.4.20) follows.

  ⟨f, Π⟩) x , (4.6.1) where we recall that K γ+β is defined in (4.3.11).We recall that Î = Îsing ∪ Îpoly , see (4.4.13). The key observation is that

	f a (x) Πa x =	f j (x) K * Π j x -
	a∈ Îsing	j∈I=I sing ∪I poly

k∈N d 0 : |k|<α j +β

  .6.3), one has K * Π j ∈ Ǧ αj hom;r , G ∈ Ǧγ+β hom;r , with continuity estimates ∥K * Π j ∥ Ǧ ᾱ+β

	hom;K, λ,r	≲ ∥Π∥ M α K, λ′ ,	∥G∥ Ǧγ+β hom;K,λ,r	≲ ∥Π∥ M α K ′ , λ′ ~f ~Dγ Γ,α;K ′ ,	(4.6.4)

  λ,x,φ] (y) = 2 βn ( λλ) d+|k| -λy) l ∂ k 2 K n (x + λz, x + λλy)dz.Using Taylor-Lagrange's inequality in the first integral (and absorbing λd+|k| into the implicit constant):|∂ k η [n,λ,x,φ] (y)|In the first resp. the second integral we use the property (4.2.6) resp. (4.2.7) of the kernel K, noting that R d (zλy) l ∂ k 2 K

		R d	φ(z) -	|l|≤|k|-1	∂ l φ( λy) l!	(z -λy) l ∂ k 2 K n (x + λz, x + λλy)dz
	+ 2 βn ( λλ) d+|k| (z ≤ 2 βn λ d+|k| |l|≤|k|-1 ∂ l φ( λy) l! R d |l|=|k| 1 l! ∥φ∥ C |k| R d |z -λy| |k| |∂ k 2 K n (x + λz, x + λλy)|dz
	+ 2 βn λ d+|k|	|l|≤|k|-1	∥φ∥ C |k| l!	R

d (zλy) l ∂ k 2 K n (x + λz, x + λλy)dz . n (x + λz, x + λλy)dz = λ -|l|-d R d (zλλy) l ∂ k 2 K n (x + z, x + λλy)dz:

The Sewing lemma for 0 < γ ≤ 1 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Although we will later want to relax this constraint, see Section 1.1.5 below.

Notice however that the left-hand side depends not only on f , g, but also on the choice of f ′ (which may not be unique) and possibly of the integration theory used to define the iterated integral of g.

The fact that we change the model is not a problem in practice as we can generally choose to work with a (recursively constructed) model which is invariant by this transformation.

The proof in [CZ20, Propositions 13.1] requires α ≤ 0, however when α > 0 one can show that a (α, γ)-coherent germ must be constant, hence the conclusion still holds.

One has Îpoly ⊇ I poly because γ + β > γ > max{αi : i ∈ I}, see Definition 4.4.4.

Γ,α;K |y -x| γ-α i , whence the desired estimate because γ -α i = (γ + β) -αi .
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Chapter 4 Hairer's multilevel Schauder estimates without Regularity Structures

Abstract

This chapter is based on joint work with Francesco Caravenna and Lorenzo Zambotti. We investigate the regularising properties of singular kernels at the level of germs, i.e. families of distributions indexed by points in R d . First we construct a suitable convolution map which acts on general coherent and homogeneous germs. Then we focus on germs that can be decomposed along a basis (corresponding to the so-called modelled distributions in Regularity Structures) and we prove a version of Hairer's multi-level Schauder estimates in this setting, with minimal assumptions. Our results are strongly inspired by the theory of Regularity Structures, but their formulation makes no explicit reference to this theory. where K n are measurable functions satisfying the following properties: there are constants c and c K , depending on compact sets K ⊂ R d , such that, for all n ∈ N 0 :

Let us show that these assumptions are closely related to (4.2.4) and they are less restrictive than they might appear. 

because the integral in the l.h.s. of (4.2.7) vanishes for |l| < |k|, as one sees through integration by parts, since

for all λ > 0, then -modulo a smooth function -the kernel (x, y) → K(y -x) is β-regularising for any (m, r), see [START_REF] Hairer | A theory of regularity structures[END_REF]Lemma 5.5] for a precise statement.

Examples of kernels falling in this situation include the Heat kernel, the Green's function of usual differential operators with constant coefficients, the Green's function of the fractional Laplacian [START_REF] Berglund | Model spaces of regularity structures for space-fractional SPDEs[END_REF], etc.

In some cases, we will require a last assumption on the kernel. 

Singular convolution and classical Schauder estimate

The convolution of a distribution f ∈ D ′ (R d ) with a kernel K is formally defined by

which makes sense when K(x, •) is regular enough. If, on the other hand, K is singular, then one expects K * f to be a distribution, defined for a test function ψ ∈ D(R d ) by

Let us now assume that K satisfies the conditions in Definition 4.2.2. From (4.2.6) and Fubini's theorem we can formally write

and note that K * n ψ ∈ D is a genuine test function, for any n ∈ N 0 . We can thus define the convolution of a distribution

as soon as this sum converges. A sufficient condition for this convolution to be well-posed is given by the following result.

Proposition 4.2.9 (Singular convolution). Let β > 0 and r ∈ N 0 . If K is a β-regularising kernel of order (0, r), and f is any distribution of order at most r, the convolution K * f is well-defined by (4.2.10) as a distribution of order at most r.

We can now show that the convolution by a β-regularising kernel K improves the Hölder regularity of a distribution by β: this result is known as the classical Schauder estimate and can be stated as follows (see also [START_REF] Friz | A course on rough paths. Second. Universitext. With an introduction to regularity structures[END_REF]Theorem 14.17]). Theorem 4.2.10 (Classical Schauder estimate). Let γ ∈ R. Let K be a β-regularising kernel of order (m, r), where β > 0 and m, r ∈ N 0 satisfy:

Also assume (if γ ≥ 0) that K preserves polynomials at level γ, see Assumption 4.2.6. Then, the convolution by K defines a continuous linear map from Z γ to Z γ+β . We will prove Proposition 4.2.9 and Theorem 4.2.10 in Section 4.5.3 below.

• In Section 4.6.2, we prove that f is indeed a modelled distribution, and we deduce the continuity estimate (4.4.21).

Remark 4.4.11 (On the properties of f ). We can rephrase Theorem 4.4.10 by stating that the map K γ+β acting on germs can be lifted to a map f = Kγ+β f acting on modelled distributions, defined by (4.4.18), so that the following diagram commutes:

where we set G γ := G ᾱ; ᾱ,γ and G γ+β := G ( ᾱ+β)∧0;( ᾱ+β)∧0,γ+β for short. The map f → f = Kγ+β f is linear, and we will prove that it is continuous: , where the compact K ′ ⊃ K in the r.h.s. depends only on the compact K: e.g., we can take K ′ := K ⊕ B(0, 1) to be the 1-enlargement of K.

Further properties

We observe that the space M α of models is not a vector space, despite the semi-norm like notation

λ , see (4.4.4), because the coefficients Γ appearing in (4.4.3) depend on the model Π. Nevertheless, given two models M 1 = (Π 1 , Γ 1 ) and M 2 = (Π 2 , Γ 2 ) (with the same homogeneities α = (α i ) i∈I and the same value of r = r Π 1 = r Π 2 ), we can consider the distance

which is well defined by (4.4.4) (even though Π 1 -Π 2 needs not be a model).

We next compare two modelled distributions f 1 ∈ D γ M 1 and f 2 ∈ D γ M 2 of the same order γ, but relative to different models M 1 = (Π 1 , Γ 1 ) and M 2 = (Π 2 , Γ 2 ) (with the same homogeneities α = (α i ) i∈I and r = r Π 1 = r Π 2 ), as in [START_REF] Hairer | A theory of regularity structures[END_REF]Remark 3.6]. To this purpose, we define for compacts

We can then improve the estimate (4.4.21), showing that the distance between f1 and f2 can be controlled by the distances between f 1 and f 2 and between the models Π 1 and Π 2 (provided ∥Π i ∥ M α K ′ and ~fi ~Dγ K ′ are uniformly bounded). More precisely, the following local Lipschitz estimate holds. Proposition 4.4.12 (Enhanced continuity). The following bound holds:

for some enlarged compact K ′ ⊃ K (e.g. we can take K ′ = K ⊕ B(0, 1)).

We finally come back to the additional properties (1), ( 2), (3) of the coefficients Γ that one may require in a model M = (Π, Γ), see Remark 4.4.2. We show that these properties are preserved when one considers the new model M = ( Π, Γ). If any of the properties (1), ( 2), (3) is satisfied by Γ, the same property is satisfied by Γ (with respect to the homogeneities α = (α i ) i∈ Î in (4.4.15)).

Proof of our Main Result I

The purpose of this section is to establish the Schauder estimates on coherent germs, Theorem 4.3.12. Rather than establishing Theorem 4.3.12 by direct calculation, we prefer to divide our proof into two steps.

1. We first establish that the operation of convolution 2. Then we prove that substracting a suitable Taylor polynomial, as in (4.3.11), maps the space Ǧ ᾱ;α,γ of weakly coherent and homogeneous germs, in the special case γ = ᾱ, into the usual space G ᾱ;α,γ of coherent and homogeneous germs.

Weakly coherent and homogeneous germs

Let us define precisely the space of weakly coherent and homogeneous germs, generalising Definition 4.3.2. We recall that B r δ denotes, for r ∈ N 0 and δ ∈ R, the space of test functions φ ∈ B r which annihilate polynomials of degree ≤ δ, see (4.2.2). Definition 4.5.1 (Weak coherence and homogeneity). Let ᾱ, α, γ ∈ R with ᾱ, α ≤ γ. Let r ᾱ,α ∈ N 0 be the smallest non-negative integer r > max{-ᾱ, -α}.

We say that a germ F is weakly (α, γ)-coherent with homogeneity ᾱ if it satisfies the following three conditions, for any given compact

3. (boundedness) uniformly over x, y ∈ K and φ ∈ B r :

The vector space of such germs will be denoted by Ǧ ᾱ;α,γ .

Appendices to Chapter 4 4.A Proof of Lemma 4.5.8

We prove Lemma 4.5.8 under the more general assumption that K satisfies Assumption 4.2.6 for some c 0 ∈ N 0 ∪ {-1}. The functions η and ζ are defined for y ∈ R d by

A.1) so that (4.5.6) follows from (4.A.1). Now let us prove (4.5.7). From the Assumption 4.2.6, see (4.2.9), observe that it is straightforward that η and ζ annihilate polynomials of degree up to min(c, c 0 ). It remains to establish the support and the C r 0 norm of η resp. ζ.

Support of η [n,λ,x,φ] . Let y ∈ R d be such that η [n,λ,x,φ] (y) ̸ = 0. Then by (4.A.1) there exists z ∈ supp(φ) ⊂ B(0, 1) such that K n (x + λz, x + λλy) ̸ = 0. By assumption on the kernel K, this implies that λ| λy -z| ≤ cst2 -n where the constant cst > 0 is the one appearing in item 1 of the Definition 4.2.2 of the regularising kernel K. Since we consider only the regime 2 -n ≤ λ, this implies that | λy -z| ≤ cst and thus by triangle inequality λ|y| ≤ cst + 1. Choosing λ := cst + 1 yields |y| ≤ 1 i.e. supp(η [n,λ,x,φ] ) ⊂ B(0, 1) as wanted. [n,λ,x,φ] . Let y ∈ R d be such that ζ [n,λ,x,φ] (y) ̸ = 0. Then by (4.A.1) there exists z ∈ supp(φ) ⊂ B(0, 1) such that K n (x + λz, x + λ2 -n y) ̸ = 0. By assumption on the kernel K, this implies that | λ2 -n y -λz| ≤ cst2 -n where the constant cst > 0 is the one appearing in item 1 of the Definition 4.2.2 of the regularising kernel K. Thus by the triangle inequality, λ|y| ≤ cst + λ 2 -n . Since we consider only the regime λ ≤ 2 -n , choosing λ := cst + 1 yields once again supp(ζ [n,λ,x,φ] ) ⊂ B(0, 1). Now we fix λ := cst + 1.

Support of ζ

Bound on C r 0 norm of η [n,λ,x,φ] . Let k ∈ N d 0 be a multi-index with |k| ≤ r 0 , and y ∈ R d , then by differentiation under the integral,

Thus, by the property (4.2.6) of the kernel K,

where the multiplicative constant depends only on the kernel K (and the dimension d of the underlying space). Consequently,

Recall that by assumption, φ ∈ B r 0 m 0 -1 , so this last integral can be bounded by 1. Thus, this establishes:

where the multiplicative constant depends only on the kernel K (and the underlying dimension d). This concludes the proof.

4.B Spaces of germs and distributions are "independent in r"

In this section we prove that the choice of the regularity r of test-functions in the different spaces of distributions and germs studied in this paper generally does not matter. 2. The Definition 4.3.2 of homogeneous and coherent germs G ᾱ;α,γ does not depend on the choice of r ≥ r ᾱ,α := min{r ∈ N 0 , r > max(-ᾱ, -α)}.

3. The Definition 4.5.1 of weakly homogeneous and coherent germs Ǧ ᾱ;α,γ does not depend on the choice of r ≥ r ᾱ,α := min{r ∈ N 0 , r > max(-ᾱ, -α)}.

A proof in the case of the Hölder-Zygmund spaces Z γ can be found for instance in [FH20, Lemma 14.13].

A proof in the case of the space of homogeneous and coherent germs G ᾱ;α,γ when γ ̸ = 0 can be found in [CZ20, Propositions 13.1 and 13.2], see Remark 4.3.4. However the approach in this reference fails to cover the case γ = 0.

We prove Proposition 4.B.1 using the following result from wavelet theory: Proof of Proposition 4.B.1. As a proof in the case of the spaces Z γ can be found in the literature, see [FH20, Lemma 14.13], we only consider the case of spaces of germs. We argue slightly differently in the case of G and in the case of Ǧ: