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Résumé: La théorie des matrices aléatoires a des
applications dans de nombreux domaines de la
physique (systèmes désordonnés, stabilité de sys-
tèmes dynamiques, modèles d’interfaces, transport
électronique,...) et des mathématiques (algèbre
d’opérateurs, combinatoire énumérative, théorie
des nombres,...). Un cas de figure récurrent
dans de nombreux domaines consiste à comprendre
comment les spectres de deux matrices aléatoires
se recombinent quand on effectue leur somme ou

leur produit. Dans cette thèse, on étudie ce prob-
lème par le prisme des intégrales sphériques et à
l’aide d’outils issus de la physique statistique. Ces
intégrales sphériques jouent le rôle de la transfor-
mée de Fourier dans la théorie des matrices aléa-
toires et leur étude permet de mieux comprendre
les propriétés de la densité limite des valeurs pro-
pres de ces modèles de matrices ainsi que le com-
portement de leur plus grande valeur propre.

Title: Spherical integrals and their applications to random matrix theory ................................................
Keywords: random matrices, spherical integrals, free probability, large deviations

Abstract: Random matrix theory has found ap-
plications in many fields of physics (disordered
systems, stability of dynamical systems, interface
models, electronic transport,...) and mathemat-
ics (operator algebra, enumerative combinatorics,
number theory,...). A recurrent problem in many
domains is understanding how the spectra of two
random matrices recombine when we perform their

sum or product. In this thesis, we study this prob-
lem through the prism of spherical integrals and
with the help of statistical physics tools. These
spherical integrals play the role of the Fourier
transform in random matrix theory and their study
allows us to better understand the properties of
both the limiting spectral density and the largest
eigenvalue of these matrix models.
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Résumé en français

Cette thèse est consacrée à l’étude de certains problèmes liés à la somme et au produit de
matrices aléatoires et à leurs liens avec les intégrales sphériques. Les matrices aléatoires ont
été découvertes en 1928 par Wishart sur son travail des matrices de covariance empirique.
Bien que le travail de Wishart soit maintenant reconnu comme un pilier fondamental de la
théorie des matrices aléatoires (abrégé par RMT pour random matrix theory en anglais) et
des statistiques, il a fallu plus de vingt ans pour que les matrices aléatoires apparaissent dans
un contexte très différent, à savoir la modélisation du spectre d’énergie des atomes de noyaux
lourds avec le travail séminal de Wigner [188]. Wigner a proposé de modéliser l’Hamiltonien d’un
noyau composé d’un grand nombre de nucléons par une matrice symétrique dont les éléments
sont des variables aléatoires indépendantes (à la contrainte de symétrie près) et identiquement
distribuées. Cela a conduit Wigner, Dyson [56] et Mehta [139] et leurs co-auteurs à étudier
la théorie des matrices aléatoires à part entière. Depuis leurs travaux fondateurs dans les années
1960, la théorie des matrices aléatoires a connu un vaste développement et des ramifications
dans de nombreux domaines de la physique (théorie des verres de spin et paysages rugueux [104,
131, 9, 8, 19, 156], étude d’interfaces en croissance [106, 162, 159], physique des hautes énergies
[96, 179], information et transport quantiques [18, 61, 148]...), des mathématiques ( théorie des
nombres et statistiques des zéros de la fonction zêta de Riemann [157, 99, 41], combinatoire
et géométrie énumératives [12, 60, 82] ...) et des sciences appliquées (communication sans fil
[178, 44, 98],estimation de matrice de covariance et apprentissage statistique [37, 151, 114],
...), pour en citer quelques-uns.

En bref, la théorie des matrices aléatoires vise à comprendre les propriétés statistiques des
matrices à éléments aléatoires et un intérêt particulier a été consacré à l’étude des valeurs
propres des grandes matrices aléatoires symétriques ou Hermitiennes. Lorsqu’on traite des
valeurs propres, deux échelles naturelles apparaissent, la première est l’échelle macroscopique
("Quelle est la forme de la distribution des valeurs propres ?") et la seconde est l’échelle
microscopique ("Comment les valeurs propres se comportent-elles comme un processus ponctuel
?"). Dans cette thèse, nous nous intéresserons presque exclusivement au régime macroscopique
où la dimension N de la matrice considérée est grande. Étant donné le spectre de deux
matrices, une question naturelle est de comprendre comment ces distributions spectrales sont
recombinées lorsqu’on effectue la somme ou le produit de ces deux matrices, car de tels modèles
apparaissent dans une variété de contextes différents. Pour des matrices de invariantes en loi par
conjugation avec une matrice orthogonale et dont la dimension tend vers l’infini, la description
de cette densité spectrale limite est donnée par la théorie des probabilités libres développée par
Voiculescu [183, 182]. Quand la dimension des matrices en question est finie, leur spectre
est profondément lié à la théorie des intégrales sphériques, introduite pour la première fois par
Harish-Chandra [88] pour construire un analogue non-commutatif de l’analyse harmonique.
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Par conséquent, comprendre le comportement de ces intégrales sphériques est d’une grande
utilité pour répondre à certaines questions concernant le spectre de la somme ou du produit de
matrices aléatoires et comme expliqué dans le premier paragraphe, c’est précisément l’objectif
de cette thèse. En particulier, nous utiliserons ces asymptotiques pour aborder le problème de
dit de grandes déviations de la valeur propre la plus grande d’une telle matrice, c’est-à-dire
l’estimation de la probabilité d’avoir cette valeur propre la plus grande loin de sa valeur typique.
Un autre aspect développé dans cette thèse est la construction d’une famille de convolution (la
convolution à haute température ou high-temperature convolution en anglais) qui peut être vue
comme une opération entre les densités de β-ensembles pris dans un régime très spécifique.

Vue d’ensemble du manuscript

Cette thèse est divisée en six chapitres. Les deux premiers chapitres de cette thèse sont des
revues de résultats connus de la théorie des matrices aléatoires et de leur liens avec les β-
ensembles, tandis que le contenu des quatre derniers chapitres est basés sur des articles ([141,
144, 143]) et des pré-publications ([142, 140]) que j’ai écrits au cours de ma thèse. À la fin de
chaque chapitre, un résumé des principaux résultats développés dans le chapitre est donné. En
particulier, Le lecteur déjà familiarisé avec la théorie des matrices aléatoires et la théorie des
probabilités libres devrait pouvoir lire relativement rapidement le contenu de ces deux premiers
chapitres voir même directement lire leur résumé. Néanmoins, je pense que l’inclusion de
ces deux chapitres est hautement bénéfique pour le lecteur (familier ou non avec la théorie des
matrices aléatoires) afin de mieux appréhender les résultats développés dans les quatre chapitres
suivants.

Il me semble important de souligner que les résultats de cette thèse sont obtenus à l’aide
d’outils et de méthodes issus de la physique statistique et ne s’inscrivent pas dans un cadre
mathématique strictement rigoureux (en particulier, je continuerai à les désigner par “résul-
tats" plutôt que par “théorèmes" pour cette raison). Cependant, nombre de ces résultats sont
presque rigoureux, dans le sens où il ne faut pas beaucoup de travail pour modifier les preuves
correspondantes afin de les rendre complètement rigoureuses. Pour cette raison, je pense (ou
du moins j’espère) qu’un lecteur ayant une formation mathématique ne devrait pas avoir trop
de difficultés à suivre cette thèse.

La suite du manuscrit est organisé comme suit .

• Le chapitre 1 est une introduction générale aux propriétés des matrices aléatoires indi-
viduelles et en particulier des matrices invariantes par conjugation. Pour ces matrices, la
loi des valeurs propres peut être obtenue explicitement et contient un terme de répulsion
logarithmique entre celles-ci. Le paramètre β = 1, 2 ou 4 qui encode la symétrie de
ces matrices peut être naturellement étendu à tout β > 0 et joue le rôle de l’inverse
de la température dans le langage de la physique statistique et dans ce cas là on parle
de β-ensembles. Dans ce chapitre, un intérêt particulier est consacré au principe de
grandes déviations de la plus grande valeur propre de tels ensembles et à l’étude de ces
β-ensembles dans (1) le régime standard où le nombre N de valeurs propres est envoyé
à l’infini à β > 0 fixé (2) le régime dit de basse température (low-temperature regime en
anglais) où β → ∞ avec N fixé et (3) le régime dit de haute température où N → ∞ et
β tend vers zéro avec N tel que le produit Nβ/2 → c > 0. On montre en particulier que
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ces derniers régimes satisfont une certaine dualité, c’est-à-dire que les propriétés de l’un
sont obtenus à partir de celles de l’autre par prolongement analytique de leur paramètre
respectif.

• Le chapitre 2 est une revue de certaines propriétés de (1) la somme de matrices aléatoires
auto-adjointes, (2) le produit de matrices aléatoires auto-adjointes positives et (3) la
somme de matrices rectangulaires. Pour chacune de ces trois opérations, nous décrivons
d’abord le comportement de la plus grande valeur propre dans le cas auto-adjoint ou de
la plus grande valeur singulière dans le cas rectangulaire lors des perturbations de rang
un (ce que l’on appelle les transitions de phase BBP) et le processus des valeurs propres
obtenues après une marche aléatoire sur l’espace matriciel correspondant (le mouvement
Brownien de Dyson et ses variantes). Nous nous intéressons ensuite au comportement
de la distribution spectrale limite dans le cas générique décrit par la convolution libre et
sa contrepartie finie, la convolution libre finie.

• Le chapitre 3 est une description des intégrales sphériques associées aux trois opérations
précédentes. Ces intégrales sphériques jouent le rôle de la transformée de Fourier dans
le cadre des matrices aléatoires. Nous montrons tout d’abord que l’on peut naturelle-
ment étendre la définition de ces intégrales pour une valeur β > 0 quelconque et ainsi
extrapoler l’opération de somme/produit pour deux β-ensembles au-delà de la restriction
β ∈ {1, 2, 4}. En particulier, le cas β → ∞ correspond à la convolution libre finie décrite
dans le chapitre précédent. Nous décrivons ensuite le comportement asymptotique de ces
intégrales sphériques pour de grands arguments matriciels dans les deux régimes distincts
où (1) la variable conjuguée est de ‘rang plein’ et (2) cette variable conjuguée est de
‘rang un’. Ce deuxième régime est lié à la convolution libre du chapitre précédent, et
en particulier le cas de l’intégrale sphérique multiplicative est basé sur les résultats de la
Réf.[142].

• Dans le chapitre 4, basé sur les résultats décrits dans la Ref.[141], nous utilisons les
propriétés dérivées dans les chapitres précédents et en particulier les propriétés du mou-
vement Brownien de Dyson pour étudier les propriétés de stabilité d’un système linéaire
avec des interactions symétriques aléatoires entre les espèces et où le taux de relaxation
intrinsèque est hétérogène entre les différentes espèces. Ce modèle est une extension na-
turelle du modèle-jouet développé par Robert May [137] dans les années 70 et on montre
qu’il existe également une transition de stabilité selon la force desinteractions entre les
espèces. Cette transition critique peut être interprété comme le temps de contact d’un
mouvement Brownian de Dyson. On s’intéresse ensuite à un choix précis de la distri-
bution taux de relaxation pour lequel on a une description explicite de la loi jointe des
valeurs propres de la matrice de stabilité.

• Le chapitre 5, basé sur les résultats obtenus dans la Réf. [144] est une description du
principe de grandes déviations (à droite) associé à la plus grande valeur propre (ou la
plus grande valeur singulière dans le cas de matrices rectangulaires) de la somme ou du
produit de deux matrices aléatoires. Ces principes de grandes déviations sont obtenus
en pondérant les lois jointes par les intégrales sphériques du Chapitre 3. On peut alors
obtenir l’expression de la fonction de taux (rate function en anglais) caractérisant les
grandes déviations à partir du comportement asymptotique des intégrales sphériques.
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• Dans le chapitre 6, basé sur les résultats obtenus dans les références [143, 140], nous con-
struisons la convolution à haute température, une famille de convolutions à un paramètre
interpolant entre les convolutions classiques et libres. Cette convolution à haute tem-
pérature peut être vu comme la somme naturelle de β-ensembles dans le régime à haute
température Nβ/2 → c et nous montrons qu’elle satisfait une dualité avec la convolution
libre finie du Chapitre 2.

Comme énoncé précédemment, on peut distinguer deux axes développés dans cette thèse : le
premier concerne les problèmes liés aux principes de grandes déviations de la plus grande valeur
propre/valeur singulière d’une matrice aléatoire (ou d’un β-ensemble) et le second concerne
l’étude de la convolution haute température. Les deux résultats sont profondément liés aux
comportements asymptotiques des intégrales sphériques. Bien que j’encourage la lecture de ce
manuscrit de manière ’linéaire’, le lecteur intéressé uniquement par le problème des grandes dévi-
ations peut sauter en première lecture les Secs. 1.6, 1.7 du chapitre 1 traitant des β-ensembles
dans les régimes de basse et haute températures, la Sec.2.7 introduisant la convolution libre
finie et le chapitre 6. De même, le lecteur intéressé uniquement par la convolution à haute
température peut sauter la lecture de la Sec.1.5 du chapitre 1 et des chapitres 4 et 5.

vi



General introduction

This thesis is devoted to the study of some problems related to the sum and product of random
matrices and their link with spherical integrals. Random matrices were first discovered in
1928 by Wishart [189] to describe empirical covariance matrices. Although the work of
Wishart is now recognized as a fundamental pillar of random matrix theory (RMT) and
statistics, it took more than twenty years for random matrices to appear in a very different
context, namely the modeling of the energy spectrum of heavy nucleus atoms with the seminal
work of Wigner [188]. Wigner proposed to model the Hamiltonian of atoms composed
of numerous nucleons by a real symmetric matrix with elements given as independent (up
to the symmetry constraint) and identically distributed random variables. This led Wigner,
Dyson [56] and Mehta [139] and their co-authors to start the study of random matrices
in their own right. Since their founding work in the 1960s, RMT has undergone numerous
developments ramifications to many fields of physics (spin glass and landscape complexity
[104, 131, 9, 8, 19, 156], growing interfaces [106, 162, 159], high-energy physics [96, 179],
quantum information and transport [18, 61, 148]...), mathematics (number theory and zeros of
the Riemann’s zeta function [157, 99, 41], combinatorics and enumerative geometry [12, 60, 82]
...) applied sciences (wireless communications [178, 44, 98], covariance matrix estimation and
machine learning [37, 151, 114], ...) to cite a few.

In a nutshell, RMT aims at understanding the statistical properties of matrices with random
elements and particular interest has been devoted to the study of eigenvalues of large symmetric
or Hermitian random matrices. When dealing with eigenvalues, two natural scalings appear,
the first one is the macroscopic scaling (“What is the shape of the distribution of eigenvalues
?") and the second one is the microscopic regime (“How do the eigenvalues behave as a point
process ?"). In this thesis, we will be almost exclusively interested in the macroscopic regime
where the dimension N of the matrix under consideration is large. Given the spectrum of two
matrices, a natural question is to understand how these spectral distributions recombine when
one does the sum or the product of these two matrices, as such models of matrices appear
in a variety of different contexts. For large matrices invariant by orthogonal conjugation, the
asymptotic description of the spectrum is given by the theory of free probability developed by
Voiculescu [183, 182]. At finite size, the spectrum of this type of matrices is deeply connected
to the theory of spherical integrals, first introduced by Harish-Chandra [88] to construct
a non-commutative analog of the harmonic analysis. As a consequence, understanding the
behavior of these spherical integrals is of great use to answer questions related to the spectrum
of sum or product of random matrices and as explained in the first paragraph, this is exactly
the purpose of this thesis. In particular, we will use these asymptoticsto tackle the problem of
the large deviation of the top eigenvalue of a matrix and to construct a family of convolution
(the high-temperature convolution) which can be seen as the operation between the spectrum
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of the so-called β-ensembles taken in a very specific regime.

Overview of this thesis

This thesis is divided into six chapters. The first two chapters of this thesis are reviews of the
results of RMT, while the last four chapters contain materials based on articles ([141, 144, 143])
and pre-publications ([142, 140]) I have conducted during my thesis. Each chapter starts with
a description of its structure and ends with a summary of the main results developed in the
chapter. The reader already familiar with RMT and free convolution will probably already know
most of the results presented in the first two chapters. Nevertheless, I believe that the inclusion
of these two chapters is highly beneficial to the reader (familiar or not with RMT) in order to
better grasp the results developed in the following four chapters.

Importantly, the results of this thesis are obtained using tools from statistical physics and are
not set under a strictly rigorous mathematical framework (in particular I will continue to denote
them by ‘results’ rather than by ‘theorems’ for this reason). However, many of these results
are almost rigorous, in the sense that it does not require much work to modify the proofs to
make them completely rigorous (the devil is of course in the words ‘almost’ and ‘much’). For
this reason, I believe (or at least hope) that a reader from a mathematical background should
not have too much of difficulty following this thesis.

The rest of this thesis is organized as follows.

• Chapter 1 is a general introduction to the properties of individual random matrices and in
particular of β-ensembles. A particular interest is devoted to the large deviation principle
of the top eigenvalue of such ensembles and the study of β-ensembles in (1) the standard
regime where the number N of eigenvalues is sent to infinity at fixed β > 0 (2) the low-
temperature regime where β → ∞ with N fixed and (3) the high-temperature regime
where β → 0, N → ∞ with Nβ/2 → c > 0.

• Chapter 2 is a review of some properties of (1) the sum of self-adjoint random matrices,
(2) the product of positive self-adjoint random matrices, and (3) the sum of rectan-
gular matrices. For each of these three operations, we first describe the behavior of
the top eigenvalue/singular value for rank-one perturbations (the so-called BBP phase
transitions) and the process of the eigenvalues obtained after a random walk on the cor-
responding matrix space (the Dyson Brownian Motion and its variants). We then turn
to the behavior of the limiting spectral distribution in the generic case described by the
free convolution and its finite counterpart, the finite free convolution.

• Chapter 3 is a description of the spherical integrals associated to the three previous
operations. These spherical integrals play the role of the Fourier transform in the random
matrix setting, and we describe their asymptotic behavior for large matrix arguments in
the two distinct regimes where (1) the conjugate variable is ‘full-rank’ and (2) this
conjugate variable is of ‘rank-one’. This second regime is related to the free convolution
of the previous chapter, and in particular, the case for the multiplicative spherical integral
is based on the results of Ref. [142].

• In Chapter 4, based on Ref. [141], we make use of the properties derived in the previ-
ous chapters to study the stability property of a linear system with random symmetric
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interactions and heterogeneous intrinsic rate of decay.

• Chapter 5, based on Ref. [144], is a description of the (right) large deviation principle
associated with the top eigenvalue/singular value of the sum or product of random
matrices.

• In Chapter 6, based on the materials of Refs. [143, 140], we construct the high-temperature
convolution, a one-parameter family of convolutions interpolating between the classical
and free convolutions. This high-temperature convolution can be understood as the
natural sum of β-ensembles in the high-temperature regime.

As I have already explained, one can distinguish two axes developed in this thesis: the first
one concerns problems related to the large deviation principle of the top eigenvalue/singular
value of a random matrix (or β-ensemble) and the second one concerns the high-temperature
convolution. Both results are deeply linked with the asymptotic behavior of spherical integrals.
Even though I encourage reading this manuscript in a ‘linear’ way, the reader only interested in
the large deviation problem may skip at first reading Secs. 1.6, 1.7 of Chapter 1 dealing with β-
ensembles in the low-temperature and high-temperature regimes, Sec. 2.7 introducing the finite
free convolution and Chapter 6. Similarly, the reader only interested in the high-temperature
convolution may skip at first reading Sec. 1.5 of Chapter 1 and Chapters 4 and 5.
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Chapter 1

Randommatrix theory and
β-ensembles in different regimes

1.1 Introduction

In this chapter, we provide a comprehensive overview of classical results of random matrix
theory (RMT) and in particular of β-ensembles. First in Sec. 1.2, we introduce the notations
and objects, we will use in the rest of the thesis. In Sec. 1.3, we describe the concepts of self-
averaging and universality through the famous classes of RMT. In particular, in this section, we
introduce the Gaussian, Laguerre, and Jacobi ensembles, which we will encounter many times in
the rest of the thesis. In Sec. 1.4, we introduce the β-ensembles, where now the parameter β of
RMT takes an arbitrary positive value. In the standard regime where N → ∞ with β fixed, we
describe the behavior of the limiting density, and in the next section 1.5, the behavior of its top
eigenvalue. In Sec. 1.6 and in Sec. 1.7, we describe the behaviors of β-ensembles in respectively
the low-temperature regime where β → ∞ and N is fixed and in the high-temperature regime
where β → 0, N → ∞ but Nβ/2 → c.

1.2 Preliminary notations on Matrix spaces

1.2.1 Dyson’s index and other notations

In this thesis, we will consider matrices with real, complex, or quaternionic entries. To fix
things, let’s first introduce Dyson’s threefold way index β = 1, 2, 4, which encodes both the
dimensions of the field Kβ = R,C,H of the entries of the matrix and their symmetry, as we will
see in the next paragraph. As we will see during the course of this thesis, one of our main goals
will be to make sense of appropriate objects without the constraint β ∈ {1, 2, 4} to allow an
analytical extension for β > 0. For the time being, we have β = 1, 2 or 4. A complex number
A = A(1) + iA(2) is a complex random variable if both its real part A(1) and imaginary part
A(2) are random variables, and the definition for quaternionic random variables is similar.

Real, complex and quaternionic numbers are denoted by a lowercase (x ∈ Kβ), vectors are
denoted by a bold lowercase letter x = (x1, . . . , xN ) and matrices A = (Aij)1≤i,j≤N by a
bold uppercase letter. When varying the dimensions of a matrix A, we implicitly mean taking
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a sequence (AN )1≤N of such matrices. To lighten notations, we have dropped the dependency
in N for A ≡ AN and large matrices or ‘large N limit’ refers to the asymptotic limit N → ∞
of this sequence.

1.2.2 Self-adjoint, positive self-adjoint, and rectangular matri-
ces

In the rest of this thesis, we will study the spaces of (1) self-adjoint matrices (2) positive
self-adjoint matrices, and (3) rectangular matrices and in this section, we describe these three
sets.

Self-adjoint matrices -

Our main attention is devoted to self-adjoint matrices, that is square matrices with a symme-
try constraint depending on the parameter β. For β ∈ {1, 2, 4}, the set of self-adjoint matrices
is denoted by Hermβ(N).

• For β = 1, the set of self-adjoint matrices corresponds to the set of symmetric matrices

Hermβ=1(N) := {A ∈ MN (R) s.t A = AT} , (1.1)
where ·T is the transpose operator, that is

[
AT
]
ij
= Aji.

• For β = 2, the set of self-adjoint matrices corresponds to the set of Hermitian matrices:

Hermβ=2(N) := {A ∈ MN (C) s.t A = A†} , (1.2)
where ·† is the conjugate transpose operator, that is

[
A†]

ij
= (A

(1)
ji − iA

(2)
ji ).

• For β = 4, the set of self-adjoint matrices corresponds to the set of quaternionic self-dual
matrices:

Hermβ=4(N) := {A ∈ MN (H) s.t A = AR} , (1.3)
where ·R is the quaternionic conjugate transpose operator, that is

[
AR
]
ij

= (A
(1)
ji −

iA
(2)
ji − jA

(3)
ji − kA

(4)
ji ).

In the following, we will use the unified notation ·∗ = ·T, ·†, ·R to denote respectively the
transpose operator, the conjugate transpose operator, and the quaternionic conjugate transpose
operator for β = 1, 2, 4 respectively and when considering a generic matrix A, we implicitly
mean a self-adjoint matrix, unless otherwise stated.

A random self-adjoint matrix is simply a matrix with random entries constrained to satisfy the
symmetry A = A∗. For β ∈ {1, 2, 4}, the Lebesgue measure dA associated with this space is
simply given by the product of the independent components of the standard one-dimensional
Lebesgue measure, that is

dA :=
N∏
i=1

dAii

∏
i<j

β∏
b=1

dA
(b)
ij . (1.4)
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Positive and positive semi-definite self-adjoint matrices -

The second ensemble of matrices encountered in this thesis consists of a subset of self-adjoint
matrices determined by an inequality constraint. We distinguish the case where the inequality
is strict from the one where it is not. Specifically,

• a self-adjoint matrix is positive semi-definite and denoted by A ∈ Herm+
β (N) if

x∗Ax ≥ 0 for all x ∈ (Kβ)
N .

• Similarly, a self-adjoint matrix is positive and denoted by A ∈ Herm++
β (N), if the

equality is strict that if x∗Ax > 0 for all x ∈ (Kβ)
N different from the null vector.

Let’s briefly give some properties of these two convex cones. Every A ∈ Herm+
β (N) admits a

Cholesky decomposition A = RARA
∗ where RA is a lower triangular matrix and similarly there

exists a positive semi-definite self-adjoint matrix denoted by
√
A such that A =

√
A
√
A =√

A(
√
A)∗. If A is further (strictly) positive, its inverse A−1 is well-defined.

The set of positive (self-adjoint) matrices will play an important role in Chapter 2 when consider-
ing the product of matrices: for two positive semi-definite matrices A and B, one can construct
the symmetric products

√
AB

√
A and

√
BA

√
B which are also positive semi-definite matrices.

Rectangular and chiral matrices -

This paragraph deals with rectangular matrices and in the following all other sections and
paragraphs dealing with rectangular matrices are put with a small font as our primary interest
lies in self-adjoint matrices.

The third ‘matrix space’ we will consider in this thesis, corresponds to the set of (N × M)
rectangular matrices MN,M (Kβ) with entries in Kβ = R,C,H, for β = 1, 2, 4 respectively. In
the following, we will consider M ≥ N without loss of generality. For such rectangular matrices,
the ‘large N limit regime’ corresponds to the double scaling limit N → ∞ and M → ∞ but
their ratio stays finite:

N

M
→ q ∈ (0, 1) , (1.5)

where q is the shape ratio.

To distinguish between quantities associated with rectangular matrices to the ones associated
with self-adjoint matrices, we will usually add an index ·q in the former.

For β ∈ {1, 2, 4} since there is no symmetry constraint for rectangular matrices, the associated
Lebesgue measure dA is simply given as the product over each component of each entry of the
standard Lebesgue measure, that is:

dA :=
N∏
i=1

M∏
j=1

β∏
b=1

dA
(b)
ij . (1.6)

Let’s point out that one can construct a self-adjoint matrix from a rectangular matrix A ∈
MN,M (Kβ) in two natural ways.
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• First, one can simply multiply A by its conjugate A∗ to define a new matrix AA∗ ∈
Herm+

β (N).

• Second, one can define Ach ∈ Hermβ(N +M) by

Ach :=

[
0 A

A∗ 0

]
, (1.7)

which is sometimes known as a chiral matrix due to its relation to high-energy physics,
see for example Ref. [179] and references therein.

The two matrices AA∗ and Ach will appear frequently in the study of rectangular matrices in
this thesis.

1.2.3 Compact matrix groups and associated Haar measure

For each β = 1, 2, 4, there exists a natural compact group of matrices defined by

Oβ(N) := {V ∈ MN (Kβ) s.t VV∗ = I} , (1.8)
where Oβ(N) is the unified notation for

• O(N) := {O ∈ MN (R) s.t OOT = I} the group of orthogonal matrices, for β = 1,

• U(N) := {U ∈ MN (C) s.t UU† = I} the group of unitary matrices, for β = 2,

• Sp(N) := {S ∈ MN (H) s.t SSR = I} the group of symplectic matrices for β = 4.

For these three compact spaces, we recall that there exists an important measure playing the
role of uniform distribution.

For β = 1, 2, 4, we can endow the compact groups Oβ(N) ≡ O(N), U(N), Sp(N) witha unique measure known as the Haar measure, denoted by PHaar, which sums to one
PHaar [Oβ(N)] = 1 and is both left and right invariant, that is for any rotation matrix
V ∈ Oβ(N) and any region S ⊂ Oβ(N) we have PHaar(VS) = PHaar(SV) = PHaar(S).We denote its infinitesimal density by µHaar(dV) and by V ∼ Unif[Oβ(N)] a matrix dis-tributed according to this Haar measure.

Note that if V ∼ Unif[Oβ(N)] and V′ ∈ Oβ(N) is a fixed matrix, then the product is also
taken uniformly at random, VV′ ∼ Unif[Oβ(N)], by definition of the Haar measure, and we
will use this simple property many times in this thesis.

1.2.4 Eigenvalues, singular values, associateddistributions and
change of variables

Eigenvalue decomposition -

For self-adjoint matrices, the most important matrix factorization is undoubtedly given by the
eigenvalue decomposition:

ifA ∈ Hermβ(N) then A = VDiag(λ)V∗ with λ ∈ RN and V ∈ Oβ(N) , (1.9)
4



where λ = (λ1, . . . , λN ) is the set of real eigenvalues and V is the matrix of eigenvectors.
Throughout this thesis, the eigenvalues are implicitly ranked in descending order λ1 ≥ · · · ≥ λN

and λ1 is referred to as the top eigenvalue.

If furthermore A ∈ Herm+
β (N) (resp. A ∈ Herm++

β (N)) then all the eigenvalues are non-
negative (resp. positive).

One of the goals of RMT is to understand the statistics of the eigenvalues of a random matrix.
To do so, one needs to understand how the law of a matrix is modified when one does the
change of variable from the elements A(b)

ij to the eigenvalues λ and eigenvectors. In other words,
one needs to compute the Jacobian associated with this change of variable. This Jacobian for
this change of variable is well-known and is given by the following result (see for example Ref.
[113, 153]).

Result 1.1 (Weyl’s formula for eigenvalues)

The Jacobian of the change of variable from a self-adjoint matrix A to its eigenvalue
decomposition (λ,V) is given by∣∣∣∣[∂A∂V ,

∂A

∂λ

]∣∣∣∣ = C
∏
i<j

|λi − λj |β = C |∆(λ)|β (1.10)

where C is a constant and ∆(λ) :=
∏

i<j(λj−λi) = det (λj−1
i )1≤i,j≤N is the Vandermonde

determinant.

For β-ensembles of Sec. 1.4, this formula will be fundamental to have the explicit joint law of
the eigenvalues. An important question is to study the shape of the distribution of eigenvalues.

To this end, let’s introduce the empirical spectral distribution (ESD):
µA(λ) :=

1

N

N∑
i=1

δ(λ− λi(A)) , (1.11)
where δ(.) is the Dirac delta function.

If A is random, its ESD is also a random probability measure. However, for a large class of
random matrices as N → ∞, one of the key features of RMT is that their ESD self-averages
(or concentrates in the mathematical language) to a non-random limit. This means that for
large matrices, one can replace the ESD µA by their average EµA.

This deterministic limit is known as the limiting spectral density (LSD) and is denotedby:
µA(λ) := lim

N→∞
µA(λ) = lim

N→∞
EµA(λ) . (1.12)

Let us mention that the LSD only captures the asymptotic behavior of the bulk of the spectrum.
In other words, one cannot say anything about possible outliers or spikes outside the bulk, from
the knowledge of the LSD alone. One of the main goals of RMT is to give an analytical
expression - or at least a complete characterization - of the LSD µA given the model for the
randomness of the matrix A.

5



Singular value decomposition -

This paragraph deals with rectangular matrices.

Similarly to the eigenvalue decomposition for self-adjoint matrices, all rectangular matrices
A ∈ MN,M (Kβ) admit a factorization known as the singular value decomposition (SVD) given
by:

A = V1Diagq(s)V2 with s ∈ RN
+ , V1 ∈ Oβ(N) and V2 ∈ Oβ(M) . (1.13)

where s := (s1 ≡ s1(A), . . . , sN = sN (A)) is the set of non-negative singular values of the
matrix A and Diagq(s) denotes the (N ×M) matrix whose only non-zero elements are the
diagonal ones determined by the vector s:

Diagq(s) :=


s1

. . . 0M−N

sN

 . (1.14)

Without loss of generality, we assume s to be in decreasing order s1 ≥ · · · ≥ sN ≥ 0. By abuse
of notation, we will sometimes refer to Diagq(s) as a diagonal matrix even if M > N .

The SVD of a rectangular matrix is a self-adjoint decomposition in disguise since

• the singular values si(A) are related to eigenvalues of AA∗ by

si(A) =
√
λi(AA∗) ; (1.15)

• and they are also equal to the N largest eigenvalues of the self-adjoint chiral matrix Ach

defined by Eq. (1.7). The N lowest eigenvalues of Ach are the opposite of the N largest
eigenvalues and the remaining M −N eigenvalues are equal to zero.

Yet the study of singular values turns out to be an interesting problem on its own, especially
when dealing with the sum of rectangular matrices, as discussed in the following Chapter.

Similarly to self-adjoint matrices, doing the change of variable from a rectangular matrix to
its singular value decomposition introduced a Jacobian which is given by the following Weyl’s
integral formula.

Result 1.2 (Weyl’s formula for singular values)

The Jacobian of the change of variable from a rectangular matrix A to its SVD (λ,V1,V2)
is given by∣∣∣∣[ ∂A

∂V1
,
∂A

∂s
,
∂A

∂V2

]∣∣∣∣ = C
∣∣∆(s2)

∣∣β N∏
i=1

s
β(M−N+1)−1
i = C

∏
i<j

|s2i − s2j |β
N∏
i=1

s
β(M−N+1)−1
i ,

(1.16)
where C is a normalization constant.
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As in the self-adjoint case, we aim at understanding the statistics of the singular valuesthanks to the empirical singular value distribution (ESVD):
µA(s) :=

1

N

N∑
i=1

δ(s− si(A)) , (1.17)

and in particular, we will be interested in the behavior of the ESVD in the double scaling limit
where N → ∞ and M → ∞ with N/M → q.

This limiting deterministic limit is known as the limiting singular value density (LSVD)and is denoted by:
µA(λ) := lim

N,M→∞
N/M→q

µA(λ) = lim
N,M→∞
N/M→q

EµA(λ) . (1.18)

The singular values are all non-negative and hence the support of the LSVD µA is on the
positive real line. As for the self-adjoint case, we denote by a± the edges of the distribution.
Let’s note that we use the same notation for the LSVD of a rectangular matrix and the LSD
of a self-adjoint matrix.

One can express the LSVD of a rectangular matrix as the LSD of the matrix AA∗ and Ach of
the previous section.

• Thanks to the change of variable given by Eq.(1.15), the LSVD µA is expressed in terms
of the LSD µAA∗ of the matrix AA∗ by:

µA(s) = 2s µAA∗(s2) or equivalently µAA∗(λ) =
µA(

√
λ)

2
√
λ

. (1.19)
• Similarly, the LSD µAch of the chiral matrix Ach of Eq. (1.7) is related to the LSVD µA

by:

µAch(λ) =
2

q + 1
· 1
2
(µA(λ) + µA(−λ)) +

(
1− 2

q + 1

)
δ(x− 0) . (1.20)

For later use, it will be also convenient to introduce the symmetrized distribution:

µ̂A(λ) :=
1

2
(µA(λ) + µA(−λ)) . (1.21)

This corresponds to removing the Dirac mass at zero in the LSD of the chiral matrix µAch and
re-scales it such that it sums to one. For q = 1, the coefficient in front of the Dirac mass is
null in Eq. (1.20) and we have equality between the two quantities:

µ̂A(λ) =
q=1

µAch(λ) . (1.22)

1.2.5 RMT transforms
The study of spectral distributions in RMT is generally done through various transforms, which
we describe in this section.
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Stieltjes transform -

For A ∈ Hermβ(N) with spectrum λ, its Stieltjes transform gA(z) is defined for any
z ∈ C \ {λ} by:

gA(z) :=
1

N
Tr (zI−A)−1 =

ˆ
µA(λ)

z − λ
dλ , (1.23)

where µA is the ESD ofA.
The Stieltjes transform is analytical in its domain of definition and admits the following first-
order behavior at infinity:

gA(z) ∼
|z|→∞

1

z
. (1.24)

Furthermore, if we restrict the argument z to be on the real line and higher than the top
eigenvalue of A, z > λ1, the Stieltjes transform is a continuously decreasing function of its
argument. From its definition, one can get for Re z > λ1 the expansion at all order of the
Stieltjes transform:

gA(z) =
1

z
+

∞∑
k=1

(TrAk)/N

zk+1
=

1

z
+

∞∑
k=1

mk[µA]

zk+1
, (1.25)

where mk[µA] :=
´
λkµA(λ)dλ = (

∑N
i=1 λ

k
i )/N is the kth moment of the distribution µA.

Thus, one can think of the Stieltjes transform as a moment generating function for the spectral
distribution.

If the ESD µA converges to the LSD µA then gA converges point-wise to the function gA
defined for any z ∈ C \ Supp[µA] as the large N limit of Eq. (1.23):

gA(z) ≡ gµA(z) :=

ˆ
Supp[µA]

µA(λ)

z − λ
dλ . (1.26)

The converse is also true and one can invert the Stieltjes to get the LSD by looking at its
imaginary part near the branch cut since we have for λ ∈ Supp[µA] and η > 0:

Im gA(λ− iη) =

ˆ
Supp[µA]

µA(λ
′) η

(λ− λ′)2 + η2
dλ′ = π (µA ∗Kη) (λ) . (1.27)

where ∗ denotes the classical convolution operator (f∗g)(x) :=
´
f(x−y)g(y)dy and Kη(λ) :=

1
π

η
η2+λ2 is the Cauchy Kernel of width η. As η → 0+ we have Kη(λ) → δ(λ), from which we

deduce the Sokochi-Plemelj inversion formula:

µA(λ) =
1

π
Im gA(λ− i0+) . (1.28)

T-transform -

A similar transform appears naturally in the study of the product of positive semi-definite
matrices

8



ForA ∈ Herm+
β (N)with spectrumλ, its T-transform tA(z) is defined for any z ∈ C\{λ}by:

tA(z) :=
1

N
Tr
[
A (zI−A)−1

]
=

ˆ
µA(λ)λ

z − λ
dλ , (1.29)

and similarly for the LSD:

tA(z) ≡ tµA(z) :=

ˆ
Supp[µA]

µA(λ)λ

z − λ
dλ . (1.30)

The T-transform is also a continuously decreasing function for z > a+ where a+ is the upper
limit of the support of the distribution. The T-transform is related to the Stieltjes transform
by:

tA(z) = zgA(z)− 1 . (1.31)

D-transform -

This paragraph deals with rectangular matrices

In the study of the singular values of the sum of two rectangular matrices, the following transform
will be useful:

ForA ∈ MN,M (Kβ) with LSVD µA, the D-transform is defined for any z ∈ C \ Supp[µA]by:

dA(z) ≡ dµA(z) :=

√(ˆ
z

z2 − s2
µA(s)ds

) (
q

ˆ
z

z2 − s2
µA(s)ds+

1− q

z

)
. (1.32)

• Using the relation (1.19), This transform can also be expressed in terms of the large N
Stieltjes transform gAA∗ of the matrix AA∗:

dA(z) =

√
qz2 (gAA∗(z2))2 + (1− q)gAA∗(z2) . (1.33)

• Similarly, using the identity

1

z2 − s2
=

1

2z

(
1

z − s
+

1

z + s

)
. (1.34)

one can express the D-transform in terms of the Stieltjes transform ĝA(z) ≡ gµ̂A
(z) :=´

(z − λ)−1µ̂A(dλ) of the symmetrized density of Eq. (1.21):

dA(z) =

√
ĝA(z)

(
q · ĝA(z) +

1− q

z

)
. (1.35)

We conclude this paragraph on the D-transform with two remarks concerning the simplifications
in the limiting cases q → 0 and q → 1 which will be useful later on:

9



Remark (D-transform for long matrices (q → 0)). For q → 0, corresponding to a long
matrix, the D-transform of Eq. (1.32) is simply given as:

dA(z) −−−→
q→0

√
gAA∗(z2) , (1.36)

as one can see from Eq. (1.33). ⌋

Remark (D-transform for square matrices (q=1) and symmetrized density). For q=1, cor-responding to an (asymptotic) square matrix, the D-transform of Eq. (1.32) considerablysimplifies (for z > a+) into:
dA(z) −−−→

q→1
ĝA(z) (for z > a+) , (1.37)

as one can see from Eq. (1.35). ⌋

1.3 Famous classes of randommatrices

For a random matrix A, a natural question is to know what is the structure of dependency
between its entries (in addition to the trivial one from the symmetry constraint). This structure
of dependency is what we call the class of random matrix and in this section, we review the
most famous and important ones of RMT.

1.3.1 Wigner matrices, Gaussian ensembles, and the semi-
circle distribution

The most simple structure of dependency between the entries one can think of is to choose
them independently up to the symmetric constraint. This leads to the most studied class of
random matrices:

For β = 1, 2, 4, a real (resp. complex, quaternionic) matrix is in the Wigner class or in short,
is a generalized Wigner matrix, if it is a symmetric (resp. Hermitian, quaternionic self-dual)
matrix A = (Ãij/

√
N), such that diagonal and off-diagonal elements are independent, and

1. the diagonal elements Ãii/
√
N are real iid random variables, where Ãii have mean zero

E Ãii = 0 and variance E Ã2
ii = 2σ2/β,

2. the off-diagonal elements (i < j) Ãij/
√
N are real (resp. complex, quaternionic) iid

random variables, such that Ãii have mean zero E Ãij = 0 and variance E |Ãij |2 = σ2.

Among all Wigner matrices, a special role is given when the laws of the entries follow the
Gaussian distribution N (0, σ) with density:

µN (m,σ)(x) :=
e−

(x−m)2

2σ2

√
2πσ

. (1.38)
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We say that a self-adjoint matrix A = (Aij) is taken from the Gaussian orthogonal
ensemble (GOE) for β = 1, resp. the Gaussian unitary ensemble (GUE) for β = 2 andresp. the Gaussian symplectic ensemble (GSE) for β = 4, if all the elements Aij areindependent for i ≥ j and

1. its diagonal elements are distributed as Aii ∼ N (0, 2σ/
√
βN)

2. its off-diagonal elements (i ̸= j) are distributed as Aji = Aij ∼ Nβ(0, σ/
√
N)

The word orthogonal (resp. unitary and symplectic) refers to a certain invariance in the law of
the matrix due to the Gaussian nature of its entries, which will be discussed in more detail in
Sec. 1.4.

Since we have TrA2 =
∑

iA
2
ii + 2

∑
i<j |Aij |2 we can write the probability to observe a GOE

(resp. GUE, GSE) matrix A in a region R of Hermβ(N) in the following compact form:

P(β)
G [A ∈ R] =

1

ZN,β

ˆ
R
e−

Nβ

4σ2TrA
2

dA , (1.39)

where ZN,β =
´
Hermβ(N) e

− Nβ

4σ2TrA
2

dA is the normalization constant which ensures that the
probability measure sums to one. The distribution of the eigenvalues of a matrix taken from
these Gaussian ensembles will be discussed in more detail in Sec. 1.4.

One of the key features of RMT is a concept of is universality, borrowed from statistical physics,
which loosely speaking means that in the ‘thermodynamic limit’ (N → ∞), the macroscopic
observables of a system of N particles only depend on few microscopic quantities. In the
context of RMT, there exist several flavors of this concept, but universality will be here referred
to the fact that matrices belonging to the same class have the same LSD, independent of the
specific law we put on each entry

Result 1.3 (Universality for LSD of Wigner matrices [170, 169])

If A is an arbitrary Wigner matrix then its empirical spectrum converges to the semi-circle
distribution, that is:

µA(λ) →
N→∞

µsc(σ)(λ) :=

√
4σ2 − λ2

2πσ2
I[−2σ,2σ] , (1.40)

where I[a,b] is the indicator function, which is equal to 1 if λ ∈ [a, b] and is null otherwise.

Furthermore, if the off-diagonal elements admit a fourth moment E |Aij |4 < ∞, then there
are no outliers outside the bulk, that is as N → ∞, the top and bottom eigenvalues
converge to the edges: λ1(A) → 2σ and λN (A) → −2σ.

The universality for Wigner matrices due to Tao and Vu, see Ref. [170, 169] is actually a much
stronger result since it concerns not only the macroscopic LSD but also the local statistics not
discussed in this thesis. The first step to get a universal result of this type is generally to start
by proving the result for the most simple ensemble of the given class and then try to extend it
to the whole class. For generalized Wigner matrices, we argue that the most simple ensemble
is the Gaussian one and there exist a vast variety of techniques, more or less rigorous, to prove
the result in this case. In particular one relies on the special properties of invariance in law of
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the Gaussian distribution to derive a variational principle for the LSD and this will be described
in detail in Sec. 1.4.

Another way to get the LSD, is to use the famous moment method which consists in first
proving the convergence as N → ∞ of the average moments Emk[µA] to the moments of
the semi-circle distribution (the so-called Catalan numbers) and then show that there is self-
averaging (or concentration) of the moments, that is loosely speaking mk[µA] ≈ Emk[µA] for
large N .

Another famous and important method is the Stieltjes method, where one shows that the
Stieltjes transform is self-averaging gA(z) ≈ E gA(z) and E gA(z) converges to the Stieltjes
transform of the semi-circle distribution given by:

gsc(σ)(z) :=
z − z

√
1− 4σ2/z2

2σ2
. (1.41)

Now going beyond the Gaussian ensembles requires (much) more work but these two methods
(and in particular the Stieltjes method) can be tuned to tackle the generic case, and we refer
to Ref. [58] and references therein for more details.

1.3.2 Sample covariance matrices, Laguerre ensembles and
the Marčenko-Pastur distribution

The second most important class of random self-adjoint matrices corresponds to the ones first
studied by Wishart:

A real (resp. complex, quaternionic) sample covariance matrix with iid entries is a matrix
of the form A = XX∗/M where X = (Xij) is a real (resp. complex, quaternionic) matrix of
size (N × M) where the entries Xij are iid random variable with zero mean EXij = 0 and
variance one E |Xij |2 = 1.

As in the Wigner case, a special role is given when the entries are Gaussian.

Wesay that a sample covariancematrix is aWishartmatrix or is taken from the Laguerre
orthogonal ensemble (LOE) for β = 1, from the Laguerre unitary ensemble (LUE) for
β = 2 and from the Laguerre symplectic ensemble (LSE) for β = 4, ifXij ∼ Nβ(0, 1).

Similarly to Gaussian ensembles, for β = 1, 2, 4 one can express the probability to find a matrix
taken from one of the three Laguerre ensembles in a region R ⊂ Herm+

β (N) as:

P(β)
L [A ∈ R] =

1

ZN,β

ˆ
R
e−

Mβ
2

TrA (detA)−1+β
2
(M−N+1) dA . (1.42)

The LSD of a sample covariance matrix with iid entries is also universal in the sense:

Result 1.4 (Universality for LSD of Wishart matrices [123, 152])

If A is an arbitrary sample covariance matrix with iid entries taken in a double scaling limit
where N → ∞ and M ≡ MN → ∞ but the ratio stays bounded, N/M → q ∈ (0,∞),
then it is another well-known result of RMT that its empirical spectrum converges to the
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Figure 1.1: Illustration of the self-averaging and universality properties of gen-eral Wigner matrices. The top line represents the histogram of eigenvalues of
GOE matrices with σ = 1 and increasing values of N from left to right. Thesecond line represents the eigenvalues of Wigner matrices with Student-t dis-tributed entries with parameterm = 5 (that is they admit moments up to orderfive), normalized to have the same variance as in the Gaussian case. The bot-tom line represents the Student case with m = 3, in this case, the LSD is also asemi-circle distribution but the top and bottom eigenvalues do not convergenceto the edges of the distribution.

so-called Marčenko-Pastur distribution:

µA(λ) →
N→∞

µMP(q)(λ) =

√
(a+ − λ)(λ− a−)

2πqλ
I[a−,a+] +

(
1− q−1

)
δ(x) I[q>1] , (1.43)

where the edges are given by a± = (1±√
q)2.

Furthermore, if the iid entries Xij admit a fourth moment E |Xij |4 < ∞, then there are
no outliers outside the bulk, that is the top and bottom eigenvalues converge to the edges:
λ1(A) → (1 +

√
q)2 and λN (A) → (1−√

q)2.

A plot of the Marčenko-Pastur distribution is given in Fig. 1.2. For Wishart matrices, we will be
mainly interested in the case q ∈ (0, 1) where there is no Dirac mass at zero. To conclude this
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section on Wishart matrices, we give the Stieltjes transform of the Marčenko-Pastur distribution:

gMP(q)(z) :=
z + q − 1−

√
z − a+

√
z − a−

2qz
. (1.44)
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Figure 1.2: The Marčenko-Pastur distribution for q = 1/2, compared with thehistogram of the eigenvalues of a Wishart matrix with N = 3000 and T = 6000.

1.3.3 General Manova matrices, Jacobi ensembles, and the
Watcher distribution

Wigner and Wishart’s matrices play a fundamental role in RMT. The third and last class of
self-adjoint matrices we will consider is lesser known and appears in the multivariate analysis of
variance (MANOVA) in statistics:

A matrix A is said to be a General Manova matrix if it is of the form:

A =

(
I+

M1

M2

√
A2A

−1
1

√
A2

)−1 (1.45)
where A1 and A2 are two independent sample covariance matrices with iid entries with pa-
rameters (N,M1) and (N,M2) respectively and with M1 ≤ N to ensure the matrix A1 to be
invertible.

The simpler element of the class of MANOVA is given by the following definition.

We say that a MANOVA matrix is taken from the Jacobi orthogonal ensemble (JOE)for β = 1, from the Jacobi unitary ensemble (JUE) for β = 2 and from the Jacobi
symplectic ensemble (JSE) for β = 4, if A1 and A2 are taken from the correspondingLaguerre ensemble.

In this case, by computing the Jacobian of the change of transformation (A1,A2) → A, one
can get an explicit expression for the probability of the matrix A. For any region R such that
A and I−A are semi-definite positive, we have:

PJ,β [A ∈ R] =
1

ZJ,β

ˆ
R
(detA)−1+β

2
(M1−N+1) (det [I−A])−1+β

2
(M2−N+1) dA , (1.46)
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Similarly to Wigner and Wishart matrices, one should expect to have a universal limit for the
spectrum of General Manova matrices and the following result goes in this direction.

Result 1.5 (Universality for MANOVA matrices [59])

Under mild assumptions on the moments of the entries of the Wishart matrices A1 and A2,
the ESD of a general MANOVA matrix converges as N,M1,M2 → ∞ with N/M1 → q1
and N/M2 → q2, to the Watcher distribution:

µA(λ) →
N→∞

µWat(q1,q2)(λ) =
1

2π(q−1
1 + q−1

2 )

√
a+ − λ

√
λ− a−

λ(1− λ)
I[a−,a+]

+
(
1− q−1

2

)
δ(x− 1) I[q2>1] (1.47)

where the edges are given by a± = q2(q2+q1(1+q1−q2±2
√
q1+q2−q1q2))

(q1+q2)2
.

One may note that for q2 ∈ (0, 1) there is no Dirac mass in the Watcher distribution.

Remark. The specific assumptions on the entries are given in Ref. [59] and are sub-
optimal. As discussed in Ref. [59] one should expect to have the same type of universal
result as in the Wigner and Wishart cases. ⌋

Remark (Watcher distribution and arcsine law). In the limiting case where q1, q2 → 1, the
Watcher distribution becomes the arcsine law:

µWat(1,1)(λ) ≡ µas(λ) :=
1

π

1√
λ(1− λ)

I[0,1] . (1.48)
which we will encounter in several instances in this thesis. ⌋

To conclude, we give the Stieltjes transform of the Watcher distribution:

gWat(q1,q2)(z) :=
q−1
1 − 1− (q−1

1 + q−1
2 )z + (q−1

1 + q−1
2 )

√
z − a+

√
z − a−

2z(1− z)
. (1.49)

1.3.4 Gaussian rectangular random matrices, Ginibre matri-
ces and associated limiting singular value distribution

This section deals with rectangular matrices.

For rectangular matrices, the most important class, and the only one mentioned in this thesis
consists of the matrix with iid entries.

In particular, if A = (Aij) ∈ MN,M (Kβ) with Aij
iid∼ Nβ

(
0, σ/

√
M
), we say that A is

taken from the Gaussian rectangular ensemble. ForM = N ,A is said to be a Ginibre
matrix.

The law of such matrices is given with respect to the Lebesgue measure dA =
∏

i,j,b dA
(b)
ij by:

P(β)
q,G [A ∈ R] =

1

ZN,β

ˆ
R
e−

Mβ

2σ2TrAA∗
dA . (1.50)
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Since the LSVD of the matrix A is related to the spectrum of Marčenko-Pastur distribution by
Eq. (1.19) one gets:

µA(s) =

√
4qσ4 − (s2 − σ2(1 + q))2

πσ2qs
I[σ(1−√

q),σ(1+
√
q)] . (1.51)

In particular, for q = 1 corresponding to Ginibre random matrices, the LSVD becomes the
so-called quarter-circle distribution:

µA(s) =

√
4σ2 − s2

πσ2
I[0,2σ] . (1.52)

1.4 β-invariant randommatrices, β-ensembles and
tridiagonal matrices

1.4.1 β-invariant randommatrices and Haar measure
We describe the invariance in law mentioned earlier satisfied by the Gaussian, Laguerre, and
Jacobi ensembles.

Amatrix is orthogonally (resp. unitary, symplectic)-invariant or in short β-invariant if itslaw is left invariant by conjugation over Oβ(N):
A

in law
= V′AV′∗ for any V′ ∈ Oβ(N) . (1.53)

One can think of this definition as the matrix counterpart of the rotationally invariance in law
satisfied by a Gaussian vector: if x iid∼ Nβ(0, 1) then for any V ∈ Oβ(N) we have Vx

in law
= x,

and for Gaussian, Laguerre and Jacobi ensembles Eq. (1.53) is actually a consequence of this
property for Gaussian vectors.

Thus for β-invariant random matrix, we can always rotate it by a matrix V′ ∈ Oβ(N) without
changing its law. This implies that if V is the matrix of the eigenvector of a β-invariant random
matrix, then V is distributed uniformly at random over Oβ(N).

1.4.2 β-ensembles and Coulomb gas at inverse temperature β

For each of these three ensembles, one has a rather simple expression for the joint density of
the elements. In fact, using the identity det· = exp[Tr log ·], we can always write the density
in the form of:

P(A) ∝ exp

[
−Nβ

2
TrV (A)

]
, (1.54)

for a function V proportional to the square function for the Gaussian ensemble, to a linear com-
bination of linear and logarithmic functions for the Laguerre ensemble, and to a linear combina-
tion of logarithmic functions for the Jacobi ensemble. We recall that for an analytical smooth
function V , V (A) is a matrix in the same basis V of A but the eigenvalues λ are modified
according to the potential: V (A) := VDiag (V (λ))V∗, with V (λ) = (V (λ1), . . . , V (λN )).
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Now density in the form of Eq. (1.54) makes perfect sense for any smooth function V , provided
Eq. (1.54) is integrable. This leads to the following definition.

If V (.) is some given smooth function with sufficient growth condition at infinity, thenwe say that a randommatrix is taken from a β-ensemble with potential V - or is takenfrom a β-ensemble in short - if its law is given by
P(β)
V [A ∈ R] =

1

ZV,β

ˆ
R
e−

Nβ
2

TrV (A)dA , (1.55)
For positive semi-definite matrices, we implicitly assume the potential to be defined on
R+ and is infinite on the negative real line.

The Gaussian, Laguerre and Jacobi ensembles are known as the classical ensembles since these
potentials correspond to ones of the three classical laws of probability, namely the Gaussian law,
the gamma law, and the beta law. We give explicitly their potential in the following examples.

Examples (Potential for the Classical ensembles). Explicitly, we have
• for GOE/GUE/GSEmatrices the corresponding potential is given by:

VG(λ) =
λ2

2σ2
. (1.56)

• for LOE/LUE/LSEmatrices the corresponding potential is given for λ ∈ (0,∞) by:
VL(λ) =

M

N
λ+

(
1− M

N
− 1

N
+

2

βN

)
log λ , (1.57)

and is infinite otherwise. Its limiting behavior (in the limit N/M → q) is given by:
lim

N,M→∞
VL(λ) =

λ

q
+

(
1− 1

q

)
log λ . (1.58)

• for JOE/JUE/JSEmatrices, the corresponding potential is given for λ ∈ (0, 1) by:
VJ(λ) =

(
1− M1

N
− 1

N
+

2

βN

)
log λ+

(
1− M2

N
− 1

N
+

2

βN

)
log(1− λ) ,

(1.59)
and is infinite otherwise. Its limiting behavior (in the limitN/M1 → q1 andN/M2 →
q2) is given by:

lim
N,M1,M2→∞

VJ(λ) = (1− q−1
1 ) log λ+ (1− q−1

2 ) log(1− λ) . (1.60)
■

By the cyclical property of the trace (TrABC = TrCAB) it is clear that if A is taken from
a β-ensemble, then it is also β-invariant. Note that the converse is not true in general.
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In this case, one can hope to get the joint law of its eigenvalues λ by integrating out the de-
pendency in the eigenvectors V after the change of variable A → (V,λ). Since the eigenvalue
decomposition is volume preserving with respect to the Lebesgue measure dA, we have:

e−
Nβ
2

TrV (A)dA ∝ e−
Nβ
2

∑N
i=1 V (λi)

∣∣∣∣[∂A∂V ,
∂A

∂λ

]∣∣∣∣ µHaar(dV)dλ . (1.61)

where the Jacobian
∣∣[∂A

∂V , ∂A∂λ
]∣∣ is given by Weyl’s integral formula of Eq. (1.10). Integrating

out the law of the eigenvectors in Eq. (1.61) with the expression of Eq. (1.10) for the Jacobian
gives the following expression for the joint density of eigenvalues:

P(β)
V (λ)dλ ∝ e−

Nβ
2

∥V (λ)∥1 |∆(λ)|β dλ , (1.62)
with ∥V (λ)∥1 =

∑N
i=1 V (λi).

The simple yet fundamental remark is to notice that while Eq. (1.62) is the joint law of eigen-
values of a matrix taken from a β-ensemble, with β ∈ {1, 2, 4}, it can be naturally defined for
any β > 0.

For any β > 0, we say that a vector λ = (λ1, . . . , λN ) is taken from a β-ensemble with
potential V and denote λ ∼ P(β)

V if its law is given by:

P(β)
V (λ) =

1

ZV,β
exp

−Nβ

2

 N∑
i=1

V (λi)−
1

N

∑
i,j|i ̸=j

log |λi − λj |

 , (1.63)

since the term∑
i,j|i ̸=j log |λi − λj | = 2

∑
i,j|i<j log |λi − λj | is up to a factor 2 nothingelse than the logarithm of the Vandermonde determinant.

By abuse of notation, we will sometimes refer to the vector λ as the vector of eigenvalues even
if β /∈ {1, 2, 4}. Similarly, we will denote by µA(λ) =

∑N
i=1 δ(λ−λi)/N its empirical ‘spectral’

distribution.

Figure 1.3: A sketch of the Coulomb gas interpretation. The eigenvalues λi’s canbe seen as the position of N particles (N = 5 in this figure) in a potential Vinteracting with a pairwise logarithmic repulsive interaction.
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It is then convenient to think of the parameter β as an inverse temperature of a Gibbs-
Boltzmann distribution, that is re-write the joint law as:

P(β)
V (λ) =

e−β ẼN (λ)

ZV,β
with ẼN (λ) :=

N∑
i=1

N

2
V (λi)−

1

2

∑
i,j|i ̸=j

log |λi − λj | , (1.64)

where the electrostatic energy ẼN (.) consists of a confining potential V and a pairwise
logarithmic repulsive interaction between the λi, preventing them to all collapse at the
minima of the potential V in the large N limit, see Fig. 1.3 for an illustration. As it is standard
in physics, the energy ẼN (.) can be defined up to an additive constant, since this constant can
be absorbed in the normalization ZV,β , without changing the law. This logarithmic pairwise
interaction is exactly the one of a two-dimensional Coulomb gas of N charged particles. The
components of the vector λ ∼ P(β)

V taken from a β-ensemble can be thought of as the positions
of N charged particles of a 2D-Coulomb gas, restricted to be on the real line. One may not
that for λi of order one if the potential V does not scale with N , the term N(

∑
V (λi)) is

order O(N2) and so does the logarithmic repulsion and the energy ẼN (.). For this reason, it is
convenient to introduce a re-scaling in the following way:

P(β)
V (λ) =

e−
N2β
2

EN (λ)

ZV,β
with EN (λ) :=

2

N2
ẼN (λ) . (1.65)

The (normalized) energy EN is now of order one for any N and so it is particularly well-suited in the large N limit. It can be explicitly written in terms of a functional of thediscrete measure µA(λ) =
∑N

i=1 δ(λ− λi)/N as:
EN (λ) =

ˆ
V (λ)µA(dλ) +

ˆ ˆ
x ̸=y

log
1

|λ− λ′|
µA(dλ)µA(dλ′) =: ẼN [µA] . (1.66)

As we increase N → ∞ if the argument µA → µ of the energy is an absolutely continuous
distribution µ, the logarithmic singularity coming from the Coulomb gas interaction is integrable,
and we can remove the constraint over the diagonal to define the asymptotic energy functional
as:

E [µ] := lim
N→∞

EN [µA] =

ˆ
V (λ)µ(λ)dλ+

ˆ ˆ
log

1

|λ− λ′|
µ(λ)µ(λ′)dλdλ′ . (1.67)

If V (λ) ≡ VN (λ) depends explicitly on the dimension N (as for the Laguerre or Jacobi ensembles
for example), we implicitly mean V (λ) = lim

N→∞
VN (λ) in Eq. (1.67). The repulsive term

Σ[µA] :=

ˆ ˆ
log |λ− λ′|µ(λ)µ(λ′)dλdλ′ , (1.68)

is sometimes referred to as the free entropy, as it has a somehow analog interpretation as the
classical entropy for RMT/free probability.

Now to understand the behavior of the limiting density of a β-ensemble, we will use the power-
full (but non-rigorous) path integral representation by doing the change of variable from the
vector λ to its empirical distribution µA. To do so, we need to compute the Jacobian of
this transformation, or equivalently, using the language of statistical physics one needs to
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count how many micro-states λ are compatible with the density µA. The reader familiar with
statistical physics will immediately recognize the definition of the entropy of the micro-state
and the following result (which has to be understood in the large N limit) should come with
no surprise:

Jac[λ → µ] ≈ e−NS[µ] , (1.69)
where S is the entropy of the distribution, which is defined by

S[µ] :=
ˆ

µ(λ) log (µ(λ)) dλ . (1.70)

We are now ready to write down the density to find a given distribution µ as

P(β)
V [µ]Dµ ≈ 1

ZV,β
exp

[
−N2β

2
E [µ]− N

c
S [µ]

]
Dµ , (1.71)

where Dµ denotes the ill-defined infinitesimal uniform increment over the space M1 of prob-
ability measure. As N → ∞, the entropy term becomes subdominant, and the probability to
find a distribution is dictated by a large deviation principle.

Informally, a random variableXN is dictated by a large deviation principlewith speed
of convergence v(N) and rate function Ψ(.) ≥ 0 if for large N the probability to find
XN in a region R, decays exponentially as:

Prob [XN ∈ R] ≍ exp

[
−v(N) inf

x∈R
Ψ(x)

]
, (1.72)

where≍ denotes equality at leading exponential order (inN ). Importantly, the rate func-tion also encodes the typical events since if this rate function is null, the correspondingprobability is of order one.
In the context of empirical distributions of β-ensembles, this means that we have the following
result which can be proved (and stated) in a rigorous manner, see Ref. [86]:

Result 1.6 (LDP for the distribution of a β-ensemble)

In the large N limit, the empirical distribution of β-ensemble satisfies a large deviation
principle with speed N2β

2 and rate function given by:

E [µ]− E [µA] where µA := argmin
µ′∈M1

E [µ′] . (1.73)

In particular, this implies that if λ ∼ P(β)
V then its LSD µA is independent of β and given

by the minimizer of the energy functional.

Let us now characterize the limiting distribution µA more precisely. We can write down the
variational principle for µA as(

δ

δµ
E [µ]

) ∣∣∣∣
µA

= 0 , (1.74)
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that is using Eq. (1.67) for the expression of the electrostatic energy, µA is the solution of the
Tricomi’s problem:

 
µA(λ

′)

λ− λ′ dλ
′ =

V ′(λ)

2
for λ ∈ Supp [µA] , (1.75)

where
ffl

is the Cauchy principal value of the integral.

The case of convex potential and Tricomi’s formula -

Whenever V is convex and ‘confining enough’1, the distribution µA is supported on an interval
of the form [a−, a+] and the Tricomi problem can be directly inverted thanks to the Tricomi
formula [174]:

µA(λ) =
1

π
√
λ− a−

√
a+ − λ

(
1− 1

π

 a+

a−

√
λ′ − a−

√
a+ − λ′

λ− λ′
V ′(λ)

2π
dλ′

)
. (1.76)

The edges a± can be either determined self-consistently thanks to the constraints µA(a−) =

µA(a+) = 0 or equivalently by solving the system of equations:
ˆ a+

a−

V ′(λ)√
λ− a−

√
a+ − λ

dλ = 0 and
ˆ a+

a−

V ′(λ)λ√
λ− a−

√
a+ − λ

dλ = 2π . (1.77)
After a few algebraic operations, one can transform Tricomi’s formula into Pastur’s form, see
for example Ref. [62]:

µA(λ) =
h(λ)

π

√
(λ− a−)(a+ − λ) . (1.78)

where the function h is given by

h(λ) :=
1

2π

ˆ a+

a−

V ′(λ)− V ′(λ′)

λ− λ′
dλ′√

(a+ − λ′)(λ′ − a−)
. (1.79)

The function h is regular near the edges and as a consequence for a general convexpotential V , the density µA(.) is non-critical, by which we mean that it behaves as asquare root near the edge a+,
µA(x) ∼

x↗a+

γ
3/2
0

π

√
a+ − x , (1.80)

where γ0 is a constant and a similar result holds for the behavior near the bottom edge.

One can compute the function h and the edges a± in the cases where V is given by Eq.
(1.56), Eq. (1.58) with q ∈ (0, 1) and Eq. (1.60) with q1, q2 ∈ (0, 1), and the results for the
corresponding density will be given respectively by the semi-circle distribution of Eq. (1.40), the
continuous part of the Marčenko-Pastur distribution of Eq. (1.43), and the continuous part of
the Watcher distribution of Eq. (1.47), as expected.

1that is such that V (x)/ log(1 + x2) →
|x|→∞

∞.
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Non-convex potential and BIPZ formula -

Now if the potential V is analytical and confining but not convex, one cannot directly invert
the Tricomi problem. However, if we add and subtract V ′(z) in the RHS of Eq. (1.75) and then
multiply the whole equation by µA(λ)(z − λ)−1 and then finally integrate over λ, we get the
following equation:

2

 ˆ
µA(λ

′)µA(λ)

(z − λ)(λ− λ′)
dλ′dλ = −

ˆ
V ′(z)− V ′(λ)

(z − λ)
µA(λ)dλ+ V ′(z)

(ˆ
µA(λ)

z − λ
dλ

)
.

(1.81)
The LHS of Eq. (1.81) is the square of the Stieltjes transform in disguise, and we get the
following simple algebraic equation for the Stieltjes transform gA of the LSD µA:

g2A − V ′(z)gA(z) + ΠV (z) = 0 , (1.82)
where the function ΠV is given by:

ΠV (z) :=

ˆ
Supp[µA]

V ′(z)− V ′(λ)

z − λ
µA(λ)dλ . (1.83)

Now the key point is to notice that if V ′ is a polynomial with the highest degree equal to k, the
a priori unknown function ΠV is also a polynomial but with a lower degree k−1 and its leading
coefficient is the same as the one of V ′. This means that one can determine self-consistently
the coefficients of ΠV a posteriori. One can actually generalize the situation to the case where
V ′ is a Laurent polynomial or a rational function. In the end, the Stieltjes transform gA is given
by the Brezin-Itzykson-Parisi-Zuber (BIPZ) formula:

gA(z) =
V ′(z)

2
±

√
V ′2(z)− 4ΠV (z)

2
, (1.84)

where one must choose the sign of the Stieltjes transform in accordance with the limiting
behavior of the Stieltjes transform near infinity given by Eq.(1.24).
Interestingly, one can naturally look at the other non-physical solution of Eq. (1.82) givenby:

ḡA(z) =
V ′(z)

2
∓

√
V ′2(z)− 4ΠV (z)

2
, (1.85)

which is known as the second branch of the Stieltjes transform.
Summing Eq. (1.84) and Eq. (1.85) we have the following simple relation between the two
branches of the Stieltjes transform and the derivative of the potentials:

ḡA(z) + gA(z) = V ′(z) . (1.86)
The second branch of the Stieltjes transform will appear quite naturally in the study of the
large deviation of the top eigenvalue.
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1.4.3 β-bi-invariant rectangular random matrices and associ-
ated β-ensembles

This section deals with rectangular matrices.

We briefly summarize the analogous formulation in the context of rectangular matrices.

Similarly to the self-adjoint cases, we say that a rectangular matrix A ∈ MN,M (Kβ) is
β-bi-invariant if its law is left unchanged by conjugation over Oβ(N)× Oβ(M), that is:

A
in law
= V′

1AV
′
2 for any V′

1 ∈ Oβ(N) and V′
2 ∈ Oβ(M) . (1.87)

A β-bi-invariant random matrix admits a singular value decomposition A = V1Diagq(s)V2

where the left and right eigenmatrix are uniformly Haar distributed, V1 ∼ Unif[Oβ(N)] and
V2 ∼ Unif[Oβ(M)].

We say that a rectangular matrix is taken from β-bi-invariant ensemble, if its law isgiven as:
P(β)
q,V [A ∈ R] =

1

ZV,β

ˆ
R
e−

Nβ
2

TrV (AA∗)dA , (1.88)
for an analytic potential V (.) such that the density is integrable.

If A ∼ P(β)
q,V then it is also β-bi-invariant, and one can get the joint law of its singular values

thanks to the Jacobian of Eq. (1.16). If we introduce the modified potential

Ṽq(x) := V (x) +

(
1− 1

q
− 1 +

1

β

)
log x , (1.89)

with q = N/M , the joint density for the singular values can be compactly written as:

P(β)

q,Ṽq
(s) =

1

ZN
exp

−Nβ

2

 N∑
i=1

Ṽq(s
2
i )−

1

N

∑
i,j|i ̸=j

log |s2i − s2j |

 . (1.90)

and this density makes sense for any β > 0.

Note that if we do the change of variable (s(A) → λ(AA∗)) given by Eq. (1.15) in the joint
law of Eq. (1.90), we have that the matrix AA∗ is taken from an invariant ensemble with the
modified potential Ṽq(.) (plus a vanishing term coming from the change of variable). In the
large double scaling limit of Eq. (1.5), the empirical singular value distribution converges to a
smooth limit:

µA(s) :=
1

N

N∑
i=1

δ(s− si(A)) → µA(s) = 2s µAA∗(s2) , (1.91)

where µAA∗ is solution of the Tricomi problem of Eq. (1.75) with the potential V (.) replaced
by Ṽq(.) of Eq. (1.89):

 
µAA∗(λ′)

λ− λ′ dλ′ =
Ṽ ′
q (λ)

2
. (1.92)
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The edges a± of the LSVD µA are the square root of the edges of the distribution µAA∗ .
Equivalently, the LSVD µA is the solution of the following equation:

 
µA(s

′)

s2 − s′2
ds′ =

Ṽ ′
q (s

2)

2
, (1.93)

which can be directly seen from the joint law of Eq (1.90).

1.4.4 Tridiagonal randommatrix model for β-ensembles

For β = 1, 2, 4, a vector λ ∼ P(β)
V taken from a β-ensemble can be seen as the set of eigenvalues

of a matrix A taken from the corresponding ensemble. A natural question is to give a ‘random
matrix’ interpretation for other values of β. The idea developed by Dumitriu and Edelman
in Ref. [54] is the following: for β = 1, 2, 4, any self-adjoint matrix A ∈ Hermβ(N) can be put
in tridiagonal form: A = HTH∗ with H ∈ Oβ(N) and

T ≡ T(a, b) :=


a1 b1

b1
. . .

. . .

. . .
. . . bN−1

bN−1 aN

 , (1.94)

with a := (a1, . . . , aN ) ∈ RN and b := (b1, . . . , bN−1) ∈
(
R∗
+

)N−1. The tridiagonal matrix
T has the same set of eigenvalues as the matrix A, but unlike A which has entries in Kβ , its
entries are real for any β ∈ {1, 2, 4}. Thus, if we take A ∼ P(β)

V for β = 1, 2, 4, one should
expect to leverage the dependency in β as being simply a parameter of the joint distribution
of the real random vectors a and b. Then, the hope is that once this analytical extension to
any β > 0 is done, the eigenvalues of T are distributed according to P(β)

V . As a consequence,
one needs first to compute the joint distribution of (a, b) associated with the transformation
A → (H,T(a, b)), extend the law to any β > 0 and then compute the joint distribution of
the vector λ associated to the change of variable T(a, b) → (Q,λ) where Q ∈ O(N) and
λ ∈ RN are the eigenmatrix and eigenvalues of T = QDiag(λ)QT.

The change of variable from a self-adjoint matrix A to its tridiagonal form T is done by House-
holder reflections, and one can obtain the joint law of the elements (a, b) by this procedure.
The final result reads:

P(β)
tri,V (a, b) :=

e−
Nβ
2

TrV (T(a,b))

Ztri
V,β

N∏
i=1

b
β(N−i)−1
i . (1.95)

Since this density makes sense for any β > 0, we say that T ∼ P(β)
tri,V is taken from a

tridiagonal β-ensemble if the law of its diagonal and upper-diagonal element is given
by the joint density P(β)

tri,V .
Next, performing the change of variable from T to its eigenvalue decomposition and using
identities for orthogonal polynomials associated with tridiagonal matrices, one can indeed prove
that the joint density of eigenvalues is given by one of the corresponding β-ensemble, that is:
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Result 1.7 (Eigenvalues of a tridiagonal β-ensemble matrix)

for any β > 0,
if T ∼ P(β)

tri,V then λ(T) ∼ P(β)
V , (1.96)

where P(β)
V is the joint law of Eq. (1.63).

Thus for any β > 0, one can really think of λ ∼ P(β)
V as the eigenvalues of a random matrix.

Note that the eigenvalues of a tridiagonal matrix of the form of Eq. (1.94) are also the roots
of the N th monic polynomial defined by the recurrence relation

xPn(x) = b2nPn−1(x) + an+1Pn(x) + Pn+1(x) , (1.97)
with the first two terms given by P−1 = 0 and P0 = 1. Hence, for λ ∼ P(β)

V , one can see the
eigenvalues as the zeroes of the N th monic polynomial obtained by this random recurrence.

However, for an arbitrary confining potential V , the description of the law of the corresponding
tridiagonal β-ensemble given by Eq. (1.95) is not very enlightening and one may wonder if, for
specific choices of V , its description greatly simplifies. This is the case for the three classical
ensembles and in particular, the tridiagonal models associated with the Gaussian weight and
the Laguerre weight were the first introduced tridiagonal models studied in Ref. [54]. The case
of the Jacobi ensemble was studied in Ref. [101].

Tridiagonal matrix model for the three classical ensembles -

A matrix T is taken from the Hermite β-ensemble (HβE), if it is tridiagonal of the formof Eq.(1.94) and all the entries a, b are distributed independently according to:
• ai ∼ N

(
0, σ√

Nβ
2

)
for i = 1, . . . , N

• b2i ∼ Gamma

(
β
2 (N − i), σ2

Nβ
2

)
for i = 1, . . . , N − 1

For T ∼ HβE the eigenvalues are distributed according to λ(T) ∼ P(β)
VG

where VG is the
harmonic potential of the Gaussian ensemble given by Eq. (1.56).
A matrixT is taken from the Laguerre β-ensemble (LβE), if it is tridiagonal of the formof Eq.(1.94) and the entries a, b are distributed according to

• a1
in law
= γ1 and ai

in law
= γ2i−2 + γ2i−1 for i = 2, . . . , N ,

• b2i
in law
= γ2i−1γ2i for i = 1, . . . , N − 1 ,

where the γi’s are independent Gamma random variables distributed according to:
• γ2i ∼ Gamma(β2 (N − i), 2

Mβ ) for i = 1, . . . , N − 1 ,
• γ2i−1 ∼ Gamma(β2 (M + 1− i), 2

Mβ ) for i = 1, . . . , N .

25



For T ∼ LβE the eigenvalues are distributed according to λ(T) ∼ P(β)
VL

where VL is given by
Eq. (1.57) and is the potential associated to the Laguerre ensemble.

A matrix T is taken from the Jacobi β-ensemble (JβE), if it is tridiagonal of the form ofEq.(1.94) and the entries a, b are distributed according to
• a1

in law
= B1 and ai

in law
= (1−B2i−3)B2i−2 + (1−B2i−2)B2n−i for i = 2, . . . , N ,

• b21
in law
= B1(1−B1)B2 and b2i in law

= (1−B2i−2)B2i−1(1−B2i−1)B2i for i = 2, . . . , N−1,
where the Bi are independent Beta random variables with parameters:

• B2i ∼ Beta
(
β
2 (N − i), β2 (M1 +M2 + 1−N)

) for i = 1, . . . , N − 1 ,
• B2i−1 ∼ Beta

(
β
2 (M1 + 1− i), β2 (M2 + 1− i)

) for i = 1, . . . , N .
For T ∼ JβE the eigenvalues are distributed according to λ(T) ∼ P(β)

VJ
where VJ is given by

Eq. (1.59) and is the potential associated to the Jacobi ensemble.

1.5 Behavior of the largest eigenvalue of a β-
ensemble: from Tracy-Widom to large devia-
tions

In this section, we describe the typical and large fluctuations of the top eigenvalue. For a
β-ensemble with a confining potential V for β > 0, if we order the eigenvalues in decreasing
order λ1 ≥ · · · ≥ λN then the top eigenvalue converges to:

λ1 ≡ λ1(N)

a. s−−→
N→∞

a+ , (1.98)
where a+ is the right edge of the limiting distribution µA, and our goal in this section is to
describe the fluctuations around this limiting value.

1.5.1 Typical fluctuations and the Tracy-Widom distribution
To fix things, we consider the case where µA is non-critical, which we recall means that the
density has a square root behavior near the edge. If the λi’s were sampled independently from
µA, then the fluctuations of its maximum would be described by the Weibull distribution, one
of the three fixed point distributions of the Fisher–Tippett–Gnedenko theorem of extreme value
theory. Yet, due to the long-range pairwise logarithmic interaction, the eigenvalues λ are far
from being independent and the fluctuation of the top eigenvalue falls into another class:

Result 1.8 (Tracy-Widom distribution and typical fluctuation [172])

If λ1 is the top eigenvalue of β-ensemble whose LSD µA has a square-root behavior near
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its top edge a+, then

N2/3

γ0
(λ1 − a+)

in law−−−→
N→∞

T ∼ TW(β) , (1.99)
where γ0 is the same constant as in Eq. (1.80) and TW(β) is the (generalized) β-Tracy-
Widom distribution.

The Tracy-Widom distribution was first studied for β = 2 in Ref. [172] and then for β = 1, 4

in Ref. [173]. In these three cases, the corresponding cumulative distribution admits a rather
simple expression in terms of the Hastings–McLeod solution of the Painlevé II equation:

q′′(s)− sq(s)− 2q(s)3 = 0 with boundary condition q(s) ∼
s→∞

Ai(s) , (1.100)
where Ai(s) := π−1 ·

´∞
0 cos(t3/3 + st)dt is the Airy function of the first kind. If we denote

by Fβ(x) := PT∼TWβ
[T ≤ x] the cumulative distribution, we have:

Fβ(x) =



exp
[
−1

2

(´∞
x (s− x)q2(s) + q(s)ds

)]
for β = 1 ,

exp
[
−
´∞
x (s− x)q2(s)ds

]
for β = 2 ,

cosh
[
1
2

´∞
x (s− x)q(s)ds

]
exp

[
−1

2

´∞
x (s− x)q2(s)ds

]
for β = 4 .

(1.101)
For other values of β > 0, one can interpret the Tracy-Widom as the distribution of the lowest
eigenvalue of a random operator known as the Stochastic Airy Operator, see Ref. [155], but
there is not anymore a simple expression for the cumulative distribution Fβ . Yet, it is possible
to obtain the behavior of the tail of the distribution for any β > 0:

Fβ(x) ≍ e−
β
24

|x|3 for x → −∞ , (1.102)
and

1−Fβ(x) ≍ e−
2β
3
x3/2

for x → ∞ , (1.103)
and ≍ denotes equality at leading exponential order.

The Tracy-Widom distribution is ubiquitous and describes the fluctuations of the maximum
‘long-range’ correlated elements far beyond the realm of RMT. It appears in the well-known
Kardar-Parisi-Zhang equation for specific initial conditions, see for example Ref. [106] and
references therein, and it also describes the fluctuations of the length of the longest increasing
sub-sequence [11] to cite a few, and we refer the reader to Refs. [25, 26, 119] for more on
extreme value statistics and related topics.

1.5.2 Right large deviation and the pulled Coulomb gas
The small deviations of λ1 around the limiting value a+ are given by the Tracy-Widom law
for fluctuations of order |λ1 − a+| ∼ O(N− 2

3 ). To get the behavior of the large fluctuations,
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that is at a value x far from the edge a+, one is outside the scope of the Tracy-Widom regime
describing typical fluctuations and one needs to estimate a large deviation principle. The scaling
(or speed of convergence) of the large deviation principle is different if x is either above or below
the edge a+ and we first describe the case x > a+, that is the right large deviation.

If one integrates the joint density in Eq. (1.63) with a Dirac delta function δ(x−λ1) one has that
the probability can be expressed in terms of the difference of energy between the configuration
of a 2d-Coulomb gas where the top particle is pulled at the position x and the configuration
of the unperturbed 2d-Coulomb gas. For the perturbed gas, we are just moving one particle
away from the bulk, and thus we expect that this perturbation does not change the equilibrium
density µA of the N − 1 other particles inside the bulk. This leads to the following result, see
also Refs. [159, 121].

Result 1.9 (right LDP for the top eigenvalue of a β-ensemble)

As N → ∞, the probability to find the top eigenvalue λ1 as close as we want to a position
x above the upper edge a+, is given by a large deviation principle with speed Nβ:

P[λ1(A) ≃ x] ≍ exp [−NβΨ(x)] (for x ≥ a+) , (1.104)
and the right rate function Ψ is given as (half) the difference of energy:

Ψ(x) =
1

2

[
V (x)− V (a+)− 2

ˆ
log(x− λ)µA(λ)dλ+ 2

ˆ
log(a+ − λ)µA(y)dλ

]
.

(1.105)

This rate right function can also be written in integral form as:

Ψ(x) =

ˆ x

a+

(
V ′(t)

2
− gA(t)

)
dt , (1.106)

where gA(.) is the Stieltjes transform of µA. If we introduce the second branch of the Stieltjes
transform of Eq. (1.85), we can interpret the rate function as (half) the area between the two
branches of the Stieltjes transform up to the position x:

Ψ(x) =
1

2

ˆ x

a+

(ḡA(t)− gA(t)) dt . (1.107)
Note that for gA(a+) = ∞, the rate function is finite.

Example (Rate function for Gaussian ensembles). For the Gaussian ensemble, we recall
that the potential is given by Eq. (1.56) and the Stieltjes transform is given by Eq. (1.41)
and if we use the integral representation of Eq. (1.106) for the rate function, we get after
simplification:

ΨG(x) =
x
√
x2 − 4σ2

4σ2
+ log

(
2σ√

x2 − 4σ2 + x

)
. (1.108)

The two branches of the Stieltjes transform, and the rate function are given in Fig. 1.5
(Left). ■
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Figure 1.4: On the left, a representation of a ‘typical’ configuration of a pushed-to-the-origin Coulomb gas in a harmonic potential. To have the top eigenvalue atthe position x = 0, one needs to also push all the other eigenvalues to the rightand in the largeN limit, this creates a different limiting density (with a black solidline) compared to the unperturbed semi-circle distribution (with dotted line). Onthe right, a ‘typical’ configuration corresponding to a Coulomb gas in a harmonicpotential pulled at the position x = 2.5 > a+ = 2. Only the top eigenvalue popsout of the limiting distribution.
Example (Rate function for Laguerre ensemble). For the Laguerre ensemble, whose limit-
ing spectrum is theMarčenko-Pastur distribution of Eq. (1.43), the potential is given by Eq.
(1.57) and the Stieltjes transform is given by Eq. (1.44). The two branches of the Stieltjes
transform are illustrated in Fig. 1.5 (Right). The right rate function is given by:

ΨL(x) =

ˆ x

a+

√
(t− a+)(t− a−)

2qt
dt , (1.109)

and is also represented in Fig. 1.5 (Right). Note that the integral in Eq. (1.109) can be
computed analytically, but the result is not very enlightening. For q = 1 the rate function
simplifies considerably, and we have:

ΨL(x) =

√
x(x− 4)

2
+ log

(
x− 2−

√
x(x− 4)

2

)
(for q = 1) . (1.110)

In this case, one may notice the following identity:
ΨL(x

2) = 2ΨG(x) (for q = 1) , (1.111)
which will be discussed in more detail later on. ■

Remark (Behavior near the edge and the Tracy-Widom ‘3/2’ scaling). If one is looking at
a non-critical density satisfying the condition of Eq. (1.80) near the edge, then both the
Stieltjes and its second branch behave near the top edge as:

gA(a+ + ϵ) = gA(a+)− γ
3
2
0

√
a+ + ϵ+ O(ϵ1/2) ,

ḡA(a+ + ϵ) = gA(a+) + γ
3
2
0

√
a+ + ϵ+ O(ϵ1/2) ,

(1.112)
so approximating the integral of Eq. (1.107) by the Euler method, at first order one has
for the rate function:

Ψ(a+ + ϵ) =
2γ3/2

3
ϵ3/2 + O

(
ϵ3/2

)
, (1.113)
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Figure 1.5: On the left, the rate function (in red) for the largest eigenvalue of a
GOE matrix with σ = 1, whose expression is given by Eq. (1.108). On the right,the rate function (in red) for the largest eigenvalue of aWishartmatrix with q = 1,given by Eq. (1.110). In each case, the rate function is infinite for values below theedge of the limiting distribution and is otherwise given as half the area betweenthe curve of the second branch of the Stieltjes transform (in blue) and the curveof the Stieltjes transform (in cyan), see Eq. (1.107).

and hence the probability behaves as
P [λ1 ≃ x] ≈ exp

[
−2β

3
u3/2 + O(N)

]
where u = γN2/3(x− c+) . (1.114)

The scaling of the reduced variable u and the asymptotic behavior matches the large ar-
gument behavior of the Tracy-Widom regime given by Eq. (1.103) which describes the
probability of finding an eigenvalue near the edge. ⌋

1.5.3 Right large deviation of the top singular value
This section deals with rectangular matrices.

As in the self-adjoint case, the goal is to estimate for large N , the probability of finding the top
singular value at a position x above its typical value given by the upper edge a+ of the LSVD
µA. By an almost identical argument of the previous section, this probability satisfies a large
deviation principle with speed Nβ

P [s1 ≃ x] = exp [−NβΨ(x)] . (1.115)
and the rate function Ψ is given as:

Ψ(x) =

ˆ x

a+

t

(
Ṽ ′
q (t

2)− 1

2

ˆ a+

a−

ρA(s)

t2 − s2
ds

)
dt . (1.116)

Remark (square matrix and symmetrized density). In the case where s ∼ P(β)

q,Ṽq
with q = 1,

which corresponds for β ∈ {1, 2, 4} to the case whereA ∼ P(β)
q,V is an (asymptotic) squarematrix but not self-adjoint, there exist a nice relation with the LDP for the top eigenvalueof β-ensemble of the previous section. For q = 1 since Ṽq=1(s

2) = V (s2) (see Eq. (1.89)),the Tricomi problem of Eq. (1.93) for the LSVD µA reads: 
µA(s

′)

s2 − s′2
ds′ =

V ′(s2)

2
. (1.117)
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If we use again the identity of Eq. (1.34) and introduced a new potential V̂ according to:
V̂ (λ) :=

V (λ2)

2
, (1.118)

then we can re-write Eq. (1.117) as a Tricomi for the symmetrized density:
 

µ̂A(λ
′)

λ− λ′ dλ
′ =

V̂ ′(λ)

2
. (1.119)

where we recall that the symmetrized density µ̂A(λ) is given by m̂uA(λ) = (µA(λ) +
µA(−λ))/2. Using again the identity Eq. (1.34) in the expression of Eq. (1.116) for therate function Ψ with q = 1, together with the definition of V̂ (.) given by Eq. (1.118), wecan write the rate function as:

Ψ(x) =

ˆ x

a+

(
V̂ ′(t)− 2ĝA(t)

)
dt = 2ΨÂ(x) , (1.120)

where ĝA is the Stieltjes transform of µ̂A, and Ψ
Â
is the rate function associated to the

corresponding β-ensemble with the new potential V̂ . In other words, for a β-bi-invariantensemble with potential Ṽq=1, the rate function associated with the largest singular value
s1 is twice the one associated with the largest eigenvalue λ1 of a β-ensemble in a potential
V̂ . Furthermore, this new potential is the one of the symmetrized distribution of µA. Thiscan be heuristically guessed by remarking that for q = 1, we can express Eq. (1.90) as:
P(β)
q,V (s) =

1

ZN
exp

−Nβ

2

 N∑
i=1

[
V̂ (si) + V̂ (−si)

]
+
∑

i,j|i ̸=j

1

2N
log |si − sj |+

1

2N
log |si + sj |

 ,

(1.121)
where the potential V̂ (x) is symmetric by construction. The joint law of the N (positive)singular values can be interpreted as the law of 2N eigenvalues following the usual Eq.(1.63) where the first N variables are constrained to be positive and each of the last N isconstrained to equal minus its positive counterpart. In the largeN limit, these constraintsare irrelevant: the two problems have the same density (which does not depend on N )and differ by a factor of two for the rate function (which has an explicit N factor).

⌋

Example (Rate function for Ginibre matrices). If A is a Ginibre matrix, the LSVD is thequarter-circle law of Eq. (1.52) and its symmetrized density is the semi-circle law of Eq.(1.40). As a consequence, the rate function ΨGin of the largest singular value of a Ginibrematrix is given by:
ΨGin(x) = 2ΨG(x) =

x
√
x2 − 4σ2

2σ2
+ 2 log

(
2σ√

x2 − 4σ2 + x

)
. (1.122)

For σ = 1, AA∗ is a Wishart with shape parameter q = 1, hence ΨGin(x) = ΦL(x
2) in thiscase, and we retrieve the relation (1.111). ■

1.5.4 A word on the left large deviation and the pushed
Coulomb gas

For x < a+, one can still use the Coulomb gas analogy, but now the perturbed 2d-Coulomb
gas is compressed such that its top particle is at the position x. Unlike the case x > a+, the
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Figure 1.6: The Rate function (in red solid line) for the largest singular value of aGinibre random matrix with σ = 1. This rate function is twice the rate functionof the largest eigenvalue of a GOEmatrix with also σ = 1, see Eq. (1.122).

equilibrium measure in the bulk is modified since one needs to push a large fraction of the
particles to satisfy this constraint. Loosely speaking, this makes the probability to observe the
event {λ1 ≃ x} equals to the probability to observe the event {µA ≃ µwall(., x)} where the
distribution µwall(., x) is given as the solution of the constrained Tricomi problem:

 
µwall(λ, x)

λ− λ′ dλ′ =
V ′(λ)

2
with µwall(λ, x) = 0 for λ > x . (1.123)

Since the distribution µA satisfies the LDP given by Res. 1.6, we deduce the following result
for the top eigenvalue:

Result 1.10 (Left LDP for the top eigenvalue of a β-ensemble)

As N → ∞, the probability to find the top eigenvalue λ1 as close as we want to a position
x below the upper edge a+, is given by a large deviation principle with speed Nβ

2 :

P[λ1 ≃ x] ≍ exp

[
−N2β

2
Ψleft(x)

]
(for x ≥ a+) , (1.124)

and the left rate function Ψleft is given as the difference of energy:

Ψleft(x) = E [µwall(., x)]− E [µA] , (1.125)
with the energy E given by Eq. (1.67) and µwall(., x) is given as the solution of the con-
strained Tricomi problem of Eq. (1.123) and µA as the solution of the unconstrained one
of Eq. (1.75).

Let’s insist on the fact that the speed of convergence is different for the right and for the left
large deviation principle. For a given potential V , the left rate function is much harder to
compute than the right one since one needs to first solve the constrained Tricomi problem of
Eq. (1.123), and in general, there is no simple analytical solution for this problem.

Example (Left rate function for Gaussian ensemble). For the Gaussian ensemble with σ =
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1, VG(λ) = λ2/2, this left rate function has been computed in Ref. [47] and is given by:
Ψleft,G(w) =

1

108

(
72w2 − 4w4 − (15

√
2w + 2

√
2w3)

√
2w2 + 6+

27
(
log 18− 2 log

(√
2w +

√
2w2 + 6

)))
. (1.126)

Near the upper edge a+ = 2, this function behaves as:
Ψleft,G(w) ∝ (2− w)3 for w → 2 and w < 2 , (1.127)

and this asymptotic behavior matches smoothly with the Tracy-Widom tail of Eq. (1.102).
■

The left large deviation for the Laguerre ensemble has been derived in Ref. [181]. Our primary
interest lies in the right large deviation, and we will (almost) not discuss this left large deviation
principle in the rest of this thesis and we refer to Refs. [118, 117, 122, 46, 180, 134] for more
on large deviations for β-ensembles.

Summary of the behavior -

These three different regimes can be summarized by the following large N behavior:

P [λ1 ≃ x] ≈



exp
[
−N2β

2 Ψleft(x) + O(N2)
]

for x < a+ and |x− a+| ∼ ON (1) ,

γ0N
2/3(Fβ)

′ (γ0N2/3(x− a+)
)

for |x− a+| ∼ O(N− 2
3 ) ,

exp [−NβΨ(x) + O(N)] for x > a+ and |x− a+| ∼ ON (1) ,

(1.128)
where F ′

β is the density of the Tracy-Widom distribution, Ψ is given by Eq. (1.105) and Ψleft

is given by Eq. (1.125), see Fig. 1.7 for an illustration.

Figure 1.7: A sketch of the different regimes of the fluctuation of the top eigen-value for a β-ensemble with square root behavior near the edge, as describedby Eq. (1.128).
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1.6 β-ensembles in the low-temperature regime,
average characteristic polynomials, and zeroes
of orthogonal polynomials

1.6.1 Characterization of the ground state in the low-
temperature limit

In the large N limit, the limiting distribution of a β-ensemble with β > 0 fixed, is described
by the Tricomi problem of Eq. (1.75). If we now send β → ∞ with N being fixed, that is
we look at β-ensemble in the low-temperature regime, it is immediate from the joint law
of Eq. (1.63) that the eigenvalues will crystallize on the deterministic positions λ⋆ given as the
ground state of the energy EN of Eq. (1.66):

λ⋆ := argmin
λ∈RN

EN (λ) , (1.129)
where the potential V in the definition of EN has to be understood as the low temperature
limit V ≡ lim

β→∞
VN,β , whenever it depends explicitly on the inverse temperature β.

Up to this possible replacement for the potential, this low-temperature limit corresponds to
the most likely configuration of a β-ensemble with the number N of eigenvalues being fixed,
and it is a natural question is to give an interpretation of the set λ⋆ in terms of well-known
mathematical objects. To this end, let’s look at the solution of:

∇EN (λ) |λ=λ⋆ = 0 , (1.130)
using the expression of Eq. (1.66) for EN , this gives:

1

N

∑
j|j ̸=i

1

λ⋆
i − λ⋆

j

=
V ′(λ⋆

i )

2
for i = 1, . . . , N , (1.131)

which is nothing else than the finite version of the Tricomi problem of Eq. (1.75). If we adapt
our derivation of the BIPZ equation to this finite setting by adding and subtracting V ′(z) to
the RHS of Eq. (1.131) and then multiply Eq. (1.131) by (z − λ⋆

i )
−1N−1 and sum over the

index i, we get:

2

N2

∑
i=1

∑
j|j ̸=i

1

(z − λ⋆
i )(λ

⋆
i − λ⋆

j )
= V ′(z)

(
1

N

N∑
i=1

1

z − λ⋆
i

)
−ΠN,V (z) (1.132)

where ΠN,V (z) :=
1
N

∑N
i=1

V ′(z)−V (λ⋆
i )

z−λ⋆
i

is the finite counterpart of ΠV (z) given by Eq. (1.83).
Now if we introduce the finite Stieltjes transform:

g⋆N (z) :=
1

N

N∑
i=1

1

z − λ⋆
i

, (1.133)
the LHS of Eq. (1.132) is given by:

2

N2

∑
i=1

∑
j|j ̸=i

1

(z − λ⋆
i )(λ

⋆
i − λ⋆

j )
= g⋆N (z)2 +

1

N
g⋆N

′(z) . (1.134)
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Note that there is now an additional derivative term (which goes to zero as N → ∞) compared
to the BIPZ case. The final equation for the Stieltjes is:

V ′(z)g⋆N (z)−ΠN,V (z)− g⋆N (z)2 − 1

N
g⋆N

′(z) = 0 . (1.135)

This is a non-linear differential equation for the Stieltjes transform and one would like to find
the change of variable which transform this non-linear equation into an easier-to-solve linear
equation.

To do, let’s introduce themonic polynomial with roots λ⋆:
P ⋆
N (z) :=

N∏
i=1

(z − λ⋆
i ) . (1.136)

This polynomial is related to the Stieltjes transform by a Cole-Hopf (or Riccati) transform:

g⋆N (z) =
1

N
(logP ⋆

N (z))′ =
1

N

P ⋆
N

′(z)

P ⋆
N (z)

, (1.137)
and if we insert this expression in the differential equation (1.135) for the Stieltjes, we get the
following result:

Result 1.11 (Differential equation for the polynomial with roots λ⋆)

The monic polynomial with roots λ⋆ is the solution of the second order differential equation

P ⋆
N

′′(z)−NV ′(z)P ⋆
N

′(z) +N2ΠN,V (z)P
⋆
N (z) = 0 , (1.138)

with ΠN,V (z) :=
1
N

∑N
i=1

V ′(z)−V (λ⋆
i )

z−λ⋆
i

.

Because Eq. (1.138) is linear, one can think of P ⋆
N as the ‘natural quantity’ to describe the

finite N setting.

1.6.2 Relation to zeroes of orthogonal polynomials
This is equation is reminiscent of the differential equation satisfied by orthogonal polynomials.
Let’s introduce a continuous measure on (a, b) where the bounds a, b may or not be finite, with
a density of the form:

w(x) := e−NW (x)I(a,b) , (1.139)
for some function W .

The associatedmonic orthogonal polynomials (PW,i)i∈N are defined by the orthogonalrelation: ˆ
PW,i(x)PW,j(x) e

−NW (x)I(a,b)dx = 0 for i ̸= j , (1.140)
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and normalized such that the coefficient in front of the leading term is one:
PW,i(x) = xi +

i−1∑
j=0

αjx
j . (1.141)

Then if we introduce the function

AN (x) :=
e−NW (y)PW,i(y)

y − x

∣∣∣∣∣
y=b

y=a

+N

ˆ b

a

W ′(x)−W ′(y)

x− y
P2
W,N (y)e−NW (y)I(a,b)dy , (1.142)

we have the following result, see for example Ref. [95] and references therein.

Result 1.12 (electrostatic model for the zeros of orthogonal polynomials, [95])

Under some convexity and boundary conditions on W and log(AN ), the N th monic poly-
nomial PW,N with respect to the measure given by Eq. (1.139), satisfies the differential
equation:

P′′
W,N (z)−N

d

dz

(
W (z) +

1

N
logAN (z)

)
P′
W,N (z)+N2ΠN,W+ 1

N
logAN

(z)PW,N (z) = 0 .

(1.143)
In other words, the zeros of the N th monic orthogonal polynomial with respect to the measure
e−NW (x)I(a,b) are the minimizers of the Coulomb energy EN given by Eq. (1.66) with a potential
V = W (x)+ 1

N logAN (x). The proof of this statement together with the precise assumptions
can be found in Ref. [95].

Conversely, this suggests that P ⋆
N is the N th monic orthogonal polynomial of some measure of

the form e−NV (x)+logAN (x), provided the assumptions for Eq. (1.143) to hold are satisfied. The
potential 1

N logAN (x) is a local potential whose contribution to the overall energy becomes
negligible at large N .

P ⋆
N for classical ensembles and classical orthogonal polynomials -

If we now restrict to the cases where V is the potential of one of the classical ensembles, then
by either identifying the differential equation (1.138) satisfied by P ⋆

N or using results dating
back to Stieltjes characterizing the classical orthogonal polynomials in terms of an electrostatic
model of the form of Eq. (1.143), one has:

• If V is the harmonic potential associated with the Gaussian ensemble, given by Eq. (1.56),
then we have:

P ⋆
N (z) = CH,N HeN

(√
N

σ
z

)
(1.144)

where HeN is the N th (probabilist’s) Hermite polynomial

HeN (x) := N !

⌊N/2⌋∑
k=0

(−1)k

k!(N − 2k)!
· x

N−2k

2k
, (1.145)

and CH,N := (N/σ2)−N/2 is the constant which makes this re-scaled Hermite polynomial
monic.
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• If V is the limit β → ∞ of the potential associated with the Laguerre ensemble, given
by Eq. (1.57), then we have:

P ⋆
N (z) = CL,N La

(M−N)
N (Mz) (1.146)

where La
(α)
N is the N th generalized Laguerre polynomial:

La
(α)
N (x) :=

N∑
k=0

(−1)k
(
N + α

N − k

)
xk

k!
, (1.147)

and CL,N := (−1)NM−NN ! is the constant which makes this re-scaled Laguerre poly-
nomial monic.

• If V is the limit β → ∞ of the potential associated with the Jacobi ensemble given by
Eq. (1.59), then we have:

P ⋆
N (z) = CJ,N Ja

(M1−N,M2−N)
N (z) (1.148)

where Ja(a,b)N is the N th unit Jacobi polynomial, which is related to the standard Jacobi
polynomial by Ja

(a,b)
N (x) = P

(b,a)
N (2x− 1)2:

Ja
(a,b)
N (x) :=

Γ(b+N + 1)

N ! Γ(a+ b+N + 1)

N∑
k=0

(
N

k

)
Γ(a+ b+ n+ k + 1)

Γ(b+ k + 1)
· (x− 1)k ,

(1.149)
and the constant CJ,N := N !Γ(M1+M2+1−N)

Γ(M1+M2+1) makes this unit Jacobi polynomial monic.

1.6.3 Relation to average characteristic polynomials (ACP)

Relation to the ACP of classical ensembles at any β > 0 -

For λ ∼ P(β)
V , the average characteristic polynomial (ACP) is defined as the followingquantity

E

[
N∏
i=1

(z − λi)

]
=

1

ZV,β

ˆ
e−

Nβ
2

∑N
i=1 V (λi)

N∏
i=1

(z − λi) |∆(λ)|βdλ . (1.150)

In the case where V is the potential of one of the three classical ensembles one can compute
the corresponding ACP for any β > 0, thanks to the recurrence relation of Eq. (1.97) for
tridiagonal matrices. For Gaussian and Laguerre ensembles, one can directly average this
relation with respect to the law of (a, b) to get a recurrence relation for the corresponding
ACP. The case of the Jacobi ensemble requires slightly more work and has been tackled in Ref.

2One may note that we have switched the order of the parameters of the two Jacobi polyno-
mials. This is not a typo, the reason is that unit Jacobi polynomials (Ja

(a,b)
i )i∈N are orthogonalpolynomials for the measure associated to a Beta(a, b) random variable (and not a Beta(b, a) ran-dom variable), hence this order seems more appropriate.
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[101]. Importantly, one recovers the classical orthogonal polynomials and with our convention,
the result is independent of the parameter β, and thus equal to the one of the low-temperature
limit β → ∞! Explicitly this means:

• If A ∼ HβE with eigenvalues λ or equivalently if λ ∼ P(β)
VG

with VG given by Eq. (1.56),
then we have:

for any β > 0 , E

[
N∏
i=1

(z − λi)

]
= P ⋆

N (z) = CH,N HeN

(√
N

σ
z

)
. (1.151)

• If A ∼ LβE with eigenvalues λ or equivalently if λ ∼ P(β)
VL

with VL given by Eq. (1.57),
then we have:

for any β > 0 , E

[
N∏
i=1

(z − λi)

]
= P ⋆

N (z) = CL,N La
(M−N)
N (Mz) . (1.152)

• If A ∼ JβE with eigenvalues λ or equivalently if λ ∼ P(β)
VJ

with VJ given by Eq. (1.59),
then we have:

for any β > 0 , E

[
N∏
i=1

(z − λi)

]
= P ⋆

N (z) = CJ,N Ja
(M1−N,M2−N)
N (z) . (1.153)

Remark. For the Laguerre and the Jacobi ensembles, the fact that the ACP is indepen-
dent of the parameter β is specific to our convention for the associated potentials VL, VJwhich depend explicitly on β. ⌋

Average of characteristic polynomial of unitary invariant ensembles (β = 2)
-

For arbitrary confining potential, as far as I know, there is no simple relation at any β > 0

between the ACP and the low-temperature polynomial P ⋆
N . Yet, for β = 2, there exist another

well-known relation between orthogonal polynomial and ACP.

Let’s look at the ACP of a β=2-ensemble:

E

[
N∏
i=1

(z − λi)

]
=

1

ZV,β=2

ˆ
e−N

∑N
i=1 V (λi)

N∏
i=1

(z − λi)∆(λ)2dλ , (1.154)
and fix z > λ1 = maxλ without loss of generality. We can absorb the product coming from
the characteristic polynomial with one Vandermonde determinant to produce a Vandermonde
determinant of N + 1 variables, that is the ACP writes:

E

[
N∏
i=1

(z − λi)

]
=

1

ZV,β=2

ˆ
e−N

∑N
i=1 V (λi)∆(λ, z)∆(λ)dλ . (1.155)

Next, determinants are left unchanged by adding to a column a multiple of another column,
we have in particular the identity:

∆(λ) = det (λj−1
i )1≤i,j≤N = det [PV,j−1(λi)]1≤i,j≤N , (1.156)
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and similarly for ∆(λ, z), where we recall that PV,i is the ith monic orthogonal polynomial with
respect to the measure e−NV . If we now use the Leibniz identity to express each determinant
as an alternating sum of products, we have:

∆(λ)∆(λ, z) =
∑

σ∈SN
σ′∈SN+1

s(σ)s(σ′)PV,σ(0)(λ1) . . .PV,σ(N−1)(λN )

× PV,σ′(0)(λ1) . . .PV,σ′(N−1)(λN )PV,σ′(N)(z) , (1.157)

where s(σ) is the sign of the permutation σ. Importantly, each variable λi appears in exactly
two polynomials of the product of the RHS of Eq. (1.157). As a consequence, if we now
multiply this equation by e−N

∑N
i=1 V (λi)dλ and integrate, by the orthogonality relation of Eq.

(1.140), the only pairs (σ, σ′) of permutations contributing to the sum are the ones satisfying
σ(i) = σ′(i) for every i = 0, . . . , N − 1. This clearly imposes σ′(N) = N . After integration
all such terms are equals and since both the ACP and PV,N are monic, we have the following
result due to Szegő [167]:

Result 1.13 (Average characteristic polynomial at β = 2)

if λ ∼ P(β=2)
V then E

[
N∏
i=1

(z − λi)

]
= PV,N (z) , (1.158)

where PV,N (z) is the N th monic orthogonal with respect to the measure e−NV .

Remark (Vandermonde and orthogonal polynomials). Eq. (1.156) expressing the Vander-
monde as the determinant of the orthogonal polynomials is a well-known identity of RMT
and has been used in a variety of different contexts. In particular, this is the starting point
to get the well-known determinantal formula for the correlation functions in terms of the
Christoffel-Darboux kernel at β = 2, see for example Ref. [108]. ⌋

As a consequence we have a relation between three monic polynomials of degree N : the
monic polynomial P ⋆

N whose roots λ⋆ corresponds to the limit β → ∞ of a β-ensemble with
N fixed, the monic orthogonal polynomial PV,N , and the average characteristic polynomials

E
[∏N

i=1(z − λi)
]

of a β-ensemble. In particular, for the three classical ensembles, these three
objects are equal.

For β-ensemble in the low temperature, as we insert a new particle, we slightly perturb the
Coulomb gas and the associated energy increases. In the large N limit, we recover the LSD,
and we have EN (λ⋆) ↗

N→∞
E [µA]. This makes a (well-known) beautiful bridge between the

three ‘standard’ laws of probability (the Gaussian, the Gamma, and the Beta distributions)
and the LSD of the three classical ensembles (the semi-circle, Marčenko-Pastur, and Watcher
distributions). Up to a re-scaling, the distribution of the zeroes of the N th monic orthogonal
polynomials of a standard law converges as N → ∞ to the LSD of the corresponding β-
ensemble.
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1.7 β-ensembles in the high-temperature regime
and the high-low temperature duality

For β-ensemble with a fixed inverse temperature β > 0, the limiting density µA is the same
for all β. In essence, this is because the entropic term is of order O(N) and is, therefore,
subdominant compared to the potential and the pairwise logarithmic interaction terms, which
are of order O(N2) in Eq. (1.71). If we choose to tune β with N such that all terms are now of
the same order, one should now account for entropic contributions, and the limiting distribution
will depend on the weight of this term, and hence on the temperature. For all terms to be of
the same order, by a rule of thumbs one sees that the inverse temperature should go slowly to
zero as βN ∼ O(1/N).

As a consequence, we are interested in the double scaling limit known as the high-
temperature regime where:

NβN
2

−−−−→
N→∞

c ∈ R∗
+ . (1.159)

In practice, this high-temperature regime is obtained by first setting βN = 2c/N and then
taking the limit N → ∞. One can then look at β-ensembles under such scaling:

A vector λ is said to be taken from β-ensemble at high temperature (with potential V
and parameter c), λ ∼ P [c]

V , if its joint density is given by Eq. (1.64) with β = 2c/N ,that is:
P [c]
V (λ) :=

e−c
∑N

i=1 V (λi) |∆(λ)|
2

cN

ZV,c
=

e−Nc EN (λ)

ZV,c
(1.160)

and the energy EN (.) is defined as before by Eq. (1.66).

Note that we use the bracket notations [c] to differentiate quantities from the high-temperature
regime from their counterpart in the usual regime. The following result is then an immediate
consequence of this re-scaling:

Result 1.14 (LDP for the distribution of high-temperature ensemble)

In the large N limit, the empirical distribution of β-ensemble at high temperature satisfies
a large deviation principle with speed Nc and rate function given by:

E [µ] + 1

c
S[µ]−

(
E
[
µ
[c]
A

]
+

1

c
S
[
µ
[c]
A

])
where µ

[c]
A := argmin

µ′∈M1

(
E [µ′] +

1

c
S[µ′]

)
.

(1.161)
In particular, this implies that if λ ∼ P [c]

V then µA :=
∑N

i=1δ(x−λi)/N → µ
[c]
A as N → ∞.

Remark (Re-scaling of the high-temperature ensembles). For λ ∼ P [c]
V , as c → ∞ the en-

tropy term in the variational formulation of Eq. (1.161) becomes negligible, and we re-
trieve µ

[c→∞]
A → µA, with µA the limiting density of a classical β-ensemble with potential

V . However, as c → 0+ we have the trivial limit µ[c→0+]
A → δ(.), while one would naturally

like to recover the classical weight e−V in this limit. This leads to modify the potential
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according to V → c+1
c V to get the following new re-scaled joint density:

P̃ [c]
V (λ) ∝ e−(c+1)

∑N
i=1 V (λi)|∆(λ)|

2
cN , (1.162)

for which the corresponding limiting density naturally interpolates between the classical
distribution e−V and µA as the parameter c varies from zero to infinity. ⌋

1.7.1 Description of the equilibrium measure in the high-
temperature regime and U-function

The limiting (or equilibrium) distribution µ
[c]
A is given as a solution of

δ

δµ

(
E [µ] + 1

c
S[µ]

)
|
µ
[c]
A

= 0 , (1.163)
that is using Eq. (1.66) for the expression of the electrostatic energy and Eq. (1.70) for the
entropy, µ[c]

A is solution of:

V ′(λ)

2
−
 

µ
[c]
A (λ′)

λ− λ′ dλ
′ +

1

c

d

dλ
log
(
µ
[c]
A (λ)

)
= 0 . (1.164)

Since the derivative of the logarithm of a function is simply the derivative of the function over
the function itself, one can multiply Eq. (1.164) by µ

[c]
A (λ)/(z − λ) and integrate over the real

line to get an equation for the Stieltjes transform gA(z) =
´
µ
[c]
A (λ)(z−λ)−1dλ. The first two

terms of Eq. (1.164) are the usual terms of a β-ensemble and so after this procedure they will
give the LHS of Eq. (1.82) and we have:

V ′(z)gA(z)−Π[c],V (z)− gA(z)
2 +

1

c

ˆ
(µ

[c]
A (λ))′

z − λ
dλ = 0 , (1.165)

where Π[c],V is given by Eq. (1.83) with µA replaced by µ
[c]
A . By integration by part, the

last term of Eq. (1.165) is nothing else than the derivative of the Stieltjes transform. As a
consequence, the Stieltjes transform satisfies the following non-linear differential equation:

V ′(z)gA(z)−Π[c],V (z)− gA(z)
2 +

1

c
g′A(z) = 0 . (1.166)

Interestingly, Eq. (1.166) is exactly Eq. (1.135) with N ∈ N replaced by −c, with c ∈ R∗
+.This is the first appearance of the high-low temperature duality c ↔ N , a conceptthat will be re-discovered in Chapter 6. Roughly speaking, this duality is a correspon-dence between the low-temperature world (β → ∞) and the high-temperature world

(Nβ/2 → c) where one can go from one world to another by analytically continuing (in
N , resp. in c) the appropriate observable of interest.

Note that while this differential equation is not new, (see for example Ref. [1] after simplification
of the integral), its correspondence with the low-temperature regime does not seem to be well-
known for arbitrary potential V . Let’s mention that this duality is different from the one
developed in Ref. [49].

Eq. (1.166) is a non-linear differential equation for the Stieltjes transform and as in the low-
temperature case described in Sec. 1.6, we would like to find the natural change of variable for
which Eq. (1.166) transforms into a linear equation.
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To this end, for a measure µA, with a+ the upper limit of its support, we define for any
z ∈ C \ (−∞, a+) its U-function (of parameter c) as:

U
[c]
A (z) ≡ U [c]

µA
(z) := exp

[
−c

ˆ
Supp[µA]

dµA(λ) log (z − λ)

]
. (1.167)

This function admits the following large z behavior:

U
[c]
A (z) ∼

|z|→∞
z−c , (1.168)

The U-function is related to the Stieltjes transform by a Cole-Hopf transform:

gA(z) = −1

c

(
logU

[c]
A (z)

)′
= −1

c

(
U

[c]
A

)′
(z)

U
[c]
A (z)

. (1.169)
Note that we can define the U -function up to a multiplicative constant without changing the
Stieltjes transform. Thus, if we denote by U

[c]
A the U-function of the equilibrium measure µ

[c]
A ,

the change of variable given by Eq. (1.169) kills the non-linearity in Eq. (1.166) and we have:

Result 1.15 (Differential equation for the U-function)

U
[c]
A

′′
(z) + c V ′(z)U

[c]
A

′
(z) + c2Π

[c]
V (z)U

[c]
A (z) = 0 . (1.170)

If the potential V has a simple expression, one can hope to get a rather ‘simple’ analytical
expression for U and then deduce a (more complicated) expression for the density µ

[c]
A by

computing the Stieltjes transform thanks to Eq. (1.169) and then using the Sokochi-Plemelj
inversion formula of Eq. (1.28).
The function U

[c]
A is for the high temperature regime what the polynomial P ⋆

N is for the low
temperature regime and Eq. (1.170) is Eq. (1.138) for P ⋆

N , up to the duality c ↔ N . It
is convenient to think of the U-function as the most simple quantity describing the high-
temperature regime. The high-low temperature duality can be summarized in the following
table.

Low-Temperature ensemble High-temperature ensemble
limit β → ∞ with N fixed N → ∞, β → 0 with Nβ/2 → c

parameter N ∈ N∗ c ∈ R+

support of dist. N atoms unconstrained
‘natural’ object P ⋆

N , def. by (1.136), sol. of Eq. (1.138) U
[c]
A , def. by (1.167), sol of Eq. (1.170)

Stieltjes g∗N = (logP ⋆
N )

′
/N , sol. of Eq. (1.135) gA = −(logU

[c]
A )′/c, sol. of Eq. (1.166)

Remark. For the re-scaled joint law of Eq. (1.162), the differential equation for the U-
function of the corresponding limiting measure can be obtained by replacing V → c+1

c V

in Eq. (1.170). ⌋

Remark (Poisson statistics for high-temperature ensembles). For high-temperature ensem-
bles, one can show that the local behavior is given by Poisson statistics, see Ref. [24]. ⌋
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1.7.2 Classical β-ensembles at high temperature
The previous section deals with high-temperature ensembles for a general potential V yet they
were introduced in the case where V is the potential of a classical ensemble, and in particular,
the first appearance of a high-temperature ensemble corresponds to the case where V is a
harmonic potential, see Ref. [3].

For classical ensembles, one can show that the corresponding joint density is for any β > 0, the
stationary measure of a N -dimensional stochastic process, which also depends explicitly on β.
This is the Dyson Brownian motion (DBM) (which will be discussed in the following chapter)
with an Ornstein-Uhlenbeck drift for the harmonic potential, the Wishart-Bru process (see Ref.
[35]) for the Laguerre ensemble, and the Jacobi-Demni process (see Ref. [48]) for the Jacobi
ensemble. One can then take βN = 2c/N and use Ito-calculus to derive a differential equation
for the Stieltjes transform of the associated process. Taking a large time and large N limit
of this equation will reproduce (up to rescaling depending on the convention) the non-linear
differential equation (1.166), see Refs. [3, 4, 175].

Another way to tackle classical-ensembles in the high-temperature regime is to study the corre-
sponding tridiagonal model of Sec. 1.4.4 under the scaling βN = 2c/N and N → ∞, since the
laws of these tridiagonal models are relatively simple. Quite remarkably, this is done (see Refs.
[55, 176, 175]) by showing that the moments of those ensembles satisfy the duality c ↔ N ,
and using identities for the easier-to-compute ‘low-temperature’-moments (that is the ones of
the same ensembles but with β → ∞ and N fixed), see also Ref. [69].

In the following, we give the limiting distribution for each classical ensemble. Importantly, our
results are given for the re-scaled joint law of Eq. (1.162) (and hence are also re-scaled from the
ones of the literature) such as we vary the parameter c, we change the shape of the distribution
µ
[c]
A but not its scale.

Gaussian ensemble at high-temperature -

For eigenvalues taken from the Gaussian ensemble in the high-temperature regime with the
following convention:

λ ∼ P̃ [c]
G (λ) ∝ e−(1+c)

∑N
i=1

λ2i
2 |∆(λ)|

2
cN , (1.171)

the ESD of the λi converges as N → ∞ to the c-Gaussian distribution, also known as
the Gauss-Wigner crossover or the Askey-Wimp-Kerov distribution, with density given by:

µ
[c]
G (λ) :=

√
c+ 1√

2πΓ(c+ 1)

1∣∣D−c

(
i
√
c+ 1λ

)∣∣2 . (1.172)

The function D−c in Eq. (1.172) is the parabolic cylinder function, which can be defined by its
integral representation:

D−c(z) :=
e−z2/4

Γ(c)

ˆ
tc−1e−zt−t2/2dt . (1.173)
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The c-Gaussian distribution is a centered symmetric distribution continuously interpolating
between the density of the unit normal distribution at c → 0+ and the semi-circle distribution
with σ = 1 at c → ∞. Importantly, with our convention, the variance of the c-Gaussian is
independent of c and is equal to one. A plot of the density of the c-Gaussian is given in Fig.
1.8.

The analytical expression for the density can be deduced by noticing in this case the derivative
of the potential is a linear function, and so the differential equation satisfied by the U-function
of the c-Gaussian U

[c]
G (z) := exp

[
−c

´
µ
[c]
G (dλ) log(z − λ)

]
is of Kummer’s type. The solution

is given by:

U
[c]
G (z) = A2Ψ

(
c

2
,
1

2
,−c+ 1

2
z2
)

= 2c/2A2 e
− (c+1)z2

4 D−c

(
i
√
c+ 1z

)
, (1.174)

for some constant A2 and Ψ is the Tricomi (confluent hypergeometric) function, which can be
compactly defined by its integral representation:

Ψ(a, b, z) :=
1

Γ(a)

ˆ ∞

0
eztta−1(1 + t)b−a−1dt (for Re a > 0) . (1.175)

From there, one can easily get the Stieltjes transform g
[c]
G (z) :=

´
µ
[c]
G (dλ)(z − λ)−1 with Eq.

(1.169) and identity for the derivative of the Tricomi function. This gives:

g
[c]
G (z) =

(c+ 1)z

2

Ψ
(
1 + c

2 ,
3
2 ,−

c+1
2 z2

)
Ψ
(
c
2 ,

1
2 ,−

c+1
2 z2

) . (1.176)
The density of the c-Gaussian is then obtained by the Plemelj inversion formula Eq. (1.28) and
identities for hypergeometric functions near their branch cut.

Laguerre ensemble at high-temperature -

For eigenvalues taken from the Laguerre ensemble at high-temperature with the following con-
vention:

λ ∼ P̃ [c]
L (λ) ∝ e

−(1+c)
∑N

i=1

(
λ2i
q
+(1−q−1) log(λi)

)
|∆(λ)|

2
cN , (1.177)

the ESD of the λi converges as N → ∞ to the c-Laguerre distribution, also known as
the Gamma-Wishart crossover with density given by:

µ
[c]
L(q) (λ) := KL

λ(c+1)(q−1−1) e
− c+1

q
λ∣∣∣Ψ(c, (c+ 1)(1− q−1),− c+1
q λ

)∣∣∣2 I(0,∞) . (1.178)

The constant KL in Eq. (1.178) is given by:

KL :=

(
c+1
q

)(c+1)(q−1−1)

Γ(c+ 1)Γ
(
c+1
q

) . (1.179)
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The c-Laguerre distribution continuously interpolates between the Gamma(q−1, q) distribution
at c → 0+ and the Marčenko-Pastur distribution with shape ratio q at c → ∞. Its mean and
variance are independent of c and given respectively by 1 and q. A plot of the density of the
c-Laguerre is given in Fig. 1.8.

Similarly to the Gaussian case, the differential equation satisfied by the U-function U
[c]
L(q)(z) :=

exp
[
−c

´
µ
[c]
L(q)(dλ) log(z − λ)

]
is of Kummer’s type and the U-function is given by:

U
[c]
L(q)(z) = A2Ψ

(
c, (c+ 1)(1− q−1),−c+ 1

q
z

)
. (1.180)

for some constant A2.

Correspondingly, its Stieltjes transform g
[c]
L(q)(z) :=

´
µ
[c]
L(q)(dλ)(z − λ)−1 is given by:

g
[c]
L(q)(z) = −c+ 1

q

Ψ
(
c+ 1, 1 + (c+ 1)(1− q−1),− c+1

q z
)

Ψ
(
c, (c+ 1)(1− q−1),− c+1

q z
) , (1.181)

and inverting this Stieltjes transform gives the analytical expression of Eq. (1.178) for the
density.

Jacobi ensemble at high-temperature -

For eigenvalues taken from the Jacobi ensemble at high temperatures with the following con-
vention:

λ ∼ P̃ [c]
J (λ) ∝ e−(1+c)

∑N
i=1((1−q−1

1 ) log(λi)+(1−q−1
2 ) log(1−λi))|∆(λ)|

2
cN , (1.182)

the ESD of the λi converges as N → ∞ to the c-Jacobi distribution, with density givenby:
µ
[c]
J(q1,q2)

(λ) = KJ
λ(c+1)(q−1

1 −1)(1− λ)(c+1)(q−1
1 −1)

|U(λ) + eiπ(c+1)(q−1
2 −1)V (λ)|2

I(0,1) . (1.183)

The constant KJ is given by:

KJ =
Γ(c+ 1)Γ

(
(c+ 1)(q−1

1 + q−1
2 − 1) + 1)

)
Γ
(
c+1
q1

)
Γ
(
c+1
q2

) , (1.184)

and for a = (c + 1)(q−1
1 − 1) and b = (c + 1)(q−1

2 − 1), the two functions U and V of Eq.(1.183) are defined by

U(x) :=
Γ(c+ 1)Γ(a+ 1)

Γ (1 + c+ a)
2F1 (c,−c− a− b− 1,−a, x) , (1.185)

V (x) := −πcΓ (c+ a+ b+ 2)x1+a(1− x)1+b

sin(πa)Γ(2 + a)Γ (1 + c+ b)
2F1 (1− c, 2 + c+ a+ b, 2 + a, x) .

(1.186)
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The c-Jacobi distribution continuously interpolates between the Beta(q−1
1 , q−1

2 ) distribution at
c = 0 and the Watcher distribution Wat(q1, q2) of Eq. (1.47) at c → ∞, with a constant mean

given by q−1
1

q−1
1 +q−1

2

.

The differential equation for the U-function U
[c]
J(q1,q2)

(z) := exp
[
−c

´
µ
[c]
J(q1,q2)

(dλ) log(z − λ)
]

is up to a change of variable of Euler’s type and we have:

U
[c]
J(q1,q2)

(z) := A2z
−c

2F1

(
c,
c+ 1

q1
, (c+ 1)(q−1

1 + q−1
2 ),

1

z

)
, (1.187)

where

2F1(a, b; c; z) :=

∞∑
k=0

(a)k(b)k
(c)k k!

zk , (1.188)
is the (Gauss) hypergeometric function and (a)k := Γ(a+k)/Γ(a) is the Pochhammer symbol.

The Stieltjes transform g
[c]
J(q1,q2)

(z) :=
´
µ
[c]
J(q1,q2)

(dλ)(z − λ)−1 is given by:

g
[c]
J(q1,q2)

(z) =
1

z

2F1

(
c+ 1, c+1

q1
, (c+ 1)(q−1

1 + q−1
2 ), 1z

)
2F1

(
c, c+1

q1
, (c+ 1)(q−1

1 + q−1
2 ), 1z

) . (1.189)

To conclude, let’s mention that β-ensembles on the real line at high temperature have been
recently shown to be connected to the hydrodynamical limit of the classical Toda chain with
periodic conditions, see Refs. [163, 138].
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Figure 1.8: Plots of the c-Gaussian distribution of Eq. (1.172) (a) and the c-Laguerre distribution of Eq. (1.178) (b) for different values of the parameter c.

1.8 Summary and conclusion of Chapter 1

In this chapter, we have reviewed different results of random matrix theory and β-ensembles
taken in different regimes. For β-ensembles in the classical regime where β > 0 is fixed and
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N → ∞, the limiting distribution is described by a competition between a confining potential
V and a repulsive 2D-Coulomb gas pairwise interaction. This Coulomb gas picture can also
be used to derive the large deviation of the top eigenvalue of a β-ensemble. The other two
regimes of β-ensembles: the low-temperature regime where β → ∞ and N is fixed, and the
high-temperature regime where N → ∞ with Nβ/2 → c ≥ 0, share an intriguing high-low
temperature duality c ↔ N between the parameters of the two regimes.
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Chapter 2

Sum and product of random
matrices and spherical integrals

2.1 Introduction and notations

In the previous chapter, we reviewed some important results concerning the properties of in-
dividual random matrices. The goal of this chapter is to study the case where a matrix C is
given as the sum or product of two (possibly but not necessarily random) matrices A and B.
Precisely, for β ∈ {1, 2, 4} we will consider the three following cases:

• The additive self-adjoint case that is C = A + B with A,B ∈ Hermβ(N) two
(N ×N) self-adjoint matrices.

• The multiplicative self-adjoint case, that is C =
√
AB

√
A where A,B ∈

Herm++
β (N), that is A and B are two positive definite matrices (in particular their

eigenvalues are all positives). The case of semi-definite matrices can be obtained as a
limiting case but will not be discussed here for simplicity.

• The additive rectangular case, that is C = A + B with A,B ∈ MN,M (Kβ), two
(N ×M) rectangular matrices with entries in Kβ = R,C,H for β = 1, 2, 4.

For each of these three cases, our goal is to describe the spectrum (resp. the singular values in
the rectangular case) of the matrix C based on the knowledge of the spectrum (resp. singular
values) of the matrices A and B and possible additional ‘information’ - or model on the
structure of A and B. For example, what can be said if we assume one of the matrices (say
A for example) to be invariant in law? or to be additionally of low rank? what happens in the
large N limit?

In order to lighten notations, we will often denote by c = (c1, . . . , cN ) ≡ λ(C) (and resp.
c ≡ s(C) in the rectangular case) the vector of eigenvalues (resp. singular values) of the
matrix C and similarly a, b denote the set of eigenvalues/singular values of the matrices A,B.

Before jumping to the problem, let’s mention several important remarks.

Remark (Symmetrized product and usual product of matrices). We have denoted the mul-
tiplicative case as the symmetrized product C =

√
AB

√
A instead of the usual matrix

product C̃ = AB. This is because ifA and B are self-adjoint (positive definite) matrices,
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then the matrix resulting from their symmetrized product is also a self-adjoint matrix
while the result from the usual matrix product is not. However, because the twomatrices
C and C̃ are similar, they have the same set of eigenvalues. As our concerns in this thesis
lie only in the behavior of the eigenvalues (and not the eigenvectors), for the product of
twomatrices, we can use either convention. ⌋

Remark (the additive case as a limit of the multiplicative case). Every positive definite
matrix A ∈ Herm++

β (N) can be written as the exponential of a self-adjoint matrix
A = exp [A0], where the matrix A0 is simply a matrix in the same basis of A but with
eigenvalues log(a) ≡ (log(a1), . . . , log(aN )). Note that for every i = 1, . . . , N we have
ai > 0 for a matrixA ∈ Herm++

β (N) and there is no issue with the logarithm function. We
can similarly define the matrix B0 and C̃0 and the usual matrix product C̃ = AB can be
written in terms of the self-adjoint matricesA0,B0, C̃0 as:

exp[C̃0] = exp[A0] exp[B0] . (2.1)
Now in general A0 and B0 do not commute and exp[A0] exp[B0] ̸= exp[A0 + B0]. Thematrix C̃0 is given in terms of A0 and B0 by the non-trivial Baker-Campbell-Hausdorff
formula, see Refs. [15, 38]. However, if we now add a tunable parameter ϵ and perform
the re-scaling (A0,B0, C̃0) → (ϵA0, ϵB0, ϵC̃0) then at first order in ϵ we have the simple
relation:

exp[ϵC̃0] = exp [ϵ(A0 +B0) + O(ϵ)] . (2.2)
In other words, one can think of the sum of matrices as a limiting case of the product
of matrices. We will encounter this property in several instances of this thesis, where
quantities related to the spectrum of the sum of two matrices can be seen as the limiting
case of their multiplicative counterpart. ⌋

Remark (Unit/quantum multiplicative case). The multiplicative self-adjoint problem is
closely related to another problem that will not be discussed in this thesis, which con-
cerns the product of matrices of the form W = UV where U,V (and hence W) are in
Oβ(N). The eigenvalues of matrices in Oβ(N) are on the unit (complex) circle T := {z ∈
C s.t. |z| = 1}, and one may ask how the eigenvalues of W depends on the ones of
U,V. ⌋

The rest of this chapter is organized as follows: In Sec. 2.2, we introduce a toy model concerning
the norm of the sum of two randomly rotated vectors. This simple example will turn out to
be useful to understand the matrix analog developed in the rest of the chapter. In Sec. 2.3,
we briefly describe Horn’s problem, that is, the description of the set of all possible values of
the sum of two self-adjoint matrices with given spectra. In Sec. 2.4, we look at the simple
model for the sum/product of random matrices, where one performs a rank-one perturbation of
a given matrix. In Sec. 2.5, we describe another simple model of the sum/product of matrices
where one constructs a matrix process made of infinitesimal perturbation. In Sec. 2.6, we tackle
the generic case and its large N limit, describes by the famous free convolution. In Sec. 2.7,
we describe the finite free convolution, which can be seen as the low-temperature counterpart
(β → ∞ with N fixed) of the previous free convolution.
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2.2 A heuristic toy model: the norm of the sum of
two vectors

Let’s look at a simple instructive vector problem, where we have two vectors x and y belonging
to RN but one only knows their norms given respectively by x0 > 0 and y0 > 0. We then
construct a third vector z made of the sum of these two vectors:

z = x+ y , (2.3)
and ask the following simple question:

What can we say about the norm z0 of the vector z ?

In this worst case scenario, by which we mean that one does not have any other prior information
on the vectors x and y, thanks to the triangle inequality, one only knows that z0 belongs to
the segment:

Ωv ≡ Ωv(x0, y0) := {z ∈ R+ s.t |x0 − y0| ≤ z ≤ x0 + y0} = I[|x0−y0|,x0+y0] , (2.4)
where the index .v indicates quantities referring to this vector toy model.

Let’s now assume that one has additional information on the law of the relative position vectors.
The most natural example one can think of is a random model where one of the vectors is in
an arbitrary position with respect to the other or more explicitly:

• the direction of one of the vectors (say x) is taken uniformly at random that is

x = x0σ with σ ∼ Unif
[
SN−1

]
, (2.5)

• while the direction of the other vector is fixed

y = y0e1 with e1 = (1, 0, . . . , 0) . (2.6)
The goal is then to describe the law pv(z0) which is supported on Ωv given by Eq. (2.4) of the
norm of z. Note that since we are only interested in the norm z0, one can take y to be equal
to y0 time any unit vector without changing the law pv(.). The description of the law will be
done by two different methods, as both are instructive for the matrix model described later on.

The most straightforward way to get the density is simply to compute the change of variable
from the σ to z0:

z0 = ∥x+ y∥ , (2.7)
z0 =

√
x20 + y20 + 2x0y0 σTe1 . (2.8)

Next, the law of the first coordinate σ1 := σTe1 ∼ µ is given by:

µ(x) =
(1− x2)N/2−1

B
(
N
2 ,

1
2

) I[−1,1] , (2.9)
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where B(., .) is the Beta function. Note that the square of a random variable distributed
according to Eq. (2.9) is a beta random variable Beta(a, b) with parameters a = 1/2 and
b = (N − 1)/2. One fancy way to describe the norm z0 is then to say that it is equal in law to
the solution of the random equation:

z0 −
√

x20 + y20 + 2x0y0 d = 0 , (2.10)
with d ∼ µ given by Eq. (2.9). If we now perform the change of variable given by Eq. (2.8) and
compute the Jacobian associated with it, we get the following law:

pv(z0) =
1

C
·
(
z20 − |x0 − y0|2

)N/2−1/2 (
(x0 + y0)

2 − z20
)N/2−1/2 I[|x0−y0|,x0+y0] , (2.11)

with the normalization constant C = 2N−2B(N/2, 1/2) (x0y0)
N−1. A plot of the density

is given in Fig. 2.1. As N → ∞, the distribution µ of Eq. (2.9) converges to the Dirac
distribution at zero, this is the well-known high-dimensional phenomenon where a rotationally
invariant vector is almost surely orthogonal to any other (independent) vector in the large N

limit. If we use this in the random equation (2.10) we immediately get the following large N

asymptotic:

z0 →
N→∞

√
x20 + y20 , (2.12)

which is nothing else than the Pythagorean theorem.
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Figure 2.1: A plot of the density of the norm of the sum of two rotationally in-variant vectors with norms x0 = y0 = 1 for different values of the dimension N .

Now let’s look at the same problem but from a different angle. Without loss of generality,
we can replace y = y0e1 by y = y0σ

′ where σ′ ∼ Unif
[
SN−1

]
without changing the law

pv(z0). Clearly, by rotationally invariance of x and y, z is also of the form z = z0σ
′′ with

σ′′ ∼ Unif
[
SN−1

]
. By classical harmonic analysis, since x and y are independent, we have

multiplication of the Fourier transforms (or characteristic function):

Fz(t) = Fx(t)Fy(t) , (2.13)
with the Fourier transform given by:

Fq(t) := E
[
eiq

Tt
]
= E

[
ei

∑N
k=0 qktk

]
. (2.14)
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If we first look at the RHS of Eq. (2.13), the Fourier transform of x is simply an average over
the angular coordinate which can be expressed in terms of Bessel functions:

Fx(t) =

ˆ
SN−1

eix0σTtµUnif(dσ) (2.15)
Fx(t) = 2N/2−1Γ(N/2) (x0∥t∥)1−N/2JN/2−1(x0∥t∥) , (2.16)

where Jν(x) :=
∑∞

m=0
(−1)m

m!Γ(m+ν+1)

(
x
2

)2m+ν is the Bessel function of the first kind of order ν,
and similarly for the vector y.

In order to ease notation, let’s denote the angular integral obtained as the previousFourier transform:
Iv(λ, t) := 2N/2−1Γ(N/2) (λt)1−N/2JN/2−1(λt) . (2.17)

Now, on the one hand, the distribution f of the vector z (not its norm!) is given by an inverse
radial Fourier transform which can be also expressed in terms of Bessel functions:

f(z) =
1

(2π)N/2

ˆ
e−i tTz (Fx(t)Fy(t)) dt , (2.18)

f(z) =
1

(2π)N/2

ˆ
e−i tTzIv (x0, ∥t∥) Iv (y0, ∥t∥) dt , (2.19)

f(z) =

ˆ ∞

0

tN/2

∥z∥N/2−1
JN/2−1(∥z∥t)Iv (x0, t) Iv (y0, t) dt . (2.20)

On the other hand, the law pv(.) of the norm z0 of the rotationally invariant vector z is given
in terms of the vector distribution f(.) by the Jacobian of the spherical change of coordinate
and reads:

f(z) =
Γ(N/2)

2πN/2

1

∥z∥N−1
pv(∥z∥) , (2.21)

where Γ(N/2)

2πN/2 is the volume of the unit sphere. All in all, this give the following (Bessel) integral
representation for the law of z0:

pv(z0) =
zN−1
0

CN

ˆ
Iv(x0, t)Iv(y0, t)Iv(z0, t)t

N−1dt , (2.22)
with CN := 2N−2Γ(N/2)2. Using Sonine’s formula (see for example Ref. [187]), this integral
representation can be simplified to give the expression of Eq. (2.11). Note that this harmonic
approach can be easily generalized to the sum of an arbitrary number of rotationally invariant
vectors.

For each of the three operations, there exists a dictionary between the matrix operation and
this toy model:

• The norms x0, y0, z0 of the vectors x,y, z in this toy model are replaced by the set of
eigenvalues (or singular values) a, b, c of the matrices A,B,C and similarly the spherical
change of coordinate is replaced by Weyl’s formula for eigenvalues (or singular values).
The notion of a rotationally invariant vector is replaced by the notation of β-invariance
in law as described in the previous chapter.
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• The segment Ωv of all possible values of the norm of the sum of two vectors in this toy
model is replaced by the Horn convex hull briefly discussed in the next section.

• The angular integral Iv obtained as an average of the Fourier transform over the unit
sphere is replaced by spherical integrals corresponding to an average over the group
Oβ(N) (and also Oβ(M) in the rectangular case) of the Fourier transform associated to
the underlying operation.

• The property of almost sure orthogonality of rotationally-invariant vectors in the large N

is replaced by the notion of asymptotic freeness for β-invariant matrices. Just like one
computes the norm of the sum of orthogonal vectors by the simple Pythagorean theorem
of Eq. (2.12), one can compute the LSD of the sum and product of free matrices thanks
to the free probability transforms described in Sec. 2.6.3.

There is however a crucial difference in the random matrix setting: while one can obtain an
analog of the integral representation of Eq. (2.22) for the joint density associated with each
operation, there is in general no known analog of Sonine’s formula to simplify it.

2.3 A few words on Horn’s problem

Let’s start with the worst case scenario, where one knows the spectrum a, b of two matrices
A,B ∈ Hermβ(N) but does not have any other prior information on A,B. What can one says
about the unknown spectrum c of C = A+B ? Note that the multiplicative/rectangular case
will be discussed shortly after. In other words, one wants to find a set of relations constraining
the set of possible values of the sum of two self-adjoint matrices. Since we are only interested
in the eigenvalues, this is also equivalent to finding all acceptable values of the eigenvalues of
Diag(a) +VDiag(b)V∗ for all V ∈ Oβ(N).

The simplest relation one can think of is the linearity of the trace, Tr (A+B) = TrA+TrB

which constrained the set of possible vectors c according to:

N∑
i=1

ci =
N∑
i=1

(ai + bi) . (2.23)

Next, another idea is to use the sup norm characterization of the top eigenvalue:

a1 = sup
x∈KN

β ,∥x∥=1

x∗Ax , (2.24)

which constrained the top eigenvalue of the sum to be below the sum of the top eigenvalues:

c1 ≤ a1 + b1 . (2.25)
The famous Weyl’s inequalities provides another set of inequalities constraining each eigenvalue
ci individually:

aj + bk ≤ ci ≤ ar + bs for j + k −N ≥ i ≥ r + s− 1 . (2.26)
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Now there are many other complex inequalities (for example the Ky Fan inequalities and the
Lidskii-Wietland inequalities to cite a few, see for example Ref. [72]), and a natural question
is to know ‘when does it stop’ and if this type of linear inequalities completely describes the
set of possible eigenvalues of the sum of two matrices. Interested in the development of this
problem, A. Horn conjectured in 1962 in Ref. [92], that the eigenvalues of the sum of two
Hermitian (β = 2) satisfy the trace constraint and a set of linear inequalities of the form

Ω ≡ Ω(a, b) :=

c ∈ RN
≥ s.t

∑
i∈I

ci ≤
∑
j∈J

aj +
∑
k∈K

bk for (I, J,K) ∈ T (N)

and
N∑
i=1

ci =

N∑
j=1

aj + bj

 , (2.27)

where the admissible sets T (N) can be defined by a sophisticated induction but is not described
here for simplicity. Importantly, Horn further conjectured the set of all these linear inequalities
for the vector c forms a convex polyhedron - now known as the Horn convex hull - and this
convex polyhedron completely describes the set of all possible eigenvalues of the matrix C.

It took several decades to prove Horn’s conjecture and the first real breakthrough was made
by A. Klaychko who proved in Ref. [102] that this conjecture can be reduced to another
conjecture (the so-called saturation conjecture) related to Littlewood-Richardson coefficients
and the latter conjecture was then proved in Ref. [103] by A. Knutson and T. Tao by
introducing a mathematical object known as the honeycomb model. The details of the original
proof used advanced tools from algebraic geometry and representation theory and are far outside
the scope of this thesis. Let’s mention however that the latter result can be generalized to
β = 1, 4 and the corresponding Horn convex hull is the same.

Similar to the additive case, one can ask if there is a multiplicative counterpart and a rectangular
counterpart of the Horn convex Hull and the answer is positive, and we refer the reader to Ref.
[72] for the details. In the rectangular case, the first two simplest relations are again given
by Eq. (2.23) and (2.24) while for the multiplicative case, the trace equality is replaced by the
determinant equality which gives:

N∏
i=1

ci =

N∏
j=1

(aj bj) , (2.28)

and the supnorm inequality gives:

c1 ≤ a1 b1 . (2.29)

2.4 Rank-one perturbation and BBP-phase transi-
tion

2.4.1 Introduction
In this section we consider the case of a rank-one perturbation of a matrix, that is:
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• A = γvv∗ with v ∈ KN
β and ∥v∥2 = 1 for the (self-adjoint) additive case,

• A = I+ γvv∗ for the multiplicative case,

• A = γvu∗ for the (additive) rectangular case.

Without loss of generality, we will assume γ > 0 (resp. γ > 1 in the multiplicative case), since
one retrieves the case γ < 0 (resp. 0 < γ < 1) by setting B → −B (resp. B → B−1).
We start with the description of the additive case in the generic setting where do not assume
a model for the description of the vector of perturbation v, we will then quickly consider the
β-invariant setting.

It should be mentioned that in statistics, the problem is usually looked at the other way: the
rank-one matrix corresponds to a planted signal corrupted by a noise matrix B and the goal is
to retrieve this signal, see for example Ref. [110] and references therein.

In the following to differentiate each operation, the joint density for the eigenvalues of the
random (self-adjoint) additive perturbation will be denoted by P(β)(·|γ, b), the one for the
product will denote by P(β)

× (·|γ, b) and the one for the singular values of the rectangular case
will be denoted by P(β)

q (·|γ, b).

2.4.2 Additive rank-one perturbation
In the case of rank-one additive perturbation, Horn inequalities reduce to Weyl’s inequalities
and the trace constraint, that is the set c of decreasing eigenvalues of C = B+γvv∗ interlaces
between the eigenvalues of B:

Ωrk1 ≡ Ωrk1(γ, b) :=
{
c ∈ RN s.t bN ≤ cN ≤ bN−1 ≤ · · · ≤ c1 ≤ b1 + γ

and
N∑
i=1

ci = γ +

N∑
i=1

bi

}
, (2.30)

where bi are the eigenvalues of B in decreasing order. Now to understand the behavior of the
set c, we will use the following result known as the Sherman-Morrison formula, to compute the
inverse of a rank-one update of an invertible matrix:

Sherman-Morrison formula: if M ∈ MN,N (Kβ) is invertible and u0,v0 ∈ KN
β then

(M+ u0v
∗
0) is invertible if and only if 1 + v∗

0M
−1u0 ̸= 0 and in this case it is given by:

(M+ u0v
∗
0)

−1 = M−1 − M−1u0v
∗
0M

−1

1 + v∗
0M

−1u0
. (2.31)

If we take the determinant of this equation and invert it we have:

det (M+ u0v
∗
0) =

(
1 + v∗

0M
−1u0

)
· detM , (2.32)

Now setting M = zI−B, u0 = −γv, v0 = v and denote by V the eigenmatrix of B, we get
the following relation between the characteristic polynomial of C and the one of B:

det(zI−C) =

(
1− γ

N∑
i=1

|e∗iVv|2

z − bi

)
· det(zI−B) , (2.33)
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with ei the vector with 1 on the ith coordinate and zero elsewhere. Since the characteristic
polynomial cancels for values of z equal to the eigenvalues of its matrix we have that the
eigenvalues ci of C which are not eigenvalues of B are solutions of the following secular
equation:

1− γ
N∑
j=1

∣∣∣e∗jVv
∣∣∣2

ci − bj
= 0 (for ci /∈ {b}). (2.34)

This describes the general setting where one does not have any prior information on B or its
rank-one perturbation. Now as in the toy model, we move to a random version of this problem
where one of the matrices is β-invariant in law, which in the case of rank-one perturbation
amounts to studying the following problem:

The random rank-one additive Horn problem is defined by
C = Diag(b) + γ σσ∗ , (2.35)

where γ > 0 and σ ∼ Unif
[
SN−1
β

]. We recall that for β = 1, SN−1
β=1 ≡ SN−1 and for

β = 2, 4, SN−1
β is respectively the complex and quaternionic sphere. We will also assumethe spectrum ofDiag(b) to be simple, that is bN < · · · < b1.

Note again that we have fixed the matrix B ≡ Diag(b) to be diagonal without loss of generality
for the eigenvalue problem since if B is not diagonal, we can always absorb its eigenmatrix in
σ by rotationally invariance. Next, to describe the law of c we need the law of the square of
the components of σ.

If σ ∼ Unif
[
SN−1
β

] then the vector (|σ1|2, . . . , |σN |2) ∼ Dir(β/2) where Dir(α) denotes
the Dirichlet distribution with uniform parameters (α, . . . , α) with density given overthe simplex∆N := {x ∈ RN s.t 0 ≤ xi ≤ 1 for i = 1, . . . , N and ∑xi = 1} by:

µDir(α)(x) :=
Γ(α)N

Γ(Nα)

N∏
i=1

xα−1
i I∆N . (2.36)

From this result and Eq.(2.37) we have a complete characterization for this problem.

Result 2.1 (random secular equation for the rank-one additive problem)

The eigenvalues c of the matrix C given by the random rank-one additive Horn problem
of Eq. (2.35) are equal in law to the solutions with unknown ci of the following random
secular equation

1− γ

N∑
j=1

dj
ci − bj

= 0 , (2.37)
where d ∼ Dir(β/2).

Note that while Eq. (2.37) has been derived for β ∈ {1, 2, 4}, solutions of Eq. (2.37) can be
naturally extended for any β > 0 even if we do not have a model for the (additive) rank-one
perturbation of a matrix for β /∈ {1, 2, 4}.
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Figure 2.2: Illustration of the solution of a secular equation (2.37) for N = 5and the positions of the bi’s are equidistributed between 0 and 1 (representedby dotted vertical lines). The new eigenvalues c1, . . . , cN (in red) are the zeros of
the function f(z) := 1− γ

N

∑N
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z−bj

, where d ∼ Dir(1/2).

Joint density -

Next, we briefly describe how one can get the joint density P(β)(.|γ, b) of the eigenvalues c of
the rank-one perturbation from Eq. (2.37) and refer to Ref. [67] for details. The LHS of Eq.
(2.37) for ci replaced by λ ∈ C can be expressed as a ratio of polynomials:

1− γ

N∑
j=1

dj
λ− bj

=

∏N
i=1(λ− ci)∏N
j=1(λ− bj)

, (2.38)
and if one evaluates the residue at λ = bj of this equation, one gets the following formula for
the change of variable from d to c:

−γdj =

∏N
i=1(bj − ci)∏N

i=1|i ̸=j(bj − bi)
. (2.39)

Next, the Jacobian of this change of variable can be expressed as a modified Cauchy double
alternant determinant:∣∣∣∣[∂d∂c

]∣∣∣∣ =
∣∣∣∣∣det

[
1

bj − ci
− 1

bj − cN

]N−1

i,j=1

∣∣∣∣∣ . (2.40)
Now if ones perform the change of variable given by Eq. (2.39) in Eq. (2.36) for α = β/2 and
then uses known identities for the Cauchy double alternant evaluation given by Eq. (2.40), one
gets after simplification the following result for the joint law

Result 2.2 (joint density for the additive rank-one perturbation [190, 67])

The joint density of the eigenvalues c of the matrix C given by the random rank-one additive
Horn problem of Eq. (2.35) is given by:

P(β)(c|γ, b) =
Γ
(
Nβ
2

)
Γ(β/2)Nγ

Nβ
2

−1|∆(b)|β−1
|∆(c)|

N−1∏
j=1

N∏
p=1

|cj − bp|
β
2
−1 IΩrk1 (2.41)
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where we recall that Ωrk1 is defined by Eq. (2.30).
Let’s mention again that this joint law can be naturally defined for any β > 0 even though our
derivation started with a rank-one perturbation model, which only makes sense for β ∈ {1, 2, 4}.
The constant γ in Eq. (2.41) only appears in the convex hull Ωrk1 (and hence also in the
normalization of the density).

Remark (Simplification for β = 2). For β = 2, the mixed products involving cj and bp inEq. (2.41) are equal to one, and we get the following simple expression:
P(β=2)(c|γ, b) = Γ (N)

γN−1

|∆(c)|
|∆(b)|

IΩrk1 , (2.42)
and one can think of the β = 2 rank-one modification as the law of N particles, each of
them constrained to be in a box ci ∈ [bi, bi−1] (with the convention b0 := b1 + γ), and the
particles are interacting with a 2d logarithm repulsion and the trace constraint. ⌋

BBP phase transition -

Let’s now turn to the large N limit of this additive rank-one perturbation. We consider a setting
where the ESD of the matrix B = Diag(b) converges to a smooth limit:

µB(λ) :=
1

N

N∑
i=1

δ(λ− bi) −−−−→
N→∞

µB(λ) , (2.43)
where the top and bottom edge of the support of µB are finite and, given respectively by b+
and b−. We further assume that the top/bottom eigenvalue converges to the top/bottom
edge: b1 → b+, bN → b−. Clearly, by the interlacing conditions of Eq. (2.30), the ESD of the
matrix C, given as the random rank-one perturbation of B by Eq. (2.35), also converges to the
same LSD µB and the top eigenvalue c1 of C is the only eigenvalue which may pop out of the
bulk since it is asymptotically restricted to belong to the segment [b+,b+ + γ]. Our goal is
therefore to understand the - hopefully deterministic - limit of this top eigenvalue. While this
asymptotic behavior can be technically done thanks to the joint law of Eq. (2.41) it is actually
much easier to consider the large N behavior of the secular equation (2.37).
For d ∼ Dir(β/2), the mean of each di is given by 1/N and its variance by:

E

[(
di −

1

N

)2
]
=

(N − 1)

N2
(
Nβ
2 + 1

) = O(N−2) , (2.44)

this means that in the large N limit the top eigenvalue c1 is not in the spectrum of B if it is
(approximately) the solution of:

1

N

N∑
j=1

1

c1 − bj
≈ 1

γ
, (2.45)

where from a purely rigorous point of view, one needs to understand Eq. (2.45) as an event
with high probability. The LHS of Eq. (2.45) is nothing else than the Stieltjes transform gB of
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the distribution µB and so asymptotically one needs to understand the behavior of the solution
(if there is any) of the equation:

gB(c1) =
1

γ
, (2.46)

for c1 ∈ (b+, b+ + γ], where we have removed the approximate sign and gB(z) :=
´
(z −

λ)−1µB(dλ) is the Stieltjes transform of µB. Now, we know that gB(.) is a strictly decreasing
function for an argument higher than the top edge b+ and it goes to zero at infinity. If we
denote by:

gB(b+) := lim
ϵ→0+

gB(b+ + ϵ) , (2.47)
the right limit of the Stieltjes near the edge, then this means that there is always a unique
solution of Eq. (2.46) provided that the inequality 1/γ ≤ gB(b+) is true. If this inequality
holds, then c1 converges to the inverse of the Stieltjes transform evaluated at 1/γ. On the
other hand, if 1/γ > gB(b+), there is no solution to Eq. (2.46) on (b+,b++γ] and this means
that the top eigenvalue c1 necessarily converges to the top edge b+. Thus, we have a phase
transition depending on the value of γ, which can be summarized in the following result.

Result 2.3 (BBP phase transition for the sum [57, 10, 22])

In the large N limit, if the ESD of a matrix B converges to a LSD µB in a such way
that the top eigenvalue converges to the upper edge of the support of the LSD b1 → b+,
then the position of the top eigenvalue of the rank-one perturbation C given by Eq. (2.35)
admits a continuous phase transition depending on the value of γ:

• For γ ≤ 1
gB(b+) : the top eigenvalue sticks to the edge b+,

c1 → b+ . (2.48)
• For γ > 1

gB(b+) : the top eigenvalue pops out of the bulk and is equal to

c1 → λ∗ := g
⟨−1⟩
B

(
1

γ

)
> b+ , (2.49)

where gB is the Stieltjes transform of the LSD µB defined by Eq. (1.26), gB(b+) :=

limϵ→0+ gB(b+ + ϵ) and g
⟨−1⟩
B is the functional inverse of the Stieltjes transform.

The BBP transition first appeared in the seminal work of Edwards and Jones in Ref. [57]
(and for this reason, some authors argue that it should be named the EJ-BBP phase transition
!). The acronym BBP stands for the first letters of the names of the three mathematicians (J.
Baik, G. Ben Arous and S. Péché) who study the local behavior of this phase transition.
The BBP transition still applies if the deterministic matrix B is replaced by a random matrix,
provided the assumptions of Res. 2.3 holds, and in particular in this case where B is taken
from β-ensemble described in Sec. 1.4. There exists a similar phase transition for the overlap
between the top eigenvalue of the matrix C and the direction of the rank-one perturbation,
and one can also generalize the setting to small-rank perturbation, see Ref. [22].

Remark (Notation for the inverse of the Stieltjes transform). We have denoted by g
⟨−1⟩
Bthe inverse of the Stieltjes transform gB , which satisfies g⟨−1⟩

B (gB(z)) = z for z > b+. It
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is also customary (especially in the physics literature) to write this transform as zB(.) ≡
g
⟨−1⟩
B (.) because if the Stieltjes transform is a solution of a fixed point equation (typically
an algebraic equation) f(z, gB(z)) = 0 then by definition the inverse transform satisfies
the same equation for a value of gB(z) = g being fixed: f(zB(g), g) = 0 and the correct
solution of this new fixed point equation is given by the behavior near zero zB(g) ∼

g→0
1/g.

For example, the Stieltjes transform of the semi-circle distribution given by Eq. (1.41) is
the solution of:

σ2g2sc(σ)(z)− zgsc(σ)(z) + 1 = 0 , (2.50)
from which one can immediately deduce the expression for the inverse Stieltjes trans-
form:

g
⟨−1⟩
sc(σ)(θ) =

1

θ
+ σ2θ , (2.51)

valid for θ ∈ (0, 1/σ) since limϵ→0+ gsc(σ)(2σ+ ϵ) = 1/σ. The limiting value 1/σ can also be
deduced by computing the derivative of the inverse of the Stieltjes transform and noticing
that it changes sign after this point hence the inverse transform is no more invertible. ⌋

Example (rank-one perturbation of GOE matrices). If we take C = A + γe1e
T
1 with A a

GOEmatrix with law given by Eq. (1.39) and e1 = (1, 0, . . . , 0), then since the LSD of GOE
matrices is the semi-circle distribution with inverse Stieltjes transform given by Eq. (2.51),
asymptotically the top eigenvalue ofC is given by:

c1 →


2σ if γ ≤ σ ,

γ + σ2

γ if γ ≥ σ .

(2.52)

This is illustrated in Fig. 2.3. ■

We conclude this section on the rank-one additive perturbation with two remarks and refer to
[22] for a complete survey of this problem.

Remark (typical fluctuations and large deviations). Similarly to individual matrix taken
from a β-ensemble, one can ask what are the typical fluctuations of c1 around the de-
terministic limit given by Eq. (2.48) and Eq. (2.49). If B is taken from a β-invariant and is
non-critical (that is, it has a square-root behavior near the top edge), then one can show
that for γ < 1/gB(b+), the fluctuations are of Tracy-Widom type (and hence of order
N−2/3), while for γ > 1/gB(b+) the fluctuations are Gaussian and of orderN−1/2. Exactly
at the transition γ = 1/gB(b+), the fluctuations are given by another class of distribution.In particular, for β = 2, this is given by a modified Airy-Kernel determinantal process, as
shown in Ref. [10]. Similarly, one can ask what is the large deviation principle associated
with this top eigenvalue and this is discussed in detail in Chapter 2, Sec. 5.3. ⌋

Remark (absence of phase transition in a specific case). If the LSDµB is critical andbehaves
near the top edge as:

µB(λ) ∼
λ↗b+

1

K
(b+ − λ)θ , (2.53)

with an exponent θ ≤ 0 (for example this is the case for the uniform distribution), then
one can show that gB(b+) = +∞ and hence for γ > 0 there is no phase transition: there
is always an outlier outside the bulk. ⌋
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Figure 2.3: Illustration of an outlier for a rank-one deformation of a GOEmatrixwith N = 1000, σ = 1 and γ = 4 compared with the asymptotic behavior givenby the bottom line of Eq. (2.52).

2.4.3 Multiplicative rank-one perturbation
We next turn to the multiplicative counterpart of the previous rank-one perturbation:

The random rank-one multiplicative Horn problem is defined by
C =

√
I+ γ σσ∗Diag(b)

√
I+ γ σσ∗ , (2.54)

where γ > 1 and σ ∼ Unif
[
SN−1
β

]. We will also assume the spectrum ofDiag(b) to be
simple and positive, that is b1 > · · · > bN > 0.

The eigenvalues c of C belong to the set

Ωrk1
× :=

{
c ∈ RN s.t bN ≤ cN ≤ bN−1 ≤ · · · ≤ c1 ≤ b1(1 + γ)

and
N∏
i=1

ci = (1 + γ)
N∏
i=1

bi

}
. (2.55)

As the study of this multiplicative rank-one perturbation is very similar to the one of the
additive case, we only sketch the proof of the main results. If we denote by B = Diag(b),
the eigenvalues of the matrix C given by Eq. (2.54) are the same as the ones of the matrix√
B(I+γ σσ∗)

√
B = B+γ(

√
Bσ)(

√
Bσ)∗. One can use the Sherman-Morrison determinant

lemma of Eq. (2.32) with u0 = −γ(
√
Bσ), v0 = (

√
Bσ) and the law of Eq. (2.36) of the

square of the absolute value of the coordinate of a vector taken uniformly over the sphere to
get the following result.

Result 2.4 (random secular equation for the rank-one multiplicative problem)

The eigenvalues c of the matrix C given by the random rank-one multiplicative Horn
problem of Eq. (2.54) are equal in law to the solutions with unknown ci of the following
random secular equation:

1− γ
N∑
i=1

dibi
ci − bi

= 0 , (2.56)

62



where d ∼ Dir(β/2) is the Dirichlet distribution with density given by Eq. (2.36).
Note that the secular equation of the multiplicative case only differs from the additive case by
an extra factor bi in the fraction entering the sum. The latter case can be seen as a limiting
case of the multiplicative case thanks to the following remark.

Remark (additive rank-one case as a limit of the multiplicative rank-one case). As explained
in the introductory section of the chapter, one should recover the additive case as a limit
of the multiplicative case under the rescaling given by Eq. (2.2) and the limit ϵ → 0+.
Indeed, if we perform the change of variable (γ = eϵγ0 − 1, b = eϵb0 , c = eϵc0) than Eq.
(2.56) writes:

1− (eϵγ0 − 1)
N∑
i=1

die
ϵb0,i

eϵc0,i − eϵb0,i
= 0 , (2.57)

which gives at zero order in ϵ:

1− γ0

N∑
i=1

di
c0,i − b0,i

+O(ϵ) = 0 . (2.58)

which nothing else than the secular equation Eq. (2.37) for the additive case. ⌋

Joint density -

The derivation of the expression for the joint density of the multiplicative rank-one perturbation
is also very similar to the ones of the additive case, and we only give the final result.

Result 2.5 (joint density for the multiplicative rank-one perturbation)

The joint density of the eigenvalues c of the matrix C given by the random rank-one
multiplicative Horn problem of Eq. (2.54) is given by:

P(β)
× (c|γ, b) =

Γ
(
Nβ
2

)
Γ(β/2)Nγ

Nβ
2

−1|∆(b)|β−1
|∆(c)|

N−1∏
j=1

N∏
p=1

|cj − bp|
β
2
−1 IΩrk1

×
(2.59)

where we recall that Ωrk1
× is defined by Eq. (2.55).

Note that the expression for the joint density of the multiplicative case only differs from the
ones of the additive case by the constraint Ωrk1 replaced by Ωrk1

× . It should be mentioned that
the expression appears in Ref. [190] for β = 2 but does not seem to have appeared before for
β = 1 or β = 4 but the result is actually an immediate consequence of prop 4.2.1 in [67].

BBP phase transition -

We now consider the large N limit of this multiplicative rank-one perturbation, where the ESD
of the matrix B = Diag(b) converges to a smooth LSD µB with support included in R∗

+ and
such that the top eigenvalue converges to the top edge: b1 → b+. The LSD of the multiplicative
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rank-one perturbation matrix C is also given by µB. For N large, the top eigenvalue c1 is not
in the spectrum of B if it is approximately solution of:

1

N

N∑
j=1

bj
c1 − bj

≈ 1

γ
. (2.60)

The LHS of Eq. (2.45) is nothing else than the T-transform transform tB(z) :=
´
λ (z −

λ)−1µB(dλ) of the distribution µB and since the T-transform is a decreasing function for
z > b+, we deduce by a similar argument as in the additive case, the following result.

Result 2.6 (BBP phase transition for the product [22])

In the large N limit, if the ESD of the bi converges to a LSD µB in a such way that the
top eigenvalue converges to the upper edge of the support of the LSD b1 → b+, then the
position of the top eigenvalue of the rank-one perturbation C given by Eq. (2.35) admits a
phase transition depending on the value of γ:

• for γ < 1
tB(b+) , the top eigenvalue sticks to the edge b+:

c1 → b+ , (2.61)
• for γ > 1

tB(b+) , the top eigenvalue pops out of the bulk and is equal to:

c1 → λ∗ := t
⟨−1⟩
B

(
1

γ

)
. (2.62)

We give below an explicit example that has seen a lot of application in high-dimensional PCA.

Example (BBP transition for spiked Wishart). For example, let’s consider the case where
one samplesM realizations of a N -dimensional Gaussian vector xm ∼ N (0,Σ) form =

1, . . . ,M , with covariance given by Σ = I + γe1e
T
1 . By property of Gaussian vectors,

xm
in law
=

√
I+ γe1eT1 x̂m with x̂m ∼ N (0, I) and hence the empirical covariance estimator

is given by:
C :=

1

M

M∑
m=1

xmxT
m

in law
=

√
I+ γe1eT1 B

√
I+ γe1eT1 , (2.63)

where B is LOE (or Wishart) matrix with parameters N and M . In the double scaling
where N,M → ∞ with N/M → q ∈ (0, 1), the ESD of B converges to the Marčenko-
Pastur distribution of Eq. (1.43) and sinceC is a rank-one perturbation of aWishart matrix
- known as a spikedWishart - by computing the inverse of the T-transformof theMarčenko-
Pastur distribution we have that the top eigenvalue ofC is asymptotically given by:

c1 →


(1 +

√
q)2 if γ ≤ √

q ,

(1 + γ)
(
1 + q

γ

) if γ ≥ √
q .

(2.64)

Thus, if one thinks of the rank-one vector as a signal, then this signal is asymptotically
detectable in the spectrum of the matrixC only if γ >

√
q. ■
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2.4.4 Rectangular rank-one perturbation
This section deals with rectangular matrices.

The random rank-one rectangular Horn problem is defined by
C = Diagq(b) + γ σσ′∗ , (2.65)

where σ ∼ Unif
[
SN−1
β

],σ′ ∼ Unif
[
SM−1
β

] and we recall thatDiagq(.) denotes the (N ×
M) diagonal matrix as given by Eq. (1.14). We will also assume γ > 0 without loss ofgenerality.

For the sum or the product of rank-one perturbation, the starting point is the determinant
lemma of Eq. (2.32) obtained from the Sherman-Morrison formula of Eq. (2.31). For the
rectangular case, one needs to use a generalization of the Sherman-Morrison formula known as
Woodbury’s formula from which one can show that the singular values of C (different from the
ones of B = Diagq(b)) are the zeros of the determinant of a (2 × 2) matrix. Expanding the
determinant gives the following final result, and we refer to Ref. [23] for details.

Result 2.7 (random secular equation for the rank-one rectangular problem)

The singular values c of the matrix C given by the random rank-one (additive) rectangular
Horn problem of Eq. (2.65) are equal in law to the solutions of the following random
secular equation(

N∑
i=1

z|σi|2

z2 − s2i

)(
N∑
i=1

z|σ′
i|2

z2 − s2i
+

1

z

M∑
i=N+1

|σ′
j |2
)
−

(
N∑
i=1

siσiσ
′
i
∗

z2 − s2i
− 1

γ

)(
N∑
i=1

siσ
∗
i σ

′
i

z2 − s2i
− 1

γ

)
= 0 ,

(2.66)
where σ ∼ Unif

[
SN−1
β

]
and σ′ ∼ Unif

[
SM−1
β

]
.

As far as I am aware, unlike the additive and multiplicative self-adjoint case, there is no known
simple expression for the joint density of the singular values of a rank-one rectangular pertur-
bation in the literature.

Next for large N,M , the sums containing the cross-terms σiσ
′
i
∗ and σ∗

i σ
′
i do not contribute,

and we have that c1 is approximately the solution of(
1

N

N∑
i=1

z

z2 − s2i

)(
1

M

N∑
i=1

z

z2 − s2i
+

1

z

M −N

M

)
≈ 1

γ2
, (2.67)

and the LHS is nothing else than the square of the D-transform of the ESVD µB defined by
Eq. (1.32) and this leads to the following result.

Result 2.8 (BBP for the rectangular rank-one perturbation [23])

In the large N limit, if the ESVD of the bi converges to a LSVD µB in a such way that
the top singular value converges to the upper edge of the support of the LSVD b1 → b+,
then the position of the top eigenvalue of the rank-one perturbation C given by Eq. (2.65)
admits a phase transition depending on the value of γ:
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• for γ < 1
dB(s+) , the top singular value sticks to the edge b+:

c1(C) → b+ ; (2.68)
• for γ > 1

dB(s+) , the top singular value pops out of the bulk and is equal to:

c1 → s∗ := d
⟨−1⟩
B

(
1

γ

)
; (2.69)

where d
⟨−1⟩
B is the functional inverse of the D-transform of µB defined by Eq. (1.32).

2.5 Randomwalks onmatrix spaces, Dyson Brown-
ian motions, and their hydrodynamical limits

In this section, we consider a setting where for each of the three cases (additive, multiplicative,
rectangular) C is a full-rank perturbation of a matrix B obtained by an iterative procedure of
small perturbations. In the limit of infinitesimal perturbations, one obtains a matrix process
and the goal is to understand how the spectrum of B is deformed with the time t. As usual, we
start with the additive (self-adjoint) case, for which we give a detailed account of the derivation
of the main results, and then turn to the multiplicative and rectangular cases.

The joint law of eigenvalues for the additive (self-adjoint) case is denoted by P(β)
t (c|b), for the

multiplicative case by P(β)
×,t(c|b) and for the singular values of the rectangular case by P(β)

q,t (c|b).

2.5.1 Iterative infinitesimal additive perturbation and Dyson
Brownian Motion

For the additive case, the random walk on the space Hermβ(N) of self-adjoint matrices is
obtained by adding element-wise (independently and up to the symmetry) a random variable
with variance scaling as O(δt). Since we will be interested in the scaling where δt becomes
infinitesimal, thanks to the Central Limit Theorem we can consider the element-wise perturba-
tions to be Gaussian. Thus, we first start with C(t0 = 0) = B with known eigenvalues b and
then at each new time step tk+1 = tk + δt, the matrix C is modified according to

C(tk+1) = C(tk) +
√
δtXk , (2.70)

where Xk ∼ P(β)
G is a matrix taken from the Gaussian ensemble with σ = 1. Note that the

variance of each element of the matrix Xk is order O(1/N) in order to have a non-trivial limit
for the spectrum in the large N limit.

66



Joint law and the additive spherical integral -

Thus after K steps we have:

C(tK) = B+
K∑
k=1

√
δtXk , (2.71)

and since the sum of Gaussian random variables is again a Gaussian random variable with
variance given as the sum of the variances, in the continuous limit we have:

C(t) = B+
√
tX , (2.72)

with X a GOE (resp. GUE,GSE) with σ = 1 for β = 1 (resp. β = 2, 4). Since the joint
of X = (C − B)/

√
t is given by Eq. (1.39), we have that the joint density of the matrix C

knowing the matrix B is given by:

P (β)(C|B) =
1

Z
e−

Nβ
2

Tr
(C−B)2

2t , (2.73)
Expanding the product, this density can be written in the form of a matrix model with external
source

P (β)(C|B) =
1

Z ′ e
−Nβ

2 (TrV (C)−αTr(CB)+αTrB2) , (2.74)
with V (λ) = λ2/(2t) and α = 1/t. Matrix models with an external source have been extensively
studied in the literature (in particular for β = 2) and we refer the reader to the monograph [34]
for example. Since we are interested in the eigenvalues of C, we can use Weyl’s formula (1.10)
and integrate the dependency in the eigenvectors to obtain the following form for the joint law
of the eigenvalues:

P(β)
t (c|b) ∝ |∆(c)|βe−

Nβ
2

∑N
i=1 V (ci)

ˆ
Oβ(N)

e+
Nβα

2
Tr(Diag(c)VDiag(b)V∗)µHaar(dV) ,

(2.75)
with α = 1/t.

The integral over the groupOβ(N) is an important object in this thesis. For twomatrices
A,T ∈ Hermβ(N), with eigenvalues a, t, we define the additive spherical integral or
Harish-Chandra-Itzykson-Zuber (HCIZ) integral with parameter β ∈ {1, 2, 4} as

I(β)(A,T) ≡ I(β)(a, t) :=

ˆ
Oβ(N)

eTrAVTV∗
µHaar(dV) . (2.76)

Note that the HCIZ integral only depends on the eigenvalues of its matrix arguments since one
can always absorb the eigenmatrix in the Haar measure. This spherical integral will be studied
in more detail in Chapter 3. As a consequence we can write the joint law of the eigenvalues of
the matrix C at time t as:

P(β)
t (c|b) ∝ |∆(c)|βe−

Nβ
4t (

∑N
i=1 c

2
i+b2i ) I(β)

(
c,

Nβ

2t
b

)
. (2.77)

It turns out that for β = 2 (as we will see in Chapter 3) there exists a determinantal formula for
the HCIZ integral and in this case, the joint law can be simplified. However, even for β = 2, it is
difficult to characterize the limiting spectral distribution from this joint law. On the other hand,
this relation between the joint law and this spherical integral will be particularly convenient to
study the large N limit of this spherical integral, as we will see in the following chapter.

67



Stochastic differential equation for the eigenvalues -

Another way to characterize the set of eigenvalues c is to find its associated (random) equation
of evolution, from which it is easier to get the behavior at large N . To do this, let’s start
with the finite setting of Eq. (2.70), using second-order perturbation theory (also known as
Hadamard’s variational principle), at first order in δt, the eigenvalues evolve after a time step
δt according to:

ci(t+ δt) = ci(t) +
√
δtvi(t)

∗Xkvi(t) + δt
∑
j|j ̸=i

|vj(t)
∗Xkvi(t)|2

ci(t)− cj(t)
+O(δt3/2) , (2.78)

where vi(t) is the ith eigenvector of the matrix C(t) at time t. Now since Xk is β-invariant,
we can always set this vector to be vi(t) = ei without changing the law of the eigenvalues
c(t+ δt) and since the entries of Xk are Gaussian, we have:

ci(t+ δt)− ci(t) =
1

N

∑
j|j ̸=i

|ξij |2

ci(t)− cj(t)
δt+

√
2

Nβ

√
δtξii +O(δt3/2) , (2.79)

with ξij a Gaussian random variable with variance one. At first order in δt, the first term of the
RHS of Eq. (2.79) is dominated by its mean and since the term

√
δtξii is a Gaussian increment

with variance
√
δt, one obtains in the informal limit δt → dt the following stochastic differential

equation known as the Dyson Brownian Motion (DBM), which was first proposed by Dyson
in Ref. [56]:

dci(t) =
1

N

∑
j|j ̸=i

1

ci(t)− cj(t)
dt+

√
2

Nβ
dB

(i)
t , (2.80)

where (dB
(1)
t , . . . ,dB

(N)
t ) are N independent Brownian motions. The force of the interactions

between the ci in the DBM of (2.80) is the derivative of the interaction term of the 2d Coulomb
gas, and hence the eigenvalues repel each other. For β = 2, one can show that the DBM is
equal in law as the process of N Brownian particles (or vicious walker) conditioned to never
intersect. A plot of the trajectories of a DBM is given in Fig. 2.4.

Large N limit and the Burger’s equation -

Now, this DBM is particularly well-suited for the study of the large N limit. To do so, let’s
first perform a change of variable from the ci to the associated Stieltjes transform gC ≡
g(c1, . . . , cN , z) = 1/N

∑N
i=1(z − ci)

−1, which is given by Ito’s lemma as:

dgC =
N∑
i=1

∂igC · dci +
1

2

∑
i,j

∂i∂jgC ·
(

2

Nβ

)
dt , (2.81)

where ∂i ≡ ∂ci and these derivatives are given by ∂igC = (z − ci)
−2/N and ∂i∂jgC =

δij · 2(z − ci)
−3/N where δij = 1 if and only if i = j. This leads to the following equation for

the Stieltjes transform:

dgC =

 2

N2β

N∑
i=1

1

(z − ci)3
+

1

N

∑
i,j|j ̸=i

1

(z − ci)2
1

ci − cj

 dt+

√
2

N3β

N∑
i=1

dB
(i)
t

(z − ci)2
.

(2.82)
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Figure 2.4: Illustration of the trajectories of particles following a DBM starting attime t = 0 at the positions 1/2 and −1/2 with N = 50 and β = 1 in (a). In (b), aplot of the limiting spectral density for t = 1/4 and the same initial condition, asgiven by Eq. (2.94).

Now the two sums inside the brackets of Eq. (2.82) can be after a few algebraic operations
identified as partial derivatives of the Stieltjes transform:

• for the first sum we have:

2

N2β

N∑
i=1

1

(z − ci)3
=

1

Nβ
∂2
zgC , (2.83)

• while for the second we have:

1

N

∑
i,j|j ̸=i

1

(z − ci)2
1

ci − cj
=

1

N

∑
i,j|j ̸=i

1

(z − ci)2
1

z − cj
= gC∂zgC − 1

2N
∂2
zgC .

(2.84)
Combining these two results in Eq. (2.82), we get the following (stochastic) partial differential
equation:

∂tgC + gC∂zgC =
1

N

(
2− β

2β

)
∂2
zgC +

√
2

N3β

N∑
i=1

η
(i)
t

(z − ci)2
, (2.85)

where (η(1)t , . . . , η
(N)
t ) are N independent white noise process in time (that is the formal deriva-

tive of the Brownian motion). Now in the large N limit, the RHS of Eq. (2.85) vanishes, and
we have the following results.

Result 2.9 (Inviscid Burgers equation for the DBM)

The Stieltjes transform gC(z, t) of the limiting distribution µC(z, t) of the particles evolving
according to the DBM of Eq. (2.80), is solution of the complex inviscid Burger’s equation:

∂tgC(z, t) + gC(z, t)∂zgC(z, t) = 0 (2.86)
with initial condition gC(z, 0) = gB(z) =

´
µB(dλ)(z − λ)−1 and with µB the limiting

spectral distribution of the matrix B.
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Using the method of characteristics, one can transform this equation into an implicit equation
for gC(z, t):

gC(z, t) = gB (z − t gC(z, t)) , (2.87)
In particular, if the Stieltjes transform gB admits a simple inverse, one can look at Eq. (2.87)
for large z and apply the inverse:

g
⟨−1⟩
B (gC(z, t)) + t gC(z, t)− z = 0 , (2.88)

then solve Eq. (2.88) with the proper behavior at infinity gC(z, t) ∼ 1/z and then extend the
result to C\Supp[µC(x, t)] by analytical property of the Stieltjes transform. As a sanity check,
one can see that if B is the null matrix, then gB(z) = g

⟨−1⟩
B (z) = 1/z and Eq. (2.88) gives

back the fixed point Eq. (2.50) of the Stieltjes transform of the semi-circle distribution with
σ =

√
t, as one should expect.

One can also look at the behavior of Burgers’ equation near the branch cut. For x ∈
Supp[µC(x, t)], we have:

gC(x− i0+, t) =v(x, t) + iπµC(x, t) , (2.89)
where the imaginary part is nothing else than the Sokochi-Plemelj inversion formula of Eq.
(1.28) and the real part v, is given by the Hilbert transform of µC(x, t):

v(x, t) := πHµC (x, t) :=

 
µC(λ, t)

x− λ
dλ . (2.90)

If we now inject Eq. (2.89) in the Burger’s Eq. (2.86) then the associated equations for the real
part and imaginary parts give that the couple (µC , v) is the solution of Euler’s equations

∂tµC(x, t) + ∂x (µC(x, t)v(x, t)) = 0 , (2.91)
∂tv(x, t) + v(x, t)∂xv(x, t)− π2µC(x, t)∂x µC(x, t) = 0 , (2.92)

with initial conditions µC(x, 0) = µB(x) and v(x, 0) = HµB (x). In the language of hydro-
dynamics, Eq. (2.91) is the equation of conservation of mass for a one-dimensional fluid with
density µC and velocity v and Eq. (2.92) is the equation of motion. In full generality, one needs
to understand the couple (µC , v) as a weak solution of this set of equations due to its potential
singular behavior.

In Chapter 4, we will encounter the DBM with an initial condition being given by the uniform
(or ‘flat’) distribution, while in Chapter 3 we will briefly discuss the case of a DBM constrained
at both ends. We conclude this section on the DBM with an explicit example given for another
initial condition.

Example (Bernoulli initial condition). Let’s consider the case where the matrixB has half
its eigenvalues being equal to +a and the other half is equal to −a. In the large N , the
LSD of B is given by the discrete measure µB(λ) = 1

2δ(λ − a) + 1
2δ(λ + a) with Stieltjes

transform gB(z) =
´
(z − λ)−1µB(dλ) = z(z2 − a2)−1. If we use this expression in the

implicit equation (2.87), we have that the Stieltjes transform gC ≡ gC(z, t) is the solutionof the following cubic equation:
t g3C − 2zt g2C +

(
z2 − a2 + t

)
gC − z = 0 . (2.93)
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The correct solution is chosen such that one has the correct asymptotic gC(z, t) ∼ 1
z for

|z| → ∞ and is given by Cardano’s formula. The expression for the density is then given by
the inversion formula of Eq. (1.28) and it turns out that it has a relatively simple expression
(the result has been obtained thanks to Mathematica):

µC(x, t) =
−6a2 + 6t− 2x2 + 2

1
3Fa (|x|, t)

2
3

2π
√
3 2

2
3 t Fa (|x|, t)

1
3

IJ , (2.94)
with the function

Fa (x, t) := 9(2a2 + t)x− 2x3 + 3
√
3
√
−4(a2 − t)3 + (8a4 + 20a2t− t)x2 − 4a2x4 .(2.95)

For t <
√
a, the support J of the distribution is made of two disjoint intervals J =

(−c+,−cin) ∪ (cin, c+) which merges at t = a2. ■

2.5.2 Multiplicative perturbation and the Dyson Geometric
Brownian motion

In this section, we consider the multiplicative analogous of the additive infinitesimal perturbation
of the previous section. Because every positive matrix A ∈ Herm++

β (N) can be written
as A = exp [A0], with A0 ∈ Hermβ(N), a natural candidate is to construct an iterative
multiplicative procedure with A0 =

√
δtXk where Xk is as in the previous section a matrix

taken from the Gaussian ensemble. In other words, we look at the matrix process starting at
C(t0 = 0) = B ∈ Herm++

β (N) and at a time step tk+1 = tk + δt, we update the matrix C

according to:

C(tk+1) =
(
exp

[√
δtXk

])1/2
C(tk)

(
exp

[√
δtXk

])1/2
. (2.96)

Now because we are interested in the small ‘step-size’ limit where δt is infinitesimal, at first
order in δt this can also be written as:

C(tk+1) = (I+
√
δtXk)

1/2 C(tk) (I+
√
δtXk)

1/2 + O(δt) . (2.97)
If now one uses second-order perturbation theory as in the previous section and takes the
informal limit “δt → dt", then one can show that the eigenvalues of this continuous process
evolve according to the following Dyson Geometric Brownian Motion (DGBM):

dci(t) =
1

N

∑
j|j ̸=i

ci(t)cj(t)

ci(t)− cj(t)
dt+

√
2

Nβ
ci(t) dB

(i)
t , (2.98)

with initial conditions, ci(0) = bi and where (dB
(1)
t , . . . ,dB

(N)
t ) are N independent Brownian

motions and the equation has to be understood with the Ito convention.

This stochastic differential equation can be put in hyperbolic form. If we first do the change
of variable c0,i(t) = log ci(t), then by Ito calculus, we have:

dc0,i(t) =
1

N

∑
j|j ̸=i

ec0,j(t)

ec0,i(t) − ec0,j(t)
dt+

√
2

Nβ
dB

(i)
t − 1

Nβ
dt . (2.99)
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Next, using the hyperbolic identity 1
2coth

(
a−b
2

)
= eb

ea−eb
+ 1

2 and since there are (N −1) terms
in the sum

∑
j|j ̸=i . . . , we get:

dc0,i(t) =

−1

2
+

1

N

(
1

2
− 1

β

)
+

1

2N

∑
j|j ̸=i

coth

(
c0,i(t)− c0,j(t)

2

)dt +

√
2

Nβ
dB

(i)
t .

(2.100)
The interaction with the hyperbolic cotangent function can be seen as a force derived from a
repulsive potential of the form

∑
j|j ̸=i log sinh(xi−xj) which we will also encounter in Chapter

4. Let’s also mention that one can retrieve the usual DBM from its geometric version which is
again a consequence of Eq. (2.2), see the following remark.

Remark (DGBM at short time and DBM). If one first re-scales time in the following way
t = ϵ2τ , we have:

dci(ϵ
2τ) =

1

N

∑
j|j ̸=i

ci(ϵ
2τ)cj(ϵ

2τ)

ci(ϵ2τ)− cj(ϵ2τ)
ϵ2dτ +

√
2

Nβ
ci(ϵ

2τ)ϵ dB(i)
τ . (2.101)

Next if one does the change of variable defined by li(τ) = ϵ−1 log ci(ϵ
2τ) then the li’sfollow the stochastic equation:

dli(τ) =
1

N

∑
j|j ̸=i

eϵlj(τ)

eϵli(τ) − eϵlj(τ)
ϵdτ +

√
2

Nβ
dB(i)

τ − ϵ

Nβ
dτ , (2.102)

which gives at zero order:
dli(τ) =

1

N

∑
j|j ̸=i

1

li(τ)− lj(τ)
dτ +

√
2

Nβ
dB(i)

τ +O(ϵ) , (2.103)

and this is nothing else than the usual DBM of Eq. (2.80). ⌋

The large N asymptotic can be obtained similarly as in the additive case, the Stieltjes transform
is replaced by (a modification of) the T -transform, see the following result.

Result 2.10 (Burger’s equation for the T-transform of the DGBM)

in the limit N → ∞, the T-transform defined by Eq. (1.29) and evaluated at y = ez,
t̃C(y, t) := tC(e

z, t) of the limiting distribution µC(z, t) of the particles evolving according
to the DGBM of Eq. (2.98), is solution of the complex inviscid Burger’s equation:

∂tt̃C(y, t) + t̃C(y, t)∂y t̃C(y, t) = 0 (2.104)
with initial condition t̃C(y, 0) = t̃B(y) = tB(log y), where tB is the T-transform of the
limiting spectral distribution µB of the matrix B.

In particular, since this is the same Burgers equation as in the previous section, we also have
the following implicit representation for its solution:

t̃C(y, t) = t̃B
(
y − t t̃C(y, t)

)
. (2.105)
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Example (Multiplicative counterpart of the semi-circle distribution). For the usual DBM, if
the initial matrix is the null matrixB = 0, then the limiting density of the DBM is given by a
semi-circle distribution with variance σ2 = t. Thus, the natural multiplicative counterpart
is to look at the DGBM starting at B = exp [0] = I, that is the identity matrix. Since the
T -transform of the identity matrix is t1(z) = 1

z−1 , one gets that the Stieltjes transform gCof the DGBM starting at the identity is asymptotically given as a solution of the fixed point
equation:

gC(z, t) =
1

z − et(gC(z,t)−1)
, (2.106)

which unfortunately does not have a closed expression in terms of classical functions. ■

2.5.3 Rectangular perturbation and the Dyson Bessel Process
This section deals with rectangular matrices.

For the rectangular case, we consider the matrix process starting at C(t0 = 0) = B ∈
MN,M (Kβ) and with an update given at each time step by:

C(tk+1) = C(tk) +
√
δtGk , (2.107)

where G = 1/q ·X where q = N/M and X is a Gaussian rectangular matrix with law given
by Eq. (1.50). Thus, for any time t, the joint law of the matrix C is given by:

P (β)
q (C|B) =

1

Z
e−

Nβ
2

Tr
(C−B)(C−B)∗

t , (2.108)
and so if we expand the product and use Weyl’s formula for singular values given by Eq. (1.16),
we get for the joint law of c:

P(β)
q,t (c|b) ∝ e−

Nβ
2t

·
∑N

i=1 c
2
i+b2i

N∏
i=1

c
β(M−N+1)−1
i ∆(c2)β I(β)

q (c, Nβ/t b) , (2.109)

where for two rectangular matricesA,T ∈ MN,M (Kβ), with singular values a and t, the
rectangular spherical integral I(β)

q (a, t) is defined as:
I(β)q (A,T) = I(β)

q (a, t) :=

ˆ
Oβ(N)

ˆ
Oβ(M)

eReTr (Diagq(a)V1Diagq(t)
TV2)µHaar(dV1)µHaar(dV2) ,

(2.110)withV1 ∈ Oβ(N) and V2 ∈ Oβ(M).
As in the additive (self-adjoint) case, it is difficult to exploit this joint distribution to get the
large N limit behavior of the limiting singular value distribution of the matrix C but on the
other hand, it will be useful in order to compute the large N asymptotic of the rectangular
spherical integral, which will be done in the following chapter.

The standard way to characterize the distribution is to find the corresponding stochastic dif-
ferential equations satisfied by the singular values of the matrix C. It can be shown (see for
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example [83] and references therein) that they evolved according to the Dyson Bessel process
(DBP) given by:

dci(t) =

αN,M,β

ci(t)
+

1

2N

∑
j|j ̸=i

1

ci(t)− cj(t)
+

1

2N

∑
j|j ̸=i

1

ci(t) + cj(t)

dt+

√
1

Nβ
dB

(i)
t ,

(2.111)
with initial condition ci(0) = bi and

αN,M,β :=
M

N
− 1 +

(
1− 1

β

)
1

N
−−−−−→
N/M→q

1− q

q
. (2.112)

Remark (Simplification for q = 1). For square non-Hermitian matrices, corresponding to
q = 1, the parameter αN,M,β = O(N−1). If we introduce N fictitious particles c−i := −cithen one has the identity (ci + cj)

−1 = (ci − c−j)
−1. If we now add and subtract the termcorresponding to j = −i, we can write the two sums in Eq. (2.111) as a single sum, andthis leads to the following dynamics for the 2N particles:

dci(t) =
1

2N

N∑
j=−N |j ̸=i,0

1

ci(t)− cj(t)
dt+

√
1

Nβ
dB

(i)
t +O

(
1

N

)
, (2.113)

where the term of order O(N−1) is explicitly given by c−1
i ·

(
(1/2− β−1)

)
/N . Up to acorrection of order O(N−1) (which is exactly zero for β = 2), one retrieves the dynamicsof the usual DBM of 2N particles. ⌋

The appropriate transform in the large N limit is given by the Stieltjes transform of the sym-
metrized distribution, as shown by the following result given in Ref. [70, 83].

Result 2.11 (Differential equation for the symmetrized Stieltjes transform of the DBP)

in the limit N → ∞, the Stieltjes transform ĝC(z) =
´
(z − x)−1µ̂C(x, t)dx of the sym-

metrized LSVD µ̂C(x, t) = µC(x, t)/2+µC(−x, t)/2 of the particles evolving according to
the DBP of Eq. (2.111), is solution of:

∂t ĝC(z, t)−
(
q−1 − 1

2z2

)
ĝC(z, t) +

(
ĝC(z, t) +

q−1 − 1

2z

)
∂z ĝC(z, t) = 0 (2.114)

with initial condition ĝC(z, 0) = ĝB(z).

2.6 Sum of Large β-invariant matrices and free
probability in a nutshell

2.6.1 Randomized Horn problems, joint laws, and spherical in-
tegrals

We now consider the general randomized Horn problem associated with each operation. For
each operation, one can express the joint density of the eigenvalues/singular values as an integral
of the product of the associated spherical integrals. The properties of these densities have been
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recently studied in Refs. [191, 43, 42, 107, 100] and references therein, and we briefly describe
these joint densities in this section.

The additive case -

We consider the following additive randomized Horn’s problem

C = VDiag(a)V∗ +V′Diag(b)V′∗ withV,V′ ∼ Unif[Oβ(N)] (2.115)
and the goal is to compute the law P(β)(c|a, b) of the eigenvalues ofC from the knowl-edge of a and b.

Remark (simplification of the problem). Since we are interested only in the eigenvalues,
one can remove one of the two random eigenmatricesV orV′ without changing the law
P(β)(c|a, b). ⌋

To get the joint density, we will repeat the derivation of the vector problem of Sec. 2.2. For
the sum C = A + B of two independent self-adjoint matrices, we are adding an operation
element-wise and therefore the corresponding Fourier transform of the matrix A is given by
introducing a conjugate variable T

(β)
ij for each component A

(β)
ij of each independent element

Aij . Thus, by the self-adjoint symmetry, this corresponds to do the average over the entries

Aij for i ≤ j of exp
[
i
∑

i≤j

∑β
b=1A

(β)
ij T

(β)
ij

]
. If we introduce a self-adjoint T, this matrix

Fourier transform can be simply expressed as:

FA(T) := E
[
ei TrAT

]
, (2.116)

and we have for the sum of independent matrices C = A+B:

FC(T) = FA(T)FB(T) . (2.117)
Now for the two matrices A = VDiag(a)V∗ and B = V′Diag(b)V′∗ of the additive ran-
domized Horn problem, this simply corresponds to do an average over the group Oβ(N) and
up to a Wick rotation this by definition the additive spherical integral:

FA(T) = I(β)(A, iT) = I(β)(a, it) , (2.118)
with I(β)(A,T) is defined by Eq. (2.76).
If we now do the inverse Fourier transform, we can write the distribution f(C|a, b) of the
matrix elements as:

f(C|a, b) = 1

CN

ˆ
e−i TrCTI(β)(A, iT)I(β)(A, iT)dT , (2.119)

and if we now perform the change of variable from T to its eigenvalue decomposition, by Weyl’s
formula of Eq. (1.10) we get:

f(C|a, b) ∝
ˆ

I(β)(a, it)I(β)(b, it)I(β)(C,−iDiag(t)) |∆(t)|βdt , (2.120)
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and by Weyl’s formula again we get for the density of the eigenvalues the following expression

P(β)(c|a, b) ∝ |∆(c)|β
ˆ

I(β)(a, it)I(β)(b, it)I(β)(c,−it)|∆(t)|βdt . (2.121)
This integral representation is the matrix counterpart of Eq. (2.22) for the toy-model of the
norm of the sum of two vectors. However, one does not have Sonine’s formula to simplify
this density in this case. In particular, because the integral is N -dimensional and the spherical
integral is highly oscillatory, it is unclear how one can get the large N behavior of the distribution
of the sum (the so-called free convolution of the following section) from this joint density. An
illustration of this joint density is given in Fig. 2.5.

(a) empirical (b) theoretical
Figure 2.5: Plot of the empirical (a) and theoretical (b) joint densities of the eigen-values of the sum of Eq. (2.115) for N = 3 and β = 2 with a = b = (1, 0,−1),represented in the (c1, c2) plane. Figures taken from Ref. [191].

The multiplicative case -

Themultiplicative randomized Horn’s problem is the problem of finding the joint law
P(β)
× (c|a, b) of the eigenvalues of the matrix
C =

√
VDiag(a)V∗ V′Diag(b)V′∗ √VDiag(a)V∗ withV,V′ ∼ Unif[Oβ(N)](2.122)from the knowledge of a and b.

To tackle the multiplicative counterpart, one needs to define the corresponding multiplicative
spherical. This object appeared in Refs. [90, 100, 190] and references therein and will be studied
in more detail in Chapter 3. It is defined by:

I(β)
× (a, t) =

ˆ
Oβ(N)

∆t (VAV
∗)µHaar(dV) , (2.123)
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where the generalized power function ∆t is given by

∆t (A) :=
(
detA(1)

)t1−t2 . . .
(
detA(N−1)

)tN−1−tN (detA)tN , (2.124)
where A(i) is the top left (i × i) corner of the matrix A. One can express the joint density
from this spherical, see Ref. [190].

The rectangular case -

This section deals with rectangular matrices.

The rectangular randomized Horn’s problem is the problem of finding the joint law
P(β)
q (c|a, b) of the singular values of the matrix

C = V1Diagq(a)V2+V′
1Diagq(b)V

′
2 withV1,V

′
1 ∼ Unif[Oβ(N)] and V2,V

′
2 ∼ Unif[Oβ(M)] ,(2.125)from the knowledge of the singular values a and b.

The corresponding Fourier transform is given by:

FA(T) = E
[
eiTr (AT∗+A∗T)

]
= E

[
eiReTr (AT∗)

]
, (2.126)

where the conjugate matrix T ∈ MN,M (Kβ). For the rectangular randomized Horn’s of Eq.(2.125), the Fourier transform of A = V1Diagq(a)V2 (and similarly for B = V′
1Diagq(b)V

′
2)

is up to a factor ‘i’ simply given by the rectangular spherical integral of Eq. (2.110). If we repeat
the same computation as in the additive case with now the Weyl’s formula of Eq. (1.16), one
gets for the joint laws of the singular values c of C:

P(β)
q (c|a, b) ∝ |∆(c2)|β

N∏
i=1

c
β(M−N+1)−1
i ×

ˆ
I(β)
q (a, it)I(β)

q (b, it)I(β)
q (c,−it)|∆(t2)|β

N∏
i=1

t
β(M−N+1)−1
i dt .

where I(β)
q is given by Eq. (2.110).

2.6.2 Large β-invariant matrices and asymptotic freeness
In order to understand the large N behavior of the spectrum of the sum of two β-invariant
matrices, let’s consider the following illustrative example where

• A = Diag(a) where the ai
i.i.d∼ µA with µA a compact distribution with zero mean ;

• B = VDiag(b)V∗ where V ∼ Unif [Oβ(N)] and the bi
i.i.d∼ µB, where µB is also a

compact distribution with zero mean.

As before, we construct a third matrix made of their sum:

C = A+B , (2.127)
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and ask what is the behavior of the distribution µC of the eigenvalues of C for large N . A naive
(but instructive way) to characterize this distribution is to compute all the average spectral
moments of C, that is the quantities

τ
(
Ck
)
= τ (A+B)k :=

1

N
ETr (A+B)k , (2.128)

for large N . Let’s look at what happens for k = 4, as it turns out to be the first non-trivial
case. By linearity and cyclicity of the trace, we have:

τ
(
C4
)
= τ

(
A4
)
+ τ

(
B4
)
+ 4τ

(
A2B2

)
+ 2τ (ABAB) + 4

[
τ
(
A3B

)
+ τ

(
AB3

)]
,(2.129)

The first two terms of the RHS of Eq. (2.129) are simply the fourth moments of the distribution
µA and µB. Let’s look at the two following terms:

• By an elementary computation we have for the first one:

τ(A2B2) =
1

N
E
∑
i,k

a2i b
2
k|Vik|2 , (2.130)

τ(A2B2) = τ(A2)τ(B2)E

 1

N

∑
i,k

|Vik|2
 , (by linearity of τ and independence)

(2.131)
τ(A2B2) = τ(A2)τ(B2) , (since VV∗ = I) .(2.132)

• Similarly, for the second term we have:

τ (ABAB) =
1

N

∑
i,j,k,l

E [aiaj ]E [bkbl]EVikVjkVjlVil , (2.133)

τ (ABAB) = τ(A2)τ(B2)E

 1

N

∑
i,k

|Vik|4
 (by independence and zero mean) ,

(2.134)
τ (ABAB) → 0 , (2.135)
where to get the last asymptotic result, we have used the fact that the column vectors
v(i) of an orthogonal/unitary matrix are asymptotically delocalized that is their Inverse
Participation Ratio (IPR) of order k > 1 goes to 0 as N → ∞:

IPRk

[
v(i)
]
:=

N∑
j=1

|v(i)j |2k → 0 . (2.136)

Similarly, one can easily show that the terms in the bracket of Eq. (2.129) are always zero since
the distributions µA and µB have mean zero and as a result, one can compute the fourth moment
of C. Importantly, this simple derivation has shed light on the (highly) non-commutative nature
of the matrices A and B for large N , since we have:

τ(A2B2) ̸= τ (ABAB) ≈ 0 , (2.137)
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regardless of the specific distributions µA and µB (provided they are centered). As a result,
one can think of two matrices A and B, one of them being β-invariant, as two maximally
non-commutative objects.

If now one wants to push this computation to higher orders k > 4, one first needs to expand
the kth average moments in terms of non-commutative products of A and B - and for large
k, this is a daunting task - and then understand which terms contribute to the sum and which
terms vanish. It appears that this problem can be greatly simplified thanks to the power-full
theory of free probability, whose link with random matrices is given by the following theorem
due to Voiculescu

Result 2.12 (Asymptotic freeness of β-invariant matrices [183, 182, 184])

If A,B are β-invariant in law (that is we recall A in law
= VAV∗ for any V ∈ Oβ(N)),

then A and B are asymptotically free: for any positive integer n and any polynomials
P1, . . . , P2n if we denote by τ(.) := ETr (.)/N , we have

τ (P1(A)P2(B) . . . P2n−1(A)P2n(B)) → 0 (2.138)
whenever τ(P2j−1(A)) → 0 and τ(P2j(B)) → 0 for all j ∈ {1, . . . , N}.

Loosely speaking, freeness can be seen as the matrix counterpart of the orthogonality relation
for vectors, with the notion of ‘rotationally invariant vectors’ being replaced by ’β-invariant
matrices’. In the following of this section we will review the practical consequences of the
freeness of two matrices and refers to Refs. [183, 145, 149] for the theoretical foundations of
free probability. In particular, we will always think of free random variables as large β-invariant
random matrices, rather than using the abstract language of non-commutative algebra. Freeness
can be seen as the non-commutative analog of the usual notion of independence between
classical random variables on the real line. For independent random variables, the ‘rule’ to
compute the distribution of their sum (resp. their product if they are positive) is given by
classical convolution (resp. Mellin convolution), which can be seen as a consequence of the
multiplicative property of their moment generating function/Mellin transform. For free matrices
there exist analogous free probability transforms which give a ‘rule’ to compute the distribution
of the sum or the product of free matrices, and the corresponding operation is known as the
free convolution and is described in the rest of this section.

2.6.3 Free probability transforms, free cumulants, and non-
crossing partitions

Sum of free matrices and R-transform -

For a compactly supported measure µA, its R-transform denoted by RA ≡ RµA is thefunction defined on a neighborhood of the origin by:
RA(y) := g

⟨−1⟩
A (y)− 1

y
, (2.139)

where g
⟨−1⟩
A is the inverse of the Stieltjes transform gA of the distribution µA.
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Remark (Elementary transformation of distribution and corresponding R-transform). Using
properties of the Stieltjes transform, one can easily deduce the following properties for
the R-transform.

• Shift: If one does a shift of the distribution µA → µA(. − δ) which corresponds to
the asymptotic operation of adding δ times the identity matrix: A → A + δI, the
corresponding R-transform is given by:

RA+δ1(y) = RA(y) + δ . (2.140)
• Scaling: If one re-scales a matrix A → δA, then the corresponding R-transform is
given by:

RδA(y) = δRA(δy) . (2.141)
• monotonicity: the R-transform is a continuously increasing function in its domain
of definition.

⌋

We give here a few explicit examples of the R-transform of some distributions, which we will
encounter several times in this thesis.

Examples. The following result can be easily obtained by computing the Stieltjes trans-
forms (and the inverse) of each distribution:

• the R-transformof the semi-circle distributionµsc(σ) given by Eq. (1.40) with variance
σ2 is given by:

Rsc(σ)(y) = σ2y . (2.142)
• The R-transform of the Marčenko-Pastur distribution of µMP(q) given by Eq. (1.43) isgiven by

RMP(q)(y) = (1 + qy)−1 . (2.143)
• the R-transform of the distribution µBer(λ) = δ(λ+ 1)/2 + δ(λ− 1)/2 is given by:

RBer(y) =

√
1 + 4y2 − 1

2y
. (2.144)

■

The R-transform plays the role of the logarithm of the moment generating function of classical
probability theory since we have the following result.

Result 2.13 (Sum of free matrices and free convolution)

If (A,B) is a couple of two self-adjoint matrices being asymptotically free, with LSD given
respectively by µA and µB, then the LSD µC of their free sum C = A+B is given as the

80



unique probability measure solution of:

RC(y) = RA(y) +RB(y) (2.145)
for all y in the complex plane close enough to the origin. The distribution µC is known as
the free convolution of µA and µB and is denoted by µA ⊞ µB.

To illustrate this result, let’s look at two practical examples:

Example (Sum with a matrix from a Gaussian ensemble and Burger’s equation). If we come
back to the ’DBM’ case where C = B+ tX withX taken from a Gaussian ensemble with
unit variance, then since X is β-invariant, the LSD µC is given by the free convolution of
µB with the semi-circle distribution. Since the R-transform of the semi-circle distribution
is given by Eq. (2.142) we have:

RC(y) = ty +RB(y) , (2.146)
and if we use the definition Eq. (2.139) of the R-transform, this can be equivalently ex-
pressed as:

g
⟨−1⟩
C (y)− ty = g

⟨−1⟩
B (y) , (2.147)

which if we apply gB(.) gives back Eq. (2.88), as expected. ■

Example (Free sum of Bernoulli distribution and the arcsine law). Next, consider the case
whereA is a deterministic diagonal matrix with half of its eigenvalues being given by 1/2
and the other half are equal to−1/2 and similarly let’s define byB = VAV∗ and construct
their free sumC = A+B, then sinceA corresponds to scaling by δ = 1/2 of the discrete
measure on 1 and −1 with R-transform given by Eq. (2.144), we have:

RC(y) =

√
1 + y2 − 1

y
, (2.148)

which gives after inversion, that the free convolution is given by the arcsine law:(
1

2
δ(x− 1/2) +

1

2
δ(x+ 1/2)

)
⊞

(
1

2
δ(x− 1/2) +

1

2
δ(x+ 1/2)

)
=

1

π
(1− λ2)−1/2I[−1,1] .

(2.149)
An illustration of this free convolution is given in Fig. 2.6. ■

Free cumulants -

Now that we have defined the free convolution and its linearizing transform (the R-transform) it
appears also natural to define the free cumulants, that is the polynomials κk in the moments
m1, . . . ,mk of a distribution µA such that they satisfy the three following properties:

• additivity: κk [µA ⊞ µB] = κk [µA] + κk [µB] ,

• homogeneity: κk
[
1
δµA

(
.
δ

)]
= δkκk [µA] ,

• leading term: κk is a polynomial in the first k moments with leading term mk.
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Figure 2.6: Plot of the free convolution of µ = 1
2δ(· − 1/2) + 1

2δ(· + 1/2) withitself compared with the histogram of the eigenvalues of A + OAOT, where
O ∼ Unif [O(N)], with N = 1000 andA is a diagonal matrix with half its entriesequal to 1/2 and the other half is equal to −1/2.

It turns out that these free cumulants are given as the coefficients of the power series of the
R-transform:

RA(y) =
∞∑
k=1

κky
k−1 , (2.150)

where κk ≡ κk [µA] is the free cumulant of order k.

Conversely the kth moment, mk of a distribution is also a polynomial in the first k free cu-
mulants. The mk, seen as a multivariate polynomial in the κi, can be written as a sum
over index j1, . . . , jk involving product of the form κj11 . . . κjkk where the ji are constrained by
j1 + · · · + jk = k by homogeneity of the moments. As one recognizes a natural property of
a partition, one may hope that the relation between moment and free cumulant is given by a
sum over a certain type of partitions and this is indeed the case, see for example Ref. [149]:

Result 2.14 (Moment-free-cumulant relation)

The moment mk of a distribution is given in terms of the first k cumulants by:

mk =
∑

π∈NC[k]

κπ (2.151)

where NC[k] denotes the set of all non-crossing partitions of k.

Let’s recall that π = {B1, . . . Br} is a partition of k - denoted by π ∈ P[k] - of length
r, if its blocks B1, . . . , Br are pairwise distinct and non-empty sets of {1, . . . , k} such that
B1 ∪ · · · ∪ Br = {1, . . . , k} and fπ :=

∏r
i=1 f|Bi|. A partition is said to be crossing whenever

there exist at least two blocks Bi, Bj with a, b ∈ Bi and c, d ∈ Bj such that a < c < b < d.
Note that this involved definition admits a natural graphical interpretation, see Fig. 2.7.

This is a different combinatorial formula than the one of classical probability, where the sum is
run over all partitions of k.

The first four moments are given in terms of the first four free cumulants by:
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Figure 2.7: Representation of the 15 partition of 4 where elements of the sameblock are linked. For example, the top partition of this figure has only one blockand is given by {1, 2, 3, 4} while the bottom partition has four individual blocksand is given by {{1}, {2}, {3}, {4}}. The partition in red is {{1, 3}, {2, 4}} andis the only crossing partition of 4 and so it does not count in the moment-freecumulant relation.

• m1 = κ1,

• m2 = κ2 + κ21 ,

• m3 = κ3 + 3κ2κ1 + κ32,

• m4 = κ4 + 4κ3κ1 + 2 · κ22 + 6κ2κ
2
1 + κ41.

Conversely, the first four free cumulants are given in terms of the first four moments mk by:

• κ1 = m1,

• κ2 = m2 −m2
1 ,

• κ3 = m3 − 3m1m2 + 2m3
1,

• κ4 = m4 − 2 ·m2
2 + 10m2m

2
1 − 5m4

1.

In the classical setting, all the coefficients of the first four cumulants are the same, except for
the ones in bold (2) which are replaced by 3. We refer the reader to the books of Speicher
[149] for more on this combinatorial interpretation of the free convolution.

Product of free matrices and S-transform -

We now turn to the free product of matrices and define the analog of the R-transform for this
operation.

For a measure µA with support included on the positive real line, its (modified) S-
transform denoted by S̃A ≡ S̃µA is the function defined on a neighborhood of the originby:

S̃A(y) :=
y

y + 1
t
⟨−1⟩
A (y) , (2.152)

where t
⟨−1⟩
A is the inverse of the T-transform tA of the distribution µA, defined by Eq.(1.29).
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Remark (Convention for the S-transform). The usual S-transform is usually defined in the
literature as the inverse of the (modified) S-transform defined in this thesis:

SA(y) :=
1

S̃A(y)
=

y + 1

y t
⟨−1⟩
A (y)

. (2.153)
Our choice of the convention for defining the S-transform with Eq. (2.152) rather than Eq.
(2.153) comes from [125] and turns out to be more appropriate in our study. ⌋

The S-transform is multiplicative for the (asymptotic) product of free matrices:

Result 2.15 (Product of free matrices and the multiplicative free convolution)

If (A,B) is a couple of two positive self-adjoint matrices being asymptotically free, with LSD
given respectively by µA and µB , then the LSD µC of their free product C =

√
AB

√
A

is given as the unique probability measure solution of:

S̃C(y) = S̃A(y)S̃B(y) , (2.154)
for all y in the complex plane close enough to the origin. The distribution µC is known as
the multiplicative free convolution of µA and µB and is denoted by µA ⊠ µB.

Let’s mention that this can be equivalently as:

log S̃C(y) = log S̃A(y) + log S̃B(y) . (2.155)
In other words, the logarithm of the S-transform is the linearizing transform of the free multi-
plicative convolution and this transformation will appear somehow more naturally in this thesis.
We give below a few examples of the free multiplicative convolution.

Example (S-transform of the DGBM). For the limiting density µMt of the DGBM of Eq.
(2.98), one can show that its S-transform is given by

S̃Mt(y) = ety (2.156)
and so its logarithm is simply given by ty. Thus, one can think of this distribution as the
multiplicative counterpart of the semi-circle distributionwith variance t, since for the latter
its R-transform is given ty. ■

Example (Watcher and Marčenko-Pastur distributions). Amatrix taken from the Jacobi en-
semble is obtained as a shift and the inverse of the product of a Wishart matrix with the
inverse of another independent Wishart matrix, see Eq. (1.45). Since Wishart matrices are
β-invariant, this product is given asymptotically by the freemultiplicative convolution, and
we can write the Watcher distribution of Eq. (1.47) (the LSD of a Jacobi ensemble) as:

µWat(q1,q2)(λ) =
(
q1µMP(q1)(q1.)⊠

(
q2µMP(q2)(q2.)

)[−1]
⊞ δ(.− 1)

)[−1] (2.157)
where if µ is the (limiting) distribution ofA, µ[−1] is the (limiting) distribution ofA−1.

■

We conclude this paragraph on the S-transform with an identity relating it to the R-transform,
which can be seen as a consequence of the fact that the sum is a limiting case of the product
for self-adjoint matrices.
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Result 2.16 (Relation between R-transform and S-transform)

If RA is the R-transform of the distribution µA and S̃exp(ϵA) the S-transform of µexp(ϵA)

(that is the push-forward of µA by x 7→ exp(ϵ x) ), then we have:

1

ϵ
log S̃exp(ϵA)

(
θ

ϵ

)
−−−→
ϵ→0+

RA(θ) . (2.158)

As far as I know, this relation does not seem to be well known, so I give below a short proof.

Proof: We can write the definition (2.152) of the S-transform as the implicit equation:

θ = tA

(
S̃A(θ)

(
1 +

1

θ

))
, (2.159)

and if we now do the changes θ → θ/ϵ and A → exp(ϵA), this gives:

θ

ϵ
= texp(ϵA)

(
S̃exp(ϵA)

(
θ

ϵ

)(
1 +

ϵ

θ

))
. (2.160)

Now since our goal is to show that the function Pϵ,A(.) := ϵ−1 log S̃exp(ϵA)(./ϵ) converges
point-wise to the R-transform, we can write Eq. (2.160) in terms of Pϵ,A:

θ = ϵ texp(ϵA)

(
eϵPϵ,A(θ)

(
1 +

ϵ

θ

))
, (2.161)

θ = ϵ

ˆ
eϵλ

eϵPϵ,A(θ)
(
1 + ϵ

θ

)
− eϵλ

µA(dλ) , (by definition (1.29) of the T-transform)

(2.162)
θ =

ˆ
1

Pϵ,A(θ) + 1/θ − λ
µA(dλ) +O(ϵ) , (2.163)

θ = gA (Pϵ,A(θ) + 1/θ) +O(ϵ) . (by definition (1.26) of the Stieltjes transform)(2.164)
Now if we invert this last equation (that is, apply g

⟨−1⟩
A (.) to this equation), we get:

lim
ϵ→0+

Pϵ,A(θ) = g
⟨−1⟩
A (θ)− 1

θ
, (2.165)

which is nothing else than the definition (2.139) of the R-transform and this concludes the
proof.

There exist other relations known as subordination relations relating the two transforms, and I
refer to [153] for their precise expression.

We summarize the dictionary between the ‘classical/commutative world’ and the ‘free world’ in
the following table
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Classical Probability Free probability
X,Y real random variables A,B infinite random matrices

distribution µX , µY LSD µA, µB

independent free

X + Y ⇔ µX ∗ µY A+B ⇔ µA ⊞ µB

CX(t) := logE[etX ] RA(t) def. by Eq. (2.139)
CX(t) =

∑∞
k=1 ck/k! t

k RA(t) =
∑∞

k=1 κk t
k−1

mk =
∑

π∈P[k] cπ mk =
∑

π∈NC[k] κπ

X · Y ⇔ µlogX ∗ µlog Y

√
BA

√
B ⇔ µA ⊠ µB

MeX(t) := E
[
Xt
]

S̃A(t) def. by Eq. (2.152)
where the ck’s are the cumulants for the classical convolution (f ∗ g)(x) =

´
f(x− y)g(y)dy

and when considering the product of random variables, we have implicitly imposed X,Y > 0

(and similarly the support of µA and µB is on the positive real line for the free case).

Bi-free sum of rectangular matrices and the rectangular C-transform -

This section deals with rectangular matrices.

In this paragraph, we briefly explain the rectangular case. To do so, we first need to introduce
the function U(.) defined by:

U(y) :=
−1− q +

√
(1− q)2 + 4qy2

2q
. (2.166)

Note that U(.) is an increasing function of y whose inverse transform is given by the simple
formula:

U ⟨−1⟩(z) =
√

(1 + z)(1 + qz) . (2.167)
The rectangular C-transform (with shape ratio q) of the LSVD µA of a rectangularmatrixA is defined as:

C̃(q)
A (y) :=

U
(
y d

⟨−1⟩
A (y)

)
y

, (2.168)
with U given by Eq. (2.166), and d

⟨−1⟩
A is the inverse of the D-transform defined by Eq.(1.32).

Remark (Convention for the C-transform). The standard convention for the rectangular
R-transform,R(q)

A , is related to our rectangular C-transform C̃(q)
A , via,

C̃(q)
A (t) =: R(q)

A (t2)/t , (2.169)
As we will see, the convention C̃(q)

A will appear more naturally in this thesis. ⌋

Although rectangular matrices are not free, one can also determine the LSVD of their ‘bi-free’
sum, thanks to the rectangular C-transform, see Ref. [20]:
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Result 2.17 (Bi-free sum of rectangular matrices and the rectangular free convolution)

If A and/or B are two (N×M) matrices bi-β-invariant in law, with LSVD given respectively
by µA and µB, then the LSVD µC of their bi-free sum C = A+B is given as the unique
probability measure solution of:

C̃(q)
C (y) = C̃(q)

A (y) + C̃(q)
B (y) . (2.170)

The distribution µC is known as the rectangular free convolution of µA and µB and is
denoted by µA⊞q µB.

In the following two remarks, we briefly describe how this rectangular convolution degenerates
in the limiting cases q → 0 and q → 1.

Remark (long matrices (q → 0) and additive free convolution). In the limit q → 0, corre-sponding to the case of (N × M) rectangular long matrices with 1 ≪ N ≪ M , we havefor the function U and the D-transform,
U(y) →

q→0
y2 − 1 , (2.171)

and in this case, since we have Eq. (1.36), the inverse of the D-transform is given by:
d
⟨−1⟩
A (y) →

q→0

√
g
⟨−1⟩
AA∗ (y2) . (2.172)

where gAA∗ is the Stieltjes transform of µAA∗(.) =
µA(

√
.)

2
√
. . As a consequence for long

matrices, the rectangular C-transform is related to the R-transform by
C̃(0)
A (y) = yRAA∗

(
y2
)
, (2.173)

and so by the linearizing property of the C-transform and the R-transform we have:
C̃(0)
C (y) = yRAA∗+BB∗

(
y2
)
. (2.174)

In other words for long matrices we have si(A + B) ≈
√

λi (AA∗ +BB∗), which is ofcourse not true for q ̸= 0. ⌋

Remark (square matrices (q = 1) and symmetrized density). For q = 1, corresponding to(asymptotic) square matrices, the function U is simply given by:
U(y) →

q→1
y − 1 , (2.175)

and the D-transform considerably simplifies into the Stieltjes µÂ is the symmetrized den-sity of ρA see Eq. (1.37). The C-transform of Eq. (2.168) reads in this case:
C̃(1)
A (y) = R

Â
(y) , (2.176)

and by the linearizing property, we have that the LSVD of the matrix C is given as theunique probability measure on R+ such that:
C̃(1)
C (y) = R

Â+B̂
(y) . (2.177)

In other words, the singular values of the sum of two (bi-free) square matrices are givenasymptotically by the additive free convolution of their respective symmetrized singularvalue densities. ⌋
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We now give the C-transform for Gaussian rectangular matrices.

Example (Gaussian rectangular random matrices). Let’s consider the case of Gaussianrectangular matrices with LSVD given Eq. (1.51). Using the expression of Eq. (1.44) for theStieltjes transform of theMarčenko-Pastur distribution, one gets the following expressionfor the D-transform (for z > 0):

dA(z) =
1

σ2

√
z2 − (1 + q)σ2 −

√
z4 − 2(1 + q)σ2z2 + (1− q)2σ4

2q
, (2.178)

whose inverse is given by
d
⟨−1⟩
A (y) =

√
(1 + σ2y2)(1 + qσ2y2)

y
. (2.179)

The argument inside the square-root function is nothing else than the inverse U ⟨−1⟩ eval-uated at σ2y2, see Eq. (2.167). Using Eq. (2.168), the rectangular C-transform of the Gaus-sian rectangular matrix is given simply by:
C̃(q)
A (y) = σ2y . (2.180)

■

2.6.4 Free central limit theorems
In this section, we would like to establish the limit theorems associated with free convolution.
Let’s recall that for classical probability, if the Xi’s are i.i.d random variables taken from a mea-
sure µ with mean zero and variance one, then for large n the sum Sn := (X1 + . . . Xn)/

√
n

converges to a standard Gaussian distribution. This is due to the fact that the classical cumu-
lants of Sn are given as the sum of the ones of the Xi’s and the scaling by n makes only the
second (classical) cumulant c2 = 1 of Sn non-vanishing for large n, and this corresponds to
the cumulants of a standard Gaussian distribution. Equivalently, this can be written in terms
of classical convolutions as

√
nµ
(√

nx
)
∗ · · · ∗

√
nµ
(√

nx
)︸ ︷︷ ︸

n times

−−−→
n→∞

µN (0,1)(x) :=
e−

x2

2

√
2π

. (2.181)

Now for the free-convolution, the distribution which has only κ2 ̸= 0 as a non-zero free cumulant
is the semi-circle distribution, from which we immediately deduce the following result.

Result 2.18 (Free central limit theorem)

For µ a distribution with zero mean and variance one, if we re-scale it such that its variance
is 1/n and performs the free convolution with itself n times, we have asymptotically in n:

√
nµ
(√

nx
)
⊞ · · ·⊞

√
nµ
(√

nx
)︸ ︷︷ ︸

n times

−−−→
n→∞

µsc(1)(x) :=

√
4− x2

2π
I[−2,2] . (2.182)
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Another well-known limit theorem of classical probability is the law of rare events or the Poisson
limit theorem, which states that the sum of independent Bernoulli random variables with a
vanishing rate of success, converges to a Poisson random variable, or equivalently if we denote
by µBer(λ/n) :=

(
1− λ

n

)
δ(x− 0) + λ

nδ(x− 1), we have:

µBer(λ/n) ∗ · · · ∗ µBer(λ/n)︸ ︷︷ ︸
n times

−−−→
n→∞

µPoi(x) :=
∞∑
k=0

λke−λ

k!
δ(x− k) . (2.183)

The free counterpart of the Poisson distribution is given by the Marčenko-Pastur distribution,
see the following result.

Result 2.19 (Free Poisson limit theorem)

For µ :=
(
1− 1

qn

)
δ(x − 0) + 1

qnδ(x − q) a re-scaled Bernoulli distribution with a small
rate of success, we have:

µ⊞ · · ·⊞ µ︸ ︷︷ ︸
n times

−−−→
n→∞

µMP(q)(x) (2.184)

where µMP(q) is given by Eq. (1.43).

2.7 Finite free convolution

The free convolution of the previous section is an asymptotic (N → ∞) operation on the
spectrum of two random matrices, and we now describe its ‘finite’ counterpart, known as the
finite free convolution (FFC in short). The FFC has been introduced by Marcus, Spielman
and Srivastava to tackle combinatorial problems in linear algebra, see Refs. [124, 126, 129,
127] and has then been noticed to share many similarities with the free convolution, see Refs.
[128, 125]. As we will briefly see, the FFC can be understood as the sum of β-ensembles in the
low-temperature regime (β → ∞, with N fixed) and just like the description of low-temperature
is naturally encoded in a monic polynomial, see Sec. 1.6, the FFC can be described as a simple
operation on such monic polynomials.

2.7.1 Introduction and preliminary definitions

To fix things, let’s denote by

Pa(x) :=
N∏
i=1

(x− ai) , (2.185)

the monic polynomial of degree N with roots a ∈ RN . The discrete measure associated with
its roots is denoted by:

µa(λ) :=
1

N

N∑
i=1

δ(λ− ai) . (2.186)
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We can represent the monic polynomial Pa as:

Pa(x) =
N∑
k=0

αk(−1)kxN−k , (2.187)
Because Pa is monic, we have α0 = 1. For other values of k, this coefficient is explicitly given
in terms of the roots ai by the kth elementary symmetric polynomial :

αk ≡ αk(a) = ek(a) :=
∑

1≤j1<···<jk≤N

aj1 . . . ajk . (2.188)

The coefficients αk can be expressed in terms of the moments mk :=
∑N

i=1 a
k
i /N of the

measure µa thanks to Newton’s identities by either a recurrence relation:

αk =
N

k

k∑
i=1

(−1)i−1αk−imi , (2.189)
or equivalently by the following combinatorial formula:

αk =
∑

1j1+···+kjk=k

(−N)j1+···+jk

k∏
i=1

mk
ji

ijiji!
. (2.190)

Remark (elementary transformations of roots of monic polynomials:). • Shift: if one
performs a shift of the roots: a → a + δ1 := (a1 + δ, . . . , aN + δ), then the new
monic polynomial is given in terms of the old one by:

Pa+δ1(x) = Pa(x− δ) , (2.191)
and the new coefficients αk in the representation of Eq. (2.187) are changed by:

αk(a+ δ1) =

k∑
i=0

(N − k + i)!

i! (N − k)!
δi αk−i(a) , (2.192)

• Scaling: if one multiplies all the roots: a → δa = (δα1, . . . , δαN ), then the new
monic polynomial is given by:

Pδa(x) = δNPa(x/δ) , (2.193)
and the new coefficients αk in the representation of Eq. (2.187) are changed by:

αk(δa) = δkαk(a) . (2.194)
• Inversion: If all the roots a are non-zero and one takes their inverse a → 1/a =

(1/a1, . . . , 1/aN ), then the new monic polynomial is given by:
P

[−1]
a (x) := P1/a(x) =

xN

αN
Pa(1/x) , (2.195)

and the new coefficients αk in the representation of Eq. (2.187) are changed by:
αk(1/a) =

αN−k(a)

αN (a)
. (2.196)

⌋
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Next, let’s introduce objects which will play an important role in the description of the finite
free convolutions. Every monic polynomial can be seen as a differential operator acting on the
monomial xN :

Pa(x) = P̂a(Dx)x
N , (2.197)

Where P̂a is a power series in the differential operator Dx and Dx := d
dx acts on xN by

Dk
xx

N = N !/(N − k)!xN−k. Now since differentiating more than N times the monomial xN

always gives zero: DN+k
x xN = 0 for k ≥ 1, only the first N + 1 coefficient in the power series

of P̂a(.) matters in Eq. (2.197) and we have:

P̂a(x) :=
N∑
k=0

(N − k)!

N !
αk (−1)kxk modxN+1 , (2.198)

where αk is the coefficient of Pa in Eq. (2.187) and modxN+1 indicates that P̂a is defined
“modulo xN+1" meaning that higher order terms can be set to zero, and in this case P̂a is also
a polynomial. The operator P̂a is the additive form of the monic polynomial P̂a and will play
the role of the Fourier transform in the definition of the finite free (additive) convolution.

Similarly, one can define the multiplicative form P̂
(×)
a of the polynomial Pa with positive

roots as the operator acting on (x− 1)N :

Pa(x) = P̂
(×)
a (xDx) (x− 1)N , (2.199)

which will naturally appear in the description of the finite free multiplicative convolution.

The last ingredient to introduce before jumping to the description of the finite free convolutions
is the following observation: every monic polynomial with real roots can be equivalently written
as the sum of N shifted monomial (x− tAi )

N/N where tA = (tA1 , . . . , t
A
N ) ∈ CN :

E
{
(x− tA)N

}
:=

1

N

N∑
i=1

(x− tAi )
N = Pa(x) , (2.200)

where we have used the convenient notation E {.} to denotes the average over the set tA.
The vector tA is uniquely defined up to a permutation of its entries and is referred to as the
negative Markov-Krein transform1 of a. Eq. (2.200) can be written in terms of the discrete
complex measure νtA(λ) :=

∑N
i=1 δ(λ− tAi )/N as:

ˆ
νtA(dx)

(z − x)−N
= exp

[
−(−N)

ˆ
µa(dλ) log (z − λ)

]
, (2.201)

which will have a clear analog in the description of the high-temperature convolution of Chapter
6. If we apply the binomial theorem to the LHS of Eq. (2.200), one can express the ‘moments’
of νtA in terms of the coefficient αk of Pa as:

τk :=
1

N

N∑
i=1

(
tAi
)k

=
(N − k)!k!

N !
αk . (2.202)

1In Ref. [125] this set is named as the U-transform of a. Our convention for denoting this objectas the negative Markov-Krein transform rather than the U-transform will appear clear in Chapter6 when we will introduce the (positive) Markov-Krein transform.
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If now one injects this relation into the expression (2.198) for the additive form, one can express
the latter as a moment generating function (evaluated at −x) of the negative Markov-Krein
transform:

P̂a(x) =

∞∑
k=0

(−1)k

k!
τk x

k modxN+1 , (2.203)
P̂a(x) = E

{
e−xtA

}
modxN+1 , (2.204)

where we recall that modxN+1 indicates equality up to the N + 1 first terms in the power
series.

Similarly, one can show that the multiplicative form given by the relation (2.199) can be set to
be the unique monic polynomial of degree N fixed by the conditions:

P̂
(×)
a (N − k) = E

{
tkA

}
for k ∈ {1, . . . , N} , (2.205)

where the set tA is the same as in the additive case. The RHS of Eq. (2.205) is nothing else
than the Mellin transform of the negative Markov-Krein transform, evaluated at x = k.

It turns out to be convenient to introduce a shifted version of the additive and multiplicative
forms such that they match the moment generating function/Mellin-transform. That is we
define the polynomial Q̂a as:

Q̂a(x) := P̂a(−x) = E
{
extA

}
modxN+1 , (2.206)

and Q̂
(×)
a as the unique polynomial of degree N given by:

Q̂
(×)
a (x) = P̂

(×)
a (N − x) , (2.207)

Q̂
(×)
a (x) = E {txA} for x ∈ {1, . . . , N} . (2.208)

Examples. I give here some practical examples which will be useful later on.
• If we define the rank-one polynomial as the monic polynomial with only one non-
zero root equals to γ:

P (rk-1)
γ (x) := xN−1(x− γ) = xN − γxN−1 . (2.209)

then one can immediately deduce its corresponding additive form:
P (rk-1)
γ (x) =

(
1− γ

N
Dx

)
xN . (2.210)

• For the Hermite polynomial, which we recall is closely related to Gaussian ensemble
in the β → ∞ see Sec. 1.6, one can check that we have:

CH,N HeN

(√
N

σ
x

)
= exp

[
− σ2

2N
Dx

2

]
xN , (2.211)

where the constant CH,N is such that this polynomial is monic.
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• Similarly, for the Laguerre polynomial appearing in the low temperature of the La-
guerre ensembles, we have

CL,N La
(M−N)
N (Mx) =

(
1− 1

M
Dx

)M

xN , (2.212)
where CL,N is the constant that ensures this polynomial is monic. Note that if we
look at a slightly modified version where ones multiply the roots byM/N :

L(M)(x) := C̃L,N La
(M−N)
N (Nx) =

(
1− 1

N
Dx

)M

xN , (2.213)
its additive form is given by the additive form of the rank-one polynomial raised to
the powerM , see Eq. (2.210).

■

Finite free additive and multiplicative convolutions -

For Pa, Pb two N degree monic polynomials with roots a, b ∈ RN , their finite free con-
volution(FFC) Pa ⊞N Pb is the bi-linear commutative operation whose result is a monicpolynomial of degree N with real roots, defined equivalently as:

(Pa ⊞N Pb) (x) := ER [det (xI− (Diag(a) +RDiag(b)R∗))] , (2.214)
(Pa ⊞N Pb) (x) =

N∑
k=0

 ∑
i+j=k

(N − i)!(N − j)!

N !(N − k)!
αi(a)αj(b)

 (−1)kxN−k , (2.215)

(Pa ⊞N Pb) (x) = E
{(

x− (tA + tB)
)N}

, (2.216)
(Pa ⊞N Pb) (x) = P̂a(Dx)P̂b(Dx)x

N . (2.217)
where in Eq. (2.214) the average over R can be either taken over U(N), O(N), or the
(discrete) group of signed permutation matrices. The notations αk(a), tA and P̂a de-note respectively the coefficients of Pa in the representation of Eq. (2.187), the negativeMarkov-Krein transform given by Eq. (2.200) and the additive form given by Eq. (2.217).

By abuse of notations, we will also denote by

µa ⊞N µb , (2.218)
the discrete measure of the roots of (Pa ⊞N Pb) (x).

The proofs of these equivalent statements can be found in [130, 125]. If one looks at Eq.
(2.214) without the expectation with R ∼ Unif [Oβ(N)] then this is nothing else than the
characteristic polynomial of the additive random Horn problem of Sec. 2.6.1. Thus, FFC
can be seen as the expected/typical value of the characteristic polynomial of this random
Horn problem. Informally as N → ∞, one should expect that have a self-averaging property
and be able to remove the expectation value if R ∼ Unif [Oβ(N)] and since the LSD of
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Diag(a) +RDiag(b)R∗ converges to the free convolution, one can therefore really think of
the FFC as a finite counterpart of the free convolution (hence its name) and we will see that
this is indeed the case. The fact that one can reduce the average over the compact Haar group
Oβ(N) to an average over the discrete group of sign permutations is a non-trivial phenomenon
known as quadrature and can be seen as a consequence of important results in representation
theory. The second non-trivial fact is that this operation gives a real-rooted polynomial since
the sum of real-rooted polynomials is a priori not real-rooted. Eq. (2.214) can be easily obtained
from Eq. (2.214) with the average taken over the group of signed permutation and encodes
how the coefficients of the FFC depend on the coefficients of the two polynomials Pa and
Pb. Eq. (2.216) and Eq. (2.217) provide another natural interpretation of the FFC: the FFC
corresponds to adding the negative Markov-Krein transform of each polynomial and in spirit
this corresponds to do the (classical) convolution of their discrete measures and hence multiply
their moment generating functions.

The multiplicative counterpart of this FFC is defined similarly:

For Pa, Pb two N degree monic polynomials with roots a, b ∈ R∗
+
N , their finite free

multiplicative convolution (FFMC) is defined equivalently as:
(Pa ⊠N Pb) (x) := ER [det (xI−Diag(a)RDiag(b)R∗)] , (2.219)
(Pa ⊠N Pb) (x) =

N∑
k=0

[
αk(a)αk(b)(

N
k

) ]
(−1)kxN−k , (2.220)

(Pa ⊠N Pb) (x) = E
{(

z − (tA tB)
)N}

, (2.221)
(Pa ⊠N Pb) (x) = P̂

(×)
a (xDx) P̂

(×)
b (xDx) (x− 1)N . (2.222)

furthermore this operation preserves real-rootness and positivity.
Note that since

√
AB

√
A has the same eigenvalues as AB, one can also interpret this FFMC as

the expected value of the characteristic polynomial of the multiplicative random Horn problem
of Eq. (2.122). Interestingly, the FFMC is now the product of the same negative Markov-Krein
transforms entering the definition of the FFC and thus this corresponds to multiplying their
Mellin transform.

Remark (finite free rectangular convolution). One can also define the rectangular counter-
part of this finite free convolution, see for example Ref. [78, 77]. However, this operation
will not be discussed in the rest of this thesis. ⌋

We conclude this section with a simple example to illustrate the FFC.

Example (FFC of rank-one polynomials). Let’s consider two rank-one polynomials as de-
fined by Eq. (2.209) with non-zero roots given by γ1 and γ2, then using the definition (2.217)and Eq. (2.210) we have for their FFC:

P (rk-1)
γ1 (x)⊞N P (rk-1)

γ2 (x) =
(
1− γ1

N
Dx

)(
1− γ2

N
Dx

)
xN , (2.223)

P (rk-1)
γ1 (x)⊞N P (rk-1)

γ2 (x) = xN − (γ1 + γ2)x
N−1 +

N − 1

N
γ1γ2x

N−2 , (2.224)
P (rk-1)
γ1 (x)⊞N P (rk-1)

γ2 (x) = xN−2 (x− γ−) (x− γ+) , (2.225)
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with
γ± =

γ1 + γ2
2

±
√

4γ1γ2 + (γ1 − γ2)2N

2
√
N

. (2.226)
Thus, their FFC is a ‘rank-two’ polynomialwith non-zero roots given asymptotically (inN ) as
the non-zero roots γ1 and γ2. Note that this asymptotic behavior is what we would obtain
if we would sum two rotationally invariant rank-one matrices with non-zero eigenvalues
given respectively by γ1 and γ2. ■

2.7.2 Finite free transforms and associated finite free cumu-
lants

Linearizing transforms for the finite free convolutions -

We introduce the finite counterpart of the R-transform and (log)-S-transform of the previous
section.

The finite R-transformR(N)
a of a polynomial Pa is defined as:

R(N)
a (y) := − 1

N
Dy log Q̂a(−Ny) mod yN , (2.227)

with Q̂a defined by Eq. (2.206).

The (logarithm of the) finite S-transform S̃(N)
a of a polynomial Pa with positive roots isdefined as:

log S̃(N)
a (y) := − 1

N
Dy log Q̂

(×)
a (−Ny) , (2.228)

with Q̂
(×)
a defined by Eq. (2.207).

Note that Q̂a and Q̂
(×)
a corresponds respectively to the moment generating function and Mellin

transform of the negative Markov-Krein transform. Since by Eq. (2.216) and (2.221), one knows
that the FFC and FFMC correspond respectively to the sum/product of the negative Markov-
Krein transform, it should come as no surprise that the linearizing transforms of the FFC and

FFMC are given as the logarithm of Q̂a and Q̂
(×)
a . The following results given in Ref. [125]

goes into this direction:

Additivity of the finite R-transform and the finite log-S-transform: If we de-
note by c the roots of Pa ⊞N Pb, then we have

R(N)
c (y) = R(N)

a (y) +R(N)
a (y) mod yN . (2.229)

Similarly if we denote by c the roots of Pa ⊠N Pb, we have:

log S̃(N)
c (y) = log S̃(N)

a (y) + log S̃(N)
b (y) , (2.230)

for y = −k/N with k ∈ {1, . . . , N}.
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Finite free cumulants -

The measure µa is discrete on (at most) N atoms, hence it is completely determined by
its first N moments. This means that one only needs the knowledge of the first N finite
free cumulants to compute the finite free sum. One can show (see Ref. [7]) that up to a
normalization those cumulants are given as the first N coefficients in the power series of the
finite R-transform:

R(N)
a (y) :=

N∑
k=0

(
(N − k)!

N !
Nk

)
κ
(N)
k yk−1 , (2.231)

where the coefficients N !/(N − k)!N−k ensure the leading term of κ
(N)
k to be mk :=∑N

i=1 a
k
i /N , the kth moment of the discrete distribution. By linearity of the finite R-transform

we have for c the roots of Pa ⊞N Pb:

κ
(N)
k (c) = κ

(N)
k (a) + κ

(N)
k (b) for k ∈ {1, . . . , N} . (2.232)

As in the free case, one would like to relate these finite free cumulants to the moments mk of
the discrete measure µa associated with the roots. Using Eq. (2.227) and Eq. (2.203), one can
see that the two quantities are related by the two equations:

τk =
(
(N−k)!

N ! k!
)∑

1j1+···+kjk=k (−N)j1+···+jk
∏k

i=1
mk

ji

ijiji!
for k ≤ N ,

log
(
1 +

∑N
k=0

τk
k! y

k
)
=
∑N

k=1

(
(N−k)!

N !
(−N)

k

)
κ
(N)
k yk mod yN .

(2.233)

where the τk :=
∑N

i=1(t
A
i )

k/N are the moments of the negative Markov-Krein transform. Thus,
in practice, one can first solve for the τk using either the top equation of Eq. (2.233) or the
recursive relation Eq. (2.189) with Eq. (2.202) and then expand the Taylor series of logarithm in
the bottom equation of Eq. (2.233) to express the cumulants in terms of the moments. Doing
so, one obtains that the first four finite cumulants are given in terms of the moments of µa by:

• κ
(N)
1 = m1,

• κ
(N)
2 = m2 −m2

1 (if N ≥ 2),

• κ
(N)
3 = m3 − 3m1m2 + 2m3

1 (if N ≥ 3),

• κ
(N)
4 = m4 − 2N−3

N−1 m
2
2 +

10N−12
N−1 m2m

2
1 − 5N−6

N−1 m
4
1 (if N ≥ 4).

After consequent work (see Ref. [7]) one can eliminate the dependency in τk to obtain a
sophisticated combinatorial formula just between the finite free cumulants and the moments.
This relation can also be interpreted as a topological expansion (see Ref. [6]) and put under
the general form:

mk =
∑

π∈P[k]

W
(N)
FFC(π)κ

(N)
π for k ∈ {1, . . . , N} , (2.234)
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where W
(N)
FFC(·) is a weight factor that can be shown to penalize crossing partitions in a certain

way. Asymptotically in N , this weight factor is given by:

W
(N)
FFC(π) −−−−→

N→∞


1 if π is non-crossing ,

0 otherwise ,

(2.235)

such that one retrieves the moment-cumulant formula of free convolution, see Eq. (2.151). In
other words, the finite R-transform converges to the R-transform and one can prove a similar
result for the finite S-transform:

Asymptotic property of finite transforms: If the discrete µa associated to the roots
of a polynomial Pa converges for large N to a smooth distribution µA then we have

R(N)
a (y) →

N→∞
RA(y) and S̃(N)

a (y) →
N→∞

S̃A(y) , (2.236)
if the roots are positive and where RA and S̃A are respectively the R-transform of µA defined
by Eq. (2.139) and the S-transform of µA defined by Eq. (2.152).
This leads immediately to the following result:

Result 2.20 (Finite free convolutions tend to free convolutions)

For two monic polynomials Pa, Pb of degree N with roots a, b ∈ RN , if we denote by
µa ⊞N µb the discrete measure with atoms given by the roots of Pa ⊞N Pb, then in the
large N limit where µa = 1/N

∑
i δ(x− ai) → µA and µb = 1/N

∑
i δ(x− bi) → µB, we

have:
µa ⊞N µb −−−−→

N→∞
µA ⊞ µB . (2.237)

Similarly, for the multiplicative case we have:

µa ⊠N µb −−−−→
N→∞

µA ⊠ µB , (2.238)
where µa ⊠N µb is the discrete measure associated to the positive roots of Pa ⊠N Pb.

2.7.3 Finite free central limit theorems
In order to construct an equivalent of the central limit theorem for the finite free convolution,
one needs to determine which polynomial has only the second finite free cumulant κ

(N)
2 as

being a non-zero cumulant. From the expression (2.211) of the additive form of the Hermite
polynomials together with the expression of the finite R-transform of Eq. (2.227), one can show
that Hermite polynomials given by Eq. (2.211) as a second cumulant given by (1−1/N)σ∗, thus
in order to have a second cumulant independent of N , one needs to re-scale this polynomial
and this gives the following result:

Result 2.21 (Finite free central limit theorem)

If a(1), . . . ,a(n) are n vectors of size N , such that their associated measure µa(i) all have
mean zero: m

(i)
1 =

∑N
j=1 a

(i)
j /N = 0, and second moment m

(i)
2 =

∑N
j=1(a

(i)
j )2/N = σ2,
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then in the large n limit we have:

Pa(1)/
√
n(x)⊞N · · ·⊞N Pa(n)/

√
n(x) −−−→

n→∞
H(σ2)(x) := C̃H,N HeN

(√
N − 1

σ2
x

)
(2.239)

where C̃H,N is the constant which makes this polynomial monic.

The Poisson limit theorem for the finite free convolution can be easily deduced from the example
of Eq. (2.213) where it was noticed that its additive form is given as M times the one of a
rank-one polynomial with non-zero root given by one, thus we have:

Result 2.22 (Finite free Poisson theorem)

Let P (rk-1)
1 (x) := xN−1(x− 1), then we have:

P
(rk-1)
1 (x)⊞N · · ·⊞N P

(rk-1)
1 (x)︸ ︷︷ ︸

M times

= L(M)(x) := CL,N La
(M−N)
N (Nx) (2.240)

where CL,N is the constant which makes this polynomial monic.

2.7.4 Finite free convolution as the sum of low-temperature
ensembles

For β > 0, even though one does not have a matrix model, one can extrapolate what is the
corresponding ‘β-sum’ of two sets of ‘eigenvalues’ a and b and this will be shortly described
in the next chapter and is based on the theory of special symmetric polynomials known as
Jack polynomials which depend explicitly on the parameter β. As β → ∞, one can show that
these Jack polynomials degenerate in a certain way into elementary symmetric polynomials,
which as we have seen are closely related to the finite free convolution. From there, one can
interpret (also in a certain way) the sum/product of β-ensembles in the low-temperature limit
β → ∞ with N fixed as being given by the FFC/FFMC. We refer the reader to Ref. [75] for
a precise statement of this result and we give in this section three simple examples illustrating
this phenomenon.

Rank-one perturbation of polynomial and secular equation -

Let’s first consider the rank-one perturbation of a polynomial:

Pc(x) =
(
Pb ⊞N P (rk-1)

γ

)
(x) , (2.241)

where P
(rk-1)
γ is given by Eq. (2.209) with γ > 0 and we assume the roots of Pb to be simple.

Now since the additive form of the rank-one polynomial is given by Eq. (2.210), we have:

Pc(x) = Pb(x)−
γ

N
(Pb)

′(x) , (2.242)
Pc(x) =

N∏
i=1

(x− bi)−
γ

N

N∑
j=1

∏
i|i ̸=j

(x− bi) . (2.243)
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Hence if we factorize by
∏N

i=1(x − bi) we have that the roots ci of Pc(x) which are different
from bi are given as the solution of the deterministic secular equation:

1− γ

N

N∑
j=1

1

ci − bj
= 0 , (2.244)

which is nothing else than the β → ∞ version of the additive rank-one deformation of Eq.
(2.37) since the mean of the di is given by 1/N and their variance goes to zero as β → ∞, see
Eq. (2.44).
Infinitesimal perturbation and the heat flow equation for zeroes of an or-
thogonal polynomial -

We now turn to the ‘DBM’ counterpart for the finite free convolution. In the finite free world,
Gaussian ensembles are replaced by Hermite polynomials and one has two natural choices for
their normalization: either choose the convention defined by Eq. (2.211) or the convention from
the finite free CLT of Eq. (2.239). We start with the first convention and then briefly describe
what changes for the other one. We consider the following deterministic process:

Pc(t, x) =

(
Pb(x)⊞N CH,N HeN

(√
N

t
x

))
, (2.245)

which can be expressed thanks to Eq. (2.211) as:

Pc(t, x) = exp

(
− t

2N
Dx

2

)
Pb(x) . (2.246)

If we differentiate this equation since we have

d

dt
exp

(
− t

2N
Dx

2

)
= − 1

2N
Dx

2 exp

(
− t

2N
Dx

2

)
, (2.247)

we get the following backward heat equation (BHE) for Pc(t, x):

∂tPc(t, x) = − 1

2N
∂xxPc(t, x) . (2.248)

Note that since FFC preserves real-rootedness, so does the BHE. The roots ci(t) of Pc(t, x)

satisfy by definition:

Pc(t, ci(t)) = 0 , (2.249)
and by differentiating this equation with respect to the variable t, we get after a few simplifi-
cations, the following equation for the roots:

d

dt
ci(t) =

1

N

∑
j|j ̸=i

1

ci(t)− cj(t)
, (2.250)

which is nothing else than the usual DBM without the noise term, that is the β → ∞ limit of
the DBM. Correspondingly, if we define the Stieltjes transform:

gc(t, z) =
1

N

N∑
i=1

1

z − ci(t)
, (2.251)
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it is the solution of the following complex Burgers equation with negative coefficient of viscosity:

∂tgc + gc∂zgc = − 1

2N
∂zzgc , (2.252)

which is again the β → ∞ of the stochastic partial differential equation Eq. (2.85).
Now if we use instead the Hermite polynomial H(t) of the finite free central limit theorem of
Eq. (2.239) and define Pc̃(t, x) = (Pb ⊞N H(t))(x), then one can show that the associated
Stieltjes transform is the solution of:

∂tgc̃ +
N

N − 1
gc̃∂zgc̃ = − 1

2(N − 1)
∂zzgc̃ . (2.253)

Relation between Jacobi and Laguerre Polynomials -

We conclude this section on the finite free convolution with the finite counterpart of the free
relation between the Watcher distribution and the Marčenko-Pastur distribution of Eq. (1.43).
To ease notation, let’s denote by

Ja(M1,M2)(x) := CJ,N Ja
(M1−N,M2−N)
N (x) = CJ,N P

(M2−N,M1−N)
N (2x− 1) , (2.254)

the monic Jacobi polynomial on the unit interval, then we have

Ja(M1,M2) (x) =
((

L(M1) ⊠N L(M2)[−1]
)
⊞N P1

)[−1]

(x) , (2.255)
where .[−1] indicates the operation of taking the inverse of the roots of a polynomial, P1(x) =

(x − 1)N and L is the Laguerre polynomial of Eq. (2.240). This result is part of an ongoing
work of the author and can be obtained by a ‘brute-force’ computation thanks to the properties
of the FFC.

2.8 Summary and Conclusion of Chapter 2

In this chapter, we have reviewed results concerning the sum and the product of random matrices
for β = 1, 2, 4. The description of the joint density of eigenvalues/singular values is expressed
in terms of spherical integrals which play the role of the Fourier transform and at large N ,
the limiting spectral distribution is given by the theory of free probability. For rank-one and
infinitesimal perturbations, we have seen that one can naturally extend the operation to any
β > 0 and as we will see in the following chapter, one can in fact extrapolate the sum/product
for any β > 0. The limit β → ∞ (with N fixed) of this extrapolation is the finite free
convolution of Sec. 2.7, an operation acting on monic polynomials. A natural question is to
extend the large deviation principle of the top eigenvalue of Sec. 1.5 (obtained for individual
β-ensembles) to the sum/product of random matrices, and this is done in Chapter 5. Another
natural question is to give a meaning for the sum of high-temperature ensembles (Nβ/2 → c)

and this operation, the high-temperature convolution, is described in Chapter 6. One open
question is to know if the support of the finite free convolution is always included in Horn’s
convex hull. Surely this is what one should expect since the FFC corresponds in a sense to the
typical value of Horn’s problem, but it is unclear how one proves this statement based on the
definitions of the FFC.
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Chapter 3

Spherical integrals and their large N
limits

Part of the materials presented in this chapter are based on the preprint [142].

3.1 Introduction

In this chapter, we study in detail the spherical integrals appearing in the different flavors of
Horn’s problem of the previous chapter, and in particular their large N limits. In Sec. 3.2 we
recall the main definitions and properties of the spherical integrals obtained for β ∈ {1, 2, 4},
give the determinantal formulae in the special case of β = 2 and then explain how one can
naturally extend the definitions of these spherical integrals to β > 0. This extension allows
one to extrapolate the sum of β-ensemble to any β > 0. In the two following sections, we
look at two different limits of these spherical integrals. The first one, developed in Sec. 3.3
concerns the case where the two arguments of the spherical integrals are ‘full-rank’, that is,
most of their entries are non-zero) while in Sec. 3.4, we look at the exact opposite case, where
the conjugate variable t has all its entries zero except for one. This limit is closely related to
the free probability transforms described in the previous chapter. Eventually in Sec. 3.4.7, we
consider the annealed limit of this ‘rank-one’ integrals.

3.2 More on spherical integrals

Reminder on the definitions of the spherical integrals -

For β = 1, 2, 4, if we denote as per usual Oβ(N) = O(N),U(N),Sp(N), the corresponding
compact group, then for ease of reading, we recall that for each β, the three spherical integrals
introduced in the previous chapter are given by the following definitions.

• For a ∈ RN the additive spherical integral (or HCIZ integral) is defined by

I(β)(a, t) :=

ˆ
Oβ(N)

eTrDiag(a)VDiag(t)V∗
µHaar(dV) , (3.1)
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• For a ∈ RN
+ the multiplicative spherical integral is defined by

I(β)
× (a, t) :=

ˆ
Oβ(N)

∆t(VDiag(a)V∗)µHaar(dV) , (3.2)
where we recall that for A a self-adjoint matrix, ∆t(A) :=(
det
[
A(1)

])t1−t2 . . .
(
det
[
A(N−1)

])tN−1−tN (detA)tN is the generalized power
function and A(i) denotes the top left (i× i) corner of the matrix A.

• For a ∈ RN
+ , the rectangular spherical integral is defined by:

I(β)
q (a, t) :=

ˆ
Oβ(N)

ˆ
Oβ(M)

eReTr (Diagq(a)V1Diagq(t)
TV2)µHaar(dV1)µHaar(dV2) ,

(3.3)
where Diagq(a) denotes the (N × M) matrix with N (a priori) non-zero entries over
the diagonal given by the components of a.

In each case, we can recall that one can replace Diag(a) (resp. Diagq(a)) by a self-adjoint
(resp. rectangular) matrix A with eigenvalues (resp. singular values) a without changing the
result since one can always absorb the matrix of eigenvectors in the eigenvalue (singular value)
decomposition of A in the Haar measure.

In the previous chapter, we have seen that these spherical integrals play the role of the Fourier
transform for their corresponding Horn problem since we have the following results. For the
additive case, we have:

Result 3.1 (Averaging property for the additive spherical integral)

EV∼Unif[Oβ(N)]

[
I(β)(A+VBV∗, ·)

]
= I(β)(A, ·) I(β)(B, ·) , (3.4)

or equivalently in terms of the joint law P(β)(c|a, b):
ˆ

I(β)(c, ·)P(β)(c|a, b)dc = I(β)(a, ·) I(β)(b, ·) . (3.5)

Similarly for the multiplicative case, we have:

Result 3.2 (Averaging property for the multiplicative spherical integral)

EV∼Unif[Oβ(N)]

[
I
(β)
×

(
B1/2VAV∗B1/2, ·

)]
= I

(β)
× (A, ·) I(β)× (B, ·) , (3.6)

or equivalently,
ˆ

I(β)
× (c, ·)P(β)

× (c|a, b)dc = I(β)
× (a, ·) I(β)

× (b, ·) . (3.7)

Eventually, for the rectangular case, we have:
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Result 3.3 (Averaging property for the rectangular spherical integral)

EV,V′

[
I(β)q (A+VBV′, ·)

]
= I(β)q (A, ·) I(β)q (B, ·) , (3.8)

or equivalently:
ˆ

I(β)
q (c, ·)P(β)

q (c|a, b)dc = I(β)
q (a, ·) I(β)

q (b, ·) . (3.9)

We now give short proofs of these properties. For the additive and rectangular cases, this is a
direct consequence of the Haar property.

Proof for the additive and rectangular cases (Res. 3.1 and 3.3): by defini-
tion of the spherical integral, one has:

EV

[
I(β)(A+VBV∗,T)

]
= EV′

[
eTrAV′TV′∗

EV

[
eTrB(V∗V′)T(V∗V′)∗

]]
, (3.10)

where to lighten notations we have set EV ≡ EV∼Unif[Oβ(N)]. If we dot the change of variable
U = (V∗V′), in the expectation over V, we have U ∼ Unif [Oβ(N)] and this gives:

EV

[
I(β)(A+VBV∗,T)

]
= EV′

[
eTrAV′TV′∗

]
· EU

[
eTrBUTU∗

]
, (3.11)

which gives the desired property by definition of the spherical integral. The proof for the
rectangular case is identical.

The case of the multiplicative spherical integral is not as straightforward as in the addi-
tive/rectangular case and a readable proof is hard to find in the literature, so I give here a
short proof.

Proof for the multiplicative case (Res. 3.2) : We decompose the proof into two
steps.

- First, every positive self-adjoint matrix Ã ∈ Herm++
β (N) admits a unique Cholesky

decomposition:

Ã = RR∗ , (3.12)
where R is an upper triangular matrix. If we apply this decomposition to VAV∗ = RAR

∗
A in

the definition of the spherical integral, we can replace the average over the compact group by
an average over the triangular matrix RA:

I
(β)
× (A, t) = ERA

[∆t (RAR
∗
A)] . (3.13)

Next, since the determinant of a product of matrices is the product of the determinants and
since the determinant of a triangular matrix is the product of its diagonal components, we have:

det
[
(RAR

∗
A)(i)

]
= det

[
RA(i)

]2
=

i∏
k=1

((RA)kk)
2 , (3.14)
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such that the multiplicative spherical writes:

I
(β)
× (A, t) = ERA

 N∏
j=1

(
(RA)jj

)2 tN
·
N−1∏
i=1

i∏
k=1

((RA)kk)
2(ti−ti+1)

 , (3.15)
which simplifies into:

I
(β)
× (A, t) = ERA

[
N∏
k=1

((RA)kk)
2 tk

]
. (3.16)

- Second, if we now look at the average multiplicative spherical integral of the corresponding
Horn problem, since B1/2 = B1/2∗, we have:

EV

[
I
(β)
×

(
B1/2VAV∗B1/2, t

)]
= EV,V′

[
∆t

((
V′B1/2

)
VAV∗

(
V′B1/2

)∗)]
. (3.17)

If we use the Cholesky decomposition once again: VAV∗ = RAR
∗
A and the QR decomposition

V′B1/2 = QRB with Q ∈ Oβ(N) (such that up to a change of variable we have V′BV′∗ =

RBR
∗
B), we have:

EV

[
I
(β)
×

(
B1/2VAV∗B1/2, t

)]
= ERA,RB

[∆t ( (RBRA) (RBRA)
∗ )] . (3.18)

The matrix RBRA is the product of two triangular matrices hence it is also triangular. Its
diagonal entries are given by (RA)kk · (RB)kk and since RA and RB are independent, we have:

EV

[
I
(β)
×

(
B1/2VAV∗B1/2, t

)]
= ERA

[
N∏
k=1

(RA)
2tk
kk

]
· ERB

[
N∏
k=1

(RB)
2tk
kk

]
, (3.19)

which concludes the proof of the averaging property by Eq. (3.13).
Spherical integrals in the abstract setting of Gelfand pair and roots systems
-

The three averaging properties of Res. 3.1, 3.2, 3.3 can all be written in the following abstract
manner:ˆ

K
φ(g1kg2)µHaar(dk) = φ(g1)φ(g2) for all g1, g2 ∈ G, (3.20)

where (G//K) is a so-called Gelfand pair or symmetric space: G is a group and K is a
compact subgroup of G with certain specific conditions between the twos. The construction of
a harmonic analysis theory on this type of generic space has received a lot of attention in the
past century with the seminal work of Harish-Chandra [88], and Helgason [90] to cite a
few. Depending on the geometry of the space (G//K) (Euclidean, compact or non-compact),
the root system associated with the group G and its multiplicity (which depends on β), one can
show that these spherical integrals satisfy a certain sophisticated partial differential equation.
One can then go one step further by even removing the concept of a Gelfand pair and only
consider ‘spherical functions’ as solutions of this differential equation where now the multiplicity
of the associated root system takes an ‘arbitrary’ value. In our setting, this means that one can
naturally extend spherical integrals to any β > 0. In Sec. 3.2.2, we will see how to construct
this differential equation without appealing to the theory of root systems. For completeness,
I give below the geometry and root system associated with the three examples studied in this
thesis and refer to Ref. [90, 64] for further details regarding harmonic analysis on these spaces.
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Spherical Integral Geometry of G.P./symm. space Root system
I(β) Euclidean (flat) AN−1

I(β)
× non-compact (negative curvature) AN−1

I(β)
q Euclidean (flat) BN−1

Let’s mention that for the multiplicative case, our choice to fix the multiplicative spherical with
the averaging property of Eq. (3.6) corresponds to the normalization:

I(β)
× (a,0) = 1 for all a ∈ (R∗

+)
N . (3.21)

However unlike the additive and rectangular case, this choice of normalization does not make the
spherical integral invariant by permutation of the entries of t and for group theoretic reasons
on non-compact spaces, it sometimes appears more natural to consider a shifted version of
this multiplicative spherical integral such that one has this property. In particular, the so-
called Heckman-Opdam hypergeometric function [89] which has seen recent applications in
problems arising in RMT, see for example Refs. [31, 75], can be seen as a shifted version of our
convention. In the rest of this thesis we will not need the use of this shifted version and stick
to our convention and definition of the multiplicative spherical integral.

3.2.1 Determinantal formulae for β = 2

In the special case β = 2, one can simplify the integral over the unitary groups U(N) (and
U(M)) to write the spherical integrals as a ratio of the determinant of a specific matrix over
two Vandermonde determinants. These determinantal formulae can be obtained by different
methods. I give here the results without proof.

For the additive spherical integral, this determinantal formula is already (indirectly) present in
the original work of Harish-Chandra [88] and has been re-discovered by Itzykson and
Zuber in high-energy physics [96]. It is given by the following result.

Result 3.4 (Itzykson-Zuber determinantal formula for β = 2 [88, 96])

For β = 2, the additive spherical integral of Eq. (3.1) admits the following determinantal
formula:

I(β=2)(a, t) = CN
det
[
eaitj

]
∆(a)∆(t)

, (3.22)
where CN =

∏N−1
i=1 i!, and ∆(.) is the Vandermonde determinant.

Note that when two (or more) components of a or t are equal, one needs to understand Eq.
(3.22) with L’Hospital’s rule.

The determinantal formula for the multiplicative case has been derived by Gelfand and
Naĭmark in Ref. [74] the study of harmonic analysis on symmetric spaces and is given by:

Result 3.5 (Gelfand-Naimark determinantal formula for β = 2 [74])

For β = 2, the multiplicative spherical integral of Eq. (3.2) admits the following determi-
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nantal formula:

I(β=2)
× (a, t− s0) = CN

det
[
ai

tj
]

∆(a)∆(t)
, (3.23)

where s0 = (N − 1, . . . , 1, 0) and CN =
∏N−1

i=1 i!, and ∆(.) is the Vandermonde determi-
nant.

Anticipating a bit, let’s mention that this formula is very reminiscent of the determinantal
formula for the famous Schur polynomials, and as we will see in the next section this comes
with no surprise as the two objects are closely related.

The determinantal formula for the rectangular spherical integral has been derived by several
authors and is given by the following result.

Result 3.6 (Schlittgen-Wettig determinantal formula for β = 2 [160])

For β = 2, the rectangular spherical integral of Eq. (3.3) admits the following determinantal
formula:

I(β=2)
q (a, t) = CN,M

det [IM−N (2aitj)]

∆(a2)∆(t2)
∏N

i=1(aitj)
M−N

, (3.24)
where ∆(.) is the Vandermonde determinant, CN,M :=

∏N
i=1(M − i)!(N − i)! and IM−N

is the Bessel function Iν(2x) := xν
∑∞

k=0
yk

k!(k+ν)! .

One may notice that in each case the argument of the determinant in the numerator is the
natural integrand of respectively the moment generating function, the Mellin transform and
the Hankel transform and since the corresponding spherical integrals are their ‘random matrix
counterpart’, it would be interesting to know if there is a simple argument for this phenomenon.

For large N , these determinantal expressions are difficult to use in practice since they involved
an alternating sum with N ! terms. However, in some specific cases (which will be detailed later
in this chapter and in the following one), these formulae considerably simplify and are useful to
study the large N limit.

3.2.2 Extension of spherical integrals to β > 0 and Jack polyno-
mials

In order to extend the definition of spherical integrals to any values of β > 0, the idea is very
similar to the definition of β-ensembles, which have been obtained as an analytical continuation
in the parameter β > 0 of the joint law of eigenvalues of matrices taken initially from a β-
ensemble with β ∈ {1, 2, 4}, as described in Sec. 1.4. For simplicity, we will describe in detail
only the case of the additive spherical integral. Thus, one wants to find a natural description of
this additive spherical integral, where β appears simply as a parameter. To do so, let’s remark
that for β = {1, 2, 4} and A,B ∈ Hermβ(N) we have:

∆A eTrAB =
(
TrB2

)
eTrAB , (3.25)
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where

∆A := Tr
∂2

∂A2
=

N∑
i=1

∂2

∂A2
ii

+
1

2

∑
i<j

β∑
b=1

∂2

∂A
(b)
ij

2 , (3.26)

is the Laplace-Beltrami operator over the (flat) space of self-adjoint matrices. Clearly, since
I(β)(A,B) can be seen as a uniform average over the matrix of eigenvectors of B, it is a
β-invariant solution of the same Helmholtz’s equation/eigenvalue problem:

∆A I(β)(A,B) =
(
TrB2

)
I(β)(A,B) , (3.27)

and thus the goal is to understand how this differential operator is modified when we do the
change of variable from the matrix arguments (I(β)(A,B)) to their eigenvalues (I(β)(a, b)),
since the latter vectors a, b ∈ RN do not depend explicitly on β > 0. The final result of
this change of variable is well-known (see Refs. [81, 33]) and I propose here to find it using a
variational approach. Let ϕ be a function of the entries of the matrix A and define the following
functional:

J [ϕ] :=

ˆ (
1

2
|∇Aϕ|2 + 1

2

(
TrB2

)
ϕ2

)
dA , (3.28)

where ∇A is the (flat) gradient over the space of self-adjoint matrices. As it is well known, if
we look at the extrema of this energy functional we get back the eigenvalue problem since we
have:

δJ [ϕ]

δϕ
=0 = −∆A ϕ+

(
TrB2

)
ϕ . (3.29)

Thus if we apply Weyl’s formula for the eigenvalue decomposition of A = VDiag(a)V∗ we
get that I(β)(a, b) is the solution of

δ

δϕ
J [ϕ = I(β)(a, b)] = 0 , (3.30)

with

J [ϕ] = Cst ·
ˆ (

1

2

N∑
i=1

(
∂

∂ai
ϕ

)2

+
1

2

(
N∑
i=1

b2i

)
ϕ2

)
|∆(a)|β da . (3.31)

The extrema of this functional is given by the Euler-Lagrange equation:

∂L

∂ϕ
−∇a · ∂L

∂(∇aϕ)
= 0 with L[a, ϕ,∇aϕ] := |∆(a)|β

(
(
∑N

i=1 b
2
i )

2
ϕ2 +

1

2
|∇aϕ|2

)
,

(3.32)
that is(

N∑
i=1

b2i

)
|∆(a)|βI(β)(a, b)−

N∑
i=1

∂ai

(
|∆(a)|β∂aiI(β)(a, b)

)
= 0 , (3.33)
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and since |∆(a)|β = exp
[
β/2

∑
i,j|i ̸=j log |ai − aj |

]
, by taking the derivative, we get after

simplification the following final eigenvalue problem: N∑
i=1

∂2

∂2
ai

+ β
∑

i,j|j ̸=i

1

ai − aj

∂

∂ai

 I(β)(a, b) =

(
N∑
i=1

b2i

)
I(β)(a, b) . (3.34)

As a consequence, we can define the additive spherical function I(β)(a, b) for any β > 0 as the
solution of the eigenvalue problem of Eq. (3.34) invariant by permutation of a and b, invariant
by permutation their entries and normalized such that I(β)(a,0) = 1. This definition is in
accordance with what one would obtain in the abstract setting of root systems. It turns out
that one can also show that this spherical integral is the eigenfunction of a countable family
of differential operators known as symmetrized Dunkl operator but we will not use this point
of view in the rest of this thesis. Note that for β /∈ {1, 2, 4} we still denote I(β)(a, b) as
a ‘spherical integral’ even-though one does have an integral representation over a group in
this case. For this reason, this function is sometimes also referred to as a multivariate Bessel
function in this general setting1.

One may expect to extend the multiplicative spherical integral I(β)
× in a similar fashion by

looking at how the Laplace-Beltrami operator over the curved space Herm++
β (N) is modified

when doing the change of variable from a matrix to its eigenvalues. One can then show that
for β ∈ {1, 2, 4}, this spherical integral is an eigenfunction of: N∑

i=1

a2i
∂2

∂2
ai

+ β
∑

i,j|i ̸=j

a2i
ai − aj

∂

∂ai

 I(β)
× (a, t) = et I(β)

× (a, t) . (3.35)
where et is a (sophisticated) function depending on t. If we re-scale t by t/ϵ, for small ϵ, one
can show et/ϵ =

∑
i=1 t

2
i /ϵ

2+o(1/ϵ2). Similarly, if we perform the change of variable a → eϵa,
the differential operator in the LHS of Eq. (3.35) becomes the differential operator of the LHS
of Eq. (3.34) divided by ϵ2. This leads to the following relation between the additive and the
spherical integral:

I(β)(a, b) = lim
ϵ→0+

I(β)
× (eϵa, b/ϵ) , (3.36)

which again can be seen as the fact that the sum of self-adjoint is a limiting case of the product.

Let us mention that there exists an analogous formulation in the rectangular case, see for
example Ref. [67] and references therein.

Relation to the Calogero-Moser-Sutherland (CMS) system -

If we define the function

Ψ(β)(a, t) := ∆(a)β/2 I(β)(a, t) , (3.37)
then one can show by injecting the expression of Ψ(β) in Eq. (3.34), that it satisfies a differential
equation:

HCMSΨ(β) = EtΨ
(β) , (3.38)

1for N = 1 one can show that the additive spherical integral is a Bessel function
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where HCMS is the quantum rational Calogero-Moser-Sutherland Hamiltonian:

HCMS :=

 N∑
i=1

∂2

∂2
ai

− β

(
β

2
− 1

)
·
∑

i,j|i ̸=j

1

(ai − aj)2

 , (3.39)

and the energy is given by Et :=
∑N

i=1 t
2
i . The CMS operator is an important integrable

system in physics, which also has a fundamental role in the study of root systems. For the
multiplicative case, there exist a variant of this property where the rational CMS is replaced by
its hyperbolic version, see for example Ref. [165] and references therein.

Expansion in terms of Jack polynomials -

In order to expand the additive spherical function, let’s first consider the case β ∈ {1, 2, 4} for
which we have the integral representation of Eq. (3.1). As we will shortly see, in each of these
three cases we have an expansion in terms of a family of symmetric polynomials which admits
a natural extension to all β > 0. We have:

I(β)(a, b) = EV∼Unif[Oβ(N)]

[
eTrAVBV∗

]
(for β ∈ {1, 2, 4}) , (3.40)

which by expanding the exponential gives:

I(β)(a, b) =

∞∑
k=0

EV∼Unif[Oβ(N)]

[
Tr (AVBV∗)k

]
k!

, (3.41)
Because we want to disentangle the contribution from a from the one from b in the expres-
sion of the additive spherical integral, the idea is to decompose the power-sum polynomial
Tr (AVBV∗)k into a basis of symmetric polynomials which behave nicely with respect to the
uniform average over Oβ(N). It turns out that for each of the three cases β = 1, 2, 4, there
exist such a family of symmetric polynomials indexed by a partition written as a N -tuple of
non-increasing non-negative integers λ = (λ1 ≥ · · · ≥ λN ), which we generically denote by

J
(β
2 )

λ ,

J
(β
2 )

λ (a) ∝



Zλ (a) for β = 1 ,

sλ (a) for β = 2 ,

Z
(Q)
λ (a) for β = 4 .

(3.42)

where Zλ is the zonal symmetric polynomial, sλ is the Schur polynomial and Z
(Q)
λ is the

quaternionic zonal polynomial. By abuse of notation, if we write J
(β
2 )

λ (AVBV∗) for the
symmetric polynomials in the eigenvalues of AVBV∗, for each of the three cases β ∈ {1, 2, 4},
we have:

EV∼Unif[Oβ(N)]

[
J
(β
2 )

λ (AVBV∗)

]
=

J
(β
2 )

λ (a) J
(β
2 )

λ (b)

J
(β
2 )

λ (1)

, (3.43)
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and the power sum polynomial is given as a linear combination of such zonal/Schur polynomials:

1

k!
Tr (AVBV∗)k =

∑
|λ|=k

1

Hλ

(
β
2

) · J(
β
2 )

λ (AVBV∗) , (3.44)

where the coefficient in front of the Jack polynomial is given below.

For β ∈ {1, 2, 4} these polynomials can be equivalently defined thanks to the generalized
Cauchy identity :

N∏
i=1

N∏
j=1

(1− aibj)
−β

2 =:
∑

|λ|=N

H ′
λ

(
β
2

)
Hλ

(
β
2

) · J(
β
2 )

λ (a) J
(β
2 )

λ (b) , (3.45)

and they admit the normalization:

J
(β
2 )

λ (1) =
(α)λ;β/2

H ′
λ

(
β
2

) , (3.46)

where the constants are defined by:

Hλ

(
β

2

)
:=
∏
s∈λ

(
a(s) +

β

2
l(s) + 1

)
, (3.47)

H ′
λ

(
β

2

)
:=
∏
s∈λ

(
a(s) +

β

2
l(s) +

β

2

)
, (3.48)

(α)λ;β/2 :=
∏

i,j>0|j<λi

(
α+ (j − 1)− β

2
(i− 1)

)
, (3.49)

with a(s) and l(s) the arm-length and leg-length of the box s of the partition λ seen as a
Young diagram, see Ref. [164, 150] for further details. let’s mention that these constants will
also not play a major role in the following.

Importantly, because the LHS of Eq. (3.45) makes sense for any β > 0, one can naturally

extend the symmetric polynomials J(
β
2 )

λ to all β > 0 and under this setting, the J
(β
2 )

λ are known
as Jack polynomials with index β/2. The Jack polynomials form a rich one-parameter family
of symmetric polynomials, and I refer to [115] and [164] for more properties concerning these
polynomials.

All in all, this gives the following expansion for the additive spherical integral valid for any
β > 0:

I(β)(a , b) =

∞∑
k=0

∑
|λ|=k

H ′
λ

(
β
2

)
(
Nβ
2

)
λ;β/2

Hλ

(
β
2

) · J(
β
2 )

λ (a) J
(β
2 )

λ (b) , (3.50)

and one can show that this definition is in accordance with the representation in terms of the
differential equation of Eq. (3.34).
For the rectangular case, there exists a similar expansion in terms of Jack polynomials and I refer
to Ref. [67] for further details. However, for the multiplicative spherical integral (or equivalently
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for the Heckman-Opdam function), there is - as far as I know - no known expansion in terms of
symmetric polynomials. Nevertheless, since for β ∈ {1, 2, 4}, Eq. (3.43) is reminiscent of the
property of Eq. (3.6) for the multiplicative spherical integral, one may expect the two quantities
to be closely related and indeed if we introduce the normalized Jack polynomials:

Ĵ
(θ)
λ (a) :=

J
(θ)
λ (a)

J
(θ)
λ (1)

, (3.51)
then when the conjugate argument t of the multiplicative spherical integral is a non-increasing
sequence of integers t = m, we have the following identity:

I(β)
× (a,m) = Ĵ

(β/2)
m (a) for m ∈ NN with m1 ≥ . . . ,≥ mN ≥ 0 , (3.52)

such that one can think of the multiplicative spherical integral as the analytical continuation
(in the index) of the Jack polynomials.

The situation is somehow very analog to the case of classical probability where the moment
generating E

[
etX
]
=
∑∞

k=0 E[Xk]tk/k! which is multiplicative for the sum of two independent
random variables, naturally expands in terms of the ‘moments’ E[Xk] and tk, while the Mellin
transform E[Xt], which is multiplicative for the product of independent random variables, is the
analytical continuation of the moments of X for non-integer values. In the context of spherical
integrals, what plays the role of the moments are Jack polynomials.

From Eq. (3.36), one can see the additive spherical integral as a limiting case of the multiplicative
spherical integral and by Eq. (3.52), one can also see it as a limit of normalized Jack polynomials:

I(β)(a, t) = lim
ϵ→0+

Ĵ
(β
2 )

⌊ϵ−1t⌋ (e
ϵa) , (3.53)

where t is a set of non-decreasing tuples and ⌊t⌋ denotes the vector whose components are
given as the integer part of the ones of t. A similar statement holds for the multiplicative
spherical integral, where the Jack polynomial in Eq. (3.53) is replaced by a certain Macdonald
polynomial, a two-parameter generalization of the former, see Ref. [115] for more details.

Positivity conjecture for the Jack-Littlewood-Richardson coefficients and
sum of β-ensembles -

The family of Jack polynomials satisfies a certain closure property for the product since we
have:

Ĵ
(β/2)
λ (.)Ĵ

(β/2)
µ (.) =

∑
ν

cνλ,µ(β/2) Ĵ
(β/2)
ν (.) . (3.54)

For β = 2, Jack polynomials degenerate into Schur polynomials and Eq. (3.54) is nothing
else than (a normalized version of) the famous Littlewood-Richardson rule. For β > 0, The
coefficients cνλ,µ(β/2) are the (normalized) Jack-Littlewood-Richardson (JLR) coefficients and
play an important role in the theory of symmetric polynomials and in representation theory,
see Ref. [115]. By Eq. (3.53), the sum in Eq. (3.54) becomes a N -dimensional integral for the
additive spherical integral, and we have:

I(β)(a, .) I(β)(b, .) =

ˆ
I(β)(c, .)P(β)(c|a, b) dc . (3.55)
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where we have used the notations P(β)(c|a, b) since for β ∈ {1, 2, 4}, this simply corresponds
to the joint distribution of the corresponding Horn problem of Sec. 2.6.1. For other values of
β, this quantity is a priori not a probability distribution but a signed measure. In fact, there
exists a general formula for Macdonald polynomials (which contains the Jack polynomials as
special cases) and this induces a similar interpretation for the multiplicative spherical:

I(β)
× (a, .) I(β)

× (b, .) =

ˆ
I(β)
× (c, .)P(β)

× (c|a, b) dc , (3.56)
where again P(β)

× corresponds to the joint density of the multiplicative Horn of Sec. 2.6.1 for
β = 1, 2, 4 and is a priori a signed measure for other values of β.

For any N , any partitions λ,µ, one can show that the coefficients of the combinatorial formula
of the Macdonald polynomials sum to one and this induces the following result:∑

ν

cνλ,µ(β/2) =

ˆ
P(β)(c|a, b) dc =

ˆ
P(β)
× (c|a, b) dc = 1 , (3.57)

valid for any β > 0, any partitions λ,µ and any vectors a, b. What is however much harder
to prove is the following still open - but believed to be true - conjecture first stated (under a
different form) by Stanley in Ref. [164].

Conjecture 3.1 (Positivity of the JLR coefficients [164, 158, 135])

For any N , any β > 0, any partitions λ,µ and any vectors a, b, all the coefficients
cνλ,µ(β/2), P(β)(c|a, b) and P(β)

× (c|a, b) are non-negative.

This conjecture will play an important role in the construction of the high-temperature convo-
lution of Chapter 6. If this conjecture holds, this means that even though one does not have
a ‘matrix-model’ for the sum/product of invariant ‘β > 0’ self-adjoint matrices, one can really
think of P(β) and P(β)

× as an extrapolation of the associated probability distributions, a property
we have already encountered when dealing with rank-one and infinitesimal perturbations in the
previous chapter. Note that in this case, one should expect the expression of the joint densities
given in terms of the spherical integrals given by Eq. (2.121) to be valid for all β > 0.

3.3 Extensive rank limit of spherical integrals

In this section, we consider the large N limit of spherical integrals in the scaling where the
conjugate variable b ≡ t is of ‘full-rank’ and its distribution converges to a certain LSD µB.
Our description of this full-rank limit will be relatively brief since our main focus will be on the
other ‘rank-one’ limit.

3.3.1 Large N limit of HCIZ integral and Matytsin’s variational
principle

The starting point of the computation is the joint law of the DBM given by Eq. (2.77) from
which one can express the additive spherical integral has:

I(β)

(
a,

Nβ

2
b

)
∝ |∆(a)|−βe+

Nβ
4 (

∑N
i=1 a

2
i+b2i ) P(β)

t=1(c(1) = a|b) . (3.58)
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As a consequence, we need to estimate the probability of the very unlikely event where the DBM
finishes at time t = 1 at the position c(1) = a, rather than its usual value. At large N , this
probability is given by a large deviation principle. Formally the probability of the trajectory of
a Brownian particle between time t = 0 and time t = 1 is given by P ({Bt}) ≈ exp

´ 1
0 Ḃ2

t /2 dt

and if one does the change of variable from the Brownian motions to the ci in Eq. (2.80), one
has formally for the law of a DBM starting at b and ending at a:

P(β)
t=1(c(1) = a|b) ≈ exp

[
−Nβ

2
·N
(ˆ 1

0
L (c(t), ċ(t)) dt +BT+O(1/N)

)]
, (3.59)

where the Lagrangian L is given by:

L (c,p) :=
1

N

(
N∑
i=1

p2i
2

+
1

2N2

N∑
i=1

1

(ci − cj)2

)
, (3.60)

and the boundary term is given at leading order in N :

BT =
1

2
Σ[µA]−

1

2
Σ[µB] , (3.61)

where we recall Σ[µ] :=
´ ´

log |λ−λ′|µ(dλ)µ(dλ′). Note that the paths of a Brownian motion
are very rough and its derivative with respect to time Ḃt (that is the white noise process) is
ill-defined, and hence so does ċ(t). Nevertheless, one can give a rigorous meaning of this
probability under the framework of the Onsager-Maschlup formalism. Let’s also mention that
we have also implicitly neglected the Jacobian of the change of variables from the Brownian
motion to the ci’s.

The Lagrangian L is nothing else than the Lagrangian of the classical Calogero-Moser-
Sutherland system. In the large N limit, one can show that this Lagrangian becomes a func-
tional:

L (c,p) → L [ρ, v] :=

ˆ
ρ(x, .)

(
v(x, .)2

2
+

π2

3
ρ(x, .)2

)
dx , (3.62)

and for large N the action in Eq. (3.62) is dominated by the instantons solutions of

ci(t) = − 2

N3

N∑
i=1

1

(ci(t)− cj(t))
3 , (3.63)

under the constraints ci(0) = bi and ci(1) = ai, which translates in the N → ∞ into the
coupled equations for ρ and v of Eq. (2.91) under the corresponding boundary value problem
(see below for the precise statement and Ref. [36] for more details).

The asymptotic behavior of the full-rank additive spherical integral can be decomposed into
two distinct contributions:

• The first one corresponds to a ‘decoupled’ term SBT
tot = SBT[µA] + SBT[µB], which

has no interactions between the distributions µA and µB. It is made of the sum of the
asymptotic behavior of BT given by Eq. (3.61) and the asymptotic behavior of the factor
term in front of the density in the RHS of Eq. (3.58). For µ = µA or µB, we have

SBT[µ] =
1

2
m2[µ]−

1

2
Σ[µ] , (3.64)
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or more explicitly

SBT[µ] =
1

2

ˆ
λ2µ(λ)dλ− 1

2

ˆ ˆ
log |λ′ − λ|µ(λ)µ(λ′) . (3.65)

• The second term is the coupling Euler-Matystin term, it is given by the hydrodynamical
limit of the Lagrangian of Eq. (3.62) under the constrained dynamics of the DBM starting
at b and ending at a, that is, explicitly:

SMat [µA, µB] =
1

2

ˆ 1

0
dt

ˆ
dx

π2

3
ρ∗(x, t)3 + ρ∗(x, t)v∗(x, t)2 , (3.66)

where ρ∗ and v∗ are given as the solutions of:{
∂tρ

∗ + ∂x (ρ
∗v∗) = 0 ,

∂tv
∗ + 1

2∂xv
∗2 − π2

2 ∂xρ
∗2 = 0 ,

(3.67)

under the fixed boundary values:{
ρ∗(x, 0) = µA(x) ,

ρ∗(x, 1) = µB(x) .
(3.68)

All in all this can be summarized in the following result:

Result 3.7 (Matystin’s variational principle for the full-rank HCIZ integral [136, 86])

In the limit where µA :=
∑N

i=1 δ(. − ai)/N → µA and µB :=
∑N

i=1 δ(. − bi)/N → µB,
we have:

2

N2β
log I(β)

(
a,

Nβ

2
b

)
→ F [µA, µB] := −3

4
+ SBT [µA] + SBT [µB]− SMat [µA, µB] ,

(3.69)
where SBT is given by Eq. (3.65) and SMat is given by Eq. (3.66).

The constant 3/4 corresponds to the asymptotic behavior of the normalization constant term
in front of Eq. (3.58) and can be obtained by Stirling formula, see Ref. [36].

This result appeared first in the high-energy physics literature in the work of Matytsin in
Ref. [136] and as then be put on a rigorous ground by Guionnet and Zeitouni in Ref. [86].

The difficulty in estimating Eq. (3.69) comes from the Matystin term from which there is no
closed formula for arbitrary µA and µB. However, for two appropriate choices of µA (or µB

by symmetry), one can evaluate the functional F [µA, µB] exactly and this is briefly described
below.

Simplification in specific cases-

.
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• First, since the limiting function F does not depend on the parameter β, we can study
the case β = 2 for which we have the determinantal formula of Eq. (3.22). Second, if
we choose the b0,j = (j − 1)/N we have:

I (a, Nb0) =
det
[
(eai)j−1

]
∆(a)

, (3.70)
where we have used the fact that ∆(Nb0) = CN exactly cancels the factor in front
I (a, Nb) in the determinantal formula of Eq. (3.22). Next, the term det

[
(eai)j−1

]
is

nothing else than then Vandermonde determinant of ea and since the distribution of b0
converges to the uniform distribution µUni on (0, 1), we get the following final result,
valid for any β and any well-behaved LSD µA of a:

F [µA, µUni] :=
1

2
Σ[µexp(A)]−

1

2
Σ[µA] , (3.71)

with Σ[µ] =
´ ´

log |λ − λ′|µ(dλ)µ(dλ′). The limiting distribution of the DBM con-
strained at both ends by a uniform distribution has been recently investigated in Ref.
[76].

• There is another simple case where one can compute explicitly the function F by noticing
that if we choose the a such that the LSD µA is the one of a DBM evaluated at time
t = 1, that is:

µA = µB ⊞ µsc(1) , (3.72)
then the dynamics of the constrained DBM are equal to the ones of the unconstrained
one, and we have used identities for the free energies [116]:

F [µB ⊞ µsc(1), µB] := −3

4
− Σ[µB ⊞ µsc(1)] +

1

2
m2[µB] +

1

2
m2[µB ⊞ µsc(1)] ,

(3.73)

3.3.2 Large N limit of the full rank multiplicative spherical in-
tegral for β = 2

For the full-rank multiplicative spherical function, there is - as far as I know of - no known
variational description for any β > 0. Nevertheless, for β = 2 one can compare the two
determinantal formulas of Eq. (3.22) and Eq. (3.23) to express the multiplicative spherical
function in terms of the additive one, namely we have:

I(β=2)
× (a, b− s0) =

∆(loga)

∆(a)
I(β=2) (loga, b) , (3.74)

from which one can deduce the corresponding variational principle. If we introduce the term:

SBT
× [µA] = m2[µA]− Σ[µA] +

1

2
Σ[µlog(A)] , (3.75)

we have the following result.
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Result 3.8 (Extensive-rank for the multiplicative spherical integral at β = 2)

In the large N limit where µA → µA and µB → µB, the limiting behavior of the multi-
plicative spherical integral is given for β = 2 by:

1

N2
log I(β=2)

× (a, Nb− s0) → −3

4
+SBT

× [µA] +SBT [µB]−SMat
[
µlog(A), µB

]
, (3.76)

where SBT
× is given by Eq. (3.75), SBT is given by Eq. (3.65) and SMat is given by Eq.

(3.66).
Unlike the previous case, this function is not symmetric by permutation of µA (or µlog(A)) and
µB. For the additive case, the DBM plays a fundamental role in the limit behavior of the
spherical integral and it will be interesting to know how if one can build a similar interpretation
for the multiplicative case with the DGBM of Eq. (2.98) (or a variant of it) in order to extend
the result to any β.

3.3.3 Large N limit of rectangular spherical integral and re-
lated variational principle

This section deals with rectangular matrices.

The derivation of the hydrodynamical limit of the rectangular spherical integral in the full rank
case where the distribution of the singular values µA =

∑N
i=1 δ(.−ai)/N converges to a LSVD

µA (and similarly µB → µB) is very similar to the one of the additive case. The final result
has been derived in Refs. [70, 83] and can be expressed in terms of the symmetrized LSVD
µ̂A = (µA(.) + µA(−.)) /2 and µ̂B = (µB(.) + µB(−.)) /2. It is made of two contributions: a
coupling term between µ̂A and µ̂B and a term which depends only on µ̂A and µ̂B individually.

• The decoupled term or ‘boundary term’ is given for each µ̂ = µ̂A, µ̂B by

SBT
q [µ̂] =

1

2
m2[µ̂]−

q−1 − 1

2
EX∼µ̂[logX]− 1

2
Σ[µ̂] , (3.77)

• The coupling term is given by the following variational principle:

SMat
q [µ̂A, µ̂B] =

1

2

ˆ 1

0

ˆ (
π2

3
ρ̂∗(x, t)3 + ρ̂∗(x, t)v∗(x, t)2 +

(1/q − 1)2

4

ρ̂∗(x, t)

x2

)
dtdx

(3.78)
where ρ̂∗ and v∗ are solutions of:{

∂tρ̂
∗ + ∂x (ρ̂

∗v∗) = 0

∂tv
∗ + 1

2∂xv
∗2 − π2

2 ∂x(ρ̂
∗)2 − (q−1−1)2

4x3 = 0
(3.79)

with ρ̂∗ being symmetric and with fixed values at the boundaries:{
ρ̂∗(x, 0) = µ̂A(x)

ρ̂∗(x, 1) = µ̂B(x)
(3.80)
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In summary we have:

Result 3.9 (Limit of the full-rank rectangular spherical integral [70, 83])

In the limit where N,M → ∞ with N/M → q ∈ (0, 1) and the symmetrized LSVD are
given by µ̂A → µ̂A and µ̂B → µ̂B, the asymptotic behavior of the rectangular spherical
integral is given by:

1

N2β
log I(β)

q (a, Nβb) → Fq[µ̂A, µ̂B] := cst + SBT
q [µ̂A] + SBT

q [µ̂B]− SMat
q [µ̂A, µ̂B]

(3.81)
where cst is constant depending on q, SBT

q is given by Eq. (3.77) and SMat
q is given by Eq.(3.78).

The large N behavior of the rectangular spherical integral has appeared recently in the study
of the problem of denoising a matrix corrupted by a Gaussian matrix. In particular in the case
where µB = µA⊞q µMP(q), one can also obtain an explicit formula for the spherical integral,
see Ref. [177].

Let’s mention that when q = 1, the expression of both the boundary term of Eq. (3.77) and the
coupling term of Eq. (3.78) simplify, and we also have cst → −3/4. In other words, we have

Fq[µ̂A, µ̂B] =
q=1

F [µ̂A, µ̂B] , (3.82)
where F is the asymptotic behavior of the additive spherical integral given by Eq. (3.69), this
is once again the manifestation of the close relation between square (but not self-adjoint)
matrices and self-adjoint matrices we have encountered in the two previous chapters. Note that
the normalizations of the additive and rectangular spherical integrals are slightly different.

3.4 Rank-one limit of spherical integrals and their
relation to free probability transforms

3.4.1 Introduction
In this section we consider another limit of spherical integrals where the conjugate vector t is
of ’rank-one’ which by abuse of notation means that it has only one non-zero component:

t = (θ, 0, . . . , 0) . (3.83)
In order to ease notation, we denote

• the additive ‘rank-one’ spherical integral by:

I(β)
a (θ) := I(β) (a, (θ, 0 . . . , 0)) , (3.84)

• the multiplicative ‘rank-one’ spherical integral by:

I(β)
×,a(θ) := I(β)

× (a, (θ, 0 . . . , 0)) , (3.85)
• and the rectangular ‘rank-one’ spherical integral by:

I(β)
q,a(θ) := I(β)

q (a, (θ, 0 . . . , 0)) . (3.86)
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Note that while the position of the non-zero entries does not matter in the additive and rectan-
gular case, it does for the multiplicative spherical integral which is not invariant by permutation
of the entries of t. The non-zero entry is set to be the first component of the vector in this
case. In all cases, we will assume θ > 0.

We will be interested in the setting where the empirical distribution of a converges to a
LSD/LSVD:

µA =
1

N

N∑
i=1

δ(.− ai)/N −→ µA , (3.87)
but importantly the position of the top eigenvalue/singular-value a1 converges to a position
x which is equal to or higher than the upper edge a+ of the support of µA:

a1 → x ≥ a+ . (3.88)
At large N , we will see that each spherical integral is closely related to the linearizing transform
of the corresponding operation: for example, the asymptotic behavior of the ‘rank-one’ additive
spherical integral is related to the R-transform linearizing the free additive convolution. This
behavior is the analog of the definition of the finite R-transform and S-transform for the FFC
of Sec. 2.7.2 and we will comment more on this relation in Chapter 6. In fact, the connection
between the rank-one spherical integrals and the corresponding linearizing transform can be
guessed heuristically by noting that if we take the logarithm of Eq. (3.4) we have:

logEV

[
I(β)(A+VBV∗, θ)

]
= log I(β)(A, θ) + log I(β)(B, θ) , (3.89)

whereby abuse of notation we have denoted by I(β)(A, θ) ≡ I(β)(A,Diag(θ, 0, . . . , 0)). As
N → ∞, the distribution of the eigenvalues of A+VBV∗ converges to the free convolution of
µA and µB and if we expect a self-averaging property such that we can remove the expectation
in the LHS of Eq. (3.89), we retrieve the linearizing property of the R-transform. However, this
result will only be true for a small value of θ: beyond a certain threshold depending on the
asymptotic position of the top eigenvalue x and µA, the spherical function will saturate and
the self-averaging property does not hold. In the language of statistical physics, this change of
behavior for the spherical function is reminiscent of a phase transition, and in order to build
intuition on this transition, I will first make a detour to the case β = 1 for which the spherical
integrals are exactly the partition functions of well-known models of disorder systems.

3.4.2 Rank-one spherical integrals and p = 2 soft spin models
for β = 1

The additive case -

For β = 1, the rank-one vector t = (θ, 0, . . . , 0) can be seen as the eigenvalues of the rank-one
matrix T = θe1e

T
1 where e1 = (1, 0, . . . , 0) has been set without loss of generality. If we

denote by A = Diag(a), the HCIZ integral writes in this case:

I(β=1)
a

(
N

2
θ

)
:=

ˆ
O(N)

exp

[
Nθ

2
Tr
(
OTe1

)T
A
(
OTe1

)]
µHaar (dO) . (3.90)
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If we perform the change of variable from O to σ := OTe1, we can write this integral as:

ZA(θ) := I(β=1)
a

(
N

2
θ

)
=

〈
e

N
2
θHSSK(σ)

〉
, (3.91)

where to follow the standard notation in statistical physics, we have denoted by ⟨.⟩ ≡´
SN−1 . dµUnif(σ) the uniform average over the spins living in the sphere of radius one and

the Hamiltonian HSSK is given by:

HSSK(σ) := σTAσ =
N∑
i

aiσ
2
i . (3.92)

Note that we have chosen A to be a diagonal matrix here but by rotational invariance, we
could have picked any matrix A with eigenvalues given by a. This model is known (see Refs.
[104, 79, 45, 13]) as the (p = 2) Spherical Sherrington-Kirkpatrick (SSK in short) model2. The
matrix A is the disordered pairwise interaction and the parameter θ is the inverse temperature of
the model. The SSK model has been studied in detail in the literature, and in particular, the case
where A is a GOE matrix has received a lot of attention. Qualitatively, for high temperatures,
it is known that the system is in a paramagnetic phase, and every eigenvalue of the matrix A

contributes roughly equally to the partition function while for low temperatures, the situation
is drastically different and the system is in a ferromagnetic phase where the partition function
is dominated by rare configurations which are aligned with the top eigenvector of A.

The multiplicative case -

Similarly, with t = (θ, 0, . . . , 0), the multiplicative spherical integral reduces to:

I(β=1)
×,a

(
N

2
θ

)
:=

ˆ
O(N)

(
det

[(
OAOT

)
(1)

])Nθ
2

µHaar (dO) . (3.93)
where A(1) is the top left principal corner of the matrix A, that is the projection along e1:
A(1) = eT1Ae1, thus by the same change of variable as before, we can also write the multi-
plicative spherical integral as an integral over the unit sphere:

I(β=1)
×,a

(
N

2
θ

)
:=

ˆ
SN−1

(
σTAσ

)Nθ
2

µUnif (dσ) . (3.94)
which we rewrite as:

ZA(θ) := I(β=1)
×,a

(
N

2
θ

)
=

〈
e

N
2
θHLSSK(σ)

〉
, (3.95)

with the Hamiltonian:

HLSSK(σ) := log
(
σTAσ

)
= log

(
N∑
i=1

aiσ
2
i

)
. (3.96)

Since A is the symmetric product of definite positive matrices, its eigenvalues are positive,
so this Hamiltonian is well-defined. Due to the logarithmic term, we denote this model as
the Logarithmic Spherical Sherrington-Kirkpatrick (LSSK for short) model. As for the original
SSK model, one should expect to have similar behavior, with a paramagnetic phase at high
temperature and a ferromagnetic phase at low temperature.

2The SSK is usually introduced with a different convention by absorbing the N in the spin vari-able: σ̃ :=
√
Nσ so that the spins lives on a sphere with radius √N , which does not change thespherical integral.
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The rectangular case -

This rectangular spherical can again be understood as the partition function of a spherical
model with inverse temperature θ since by a similar argument we have:

I(β=1)
q,a (

√
NMθ) =

ˆ
SN−1

µUnif(dσ1)

ˆ
SM−1

µUnif(dσ2) exp
[√

NMθσT
1 Aσ2

]
. (3.97)

If we introduce the vector

σ :=
1√
2
[σ1,σ2] ∈ SN+M−1 , (3.98)

this spherical integral can be written as:

ZA(θ) := I(β=1)
q,a (

√
NMθ) =

〈
e
√
NMθHBSSK(σ)

〉
, (3.99)

with the Hamiltonian

HBSSK(θ) := σT

(
0 A

AT 0

)
σ , (3.100)

and by bi-invariance, this can be also written as:

HBSSK(θ) =

N∑
i=1

aiσiσN+i. (3.101)
This model is known [9, 16, 14] as the Bipartite Spherical Sherrington-Kirkpatrick (BSSK in
short) spin model, due to the graph structure of the interaction matrix: each coordinate of one
family vector interacts only with members of the other family and similarly to the SSK, this
model is known to have a paramagnetic phase at high temperature and a ferromagnetic phase
at low temperature.

Quenched and annealed free energies -

In the language of statistical physics, the fundamental quantity to characterize a disordered
system is the quenched free energy defined by

JA(x, θ) := lim
N→∞

α

N
logZA(θ) , (3.102)

where α is a constant of proportionality, usually set to one but will depend here on β. We have
put explicitly the dependency in the position of the asymptotic position x of the top eigenvalue.
Since ZA(θ) is nothing else than a spherical integral, this is our main quantity of interest in
this section. By abuse of notation, for β > 0 we will also call the (re-scaled) logarithm of the
spherical integrals, the quenched free energy.

For disordered systems where the interaction matrix A is random, there is another related
quantity known as the annealed free energy, which is defined by:

FA(θ) := lim
N→∞

α

N
logEZA(θ) , (3.103)
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in other words, it differs from the quenched free energy by taking an average over the disorder
A before taking the logarithm. This quantity will also play an important role in the large
deviation of the top eigenvalue of Chapter 5. In disordered systems, one has usually equality
between the two quantities FA(θ) = JA(θ) for high temperatures, but this equality breaks for
low temperatures and JA(θ) is dominated by ‘typical values’ of ZA(θ) far from its average.

Eventually, let us mention that we will actually be interested more in the partial derivatives of
these two free energies rather than the free energies themselves.

3.4.3 General method to get the result
We briefly describe the steps to compute the asymptotic behavior for β = 1 of the spherical
integrals.

• The first step of the computation is to derive a complex integral representation for the
partition function ZA(θ) of each model:

ZA(θ) =
1

2πi

ˆ
C
e

Nβ
2

GN (a,z,θ)dz , (3.104)
where C is Bromwich contour, that is a vertical line in the complex plane making the
integral convergent. Such formulae are obtained by removing the constraint over the
sphere by introducing a Lagrange multiplier z and then working on the unconstrained
integral to write it as a multivariate Gaussian integral. Let’s mention that for the rect-
angular case, we will have a double complex integral representation instead. The case
β /∈ {1, 2, 4} requires slightly more work and can be obtained thanks to identities for
symmetric polynomials and corresponds to an analytical continuation in the parameter
β of the expression obtained for β = 1, 2, 4.

• The second step is then to do a saddle-point computation (or Laplace’s method) over
the complex variable z to get the asymptotic behavior.

Because the integration is done over a vertical line in the complex plane the integrals are highly
oscillatory and from a purely rigorous point of view, one needs to ensure that the saddle-point
approximation is valid. For each of the three spherical integrals, the control of the saddle-
point approximation has been verified in the mathematical literature, and I will refer to the
corresponding references in each case.

3.4.4 Additive spherical integral and the R-transform

Complex integral representation -

As explained in the previous section, the first step is to remove the constraint over the sphere.
For a f : KN

β → R, we have:

ˆ
SN−1
β

f(σ)µUnif(dσ) ∝
ˆ
KN

β

δ(x∗x− 1)f(x)dx , (3.105)
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where the constant of proportionality will be set at the end. If one uses the Inverse Laplace
representation of the Dirac ‘function’:

δ(x) =
1

2πi

ˆ
C
ezxdz = L−1 [1] (x) , (3.106)

Eq. (3.105) can be written as:

ˆ
SN−1
β

f(σ)µUnif(dσ) =
Γ
(
Nβ
2

)
πNβ/2

· 1

2πi

ˆ
C
ez

(ˆ
KN

β

f(x)e−zx∗xdx

)
dz , (3.107)

where the constant of proportionality has been determined by setting f(.) = 1 and using´
SN−1
β

µUnif(dσ) = 1 for the LHS and Gaussian integration and the standard complex integral

representation of the inverse of the Gamma function for the RHS.

If we specify this expression to the case corresponding to the additive spherical integral, that is
set f(σ) := exp

[
Nβθ
2 σ∗Diag(a)σ

]
, we obtain for β ∈ {1, 2, 4}:

I(β)
a

(
Nβ

2
θ

)
=

Γ
(
Nβ
2

)
π

Nβ
2

1

2πi

ˆ
C
ez

(ˆ
KN

β

e−x∗(zI−Nβθ
2

Diag(a))xdx

)
dz . (3.108)

Next, let’s do the change of variable z → (Nβθ/2) z , dz → (Nβθ/2) dz, such that we can
write this integral:

I(β)
a

(
Nβ

2
θ

)
=

Γ
(
Nβ
2

)(
Nβθ
2

)
π

Nβ
2

· 1

2πi

ˆ
C
e

Nβθ
2

z

(ˆ
KN

β

e−
Nβθ
2

x∗(zI−Diag(a))xdx

)
dz

(3.109)
The integral inside the bracket is Gaussian integral which is convergent provided Rez > a1,
which corresponds to the Bromwich contour C going to the right of all the eigenvalues from
which we deduce:

I(β)
a

(
Nβ

2
θ

)
=

Γ
(
Nβ
2

)
(
Nβθ
2

)Nβ
2

−1

1

2πi

ˆ
C
dz e

Nβθ
2

z
N∏
i=1

(z − ai)
−β

2 . (3.110)

Let’s mention that while Eq. (3.110) has been derived for β ∈ {1, 2, 4}, using identities for the
Jack polynomials, one can show that this expression is valid for any β > 0 and in particular we
have for all β:

I(β)
a (θ) =

Γ
(
Nβ
2

)
(θ)

Nβ
2

−1
L−1
z

[
N∏
i=1

(z − ai)
−β

2

]
(θ) . (3.111)

where L−1
z [·] is the inverse Laplace transform.

Next, since we are interested in the large N limit, by the generalized Stirling formula:

log Γ(ζ) ∼
|ζ|→∞

ζ log ζ − ζ − 1

2
log ζ +

1

2
log 2π +O

(
1

ζ

)
, (3.112)
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we can write the additive spherical integral as:

I(β)
a

(
Nβ

2
θ

)
=

1

2πi

ˆ
C
e

Nβ
2

GN (a,z,θ)dz , (3.113)
where C is a vertical line in the complex plane that goes to the right of all the eigenvalues and

GN (a, z, θ) := zθ − 1− log θ − 1

N

N∑
k=1

log(z − ai) +O
(

1

N

)
. (3.114)

Saddle-point computation -

We are now ready to perform the saddle-point computation. At large N the complex integral
is dominated by the point z∗ ≡ z∗(θ) such that:

∂zGN (a, z, θ)|z=z∗ = 0 , (3.115)
that is z∗ is the solution of:

ga(z
∗) :=

1

N

N∑
i=1

1

z∗ − ai
= θ . (3.116)

Now to invert this equation, one needs to be a bit cautious. First, let’s recall that we are
interested in the large N regime where µa → µA and a1 → x.

• For small values of θ, since ga(z) is a positive decreasing function for values of z > a1
going to zero at infinity, one can directly invert this equation and this given asymptotically
by the inverse Stieltjes transform of the LSD µA:

z∗(θ) = g
⟨−1⟩
A (θ) . (3.117)

However, this result is only valid for a small value of θ because if θ > gA(x), one cannot
naively invert the equation.

• For large values of θ (θ > gA(x)), since the Bromwich contour must pass at the right of all
eigenvalues, z is constrained to be higher than a1 and we have a saturation phenomenon,
asymptotically the sum of Eq. (3.116) is dominated by the term 1/(z∗ − a1) and since
a1 → x, we have:

z∗ = x . (3.118)
As a consequence, we have

2

Nβ

d

dθ
log

[
I(β)
a

(
Nβ

2
θ

)]
→ d

dθ
GA(z

∗(θ), θ) , (3.119)
where

GA(z, θ) := lim
N→∞

GN (a, z, θ) = zθ − 1− log θ −
ˆ

log(z − λ)µA(λ) . (3.120)
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If we use the chain rule, we get:

2

Nβ

d

dθ
log

[
I(β)
a

(
Nβ

2
θ

)]
→ ∂θGA(z

∗(θ), θ) +
dz∗(θ)

dθ
· ∂zGA(z, θ)|z=z∗(θ)︸ ︷︷ ︸

=0

, (3.121)

where the second term is null since z∗ is the solution of the saddle-point Eq. (3.115) and as a
consequence, we have the following simple formula

2

Nβ

d

dθ
log

[
I(β)
a

(
Nβ

2
θ

)]
→ z∗(θ)− 1

θ
. (3.122)

All in all, using the expression of z∗ given by Eq. (3.117) and Eq. (3.118), we can summarize
the asymptotic behavior in the following result.

Result 3.10 (rank-one additive spherical integral and R-transform [131, 84])

In the large N limit where µA → µA and a1 → x, if we denote by:

JA(x, θ) := lim
N→∞

2

Nβ
log

[
I(β)
a

(
Nβ

2
θ

)]
, (3.123)

we have that the partial derivatives of this free energy are given by:

∂θJA(x, θ) =


RA(θ) for θ ≤ gA(x) ,

x− 1
θ for θ ≥ gA(x) ,

(3.124)

and

∂xJA(x, θ) =


0 for θ ≤ gA(x) ,

θ − gA(x) for θ ≥ gA(x) .

(3.125)

where RA is the R-transform of µA, see Eq. (2.139) and gA is the Stieltjes transform of
µA.

The result first appeared in the literature on spherical spin glass in Ref. [131] and has then been
shown to be rigorous in Ref. [84]. The result can in fact be generalized to a ‘rank-k’ spherical
integral, but understanding the crossover with the full-rank regime of the previous section is an
open problem. Note that we have treated the asymptotic position x of the top eigenvalue as
a variable of the quenched free energy as this point of view will turn out to be very useful in
Chapter 5.

3.4.5 Multiplicative spherical integral and the S-transform

The results of this section are based on the preprint [142] -

We now turn to the ‘rank-one’ multiplicative spherical integral given by Eq. (3.85). We first
consider the case β ∈ {1, 2, 4} and then briefly discuss the general setting β > 0. For β ∈
{1, 2, 4}, we can remove the spherical constraint by introducing a Lagrange multiplier and
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writing the spherical integral as:

I(β)
×,a

(
Nβ

2
θ

)
=

Γ
(
Nβ
2

)
π

Nβ
2

· 1

2πi

ˆ
C1

ez
ˆ
KN

β

e−zx∗x (x∗Diag(a)x)
Nβ
2

θ dxdz , (3.126)
where C1 is a vertical line in the complex plane making this integral convergent. Now in
order to tackle this integral, we introduce an auxiliary variable s thanks to the inverse Laplace
representation of the power function since for a > 0, we have:

at =
Γ(t+ 1)

2πi

ˆ
C2

s−t−1esa ds , (3.127)
where C2 is another vertical line in the complex plane. If we use this integral representation for
a = x∗Diag(a)x and t = (Nβ/2)θ in Eq. (3.126) we have:

I(β)
×,a

(
Nβ

2
θ

)
=

Γ
(
Nβθ
2 + 1

)
Γ
(
Nβ
2

)
π

Nβ
2

×

1

2πi

ˆ
C1

ez
ˆ
KN

β

e−zx∗x 1

2πi

ˆ
C2

s−(
Nβθ
2 )−1es(x

∗Diag(a)x) dz dxds . (3.128)
Next, let’s do the change of variable s = e−s and deform the Bromwich contour accordingly
such that we have:

I(β)
×,a

(
Nβ

2
θ

)
=

Γ
(
Nβθ
2 + 1

)
Γ
(
Nβ
2

)
π

Nβ
2

×(
1

2πi

)2 ˆ
C1

ˆ
C2

es(
Nβθ
2 )+z

(ˆ
KN

β

dx e−x∗(z−e−sDiag(a))x

)
dz ds , (3.129)

The integral inside the bracket is again a Gaussian integral which gives:

I(β)
×,a

(
Nβ

2
θ

)
= Γ

(
Nβ

2

)
Γ

(
Nβθ

2
+ 1

)(
1

2πi

)2 ˆ
C1

ˆ
C2

es(
Nβθ
2 )+z

N∏
i=1

(
z − e−sai

)−β
2 dz ds ,

(3.130)
If we do another change of variable (s → s− log z, ds → ds) which just shifts the contour of
the integral, and then we factorize by z−

Nβ
2 in the product, we have:

I(β)
×,a

(
Nβ

2
θ

)
= Γ

(
Nβ

2

)
Γ

(
Nβθ

2
+ 1

)
×(

1

2πi

)2(ˆ
C1

dz ezz−
Nβ
2

−Nβθ
2

) ˆ
C2

es(
Nβθ
2 )

N∏
i=1

(
1− e−sai

)−β
2 ds . (3.131)

The integral in the bracket is nothing else than the inverse of the gamma function, see Eq.
(3.127), such that we can write the multiplicative spherical as:

I(β)
×,a

(
Nβ

2
θ

)
=

Γ
(
Nβ
2

)
Γ
(
Nβθ
2 + 1

)
Γ
(
Nβ
2 (θ + 1)

) 1

2πi

ˆ
C2

ds es(
Nβθ
2 )

N∏
i=1

(
1− e−sai

)−β
2 , (3.132)
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and more generally we have:

I(β)
×,a (θ) =

Γ
(
Nβ
2

)
Γ (θ + 1)

Γ
(
Nβ
2 + θ

) L−1
s

[
N∏
i=1

(
1− e−sai

)−β
2

]
(θ) . (3.133)

By Stirling approximation, we have:

2

Nβ
log

Γ
(
Nβ
2

)
Γ
(
Nβθ
2 + 1

)
Γ
(
Nβ
2 (θ + 1)

) ∼
N→∞

θ log θ − (1 + θ) log(1 + θ) +O
(

1

N

)
, (3.134)

from which we deduce the following complex integral representation:

I(β)
×,a

(
Nβ

2
θ

)
=

1

2πi

ˆ
C2

e
N
2
G

(×)
N (a,z,θ) dz , (3.135)

with

G
(×)
N (a, z, θ) = zθ − 1

N

N∑
i=1

log(1− aie
−z) + θ log θ − (1 + θ) log(1 + θ) +O

(
1

N

)
.

(3.136)

Saddle-point computation -

The integral of Eq. (3.135) is dominated by the saddle point z∗ ≡ z∗(θ, x) solution of
∂zGN (a, z, θ)|z=z∗ = 0 that is:

ta

(
ez

∗
)
:=

1

N

N∑
i=1

ai
ez∗ − ai

= θ . (3.137)

Again, we have two different behaviors for the solution of this fixed point equation depending
on the value of θ.

• For θ small, namely θ < tA(x) one can directly invert the T-transform, and the results
are given asymptotically by:

z∗(θ) = log t
(−1)
A (θ) . (3.138)

• Conversely, for θ > tA(x), ez
∗

saturates at a1 → x and we have:

z∗ = log x . (3.139)

As a consequence, in the large N limit, the derivative with respect to θ of the logarithm of the
spherical integral is given by:

2

Nβ

d

dθ
log

[
I(β)
×,a

(
Nβ

2
θ

)]
→ ∂θG

(×)
A (z∗(θ), θ) , (3.140)
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where the total derivative of the RHS is equal to the partial derivative with respect to θ, since
z∗ is a saddle-point and G

(×)
A (z∗(θ), θ) is given by:

G
(×)
A (z, θ) := lim

N→∞
G

(×)
N (a, z, θ) = zθ −

ˆ
log(1− λe−z)µA(dλ) + θ log θ − (1 + θ) log(1 + θ) ,

(3.141)
such that we have:

2

Nβ

d

dθ
log

[
I(β)
×,a

(
Nβ

2
θ

)]
→ z∗ + log

θ

θ + 1
. (3.142)

Using the expression for z∗ given by Eq. (3.138) and Eq. (3.139) and the definition of the
S-transform we have the following result.

Result 3.11 (rank-one multiplicative spherical integral and S-transform, [142])

In the limit where µA :=
∑N

i=1 δ(. − ai)/N → µA and the top eigenvalue a1 → x, if we
define the free energy by:

JA(x, θ) := lim
N→∞

2

Nβ
log

[
I(β)
×,a

(
Nβ

2
θ

)]
, (3.143)

the partial derivatives of this free energy are given by:

∂θJA(x, θ) =


log S̃A(θ) for θ ≤ tA(x) ,

log
(

xθ
θ+1

)
for θ ≥ tA(x) .

(3.144)

and by:

∂xJA(x, θ) =


0 for θ ≤ tA(x) ,

θ+1
x − gA(x) for θ ≥ tA(x) .

(3.145)

where S̃A and tA are respectively the S-transform and T-transform of the LSD µA given
respectively by Eq. (2.152) and Eq. (1.29).

Let’s mention that the control of the saddle-point approximation has been done in the mathe-
matical literature in Ref. [93].

Asymptotic of symmetric polynomials -

For β = 2, the asymptotic behavior of the HCIZ integral can be translated as an asymptotic
behavior over normalized Schur polynomial: if 1

N

∑N
i=1 δN−1(λi+N−i) converge toward a de-

terministic measure µ, then the corresponding normalized Schur polynomial with index λ and
with all its arguments except one fixed, converges (up to an integration term) exponentially
towards the integral of the R-transform see Ref. [84]. Since the multiplicative spherical func-
tion I(β)

×,a (θ) of this note is nothing else than the analytical extension of the normalized Jack
polynomials, see Eq. (3.52), we have a similar interpretation, except that now it is the vector
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in argument of the Jack polynomial which converges towards a deterministic measure while the
index is the trivial partition λ =

(
⌊Nβ

2 θ⌋, 0, . . . , 0
)
=: ⌊Nβ

2 θ⌋.

lim
N→∞

2

Nβ
log

J
(β
2 )

⌊Nβ
2

θ⌋
(a)

J
(β
2 )

⌊Nβ
2

θ⌋
(1)

=

ˆ θ

0
log S̃A(s) ds for θ ≤ tA(x) . (3.146)

In particular, for β = 2, the Jack polynomials become Schur polynomials, and Schur polynomials
of a trivial partition degenerate into complete homogeneous polynomials defined by:

hk(a) :=
∑

1≤i1≤···≤ik≤N

ai1 . . . aik , (3.147)

so that the LHS of Eq. (3.146) has a simple explicit expression in terms of the ai in this case.

As an illustration of this example, let’s take a = (2/N, . . . , 2i/N, . . . , 2), such that µA is given
by the uniform distribution on [0, 2] and a1 = a+ = 2. In this case, one can show tA(a+) = ∞,
such that there is no phase transition and after some calculation one has:

ˆ θ

0
log S̃A(s) ds = θ

(
log

2θ∣∣θ + 1 +W
(
−(θ + 1)e−(θ+1)

)∣∣ − 1

)
− log

∣∣∣W (
−(θ + 1)e−(θ+1)

)∣∣∣ ,
(3.148)

where W (.) is the Lambert W function, which we compare with:

1

N
log

hk (a)

hk (1, . . . , 1)
=

1

N
log

[
k!(N − 1)!

(k +N − 1)!
hk (a)

]
, (3.149)

for different N and θ = k/N , where the ai are the N equidistributed points between 0 and 2.
The results are shown in Fig. 3.1.

3.4.6 Rectangular spherical integral and the rectangular C-
transform

This section deals with rectangular matrices.

For the rectangular case, we can remove the constraints on the spheres by introducing two
Lagrange multipliers z1, z2 and write:

I(β)
q,a

(√
NMβθ

)
=

Γ
(
Nβ
2

)
π

Nβ
2

Γ
(
Mβ
2

)
π

Mβ
2

(
1

4πi

)2 ˆ
C1,C2

dz1dz2

ˆ
KN+M

β

dy e
z1
2
+

z2
2
− 1

2
yTQy ,

(3.150)
where the matrix Q ≡ Q(z1, z2, θ, s) is given by:

Q =

 z1IN −
√
NMβ θDiag(a) 0M−N,N

−
√
NMβ θDiag(a) z2IN 0M−N,N

0M−N,N 0M−N,N z2IM−N

 ,
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Figure 3.1: Value of the logarithm of the normalized complete homogeneoussymmetric polynomials (3.149) for equidistributed entries between 0 and 2 fordifferent N and different k = Nz, compared with the limiting behavior (3.148),represented by a dashed line. The inset graph represents the convergence at
k = N (z = 1) for more values of N , represented as a function of 1

N .

with a the vector of singular values. By Gaussian integration, we have:

I(β)
q,a

(√
NMβθ

)
= Γ

(
Nβ

2

)
Γ

(
Mβ

2

)(
1

4πi

)2 ˆ
C1,C2

dz1dz2 e
z1/2+z2/2(detQ)−

β
2 ,

(3.151)
so we need to compute the determinant of this matrix Q. Expanding twice along the right-
bottom block, we have:

detQ = det(z2IM−N ) det

(
z1IN −

√
NMβθDiag(a)

−
√
NMβθDiag(a) z2IN

)
, (3.152)

detQ = zM−N
2 det(z2IN ) det

(
z1IN −

(√
NMβθ

)2 1

z2
Diag(a2)

)
, (3.153)

detQ = zM−N
2

N∏
i=1

(
z1z2 −NMβ2θ2a2i

)
, (3.154)

which gives:

I(β)
q,a

(√
NMβθ

)
= Γ

(
Nβ

2

)
Γ

(
Mβ

2

)
×

ˆ
C1,C2

dz1dz2 z
Nβ−Mβ

2
2 e

z1
2
+

z2
2
−β

2

∑N
i=1 log(z1z2−NMβ2θ2a2i ) . (3.155)

Let’s do the change of variable (z1 → Nβθz1, dz1 → Nβθdz1) , (z2 → Mβθz2,dz2 →
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Mβθdz2) we have:

I(β)
q,a

(√
NMβθ

)
=

Γ
(
Nβ
2

)
Γ
(
Mβ
2

)
(Nβθ)

Nβ
2

−1 (Mβθ)
Mβ
2

−1
×

(
1

4πi

)2 ˆ
C1,C2

dz1dz2e
Nβθ
2

z1+
Mβθ

2
z2+

Nβ−Mβ
2

log(z2)−β
2

∑N
i=1 log(z1z2−a2i ) . (3.156)

If we now consider the large N limit with the double scaling limit N/M → q and use Stirling
approximation to get the behavior of the multiplicative constant, we have the following (double)
integral representation:

I(β)
q,a

(√
NMβθ

)
=

(
1

4πi

)2 ˆ
C1,C2

dz1dz2e
Nβ
2

G(z1,z2,θ) , (3.157)
with:

G(z1, z2, θ) := θz1 +
θ

q
z2 −

1− q

q
log z2 −

1

N

N∑
i=1

log
(
z1z2 − s2i

)
− 1 + q

q
(1 + log θ) +O

(
1

N

)
.

(3.158)

Saddle-point computations -

In the large N limit, the complex integral of Eq. (3.157) is dominated by the saddle points
(z∗1 , z

∗
2) ≡ (z∗1(θ), z

∗
2(θ)) solutions of the zero-gradient equations:

∂z∗1G(z∗1 , z
∗
2 , θ) = 0 ,

∂z∗2G(z∗1 , z
∗
2 , θ) = 0 .

(3.159)

That is, the solution of:

θ − z∗2
N

N∑
i=1

(
z∗1z

∗
2 − a2i

)−1
= 0 , (3.160)

and

θ − (1− q)
1

z∗2
− qz∗1

N

N∑
i=1

(
z∗1z

∗
2 − a2i

)−1
= 0 . (3.161)

The equations Eq. (3.160) and Eq. (3.161) are coupled but can be easily taken care of by noting
that:

1. if ones multiply Eq. (3.160) by qz∗1 and Eq. (3.161) by z∗2 and then subtract the two, one
gets

θ(qz∗1 − z∗2) = (q − 1) , (3.162)
that is

z∗2 = qz∗1 +
1− q

θ
, (3.163)
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2. if we put the variable θ on the RHS in both Eq. (3.160) and Eq. (3.161) and multiply
the two equations, we get:

θ2 = qz∗1z
∗
2

(
1

N

N∑
i=1

1

z∗1z
∗
2 − a2i

)2

+ (1− q)
N∑
i=1

1

z∗1z
∗
2 − a2i

, (3.164)
that is following the expression (1.32) of the D-transform:

θ = dA(
√
z∗1z

∗
2) . (3.165)

Eq. (3.163) and Eq. (3.165) allow one to get the behavior of the spherical integral but as in
the additive and multiplicative case, we need to be careful before inverting Eq. (3.165) and we
have to consider two cases:

• the case θ ≤ dA(x): In this case, we can directly invert Eq. (3.165) and we get:

z∗1z
∗
2 =

[
d
⟨−1⟩
A (θ)

]2
for θ ≤ dA(x) . (3.166)

Injecting Eq. (3.163) in Eq. (3.166), we get the following quadratic equation for z∗1 :

q(z∗1)
2 +

1− q

θ
z∗1 −

[
d
⟨−1⟩
A (θ)

]2
= 0 , (3.167)

whose (correct) solution is given by:

z∗1(θ) =
−(1− q) +

√
(1− q)2 + 4qθ2

[
d
⟨−1⟩
A (θ)

]2
2qθ

. (3.168)

• the case θ ≥ dA(x): In this case, we have (again) a saturation. To satisfy Eq. (3.165),
one must have: √

z∗1z
∗
2 = x , (3.169)

since Eq. (3.163) is still valid, z∗1 is solution of the same quadratic equation (3.167)
except that the term d

⟨−1⟩
A (θ) is replaced by x, so that we have:

z∗1(x, θ) =
−(1− q) +

√
(1− q)2 + 4qθ2x2

2qθ
. (3.170)

We now have all the tools to compute the asymptotic behavior of the rectangular spherical
integral, since z∗1 , z

∗
2 are the saddle points we have:

1

Nβ

d

dθ
log
[
I(β)
q,a

(√
NMβθ

)]
→ ∂θG(z∗1(θ), z

∗
2(θ), θ)/2 , (3.171)

which using Eq. (3.158) gives:

1

Nβ

d

dθ
log
[
I(β)
q,a

(√
NMβθ

)]
→ 1

2

[
z∗1 +

z∗2
q

− 1 + q

q

1

θ

]
, (3.172)
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and using Eq. (3.163), we can express z∗2 as a function of z∗1 to have:

1

Nβ

d

dθ
log
[
I(β)
q,a

(√
NMβθ

)]
→ z∗1 −

1

θ
. (3.173)

If we now inject the expression of z∗1 for θ < dA(x) and θ > dA(x) given by Eq. (3.168) and Eq.(3.170) and compare it with the expression of the C-transform of Eq. (2.168) and the function
U of Eq. (2.166), we get the following result.

Result 3.12 (rank-one rectangular spherical integral and C-transform, [21])

In the large N → ∞ limit where N/M → q and µA :=
∑N

i=1 δ(.− ai)/N → µA and the
top singular value a1 → x, if we define the quenched free energy by:

JA(x, θ) := lim
N→∞

1

Nβ
log
[
I(β)
q,a

(√
NMβθ

)]
, (3.174)

we have that the partial derivatives of this free energy are given by:

∂θJA(x, θ) =


C̃(q)
A (θ) for θ ≤ dA(x) ,

U(θx)
θ for θ ≥ dA(x) .

(3.175)

and by:

∂xJA(x, θ) =


0 for θ ≤ dA(x) ,

√
(1−q)2+4qθ2x2−

√
(1−q)2+4qdA(x)2x2

2qx for θ ≥ dA(x) .

(3.176)

where C̃(q) and dA are respectively the C-transform and D-transform of the LSVD µA given
by Eq. (2.168) and Eq. (1.32), and U is the function defined by Eq. (2.166).

3.4.7 Limit for annealed free energies
The result of this section will only be used in Chapter 5 dealing with the large deviation of the
top eigenvalue of the sum/product of random matrices.

The setting -

Instead of looking at the quenched free energy of the spherical integral, we look at another
limit where we first do an average over the laws of A (or equivalently over the laws of its
eigenvalues a), before taking the logarithm and taking the large N limit, that is we want to
compute the annealed free energy. In order to do so, one must specify what is the law of the
eigenvalues. As N → ∞, we denote as usual by µA the LSD/LSVD with corresponding upper
edge a+. Importantly, we will consider a rather general setting where:

• the potential V is ‘confining enough’, that is, it is a convex function for values higher
than a+;
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• The potential V (x) is finite for values of x lower than a position of a wall a+ ≤ wA ≤ +∞
and is infinite for values higher than the wall.

The introduction of these invariant ensembles with a wall might seem odd at first, but as we
will see later on, it will turn out to be very convenient when considering the problem of the large
deviation of the top eigenvalue/singular value of the sum or the product of random matrices in
Chapter 5. In order to highlight the presence of such a wall, we denote this law by a ∼ P(β)

V,wA
.

Reminder on the second branch of the Stieltjes transform-

Let’s recall for convenience from Sec. 1.4, that the second branch of the Stieltjes transform ḡA
is given as the ‘unphysical’ solution of the algebraic BIPZ equation (1.84) with unknown g:

g2 − V ′(z)g + P (z) = 0 , (3.177)
that is for z > a+ this function is given by:

ḡA(z) =
V ′(z)

2
+

√
V ′2(z)− 4P (z)

2
= V ′(z)− gA(z) . (3.178)

For z ≥ a+, this function starts at ḡA(a+) = gA(a+) and is then continuously increasing with
asymptotic behavior given by:

ḡA(z) ∼
z→∞

V ′(z) . (3.179)
rather than the decaying behavior of the Stieltjes transform gA(z) ∼

z→∞
1/z.

If now we look at the algebraic equation (3.177) the other way by fixing the value of g = y for
some y in (0, gA(a+)), the corresponding z(y) ≡ z is by definition the inverse g

⟨−1⟩
A (y). If now

the parameter y is higher than gA(a+) (but lower than rA := limz→∞ V ′(z)), Eq. (3.177) is the
implicit equation for the analytical continuation of g⟨−1⟩. Since this regime corresponds to the
second branch of Stieltjes, we have a natural interpretation for the analytical continuation of
g
⟨−1⟩
A beyond the point gA(a+): it is the inverse function of the second branch of the Stieltjes

transform.

The additive case -

Based on ideas developed in Ref. [66], let’s consider a ∼ P(β)
V,wA

, such that we have:

E I(β)
a

(
Nβ

2
θ

)
=

1

2πi

ˆ
RN×C

e
Nβ
2

HN (a,z,θ)I{ai≤wA}dadz , (3.180)

where E denotes the average over P(β)
V,wA

and

HN (a, z, θ) := −
N∑
i=1

V (ai) +
1

N

∑
i,j|j ̸=i

log |ai − aj | −
1

N

N∑
i=1

log(z − λi) + zθ − 1− log θ +O
(

1

N

)
.

(3.181)
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This can be understood as the Hamiltonian of a system of N + 1 particles3. In the large N

limit, we argue that the integral is dominated by the most probable configuration given as the
solution of the set of saddle-point equations:

∂a∗i HN (a∗, z∗, θ) = 0 for i = 1, . . . , N ,

∂z∗HN (a∗, z∗, θ) = 0 .

(3.182)

That is:
V ′(a∗i ) =

2
N

∑N
j=1|j ̸=i

1
a∗i−a∗j

+ 1
N

1
z∗−a∗i

for i = 1, . . . , N ,

θ = 1
N

∑N
i=1

1
z∗−a∗i

.

(3.183)

These two equations have to be understood with the additional constraints:
a∗1 ≤ z∗ ,

a∗N ≤ · · · ≤ a∗1 ≤ wA .

(3.184)

We need to distinguish three different cases:

1. For θ ≤ gA(a+), the bottom line of Eq. (3.183) can be satisfied with the λ∗
i ’s in their

classical positions. By direct inversion we find:

z∗(θ) = g
⟨−1⟩
A (θ) , (3.185)

and by the self-averaging property, this gives the same result as in the quenched case.

2. For gA(a+) ≤ θ ≤ ḡA(wA), for the RHS of the bottom line of Eq. (3.183) to be equal to
θ, one has to have the distance between z∗ and a∗1 be of order O (1/N) so Eq. (3.183)
(bottom) has to be understood as:

θ ≃ gA(z
∗) +

1

N

1

z∗ − a∗1
+O

(
1

N

)
. (3.186)

Next, since V (.) is analytic, we can approximate the potential and interaction term in
Eq. (3.183) for i = 1 by:

V ′(a∗1) = V ′(z∗) +O
(

1

N

)
, (3.187)

1

N

N∑
j=2

1

a∗1 − a∗j
≃ gA(z

∗) +O
(

1

N

)
, (3.188)

3The variable z superficially looks like another eigenvalue repelled by all the other ones andwith its own linear potential. But closer inspection reveals that the force between z and the λi isactually attractive. What is even stranger is that the equilibrium position of z is a local minimumof the probability. The reason for this is that in the integral of Eq. (3.180), z is integrated on avertical line in the complex plane, so the second derivative in that direction should be positive forthe integral to converge.
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injecting this in the top line of Eq. (3.183) for i = 1 one gets:

V ′(z∗) = 2gA(z
∗) +

1

N

1

z∗ − a∗1
+O

(
1

N

)
. (3.189)

Now making the difference of Eq. (3.186) and Eq. (3.189) to eliminate the term (z∗ −
a∗1)

−1 and neglecting term of order O (1/N) one obtain a simple self-consistent equation
for the unknown z∗:

V ′(z∗)− gA(z
∗) = θ , (3.190)

which using Eq. (3.178) reads:

ḡA(z
∗) = θ , (3.191)

where ḡA(.) is the second branch of the Stieltjes transform. Following the properties of
the second branch of the Stieltjes transform, inverting Eq. (3.191) yields:

z∗(θ) = g
⟨−1⟩
A (θ) , (3.192)

where g
⟨−1⟩
A (.) is here the analytical continuation beyond the point gA(a+) of the inverse

of the Stieltjes.

3. for θ ≥ ḡA(wA), the position of the top eigenvalue becomes fixed at the wall and since
the distance between z∗ and this top of eigenvalue is infinitely small in the large N limit,
we have again a saturation, but now at the position wA instead of x in the quenched
case:

z∗(θ) = wA . (3.193)
All in all, we have the following result:

Result 3.13 (additive annealed free energy)

For a ∼ P(β)
V , such that V is strictly increasing beyond the top edge a+ of the LSD µA

and infinite after the position wA, if we denote the annealed free energy by:

FA(wA, θ) := lim
N→∞

2

Nβ
logE

[
I(β)
a

(
Nβ

2
θ

)]
, (3.194)

then we have:

∂θFA(wA, θ) =


RA(θ) for θ ≤ ḡA(wA) ,

wA − 1
θ for θ ≥ ḡA(wA) ,

(3.195)

where RA is the analytical continuation of the R-transform of the LSD µA and ḡA is the
second branch of the Stieltjes transform.

Let’s point out two fundamental remarks, corresponding to the limiting cases where the wall
is either at the edge wA = a+ or send to infinity wA → ∞, which will play an important role
later on.
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Remark (wall at the edge). If we choose the position of the wall to be exactly at the edge:
wA = a+, since we have the relation

ḡA(a+) = gA(a+) , (3.196)
Eq. (3.195) reads in this case:

∂θFA(wA = a+, θ) =


RA(θ) for θ ≤ gA(a+) ,

a+ − 1
θ for θ ≥ gA(a+) .

(3.197)

Comparing Eq. (3.197) and Eq. (3.124) (with the index C replaced by the index A and for
x = a+), we see that we have indeed the relation (5.46) such that from the point of view
of the annealed free energy, we can consider a fixed diagonal matrix as an invariant
matrix with a wall at the edge of its distribution. ⌋

Remark (wall at infinity and classical invariant ensemble). Since classical ensembles are
obtained by taking the limit wA → ∞. If we define by:

rA := lim
x→+∞

V ′(x) , (3.198)
we have for the corresponding annealed free energy:

∂θFA(wA → ∞, θ) =


RA(θ) for θ ≤ rA ,

∞ for θ ≥ rA ,

(3.199)

One may note that the second line of Eq. (3.199) is removed if rA = ∞ (which is for ex-
ample is the case for a GOEmatrix) but is present otherwise (which is, for example, is the
case for a Wishart/LOEmatrix for which rA = 1/q). ⌋

For classical ensembles, the result can be directly obtained by direct Gaussian integration, see
the following two examples.

Example (GOEmatrices and Gaussian integration). ForA a GOEmatrix with variance σ2,
the potential is convex on the whole real line and the annealed free energy can be directly
obtained by Gaussian integration. By rotationally invariance, the average of the partition
function is simply the moment generating function of one of the diagonal elements, say
A11. Since this element is a Gaussian random variable with variance 2σ2/N , we have:

EA

[
I(β=1)
A

(
N

2
θ

)]
=

ˆ
e

Nθ
2

A11− N
4σ2A

2
11√

4πσ2/N
dA11 = e

N
2

σ2θ2

2 . (3.200)
Using the expression of Eq. (2.142) for the R-transform, this gives indeed Eq. (3.195) for
the annealed free energy with wA = ḡA(wA) = ∞. ■

Example (Wishart matrices and Gaussian integration). ForA a real Wishart/LOEmatrix of
shape parameter q = N/M , the annealed free energy can be also directly obtained by
Gaussian integration. Indeed, we have A

in law
= 1

M

∑M
m=1 xmxT

m, where the {xm}m=1,...,M
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areM independentN -dimensional standard Gaussian vectors. SinceA is rotationally in-
variant, we can remove the integral over the sphere and fix σ = e1 = (1, 0, . . . , 0)without
loss of generality and this gives:

EA

[
I(β=1)
A

(
N

2
θ

)]
=

ˆ
e

Nθ
2M

eT1(
1
M

∑M
m=1 xmxT

m)e1
M∏
i=1

e−
|xm|2

2

(2π)−
M
2

dxm (3.201)

=

(ˆ
e−

1
2
xT(I−qθe1eT1 )x

(2π)−
1
2

dx

)M

. (3.202)

Now for θ ≥ 1/q, the integral inside the bracket is diverging and hence we get F ′
A(θ) =

∞ . Otherwise, we can do the Gaussian integration, and we have:
2

N
logEA

[
I(β=1)
A

(
N

2
θ

)]
= −1

q
log(1− qθ)

(
for θ <

1

q

)
. (3.203)

Using the expression of Eq. (2.143) for the R-transform of a Wishart matrix, this gives
indeed Eq. (3.195) for the annealed free energy. A similar computation can be done for
generalized Wishart matrices, that is a matrix of the form (

√
ΣX)(

√
ΣX)∗/T , whereX is

a matrix with iid Gaussian entries andΣ is the covariance matrix. ■

The multiplicative case -

The annealed average in the multiplicative is almost identical to the ones of the additive case,
if we introduce the second branch of the T-transform t̄A(.) satisfying:

t̄A(z) = zḡA(z)− 1 , (3.204)
then t̄A(.) can be seen as the analytical continuation of the inverse of t⟨−1⟩

A (and conversely)
and we have the following result.

Result 3.14 (multiplicative annealed free energy)

For a ∼ P(β)
V , such that V is convex beyond the top edge a+ of the LSD µA and infinite

after the position wA, if we denote the annealed free energy by:

FA(wA, θ) := lim
N→∞

2

Nβ
logE

[
I(β)
×,a

(
Nβ

2
θ

)]
, (3.205)

then we have:

∂θFA(wA, θ) =


log S̃A(θ) for θ ≤ t̄A(wA) ,

log
(
wAθ
θ+1

)
for θ ≥ t̄A(wA) ,

(3.206)

where S̃A(θ) is the analytical continuation of the S-transform and t̄A is the second branch
of the T-transform.
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The rectangular case -

A similar computation as in the additive case shows that if we introduce the second branch of
the D-transform:

d̄A(z) =

√
qz2 (ḡAAT(z2))

2 + (1− q)ḡAAT(z2) . (3.207)
then we have the following result:

Result 3.15 (rectangular annealed free energy)

For a ∼ P(β)
V , such that V is convex beyond the top edge a+ of the LSVD µA and infinite

after the position wA, if we denote the annealed free energy by:

FA(wA, θ) := lim
N→∞

1

Nβ
logE

[
I(β)
q,a

(√
NMβ θ

)]
, (3.208)

then we have

∂θFA(wA, θ) =


C̃(q)
A (θ) for θ ≤ d̄A(wA) ,

U(θwA)
θ for θ ≥ d̄A(wA) ,

(3.209)

where C̃(q)
A is the Rectangular C-transform of Eq. (2.168).

3.5 Summary and conclusion of Chapter 3

In this chapter, we have reviewed results concerning the additive, multiplicative and rectangular
spherical integrals. We first explain how one can naturally extend these spherical integrals to
any β > 0 and this extension allows one to extrapolate the sum/product of matrices at any
values of β. Then, we look at two different limits of these spherical integrals: the full-rank limit
which is dictated by a variational principle, and the rank-one limit is related to the linearizing
transforms of the free convolution of the previous chapter. The result of the additive full-rank
limit will be (partially) used in the following chapter concerning the dynamics of large complex
systems, while the result for the rank-one limit will be fundamental for the large deviation
principle of Chapter 5 and the construction of the high-temperature convolution of Chapter
6. An important question concerning the asymptotic behavior of the spherical integrals is
to understand the crossover between the full-rank regime and the small-rank regime. Another
important question is the full-rank limit of the multiplicative spherical, which has been obtained
here for β = 2 thanks to the determinantal formulae, but it is unclear how this result generalizes
to other values of β. Last, the additive and multiplicative forms of the finite free convolution of
Chapter 3, see Sec. 2.7 share many similarities with spherical integrals, and it will be interesting
to know if they are also spherical integrals of a specific Gelfand pair.
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Chapter 4

Stability of large complex systems
with heterogeneous relaxation
dynamics

The results of this chapter are based on the paper [141]. Its structure is very similar to the
original paper, with minor changes to homogenize the notations with the rest of the thesis and
avoid redundancy. The core of the chapter rely on the large deviation principle for the top
eigenvalue of a β-ensemble developed in Chapter 1 (Sec. 1.5), the Dyson Brownian Motion of
Chapter 2 (Sec. 2.5.1) and on the extensive rank limit (Sec. 3.3.1) and determinant formula
of the HCIZ integral of Chapter 3 (Sec. 3.2.1). In particular, this chapter does not require any
knowledge of free probability.

4.1 Introduction to May’s work on large complex
systems

One of the main objectives in the study of large complex systems is to understand their stability
properties. A major theoretical contribution to answer this hard question was made by Robert
May in 1972 [137]. Using a simple ‘toy’ model May argued that large complex systems might
become unstable as the system complexity (measured by the strength of interactions between
different units) increases. The seminal work of May was motivated by ecological questions
at his time [2], but even today his results have found resonance among the study of large
complex systems arising across disciplines including economical sciences [146], neural networks
[161, 186], gene regulations [87] to cite a few. May’s approach will be discussed in detail below
and consists in approximating the dynamics of the system by a set of linear coupled equations
with random coefficients, and we refer to [73, 27, 19] for recent studies going beyond this linear
approximation.

In his original toy model, May considered a complex system consisting of N ecological species.
To start with, each of the N species is assumed to be in equilibrium with population P ∗

i

(i = 1, 2, · · · , N). Consider first the case where the species are non-interacting and linearly
stable. By linearly stable, one means that if the population size Pi’s are slightly perturbed
from their equilibrium values, then the deviation ni(t) = Pi(t) − P ∗

i for each i evolves in a
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deterministic manner as

dni(t)

dt
= −ni(t) for i = 1, . . . , N . (4.1)

For simplicity, May assumed an identical intrinsic decay rate (set to be unity in Eq. (4.1)) for
each species, and this is what we call the homogeneous relaxation hypothesis. Imagine now
switching on a pairwise interaction between the species, such that the dynamics are modified
in the following way [137]

dni(t)

dt
= −ni(t)−

√
T
∑
j

Jijnj(t) for i = 1, . . . , N , (4.2)

where Jij represents a pairwise interaction term which denotes the influence of the jth species
on the relaxation dynamics of the ith species and

√
T is a measure of the strength of this

interaction. The notation
√
T for this interaction strength may seem a bit strange at this

stage, but we will see later that it corresponds to the ‘time’ in the associated Dyson Brownian
motion picture of Sec. 2.5.1 of Chapter 2. May’s further assumption was to model this complex
interaction matrix Jij as a random Gaussian matrix with real elements. The dynamics for
n(t) = (n1(t), . . . , nN (t)) in Eq. (4.2) can be described in a compact matrix form as

dn(t)

dt
= −

(
I+

√
T J
)
n(t) , (4.3)

where I is the identity matrix and J is a real matrix with independent Gaussian entries. To
make further progress, May also assumed that the interaction matrix Jij is symmetric. In other
words, the random matrix J = (Jij)i,j coincides with the GOE matrices of Chapter 1. Note
that for a GOE matrix J has the same distribution as −J, hence we have chosen an overall
negative sign in the interaction term in Eq. (4.2) without any loss of generality.

May’s equation (4.3) then maps a dynamics question “Is the multi-component system stable?”
to a RMT question “Are all the eigenvalues of the random matrix B = I +

√
T J positive?”.

Using the properties of GOE matrices, May argued that strictly in the large N limit (where all
finite size fluctuations disappear), there exists a critical strength Tc where the system undergoes
a stability-instability phase transition (sometimes known as May-Wigner transition): for T < Tc

the system is stable while for T > Tc it is always unstable. Using the well-known Wigner semi-
circular law for the average eigenvalue density of GOE eigenvalues as N → ∞, May computed
Tc explicitly for this homogeneous model [137]. Thanks to the well-known properties of GOE
matrices, one can go beyond May’s calculation of Tc and even investigate the regime where
N is still large but finite and derive the behaviors of the typical and atypical fluctuations of
the stability property of the system [120], thanks to the large deviation principle of the top
eigenvalue of a GOE matrix, developed in Chapter 1, and this will be recalled briefly in the next
section.

One of the important ingredients in May’s model (apart from the fact that J is a GOE matrix)
was to assume a homogeneous decay rate for all species. In this chapter, we address a simple
question: assuming that J is still a GOE matrix, how the May-Wigner transition gets modified
if one just makes the intrinsic decay rates for the species heterogeneous? This is a natural
and simple generalization of May’s original toy model. In this heterogeneous version, one just
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replaces the identity matrix I in Eq. (4.3) with an arbitrary diagonal matrix with positive entries
A = Diag(a1, . . . , aN ). Eq. (4.3) now gets modified to

dn(t)

dt
= −(A+

√
T J)n(t) = −Bn(t) , (4.4)

where the effective relaxation matrix

B = A+
√
TJ =

√
T

[
J+

1√
T
A

]
, (4.5)

can be interpreted as a deformation of the GOE matrix J by an additive positive diagonal
matrix A, with 1/

√
T playing the role of the strength of ‘perturbation’. In May’s original

homogeneous model where A = I, the matrix B, for any strength parameter
√
T , is just a

shifted GOE matrix. However, in the generic case A ̸= I, the spectrum of B is more complex,
and it is described by the Dyson Brownian Motion of Chapter 2 (see Sec. 2.5.1). While deformed
GUE (Gaussian unitary ensemble) models have been studied extensively in the recent past with
many applications (see e.g. [105] and references therein), here we obtain a natural example of
a deformed GOE matrix.

For this heterogeneous May model, we expect again that in the limit N → ∞, where there are
no finite size fluctuations, there should a critical value Tc separating the stable (T < Tc) and
the unstable (T > Tc) phases. However, it turns out that the moment the intrinsic diagonal
positive rate matrix A differs from I, computing Tc becomes nontrivial. We will first develop a
general method to compute Tc for arbitrary diagonal positive A, and then use it to calculate Tc

explicitly for a particularly interesting case where the elements of A are distributed uniformly
over a finite interval (we will refer to this case as the flat initial condition since this corresponds
to the value of B at “time” T = 0). This is the first main result of this chapter.

Next, for a general positive diagonal matrix A, computing explicitly the average density profile
or LSD of the eigenvalues of the deformed matrix B is also hard. However, for the ‘flat initial
condition’ described above, we are able to compute analytically the average density of the
eigenvalues of B in the large N limit (in explicit parametric form), providing the second main
result of this chapter.

Finally, for the same choice of A (the flat initial condition), we make the link with another
ensemble, the deformed GUE, for which one can compute the joint density of the eigenvalues,
going beyond just the average density. This is possible thanks to the determinantal formula of
the additive spherical (HCIZ) integral of Chapter 3,Sec. 3.2.1. To the best of our knowledge,
this provides a new RMT ensemble–a Coulomb gas in a harmonic potential, where the repulsive
interaction between any pair of eigenvalues is a linear combination of logarithmic (as in the
standard GUE) and log-sinh types. The RMT ensemble with only logarithmic (the standard
GUE) or only log-sinh interaction [132, 133, 53, 171, 166, 68] have been studied before, but
here we obtain naturally a linear combination of them as interaction. Such a mixed Coulomb
gas is interesting to study in its own right. Moreover, this Coulomb gas approach also allows us
to estimate, how for finite but large N , the probability of stability differs from 1 on the stable
side as one decreases T below Tc with Tc − T ∼ O(1) (we recall that strictly in the N → ∞
limit, the probability of stability is exactly 1 for T < Tc by definition).

The rest of this chapter is organized as follows: In Section 4.2, we recall in detail the derivation
and properties of May’s original model. In particular, we describe in detail the finite size effects
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on the May-Wigner transition, in terms of the Tracy-Widom distribution and the large deviation
functions describing respectively the typical and atypical fluctuations of the system. We then
describe the new main model with heterogeneous relaxation dynamics. In Section 4.3, we recall
the main tools to perform the study of the heterogeneous model: the Stieltjes transform, and
its link with Dyson Brownian Motion (DBM) and the Burgers’ equation. This allows us to get
the equation satisfied by the critical strength Tc for a generic matrix A. In Section 4.4, we show
how one can get the parametric solution for the density, based again on the Burgers’ equation.
In Section 4.5, we describe the deformed GUE with flat initial conditions and show how one
can get the joint law density thanks to the Harish-Chandra-Itzykson-Zuber (HCIZ) integral, we
then make the link with different models and show how one can get the large deviation function
in the weakly stable phase for the original deformed GOE model with a flat initial condition.

4.2 May’s homogeneous model and its heteroge-
neous generalization

4.2.1 May’s original homogeneous model

The homogeneous May model has already been described in the introduction. In this subsection,
we show how Tc for this model is computed in the strict N → ∞ limit and then demonstrate
how the probability of stability gets modified when N is large but finite. Also, this recapitulation
would be useful for understanding the stability issues in the general setting of the heterogeneous
model that we will discuss in the next subsection.

The deviations ni(t) = Pi(t) − P ∗
i evolve via Eq. (4.3) in the original homogeneous model,

where J is a GOE matrix with variance σ2 = 1. We recall that the law of the elements of
J is given by Eq. (1.39) and the distribution of the eigenvalues converges as N → ∞ to the
semi-circle distribution of Eq. (1.40) whose support is the interval [−2, 2].

0.0 0.1 0.2 0.3 0.4 0.5
T

0.0

0.5

1.0

1.5

2.0

b ±
(T

)

Tc

Figure 4.1: Plot of the edges b±(T ) = 1 ± 2
√
T of a Wigner semi-circular distri-bution of variance T as a function of T . The critical strength occurs at Tc = 1

4 ,where the lower edge b−(T ) hits zero.
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The matrix form of May’s equation (4.3) reads

dn(t)

dt
= −Bn(t) , (4.6)

where the effective relaxation matrix

B = I+
√
T J , (4.7)

is just a shifted GOE. Let λ1 ≥ . . . ≥ λN and similarly b1(T ) ≥ b2(T ) ≥ . . . ≥ bN (T ) denote
the ordered eigenvalues of J and B in Eq. (4.7) respectively. Clearly,

bi(T ) = 1 +
√
T λi , for all i = 1, 2, . . . , N . (4.8)

One can now write down the condition for stability in terms of the ordered eigenvalues {bi(T )}.
From Eq. (4.6), it is clear that the system is stable if all eigenvalues of B are positive. Hence
the probability of the stability can be expressed, for fixed T and N , as

Pstable(T,N) := Prob [b1(T ) > 0, . . . , bN (T ) > 0] , (4.9)
or equivalently since we have ordered the eigenvalues

Pstable(T,N) = Prob [bN (T ) > 0] = Prob

[
λN > − 1√

T

]
, (4.10)

where we used bN (T ) = 1 +
√
T λN from Eq. (4.8). For finite N , the value of λN , and

hence that of bN (T ) = 1 +
√
T λN fluctuates from sample to sample. However, strictly in

the N → ∞ limit, we have seen before that the eigenvalues of J converge, almost surely, to
Wigner semi-circular law. This means that, as N → ∞, Since λN is the lowest eigenvalue, it
converges to the lower edge of the semi-circular, i.e., λ1 → −2. Consequently, from Eq. (4.8),
the eigenvalues b(t) of B also converge to a shifted semi-circular law over the finite support
[b−(T ),b+(T )], where the edges are given by:

b−(T ) = 1− 2
√
T and b+(T ) = 1 + 2

√
T . (4.11)

In particular, the lowest eigenvalue bN (T ) converges to the lower edge as N → ∞, i.e.,
bN (T ) → b−(T ) = 1 − 2

√
T , see Fig. 4.1. This means that as N → ∞, almost surely,

bN (T ) > 0 if T < Tc = 1/4 and bN (T ) < 0 if T > Tc = 1/4. Thus, the probability of stability
in Eq. (4.10) also converges to an N -independent form as N → ∞

Pstable(T,∞) =

{
1 if T < Tc =

1
4 ,

0 otherwise.
(4.12)

Thus, strictly in the N → ∞ limit, the stability probability, as a function of T , approaches a
‘sharp’ step function with the step located at Tc = 1/4, as shown in Fig. 4.2.

However, for finite but large N , this curve Pstable(T,N) vs. T will deviate from the step
function (see Fig. 4.2) and one may ask how does the step function get modified for finite
but large N . To extract this information, we see from Eq. (4.10) that we need to know the
probability distribution of the lowest (minimum) eigenvalue λN of an (N ×N) GOE matrix J.
Since for a Gaussian random matrix, the top eigenvalue λ1 has the same distribution as −λN
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Figure 4.2: Sketch of the stability diagram in May’s homogeneous model: thestability probability Pstable(T,N) as a function of T for fixed large N . The solid(black) line corresponds to the strictly N → ∞ limit, where Pstable(T,N) isa step function with the step at Tc = 1/4. For finite but large N , this stepfunction gets smoothened, as shown schematically by the dashed and dottedlines. The dotted line around Tc, shows the behavior of Pstable(T,N) on a scale
|T − Tc| ∼ O(N−2/3), and has the Tracy-Widom form. The dashed lines describethe behavior of Pstable(T,N) when |T −Tc| ∼ O(1) and are described by the twolarge deviation behaviors on the two sides of Tc.

by symmetry, we can equivalently express the stability probability in Eq. (4.10) in terms of the
distribution of the top eigenvalue λ1 of the GOE matrix, namely

Pstable(T,N) = Prob [b1(T ) > 0] = Prob

[
λ1 > − 1√

T

]
= Prob

[
λ1 <

1√
T

]
. (4.13)

Thus, we need to know how the top eigenvalue λ1 of an (N ×N) GOE matrix is distributed for
finite but large N . At the time of May’s original work [137], this information was not available.
Currently, however, one knows a great deal about the distribution of the top eigenvalue λ1 of
a (N × N) GOE matrix for finite but large N , as we have seen in Chapter 1, Sec. 1.5. This
information was used to estimate Pstable(T,N) for finite but large N in Ref. [120], which we
briefly recall below.

Summary of the largeN behavior of the top eigenvalue λ1 of an (N ×N) GOE
matrix -

As mentioned earlier, the largest eigenvalue λ1 converges to 2 as N → ∞, i.e., coincides with
the right edge of the Wigner semi-circular density. However, for finite but large N , the random
variable fluctuates around this right edge 2 and the cumulative distribution admits the following
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summary behavior, as discussed in Chapter 1:

Prob [λ1 < w] ≈



exp
[
−N2

2 Ψ−(w) + O(N2)
]

for w < 2 and |w − 2| ∼ O(1) ,

F (1)
(
N2/3(w − 2)

)
for |w − 2| ∼ O(N− 2

3 ) ,

1− exp
[
−N

2 Ψ+(w) + O(N)
]

for w > 2 and |w − 2| ∼ O(1) .

(4.14)
where we recall that F (1) is the β = 1 Tracy-Widom distribution and Ψ− ≡ Ψleft,G, Ψ− ≡ ΨG

are the two large deviations functions given by Eq. (1.108) and Eq. (1.126). Let’s recall that
the two large deviation functions have the following asymptotic behaviors near the edge w = 2:

Ψ−(w) ∝ (2− w)3 for w → 2 and w < 2 , (4.15)
Ψ+(w) ∝ (w − 2)

3
2 for w → 2 and w > 2 . (4.16)

which match smoothly with the Tracy-Widom tails of Eq. (1.102) and Eq. (1.103).
LargeN behavior of the stability probabilityPstable(T,N) in thehomogeneous
May model-

Using the relation in Eq. (4.13) one can then translate the large N behavior of the cumulative
density function (CDF) of the top eigenvalue Prob[λN < w] into the large N behavior of
Pstable(T,N) in May’s homogeneous model. Setting w = 1/

√
T in Eq. (4.14), we see that the

Wigner edge w = 2 corresponds to Tc = 1/4 and the behaviors of the probability of stability
Pstable(T,N) around Tc = 1/4 for finite, but large N are described by

Pstable(T,N) ≈



exp
[
−N2

2 Φ+ (T ) + O(N2)
]

for T > Tc = 1/4 and |T − Tc| ∼ O(1) ,

F (1)
(
N2/3

(
T−1/2 − 2

))
for |T − Tc| ∼ O(N− 2

3 ) ,

1− exp
[
−N

2 Φ− (T ) + O(N)
]

for T < Tc = 1/4 and |T − Tc| ∼ O(1) ,

(4.17)
where F (1) is again the Tracy-Widom (GOE) function and now the rate functions Φ±(w) are
given by:

Φ±(w) = Ψ∓

(
w =

1√
T

)
, (4.18)

with Ψ∓ given by Eq. (1.108) and Eq. (1.126). These behaviors are schematically sketched
by the dashed-dotted lines in Fig. 4.2 and describe precisely how the sharp step function (for
N → ∞) gets modified for finite but large N . In fact, the critical behavior around Tc = 1/4

for finite N in May’s homogeneous model is similar to the so-called ‘double scaling’ limit in
various matrix models arising in lattice gauge theory and they all share a ‘third order’ phase
transition around the critical point, as reviewed extensively in Ref. [120].
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Let us remark that for finite but large N and T > Tc, the stability probability Pstable(T,N)

in Eq. (4.17) in the large deviation regime T − Tc ∼ O(1) deviates only very slightly ∼
exp[−O(N2)] from its value 0 when N → ∞. Thus, the N → ∞ ‘unstable’ phase remains
‘strongly’ unstable when N reduces from ∞. Hence we refer to this phase as ‘strongly unstable’
in Fig. 4.2. In contrast, for T < Tc, the deviation of Pstable(T,N) from its N → ∞ value 1 is
of order ∼ exp[−O(N)] which is much larger than the deviation ∼ exp[−O(N2)] on the other
side, i.e., for T > Tc. Thus, for T < Tc, the N → ∞ ‘stable’ phase, where the system was
stable with probability 1 when N → ∞, is likely to change with a relatively higher probability
when N is reduced from ∞. Hence, in Fig. 4.2, we refer to the phase T < Tc as the ‘weakly
stable’ phase.

Finally, we remark that these two different N dependence of the large deviation behaviors of
Pstable(T,N) on either side of Tc admits a nice physical interpretation in terms of the underlying
log-gas picture of the eigenvalues of the relaxation matrix B = I+

√
T J, see Fig. 4.3. One can

view the eigenvalues of the matrix B as a gas of N particles living on the real line, confined by a
harmonic potential and subject to a pairwise logarithmic repulsive interaction. For T < Tc, the
system is asymptotically stable: this means all the eigenvalues {bi(T )} are above 0 for T < Tc

with probability 1 in the N → ∞ limit. To reduce this probability from unity, i.e, to trigger an
event that will make the system unstable for T < Tc, one needs a rare configuration of charges
for which the lowest eigenvalue b1(T ) < 0. This can be achieved by pulling the lowest eigenvalue
bN (T ) from its spectrum (whose lower edge is above 0 for T < Tc) to the value 0. This costs
energy of order O(N) since one needs to disturb (pull) only one eigenvalue, without disturbing
the rest of the spectrum. Hence, this explains the behavior 1− Pstable(T,N) ∼ exp[−O(N)]

for T < Tc. In contrast, for T > Tc, the system is asymptotically unstable, i.e., the lower
edge of the spectrum of eigenvalues {bi(T )} is already below 0. To increase stability, one
needs to create a rare configuration where one pushes the whole gas of eigenvalues above 0.
Since this involves a re-arrangement of N particles in the Coulomb gas, it will cost energy of
O(N2) (since each pair will contribute when the whole gas is compressed from its equilibrium
configuration). This explains the behavior Pstable(T,N) ∼ exp[−O(N2)] for T > Tc. This
‘pulled’ to ‘pushed’ phase transition occurs also in various lattice gauge models [80, 185, 71]
where the ‘pulled’ phase corresponds to the ‘weak coupling’ phase in gauge theory, while the
‘pushed’ phase corresponds to the ‘strong coupling’ phase in gauge theory (for a review see
[120]). Thus, the ‘stability-instability’ phase transition in May’s homogeneous model can also
be viewed as a ‘pulled-pushed’ transition. The ‘stable’ phase in May’s model is the analog of
the ‘weak coupling’ phase of the gauge theory, while the ‘unstable’ phase is the analog of the
‘strong coupling’ phase of the gauge theory [120].

4.2.2 Heterogeneous relaxation dynamics
A natural extension of May’s work is to drop the assumption that all the damping constants
are equal and allow a spread in the distribution of the damping constants ai’s, i.e., modify the
evolution equation (4.2) to

dni(t)

dt
= −ai ni(t)−

√
T
∑
j

Jijnj(t) for i = 1, . . . , N , (4.19)
where the ai > 0’s are not necessarily equal. In the matrix form, this can be written as as Eq.
(4.4) with A being a diagonal matrix with positive entries {a1, a2, . . . , aN}. To keep the model
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Figure 4.3: Sketch of the two different processes leading to the different scalingin N of the probability (4.17). (Left) For T < Tc, one needs to pull the lowesteigenvalue to the origin to make the system unstable, which does not changethe equilibrium density. (Center) For T = Tc, the system is at the critical positionwhere its lowest eigenvalue goes to 0. (Right) For T > Tc, to make the systemstable, one needs to push all the eigenvalues below 0 by a wall, in such a casethe gas rearranges itself and the equilibrium density is modified.

simple, we will still assume that the matrix J in Eq. (4.4) is a GOE matrix with the law given
by (1.39). Since we will first study this generalized system in the N → ∞ limit, we assume the
empirical distribution of the ai’s converges to a continuous distribution µ(a) whose support is
included in the positive real axis (since we have assumed the ai > 0 to ensure stability without
interactions). Thus, µ(a) can be considered as the ‘initial’ value of the deformed GOE matrix
B at T = 0. The homogeneous May model corresponds to the choice of the ‘initial’ condition

µ(a) = δ(a− 1) . (4.20)
Our main goal, in this chapter, is to understand how the May-Wigner transition may get
modified when there is a spread or heterogeneity in the ‘initial’ density µ(a).

Starting from a given ‘initial’ density µ(a) at T = 0, the eigenvalues {bi(T )} of B will evolve in
‘time’ T . The first natural question is: for a general ‘initial’ density µ(a), what is the limiting
density ρT (b) of the eigenvalues {bi(T )} at time T , in the N → ∞ limit? For the special
homogeneous initial condition in Eq. (4.20), we have seen in the previous subsection that ρT (b)
is a shifted semi-circular law with support over b ∈ [1 − 2

√
T , 1 + 2

√
T ] at ‘time’ T . For a

general µ(a), we will again expect that the limiting density ρT (b) will have a finite support
b ∈ [b−(T ),b+(T )] at time T . If one can compute the location b−(T ) of the lower edge of
the support of the limiting density as a function of T , then setting b−(T = Tc) = 0 will give
us access to the exact critical strength Tc for an arbitrary ‘initial’ condition µ(a).

Computing the limiting density ρT (b) at T for arbitrary ‘initial’ density µ(a) seems rather
hard. However, one can make analytical progress for a specific choice of the ‘initial’ values
bi(T = 0) = ai,

aN−i = 1 + σ
i− 1

N
for i = 1, . . . , N , (4.21)

which we call the flat initial condition since in the limit N → ∞, the distribution of the ai’s
given by (4.21) converges towards the flat distribution µ(a) between 1 and 1 + σ:

µ(a) =
1

σ
I[1,1+σ](a) , (4.22)
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Figure 4.4: Flat discrete initial configuration of the ai for N = 20 (in red) andtheir limiting flat density as N → ∞ (in blue) for σ = 1.
where I[a,b](x) is the indicator function: I[a,b](x) = 1 if x is in [a, b] and 0 otherwise, see
Fig. 4.4. The parameter σ controls the width of this distribution and in particular the limit
σ → 0 corresponds to the homogeneous limit of May, so we can consider this new model as
one parameter extension of May’s original model.

For this ‘flat initial condition’, we are able to compute, in the N → ∞ limit, the limiting density
ρT (b) for all T . In particular, we will see in the next section that the precise knowledge of the
lower edge b−(T ) of its support will enable us to compute the exact value of Tc in this model.
Furthermore, for finite but large N , we expect that for the ‘flat initial condition’, the stability
probability Pstable(T,N) near its critical point T = Tc will have a qualitatively similar behavior
as in its homogeneous counterpart in Eq. (4.17): In particular, from the general universality
argument of the top eigenvalue of a GOE, we expect that the typical fluctuation of Pstable(T,N)

will still be described by the (β = 1) Tracy-Widom scaling function F (1)(x) in the middle line of
Eq. (4.17). However, the large deviation functions in the region |T−Tc| ∼ O(1), respectively in
the ‘unstable’ and the ‘stable’ side, are expected to be different in this heterogeneous ‘flat initial
condition’ model. We will see in later sections that while we can compute the rate function on
the ‘weakly stable’ side, i.e., for T < Tc, computing the rate function in the ‘strongly unstable’
phase remains a hard challenging problem even for the flat initial condition case.

4.3 Critical strength and the hitting time of a Dyson
Brownian Motion

4.3.1 Reminder on DBM and Burger’s equation
The idea to characterize the critical strength in the general setting is to think of the parameter
T as a (fictitious) ‘time’ variable, since we know from Chapter 2, Sec. 2.5.1, that the laws of
the eigenvalues b of the matrix B corresponds to joint law of a Dyson Brownian Motion (DBM)
with β = 1 starting at time t = 0 at a and evaluated at time T , that is:

dbi(T )

dT
=

1

N

∑
j:j ̸=i

1

bi(T )− bj(T )
+
√
2Dηi(T ) , (4.23)
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starting from the initial conditions,

bi(0) = ai for i = 1, . . . , N , (4.24)
and with D = 1/N and for each i, ηi(T ) in Eq. (4.23) is an independent Gaussian white noise
with zero mean and correlator ⟨ηi(t)ηj(t′)⟩ = δij δ(t− t′). In the limit N → ∞, we recall that
the LSD of the bi(T )

ρT (b) := lim
N→∞

1

N

N∑
i=1

δ(b− bi) , (4.25)

is completely determined by its Stieltjes transform

g(z, T ) := lim
N→∞

1

N
Tr (z I−B)−1 =

ˆ b+(T )

b−(T )

ρT (b)

z − b
db , (4.26)

which is the solution of the complex inviscid Burgers’ equation:

∂T g(z, T ) + g(z, T )∂zg(z, T ) = 0 , (4.27)
evolving from the initial condition g(z, 0) = g0(z) =

´
daµ(a)

z−a . Using the method of charac-
teristics, see for example Eq. (2.87) the solution may be expressed as a fixed point equation, or
equivalently in a parametric form as:

g(z, T ) = g0(ξ) , (4.28)
with

ξ = z − Tg0(ξ) . (4.29)
For z and T fixed and given g0, one first needs to solve (4.29) for ξ and then inject the solution
in (4.28). Conversely, from (4.29) with ξ fixed, one can express z as an implicit function of ξ

z(ξ) = ξ + Tg0(ξ) . (4.30)
The idea would be to eliminate ξ from Eqs. (4.28) and (4.30) to obtain g(z, T ) as a function
of z for fixed T . However, in practice, this is not always easy, as we will see shortly.

4.3.2 Critical strength
To compute the critical strength in the large N limit, one then needs first to compute the lower
edge b−(T ) of the LSD of the DBM and then compute the critical strength (or time) by solving
the solution:

b−(Tc) = 0 , (4.31)
and we first explain the general method to characterize the edges from the knowledge of the
Stieltjes transform and then apply this method to Burger’s equation.
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Edges from the Stieltjes transform -

The lower and the upper edges b∓(T ) of the density ρT (b) can be extracted from the Stieltjes
transform g(z, T ) by applying the following general prescriptions.

• First, one needs to compute the inverse Stieltjes transform g⟨−1⟩(.) of the Stieltjes trans-
form g(.) which we recall is the function satisfying g⟨−1⟩(g(z)) = z for z large enough.
Note that we have suppressed the T dependence of g(z, T ) for convenience. Let’s recall
that for the semi-circle distribution, this inverse has been computed in Eq. (2.51) and is
given by g⟨−1⟩(θ) = θ + 1/θ.

• Next, one needs to find the roots g∗ solutions of(
g⟨−1⟩

)′
(g∗) = 0 , (4.32)

where
(
g⟨−1⟩)′ (θ) := dg⟨−1⟩(θ)/dθ is the derivative of the inverse of the Stieltjes. In

general, this equation will have multiple roots. For a density confined in a single interval
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on the real line, this has typically two roots. For example, for the semi-circular distribu-
tion,

(
g⟨−1⟩)′ (θ) = 1 − 1θ2, which gives two roots g∗ = −1 and g∗ = 1. The smallest

root is g∗ = −1 and the largest one is g∗ = 1. The solutions g∗ of Eq. (4.32) corresponds
to the values of the Stieltjes transforms at the edges of the boundaries of the support of
the distribution.

• The lower edge b−(T ) of the support of the density is then given by

b−(T ) = g⟨−1⟩(g∗) , (4.33)
Similarly, the upper edge of the support is given by the other root, i.e., b+(T ) = z(g∗).
For example, for the semi-circular law, one gets b− = −2 and b+ = 2 which indeed
are respectively the lower and the upper edge of the support [−2, 2] of the semi-circle
distribution.

Lower edge for the DBM and critical strength in the general setting

We now have all the necessary ingredients to compute the critical strength Tc. If for convenience
we denote by z(θ) ≡ g⟨−1⟩(θ), The equation z′(g) = 0 is equivalent to

dz(ξ)

dξ

dξ

dg
= 0 . (4.34)

In general the term dξ
dg is non-zero, hence this is equivalent to solve

dz(ξ)

dξ
= 0 . (4.35)

Using the expression (4.30) for z(ξ), one gets

1 + Tg′0 (ξ∗(T )) = 0 , (4.36)
where ξ∗(T ) denotes the lowest root of Eq. (4.36). Injecting this ξ∗(T ) back into Eq. (4.30)
and using (4.33) gives the lower edge

b−(T ) = ξ∗(T ) + T g0 (ξ∗(T )) , (4.37)
where ξ∗(T ) is obtained from Eq. (4.36). Finally, setting b−(Tc) = 0 gives Tc.

This can be summarized in the following result

Result 4.1 (Stability criterion for the heterogeneous model)

The probability of stability for May’s heterogeneous model with arbitrary initial density µ(a)

is given in the limit N → ∞ by:

Pstable(T,∞) =

{
1 if T < Tc ,

0 otherwise.
(4.38)

where now the critical strength Tc, which implicitly depends on µ(a), is obtained from the
solution of the transcendental equation

ξ∗(Tc) + Tc g0 (ξ∗(Tc)) = 0 , (4.39)
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with ξ∗(Tc) given by Eq. (4.36).
Our algorithm for determining Tc, for arbitrary initial density µ(a), thus follows three principal
steps:

• Given µ(a), we first determine the initial Stieltjes transform g0(z) =
´
daµ(a)

z−a .

• Once we have g0(z), we solve Eq. (4.36) and determine ξ∗(T ).

• Next we inject this ξ∗(T ) in the transcendental equation (4.39) and solve it to determine
Tc.

For example, in May’s original homogeneous model, we have µ(a) = δ(a − 1). This gives,
g0(z) = 1/(z− 1). Substituting this in Eq. (4.36), we get two roots, and the lowest root gives
ξ∗(T ) = 1 −

√
T . Substituting this in (4.39) gives 1 − 2

√
Tc = 0, and hence Tc = 1/4. Our

method, outlined above, holds for arbitrary µ(a) and in the next subsection, we show that for
the flat initial condition with µ(a) given in Eq. (4.22), the general procedure described above
can be carried out explicitly, thus providing a nontrivial generalization of May’s homogeneous
initial condition.

Critical strength for the flat initial condition -

As a nontrivial example, we now consider the flat initial condition with µ(a) given in Eq. (4.22).
In this case, the initial Stieltjes transform is given by:

g0(z) ≡ gA(z) =
1

σ

ˆ 1+σ

1

da

z − a
=

1

σ
log

(
z − 1

z − 1− σ

)
, (4.40)

and its derivative is given by

g′0(z) = − 1

(z − 1)(z − 1− σ)
. (4.41)

Using Eq. (4.36), ξ∗(T ) satisfies the quadratic equation

(ξ∗(T )− 1)) (ξ∗(T )− 1− σ) = T , (4.42)
whose lowest solution is given by

ξ∗(T ) = 1 +
σ

2
− σ

2

√
1 +

4T

σ2
. (4.43)

Using Eq. (4.37), the lower edge at fixed T is given by

b−(T ) = 1 +
σ

2
− σ

2

√
1 +

4T

σ2
+

T

σ
log

√
1 + 4T

σ2 − 1

1 +
√

1 + 4T
σ2

. (4.44)

Setting b−(Tc) = 0 in Eq. (4.44) gives Tc. However, it is not easy to solve explicitly this
transcendental equation. To proceed further, we first write Eq. (4.44) in a more compact form,

b−(T ) = 1− σh

(
4T

σ2

)
, (4.45)
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Figure 4.7: Plot of the critical strength Tc given by Eq. (4.49), function of thespread σ.

where the scaling function h(u) is given by

h(u) =

√
1 + u− 1

2
+

u

2
log

(
1 +

√
u+ 1√
u

)
. (4.46)

This function admits the following asymptotic behaviors near the origin and at infinity:

h(u) ∼


1
4 (1 + 2 log 2− log u)u for u → 0 ,

√
u− 1

2 + 1
6u

− 1
2 for u → ∞ .

(4.47)

Setting b−(Tc) = 0 in Eq. (4.45) gives

h

(
4Tc

σ2

)
=

1

σ
. (4.48)

As a result, the critical strength is given in this case by

Tc(σ) =
σ2

4
u

(
1

σ

)
, (4.49)

where u(h) is the inverse function of h(u). Since the function h(u) is explicit in Eq. (4.46), its
inverse function u(h) can be easily plotted and hence we can plot Tc in Eq. (4.49) as a function
of the spread σ, as shown in Fig. 4.7. The asymptotic behaviors of Tc for small and large σ

can also be derived using Eq. (4.47) and are given by

Tc(σ) ∼


1+σ
4 for σ → 0 ,

σ
log(σ

4 )
for σ → ∞ .

(4.50)

In particular, we recover as expected the limit Tc =
1
4 of May’s original model for σ → 0. In the

limit σ → ∞, we find Tc → ∞ from Eq. (4.50), which indicates that for large σ, the system is
always stable, regardless of the value of the strength parameter T . This is an interesting result
that perhaps could not have been guessed a priori.
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4.4 Parametric solution for the density with flat ini-
tial condition

The goal of this section is to obtain an expression for the limiting density ρT (b) of the eigenvalues
of the matrix B for the flat initial condition (4.21), at arbitrary time T . The idea is to rely
again on the complex Burgers’ equation (4.27) for the Stieltjes transform. As we will see, that
the density ρT (b) cannot be easily expressed in terms of known analytical functions. However,
it can be expressed in an easily plottable parametric form.

We start with the two basic equations satisfied by the Stieltjes transform g(z, T ), namely the
solution of the complex Burger’s equation in Eq. (4.28) and Eq. (4.30). For easy reading, let
us re-write these two equations together

g(z, T ) = g0(ξ) (4.51)
z(ξ) = ξ + T g0(ξ) . (4.52)

The idea is to eliminate the auxiliary variable ξ between these two equations and express g as
a function of z, for a fixed T .

To proceed, we start with the initial Stieltjes transform

g0(ξ) =

ˆ
µ(a)

ξ − a
da . (4.53)

Suppose we could invert this equation and write ξ as a function of g0

ξ = z0(g0(ξ)) , (4.54)
Thus z0(.) ≡ g

⟨−1⟩
0 is just the inverse function of g0(ξ) in Eq. (4.53). Substituting (4.51) in

Eq. (4.54) gives

ξ = z0(g(z, T )) . (4.55)
Using this relation in Eq. (4.52) and further using g0(ξ) = g(z, T ), Eq. (4.52) reduces to

z = T g(z, T ) + z0(g(z, T )) . (4.56)
Thus, for fixed T , if we know the initial inverse function z0(.), we have, in principle, a closed
equation for g(z, T ). From the expression (4.40) of the initial Stieltjes transform g0 in the flat
initial condition case, its inverse function z0(g) is given by:

z0(g) = 1 + σ +
σ

eσg − 1
, (4.57)

Substituting this in Eq. (4.56), we then have a closed equation for the Stieltjes transform
g(z, T ) at any time T

z = T g(z, T ) + 1 + σ +
σ

eσg(z,T ) − 1
. (4.58)

Solving explicitly g(z, T ) from this transcendental equation does not seem feasible, unfortu-
nately. To derive the density ρT (b) from this Stieltjes transform g(z, T ) using Eq. (1.28),
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we set z = b − i0+, with b between the two edges b±(T ). Then by (1.28) we have
g(b − i0+, T ) = u + iπρ, where u is the real part of the Stieltjes transform. For simplic-
ity, we have used the shorthand notation u ≡ u(b, T ) and ρ ≡ ρT (b). Identifying the real and
the imaginary parts of (4.58), we get a pair of coupled equations

b = 1 + σ + Tu+ σRe

[
1

eσ(u+iπρ) − 1

]
,

0 = Tπρ+ σ Im

[
1

eσ(u+iπρ) − 1

]
.

(4.59)

One can multiply the numerator and denominator inside the brackets by eσ(u−iπρ) − 1, to get
the real and imaginary parts of the function inside the brackets, and the system can then be
written as 

b = 1 + σ + Tu+ σ
cos(σπρ)eσu − 1

e2σu − 2 cos(πσρ)eσu + 1
,

0 = Tπρ− σ
sin(πσρ)eσu

e2σu − 2 cos(πσρ)eσu + 1
.

(4.60)

Ideally, the goal would be to eliminate u from these pair of equations and express ρ ≡ ρT (b)

as a function of b, for fixed T .

Let us first consider the simple case of May’s homogeneous model, i.e., the limit σ → 0. In
this limit, Eq. (4.60) reduces to{

b = 1 + Tu+ u
u2+π2 ρ2

0 = Tπρ− π ρ
u2+π2 ρ2

.
(4.61)

Eliminating u from these pair of equations, one immediately gets the shifted Wigner semi-
circular density

ρT (b)|σ=0 =
1

2πT

√
4T − (b− 1)2 , (4.62)

supported over the interval b ∈
[
1− 2

√
T , 1 + 2

√
T ]
]
. Thus, in May’s homogeneous model,

starting from the initial condition µ(a) = δ(a − 1), the density of eigenvalues bi(T )’s, at any
time T > 0, is of the shifted Wigner semi-circular form in Eq. (4.62).

For general σ > 0, eliminating u from Eq. (4.60) and expressing ρT (b) explicitly (as in the σ = 0

case) seems difficult. Instead, for a general σ > 0, one can obtain the solution parametrically
as follows. We note that the top equation of (4.60) is a parametric expression for b(u, ρ). The
idea is to eliminate the dependency on u by working a bit on the bottom equation of (4.60).
To do so, let us denote by w = eσu, and then from the bottom equation of (4.60) w satisfies
a quadratic equation,

w2

2
− w

(
σ2

2T
sinc(πσρ) + cos(πσρ)

)
+

1

2
= 0 , (4.63)

where sinc(x) = sin(x)
x is the standard sinus cardinal function. Let us introduce further the

function

fσ,T (ρ) :=
σ2

2T
sinc (πσρ) + cos (πσρ) , (4.64)
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Figure 4.8: (Left) Plot of fσ,T (ρ) given by Eq. (4.64), function of ρ for σ = T = 1.Only the part on the left of the value ρ⋆ ≈ 0.305637 contributes to the parametricsolution of the density. (Right) Plot of the maximum ρ⋆ described by Eq. (4.70)function of T , for σ = 1.

plotted in Fig. 4.8 (Left).

Let us now imagine that the value of ρ is fixed. Then the two solutions w±(ρ) of the system
(4.63) are given in terms of this function fσ,T (ρ) by,

w±(ρ) = fσ,T (ρ)±
√
fσ,T (ρ)2 − 1 , (4.65)

and they satisfy the symmetry relation

1

w−(ρ)
= w+(ρ) . (4.66)

Injecting this into the top equation of (4.59) we get two solutions b±(ρ):

b±(ρ) = 1 +
σ

2
+

T

σ
logw±(ρ) +

T

2σ sinc(πσρ)

(
w± − 1

w±

)
. (4.67)

Using the symmetry relation (4.66) and the expression (4.65) for w±(ρ), we get the following
result:

Result 4.2 (parametric solution for the DBM with flat initial condition)

In the large N limit, the LSD ρ ≡ ρT of the DBM of Eq. (4.23) with the flat initial condition
of Eq. (4.21) admits a parametric solution in the form

b±(ρ) = 1 +
σ

2
± T

σ

(
log

(
fσ,T (ρ) +

√
fσ,T (ρ)2 − 1

)
+

√
fσ,T (ρ)2 − 1

sinc (πσρ)

)
. (4.68)

where fσ,T is given by Eq. (4.64).
In Fig. 4.9, we plot the two branches b±(ρ) as a function of ρ for fixed T . Indeed, if one
rotates this plot anticlockwise by π/2 and then reflects around the vertical axis, one gets the
desired density ρT (b) as a function of b, as seen in Fig. 4.5 (Right). Apart from being able to
plot the density, one can also extract a few additional information from the explicit expression
in Eq. (4.68), as discussed below.
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Maximum value of the density -

From Eq. (4.68), we see that the maximum value of the density ρ⋆ is attained at the point b⋆ for
which b+(ρ) = b−(ρ), i.e., b⋆ = 1+ σ

2 . The value of the maximum of the density ρ⋆ = ρT (b⋆),
is therefore given as the first positive solution of

fσ,T (ρ
⋆) = 1 , (4.69)

which using Eq. (4.64) is equivalent to finding the first positive solution of

ρ⋆ tan

(
σπρ⋆

2

)
=

σ

2Tπ
. (4.70)

A plot of the maximum ρ⋆ as a function of T for σ = 1 is given in Fig. 4.8 (Right).

Behavior near the edges -

By Taylor expanding the function b±(ρ) near ρ = 0, we have

b±(ρ) ∼ b±(T )∓
Tπ2

2

√
σ2 + 4T ρ2 as ρ → 0 , (4.71)

where the edges b±(T ) are given by

b±(T ) = 1 +
σ

2
±

[
σ

2

√
1 +

4T

σ2
+

T

σ
log

(
1 +

σ2

2T
+

σ2

2T

√
1 +

4T

σ2

)]
. (4.72)

It is easy to verify that the expression for b−(T ) coincides with Eq. (4.44). Inverting the
relation in Eq. (4.71), one finds that the density vanishes as a square root near the edge, with
a prefactor that can be computed explicitly

ρT (b) ∼
1

π

√
2

T

1

(σ2 + 4T )
1
4

√
(b±(T )− b)+ as b → b±(T ) . (4.73)

where (x)+ is equal to x for x > 0 and 0 otherwise.

157



4.5 The deformed GUEwith flat initial condition and
the left large deviation function of the dynami-
cal system

So far, we have computed the average density of eigenvalues ρT (b) in the large N limit of
the relaxation matrix, B = A +

√
T J for any T , where J is a N ×N GOE matrix and A is

diagonal with positive entries drawn from a flat distribution over [1, 1 + σ] with width σ. This
gives us the exact Tc between the stable to unstable transition. We expect that for finite but
large N , the stability probability will have qualitatively similar behavior as in the homogeneous
model in Eq. (4.17), see also Fig. 4.2:

Pstable(T,N) ≈



exp
[
−N2

2 Φ+(σ, T ) + O(N2)
]

for T > Tc and |T − Tc| ∼ O(1) ,

F (1)
(
γN2/3

(
T−1/2 − T

−1/2
c

))
for |T − Tc| ∼ O(N− 2

3 ) ,

1− exp
[
−N

2 Φ−(σ, T ) + O(N)
]

for T < Tc and |T − Tc| ∼ O(1) ,

(4.74)

where γ is a constant of order one and the large deviation functions Φ±(σ, T ) on either side
of Tc would be different. It turns out (see later) that to compute the large deviation functions
Φ±(σ, T ), we need the information on the full joint distribution of eigenvalues, and not just
the one-point function, i.e, the average density.

Hence, our next natural step was to see if we could compute the joint distribution of the
eigenvalues of B, where J is a GOE matrix. For this β = 1 case, one does not have a closed
formula for the joint density. However, it turns out that one can compute the joint distribution
of eigenvalues in the Hermitian counterpart of the relaxation matrix, B̃ = A+

√
T J̃, where A

is still diagonal with a flat distribution, but now J is Hermitian, i.e., a GUE matrix.

In this section, for this deformed GUE model, we derive an explicit formula for the joint law of
eigenvalues for the flat initial condition, thanks to the Itzykson-Zuber determinantal formula.
We will see that this leads to a new Coulomb gas, where the eigenvalues can be interpreted
as the positions of a gas of particles confined in a harmonic potential and repelling pairwise
as in the standard GUE, but with an additional twist that the pairwise interaction here is
a linear combination of a logarithmic (as in standard GUE) and a log-sinh type interaction.
Finally, using this Hermitian modification, we will show how to compute at least the large
deviation function Φ−(σ, T ) appearing in Eq. (4.74), in the ‘weakly stable’ phase (T < Tc) in
the original deformed GOE model. However, computing the large deviation function Φ+(σ, T )

on the ‘strongly unstable’ phase (T > Tc) still remains out of reach.
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4.5.1 The deformed GUEwith flat initial condition and its joint
law for the eigenvalues

The deformed GUE model is the Hermitian counterpart of the deformed GOE model

B̃ = A+
√
T J̃ , (4.75)

with the matrix A = Diag(a1, . . . , aN ) with positive entries as before. The matrix J̃ is now a
GUE matrix whose law is given by Eq. (1.39) with β = 2.

As we have seen in Chapter 2, the large N limit of the DBM is independent of the Dyson index
β > 0 and is completely characterized by the Burgers’ equation (4.27) for the Stieltjes transform
for any arbitrary initial density µ(a) of the ai’s. In particular, for the flat initial condition, this
means that the large N limit of the deformed GUE model has the LSD given by the parametric
solution of Eq. (4.68).
Furthermore in Chapter 2 (see Eq. (2.77)), we have also seen that the joint law of the eigenvalues
b̃ of the deformed GUE can be explicitly expressed in terms of the (β = 2) additive spherical
integral, that is:

P(β=2)
T

(
b̃
∣∣∣a) ∝ e−

N
2T

∑N
i=1 b̃

2
i ∆(b̃)2 I(β=2)

(
a, N/T · b̃

)
, (4.76)

where we recall that ∆(b̃) = ∆(b̃1, . . . b̃N ) =
∏

i<j(b̃j − b̃i) is the Vandermonde product and
I(β=2) is the additive spherical integral of Eq. (3.1) over the unitary group Oβ=2(N) ≡ U(N).
In Chapter 3, we have also seen that in this β = 2 case, the spherical integral admits the
determinantal formula of Eq. (3.22) which allows us to write the joint density explicitly in terms
of several determinants:

P(β=2)
T

(
b̃
∣∣∣a) ∝ e−

N
2T

∑N
i=1 b̃

2
i∆(b̃) det

[
e

N
T
aib̃j
]
1≤i,j≤N

. (4.77)

At this stage, the equation (4.77) holds for an arbitrary diagonal matrix A = Diag(a1, . . . , aN ).
Let us now take the ai’s to be given by the flat initial condition (4.21). In this case, the
determinant appearing in (4.77) considerably simplifies since

det

[
e

(
N
T
+

σ(i−1)
T

)
b̃j

]
= e

N
T

∑N
i=1 b̃i∆

(
e(σ/T ) b̃

)
= e

N
T

∑N
i=1 b̃i

∏
i<j

(
e

σ
T
b̃j − e

σ
T
b̃i
)
. (4.78)

Hence, the joint law for the ordered eigenvalues (4.77) simplifies to

P(β=2)
T (b̃) ∝ exp

{
N∑
i=1

N

T

(
− b̃2i

2
+ b̃i

)}
∆(b̃)∆

(
e

σ
T
b̃
)
, (4.79)

Next, using the identity

(ex − ey) e−
(x+y)

2 = 2 sinh

(
x− y

2

)
, (4.80)
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we can write the second Vandermonde in Eq. (4.79) as

∆
(
e

σ
T
b̃
)
∝ exp


 σ

2T

∑
i ̸=j

(bi + bj)

+
1

2

∑
i ̸=j

log sinh
( σ

2T
|bi − bj |

) , (4.81)

∆
(
e

σ
T
b̃
)
= exp

σ(N − 1)

2T
·
∑
i

bi +
1

2

∑
i ̸=j

log sinh
( σ

2T
|bi − bj |

) . (4.82)
Using Eq. (4.79) and completing the square, this induced the following final expression for the
joint law:

Result 4.3 (Joint distribution for deformed GUE with flat initial condition)

The joint distribution of the eigenvalues b̃ of the deformed GUE model of Eq. (4.75) under
the initial flat condition of Eq. (4.21) for the matrix A is given by

P(β=2)
T (b̃) ∝ exp

−N
N∑
i=1

(
b̃i − b∗N

)2
2T

+
1

2

∑
i ̸=j

(
log |b̃i − b̃j |+ log sinh

( σ

2T
|b̃i − b̃j |

))
(4.83)

where b∗N := 1 + (σ/2)(N − 1)/N .

Eq. (4.83) provides a nice Coulomb gas interpretation of the joint law of eigenvalues. The joint
distribution in Eq. (4.83) can be written as a Boltzmann distribution ∼ e−E({b̃i}), where the
energy function can be read off the argument of the exponential in Eq. (4.83). The eigenvalues
{b̃i}’s can be interpreted as the positions of N charges on a line. These charges are subjected
to an external harmonic potential centered at b∗N = 1 + (σ/2)(N − 1)/N . In addition, they
repel each other pairwise. The pairwise interaction is a linear combination of the logarithmic
repulsion (represented by the second term inside the exponential in Eq. (4.83)) and a log-sinh
interaction (the third term in Eq. (4.83)). In the limit σ → 0 (upon absorbing an overall
constant in the normalization), the third term also becomes logarithmic, and hence the system
reduces to the standard log-gas of Gaussian random matrices [67]. But for a nonzero σ > 0,
we have a new variety of Coulomb gas with both log and log-sinh interactions that is usually
not encountered in RMT models.

Given the joint density of the eigenvalues in the Coulomb gas representation in Eq. (4.83), one
can, in principle, obtain the average density in the large N limit by a variational principle, i.e., by
employing a saddle point method for large N to evaluate the partition function of the Coulomb
gas. This amounts to minimizing the energy function E({b̃i}). Minimizing this energy in Eq.
(4.83) gives the saddle point equation

1

T

(
1 +

σ

2

N − 1

N
− b̃

)
+

1

N

∑
j:j ̸=i

1

b̃i − b̃j
+

σ

T

1

2N

∑
j:j ̸=i

coth
( σ

2T
(b̃i − b̃j)

)
= 0 . (4.84)

For large N , the sums can be replaced by integrals, and one obtains an integral equation
satisfied by the density ρT (b̃)

1

T
(b⋆ − b̃) +

 
ρT (b

′)

b̃− b′
db′ +

σ

2T

 
ρT (b

′) coth
( σ

2T
(b̃− b′)

)
db′ = 0 , (4.85)
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where we recall b⋆ = 1+σ/2, and this integral equation holds for all b̃ ∈ [b−(T ), b+(T )] where
b±(T ) denotes the support edges.

In the limit σ → 0, the third term coincides with the second term in Eq. (4.85), and one
recovers the standard saddle point density of the log-gas [67, 120],

1

2T
(b⋆ − b̃) +

 
ρT (b̃

′)

b̃− b̃′
db̃′ = 0 . (4.86)

This singular value integral equation can be inverted using Tricomi’s formula (see Ref. [120]
for details) and one recovers the shifted semi-circular law in Eq. (4.62). For a nonzero σ, we
were not able to solve the singular integral equation (4.85). However, remarkably, we actually
know the solution ρT (b̃), albeit in a parametric form, in Eq. (4.68) via the Stieltjes transform
method. Note that the parametric solution in Eq. (4.68) also holds for deformed GUE ρT (b̃)

which is identical to that of deformed GOE, as shown earlier. It then remains a mathematical
challenge to derive this parametric solution (4.68) directly from the singular value integral
equation (4.85).

4.5.2 Relations to other models

The matrix B̃ (and the matrix B of the original model) as described in the previous section is
related to several models of RMT that have appeared before in the literature. The joint density
for the matrix B̃ in Eq. can be written as

PN (B̃)dB̃ ∝ e−NTr [V (B̃)−ÃB̃]dB̃ , (4.87)
with V (x) = x2

2 and Ã = A
T . The matrix Ã in (4.87) plays the role of an external field, and

hence models of the type (4.87) are known as random matrices with an external source [34].
A particular interest has been devoted to the case where one half of the eigenvalues of the
matrix Ã takes the value a and the other half takes the value −a, see [32, 28, 5, 29]. The
local properties for the case of flat initial condition (4.21) have also been studied in [40] using
Riemann-Hilbert techniques.

From Eq. (4.79), one can see that the joint law of eigenvalues exhibits a bi-orthogonal structure
of a determinantal point process which resembles somewhat the Muttalib-Borodin ensemble
with parameter θ > 0 [147, 30]

P(θ)
MB(λ) ∝ exp

[
−N

N∑
i=1

V (λi)

]
∆(λ)∆

(
λθ
)
. (4.88)

with the difference that in the second Vandermonde, the arguments are exponential in (4.79),
while they have a power-law form in (4.88). However, the case with the exponential function
in the second Vandermonde, appeared in the randomized multiplicative Horn problem [190], in
the DPMK equation for transport in semiconductors [18] and in the multiplicative analog of
Dyson Brownian Motion [94].
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If one makes the change of variable xi = 1√
T

(
b̃i − (1 + σ

2 )
N−1
N

)
in Eq. (4.83) and writes

r = σ
2
√
T

, the joint distribution of the xi’s is given by:

P(x) ∝ exp

−N

2

N∑
i=1

x2i +
1

2

∑
i ̸=j

log |xj − xi|+
1

2

∑
i ̸=j

log sinh (r|xj − xi|)

 . (4.89)

Thus, we have a Coulomb gas where the pairwise interaction is a linear combination of loga-
rithmic and log-sinh. The case with only log-repulsion (without the log-sinh) corresponds to
the standard Gaussian matrices. The case with only log-sinh repulsion (without the log term)
appears in the partition function of the Chern-Simons model on S3 [132, 133], in the theory
of Stieltjes-Wigert polynomials [53, 171, 166, 168] and in the recent study of vicious walkers
constrained at both ends by a flat initial conditions [76]. The parameter r = σ/

√
4T in (4.89)

controls the strength of the second interaction, since for r positive, the function log sinh(r) is
increasing from 0 to ∞. In the limit r → 0, it reduces to the log-gas as shown before. In the
opposite limit r → ∞, Eq. (4.89) to leading order in r reduces to a 1D-one component plasma
(OCP) model [111, 154, 17]

P(x) ∝ exp

−N

2

N∑
i=1

x2i +
1

2

∑
i ̸=j

|xj − xi|

 , (4.90)

for which the equilibrium measure is the flat distribution and the distribution of its largest
(lowest) eigenvalue have recently been computed exactly, both for typical fluctuations and also
for large deviations [50, 51, 65].

4.5.3 Large deviation below the critical strength Tc for the flat
initial condition

We now go back to the original deformed GOE model with flat initial condition (4.21). In the
strict N → ∞ limit, the probability of stability Pstable(N → ∞, T ) follows the step function
behavior as in Eq. (4.38). We have computed the exact Tc and also the LSD of particles
in a parametric form (4.68) for the flat initial condition (4.21). As we have discussed in the
introduction, the next step is to derive the behavior of the probability Pstable(N,T ) for large
but finite N , close to the critical point T = Tc. Similar to May’s original homogeneous
model in Eq. (4.17), one can show [109] that the typical ‘small’ fluctuations of O(N−2/3)

around T = Tc, are again described by the Tracy-Widom distribution. This is the middle
equation of Eq. (4.74) where the constant γ in Eq. (4.74) is given in [109]. For σ > 0, The
large deviation functions Φ±(σ, T ) are expected to be different from the homogeneous model
Φ±(σ = 0, T ) = Φ±(T ) = Ψ±

(
1√
T

)
, with Ψ± are given by Eqs. (1.108) and (1.126). For

values of T > Tc (see Fig. 4.5 (Left)) a finite fraction of the eigenvalues are negative and as
explained in the introduction, to access the large deviation regime one needs to push all those
eigenvalues leading to a modification of the equilibrium density in the bulk. For the matrix
B, the eigenvalues do not behave as a simple 2D Coulomb-gas particles confined on the real
line and therefore this equilibrium density in the presence of a pushing wall, needed for the
computation of the large deviation function Φ±(σ, T ) in this regime, is hard to obtain. For this
reason, we restrict the discussion only to the weakly stable phase, corresponding to T < Tc,
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where the bulk density remains unchanged when one pulls a single charge out of the bulk and
is still given by ρT . To access the large deviation function Φ−(σ, T ) in this regime, we recall
using Eq. (4.10) that one has to compute

Pstable(T,N) = 1− Prob [b1 < 0] , (4.91)
where to ease notation, we simply write bi ≡ bi(T ) in the rest of this section, and the eigenvalues
{bi} are in increasing order. To evaluate this probability, we will redo a similar computation as
the one in Sec. 4.5.1 to obtain the joint law for the eigenvalues (b1, . . . , bN ). The main difference
with the Hermitian case is that the joint law will involve the β = 1 HCIZ integral. Instead of
the β = 2 HCIZ integral, there is no simple determinantal formula for the β = 1 case. It will
be possible to overcome this difficulty thanks to the known ‘full-rank’ asymptotic of the HCIZ
integral derived in Chapter 3, Sec. 3.3.1, and we can then compute the probability by integrating
the joint law over all eigenvalues and then use of a standard saddle-point approximation.

The laws of the eigenvalues b of the original deformed GOE model of Eq. (4.5) is given by:

P(β=1)
T

(
b
∣∣∣a) ∝ e−

N
4T

∑N
i=1 b

2
i ∆(b)2 I(β=1) (a, N/(2T ) · b) , (4.92)

where now I(β=1) is the β = 1 HCIZ integral. There is no simple Itzykson-Zuber formula in
this case, but since we are interested in the large N limit, what one only needs is the asymptotic
behavior of this integral. For large N and β = 1, 2, this integral behaves as:

I(β)

(
a,

Nβ

2
· b
)

≈ exp

{
N2β

2
F(a1, . . . , aN ; b1, . . . , bN ) + O(N2)

}
, (4.93)

where the function F(.) has been derived in Chapter 3, see Res. 3.7 . The important point is
that this function F(.) does not depend on β and the β dependence appears just as a prefactor
of F(.) in Eq. (4.93). Thus, for N large, the joint law for the Deformed GOE is asymptotically
given by:

P(β=1)
T

(
b
∣∣∣a) ∝ exp

−N2

2

 1

N

N∑
i=1

b2i
2T

− 1

N2

N∑
j ̸=i

log |bi − bj |

−F
(a1
T
, . . . ,

aN
T

; b1, . . . , bN

)
+ O(1)

)]
. (4.94)

Similarly, for the deformed GUE, the joint law can be written as:

P(β=2)
T

(
b̃
∣∣∣a) ∝ exp

−N2

 1

N

N∑
i=1

b̃2i
2T

− 1

N2

N∑
j ̸=i

log |b̃i − b̃j |

−F
(a1
T
, . . . ,

aN
T

; b̃1, . . . , b̃N

)
+ O(1)

)]
. (4.95)

Comparing Eq. (4.83) and Eq. (4.95), one gets for the flat initial case (4.21) that the function
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F is asymptotically given by:

F
(a1
T
, . . . ,

aN
T

; b1, . . . , bN

)
≈

N∑
i=1

bib
⋆

2T
+

1

2N2

∑
j ̸=i

log sinh
( σ

2T
|bi − bj |

)

− 1

2N2

N∑
j ̸=i

log |bi − bj |+ C + O(1) , (4.96)
where C is a constant independent of the {bi} and b⋆ = 1+ σ

2 . Discarding sub-leading term in
N in Eq. (4.94) with F given by Eq. (4.96), one has asymptotically:

P(β=1)
T (b) ∝ exp

−N2

2

 1

2NT

N∑
i=1

(bi − b⋆)2 − 1

2N2

∑
j ̸=i

log |bi − bj |

− 1

2N2

∑
j ̸=i

log sinh
σ

2T
|bi − bj |+ O(1)

 . (4.97)
From this (asymptotic) behavior, one can deduce the following result for the behavior of the
bottom eigenvalue (the result for the top eigenvalue is obtained by symmetry)

Result 4.4 (LDP for flat initial condition)

For large N and w < b−(T ) the bottom eigenvalue of the deformed GOE model with flat ini-
tial condition satisfy a large deviation principle with speed N/2, P [bN ≃ w] ∼ e−N/2·Ψσ,T (w)

and the rate function Ψσ,T (w) is given by:

Ψσ,T (w) =
(w − b⋆)2

2T
− 1

2

(ˆ b+(T )

b−(T )

[
log(b− w) + log sinh

( σ

2T
(b− w)

)]
ρT (b)db

)
−A ,

(4.98)
with the constant A is chosen such that Ψσ,T (b−(T )) = 0.

The cumulative distribution is given by

Prob [b1 < 0] ≈
ˆ 0

−∞
exp

{
−N

2
Ψσ,T (b1) + O(N)

}
db1 , (4.99)

and the function Ψσ,T (w) is decreasing on (−∞, 0) and hence takes its minimum at 0, so that
the integral (4.99) is dominated at large N by the value at zero, which is nothing else than the
left large deviation function we want to compute:

Φ−(σ, T ) := Ψσ,T (0) . (4.100)
Note that unlike the homogeneous case corresponding to σ = 0, one cannot simplify further
this expression. Thus, we have

Prob [b1 < 0] ≈ exp

{
−N

2
Φ−(σ, T ) + O(N)

}
, (4.101)

and from Eq. (4.91) the probability of stability writes:

Pstable(T,N) ≈ 1− exp

{
−N

2
Φ−(σ, T ) + O(N)

}
. (4.102)
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Figure 4.10: Plot of the rate function Φ−(σ, T ) defined by Eq. (4.100) for σ = 1and different value of T < Tc.

This can be easily computed thanks to Eq. (4.68) for the density ρT (b). A plot of the large
deviation function for σ = 1 is given in Fig. 4.10 and a careful analysis of the rate function
show that it matches the Tracy-Widom scaling near the edge.

4.6 Summary and conclusion of Chapter 4

In this chapter, we have studied the probability of stability of a large complex system of size
N within the framework of a generalized May model, which takes into account a possible
heterogeneity ai ̸= aj in the intrinsic relaxation rates of each species. In this model, the
control parameter is T which is the square of the interaction strength of the random pairwise
interaction between the different species. For generic distribution µ(a) of the ai’s, Eq. (4.39)
completely characterizes the critical point Tc of the May-Wigner phase transition, where the
system undergoes a transition from a ‘stable’ phase to an ‘unstable’ phase as T increases.
Focusing on the special case where the ai’s follow what we call the flat initial condition (4.21),
where σ is the only new parameter of the model controlling the spread of the distribution µ(a),
we are able to (i) characterize how Tc behaves with σ, (ii) to obtain the parametric solution of
the eigenvalue density of the stability matrix in the large N limit for any T , and (iii) to obtain
the ‘left’ large deviation function Φ−(σ, T ) that controls the probability of stability for T < Tc

on the stable side, for large but finite N . One important challenge is to develop a framework
to compute the ‘right’ large deviation function Φ+(σ, T ) which characterizes the probability of
stability in the unstable phase (T > Tc). To compute Φ+, one needs to find the equilibrium
measure of a pushed-to-the-origin gas of particles with a mixture of logarithmic and log-sinh
pairwise interactions, as given in the joint law of eigenvalues. Finally, another natural question
is to investigate the large deviation function for other initial conditions, for which we do not
have a simple formula for the joint law of eigenvalues. This is tackled in the next chapter.
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Chapter 5

Large deviation for the top
eigenvalue of sum and product of
invariant randommatrices

This chapter is based on the paper [144]. The results are this chapter use the rank-one
asymptotics of the spherical integrals of Chapter 3, see Sec. 3.4 and Sec. 3.4.7.

5.1 Introduction

In the previous chapter, we have seen that the large deviation principle for the top eigenvalue
of a random matrix can be used to study the stability of a random linear system, and we have
used this property for a very specific model: the sum of a diagonal matrix with equidistributed
entries with a matrix taken from a Gaussian ensemble. In this chapter, our goal is to get
the (right) large deviation principle for the sum and the product of random matrices in a very
general setting. As we will see, depending on the model for the sum/product, the rate function
may have one or even two second-order discontinuities. In order to have an intuition on this
result, let’s look at the three simple models

• GOEσ + GOEσ′ ,

• GOEσ +Diag(scσ′) ,

• Diag(scσ) +ODiag(scσ′)OT, with O ∼ Unif [O(N)].

where ·σ indicates that the corresponding GOE matrix has variance σ, and Diag(scσ) is a
diagonal matrix whose entries are taken independently from a semi-circle distribution with
variance σ. At large N , the limiting spectral distributions of the three models are the same:
it is a semi-circle distribution with variance

√
σ2 + (σ′)2. However, the behavior of the top

eigenvalue is very different. In the first case, the matrix is again a GOE matrix, and one can
immediately get the smooth rate function thanks to the results of Chapter 1, Sec. 1.5. In the
third case, the top eigenvalue is, for any N , lower than 2σ + 2σ′ by the sup norm inequality.
This means that the corresponding rate function must be infinite after this point and hence is
very different from the one of the sums of two GOE matrices and its precise description will be
given in this chapter.

167



The rest of this chapter is organized as follows. In Sec. 5.2, we consider the large deviation
for the didactic toy model of a rank-one plus rank-one matrix. In Sec. 5.3, we study the large
deviation associated with each rank-one perturbation. In Sec. 5.5, Sec. 5.6, Sec. 5.7, we consider
respectively the (right) large deviation associated with the sum, product and rectangular sum
of ‘full-rank’ matrices.

5.2 Rank-one plus rank-one toy model

In this section, we consider the ‘toy model’ of the sum of two rank-one matrices where one is
randomly rotated. This example should be read in conjunction with the example of the norm
of the sum of two vectors of Sec. 2.2 in Chapter 2. Explicitly, we consider a matrix

C := wA e1e
T
1 + wB vvT , (5.1)

with e1 = (1, 0, . . . , 0) is the unit vector in the first canonical direction and v ∼ Unif
[
SN−1

]
is a unit vector taken uniformly on the real sphere. The constants wA and wB are known, and
we take the convention wA ≥ wB without loss of generality.

An elementary calculus gives that the largest eigenvalue of C is given by

λ1(C) =
wA + wB +

√
(wA − wB)2 + 4wAwB|eT1 v|2

2
. (5.2)

Note that since 0 ≤ |eT1 v|2 ≤ 1, we have wA ≤ λ1(C) ≤ wA + wB as expected.

In the limit N → ∞, the vector v is almost-surely orthogonal to the vector e1 so that the top
eigenvalue of the matrix C is given by wA:

λ1(C) −−−−→
N→∞

wA , (5.3)
This can be checked by taking the limit |eT1 v| → 0+ in Eq. (5.2).
Now at large but finite N , we can ask what is the probability of finding λ1(C) at a position x

higher than wA?

To do so, let’s remark, that since v is uniform on the sphere, the square of each of its compo-
nents - and hence the squared overlap - is known to follow a Beta distribution of parameters
(1/2,N/2). Its probability density is given by:

p
(
|eTv|2 = ϕ

)
=

ϕ−1/2(1− ϕ)N/2−1

B(1/2, N/2)
, (5.4)

where B(1/2, N/2) is the Euler Beta function. From this we can do the change of variable
from the overlap to the top eigenvalue given by Eq. (5.2) to write the exact probability density
Ptm of the law of c1 ≡ λ1(C):

Ptm(c1) =
2 c1 − wA − wB

B(1/2, N/2)wAwB

(
1− c1(wA + wB − c1)

wAwB

)−1/2(c1(wA + wB − c1)

wAwB

)N/2−1

.

(5.5)
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Figure 5.1: The rate function for the eigenvalue of the toy model of the sumof two rank-one matrices with non-zero eigenvalues being respectively given by
wA = 2 and wB = 1, as described by Eq. (5.6).

IF we now take the large N limit we obtain the following result for the large deviation of the
top eigenvalue.

Result 5.1 (LDP for a rank-two matrix)

For large N , the probability to have the top eigenvalue c1 of the rank-one plus rank-one
matrix of Eq. (5.1), at a position x ≥ wA, satisfies a large deviation principle with N ,
P [c1 ≃ x] ≈ e−NΨtm(x) and rate function given for wA ≤ x < wA + wB:

Ψtm(x) =
1

2

(
− log

(
wA + wB − x

wB

)
− log

(
x

wA

))
, (5.6)

and is infinite for other values of x.

This rate function is represented in Fig. 5.1. Importantly, this rate has a logarithmic divergence
near the upper bound wA+wB and as we will see, for more sophisticated models of sum/product
of matrices, this type of divergence near the upper edge will be universal.

5.3 Large deviation for rank-one deformation

In this section, we consider the case where the square (resp. rectangular) matrix C is a rank-one
deformation of a random matrix B and study the right large deviation of its largest eigenvalue
(resp. singular value). For this type of problem, depending on the norm of the vector of the
rank-one deformation, as we have seen in Chapter 2 (see Sec. 2.4) there exists a regime where
the top eigenvalue (resp. singular value) sticks to the right edge of the bulk density and another
one where it pops out of the bulk density and forms an outlier. The goal of this section is to
characterize completely the large deviation of this top eigenvalue/singular value. I will give
proof of the result only in the regime where there is an outlier. The proof for the other regime
is obtained thanks to the ‘tilting method’ of Sec. 5.4.

Importantly in order to tackle both the case where the ‘full-rank’ B is a fixed diagonal and the
case where it is taken from an invariant ensemble, we will consider such matrix B to be taken
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from a β-ensemble with a wall, as described in Sec. 5.4.2. We recall from Sec. 5.4.2 that the
case of a fixed diagonal matrix corresponds to having the parameter at the wall wB = b+,
while for classical β-ensemble with a potential defined on the whole real line, this corresponds
to send the wall at infinity wB → ∞.

5.3.1 Additive rank-one deformation
In this subsection, the matrix B ∼ PV,wB

(.), with limiting spectral density µB and (right) edge
b+ and we consider the rank-one additive deformation:

C := B+ γ vv∗ , (5.7)
where v is an arbitrary1 unit vector. In this case, let’s recall Result 2.3:

λ1(C) →

{
b+ for γ ≤ 1/gB(b+) ,

λ∗ := g
⟨−1⟩
B

(
1
γ

)
for γ ≥ 1/gB(b+) .

(5.8)

To get the full behavior in the case where the typical value is the BBP outlier at λ∗, the idea
is to use the characterization of the top eigenvalue as a solution of the secular equation (2.37).
For λ1(C) ≃ x, we recall that this equation takes the form::

1− γv∗GB(x)v = 0 . (5.9)
where GB(z) = (zI−B)−1 is the resolvent of the matrix B. As a consequence, we can write
the probability of finding the top eigenvalue λ1(C) at the position x in terms of an average
over a Dirac function:

P [λ1(C) ≃ x] = E [δ(1− γv∗GB(x)v = 0)] . (5.10)
Using the inverse Laplace representation of the Dirac, this can be equivalently written as:

P [λ1(C) ≃ x] =
1

K
E
[ˆ

C1

e
Nβz1

2
−Nβγz1

2
v∗GB(x)vdz1

]
, (5.11)

where K is a (complex) constant whose asymptotic will not contribute to the large deviation
in its integral representation. For simplicity, we take the notation K from one line to another,
even though this constant might be different. Next, since B is rotationally invariant, we can
either take the vector v to be either fixed or random. To perform the computation, it will be
convenient to take v uniform over the sphere. Removing the constraint over the sphere by
introducing a second Lagrange multiplier z2, Eq. (5.11) now writes:

P [λ1(C) ≃ x] =
1

K
E
[ˆ

C1×C2

e
Nβz1

2
+

Nβz1
2

(ˆ
RN

e−
Nβ
2

v∗(z2Id+γz1GB(x))vdv

)
dz1dz2

]
.

(5.12)
By Gaussian integration over the N -dimensional variable v, we have the following integral:

P [λ1(C) ≃ x] = E
[ˆ

C1×C2

e
Nβ
2

H(z1,z2,x)dz1dz2

]
, (5.13)

1If one replaces the matrix B by a fixed diagonal matrix o then one has to consider the vector
v to be taken uniformly over the sphere SN−1 for the problem to be invariant
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with:

H(z1, z2, x) := z1 + z2 −
1

N

N∑
i=1

log (γz1 + z2(x− bi)) +
1

N

N∑
i=1

log(x− bi) +K +O
(

1

N

)
,

(5.14)
where K is constant independent of z1, z2 and x. In the large N limit, this integral over the

variables z1 and z2 are dominated by the saddle-points z∗1 and z∗2 solutions of:
γ
N

∑N
i=1

1
γz∗1+z∗2 (x−bi)

= 1 ,

1
N

∑N
i=1

(x−bi)
γz∗1+z∗2 (x−bi)

= 1 .

(5.15)

Combining the two equations, we have that the two saddle points are related to one each
another by:

z∗1 + z∗2 = 1 . (5.16)
As we will see later on, only the saddle-point z∗2 will contribute to the large deviation. Substi-
tuting z∗2 in the top line of Eq. (5.15), we have:

z∗2
γ

= gB

(
x− γ +

γ

z∗2

)
. (5.17)

where gB(z) = 1/N ·
∑N

i=1(z−bi)
−1 is the Stieltjes transform of the matrix B. As in the study

of the asymptotic behavior of rank-one spherical integral, we need to distinguish two cases: Eq.
(5.17) only makes sense if the argument of the RHS does not exceed wB, that is if we define:

xc2 := wB + γ − 1

ḡB(wB)
, (5.18)

then

• if x ≤ xc2 we don’t have any saturation. Inverting Eq. (5.17) gives:

z∗2
γ

= R⟨−1⟩
B (x− γ) , (5.19)

• if x ≥ xc2 , then there is a saturation, that is z∗2 is given by

z∗2
γ

=
1

wB + γ − x
. (5.20)

We have now all the tools to express the rate function in this regime. We have:

ΨC(x) = −
ˆ x

λ∗

d

ds
H(z∗1 , z

∗
2 , s)ds = −

ˆ x

λ∗

∂

∂s
H(z∗1 , z

∗
2 , s)ds , (5.21)

since the partial derivatives with respect to z∗1 and z∗2 are exactly zero at the saddle points.
The derivative of the function H with respect to s is given thanks to Eq. (5.14) by:

∂

∂s
H(z∗1 , z

∗
2 , s) = − 1

N

N∑
i=1

z∗2
γz∗1 + z∗2(x− bi)

+
1

N

N∑
i=1

1

x− bi
. (5.22)
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The first term in the RHS can be simplified since if we multiply the topline of Eq. (5.15) by
z∗2
γ we find that this term is exactly z∗2

γ . Taking the large N limit, one has the expression for
the rate function in this regime. The proof of the rate function for the regime where there is
no outlier can be obtained thanks to the tilting method described in the next Section, and we
have the following two results

Result 5.2 (LDP for the additive rank-one perturbation below the BBP threshold)

For the additive rank-perturbation of Eq. (5.7), in the regime where there is no outlier,
γ ≤ 1

gB(b+) , the probability to observe the event λ1(C) ≃ x satisfies a large deviation

principle with speed Nβ: P [λ1(C) ≃ x] ∼ e−Nβ·ΨC(x) and the rate function is infinite for
x /∈ [b+, wB + γ) and is otherwise given by:

ΨC(x) =
1

2



´ x
b+

(ḡB(t)− gB(t)) dt for b+ ≤ x ≤ xc1 ,

K1 +
´ x
xc1

(
R⟨−1⟩

B (t− γ)− gB(t)
)
dt for xc1 ≤ x ≤ xc2 ,

K2 + log
(

1
wB+γ−x

)
−
´ x
xc2

gB(t)dt for xc2 ≤ x ≤ wB + γ ,

(5.23)
with xc1 := g

⟨−1⟩
B

(
1
γ

)
and xc2 := wB + γ − 1

ḡB(wB) and the constant K1 and K2 are

such that ΨC is continuous at the points xc1 and xc2 : K1 :=
´ xc1
b+

(ḡB(t)− gB(t)) dt and

K2 := K1 + log
(

1
ḡB(wB)

)
+
´ xc2
xc1

(
R⟨−1⟩

B (t− γ)− gB(t)
)
dt.

Result 5.3 (LDP for the additive rank-one perturbation above the BBP threshold)

For the additive rank-perturbation of Eq. (5.7), in the regime γ ≥ 1
gB(b+) where there is an

outlier at λ∗ = g
⟨−1⟩
B (1/γ), the probability to observe the event λ1(C) ≃ x satisfies a large

deviation principle with speed Nβ: P [λ1(C) ≃ x] ∼ e−Nβ·ΨC(x) and the rate function is
infinite for x /∈ [b+, wB + γ) and is otherwise given by:

ΨC(x) =
1

2


´ x
λ∗

(
R⟨−1⟩

B (t− γ)− gB(t)
)
dt for b+ ≤ x ≤ xc2 ,

K∗
2 + log

(
1

wB+γ−x

)
−
´ x
xc2

gB(t)dt for xc2 ≤ x ≤ wB + γ ,

(5.24)

with xc2 := wB + γ − 1
ḡB(wB) and K∗

2 =
´ xc2
λ∗ (ḡB(t)− gB(t)) dt+ log

(
1

ḡB(wB)

)
.

Let’s once again recall that the limiting case wB = b+ and wB → ∞ corresponds respectively
to the case where B is a fixed diagonal matrix and the case where B is taken from a β-ensemble.
In the latter case, the critical point xc2 → ∞ such that one can remove the bottom line of
both Eqs (5.23) and (5.24).
Remark (Behavior near the edge). Below the threshold when there is no outlier, if the
density is non-critical, one recovers the Tracy-Widom ‘3/2’ scaling for the rate function
since the expressionmatches the ones of the classical case of Eq. (1.107). However above
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the threshold, because both the Stieltjes transform and the R-transform (and hence its
shifted inverse) are analytic around λ∗, the rate function as a square behavior close to the
outlier. This is expected because the fluctuations of the outliers are known to be Gaussian
and of variance N− 1

2 . ⌋

Example (Large deviation for rank-one perturbation of a GOE matrix). Let’s consider the
case whereA is a GOEmatrix. In this case, b+ = 2σ, gB(b+) = 1

σ , and if γ ≤ σ there is no
outlier but one critical point xc1 = γ + σ2

γ and if γ ≥ σ there is one outlier at λ∗ = γ + σ2

γ .As a consequence, the rate function is given by:
• if γ ≤ σ,

ΨC(x) =


x
√
x2−4σ2

4σ2 + log
(

2σ√
x2−4σ2+x

) for 2σ ≤ x ≤ γ + σ2

γ ,

(
x−(γ+σ2

γ )
)(

x−(3γ+σ2

γ )
)
+x

√
x2−4σ2

4σ2 + log
(

2σ
x+

√
x2−4σ2

) for x ≥ γ + σ2

γ ,

(5.25)
One can find a plot of this function for γ = 1/2 and σ = 1 in Fig. 5.2 (Left).

• and if γ ≥ σ,
ΨC(x) =

x2 − 4γx+ 2(γ2 + σ2) + x
√
x2 − 4σ2

4σ2
+ log

(
2γ

x+
√
x2 − 4σ2

)
. (5.26)

One can find a plot of this function for γ = 2 and σ = 1 in Fig. 5.2 (Right).
■
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Figure 5.2: On the left, the Rate function (in red) of the largest eigenvalue ofthe sum of a GOE matrix with σ = 1 and a rank-one matrix with a non-zeroeigenvalue equal to γ = 1/2, as described by Eq. (5.25). This function admitsa phase transition at xc1 = 2.5, represented by the vertical dotted line. On theright, the Rate function (in red) of the largest eigenvalue of the sum of a GOEmatrix with σ = 1 and a rank-one matrix with now a non-zero eigenvalue equalto γ = 2, as described by Eq. (5.26). In this case, one is above the BBP transitionand the typical position of the largest eigenvalue of this matrix is represented ina dotted line.
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5.3.2 Multiplicative case
Similar to the additive case, we consider in this subsection the ‘multiplicative’ rank-one defor-
mation of Sec. 2.4.3, that is:

C =
√
I+ γvvTB

√
I+ γvvT , (5.27)

where B ∼ PV,wB
(.) and is further assumed to be semi-definite positive. In the large N limit,

let’s recall form Res. 2.6 the associated BBP transition:

λ1(C) →

{
b+ for γ ≤ 1/tB(b+) ,

λ∗ := t
⟨−1⟩
B

(
1
γ

)
for γ ≥ 1/tB(b+) .

(5.28)

The proof of the large deviation principle is similar to the additive case. For the case below the
BBP transition, this can be done by the tilting method of the next section while when there is
an outlier, one may use the characterization with the (multiplicative) secular equation of Eq.
(2.56), that is to have λ1 at x, it must satisfy:

1− γv∗√BGB(x)
√
Bv = 0 . (5.29)

with GB(x) = (xI−B)−1. Using again the delta trick one may compute the associated large
deviation function and the results are given by:

Result 5.4 (LDP for the multiplicative rank-one perturbation below the BBP threshold)

For the multiplicative rank-perturbation of Eq. (5.27), in the regime where there is no
outlier, γ ≤ 1

tB(b+) , the probability to observe the event λ1(C) ≃ x satisfies a large

deviation principle with speed Nβ: P [λ1(C) ≃ x] ∼ e−Nβ·ΨC(x) and the rate function is
infinite for x /∈ [b+, wB(1 + γ)) and is otherwise given by:

ΨC(x) =
1

2



´ x
b+

ḡB(t)− gB(t)dt for b+ ≤ x ≤ xc1 ,

K1 +
´ x
xc1

(
S̃⟨−1⟩
B

(
t

1+γ

)
+1

t − gB(t)

)
dt for xc1 ≤ x ≤ xc2 ,

K2 + log
(

x
wA(1+γ)−x

)
−
´ x
xc2

gB(t)dt for xc2 ≤ x ≤ wB(1 + γ) .

(5.30)
with xc1 := t

⟨−1⟩
B (1/γ) and xc2 := γwB

t̄B(wB)
t̄B(wB)+1 and the constant K1 and K2 are such

that ΨC is continuous at the points xc1 and xc2 : K1 :=
´ xc1
c+

(ḡB(t)− gB(t)) dt and

K2 := K1 + log (1/t̄B(wB)) +
´ xc2
xc1

(
(S̃⟨−1⟩

B (t/(1 + γ)) + 1)/t− gB(t)
)
dt.

Result 5.5 (LDP for the multiplicative rank-one perturbation above the BBP threshold)

For the multiplicative rank-perturbation of Eq. (5.27), in the regime γ ≥ 1
tB(b+) where

there is an outlier at λ∗ = t
⟨−1⟩
B (1/γ), the probability to observe the event λ1(C) ≃ x

satisfies a large deviation principle with speed Nβ: P [λ1(C) ≃ x] ∼ e−Nβ·ΨC(x) and the
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rate function is infinite for x /∈ [b+, wB(1 + γ)) and is otherwise given by:

ΨC(x) =
1

2


´ x
λ∗

(
S̃⟨−1⟩
B

(
t

1+γ

)
+1

t − gB(t)

)
dt for b+ ≤ x ≤ xc2 ,

K∗
2 + log

(
x

wB(1+γ)−x

)
−
´ x
xc2

gB(t)dt for xc2 ≤ x ≤ wB(1 + γ) .

(5.31)
with xc2 := (1 + γ)wB

t̄B(wB)
t̄B(wB)+1 and the constant K∗

2 := log(1/t̄B(wB)) +´ xc2
λ∗

((
S̃⟨−1⟩
B (t/(1 + γ)) + 1

)
/t− gB(t)

)
dt is such that ΨC is continuous at xc2 .

Example (spiked square Wishart). Let’s consider the case where B is Wishart, where in
order to have a simple analytical formula for the rate function, we consider the shape
parameter to be equal to one, q = 1. In this case, the density of Eq. (1.43) has a top edge
at b+ = 4. The matrix C given by Eq. (5.27) is known as a spiked (square) Wishart matrix
and the rate function for its largest eigenvalue is given by:

• if γ ≤ 1, then there is no outlier and the rate function is given by:

ΨC(x) =



√
x(x−4)

2 + log

(
x−2−

√
x(x−4)

2

)
for 4 ≤ x ≤ 2 + γ + 1

γ ,

x−γx+(1+γ)
√

x(x−4)

4(1+γ) + 1
2 log

(
xγ−2γ−γ

√
x(x−4)

2

)
for x ≥ 2 + γ + 1

γ .

(5.32)
One can find a plot of this function for γ = 1/2 and q = 1 in Fig. 5.3 (Left).

• if γ > 1, then there is an outlier at λ∗ = 2+ γ + 1
γ and in this case the rate functionis given by:

ΨC(x) =
1+ 1

γ

2 +
x−2−γ− 1

γ

2(1+γ) +

√
x(x−4)−x

4 + 1
2 log

(
γ
1−

√
x−4
x

1+
√

x−4
x

)
. (5.33)

One can find a plot of this function for γ = 2 and q = 1 in Fig. 5.3 (Right).
■

5.4 The tools to compute large deviations: tilting
method and invariant-ensembles with a wall

5.4.1 Tilting method
For an individual matrix taken from a β-ensemble of Sec. 4.5.3 and the toy model of the rank-
two matrix of Sec. 5.2 and the rank-one perturbation of the previous section, we were able
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Figure 5.3: On the left, the Rate function (in red) of the largest eigenvalue ofa spiked Wishart matrix with q = 1 and the value of the spike is γ = 1/2, asdescribed by Eq. (5.25). This function admits a phase transition at xc1 = 4.5 rep-resented by the vertical dotted line. On the right, the Rate function (in red) of thelargest eigenvalue of the sum of a spiked Wishart matrix with q = 1 and a spike
γ = 2, as described by Eq. (5.26). In this case, one is above the BBP transitionand the typical position of the largest eigenvalue of this matrix is represented ina dotted line.

to compute the (right) large deviation of the top eigenvalue thanks to an explicit character-
ization for the joint laws of the eigenvalues or even the top eigenvalue itself. For the sum
or the product of matrices, one does not have a simple expression for the joint density of the
eigenvalues/singular values, except in some specific cases, see for example the previous chapter.
Instead of directly looking at C, the idea introduced in Ref. [85] in the context of RMT, is
to look at a weighted realization of this matrix. If we denote by P (.) the probability density
of the random matrix C in the space of self-adjoint/rectangular matrix, let’s consider another
random matrix C′ whose probability density is given by:

P [θ](C′) :=
ZC′(θ)

E [ZC(θ)]
P (C′) , (5.34)

where ZC′(θ) is a tilting function. Note that we use the same notation as in Chapter 3, Sec.
3.4.2 for this tilting function since, as we will see, it will correspond to the rank-one spherical
integrals. The role of this function is to make the event {ζ1(C′) ≃ x} of high probability for
the new matrix C′ for a given choice of the parameter θ. One can then relate the rate function
ΨC(.) to its asymptotic behavior, as we will explain below. We first list sufficient conditions
for the choice of this tilting function and then explain how based on these properties one can
get the large deviations for the top eigenvalue/singular-value.

Sufficient conditions for the tilting function -

(C1) The tilting function ZC′(θ) only depends on the eigenvalues/singular values of C′ (and
not its eigenvectors) and for large N this function depends only on the position of the
top eigenvalue/singular value c′1 and becomes self-averaging with respect to the other
c′2, . . . , c

′
N and thus it is independent of them.

(C2) The tilting function ZC′(θ) satisfies the following decomposition property:

E [ZC(θ)] = EA [ZA(θ)] EB [ZB(θ)] . (5.35)
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(C3) For large N , one can compute the quenched free energy defined as

JC(x, θ) :≈
2

Nβ
logZC|{c1=x}(θ) , (5.36)

where {c1 = x} indicates that the limit is taken with the constraint that the top eigen-
value (or singular value) is fixed at x. Similarly, for large N , one can compute the two
annealed free energies:

FA(θ) :≈
2

Nβ
logEZA(θ) and FB(θ) :≈

2

Nβ
logEZB(θ) . (5.37)

(C4) For any x > c+, there is one optimal θ∗(x), solution of:

θ∗(x) = argsup
θ>0

{Ix(θ) := JC(x, θ)− FA(θ)− FB(θ)} , (5.38)
and this supremum can be computed.

General expression for the rate function with the tilting method -

Under these conditions and for large N , because ZC′ is a function of the eigenvalues (or
singular values), we can integrate out the dependency in the eigenvectors in Eq. (5.34) to
obtain a relation between the joint density P(θ)

N (c1, . . . , cN ) of the eigenvalues/singular values
of C′ to the (unknown) joint density PN (c1, . . . , cN ) of eigenvalues/singular values of C:

P(θ)
N (c′1, . . . , c

′
N ) = e

Nβ
2 [JC(c′1,θ)−FA(θ)−FB(θ)]+O(N)PN

(
c′1, . . . , c

′
N

)
, (5.39)

where we have used the decomposition property (5.35) and the definitions of the annealed and
quenched free energies given by Eq. (5.36) and Eq. (5.37). If we now integrate over the variables
c1,

′ . . . c′N with a Dirac delta function δ(c′1 − x), by self-averaging property (C1) with respect
to the variables c′2, . . . , c

′
N for the tilting function, we have:

Prob.[θ]
[
c′1 ≃ x

]
= e

Nβ
2

[JC(x,θ)−FA(θ)−FB(θ)]+O(N) Prob. [λ1(C) ≃ x] , (5.40)
which is by definition of the rate function

Prob.[θ]
[
c′1 ≃ x

]
= e

Nβ
2

[JC(x,θ)−FA(θ)−FB(θ)−ΨC(x)]+O(N) . (5.41)
Now to get the rate function ΨC(.), let us find the optimal value θ∗ ≡ θ∗(x) of the parameter
θ that makes the event {c′1 ≃ x} of probability one. Since the LHS of (5.40) is a probability
measure, it is always bounded by one, and so the corresponding optimal θ∗ corresponds to
maximize the argument of the exponential in the RHS of Eq. (5.40), that is, θ∗ is given by Eq.
(5.38). By condition (C4), this supremum exists for any x > c+. As a consequence, we can
relate the unknown rate function ΨC(.) to the annealed and quenched free energies:

ΨC(x) =
1

2
(JC(x, θ

∗(x))− FA(θ
∗(x))− FB(θ

∗(x))) . (5.42)
Now if the supremum in Eq. (5.38) is a maximum, one has that θ∗ is the solution of:

I ′x(θ
∗) := ∂θJC(x, θ)|θ∗ − F ′

A(θ
∗)− F ′

B(θ
∗) = 0 . (5.43)
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By construction ΨC(c+) = 0. One can therefore take the derivative of Eq. (5.42) with respect
to x to get the following integral representation for the rate function:

ΨC(x) =
1

2

ˆ x

c+

∂tJC(t, θ
∗(t)) + θ∗′(t)(∂θJC(t, θ)|θ∗ − F ′(θ∗))dt , (5.44)

but by Eq. (5.43) the second term is null, so that we have the following final simple formula
for the rate function.

ΨC(x) =
1

2

ˆ x

c+

∂tJC(t, θ
∗(t))dt with θ∗ solution of Eq. (5.43) . (5.45)

Spherical Integrals as tilting functions -

Thus, if one has found a tilting function with the four properties (C1)-(C4), one can compute
the rate function. We argue that a natural candidate for the tilting function is given by the
spherical integral of the operation we are considering:

• On the one hand, the quenched free energy associated with each spherical integral has
been computed in Chapter 3 (see Sec. 3.4.7) and it satisfies a θ-dependent transition
between a phase where it does not depend explicitly on the position of the top eigen-
value/singular value and a phase where it does. In other words, spherical functions satisfy
the conditions (C1)-(C2).

• On the other hand, the spherical functions satisfy by the construction of the decompo-
sition property (C3) of Eq. (5.35).

As a consequence, what is left is to prove that spherical functions satisfy the property (C4) and
then compute the corresponding optimal parameter θ∗(x). This is done for each case in Sec.
5.5.2; Sec. 5.6.1 and Sec. 5.7.1. Injecting the expression of the optimal parameter θ∗(x) in Eq.
(5.45), we can then get an expression for the rate function and the results are given in in Sec.
5.5.3, in Sec. 5.6.2 and in Sec. 5.7.2.

5.4.2 Invariant ensembles with a wall

In order to deal with the free sum (or the free product or bi-free sum) of either matrix taken
from an invariant ensemble or fixed diagonal matrices or a combination of the two under the
same framework, we recall the definition of invariant ensembles with a wall of Chapter 3.

We say that a matrix is taken from an invariant ensemble with a wall at wA, which we denote
by A ∼ P(β)

V,wA
, if A = ODiag (λ1, . . . , λN )OT with O uniform over O(N) and the {λi} follow

the joint law of Eq. (1.63) with V (.) a confining potential such that V (x > wA) = ∞, see
Fig. 5.4. The definition naturally extends to rectangular matrices. It is important to notice
that the introduction of this wall does not change the limiting equilibrium density µA(.) since
wA ≥ a+ and the solution of the Tricomi problem of Eq. (1.75) only depends on the values of
the potential between the two edges a±.

Now if we look at the two limiting cases:
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• If wA = ∞, then there is no wall, and we recover the case of an unrestricted invariant
ensemble.

• If wA = a+, then at finite N the top eigenvalue cannot fluctuate outside the support
of the bulk density µA(.). We argue that from the point of the right large deviation it
behaves as a fixed diagonal matrix with limiting density µA and edge a+. To justify this
statement, we have seen the following property in Chapter 3;

(C5) the annealed free energy for an invariant ensemble with a wall is related to the
quenched free energy by:

∂θFA(wA = a+, θ) = ∂θJA(a+, θ) , (5.46)
where we have made explicit the dependency in the wall wA for FA(wA, θ) :=
1
N logEA∼PV,wA

ZA(θ). Indeed, if A is a fixed diagonal matrix with limiting density
µA and limiting edge a+ then one can drop the average over A in the decomposition
property (C3) of Eq. (5.35):

E [ZC(θ)] = ZA(θ)EB [ZB(θ)] , (5.47)
which, by definition of the quenched free energy, corresponds to replacing F ′

A(θ
∗) by

∂θJA(a+, θ) in Eq. (5.43). Since no other quantities are changed, if we have (C5) then
from the point of the right large deviation of the top eigenvalue, we can safely replace
a fixed diagonal matrix with a corresponding matrix taken from an invariant ensemble
with a wall at its edge.

As a consequence, invariant ensembles with a wall provide a framework to tackle both cases
(invariant and fixed diagonal) at the same time and appear to be interesting objects on their
own. By construction, matrices taken from an invariant ensemble with a wall are rotationally
invariant, such that we can also drop out the conjugation by Haar matrices.
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Figure 5.4: Potential and limiting density for a random matrix taken from aninvariant ensemble with a wall. Beyond the wall, the potential is infinite. Thelimiting density is the same as if there were no wall (wA → ∞) since wA ≥ a+.The black dots represent ‘typical’ configurations of the eigenvalues at finite N .
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5.5 Large deviation for the sum of self-adjoint ma-
trices

In this section, we consider the case where the matrix C is given as

C = A+B , (5.48)
where A ∼ P(β)

VA,wA
and B ∼ P(β)

VB ,wB
are two symmetric matrices, each taken from an invariant

ensemble with a wall as defined in Sec. 5.4.2. We recall from the previous section that:

• if we set the wall parameters at the edges, wA = a+ and wB = b+, then we get the large
deviation for the top eigenvalue of the sum of two randomly fixed diagonal matrices:

Diag(a) +VDiag(b)V∗ , (5.49)
with O a uniform orthogonal matrix and 1/N

∑
i δ(λ−ai) → µA(λ) and 1/N

∑
i δ(λ−

bi) → µB(λ).

• If we set wA = a+ and wB = ∞, then we get the large deviation for the top eigenvalue
of the sum of:

Diag(a) +B , (5.50)
with 1/N

∑
i δ(λ − ai) → µA(λ) and B ∼ P(β)

VB
is a matrix taken from an invariant

ensemble.

• If we set wA = ∞ and wB = ∞, then we get the large deviation for the top eigenvalue
of the sum:

A+B , (5.51)
where A ∼ P(β)

VA
and B ∼ P(β)

VB
are two matrices taken from (unrestricted) invariant

ensembles.

We aim at computing the rate function ΨC(x):

P [λ1(C) ≃ x] = exp [−NβΨC(x) + O(N)] forx > c+ , (5.52)
where c+ is the edge of the limiting spectrum µC of C, and µC = µA⊞µB is described by the
free convolution of Chapter 2 (see Sec. 2.6.3).

5.5.1 Warm-up computation: retrieving the right large devi-
ation for an individual random matrix taken from a β-
ensemble

The next step in order to get the rate function is to show that there exists an optimal tempera-
ture θ∗(x) and compute it. Let’s consider the case of one individual random matrix A ∼ P(β)

V (.)

in a classical invariant ensemble, and let’s retrieve the expression of Eq. (1.107) with the tilting
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method as a warm-up exercise. For any x > a+, the optimal inverse temperature θ∗ is given
as the supremum of Eq. (5.38) with FB = 0 and JC = JA.

One may notice by integrating Eqs. (3.124) and (3.199) with respect to θ, that for θ between
0 and gA(x), we have:

JA(x, θ) = FA(wA → ∞, θ) =
1

2

ˆ θ
2

0
RA(θ

′)dθ′ (for θ ∈ (0, gA(x)) . (5.53)
If one uses the interpretation in terms of the partition function of a soft spin model of Sec. 3.4.2,
this corresponds to the high-temperature regime (or paramagnetic phase) of the system where
both the annealed and quenched free energy are equal. Necessarily, the optimal temperature
θ∗(x), if there is one, cannot be in this region since from Eq. (5.38), we want precisely the
difference between the two free energies to be as high as possible. We can therefore restrict
the range of possible optimal temperature to be in the ferromagnetic phase, θ > gA(x):

θ∗(x) = argsup
θ>gA(x)

{Ix(θ) := JA(x, θ)− FA(wA → ∞, θ)} . (5.54)

Let’s compute the derivative with respect to θ of this function Ix(θ). According to Eq. (3.124)
and Eq. (3.199), and the definition of the R-transform given by Eq. (2.139), it is simply given
by:

I ′x(θ) =
(
x− g

⟨−1⟩
A (θ)

)
(for θ > gA(x)) . (5.55)

Here the function g
⟨−1⟩
A (θ) = RA(θ)+1/θ contains the inverse of both branches of the Stieltjes

transform. It is decreasing until it reaches the value θ = gA(a+) and then it is increasing until
it reaches the (possibly infinite) value, θ = rA = ḡA(wA → ∞) where it goes to infinity.
Conversely, the function I ′x(θ) of Eq. (5.55), seen as function of θ for x fixed, starts at zero at
θ = gA(x) and then is increasing until it reaches the point θ = gA(a+) and then decreasing
again, and goes to −∞ as θ → rA. Thus, as one varies θ starting at gA(x), this continuous
function is positive and then negative and only crosses the real axis once. As a consequence,
the supremum in Eq. (5.54) is a maximum and this maximum is unique. This maximum θ∗ is
given at the unique point where the function I ′x(θ) of Eq. (5.55) crosses the real axis in the
region θ > gA(a+). In other words, finding θ∗ amounts to solve the equation:

x = g
⟨−1⟩
A (θ∗(x)) for θ∗(x) > gA(a+) , (5.56)

which is nothing else than the definition of the second branch of the Stieltjes transform, that
is we have:

θ∗(x) = ḡA(x) . (5.57)

If we now use the integral representation Eq. (5.45) of the rate function, with the expression
of Eq. (3.125) for the partial derivative of the quenched free energy, together with Eq. (5.57)
for the expression of θ∗, we recover Eq. (1.107) as expected. A plot of the function I ′x, for A
a GOE matrix, is given in Fig. 5.5.
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Figure 5.5: Derivative of the difference of the free energy in the case of one GOErandom matrix with σ = 1 and x = 3, given as the argument of Eq. (5.54). For
θ ≤ gsc(x), this function (in black) is null since the two free energies are equals,see Eq. (5.53), and this corresponds to the paramagnetic phase. For θ ≥ gsc(x),this function (in brown) is increasing and then decreasing with a maximum at
gsc(a+ = 2σ) = 1, and this corresponds to the spin glass phase. The optimal in-verse temperature (in blue) corresponds to the value where this function crossesthe real axis in the spin glass phase.

5.5.2 Optimal inverse temperature for the sum
Let’s now consider the general case given by Eq. (5.48). Without loss of generality, we can
consider2

ḡA(wA) ≤ ḡB(wB) . (5.58)
We further assume the non-trivial condition:

gC(c+) < ∞ , (5.59)
as for gC(c+) = ∞ (which necessarily implies gA(a+) = gB(b+) = ∞ by property of the free
convolution), the right large deviation is infinite for any x > c+. As in the previous section, we
first want to show that the supremum in Eq. (5.38) is attained at a unique point, where FC

is given by the sum of Eq. (5.47) and the annealed free energies FA(.) and FB(.) are given by
Eq. (3.195). Since the function Ix(θ) is given as the sum of three piece-wise functions, let’s
first note that we have the following set of inequalities:

gC(x) ≤ gC(c+) ≤ gA(a+) ≤ ḡA(wA) ≤ ḡB(wB) . (5.60)
The first inequality is due to the fact that the Stieltjes is decreasing for x > c+. The second
inequality is a property of the free convolution. The third is due to the second branch of
the Stieltjes transform being monotonically increasing. The fourth is the previously mentioned
convention of Eq. (5.58). Using the asymptotics of Eqs. (3.124) (3.195) for the quenched and
annealed free energies, together with the linearizing property of the R-transform, one has the

2For general A and B, having wA ≤ wB does not imply ḡA(wA) ≤ ḡB(wB) nor its converse.One can even come up with examples whereA has a no wall (wA → ∞) while B has a finite wall
wB but still ḡA(wA) ≤ ḡB(wB).
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following behavior for the difference between the derivative of the annealed and quenched free
energy:

I ′x(θ) =



0 for θ ≤ gC(x) ,

x− g
⟨−1⟩
C (θ) for gC(x) ≤ θ ≤ ḡA(wA) ,

x− wA −RB(θ) for ḡA(wA) ≤ θ ≤ ḡB(wB) ,

x− wA − wB + 1
θ for θ ≥ ḡB(wB) ,

(5.61)

where if ḡB(wB) = ∞ one has to remove the last line and similarly if ḡA(wA) = ∞, one has
to remove the last two lines. This function is represented in Fig. 5.6 for different values of x.
Let’s look at each interval separately.

1. For θ < gC(x), we are in the paramagnetic phase where both the annealed and the
quenched free energy are equal. Since for each x > c+, we want again the difference
between the two to be as high as possible, the optimal inverse temperature is not in this
region of the phase space.

2. For gC(x) ≤ θ ≤ ḡA(wA), as we have seen in the simple case of one invariant matrix,
the function θ 7→ x− g

⟨−1⟩
C (θ) is increasing until it reaches gC(c+) and then decreasing.

3. For ḡA(wA) ≤ θ ≤ ḡB(wB), since the R-transform is increasing, the function θ 7→
x− wA −RB(θ) is decreasing.

4. For ḡA(wA) ≤ θ ≤ ḡB(wB), the function θ 7→ x− wA − wB + 1
θ is decreasing.

One can easily check that the function of Eq. (5.61) is continuous at each point where its
behavior changes. At ḡA(wA) it is equal to:

I ′x(ḡA(wA)) =
1

2

(
x− g

⟨−1⟩
C (ḡA(wA))

)
, (5.62)

and at ḡB(wB), it is equal to:

I ′x(ḡB(wB)) = x− wA − wB +
1

ḡB(wB)
. (5.63)

To summarize, in the spin glass phase θ ≥ gC(x) the function of Eq. (5.61) is continuously
increasing until θ = gC(c+) and then it is continuously decreasing.

For x > wA + wB, it is easy to check that this function never crosses the real axis for values
of θ > gC(x), as a consequence,

θ∗(x) = ∞ for x > wA + wB . (5.64)
This is expected because for the sum of two matrices we have the classical inequality:

λ1(C) ≤ λ1(A) + λ1(B) , (5.65)
and since by definition of the walls, λ1(A) ≤ wA and λ1(B) ≤ wB, the top eigenvalue of C
cannot exceed wA + wB. So we find that the rate function is infinite for x > wA + wB.
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Otherwise, for values of x < wA + wB, this function always crosses the real axis once in this
region, that is we satisfy the condition (C4) of Sec. 5.4. The correct equation for θ∗(x) - the
point where the function I ′x(.) touches the real axis, see Eq. (5.43) - depends on if the value of
this function at ḡA(wA) or ḡB(wB) is above or below zero, and hence on the value of x. There
exist three possible cases, separated by two critical points, xc1 and xc2 defined respectively as
the solution of the RHS of Eq. (5.62) and the RHS of Eq. (5.63)) being equal to zero, that is:

xc1 := g
⟨−1⟩
C (ḡA(wA)) = wA +RB(ḡA(wA)) , (5.66)

and

xc2 := wA + wB − 1

ḡB(wB)
. (5.67)

Note that xc1 ≤ xc2 as we have postulated Eq. (5.58). We have:

1. for c+ < x < xc1 , the optimal inverse temperature is attained in the region gC(x) ≤
θ ≤ ḡA(wA) and so replacing in Eq. (5.43) the expression of the difference of the free
energies by the top line of Eq. (5.61), it is the solution of the same equation (5.56) as
the one in the simple one invariant random matrix case (with g

⟨−1⟩
A replaced by g

⟨−1⟩
C )

and thus we have:

θ∗(x) = ḡC(x) , (5.68)
where ḡC(.) is defined as the inverse of g⟨−1⟩

C (.) for values beyond gC(c+).

2. For xc1 < x < xc2 , the optimal inverse temperature is attained in the region ḡA(wA) ≤
θ ≤ ḡB(wB) and so from the expression of the second line of the RHS of Eq. (5.61), it
is the solution of:

RB (θ∗(x)) = x− wA , (5.69)
since the R-transform is continuously increasing, it has an inverse which we denote by
R⟨−1⟩

B so that the optimal temperature is given by:

θ∗(x) = R⟨−1⟩
B (x− wA) . (5.70)

3. For xc2 < x < wA +wB, θ∗(x) is attained in the region θ ≥ ḡB(wB) and so solving the
third line of Eq. (5.61) being equal to zero, we have:

θ∗(x) =
1

wA + wB − x
. (5.71)

One can check that the piecewise function θ∗(x) is actually continuously increasing.

5.5.3 Expression for the rate function
Now that we have the expression for the optimal temperature, we can get the expression for
the (right) rate function ΨC(.) thanks to Eq. (5.45) and this gives the following result:
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Figure 5.6: Representation of the function of Eq. (5.61) forA andB twomatricesfrom a GOE ensemble with a wall at their edge, with σA = 1 and σB = 9/10 andfor different values of x. Each color represents the correct expression of thispiecewise continuous function in a given interval. In the upper left, x = 2.75, andthe optimal inverse temperature is attained in the first region where the browncurve crosses the real axis. In the upper right, x = 2.85, and the optimal inversetemperature is attained in the second region where the yellow curve crosses thereal axis. In the center, x = 2.95 and the optimal inverse temperature is attainedin the third region where the green curve crosses the real axis.

Result 5.6 (LDP for the sum)

In the large N limit, the top eigenvalue of the sum of two ‘full-rank’ matrices with LSD µC

satisfies a large deviation principle with speed Nβ and rate function given by

ΨC(x) =
1

2



ˆ x

c+

(ḡC(t)− gC(t)) dt for c+ ≤ x ≤ xc1 ,

K1 +

ˆ x

xc1

(
R⟨−1⟩

B (t− wA)− gC(t)
)
dt for xc1 ≤ x ≤ xc2 ,

K2 + log

(
1

wA + wB − x

)
−
ˆ x

xc2

gC(t)dt for xc2 ≤ x ≤ wA + wB ,

(5.72)
where xc1 and xc2 are given respectively by Eq. (5.66) and Eq. (5.67) and the
two constants K1 :=

´ xc1
c+

(ḡC(t)− gC(t)) dt and K2 := K1 + log (1/ḡB(wB)) +´ xc2
xc1

(
R⟨−1⟩

B (t− wA)− gC(t)
)
dt are such that ΨC is continuous at xc1 and xc2 .
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Remark (Tracy-Widom ‘3/2’-scaling near the edge). Since the first regimematches the ones
of the classical case of one random matrix given by Eq. (1.107), we retrieve in particular
the Tracy-Widom ‘3/2’-scaling of Eq. (1.114) near the edge for the free convolution of non-
degenerate densities, as recently investigated in Ref. [97]. ⌋

Remark (Number of critical points). In general, if one is considering the sum of two ran-
dom matrices taken from an invariant ensemble with a wall, then the rate function has
two possible critical points. However, if ḡA(wA) = ḡB(wB), then from Eqs. (5.66) (5.67),
one can see that two critical points merge, and we have at most one critical point. In
particular, this happens when one is considering the free sum Ã+OÃOT, where Ã is a
fixed diagonal matrix. Since xc1 diverges if wA → ∞ while xc2 diverges if either wA → ∞
or wB → ∞, the free sum of a two fixed diagonal and a fluctuating matrix (no wall) has at
most one critical point while the sum of two fluctuatingmatrices never has a critical point,
in this case, the rate function is the same as that of an invariant ensemble Eq. (1.107). ⌋

Remark (Interpretation of the three regimes). For c+ ≤ x ≤ xc1 the rate function is the
same as the one from an invariant ensemble. In this regime, the eigenvalues (including
rare large ones) of thematrixCbehave exactly as an invariant ensemblewith the potential
(and its analytical continuation outside the segment [c−, c+]) VC(.) compatible with the
limiting density µC(.), that is, VC(.) is given by Eq. (1.75). In particular, walls (if any) do
not modify the rate function in this regime. For xc1 ≤ x ≤ xc2 , the wall wA starts to
matter, and the derivative of the rate function is now the same as if the matrix A were
replaced by a rank-one matrix with eigenvalue wA but with the still correct gC(x). Finally,for xc1 ≤ x ≤ wA + wB , both walls matter and the derivative of the rate function is now
the same as for the sum of two rank-one matrices with eigenvalues wA and wB , again upto the correct gC(x) (see Sec. 5.2). In particular for β = 1, very close to the maximal value
wA + wB , we have:

P [λ1 (C) ≃ (wA + wB)(1− ϵ)] ≈ ϵN/2 for ϵ ≪ 1 , (5.73)
which is the asymptotic probability of two random vectors having a squared overlap of
order 1− ϵ in dimension N . ⌋

Example (Free sum of two diagonal semi-circle matrices). In this paragraph, we will com-
pute explicitly the rate function ΨC(x) for a matrix C = Ã + OB̃OT, where Ã = B̃ =

Diag(λ1, . . . , λN ) are two fixed diagonal matrices with the semi-circle distribution of Eq.
(1.40) as their limiting spectrum. Without loss of generality, let’s consider that their vari-
ances are given by σA = 1 and by σ2

B ≡ σ2 ≤ 1 respectively. The computation is equivalent
to the sum of two invariant randommatrices in quadratic potentials Vi(x) = x2/(2σ2

i ) anda wall at wi = 2σi for i = A,B respectively. The free convolution of two semi-circle dis-
tributions is again a semi-circle distribution, with variance the sum of the variance. In
other words, the limiting law and Stieltjes transform of the matrix C are given respec-
tively by Eq. (1.40) and Eq. (1.41) with σC =

√
1 + σ2. Since we have gA(2) ≤ gB(2σ) andthe R-transform of the semi-circle distribution is given by Eq. (2.142), the optimal inverse
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temperature is given by:

θ∗(x) =



x+
√

x2−4(1+σ2)

2(1+σ2)
for 2√1 + σ2 ≤ x ≤ 2 + σ2 ,

x−2
σ2 for 2 + σ2 ≤ x ≤ 2 + σ ,

1
2+2σ−x for 2 + σ ≤ x ≤ 2 + 2σ ,

(5.74)

and so the rate function is given for x ∈ [2
√
1 + σ2, 2 + 2σ] by

Ψsc+sc(x) =



x
√
x2 − 4(1 + σ2)

4(1 + σ2)
+ log

(
2
√
1 + σ2√

x2 − 4(1 + σ2) + x

)
for 2√1 + σ2 ≤ x ≤ 2 + σ2 ,

(x− 2)2

4σ2(1 + σ)2
+

4σ2 + x2 − 8x+ 12 + x
√

x2 − 4(1 + σ2)

8(1 + σ2)

+
1

4
log

(
x2 − 2(1 + σ2)− x

√
x2 − 4(1 + σ2)

2(1 + σ2)2

)
for 2 + σ2 ≤ x ≤ 2 + σ ,

1

4
log

(
(2 + σ)(2 + σ −

√
σ(4− 3σ))− 2(1 + σ2)

2

)
+
6(1 + σ2)− x2 + x

√
x2 − 4(1 + σ2)

8(1 + σ2)

+
1

2
log

 σ
(
2 + σ +

√
σ(4− 3σ)

)
(1 + σ2)(2(1 + σ)− x)

(
x+

√
x2 − 4(1 + σ2)

)
 for 2 + σ ≤ x ≤ 2 + 2σ ,

(5.75)
and is infinite otherwise. This function has been plotted in Fig. 5.7 for σ = 9/10. ■
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Figure 5.7: The rate function of the largest eigenvalue of the sum of A and Bfrom a GOE ensemble with a wall at their edge, with σA = 1 and σB = σ = 9/10,see Eq. (5.75).
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5.6 Large deviation for the product of self-adjoint
matrices

In this section, we consider the case where the matrix C is given as the symmetric product

C =
√
AB

√
A , (5.76)

where A ∼ PVA,wA
and B ∼ PVB ,wB

are two positive self-adjoint random matrices. In the
large N limit, the limiting density µC = µA ⊞ µB of C is described by the multiplicative free
convolution of Chapter 2 (see Sec. 2.6.3) and our goal is to compute the rate function ΨC(x):

P [λ1(C) ≃ x] ≈ exp [−NβΨC(x) + O(N)] forx > c+ , (5.77)
describing the right large deviation of the top eigenvalue of C far from its typical value given
by the edge c+ of µC . Let us make the following important remark concerning the case of the
product of rectangular matrices.

5.6.1 Optimal temperature for the product
Without any loss of generality, let’s assume

t̄A(wA) ≤ t̄B(wB) , (5.78)
and

t̄C(c+) ≤ ∞ . (5.79)
Our goal is to show that the supremum in Eq. (5.38) is attained at a unique point by looking
at the derivative I ′x(.) with respect to θ. Paying attention to the bounds in Eqs. (3.144) and
(3.206), one has the following behavior:

I ′x(θ) =



0 for θ ≤ tC(x) ,

log
x

t
⟨−1⟩
C (θ)

for tC(x) ≤ θ ≤ t̄A(wA) ,

log
x

wAS̃B(θ)
for t̄A(wA) ≤ θ ≤ t̄B(wB) ,

log
x(θ + 1)

wAwBθ
for θ ≥ t̄B(wB) .

(5.80)

Based on a similar monotonous argument as in the additive case of Sec. 5.5.2, one can show
that for θ ≥ tC(x) this function is continuously increasing until it reaches the point tC(c+)

and then it is continuously decreasing. For values of x > wAwB, it never crosses the real axis,
and we have θ∗(x) = ∞. Otherwise, it crosses the real axis exactly one time, and the equation
determining θ∗(x) depends on the position of x with respect to the two critical points xc1 and
xc2 defined by

xc1 := t
⟨−1⟩
C (t̄A(wA)) = wA S̃B (t̄A(wA)) , (5.81)
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and by:

xc2 := wAwB
t̄B(wB)

t̄B(wB) + 1
. (5.82)

1. For c+ < x < xc1 , θ
∗ is attained in (tC(c+), t̄A(wA)) and so setting the second line of

the RHS of Eq. (5.80) being equal to zero, gives:

θ∗(x) = t̄C(x) ; (5.83)
2. for xc1 < x < xc2 , the optimal inverse temperature is attained in the region t̄A(wA) ≤

θ ≤ t̄B(wB) and θ∗(x) is solution of the third line of the RHS of Eq.(5.80) being equal
to zero, that is:

θ∗(x) = S̃⟨−1⟩
B

(
x

wA

)
; (5.84)

3. for xc2 < x < wAwB, θ∗(x) is attained in the region θ ≥ t̄B(wB) and so from Eq. (5.80)
it is given by:

θ∗(x) =
x

wAwB − x
. (5.85)

5.6.2 Expression for the rate function
Using the expressions of the previous section for the optimal temperature together with the
expression of the partial derivative of the quenched free energy of Eq. (3.145) in Eq. (5.45), we
have that the rate function is given by the following result.

Result 5.7 (LDP for the product)

In the large N limit, the top eigenvalue of the product of two ‘full-rank’ matrices with LSD
µC satisfies a large deviation principle with speed Nβ and rate function given by

ΨC(x) =
1

2



ˆ x

c+

(ḡC(t)− gC(t)dt) for c+ ≤ x ≤ xc1 ,

K1 +

ˆ x

xc1

 S̃⟨−1⟩
B

(
t

wA

)
+ 1

t
− gC(t)

 dt for xc1 ≤ x ≤ xc2 ,

K2 + log

(
x

wAwB − x

)
−
ˆ x

xc2

gC(t)dt for xc2 ≤ x ≤ wAwB ,

(5.86)
where xc1 and xc2 are given respectively by Eq. (5.81) and Eq. (5.82) and the
two constants K1 :=

´ xc1
c+

(ḡC(t)− gC(t)) dt and K2 := K1 + log (1/t̄B(wB)) +

´ xc2
xc1

(
S̃⟨−1⟩
B (t/wA)+1

t − gC(t)

)
dt are such that ΨC is continuous at xc1 and xc2 .
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Example (Rate Function for Generalized Wishart). Let’s consider the case in Eq. (5.76)
where B is a (White) Wishart with shape ratio q and A is a fixed diagonal (positive semi-
definite) matrix. In this case, we havewA = a+ andwB = t̄B(wB) = ∞. As a consequence,
there is just one critical point, and using the expression (2.152) for the S-transform of the
Wishart matrix, it is given by:

xc1 = a+(1 + q tA(a+)) , (5.87)
and using Eq. (1.44) for the S-transform, we have for the rate function:

ΨC(x) =



1

2

ˆ x

c+

(ḡC(t)− gC(t)) dt for c+ ≤ x ≤ xc1 ,

K1

2
+

1

2

(
−1

q
− tA(a+) +

x

qa+
+

(
1− 1

q

)
log

(
x

xc1

)
−
ˆ x

xc1

gC(t)dt

)
for x ≥ xc1 ,

(5.88)
which is up to a change in the notation, the results obtained in Ref. [116]. ■

5.7 Large deviation for the top singular value of the
sum of rectangular matrices

In this section, we consider the case where the matrix C is given as

C = A+B , (5.89)
where A ∼ PVA,wA

and B ∼ PVB ,wB
are two rectangular matrices, each taken from a bi-

invariant ensemble with a wall as defined similarly to the one of Sec. 5.4.2. We aim at computing
the rate function ΨC(x):

P [s1(C) = x] ≈ exp [−Nβ ΦC(x) + o(N)] forx > c+ , (5.90)
where c+ is the edge of the limiting density of singular values µC of C, described by the
rectangular free convolution of Chapter 2, see Sec. 2.6.3.

5.7.1 Optimal temperature for the rectangular case

Without loss of generality, we assume:

d̄A(wA) ≤ d̄B(wB) , (5.91)
and the non-trivial condition:

dC(c+) < ∞ . (5.92)
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In this case, the derivative with respect to θ of the function Ix(.) in the supremum of Eq. (5.38)
is given by:

I ′x(θ) =



0 for θ ≤ dC(x) ,

U(θx)
θ − C̃(q)

C (θ) for dC(x) ≤ θ ≤ d̄A(wA) ,

U(θx)
θ − U(θwA)

θ − C̃(q)
B (θ) for d̄A(wA) ≤ θ ≤ d̄B(wB) ,

U(θx)
θ − U(θwA)

θ − U(θwB)
θ for θ ≥ d̄B(wB) .

(5.93)

By property of the rectangular free convolution, for θ > dC(x), this function is first increasing
with θ until it reaches the value θ = dC(c+) and then it is decreasing with θ. One can check
that it crosses the real axis if x is in the interval [c+, wA + wB], and in this case, the position
of the optimal inverse temperature θ∗ depends on two critical points xc1 and xc2 . The first one
is given by

xc1 := d
⟨−1⟩
C (d̄A(wA)) . (5.94)

Unfortunately, unlike the sum and the product of symmetric matrices, the expression for xc1 in
terms of the rectangular C-transform is quite involved. if we introduce the function:

fq(z) :=
1

2

√
(1− q)2 + 4qz2 , (5.95)

to ease the notation, then we have:

xc1 =

√
w2
A + C̃(q)

B (d̄A(wA))

(
qC̃(q)

B (d̄A(wA)) +
fq(wAd̄A(wA))

d̄A(wA)

)
. (5.96)

The other critical point xc2 is given by:

xc2 :=
1

d̄B(wB)
U ⟨−1⟩ (U(wAd̄B(wB)) + U(wB d̄B(wB))

)
, (5.97)

where we recall that U ⟨−1⟩ is given by Eq. (2.167). Eq. (5.97) can be written in semi-explicit
form with the function fq of Eq. (5.95):

xc2 =

√(
fq
(
wAd̄B(wB)

)
+ fq

(
wB d̄B(wB)

)
− 1
) (

fq
(
wAd̄B(wB)

)
+ fq

(
wB d̄B(wB)

)
− q
)

√
qd̄B(wB)

.

(5.98)

1. For c+ ≤ x ≤ xc1 , θ
∗ is attained in (dC(c+), d̄A(wA)) and hence θ∗ is the solution of the

second line of the RHS of Eq. (5.93) being equal to zero. Using Eq. (2.168) to express
the C-transform in terms of the function U , one gets:

U(θ∗x) = U(d
⟨−1⟩
C (θ∗)θ∗) ; (5.99)
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and so by applying the (monotonous) function U ⟨−1⟩(.) to this equation and dividing by
θ∗, one gets to solve the equation:

d
⟨−1⟩
C (θ∗) = x

(
for θ∗ ∈ (dC(c+), d̄A(wA))

)
. (5.100)

The solution is given by the second branch of the D-transform:

θ∗(x) = d̄C(x) . (5.101)
2. For xc1 ≤ x ≤ xc2 , the optimal inverse temperature is attained in the region d̄A(wA) ≤

θ ≤ d̄B(wB). θ∗ ≡ θ∗(x) is solution of the third line of the RHS of Eq.(5.93) being
equal to zero so that it satisfies:

U(xθ∗) := U(wAθ
∗) + C̃(q)

B (θ∗)θ∗ . (5.102)
If one applies the function U ⟨−1⟩ on each side, one gets after simplification an analytical
expression for the function θ∗ 7→ x(θ∗):

x(θ∗) =

√
w2
A + C̃(q)

B (θ∗)

(
qC̃(q)

B (θ∗) +
fq (wAθ∗)

θ∗

)
, (5.103)

which is by definition the inverse of the function θ∗(x). Now unfortunately for general
values of the parameter q, we do not have a simple analytical formula for the optimal
inverse temperature function of the position x and so we simply denote by F1 the solution
of Eq. (5.103) with unknown θ∗ for x between xc1 and xc2 .

3. For xc2 ≤ x ≤ wA + wB, θ∗(x) is attained in the region θ ≥ d̄B(wB) and so from
Eq. (5.93) and after simplification, one gets the following analytical expression for the
function θ∗ 7→ x(θ∗):

x(θ∗) =

√
(fq(wAθ∗) + fq(wBθ∗)− 1)(fq(wAθ∗) + fq(wBθ∗)− q)

√
qθ∗

. (5.104)
In full generality, one can isolate one of the radical functions and take the square of the
newly obtain equation and repeat the process until it becomes a polynomial equation. In
our setting and for general q, wA, wB, one would obtain that (θ∗)2 is one of the zeros of
a polynomial of degree 8, and hence there is no hope of finding an analytical expression
for θ∗. As a consequence, we simply denote by F2 the solution (in θ) of Eq. (5.104) for
x higher than xc2 . Now for specific values of wA and wB, for example wA = wB, or q,
for example q = 0 or q = 1, Eq. (5.104) becomes, after some work, a quadratic or even
linear equation for (θ∗)2 (or θ), as we will see.

Remark (Simplification for the case of long (q = 0) matrices). For q → 0, one has:
• For xc1 ≤ x ≤ xc2 , Eq. (5.103) for the optimal inverse temperature simplifies into:

x =

√
wA +

C̃(0)
B (θ∗)

θ∗
, (5.105)

and since the rectangular C-transform of a long matrix is related to R-transform by
Eq. (2.173), we have:

θ∗(x) =

√
R⟨−1⟩

BB∗(x2 − w2
A) . (5.106)
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• For xc2 ≤ x ≤ wA + wB , Eq. (5.104) for the optimal inverse temperature simplifies
into:

x =

√
θ∗2
(
w2
A + w2

B

)
− 1

θ∗
, (5.107)

such that the optimal temperature is given by:
θ∗(x) =

1√
w2
A + w2

B − x2
. (5.108)

⌋

Remark (Simplification for the case of square (q = 1) matrices). For q → 1, one has:
• For xc1 ≤ x ≤ xc2 , Eq. (5.103) for the optimal inverse temperature simplifies into:

x− wA = C(1)
B (θ∗) , (5.109)

and since for q = 1, the rectangular C-transform is the R-transform of the sym-
metrized density (see Eq. (2.176)), we have:

θ∗(x) = R⟨−1⟩
B̂

(x− wA) . (5.110)
• For xc2 ≤ x ≤ wA + wB , Eq. (5.104) for the optimal inverse temperature simplifies
into:

(xθ∗(x))2 = (θ∗(x) (wA + wB)− 1)2 , (5.111)
and hence we have:

θ∗(x) =
1

wA + wB − x
. (5.112)

⌋

5.7.2 Expression for the rate function
Using the general expression of Eq. (5.45) for the rate function with the expression of Eq.
(3.176) and the expression of the optimal inverse temperature of the previous section, we have
the following result for the rate function.

Result 5.8 (LDP for the rectangular sum)

In the large N limit, the top singular value of the sum of two ‘full-rank’ rectangular matrices
with LSVD µC satisfies a large deviation principle with speed Nβ and rate function given
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by

ΨC(x) =



1

2

ˆ x2

c2+

(ḡCC∗(t)− gCC∗(t)) dt for c+ ≤ x ≤ xc1 ,

K1 +

ˆ x

xc1

fq (F1(t)t)− fq (dC(t)t)

qt
dt for xc1 ≤ x ≤ xc2 ,

K2 +

ˆ x

xc2

fq (F2(t)t)− fq (dC(t)t)

qt
dt for xc2 ≤ x ≤ wA + wB ,

(5.113)
where xc1 , xc2 are defined by Eq. (5.94) and Eq. (5.97) and F1 (resp. F2) is defined as the
(correct) solution with unknown θ∗ of Eq. (5.103) (resp. Eq. (5.104)) and K1 and K2 are
the constants such that this rate function is continuous.

Let’s conclude with two remarks concerning the limiting cases q → 0 and q → 1.

Remark (Rate function for the sum of long (q → 0) matrices). In this case, we have:
ΨC(x) = ΨAA∗+BB∗(x2) , (5.114)

that is,

ΨC(x) =
1

2



ˆ x2

c2+

(ḡAA∗+BB∗(t)− gAA∗+BB∗(t)) dt for c+ ≤ x ≤ xc1 ,

K1 +

ˆ x2

x2
c1

(
R⟨−1⟩

BB∗(t− w2
A)− gAA∗+BB∗(t)

)
dt for xc1 ≤ x ≤ xc2 ,

K2 + log

(
1

w2
A + w2

B − x2

)
−
ˆ x2

x2
c2

gAA∗+BB∗(t)dt for xc2 ≤ x ≤ wA + wB .

(5.115)
where gAA∗+BB∗ is the Stieltjes transform of the free convolution µAA∗ ⊞ µBB∗ . ⌋

Remark (Rate function for the sum of square (q = 1) matrices). In this case, we have:

ΨC(x) = 2Ψ
Â+B̂

(x) =



ˆ x

c+

(
ḡ
Â+B̂

(t)− g
Â+B̂

(t)
)
dt for c+ ≤ x ≤ xc1 ,

K1 +

ˆ x

xc1

(
R⟨−1⟩

B̂
(t− wA)− g

Â+B̂
(t)
)
dt for xc1 ≤ x ≤ xc2 ,

K2 + log

(
1

wA + wB − x

)
−
ˆ x

xc2

g
Â+B̂

(t)dt for xc2 ≤ x ≤ wA + wB .

(5.116)
where g

Â+B̂
is the Stieltjes transform of the free convolution of the symmetrized distri-

butions µ̂A ⊞ µ̂B . ⌋
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Example (Free sum of fixed diagonal quarter-circle distribution). Let’s consider two diago-
nal squarematrices Ã and B̃with LSVD given by the quater-circle distribution of Eq. (1.52)
where without loss of generality we take the variances to be respectively equal to σA = 1

and σB ≤ 1 then we have that the rate function Φqc+qc associated to the large deviationof the top singular value of the sum Ã+UB̃VT is given by:
Φqc+qc(x) = 2Ψsc+sc(x) , (5.117)

with Ψsc+sc given by Eq. (5.75). ■

5.8 Summary and conclusion of Chapter 5

In this chapter, we have derived the right large deviation function for:

1. the top eigenvalue of the sum of two generic self-adjoint matrices;

2. the top eigenvalue of the product of two generic self-adjoint matrices;

3. the top singular of the sum of two generic rectangular matrices;

whereby ‘generic’ means that we can take the matrices to be either taken from an invariant
ensemble (resp. a bi-invariant for the case of rectangular random matrices) or to be a randomly
rotated fixed diagonal matrix (resp. a fixed diagonal rectangular matrix). From the point of
view of large deviation, the former corresponds to the study of an invariant ensemble with a wall
sent to infinity (wA → ∞) and the latter to the case where the wall is at the edge (wA = a+).
The results rely on a direct link with spherical spin models and are summarized in Sec. 5.5.3
for the case of the sum of self-adjoint matrices, in Sec. 5.6.2 for the case of the product of self-
adjoint matrices and in Sec. 5.7.2 for the case of the sum of rectangular matrices. In each case,
we find that the rate function has up to three different regimes, and we give an interpretation
of the behavior in each regime. A natural question is to extend the above construction to tackle
the ‘left’ large deviation, for which the speed of convergence of the large deviation is N2.
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Chapter 6

The High-temperature convolution:
interpolating between classical and
free convolutions

The results of this chapter are based on the paper [142] and the preprint [140]. They are closely
related to the high-temperature ensemble of Chapter 1 (see. Sec. 1.7), the free convolution
and finite free convolution of Chapter 2 (see Secs. 2.6.3) and the asymptotic behavior of the
rank-one additive spherical integral (see Sec. 3.4).

6.1 Introduction and Motivation

In this chapter, we aim at constructing a family of convolutions, indexed by a continuous
parameter c, such that as one varies c, one continuously interpolates between the classical
convolution and the free convolution. They are at least two (related) reasons why one would
like to construct such a family of convolutions.

1. First, as we have seen in Chapter 2, free convolution (and more generally free probabil-
ity) deals with objects which are in ‘generic position’ or ‘maximally non-commutative’
in the sense that if A and B are asymptotically free, with LSD µA and µB with
zero mean, then if we denote by τ(.) := Tr(.)/N , we have for large dimensions N ,
τ(A2B2) = τ(A2)τ(B2) = m2[µA]m2[µB] with m2[µ] :=

´
x2dµ but τ(ABAB) ≃

0 ̸= τ(A2)τ(B2). On the other hand, classical probability naturally deals with ‘com-
muting objects’ for example if one looks at the matrix Diag(a) +PDiag(b)PT where
P ∼ Unif(S(N)) is a (uniform) random permutation matrix, one is summing diagonal
matrices and the limiting spectral distribution for the sum is now simply given by the
classical convolution µA ∗ µB. Thus, classical convolution naturally appears in Random
Matrix Theory (RMT) when the eigenbasis of both symmetric matrices are perfectly
aligned or said differently when one is looking at the spectrum of large commutative
self-adjoint objects. In particular, if now B := PDiag(b)PT and µA and µB have
zero mean, we have τ(ABAB) = τ(A2)τ(B2). A natural (and difficult) problem is
to give meaning to ‘intermediate cases’, that is, to describe the spectrum of the sum
of two large self-adjoint objects for cases where those objects are not commutative nor
maximally non-commutative.
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2. Second, we have also seen in Chapter 2 that one can give a meaning for the sum of
low-temperature ensembles of Chapter 1 (where β → ∞ and N is fixed) thanks to the
finite free convolution. A natural task is to complete the picture by constructing a similar
operation for the high-temperature ensemble of Chapter 1, Sec. 1.7, summarized in the
following table.

convolution operation on corresponding ensemble
free convolution sum of β-ensembles with N → ∞ and β > 0 fixed

finite free convolution (FFC) sum of β-ensembles with N fixed and β → ∞
high-temperature convolution sum of β-ensembles with N → ∞ and Nβ/2 → c

For individual ensemble, we have also seen that the limit β → ∞ with N fixed and
the double limit N → ∞ with Nβ/2 → c share a certain high-low temperature duality
(see Sec. 1.7) and a natural question is to know if this duality will extend between the
high-temperature convolution (HTC) and the FFC.

The precise description of this high-temperature convolution will be done in the rest of the
chapter, but for now one can think of it as an operation taking a parameter c ∈ (0,∞) and
two distributions µA and µB as inputs and giving a distribution denoted by µA⊕cµB as output
and such that µA ⊕c→0 µB ≡ µA ∗ µB and µA ⊕c→∞ µB ≡ µA ⊞ µB. Let us mention
that this convolution is done directly at the level of the limiting distributions and finding the
corresponding ’linear algebra operation’ is a difficult open problem.

The rest of this chapter is organized as follows. In Sec. 6.2, we recall several properties
for the rank-one additive spherical integral. In Sec. 6.3, we construct the high-temperature
convolution by looking at this spherical integral in the high-temperature regime. In Sec. 6.4 we
give a complete analytical example of the high-temperature convolution. In Sec. 6.5 we derive
the cumulant-moment relation. In Sec. 6.6 we derive the central limit theorems associated with
this high-temperature convolution.

6.2 More on the additive spherical integral for fixed
β

6.2.1 Equivalent representations for the rank-one spherical in-
tegral at any β > 0

Before jumping to the high-temperature regime of the additive spherical, let’s derive and recall
some properties for fixed β > 0.

Power series representation -

As we have seen in Chapter 3 (see Eq. (3.50)), for any β > 0 the additive spherical integral
admits an expansion in terms of Jack polynomials, which are defined by the generalized Cauchy
identity of Eq. (3.45). Let’s now look at this expansion in the specific case where one of the
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vectors is of rank one t = (θ, 0, . . . , 0). To do, let’s introduce the polynomials g
(β)
k defined by

the Cauchy identity of Eq. (3.45) when one of the vector is of rank one:

N∏
i=1

(1− aiθ)
−β/2 :=

∞∑
k=0

g
(β)
k (a)θk . (6.1)

These polynomials can be expressed in terms of the moments mk(a) :=
∑N

i=1 a
k
i /N of the

ai’s thanks to the following combinatorial formula:

g
(β)
k (a) =

∑
1j1+···+kjk=k

(
Nβ

2

)j1+···+jk k∏
i=1

mi(a)
ji

ijiji!
, (6.2)

and they admit the following recurrence relation:

k g
(β)
k (a) =

Nβ

2

k∑
l=1

g
(β)
k−l(a)ml(a) . (6.3)

For the rank-one specialization of the additive spherical integral, the sum of Eq. (3.50) over
partitions becomes a power series, and we have:

I(β)
a (θ) =

∞∑
k=0

Γ
(
Nβ
2

)
Γ
(
Nβ
2 + k

)g(β)k (a) θk . (6.4)

Inverse Laplace representation -

Now if multiply and divide this power-sum representation by θNβ/2−1, we have:

I(β)
a (θ) =

(
Γ(Nβ

2 )

θ
Nβ
2

−1

) ∞∑
k=0

g
(β)
k (a)

1

Γ(Nβ
2 + k)

θ
Nβ
2

+k−1

︸ ︷︷ ︸
=L−1

z

[
1

z
Nβ
2 +k

]
(θ)

, (6.5)

I(β)
a (t) =

(
Γ(Nβ

2 )

t
Nβ
2

−1

) ∞∑
k=0

g
(β)
k (a)L−1

z

[
1

z
Nβ
2

+k

]
(t) , (6.6)

I(β)
a (t) =

(
Γ(Nβ

2 )

t
Nβ
2

−1

)
L−1
z

[
1

z
Nβ
2

∞∑
k=0

g
(β)
k (a)

1

zk

]
(t) . (6.7)

Thanks to the Cauchy Eq. (6.1) for the polynomials gk(a), the sum inside the inverse Laplace
transform is the characterized polynomial raised to the power −β/2:

I(β)
a (θ) =

Γ
(
Nβ
2

)
θ

Nβ
2

−1

L−1
z

[
U

(β)
a (z)

]
(θ) , (6.8)

where the function U
(β)
a is defined by:

U
(β)
a (z) :=

N∏
i=1

(z − ai)
−β

2 . (6.9)
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Differential operator representation -

Now let’s compare the expansion of the function U
(β)
a = 1

z
Nβ
2

∑∞
k=0 g

(β)
k (a) 1

zk
with the one of

the spherical integral of Eq. (6.4). They differ by the ratio of Gamma functions and a re-scaling
by z. This ratio of Gamma functions exactly corresponds to the coefficient of the rational
function obtained after differentiating the function z−Nβ/2 since we have:

(−1)k
dk

dtk

[
t−

Nβ
2

]
=

Γ(Nβ
2 + k)

Γ(Nβ
2 )

t−
Nβ
2

−k . (6.10)
As a consequence, we have the following differential operator representation for the additive
spherical integral:

U
(β)
a (z) = I(β)

a (−Dz) z
−Nβ

2 , (6.11)
where Dz = d/dz.

Moment generating function representation and finite Markov Krein rela-
tion -

Using identities for Dirichlet distribution, one can also express the additive spherical integral as
a moment generating function of a convex combination of the ai’ and we have:

I(β)
a (θ) = E

[
eθX
]

where X
in law
= dTa with d ∼ Dir(β/2) , (6.12)

and we recall that Dir(β/2) denotes the Dirichlet distribution with uniform parameter β/2, see
Eq. (2.36).
Now let’s relate the distribution νN of X to the ai. Using the Inverse Laplace transform of Eq.
(6.8), we have:

U
(β)
a (z) =

1

Γ
(
Nβ
2

) Lθ

[
θNβ/2−1I(β)

a (θ)
]
(z) , (6.13)

U
(β)
a (z) =

1

Γ
(
Nβ
2

) Lθ

[
θNβ/2−1EX∼νN

[
eθX
]]

(z) , (6.14)

U
(β)
a (z) =

1

Γ
(
Nβ
2

) EX∼νN

Lθ

[
θNβ/2−1eθX

]
(z)︸ ︷︷ ︸

=Γ(Nβ/2)·(z−X)−Nβ/2

 , (6.15)

U
(β)
a (z) = EX∼νN

[
(z −X)−Nβ/2

]
, (6.16)

or more explicitly:

ˆ
1

(z − x)Nβ/2
νN (dx) =

N∏
i=1

(z − ai)
−β/2 . (6.17)

This is the ‘finite’ counterpart of the Markov-Krein relation we will encounter in the high
temperature regime.
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Relation to low-temperature ensemble/FFC -

Let’s mention that if one analytically extends the Cauchy identity of Eq. (6.1) to β = −2, then
on has g

(β=−2)
k (a) = (−1)kek(a), where the ek’s are the elementary symmetric polynomials

appearing in the definition of the FFC. The same remark holds for the other representations,
and in particular, the analytical extension to β = −2 of the differential operator representation
of Eq. (6.11) is nothing else than the definition of the additive form of the FFC. This is the
first hint of the high-low temperature duality which will appear when taking the double scaling
limit N → ∞ and Nβ/2 → c.

6.2.2 Asymptotic behavior for β > 0 versus β = 0

As N → ∞, the asymptotic behavior of the spherical integral depends on if either β > 0 or
β = 0.

Reminder of the asymptotic behavior for β > 0 -

As we have seen in Chapter 3, the asymptotic behavior for β > 0 is given by the R-transform
since we have:

2

Nβ
log

[
I(β)
a

(
Nβ

2
θ

)]
−−−−→
N→∞

ˆ θ

0
RA(t)dt for θ small enough , (6.18)

and hence the logarithm of the spherical integral is the linearizing transform of the free convo-
lution.

The case β = 0 and classical convolution -

The situation for the case where we first take the limit β → 0+ and then the limit N → ∞ is
different. In this limit using either properties of Jack polynomials or of the Dirichlet distribution
in the representation of Eq. (6.12), one has:

I(β)
a (θ) −−−−→

β→0+

∑
k=0

mk(a)

k!
θk = EY∼µa

[
eθY
]
, (6.19)

where µa(x) =
∑N

i=1 δ(x − ai) and mk(a) is the kth moment of µa. Thus, in this setting,
the additive spherical integral is nothing else than the moment generating function of the
distribution of the ai’s and in the large N limit this is the MGF of µA. In other words, for
β = 0, the logarithm of the additive spherical is the linearizing transform of the classical
convolution.

This sharp change of behavior at β = 0 suggests scaling β slowly with N in order to smooth
this transition to constructing an interpolation between the two convolutions and a natural way
to do so is to look at the high-temperature regime Nβ/2 → c, as discussed in the next section.

201



6.3 Constructionof the (additive) high-temperature
convolution

The high-temperature convolution is constructed in such a way that the logarithm of the additive
spherical taken in the high-temperature regime is its associated linearizing (that is, it plays the
role of the R-transform for this convolution). We first describe the high-temperature regime of
this spherical integral before jumping to the properties of the associated convolution itself.

6.3.1 Spherical integral in the high-temperature regime
We are interested in the double scaling limit where N → ∞ and Nβ/2 → c ≥ 0, and the
distribution of the ai’s converges to a smooth distribution with a compact support: µa → µA.
We next introduce the ‘high-temperature’ counterpart of the quantities of the previous section.
In order to differentiate between quantities defined for β > 0 and Nβ/2 → c ≥ 0 we denote
(as usual) the former by f (β) and the latter by f [c] such that there should be no confusion
between the two. Precisely, we define:

g
[c]
k [µA] := lim

Nβ/2→c
g
(β)
k (a) =

∑
1j1+···+kjk=k

cj1+···+jk

k∏
i=1

mi[µA]
ji

ijiji!
, (6.20)

where mi[µA] is the ith moment of µA and similarly we recall that the U-function introduced
in Chapter 1 (see. Eq. (1.167)) is the high-temperature limit of Ua of Eq. (6.9):

U [c]
µA

(z) := lim
Nβ/2→c

U
(β)
a (z) = exp

{
−c

ˆ
Supp[µA]

log(z − x)µA(x)dx

}
, (6.21)

which is defined for z ∈ C \ (−∞, a+), where as usual, a+ is the upper edge of µA.

The spherical integral in the high-temperature regime is then defined thanks to thefollowing representations:
I [c]
µA

(θ) :=

∞∑
k=0

Γ (c)

Γ (c+ k)
g
[c]
k [µA] θ

k , (6.22)
I [c]
µA

(θ) =

(
Γ (c)

θc−1

)
L−1
z

[
U [c]
µA

(z)
]
(θ) , (6.23)

U [c]
µA

(z) = I [c]
µA

(−D) z−c , (6.24)
I [c]
µA

(θ) = EX∼νA

[
eθX
]
. (6.25)

The distribution νA in Eq. (6.25) is the Markov-Krein Transform of index c (MKT in short)
of the distribution µA. It is determined by taking the high-temperature limit of Eq. (6.17), that
is νA is the unique probability measure satisfying the Markov-Krein (MK in short) relation
: ˆ

Supp νA

νA(dx)

(z − x)c
= exp

[
−c

ˆ
SuppµA

µA(dy) log (z − y)

]
. (6.26)
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The LHS of the MK relation is a generalized Stieltjes and for c = 1 this is the standard Stieltjes
transform. In Sec. 6.3.3 we will give an expression to compute νA from µA (that is, to compute
the MKT of µA). Similarly, in Sec. 6.3.4, we will give an expression to compute µA from νA,
(that is, to compute inverse Markov-Krein transform (IMKT) of νA).

From the MK relation of Eq. (6.26), one can see that shifting or rescaling a distribution µ

introduces the same shift/scaling for the MKT ν. Importantly, one can expand the MK relation
for |z| → ∞ to relate the moments of the MKT with the ones of µ. The full combinatorial
description of this relation will be given later but let’s point out here that the mean of the MKT
ν is the same as the one of µ but its variance is re-scaled by a factor (c+ 1)−1:

m2[ν]−m1[ν]
2 =

m2[µ]−m1[µ]
2

c+ 1
. (6.27)

By definition of the high-temperature regime, the parameter c is restricted to be positive. If
we extend analytically its definition to negative integers c = −N and change the quantities
accordingly, one retrieves the definitions of the functions appearing in the definition of the FFC,
see Sec. 2.7. In other words, the function I [c]

µA(θ) will be for the high-temperature convolution
what the additive form Q̂a is for the FFC.

6.3.2 High-temperature convolution as the classical convolu-
tion of Markov-Krein transforms

We now have all the tools to construct the high-temperature convolution of two distributions.

For µA and µB two distributions with compact support, we define their high-
temperature convolution (HTC in short) denoted by µA ⊕c µB such that the logarithmof the additive spherical taken in the high-temperature regime is the corresponding lin-earizing transform:

µA ⊕c µB ⇔ log I [c]
µA⊕cµB

(θ) = log I [c]
µA

(θ) + log I [c]
µB

(θ) . (6.28)

Positivity conjecture -

A priori, the quantity µA ⊕c µB obtained by this construction might not be a probability
distribution. However, let’s recall from Chapter 3, Sec. 3.2.2, that the quantity P(β)(c|a, b)
satisfying:

ˆ
I(β)
c (θ)P(β)(c|a, b)dc = I(β)

a (θ)I(β)
b (θ) , (6.29)

sums to one and is conjectured to be positive for any β > 0 such that one can give a meaning
of the ‘β-sum’ for arbitrary β. Since this result is conjectured to be true for any β and any
N , this is also the case if we choose β to depend on N : βN = 2c/N . If we now let N go to
infinity, the empirical distribution of the ci’s converges to the LSD which is nothing else than
the high-temperature convolution µA ⊕c µB by construction. In other words, the distribution
µA ⊕c µB is conjectured to be a well-defined probability distribution, as a consequence of
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the positivity conjecture for P(β)(c|a, b) (itself obtained as a consequence of the positivity
conjecture for Jack-Littlewood-Richardson coefficients, itself obtained as a consequence of a
similar conjecture for Macdonald polynomials !). In the following, we will assume µA⊕c µB

to be a well-defined probability distribution. I believe that one should be able to prove
this weaker positivity conjecture thanks to the formulae developed in the following of the thesis
(without appealing to tools from representation theory) but for now, this remains an open
problem.

HTC as the classical convolution of MKT -

By Eq. (6.25) the high-temperature spherical integral of a distribution µ is the moment
generating function of its MKT and by the definition of Eq. (6.28), the HTC corresponds to a
classical convolution in the ‘Markov-Krein space’. This statement can be summarized by the
following scheme:

µA µB

νA νB

νA ∗ νB

µA ⊕c µB

MKT MKT

IMKT

and the details to compute the MKT and IMKT will be given in the next two sections.

Operation on U-functions -

For the finite free convolution, we have seen the convolution is naturally seen as an operation
acting on polynomials rather than acting on the measure associated with the real roots of
these polynomials. Similarly, for the HTC, one can define it as a compact operation acting on
U-functions (rather than on the associated measures). By Eq. (6.23) and the definition of the
HTC, we have that the U-function associated with µA ⊕c µB is given in terms of the ones of
µA and µB by:

U
[c]
µA⊕cµB

(z) = Γ(c)Lθ

[
θ1−c L−1

z1

[
U [c]
µA

(z1)
]
(θ) L−1

z2

[
U [c]
µB

(z2)
]
(θ)
]
(z) . (6.30)

Note that we can also write the U-function of the HTC in terms of the differential operator
representation of Eq. (6.24) but this expression is not very useful in practice.

6.3.3 Computing the Markov-Krein Transform (MKT)
In this section, we describe how one can compute the MKT ν of a measure µ thanks to the
relation of Eq. (6.26). We decompose this computation into two steps:

204



1. First we express the imaginary part of the generalized Stieltjes near the branch cut:

h(c)(x) :=
1

π
Im

[ˆ
Supp νA

ν(dx′)

(x− x′ − i0+)c

]
, (6.31)

in terms of the measure µ

2. Then we establish a generalized Sokochi-Plemelj formula, that is we explain how to
compute the measure ν from h(c).

Expression for h(c) -

Using the Markov-Krein relation of Eq. (6.26), we have:

h(c)(x) =
1

π
Im

[
exp

[
−c

ˆ
SuppµA

log
(
x− y − i0+

)
µ(dy)

]]
(6.32)

Next using the behavior of the logarithm function near the branch cut:

log(ξ − i0+) =

{
log |ξ| − iπ for ξ < 0 ,

log |ξ| for ξ > 0 ,
(6.33)

with ξ = x− y, gives for h(c):

h(c)(x) =
1

π
exp

[
−c

ˆ
Suppµ

log |x− y|µ(dy)
]
· Im

[
exp

[
−iπc

ˆ a+

x
µ(dy)

]]
(6.34)

If for simplicity we denote by

µ ([x, a+]) :=

ˆ a+

x
µ(dy) , (6.35)

then since the imaginary part of the exponential is the sinus function, we have the following
expression

h(c)(x) =
1

π
exp

[
−c

ˆ
Suppµ

log |x− y|µ(dy)
]
· sin (πc µ ([x, a+])) . (6.36)

Expression for the MKT -

Now to establish the generalized Sokochi-Plemelj formula, let’s use once again the behavior of
the power function near the branch cut:

(ξ − i0+)−c =

{
cos(−πc)|ξ|−c + i sin(−πc)|ξ|−c for ξ < 0 ,

ξ−c for ξ > 0 ,
(6.37)

injecting this behavior with ξ = x− x′ in the definition of Eq. (6.31) gives

h(c)(x) = −sin(πc)

π

ˆ ∞

x

ν(dy)

(y − x)c
. (6.38)
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Eq. (6.38) is a generalized Abel transform/fractional derivative or integral for which the inverse
transforms are known and depend on the parameter c, and this is summarized in the following
result

Result 6.1 (MKT of a measure)

For µ a distribution, its Markov-Krein transform ν given by Eq. (6.26), can be expressed as
an integral operator acting on µA:

• for 0 < c < 1:

ν(x) := −
ˆ ∞

x
(y − x)c−1 d

dy
h(c)(y) dy , (6.39)

• for c = 1, ν(x) = h(c=1)(x),

• for c > 1:

ν(x) = (c− 1)

ˆ ∞

x
(y − x)c−2h(c)(y) dy . (6.40)

where the function h(c) is given in terms of the distribution ν by Eq. (6.38).
We conclude this section with several examples.

Example (MKT of the Bernoulli distribution). Let us denote by
µB(p)(x) := (1− p)δ(x− 0) + pδ(x− 1) , (6.41)

the Bernoulli distribution with probability of success p, then one can show [39] [91] that its
MKT follows the law of a beta distribution Beta (cp, c(1− p)) so that we have:

ν(x) := MKT[µB(p)] =
Γ(c)

Γ(cp) Γ(c(1− p))
xcp−1 (1− x)c(1−p)−1 I[0,1] , (6.42)

where I is the indicator function. Let’s mention the result can also be derived by first
looking at the finiteN case for which one has a simple expression for the Jack polynomials
and then taking the high-temperature limit, see for example the original paper fromwhich
this chapter is based on. The additive spherical writes:

I [c]
µB(p)

(t) = 1F1 (cp, c, t) , (6.43)
where 1F1(a, b, z) :=

∑∞
k=0

(a)k
(b)kk!

zk is Kummer confluent hypergeometric function which
is the moment generating function of (6.42). ■

Example (MKT of the arcsine distribution). Another known example in closed form (see for
example [91] and reference therein) is given when the original distribution is the arcsine
distribution:

µAs(x) :=
1

π
√

x(1− x)
I[0,1] , (6.44)
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then one may show that its MKT follows the law of a beta distribution Beta
(
c+ 1

2 , c+
1
2

):
ν(x) =

Γ(2c+ 1)

Γ
(
c+ 1

2

)2 (x (1− x))c−
1
2 I[0,1] , (6.45)

this can be checked by computing the LHS and RHS of the MK relation of Eq. (6.26) with
the corresponding measures. ■

Example (MKT of the uniform distribution). If we now take the original distribution to be
the uniform distribution on [0, 1]:

µU := I[0,1] , (6.46)
then using the expression for the function h(c), we have:

h(c)(x) =
ec

π
(1− x)−c(1−x) x−cx sin (πc(1− x)) I[0,1] , (6.47)

which gives in particular the density for c = 1of the correspondingMKT transform. For c <
1 and c > 1, one needs to use the formula (6.39) and (6.40) but no analytical expression
is known. ■

Example (MKT of the Cauchy distribution). If we extend our setting to non-compact mea-
sures, we have for every c > 0, the Markov-Krein transform of a Cauchy distribution with
parameters x0 and b:

µCx,b
(x) :=

b

π
(
b2 + (x− x0)

2
) , (6.48)

is again a Cauchy distributionwith the same parameters (which can be seen by computing
LHS and RHS of the MK relation of Eq. (6.26), see for example [63] [112]) ■

6.3.4 Computing the Inverse Markov-Krein Transform (IMKT)
Now conversely, one also needs to compute a distribution µ from its MKT ν. From the Markov-
Krein relation, we have that Stieltjes transform gµ of µ is given in terms of ν by

gµ(z) = −1

c

d

dz
log

[ˆ
ν(x)dx

(z − x)c

]
, (6.49)

if we now apply the Sokochi-Plemelj inversion µ(x) = Imgµ(x−i0+)/π together with (log f)′ =

f ′/f we have:

µ(x) =
1

π
Im

[´
(x− x′ − i0+)−c−1 ν(x′)dx′´
(x− x′ − i0+)−c ν(x′)dx′

]
. (6.50)

Now thanks to the property of the power function near the branch cut see Eq. (6.37), we have
for α = c, c+ 1,

ˆ
(x− x′ − i0+)−α ν(x′)dx′ = I<α + cos(πα)I>α − i sin(πα)I>α , (6.51)

where
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• the first integral is defined by

I<α :=

ˆ x

−∞
(x− x′)−αν(x′)dx′ , (6.52)

• and the second one by:

I>α :=

ˆ ∞

x
(x′ − x)−αν(x′)dx′ . (6.53)

Let’s write µ = π−1 ·Num/Den, where Den is obtained by conjugation of the denominator in
the RHS of Eq. (6.50), that is Den :=

∣∣´ (x− x′ − i0+)−c ν(x′)dx′
∣∣2 and then look at each

term individually

• For the Denominator (Den), we have:

Den =
(
I<c + cos(πc)I>c

)2
+
(
sin(πc)I>c

)2
, (6.54)

Den =
(
I<c
)2

+ 2 cos(πc)
(
I<c
) (

I>c
)
+ cos(πc)2 + sin(πc)2︸ ︷︷ ︸

=1

(
I>c
)2

, (6.55)
Den =

(
I<c
)2

+ 2 cos(πc)
(
I<c
) (

I>c
)
+
(
I>c
)2

. (6.56)
• For the numerator (Num), we have:

Num = sin(πc)
(
I<c+1 + cos(π(c+ 1))I>c+1

)
I>c − sin(π(c+ 1))I>c+1

(
I<c + cos(πc)I>c

)
,

(6.57)
Num = sin(πc)

I<c+1I
>
c + I>c+1I

<
c + (cos(πc)− cos(πc))︸ ︷︷ ︸

=0

I>c+1I
>
c

 , (6.58)
Num = sin(πc)

((
I<c+1

) (
I>c
)
+
(
I>c+1

) (
I<c
))

. (6.59)
In summary, we have the following result.

Result 6.2 (Expression for the inverse Markov-Krein transform)

For ν a distribution, its corresponding inverse Markov-Krein transform µ is given by:

µ(x) :=
sin(πc)

π
·

(
I<c+1

)
(I>c ) +

(
I>c+1

)
(I<c )

(I<c )2 + 2 cos(πc) (I<c ) (I>c ) + (I>c )2
(6.60)

where for α = c, c+ 1 the function I>α and I<α are defined by Eqs. (6.52), (6.53).
Let’ conclude this section with important examples of IMKT.

Example (IMKT of the standard Gaussian distribution). For

νG(x) :=
e−

x2

2

√
2π

, (6.61)
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a standard Gaussian distribution, the additive spherical integral in the high-temperature
regime of its IMKT µ ≡ IMKT[νG] is given by the MGF of a Gaussian distribution that is:

I [c]
µ (θ) = EX∼νG

[
eθX
]
= eθ

2/2 . (6.62)
Next, the U-function of the IMKT of the Gaussian distribution is given thanks to Eq. (6.23)
by

U [c]
µ =

1

Γ(c)

ˆ ∞

0
θc−1eθ

2/2ezθdθ . (6.63)
One may recognize here the integral representation of the parabolic cylinder function,
see Eq. (1.173) and we have:

U [c]
µ ∝ e−z2/4D−c(iz) . (6.64)

which is the U-function of the c-Gaussian distribution of Chapter 1, re-scaled to have vari-
ance c+ 1, see Eq. (1.174). As a consequence, we have:

µ(x) = IMKT [νG] =
1√

2πΓ(c+ 1)

1

|D−c (ix)|2
, (6.65)

whereD−c is the parabolic cylinder function of Eq. (1.173). ■

Example (IMKT of the gamma distribution). Similarly, one can check that the IMKT of a
Gamma distribution is a re-scaled c-Laguerre distribution of Chapter 1 thanks to the inte-
gral representation of Eq. (1.175) of the Tricomi function. ■

6.3.5 Summary on how to compute theHigh-temperature con-
volution

We summarize here one way (among many others, thanks to the different formulae derived in
the previous section) to compute the high–temperature convolution. This operation can be
decomposed into four steps.

1. Compute the MKT of the two distributions µA and µB and their moment generating
functions (MGF) MA,B(s) := EY∼νA,νB

[
esY
]
.

2. Compute the corresponding U-function thanks to:

U [c](z) :=
1

Γ(c)

ˆ ∞

0
ds e−zssc−1MA(s)MB(s) , (6.66)

for z high enough, that is higher than the K = max(SuppµA) + max(SuppµB) and
then extend analytically this function to all z ∈ C \ (−∞,K).

3. Compute the Stieltjes transform g(z) ≡ gµA⊕cµB (z) :=
´
d(µA ⊕c µB)(x) (z − x)−1,

thanks to the formula:

g(z) := −1

c

d

dz
logU [c](z) = −1

c

(U [c])′(z)

U [c](z)
. (6.67)
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4. Compute the distribution µA ⊕c µB thanks to the Sokochi-Plemelj formula:

(µA ⊕c µB)(x) =
1

π
Im g(x− i0+) , (6.68)

or using the inversion formula of Eq. (6.60).
Each step can be approximated numerically such that one can really think of the entire process
as an algorithm to compute the high-temperature convolution of two distributions, see for
examples Fig. 6.1 for numerical examples.
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(c)

Figure 6.1: Illustration of the numerical approximations of the high-temperatureconvolution for different values of c of (a) the uniform distribution with itself (b)the arcsine law with itself and (c) the uniform distribution with the arcsine law.The classical convolution is given in a dashed line and the free convolution isgiven in a dotted line.

6.4 An explicit analytical example: High-
temperature convolution of two symmetric
Bernoulli distributions

In the previous section, we have explained how one can compute the HTC. However, for a given
choice of µA and µB and the parameter c, finding an explicit expression non-trivial example for
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the density of their high-temperature convolution is a daunting task. Note that even for the
free convolution, one has an analytical expression for the density only for specific choices of the
distribution µA and µB such that one should not expect to have a simple expression for the
high-temperature convolution.

This section aims to answer this issue by providing a complete description of µA ⊕c µB for a
specific choice of µA and µB and any value of the parameter c. We consider the case where
µA = µB = µ, with,

µ =
1

2
δ (x+ 1/2) +

1

2
δ (x− 1/2) , (6.69)

since this is a famous case where the density of its free convolution with itself is known analyti-
cally and given by the (shifted and re-scaled) arcsine law: for x ∈ [−1, 1], (µ⊞µ)(x) = 1

π
√
1−x2

.

For the classical convolution, we have µ∗µ = 1
4δ−1+

1
2δ0+

1
4δ1, which is the re-centered binomial

distribution with number of trials n = 2 and probability of success p = 1/2.

6.4.1 MGF of the MKT
For the symmetric Bernoulli distribution, we have shown in the previous Section, see Eq. (6.42),
that the corresponding MKT is the density of the random variable Y ′ ∼ Beta(c/2, c/2). The
distribution µ is the symmetric Bernoulli distribution, shifted by 1/2. From the Markov-Krein
relation of Eq. (6.26), one sees immediately that a shift in the distribution µ introduces the
same shift in the MKT. Thus, the MKT of µ is simply the law of Y=Y ′−1/2. From well-
known properties of the Beta distribution, this means that the MGF of the MKT of µ, M(.) ≡
MA(.) = MB(.), is given by:

M(s) = es/2 1F1

( c
2
; c; s

)
, (6.70)

where 1F1(a; b;u) :=
∑∞

k=0
(a)k
(b)k

uk is the confluent hypergeometric function. Using identities
[52] for the confluent hypergeometric, this can also be expressed in terms of the modified Bessel
function of the kind Iα(.):

M(s) = C1 s
(1−c)/2I c−1

2

(s
2

)
, (6.71)

where C1 := 2c−1Γ
(
c+1
2

)
.

6.4.2 Expression for the U-function

Injecting Eq. (6.71) into the definition of U [c](z) given by Eq. (6.66), one obtains the integral
representation:

U [c](z) = C2

ˆ ∞

0
ds e−zs

(
I c−1

2
(s/2)

)2
, (6.72)

where C2 := C2
1/Γ(c) is a constant that will not contribute to the expression of the Stieltjes

transform (and hence the density). The square of the Bessel function can be expressed as an
integrated Bessel function thanks to the formula [52]:(

I c−1
2

(s/2)
)2

=
2

π

ˆ π
2

0
dθ Ic−1 (s cos θ) . (6.73)
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If we do the change of variable s → s cos θ in Eq. (6.72) and then θ → arcos (cosh θ) we have:

U [c](z) = C3

ˆ ∞

0
ds Ic−1 (s)

(ˆ ∞

0
dθ e−(zs) cosh θ

)
, (6.74)

with C3 = 2C2/π. The integral with respect to the variable θ is the integral representation
[52] of the Bessel function of the second kind K0(.), such that we have:

U [c](z) = C3

ˆ ∞

0
ds Ic−1 (s)K0(zs) . (6.75)

By identities for the integral of the product of two Bessel functions of different kinds, see [52],
one can finally express U [c] in terms of a hypergeometric function:

U [c](z) = Γ(c) z−c
2F1

(
c

2
,
c

2
; c;

1

z2

)
. (6.76)

6.4.3 Expression for the Stieltjes transform
In order to compute g given by Eq. (6.67), we first need to compute the derivative of
U [c](z). Using the differentiation formula, see Ref. [52] for the hypergeometric function,
(d/du) 2F1 (a, b; c;u) = (ab/c) 2F1 (a+ 1, b+ 1; c+ 1;u), we get:

(U [c])′(z) = Γ(c)(−c)z−c−1

[
c

2z2
2F1

(
1 +

c

2
, 1 +

c

2
; 1 + c;

1

z2

)
+ 2F1

(
c

2
,
c

2
; c;

1

z2

)]
.

(6.77)
Next, using identities see Ref. [52] between contiguous hypergeometric functions, the sum
inside the brackets simplifies such that the derivative of U [c](z) writes:

(U [c])′(z) = Γ(c)(−c)z−c 2F1

(
c
2 , 1 +

c
2 ; c;

1
z2

)
z

. (6.78)
Injecting the expression of U [c](z) and its derivative, given respectively by Eq. (6.76) and Eq.
(6.78), in Eq. (6.67) gives the following results for the Stieltjes transform. see Eq. (6.79).
Result 6.3 (Stieltjes transform of HTC of symmetric Bernoulli distributions)

The Stieltjes transform g of µ⊕c µ where µ is the symmetric Bernoulli distribution of Eq.
(6.69) is given by

g(z) =
1

z

2F1

(
c
2 , 1 +

c
2 ; c;

1
z2

)
2F1

(
c
2 ,

c
2 ; c;

1
z2

) , (6.79)
where 2F1(a, b; c;u) :=

∑∞
k=0

(a)k(b)k
(c)k k! u

k is the Gauss hypergeometric function and (a)k :=

Γ(a+ k)/Γ(a).

Using the power series of the hypergeometric functions, one gets the large z behavior of the
Stieltjes transform:

g(z) =
1

z
+

1

2z3
+

4 + 3c

8(c+ 1)z5
+

8 + 5c

16(c+ 1)z7
+ O(z−8) , (6.80)
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from which we deduce that the first even moments of the symmetric distribution µ ⊕c µ are
given by m2 = 1/2, m4 = (4 + 3c)/(8c+ 8) and m6 = (8 + 5c)/(16c+ 16).

The Stieltjes transform is expressed as the inverse function times the ratio of two different
hypergeometric functions. Such a general form is very reminiscent of the high-temperature
Jacobi ensemble of Chapter 1 (see. Eq. (1.189)). Yet, the parameters of the hypergeometric
functions here are different such that - to the best knowledge of the author - the family of
distributions µ⊕c µ (and ρ̃) is a new one in RMT.

The case c → 0+ and classical convolution -

In the limiting case c → 0+, one should retrieve the classical convolution. This is done by using
an expansion for small c in the hypergeometric functions entering the expression of g. For the
numerator, we get:

2F1

(
c

2
, 1 +

c

2
; c;

1

z2

)
= 1 +

∞∑
k=1

(
1

2
+ Oc(1))

1

z2k
, (6.81)

that is:

2F1

(
c

2
, 1 +

c

2
; c;

1

z2

)
= 1 +

1

(z2 − 1)
+ Oc(1) . (6.82)

Similarly, the hypergeometric function in the denominator is equal to 1 + Oc(1). Combining
these two asymptotic behaviors, we get for the Stieltjes:

g(z) −−−→
c→0+

1

z
+

1

2z(z2 − 1)
, (6.83)

which decomposes into simple elements as:

g(z) −−−→
c→0+

1

4(z + 1)
+

1

2z
+

1

4(z − 1)
, (6.84)

as expected for the Stieltjes transform of the centered binomial distribution, µ ∗ µ = 1
4δ−1 +

1
2δ0 +

1
4δ1.

The case c → ∞ and free convolution -

The limiting case c → ∞ corresponding to the free convolution requires more work, and we
only sketch the main ingredients to recover the Stieltjes transform of the arcsine law. The idea
is to use the integral representation [52] of the hypergeometric function:

2F1 (a, b; c;u) = C4

ˆ 1

0
tb−1(1− t)c−b−1(1− tu)−a dt , (6.85)

with C4 = Γ(c)
Γ(c−b)Γ(b) and c > b > 0. If we denote by Fη(c, u) := 2F1 (c/2, η + c/2; c;u)

with η = 1 for the hypergeometric function in the numerator of Eq. (6.79) and η = 0 for the
denominator, this means that we can write Fη(c, u) as:

Fη(c, u) ∝
ˆ 1

0
e

c
2
g(t,u)h(t) dt , (6.86)
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with g(t, z) := log(t(1− t))− log(1− tu) and h(t) := tη−1(1− t)1−η. As c → ∞, Eq. (6.86)
can be approximated by Laplace method and the results write:

Fη(c, u) ∼
c→∞

Kc(u)(1− u)−η/2 , (6.87)
where Kc(u) is a function independent of the parameter η. Thus, if we inject this asymptotic
behavior in Eq. (6.79) we get:

g(z) −−−→
c→∞

1

z

1√
1− 1

z2

, (6.88)

which is indeed the Stieltjes transform of µ⊞ µ, see Chapter 2, Eq. (1.189).

6.4.4 Expression for the density
The explicit expression for the density is obtained thanks to the Sokochi-Plemelj formula of
Eq. (6.68) and the expression of Eq. (6.79) for the Stieltjes transform, by looking carefully
at the behavior of the hypergeometric functions near their branch cuts. The situation is very
similar for both the numerator and denominator and is also very similar to the derivation of the
expression of the IMKT and I only sketch the main steps. The idea is to use both the integral
representation of Eq. (6.85) for a = c/2 and b = η+c/2 and the behavior of the power function
near its branch cut of Eq. (6.37). As z → x− i0+ with x ∈ [−1, 1], we have

(1−t/z2)−c/2=(1−t/x2+i sign(x)0+)−c/2 , (6.89)
such that we need to differentiate the cases t < x2 and t > x2 in Eq. (6.85). Since the
distribution µ ⊕c µ is symmetric, we also fix x > 0. Thus, if we introduce the two functions
J1,2(x) corresponding respectively to the split of the integral of Eq. (6.85) for a = c/2 and
b = c/2, into the segment [0, x2] and [x2, 1]:

J1(x) := C4

ˆ x2

0
dt (t(1− t))−c/2

(
1− t

x2

)−c/2

, (6.90)
and

J2(x) := C4

ˆ 1

x2

dt (t(1− t))−c/2

(
t

x2
− 1

)−c/2

, (6.91)
then the real and imaginary parts of the hypergeometric function in the denominator of Eq.
(6.79) are given by:

Re 2F1

(
c

2
,
c

2
; c;

1

(x−i0+)2

)
= J1(x) + cos

(πc
2

)
J2(x) , (6.92)

and

Im 2F1

(
c

2
,
c

2
; c;

1

(x−i0+)2

)
= − sin

(πc
2

)
J2(x) . (6.93)

If we now perform the change of variable t → x2t in Eq. (6.90), we can rewrite J1(x) as:

J1(x) = C4 x
c

ˆ 1

0
dt tc/2−1 (1− t)−c/2 (1− x2t

)−c/2−1
. (6.94)
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By Eq. (6.85) and up to a multiplicative constant we recognize the integral in Eq. (6.94) as the
hypergeometric function

V1(x) := 2F1

(
1− c

2
,
c

2
, 1;x

)
. (6.95)

The multiplicative constant can be simplified thanks to the complement formula of the Gamma
function Γ(1− z)Γ(z) = π/ sin(πz) for z ∈ C \ Z, and we finally obtain:

J1(x) =
πΓ(c)

Γ
(
c
2

)2
sin
(
cπ
2

)xc V1(x
2) . (6.96)

Note that the integral representation of Eq. (6.94) is actually only valid for c ∈ (0, 2) but by
analytic continuation of the hypergeometric function, the result holds for any c > 0 such that
2c /∈ N, due to the presence of the inverse of the sinus function in Eq. (6.96).
Similarly, by the change of variable t → x2 + (1− x2)t2 in Eq. (6.91), J2(x) can be expressed
as:

J2(x) =
πΓ(c)

Γ
(
c
2

)2
sin
(
cπ
2

)xc V1(1− x2) . (6.97)

Thanks to Eq. (6.92) and Eq. (6.93), one has the complete behavior near the branch cut for
the denominator of Eq. (6.79).
We then sketch the remaining steps to get the analytical expression for density: one can
then repeat the exact same previous computation for the numerator of Eq. (6.79), where
instead of the function V1(.), another function V2(.) will appear (with a different multiplicative
constant) when splitting the integral into the segments [0, x2] and [x2, 1]. All in all, one gets the
density by taking the imaginary part of the entire expression, divided by π. After simplification
with the trigonometric identity cos(cπ/2)2+sin(cπ/2)2=1, appearing when one multiplies the
denominator of Eq. (6.79) by its conjugate, one gets the desired expression of Eq. (6.98) for
the density.

Result 6.4 (Explicit density for HTC of symmetric Bernoulli distributions)

For µ the symmetric Bernoulli distribution of Eq. (6.69), for any c such that 2c /∈ N, the
density µ⊕c µ of its HTC with itself, is given for any x ∈ [−1, 1] \ {−1, 0, 1} by:

(µ⊕c µ)(x) =
(2− c) sin (cπ/2)

2π
· |x|(V1(1−x2)V2(x

2) + V1(x
2)V2(1−x2))

V1(x2)2 + 2 cos
(
cπ
2

)
V1(x2)V1(1−x2) + V1(1−x2)2

.

(6.98)
with V1(x) := 2F1

(
1− c

2 ,
c
2 , 1;x

)
and V2(x) := 2F1

(
2− c

2 , 1 +
c
2 , 2;x

)
.

Furthermore, one can obtain the cases where c is a positive even integer by carefully taking
the limit, such that one can understand Eq. (6.98) as being valid for any c > 0, after proper
regularization. The distribution µ ⊕c µ diverges at the points {−1, 0, 1} and is otherwise
absolutely continuous with no singular parts in [−1, 1]. A plot of the density of µ⊕c µ is given
in Fig. 6.2.
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Figure 6.2: Plot of the density µ⊕cµ for µ the symmetric Bernoulli distribution ofEq. (6.69), for x ∈ [−1, 1] and different values of the parameter c, in logarithmicscale.

Simplification for special values of c

For special values of the parameter c, this expression of the HTC greatly simplifies. For ex-
ample for c = 1, corresponding in a sense to the mid-point between the classical and the free
convolution, we have:

(µ⊕c=1 µ)(x) =
1

2|x|(1−x2)

1

K(x2)2 +K(1−x2)2
, (6.99)

where K(.) is the complete elliptic integral of the first kind, K(u) :=
´ π/2
0 dθ (1−u2 sin2 θ)−1/2.

The expression for c = 2 is even simpler since we have:

(µ⊕c=2 µ)(x) =
1

|x|(1− x2)

1(
log
(
1−x2

x2

))2
+ π2

. (6.100)

Note that in practice when c is an even positive integer it is easier to evaluate the Stieltjes
transform thanks to Eq. (6.79) and then use the Sokochi-Plemelj formula of Eq. (6.68) rather
than taking the limit in the generic expression of Eq. (6.98).

6.5 HTC cumulants and the high-low temperature
duality

The goal of this section is to construct the cumulants κ
[c]
k associated to the HTC and relates

them to moments mk[µ] of the distribution in question. Just like for the FFC of Sec. 2.7.2, we
will relate the cumulants and moments via a third quantity: the moments of the MKT.

To do so, let’s first compare the power sum representation of Eq. (6.22) with the moment
generating function representation of Eq. (6.25). If we denote by nk ≡ mk[ν] the kth moment
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of the MKT, we have:

nk =
Γ(c)k!

Γ(c+ k)
gk[µ] , (6.101)

from which thanks to Eq. (6.2) one can deduce a first combinatorial relation between the nk’s
and the mk’s. The exact combinatorial formula will be given shortly after but one can check
that the leading in mk is given by:

nk =
Γ(c+ 1)(k − 1)!

Γ(c+ k)
mk + lin. comb. of product of lower moments . (6.102)

Next, the cumulants for the HTC are up to a factor the coefficients of the power series of the
logarithm of the spherical integral. By definition of the cumulants, the leading term of κ

[c]
k

must be 1 ·mk and thanks to the leading term of nk, one can deduce the factor in the power
series of the cumulants in order to have such behavior and the final result reads as follows.

Result 6.5 (Moment-cumulant relation for the HTC)

The moments mk ≡ mk[µ] of a distribution µ are related to the cumulants κ[c]k of the HTC
by the following coupled equation:

nk =
(

Γ(c)k!
Γ(c+k)

)∑
1j1+···+kjk=k (c)

j1+···+jk
∏k

i=1
mk

ji

ijiji!
,

log
(
1 +

∑N
k=1

nk
k! y

k
)
=
∑N

k=1

(
Γ(c+1)
Γ(c+k)k

)
κ
[c]
k yk ,

(6.103)

where nk is the kth moment of the MKT of µ.

Let’s mention that the nk are ‘silent’ variables since one can technically inject the top line of
Eq. (6.103) in the bottom line of Eq. (6.103) to have a (sophisticated) relation involving only
the moments and the HTC cumulants.

The first four HTC cumulants are given by:

κ
[c]
1 = m1 , (6.104)

κ
[c]
2 = m2 −m2

1 , (6.105)
κ
[c]
3 = m3 − 3m2m1 + 2m3

1 , (6.106)
κ
[c]
4 = m4 − 4m3m1 −

(
2 +

1

c+ 1

)
m2

2 +

(
10 +

2

c+ 1

)
m2m

2
1 −

(
5 +

1

c+ 1

)
m4

1 ,

(6.107)
In particular when the first moment m1 = 0, we have that the 4th cumulant is given by:

κ
[c]
4 = m4 −m2

2

(
2c+ 3

c+ 1

)
, (6.108)

from which one can see that the value c = 1 corresponds in a sense to the midpoint between
the classical case (for which the coefficient in front of m2

2 is equal to 3) and the free case (for
which the coefficient in front of m2

2 is equal to 2).
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Similarly we can obtain the moments in terms of the c-cumulants, we only give here the first
four moment-c-cumulant relations:

m1 = κ
[c]
1 , (6.109)

m2 = κ
[c]
2 +

(
κ
[c]
1

)2
, (6.110)

m3 = κ
[c]
3 + 3κ

[c]
2 κ

[c]
1 +

(
κ
[c]
2

)3
, (6.111)

m4 = κ
[c]
4 + 4κ

[c]
3 κ

[c]
1 +

(
2 +

1

c+ 1

)(
κ
[c]
2

)2
+ 6κ

[c]
2

(
κ
[c]
1

)2
+
(
κ
[c]
1

)4
. (6.112)

High-low temperature duality for cumulants -

The relation between moments and HTC cumulants is very reminiscent of the one between
moments and FFC cumulants, see Eq. (2.233). In fact, one can analytically extend this relation
to c = −N thanks to the limit relation for the Gamma function:

lim
ϵ→0+

Γ(k −N + ϵ)

Γ(−N + ϵ)
= (−1)k

N !

(N − k)!
. (6.113)

Next, if one does the change of variable y → −y, one retrieves the relation between moments
and finite free cumulants with τk ≡ (−1)knk and since the τk are silent variables we have the
following result between FFC and HTC.

Result 6.6 (High-low temperature duality for cumulants)

If we denote by κ
(N)
FFC,k the kth cumulant associated to the finite free convolution, and by

κ
[c]
HTC,k the kth cumulant associated to the high-temperature convolution, then the two

families of cumulants seen as an expansion in terms of moments, satisfy the duality relation

κ
(N)
FFC,k = κ

[−N ]
HTC,k (6.114)

where the RHS has to be understood as an analytical continuation to negative integer values
of the parameter c.

In other words, the high-low temperature duality, which was present for individual ensembles
in Chapter 1, naturally extends to the associated convolution.

Weighted partitions and relation between classical and free convolution -

As for the finite free convolution, after a consequent work, one can eliminate the dependency
in the nk’s to express the kth moment as a sum over partitions of HTC cumulants:

mk =
∑

π∈P[k]

W
[c]
HTC(π)κ

[c]
π , (6.115)
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where W
[c]
HTC is again a weighting factor that can be shown to penalize crossing partitions in a

certain way. Asymptotically in c, this weight factor satisfies:

W
[c]
HTC(π) −−−→

c→0+
1 and W

[c]
HTC(π) −−−→

c→∞


1 if π is non-crossing ,

0 otherwise ,

(6.116)

such that one retrieves the moment-cumulant formula of the classical convolution for c → 0+

and the moment-cumulant formula of the free convolution in the limiting case c → ∞, see Eq.
(2.151).

6.6 High-temperature limit theorems

In this section, we derive the limit theorems for the high-temperature convolution.

6.6.1 High-temperature CLT
Let’s consider a measure µ with zero mean and variance one. Its MKT ν is a measure with zero
mean and variance 1/(c+ 1). If we now re-scale µ to have variance 1/n ( that is

√
nµ(

√
n·)),

the corresponding MKT
√
nν(

√
n·) has now variance 1/(n · (c + 1)). Now let’s perform the

HTC of this measure
√
nµ(

√
n·) with itself n times. Since the HTC corresponds to do classical

convolution of the MKT, by the (classical) CLT, the MKT of the limiting distribution is a
Gaussian distribution with mean zero and variance 1/(c + 1). Since the IMKT of a standard
Gaussian is given by Eq. (6.65), we get by scaling the following result.

Result 6.7 (CLT for the HTC)

For µ a distribution with zero mean and variance one, if we re-scale it such that its vari-
ance is 1/n and performs the high-temperature convolution with itself n times, we have
asymptotically in n:

√
nµ
(√

nx
)
⊕c · · · ⊕c

√
nµ
(√

nx
)︸ ︷︷ ︸

n times

−−−→
n→∞

µ
[c]
G (x) :=

√
c+ 1√

2πΓ(c+ 1)

1∣∣D−c

(
i
√
c+ 1x

)∣∣2
(6.117)

where D−c is the Dawson function of Eq. (1.173).
The distribution µ

[c]
G is the c-Gaussian distribution of Chapter 1 (see Sec. 1.7 and Fig. 1.8 for an

illustration). Its additive spherical I [c]
G ≡ I [c]

µ
[c]
G

is given by the MGF of a Gaussian distribution

with variance (c+ 1):

I [c]
G (u) = e

u2

2(c+1) , (6.118)
from which one can easily check that the HTC cumulants are given by:

κ
[c]
k

[
µ
[c]
G

]
=


1 if k = 2 ,

0 otherwise ,

(6.119)
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as one should expect for the limiting distribution of a CLT.

DBM at high-temperature -

Let’s now consider the high-temperature analog of the DBM of Chapter 2 (see Sec. 2.5.1), that
is, we want to describe the distribution:

µC(x, t) = µB ⊕c µ
[c]
G

(
·/
√
t
)
/
√
t , (6.120)

where µ
[c]
G

(
·/
√
t
)
/
√
t is the c-Gaussian distribution re-scaled to have variance t. By multiplica-

tive of the spherical integral we have that U-function U
[c]
C ≡ U

[c]
µC is given by:

U
[c]
C = I [c]

G(t) (−Dz) I [c]
B (−Dz) z

−c︸ ︷︷ ︸
=U

[c]
B

, (6.121)

U
[c]
C = e

t
2(c+1)

D2
z U

[c]
B , (6.122)

Next since ∂t exp
[

t
2(c+1)D

2
z

]
= D2

z/(2 ·(c+1)) ·exp
[

t
2(c+1)D

2
z

]
, by Differentiating Eq. (6.122)

with respect to t, we have the forward heat equation:

∂tU(t, z) =
1

2(c+ 1)
∂zzU(t, z) . (6.123)

Now perform the change of variable from the U-function to the Stieltjes transform g(z, t) ≡
gC(z, t), given by Eq. (6.67), we have:

∂tg +
c

c+ 1
g∂zg =

1

2

1

c+ 1
∂zzg , (6.124)

under the initial condition g(0, z) =
´
(z − x)−1dµB.

As c → ∞ we retrieve the inviscid Burgers equation of Eq. (2.86) while as c → 0 one has the
standard heat equation for the Stieltjes. If the parameter c extends analytically to negative
values c = −N , we get the DBM of β → ∞ with N fixed of Eq. (2.252).

6.6.2 High-temperature Poisson limit theorem
We now turn to the Poisson central limit theorem which concerns the limit of ‘c-sum’ of
independent Bernoulli random variables with a probability of success that goes to zero at a
speed 1/n:

µa·Ber(λ/n) :=

(
1− λ

n

)
δ(x− 0) +

λ

n
δ(x− a) , (6.125)

that is, we want to characterize the limit n → ∞ of the HTC of µa·Ber(λ/n) with itself, done n

times, which we denote by µc−Poi.

We know, from Eq. (6.42), that the Markov-Krein transform of the Bernoulli distribution with
a probability of success p is the beta distribution Beta(cp, c(1− p)). Since again c-convolution
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corresponds to classical convolution in the MK space, we first need to determine the limiting
distribution of:

ν(.) := MKT[µc−Poi] := lim
n→∞

1aµBeta
(

cλ
n
,
c(n−λ)

n

) ( .

a

)
⊕c · · · ⊕c µBeta

(
cλ
n
,
c(n−λ)

n

) ( .

a

)
︸ ︷︷ ︸

n times

 ,

(6.126)
and then take the IMKT. This kind of distribution does not seem to have appeared before in the
literature, and we will characterize it with its moment generating function (as no closed form
is known). The moment generating function of the beta distribution is given by Eq. (6.43), so
that we have:

EX∼ν

[
etX
]
= lim

n→∞ 1F1

(
cλ

n
, c; at

)n

, (6.127)

EX∼ν

[
etX
]
= lim

n→∞

1 +

∑∞
k=1

λΓ(c+1)
Γ(c+k) k (at)

k

n
+O

(
1

n2

)n

, (6.128)

Next, we use:

2F2 ({1, 1}, {2, c+ 1}; t) =
∞∑
k=0

Γ(c+ 1)

Γ(c+ k + 1) (k + 1)
tk =

1

t

∞∑
k=1

Γ(c+ 1)

Γ(c+ k) k
tk , (6.129)

where 2F2 is the hypergeometric function. Together with the classical limit identity for the
exponential:

ex = lim
n→∞

(
1 +

x

n

)n
, (6.130)

we get:

EX∼ν

[
etX
]
= exp {aλt 2F2 ({1, 1}, {2, c+ 1}; at) } . (6.131)

Since the distribution ν is supported on R+, we can take the inverse Laplace transform of the
moment generating function evaluated at −t:

ν(x) = L−1
t [exp {− aλt 2F2 ({1, 1}, {2, c+ 1};−at) }] (x) . (6.132)

One can compute numerically ν using this last formula. This can be summarized in the following
result.

Result 6.8 (High-temperature Poisson distribution)

For µa·Ber(λ/n) :=
(
1− λ

n

)
δ(x−0)+ λ

nδ(x−a) a re-scaled Bernoulli distribution with small
rate of success λ/n, we have:

µa·Ber(λ/n) ⊕c · · · ⊕c µa·Ber(λ/n)︸ ︷︷ ︸
n times

−−−→
n→∞

µc−Poi (6.133)

where µc−Poi is the distribution whose Markov-Krein transform ν is given by Eq. (6.132).
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This high-temperature Poisson distribution can be approximated numerically, and we have plot-
ted the different results in Fig 6.3. It interpolates between the (standard) Poisson distribution
and the Marčenko-Pastur distribution. Thanks to Eq. (6.131), one can show that its cumulants
(for the HTC) are given by:

κ
(c)
k = akλ , (6.134)

as one should expect for the limit distribution of a Poisson theorem.
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Figure 6.3: Plots of the numerical approximation of the limiting distribution ofthe Poisson limit theorem with parameters a = 1 and λ = 1 for the left figure,and λ = 2 for the right figure, for different values of c, compared to the classical(Poisson) and free (Marčenko-Pastur) limiting distributions.

6.7 Summary and Conclusion of Chapter 6

In this chapter, we have constructed the high-temperature convolution (HTC), a one-parameter
interpolation between the classical (c = 0) and the free (c → ∞) convolutions. Our construc-
tion of this HTC relies heavily on the study of the additive spherical integral in the high-
temperature regime Nβ

2 → c. It turns out that in this regime the additive spherical integral is
the moment generating function of the so-called Markov-Krein transform of the distribution of
interest, such that the HTC of two distributions corresponds to a classical convolution of their
Markov-Krein transforms. Furthermore, this HTC shares a duality with the FFC introduced in
Chapter 2, a property we have already encountered for individual ensembles in Chapter 1.

The HTC is conjectured to be positive-preserving and it will be interesting to know if one can
come up with proof of this property using the formula developed in this thesis.

An natural extension of this work is to construct the multiplicative counter of this HTC, thanks
to the asymptotic behavior of the multiplicative spherical integral of Chapter 3. This is a
problem I am currently working on.
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