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Université de Strasbourg, France
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Summary

The information available through our senses is noisy, incomplete, and to varying degrees

ambiguous. The perceptual system has to reconstruct the exogenous world by integrating

the limited sensory information with endogenous factors such as memory (von Helmholtz,

1867). This construction process causes the perceptual inference problem, i.e. one single

sensory information can be interpreted in multiple ways. In a probabilistic manner, the brain

decides for one of those interpretations in order to provide a stable and reliable percept. The

present dissertation investigates different aspects of this probabilistic decision in neurotypical

participants but also in patients with Schizophrenia Spectrum Disorder (SSD) by comparing

visual processing of ambiguous/low-visibility with disambiguated/high-visibility stimuli.

Ambiguous figures are paradigmatic when studying the perceptual inference problem, because

in those figures one sensory information allows for two possible interpretations. Using

electroencephalography (EEG), previous studies already found large event-related potential

(ERP) differences 200 ms and 400 ms after stimulus onset between ambiguous stimuli and

disambiguated variants thereof (Kornmeier and Bach, 2009; Kornmeier et al., 2016), i.e. the

ERP Ambiguity Effects. In the first part of this dissertation (see also my publication Joos

et al., 2020b), I replicated one experiment using ambiguous stimuli (by Kornmeier and Bach,

2009; Kornmeier et al., 2016) and studied whether these ERP Ambiguity Effects also occur with

low-/high-visibility stimuli. I found that not only different levels of stimulus ambiguity, but also

different degrees of stimulus visibility evoke those ERP effects. The stimuli used were smiley

faces with two different emotional expressions that were either clearly or less visible. Ambiguous

figures impose different demands on the perceptual system compared to low-visibility stimuli.

Common to both types of stimuli is, however, that they evoke uncertainty. The ERP effects

identified by Kornmeier et al. (2009, 2016), and replicated in the current work might thus reflect

a certainty rating of perceptual constructs at a higher cognitive level, beyond sensory details.

The effects are accordingly re-labelled to ERP Uncertainty Effects.

Patients with SSD show fundamental differences in the process of perception (Silverstein et al.,

2015), in the integration of sensory with endogenous information (van Assche and Giersch,

2011), and reveal difficulties in processing of ambiguous emotional expressions (Kohler et al.,

2000) compared to controls. Thus, the experimental paradigm and stimuli from the first part of

this thesis were investigated in patients with SSD in the second part of this thesis. Due to the

Corona pandemic, I was not able to finish data acquisition during the time of my PhD. Therefore,

the following results are preliminary. The ERP Uncertainty Effects were replicated in both

groups. An observable tendency for smaller ERP effects in patients compared to controls did not

reach statistical significance. Additional exploratory analyses indicated significant differences in

the processing of perceptual (un)certainty in patients with SSD compared to controls. These

results are interpreted within the predictive coding theory (Friston, 2012), which postulates that

the brain continuously forms models about the external world and continuously updates these

models with new sensory information. Patients with SSD show alterations in those updating

mechanisms (e.g. Notredame et al., 2014). The current results might reflect these altered

updating mechanisms by means of altered reliability attribution to the sensory information,

which ultimately might result in altered (un)certainty ratings as found in this study.

vi



Helmholtz’ inferential approach on perception postulates that the brain uses information from

previous experiences in order to appropriately reconstruct the exogenous world despite the

limited sensory information. Currently discussed predictive coding theories are based on this

idea and further assume that the brain (1) always forms a prediction about the to-be-created

perceptual interpretation, (2) integrates these predictions with the current sensory information,

and (3) concurrently creates new predictions for an upcoming moment. The ERP Uncertainty

Effects show unusually large effect sizes and individual statistical significance, which makes the

understanding of their functional roles even more interesting. Previous experimental evidence

suggested the involvement of the ERP effects in the above mentioned processes, but their

exact role could not be systematically investigated due to the experimental paradigm. In

the third part of this dissertation (see also my publication Joos et al., 2020a), I modified

the experimental paradigm in order to investigate the functional role of the ERP Uncertainty

Effects with a particular focus on predictive coding theories. The results of this third study

confirm the involvement of the ERP Uncertainty Effects in predictive mechanisms. They

further confirm the strong influence of temporal aspects on perceptual processing. Particularly,

the perceptual system seems to automatically and unavoidably exploit regularities from past

perceptual experiences in order to generate predictions about the immediate perceptual future.

This seems to be the case even in situations where the perceptual past and the perceptual future

are irrelevant for a current task related to a currently seen stimulus. The present results further

indicate that our expectations about the immediate perceptual future influence how we perceive

the present.

The findings of this dissertation should be considered when investigating physiological correlates

of psychiatric diseases. Particularly, altered predictive processes in patients with SSD could be

investigated by means of the experimental paradigm from the third part of the dissertation.

Further, emotional expressions in smiley faces with different degrees of their visibility (as in the

first and second part of this thesis) could be used as stimulus material. In future studies these

modifications would allow to measure predictive processes in patients with psychiatric diseases

and in neurotypical participants in a state of perceptual uncertainty, which closely resembles

difficult situations within the patients and controls everyday life, i.e. dealing with uncertainty

in social interactions.
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Thesis Structure

The current cumulative dissertation introduces the background, motivation, and research

questions of this PhD project in chapter 1.

In the three following chapters, the two published manuscripts (chapter 2, chapter 4)

and an unpublished manuscript (chapter 3) are presented. The contribution of the three

manuscripts to the general research question and its scientific relevance are discussed in

chapter 5.

There are two numbering systems within this dissertation, one is related to the dissertation

structure and the other is inherent to the specific publication/manuscript.
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1. Introduction

The exogenous world provides a huge amount of information at a given time point. The human

access to this information, however, is limited by the sensory organs. The three dimensional

world that we live in, for example, is projected onto a two-dimensional retina and with this,

the direct access to the third dimension is lost (e.g. Todd, 2004). If visual perception would

be based only on exogenous information entering through the limiting sensory organs, a poor

quality image would be the consequence (von Helmholtz, 1867).

The rich and detailed experience made during human visual perception can be explained by

a reconstruction process of the information given the limited sensory evidence. Endogenous

information like memories of previous experiences and learnt regularities about the world are

integrated into perception. The third dimension, for example, can be inferred by including

secondary depth cues, like occlusion, central perspective, etc. and the knowledge of light

originating above us (Rock, 1995).

Due to this limited sensory access, multiple interpretations of a given sensory input are possible.

This perceptual inference problem is solved by the brain in a probabilistic manner by using

the temporal and spatial context (von Helmholtz, 1867). For example, if the representation of

another person on one’s retina decreases in size, it is much more probable that this person is

moving away from oneself, rather than the interpretation that the person is shrinking (for other

examples read von Helmholtz, 1867). Our everyday experience shows that this is an efficient

strategy, because the reconstruction of the exogenous world is usually reliable and effective. It

is, however, important to notice that our perception does not reflect the exogenous world as

it is.

1.1 Ambiguity vs. Visibility

1.1.1 Ambiguity

The perceptual inference problem becomes obvious in situations in which the probabilistic

mechanisms during perception do not reveal a unique and highly probable interpretation. The

term ambiguity refers to this situation and to the Latin word ambi, meaning both. Ambiguity

is defined as the ’Capability of being understood in two or more ways [...]’ (Dictionary,

2019). Studying ambiguity allows to explicitly investigate the neural processes underlying the

constructive, probabilistic mechanisms that are present in every perceptual decision.

In classical ambiguous figures, one single sensory information allows for two or more possible

interpretations. Examples for binary perceptual decisions can be found in binocular rivalry,

1



1.1. AMBIGUITY VS. VISIBILITY

when the two eyes receive mutually exclusive information and perception alternates between

the perceptual interpretations of the two eye’s input (Pitts et al., 2010; Blake, 2001; O’Shea

et al., 2013). Another category of binary perceptual decisions are classical ambiguous figures

like the famous Necker cube (Necker, 1832), Rubin’s face-vase illusion (Rubin, 1921), and

Boring’s Old/Young Woman (Boring, 1930) all result in two mutually exclusive perceptual

interpretations, which alternate spontaneously.

ERP Ambiguity Effects: Interesting in this context are findings by Kornmeier et al. who

investigated event-related potential (ERP) correlates of ambiguity in classical ambiguous figures

(Kornmeier and Bach, 2009; Kornmeier et al., 2016). In one experimental condition, they

presented the Necker lattice (Kornmeier et al., 2001), a variant of the Necker cube, and in

another condition disambiguated variants thereof (see Figure 1.1, left column). Two prominent

ERP components differed between conditions, an anterior P200 (positive ERP component

200 ms after stimulus onset) and a posterior P400 (positive ERP component 400 ms after

stimulus onset), which constitute the so-called ERP Ambiguity Effects. Amplitudes of both ERP

components increase as stimulus ambiguity decreases (Kornmeier et al., 2016). Importantly,

the ERP Ambiguity Effects were found for three different stimulus categories, with very

different manifestations of ambiguity, i.e. geometry (Necker lattice), motion (SAM/’motion

quartet’: Schiller, 1933), and Gestalt perception (Boring’s Old/Young Woman: Boring, 1930, see

Figure 1.1). This generality along with the late occurrences (200 ms and 400 ms after stimulus

onset) indicate that the ERP Ambiguity Effects are likely to reflect higher cognitive functions

after the initial processing of sensory information. The current interpretation (Kornmeier

et al., 2016) suggests that the perceptual system constructs perceptual interpretations as fast

as possible and in a highly automatic manner (for further discussion see Kornmeier and Bach,

2012). It is proposed that only after this initial formation of a certain percept, the reliability of

this perceptual construct is rated. Importantly, it is proposed that the ERP Ambiguity Effects

reflect this reliability estimation of the perceptual construct with large amplitudes in the case

of high reliability (disambiguated stimuli) and small amplitudes in the case of low reliability

(ambiguous stimuli).

1.1.2 Visibility

In the case of classical ambiguous figures, the perceptual decision becomes difficult because one

and the same sensory information allows for two mutually exclusive interpretations. Making a

perceptual decision, however, can also be difficult because the information available to our senses

is of low quality, e.g. during rain and fog or during low luminance. In this case, the difficulty of

the perceptual decision is based on poor visibility.

A relevant situation in which poor visibility might lead to impaired social interaction is when

emotional expressions are interpreted. Everyone knows situations where it is difficult to infer

another person’s emotional state from her/his facial expressions. Particularly, the differences

in facial expressions between different emotional states can be tiny. A slight smile for example

might express that a person is a little bit happy, but it might also express that the person

is insecure. Not only the six basic emotions as defined by Ekman (Ekman, 1992), but many

2



CHAPTER 1. INTRODUCTION
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Figure 1.1: ERP Ambiguity Effects described by Kornmeier et al. (2009, 2016). The ERP Effects
were found for geometry (left), motion (middle), and Gestalt perception (right). In the upper row
the respective stimuli are depicted with black frames around the disambiguated stimuli and red
frames around the ambiguous stimuli. The middle row depicts the grand mean ERPs along with
the SEM at electrode Cz. Consistently larger ERP traces are found in response to disambiguated
(black trace) compared to ambiguous (red trace) stimulus variants (effect sizes between 0.8 and
2.1). The ERP Ambiguity Effects comprise a positivity 200 ms (P200) and a positivity 400 ms
(P400) after stimulus onset. The spatial distribution of those two ERP components can be
inspected in the bottom row. The P200 is located at fronto-central electrodes, while the P400
shows a centro-parietal distribution.

nuances in-between them can be perceived. Emotions and the related facial expressions can

thus be represented in a multidimensional space. One particular dimension, like the axis from

happy to sad, has a continuous scale rather than a binary one, which is the case in classical

ambiguous figures. In order to quantify the aspects of visibility easily, I reduced the complexity

of the stimuli to a minimum by presenting smiley faces. Further, I reduced complexity of the

emotional expression by only presenting either happy (mouth curvature upwards) or sad (mouth

curvature downwards) smileys. In addition to this, the emotional expressions could either be

highly visible (strong mouth bending) or less visible (slight mouth bending).

1.1.3 First research question

The first research question is: Can the ERP amplitude effects, labeled as ERP Ambiguity

Effects by Kornmeier et al. (Kornmeier and Bach, 2009; Kornmeier et al., 2016), also be evoked

by high- and low-visibility stimuli? In chapter 2, I compared the ERP Ambiguity Effects in

response to disambiguated and ambiguous Necker lattices with possible ERP Ambiguity Effects

in response to more or less visible emotional expressions of smiley faces.

3



1.2. PERCEPTION IN SCHIZOPHRENIA SPECTRUM DISORDER (SSD)

If similar neural responses for those very different stimulus types were found, then the EEG

effects are not related to a certain stimulus category but rather reflect very high-level cognitive

processes. It is proposed that both ambiguity and poor visibility can lead to unreliable

perceptual interpretations. In turn, unreliable perceptual interpretations might result in a

state of perceptual uncertainty, whereas reliable perceptual interpretations might result in a

state of perceptual certainty. This perceptual (un)certainty might be reflected in the ERP effects.

1.2 Perception in Schizophrenia Spectrum Disorder (SSD)

Schizophrenia Spectrum Disorder (SSD) is a complex set of neurodevelopmental disorders with

a prevalence in the population of around 1% (Jardri and Deneve, 2013). The DSM-V defines

Schizophrenia Spectrum Disorder ”by abnormalities in one or more of the following five domains:

delusions, hallucinations, disorganized thinking (speech), grossly disorganized or abnormal motor

behavior (including catatonia), and negative symptoms” (American Psychiatric Association,

2013, page 87). Decreased emotional expression and avolition (drive disorder) are the two main

occurring negative symptoms in schizophrenia, while alogia (speech impairment), asocialtiy, and

anhedonia (reduced experience of positive emotions) occur less frequent. So far, diagnoses are

based on behavioural parameters, while reliable physiological markers do not exist.

1.2.1 Altered perceptual processing in SSD

As mentioned above, our perceptual experience is stable and reliable, even though the sensory

information is limited. One fundamental mechanism of the brain to solve the perceptual

inference problem is based on the integration of exogenous with endogenous contextual

information, like perceptual memory on different time scales. It has been proposed that patients

with SSD show fundamental deficits in the process of perception (Silverstein et al., 2015).

Further, patients with SSD reveal impairments in the integration of sensory information with

memorised concepts (Notredame et al., 2014) and spatial and temporal contexts (van Assche

and Giersch, 2011).

Ambiguous figures are paradigmatic in this context, because even though the sensory

information is the same, different perceptual interpretations are possible. The different

interpretations can thus be traced back to the endogenous information used for constructing

the percept. Studying ambiguity resolution in patients with SSD has been proposed in order to

provide a promising tool to investigate the underpinnings of the disorder (Jardri and Deneve,

2013; Notredame et al., 2014; Bortolon et al., 2016; Fujino et al., 2016). It has already been

found that patients with SSD show different processing of ambiguous figures compared to

controls (Notredame et al., 2014; King et al., 2017; McBain et al., 2011). Particularly, patients

with SSD show impairments in disambiguating stimuli with emotionally ambiguous content

(Dlabac-de Lange et al., 2018) and in estimating emotional states from facial expressions

(Turetsky et al., 2007; Kohler et al., 2003, 2000).

4



CHAPTER 1. INTRODUCTION

1.2.2 Second research question

The previously introduced ERP Uncertainty Effects (Kornmeier and Bach, 2009; Kornmeier

et al., 2016; Joos et al., 2020b) show physiological differences in response to different degrees of

ambiguity, with large ERP amplitudes in the case of unambiguous and small ERP amplitudes in

the case of ambiguous stimuli. The ERP Ambiguity Effects might represent a successful solution

of the perceptual inference problem, because one highly probable perceptual interpretation

that results in perceptual certainty (unambiguous stimuli) evokes larger ERP amplitudes than

two equally likely perceptual interpretations that result in perceptual uncertainty (ambiguous

stimuli). In the current line of research it is hypothesised that the ability to solve the perceptual

inference problem is altered in patients with SSD compared to neurotypicals. As a consequence,

SSD patients should show an altered pattern of the ERP Uncertainty Effects compared to

controls. Further, patients with SSD have been shown to reveal impaired emotion processing

(Dlabac-de Lange et al., 2018; Turetsky et al., 2007; Kohler et al., 2003) and might therefore

show stronger alterations during the study of perceptual processing if the stimuli contain

emotional expressions. I thus adopted the paradigm from chapter 2 and introduced perceptual

(un)certainty by low- and high-visibility of emotional expressions in smiley faces. I measured

the related neural responses in patients with SSD and in matched control participants.

The second research question of this PhD project is: Do patients with SSD process perceptual

(un)certainty differently than controls? If yes, then the pattern of ERP Uncertainty Effects

should be altered.

The ERP Uncertainty Effects (Kornmeier and Bach, 2009; Kornmeier et al., 2016; Joos et al.,

2020b) reveal large effect sizes (Cohen’s d between 0.6 and 1.2) and are typically visible in

individual participants. The latter is the exception rather than the rule in ERP studies. If

this project were to provide altered ERP effects in patients compared to controls, they may be

promising physiological markers for clinical diagnostics.

1.3 Influences of the temporal context

The previously presented experimental paradigms were focused on the investigation of a

currently shown stimulus. The influence of previously seen and predicted stimuli on a currently

seen stimulus has so far been neglected. However, it was already highlighted by von Helmholtz

(1867) that the integration of previous experiences is crucial for solving the perceptual inference

problem, i.e. reducing the infinite number of possible interpretations of one sensory input to

one most probable interpretation. Our environment typically only changes slightly from one

moment to the other, therefore it is efficient to use information from the past to expect future

events. This strategy avoids unnecessary re-categorisation of information that is constant over

time.

1.3.1 Empirical findings

Several lines of research investigate influences of previously shown stimulus-specific features (e.g.

orientation of a Gabor patch) on the perception of the same feature of a currently presented

stimulus. Positive aftereffects, e.g. positive priming (Long et al., 1992; Dehaene et al., 1998),
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positive hysteresis (Liaci et al., 2018; van Rooij et al., 2016), and serial dependence (Fischer and

Whitney, 2014; Cicchini et al., 2017; Chambers et al., 2017), show that current perception is

shifted towards the previous percept. There are also negative aftereffects, e.g. adaptation (Bach

and Ullrich, 1994; Heinrich and Bach, 2002) in which current perception is shifted away from the

previous percept. The empirical findings reveal influences of the past on different time scales,

mostly studied in the milliseconds range but they were found to last for up to 10 seconds in serial

dependence (Fischer and Whitney, 2014). Further, different processing steps are involved in the

integration of previous experiences, ranging from specific retinotopic locations in adaptation and

priming to attention-modulated influences in serial dependence.

1.3.2 Theoretical frameworks

The empirical findings can be explained by theoretical frameworks such as Bayesian probability

(Kersten and Yuille, 2003) and predictive coding (Friston, 2012; Kok and de Lange, 2015).

According to these theories, the brain creates a model about the external world. With every

new sensory input, the prediction error between the model and the input is calculated and the

model is updated accordingly (e.g. Friston, 2012).

In typical studies, frequently presented stimuli are infrequently disrupted by deviant stimuli.

The assumption is that the frequently presented stimuli optimise the model such that

upcoming sensory information is reliably predicted. The deviant stimuli, on the other hand,

should evoke large prediction errors, which the authors then measure both behaviourally and

electrophysiologically (Näätänen et al., 2007; Stefanics et al., 2014).

1.3.3 Third research question

The stimuli used in the temporal context studies introduced above were typically unambiguous,

highly visible, and mainly differed in their occurrence frequency. However, in our natural

environment, exploiting the perceptual past and relying on a predicted future may be very

important in perceptual situations with low quality of the sensory input, e.g. when the stimulus

is ambiguous. Stimuli from the immediate past that are ambiguous, may make predictions

about the immediate perceptual future less reliable compared to unambiguous previous stimuli.

The experimental paradigm introduced in chapter 2 and chapter 3, however, does not allow for

the investigation of the influence of low quality stimuli on predictive processes. In the third part

of this dissertation the paradigm is modified such that those influences can be systematically

investigated.

The third research question is thus: Is a currently seen stimulus perceived and processed

differently if the previous and the predicted stimulus are ambiguous compared to unambiguous?

In chapter 4 the previously introduced ERP Uncertainty Paradigm was modified to a paired

stimulus paradigm, where a first stimulus (S1 ) was followed by a second stimulus (S2 ). In

a first experiment, a paired design (2x2) was applied by presenting all possible combinations

of ambiguity levels (ambiguous vs. unambiguous) of S1 and S2. Ambiguity levels thus varied

between but stayed constant within experimental conditions. This experimental design allowed

for the investigation of neural responses elicited by the same S1 stimuli with different levels

of ambiguity in its temporal context, i.e. preceding S2 of the previous pair and predicted S2

6
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of the current pair. In a second experiment, preceding S2 stimuli were replaced with abstract

symbolic information about the future stimulus and it was studied whether this replacement

evokes similar ERP and reaction time results as found in the first experiment.

If differences of ambiguity levels in the temporal context stimuli evoke different ERP Uncertainty

Effects, then the particular modulations would reveal fundamental steps in the process of

perception and related predictive processes and should help to unravel the functional role of

the exceptionally large ERP Uncertainty Effects.

In the current dissertation, different processing strategies for solving the perceptual inference

problem will be investigated. First, it will be investigated whether the same neural correlates

of solving the perceptual inference problem can be found in case of stimulus ambiguity and low

visibility of a stimulus. Second, normal and altered perceptual processing will be investigated in

patients with SSD and neurotypicals in case of low visibility. Third, temporal aspects of solving

the perceptual inference problem, i.e. integrating information from the immediate perceptual

past and predicted information about the immediate perceptual future into processing of the

perceptual present, will be investigated.

7
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2. PhD article No. 1: Large EEG

amplitude effects are highly

similar across Necker cube,

smiley, and abstract stimuli

2.1 Summary

The previously reported ERP Ambiguity Effects (P200, P400; Kornmeier and Bach, 2009;

Kornmeier et al., 2016) revealed large EEG differences in response to classical ambiguous figures

compared to disambiguated variants thereof. Specifically, the differences were found in two ERP

components, 200 ms (P200) and 400 ms (P400) after stimulus onset, with large amplitudes in

response to disambiguated and small amplitudes in response to ambiguous stimuli. The ERP

effects were found for ambiguity in geometry, motion, and Gestalt perception. Due to the

late occurrences – in perceptual processing time scales – of the ERP components at 200 ms and

400 ms after stimulus onset and their generality across stimulus types, the effects are interpreted

as a reflection of high-level cognitive processes, which are not directly related to the actual

stimulus information. It was already proposed by Kornmeier et al. that the ERP Ambiguity

Effects might reflect high-level evaluations of the perceptual outcome with large amplitudes

when the perceptual outcome is reliable (unambiguous stimuli) and with small amplitudes when

the perceptual outcome is unreliable (ambiguous stimuli). If the effects really reflect the brains

reliability estimation of the perceptual outcome, then the source for the (un)reliability should

not matter.

Testing this hypothesis was one of the goals of the current study. To this end, another source of

(un)reliability, namely poor visibility, was tested within the ERP Ambiguity Paradigm. Highly

visible stimuli were contrasted with less visible stimuli and it was investigated whether the same

ERP effects were present in this case compared to (un)reliability evoked by unambiguous and

ambiguous Necker lattices.

Manipulating visibility was achieved by presenting smiley face stimuli with different emotional

expressions, which were evoked by varying only one parameter, i.e. the mouth curvature. The

mouth curvature could have been (1) highly visible with a clearly happy (mouth strongly bended

upwards) or a clearly sad (mouth strongly bended downwards) expression in order to induce

reliable perceptual contstructs. The mouth curvature could also have been (2) less visible
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2.1. SUMMARY

with unclear happy (mouth slightly bended upwards) or unclear sad (mouth slightly bended

downwards) expressions in order to induce unreliable perceptual constructs.

In addition to the smiley stimuli, ambiguous and disambiguated Necker lattices were presented

to replicate previous findings (Kornmeier and Bach, 2009; Kornmeier et al., 2016). Furthermore,

abstract stimuli were presented, which had the same low-level features as the smiley stimuli, but

differently arranged such that hardly any face could be recognised. These low-visibility and

high-visibility abstract stimuli were presented for two reasons: (1) to investigate a face-specific

ERP component (N170), which was hypothesised to be present in smiley but not in abstract

figure stimuli. Larger N170 amplitudes for smileys compared to abstract figures would indicate

face-specific processing of the smileys. (2) To investigate whether the same ERP Effects were

evoked only through a difference in curvature bending present in the abstract stimuli.

It was found that ERP Effects (P200 and P400) were similarly evoked by Necker lattice, smiley,

and also by abstract stimuli. Given a prominent face-selective ERP component (N170) in

response to smiley, but not to abstract stimuli, it was assumed that the smileys were indeed

processed as faces.

The paper ”Large EEG amplitude effects are highly similar across Necker cube, smiley, and

abstract stimuli” (Joos et al., 2020b) indicates that the ERP effects are the same between

very different stimulus categories such as classical ambiguous figures and visibility of emotional

facial expressions. This generality of the ERP effects indicates a high-level evaluation of the

perceptual outcome, which is independent of sensory details. The similar modulation of two ERP

components that are 200 ms apart from each other suggests that not only one event of reliability

estimation in time but rather a longer-lasting brain state of (un)certainty arises through sensory

information of low quality (ambiguity and low-visibility). Therefore, the term ERP Uncertainty

Effects might be more appropriate than ERP Ambiguity Effects and will be used in the following.

Contribution to the paper I was part of the funding acquisition, as well as the

conceptualisation and administration of the project. I was responsible for data curation, formal

analysis, investigation, methodology, software, validation, visualisation, writing the original draft

and reviewing and editing the manuscript.

10



CHAPTER 2. PHD ARTICLE NO. 1: LARGE EEG AMPLITUDE EFFECTS ARE
HIGHLY SIMILAR ACROSS NECKER CUBE, SMILEY, AND ABSTRACT STIMULI

2.2 Main Manuscript

RESEARCH ARTICLELarge EEG amplitude effects are highly similaracross Necker cube, smiley, and abstractstimuli
Ellen JoosID

1,2,3, Anne Giersch1, Lukas Hecker2,3, Julia Schipp2,3, Sven P. Heinrich4,
Ludger Tebartz van Elst2, Jürgen Kornmeier2,3¤*

1 INSERM U1114, Cognitive Neuropsychology and Pathophysiology of Schizophrenia, University of
Strasbourg, Strasbourg, France, 2 Department of Psychiatry and Psychotherapy, Medical Center—
University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany, 3 Institute for Frontier
Areas of Psychology and Mental Health Freiburg, Germany, Germany, 4 Section for Functional Vision
Research, Eye Center, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg,
Freiburg, Germany

¤ Current address: Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
* juergen.kornmeier@uni-freiburg.de

Abstract
The information available through our senses is noisy, incomplete, and ambiguous. Our per-

ceptual systems have to resolve this ambiguity to construct stable and reliable percepts. Previ-

ous EEG studies found large amplitude differences in two event-related potential (ERP)

components 200 and 400 ms after stimulus onset when comparing ambiguous with disambigu-

ated visual information ("ERP Ambiguity Effects"). These effects so far generalized across

classical ambiguous figures from different visual categories at lower (geometry, motion) and

intermediate (Gestalt perception) levels. The present study aimed to examine whether these

ERP Effects are restricted to ambiguous figures or whether they also occur for different

degrees of visibility. Smiley faces with low and high visibility of emotional expressions, as well

as abstract figures with low and high visibility of a target curvature were presented. We thus

compared ambiguity effects in geometric cube stimuli with visibility in emotional faces, and with

visibility in abstract figures. ERP Effects were replicated for the geometric stimuli and very simi-

lar ERP Effects were found for stimuli with emotional face expressions but also for abstract fig-

ures. Conclusively, the ERP amplitude effects generalize across fundamentally different

stimulus categories and show highly similar effects for different degrees of stimulus ambiguity

and stimulus visibility. We postulate the existence of a high-level/meta-perceptual evaluation

instance, beyond sensory details, that estimates the certainty of a perceptual decision. The

ERP Effects may reflect differences in evaluation results.

Introduction

The information available through our senses is incomplete, noisy and sometimes ambiguous.
For example, we see objects only from one perspective, they are often partially occluded, or
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2.2. MAIN MANUSCRIPT

seen in suboptimal conditions e.g. during rain or fog. Further, the available sensory informa-
tion at a given moment can be ambiguous and thus allow for several about equally probable
but mutually exclusive interpretations. The perceptual system has to overcome such sensory
limitations and resolve ambiguities in order to create stable and reliable representations of the
external world [1].

Ambiguity can arise in different modalities [2], in different forms [3,4], and at different lev-
els of stimulus complexity. Most prominent scientific examples of ambiguity are classical
ambiguous figures like the Necker cube [5] (see the Necker lattice [6,7], a variant of the Necker
cube in Fig 1A left graph) or Rubin’s face-vase illusion [8]. Here one and the same sensory
information allows for two or more possible and about equally probable interpretations. Dur-
ing prolonged observation, our perception becomes unstable and alternates repeatedly
between different interpretations [see 3 for a review of the phenomenon].

Interestingly, there are many different uses of the term "ambiguity". One prominent area
beyond perception science is art, where–at first sight–this term seems to have a different mean-
ing. One most prominent example is Da Vinci’s famous "Mona Lisa" painting. The English
essayist and writer Walter Pater affirmed in a prominent essay, that Mona Lisa’s smile holds
an "emotional ambiguity", revealing first a "promise of an unbounded tenderness", but soon
after also a "sinister menace" [9]. A large number of articles about Mona Lisa focus on this
ambiguity in her emotional facial expression [10–12], which seems to be very different from
the ambiguity examples in perceptual science. Mona Lisa’s emotional expression is not per-
ceived as either clearly happy or clearly sad but rather more or less happy or sad. Several
nuances of emotional expressions and therefore several slightly different interpretations are
theoretically possible when observing Mona Lisa.

There is an obvious qualitative difference in the perception between such types of ambiguity
and ambiguity as used with the classical ambiguous figures, like the Necker cube. In the case of
the Necker cube, perception oscillates between two clear-cut perceptual alternatives, i.e. a per-
spective from above and a perspective from below. Therefore the perceptual decision here
seems to be binary. The interpretation of emotional facial expressions, on the other hand, has
different preconditions and is probably more complicated compared to the Necker cube. The
relations between the relevant face muscles [13] need to be analysed and related to emotional
states experienced by ourselves. The necessary reference system for emotional states is thus
endogenous and theory of mind concepts are needed [see 14 for related concepts of embodi-
ment]. Based on internal perceptual statistics generated from memorized perceptual experi-
ences over lifetime, specific patterns of face-muscle-relations receive specific probability values
for representing certain emotional states. The ambiguity of an emotional face is thus rather
based on a continuous scale of theoretically possible perceptual outcomes.

A closer look at the Necker cube relativizes its binary nature. The source of ambiguity of the
Necker cube is the projection of a 3D world on 2D retinae during the first step of vision, and
the fact that two different 3D grid objects produce identical projections on the retinae. How-
ever, one could imagine in principle infinitively many other 3D grid objects and even some 2D
objects projecting identically on the retinae as the Necker cube, as Fig 2C in Kersten and Yuille
[15] demonstrates nicely. This implies that the theoretically possible interpretations of the
Necker cube are manifold rather than twofold. The reason for the preference of two 90˚ object
interpretations is simply that 90˚ angles are much more frequent in our environment than any
other angles and thus more probable. To reduce the infinitely many possible interpretations of
the Necker cube to the two most probable interpretations, one "only" has to match the sensory
evidence to an internal statistics about perceptual experiences, learned over lifetime.

Thus, ambiguity of emotional faces and of geometric cube stimuli may share one basic
principle. The fact that the identical sensory information is compatible with several

PLOS ONE Highly similar EEG effects across Necker cube, smiley, and abstract stimuli

PLOS ONE | https://doi.org/10.1371/journal.pone.0232928 May 20, 2020 2 / 26

the article processing charge was funded by the
Baden-Wuerttemberg Ministry of Science,
Research and Art and the University of Freiburg in
the funding programme Open Access Publishing.
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

12



CHAPTER 2. PHD ARTICLE NO. 1: LARGE EEG AMPLITUDE EFFECTS ARE
HIGHLY SIMILAR ACROSS NECKER CUBE, SMILEY, AND ABSTRACT STIMULI

theoretically possible perceptual interpretations holds for both, the Necker cube and Mona
Lisa, and reflects the ambiguity of both stimulus types. However, the reduction of the num-
ber of possible interpretations to a lower number of highly probable interpretations, the
underlying probability distributions, and the subjective experience seem to differ. The com-
monality between Necker cube perception and perception of "ambiguous" emotional face
expressions may thus be the resulting perceptual uncertainty during their observation,
given insufficient sensory evidence.

Fig 1. Stimuli. (a) depicts the ambiguous Necker lattice (left) and the disambiguated variants thereof (middle and
right). Smiley (b) and abstract figure (c) stimuli are enlarged for better visibility of the "mouth" curvature. (b) depicts
the high-visibility (upper row) and low-visibility (bottom row) smileys. Happy smileys are depicted in the left column,
sad smileys in the right column. The emotional expression of the smileys was only created through the mouth
curvature. In a control condition we embedded the same mouth curvatures into abstract figures (c). Strongly bended
“mouth” curvatures are depicted in the upper row and slightly bended “mouth” curvatures in the bottom row
(upwards on the left, downwards on the right).

https://doi.org/10.1371/journal.pone.0232928.g001

PLOS ONE Highly similar EEG effects across Necker cube, smiley, and abstract stimuli
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Interesting in this context are two EEG studies by Kornmeier et al. [16,17]. They compared
event-related potentials (ERPs) evoked by ambiguous and disambiguated versions of the Nec-
ker cube and found unusually large amplitude differences in two components, an anteriorly
distributed P200, followed by a posteriorly distributed P400. Both components show small
amplitudes for ambiguous stimuli and large amplitudes for the respective disambiguated

Fig 2. Experimental paradigm. Stimuli were presented discontinuously for 1000 ms with an inter-stimulus interval of 400 ms. Participants compared
the current stimulus with the immediately preceding one. In case of identical percepts across two consecutive stimuli, participants pressed ’S’ (stability)
on a keyboard (represented as squares with the letters ’R’ and ’S’ below the time axis). If perception changed from one stimulus to the next, participants
pressed ’R’ (reversal). Stimulus type and ambiguity/visibility level stayed unchanged within experimental conditions (within rows), but differed between
experimental conditions (different rows). The order of conditions (rows) was pseudo-randomized. The specific sequences of stimuli (Si1, Si2, Si3) in b—f
are for demonstration purposes.

https://doi.org/10.1371/journal.pone.0232928.g002

PLOS ONE Highly similar EEG effects across Necker cube, smiley, and abstract stimuli

PLOS ONE | https://doi.org/10.1371/journal.pone.0232928 May 20, 2020 4 / 26

14



CHAPTER 2. PHD ARTICLE NO. 1: LARGE EEG AMPLITUDE EFFECTS ARE
HIGHLY SIMILAR ACROSS NECKER CUBE, SMILEY, AND ABSTRACT STIMULI

stimulus variants. The same pattern of results was found for ambiguity in motion (von Schil-
ler’s stroboscopic alternative motion stimulus—also known as the SAM/’motion quartet’ [18])
and also in Gestalt perception (Borings ambiguous Old/Young Woman [19]). This is remark-
able, because of the dramatic differences in the low-level features and in the sources of ambigu-
ity. One obvious commonality between these different stimulus types is ambiguity at a more
abstract level, i.e. that one and the same sensory information is about equally compatible with
different interpretations. Based on this consideration Kornmeier et al. labelled these effects the
"ERP Ambiguity Effects" [16,17] with ambiguity representation at a higher-level, beyond sen-
sory details. In the current study we were interested in whether the “ERP Ambiguity Effects”
further generalize across stimuli with emotional facial expressions and thus whether they may
be rather "ERP Uncertainty Effects". Until this issue is resolved, we decided to adopt a neutral
nomenclature, “ERP Effects”, for the methods, results and part of the discussion section.

The above-mentioned example for "ambiguity" in emotion, the Mona Lisa, is a highly com-
plex painting, which has multiple sources for uncertainty. We aimed at having maximal con-
trol over the source of uncertainty and thus created simpler line drawings of a face (smileys). It
has been found, that the mouth region is of high importance for emotion perception in faces
[e.g. 20], therefore we only varied the mouth curvature of the smileys to introduce happy and
sad emotional facial expressions. We created two smiley variants with highly visible happy and
sad expressions (mouth curvatures with strong bending), corresponding to the disambiguated
versions in the Necker lattice. Both stimulus types (smiley, Necker lattice) should result in per-
ceptual outcomes with low uncertainty. We further created two smiley versions with less visi-
ble emotional expressions (mouth curvatures with weak bending) that could be perceived
either as slightly happy or as slightly sad, corresponding to the ambiguous Necker lattices and
evoking high perceptual uncertainty. The choice of specific smiley stimulus variants was based
on a pilot psychophysical experiment (for details see Supporting Information S1 File). There,
participants were instructed to make binary decisions concerning the perceived emotional
expression (happy/sad) of the smiley faces. With these responses we could identify those stim-
ulus variants that were perceived in half of the trials as happy and in the other half as sad (low-
visibility), which were chosen as the “less visible” emotion expressing stimulus variants. We
here define the term "visibility" as the ability to spatially resolve the difference between the
mouth curvatures bending.

The smiley stimuli evoke perceptual (un)certainty due to the visibility of their mouth curva-
tures. These, in turn, evoke the perception of emotional expressions (see e.g. Fig 1B). Emotional
expressions are inevitably linked to their low-level features (e.g. mouth curvature) and cannot
be studied in isolation. This makes assumptions about the origin (line bending or emotional
expression) of perceptual (un)certainty in the case of smileys difficult in the current study.

Face processing, however, is known to be holistic in the sense that the individual stimulus
features are processed and integrated simultaneously rather than in a hierarchical manner
[21,22]. Thus, if the smileys are perceived as faces they should also be processed holistically.
Then the mouth curvature should be integrated into the face, automatically resulting in the
percept of an emotional face. To test whether smileys were at all perceived as faces, we intro-
duced a control condition with "abstract figures" containing the same low-level stimulus fea-
tures as in the smileys. However, these low-level visual details were differently arranged to
prevent the recognition of a face, with one exception: the curvatures representing the mouth in
the smiley stimuli were presented in the same size and at the same position within those
abstract figures as in the smileys. This abstract figure condition had two purposes: (1) to inves-
tigate if face-specific ERP signatures are present with smileys and absent with abstract figures.
(2) Both the occurrence of the ERP Effects in very different stimulus types (Necker cube, SAM,
Boring’s Old/Young Woman) and their relatively late occurrences (on a visual processing time

PLOS ONE Highly similar EEG effects across Necker cube, smiley, and abstract stimuli
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scale) indicate that the ERP Effects reflect higher-level processes beyond stimulus specific fea-
tures. Therefore, the second purpose of presenting the abstract figures was to investigate
whether the ERP Effects also generalize across the curvature ambiguity in abstract figures.

Methods

Participants

Twenty healthy participants (11 females) between 19 and 34 years (mean: 25.1 years) with nor-
mal or corrected-to-normal visual acuity participated in this study. All gave their informed
written consent. The study was approved by the ethics committee of the University of Freiburg
and performed in accordance with the ethical standards laid down in the Declaration of Hel-
sinki [23].

Stimuli

Three stimulus types were used: Necker lattice stimuli, smileys, and abstract figures (see Fig 1).
In separate experimental conditions, either ambiguous or disambiguated variants of the Nec-
ker lattice were presented. Smileys could have either low or high visibility of the mouth curva-
ture. The respective separate experimental conditions are labelled as "low-visibility smileys"
and "high-visibility smileys". Abstract figures could have either low or high visibility of a line
curvature located beneath the fixation cross. The respective separate experimental conditions
are labelled as "low-visibility abstract figures" and "high-visibility abstract figures".

The ambiguous Necker lattices–a combination of nine Necker cubes (Fig 1A left graph,
[5,7])–and disambiguated Necker lattices were presented in white on a dark background. The
stimuli had a size of 7.5˚×7.5˚ degrees of visual angle ("VA"). We created two disambiguated
Necker lattice variants corresponding to the two perceptual interpretations of the ambiguous
Necker lattice by adding depth cues like shading, central projection, and aerial perspective [see
24 for the OpenGL lighting model]. Both ambiguous and disambiguated Necker lattice vari-
ants had an overall luminance of 40 cd/m2. For the disambiguated Necker lattice variants this
luminance value represents an average across corners. A cross in the centre of the Necker lat-
tices served as fixation target.

The present smileys were emotional face stimuli (see Fig 1B) with a minimal parameter
space that allows maximal stimulus control and thus makes it easy to quantify levels of low and
high visibility of the emotional expression. The face border was described by a white circle
with a diameter of d = 4˚ VA on a black background. The eyes were two filled circles with a
diameter of 0.214˚ VA and a distance to the face symmetry axis of 0.611˚ VA to the left and
right respectively. The nose was indicated by a simple vertical line with 0.377˚ VA length and
0.102˚ VA width, located on the face symmetry axis at 2.076˚ VA distance from the upper cen-
tral face border. Two smiley variants with happy and sad expressions at two visibility levels
with less and highly visible happy and sad expressions were produced. Happiness/Sadness was
only controlled via the mouth curvature. The upper (sad expression) and lower (happy expres-
sions) arcs of a circle with two different radii r (r = 100.662/4.601˚ VA for slightly/strongly
happy and sad smileys) indicated the mouth.

In a pilot study those mouth curvatures were determined that could still be discriminated,
but were as similar as possible. Therefore we used the method of constant stimuli [25] (see
Supporting Information S1 File). The common anchor point of the four mouth variants/circle
arcs was the central point of the circle arcs that was kept constant at a distance of 0.916˚ VA to
the lower central face border across stimulus variants. Imaginary vertical lines at 0.611˚ VA
left and right from the (vertical) face symmetry axis defined left and right end points of the
four mouth variants/circle arcs.

PLOS ONE Highly similar EEG effects across Necker cube, smiley, and abstract stimuli
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In this study we created new smiley stimuli and thus had to verify that they were perceived
as faces. Therefore, we introduced a control condition with the following stimuli: we used the
same less and highly visible mouth elements/circle arcs as in the smileys and embedded them
into an abstract figure. These abstract figures had the same total line length and luminance (40
cd/m2) as the smileys, but the line elements were arranged in a way that hardly any face could
be recognized (see Fig 1C). Larger amplitudes of the face-specific N170 ERP component [26–
28] for smileys compared to abstract figures would be evidence for face-specific processing of
the smileys.

Procedure

In total we presented six separate experimental conditions, with two ambiguity/visibility levels
for each stimulus type (Necker lattice, smiley, abstract figure). In two experimental conditions,
either ambiguous or disambiguated variants of the Necker lattice were presented. In two con-
ditions either low-visibility or high-visibility smileys and in two other conditions either low-
visibility or high-visibility abstract figures were presented.

Necker lattice blocks lasted for 7 minutes, smiley and abstract figures blocks lasted for 6
minutes. The order of experimental conditions within one day was pseudo-randomized. The
measurements were performed within two sessions on two different days (median time
between two sessions: 2 days, range: 1–6 days). The abstract figures and Necker lattices were
always presented in the first session, the smileys in the second.

Within the disambiguated/high-visibility stimulus conditions, the two respective stimulus
variants were alternated randomly to simulate the spontaneous perceptual reversals of the
ambiguous variants. The disambiguated Necker lattice variants were alternated with a reversal
probability of 30% according to the average reversal probability of the ambiguous lattices as
known from the literature [29,30]. Low-visibility and high-visibility smileys and abstract fig-
ures were also presented with a 30% reversal probability.

Stimuli were presented discontinuously for 1000 ms with a blank inter-stimulus interval of
400 ms (see Fig 2 and [16,17]). Participants were instructed to compare their current percept
to the immediately preceding percept and to indicate perceptual reversals (change from one
percept to the other) or perceptual stability (identical percepts across two consecutive presen-
tations) for each stimulus (Fig 2) by pressing different keys (‘S’ for stability and ‘R’ for rever-
sals) on a keyboard with four keys (two keys were not used). Keys were pressed using the
thumb and ‘S’ and ‘R’ assignment to the left or the right thumb was counterbalanced between
participants. Further, participants were instructed to respond as quickly and as precisely as
possible. For Necker lattices, the two possible percepts were front-side pointing upwards or
downwards (Fig 1A middle and right graph). Smileys could be perceived as either happy or
sad. For the abstract figures the ends of the bended line could be perceived as pointing either
upwards or downwards.

EEG recording and pre-processing

EEG was recorded with 32 active silver/silver chloride electrodes at scalp locations according
to the extended 10–10 system [31]. Impedance was kept below 10 kO across electrodes. EEG
data were digitized with 1000 Hz sampling rate, and online band-pass filtered with 0.01–120
Hz. Data analysis was executed in Igor Pro 6.3 (Wavemetrics, Inc.). The data was band-pass fil-
tered offline at 0.01–25 Hz. It was re-referenced to the averaged mastoid channels for the anal-
yses of P200 and P400 ERP Effects [16,17] and re-referenced to common average for the
analyses of the face-specific N170 ERP component [26].

PLOS ONE Highly similar EEG effects across Necker cube, smiley, and abstract stimuli

PLOS ONE | https://doi.org/10.1371/journal.pone.0232928 May 20, 2020 7 / 26

17



2.2. MAIN MANUSCRIPT

Trials exceeding an artefact threshold of ±100 μV were excluded from analysis. The baseline
was defined as the average from 60 ms before to 40 ms after stimulus onset. For each stimulus
type and ambiguity/visibility level, the EEG data was averaged separately for each participant
and electrode. The trials started 60 ms before stimulus onset and were analysed until 1000 ms
after onset.

Behavioural analysis

For each stimulus type and ambiguity/visibility level, we analysed the median reaction times
and interquartile ranges with Wilcoxon signed rank tests. Reaction times are defined as the
time between stimulus onset and the key press. Responses were regarded as physiologically
plausible when their earliest occurrence was 150 ms after stimulus onset and responses were
regarded as valid until the end of the inter-stimulus interval (1200 ms after stimulus onset).

ERP analysis

The analysis focused on the known ERP Effects consisting of two positive ERP components, a
P200 with a latency of about 200 ms after stimulus onset and a fronto-central scalp distribution
and a P400 with a centro-parietal scalp distribution [16,17] occurring 400 ms after stimulus
onset. Following Kornmeier et al. [16,17], we focused on electrode Cz as spatial region of inter-
est (ROI) for both ERP components and on temporal ROIs from 100 to 300 ms for the P200
and from 300 to 600 ms for the P400. We re-referenced the data to the mastoid electrodes P7
and P8.

We further analysed the N170, a negative ERP component 170 ms after stimulus onset most
prominent at the temporal electrode positions, which is known from the face processing litera-
ture [26,32]. Spatial ROI for the N170 were electrodes P7 and P8, the temporal ROI was from
150 to 220 ms after stimulus onset [26]. For this analysis the data was re-referenced to com-
mon-average due to the spatial distribution of the N170 ERP component.

We identified the individual peak amplitudes in the respective spatial and temporal ROIs
and measured the average voltage in a ±30 ms time window around the peak [33].

19 participants with at least 30 valid trials per condition were included in the statistical anal-
ysis (1 participant had less trials in one condition and therefore was excluded from the analy-
sis). Due to low numbers of perceptual reversals, the statistical analyses were based only on
stability trials (see further elaboration in the results and discussion sections).

We conducted separate repeated-measures ANOVAs (rmANOVA) in SPSS (Version 24.0)
with the variable amplitude for the P200 and the P400 ERP components, both with the factors
stimulus (Necker lattice, smiley, abstract figure) and sensory evidence (ambiguous/low-visibil-
ity, disambiguated/high-visibility). A separate rmANOVA was conducted for the N170 com-
ponent for the variable amplitude with the factors stimulus (smiley, abstract figure), sensory
evidence (ambiguous/low-visibility, disambiguated/high-visibility) and channel (P7, P8). In
case sphericity was violated the respective degrees of freedom and p-values were Greenhouse-
Geisser corrected [34].

P-values resulting from the rmANOVAs, post-hoc t-tests and reaction time analyses
were corrected for multiple testing using the Bonferroni-Holm correction with an alpha of
0.05 [35].

All data (behavioural and EEG) of disambiguated/high-visibility stimulus variants represent
only correctly identified stability trials. Because there are no correct answers in the case of
ambiguous Necker lattices, all valid indications of perceptual stability trials were included. We
adopted the same strategy for low-visibility smiley and abstract figure conditions.
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Results

Behavioural results

Trial numbers. Participants responded to reversal and stability trials by using two dif-
ferent keys. In the case of disambiguated Necker lattices, high-visibility smileys, and high-
visibility abstract figures participants responded correctly to stability trials in more than
97% (valid trials) of all stimulus presentations on average (disambiguated Necker lattices:
Median 97.44%–IQR: 95.6–98.7%, high-visibility smileys: Mdn 100%–IQR: 98.68–100%,
high-visibility abstract figures: Mdn 98.46%–IQR: 97.02–99.48%). Ergo less than 3% of all
stability trials contained incorrect responses, non-responses or multiple responses to one
stimulus presentation. They further responded correctly to reversal trials in more than 85%
of all trials on average (disambiguated lattices: Mdn 90.77%–IQR: 89.37–93.51%, high-visi-
bility smileys: Mdn 92.05%–IQR: 87.34–95.69%, high-visibility abstract figures: Mdn
85.37%–IQR: 77.42–93.5%). Ergo less than 15% of all reversal trials contained incorrect
responses, non-responses or multiple responses to one stimulus presentation. These incor-
rect responses, non-responses and multiple responses to one stimulus presentation in dis-
ambiguated/high-visibility conditions were excluded from further analysis from both,
stability and reversal trials.

In the case of ambiguous Necker lattices there were no “correct” responses, because one
and the same stimulus variants was presented and only the perceptual responses were avail-
able. We analysed low-visibility smileys and low-visibility abstract figures according to the
ambiguous Necker lattices and thus we did not separately analyse correct and incorrect
responses to the physical stability and reversal trials, but only classified trials as valid or invalid
perceptual responses.

Valid perceptual response trials in the case of ambiguous/low-visibility stimuli are trials
where participants gave one response per stimulus in a predefined time-window (not before
150 ms and not after 1200 ms after stimulus onset), for which they had to press one of two pre-
defined keys (indicating a stability or a reversal trial). Participants gave valid perceptual
responses in more than 95% of all stimulus presentations on average (ambiguous Necker lat-
tices: Mdn 96.16%–IQR: 95.4–98.33%, low-visibility smileys: Mdn 98.74%–IQR: 95.65–100%,
low-visibility abstract figures: Mdn 95.86%–IQR: 91.11–100%). Ergo less than 5% of all trials
contained invalid perceptual responses. The invalid perceptual responses in ambiguous/low-
visibility conditions were excluded from further analysis.

Table 1 shows the remaining stability and reversal trials with and without EEG artefact
removal due to body and eye movements, eye blinks, low-conductance electrodes, etc. One has
to differ between perceptual reversal trials (endogenously determined) and physical reversal
trials (exogenously determined by the stimulus program). For disambiguated/high-visibility
conditions we included only correct responses to physical reversal trials. For ambiguous/low-
visibility conditions we included all perceptual reversal trials, irrespective of the correctness
regarding physical reversal trials (available for smileys and abstract figures, but not for Necker
lattices). The resulting reversal rates can be seen in Table 1 column six, along with the physical
reversal rate in column seven (30% for disambiguated Necker lattices, low- and high-visibility
smileys, and low- and high-visibility abstract figures).

For low-visibility stimuli the perceptual reversal rate (smileys: 6.18%, abstract figures: 5.5%)
is obviously different from the physically determined reversal rate (both 30%). Therefore, we
did analyse the correct responses in the low-visibility conditions and found correct responses
to low-visibility smileys in 9.86% (Median, IQR: 3.43–16.73%) and to low-visibility abstract
figures in 4.88% (Median, IQR: 0.88–14.57%). This explains the large difference between
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physically determined and perceptual reversal rates and is most probably related to the low vis-
ibility of the relevant stimulus information (curvature).

The number of reversal trials for disambiguated/high-visibility conditions after artefact
removal (Table 1 column 2) would be sufficient for an analysis of reversal trials. The number
of reversal trials for ambiguous/low-visibility conditions after artefact removal (Table 1 col-
umn 2), however, is very low and even the mean value of low-visibility smileys and abstract fig-
ures is below the criterion of at least 30 valid trials per participant and condition.

Recent studies about the currently investigated ERP amplitude effects had fewer conditions
and therewith more trials per condition. Separate analyses for stability and reversal trials were
possible and thus realized in these studies [16,17]. The main difference between stability and
reversal trials was an additional P3b component superimposed on the P400 in the reversal con-
ditions. In the present study we were not interested in a surprise P3b component and thus
restricted our focus on what had been labelled as the “ERP Ambiguity Effect”, which was also
found for the stability trials. We thus decided to add another experimental condition instead
of attempting to collect enough reversal trials.

Reaction times. The Wilcoxon signed rank tests on median reaction times indicated no
significant effects, neither for sensory evidence nor for stimulus type (see Fig 3 top row for
graphical illustration and Supporting Information S1 Table).

For all stimulus types, the intra-individual interquartile ranges of the reaction times signifi-
cantly differed between ambiguous/low-visibility and disambiguated/high-visibility stimulus
variants (Necker lattices: Z = 3.78, r = 0.61, p = 0.0002; smileys: Z = 3.7, r = 0.6, p = 0.0005;
abstract figures: Z = 3.54, r = 0.57, p = 0.002, see Fig 3 bottom row).

We further compared for each ambiguity/visibility level the intra-individual interquartile
ranges of the reaction times between stimulus types. The Wilcoxon tests indicated a signifi-
cant difference only between disambiguated Necker lattices and high-visibility smileys
(Z = 3.3, r = 0.54, p = 0.007, see Fig 3 bottom row and Supporting Information S1 Table). In
summary, we found equal median reaction times across stimulus types, but more reaction
time variability for ambiguous/low-visibility compared to disambiguated/high-visibility
stimulus variants.

Table 1. Trial numbers.

Number of reversal
responses (incl.
artefact trials)

Number of reversal
responses (excl.

artefact trials

Number of stability
responses (incl.
artefact trials)

Number of stability
responses (excl.
artefact trials)

Reversal rate (incl.
artefact trials)

Physical reversal
rate (percentage)

Necker
lattice – disambiguated

102.58 ±36.09 149.74 ±16.35 254.63 ±78.94 391.53 ±18.58 27.27% (25.84–29.58%) 30%

Necker
lattice – ambiguous

64.53 ±47.2 100.11 ±69.54 293.74 ±103.73 467.53 ±71.12 18.56% (8.62–25.41%) N/A

Smileys – high-visibility 94.16 ±32.01 131 ±25.25 231.89 ±66.32 340.74 ±12.68 28.03% (24.64–31.2%) 30%

Smileys – low-visibility 29.79 (±32.69) 36.74 (±36.92) 317.16 (±109.08) 452.79 (±38.88) 6.18% (2.24–9.21%) 30%

Abstract figures – high-
visibility

77.21 (±30.48) 118.11 (±21.78) 199.58 (±82.45) 323.74 (±25.06) 25.74% (23.13–28.68%) 30%

Abstract figures – low-
visibility

20.42 (±22.76) 28.74 (±27.76) 280.89 (±114.24) 455.68 (±33.24) 5.5% (0.6–9.52%) 30%

Table 1 displays the mean number of reversal trials (±Standard deviation) excluding artefact trials across participants in the second column and the mean number of all

valid reversal response trials including artefact trials (±SD) in the third column, separately for the experimental conditions (rows). Similarly for stability trials, trials

excluding artificial trials are presented in column four and trials including artificial trials are presented in column five. Column six shows the median reversal rate in

percentage (IQR) including artificial trials. Column seven shows the physical reversal rate implemented in the stimulus presentation program.

https://doi.org/10.1371/journal.pone.0232928.t001
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P200 and P400 ERP effects

One aim of this study was to replicate the P200 and P400 ERP Effects in the Necker lattice sti-
muli reported in previous studies [16,17]. A second aim was to investigate whether the effects
are also present with the smiley stimuli and in the control condition with abstract figures.

Fig 4 (a1, b1, c1) displays the grand mean ERP traces at electrode Cz for disambiguated/
high-visibility (solid lines) and ambiguous/low-visibility (dotted lines) stimulus variants. The

Fig 3. Reaction times. The upper row depicts the median (white line) of the individual median RTs (whiskers depict the interquartile range of reaction times). The
bottom row depicts the intra-individual interquartile ranges of reaction times above (white line—median interquartile range; whiskers interquartile range of individual
interquartile ranges; amb = ambiguous, disamb = disambiguated, LV = low-visibility, HV = high-visibility).

https://doi.org/10.1371/journal.pone.0232928.g003
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Fig 4. P200 and P400 ERP effects. P200 and P400 ERP Effects (re-referenced to the averaged mastoid electrodes) for Necker lattices (a1-a5),
smileys (b1-b5), and abstract figures (c1-c5). Graphs (a1), (b1), and (c1) depict grand mean ERP traces for disambiguated/high-visibility (solid
lines, dark colours) and ambiguous/low-visibility (dotted lines, light colours) stimuli. Graphs (a2, a4), (b2, b4), and (c2, c4) show grand mean
voltage maps of the P200 (a2, b2, c2) and the P400 (a4, b4, c4) of the respective stimuli. Graphs (a3, a5), (b3, b5), and (c3, c5) show scatter plots for
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P200 and the P400 show larger amplitudes with disambiguated/high-visibility compared to
ambiguous/low-visibility stimuli.

The rmANOVA for the P200 ERP amplitudes showed a significant main effect of sensory
evidence (F(1,18) = 37.6, p = 0.0002, Z2

p = 0.68). The P200 has its maximal amplitudes from

frontal to parietal electrodes near the midline for Necker lattices (Fig 4 a2), smileys (Fig 4 b2),
and abstract figures (Fig 4 c2). Fig 4 a3, b3, and c3 depict scatterplots with P200 amplitudes
from individual participants. Amplitudes are larger for disambiguated/high-visibility than for
ambiguous/low-visibility stimuli (i.e. above the identity line) for the vast majority of partici-
pants (Necker lattices: 17 out of 19; smileys: 18 out of 19; abstract figures: 15 out of 19).

The rmANOVA for the P400 ERP amplitudes also showed a significant main effect of sen-
sory evidence (F(1,18) = 27.15, p = 0.0013, Z2

p = 0.6). The P400 has its highest activation at cen-

tro-parietal electrodes for all of the three stimulus types (see Fig 4 a4, b4, c4). Scatter plots in
Fig 4 a5, b5, and c5 depict the individual P400 amplitudes, which are larger (i.e. above the
bisection line) for disambiguated/high-visibility than for ambiguous/low-visibility stimuli for
the vast majority of participants (Necker lattices and abstract figures: 18 out of 19 participants
respectively; smileys: 19 out of 19 participants).

Comparison of P200 and P400 ERP effects across stimulus types

Fig 4 (a1), (b1), and (c1) depict similar P200 and P400 ERP Effects across stimulus types. Fig 5
upper row allows a direct comparison of the mean amplitudes (±SEM) for the P200 (a) and the
P400 (b) ERP components.

Neither the rmANOVA on P200, nor on P400 ERP amplitude show a significant main
effect for the fact stimulus (P200: F(2,36) = 3.85, p = 0.41; P400: F(2,36) = 0.81, p = 0.91). There
were significant interactions between the factors stimulus and sensory evidence for both, the
P200 (F(2,36) = 13.24, p = 0.001, Z2

p = 0.42) and the P400 (F(2,36) = 40.97, p = 1e-08, Z2
p = 0.69).

In post-hoc t-tests we compared the peak differences between disambiguated/high-visibility
and ambiguous/low-visibility stimulus variants between stimulus types (see Fig 5 bottom row).
There were no significant effects of the peak differences between stimulus types in neither the
P200 (Necker lattice vs. smiley: t(18) = -2.28, p = 0.42, Cohen’s d = 0.52; Necker lattice vs.
abstract figure: t(18) = 0.09, p = 0.93, Cohen’s d = 0.02; smiley vs. abstract figure: t(18) = 1.91,
p = 0.62, Cohen’s d = 0.44), nor in the P400 (Necker lattice vs. smiley: t(18) = -1.19, p = 0.92,
Cohen’s d = 0.27; Necker lattice vs. abstract figure: t(18) = -2.84, p = 0.19, Cohen’s d = 0.65;
smiley vs. abstract figure: t(18) = -2.7, p = 0.23, Cohen’s d = 0.62). We additionally calculated
the effects size (Cohen’s d) of the difference between disambiguated/high-visibility and ambig-
uous/low-visibility conditions for each stimulus type separately. The results can be found in
the following Table 2.

In summary, we replicated the P200 and P400 ERP Effects for the Necker lattice stimuli
[16,17] and found highly similar ERP Effects (concerning timing, location and amplitude
effect sizes) for the smileys and abstract figures.

N170 ERP results for smileys and abstract figures

The N170 is known to be related to face-specific processing [26] and can thus provide evidence
for or against the processing of the smileys as faces. If smileys were perceived as faces, they

the P200 (a3, b3, c3) and the P400 (a5, b5, c5) with amplitudes of individual participants for the disambiguated/high-visibility (ordinate) versus
ambiguous/low-visibility stimuli (abscissa). In all scatter plots the vast majority of data points are above the bisection line, indicating larger
amplitudes for disambiguated/high-visibility compared to ambiguous/low-visibility stimulus variants.

https://doi.org/10.1371/journal.pone.0232928.g004
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should evoke N170 ERPs with larger (negative) amplitudes than the abstract figures. We tested
whether this was the case in the present data.

Fig 6 displays the grand mean ERP data averaged across electrodes P7 and P8 and re-refer-
enced to common average for the ambiguous/low-visibility (dotted lines, light colours) and
disambiguated/high-visibility stimuli (solid lines, dark colours). Fig 6 (A) shows the ERP traces
from high-visibility smileys (dark blue solid line) and high-visibility abstract figures (dark red
solid line). Fig 6 (D) displays the grand mean data of low-visibility smileys (light blue dotted
line) and low-visibility abstract figures (light red dotted line). The ERP traces in Fig (6A and
6D) show the same topology, with a positive deflection at around 150 ms, followed by a

Table 2. Effect sizes ERP effects.

P200 P400

Necker lattices 1.36 0.97

Smileys 1.44 2.13

Abstract figures 0.71 2.08

Table 2 displays effects sizes (Cohen’s d) for the difference between disambiguated/high-visibility and ambiguous/

low-visibility conditions, separately for each stimulus type and ERP component (P200, P400).

https://doi.org/10.1371/journal.pone.0232928.t002

Fig 5. Grand mean P200 and P400 amplitudes. Top row: Grand mean amplitudes (±SEM) of the P200 (a) and P400 (b) ERP amplitudes are depicted for ambiguous
(amb)/low-visibility (LV) and disambiguated (disamb)/high-visibility (HV) stimuli (upper row). Bottom row: Grand mean ERP amplitude differences for disambiguated/
high-visibility minus ambiguous/low-visibility stimulus variants. All values result from the average around peak analysis (see methods section).

https://doi.org/10.1371/journal.pone.0232928.g005
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Fig 6. N170 for smileys and abstract figures. N170 effects (re-referenced to common average) in smileys and abstract figures. (a) and (d) depict the average of P7
and P8 grand mean data of smileys and abstract figures. (a) displays the ERP traces for the high-visibility variants (high-visibility smileys = dark blue solid line; high-
visibility abstract figures = dark red solid line) and (d) for the low-visibility variants (low-visibility smileys = light blue dotted line; low-visibility abstract figure = light

PLOS ONE Highly similar EEG effects across Necker cube, smiley, and abstract stimuli

PLOS ONE | https://doi.org/10.1371/journal.pone.0232928 May 20, 2020 15 / 26

25



2.2. MAIN MANUSCRIPT

negative deflection at around 180 ms (the N170). The maximal (negative) excursion of the
N170 is around electrodes P7 and P8 for high-visibility smileys, high-visibility abstract figures,
and for low-visibility smileys (see voltage maps in Fig 6B (left and right) and e (left)), which is
in accordance with the literature [26]. The N170 of the low-visibility abstract figures shows the
smallest negative excursions, staying close to zero. This may explain the different voltage distri-
bution across electrodes for this condition as displayed in the voltage maps (Fig 6E right).

The rmANOVA of the N170 ERP amplitude showed a significant main effect of stimulus (F
(1,18) = 61.69, p = 9e-06, Z2

p = 0.77). The amplitude differences between smileys and abstract

figures can be seen in Fig 6 (C) for high-visibility and in Fig 6 (f) for low-visibility stimulus
variants.

The rmANOVA further showed a significant main effect of sensory evidence (F(1,18) =
131.45, p = 3e-08, Z2

p = 0.88), while no main effect for the factor electrode (F(1,18) = 1.32,

p = 0.92) indicated no detectable hemispheric difference. No interactions were indicated
between none of the factors (for details see Table C in Supporting Information S2 File).

In summary, we found larger (negative) N170 amplitudes for smileys compared to abstract
figures. We further found larger (negative) N170 amplitudes for high-visibility compared to
low-visibility stimulus variants.

Discussion

The current study focused on two large ERP amplitude effects, labelled as the ERP Ambiguity
Effects [16,17]: two ERP components (P200 and P400) show small amplitudes for ambiguous
stimuli and large amplitudes for disambiguated stimulus variants. So far, these effects were
found across very different lower (geometry, motion) and intermediate levels (Borings Old/
Young Woman) of stimulus ambiguity. They have thus been attributed to stimulus ambiguity.
In the present experiments, we investigated whether the ERP Ambiguity Effects can also be
evoked by faces with high vs. low visibility of emotional expressions and in a control condi-
tions with high and low visibility of low-level visual feature, namely the degree of curve
bending.

We replicated these two ERP amplitude effects for Necker lattice stimuli and found similar
effects for smiley faces and for abstract figures.

Perception of face stimuli is known to evoke larger N170 ERP components than non-face
objects [26]. Larger (negative) amplitudes of the N170 ERP component for smileys compared
to abstract figures thus indicate that the smileys were indeed processed as faces.

Median reaction times showed neither effects of sensory evidence (ambiguous/low-visibil-
ity, disambiguated/high-visibility) nor of stimulus type (Necker lattices, smileys, abstract fig-
ures). However, reaction times variability was overall larger for ambiguous/low-visibility than
for disambiguated/high-visibility stimuli.

Can we really compare ambiguity in Necker lattices, smileys and abstract
figures?

The term "ambiguity" is often used in the sense that one and the same sensory information is
compatible with more than one interpretation. In the case of the classical ambiguous figures,

red dotted line). (b) and (e) show the respective grand mean scalp maps of the N170. The scatter plots in (c) and (f) show the N170 amplitudes from individual
participants for smileys (ordinate) versus abstract figures (abscissa) for high-visibility (c) and low-visibility (f) stimulus variants at electrodes P7 (filled triangles) and
P8 (hollow circles) separately. For both visibility levels, the vast majority of data points are below the bisection line indicating larger (more negative) N170 amplitudes
for smileys than for abstract figures. No hemispheric difference is indicated.

https://doi.org/10.1371/journal.pone.0232928.g006
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like the Necker cube, the sensory information is most compatible with two interpretations and
perception oscillates between them. We do not have this binary situation with two distinct per-
ceptual experiences when looking at the low-visibility smileys. However, the results of our psy-
chophysical pilot study, reported in the Supporting Information S1 File show that the smileys
with low visibility of the mouth curvature (close to the inflection point of the sigmoidal func-
tion in Fig A in Supporting Information S1 File) can be sometimes perceived as happy and
sometimes as sad. Further, the high visibility stimulus variants are most often perceived in
accordance with the intended respective stimulus manipulation. The stimuli from the two cat-
egories are thus located an about comparable perceptual scales.

It is of course possible to execute the task of the smiley pilot study as well as the task in the
subsequent EEG study simply by focusing on the mouth curvature, while ignoring the face
information from the smileys. One obvious question is thus, whether the smileys are indeed
processed as faces. Overall larger P200 amplitudes for smileys than for abstract figures indicate
principle differences in their processing even though the low-level features, i.e. luminance and
overall line length were identical. Further, the larger N170 ERPs for smileys than for abstract
figures provide physiological evidence for face-specific processing in the former case. A
detailed analysis of the N170, including independent component analysis (ICA), can be found
in the Supporting Information S3 File. Additionally, several studies indicate that our percep-
tual system automatically interprets any information with an approximately face-like structure
as a face [36–38]. Taken together, these arguments make it very probable, that the smileys are
perceived as faces.

Assuming face-perception mechanisms for the smileys, a second question is whether per-
ceptual uncertainty in the case of smiley stimuli occurs at the level of face-emotion decoding,
or at the level of the mouth curvature processing, or both? Differences in the overall pattern of
the P200 and P400 ERP Effects between smileys and abstract figures would provide evidence
for the former. This, however, would not stand in line with the generality of the ERP Effects
found so far [16,17].

In fact, we did find the same overall pattern of P200 and P400 ERP Effects in Necker lattice,
smiley, and abstract figure stimuli, even though effect sizes differ between stimulus types (for
further discussion see below). This finding is in line with the overall pattern of generality of
the ERP Effects across stimulus types, indicating processing differences at an abstract level
beyond lower-level stimulus-specific processing steps (see discussion below). Our N170 inter-
pretation strongly indicates that smileys are processed in a face-like manner. But based on the
present data we cannot say whether the curvature is perceptually resolved during an early
visual processing step, or alternatively during a holistic, higher-level face and emotion process-
ing step. Similarly, we do not know whether the ambiguity resolution in the Necker lattice
takes place at the level of single lines or at the level of bound line object (= lattice).

Numerous studies about classical ambiguous figures as well as studies in the context of the
predictive coding theory discuss perception as a decision process based on probabilities [39–
41]. The perceptual decision task is thus about finding the most probable interpretation for the
given sensory information with a given visibility and/or ambiguity level. The probabilities of
perceptual interpretations in turn are influenced by a number of factors, like previous percep-
tual experiences on different memory time scales. Studies about priming and adaptation both
in the ambiguous figure literature [e.g. 42–46] but also in the face perception literature [e.g.
47,48], the emotional face expression literature [49] and beyond [50,51] indicate influence of
the immediate perceptual history on the present percept. Studies about an a priori bias e.g. in
the case of the Necker cube [52] but also the face inversion effect [53,54] indicate the impor-
tance of longer-term memory. Perceptual probability values can further be influenced by the
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current context [55], by observers intents and goals, but also by task instruction in experiments
about perception in the lab [e.g. 56,57].

In the case of classical ambiguous figures, the underlying probability distribution is discrete
(mostly bimodal, almost binary) in nature. In the case of the Necker cube, for example, 90˚
interpretations are most probable, because we live in a world with many 90˚ angles, although
many other perceptual interpretations are principally possible [see Fig 2C in 15]. The task of
the current paradigm, asking for a binary perceptual decision, is compatible with this. The
"natural" probability distribution for the low-visibility smiley is most probably not binary. The
strategy of the current study was to "binarize" the probability distribution of the low-visibility
smileys and of the low-visibility abstract figures with our choice of stimuli and with the binary
task.

Ambiguity, probability, perceptual decision, and meta-perception–about
the functional roles of the ERP effects

P200 and P400 in the literature. The currently investigated ERP Effects consist of ampli-
tude differences in two ERP components, a centro-frontal P200 and a centro-parietal P400.
The question is, what kind of neural processing do the P200 and the P400 amplitude effects
reflect?

The results from the P200 time window in the current study indicate that there are two pos-
itivities at around 200 ms, one is a posterior P200, the other a more anterior P200 ERP compo-
nent. The posterior P200 seems to be equally large as the anterior P200 for Necker lattice and
smiley stimuli and even larger for the abstract figures (see voltage maps in Fig 4, right). The
posterior P200 in the present data is most likely related to latest stages of sensory processing of
the stimuli and probably related to posterior P200 components from the literature. In the liter-
ature, the posterior P200 is evoked by stimuli from different modalities [e.g. 58 for a visually
evoked P200] although most studies used auditory stimuli [59]. Melloni et al. [60] modified
the visibility of a letter embedded in varying levels of noise. They found a right-lateralized pos-
terior P200, which was inversely related to letter visibility and depended on prior stimulus
knowledge.

Only a few studies reported an anterior P200, similar to the present P200. Amongst these
are Luck & Hillary [61], studying feature detection across visual dimensions, Taosheng et al.
[62], studying modality-independent emotional salience, and Curran & Dien [63], studying
the match of sensory input with memory contents [see also 64,65]. Kornmeier et al. [16,17]
and a recent study [66] report a fronto-central P200 in the context of visual ambiguity (see also
discussion below). These results about the anterior P200 provide evidence for its functional
role beyond early sensory processing. In a recent study from our lab, we further found evi-
dence for a functional separation between the P200, reflecting the ambiguity level of working
memory information, and the P400, reflecting the integration of working memory content
and sensory evidence [64].

The P400 is similar to the well-known P300 [specifically the P3b, see 67], which typically
occurs in “oddball paradigms”: the P300 occurs between 250 ms and 600 ms after onset of an
infrequent and task-relevant target stimulus (the “oddball”) or after infrequent omissions of a
periodical stimulus. The P300 latency is negatively correlated with reaction times and its
amplitude is negatively correlated with the target stimulus’ frequency and positively correlated
with stimulus discriminability [for recent reviews see 68,69]. One reason for our experimental
block design, with either only ambiguous or only disambiguated stimuli, and for focusing only
on stability trials and with this removing trials with oddball-like reversal events, was to avoid
such an oddball P300 response. Delplanque et al. [70] investigated P300 ERPs evoked by
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oddball stimuli comprised of faces with unpleasant, pleasant or neutral emotional expressions.
They found a typical P300 oddball effect with larger P300 amplitudes for faces with emotional
valence compared to neutral faces. They assume a separate emotion-processing step on top of
the oddball processing. The latter may be in line with our P400 findings in response to the
smiley stimuli.

All of these arguments and observations indicate that the P400 cannot be reduced to the
classical P300, although the two components may share some neural generators. In their for-
mer publication Kornmeier et al. [17] discuss this issue in more detail.

We recently found that the P200 and P400 ERP Effects are only present if the ambiguous
and disambiguated stimuli are in the attentional focus [71,72]. This indicates that a certain rel-
evance of the perceptual outcome, e.g. for the execution of a task, is a necessary precondition
of the P200 and P400 ERP Effects. The processes underlying the ERP Effects are thus not exe-
cuted automatically when the related sensory information is present. This is further evidence
for higher-level processing steps related to attention and task-relevance.

Can reversal rates explain the ERP amplitude effects? The physical reversal rates for the
disambiguated lattice stimuli as well as for low-visibility and high-visibility smileys and
abstract figures were predefined to 30% by the stimulus program. This is about the rate of the
typical reversal rates found for classical ambiguous figures, like the Necker cube [3,73]. As can
be seen in Table 1 the perceptual reversal rates for the Necker lattice are in the expected range.

The perceptual reversal rates for the disambiguated lattice variants and the high-visibility
smileys and abstract figures are in good confirmation with the predefined physical reversal
rates. This result was expected because of the high visibility of the relevant curvature within
the stimuli.

The perceptual reversal rates for the low-visibility smileys and abstract figures are roughly
by factor 6 smaller than their predefined physical reversal rates of 30%. Given the low visibility
of the curvature in these stimuli we expected a partial de-synchronization between physical
and perceptual reversal events. However, the large decrease of reversal percepts translates into
an increase of stability responses. This may indicate the influence of a priori perceptual biases
(e.g. a preference for happy faces or upward bending), and/or perceptual priming evoked by
the perception of immediately preceding stimuli. Further the large amount of stability
responses may indicate that participants did not perceive the emotion/line bending as one of
the two given options (e.g. smileys are perceived as neutral and neither as happy nor as sad)
and a response strategy (e.g. preference for perceptual stability) would be the consequence. We
did not collect information about individual strategies. Thus, we can neither analyse nor rule
out the potential influence of such individual strategies to overcome low visibility and percep-
tual uncertainty on the ERP amplitude effects.

However, as already mentioned in the introduction there are qualitative differences
between the perception of the ambiguous Necker lattice and the low-visibility smileys and
abstract figures. At each moment we seem to have a clear and distinct 3D percept of the Necker
lattice, which is one of the two most probable 90˚-angle interpretations. The perceptual deci-
sion is thus an either-or decision. In the case of low-visibility smileys and abstract figures the
perceptual decisions are rather a more-or-less decisions and the binarity only comes from the
task constriction. This qualitative difference may be one reason for the quantitative difference
in the perceptual reversal rates between the Necker lattices (close to 30%) and the low-visibility
smileys and abstract figures (around 6%).

Given these and other differences it is even more remarkable that the ERP amplitude effects
are that similar across stimulus types. The latter indicates that these effects reflect processes
that are also beyond these differences, which we will discuss below.
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Do the P200 and P400 ERP Effects reflect stability of neural representations underlying
percepts? As already discussed above, because the sensory information is a priori incomplete,
noisy and to varying degrees ambiguous, disambiguation, interpretation, and finally a percep-
tual decision become necessary. This decision is easy if a good quality of sensory information
makes one interpretation highly probable compared to other theoretically possible interpreta-
tions. The resulting perceptual outcome will then be stable and reliable. In the case of ambigu-
ity, and/or low visibility, perceptual decisions become more difficult and perceptual outcomes
less stable over time, possibly resulting in spontaneous perceptual alternations as known from
classical ambiguous figures.

It may be possible that the amplitude differences found for the P200 and P400 simply reflect
differences in stability of neural representations. If this would be the case, we should expect
that the neural representations of motion stimuli (e.g. the SAM), geometric cube stimuli (e.g.
the Necker lattices) and face stimuli (e.g. the smileys) differ between each other, because they
should be differently represented in the brain. However, the temporal and spatial patterns of
our ERP Effects are surprisingly similar between these different stimulus categories. Further,
the factor stimulus from the rmANOVA as well as the post-hoc t-tests did not indicate a signif-
icant difference of the amplitude effects between stimulus types.

Of course, it is not possible to make strong inferences from spatial distributions based on
EEG voltage maps, and null-results from statistical tests do neither allow for far-reaching inter-
pretations. Further, the significant interactions between the factors stimulus and sensory evi-
dence, as indicated in the rmANOVAs, and differences in the sizes of the amplitude effects
between stimulus categories (see Table 2) point to some differences. However, taking into
account the large differences between stimulus categories (low-level features, but also conceptual
differences), the identified ERP amplitudes are remarkably similar across stimulus categories.

EEG source analyses combined with fMRI data may resolve whether similarities on the
scalp are based on the same underlying sources across stimuli. We are currently running an
fMRI study investigating this question. Preliminary results indicate common sources across
stimulus categories, making it less likely that the P200 and P400 ERP Effects reflect stability of
perceptual / neural representations [74].

Do the P200 and P400 ERP Effects reflect meta-perceptual processing? An alternative
interpretation of the present ERP amplitude effects is related to the recently discussed concept
of meta-perception/ visual confidence. According to a definition given by Mamassian [41]
meta-perception / visual confidence is "[. . .] the ability to estimate the accuracy of our visual
decisions [. . .]", and with this it is "[. . .] a judgment on a judgment [. . .] ".

A closer look into the literature provides a rough time scale of visual processing and a very
good guideline in this respect is the paper by Thorpe & Fabre-Thorpe [75]. Processing of
objects and faces already takes place between 80 and 100 ms after stimulus onset and categori-
cal judgements and decision making can be measured at about 120–160 ms after stimulus
onset, as measured in monkeys. Values from humans may slightly differ and of course such
values also strongly depend on stimulus identities. However, comparable values from humans
indicate at least similar time scales [76–79]. Latencies of 200 ms (P200) and 400 ms (P400)
thus indicate that the effects we found are most probably post-decision processes and may
thus rather reflect estimations about the reliability of perceptual decisions.

We thus postulate that a secondary, meta-perceptual instance may evaluate the stability of
neural/perceptual representations and the P200 and P400 amplitudes may reflect the evaluation
result–or in other words–the certainty of our perceptual decision, with large amplitudes in the
case of high reliability and vice versa. Assuming that this meta-perceptual instance is beyond sen-
sory details—perhaps even beyond modalities—this approach may nicely explain the generality
of our effects. In this case our results would present remarkably strong ERP correlates of meta-
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perceptual processing. It is important to add that meta-perceptual processing is not necessarily
conscious processing. It is well possible and even probable that such meta-perceptual evaluations
take place subconsciously in the majority of the cases and do not necessarily influence the quality
of our conscious perceptual experience. Evaluations may only become conscious if their results
involve substantial consequences for the current goals and the immediate behaviour.

Conclusion and outlook

The present results further extend the generality of the P200 and P400 ERP Effects across stim-
ulus types, with larger amplitudes for disambiguated/high-visibility compared to ambiguous/
low-visibility stimulus variants. Importantly the effects were not only shown for classical
ambiguous figures, but also for stimuli with low visibility of certain stimulus features, i.e. cur-
vature. In future experiments it would be interesting to investigate the ERP Effects in other
modalities like audition and touch.

We currently interpret the generality of the ERP Effects as an indication for meta-perceptual
evaluations beyond sensory details and categories, and thus as an indication of certainty or
uncertainty of a perceptual decision. As an important next step on our agenda to test this inter-
pretation, the present paradigm will be extended by a confidence judgement as a second task. It
would be further support of our hypothesis, if one and the same ambiguous stimulus were to
elicit P200 and/or P400 amplitude modulations as a function of confidence ratings. Another
step could be to compare ERP results from one experiment with classical ambiguous stimuli
and disambiguated stimulus variants with ERP results from a second experiment where the
unambiguous stimuli embedded in high and low visual noise will be compared. Visual noise is
another–ecologically reasonable–way to modulate stimulus visibility. Preliminary results from
our lab indicate highly similar P200 and P400 amplitude effects with noise stimuli [80].

Stating that both, the P200 and the P400 effects correlate with meta-perceptual processing
is still rather unspecific. The difference in latency between P200 and P400 of 200 ms, which is
quite long on perceptual processing time scales, indicates at least two separate processing
steps. An interesting question is thus about the functional difference between P200 and P400.
An important aspect of our paradigm is, that a current stimulus needs to be compared with
the percept of the previous one. Thus, access to working memory content is necessary in order
to execute this task. Recent results from our lab provide evidence that the working memory
stores the identity of a previously perceived stimulus along with its ambiguity level and/or a
corresponding reliability label. We found that the P200 effect can be explained almost entirely
by such a working memory effect [65]. This finding is in good confirmation with theories
about meta-perceptual rating and predictive coding approaches [81,82] emphasizing temporal
aspects (i.e. memory and prediction) of perception and meta-perception.

The P400 latency and the present reaction times have similar latencies. Ambiguous sensory
input results in unstable and thus unreliable percepts and uncertain motor decisions during
task execution, i.e. which key to press. The P400 might reflect processes at the intersection of
perception, meta-perception and motor execution. However, uncertainty during motor execu-
tion should result in more variable and overall longer reaction times compared to certain situa-
tions. In response to ambiguous sensory input we found more variance but no increase in
reaction times compared to unambiguous input, which puts this interpretation into question.
More studies are necessary to further clarify the mechanisms underlying the P200 and the
P400 effects.

In conclusion, we here report ERP Effects with a large degree of generalization across differ-
ent stimulus material. These effects show exceptionally large effect sizes and are clearly visible
in almost all participants, which is rather uncommon for ERP effects, because of the known a
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priori low signal-to-noise ratio of EEG [83]. This may make these effects interesting in clinical
contexts and related studies are currently in progress. In view of what we know so far about
the ERP Ambiguity Effects we favour explanations in the context of meta-perceptual confi-
dence judgments and (un)certainty of perceptual decisions. If this direction of interpretation
will be confirmed in subsequent studies, we need to think about re-labelling this effect from
"ERP Ambiguity Effect" to "ERP Uncertainty Effect" or "ERP Confidence Effect".
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71. Krüger K, Bach M, Heinrich SP, Kornmeier J. Multistable Perception: Does Stability of a Neural Object
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2.3 Supplementary Material 1

S1 File. Psychophysical Pilot Study to identify low-visibility Smileys. 
The present study used ambiguous and disambiguated variants of Necker lattices and low-
visibility and high-visibility stimulus variants of smileys and abstract figures. The 
perceptually ambiguous and disambiguated lattice stimuli were adopted from previous studies 
[1,2]. We used smileys with low-visibility of their emotional expression, in contrast, for the 
first time in this study. It was necessary to access the perceptual scale of visibility of the 
emotional expressions as a function of the stimulus variable 'mouth curvature'.  
We thus conducted a pilot study with 7 participants to determine probabilities of happy and 
sad face percepts as a function of the parameter mouth curvature using the method of constant 
stimuli [3]. All participants gave their informed written consent. The study was approved by 
the ethics committee of the University of Freiburg and in accordance with the ethical 
standards laid down in the Declaration of Helsinki [4]. 
10 smiley variants were presented in random order 10 times for 800 ms each (ISI = 200 ms) 
and participants were asked to indicate for each smiley stimulus whether it was perceived as 
happy or sad. The smiley variants differed in their mouth curvature with radii of r = 11.237° 
VA (variants 0 and 9), r = 14.422° VA (variants 1 and 8), r = 20.193° VA (variants 2 and 7), 
r = 33.527° VA (variants 3 and 6), and r = 100.662° VA (variants 4 and 5) (see Methods 
section). 
Psychometric functions were fitted to each participant's average responses (across the ten 
stimulus repetitions) and averaged across participants. Figure A depicts the psychometric 
function of the averaged data across participants (±SEMs). The sigmoid inflection point 
indicates the most low-visibility smiley variant, i.e. where both, happy and sad smiley 
percepts are equally likely.  
One problem with the so identified low-visibility smiley stimuli is that they are not perceived 
in a binary manner as the ambiguous lattices. In the case of ambiguous lattice stimuli, 
observers typically alternate spontaneously between two perceptual interpretations with 
precisely defined spatial angles. In contrast there are typically no spontaneous alternations 
between a clearly happy and a clearly sad percept if a smiley variant around the inflection 
point is presented (e.g. smiley 4 in Supporting Information Fig. S1). Rather the emotional 
expression of smiley 4 (the identified low-visibility variant) is perceived as slightly happier or 
sadder or even as neutral. To circumvent this problem, we took the two smiley variants 
closest to the inflection point (smiley 4 and smiley 5 as low-visibility smiley variants in the 
main study (see also the Discussion section for further elaboration on this aspect) and used a 
task with only two response options (perceptual stability and perceptual reversals). To ensure 
clear percepts, the high-visibility smileys shown in the main study had a stronger mouth 
bending than the smileys variants 0 and 9 from this pilot study.  
For the control experiment in the main EEG study we followed the above described logic to 
decide for appropriate stimulus variants and simply isolated the mouth variants of these four 
smiley variants and embedded them to newly created abstract figures. 
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Supporting Information File 1 - Fig A Pilot study to identify low-visibility mouth curvatures in 
smileys. The top row depicts the psychometric function of the grand means (across participants) 
displaying the probability of perceived sadness as a function of the randomly presented smiley 
variants (± SEM). At the bottom six examples of smiley variants are depicted (from left to right: smiley 
variants 0, 2, 4, 5, 7, 9). Smiley variants 4 and 5 were used as low-visibility (of the mouth curvature) 
variants. High-visibility smiley variants, used in the main study had even sharper mouth curvatures 
than smileys 0 and 9 to ensure clear percepts. 
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2.4 Supplementary Material 2

S2 Table. Reaction times - statistical results. 
 
 
Supporting Information Table S2. Reaction Time data - Wilcoxon tests 
 

Dependent 
variable 

Contrast Z score (based on 
positive ranks) 

Effect 
size r 

p-value 
corrected 

(uncorrected) 
 
 
 
 
Median 

Sensory evidence (ambiguous/low-visibility vs. disambiguated/high-
visibility) 
Lattice 1.05 0.17 0.93 (0.31) 
Smiley 0.54 0.09 0.58 (0.58) 

Abstract Figure 0.85 0.14 0.93 (0.42) 

Stimulus type (collapsed across ambiguity/visibility levels) 

Lattice vs. Smiley 1.01 0.16 0.91 (0.33) 

Lattice vs. Abstract Figure 1.65 0.27 0.72 (0.1) 

Smiley vs. Abstract Figure 0.77 0.12 0.85 (0.47) 

 
 
 
 
 
 
 
Inter-
quartile 
Range 

Sensory evidence (ambiguous/low-visibility vs. disambiguated/high-
visibility) 
Lattice*** 3.78 0.61 0.0002 (7e-06) 

Smiley** 3.7 0.6 0.0005 (2e-05) 

Abstract Figure** 3.54 0.57 0.002 (7e-05) 

Stimulus type (disambiguated/high-visibility stimuli) 

Lattice vs. Smiley** 3.3 0.54 0.007 (0.0003) 

Lattice vs. Abstract Figure 2.05 0.33 0.44 (0.04) 

Smiley vs. Abstract Figure 2.13 0.35 0.41 (0.03) 

Stimulus type (ambiguous/low-visibility stimuli) 

Lattice vs. Smiley 1.25 0.2 0.93 (0.23) 

Lattice vs. Abstract Figure 0.32 0.05 0.77 (0.77) 

Smiley vs. Abstract Figure 1.53 0.25 0.78 (0.13) 

 
Bonferroni-Holm corrected (uncorrected p-values; Significance Codes: p<0.05*; p<0.01**; p<0.001***). 
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2.5 Supplementary Material 3

S3 File. ERPs - statistical results. 
 
 
 
Supporting Information S3 File – Table A. ERP Effects - Repeated measures ANOVA 
on ERP Amplitude at electrode Cz. 
 Factor F-Value p-value corrected 

(uncorrected) 

 
P200 

Stimulus 3.85 0.41 (0.03) 
Sensory evidence*** 37.6 0.00023 (9e-06) 

Stimulus : Sensory 
evidence** 

13.24 0.0011 (0.00005) 

    

 
P400 

Stimulus 0.81 0.91 (0.45) 
Sensory evidence ** 27.15 0.0013 (5e-05) 

Stimulus : Sensory 
evidence*** 

40.97 1e-08 (5e-10) 

Repeated measures ANOVA results for the amplitudes of the two ERP components P200 and P400 at 
electrode Cz  with Bonferroni-Holm corrected (and uncorrected p-values). The factor stimulus has 
three levels: Lattice, Smiley, Abstract Figure. The Factor sensory evidence has two levels: 
disambiguated/high-visibility and ambiguous/low-visibility (Significance Codes: p<0.05*; p<0.01**; 
p<0.001***). 
 
 
 
 
Supporting Information S3 File - Table B. Post-hoc t-tests for the interaction of  
stimulus*sensory evidence. 
 Comparison t-value p-value corrected 

(uncorrected) 
Cohen’s d 

 
P200 
(D-A) 

 
 

Lattice vs. Smiley -2.28 0.42 (0.04) 0.52 
Smiley vs. Abstract Figure 1.91 0.62 (0.07) 0.44 

Lattice vs. Abstract Figure 0.09 0.93 (0.93) 0.02 

     
P400 
(D-A) 

Lattice vs. Smiley -1.19 0.92 (0.25) 0.27 
Smiley vs. Abstract Figure -2.7 0.23 (0.01) 0.62 
Lattice vs. Abstract Figure -2.84 0.19 (0.01) 0.65 

Post-hoc t-tests for rmANOVA result of a significant interaction (stimulus*sensory evidence) at 
electrode Cz. Peak differences between disambiguated/high-visibility and ambiguous/low-visibility 
stimulus variants were calculated and p-values are Bonferroni-Holm corrected (and uncorrected p-
values; Significance Codes: p<0.05*; p<0.01**; p<0.001***). 
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Supporting Information Table S3 File – Table C. N170 - Repeated measures ANOVA on 
ERP Amplitude. 
 Factor F-value p-value corrected 

(uncorrected) 

 
N170 

Stimulus*** 61.69 9e-06 (3e-07) 
Sensory evidence *** 131.45 3e-08 (1e-09) 

Electrode 1.32 0.92 (0.27) 

Stimulus : Sensory 
evidence 

0.51 0.74 (0.49) 

Stimulus : Electrode 0.23 0.64 (0.64) 

Sensory evidence: 
Electrode 

0.46 0.51 (0.51) 

Stimulus : Sensory 
evidence : Electrode 

0.02 0.89 (0.89) 

Repeated measures ANOVA results for the amplitudes of the N170 ERP component with Bonferroni-
Holm corrected p-values (uncorrected p-values). The factor stimulus has two levels: Smiley, Abstract 
Figure. The factor sensory evidence has two levels: disambiguated/high-visibility and ambiguous/low-
visibility. The factor electrode has two factors: P7 and P8 (Significance Codes: p<0.05*; p<0.01**; 
p<0.001***). 
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2.6 Supplementary Material 4

S4 File. Face Perception and the N170 ERP Component. 
Background 
One of the major foci of the present experiments was to study ERP correlates of visibility of 
the emotional content of smiley face stimuli. We manipulated emotion by varying the smileys' 
mouth curvatures. One problem of this approach is that participants could simply distinguish 
between upward and downward oriented (mouth) curvatures to execute the task. Face 
perception is in principle not necessary. 
To clarify whether the smileys were really perceived as faces, we presented the same mouth 
curvatures in the context of abstract figures as a control condition. 
Face perception is known to evoke larger N170 ERP components than objects [5]. If smileys 
were perceived as faces, they should evoke N170 ERPs with larger amplitudes than the 
abstract figures.  
 
Analysis overview 
The Independent Component Analysis (ICA) was applied to isolate an independent EEG 
component that most probably represents the N170. The amplitudes of the respective 
components from smiley and abstract figure stimuli were then compared with each other. The 
basic steps were the following:  
 

• ICA on each individual dataset 
• Isolation of independent components (ICs) most likely representing the N170 ERP 

component 
• Back-projection of the identified components into the electrode domain. 
• Determination of how much of the originally found N170 ERP components can be 

explained by those components. 
 
Analysis details 
(A) Calculating ICA 
For each participant and visibility level (low-visibility and high-visibility) the following pre-
processing steps were realized: 
 

• Pooling smiley and abstract figure data 
• Down-sampling data to 250 Hz 
• Selecting data from 60 ms before to 1000 ms after stimulus onset (only stability trials; 

see Methods for their definition) 
• Rejecting artefacts (± 100 µV threshold) 
• Concatenating single trials  
 

On this pre-processed data an AMICA [6] was conducted using the implementation provided 
by the Matlab toolbox EEGLAB [7]. 
In the ICA the number of electrodes (here 32) determines the maximal number of identifiable 
independent components (ICs). The difference between low-visibility and high-visibility 
stimuli is prominent in the data and importantly, detected by the ICA. To not "loose" 
available ICs to the ERP difference related to stimulus visibility, but to extract the N170 
related ICs, we decided to calculate separate ICAs for low-visibility and high-visibility 
stimuli.  
 
(B) Selection of ICs related to the N170 
The ICA provided 32 ICs per participant. The ICs that most likely contributed to the N170 
component were selected as follows: 
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(B1) Rejection of ICs representing eye artefacts: ICs related to eye artefacts were identified 
with a cluster analysis based on dipole locations of the ICs close to the eyes and artefact 
typical activations [8]. Those ICs were excluded. 
 
(B2) Selection steps for N170-related ICs: 
 

• Selection of ICs with maximal activity located in the posterior hemisphere (TP9, CP5, 
CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, PO10) 

• Back-projection of the selected ICs into the electrode domain 
• Selection of those ICs whose back-projection explained at least 5 % of artefact-free 

data (sum of the squared amplitude values) at the N170-specific electrodes P7 and P8 
(spatial ROI) in a time-window from 170 to 220 ms (temporal ROI) 

 
Results 
Between 2 and 7 (median = 4) ICs per participant were found for the low-visibility and for the 
high-visibility stimuli related to the N170 ERP component. The sum of those ICs explained 
on average 61.5 % (median, range = 35.6-80.2 %) for the low-visibility stimuli and 72.5 % 
(median, range = 56.3-83.3 %) for the high-visibility stimuli of the originally found N170 
amplitudes related to smileys and abstract figures.  
As can be seen in the graphical illustration of the results (Fig A a-c and f-h), the modulation 
of the N170 (smileys vs. abstract figures) is almost identical between the original ERPs and 
the back-projected N170 related independent components. Importantly, the effect of larger 
N170 amplitudes of smileys compared to abstract figures is conserved in the back-projected 
N170 components from the IC analysis.  
 
Discussion:  
The P200 ERP and the N170 are in relatively close temporal vicinity. It is thus theoretically 
possible that the modulation of one of those ERP components as a function of stimulus type 
and / or visibility level may be also reflected in the other component due to volume 
conduction.  
We applied the ICA in order to disentangle the two components and therewith isolate ERP 
specific effects. In particular we were interested in whether the N170 component shows face 
specific modulations with the smiley stimuli. We further aimed to check whether such a 
modulation is really related to the N170 or alternatively influenced by the P200 modulation.  
We identified N170-specific independent components that show – after back-projection - the 
same face specific modulation as the originally identified N170. We regard this as evidence 
for face-specific processing of the smiley stimuli.  
 
 
 

43



2.6. SUPPLEMENTARY MATERIAL 4

 

N170 

-4

-2

0

2

4

Am
pl

itu
de

 [µ
V]

1.00.80.60.40.20.0
Time [s]

 Back-projected ICs - Disambiguated Smiley
 Back-projected ICs - Disambiguated  Abstract Figure

AVG P7,P8

N170 

4

3

2

1

0

-1

Am
pl

itu
de

 [µ
V]

1.00.80.60.40.20.0
Time [s]

 Ambiguous Abstract Figure
 Back-projected ICs - Ambiguous Abstract Figure

AVG P7,P8
N170 

4

2

0

-2

Am
pl

itu
de

 [µ
V]

1.00.80.60.40.20.0
Time [s]

 Disambiguated Abstract Figure
 Back-projected ICs -Disambiguated Abstract Figure

AVG P7,P8

N170 

3

2

1

0

-1

-2

-3

Am
pl

itu
de

 [µ
V]

1.00.80.60.40.20.0
Time [s]

 Ambiguous Smiley
 Back-projected ICs - Ambiguous Smiley

AVG P7,P8

High-visibility variants Low-visibility variants 
a) f) 

b) 

Abstract Figures: 
back-projected ICs 

g) 

e) j) 

c) h) 

d) Smileys:  
back-projected ICs 

Abstract Figures: 
back-projected ICs 

i) 

N170 

4

3

2

1

0

-1

-2

-3

Am
pl

itu
de

 [µ
V]

1.00.80.60.40.20.0
Time [s]

 Back-projected ICs - Ambiguous Smiley
 Back-projected ICs - Ambiguous Abstract Figure

AVG P7,P8

N170 

-4

-2

0

2

Am
pl

itu
de

 [µ
V]

1.00.80.60.40.20.0
Time [s]

 Disambiguated Smiley
 Back-projected ICs - Disambiguated Smiley

AVG P7,P8

-12

-8

-4

0

4

Sm
ile

y 
- p

ea
ks

 [µ
V]

-12 -8 -4 0 4
Abstract Figure - peaks [µV]

N170 back-projected
Disambiguated

 P8
 P7

-12

-8

-4

0

4

Sm
ile

y 
- p

ea
ks

 [µ
V]

-12 -8 -4 0 4
Abstract Figure - peaks [µV]

N170 back-projected
Ambiguous

 P8
 P7

Smileys:  
back-projected ICs 

High-visibility stimuli – 
back-projected N170 ICs 

Low-visibility stimuli –  
back-projected N170 ICs 

Back-projected ICs – High-visibility Smiley 
Back-projected ICs – High-visibility Abstract Figure 

Back-projected ICs – Low-visibility Smiley 
Back-projected ICs – Low-visibility Abstract Figure 

High-visibility Smiley 
Back-projected ICs – High-visibility Smiley Low-visibility Smiley 

Back-projected ICs – Low-visibility Smiley 

High-visibility Abstract Figure 
Back-projected ICs – High-visibility Abstract Figure 

Low-visibility Abstract Figure 
Back-projected ICs – Low-visibility Abstract Figure 

44



CHAPTER 2. PHD ARTICLE NO. 1: LARGE EEG AMPLITUDE EFFECTS ARE
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Supporting Information S4 File Fig B. Back projected ICA components - N170 Smiley vs. 
Abstract Figure. Back projected N170 independent components in smileys and abstract figures, 
analysed separately for high-visibility and low-visibility stimuli. (a) depicts the grand mean back-
projected ERP traces averaged across electrode P7 and P8 of smileys (blue) and abstract figures 
(red) for the high-visibility (solid lines) stimulus variants and (f) for the low-visibility (dotted lines) 
stimuli. Sub graphs (b, c, g, h) show the back-projected IC ERPs together with the original ERPs. The 
grand mean data was averaged across electrodes P7 and P8. Sub graphs (d) and (i) show the grand 
mean scalp maps of the N170. Sub graph (e) and (j) depict scatterplots of the N170 peak amplitudes 
from the back-projected data of individual participants by plotting smileys (ordinate) versus abstract 
figures (abscissa) for electrodes P7 (filled triangles) and P8 (hollow circles) separately. The vast 
majority of data points are below the bisection line, showing larger N170 amplitudes for smileys than 
for abstract figures.  This indicates face-specific processing of the smileys. 
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3. Preliminary PhD article No. 2:

Perceptual uncertainty effects

in Schizophrenia Spectrum

Disorder

3.1 Summary

Schizophrenia Spectrum Disorder (SSD) represents a complex set of neurodevelopmental

disorders with severe implications for the lives of patients and their families. Diagnostics

are based on behavioural parameters (American Psychiatric Association, 2013), while reliable

physiological markers so far do not exist.

Patients with SSD show altered perceptual processing (Silverstein et al., 2015) and impairments

in the integration of bottom-up with top-down information (Notredame et al., 2014; van Assche

and Giersch, 2011). This might cause a different handling of the perceptual inference problem in

patients with SSD compared to controls. The ERP Uncertainty Effects (Kornmeier and Bach,

2009; Kornmeier et al., 2016; Joos et al., 2020b) are proposed to reflect a reliability estimation

of the perceptual outcome, which grounds on solving the perceptual inference problem. The

ERP Uncertainty Effects are thus hypothesised to being altered in patients with SSD. Further,

patients with SSD show deficits in the processing of emotions (Dlabac-de Lange et al., 2018;

Turetsky et al., 2007; Kohler et al., 2003). Therefore, the paradigm and emotional stimuli from

chapter 2 (Joos et al., 2020b) were applied to patients with SSD in the current project. The

ERP effects have large effect sizes and are visible in individual participants, which make them

promising candidates to reliably differ between patients with SSD and controls. Due to the

Corona pandemic, I was not able to finish data collection during the time of my PhD. For the

EEG analysis, I was able to include 11 patients and 12 controls. Data collection will remain

on-going until a sample size of N = 20 per group is reached. Due to the fact that this study

is statistically underpowered at this point in time, the current findings may change with more

data and the interpretations derived from the current data should be made cautiously.

The ability to identify poorly visible emotional expressions was expected to reveal a large

inter-individual variability and was thus determined for each participant separately. In order to

do so, a range of smiley stimuli with different levels of visibility were presented in behavioural

Experiment 1. For each individual, those stimuli that evoked the highest perceptual uncertainty
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were determined. The selected stimuli did not systematically differ between the groups.

Controls revealed longer reaction times in response to less visible stimuli and shorter reaction

times to the more clearly visible stimuli. Patients, on the other hand, revealed (1) generally

long reaction times irrespective of stimulus visibility and (2) reaction times were very similar

to those of the controls in response to the less visible stimuli.

In electrophysiological Experiment 2, the low-visibility stimuli determined in Experiment 1

were presented in one experimental condition. In another experimental condition high-visibility

smiley stimuli were presented. Contrasting results of the two conditions revealed that the

ERP Uncertainty Effects were replicated (see Joos et al., 2020b) with large ERP amplitudes

in the case of high-visibility of the emotional expressions within smiley faces and small ERP

amplitudes in the case of low-visibility. There was an observable tendency for smaller ERP

Uncertainty Effects in patients with SSD compared to controls, but this difference did not

reach statistical significance. In an exploratory analysis of Experiment 2, differences in

perceptual processing in response to perceptual (un)certainty between patients and controls

were investigated by means of topographic differences. To this end, a data-driven microstate

analysis was conducted. Microstate Uncertainty Effects were found to differ between patients

with SSD and matched controls. Interestingly, the microstates that differed between groups

were only present in subsets of the groups, possibly suggesting sub-groups within the patient

and the control group. Additionally, the earliest time point after stimulus onset at which

processing of perceptual (un)certainty differed between patients with SSD and controls was

found to occur as early as 115 ms after stimulus onset at occipital electrode sites.

The study underlying the unpublished manuscript ”Uncertainty Effects in Schizophrenia

Spectrum Disorder - an EEG study” indicates that processing of (un)certainty is altered in

patients with SSD compared to controls. The underpinnings of the sub-groups, as indicated by

the Microstate Uncertainty Effects, are currently not clear and can only be determined with

more data sets. Furthermore, it will be interesting to unravel the anatomical sources of the

differing microstates in future studies (optimally including anatomical MRI scans to facilitate

the inverse solution for EEG source analysis) and thus learn more about the functional role of

those microstates. The finding that patients reveal similar reaction times for a range of different

stimuli in Experiment 1 suggests a generally higher level of uncertainty in patients compared

to controls. Moreover, Schizophrenia Spectrum Disorder is typically regarded as a high-level

cognitive disease. In contrast, the very early EEG difference between groups (N115) additionally

indicates low-level alterations in patients with SSD compared to controls. Ultimately, previous

studies showed that patients with SSD reveal altered predictive mechanisms (Notredame et al.,

2014). Altered predictive mechanisms might result in altered reliability attributions to the

perceptual outcomes and thus might cause the altered behavioural and neural responses to

(un)certainty as found in the current study in patients with SSD.

Contribution to the paper I was part of the funding acquisition, as well as the

conceptualisation and administration of the project. I was responsible for data curation, formal

analysis, investigation, methodology, software, validation, visualisation, writing the original draft

and reviewing and editing the manuscript.
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Preamble 

The following preliminary manuscript presents a data set, which is not fully collected yet and 

the whole study is currently underpowered. Data collection had to be stopped completely 

between March and June 2020 due to restrictions during the Corona pandemic. Since then no 

one participated in my study. The reported results are thus preliminary and they might change 

with more data.  

The currently small data set, unfortunately, does not allow calculating reliable correlational 

analyses between the behavioural and physiological variables collected from the experiment 

and clinical symptoms of the patients. Once the data set is completed, we will correlate the 

findings with the symptoms and properly introduce and discuss this issue. 	
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Abstract 

The information available to our senses is noisy, incomplete, and to varying degrees 

ambiguous. The perceptual system has to create stable and reliable percepts out of this 

restricted information by integrating the sensory information (bottom-up) with endogenous 

information (top-down). Current theories explain both social and perceptual impairments in 

patients with Schizophrenia Spectrum Disorder (SSD) with deficits in this integration process. 

Diagnostics of SSD are so far based on behavioural parameters, while reliable physiological 

markers do not exist.  

Recent studies compared the ERP signatures evoked by ambiguous/low-visibility with 

unambiguous/high-visibility stimuli. They found large ERP differences between these stimuli 

and interpreted them as "ERP Uncertainty Effects", resulting from the differential integration 

of sensory with endogenous information. The large size of these effects and their visibility in 

individual participants make them promising tools to study the underpinning of SSD. 

In two experiments, we compared behavioural and electrophysiological correlates of 

(un)certainty in patients with SSD and matched control participants. We evoked uncertainty 

by low-visibility of emotional expressions in smiley faces and certainty by high-visibility of 

emotional expressions in smiley faces.   

In Experiment 1, we presented a range of stimuli with different visibility levels in random 

order and participants indicated for each stimulus whether they perceived a happy or a sad 

emotional expression. We found that stimulus visibility modulates reaction times differently 

for patients with SSD compared to controls. In Experiment 2, we recorded EEG while 

presenting those two smiley stimuli with the lowest visibility of happiness and sadness, as 

determined on the individual level by Exp. 1. In another experimental condition, we presented 

two smiley stimuli with high-visibility of happiness and sadness. We replicated the ERP 

Uncertainty Effects from previous studies with larger ERP amplitudes in response to high-
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visibility stimuli compared to low-visibility stimuli. An observable tendency for smaller ERP 

Uncertainty Effects in patients compared to controls did not reach statistical significance. In 

an additional exploratory part of the data analysis, we performed a microstate analysis and 

found qualitative differences between patients and controls in the time window of the ERP 

Uncertainty Effects. Further, EEG differences between the two groups already start during 

lower-level visual processing at around 115 ms after stimulus onset at occipital electrode 

sites.  

The results indicate similarities but also principle differences in the processing of 

(un)certainty between patients with SSD and controls. Altered predictive coding mechanisms 

as already reported in patients with SSD might evoke this altered processing of (un)certainty. 

This might be reflected in early occipital alterations and qualitatively different EEG 

microstates and it might result in a less stimulus-specific reaction time pattern in patients 

compared to the matched controls.  

Introduction 

Schizophrenia Spectrum Disorder (SSD) is a complex set of neurodevelopmental disorders 

with a prevalence in the population of around 1% [1]. The disorder has severe consequences 

for the social lives of patients and their families, along with considerable socioeconomic 

burden. Diagnostics are based on behavioural parameters [2], while reliable physiological 

markers do not exist so far. 

Fundamental deficits in the process of perception [3–5] have since long been described in 

Schizophrenia Spectrum Disorder. This may be explained by the difficulties inherent to visual 

perception. Under normal circumstances, the perceptual experience is stable and reliable and 

permits a smooth interaction with the external environment. However, the information 

available to our senses (bottom-up) is always restricted, noisy and to varying degrees 

ambiguous. To provide a stable and reliable representation of the external world, the 
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perceptual system complements the incomplete exogenous information (bottom-up sensory 

input) with endogenous information [top-down, e.g. memorized concepts; 4,5]. The quality of 

the exogenous information and the precision of endogenous information determine the 

relative contribution of the two types of information to the perceptual outcome. Consequently, 

our perception does not represent the external world exactly as it is, but is always biased 

through endogenous information. Patients with SSD show impairments in the integration of 

sensory information with memorized concepts [8] and spatial and temporal context [9]. 

Typical cognitive symptoms of SSD, like disorganized thoughts and memory deficits, but also 

the lower susceptibility to certain perceptual illusions in patients with SSD have been linked 

to this imbalance during the perceptual process [1,8,10].  

It has been proposed that studying ambiguity resolution in patients with SSD provides a 

promising tool to investigate the underpinnings of the disorder [1,8,11,12] as a way to 

understand how patients integrate bottom-up with top-down information. The Oxford English 

Dictionary defines ambiguity as the: “Capability of being understood in two or more ways 

[…]” [13]. The available sensory information is thus equally compatible with different 

interpretations. Ambiguity resolution refers to the perceptual decision between these 

alternative interpretations and strongly involves the integration of top-down processes. In the 

case of ambiguous sensory information, the perceptual decision is difficult and uncertain, 

while disambiguated sensory information leads to an easy and certain perceptual decision.  

Interesting in this context are results from the group of Kornmeier [14–16]. They found 

remarkably large EEG differences (Cohen’s d = 0.8-2.1) that are visible on the individual 

level when contrasting classical ambiguous figures with their disambiguated variants. They 

found two event-related potential (ERP) components, 200 and 400 ms after stimulus onset, 

with large amplitudes in response to disambiguated and small amplitudes in response to 

ambiguous stimulus variants. Importantly, they found these effects for very different classical 

ambiguous figures (geometry: Necker lattice, a variant of the Necker cube [17]; motion: 
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SAM/”motion quartet” [18]; Gestalt perception: Borings Old/Young Woman [19]) and their 

respective disambiguated stimulus variants [14,15]. Further, they found highly similar ERP 

differences when contrasting highly visible emotional facial expressions with less visible 

emotional facial expressions [16]. The generality of these ERP effects together with the late 

occurrences (in visual processing times) of the related ERPs indicate processing steps beyond 

low-level visual processing. According to the current interpretation, perceptual outcomes 

(integration of exogenous with endogenous information) are automatically generated by the 

perceptual system and the certainty about the perceptual outcome is rated by a meta-

perceptual evaluation instance. The ERP effects might reflect this evaluation with large 

amplitudes in the case of high reliability of the perceptual outcome resulting in a state of 

certainty and with small amplitudes in the case of low reliability of the perceptual outcome 

resulting in a state of uncertainty. Therefore, they labelled their effects accordingly the 

"ERP Uncertainty Effects" [16].  

It has been found that patients with SSD reveal a different processing of classical ambiguous 

figures compared to controls [8,20,21]. Further, patients with SSD have problems to 

disambiguate stimuli with emotionally ambiguous content [22] and show impairments in 

estimating emotional states from facial expressions [23–25]. 

If the available bottom-up sensory information is of sufficient quality, the perceptual system 

can successfully integrate it with top-down information. This results in an adequate perceptual 

interpretation and additionally in an adequate rating of its reliability. Kornmeier et al. 

interpret large P200 and P400 amplitudes as correlates of high perceptual reliability [14–16]. 

If the sensory information, in contrast, is of low quality, e.g. if it is ambiguous or if it is of 

low visibility, perceptual interpretations become less reliable and the P200 and P400 ERPs 

show respectively small amplitudes.  

In patients with SSD the integration of bottom-up with top-down information is supposed to 

be altered [e.g. 8,9]. Altered integration mechanisms may result in erroneous reliability 

53



3.2. MAIN MANUSCRIPT

	 6	

estimations of the perceptual outcome. This in turn should result in distorted ERP Uncertainty 

Effects. The reasons why these effects provide a promising tool to find reliable physiological 

differences between patients with SSD and healthy controls are threefold: (1) the large effect 

sizes of the ERP Uncertainty Effects, (2) their visibility in individual participants, and (3) the 

ERP effects were found for different degrees of visibility of emotional facial expressions and 

patients with SSD are known to have difficulties to estimate emotional states from facial 

expressions [23–25]. 

In the current study, the ERP Uncertainty Effects introduced by Kornmeier et al. [14–16] are 

compared between patients with SSD and control participants, matched in age, sex, and 

education level. The ERP Uncertainty Effects in this study are evoked by face stimuli with 

different degrees of visibility of their emotional expressions (methodology adapted from Joos 

et al. [16]). The ability to identify the emotional state of a person depends on low-level visual 

features in the observed person's face but also on the existence of a reference system for 

emotionality, including theory-of-mind aspects. We expected a large inter-individual 

variability in this ability and thus determine the individual low-visibility stimulus variants 

separately for each participant. 

In the subsequent main experiment we compare the perceptual processing of low- and high-

visibility emotional stimuli within participants to study the ERP Uncertainty Effects. We 

further compare these ERP Uncertainty Effects between patients with SSD and healthy 

controls. The specific type of modulation between patients and controls will reveal alterations 

in the underlying perceptual processes in patients with SSD. If, for example, the absolute 

amplitudes of the low-visibility traces are altered in patients with SSD, this might be related 

to the task difficulty. If, on the other hand, the absolute amplitudes of the high-visibility traces 

are different in patients with SSD, this might reflect a fundamental impairment in perceptual 

processing, not related to the difficulty of the task. 
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It is also possible that patients with SSD process (un)certainty in a different way compared to 

controls. Different processes should be located in other brain areas and thus should evoke 

different topographic maps. We therefore investigate differences in the topographic maps in 

an explorative and data-driven microstate analysis. We will label the resulting effects 

"Microstate Uncertainty Effects".  

The Uncertainty Effects start to develop 200 ms after stimulus onset. However, several 

studies have shown that earlier ERP components differ between patients and controls [26,27]. 

In addition to the investigation of higher-level processes such as the Uncertainty Effects, we 

are interested in possible differences between patients and controls during the early perceptual 

processing of the sensory information. We thus identify the earliest significant difference 

between the groups at occipital electrodes. 

Methods 

Participants 

Participants are divided into two groups. The patient group consists of 14 stabilized chronic 

outpatients (3 woman, 11 men; mean age = 38.6 years, SD = 9.1; mean level of education = 

13.1 years, SD = 2.0) and the control group consists of 12 matched controls (3 woman, 9 men; 

mean age = 37.8 years, SD = 8.2; mean level of education = 13 years, SD = 1.7). Patients 

were recruited in the University of Strasbourg Psychiatry Department and controls were 

recruited by advertisement. Controls are individually matched with patients on sex, level of 

education, and age. One patient with SSD had to be excluded from analysis, because this 

person left after 1/3 of the experiment. 

All participants gave their informed written consent. The study was approved by the ethics 

committee CPP Est IV and performed in accordance with the ethical standards laid down in 
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the Declaration of Helsinki [28]. All participants have normal or corrected-to-normal visual 

acuity as measured with the Freiburg Visual Acuity Test [FrACT 29]. 

Two senior psychiatrists from the University Psychiatry Department diagnosed the patients 

with SSD using the Mini International Neuropsychiatric Interview. Criteria for the diagnosis 

of SSD are in accordance with the Diagnostic and Statistical Manual of Mental Disorders, 

Fourth Edition. Symptoms were assessed with the help of the Scales for the assessment of 

Positive Symptoms (SAPS) [30] and Negative Symptoms (SANS) [31]. The mean score for 

the SAPS is 21.77 (SD = 22.77) and the mean score for the SANS is 33.54 (SD = 24.64).  

The mean age at onset of SSD symptoms was 23.23 years (SD = 8.73), the mean disease 

duration is 16.62 years (SD = 13.94), and the median number of hospitalizations is 3 (inter-

quartile range from 1 to 3). 11 patients receive atypical antipsychotic treatment, one receives 

typical antipsychotic treatment, and one receives both atypical and typical treatment. The 

mean standard dose is 300.2 mg/day (SD = 198.7) of chlorpromazine or chlorpromazine 

equivalents. Another participant receives anti-epileptic drugs (Depakote 1250 mg/d) and 

another an anti-parkinsonian agent (Lepticur 10 mg/d). 

We measured the verbal fluency as an indicator of intellectual ability using the French 

National Adult Reading Test [32]. We calculated the WAIS-R scores according to Mackinnon 

et al. [33]. Patients have a mean WAIS-R full scale score of 109.04 (SD = 6.74) and controls 

have a mean score of 110.71 (SD = 5.74). The mean WAIS-R verbal score was 109.2 

(SD = 8.49) for patients and 113.24 (SD = 7.23) for controls. The mean WAIS-R performance 

score was 105 (SD = 3.72) for patients and 106.77 (SD = 3.17) for patients. We did not find 

differences in those scores between patients with SSD and matched controls. 

General information 

Stimuli were generated and presented using PsychoPy v1.82 [34] and presented on a Sony 

CPD-520GS Trinitron monitor with a refresh rate of 60 Hz. Experiments were performed in a 
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room with reduced illumination. The analyses were conducted in Igor Pro 6.3 (Wavemetrics, 

Inc.) and statistics were done in SPSS (IBM SPSS Statistics for Macintosh, Version 24.0).  

Experiment 1 

Stimuli 

In the electrophysiological Experiment 2, smiley stimuli with high-visibility of their 

emotional expressions are compared with smiley stimuli with low-visibility of their emotional 

expressions. The perception and classification of poorly visible emotional expressions is 

highly subjective and was thus determined for each participant separately. In a behavioural 

Experiment 1, we determine those smiley stimulus variants that evoke the highest perceptual 

uncertainty, i.e. those stimulus variants that are about equally often rated as being happy and 

sad.  

Ten different smiley stimuli with low-visibility of the respective emotional expressions (see 

Fig 1, stimulus specifications adopted from Joos et al [16]) were presented in random order 

using the method of constant stimuli [35]. The emotional expressions of the smiley stimuli 

were either happy or sad and it was only evoked by one parameter, i.e. the mouth curvature. 

The smiley variants have mouth curvatures with radii of r = 11.237°VA (stimulus variants S1 

and S10), r = 14.422°VA (variants S2, S9), r = 20.193°VA (variants S3, S8), r = 33.527°VA 

(variants S4, S7), and r = 100.662°VA (variants S5, S6). The face border is described by a 

white circle with a diameter of d = 4° VA on a black background. The eyes are two filled 

white circles with a diameter of 0.214° VA and a distance to the vertical face symmetry axis 

of 0.611° VA to the left and right respectively. The nose is indicated by a simple vertical line 

with 0.377° VA length and 0.102° VA width, located on the vertical face symmetry axis at 

2.076° VA distance from the upper central face border. 
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Figure 1 10 smiley stimulus variants (S1-S10) were presented in Experiment 1. The emotional expression of the 
smiley stimuli is only created through different mouth curvature radii and was either happy (S1-S5) or sad (S6-
S10).  
Procedure 

The ten smiley variants (see Fig 1) were presented in random order for 1000 ms each (inter-

stimulus interval = 400 ms). Each stimulus variant was repeated 20 times. The fixation point 

was the nose of the smiley stimuli. Only the line representing the nose was presented during 

the ISI in order to not disrupt fixational efforts. Participants were asked to indicate for each 

smiley stimulus whether it was perceived as happy or sad by pressing separate keys.  

Behavioural analysis 

Emotion perception 

We first sorted the smiley stimuli from maximal sad (S1) over neutral (S5, S6) to the maximal 

happy expressions (S10, see Fig. 1). Subsequently, psychometric functions (sigmoids) were 

fitted to each participant’s average responses (across the 20 stimulus repetitions). The 

individual sigmoid inflection point indicates the theoretical smiley variant, where the 

perception of both happy and sad smiley percepts is equally likely. Using Mann-Whitney U 

tests we compare the two sigmoid function parameters (inflection point and rate) between 

patients with SSD and matched controls. Further, we computed the explained variance (R2) of 

the sigmoidal fit to the responses. 

S1 S2 S3 S4 S5 

S6 S7 S8 S9 S10 

large 
“mouth” 

curvature 

sad 

happy 

small 
“mouth” 

curvature 
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Two patients with SSD did not respond to stimulus variant S5 at all. We substituted the non-

existing response with the hypothetical response value obtained through the sigmoidal fit. 

Manual responses 

We identified the number of manual responses separately for each stimulus variant on the 

individual level. We then compared these response frequencies between the groups using 

Mann-Whitney U tests for each stimulus variant separately in order to test for general 

response biases. Further, we calculated the median reaction times for each stimulus variant on 

the individual level. We tested the median reaction times between the groups using separate 

Mann-Whitney U tests for the different stimulus variants. In order to check for reaction time 

differences between the different stimulus variants within groups, we logarithmised the 

individually determined median reaction times and performed a repeated-measures ANOVA 

(rmANOVA) with the stimulus identity as within-participant factor. Additionally, we fitted 

for each of the ten stimulus variants Gaussian distributions to the individual median reaction 

times. To this end, we (1) normalized the median reaction times (individual level) to range 

between 0 and 1 and (2) set the maximal possible mode of the Gaussian function to 1 in order 

to account for general reaction time differences between participants. Further, (3) we 

restricted the minimal variance of the Gaussian to 0.85, resulting in a width that must 

comprise at least two stimulus variants in order to prevent the Gaussian fit from peaking at an 

outlier response. We then computed for each participant the explained variance (R2) of the 

Gaussian fit to the reaction time data.  

Two patients with SSD did not respond to stimulus variant S5 at all (as already mentioned 

above). We averaged the reaction times in response to the immediate neighbouring stimulus 

variants (S4 and S6) and substituted the non-existing response with this mean reaction time 

for the rmANOVA and goodness of fit analyses. P-values of response frequencies and 

reaction time analyses were correct for multiple testing using the Bonferroni-Holm correction 

with an alpha of 0.05 [36]. 
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Identifying low-visibility smiley stimuli for Experiment 2 

We determined the appropriate low-visibility stimulus variants for each participant in order to 

use them for the electrophysiological part of the study (Experiment 2). The values of the 

individually determined inflection points, however, were most often not integers and thus did 

not match one of the presented stimulus variants (S1-S10). Therefore, we chose two stimulus 

variants for each participant, namely those that were closest to the inflection point (i.e. the left 

and right immediate neighbours). If, for example, the calculated inflection point has an x-

value of 5.5 then stimulus variants S5 and S6 are labelled as the two most low-visibility 

smiley stimulus variants for this participant. 

Experiment 2 

Stimuli 

In the electrophysiological Experiment 2 high-visibility smiley variants are compared with 

low-visibility smiley variants. Both visibility levels contained a happy and a sad smiley and 

thus consisted of two stimulus variants each. This results in a total of four stimulus variants, 

i.e. happy high-visibility stimulus, sad high-visibility stimulus, happy low-visibility stimulus, 

and sad low-visibility stimulus. 

The low-visibility smiley variants were determined for each participant individually (see 

Methods “Experiment 1”). The high-visibility smiley variants were chosen such that their 

emotional expression was easily detectable for all participants (see Fig. 2). We therefore 

presented the same high-visibility stimuli to all 

participants. The stimuli themselves have the same 

features as described previously, but their mouth 

curvatures has a radius of r = 4.601°VA for both 

happy and sad smiley variants (see Fig 2).  

 

 

Figure 2 The two high-visibility smiley 
stimulus variants.   

happy sad 
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Procedure 

We presented two separate experimental conditions with either only high-visibility smiley 

stimuli or only low-visibility smiley stimuli. Experimental blocks lasted for seven minutes 

and were repeated two times in a pseudo-randomized order. Within the high-visibility and 

low-visibility stimulus conditions, the two respective stimulus variants (happy and sad) were 

alternated pseudo-randomly and had a reversal probability of 50%.  

Stimuli were presented discontinuously for 1000 ms with a blank inter-stimulus interval (ISI) 

of 400 ms (see Fig 3 and [14–16]). According to the paradigm used in previous studies 

reporting the ERP Uncertainty Effects [14–16], participants were instructed to compare their 

current percept to the immediately preceding percept and to indicate perceptual reversals 

(change from one percept to the other) or perceptual stability (identical percepts across two 

consecutive presentations) for each stimulus (Fig 3) by pressing different keys. We used a 

standard keyboard on which the keys “F” and “J” were associated with either perceptual 

stability or perceptual reversal (the other keys on the keyboard were not used). Keys were 

 

Figure 3 Experimental paradigm. Stimuli were presented discontinuously for 1000 ms with an ISI of 400 ms. 
Participants compared the current stimulus with the immediately preceding one. In case of identical percepts 
across two consecutive stimuli, participants indicate perceptual stability (stab) and in case of a change from one 
stimulus to the next, participants indicated perceptual reversal (rev). Within one experimental condition the 
visibility level stayed unchanged. The specific sequences of stimuli (Si1, Si2, Si3) in (a) and (b) are for 
demonstration purposes.  

... ... smiley 
low-visibility a) 

... ... smiley 
high-visibility b) 

Si1 Si2 Si3 

Time 1000 ms 400ms 

S
t
a
b 

R
e
v 

S
t
a
b 

R
e
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pressed using the two index fingers and the stability and reversal assignment to the left (“F”) 

or right (“J”) index finger was counterbalanced between participants.  

In the low-visibility condition, participants very often responded incorrectly and/or did only 

perceive very few reversal trials. Therefore, we will only analyse perceptual stability trials. 

Data analysis 

Eye tracker recording and processing  

Eye tracking data (left eye) was measured using EyeLink CL 1000 (SR Research) with a 

sampling rate of 1000 Hz. A 9-point grid was used to calibrate the eye tracker before the 

experimental conditions and participants' heads were stabilized using a chin-rest.  

In order to check whether patients and controls fixated similarly on the nose of the smileys, 

we analysed fixations and compared them between patients with SSD and healthy controls. 

Fixations are defined as stable eye position coordinates when lasting between 90 ms and 

1000 ms. Only data sets (one participant, one experimental condition) with at least 30 

fixations were included in the analysis. Due to problems during eye tracking data acquisition 

we could only include 7 patients with SSD and 8 matched controls in the analysis of the eye 

tracking data. 

To analyse the fixations and find possible differences between patients with SSD and matched 

controls, we first clustered the fixations within one participant, within one experimental 

condition (high-visibility or low-visibility), and within one emotion (happy or sad) using a 

hierarchical cluster analysis with the Euclidean distance as metric and complete-linkage as 

fusion algorithm. The advantage of hierarchical clustering is that it does not need predefined 

parameters for building clusters (like number of clusters, critical value for the Euclidean 

distance, etc.). The output of the hierarchical clustering is a ranking of fixations based on their 

Euclidean distances. The clustering algorithm, however, does not return a threshold of 

Euclidean distance between fixations, which would allow distinguishing between clusters. 

Thus, the algorithm does not define how many clusters can be found within the data set. The 
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experimenter has to define criteria to differ between groups of fixations that belong together 

and thus form a cluster. We aimed at having clusters with the following criteria: 

(1) The cluster centroids had at least a distance of 0.7°VA (smallest distance between 

nose and mouth) between each other in order to being able to differ groups of fixations 

centred on the nose from groups of fixations centred on the mouth 

(2) The number of fixations within a cluster had to at least comprise 10% of the data set in 

order to exclude outliers and/or very short fixation periods 

We applied these criteria starting from the least possible amount of clusters, continued with 

increasing cluster number, and stopped at the largest number of clusters that still fulfilled the 

above-mentioned criteria.   

The so identified clusters and their respective centroids were then compared between the two 

groups (patients with SSD and matched controls) individually for conditions (high-visibility 

or low-visibility) and emotions (happy or sad) using the following variables: 

(1) Number of Clusters: We counted the number of cluster centroids per participant, 

condition, and emotion. This is a measure of spatial fixation variability between 

participants over the time of the experiment. 

(2) Spatial Variance: We calculated the variance of the x- and y-distributions of the 

fixations within clusters. This is a measure of spatial variability within clusters. In the 

case that several clusters were found for one participant, one condition, and one 

emotion, we averaged the spatial variances across individual clusters.  

(3) Distance to Fixation Target: We calculated the spatial distance between cluster 

centroids and the fixation target, i.e. the nose of the smiley stimuli. This is a measure 

of how well participants could follow the instruction of fixation on the nose. In the 

case that several clusters were found for one participant, one condition, and one 

emotion, we averaged the spatial distances to the nose of the multiple clusters 

respectively.  

63



3.2. MAIN MANUSCRIPT

	 16	

We calculated a rmANOVA with the between-participants factor group (patients with SSD or 

matched controls) and the within-participants factors visibility level (high-visibility or low-

visibility) and emotion (happy or sad) for the variables Number of Clusters, Spatial Variance, 

and Distance to Fixation Target.  

Key press analysis 

We calculated the number of correct responses and median reaction times separately for both 

groups (patients with SSD or matched controls) and for both visibility levels (high-visibility 

or low-visibility).  

In response to high-visibility stimuli, manual responses were regarded as valid if the 

following two criteria were fulfilled: (1) the response had to match the actual sensory 

information (stability trials) and (2) the response had to be given between 150 ms after 

stimulus onset and the next onset of a stimulus, i.e. 1400 ms after stimulus onset. Low-

visibility stimuli were chosen such that those stimuli are equally likely to being perceived as 

happy and as sad (see "Experiment 1"). As a consequence, there are no "correct" and "false" 

responses to those stimuli and valid responses only had to fulfil the criterion that the response 

was given between 150 ms and 1400 ms after stimulus onset. The number of valid responses 

was compared using a two-tailed Mann-Whitney-U-Test to test between groups and a two-

tailed Wilcoxon signed-rank test to test between visibility levels. 

The above-described valid responses (low-visibility: perceived stability; high-visibility: 

correctly identified stability) were further considered in the reaction time and ERP analysis. 

Reaction times were measured as the time between stimulus onset and the key press. Median 

reaction times were compared using two-tailed Mann-Whitney-U-Tests to test between 

groups and two-tailed Wilcoxon signed-rank tests to test between visibility levels.  

For both behavioural analyses (number of correct responses and reaction times), (1) the effect 

size r was calculated by dividing the Z-score by the root of the total number of 

observations [37], (2) resulting p-values were corrected for multiple testing using the 
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Bonferroni-Holm correction with an alpha of 0.05 [36] , and (3) we could include 13 patients 

with SSD and 12 matched control participants.  

EEG recording and pre-processing 

EEG was recorded with 64 active silver/silver chloride electrodes at scalp locations according 

to the 10-20 system [38] using Biosemi's Active Two system. EEG data were digitized with 

2048 Hz and online low-pass filtered with 0.01-417 Hz. Data analysis was executed in Igor 

Pro 6.3 (Wavemetrics, Inc.). The data were down sampled to 1000 Hz and band-pass filtered 

offline at 0.01-25 Hz. 

Trials exceeding an artefact threshold of ±150 µV were excluded from analysis. The baseline 

was defined as the average from 60 ms before to 40 ms after stimulus onset. For each group 

and visibility level, the EEG data was averaged separately for each participant and electrode. 

The trials started 60 ms before stimulus onset and were analysed until 1000 ms after onset, i.e. 

until the end of the stimulus presentation. 

Uncertainty Effects 

ERP Uncertainty Effects: Hypothesis-driven amplitude analyses 

This ERP analysis focused on the previously described ERP Uncertainty Effects [14–16] 

showing positive deflections 200 and 400 ms after stimulus onset with high amplitudes in 

response to disambiguated/high-visibility stimuli and low amplitudes in response to 

ambiguous/low-visibility stimuli. Following these previous studies, we re-referenced the data 

to the averaged mastoid channels. Further, we focused on electrode Cz as spatial region of 

interest (ROI) for both ERP components and on temporal ROIs from 140 to 300 ms for the 

P200 and 300 to 600 ms for the P400. 

We identified the individual peak amplitudes in the respective spatial and temporal ROI and 

measured the average voltage in a ±30 ms time window around the peak [39]. Two patients 

with SSD had to be excluded due to massive EEG artefacts. Thus, 11 patients with SSD and 
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12 matched controls with at least 30 valid trials per condition were included in the statistical 

analysis.  

We conducted a rmANOVA with the within-participants factor visibility (high-visibility vs. 

low-visibility) and the between-participants factor group (patients vs. controls) separately for 

the P200 and for the P400 ERP component.  

Microstate Uncertainty Effects: Exploratory topographical analysis 

In this exploratory part of the Uncertainty Effects analysis, we investigated topographic 

effects using a modified microstate analysis. For some participants not all channels were 

available due to massive EEG artefacts. We thus had to perform the whole microstates 

analysis on those channels that were usable for all participants. In total this analysis was based 

on 48 channels, while we had to exclude channels Fp1, AF7, F7, T7, P7, P9, PO3, Iz, Fpz, 

Fp2, AF8, P2, P10, PO8, PO4, O2.  

We investigated Microstate Uncertainty Effects in the following way:  

(1) We re-referenced the data to common average.  

(2) We calculated the difference ERPs (dERPs) between high-visibility and low-visibility 

conditions to isolate the ERP Uncertainty Effects, for each participant separately.  

(3) The time span of the P200 and P400 temporal ROIs, i.e. 140 ms to 600 ms after 

stimulus onset, was selected for further analysis.  

(4) We applied normalization on the individual level to make the amplitude range 

comparable between participants, while keeping the individual topographical patterns.  

(5) Cluster analysis: 

a. We applied a hierarchical cluster analysis on the selected data for each 

individual, with the Euclidean distance as metric and complete-linkage as 

fusion algorithm. This hierarchical clustering was thus performed on amplitude 

maps as a function of time points (sampling frequency = 1000 Hz). 
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b. The detection of clusters within the resulting dissimilarity values was 

determined by applying a modified elbow method. The elbow method 

represents the intra-cluster sum of squared distances (residual variance) as a 

function of the number of clusters and usually one can detect a clear “elbow” 

or “knee of a curve” (i.e. a sudden drop of residual variance from one given 

number of clusters to the next larger one), which is then set to be the optimal 

number of clusters. In the current results, however, no clear elbow was 

detectable. Thus, we plotted the residual variance as a function of the number 

of clusters, fitted a psychometric curve to the residual variance, and calculated 

the slope for this fit. The threshold for the optimal number of clusters was then 

determined as the standard deviation of the slope of the residual variance fit. 

The smallest number of clusters with a higher slope value than the threshold 

was chosen.  

c. In order to compare clusters between participants and between groups we 

conducted a "meta-clustering". This meta-clustering was performed on all of 

the individually determined clusters with the same setting as previously 

described. In the following, the resulting meta-clusters will be labelled as 

"microstates", because they represent topographic patterns of EEG activity that 

are stable over short time periods and that are present in the majority of the 

participants.  

d. The resulting microstates were back projected onto the individual dERPs and 

thus a comparison between groups was possible.  

i. We compared the number of occurrences for each microstate between 

patients and controls. In case that a microstate occurred with the same 

frequency in both groups, we compared the mean duration of this 
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microstate and the coverage, i.e. fraction of the total time that a 

microstate was dominant, between the groups.  

ii. Similarity within groups and between groups: One stimulus 

presentation lasted for 1000 ms. At every time point we collected one 

data point vector containing the voltage information of all 48 channels. 

For each data point vector we identified the microstate topography. In 

order to compare the similarity of the sequence of microstates between 

two participants within these 1000 ms, we calculated for each time 

point correlation coefficients between the microstates topographies of 

two participants. Each resulting correlation coefficient is thus a 

measure of similarity of microstates between the two participants at this 

specific time point. We calculated the average of these correlation 

coefficients as a measure of similarity across the 1000 ms of stimulus 

presentation. We did this for each possible pair of participants within 

an experiment group (within similarity) and separately, for each 

possible participant pair between groups (between similarity). 

 The statistical analyses of the Microstate Uncertainty Effects were performed using 

permutation tests with 10000 repetitions. Because this is the exploratory part of the analysis 

and the study in general is underpowered, we did not correct for multiple testing. 

Early occipital differences 

In this exploratory part of the analysis, we aimed to identify the earliest differences between 

patients with SSD and matched controls. The data was re-referenced to the averaged mastoid 

channels. We calculated the difference between high-visibility and low-visibility conditions in 

order to isolate effects related to the visibility of the stimuli on the individual level. Then we 

compared the isolated effects between patients with SSD and matched controls and identified 

the earliest deviation between the two groups using a running t-test. We found a significant 
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difference between the groups already 115 ms after stimulus onset at electrode Oz (see 

Fig. 10 a). This finding is of an exploratory nature and we did not correct for multiple testing 

in this part of the analysis. 

In order to systematically evaluate this effect on the individual level we performed a peak 

analysis based on the above-mentioned findings. We chose 100 ms to 130 ms after stimulus 

onset as the temporal ROI and electrode Oz as the spatial ROI. We identified the individual 

peak amplitudes in the respective spatial and temporal ROI and measured the average voltage 

in a ±30 ms time window around the peak [39]. As described in the previous analysis part, we 

included the same 11 patients with SSD and 12 matched controls in the statistical analysis.  

We conducted a rmANOVA with the within-participants factor visibility (high-visibility vs. 

low-visibility) and the between-participants factor group (patients vs. controls).  

Correlation SAPS/SANS with the results of Experiment 2 

We investigated possible relations between the symptoms of patients and their behavioural 

and neural responses. To this end, we calculated Spearman correlations between SAPS and 

SANS results and the previously mentioned measures of Experiment 2, i.e. key presses, 

reaction times, hypothesis-driven amplitude analysis (for P200 and P400 separately), 

exploratory topographical analysis, and the early occipital differences.  

Results 

Experiment 1 

Emotion perception 

In a first step, each participant was randomly presented with 10 smiley stimulus variants, 

differing in their degree of visibility in order to determine those variants that are equally 

likely perceived as happy and as sad. Psychometric curves were fitted to the individual data. 

The grand mean data can be inspected in Figure 4 top row. We do not find differences 
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between patients with SSD and matched controls for neither the value of the inflection point, 

nor for the rate of the sigmoidal fit. We further estimated the goodness of the sigmoidal fit on 

the individual level, depicted in the bottom row of Figure 4. We find that the sigmoidal fit 

explains more than 90% of the variance in 10 out of 11 patients and in 12 out of 12 controls.  

 

Figure 4 Emotion perception in Experiment 1. Top row: Averaged responses of perceived sadness (blue circles 
± SEM depicted as error bars) for the stimulus variants S10-S1 (see Figure 1 for display) of patients with SSD 
(left graph) and matched controls (right graph). A psychometric curve is fitted (blue line) and values for the 
inflection point (xhalf) and the rate of the function are provided for both groups. Red squares indicate the group 
average of stimulus variants neighbouring the inflection point. The Bottom row depicts how well the sigmoidal 
functions fit the individual data (explained variance more than 90% in 10/11 patients and in 12/12 controls). 
Response Frequencies 

Table 1 presents the mean number of valid responses (± standard deviation), separately for the 

different stimulus variants (S10-S1) and groups (patients with SSD and controls). Patients 

with SSD showed significantly less manual responses for stimulus variants S10 (Z = 2.88, 

r = -0.6, p = 0.04), S8 (Z = -2.87, r = -0.6, p = 0.04), S4 (Z = -2.83, r = -0.59, p = 0.04), and 

S2 (Z = -2.73, r = -0.57, p = 0.04).  

1.0

0.8

0.6

0.4

0.2

0.0

pr
ob

ab
ilit

y 
of

 p
er

ce
iv

ed
 s

ad
ne

ss

S10 S9 S8 S7 S6 S5 S4 S3 S2 S1
Happy -> Sad

Controls 

1.0

0.8

0.6

0.4

0.2

0.0

pr
ob

ab
ilit

y 
of

 p
er

ce
iv

ed
 s

ad
ne

ss

S10 S9 S8 S7 S6 S5 S4 S3 S2 S1
Happy -> Sad

Patients 

xhalf = 4.71 ± 0.2 
rate  = 0.78 ± 0.2 

xhalf = 4.68 ± 0.2 
rate  = 1.17 ± 0.2 

100

98

96

94

92

90

88

86

Ex
pl

ai
ne

d 
Va

ria
nc

e 
(R

2 )

0.80.70.60.50.4 Controls Patients 

P
ro

ba
bi

lit
y 

of
 p

er
ce

iv
ed

 s
ad

ne
ss

 

P
ro

ba
bi

lit
y 

of
 p

er
ce

iv
ed

 s
ad

ne
ss

 

Happy -> Sad Happy -> Sad 

E
xp

la
in

ed
 V

ar
ia

nc
e 

(R
2 )

 

100 

98 

96 

94 

92 

90 

88 

86 

S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 

70



CHAPTER 3. PRELIMINARY PHD ARTICLE NO. 2: PERCEPTUAL UNCERTAINTY
EFFECTS IN SCHIZOPHRENIA SPECTRUM DISORDER

	 23	

Reaction times 

In Figure 5 reaction times can be inspected on the 

grand mean level (top row) and on the individual 

level (middle row). Controls (right column, blue 

colour) clearly show longest reaction times in 

response to stimulus variants S6 and S5 with the 

least visibility (see also Fig. 1, right), while 

patients with SSD (left column, red colour) seem 

to have the same reaction times in response to all 

stimulus variants. Mann-Whitney-U tests show that reaction times are (marginally) 

significantly smaller in patients compared to controls for stimulus variants S10 (Z = -2.4, r = -

0.5, p = 0.09), S9 (Z = -2.4, r = -0.5, p = 0.08), S8 (Z = -2.28, r = -0.48, p = 0.09), S4 (Z = -

2.5, r = -0.51, p = 0.09), S3 (Z = -3.2, r = -0.67, p = 0.009), S2 (Z = -2.65, r = -0.55, p = 0.06), 

and S1 (Z = -3.2, r = -0.67, p = 0.01). The rmANOVA of the within group comparison reveals 

that controls show a significant effect for the factor stimulus (F(1,9) = 30.64, p = 7e-25, 𝜂!! = 

0.74), but patients do not (F(1,9) = 0.7, p = 0.7, 𝜂!! = 0.07). In order to account for the 

different dynamics of reaction times in controls compared to patients, we fitted Gaussian 

distributions on the individual reaction times as a function of stimulus identity.  We calculated 

the explained variance (R2), which can be seen in the bottom graph of Figure 5. The Gaussian 

distribution can explain more than 90% of the reaction time data variance in 10 out of 12 

controls and only in 5 out of 11 patients. 

Identifying low-visibility smiley stimuli for Experiment 2 

We calculated the inflection point for each participant and therewith individually determined 

the low-visibility stimulus variants that were used in Experiment 2. 

 

Table 1. Mean number of valid responses  
(± standard deviation) in Experiment 1.  

Stimulus	
variant	

Patients		
with	SSD	

Controls	

S10	 19.2	(±1.1)	 20	(±0)	

S9	 18.4	(±2.1)	 19.9	(±0.3)	

S8	 17.6	(±3.1)	 20	(±0)	

S7	 17.6	(±4)	 19.9	(±0.3)	

S6	 14.9	(±6.7)	 17.3	(±5.5)	

S5	 13.8	(±8.2)	 19.9	(±4.9)	

S4	 16	(±5.1)	 19.9	(±0.3)	

S3	 18.8	(±2.3)	 20	(±0)	

S2	 19	(±1.7)	 19.9	(±0.3)	

S1	 19.4	(±1)	 19.9	(±0.3)	
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Figure 5 Reaction times in Experiment 1. The right column depicts data of controls (blue) participants and the 
left column depicts data of patients with SSD (red). The top row shows the median reaction times on the group 
level for the ten stimulus variants (S10-S1, see also Fig 1). Control participants clearly exhibit longer reaction 
times in response to stimulus variants S6 and S5, i.e. the most neutral stimuli, whereas patients show larger and 
also more similar responses to all stimulus variants. The middle row shows the median reaction times on the 
individual level, i.e. every line (specific colour and specific icon) represents one participant. We fitted Gaussian 
distributions on the individual reaction times as a function of stimulus identity and calculated the explained 
variance (R2), which can be seen in the bottom graph. The Gaussian distribution can explain more than 90% of 
the reaction time data variance in 10 out of 12 controls and only in 5 out of 11 patients.  
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Experiment 2 

In the second part of the study, we compare a condition presenting high-visibility stimuli with 

a condition presenting low-visibility stimuli (as determined on the individual level in Exp. 1). 

We had a 2x2 design with the between-participants factor group, i.e. patients with SSD vs. 

matched controls, and the within-participants factor visibility, i.e. high-visibility vs. low-

visibility stimulus variants.   

Behavioural Results 

Eye tracker data 

Analyses of the eye tracking data do not reveal any 

significant differences. The variables Number of 

Clusters, Spatial Variance, and Distance to Fixation 

Target are unaffected by the between-participants factor 

group and also unaffected by the within-participants 

factors visibility level and emotion. Across both within-

participants factors as well as across the between-

participants factor group the mean number of cluster per 

participant is 3.1 (SD: 1.2), the mean spatial variance of 

each cluster is 9.15°VA (SD: 2.98°VA), and the mean 

distance of the average cluster centroid to the nose 

(fixation target) is 1.29°VA (SD: 0.73°VA). In Fig 6 

one exemplary data set is displayed. 

Key presses 

The mean number of valid responses for high-visibility stimuli is 322.62 (SD: 148.4) for 

patients and 521.92 (SD: 81.05) for controls. The mean number of valid responses for low-

visibility stimuli is 385.3 (SD: 154.9) for patients and 509.2 (SD: 78.7) for controls. We find 

 

Figure 6 Exemplary eye tracking data 
(one data set). Each cross represents 
one fixation, with the size indicating 
the duration of this fixation (small = 
short duration, large = long duration) 
and the colour indicating the time-
course of the fixations (light colour = 
beginning of the measurement, dark 
colour = end of the measurement). The 
blue circles represent the cluster 
centroids found for this data set.   
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that the number of valid responses does not differ between visibility levels and they do not 

differ between the groups in response to low-visibility stimuli. We do, however, find that 

controls show significantly more correct responses for high-visibility stimuli compared to 

patients (Z = -3.4, r = -0.68, p = 0.008). Further, we find that controls reveal significantly 

more valid responses to high-visibility stimuli compared to low-visibility stimuli (Z = -3.06, 

r = -0.88, p = 0.02).  

Median reaction times for patients with SSD are 683 ms (IQR: 533-733 ms) in the high-

visibility condition and 666 ms 

(IQR: 567-666 ms) in the low-

visibility condition. Median 

reaction times for matched 

controls are 575 ms (IQR: 516-

620 ms) in the high-visibility 

condition and 641 ms (IQR: 

541-700 ms) in the low-

visibility condition. This can be 

inspected in Figure 7. The 

median reaction times neither 

differ significantly between 

groups nor between visibility 

levels.  

Uncertainty Effects 

ERP Uncertainty Effects: Hypothesis-driven amplitude analyses 

We replicate the previously found ERP Uncertainty Effects in response to smiley stimuli. In 

Fig 8 (a) larger amplitudes for high-visibility (solid line) compared to low-

visibility (dashed line) stimuli can be inspected.  The rmANOVA indicates a significant main 

 

Figure 7 Median reaction times for the two visibility levels (high-
visibility dark colours, low-visibility light colours) and the two 
groups (patients red, controls blue). The median of the individual 
median reaction times is the white line (low-visibility patients: white 
line is above the red square) and the whiskers depict the interquartile 
ranges of the reaction times.  
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effect of visibility for both the P200 (F(1,21) = 10.13, p = 0.005, 𝜂!! = 0.325) and the P400 

(F(1,21) = 20.88, p = 0.0002, 𝜂!! = 0.499). 

One aim of the current study was to investigate possible amplitude differences of the ERP 

Uncertainty Effects between patients with SSD (Fig 8 a, left graph, red colours) and control 

participants (Fig 8 a, right graph, blue colours). In Fig 8 (a) it seems that the difference 

between high- and low-visibility responses would be less in patients than in controls. Further, 

two clear P200 and P400 peaks can be identified for control participants with a spatial 

distribution ranging from frontal to parietal electrodes (see also voltage maps below the grand 

 

Figure 8 P200 and P400 ERP Effects in patients with SSD and matched control participants. In (a) the grand 
mean ERP traces (upper part) in response to high-visibility (dark colours, solid lines) and low-visibility (light 
colours, dotted lines) stimuli are depicted for patients (red, left graph) and controls (blue, right graph). The 
bottom part shows the voltage maps at peak latencies of the high-visibility conditions of the grand mean ERPs. 
In (b) the P200 (left graph) and P400 (right graph) amplitudes of individual participants (small icons) are 
depicted for both groups and both visibility levels along with the mean amplitudes and the SEM (large icons and 
error bars, respectively).  
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mean ERP graph), while there seems to be three peaks in the patient data. The ERPs seem to 

differ between the groups in terms of their spatial distributions and the temporal development 

of the ERP traces (see Fig 8 a). The statistical analysis, however, shows no significant 

difference between groups for neither the P200 nor the P400.  

Microstate Uncertainty Effects: Exploratory topographical analysis 

In the previous paragraph, we investigated the Uncertainty Effects in terms of amplitude (ERP 

Uncertainty Effects). Comparing amplitude differences between patients and controls is 

justified under the assumption that the same processes occur with different strengths. 

However, a difference in underlying processes is not captured with this analysis. Different 

underlying processes should have different locations in the brain and should thus result in 

different topographies (for further elaboration see the discussion section). We therefore 

investigate topographic differences in the processing of perceptual (un)certainty by means of 

a data-driven microstate analysis, i.e. the Microstate Uncertainty Effects. With this analysis 

we again focus on the differential processing of low- vs. high-visibility of the smiley stimuli 

and therefore calculated the difference between high- and low-visibility conditions for each 

participant. We performed a cluster analysis on the individual level in the time range of the 

P200 and the P400. We then clustered all of those resulting clusters again in a "meta-

clustering" across patients and controls as described in the methods section. We back-

projected those meta-clusters onto the individual time-series and investigated possible 

differences in the resulting microstates between patients with SSD and controls. 

In Figure 8 the dominant microstates within the temporal ROI are depicted for each 

individual, with patients data shown in the left column and controls data shown in the middle 

column. In the right column the related microstate topographies are depicted. There are two 

colour codings: (1) the colours depicted in the left and middle column code for the identity of 

the respective microstate and are presented in the right column as headings of the microstate 

topography. (2) The colours depicted within the microstate topography indicate the strength 
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of activation and range from red, i.e. the highest activation, to blue, i.e. the lowest activation. 

The spatial distributions of the microstate (right column in Fig 9) reveal that the positive 

activations are mainly located at frontal electrodes (Microstates C, D, E, F, G, H, L) or at 

central electrodes (Microstates A, B, J, K). 

 

Figure 9 Microstate Uncertainty Effects in the P200-P400 time range. For all participants (rows) of both groups 
(patients left column, controls middle column) the dominant microstates are depicted in different colours. In the 
right column the colours are associated with the respective graphical illustration of the microstate topography 
(colours within the graphs: red = highest values, blue = lowest values). Note that the underlying data is the 
difference between high-visibility and low-visibility conditions.  
The occurrence frequency is higher for controls compared to patients with SSD for 

microstate B (light blue; p = 0.0002), microstate F (dark orange; p = 0.0002), and microstate J 

(middle blue; p = 0.0002). Microstate L (dark red) is more frequent in patients than in 

controls (p = 0.02). For those microstates that occur similarly frequent in patients and controls 

we further investigate the duration, i.e. temporal length of dominance of one microstate, and 

the coverage, i.e. fraction of the total time that a microstate is dominant. We do not find any 

significant differences between groups for the variable duration. Microstate C (light pink), 

however, shows significantly more coverage in patients compared to controls (p = 0.03).  
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We further investigate the similarity of the temporal evolution of dominant microstates within 

and between the two groups by means of linear correlations. Within patients the average 

correlation coefficient is 0.58 (SD = 0.21) and within controls it is 0.54 (SD = 0.18). Between 

the two groups the average correlation coefficient is 0.58 (SD = 0.04). We do not find any 

significant differences of correlation coefficients between the within patients design, the 

within controls design, and the between groups design. 

Early occipital differences 

The previous ERP effects concerned the higher-level ERP Uncertainty Effects. In this section, 

the earliest differences between patients with SSD and matched controls are identified at 

electrode Oz. These results are of an exploratory nature and yield interesting effects for future 

analyses.  

In Figure 10 (a) the grand mean differences between high-visibility and low-visibility 

conditions are depicted separately for patients (red) and controls (blue). A running t-test 

shows that the earliest significant differences between the groups are present between 100 ms 

and 130 ms after stimulus onset (see Figure 10 (a)). We then applied the so-identified region 

of interest in a regular peak analysis (for details see the methods section). In the top graphs of 

Figure 10 (b) the grand mean ERP traces can be inspected for high-visibility conditions (left 

graph, dark colours solid lines) and low-visibility conditions (right graph, light colours, dotted 

lines). Patients (red) and controls (blue) show different amplitude values of the negative 

deflections within the temporal ROI (grey bar). The voltage maps (bottom part of (b)) reveal a 

negative deflection at central occipital electrode sites in controls. This negativity seems to be 

absent for the patients. The individual data is depicted in Figure 10 (c) and shows generally 

larger negative ERP amplitudes for controls compared to patients. The rmANOVA indicates a 

significant main effect of the between factor group (F(1,21) = 6.51, p = 0.02, 𝜂!! = 0.24). 

Further, we find a significant interaction between group and visibility (F(1,21) = 4.7, p = 0.04, 

𝜂!! = 0.18). We do not find a significant main effect for the factor visibility. 
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Figure 10 Occipital ERP effects at around 115 ms after stimulus onset in patients with SSD and matched control 
participants. In (a) the grand mean difference between high-visibility and low-visibility conditions is depicted for 
controls (blue) and patients (red). A running t-test was performed and revealed that significant differences 
between the groups are present in the time-range of roughly 100 ms to 130 ms after stimulus onset. In (b) the 
grand mean ERP traces (upper part) are depicted for patients (red) and controls (blue) in response to high-
visibility (dark colours, solid lines) in the left graph and in response to low-visibility (light colours, dotted lines) 
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in the right graph. The grey bar indicates the temporal ROI. The bottom part shows the voltage maps at peak 
latencies of the respective condition. There is a small difference between patients and controls in the high-
visibility conditions and a clear difference between groups in the low-visibility conditions. In (c) the individual 
amplitudes (small icons) are depicted for both groups and both visibility levels along with the mean amplitudes 
and the SEM (large icons and error bars, respectively).  
 

Correlation SAPS/SANS with the results of Experiment 2 

We find no significant correlations between the SAPS/SANS scores and the measures of 

Experiment 2.  

Discussion 

The present study is divided into a hypothesis-driven data analysis part and a separate 

exploratory analysis part. In the hypothesis-driven part, we postulated highly similar steps but 

different intensities in (un)certainty processing between SSD patients and controls. To this 

end, we adopted spatial and temporal ROIs from previous studies [14–16] describing the ERP 

Uncertainty Effects. These effects show large ERP amplitudes in response to stimuli that 

evoke certainty (e.g. highly visible stimuli) and small ERP amplitudes in response to stimuli 

that evoke uncertainty (e.g. less visible stimuli). Stable and reliable percepts result from an 

integration of bottom-up sensory with top-down endogenous information. According to the 

current interpretations, the ERP Uncertainty Effects reflect how certain an observer is about 

her/his perceptual interpretation of the sensory information [14–16,40]. Perceptual integration 

functions are proposed to be altered in patients with SSD [1,8–10]. As a consequence, 

certainty estimations should be inadequate and thus result in an altered ERP Uncertainty 

Effects pattern. In the current experiments, we tested this hypothesis by comparing EEG data 

from patients with SSD with that of matched controls in response to (un)certainty.  

In a behavioural Experiment 1, we first determined those smiley stimuli that evoked the 

highest uncertainty for each individual separately. We presented 10 stimulus variants differing 

in the degree of visibility of the happy and sad expression in random order and participants 
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indicated whether they perceived them as happy or sad. The selected stimuli do not 

systematically differ between the groups. We do, however, find differing numbers of manual 

responses between patients and controls and a strikingly different pattern of reaction time 

results between the two groups in response to the randomly presented low-visibility smiley 

stimuli. 

 In Experiment 2, behavioural and neural responses to high-visibility stimuli are compared 

with those to low-visibility stimuli. All participants were instructed to fixate a central fixation 

target during the EEG experiment in order to minimize artefacts induced by eye-movements. 

We analysed the fixation behaviour and find no difference between the groups. Further, 

reaction times in this EEG experiment do not differ between the groups. For the high-

visibility stimuli, however, we find more correct responses in controls than in patients with 

SSD.  

In the hypothesis-driven analysis of the ERP Uncertainty Effects, we replicate those effects 

for controls and also find them for patients with SSD, with larger amplitudes of the P200 and 

the P400 ERP components in response to high-visibility compared to low-visibility stimuli. 

The observable tendency for smaller ERP Uncertainty Effects in patients compared to 

controls does not reach statistical significance. In the exploratory analysis we kept the 

temporal ROI of the ERP Uncertainty Effects but took into account the possibility of 

qualitative differences in processing steps, potentially resulting in different spatial patterns of 

the ERP signals between patients with SSD and controls. We therefore performed a 

microstate analysis on the Uncertainty Effects data and find differences between the groups. 

Three of the identified microstates occur more frequently in controls than in patients and one 

microstate occurs more frequently in patients than in controls. Another microstate is dominant 

for an overall longer time in patients than in controls. Degrees of similarity in the temporal 

microstate evolution within and between groups were investigated by means of correlation 

81



3.2. MAIN MANUSCRIPT

	 34	

coefficients. These temporal evolutions of microstates are about equally similar between 

participants within groups and between groups. 

Additionally, we explore the earliest time point after stimulus onset at which the ERP traces 

for low-visibility smiley stimuli are different from those evoked by the high-visibility smileys 

and compared the EEG data around these time points between groups. We identify an early 

ERP negativity in the difference traces (high-visibility traces minus low-visibility traces) at 

115 ms after stimulus onset, which is most prominent at electrode Oz. This negativity shows 

larger amplitudes in controls compared to patients.  

Limitations of the study 

The present study is part of the dissertation project of the first author Ellen Joos. Due to the 

Corona pandemic we had to stop measurements at a time point of the study when we had a bit 

more than half of the planned number of participants (N = 20 per group). The study is at its 

current state thus strongly underpowered with usable EEG data from 11 patients with SSD 

and 12 controls. The results are preliminary and might either stabilize or change with more 

collected data sets. 

One factor that might largely influence the current results is medication. All patients receive 

antipsychotic drugs, whereas the matched control participants do not. Some patients 

additionally receive anti-epileptic, anti-parkinsonian and other co-morbidity-related 

medication, which causes a variety of different combination of treatments within the patient 

group. Due to the low number of patients measured so far, correlational analyses between 

type and dosage of medication with the behavioural and neural measures applied in this paper 

are not conclusive. Once data acquisition is completed we will calculate those correlations in 

order to quantify the impact of medication on the findings. 

Further, we only tested patients with SSD and matched controls. It is thus unclear whether the 

differences between the groups are specific for patients with SSD or whether they are 

generally present in mental disorders. Symptoms, as determined by SAPS and SANS, show 
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no significant correlations with the results of Experiment 2, but given the low number of 

patients we cannot derive any conclusions from this finding. Stronger claims about the current 

findings can only be made after more participants have been tested and also sub-scores of 

SAPS and SANS are correlated. Strong claims, moreover, can only be made once the current 

results are replicated in one or more separate replication studies and they are shown to be 

specific to patients with SSD.  

Different Uncertainty Effects in patients with SSD compared to matched controls 

In the hypothesis-driven analysis we investigated possible amplitude modulations of the 

ERP Uncertainty Effects between patients with SSD and matched controls. Such modulations 

in amplitude, given the presence of the focused ERP signatures, would indicate similar 

processes but potentially different processing intensities related to (un)certainty in the two 

groups. We do, however, find no significant difference in the focused ERP Uncertainty 

Effects between the two groups. Due to the currently small sample size of this study it is not 

clear whether or not amplitude effects will become significant between patients and controls 

with more measurements. The grand mean data shown in Figure 8 seem as if amplitudes 

heights in response to low-visibility stimuli are similar between groups. Amplitude heights in 

response to high-visibility stimuli, however, seem to be smaller in patients compared to 

controls. If this difference would manifest in the statistical results with more data, then one 

could speculate that the differences between groups would not be related to the difficulty of 

the task, but that they are rather due to general differences in the processing of certainty. This 

would stand in line with the notion of Phillips et al. [41], who speculated that patients with 

SSD have a lower threshold for stimuli to being perceived as ambiguous.  

We identified one control participant with unusually large amplitudes for both, the P200 and 

the P400 ERP component. This person may distort the grand means in the control group (see 

individual data in Fig. 8). Exclusion of this person, however, would further reduce the already 

low number of participants and would thus provide no real gain for the statistics.  
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Another interesting observation of the ERP Uncertainty Effects is that there seems to be a 

difference in inter-individual variability between the groups, with a tendency for smaller 

inter-individual variability in the patients group compared to the control group (see Fig 8 b). 

Again, more data sets will reveal whether this is actually a systematic effect or just a 

momentary impression due to the underpowered study. 

Further, the grand mean display of the ERP Uncertainty Effects in patients reveals three peaks 

(210 ms, 305 ms, and 370 ms after stimulus onset) instead of two (at 200 ms and at 400 ms 

after stimulus onset), as found in previous studies [14–16]. We inspected the individual 

patients data in order to (dis)proof the three peaks assumption arising from the grand mean 

level on the individual level. We find no systematic differences in the number of peaks 

between patients and controls. We do, however, observe more variance in latency of the P400 

in patients compared to controls. This might cause an averaging artefact resulting in three 

peaks in the grand mean ERP, even though only two peaks are present on the individual level. 

Systematically analysing the latency differences between patients and controls will be 

conducted when more data sets are collected. This analysis might provide valuable 

information about differences in processing speed between the two groups. 

In the preliminary results, the amplitude modulations of the ERP Uncertainty Effects do not 

significantly differ between the groups. The amplitude analysis relies on the assumption that 

the same processes are present in different strengths between the groups. One could also 

hypothesise that different processes are present in the two groups. Different processes should 

be evoked by different brain structures, which should be reflected in different locations in the 

brain and which should thus evoke different topographic patterns. This idea is reflected in the 

microstates analysis. Microstates are short periods of stable brain states that are identified 

with EEG. Importantly, a microstate has a fixed topography, which might vary in strength and 

polarity [42]. In typical microstate analyses, four main microstates as initially defined within 

a resting state paradigm [43], are investigated. In the current study an onset paradigm is used, 
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which evokes stimulus-specific processes. These processes might not be represented by the 

resting state microstates and therefore we performed a data-driven microstate analysis, similar 

to Bhatia [44]. Note that all of the results from this explorative analysis are reported without 

correction for multiple testing and should thus not be over interpreted.  

We applied a hierarchical clustering algorithm and a data-bound decision criterion for the 

number of clusters. This analysis was conducted on the individual differences of neural 

responses to high-visibility minus low-visibility conditions. The idea behind this was to 

eliminate neural activity related to the processing of the low-level visual features of the 

smiley stimuli, like circles and lines, and therewith to isolate the EEG related to perceptual 

decision making under different certainty conditions. Importantly, a microstate analysis is 

only valid under the assumption that similar topographies generally represent similar neural 

processes and that particularly similar topographies between individuals also represent similar 

neural processes, despite of possible differences in brain anatomy. The same reasoning 

underlies a variety of analyses of EEG features across participants. We would thus expect a 

homogenous picture of the dominant microstates between participants.  

Observation of Figure 9 (left and middle column), however, shows that the temporal sequence 

of microstates within the temporal ROI varies considerably between individuals both within 

groups but also between groups. One reason may be that some of the identified microstate 

topographies are very similar (e.g. meta-clusters C, F, G, and H all have a frontal positivity). 

The hierarchical clustering groups together those topographies with the least Euclidean 

distance, starting from the smallest distance where two topographies, e.g. at two time-points, 

are grouped together and calculates the distances iteratively up to the largest distance where 

all topographies, e.g. at all time-points, are grouped together. The criterion to decide for the 

number of microstates or to put it in other words the criterion to decide which 

similarity/Euclidean distance between the topographies should be set as the threshold is 

chosen by the experimenter. We used a modified elbow-method, which is based on the slope 
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of the explained variance. It is important to notice that this choice of the threshold does not 

necessarily have an output in which the different microstates actually represent different states 

of the brain. Further, every microstate topography comprises several processes. If 

topographies are very similar between microstates then the majority of sub-processes may be 

the same and only few sub-processes may be different. In the current result we can see that 

microstates mainly show frontal or central positive spatial distributions, with only two 

exceptions (Microstate J, Microstate M). Having this in mind, the temporal sequences of 

microstate topographies between participants may be less heterogeneous than it seems. 

We find that Microstate Uncertainty Effects differ between patients and controls. In 

particular, we find that three microstates occur more frequently in controls than in patients 

and only one microstate is more frequent in patients than in controls.  

It is important to notice that in the occurrence frequency analysis a certain microstate can 

either be present in a participant or not. Therefore, not all of the participants within a group do 

necessarily have to show the microstate. The comparison between groups thus depends on 

probabilities of a microstates' occurrence frequency. The reason for a certain microstate only 

occurring in parts of the group can be (1) that the groups comprise sub-groups which do not 

share the same neural processes, (2) that individual anatomies do not allow to detect the same 

topographies even though the signals are the same, or (3) that the signal processing evokes 

different topographies even though the signals are the same. Importantly, the fact that the 

microstates are not present in all participants within a group limits the conclusions that can be 

drawn from the results. Given the current data, we cannot infer statements about the whole 

population and the Microstate Uncertainty Effects cannot be used as a physiological signal to 

differ between patients and controls.  

It is, however, very interesting to investigate the functional role of the microstates that differ 

between groups. Brain regions evoking the microstates reported above might help to 

understand this functional role. Two of the identified microstates that differ between patients 
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and controls show a central/centro-parietal distribution and the two others show a frontal 

distribution. Once data acquisition is completed, we will investigate the neural sources using 

source analysis methods such as eLORETA [45] and recently developed methods such as 

ConvDip [preprint: 46], which is based on convolutional neural networks. In future studies, 

advanced source analyses should be applied, optimally using a combined MRI measurement 

in order to individually determine the brain anatomy and thus have more precise source 

localisation.  

Further, it is important to understand why the microstates only occur in some of the 

participants within a group. Three microstates are represented in 1/3 of the controls each and 

they do not occur at all in the patients. Another microstate was found more frequently in 

patients (in roughly 70% of the individuals) compared to controls (in roughly 30% of the 

individuals). The existence of sub-groups within the groups might be a possible explanation. 

We will try to identify those sub-groups and understand the common basis within one sub-

group once data acquisition is completed. As mentioned previously, a correlational analysis at 

the current stage, i.e. with only 11 patients and 12 controls, is not conclusive. To rule out 

general differences between patients and controls, we tested for a difference in the amount of 

variability of the topographic patterns between the two groups. To this end, we computed the 

correlation coefficients of the topographic variability and do not find any significant 

differences, which is in favour of the sub-group interpretation.  

Similar ocular fixation behaviour in patients with SSD and matched controls 

In the current study we find no significant amplitude ERP Uncertainty Effects, but we find 

differing microstate patterns between the two groups, which indicates a difference in 

(un)certainty processing between the two groups. Differences in fixation behaviour might be 

the cause for differences in processing or they could constitute a confound. We investigated 

this possible influence and find no differences of fixation behaviour between patients with 

SSD and matched controls. There are controversial findings in the literature regarding ocular 

87



3.2. MAIN MANUSCRIPT

	 40	

fixation behaviour. Some studies report differences between patients with SSD compared to 

control participants [e.g. 47,48] and others only a trend [e.g. 49]. However, there are also 

studies in line with the current finding, which report no differences of ocular fixations of 

patients with SSD compared to controls [e.g. 50,51]. Further, it has been proposed that 

patients with SSD exhibit differences in visual scanning of faces during passive viewing 

tasks, while they do not differ compared to controls during an active and instructed task [52], 

which is similar to the current paradigm. Differences between studies might be due to 

differences in medication status of the patients, different stimuli, different tasks and/or other 

methodological aspects, as pointed out by Gooding et al. [51]. Future research should focus 

on the ocular fixation behaviour and systematically account for medication status and 

methodology to get a clearer picture. For the purpose of this study, the current results stand in 

line with the findings of the emotion recognition ability, which reveals no significant 

difference between patients and controls. One has to keep in mind, however, that the current 

study is underpowered and more data has to be collected to make valid statements. 

Differences in the number manual responses in patients with SSD compared to matched 

controls 

We find differences in the number of manual responses in Experiment 1. Patients with SSD 

show less manual responses for four variants of the low-visibility stimuli compared to 

controls. Two of those stimulus variants contained rather sad emotional expressions, while the 

two other stimulus variants contained rather happy emotional expressions. In order to test for 

a dependency between the number of manual responses and the negative symptom scores, as 

indicated by [53], we will correlate the two variables once the data set is completed. 

Especially interesting is that before correction for multiple testing the number of manual 

responses for seven out of ten smiley variants was marginally significantly lower in patients 

compared to controls. The lack of statistical difference might thus be related to the 
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underpowered data set and the results and possible interpretations might thus change with a 

complete data set.  

In Experiment 2 participants had to perform an n-back comparison task. We find that the 

number of valid responses for highly visible stimuli was significantly lower in patients 

compared to controls. This might be related to memory impairments, as was already found 

extensively in patients with SSD [e.g. 54]. Another explanation might be that patients are less 

successful in correctly discriminating the different emotional facial expressions. In order to 

test this interpretation in a future study, one could present two smiley stimuli simultaneously 

and systematically vary same and different stimuli. The resulting number of correct responses 

would be compared between patients and controls. If the above-mentioned discrimination task 

is deficient in patients, the number of correct responses should be less compared to controls. 

Further, we will also correlate the number of manual responses in Experiment 2 with the 

negative symptom scores once data collection is completed. 

Similar emotion recognition in patients with SSD and matched controls 

It has been shown that patients with SSD have difficulties in interpreting emotional 

expressions [23–25]. We do not find any significant differences in emotion 

recognition/classification between patients with SSD and matched controls in Experiment 1. 

One has to keep in mind, however, that we did not use actual pictures of human beings, as 

was done in the previously mentioned studies, but we presented abstract representations of 

faces in the form of smileys. A study by Manalai et al. [55] shows that patients with psychotic 

disorders perform worse than controls when recognizing emotional expressions of actual face 

pictures, but interestingly outperform controls when recognizing emotional expressions of 

emoticons. One could conclude from this study that complex information about an emotional 

expression induces difficulties in their interpretation in patients in SSD. On the other hand, 

coarse information about a mouth bending upwards or downwards does not impair patients’ 
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ability to recognize emotions, as seen in the current study, or that they even outperform 

control participants, as seen in the study by Manalai et al. [55].  

 

Reaction time patterns (Exp. 1) in patients with SSD and matched controls 

The generality of the ERP Uncertainty Effects [14–16] along with their late latencies led to 

the hypothesis that they reflect higher-level/cognitive rather than lower-level sensory 

processing steps. We thus interpret them in the following way: Due to evolutionary reasons 

the perceptual system produces perceptual interpretations as fast as possible and in a highly 

automatic manner [see 56 for a more detailed discussion]. Certainty or uncertainty of these 

quickly generated perceptual interpretations is then rated in a second step, probably by a 

meta-perceptual evaluation instance [see also 57]. We hypothesise that the ERP Uncertainty 

Effects and possibly also the Microstate Uncertainty Effects reflect the differential meta-

perceptual evaluation results given different degrees of stimulus visibility. In a third step, 

different levels of (un)certainty might influence the behaviour. In the current study, we 

indirectly measure (un)certainty by means of reaction times. It is known for a long time that 

uncertainty, as measured with rating scales, is correlated with long reaction times [e.g. 58]. 

The reaction time results from control participants from the behavioural Experiment 1 

confirm this by showing longer reaction times in response to stimulus variants S6 and S5 

(most low-visibility stimuli) compared to the other variants. It seems therefore reasonable that 

controls experience uncertainty when observing the most low-visibility stimuli, resulting in 

long reaction times, and that they experience certainty when observing higher-visibility 

stimuli, resulting in short reaction times. The reaction times of patients with SSD clearly 

differ in terms of duration and dynamics from those of controls. In detail, patients with SSD 

show longer reaction times compared to controls for all stimulus variants except for stimuli 

S7, S6, and S5, i.e. the most low-visibility stimulus variants. Further, the actual reaction time 

values do not differ between the stimulus variants in patients. Patients with SSD thus may 
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experience the same amount of subjective uncertainty in response to all used stimulus 

variants, independent of the amount of visual cues. The finding that all reaction times of the 

patients are very similar to the reaction times of controls in response to the most low-visibility 

stimuli is in favour of this speculation. Like for the EEG results, this interpretation stands in 

line with the notion of Phillips et al. [41], suggesting that patients with SSD are more likely to 

perceive stimuli in general as ambiguous.  

The relation between behavioural (reaction times) and electrophysiological measures 

(ERP/Microstate Uncertainty Effects) of (un)certainty is not entirely clear. One way to 

investigate this relation would be to introduce a certainty rating as a second task, which would 

allow assessing certainty on a behavioural level and to correlate this with reaction times and 

electrophysiological measures. 

How can the conflicting patterns (Exp. 1 vs. Exp. 2) of reaction time results be 

explained? 

One remaining problem for the above presented interpretation is that we should expect also 

significant reaction time differences between visibility levels in Experiment 2, but do not find 

them. Previous studies, using a highly similar experimental paradigm to investigating the ERP 

Uncertainty Effects [14–16] did also reveal no systematic differences between median 

reaction times in response to different levels of ambiguity/visibility.  

In the following these discrepancies between the reaction time findings of the behavioural 

Experiment 1 and that of the electrophysiological Experiment 2 are discussed. It is important 

to emphasize the differences between the two experimental paradigms: 

• Visibility of the stimuli: in Experiment 1 ten different happy and sad stimuli with 

differences in the visibility of the emotional expression were presented. In Experiment 

2 only one happy and one sad low-visibility smiley and one happy and one sad high-

visibility smiley were presented. 
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• Number of stimuli within one experimental condition: in Experiment 1 the ten 

stimulus variants were randomly presented within one experimental condition. 

Experiment 2 consisted of two conditions. In one condition only one happy and one 

sad low-visibility smiley, i.e. 2 different stimuli, were presented repeatedly in a 

randomised order. In the other condition the happy and sad high-visibility smiley were 

presented in the same way.  

• Task: in Experiment 1 participants had to categorize the presented stimulus as either 

happy or as sad. In Experiment 2 an n-back task was introduced, following the typical 

paradigm used in previous studies about the ERP Uncertainty Effects [14–16]: 

Participants had to indicate same or different emotional expression of the current 

stimulus compared to the previous one. 

It has been shown that in general task difficulty correlates positively with the duration of 

reaction times (the more difficult the slower) [59].  It is reasonable to assume that task 

difficulty also correlates positively with uncertainty, which in turn results in longer reaction 

times [58]. The n-back task (Experiment 2) explicitly involves the access to memory traces 

and may thus be regarded as more difficult compared to the identification task in Experiment 

1, which does not involve memory. One would therefore expect longer reaction times in the 

n-back compared to the identification task. We do, however, find the opposite pattern for both 

controls and patients. The median reaction times are up to 100 ms longer in Experiment 1 

compared to Experiment 2. A possible explanation of this unexpected finding will be 

described in the following: Both experiments have in common that two responses are possible 

(Experiment 1: happy and sad; Experiment 2: same and different). The number of stimuli 

within one experimental condition, however, is different. More stimulus variants in the 

behavioural Experiment 1 might explain long reaction times from a predictive processing 

perspective, because the probability of one stimulus to occur is only 10% and thus the identity 

of the upcoming stimulus is poorly predictable. In Experiment 2, in contrast, only two 
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different stimuli are presented and thus the probability of one stimulus to occur is 50% and 

therefore the identity of the upcoming stimulus is easily predictable. Generally, more accurate 

predictions enable more accurate and faster responses and vice versa. In Exp. 2 stimuli are 

much more predictable and might thus lead to generally shorter reaction times than the ten 

stimuli in Exp. 1.  

Furthermore, the finding that both groups exhibit similar reaction times for low- and high-

visibility stimuli in Experiment 2 might be due to physiological restrictions: The high 

predictability of the stimuli (50% occurrence probability), which is irrespective of their 

visibility level, might make reaction times as short as physiologically possible. In 

Experiment 1, contrarily, no such limiting physiological effect is found, which might again be 

related to the low predictability of the stimuli (10% occurrence probability). Under normal, 

non-laboratory circumstances the predictability of the upcoming sensory information is 

usually lower than 50% occurrence probability, because we move in space, interact with other 

beings that act independently and stimuli are not presented with numerous repetitions as in 

typical lab experiments. Experiment 1 might thus come a bit closer to non-laboratory 

situations than the high predictability situation in Experiment 2.  

We observe a tendency of reaction time differences between the two groups. Patients with 

SSD are 25 ms slower than controls in the low-visibility condition and over 100 ms slower 

than controls in the high-visibility condition. These differences in reaction times are, 

however, not statistically significant. Earlier studies repeatedly found slower reaction times in 

patients with SSD compared to matched controls [60–62]. The reaction time differences 

between groups are around 50 ms in the literature [63]. Thus, the observed non-significant 

tendency is in directionality and quantity roughly in confirmation with these studies. The lack 

of statistical significance of the group difference in the current study might be due to the low 

sample size. More participants have to be measured in order to see whether the observed 
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tendency transforms into a statistically significant effect. Hereafter this reaction time 

difference between groups is neglected due to its statistical insignificance.   

 

 

Predictive coding and (un)certainty 

Predictive processes are described in more detail by the frameworks of Bayesian probability 

[64] and predictive coding [65,66]. According to these theories, the brain forms a model about 

the external world. Whenever new sensory information enters the brain, this information is 

compared with the previously formed model and the error between sensory information and 

the model is calculated (the "prediction error"). The model then becomes updated in a 

recursive manner until the prediction error is minimized. In typical EEG paradigms aiming to 

investigate predictive processes, the predictions are based on frequent repetitions of the same 

stimulus. Sudden presentations of rare stimuli violate these predictions and thus maximize the 

prediction error. EEG differences between frequent and rare stimuli are then interpreted as 

correlates of the prediction error [e.g. the mismatch negativity (MMN) 67]. The stimuli used 

in such paradigms were typically unambiguous and clearly visible. In a recent study by our 

group [40], we investigated predictive processes in response to different ambiguity levels of a 

stimulus rather than its occurrence frequency. It was shown that the ERP Uncertainty Effects 

varied as a function of the predicted stimulus ambiguity level. Further, we found that 

predictive processes always modulate processing of the perceptual present, even if those 

predictions are irrelevant for the present percept and task. In the following we will speculate 

about predictive processes evoked by high and low quality of the sensory information as used 

in the current study. Importantly, in this study the occurrence probability of the sensory 

information is high due to the block-design paradigm, irrespective of the quality of the 

sensory information.  
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In the case of highly visible stimuli, the low-level differences between a picture of a clearly 

happy and a clearly sad expression are relatively large, because the mouth curvatures within 

those pictures strongly differ. If the brain has predicted, for example, an upcoming clearly 

happy smiley picture at a time-point t = -1, but the actual sensory input at t = 0 is a picture of 

a clearly sad smiley, one would expect a large prediction error due to the large low-level 

differences between what has been expected and what is seen. In the condition with low-

visibility smileys, the low-level differences between a slightly happy and a slightly sad 

expression are small, because the mouth curvatures within those pictures only slightly differ. 

If the brain has predicted, for example, an upcoming slightly happy smiley picture at t = -1 

and the actual sensory input at t = 0 is a picture of a slightly sad smiley, one would expect a 

small prediction error due to the small low-level differences between predicted and seen 

stimuli. We thus hypothesise generally smaller prediction errors in the case of less visible 

compared to highly visible sensory information (under the assumption of equal occurrence 

probabilities).  

Following this argumentation, we can speculate that beyond a postulated prediction error 

signal the brain also produces a signal reflecting prediction success. A prediction success 

would be if the predicted stimulus (at t = -1) equals the sensory information (at t = 0). In this 

case the match between predicted and actual sensory information should be larger in the case 

of highly visible compared to less visible stimuli, because more low-level details are present 

in the highly compared to the less visible stimuli. Accordingly, the postulated prediction 

success should thus be high in the case of highly visible and low in the case of less visible 

stimuli. The amplitudes of the ERP Uncertainty Effects might reflect such a prediction 

success with large amplitudes in the case of a high prediction success and small amplitudes in 

the case of a low prediction success. 

We previously postulated that the prediction is formed at a time-point t = -1 and that the 

sensory information is perceived at t = 0. Afterwards the predictive model is updated, using 
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the prediction error, until the prediction error is close to zero at time-point t = 1 and a new 

prediction is formed. Further, it is known for a long time that perception results from a 

weighting of the exogenous sensory information with the endogenous, e.g. memorized, 

information [6].  

In the case of highly visible stimuli, one sensory input allows for one highly probable 

perceptual interpretation. This might evoke a high perceptual certainty about the sensory 

information. Consequently, the sensory information might be strongly weighted during 

perceptual processing. The strong weighting of the sensory information might result in a large 

contribution of the highly visible input during minimization of the prediction error, because 

the sensory input is judged as being reliable enough to update the model accordingly. In a 

very simplified way, one could say that the prediction error will be minimized until it reaches 

a value close to zero in the case of highly visible stimuli.  

In the case of less visible stimuli, one sensory input allows for two or more equally likely 

perceptual interpretations (see the most low-visibility stimuli in the behavioural Experiment 

1). This might evoke perceptual uncertainty about the sensory information. Consequently, the 

sensory information might be weighted weakly during perceptual processing, resulting in a 

small contribution of the less visible input during minimization of the prediction error. In a 

very simplified way, one could say that the prediction error will always be larger than zero in 

less visible stimuli, because the sensory information might not be regarded as reliable enough 

to update the model accordingly.  

Importantly,	it is proposed that updating of the model is disturbed in patients with SSD, 

resulting in an erroneous interpretation of the sensory information [8,10,68–70]. One 

consequence of these aberrant updating mechanisms might be that the prediction error can 

never come close to zero in patients with SSD. In the case of less visible stimuli, which are 

proposed to always having a prediction error larger than 0, the aberrant processing in patients 

with SSD might not have a strong influence. In the case of highly visible stimuli, however, 
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which are proposed to produce a prediction error close to zero after the updating process, a 

possibly general increase of the prediction error in patients with SSD might have severe 

consequences. This reasoning might explain the tendency for smaller ERP amplitudes in 

response to highly visible stimuli in patients compared to controls in Experiment 2 (see results 

"ERP Uncertainty Effects"). Further, this reasoning might explain differences in the 

Microstate Uncertainty Effects between the groups and ultimately might explain the reaction 

time differences found between groups in Experiment 1.  

Earliest differences between groups 

Most studies investigating face-processing in patients with SSD focus on the N170 as the 

earliest time-point to differ between patients and controls [71,72]. The current study, 

however, shows that the EEG traces differ between groups already at about 115 ms after 

stimulus onset, indicating a remarkable early, lower-level difference in perceptual processing 

for patients with SSD compared to controls. These results stand in line with recent findings of 

sensory deficits in psychiatric diseases, which is highly interesting because psychiatric 

diseases are typically regarded as diseases of the higher-level cognitive system [26,27,73–75]. 

Further, the above-raised hypothesis that the meta-perceptual certainty rating is altered in 

patients with SSD, resulting in aberrant predictive processes, might be related to these early 

differences in processing of (un)certainty in patients compared to controls. The framework of 

predictive coding assumes that the prediction error is integrated on all hierarchy levels during 

the perceptual process [65]. The different time-points in which patients with SSD show 

altered results compared to controls, i.e. the early occipital differences, the ERP/Microstate 

Uncertainty Effects, and the deviating reaction times, could reflect those different hierarchy 

levels of the prediction error integration.  

Future studies should systematically investigate whether this early peak reliably differs 

between patients with SSD and matched controls. If this early effect will be replicated in 
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follow-up studies it will be necessary to investigate whether it is specific to the current stimuli 

or whether it represents a general feature of deviant visual processing in patients with SSD.  

 
 
 
Conclusion and Outlook 

The current study compared the neural and behavioural correlates of (un)certainty between 

patients with SSD and matched controls using happy and sad smiley face stimuli differing in 

visibility of their emotional face expressions. We focused on the differential processing of 

stimuli with high- versus low-visibility and compared the EEG and behavioural correlates of 

the resulting high versus low certainty about the respective perceptual outcomes in the two 

groups. Our analysis followed two parallel approaches: 

In one approach, we postulated same processes in patients with SSD as in healthy controls but 

different intensities. We thereby focused on the previously reported ERP Uncertainty Effects 

[14–16] and replicated previous findings of larger ERP amplitudes with high-visibility 

compared to low-visibility smiley stimuli in healthy controls and found the same pattern in 

SSD patients. This finding is in line with similar ocular fixation behaviour and reaction times 

between groups in Experiment 2. Some non-significant tendency towards overall smaller 

amplitudes in patients than in controls is observable in the grand mean ERP traces. However, 

the present results are based on an underpowered data set and additional data sets will 

probably provide more clarification in one or the other direction.  

In our first data analysis approach, we postulated differences in quantity/intensity of 

otherwise equal processing steps. In our second approach, we postulated qualitative 

differences in perceptual processing between patients and controls. In order to test this 

hypothesis, we calculated ERP microstates of the difference traces (high- minus low-visibility 

smileys) and compared their temporal evolution between patients with SSD and matched 
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controls. We found evidence for deviating microstate patterns of sub-groups within patients 

and controls. In summary we found certain microstate patterns that were present in a number 

of member of one group but completely absent in the other group. This pattern of results 

indicates qualitative differences in (un)certainty processing between groups but also some 

indications for the existence of sub-groups within groups.  

Recent predictive coding approaches postulate deviant integration of bottom-up sensory with 

top-down endogenous conceptual information during the perceptual process in patients with 

SSD. As a consequence, patients may create deviating models about the external world. The 

deviating microstate (Exp. 2) and reaction time patterns (Exp. 1) in patients with SSD, as is 

present in the current data, might reflect certain steps during such a deviant model formation.  

In a recent study in our lab with only healthy controls, we varied the current experimental 

paradigm such that influences from the immediate perceptual past and predictions about the 

immediate perceptual future on the perception of the present could be systematically 

investigated [40]. With this paradigm we tested whether the here reported ERP Uncertainty 

Effects stand in line with the predictive coding approach. In yet unpublished results we found 

that the ERP Uncertainty Effects are in perfect agreement with the predictive coding models.  

Important next steps on our agenda are (1) to increase the number of participants in order to 

see whether the currant findings stabilize statistically. (2) In a follow-up study with patients 

with SSD we plan to adopt the above-mentioned variant of the experimental paradigm [40], 

which allows quantification of predictive processes. With this we may be able to test more 

specifically the hypothesis of deviant predictive coding model formation in patients compared 

to controls. (3) Further, adding a certainty rating as a secondary task will allow to investigate 

the relation between electrophysiological and behavioural correlates of (un)certainty. 

One important finding in our exploratory analysis is the very early occipital amplitude 

differences (at 115 ms after stimulus onset) between groups, which indicates that also low-

level processes related to the sensory information are altered in patients with SSD. Future 
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studies, of course, have to replicate the current findings and importantly investigate whether 

this difference is specific to patients with SSD or generally occurs in mental disorders. 

Overall, we are optimistic that the experimental paradigm used in this study is a promising 

tool to identify strongly demanded physiological markers of Schizophrenia Spectrum 

Disorder.  
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perceptual future influences

the perceived present

4.1 Summary

The perceptual inference problem is solved with the help of information from the immediate

perceptual history, experiences over lifetime and the predictions about upcoming sensory

information formed thereof. Previous studies regarding this temporal aspect of perception

primarily focused on either the influence of past experiences on the perceptual processes in the

present (e.g. priming, hysteresis: Long et al., 1992; Liaci et al., 2018) or primarily focused on

the influence of predictions about future stimuli on present perceptual processes (e.g. predictive

coding: Näätänen et al., 2007). The current study builds a bridge between those different lines

of research by acknowledging the interplay between previous experiences and predictions and

its combined influence on the perceptual present. In the following this interplay will be labelled

as temporal context. The stimuli used in previous studies investigating aspects of temporal

context integration were typically unambiguous, highly visible, and mainly differed in their

occurrence frequency (e.g. Näätänen et al., 2007). However, solving the perceptual inference

problem might be most difficult when the stimulus is of low quality, e.g. when it is ambiguous.

Further, ambiguous stimuli in the immediate past might evoke less reliable predictions about the

immediate perceptual future compared to previous unambiguous stimuli. In the current study,

ambiguous and unambiguous lattice variants were presented (similar to Kornmeier and Bach,

2009; Kornmeier et al., 2016), with ambiguity being the independent stimulus variable to study

temporal context effects during perception. The ERP Uncertainty Paradigm (Kornmeier and

Bach, 2009; Kornmeier et al., 2016; Joos et al., 2020b), however, was not suited for systematic

analyses of temporal context effects, because the level of ambiguity was kept constant within

conditions (block design). The paradigm was thus modified such that the stimuli were presented

in pairs, where stimulus S1 was followed by stimulus S2. Four different experimental conditions

were created with a paired design (2x2) with differing ambiguity levels of S1 and S2 (ambiguous

vs. unambiguous). This allowed for the investigation of neural responses elicited by the same S1

stimuli over different levels of ambiguity in its temporal context, i.e. preceding S2 of the previous
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pair and predicted S2 of the current pair.

It is hypothesised that information from the temporal context is automatically integrated into

the processing of the sensory present and into the execution of a present task. In the first

experiment of this study, reaction times and ERP Uncertainty Effects (P200 and P400) were

compared between two conditions: condition 1 had a temporal context consisting of unambiguous

stimuli and condition 2 had a temporal context consisting of ambiguous stimuli. ERP amplitudes

were larger with an unambiguous temporal context compared to an ambiguous temporal context,

i.e. ERP Temporal Context Effects. Reaction times were also affected by the temporal context

stimuli. Specifically, reaction times were short when the ambiguity level was the same in S1 and

S2 while reaction times were long when the ambiguity level was different in S1 and S2.

In the second experiment, it was investigated whether the same results from Experiment 1 could

be found when information to predict the perceptual future is provided as an abstract symbol,

and not based on the direct perceptual experience of sensory regularities in the past. To this

end, preceding S2 stimuli were replaced with a symbolic representation of the upcoming stimuli

that was presented at the beginning of each block. Block length was dramatically shortened

from 9 minutes to 9 seconds (i.e. three pair presentations) and concurrently block repetitions

were increased. This enabled the separate analysis of the first, second, and third stimulus

presentation. The results showed that exposure to the sensory information indeed is a necessary

precondition for the ERP Temporal Context Effects. Only in the third stimulus presentation a

significant effect was observable for an ERP difference between disambiguated and ambiguous

stimuli in the temporal context. Reaction time differences, on the other hand, were present

already in the second stimulus presentation, i.e. after exposure to one sensory experience.

The paper ”Using the perceptual past to predict the perceptual future influences the perceived

present - a novel ERP paradigm” (Joos et al., 2020a) indicates that previous and predicted

sensory information have a strong influence on the processing of the present and can be

measured both behaviourally and electrophysiologically. Importantly, this is the case even

though the task was not dependent on information from the temporal context. This indicates an

automatic integration of previous and predicted information about the certainty of perceptual

outcomes. The brain always estimates the reliability of previous and predicted sensory

information and integrates them into the current one, despite actual relevance. Experiencing

the sensory information directly, however, is necessary to form those predictions about the

perceptual future, whereas a symbolic information about the future is not sufficient.

In psychiatric diseases such as Schizophrenia Spectrum Disorder, predictive processes are

proposed to being altered compared to controls (Shergill et al., 2005; Fletcher and Frith, 2009;

Notredame et al., 2014; Schmack et al., 2015; Sterzer et al., 2019). The current findings might

help to investigate aberrant predictive processes in psychiatric patients by means of the ERP

Temporal Context Effects.

Contribution to the paper I was part of the funding acquisition, as well as the

conceptualisation and administration of the project. I was responsible for data curation, formal

analysis, investigation, methodology, software, validation, visualisation, writing the original draft

and reviewing and editing the manuscript.

106



CHAPTER 4. PHD ARTICLE NO. 3: USING THE PERCEPTUAL PAST TO PREDICT
THE PERCEPTUAL FUTURE INFLUENCES THE PERCEIVED PRESENT

4.2 Main Manuscript

RESEARCH ARTICLEUsing the perceptual past to predict theperceptual future influences the perceivedpresent – A novel ERP paradigm
Ellen JoosID

1,2,3,4,5, Anne Giersch1, Kriti Bhatia3,5,6, Sven P. Heinrich3,6, Ludger Tebartz
van Elst2,3, Jürgen Kornmeier2,3,4*

1 INSERM U1114, Cognitive Neuropsychology and Pathophysiology of Schizophrenia, University of
Strasbourg, Strasbourg, France, 2 Department of Psychiatry and Psychotherapy, Medical Center–University
of Freiburg, Freiburg, Germany, 3 Faculty of Medicine, University of Freiburg, Freiburg, Germany, 4 Institute
for Frontier Areas of Psychology and Mental Health, Freiburg, Germany, 5 Faculty of Biology, University of
Freiburg, Freiburg, Germany, 6 Eye Center, Medical Center–University of Freiburg, Freiburg, Germany

* juergen.kornmeier@uni-freiburg.de

Abstract
The information available through our senses is noisy, incomplete, and to varying degrees

ambiguous. The perceptual system must create stable and reliable percepts out of this

restricted information. It solves this perceptual inference problem by integrating memories

of previous percepts and making predictions about the perceptual future.

Using ambiguous figures and a new experimental approach, we studied whether gener-

ating predictions based on regularities in the past affects processing of the present and how

this is done. Event-related potentials (ERPs) were measured to investigate whether a highly

regular temporal context of either ambiguous or unambiguous stimulus variants differently

affects processing of a current stimulus and/or task execution. Further, we tested whether

symbolic announcements about the immediate perceptual future can replace the past expe-

rience of regularities as a source for making predictions. Both ERP and reaction time varied

as a function of stimulus ambiguity in the temporal context of a present stimulus. No such

effects were found with symbolic announcements.

Our results indicate that predictions about the future automatically alter processing of the

present, even if the predictions are irrelevant for the present percept and task. However,

direct experiences of past regularities are necessary for predicting the future whereas sym-

bolic information about the future is not sufficient.

Introduction

The information entering our senses is inherently noisy, incomplete, and to varying degrees
ambiguous. In order to disambiguate and interpret the strongly limited sensory information,
our perceptual system must include non-sensory (top-down) information from spatial and
temporal contexts. This enables the brain to construct stable and reliable percepts that allow
for a successful interaction with our environment. Perception has already been described as an
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unconscious inference process by Hermann von Helmholtz [1], where perception results from
a combination of bottom-up sensory evidence with top-down contextual information. A more
detailed historical overview of the roots of von Helmholtz’s "perception as unconscious infer-
ence" account can be found in the introduction of Brascamp et al. [2]. One prominent example
of the perceptual inference problem is three-dimensional (3D) perception. We live in a three-
dimensional world but in the first step of vision, the observed three-dimensional environment
is projected onto two-dimensional retinae [e.g. 3]. Therefore, only two of the three dimensions
can be accessed directly from this projection. The third dimension, however, has to be recon-
structed out of secondary information like occlusion, binocular vision etc. [e.g. 4]. The Necker
cube [5] is a famous ambiguous figure consisting of a two-dimensional representation of a
three-dimensional cube grid, which can be perceived as two mutually exclusive cube variants
with different spatial orientations. Fig 1 presents a so-called Necker lattice, a combination of 9
assembled Necker cubes, together with the two unambiguous lattice variants with 3D cues
[6,7]. During prolonged observation, our perception of the Necker cube becomes unstable and
alternates between these two interpretations. The reason behind this perceptual instability is
that the retinal projection is equally compatible with the two alternative three dimensional
cube variants. In fact, the retinal image of the Necker cube is also compatible with other geo-
metric object interpretations with no 90˚ angles, as nicely demonstrated in Kersten & Yuille
(2003) [8]. Nevertheless, our perception typically alternates exclusively between the 90˚ alter-
natives. This perceptual bias is already evidence that our perceptual history influences our cur-
rent percept, since we live in a world where 90˚ objects are much more common, and thus,
more probable than objects that do not contain 90˚ angles [e.g. 9].

Different lines of research have investigated the influence of the perceptual history, at differ-
ent time scales, on the current percept. Typical experimental paradigms presented stimuli with
different degrees of similarity in sequence and compared the influence of preceding stimuli on
the perceptual interpretation of the current stimulus. Several studies reported positive effects
(positive priming [10–12], positive hysteresis [9,13], serial dependence [14–16]) of the

Fig 1. Stimuli. (a) depicts the ambiguous Necker lattice, a variant of the Necker cube [5]. The unambiguous variants
are displayed in (b) with the front side facing towards the top (front-top = FT) on the left and the front side facing
towards the bottom (front-bottom = FB). Stimuli were created in the laboratory of Dr. Kornmeier.

https://doi.org/10.1371/journal.pone.0237663.g001
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perceptual history on current percept (e.g. current stimuli are likely to be perceived in the
same way as previous ones). In contrast, other studies reported negative effects (e.g. adapta-
tion, negative hysteresis [9,17–19]) of perceptual history on current stimuli (e.g. current sti-
muli are likely to be perceived as opposite of the previous one).

Taking information of the perceptual past into account is an efficient strategy of the percep-
tual system to handle the perceptual inference problem. Typically, our environment only
slightly changes from one moment to another. Predicting the future using regularities from
the immediate past can thus substantially help to overcome the inherent sensory limitations.
Concurrently, both speed and efficacy of perceptual processes are increased.

Recent Bayesian probability [8] and predictive coding [20,21] approaches provide a general
theoretical framework that may be able to integrate the above mentioned findings. The basic
idea is that the perceptual history is used to generate a model of the external world and to
make predictions about the upcoming sensory future. A measure of the error between gener-
ated predictions and the actual sensory evidence (prediction error) is minimized during a vari-
able number of recurrent loops of feed-forward (bottom-up) and feedback (top-down) neural
activity [e.g. 22].

The electroencephalogram (EEG) monitors the activity of the brain non-invasively. Its high
temporal resolution allows for observation of neural processing on a millisecond scale. The influ-
ence of the immediate perceptual history on the current percept can thus be analysed in terms of
EEG correlates. The event-related potential (ERP) is the averaged EEG response over many stim-
ulus repetitions, which isolates processing steps time-locked to the stimulus. Several studies have
used ERPs to test predictive coding approaches. In typical paradigms, the predictions are based
upon frequent repetitions of the same stimulus in the immediate past. These predictions are
then infrequently violated by sudden presentation of a deviant stimulus. Differences between
predicted (frequently presented) and unpredicted (rare deviant) stimuli are then interpreted as
correlates of the prediction error. The ERP correlate of this postulated prediction error is the so-
called Mismatch Negativity (MMN), a negative ERP component between 100 and 250 ms after
onset of the deviant stimulus, with maximal amplitude at temporal and frontal electrode loca-
tions [MMN, 23–25]. The MMN is regarded as an important physiological correlate within the
predictive coding account and is interpreted as reflecting the prediction error, i.e. the outcome
of the comparison between prediction and actual sensory input.

The current study differs in two aspects from the previously described MMN studies:

(1) Stimulus quality instead of stimulus frequency

The stimuli used in the MMN studies introduced above were typically unambiguous, highly
visible, and mainly differed in their occurrence frequency. However, in our natural environ-
ment, exploiting the perceptual past and relying on a predicted future may become increas-
ingly important in perceptual situations with low quality of the sensory input, e.g. when the
stimulus is ambiguous. In this situation, the occurrence frequency of a certain stimulus in a
short period of time is less important. Furthermore, stimuli from the immediate past, that are
ambiguous or low in visibility, may make predictions about the immediate perceptual future
less reliable than unambiguous previous stimuli. Therefore, we presented ambiguous and
unambiguous lattice variants [26,27], with ambiguity as the independent stimulus variable to
study temporal context effects during perception. The term ‘temporal context’ can refer to dif-
ferences in temporal aspects of the stimuli such as presentation duration of the stimuli [28,29].
Further, the term is used in memory studies and can refer to features and/or objects that occur
simultaneously with an object of interest, which are thus linked together in the perceptual
memory [30]. In the current study we present certain sequences of stimuli repeatedly within
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experimental blocks. This makes an actual stimulus sequence within an experimental block
highly memorable and predictable. In the following, the ‘temporal context’ of a certain stimu-
lus thus implied both, the immediately preceding stimulus and the highly predictable subse-
quent stimulus.

We hypothesize that predictions based on previous experience with an ambiguous stimulus
(temporal context = ambiguous) are less reliable than predictions based on previous experi-
ence with clear and unambiguous stimuli (temporal context = unambiguous).

(2) Ambiguity-sensitive ERPs as dependent variables

Kornmeier et al., in a series of ERP studies, presented either ambiguous or unambiguous stim-
ulus variants in separate experimental conditions and compared the resulting ERPs. They
found prominent P200 and P400 amplitude effects (Cohen’s d between 0.6 and 1.2). The
unambiguous stimulus variants resulted in large amplitudes and the ambiguous stimuli in
small amplitudes [26,27]. These prominent ERP effects were found across different categories
of stimulus ambiguity (geometry, motion, Gestalt perception) and recently also for smiley sti-
muli with low and high visibility of their emotional expression [31]. The authors interpreted
the P200 and P400 amplitude effects as correlates of certainty about perceptual outcomes [see
also 32] or–in other words–as a measure of success in solving the perceptual inference prob-
lem. In their recent study they labelled these effects “ERP Uncertainty Effects” [31].

Assuming that this interpretation is valid and that perceptual outcomes are always the result
of integrating bottom-up sensory information with top-down temporal context information, it
would be reasonable to expect that the sizes of these effects not only depend on the quality of
the current stimulus, but also on the quality of the stimuli within the temporal context. The
experimental design of our previous studies [26,27,31] did not allow for systematic analyses of
sensory quality within the temporal context because the level of ambiguity/visibility was kept
constant within conditions (block design).

In contrast to this, in the current study, we presented stimuli in pairs, where stimulus S1
was followed by stimulus S2. Furthermore, we created four different experimental conditions
with a paired design (2x2) with differing ambiguity levels of S1 and S2 (ambiguous vs. unam-
biguous). Designing the experiment in this way allowed us to investigate neural responses elic-
ited by the same S1 stimuli over different levels of ambiguity in its temporal context, i.e.
preceding S2 of the previous pair and subsequent S2 of the current pair. We were thus able to
investigate neural responses to an ambiguous S1 stimulus and compare an ambiguous tempo-
ral context with an unambiguous temporal context. Similarly, neural responses to unambigu-
ous S1 stimuli were compared between ambiguous and unambiguous temporal contexts. We
postulate that responses to stimuli S1 should reveal higher ERP amplitudes when the temporal
context consists of unambiguous stimuli compared to ambiguous stimuli, meaning that ERP
responses should be higher in amplitudes when the temporal context is certain as opposed to
uncertain. This effect is expected to be independent of the ambiguity level (ambiguous, unam-
biguous) of S1 itself. Furthermore, an ambiguous context (i.e. an uncertain temporal context)
may drive the observer into an uncertain, and thus, less stable current perceptual state, making
them react more hesitantly. As a result of this, we expect longer reaction times.

In short, we hypothesize that the automatic integration of the stimulus information from
the temporal context affects processing of the sensory present and the execution of a present
task.

The current study consists of two experiments. In Experiment 1, we compared both the
reaction times to a stimulus-related task as well as the P200 and P400 ERP components (ERP
Uncertainty Effects [26,27,31]) evoked by two factors: ambiguity level of the current stimuli
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(ambiguous vs. unambiguous) and ambiguity level of the stimuli within the temporal context
(ambiguous vs. unambiguous).

In Experiment 1, the temporal context consisted of either ambiguous or unambiguous lat-
tice stimuli. In Experiment 2, we replaced the preceding S2 stimuli with abstract symbolic
information about the future stimulus and studied whether this replacement alters the ERP
and reaction time results, which were obtained in Experiment 1.

Material and methods—Experiment 1

Participants

Thirteen participants (seven females) took part in this study. The median age was 24 with par-
ticipants ranging from 21 to 34 years old. Twelve participants were right-handed and one was
ambidextrous. All participants had normal or corrected-to-normal visual acuity [33] and gave
their written informed consent. The study was approved by the ethics committee of the Uni-
versity of Freiburg and was performed in accordance with the ethical standards laid down in
the Declaration of Helsinki [34].

Stimuli. We used the ambiguous Necker lattice, a combination of nine Necker cubes [5,6]
and two unambiguous lattice variants corresponding to the two perceptual interpretations of
the ambiguous lattice, see Fig 1. The unambiguous lattice variants included depth cues, like
shading, central projection, and aerial perspective based on OpenGL lighting model [35]. The
lattice stimuli had a size of 7.5˚ x 7.5˚ visual angle. Both ambiguous Necker lattices and unam-
biguous lattice variants had a mean luminance of 40 cd/m2 (the unambiguous stimuli lumi-
nance being calculated by averaging the four outer corners of the lattice). All lattices were
presented on a black background (0.01 cd/m2).

Procedure. Participants were tested in a dimly lit room in the Eye Center, in the Medical
Center of the University of Freiburg, Germany. They were seated at a distance of 114 cm in
front of a Philips GD 402 monochrome CRT screen (refresh rate = 85 Hz, screen resolu-
tion = 800×600 pixels), which was operated by an Apple Mac mini computer. During the
experiment, participants were instructed to focus their gaze on a fixation point in the middle
of the screen.

One observation sequence (OS) consisted of the successive presentation of two lattice sti-
muli (S1 and S2). Each stimulus was presented for 800 ms. S1 and S2 were temporally sepa-
rated by an inter-stimulus interval (ISI) of 400 ms. During presentation of the lattice S1,
participants were instructed to identify its 3D orientation (front side perceived either right/
downwards or left/upwards) and to indicate their percept by key press. During the subsequent
presentation of the second lattice (S2), participants compared their perceived 3D orientation
of S2 with that of the previously perceived and memorized S1. By pressing separate keys, par-
ticipants indicated perceived orientation reversal or stability (i.e. percepts of identical 3D ori-
entations of S1 and S2). Key presses were performed on a keyboard with four keys, and key
assignment (two scenarios) was counterbalanced between participants.

Key assignment scenario 1: keys 1 and 2 were associated with the orientation task and
pressed with the left thumb, with key 1 indicating the left/upwards orientation and key 2 the
right/downwards orientation. Keys 3 and 4 were associated with the memory task and pressed
with the right thumb, with key 3 indicating perceptual stability and key 4 perceptual reversal
trials.

Key assignment scenario 2: keys 1 and 2 were associated with the memory task and pressed
with the left thumb, with key 1 indicating perceptual stability and key 2 perceptual reversal tri-
als. Keys 3 and 4 were associated with the orientation task and pressed with the right thumb,
with key 3 indicating the left/upwards orientation and key 4 the right/downwards orientation.
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Successive observation sequences (OS) were separated by an inter-observation sequence
interval (IOSI) of 1000 ms (see Fig 2).

Experiment 1 consisted of four different experimental conditions (see Fig 3). The ambiguity
levels of both S1 and S2 varied between but stayed constant within experimental conditions.
The analysis only focused on EEG and behavioural responses to stimulus S1 (the currently
observed stimulus) as a function of the ambiguity levels of preceding and upcoming stimuli S2
(see details below). S1 stimuli, denoted as "S", occurred in different experimental conditions
with two different ambiguity levels with the following coding: SA = ambiguous lattice; SU =
unambiguous lattice variant. The stimulus S2 from the preceding pair and the upcoming S2
from the current pair had always the same ambiguity level within an experimental condition.
We will label these preceding and upcoming S2 stimuli as the temporal context "C" of S1. The

Fig 2. Paradigm of Experiment 1. Stimuli were presented in pairs one after the other and formed one Observation Sequence (OS). Each stimulus was
presented for 800 ms. Stimulus 1 (S1) and Stimulus 2 (S2) were presented in succession and temporally separated by an inter-stimulus interval with a dark
screen for 400 ms. Presentation of a dark screen for 1000 ms separated subsequent OS from each other. The experimental paradigm consisted of two tasks:
during the presentation of the lattice stimulus S1 participants indicated the perceived orientation of S1 (Task 1). During the subsequent presentation of the
lattice S2, they compared their perceived S2 orientation with the previously perceived and memorized orientation of lattice S1 and indicated either percepts of
identical or reversed orientation (Task 2). Notice that the Task 1 was only related to stimulus S1. Neither the information about the preceding and subsequent
stimuli nor information about their ambiguity levels was necessary for the execution of this task.

https://doi.org/10.1371/journal.pone.0237663.g002
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ambiguity level of the temporal context stimuli will be coded as follows: CA = temporal context
consists of ambiguous lattices; CU = temporal context consists of unambiguous lattice variants.

The ERP and reaction times to a currently observed stimulus S1 will be described as a func-
tion of the ambiguity level of the currently seen stimulus S1 and of its temporal context with
the following labels:

SA(CA): response (i.e. ERPs and reaction times) to an ambiguous SA (S1 from a stimulus
pair) as a function of an ambiguous temporal context CA (i.e. ambiguous S2 from the preced-
ing stimulus pair and ambiguous upcoming S2 from the current pair)

SA(CU): response to an ambiguous SA as a function of an unambiguous temporal context
CU

SU(CA): response to an unambiguous SU as a function of an ambiguous temporal context
CA

SU(CU): response to an unambiguous SU as a function of an unambiguous temporal context
CU

Fig 3. Conditions of Experiment 1. The current experiment consisted of four separate experimental conditions with a 2 x 2 design. SU(CU): Both lattices S1
and temporal context stimuli (preceding and upcoming S2) were unambiguous; SU(CA): S1 unambiguous and temporal context ambiguous; SA(CU): S1
ambiguous and temporal context unambiguous; SA(CA): both S1 and temporal context ambiguous. Ambiguity levels of S1 and the temporal context were kept
constant and were thus highly predictable within conditions but differed between conditions. In Experiment 1, each experimental block consisted of 180
observation sequences (OS) with the same stimulus pairs. Each block was repeated 3 times across the experiment. (U = Unambiguous, A = Ambiguous).

https://doi.org/10.1371/journal.pone.0237663.g003
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In conditions with ambiguous lattice stimuli SA, the perceived 3D orientation could reverse
endogenously from one stimulus presentation to the next, while the stimulus itself stayed
unchanged. The short presentation time of 800 ms prevented perceptual reversals during stim-
ulus presentations. Therefore, perceptual reversals only took place from one presented stimu-
lus to the next.

In conditions with unambiguous stimuli SU, the two lattices variants corresponding to the
two perceptual alternatives of the ambiguous lattice were presented with a 50% occurrence
probability.

Each of the four experimental conditions was subdivided into three shorter experimental
blocks that alternated in a pseudo-random order across the experiment. Experimental blocks
lasted for about 9 minutes. It is important to note, that the blocked design with multiple repeti-
tions of identical stimulus pairs introduced a sensory regularity within blocks and conditions
and made upcoming ambiguity levels of stimuli highly predictable. For example, in the experi-
mental condition SA(CU), a currently presented SA was always followed by a highly predictable
unambiguous S2 and preceded by an unambiguous S2 from the previous stimulus pair, form-
ing an unambiguous temporal context CU of this SA.

Participants learned the tasks with the SU(CU) condition before the EEG experiment in
training blocks of four minutes. The training blocks were repeated as many times as needed to
reach an error rate of maximal 5% within one block. As a result, the number of repetitions var-
ied slightly between participants.

Behavioural analysis

Lattice orientation. The Necker lattice stimuli used in this experiment can be described
in terms of their ambiguity level, as well as in their perceived orientations. Ambiguous and
unambiguous variants of the Necker lattice stimuli could be perceived with their front side fac-
ing towards the bottom (front-bottom = FB) or towards the top (front-top = FT). We report
the ratio between the two perceived orientations of stimulus S1 separately for the four experi-
mental conditions.

Reversal rates. We analysed the reversal rates from S2 of the preceding pair to the currently
seen S1, i.e. those responses that indicate differently perceived orientation of S2 compared to
S1. We separately calculated reversal rates towards percept FB (RRFT = >FB) and reversal rates
towards percept FT (RRFB = >FT) as follows:

RRFTà> FB à
#ÖS2 à FT; S1 à FBÜ

#ÖS2 à FT; S1 à FBÜ á#ÖS2 à FB; S1 à FBÜ

RRFBà>FT à
#ÖS2 à FB; S1 à FTÜ

#ÖS2 à FB; S1 à FTÜ á#ÖS2 à FT; S1 à FTÜ

Wilcoxon signed-rank tests were used to test for difference of reversal rates between the differ-
ent directions (RRFT = >FB and RRFB = >FT) of reversals. This was done separately for each
experimental condition (SA(CA), SA(CU), SU(CA), SU(CU)). Furthermore, Wilcoxon signed-
rank tests were used to compare differences of reversal rates between experimental conditions.

Effects of sensory quality within the temporal context

Reaction time. Reaction times from Task 1 (indicating perceived 3D orientation of lattice
S1) were measured from the onset of lattice S1 to the participant’s response. Responses were
regarded as physiologically plausible if their earliest occurrence was 150 ms after stimulus
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onset. Reaction times were valid until the end of the inter-stimulus interval, i.e. 1200 ms after
stimulus onset.

Electrophysiological recordings. EEG recordings and pre-processing. EEG was recorded
with 32 active silver/silver chloride electrodes (Brain Products GmbH, 82205 Gilching, Ger-
many) according to the extended 10–20 system [36]. Impedance was kept below 10 kO across
all electrodes. EEG data were digitized with a sampling rate of 500 Hz, offline digitally filtered
with a low-pass at 25 Hz and re-referenced to linked-ears. Data analysis was executed in Igor
Pro 6.3 (WaveMetrics, Inc. 10200 SW Nimbus, G-7 Portland, OR 97223, USA).

Blinks and eye movements were detected and trials were excluded from analysis when
reaching an artefact threshold of ±100 μV. Amplitudes were measured relative to the baseline,
which was defined as the average from 60 ms before stimulus onset to 40 ms after. This base-
line was determined following our lab’s previous studies [26,27,31]. The present analysis
focused on ERPs evoked by stimulus S1. EEG data from S1 were sorted with respect to the
ambiguity levels of the S1 stimuli as well as the ambiguity level of the temporal context stimuli
S2. The data were averaged separately for each participant and for each EEG electrode using
the onset of S1 as time reference.

ERP analysis. Based on results from previous studies, we focused our analysis on two posi-
tive ERP components, a P200 with a latency of about 200 ms and fronto-central scalp distribu-
tion, and a P400 about 200 ms later with a centro-parietal scalp distribution from the so-called
“ERP Uncertainty Effects” [26,27,31]. We selected electrode Cz as the spatial region of interest
(ROI). Corresponding temporal ROIs ranged from 100 to 300 ms, covering the latency of the
P200 ERP component and from 300 to 600 ms, covering the latency of the P400. We identified
the individual peak amplitudes in the temporal and spatial ROIs and measured the average
voltage in a ±30 ms time window around the individual peak [37].

We tested for the assumption of normality using the Shapiro-Wilk test. Significant departures
from normality were found for the P200 in condition SA(CA) (W(13) = 0.81, p = 0.008) and for
the P400 in condition SU(CA) (W(13) = 0.84, p = 0.02). Therefore, we based our statistical analy-
sis of the ERP components on the non-parametric Wilcoxon signed rank test. The Wilcoxon
tests were conducted for the P200 and the P400 amplitudes with a predefined alpha of 0.05.

Statistical analysis of reaction time and ERP data. The median reaction times and the
P200 and P400 data were sorted with respect to the ambiguity levels of S1 and to the ambiguity
level of its temporal context.

We tested for the influence of sensory quality within the temporal context on those vari-
ables (reaction time, P200, P400) in the case of an ambiguous current stimulus S1 (main effect
1), by comparing responses to condition SA(CA) with responses to condition SA(CU). Similarly,
we tested this in the case of an unambiguous current stimulus S1 (main effect 2), by comparing
condition SU(CA) with condition SU(CU). To test for possible differences in effects of sensory
quality within the temporal context between ambiguous (SA) and unambiguous (SU) currently
observed stimuli, we calculated the individual differences between conditions SA(CU) minus
SA(CA) and between conditions SU(CU) minus SU(CA) and compared them.

It is important to note that we analysed the amplitudes of P200 and P400 ERP components
evoked by lattice stimulus S1. The ERP amplitudes evoked by one and the same stimulus S1, as
well as the reaction times of the task, was compared between the two conditions. In one of the
conditions, the temporal context stimuli were ambiguous and in the other, the temporal con-
text stimuli were unambiguous.

All Wilcoxon tests reported until now (reversal rates, reaction times, ERP data) were corrected
for multiple testing according to the Holm procedure [38]. The effect size reffect size (res) was calcu-
lated by dividing the Z-score by the square root of the total number of observations [39].

PLOS ONE Using the perceptual past to predict the perceptual future influences the perceived present

PLOS ONE | https://doi.org/10.1371/journal.pone.0237663 September 1, 2020 9 / 35

115



4.2. MAIN MANUSCRIPT

Correlation between EEG data, reaction time data, and reversal rates

We calculated Pearson correlation coefficients rPearson between the EEG data (P200 and P400
amplitudes), the reaction time data, and the reversal rates. We calculated these correlations on
non-normalized and on normalized values. Normalization was done to account for individual
differences regarding EEG data (anatomical differences) but also for individual response strat-
egies, which could possibly influence reversal rates and reaction times. Normalization was
accomplished within participants by dividing the individual value (e.g. participant 1, P200
peak amplitude, condition SA(CA)) by the sum of all experimental conditions (e.g. participant
1, P200 peak amplitude of SA(CA)+ SA(CU)+ SU(CA)+ SU(CU)). We did not correct the result-
ing p-values of this exploratory analysis for multiple testing.

Results from Experiment 1

In the present study, we focused on the P200 and P400 components of the ERP Uncertainty
Effects [26,27,31] to test whether processing of a currently observed stimulus is affected by the
ambiguity levels (ambiguous vs. unambiguous) of stimuli in its temporal context "C" (immedi-
ately preceding and upcoming stimuli) and how this is done.

Behavioural analysis

Trial numbers. In Task 1 related to stimulus S1, participants were instructed to indicate the
orientation of the currently perceived Necker lattice stimulus. When presented with the currently
seen unambiguous stimuli (conditions SU(CU) and SU(CA)), participants, on average, responded
correctly more than 90% of the time (96.5% ±0.04 SD and 90.9% ±0.12 SD, respectively). When
presented with currently seen ambiguous stimuli (conditions SA(CU) and SA(CA)), only one stim-
ulus variant was presented so correctness of the response could not be determined.

We restricted the time window for valid responses for all experimental conditions from 150
to 1200 ms after stimulus onset. Participants reacted to this time window almost perfectly and
we only had to exclude 0.018% of all trials (0.04% SD) per participant and condition due to
invalid response times. Invalid trials are defined as trials containing incorrect responses,
responses outside of the predefined time-window and trials containing EEG artefacts. All
other trials are defined as valid trials. The average number of valid trials can be found in
Table 1 (middle column) and the average number of all stimulus presentations (including EEG
artefacts, incorrect responses and responses outside of the predefined time-window) can be
found in the right column of Table 1.

Lattice orientation. For the unambiguous stimuli S1 (= SU), the ratio of perceived orien-
tations (front-bottom (FB) vs. front-top (FT) view) was averaged across participants. In condi-
tion SU(CU), the ratio was 193:210 and in the condition SU(CA), the ratio was 176:182. The two

Table 1. Number of trials of Experiment 1.

Average number of valid trials (±SD) Average number of all stimulus presentations (±SD)

SU(CU) 404 (±71) 537 (±12)

SU(CA) 358 (±75) 539 (±9)

SA(CU) 390 (±99) 520 (±53)

SA(CA) 341 (±100) 492 (±39)

Table 1 displays the average number of valid trials (±SD) across participants in the middle column and the average

number of all stimulus presentations (±SD) in the right column, separately for the experimental conditions (rows:

U = Unambiguous, A = Ambiguous).

https://doi.org/10.1371/journal.pone.0237663.t001
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stimulus variants were presented with equal frequency by the stimulus program. The devia-
tions of the perceived lattice orientation from exactly equal presentation frequencies are due to
some trials being categorised as invalid trials (incorrect responses, responses outside of the
predefined time-window, trials containing EEG artefacts). The ambiguous Necker lattices can
be perceived in two different orientations. It is known from the literature (e.g. [40]) that
observers show a perceptual bias in favour of the front-bottom view (which is a from-above
perspective). This a priori bias can also be seen in the results of the current study, in conditions
where an ambiguous Necker lattice is the stimulus S1 (SA). For the condition SA(CU), a front-
bottom to front-top ratio of 247:142 was observed and for the condition SA(CA), the front-bot-
tom to front-top ratio was 233:108. The ratios reported are averages across participants.

Reversal rates. Numbers of perceptual reversals from S2 of the preceding pair to the cur-
rently seen S1 are listed in Fig 4C separately for the four different conditions. Comparing the
different directions of reversal (FB =>FT vs. FT = >FB) within conditions, we only found sig-
nificantly more reversals from FB =>FT compared to FT =>FB in condition SU(CA) (Z =
-2.41, res = -0.47, p = 0.03).

For ambiguous S1 stimuli (SA) we did not find differences between the directions of reversals.
When comparing reversal rates between conditions SA(CA) and SA(CU), we calculated cumulative
reversal rates across reversal directions and found significant differences between the conditions
(Z = -3.18, res = -0.62, p = 2e-07). We found no significant difference of reversal rates between
conditions SU(CA) and SU(CU), which were separately analysed for both reversal directions.

We do not see a consistent pattern in the reversal rate results and therefore, FB and FT per-
cepts will not be separately analysed from now on. The EEG and the reaction time data will
not be separated depending on their perceptual reversals or stability from a preceding S2 to
the currently seen S1. Correlation coefficients between reversal rates, reaction time data and
ERP data will be provided after presentation of the main results.

Effects of sensory quality within the temporal context

In this results section, we will present the analysis of the influence of sensory quality within the
temporal context, i.e. ambiguity level of preceding and subsequent S2 stimuli, on a currently seen
S1 stimulus. The temporal context was either ambiguous (= CA) or unambiguous (= CU), see
methods section for more detail. Effects of sensory quality within the temporal context were ana-
lysed separately for ambiguous S1 stimuli (= SA) and for unambiguous S1 stimuli (= SU). Further,
the interactions between effects of sensory quality within the temporal context of SA and SU con-
ditions were tested. This procedure is adopted for both the reaction time and the ERP data.

Note that all main effects reported hereinafter represent differences in processing of one
and the same stimulus information but varying stimulus information in the temporal contexts.
We want to particularly emphasize that the information about the temporal context was
completely irrelevant for the execution of Task 1 related to S1.

Reaction times. Reaction times of Task 1 related to an ambiguous stimulus SA were longer
if the temporal context was unambiguous compared to an ambiguous temporal context
(SA(CU) vs. SA(CA): Z = -3.11, res = -0.61, p = 0.00024). This reaction time effect can be seen in
the scatter plots in Fig 5A (12 out of 13 data points are above the diagonal).

We found the opposite effect if the observed stimulus was unambiguous. Reaction times of
Task 1 related to an unambiguous stimulus SU were shorter if the temporal context was unam-
biguous compared to an ambiguous temporal context (SU(CU) vs. SU(CA): Z = -3.18, res =
-0.62, p = 0.00012). This effect can be seen in the scatter plots in Fig 5B (all data points are
below the diagonal). Median values and interquartile ranges of reaction times for all experi-
mental conditions can be found in Fig 5C.
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The differences in reaction time context effects is statistically indicated by an interaction:
Comparing the reaction time differences (SA(CA)–SA(CU)) with (SU(CA)–SU(CU)) reveals a
significant effect (Z = -3.18, res = -0.62, p = 0.00012).

ERP data

Fig 6A displays the ERP traces at electrode Cz evoked by an ambiguous currently observed
stimulus, separately for condition SA(CA), in a block in which the temporal context was ambig-
uous (light blue dotted trace) and for condition SA(CU), in a block in which the temporal

Fig 4. Reversal rate Necker lattices. We calculated the reversal rate towards front-bottom (FB) and the reversal rate towards front-top (FT) views of the
Necker lattice from the preceding S2 of the previous pair towards the currently seen S1. A schematic overview of condition SA(CA) can be seen in a) and
an example with stimuli in b). In c) the average (±SD) values are displayed for both view orientations and for each condition.

https://doi.org/10.1371/journal.pone.0237663.g004
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context was unambiguous (dark blue traces). The amplitudes of both the P200 and the P400
were significantly larger in the case of an unambiguous temporal context compared to an
ambiguous temporal context (SA(CU) vs. SA(CA): P200: Z = -2.3, res = -0.46, p = 0.02; P400: Z =
-3.18, res = -0.62, p = 0.0007). Fig 6A shows this effect in the grand mean ERP traces (electrode
Cz) and Fig 6B left shows the individual data in scatter plots. In the left scatter plot, each point
represents the P200 amplitudes evoked by the ambiguous currently observed stimulus SA from
one individual participant when the temporal context is also ambiguous (SA(CA): abscissa),
versus an unambiguous temporal context (SA(CU): ordinate). The data points for the most par-
ticipants (only three exceptions) are located above the diagonal, confirming the above-
described temporal context effect on the P200 amplitude. The corresponding context effect for
the P400 amplitude moves in the same direction and is even larger than the P200. This is visi-
ble in all participants, as indicated in the corresponding scatter plot (Fig 6B right).

Fig 5. Reaction time data for task 1. Blue colours indicate reaction times to ambiguous stimuli SA (a) and red colours to unambiguous stimuli SU (b). Reaction
times show opposite effects of stimulus ambiguity within the temporal context for ambiguous compared to unambiguous currently observed stimuli: reaction
times were generally shorter when the stimuli S2 from the temporal context were of the same ambiguity level as the currently perceived stimulus compared to
those conditions with differing ambiguity levels of temporal context stimuli S2 compared to the perceived S1. (c) List of median reaction time [s] values with
the interquartile ranges [s], separately for each experimental condition.

https://doi.org/10.1371/journal.pone.0237663.g005
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Fig 6C displays the ERP traces at electrode Cz for an unambiguous current lattice SU, sepa-
rating the ambiguous temporal context CA (light red dotted trace) from the unambiguous tem-
poral context CU (dark red traces).

Fig 6. ERP effects of sensory quality within the temporal context. (a) ERP traces at electrode Cz during perception of an ambiguous lattice SA, when the stimuli
in the temporal context (i.e. S2 from the preceding pair and the predicted S2 from the current pair) were unambiguous (“SA(CU)”, dark blue continuous trace) and
when the stimuli from the temporal context were ambiguous (“SA(CA)”, light blue dashed trace). Notice that the same ambiguous current SA lattice stimulus
evoked larger P200 and P400 amplitudes with an unambiguous temporal context compared to an ambiguous temporal context. (b) Voltage maps (top) showing the
spatial distribution of P200 (left, t = 214 ms) and P400 (right, t = 326 ms) and scatter plots (bottom) showing individual mean amplitude data for the P200 (left) and
the P400 (right), which correspond to (a). Notice that for almost all participants the P200 and P400 ERP components evoked by SA show larger amplitudes when
the temporal context stimuli were unambiguous (data points are above the diagonal). (c) ERP traces during perception of an unambiguous lattice SU, when the
temporal context stimuli were unambiguous (“SU(CU)”, dark red continuous trace) and when the temporal context stimuli were ambiguous (“SU(CA)”, light red
dashed trace). Notice that the amplitude of the P400 evoked by the one and the same unambiguous present SU lattice stimulus varied as a function of the ambiguity
level within the temporal context. No such effect is visible for the P200. (d) Same logic as in (c) but with an unambiguous present stimulus SU (data related to c;
Voltage maps: P200—t = 222 ms, P400—t = 358 ms). U = unambiguous, A = Ambiguous, S = stimulus S1, C = temporal context (preceding and subsequent S2).

https://doi.org/10.1371/journal.pone.0237663.g006
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In contrast with the findings from an ambiguous current stimulus SA, the P200 did not
show an effect of stimulus ambiguity within the temporal context when the current stimulus
was unambiguous SU (SU(CU) vs. SU(CA): P200: Z = -0.25, res = -0.05, p = 0.42). The corre-
sponding scatter plot (Fig 6D left) shows that six out of 13 points are above the diagonal but
seven points are below.

Consistent with the findings from an ambiguous current stimulus SA, the amplitude of the
P400 evoked by an unambiguous current stimulus SU was significantly larger when the tempo-
ral context was unambiguous than when it was ambiguous (SU(CU) vs. SU(CA): P400: Z =
-2.76, res = -0.54, p = 0.0085). This grand mean effect (Fig 6C) can be seen in more detail in the
scatter plot in Fig 6D right, where 11 out of 13 points are located above the diagonal, confirm-
ing the above-described amplitude difference between conditions.

The P200 results indicate a significant interaction between effects of stimulus ambiguity
within the temporal context of an ambiguous stimulus SA and an unambiguous stimulus SU

(SA(CU)-SA(CA) vs. SU(CU)-SU(CA): P200: Z = -2.41, res = -0.47, p = 0.02). The P400 was simi-
larly modulated by the stimulus ambiguity within the temporal context and thus no such inter-
action was found for the P400 (Z = -1.71, res = -0.34, p = 0.09).

Correlation between EEG data, reaction time data, and reversal rates

We calculated correlations between the EEG data (P200 and P400 amplitudes) and the
median reaction times (see Table A in S1 File), between the EEG data and the reversal rates
(see Table B in S1 File), as well as between the median reaction times and the reversal rates
(see Table C in S1 File). These correlations were calculated separately for each experimental
condition. This exploratory post-hoc analysis was not systematically corrected for multiple
testing. However, since we calculated 20 independent correlation coefficients in total (not
counting the additional tests with the non-normalized data), we pre-defined an alpha
threshold of 0.01.

There are no significant results when correlating the EEG data (P200, P400) with the
median reaction time, the EEG data (P200, P400) with the reversal rates, and the reversal rates
with the reaction time.

Summary and discussion of Experiment 1

We compared the amplitudes of two ERP components evoked by the same current stimulus
and the reaction times of a stimulus-related task in a condition with ambiguous stimuli in
the temporal context CA (i.e. an ambiguous preceding and an ambiguous subsequent stimu-
lus) with a condition with unambiguous stimuli in the temporal context CU (i.e. an unam-
biguous preceding and an unambiguous subsequent stimulus). Each condition consisted of
several experimental blocks. Within the blocks, the condition-specific ambiguity levels of
the presented stimuli were kept constant, which made the stimulus sequence highly predict-
able (see Fig 3).

ERP results

We found that the P400, evoked by the same stimulus, was generally larger, with an unambigu-
ous temporal context compared to an ambiguous temporal context. This effect was observed
irrespective of the ambiguity level of the currently observed stimulus.

We found a similar effect for the P200, when the currently observed stimulus was ambigu-
ous. In contrast, we found no such P200-effects when the currently observed stimulus was
unambiguous.
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Reaction time results

The ambiguity level of the temporal context stimuli also affected reaction times related to the
execution of Task 1. More specifically, reaction times from Task 1 related to the same unam-
biguous stimulus SU were longer, if the temporal context contained ambiguous compared to
unambiguous stimuli. This finding is striking, because Task 1 was exclusively related to the
currently observed stimulus, whereas the ambiguity levels of the stimuli in the temporal con-
text were irrelevant for its execution.

We expected a similar reaction time effect of the temporal context when an ambiguous
stimulus SA was observed. However, we found an opposite effect with shorter (rather than lon-
ger) Task 1-related reaction times with ambiguous context stimuli compared to than unambig-
uous temporal context stimuli.

The role of perceptual reversals for the reported ERP and reaction time
effects

Our experimental paradigm contained conditions where the level of ambiguity changed
between S1 and S2 stimuli (SA(CU) and SU(CA)) and conditions where the ambiguity level
stayed the same between stimulus presentations (SA(CA) and SU(CU)). Our analysis so far sug-
gests that the ERP amplitude and the reaction time effects reflect differences in the ambiguity
level of the stimuli in the temporal context (S2) of a currently perceived stimulus (S1).

However, another aspect that changed (or stayed stable) between stimulus presentations is
the perceived 3D orientation of the presented lattice stimuli. In the case of the unambiguous
lattice stimuli, we presented the stimulus variants with depth cues corresponding to the two
most probable perceptual interpretations of the ambiguous lattice variant (see Fig 1) with a
predefined rate (of 0.5) of 3D orientation reversals (by the stimulation program) from one
stimulus to the next. The perceptual interpretations of the unambiguous stimulus variants, as
indicated by the participants, almost fully corresponded to what was presented on the screen
(see section “Lattice orientation” in the behavioural results section).

During observation of the ambiguous Necker lattice, the perceptual interpretation is endog-
enously driven (see [41] for more information about perceptual endogenous reversals during
observation of ambiguous figures). As a result, the rate of perceptual reversals could not be
controlled by the computer program when the condition included ambiguous lattices (SA(CA),
SA(CU), SU(CA)). Consequently, reversal rates between stimuli could vary between the four
experimental conditions and such variations could also have contributed to the ERP amplitude
and reaction time effects reported above.

We compared reversal rates between the experimental conditions and found significantly
reduced reversal rates in condition SA(CA), i.e. when an ambiguous stimulus S1 was combined
with an ambiguous temporal context, compared to the other conditions. In order to study how
much the reversal rates influenced the ERP amplitude and reaction time modulations, we cal-
culated post-hoc correlation coefficients between reversal rates, amplitude effects and reaction
times, respectively, but found no significant correlation. We thus conclude that differences in
reversal rates cannot explain the observed amplitude and the reaction time effects.

P200 vs. P400 ERP components

The ambiguity level of the stimuli in the temporal context of a currently observed stimulus affects
the P400 amplitude, regardless of the currently observed stimulus being ambiguous or unambigu-
ous. The pattern of results is slightly different for the P200 ERP component, where we only see
effects of sensory quality within the temporal context if the currently observed stimulus is

PLOS ONE Using the perceptual past to predict the perceptual future influences the perceived present

PLOS ONE | https://doi.org/10.1371/journal.pone.0237663 September 1, 2020 16 / 35

122



CHAPTER 4. PHD ARTICLE NO. 3: USING THE PERCEPTUAL PAST TO PREDICT
THE PERCEPTUAL FUTURE INFLUENCES THE PERCEIVED PRESENT

ambiguous. Those effects cannot be observed when the currently presented stimulus is unambig-
uous. Potential explanations for this observation will be outlined in the General Discussion.

Are the effects of sensory quality within the temporal context low-level or
high-level/cognitive effects?

A possible explanation for the ERP effects described above could be that unambiguous lattice
stimuli are processed differently. The unambiguous lattice stimuli have brighter and darker
edges that are cues for the third dimension and result in different local retinotopic adaptation
during their observation. The ambiguous lattice stimuli have exclusively isoluminant edges
with an intermediate brightness and so, homogeneous adaptation across the retinotopic visual
maps could be expected in this case. Thus, a visual stimulus presented to a perceptual system
in a differently adapted state may thus be differently processed. Therefore, the ERP compo-
nents evoked by this stimulus may differ in amplitude as a function of the difference in adapta-
tion levels. Temporal context stimuli differing in their degree of ambiguity may drive the
perceptual system into differently adapted states and thus account for the previously reported
ERP effects. This low-level interpretation of the results is related to the findings from Cicchini
et al [15], where the authors found low-level influences of the immediate past on perception in
an uncertain but not in a certain situation.

On the other hand, several results indicate an involvement of high-level cognitive processes.
The late latencies of the affected ERP components, 200 ms and 400 ms after stimulus onset, the
reaction time modulations, as well as the lack of correlations between ERP data, reversal rates,
and reaction times all indicate this.

We suggest that the effects of the ERP amplitude and reaction time are related to differences
in the ambiguity level of the temporal context. Several studies have shown that the perceptual
system continuously evaluates the sensory regularities from the past to make predictions about
the future [e.g. 23,24]. Therefore, we postulate that the previously presented effects may be
related to such evaluation and prediction processes.

In a next experimental step, we aimed to estimate at which level a potential evaluation of
regularities within the temporal context takes place. It could be that the direct perceptual expe-
rience of regularities in the immediate perceptual past is a necessary condition for such predic-
tions about the future. Alternatively, this effect could be located at such a high level that
informing the observer about the identity of a future stimulus with an abstract symbol, making
the future stimuli 100% predictable, could be sufficient.

The previously found effects should disappear when the information about the perceptual
future is only provided in an abstract symbol, if they reflect the predictability of the perceptual
future based on the direct perceptual experience of regularities in the temporal context. How-
ever, if the abstract information is sufficient, the ERP effects should still be observable.

In Experiment 2, we were unable to measure all four conditions from Experiment 1 due to
limited time. Therefore, we focused on the two conditions with an ambiguous current stimulus
S1 and ambiguous vs. unambiguous temporal context stimuli S2. The reason behind this being
that Experiment 1 revealed amplitude effects for both ERP components, the P200 and the
P400. We were interested in how the specific experimental manipulation of Experiment 2 may
affect the amplitude effects of both ERP components.

Experiment 2

In Experiment 2, we investigated whether the same results of Experiment 1 can be found when
information to predict the perceptual future is provided in an abstract symbol, and not based
on the direct perceptual experience of sensory regularities in the past.
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Therefore, we changed the paradigm from Experiment 1 in the following way:
(I) Before presenting the stimulus pairs of a specific condition (SA(CA) or SA(CU)), we dis-

played a symbolic representation of the experimental condition that followed. We did not
present the actual stimuli that were shown during the experimental condition to avoid low-
level effects like adaptation. Instead, two symbols were presented on a screen with one symbol
being on the left and the other being on the right. A symbol could be either a question mark,
coding for an ambiguous stimulus, or an exclamation mark, coding for an unambiguous stim-
ulus. The position of the symbols on the screen coded for the two stimuli presented in one
observation sequence. The left symbol coded for the first stimulus (S1) and the right symbol
for the second stimulus (S2; see Fig 7).

(II) We shortened the experimental block durations dramatically from around 9 minutes to
9 seconds. Consequently, each experimental block consisted of only three observation
sequences resulting in three repetitions of a specific stimulus pair S1S2 (see Fig 8). This short-
ening of block duration allowed us to strongly increase the number of blocks. Note that in
Experiment 2, the term experimental “block” refers to a presentation of an experimental con-
dition lasting 9 seconds. This includes three repetitions of an observation sequence. Such a
short experimental block is immediately followed by the next 9 seconds presentation of an
experimental condition (block). The conceptual meaning of an experimental block is identical
between Experiment 1 and 2. Only the duration and therefore, the number of repetitions of
observation sequences differ between blocks of Experiment 1 and 2.

(III) We aimed to extinguish short-term memory effects from one block of Experiment 2 to
the next one by a ’nesting technique’. The blocks of Experiment 2 were interlaced with blocks
from a second experiment lasting for about 10 seconds. This second experiment used
completely different stimuli and was not related to the lattice stimuli. Therefore, each block of
Experiment 2 was followed by a block from this additional experiment with different stimuli.

(IV) Due to limitations in the total experimental time, we only varied the ambiguity levels
of the temporal context stimuli (S2) but not of the currently observed stimuli (S1). Meaning

Fig 7. The symbolic announcement in Experiment 2. Ambiguous stimuli are announced by question marks, while
unambiguous stimuli are announced by exclamation marks. Before each block of condition SA(CU) a picture was
presented with a question mark symbol (left) pointed towards an exclamation mark symbol (right). Before each block
of condition SA(CA) a picture with two question marks was presented.

https://doi.org/10.1371/journal.pone.0237663.g007
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that in Experiment 2, only conditions SA(CA) and SA(CU) were presented. The sequence of
blocks was pseudo-randomized.

The rationale behind these changes in the experimental design from Experiment 1 to
Experiment 2 was the following:

The announcement (I) at the beginning of each experimental block contained only abstract
symbolic information about the ambiguity levels of the upcoming series of three stimulus

Fig 8. Conditions of Experiment 2. Experiment 2 consisted of two separate experimental conditions (bottom part). Within experimental conditions,
ambiguity levels of currently observed S1 stimuli and ambiguity levels of their temporal context (preceding and subsequent S2) were kept constant and were
highly predictable within conditions. The ambiguity level of the temporal context differed between conditions. SA(CU): current ambiguous stimulus SA and
unambiguous temporal context; SA(CA): both SA and temporal context ambiguous. One observation sequence (OS) consisted of an S1 stimulus (800 ms), an
inter-stimulus interval (400 ms), a S2 stimulus (800 ms), and an inter-observation sequence interval (1000 ms). One experimental block consisted of a symbolic
announcement and three repetitions of the observation sequence. Each block of Exp. 2 was followed by an experimental block from another unrelated
experiment with completely different stimuli to increase the temporal distance between blocks of Exp. 2 and thus to minimize low-level memory effects (e.g.
priming, adaptation, etc.) from one block to the other. (U = Unambiguous, A = Ambiguous).

https://doi.org/10.1371/journal.pone.0237663.g008
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pairs. The stimuli themselves were not experienced during this announcement. Additionally,
the announcement mostly avoided a surprise-P3b [42–44] ERP response to the very first stim-
ulus (or stimulus pair) within one experimental block. The reduction of block length (II)
allowed us to increase the number of experimental blocks for each condition from 3 (Exp. 1)
to 120 (Exp. 2). This enabled separate analyses of the effects of sensory quality within the tem-
poral context, reported in Exp. 1, for each of the three stimulus pairs within a block. The inter-
lacing of the unrelated experimental blocks, resulting in an alternation of stimulus types
between blocks (III), was intended to allow for the recovery of the perceptual system from pos-
sible lower-level conditioning effects (types of serial dependence or adaptation) or recency
effects, potentially resulting from the repetitions of one and the same stimulus pair per block.

As a result of this experimental manipulation, the first pair of each experimental block
should be unaffected by lower-level footprints from the immediate past. It can only be influ-
enced by the symbolic announcement, assuming that the recovery period introduced by the
interspersed unrelated experimental blocks was long enough. However, the second pair was
preceded by one presentation of a stimulus pair and the third pair was preceded by two presen-
tations of a stimulus pair. The influence of memory on the three separately analysed stimulus
pairs allowed us to study the different effects of cognitive (pair 1) and sensory (pair 2 and pair
3) temporal context information on the processing of a currently observed stimulus. We were
also able to study the different effects on related reaction times.

Material and methods—Experiment 2

Participants

Twenty-three participants (16 female) took part in Experiment 2. The median age was 24, with
participants ranging from 19 to 31 years old. All participants had normal or corrected-to-nor-
mal visual acuity [33] and gave their written informed consent. The study was approved by the
ethics committee of the University of Freiburg and in accordance with the ethical standards
laid down in the Declaration of Helsinki [34]. We had to exclude two participants from the
analysis due to low number of trials that survived the artefact rejection (<30 in at least one
condition). Eighteen participants were right-handed, two participants were left-handed, and
one participant was ambidextrous.

Procedure

Experiment 2 was very similar to Experiment 1 with three exceptions:

1. At the beginning of each experimental block, we announced the experimental condition
(SA(CA) or SA(CU)) that the block belonged to abstract symbols (see Fig 7)

2. Experiment 2 was restricted to conditions SA(CA) and SA(CU) (see Fig 8). As a result, only
the ambiguity level of the stimuli S2 in the temporal context varied, whereas the currently
perceived stimulus S1 in the analysis window stayed ambiguous.

3. In this Experiment 2 one experimental block consisted of the symbolic announcement and
only three stimulus pairs. With this we decreased the block duration from 9 minutes
(Exp. 1) to 9 seconds (Exp. 2) and concurrently increased the number of experimental
blocks per condition from 3 (Exp. 1) to 120 (Exp. 2).

4. In this Experiment 2 it was important to extinguish short-term perceptual memory between
experimental blocks as much as possible. Thus, we separated the blocks from Experiment 2
by blocks from a separate and unrelated experiment with completely different stimuli
(smiley stimuli with different emotional expressions).
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Before the start of the main experiment, participants learned the tasks in training blocks of
three minutes. In the training blocks, we presented the paradigm with only unambiguous sti-
muli, which allowed us to distinguish between correct and false responses. The training blocks
were repeated as many times as needed to reach a maximal error rate of 10% within one block.
Thus, the number of repetitions varied slightly between participants.

Analyses

Like in Experiment 1, we analysed the ERPs evoked by stimulus S1 from a pair S1S2. In Experi-
ment 2, this S1 stimulus was always ambiguous and is thus labelled accordingly as SA (see Fig 8
for details). The EEG data from this stimulus SA were sorted with respect to participant, to the
ambiguity level of the temporal context stimuli S2, to the order of SA in the experimental block
(SA-pair 1, SA-pair 2, SA-pair 3), and to electrode. The onset of SA served as a time reference.

As in Experiment 1, we selected electrode Cz as the spatial region of interest (ROI) in
Experiment 2. Corresponding temporal ROIs ranged from 100 to 300 ms, covering the latency
of the P200 ERP component, and from 300 to 600 ms, covering the latency of the P400. We
identified the individual peak amplitudes in the temporal and spatial ROIs and measured the
average voltage in a ±30 ms time window around the peak [37].

We tested for the assumption of normality using the Shapiro-Wilk test. Significant depar-
tures from normality were found for the P200 in condition SA(CU)-pair 1 (W(21) = 0.9,
p = 0.04) and for the P400 in condition SA(CA)-pair 1 (W(21) = 0.87, p = 0.008). Therefore, we
based our statistical analysis on the non-parametric Wilcoxon signed rank test.

Reaction times were regarded as physiologically plausible if their earliest occurrence was at
least 150 ms after stimulus onset. Reaction times were treated as valid until the end of the
inter-stimulus interval, i.e. 1200 ms after stimulus onset. We calculated the median reaction
times and conducted Wilcoxon signed-rank tests.

The Wilcoxon tests were conducted for the P200 and the P400 amplitudes and for the
median reaction time data with a predefined alpha of 0.05. The resulting p-values were cor-
rected for multiple testing with the Holm procedure [38]. The effect size res was calculated by
dividing the Z-score by the square root of the total number of observations [39].

We tested for the influence of the ambiguity level of the temporal context (preceding and
subsequent stimuli) on the amplitudes of the SA-evoked P200 and P400 ERP components. This
was done by comparing conditions SA(CU) with SA(CA). The related tests were calculated sepa-
rately for the SA-evoked ERPs and reaction times to the related task from pair one, pair two,
and pair three within experimental blocks. This allowed us to investigate the influence of the
accumulating perceptual memory, as well as the increasing evidence about stimulus regularity
in the temporal context of SA on the reaction times and ERP amplitudes.

Results from Experiment 2

In Experiment 2, we investigated whether abstract symbolic knowledge about the perceptual
future, without sensory history, is sufficient to evoke the effects of sensory quality within the
temporal context (P200 and P400) from Exp. 1, or whether the direct perceptual experience of
stimulus regularity is necessary. We presented a symbolic announcement of the upcoming
conditions SA(CA) and SA(CU) at the beginning of each block. Each block consisted of only
three stimulus pairs and we analysed SA-evoked ERPs from SA–pair 1, SA–pair 2, and SA–pair
3 separately. If the ERP effects found in Experiment 1 are related to processes of predicting the
immediate perceptual future, and if the abstract symbolic knowledge about the immediate per-
ceptual future is sufficient to evoke these predictions, we should find effects of sensory quality
within the temporal context in the ERPs and in reaction times already in the first stimulus of
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the first pair. If, however, direct perceptual experience of stimulus regularity is necessary for
these effects, we should see earliest evidence for these effects with the first stimulus of the sec-
ond pair and perhaps a slow build-up of the effect with the third stimulus pair.

Behavioural data

Trial numbers. The average number of valid trials can be found in Table 2. Based on the
restriction of a valid response time window from 150 to 1200 ms after stimulus onset, we only
had to exclude 0.0006% of all trials (0.003% SD) per participant and condition due to invalid
response times. The remaining difference between the average number of all stimulus presen-
tations (Table 2, right column) and the average number of valid trials (Table 2, middle col-
umn) between participants and conditions is due to EEG artefacts.

Reaction times. We found no significant effects of stimulus ambiguity within the tempo-
ral context on SA-related reaction time in the first pair (SA(CA)–pair 1 vs. SA(CU)–pair 1: Z =
-0.64, res = -0.095, p = 0.27, see Fig 9). Note that the temporal context of SA from the first pair
differs substantially from the temporal contexts of SA in the second and third pair. SA from the
first pair was only preceded by a symbolic announcement about the current condition, i.e. the
ambiguity levels of the upcoming stimuli. The SA stimuli from the second and the third pair
were preceded by lattice stimuli instead of abstract information.

We found significantly longer reaction times for an unambiguous temporal context com-
pared to an ambiguous temporal context in the second (SA(CA)–pair 2 vs. SA(CU)–pair 2: Z =
-3.91, res = -0.58, p = 2.38e-06) and the third stimulus pair (SA(CA)–pair 3 vs. SA(CU)–pair 3: Z
= -3.95, res = -0.58, p = 2.86e-06). Note that the reaction times were related to an identification
task of the currently seen stimulus SA. The temporal context stimuli were completely irrelevant
for the execution of this task.

ERP data

The amplitudes of the SA-evoked P200 and P400 show no significant effects of stimulus ambi-
guity within the temporal context in the first pair (SA(CA)–pair 1 vs. SA(CU)–pair 1: P200: Z =
-0.16, res = -0.02, p = 0.45; P400: Z = -1.16, res = -0.17, p = 0.42) or in the second pair (SA(CA)–
pair 2 vs. SA(CU)–pair 2: P200: Z = -0.82, res = -0.12, p = 0.52; P400: Z = -0.19, res = -0.03,
p = 0.68). Further, there was no significant effect of stimulus ambiguity within the temporal
context for the SA-evoked P200 in the third pair (SA(CA)–pair 3 vs. SA(CU)–pair 3: P200: Z =
-1.62, res = -0.24, p = 0.25;). Interestingly, there was a significant effect of stimulus ambiguity
within the temporal context for the SA-evoked P400 amplitudes in the third pair (SA(CA)–pair
3 vs. SA(CU)–pair 3: P400: Z = -2.69, res = -0.4, p = 0.016).

Table 2. Number of trials of Experiment 2.

Average number of valid trials (±SD) Average number of all stimulus presentations (±SD)

SA(CU)–pair 1 83 (±17) 109 (±11)

SA(CA)–pair 1 83 (±17) 110 (±9)

SA(CU)–pair 2 82 (±19) 108 (±12)

SA(CA)–pair 2 84 (±20) 109 (±9)

SA(CU)–pair 3 81 (±19) 105 (±13)

SA(CA)–pair 3 81 (±20) 107 (±9)

Table 2 displays the average number of valid trials (±SD) in the middle column and the average number of all

stimulus presentations (±SD) in the right column, both separately for the experimental conditions.

(U = Unambiguous, A = Ambiguous).

https://doi.org/10.1371/journal.pone.0237663.t002
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Fig 10 displays the grand mean ERPs at electrode Cz for the three stimulus pairs separately.
Fig 11 shows the summarized results for the three stimulus pairs from Exp. 2 together with the
results from Exp. 1 for the P200 and Fig 12 for the P400.

Summary and discussion of Experiment 2

In Experiment 2, we presented an abstract symbolic announcement before each experimental
block and only three stimulus pairs within experimental blocks. We separately analysed ERPs

Fig 9. Reaction time results from Experiment 2. Bottom row depicts the median reaction times evoked by a currently observed stimulus separately for
the two experimental conditions with unambiguous (black) and ambiguous (grey) stimuli in the temporal context of SA. Reaction times are separately
shown for the first (circles, first column), second (squares, second column), and third pair (diamond, third column). For comparison, the results from
Exp. 1 (triangles) are plotted on the right (fourth column). The data from individual participants are represented with small icons, while the large icons
represent the median reaction time data with interquartile ranges (whiskers). In the middle row the median reaction time differences (large
icons ± interquartile ranges) between the two conditions (unambiguous temporal context minus ambiguous temporal context) are depicted together with
data from the individual participants (small icons). The top row shows the sizes of the reaction time effects (res). U = Unambiguous, A = Ambiguous.

https://doi.org/10.1371/journal.pone.0237663.g009
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and reaction times from the first, second and third stimulus pair presentations within the
blocks. This allowed the comparison between stimulus processing without an immediate per-
ceptual history (first pair) and the slow build-up of a perceptual memory trace across the sec-
ond and third stimulus pair. The aim of Experiment 2 was to study whether the ERP and
reaction times effects of sensory quality within the temporal context are also present when
only symbolic knowledge about upcoming temporal context regularities is available (first stim-
ulus pair) and/or whether they build up over accumulating perceptual memory (second and
third stimulus pair within experimental blocks). We found no such ERP effects for stimulus SA

from the first and second stimulus pair and only a P400 amplitude effect for stimulus SA from
the third stimulus pair.

Further, there was no reaction time effect for Task 1 of the first stimulus pair, but similarly
strong reaction time effects in the second and the third pair as in Experiment 1.

The results from Experiment 2 indicate that providing only abstract symbolic information
about the upcoming stimuli and their ambiguity levels is not sufficient to evoke effects of sen-
sory quality within the temporal context as found in Experiment 1. These effects start to be vis-
ible only in the third stimulus pair, i.e. after two exposures to the sensory information and
only for the P400 ERP component. Therefore, it can be concluded that the direct sensory expe-
rience of regularities is a necessary precondition to evoke the effects of sensory quality within
the temporal context found in Experiment 1. This indicates that the abstract symbolic infor-
mation did not evoke a proper expectation in the participants. Rather, the direct perceptual
experience of the stimuli and their regularities must be in the perceptual memory. Although
effects of sensory quality within the temporal context for Task 1 reaction times are already
present in the second stimulus pair, they are absent for the first pair, again indicating that the
direct sensory stimulus experience is a necessary precondition.

Summary and general discussion

In the present study, we investigated whether the automatic integration of observed regulari-
ties across previous percepts and the generation of predictions based on these observed and
memorized regularities, affect processing of the sensory present and the execution of a present
task. To study this question, we applied a novel experimental paradigm with ambiguous and

Fig 10. Grand mean ERP results from Experiment 2. Grand means (±SEM) in response to a currently observed stimulus are separately shown for conditions
SA(CU) (dark blue solid lines) and SA(CA) (light blue dotted lines). SA-evoked ERP traces from stimulus pair 1 (left), 2 (middle), and 3 (right) are depicted
separately. All traces are displayed for electrode Cz.

https://doi.org/10.1371/journal.pone.0237663.g010
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unambiguous stimulus variants and investigated two ambiguity-sensitive ERP components
(P200 and P400). We used stimulus ambiguity to manipulate the reliability of the perceptual
history and the predictions about the perceptual future.

We found that the amplitudes of P200 and P400 ERPs evoked by identical lattice stimuli dif-
fer as a function of the temporal context, i.e. the ambiguity level of a preceding stimulus (S2
from the previous pair) and the expected ambiguity level of a subsequent stimulus (S2 from
the current pair). Similarly, reaction times from a stimulus-related Task 1 differ as a function

Fig 11. P200 ERP results from Experiment 2. Bottom row depicts the mean amplitudes of the P200 evoked by a currently observed stimulus SA

separately for conditions with unambiguous (CU, black) and ambiguous (CA, grey) stimuli in the temporal context of SA. P200 amplitudes are separately
shown for SA from the first (circles, first column), second (squares, second column), and third pair (diamond, third column). For comparison, the
results from Exp. 1 (triangles) are plotted on the right (fourth column). The data from individual participants are represented with small icons, while the
large icons represent the mean amplitudes with SEM (whiskers). In the middle row, the mean ERP differences (large icons ±SEM) between the two
conditions (unambiguous temporal context minus ambiguous temporal context) are depicted together with data from the individual participants (small
icons). The top row shows the effect size (res) of the temporal context effects. U = Unambiguous, A = Ambiguous.

https://doi.org/10.1371/journal.pone.0237663.g011
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of the ambiguity level of the stimuli within the temporal context, even though they were irrele-
vant for the execution of this task.

In the following, we will first discuss general limitations of the current study. We will then
describe previous findings of P200 and P400 ERP components, similar to the ones found in
the present study. Next, we discuss whether our results reflect "footprints" from the perceptual
past or rather mechanisms underlying predictions of the perceptual future, or both. Finally, we

Fig 12. P400 ERP results from Experiment 2. Bottom row depicts the mean amplitudes of the P400 evoked by a currently observed ambiguous
stimulus SA, separately for conditions with unambiguous (CU, black) and ambiguous (CA, grey) stimuli in the temporal context. P400 amplitudes are
separately shown for the first (circles, first column), second (squares, second column), and third pair (diamond, third column). For comparison, the
results from Exp. 1 (triangles) are plotted on the right (fourth column). The data from individual participants are represented with small icons, while
the large icons represent the mean amplitudes with SEM (whiskers). In the middle row the mean ERP differences (large icons ±SEM) between the
two conditions (unambiguous temporal context minus ambiguous temporal context) are depicted together with data from the individual
participants (small icons). The top row shows the effect size (res) of the temporal context effects. U = Unambiguous, A = Ambiguous.

https://doi.org/10.1371/journal.pone.0237663.g012
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will speculate about the specific functional roles of the identified ERP effects and provide a
possible explanation for the differing pattern of reaction time effects.

Limitations of the current study

In Experiment 1, thirteen participants were measured. We conducted a power analysis [45] on
the basis of previous results [26,27], which indicated 12 participants as sufficient. Even though
the previously found exceptionally large P200 and P400 amplitude effects related to stimulus
ambiguity [26,27,31] suggested this small number of participants, a larger number of partici-
pants in a follow-up replication of the present study may confirm the present findings and
even reveal more subtle effects.

Our current EEG setup contains only 32 electrode channels. For future attempts to deter-
mine the brain sources underlying the reported effects, one should use a setting with 64 or
even 128 electrodes, combined with anatomical MRI scans. These two extensions would
decrease the well-known inverse problem in EEG, when trying to identify sources [46,47].

P200 and P400 in the literature

Only a few studies report a positive deflection with a fronto-central distribution 200 ms after
stimulus onset, as shown in the current study. Similar P200 ERP components were found dur-
ing feature detection across visual dimensions [48], modality-independent emotional salience
[49], and the match of sensory input with memory contents [11]. The latter finding is in line
with our current finding of a P200 amplitude modulation, which is dependent on information
from the temporal context. Perri et al. [50] found frontal components (pP1, pP2) in the P200
time-range related to decision-making. These ERP components originate from the anterior
insula and reveal larger amplitudes in response to complex compared to simple stimuli. The
present P200 findings show an opposite pattern, i.e. larger ERP amplitudes in response to easy
perceptual decisions (unambiguous stimuli) and smaller ERP amplitudes in response to diffi-
cult/uncertain perceptual decisions (ambiguous stimuli). It may be very interesting to system-
atically compare similarities and differences in the paradigms and results of the study by Perri
et al. and the current experiments in a follow-up study, which then may include source analy-
sis, in a way suggested above.

The positivity 400 ms after stimulus onset with its central distribution resembles the well-
known P300 ERP component (specifically P3b [42]). The P300 is typically reported in "oddball
paradigms" evoked by infrequent and task-relevant stimuli. The P300 latency is found to be
negatively correlated with reaction times (for reviews see [43,44]). In the current study, we
aimed at excluding typical oddball situations as much as possible in order to avoid P300 contri-
butions to our results. The present P400 may still share some neural mechanisms with the
P300 but cannot be completely reduced to it, at least because of the obvious differences in the
respective characteristics. This issue has been discussed in more detail in a recent publication
of Kornmeier et al. [27].

Do the present findings reflect "footprints" from the past or predicting the
future—or both?

Our findings indicate that the amplitude modulations of the P200 and P400 ERP components
evoked by one and the same stimulus are based on different sensory qualities within the tem-
poral contexts. One interesting question is now, whether these amplitude effects result from
predictions about the future or whether they are "footprints" from the perceptual past–or
whether both factors play a role?
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Effects of the perceptual history on early perceptual processing of a current stimulus are
well known from the literature. The immediate perceptual history can have both facilitating
(serial dependence) and inhibitory (adaptation) effects on the perceptual outcome during
observation of ambiguous figures [9,10,13–15,51]. Further examples are motion aftereffects
[52], contrast aftereffects [18], or repetition suppression [53]. Moreover, both serial depen-
dence and adaptation effects can be found at different levels along the perceptual processing
chain, up to the processing of emotional contents of faces and even beyond [9,54,55].

The amplitude differences of the P200 and P400, as found in the present study, may be sim-
ply caused by low-level influences from the immediate past rather than reflecting predictions
about stimuli in the immediate future. In particular, the results from Experiment 2 point in
this direction: Given our experimental design, stimulus S1 from the first of three stimulus
pairs and the related Task 1 have no influential immediate perceptual history (see Methods
above). Accordingly, the amplitudes of the P200 (Fig 11) and P400 (Fig 12) evoked by the first
stimulus of the first stimulus pair and the corresponding task-related reaction times (Fig 9) do
not differ between conditions. The influence from the past seems to build up over time: we
found reaction time effects as early as the second stimulus pair and also for the third pair. We
found P400 amplitude effects for the third pair, which has a perceptual history of two preced-
ing stimulus pairs, but no significant effects for the P200.

On the other hand, it is also possible that the current amplitude and reaction time modula-
tions reflect processes underlying the generation of predictions about the future rather than
footprints from the past. A necessary precondition for reliable predictions about the future is
the identification of reliable statistics in the past. Having this in mind, the results from Experi-
ment 2 are also compatible with the predicting approach: if there is no history of regularities,
there will also be no reliable source for the generation of a prediction and thus, neither a differ-
ence in ERP amplitudes nor in reaction times, as found for the first stimulus pair in Experi-
ment 2. Further, with an accumulating perceptual history (second and third stimulus pair)
including mounting evidence for regularities, predictions can be generated and become
increasingly reliable, resulting in ERP amplitude and reaction time differences between condi-
tions. We found P400 amplitude effects for the third stimulus pair and observed in Fig 11 a
weak but not yet significant tendency for a P200 amplitude difference with this third stimulus
pair. Interesting in this context is a study by Jazayeri and Shadlen [56]. They demonstrated
that if stimuli are drawn from a certain distribution, perception of a current stimulus is biased
towards the mean of the distribution that the stimulus originates from, and that response
behaviour is best explained by a Bayesian observer model. Of course, this is only possible if the
observer relies on a certain type of statistics across a certain time window of repeated presenta-
tions of stimuli from this specific distribution. One interesting question is, how many stimuli
from such a distribution need to be presented in order to get a reliable estimate of the distribu-
tion’s mean. Correspondingly, it would be interesting to extend our Experiment 2 by adding
more stimulus pairs to one experimental block and see at which point effect sizes as found in
Experiment 1 are reached. Such a follow-up study is on our agenda.

Jazayeri and Shadlen [56] investigated perceptual un/certainty by varying temporal aspects
of the stimuli, i.e. presenting stimuli for different durations. The current study might add to
this line of research in that it also investigates perceptual un/certainty but here this is intro-
duced through the sensory quality of the stimulus instead of its temporal extend.

The considerations above raise the fundamental question whether memory and prediction
effects are at all experimentally separable or whether they are inextricably entangled. Current
predictive coding approaches [24] assume numerous cycles of generating and evaluating pre-
dictions along the (hierarchical) chain from early sensory to cognitive processing [57]. Effects
of adaptation and/or serial dependence, typically labelled as low-level sensory effects [58], may
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thus be exploited during the prediction process and have been discussed to involve predictive
properties [59]. One can therefore inversely ask the question whether low-level memory
effects, as mentioned above, can occur without influencing the prediction of future sensory
input.

Effects of sensory quality within the temporal context on reaction times

The reasoning above may also explain longer reaction times related to a currently observed
stimulus if an ambiguous future stimulus is expected, compared to the expectation of an
unambiguous future stimulus. The problem with this, initially intuitive, explanation of the
reaction time effects is that it only fits to those conditions with an unambiguous currently
observed stimulus S1. For an ambiguous current stimulus, we found the opposite pattern, i.e.
longer reaction times with an unambiguous temporal context.

This finding seems counter-intuitive at first sight, but makes much more sense if we look at
it from a different point of view: There is perceptual continuity over time in the case of SA(CA),
i.e. if both the currently observed stimulus and its temporal context are ambiguous. Similarly,
there is perceptual continuity over time in the case of SU(CU), i.e. if both the currently observed
stimulus and its temporal context are unambiguous. In contrast, there is perceptual discontinu-
ity over time in the case of SA(CU), i.e. if the currently observed stimulus is ambiguous and its
temporal context is unambiguous. There is also perceptual discontinuity over time in the case
of SU(CA). Reaction times were consistently shorter in the perceptual continuity case com-
pared to a perceptual discontinuity case. The reaction time effect thus may not reflect the
expected quality of a stimulus but, in contrast, the expected perceptual continuity or disconti-
nuity–concerning ambiguity levels–between the currently observed stimulus and its temporal
context. This interpretation stands in line with behavioural findings from task-switching para-
digms [60]. They show slower reaction times when the task switches from one stimulus to the
next, and faster reaction times when the tasks stay the same. However, the ERP effects found
in task-switching paradigms [60] are different from our findings. This indicates that the ERP
effects reflect a different processing step in the current study than in studies only dealing with
task switching and not ambiguity level switching.

To sum up, our results indicate that the perceptual system exploits regularities from the
immediate perceptual past in order to generate predictions about the expected sensory quality
of a future stimulus in at least two steps, reflected by the P200 and P400 ERP components. Sep-
arately, automatic predictions are generated about perceptual continuity, i.e. whether the
given sensory quality of a stimulus at time point t1 is expected to continue to another stimulus
at time point t2. An expected change of sensory quality may require the pre-activation of addi-
tional neural resources in order to be prepared for an expected larger environmental change.
This pre-activation may increase reaction times related to the execution of a current task by
about 100 ms, even though this task is restricted to the sensory evidence from the current stim-
ulus, while perceptual past and expected perceptual future are irrelevant. Of course, this inter-
pretation is speculative and needs to be further confirmed or even disproved in future studies.

What do the present findings tell us about the integration of information
from the temporal context?

The available sensory information is noisy, incomplete and, to varying degrees, ambiguous.
Thus, finding the most appropriate perceptual interpretation as quickly and as efficiently as
possible was, most probably, a critical factor during the evolution of perception. This is known
as the perceptual inference problem [1] and has the consequences that we exploit even tiniest
bits of stimulus [40] and contextual information [61] in order to resolve it. Adaptation [62,63]
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and serial dependence [14–16] are examples of how past temporal regularities in the sensory
environment influence current percepts. Predictions about the immediate future based on cur-
rent percepts and identified regularities in the past, can facilitate and optimize the perceptual
process, because typically our environment does not change fundamentally from one moment
to the next. Thus, several of the previous arduously created perceptual concepts can simply be
kept for the next perceptual moment [64].

Interestingly, even though predictions obviously influence conscious experience, they seem
to be generated automatically and neither awareness nor task-relevance of, or attention to the
predicted stimulus seem to be necessary preconditions [e.g. 65,66].

Most studies on predictive coding focused on how predictions facilitate perception [20–22].
Only a few studies focused on neural correlates of generating predictions at a time point t1 con-
cerning the expected sensory information at a time point t2 (few examples are fMRI measure-
ments in humans [65] and voltage sensitive dye measurements in ferrets [67]). The current
results can be interpreted as evidence for EEG and behavioural measures of how making pre-
dictions about the future, based on regularities in the past, affects perceptual processing of a
present stimulus and execution of a present task. We found larger amplitudes of two ERP com-
ponents evoked by the same stimuli when an unambiguous future stimulus can be predicted
from the temporal context than when an ambiguous future stimulus can be predicted (effect
sizes between 0.24 and 0.62).

Also noteworthy is the observation that the sensory quality within the temporal context also
modulates reaction times of the present Task 1, even though the sensory quality within the
temporal context is completely irrelevant for the execution of this task. This is further evidence
for the inevitability and automaticity of integration of information from the temporal context.

The present results are threefold and may reflect three processing steps. The first step is indi-
cated by the modulation of the fronto-central P200. The second step follows 200 ms later, as
indicated by the modulation of the centro-parietal P400 and the deviating pattern of reaction
time results indicate a different third step. Both ERP effects point in the same direction (larger
amplitudes if stimuli in the temporal context were unambiguous compared to ambiguous), but
the results indicate small differences between the P200 and the P400 amplitude effects. Particu-
larly, the results from Experiment 1 show that the ambiguity level of the temporal context of a
currently observed stimulus affects the P400 amplitude, irrespective of the ambiguity level of the
observed stimulus itself. However, we only see P200 effects of sensory quality within the tempo-
ral context if the currently observed stimulus is ambiguous. Further, although the functional dif-
ference between processes underlying the two ERP components is currently not entirely clear,
recent evidence from our lab indicates that the fronto-central P200 component reflects—at least
partly—the reactivation of memory traces during comparison of present with previous percep-
tual interpretations [68,69]. The absence of the P200 effects of sensory quality within the tempo-
ral context during observation of an unambiguous current stimulus may be a simple ceiling
effect: The amplitude of the P200 evoked by an unambiguous currently observed stimulus S1 is
larger than the amplitude of the P200 evoked by an ambiguous stimulus S1 (compare dashed
traces in Fig 6A and 6C). The amplitude of the P200 evoked by an unambiguous S1 may already
be at such a high level that it cannot further increase due to physiological and/or brain anatomy
reasons. On the other hand, it may also be possible that in a situation when an unambiguous
stimulus S1 is currently observed, i.e. when high quality sensory evidence is present, a possible
contribution of the working memory may be reduced and a potentially smaller P200 effect of
sensory quality within the temporal context may become insignificant.

With the simplified explanation of the effects of sensory quality within the temporal context
on the processing of a current stimulus reported in this study, one could assume that–based on
reactivated information from perceptual memory–large amplitudes reflect the expectation of
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an unambiguous and thus, easy-to-process future stimulus. This may therefore serve as a kind
of go-signal, affecting both the current task (i.e. faster reaction times), and the future percep-
tual process. Expecting an ambiguous, thus unclear future, in contrast, may cause an inhibition
of the go-signal (resulting in smaller ERP amplitudes). Furthermore, expecting a discontinuity
in the visual flow over time may result in a more careful execution of actions in the present. All
of this is currently a very speculative explanation of our results and far away from a well-
founded theoretical framework. Of course, further experimental steps are necessary to get a
clearer picture and to confirm or disconfirm these speculative interpretations.

Conclusion and outlook

One strategy to make perception metabolically more efficient, more reliable and faster may
include accounting for stimulus regularities in the past to anticipate the immediate future. Pre-
dictive strategies are thus powerful contributions to the resolution of the perceptual inference
problem [1]. The current findings show that information from the temporal context strongly
modulate perceptual processes in a highly automatic manner, even if those temporal context
stimuli are outside the focus of attention and irrelevant for a given task. It seems as if the infor-
mation from the temporal context is always integrated into the current percept and we cannot
avoid doing so. Further evidence for such automaticity comes from the observation that the
direct experiences of perceptual regularities in the past are necessary preconditions for the cur-
rent effects to occur. Symbolic announcements at a higher cognitive level alone are not suffi-
cient, as found in Experiment 2.

Previous studies about influences of past events and prediction mechanisms during percep-
tion used unambiguous and clearly visible stimuli. Typical studies on prediction mechanisms
compared frequently presented and thus highly predictive stimuli with rare unpredictable sti-
muli. Stimulus frequency, not stimulus quality, was the critical factor. The current study used
stimulus quality, namely stimulus ambiguity, as the critical factor. In our study, the compared
perceptual situations were identical concerning stimulus frequency but different concerning
perceptual reliability. The different paradigms may have lead to differing results. An interest-
ing next step may be to bridge the gap between the different approaches and to extend the
given theoretical framework in a follow-up step by incorporating the differing results.

The current findings indicate that the sensory quality within the temporal context can influ-
ence the present and slow down a current task. Importantly, this is the case even when the
immediate past and the immediate future are irrelevant for the execution of this current task.
Therefore, integrating information from the temporal context may, in certain situations, have
impeding effects on how we see the present and how (fast) we act at a present moment. Every-
one is familiar with situations where the anticipation of an unpleasant future inhibits us men-
tally or makes us less motivated during an unrelated current task. Depression may be an
extreme case of such a scenario. The current results highlight lower-level perceptual states and
mechanisms whose characteristics potentially parallel those of such higher-level mental states
and mechanisms. Depression is typically regarded as a higher-level psychiatric disorder. Inter-
estingly, recent evidence indicates that also lower-level visual processing steps are affected [e.g.
70]. It may be interesting to apply the current paradigm to patients with depression and see
whether they show an altered pattern of effects of sensory quality within the temporal context.
This is one of our next steps on the agenda.

A better understanding of the mechanisms underlying the automatic integration of the
temporal context for the generation of predictions may thus help to understand basic princi-
ples of perception. At the same time, it may also help to better understand basic principles of
higher-level mental states and mental disorders.
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4.3 Supplementary Material 1

S1 File. Result Tables of correlations between EEG data, reaction time data, and 
reversal rates. 
 
 
 
Table A. Correlation between EEG data (P200, P400) and reaction time data. 

 Condition Pearson correlation 
coefficient  

p-value 

P200 

SA(CA) -0.346 (-0.07) 0.25 (0.59) 
SU(CU) 0.33 (0.1) 0.14 (0.37) 
SU(CA) -0.29 (-0.35) 0.32 (0.24) 
SU(CU) 0.17 (-0.27) 0.29 (0.36) 

P400 

SA(CA) -0.36 (-0.16) 0.23 (0.61) 
SU(CU) 0.18 (0.14) 0.28 (0.32) 
SU(CA) -0.002 (-0.29) 0.5 (0.35) 
SU(CU) 0.03 (-0.39) 0.46 (0.19) 

Table A displays the Pearson correlation coefficients and corresponding p-values for 

normalized (and non-normalized) data between the EEG data (P200 and P400 amplitudes) 

and the median reaction time data. No significant correlations were found. 

 

 

Table B. Correlation between EEG data (P200, P400) and reversal rates. 

 Condition Pearson correlation 
coefficient  

p-value 

P200 

SA(CA) -0.03 (0.27) 0.54 (0.19) 
SU(CU) 0.34 (0.25) 0.13 (0.21) 
SU(CA) 0.12 (0.03) 0.35 (0.46) 
SU(CU) 0.41 (0.09) 0.08 (0.38) 

P400 

SA(CA) -0.12 (0.04) 0.66 (0.45) 
SU(CU) 0.19 (0.19) 0.26 (0.26) 
SU(CA) -0.19 (-0.49) 0.53 (0.08) 
SU(CU) -0.16 (-0.24) 0.6 (0.43) 

Table B displays the Pearson correlation coefficients and corresponding p-values for 

normalized (and non-normalized) data between the EEG data (P200 and P400 amplitudes) 

and the reversal rates. No significant correlations were found. 

 

 

Table C. Correlation between reversal rates and reaction time data. 
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Condition Pearson correlation 
coefficient  

p-value 

SA(CA) 0.61 (0.61) 0.01 (0.01) 
SU(CU) 0.3 (0.39) 0.15 (0.1) 
SU(CA) 0.04 (0.51) 0.45 (0.04) 
SU(CU) 0.46 (-0.18) 0.06 (0.56) 
Table C displays the Pearson correlation coefficients and corresponding p-values for 

normalized (and non-normalized) data between the reversal rates and the median reaction 

time data. Only in condition SA(CA) a significant correlation was found. 
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5. Discussion

In this dissertation, different aspects of the brain’s resolution of the perceptual inference problem

are investigated. In chapter 2, I showed that ambiguity and also low-visibility evoke very

similar ERP components 200 ms and 400 ms after stimulus onset (ERP Ambiguity Effects

Kornmeier and Bach, 2009; Kornmeier et al., 2016), which show small ERP amplitudes

in response to ambiguous/low-visibility stimuli and large ERP amplitudes in response to

disambiguated/high-visibility stimuli. The ERP effects are related to brain states of perceptual

(un)certainty and accordingly relabelled to ERP Uncertainty Effects. In chapter 3, I showed

that patients with Schizophrenia Spectrum Disorder (SSD) reveal similar but also different

steps during the (un)certainty processing compared to matched control participants, both

behaviourally and electrophysiologically. This suggests that solving the perceptual inference

problem is partially altered in patients with SSD, which is hypothesised to be based on

aberrant predictive processes. In chapter 4, I modified the previously used ERP Ambiguity

Paradigm (Kornmeier and Bach, 2009; Kornmeier et al., 2016) such that predictive processes

can be investigated. I showed that the brain uses information from the temporal context,

i.e. information from the perceptual past that evoke predictions about the perceptual future,

in order to solve the perceptual inference problem of a given sensory information in a

highly automatic manner. This confirms previous theories (based on von Helmholtz, 1867)

using electrophysiological measures of neural responses and allows for the investigation of the

underpinnings of perceptual processing alterations in terms of predictive coding mechanisms

related to low quality of the sensory information.

5.1 Probability estimations

As described in the introduction (chapter 1), perception is of a probabilistic nature. Sometimes,

a large number of possible perceptual interpretations of a given sensory information have to be

reduced to one highly probable interpretation to provide a stable and reliable representation of

the external world. This is done by probability estimations, which are based on information

from endogenous factors such as memory. The time scales on which this reduction of probable

interpretations is allocated seems to vary between different types of stimuli.

The dynamic field of human interaction (Jack et al., 2014) is strongly influenced by updating

mechanisms. Even though the core features of emotional facial expressions are learnt very early

during development, the association between a certain configuration of face muscle contractions

and an emotional expression is individual to each person. Thus the learnt associations have to be

updated with every new individual that we get to know. It might be speculated that continuous
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updating might result in various different possible interpretations of emotional expressions that

ultimately result in a continuous scale of possible perceptual interpretations.

In the case of classical ambiguous figures such as the Necker cube, one sensory input allows for

exactly two possible interpretations, even though there are, in principle, infinitely many possible

interpretations (Kersten and Yuille, 2003). The two cube interpretations that can be perceived

both contain 90° angles. This is most probably due to the fact that we live in a world with many

90° angles and all other angles are less common. The two 90° angle interpretations of the Necker

cube are thus the most probable ones to occur in our environment. The finding that only two

out of the infinitely many possible interpretations are typically perceived, therefore shows how

well the perceptual system adjusts to the external world and the regularities detected within.

The reduction of possible interpretations due to those regularities might be learnt once and is

then confirmed over one’s lifetime. It might be speculated that this learnt regularity should not

be affected by updating mechanisms, because perceptual knowledge, such as the high probability

of 90° angles in our environment, is valid over time and will not change during one’s lifetime. In

the case of the Necker cube, this might result in exactly two possible interpretations and thus

might explain the special case of binarity in classical ambiguous figures.

5.2 Perceptual (un)certainty

In the current dissertation I showed that, despite the difference mentioned above, very similar

EEG effects in response to classical ambiguous figures and low-visibility of emotional facial

expressions were found. The common factor between them might be that they both result in a

low reliability of the perceptual outcome. Contrarily, disambiguated figures and high-visibility

of a certain feature might result in high reliability of the perceptual outcome. Assuming that

this is the source of the ERP Effects, it can be hypothesised that low reliability of the perceptual

outcome leads to a brain state of perceptual uncertainty, while high reliability of the perceptual

outcome leads to a brain state of perceptual certainty. The similar modulation of two ERP

components that are 200 ms apart from each other suggests that not only one event in time but

rather a longer-lasting brain state of (un)certainty arises through sensory information of low

quality (ambiguity and low visibility). Further, the behavioural findings in chapter 2 strongly

support the idea of perceptual (un)certainty. Ultimately, evidence for this interpretation is

provided by the Master thesis of Kriti Bhatia (Bhatia et al., 2019; Bhatia, 2020), which was

supervised by Jürgen Kornmeier and I during the time of my PhD. In this work, ERP Effects

(P200 and P400) were found for poorly visible stimuli, which were embedded in a high amount

of noise compared to clearly visible stimuli embedded in a low amount of noise.

The previously labelled ERP Ambiguity Effects have been shown to occur for classical ambiguous

figures and also for different levels and types of visibility. Perceptual uncertainty might be the

common factor between the ERP Effects and it is thus proposed to relabel the ERP Effects to

ERP Uncertainty Effects.

One important next step in order to test whether the ERP Effects really represent (un)certainty

is to introduce a certainty rating after the perceptual decision. This would allow to study whether

the ERP Effects vary as a function of (un)certainty and would also allow the comparison of the

current neural responses to other previously shown meta-cognitive processes (Mamassian, 2016).
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5.3 Predictive mechanisms and Schizophrenia Spectrum

Disorder

In chapter 3, I investigated processing of perceptual (un)certainty in controls and in patients

with Schizophrenia Spectrum Disorder (SSD). A possible cause for the behavioural and

electrophysiological alterations between (1) low-visibility and high-visibility stimuli, as well as

between (2) patient with SSD and controls, can be found using Bayesian probability (Kersten

and Yuille, 2003) and predictive coding mechanisms (Friston, 2012; Kok and de Lange, 2015).

According to these theories, the brain forms a model about the external world and compares

the actual sensory information with the previously formed model. The difference between model

and sensory information is then computed by means of a prediction error. Updating the model

according to the sensory information minimises this prediction error. In the case of high-visibility

smiley stimuli, low-level differences are large between happy and sad expressions, i.e. strong

upwards vs. strong downwards bending of the mouth curvature. The comparison of a predicted

happy smiley and an actually presented sad smiley should thus evoke large prediction errors. In

the case of low-visibility stimuli, the low-level differences between emotions are small and thus

the prediction error should also be small. The amplitudes of the ERP Uncertainty Effects might

reflect this with large ERP amplitudes in the case of a small prediction error and small ERP

amplitudes in the case of a large prediction error.

During the process of model formation, the prediction error is minimised in order to update the

model most efficiently. In the case of high-visibility, the sensory information might be regarded

as reliable enough to integrate all sensory information into the formation of predictions. In the

case of low-visibility, on the other hand, the sensory information might be regarded as unreliable

and not all of the information is integrated into the formation of predictions. The underlying

idea that the prediction error is weighted with its estimated precision was proposed by Friston

(2010). Importantly, it is proposed that the formation of predictions is disturbed in patients

with SSD (Notredame et al., 2014; Fletcher and Frith, 2009; Sterzer et al., 2019; Schmack et al.,

2015; Shergill et al., 2005). One consequence might be that the sensory information is never

regarded as being fully reliable in the patients. This might explain the alterations in patients

with SSD compared to neurotypicals as found and discussed in chapter 3.

The ERP Uncertainty Paradigm, as was used in chapter 2 and in chapter 3, does not allow

for a systematic investigation of predictive processes in the ERP Uncertainty Effects. In

those studies, it was only possible to analyse the neural processing related to a currently

perceived stimulus, while the influences of predicted upcoming sensory information was not

measurable. Therefore, the experimental paradigm was modified in chapter 4 such that the

influences from the immediate past and the resulting predictions about the immediate perceptual

future on the perceptual processing of the present could be investigated. It was found that the

temporal context (memorised immediate perceptual past and predicted immediate perceptual

future) alters the processing of the perceptual present according to the quality of the sensory

information in the temporal context, i.e. ERP Temporal Context Effects. Interestingly, this

was found to occur irrespective of the relevance of this temporal context information for a

present task. The integration of information from the temporal context is thus proposed to
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act in a highly automatic manner. How long this influence lasts was not in the focus of this

study. Systematic investigation of the influence of temporal distance between the stimuli of

interest on the temporal context integration would be a very interesting next step. In predictive

coding theories there is only one factor, the prior, covering the previous perceptual information.

Perceptual memories on different time scales might be integrated with different weightings, e.g.

dependent on their temporal distance and/or importance. Further, it was found that the direct

experience of past regularities are necessary in order to predict the perceptual future, whereas

a symbolic representation did not evoke such predictions. The findings from chapter 4 highlight

the importance of information in the temporal context of a given stimulus for its perceptual

processing. Importantly, the ERP effects are strongly modulated by this integration of temporal

context integration, shedding more light on their functional roles.

These findings should be considered when using the ERP Uncertainty Effects to investigate

alterations in patients with psychiatric diseases. The proposed aberrant predictive processes

in patients with SSD (Notredame et al., 2014; Fletcher and Frith, 2009; Sterzer et al., 2019;

Schmack et al., 2015; Shergill et al., 2005) should thus be investigated using the ERP Temporal

Context Effects as found in chapter 4. With this experimental manipulation it would be possible

to investigate the temporal aspects of the alterations in predictive mechanisms in patients with

SSD in more detail. Furthermore, the current dissertation shows that perceptual (un)certainty

is reflected in the ERP Uncertainty Effects not only by classical ambiguous figures, but also

by socially relevant stimuli, like emotional facial expressions. These are found to be especially

difficult to process for patients with SSD. Combining the ERP Temporal Context Paradigm

with the smiley stimuli would yield a very promising next step to study the proposed aberrant

predictive processes in patients with SSD. This might be especially important when dealing with

uncertainty in social interactions.

Van de Cruys et al. (2014) argue that patients with Autism Spectrum Disorder (ASD) reveal

impairments in the prediction error integration. In particular, it is hypothesised that patients

with ASD fail to assign the appropriate level of relevance to the prediction error signal, which is

dependent on its level of reliability. This is exactly what is proposed to be studied with the ERP

Temporal Context Paradigm. In a future study, patients with ASD should also be presented with

the ERP Temporal Context Paradigm in order to (dis)prove and possibly quantify alterations

in predictive mechanisms related to the reliability of the sensory information.

5.4 Electrophysiological correlates of psychiatric diseases

The entire concept of schizophrenia is currently challenged (Van Elst, 2017). Guloksuz and

Van Os (2018) argue that the current concept of schizophrenia only represents one third of a

multidimensional psychotic syndrome, supposedly resulting in a neglect of diagnoses other than

schizophrenia within the psychotic spectrum. Diagnostics are based on behavioural measures

that rely on an estimation of the related symptom severity. Scientists try to find reliable

physiological markers of psychiatric diseases, but this goal is not accomplished to date. In

typical studies such as the one presented in chapter 3, patients are diagnosed according to

current standards and data from one patient group is compared to data from neurotypical

control participants, in order to find physiological markers for the disease. This approach relies
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on the assumption that the combination of symptoms that form a disease are based on a certain

aberrant neural mechanism, which has to be coherent within the selected group. Since it was

not possible for scientists to find a reliable physiological marker so far, it can be speculated

that this assumption is not valid. Another possibility, for example, could be that one symptom

might be traced back to exactly one aberrant neural mechanism. Symptom severity, however,

usually varies between patients of a studied group. Consequently, a certain neural mechanism

related to a certain symptom might be altered to different degrees, depending on symptom

severity. Due to this heterogeneity within the patients group, the so-far used experimental

approach might not be able to reliably differ between groups. Another possibility would be that

one aberrant neural mechanism only causes partial aspects of one or several symptoms, which

again might not yield enough difference to reliably separate the groups. This would especially

be the case if the symptoms would not be classified within one disease.

A paradigm-shift might yield interesting new approaches for the investigation of altered neural

mechanisms in patients compared to controls. The main idea would be to shift the focus

of the experimental studies from a currently used symptom-based distinction between two

groups of participants (patients vs. controls) towards a neural correlate-based distinction

between participants. This might be achieved by ignoring the diagnostics and then using e.g.

clustering algorithms and recent innovative machine learning methods (e.g. Banville et al.,

2020) to group the data only regarding the neural correlates. As a result, new categorisations

of participant groups dependent on their neural responses, not on their symptomatology, might

yield interesting new insights about the underlying structure of neural responses between

participants. These results might then be related to the previously defined structure of

symptoms, thus helping to unravel the relation between neural responses and behavioural

symptoms. This approach might ultimately help to further improve treatment of the altered

neural mechanisms in patients.

Neural correlates of predictive coding mechanisms might be a promising candidate for such an

approach. Patients with SSD and patients with ASD vary considerably in their symptomology.

It is, however, proposed that both show very similar alterations in predictive coding mechanisms,

i.e. aberrant updating of the predictive coding model, as already discussed above. The idea that

one aberrant neural mechanism might cause very different symptoms in different diseases is

thus already indicated in the case of predictive coding mechanisms. A promising candidate for

such a reflection of an aberrant neural mechanism might be the altered Microstate Uncertainty

Effects as found in chapter 3, which indicate sub-groups within the patients’ sample. Increasing

the sample size and a replication of these findings in an independent study will reveal whether

this pattern of results stabilises.

Importantly, the ERP Temporal Context Paradigm in combination with the emotional smiley

stimuli, as introduced in the current dissertation, yield a very interesting experimental setup

that resembles uncertainty in social interactions. This can be used to study predictive coding

mechanisms that might form groups beyond currently existing disease classifications. Further,

studying the exceptionally large ERP Uncertainty/Temporal Context Effects with respect to

predictive processes might help unravel fundamental processing steps and mechanisms during

the process of solving the perceptual inference problem.
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A. Zusammenfassung

Die Wahrnehmung der uns umgebenden Welt erscheint stabil und verlässlich. Der Zugang über

unsere Sinne ist jedoch limitiert und unser Gehirn muss die exogene Information mit Hilfe

von erinnerten Konzepten und gelernten Regelmässigkeiten rekonstruieren (von Helmholtz,

1867). Durch diesen Rekonstruktionsprozess gibt es immer verschiedene Möglichkeiten

wie die aktuelle sensorische Information interpretiert werden kann. Dies wird als das

Wahrnehmungsinferenzproblem (perceptual inference problem) bezeichnet und es wird

offensichtlich in der Verarbeitung von mehrdeutigen Figuren, z.B. des Necker-Würfels (Necker,

1832, s. auch Figure 1.1). Bei diesen Figuren kann eine sensorische Information auf zwei oder

mehr Arten interpretiert werden, wobei die Wahrnehmung spontan zwischen diesen wechselt.

In diesem Kontext sind die Befunde von Kornmeier et al. interessant (Kornmeier and Bach, 2009;

Kornmeier et al., 2016). Die Autoren präsentierten mehrdeutige Necker-Würfel (zwei mögliche

Interpretationen) in einer experimentellen Bedingung und eindeutige gemachte Reizvarianten

davon (eine mögliche Interpretation) in einer anderen experimentellen Bedingung. Der Kontrast

der beiden Bedingungen zeigt zwei ereigniskorrelierte Potentiale (EKPs) 200 ms und 400 ms

nach Reizbeginn auf, welche große Amplituden bei eindeutigen und kleine Amplituden bei

mehrdeutigen Reizen haben. Diese Effekte werden deshalb als die EKP Ambiguitäts Effekte

bezeichnet. Die Effekte wurden für unterschiedliche Manifestationen von Mehrdeutigkeit in

den Reizkategorien Geometrie (Necker-Würfel), Bewegung (SAM/Bewegungsquartett) und

Gestaltwahrnehmung (Borings Alte/Junge Frau) gefunden und sind auf Einzelpersonenniveau

sichtbar (s. auch Figure 1.1 Kornmeier and Bach, 2009; Kornmeier et al., 2016). Die Generalität

in Verbindung mit dem späten Auftreten der Effekte (200 ms und 400 ms nach Reizbeginn)

lassen vermuten, dass die Effekte eher spätere, kognitive Prozesse abbilden statt frühe Prozesse,

welche an die sensorischen Reizeigenschaften gebunden sind. Laut der aktuellen Interpretation

(Kornmeier et al., 2016) spiegeln die Effekte eine Evaluation der Wahrnehmungsverlässlichkeit

wider, welche niedriger ist im Falle von zwei möglichen verglichen mit einer möglichen

Interpretation.

Falls diese Hypothese zutrifft, sollten die Effekte auch durch Reize hervorgerufen werden,

welche eine andere Quelle für unterschiedliche Wahrnehmungsverlässlichkeiten haben

als Mehrdeutigkeit. Im ersten Teil meiner Doktorarbeit (chapter 2) habe ich deshalb

Reize mit unterschiedlichen Sichtbarkeitsstufen präsentiert. Ich habe Smiley-Gesichter mit

entweder klar sichtbarem traurigem oder fröhlichem oder schlecht sichtbarem traurig oder

fröhlichem Gesichtsausdruck gezeigt, sowie eindeutigen und mehrdeutigen Necker-Würfeln

als Kontrollbedingung. Die Ergebnisse zeigen, dass sowohl die Necker-Würfel als auch die

Smiley-Gesichter die gleichen EKP Effekte hervorrufen und liefern somit mehr Evidenz dafür,
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dass die Effekte eine reizunabhängige Verlässlichkeitsabschätzung des perzeptuellen Konstrukts

darstellt. Diese Verlässlichkeitsabschätzung wiederum könnte in einer (Un)Sicherheit der

Wahrnehmungsinterpretation resultieren. Die Effekte werden deshalb im Folgenden als EKP

Unsicherheitseffekte bezeichnet.

Patienten mit einer Schizophrenie-Spektrums-Störung (SSD) zeigen fundamentale Unterschiede

in der Wahrnehmungsprozessierung (Silverstein et al., 2015) und in der Integration von

sensorischen Informationen mit endogenen Informationen (Notredame et al., 2014; van Assche

and Giersch, 2011) verglichen mit Kontrollpersonen. Des Weiteren wurde gezeigt, dass

die Patienten Probleme mit der Verarbeitung von mehrdeutigen Reizen im Allgemeinen

(Notredame et al., 2014; King et al., 2017; McBain et al., 2011) und im Speziellen mit

mehrdeutigen emotionalen Gesichtsausdrücken haben (Dlabac-de Lange et al., 2018; Turetsky

et al., 2007; Kohler et al., 2003, 2000). Die EKP-Unsicherheitseffekte, wie im ersten Teil dieser

Doktorarbeit beschrieben, sollten deshalb in Patienten mit SSD verändert sein und könnten

aufgrund ihrer großen Effektstärke und Sichtbarkeit in den Einzelpersonen ein bereits seit langem

gesuchtes physiologisches Korrelat der Erkrankung darstellen. Die entsprechende Untersuchung

im zweiten Teil meiner Doktorarbeit (chapter 3) konnte leider noch nicht abgeschlossen werden,

weshalb die Ergebnisse sowie die Diskussion vorläufig sind. Die EKP-Unsicherheitseffekte

wurden bei den Smiley-Gesichtern repliziert. Diese Effekte waren tendenziell kleiner bei

den Patienten verglichen mit den Kontrollen, jedoch erreichte der Unterschied zwischen den

beiden Gruppen keine statistische Signifikanz. Explorative Analysen von Verhaltens- sowie

elektrophysiologischen Daten zeigen allerdings signifikante Unterschiede zwischen den Gruppen.

Laut der aktuellen Interpretation könnten diese Befunde im Zusammenhang mit abweichenden

predictive coding-Prozessen bei Patienten mit SSD stehen. Das Konzept von predictive

coding geht davon aus, dass das Gehirn ein Modell über die exogene Welt erstellt, welches

mit jedem neuen sensorischen Reiz auf allen Hierachieebenen der Wahrnehmungsverarbeitung

aktualisiert wird (Friston, 2012; Kok and de Lange, 2015). Der Aktualisierungsprozess

des Predictive-Coding-Modells scheint in Patienten mit SSD verändert zu sein (Notredame

et al., 2014; Fletcher and Frith, 2009; Shergill et al., 2005). Es wird spekuliert, dass diese

Veränderung im Zusammenhang mit der Evaluation der Wahrnehmungsqualität und somit

auch mit veränderten ERP Uncertainty Effects steht.

Das bisher benutzte EKP-Unsicherheits-Paradigma erlaubt die Untersuchung einer aktuellen

sensorischen Information, wohingegen der Einfluss von vorangegangenen und erwarteten Reizen

auf die Verarbeitung einer aktuellen sensorischen Information nicht systematisch untersucht

werden können. Dieser Einfluss ist jedoch essentiell für Wahrnehmungsprozesse, wie bereits

von von Helmholtz (1867) hervorgehoben. Im dritten Teil meiner Doktorarbeit (chapter 4)

wurde das Paradigma dahingehend verändert, dass der Einfluss des Grades der Mehrdeutigkeit

eines vorangegangenen und eines erwarteten Reizes auf die Verarbeitung eines aktuellen Reizes

untersucht werden konnte. Es zeigte sich, dass diese zeitlichen Aspekte einen starken Einfluss

auf Verhaltens- und elektrophysiologische Daten während der Verarbeitung eines aktuellen

Reizes haben. Dies ist der Fall obwohl diese zeitlichen Aspekte irrelevant für die Lösung der

aktuellen Aufgabe sind. Dies impliziert, dass das Gehirn zu jedem Zeitpunkt die Informationen

aus vergangenen und erwarteten Reizinformationen in die Verarbeitung eines jetzigen Reizes
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mit einbezieht.

Diese Befunde sollten in die Untersuchung von physiologischen Korrelaten psychiatrischer

Erkrankungen mit einbezogen werden. Im Speziellen sollten die veränderten prädiktiven

Prozesse in Patienten mit SSD mit Hilfe des experimentellen Paradigmas aus chapter 4

untersucht werden. Des Weiteren sollten, wie in chapter 2 und chapter 3 gezeigt,

Smiley-Gesichter mit unterschiedlicher Erkennbarkeit emotionaler Ausdrücke als

Stimulationsreize verwendet werden. Dieser Ansatz erlaubt in zukünftigen Untersuchungen

die Messung und Quantifizierung von prädiktiven Prozessen in Patienten mit psychiatrischen

Erkrankungen und in neurotypischen Personen in einer sehr alltagsnahen Situation von

Unsicherheit in sozialen Interaktionen.
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B. Résumé

Introduction

Les informations dont disposent nos sens sont limitées, bruitées et plus ou moins ambiguës.

La perception humaine, cependant, est stable et fiable. Pour fournir une représentation stable

et fiable du monde extérieur, le système perceptif complète l’information exogène incomplète

(bottom-up sensoriell) par une information endogène (top-down, par exemple des concepts

mémorisés Kersten and Yuille, 2003). La qualité de l’information exogène et la précision de

l’information endogène déterminent la contribution des deux types d’information au résultat

perceptuel. En outre, le processus d’intégration en lui-même entrâıne le problème de l’inférence

perceptuelle, c’est-à-dire qu’une information sensorielle permet des interprétations multiples.

Des figures ambiguës, comme le fameux cube de Necker (Necker, 1832, voir Figure B.1)

sont paradigmatiques pour étudier l’intégration des informations exogènes top-down avec

les informations endogènes bottom-up. Dans ces figures, une seule information sensorielle

permet deux ou plusieurs interprétations possibles. Lors d’une inspection prolongée d’une

figure ambiguë, la perception devient instable et alterne de manière répétée entre différentes

interprétations. Les figures ambiguës permettent donc de démêler le traitement lié à l’entrée

sensorielle constante du traitement lié à l’interprétation perceptive alternée.

Dans ce contexte, il est intéressant de noter deux études de Kornmeier et al. (Kornmeier

and Bach, 2009; Kornmeier et al., 2016) dans lesquelles le traitement de stimuli ambigus (une

entrée sensorielle évoque deux interprétations perceptuelles) a été comparé au traitement de

variantes de stimuli désambigüısées (une entrée sensorielle n’évoque qu’une seule interprétation

perceptuelle). Ils ont mesuré des potentiels évoqué (PE, données électroencéphalographie

(EEG) moyennées) et ont trouvé de grandes amplitudes en réponse à des variantes de stimuli

désambigüısées et de petites amplitudes en réponse à des variantes de stimuli ambigus. Deux

composantes PE, 200 ms et 400 ms après le début du stimulus, ont été identifiées (effets

d’ambigüıté de PE Kornmeier and Bach, 2009; Kornmeier et al., 2016, voir Figure B.2). Ces

effets sont remarquablement forts (Cohen’s d = 0,8-2,1) et ont été trouvés dans des catégories

visuelles très différentes (géométrie, mouvement, perception de la Gestalt).

La généralité de ces effets PE ainsi que les occurrences tardives (en termes de temps de

traitement visuel) des PE correspondantes indiquent des étapes de traitement au-delà des
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a) b) c) 

Figure B.1: (a) variante désambigüısé du cube de Necker orienté à gauche/en haut. (b) cube
de Necker ambigu (Necker, 1832) - lors d’une observation prolongée, la perception alterne
spontanément entre les deux interprétations possibles comme on le voit en (a) et (c). (c) variante
désambigüısé du cube de Necker orienté vers la droite/vers le bas. Des variantes de stimulus
désambigüısées avec des indices de profondeur ont été créées dans le laboratoire du Dr Kornmeier.

étapes de traitement visuel de bas niveau. Selon l’interprétation actuelle, les résultats perceptifs

(pondération des informations exogènes et endogènes) sont générés automatiquement et la

fiabilité du résultat perceptif est évaluée par une instance d’évaluation méta-perceptive. Les

effets ERP peuvent refléter cette évaluation avec de grandes amplitudes dans le cas d’une

grande fiabilité du résultat perceptuel (stimuli désambigüısés) et avec de petites amplitudes

dans le cas d’une faible fiabilité du résultat perceptuel (stimuli ambigus).

Projet 1: Généralisation des effets d’ambigüıté de PE

Jusqu’à présent, les effets d’ambigüıté de PE ont été constatés pour des exemples très différents

de figures ambiguës classiques (voir Figure B.2). La fiabilité des résultats perceptifs peut

également varier pour les objets visuels autres que les figures ambiguës classiques, par exemple

lorsque l’information transmise à nos sens est de mauvaise qualité, comme dans le cas de la pluie

et du brouillard. Dans ce cas, la faible fiabilité des résultats perceptifs s’explique par la mauvaise

visibilité. Une situation pertinente dans laquelle une mauvaise visibilité pourrait entrâıner

une interaction sociale altérée est celle où les expressions émotionnelles sont interprétées. Si

l’interprétation susmentionnée selon laquelle les effets de PE reflètent une estimation de la

fiabilité du résultat perceptuel, alors la source de cette (non) fiabilité ne devrait pas importer.

Dans la première partie de cette thèse, je cherche donc à savoir si les effets d’amplitude de PE,

appelés effets d’ambigüıté de PE par Kornmeier et al. (Kornmeier and Bach, 2009; Kornmeier

et al., 2016) peuvent également être évoqués par la haute et la basse visibilité des expressions

faciales émotionnelles.

Projet 2 : Effets de l’incertitude PE chez les patients atteints de troubles du spectre de la
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Figure B.2: Résultats précédents des effets d’ambigüıté de PE de Kornmeier et al.(Kornmeier
and Bach, 2009; Kornmeier et al., 2016). (a) Trois figures ambiguës classiques différentes,
la grille de Necker (géométrie Necker, 1832), le mouvement alternatif stroboscopique/SAM
(mouvement, https://michaelbach.de/ot/mot-sam/ Schiller, 1933), et la vieille/jeune femme
(Gestalt Boring, 1930) ont été présentées (cadres de figures rouges), ainsi que les variantes de
stimulus désambigüısées respectives (cadres de figures noires). (b) Les grands moyens PE entre
les participants à l’électrode Cz. Les effets d’ambigüıté PE consistent en des amplitudes P200 et
P400 plus importantes avec des variantes de stimulus désambigüısés (traces et cadres de figures
noirs) par rapport aux figures ambiguës (traces et cadres de figures rouges ; Cohen’s d entre 0,8 et
2,1). (c) Cartes de tension (scalp schématique avec distribution interpolée et codée par couleurs
des tensions entre les électrodes EEG à un moment donné) aux heures de pointe P200 et P400
(stimuli désambigüısés). Les résultats sont très similaires pour les stimuli géométriques (grille
de Necker), le mouvement (SAM) et la perception de la Gestalt (Borings Vieille/Jeunesse).
(d) Dans les diagrammes de dispersion, les données individuelles sont présentées. Un cercle
représente le P200 et une étoile les amplitudes ERP du P400 pour un participant. Presque
tous les points de données se trouvent au-dessus de la diagonale, ce qui indique que les effets
d’ambigüıté de PE sont clairement visibles dans les données individuelles. Ces graphiques ont
été créées dans le laboratoire du Dr Kornmeiers.

schizophrénie :

Les troubles du spectre de la schizophrénie (SSD) sont un ensemble de troubles du développement

neurologique dont la prévalence dans la population est d’environ 1 % (Jardri and Deneve, 2013).
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Ces troubles ont de graves conséquences sur la vie sociale des patients et de leurs familles, ainsi

qu’un fardeau socio-économique considérable. Les diagnostics sont basés sur des paramètres

comportementaux (DSM-V), alors qu’il n’existe pas encore de marqueurs physiologiques fiables.

Les effets d’ambigüıté de PE pourraient représenter une solution efficace au problème de

l’inférence perceptuelle, car une interprétation perceptuelle hautement probable qui entrâıne

une grande fiabilité de la construction perceptuelle (stimuli désambigüısés) évoque des

amplitudes PE plus importantes que deux interprétations perceptuelles également probables

qui entrâınent une faible fiabilité (stimuli ambigus). Il a été proposé que les patients atteints

de SSD présentent des déficits fondamentaux dans le processus de perception (Silverstein et al.,

2015). En outre, les patients atteints de SSD révèlent des déficiences dans l’intégration des

informations sensorielles avec les concepts mémorisés (Notredame et al., 2014) et les contextes

spatiaux et temporels (van Assche and Giersch, 2011). L’étude de la résolution de l’ambigüıté

chez les patients atteints de SSD a été proposée afin de fournir un outil prometteur pour étudier

les fondements de ce trouble (Jardri and Deneve, 2013; Notredame et al., 2014; Bortolon et al.,

2016; Fujino et al., 2016). Il a déjà été constaté que les patients atteints de SSD présentent

un traitement différent des chiffres ambigus par rapport aux contrôles (Notredame et al.,

2014; King et al., 2017; McBain et al., 2011). En particulier, les patients atteints de SSD

présentent des déficiences dans la désambigüısation des stimuli au contenu émotionnellement

ambigu (Dlabac-de Lange et al., 2018) et dans l’estimation des états émotionnels à partir des

expressions faciales (Turetsky et al., 2007; Kohler et al., 2003, 2000). J’ai donc adopté le

paradigme du projet 1 et introduit la (non) fiabilité de la construction perceptive par la faible

et la forte visibilité des expressions émotionnelles dans les visages souriants. J’ai mesuré les

réponses neurales correspondantes chez des patients atteints de SSD et chez des participants

contrôles appariés. La deuxième question de recherche de ce projet de doctorat est la suivante :

Les patients atteints de SSD traitent-ils la (non) fiabilité différemment des contrôles ? Si oui,

alors on devrait trouver un schéma modifié des effets d’ambigüıté de PE.

Projet 3 : Effets du contexte temporel sur le traitement perceptuel:

Nous ne savons pas si les facteurs endogènes contribuant aux effets d’ambigüıté de PE sont

uniquement constitués par la mémoire à long terme, comme les régularités générales apprises sur

le monde dans lequel nous vivons, ou s’ils incluent également l’histoire perceptive immédiate. Si,

par exemple, le stimulus vu précédemment était très fiable, le stimulus actuel l’est-il également ?

Cela pourrait bien être possible, car dans des circonstances normales, notre environnement ne

change pas de façon spectaculaire d’un moment à l’autre. Le concept sous-jacent selon lequel

l’intégration des expériences antérieures est cruciale pour résoudre le problème de l’inférence

perceptuelle a déjà été mis en évidence par von Helmholtz (1867). Les approches actuelles

de la probabilité bayésienne (Kersten and Yuille, 2003) et du codage prédictif (Friston, 2012;

Kok and de Lange, 2015) formalisent cette notion. Selon la théorie du codage prédictif, le

cerveau crée un modèle sur le monde extérieur. À chaque nouvelle entrée sensorielle, l’erreur

de prédiction entre le modèle et l’entrée est calculée et le modèle est mis à jour en conséquence

(p. ex. Friston, 2012). Dans les études typiques, les stimuli fréquemment présentés sont
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rarement perturbés par des stimuli déviants. L’hypothèse est que les stimuli fréquemment

présentés optimisent le modèle de telle sorte que les informations sensorielles à venir soient

prédites de manière fiable. Les stimuli déviants, en revanche, devraient provoquer de grandes

erreurs de prédiction, que les auteurs mesurent ensuite à la fois sur le plan comportemental et

électrophysiologique (Näätänen et al., 2007; Stefanics et al., 2014). Les stimuli utilisés dans ces

études étaient généralement non ambigus, très visibles et différaient principalement par leur

fréquence d’apparition. Toutefois, dans notre environnement naturel, l’exploitation du passé

perceptif et la prévision de l’avenir peuvent être très importantes dans les situations perceptives

où la qualité de l’apport sensoriel est faible, par exemple lorsque le stimulus est ambigu. Les

stimuli du passé immédiat qui sont ambigus peuvent rendre les prédictions sur l’avenir perceptif

immédiat moins fiables que les stimuli précédents non ambigus. Le paradigme expérimental

introduit dans le projet 1 et le projet 2 ne permet toutefois pas d’étudier l’influence de stimuli

de faible qualité sur les processus de prédiction. Dans la troisième partie de cette thèse, le

paradigme est modifié de telle sorte que ces influences peuvent être systématiquement étudiées.

La troisième question de recherche est donc la suivante : Un stimulus actuellement perçu est-il

perçu et traité différemment si le stimulus précédent et le stimulus prédit sont ambigus par

rapport au stimulus désambigüısé ?

Résultats :

Projet 1 : Généralisation des effets d’ambigüıté de PE

Les effets d’ambigüıté de PE précédemment rapportés (P200, P400 Kornmeier and Bach,

2009; Kornmeier et al., 2016) ont révélé de grandes différences d’EEG en réponse aux figures

ambigües classiques par rapport aux variantes désambigüısé. Les différences ont été constatées

en particulier dans deux composantes de l’EEG, 200 ms et 400 ms après le début du stimulus,

avec de grandes amplitudes en réponse à des figures désambigüısées et de petites amplitudes en

réponse à des stimuli ambigus. Les effets PE ont été trouvés pour l’ambigüıté dans la géométrie,

le mouvement et la perception de la Gestalt. En raison de l’apparition tardive - dans les échelles

de temps de traitement perceptif - des composantes de PE à 200 ms et 400 ms après l’apparition

du stimulus et de leur généralité à travers les types de stimulus, les effets sont interprétés comme

le reflet de processus cognitifs de haut niveau, qui ne sont pas directement liés à l’information

réelle sur le stimulus. Il a déjà été proposé par Kornmeier et al. que les effets d’ambigüıté de

PE pourraient refléter des évaluations de haut niveau du résultat perceptuel avec de grandes

amplitudes lorsque le résultat perceptuel est fiable (stimuli non ambigus) et avec de petites

amplitudes lorsque le résultat perceptuel n’est pas fiable (stimuli ambigus). Si les effets reflètent

réellement l’estimation de la fiabilité cérébrale du résultat perceptuel, alors la source de la (non)

fiabilité ne devraient pas importer. En particulier, les effets d’ambigüıté PE précédemment

constatés devraient être reproduits avec des stimuli à faible et à forte visibilité.

La vérification de cette hypothèse était l’un des objectifs de la présente étude. À cette fin,

une autre source d’incertitude perceptuelle, à savoir la mauvaise visibilité, a été testée dans

le cadre du paradigme d’ambigüıté de PE. Des stimuli très visibles ont été mis en contraste
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avec des stimuli moins visibles et on a cherché à savoir si les mêmes effets PE étaient présents

dans ce cas par rapport à la (non) fiabilité évoquée par les grilles de Necker non ambiguës et

ambiguës. L’identification des expressions émotionnelles dans les repères faciaux d’une autre

personne représente une situation importante dans laquelle la visibilité est pertinente pour les

interactions sociales. Les expressions émotionnelles des visages humains sont cependant d’une

grande complexité et il peut être très difficile d’estimer toutes les sources de problèmes possibles

pour détecter l’émotion correcte. Afin de quantifier facilement les aspects de la visibilité, j’ai

réduit la complexité des stimuli au minimum en présentant des smileys. De plus, j’ai réduit

la complexité de l’expression émotionnelle en ne présentant que des smileys heureux ou tristes.

Les expressions émotionnelles ont été manipulées en ne faisant varier qu’un seul paramètre, à

savoir la courbure de la bouche. La courbure de la bouche aurait pu être (1) très visible avec

une expression clairement heureuse (bouche fortement penchée vers le haut) ou clairement triste

(bouche fortement penchée vers le bas) afin d’induire une certitude perceptive. La courbure de

la bouche aurait également pu être (2) moins visible avec des expressions peu claires de bonheur

(bouche légèrement penchée vers le haut) ou de tristesse (bouche légèrement penchée vers le

bas) afin d’induire des constructions perceptuelles peu fiables.

En plus des stimuli du smiley, des grilles de Necker ambiguës et désambigüısés ont été présentées

pour reproduire les résultats précédents (Kornmeier and Bach, 2009; Kornmeier et al., 2016).

En outre, des stimuli abstraits ayant les mêmes caractéristiques de bas niveau que les stimuli

smiley ont été présentés, mais ils ont été disposés différemment de sorte que pratiquement aucun

visage ne pouvait être reconnu. Ces stimuli abstraits à faible visibilité et à haute visibilité

ont été présentés pour deux raisons : (1) pour étudier un composant PE spécifique au visage

(N170), dont on a supposé qu’il était présent dans les smiley mais absent dans les stimuli

abstraits. Des amplitudes N170 plus importantes pour les smileys par rapport aux figures

abstraites indiqueraient un traitement des smileys spécifique au visage. (2) Chercher à savoir si

les mêmes effets PE n’ont été évoqués que par une différence de courbure des courbes présentes

dans les stimuli abstraits.

Il a été constaté que les effets PE (P200 et P400) étaient évoqués de manière similaire par la grille

de Necker, les smileys et également par des stimuli abstraits (voir Figure B.3). Étant donné la

présence d’une composante PE sélective du visage en réponse aux smileys, mais pas aux stimuli

abstraits, on a supposé que les smileys étaient effectivement traités comme des visages. En outre,

les temps de réaction médians n’ont montré aucun effet de preuve sensorielle (ambiguë/basse

visibilité vs. désambigüısé/haute visibilité) ni de type de stimulus (grilles de Necker vs. smileys

vs. figures abstraites).

L’article �Large EEG amplitude effects are highly similar across Necker cube, smiley, and

abstract stimuli �(Joos et al., 2020b) indique que les effets de PE sont les mêmes entre des

catégories de stimulus très différentes, comme les figures classiques ambiguës et la visibilité des

expressions faciales émotionnelles. Cette généralité des effets PE indique une évaluation de haut

niveau du résultat perceptif, qui est indépendant des détails sensoriels. La modulation similaire

de deux composantes PE distantes de 200 ms l’une de l’autre suggère que non seulement un

événement dans le temps, mais plutôt un état cérébral de (in)certitude plus durable se produit à

cause d’informations sensorielles de faible qualité (ambigüıté et faible visibilité). Par conséquent,
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le terme effets d’incertitude de PE pourrait être plus approprié que effets d’ambigüıté de PE et

sera utilisé dans ce qui suit.
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Figure B.3: Effets PE pour les grilles de Necker (a1-a5) et les smileys (b1-b5). Les graphiques
(a1) et (b1) représentent les traces PE moyennes pour les stimuli désambigüısées/à haute
visibilité (lignes continues, couleurs sombres) et ambigus/faibles (lignes pointillées, couleurs
claires). Les graphiques (a2, a4) et (b2, b4) montrent les cartes de tension moyenne générale
des P200 (a2, b2) et des P400 (a4, b4) des stimuli respectifs. Les graphiques (a3, a5) et
(b3, b5) montrent des diagrammes de dispersion pour les P200 (a3, b3) et les P400 (a5,
b5) avec les amplitudes des participants individuels pour les stimuli désambigüısées/à haute
visibilité (ordonnée) par rapport aux stimuli ambigus/faible visibilité (abscisse). Dans tous les
diagrammes de dispersion, la grande majorité des points de données se trouvent au-dessus de
la bissectrice, ce qui indique des amplitudes plus importantes pour les variantes de stimulus
désambigüısées/à haute visibilité par rapport aux variantes de stimulus ambigus/faibles. Ce
chiffre est tiré de (Joos et al., 2020b).

Projet 2 : Effets de l’incertitude PE chez les patients atteints de troubles du

spectre de la schizophrénie

Le trouble du spectre de la schizophrénie (SSD) représente un ensemble complexe de troubles

neurodéveloppementaux ayant de graves implications à la vie des patients et de leurs familles.

Les diagnostics sont basés sur des paramètres comportementaux (American Psychiatric
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Association, 2013), alors que des marqueurs physiologiques fiables n’existent pas encore.

Les patients atteints de SSD présentent une altération du traitement perceptuel (Silverstein

et al., 2015) et des déficiences dans l’intégration des informations �bottom-up �avec les

informations �top-down �(Notredame et al., 2014; van Assche and Giersch, 2011). Cela

pourrait entrâıner un traitement différent du problème de l’inférence perceptuelle chez les

patients atteints de SSD par rapport aux contrôles. Les effets d’incertitude de PE (Kornmeier

and Bach, 2009; Kornmeier et al., 2016; Joos et al., 2020b) sont proposés pour refléter une

estimation de la fiabilité du résultat perceptuel, qui se fonde sur la résolution du problème

d’inférence perceptuelle. Les effets d’incertitude de PE sont donc supposés être modifiés chez

les patients atteints de SSD. En outre, les patients atteints de SSD présentent des déficits dans

le traitement des émotions (Dlabac-de Lange et al., 2018; Turetsky et al., 2007; Kohler et al.,

2003). Par conséquent, le paradigme et les stimuli émotionnels de l’project 1 (Joos et al.,

2020b) ont été appliqués aux patients atteints de SSD dans le cadre du présent projet. Les

effets de PE ont des tailles d’effet importantes et sont visibles chez les participants individuels,

ce qui en fait des candidats prometteurs pour différencier de manière fiable les patients atteints

de SSD des contrôles. En raison de la situation sanitaire liée au Coronavirus, je n’ai pas pu

terminer la collecte de données pendant la durée de mon doctorat. Pour l’analyse EEG, j’ai pu

inclure 11 patients et 12 contrôles dans l’analyse. La collecte des données se poursuit jusqu’à ce

que la taille de l’échantillon atteigne N = 20 par groupe. Cette étude n’étant pas suffisamment

puissante statistiquement à ce stade-ci, les résultats actuels pourraient différer après d’avoir

inclus d’autres ensembles de données et les interprétations fondées sur l’ensemble actuel de

données doivent être faites avec prudence. La capacité à identifier les expressions émotionnelles

peu visibles devait révéler une grande variabilité interindividuelle et a donc été déterminée

séparément pour chaque participant. Pour ce faire, une série de smileys avec différents niveaux

de visibilité a été présentée dans une expérience comportementale 1 et pour chaque individu,

les stimuli qui évoquaient la plus grande incertitude perceptive ont été déterminés. Les stimuli

sélectionnés n’ont pas systématiquement différé entre les groupes. Les contrôles ont révélé des

temps de réaction plus longs en réponse aux stimuli moins visibles et des temps de réaction

plus courts aux stimuli plus clairement visibles. Les patients, en revanche, ont révélé (1) des

temps de réaction généralement longs indépendamment de la visibilité des stimuli et (2) des

temps de réaction très similaires à ceux des contrôles en réponse aux stimuli moins visibles

(voir Figure B.4).

Dans une expérience électrophysiologique 2, les stimuli à faible visibilité déterminés pour chaque

individu dans l’expérience 1 ont été présentés dans une condition expérimentale. Dans une

autre condition expérimentale, des smileys à haute visibilité ont été présentés. Les résultats

contrastés des deux conditions ont révélé que les effets d’incertitude de PE étaient reproduits

(voir Joos et al., 2020b) avec de grandes amplitudes de PE dans le cas d’une haute visibilité

des expressions émotionnelles dans les smileys et de petites amplitudes de PE dans le cas d’une

faible visibilité. Il y avait une tendance observable à des effets d’incertitude de PE plus faibles

chez les patients atteints de SSD par rapport aux contrôles, mais cette différence n’était pas

statistiquement significative. Dans une analyse exploratoire de l’expérience 2, les différences de
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Figure B.4: Expérience comportementale du projet 2 : (a) Représente les 10 variantes de stimulus
du smiley (S1-S10). L’expression émotionnelle des stimuli du smiley n’est créée qu’à travers les
différents rayons de courbure de la bouche et était soit heureuse (S1-S5) soit triste (S6-S10). Les
stimuli étaient présentés dans un ordre aléatoire et les participants devaient indiquer l’expression
émotionnelle perçue (heureuse ou triste) en appuyant sur une touche respective en réponse à
chaque stimulus. (b) présente les données sur le temps de réaction médian au niveau du groupe en
réponse aux différentes variantes de stimulus, les données des patients étant présentées à gauche
(rouge) et celles des contrôles à droite (bleu). Les participants du groupe control présentent
clairement des temps de réaction plus longs en réponse aux variantes de stimulus S6 et S5,
c’est-à-dire aux stimuli les plus neutres, tandis que les patients présentent des réponses plus
longues et également plus similaires à toutes les variantes de stimulus. Compte tenu de la
corrélation positive précédemment constatée entre la durée du temps de réaction et les cotes
de certitude (Henmon, 1911), on peut supposer que les patients atteints de SSD perçoivent
généralement plus de (in)certitude perceptive que les contrôles.

traitement perceptif en réponse à la (in)certitude perceptive entre les patients et les contrôles ont

été étudiées au moyen de différences topographiques. À cette fin, une analyse des micro-états

basée sur les données a été réalisée. Il a été constaté que les effets de l’incertitude des micro-états

différaient entre les patients atteints de SSD et les contrôles appariés. Il est intéressant de noter

le fait que les micro-états qui différaient entre les groupes n’étaient présents que dans une partie

des groupes, ce qui suggère l’existence de sous-groupes au sein du groupe de patients et du

groupe control. En outre, le premier moment après l’apparition du stimulus o le traitement

de la (in)certitude perceptive différait entre les patients atteints de SSD et les contrôles a été
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constaté dès 115 ms après l’apparition du stimulus au niveau des électrodes occipitales.

L’étude fondamental du manuscrit non publié �Uncertainty Effects in the Schizophrenia

Spectrum Disorder - an EEG study �chapter 3 indique que le traitement de la (in)certitude

est modifié chez les patients atteints de SSD par rapport aux contrôles. Les fondements des

sous-groupes, comme l’indiquent les effets d’incertitude des micro-états, ne sont actuellement

pas clairs et ne peuvent être consultés qu’avec des ensembles de données plus nombreux. En

outre, il sera intéressant de démêler les sources anatomiques des différents micro-états dans

les études futures (en incluant de façon optimale les scans IRM anatomiques pour diminuer

le problème de l’inverse dans l’analyse des sources EEG) et ainsi en apprendre davantage sur

le rôle fonctionnel de ces micro-états. La constatation que les patients révèlent des temps de

réaction similaires pour une gamme de stimuli différents dans l’expérience 1 suggère un niveau

d’incertitude généralement plus élevé chez les patients que chez les contrôles. En outre, le trouble

du spectre de la schizophrénie est généralement considéré comme une maladie cognitive de haut

niveau. En revanche, la différence d’EEG très précoce entre les groupes indique également des

altérations de faible niveau chez les patients atteints de SSD par rapport aux contrôles. En

fin de compte, des études antérieures ont montré que les patients atteints de SSD révèlent des

mécanismes de codage prédictif altérés (Notredame et al., 2014). L’altération des mécanismes

prédictifs pourrait entrâıner une altération des attributions de fiabilité des résultats perceptifs

et donc une altération des réponses comportementales et neuronales à la (in)certitude, comme

le montre l’étude actuelle sur les patients atteints de SSD.

Projet 3 : Effets du contexte temporel sur le traitement

perceptuel

Le problème d’inférence perceptuelle est résolu à l’aide d’informations provenant de l’histoire

perceptuelle immédiate, des expériences vécues au cours de la vie et des prédictions sur les

informations sensorielles à venir qui en découlent. Les études précédentes concernant ces aspects

temporels de la perception se sont soit principalement concentrées sur l’influence des expériences

passées sur les processus perceptifs du présent, soit principalement sur l’influence des prédictions

concernant les stimuli futurs sur les processus perceptifs actuels. La présente étude établit un

pont entre ces différentes lignes de recherche en reconnaissant l’interaction entre les expériences

et les prédictions antérieures et son influence combinée sur la perception du présent. Dans ce

qui suit, cette interaction sera appelée contexte temporel.

Les stimuli utilisés dans les études précédentes sur les aspects de l’intégration du contexte

temporel étaient généralement sans ambigüıté, très visibles et différaient principalement par leur

fréquence d’apparition. La résolution du problème de l’inférence perceptuelle peut cependant

être plus difficile lorsque le stimulus est de faible qualité, par exemple lorsqu’il est ambigu. En

outre, des stimuli ambigus dans le passé immédiat peuvent donner lieu à des prédictions moins

fiables sur l’avenir perceptif immédiat que des stimuli non ambigus antérieurs. Dans la présente

étude, des variantes de grilles ambiguës et non ambiguës ont été présentées (comme Kornmeier

and Bach, 2009; Kornmeier et al., 2016), l’ambigüıté étant la variable indépendante de stimulus

pour étudier les effets du contexte temporel pendant la perception. Le paradigme d’incertitude
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PE (Kornmeier and Bach, 2009; Kornmeier et al., 2016; Joos et al., 2020b), cependant, n’était pas

adapté aux analyses systématiques des effets du contexte temporel, car le niveau d’ambigüıté

était maintenu constant dans les conditions (conception en bloc). Le paradigme a donc été

modifié de telle sorte que les stimuli étaient présentés par paires, o le stimulus S1 était suivi du

stimulus S2. Quatre conditions expérimentales différentes ont été créées avec un plan par paires

(2x2) avec des niveaux d’ambigüıté différents de S1 et S2 (ambiguë contre non ambiguë). Cela

a permis d’étudier les réponses neuronales provoquées par les mêmes stimuli S1 sur différents

niveaux d’ambigüıté dans son contexte temporel, c’est-à-dire précédant S2 de la paire précédente

et prédisant S2 de la paire actuelle.

On suppose que le contexte temporel est automatiquement intégré dans le traitement du présent

sensoriel et dans l’exécution d’une tche présente. Dans la première expérience de cette étude,

les temps de réaction et les effets d’ambigüıté PE (P200 et P400) ont été comparés entre deux

conditions : la condition 1 avait un contexte temporel constitué de stimuli non ambigus et la

condition 2 avait un contexte temporel constitué de stimuli ambigus. Les amplitudes de PE

étaient plus importantes avec un contexte temporel non ambigu qu’avec un contexte temporel

ambigu, c’est-à-dire les effets du contexte temporel de PE (voir Figure B.5). Les temps de

réaction ont également été affectés par les stimuli du contexte temporel. En détail, les temps de

réaction étaient courts lorsque le niveau d’ambigüıté était le même dans S1 et S2 alors que les

temps de réaction étaient longs lorsque le niveau d’ambigüıté était différent dans S1 et S2.

Dans la deuxième expérience, on a cherché à savoir si les mêmes résultats que dans l’expérience

1 pouvaient être trouvés lorsque l’information permettant de prédire l’avenir perceptif est

fournie sous forme de symbole abstrait, et non sur la base de l’expérience perceptive directe des

régularités sensorielles dans le passé. À cette fin, les stimuli S2 précédents ont été remplacés par

une représentation symbolique des stimuli à venir présentée au début de chaque bloc. La durée

des blocs a été considérablement réduite, passant de 9 minutes à 9 secondes (trois présentations

par paire) et les répétitions de blocs ont été augmentées. Cela a permis d’analyser séparément

la première, la deuxième et la troisième présentation des stimuli. Les résultats ont montré que

l’exposition aux informations sensorielles est en effet une condition préalable nécessaire pour

les effets du contexte temporel de PE. Ce n’est que dans la troisième présentation du stimulus

qu’un effet significatif a été observé pour une différence d’PE entre les stimuli désambigüısés et

ambigus dans le contexte temporel. Les différences de temps de réaction, en revanche, étaient

déjà présentes dans la deuxième présentation du stimulus, c’est-à-dire après l’exposition à une

expérience sensorielle.

L’article �Using the perceptual past to predict the perceptual future influences the perceived

present - a novel ERP paradigm �(Joos et al., 2020a) indique que les informations sensorielles

précédentes et prédites ont une forte influence sur le traitement du présent et peuvent être

mesurées à la fois sur le plan comportemental et électrophysiologique. Il est important de noter

le fait que c’est le cas même si la tche ne dépendait pas d’informations provenant du contexte

temporel. Cela indique une intégration automatique des informations précédentes et prédites

sur la certitude des résultats perceptifs. Le cerveau estime toujours la fiabilité des informations

sensorielles précédentes ainsi que prédites et les intègre dans l’information actuelle, malgré

leur pertinence réelle. Cependant, l’expérience directe des informations sensorielles réelles est
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Figure B.5: Paradigme simplifié du projet 2. Les stimuli précédents et attendus sont
soit seulement ambigus (contexte temporel ambigu), soit seulement désambigüısés (contexte
temporel désambigüısé). Les stimuli identiques actuellement observés (cadre rouge) sont
comparés en fonction de leur contexte temporel. Notez que la tâche liée au stimulus actuel
ne nécessitait aucune information du contexte temporel et se concentrait uniquement sur le
stimulus actuel. (b) représente les traces PE grandes moyennes correspondantes montrant de
grandes différences PE dans la fenêtre temporelle P200 et P400. Des stimuli actuels identiques et
ambigus révèlent des amplitudes nettement plus importantes en réponse à un contexte temporel
désambigüısé par rapport à un contexte temporel ambigu. c) affiche séparément la distribution
spatiale et les données de crête individuelles pour les composantes P200 (à gauche) et P400 (à
droite).

nécessaire pour former ces prédictions sur l’avenir perceptif, alors qu’une information symbolique

sur l’avenir n’est pas suffisante.

Dans les maladies psychiatriques telles que le trouble du spectre de la schizophrénie, il est

proposé de modifier les processus prédictifs par rapport aux contrôles (Shergill et al., 2005;

Fletcher and Frith, 2009; Notredame et al., 2014; Schmack et al., 2015; Sterzer et al., 2019). Les

résultats actuels pourraient aider à étudier les processus prédictifs aberrants chez les patients
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psychiatriques au moyen des effets du contexte temporel de PE.

Discussion

Dans cette thèse, des différents aspects de la résolution du problème de l’inférence perceptuelle

par le cerveau sont étudiés. Dans l’projet 1 (Joos et al., 2020b), je montre que la représentation

neuronale de la (in)certitude perceptive est la même pour l’ambigüıté et la visibilité. Cela

indique qu’il existe une estimation généralisée de la (in)certitude des résultats perceptifs

à un niveau cognitif au-delà des détails sensoriels. Cela pourrait aboutir à ce que les

amplitudes des composantes de PE constituent les effets d’incertitude de PE. Dans l’projet

2 (chapter 3), je montre que les patients atteints du trouble du spectre de la schizophrénie

(SSD) révèlent des étapes à la fois similaires mais aussi différentes au cours du traitement de

(in)certitude par rapport aux participants du contrôle apparié, tant sur le plan comportemental

qu’électrophysiologique. Cela suggère que la résolution du problème d’inférence perceptive est

partiellement altérée chez les patients atteints de SSD, ce qui est censé reposer sur des processus

prédictifs aberrants. Dans l’projet 3 (Joos et al., 2020a), je modifie le paradigme d’ambigüıté

PE utilisé précédemment (Kornmeier and Bach, 2009; Kornmeier et al., 2016) de manière à

pouvoir étudier les processus prédictifs. Je montre que le cerveau utilise les informations du

contexte temporel, c’est-à-dire les informations du passé perceptif qui évoquent des prédictions

sur le futur perceptif, afin de résoudre le problème d’inférence perceptive d’une information

sensorielle donnée de manière hautement automatique. Cela confirme les théories antérieures

(basées sur von Helmholtz, 1867) utilisant des mesures électrophysiologiques des réponses

neuronales et permet d’étudier les fondements des altérations du traitement perceptif en termes

de mécanismes de codage prédictifs liés à la faible qualité de l’information sensorielle.

Une cause possible des altérations comportementales et électrophysiologiques entre (1) les stimuli

à faible visibilité et à haute visibilité, ainsi qu’entre (2) le patient atteint de SSD et les contrôles,

peut être trouvée à la lumière de la probabilité bayésienne (Kersten and Yuille, 2003) et des

mécanismes de codage prédictif (Friston, 2012; Kok and de Lange, 2015). Selon ces théories, le

cerveau forme un modèle sur le monde extérieur et compare les informations sensorielles réelles

avec le modèle précédemment formé. La différence entre le modèle et les informations sensorielles

est ensuite calculée au moyen d’une erreur de prédiction. La mise à jour du modèle en fonction

des informations sensorielles minimise l’erreur de prédiction. Dans le cas des smileys à haute

visibilité, les différences de faible niveau sont importantes entre les expressions joyeuses et tristes,

c’est-à-dire une forte flexion vers le haut et une forte flexion vers le bas de la courbure de la

bouche. La comparaison d’un smiley joyeux prédit et d’un smiley triste effectivement présenté

devrait donc évoquer de grandes erreurs de prédiction. Dans le cas de stimuli à faible visibilité,

les différences de faible niveau entre les émotions sont faibles et l’erreur de prédiction devrait

donc également être faible. Les amplitudes des effets d’incertitude de PE peuvent refléter cela

avec de grandes amplitudes de PE dans le cas d’une petite erreur de prédiction et de petites

amplitudes de PE dans le cas d’une grande erreur de prédiction.

Pendant le processus de formation du modèle, l’erreur de prévision est minimisée afin de

mettre à jour le modèle le plus efficacement possible. Dans le cas d’une haute visibilité, les
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informations sensorielles peuvent être considérées comme suffisamment fiables pour intégrer

toutes les informations sensorielles dans la formation des prévisions. Dans le cas d’une faible

visibilité, en revanche, les informations sensorielles peuvent être considérées comme peu fiables et

toutes les informations ne sont pas intégrées dans la formation des prévisions. L’idée sous-jacente

a été proposée par Friston (2010), c’est-à-dire que l’erreur de prédiction est pondérée en fonction

de sa précision estimée. Il est important de noter le fait que la formation des prédictions

est perturbée chez les patients atteints de SSD (Notredame et al., 2014; Fletcher and Frith,

2009; Sterzer et al., 2019; Schmack et al., 2015; Shergill et al., 2005). Une des conséquences

pourrait être que les informations sensorielles ne sont jamais considérées totalement fiables chez

les patients. Cela pourrait expliquer les altérations observées chez les patients atteints de SSD

par rapport aux les personnes neurotypiques, telles qu’elles ont été constatées et examinées dans

l’projet 2.

Le paradigme de l’incertitude PE, tel qu’il est utilisé dans l’projet 1 (Joos et al., 2020b) et dans

l’projet 2, ne permet pas une investigation systématique des processus prédictifs dans les effets

de l’incertitude PE. Dans ces études, il n’est possible d’analyser que le traitement neuronal lié à

un stimulus actuellement perçu, tandis que les influences des informations sen sorielles prédites

à venir n’étaient pas mesurables. Par conséquent, le paradigme expérimental est modifié dans

l’projet 3 (Joos et al., 2020a) de manière à pouvoir étudier les influences du passé immédiat et

les prédictions qui en résultent concernant l’avenir perceptif immédiat sur le traitement perceptif

du présent. Il est constaté que le contexte temporel (passé perceptif immédiat mémorisé et futur

perceptif immédiat prédit) modifie le traitement du présent perceptif en fonction de la qualité des

informations sensorielles dans le contexte temporel, c’est-à-dire les effets du contexte temporel

PE. Il est intéressant de constater que cela se produit indépendamment de la pertinence de ces

informations contextuelles temporelles pour une tche présente. L’intégration des informations

du contexte temporel est donc proposée pour agir de manière hautement automatique. La durée

de cette influence n’a pas fait l’objet de cette étude. L’étude systématique de l’influence de la

distance temporelle entre les stimuli d’intérêt sur l’intégration du contexte temporel serait une

prochaine étape très intéressante. Dans les théories de codage prédictif, il n’existe qu’un seul

facteur couvrant les informations perceptuelles précédentes, à savoir le postérieur. Les souvenirs

perceptifs sur différentes échelles de temps pourraient être intégrés avec des pondérations

différentes, par exemple en fonction de leur distance temporelle et/ou de leur importance. En

outre, il est constaté que l’expérience directe des régularités passées est nécessaire pour prédire

l’avenir perceptif, alors qu’une représentation symbolique n’évoque pas de telles prédictions. Les

conclusions de l’projet 3 (Joos et al., 2020a) soulignent l’importance des informations dans le

contexte temporel d’un stimulus donné pour son traitement perceptif. Il est important de noter

le fait que les effets de PE sont fortement modulés par cette intégration du contexte temporel,

ce qui permet de mieux comprendre leurs rôles fonctionnels.

Ces résultats doivent être pris en compte lorsque l’on utilise les effets d’incertitude de PE

pour étudier les altérations chez les patients atteints de maladies psychiatriques. Les processus

prédictifs aberrants proposés chez les patients atteints de SSD (Notredame et al., 2014; Fletcher

and Frith, 2009; Sterzer et al., 2019; Schmack et al., 2015; Shergill et al., 2005) devraient donc

être étudiés en utilisant les effets de contexte temporel de PE tels qu’ils figurent dans l’article
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3 (Joos et al., 2020a). Cette manipulation expérimentale permettrait d’étudier plus en détail

les aspects temporels des altérations des mécanismes de prédiction chez les patients atteints de

SSD. En outre, la présente thèse montre que la (in)certitude perceptive se reflète dans les effets

d’incertitude de PE également par des stimuli socialement pertinents, comme les expressions

faciales émotionnelles, qui s’avèrent particulièrement difficiles à traiter pour les patients atteints

de SSD. La combinaison du paradigme du contexte temporel de PE avec les stimuli du smiley

constituerait une prochaine étape très prometteuse pour étudier les processus prédictifs aberrants

proposés chez les patients atteints de SSD, ce qui pourrait être particulièrement important pour

traiter l’incertitude dans les interactions sociales.

En conclusion, l’étude des effets d’incertitude PE et des effets de contexte temporel PE

exceptionnellement importants en ce qui concerne les processus prédictifs pourrait aider à

démêler les étapes et mécanismes de traitement fondamentaux normaux et modifiés pendant

le processus de résolution du problème d’inférence perceptuelle.
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C. Short summary

Résumé

Le cerveau construit des interprétations fiables à partir de données sensorielles limitées.

La comparaison entre figures ambigües et figures univoques permet d’étudier les processus

neuronaux sous-jacents et montre des différences importantes au niveau de l’EEG (Kornmeier

and Bach, 2009; Kornmeier et al., 2016). Ici, il a été montré que (1) non seulement l’ambigüıté,

mais aussi une faible visibilité évoquent ces effets, suggérant que les processus de haut niveau

liés à un état d’incertitude en sont la cause. (2) Les patients atteints de schizophrénie perçoivent

plus d’incertitude et leurs processus neuronaux associés diffèrent de ceux de contrôles. (3) Les

données présentées auparavant et celles pouvant être prédites influencent automatiquement la

perception actuelle. Il a été postulé que cette influence pouvait être altérée chez les patients.

Les résultats présents permettront d’étudier les mécanismes prédictifs et les processus perceptifs

fondamentaux chez les patients et les personnes neurotypiques.

Mots-clés : Neuroscience cognitive, EEG, ambigüıté, visibilité, trouble du spectre de la

schizophrénie, mécanismes prédictifs

Résumé en anglais

The brain constructs reliable interpretations from the limited sensory input. Contrasting

ambiguous figures with disambiguated variants allows investigating the underlying neural

processes and shows large EEG differences (Kornmeier and Bach, 2009; Kornmeier et al.,

2016). Here, I showed that (1) not only ambiguity, but also low visibility evokes those

effects, suggesting that high-level processes related to a state of uncertainty evoke the effects.

(2) Patients with schizophrenia perceive more uncertainty and have different related neural

processes than controls. (3) Previous and predicted input automatically influence the perceptual

present. It was proposed before that this influence is altered in patients. The present findings

will help to study predictive mechanisms and fundamental perceptual processes in patients and

in neurotypicals.

Keywords: Cognitive neuroscience, EEG, ambiguity, visibility, Schizophrenia Spectrum

Disorder, predictive mechanisms
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Résumé 

Le cerveau construit des interprétations fiables à partir de données sensorielles limitées. La comparaison entre 

figures ambigües et figures univoques permet d'étudier les processus neuronaux sous-jacents et montre des 

différences importantes au niveau de l'EEG (Kornmeier et al. 2009, 2016). Ici, il a été montré que (1) non 

seulement l'ambiguïté, mais aussi une faible visibilité évoquent ces effets, suggérant que les processus de haut 

niveau liés à un état d'incertitude en sont la cause. (2) Les patients atteints de schizophrénie perçoivent plus 

d'incertitude et leurs processus neuronaux associés diffèrent de ceux de contrôles. (3) Les données présentées 

auparavant et celles pouvant être prédites influencent automatiquement la perception actuelle. Il a été postulé 

que cette influence pouvait être altérée chez les patients. Les résultats présents permettront d'étudier les 

mécanismes prédictifs et les processus perceptifs fondamentaux chez les patients et les personnes 

neurotypiques. 

Mots-clés : Neuroscience cognitive, EEG, ambiguïté, visibilité, trouble du spectre de la schizophrénie, 

mécanismes prédictifs 

 

Résumé en anglais 

The brain constructs reliable interpretations from the limited sensory input. Contrasting ambiguous figures 

with disambiguated variants allows investigating the underlying neural processes and shows large EEG 

differences (Kornmeier et al. 2009, 2016). Here, I showed that (1) not only ambiguity, but also low visibility 

evokes those effects, suggesting that high-level processes related to a state of uncertainty evoke the effects. (2) 

Patients with schizophrenia perceive more uncertainty and have different related neural processes than 

controls. (3) Previous and predicted input automatically influence the perceptual present. It was proposed 

before that this influence is altered in patients. The present findings will help to study predictive mechanisms 

and fundamental perceptual processes in patients and in neurotypicals.  

Keywords: Cognitive neuroscience, EEG, ambiguity, visibility, Schizophrenia Spectrum Disorder, predictive 

mechanisms 
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