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Abstract

Understanding the fundamental structures at play in quantum computation is a
key issue in the development of quantum technologies. Such an understanding
provides tools for reasoning about the potential and limits of quantum computers.
It is also critical when reasoning about computational architectures for physical
implementations, and in minimising the different resources required.

Measurement-based quantum computation (MBQC) is an alternative model for
quantum computation, which makes careful use of the properties of the measurement
of entangled quantum systems to perform transformations on an input. It differs
fundamentally from the standard quantum circuit model in that measurement-
based computations are naturally irreversible. This is an unavoidable consequence
of the quantum description of measurements, but begets an obvious question:
when does an MBQC implement an effectively reversible computation? The
measurement calculus is a formal framework for reasoning about MBQC which
encodes a computation as a sequence of logical commands and with the remarkable
feature that every computation can be related in a canonical way to a graph. This
allows one to use graph-theoretical tools to reason about MBQC problems, such as
the reversibility question, and the resulting study of MBQC has had a large range
of applications.

However, the vast majority of the work on MBQC has focused on architectures
using the simplest possible quantum system: the qubit. It remains an open question
how much of this work can be lifted to other quantum systems. In this thesis,
we begin to tackle this question, by introducing analogues of the measurement
calculus for higher- and infinite-dimensional quantum systems. More specifically,
we consider the case of qudits when the local dimension is an odd prime, and of
continuous-variable systems familiar from the quantum physics of free particles.
In each case, a calculus is introduced and given a suitable interpretation in terms
of Hilbert space operations. We then relate the resulting models to the standard
circuit models, using graph-theoretical tools called “flow” conditions. In the finite-
dimensional case, this amounts to the study of outcome determinism—deciding
when it is possible to eliminate the probabilistic nature of the measurements by
using outcome-dependant corrections on the resulting state. In CV, we must
treat the subtler question of convergence, since there MBQCs are only ever an
approximation to the desired operation, and it is necessary to ensure one recovers
the desired computation in some ideal limit.
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Introduction

The advent of quantum mechanics at the start of the last century marked a turning
point in our understanding of the behaviour of matter. The old physical theories
[Max61; Boh13] were either swept aside or needed to be considered anew within
the models [Sch26; Hei25; DF26] being developed to fit previously unexplained
experimental phenomena [Pla01; Ein05; DG28]. The subsequent developments have
led to a much deeper understanding of many domains, from chemistry, through
nuclear physics, to electronics and many others. Such was its impact that it has
been retroactively called “the quantum revolution” [Pea08]. It is also not unfair
to say that whole areas of mathematical research, such as the theories of Hilbert
spaces [von30] and operator algebras [MN36], would not exist, or certainly not in
their modern form, were it not for their connection with the burgeoning quantum
theory.

The realisation that the properties of quantum systems could be used to encode
and manipulate information as one would with a computer, and that it might
actually be possible to extract some kind of advantage from such a procedure, came
later. It is often tracked back to an early 1970s manuscript of Stephen Wiesner,
“Conjugate Coding”, or more prosaically to Richard Feynman’s famous 1981 lecture
at MIT. He suggested that simulation of quantum systems would require building
simulators of a quantum nature, and the field was set for the “second quantum
revolution”, of quantum information and quantum technology.

Early on, Benioff [Ben80; Ben82], followed by Deutsch [Deu85], realised that
the computing machines of Turing [Tur36] could be given a grounding in the
systems described by classical physics. Turing machines are an abstract model for
a computer which forms the foundation of much of classical computability and
complexity theory. By reinterpreting what it means for a system to compute a
function, Deutsch introduced quantum Turing machines (QTM) which were the first
formal model for quantum computation. In formulating such a machine, he used
a quantum generalisation of the bits familiar from classical computation theory,
later dubbed the “qubit”, or quantum bit [Sch95]. Soon enough followed the first
quantum algorithms which demonstrated an advantage over any known classical
alternative [DJ92; Sho94; Gro96; Sho97], as well as the first theoretical results
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INTRODUCTION

separating classes of computational problems solvable using classical computers
from those involving quantum computers [BB94; BV93].

The year 1993 saw two seemingly unrelated results which are of particular
importance to this thesis. Building off of the work of Deutsch, Bernstein and
Vazirani, Chi-Chih Yao [Chi93] introduced a circuit model for quantum computers,
analogous to the Boolean circuit model for classical computation, and showed that
(under some natural assumptions) it was equivalent to the QTM model. This
model has stood the test of time, and today the majority of results in quantum
computation are formulated in terms of quantum circuits.

The same year, Bennett et al. [Ben+93] published the quantum state teleporta-
tion protocol, which makes use of a key property of quantum systems, entanglement.
It is well-established that measuring a quantum system in some sense destroys
it. They showed that, using an entangled pair of quantum systems a and b at
respective physical locations A and B, the state of a could, after being destroyed
through measurement, be recovered at the system b, without the state being know
either at A or B, nor being transported along any physical path from A to B. This
protocol was realised experimentally in 1997 by Bouwmeester et al. [Bou+97].

Variations on this idea, such as the quantum gate teleportation protocol [ZLC00],
allow one to teleport a quantum state while also applying a programmable trans-
formation on that state [GC99]. This of course makes it possible to consider
architectures where computations are carried out using destructive measurements
to implement such programmable operations on an input state. These measurement-
based models of computation stand in contrast to the QTM and quantum circuits in
one major way. Where any computation in those models is reversible, in that running
the computation backwards recuperates the initial input state, measurement-based
models are irreversible, since measurements remove systems from the computation.

Such models are placed under the umbrella term measurement-based quantum
computation (MBQC), and further can mostly be placed into two (non-exclusive)
categories: MBQC by consumption of entanglement [RB01; RBB02; RB02; RBB03;
Nie06; Bri+09; BB16]; and MBQC by projective measurements [Nie03; Leu02;
Leu04; Per05]. These models are essentially equivalent in terms of the computations
that they can implement [AL04; JP05], although they have different operational
interpretations. In MBQC by consumption of entanglement, one typically operates
by constructing a highly entangled state involving multiple quantum systems (a
reversible process), before performing a series of subsequent measurements to enact
the desired computation. On the other hand, in MBQC by measurements only,
one uses entangling measurements, and it is therefore not necessary in principle to
have access to any reversible entangling operations.

MBQC offers a distinct set of advantages and disadvantages in terms of im-
plementation difficulties when compared to reversible models. For example, in
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INTRODUCTION

quantum computation, it is necessary to be able to perform entangling operations
to obtain any kind of quantum advantage over classical computers, and they are one
of the harder types of operations to implement. MBQC permits one to generate all
necessary entanglement at the start of the computation, rather than needing access
to entangling operations throughout a computation. On the other hand, this makes
it important to maintain that entanglement, with at most minor losses, until the
computation completes. MBQC is also a promising architecture for fault-tolerant
quantum computation [RHG06; Men14]. Beyond offering an alternative computa-
tional model for implementations of quantum computers, the ideas behind MBQC
have been applied to a surprising variety of problems. For example, they have
been used in quantum foundations, as a discrete toy model for general-relativistic
space-time [Rau+11], to study the fundamental quantum behaviors which give rise
to computational advantages [Rau13; LDR15; Ber+17; FRB18], and related to
closed time-like curves in quantum computation [dGK11].

The measurement calculus [DKP07] is a formal model for reasoning about
MBQC and whose primitives closely relate to those of MBQC by consumption of
entanglement. It encodes a computation as an abstract sequence of commands,
called a measurement pattern, which is interpreted in terms of manipulations (in-
cluding measurements) carried out on a register of qubits. The overall computation
carried out by the MBQC, called its semantics, is in general not reversible, and this
leads to the questions: when does a measurement pattern implement a reversible
computation, and how does the measurement calculus relate to the other reversible
models? The problem is essentially that measurements in quantum mechanics are
probabilistic, and in general the semantics of the pattern is reversible only if this
randomness can be eliminated. One remarkable feature is that every measurement
pattern can be related in a canonical way to a graph, and this allows one to
use graph-theoretic techniques to reason about MBQC. Causal flow [DK06] and
g-flow [Bro+07] are graph-theoretical conditions introduced to treat the problem
of reversibility. The problem can be re-framed in terms of outcome determinism,
which eliminates this measurement randomness. They introduced a strong form
of determinism, robust determinism, and it has been shown that a measurement
pattern is robustly deterministic if and only if the underlying graph has g-flow
[PSM]. These results have been extended to show how to obtain a quantum circuit
equivalent to any robustly deterministic measurement pattern [BK09; MHM15;
Dun+20; Bac+21; Sim21].

Flow conditions were essential in formulating blind quantum computation
protocols [dGK11; Man+17], as well as estimating the depth advantages of MBQC
over quantum circuits [BK09; BKP09; MHM15] and have also been used to study
the classical simulatability of quantum computations [MK14]. More recently, there
has been an interest in using flow conditions in the context of the ZX-calculus. The
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INTRODUCTION

ZX-calculus is a diagrammatic language for reasoning about quantum operations
[CD11; CK17; van20]. It differentiates itself from quantum circuits by having a
particularly nice set of identities (or rewrite rules) which can be used to prove
any equality of quantum operations in the qubit setting [Bac14; JPV17; NW17;
Vil19]. However, this comes at a major cost: in general a ZX-diagram cannot be
straightforwardly related to computation in the QTM or circuit models. It turns
that they can be related to MBQCs, and then flow conditions can sometimes be
used to extract a quantum circuit from a ZX-diagram [Dun+20; Bac+21].

The literature on MBQC has therefore been quite extensive, but falls short in
one way: it has been restricted mostly to the case of qubits, where quantum theory
allows for many other types of systems. As its title suggests, this thesis is concerned
with extending the previous work on the measurement calculus beyond the setting
of qubits. We will consider the case of qudits, which are a quantum version of the
dit or d-state bit, and of continuous variables, which means tackling some of the
problems of infinite-dimensional quantum theory. We show that in either case,
a slightly modified measurement calculus can be given a suitable semantics, and
introduce flow conditions for each case. We then use these flow conditions to show
that the corresponding MBQC is equivalent to a quantum circuit, and construct
an explicit quantum circuit extraction algorithm for each case.

Qudit quantum computation
Qudit quantum computation, of course, is quantum computation where the qubits
are replaced with qudits. Since qubits are modelled as two-dimensional vector
spaces, and qudits correspond to d-dimensional vector spaces for an integer d,
studying qudit quantum computation involves some subtler mathematics. When d
is a prime number, these mathematics exhibit many similarities to the qubit case
[Got99; de 12], and this is the case on which we shall concentrate.

In principle, many physical systems are qudits, and so it makes little sense to
discard them outright because of their relative complexity. In fact, in some physical
implementations, qubits are encoded into naturally d-level systems by ignoring all
but the first two levels [Fri+18; Kli+03]. Some proof-of-concept experiments have
begun to explore the various qudit systems available [BW08; Nee+09; Erh+18;
Gao+19], opening the way for the construction of qudit-based quantum computers.

From a complexity-theoretic perspective, little work has been done on qudits.
This can be mostly attributed to the fact that we cannot expect to obtain a super-
polynomial speed-up over the qubit case. That said, recent work suggests that it is
possible to reduce the depth of quantum circuits asymptotically compared to the
qubit case by using qutrits (for which d = 3) [Gok+19]. This of course beats the
constant improvement owed to the binary-to-ternary compression, and suggests
there is more to be discovered in yet higher dimensions, as seen in [Kik+20]. Results
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have also been obtained for improved noise tolerance in quantum key distribution
with qudits [CGL99], as well as for the size of optimal quantum error correcting
codes [BT00; Cer+02; SS10]. Furthermore, if one wants to work with registers of n
qubits as fundamental data structure, rather than acting directly on the qubits
themselves, then such a register can be represented as a qudit of dimension d = 2n,
and results obtained for qudits naturally cover this case.

Qudit MBQC has seen even less work. A recent review paper [Wan+20]
states “measurement-based qudit quantum computing is unexplored to date.” It is
straightforward to see that quantum teleportation can be adapted for qudits, and
preliminary work has been done on generalising graph states to the qudit setting
[Zho+03; BB07a]. These qudit graph state have been realised experimentally
[Rei+19]. To my knowledge, our papers on the subject [Boo+21; BP21] are the
first formal study of qudit MBQC.

Continuous variable quantum computation
Continuous-variable (CV) quantum computation1 can broadly be defined as quan-
tum computation where information is encoded in the state of a collection of
quantum particles in free space [LB99; BP03; Bv05]. Such a quantum system is
typically modelled as a specific type of infinite-dimensional vector space known
as a Hilbert space [Hal13]. It is necessary to introduce such infinities in order
to obtain a description which allows for unbounded positions and momenta as
observable quantities. This comes at a cost: the theory of Hilbert spaces is much
more mathematical in order to tame these infinities.

Nevertheless, CV quantum computation has been an active area of research in
the last twenty years. The CV equivalent of the qubit is often called a qumode,
because the mathematics of a free quantum particle are identical to those of a
quantization mode of the electromagnetic field [FT20], and there is an entirely
analogous CV quantum circuit description for computations. It was established
early on that an intelligent encoding of qubits into qumodes yields a performant
quantum error correction code by taking advantage of the inherent redundancy in
such an encoding [GKP01]. This has lead to one of the main classes of quantum
error correcting codes [Mic+16; Alb+18], and aroused interest in CV architectures
which take advantage of them [Men14; SCC19; FAF20].

1There is an unfortunate overloading of the term “continuous variables” in the literature. We
mean the model of quantum computation introduced by Lloyd and Braunstein [LB99] and which
encodes information in the position and momentum oberservables of particles in free space. This
is not to be confused with the more generic term referring to computation where the observable
quantities correspond to real numbers rather than integers. The model of Lloyd and Braunstein
is one such model but there are in theory many others.
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CV computation also has implementational advantages over the discrete variable
case. As far as I know, the largest entangled states observed experimentally to
date (in terms of number of involved systems) remain those obtained in CV
optical experiments using time-multiplexing, beating their discrete counterparts by
many orders of magnitude [Yok+13; Yos+16]. That said, there of course remain
challenges to a CV quantum computer. Firstly, while it is relatively easier to
generate entanglement in CV, there are other operations necessary for quantum
speed-up, dubbed non-Gaussian operations. They are much more difficult to
obtain since they correspond to interactions typically observed only at very high
energies or in very specific states of matter, although some progress has been made
on this aspect [Miy+16; Kon+21a; Kon+21b]. Secondly, genuinely CV quantum
error correction codes have proved elusive. This is partially because it has been
shown that no satisfactory CV code is possible without non-Gaussian operations
[ESP02; NFC09; Vui+19], but even when assuming access to such operations,
results tackling natural classes of errors have only recently been obtained [NGJ20;
Hao+21].

CV MBQC fares somewhat better than the qudit case. There are once again
analogous protocols for teleporting CV quantum states [BK98] while enacting
corresponding programmable transformations, and these can be used to define CV
MBQC in an approach close to MBQC by consumption of entanglement. This has
been used to define CV graph states [ZB06; MFv11], and describe a CV one-way
quantum computer [Men+06; Gu+09]. One of the main issues in CV MBQC is
that the gate teleportation, and by extension more general measurement-based
computations, can only be obtained physically as an approximation to the desired,
ideal protocol. This complication can be treated in different ways [SWB18], but
we treat it as a problem of mathematical convergence of the physical protocol to
the ideal one [Wil18; PLB18; SH08]. This means more generality in the types of
computations which can be considered, but we must settle for somewhat weaker
conclusions and more technical proofs.

Summary of results
After a preliminary chapter 1, chapters 2 to 5 generalise the qubit theory to qudit
MBQC for odd prime dimensions. Chapter 6 is concerned with continuous variable
MBQC. The dependencies between chapters is mostly linear, although chapter 6
repeats multiple results from chapter 4, albeit in a somewhat altered setting. We
detail the contents of each chapter in what follows.

Chapter 1 A preliminary chapter, which details the results we need from the
mathematical theory of Hilbert spaces. All of these statements can be found in
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INTRODUCTION

Chapter 1
Mathematical preliminaries

Chapter 2
Models of computation

with qudits

Chapter 3
Robust determinism
in MBQC with qudits

Chapter 4
Circuit extraction
for simple Zd-flows

Chapter 5
Circuit extraction

for extended Zd-flows

Chapter 6
Convergence in CV MBQC

Figure 0.2: Breakdown of chapter interdependencies. Chapter 5 does not depend
on any of the results of chapter 4, but there many similar techniques are applied in
a much simpler setting. Chapter 6 could in principle be read immediately after
chapter 1, but the chapters leading up to it build up ideas and intuition without
which the chapter would lack a lot of motivation.
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INTRODUCTION

standard textbooks on the matter, but I found it convenient to collect them in a
single place to reference from other chapters. We also detail the axioms of quantum
mechanics for both pure and mixed states.

Chapter 2. This chapter introduces the measurement calculus for qudits. It
is first necessary to introduce measurement spaces, labelled collections of mea-
surements which are each associated to a predetermined “correction” operator.
These spaces are thoroughly characterised, then used to define qudit measurement
patterns (the terms of the measurement calculus), and their Hilbert space semantics.
We then discuss determinism, relate measurement patterns to edge-weighted graphs,
and define qudit graph states.

Chapter 3. After introducing our novel qudit flow condition, Zd-flow, we show
that it recovers g-flow in the case d = 2. We then prove that a qudit measurement
pattern is robustly deterministic if and only if the underlying open graph has
Zd-flow. Finally, we present a polynomial-time algorithm that finds a Zd-flow for an
open graph whenever it has one, and show that the resulting MBQC has optimal
computational depth.

Chapter 4. The first chapter on the circuit extraction problem. We produce a
circuit extraction procedure for measurement patterns with simple Zd-flow. To do
so, we first show how to use star pattern transformation to extract a circuit from
a causal flow, then relate any simple Zd-flow to a sequence of causal flows. The
chapter also introduces circuit-graph hybrid diagrams, which are used to represent
partially extracted patterns, and shows how to sequentially compose two patterns.

Chapter 5. This chapter presents a quantum circuit extraction algorithm for
any Zd-flow. First, we need to consider the action of local-Clifford operations on
measurement patterns with Zd-flows and their semantics, which we decompose as
local scalings and local complementations. This action is then used in formulating
the extraction algorithm, along with some ides from chapter 4. We conclude with
some more worked out examples and a discussion of possible improvements.

Chapter 6. Continuous variable MBQC presents some different problems than
the qudit case. We first prove the convergence of the CV quantum gate teleportation
protocol, then show how to give a semantics and squeezing-dependant semantics for
CV-MBQC. Then, we introduce R-flow, and adapt the circuit extraction algorithm
of chapter 4 to show that every CV measurement pattern with R-flow converges to
a unitary in the infinite-squeezing limit.
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Mathematical preliminaries

We begin, as all theses in quantum information must, with a discussion of the axioms
of quantum mechanics. This will serve in part as a refresher for our kind readers,
but mostly to introduce notations and conventions used throughout the remaining
chapters. Our presentation follows the so-called mathematical formulation of
quantum mechanics, started by John von Neumann in the late 1920s.

He found that the nascent theory of Hilbert spaces and their linear operators
provided a natural mathematical framework for unifying the different attempts
at explaining the observations of quantum physics which had been made in the
previous years [von27; von30]. These ideas were neatly summarised in his book
[von32; von18], and we present them here. The books of Brian C. Hall [Hal13] and
of Valter Moretti [Mor17] were also extensively consulted throughout the writing
of this thesis. The material on mixed state quantum theory is harder to find in
one place. Amongst the best sources are the textbooks of Karl Kraus [Kra83],
Alexander Holevo [Hol01] and Masahito Hayashi [Hay17]. All results in this chapter
are stated without proof, since they can found in many textbooks, including those
cited.

1.1 Hilbert spaces
Hilbert spaces generalise the Euclidian spaces familiar from classical geometry, and
conserve many of their properties. They also provide a good model for the states
of a quantum system.
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CHAPTER 1. MATHEMATICAL PRELIMINARIES

Definition 1.1. A Hilbert space is a C-linear space H , along with an inner
product 〈−,−〉H : H ×H → C such that for any x, y, z ∈H and λ ∈ C,

• 〈x, y〉 = 〈y, x〉;
• 〈x, y + λz〉 = 〈x, y〉+ λ〈x, z〉;
• 〈x, x〉 = 0 if and only if x = 0;

and furthermore H is complete with respect to the norm ‖x‖H =
√
〈x, x〉.

We make the somewhat unconventional choice of taking the inner product to
be right-linear (and thus, left-antilinear), which matches the “bra-ket” notation
common in the quantum information and quantum physics literature. When the
Hilbert space is clear, we will drop the indices and simply write 〈x, y〉 and ‖x‖ for
the inner product and norm.

Example 1.2. A first example of Hilbert space is given by Cd for any d ∈ N, with
its usual complex inner product: 〈x, y〉 = ∑d

n=1 xnyn. Later, we shall call a system
modelled by such a Hilbert space a qudit.

Example 1.3. Extending this construction, consider the space `2(N) of infinite
sequences (xn)n∈N such that ∑

n∈N
|xn|2 <∞, (1.1)

with element-wise operations and inner product

〈x, y〉 =
∑
n∈N

xnyn. (1.2)

`2(N) is a Hilbert space called the space of square-summable sequences.

Example 1.4. Let (X,µ) be a measure space, and write L2(X,µ) the space of
functions f : X → C such that∫

X
|f(x)|2 dµ(x) <∞ (1.3)

with point-wise operations and with an inner product given by

〈f, g〉 =
∫
X
f(x)g(x) dµ(x) , (1.4)

Define an equivalence relation

f ∼ g if 〈f − g, f − g〉 = 0, (1.5)
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then the quotient space L 2(X,µ) := L2(X,µ)/ ∼ is a Hilbert space called the
space of square-integrable functions on (X,µ) where the inner product is given by
calculating (1.4) on representatives.

If G is a Haussdorf locally compact abelian group, then there is a unique
translation invariant measure on G, the Haar measure µG, and we will write
L 2(G) := L 2(G, µG). Of particular interest in the final chapter of this thesis is
L 2(R), which will model the state space of a single particle with one degree of
freedom. Borrowing from quantum optics, we shall call such a quantum system a
qumode.

There is one subtlety here: we will frequently make arguments viewing elements
of L 2(R) as actual functions R → C, but it must be understood that these
implicitly correspond to representatives of the ∼-equivalence classes and that one
must be careful that the arguments lift to the quotient.

It was a key result of the early work of von Neumann that despite quite different
constructions, many of these Hilbert spaces coincide.

Definition 1.5. An isomorphism of Hilbert spaces is a bijective linear map H → I
which furthermore preserves the norm. In this case, we say that H and I are
isomorphic and we write H ∼= I .

It turns out that all of the examples of Hilbert spaces introduced above have
an important property: they contain countable dense subsets (w.r.t. the topology
generated by the norm). Leveraging this property, called separability, von Neumann
showed that:

Proposition 1.6. A separable Hilbert space has an orthonormal basis of at most
countable cardinality.

This in turn implies the following isomorphisms, by identifying basis elements:

L 2(Zd) ∼= Cd and L 2(R) ∼= `2(N). (1.6)

All the Hilbert spaces we will encounter from chapter 2 onwards will take one of
these two forms. In the case of finite-dimensional Hilbert spaces, we use the Dirac
notation for representing elements of the Hilbert space: a state ψ ∈ L 2(Zd) is
written |ψ〉. 〈ψ| represents the map L 2(Zd)→ C : φ 7→ 〈ψ, φ〉, and in particular,
〈ψ|φ〉 = 〈ψ, φ〉. We avoid using this notation for infinite-dimensional Hilbert spaces
as it is not as practical. We will often need to consider a representative function
for a state, and the Dirac notation is unwieldy for that purpose: we either use
φ(x) = 〈x|φ〉, which is implies that |x〉 ∈ L 2(X), but there is (in general) no such
vector, or φ(x) = |φ〉 (x) which is notationally confusing. We chose to use neither
and skip the Dirac notation altogether in Hilbert spaces of functions.
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1.1.1 Operators on Hilbert spaces
An operator, or linear operator, is a linear map H → I between Hilbert spaces.
While Hilbert spaces are fairly “nice” objects (in that they preserve most of the
properties of finite-dimensional vector spaces), this is not the case for their linear
operators. As we shall see towards the end of this thesis, many of the operators
which come up naturally in quantum physics exhibit some of these complications.

It is then useful to consider operators which are not defined on the whole of
H , but only on a (dense) subspace. In that case, we shall write D(T ) ⊆H the
domain of the operator T : H → I . As is standard, we typically write application
of an operator on x ∈ H as Tx = T (x), and the composition of two operators
such that T (D(T )) ⊆ D(S) as ST = S ◦ T . Finally, IH denotes the identity map
on H (and we often drop the subscript when it is obvious).

We define the operator norm of T : H → I as

‖T‖ := sup{‖Tx‖I | x ∈H and ‖x‖H = 1}, (1.7)

and say that T is bounded if ‖T‖ <∞. Then,

Proposition 1.7. Let T : H → I be a bounded linear operator between Hilbert
spaces. Then there is a unique bounded linear operator T ∗ : I →H such that for
any x ∈H and y ∈ I , 〈y, Tx〉I = 〈T ∗y, x〉H . T ∗ is called the adjoint of T .

We write B(H ) the set of bounded operators on a Hilbert space H ,1 and it is
straightforwardly characterised as follows:

Proposition 1.8. Let T : H → I be a linear operator, then T is continuous if
and only if it is bounded.

This is a problem, since many important quantities—see example 1.9—correspond
to unbounded linear operators, which therefore cannot be continuously defined on
the whole Hilbert space.

Example 1.9. Let P ⊆ L 2(R) be the space of functions of the form p(x)e−x2

where p is a polynomial, and consider the following operators on P :

Qf(x) := xf(x) and Pf(x) := i
df
dx (x). (1.8)

Then P is a dense subset of L 2(R), and Q and P are unbounded linear operators
on P which correspond the position and momentum of a free particle in state f
(at least in a first approach). As a consequence of the previous discussion, they
cannot be continuously extended to L 2(R).

1The set of bounded operators on a Hilbert space is the canonical example of von Neumann
algebra, although we omit such a construction since we have no need for it.
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This brings us to another important consideration: unlike for bounded operators
defined on the whole of H , the domain of unbounded operators is actually a matter
of some importance. First of all, there are states f ∈ L 2(R) on which the action
of neither Q nor P is well-defined. Worse, Q can be extended to act on some
functions f ∈ L 2(R) which are not differentiable, so that Pf is not defined. This
is a bit of a problem if we want to model the state space for a physical particle,
and therefore we would like to find a common dense domain for both Q and P .

The issue of finding “nice” domains also comes up when we try to find adjoints
for unbounded operators. In general, the adjoint T ∗ of an unbounded operator T
will itself be unbounded, and therefore we need to specify a dense domain for T ∗.
Typically, this domain differs from D(T ).

Definition 1.10. Let A be an unbounded operator on H , then the adjoint A∗ of
A is defined by:

• the domain of A∗ is the subset D(A∗) of H consisting in vectors ψ such that
the linear map H → C : φ 7→ 〈ψ,Aφ〉 is bounded;

• for ψ ∈ D(A∗), A∗ψ is defined to be the unique vector φ ∈ H such that
〈φ, ξ〉 = 〈ψ,Aξ〉 for all ξ ∈ D(A).

Unicity of A∗ψ is assured by the Riesz representation theorem.

1.1.2 Some important classes of operators
Isometries and unitaries A bounded operator T : H → I is an isometry if
for any ψ ∈H , ‖Tψ‖I = ‖ψ‖H . This is equivalent to requiring that TT ∗ = IH .
T is a unitary if it is an isometry and furthermore, T ∗T = II .

Positive operators We say that an operator T on H is positive if 〈ψ, Tψ〉 > 0
for all ψ ∈H .

Self-adjoint operators An unbounded operator A on H is symmetric if for any
ψ, φ ∈ D(A), 〈ψ,Aφ〉 = 〈Aψ, φ〉. It is self-adjoint if D(A∗) = D(A) and A∗ψ = Aψ
for all ψ ∈ D(A).

In other words, A is self-adjoint if A∗ and A are the same operator with
identical domains. All self-adjoint operators are of course symmetric, but not all
symmetric operators are self-adjoint. The following standard example demonstrates
the difference.

Example 1.11. Let D(A) ⊆ L 2([0, 1]) be the subspace of continuously differen-
tiable functions ψ such that ψ(0) = ψ(1) = 0, and put Aψ := idψ

dx . Then a simple
calculation using integration by parts shows that A is symmetric. However, for
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any continuously differentiable φ (without boundary condition), φ ∈ D(A∗) so the
domain of A∗ is strictly bigger than the domain of A.

While the definition of self-adjointness is more complicated, it turns out the be
the right one to make. For example, the all-important spectral theorem applies to
self-adjoint operators but not to all symmetric operators.

Normal operators An operator T : H → H is normal if T ∗T = TT ∗. The
importance to us of this definition is that both self-adjoint and unitary operators
H → H are clearly normal, which allows us to state some results about both
types of operators in one go (see for example theorem 1.16).

Projections A bounded operator P on H is a projection if PP = P . The set of
all projections on H is denoted P(H ).

If ψ ∈H there is an associated projection Pψ given by Pψφ := 〈ψ, φ〉ψ for any
φ ∈H .

Definition 1.12. Let (X,Ω) be a measurable space. Then a map P : Ω→ P(H )
is a projection-valued measure or PVM if

• P (∅) = 0 and P (X) = I;
• for any sequence (En)n∈N ⊆ Ω of pairwise disjoint subsets of X,

P (
⋃
n∈N

En) =
∑
n∈N

P (En), (1.9)

where the series converges in the strong operator norm;
• for all A,B ∈ Ω, P (A ∩B) = P (A)P (B).

In particular, if P is such a PVM, then for any ψ ∈ H , the map Ω → R :
E 7→

√
〈ψ, P (E)ψ〉 defines a measure, which furthermore is a probability measure

if ‖ψ‖ = 1.

1.1.3 The spectral theorem and functional calculi
If P is a PVM defined on some measurable space (X,Ω) and acting in H , then
for each ψ ∈H1, we define a probability measure by

µψ : Ω −→ R+

E 7−→ 〈ψ, P (E)ψ〉.
(1.10)
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Theorem 1.13 (Functional calculus). Let P be a PVM on a measurable space
(X,Ω), and f : X → C a measurable function. Define a subspace of H by

D(f) =
{
ψ |

∫
X
|f(x)|2 dµψ <∞

}
. (1.11)

Then D(f) is dense in H , and there exists a unique unbounded operator
∫
X f dP

with domain D(f) such that〈
ψ,
∫
X
f dP ψ

〉
=
∫
X
f(x) dµψ , (1.12)

for any ψ ∈ D(f).

Suppose T is an operator on H , then the resolvent set of T is the set of all
λ ∈ C for which there exists some bounded operator B such that for all ψ ∈H ,
Bψ ∈ D(T ) and (T − λI)Bψ = ψ. The complement of the resolvent set of T in C
is called the spectrum and denoted sp(T ).

Proposition 1.14. If A is a self-adjoint operator, then sp(A) ⊆ R.

Proposition 1.15. If U is a unitary operator, then sp(U) ⊆ T.

Theorem 1.16 (Spectral theorem). Let T be a normal operator on H . Then
there is a unique PVM PT on sp(T ), called the spectral measure of T , such that

T =
∫

sp(T )
id dPT . (1.13)

We are only going to be interested in the two following cases:

1. T is self-adjoint, in which case sp(T ) ⊆ R; in this case we typically extend
(1.13) to R as

∫
R χsp(T ) dPT .

2. T is unitary, in which case sp(T ) ⊆ T, the unit circle.

If PA is the spectral measure of some normal operator A, and f : sp(A)→ C is
a measurable function, then we write

f(A) :=
∫

sp(A)
f dPA . (1.14)

1.1.4 Tensor products
Tensor products are a particularly important way of constructing, from two Hilbert
spaces, a third Hilbert space. They will be used to model the joint state space of
two quantum systems.
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If H and I are two Hilbert spaces, we can construct an inner product space
H ⊗̄I as follows. Elements of H ⊗̄I are expressions of the form ∑n

j=1 ψj ⊗ φj
where ψj ∈H , φj ∈J and n ∈ N. The expression ψ ⊗ φ is assumed to be linear
with respect to both arguments, so that

c(ψ ⊗ φ) = (cψ)⊗ φ = ψ ⊗ (cφ), (1.15)
(ψ1 + ψ2)⊗ φ = ψ1 ⊗ φ+ ψ2 ⊗ φ, (1.16)
ψ ⊗ (φ1 + φ2) = ψ ⊗ φ1 + ψ ⊗ φ2. (1.17)

The inner product on H ⊗̄I is defined by linearity from

〈ψ1 ⊗ φ1, ψ2 ⊗ φ2〉 = 〈ψ1, ψ2〉 〈φ1, φ2〉 . (1.18)

There is only one problem: the linear space H ⊗̄I is not complete with respect
to the norm induced by this inner product. The solution is simple: we take the
tensor product H ⊗I to be the completion of H ⊗̄I with respect to that norm.
It should be clear that the tensor product of Hilbert spaces is associative up to
isomorphism of Hilbert spaces, so the construct generalises to any finite number of
factors. If (Hj)j∈J is a finite collection of Hilbert spaces, we write ⊗j∈J Hj their
tensor product, and

H ⊗J =
⊗
j∈J

H , H ⊗n =
⊗

j∈{1,2,...,n}
H , (1.19)

for brevity, where n ∈ N.
Then, we have the following useful isomorphisms: whenever J is a finite set of

cardinality n ∈ N,

L 2(GJ) ∼=
⊗
j∈J

L 2(G), H ⊗J ∼= H ⊗n and H ⊗ Cn ∼= H ⊗n. (1.20)

Finally, if A and B are bounded operators on H and I respectively, there is a
unique bounded operator A⊗B on H ⊗I such that

(A⊗B)(ψ ⊗ φ) = (Aψ)⊗ (Bφ). (1.21)

for all ψ ∈H and φ ∈ I .
Similarly, if A and B are (not necessarily bounded) self-adjoint operators on

H and I respectively, there is a unique self-adjoint operator A⊗B on H ⊗I
such that

(A⊗B)(ψ ⊗ φ) = (Aψ)⊗ (Bφ). (1.22)
for all ψ ∈ D(A) and φ ∈ D(B).
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When considering operators on H ⊗n, and if T is an operator on H , then we
will often write

Tj = I ⊗ I ⊗ · · · ⊗ T︸︷︷︸
j-th position

⊗ · · · ⊗ I

︸ ︷︷ ︸
n times

. (1.23)

Tj is an operator on H ⊗n which we say “acts on the j-th subsystem”. This
construction generalises via the isomorphism in equation 1.20 to the case of the
operator Tj acting on H ⊗J , where j ∈ J .

1.2 Pure state quantum mechanics
We are now ready to state the axioms of quantum theory in terms of Hilbert spaces.
As described informally, the state of a quantum system is a vector in a Hilbert
space, and the Hilbert space of a composite system is described by a tensor product.
Formally, we have:

Axiom P.1 (Pure states). A state of a quantum system with Hilbert space H is a
vector ψ ∈H such that ‖ψ‖ = 1.

Axiom P.2 (Composite systems). A state of a composite of two quantum systems
with respective Hilbert spaces H1 and H2 is a state in H1 ⊗H2.

Axiom P.3 (Expectation values). The expectation value of an operator A ∈ B(H )
for a given state ψ ∈H is given by 〈A〉 = 〈ψ,Aψ〉.

In practice, the only values of the quantum system which are accessible are
those which can be measured:

Axiom P.4 (Measurements). An observable on a Hilbert space H is a projection-
valued measure P : Ω→ P(H ) on some measurable space Ω.

If E ∈ Ω and the system is the state ψ ∈H the probability of obtaining outcome
x ∈ E from the measurement is µψ(E). The state of the system immediately after
the measurement is then

ψE := P (E)ψ
‖P (E)ψ‖ = P (E)ψ

µψ(E) . (1.24)

Given the spectral theorem, any self-adjoint operator is associated to a canonical
PVM and therefore to a measurement. Thus, physicist often call self-adjoint
operators observables since they correspond to the observable properties of the
system.

An immediate implication of these axioms is that transformations of a quantum
system must preserve “statefulness”, in other words they must map unit-norm
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vectors to unit norm vectors. We further impose that these transformations must
be linear, which results in the following description of transformations:

Axiom P.5 (Transformations). A transformation of a quantum system with Hilbert
space H is described by an isometry H → I for some Hilbert space I .

This axiom includes the possibility of embedding a quantum system into a
larger one. If we exclude this, then transformations on a quantum system are given
by unitaries H →H .

1.3 Mixed state quantum mechanics
Now, we want to describe quantum states that are probabilistic mixtures of pure
quantum states. Think of the state obtained by flipping a coin and outputting the
state ψ if heads and φ if tails. This is a key concern given that if we perform a
measurement and discard the outcome, then the result in general is precisely such
a mixture of states each of which takes the form of equation (1.24). To do so, we
need to model states as a specific kind of operator on H rather than simply as
elements of H .

If A is a bounded, self-adjoint and positive operator on H , then we define the
trace of A to be

tr[A] =
∑
j∈J
〈ej, Aej〉, (1.25)

for an arbitrarily chosen2 basis (ej)j∈J of H . If tr[A] < +∞, we say that A is
trace-class. A (not necessarily self-adjoint) bounded operator T is trace-class if the
self-adjoint operator

√
T ∗T (defined using the functional calculus, theorem 1.13) is

trace-class. We write T(H ) the set of trace-class operators on H .

Definition 1.17. A density operator on a Hilbert space H is a trace-class, self-
adjoint and positive operator ρ on H such that tr[ρ] = 1. We denote D(H ) the
set of density operators on H .

Example 1.18. In the Hilbert space C, it is straightforward to see that 1 is the
unique density operator.

Firstly, we can recover the set of pure states H as density operators:

Proposition 1.19. If ψ ∈H is a pure state, then Pψ ∈ D(H ), where as before
Pψ is the projector along the normalised state ψ.

2Importantly, the value of tr(A) is independent of the choice of basis.
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So, all pure states embed into this formulation by the map H → D(H ) : ψ 7→
Pψ. This axiom and the name “mixed state” is made clear by the following result:

Proposition 1.20. Let ρ ∈ D(H ) be a density operator, then there is a (non-
unique) sequence of positive real numbers (cj)j∈J ∈ [0, 1] and a sequence of states
(ψj)j∈J ∈H such that ρ = ∑

j∈J cjPψj and
∑
j∈J cj = 1.

We can interpret this sum as a classical probabilistic mix of the pure states ψj,
which is for example the output of a process that produces state ψj with probability
cj. It follows that density operators provide a good representation for a quantum
system in a mixed state:

Axiom M.1 (Mixed states). A (mixed) state on a quantum system with Hilbert
space H is described by a density operator ρ ∈ D(H ).

Like for pure states, a state of a composite quantum system is given by a state
on the tensor product of Hilbert spaces:

Axiom M.2 (Composite systems). A state on a composite of two quantum systems
with respective Hilbert spaces H and I is a state on H ⊗I , i.e. an operator in
D(H ⊗I ).

In fact, the trace can be used to define a metric on D(H ), called the trace
distance and given by d(A,B) = tr[A−B]. Although we will not need it for a long
time (in fact, until chapter 6) we state the following important property:

Proposition 1.21. D(H ) is a complete separable metric space with the metric
defined by the trace distance.

The corresponding norm is called the trace norm, and it more or less corresponds
to the Hilbert space norm for density operators:

Proposition 1.22. If ψ ∈H , then tr[Pψ] = ‖ψ‖H .

Proposition 1.23. T(H ) is an ideal in B(H ): whenever T ∈ T(H ) and
A ∈ B(H ), AT ∈ T(H ) and TA ∈ T(H ).

Proposition 1.24. The trace is cyclical: if Aj ∈ T(H ) for each j ∈ J with J
finite, and σ is a cyclic permutation of J , then

tr
∏
j∈J

Aσ(j)

 = tr
∏
j∈J

Aj

. (1.26)

Given these two properties, it is clear that the generalisation of axiom P.3 to
mixed states should be given by:
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Axiom M.3 (Expectation values). If A ∈ B(H ), the expectation value of A for a
state ρ is given by 〈A〉 = tr[Aρ] = tr[ρA].

Measurement are described once again by PVMs:

Axiom M.4. An observable on a Hilbert space H is a projection-valued measure
P : Ω→ P(H ) on some measurable space (X,Ω).

If the system is in the state ρ ∈ D(H ) outcome probabilites are described by
the probability measure on (X,Ω),

µPρ (E) = tr(P (E)ρ). (1.27)

If a measurement is made with outcome E ∈ Ω, the state of the system immediately
after the measurement is

ρE := P (E)ρP (E)
tr(P (E)ρ) . (1.28)

1.3.1 Quantum channels
We say a linear map Φ : T(H ) → T(I ) is positive if whenever A ∈ B(H ) is
positive, Φ[A] is also positive.

Definition 1.25. A quantum channel between Hilbert spaces H and I is a linear
map Φ : T(H )→ T(I ) that furthermore is:

• trace-preserving: for any A ∈ T(H ), tr[Φ[A]] = tr[A]; and,
• completely positive: for every n ∈ N, the linear map Φ⊗ In : T(H ⊗Cn)→

T(I ⊗ Cn) is positive.

The set of all quantum channels T(H )→ T(I ) will be written C(H ,I ), and the
application of a quantum channel Φ on a state ρ as Φ[ρ].

Then, quantum channels model transformations on mixed quantum states:

Axiom M.5. A transformation from a quantum system with Hilbert space H to one
with Hilbert space I is described by a quantum channel map Φ : T(H )→ T(I ).

For any unitary U ∈ U(H ), there is an associated quantum channel given by
conjugation: ΓU (T ) := UTU∗. If Pψ is the projection along ψ ∈H , it is clear that
ΓU(Pψ) = PUψ, and once again the pure theory is recovered via the projections.

The conditions in definition 1.25 can be straightforwardly motivated. The first
is clearly necessary for a quantum channel to map density operators to density
operators, i.e. for the quantum channel to preserve statefulness. The second is
also about preserving statefulness, but in a more subtle way. It is necessary to
guarantee positivity of the channel obtained by performing Φ on part of a larger
system and ignoring the rest.
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Example 1.26. We have already seen an example of a very simple quantum
channel: the trace on H is the unique quantum channel H → C. This justifies
the square-bracket notation we have used thus far for the trace.

A particularly important quantum channel is obtained by tracing out a single
subsystem in a tensor product:

Theorem 1.27. Suppose that ρ ∈ D(H1 ⊗H2). Then there is a unique density
operator tr2[ρ] ∈ D(H1) with the property that for any A ∈ B(H ),

tr[tr2[ρ]A] = tr[ρ(A⊗ I)]. (1.29)

We call tr2[ρ] the partial trace of ρ with respect to H2, and the function D(H1 ⊗
H2)→ D(H1) : ρ 7→ tr2[ρ] is a quantum channel.

This extends straightforwardly to density operators in a finite tensor product
of Hilbert spaces ⊗j∈J Hj, and we obtain for each k ∈ J , a quantum channel

trk : D(
⊗
j∈J

Hj)→ D(
⊗

j∈J\{k}
Hj), (1.30)

called the partial trace over Hk.
The following description of quantum channels, due to Karl Kraus, is particularly

useful, especially (but not only) in finite-dimensions:

Theorem 1.28 (Kraus decompositions). Φ : T(H )→ T(I ) is a quantum channel
if and only if there is an at most countable index set J and a collection of linear
operators (Kj : H → I )j∈J such that for any ρ ∈ T(H ),

Φ[ρ] =
∑
j∈J

KjρK
∗
j and

∑
j∈J

KjK
∗
j = II . (1.31)

This allows us to describe a typical way in which quantum channels arise in
the finite-dimensional case. A measurement process, described by a PVM P , in
which the information on the actual outcome of the measurement is not conserved
is a quantum channel described by a collection of Kraus operators (Km). Each
operator Km is the map obtained applying the projection P ({m}) corresponding
to the outcome m. Intuitively, this corresponds to the classical probabilistic mix of
the pure states that one would have obtained from axiom P.4 given outcome m.

The Kraus formulation of quantum channels has a couple of drawbacks. Firstly,
the collection of operators (Aj : H → J )j∈J is non-unique. Secondly, in the
infinite-dimensional case we often want to consider measurements with uncountable
outcome sets (such as the real numbers). Then, these measurement can be associated
to quantum channels, and they have Kraus decompositions by theorem 1.28, but
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no Kraus decomposition where the operators correspond to measurement outcomes
as above. The theorem can be reformulated in the following essentially equivalent
way, due to William Stinespring [Sti55], which will also prove very useful:

Theorem 1.29 (Strinespring dilation). Φ : T(H )→ T(I ) is a quantum channel
if and only if there is a Hilbert space J and an isometry T : H → I ⊗J such
that for any ρ ∈ T(H )

Φ[ρ] = trJ [TρT ∗]. (1.32)
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Formal models of quantum
computation with qudits

This is an introductory chapter for the computational models that we will reason
about in the following few chapters. It introduces two models for qudit quantum
computation:

• quantum circuits, which are used to represent reversible quantum computa-
tions;

• the measurement calculus, which makes explicit use of quantum measure-
ments to transform an input state while consuming subsystems of the total,
composite quantum system. It is therefore deemed an “irreversible” model.

In section 2.1 we will first define some unitary operations that are omnipresent
when talking about qudit MBQC, before moving on to quantum circuits. We also
introduce a circuit notation for measurements which extends the quantum circuit
model and allows one to (somewhat clumsily) represent measurement calculus
computations in terms of quantum circuits. Then section 2.2 will introduce the
measurement calculus, a formal model for reasoning about measurement-based
quantum computation. It is one of the main objects of study in this thesis, and
defining it for qudits requires a careful consideration of the types of measurement
which should be allowed. The correct formulation of measurements will be captured
in the notion of measurement spaces, which are studied in subsection 2.2.1.

Some of the results in this chapter, in particular in sections 2.2 and 2.3 are based on our
article, [Boo+21].
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It is worthwhile to take a second at this point to discuss the interplay between
these two models, since a major part of this thesis will be dedicated to translating
from one to the other. It is easy, using the circuit notation for measurements, to
map any computation described in the measurement calculus into the quantum
circuit picture. However, this comes at a major cost: the resulting circuit is not
unitary and corresponds (in general) to a CPTP map as described in chapter 1.
We would much rather have a method for obtaining a reversible quantum circuit
(without measurements). This is not always possible, but chapters 4 and 5 provide
complete algorithms for doing so whenever it is possible.

2.1 The quantum circuit model
Throughout this thesis, d denotes an odd prime number, and Zd = Z/dZ the ring
of integers with arithmetic modulo d. We also put ω := ei

2π
d , and let Z∗d be the

group of units of Zd. Since d is prime, Zd is a field and Z∗d = Zd \ {0} as a set.
Many of our results apply with small modifications for the case d = 2, but since
this case has been extensively studied already, we omit it for the sake of simplicity.

The Hilbert space of a single qudit [Got99; Wan+20] is H := L 2(Zd), and we
write U(H ) the group of unitary operators acting on H . Throughout the qudit
part of this thesis, we shall use the Dirac notation. A state ψ ∈H will be written
|ψ〉 and decomposed along a fixed choice of basis: |ψ〉 = 1√

d

∑
n∈Zd ψ(n) |n〉.

Given such a choice of basis, we have the following standard operators on H ,
also known as the clock and shift operators:

Z |m〉 := ωm |m〉 and X |m〉 := |m+ 1〉 for any m ∈ Zd. (2.1)

In particular, note that ZX = ωXZ. Any operator of the form ωkXaZb for
k, a, b ∈ Zd is called a Pauli operator, although we will often drop the phase ωk
as it is of little importance in most cases. We say a Pauli operator is trivial if
it is proportional to the identity. The Paulis are further related by the Fourier
operator,

F |m〉 = 1√
d

∑
n∈Zd

ωmn |n〉 s.t. FXF ∗ = Z and FZF ∗ = X−1, (2.2)

and the phase operator,

P |k〉 = ω
k(k+1)

2 |k〉 s.t. PXP ∗ = XZ and PZP ∗ = Z. (2.3)

Equations (2.1)–(2.3) imply that both X and Z, and in fact every Pauli has
spectrum {ωk | k ∈ Zd}, and in turn a simple counting argument shows that each
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eigenvalue has multiplicity 1. We label the eigenvectors of a Pauli Q by their
(unique) eigenvalues: for any k ∈ Zd, |k : Q〉 is the eigenvector of Q associated with
eigenvalue ωk.

Together, the Fourier and phase operators generate a subgroup of U(H ) called
the Clifford group [Got99; Cla06]. An element of this subgroup which is of particular
interest to us is the multiplier : for any k ∈ Z∗d,

M(k) |n〉 := |kn〉 s.t. M(k)XM(k)∗ = Xk and M(k)ZM(k)∗ = Zk−1
.
(2.4)

Finally, we will also use the Z-rotation operator, RZ(α) |x〉 := eiαx |x〉 for α ∈ Td−1.
All of the operators presented so far act on a single qudit. To make multiple

qudits interact, we use the controlled-Z operator (also, controlled phase), which
acts on H ⊗H ,

E |m〉 |n〉 := ωmn |m〉 |n〉 . (2.5)
It is important to emphasise a key difference between the qudit and the qubit

case: when d 6= 2, none of these operators are self-inverse. In fact, if Q is a Pauli
and I the identity operator on H , we have:

Qd = I, Ed = I ⊗ I and F 4 = I. (2.6)

As a result, they are not self-adjoint either, something which needs to be taken
into account when describing measurements.

2.1.1 Reversible quantum circuits
Quantum circuits are a simple graphical representation for unitary operations
acting on a fixed number of quantum systems, and built from a set of elementary
unitary operations called quantum gates. In our case, we consider a register V of
qudits corresponding to the Hilbert space H ⊗V . The set of quantum gates will
then be

{Uj, Eλ
j,k | U ∈ U(H ), λ ∈ Zd, j, k ∈ V }, (2.7)

where the indices indicate on which qudit the gates act, as described in sec-
tion (1.1.4). This gate set is universal in the usual sense [NC10; SK17a; SK17b]:
the group it generates is equal to U(H ⊗V ).

A quantum circuit is comprised of a set of n wires, each of which is identified
with a quantum system with Hilbert space H undergoing some unitary evolution,
and which together represent a unitary H ⊗n → H ⊗n. The simplest quantum
circuit consists in only the wires, and represents the identity I⊗n. For n = 4 this
gives:
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Operations from the gate set acting on the subsystems are represented as boxes
superimposed on the corresponding wires:

XaZb RZ(α) F .

For the two-qubit operation E, we use a special notation:

Ek = k ,

which we in turn use to define the controlled-X or CX gate:

=
F ∗ F

k k .

A generic quantum circuit is read from left to right and evaluated by successively
applying the quantum gates on the qudits corresponding to the wires in the circuit.
Left-to-right juxtaposition of gates in the same quantum circuit corresponds to
composition as functions. Here is another simple example of a quantum circuit
when n = 4:

X

RZ(α)

and this circuit is interpreted as the unitary

(I ⊗ CX2,3⊗I) ◦ (I ⊗RZ(α)⊗X ⊗ I) ◦ (E1,2 ⊗ E3,4), (2.8)

where the indices indicate on which subsystem each gate acts.
Any quantum circuit which is built in this way is reversible, since by reversing

the order of all the gates and taking their adjoints, we obtain the adjoint of the
whole circuit. This is the inverse of the unitary represented by the original quantum
circuit. In particular, every quantum circuit built in this way represents a unitary
operation on H .
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2.1.2 State preparation and measurements
The quantum circuit representation can be extended to include either state prepa-
ration or measurements of quantum systems. State preparations are easy once we
introduce some notation for labelling input and output states to a quantum circuit:

|φ〉 |ψ〉X .

|φ〉 represents an input state to the circuit, and |ψ〉 is the output obtained by
applying the unitary corresponding to the circuit on |φ〉. In this case, the circuit
describes an equation |ψ〉 = X |φ〉. State preparation is simply represented as a
fixed input state. For example, the quantum circuit that entangles an input with
the state |0〉 is

|0〉 .

No gates are allowed to act on a wire before the state label, and the interpretation
of state preparation is then just the map:

H ⊗n −→H ⊗n+1

|ψ〉 7−→ |ψ〉 ⊗ |φ〉
. (2.9)

As a result, a quantum circuit built from the unitary fragment plus state prepa-
rations represents an isometry H ⊗m → H ⊗n with m 6 n and n−m being the
number of prepared states.

Measurements are a little bit more subtle. Recall from chapter 1 that a
measurement is given by a PVM P : Ω→ R. In the case of qudits, the σ-algebra
Ω is finite, and we interpret the outcome k ∈ Ω as classical data output by the
measurement. A measurement can then be represented by a box that has a quantum
input and a classical output, which we draw as a doubled wire:

P .

For example, the famous gate teleportation protocol is represented as

M

|0 : Q〉 Xm

,

where we have further used the outcome m of the measurement to control the
unitary gate Xm (which of course must appear after the measurement has taken
place). Any qudit which is both initialised and measured within a quantum circuit
is called an auxiliary qudit.
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Now, following the discussion in chapter 1, the operation represented by a
measurement is no longer unitary. If the outcomes of measurements are always
discarded by the end of the computation, a quantum circuit where ` systems
are inputs, m are prepared and n are measured corresponds to a CPTP map
D(H ⊗`)→ D(H ⊗(`+m−n)).

If one wishes to keep track of the exact outcomes of measurements throughout
the computation, it becomes necessary in principle to extend the axioms of sec-
tion 1.3. One needs access to a “classical” register which records the outcomes of
measurements,and which can be modelled as an extra interacting quantum system,
or as an external structure. However, in this thesis we do not need this structure:
we will always assume that measurement outcomes are discarded by the end of the
computation.

2.2 The measurement calculus
The measurement calculus was first introduced in [DKP07] as a rigorous mathe-
matical model for studying measurement-based quantum computation with qubits,
and various extensions to the measurement calculus have been studied [Dan+09;
Per06]. In this section we explicit another extension where the quantum systems
under consideration are taken to be qudits.

Inherent in the measurement calculus is the idea of outcome determinism. Put
informally, when is it possible to use measurement-outcome dependant operations
to eliminate the probabilistic nature of quantum measurements in order to obtain
a computation that does not depend on the result of any given measurement? In
order to be able to attack this question at all, we need to impose restrictions on
the kinds of measurements which we allow in the model. This leads naturally to
our introduction of measurement spaces, which can be thought of as collections of
“correctable” measurements labelled by the kind of correction which needs to be
made.

2.2.1 Measurement spaces
For MBQC with qubits, it is well-established that by using a Pauli X, Y or Z as
an acausal correction operator, it is possible to perform deterministic MBQCs on
graph states where the measurements are taken from the plane on the Bloch sphere
orthogonal to the chosen Pauli correction [Bro+07]. Since there are three Pauli
operators for qubits, this yields three allowable measurement “planes” for MBQC.

This interpretation is not as clear in the qudit case, partly because Pauli
operators are self-adjoint only in the case d = 2, but mostly because the geometry
of the Bloch “space” is not as intuitive in the general case. Instead, we describe
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a qudit-measurement by a unitary matrix M : given its spectral decomposition
M = ∑

i λiPi, the measurement ofM is the measurement given by the PVM {Pi}. In
the context of MBQC, we would like to have a distinguished measurement outcome,
the one that does not need corrections, so we assume that all measurements have a
fixpoint.

Definition 2.1. M is a fixpoint unitary if M∗M = MM∗ = I and there is a non-
zero |φ〉 ∈H s.t. M |φ〉 = |φ〉. Given (a, b) ∈ Z2

d \{(0, 0)}, the measurement space
M(a, b) is defined asM(a, b) := {fixpoint unitaries M s.t. XaZbM = ωMXaZb}.

It should be pointed out that the commutation relation used to define the
measurement spaceM(a, b) is somewhat arbitrary. We could have chosen instead
to use the relation

XaZbM = ωpMXaZb for some p ∈ Z∗d. (2.10)

However, nothing is lost by considering only p = 1, since if M satisfies equation
(2.10), then

Xp−1aZp−1bM = ωp
−1pMXp−1aZp−1b = ωMXp−1aZp−1b, (2.11)

(where this calculation is formally carried out using p−1 = d+1
p
) which implies that

M ∈M(p−1a, p−1b).
In fact, this construction is very analogous to one used in qudit quantum error

correction where the M are called detectable errors [Got99]. The main point of
this definition is that the Pauli XaZb can be used to translate the eigenvectors of
any measurement in the corresponding measurement space:

Proposition 2.2. If M ∈M(a, b) for some non-zero (a, b) ∈ Z2
d, then the spectrum

of M is {ωm | m ∈ Zd}, each eigenvalue has multiplicity 1, and M is special
unitary. Denoting |0 : M〉 the fixpoint of M , then |m : M〉 := (XaZb)−m |0 : M〉 is
an eigenvector of M associated with eigenvalue ωm.

Proof. By assumption, if M ∈ M(a, b) then M has a fixpoint M |0 : M〉 =
|0 : M〉. Letting Q = XaZb, it follows from the commutation relation that

MQ |0 : M〉 = ω−1QM |0 : M〉 = ω−1Q |0 : M〉 , (2.12)

so Q |0 : M〉 is an eigenvector ofM associated with eigenvalue ω−1. Repeating this
procedure, we find that |k : M〉 = Q−k |0 : M〉 is an eigenvector of M associated
with eigenvalue ωk, and a counting argument shows that each of these eigenvalues
must have multiplicity 1. Now, we have that det(M) = ∏

k∈Zd ω
k = 1.
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This means that the Pauli XaZb can be used as correction for any measurement
in the corresponding measurement space, and we will use this extensively in
chapter 3. Although there is not as nice a geometric picture for the collection of
all measurements as the Bloch sphere, qudit measurement spaces do retain some of
the structure of qubit measurement planes.

Proposition 2.3. ωkXxZz ∈M(a, b) if and only if bx− az = 1.

Proof. ωkXaZbXxZz = ωkωbxXa+xZb+z = ωbx−azωkXxZzXaZb.

Proposition 2.4. For any two non-commuting Pauli operators P,Q, there exists
a unique (a, b) ∈ Z2

d s.t. P,Q ∈M(a, b).

Proof. Given P and Q we can solve a linear system to find (a, b) s.t. P,Q ∈
M(a, b). This linear system has a unique solution.

Notice that when d > 2, two distinct pairs of non commuting Pauli operators can
lead to the same measurement space, e.g. the pairs (X,X2Zd−1) and (Z,X3Zd−2)
both belong to the same measurement space. For this reason, it is more convenient
to identify a measurement space by the corresponding pair (a, b) ∈ Z2

d, i.e. a choice
of Pauli corrector.

As in the qubit case, pairs of measurements within the same measurement space
M(a, b) are still related to each other by rotations around the “correction” axis
XaZb:

Proposition 2.5. Let XaZb be a non-trivial Pauli operator and N ∈ M(a, b).
Then M ∈ M(a, b) if and only if there is a special unitary U ∈ SU(d) such that
M = UNU∗ and [U,Q] = 0.

Proof. ( =⇒ ) If M ∈ M(a, b) then sp(M) = sp(N) = {ωk | k ∈ Zd} and each
eigenvalue has multiplicity one. It follows that M and N are similar so that there
is a unitary U such that M = UNU∗.

Furthermore, by proposition 2.2 and writing Q = XaZb, the eigenvector
|k : M〉 of M can be obtained as Q−k |0 : M〉, from which it also follows that
|k + 1 : M〉 = Q |k : M〉. But, we also haveMU |k + 1 : N〉 = UNU∗U |k + 1 : N〉 =
ωk+1U |k + 1 : N〉 from which it follows that

QU |k : N〉 = Q |k : M〉 = |k + 1 : M〉 = U |k + 1 : N〉 = UQ |k : N〉 . (2.13)

This is true for any k ∈ Zd, and since N is unitary its eigenvectors form a basis
for H . We deduce that QU = UQ.

Finally, it is clear we can choose U to be special unitary, since for any unit
norm λ ∈ C, (λU)N(λU)∗ = |λ|2UNU∗ = UNU∗.

38



CHAPTER 2. MODELS OF QUANTUM COMPUTATION WITH QUDITS

(⇐= ) Let M = UNU∗ such that [U,Q] = 0, then we have

MQ = UNU∗Q = UNQU∗ = ωUQNU∗ = ωQUNU∗ = ωQM. (2.14)

Furthermore, M and N have the same spectrum, and in particular M has a
fixpoint since N does. Then, M ∈M(a, b).

In turn, this allows us to recover a parametrisation of measurement spaces
much closer to the qubit case, where a measurement is given by angles relative to
a reference Pauli axis of the Bloch sphere.

Corollary 2.6 (Measurement angles). For any non-zero (a, b) ∈ Z2
d, a measurement

M ∈M(a, b) is characterised by d− 1 angles ~θ = (θ1, . . . , θd−1) ∈ [0, 2π)d−1, up to
a choice of reference axis P ∈M(a, b).

Proof. Fix some P ∈ M(a, b), then by the proposition, every M ∈ M(a, b) is
such that M = UPU∗, and in particular [U,XaZb] = 0. This implies that in the
eigenbasis of XaZb, U takes the form of a diagonal matrix diag(eiθk | k ∈ Zd)
with θk ∈ [0, 2π). Since det(U) = 1, we have that ∑d−1

k=0 θk = 0 and one of these
phases is redundant. Then, U and by extension, M , is uniquely determined by
the d− 1 phases {θk}d−1

k=1 (and the arbitrary choice of P ).

2.2.2 Measurement patterns
Given that we are interested in procedures with an emphasis on measurements and
corrections conditioned on the outcomes of measurements, the quantum circuit
description of computations is not very practical for our needs. Instead, we describe
an MBQC by a sequence of commands, called a measurement pattern. Here, we
formally describe the syntax of measurement patterns, assuming that a choice of
reference axis has been made for each measurement space.

Definition 2.7 ([DKP07]). A Zd-measurement term on a register V of qudits
consists in a finite ordered sequence of V -indexed commands chosen from:

• Nu : initialisation of a qudit u in the state |0 : X〉 = F |0〉;
• Eλ

u,v : application of Eλ on qudits u and v for some λ ∈ Zd, with u 6= v;
• Ma,b

u (~θ) : measurement of qudit u in the measurement space M(a, b) with
angles ~θ;

• Xmv
u and Zmv

u : Pauli corrections acting on qudit u and depending on the
outcome mv of the measurement of qudit v.

A measurement term is runnable if no commands act on a qudit v ∈ V before
it is initialised (except initialisations) or after it is measured; and no commands
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depend on the outcome of a measurement before it is made. A runnable measurement
term is called a Zd-measurement pattern.

We often drop explicit mentions of the field Zd when it is obvious.
The outcome mv of a given measurement can be described as a signal which

communicates its value across a control structure for the MBQC. The syntax for
corrections then binds that signal to a given correction.

Following Sanselme and Perdrix [SP17], measurement patterns can be equiva-
lently represented as labelled graphs. Then, following [Zho+03], these measurement
patterns are universal for all qudit quantum circuits.

Notation. A Zd-graph G is a loop-free undirected Zd-edge-weighted graph on a
set V of vertices. We will identify the graph G with its symmetric adjacency matrix
G ∈ ZV×Vd (for some arbitrary ordering of the rows and columns). If A,B ⊆ V ,
we will also denote G[A,B] the submatrix of G obtained by keeping only the rows
corresponding to elements of A and the columns corresponding to elements of B.
If A ⊆ V , then we denote 1A ∈ ZVd the column vector whose u-th element is 1
if u ∈ A, 0 otherwise. Similarly we consider Zd-multisets of vertices where each
vertex occurs with a multiplicity in Zd and we will identify the Zd-multiset with
column vectors in ZVd . The size of a multiset is defined by |A| = ∑

u∈V A(u) ∈ Zd.
x> is the transpose of x. Given a single qudit Pauli operator P and a multiset A,
let PA := ⊗

u∈V P
A(u)
u .

The commands of a measurement pattern satisfy the following identities, for
every u, v ∈ V such that u 6= v and a, b ∈ Zd:

XuZv = ZvXu, XuZu ' ZuXu, ZaZb = Za+b (2.15)
XuMv = MvXu, ZuMv = MvZu, XaXb = Xa+b (2.16)
Eu,vXu = XuZvEu,v, Eu,vZu = ZuEu,v, Eu,v = Ev,u (2.17)

where we use the notation A ' B to mean that there is a phase eiα such that
A = eiαB. It was shown by Danos, Kashefi, and Panangaden [DKP07] that any
runnable measurement pattern can be rewritten using these commutation relations
to the standard form1:( ≺∏

v∈Oc
Xmv

x(v)Z
mv
z(v)M

av ,bv
v (~θv)

) ∏
(u,v)∈G

EGuv
u,v

(∏
v∈Ic

Nv

)
, (2.18)

where I, O are subsets of V , x, z are functions Oc → ZVd , ≺ describes an order on
Oc for measurement (equivalently, the order of the product), mv is the outcome

1They worked in the qubit setting but their proof is purely symbolic. Rewriting Uλ =
∏λ
k=0 U

where U is any unitary from equations (2.15)-(2.17), and applying their standardisation procedure
results in a pattern of the form (2.18).
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of the measurement Mv, G is the matrix of a Zd-graph on the vertex set V , and
(u, v) ∈ G identifies an edge in the graph G. The functions x, z implicitly describe
a weaker measurement order: the transitive closure of the relation {(u, v) | x(v)u 6=
0 or z(v)u 6= 0} gives a strict partial order ≺x,z on Oc. The measurement order ≺
must agree with ≺x,z, and in fact any measurement order that agrees with ≺x,z
gives a valid standard form.

This motivates the following definition [DK06; Bro+07; Bac+21]:

Definition 2.8. An open Zd-graph is a triple (G, I,O) where G is a Zd-graph
over V , and I, O ⊆ V are distinguished sets of vertices which identify inputs and
outputs in an MBQC.

A labelled open Zd-graph is a tuple (G, I,O, λ) where (G, I,O) is an open
Zd-graph and λ : Oc → Z2

d \ {(0, 0)} assigns a measurement space to each measured
vertex.

If (G, I,O, λ) is a labelled open Zd-graph, we let

M(λ) := {M : Oc → U(H ) | (∀v ∈ Oc) : M(v) ∈M(λ(v))} , (2.19)

which is the set of choices of measurements across the whole open graph that
agree with the labelling. Then the form (2.18) describes a 1-to-1 correspondence
between measurement patterns and tuples (G, I,O, λ,x, z,M), where (G, I,O, λ)
is a labelled open Zd-graph, x, z are functions Oc → ZVd , and M ∈ M(λ). M
gives the measurement to be made at each non-output vertex, and x, z describe
corresponding outcome-dependant corrections. We shall call such a tuple a Zd-
MBQC. The labelling λ is technically required since the syntax of measurements in
equation (2.18) depends on the labelling, but as we shall see in the next section,
once the choice of M is made, λ has no effect on the actual computation carried
out by the Zd-MBQC (the semantics of the measurement pattern).

When we represent open graphs in figures, we represent input vertices as squares
vertices, and outputs as white vertices. The edge weights are represented as usual
for colored graphs. For labelled open graphs, labelling of each non-output vertex
is written next to the corresponding vertex. Unlabelled vertices correspond to
the label (0, 1), and unweighted edges are assumed to have weight 1. Here is an
example:
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3
1

4

3

4

2

(1, 3)

(3, 0) (2, 2)

.

2.2.3 Semantics and determinism
A Zd-MBQC (G, I,O, λ,x, z,M) describes an inherently probabilistic computation
with d× |Oc| possible branches (one for each set of measurement outcomes). For
an input state |φ〉 ∈H ⊗I and set of outcomes ~m ∈ ZOc

d , the corresponding branch
in a Kraus decomposition (theorem 1.28) is given by:

AM
~m (|φ〉) :=

( ≺∏
v∈Oc

Xmv
x(v)Z

mv
z(v) 〈mv : M(v)|v

) ∏
(u,v)∈G

EGuv
u,v

(|φ〉⊗
u∈Ic
|0 : X〉

)
,

(2.20)
which clearly depends on the choice of measurements M. We call the tuple
(G, I,O, λ,x, z) a programmable Zd-MBQC, and encode this dependence in the
following definition:

Definition 2.9. Let (G, I,O, λ,x, z) be a programmable Zd-MBQC, then its se-
mantics for a choice of measurements M ∈ M(λ) are given by a map defined
as:

JG, I,O, λ,x, zKM := D(H ⊗I) −→ D(H ⊗O)
ρ 7−→

∑
~m∈ZOc

d

AM
~m ρA

M∗
~m

, (2.21)

and which takes values in the set of CPTP maps H ⊗I →H ⊗O.

An MBQC is said to be deterministic if the output state never depends on
the outcomes of the measurements. This is equivalent to saying that all branches
(2.20) are proportional, in which case the pattern is described by the single Kraus
operator K~0, corresponding to obtaining outcome 0 for all measurements. This is
by construction a correction-less branch since we have then obtained the “preferred”
outcome of each measurement. However, a problem comes up if K~0 = 0, in which
case two deterministic Zd-MBQCs can have the same open Zd-graph but implement
different maps. See [DK06; Bro+07; SP17] for examples.

To exclude these pathological cases, a stronger determinism condition was
introduced by Danos and Kashefi [DK06]: a measurement pattern is strongly
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deterministic if all branch maps are equal up to a global phase. In particular,
strongly deterministic measurement patterns implement isometries.

Now, the original purpose of flow was to obtain sufficient and necessary condi-
tions for deciding when such an MBQC is deterministic. However, a characterisation
of strong determinism is still an open question, even in the case of qubits. Instead,
we restrict our attention to a yet stronger form of determinism, which is both more
tractable and arguably more practical [SP17]:

Definition 2.10 (Robust determinism). A programmable Zd-MBQC (G, I,O, λ,x, z)
is robustly deterministic if for any ≺x,z-lowerset2 S ⊆ Oc and any M ∈M(λ|S),
the MBQC (G, I,O ∪ Sc, λ|S,x|S, z|S,M) is strongly deterministic.

In other words, the MBQC is robustly deterministic if any partial computation
is strongly deterministic. Robust determinism is equivalent to the uniformly and
stepwise strong determinism of Browne et al. [Bro+07] in the qubit case.

Since the computation implemented by a robustly deterministic MBQC does
not depend on the corrections chosen, but only the open graph and the choice of
measurements, we simplify the semantics notation in that case to:

JG, I,O, λKM :=
√
d× |Oc|AM

~0 . (2.22)

The scalar factor accounts for the fact that the branch maps are not normalised
(in fact, the norm of the branch ‖A~m |ψ〉‖ encodes the probability of obtaining
that branch for a given input [DKP07], a trivial piece of information for a robustly
deterministic MBQC in which all branches have equal probability of occurring).

2.2.4 Causal flow
All of the preceding discussion begets an obvious question: when is a given mea-
surement pattern robustly deterministic? Causal flow was introduced in [DK06] as
a graph-theoretical tool for finding robustly deterministic MBQCs. It was the first
step in the framework we present in this thesis, and allows only the simplest kinds
of corrections. Writing N(u) the neighbourhood of u in a given graph, causal flow
is defined as follows:

Definition 2.11 ([DK06]). An open Zd-graph (G, I,O) has a causal flow (f,≺) if
f is a map Oc → Ic and ≺ a partial order on V such that for any i ∈ Oc,

1. i ≺ f(i);
2. Gi,f(i) 6= 0;
2If ≺ is a partial order on V , then a ≺-lowerset is a subset S ⊆ V such that if u ≺ v for some

v ∈ S, then u ∈ S.
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3. for every j ∈ N(f(i)) \ {i}, i ≺ j.

The name reflects the fact that a causal flow can always be viewed as a sequence
of single gate teleportations with intermediate controlled-Z operations. When we
perform measurements in the corresponding pattern, each input is teleported onto
a subsequent vertex in the graph, and thus can be seen to “flow” across the graph
state3.

The partial order ≺ gives an order for measurement, and the function f identifies,
for each measurement i ∈ Oc, a single vertex f(i) which is used for corrections.
Condition (1) encodes the fact that this vertex f(i) must not have been measured
when we try to perform the correction for i. Condition (2) implies that f(i) is a
neighbour of i in the graph G: this is necessary for the kind of corrections which
we consider: performing an X−1 gate at f(i) has the equivalent effect of applying
a Z gate at every neighbour of f(i) (see proposition 2.12). Then, condition (3) is
needed to make sure that no previously measured vertex, other that i, is affected
by this correction. The remaining Z gates acting in N(f(i)) \ {i} can be corrected
for by applying Z−1.

When only measurements inM(0, 1) are allowed, causal flow was shown to give
rise to a robustly deterministic Zd-MBQC (G, I,O,xf , zf ) given by:

xf (u) = −G−1
u,f(u)1{f(u)} and zf (u) = −G−1

u,f(u)G1N(f(u))\{u}, (2.23)

which is well-defined by condition 2 of definition 2.11.
In [DK06], this result is stated only in the case of qubits, but it can be easily

adapted for qudits. They rely on the relations (2.15)-(2.17), with only two additions,
which relate specific preparations and measurements to corrections: for any u ∈ Oc,
v ∈ I and m ∈ Z2,

〈0 : X|RZ(α) = Mu(α)Zmu and Xm
u Nu = Nu. (2.24)

These relations hold identically over L 2(Zd) if one takes insteadm ∈ Zd. As a result,
the causal flow condition also applies for qudits, and the resulting measurement
pattern (G, I,O,xf , zf ) is robustly deterministic.

3This intuition will later be formalised in terms of path covers of the open graph [de 08], but
we will not encounter them until chapter 4. Each input corresponds to the starting point of a
path that traverses the graph from the inputs to the outputs, identifying the vertices of (G, I,O)
that will be “traversed” by each input through subsequent teleportations.
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2.3 Graph states

For an open graph (G, I,O) and an arbitrary input state |φ〉 ∈H ⊗I , we write

|G(φ)〉 =
 ∏

(u,v)∈G
EGu,v
u,v

(|φ〉⊗
u∈Ic
|0 : X〉u

)
, (2.25)

which we call an open graph state, and put EG = ∏
(u,v)∈GE

Gu,v
u,v . Open graph states

are resource states for the MBQCs which we describe in this chapter. In the case
I = ∅, we recover the well-known qudit graph states [Zho+03; MMP13]. The
stabilisers of an open graph state are given by:

Proposition 2.12 (Open graph stabilisers). Let (G, I,O) be an open Zd-graph,
and assume Q is a product of Paulis. Then, Q |G(φ)〉 = |G(φ)〉 for all |φ〉 ∈H ⊗I

if and only if there is a multiset A ∈ ZVd such that Av = 0 for all v ∈ I and

Q = ω
A>GA

2 XAZGA. (2.26)

Proof. The stabilisers of |G(φ)〉 are simply the stabilisers of |φ〉⊗u∈Ic |0 : X〉
conjugated by EG. It is clear that the stabiliser group of |0 : X〉 is generated by
Xm for all m ∈ Zd. Since no Pauli stabilises every |ψ〉 ∈H , it follows that the
stabiliser group of |φ〉⊗u∈Ic |0 : X〉 is of the form XA for some A ∈ ZVd such that
Av = 0 if v ∈ I. Now, we have

EGX
Ak
k E∗G =

∏
(u,v)∈G

EGu,v
u,v XAk

k

∏
u,v∈V
u<v

EGu,v
u,v = XAk

k

∏
v∈V

ZGvkAk
v = XAkZGAk , (2.27)

so that

EGXAE
∗
G = EG

∏
k∈V

XAk
k E∗G = XAk

k

∏
v∈V

ZGvkAk
v (2.28)

=
∏
k∈V

XAkZGAk = ω
∑

k∈V A
T
kG
∑

k∈V AkX∑
k∈V Ak

Z∑
k∈V GAk

(2.29)

= ωA
TGAXAZGA, (2.30)

as claimed.
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Robust determinism in
measurement-based quantum
computation with qudits

We are now ready to begin our study of MBQC proper. This chapter is primarily
concerned with finding a characterisation of robust determinism in measurement
patterns over a finite cyclic field Zd. This characterisation will take the form of
a linear algebraic condition which relates to the connectivity of the open graph
(G, I,O) via its adjacency matrix G. It generalises the two previous flow conditions
that were introduced to characterise robust determinism in MBQC with qubits
only: causal flow and g-flow.

Causal flow was introduced by Danos and Kashefi [DK06], and was described
in section 2.2.4. However, it turned out to be too restrictive a condition. While
it is sufficient for robust determinism, only the simplest kinds of corrections were
allowed and there are many open graphs corresponding to robustly deterministic
patterns that do not have causal flow. This lead to the formulation of generalised
flow or g-flow [Bro+07] which was subsequently proven to be a necessary and
sufficient condition for a qubit measurement pattern to be robustly deterministic
[PSM]. Generalised flow is briefly described in section 3.1.1 of this chapter.

The g-flow condition was originally stated in terms of parity conditions on
The results in this chapter are based on our article, [Boo+21], and the work was presented at

the 19th International Conference on Quantum Physics and Logic as well as the Sixth International
Conference for Young Quantum Information Scientists.
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the neighbourhoods of measured vertices in the labelled open graph (G, I,O, λ).
These conditions can straightforwardly be interpreted as equations in a linear space
over the finite field Z2 (see proposition 3.5). Generalising this construction to the
case of any prime d, we get our novel flow condition, Zd-flow, which is presented
in section 3.1. Then, we show that Zd-flow is both sufficient and, in section 3.2,
necessary for a Zd-measurement pattern to be robustly deterministic. Finally, in
section 3.3 we present a polynomial-time algorithm which finds a Zd-flow for an
input open graph whenever one exists.

This chapter builds on the constructions introduced in chapter 2. Beyond the
definitions of measurement patterns and robust determinism which are of course
ubiquitous, we make frequent use of the following:

• Zd-flow is closely linked to the existence of Pauli stabilisers of open graph
states, proposition 2.12; they are essential in the proofs that Zd-flow is both
necessary and sufficient for robust determinism;

• the proof that Zd-flow is necessary for robust determinism relies extensively
on the characterisation of measurement spaces from section 2.2.1.

3.1 Zd-flow is sufficient for robust determinism
This leads us to the statement of our novel flow condition. It is a strict generalisation
of gflow to qudits, which must take into account the additional freedom in open
graphs described in section 2.2. Recall that, if A,B ⊆ V , G[A,B] is the submatrix
of G obtained by keeping only the rows corresponding to elements of A and the
columns corresponding to elements of B.

Definition 3.1. A labelled open Zd-graph (G, I,O, λ) has a Zd-flow (C,Λ) if
C ∈ ZV×Vd and Λ is a totally ordered partition of V such that

1. ∀u ∈ Oc, λ(u) = (Cuu, (GC)uu);
2. C[I, V ] = 0 and C[V,O] = 0;
3. for any M,N ∈ Λ,

• C[M,M ] and (GC)[M,M ] are diagonal;
• whenever M < N , C[M,N ] = (GC)[M,N ] = 0.

If λ(u) = (0, 1) for all u ∈ Oc, we say that (C,Λ) is a simple Zd-flow, otherwise it
is extended. We call Λ a layer decomposition of (G, I,O, λ) for C and the elements
of Λ are layers.

If (G, I,O, λ) is a labelled open graph with Zd-flow (C,Λ), then we obtain a
runnable MBQC (G, I,O, λ,xC , zC) by imposing

xC(v) := (C•v − λ(v)11{v}) and zC(v) := ((GC)•v − λ(v)21{v}), (3.1)
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a

c
b


0 0 a 0
0 0 b c
a b 0 0
0 c 0 0


︸ ︷︷ ︸

G


0 0 0 0
0 1 0 0
a−1 0 0 0
0 0 0 0


︸ ︷︷ ︸

C

=


1 0 0 0

ba−1 0 0 0
0 b 0 0
0 c 0 0


(0, 1)

(1, 0)

Figure 3.1: An example of a labelled open graph (left) with corresponding Zd-flow
(right). The inputs of the open graph are square vertices, and the outputs are
white. The labelling is written in parentheses next to the unmeasured vertices.
The edge weights can take any values in Zd with the only constraint being that a
must be invertible. We measure the input vertex before the auxiliary non-output,
which gives the corresponding layer decomposition.

where M•v is the v-th column of a matrix M .
The layer decomposition Λ describes a (partial) measurement order for the

non-output qudits: the qudits can be measured in any totalisation of the order
induced on Oc by the order of Λ, and qudits within the same layer can be measured
simultaneously. This order is a (not necessarily strict) extension of the order
induced by xC , zC as described in section 2.2.2.

The u-th columns (minus the u-th element) of C and GC then respectively
describe where to apply X and Z corrections for the measurement of vertex u ∈ Oc.
If u belongs to layer L ∈ Λ, the elements in C•u and (GC)•u corresponding to
vertices in layers L < K then express the back-action of these corrections on qudits
that have already been measured. These matrix elements must consequently be
zero for there to be no unwanted back-action. The elements in C•u and (GC)•u
that corresponds to vertices in the same layer as u must also be 0, since those
vertices can be measured before u. These considerations impose condition 3.

Condition 2 follows from the fact that the outputs are not measured and thus
no correction is needed. Furthermore, we cannot apply X corrections at an input
vertex, since our proof of robust determinism relies on the fact that XuNu = Nu.1
Finally, the u-th element of C•u and (GC)•u describes the effective correction
applied at vertex u, XC

uuZ
(GC)uu , when we follow this procedure. This effective

correction must match the measurement space assigned to u so that we can use
the back-action to perform the correction, which implies condition 1.

Then this MBQC is deterministic and implements an isometry:

Theorem 3.2. Suppose the labelled open graph (G, I,O, λ) has Zd-flow (C,Λ), then
the programmable MBQC (G, I,O, λ,xC , zC) is runnable and robustly deterministic.

1Equivalently, by proposition 2.12, the open graph stabiliser have X components only on
non-input vertices of the graph.

48



CHAPTER 3. ROBUST DETERMINISM IN MBQC WITH QUDITS

Furthermore, for a given choice of measurements M, it realises the isometry
JG, I,OKM = H⊗I → H⊗O :

√
d× |Oc|⊗u∈Oc 〈0 : M(u)|EGNIc .

Proof. Assume (G, I,O, λ) has a Zd-flow (C,Λ). We perform the measurements
in the order given by any totalisation of the order induced by Λ on V . We measure
qudit u with a M -measurement, and we obtain a classical outcome su ∈ Zd. Let
Qu := XCuu

u Z(GC)uu
u then by lemma 2.5, the action of any measurement inM(λ(u))

correspond to the application on qudit u of the projector 〈m : M | = 〈0 : M |Qsu
u .

Thus a correction must consist in simulating the application of Q−su on u. The
definition of Zd-flow implies that C and GC must be lower triangular, so that
X(C{u})\{u}Z(GC{u})\{u} acts only on unmeasured qudits, where A \ {u} removes
all the occurrences of u in A:

A \ {u} = v 7→

0 if u = v

A(v) otherwise
. (3.2)

Then by proposition 2.12 we have that:

Xsu
(C{u})\{u}Z

su
(GC{u})\{u} |G〉 = Xsu

(C{u})\{u}Z
su
(GC{u})\{u}Q

su
u Q

−su
u |G〉 (3.3)

= Xsu
C{u}Z

su
GC{u}Q

−su
u |G〉 = Q−suu |G〉 . (3.4)

As a consequence, the correction Xsu
(C{u})\{u}Z

su
(GC{u})\{u} is runnable and makes

the computation uniformly deterministic.
Since all the branch maps are equal, the computation is strongly deterministic,

and since we have considered only a single measurement and the associated
corrections, it is stepwise deterministic.

In [DK06] it was shown that if a measurement pattern is strongly deterministic
then it implements an isometry. Since we correct each measurement to the
outcome m = 0, it is clear after renormalising that the final isometry is given by
H⊗I → H⊗O :

√
d× |Oc|∏u∈Oc 〈0 : Mu|EGNIc as claimed.

3.1.1 Recovering gflow
Generalised flow was originally formulated in terms of a partial order on the vertices
to be measured. If A ⊆ V , we write Odd(A) the subset ⋃a∈AN(a) of vertices that
are neighbours of an odd number of elements of A. Then:

Definition 3.3 ([Bro+07]). A labelled open Z2-graph (G, I,O, λ) has g-flow if
there exists a map g : Oc → 2Ic and a partial order ≺ on V such that for all i ∈ Oc,

• if j ∈ g(i) and i 6= j then i ≺ j;
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• if j � i and i 6= j then j /∈ Odd(g(i));
• if λ(i) = (0, 1) then i /∈ g(i) and i ∈ Odd(g(i));
• if λ(i) = (1, 1) then i ∈ g(i) and i ∈ Odd(g(i));
• if λ(i) = (1, 0) then i ∈ g(i) and i /∈ Odd(g(i)).

These parity conditions of the connectivity of the open graph can be reinterpreted
as linear equations over Z2, as we see here.

In the case of Zd-flow, it is straightforward to see that the order of the layer
decomposition Λ induces a (non-unique) partial order on the vertices V . Given
a partial order ≺ on the vertices V , then there is of course a (also non-unique)
ordered partition of V that agrees with ≺. Since either of these orders are only
used to describe the measurement order for the vertices of the graph, we can write
the Zd-flow condition in terms which are closer to [Bro+07]:

Lemma 3.4 (Partial order Zd-flow). (G, I,O, λ) has a Zd-flow if and only if there
exists C ∈ ZV×Vd and a partial order ≺ on V such that

1. ∀u ∈ Oc, λ(u) = (Cuu, (GC)uu);
2. Cuv = 0 whenever u ∈ I or v ∈ O;
3. when the columns and rows of G and C are ordered according to any totalisa-

tion of ≺, C and GC are lower triangular.

It is straightforward from this formulation to recover the gflow condition, using
the intuition that the parity conditions in the original formulation correspond to
linear equations over Z2: we interpret g(i) ∈ 2Ic as an element of ZIc

2 which is
embedded into ZV2 by padding it with zeros. This then corresponds to the column
C•i, and the g-flow conditions are then equivalent to those of Z2-flow:

Proposition 3.5. A labelled open Z2-graph (G, I,O, λ) has a gflow if and only if
it has a Z2-flow.

We omit the formal proofs of these statements, which involve technical calcula-
tions of matrix elements and therefore are not particularly informative.

3.2 Zd-flow is necessary for robust determinism
It has been shown in the qubit case that any measurement pattern that is robustly
deterministic is such that the underlying open graph has a gflow [Bro+07; PSM].2
We generalise this result to the case of qudits:

2Note that the claimed proof in [Bro+07] is mistaken. The mistake is corrected by the original
authors in the upcoming article [PSM]. The work in this section also corrects the original mistake
(in particular the proof of lemma 3.7), but I do not claim the first correct proof.
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Theorem 3.6. If (G, I,O, λ,x, z) is a robustly deterministic Zd-MBQC, then the
underlying labelled open Zd-graph (G, I,O, λ) has a Zd-flow (C,Λ) such that x = xC
and z = zC.

3.2.1 A technical lemma
Our proof of theorem 3.6 relies crucially on the following technical lemma, which
we prove in this section. The idea is that we need to identify the open graph state
of an arbitrary robustly deterministic measurement pattern with the open graph
state of an open graph3 with Zd-flow. However, we in principle only have access to
the projected states after measurements have been made. Therefore, it is necessary
to show that the set of measurementsM(λ) is rich enough to allow us to identify
two states which have identical projections on all measurements. Put formally,

Lemma 3.7. Let (G, I,O, λ) be a labelled open Zd-graph, |φ〉 , |φ′〉 ∈ (H ⊗V )1 and
R ⊆ V . For any M ∈M(λ|R) and ~m ∈ ZRd , put |~m : M〉 = ⊗

r∈R |mr : M(r)〉. If,
for every such ~m and M, we have

〈~m : M|φ〉 ' 〈~m : M|φ′〉 and ‖〈~m : M|φ〉‖ = 1√
d|R|

= ‖〈~m : M|φ′〉‖, (3.5)

then there is a subset L ⊆ R, ~x, ~y ∈ ZLd and |ψ〉 ∈H ⊗V \L such that

|φ〉 ' |ψ〉
⊗
n∈L
|xn : Qn〉 and |φ′〉 ' |ψ〉

⊗
n∈L
|yn : Qn〉 . (3.6)

We build up to the proof of lemma 3.7 itself in a sequence of smaller results.
Firstly:

Lemma 3.8. Let |φ〉 be a state of a register V of qudits, Q = XaZb a Pauli
operator and fix some v ∈ V . If for every measurement M ∈M(a, b) of the qudit
v and every m ∈ F, we have

‖〈m : M | φ〉‖ = 1√
d

(3.7)

then |φ〉 has a Schmidt decomposition of the form

|φ〉 =
∑
x∈Zd

cx |x : Q〉 ⊗ |ψx〉 , (3.8)

where |x : Q〉 is an eigenvector of Q associated with eigenvalue ωx, and we take the
coefficients cx to be real and non-negative.

3Open graph states were defined in section 2.3.
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Proof. Pick some M ∈M(a, b), we can write

|φ〉 =
∑
m∈Zd

|m : M〉 |φm〉 where |φm〉 := 〈m : M |φ〉 (3.9)

and ‖〈m : M |φ〉‖ = 1√
d
.

Letting {|ψm〉} be the collection of vectors obtained by orthonormalising
{|φm〉}, we can expand |φ〉 in this basis:

|φ〉 = 1√
d

∑
m,n∈Zd

Ψmn |m : M〉 |ψn〉 , and for anym ∈ Zd, ‖Ψm•‖2 = 1 (3.10)

where Ψ is therefore a d× p matrix such that p is the dimension of the subspace
of H ⊗V generated by the |φm〉 and we denote Ψm• the mth line vector of Ψ.

We know that, for every rotation U in SU(d) preserving Q and every M in
M(a, b), UMU † is also in M(a, b). The group of all such rotations acts on Ψ
from the left via the Hilbert space representation, and this action is generated by
the rotations of the form V −1

M Rk,l(ξ)VM , where VM is the d-dimensional discrete
Fourier transform matrix in the eigenbasis of M , and Rk,l(ξ) is the diagonal
matrix given by k ∈ Zd, l ∈ Z∗d and ξ ∈ R, by

Rk,l(ξ)mm :=


e−iξ if m = k;
eiξ if m = k + l;
1 otherwise.

(3.11)

Explicitly, VM is given by 〈m : M |VM |n : M〉 = ωmn. According to equation (3.7),
applying a rotation preserving Q to v preserves the outcomes’ probabilities. As
such, we deduce that the action of rotations V −1

M Rk,l(ξ)VM on matrix Ψ will
preserve the norm of its line vectors. Namely, for every k ∈ Zd, l ∈ Z∗d and ξ ∈ R,

‖Ψm•‖2 =
∥∥∥(Dk,l,ξΨ)m•

∥∥∥2
where Dk,l,ξ := V −1

M Rk,l(ξ)VM . (3.12)

Below, we explicit the right side of this equality to find which Ψ satisfy equa-
tion (3.12). First, we compute the row vectors of the transformed matrix:

(Dk,l,ξΨ)m• = Ψm• + 1
d

∑
α∈Zd

Ψα•
(
ωk(m−α)(e−iξ − 1) + ω(k+l)(m−α)(eiξ − 1)

)
(3.13)

= Ψm• + P k,l,1
m sin ξ + P k,l,2

m (cos ξ − 1) (3.14)
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where

P k,l,1
m := −2

d

∑
α∈Zd

Ψα•ω
(k+ l

2 )(m−α) sin
(
πl

d
(m− α)

)
and (3.15)

P k,l,2
m := 2

d

∑
α∈Zd

Ψα•ω
(k+ l

2 )(m−α) cos
(
πl

d
(m− α)

)
. (3.16)

We rewrite equation (3.12) as,

‖Ψm•‖2 =
∥∥∥(Dk,l,ξΨ)m•

∥∥∥2
(3.17)

=
∥∥∥Ψm• + P k,l,1

m sin ξ + P k,l,2
m (cos ξ − 1)

∥∥∥2
(3.18)

= ‖Ψm•‖2 + A+B sin ξ + C cos ξ +D cos 2ξ + E sin 2ξ, (3.19)

from which we deduce:

A+B sin ξ + C cos ξ +D cos 2ξ + E sin 2ξ = 0. (3.20)

We specify these five alphabetic constants while emphasising that only the ex-
pression of D will be used thereafter:

A := 3
2
∥∥∥P k,l,2

m

∥∥∥2
− 2 Re

(
Ψm•P

k,l,2∗
m

)
+ 1

2
∥∥∥P k,l,1

m

∥∥∥2
, (3.21a)

B := 2 Re
(
Ψm•P

k,l,1∗
m

)
− 2 Re

(
P k,l,1
m P k,l,2∗

m

)
, (3.21b)

C := 2 Re
(
Ψm•P

k,l,2∗
m

)
− 2

∥∥∥P k,l,2
m

∥∥∥2
, (3.21c)

D := 1
2

(∥∥∥P k,l,2
m

∥∥∥2
−
∥∥∥P k,l,1

m

∥∥∥2
)
, (3.21d)

E := 2 Re
(
P k,l,1
m P k,l,2∗

m

)
, (3.21e)

where P k,l,i∗
m denotes the complex conjugate of P k,l,i

m .
We know that {cos(mξ), sin(nξ)}m,n∈N forms an orthogonal set in the space

of periodic functions of period 2π with respect to the Hermitian form 〈f, g〉 :=∫ π
−π f

∗(t)g(t)dt, and as such, the five alphabetic constants of the left side of
equation (3.20) must be zero.
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We develop the two terms of the constant D, ∀m, k ∈ Zd, l ∈ Z∗d , and obtain:

∥∥∥P k,l,1
m

∥∥∥2
= 4
d2

∑
α,α′∈Zd

Ψ∗α •Ψα′•ω
(k+ l

2 )(α−α′) cos
(
πl

d
(m− α)

)
cos

(
πl

d
(m− α′)

)
,

(3.22a)∥∥∥P k,l,2
m

∥∥∥2
= 4
d2

∑
α,α′∈Zd

Ψ∗α •Ψα′•ω
(k+ l

2 )(α−α′) sin
(
πl

d
(m− α)

)
sin

(
πl

d
(m− α′)

)
.

(3.22b)

Using the addition formulas of trigonometry, we deduce,

D = 2
d2

∑
α,α′∈Zd

Ψ∗α •Ψα′•ω
(k+ l

2 )(α−α′) cos
(
πl

d
(2m− α− α′)

)
= 0. (3.23)

We introduce the following change of variables 2β := α + α′ and 2β′ := α − α′,
such that we obtain,

∀k, n ∈ Zd and l ∈ Z∗d,
∑

β,β′∈Zd

ω2(k+ l
2 )β′Ψ∗β+β′•Ψβ−β′• cos

(
2πl
d

(m− β)
)

= 0.

(3.24)
Now, for any l ∈ Z∗d, the square matrix given by Ωk,β′ := ω2(k+ l

2 )β′ is invertible. As
a consequence, we deduce from the previous equation that ∀m ∈ Zd and ∀l ∈ Z∗d,

∑
β∈Zd

Ψ∗β+β′•Ψβ−β′• cos
(

2πl
d

(m− β)
)

= 0. (3.25)

Developing the cosine, we obtain

cos
(

2πlm
d

) ∑
β∈Zd

Ψ∗β+β′•Ψβ−β′• cos
(

2πlβ
d

)

+ sin
(

2πlm
d

) ∑
β∈Zd

Ψ∗β+β′•Ψβ−β′• sin
(

2πlβ
d

)
= 0,

(3.26)

from which we deduce, using again the argument used in equation (3.20), that
∀l ∈ Z∗d,

∑
β∈Zd

Ψ∗β+β′•Ψβ−β′• cos
(

2πlβ
d

)
= 0, (3.27a)
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∑
β∈Zd

Ψ∗β+β′•Ψβ−β′• sin
(

2πlβ
d

)
= 0. (3.27b)

These equations force the following conclusion: for all β ∈ Zd, the Hermitian
product of Ψβ+β′• and Ψβ−β′• depends only of β′, namely:

Ψ∗β+β′•Ψβ−β′• = rβ′ . (3.28)

At this point, we define a “Fourier transform” of our line vectors Ψm• as

ΨF
γ• := 1√

d

∑
m∈Zd

Ψm•ω
mγ. (3.29)

This tranformation is invertible as:

Ψm• = 1√
d

∑
γ∈Zd

ΨF
γ•ω

−mγ, (3.30)

so that going back to |φ〉,

|φ〉 = 1√
d

∑
m,n∈Zd

Ψmn |m〉 |ψn〉 (3.31)

= 1
d

∑
m,n∈Zd

∑
γ∈Zd

ΨF
γnω

−mγ

 |m〉 |ψn〉 (3.32)

= 1
d

∑
m,γ∈Zd

ω−mγ |m〉
∑
n∈Zd

ΨF
γn |ψn〉 (3.33)

= 1√
d

∑
γ∈Zd
|−γ : Q〉

∣∣∣ψFγ 〉 , (3.34)

where
∣∣∣ψFγ 〉 := ∑

n∈Zd ΨF
γn |ψn〉. Making good use of equation (3.28), we find that

for γ1, γ2 ∈ Zd 〈
ψFγ1

∣∣∣ψFγ2

〉
=
∑
n∈Zd

ΨF∗
γ1nΨF

γ2n′ 〈ψn|ψn′〉 (3.35)

=
∑
n∈Zd

ΨF∗
γ1nΨF

γ2n (3.36)

= 1
d

∑
n∈Zd

 ∑
m1,m2∈Zd

Ψ∗m1nΨm2nω
−m1γ1+m2γ2


(3.37)
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= 1
d

∑
m1,m2∈Zd

∑
n∈Zd

Ψ∗m1nΨm2n

ω−m1γ1+m2γ2

(3.38)

according to equation (3.28), = 1
d

∑
m1,m2∈Zd

rm1−m2
2

ω−m1γ1+m2γ2 (3.39)

= 1
d

∑
α1,α2∈Zd

rα2ω
−(α1+α2)γ1+(α1−α2)γ2 (3.40)

summing over α1, =
∑
α2∈Zd

rα2ω
−α2(γ1+γ2)δγ1,γ2 . (3.41)

The family {
∣∣∣ψFγ 〉}γ∈Zd forms an orthogonal family. Note that, depending on

the value of the rα, some
∣∣∣ψFγ 〉 can be of norm 0. Nevertheless, whenever the

condition of equation (3.7) is met, we have a valid Schmidt decomposition of |φ〉
of the form

1√
d

∑
γ∈Zd
|−γ : Q〉

∣∣∣ψFγ 〉 . (3.42)

Lemma 3.9. Let |φ〉 , |φ′〉 be two states of a register V of qudits, Q = XaZb a non-
trivial Pauli operator and fix some v ∈ V . If for every measurement M ∈M(a, b)
of the qudit v and every m ∈ Zd, we have

〈m : M | φ〉 ' 〈m : M | φ′〉 and ‖〈m : M | φ〉‖ = 1√
d

= ‖〈m : M | φ′〉‖,
(3.43)

then at least one of the following holds:

1. |φ〉 ' |φ′〉;
2. |φ〉 and |φ′〉 are separable and there are x, y ∈ Zd and |ψ〉 ∈ H ⊗V \{v} such

that
|φ〉 = |x : Q〉v ⊗ |ψ〉 and |φ′〉 ' |y : Q〉v ⊗ |ψ〉 , (3.44)

where |x : Q〉 is an eigenvector of Q associated with eigenvalue ωx.

Proof. Assume that both |φ〉 , |φ′〉 have Schmidt rank 1. According to the previous
lemma, we can write both states as

|φ〉 = |x : Q〉 ⊗ |ψx〉 and |φ′〉 = |y : Q〉 ⊗
∣∣∣ψ′y〉 , (3.45)
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using equation (3.43),

|ψx〉 =
√
d 〈0 : M |φ〉 = eiα

√
d 〈0 : M |φ′〉 = eiα

∣∣∣ψ′y〉 , (3.46)

and we are clearly in subcase (2) of the main lemma.
Now, assuming the Schmidt rank along the partition {v;V \ {v}} of both |φ〉

and |φ′〉 is greater than or equal to 2. According to the previous lemma,

|φ〉 =
∑
x∈Zd

cx |x : Q〉 ⊗ |ψx〉 and |φ′〉 =
∑
x∈Zd

c′x |x : Q〉 ⊗ |ψ′x〉 . (3.47)

Then, for any m, k, l ∈ Zd, and any ξ ∈ Td, we have

〈m : M |φ〉 = eiαm 〈m : M |φ′〉 , (3.48)
〈m : M |Dk,l,ξ|φ〉 = eiβ(k,l,ξ,m) 〈m : M |Dk,l,ξ|φ′〉 , (3.49)

where Dk,l,ξ is defined as in equation (3.12) and β is a function of the different
parameters which define the rotation. Developing the right-hand side of the
previous equation we find

〈m : M |Dk,l,ξ|φ′〉 =
∑
x

c′x 〈m : M |Dk,l,ξ|x : Q〉 |ψ′x〉 (3.50)

=
∑
x

[
ωmx + 1

d

∑
n

ωnx
(
ωk(m−n)

(
e−iξ − 1

)
+ ω(k+l)(m−n)

(
eiξ − 1

))]
c′x |ψ′x〉 .

(3.51)

Likewise, for the left-hand side, we have for any m, k, l ∈ Zd, and any ξ ∈ Td,

〈m : M |Dk,l,ξ |φ〉 (3.52)

= 〈m : M |φ〉+ 1
d

∑
n

(
ωj(m−n)(e−iξ − 1)ω(j+k)(m−n)(eiξ − 1)

)
〈n : M |φ〉 (3.53)

=eiαm 〈m : M |φ′〉+ 1
d

∑
n

(
ωj(m−n)(e−iξ − 1)ω(j+k)(m−n)(eiξ − 1)

)
eiαn 〈n : M |φ′〉

(3.54)

=
∑
x

[
eiαmωmx + 1

d

∑
n

eiαnωnx
(
ωk(m−n)(e−iξ − 1)ω(k+l)(m−n)(eiξ − 1)

)]
c′x |ψ′x〉 ,

(3.55)

where we have used equation (3.48) between the first two lines. By identifying
components along the orthonormal basis elements {|ψ′x〉} and removing terms
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where c′x = 0, we can write equation (3.49) as

eiβ(j,k,ξ,m)
(
ωmx + 1

d

∑
n

ωnxωk(m−n)
(
e−iξ − 1

)
+ 1
d

∑
n

ωnxω(k+l)(m−n)
(
eiξ − 1

))
=ωmxeiαm + 1

d

∑
n

eiαnωnxωk(m−n)
(
e−iξ − 1

)
+ 1
d

∑
n

eiαnωnxω(k+l)(m−n)
(
eiξ − 1

)
.

(3.56)
Since |φ′〉 has Schmidt rank of at least 2, we can find y, z ∈ Zd such that

y 6= z, c′y 6= 0 and c′z 6= 0. For the next part, let k = y and l = z − y such that
the phase of Dk,l,ξ is applied on the two non-zero components.

From now on, we note β(ξ,m) := β(y, z − y, ξ,m). Taking the coefficients
along

∣∣∣ψ′y〉, we rewrite the previous equation, for any ξ ∈ T and m ∈ Zd, as

eiβ(ξ,m)ωmye−iξ

= ωmyeiαm + 1
d

∑
n

eiαnωnyωy(m−n)
(
e−iξ − 1

)
+ 1
d

∑
n

eiαnωnyωz(m−n)
(
eiξ − 1

)
,

(3.57)
taking the coefficients along |ψ′z〉 we extract a different equation,

eiβ(ξ,m)ωmzeiξ

= ωmzeiαm + 1
d

∑
n

eiαnωnzωy(m−n)
(
e−iξ − 1

)
+ 1
d

∑
n

eiαnωnzωz(m−n)
(
eiξ − 1

)
.

(3.58)
Finally, for any ξ ∈ T and m ∈ Zd,

eiβ(ξ,m) = eiξeiαm + 1
d

∑
n

eiαn
(
1− eiξ

)
+ 1
d

∑
n

eiαnω(z−y)(m−n)
(
ei2ξ − eiξ

)
(3.59)

and

eiβ(ξ,m) = e−iξeiαm + 1
d

∑
n

eiαnω(y−z)(m−n)
(
e−i2ξ − e−iξ

)
+ 1
d

∑
n

eiαn
(
1− e−iξ

)
.

(3.60)
So, the right sides of both equations are equal. However, we can use again the
argument below equation (3.21), {emξ}m∈N is an orthogonal set in the space of
periodic functions. As such, taking the terms in e2ξ and eξ,∑

n

eiαnω(z−y)(m−n) = 0 (3.61a)

eiαm − 1
d

∑
n

eiαn −
∑
n

eiαnω(z−y)(m−n) = 0. (3.61b)
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Instantly, we get, for all m,

eiαm = 1
d

∑
n

eiαn and in particular eiαm = eiα0 . (3.62)

We note this common phase α, and this implies by direct calculation that

cx |ψx〉 = eiαc′x |ψ′x〉 (3.63)

Based on this result, we can conlude that we are in subcase (1) of the lemma:

|φ〉 =
∑
x

cx |x : Q〉 ⊗ |ψx〉 , (3.64)

=
∑
x

|x : Q〉 ⊗ (cx |ψx〉), (3.65)

=
∑
x

|x : Q〉 ⊗ (eiαc′x |ψ′x〉), (3.66)

= eiα
∑
x

c′x |x : Q〉 ⊗ |ψ′x〉 , (3.67)

= eiα |φ′〉 , (3.68)

as desired.
We have shown that any choice of |ψ〉 , |ψ′〉 which verify the conditions of

equation (3.43) must fall into either subcase (1) or (2) of the lemma, and we are
done.
Finally, we are ready to prove the main lemma:

Proof of lemma 3.7. The proof proceeds by induction on the size of R. The
case |R| = 0 is trivial, and the case |R| = 1 is lemma 3.9. Assume the statement
is true for some non-empty R, if R = V we are done since the induction cannot
continue. If this is not the case, pick u ∈ V \R. If

(〈m : M(u)| ⊗ 〈~m : M|R) |φ〉 ' (〈m : M(u)| ⊗ 〈~m : M|R) |φ′〉

and
∥∥∥√d|R|(〈m : M(u)|u ⊗ 〈~m : M|R) |φ〉

∥∥∥ = 1√
d

(3.69)

hold for all m ∈ F, then by lemma 3.9 we have one of the following cases:

1. 〈~m : M|φ〉 ' 〈~m : M|φ′〉 and ‖〈~m : M|φ〉‖ = 1√
d|R|

for any ~m ∈ ZRd so that
by the induction hypothesis we are done.

2. For each ~m ∈ ZRd , there are x, y ∈ Zd and |ψ~m:M〉 ∈ H ⊗V \{u} such that
〈~m : M|φ〉 ' |x : Qu〉u ⊗ |ψ~m:M〉 and 〈~m : M|φ′〉 ' |y : Qu〉u ⊗ |ψ~m:M〉.
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In the latter case, make some arbitrary choice of measurements M : R →
U(H ), and expand |φ〉 in their common eigenbases:

|φ〉 =
∑
n∈Zd

∑
~a∈ZR

d

c(n,~a) |n : Qu〉u ⊗ |~a : M〉R ⊗ |φ(a)〉 . (3.70)

Then in particular, we have that for any choice ~m ∈ ZRd ,

〈~m : M|φ〉 =
∑
n∈Zd

c(n, ~m) |n : Qu〉u ⊗ |φ(n, ~m)〉 ' |x : Qu〉u ⊗ |ψ~m:M〉 , (3.71)

which implies that c(n, ~m) = 0 whenever n 6= x, and we have |φ〉 = |x : Qu〉⊗|ψx〉,
where

|ψx〉 =
∑
~m∈ZR

d

c(x, ~m) |~m : M〉 ⊗ |φ(x, ~m)〉 . (3.72)

Similarly 〈~m : M|φ′〉 ' |y : Qu〉 ⊗
∣∣∣ψ′y〉. It follows that for any ~m ∈ ZRd , we must

have 〈~m : M|ψx〉 ' |ψ~m:M〉 and
〈
~m : M

∣∣∣ψ′y〉 ' |ψ~m:M〉, so that 〈~m : M|ψx〉 '〈
~m : M

∣∣∣ψ′y〉. Then, by the induction hypothesis, there is L ⊆ R and ~x, ~y ∈ ZL∪{u}d

such that |φ〉 = |ψ〉⊗v∈L∪{u} |xu : Qu〉 and |φ′〉 = |ψ〉⊗v∈L∪{u} |yu : Qu〉, and we
are done.

3.2.2 Proof of the converse theorem

Proof of theorem 3.6. Let ≺ be the order on Oc, and consider the last measure-
ment made according to some totalisation of ≺. Suppose it is made at vertex u.
Let M : Oc → U(H ) be such that M(v) ∈M(λ(v)) for all v ∈ Oc. Performing
the measurement with outcome m, there is a corresponding correction Xm

x(u)Z
m
z(u)

that acts only on outputs, and which induces the branch map:

|G(φ)〉 7−→Xm
x(u)Z

m
z(u)

〈m : M(u)|
⊗

v∈Oc\{u}
〈0 : M(v)|

 |G(φ)〉 (3.73)

= Xm
x(u)Z

m
z(u)

(⊗
v∈Oc
〈0 : M(v)|

)
Qm
u |G(φ)〉 , (3.74)

=
(⊗
v∈Oc
〈0 : M(v)|

)
Xm

x(u)Z
m
z(u)Q

m
u |G(φ)〉 (3.75)

=
⊗
v∈Oc

〈0 : M(v)|G(φ)〉 . (3.76)

By the uniformity condition, this equation is true for any choice of measure-
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ments in ∏v∈OcM(λ(v)). In particular, for any M ∈ M(λ), by proposition 2.5
we have Q−mv M(v)Qm

v ∈M(λ(v)), and〈
0 : Q−mv M(v)Qm

v

∣∣∣ = 〈0 : M(v)|Qm
v = 〈m : M(v)| . (3.77)

It follows that for any choice of measurements M and any ~m ∈ ZOc
d ,

〈~m : M|Xm
x(u)Z

m
z(u)Q

m
u |G(φ)〉 = 〈~m : M|G(φ)〉 , (3.78)

so by lemma 3.7, there is a subset L ⊆ Oc, vectors ~x, ~y ∈ Z|L|d and a state
|ψ〉 ∈H ⊗V \L such that

Xm
x(u)Z

m
z(u)Q

m
u |G(φ)〉 ' |ψ〉

⊗
n∈L
|xn : Qn〉 and |G(φ)〉 ' |ψ〉

⊗
n∈L
|yn : Qn〉 .

(3.79)
Then,

Xm
x(u)Z

m
z(u)Q

m
u |ψ〉

⊗
n∈L
|xn : Qn〉 ' Xm

x(u)Z
m
z(u)Q

m
u |G(φ)〉 (3.80)

' |G(φ)〉 ' |ψ〉
⊗
n∈L
|yn : Qn〉 . (3.81)

If u /∈ L, then since the corrections only act on outputs this implies that

(Xm
x(u)Z

m
z(u)Q

m
u |ψ〉)

⊗
n∈L
|xn : Qn〉 ' |ψ〉

⊗
n∈L
|yn : Qn〉 , (3.82)

so we must have xn = yn for all n ∈ L.
If u ∈ L,

(Xm
x(u)Z

m
z(u)Q

m
u |ψ〉)

⊗
n∈L
|xn : Qn〉 (3.83)

' (Xm
x(u)Z

m
z(u) |ψ〉)⊗Qm

u |xu : Qu〉
⊗

n∈L\{u}
|xn : Qn〉 , (3.84)

' (Xm
x(u)Z

m
z(u) |ψ〉)⊗ ωmxu |xu : Qu〉

⊗
n∈L\{u}

|xn : Qn〉 , (3.85)

' |ψ〉 ⊗ |yu : Qu〉
⊗

n∈L\{u}
|yn : Qn〉 , (3.86)

which which also implies that xn = yn for all n ∈ L. Then,

Xm
x(u)Z

m
z(u)Q

m
u |G(φ)〉 ' |G(φ)〉 , (3.87)
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and Xx(u)Zz(u)Qu stabilises the graph state for any m ∈ Zd, up to a phase eiα.
By proposition 2.12 there is some multiset C•u ∈ ZVd such that

eiαXx(u)Zz(u)Qu = ωC
T
•uGC•uXC•uZGC•u and (C•u)v = 0 if v ∈ I. (3.88)

The corrections act only on outputs, so that the factor of XC•uZ
−1
GC•u act-

ing on u must be Qu.S This implies that XCuuZ
−1
(GC)uu ' Qu, so that λ(u) =

((C•u)u, (GC•u)u, and furthermore, that (C•u)v = (GC•u)v = 0 if v /∈ O ∪ {u}
since Xm

x(u)Z
m
z(u) acts only on outputs. Furthermore, tensor products of Paulis

form a basis of the space of linear operators, so that we must have

x(v) := (C•v − λ(v)11{v}) and z(v) := ((GC)•v − λ(v)21{v}). (3.89)

Now, consider the open graph (G, I,O∪{u}). Since (G, I,O, λ,x, z) is robustly
deterministic, we can repeat the same procedure on the new open graph

(G, I,O ∪ {u}, λ|(O∪{u})c ,x|(O∪{u})c , z|(O∪{u})c), (3.90)

obtaining C•v for the last measured vertex v in Oc\{u}. This procedure eventually
terminates, and we end up with a column vector C•w for each w ∈ Oc. Let
C ∈ ZV×Vd be the matrix whose u-th column is C•u, or 0 if u ∈ O. Then from
the equations in lemma 3.15 we see that the pair (C,<) gives an Zd-flow for
(G, I,O, λ) by lemma 3.4. Furthermore, it is also clear from equations (6.56) and
(3.89) that x = xC and z = zC .

3.3 A polynomial-time algorithm for Zd-flow
In this section we formulate an algorithm for finding Zd-flow for a given labelled
open graph. It is constructed in such a way that it always finds a Zd-flow (C,Λ)
with optimal depth, in that the cardinality of Λ is minimal over all possible Zd-flows.
This algorithm is strongly inspired by the analogous algorithm for finding gflows
for open Z2-graphs [MP08], and its generalisations to multiple measurement planes
[Bac+21] and to finding R-flows [BM21] in continuous-variable quantum computing.

input: A labelled open Zd-graph (G, I,O, λ)
output: A Zd-flow (C,Λ) or fail

1: procedure Z-Flow(G, I,O, λ)
2: find L := {u ∈ V | (∀v ∈ V ) : Guv = 0} . Isolated vertices
3: layer(0) := O ∪ L
4: C := 0|V |×|V |
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5: return Z-Flow-aux(G, I,O ∪ L, λ|Oc\L, C, layer, 1)

6: procedure Z-Flow-aux(G, I,O, λ, C, layer, k)
7: L := ∅ . Vertices which we are correcting in this layer
8: for all v ∈ Oc do
9: (a, b) := λ(v)

10: solve in Zd: G[Oc, O \ I]~c = b1{v} − aG[Oc, {v}]
11: if there is a solution ~c then
12: L := L ∪ {v} . Assign v to the current layer
13: C[O \ I, {v}] := ~c . The corrections for vertex v
14: C[{v}, {v}] := a

15: if L = ∅ then . If we cannot correct for additional vertices, either:
16: if O = V then
17: return (C, layer) . we have found a Zd-flow; or,
18: else
19: fail . there is no Zd-flow.
20: else
21: layer(k) := L
22: return Z-Flow-aux(G, I,O ∪ L, λ|Oc\L, C, layer, k + 1)

3.3.1 Correctness
The core of the algorithm is the loop line 8. Letting n = |V |, ` = |O| and `′ = |O \ I|
at a given call to Z-Flow-Aux, note that `′ 6 ` 6 n. The loop amounts to solving
n− ` systems of n− ` equations in `′ variables. Let xv be the right hand side of
equation line 10. Solving the system can be done by transforming the matrix[

G[Oc, O \ I] | xv1 | · · · | xvn−`
]

(3.91)

to upper echelon form. This can by done in time O(n3) by Gaussian elimination,
and backsubstituting to find the corresponding ~cj to each xj takes time O(n2)
or for all solutions O(n3) since there are at most n backsubstitutions to perform.
Finally, since each call to Z-Flow-Aux either eliminates a vertex or terminates,
the algorithm recurses at most n times. The total complexity is therefore O(n4).

Theorem 3.10. (G, I,O, λ) has a Zd-flow if and only if the algorithm above returns
a valid Zd-flow.

Proof. It is clear the algorithm terminates, since at each call to Z-Flow-Aux,
the algorithm either passes vertices from V \O to O, returns an Zd-flow, or fails.
Since V is finite, there are a finite number of recursions after which the algorithm
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either returns an Zd-flow or fails.
(Outputs a valid Zd-flow) Suppose the algorithm terminates with a pair (H,C).

We need to show this defines a valid Fq-flow. Consider the function Z-Flow-Aux
at a given call, and let H ′ := G[Oc, O \ I] and h := G[Oc, v].

The output columns of C are 0, and since the solution vector x from line 11
never contains an input, the input rows of C are also 0. Hence condition (i) is
satisfied.

Similarly, the solution vector x only has rows labelled by vertices v ≥ u,
so C is lower triangular by construction. If the linear equation in line 11 is
satisfied, then the entries above (HC)uu in the u-th column of HC will be
0. Hence (ii) is satisfied. Indeed, for any u > v, (HC)vu = ∑

wHvwCwu =∑
w<uHvwCwu +HvuCuu +∑

w>uHvwCwu = hwa+∑
w>uH

′
vwxw. Since Cuu = a,

Hvu = hv, ∀w < u,Cwu = 0, and ∀w > u,Hvw = H ′vw and Cwu = xw. As a
consequence (HC)vu = (ah+H ′x)v = (ah+ b{u} − ah)v

Finally, for a non-output u, Cuu = a. As a consequence C is an Fq-flow for H.
(Outputs a valid layer decomposition) Let L be as in line 21 of the algorithm

for some call k to Z-Flow-Aux. It is clear that the equation line 10 doesn’t
depend on the vertices in L which appear before or after {v} and therefore L is
independent of the order in which the elements of L are found. As a result, the
output of the algorithm is invariant any permutation of the vertices in L. Since
this corresponds tautologically to a permutation of the layer Vk output by the
algorithm, and every permutation that preserves the partition can be written as a
product of such permutations, the Zd-flow found by the graph is invariant under
permutations that preserve the layers (whenever the algorithm succeeds).

(Outputs a Zd-flow whenever there is one) Assume the algorithm fails, that
is, for some call to Z-Flow-Aux, line 10 has no solution for any remaining
unfinished vertices. Let O be the third parameter at that function call, and
further assume that D is an Zd-flow for (G, I,O, λ).

Let D be the matrix obtained by replacing the columns in D corresponding
to O with zeros and permuted such that the columns O appear last. Then, D is
an Zd-flow for (G, I,O, λ|Oc). Let v ∈ Oc be the last column before Oc, and put
c := D[O \ I, {v}]. Then,

(G[Oc
, O \ I]c)u =

∑
j∈O\I

Gujcj =
∑
j∈O\I

GujDjv =
∑
j∈O

GujDjv =
∑
j∈O

GujDjv

(3.92)
=
∑
j∈V

GujDjv −
∑
j∈Oc

GujDjv = (GD)uv −
∑
j∈Oc

GujDjv (3.93)

= bδu,v −GuvDvv = bδu,v − aGuv. (3.94)
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As a result, we see that c verifies the equation of line 10, which contradicts the
failure of the algorithm. It follows that (G, I,O, λ) cannot have an Zd-flow if the
algorithm fails. By contrapositive, if (G, I,O, λ) has an Zd-flow, the algorithm
succeeds.
Note this procedure can also be adapted to simultaneously find a Zd-flow and

a corresponding labelling, rather than one fixed in advance. First, note that, for
the existence of a Zd-flow, it suffices to choose measurement planes up to a scalar
factor. That is, (C,Λ) is a Zd-flow for (G, I,O, λ) with λ(u) = (a, b) if and only
if it is a Zd-flow for (G, I,O, λ′) where λ′(u) = (ka, kb). Hence we can solve for
measurement planes at the same time as C by either fixing a = 1 and solving for b
in the equation line 10 of the algorithm, or for non-inputs, fixing b = 1 and solving
for a.

3.3.2 Depth optimality
Our proofs follow the structure of [MP08], which introduced the idea of optimising
gflows starting from the last layer and working back. The idea is to find corrections
for as many measured vertices as possible at the part of the MBQC when there
are the most constraints on possible corrections: when the only vertices left
unmeasured are the outputs. This motivates the following definition which allows
us to conveniently manipulate layer decompositions “from the back”:

Definition 3.11. Let (C,Λ) be a Zd-flow for a labelled open graph (G, I,O, λ).
Then, the depth of (C,Λ) is |Λ| − 1. Furthermore, we define an N-indexing of the
elements of Λ by:

Λk := max(Λ \ {Λn | n < k}), (3.95)
where we note that Λm < Λn as elements of Λ if and only if n > m, and Λk 6= ∅ if
and only if k is less than or equal to the depth of (C,Λ).

This definition of the depth of a Zd-flow corresponds to the intuitive interpreta-
tion: all measurements (and corresponding corrections) within a layer can be made
concurrently, therefore there is an implementation that runs the MBQC in |Λ| − 1
rounds of measurements (since the outputs are not measured).

Now, we can use this definition to compare the depths of different Zd-flows:

Definition 3.12. Let (C,Λ) and (D,Φ) be Zd-flows for a labelled open graph
(G, I,O, λ). Then (C,Λ) is more delayed than (D,Φ) if for each k,

|
k⋃

n=0
Λn| > |

k⋃
n=0

Φn|. (3.96)

and this inequality is strict for at least one k. It is maximally delayed if there is
no layer decomposition which is more delayed.
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Then, we can give a complete characterisation of the layer decompositions of
maximally delayed Zd-flows, which turn out to be uniquely defined:

Proposition 3.13. If (C,Λ) is a maximally delayed Zd-flow for a labelled open
graph (G, I,O, λ), then Λ0 = O ∪ {u ∈ V | (∀v ∈ V ) : Guv = 0} and for k > 0,

Λk =
u ∈ (O

⋃
1<n<k

Λn)c | ∃c ∈ ZVd s.t.
(cu, (Gc)u) = λ(u)
∀v /∈ (O

⋃
1<n<k

Λn) ∪ {u}, cv = (Gc)v = 0

.
(3.97)

In particular, if (C,Λ) and (D,Φ) are maximally delayed Zd-flows for the same
labelled open graph, then Λ = Φ.

This can be understood from the following principle. If a correction exists
for the measurement of a vertex that acts only on outputs, then this correction
can be performed at any point during the MBQC, since the outputs are never
measured and therefore always available for corrections. As a result, we can delay
this measurement as much as possible, to the penultimate layer, to give ourselves
as much flexibility as possible in corrections for previous layers. Thus, we can put
all vertices whose corrections act only on outputs in the penultimate layer Λ1. Any
vertices which do not verify this property must be in a layer which precedes the
penultimate layer, since at the time they are measured there must be non-output
vertices which are left unmeasured. This allows us to uniquely characterise Λ1.

The rest of the result is proved by an induction on the layers, which we split
into several lemmas since they are each fairly technical. Lemmas 3.14 and 3.15
uniquely characterise Λ0 and Λ1 respectively for maximally delayed Zd-flows, which
gives the base case for the induction. Then lemma 3.16 gives the inductive step.

Lemma 3.14. If (C,Λ) is a maximally delayed Zd-flow for an open graph (G, I,O, λ),
then Λ0 = O ∪ {u ∈ V | (∀v ∈ V ) : Guv = 0}, i.e. the union of the outputs and
isolated vertices of (G, I,O, λ).

Proof. Let A := O ∪ {u ∈ V | (∀v ∈ V ) : Guv = 0}, and define a layer
decomposition Λ′ on (G, I,O, λ) by

Λ′k := Λk \ A for k > 0 and Λ′0 = Λ0 ∪ A. (3.98)

Then it is clear that Λ′ is more delayed than Λ. Let C ′ be the matrix obtained by
replacing, for every isolated vertex u ∈ V , the u-th column of C by Cuu1{u}.

We show that (C ′,Λ′) is an Zd-flow for (G, I,O, λ).

1. We haven’t touched the diagonal elements of C and have only changed the
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columns corresponding to isolated vertices. Then

(GC ′)uu =

∑
v GuvCvu = 0 if u is isolated;

(GC)uu otherwise .
(3.99)

and condition (i) of the definition is still verified.
2. Since C ′uv = Cuv if u ∈ I or v ∈ O, we have condition (ii) of the definition.
3. For every m > n ∈ N∗, C[Λ′m,Λ′n] = (GC)[Λ′m,Λ′n] = 0, since they are sub-

matrices of C[Λm,Λn] = (GC)[Λm,Λn] = 0, and C[Λ′m,Λ′m], (GC)[Λ′m,Λ′m]
are diagonal for the same reason. Also,

(GC ′)[Λ′m,Λ′0]uv =


0 if v ∈ Λ0 since otherwise (C,Λ) is not an Zd-flow;∑
k∈V GukC

′
kv = GuuCuu = 0 if v is isolated;∑

k∈V GukC
′
kv = ∑

k∈V GukCkv = 0 if v ∈ O.
(3.100)

Finally, it is clear that C ′[Λ′0,Λ′0] is diagonal if C[Λ0,Λ0] was, since we have
only added zero for outputs or “diagonal” columns for isolated vertices.
Therefore we have condition (iii).

As a result, (C ′,Λ′) is an Zd-flow for (G, I,O, λ) that is more delayed than (C,Λ).
This implies that we must have A ⊆ Φ0 if Φ is maximally delayed.

Now assume there is some v ∈ Λ0 \O. We know that C[Λ0,Λ0] is diagonal and
that GC[Λn,Λ0] = ∑

n6|Λ|G[Λn,Λk]C[Λk,Λ0] = G[Λn,Λ0]C[Λ0,Λ0]. If Cuu 6= 0,
then for GC[Λ0,Λ0] to be diagonal and GC[Λn,Λ0] = 0, we must have either
Cuv = 0 or for all u ∈ V , Guv = 0 since then (GC)uv = GuvCvv must be 0 if u 6= v.
In the latter case, v is isolated in the graph G.

In the former case, GuuCuu = 0, and we have (Cuu, (GC)uu) = (0, 0). But
since u is not an output, we must have (Cuu, (GC)uu) = λ(u), so that (C,Λ) is
not a Zd-flow for (G, I,O, λ). As a result, there can be no such u if (C,Λ) is a
valid Zd-flow. We conclude that Λ0 = O ∪ {u ∈ V | (∀v ∈ V ) : Guv = 0}.

Lemma 3.15. If (C,Λ) is maximally delayed for (G, I,O, λ), then

Λ1 =
u ∈ Oc | ∃c ∈ Z|V |d s.t.

(cu, (Gc)u) = λ(u)
∀v /∈ O ∪ {u}, cv = (Gc)v = 0

. (3.101)

Proof. Let (D,Φ) be a maximally delayed Zd-flow for (G, I,O, λ) and define cu
as the u-th column of D. The only elements below the diagonal in column v ∈ Φ1
of D correspond to Φ1 or Φ0. Since D[Φ1,Φ1] and (GD)[Φ1,Φ1] are diagonal, and
Φ0 = O by lemma 3.14, for any v /∈ O ∪ {u} we must have Dvu = cuv = 0 and
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(GD)vu = (Gcu)v = 0. The condition λ(u) = (cu, (Gc)u) itself corresponds to part
(iii) of the definition of Zd-flow. As a result, every maximally delayed Zd-flow of
(G, I,O, λ) must verify equation (3.101), and there can be no layer decomposition
Φ where Φ1 is not contained in Λ1.

Now, assume (G, I,O, λ) is an open graph with Zd-flow, that (D,Φ) is a
maximally delayed Zd-flow and let u ∈ Λ1 \ Φ1. Let E be the matrix obtained by
replacing the u-th column of D by cu and permuting the u-th column to the start
of Φ1. Then (E,Ψ) where

Ψk :=
Λ1 ∪ {u} if k = 1;

Λk \ {u} otherwise;
(3.102)

is a more delayed Zd-flow than (D,Φ). As a result, there can be no such u, so
that if (D,Φ) is maximally delayed, Φ1 = Λ1.

Lemma 3.16. If (C,Λ) is a maximally delayed Zd-flow of (G, I,O, λ), (D,Φ) is a
maximally delayed Zd-flow of (G, I,O ∪ Λ1, λ|(O∪Λ1)c), where

• D is the matrix obtained by replacing the columns of C corresponding to Λ1
with zeros;

• Φ is given by

Φk :=
Λ1 ∪O if k = 0;

Λk+1 otherwise.
(3.103)

Proof. It is clear that (D,Φ) is a layer decomposition, since if it were not, this
would imply that (C,Φ) is not either.

There cannot be a more delayed Zd-flow of (G, I,O ∪ Λ1, λ) since that would
immediately imply that there is a layer decomposition of (G, I,O, λ) that is more
delayed than (C,Λ).

Proof of proposition 3.13 (by induction). Λ0 must take the form given in
lemma 3.14. Then, a recursive application of lemma 3.16 and lemma 3.15 shows
that the layer decomposition of a maximally delayed Zd-flow is uniquely defined.

Since the open graph obtained from lemma 3.16 and used to calculate Λk with
lemma 3.15 is (G, I,O⋃1<n<k Λn, λ|(O⋃1<n<k Λn)c), it is clear that Λk must take
the form claimed.

It now suffices to show that there is a minimal depth Zd-flow that is maximally
delayed to obtain:

Proposition 3.17. A maximally delayed Zd-flow for an open graph (G, I,O, λ)
has minimal depth.
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Proof. First, note that if (C,Λ) is more delayed than (D,Φ), then in particular,

|V | = |
|Λ|⋃
n=0

Λn| > |
|Λ|⋃
n=0

Φn|, (3.104)

so that |Λ| 6 |Φ|. Assume now that (D,Φ) has minimal depth, then any Zd-flow
that is more delayed has the same depth. It follows that either (D,Φ) is maximally
delayed and has minimal depth, or there is a maximally delayed Zd-flow that
is more delayed than (D,Φ) thus has the same depth. But by proposition 3.13,
every maximally delayed Zd-flow has the same layer decomposition for a given
open graph, so that every maximally delayed Zd-flow has minimal depth.

Note however that a minimal depth decomposition is not necessarily maximally
delayed. For example, we can always measure the entirety of the inputs first
without changing the depth, but this measurement order is not always maximally
delayed since this allows us to move inputs into earlier layers. Since the algorithm
is constructed such that it finds a maximally delayed Zd-flow:

Theorem 3.18. The algorithm outputs a Zd-flow of minimal depth.

Proof. Assume that the algorithm succeeds with output (D,Φ). We show that
this output Zd-flow (D,Φ) is maximally delayed. Firstly, we show that the output
flow has Φ1 = Λ1 from lemma 3.15. We know that Φ1 ⊆ Λ1 and it is clear from
the definition of the algorithm that

Φ1 =
{
u ∈ Oc | ∃~c ∈ Z|O\I|d s.t. G[Oc, O \ I]~c = b1{v} − aG[Oc, {v}]

}
(3.105)

Let u ∈ Λ1, that is there is some vector ~c ∈ Z|V |d such that(cu, (Gc)u) = λ(u)
∀v /∈ O ∪ {u}, cv = (Gc)v = 0

(3.106)

Then, for any v ∈ Oc,

(G[Oc, V ]c)v =
∑
j∈V

Gvjcj =
∑

j∈O∪{u}
Gvjcj (3.107)

=
∑
j∈O

Gvjcj + aGvu = (Gc)v + aGvu = bδvu + aGvu (3.108)

from which we see that u ∈ Φ1 whence Φ1 = Λ1.
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Now, Φ2 is calculated in the next call to Z-Flow-Aux where the open graph
passed as argument is (G, I,O ∪ Φ1, λ|(O∪Φ1)c). Using the same argument as for
Φ1, Φ2 must match the layer Λ2 obtained by applying lemma 3.15 to the Zd-flow
resulting from 3.16.

Then, using the same recursion as in the proof of proposition 3.13, we see that
(D,Φ) is maximally delayed. It follows from proposition 3.17 that the Zd-flow
output by the algorithm has optimal depth.

Corollary 3.19. If (G, I,O, λ) is a labelled open Zd-graph with Zd-flow, then it
has a maximally delayed Zd-flow.

Proof. If (G, I,O, λ) has a Zd-flow, then by theorem 3.10 the algorithm finds a
(possibly different) Zd-flow for (G, I,O, λ), which by theorem 3.18 is maximally
delayed.

Conclusion and outlook
We have constructed a flow condition that completely characterises robust deter-
minism in measurement patterns over the field Zd, and an efficient algorithm for
finding Zd-flow whenever it exists (and says whenever there is no possible Zd-flow).

The main open questions we leave unresolved concern the extension of these
results to more general kinds of measurement patterns. Most of our work can
be extended to the case of an arbitrary finite field F, wherein the equation of
definition 6.5 must hold over F instead of Zd. The only result which is missing is
the necessity of F-flow for robust determinism, since we have not found a proof
of lemma 3.9 which works for any finite field F. It is not much harder to see that
any results for F-flow hold for R-flow, where R is any ring obtained as a cartesian
product of fields. This is because the whole construct factorises over this product
at the level of the Hilbert space representation of measurement patterns.

These results fall short of my initial goal of characterising robust determinism
over any finite abelian group. Any such abelian group can be viewed as a cartesian
product of cyclic groups Zn, but these cannot be given a nice enough ring structure
for our work to apply. Already the group Z4 only admits a single (non-trivial) ring
structure, arithmetic modulo 4, and this ring is not treatable by the methods of
this chapter.

We also leave open the generalisation to the qudit setting of other extensions to
the measurement calculus. Of these, the one which is most tractable to a natural
formulation in the qudit setting is Pauli g-flow. This was defined by Browne et al.
[Bro+07], and while it has been hypothesised to completely characterise robust
determinism for the corresponding measurement patterns, no proof has yet been
published, even in the qubit setting.
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A quantum circuit extraction
algorithm for simple Zd-flows

In this chapter, we present a first unitary circuit extraction algorithm for measure-
ment patterns over the field Zd. Having access to such such an extraction algorithm
is important for a number of reasons. It makes clear the relationship between the
circuit model and MBQC and it is important in order to know, for a robustly
deterministic MBQC, what isometry it actually implements in comparable terms to
the standard model. This has been key in understanding the improvement MBQC
brings in the depth (number of subsequent rounds of simultaneous operations) of a
computation at the cost of increasing its “width” (number of involved subsystems)
[BK09; MHM15]. As stated in the introduction, it has also proved important in the
context of the ZX-calculus, as the algorithms related to flow conditions comprise the
most general currently known for extracting a circuit from a ZX-calculus diagram
[Dun+20; Bac+21].

Here, we consider only the case where all of the measurements are taken from
the measurement spaceM(0, 1). As a consequence we no longer need to track the
labelling λ, and we simply assume that (G, I,O) is a labelled open graph (G, I,O, λ)
where λ(u) = (0, 1) for all u ∈ Oc. In this setting, imposing the existence of Zd-
flow, which must therefore be a simple Zd-flow (definition 6.5), greatly restricts
the possible connectivities for (G, I,O), and this in turn simplifies the extraction
problem.

The circuit extraction algorithm for extended Zd-flows presented in chapter 5
The results in this chapter are adapted from our article, [BM21].
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(where all measurement spaces are allowed) completely subsumes what we detail
here, but we choose to present this simpler algorithm nonetheless for a couple of
reasons. On the one hand, the algorithm presented here is much simpler than that
of the general case, but some steps of the general algorithm will greatly resemble
those used here. It therefore makes pedagogical sense to present this reduced case
first. On the other hand, in chapter 6 we will consider how the MBQC formalism
can be extended to the setting of continuous variable quantum computing. For
various reasons, it is then necessary to have access to a circuit extraction algorithm
to define the semantics. It turns out that we can pretty much re-use the algorithm
presented here with a few variations.

In section 4.1, we introduce some new constructions. Firstly, we show how
to compose the MBQCs of two labelled open graphs with Zd-flow, by identifing
(a subset of) the outputs of the first with inputs of the latter. Then we present
graph-circuit hybrid diagrams, which combine the graphical notation for both
open graphs and quantum circuits. This new notation will be used for examples.
Finally, we introduce a new condition equivalent to Zd-flow with all measurements
inM(0, 1). This condition splits the set of corrections for each layer into its own
object, and this will be more practical for the extraction since we will be extracting
the MBQCs layer by layer. In section 4.2 we show how to perform the circuit
extraction of a causal flow, by a technique known as star pattern transformation
(SPT) [DK06; BK09]. Then, in section 4.3, we show how to extract any simple
Zd-flow by relating it to a sequence of causal flows on which we can apply SPT.

4.1 Preliminaries

4.1.1 Composing measurement patterns
The measurement calculus comes with ways of composing measurement patterns
[DKP07]. These manipulations will be useful for the extraction of quantum circuits,
so we present them here. We use some slightly different conventions which suit the
extraction problem more.

Definition 4.1. Let (G, I,O, λ) and (G′, I ′, O′, λ′) be open graphs on disjoint vertex
sets V and V ′, and let γ be a bijection O → I ′. Then we define the composition
along γ to be the open graph (Ḡ, I, Ō, λ̄) on the set of vertices V̄ = V ∪ V ′ \ I ′,
where Ō = (O′ \ I ′) ∪ γ−1(O′ ∩ I ′) and

Ḡuv :=


Guv if u, v ∈ V
G′γ(u),v if u ∈ O, v ∈ V ′

G′uv if u, v ∈ V ′
, λ̄(u) :=


λ(u) if u ∈ V
λ′ ◦ γ(u) if u ∈ O
λ′(u) if u ∈ V ′

.

(4.1)
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While this definition might seem complicated, it has an intuitive meaning: we
paste together the two open graphs by identifying each vertex u ∈ O with its image
by γ. This amounts to feeding the output state of one MBQC into the inputs of
another, and from there it is straightforward to see that we should obtain a Zd-flow
for the total MBQC:

Proposition 4.2. Let (G, I,O, λ) and (G′, I ′, O′, λ′) be open graphs on disjoint
vertex sets with Zd-flows (C,Λ) and (C ′,Λ′) respectively. Then the composition
along a bijection γ : O → I ′ has a Zd-flow given by

C̄ =
(

C 0
Ḡ[V ′ \ I, O]C[O, V ] C ′[I ′c, I ′c]

)
(4.2)

and Λ̄ the ordered partition of V̄ obtained by appending Λ′ to Λ.
Furthermore, for any choice of measurements M ∈M(λ̄),
r

(G′, I ′, O′, λ′) γ◦ (G, I,O, λ)
z

M
= JG′, I ′, O′, λ′KM|V ′

◦ Uσ ◦ JG, I,O, λKM|V \O ,

(4.3)
where Uσ is a unitary which permutes the subsystems in the output of (G, I,O, λ)
to match the correct inputs of (G′, I ′, O′, λ′) according to γ.

Proof. The composition along γ simply amounts to feeding the output of the
MBQC (G, I,O, λ) as an input into (G′, I ′, O′, λ′), where each subsystem u ∈ O
is fed into the input γ(u) ∈ I ′. The semantics, equation (4.3), follows straightfor-
wardly from this remark.

As for the new Zd-flow given by C̄ we only need to consider the “new edges”
between the I ′ and V ′, since we never allow corrections on the inputs when doing
the MBQC corresponding to (G′, I ′, O′, λ′). Since the corrections for the vertices
in V are already correct, we simply need to calculate the new Z corrections from
these new edges.

Hopefully, it is clear from this discussion how to do composition of two labelled
open graphs where we only identify a subset of O with a subset of I ′. This can be
formalised using a pair of injective maps

O
γ←− U

δ−→ I ′, (4.4)

but the construction is even clumsier than what we have just done and therefore
not particularly informative. Then, proposition 4.2 holds identically, up to carefully
identifying on what qudits the interpretation of (G′, I ′, O′, λ′) should act. The
next section makes this construction clearer still by motivating the unitary Uσ
of equation (4.3) as a permutation circuit which can be decomposed in terms of
SWAP gates.
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4.1.2 Graph-circuit hybrid diagrams
In order to present the circuit extraction clearly, we introduce a hybrid representa-
tion which is used for partially extracted measurement patterns. For any labelled
open graph (G, I,O, λ), we allow a single incoming quantum wire to be attached to
each input, and a single outgoing quantum wire to be attached to each output. The
incoming wires connected to the inputs allow one to describe a reversible quantum
circuit (i.e. a unitary) which acts on the input state to the MBQC, before any
commands in the pattern are performed. The outgoing wires connected to outputs
form the beginning of another reversible quantum circuit that acts on the output
state of the measurement pattern, after the MBQC is finished. We allow either the
graph part or the circuit part of the diagram to be empty, so that the notation
naturally contains both the open graph notation and circuit diagrams as edge cases.
If the graph part is empty, we assume that both input and output circuits have the
same number of wires, and therefore can be concatenated into one larger overall
quantum circuit. As an example, a simple MBQC with some gates acting on the
input and followed by a CZ gate on the resulting output state might look like this:

(0, 1)

(0, 1)
X

F

.

The semantics of such a diagram is defined in the obvious way. Since we are only
interested in the case of open graph with Zd-flow, the corresponding MBQC is
robustly deterministic and therefore corresponds to an isometry. If Uin and Uout
are the unitaries represented by the input and output circuit parts of the diagram
respectively, and the graph part is given by (G, I,O, λ), then for any choice of
measurements M ∈M(λ), the semantics of the diagram is Uout ◦ JG, I,OKM ◦ Uin.

Using this new hybrid notation, we can give a clearer pictorial view of the
composition of two measurement patterns. In general, the composition of two
diagrams, given in equation (4.3), can be obtained by connecting the wires of (a
subset of) the outputs of the former into the wires of (a subset of) the inputs of
the latter, up to some permutation of the wires. This permutation is a circuit
corresponding to the unitary Uσ, and can itself of course be decomposed in terms
of SWAP gates.

To illustrate this, consider a pair of labelled open graphs and injective maps as
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in equation (4.4):

U

γ
δ

, (4.5)

where we have suppressed the open graph labelling for simplicity. For any choices
of measurements M,M′ for each open graph, the composition along γ and δ is
such that

u

www
v

γ◦
δ

}

���
~

M̄

=

u

www
v

}

���
~

M̄

(4.6)

=

u

www
v

}

���
~

MtM′

(4.7)

=
t |

M′
◦ SWAP ◦

u

www
v

}

���
~

M

, (4.8)

where the first line is the graph constructed in definition 4.1. M tM′ is obtained
by pasting together M and M′ in the obvious way, and M̄ is obtained by mapping
M tM′ through the relabelling of vertices in definition 4.1.

4.1.3 Extracting gate teleportations
The key construction which will allow us to extract circuits from MBQCs with
Zd-flow is the gate teleportation protocol, which as a quantum circuit takes the
form

M

w

|0 : X〉 X

.

It implements the same unitary as

RZ(α) F M(w) ,
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where the angle α ∈ [0, 2π)d is uniquely determined by the choice of measurement
M ∈M(0, 1). As a result, we define

J(w, α) := M(w)FRZ(α). (4.9)

The gate teleportation protocol can be simply stated in our new notation as

Lemma 4.3. For any choice of measurement M ∈ M(0, 1), there is a unique
α ∈ [0, 2π)d such that

J w KM = J(w,α) . (4.10)

Proof. The graph has a simple Zd-flow given by the matrix

C =
(

0 0
1 0

)
, (4.11)

so by theorem 3.2, we only need to consider the branch map for the measurement
outcome 0. If M ∈ M(0, 1), by lemma 2.5 there must be a phase α ∈ [0, 2π)d
such that M = R∗Z(α)XRZ(α), and in particular |0 : M〉 = R∗Z(α) |0 : X〉. Then,
by theorem 3.2 the isometry implemented by the MBQC is given for any input
|ψ〉 ∈H by:
√
d(〈0 : X|RZ(α)⊗ I)Ew(|ψ〉 ⊗ |0 : X〉) (4.12)

=
√
d(〈0 : X| ⊗M(w))E(RZ(α) |ψ〉 ⊗M(w) |0 : X〉) (4.13)

=
√
d(〈0 : X| ⊗M(w))E(|ψ′〉 ⊗ |0 : X〉) (4.14)

= (〈0 : X| ⊗M(w))
∑

m,n∈Zd
ψ′mω

mn |m〉 ⊗ |n〉 (4.15)

= M(w) 1√
d

∑
n∈Zd

ψ′mω
mn |n〉 (4.16)

= M(w)F |ψ′〉 = M(w)FRZ(α) |ψ〉 , (4.17)

where we have used the fact that the rotation RZ(α) commutes with the controlled-
phase E.

Using the work on composition from the previous subsection, we can now state a
particularly useful proposition. It is used to extract parts of an MBQC which can
be identified with a gate teleportation. This will be the only tool available to us
for the actual extraction of a unitary from an MBQC, and the rest of the work will
go into relating an open graph with Zd-flow to one where this proposition applies.
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Proposition 4.4. Let (G, I,O) be an open graph with simple Zd-flow, u ∈ Oc

and v ∈ O such that Guv 6= 0 and for all w ∈ V \ {v}, Gvw = 0. Then for any
M : Oc →M(0, 1), there is a unique phase α ∈ [0, 2π)d such that

JG, I,OKM = M(Guv)uFuRZ(α)u ◦ JG′, I ′, O′KM|{u}c , (4.18)

where G′ = G[{v}c, {v}c], I ′ = I \ {v} and O′ = (O ∪ {u}) \ {v}.

Proof. We can see that that (G, I,O) is the composition of w and (G′, I ′, O′)
along the pair of maps

O′ {∗} { }

u ∗
.

It follows that

JG, I,OKM =
(
J w KM(u)

)
u
◦ JG′, I ′, O′KM|{u}c (4.19)

= M(Guv)uFuRZ(α)u ◦ JG′, I ′, O′KM|{u}c , (4.20)

where we have use lemma 4.3 to extract the teleportation graph.

A sequence of gate teleportations can then be extracted as the following equation:
u

v
(0, 1) (0, 1) (0, 1)

}

~

M

=

u

v (0, 1) (0, 1) (0, 1)

}

~

M

(4.21)

=

u

v J(1, α3)
(0, 1) (0, 1)

}

~

M|{1,2}

, (4.22)

where the angle α3 is obtained by applying lemma 4.3 with the measurement M(3)
of the corresponding vertex. Repeating this procedure sequentially, we obtain a
circuit form for the unitary implemented by the measurement pattern:

u

v
(0, 1) (0, 1) (0, 1)

}

~

M

= J(1, α1) J(1, α2) J(1, α3) . (4.23)

The extraction algorithms presented in this chapter and the next will follow this
schema: starting from the outputs, we will show that it is possible to extract a
circuit acting after the measurement pattern is completed, and gradually reduce
the graph part of the diagram by identifying gate teleportations which can be
extracted to the circuit part.
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4.1.4 A reformulation of simple Zd-flow
In the case of simple Zd-flow, i.e. when all the measurement spaces areM(0, 1),
we can rework the condition into an equivalent form which considers, at each step
in the MBQC, the specific back-action of corrections on the measured vertices.
In order to do so, we first need to decide, for a given vertex u in an open graph
(G, I,O), what vertices will have been measured before it. We skip straight to the
case of a set of vertices:

Definition 4.5. Let (G, I,O) be an open graph, ≺ a partial order on Oc, and
define the past of a subset L ⊆ Oc of vertices of (G, I,O) as

P (L) := {k ∈ V | (∃j ∈ L) : k � j} . (4.24)

If Λ is a layer decomposition of (G, I,O), put P (k) = ∪j>kΛk (the past of layer k).
Then the correction matrix GΛ

k is the matrix GΛ
k := G[P (k), (P (k) ∪ I)c].

P (L) depends on the order ≺, but since we only ever consider a single order
at once, we omit this from its notation. P (L) can equivalently be defined as the
smallest ≺-lowerset that contains L. Note that P (k) = P (Λk) under the order on
Oc induced by the ordering of Λ.

GΛ
k is the subgraph of G which at each step of the MBQC (each layer) describes

the back-action of possible corrections made on as-of-yet unmeasured vertices.
Viewed this way, simple Zd-flow essentially amounts to a condition that assures
that this back-action can always be controlled to correct the measurement outcome
without inducing new errors in previous layers:

Proposition 4.6. An open Zd-graph (G, I,O) has simple Zd-flow (C,Λ) if and
only if for each k the linear equation

GΛ
k~cj =

(
~0P (k)\Λj

~m

)
has solutions ~ck ∈ Z(P (k)∪I)c

d for any ~m ∈ ZΛk
d , (4.25)

where ~0n is a (possibly empty) column vector of n zeros.

Proof. We assume without loss of generality that we only ever measure a single
vertex at a time, in other words, that the elements of Λ are singletons in Oc,
inducing a total order < on Oc. We also assume that the indices in O come last
with respect to < (with some arbitrary order with respect to each other), and
that the indices of G are ordered by <.

( =⇒ ) For each j ∈ Oc let ~cj be a solution to equation (6.57):

A<j ~cj =
(
~0j−1
mj

)
for some arbitrary non-zero mj ∈ Zd, (4.26)
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and define the matrix C ∈ Z|G|×|G|d as the the matrix whose i, j-th element is
given by

Cij :=
cji if j ∈ Oc and i ∈ (P (j) ∪ I)c;

0 otherwise;
(4.27)

where cji is the i-th element of ~cj . Then, C clearly verifies the properties required
of it in the statement: since C is ordered by <, there are at least |P (j)| = j
zeros above the diagonal in column j, so C is lower triangular with zero diagonal.
Furthermore, it is clear that Cij = 0 whenever i ∈ I or j ∈ O.

Since Cij = 0 for any i ∈ P (j) ∪ I, the j-th column of GC is

(GC)•j =
(
G[P (j), (P (j) ∪ I)c] · C[(P (j) ∪ I)c, {j}]
G[P (j)c, (P (j) ∪ I)c] · C[(P (j) ∪ I)c, {j}]

)
=
(
A<j ~cj
~xj

)
=

~0j−1
mj

~xj

 ,
(4.28)

where ~xj is a column vector in Z|(P (j)c)|
d (which tells us where we need to perform

Z-corrections). If j ∈ O, then the j-th column of GC is simply the zero vector. In
other words, we have that GC is lower triangular and for any j ∈ Oc, (GC)jj = mj

and we are done.
(⇐= ) Let < be the order of the indices of G, and put ~cj := C[(P (j)∪I)c, {j}].

We know that Cij = 0 if i ∈ P (j) ∪ I, since k ∈ P (j) implies that k 6 j, i.e. it is
above the diagonal (or is the diagonal element). Then by the definition of A<j the
j-th column of GC is

(GC)•j = G · C•j =
∑
j

CijG•j =
∑

j∈(P (j)∪I)c
CijG•j =

(
A<j ~cj
~xj

)
, (4.29)

where A<j ~cj ∈ Zjd and ~xj is an unimportant column vector in Z|(P (j)c)|
d .

Since GC is lower triangular, it’s j-th column must have j − 1 zeros above, so
that we have (

A<j ~cj
~xj

)
=

 ~0j−1
(GC)jj
~xj

 . (4.30)

Since (GC)jj 6= 0, for any mj ∈ Zd,

A<j (mj(GC)−1
jj ~cj) =

(
~0j−1
mj

)
, (4.31)

and this is true for each j ∈ Oc, thus (G, I,O) has simple Zd-flow.
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4.2 Star pattern transformation
In order to model the computation through the MBQC, the trick is to distinguish
between “real” qudits that undergo a unitary transformation though the MBQC
(and act like the wires in a circuit undergoing gates), and auxiliary qudits that are
consumed in teleportations. In the case of causal flow, things work out nicely as
follows.

Definition 4.7 ([de 08]). A path in a graph G is a sequence (vn)N−1
n=0 of vertices in

G such that for each n, Gvn,vn+1 6= 0. A path cover of an open graph (G, I,O) is a
collection P of paths in G such that

• each vertex in G is contained in exactly one path in P;
• each path in P is either disjoint from I or intersects I only at its initial point;
• each path in P intersects O only at its final point.

We use the following which also holds for qudits (since causal flow does not
depend on edge weights, only the semantics):

Lemma 4.8 (Causal flow path cover [de 08]). Let (f,6) be a causal flow on an
open graph (G, I,O). Then there is a path cover Pf of (G, I,O) where x→ y is an
arc in some path of Pf if and only if y = f(x).

A causal flow can always be viewed as a sequence of single gate teleporta-
tions with intermediate CZ operations. When we perform measurements in the
corresponding pattern, each input is teleported onto a subsequent vertex in the
graph, and thus can be seen to “flow” across the graph state. A path cover of the
corresponding open graph formalises this intuition. Each input corresponds to the
starting point of a path that traverses the graph from the inputs to the outputs,
identifying the vertices of (G, I,O) that will be “traversed” by each input through
subsequent teleportations.

Lemma 4.8 allows us to interpret the causal flow MBQC procedure as a sequence
of single qudit gate teleportations, with additional entangling operations between
teleportations. In fact, the path cover Pf allows us to distinguish between two
types of edges in G:

• edges (j, k) ∈ Pf correspond to gate teleportations where one end is the input
and the other the output, which we shall call teleportation edges;

• edges (j, k) /∈ Pf correspond to controlled-Z gates in the final circuit; and
are dubbed mediating edges.

Star pattern transformation (STP) [BK09] is a method based on this intuition for
turning a measurement pattern on an open graph with causal flow into a quantum
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circuit with equivalent semantics. In fact, the only real difficulty at this point is
figuring out whether it is possible to totally order the resulting teleportations and
mediating CZs in order to obtain a circuit. Luckily, all we need to worry about is
ordering the mediating edges such that they occur before any teleportation of a
vertex they are connected to. This is possible since such an ordering exists if and
only if there is a causal flow [MHM15] (although this result is stated in [MHM15]
only for qubits, it is easily adapted to the case of qudits since once again the
causal flow condition can be applied unchanged in that setting, as described in
section 2.2.4).

The SPT of a given causal flow can be obtained by the following algorithm:

Assume (G, I,O) is an open graph with causal flow (f,≺) and corresponding
path cover Pf , and let M : Oc →M(0, 1) be a choice of measurements.

Step 1: Interpret each path in Pf as a wire (qudit) in a quantum circuit, and
index the wire by the collection of vertices intersected by the path.

Step 2: For each edge (j, k) /∈ Pf , insert a CZ
(
Gjk

)
gate between the edges

indexed by j and k.
Step 3: For each edge (j, k) ∈ Pf , insert a J

(
Gjk, α

)
gate after all the CZ

gates for vertices i ∈ Pf such that i 6 j but before all such gates for k 6 i, where
α is the phase obtained from lemma 4.3 and corresponding to the measurement
M(j).

Step 4: For each path in Pf that does not intersect the inputs, initialise the
corresponding wire in the circuit with the auxiliary state |0 : X〉.

We have that:

Proposition 4.9 (Causal flow circuit). Suppose the open Zd-graph (G, I,O) has a
causal flow (f,≺), then for any choice M of measurements,

JG, I,OKM : H⊗I −→ H⊗O

|ψ〉 7−→ USPT (M)(|ψ〉
⊗
j∈O

Pj∩I=∅

|0 : X〉), (4.32)

where USPT is the unitary corresponding to the circuit obtained by star pattern
transformation of f (with phases depending on the choice of measurements M).

Proof. We present a slightly different algorithm that extracts the same circuit
as the SPT. Firstly, pull the CZ gates acting only between the outputs into the
circuit part of the diagram.

If Oc is empty, the graph part of the diagram consists only in the outputs.
Replace all of the inputs (now contained in the outputs) with inputs to the circuit,
and the non-inputs with state initialisation in the state |0 : X〉.
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Otherwise, note that there is always at least one element u ∈ Oc which is
maximal for ≺ (by the properties of partial orders). By definition of causal flow,
u then verifies the hypotheses of proposition 4.4 for the neighbour f(v) ∈ O.
We can therefore use the proposition to extract u to a J(Guo, α) gate. It is
straightforward to verify that the restriction of f and ≺ to Oc \ {u} is gives a
causal flow for (G[{f(u)}c, {f(u)}c], I \ {f(u)}, (O ∪ {u}) \ {f(u)}) (the graph
obtained by removing f(u) and passing u into the outputs), so we can repeat the
procedure starting from the first step.

Since we always either extract a vertex of the graph (which are finite) or
terminate, this recursion must terminate.

The upshot of this, is that if (G, I,O) is an open graph with Zd-flow, and there
is a subset K of the penultimate layer Λ1 such that there is a causal flow for K,
then we can extract the vertices from K:

Proposition 4.10. Suppose (G, I,O) is an open graph with simple Zd-flow, and
furthermore that there is a subset K ⊆ Λ1 such that there is a causal flow f : K → O.
Then, for any choice of measurements M : Oc →M(0, 1),

JG, I,OKM = USPT (M|K) ◦ JG′, I ′, O′KM|Kc , (4.33)

where G′ = G[f(K)c, f(K)c], I ′ = I \ f(K), O′ = (O∪K) \ f(K), and USPT is the
unitary obtained by applying proposition 4.9 to the subgraph between K and f(K).

Proof. As noted in chapter 3, the semantics of a open graph with Zd-flow does
not depend on the exact choice of Zd-flow. Thus, since the vertices in Λ1 can
be measured in any order, we can delay K to the end, and replace the part of
the simple Zd-flow that describes the corrections for K with f . Furthermore, the
definition of causal flow implies that f(K) can be connected only with K, so we
can view (G, I,O) as the composition of (G′, I ′, O′) with the subgraph G′′ of G
containing only K and f(K). Then,

JG, I,OKM = JG′′, K, f(K)KM|U ◦ JG′, I ′, O′KM|Kc (4.34)
= USPT (M|K) ◦ JG′, I ′, O′KM|Kc , (4.35)

for any choice of measurement M→M(0, 1).

4.3 Triangularising Zd-flow
The next challenge is to generalise this technique to the case of any simple Zd-flow.
We follow the ideas of [MHM15], associating open graphs with simple Zd-flow to
equivalent open graphs with (partial) causal flow which allows circuit extraction,
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albeit using quite different proof methods. We can then apply proposition 4.10 to
extract the causal flow.

More precisely, we show that the simple Zd-flow from Λ1 into Λ0 can always
be reduced to a causal flow, at the cost of some additional gates acting on the
outputs. These gates can be extracted immediately to the circuit part of the
diagram. Finally, by repeating this procedure for each layer, we extract a circuit for
the total MBQC procedure, as a sequence of star pattern transformation circuits
and intermediate arrays of CX gates.

4.3.1 From simple Zd-flow to causal flow
In order to extract causal flows from simple Zd-flows, we need a matricial charac-
terisation of causal flow:

Lemma 4.11 (Matrix form of causal flow). Let (G, I,O) be an open graph with
simple Zd-flow for a layer decomposition Λ, and L ⊆ Oc. Then there is a subset
C ⊆ P (L)c with |L| = |C| and a causal flow L→ C if and only if the “correction
matrix” of L can be written as

AL := G[P (L), (P (L) ∪ I)c] = M ·
(
X 0
Y T

)
·N (4.36)

where M and N are permutation matrices, T is a lower triangular |V | × |C| matrix
with non-zero diagonal and X, Y are arbitrary real matrices. In other words, we
can turn A<L into the partial triangular form of equation (4.36) only by reordering
rows and columns, which in turn corresponds to relabelling the vertices of the graph
G.
Proof. ( ⇐= ) If AL takes the form described, then the diagonal elements of
T determine a single correction vertex in C for each vertex in L, as well as a
measurement order such that there is no back-action: the order of the columns in
T (since all elements above the diagonal are now 0). Thus, there is a causal flow
L→ C.

( =⇒ ) If there is a causal flow L → C, then there is a measurement order
< on L such that when measuring vertex i ∈ L, there is a single unmeasured
vertex j ∈ Ic to correct onto, and this correction has no back-action on previously
measured vertices. But this implies that if we reorder the columns of j according
to <, column i has only zeros above row j (otherwise there is a back-action),
and a non-zero entry in row j (otherwise it is not possible to correct onto j).
Repeating this process for each vertex in L gives |L| such columns, let C be the
corresponding correction vertices.

Now, < induces an order <C on C by the causal flow matching. Extend < by
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letting all previously measured vertices in P (L) be less than L, and <C by letting
all unmeasured vertices in P (L)c be less than C. Then, ordering the columns and
rows of AL according to < and <C , respectively, results in a matrix of the form
described.
This characterisation of causal flow is the key difference between our proof

method and that of Miyazaki, Hajdušek, and Murao [MHM15]—where they use
arguments based on local complementation to find a causal flow from a g-flow, we
solve the comparatively easier problem of proving it is always possible to map an
open graph with simple Zd-flow to one where the correction matrix takes this form.

The approach now is, having broken the measurement pattern down into layers,
we show that the graph over each pair of layers can be seen as having flow, by
transforming the correction matrix such that it takes the above triangular form.
Reordering rows and columns of the correction matrix simply corresponds to
relabelling of the vertices, however, we will also require linear addition of columns.
This matrix or graphical operation, it turns out, is physically equivalent to applying
CX gates, which are exactly the additional operations in the equivalence mentioned
previously.

This emerges from the following stabiliser condition for controlled operators.
For any j ∈ V and S ⊆ V \ {j}, put

CZj,S(w) :=
∏
k∈S

CZj,k(w), (4.37)

then,

Lemma 4.12 (Controlled stabilisers). Let (G, I,O) be an open Zd-graph, j ∈ G
and k ∈ Ic. Then, for any input state φ ∈H ⊗|I|

CXj,k(s) CZj,N(k)(s) |G(φ)〉 = |G(φ)〉 . (4.38)

Proof. We have CXj,k(s) CZj,N(k)(s)G = GCXj,k(s), and

CXj,k(s)(|ψ〉j ⊗ |0 : X〉k) = CXj,k(s)(
∑

ψn |n〉j ⊗ |0 : X〉k) (4.39)
=
∑
n∈Zd

ψn |n〉j ⊗X(sn) |0 : X〉k (4.40)

=
∑
n∈Zd

ψn |n〉j ⊗ |0 : X〉k (4.41)

= |ψ〉j ⊗ |0 : X〉k , (4.42)

which proves the claim.
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Corollary 4.13. Let (G, I,O) be an open Zd-graph, j ∈ G and k ∈ Ic. Then, for
any input state φ ∈H ⊗|I|

CXj,k(−s) |G(φ)〉 = CZj,N(k)(s) |G(φ)〉 . (4.43)

In this way, the action of specific CZ operations - which are what are used to
create or remove edges in the graph - are equivalent to the application of a CX
operation. This allows us to achieve our goal of identifying a causal flow from the
penultimate layer to the outputs:

Proposition 4.14 (Triangularisation). If (G, I,O) is an open graph with simple
Zd-flow (C,Λ), then (G, I,O) is equivalent to an open graph with a causal flow
Λ1 → O, up to weighted CX gates acting in O and reordering the vertices in Λ1.

Proof. We can reorder the columns of G1
Λ by relabeling the unmeasured vertices,

and we can reorder the rows of G1
Λ by choosing a different measurement order for

vertices in Λ1.
Further let j, k ∈ O, then by corollary 4.13 applying the gate CXj,k(−s) on

the graph state induces new edges in the graph state. The result on the correction
matrix is the transformation

Cj 7−→ Cj + sCk, (4.44)

where Cj is the j-th column of AL.
By the definition of simple Zd-flow, for each v ∈ L we have that

G1
Λcv(1v) = 1v, (4.45)

so that cv(1v) gives a sum of columns G1
Λ which contains a single 1 in the row

corresponding to v. Repeating this for each v ∈ Λ1, we obtain |Λ1| such columns,
each with the 1 on a different row, so that by reordering rows and columns we
can write G1

Λ as

G1
Λ ∼

(
X 0
Y I|Λ1|

)
(4.46)

where I|Λ1| is the |Λ1|×|Λ1| identity matrix. Then, G1
Λ takes the form described in

lemma 4.11, and this partial triangularisation procedure corresponds to extracting
additional CX gates from the graph as described above. Then, the open graph
(G, I,O) is approximately equivalent to a graph with causal flow Λ1 → O, up to
CX gates acting in O.

The fact that the additional controlled gates act only on the outputs is crucial:
it will allow us to immediately pull them out into the circuit part of the diagram.
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As a result, they are taken care of in the extraction procedure and do not need to
be taken into account of in the following steps.

4.3.2 The extraction algorithm
We now can give a description of the circuit extraction algorithm for simple Zd-flows.
An example of the algorithm applied to a specific open graph is given in section 4.4.

Assume the input to the algorithm takes the form of a graph-circuit diagram D
and a simple Zd-flow (C,Λ) for the open graph part (G, I,O).

Step 1: If the graph part of the diagram contains no non-outputs, then each
output is connected to an output wire and at most one input wire. Delete the
output vertices, connect the inputs to the corresponding output wires, and initialise
any u ∈ Ic ∩O in the auxiliary state |0 : X〉. Then, return the resulting quantum
circuit. Otherwise, go on to step 2.

Step 2: Calculate a triangularisation for the flow Λ1 → O, and pull the
corresponding CX gates into the circuit part (corollary 4.13). This is always
possible by proposition 4.14, and can be done by a Gaussian elimination.

Step 3: Use proposition 4.10 to extract the quantum circuit corresponding
to the resulting causal flow Λ1 → O. The result is a graph-circuit diagram D′

whose semantics match D for any choice of measurement. The graph part of D′ is
(G[f(Λ1)c, f(Λ1)c], I \ f(Λ1), (O ∪ Λ1) \ f(Λ1)), and by lemma 3.16, it has a simple
Zd-flow. Return to step 1.

Theorem 4.15 (Simple Zd-flow circuit). Let (G, I,O) be an open Zd-graph with
simple Zd-flow (C,Λ), then for any choice M : Oc →M(0, 1) of measurements,

JG, I,OKM : H ⊗I −→H ⊗O

|ψ〉 7−→
∏
L∈Λ

TLUL
SPT (M|L)(|ψ〉

⊗
j∈O

Pj∩I=∅

|0 : X〉). (4.47)

where the product is ordered according to the order on layers, UL
SPT is the parametrised

circuit extracted for layer L using the causal flow from corollary 4.13, and TL con-
tains the CX gates obtained from the triangularisation of the Zd-flow (lemma
4.14).

Proof. It is clear the algorithm terminates since at every recursive step we extract
a layer into the circuit part of the diagram, and there are a finite number of layers.

The correctness of the algorithm follows from the fact that each step is
correct, and this is proved in the statement of the algorithm by referring to the
corresponding lemmas and propositions.
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Since each step of the algorithm runs in time polynomial (step 1 is O(|V |),
step 2 can be done in time O(|V |3) by Gaussian elimination, and step 3 is O(|V |))
and the algorithm loops at most |V | times, the total runtime of the algorithm is
polynomial.

4.4 A worked out example
This section contains a complete worked out example of a circuit extraction, where
the algorithm is applied step by step on the open graph

3
1

4

3

4

2 (4.48)

It has a simple Z5-flow given by the layer decomposition

Λ1Λ2 = I Λ0 = O

3
1

4

3

4

2 (4.49)
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and correction matrix

3 1 0
1 1 0
0 1 4

3 1 0
1 1 1
0 0 4

3 2 0
1 0 1
0 4 1

3 1 0
2 0 4
0 1 1


︸ ︷︷ ︸

G



0
0 0
0 0 0
3 2 0 0
2 4 0 0 0
2 4 4 0 0 0
0 0 0 1 4 2 0
0 0 0 4 4 2 0 0
0 0 0 4 2 3 0 0 0


︸ ︷︷ ︸

C

=



1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 0 0 0
1 4 1 0 0 0 0 0
4 3 4 0 0 0 0 0 0



(4.50)

where the empty matrix elements are taken to be 0. Note that the definition of
Zd-flow enforces that λ(u) = (0, 1) for all u ∈ Oc, thus we indeed have a simple
Z5-flow by lemma 4.6.

Since the circuit is extracted from the back of the open graph, in the first
step of the algorithm, we start with layer Λ1. Firstly, use Gaussian elimination
to triangularise the sub-adjacency matrix G[Λc

0,Λ0], which must be possible by
proposition 4.14:

G[Λc
0,Λ0] =



0 0 0
0 0 0
0 0 0
3 2 0
1 0 1
0 4 1





0 0 0
0 0 0
0 0 0
3 0 0
1 1 0
0 4 2



C2 ← C2 + C1
C3 ← C3 + 4C2

(4.51)

Using corollary 4.13 to extract this triangularisation into the corresponding CX
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operations in the circuit part of the diagram yields the equality:
u

wwwww
v

3
1

4

3

4

2

}

�����
~

M

=

u

wwwww
v

3

4

3

4 -4

-1

2

}

�����
~

M

(4.52)

By lemma 4.11, there is a causal flow Λ1 → Λ0, so we can use SPT to obtain

u

wwwww
v

3
1

4

3

4

2

}

�����
~

M

=

u

wwwwwwwwwwww
v

J43

4

J5

J6

4

Λ′1 = Λ2 Λ′0 = Λ1

-4

-1

}

������������
~

M|Λ2
(4.53)

where we have identified the new layer decomposition for the reduced graph. The
unitaries J4, J5, J6 are the J gates from the corresponding teleportation and are
passed the angle for the measurement and the weight of the edge along which the
teleportation occurs as arguments (see lemma 4.3). Repeating the triangularisation
procedure for layer Λ2 leads to: 3 0 0

1 4 0
0 1 4

G(1)[Λ′c0 ,Λ′0] =

3 1 0
1 1 0
0 1 4

 C2 ← C2 + 3C1
(4.54)

so that, applying lemma 4.11 a second time,
u

wwwww
v

3
1

4

3

4

2

}

�����
~

M

=

u

wwwww
v

J43

4

J5

J6

4

-3
4

-4

-1

}

�����
~

M|Λ2
(4.55)
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Using another SPT, the final extracted circuit for the whole MBQC is

J4

J5

J6

4

-3
J1

J2

J3

U
(2)
SPT U

(1)
SPT T (1)T (2)

-4

-1
(4.56)

where we have labelled the unitaries in the decomposition of theorem 4.15. Once
again, the unitaries J1, J2, J3 are the J gates from the corresponding teleportation
and are passed the angle for the measurement and the weight of the edge along
which the teleportation occurs as arguments.

Conclusion and outlook
We have provided a quantum circuit extraction for any open graph with simple
Zd-flow (i.e. when only the measurement spaceM(0, 1) is allowed), by relating
it to a sequence of causal flows with intermediate CX gates. In the following
chapter, we show how to use some of these methods to extract quantum circuits
from extended Zd-flows.

As mentioned in the introduction, many of the results presented here will also
by re-used in chapter 6, which is concerned with MBQC in the continuous variable
settings. There, we shall mostly be concerned with issues of convergence when the
auxiliary state used to generate the open graph state is only an approximation to
the ideal. Doing so will require us to reframe and extend many of the results from
this chapter.
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Quantum circuit extraction for
extended Zd-flows

In the final chapter on qudits, we construct an algorithm for extracting reversible
quantum circuits from robustly deterministic measurement patterns when all
measurement spaces are allowed. Our algorithm is inspired in many ways by
the one presented in [Bac+21] for the qubit case, but has its differences, and all
proofs have to be redone to fit the setting of qudits. This algorithm also builds
on the algorithm presented in chapter 4, since we once again proceed by using
Zd-flow-preserving transformations of the open graph to relate the measurements
to gate teleportations.

The full extraction problem presents additional complications when compared
to the simplified subcase which we solved in chapter 4, for a couple of reasons. On
the one hand, up until this point we have only shown how to extract unitary gates
from measurements inM(0, 1), by relating them to the gate teleportation protocol.
Even a very simple labelled open graph such as

(1, 0)
, (5.1)

has a (non-simple) Zd-flow, but it is not obvious how this should relate to the gate
teleportation protocol1.

This chapter is based on our upcoming article, [BP21].
1In fact, this graph corresponds to a gadget for a Z-rotation gate, i.e. RZ(α). It can be

extracted as such, but this does not help us find a general extraction method.
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On the other hand, the existence of extended Zd-flow on an open graph imposes
fewer restrictions on its connectivity than simple Zd-flow, and this makes the task
of identifying vertices to be extracted at any step in the algorithm a more subtle
affair. A particularly pathological example is the complete graph on n vertices,
with a single output o, no inputs, and such that every non-output is labelled by
(1,−1). In the case n = 4, this corresponds to

(1,−1)

(1,−1)

(1,−1) . (5.2)

This open graph (Gn,∅, {o}) has a Zd-flow (Cn,Λn) given by(
Jn − 1n Jn×1
J1×n 0

)
︸ ︷︷ ︸

Gn

(
1n 0n×1
−J1×n 0

)
︸ ︷︷ ︸

Cn

=
(
−1n 0n×1
J1×n 0

)
, (5.3)

where Jn×m is the m× n all-ones matrix, and
Λn =

{
{o}c, {o}

}
such that {o}c < {o}. (5.4)

It therefore has a single output, while simultaneously having an arbitrary number
of non-output vertices in the penultimate layer. If we want to extract such a graph
using similar methods to the previous chapter, we are going to have to split up the
penultimate layer since we can extract at most one teleportation edge at a time
through the single output.

Fortunately, the solution to both of these difficulties lies in a single idea: using
local-Clifford operations, we can simultaneously act on both the connectivity and
the labels of the open graph. The nature of this action is explored in section 5.1
in terms of local complementations and local scalings of the open graph which
collectively generate the local Clifford group [BB07b]. Crucially, it preserves the
structure of measurement spaces and the semantics of the measurement pattern.

Using these operations, we can isolate a subset ΛZ
1 of the penultimate layer

Λ1 of any Zd-flow (C,Λ) by changing all of its labels to (0, 1). In doing so, we
simplify the topology of the subgraph between ΛZ

1 and O enough that we can apply
(a version of) the triangularisation technique of the previous chapter. Of course,
the local Clifford operations affect multiple vertices of the graph, and in a way
that depends on its connectivity. Since they also change the connectivity itself,
some care is needed in correctly isolating ΛZ

1 , and this is the content of section 5.2.
This allows us, in section 5.3, to present the extraction algorithm itself, along with
some simplifications. Finally, in section 5.4, we present some explicitly worked out
examples of applying the algorithm to some specific labelled open graphs.
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5.1 Manipulating Zd-flows with local Cliffords
Recall from chapter 2 that the Clifford group G on a qudit is the subgroup of
U(H ) which preserves the Pauli group. We define the local Clifford group on
a register V of qudits to be the group of operators {⊗k∈V Pk|(∀k ∈ V ) : Pk ∈ G}.
Furthermore, we say that two graph states are local Clifford equivalent if there is a
local Clifford operator that maps one to the other. We introduce two types of local
Clifford operations, which we call local complementation and local scaling. It was
show in [BB07b; BB07a] that any local-Clifford equivalence of graph states can be
can be generated by just these two kinds of local Cliffords.

In this section, we show that both of these operations preverve the existence of
Zd-flow as well as the semantics of any corresponding measurement pattern. The
key to the semantics part of this statement is the following simple result:

Lemma 5.1. Let (a, b) ∈ Z2
d be non-zero, and M ∈M(a, b). If U ∈ U(H ) is any

unitary such that UXaZbU∗ ' XcZd, then UMU∗ ∈M(c, d).

Proof. We have for some α ∈ [0, 2π):

XcZdUMU∗ = eiαUXaZbU∗UMU∗ = eiαUXaZbMU∗ (5.5)
= eiαωUMXaZbU∗ = ωUMU∗XcZd, (5.6)

as required.

In other word, if a unitary transformation U maps the Pauli correction XaZb to
another Pauli correction XcZd, then the image of the corresponding measurement
space under the same unitary is UM(a, b)U∗ =M(c, d).

5.1.1 Local scaling
Definition 5.2. For any γ ∈ Z∗d, the γ-scaling about a vertex w in a graph G is
given by:

(G γ◦ w)uv :=
γGuv if u = w or v = w;
Guv otherwise.

(5.7)

In other words, we apply a multiplicative scaling to all of the edges in the
neighbourhood of w. For example:

a

b w

γ
◦w7−→

γa

γb

γ

γ . (5.8)
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Let Dw
γ ∈ ZV×Vd be the diagonal matrix given by

(Dw
γ )uv =


1 if u = v 6= w;
γ if u = v = w;
0 otherwise.

(5.9)

Lemma 5.3. G γ◦ w = Dw
γGD

w
γ .

Proof. This is clear since multiplying by Dw
γ on the left rescales the w-th row,

and multiplying on the right rescales the w-th column. The only possible issue is
at Gww, but since we don’t allow self-edges, γ2Gww = 0 = γGww.

First of all, we find a unitary representation of local scaling, which will be used
to apply lemma 5.1:

Proposition 5.4. Let (G, I,O) be an open Zd-graph. For any |φ〉 ∈H ⊗I , γ ∈ Z∗d
and w ∈ Ic, ∣∣∣G γ◦ w(φ)

〉
= Mw(γ−1) |G(φ)〉 , (5.10)

where M(γ) |k〉 := |γ · k〉, and this map is local-Clifford.
If w ∈ I, then ∣∣∣G γ◦ w(φ)

〉
= Mw(γ−1) |G(φ′)〉 , (5.11)

where |φ′〉 = Mw(γ) |φ〉.

Proof. We have

M1(γ−1) · E1,2 ·M1(γ) |m〉 |n〉 = ωγmn |m〉 |n〉 = Eγ
1,2 |n〉 |m〉 , (5.12)

and M(γ) |0 : X〉 = |0 : X〉. Therefore, if w ∈ Ic, by commuting M through the
E gates in equation 2.18 we obtain:

Mw(γ−1) |G〉 = Mw(γ−1)

 ∏
u,v∈V
u<v

EGuv
u,v


(
|ψ〉

⊗
u∈Ic
|0 : X〉

)
(5.13)

=
 ∏
v∈N(w)

EγGwv
u,v


 ∏
u,v∈V \{w}

u<v

EGuv
u,v

Mw(γ−1)
(
|ψ〉

⊗
u∈Ic
|0 : X〉

)

(5.14)
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=

 ∏
u,v∈V
u<v

E(G
γ
◦w)uv

u,v


(
|ψ〉

⊗
u∈Ic
|0 : X〉

)
=
∣∣∣G γ◦ w

〉
, (5.15)

as desired. In the case where w ∈ I, we do the same commutation through the
E gates, but cannot do the simplification of the Mw(γ−1) gate on the stabiliser
state. Instead, the gate remains, acting on the corresponding input.

Then, for any k ∈ Zd and non-zero (a, b) ∈ Z2
d, we have

M(λ)∗XaZbM(λ) |k〉 = M(λ)∗XaZb |λk〉 (5.16)
= M(λ)∗ωbλk |λk + a〉 (5.17)
= ωbλk

∣∣∣k + λ−1a
〉

(5.18)

= Xλ−1aZλb |k〉 (5.19)

so M(λ)∗XaZbM(λ) = Xλ−1aZλb and M(λ) is local-Clifford.

We can now use this unitary presentation to show that local scaling preserves
both the existence of Zd-flow, and the corresponding semantics of the MBQC. To
do so, we construct a new open graph, with a new labelling and Zd-flow which are
obtained by considering the action of the corresponding unitary.

Proposition 5.5. Suppose the labelled open graph (G, I,O, λ) has a Zd-flow given
by (C,Λ). Then for any w ∈ V and γ ∈ Z∗d, (G γ◦ w, I,O, λ

γ
◦w) has a Zd-flow given

by (Dw
γ−1C,Λ), and with labels

λ
γ
◦w(u) :=


(
γ−1Cww, γ(GC)ww

)
if u = w;(

Cuu, (GC)ww
)

otherwise;
(5.20)

(where we originally had λ(u) = (Cuu, (GC)uu)).
If w ∈ Oc, for any M ∈M(λ), put

M
γ
◦w(u) :=

M(γ)M(u)M(γ−1) if u = w;
M(u) otherwise;

(5.21)

then M
γ
◦w ∈M(λ

γ
◦w) and

r
G

γ◦ w, I,O
z

M
γ
◦w

= JG, I,OKM . (5.22)

If w ∈ O, we have

Mw(γ−1) ◦
r
G

γ◦ w, I,O
z

M
= JG, I,OKM , (5.23)

95



CHAPTER 5. CIRCUIT EXTRACTION FOR EXTENDED ZD-FLOWS

and if w ∈ I, r
G

γ◦ w, I,O
z

M
◦Mw(γ−1) = JG, I,OKM . (5.24)

Proof. Left multiplication by a diagonal matrix only rescales rows, so it is clear
that Dw

γ−1C and (G γ◦ w)C = Dw
γGD

w
γD

w
γ−1C = Dw

γGC are lower triangular. It is
clear that local scaling preserves layers since it only rescales rows and columns
thus preserves conditions (ii) and (iii) of the definition of Zd-flow.

The semantics part follows from the fact that if the scaling acts on measured
vertices, then it is absorbed into the choice of measurement plane at w, otherwise
we pull it out of the pattern as a unitary acting on the outputs.

5.1.2 Local complementation
For any γ ∈ Z∗d, the γ-weighted local Zd-complementation or γ-complementation
about a vertex w in a graph GßZV×Vd is defined as:

(G γ
? w)uv :=

Guv + γGuwGwv if u 6= v;
Guv otherwise.

(5.25)

This operation is somewhat harder than local scaling to get a good intuition
for. It essentially operates on “cones” in G with summit w. The simplest example
is the following:

a

b
w

γ
?w7−→ a

b
γab . (5.26)

In a more complicated graph, local complementation about w performs this simple
operation for every such “cone” with summit w. For example,

a

b w

γ
?w7−→ a

b
γab

1 + γa

γb

γ

. (5.27)

We can give a more linear-algebraic form of local complementation as follows:

Proposition 5.6. For a vector v ∈ Znd , let Dv be the corresponding diagonal n× n
matrix. If G ∈ ZV×Vd , w ∈ V and γ ∈ Z∗d, then

G
γ
? w = G+ γG1{w}1T

{w}G− γD2
Gew . (5.28)
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Proof. The proof follows by directly calculating elements: if u, v ∈ V and u 6= v,

(G+ γG1{w}1T
{w}G− γD2

Gew)uv = Guv + γGuwGwv − γD2
uv (5.29)

= Guv + γGuwGwv. (5.30)

Otherwise,

(G+ γG1{w}1T
{w}G− γD2

Gew)uu = Guu + γGuwGwu − γD2
uu (5.31)

= Guu + γGuwGwu − γ(G1{w})2 (5.32)
= Guu + γGuwGwu − γG2

uw (5.33)
= Guu, (5.34)

as claimed.

Recall that the phase gate on L 2(Zd) is defined as

P |x〉 := ω
x(x−1)

2 |x〉 , (5.35)

and put P̃ := F−1PF . In particular, we have

PXP−1 = XZ, PZP−1 = Z (5.36)
P̃XP̃−1 = X, and P̃ZP̃−1 = ZX−1 = ω−1X−1Z, (5.37)

so the phase gates are Clifford operations. This allows us to express local comple-
mentation as a unitary acting on H⊗V :

Proposition 5.7. Let (G, I,O) be an open Zd-graph, γ ∈ Zd and w ∈ Ic. Then
for any |φ〉 ∈ H⊗I , ∣∣∣G γ

? w(φ)
〉

= P̃ γ
w

∏
v∈V

P−γG
2
wv

v |G(φ)〉 , (5.38)

and this map is local-Clifford.

Proof. We first compute the action of L := P̃ γ
w

∏
v∈V P

−γG2
wv

v on the open graph
stabilisers when the input state is assumed to be a stabiliser state. Recall that
these take the form

X1{u}ZG1{u} |G(φ)〉 = |G(φ)〉 if u /∈ I, (5.39)
ω−nX1{u}ZG1{u} |G(n : X)〉 = |G(φ)〉 if u ∈ I, (5.40)

ω−nZu |G(n : Z)〉 = |G(φ)〉 if u ∈ I. (5.41)
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Since we have assumed w /∈ I, we have u 6= w and LZuL† = Zu. Firstly, note that

LX1{w}ZG1{w}L
† = X1{w}ZG1{w} (5.42)

and for u ∈ V such that u 6= w:

LX1{u}ZG1{u}L
† = ω−γGuwω−γ

Guw(Guw−1)
2 XuZ

−γG2
wu

u X−γGuww ZG1{u} (5.43)

= ω−γ
Guw(Guw+1)

2 XuX
−γGuw
w Z−γG

2
wu

u ZG1{u} (5.44)

= ω−γ
Guw(Guw+1)

2 ωγG
2
wuX−γGuww Z−γG

2
wu

u XuZG1{u} (5.45)

= ωγ
Guw(Guw−1)

2 X−γGuww Z−γG
2
wu

u XuZG1{u} (5.46)

= ωγ
Guw(Guw−1)

2 X−γGuww Z−γG
2
wu

u XuZG1{u} (5.47)

= ωγ
Guw(Guw−1)

2 X−γGuww

∏
v∈V

Z−γGwvGwuv

∏
v∈V \{u}

Z−γGwvGwuv XuZG1{u}

(5.48)
= (X1{w}ZG1{w})

−γGuw
∏

v∈V \{u}
Z−γGwvGwuv XuZG1{u} . (5.49)

Then, applying LX1{w}ZG1{w}L
† on the left, we have:

∏
v∈V \{u}

Z−γGwvGwuv XuZG1{u} = X1{u}Z(G
γ
?w)1{u}

, (5.50)

so the image of the stabiliser group of |G(φ)〉 under L is the stabiliser group of∣∣∣G γ
? w(φ)

〉
whenever the input φ is a stabiliser state. Let |G(~m)〉 be the graph

state obtained from the input state ⊗i∈I |mi〉, and
∣∣∣G(~0 : X)

〉
be the graph state

obtained from the input state ⊗i∈I |0 : X〉. Then it ensues that there are phases
α~m, β ∈ [0, 2π) such that

L |G(~m : Z)〉 = eiα~m
∣∣∣G γ
? w(~m)

〉
(5.51)

L
∣∣∣G(~0 : X)

〉
= eiβ

∣∣∣G γ
? w(~0 : X)

〉
, (5.52)

by the stabiliser relations above.
Letting |ψ〉 ∈H ⊗I be an arbitrary input state, we have

|0 : X〉 = 1√
d

∑
~m∈ZI

d

|~m〉 , (5.53)

98



CHAPTER 5. CIRCUIT EXTRACTION FOR EXTENDED ZD-FLOWS

so that ∣∣∣G(~0 : X)
〉

= 1√
d|I|

∑
~m∈ZI

d

|G(~m)〉 . (5.54)

In turn,

L
∣∣∣G(~0 : X)

〉
= 1√

d|I|

∑
~m∈ZI

d

eiα~m
∣∣∣G γ
? w(~m)

〉
(5.55)

and

L
∣∣∣G(~0 : X)

〉
= eiβ

∣∣∣G γ
? w(~0 : X)

〉
(5.56)

= eiβ
1√
d|I|

∑
~m∈ZI

d

∣∣∣G γ
? w(~m)

〉
(5.57)

Since the states
∣∣∣G γ
? w(~m)

〉
are orthogonal, we must therefore have eiα~m = eiβ

for all ~m ∈ Z|I|d . Letting |ψ〉 ∈H ⊗I be an arbitrary input state, we then have

L |G(ψ)〉 = 1√
d|I|

∑
~m∈ZI

d

c~mL |G(~m)〉 (5.58)

= 1√
d|I|

∑
~m∈ZI

d

c~me
iβ
∣∣∣G γ
? w(~m)

〉
(5.59)

'
∣∣∣G γ
? w(ψ)

〉
, (5.60)

as claimed.
We now use this unitary presentation to show that local complementation

preserves the existence of Zd-flow for a given open graph, as well as the semantics of
the corresponding measurement pattern up to local Cliffords acting on the outputs:

Proposition 5.8. Suppose the open graph (G, I,O, λ) has a Zd-flow given by
(C,Λ). Then, for any w ∈ Oc and γ ∈ Zd, (G γ

? w, I, O, λ
γ
?w) with new labels

λ
γ
?w(u) :=


(
Cww − γ(GC)ww, (GC)ww

)
if u = w;(

Cuu, (GC)uu − γG2
uw(GC)uu

)
otherwise;

(5.61)
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(where we originally had λ(u) = (Cuu, (GC)uu)) has a Zd-flow (C
γ
?w,Λ) defined as

C
γ
?w
uv :=

Cwv − γ(GC)wv if u = w;
Cuv otherwise.

(5.62)

Let PO be the (possibly trivial) restriction of the product in equation (5.38) to
outputs, and Pj its component acting on vertex j ∈ Oc. Then for any M ∈M(λ),
we have

PO ◦
r
G

γ
? w, I, O

z

M
γ
?w

= JG, I,OKM , (5.63)

where for any j ∈ Oc, M
γ
?w(j) := PjM(j)P ∗j and is such that M

γ
?w ∈M(λ

γ
?w).

Proof. C
γ
∗w maintains conditions (ii) and (iii) of the definition of Zd-flow since

from equation (5.62) we see that it amounts to a sum of columns of C and GC.
Furthermore, if u ∈ I, C ′uv = Cuv = 0, and if v ∈ O, Cuv = 0 which implies

(GC)uv = ∑
a∈V GuaCav = 0 so that C ′uv = 0.

We also have(
(G γ

? w)C ′
)
uv

=
∑
a∈V

(Gua + γ(GeweTwG−D2
Gew)ua)Cav (5.64)

− γ(Guw + γ(GeweTwG−D2
Gew)uw)(GC)wv (5.65)

= (GC)uv + γ
∑
a6=u

GwuGwaCav − γGuw(GC)wv (5.66)

= (GC)uv − γG2
uwCuv, (5.67)

From this equation we see that (G γ
?w)C

γ
∗w corresponds to a weighted element-wise

sum of C and GC, hence also preserves condition (ii) and (iii) of the definition of
Zd-flow.

Moreover,

C ′uu =
Cww − γ(GC)ww if u = w;
Cuu otherwise.

(5.68)

and (
(G γ

? w)C ′
)
uu

=
(GC)ww if u = w;

(GC)uu − γGw
uwCuu otherwise.

(5.69)

from which it is clear that we always have C ′uu or ((G γ
? w)C ′)uu different from

zero, since the same is true of Cuu and (GC)uu by hypothesis.
Finally, we note that equations (5.68) and (5.69) correspond precisely to the

image of the corrections XCuuZ(GC)uu under the action of the local complementa-
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tion as described in proposition 5.7 and using the identities (5.36)-(5.37). In other
words, the local complementation is absorbed into the choice of measurement
spaces and unitaries within those new spaces, yielding the new labelling λ

γ
?w(j)

and choice of measurements M
γ
?w(j). Applying lemma 5.1 to the definition of

M
γ
?w shows that M

γ
?w(j) ∈M(λ

γ
?w(j)) as claimed. However, this is only possible

on vertices that are measured, non-outputs, so that the remaining part of equation
(5.38) acting on outputs must be tracked explicitly in PO.

Locally complementing about an input

For our extraction algorithm, we will also sometimes need to locally complement
the open graph about an input. This is forbidden since the unitary representation
of local complementation depends on the fact that P̃ |0 : X〉 = |0 : X〉. We have
to resort to a “trick”, taken from [Bac+21], proposition 4.4: we replace the input
vertex by an auxiliary vertex onto which the input state is then teleported. The
labelling of the new vertex matches the original labelling of the input (or it is an
output if the original input was). For example, in the case of the Z-rotation gadget
graph,

we replace
(1, 0)

with
(1, 0)

(0, 1)
F−1

, (5.70)

where the new input must be measured in X ∈ M(0, 1). The additional inverse
Fourier gate on the input circuit comes from the fact that the gate teleportation adds
a Fourier gate acting on the input, which we need to get rid of: by proposition 4.4,
we have

J F−1 K
X

= J(0, 0)F−1 = . (5.71)
We can then apply the local complementation about the vertex that has replaced
the input. Of course, we need to make sure that the existence of Zd-flow and the
semantics of the MBQC are preserved by this substitution. Formally, we have:

Proposition 5.9 (Complementing about an input). Let (G, I,O, λ) be a labelled
open Zd-graph on the vertex set V with Zd-flow, and w ∈ I. Also let (G′, I ′, O, λ′)
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be the labelled open graph on the vertex set V t {x} where I ′ = (I t {x}) \ {w},

G′uv =



1 if u = x, v = w;
1 if u = w, v = x;
0 if u = x, v 6= w;
0 if u 6= w, v = x;
Guv otherwise;

(5.72)

and

λ′(u) =
(0, 1) if u = x;
λ
γ
?w(u) otherwise.

(5.73)

Then, (G′, I ′, O, λ′) has Zd-flow.
Furthermore, for any M ∈M(λ), define M′ : V ′ \O → U(H ) as

M′(u) :=
X if u = x;

M
γ
?w(u) otherwise;

(5.74)

then M′ ∈M(λ′) and

JG, I,OKM =
r
G′

γ
? w, I ′, O′

z

M′
◦ F−1

x . (5.75)

Proof. (G′, I ′, O, λ′) can be seen to be the composition of (G, I,O, λ) with the
teleportation graph

, (5.76)
along the pair of maps

{ } {∗} I

∗ w

.

Then by proposition 4.2, we have

JG′, I ′, O′KN ◦ F
−1
x = JG, I,O, λKM ◦ J KX ◦ F

−1
x = JG, I,O, λKM (5.77)

where in the second equality we have used equation (5.71). The equality for the
local complementation then follows from proposition 5.8.

5.2 Quantum circuit extraction subprocesses
In this section, we construct useful subprocesses for the full circuit extraction
algorithm, relying extensively on the results of the previous section. Explicitly, we
prove the following statements:
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1. Edges between output vertices can be pulled into the output circuit part of
the diagram as CZ gates.

2. There is a sequence of local Clifford operations which simplifies the graph such
that the only measurement labels are (0, 1) or (1, 0). Defining a simplified
type of open graph, which we called reduced open graphs, we show that these
methods can be used to reduce any open graph.

3. We show how to extract any number of vertices in the penultimate layer
which are labelled with (0, 1). The collection of such vertices is the set ΛZ

1
mentioned in the introduction.

4. If Λ is the maximally delayed layer decomposition for (G, I,O, λ), and
(G, I,O, λ) is reduced and non-empty, then there are always vertices in
the penultimate layer labelled with (0, 1).

5. Isolated vertices in the graph can be discarded without affecting the Zd-flow
or the semantics of the measurement pattern.

5.2.1 Extracting edges between outputs
In order to make the extraction procedure possible, we first want to simplify the
labelled open graph part of the hybrid diagram as much as possible. Firstly, we
show that one can simply pull any edges between outputs into the circuit part of
the diagram, without changing the Zd-flow nor the semantics of the diagram:

Proposition 5.10. Let (G, I,O, λ) be a labelled open graph with Zd-flow (C,Λ).
Define a new labelled open graph (G′, I, O, λ) on the same vertex set by

G′uv :=
0 if u, v ∈ O;
Guv otherwise.

(5.78)

Then (G′, I, O, λ) has Zd-flow (C,Λ) and for any M ∈M(λ),

JG, I,OKM =
∏

(u,v)∈O
u6=v

EGuv
u,v ◦ JG′, I, OKM . (5.79)

Proof. If u 6= O, then (G′C)uv = ∑
w∈V G

′
uwCwu = ∑

w∈V GuwCwu = (GC)uv.
Therefore, G′C only differs from GC in the submatrix G′C[O,Oc], so G′C still
all of the conditions for Zd-flow (definition 6.5).

The semantics part follows straightforwardly from examining those obtained
in theorem 3.2:

JG, I,OKM =
√
d× |Oc|

⊗
u∈Oc
〈0 : M(u)|EGNIc (5.80)
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=
√
d× |Oc|

⊗
u∈Oc
〈0 : M(u)|

∏
(u,v)∈O
u6=v

EGuv
u,v EG′NIc (5.81)

=
∏

(u,v)∈O
u6=v

EGuv
u,v

√
d× |Oc|

⊗
u∈Oc
〈0 : M(u)|EG′NIc (5.82)

=
∏

(u,v)∈O
u6=v

EGuv
u,v ◦ JG′, I, OKM , (5.83)

as claimed.

5.2.2 Removing intermediate measurement spaces
It turns out that it is possible to perform a series of local Clifford transformations
on a labelled open graph (G, I,O, λ) which deals with many of the complications
evoked in the introduction of the chapter. We are going to map any open graph
with Zd-flow to the following form, up to local Clifford operations acting on the
outputs:

Definition 5.11. A labelled open Zd-graph (G, I,O, λ) is reduced if

• there are no edges between outputs, i.e. G[O,O] = 0;
• the only labels that appear in the graph are (0, 1) or (1, 0), i.e. λ(Oc) ⊆
{(0, 1), (1, 0)};

• there are no adjacent vertices in (G, I,O, λ) which are both labelled (1, 0), i.e.
λ(u) = (0, 1) = λ(v) implies Guv = 0;

• there are no vertices in (G, I,O, λ) which are labelled (1, 0) and also connected
to an output, i.e. λ(u) = (0, 1) and v ∈ O implies Guv = 0.

Then, every labelled open Zd-graph with Zd-flow is locally equivalent to a
reduced labelled open Zd-graph which must have Zd-flow. Since local Cliffords
preserve the semantics, as described in section 5.1:

Proposition 5.12. If (G, I,O, λ) is a labelled open Zd-graph on the vertex set V
with Zd-flow then there is a reduced open Zd-graph (G′, I, O, λ′) on a vertex set
V ′ ⊇ V , such that for any M ∈ M(λ), there are M′ ∈ M(λ′), a local Clifford
P : H ⊗O →H ⊗O, an array A of CZ gates and an array B of (inverse) Fourier
gates and M gates such that

JG, I,OKM = P ◦ A ◦ JG′, I, OKM′ ◦B. (5.84)

In other words, if D is a hybrid diagram, we can transform it to a diagram D′

whose graph part is reduced, by pulling P into the circuit part. Once again, we
build up to this statement in multiple smaller steps.
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Lemma 5.13. Let (G, I,O, λ) be a labelled open graph with Zd-flow (C,Λ). Then it
is locally equivalent to an open graph (G′, I, O, λ′) such that λ′(Oc) ⊆ {(x, 0), (0, x) |
x ∈ Zd}.

Proof. Note that local complementation at some vertex w ∈ Ic only changes
the X-coordinate of the measurement space at w and the Z-coordinate of the
measurement spaces of the neighbours of w. Pick a random vertex v ∈ V such
that λ(v)1 6= 0 6= λ(v)2, and apply the local complementation at v with weight
γ := λ(v)1 · λ(v)−1

2 . The resulting open graph has λ′(v) = (0, λ(v)2). Since, as
noted above, local complementation does not change the X-coordinate of any
other vertex than w, we can repeat this procedure for any vertex in V without
reintroducing a non-zero X-coordinate at w. The only vertices for which this is
not possible are:

• inputs i ∈ I, since the local complementation rule does not hold at inputs,
but these must have λ(i) = (0, λ(i)2) by the definition of Zd-flow;

• vertices u ∈ V such that λ(v)2 = 0 since then local complementation at
u has no effect on the measurement space of u, but then we already have
λ(u) = (λ(u)1, 0).

Then, at each iteration of this procedure we eliminate a vertex that doesn’t verify
the condition, and the iteration terminates when the whole graph is labelled
according to the statement of the lemma.

Lemma 5.14. Let (G, I,O, λ) be a labelled open graph with Zd-flow (C,Λ). Then
it is locally equivalent to open graph (G′, I, O, λ′) such that λ′(Oc) ⊆ {(1, 0), (0, 1)}.

Proof. By the preceding lemma, (G, I,O, λ) is locally equivalent to an open
graph such that for any v ∈ Oc, λ′(v) is either (λ(v)1, 0) or (0, λ(v)2). Note that
local scaling at v only changes the measurement space of v and no other vertex
in the graph. Then, if we are in the first case, apply a local scaling at v with
weight λ(v)1, which maps the measurement space of v to (1, 0). In the second
case, apply a local scaling with weight λ(v)−1

2 , which maps the measurement space
to (0, 1).

Lemma 5.15. Let (G, I,O, λ) be a labelled open graph with Zd-flow (C,Λ), and
assume there are vertices u, v ∈ V such that Guv 6= 0 and λ(u) = (x, 0) and either
λ(v) = (y, 0) or v ∈ O \ I. Then (G, I,O, λ) is locally equivalent to an open graph
(G′, I, O, λ′) with λ′(u) = (0, 1) and λ′(v) = (0, 1) if v /∈ O.
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Proof. Let (u, v) be such a pair of adjacent X-vertices. Then, perform the
following sequence of local complementations:

λ(u) = (x, 0)
λ(v) = (y, 0)

α
?v7−−−−−→

(x, 1)
(y, 0)

β
?u7−−−−−→

(0, 1)
(y, q)

γ
?u7−−−−−→

(0, 1)
(0, q)

, (5.85)

where α = −G−2
uv y

−1, β = x which implies q = −xyG2
uv, and γ = yq−1 =

−x−1G−2
uv .

Finally, use local scaling as in lemma 5.14 to maps both labels to (0, 1).
In the case where v ∈ O, it suffices to perform the first two local complemen-

tations, and push the corresponding action on v into the extracted circuit.

Finally, we need the version of the previous lemma for which the output turns out
to also be an input. In this case, we need to use the rule for locally complementation
about an input. In particular, we need to add an extra vertex to the graph to make
this possible.

Lemma 5.16. Let (G, I,O, λ) be a labelled open graph with Zd-flow (C,Λ), and
assume there are vertices u ∈ V and v ∈ O∩ I such that Guv 6= 0 and λ(u) = (x, 0).
Then there is a reduced open graph (G′, I ′, O, λ′) on a vertex set V t {x} with
λ′(u) = (0, 1), and such that the open graph (G, I,O) embeds into (G′, I ′, O, λ′) by
the inclusion map of V into V t {x}, up to local equivalence.

Proof. Same as lemma 5.15, except we use the rule for local complementation
about an input, proposition 5.9. As a result we have to add a vertex to the
graph following that proposition, and pull an inverse Fourier gate into the input
circuit.

Proof of proposition 5.12. Alternate between

1. applying lemmas 5.13 and 5.14 to simplify (G, I,O, λ) to an open graph
labelled entirely in (1, 0), (0, 1), pulling local Clifford into the outputs when-
ever local complementation is used (proposition 5.8) and pulling multipliers
into the input circuit whenever local scaling is applied at an input (proposi-
tion 5.5);

2. applying lemmas 5.15 to each pair of adjacent (1, 0)-vertices in G (pulling
local Cliffords into the output circuit) and 5.16 to any (1, 0)-vertex adjacent
to an input (pulling inverse Fouriers into the input circuit, proposition 5.9).

Since at each loop we reduce the number of (1, 0)-vertices this must even-
tually terminate, either because there are no (1, 0)-vertices left or because the
connectivity of the graph no longer allows the lemmas to be applied. Finally, use
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proposition 5.10 to pull any edges between outputs into the circuit part of the
diagram as the array A. The graph part of the resulting diagram is reduced.

5.2.3 Diagonalising extended Zd-flow
We have now reached the core of the algorithm. We show here how to extract
vertices in the penultimate layer which are measured inM(0, 1). The idea used here
is very similar to that of triangularisation in the case of simple Zd-flow (section 4.3),
except here we diagonalise instead.

Proposition 5.17. Let (G, I,O, λ) be a reduced open graph with Zd-flow (C,Λ),
and put ΛZ

1 = λ−1({(0, 1)}) ∩ Λ1. Then (G, I,O, λ) is Clifford equivalent to a
reduced open graph (G′, I, O, λ) such that

1. there is a subset U ⊆ O and a perfect matching ΛZ
1 → U in G′;

2. U is connected only to ΛZ
1 .

Furthermore, this equivalence is given only by an array of CX gates acting in the
outputs of (G, I,O, λ).

Proof. First let ΛX
1 = Λ1 \ΛZ

1 , which is such that λ(ΛX
1 ) = {(0, 1)}, and consider

the matrix

(GC)[V,ΛZ
1 ] =



(GC)[ΛN ,ΛZ
1 ]

...
(GC)[Λ2,ΛZ

1 ]
(GC)[Λ1,ΛZ

1 ]
(GC)[Λ0,ΛZ

1 ]

 =



(GC)[ΛN ,ΛZ
1 ]

...
(GC)[Λ2,ΛZ

1 ]
(GC)[ΛX

1 ,ΛZ
1 ]

(GC)[ΛZ
1 ,ΛZ

1 ]
(GC)[Λ0,ΛZ

1 ]


=



0
...
0
0

1ΛZ1
A


. (5.86)

We have that

(GC)[Λk,ΛZ
1 ] =

∑
j

G[Λk,Λj]C[Λj,ΛZ
1 ], (5.87)

= G[Λk,Λ1]C[Λ1,ΛZ
1 ] +G[Λk,Λ0]C[Λ0,ΛZ

1 ], (5.88)
= G[Λk,Λ0]C[Λ0,ΛZ

1 ]. (5.89)
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Using the first equation, we then have

G[ΛN ,Λ0]
...

G[Λ2,Λ0]
G[ΛX

1 ,Λ0]
G[ΛZ

1 ,Λ0]
G[Λ0,Λ0]


C[Λ0,ΛZ

1 ] =



0
...
0
0

1ΛZ1
A


. (5.90)

Finally, A = G[Λ0,Λ0]C[Λ0,ΛZ
1 ] = 0 since (G, I,O, λ) is reduced, so that C[Λ0,ΛZ

1 ]
describes a set of column operations on G[V,Λ0] that finds a perfect matching for
ΛZ

1 in O. Following section 4.3, these column operations correspond to CX gates
acting in the outputs O of (G′, I, O).

Corollary 5.18. Under the same hypotheses, for any M ∈M(λ),

JG, I,OKM = T ◦ JG′, I, OKM , (5.91)

where T collects the array of CX gates acting on the outputs.

By pulling the array T of CX gates into the circuit part of the diagram D,
we find a perfect matching for the vertices in ΛZ

1 with vertices U ⊆ O which are
disconnected from the rest of the graph. In other words, each u ∈ ΛZ

1 now verifies
the conditions for proposition 4.4. It follows that

Corollary 5.19. Under the same hypotheses, for any M ∈M(λ), there is a unique
collection choice of αu ∈ [0, 2π) for each u ∈ ΛZ

1 such that

JG, I,OKM = T ◦
∏
u∈Λ1

Z

J(Guγ(u), αu)u ◦
q
G[U c, U c], I \ U, (O ∪ ΛZ

1 ) \ U
y

M|Uc
,

(5.92)
where T collects the array of CX gates acting on the outputs, γ : ΛZ

1 → U is the
bijection corresponding to the perfect matching found in the proposition.

Proof. By the discussion above, (G′, I, O, λ) is the composition of (G[U c, U c], I \
U, (O ∪ ΛZ

1 ) \ U, λ|U c) and the open graph consisting in a collection of parallel
gate teleportation graphs (lemma 4.3) along the pair of maps

(O \ U) ∪ ΛZ
1 ΛZ

1 U
ι γ , (5.93)

where ι denotes inclusion. The equality on interpretations then follows from
corollary 5.18 and (multiple applications of) proposition 4.4.
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5.2.4 Correctness of the extraction algorithm
The final key to the algorithm is a proof that if D is a diagram whose graph part
is a reduced open graph with Zd-flow, either

1. the graph part is essentially empty and the extraction is complete, or;
2. ΛZ

1 6= ∅ and we can use the procedures constructed in section 5.2.3 to extract
more vertices from the graph part of the diagram into the circuit part.

The algorithm can therefore never reach a “fail” state where it cannot continue.
More specifically, if the graph is non-empty, either there is a vertex connected to
the outputs and labelled with (0, 1) that can be extracted, or the remaining graph
is totally disconnected and can be discarded without changing the semantics of the
diagram.

Proposition 5.20. If (G, I,O, λ) is a reduced open graph and has a maximally
delayed Zd-flow (C,Λ), then either rankG[Λ1,Λ0] > 1, or all of the non-output
vertices are isolated.

Before proving this however, we need a couple of intermediary lemmas:

Lemma 5.21. Let (G, I,O, λ) be a open graph with Zd-flow (C,Λ), and assume
there is v ∈ Λ1 such that λ(v)2 6= 0. Then, rankG[Λ1,Λ0] > 1.

Proof. We work by contradiction. Assume that rankG[Λ1,Λ0] = 0, then
G[Λ1,Λ0] = 0. We have that

(GC)[Λ1,Λ1] =
∑
k

G[Λ1,Λk]C[Λk,Λ1] (5.94)

= G[Λ1,Λ1]C[Λ1,Λ1] +G[Λ1,Λ0]C[Λ0,Λ1], (5.95)

from which it follows that (GC)[Λ1,Λ1] = G[Λ1,Λ1]C[Λ1,Λ1]. However, C[Λ1,Λ1]
is diagonal, thus only rescales columns, but the diagonal elements of G[Λ1,Λ1]
are zero since we don’t allow loops. This implies that the diagonal elements of
(GC)[Λ1,Λ1] are also zero, but we have λ(u) = (GC)uu = (GC)[Λ1,Λ1]uu for each
u ∈ Λ1, therefore λ(u) = 0 for all u ∈ Λ1, which is a contradiction.

Lemma 5.22. If (G, I,O, λ) is a labelled open graph with Zd-flow such that the
outputs are disconnected from the rest of the graph, then all of the non-output
vertices are isolated.

Proof. Since (G, I,O, λ) has an Zd-flow, it has a maximally delayed Zd-flow

109



CHAPTER 5. CIRCUIT EXTRACTION FOR EXTENDED ZD-FLOWS

(C,Λ). If the outputs are disconnected from the rest of the graph, we have that

(GC)[Λ1,Λ1] = G[Λ1,Λ1]C[Λ1,Λ1] +G[Λ1,Λ0]C[Λ0,Λ1] = G[Λ1,Λ1]C[Λ1,Λ1],
(5.96)

so that for any u, v ∈ Λ1, (GC)uv = ∑
x∈Λ1 GuxCxv = GuvCvv since C[Λ1,Λ1]

is diagonal. But this implies GC[Λ1,Λ1] = 0 = G[Λ1,Λ1] since Guu = 0 and
(GC)uv = 0 if u 6= v. We must therefore also have C[Λ1,Λ1] = 1|Λ1|×|Λ1|. Further-
more, for k > 1,

(GC)[Λk,Λ1] =
∑
j

G[Λk,Λj]C[Λj,Λ1] = G[Λk,Λ1]C[Λ1,Λ1] = G[Λk,Λ1] = 0.

(5.97)

Then, the vertices in Λ1 are isolated. A simple induction using lemma 3.16 shows
that all the non-output vertices must be isolated.

Proof of proposition 5.20. By lemma 5.22, we know that if the outputs are
disconnected from the rest of the graph, all of the non-output vertices are isolated.
By lemma 5.21, we know that rankG[Λ1,Λ0] > 1 if even a single vertex in Λ1 is
labelled by (0, 1). Assume this is not the case, and also that the outputs are not
disconnected from the rest of the graph.

It follows that all vertices in Λ1 are labelled by (1, 0), and are not isolated
vertices (since those are all in Λ0 as a conclusion of maximal delay). Pick some
u ∈ Λ2, then there is some v ∈ Λ1 such that Cvu 6= 0 and Guv 6= 0 since otherwise
the Zd-flow is not maximally delayed. It follows that u must be labelled in (0, 1).
Furthermore, (GC)uv = GuvCvv +∑

x∈OGuxCxv = Guv +∑
x∈OGuxCxv = 0 since

u ≺ v.
Put ~c ∈ ZVd such that ~c := C•u −

∑
v∈Λ1 CuvC•v. Then,

(G~c)x =
∑
n∈V

Gxncn =
∑
n∈V

GxnCnu −
∑
n∈V

∑
v∈Λ1

CuvGxnCnv. (5.98)

= (GC)xu −
∑
n∈Λ1

∑
v∈Λ1

CuvGxnCnv −
∑
n∈O

∑
v∈Λ1

CuvGxnCnv. (5.99)

= (GC)xu −
∑
v∈Λ1

CuvGxv −
∑
n∈O

∑
v∈Λ1

CuvGxnCnv. (5.100)

It follows that

(G~c)u = 1−
∑
v∈Λ1

CuvGuv −
∑
n∈O

∑
v∈Λ1

CuvGunCnv (5.101)

= 1−
∑
v∈Λ1

Cuv(Guv +
∑
n∈O

GunCnv) = 1, (5.102)
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since as stated previously Guv +∑
n∈OGunCnv = 0.

If x ∈ Λ1,

(G~c)x = (GC)xu −
∑
v∈Λ1

CuvGxv −
∑
n∈O

∑
v∈Λ1

CuvGxnCnv (5.103)

= (GC)xu =
∑
v∈V

GxnCnu (5.104)

=
∑
v∈Λ1

GxnCnu +
∑
v∈O

GxnCnu = 0, (5.105)

since x is connected to no other vertex in either Λ1 or O.
If x /∈ O ∪ Λ1 ∪ {v},

(G~c)x = (GC)xu −
∑
v∈Λ1

CuvGxv −
∑
n∈O

∑
v∈Λ1

CuvGxnCnv (5.106)

= (GC)xu −
∑
v∈Λ1

Cuv(Gxv +
∑
n∈O

GxnCnv) (5.107)

= (GC)xu = 0. (5.108)

Finally, we have cx = Cxu −
∑
v∈V1 CuvCxv = Cxu − Cux = 0 if x ∈ Λ1, and

cu = Cuu = 0. Then, by lemma 3.15, u ∈ Λ1 which is a contradiction.

Corollary 5.23. If (G, I,O, λ) is a labelled open graph with Zd-flow and U ⊆ Oc

is a subset of vertices which is path-disconnected from O, then the vertices in U are
isolated.

Corollary 5.24. If (G, I,O, λ) is a reduced open graph and has a maximally
delayed Zd-flow (C,Λ), then either there is some u ∈ Λ1 such that λ(u) = (0, 1)
and u is connected to O, or G = 0.

Proof. By the previous lemma there are two possibilities. If the outputs are
disconnected from the graph, then all non-outputs are isolated, and since in a
reduced open graph, outputs are isolated, the graph is totally disconnected so
that G = 0.

Otherwise, there is at least one edge between Λ1 and the outputs. Then, the
endpoint of this edge cannot be labelled with (1, 0) because otherwise it would
not be lonely, so it must be labelled with (0, 1).

By corollary 3.19, if (G, I,O, λ) has a Zd-flow, it also has a maximally delayed
Zd-flow. This allows us to use the results of this section for any open graph with
Zd-flow.
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5.2.5 Discarding subgraphs disconnected from the outputs
Since we always extract vertices in the open graph by pulling them through outputs
into the output circuit part of a hybrid diagram, we need a way to treat subgraphs
of the open graph which are not path connected to the outputs. Luckily, this is
easy: just discard those vertices. Here we show that this operation preserves both
Zd-flow and the semantics (up to a global phase).

Proposition 5.25. Let (G, I,O, λ) be a labelled open graph with Zd-flow (C,Λ), and
v ∈ V an isolated vertex. Then, the labelled open graph (G[{v}c, {v}c], I, O, λ|{v}c)
has Zd-flow (C[{v}c, {v}c],Λ′), where Λ′ = {L \ {v} | L ∈ Λ} with the induced
order. Furthermore, for any M ∈M(λ),

JG[{v}c, {v}c], I, OKM|{v}c ' JG, I,OKM . (5.109)

Proof. For any j, k ∈ V \ {v},

(G[{v}c, {v}c]C[{v}c, {v}c])jk =
∑

u∈{v}c
GjuCuk (5.110)

=
∑
u∈V

GjuCuk (5.111)

= (GC)jk, (5.112)

since Gvk = 0, so discarding v clearly preserves the Zd-flow.
The semantics part follows from

JG, I,OKM =
√
d× |Oc|

⊗
u∈Oc
〈0 : M(u)|EGNIc (5.113)

= 〈0 : M(v)|0 : X〉
√
d× |Oc|

⊗
u∈Oc\{v}

〈0 : M(u)|EGNIc\{v} (5.114)

= eiα
√
d× (|Oc − 1)|

⊗
u∈Oc\{v}

〈0 : M(u)|EGNIc\{v} (5.115)

' JG[{v}c, {v}c], I, OKM|{v}c , (5.116)

where we have used the fact that 〈0 : M(v)|0 : X〉 = eiα√
d
for some α ∈ [0, 2π),

otherwise the pattern is not uniformly deterministic.

Corollary 5.26. Let (G, I,O, λ) be a labelled open graph with Zd-flow (C,Λ) and
K ⊆ Oc a subset of vertices which is path-disconnected from O. Then, the labelled
open graph (G[Kc, Kc], I, O, λ|Kc) has Zd-flow (C[Kc, Kc],Λ′), where Λ′ = {L\K |
L ∈ Λ} with the induced order. Furthermore, for any M ∈M(λ),

JG[Kc, Kc], I, OKM|Kc ' JG, I,OKM . (5.117)
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Proof. By corollary 5.23, the vertices in K must be isolated in G. Then, the
corollary follows from a simple induction using proposition 5.25.

5.3 The extraction algorithm
We are now ready to describe the algorithm for extracting a reversible quantum
circuit from any open graph with Zd-flow.

Let D be a diagram whose graph part (G, I,O, λ) has Zd-flow.
Step 0: Find the maximal subgraph of G which is connected to O and discard

the rest of the graph (an operation which preserves the semantics up to a global
phase, by corollary 5.26).

Step 1: If the graph part of the diagram contains no non-outputs, then each
output is connected to an output wire and at most one input wire. Delete the
output vertices, connect the inputs to the corresponding output wires, and initialise
any u ∈ Ic ∩O in the auxiliary state |0 : X〉. Then, return the resulting quantum
circuit. If the graph part of the diagram contains any non-outputs, go on to step 2.

Step 2: Firstly, reduce the open graph using proposition 5.12, pulling the
resulting local-Clifford operation P into the input circuit part of the diagram, the
Fourier and multipliers on inputs into the input circuit part of the diagram, and
update the choice of measurements M following propositions 5.5, 5.8 and 5.9. Then
use the algorithm of section 3.3 to find a maximally delayed Zd-flow (C,Λ) for the
resulting open graph (G′, I, O, λ′).

Step 3: Find ΛZ
1 , and use proposition 5.17 to diagonalise the submatrix

G[ΛZ
1 , O] by pulling the corresponding array T of CX gates into the circuit part of

the diagram (corollary 5.18).
Step 4: Extract ΛZ

1 using proposition 5.19, and pull the resulting unitary into
the circuit part of the diagram. Return to step 1.

Every step takes a number of elementary operations which is polynomial in the
size of the graph |V |, therefore the total algorithm runs in time polynomial in |V |.

Theorem 5.27. Let (G, I,O, λ) be an open graph with Zd-flow. Then, for any
M ∈M(λ),

JG, I,OKM |ψ〉 '
N∏
k=1

(
P (k)A(k)T (k)U (k)

(
M(k)

)
B(k)

)
(|ψ〉

⊗
j∈I∩O(N)

|0 : X〉), (5.118)

where P (k) ad A(k) are the unitaries pulled into the output circuit part of the diagram
in the k-th loop of the algorithm at steps 2, T (k) at step 3, and U (k) at step 4.
B(k) is the array of inverse Fourier gates pulled into the input circuit part of
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the diagram if any local complementation around inputs need to be applied when
reducing the open graph. N corresponds to the number of loops the algorithm makes
before terminating. The angles in the unitary circuit U (k) depend on the choice of
measurements M(k) for the vertices in ΛZ

1 at loop k.

Proof. The only point at which the algorithm can fail is at step 3 if ΛZ
1 is empty.

Since after step 2 the graph part of the diagram is reduced, by corollary 5.24
there are only 2 possibilities. If Λ1

Z is empty then G = 0, so that the graph part
would have been discarded in step 0 and the algorithm would have terminated at
step 1. Otherwise, Λ1

Z is non-empty and the algorithm proceeds.
Let n be the number of vertices in the graph and m the number of vertices

labelled with (1, 0). In any given loop, at step 2 we reduce the number m if it
is non-zero, and increase the number n by at most m (once for every time we
might need to apply proposition 5.9 about an input). Eventually, we reach a
state (0, n′), where n′ might be greater than at the first iteration. However, at
this point, there are no vertices labelled (1, 0) so we no longer need to apply any
local complementations, and the number n′ of vertices only reduces in further
iterations. It follows that on any given loop we reduce (m,n) in the alphabetical
order, so the algorithm must terminate since we eventually reach state (0, 0) in
step 1 after removing all of the outputs. N is therefore finite.

5.4 Some worked out examples
We conclude this chapter with a few examples of the circuit extraction algorithm
applied to some examples. We start with the phase-gate graph and the total graph
which were presented as particularly pathological examples in the introduction.

5.4.1 The Z-rotation gadget
Recall that the Z-rotation gadget graph is given by

(1, 0)
. (5.119)

This graph is not reduced, so the first step of the algorithm is to apply proposi-
tion 5.12 to obtain a reduced open graph. In this case, we have an X-vertex which
is connected to an output. To eliminate this vertex, we need to locally complement
about the output. This is also an input, so we need to extend the graph as per
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proposition 5.9:

u

v
(1, 0)

}

~

M

Prop 5.9=

u

wwww
v (1, 0)

(0, 1)
F−1

}

����
~

M′

(5.120)

−1
? 3=

u

wwww
v (1, 1)

(0, 1)
F−1

-1 P̃−1

}

����
~

M′′

(5.121)

1
?2=

u

wwww
v (0, 1)

(0, 1)
F−1

-1 P̃−1P−1

}

����
~

M′′′

(5.122)

At this point we recognise the sequential gate teleportation graph of section 4.1, so
that for any choice of measurement M ∈M(1, 0),

u

v
(1, 0)

}

~

M

= J(0, α) P−1 P̃−1J(−1, 0)F−1 . (5.123)

From this example, it is clear that the extraction algorithm sometimes outputs
circuits that are very much not optimal. Rewriting the leftmost J gate to its
components, we get

J(0, α) P−1 P̃−1J(−1, 0)F−1

J(0, α) P−1 P̃−1F−1= RZ(0) F M(−1)

J(0, α) P−1 P̃−1= M(−1)

(5.124)

But even this is still not optimal. Because we know this open graph to correspond
to a Z-rotation gadget, there is some α′ ∈ [0, 2π)d−1 such that

u

v
(1, 0)

}

~

M

= RZ(α′) . (5.125)

We leave fixing these issues for future work.
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5.4.2 The total graph
Next, we consider the case of the total graph on 4 vertices that was given in the
introduction:

(1,−1)

(1,−1)

(1,−1) . (5.126)

As was explained, while it has Zd-flow, this open graph is particularly pathological
from the point of view of the algorithm of the previous chapter. While we can
extract at most one gate at a time trough the output (since they must be totally
ordered in the resulting circuit on one wire), every non-output is connected to the
sole output. There is therefore no clear ordering for extraction.

As before, this graph is not reduced. The graph is connected, and we don’t
terminate at step 1 so the first real step of the algorithm is to transform it to
an equivalent reduced open graph. This can by done (non-uniquely) by locally
complementing about any of the non-outputs with weight 1. We get the equality
of diagrams, for any M ∈M(λ):

u

wwwww
v

(1,−1)

(1,−1)

(1,−1)

}

�����
~

M

=

u

wwwwwwww
v

(0, 1)

(1, 0)

(1, 0)
P

-1-1

-1

}

��������
~

M′

, (5.127)

and we can extract the first vertex:
u

wwwww
v

(1,−1)

(1,−1)

(1,−1)

}

�����
~

M

=

u

wwww
v

(1, 0)

(1, 0)

-1
-1 P−1J(−1, α1)

}

����
~

M′|2,3

, (5.128)

where the angle α1 depends on the measurement M′(1) which is obtained as
M(−1)P̃−1M(1)P̃M(−1).

Then, the graph part is once again not reduced. At step 2 of the algorithm, we
therefore reduce the graph part: denoting o the output and once again ordering
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the non-outputs 2, 3 from top to bottom,
u

wwww
v

(1, 0)

(1, 0)

-1
-1 P−1J(−1, α1)

}

����
~

M′|2,3

(5.129)

−1
? o=

u

wwww
v

(1, 1)

(1, 1)

-1
-1

-1 P−1J(−1, α1)P̃−1

}

����
~

(M′)
−1
? o

, (5.130)

1
?2=

u

wwww
v

(0, 1)

(1, 1)

-1
-1 P−1J(−1, α1)P̃−1P−1

}

����
~

((M′)
−1
? o)

1
?1

, (5.131)

1
?3=

u

wwww
v

(0, 1)

(0, 1)

-1
-1 P−1J(−1, α1)P̃−1P−1

}

����
~

M′′

, (5.132)

Then, we once again recognise the sequential teleportation graph, which we can
extract in one step:
u

wwwww
v

(1,−1)

(1,−1)

(1,−1)

}

�����
~

M

= J(−1, α2)J(−1, α3) P−1J(−1, α1)P̃−1P−1|0 : X〉 .

(5.133)

Conclusion and outlook
We have presented an algorithm for extracting unitary quantum circuits from any
open Zd-graph with Zd-flow. This extends the results of chapter 4 to allow for all
measurement spaces.
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As we saw in section 5.4.1, the circuits found by the algorithm can be very
sub-optimal. We leave improving this aspect to future work. Recent work has
shown how to extract circuits from open Z2-graphs with extended Pauli Z2-flow,
and with a simpler method [Sim21]. Possibly this technique can be extended to
cover the case of arbitrary prime dimension as well.

Finally, the original work on which this chapter draws a lot of inspiration,
[Bac+21], was concerned with extracting circuits from ZX-diagrams with graph-like
properties [Dun+20]. The ZX-calculus [van20] has been extended to the case of
qudits (of arbitrary dimension) [Wan21], and it would be interesting to see how
much of our work can be adapted to that setting.
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Convergence in continuous
variable measurement-based
quantum computation

The final research chapter of this thesis is concerned with the following question:
how much of the preceding work on qudits can be extended beyond the finite-
dimensional setting? We offer only a partial answer, for two reasons. Firstly,
we shall only consider the case of MBQC in the model of continuous variable
quantum computation proposed by Lloyd and Braunstein [LB99]. Secondly, the
results in this section were actually obtained mostly before the qudit case was
considered [Boo+21]. While it is clear, given the results of chapter 3, how to
construct measurement spaces for CV-MBQC, we only allow measurements in a
single space, as in chapter 4. The details of the full construction have yet to be
formally derived.

The main complication here is that the gate teleportation protocol does not
carry over from the finite-dimensional case. Rather, the best one can expect is
an approximation to the gate teleportation, where the auxiliary state is replaced
by a squeezed state. Then, the main concerns are questions of convergence when
the approximation is sent to its ideal limit: is the gate teleportation appropriately
recovered? And how does this approximation hold up when one tries to run more
complicated MBQC protocols than a simple gate teleportation? As a result, this

This chapter is based on our article, [BM21], and the work was presented at the 18th
International Conference on Quantum Physics and Logic.
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chapter has a substantially more analytic flavour than the previous ones.
Section 6.1 presents the standard model of continuous-variable quantum com-

putation as well as the Wigner transform for CV states. The Wigner function
often proves useful for making calculations in the CV setting which we will use
extensively in proofs. Then, in section 6.2, we explicit the CV gate teleportation
protocol, and prove that, in the ideal limit, it converges (in the strong sense) to
the expected unitary. Section 6.3 introduces CV-MBQC and R-flow, which is the
straightforward generalisation of simple Zd-flow to continuous variables. Finally,
section 6.4 treats the question of convergence for MBQCs with simple R-flow, by
adapting the circuit extraction algorithm of chapter 4.

6.1 Preliminaries
Before diving into the heart of the matter, we need to introduce the computational
model and some useful tools. In CV quantum computation, the basic building
block is the qumode1, a complex, countably infinite-dimensional, separable Hilbert
space H = L 2(R) which takes the place of the qudit. As described in chapter 1,
H is a space of square-integrable complex-valued functions: an element φ ∈H is
represented by a function R→ C such that∫

x∈R
|φ(x)|2 <∞, (6.1)

and where the Hilbert inner product is

〈ψ, φ〉 :=
∫
x∈R

ψ(x)φ(x), (6.2)

with corresponding norm ‖ψ‖ :=
√
〈ψ, ψ〉.

Each qumode is equipped with a pair of unbounded linear position and momen-
tum operators Q and P , which are defined on the dense subspace S (R) ⊆H of
Schwartz functions [Sch50; Lig58], along with any real polynomial thereof, by:

for any φ ∈ S (R), Qφ(x) := xφ(x) and Pφ(x) := −idφ(x)
dx . (6.3)

S (R) forms a common, dense domain for any polynomial of Q and P such that
they are all self-adjoint (see section 1.1.2). From these, the functional calculus (the-
orem 1.16) is used to define the corresponding translation operators (continuously
extended to all H ):

for any s ∈ R, X(s) := exp(−isP ) and Z(s) := exp(isQ). (6.4)
1This terminology comes from quantum optics, where we can identify each quantisation mode

of the quantum electromagnetic field with a space L 2(R) [FT20].
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Then, X(s)f(x) = f(x− s), X∗(s) = X(−s) and Z∗(s) = Z(−s) so that

X(−s)QX(s) = Q+ sI; (6.5)
Z(−s)PZ(s) = P + sI. (6.6)

Hopefully, it is clear that these operators are an analogue of the Pauli group in CV.
In fact, all four of these operators are defined by the exponential Weyl commutation
relations (up to unitary equivalence, by the Stone-von Neumann theorem, see
[Hal13], chapter 14):

for any s, t ∈ R, X(s)Z(t) = e−istZ(t)X(s), (6.7)

which generalise the canonical commutation relations, and further related by the
Fourier transform operator F = exp

(
iπ4 (Q2 + P 2)

)
:

F ∗QF = P and F ∗PF = −Q. (6.8)

The multiplier, defined in equation 2.4, also generalises to this setting, although
it is conventionally called the squeeze operator : for any real number η > 0, called
the squeezing factor,

S(η) := exp
(
− i ln(η)(QP + PQ)

)
. (6.9)

Then S(η)ψ(x) =
√
η−1ψ(η−1x) so that:

S(η)∗QS(η) = ηQ, S(η)∗PS(η) = η−1P (6.10)
S(η)∗Z(s)S(η) = Z(ηs), S(η)∗X(s)S(η) = X(η−1s). (6.11)

Following Lloyd and Braunstein [LB99; Bv05], the state of a register V of
qumodes can be used to encode information and perform computations just as one
would with a register of qudits. We use the gates from the set of unitaries{

F, exp(isQj), exp
(
isQ2

j

)
, exp

(
isQ3

j

)
, exp(isQjQk) | s ∈ R, j, k ∈ V

}
, (6.12)

also defined using the functional calculus. As described in section 1.1.4, the indices
j, k indicate on which subsystems in the total tensor product H ⊗N the operators
act. For brevity and by analogy with the qudit case, we write:

CZj,k(s) := exp(isQjQk), (6.13)
CXj,k(s) := exp(−isQjPk) = Fk CZj,k(s) F ∗k , (6.14)
U(α, β, γ) := exp(iαQ) exp

(
iβQ2

)
exp

(
iγQ3

)
. (6.15)
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In the circuit representation, the parameters of these controlled unitaries are
once again represented as edge weights:

CZ(w) = w and CX(w) = w . (6.16)

This model of computation is strong enough to encode qubit quantum compu-
tation [GKP01], and is universal in the sense that any “physical” unitary can be
approximated by combinatons of applications of (6.13) - (6.15) [LB99].

The Wigner function
Before diving into MBQC, we present one last tool. The Wigner function is a
phase-space quasi-probability distribution which uniquely represents the state
of a quantum system with Hilbert space L 2(R). We briefly review the Wigner
formulation [CG69; de 06; de 17; de 18]. In fact, we do not need the full phase
space picture: it is sufficient for our purposes to understand how to represent states.
While it has many interesting properties from the standpoint of quantum theory, we
chose not to present them as we essentially use the Wigner function as a functional
representation of density operators to be used for calculations.

In the phase space formalism, to each density operator ρ ∈ D(H ⊗N) (where
N ∈ N) such that ρ = ∑

j cjPψj (see proposition 1.20), we associate a real-valued
square-integrable function Wρ in a Hilbert space L 2(RN × RN ,R), called the
Wigner function of ρ:

Wρ(x, y) := 1
(2π)N

∑
j

cj

∫
RN

∫
RN
ψj(q − 1

2y)ψj(q + 1
2y)e2ip·y dq dp . (6.17)

It is clear that this association is R-linear, Wρ+λσ = Wρ + λWσ. The norm is given
by

‖Wρ‖ :=
√∫

RN

∫
RN
Wρ(x, y)2 dq dp, (6.18)

which agrees with the Hilbert-Schmidt norm on D(H ), ‖Wρ‖2 = tr(ρ2).

6.2 The gate teleportation protocol
Just as for qudits, the core of continuous-variable MBQC is gate teleportation.
However, the qudit gate teleportation protocol does not carry over identically
to continuous variables. This comes down mainly to the following fact: the key
property of the auxiliary state used in the qudit case is that it is a fixed point for
the X operator: X |0 : X〉 = |0 : X〉. In CV, neither the momentum operator P
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nor the translation operation X(s) admit any eigenvectors. For no s ∈ R \{0} does
there exist a non-zero φ ∈H for which X(s)φ = φ holds. Such a vector would be
an s-periodic function, and therefore could never satisfy equation (6.1).

We therefore need to find a replacement for this auxiliary state. But even this
is ill-fated: there is in fact no state φ ∈ H at all such that for all ψ ∈ H , the
circuit

Pψ

φ X(−m)

outputs the state Fψ. As a result, the best we can hope for is an approximation
to the “ideal” auxiliary state. The gate teleportation circuit is then only an
approximation to the gate teleportation, which should converge to the desired
unitary in the ideal limit of the approximation.

Such an approximation is given by the following net2 of Gaussian states. Let g1
be an L 2-normalised Gaussian distribution on R given by

g1(x) := 1
4
√

2π
e−

x2
2 , (6.19)

and put gη = S(η)g1. In other words,

gη(x) = 1
4
√

2πη2 e
− x2

2η2 . (6.20)

Such a state is called a squeezed state, in part because of its Wigner function which
appears spatially squeezed along the momentum axis:

Proposition 6.1. The Wigner function of gη is given by Wgη(x, y) = Gη(x)G1/η(y),
where

Gη(x) := 1√
πη2 e

−x
2
η2 = gη(x)2. (6.21)

Proof.
Wgη(x, y) =

∫
q∈R

e−iqygη(x+ q

2)gη(x−
q

2) (6.22)

= 1√
πη2

∫
q∈R

e−iqye
−

(x+ q
2 )2

2η2 e
−

(x− q2 )2

2η2 (6.23)

= 1√
πη2 e

−x
2
η2
∫
q∈R

e−iqye
− q2

4η2 (6.24)

2A net is a sort of generalised sequence, where the index set N is replaced by a directed set.
Here we only need to consider the positive real numbers R∗

+ with their usual order.

123



CHAPTER 6. CONVERGENCE IN CV MBQC

= 1√
πη2 e

−x
2
η2 ·

√
πη2e−η

2y2 (6.25)

= Gη(x)G 1
η
(y).

The desired approximation to the gate teleportation protocol can then be
obtained by the following quantum circuit, parameterised by a squeezing factor η:

P

w

ρ U(α, β, γ)

Pgη X(−wm) Tη(α, β, γ, w)[ρ]

where Pgη is the pure density operator associated to gη and Tη(α, β, γ, w) is the
quantum channel described by the circuit. An analytic form for the output state of
this quantum circuit, ignoring the CZ weight and unitary U(α, β, γ), was obtained
by Gu et al. [Gu+09], in terms of the Wigner function of ρ as

WTη(α,β,γ,w)[ρ](x, y) =
∫
q∈R

Gη(x− q)Wρ(q, y), (6.26)

i.e. convolution with respect to the first variable. They never explicitly consider the
convergence question as η →∞, called the infinite squeezing limit. While it is clear
that the net (gη)η>1 can have no limit in H as η → +∞, somewhat surprisingly,
for any ρ ∈ D(H ), Tη(α, β, γ, w)[ρ] does converge to a state in D(H ).

Proposition 6.2 (Gate teleportation convergence). For any α, β, γ, w ∈ R and
any ρ ∈ D(H ),

lim
η→+∞

Tη(α, β, γ, w)[ρ] = ΓS(w)FU(α,β,γ)[ρ], (6.27)

where ΓU is the unitary channel given by conjugation by U .

In other words, the quantum channel Tη(α, β, γ, w) converges to ΓS(w)FU(α,β,γ)
in the strong topology on the set C61(H ) of quantum operations. In general the
usual topology on the set of quantum operations is inappropriate for considering
the approximation of arbitrary quantum operations in infinite-dimensional Hilbert
spaces [SH08; Wil18; PLB18]. The net (Tη(α, β, γ, w))η>1 can be viewed as a
pointwise approximation to the unitary channel ΓS(w)FU(α,β,γ).

The question of convergence in the infinite squeezing limit has been considered
for some slightly different but related protocols, such as the convergence of the
quantum state teleportation protocol of [Wil18; SW20].3 Their result does not
immediately apply in our case, but we use some of their ideas as well as some
standard results of functional analysis in formulating our proof:

3The quantum state teleportation should not be confused with the gate teleportation we
use here. The state teleportation involves three qumodes: an initial qumode is teleported using
an auxiliary two qumode state and entangling two-qumode measurement. In contrast, the gate
teleportation only uses two qumodes.
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Proof. We first note that we can ignore the parameter w for the CZ(w) gate: we
know that

CZ(w) = exp(iwQ1Q2) = exp(iQ1wQ2) = exp(iQ1S2(w)Q2S2(w)∗) (6.28)
= S2(w) exp(iQ1Q2)S2(w)∗ = S2(w)CZ(1)S2(w)∗. (6.29)

Thus, the teleportation circuit is equivalent to

Pρ U(α, β, γ)

ση S(w)∗ S(w) X(−wm)

and, commuting the correction with the squeezing operator, to

Pρ U(α, β, γ)

ση+w X(−m) S(w)

The additional squeezing w in the auxiliary state will be absorbed into the
limit, and the final S(w) gate can be added at the end since it comes after
the teleportation (it is unitary thus continuous and preserves limits). Since
the “change of basis” unitary U(α, β, γ) commutes with the CZ gate, it can be
absorbed into the input state which is arbitrary by hypothesis. We have therefore
reduced the problem to proving convergence of the simpler circuit:

Pρ

ση X(−m)

for an arbitrary input ρ ∈ D(H ). From [Gu+09] we know that the output of
this circuit is

WTη [ρ](x, y) =
∫
q∈R

Gη(x− q)Wρ(q, y) = WFρF ∗ ∗1 g 1
η
(x, y), (6.30)

where ∗1 indicates convolution with respect to the first variable. We need to
bound the trace distance ‖Tη[ρ]− FρF ∗‖. By [AU00; HQ12] we know that for
any ρ, σ ∈ D(H),

‖ρ− σ‖ 6
√

1− F(ρ, σ), (6.31)
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where F is the Ulhmann fidelity [Uhl76] which can be calculated for pure states as

F(ρ, σ) = 1
π

∫
q∈R

∫
p∈R

Wρ(q, p)Wσ(q, p). (6.32)

Assume ρ is a pure state, and furthermore that it is the density operator of
ψ ∈ L 1(R) ∩L 2(R), i.e. the projector Pψ onto the one-dimensional subspace
generated by ψ. Then we have

1− F(Tη[ρ], FρF ∗) = 1− 1
π

∫
q∈R

∫
p∈R

WTη [ρ](q, p)Wρ(p,−q) (6.33)

= 1
π

∫
q∈R

∫
p∈R

(
Wρ(p,−q)2 −WTη [ρ](q, p)Wρ(p,−q)

)
(6.34)

= 1
π

∫
q∈R

∫
p∈R

Wρ(p,−q)
(
Wρ(p,−q)−WTη [ρ](q, p)

)
. (6.35)

since ∫
q∈R

∫
p∈R

Wρ(p,−q)2 = tr
(
(FρF ∗)2

)
= tr

(
ρ2
)

= 1. (6.36)

ψ being L 1 implies that its Wigner transform Wρ is also L 1 ([de 06], proposition
6.43), so

1− F(Tη[ρ], FρF ∗) = |1− F(Tη[ρ], FρF ∗)| (6.37)

=
∣∣∣∣ 1π
∫
q∈R

∫
p∈R

Wρ(p,−q)
(
Wρ(p,−q)−WTη [ρ](q, p)

)∣∣∣∣ (6.38)

6
1
π

∫
q∈R

∫
p∈R

∣∣∣∣Wρ(p,−q)
(
Wρ(p,−q)−WTη [ρ](q, p)

)∣∣∣∣ (6.39)

= 1
π

∫
q∈R

∫
p∈R
|Wρ(p,−q)| ·

∣∣∣Wρ(p,−q)−WTη [ρ](q, p)
∣∣∣ (6.40)

6
1
π2

∫
q∈R

∫
p∈R

∣∣∣Wρ(p,−q)−WTη [ρ](q, p)
∣∣∣ (6.41)

= 1
π2

∫
q∈R

∫
p∈R

∣∣∣∣Wρ(p,−q)−Wρ ∗1 g 1
η
(p,−q)

∣∣∣∣, (6.42)

where we have used the inequality |Wρ(p,−q)| 6 1
(2π)N 6 1

π
for pure states ([de

06], section 6.4.3) to go from equation (6.40) to (6.41). As a result,

‖Tη[ρ]− FρF ∗‖ 6 1
π

∥∥∥∥WFρF ∗ −WFρF ∗ ∗1 g 1
η

∥∥∥∥
L 1
. (6.43)
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By definition, Gη(x) = η−1G1(η−1x) and
∫
RGη = 1, so that by [WZ15], theorem

9.6, the net (Gη)η∈R∗+ forms an approximation to identity. As a result,∥∥∥∥WFρF ∗ −WFρF ∗ ∗1 g 1
η

∥∥∥∥
L 1
→ 0 as η → +∞, (6.44)

and it follows that
lim
η→∞
Tη[ρ] = FρF ∗, (6.45)

for any such ρ. Since the trace-class norm agrees with the Hilbert space norm
for pure states, and L 1(R) ∩L 2(R) is dense in L 2(R), equation 6.45 holds by
continuity of Tη for any pure ρ ∈ D(H ). Finally, since the set of finite convex
sums of pure ρ ∈ D(H ) is dense in D(H ) (which is Banach) the result can be
extended to mixed states.

Reintroducing the edge-weight and measurement angles, we have

lim
η→∞
Tη(α, β, γ, w)[ρ] = S(w)FU(α, β, γ)ρU∗(α, β, γ)F ∗S∗(w), (6.46)

as desired.

6.3 CV-MBQC and R-flow
We are now ready to move on to more general MBQCs. Our first stop is to
extend the measurement calculus to continuous variables. Like in the qudit case, a
(CV) measurement pattern will describe a computation in terms of a sequence of
commands. The main difference is in the preparation command, which will have an
squeezing-dependent interpretation, since it will formally correspond to initialising
a finitely-squeezed auxiliary state.

Definition 6.3. A CV measurement term on a register V of qumodes consists in
a finite ordered sequence of V -indexed commands chosen from:

• Nu : initialisation of a qumode u in an auxiliary squeezed state;
• Ew

u,v : entangling operation on qumodes u and v for some w ∈ R, with u 6= v;
• Mu(~θ) : measurement of qumode u with angles ~θ ∈ R3;
• Xmv

u and Zmv
u : Pauli corrections depending on the outcome mv ∈ R of the

measurement of vertex v.

A measurement term is runnable if no commands act on a qumode v ∈ V before
it is initialised (except initialisations) or after it is measured; and no commands
depend on the outcome of a measurement before it is made. A runnable measurement
term is called a measurement pattern.
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Since, formally, the commands above verify essentially the same equations as in
the qudit case (equations (2.15)-(2.17)), we can once again rewrite any measurement
pattern to the form:( ≺∏

v∈Oc
Xmv

x(v)Z
mv
z(v)Mv(~θv)

) ∏
u,v∈V

EGuv
u,v

(∏
v∈Ic

Nv

)
, (6.47)

where I, O are subsets of V , x, z are functions Oc → RV , mv is the outcome of
the measurement Mv, G is the adjacency matrix of an R-graph on the vertex
set V , and the measurements follow the order ≺ induced by the order in which
they appear in the measurement pattern. The functions x, z implicitly describe a
weaker measurement order: the transitive closure of the relation {(u, v) | x(v)u 6=
0 or z(v)u 6= 0} gives a strict partial order ≺x,z on Oc. The measurement order ≺
must agree with ≺x,z, and in fact any measurement order that agrees with ≺x,z
gives a valid standard form.

We define semantics for CV measurement patterns in a similar way to the
qudit case. However, there is one complication: the branch maps no longer give a
Kraus decomposition for the total MBQC, as discussed in section 1.3.1. Indeed,
each “branch map” would correspond to an outcome m ∈ ROc , which formally
occurs with probability 0 since we are performing momentum measurements whose
outcome probability measures have density with respect to the Lebesgue measure.
In order to describe semantics for a pattern, we use a “trick”, reasoning about the
induced quantum channel in terms of Stinespring dilations (theorem 1.29) rather
than Kraus decompositions. We essentially identify the circuits

P

X(−wm)
=

P

−w (6.48)

where in both circuits the measurement outcome is discarded. The two-sided
control gate in the RHS represents the unitary operation exp(−wP1P2). Both
circuits can be seen to output the same Wigner function for inputs Wρ and Wσ:

Wout(x, y) =
∫
R

∫
R
Wρ(τ,m)W (x+ wm, y) dτ dm. (6.49)

The RHS of equation 6.48 can be represented in terms of density matrices using
the partial trace as

ρout = tr1(exp(−iwP1P2)ρin exp(iwP1P2)) = tr1(Γexp(−iwP1P2)[ρin]) (6.50)

Extending this construction to the entire measurement pattern, we get, for
an input ρ ∈ D(H ⊗I), squeezing factor η ∈ R∗+ and choice of measurements
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θ : Oc → R3:

JG, I,O,x, zKηθ [ρ]

=
≺x,z∏
v∈Oc

trv ◦Γexp(−iPvx(v)·~P) ◦ Γexp(iPvz(v)· ~Q) ◦ ΓUv(θ(v))

 ◦ ΓEG
(
ρ
⊗
v∈Ic

Pgη

)
,

(6.51)
where

EG =
∏

u,v∈V
CZGuv

u,v , (6.52)

x(v) · ~P =
∑
k∈V

x(v)kPk, (6.53)

z(v) · ~Q =
∑
k∈V

z(v)kQk. (6.54)

Finally, the outcome determinism question no longer really makes sense in the
CV case: the state obtained for a given outcome m ∈ ROc isn’t well defined. If we
want to make sense of this question at all, we have to describe a partition of the
outcome space into measurement space, which essentially amounts to binning the
outcomes. Even then, the situation is hopeless: one always has a non-zero (but
very low, as η increases) probability of obtaining some very large measurement
outcome for which the output state is garbage. As a consequence we cannot drop
the corrections in the LHS of equation 6.51 as we did in equation 2.22 for robustly
deterministic qudit MBQCs. It turns out that the question of convergence is much
more appropriate in the CV case, since if the channel converges to a unitary, then
the output state does not depend on the measurement outcomes anyways.

It is hopefully clear at this point that many of the results we obtained for
Zd-flow will carry over to continuous variables, but where the field R replaces Zd.
We will of course use the name R-flow (although in the article version [BM21],
simple R-flow was called CV-flow), and repeat some definitions here for the sake of
completeness:

Definition 6.4. An open R-graph is a triple (G, I,O) where G is an R-graph over
V , and I, O ⊆ V are distinguished sets of vertices which identify inputs and outputs
in an MBQC.

A labelled open R-graph is a tuple (G, I,O, λ) where (G, I,O) is an open R-
graph and λ : Oc → R2 \ {(0, 0)} assigns a measurement space to each measured
vertex.

For an open graph (G, I,O), an arbitrary input state φ ∈H ⊗I , and a squeezing
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factor η > 1 we define a CV open graph state as

Gη(φ) =

 ∏
u,v∈V
u<v

CZGu,v
u,v


(
φ
⊗
u∈Ic

gη

)
. (6.55)

As in the qudit case, when I = ∅ we obtain finitely squeezed graph states [Men+06;
Gu+09; Zha10; Zha08; ZB06]. This graph-theoretical representation is similar to
that of [MFv11]

Definition 6.5. The labelled open R-graph (G, I,O, λ) has an R-flow (C,Λ) if
C ∈ RV×V and Λ is a totally ordered partition of V such that

1. ∀u ∈ Oc, λ(u) = (Cuu, (GC)uu);
2. C[I, V ] = 0 and C[V,O] = 0;
3. for any M,N ∈ Λ,

• C[M,M ] and (GC)[M,M ] are diagonal;
• whenever M < N , C[M,N ] = (GC)[M,N ] = 0.

If λ(u) = (0, 1) for all u ∈ Oc, we say that (C,Λ) is a simple R-flow, otherwise it is
extended. We call Λ a layer decomposition of (G, I,O, λ) for C and the elements
of Λ are layers.

As stated in the introduction, we will restrict our attention to the case of simple
R-flows, since the necessary work on extending measurement spaces to L 2(R) has
not yet been done. As in the qudit case, if (G, I,O) is an open graph with simple
R-flow (C,Λ), then we obtain a runnable MBQC (G, I,O,xC , zC) by setting

xC(v) := C•v and zC(v) := ((GC)•v − 1{v}), (6.56)

where M•v is the v-th column of a given matrix M .
Then, we obtain the same equivalent characterisation as in the qudit case:

Definition 6.6. Let (G, I,O) be an open graph, Λ a layer decomposition of G, and
define P (k) := ∪j>kΛk (the “past” of layer k). Then the correction matrix GΛ

k is
the matrix GΛ

k := G[P (k), (P (k) ∪ I)c].

GΛ
k is the subgraph of G which at each step of the MBQC (each layer) describes

the back-action of possible corrections made on as-of-yet unmeasured vertices.
Viewed this way, simple R-flow essentially amounts to a condition that assures
that this back-action can always be controlled to correct the measurement outcome
without induces new errors in previous layers:
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Proposition 6.7. An open R-graph (G, I,O) has simple R-flow (C,Λ) if and only
if for each k the linear equation

GΛ
k~cj =

(
~0P (k)\Λj

~m

)
has solutions ~ck ∈ R(P (k)∪I)c for any ~m ∈ RΛk , (6.57)

where ~0n is a (possibly empty) column vector of n zeros.

Proof. The proof is essentially identical to the qudit case (proposition 4.6), where
we formally replace Zd by R.

6.4 CV-MBQCs with simple R-flow converge
We now address the induced quantum map and the question of convergence of the
MBQC. In general, for an arbitrary graph state, even one with simple R-flow, the
MBQC procedure is not convergent. It is possible for the output state to contain
squeezing dependant components which diverge in the limit. The simplest example
is given by the single-vertex open graph with no input and a single output.4 One
can readily check that it trivially has simple R-flow but the output is a squeezed
state. As a result, when if we try to take the infinite squeezing limit the state
diverges in H .

We address the infinite squeezing limit by constructing an explicit circuit to
which the MBQC converges. To do so, we re-use many of the techniques of
chapter 4—with a twist. In the qudit case, we were able to extract the circuit from
the back since we treat each extracted teleportation independently and do not
have to worry about the convergence of teleportations from earlier in the MBQC.
Here, this method no longer suffices. We need to ensure that all the teleportations
converge. In order for this to work, we show how to construct a path cover for any
open graph with simple R-flow. This path cover essentially identifies a sequence of
gate teleportations which each input undergoes, and each of these can be proven
to converge by proposition 6.2. We restate many of the results from chapter 4 for
clarity, whilst also noting that some results need new proofs as they only hold in an
approximate sense (for example, lemma 6.12 on controlled stabilisers of the open
graph).

As we shall see, the existence of a simple R-flow implies both that |I| 6 |O|
and |O| 6= 0, and we shall conclude that a sufficient condition for the protocol to
be convergent is that the open graph has simple R-flow and as many input vertices
as outputs, |I| = |O|. Furthermore, if the open graph has simple R-flow, then the
MBQC converges only if |I| = |O|.

4This open graph is formally defined in the language of definition 6.3 on the vertex set { }
as (0,∅, { }).
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Figure 6.1: An example of circuit extraction of an MBQC for an open graph
with causal flow, using star pattern transformation as described in section 6.4.1.
Starting from an open graph with a causal flow (a), we identify a path cover of
the graph that agrees with the causal flow (thick edges directed u→ f(u) for each
u ∈ Oc) (b), and each path as a wire in a quantum circuit (c). The remaining
edges of the graph implement CZ gates in the circuit. Finally, each causal flow
edge implements a unitary of the form given by equation (4.9), and we obtain a
circuit representation of the unitary implemented by the MBQC (d).

Like for chapter 4, the actual circuit extraction scheme is inspired by [MHM15].
While the circuits extracted by our scheme as well as the broad structure of the
proof are entirely analogous to that work, our proof method is quite different. The
original graph-theoretical arguments using local complementation in [MHM15] do
not hold for CV, so we reason instead with the adjacency matrix and correction
matrices of the open graph. The main differences with the qudit case are the new
proofs of lemmas 6.12, proposition 6.10 and theorem 6.18 which only hold in the
infinite squeezing limit, and the construction of a path cover for any simple R-flow
(lemma 6.9).

6.4.1 Star pattern transformation
As in chapter 4, in order to model the computation through the MBQC, the trick
is to distinguish between “real” qumodes that undergo a unitary transformation
though the MBQC (which act like the wires in a circuit undergoing gates), and
auxiliary qumodes that are consumed in teleportations. In the case of causal flow,
things work quite nicely as follows.

We use the following which also holds in CV (since the causal flow does not
depend on edge weights, only the correction procedure):

Definition 6.8 ([de 08]). A path cover of an open graph (G, I,O) is a collection
P of directed edges (or arcs) in G such that

• each vertex in G is contained in exactly one path in P;
• each path in P is either disjoint from I or intersects I only at its initial point;
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• each path in P intersects O only at its final point.

If the open R-graph (G, I,O) has a causal flow (f,≺) (definition 2.11) then we
can obtain a runnable CV MBQC (G, I,O,xf , zf ) given by:

xf (u) = −G−1
u,f(u)1{f(u)} and zf (u) = −G−1

u,f(u)G1N(f(u))\{u}. (6.58)

Lemma 6.9 (Causal flow path cover [de 08]). Let (f,6) be a causal flow on an
open graph (G, I,O). Then there is a path cover Pf of (G, I,O) where x→ y is an
arc in some path of Pf if and only if y = f(x).

Lemma 6.9 allows us to interpret the causal flow MBQC procedure as a sequence
of single qumode gate teleportations, with additional entangling operations between
teleportations. In fact, the path cover Pf allows us to distinguish between two
types of edges in G:

• edges (j, k) ∈ Pf correspond to gate teleportations where one end is the input
and the other the output;

• edges (j, k) /∈ Pf correspond to CZ
(
Aj,k

)
gates in the final circuit.

While it was originally formulated for DV, an almost identical method to Star
pattern transformation (STP) functions in CV, the only real difference being the
nature of the unitary gates. Assume (G, I,O) is an open graph with causal flow
(f,≺) and corresponding path cover Pf , and let

J(w, α, β, γ) := S(w)FU(α, β, γ), (6.59)

and for any subset S ⊆ G,

CZj,S(s) :=
∏
k∈S

CZj,k(w), and CXj,S(s) :=
∏
k∈S

CXj,k(w). (6.60)

To obtain a circuit for the causal flow MBQC,

1. Interpret each path in Pf as a wire (qumode) in a quantum circuit, and index
the wire by the collection of vertices intersected by the path.

2. For each edge (j, k) /∈ Pf , insert a CZ
(
Aj,k

)
gate between the edges indexed

by j and k.
3. For each edge (j, k) ∈ Pf , insert a J

(
Aj,k, α, β, γ

)
gate after all the CZ gates

for vertices i ∈ Pf such that i 6 j but before all such gates for k 6 i.

An example is worked out in figure 6.1. In the ideal limit, the MBQC converges to
the CV SPT map for any choice of measurements:
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Proposition 6.10 (Causal flow circuit). Suppose the open graph (G, I,O) has a
causal flow and |I| = |O|. Then for any θ : Oc → R3 and any ρ ∈ D(H ⊗|I|),

lim
η→∞

JG, I,O,xf , zfKηθ [ρ] = USPT (θ)ρU∗SPT (θ), (6.61)

where USPT is the unitary corresponding to the circuit obtained by star pattern
transformation of (G, I,O) for the choice of measurements θ. Furthermore, the
condition |I| = |O| is necessary.

Proof. As explained above, we can decompose JG, I,O,xf , zfKηθ as a set of parallel
paths with mediating edges. Each of these parallel paths corresponds to a sequence
of single gate teleportations. All we need to worry about is ordering the mediating
edges such that they appear before any teleportation of a vertex they are connected
to. This is possible since such an ordering exists if and only if there is a causal
flow [MHM15]. Then, by proposition 6.2 each teleportation converges, and since
each gate teleportation channel is continuous it preserves limits.

6.4.2 Simple R-flow triangularisation
The next challenge is to do the same as above and extract a circuit, for simple
R-flow. For simple R-flow however, it is not obvious how to go about this, for
instance one does not directly have an obvious path cover. We follow the ideas of
[MHM15], associating open graphs with simple R-flow to equivalent open graphs
with causal flow which allows circuit extraction, albeit using quite different proof
methods.

This section repeats many of the proofs of chapter 4. There are two main
differences. Firstly, some results only hold in the infinite-squeezing limit, such as
the existence of controlled-stabilisers (lemma 6.12), so those results need to be
reproved. Secondly, we show that we can use the triangularisation procedure to
find a causal flow from each layer into the next (Λn+1 → Λn), and use this sequence
of causal flows to construct the path cover which we need for the convergence proof
(section 6.4.2).

From R-flow to causal flow

In order to extract causal flows from R-flows, we need a matricial characterisa-
tion of causal flow. Essentially the same proposition holds as in the qudit case
(proposition 4.11):

Lemma 6.11 (Matrix form of causal flow). Let (G, I,O) be an open graph with
simple R-flow for a layer decomposition Λ and L ⊆ Oc. Then there is a subset
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C ⊆ P (L)c with |L| = |C| and a causal flow L→ C if and only if the “correction
matrix” of L can be written as

AL := G[P (L), (P (L) ∪ I)c] = M ·
(
X 0
Y T

)
·N (6.62)

where M and N are permutation matrices, T is a lower triangular |V | × |C| matrix
with non-zero diagonal and X, Y are arbitrary real matrices. In other words, we
can turn A<L into the partial triangular form of equation (4.36) only by reordering
rows and columns, which in turn corresponds to relabelling the vertices of the graph
G.
Proof. The proof is essentially the same as proposition 4.11.

As in the qudit case, this characterisation of causal flow is the key difference
between our proof method and that of Miyazaki, Hajdušek, and Murao [MHM15]—
where they use arguments based on local complementation to find a causal from a
g-flow, we solve the comparatively easier problem of proving it is always possible
to map an open state with R-flow to one where the correction matrix takes this
form. The approach now is, having broken the measurement pattern down into
layers, we show that the graph over each pair of layers can be seen as having
flow, by transforming the correction matrix such that it takes the above triangular
form. Reordering rows and columns of the correction matrix simply corresponds
to relabelling of the vertices, however, we will also require linear addition of
columns. This matrix or graphical operation, it turns out, is physically equivalent
to applying CX gates, which are exactly the additional operations in the equivalence
we mentioned. This emerges from the following stabiliser condition for controlled
operators, which is approximate for any finite squeezing and, as for the standard
stabiliser conditions, only holds perfectly in the infinite squeezing limit:

Lemma 6.12 (Approximate controlled stabilizers). Let (G, I,O) be an open graph,
j ∈ G and k ∈ Ic. Then, for any Schwartz input state φ ∈H ⊗|I| and s ∈ R,

lim
η→∞

∥∥∥CXj,k(s) CZj,N(k)(s)Gη(φ)−Gη(φ)
∥∥∥ = 0. (6.63)

The Schwartz condition on the input state is a technical consideration without
which I have been unable to find a proof of this statement, and which therefore
carries through to the main convergence result, theorem 6.18. Note however,
that any physical state is experimentally indistinguishable from a Schwartz state
[BG89].
Proof. Let φ ∈ (S (R))1, s ∈ R and consider

CX1,2(s)[φ⊗ gη](x, y) = exp(isQ1P2)[φ⊗ gη](x, y) = φ(q)gη(y + sx). (6.64)
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Now, since φ is square-integrable of norm 1, for any ε > 0 there is some bounded
measurable subset E ⊆ R such that∫

x∈Ec
|φ(x)|2 < ε, (6.65)

and

‖CX1,2(s)φ⊗ gη − φ⊗ gη‖2 = 1√
πη2

∫
x∈R

∫
y∈R

∣∣∣∣∣φ(x)e−
(y+sx)2

2η2 − φ(x)e−
y2

2η2

∣∣∣∣∣
2

(6.66)

6
1√
πη2

∫
x∈R

∫
y∈R

|φ(x)|2
∣∣∣∣∣e− (y+sx)2

2η2 − e−
y2

2η2

∣∣∣∣∣
2

(6.67)

6
1√
πη2

∫
x∈E

∫
y∈R

|φ(x)|2
∣∣∣∣∣e− (y+sx)2

2η2 − e−
y2

2η2

∣∣∣∣∣
2

(6.68)

+ 1√
πη2

∫
x∈Ec

∫
y∈R

|φ(x)|2
∣∣∣∣∣e− (y+sx)2

2η2 − e−
y2

2η2

∣∣∣∣∣
2

(6.69)

6
1√
πη2

∫
x∈E

|φ(x)|2
∫
y∈R

∣∣∣∣∣e− (y+sx)2

2η2 − e−
y2

2η2

∣∣∣∣∣
2

+ 2
∫

x∈Ec

|φ(x)|2.

(6.70)

Furthermore, using for any x, y ∈ R,∣∣∣∣∣e− (y+sx)2

2η2 − e−
y2

2η2

∣∣∣∣∣ 6 |sx| ·max
t∈R

d
dt

(
e
− t2

2η2

)
6
A

η
|sx| (6.71)

where A = maxt∈R d
dt

(
e−

t2
2

)
. Then,

‖CX1,2(s)φ⊗ gη − φ⊗ gη‖2 6
A2s2

η3√π

∫
x∈E

|xφ(x)|2 + 2ε, (6.72)

and since φ is Schwartz,
∫
x∈E |xφ(x)|2 is bounded by some B > 0. Finally,

‖CX1,2(s)φ⊗ gη − φ⊗ gη‖2 6
A2Bs2

η3√π
+ 2ε, (6.73)
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whence picking η > 3
√ √

π
A2Bs2

we have ‖CX1,2(s)φ⊗ gη − φ⊗ gη‖2 < 3ε, and be-
cause ε < 0 was arbitrary,

lim
η→∞
‖CX1,2(s)φ⊗ gη − φ⊗ gη‖2 = 0. (6.74)

Every controlled stabiliser can be reduced to this case by commuting though
EG,

CXj,k(s) CZj,N(k)(s)EG = EG CXj,k(s), (6.75)
and noting that gη is Schwartz so can be substituted for the arbitrary input φ if
j /∈ I, we are done.

In this way, the action of specific CZ operations - which are what are used to
create or remove edges in the graph - are equivalent (in the infinite squeezing limit)
to the application of a CX operation. This allows us to achieve the our goal:

Proposition 6.13 (Triangularisation). If (G, I,O) is an open graph with R-flow,
and L is the last layer in a corresponding layer decomposition, then (G, I,O) is
approximately equivalent to an open graph with a causal flow L→ O, up to weighted
CX gates acting in O and reordering the vertices in L.

Proof. Let AL be the correction matrix of L for a given R-flow order. Then, we
can reorder the columns of AL by relabeling the unmeasured vertices, and we can
reorder the rows of AL by choosing a different measurement order for vertices in
L.

Further let j, k ∈ O, then by lemma 6.12 applying the gate CXj,k(−s) on the
graph state induces new edges in the graph state in the infinite squeezing limit.
The result on the correction matrix is the transformation

Cj 7−→ Cj + sCk, (6.76)

where Cj is the j-th column of AL.
By the definition of R-flow, for each v ∈ L we have that

A<Lcv(1v) = 1v, (6.77)

so that cv(1v) gives a sum of columns A which contains a single 1 in the row
corresponding to v. Repeating this for each v ∈ L, we obtain |L| such columns,
each with the 1 on a different row, so that by reordering rows and columns we
can write AL as

AL ∼
(
X 0
Y I|L|

)
(6.78)
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where I|L| is the |L| × |L| identity matrix. Then, AL takes the form described in
lemma 6.11, and this partial triangularisation procedure corresponds to extracting
additional CX gates from the graph as described above. Then, the open graph
(G, I,O) is approximately equivalent to a graph with causal flow L→ O, up to
CX gates acting in O.

The fact that the additional controlled gates act only on the outputs is crucial: it
will allow us reduce the total physical map to a sequence of single-gate teleportation
operations. Since the CX gates never appear in between a measurement and the
corresponding CZ gate for the teleportation, nor do they act on the auxiliary
squeezed states before they are consumed in the teleportation, the projective
measurements can be brought forward and the squeezed inputs delayed to obtain
a single gate teleportation circuit within the larger circuit representing the total
physical map of the computation.

Path cover of R-flow

Now, using these two lemmas, we obtain a causal flow from the last layer Λ1 of a
decomposition into a subset of the outputs by adding CX gates. Most importantly,
this subset is then only connected to Λ1 so it can be removed from the open graph
as far as determining flows on the remainder is concerned. As a result, we can
reduce a graph to a sequence of causal flows by peeling off each layer one-by-one.

Lemma 6.14 (Graph reduction). If (G, I,O) is an open graph with simple R-
flow (C,Λ) then there is C1 ⊆ O such that there is a causal flow Λ1 → C1 with
|Λ1| = |C1|, up to a product T of weighted CX gates acting in O. Furthermore, let
G′ be the graph state obtained from the triangularisation procedure for layer Λ1,
then (G′ \ C1, I \ C1,Λ1 ∪ (O \ C1)) has simple R-flow, for the layer decomposition
{Λk}Nk=2.

Proof. The first part follows straightforwardly from lemmas 6.11 and 6.13. The
second is immediate once one realises the following: by the third condition in
the definition of causal flow, if there is a causal flow C1 → L1, C1 cannot be
connected to any vertex in a layer k > 1. Since L1 is measured last, so C1 must
be connected only to L1 (and possibly O). As a result, we can remove C1 from
the graph for subsequent layers: since it is not connected to any previous layer
k > 1, it never appears in any subsequent correction subgraphs. As a result, the
truncated R-flow and layer decomposition remain valid for the reduced graph.

This “peeling” procedure also allows us to determine a path cover of (G, I,O),
by noting that each layer causal flow has a path cover, and the endpoints of each
of these covers meet up. So, by a successive applications of this lemma, we obtain
a the final ingredient to our proof, a R-flow analogue of lemma 6.9:
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Lemma 6.15 (R-flow path cover). Let (G, I,O) be an open graph with simple
R-flow, then there is a path cover of (G, I,O) whose edges are causal flow edges of
the triangularised graph (6.13). If |I| = |O|, every path is indexed by an input.

Proof. Let {Lk} be a layer decomposition of (G, I,O), and consider each vertex
j ∈ O the endpoint of a path. Then, by lemma 6.14 there is C1 ⊆ O such that
there is a causal flow and a bijection L1 → C1; label each vertex in L1 by its
image under the causal flow matching. Then, remove C1 from the graph as in
lemma 6.14, and repeat the process. Since ⋃Nk=1 Lk ∪O = G, we eventually label
the whole graph. Furthermore, the resulting paths never cross: if they did, there
would be two vertices in the same layer corrected onto the same vertex–but this
is impossible, by the definition of causal flow. Thus the resulting set of paths is a
path cover for (G, I,O).

Finally, if |I| = |O|, every input is the beginning of some path, since we
measure all j ∈ I but can never correct onto I. Since there are exactly |O| = |I|
paths, every path must begin in I and end in O, and every path is indexed by an
input.

As a corollary, we obtain bounds on the number of inputs and outputs of an
open graph if it has a R-flow:

Corollary 6.16. Let (G, I,O) be an open graph with simple R-flow, then |I| 6 |O|.

Proof. By the proof to the lemma, every input is the beginning of a path that
ends in O, and these paths never cross, such that even their endpoints in O cannot
coincide. Then, the collection of paths describes an injection I → O, since each
path uniquely associates an endpoint in O to each input.

Corollary 6.17. Let (G, I,O) be an non-empty open graph with simple R-flow,
then |O| 6= 0.

Proof. If G 6= ∅ and the open graph has simple R-flow, then there is a path
cover of the open graph which contains at least one path. This path must end at
an output vertex, thus |O| 6= 0.

Putting it all together

Theorem 6.18 (Simple R-flow circuit). Assume (G, I,O) is an open graph with
simple R-flow (C,Λ) and |I| = |O| then for any θ : Oc → R3 and any Schwartz
input state ρ ∈ D(H ⊗I),

lim
η→∞

JG, I,O,xC , zCKηθ [ρ] = Γ∏n

k=1 T
(k)U

(k)
SPT (θ|Λk )[ρ], (6.79)
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where U (k)
SPT is the circuit extracted for the k-th layer using the causal flow from

lemma 6.14, and T (k) contains the CX gates obtained from the triangularisation of
the R-flow (lemma 6.13).

T (k)U
(k)
SPT (θ|Λk) acts on the qumodes represented by wires indexed by Lk, and

the total product acts on the qumodes represented by wires indexed by I.

As mentioned previously, we need to assume that the input state is Schwartz
in order to be able to use lemma 6.12. If it is a pure state, this amounts to
assuming that it is the density operator of a Schwartz function. In the mixed case,
Schwartz density operators are defined in [KKW16], but they naturally correspond
to density operators whose Wigner functions are Schwartz. For pure states, these
two definitions match.
Proof. By lemma 6.15 we obtain a graph G′ that is approximately equivalent to
G up to CX gates. Let E(k)

G be the product of CZ gates in G′ from layer Λk into its
outputs and T (k) the CX gates obtained from the corresponing triangularisation
procedure. By lemmas 6.13 and 6.15 for any A > 0 we have, for high enough
squeezing, that∥∥∥∥∥∥∥ΓEG [P⊗|Ic|

gη ⊗ ρ]− Γ∏n

k=1

(
T (k)E

(k)
G

)[P⊗|Ic|
gη ⊗ ρ]

∥∥∥∥∥∥∥ < A. (6.80)

Now, none of the edges in T (k) E
(k)
G for k < n touch the vertices in Λk+1, so

that we can bring the auxiliary squeezed states |η〉v for v ∈ Λk forward until E(k)
G .

Since there is a causal flow Λk+1 → Λk,

Γ∏n

k=1

(
T (k)E

(k)
G

)[P⊗|Ic|
gη ⊗ ρ] = ΓT (k) ◦ O(k) ◦ · · · ◦ ΓT (1) ◦ O(1)

[
ρ
]

(6.81)

where O(k) is the channel associated to the causal flow procedure Λk+1 → Λk.
Then by proposition 6.10, we can perform an SPT for each O(k), and

lim
η→∞

JG, I,O,xC , zCKηθ [ρ] =
n∏
k=1

T (k) U
(k)
SPT (~α, ~β,~γ), (6.82)

by continuity.

An example of the complete circuit extraction procedure for an open graph
based on a R-flow in section 6.5.
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6.5 A worked-out example
We conclude this chapter with an example of the extraction procedure corresponding
to theorem 6.18. It is important to note that running the algorithm from chapter 4
produces the correct circuit for the ideal limit, if one, as always, replaces the field
Zd with R. We include this example nonetheless, as we present the extraction in a
slightly different way, which more closely matches the proof method for theorem
6.18. Hopefully, it will help to make that proof clearer.

Consider the open graph:

3
6

4

2

3

4

layer 2 layer 1

(6.83)

whose adjacency matrix is

G =



3 1 0
0 1 1
6 0 4

3 0 6
1 1 0
0 1 4

3 1 0
2 0 4
0 1 1

3 2 0
1 0 1
0 4 1


(6.84)

It has a simple R-flow for the given layer decomposition given by

C =



0
0 0
0 0 0
2
9 −2

9
1
18 0

1
3

2
3 −1

6 0 0
−1

3
1
3

1
6 0 0 0

0 0 0 2
7

1
14 −2

7 0
0 0 0 1

7 − 3
14

6
7 0 0

0 0 0 −1
7

3
14

1
7 0 0 0


(6.85)

141



CHAPTER 6. CONVERGENCE IN CV MBQC

since

GC =



1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
4
3

2
3 −1

6 0 0 0 0
1
9 −

1
9

2
9 0 0 0 0 0

1 3 −1
2 0 0 0 0 0 0


(6.86)

The empty elements are once again taken to be zero. The first step of the algorithm
is to run the triangularisation procedure for the entire graph, layer by layer.
From equation (6.85) and definition 6.6, the correction matrix for layer 1 can be
triangularised by:

G[Oc, O] =



0 0 0
0 0 0
0 0 0
3 1 0
2 0 4
0 1 1





0 0 0
0 0 0
0 0 0
3 0 0
2 −2

3 0
0 1 11

3



C2 ← C2−1
3C1

C3 ← C3 + 4
3C2

(6.87)

By lemma 6.14, these column operations correspond to CX gates acting within
the outputs, which we call pull into the circuit part of the circuit:
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(6.88)

Then, we can view the remaining open graph as the composition of the subgraph
between layer 1 and the outputs, and the remaining open graph. If we view the
composition as a circuit between the outputs of the latter into the inputs of the
former, we get the approximation:
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(6.89)
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The remaining subgraph, which corresponds to layer 2, is triangularised by:

3 0 0
0 1 0
6 −2 6

G[O′c, O′] =

3 1 0
0 1 1
6 0 4


C2 ← C2−1

3C1
C2 ← C2−C2

(6.90)

Pulling the CX gates into the intermediate circuit,
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(6.91)

The equality is the graphical form of equation 6.81, where each set of CX gates
corresponds to a T (k) factor, and each of the open graphs has causal flow thus
corresponds to a factor of the form O(k). To obtain the circuit implemented in the
infinite squeezing limit, we perform the SPT of each open graph, and obtain:

u

wwww
v

3
6

4

2

3

4

}

����
~

η

θ

η→+∞−→
−4

3

1
3

6 1
3

1-2

U
(2)
SPT U

(1)
SPT T (1)T (2)

(6.92)
This circuit is in the form claimed in theorem 6.18.

Conclusion and outlook
We have extended the measurement calculus to continuous variables, and defined a
flow condition, R-flow, which is appropriate in this setting. Then, we have shown
that MBQCs with R-flow converge in the infinite squeezing limit.

There are a number of questions we leave for future work. On the practical side
of things, we have only shown convergence without considering the actual rate of
convergence as a function of squeezing and approximation error. Asking for such
a rate is actually not a very well-posed question in general: even in the case of
gate teleportation, for a fixed squeezing factor, there are states with arbitrarily
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high approximation error. To make any progress, it is necessary to restrict the set
of input states to a bounded subset of H , and probably also exert some kind of
stronger control on the unitary change-of-basis for the measurement. Any further
work therefore must proceed on a case-by-case basis which strongly depends on the
implementation under consideration.

On the more theoretical side, many of the questions which were either posed or
resolved in the previous chapters are also still open in the CV case. Chief amongst
them perhaps is the extension to arbitrary measurement spaces. It is clear how
one should define the set of CV measurement spaces, combining definition 2.1 and
equation 6.7, but the details still need to be figured out. Such a generalisation
would also need to formulate an algorithm similar to chapter 5 in order to prove
convergence of the MBQC in the squeezing limit. As for the qudit case, finding a
formulation of Pauli R-flow is also a question which we have not considered.

Finally, it is unclear whether flow conditions would provide a useful tool in
MBQC in infinite-dimensional Hilbert spaces beyond the CV model. Weyl-like
commutation relations related to topological groups have been extensively studied
in the mathematics literature, but as we saw, even in the qudit case, MBQC over
groups which are not fields are problematic.
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Conclusion, outlook and
unresolved problems

In this thesis, we have extended the measurement calculus to odd prime dimensions
and continuous variables. Introducing a class of related flow conditions, we have
been able to completely characterise the robustly deterministic MBQC in odd prime
dimensions, and constructed algorithms to find a matching reversible quantum
circuit that implements the same operation. For continuous variables, we have
adapted the circuit extraction algorithm and used it to prove convergence of a large
class of MBQCs.

As with all theses, there were many questions that I considered with varying
degrees of ambition and various degrees of success. Many of these have not yet
been answered, and I list them here. Some of these are the subject of ongoing
research, while others I do not know how to attack and merely state in the vain
hope that someone else will find a satisfying solution.

Further extensions to Zd-flow
Beyond prime fields We have already made the remark that much of our work
extends naturally to the case of any finite field F. In fact, the only section where
I expect any meaningful complications to arise in this extension in section 3.2,
where it is proved that every robustly deterministic Zd-MBQC has Zd-flow. I
expect this proof can be adapted to the general case, but there is some work to be
done. Building of off this, it should be reasonably straightforward to see that all
of our results cover the case of products of finite fields. In particular, this should
imply that our results cover all dimensions, in a somewhat convoluted way, since
it essentially amounts to viewing a qudit of dimension d as a register of smaller
qudits of dimensions pn where the pn are the prime factorisation of d.

Generalising further, it seems natural to consider A-flow, where A is any finite
abelian group. This amounts to allowing more general kinds of Pauli groups as
corrections, which should be given by a representation of a semi-direct product
(A× A) o T in the style of Weil [Wei64].
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It is well-known that any such group A factors as a finite product of cyclic groups
of power-of-prime order. The work in this thesis, combined with the preceding
remark about product flows, takes care of any of the factors of the form Znp . What
remains are those of the form Zpn . These groups are far trickier to tackle as there is
no nice ring or field structure to use. Already in the case of Z4 the only non-trivial
ring structure is arithmetic modulo 4, which our methods do not treat. This is
already a problem at the level of measurement patterns, as equation (2.11) does
not hold, and measurement spaces have a more complicated structure.

Zd-flow within the qudit ZX calculus There is a natural connection between
the ZX-calculus and MBQC, which so far has been exploited only for qubits.
Measurement patterns have a very clean representation within the ZX-calculus
[DP10], and inversely, oftentimes ZX-diagrams can be interpreted as measurement
terms. This has lead to the use of Z2-flow to extract reversible quantum circuits
from such ZX-diagrams [Bac+21], and this is to my knowledge the most general
technique for doing so. It has been used extensively as the final step in circuit
optimisation algorithms using the ZX-calculus as intermediate representation [Kv20;
dBW20; Dun+20]. The connection has also been important for other applications
of the ZX-calculus [Hor11; de +20].

The ZX-calculus has recently been generalised to qudits [Wan18; Wan18], and
many of the same techniques we developed in this thesis should apply there.

A reasonable CV quantum circuit model
Throughout the chapter on continuous variables, we treated CV quantum circuits
as a natural representation for the unitaries appearing in a CV quantum computer.
There remain conceptual gaps in interpreting the set of such CV quantum circuits
as a computational model. First of all, it is unclear exactly what unitaries can
be generated by the gate set of equations (6.13)-(6.15)—is it dense in the unitary
group acting on H as in the qudit case, or not?

Furthermore, in order to obtain a realistic model, it is necessary not just to
impose a uniformity condition like in the finite-dimensional case, but also an energy
bound since otherwise the model is physically unrealistic. It is also necessary to
have some kind of binning on the outcomes of measurements, if one wants to extract
outcomes as a digital signal. Having imposed these restrictions, a number of further
questions impose themselves. Does the energy bound come at a computational cost
to the model? Is there a more natural gate set that allows one to reason without
imposing an external energy bound? Finally, it is generally assumed that once
such bounds are imposed, the model should be (weakly) efficiently simulable by a
finite-dimensional quantum computer, but there are limited actual results in this
direction.
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CHAPTER 6. CONVERGENCE IN CV MBQC

A “good” distribution theory for CV quantum information
While it is maybe surprising to be able to prove a convergence result at all for
MBQCs, I have to confess some frustration with the results of chapter 6. As
described there, the problem of convergence comes from the non-existence of
eigenvectors for the position operator. These are typically treated informally in the
physics literature as Dirac delta “distributions” which are assumed to preserve all of
the algebraic properties of their finite-dimensional counterparts. Such distributions
can be formalised in terms of Schwartz generalised functions, and one can show
that many properties do still hold in a weaker sense. However, this description of
distributions is not subtle enough for the types of operations which are at the core
of MBQC. Consider the gate teleportation circuit:

Pψ

δ X(−m)

In the Schwartz theory, the state CZ(ψ ⊗ δ) is described by a distribution. Evalu-
ating the “branch” corresponding to an outcome m ∈ R should formally correspond
to taking the inner product of a distribution δm with this state. But this inner
product is not valid in the Schwartz theory, and so it doesn’t really give a satisfying
semantics to the gate teleportation protocol, at least in the way that physicists
tend to reason about it.

One work-around for this is to abandon the idea of branches altogether, as
we have done in this thesis. The Schwartz theory has recently seen an opera-
torial generalisation [KKW16]. Using only the semantics of equation (6.51) in
the Stinespring picture, it should be possible to use this theory to give a valid
semantics for measurement pattern where the ideal auxiliary state corresponds to
a “distributional” operator.

On the other hand, if one wants to makes sense of the branch maps at all cost,
the only solution seems to be to find a more appropriate distribution theory that
allows such products of distributions. Various theories of generalised functions exist
which allow this, but it is not obvious which one best applies. Furthermore, they
are much less studied than the Schwartz theory, so many of the tools one might
like to use simply have not been developed.
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List of symbols

N - natural numbers, including 0
R - real numbers
R∗ - non-zero real numbers
R+ - non-negative real numbers
C - complex numbers
T - group of unit complex numbers
Zd - field of integers modulo d (d is always prime)
Z∗d - group of units of Zd
FV×V - algebra of V × V matrices over a field F
H ,I ,J - Hilbert spaces
L 2(X) - Hilbert space of square integrable functions on a measurable space X
Ac - complement X \ A of a set A within some ambient set X; only used when

the ambient set is clear, typically this means X = V the set of vertices of an
open Zd-graph

1A - column vector whose u-th element is 1 if u ∈ A, 0 otherwise
G[A,B] - when G ∈ FV×V and A,B ⊆ V , the submatrix of G obtained by keeping

only the rows corresponding to elements of A and columns corresponding to
elements of B

148



Bibliography

[Alb+18] Victor V. Albert et al.
“Performance and Structure of Single-Mode Bosonic Codes”.
In: Physical Review A 97.3 (Mar. 2018), p. 032346.
doi: 10.1103/PhysRevA.97.032346.

[AU00] Peter M. Alberti and Armin Uhlmann.
“On Bures Distance and *-Algebraic Transition Probability between
Inner Derived Positive Linear Forms over W*-Algebras”.
In: Acta Applicandae Mathematica 60.1 (Jan. 2000), pp. 1–37.
doi: 10.1023/A:1006317508252.

[AL04] Panos Aliferis and Debbie W. Leung.
“Computation by Measurements: A Unifying Picture”.
In: Physical Review A 70.6 (Dec. 2004), p. 062314.
doi: 10.1103/PhysRevA.70.062314.
arXiv: quant-ph/0404082.

[Bac14] Miriam Backens.
“The ZX-calculus Is Complete for Stabilizer Quantum Mechanics”.
In: New Journal of Physics 16.9 (Sept. 2014), p. 093021.
doi: 10.1088/1367-2630/16/9/093021.
arXiv: 1307.7025.

[Bac+21] Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo
Lobski, and John van de Wetering.
“There and Back Again: A Circuit Extraction Tale”.
In: Quantum 5 (Mar. 2021), p. 421.
doi: 10.22331/q-2021-03-25-421.

[BB07a] Mohsen Bahramgiri and Salman Beigi.
“An Efficient Algorithm to Recognize Locally Equivalent Graphs in
Non-Binary Case”.
In: arXiv:cs/0702057 (July 2007).
arXiv: cs/0702057.

[BB07b] Mohsen Bahramgiri and Salman Beigi.

149

https://doi.org/10.1103/PhysRevA.97.032346
https://doi.org/10.1023/A:1006317508252
https://doi.org/10.1103/PhysRevA.70.062314
https://arxiv.org/abs/quant-ph/0404082
https://doi.org/10.1088/1367-2630/16/9/093021
https://arxiv.org/abs/1307.7025
https://doi.org/10.22331/q-2021-03-25-421
https://arxiv.org/abs/cs/0702057


BIBLIOGRAPHY

“Graph States Under the Action of Local Clifford Group in Non-Binary
Case”.
In: arXiv:quant-ph/0610267 (June 2007).
arXiv: quant-ph/0610267.

[BT00] H. Bechmann-Pasquinucci and W. Tittel.
“Quantum Cryptography Using Larger Alphabets”.
In: Physical Review A 61.6 (May 2000), p. 062308.
doi: 10.1103/PhysRevA.61.062308.

[Ben80] Paul Benioff.
“The Computer as a Physical System: A Microscopic Quantum Me-
chanical Hamiltonian Model of Computers as Represented by Turing
Machines”.
In: Journal of Statistical Physics 22.5 (May 1980), pp. 563–591.
doi: 10.1007/BF01011339.

[Ben82] Paul Benioff.
“Quantum Mechanical Hamiltonian Models of Turing Machines”.
In: Journal of Statistical Physics 29.3 (Nov. 1982), pp. 515–546.
doi: 10.1007/BF01342185.

[Ben+93] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa,
Asher Peres, and William K. Wootters.
“Teleporting an Unknown Quantum State via Dual Classical and
Einstein-Podolsky-Rosen Channels”.
In: Physical Review Letters 70.13 (Mar. 1993), pp. 1895–1899.
doi: 10.1103/PhysRevLett.70.1895.

[Ber+17] Juan Bermejo-Vega, Nicolas Delfosse, Dan E. Browne, Cihan Okay,
and Robert Raussendorf.
“Contextuality as a Resource for Models of Quantum Computation on
Qubits”.
In: Physical Review Letters 119.12 (Sept. 2017).
doi: 10.1103/PhysRevLett.119.120505.
arXiv: 1610.08529.

[BV93] Ethan Bernstein and Umesh Vazirani.
“Quantum Complexity Theory”.
In: Proceedings of the 25th Annual ACM Symposium on Theory of
Computing (1993), p. 63.

[BB94] André Berthiaume and Gilles Brassard.
“Oracle Quantum Computing”.
In: Journal of Modern Optics 41.12 (Dec. 1994), pp. 2521–2535.
doi: 10.1080/09500349414552351.

150

https://arxiv.org/abs/quant-ph/0610267
https://doi.org/10.1103/PhysRevA.61.062308
https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF01342185
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.119.120505
https://arxiv.org/abs/1610.08529
https://doi.org/10.1080/09500349414552351


BIBLIOGRAPHY

[BW08] Rainer Blatt and David Wineland.
“Entangled States of Trapped Atomic Ions”.
In: Nature 453.7198 (June 2008), pp. 1008–1015.
doi: 10.1038/nature07125.

[BG89] Arno Bohm and Manuel Gadella.
Dirac Kets, Gamow Vectors and Gel’fand Triplets.
Vol. 348.
Lecture Notes in Physics.
1989.

[Boh13] N. Bohr.
“I. On the Constitution of Atoms and Molecules”.
In: The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 26.151 (July 1913), pp. 1–25.
doi: 10.1080/14786441308634955.

[Boo+21] Robert I. Booth, Aleks Kissinger, Damian Markham, Clément Meignant,
and Simon Perdrix.
“Outcome Determinism in Measurement-Based Quantum Computation
with Qudits”.
Submitted to Quantum, Sept. 2021.
arXiv: 2109.13810.

[BM21] Robert I. Booth and Damian Markham.
“Flow Conditions for Continuous Variable Measurement-Based Quan-
tum Computing”.
Submitted to Quantum, Apr. 2021.
arXiv: 2104.00572.

[BP21] Robert I. Booth and Simon Perdrix.
“Extracting Reversible Circuits from Measurement-Based Quantum
Computations with Higher-Dimensional Systems”.
In preparation, 2021.

[Bou+97] Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald
Weinfurter, and Anton Zeilinger.
“Experimental Quantum Teleportation”.
In: Nature 390.6660 (Dec. 1997), pp. 575–579.
doi: 10.1038/37539.

[BK98] Samuel L Braunstein and H J Kimble.
“Teleportation of Continuous Quantum Variables”.
In: Physical Review Letters 80.4 (1998), p. 4.
doi: 10.1103/PhysRevLett.80.869.

151

https://doi.org/10.1038/nature07125
https://doi.org/10.1080/14786441308634955
https://arxiv.org/abs/2109.13810
https://arxiv.org/abs/2104.00572
https://doi.org/10.1038/37539
https://doi.org/10.1103/PhysRevLett.80.869


BIBLIOGRAPHY

[BP03] Samuel L. Braunstein and Arun K. Pati, eds.
Quantum Information with Continuous Variables.
Dordrecht: Springer Netherlands, 2003.
doi: 10.1007/978-94-015-1258-9.

[Bv05] Samuel L. Braunstein and Peter van Loock.
“Quantum Information with Continuous Variables”.
In: Reviews of Modern Physics 77.2 (June 2005), pp. 513–577.
doi: 10.1103/RevModPhys.77.513.
arXiv: quant-ph/0410100.

[Bri+09] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van
den Nest.
“Measurement-Based Quantum Computation”.
In: Nature Physics 5.1 (Jan. 2009), pp. 19–26.
doi: 10.1038/nphys1157.
arXiv: 0910.1116.

[BK09] Anne Broadbent and Elham Kashefi.
“Parallelizing Quantum Circuits”.
In: Theoretical Computer Science 410.26 (June 2009), pp. 2489–2510.
doi: 10.1016/j.tcs.2008.12.046.

[Bro+07] D. E. Browne, E. Kashefi, M. Mhalla, and S. Perdrix.
“Generalized Flow and Determinism in Measurement-based Quantum
Computation”.
In: New Journal of Physics 9.8 (Aug. 2007), pp. 250–250.
doi: 10.1088/1367-2630/9/8/250.
arXiv: quant-ph/0702212.

[BB16] Dan Browne and Hans Briegel.
“One-Way Quantum Computation”.
In: Quantum Information.
John Wiley & Sons, Ltd, 2016.
Chap. 21, pp. 449–473.
doi: 10.1002/9783527805785.ch21.

[BKP09] Dan E. Browne, Elham Kashefi, and Simon Perdrix.
“Computational Depth Complexity of Measurement-Based Quantum
Computation”.
In: arXiv:0909.4673 [quant-ph] (Sept. 2009).
arXiv: 0909.4673 [quant-ph].

[CG69] K. E. Cahill and R. J. Glauber.
“Density Operators and Quasiprobability Distributions”.

152

https://doi.org/10.1007/978-94-015-1258-9
https://doi.org/10.1103/RevModPhys.77.513
https://arxiv.org/abs/quant-ph/0410100
https://doi.org/10.1038/nphys1157
https://arxiv.org/abs/0910.1116
https://doi.org/10.1016/j.tcs.2008.12.046
https://doi.org/10.1088/1367-2630/9/8/250
https://arxiv.org/abs/quant-ph/0702212
https://doi.org/10.1002/9783527805785.ch21
https://arxiv.org/abs/0909.4673


BIBLIOGRAPHY

In: Physical Review 177.5 (Jan. 1969), pp. 1882–1902.
doi: 10.1103/PhysRev.177.1882.

[Cer+02] Nicolas J. Cerf, Mohamed Bourennane, Anders Karlsson, and Nicolas
Gisin.
“Security of Quantum Key Distribution Using $\mathit{d}$-Level
Systems”.
In: Physical Review Letters 88.12 (Mar. 2002), p. 127902.
doi: 10.1103/PhysRevLett.88.127902.

[Chi93] A. Chi-Chih Yao.
“Quantum Circuit Complexity”.
In: Proceedings of 1993 IEEE 34th Annual Foundations of Computer
Science.
Palo Alto, CA, USA: IEEE, 1993,
Pp. 352–361.
doi: 10.1109/SFCS.1993.366852.

[Cla06] Sean Clark.
“Valence Bond Solid Formalism for D-Level One-Way Quantum Com-
putation”.
In: Journal of Physics A: Mathematical and General 39.11 (Mar. 2006),
pp. 2701–2721.
doi: 10.1088/0305-4470/39/11/010.
arXiv: quant-ph/0512155.

[CGL99] Richard Cleve, Daniel Gottesman, and Hoi-Kwong Lo.
“How to Share a Quantum Secret”.
In: Physical Review Letters 83.3 (July 1999), pp. 648–651.
doi: 10.1103/PhysRevLett.83.648.
arXiv: quant-ph/9901025.

[CD11] Bob Coecke and Ross Duncan.
“Interacting Quantum Observables: Categorical Algebra and Diagram-
matics”.
In: New Journal of Physics 13.4 (Apr. 2011), p. 043016.
doi: 10.1088/1367-2630/13/4/043016.
arXiv: 0906.4725.

[CK17] Bob Coecke and Aleks Kissinger.
Picturing Quantum Processes: A First Course in Quantum Theory
and Diagrammatic Reasoning.
Cambridge: Cambridge University Press, 2017.
doi: 10.1017/9781316219317.

153

https://doi.org/10.1103/PhysRev.177.1882
https://doi.org/10.1103/PhysRevLett.88.127902
https://doi.org/10.1109/SFCS.1993.366852
https://doi.org/10.1088/0305-4470/39/11/010
https://arxiv.org/abs/quant-ph/0512155
https://doi.org/10.1103/PhysRevLett.83.648
https://arxiv.org/abs/quant-ph/9901025
https://doi.org/10.1088/1367-2630/13/4/043016
https://arxiv.org/abs/0906.4725
https://doi.org/10.1017/9781316219317


BIBLIOGRAPHY

[dGK11] Raphael Dias da Silva, Ernesto F. Galvao, and Elham Kashefi.
“Closed Timelike Curves in Measurement-Based Quantum Computa-
tion”.
In: Physical Review A 83.1 (Jan. 2011), p. 012316.
doi: 10.1103/PhysRevA.83.012316.
arXiv: 1003.4971.

[DK06] Vincent Danos and Elham Kashefi.
“Determinism in the One-Way Model”.
In: Physical Review A 74.5 (Nov. 2006), p. 052310.
doi: 10.1103/PhysRevA.74.052310.

[DKP07] Vincent Danos, Elham Kashefi, and Prakash Panangaden.
“The Measurement Calculus”.
In: Journal of the ACM 54.2 (Apr. 2007), 8–es.
doi: 10.1145/1219092.1219096.

[Dan+09] Vincent Danos, Elham Kashefi, Prakash Panangaden, and Simon
Perdrix.
“Extended Measurement Calculus”.
In: Semantic Techniques in Quantum Computation.
Ed. by Ian Mackie and Simon Gay.
Cambridge: Cambridge University Press, 2009,
Pp. 235–310.
doi: 10.1017/CBO9781139193313.008.

[DG28] C. J. Davisson and L. H. Germer.
“Reflection of Electrons by a Crystal of Nickel”.
In: Proceedings of the National Academy of Sciences 14.4 (Apr. 1928),
pp. 317–322.
doi: 10.1073/pnas.14.4.317.

[de 08] Niel de Beaudrap.
“Finding Flows in the One-Way Measurement Model”.
In: Physical Review A 77.2 (Feb. 2008), p. 022328.
doi: 10.1103/PhysRevA.77.022328.
arXiv: quant-ph/0611284.

[de 12] Niel de Beaudrap.
“A Linearized Stabilizer Formalism for Systems of Finite Dimension”.
In: arXiv:1102.3354 [quant-ph] (Sept. 2012).
arXiv: 1102.3354 [quant-ph].

[dBW20] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang.
“Fast and Effective Techniques for T-count Reduction via Spider Nest
Identities”.

154

https://doi.org/10.1103/PhysRevA.83.012316
https://arxiv.org/abs/1003.4971
https://doi.org/10.1103/PhysRevA.74.052310
https://doi.org/10.1145/1219092.1219096
https://doi.org/10.1017/CBO9781139193313.008
https://doi.org/10.1073/pnas.14.4.317
https://doi.org/10.1103/PhysRevA.77.022328
https://arxiv.org/abs/quant-ph/0611284
https://arxiv.org/abs/1102.3354


BIBLIOGRAPHY

In: arXiv:2004.05164 [quant-ph] (Apr. 2020).
arXiv: 2004.05164 [quant-ph].

[de +20] Niel de Beaudrap, Ross Duncan, Dominic Horsman, and Simon Per-
drix.
“Pauli Fusion: A Computational Model to Realise Quantum Transfor-
mations from ZX Terms”.
In: Electronic Proceedings in Theoretical Computer Science 318.Pro-
ceedings QPL 2019 (Apr. 2020), pp. 85–105.
doi: 10.4204/EPTCS.318.
arXiv: 1904.12817.

[de 17] Maurice de Gosson.
The Wigner Transform.
WORLD SCIENTIFIC (EUROPE), May 2017.
doi: 10.1142/q0089.

[de 06] Maurice A. de Gosson.
Symplectic Geometry and Quantum Mechanics.
Advances in Partial Differential Equations.
Birkhäuser Basel, 2006.
doi: 10.1007/3-7643-7575-2.

[de 18] Maurice A. de Gosson.
“Quantum Harmonic Analysis of the Density Matrix”.
In: Quanta 7.1 (Sept. 2018), p. 74.
doi: 10.12743/quanta.v7i1.74.
arXiv: 1703.00889.

[Deu85] D. Deutsch.
“Quantum Theory, the Church-Turing Principle and the Universal
Quantum Computer”.
In: Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 400.1818 (July 1985), pp. 97–117.
doi: 10.1098/rspa.1985.0070.

[DJ92] David Deutsch and Richard Jozsa.
“Rapid Solution of Problems by Quantum Computation”.
In: Proc. R. Soc. Lond. A 439.1907 (Dec. 1992), pp. 553–558.
doi: 10.1098/rspa.1992.0167.

[DF26] Paul Adrien Maurice Dirac and Ralph Howard Fowler.
“On the Theory of Quantum Mechanics”.
In: Proceedings of the Royal Society of London. Series A, Containing
Papers of a Mathematical and Physical Character 112.762 (Oct. 1926),
pp. 661–677.

155

https://arxiv.org/abs/2004.05164
https://doi.org/10.4204/EPTCS.318
https://arxiv.org/abs/1904.12817
https://doi.org/10.1142/q0089
https://doi.org/10.1007/3-7643-7575-2
https://doi.org/10.12743/quanta.v7i1.74
https://arxiv.org/abs/1703.00889
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1992.0167


BIBLIOGRAPHY

doi: 10.1098/rspa.1926.0133.
[Dun+20] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John van de We-

tering.
“Graph-Theoretic Simplification of Quantum Circuits with the ZX-
calculus”.
In: Quantum 4 (June 2020), p. 279.
doi: 10.22331/q-2020-06-04-279.
arXiv: 1902.03178.

[DP10] Ross Duncan and Simon Perdrix.
“Rewriting Measurement-Based Quantum Computations with Gener-
alised Flow”.
In: Automata, Languages and Programming.
Ed. by David Hutchison et al.
Vol. 6199.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
Pp. 285–296.
doi: 10.1007/978-3-642-14162-1_24.

[Ein05] A. Einstein.
“Über Einen Die Erzeugung Und Verwandlung Des Lichtes Betref-
fenden Heuristischen Gesichtspunkt”.
In: Annalen der Physik 322.6 (1905), pp. 132–148.
doi: 10.1002/andp.19053220607.

[ESP02] J. Eisert, S. Scheel, and M. B. Plenio.
“Distilling Gaussian States with Gaussian Operations Is Impossible”.
In: Physical Review Letters 89.13 (Sept. 2002), p. 137903.
doi: 10.1103/PhysRevLett.89.137903.
arXiv: quant-ph/0204052.

[Erh+18] Manuel Erhard, Robert Fickler, Mario Krenn, and Anton Zeilinger.
“Twisted Photons: New Quantum Perspectives in High Dimensions”.
In: Light: Science & Applications 7.3 (Mar. 2018), pp. 17146–17146.
doi: 10.1038/lsa.2017.146.

[FT20] Claude Fabre and Nicolas Treps.
“Modes and States in Quantum Optics”.
In: Reviews of Modern Physics 92.3 (Sept. 2020), p. 035005.
doi: 10.1103/RevModPhys.92.035005.
arXiv: 1912.09321.

[FRB18] Markus Frembs, Sam Roberts, and Stephen D. Bartlett.
“Contextuality as a Resource for Measurement-Based Quantum Com-
putation beyond Qubits”.

156

https://doi.org/10.1098/rspa.1926.0133
https://doi.org/10.22331/q-2020-06-04-279
https://arxiv.org/abs/1902.03178
https://doi.org/10.1007/978-3-642-14162-1_24
https://doi.org/10.1002/andp.19053220607
https://doi.org/10.1103/PhysRevLett.89.137903
https://arxiv.org/abs/quant-ph/0204052
https://doi.org/10.1038/lsa.2017.146
https://doi.org/10.1103/RevModPhys.92.035005
https://arxiv.org/abs/1912.09321


BIBLIOGRAPHY

In: arXiv:1804.07364 [quant-ph] (Apr. 2018).
arXiv: 1804.07364 [quant-ph].

[Fri+18] Nicolai Friis et al.
“Observation of Entangled States of a Fully Controlled 20-Qubit Sys-
tem”.
In: Physical Review X 8.2 (Apr. 2018), p. 021012.
doi: 10.1103/PhysRevX.8.021012.
arXiv: 1711.11092.

[FAF20] Kosuke Fukui, Warit Asavanant, and Akira Furusawa.
“Temporal-Mode Continuous-Variable 3-Dimensional Cluster State for
Topologically-Protected Measurement-Based Quantum Computation”.
In: Physical Review A 102.3 (Sept. 2020), p. 032614.
doi: 10.1103/PhysRevA.102.032614.
arXiv: 2004.05750.

[Gao+19] Xiaoqin Gao, Mario Krenn, Jaroslav Kysela, and Anton Zeilinger.
“Arbitrary $d$-Dimensional Pauli $X$ Gates of a Flying Qudit”.
In: Physical Review A 99.2 (Feb. 2019), p. 023825.
doi: 10.1103/PhysRevA.99.023825.

[Gok+19] Pranav Gokhale, Jonathan M. Baker, Casey Duckering, Natalie C.
Brown, Kenneth R. Brown, and Frederic T. Chong.
“Asymptotic Improvements to Quantum Circuits via Qutrits”.
In: Proceedings of the 46th International Symposium on Computer
Architecture.
Phoenix Arizona: ACM, June 2019,
Pp. 554–566.
doi: 10.1145/3307650.3322253.

[Got99] Daniel Gottesman.
“Fault-Tolerant Quantum Computation with Higher-Dimensional Sys-
tems”.
In: Chaos, Solitons & Fractals 10.10 (Sept. 1999), pp. 1749–1758.
doi: 10.1016/S0960-0779(98)00218-5.
arXiv: quant-ph/9802007.

[GC99] Daniel Gottesman and Isaac L. Chuang.
“Demonstrating the Viability of Universal Quantum Computation
Using Teleportation and Single-Qubit Operations”.
In: Nature 402.6760 (Nov. 1999), pp. 390–393.
doi: 10.1038/46503.

[GKP01] Daniel Gottesman, Alexei Kitaev, and John Preskill.

157

https://arxiv.org/abs/1804.07364
https://doi.org/10.1103/PhysRevX.8.021012
https://arxiv.org/abs/1711.11092
https://doi.org/10.1103/PhysRevA.102.032614
https://arxiv.org/abs/2004.05750
https://doi.org/10.1103/PhysRevA.99.023825
https://doi.org/10.1145/3307650.3322253
https://doi.org/10.1016/S0960-0779(98)00218-5
https://arxiv.org/abs/quant-ph/9802007
https://doi.org/10.1038/46503


BIBLIOGRAPHY

“Encoding a Qubit in an Oscillator”.
In: Physical Review A 64.1 (June 2001).
doi: 10.1103/PhysRevA.64.012310.
arXiv: quant-ph/0008040.

[Gro96] Lov K. Grover.
“A Fast Quantum Mechanical Algorithm for Database Search”.
In: arXiv:quant-ph/9605043 (May 1996).
arXiv: quant-ph/9605043.

[Gu+09] Mile Gu, Christian Weedbrook, Nicolas C. Menicucci, Timothy C.
Ralph, and Peter van Loock.
“Quantum Computing with Continuous-Variable Clusters”.
In: Physical Review A 79.6 (June 2009).
doi: 10.1103/PhysRevA.79.062318.
arXiv: 0903.3233.

[Hal13] Brian C. Hall.
Quantum Theory for Mathematicians.
Graduate Texts in Mathematics.
New York: Springer-Verlag, 2013.

[Hao+21] Shuhong Hao, Meihong Wang, Dong Wang, and Xiaolong Su.
“Topological Error Correction with a Gaussian Cluster State”.
In: Physical Review A 103.5 (May 2021), p. 052407.
doi: 10.1103/PhysRevA.103.052407.

[Hay17] Masahito Hayashi.
A Group Theoretic Approach to Quantum Information.
Springer International Publishing, 2017.
doi: 10.1007/978-3-319-45241-8.

[Hei25] Werner Heisenberg.
“Über Quantentheoretische Umdeutung Kinematischer Und Mechanis-
cher Beziehungen”.
In: Zeitschrift für Physik volume 33 (1925), pp. 879–893.

[Hol01] A. S. Holevo.
Statistical Structure of Quantum Theory.
Lecture Notes in Physics. New Series m, Monographs 67.
Berlin ; New York: Springer, 2001.

[Hor11] Dominic Horsman.
“Quantum Picturalism for Topological Cluster-State Computing”.
In: New Journal of Physics 13.9 (Sept. 2011), p. 095011.
doi: 10.1088/1367-2630/13/9/095011.

158

https://doi.org/10.1103/PhysRevA.64.012310
https://arxiv.org/abs/quant-ph/0008040
https://arxiv.org/abs/quant-ph/9605043
https://doi.org/10.1103/PhysRevA.79.062318
https://arxiv.org/abs/0903.3233
https://doi.org/10.1103/PhysRevA.103.052407
https://doi.org/10.1007/978-3-319-45241-8
https://doi.org/10.1088/1367-2630/13/9/095011


BIBLIOGRAPHY

arXiv: 1101.4722.
[HQ12] JinChuan Hou and XiaoFei Qi.

“Fidelity of States in Infinite-Dimensional Quantum Systems”.
In: Science China Physics, Mechanics and Astronomy 55.10 (Oct.
2012), pp. 1820–1827.
doi: 10.1007/s11433-012-4840-4.

[JPV17] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart.
“A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quan-
tum Mechanics”.
In: arXiv:1705.11151 [quant-ph] (May 2017).
arXiv: 1705.11151 [quant-ph].

[JP05] Philippe Jorrand and Simon Perdrix.
“Unifying Quantum Computation with Projective Measurements Only
and One-Way Quantum Computation”.
In: arXiv:quant-ph/0404125 (June 2005), p. 44.
doi: 10.1117/12.620302.
arXiv: quant-ph/0404125.

[KKW16] Michael Keyl, Jukka Kiukas, and Reinhard F. Werner.
“Schwartz Operators”.
In: Reviews in Mathematical Physics 28.03 (Apr. 2016), p. 1630001.
doi: 10.1142/S0129055X16300016.
arXiv: 1503.04086.

[Kik+20] E. O. Kiktenko, A. S. Nikolaeva, Peng Xu, G. V. Shlyapnikov, and
A. K. Fedorov.
“Scalable Quantum Computing with Qudits on a Graph”.
In: Physical Review A 101.2 (Feb. 2020), p. 022304.
doi: 10.1103/PhysRevA.101.022304.
arXiv: 1909.08973.

[Kv20] Aleks Kissinger and John van de Wetering.
“Reducing T-count with the ZX-calculus”.
In: arXiv:1903.10477 [quant-ph] (Jan. 2020).
arXiv: 1903.10477 [quant-ph].

[Kli+03] A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra.
“Qutrit Quantum Computer with Trapped Ions”.
In: Physical Review A 67.6 (June 2003), p. 062313.
doi: 10.1103/PhysRevA.67.062313.

159

https://arxiv.org/abs/1101.4722
https://doi.org/10.1007/s11433-012-4840-4
https://arxiv.org/abs/1705.11151
https://doi.org/10.1117/12.620302
https://arxiv.org/abs/quant-ph/0404125
https://doi.org/10.1142/S0129055X16300016
https://arxiv.org/abs/1503.04086
https://doi.org/10.1103/PhysRevA.101.022304
https://arxiv.org/abs/1909.08973
https://arxiv.org/abs/1903.10477
https://doi.org/10.1103/PhysRevA.67.062313


BIBLIOGRAPHY

[Kon+21a] Shunya Konno, Warit Asavanant, Kosuke Fukui, Atsushi Sakaguchi,
Fumiya Hanamura, Petr Marek, Radim Filip, Jun-ichi Yoshikawa, and
Akira Furusawa.
“Non-Clifford Gate on Optical Qubits by Nonlinear Feedforward”.
In: arXiv:2103.10644 [quant-ph] (Aug. 2021).
arXiv: 2103.10644 [quant-ph].

[Kon+21b] Shunya Konno, Atsushi Sakaguchi, Warit Asavanant, Hisashi Ogawa,
Masaya Kobayashi, Petr Marek, Radim Filip, Jun-ichi Yoshikawa, and
Akira Furusawa.
“Nonlinear Squeezing for Measurement-Based Non-Gaussian Opera-
tions in Time Domain”.
In: Physical Review Applied 15.2 (Feb. 2021), p. 024024.
doi: 10.1103/PhysRevApplied.15.024024.
arXiv: 2011.14576.

[Kra83] Karl Kraus.
States, Effects, and Operations: Fundamental Notions of Quantum
Theory.
Ed. by Arno Bohm.
Lecture Notes in Physics 190.
Berlin Heidelberg: Springer, 1983.

[Leu02] D. W. Leung.
“Two-Qubit Projective Measurements Are Universal for Quantum
Computation”.
In: arXiv:quant-ph/0111122 (Apr. 2002).
arXiv: quant-ph/0111122.

[Leu04] Debbie W. Leung.
“Quantum Computation by Measurements”.
In: arXiv:quant-ph/0310189 (Feb. 2004).
arXiv: quant-ph/0310189.

[Lig58] M. J. Lighthill.
An Introduction to Fourier Analysis and Generalised Functions.
London: Cambridge University Press, 1958.

[LB99] Seth Lloyd and Samuel L. Braunstein.
“Quantum Computation over Continuous Variables”.
In: Physical Review Letters 82.8 (Feb. 1999), pp. 1784–1787.
doi: 10.1103/PhysRevLett.82.1784.
arXiv: quant-ph/9810082.

[LDR15] Leon Loveridge, Raouf Dridi, and Robert Raussendorf.

160

https://arxiv.org/abs/2103.10644
https://doi.org/10.1103/PhysRevApplied.15.024024
https://arxiv.org/abs/2011.14576
https://arxiv.org/abs/quant-ph/0111122
https://arxiv.org/abs/quant-ph/0310189
https://doi.org/10.1103/PhysRevLett.82.1784
https://arxiv.org/abs/quant-ph/9810082


BIBLIOGRAPHY

“Topos Logic in Measurement-Based Quantum Computation”.
In: Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 471.2176 (Apr. 2015), p. 20140716.
doi: 10.1098/rspa.2014.0716.
arXiv: 1408.0745.

[Man+17] Atul Mantri, Tommaso F. Demarie, Nicolas C. Menicucci, and Joseph
F. Fitzsimons.
“Flow Ambiguity: A Path Towards Classically Driven Blind Quantum
Computation”.
In: Physical Review X 7.3 (July 2017).
doi: 10.1103/PhysRevX.7.031004.
arXiv: 1608.04633.

[MMP13] Anne Marin, Damian Markham, and Simon Perdrix.
“Access Structure in Graphs in High Dimension and Application to
Secret Sharing”.
In: (2013), 17 pages.
doi: 10.4230/LIPICS.TQC.2013.308.

[MK14] Damian Markham and Elham Kashefi.
“Entanglement, Flow and Classical Simulatability in Measurement
Based Quantum Computation”.
In: Horizons of the Mind. A Tribute to Prakash Panangaden: Es-
says Dedicated to Prakash Panangaden on the Occasion of His 60th
Birthday.
Ed. by Franck van Breugel, Elham Kashefi, Catuscia Palamidessi, and
Jan Rutten.
Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2014,
Pp. 427–453.
doi: 10.1007/978-3-319-06880-0_22.

[Max61] J.C. Maxwell.
“On Physical Lines of Force”.
In: Philosophical Magazine 4 (1861), pp. 12–24.
doi: 10.1080/14786431003659180.

[Men14] Nicolas C. Menicucci.
“Fault-Tolerant Measurement-Based Quantum Computing with Continuous-
Variable Cluster States”.
In: Physical Review Letters 112.12 (Mar. 2014), p. 120504.
doi: 10.1103/PhysRevLett.112.120504.

[MFv11] Nicolas C. Menicucci, Steven T. Flammia, and Peter van Loock.

161

https://doi.org/10.1098/rspa.2014.0716
https://arxiv.org/abs/1408.0745
https://doi.org/10.1103/PhysRevX.7.031004
https://arxiv.org/abs/1608.04633
https://doi.org/10.4230/LIPICS.TQC.2013.308
https://doi.org/10.1007/978-3-319-06880-0_22
https://doi.org/10.1080/14786431003659180
https://doi.org/10.1103/PhysRevLett.112.120504


BIBLIOGRAPHY

“Graphical Calculus for Gaussian Pure States”.
In: Physical Review A 83.4 (Apr. 2011).
doi: 10.1103/PhysRevA.83.042335.
arXiv: 1007.0725.

[Men+06] Nicolas C. Menicucci, Peter van Loock, Mile Gu, Christian Weedbrook,
Timothy C. Ralph, and Michael A. Nielsen.
“Universal Quantum Computation with Continuous-Variable Cluster
States”.
In: Physical Review Letters 97.11 (Sept. 2006).
doi: 10.1103/PhysRevLett.97.110501.
arXiv: quant-ph/0605198.

[MP08] Mehdi Mhalla and Simon Perdrix.
“Finding Optimal Flows Efficiently”.
In: Automata, Languages and Programming.
Ed. by Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz.
Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2008,
Pp. 857–868.
doi: 10.1007/978-3-540-70575-8_70.

[Mic+16] Marios H. Michael, Matti Silveri, R. T. Brierley, Victor V. Albert,
Juha Salmilehto, Liang Jiang, and S. M. Girvin.
“New Class of Quantum Error-Correcting Codes for a Bosonic Mode”.
In: Physical Review X 6.3 (July 2016), p. 031006.
doi: 10.1103/PhysRevX.6.031006.

[Miy+16] Kazunori Miyata, Hisashi Ogawa, Petr Marek, Radim Filip, Hidehiro
Yonezawa, Jun-ichi Yoshikawa, and Akira Furusawa.
“Implementation of a Quantum Cubic Gate by Adaptive Non-Gaussian
Measurement”.
In: Physical Review A 93.2 (Feb. 2016), p. 022301.
doi: 10.1103/PhysRevA.93.022301.
arXiv: 1507.08782.

[MHM15] Jisho Miyazaki, Michal Hajdušek, and Mio Murao.
“An Analysis of the Trade-off between Spatial and Temporal Resources
for Measurement-Based Quantum Computation”.
In: Physical Review A 91.5 (May 2015), p. 052302.
doi: 10.1103/PhysRevA.91.052302.
arXiv: 1310.4043.

[Mor17] Valter Moretti.

162

https://doi.org/10.1103/PhysRevA.83.042335
https://arxiv.org/abs/1007.0725
https://doi.org/10.1103/PhysRevLett.97.110501
https://arxiv.org/abs/quant-ph/0605198
https://doi.org/10.1007/978-3-540-70575-8_70
https://doi.org/10.1103/PhysRevX.6.031006
https://doi.org/10.1103/PhysRevA.93.022301
https://arxiv.org/abs/1507.08782
https://doi.org/10.1103/PhysRevA.91.052302
https://arxiv.org/abs/1310.4043


BIBLIOGRAPHY

Spectral Theory and Quantum Mechanics: Mathematical Foundations
of Quantum Theories, Symmetries and Introduction to the Algebraic
Formulation.
Second.
La Matematica per Il 3+2.
Springer International Publishing, 2017.
doi: 10.1007/978-3-319-70706-8.

[MN36] F. J. Murray and J. v. Neumann.
“On Rings of Operators”.
In: Annals of Mathematics 37.1 (1936), pp. 116–229.
doi: 10.2307/1968693.

[Nee+09] Matthew Neeley et al.
“Emulation of a Quantum Spin with a Superconducting Phase Qudit”.
In: Science 325.5941 (Aug. 2009), pp. 722–725.
doi: 10.1126/science.1173440.

[NW17] Kang Feng Ng and Quanlong Wang.
“A Universal Completion of the ZX-calculus”.
In: arXiv:1706.09877 [quant-ph] (June 2017).
arXiv: 1706.09877 [quant-ph].

[NC10] M.A. Nielsen and I.L. Chuang.
Quantum Computation and Quantum Information: 10th Anniversary
Edition.
Cambridge University Press, 2010.

[Nie03] Michael A. Nielsen.
“Universal Quantum Computation Using Only Projective Measure-
ment, Quantum Memory, and Preparation of the 0 State”.
In: Physics Letters A 308.2-3 (Feb. 2003), pp. 96–100.
doi: 10.1016/S0375-9601(02)01803-0.
arXiv: quant-ph/0108020.

[Nie06] Michael A. Nielsen.
“Cluster-State Quantum Computation”.
In: Reports on Mathematical Physics 57.1 (Feb. 2006), pp. 147–161.
doi: 10.1016/S0034-4877(06)80014-5.
arXiv: quant-ph/0504097.

[NFC09] Julien Niset, Jaromír Fiurášek, and Nicolas J. Cerf.
“No-Go Theorem for Gaussian Quantum Error Correction”.
In: Physical Review Letters 102.12 (Mar. 2009), p. 120501.
doi: 10.1103/PhysRevLett.102.120501.

163

https://doi.org/10.1007/978-3-319-70706-8
https://doi.org/10.2307/1968693
https://doi.org/10.1126/science.1173440
https://arxiv.org/abs/1706.09877
https://doi.org/10.1016/S0375-9601(02)01803-0
https://arxiv.org/abs/quant-ph/0108020
https://doi.org/10.1016/S0034-4877(06)80014-5
https://arxiv.org/abs/quant-ph/0504097
https://doi.org/10.1103/PhysRevLett.102.120501


BIBLIOGRAPHY

[NGJ20] Kyungjoo Noh, S. M. Girvin, and Liang Jiang.
“Encoding an Oscillator into Many Oscillators”.
In: Physical Review Letters 125.8 (Aug. 2020), p. 080503.
doi: 10.1103/PhysRevLett.125.080503.
arXiv: 1903.12615.

[Pea08] K.A. Peacock.
The Quantum Revolution: A Historical Perspective.
Greenwood Guides to Great Ideas in Science.
Greenwood Press, 2008.

[Per05] Simon Perdrix.
“State Transfer Instead of Teleportation in Measurement-based Quan-
tum Computation”.
In: International Journal of Quantum Information 03.01 (Mar. 2005),
pp. 219–223.
doi: 10.1142/S0219749905000785.
arXiv: quant-ph/0402204.

[Per06] Simon Perdrix.
“Modèles formels du calcul quantique: ressources, machines abstraites
et calcul par mesure”.
PhD thesis. Institut National Polytechnique de Grenoble, Dec. 2006.

[PSM] Simon Perdrix, Luc Sanselme, and Mehdi Mhalla.
“Characterising Determinism in MBQCs Involving Pauli Measure-
ments”.
To Appear.

[PLB18] Stefano Pirandola, Riccardo Laurenza, and Samuel L. Braunstein.
“Teleportation Simulation of Bosonic Gaussian Channels: Strong and
Uniform Convergence”.
In: The European Physical Journal D 72.9 (Sept. 2018), p. 162.
doi: 10.1140/epjd/e2018-90253-1.
arXiv: 1712.01615.

[Pla01] Max Planck.
“Ueber Das Gesetz Der Energieverteilung Im Normalspectrum”.
In: Annalen der Physik 309.3 (1901), pp. 553–563.
doi: 10.1002/andp.19013090310.

[RBB03] R. Raussendorf, D. E. Browne, and H. J. Briegel.
“Measurement-Based Quantum Computation with Cluster States”.
In: Physical Review A 68.2 (Aug. 2003).
doi: 10.1103/PhysRevA.68.022312.
arXiv: quant-ph/0301052.

164

https://doi.org/10.1103/PhysRevLett.125.080503
https://arxiv.org/abs/1903.12615
https://doi.org/10.1142/S0219749905000785
https://arxiv.org/abs/quant-ph/0402204
https://doi.org/10.1140/epjd/e2018-90253-1
https://arxiv.org/abs/1712.01615
https://doi.org/10.1002/andp.19013090310
https://doi.org/10.1103/PhysRevA.68.022312
https://arxiv.org/abs/quant-ph/0301052


BIBLIOGRAPHY

[RHG06] R. Raussendorf, J. Harrington, and K. Goyal.
“A Fault-Tolerant One-Way Quantum Computer”.
In: Annals of Physics 321.9 (Sept. 2006), pp. 2242–2270.
doi: 10.1016/j.aop.2006.01.012.

[Rau+11] R. Raussendorf, P. Sarvepalli, T.-C. Wei, and P. Haghnegahdar.
“Measurement-Based Quantum Computation–a Quantum-Mechanical
Toy Model for Spacetime?”
In: arXiv:1108.5774 [quant-ph] (Aug. 2011).
arXiv: 1108.5774 [quant-ph].

[Rau13] Robert Raussendorf.
“Contextuality in Measurement-based Quantum Computation”.
In: Physical Review A 88.2 (Aug. 2013), p. 022322.
doi: 10.1103/PhysRevA.88.022322.
arXiv: 0907.5449.

[RB01] Robert Raussendorf and Hans J. Briegel.
“A One-Way Quantum Computer”.
In: Physical Review Letters 86.22 (May 2001), pp. 5188–5191.
doi: 10.1103/PhysRevLett.86.5188.

[RB02] Robert Raussendorf and Hans J. Briegel.
“Computational Model Underlying the One-Way Quantum Computer”.
In: Quantum Info. Comput. 2.6 (Oct. 2002), pp. 443–486.
doi: 10.5555/2011492.2011495.

[RBB02] Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel.
“The One-Way Quantum Computer - a Non-Network Model of Quan-
tum Computation”.
In: Journal of Modern Optics 49.8 (July 2002), pp. 1299–1306.
doi: 10.1080/09500340110107487.
arXiv: quant-ph/0108118.

[Rei+19] Christian Reimer et al.
“High-Dimensional One-Way Quantum Processing Implemented on d
-Level Cluster States”.
In: Nature Physics 15.2 (Feb. 2019), pp. 148–153.
doi: 10.1038/s41567-018-0347-x.

[SP17] Luc Sanselme and Simon Perdrix.
“Determinism and Computational Power of Real Measurement-Based
Quantum Computation”.
In: Fundamentals of Computation Theory.
Ed. by Ralf Klasing and Marc Zeitoun.

165

https://doi.org/10.1016/j.aop.2006.01.012
https://arxiv.org/abs/1108.5774
https://doi.org/10.1103/PhysRevA.88.022322
https://arxiv.org/abs/0907.5449
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.5555/2011492.2011495
https://doi.org/10.1080/09500340110107487
https://arxiv.org/abs/quant-ph/0108118
https://doi.org/10.1038/s41567-018-0347-x


BIBLIOGRAPHY

Vol. 10472.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2017,
Pp. 395–408.
doi: 10.1007/978-3-662-55751-8_31.

[SK17a] Adam Sawicki and Katarzyna Karnas.
“Criteria for Universality of Quantum Gates”.
In: Physical Review A 95.6 (June 2017), p. 062303.
doi: 10.1103/PhysRevA.95.062303.
arXiv: 1610.00547.

[SK17b] Adam Sawicki and Katarzyna Karnas.
“Universality of Single Qudit Gates”.
In: Annales Henri Poincaré 18.11 (Nov. 2017), pp. 3515–3552.
doi: 10.1007/s00023-017-0604-z.
arXiv: 1609.05780.

[Sch26] Erwin Schrödinger.
“Quantisierung Als Eigenwertproblem”.
In: Annalen der Physik 79 (1926), pp. 361–376.

[Sch95] Benjamin Schumacher.
“Quantum Coding”.
In: Physical Review A 51.4 (Apr. 1995), pp. 2738–2747.
doi: 10.1103/PhysRevA.51.2738.

[Sch50] Laurent Schwartz.
Théorie Des Distributions.
Publications de l’Institut de Mathématique de l’Université de Stras-
bourg.
1950.

[SW20] Kunal Sharma and Mark M. Wilde.
“Characterizing the Performance of Continuous-Variable Gaussian
Quantum Gates”.
In: Physical Review Research 2.1 (Feb. 2020), p. 013126.
doi: 10.1103/PhysRevResearch.2.013126.
arXiv: 1810.12335.

[SS10] Lana Sheridan and Valerio Scarani.
“Security Proof for Quantum Key Distribution Using Qudit Systems”.
In: Physical Review A 82.3 (Sept. 2010), p. 030301.
doi: 10.1103/PhysRevA.82.030301.

[SCC19] Yunong Shi, Christopher Chamberland, and Andrew W. Cross.
“Fault-Tolerant Preparation of Approximate GKP States”.

166

https://doi.org/10.1007/978-3-662-55751-8_31
https://doi.org/10.1103/PhysRevA.95.062303
https://arxiv.org/abs/1610.00547
https://doi.org/10.1007/s00023-017-0604-z
https://arxiv.org/abs/1609.05780
https://doi.org/10.1103/PhysRevA.51.2738
https://doi.org/10.1103/PhysRevResearch.2.013126
https://arxiv.org/abs/1810.12335
https://doi.org/10.1103/PhysRevA.82.030301


BIBLIOGRAPHY

In: New Journal of Physics 21.9 (Sept. 2019), p. 093007.
doi: 10.1088/1367-2630/ab3a62.
arXiv: 1905.00903.

[SH08] M. E. Shirokov and A. S. Holevo.
“On Approximation of Infinite-Dimensional Quantum Channels”.
In: Problems of Information Transmission 44.2 (June 2008), pp. 73–
90.
doi: 10.1134/S0032946008020014.

[Sho94] P.W. Shor.
“Algorithms for Quantum Computation: Discrete Logarithms and
Factoring”.
In: Proceedings 35th Annual Symposium on Foundations of Computer
Science.
Nov. 1994,
Pp. 124–134.
doi: 10.1109/SFCS.1994.365700.

[Sho97] Peter W. Shor.
“Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer”.
In: SIAM Journal on Computing 26.5 (Oct. 1997), pp. 1484–1509.
doi: 10.1137/S0097539795293172.
arXiv: quant-ph/9508027.

[Sim21] Will Simmons.
“Relating Measurement Patterns to Circuits via Pauli Flow”.
In: Electronic Proceedings in Theoretical Computer Science 343 (Sept.
2021), pp. 50–101.
doi: 10.4204/EPTCS.343.4.
arXiv: 2109.05654.

[Sti55] W. Forrest Stinespring.
“Positive Functions on C ∗ -Algebras”.
In: Proceedings of the American Mathematical Society 6.2 (Apr. 1955),
p. 211.
doi: 10.2307/2032342.

[SWB18] Daiqin Su, Christian Weedbrook, and Kamil Brádler.
“Correcting Finite Squeezing Errors in Continuous-Variable Cluster
States”.
In: arXiv:1801.03488 [quant-ph] (Jan. 2018).
arXiv: 1801.03488 [quant-ph].

167

https://doi.org/10.1088/1367-2630/ab3a62
https://arxiv.org/abs/1905.00903
https://doi.org/10.1134/S0032946008020014
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1137/S0097539795293172
https://arxiv.org/abs/quant-ph/9508027
https://doi.org/10.4204/EPTCS.343.4
https://arxiv.org/abs/2109.05654
https://doi.org/10.2307/2032342
https://arxiv.org/abs/1801.03488


BIBLIOGRAPHY

[Tur36] Alan M. Turing.
“On Computable Numbers, with an Application to the Entschei-
dungsproblem”.
In: Proceedings of the London Mathematical Society. 2nd ser. 42 (Nov.
1936), pp. 230–265.

[Uhl76] Armin Uhlmann.
“The “Transition Probability” in the State Space of a ∗-Algebra”.
In: Reports on Mathematical Physics 9.2 (Apr. 1976), pp. 273–279.
doi: 10.1016/0034-4877(76)90060-4.

[van20] John van de Wetering.
“ZX-calculus for the Working Quantum Computer Scientist”.
In: arXiv:2012.13966 [quant-ph] (Dec. 2020).
arXiv: 2012.13966 [quant-ph].

[Vil19] Renaud Vilmart.
“ZX-Calculi for Quantum Computing and Their Completeness”.
PhD thesis. Université de Lorraine, Sept. 2019.

[von30] J. von Neumann.
“Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren”.
In: Mathematische Annalen 102.1 (Dec. 1930), pp. 49–131.
doi: 10.1007/BF01782338.

[von27] John von Neumann.
“Mathematische Begrundung der Quantenmechanik”.
In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen
(1927), pp. 1–57.

[von32] John von Neumann.
Mathematische Grundlagen der Quantenmechanik.
Berlin: J. Springer, 1932.

[von18] John von Neumann.
Mathematical Foundations of Quantum Mechanics.
Ed. by Nicholas Wheeler and Robert T. Beyer.
Princeton University Press, 2018.

[Vui+19] Christophe Vuillot, Hamed Asasi, Yang Wang, Leonid P. Pryadko,
and Barbara M. Terhal.
“Quantum Error Correction with the Toric-GKP Code”.
In: Physical Review A 99.3 (Mar. 2019), p. 032344.
doi: 10.1103/PhysRevA.99.032344.
arXiv: 1810.00047.

[Wan18] Quanlong Wang.

168

https://doi.org/10.1016/0034-4877(76)90060-4
https://arxiv.org/abs/2012.13966
https://doi.org/10.1007/BF01782338
https://doi.org/10.1103/PhysRevA.99.032344
https://arxiv.org/abs/1810.00047


BIBLIOGRAPHY

“Qutrit ZX-calculus Is Complete for Stabilizer Quantum Mechanics”.
In: Electronic Proceedings in Theoretical Computer Science 266 (Feb.
2018), pp. 58–70.
doi: 10.4204/EPTCS.266.3.
arXiv: 1803.00696.

[Wan21] Quanlong Wang.
“Qufinite ZX-calculus: A Unified Framework of Qudit ZX-calculi”.
In: arXiv:2104.06429 [quant-ph] (Apr. 2021).
arXiv: 2104.06429 [quant-ph].

[Wan+20] Yuchen Wang, Zixuan Hu, Barry C. Sanders, and Sabre Kais.
“Qudits and High-Dimensional Quantum Computing”.
In: Frontiers in Physics 8 (2020).
doi: 10.3389/fphy.2020.589504.

[Wei64] André Weil.
“Sur certains groupes d’opérateurs unitaires”.
In: Acta Mathematica 111 (1964), pp. 143–211.
doi: 10.1007/BF02391012.

[WZ15] Richard L. Wheeden and Antoni Zygmund.
Measure and Integral: An Introduction to Real Analysis.
Second.
Chapman and Hall/CRC, Apr. 2015.

[Wil18] Mark M. Wilde.
“Strong and Uniform Convergence in the Teleportation Simulation of
Bosonic Gaussian Channels”.
In: Physical Review A 97.6 (June 2018), p. 062305.
doi: 10.1103/PhysRevA.97.062305.
arXiv: 1712.00145.

[Yok+13] Shota Yokoyama, Ryuji Ukai, Seiji C. Armstrong, Chanond Sorn-
phiphatphong, Toshiyuki Kaji, Shigenari Suzuki, Jun-ichi Yoshikawa,
Hidehiro Yonezawa, Nicolas C. Menicucci, and Akira Furusawa.
“Ultra-Large-Scale Continuous-Variable Cluster States Multiplexed in
the Time Domain”.
In: Nature Photonics 7.12 (Dec. 2013), pp. 982–986.
doi: 10.1038/nphoton.2013.287.

[Yos+16] Jun-ichi Yoshikawa, Shota Yokoyama, Toshiyuki Kaji, Chanond Sorn-
phiphatphong, Yu Shiozawa, Kenzo Makino, and Akira Furusawa.
“Generation of One-Million-Mode Continuous-Variable Cluster State
by Unlimited Time-Domain Multiplexing”.

169

https://doi.org/10.4204/EPTCS.266.3
https://arxiv.org/abs/1803.00696
https://arxiv.org/abs/2104.06429
https://doi.org/10.3389/fphy.2020.589504
https://doi.org/10.1007/BF02391012
https://doi.org/10.1103/PhysRevA.97.062305
https://arxiv.org/abs/1712.00145
https://doi.org/10.1038/nphoton.2013.287


BIBLIOGRAPHY

In: APL Photonics 1.6 (Sept. 2016), p. 060801.
doi: 10.1063/1.4962732.
arXiv: 1606.06688.

[Zha08] Jing Zhang.
“Graphical Description of Local Gaussian Operations for Continuous-
Variable Weighted Graph States”.
In: Physical Review A 78.5 (Nov. 2008), p. 052307.
doi: 10.1103/PhysRevA.78.052307.
arXiv: 0810.1343.

[Zha10] Jing Zhang.
“Graphical Rule of Transforming Continuous-Variable Graph States
by Local Homodyne Detection”.
In: Physical Review A 82.3 (Sept. 2010), p. 034303.
doi: 10.1103/PhysRevA.82.034303.
arXiv: 1006.3974.

[ZB06] Jing Zhang and Samuel L. Braunstein.
“Continuous-Variable Gaussian Analog of Cluster States”.
In: Physical Review A 73.3 (Mar. 2006).
doi: 10.1103/PhysRevA.73.032318.

[Zho+03] D. L. Zhou, B. Zeng, Z. Xu, and C. P. Sun.
“Quantum Computation Based on D-Level Cluster States”.
In: Physical Review A 68.6 (Dec. 2003), p. 062303.
doi: 10.1103/PhysRevA.68.062303.
arXiv: quant-ph/0304054.

[ZLC00] Xinlan Zhou, Debbie W. Leung, and Isaac L. Chuang.
“Methodology for Quantum Logic Gate Constructions”.
In: Physical Review A 62.5 (Oct. 2000), p. 052316.
doi: 10.1103/PhysRevA.62.052316.
arXiv: quant-ph/0002039.

170

https://doi.org/10.1063/1.4962732
https://arxiv.org/abs/1606.06688
https://doi.org/10.1103/PhysRevA.78.052307
https://arxiv.org/abs/0810.1343
https://doi.org/10.1103/PhysRevA.82.034303
https://arxiv.org/abs/1006.3974
https://doi.org/10.1103/PhysRevA.73.032318
https://doi.org/10.1103/PhysRevA.68.062303
https://arxiv.org/abs/quant-ph/0304054
https://doi.org/10.1103/PhysRevA.62.052316
https://arxiv.org/abs/quant-ph/0002039

	Table of Contents
	Introduction
	Summary of results
	Publications

	Mathematical preliminaries
	Hilbert spaces
	Operators on Hilbert spaces
	Some important classes of operators
	The spectral theorem and functional calculi
	Tensor products

	Pure state quantum mechanics
	Mixed state quantum mechanics
	Quantum channels


	Models of quantum computation with qudits
	The quantum circuit model
	Reversible quantum circuits
	State preparation and measurements

	The measurement calculus
	Measurement spaces
	Measurement patterns
	Semantics and determinism
	Causal flow

	Graph states

	Robust determinism in MBQC with qudits
	Zd-flow is sufficient for robust determinism
	Recovering gflow

	Zd-flow is necessary for robust determinism
	A technical lemma
	Proof of the converse theorem

	A polynomial-time algorithm for Zd-flow
	Correctness
	Depth optimality

	Conclusion and outlook

	Circuit extraction for simple Zd-flows
	Preliminaries
	Composing measurement patterns
	Graph-circuit hybrid diagrams
	Extracting gate teleportations
	A reformulation of simple Zd-flow

	Star pattern transformation
	Triangularising Zd-flow
	From simple Zd-flow to causal flow
	The extraction algorithm

	A worked out example
	Conclusion and outlook

	Circuit extraction for extended Zd-flows
	Manipulating Zd-flows with local Cliffords
	Local scaling
	Local complementation

	Quantum circuit extraction subprocesses
	Extracting edges between outputs
	Removing intermediate measurement spaces
	Diagonalising extended Zd-flow
	Correctness of the extraction algorithm
	Discarding subgraphs disconnected from the outputs

	The extraction algorithm
	Some worked out examples
	The Z-rotation gadget
	The total graph

	Conclusion and outlook

	Convergence in CV MBQC
	Preliminaries
	The gate teleportation protocol
	CV-MBQC and R-flow
	CV-MBQCs with simple R-flow converge
	Star pattern transformation
	Simple R-flow triangularisation

	A worked-out example
	Conclusion and outlook

	Conclusion, outlook and unresolved problems
	Bibliography

