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General introduction

Lot-sizing problems aim at determining a production or distribution plan that satisfies de-
mands over a planning horizon discretized into periods. The objective is to find a production
plan that minimizes the total production, inventory and setup costs. Lot-sizing problems are
very common in manufacturing and logistics as there can be important economical incentives
in making rational production and distribution decisions. The complexity of the problems
varies depending on the constraints that are considered. The first objective of the thesis is
to study lot-sizing problems that are closer to industrial reality and with better management
of inventory constraints. To solve lot-sizing problems of the complexity and size of the prob-
lems that are faced at DecisionBrain, using an industrial solver is not sufficient to provide
good solutions in reasonable times. Consequently, the second objective of this thesis is to
develop generic heuristics to solve the addressed lot-sizing problems. We have focused our
work on extending methods that are already widely used to solve lot-sizing problems.

Contributions

– The first contribution of this thesis consists in analyzing literature instances commonly
used as a benchmark for studies on the capacitated lot-sizing problem and point out
biases and issues with regards to the optimal production plans for these instances
compared to industrial reality. We propose a method to modify these instances in
order to make them more realistic.

– Lot-sizing problems are oftentimes optimized on a rolling horizon to fix production
decisions. As described later in the manuscript, these decisions are affected by the
end-of-horizon effect. To mitigate the end-of-horizon effect and its impact on a rolling
horizon, we introduce an extension of the capacitated lot-sizing problem with setup
times and lost sales by adding minimum and maximum ending inventory constraints.
We show in numerical experiments that these new constraints can reduce the end-of-
horizon effect on a rolling horizon. We extend the notion of Time Between Order to
take into account the impact of capacity when considering the problem with setup
times. We also define relevant lost sales costs based on the analysis of a static and
cyclical lot-sizing model.

– In order to better take inventory constraints into account when solving lot-sizing prob-
lems, we study the evolution of inventory within periods and propose two new models
to better model the dynamic nature of the inventory evolution. These two models
make different assumptions on the shapes of production and demand evolution that
are relevant in different contexts. In the first model, we consider a uniform produc-
tion rate within the period and a demand within a cone of uncertainty. Under these
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assumptions, we bound the inventory by adding inventory constraints within each pe-
riod. In the second model, we consider an instantaneous demand and a production at
a maximum production rate. We add inventory constraints within each period as well.
We also add new capacity constraints before and after each demand.

– Finally, the last contribution of this thesis consists in extending commonly used heuris-
tics to solve lot-sizing problems by using parallelization. We have defined a paral-
lelized version of the relax-and-fix heuristic and extended a Lagrangian relaxation
based heuristic to tackle the CLSP with minimum and maximum ending inventory
constraints. We introduce strategies to pick intervals to fix at each iteration in the
parallelized relax-and-fix and compare the results with the relax-and-fix heuristic. The
Lagrangian relaxation based heuristic is based on a relaxation of the capacity con-
straints combined with a reconstruction heuristic to obtain good feasible solutions.
We show that the related uncapacitated problem is polynomial when the maximum
ending inventory is identical for all items and np-hard otherwise. We also propose
another version of the parallelized relax-and-fix algorithm that we implemented in an
optimization tool. We test this heuristic on a real industrial problem with production
constraints that extend over several periods and multiple machines working in parallel.

Thesis structure

In Chapter 1, we present the industrial context and a short state of the art. We first focus on
production planning and complex lot-sizing problems faced by DecisionBrain. We provide a
state of the art on some classes of lot-sizing problems related to the ones considered in this
thesis.

In Chapter 2, we define adequate ending inventory levels and relevant indicators to ana-
lyze the shape of an optimal solution and mitigate the end-of-horizon effect. We perform an
analysis on a static and cyclical model to define relevant indicators and inventory levels on
a rolling horizon.

In Chapter 3, we point out the importance of inventory management at each period
when solving manufacturing problems. In this chapter, we propose two ways to model the
demand and production rates and identify the minimum and maximum inventory levels
reached within each period. Numerical experiments to define the relevance and use of each
model are performed.

In Chapter 4, we introduce new decomposition methods to solve generic lot-sizing prob-
lems. These heuristics can be fastened by using parallelization. Two heuristics are pro-
posed to solve the capacitated lot-sizing problem with ending inventory constraints: (1) A
parallelized version of the relax-and-fix algorithm, and (2) A Lagrangian relaxation based
heuristic. We perform numerical experiments to assess the efficiency of these new heuristics.

In Chapter 5, we discuss the integration of the parallelized relax-and-fix heuristic in the
planning engine developed by DecisionBrain. We discuss the limits of this method applied
to generic lot-sizing problems, and propose ways to cope with these issues. The adapted
heuristic is tested on an industrial capacitated lot-sizing problem.

Chapter 6 sums up the contributions of the manuscript and suggests perspectives and
future works.

Page 2 EMSE-CMP Mehdi Charles







Chapter 1

Industrial context and a short state of
the art

Since the middle of the 20th century, lot-sizing has been a very active research field, in par-
ticular because of its numerous applications in manufacturing and logistics. Yet, the first
results on lot-sizing come from the beginning of the 20th century, where Harris (1913) devel-
oped the notion of Economic Order Quantity (EOQ) for a cyclical and stationary single-item
production planning problem. A global overview on the various types of lot-sizing problems
can be found in Pochet and Wolsey (2006). In this section, we point out the complexity of
modeling industrial production planning problems and the efforts in the literature to better
model and solve these problems. In order to emphasize the correlation between industrial
problems and lot-sizing problems, we introduce an industrial application and the correspond-
ing lot-sizing model. We point out that, for some of the constraints of this lot-sizing model,
there are little or no literature references.

In Section 1.1, we describe the role and evolution of production planning in the industry
and, in Section 1.2, an industrial application in production planning. This industrial appli-
cation will be further analyzed in Chapter 5. Section 1.3 provides a state of the art on the
modeling of lot-sizing problems and on solutions approaches.

1.1 Production planning

1.1.1 Lot-sizing in the industry

Production management problems in the industry usually can be divided into three hierar-
chical levels of decisions:

– Strategic: This level corresponds to long range decision making, which spans over
several years. The strategies to pursue are defined at this level, as well as the most
critical resources to acquire and allocate.

– Tactical: This level corresponds to middle range decision making, which usually ap-
plies on several weeks or months. Based on the capacity allocated at the strategic
level, this is typically at this level that lot-sizing decisions are taken based on customer
orders and demand forecasts. Lot-sizing problems usually consist in determining the
lots to produce for each item and in each period of a planning horizon.
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– Operational: This level corresponds to short range decision making, which is taken
for several hours or days, and can include real time decisions, that are sometimes con-
sidered in a fourth level. The lots decided at the tactical level are typically sequenced
and scheduled at the operational level on the resources of the factory.

Being able to make good decisions at each level is crucial because each level is linked to
the others. Lot-sizing problems are very important in the industry. They are mainly used
for tactical planning in order to make general decisions about the quantities to produce for
multiple items on large time buckets (weeks or months), i.e. periods, in a planning hori-
zon. Lot-sizing problems can also be used on smaller time buckets, i.e. days or even hours.
Lot-sizing problems adapted to the industry need to better model the industrial reality,
with models becoming more and more complex (new constraints and objectives, integration
of other problems, stochastic parameters, ...). Usually industrial problems are solved on a
rolling horizon, meaning that, in order to fix the production plan for the next period, de-
cisions over a longer planning horizon are optimized. Demands are approximated, and the
longer the planning horizon the riskier it is to approximate future demands. A review of
lot-sizing in the industry can be found in Jans and Degraeve (2008). We can also cite Voß
and Woodruff (2006) for a review of optimization models for production planning problems.
Production planning problems often combine a lot-sizing problem with a scheduling prob-
lem to sequence the productions (Elmaghraby (1978), Dauzère-Pérès and Lasserre (2002),
Seeanner and Meyr (2013)). The main feature of a lot-sizing problem is that the time is di-
vided into discrete periods, while in practice the schedule occurs in continuous time (Dobson
(1987), Holmbom and Segerstedt (2014)).

1.1.2 Production planning at DecisionBrain

DecisionBrain 1 is a software company that specializes in providing optimization solutions
primarily in the fields of production planning and workforce management. DecisionBrain is
an IBM business partner and thus often uses in its solutions the IBM’s Mixed Integer Pro-
gramming solver CPLEX and Constraint Programming solver CPO. The range of problems
varies from routing problems to scheduling problems to very complex multi-level lot-sizing
problems. DecisionBrain develops an optimization engine (called the Planning Engine) that
uses IBM ILOG CPLEX and that aims at solving a large variety of lot-sizing problems.
In this section, we give insights on issues that might occur when trying to solve industrial
problems.

Complex constraints

The constraints that are modeled in industrial lot-sizing problems are more complex than
the problems that are usually studied in the academic literature. An industrial problem
oftentimes has specific rules. For instance, many industrial problems have multiple levels
or bounds on the production and inventory quantities. The planning engine developed by
DecisionBrain can handle several types of lot-sizing problems such as multi-level problems
with parallel machines, bounds on the decision variables.

Some of the constraints that are modeled in the Planning Engine have been studied in the
literature. For instance, in the Planning Engine, demands have time windows to be satisfied
instead of being defined per period (Lee et al. (2001), Dauzère-Pérès et al. (2002)). Another

1https://www.decisionbrain.com/
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feature concerns the perishability of items that cannot remain in the inventory for more than
a given number of periods (Friedman and Hoch (1978)). It is also possible to model lead
times, meaning that a production for an item will not be available in the inventory before
a given number of periods (Billington et al. (1986), Berretta et al. (2005), Almeder et al.
(2015)). Other features implemented in the engine have not been extensively studied in the
literature, such as a minimum production quantity that spans over several periods.

Because industrial problems come from many different sectors with different planning
horizons and period lengths, it is a challenging task to develop a generic solver for lot-sizing
problems. Some constraints of problems faced at DecisionBrain also model the link between
production planning and other types of problem, such as routing or scheduling problems.
These constraints are modeled in the Planning Engine. For instance it is possible to model
transfer processes to move inventory from one location to another.

Integrating lot-sizing and scheduling problems

Decisions taken after solving a lot-sizing problem are aggregated, meaning that for each
period only the production quantities are known and not the sequence of the related produc-
tion operations. Many production management problems combine both a lot-sizing problem
(tactical) and a scheduling problem (operational). Once the quantities to produce have been
decided, the best production sequence that satisfies the operational constraints in continu-
ous time needs to be found. There can be a decoupling between lot-sizing and scheduling
decisions. For instance, in a two-level production planning problem where an intermediate
product needs to be processed on one machine to execute another item on another machine,
then the production sequence is very important because the decisions taken after solving
the lot-sizing problem may lead to an infeasible schedule. Another example is the dynamic
evolution of the inventory within each period. If the inventory has a maximum (or mini-
mum) level, the classical lot-sizing constraints only ensure that the maximum (or minimum)
inventory level is satisfied at the very beginning and at the very end of each period. If a
period has a duration of one month and the demand only occurs in a single day, the exact
time of the production within the period can affect the feasibility of the production plan.
The combination of lot-sizing and scheduling decisions has been extensively studied in the
literature and models with small time buckets were defined, such as the Discrete Lot-Sizing
and Scheduling Problem (Fleischmann (1990)), where at most one item is produced at each
period and this production has to last for the entire period. The Continuous Setup Lot-
Sizing Problem (Karmarkar et al. (1987)) is similar but the production does not have to last
for the entire period. Some lot-sizing problems mix big and small buckets models such as
the General Lot-Sizing and scheduling problem (Fleischmann and Meyr (1997), Copil et al.
(2017)) where macro and micro-periods are defined such that each macro-period is composed
of a set of micro-periods and at most one setup can occur for each micro-period. There is
still progress to be made, especially in developing heuristics to quickly find good solutions
for very large instances. Small time bucket models often lead to a higher number of decision
variables because periods are usually smaller. A survey on the combination of lot-sizing and
scheduling can be found in Drexl and Kimms (1997).

Complex structure and instance size

An additional complexity of industrial instances is the size of the problem instances that need
to be solved. Industrial instances can have thousands of demands for hundreds of items. By
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comparison, the literature instances proposed by Trigeiro et al. (1989) and often used to
benchmark solution approaches to solve the capacitated lot-sizing problem with setup times
have at most 30 items. In most industrial production planning problems, items are produced
by a set of machines with limited capacity, thus decisions must be taken not only on the
quantities to produce but also on the capacity allocation on each machine. Oftentimes,
the final demands concern end items that require several production steps, requiring the
production of intermediate items at each step.

1.2 Industrial application: Spare part manufacturer

The industrial application introduced in this section concerns a manufacturer of automobile
spare parts. This example will be used in Chapter 5 to adapt the parallelized relax-and-fix
heuristic proposed in Chapter 4 to more generic lot-sizing problems. The finished products
are spare parts that are first produced and painted, and then assembled by customer. Thus,
for the manufacturer, the demands are on the painted spare parts. The manufacturing
process is performed sequentially as follows:

1. A first workshop produces the spare parts using molds to obtain the correct shapes.

2. A second workshop paints the spare parts coming from the first workshop in order to
satisfy the demands for the finished products.

Figure 1.1: Painting spare parts 2

The two workshops being linked, decisions taken at the first workshop deeply affect the
quality of the decisions in the second workshop. Indeed, the painting line schedule highly
depends on the available inventory of non-painted spare parts. Yet, the available inventory
at each period is a consequence of the decisions taken for the whole production line. The
decisions of the second workshop also affect the decisions in the first workshop because the
demands for non-painted spare parts are deduced from the forecasted schedule of the painting
line. The planning problem in the first workshop has been modeled as a lot-sizing problem.
The problem is solved using the Planning Engine of DecisionBrain. Because the schedule
of the painting line needs to be synchronized with the production decisions on the first

2Attribution: RoboGuru, CC BY-SA 3.0, via Wikimedia Commons
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workshop, demands for non-painted spare parts are defined every hour. The time buckets
are small (two hours) to match the demands. The planning horizon is set to one day and
about one hundred different spare parts need to be produced.

Inventory management and constraints are critical in this problem, which was one of the
motivations to tackle this problem in this thesis. The problem includes many complex key
features of lot-sizing problems. The spare parts are produced on a set of parallel machines.
Each machine needs to use a specific mold to produce each spare part, and a mold can be
shared by several machines. Inventory constraints are considered to limit the inventory of
non-painted spare parts.

Because the periods are short and the setup times are a large fraction of the period
length, the production of one spare part usually lasts for more than one period. To model
this, the lot-sizing model allows what are called setup carry-overs, and the minimum order
quantities can exceed the capacity available in a single period. The consideration of the
inventory evolution within periods, which is the topic of Chapter 3 and especially the model
proposed in Section 3.3, is relevant for this type of problems.

1.3 State of the art

In this section, we give a general overview of the literature regarding both the modeling
of lot-sizing problems and the solution approaches proposed to solve these problems. This
state of the art focuses on the problems we are analyzing throughout the manuscript. In
each chapter, a specific literature review related to the problems that are studied in this
work is given in the introduction sections.

1.3.1 Modeling lot-sizing problems

The literature on lot-sizing started as early as the beginning of the 1900’s in the economic
literature with the definition by Harris of the Economic Order Quantity for a single-item lot-
sizing problem with a continuous production evolution (Harris (1913)). We provide in this
section a short review of the modeling of dynamic lot-sizing problems, first for single-item
problems and then for multi-item capacitated problems.

Single-item lot-sizing problems

The single-item uncapacitated lot-sizing problem was first introduced by Wagner and Whitin
in the late 1950’ (Wagner and Whitin (1958)). This problem is polynomial and can be solved
using dynamic programming. It is a guideline for many lot-sizing problems, yet it is among
the few lot-sizing problems that can be polynomially solved. A survey on single-item lot-
sizing problems can be found in Brahimi, Dauzère-Pérès, Najid and Nordli (2006) and was
updated in Brahimi et al. (2017). The problem is an uncapacitated single-item lot-sizing
problem where production, inventory and setup decisions need to be taken over a planning
horizon of T periods to meet the demand of a single item at each period. In this manuscript,
as it is most often the case in lot-sizing papers, we assume that the costs are linear. Each
period t ∈ J1, T K induces a fixed setup cost ft if there is production in t, a variable processing
cost per unit pt and a holding cost per unit ht.

Let us define for each t ∈ J1, T K the decision variables as follows:
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Xt ≥ 0: Quantity produced at period t,
Yt ∈ {0, 1}: Setup variable equals to 1 if there is an order at period t, and 0
otherwise,
It ≥ 0: Inventory at the end of period t.

The formulation of the single-item uncapacitated lot-sizing problem is given below:

min
T∑
t=1

(ftYt + ptXt + htIt) (1.1)

It−1 +Xt = dt + It, ∀t ∈ 1, . . . , T (1.2)
Xt ≤MtYt, ∀t ∈ 1, . . . , T (1.3)
Yt ∈ {0, 1}, ∀t ∈ 1, . . . , T (1.4)
Xt, It ≥ 0, ∀t ∈ 1, . . . , T (1.5)

The objective function (1.1) minimizes the total production, setup and inventory costs
over the planning horizon. Constraints (1.2) are the flow conservation constraints that bal-
ance the inventory at period t−1 and the production quantities at period t with the inventory
and the demand at period t. Constraints (1.3) link the continuous production variables with
the binary setup variables, Mt being an upper bound on the optimal production quantity
(for instanceMt =

∑T
k=t dk)). Constraints (1.4) and (1.5) define the domain of the variables.

Because periods are defined by discretizing time and thus have fixed durations, a natural
extension to this problem is to limit the production at each period. A maximum capacity
cmaxt can be consumed by production at each period t (Florian and Klein (1971)).

Xt ≤ cmaxt , ∀t ∈ 1, . . . , T (1.6)

Constraints (1.6) can then be extended by adding a fixed processing time st and a pro-
cessing time per unit bt in period t. The capacity consumed in each period by both the fixed
and the variable processing times must not exceed the maximum capacity.

stYt + btXt ≤ cmaxt , ∀t ∈ 1, . . . , T (1.7)

Constraints (1.7) ensure that the capacity consumed by setup and production times does
not exceed the maximum production capacity cmaxt .

In case the capacity at a given period is not sufficient to satisfy all the demands, lost
sales can be considered to allow some of the demands not to be fulfilled (Sandbothe and
Thompson (1990), Aksen et al. (2003), Absi and Kedad-Sidhoum (2009)). Let us introduce
the variable Lt that corresponds to the number of unsatisfied units of demand dt, and the
parameter lt that represents the unit lost sales cost. The formulation of the single-item
lot-sizing problem with lost sales is given below:

min
T∑
t=1

(ftYt + ptXt + htIt + ltLt) (1.8)

It−1 +Xt + Lt = dt + It, ∀t ∈ 1, . . . , T (1.9)
Lt ≤ dt, ∀t ∈ 1, . . . , T (1.10)
Lt ≥ 0, ∀t ∈ 1, . . . , T (1.11)
(1.3), (1.4), (1.5)
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Lost sales costs are added to the objective function (1.8). The material flow constraints
(1.9) are modified to consider only the satisfied demand at each period that is dt − Lt.
Constraints (1.10) bound the number of lost sales by the demand at each period.

This problem was then extended to the possibility for some demands to be backlogged,
hence not satisfied at the period they occur but later on the planning horizon (Zangwill
(1966), Millar and Yang (1994)). Let us introduce the variable Bt that corresponds to the
number of units of demand that are backlogged at the end of period t, and the parameter bt
that represents the unit backlog cost. The formulation of the single-item lot-sizing problem
with backlogs is given below:

min
T∑
t=1

(ftYt + ptXt + htIt + btBt) (1.12)

It−1 +Bt +Xt = dt + It +Bt−1, ∀t ∈ 1, . . . , T (1.13)

Xt ≤ (
T∑
t=1

dt)Yt, ∀t ∈ 1, . . . , T (1.14)

Bt ≥ 0, ∀t ∈ 1, . . . , T (1.15)
(1.4), (1.5)

Backlog costs are added to the objective function (1.12). The material flow constraints
(1.13) are modified to consider only the satisfied demand at period t or the previous demands
that were backlogged. The satisfied demand at t, taking into account the previous backlog,
is dt −Bt +Bt−1.

Multi-item lot-sizing problems

Throughout the years, lot-sizing problems have become more and more complex because of
the need to model industrial constraints as precisely as possible.

In the 1980’s, the single-item lot-sizing problem was extended to take into account the
production of multiple items, which is a more realistic representation of industrial problems.
In the single machine problem, the decisions on the production quantities of N items are
interrelated because the machine is shared by all the items. Let us extend the production,
inventory and setup variables by adding an index i ∈ J1, NK that corresponds to item i. Let
us define a fixed processing time sit and a variable processing time bit for each item i ∈ J1, NK
at each period t ∈ J1, T K.

N∑
i=1

sitYit + bitXit ≤ cmaxt , ∀t ∈ 1, . . . , T (1.16)

Multi-item capacitated lot-sizing problems are more complex and harder to solve than
single-item uncapacitated lot-sizing problems. For the capacitated lot-sizing problem with
setup times, even the feasibility problem is np-complete (Trigeiro et al. (1989)). The ca-
pacitated lot-sizing problem with setup times (CLSP) has been extensively studied in the
literature (Manne (1958), Bitran and Matsuo (1986), Barany et al. (1984)) and remains a
very active field of study.

Additional constraints on the production quantities can be considered. Indeed, in some
cases, a production might only be possible or beneficial if the quantity produced exceeds a
given quantity. This can be because of hard constraints (for instance production in batches),
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or because it is not profitable to setup a machine for small production quantities, even if it
leads to the best solution when only relying on the costs and on the capacity constraints.
To that intent, many articles study the CLSP with a Minimum Order Quantity (Anderson
and Cheah (1993), Hellion et al. (2012), Park and Klabjan (2015)). Let us introduce qminit ,
the minimum production quantity for item i at period t.

Xit ≥ qminit Yit, ∀t ∈ 1, . . . , T,∀i ∈ 1, . . . , N (1.17)

Inventory management can also be important to take into account when solving a lot-
sizing problem (Liu and Tu (2008)). It might correspond to a guideline as to how the
production is supposed to be shaped (lean manufacturing, Time Between Order, ...). It can
also take the form of hard inventory constraints (Love (1973), Gutiérrez et al. (2003), Liu
(2008)) that come from warehouse capacities or minimum inventory quantities to provide
robustness to the production plan. Soft constraints are also considered, mainly in the form
of safety stocks (Absi and Kedad-Sidhoum (2009)), which are also used to provide robustness
to the production plan, penalizing the inventory below a certain level. However, safety stocks
are less restrictive than minimum inventory levels. If Iit (resp. Iit) denotes the minimum
(resp. maximum) inventory level for each item at each period, we have:

Iit ≥ Iit, ∀t ∈ 1, . . . , T,∀i ∈ 1, . . . , N (1.18)

Iit ≤ Iit, ∀t ∈ 1, . . . , T,∀i ∈ 1, . . . , N (1.19)

Because it is not realistic to consider a problem with only a single machine producing
all items, a natural extension to the lot-sizing problem is to consider multiple machines that
can perform operations in parallel. Each item can be produced by a subset of machines.
A dimension is added to single-machine lot-sizing problems, where not only the quantities
produced at each period must be optimized, but also the distribution of the production
quantities between machines (Fiorotto et al. (2015)). Because of uncertainties in the exact
period demands are collected, models with different modeling of the demands are considered.
For instance, the lot-sizing problem with time windows considers that each demand needs to
be fulfilled within a specific period interval (Lee et al. (2001)). Time windows have also be
defined for production quantities in Dauzère-Pérès et al. (2002) and Brahimi, Dauzère-Pérès
and Najid (2006). Both types of time windows are considered in Absi et al. (2011).

Recently, the focus has been on the study of lot-sizing problems with more than one level
which have many applications. For instance, the production of one item can require an inter-
mediate item (Maes et al. (1991), Stadtler (2003), Helber and Sahling (2010)). Several other
industrial aspects that go beyond the scope of this thesis have been modeled as lot-sizing
problems. A thorough review of lot-sizing models to solve production planning problems can
be found in Díaz-Madroñero et al. (2014).

1.3.2 Solution approaches

Several directions can be taken when designing approaches to solve a lot-sizing problem. As
the problems become more and more complex and the size of the instances to solve grows,
the need to find solution approaches that can apply to lot-sizing problems with complex
constraints and provide good solutions becomes critical.
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Solution approaches for uncapacitated lot-sizing problems

For some lot-sizing problems, dynamic programming methods can be implemented using
the structural properties an optimal solutions. For the uncapacitated single-item lot-sizing
problem for instance, Wagner and Whitin proved in the late 50’s the so-called zero-inventory
property and developed an algorithm to solve this problem using dynamic programming
(Wagner and Whitin (1958)) in O(T 2) under concavity assumptions on the costs. This
complexity was later improved to O(T log T ) (Federgruen and Tzur (1991), Wagelmans et al.
(1992)). Heuristics were also proposed, such as the simple one in Silver and Meal (1973)
based on a linear forward method that computes the average cost per period.

The single-item uncapacitated problem with lost sales can be solved in O(T 2) (Aksen
et al. (2003)). The uncapacitated problem with backlogs was proven to be polynomially
solvable in O(T 3) when costs are concave (Zangwill (1966)). The same author later showed
that the problem can be solved in O(T 2) with linear production and setup costs (Zangwill
(1969)). Aggarwal and Park (1993) extended this result to the problem with concave costs.
Other extensions of this problem were proven to be polynomial, such as the single-item lot-
sizing problem with minimum order quantities (Hellion et al. (2012), Okhrin and Richter
(2011)) or with inventory bounds (Love (1973), Atamtürk and Küçükyavuz (2008)). All of
these problems were solved using dynamic programming. These problems have the similar
property that they can be decomposed based on discrete optimal values for some of the
decision variables.

Solution approaches for capacitated lot-sizing problems

Most capacitated lot-sizing problems are np-hard, except when strong assumptions are made
on the nature of the costs (Florian et al. (1980), Bitran and Yanasse (1982)). For instance,
in Florian and Klein (1971) the authors prove that the single-item capacitated lot-sizing
problem is polynomial under static assumptions on the capacity and concavity assumptions
on the costs. Without setup times, the feasibility problem for the multi-item capacitated lot-
sizing problem is polynomial and specific heuristics can be defined to find feasible solutions
(Dixon and Silver (1981)). Various approaches were introduced and studied to solve lot-sizing
problems with capacity constraints.

A first approach consists in relaxing the integrality constraints of some of the boolean
variables to fasten the optimization process. A feasible production plan can be found by
solving different subproblems and sometimes performing a reconstruction heuristic (Chen
and Thizy (1990), Helber and Sahling (2010), Maes et al. (1991), Federgruen et al. (2007),
Absi and Kedad-Sidhoum (2007)). In Pochet and Van Vyve (2004), the authors compare
different approaches based on linear relaxations of a production planning problem, including
the relax-and-fix algorithm (Absi and Kedad-Sidhoum (2007)), an iterative heuristic that
consists in performing iterative linear relaxations of the binary decision variables. The
authors show that this heuristic can perform the best for specific types of instances.

Another approach consists in using a Lagrangian relaxation based heuristic where some
of the complex constraints are relaxed, enabling the decomposition of the problem into
subproblems oftentimes polynomial and that can be solved in parallel. This method has
been extensively used in the literature to find good solutions for the CLSP (Thizy and
Van Wassenhove (1985)), also with the addition of setup times (Süral et al. (2009), Diaby
et al. (1992), Absi et al. (2013), Millar and Yang (1994)). Usually for capacitated lot-
sizing problems, the capacity constraints are relaxed because they are often the only linking
constraints between the different items. For instance, the relaxed problem for the CLSP with

05/03 EMSE-CMP Page 13



CHAPTER 1. INDUSTRIAL CONTEXT AND A SHORT STATE OF THE ART

setup times becomes separable into single-item uncapacitated lot-sizing problems that can
be solved polynomially using dynamic programs (Trigeiro et al. (1989)). Approaches based
on a Lagrangian decomposition can also be used to solve capacitated lot-sizing problems.
These methods consist in duplicating some of the variables and then relaxing the linking
constraints to decompose the initial problem into two distinct easier to solve problems. For
instance, in Millar and Yang (1994), the authors decompose the CLSP with backlogs into a
transportation problem and an uncapacitated multi-item lot-sizing problem.

Approaches using column generation are also used to solve capacitated lot-sizing problems
(Jans and Degraeve (2004)). Column generation methods can be embedded in a branch-
and-price algorithm to develop an exact approach ( Degraeve and Jans (2007)). Branching
approaches can also be tightened by the addition of valid inequalities such as the (l, S)
inequalities (Barany et al. (1984)) that are used to tighten the lp-relaxation of the CLSP.
We can also cite Miller et al. (2000) that define valid inequalities for the CLSP with setup
times or Absi and Kedad-Sidhoum (2008) that also take into account lost sales. Tighter
lp-relaxation can also be found by considering reformulations of the problems, as in Eppen
and Martin (1987) for the CLSP by introducing the shortest path formulation or in Denizel
and Süral (2006) for the CLSP with setup times.

Many heuristics combine different approaches (Muller et al. (2012), Fiorotto et al. (2015)).
A review of solution approaches for solving dynamic lot-sizing problems can be found in
Jans and Degraeve (2007) and for capacitated lot-sizing problems in Maes and Wassenhove
(1988) (or more recently in Buschkühl et al. (2010)). An overview of complex characteristics
in capacitated lot-sizing problems can be found in Karimi et al. (2003).

1.4 Conclusion

In this section, we have shown that lot-sizing problems are relevant in the industry and are
still actively studied in the literature. Capacitated lot-sizing problems especially have many
industrial applications, which explains why these problems have been studied during the
last decades. In this thesis, we focus on the CLSP with setup times and extend the classical
models in order to make them more relevant for industrial applications. We also develop
solution approaches to solve the considered problems introduced in the following chapters.
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Chapter 2

Capacitated lot-sizing problem with min-
imum and maximum ending invento-
ries and setup times

In this chapter, we propose a way to mitigate the end-of-horizon effect by adding to the CLSP
with setup times and lost sales (Absi and Kedad-Sidhoum (2007, 2008)) both a maximum
ending inventory per item and a global minimum ending inventory at the end of the horizon.
From the generation scheme of Trigeiro et al. (1989) (still used as a benchmark for capacitated
lot-sizing problems, see e.g. Absi and Kedad-Sidhoum (2007) and de Araujo et al. (2015)),
we propose a new framework to create instances for this new lot-sizing problem where the
end-of-horizon effect is avoided, and that are relevant when solving lot-sizing problems on a
rolling horizon where the available information on future demands can be used.

The chapter is organized as follows. Section 2.1 positions our work in the current liter-
ature on the subject. Section 2.2 motivates the need to mitigate the end-of-horizon effect
by the addition of maximum ending inventory levels as well as a global minimum ending
inventory when solving a CLSP with setup times and lost sales. In Section 2.3, an analysis
of optimal solutions in a capacitated cyclical configuration is performed in order to evaluate
relevant inventory levels on a rolling horizon, in a way similar to the definition of the Time
Between Order (Harris (1913)) but taking the capacity into account. Section 2.4 addresses
some extensions of the CLSP for which the same analysis can be applied. In Section 2.5,
an extension of the CLSP with setup times, lost sales and global minimum ending inventory
for all items is introduced. A new generation scheme which extends the one of Trigeiro
et al. (1989) to create more relevant instances is then proposed. A computational analysis
is carried out in Section 2.6 to compare the solutions obtained by solving the original and
the new instances, and the effect of planning on a rolling horizon. Some conclusions and
perspectives can be found in Section 2.7.



CHAPTER 2. CAPACITATED LOT-SIZING PROBLEM WITH MINIMUM AND
MAXIMUM ENDING INVENTORIES AND SETUP TIMES

2.1 Related works

Throughout the years, the focus is increasingly on finding ways to model industrial problems
as close to the reality as possible (Jans and Degraeve (2008)). Additional constraints in
single-item lot-sizing problems have been extensively considered (Brahimi et al. (2017)).
Although some dynamic lot-sizing problems are polynomial, the first one being studied in
Wagner and Whitin (1958), they are generally np-hard, and many heuristics have been
proposed in the literature to find good feasible solutions for single-item and multi-item
problems. Lagrangian relaxation approaches (see e.g. Brahimi, Dauzère-Pérès and Najid
(2006) and Süral et al. (2009)) and partial lp-relaxation approaches (see e.g. Absi and
Kedad-Sidhoum (2007) and Helber and Sahling (2010)) are two of the most popular methods.

To model the fact that, in many industrial contexts, starting a new product incurs a fixed
time to configure the resource, Trigeiro et al. (1989) consider the notion of setup times in the
multi-item CLSP. Usually industrial lot-sizing problems are solved on a rolling horizon. In
this context, only the decisions for the immediate periods are implemented, after which the
horizon is rolled forward and the model is applied once more with updated inventory, demand
and capacity parameters. Using this approach enables for each period to be optimized several
times and updated according to new information on future demands. However, because each
optimization problem only considers a finite time horizon, an end-of-horizon effect can occur.
As described in Fisher et al. (2001), most lot-sizing problems have in common that there
exists a solution with a zero-ending-inventory policy, meaning that there is no inventory at
the end of the time horizon. The fact that the ending inventory is null for an optimal solution
raises some issues, and can affect the production plan during the first periods in such a way
that the quality of the solution decreases over time. Stadtler (2000), Fisher et al. (2001),
van den Heuvel and Wagelmans (2005) propose ways to either define an adequate length of
the time horizon or modify the objective function in order to cope with this end-of-horizon
effect. However, they only consider single-item uncapacitated lot-sizing problems, and thus
deduce inventory valuations based only on the cost, using indicators such as the Economic
Order Quantity (Harris (1913)). In addition, the proposed approaches do not apply to
capacitated lot-sizing problems since capacity is not taken into account when evaluating the
ending inventory. These methods do not apply to the CLSP because they assume the Zero
Inventory Ordering (ZIO) property (Wagner and Whitin (1958)) and extend the dynamic
programming algorithm proposed by Wagner and Whitin (WW). However the CLSP does
not have the ZIO property, so an update on the cost coefficients when solving the problem
using the WW algorithm as proposed by Stadtler (2000) and van den Heuvel and Wagelmans
(2005) cannot be used to determine the ending inventory of a multi-item capacitated problem.
In such problems, the obtained solutions will not respect the capacity constraints. We also
quote the work of Fisher et al. (2001) that provides a valuation for the ending inventory
in the objective function, however this cost is not linear and cannot be solved by a linear
solver. Studying the impact of the end-of-horizon effect on a multi-item capacitated lot-sizing
problem with setup times cannot be neglected. Yet, in the literature, the ending-horizon
effect on the CLSP is very rarely considered. As illustrated in Section 2.2, independently
of the number of periods of the planning horizon, the decisions in the first periods might
be impacted by the zero-ending-inventory property. To the best of our knowledge, this
phenomenon has never been studied in the literature. Clark and Clark (2000) consider a
rolling horizon setting for a capacitated lot-sizing problem with multiple machines and setup
carry-over and propose a new model that modifies production times according to the average
demand in order to get better lp-relaxations. Similarly to our approach, their model also
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takes into account a number of setups per period but the setting of this parameter is left
to the user and depends neither on the costs nor on the capacity at each period. Moreover,
they do not consider additional inventory constraints. Campbell and Mabert (1991) justify
the fact that cyclical schedules are often preferred in practice, mainly because they can be
efficiently implemented. They also point out that cyclical schedules provide good results on
average when solving capacitated lot-sizing problems. They impose a cyclical CLSP where
cycle lengths are picked among a set of discrete values based on the Time Between Order
(TBO) for each item. This point is also emphasized in Bahl and Ritzman (1984). However
in this chapter, cycle lengths are not predefined, setup times are considered in the TBO
calculation, and we use a cyclical subproblem to define relevant inventory indicators. The
numerical results in Campbell and Mabert (1991) show that cyclical schedules are especially
relevant for small demand variability, which is consistent with our computational results.
Campbell and Mabert (1991) also point out that tighter capacity constraints provide larger
gaps between the costs obtained by solving a cyclical problem and a non-cyclical problem.
However, this can be caused by the fact that, when considering the set of cycle lengths,
capacity is not taken into account in Campbell and Mabert (1991). In our approach, the
theoretical cycle lengths also take capacity into account, adjusting the cycle length for each
item accordingly.

In Chand et al. (2002), the authors point out the importance and the impact of the
length of the time horizon on the solution quality. As pointed out by Carlson et al. (1979),
to reduce the nervousness of a Material Requirement Planning problem (MRP), we ideally
want to minimize the changes in the production plan for practical reasons when we add a
period on a rolling horizon. Yet, the added information on the new demand might change
the optimal order of setups. Federgruen and Tzur (1994) extend the notion of nervous-
ness in MRP (Carlson et al. (1979)) and propose an algorithm to find a minimum forecast
horizon that is sufficient to not affect the decisions taken over a planning horizon for the
uncapacitated single-item lot-sizing problem (ULSP). Their numerical results show that the
minimum forecast horizon varies a lot depending on the parameters, but can be quite large
for static costs. Moreover, finding a minimal forecast horizon is a problem that is of the
same complexity as the ULSP. This importance is even greater when there are setup times
and when the capacity is tight. In this case, there is no guarantee that all demands can be
satisfied, and lost sales should be allowed and penalized. A common belief among researchers
in the field is that extending the planning horizon is enough to ensure that decisions in the
first periods are not impacted by the end-of-horizon effect. We show in this chapter that
this belief is not true for the the CLSP with setup times, and that allowing zero ending
inventories might lead to poor decisions on arbitrarily large planning horizons, in particular
when planning on a rolling horizon as it is the case in practice.

2.2 Motivations

Section 2.2.1 recalls the multi-item CLSP model with setup times and lost sales. Section 2.2.2
illustrates the impact of a global ending inventory, and Section 2.2.3 shows how the end-
of-horizon effect can affect decisions taken in the first periods when planning on a rolling
horizon, and thus the limits of the model and the instances of Trigeiro et al. (1989). Sec-
tion 2.2.4 focuses on the impact of initial inventories.
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2.2.1 Problem formulation

Let us consider the capacitated lot-sizing problem with setup times and lost sales, where N
items have to be produced over a planning horizon of T periods. The discrete demand of
each item i is given by dit at period t. Each unit of item i produced at period t induces a
production time bit as well as a fixed setup time sit. We aim at finding an optimal production
plan, i.e. a production plan complying with the capacity restriction cmaxt for each period t
while minimizing the total cost. This cost comprises the fixed and unitary production costs
to be incurred each time a production takes place, the inventory holding costs for all the
items as well as the lost sales costs penalizing the unsatisfied demand. The cost parameters
are the unitary production pit, fixed setup fit and unitary inventory holding hit costs for
item i at period t. The lost sales costs penalizing each unit of unsatisfied demand of item
i at period t are defined by lit. Let us recall the mathematical formulation of the problem
that can be found in Trigeiro et al. (1989) (without lost sales) and Absi and Kedad-Sidhoum
(2008).

Let us define the decision variables as follows:

Xit ≥ 0: Quantity of item i produced at period t,
Yit ∈ {0, 1}: Setup variable equals to 1 if there is an order for item i at period t,
and 0 otherwise,
Iit ≥ 0: Inventory of item i at the end of period t,
Lit ≥ 0: Quantity of lost sales for item i at the end of period t.

We extend the definition of Iit with t = 0 to model the initial inventory of item i. More-
over, we use .̄ to define the average value of a parameter over all items and all periods, e.g.
f̄ = 1

NT

∑N
i=1

∑T
t=1 fit.

The formulation of the CLSP with setup times and lost sales, denoted (PT ), is given
below:

min
N∑
i=1

T∑
t=1

(fitYit + pitXit + hitIit + litLit) (2.1)

Ii,t−1 +Xit + Lit = dit + Iit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (2.2)
N∑
i=1

(sitYit + bitXit) ≤ cmaxt , ∀t ∈ 1, . . . , T (2.3)

Xit ≤MitYit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (2.4)
Lit ≤ dit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (2.5)
Yit ∈ {0, 1}, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (2.6)
Xit, Iit, Lit ≥ 0, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (2.7)

The objective function (2.1) minimizes the total production, setup, inventory and lost
sales costs of all items over the planning horizon. Constraints (2.2) are the flow conservation
constraints that balance, for each item, the inventory at period t − 1 and the production
and lost sales quantities at period t with the inventory and the demand at period t. Con-
straints (2.3) ensure that the capacity consumed by setup and production times does not
exceed the maximum production capacity. Constraints (2.4) link the continuous production
variables with the binary setup variables, Mit being an upper bound on the optimal produc-
tion quantity (e.g. Mit = min(

∑T
k=t dik, c

max
t −sit)). Constraints (2.5) state that the quantity
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of lost sales cannot exceed the demand. Constraints (2.6) and (2.7) define the domain of the
variables.

As in Trigeiro et al. (1989), we only consider the case where there are no production
costs, and where the cost parameters are constant over the horizon. Thus, the index t is
removed in the cost parameters.

2.2.2 Impact of global ending inventory

In this section, through an illustrative example, we show that the end-of-horizon effect can
affect the capacity consumption in the first periods even for large horizons. On a rolling
horizon, as discussed in Section 2.2.3, this can lead to significant lost sales. The example
shows that the addition of a global ending inventory can mitigate the end-of-horizon effect.

To illustrate the impact on the first periods of a production plan of considering an ending
inventory, let us consider the optimal solution of an instance of the problem with 2 items,
i.e. N = 2, and 20 periods, i.e. T = 20. The demand is constant over time and is set to
100, and the holding costs, unitary production times and setup times are set to 1. No setup
and production costs are considered and lost sales costs are set to a very high value. The
available capacity is cmax = 201 in each period. In addition, the initial inventory I1,0 is set
to 100 for the first item.

Figure 2.1a (resp. 2.1b) shows the optimal solution obtained without (resp. with) a
global minimum ending inventory set to 100 (using the method proposed in Section 2.5.2),
while Figure 2.1c shows the optimal solution for the first 20 periods when solving the problem
with T = 101 and Figure 2.1d for T = 200.

(a) Without ending inventory, T = 20 (b) With ending inventory, T = 20

(c) Without ending inventory, T = 101 (d) Without ending inventory, T = 200

Figure 2.1: Production quantities in the first 20 periods

The addition of the global ending inventory enables the decisions in the first periods to
match the optimal decisions observed over a very long horizon. Even with T = 20 and only

05/03 EMSE-CMP Page 21



CHAPTER 2. CAPACITATED LOT-SIZING PROBLEM WITH MINIMUM AND
MAXIMUM ENDING INVENTORIES AND SETUP TIMES

two items (Figures 2.1a and 2.1b), not considering inventory constraints at the end of the
horizon directly impacts the decisions taken in the first periods. Without a global ending
inventory, Figure 2.1a shows that the capacity at the end of the horizon is used to add
additional setups at each period. This leads to a poor capacity utilization in the first period,
where only a little over half the capacity is consumed. On the opposite, Figure 2.1b shows
that capacity is better used with the ending inventory constraints. As shown in Figures 2.1c
and 2.1d, the optimal production plan over longer horizon tends to the production plan of
Figure 2.1b.

In order to illustrate the impact of the end-of-horizon effect on an instance with more
than two items, Figure 2.2 shows the optimal plan for an instance of Trigeiro et al. (1989)
with 10 items, where each color corresponds to an item. All the optimal solutions of the
instances of Trigeiro et al. (1989) share the same shape, with small production lots in the
first periods and an under-utilization of the capacity in the last periods of the horizon, as
discussed in more details in Sections 2.2.3 and 2.2.4.

Figure 2.2: Optimal solution for an instance of Trigeiro et al. (1989).

Enough inventories should be available at the end of horizon, in particular on a rolling
horizon, to make better use of production capacity in the first periods. The benefits of
considering ending inventories on a rolling horizon are discussed in the following section.

It should also be pointed out that the number of periods affected by the edge effect
(both the first and last periods of the horizon) can vary depending on the capacity and
cost parameters. The impact of this effect is especially hard to evaluate for the CLSP with
setup times, where regular indicators such as the TBO or the EOQ, used for instance in
Fisher et al. (2001), cannot be applied to capacitated problems. This impact is illustrated
in Section 2.2.3, where even large time horizons cannot cope with the end-of-horizon effect.

2.2.3 Planning on a rolling horizon

In this section, we consider the process of planning on a rolling horizon. Let us denote by
T the number of periods of each planning horizon and by Ω the number of periods of the
total time horizon (T ≤ Ω). τ ≤ T is the number of first periods in which decisions are
fixed after optimizing the production plan. Let us consider an instance of the problem with
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N = 4, T = 10, Ω = 16 and τ = 1. The demand is constant over time and is set to 100.
The holding costs and unitary production times are set to 1. Setup times are fixed to 50.
No setup and production costs are considered. The available capacity is cmax = 450 for each
period of the horizon. An initial inventory of 300 units is considered for each item. Note
that, since no setup costs are considered, the best policy, only guided by the holding costs,
is to have the lowest possible inventory levels. Ideally, no inventory would be carried and
100 units of both items would be produced at each period. However, this production plan is
not feasible because of the limited capacity at each period. In this example, we assume that
lost sales are highly penalized.

(a) Without ending inventory (b) With ending inventory

Figure 2.3: Inventory evolution on a rolling horizon

(a) Without ending inventory (b) With ending inventory

Figure 2.4: Capacity consumption on a rolling horizon

Figure 2.3 (resp. Figure 2.4) shows the inventory levels and lost sales (resp. the ca-
pacity consumption) for this instance on a rolling horizon with or without ending inventory
constraints as proposed in Section 2.5.2. Let us first analyze the two different cases in
Figure 2.3:

– Figure 2.3a shows the inventory levels and lost sales in the first 16 periods when no
ending inventory constraints are considered. Without ending inventory constraints,
the additional capacity provided at the end of the horizon, because of the ZIO policy,
enables the inventory in the first periods of the rolling horizon to be immediately
consumed and not kept to satisfy later demands. At each step of the rolling horizon
process, the initial inventory decreases until it reaches a point where it is no longer
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possible to find a feasible solution without lost sales due to capacity limitations. We
then get a cyclic production plan where 50 units are lost every two iterations.

– Figure 2.3b shows the inventory and lost sales evolution for the same instance with the
addition of a global minimum ending inventory of 600 units and a maximum ending
inventory of 300 units for each item (using the method proposed in Section 2.5.2).
The ending inventory constraints force the capacity to be fully used throughout the
planning horizon, and the decisions of the first periods are not impacted by the unused
capacity at the end of the horizon. We can see that no lost sales are observed in this
case.

When lost sales are not allowed, we get an infeasible production plan when there are no
ending inventory constraints. When lost sales are penalized and not forbidden, because we
have a cyclic production plan after 5 periods (the first 5 periods with a total holding cost of
2550) for the case without ending inventory and 2 periods with ending inventory (the first
2 periods with a total holding cost of 1450), we can calculate the optimal cost over a rolling
horizon of Ω ≥ 5 periods. Assuming unit lost sales costs of l, we get for the problem without
ending inventory (Figure 2.3a) an optimal cost of:

C1 = 2550 + (400 + 50l)bΩ− 5

2
c+ 350dΩ− 5

2
e

and
C2 = 1450 + (Ω− 2)600

for the problem with ending inventory (Figure 2.3b). In this case, for Ω = 100, we get that
C1 ≥ C2 for:

38150 + 2350l ≥ 60250.

Thus, if l ≥ 9.5, the production plan in Figure 2.3b becomes less expensive in terms of
costs than the plan in Figure 2.3a, and the difference increases with l. In many industrial
applications, lost sales costs are the primary objective to optimize. Note that, because of
the symmetrical structure of the costs, there are multiple optimal production plans when
there are no ending inventory constraints.

Let us now analyze the two different cases in Figure 2.4:

– In Figure 2.4a, because there are no ending inventory constraints, more capacity is
allocated to setup times since the initial inventory is used in the first periods, and then
not enough inventory is kept to fully satisfy part of the demands, leading to the lost
sales observed in Figure 2.3a.

– Figure 2.4b shows that ending inventory constraints better allocate setup times through-
out the horizon. This explains why there are no lost sales in Figure 2.3b.

One can consider that the production plan patterns in Figures 2.3b and 2.4b could be
obtained by significantly increasing the number of periods of the planning horizon. How-
ever, this leads to some negative effects. Indeed, the introduction of non accurate demands,
because of the lack of information at the end of the horizon, should impact the quality of
the obtained solutions. Moreover, increasing the number of periods negatively affects the
computational efficiency of solution approaches. As the capacity gets tighter, the number of
periods T that needs to be considered on a rolling horizon increases. In contrast, setting a
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global ending inventory based on future demand predictions on a rolling horizon allows ca-
pacity to be better used. Moreover, contrarily to studies on uncapacitated lot-sizing problems
(e.g. Carlson et al. (1979)), there is no theoretical guarantee that, for capacitated lot-sizing
problems with setup times, there exists a forecast horizon ensuring that the decisions in the
first periods will not be affected by demands outside the planning horizon.

2.2.4 Initial inventories

Figure 2.2 shows that there are 5 setups in the first period while, from periods 2 to 18, the
number of setups oscillates between 2 and 3. Note also that the fraction of the capacity
consumption taken by setup times is larger in the first period than in the following ones.
This is because, when there are neither lost sales nor initial inventory, as it is the case for
the CLSP, a setup will occur for every item before or in the period corresponding to its first
positive demand. The first production periods are not impacted by production and setup
costs, which explain the difference in the number of setups. This leads the optimization
process to focus on packing the first production quantities to meet the demands of the first
periods as well as making full use of the capacity constraints.

The feasibility of the problem highly depends on whether or not the capacity in the
first periods is large enough to cover the demands of the first periods. As the capacity is
constant over the planning horizon, in order to avoid infeasibility for these instances due to
the required capacity for covering the demands during the first periods, 25% of the demands
in the first four periods were set to 0 in the instances generated by Trigeiro et al. (1989). This
choice was arbitrarily made to guarantee feasibility, and has no practical reality. Optimizing
the production quantities in the first production periods, which increases the computational
complexity of the optimization problem, also does not make much sense when planning on
a rolling horizon.

Initial inventories can also have a significant impact on the feasibility of the solution when
planning on a rolling horizon, as the initial inventories are linked to the decisions taken in
the first periods. In order to tackle infeasibility issues, some authors have considered initial
inventories as decision variables, with high penalty costs (Vanderbeck (1998), Degraeve and
Jans (2007), de Araujo et al. (2015))).

2.3 Inventory levels for the capacitated lot-sizing prob-
lem with setup times on a rolling horizon

The main goal of this section is to define new indicators to characterize relevant inventory
levels for the considered capacitated lot-sizing problem on a rolling horizon. To this end,
we use similar arguments that the ones used to define the Time Between Order and the
Economic Order Quantity (Harris (1913)). To do that, we define in Section 2.3.1 a new
problem that enables us to find approximated analytical values whose relevance will be
discussed in the numerical analysis of Section 2.6. We show in Section 2.3.2 that this problem
is relevant compared to the CLSP, and more specifically to the problem with static costs
and the parameters considered in Trigeiro et al. (1989). This simplified model will be used
in Section 2.5.2 to update the instance generation scheme proposed in Trigeiro et al. (1989),
in order to create instances whose optimal plans will not be affected by the end-of-horizon
effect.
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2.3.1 Multi-item cyclical production planning with bounded aver-
age capacity consumption

Let us consider the multi-item lot-sizing problem with setup times that consists in finding
optimal cycle lengths on a rolling horizon. All costs and demands are static. Let us denote
by φi ∈ N∗ the cycle length of an item i, i.e. the number of periods between two production
periods. The production cycle length φ̃ ∈ N∗ is defined as the minimum number of periods,
such that each item has an integer number of cycles, i.e. the least common multiple of the
cycle length of all the items. Additionally, the cycle lengths of each item should be such that
the average capacity consumed in each period of a production cycle should not exceed the
maximum capacity cmax. Figure 2.5 illustrates the item and the production cycle lengths for
an instance with four items and a horizon of ten periods, where φ1 = φ2 = 3, φ3 = φ4 = 2
and φ̃ = 6.

Figure 2.5: Example of cyclical production with 4 items.

The total inventory cost for one cycle of length φi is h̄di
∑φi−1

t=1 t = h̄diφi
φi−1

2
. The total

inventory cost in a production cycle of length φ̃ is then:
N∑
i=1

φ̃

φi
h̄diφi

φi − 1

2
= h̄φ̃

N∑
i=1

di
φi − 1

2
.

The average inventory at each period Ĩ inf , as well as the maximum inventory Isupi for
item i, can be defined as:

Ĩ inf =
N∑
i=1

di
φi − 1

2
, (2.8)

Isupi = (φi − 1)di. (2.9)

Let us denote φ = {φ1, · · · , φN}. The optimization problem denoted (PC), that minimizes
the cost per period in a production cycle φ can be defined as follows:

min
φi∈N∗N

N∑
i=1

fi
φi

+ h̄

N∑
i=1

di
φi − 1

2
(2.10)

s.t.
N∑
i=1

si
φi
≤ cmax −Nb̄d̄ (2.11)

Page 26 EMSE-CMP Mehdi Charles



2.3. INVENTORY LEVELS FOR THE CAPACITATED LOT-SIZING PROBLEM
WITH SETUP TIMES ON A ROLLING HORIZON

The objective function (2.10) minimizes the average setup and inventory costs for a period
of the cycle length. In a cyclical configuration, the average production time per period is
Nb̄d̄, which means that, on average, the capacity available for setup times is cmax − Nb̄d̄.
Constraint (2.11) thus imposes an upper bound on the average number of setups.

2.3.2 Similarities between (PC) and the optimization problem of
Trigeiro et al. (1989)

To consider a problem with data similar to the ones generated in Trigeiro et al. (1989),
average values for costs and demands are set identical for all items. These values correspond
to the average values of the parameters defined in Section 2.2.1, except for the production
costs that are equal to 0 and the lost sales that are not allowed.

The expected number of setups per period ki ∈ R∗+ for item i corresponds to the reciprocal
of the cycle length φi:

1

φi
= ki.

This implies that the average number of setups k ∈ R∗+ in each period of a production cycle
is related to the cycle length of each item:

k =
N∑
i=1

ki =
N∑
i=1

1

φi
.

The optimization problem denoted (P̄C), that minimizes the cost per period in a produc-
tion cycle φ can be derived from problem (PC) and is defined as follows:

min
(k,φi)∈R∗+×N∗

N
f̄k + h̄d̄

N∑
i=1

φi − 1

2
(2.12)

s.t.
N∑
i=1

1

φi
= k (2.13)

k ≤ cmax −Nb̄d̄
s̄

(2.14)

The objective function (2.12) as well as Constraint (2.14) are similar to Constraints (2.10)
and (2.11), where cycle lengths are replaced by the variable corresponding to the average
number of setups. Constraint (2.13) links the number of setups per period with the cycle
length of each item.

The cyclical approximation is a simple but relevant simplification of the model in order
to get a general idea of the behaviour of a solution as it provides insights on the role of
the costs and the capacity. In the Trigeiro et al. (1989) generation scheme, all costs are
static. The costs can vary between items, but they are all generated by doing slight changes
around common average values. Even though the demands are dynamic, they are also
generated around the same common value. In (P̄C), we only require that the average capacity
consumed in each period is lower than cmax. However, compared to the problem addressed
in Trigeiro et al. (1989), the upper bound on the capacity consumption is not set in each
period. However, with N production cycle lengths, we assume that there is one configuration
such that the capacity used in each period is close to the average capacity consumption.
Furthermore, in this chapter, we are only interested in approximating the inventories in
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each period. The idea is not to consider the dynamics of production. Thus, analyzing
the cyclical multi-item problem, where all costs and demands are averaged and where the
average capacity consumption is bounded, should provide enough insights on the shape of an
optimal solution of the problem addressed in Trigeiro et al. (1989) on a rolling horizon. The
relevance of our assumptions is analyzed in the computational experiments of Section 2.6.1.
The study of the continuous relaxation of (P̄C) helps to evaluate the average total inventory
as well as the maximum inventory per item.

2.3.3 Analysis of the continuous relaxation of (P̄C)

When the integrality constraints on variables φi are relaxed in (P̄C), the following non-linear
problem can be derived:

F ∗ = −Nh̄
2
d̄+ min

{k∈R∗+|k≤
cmax−Nd̄b̄

s̄
}

(f̄k +
h̄

2
d̄ min
{φi∈R∗+|

∑N
i=1

1
φi

=k}

N∑
i=1

φi),

as the set {φi ∈ R∗+|
∑N

i=1
1
φi

= k} is non-empty for all k ∈ R∗+.
Let us show that the continuous relaxation of (P̄C) can be analytically solved to opti-

mality. Providing an easy-to compute analytical formula might give insights on the links
between the costs and the capacity for an instance of the problem.

Theorem 1. If cmax−Nd̄b̄
s̄

≥ N
√

h̄
2f̄
, then the optimal solution is reached for k∗ = N

√
h̄d̄
2f̄
,

and the optimal value is: − h̄d̄N
2

+ N
√

2h̄d̄f̄ . Otherwise, F ∗ is reached for k∗ = cmax−Nd̄b̄
s̄

,

and is equal to: h̄d̄N
2

( Ns̄
cmax−Nd̄b̄ − 1) + f̄ (cmax−Nd̄b̄)

s̄
.

Proof. Let us first show that:

min
{φi∈R∗+

N |
∑N
i=1

1
φi

=k}

N∑
i=1

φi =
N2

k

Using the Euclidian norm and its corresponding scalar product, the Cauchy-Schwarz
inequality states that, for φi ∈ R∗+

N :

(
N∑
i=1

√
φi
φi

)2 ≤ (
N∑
i=1

1

φi
)(

N∑
i=1

φi)

Thus, by positivity:
N∑
i=1

φi ≥
N2∑N
i=1

1
φi

So that:

min
{φi∈R∗+

N |
∑N
i=1

1
φi

=k}

N∑
i=1

φi ≥
N2

k

When φi = φ = N
k
, for all i, we have

∑N
i=1

1
φi

= k and
∑N

i=1 φi = N2

k
, and then:

min
{φi∈R∗+

N |
∑N
i=1

1
φi

=k}

N∑
i=1

φi =
N2

k
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The continuous relaxation of (P̄C) is equivalent to:

F ∗ = − h̄d̄N
2

+ min
{k∈R∗+|k≤

cmax−Nd̄b̄
s̄

}
(f̄k +

h̄d̄N2

2k
)

Let us consider the function g(x) = f̄x + h̄d̄N2

2x
on R∗+. This function of x ∈ R∗+ is

decreasing until x∗ = N
√

h̄d̄
2f̄
, and then increasing. Let k∗ denotes the optimal average

number of setups. Since k∗ ≤ cmax−Nb̄d̄
s̄

, we get:

– If cmax−Nd̄b̄
s̄

≥ N
√

h̄d̄
2f̄
, then k∗ = N

√
h̄d̄
2f̄

and F ∗ is equal to: − h̄d̄N
2

+N
√

2h̄d̄f̄ ,

– Otherwise, k∗ = cmax−Nd̄b̄
s̄

, and F ∗ is equal to: h̄d̄N
2

( Ns̄
cmax−Nd̄b̄ − 1) + f̄ (cmax−Nd̄b̄)

s̄
.

Let us introduce kcapa = cmax−Nd̄b̄
s̄

and kcost = N
√

h̄d̄
2f̄
. In a cyclical configuration, the

number of setups k in each period is close to:

k = min(kcost, kcapa) (2.15)

and the cycle length φi is close to N
k
for all items.

If the capacity constraints are not binding, the production cycles follow the time between

order TBO =
√

2 f̄
d̄h̄

for each item. On average, k = kcost items will be produced in each
period, consuming a capacity of N

k
s̄+Nd̄b̄.

By applying the same analysis to the original Trigeiro et al. (1989) instances, we find
that, for some of these instances, kcapa < 1. This would imply that these instances are only
feasible because of the extra capacity freed by the demands randomly set to 0 in the first
periods of the planning horizon. For the other instances, we have kcapa > N , which is not
relevant when the capacity is constrained. Moreover, if the costs are defined such that N

k

is integer, then the optimal solution of the relaxed problem (P̃C) is an optimal solution of
problem (P̄C). Indeed, because of the relaxation of the integrality property of the φ variables
we have:

min
{φ∈R∗+

N |
∑N
i=1

1
φi

=k}

N∑
i=1

φi =
N2

k
≤ min
{φ∈N∗+

N |
∑N
i=1

1
φi

=k}

N∑
i=1

φi.

For φi = N
k
∈ N∗, the value of N2

k
is reached for problem (P̄C).

If the cycle length φi of item i is integer, then we have already established that the
average inventory of item i is equal to d̄φi−1

2
. The maximum inventory is d̄(φi − 1). We

then apply these formulas to deduce the approximate values of the total average and the
maximum inventory for each item. As φi = N

k
, we get the following values:

Ĩ inf = d̄
N∑
i=1

N
k
− 1

2
=
N(N − k)

k

d̄

2
, (2.16)

Isupi = Isup =
N − k
k

d̄. (2.17)

We can define analytical values for Ĩ inf and Isup even when φi = N
k
is not an integer. We

show in Section 2.6.1 that this indicator is effective on a rolling horizon.
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2.3.4 Lost sales costs

We want to study a special case of the cyclical problem defined in Section 2.3.1, where only
a fraction of the demand can be satisfied in each period. Let us denote by γ ∈ [0, 1] the
fraction of the average demand that is satisfied in a cyclical production process, and by l̄ the
average lost sales cost over all items. We want to find sufficient conditions on l̄ in order to
get γ∗ = 1, and thus an optimal solution where all demands are satisfied. We assume that
Nh̄

2l̄+h̄
≤ cmax

s̄
otherwise Formula (2.22) implies that it is optimal to lose all demands (γ∗ = 0).

The mathematical formulation of the problem is given by:

min
(k,φ,γ)∈R∗×N∗N×[0,1]

f̄k + h̄γd
N∑
i=1

φi − 1

2
+N(1− γ)d̄l̄ (2.18)

s.t.
N∑
i=1

1

φi
= k (2.19)

k ≤ cmax −Nb̄γd̄
s̄

(2.20)

which can be rewritten as:

Nd̄l̄ + min
k∈]0, c

max

s̄
]
(f̄k + d̄ min

{γ∈[0,1]|k≤ cmax−Nb̄γd̄
s̄

}
γ[h̄ min

{φ∈N∗N |
∑N
i=1

1
φi

=k}
(
N∑
i=1

φi
2

)−Nl̄ − h̄N

2
])

(2.21)

The continuous relaxation is equivalent to:

Nd̄l̄ + min
k∈]0, c

max

s̄
]
(f̄k +

Nd̄

2
min

{γ∈[0,1]|γ≤ cmax−ks̄
Nb̄d̄

}
γ[h̄(

N

k
− 1)− 2l̄]) (2.22)

If h̄(N
k
− 1) − 2l̄ ≥ 0, i.e k ≤ Nh̄

2l̄+h̄
, then γ∗ = 0. The term Nd̄

2
h̄(N

k
− 1) represents the

average inventory costs per period if all demands are satisfied while the term Nd̄l̄ corresponds
to the cost of losing all demands for a period. For a given cycle with k setups per period,
when the average inventory costs are higher than the lost sales costs, it will always be better
to lose all demands.

When k ≥ Nh̄
2l̄+h̄

, the average inventory costs per period are smaller than the lost sales
costs, we try to satisfy as much of the demands as possible. Otherwise γ∗ = min(1, c

max−ks̄
Nb̄d̄

).

Characterization of optimal solutions

The optimal solution of the problem in Formula (2.22) is denoted by F ls∗. We can divide the
problem into three distinct cases depending on the definition domain of the average number
of setups k:

Case 1. K1 = {k ∈]0, c
max

s̄
]|k ≤ Nh̄

2l̄+h̄
}:

As shown previously γ∗ = 0 and it is optimal to lose all demands:

F ls∗ = Nd̄l̄ + min
k∈K1

f̄k = Nd̄l̄
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Case 2. K2 = {k ∈]0, c
max

s̄
]|k ≥ Nh̄

2l̄+h
and k ≤ cmax−Nb̄d̄

s̄
}:

We have cmax−ks̄
Nb̄d̄

≥ 1 and thus γ∗ = 1. It is optimal to satisfy all demands:

F ls∗ = Nd̄l̄ + min
k∈K2

(f̄k +
Nd̄

2
(h̄(

N

k
− 1)− 2l̄))

F ls∗ = −Nd̄h̄
2

+ min
k∈K2

(f̄k +
N2d̄h̄

2k
) (2.23)

The minimum of F ls∗ is reached for k∗ = N
√

d̄h̄
2f̄

if N
√

d̄h̄
2f̄

is in the definition domain
(which would correspond to a solution guided only by the costs), or k∗ corresponds to
one of the domain bounds.

Case 2.1. Nh̄
2l̄+h
≤ N

√
d̄h̄
2f̄
≤ cmax−Nb̄d̄

s̄
:

We have k∗ = N
√

d̄h̄
2f̄

and then:

F ls∗ = N(

√
2f̄ d̄h̄− d̄h̄

2
)

Case 2.2. N
√

d̄h̄
2f̄
≤ Nh̄

2l̄+h̄
:

F ls∗ is increasing between Nh̄
2l̄+h̄

and cmax−Nb̄d̄
s̄

, so k∗ = Nh̄
2l̄+h̄

and:

F ls∗ = Nd̄h̄(
f̄

d̄(2l̄ + h̄)
+
l̄

h̄
)

It is worth noticing that this case corresponds to a case where the average inven-
tory costs are equal to the lost sales costs, thus all values of γ∗ are equivalent.
This means that the solution where all demands are satisfied is equivalent to the
solution considering all demands as lost sales. We want to avoid this case when
defining relevant lost sales costs.

Case 2.3. N
√

d̄h̄
2f̄
≥ cmax−Nb̄d̄

s̄
:

F ls∗ is decreasing between Nh̄
2l̄+h̄

and cmax−Nb̄d̄
s̄

, so k∗ = cmax−Nb̄d̄
s̄

and then:

F ls∗ =
Nd̄h̄

2
(

Ns̄

cmax −Nb̄d̄
− 1) +

f̄

s̄
(cmax −Nb̄d̄)

Case 3. K3 = {k ∈]0, c
max

s̄
]|k ≥ Nh̄

2l̄+h
and k ≥ cmax−Nb̄d̄

s̄
and k ≤ cmax

s̄
}:

We have cmax−ks̄
Nb̄d̄

≤ 1 and γ∗ = cmax−ks̄
Nb̄d̄

. It can be optimal to satisfy only a fraction of
the demand.

F ls∗ = Nd̄l̄ + min
k∈K3

(f̄k +
(cmax − ks̄)

2b̄
(h̄(

N

k
− 1)− 2l̄))

Let us define f̃ = f̄ + s̄(2l̄+h̄)

2b̄
and h̃ = cmax

Nb̄d̄
h̄.
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F ls∗ = Nd̄l̄ − (2l̄ + h̄)cmax +Nh̄s̄

2b̄
+ min

k∈K3

(f̃k +
N2d̄h̃

2k
) (2.24)

This corresponds to a new cyclical problem with updated setup and inventory costs.
The minimum of F ls∗ is reached for k∗ = N

√
d̄h̃
2f̃

if N
√

d̄h̃
2f̃

is in the definition do-
main (which would correspond to a solution guided only by the updated costs), or k∗
corresponds to one of the domain bounds.

Case 3.1. cmax

s̄
≤ N

√
d̄h̃
2f̃
:

The minimum is reached for k∗ = cmax

s̄
, which corresponds to γ∗ = 0 and none of

the demand is satisfied.

F ls∗ = Nd̄l̄ +
f̄

s̄
cmax

Case 3.2. cmax

s̄
≥ N

√
d̄h̃
2f̃

and Nh̄
2l̄+h̄
≤ cmax−Nb̄d̄

s̄
:

The lower bound of K3 is cmax−Nb̄d̄
s̄

and the minimum of F ls∗ (see Formula (2.24))

is reached in cmax−Nb̄d̄
s̄

or in N
√

d̄h̃
2f̃
.

Case 3.2.1. cmax−Nb̄d̄
s̄

≤ N
√

d̄h̃
2f̃
, we have k∗ = N

√
d̄h̃
2f̃

and γ∗ ≤ 1. It can be optimal to
satisfy only part of the demand, and:

F ls∗ = Nd̄l̄ − (2l̄ + h̄)cmax +Nh̄s̄

2b̄
+N

√
2f̃ h̃d̄

Case 3.2.2. cmax−Nb̄d̄
s̄

≥ N
√

d̄h̃
2f̃
:

We have k∗ = cmax−Nb̄d̄
s̄

and γ∗ = 1. It is optimal to satisfy all demands, and:

F ls∗ =
Nd̄h̄

2
(

Ns̄

cmax −Nb̄d̄
− 1) +

f̄

s̄
(cmax −Nb̄d̄)

Case 3.3. cmax

s̄
≥ N

√
d̄h̃
2f̃

and cmax−Nb̄d̄
s̄

≤ Nh̄
2l̄+h̄

:

Case 3.3.1. Nh̄
2l̄+h̄
≤ N

√
d̄h̃
2f̃
:

We have k∗ = N
√

d̄h̃
2f̃

and γ∗ ≤ 1. It can be optimal to satisfy only part of
the demand, and:

F ls∗ = Ndl̄ − (2l̄ + h̄)cmax +Nh̄s̄

2b̄
+N

√
2f̃ h̃d̄

Case 3.3.2. Nh̄
2l̄+h̄
≥ N

√
d̄h̃
2f̃
:

We have k∗ = Nh̄
2l̄+h̄

and γ∗ ≤ 1 because cmax−Nb̄d̄
s̄

< Nh̄
2l̄+h

. It can be optimal to
satisfy only part of the demand, and:

F ls∗ = N(d̄l̄ +
f̄ h̄

2l̄ + h̄
)
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Definition of relevant lost sales costs

The goal of the section is to propose sufficient conditions to define lost sales costs that
guarantee that the optimal solution does not have a fraction of demand unsatisfied for the
problem defined in Formula (2.22). With regards to the different cases introduced previously,
we want to consider only the cases where γ∗ = 1 is the only optimal value for γ. This means
we want Cases 2.1, 2.3 and 3.2.2 to dominate the other cases.

Sufficient conditions for not having lost sales in an optimal cycle can be set as follows:

1. In order to prevent Case 3.1:
cmax

s̄
≥ N

√
d̄h̃

2f̃

2. In order to prevent Cases 3.1, 3.3 and 3.2.1, we want to define l̄ such that cmax−Nb̄d̄
s̄

≥
N
√

d̄h̃
2f̃

and cmax−Nb̄d̄
s̄

≥ Nh̄
2l̄+h̄

. Both conditions are respected by setting:

l̄ ≥ cmax

(cmax −Nb̄d̄)

Ns̄h̄

2(cmax −Nb̄ ¯̄d)

This condition also implies that cmax

s̄
≥ N

√
d̄h̃
2f̃

and cmax

s̄
≥ Nh̄

2l̄+h̄
.

3. In order to prevent Case 2.2 and to ensure that Case 2.1 is dominated by Case 1, we
want to define l̄ such that N

√
d̄h̄
2f̄
≥ Nh̄

2l̄+h̄
and N(

√
2f̄ d̄h̄− d̄h̄

2
) ≤ Nd̄l̄. Both conditions

are respected by setting:

l̄ ≥

√
2f̄ h̄

d̄

4. In order to ensure that Cases 2.3 and 3.2.2 are dominated by Case 1, we want to
define l̄ such that Nd̄h̄

2
( Ns̄
cmax−Nb̄d̄ − 1) + f̄

s̄
(cmax −Nb̄d̄) ≤ Nd̄l̄, which implies:

l̄ ≥ h̄

2
(

Ns̄

cmax −Nb̄d̄
− 1) +

f̄

Nds̄
(cmax −Nb̄d̄)

It should be pointed out that, because the goal is to find sufficient conditions for l̄ that
are easy to express, the focus for Points 2. and 3. was not to find the minimum l̄ satisfying
the required conditions but only a threshold that would guarantee that these conditions are
respected.

Consequently, there is an optimal solution without lost sales if we set the lost sales costs
for item i as follows:

li = max

 Ns̄h̄cmax

2(cmax −Nb̄d̄)2
,

√
2f̄ h̄

d̄
,
h̄

2
(

Ns̄

cmax −Nb̄d̄
− 1) +

f̄

Nds̄
(cmax −Nb̄d̄)

 (2.25)

This proposed definition of the lost sales cost better integrates the cost and the capacity
parameters of the instances.
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2.4 Extensions to more general cases

This section considers some extensions of the CLSP for which the same rationale can be
applied and analytical values for the optimal cycle lengths can be deduced from the relaxed
problem. The first extension addresses the case where the average demand varies between
items, and the second extension the case where, in addition, the setup times and costs are
linearly dependent.

2.4.1 Average demand per item

Let us consider the case where the average demand di is different for each item i. Let us
define an optimal cyclical production plan where the average capacity consumption does not
exceed cmax by solving the following problem:

min
(k,φi)∈R∗×N∗N

f̄k + h̄

N∑
i=1

di
φi − 1

2
(2.26)

s.t.
N∑
i=1

1

φi
= k (2.27)

k ≤ cmax −Nb̄d̄
s̄

(2.28)

Constraint (2.28) still applies to this model to limit the average capacity consump-
tion, since the average capacity consumed in each period by the production setup time
is
∑N

i=1 dib̄ = Nb̄d̄. Hence, the capacity available for setup times is still cmax − Nb̄d̄. The
continuous relaxation of the problem can be written as:

−h̄
N∑
i=1

di
2

+ min
{k∈R∗+|k≤

cmax−Nd̄b̄
s̄

}
(f̄k +

h̄

2
min

{φi∈R∗N |
∑N
i=1

1
φi

=k}

N∑
i=1

diφi)

Theorem 2. If cmax−Nb̄d̄
s̄

≥
√

h̄
2f̄

∑N
i=1

√
di, then the optimal solution is reached for k∗ =√

h̄
2f̄

∑N
i=1

√
di, and the optimal value is:

√
2f̄ h̄

∑N
i=1

√
di − h̄

∑N
i=1

di
2
. Otherwise, the op-

timal solution is reached for k∗ = cmax−Nb̄d̄
s̄

and the optimal value is: f̄
s̄
(cmax − Nb̄d̄) +

s̄h̄
2

(
∑N
i=1

√
di)

2

cmax−Nb̄d − h̄
∑N

i=1
di
2
.

The proof of Theorem 2 follows similar arguments than the proof of Theorem 1.

2.4.2 Average demand per item and correlated setup costs and
times

Let us now assume that the setup times and costs are correlated, i.e. there exists λ ∈ R∗
such that fi = λsi, ∀i ∈ {1, . . . , N}, and also that the average demand di is not the same
for all items. We set k̃ =

∑N
i=1

si
φi
, which corresponds to the average setup time per period.

The average setup cost per period is then
∑N

i=1
fi
φi

= λ
∑N

i=1
si
φi

= λk̃.
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Similarly, the following cyclical production planning problem is solved:

min
(k̃,φi)∈R∗×N∗N

λk̃ + h̄

N∑
i=1

di
φi − 1

2
(2.29)

s.t.
N∑
i=1

si
φi

= k̃ (2.30)

k̃ ≤ cmax −Nb̄d̄ (2.31)

The continuous relaxation of the problem can be written as:

−h̄
N∑
i=1

di
2

+ min
{k̃∈R∗+|k̃≤cmax−Nd̄b̄}

(λk̃ +
h̄

2
min

{φi∈R∗N |
∑N
i=1

si
φi

=k̃}

N∑
i=1

diφi)

Theorem 3. If cmax − Nb̄d̄ ≥
√

h̄
2λ

∑N
i=1

√
disi, then the optimal solution is reached for

k̃∗ =
√

h̄
2λ

∑N
i=1

√
disi, and the optimal value is:

√
2λh̄

∑N
i=1

√
disi − h̄

∑N
i=1

di
2
. Otherwise,

the optimal solution is reached for k̃∗ = cmax − Nb̄d̄, and the optimal value is: λ(cmax −
Nb̄d̄) + h̄

2

(
∑N
i=1

√
disi)

2

cmax−Nb̄d − h̄
∑N

i=1
di
2
.

The proof of Theorem 3 follows similar arguments than the proof of Theorem 1.

2.5 New instance generation scheme

The new generation scheme proposed in this chapter is based on the one proposed in Trigeiro
et al. (1989) with additional enhancements and parameters. The original instance generation
scheme is recalled in Section 2.5.1, and the new generation scheme is outlined in Section 2.5.2.
The parameters are described and analyzed in details in Section 2.5.3.

2.5.1 Original generation scheme

In the CLSP instances of Trigeiro et al. (1989), the cost and capacity parameters are constant
over time. The number of items varies from 10 to 30, and the production costs are equal to
0. The instances were built as follows:

– Demand range. Demands are dynamic with an average value d̄ = 100. Half of
the instances have demands following a uniform probability distribution in the range
[75, 125], the other half in the range [0, 200]. In addition, 25% of the demands in the
first four periods are set to 0.

– Time Between Order (TBO). The time between order, defined as TBO =
√

2 f̄
d̄h̄

(Harris (1913)), is in {1, 2, 4}. In all the original instances, h̄ = 1.

– Production and Setup times. Half of the instances have an average setup time of
s̄ = 11, and of s̄ = 43 for the other half. All unitary production times are set to b̄ = 1.
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– Capacity tightness. For each instance, an average capacity use per period is com-
puted following the EOQ of Harris (1913). This capacity consumption is divided by
a factor ρ ∈ {0.75, 0.85, 0.95} to define the instance capacity per period: cmax =
N
ρ

( s̄
TBO

+ b̄d̄).

– Variability between items. Setup times as well as inventory and setup costs for
each item are generated based on their average values multiplied by coefficients taking
values uniformly in the range [0.5, 1.5].

2.5.2 New generation scheme

In this section, we propose a new generation scheme integrating the features discussed in Sec-
tion 2.2. Since we consider an extension of the CLSP with lost sales, new related parameters
will be defined. Lost sales are allowed but at a very high cost.

In order to obtain optimal solutions with limited end-of-horizon effect at the beginning
or at the end of the planning horizon, we solve a new mixed integer linear problem that
we denote (PT ) based on the CLSP formulation (Constraints (2.1)-(2.7)) with the following
additional parameters and constraints:

– A global ending inventory I inf , so that the inventory level is not equal to 0 at the end
of the horizon, subject to the following constraint:

N∑
i=1

IiT ≥ I inf (2.32)

– An upper bound on the final inventory Isup of each item in order to have enough item
diversity in the ending stock, subject to the following constraint:

IiT ≤ Isup, ∀i ∈ {1, · · · , N} (2.33)

– An initial inventory per item Ii0 to have enough stock to satisfy the first demands.

The tricky point is the set up of the new parameters I inf , Isup and Ii0, so that they are in
line with the practical considerations discussed in Section 2.2. The parameters that do not
appear in the outline of the generation scheme below, are generated according to the original
scheme described in Section 2.5.1. For the new parameters, a reference to the section with
the detailed analysis is provided.

– Demand range. Demands are dynamic with an average value d̄ = 100. Half of
the instances have demands following a uniform probability distribution in the range
[75, 125], the other half in the range [0, 200]. Contrary to Trigeiro et al. (1989), no
demands in the first four periods are set to 0.

– TBO, Setup times. As defined in Section 2.5.1.

– Lost sales cost for item i. As defined in Section 2.3.4.

– Maximum inventory per item. Isup = N−k
k
d̄ (see (2.17) derived in Section 2.3.3),

where k = min(kcost, kcapa) (see (2.15) derived in Section 2.3.3), with kcost = N
√

d̄h̄
2f̄

and kcapa = cmax−Nd̄b̄
s̄

.
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– Global ending inventory. I inf =
∑N

i=1 I
∗
iT , where the values of I∗iT are obtained by

solving the Mixed Integer Linear Program (MILP) (Pf ) in Section 2.5.3.

– Initial inventory per item. Ii0 = I∗i0, where the values of I∗i0 are obtained by solving
(Pf ) in Section 2.5.3.

– Capacity tightness. cmax = ks̄ + Nd̄b̄ + c∗o, where the value of c∗o is obtained by
solving (Pf ) in Section 2.5.3.

Section 2.3 showed how the last four parameters of the new generation scheme were
derived. These parameters are fitted in Section 2.5.3. In Section 2.3.3, we defined an
approximate global ending inventory Ĩ inf , and a maximum inventory per item, denoted by
Isup, based on the value of a time between order deduced from the average value of the
demands, the average holding and setup costs and the maximum capacity per period. From
these parameters, we then define in Section 2.5.3 a new MILP which, given a global inventory
Ĩ inf as well as a maximum inventory per item Isup, determines feasible initial inventories for
each item as well as a capacity limit. The value of I inf is also fitted in order to follow the
dynamic nature of the demand.

2.5.3 Fitting I inf and setting initial inventories

In Section 2.3, a global ending inventory and a maximum inventory based on a static cyclical
model were proposed. In order to find fitted values for the initial inventories of the dynamic
CLSP with lost sales, we solve a MILP where all the constraints of the original model (2.2)-
(2.7), as well as additional global ending inventory and maximum inventory constraints, are
considered. The initial inventory of each item must be set so that the total initial inventory
should be close to Ĩ inf , yet individually each initial inventory should be lower than Isup. This
comes from the fact that, ideally, the total inventory is constant throughout the time horizon,
and individual inventories should not exceed the value of Isup deduced in Section 2.3.3.

We want an inventory configuration at the end of the horizon that is similar to the one at
the beginning of the horizon. Therefore, the goal is to find a feasible solution that minimizes
the absolute value of the difference between the total initial inventory and the total inventory
at the end of the planning horizon. Let us denote by (Pf ) the following MILP:

min Kco + δ (2.34)
Ii,t−1 +Xit = dit + Iit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (2.35)
N∑
i=1

(sitYit + bitXit) ≤ c̃max + co, ∀t ∈ 1, . . . , T (2.36)

0 ≤ Ii0 ≤ Isup, ∀i ∈ 1, . . . , N (2.37)
0 ≤ IiT ≤ Isup, ∀i ∈ 1, . . . , N (2.38)

γĨ inf ≤
N∑
i=1

Ii0 ≤ Ĩ inf , (2.39)

δ ≥
N∑
i=1

(Ii0 − IiT ), (2.40)

δ ≥
N∑
i=1

(IiT − Ii0), (2.41)
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Xit ≤MitYit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (2.42)
Yit ∈ {0, 1}, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (2.43)
Xit, Iit ≥ 0, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (2.44)
co, δ ≥ 0 (2.45)

where c̃max is defined using average values on the costs and capacity, c̃max = ks̄+Nd̄b̄ with
k defined as shown in Section 2.3.3.

The capacity limit is the sum of the fixed capacity c̃max and the overtime co. The fixed
parameter is the estimated capacity consumption in the cyclical configuration. Overtime
is added to guarantee the feasibility of the problem with dynamic demands, but is highly
penalized in the objective function (2.34) by parameter K. The fixed capacity is defined
according to the EOQ provided either by the average costs or by the capacity cmax. Variable
δ is the gap between the initial inventory and the ending inventory. This gap has to be
minimized as well. Constraints (2.36) are the capacity constraints. Constraints (2.37) and
(2.38) set bounds on the initial inventories and the ending inventories. Constraint (2.39)
ensures that the total initial inventory is close to the global ending inventory, and parameter
γ defines the tightness in Constraint (2.39), where 0 ≤ γ ≤ 1. Constraints (2.40) and (2.41)
link δ with the inventory gap, while Constraints (2.42) connect the production and setup
variables. Finally, the domains of the variables are given by Constraints (2.43)-(2.45).

In the proposed generation scheme, we define cmax = c̃max + c∗o, where c∗o is the optimal
value obtained by solving (Pf ). In addition, the global ending inventory is fitted to guarantee
that a feasible solution without lost sales can be found, I inf =

∑N
i=1 I

∗
iT , where I∗iT is the

optimal ending inventory obtained by solving (Pf ). In our case, we want to avoid adding
overtime to the analytical capacity except to avoid infeasibility without lost sales. We set
K the penalization per unit of overtime to an order of magnitude higher than the unit
penalization of the gap between the initial and the ending inventories. Regarding γ, ideally
this parameter should be close to 1 to keep the same global inventory at the beginning and
at the end of the horizon. However, in order to allow some slack due to the variability
of the costs and the parameters, we can set a slightly lower value. In our computational
experiments, we set K = 100 and γ = 0.95.

The initial inventory values Ii0 are considered as decision variables because we want to
create instances that are relevant on a rolling horizon. However a possible extension could
be to assume that the initial inventories are known parameters and to define an adequate
minimum ending inventory level I inf that is close to Ĩ inf but takes into account the potential
lack of inventory during the first periods and the impact of the capacity. Ideally, the ending
inventory should be close to Ĩ inf without lost sales or extra capacity required. The analytical
minimum inventory target Ĩ inf might be reached after a few iterations over the rolling horizon
even without initial inventories. If we assume Ii0 are known parameters, we can remove
Constraints (2.37) and (2.39) and modify Constraints (2.40) and (2.41) from (Pf ) as follows:

δ ≥ Ĩ inf −
N∑
i=1

IiT , (2.46)

δ ≥
N∑
i=1

IiT − Ĩ inf . (2.47)

Constraints (2.46) and (2.47) define δ as the absolute value of the difference between the
ending inventory and the analytical ending inventory Ĩ inf .
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2.6 Computational experiments

The original instances of Trigeiro et al. (1989) are compared with our new instances in
Section 2.6.1 while, in Section 2.6.2, the relevance of considering ending inventories on a
rolling horizon is shown.

2.6.1 Comparison of original and new instances

As a benchmark for the creation of the new proposed instances, we use the set of 180
instances of the library LOTSIZELIB proposed by Trigeiro et al. (1989) with N = 10 items
and T = 20 periods, and the 180 instances with N = 30 items. All the instances have an
average demand of 100 units per period and per item and, for a given instance, all items
have the same cost and demand pattern. Half of the instances have low demand variability
(demand between 75 and 125), and the other half have high demand variability (demand
between 0 and 200). We first modified the demands that were originally set to 0 in the first
periods to ensure the feasibility of the instances, by assigning them a random value generated
as the strictly positive demand (see Section 2.5.1). The original instances will be referred
as “Orig.” and correspond to problem (PT ) (see Section 2.2.1), and the instances created by
applying the new generation scheme summarized in Section 5.2 as “New” and correspond to
problem (PT ) (see Section 2.5.2).

The mathematical models are solved using IBM ILOG CPLEX 12.7 on a computer with
2.6 GHz PC, 64 GB of RAM and 2 processors, with a maximum running time of 600 seconds
for each instance, except for Table 2.3 where the time limit is set to 100 seconds.

Adding the initial inventory and the ending inventory constraints is supposed to mitigate
the end-of-horizon effect, whose potential main impacts are a drop of production in the last
periods and a large number of setups in the first periods to satisfy the initial demands. A
way to measure this edge effect is to analyze the variation of the number of setups and of the
production between periods. Indeed, for the original instances, this variation is high because
of the end-of-horizon effect, as observed in Figure 2.2. The initial and ending inventories are
established using a cyclical submodel, where we assume a constant production and number of
setups over time. Even if the CLSP model with minimum and maximum ending inventories
is not cyclical, we expect to find an optimal production plan with low variability between
periods, which should lead to a reduction of the impact of the end-of-horizon effect (see
Figure 2.6). In order to show that the constraints on the minimum and maximum ending
inventories do not make the model easier to solve, the average relative optimality gaps,
denoted Gap, were computed for both the original model and the new model. The relative
optimality gap corresponds to the relative difference between the best upper bound UB and
the best lower bound LB obtained by IBM ILOG CPLEX: Gap = UB−LB

UB
.

Let us define a variability coefficient as the ratio between the standard deviation and the
average value over all the periods. For the original and new instances, Table 2.1 provides the
variability coefficients for the number of setups per period, the total quantity produced per
period and the total inventory per period. The results are classified according to different pa-
rameters: Number of items (N), Time Between Orders (TBO), demand range, average setup
time and capacity tightness. Except for the capacity tightness, the classification parame-
ters are not affected by the modification of the original instances using the new generation
scheme. It is worth noticing that the capacity tightness relies on the computation of EOQ,
and hence on the average demand. The following observation is interesting to note about
the original instances. Because the capacity is defined by dividing the capacity required
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for an EOQ production with a coefficient that is smaller than 1, in the problem studied in
Section 2.3.1, the shape of the relaxed solution is only guided by the costs, that is k = kcost.
By following the new generation scheme in Section 2.5, it should also be the case for the
new instances. However, in all the original instances of Trigeiro et al. (1989), the capacity
was deduced by taking an average demand of 90 to compute the EOQ. This should not be
the case as Trigeiro et al. (1989) state that the average demand is equal to 100. However,
unlike described in their generation scheme, not 25% but 50% of the demands in the first
four periods were set to 0 when generating the original instances, and the demands that were
removed were not balanced among the demands at other periods. When recomputing kcapa
with the same capacity but with an average demand of 100 for the new instances, there are
cases where kcapa < kcost, thus an optimal solution guided by the capacity.

Variability coefficient
Setup Production Inventory

Orig. New Orig. New Orig. New
10 0.29 0.15 0.26 0.04 0.70 0.40N 30 0.26 0.11 0.25 0.03 0.59 0.27
1 0.22 0.09 0.23 0.06 1.17 0.75
2 0.24 0.13 0.25 0.03 0.42 0.18TBO
4 0.37 0.16 0.28 0.01 0.35 0.08

[75;125] 0.27 0.09 0.25 0.02 0.76 0.32Demand
range [0;200] 0.28 0.16 0.25 0.05 0.53 0.35

11 0.28 0.14 0.25 0.02 0.68 0.34Average
setup time 43 0.27 0.11 0.26 0.04 0.61 0.33

EOQ/0.75 0.31 0.12 0.31 0.04 0.66 0.37
EOQ/0.85 0.27 0.12 0.26 0.04 0.76 0.46

Capacity
tight-
ness(*) EOQ/0.95 0.25 0.14 0.18 0.02 0.52 0.17

Table 2.1: Comparison of the variability for the original and new instances.
(*)This classification only applies on the original instances.

Table 2.1 shows that the expected behavior is observed, i.e. the variability is greatly
reduced when adding the initial inventories and the global ending inventory. The variability
of the inventory is larger than the variability of the setup and production, but always sig-
nificantly lower for the new instances than for the original ones. On average, the variability
coefficients for the quantity produced are between 5 to 28 times smaller when the ending
inventory constraints are added (from 0.28 to 0.01 for the instances with a TBO of 4). This
implies that the deviation from the average quantity produced at each period is much smaller
for the new instances. As illustrated in Figure 2.2, this variability in the produced quantities
was mostly caused by the end-of-horizon effect. Note that the setup range, defined by the
difference between the maximum and the minimum number of setups in a period, is also
lower for the new instances.

Let us now analyze the capacity utilization in more detail. Table 2.2 shows the mean
capacity utilization over all periods and the standard deviation between the periods. The
mean capacity utilization is defined as the average value of the ratio between the consumed
capacity and the available capacity over the time horizon. The capacity parameters of the
original instances were generated by taking an average value of the capacity required to have
a production based on the EOQ of each item and by dividing it by a coefficient of 0.75, 0.85
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Capacity Utilization
Mean (%) Variability coefficient
Orig. New Orig. New

10 84.0 98.2 0.25 0.03N 30 84.1 98.4 0.24 0.02
1 83.0 95.8 0.22 0.05
2 84.2 99.3 0.24 0.02TBO
4 85.0 99.8 0.28 0.00

[75;125] 84.6 99.4 0.25 0.01Demand
range [0;200] 83.5 97.2 0.25 0.04

11 84.5 98.9 0.24 0.02Average
setup time 43 83.6 97.7 0.25 0.03

EOQ/0.75 74.4 97.6 0.31 0.03
EOQ/0.85 84.5 98.1 0.26 0.03

Capacity
tight-
ness(*) EOQ/0.95 93.2 99.3 0.17 0.01

Table 2.2: Capacity utilization comparison.
(*)This classification only applies on the original instances.

and 0.95 (Trigeiro et al. (1989)). It is clear that the mean capacity utilization is much larger
for the new instances, always larger than 95% and most often close or larger than 98%. On
the opposite, the mean capacity utilization for the original instances is nearly always smaller
than 85%, and is even equal to 74.4% when the capacity tightness is equal to EOQ/0.75.
The results are even more impressive when considering the variability, which is never larger
than 0.05 in the new instances, whereas it is always larger than 0.17 in the original instances
with a peak at 0.31, again when the capacity tightness is equal to EOQ/0.75.

Tables 2.3 and 2.4 compare the average optimality gaps and the average computational
times of the original and new instances as well as the maximum optimality gap observed
for each set of instances. With a maximum computational time of 100 seconds, the average
optimality gap for the new instances is as large as 2.3% when TBO is equal to 4, whereas
it is never larger than 0.9% for the original instances. When the maximum computational
time is increased to 600 seconds, the differences between the optimality gaps remain large,
up to 1.7% when TBO is equal to 4. Average computational times are also much larger when
solving the new instances.

Finally, Tables 2.3 and 2.4 show that the new instances are harder to solve than the
original ones, i.e. adding initial inventories and a global ending inventory does not make the
problem easier to solve and raises issues as how to solve the new instances efficiently.

Figure 2.6 displays the optimal plans for an original instance and its associated new
instance. Note that the production is relatively constant over time, as is the number of
setups in each period. However, in the first and last periods, there is both a decrease in the
number of setups and an increase of the capacity utilization, in line with the other periods, in
Figure 2.6b compared to Figure 2.6a, i.e. in the new instance compared to the original one.
By adding initial inventories and a global ending inventory, the capacity is fully consumed in
all the periods of the horizon in the optimal production plan of the new instance. Moreover,
except for slight variations caused by differences in the costs between items, the fraction of
capacity used for setup times is rather stable throughout the planning horizon.

Initial and global ending inventories were deduced from the study of a relaxed version of
the problem defined in Section 2.3.1. In Sections 2.3.3 and 2.4, analytical values for objective
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Gap (%) MaxGap (%) T (s)
Orig. New Orig. New Orig. New

10 0.4 1.7 4.9 6.6 34.5 71.7N 30 0.2 0.8 1.4 8.1 38.7 78.2
1 0.1 0.3 1.9 4.3 25.6 34.1
2 0.2 1.0 2.0 5.8 31.7 90.7TBO
4 0.5 2.3 4.9 8.1 52.6 100.2

[75;125] 0.4 1.5 4.9 8.1 41.9 78.2Demand
range [0;200] 0.2 0.9 3.4 4.6 31.3 71.8

11 0.3 1.5 4.9 8.1 39.0 81.6Average
setup time 43 0.3 0.9 2.7 4.6 34.2 68.3

EOQ/0.75 0.0 1.0 0.0 5.8 1.2 68.0
EOQ/0.85 0.0 0.9 0.7 6.4 19.2 67.2

Capacity
tight-
ness(*) EOQ/0.95 0.9 1.7 4.9 8.1 89.4 89.7

Table 2.3: Average optimality gaps and computational times for the original and new in-
stances with Tlim = 100 sec.
(*)This classification only applies on the original instances.

Gap (%) MaxGap (%) T (s)
Orig. New Orig. New Orig. New

10 0.3 1.3 4.5 5.8 171.7 385.4N 30 0.1 0.5 1.0 2.7 212.5 453.8
1 0.1 0.2 1.1 2.3 138.7 165.5
2 0.2 0.8 1.8 5.4 180.1 494.6TBO
4 0.4 1.7 4.5 5.8 257.5 598.6

[75;125] 0.3 1.2 4.5 5.8 225.4 453.6Demand
range [0;200] 0.2 0.6 3.2 3.1 158.7 385.5

11 0.2 1.1 4.5 5.8 206.2 467.8Average
setup time 43 0.2 0.7 2.4 3.6 178.0 371.4

EOQ/0.75 0.0 0.8 0.0 5.5 5.6 367.9
EOQ/0.85 0.0 0.7 0.0 5.5 62.9 361.3

Capacity
tight-
ness(*) EOQ/0.95 0.7 1.3 4.5 5.8 507.7 529.5

Table 2.4: Average optimality gaps and computational times for the original and new in-
stances with Tlim = 600 sec.
(*)This classification only applies on the original instances.
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(a) Solution for original instance.

(b) Solution for new instance.

Figure 2.6: Comparing the optimal plans of two related original and new instances.
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functions are provided. To validate the study of this simplified problem to deduce values
for the CLSP with setup times, Table 2.5 displays the gaps between the best upper bound
obtained by solving the MILP model and the analytical optimal values for each instance.

Gap (%)
Orig. New

10 9.7 4.3N 30 10.6 5.9
1 13.3 5.1
2 10.4 5.2TBO
4 6.7 5.1

[75;125] 6.2 2.4Demand range [0;200] 14.1 7.8
11 10.3 5.0Average setup time 43 10.0 5.3

EOQ/0.75 11.4 5.1
EOQ/0.85 10.5 5.2Capacity tightness(*)

EOQ/0.95 8.5 5.1

Table 2.5: Gap with predicted objective value.
(*)This classification only applies on the original instances.

Table 2.5 shows that, for the original and new instances, the gap between the predicted
and the optimized objective values is on average equal to 5.1%, which implies that the
problem defined in Section 2.3.1 is a good relaxation of the CLSP with setup times. When
the demand range is small, the approximation is even better. The gap is equal to 2.4% for a
small demand range, whereas it increases to 7.8% when the demand has a larger range. That
makes sense because the smaller the demand range, the closer each demand is to its average
value. For the original instances, the average gap is equal to 10.2%, so the approximation
is less precise. That can in part be explained by the fact that the original instances have
neither initial nor ending inventories, hence approximating the original problem by a problem
on a rolling horizon might be too constraining. Note also that, in Table 2.5, the quality of
the approximation does not seem to depend on the TBO for the new instances. The TBO
is theoretically linked to k = kcapa = kcost by the formula k = N

TBO
in the new generated

instances. This is an interesting point as the average number of setups per period k is the
main factor shaping the production plan. Consequently, the optimal production plan varies
greatly depending on the TBO but the approximation remains of the same quality. In the
original instances of Trigeiro et al. (1989), the analytical optimal value better approximates
the best upper bound for the problem as the TBO increases (13.3% of average gap for a
TBO of 1 to 6.7% for a TBO of 4). The poor evaluation of the optimal objective value for
smaller TBO can be partly explained by the fact that, in the original instances of Trigeiro
et al. (1989), 50% of the demands in the first 4 periods are set to 0. For the instances with a
TBO close to 1, when the capacity is not constraining, the number of setups during the first
periods can be reduced compared to the analytical average number of setups. This leads
to an overevaluation of the optimal objective value. For the instances with tight capacity,
some of the later demands need to be satisfied during the first periods where demands were
removed. This leads to additional inventory costs and an underevaluation of the optimal
objective value.

Page 44 EMSE-CMP Mehdi Charles



2.6. COMPUTATIONAL EXPERIMENTS

2.6.2 Analysis on a rolling horizon

To test the impact of the global ending inventory on a rolling horizon, we extend the instances
of Trigeiro et al. (1989) with N = 30 by using the same generation scheme to create instances
with Ω = 100. The global minimum ending inventory and maximum ending inventory
per item are generated by solving the continuous relaxation of Problem (PC) defined in
Section 2.3.1. The continuous relaxation of (PC) is:

min
(ki,φi)∈R∗+

N×R∗+
N

N∑
i=1

fiki + h̄

N∑
i=1

di
φi − 1

2
(2.48)

s.t.

N∑
i=1

siki ≤ cmax −Nb̄d̄ (2.49)

kiφi = 1,∀i ∈ 1, . . . , N (2.50)

This problem is a Quadratic Constraint Problem that can be solved to optimality using
IBM ILOG CPLEX with the barrier algorithm. The obtained minimum and maximum
inventory levels remain constant through the rolling horizon. Three settings for the time
horizon T are considered (T ∈ {5, 10, 20}) in order to fix the decisions period by period.
Compared to the original instances, we modified the instances and the capacity by taking
kcapa ∈ {3.75, 7.5, 15} and set cmax

t = Nbd + ks, where k = max(kcapa, N
√

dh
2f

). The initial
inventory for each item has been set as half the maximum ending inventory for each item
(Ii0 =

Isupi

2
), which corresponds to the average inventory level based on the cycle length

determined in Section 2.4.
When optimizing on a rolling horizon, Constraint (2.32) was slightly modified to allow

lost sales on the global ending inventory:

N∑
i=1

IiT ≥ I inf + lT+1.

The new parameter lT+1, which is the unit cost of lost sales for the ending inventory, is
defined so that it is less costly to have lost sales in the last period of the horizon than in
previous periods.

Fraction of lost sales (%)
T=5 T=10 T=20

Global Ending Inventory Global Ending Inventory Global Ending Inventory
w/o with w/o with w/o with

Avg | Max Avg | Max Avg | Max Avg | Max Avg | Max Avg | Max
[75;125] 6.74|9.68 0.61|1.87 4.14|5.85 0.09|0.40 2.13|3.02 0.13|0.65Demand

range [0;200] 6.20|10.65 0.93|3.45 3.87|6.45 0.52|2.29 1.99|3.28 0.38|2.36
11 4.38|6.24 0.25|1.36 2.93|4.46 0.22|1.29 1.60|3.06 0.19|2.36Average

setup time 43 8.56|10.65 1.29|3.45 5.08|6.45 0.40|2.29 2.52|3.28 0.33|1.19

Table 2.6: Fraction of lost sales (%) for N = 30 and kcapa = 3.75
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Fraction of lost sales (%)
T=5 T=10 T=20

Global Ending Inventory Global Ending Inventory Global Ending Inventory
w/o with w/o with w/o with

Avg | Max Avg | Max Avg | Max Avg | Max Avg | Max Avg | Max
[75;125] 5.06|7.16 0.24|0.72 2.78|3.58 0.17|0.70 1.23|1.61 0.19|0.47Demand

range [0;200] 4.56|7.71 0.79|1.89 2.53|4.15 0.58|1.63 1.04|1.77 0.32|1.12
11 3.56|5.13 0.47|1.89 2.22|3.57 0.39|1.63 1.06|1.77 0.22|1.12Average

setup time 43 6.05|7.71 0.56|1.88 3.09|4.15 0.36|1.37 1.21|1.71 0.28|0.66

Table 2.7: Fraction of lost sales (%) for N = 30 and kcapa = 7.5

Fraction of lost sales (%)
T=5 T=10 T=20

Global Ending Inventory Global Ending Inventory Global Ending Inventory
w/o with w/o with w/o with

Avg | Max Avg | Max Avg | Max Avg | Max Avg | Max Avg | Max
[75;125] 1.71|2.87 0.15|0.47 0.75|1.54 0.14|0.40 0.21|0.65 0.07|0.20Demand

range [0;200] 1.39|3.06 0.47|2.15 0.57|1.85 0.28|1.43 0.16|0.89 0.11|0.58
11 1.48|3.06 0.44|2.15 0.79|1.85 0.29|1.43 0.29|0.89 0.11|0.58Average

setup time 43 1.62|3.01 0.18|0.74 0.53|1.05 0.13|0.40 0.08|0.24 0.07|0.20

Table 2.8: Fraction of lost sales (%) for N = 30 and kcapa = 15

Tables 2.6, 2.7 and 2.8 compare the fraction of lost sales on a rolling horizon on instances
classified according to their demand range and average setup time. Each table presents the
results for a specific value of kcapa without or with the global minimum ending inventory
and for different planning horizons (T ). The influence of each parameter is similar in each
table, even if it can be noticed that the average fraction of lost sales seems to increase when
the capacity becomes tighted. With kcapa = 3.75, the average fraction of lost sales is equal
to 6.74% for T = 5 and no ending inventory constraint while, for the same instances and
kcapa = 15, the average fraction of lost sales decreases to 1.96%.

For a specific value of kcapa, several remarks can be raised. In terms of lost sales, the
results are much better with ending inventory constraints. In Table 2.6 with T = 5, the
average lost sales of 6.47% without ending inventory constraints drops to 0.77%. In Table 2.7,
the average lost sales decrease from 4.81% to 0.52% and, in Table 2.8, from 1.55% to 0.31%.
The average lost sales without ending inventory constraints are almost always larger than 1%,
except when both the planning horizon and the capacity are large. With ending inventory
constraints, even with a small planning horizon and a tight capacity, the average lost sales
are almost always smaller than 1%. With ending inventories, there are on average both less
lost sales and less setup times. In Table 2.6 for T = 10, the average lost sales are equal to
2.93% with s̄ = 11 and 5.08% with s̄ = 43. This makes sense because, when setup times are
small compared to the available capacity, the impact they can have on the feasibility of the
problem is less relevant. When setup times increase, up to a certain point, it becomes more
difficult to recover from a lack of production in a previous period, leading to an increase of
the lost sales. However, this effect disappears when setup times reach a threshold, because
then the number of setups per period is fixed and the decisions in the first periods will not
lead to more sales later on.

To illustrate this point, let us consider the case with N = 3, T = 5, d = 100, with no

Page 46 EMSE-CMP Mehdi Charles



2.6. COMPUTATIONAL EXPERIMENTS

setup and production costs. The holding costs and unitary production times are set to 1.
Let us consider different values for the setup times, s̄ ∈ {0, 10, 100}. Let us set kcapa = 1
and define cmax = 300 + kcapas̄. To model the lack of production in a previous period, we
consider the case where the initial inventory is set to 0 for all items. Lost sales are highly
penalized. The optimal production plans can be found in Figure 2.7.

(a) s̄ = 0 (b) s̄ = 10

(c) s̄ = 100

Figure 2.7: Production quantities for different values of s̄

– For s̄ = 0: There are no lost sales in the optimal solution. This can be explained by the
fact that a lack of production from a previous period can easily be recovered because
all demands at a period can be satisfied by a production at the same period, which is
not the case for s̄ > 0.

– For s̄ = 10: There are 80 units of lost sales (20 units of item 2 at each period) in
the optimal solution. The production plan is similar to the one obtained for s̄ = 0.
However, when there are 3 setups in a period, only 280 units can be produced, leading
to a deficit of 20 units per period.

– For s̄ = 100: There are 300 units of lost sales (100 units of item 2 at t = 1 and at
t = 3, 100 units of item 3 at t = 1) in the optimal solution. Because each setup takes
1
4
of the capacity, it is suboptimal to have 3 setups in the first period. However, we

get a production plan that is optimal on a rolling horizon if one period is fixed in each
optimization run, leading to less lost sales compared to Figure 2.7b.
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– For s̄ ≥ 300: Each setup takes more than half the capacity available during a period,
so the optimal production plan consists in exactly one setup in each period. There are
also 300 units of lost sales in the optimal solution. Because the production capacity
forces to have at most one setup per period, the resulting production plan is the optimal
production plan on a rolling horizon.

Note that, without constraints on inventory levels at the end of the planning horizon,
the results depend a lot on the length of the planning horizon. The fluctuation of the
fraction of lost sales when the length of the planning horizon increases is larger without
ending inventories. Table 2.7 shows that, for s̄ = 43, the fraction of lost sales decreases
from 6.05% to 3.09% when T increases from 5 to 10. With ending inventories, the best
results are obtained when there is a small variability in demands. For instance, for T = 10
in Table 2.7, the fraction of lost sales drops from 0.79% for instances with a large demand
range to 0.24% for instances with a small demand variability. This also makes sense because
the computation of the ending inventories are based on models using averages. When looking
more specifically at the evolution of the inventories in each period, the ending inventories
enable for inventories to be kept throughout the horizon rather than being depleted in the
first periods.

2.7 Conclusions

In this chapter, we first highlight the issues associated with classical instances of the literature
for the capacitated lot sizing problem with setup times. Our analysis shows that the lack
of ending inventories creates inconsistencies with the industrial reality where planning is
performed on a rolling horizon. In particular, even when using a long planning horizon,
decisions in the first periods might be negatively impacted. Building on this analysis and
to mitigate the end-of-horizon effect, we propose to modify the problem by considering a
global minimum ending inventory and maximum ending inventories for items. The values
of these parameters are deduced from an analysis of cyclical lot-sizing problems with setup
times. A new scheme, extending the one of Trigeiro et al. (1989), is proposed to generate
instances with initial and ending inventories. Numerical results on the new instances show
the practical relevance of the new problem.

As future research perspectives, we believe it is interesting to study how constraints on
ending inventories impact various extensions of the CLSP with setup times, such as demand
and production time windows or inventory capacity constraints. Another interesting research
topic would be to pursue the work started at the end of Section 2.5.3, namely investigat-
ing approaches to determine relevant ending inventories from known initial inventories and
probably also demand forecasts.
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Chapter 3

Capacitated lot-sizing problem with in-
ventory constraints within periods

In Chapter 2, we have extended the CLSP with setup times by adding ending inventory
constraints to mitigate the end-of-horizon effect. These ending inventory constraints enabled
for a better inventory management on a rolling horizon. In this chapter, still to improve
inventory management, we consider the evolution of inventory within periods. In case the
inventory is bounded and under specific assumptions on how demand and production evolve
over time, we propose new constraints to bound the inventory levels reached within each
period. Our contributions in this chapter are twofold. First, we propose different CLSP
models to capture the inventory evolution within periods. Second, we present and discuss
numerical experiments to assess the practical relevance of the proposed models.

The chapter is organized as follows. Section 3.1 positions our work in the current litera-
ture on the subject. Section 3.2 motivates the need to consider the dynamic evolution of the
inventory within each period when solving a CLSP. Section 3.3 proposes a first model with a
uniform production rate and a bounded demand rate. Section 3.4 proposes a second model
where the production occurs at maximum rate and the demand is instantaneous. Compu-
tational experiments are presented in Section 3.5. Potential extensions are introduced in
Section 3.6 and some conclusions and perspectives can be found in Section 3.7.



CHAPTER 3. CAPACITATED LOT-SIZING PROBLEM WITH INVENTORY
CONSTRAINTS WITHIN PERIODS

3.1 Related works

There are some works in the literature dealing with inventory bounds that limit the prod-
ucts that can be kept in the inventory (Love (1973), Gutiérrez et al. (2003), Atamtürk and
Küçükyavuz (2008), Hwang and van den Heuvel (2012), Liu (2008), Önal et al. (2012)).
These bounds are practically relevant in various industrial applications. A survey on lot-
sizing problems with inventory bounds can be found in Minner (2009). We can also quote Absi
and Kedad-Sidhoum (2009) that consider penalty costs if the products kept in inventory do
not meet a safety stock level. Moreover, the increasing research considering stochastic de-
mands emphasizes the need to have a minimum stock level on the inventory at each period.
Some works consider production and demand rates to model the evolution of the production
and the inventory in production planning (Dauzère-Pérès et al. (2000)). Grigoriev et al.
(2020) consider, among other models, a lot-sizing problem with production and demand
rates (under strong assumptions on these rates). It is also considered in the Economic Lot-
Scheduling literature (Elmaghraby (1978)). However, in the classical lot-sizing literature,
inventory bounds are always set on discrete periods, not taking into account the dynamic
nature of the inventory evolution within each period. Most of the time, inventory bounds
are considered at the beginning of the period but, in some cases, the inventory can also take
into account a production occurring within the period (Gutiérrez et al. (2013)). Inventory
constraints have also been combined with other constraints such as lost sales (Hwang et al.
(2013)) or backlogs (Hwang and van den Heuvel (2012)). In the recent literature, inventory
bounds are still modeled assuming that quantities are produced and demands taken from
the inventory only at the end of each period. The focus in the past years has mostly been
on proposing more realistic problem formulations for discrete problems and not on modeling
the evolution of the inventory within periods (Brahimi et al. (2017), Zhong et al. (2016),
Jing and Mu (2020)).

3.2 Motivations

Section 3.2.1 recalls the CLSP with setup times, lost sales and inventory bounds, while
Section 3.2.2 motivates why considering the inventory evolution within periods can be im-
portant.

We consider the CLSP with minimum and maximum ending inventories defined in Chap-
ter 2. We add for each item i at period t a lower (resp. upper) bound denoted by Iit (resp.
Iit). The maximum ending inventory per item Isupi for i ∈ J1, NK introduced in Chapter 2
is replaced by IiT . Let us first recall the mathematical formulation of the problem before
addressing inventory constraints within periods.

3.2.1 Original problem formulation

The quantity of item i produced at period t is given by variable Xit. The binary variable Yit
indicates whether a setup for item i occurs at period t or not. Variable Iit is the inventory
variable for item i at the end of period t. Finally, variable Lit defines the quantity of lost
sales for item i at the end of period t. We extend the definition of Iit with t = 0 to describe
the initial inventory of item i. The formulation of the CLSP with setup times, lost sales and
minimum ending inventory follows.
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min
N∑
i=1

T∑
t=1

(fitYit + pitXit + hitIit + litLit) (3.1)

(2.2)− (2.7)

Iit ≤ Iit ≤ Iit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (3.2)
N∑
i=1

IiT ≥ I inf (3.3)

The objective function (3.1) minimizes the total production, setup, inventory and lost
sales costs for all items over the planning horizon. Constraints (3.2) ensure the lower and
upper bounds for the inventory. Constraint (3.3) sets a lower bound for the ending inven-
tory. It should be noted that the global minimum ending inventory constraint only applies
at the end of the plannig horizon, once all satisfied demands are consumed and all produc-
tion processes are finished. Consequently, contrary to the other inventory constraints, the
satisfaction of Constraint (3.3) does not depend on the demand and production rates within
each period.

3.2.2 Inventory evolution within periods

Even if it is common to consider inventory bounds in an industrial manufacturing problem,
Constraints (3.2) only apply at the end of each period, and do not capture the dynamic nature
of the inventory evolution. To illustrate this point, let us consider the specific case of a single
item to be produced during a single period with no initial inventory. The demand is d = 500.
The length of the period is cmax = 1000 and the demand occurs instantaneously at td = 250.
The item is produced at a unit production rate of b = 1 and there are no setup times. For
that specific case, it can be noticed that it is not possible to satisfy the entire demand when
considering the dynamic evolution of the inventory since no more than 250 units can be
produced at td (Figure 3.1). Yet, in a regular lot-sizing model using Constraints (3.2), only
cmax and b are considered, leaving enough capacity to satisfy the demand entirely.

Figure 3.1: Dynamic evolution of the inventory

This consideration is relevant in at least two cases:
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1. The production of one item in a workshop determines the production in another
workshop. There is a need for synchronization between these two levels. Hence, even
in short periods, the exact time at which the demand occurs is well known. In that
specific case, it is important to have a precise description of the shape of the demand,
possibly at the expense of strong assumptions on the shape of the production. This
case corresponds to the industrial application introduced in Section 1.2 of Chapter 1.

2. Periods are long (weeks/months) and the interval during which the demand is
consumed is much smaller than the period (hours/days). In this case, because the
time at which the demand occurs is small in comparison to the period length, it can be
assumed that the demand is instantaneous. Not considering a production rate when
optimizing the production decisions might lead to underestimating the inventory bound
constraints. To illustrate a lot-sizing problem where decisions are made on a monthly
basis, we can take the example of a clothing manufacturer making both production and
routing decisions between the production sites and the warehouses in order to satisfy
the monthly demand from the retailers.

Let us consider in the following two models to handle a finer modeling of the inventory
constraints within periods. The model proposed in Section 3.3 corresponds to a model
compatible with the first case, while the model proposed in Section 3.4 corresponds to the
second case.

3.3 Uniform production and demand within a cone of
uncertainty

We consider in this section that the production occurs at a uniform rate right after the
setup time. We propose in Section 3.3.1 an approximation of the demand within a cone
of uncertainty and in Section 3.3.2 new linear constraints to guarantee that, with these
assumptions, the inventory remains within its bounds in each period.

3.3.1 Demand approximation within a cone of uncertainty

Because it covers a large set of possible scenarios of demand evolution within a period,
we propose to approximate each demand by two slopes and two offsets. The first slope
corresponds to the demand at its earliest time, the second to the demand at its latest time.
The offsets allow for these slopes to be adjusted as tightly as necessary. We define four new
parameters for each period t: obt (resp. oet ) is the offset before the start of the early (resp.
late) demand, αt (resp. βt) is the early (resp. late) demand rate.
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Figure 3.2: Convex demand

Figure 3.2 illustrates the approximation of a demand that is consumed within a given
time interval. This approximation can still be used even in the case of uncertainties on the
exact distribution of the demand. These two slopes frame not only a linear distribution but
also approximate any given distribution that is inside this cone of uncertainty.

The proposed demand approximation allows the following specific cases of demand shapes
to be considered:

1. If the demand has a convex shape, as illustrated in Figure 3.3, then the line that
corresponds to the early demand rate and the one corresponding to a uniform demand
are identical. To create the line for the late demand rate, βt is set equal to the slope
at the end of the demand consumption.

Figure 3.3: Convex demand

2. If the demand has a concave shape, as illustrated in Figure 3.4, then the line that
corresponds to the late demand rate and the one corresponding to a uniform demand
are identical. To create the line for the early demand rate, αt is set equal to the slope
at the beginning of the demand consumption.
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Figure 3.4: Concave demand

3. If the demand is neither convex nor concave, as in Figure 3.5, then the slope for the
early rate αt corresponds to the maximum value when considering all slopes from the
beginning of the demand consumption to one of the local extrema. The slope for the
late demand rate βt corresponds to the maximum value when considering all slopes
from one of the local extrema to the end of the demand consumption.

Figure 3.5: Generic demand

3.3.2 Modeling inventory constraints

Let us consider the single-item capacitated lot-sizing problem with setup times where each
demand is approximated as in Section 3.3.1. With the assumptions on the production and
demand rates, new constraints for inventory levels within periods can be linearly modeled.
Several cases associated to minimum inventory constraints and maximum inventory con-
straints are considered in the following. We assume that lost sales are allowed under the
specific condition that the time taken to consume the demand is constant and that only
the demand rates and the quantity of satisfied demand are affected. Thus the fact that the
production and demand lines cross does not depend on the fraction of the demand that is
satisfied.

Minimum inventory constraints

To consider minimum inventory levels within periods, we only need to consider the slope
for the demand approximation of the earliest demand. Three cases need to be considered,
leading to the addition of one or two new constraints in the original lot-sizing model.

Page 56 EMSE-CMP Mehdi Charles



3.3. UNIFORM PRODUCTION AND DEMAND WITHIN A CONE OF
UNCERTAINTY

Case 1. The production starts before the demand (st ≤ obt), see example of Figure 3.6.

In that case, the minimum inventory level is reached either at the beginning of the
period or when the satisfied demand dt − Lt is fully consumed. In the latest case,
the inventory is It−1 − dt + Lt + Xt

cmaxt −st (o
b
t + dt

αt
− st). Thus, to respect the minimum

inventory constraint, one new constraint needs to be added to the model to guarantee
that this inventory level is above the inventory lower bound:

It−1 − dt + Lt +
Xt

cmaxt − st
(obt +

dt
αt
− st) ≥ It (3.4)

Figure 3.6: Case 1

Case 2. The production starts after the demand but before the demand is fully consumed
(obt ≤ st ≤ obt + dt

αt
), see example of Figure 3.7.

In that case, the minimum inventory level is reached either (1) when the production
starts, with an inventory of It−1 − αt(1− Lt

dt
)(st − obt) or (2) when the demand is fully

consumed, with an inventory of It−1−dt+Lt+ Xt
cmaxt −st (o

b
t+

dt
αt
−st). Thus to respect the

minimum inventory constraint, two new constraints need to be added to the model:

It−1 − αt(1−
Lt
dt

)(st − obt) ≥ It (3.5)

It−1 − dt + Lt +
Xt

cmaxt − st
(obt +

dt
αt
− st) ≥ It (3.6)

Figure 3.7: Case 2
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Case 3. The production starts after the demand is fully consumed (st ≥ obt + dt
αt
), see example

of Figure 3.8.

In that case, the minimum inventory level is reached when the demand is fully con-
sumed, with an inventory of It−1 − dt + Lt. Thus, to respect the minimum inventory
constraint, the following constraint needs to be added to the model:

It−1 − dt + Lt ≥ It (3.7)

Figure 3.8: Case 3

Maximum inventory constraints

To consider the maximum inventory levels within periods, we only need to consider the slope
for the demand approximation of latest demand. There is only one case where the maximum
inventory level is not reached at the beginning or at the end of the period, and it leads to
the addition of one new constraint to the model.

Case 1. The production starts before the demand (st ≤ oet ), see example of Figure 3.9

In that case, the maximum inventory level is reached either right before the demand
starts to be consumed with an inventory of It−1 + Xt

cmaxt −st (o
e
t − st), or at the end of the

period. Thus, to respect the maximum inventory constraint, the following constraint
needs to be added to the model:

It−1 +
Xt

cmaxt − st
(oet − st) ≤ It (3.8)

Figure 3.9: Case 1
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3.3.3 Worst case errors

Under the assumptions made on the shapes of the demand and production rates, let us
now consider the multi-item version of the problem. The capacity constraint at period t
(Constraint (2.3)) is expressed as such:

N∑
i=1

(sitYit + bitXit) ≤ cmaxt .

The unit production time bit can be defined as the inverse of the production rate. The
capacity constraint at period t implies that, after optimization, we can find a production
schedule with a production at maximum rate that respects the length of the period. With the
assumptions made in this section, the optimal production schedule found once the quantities
to produce at each period are defined might be infeasible with regards to the minimum and
maximum inventory bounds. However, we show in this section that adding these constraints
enables to lower the worst case inventory error even when the shapes of the demand and
production rates differ from the assumptions. Because the analysis is identical for each
item, the index i has been removed in the rest of the section. In this analysis, we assume
that the inventory at the beginning of period t respects the inventory bounds at period t:
It ≤ It−1 ≤ It.

Worst case for the minimum inventory error

Let us consider the maximum difference between the minimum inventory level It and the
minimum inventory level Imint that can be reached with a production at maximum capacity
at time t. Ideally we want Imint ≥ It.

– No inventory constraints within periods

Without the inventory constraints, the inventory gap between It and Imint is at most:

It − Imint = min(dt, Xt).

Indeed, the gap can never exceed the value of the demand at period t, else the inventory
constraint would not have been respected at the beginning of the period. The gap also
cannot exceed the quantity produced at t, otherwise the inventory constraint would
not be satisfied at the end of the period. The maximum gap occurs when the demand
is fully consumed before the production starts in case It−1 = It. Considering the
maximum quantity that can be produced (cmaxt −st)

bt
, we get:

It − Imint = min(dt,
(cmaxt − st)

bt
).

– Inventory constraints within periods

If we add the inventory constraints for the uniform production rate with setup times
then, at period t, the maximum difference in minimum inventory occurs when the
production at maximum rate occurs as late as possible. If quantity Xt is produced,
then the time required to produce the quantity at maximum production rate is btXt.

The worst case occurs when the production at maximum rate starts at cmaxt − btXt.
From st to cmaxt −btXt, at a uniform production rate Xt

cmaxt −st the quantity
Xt

cmaxt −st (c
max
t −
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btXt − st) = Xt(1− btXt
(cmaxt −st)) is produced. Thus, we know that there is at most a dif-

ference of Xt(1− btXt
(cmaxt −st)) for the produced quantity between considering a production

at maximum rate and a uniform production. The inventory constraints within periods
guarantee that, for a uniform production rate the inventory cannot go below It. The
gap still cannot exceed the demand for the period, thus the previous result implies
that the maximum inventory gap is:

It − Imint = min(dt, Xt(1−
btXt

(cmaxt − st)
)).

The function f(x) = x(1 − btx
(cmaxt −st)) for x ∈ [0;

(cmaxt −st)
bt

] reaches its maximum for

x∗ =
(cmaxt −st)

2bt
, so that:

It − Imint = min(dt,
(cmaxt − st)

4bt
).

It is interesting to note that, by considering or not the inventory constraints within
periods, the potential extreme points for the inventory gaps differ.

Worst case for the maximum inventory error

Let us consider the maximum difference between the maximum inventory level It and the
inventory level Imaxt that can be reached with a production at maximum capacity at time t.
Ideally we want Imaxt ≤ It.

– No inventory constraints within periods

Without the inventory constraints, the maximum inventory gap between It and Imaxt

is:

Imaxt − It = min(dt, Xt).

Indeed, the gap can never exceed the value of the demand at period t, else the inventory
constraint would not be satisfied at the end of the period. The gap also cannot exceed
the quantity produced at t, otherwise the inventory constraint would not be have
been respected at the beginning of the period. The maximum gap occurs when the
production is fully completed before the demand starts to be consumed, in case It−1 =

It. Considering the maximum quantity that can be produced (cmaxt −st)
bt

, we get:

Imaxt − It = min(dt,
(cmaxt − st)

bt
).

– Inventory constraints within periods

If we add the inventory constraints for the a uniform production rate and a production
with setup times, then at period t the maximum difference in maximum inventory
occurs when the production at maximum rate occurs right after the setup time. If
quantity Xt is produced, then the time required to produce the quantity at maximum
production rate is btXt
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The worst case occurs when the production at maximum rate starts at st. From st
to the end of production st + btXt, at a uniform production rate Xt

cmaxt −st the quantity
Xt

cmaxt −st btXt =
btX2

t

Xt(cmaxt −st) is produced. Thus we know that there is at most a difference
of Xt(1 − btXt

(cmaxt −st)) for the produced quantity between considering a production at
maximum rate and a uniform production. The inventory constraints within periods
guarantee that, for a uniform production rate, the inventory cannot go over It. The
gap still cannot exceed the demand for the period, thus the previous result implies
that the maximum inventory gap is:

Imaxt − It = min(dt, Xt(1−
btXt

(cmaxt − st)
)).

For the same reasons as for the minimum inventory level, we have in the worst case
that:

Imaxt − It = min(dt,
(cmaxt − st)

4bt
).

These results are especially relevant for small-bucket problems with sparse demands. If
the production capacity at t is lower than the demand at the same period, it is possible to
have a deficit or an excess of inventory which is equal to the entirety of the production during
the period. We avoid this worst case with the additional inventory constraints, reducing the
worst possible inventory deficit or excess by a factor of 4.

3.4 Production at maximum rate and instantaneous de-
mand

In this section, we define a lot-sizing model based on assumptions on the production and
demand rates that differ from the ones in Section 3.3. We introduce for each demand at
period t a new parameter tdit ≤ cmaxt that corresponds to the time at which the demand occurs
within the period. We also assume that the demand for item i at period t is instantaneous.
This assumption can be reasonable for long periods. According to the model described in
Section 3.2.1, each unit of item i at period t takes bit to be produced. Consequently, in this
section, we assume that the production of item i at period t occurs at a production rate of
1
bit
. Under these assumptions, additional constraints to bound the inventory within periods

are introduced in Section 3.4.1. In Section 3.4.2, we show that the problem introduced in
the section can be polynomially solved once the capacity constraints are relaxed.

3.4.1 Modeling inventory constraints

We split each production decision variable Xit into two decision variables Xb
it and Xa

it that
respectively represents the production before and after the demand occurs. We also assume
that each production either ends strictly before or starts strictly after tdit. To that intent, we
split each setup decision variable into two setup decision variables Y b

it and Y a
it .
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Yit = Y b
it + Y a

it , ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (3.9)
Xit = Xb

it +Xa
it, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (3.10)

Xb
it ≤MitY

b
it, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (3.11)

Xa
it ≤MitY

a
it , ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (3.12)∑

j,tdjt≤tdit

(bjtX
b
jt + sjtY

b
jt) ≤ tdit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (3.13)

∑
j,tdjt≥tdit

(bjtX
a
jt + sjtY

a
jt) ≤ cmaxt − tdit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (3.14)

Ii,t−1 +Xb
it ≤ Iit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (3.15)

Ii,t−1 +Xb
it − dit ≥ Iit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (3.16)

Constraints (3.9) imply that a setup induces a production either before or after the
demand occurs. Constraints (3.10) link the production variables before and after the demand
to the production quantity in the period. Constraints (3.11) and (3.12) link the production
and the setup variables. Constraints (3.13) (resp. (3.14)) state that, for a given demand
for item i at period t, the sum of all setup and production times for all demands occurring
before (resp. after) tdit must be lower than tdit (resp. the remaining time cmaxt − tdit).

The advantage of this formulation is that it takes into account all previous production
quantities when deciding on the quantity to produce for each item. A good scheduling algo-
rithm minimizing the excess of inventories should find better solutions with these additional
constraints without affecting the quality of the solution. This model is less constraining than
the one assuming that the production is uniform throughout the period, which can restrict
the feasibility domain, especially for longer periods.

3.4.2 The uncapacitated lot-sizing problem with constant inventory
bounds and inventory constraints within periods

Let us consider the problem defined in Section 3.4.1 where all capacity constraints (Con-
straints (3.13), Constraints (3.14) and Constraints (2.3)) are removed. Because the capacity
constraints are relaxed, the initial problem can be decomposed into independent uncapaci-
tated single-item problems. Lost sales are also not allowed and we assume that the inventory
bounds are constant. We show in this section that this problem can be polynomially solved.
This result could provide insights in order to develop a heuristic based on the relaxation
of the capacity constraints of the problem. Let us denote by I and I the minimum and
maximum inventory bounds.

Let us consider 4 inventory values at the end of each period t:

(1) I1
t = I,

(2) I2
t = I,

(3) I3
t = I − dt,

(4) I4
t = I + dt+1.
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We refer to these values by the term inventory points of type i ∈ {1, 2, 3, 4} in the rest of
the section, and assume that the initial inventory is an inventory point. We refer to a period
with an inventory point as an inventory period.

Theorem 4. There is an optimal solution such that, between two successive production
periods j and k with j < k, there is at least one inventory period l with j ≤ l < k.

Proof. Let us define cj = pj +
∑k−1

m=j hm and ck = pk. We need to analyze four different
cases. We assume that for all l such that j ≤ l < k, Il is not an inventory point.

Case 1. Xj = Xa
j and Xk = Xb

k.

We have Ij < I and Ik−1 > I.

– If cj < ck, then δ = min(Xk,minj≤m<k(I − Im)) = min(Xk, I − Ij) units can be
moved from period k to period j without affecting the feasibility of the solution.
This new solution, with either a new inventory at period j of I ′j = I or a new
production quantity at period k of X ′k = 0, improves the objective function by at
least δ(ck − cj) ≥ 0.

– If cj ≥ ck, then δ = min(Xj,minj≤m<k(Im − I)) = min(Xj, Ik−1 − I) units can be
moved from period j to period k without affecting the feasibility of the solution.
This new solution, with either a new inventory at period k − 1 of I ′k−1 = I or a
new production quantity at period j of X ′j = 0, improves the objective function
by at least δ(cj − ck) ≥ 0.

Case 2. Xj = Xb
j and Xk = Xb

k.

In that case, the inventory right before time tdj is Ij + dj < I. We have Ij < I − dj and
Ik−1 > I.

– If cj < ck, then δ = min(Xk, I−dj− Ij,minj≤m<k(I− Im)) = min(Xk, I−dj− Ij)
units can be moved from period k to period j without affecting the feasibility
of the solution. This new solution, with either a new inventory at period j of
I
′
j = I − dj or a new production quantity at period k of X ′k = 0, improves the
objective function by at least δ(ck − cj) ≥ 0.

– If cj ≥ ck, then δ = min(Xj,minj≤m<k(Im − I)) = min(Xj, Ik−1 − I) units can be
moved from period j to period k without affecting the feasibility of the solution.
This new solution, with either a new inventory at period k − 1 of I ′k−1 = I or a
new production quantity at period j of X ′j = 0, improves the objective function
by at least δ(cj − ck) ≥ 0.

Case 3. Xj = Xb
j and Xk = Xa

k .

In that case, the inventory right after tdk is Ik−1 − dk > I. We have Ij < I − dj and
Ik−1 > I + dk.

– If cj < ck, then δ = min(Xk, I−dj− Ij,minj≤m<k(I− Im)) = min(Xk, I−dj− Ij)
units can be moved from period k to period j without affecting the feasibility
of the solution. This new solution, with either a new inventory at period j of
I
′
j = I − dj or a new production quantity at period k of X ′k = 0, improves the
objective function by at least δ(ck − cj) ≥ 0.
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– If cj ≥ ck, then δ = min(Xj, Ik−1−dk−I,minj≤m<k(Im−I)) = min(Xj, Ik−1−dk−
I) units can be moved from period j to period k without affecting the feasibility
of the solution. This new solution, with either a new inventory at period k− 1 of
I
′

k−1 = I + dk or a new production quantity at period j of X ′j = 0, improves the
objective function by at least δ(cj − ck) ≥ 0.

Case 4. Xj = Xa
j and Xk = Xa

k .

In that case, the inventory right after tdk is Ik−1 − dk > I. We have Ij < I and
Ik−1 > I + dk.

– If cj < ck, then δ = min(Xk,minj≤m<k(I − Im)) = min(Xk, I − Ij) units can be
moved from period k to period j without affecting the feasibility of the solution.
This new solution, with either a new inventory at period j of I ′j = I or a new
production quantity at period k of X ′k = 0, improves the objective function by at
least δ(ck − cj) ≥ 0.

– If cj ≥ ck, then δ = min(Xj, Ik−1−dk−I,minj≤m<k(Im−I)) = min(Xj, Ik−1−dk−
I) units can be moved from period j to period k without affecting the feasibility
of the solution. This new solution, with either a new inventory at period k− 1 of
I
′

k−1 = I + dk or a new production quantity at period j of X ′j = 0, improves the
objective function by at least δ(cj − ck) ≥ 0.

The proof also implies that we can find an optimal solution where either period j or
period k − 1 is an inventory period.

Corollary 1. There is an optimal solution such that, between two successive inventory pe-
riods j and k with j < k, there is at most one production period l such that j < l ≤ k.

Proof. If we have two successive productions periods l1 and l2 with j < l1 < l2 ≤ k then,
according to Theorem 4 we can find an optimal solution where either l1 or l2 − 1 is an
inventory period. Both cases contradict the fact that periods j and k are successive inventory
periods.

From Corollary 1 we can derive a polynomial dynamic programming algorithm to solve
the relaxed problem.

Dynamic programming algorithm

Let us denote C(j, i) the minimum cost from period j+1 to period T where j is an inventory
period of type i ∈ {1, 2, 3, 4}.

There is an optimal solution where the inventory at T is an inventory point of type 2.
Indeed, if there is a solution with an ending inventory level IT > I, the production quantity
in the last production period k ≤ T can be decreased such that min(Xk, IT − I) = 0.

We have C(T, 2) = 0.
Corollary 1 provides the following recursion:

C(j, i) = min
{(k,i′)|k>j;i′∈{1,2,3,4}}

G(j, k, i, i′) + C(k, i′),
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where G(j, k, i, i′) corresponds to the minimum cost to go from inventory period j of type i
to inventory period k of type i′ with at most one production period j < l ≤ k, i.e.

G(j, k, i, i′) = min
j<l≤k

[fl + pl(I
i′

k − I ij +Dj+1,k) +
l−1∑

m=j+1

hm(I ij −Dj+1,m) +
k∑

m=l

hm(I i
′

k +Dm+1,k)],

where Djk =
∑k

l=j dl, Djk = 0 if j > k.
If l is a production period, then either Xl = Xa

l or Xl = Xb
l . This implies that, in a

feasible solution, either (I ij −Dj+1,l) ≥ I or (I i
′

k +Dlk) ≤ I.
Let us only consider feasible production plans from j to k with production at period l.

Hence, if (I i
′

k − I ij + Dj+1,k) < 0, (I ij − Dj+1,l−1) < I or (I i
′

k + Dl+1,k) > I, we set a value
of ∞ for this value of l during the computation of G(j, k, i, i′). We also set a value of ∞ if
both (I ij −Dj+1,l) < I and (I i

′

k +Dlk) > I.
If we assume that all sums are precomputed (which can be done in O(T 2)), then each

computation of G(j, k, ∗, ∗), for fixed j and k, can be done in O(T ). Consequently, if we
compute C(j, ∗) in decreasing order of j, each C(j, ∗) can be computed in at most O(T 2).
The optimal value of the problem considered in this section corresponds to C(0, i), where
i is the type of the initial inventory. C(j, ∗) needs to be computed for j ∈ {T − 1, · · · , 0},
which implies that the complexity of the algorithm is O(T 3).

3.5 Computational experiments

Computational experiments were performed on 180 instances based on the instances of
Trigeiro et al. (1989) with N = 30 items and T = 20 periods modified according to the
generation scheme of Section 2.5.2 of Chapter 2. We set a lower bound for the inventory of
each item i at each period t of Iit = 0, and an upper bound equal to the minimum between
the maximum ending inventory and twice the average demand per period for each item. All
mixed-integer linear programs were solved using IBM ILOG CPLEX 12.10 with the solver
default settings. A time limit for each run is set to 600 seconds. We denote by deficit (resp.
surplus) the units below (resp. above) the minimum (resp. maximum) inventory value at
each period for each item. After each run, we have computed the deficit, surplus and lost
sales obtained after reconstructing a production schedule. The results are reported in Ta-
bles 3.1, 3.2 and 3.3 that show the ratio of the obtained values and the total demand. We

sort the instances according to their TBO defined by
√

2 f̄
h̄d̄
. We also report the average

relative optimality gap, denoted Gap, for each set of instances, that corresponds to the rel-
ative difference between the best upper bound UB and the best lower bound LB obtained
by CPLEX: Gap = UB−LB

UB
.

3.5.1 Planning reconstruction

Using the information provided by solving the lot-sizing problem on quantities to produce
at each period, we can reconstruct a production plan that respects as much as possible the
inventory constraints by considering that the production for item i at period t occurs at
rate 1

bit
after a setup time of sit. This assumption makes sense with regards to the capacity

constraints of the CLSP, which allow a feasible production plan to be determined.
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3.5.2 Analysis

Let us first consider two settings in which we assume that we know exactly when the demands
occur within the periods.

1. In the first setting, all demands are instantaneous and randomly generated within the
period.

2. In the second setting, all demands are instantaneous and randomly generated within
the first half of the period.

Let us denote by M0 the original model in Section 3.2.1, and M1 (resp. M2) the model
with the additional constraints introduced in Section 3.3 (resp. Section 3.4).

Deficit (%) Surplus (%) Lost Sales (%) Gap (%)
Model M0 M1 M2 M0 M1 M2 M0 M1 M2 M0 M1 M2

1 11.30 2.06 0.91 0.65 2.68 0.06 0.00 2.39 0.88 0.88 0.58 1.65
2 7.88 3.00 0.32 3.04 3.07 0.01 0.02 1.50 1.94 2.76 1.05 9.94TBO
4 3.94 2.62 0.01 3.82 2.92 0.00 0.16 0.58 1.72 2.34 3.30 18.56

Average 7.71 2.56 0.41 2.50 2.89 0.02 0.06 1.49 1.51 1.99 1.65 10.05

Table 3.1: Comparison between models for randomly generated demands (maximum CPU
time of 600 seconds)

Table 3.1 shows that, for the original modelM0, the lost sales are very small (always less
than 1%), the inventory surplus or deficit can be significant, especially for small values of
TBO (11.30% of deficit on average for TBO=1). Model M1 has larger lost sales (2.39% for
instances with TBO=1), but the fraction of deficit and surplus is greatly reduced compared to
M0. The optimality gaps reported for M0 and M1 are equivalent. Model M2, being more
precise, performs much better than M0 with regards to the inventory deficit and surplus
(from 3.94% to 0.01% for the inventory deficit for the instances with TBO=4). The lost
sales are greater for TBO=4 compared to M1, but the total loss (deficit, surplus and lost
sales) is much smaller. These inventory excesses can be considered as lost sales for strict
inventory constraints. However, because M2 is more precise and 2N new variables have
been added for each period, the optimality gaps are larger within the same CPU time limit
of 600 seconds. By setting a larger CPU time limit, a lost sales decrease can be reached.

Deficit (%) Surplus (%) Lost Sales (%) Gap (%)
Model M0 M1 M2 M0 M1 M2 M0 M1 M2 M0 M1 M2

1 43.99 10.48 3.65 0.25 0.93 0.00 0.00 3.15 2.56 0.78 0.67 1.97
2 24.46 10.12 1.59 0.95 1.25 0.00 0.02 2.06 2.85 2.67 0.98 8.24TBO
4 9.86 6.47 0.09 0.81 1.14 0.00 0.16 0.68 1.83 2.39 2.92 21.86

Average 26.11 9.03 1.77 0.67 1.11 0.00 0.06 1.96 2.42 1.95 1.52 10.69

Table 3.2: Comparison between models for randomly generated demands during the first
half of the period (maximum CPU time of 600 seconds)

In the specific case where demands occur at the beginning of the period, not considering
the dynamic evolution of the inventory may lead to inventory management issues because
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decision making does not take into account the inventory drop at the beginning of the period.
Table 3.2 shows the results obtained when all demands occur during the first half of each
period. In this case, we notice a great increase in deficit for M0. Indeed, if we take the case
of TBO=1 (43.99%), without the additional inventory constraints, the initial inventory level
at each period will most likely be close to 0, meaning that if the production occurs after the
demand, then there will be a negative inventory. The deficit increases for M1 and M2, but
they still comparatively perform much better than the original model. M2 still has the best
performances.

Deficit (%) Surplus (%) Lost Sales (%) Gap (%)
Model M0 M1 M2 M0 M1 M2 M0 M1 M2 M0 M1 M2

1 87.53 0.00 0.00 0.00 0.00 0.00 0.00 4.97 5.06 0.70 0.68 0.81
2 49.47 0.00 0.00 0.00 0.00 0.00 0.02 4.67 5.30 2.29 1.06 1.61TBO
4 20.85 0.00 0.00 0.00 0.00 0.00 0.16 2.18 3.08 2.43 2.59 3.94

Average 52.61 0.00 0.00 0.00 0.00 0.00 0.06 3.94 4.48 1.81 1.44 2.12

Table 3.3: Comparison between models for instantaneous demand at the beginning of the
period (maximum CPU time of 600 seconds)

Deficit (%) Surplus (%) Lost Sales (%) Gap (%)
Model M0 M1 M2 M0 M1 M2 M0 M1 M2 M0 M1 M2

1 0.00 0.00 0.00 3.03 0.00 0.00 0.00 0.35 0.44 0.77 0.83 3.47
2 0.00 0.00 0.00 13.79 0.00 0.00 0.02 1.87 2.60 2.35 1.89 3.04TBO
4 0.00 0.00 0.00 20.19 0.00 0.00 0.16 2.12 3.07 2.44 7.93 6.45

Average 0.00 0.00 0.00 12.34 0.00 0.00 0.06 1.45 2.04 1.85 3.55 4.32

Table 3.4: Comparison between models for instantaneous demand at the end of the period
(maximum CPU time of 600 seconds)

Table 3.3 (resp. Table 3.4) reports the fraction of deficit, surplus and lost sales in the
extreme case where all demands are instantaneous and occur at the beginning (resp. the
end) of the period. When demands occur at the beginning of the period, if the inventory at
the beginning of the period is smaller than the demand at this period, the difference will be
lost. When demands occur at the end of the period, if the inventory at the beginning of the
period plus the production during the period exceed the maximum inventory, the difference
will be lost. Because M0 does not consider the inventory evolution within the periods, this
model performs the worse. For a demand at the beginning of the period, the worst cases
occur for instances with a small TBO where the initial inventory at each period is close to 0
(87.53% of deficit for the instances with TBO=1). For a demand at the end of the period,
the worst cases occur for instances with a high TBO where the production quantities per
item at each period are larger (20.19% of surplus for the instances with TBO=4). Both
M1 and M2 handle the case where all demands occur at the beginning (resp. the end) of
each period. For these two models, we can find production plans without inventory deficit
or surplus. With a maximum CPU time of 600 seconds, the average optimality gaps of all
models are close (1.44% for M1 to 2.12% for M2) when demands occur at the beginning of
the period. In that case, M1 and M2 provide very similar results, with solutions for M2
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with slightly higher lost sales (2.18% for M1 to 3.08% for M2 of lost sales for the instances
with TBO=4).

3.6 Additional studies

Several extensions of the modeling of production and demand within periods can be consid-
ered. In this section, we propose additional models that could be used within this framework
for further research. The models introduced in Sections 3.6.2 and 3.6.3 were not implemented
and tested with computational experiments.

3.6.1 Backlogs

Since we consider when demand occurs within each period, adding backlogs to the problem
is a natural extension to our models. Instead of being considered as lost sales, a demand
not satisfied at the end of a period can be satisfied with production quantities in following
periods assuming a penalty cost (Zangwill (1966)). To model backlogs in our problem, we
introduce the variable Bit ≥ 0 which is the quantity of demand of item i that is backlogged
at the end of period t. Each unit of backlogs of item i at period t is penalized by a coefficient
h−it . Each unit of backlogs at period T is considered as a lost sale and is highly penalized in
the objective function. The extension of model M0 with backlogs is defined as follows:

min
N∑
i=1

T∑
t=1

(fitYit + pitXit + hitIit + h−itBit) (3.17)

Ii,t−1 +Xit +Bit = dit + Iit +Bi,t−1, ∀i, t (3.18)
Bit −Bi,t−1 ≤ dit, ∀i, t (3.19)
Xit, Iit, Bit ≥ 0, ∀i, t (3.20)
(2.3), (2.4), (2.6), (3.2), (3.3)

Backlog costs have been added in the objective function (3.17). In the flow conservation
constraints (3.18), the lost sales variables Lit of Constraints (2.2) are replaced with the
difference Bit − Bi,t−1, which corresponds to the new backlogs added at the end of period
t for item i. Constraints (3.19) state that we cannot add to the backlogs a quantity larger
than the demand for item i at period t. We can extend models M1 and M2 by considering
backlogs instead of lost sales under the assumption that, similarly to the lost sales, backlogs
do not change the time interval during which each satisfied demand is consumed. Under
this assumption, we simply need to replace Lt by Bit−Bi,t−1 in all the inventory constraints
introduced in Sections 3.3 and 3.4.

Computational experiments

Table 3.5 reports the fraction of deficit, surplus, lost sales and backlogs when solving the
instances introduced in Section 3.5 with a time limit of 600 seconds and with backlog costs
h−it = 5hit.

We first notice, by comparing Table 3.5 and Table 3.1 that, for all models we get similar
results with regards to the respect of the inventory constraints within periods whether back-
logs are allowed or not. However some of the lost sales become backlogs. For model M1,
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Deficit (%) Surplus (%) Lost Sales (%) Backlogs (%) Gap (%)
Model M0 M1 M2 M0 M1 M2 M0 M1 M2 M0 M1 M2 M0 M1 M2

1 11.18 2.29 0.89 0.67 3.47 0.02 0.00 0.03 0.09 0.05 4.88 2.57 0.75 1.60 3.60
2 8.24 3.59 0.19 3.52 4.70 0.01 0.00 0.06 0.71 0.65 5.23 11.31 1.56 3.52 20.35TBO
4 4.71 3.97 0.00 4.68 4.18 0.00 0.01 0.10 1.42 2.18 4.66 8.86 2.84 16.34 19.34

Average 8.04 3.28 0.36 2.96 4.11 0.01 0.00 0.06 0.74 0.96 4.93 7.58 1.71 7.15 14.43

Table 3.5: Comparison between models for randomly generated demands and backlogs (max-
imum CPU time of 600 seconds)

the average lost sales drop from 1.49% to 0.06% when backlogs are allowed. The problem
with backlogs seems to be computationally harder to solve, especially for M1, where the av-
erage optimality gap increases from 1.44% to 7.15%. M2 has the most backlogged demand
(7.58% on average), but it still outperforms M0 and M1 when considering the inventory
management within periods, with no inventory excess and limited lost sales (1.42%) for the
instances with TBO=4.

3.6.2 Production and demand at maximum rates

Let us consider a single-item lot-sizing problem with inventory bounds, and consider the case
where production (resp. demand) occurs with a production (resp. demand) time per unit
of bt (resp. bdt ). We know the time td at which the demand starts being consumed. We can
model the fact that we want to avoid the worst case for the respect of both the inventory
lower bound It and upper bound It within period t.

This model guarantees that the inventory constraints will be respected independently
of when production and demand occur within the period. This model can be useful for
problems where robustness is required, e.g. when there is uncertainty in the value of td or if
being able to find a production schedule respecting the inventory constraints is mandatory.
These constraints are less constraining than considering that all production quantities has
to be completed before the demand occurs or that the demand is fully consumed before the
production starts, which is what is usually done to guarantee the respect of the inventory
constraints. The additional constraints can be found below. Because these constraints are
not linear, we propose a way to linearize them.

Minimum inventory constraints

The worst case occurs when production ends right at the end of the period. In that case,
production starts at cmaxt − btXt. We need to consider three cases:

Case 1. Demand ends before production starts, i.e. td + bdtdt ≤ cmaxt − btXt. The extremum is
reached at time td + bdtdt, when dt units of demand have been consumed and nothing
has been produced. The following constraint needs to be added to the model:

It−1 − dt ≥ It

Case 2. Demand starts before production starts (td ≤ cmaxt − btXt) and ends after production
starts (td + bdtdt ≥ cmaxt − btXt). Two cases need to be considered.

(a) The extremum is reached at time cmaxt − btXt right before production starts:

It−1 −
(cmaxt − btXt − td)

bdt
≥ It (3.21)
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(b) The extremum is reached at time td + bdtdt, when demand is fully consumed:

It−1 + (
bdt
bt
− 1)dt −

(cmaxt − btXt − td)
bt

≥ It (3.22)

Case 3. Demand starts after production starts, i.e. td ≥ cmaxt − btXt. The extremum is reached
at time td + bdtdt when demand is fully consumed

It−1 − dt +
bdt
bt
dt −

(cmaxt − btXt − td)
bt

≥ It (3.23)

If we define γt = min(dt,
(cmaxt −btXt−td)

bdt
), Constraints (3.21)-(3.23) can be reduced into

these two constraints:

It−1 − γt ≥ It (3.24)

It−1 − (1− bdt
bt

)dt −
bdt
bt
γt ≥ It (3.25)

Maximum inventory constraints

The worst case occurs when the production starts at the beginning of the period. We have
three cases:

Case 1. Production ends before demands starts, i.e. st + btXt ≤ td. The extremum is reached
at time st + btXt, at the end of the production when Xt units have been produced:

It−1 +Xt ≤ It (3.26)

Case 2. Production ends after demand starts, i.e. st + btXt ≥ td, and production starts before
demand starts, i.e. st ≤ td):

(a) The extremum is reached at time td, right before the demand starts being con-
sumed:

It−1 +
(td − st)

bt
≤ It (3.27)

(b) The extremum is reached at time st + btXt, at the end of the production:

It−1 +Xt −
bt
bdt
Xt −

(st − td)
bdt

≤ It (3.28)

Case 3. Production starts after demand starts, i.e. st ≥ td. The extremum is reached at the
end of the production:

It−1 +Xt −
bt
bdt
Xt −

(st − td)
bdt

≤ It (3.29)

If we define γt = min(Xt,
(td−st)
bt

), Constraints (3.26)-(3.29) can be reduced into these
two constraints:

It−1 + γt ≤ It (3.30)

It−1 + (1− bt
bdt

)Xt +
bt
bdt
γt ≤ It (3.31)
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Linearization

For each item, we only need to add two constraints per period and per item to model the
worst case for the minimum (resp. maximum) inventory. Constraints (3.24),(3.25),(3.30)
and (3.31) are not linear because γt (resp. γt) is not linear. However, we can use additional
boolean variables to linearize a minimum between two variables. Let us define γbt ∈ {0, 1}
such that, for the minimum inventory constraints, we add the following constraints to the
model:

γt ≤ dt (3.32)

γt ≤
(cmaxt − btXt − td)

bdt
(3.33)

γt ≥ dt −
cmaxt

bdt
γbt (3.34)

γt ≥
(cmaxt − btXt − td)

bdt
− cmaxt

bdt
(1− γbt ) (3.35)

and remove the constraint γt = min(dt,
(cmaxt −btXt−td)

bdt
).

The same process can be applied to γt by adding the variables γbt ∈ {0, 1}.

3.6.3 Joint storage capacity

Another interesting extension is to consider the case where the inventory bounds are on the
total joint inventory of all items combined (Akbalik et al. (2015), Melo and Ribeiro (2017)).
It makes sense when considering upper bounds on the inventories when the storage location
has a limited capacity. Because, in both models considered in this chapter, the inventory
evolution for each item is piecewise linear, the extremum of the total inventory corresponds
to one of the extrema of the individual inventory. We have already defined these extreme
points in the previous sections and can evaluate the inventory at each of these points. In
this section, we consider the extension of the model defined in Section 3.3 where the joint
inventory of all items is bounded. Let us consider a specific item i, in the following we provide
linear constraints for each period to bound the minimum and maximum joint inventories.

Minimum joint inventory constraints

Case 1. Production starts before demand, i.e. sit ≤ obit. The extremum is reached at time
obit + dit

αit
. For j 6= i, the inventory at time obit + dit

αit
that we denote I ijt is:

Iijt = Ij,t−1 +δ{obit+
dit
αit
≥sjt}

Xjt

cmaxt − sjt
(sit−sjt)−δ{obit+ dit

αit
≥objt}

(djt−Ljt) min(1,
αjt
djt

(sit−objt))

The additional constraint to be added is:

Ii,t−1 − dit + Lit +
Xit

cmaxt − sit
(obit +

dit
αit
− sit) +

∑
j 6=i

Iijt ≥ It (3.36)

Case 2. Production starts before demand is fully consumed, i.e. obit ≤ sit ≤ obit + dit
αit

.
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(a) The extremum is reached at time sbit. For j 6= i, the inventory at time sbit is:

Iijt = Ij,t−1+δ{sit≥sjt}
Xjt

cmaxt − sjt
(sit−sjt)−δ{sit≥objt}min(djt−Ljt, αjt(1−

Ljt
djt

)(sit−objt))

The additional constraint to be added is:

Ii,t−1 − αit(1−
Lit
dit

)(sit − obit) +
∑
j 6=i

Iijt ≥ It (3.37)

(b) The extremum is reached at time obit + dit
αit

. For j 6= i, the inventory at time obit + dit
αit

is:

Iijt = Ij,t−1+δ{obit+
dit
αit
≥sjt}

Xjt

cmaxt − sjt
(sit−sjt)−δ{obit+ dit

αit
≥objt}

(djt−Ljt) min(1,
αjt
djt

(sit−objt))

The additional constraint to be added is:

Ii,t−1 − dit + Lit +
Xit

cmaxt − sit
(obit +

dit
αit
− sit) +

∑
j 6=i

Iijt ≥ It (3.38)

Case 3. Production starts after demand is fully consumed, i.e. sit ≥ obit + dit
αit

. The extremum is
reached at time obit + dit

αit
. For j 6= i, the inventory at time obit + dit

αit
is:

Iijt = Ij,t−1 +δ{obit+
dit
αit
≥sjt}

Xjt

cmaxt − sjt
(sit−sjt)−δ{obit+ dit

αit
≥objt}

(djt−Ljt) min(1,
αjt
djt

(sit−objt))

The additional constraint to be added is:

Ii,t−1 − dit + Lit +
∑
j 6=i

Iijt ≥ It (3.39)

Maximum joint inventory constraints

Case 1. Production starts before demand, i.e. sit ≤ oeit. The extremum is reached at oeit. For
j 6= i, the inventory at oeit is:

I ijt = Ij,t−1 + δ{sjt≤oeit}
Xjt

cmaxt − sjt
(oeit − sjt)− δ{oejt≤oeit}βjt(1−

Ljt
djt

)(oeit − oejt)

The additional constraint that needs to be added is:

Ii,t−1 +
Xit

cmaxt − sit
(oeit − sit) +

∑
j 6=i

I ijt ≤ It (3.40)
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3.7 Conclusions

In this chapter, we have first shown that there are incentives to consider the evolution of
inventory within each period when solving lot-sizing problems, even when these problems
are based on a time discretization of the planning horizon. Assuming that the production
and the demand are both instantaneous and simultaneous is a strong assumption that is
implicitly made when modeling inventory bounds in lot-sizing models. This assumption can
lead to operational production schedules that do not respect the inventory bounds. We
have proposed two ways to model and bound the maximum (resp. minimum) inventory
level reached for each item at each period under specific hypotheses on the shapes of the
production and demand rates. These models guarantee that a production plan that respects
inventory bounds can be determined. We have also shown that the hypotheses for each of the
two models are relevant in some cases. Computational experiments showed that these models
help to determine production schedules that better respect inventory constraints, even when
the shapes of the production and demand rates differ from the ones in the hypotheses. In
particular, we have shown that, in the extreme case where the demand is instantaneous at
either the beginning or the end of the period, both models ensure a production schedule in
which the inventory levels always fall within their bounds.

A perspective is to focus on solution methods that are specific to the proposed models
as well as on a detailed complexity analysis for the new identified problems. Based on the
numerical results, it could also be interesting to only generate a subset of the new inventory
constraints within periods and analyze whether they provide more relevant production plans
without affecting running times.
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Chapter 4

Parallelized decomposition approaches
for capacitated lot-sizing problems

In Chapter 2, we have extended the CLSP with setup times to better take into account
the impact of the end-of-horizon effect on optimized production plans. The addition of a
minimum global ending inventory was proposed as well as a maximum ending inventory per
item. This allowed for the capacity in the last periods to not be underused and we showed
that, on a rolling horizon, the production decisions are less affected by the length of the
planning horizon. In Chapter 3, we have added constraints to bound the inventory levels in
each period. We have shown that these new problems are computationally harder to solve.
We now want to efficiently solve large instances of these problems by using two classical
decomposition heuristics of the literature: Relax-and-fix and Lagrangian relaxation. These
heuristics are adapted by splitting the problem into independent subproblems that can be
solved in parallel.

The chapter is organized as follows. Section 4.1 positions our work in the literature. In
Section 4.2, the lot-sizing problem with setup times, lost sales and global ending inventory
is recalled, and the choice to use parallelized decomposition approaches is motivated. In
Section 4.3, a parallelized version of the relax-and-fix algorithm is proposed, combined with
a reconstruction technique at each iteration. In Section 4.4, we propose a Lagrangian re-
laxation based heuristic that uses a reconstruction method with an additional vertical pass
compared to the literature. In Section 4.5, we show that, once the capacity constraints in
the problem without lost sales are relaxed, each subproblem can be polynomially solved.
Computational experiments are carried out in Section 4.6 where our methods are compared
to the standard solver IBM ILOG CPLEX 12.10.



CHAPTER 4. PARALLELIZED DECOMPOSITION APPROACHES FOR
CAPACITATED LOT-SIZING PROBLEMS

4.1 Related works

The relax-and-fix heuristic relaxes the integrality of some of the binary variables to decom-
pose the problem into a series of subproblems that are solved in an iterative process (Absi
and Kedad-Sidhoum (2007)). A recent study on the performances of the relax-and-fix heuris-
tic can be found in Absi and van den Heuvel (2019). Our parallelization approach can also
apply to the fix-and-optimize algorithm that fixes the binary decision variables to a specific
value (Helber and Sahling (2010)). The Lagrangian relaxation based heuristic consists in
combining a relaxation of the capacity constraints with a reconstruction heuristic to find a
feasible plan (see e.g. Trigeiro et al. (1989), Brahimi, Dauzère-Pérès and Najid (2006) and
Süral et al. (2009)). A major novelty in this thesis is that we parallelize these approaches
not only to accelerate the solution times, but also to propose new relax-and-fix strategies.
To solve the relaxed problem in the Lagrangian relaxation heuristic, a polynomial dynamic
programming algorithm is also introduced for the uncapacitated single-item lot-sizing prob-
lem with ending inventory constraints and without lost sales. Even though there are some
research works focusing on the use of a parallel framework to solve production planning prob-
lems (Roux et al. (1999)), there are few references on this subject (Haase and Kohlmorgen
(1996)).

Decomposing a problem into subproblems is a well-known way to handle complex prob-
lems and large problem instances. In practice, an industrial problem can be split into
subproblems that are solved in parallel, for instance by decomposing the problem by item
or by location. This reduces the search tree when solving a problem using a Branch-And-
Bound approach. Nowadays, it is easy to use threads in multicore platforms to perform
many tasks in parallel. Almost every commercial solver uses threads in their exploration
methods, exploiting the capacity of the machine in order to speed optimization processes.
Once the problem is decomposed, the resulting subproblems can also be easier to solve than
the original problem with regards to the time and space complexity of the problem. A prob-
lem that might be difficult to solve can become a series of polynomial subproblems for which
there exist effective solution approaches in the literature. When solving the CLSP with setup
times as defined in Trigeiro et al. (1989), methods based on the relaxation of the capacity
constraints transform an np-hard problem into a number of polynomial subproblems that
can be solved in parallel using dynamic programming. The main drawback of using a de-
composition method is that the reconstructed solution, while being fast to solve, might be of
poor quality with regards to the initial problem. A compromise needs to be found between
computational times and solution quality.

4.2 Problem formulations

4.2.1 General problem formulation

Let us consider the capacitated lot-sizing problem (CLSP) with minimum and maximum
ending inventories, setup times and lost sales. N items have to be produced over a planning
horizon of T periods. The discrete demand of each item i is given by dit at period t. Each
unit of item i produced at period t induces a production time bit as well as a fixed setup
time sit. At the end of the horizon, there is a global minimum ending inventory I inf as well
as a maximum ending inventory per item Isupi .

The goal is to find an optimal production plan respecting the capacity restriction cmax
t for
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each period t while minimizing the total cost. This total cost comprises the fixed and unitary
production costs to be incurred each time a production takes place, the inventory holding
costs for all the items as well as the lost sales costs penalizing the unsatisfied demand. The
cost parameters are the unitary production pit, fixed setup fit and unitary inventory holding
hit costs for item i at period t. The lost sales costs penalizing each unit of unsatisfied demand
of item i at period t are defined by lit.

Let us recall the mathematical formulation of the problem that is defined in Chapter 2
and that can be found in Charles et al. (2021), and first define the decision variables as
follows:

Xit ≥ 0: Quantity of item i produced at period t,
Yit ∈ {0, 1}: Setup variable which is equal to 1 if there is an order for item i at
period t, and 0 otherwise,
Iit ≥ 0: Inventory of item i at the end of period t,
Lit ≥ 0: Quantity of lost sales for item i at the end of period t.

We extend the definition of Iit with t = 0 to describe the initial inventory of item i.
Moreover, .̄ is used to define the average value of a parameter over all items and all periods,
e.g. f̄ = 1

NT

∑N
i=1

∑T
t=1 fit.

Let us define problem (P ) as follows:

min
N∑
i=1

T∑
t=1

(fitYit + pitXit + hitIit + litLit) (4.1)

Ii,t−1 +Xit + Lit = dit + Iit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (4.2)
N∑
i=1

(sitYit + bitXit) ≤ cmaxt , ∀t ∈ 1, . . . , T (4.3)

Xit ≤MitYit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (4.4)
Lit ≤ dit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (4.5)
N∑
i=1

IiT ≥ I inf (4.6)

IiT ≤ Isupi , ∀i ∈ 1, . . . , N (4.7)
Yit ∈ {0, 1}, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (4.8)
Xit, Iit, Lit ≥ 0, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (4.9)

The objective function (4.1) minimizes the total production, setup, inventory and lost
sales costs of all items over the planning horizon. Constraints (4.2) are the flow conservation
constraints that balance, for each item, the inventory at period t − 1 and the production
and lost sales quantities at period t with the inventory and the demand at period t. Con-
straints (4.3) ensure that the capacity consumed by the setup and production times does not
exceed the maximum production capacity. Constraints (4.4) link the continuous production
variables with the binary setup variables, Mit being an upper bound on the optimal produc-
tion quantity (e.g. Mit = min(

∑T
k=t dik + Isupi , cmax

t − sit)). Constraint (4.6) states that the
global ending inventory is bounded by I inf . Constraints (4.7) add an upper bound for the
ending inventory of each item. Constraints (4.5) state that the lost sales cannot exceed the
demand. Constraints (4.8) and (4.9) define the domain of the variables.
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4.2.2 Disaggregated formulation

In this chapter, we are also considering a disaggregated formulation for the CLSP with
minimum and maximum ending inventories, setup times and lost sales. This formulation
consists in disaggregating the production variables at period t and to consider not only the
production period but also the demand it satisfies. Disaggregated formulations are often used
to solve the lp-relaxation of the CLSP because they usually provide better lower bounds
thath the classical formulation (Eppen and Martin (1987), Denizel and Süral (2006)). The
reformulation considered in this section was introduced in Krarup and Bilde (1977) and can
be found in Degraeve and Jans (2007) and de Araujo et al. (2015) for the CLSP with setup
times. Let us denote by Xikt the quantity produced at period k to satisfy the demand for
item i at period t (k ≤ t). We extend this definition to t = T + 1 to model the quantity
produced to satisfy the ending inventory constraint and to k = 0 to model the distribution
of the initial inventory. With these new variables, the inventory variables can be removed,
and by defining the new parameters

p̃ikt = pik +
t−1∑
l=k

hil

the following model can be written:

min
N∑
i=1

T∑
t=1

(fitYit + litLit) +
N∑
i=1

T∑
k=0

T+1∑
t=k

p̃iktXikt (4.10)

Lit +
t∑

k=0

Xikt = dit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (4.11)

N∑
i=1

(sikYik +
T+1∑
t=k

bikXikt) ≤ cmaxk , ∀k ∈ 1, . . . , T (4.12)

Xikt ≤ ditYik, ∀i ∈ 1, . . . , N, ∀k ∈ 0, . . . , T, ∀t ∈ 1, . . . , T + 1
(4.13)

Xik,T+1 ≤ Isupi Yik, ∀i ∈ 1, . . . , N, ∀k ∈ 0, . . . , T, ∀t ∈ 1, . . . , T + 1
(4.14)

T+1∑
t=1

Xi0t = Ii0, ∀i ∈ 1, . . . , N (4.15)

N∑
i=1

T∑
k=0

Xik,T+1 ≥ I inf (4.16)

T∑
k=0

Xik,T+1 ≤ Isupi , ∀i ∈ 1, . . . , N (4.17)

Yit ∈ {0, 1}, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (4.18)
Xikt ≥ 0, ∀i ∈ 1, . . . , N, ∀k ∈ 0, . . . , T, ∀t ∈ 1, . . . , T + 1

(4.19)
Lit ≥ 0, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (4.20)

In the new objective function (4.10), the inventory variables are removed and replaced by
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the updated production cost parameters. Constraints (4.11) link the production variables to
satisfy the demand of item i at period t to the corresponding demand and lost sales variables.
Constraints (4.12) are equivalent to Constraints (4.3), where the Xit variables are replaced
by
∑T+1

k=t Xitk. Constraints (4.13)-(4.14) link the production variables with the binary setup
variables. Constraints (4.16)-(4.17) model the minimum and maximum ending inventory
constraints.

4.3 Parallelized relax-and-fix

The aim of the parallelized relax-and-fix approach is to give more flexibility to the production
plan than in the classical relax-and-fix approach described in Section 4.3.1 by not necessarily
fixing production decisions chronologically. The main issue of a relax-and-fix heuristic is that
it might underestimate the impact of the limited capacity in the future periods when fixing
some of the binary setup variables after optimization. This aspect might be even more
relevant when optimizing on a rolling horizon, because a minimum level of inventory is
required at the end of the horizon, and the relax-and-fix heuristic tends to underestimate
the impact of the capacity in the last periods.

To illustrate the impact of the order in which the subproblems are optimized, let us
consider an instance of the CLSP with two items, i.e. N = 2, and T = 5. Except for the
first period where d11 = d21 = 0, demand is constant over time and is set to 100 for both
items. Holding costs and unitary production times are set to 1 and setup times are set to
100. No setup and production costs are considered. The available capacity is cmax = 300 in
each period. The optimal objective function for this instance is 400 and can be found for
instance by setting Y12 = Y14 = Y21 = Y23 = Y25 = 1 and all other setup variables to 0. An
optimal production plan is shown in Figure 4.1. Let us consider a framework that optimizes
production decisions one period at a time, fixing decisions that have already been taken
and relaxing the integrality of all other binary variables. If we solve each subproblem in
chronological order, after the first optimization we fix Y11 = Y12 = 0, which cannot lead to a
feasible production plan without lost sales. We get the production plan shown in Figure 4.2.
There are however several optimization orders leading to a feasible production plan without
lost sales. For instance, by optimizing subproblems in the reverse chronological order, we
get the production plan of Figure 4.1.

Figure 4.1: Optimal production plan Figure 4.2: Chronological optimization

05/03 EMSE-CMP Page 81



CHAPTER 4. PARALLELIZED DECOMPOSITION APPROACHES FOR
CAPACITATED LOT-SIZING PROBLEMS

4.3.1 Principle

The relax-and-fix heuristic (Absi and Kedad-Sidhoum (2007), Helber and Sahling (2010)) is
an iterative method. Let us define two parameters δ ∈ N∗ and γ ∈ N∗ such that δ ≤ T and
γ ≤ δ. These parameters are respectively the number of periods where setup variables are
optimized and the additional number of periods in which binary setup variables are fixed
between two successive iterations. Let us denote by K = dT

γ
e the number of iterations

necessary to fix all binary decision variables. More precisely, the planning horizon is divided
into three sets at each iteration k ∈ J1, KK.
Sfixk = {1, . . . , (k−1)γ} for k = 2, . . . , K (Sfix1 = ∅) is the set of periods where all binary

variables are fixed.
Soptk = {(k−1)γ+1, . . . ,min((k−1)γ+δ, T )} is the set of periods where all the constraints

hold.
Srelk = {(k− 1)γ + δ+ 1, . . . , T} is the set of periods where all the integrality constraints

are relaxed.
At each iteration k, we solve subproblem (Pk) derived from problem (P ) where, for each

t ∈ J1, T K:

– If t ∈ Sfixk : variables Yit are fixed to the values that were obtained up to iteration k,
denoted Yitk. (Pk) thus has the following additional constraints:

Yit = Yitk (4.21)

– If t ∈ Srelk : variables Yit are considered as continuous variables. Constraints (4.8) are
replaced in (Pk) by:

Yit ∈ [0, 1]. (4.22)

Optimal values Y ∗it obtained at iteration k after solving (Pk) are used to define Yit,k+1 = Y ∗it
for t ∈ J(k − 1)γ, kγK. The algorithm is formalized in Algorithm 4.1.

Algorithm 4.1 Relax-and-fix algorithm
1 ≤ δ ≤ T, 1 ≤ γ ≤ δ
for k ∈ J1, KK do
Sfixk ← {1, . . . , (k − 1)γ}
Soptk ← {(k − 1)γ + 1, . . . , (k − 1)γ + δ}
Srelk ← {(k − 1)γ + δ + 1, . . . , T}
Solve (Pk) where:
- Yit ← Yitk for (i, t) ∈ J1, NK× Sfixk

- Yit ∈ [0, 1] for (i, t) ∈ J1, NK× Srelk

Y ∗ is an optimal solution of (Pk)
Yit,k+1 ← Y ∗it for (i, t) ∈ J1, NK× J(k − 1)γ + 1, kγK

end for

In the fix-and-optimize algorithm (Helber and Sahling (2010)), all binary variables Yit for
t ∈ Srelk are fixed to Yitk whose values come from an initial solution. At the end of iteration
k, all Yitk are updated for t ∈ Soptk .
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4.3.2 Parallelized relax-and-fix

The parallelized version of the relax-and-fix heuristic introduces a more generic definition
of the sets defined in Section 4.3.1. At iteration k, at most J = dT

γ
e subproblems (Pjk)

for j ∈ Jk ⊂ {1, · · · , J} are solved. We assume that γ divides T . These subproblems
can be solved in parallel. The decomposition of the time horizon is provided by the triplet
(Sfixjk ,Soptjk ,Sreljk ) for each subproblem (Pjk), where Sfixjk is the same for all j ∈ Jk. More
precisely, at iteration k and for each subproblem j ∈ Jk, we have:

– Soptjk , Sreljk and Sfixjk form a partition of {1, · · · , T},

– Soptjk = {(j − 1)γ + 1, · · · ,min((j − 1)γ + δ, T )},

– Sfixj0 = ∅,

– Sfixj,k+1 = Sfixjk ∪ {t ∈ J(jk − 1)γ + 1, jkγK|t /∈ Soptjk }.

The sets Jk are defined as follows. Jk+1 = Jk\{jk} for k = 1, . . . , J − 1, where jk
corresponds to a selected subproblem and J1 = {1, . . . , J}. The selection is based on a score
denoted vjks that depends on the selected strategy s ∈ J1, CK where C is the number of
strategies. The subproblem with the lowest score is selected. All the binary variables Yit
for t ∈ J(jk − 1)γ + 1, jkγK are fixed for all iterations k′ > k. Algorithm 4.2 formalizes the
parallelized relax-and-fix heuristic.

Algorithm 4.2 Parallelized relax-and-fix algorithm

1 ≤ δ ≤ T, 1 ≤ γ ≤ δ,Sfix ← ∅, s ∈ J1, CK
J1 = {1, · · · , T

γ
}

for k ∈ J1, KK do
for j ∈ Jk do
Soptjk ← {γ(j − 1) + 1, · · · , γ(j − 1) + δ}, Sfixjk ← Sfix\S

opt
jk , Sreljk ← {1, · · · , T}\(S

fix
jk ∪

Soptjk )
Solve (Pjk) where:
- Yit ← Y ∗kit for (i, t) ∈ J1, NK× Sfixjk

- Yit ∈ [0, 1] for (i, t) ∈ J1, NK× Sreljk

Y ∗j is an optimal solution of (Pjk)
Set vjks as defined in Section 4.3.2

end for
jk ← argminj∈Jk vjks
Yk+1,it ← Y ∗jkit for (i, t) ∈ J1, NK× J(jk − 1)γ + 1, jkγK
Sfix ← Sfix ∪ Soptjkk

Jk+1 ← Jk\{jk}
end for

The iterative method is illustrated in Figure 4.3 for J = 3. At each iteration different
subproblems are optimized in parallel, the most promising partial solution is kept and all
binary variables of the corresponding set of periods are fixed in the next iterations. We get
a complete production plan after J iterations.
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Figure 4.3: Illustration of the parallelized relax-and-fix heuristic

Finding the best interval

At each iteration, different strategies can be considered to select the partial solution that
leads to the interval to fix in the next iterations. In the present work, the number of strategies
C = 4. The four strategies are detailed below.

1. The first strategy (s = 1) consists in randomly selecting an interval among the remain-
ing subproblems to be fixed in the next iterations, i.e vjk1 is randomly fixed in [0, 1].
This strategy, which should be the worst, is used as a baseline for comparison with the
three other strategies.

2. The second strategy (s = 2) considers the intervals in chronological order, which
corresponds to the classical relax-and-fix heuristic of Section 4.3.1. At iteration k,
jk = k and vjk2 = j.

3. The third strategy (s = 3) consists in selecting at each iteration the interval associated
to the subproblem with the lowest objective value. The idea is to fix at each iteration
the interval that degrades the least the objective function. Let us denote by v(Pjk) the
objective value of an optimal solution for (Pjk), then vjk3 = v(Pjk).

4. The fourth strategy (s = 4) consists in selecting at each iteration the interval associated
to the subproblem with the largest number of integer setup variables. Even if the
objective function at the iteration is not the lowest, it might be the solution that will be
the least affected during the following iterations, hence vjk4 =

∑N
i=1

∑T
t=1(1−Y ∗jit)Y ∗jit.

The different strategies are illustrated in Figure 4.4 that shows that different strategies
can lead to different selected intervals. Figure 4.4 corresponds to a possible outcome after the
first iteration of the parallelized relax-and-fix heuristic. A comparative analysis is provided
in Section 4.6.

4.3.3 Reconstruction method

After solving subproblem (Pjk), we obtain a partial solution where setup variables have
either binary or fractional values. Let us denote 0 ≤ Y ∗jit ≤ 1 the values obtained for the
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Figure 4.4: Strategies for selecting the best interval for T = 3.

binary variables after optimization of subproblem j. The information provided by the partial
production plan can be used to build a feasible solution to the initial problem.

Let us define the following sets:

– Y frac
jk = {(i, t) ∈ J1, NK× J1, T K, 0 < Y ∗jit < 1},

– Y prod
jk = {(i, t) ∈ J1, NK× J1, T K, Y ∗jit = 1},

– Y off
jk = {(i, t) ∈ J1, NK× J1, T K, Y ∗jit = 0}.

We reconstruct a feasible solution based on each partial solution obtained using the relax-
and-fix heuristic as defined in Section 4.3.2. At iteration l of the relax-and-fix heuristic, all
binary variables in set Soptl are optimized. A new problem (P l

jk) derived from problem (Pjk) is
optimized where, for all binary variables whose integrality constraints were initially relaxed:

– If (i, t) ∈ Y off
jk \S

opt
l , the binary variables are fixed to 0:

Yit = 0

– If (i, t) ∈ Y prod
jk \S

opt
l , the binary variables are fixed to 1:

Yit = 1

– If (i, t) ∈ Y frac
jk \Soptl , the binary variables have their integrality relaxed:

0 ≤ Yit ≤ 1

At the end of iteration l, we update the sets Y frac
jk , Y prod

jk and Y off
jk using the new setup

values. Fixing all binary variables in Y off
jk and Y prod

jk simplifies the problem by reducing the
number of binary variables that are optimized, hence fastening the optimization process.
Performing the reconstruction heuristic during the first iterations of the algorithm provides
more flexibility as less binary variables are fixed. In the last iterations, the reconstruction
method is faster but less flexible.
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4.4 A Lagrangian relaxation based heuristic

Lagrangian relaxation consists in approximating an optimization problem by relaxing some
of the problem constraints. Lagrangian multipliers are used to penalize the violation of
the relaxed constraints in the objective function. By fitting the Lagrangian multipliers, the
convex hull of the optimization problem can be found in some cases (Süral et al. (2009)).
Indeed, the Lagrangian dual bound is usually better than the linear relaxation bound, and
the usually infeasible solutions of the relaxed problems found in the iterative algorithm to
determine the Lagrangian dual, such as the subgradient algorithm, can be used to derive
feasible solutions by means of reconstruction heuristics.

Heuristics based on Lagrangian relaxation have been widely used to solve capacitated
lot-sizing problems since the early work of Trigeiro et al. (1989). Our Lagrangian relaxation
based heuristic is similar to the ones proposed in Brahimi, Dauzère-Pérès and Najid (2006)
or Absi et al. (2013) and is divided into two phases. After relaxing the capacity constraints,
we solve the Lagrangian relaxed problem for given Lagrangian multipliers using the algo-
rithms proposed in Section 4.5. Starting from the obtained solution, we restore the feasibility
with respect to the capacity constraints by smoothing the produced quantities using a for-
ward and a backward passes known in the literature (Trigeiro et al. (1989)) and recalled in
Section 4.4.3. In addition, the global minimum ending inventory constraint adds a linking
constraint between all items. Hence, one of the new features of our approach compared to
the literature is a vertical pass, presented in Section 4.4.4, which aims at satisfying the global
minimum ending inventory by moving inventories between items. In the original problem
(P ), lost sales are allowed. However, contrary to Absi et al. (2013), lost sales are not allowed
in the Lagrangian subproblem (P ) that we define and study in Section 4.4.2. We propose,
in Section 4.4.5, a way to efficiently transfer any quantity of overtime, that corresponds to
the excess beyond the capacity limit, to lost sales in order to find a feasible solution to the
original problem (P ). This approach is mainly relevant to solve problems where lost sales
are allowed but highly penalized (for instance multi-objective problems where the first and
most important objective consists in minimizing the total lost sales).

The resulting uncapacitated lot-sizing problem without lost sales is analyzed in Sec-
tion 4.5. We show in Section 4.5.1 that the general problem is np-hard. A heuristic is thus
proposed in Section 4.5.2. Using this heuristic to solve the relaxed problem implies that
the Lagrangian relaxation based heuristic does not provide a valid lower bound for given
Lagrangian multipliers. We show in Section 4.5.3 that, when all maximum ending inven-
tories are identical, the uncapacitated problem without lost sales becomes polynomial and
an exact algorithm is proposed. Hence, in this special case, a lower bound is obtained at
each iteration of the Lagrangian relaxation based heuristic when there are no lost sales in
an optimal solution of the original problem.

4.4.1 Relaxation of the capacity constraints

Let us consider Problem (P ) modeled in Section 4.2.1 where the capacity Constraints (4.3)
are relaxed. The related Lagrangian multipliers are denoted λt ≥ 0 for each period t, leading
to the following problem (P̃ ):

min
N∑
i=1

T∑
t=1

(fitYit + pitXit + hitIit + litLit + λt(sitYit + bitXit −
cmaxt

N
)) (4.23)

(4.2), (4.4)− (4.9)
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The objective function can also be written as follows:

min
N∑
i=1

T∑
t=1

((fit + λtsit)Yit + (pit + λtbit)Xit + hitIit + litLit)−
T∑
t=1

λtc
max
t (4.24)

The only linking constraint in Problem (P̃ ) is the global minimum ending inventory
constraint (Constraint (4.6)).

4.4.2 Lagrangian heuristic

The iterative algorithm described in this section is designed to determine a feasible produc-
tion plan for the CLSP with setup times and ending inventory constraints.

At each iteration of the algorithm several steps are performed:

1. We first remove the lost sales from Problem (P̃ ) in the objective function (4.23) and
the material flow constraints (4.2), and obtain Problem (P ).

2. Problem (P ) is solved.

3. Based on the solution that is obtained, any excess in capacity (overtime) becomes lost
sales.

The method to transfer overtime into lost sales is formalized in Section 4.4.5. We assume
that the initial inventory for each item i is not greater than the total demand for this item
over the time horizon:

Ii0 ≤
T∑
t=1

dit.

Because lost sales are not allowed, the initial inventory can be spread on the demands in
the first periods. By updating these demands, we can reduce (P̃ ) to a problem with no initial
inventory and without lost sales. Let us denote by f ′it = fit + λtsit and p′it = pit + λtbit the
updated setup and production costs using the Lagrangian multipliers defined in Section 4.4.1.
The resulting problem (P ) is written below:

min
N∑
i=1

T∑
t=1

(f ′itYit + p′itXit + hitIit) (4.25)

N∑
i=1

IiT = I inf (4.26)

Ii,t−1 +Xit = dit + Iit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (4.27)
(4.7)− (4.8)

Constraints (4.6) are replaced by an equality as there is no need to produce more than
required if the costs are positive. At each iteration k, we obtain, after solving Problem (P̃ )
a production plan that can be described by the decision variables Y ∗kit, X∗kit and I∗kit that are
the setup, production and inventory decisions for each item i at each period t. Using this
production plan, we can define:

ok =
T∑
t=1

max(0,
N∑
i=1

(sitY
∗
kit + bitX

∗
kit)− cmaxt ) (4.28)
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the overtime that would be required to satisfy production plan (Y ∗, X∗, I∗) and Lk the
corresponding quantity of lost sales. We update the Lagrangian multipliers using the formula
below:

λk+1,t = max(0, λkt − ψk(cmaxt −
N∑
i=1

(sitY
∗
kit + bitX

∗
kit))) (4.29)

where ψk > 0 is a coefficient that is set to:

ψk = φk
ok√∑T

t=1(cmaxt −
∑N

i=1(sitY ∗kit + bitX∗kit))
2 + ε

(4.30)

where ε > 0 is a parameter set to a very small value in order to avoid the denominator
to be equal to 0. At iteration k, φk is updated according to the learning based expander-
contracter defined in Zamani and Lau (2010), where the overtime ok is compared to the
minimum overtime found o. If ok ≤ o, we set φk+1 = µ1φk, otherwise we set φk+1 = µ2φk,
with φ0 > 0, µ1 > 1 and 0 < µ2 < 1. This implies that, if the minimum overtime is improved,
the step size increases while the step size decreases when there is no improvement.

If the capacity constraint is not respected (cmaxt <
∑N

i=1(sitY
∗
kit+bitX

∗
kit)), the Lagrangian

coefficient λkt increases. The overtime is reduced by performing runs of vertical, forward and
backward passes as described in Section 4.4.3 and Section 4.4.4 until no further improvement
can be made. Let us denote by L the smallest number of lost sales found during the run of
the algorithm. The algorithm is formalized in Algorithm 4.3:
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Algorithm 4.3 Lagrangian relaxation based heuristic
k ← 0, kmax, L←∞, o←∞,
φ0 > 0, µ1 > 1, 0 < µ2 < 1
λ0t ← 0 ∀t ∈ {1, · · · , T}
while k ≤ kmax do
Solve (P ) as defined in Section 4.4.2 using Algorithm 4.4
(Y ∗k , X

∗
k) is the obtained solution

Compute ok using formula (4.28)
if ok < o then
o← ok
φk+1 ← µ1φk

else
φk+1 ← µ2φk

end if
Compute ψk using formula (4.30)
λk+1,t ← max(0, λkt − ψk(cmaxt −

∑N
i=1(sitY

∗
kit + bitX

∗
kit))) for t ∈ J1, T K

while stopping criteria do
Perform forward, backward and vertical passes as defined in Section 4.4.3 and Sec-
tion 4.4.4

end while
Transfer excess production to lost sales as defined in Section 4.4.5
Compute Lk
if Lk < L then
L← Lk

end if
k ← k + 1

end while

In Sections 4.4.3 and 4.4.4, index k is removed to simplify the notations.

4.4.3 Forward and backward passes

Although these passes are known in the literature (Trigeiro et al. (1989), Brahimi, Dauzère-
Pérès and Najid (2006)), they are recalled in this section for the sake of completeness. At
each iteration k, once the uncapacitated problem (P ) is solved, we get a production plan
that requires overtime in some periods to satisfy all demands over the horizon. This initial
production plan is usually smoothed out by performing forward and backward passes. At
iteration k, a forward pass moves the production quantity of an item to a later period while
a backward pass moves the production quantity of an item to a previous period. When
performing a forward pass from period t′ to a later period t, enough inventory should be
kept to satisfy all demands before t. Hence, we cannot move a quantity greater than the
inventory at any given period between t′ and t−1. Let us denote by cat the available capacity
at period t. The quantity of i that is moved forward cannot consume more time than the
available capacity at t, including a setup time if i was initially not produced at t. With a
forward pass, the maximum quantity Qf

it′t of item i that can be moved from period t′ to
period t (t′ < t) without affecting the feasibility of the production plan is:

Qf
it′t = min(

cat − (1− Y ∗it )sit
bit

, X∗it′ , min
t′≤l<t

I∗il) (4.31)
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With a backward pass, the quantity moved from period t′ to period t similarly cannot
consumed more time than the available capacity cat , including a setup time if there was no
previous production of i at t. The maximum quantity Qb

itt′ of item i that can be moved from
period t′ to an earlier period t (t < t′) without affecting the feasibility of the production plan
is:

Qb
itt′ = min(

cat − (1− Y ∗it )sit
bit

, X∗it′) (4.32)

For both passes, at each iteration of a pass, the best move from t′ to t is chosen according
to the following criterion:

min
(t,t′)∈T 2

λt
max(Qit′t, ε)λt′

, (4.33)

where Qit′t = Qf
it′t or Qit′t = Qb

itt′ depending on whether a forward or a backward pass
is performed and ε > 0. Production is less penalized for periods with smaller Lagrangian
multipliers, thus this criterion moves production quantities from a period with a low incentive
to produce to a period with a high incentive to produce. As in Trigeiro et al. (1989), forward
and backward passes are performed three times each. Each pass stops when no further move
is possible.

4.4.4 Vertical pass

As the problem with ending inventory bounds has an additional constraint linking the ending
inventory of all items, at each iteration k an additional pass that enables units of ending
inventories to be moved from one item to another is added to the forward and backward
passes. This pass does not apply for the CLSP with setup times with the linking global
ending inventory constraint because demands are independent for each item. We show
in Section 4.5 that, when solving the uncapacitated version of the problem with ending
inventory constraints, all ending inventories can only take a restricted set of values. This
property does not apply to the capacitated problem, justifying the need for this additional
pass. With a vertical pass, the maximum quantity of ending inventory of item i′ produced at
period t′ that can be replaced by ending inventory of i produced at period t (denoted Qv

ijkt)
without affecting the feasibility of the production plan is:

Qv
i′it′t = min(

cat − (1− Y ∗it )sit
bit

, Isupi − I∗iT , X∗i′t′ , min
t′≤l≤T

I∗i′l) (4.34)

Indeed, the quantity of item i produced at period t cannot consume more time than the
available capacity cat . Moreover, we cannot remove a quantity of i′ at t′ that is greater than
the available inventory at any given period between t′ and T . Finally, the ending inventory
of i cannot exceed Isupi . At each iteration of the pass, we find the best move from item i′

produced at period t′ to item i produced at period t according to the criterion:

min
(i,i′,t,t′)∈N2×T 2

λt
max(Qv

i′it′t, ε)λt′
(4.35)

Similarly to the forward and backward passes, we move production quantities from a
period with a low incentive to produce to a period with a high incentive to produce.
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4.4.5 Deriving a feasible solution for (P )

At the end of the passes performed at iteration k, the resulting production plan has no lost
sales but may require overtime ot at period t in order to satisfy all demands.

We compute for each item i with Y ∗it = 1 the ratio between the setup times and the
production times:

rit =

{
sit+1
bitX∗it

if bitX∗it ≤ ot
1

bitX∗it

(4.36)

By not producing an item, we also delete the setup time for this item. Thus, it makes sense
to first remove items for which the setup times are the largest compared to the processing
times. This is why, at each period t, we remove units of item i in decreasing order of rit
until all overtime has been removed. Runs of the passes described in Section 4.4.3 are then
performed.

4.5 Uncapacitated lot-sizing problem without lost sales
and with ending inventory constraints

We consider in this section the uncapacitated lot-sizing problem without lost sales and with
ending inventory constraints (P ). We prove in Section 4.5.1 that (P ) is np-hard. Then, a
heuristic to find a feasible solution in polynomial time is proposed in Section 4.5.2. Finally,
we show in Section 4.5.3 that, when the ending inventory upper bound is the same for all
items, the problem can be solved polynomially.

4.5.1 Problem analysis

We first prove a preliminary result that is used in the proof of Theorem 6, the main theorem
of this section.

Theorem 5. There exists an optimal solution for (P ) where at most one item i ∈ J1, NK has
an ending inventory 0 < IiT < Isupi . All other ending inventories take values in {0, Isupi }.

Proof. The proof is done by contradiction. Let us assume there exists an optimal solution
where the ending inventories of two items i and i′ are such that:

0 < IiT < Isupi ,

0 < Ii′T < Isupi′ .

We can assume that this solution is such that all demands as well as the ending inventory
are produced during the latest production period. Otherwise, because the problem is unca-
pacitated and because inventory costs are non-negative, we can find a feasible solution as
least as good that satisfies this requirement. Let us denote by tei and tei′ the last production
periods for items i and i′ in this solution. Such periods exist because ending inventories for
items i and i′ are strictly greater than 0 and the problem does not have initial inventory.
Let us consider the costs:

ci = pitei +
T∑
t=tei

hit
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and

c′i = pi′te
i′

+
T∑

t=te
i′

hi′t.

Let us consider the case where ci ≤ ci′ . Then δ = min(Ii′T , I
sup
i − IiT ) units of item

i′ can be replaced by units of item i without affecting the feasibility of the solution. The
new solution is at least as good as the previous one with either IiT = Isupi or Ii′T = 0. By
symmetry, this proposition holds for ci > ci′ .

The theorem below shows that the problem is np-hard.

Theorem 6. The uncapacitated lot-sizing problem without lost sales and with ending inven-
tory constraints is np-hard.

Proof. Let us consider a single period case where fi = Isupi for i ∈ J1, NK. Demands as well
as production and holding costs are equal to 0. Let us denote this problem by (P1) and its
optimal value by F ∗1 . (P1) is given by:

min
N∑
i=1

Isupi Yi (4.37)

s.t.
N∑
i=1

Xi ≥ I inf (4.38)

Xi ≤ Isupi Yi, ∀i ∈ J1, NK (4.39)
Yit ∈ {0, 1}, ∀i ∈ J1, NK (4.40)
Xit ≥ 0, ∀i ∈ J1, NK (4.41)

We show that (P1) is equivalent to (P2), whose optimal value is denoted F ∗2 and which
is given by:

min
N∑
i=1

Isupi Zi (4.42)

s.t.
N∑
i=1

Isupi Zi ≥ I inf (4.43)

Zit ∈ {0, 1}, ∀i ∈ J1, NK (4.44)

Let us first show that F ∗2 = F ∗1 :

– Let us denote (Z∗) an optimal solution for (P2). The solution consisting in setting
Yi = Z∗i and Xi = Isupi Z∗i is a feasible solution for (P1) of objective value F ∗2 , hence
F ∗2 ≥ F ∗1 .

– F ∗2 ≤ F ∗1 : Let us denote (Y ∗i , X
∗
i ) an optimal solution for (P1). The solution consisting

in setting Zi = Y ∗i is a feasible solution for (P2) of objective value F ∗1 . Indeed we have∑N
i=1 I

sup
i Y ∗i ≥

∑N
i=1 X

∗
i ≥ I inf , hence F ∗2 ≤ F ∗1 .

Page 92 EMSE-CMP Mehdi Charles



4.5. UNCAPACITATED LOT-SIZING PROBLEM WITHOUT LOST SALES AND
WITH ENDING INVENTORY CONSTRAINTS

Let us now consider the subset sum problem, which consists in deciding whether a sum
of any subset of a set of positive integers is equal to a specific target value. We show in the
following that, for all instances of the subset sum problem, we can define an instance of (P2)
such that by finding an optimal solution for this instance, we can solve the corresponding
subset sum instance.

Let us denote an instance of the subset problem S = {S1, · · · , SN} of N positive integers
and a target sum TS. Let us also define a corresponding instance of (P2) with Isupi = Si for
all i ∈ J1, NK and I inf = TS of optimal solution (Z∗) and optimal value F ∗2 ≥ TS.

– If F ∗2 = TS, then the subset of i ∈ J1, NK such that Z∗i = 1 provides a solution to the
instance of the subset sum problem.

– If F ∗2 > TS, then no subset of the set of integers sums to TS, otherwise a feasible
solution for the instance (P2) would exist with a value of TS.

This result shows that (P2) is at least as hard as the subset sum problem. The subset sum
problem is known to be np-complete (Karp (1972)). Thus (P2) is np-hard and consequently
(P1) is np-hard as well.

4.5.2 Heuristic approach

For each item i, let us consider the single-item uncapacitated lot-sizing problem (Pi) with
ending inventory Iei ≥ 0 below:

min
T∑
t=1

(f ′itYit + p′itXit + hitIit) (4.45)

s.t. Ii,t−1 +Xit = dit + Iit, ∀t ∈ J1, T K (4.46)
IiT = Iei (4.47)
Xit ≤MitYit, ∀t ∈ J1, T K (4.48)
Yit ∈ {0, 1}, ∀t ∈ J1, T K (4.49)
Xit ≥ 0, ∀t ∈ J1, T K (4.50)
Iit ≥ 0, ∀t ∈ J1, T K (4.51)

(Pi) is equivalent to an uncapacitated single-item lot-sizing problem with T + 1 periods,
where the last demand is equal to Iei and the setup and production costs at the last period
are large enough (for instance f ′i,T+1+p′i,T+1 > f ′iT +p′iT +hiT ), so that, in an optimal solution,
no production occurs at period T + 1. This last problem can be solved in at most O(T 2)
(Wagner and Whitin (1958)) (or in O(T log T ), Wagelmans et al. (1992)). Consequently, (Pi)
can also be polynomially solved. Let us denote by F ∗i (I) the optimal value of an instance of
problem (Pi) with Iei = I.

Theorem 5 shows that there is an optimal solution for (P ) such that the ending inventory
for each item i ∈ J1, NK is in {0, Isupi } except for at most one item. Algorithm 4.4 consists
in solving one instance of (Pi) for each item i with ending inventory Iei , with at most one
item i such that Iei /∈ {0, I

sup
i }.

Let us sort the items in a set s = {i1, · · · , iN} and iterate over this set. At each iteration
j, we keep a parameter I leftj indicating how much ending inventory is still left to be satisfied.
Initially, I left0 = I inf .

At iteration j, when considering item ij:
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– If I leftj > Isupij
, we set Ieij = Isupij

.

– Else if I leftj > 0, we set Ieij = I leftj .

– Otherwise, we set Ieij = 0.

At the end of each iteration, we set I leftj+1 = I leftj − Ieij . At most one item i will have an
ending inventory not in {0, Isupi }. Assume the items are sorted according to their maximum
ending inventories. In Algorithm 4.4, let us denote by s = {i1, · · · , iN} the set of items
sorted by decreasing order of maximum ending inventory. The heuristic solving (P ) when
the maximum ending inventory varies between items is formalized in Algorithm 4.4:

Algorithm 4.4 Heuristic to solve (P )

F ∗ ← 0, I left0 ← I inf

s← {i1, · · · , iN}
for j ∈ {1, · · · , N} do
if I leftj ≥ Isupij

then
F ∗ ← F ∗ + F ∗ij(I

sup
ij

)

I leftj+1 ← I leftj − Isupij

else if I leftj > 0 then
F ∗ ← F ∗ + F ∗ij(I

sup
ij
− I leftj )

I leftj+1 ← 0
else
F ∗ ← F ∗ + F ∗ij(0)

end if
end for

The heuristic runs in O(N(logN+T log T )), with a complexity of O(N logN)) to sort the
set of maximum ending inventories and a complexity of O(NT log T ) to solve N single-item
uncapacitated lot-sizing problems.

4.5.3 Polynomial case

In this section, we consider the case where Isupi = Isup, ∀i ∈ {1, · · · , N}, i.e. the maximum
ending inventory is the same for all items, and show that (P ) can be polynomially solved.
Let us define k ∈ N such that I inf = kIsup + IR with 0 ≤ IR < Isup. k is the quotient of the
euclidean division of I inf by Isup. This means that, according to Theorem 5, we can find an
optimal solution where exactly k items have an ending inventory equal to Isup.

Let us show that an optimal solution of (P ) can be determined by solving a polynomial
number of instances of subproblems (Pi). Let us denote by G ⊂ RN the set of possible ending
inventory combinations g = (g1, ..., gN) such that each element gi ∈ g is in {0, Isup, IR},∑N

i=1 gi = I inf , and at most one gi of g is equal to IR.
Let us denote by (Pg) for g ∈ G the uncapacitated multi-item lot-sizing problem where

Iei = gi for i ∈ {1, · · · , N}.

Theorem 7. Finding an optimal solution of (P ) is equivalent to finding an optimal solution
among all (Pg), for g ∈ G.
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Proof. Theorem 5 implies that there is an optimal solution (Y ∗, X∗, I∗) of (P ) such that the
combination of ending inventories {I∗1T , · · · , I∗NT} corresponds to an element of G.

Reciprocally, every element of g = {g1, · · · , gN} ∈ G corresponds to a feasible solution
for (P ) with ending inventory gi for item i.

It should be pointed out that the size of G is exponential. If IR = 0, then there are
exactly k items with ending inventory equal to Isup and the rest equal to 0, so |G|=

(
N
k

)
. If

IR 6= 0, then there are exactly k items with ending inventory equal to Isup, one item with
an ending inventory equal to IR and the rest equal to 0, so |G|= (N − k)

(
N
k

)
. However, we

will show that finding the optimal solution among all (Pg) is polynomial, and that it is not
necessary to explore all the possible values for g.

Theorem 8. For any item i ∈ {1, · · · , N}, let us denote Ki = {g ∈ G| gi = IR}. An optimal
solution g∗ of (Pg) restricted to g ∈ Ki can be determined in polynomial time.

Proof. Let us denote F ∗(g) =
∑N

j=1 F
∗
j (gj) for g = {g1, · · · , gN}.

For each g ∈ Ki, the indices of g can be divided in three disjoint sets Ssupg , S0
g and SRg

such that SRg = {i} and |Ssupg |= k by defining:

(1) SRg = {i},

(2) Ssupg = {j ∈ {1, · · · , N}\{i}|gj = Isup},

(3) S0
g = {j ∈ {1, · · · , N}\{i}|gj = 0}.

Reciprocally, each partition of {1, · · · , N} can be divided into three disjoint sets SR, Ssup
and S0 such that SR = {i} and |Ssup|= k defines an element g = {g1, · · · , gN} of Ki where:

(1) gi = IR,

(2) gj = Isup for j ∈ Ssup,

(3) gj = 0, for j ∈ J1, NK\({i} ∪ Ssup).

.
Let us denote by Spart the set of partitions {1, · · · , N} into three disjoint sets SR, Ssup

and S0 such that SR = {i} and |Ssup|= k. We show in the following that there is an optimal
partition to solve (Pg) restricted to g ∈ Ki.

min
g∈Ki

F ∗(g) = min
{SR,Ssup,S0}∈Spart

(F ∗i (IR) +
∑
j∈Ssup

F ∗j (Isup) +
∑
j∈S0

F ∗j (0)) (4.52)

Let us denote ∆j = F ∗j (Isup)− F ∗j (0). We have:

min
g∈Ki

F ∗(g) = F ∗i (IR) +
∑

j∈{1,···,N}\{i}

F ∗j (0) + min
{SR,Ssup,S0}∈Spart

(
∑
j∈Ssup

∆j). (4.53)

Finding an optimal solution S∗ = {SR∗ , Ssup∗ , S0∗} ∈ Spart can be done by sorting each
∆j for j ∈ J1, NK\{i} and by taking the first k indices in increasing order. As problem (Pj)
is polynomial, computing and sorting all ∆j is polynomial.

Because we have shown that each element of Spart corresponds to an element of Ki, we
can define an optimal solution g∗ = {g∗1, · · · , g∗N} ∈ Ki for (Pg) restricted to g ∈ Ki.
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The problem complexity of solving (P ) is defined in the theorem below.

Theorem 9. (P ) can be polynomially solved.

Proof. We want to find:

min
i∈J1,NK

(min
g∈Ki

F ∗(g)) (4.54)

Because finding an optimal solution to ming∈Ki F
∗(g) can be done in polynomial time

according to Theorem 8 for each i ∈ {1, · · · , N}, finding an optimal solution for each sub-
problem for i ∈ {1, · · · , N} and taking the solution with the lowest value provides an optimal
solution for (P ).

Algorithm 4.5 solving to optimality the uncapacitated lot-sizing problem with ending
inventory constraints when the maximum ending inventory is identical for all items is for-
malized as follows:

Algorithm 4.5 Exact method to solve (P̄ ) when the maximum ending inventory is the
same for all items
F ∗ ←∞
for i ∈ {1, · · · , N} do
Compute F ∗i (Isup), F ∗i (0) and F ∗i (IR)
∆i ← F ∗i (Isup)− F ∗i (0)

end for
s← {i1, · · · , iN} sorted in increasing order of ∆ = {∆1, · · · ,∆N}
for i ∈ {1, · · · , N} do
si ← {iφ(1), · · · , iφ(N−1)} = s\{i}
F ∗|Ki ← F ∗i (IR)

for j ∈ {1, · · · , N − 1} do
if j ≤ k then
F ∗|Ki ← F ∗|Ki + F ∗iφ(j)

(Isup)
else
F ∗|Ki ← F ∗|Ki + F ∗iφ(j)

(0)
end if

end for
if F ∗|Ki < F ∗ then
F ∗ ← F ∗|Ki

end if
end for

Similarly to the heuristic formalized in Algorithm 4.4, Algorithm 4.5 runs in O(N(N +
T log T )).

4.6 Computational experiments

4.6.1 Instance generation scheme

We generate instances according to the generation scheme introduced in Charles et al. (2021)
and presented in Section 2.5.2 of Chapter 2. We added slight changes in order to make these
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instances more realistic. The number of items N takes values in {50; 80; 100} with T = 24.
The average demand is set to d = 100, and this average demand takes into account the fact
that some items are high runners while other items are low runners. To do so, we define
θ ≤ 1 the fraction of high-running items. These items correspond to 80% of the total demand
and have a demand generated at each period. Low-running items only have a 20% chance to
have a positive demand at each period. In our computational experiments, θ = 0.3. We have
also defined the average setup time s according to the average fraction of capacity consumed
by setups at each period {0.05; 0.2; 0.4}. The average number of setups based on the costs
(kcost =

√
h̄
2f̄

∑N
i=1

√
di), as well as the average number of setups based on the capacity

(kcapa = cmax−Nb̄d̄
s̄

), as defined in Chapter 2, take values in {N
5

; N
10

; N
20
}. The Time Between

Order (TBO) that extends the definition of Harris (1913) is defined as TBO = N
kcost

. For all
these instances, there exists a feasible production plan without lost sales. In order for this
production plan to be optimal, lost sales are highly penalized in the objective function.

The mathematical models are solved using IBM ILOG CPLEX 12.10 with a maximum
running time of 50 seconds and the optimization is stopped if the optimality gap is lower
than 1%.

4.6.2 Analysis

We compute the fraction of lost sales over the total demand obtained after using the paral-
lelized relax-and-fix (c.f. Algorithm 4.2) for the different strategies introduced in Section 4.3.2
and the results are compared to the ones obtained using the Lagrangian relaxation based
heuristic using Algorithm 4.3 with a maximum number of iterations kmax = 2000 and to
the ones obtained using Algorithm 4.1. We set the following parameters for the Lagrangian
relaxation based heuristic: φ0 = 1, µ2 = 0.96 and µ1 = 3−µ2

2
= 1.02.

The choice was made to show the fraction of lost sales instead of a computed optimality
gap because of the high lost sales costs that lead to high optimality gaps when evaluating the
quality of the solution. For the relax-and-fix heuristic, in all the tables except for Tables 4.3
and 4.4, we set γ = δ = 2. In Tables 4.3 and 4.4, we set γ = 2 and δ = 4. This makes more
sense with regards to the classical use of the relax-and-fix heuristic where we usually allow
for the binary variables to be revised several times. In Tables 4.1 and 4.3, the instances are
sorted according to the TBO while, in Tables 4.2 and 4.4, the instances are sorted according
to the average fraction of capacity consumed by setups. These two parameters are the ones
leading to the most variations between instances. The parallelized relax-and-fix heuristic is
referred to by the strategy used (classical -chronological order-, random, best first or most
integer). The Lagrangian heuristic is denoted LR. We refer to the fraction of lost sales over
the total demand by LS.

Table 4.1 shows that, except for the Lagrangian relaxation based heuristic, instances with
a smaller TBO are the hardest to solve and lead to the largest lost sales (from 5.10% to 2.36%
for the relax-and-fix with a selection based on the most integer partial solution). This can
be explained by the fact that the capacity in the relaxed periods might be underestimated
for smaller production quantities. For the Lagrangian relaxation based heuristic, we get
the opposite effect because the larger the number of production periods, the more we have
flexibility when performing the passes. For all methods, note in Table 4.2 that the instances
become harder to solve as the average capacity consumed by setup times at each period
increases. Smaller setup times provide more flexibility to add additional production periods
to compensate for a prior underestimation of the impact of the capacity on the relaxed periods
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(from 2.77% to 11.13% for the relax-and-fix with a selection based on the chronological order).
In Tables 4.1 and 4.2, note that the chronological order provides in our case the worst results
with regards to the fraction of lost sales (11.74% for the instances with a TBO of 5 compared
to 5.10% by picking the interval with the most integer partial solution). The random and
best first strategies seem comparable (they both have an average value of around 5% of lost
sales), both when sorting the instances according to the TBO or the fraction of capacity
consumed by the setups. With comparable running times, the Lagrangian relaxation always
provides better results (always less than 1%).

Parallelized relax-and-fix
Classical Random Best first Most integer LR

TBO LS (%) T (s) LS (%) T (s) LS (%) T (s) LS (%) T (s) LS (%) T (s)
5 11.74 11.48 8.30 32.93 7.66 28.07 5.10 14.19 0.24 18.43
10 7.98 12.11 4.82 33.74 5.20 35.00 3.17 29.33 0.21 12.61
20 5.87 13.37 4.62 29.56 5.30 56.41 2.36 12.59 0.51 15.68

Table 4.1: Numerical results with respect to TBO

Parallelized relax-and-fix
Classical Random Best first Most integer LR

Capa. for
setups (%) LS (%) T (s) LS (%) T (s) LS (%) T (s) LS (%) T (s) LS (%) T (s)

5 2.77 11.19 2.95 30.41 3.32 29.15 2.04 23.74 0.24 14.82
20 6.94 11.96 5.40 29.63 5.93 37.41 3.19 14.48 0.34 11.98
40 11.13 13.81 6.80 36.19 6.86 52.93 3.87 17.89 0.39 19.92

Table 4.2: Numerical results with respect to capacity settings

In Tables 4.3 and 4.4, only half of the binary variables are fixed when selecting an interval.
Because the set of binary variables that are optimized at each iteration is twice as large (δ = 4
while in the previous tables δ = 2), the running times are larger (165 seconds on average
for the classical order selection compared to less than 10 seconds without reoptimization).
However, the fraction of lost sales decreases compared to the previous tables (from 11.13% to
5.16% with the chronological order). The most integer strategy still outperforms the other
ones, and we still get better results with the Lagrangian relaxation heuristic, this time with
much better running times.

Parallelized relax-and-fix
Classical Random Best first Most integer

TBO LS (%) T (s) LS (%) T (s) LS (%) T (s) LS (%) T (s)
5 4.35 162.52 1.35 192.52 2.44 119.19 0.88 181.48
10 3.44 169.96 1.14 205.04 1.67 137.56 0.54 222.81
20 3.67 162.96 1.60 231.48 2.54 246.59 0.65 215.89

Table 4.3: Numerical results with respect to TBO with reoptimization

In Table 4.5, the different strategies are compared using the disaggregated formulation
introduced in Section 4.2.2. The instances are sorted according to the average fraction of
the capacity that is consumed by setup times. When comparing the results with Table 4.2
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Parallelized relax-and-fix
Classical Random Best first Most integer

Capa. for
setups (%) LS (%) T (s) LS (%) T (s) LS (%) T (s) LS (%) T (s)

5 1.09 118.00 0.97 187.19 1.11 135.85 0.57 203.85
20 3.52 159.04 1.18 190.89 1.99 154.59 0.63 192.22
40 5.16 218.41 1.80 250.96 2.94 212.89 0.73 224.11

Table 4.4: Numerical results with respect to capacity settings with reoptimization

that uses the aggregated formulation to the results of Table 4.5, we can point out that the
running times are always larger (from around 12 seconds for the relax-and-fix heuristic using
the aggregated formulation to 100 seconds using the disaggregated formulation). This can
be explained by the fact that the disaggregated formulation has more variables (O(NT 2))
than the aggregated formulation (O(NT )). However, the disaggregated formulation always
provides better reconstructed solutions (always less than 0.5% of lost sales using the disag-
gregated formulation). With this formulation, the chronological relax-and-fix outperforms
the other strategies (0.21% of lost sales for the instances with 20% of capacity being con-
sumed by setup times to 0.39% of lost sales with the strategy based on the most integer
partial solution). All strategies are very similar and provide reconstructed solutions of sim-
ilar qualities. The quality of the reconstructed solution however seems to depend on the
setup times. When a large fraction of the capacity is consumed by setup times, it becomes
harder to recover from decisions taken in the early iterations of the algorithm. On average,
when 5% of the capacity is consumed by setup times, about 0.09% of demands are lost while,
when 40% of the capacity is consumed by setup times, the fraction of lost sales increases to
0.33%.

Parallelized relax-and-fix
Classical Random Best first Most integer

Capa. for
setups (%) LS (%) T (s) LS (%) T (s) LS (%) T (s) LS (%) T (s)

5 0.06 94.78 0.11 92.44 0.09 106.22 0.10 106.59
20 0.12 96.26 0.22 103.19 0.23 104.11 0.23 113.78
40 0.21 99.70 0.32 119.26 0.38 119.85 0.39 117.22

Table 4.5: Numerical results with respect to capacity settings using disaggregated formula-
tion

Using the disaggregated formulation, Table 4.6 shows the results of the parallelized relax-
and-fix using the reconstruction method of Section 4.3.3, and compares it to the results of the
chronological relax-and-fix heuristic with reoptimization of half of the binary variables that
were fixed during the previous iteration. The number of lost sales for 1000 units of demand
is displayed. The fraction of lost sales is very small, however note that the reconstruction
heuristic outperforms the chronological relax-and-fix both in terms of running times (78.33
seconds on average compared to 135.63 seconds for the instances where 40% of the capacity
is consumed by setup times) and in terms of lost sales (4.2 ‰ to 8.12 ‰).
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Parallelized relax-and-fix
Classical Reconstruction

Capa. for
setups (%) LS (‰) T (s) LS (‰) T (s)

5 3.19 101.48 2.68 47.63
20 5.28 90.67 3.91 60.26
40 8.12 135.63 4.25 78.33

Table 4.6: Numerical results with respect to capacity settings using disaggregated formula-
tion and with reconstruction

4.7 Conclusions

The main focus of this chapter was the use of parallelization to enhance well-known heuristics
for capacitated lot-sizing problems. We considered the relax-and-fix heuristic as well as a
Lagrangian relaxation based heuristic to solve the CLSP with the addition of the minimum
and maximum ending inventory constraints introduced in Chapter 2. We have extended the
relax-and-fix heuristic and proposed a parallelized version that optimizes several intervals in
parallel and selects the best interval to fix for the next iterations based on strategies to eval-
uate the partial solutions. We have shown that, under specific assumptions on the maximum
ending inventory constraints and when relaxing the capacity constraints, the problem can be
decomposed into independent uncapacitated single-item lot-sizing problems. We have pro-
posed a new version of the Lagrangian relaxation based heuristic introduced by Trigeiro et al.
(1989) which includes an additional vertical pass that moves the ending inventory between
items. We have considered both the aggregated formulation of the problem as well as the
facility location (a disaggregated) formulation. Computational experiments show that, with
the aggregate formulation, the relax-and-fix heuristic can provide better reconstructed solu-
tions when the selection strategy introduced in Section 4.3.2 differs from the chronological
order. We have also shown that the Lagrangian relaxation based heuristic outperforms the
relax-and-fix heuristic with similar running times. When using the facility location formula-
tion, all selection strategies of the parallelized relax-and-fix heuristic give results of similar
qualities, with the chronological order providing slightly better reconstructed solutions. We
have finally shown that, using a reconstruction strategy to determine feasible solutions based
on the partial solutions at each iteration, solutions with very few lost sales can be reached.

As a perspective, it would be interesting to use the solution of the Lagrangian relaxation
based heuristic defined in Section 4.4 as an initial solution for the parallelized relax-and-fix
heuristic. We have seen that the Lagrangian relaxation based heuristic provided solutions
with few lost sales, and the relax-and-fix heuristic could improve even more this solution.
We have considered the CLSP with additional ending inventory constraints, however it has
been proven that many uncapacacitated lot-sizing problems can be solved polynomially using
dynamic programming algorithms (minimum or maximum production quantities, inventory
bounds...). Hence it would be interesting to adapt the Lagrangian relaxation based heuristic
to solve these problems. In Chapter 5, we extend the parallelized relax-and-fix to tackle more
generic lot-sizing problems, such as the ones that are faced at DecisionBrain. Additional
perspectives are discussed in Chapter 6.

Page 100 EMSE-CMP Mehdi Charles







Chapter 5

Industrial application

5.1 Introduction

The previous chapters focused on single-level single-machine multi-item capacitated lot-sizing
problems. However, the problems faced at DecisionBrain often have multiple levels and
multiple resources. Manufacturing problems modeled as lot-sizing problems can in reality
be a combination of lot-sizing, scheduling and routing problems. In order to efficiently
solve a large variety of lot-sizing problems, DecisionBrain designed the Planning Engine, an
optimization tool using IBM ILOG CPLEX that can model and solve multi-level lot-sizing
problems with parallel machines and shared resources. The differences between the models
studied so far in this thesis and the lot-sizing problem modeled in the Planning Engine affect
the feasibility and the performances of the heuristics proposed in Chapter 4 when solving
real instances. One of the main differences is that production decision variables are linked
to processes and not items. The available capacity on the resources is consumed by the
execution of these processes and each execution of a process corresponds to the production
of some items. Another difference is the fact that setup carry-over is allowed on the machines.
This means that, if the last item produced on a machine at the end of a period is the same
than the first item at the beginning of the next period, then no setup cost and time are
required in the next period, which is defined as setup carry-over. Considering setup carry-
over affects the parallelized relax-and-fix heuristic because we have implicitly assumed in
Chapter 4 that fixing decision variables at one period does not affect the feasibility of the
problem. This assumption does not apply when setup carry-over is considered because setup
variables are linked between the periods.

In this chapter, we extend the parallelized relax-and-fix heuristic to take into account
some of the constraints modeled in the Planning Engine, particularly setup carry-overs.
These constraints and how they affect the heuristics are detailed in Section 5.2. We specifi-
cally consider the industrial application introduced in Section 1.2 of Chapter 1. Section 5.3
describes the updated version of the parallelized relax-and-fix heuristic. Computational ex-
periments are conducted and discussed in Section 5.4.
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5.2 Complex lot-sizing constraints and industrial appli-
cation

The lot-sizing formulations introduced in the previous chapters mostly model big time bucket
problems, where setups are not carried over from one period to the next. However, some
of the problems solved by DecisionBrain, including the industrial problem described in Sec-
tion 1.2, allow setups to be carried from one period to the next. Setup carry-over in lot-sizing
problems has been extensively studied (Karmarkar and Schrage (1985), Dillenberger et al.
(1993), Dillenberger et al. (1994), Suerie and Stadtler (2003)). Using small time buckets with
only one or two setups per period, modeling setup carry-over becomes necessary as the pro-
duction of an item might last several periods (Sahling et al. (2009)). This section describes
some of the complex lot-sizing constraints that apply to the industrial application described
in Section 1.2 and that are modeled in the Planning Engine. We explain how each of these
constraints can affect the parallelized relax-and-fix heuristics introduced in Chapter 4. We
also provide a mathematical formulation of the problem.

5.2.1 Minimum production quantities over several periods

One of the complex constraints of the problem introduced in Section 1.2 consists in consider-
ing a minimum production quantity Xi for item i that exceeds the available capacity during
a single period. We define by δit the minimum number of periods required to produce the
minimum production quantity starting at the beginning of period t. If the available capacity
between t and T is not enough to produce quantity Xi, then δit = T −t+1 and the minimum
ordering quantity corresponds to the available capacity between t and T (assuming setup
carry-over). The minimum production quantity constraints are modeled as:

δit−1∑
k=0

Xi,t+k ≥ min(

δit−1∑
k=0

cmaxi,t+k − si,t+k
bi,t+k

, Xi)(Yit − Yi,t−1), ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T

(5.1)

Xit ≥
cmaxt − sit

bit
(Yi,t−1 + Yi,t+1 − 1), ∀i ∈ 1, . . . , N, ∀t ∈ 2, . . . , T − 1

(5.2)

Constraints (5.1) model the fact that, if a production starts at t for item i, then at
least min(

∑δit−1
k=0

cmaxi,t+k−si,t+k
bi,t+k

, Xi) units of item i need to be produced in the next δi periods.
Constraints (5.2) ensure that, if item i is produced for three consecutive periods t− 1, t and
t+ 1, then period t needs to produce only item i at full capacity.

This can raise issues because a decision at period t should be taken assuming that there
will be enough capacity available to produce Xi in the next δit periods, even if some of these
periods were relaxed.

5.2.2 Shared resources and setup states

The Planning Engine developped by DecisionBrain not only considers fixed setup times,
through binary variables Yit that model when item i is produced in period t, but each setup
requires a specific state u among U possible states for a given set of R resources. A resource
set to a specific state can only produce one category of items. Changing the state of a
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resource r in period t requires an additional setup time to set the resource in the correct
configuration. In the industrial application we are considering, an additional initial state
binary variable denoted Z0

rut is added for each resource r and each period t. In that case,
there is no need to configure the machine in state u because the state is the same as the one
observed at the end of the previous period. Setup times only occur when there is a change
of states for a given resource r at t, that is modeled using the binary variables denoted Z+

rut.
In the Planning Engine, for each resource r ∈ {1, . . . , R}, the following binary decision

variables are used:

– Z0
rut ∈ {0, 1}: This variable is equal to 1 if state u is the initial state of resource

r ∈ {1, . . . , R} at the beginning of time bucket t, and is equal to 0 otherwise,

– Z+
rut ∈ {0, 1}: This variable is equal to 1 if there is a change to state u on resource

r ∈ {1, . . . , R} at time bucket t, and is equal to 0 otherwise,

– Zrut ∈ {0, 1}: This variable is equal to 1 if there is a production using state u on
resource r ∈ {1, . . . , R} at time bucket t, and is equal to 0 otherwise.

Setup state constraints

Setup times and setup costs at each period t for each resource r only occur if there is a
change of states in the period. This implies that the initial setup state does not induce a
setup time. The following set of constraints link the Z0

rut Z
+
rut and Zrut variables:

Z+
rut ≤ Zrut, ∀r ∈ 1, . . . , R, ∀u ∈ 1, . . . , U,∀t ∈ 1, . . . , T (5.3)

Zrut ≤ Z0
rut + Z+

rut, ∀r ∈ 1, . . . , R, ∀u ∈ 1, . . . , U,∀t ∈ 1, . . . , T (5.4)
Z0
rut + Z+

rut ≤ 1, ∀r ∈ 1, . . . , R, ∀u ∈ 1, . . . , U,∀t ∈ 1, . . . , T (5.5)

Constraints (5.3) ensure that if the state of resource r changes to u in time bucket t,
then u is one of the states of resource r in t. Constraints (5.4) state that if resource r is
producing in period t using state u, then it either means that there was a change or that it
was the initial state of the resource at the beginning of t. Constraints (5.5) model the fact
that state u on resource r cannot be both an initial state and a state that has changed at t.

The continuity between a previous state and the initial state of a resource is expressed
as follows:

Z0
ru1,t+1 + Z0

ru1t
+ Zru2t ≤ 2, ∀r ∈ 1, . . . , R, ∀(u1, u2) ∈ {1, . . . , U}2, ∀t ∈ 1, . . . , T

(5.6)
Z0
ru,t+1 ≤ Z+

rut + Z0
rut, ∀r ∈ 1, . . . , R, ∀u ∈ 1, . . . , U,∀t ∈ 2, . . . , T (5.7)

Constraints (5.6) model the fact that, if the initial state of resource r remains the same
in two consecutive periods t and t+ 1, then there are no other states in t. Constraints (5.7)
ensure that the initial state of resource r at each period is either a state that has changed
or the initial state of the previous period.

Additionally, the following constraints imply that there is exactly one initial state for
each resource at each period:

U∑
u=1

Z0
rut = 1, ∀r ∈ 1, . . . , R, ∀t ∈ 1, . . . , T (5.8)
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Linking resources to production

We need to link the setup state at the resource level to the setup variables at the production
level. A setup for item i can only occur if each used resource ri is in the correct state ui.

Yit ≤ Zriuit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (5.9)∑
i∈{1,···,N},(ri,ui)=(r,u)

Yit ≥ Zrut, ∀r ∈ 1, . . . , R, ∀u ∈ 1, · · · , U, ∀t ∈ 1, . . . , T (5.10)

Constraints (5.9) imply that item i can only be produced if the required resource ri is in
the required state ui. Constraints (5.10) state that, at period t, if a resource r is in a specific
state u, at least one item i requiring resource r to be in setup state u is such that Yit = 1.

5.2.3 Problem formulation for a single resource

For sake of simplicity, let us consider a single resource problem (PPE). Let us denote by srut
(resp. f rut) the setup time (resp. setup cost) induced if there is a change to state u at period
t.

The formulation of (PPE) is given below:

min
T∑
t=1

(
N∑
i=1

(fitYit + pitXit + hitIit + litLit) +
S∑
s=1

f rutZ
+
ut) (5.11)

Ii,t−1 +Xit + Lit = dit + Iit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (5.12)
Xit ≤MitYit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (5.13)
Lit ≤ dit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (5.14)
N∑
i=1

(sitYit + bitXit) +
S∑
s=1

srutZ
+
ut ≤ cmaxt , ∀t ∈ 1, . . . , T (5.15)∑

i req. s

Yit ≤ NZut, ∀u ∈ 1, · · · , U, ∀t ∈ 1, . . . , T (5.16)∑
i req. s

Yit ≥ Zut, ∀u ∈ 1, · · · , U, ∀t ∈ 1, . . . , T (5.17)

Z+
ut ≤ Zut, ∀u ∈ 1, · · · , U, ∀t ∈ 1, . . . , T (5.18)

Zut ≤ Z0
ut + Z+

ut, ∀u ∈ 1, · · · , U, ∀t ∈ 1, . . . , T (5.19)
Z0
ut + Z+

ut ≤ 1, ∀u ∈ 1, · · · , U, ∀t ∈ 1, . . . , T (5.20)
Z0
u1,t+1 + Z0

u1t
+ Zu2t ≤ 2, ∀(u1, u2) ∈ {1, · · · , U}2, u1 6= u2, ∀t ∈ 1, . . . , T

(5.21)
Z0
u,t+1 ≤ Z+

ut + Z0
ut, ∀u ∈ 1, · · · , U, ∀t ∈ 1, . . . , T (5.22)

S∑
s=1

Z0
ut = 1, ∀t ∈ 1, . . . , T (5.23)

Yit ∈ {0, 1}, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (5.24)
Zut, Z

0
ut ∈ {0, 1}, ∀u ∈ 1, · · · , U, ∀t ∈ 1, . . . , T (5.25)

Z+
ut ∈ [0, 1] , ∀u ∈ 1, · · · , U, ∀t ∈ 1, . . . , T (5.26)

Xit, Iit, Lit ≥ 0, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (5.27)
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The objective function (5.11) includes the costs of a change in the setup configuration at
each period for each state. Only the state change variables Z+

ut imply a setup cost. In the
capacity constraints (5.15), the setup times corresponding to a state change have been added.
Constraints (5.16) and (5.17) ensure that the machine state is linked to the production of
one of the item requiring this state. Constraints (5.18) to (5.22) link the setup state variables
to the initial and change setup state variables. Constraints (5.23) state that the machine is
in exactly one configuration at the beginning of each period. Constraints (5.24) to (5.26)
define the domains of the variables.

5.2.4 Multi-objective optimization

The Planning Engine supports lexicographic multi-objective optimization. The problem
to solve is divided into a set of criteria, that are associated to a lexicographic order. The
objective functions are optimized in this order, meaning that at step i all criteria of order i are
optimized. Lexicographic optimization allows the different costs to be strongly prioritized.
For instance, lost sales might be the main objective to optimize, even though setup and
holding costs should be minimized as well. After a given criterion has been optimized, upper
bounds are set on the criteria already considered when optimizing the next criterion in the
lexicographical order.

The problem considered in this chapter has demands of different importance. We first
want to satisfy the most important demands, and then use the remaining capacity on the
resources to satisfy the remaining demands. This first criterion to minimize is the number of
lost sales for the most important demands. The second criterion to optimize is the number
of lost sales for the less important demands.

If we consider a bi-level optimization problem where all lost sales would first be min-
imized, and then the production, inventory and setup costs would be minimized, the La-
grangian relaxation based heuristic proposed in Section 4.4.2 would be effective because it
focuses on finding a solution minimizing the lost sales, but also takes the different costs into
consideration when deciding on the quantities to produce in each period.

5.3 Extending the relax-and-fix heuristic

In Section 5.3.1, we show that Algorithm 4.2 cannot be used to solve lot-sizing problems with
minimum production quantities and with setup carry-over. In Section 5.3.2, we discuss how
the relax-and-fix heuristic can be extended to solve multi-objective lot-sizing problems. In
Section 5.3.3, we discuss how some of the infeasibility issues can be dealt with by considering
other decomposition of the binary variables. In Section 5.3.4, we propose an updated version
of Algorithm 4.2 to solve lot-sizing problems with minimum production quantities and setup
carry-over.

5.3.1 Infeasibility issues

Minimum production quantities

Applying the relax-and-fix heuristic described in Section 4.3.2 will not work if the minimum
production quantity constraints (Constraints (5.1)) are added, because Algorithm 4.2 might
fix setup variables to 1 that will make the problem infeasible even if there is a feasible solution
with lost sales.
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Let us consider a simple example with N = 2, T = 2, γ = δ = 1, a demand per period
of d1t = 400, d21 = 0 and d22 = 200, a setup time of sit = 200, holding costs hit = 1,
lost sales costs lit = 100 and a maximum capacity cmaxt = 1000 for i ∈ {1, · · · , N} and
t ∈ {1, · · · , T}. All the other costs are set to 0. We are not considering the setup states on
the resources, although each production incurs a setup time (similar to the models described
in the previous chapters). In the Planning Engine, Mit (the upper bound on the production
linking the setup and production variables) is set to cmaxt − sit = 800. Let us consider the
strategy that consists in selecting the subproblem with the lowest objective value and set a
minimum production quantity X1 = 1600 for item 1.

If we optimize the binary variables for the first period, because of Constraints (5.1),
the demand for item 2 cannot be satisfied, leading to an objective value of 200, 000. If the
binary variables for the second period are optimized, we can satisfy the demands for both
item 1 and item 2 and get a solution with an objective value of 0 if we set (Y ∗11, X

∗
11) =

(0.5, 400), (Y ∗12, X
∗
12) = (1, 400), (Y ∗21, X

∗
21) = (0, 0) and (Y ∗22, X

∗
22) = (1, 200). Because of

Constraints (5.1), if Y ∗11 = 0.5, the minimum production quantity of item 1 between period
1 and period 2, if production starts at period 1, is 800 units instead of 1600 units.

If we fix Y12 = Y22 = 1 for the second iteration, it would not be possible to find a
feasible solution satisfying the minimum production quantity because the production for
item 1 cannot fully consume the capacity in the second period.

A first solution would be to relax these constraints and only penalize a production quan-
tity that does not satisfy the minimum production quantity for each item. This can raise
issues because, even after several iterations of the algorithm, it might not be possible to
find a solution satisfying these constraints. Another possible solution is to only fix the non-
production decision variables, i.e. Y ∗it = 0, and allow the binary variables that were set to
1, i.e. Y ∗it = 1, to be reoptimized. In that case, if a production decision was taken in the
previous iterations but the capacity is not sufficient to satisfy the capacity constraints and
the minimum production quantities, then previous decisions can be revised.

Setup carry-overs

Let us give an example to show that Algorithm 4.2 of Chapter 4 cannot be used to solve
(PPE). Let us consider an instance with N = 1, T = 3, S = 2, dt = 100, ht = 1, sru1t

= 800,
cmaxt = 500 for t ∈ {1, · · · , 3}, all other costs or parameters are set to 0. The item that needs
to be produced requires setup state u1. However, in this instance, the initial setup state at
the beginning of the planning horizon is u0.

The only feasible solution for this instance is to consider that all demands are lost.
However, if we optimize first the binary variables of the third period and relax the binary
variables for the other periods, we find the following solution with objective value 0:

– (X∗1 , Y
∗

1 , Z
0∗
u11, Z

+∗
u11) = (100, 0.5, 0, 0.5)

– (X∗2 , Y
∗

2 , Z
0∗
u12, Z

+∗
u12) = (100, 0.5, 0.5, 0.5)

– (X∗3 , Y
∗

3 , Z
0∗
u13, Z

+∗
u13) = (100, 1, 1, 0)

Fixing Z0
u13 = 1 leads to an infeasible instance because the setup time required to change

the setup state to state u1 exceeds the production capacity.
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5.3.2 Extending the parallelized relax-and-fix to multi-objective op-
timization

The parallelized relax-and-fix heuristic proposed in Chapter 4 only considers a single objec-
tive function. In order to extend the algorithm to a multi-objective optimization setting,
different options can be considered.

At each iteration and for each subproblem, we could find a partial solution based on
the optimization of all the objective functions. The main issue with this method is that,
at each iteration, decisions with regards to the first objective to optimize can be affected
by optimizing objectives that are less important in previous iterations. Moreover, some of
the score definitions would need to be updated to take into account the fact that multiple
objectives were minimized.

Alternatively, we could perform runs of Algorithm 4.2 for each objective function itera-
tively. In this way, the first feasible solution found after a first run of the algorithm would
only have minimized the first objective function without considering the others. We then
set an upper bound on this objective and, based on this solution, perform another run of
Algorithm 4.2 where only the second objective function is minimized.

Both of these methods still need to be compared.

5.3.3 Other types of decompositions

An option to cope with the feasibility issues that come with splitting the binary decision
variables according to the periods would be to consider other types of decompositions.

Another decomposition that has already been studied for the relax-and-fix heuristic to
solve a multi-level capacitated lot-sizing problem (Helber and Sahling (2010)) consists in
splitting the binary variables by item. With a decomposition per item, Constraints (5.1) are
compatible with the relax-and-fix heuristic. However, this raises the concern as to how to
consider the setup states of the resource. Indeed, different items can share the same required
setup state. Depending on the number of setup states, it would be possible to consider a
decomposition per item sharing the same setup state.

As pointed out in Helber and Sahling (2010), the order in which the subset of items are
considered in the relax-and-fix heuristic can affect the solution obtained by the heuristic.
Further work should be done to find the best way to split the items. In Helber and Sahling
(2010), the items are sorted according to their cost in an optimal solution of the lp-relaxation
of the problem. Their numerical experiments, especially the comparison with the work of
Tempelmeier and Derstroff (1996) and Stadtler (2003), show that large gains can be obtained
by considering a decomposition per item.

5.3.4 Updated parallelized relax-and-fix

Based on the discussions in the previous sections, we propose an updated version of Algorithm
4.2 of Chapter 4. The binary variable decomposition is generalized, so that the decomposition
can be done by period, item, or a combination of both. It would be an interesting topic to
analyze what would be the best way to decompose the binary variables depending on the
structure of the problem, especially for large instances. Once the binary variables are split,
K subproblems are defined that can be solved in parallel. Then, once the set of binary
variables to fix has been picked, for each binary variable of this set:
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– If the optimized value of the binary variable is 0, we fix this variable to 0 for the next
iterations.

– Otherwise, the variable will be optimized as a binary variable in the next iterations
without being fixed as in Algorithm 4.2.

When the problem to solve has both setup carry-over and minimum production quantities,
the initial setup state variables are not relaxed. Indeed, if at an iteration, all changes of
states variables are set to 0 between period t and period t′ > t, then the initial setup state
binary variables between period t+ 1 and t′ need to be changed.

Algorithm 5.1 First run of the updated parallelized relax-and-fix algorithm
K, s ∈ J1, CK
A partition of J1, NK× J1, T K into sets Sopt,Ij for j ∈ {1, · · · , K}
A partition of J1, UK× J1, T K into sets Sopt,Uj for j ∈ {1, · · · , K}
Sfix,I ← ∅,Sfix,U ← ∅
J1 = {1, · · · , K}
for k ∈ J1, KK do
for j ∈ Jk do
Sfix,Ijk ← Sfix,I\Sopt,Ij , Srel,Ijk ← J1, NK× J1, T K\(Sfix,Ijk ∪ Sopt,Ij )

Sfix,Ujk ← Sfix,U\Sopt,Uj , Srel,Ujk ← J1, UK× J1, T K\(Sfix,Ujk ∪ Sopt,Uj )
Solve (PPE)jk where:
- Yit ← 0 if Ykit = 0 for (i, t) ∈ Sfix,Ijk

- Zut ← 0 if Zkut = 0 for (u, t) ∈ Sfix,Ujk

- Yit ∈ [0, 1] for (i, t) ∈ Srel,Ijk

- Zut ∈ [0, 1] for (u, t) ∈ Srel,Ujk

(Yj
∗, Zj

∗) an optimal solution
Set vjks as defined in Section 4.3.2

end for
jk ← argminj∈Jk vjks
for (i, t) ∈ Sopt,Ijk

do
Yk+1,it ← Yjkit

∗

end for
for (u, t) ∈ Sopt,Ujk

do
Zk+1,ut ← Zjkut

∗

end for
Sfix,I ← Sfix,I ∪ Sopt,Ijk

Sfix,U ← Sfix,U ∪ Sopt,Ujk

Jk+1 ← Jk\{jk}
end for

We can define a number of runs per objective in a multi-objective problem. During
the first run(s), only the first objective is optimized. At the end of the first run, a first
feasible solution is obtained. During the following runs, the other objectives are optimized
in lexicographic order and an upper bound is set on the first objective, similarly to what is
currently being done in the Planning Engine.
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5.4 Computational experiments

Computational experiments were performed on a set of 6 industrial instances denoted IIi for
i ∈ {1, · · · , 6} of the problem introduced in Section 1.2. Although the mathematical model
introduced in Section 5.2.3 has been written for a single resource, there are multiple resources
in the industrial instances, and each item requires a set of resources to be in a specific setup
state. Each demand has a high or low priority. Two criteria are minimized in a lexicographic
order: The total lost sales of demands with a high priority are first minimized, and then the
total lost sales of demands with a low priority.

Let us compare the results obtained using Algorithm 5.1 and the standard solver IBM
ILOG CPLEX 12.10. The maximum optimality gap is set to 0.1%, and a time limit of 30
seconds is set to solve each subproblem. To solve each instance, Algorithm 5.1 runs four
times: (1) Two times where only the first objective function is optimized and (2) Two times
where both objective functions are optimized in lexicographic order. The binary decision
variables are split in {4, 6, T} sets using a maximum number of 6 threads. The splitting of
the binary decision variables is alternatively time-based or item-based, similarly to Helber
and Sahling (2010).

Instances T N R U
II1 14 110 79 10
II2 13 110 79 10
II3 15 97 67 8
II4 14 105 77 10
II5 14 99 77 9
II6 14 99 77 9

Table 5.1: Instance characteristics

In the considered industrial problem, the resources are either the machines that mold the
items, or the molds that can be shared between different machines. Each change of state
on a machine induces a setup time that lasts for half of a period, implying that at most
two different items can be produced on each machine at each period. Table 5.1 shows, for
each instance, the number of periods T , the number of items N , the number of resources R
and the average number of states per resource U . The six instances have similar sizes. The
number of periods varies between 13 for instance II2 to 15 for instance II3, and the number
of resources varies between 97 items for instance II3 and 110 for instances II1 and II2. On
average, around 75 resources are available, each with about 9 possible setup states.

CPLEX
Instances Obj. 1 Obj. 2 LB 1 LB 2 T (s)

II1 1,691 0 1,691 0 0
II2 0 0 0 0 1
II3 871 0 871 0 14
II4 51,500 152,580 51,500 145,592 300
II5 18,285 0 17,540 0 300
II6 6,500 135,096 6,500 124,862 300

Table 5.2: Numerical results using IBM ILOG CPLEX (maximum CPU time of 300 seconds
per objective)
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Table 5.2 shows the objective values and the lower bounds given by IBM ILOG CPLEX
after a time limit of 300 seconds. Note that Instances II1, II2 and II3 are easy to solve and
an optimal solution is found within less than 14 seconds. Instances II4 and II6 are the only
instances that have demands of both high and low priorities, hence two objective functions
to minimize in a lexicographic order. An optimal solution for the first objective function is
found within a few seconds. This is not the case for the second objective function which is
not solved to optimality for both instances (for Instance II6, the best feasible solution has
a second objective value of 135, 096 while the lower bound is 124, 862). Instance II5 has no
demand of low priority, but an optimal solution for the demands of high priority is not found
within the time limit.

Chronological CPLEX T (s) Most integer CPLEX T (s)Instances Obj. 1 Obj. 2 Obj. 1 Obj. 2 Obj. 1 Obj. 2 Obj. 1 Obj. 2
II1 1,691 0 1,691 0 11 1,691 0 1,691 0 28
II2 0 0 0 0 10 0 0 0 0 24
II3 871 0 871 0 47 873 0 871 0 79
II4 51,500 153,970 51,500 154,847 19 51,500 156,381 51,500 158,107 49
II5 18,285 0 18,285 0 90 18,485 0 18,285 0 95
II6 6,500 134,957 6,500 271,980 31 6,500 140,943 6,500 147,980 55

Table 5.3: Numerical results with 4 intervals

Chronological CPLEX T (s) Most integer CPLEX T (s)Instances Obj. 1 Obj. 2 Obj. 1 Obj. 2 Obj. 1 Obj. 2 Obj. 1 Obj. 2
II1 1,691 0 1,691 0 23 1,691 0 1,691 0 44
II2 0 0 0 0 21 0 0 0 0 41
II3 871 0 871 0 78 871 0 871 0 126
II4 51,500 155,767 51,500 154,270 33 51,500 155,270 51,500 154,037 90
II5 18,485 0 18,285 0 116 18,285 0 18,285 0 179
II6 6,500 137,400 6,500 286,580 48 6,500 141,167 6,500 235,337 130

Table 5.4: Numerical results with 6 intervals

Chronological CPLEX T (s) Most integer CPLEX T (s)Instances Obj. 1 Obj. 2 Obj. 1 Obj. 2 Obj. 1 Obj. 2 Obj. 1 Obj. 2
II1 1,691 0 1,691 0 65 1,691 0 1,691 0 100
II2 0 0 0 0 48 0 0 0 0 86
II3 871 0 871 0 147 925 0 871 0 231
II4 51,500 155,163 51,500 160,514 58 51,500 156,146 51,500 153,597 182
II5 18,485 0 18,285 0 268 18,685 0 18,285 0 301
II6 6,500 139,790 6,500 204,910 99 6,500 137,033 6,500 141,023 223

Table 5.5: Numerical results with T intervals

Tables 5.3, 5.4 and 5.5 show the results obtained for the two objective functions after
using four iterations of Algorithm 5.1, by dividing the binary variables in respectively 4, 6
and T sets using either the Chronological strategy or the Most integer strategy, as defined
in Chapter 4, to select the best set of binary variables to fix at each iteration. At each
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iteration of Algorithm 5.1, the binary variables are divided by sets of periods or by sets of
items alternatively. The corresponding objective values of the best solution obtained by IBM
ILOG CPLEX with a time limit that is equal to the running time T (s) of the heuristic are
also displayed.

For Instances II1 and II2, an optimal solution is obtained by both the heuristics and IBM
ILOG CPLEX. However, IBM ILOG CPLEX solves these instances in less than 1 second
while the heuristic takes at least 10 seconds (when the binary variables are divided into 4
sets). When selecting the binary variables based on the chronological order, Instance II3 is
always solved to optimality by the updated relax-and-fix heuristic. This is not the case when
the selection is based on the most integer relaxed solution (for instance an objective value of
925 is obtained when the binary variables are split in T sets, while the optimal value is 871).
For Instance II6, the hardest instance to solve by IBM ILOG CPLEX, the heuristic always
provides better results than IBM ILOG CPLEX within the same time limit (134, 957 for a
selection of binary variables based on the chronological order and 4 sets, while IBM ILOG
CPLEX finds a best upper bound for the second objective function of 271, 980). When the
selection of binary variables is based on the chronological order, the running times as well as
the objective values are better as the number of sets dividing the binary variables decreases
(for Instance II6, the second objective value is 134, 957 and the running time is 31 seconds
when 4 sets are considered, while the second objective value is 139, 790 and the running time
is 99 seconds when T sets are considered). When the selection is based on the most integer
relaxed solution, this observation does not seem to apply. As an example, the best solution
for Instance II6 is obtained when the binary variables are divided in T sets with a second
objective value of 137, 033.

5.5 Conclusion and perspectives

In this section, we have adapted the parallelized relax-and-fix heuristic introduced in Chap-
ter 4 to solve an industrial lot-sizing problem with setup carry-over and minimum production
quantities that span over several periods. We have shown that the relax-and-fix algorithms
(Algorithms 4.2 and 5.1) can lead to infeasibility issues when linking constraints between
periods are added to the model. As an alternative, we have proposed an adaptation of Al-
gorithm 5.1 where not all binary variables are fixed. The heuristic was implemented on the
Planning Engine of DecisionBrain and tested on a set of real instances. For these instances,
the heuristic returned feasible solutions that are close to the ones returned by IBM ILOG
CPLEX within the same time limit.

These results are just preliminary results, and more tests of the updated parallelized
relax-and-fix heuristic should be performed on instances that are hard to solve by IBM
ILOG CPLEX. Future works also have to be done on the way binary variables are split and
fixed. Finally, it would be interesting to test the proposed heuristic on another production
planning problem, with additional constraints or levels.
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Chapter 6

Conclusions and perspectives

6.1 Conclusions

In the first part of this manuscript, we have considered how we could improve the modeling of
the CLSP with setup times and lost sales to better take into account inventory management.
We first focused in Chapter 2 on the end-of-horizon effect caused by the ZIO property. We
have shown that, for capacitated lot-sizing problems, simply extending the planning horizon
is not sufficient to compensate the end-of-horizon effect. This is why we proposed to add
both a minimum ending inventory constraint and a maximum ending inventory constraint
per item to model the fact that, at the end of the planning horizon, there should be enough
stock to satisfy some of the future demands. To define these ending inventory levels, we have
studied a simpler cyclical lot-sizing problem. From this problem, we derived the cycle length
for each item. We have shown that these additional constraints indeed mitigated the end-
of-horizon effect, and that this was especially useful on a rolling horizon. We then focused
in Chapter 3 on the impact of discretizing the time when solving lot-sizing problems with
inventory bounds. We have shown that, when the inventory is constrained, not considering
the evolution of demand and production within periods can lead to infeasibility. To consider
the inventory evolution, we have proposed two models with specific assumptions on the
production and demand rates of items, and we have shown that these models help to better
respect the inventory constraints when optimizing production plans.

The numerical results in Chapters 2 and 3 showed that the new models we have pro-
posed are numerically harder to solve. Thus the second part of the manuscript was devoted
to finding generic ways to solve lot-sizing problems, using parallelization to fasten the op-
timization process. We have proposed in Chapter 4 two adaptations of heuristics used to
solve lot-sizing problems: A parallelized version of the relax-and-fix algorithm and a heuris-
tic based on Lagrangian relaxation. We have shown that, for the classical formulation of the
problem, these heuristics could provide better results than when using the original version
of the relax-and-fix algorithm. Finally, in Chapter 5, we have extended the relax-and-fix
algorithm to tackle more generic lot-sizing problems, such as the ones that are solved at
DecisionBrain. We studied a specific problem with setup carry-over and proposed a new
version of the parallelized relax-and-fix algorithm.
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6.2 Perspectives

This section proposes various extensions of the studies presented in the manuscript. Theses
perspectives are classified based on the time we believe they require to be investigated.

6.2.1 Short-term perspectives

Lot-sizing problems with seasonal demands

We could extend Chapter 2 by considering variations of the demand outside the planning
horizon, e.g. a seasonal demand. The analysis of the minimum and maximum ending
inventories was based on the average costs and demands. We could define these parameters
by weighing part of the costs and demands outside of the planning horizon. For instance,
the average demand d̄ used in Section 2.3 could be defined as:

d = αdin + (1− α)dout,

with α ∈ [0, 1]. din corresponds to the average demand in the planning horizon and dout

a forecasted demand after the planning horizon. By performing numerical analysis varying
the values of α, a relevant weight could be determined for the demand after the planning
horizon.

Studies on cyclical lot-sizing problems

Another perspective is to use cyclical lot-sizing problems to perform cost analysis. We have
shown in Chapter 2 that we can analytically find the optimal solution for the relaxed problem
proposed in Section 2.2 and get an average number of setups per period in an optimal solution
based on the capacity and the costs. We can use these formulas to study the relevance of the
instances, especially the consistency between the capacity and the costs. Some parameters,
such as the lost sales costs, are in practice hard to define because attributing a monetary value
for these parameters is not straightforward. Features such as lost sales are usually defined
in order to guarantee feasibility of the problem during the optimization process, but should
ideally be avoided. The analysis of the relaxed problem with lost sales in Section 2.3.4
provided a value for lost sales costs based on the other parameters that would imply an
optimal solution without lost sales for the relaxed cyclical problem. It would be interesting
to study if this analysis can be applied for other costs or with additional constraints, such
as a limited storage or production capacity.

Models for other production and demand approximations

Several extensions could be considered with regards to the modeling of inventory evolution
within periods of Chapter 3. Indeed, there are only few references on using production
and demand rates for lot-sizing problems and on the links between lot-sizing and scheduling
problems. As shown in Section 3.6, other shapes of production and demand rates could be
considered and modeled. Further experiments could be performed to test these new models.
Tests on industrial instances, especially when inventory management is important, should
be performed as well.
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Replace lost sales with overtimes

We could also consider overtimes instead of lost sales to deal with infeasibility issues in all
our models. This could provide more flexibility on the user’s side in case extra capacity can
be provided and will reduce the number of variables in our models. We simply need to add
new variables ot to model the overtime in period t and replace the capacity constraints (2.3)
of the model in Section 2.2.1 by:

N∑
i=1

(sitYit + bitXit) ≤ cmaxt + ot, ∀t ∈ 1, . . . , T (6.1)

ot ≥ 0, ∀t ∈ 1, . . . , T (6.2)

and add overtime penalties on the objective function. It would be interesting to analyze
if the parallelized relax-and-fix heuristic proposed in Chapter 4 performs differently. For
the Lagrangian relaxation based heuristic proposed in Section 4.4, we could remove the last
step that consists in converting the overtime at each period into lost sales. The method
proposed to convert overtimes to lost sales could be used to derive good feasible solutions to
the problem with lost sales using feasible solutions to the problem with overtime.

6.2.2 Mid-term perspectives

Modeling other constraints to mitigate the end-of-horizon effect

In Chapter 2, we have shown that, for a capacitated lot-sizing problem, extending the length
of the planning horizon was not a guarantee that the optimal solution would not be affected
by the end-of-horizon effect. This is a phenomenon that has not been studied in the literature
for capacitated lot-sizing problems, even though it can significantly impact production plans
on a rolling horizon. The minimum ending inventory constraints we proposed were a way
to partially cope with this effect. However, other ways to enforce a minimum production
quantity in the last periods could have been implemented. It would be interesting to try to
mitigate the end-of-horizon effect using another method. We could, as in Fisher et al. (2001)
for an uncapacitated lot-sizing problem, add a negative cost to the ending inventory in order
to avoid the ZIO property. However, the penalization used in Fisher et al. (2001) leads to
a non-linear objective function and only applies on uncapacitated lot-sizing problems. It
would be a challenge to find relevant costs for the CLSP. We could alternatively set lower
bounds on the capacity utilization or set a minimal total production quantity in the last
periods.

Solution approaches for lot-sizing problems with inventory constraints within
periods

We have seen in Chapter 3 that the new models are harder to solve than the CLSP because
of the additional inventory constraints. It could be interesting to:

1. Develop a Lagrangian relaxation based heuristic for these new models to figure out if
an adequate penalization of the variables in the objective function can provide good
solutions with regards to the satisfaction of the inventory constraints within each pe-
riod. We have shown in Section 3.4.2 that the model with instantaneous demand can
be polynomially solved when the capacity constraints are relaxed.
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2. Analyze if only a subset of these constraints are sufficient to guarantee the feasibility of
the problems under the production and demand assumptions. It would be interesting to
implement a method based on constraints generation that would sequentially generate
a subset of the inventory constraints.

Adapt our heuristics to solve complex lot-sizing problems

With regards to the industrial applications, the methods developped in Chapter 4 could
be generalized as a framework to solve complex lot-sizing problems of any sort using par-
allelization to fasten the optimization process. This framework could be implemented in
the Planning Engine of DecisionBrain. The dynamic programming method used to solve
the uncapacitated problem in the Lagrangian relaxation based heuristic can be extended
to consider the additional constraints that were not implemented in the model defined in
Section 4.2.1. The generalized version of the parallelized relax-and-fix algorithm has the
advantage to cope with a wide variety of lot-sizing problems, and can easily be adapted
by changing the selection strategy or the decomposition method used to split the boolean
variables.

We have only tested our model on one industrial application and it would be relevant to
extend these tests to other industrial applications. As observed in Chapter 5, constraints that
were not considered when developing a heuristic can affect the performances of the method.
In order to develop a heuristic that solves generic lot-sizing problems, it is necessary to
perform tests on several types of industrial lot-sizing problems.

6.2.3 Long-term perspectives

Links between lot-sizing and scheduling

In Chapter 3, we have modeled the evolution of inventory based on production and demand
rates, which are parameters that are usually associated to scheduling problems. The correla-
tion between lot-sizing and scheduling problems is a topic that, even though is know in litera-
ture (Dauzère-Pérès and Lasserre (1994), Dauzère-Pérès and Lasserre (2002), Gomez Urrutia
et al. (2014), Wolosewicz et al. (2015)) with various integrated models, would be interesting
to further explore. Decisions made at a tactical level when solving lot-sizing problems are
used as inputs of scheduling problems. Being able to provide more information on the lot-
sizing problem without significantly increasing the complexity of the lot-sizing or scheduling
problems should help to determine better schedules and is an important industrial topic.

General decomposition approach using parallelization

Following Chapter 4, the use of parallelization to fasten and improve the performances of
heuristics is also be an interesting topic to explore, within and outside the field of manufac-
turing. For instance, the basic idea behind the parallelized relax-and-fix algorithm could be
adapted to a wide range of optimization problems with binary variables. By splitting the
binary variables into different sets, we could potentially use or adapt the algorithm proposed
in Section 5.3.4.
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Appendix A

Extended summary in French

Chapitre 1 : Contexte industriel et état de l’art

Résoudre un problème de planification de la production (lot-sizing) consiste à déterminer
un plan de production qui permet de satisfaire un ensemble de demandes connues dans un
horizon temporel discrétisé en périodes de temps (typiquement un jour ou une semaine). Ce
plan de production doit entre autres minimiser les coûts de production, de stock et de setup.
Les problèmes de lot-sizing sont très courants en logistique en raison de l’intérêt économique
lié au fait de prendre des décisions de production rationnelles. Durant cette thèse nous nous
sommes intéressés au problème de lot-sizing avec capacité limitée (CLSP), temps de setup
et ventes perdues. La littérature en lot-sizing est très riche et a été l’objet de nombreuses
recherches depuis le premier article de Harris (1913). Plus particulièrement, les problèmes
avec plusieurs produits et avec une capacité de production limitée par période sont parti-
culièrement intéressants pour modéliser des problèmes industriels. Certains problèmes de
lot-sizing peuvent être résolus optimalement de manière polynomiale à l’aide d’algorithmes
basés sur la programmation dynamique. Cependant, il est souvent nécessaire d’utiliser des
heuristiques pour résoudre les problèmes les plus complexes, en particulier les problèmes avec
contraintes de capacité de production. Parmi les heuristiques possibles, nous nous sommes
concentrés durant cette thèse sur les heuristiques basées sur la décomposition d’un problème
en un ensemble de sous-problèmes plus simples (relaxation lagrangienne, relax-and-fix, ...).
Cette thèse s’inscrit dans une collaboration CIFRE entre Mines Saint-Etienne et Decision-
Brain, une entreprise spécialisée dans les solutions en optimisation, et plus particulièrement
dans le domaine de la planification de la production. Les problèmes que doivent résoudre
DecisionBrain incluent souvent des contraintes particulièrement complexes intégrant à la
fois des concepts de planification de la production et d’ordonnancement. L’outil de planifi-
cation optimisée développé par DecisionBrain (Planning Engine) permet de modéliser et de
résoudre des problèmes génériques de planification de la production. L’objectif principal de
cette thèse a été de prendre en compte des aspects industriels souvent négligés dans la littéra-
ture, et d’enrichir les modèles existants par de nouvelles contraintes permettant d’obtenir
des plans de production de meilleure qualité. Nous avons donc étendu dans les Chapitres 2
et 3 le CLSP avec temps de setup et ventes perdues afin de prendre en compte des aspects
importants dans le milieu industriel, notamment en ce qui concerne une meilleure gestion
des stocks. Nous avons ensuite proposé dans le Chapitre 4 deux approches de décomposition
pouvant être accélérées à l’aide de techniques de parallélisation. Enfin, nous avons étendu
dans le Chapitre 5 l’une de ces heuristiques afin de résoudre un problème industriel avec
contraintes de continuité dans les setups.
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Chapitre 2 : Problème de lot-sizing avec capacité, temps de setup et
stock final minimum et maximum

La prise en compte des stocks et leurs évolutions ont été au coeur des enjeux de modélisation
de cette thèse. Dans le Chapitre 2, nous analysons le fait que le CLSP considère habituelle-
ment un stock nul en fin d’horizon, car il est sous-optimal de produire pour satisfaire des
demandes au-delà de l’horizon considéré. Avoir un stock nul en fin d’horizon peut poser
problème car la nature des solutions obtenues n’est pas compatible avec une optimisation en
horizon glissant, alors que ce type d’optimisation est classique lors de la résolution de prob-
lèmes industriels. Les effets de fin d’horizon peuvent influencer les décisions prises durant
les premières périodes de l’horizon, et nous avons montré que cela était le cas même pour
des horizons temporels très longs en raison d’une mauvaise gestion de la capacité.

Pour compenser les effets de fin d’horizon, nous proposons d’ajouter une nouvelle con-
trainte de stock final minimal global ainsi que de nouvelles contraintes de stock maximal
par produit. Les valeurs des bornes du stock ont été déduites d’une analyse d’un problème
cyclique similaire au CLSP avec temps de setup dont la relaxation linéaire peut être résolue
de manière analytique. En plus de nous fournir des informations sur une longueur de cycle
optimale par produit, cette analyse nous a permis de définir et d’introduire deux nouveaux
indicateurs basés sur le nombre moyen de setups par période dans une solution optimale
théorique. Le premier indicateur (kcost) se base sur les coûts moyens, tandis que le second
indicateur (kcapa) se base sur la capacité moyenne consommée par période. Ces indicateurs
étendent la notion de Time Between Order introduite par Harris (1913), permettant de
déterminer le nombre optimal de périodes entre deux productions successives.

Nous avons utilisé ces indicateurs pour définir un stock minimal global I inf ainsi qu’un
stock maximal Isupi pour chaque produit i ∈ J1, NK, où N est le nombre de produits. Ces
bornes sur les stocks ont été utilisées pour proposer un nouveau schéma de génération
d’instances, adapté du schéma de Trigeiro et al. (1989), qui permet de créer des instances plus
pertinentes d’un point de vue industriel et moins soumises aux effets de fin d’horizon. L’étude
d’autres modèles de lot-sizing cycliques a permis d’étendre les analyses sur les longueurs op-
timales de cycles à des problèmes plus génériques, notamment dans le cas où la demande
moyenne varie selon les produits. L’un de ces modèles permet aussi de proposer une façon
de définir des coûts de ventes perdues de manière plus pertinente.

Les résultats numériques montrent que l’ajout de bornes sur les stocks finaux permet
de limiter les effets de fin d’horizon, en particulier dans une résolution en horizon glissant.
Les résultats numériques montrent aussi que les nouvelles instances générées sont moins
soumises aux effets de bord que les instances crées par Trigeiro et al. (1989). Une extension
de ce chapitre serait d’utiliser les nouveaux indicateurs kcapa et kcost pour définir des coûts
ainsi que des capacités adéquates se basant sur les analyses théoriques du problème relâché,
notamment pour certains coûts étant en pratique particulièrement difficiles à évaluer. Ces
indicateurs pourraient aussi permettre d’analyser si la capacité est bien dimensionnée par
rapport au plan de production optimal induit par les coûts. Il serait aussi intéressant de
définir des niveaux de stock en fin d’horizon dépendant de projections futures sur les de-
mandes ainsi que sur la capacité moyenne disponible à chaque période. Ainsi, ce stock final
pourrait permettre de s’adapter à des futures modifications dans les ressources ou dans les
demandes.
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Chapitre 3 : Problème de lot-sizing avec capacité et contraintes de
stock à l’intérieur des périodes

Toujours dans le but d’avoir une meilleure gestion opérationnelle des stocks, dans le Chapitre 3,
nous nous intéressons à l’évolution des stocks à l’intérieur des périodes. Cet aspect est par-
ticulièrement important lorsque les valeurs des stocks sont bornées, car les contraintes sur
les stocks peuvent être particulièrement importantes pour certaines applications. Avoir un
stock de sécurité permet de se protéger en cas de rupture dans la production, tandis qu’un
stock maximal peut être nécessaire pour prendre en compte des considérations physiques,
telles que la taille des entrepôts. Deux cas concrets rencontrés à DecisionBrain illustrent
l’importance de considérer les évolutions de stock à l’intérieur des périodes.

– Lorsque les périodes sont très longues, de l’ordre de la semaine ou du mois : négliger
l’évolution du stock à l’intérieur de la période peut être problématique car les variations
de stock peuvent être particulièrement importantes. Il est par exemple possible, si les
périodes sont suffisamment longues, que toute la demande d’un produit soit consommée
avant que sa production ne démarre à l’intérieur d’une période donnée. Dans ce cas
précis, tenir compte de la production dans le calcul du stock minimum atteint peut
autoriser des solutions entraînant en pratique des déficits de stock à l’intérieur d’une
période.

– Lorsque la production doit être synchronisée sur plusieurs niveaux : la fabrication
d’un produit s’effectue souvent sur plusieurs niveaux, et la production d’un atelier à
un niveau sert à alimenter les demandes d’un atelier à un second niveau. Dans ce cas,
il est très important d’être sûr qu’il y ait suffisamment de stock quand les produits
changent d’ateliers, ce qui peut arriver au milieu d’une période.

Les évolutions dynamiques de stock et les modélisations par taux de production et de de-
mande sont très peu analysées dans les problèmes de lot-sizing alors qu’elles sont particulière-
ment importantes dans les problèmes d’ordonnancement. Sous des hypothèses spécifiques
de modélisation d’évolution de la demande et de la production à l’intérieur des périodes,
nous avons proposé de nouvelles contraintes permettant de limiter les excès et les déficits de
stock lors de l’ordonnancement du plan de production obtenu après résolution du problème
de lot-sizing.

Dans un premier modèle, la demande est approchée par deux droites. La première
droite représente une demande uniforme au plus tôt, et la seconde droite représente une
demande uniforme au plus tard. Un des avantages de cette approximation est qu’elle per-
met d’approcher de manière assez précise et simple des demandes ayant des formes très
génériques. Elle apporte aussi de la robustesse dans le cas où la demande n’est pas exacte-
ment connue, sans excessivement contraindre le problème. On suppose dans cette modéli-
sation que la production a lieu de manière uniforme au cours de la période, une fois que le
temps de setup a été effectué. Cette approximation est très simple et permet de modéliser
linéairement les stocks minimal et maximal atteints à chaque période.

Dans un second modèle, la demande est considérée comme instantanée et la production
a lieu à chaque période avec un taux de production maximal. Alors que le premier modèle
est plus pertinent pour résoudre des problèmes de lot-sizing où les mailles temporelles sont
petites, ce second modèle est plus pertinent lorsque les mailles temporelles sont grandes et
que la production ne peut être considérée comme uniforme à l’intérieur de chaque période.
Dans ce second modèle, chaque variable de décision associée à un setup ou à une production

05/03 EMSE-CMP Page 125



APPENDIX A. EXTENDED SUMMARY IN FRENCH

est décomposée en deux variables. Ces nouvelles variables correspondent à une production
avant et après le moment où la demande est satisfaite, pour chaque produit et à chaque
période. Sous ces hypothèses sur la production et la demande, le stock maximal (resp.
minimal) est atteint juste après (resp. avant) le moment où une production a lieu durant la
période.

Les résultats numériques montrent que ces nouvelles contraintes peuvent permettre de
construire des plans de production respectant davantage les bornes sur les stocks. Ces plans
seront donc moins susceptibles à des modifications ultérieures au niveau opérationnel. Pour
comparer les différents modèles avec ajout de contraintes sur les stocks, chaque solution
est utilisée pour créer un ordonnancement des lots de production minimisant les excès et les
déficits de stock à chaque période. Le second modèle permet de créer des plans de production
respectant davantage les bornes sur les stocks à l’intérieur de chaque période, car il apporte
plus d’informations par l’ajout de nouvelles variables.

Une question théorique ouverte soulevée dans ce chapitre concerne la complexité du
modèle où la production est uniforme dans la période lorsque les contraintes de capacité
sont relâchées. Il serait aussi intéressant de trouver des modélisations linéaires du CLSP
prenant en compte d’autres hypothèses sur les évolutions de la production et de la demande
à l’intérieur des périodes. Nous avons proposé d’autres modélisations de l’évolution des stocks
à l’intérieur des périodes lorsque les stocks sont bornés, notamment avec une modélisation
où la demande peut être satisfaite avec du retard, mais aussi si les contraintes sur les stocks
concernent le stock total et non le stock par produit.

Les nouveaux modèles étant plus difficiles à résoudre, la seconde partie de la thèse s’est
concentrée sur l’implémentation de méthodes de résolution génériques, et plus particulière-
ment de méthodes décomposant un problème complexe en un sous-ensemble de problèmes
plus simples pouvant être résolus en parallèle. Le but est de réduire la taille des problèmes à
résoudre et d’utiliser les outils disponibles à DecisionBrain. Comme le chapitre sur l’état de
l’art l’a montré, les heuristiques basées sur des relaxations partielles des variables booléennes
(relax-and-fix, fix-and-optimize), ainsi que les heuristiques basées sur la relaxation lagrangi-
enne font parties des heuristiques les plus utilisées pour résoudre des problèmes de lot-sizing.

Chapitre 4 : Approches de décompositions parallèles pour le prob-
lème de lot-sizing avec capacité

Dans le Chapitre 4, nous avons adapté et étendu des heuristiques de décomposition en les
parallélisant pour résoudre le CLSP avec temps de setup, ventes perdues et contraintes de
stock final.

Une première heuristique étend l’heuristique de relax-and-fix en proposant une version qui
résout à chaque itération plusieurs sous-problèmes en parallèle. L’heuristique de relax-and-
fix est une heuristique itérative consistant à décomposer l’horizon temporel en un ensemble
d’intervalles où chaque intervalle contient une partie des variables binaires du modèle (e.g.
les variables de setup). A chaque itération, les variables binaires d’un des intervalles sont
optimisées, tandis que les autres variables binaires sont soit relâchées, soit fixées à des valeurs
déterminées à des itérations précédentes. Les solutions partiellement relâchées obtenues à
chaque itération sont utilisées pour fixer une partie des variables binaires dans les itérations
futures. Le relax-and-fix parallélisé que nous proposons diffère du relax-and-fix classique par
dans lequel les intervalles temporels sont fixés. Au lieu d’optimiser les intervalles de façon
chronologique, comme c’est le cas pour l’heuristique classique, divers intervalles temporels
sont optimisés en parallèle à chaque itération afin de sélectionner l’intervalle le plus pertinent
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à fixer pour les itérations futures. Différentes stratégies de sélection du meilleur intervalle
à fixer à chaque itération ont été comparées en définissant un score pour chaque solution
partielle en se basant sur:

1. Une sélection chronologique, qui correspond à la version classique de l’heuristique de
relax-and-fix,

2. Un score aléatoire, afin de servir de point de comparaison avec les autres stratégies de
sélection,

3. La fonction objectif de la solution au sous-problème, dans l’idée que la meilleure solu-
tion à chaque itération fournira la meilleure solution finale,

4. Le nombre de variables binaires relâchées ayant une valeur optimale entière, dans l’idée
que la solution la plus entière sera la moins affectée dans les itérations futures.

Une stratégie de sélection additionnelle consiste à reconstruire à chaque itération une
solution réalisable pour le problème à partir de chaque solution partielle. L’heuristique de
reconstruction est une heuristique de relax-and-fix où une partie des variables binaires est
fixée à des valeurs calculées durant les itérations précédentes. Cette heuristique peut perme-
ttre de trouver de bonnes solutions réalisables dès les premières itérations de l’algorithme.

La seconde heuristique de decomposition considérée est basée sur de la relaxation la-
grangienne, comme cela est classiquement le cas pour les problèmes de lot-sizing avec ca-
pacité de production. Dans cette heuristique, les contraintes de capacité de production à
chaque période sont relâchées. Contrairement au CLSP classique, le problème sans con-
traintes de capacité contient toujours la contrainte de stock minimal global liant les stocks
finaux de chaque produit. Nous avons montré que le problème de lot-sizing sans capacité
avec contraintes de stock final est np-difficile dans le cas général, mais peut être résolu en
temps polynomial si les stocks minimaux par produit sont identiques. L’algorithme sous-
jacent décompose le problème initial en un ensemble de sous-problèmes à un seul produit,
avec un stock final imposé et sans contraintes de capacité de production. Chacun de ces
sous-problèmes peut être résolu par un algorithme de programmation dynamique. Tous ces
sous-problèmes sont indépendants et leur résolution peut donc être parallélisée. Dans le
cas où le stock maximal varie selon les produits, nous avons proposé une heuristique pou-
vant aussi être accélérée à l’aide de la parallélisation. Une fois le problème relâché résolu,
l’heuristique lagrangienne proposée reconstruit une solution réalisable pour le problème avec
contraintes de capacité à partir de la solution obtenue lorsque les contraintes de capacité sont
relâchées. Les heuristiques classiques de reconstruction dans une heuristique lagrangienne
pour résoudre des problèmes de lot-sizing utilisent en général deux phases de lissage :

– Une première passe en amont, qui consiste à retarder des quantités de production dans
les périodes futures,

– Une seconde passe en aval, qui consiste à avancer des quantités de production dans les
périodes passées.

Ces phases de lissage ont pour but de libérer de la capacité durant les périodes contenant
de l’excès de capacité, que l’on définit comme l’excès de capacité nécessaire afin de satisfaire
le plan de production obtenu après avoir résolu le problème sans contraintes de capacité.
Comme notre problème contient aussi une contrainte de stock final minimal global liant
les produits entre eux, nous avons ajouté une troisième phase, dite phase verticale, qui
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consiste à déplacer du stock final d’un produit vers un autre. Ce déplacement doit se faire
en étant sûr que les contraintes de stock final maximal soient bien respectées. Après avoir
résolu le problème sans contraintes de capacité et effectué les différentes phases de lissage,
la solution obtenue peut ne toujours pas respecter les contraintes de capacité de production
à chaque période. Pour reconstruire une solution réalisable de notre problème initial, nous
avons ajouté à l’heuristique une dernière phase qui transforme l’excès de capacité en ventes
perdues.

Ces heuristiques ont permis de fournir des solutions avec peu de ventes perdues, ce
qui était le but recherché. En utilisant la formulation agrégée du problème étudié, nous
avons aussi montré que l’heuristique de relax-and-fix parallèle pouvait, selon le choix de
stratégie pour la sélection des intervalles à chaque itération, fournir de meilleurs résultats que
l’heuristique de relax-and-fix dans sa version classique. Cette heuristique a aussi l’avantage
de proposer un ensemble de solutions partielles à chaque itération. La reconstruction des
solutions partielles a permis d’obtenir dès les premières itérations de bonnes solutions réal-
isables pour le problème. Les résultats numériques montrent aussi que l’heuristique basée
sur la relaxation lagrangienne est particulièrement intéressante pour trouver rapidement des
solutions avec peu de ventes perdues. Il serait intéressant d’étendre l’heuristique lagrangi-
enne proposée à des problèmes avec d’autres contraintes industrielles (quantités minimales
à produire par période, bornes sur les stocks), dont on sait que les versions sans contraintes
de capacité peuvent être résolues en un temps polynomial à l’aide de la programmation
dynamique. Il ne s’agirait dans ce cas là que de changer la méthode de résolution des sous-
problèmes et d’adapter les mouvements locaux présentés dans les Sections 4.4.3 et 4.4.4,
afin que ces mouvements locaux n’affectent pas la réalisabilité de la solution. L’avantage de
l’heuristique de relax-and-fix est qu’elle est plus facilement modulable pour résoudre d’autres
modèles plus complexes de lot-sizing.

Chapitre 5 : Application industrielle

L’objectif final de cette thèse a été l’implémentation des heuristiques du Chapitre 4 dans
l’outil d’optimisation développé par DecisionBrain, ainsi que des tests de performance sur des
instances industrielles. Dans le Chapitre 5 nous proposons une modification de l’algorithme
du relax-and-fix parallélisé pour le rendre plus générique et capable de résoudre des problèmes
avec des contraintes liant les productions entre les périodes, telle que la continuité de l’état
d’une ressource entre deux périodes successives. En effet, nous avons montré que si le
problème contenait certaines contraintes liant les périodes entre elles, l’heuristique de relax-
and-fix, et en particulier le fait de fixer des décisions de production, peut aboutir à des
solutions non réalisables. Nous avons considéré un cas industriel de peinture de pièces
automobiles dont la modélisation contient des contraintes de continuité de la production entre
les périodes, ainsi que des contraintes de quantités minimales de production sur plusieurs
périodes consécutives. Contrairement à ce qui a été considéré dans les autres chapitres, pour
le problème étudié dans ce chapitre, les setups correspondent à des états sur les ressources
parmi un ensemble d’états possibles requis pour produire un certain type de produit. Dans
la nouvelle version du relax-and-fix proposée, la décomposition des variables binaires se fait
successivement selon les périodes ou selon les produits. Afin de pouvoir remettre en question
les décisions de production si ces dernières peuvent entrainer l’infaisabilité du modèle, seules
certaines variables binaires sont fixées à chaque itération. De plus, cette heuristique permet
de prendre en compte une optimisation multiobjectif, où les différents objectifs sont optimisés
dans un ordre lexicographique. L’heuristique proposée dans ce chapitre a été implémentée
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dans l’outil de modélisation et de résolution de problème de planification de la production de
DecisionBrain (Planning Engine) et testée sur un ensemble d’instances industrielles. Pour
ces instances, les résultats obtenus par l’heuristique sont similaires à ceux obtenus en utilisant
IBM ILOG CPLEX pour des temps comparables.

Certaines contraintes industrielles n’ont pas été prises en compte et il serait intéressant
de voir comment les heuristiques pourraient être modifiées pour les prendre en compte.
Nous avons seulement considéré une décomposition chronologique et une décomposition par
produit des variables binaires, mais l’heuristique présentée dans l’Algorithme 5.1 pourrait
s’appliquer à toute décomposition des variables binaires. Une extension possible serait donc
de considérer d’autres décompositions, notamment en explorant davantage la décomposition
par produit. Des résultats numériques doivent aussi être obtenus pour des instances plus
difficiles à résoudre.

Chapitre 6 : Perspectives

Différentes perspectives à court, moyen et long terme peuvent être considérées pour prolonger
les travaux entrepris durant cette thèse.

En ce qui concerne les perspectives à court terme, une première perspective concernant
la considération des effets de fin d’horizon introduite dans le Chapitre 2 serait de prendre en
compte des variations dans la demande au-delà de l’horizon temporel. Il serait alors possible
d’étendre un problème statique à un problème avec entre autres des variations saisonnières.
Les valeurs de stock minimal et maximal pourraient se déduire par pondération des coûts
et des demandes au-delà de l’horizon à optimiser. Dans le Chapitre 2, nous avons défini un
problème de lot-sizing cyclique pour établir des niveaux pertinents de stock en fin d’horizon.
Ce modèle pourrait aussi être utilisé pour faire de l’analyse des coûts. En effet, il serait par
exemple possible d’analyser les instances testées, notamment en ce qui concerne la corrélation
entre les coûts et la capacité de production. Certains paramètres, tels que les paramètres
de ventes perdues, sont difficiles à définir en pratique car la définition de tels coûts n’est
pas directe. L’analyse du problème de lot-sizing cyclique a pu permettre de définir des
coûts de ventes perdues permettant l’existence théorique d’une solution optimale sans ventes
perdues, ce qui en pratique peut représenter une définition pertinente des coûts de ventes
perdues. Le sujet de la prise en compte de l’évolution des stocks à l’intérieur des périodes du
Chapitre 3 n’a été que peu étudié dans la littérature et de nombreuses extensions peuvent être
envisagées. Différents modèles peuvent être proposés en supposant d’autres hypothèses sur
les évolutions de la production et de la demande à l’intérieur de chaque période. Davantage
d’expérimentations doivent être effectuées afin de valider l’utilité de ces nouveaux modèles.

A moyen terme, une perspective possible serait de s’intéresser à d’autres moyens d’atténuer
les effets de fin d’horizon. Nous avons montré que ces effets de bords pouvaient grandement
affecter la qualité des plans de production obtenus en horizon glissant. Les travaux effec-
tués ont consisté à rajouter des contraintes sur les stocks en fin d’horizon, mais d’autres
approches pourraient être considérées. Il serait possible de modifier les coûts de stockage
durant la dernière période afin d’éviter d’avoir un stock nul en fin d’horizon. Il serait aussi
possible de rajouter des contraintes de production ou de consommation de capacité minimale
durant les dernières périodes de l’horizon temporel. Le Chapitre 3 a montré que les nouveaux
modèles proposés étaient plus difficiles à résoudre que le CLSP. Il serait donc intéressant de
proposer des heuristiques adaptées à la résolution de ces nouveaux modèles. Il pourrait par
exemple s’agir d’une heuristique basée sur une relaxation des nouvelles contraintes de stock.
Une approche basée sur de la génération de contraintes, qui consisterait à n’ajouter qu’un
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sous-ensemble des contraintes de stock à l’intérieur des périodes, pourrait aussi donner de
bons résultats numériques. Les méthodes développées dans le Chapitre 4 pourraient être
généralisées afin de mettre en place une heuristique permettant de résoudre des problèmes
de lot-sizing plus génériques. L’objectif serait à terme d’implémenter cette méthode dans
l’outil de planification optimisée de DecisionBrain. L’heuristique de relax-and-fix parallélisé
n’a été testé que sur une seule application industrielle, et il serait nécessaire d’étendre ces
tests à d’autres types problèmes industriels. En effet, comme cela a été observé dans le
Chapitre 5, l’ajout de nouvelles contraintes peut facilement affecter les performances d’une
heuristique.

L’une des principales pistes de perspectives à long terme serait d’étudier les liens entre
lot-sizing et ordonnancement. Dans les problèmes intégrés, les décisions prises au niveau
tactique lors de la résolution du problème de lot-sizing impactent directement les décisions
prises au niveau opérationnelle lors de l’ordonnancement des lots à produire. Au cours de
cette thèse, nous avons considéré l’évolution de la production et de la demande à l’intérieur de
périodes, ce qui est normalement du ressort de l’ordonnancement. Être en mesure de fournir
des informations au modèle de lot-sizing sans augmenter de manière significative sa complex-
ité pourrait permettre de trouver des plans de production optimaux plus réalistes, ce qui
aurait une portée industrielle importante. L’utilisation de la parallélisation pour améliorer
les performances d’une heuristique, comme nous avons pu le faire pour l’heuristique de relax-
and-fix dans le Chapitre 4, est aussi un sujet intéressant à explorer. Par exemple, la manière
dont l’heuristique de relax-and-fix a été parallélisée peut facilement s’adapter à n’importe
quel problème contenant des variables binaires. Une réflexion sur la meilleure manière de
séparer les variables binaires dépendant du problème à résoudre serait aussi un sujet in-
téressant à étudier, surtout si la réalisabilité de l’heuristique dépend de la décomposition
choisie.
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Abstract:

In this thesis, we considered the capacitated multi-item lot-sizing problem with setup
times and lost sales. We extended this problem to take into account important industrial
aspects, especially with regards to inventory management. We first studied the end-of-
horizon effects on optimal solutions of lot-sizing problems that, even on a rolling horizon,
can lead to important additional costs. To reduce these effects, we have added a global
minimum ending inventory constraint as well as a maximum ending inventory constraint
for each item. These values were deduced from the analysis of a cyclical capacitated lot-
sizing problem with setup times, whose linear relaxation can be analytically solved. Then,
we modeled the inventory evolution within each period. This point is especially relevant
when the storage capacity is limited. We added new inventory constraints to better respect
inventory bounds when scheduling productions within each period. The constraints differ
based on hypotheses on the shapes of evolution of production and demand. Numerical
experiments showed that these new constraints enable to schedule production plans with a
better inventory management. Decomposition approaches (Lagrangian relaxation, relax-and-
fix ) were developed in order to propose generic approaches to solve capacitated lot-sizing
problems with setup times. An original use of parallelization was proposed in order to
reduce the size of the subproblems to solve and to use Decisionbrain’s tools. Finally, the
parallelized relax-and-fix was implemented into DecisionBrain’s optimization tool and tests
were performed on industrial instances.
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Résumé:

Nous nous sommes intéressés au problème de lot-sizing multi-produits avec capacité,
temps de lancement et ventes perdues. Nous avons étendu ce problème afin de prendre en
compte des aspects industriels importants, en particulier des contraintes sur les stocks. Nous
avons d’abord étudié les effets de fin d’horizon des solutions aux problèmes de lot-sizing, qui
peuvent entraîner des coûts importants même pour des horizons temporels très longs. Pour
compenser ces effets, nous avons proposé de rajouter une contrainte de stock final minimal
ainsi que des contraintes de stock maximal par produit. Ces valeurs ont été déduites d’une
analyse d’un problème de lot-sizing cyclique avec temps de lancement et capacité dont la
relaxation linéaire peut être résolue de manière analytique. Par la suite, nous nous sommes
intéressés à la modélisation de l’évolution des stocks intra-périodes. Cet aspect est parti-
culièrement important lorsque les capacités de stockage sont limitées. Nous avons proposé
des nouvelles contraintes qui différent en fonction des hypothèses sur la production et la
demande. L’objectif est de limiter les excès et les déficits de stock lors de l’ordonnancement
détaillé du plan de production à chaque période. Nos résultats numériques ont montré
que ces nouvelles contraintes permettent de construire des plans de production respectant
davantage les contraintes sur les stocks. Des méthodes de résolution génériques et plus par-
ticulièrement des méthodes de décomposition (relaxation Lagrangienne, relax-and-fix ) ont
été développées. Une approche originale de parallélisation a été proposée, dont l’objectif est
de réduire la taille des sous-problèmes à résoudre et d’utiliser les outils disponibles à Deci-
sionBrain. L’objectif final de cette thèse a été l’implémentation des heuristiques proposées
dans l’outil d’optimisation développé par DecisionBrain ainsi que des tests de performance
sur des instances industrielles.
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