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Abstract

The development of autonomous vehicles, capable of peer-to-peer communication, as well as

the interest in on-demand solutions (e.g., Uber, Lyft, Heetch), are the primary motivations for

this study. More precisely, we are interested here in solving the problem of allocating autonomous

vehicles in a decentralized manner. A fleet of autonomous vehicles is deployed to respond to

numerous requests from different locations in the city. Typically, this problem is solved by

centralizing the requests in a portal where a fleet manager assigns them to vehicles. This implies

that the vehicles have continuous access to the portal (via a cellular network, for example).

However, accessing such a global switching infrastructure (for data collection and order delivery)

is costly and represents a critical bottleneck. The idea is to use low-cost vehicle-to-vehicle (V2V)

communication technologies to allow vehicles to coordinate without a global communication

infrastructure. We propose to model the different aspects of decision and optimization problems

related to this more general challenge. Then, the question arises as to the choice between

centralized and decentralized solution methods. Methodologically, we explore the directions

and compare the performance of distributed constraint optimization techniques (DCOP), self-

organized multiagent techniques, market-based approaches, and centralized operations research

solutions.

Keywords

Multiagent, On demand Transport, Resource Allocation, Connected Autonomous Vehicles,

Simulation.

i





Contents

Abstract i

Introduction (French) xv

Introduction 1

I State of the Art 5

1 Background on On-demand Transport Problems 7

1.1 Vehicle Routing Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Pick-up and Delivery Problem . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Dial-A-Ride Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Variations of Dial-a-Ride Problem . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Specifications of Deal-a-Ride Problems . . . . . . . . . . . . . . . . . . . . 11

2 Multiagent Systems and Resource Allocation 13

2.1 Components of Multiagent Resource Allocation . . . . . . . . . . . . . . . . . . 13

2.1.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Allocation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Properties of Multiagent Resource Allocation . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Utility Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Social Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iii



2.2.3 Cooperativeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Cooperative Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Constraint reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Distributed Constraint Optimization Problem . . . . . . . . . . . . . . . . 19

2.3.3 DCOP Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Market-based Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Applying Multiagent Resource Allocation to DARP 23

3.1 Existing MARA solutions for DARP . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Problem Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Agency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Agent-based Modeling and Simulation . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Evaluating Solution Methods via Transport Simulation . . . . . . . . . . 27

3.3.2 Common Simulation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Analysis of Multiagent Contributions to DARP . . . . . . . . . . . . . . . . . . . 29

II Modeling (AV-OLRA) 33

4 Modeling the Autonomous Vehicle Fleets Allocation Problem 35

4.1 Illustrative Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 OLRA Problem Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Allocation Constraints and Objectives . . . . . . . . . . . . . . . . . . . . 38

4.3 Extension: AV-OLRA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Connected Sets and Sub-problem Instances . . . . . . . . . . . . . . . . . 40

4.3.2 Quality of Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.3 Utility, Constraints and Objectives . . . . . . . . . . . . . . . . . . . . . . 43

5 Multiagent Approach to AV-OLRA 45

iv



5.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Source Artifact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.2 Vehicle Artifact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.3 Resource Artifact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 AV Acting Sub-behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 AV Communicating Sub-Behavior . . . . . . . . . . . . . . . . . . . . . . 50

5.2.3 AV Planning Sub-Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.4 AV Coordination Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 51

III Solution Methods (to AV-OLRA) 53

6 Centralized Dispatching 55

6.1 Agent Coordination and Connected Sets Architecture . . . . . . . . . . . . . . . 55

6.1.1 Selecting the Dispatcher Agent . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.2 Information Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 AV-OLRA as an Integer Linear Program . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 Urban Network Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Dynamic Rescheduling with Central Dispatcher . . . . . . . . . . . . . . . . . . . 62

6.3.1 Dynamically Computing a New Solution as an AV-OLRA Problem . . . . 62

6.3.2 Deriving the AV-OLRA Instance Graph Gs . . . . . . . . . . . . . . . . . 62

7 Decentralized Solutions 67

7.1 Selfish Decentralized Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1.1 Specifications of Greedy Algorithms . . . . . . . . . . . . . . . . . . . . . 68

7.1.2 Greedy Heuristic to Solve AV-OLRA . . . . . . . . . . . . . . . . . . . . . 69

7.2 Coordination-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2.1 Market-Based Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2.2 Distributed Constraint Optimization Approach . . . . . . . . . . . . . . . 73

7.2.3 DCOP Model for AV-OLRA . . . . . . . . . . . . . . . . . . . . . . . . . 74

8 Combining Dynamic responsiveness Together with Solution Quality Refine-

v



ment 77

8.1 Auction-based Insertion Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.1.1 Priority Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.1.2 Agents Bid Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.1.3 Winner Determination in ORNInA . . . . . . . . . . . . . . . . . . . . . . 80

8.2 Online Solution Improvement in ORNInA . . . . . . . . . . . . . . . . . . . . . . 80

8.2.1 Dynamic Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.2.2 Pull-demand Optimization Bids . . . . . . . . . . . . . . . . . . . . . . . . 83

8.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

IV Experiments 89

9 Experimental Framework 91

9.1 AV-SIM Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.1.1 Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.1.2 Implementing the MAS Approach to AV-OLRA with AV-SIM . . . . . . . 93

9.2 Implementing Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.2.1 Centralized Dispatching Based on ILP . . . . . . . . . . . . . . . . . . . . 96

9.2.2 Greedy Decentralized Decisions (Selfish Behavior) . . . . . . . . . . . . . 98

9.2.3 Cooperative Decentralized Decisions (DCOP) . . . . . . . . . . . . . . . . 98

9.2.4 Auction-based Coordinated Decisions (ORNInA) . . . . . . . . . . . . . . 99

10 Experimental Results 101

10.1 Experiments with Synthetic Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 101

10.1.1 Simulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.1.2 Selecting and Tuning DCOP Algorithms . . . . . . . . . . . . . . . . . . . 102

10.1.3 Results on Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10.2 Experiments With Real-world Scenarios . . . . . . . . . . . . . . . . . . . . . . . 108

10.2.1 The New-York City Urban Network . . . . . . . . . . . . . . . . . . . . . 108

10.2.2 The NYC-TLC Trip Records Data-Set . . . . . . . . . . . . . . . . . . . . 109

10.2.3 Data Analysis on NYC-TLC Trip Records . . . . . . . . . . . . . . . . . . 110

10.2.4 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vi



10.2.5 Results on NYC Trip Record Scenarios . . . . . . . . . . . . . . . . . . . 114

Conclusion 121

List of Publications 125

Bibliography 126

Appendix A Future Direction: Supporting Allocation Mechanisms with Demand

Prediction Models 139

Appendix B Future Direction: A Proposal Towards Explainable Recommender

System for ODT Coordination Mechanisms 143
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Appendix D Conclusion de la thèse 167
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Introduction

Les premiers essais connus de conception de véhicules sans conducteur remontent à 500 ans, à

une époque où les véhicules motorisés n’étaient même pas une lueur d’espoir. Aux alentours de

1478, Léonard de Vinci a dessiné les plans du premier véhicule autopropulsé au monde [57]. Son

véhicule (charrette) n’était pas destiné à transporter des passagers à bord. Il était capable de se

déplacer et de changer de direction sans être poussé. Il était propulsé par des ressorts hélicöıdaux.

Il était également doté d’une direction programmable, obtenue en disposant des blocs de bois

entre des engrenages à des endroits prédéfinis. Curieusement, elle ne pouvait tourner qu’à droite.

À la fin des années 1960, John McCarthy, dans un essai à Stanford, imagine qu’un véhicule

automatisé pourrait un jour le conduire à l’aéroport [109]. En 1987, Dickmanns and Zapp

ont fait la démonstration d’une camionnette Mercedes autopilotée sur l’autoroute allemande

(autobahn) ; elle pouvait rester dans les voies et dépasser [46]. Cependant, ces exemples sont

considérés comme automatisés, alors que plus de 30 ans plus tard, l’autonomie n’est pas encore

totalement atteinte [134].

Les véhicules modernes (à partir du niveau 2 de la conduite automatisée définie par SAE2)

ont été équipés de nombreux capteurs internes au cours des dernières décennies : niveau de car-

burant, température du moteur, niveau de la batterie, rappel de ceinture de sécurité, etc. Ces

capteurs sont principalement destinés à surveiller l’état de sécurité du véhicule. Avec l’avènement

de la mobilité coopérative, connectée et automatisée (CCAM), des capteurs externes tels que des

radars et des caméras ont été introduits. L’objectif de ces capteurs est de détecter la présence

et le comportement des autres usagers du transport. En combinant plusieurs capteurs et en

appliquant un modèle de reconnaissance d’objet, les véhicules équipés de ces capteurs peuvent

collecter des données (ils “voient” et “entendent” pour construire leurs modèles de connais-

sance du monde environnant). Grâce à la connectivité des véhicules, ces données peuvent être

partagées avec d’autres.

Au cours de la dernière décennie, des technologies de communication entre véhicules à courte

et longue portée ont été développées et introduites dans le domaine des transports dans le but

principal d’améliorer la sécurité et l’efficacité du trafic. Les technologies de communication entre

véhicules comprennent des équipements, des applications et des systèmes permettant la commu-

nication de véhicule à véhicule (V2X). Ces capacités ouvrent la voie au domaine d’application

de la conduite coopérative. En plus d’être des entités autonomes individuelles, des groupes de

véhicules (tels que ceux appartenant à la même entreprise) peuvent se comporter comme des

flottes et bénéficier de leur intelligence collective, collecter des informations, les partager entre

eux, s’adapter aux conditions du trafic et de l’environnement environnant, pour atteindre leurs

objectifs communs. Dans cette étude, nous nous intéressons au comportement coopératif en tant

que technologie permettant de résoudre le problème du transport à la demande. Ce problème est

2SAE signifie Society of Automotive Engineers, une association professionnelle basée aux États-Unis et active
dans le monde entier, ainsi qu’un organisme de développement de normes pour les professionnels de l’ingénierie
dans divers secteurs. Créée au début des années 1900 sous le nom de Society of Automobile Engineers
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également connu sous le nom de Dial-a-Ride Problem, dans lequel nous disposons d’une flotte

de véhicules distribués en différents endroits de la ville pour répondre aux demandes des pas-

sagers qui souhaitent se déplacer entre les lieux de prise en charge et d’arrivée en respectant un

ensemble de contraintes sur la demande.

Motivation

Les systèmes de transport évoluent rapidement, en raison de développements technologiques

tels que l’intelligence artificielle et les technologies de communication émergentes (par exemple,

la 5G cellulaire, les protocoles sans fil LP-WAN et les communications ad hoc entre véhicules

via les protocoles ITS-G5). En outre, l’évolution des préférences des entreprises et des clients

met en évidence le besoin de systèmes de mobilité personnalisés et intelligents. Ces nouvelles

solutions de mobilité peuvent avoir la capacité de modifier fondamentalement le domaine des

transports. Par exemple, le transport à la demande (ODT)3 peut conduire à la transition de

la propriété d’un véhicule à un véhicule en tant que service, ce qui réduirait le nombre de

véhicules, tout en augmentant l’efficacité du transport et en réduisant ainsi les mouvements

inutiles, tout en conservant le même niveau de qualité de service. Ces avantages potentiels

auraient des répercussions environnementales, sociales et économiques [54]. Le développement de

flottes de véhicules autonomes, capables de communiquer de pair à pair, ainsi que l’intérêt pour

les solutions à la demande (par exemple, Uber, Lyft, Heetch) sont les principales motivations

de cette recherche. Nous souhaitons étudier le problème de la mise en place d’une flotte de

véhicules autonomes capables de répondre dynamiquement, en l’absence de contrôle central, à

des demandes de déplacement en ligne dans une ville. La vision de l’allocation de ressources

multi-agents (MARA) est pertinente pour un large éventail de domaines d’application, y compris

le transport. Le domaine multi-agent est bien adapté à la modélisation et au développement de

systèmes décentralisés. Par conséquent, l’allocation de véhicules est un domaine d’application

pertinent pour les techniques multi-agents [49, 100, 137, 143]. En revanche, la centralisation

du processus d’allocation avec un répartiteur automatique est encore assez courante dans les

approches multi-agents [49, 143, 102].

Défi 1. Antagonisme des objectifs dans l’allocation de ressources

Les problèmes d’allocation sont des questions majeures dans la gestion des systèmes ODT.

Ils sont étudiés depuis des décennies et diverses solutions ont été proposées. En pratique, la

faisabilité et l’efficacité du choix de centraliser ou de décentraliser les méthodes de résolution

dépendent de la complexité du problème, de ses contraintes et de la dynamique de l’environnement.

Cependant, même les cas les plus simples d’allocation de ressources conduisent à des débats sur

l’efficacité versus l’équité [98], l’efficacité versus la vie privée [12] et sur la qualité de l’entreprise

versus l’expérience de l’utilisateur [140].

Défi 2. Une solution adaptative dynamique

Les solutions aux problèmes d’allocation des ressources dans les contextes dynamiques des

systèmes de télétravail doivent remettre en question les horaires des véhicules en temps réel. Ce

défi fait que l’obtention d’une solution globalement optimale est un objectif difficile à attein-

dre dans la pratique. Cependant, la conception d’approches d’amélioration pour des solutions

réalisables est une alternative appropriée pour traiter les problèmes de la dimension dynamique

du problème : cela nécessite de prendre en compte l’aspect communication et de fournir des

mécanismes de communication et de coordination robustes et efficaces.

3Acronyme du terme anglais “On-Demand Transport”.
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Défi 3. Goulot d’étranglement de la communication

L’un des principaux problèmes liés à l’utilisation des systèmes multi-agents (SMA) et des

approches d’allocation de ressources multi-agents (MARA) pour résoudre les problèmes liés aux

ODT est le goulot d’étranglement de la communication. Selon Jin and Jie, chaque agent n’a

besoin de communiquer qu’avec un ensemble limité de voisins dans sa zone de planification au

lieu de communiquer avec tous ses pairs [81]. Le développement de solutions décentralisées basées

sur les interactions de véhicule à véhicule (V2V) pourrait être une source essentielle d’économies

et de résilience.

Notre thèse est que nous pouvons relever les défis ci-dessus en définissant deux modèles : un

modèle générique pour le problème d’allocation de ressources en ligne avec véhicules autonomes

- Autonomous Vehicles - Online Localized Resource Allocation (AV-OLRA)et un modèle multi-

agents générique pour les méthodes de résolution de ce problème. Ces modèles permettent la

mise en œuvre d’un cadre multi-agents pour comparer les méthodes alternatives de résolution

des problèmes ODT. Ensuite, des outils analytiques pourraient être utilisés pour soutenir les

décisions de choix entre les méthodes de solution en fonction du contexte spécifique.

Questions de recherche

L’objectif principal de cette thèse est de définir un cadre, c’est-à-dire des directives de mise en

œuvre et des méthodes analytiques pour offrir une aide à la décision dans le choix des méthodes

de solution ODT dans différents contextes. Nous construisons un tel cadre en nous fondant

sur les résultats de l’état de l’art de la recherche sur l’allocation des ressources multi-agents et

les problèmes de transport. Nous abordons cinq questions de recherche dérivées de cet objectif

global. Les trois premières questions sont axées sur la modélisation des principes fondamentaux

de cette thèse ; la quatrième porte sur l’évaluation des méthodes de résolution. La dernière

question porte sur les limites de l’implémentation des solutions de l’état de l’art pour aborder

l’aspect dynamique du problème.

Question de recherche 1. Quels sont les principaux éléments nécessaires à la formalisation

du problème AV-OLRA ?

La première pierre angulaire de notre thèse est la généricité du modèle. Les problèmes ODT

peuvent être considérés comme une super-classe de nombreux sous-problèmes et instanciés avec

différents scénarios et contextes. Cela soulève le défi de choisir le niveau d’abstraction, ainsi

que le choix des éléments qui doivent être inclus dans le modèle abstrait, et ceux qui font partie

d’une instance.

Question de recherche 2. Comment pouvons-nous définir une représentation uniforme des

différentes méthodes de solution ?

La généricité doit prendre en compte non seulement les instances de problème mais aussi les

approches pour concevoir une solution. Les méthodes de résolution des problèmes ODT sont

variées. En plus d’une grande variété de mécanismes d’allocation, elles peuvent être fondées sur

un répartiteur central, une autonomie individuelle ou des décisions collectives et coopératives,

ainsi que différer dans le choix du partage de l’information et des niveaux de coopérativité.

Le défi ici est de définir un modèle multi-agent générique pour les solutions à ce problème. Ce

modèle doit s’adapter à différentes méthodes de solution en définissant des niveaux d’abstraction

pour l’autonomie, la coopérativité et le mécanisme d’allocation.

Question de recherche 3. Comment pouvons-nous définir une représentation uniforme des
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modèles de communication entre véhicules ?

La deuxième pierre angulaire de notre thèse est la connectivité. Les technologies de communica-

tion pour véhicules comprennent les équipements, les applications et les systèmes permettant la

communication de véhicule à véhicule (V2X), y compris les protocoles DSRC (Dedicated Short

Range Communication), LPWAN et C-V2X (Cellular V2X). Les solutions ODT peuvent utiliser

soit l’architecture de portail de communication global, soit la communication locale de pair à

pair. Le défi consiste ici à définir un modèle de communication capable de s’adapter à toutes les

possibilités.

Question de recherche 4. Comment pouvons-nous évaluer la faisabilité et la qualité des

méthodes de solution ?

La troisième pierre angulaire de notre thèse consiste à réaliser une évaluation équitable et

complète des méthodes de résolution. Une fois que les représentations uniformes mentionnées

ci-dessus sont définies, les méthodes de résolution sont classées en catégories. Nous explorons

ces catégories et implémentons des exemples d’algorithmes pour chacune d’entre elles. Le défi

consiste ici à définir des critères d’évaluation équitables adaptés à toutes les catégories. En partic-

ulier, la qualité d’une allocation peut être caractérisée par un ensemble d’indicateurs fonctionnels

et techniques. Le calcul de ces indicateurs doit être indépendant du mécanisme d’allocation et

permet néanmoins d’évaluer sa faisabilité et ses performances.

Question de recherche 5. Est-il possible de définir une méthode de résolution efficace et

réactive pour un cadre dynamique et dont le mécanisme d’allocation permet d’éviter les conflits

?

Dans la solution traditionnelle de l’ODT utilisant l’architecture de portail de communication,

les demandes des passagers sont envoyées à un portail. Un opérateur de transport en commun

calcule la meilleure allocation de véhicules aux demandes dans le back-end, puis répartit les

véhicules pour les desservir. Cela exige que le répartiteur ait une connaissance complète de

la demande, de l’offre et de l’environnement au début du calcul, ce qui le rend trop difficile à

adapter à la dynamique du problème (voir Défi 2). Cette architecture exige que les véhicules

aient un accès continu au portail via une infrastructure de communication globale, ce qui peut

provoquer un goulot d’étranglement critique en matière de communication du côté du portail

(Défi 3).

On pourrait suggérer l’utilisation d’une méthode de solution décentralisée avec un mécanisme

efficace de résolution des conflits, comme les enchères, par le biais de la communication locale.

Cela peut permettre d’augmenter la réactivité de la solution. Cependant, cela peut également

rendre impossible l’obtention d’une allocation satisfaisante dans les scénarios en ligne, car les

informations partagées sont limitées dans l’espace et le temps. (Défi 1).

Les grandes lignes de la thèse

Cette thèse est organisée en quatre parties:

Dans la partie I, nous analysons l’état de l’art à la recherche de modèles et de technologies

connexes. Dans le chapitre 1, nous discutons de la formalisation des problèmes de transport

liés et nous les classons en mentionnant les travaux connexes dans les domaines de la recherche

opérationnelle et des systèmes multi-agents.

Dans la section 2 Nous examinons le paradigme de l’allocation de ressources multi-agents
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(MARA) dans le chapitre 2 en détaillant ses composants de modélisation et les modèles de

solution existants. Nous positionnons ensuite ce travail par rapport aux domaines de recherche

de la modélisation et de la simulation à base d’agents dans le chapitre 3.

La partie II est consacrée à la modélisation du problème et à ses méthodes de résolution.

Dans le chapitre 4, nous introduisons le problème (AV-OLRA) et proposons un modèle générique

pour le formaliser. Nous illustrons les composants du modèle et leurs attributs abstraits et

définissons les principaux critères d’évaluation de la qualité de l’allocation par le biais d’un en-

semble d’indicateurs fonctionnels et techniques, en plus de définir les formulations des fonctions

objectives (d’utilité) que nous considérons dans cette étude. Dans le chapitre 5, nous définissons

plus en détail notre modèle générique de programmation orientée multi-agents proposé pour

les méthodes de solution AV-OLRA. Nous illustrons l’architecture du système multi-agent, en

définissant les composants de l’environnement et le comportement abstrait de l’agent. Enfin,

nous identifions les fonctions d’utilité et d’objectif des agents que nous considérons dans cette

étude.

Dans la partie III, nous identifions les directives générales de mise en œuvre pour chaque

catégorie des méthodes de résolution et nous listons quelques exemples d’approches avec des

exigences de mise en œuvre détaillées. Le chapitre 6 est consacré au Dispatching par répartiteur

centralisé et propose un modèle de programmation linéaire adaptatif pour travailler sur des

paramètres dynamiques. Dans le chapitre 7, nous présentons la solution décentralisée en détaillant

la spécification des approches Selfish, Cooperative, et Market-based. Puis, dans le chapitre 8,

nous décrivons notre approche basée sur le marché (ORNInA) comme une approche efficace,

réactive en ligne avec une amélioration continue de la qualité.

Dans la partie IV, nous validons notre proposition de manière expérimentale. Nous implémentons

un cadre multi-agents générique pour les problèmes de transport à la demande fondé sur notre

proposition de modèle générique. Ce cadre, que nous décrivons dans le chapitre 9, sert de

banc d’essai de comparaison par la simulation pour une variété de méthodes de solution. Nous

décrivons en détail les méthodes mises en œuvre et les paramètres expérimentaux. Nous ef-

fectuons des tests sur des données de scénarios synthétiques et réels. Dans le chapitre 10, la

génération du scénario est décrite ainsi que la structure de l’ensemble de données utilisé. Les

résultats de l’évaluation sont ensuite discutés et analysés.

Enfin, nous concluons cette thèse par un sommaire de notre travail et soulignons les directions

de recherche futures.

xix





Introduction

The first known trial to design driver-less vehicles stretch back to 500 years ago, when motorized

vehicles were not even a gleam in someone’s eye. Sometime around the year 1478, Leonardo da

Vinci drew out his plans for the world’s first self-propelled vehicle [57]. His vehicle (cart) was not

meant to carry passengers on board. It was capable of moving and changing direction without

being pushed. It was powered by coiled springs. It also featured programmable steering, which

is achieved by arranging wooden blocks between gears at pre-set locations. Oddly enough, it

could only turn right. In the late 1960s, John McCarthy, in an essay at Stanford, imagined that

an automated vehicle might one day drive him to the airport [109]. In 1987, Dickmanns and

Zapp demonstrated a self-driving Mercedes van in Germany’s highway (autobahn); it could stay

in lanes and overtake [46]. However, these examples are considered automated, while more than

30 years later, autonomy is not fully achieved yet [134].

Modern vehicles (starting from Level 2 of automated driving defined by SAE4) have been

equipped with many internal sensors in the last decades: fuel level, engine temperature, battery

level, seat belt reminder, etc. These sensors are mostly meant for monitoring the safe state of the

vehicle. With the advent of cooperative, connected, and automated mobility (CCAM), external

sensors like radars and cameras have been introduced. The purpose of these sensors is to detect

the presence and behavior of other transport users. Vehicles with these sensors can collect data

(so they “see” and “hear” to build their knowledge models of the surrounding world).

Connectivity information is usually handled by vehicle control and not seen as part of sensor

fusion. However, through connectivity, vehicles might share their world models. Over the past

decade, both short- and long-range vehicle communication technologies have been developed

and introduced in the transport domain with the primary goal of improving traffic safety and

efficiency. Vehicle communication technologies comprise equipment, applications, and systems

to enable vehicle-to-everything (V2X) communication. These capacities open the path to the

cooperative driving application domain. Besides being individual autonomous entities, groups of

vehicles (such as those owned by the same company) may behave as fleets and benefit from their

collective intelligence, gather information, share it with each other, adapt to the surrounding

traffic and environment conditions, to achieve their common goals. In this study we are interested

in cooperative driving as enabling technology to tackle the On-Demand Transport problem. This

problem is also known as Dial-a-Ride Problem, in which we have a fleet of vehicles distributed

in different locations in the city to serve passenger requests to travel from pick-up to delivery

locations respecting a set of request constraints.

4SAE stands for the Society of Automotive Engineers, a United States-based, globally active professional
association and standards developing organization for engineering professionals in various industries. Originated
in the early 1900s as the Society of Automobile Engineers
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Motivation

Transport systems are changing rapidly, due to technological developments like Artificial Intel-

ligence and the emerging communication technologies (e.g. cellular 5G, the wireless LP-WAN

protocols, and the ad-hoc vehicle-to-vehicle communications via ITS-G5 protocols). Moreover,

changing preferences of companies and customers highlight the need for customized On-Demand

Transport (ODT) and Smart Mobility Systems. These new mobility solutions may have the

capability to change the transportation domain fundamentally. For instance, ODT can lead to

the transition from vehicle ownership to vehicle as a service, which would reduce the number of

vehicles, as well as increase transportation efficiency and thus reduce unnecessary movements.

These potential benefits are claimed to have environmental, social, and economic impacts [54].

The development of autonomous vehicle fleets, capable of peer-to-peer communication, as well

as the interest in on-demand solutions (e.g., Uber, Lyft, Heetch) are the primary motivations for

this study. We are interested in studying the problem of setting up a fleet of autonomous vehi-

cles capable of responding dynamically in the absence of central control to on-line trip requests

throughout a city. The multiagent domain is well suited to the modeling and development of

decentralized systems. Therefore, vehicle allocation is a relevant application area for multiagent

techniques [49, 100, 137, 143]. On the other hand, centralization of the allocation process with

an automatic dispatcher is still quite common in multiagent approaches [49, 143, 102].

Challenge 1. Allocation objective trade-offs:

Allocation problems are major issues in the management of ODT systems. They have been

studied for decades, and various solutions have been proposed. In practice, the feasibility and

efficiency of the choice to centralize or decentralize the solving methods depend on the problem

complexity, its constraints and the environment dynamics. However, even the most straight-

forward cases of resource allocation lead to debates on efficiency versus fairness [98], efficiency

versus privacy [12] and on business quality versus user experience [140].

Challenge 2. Dynamic settings:

The solutions for resource allocation problems in the dynamic settings of ODT systems must

challenge vehicle schedules in real-time. This challenge makes the achievement of a globally

optimal solution an elusive goal in practice. However, the design of improving approaches for

feasible solutions is a suitable alternative to tackle the dynamic aspect issues: this requires taking

the communication aspect into account and providing robust and efficient communication and

coordination mechanisms.

Challenge 3. Communication bottleneck:

One of the main issues for using multiagent systems (MAS) and multiagent resource allocation

(MARA) approaches to solve ODT-related problems is the communication bottleneck. According

to Jin and Jie, each agent needs only to communicate with a limited set of neighbors in its

planning area instead of communicating with all peers [81]. The development of decentralized

solutions based on vehicle-to-vehicle (V2V) interactions could be an essential source of savings

and resilience.

Our thesis is that we can address the above challenges by defining two models; a generic model

for the Autonomous Vehicles - Online Localized Resource Allocation (AV-OLRA), and a generic

multiagent model for solution methods of this problem. These models allow the implemen-

tation of a multiagent framework for comparing alternative methods to solve ODT problems.

Then, analytical tools could be used for supporting decisions to choose among solution methods

depending on the specific context.
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Research questions

The overarching objective of this dissertation is to define a framework, i.e. implementation

guidelines and analytical methods to offer decision support in the choice of ODT solution methods

in different settings. We build such a framework based on state-of-art results from multiagent

resource allocation and transportation problems research. We address five research questions

derived from this overarching objective. The first three questions are focused on modeling the

fundamental principles of this thesis; the fourth is about evaluating solution methods. The

last one addresses the limitations in state-of-art solution implementation to tackle the dynamic

aspect of the problem.

Research Question 1. What are the main elements required to formalize AV-OLRA problem?

The first cornerstone in our thesis is the model genericity. ODT problems could be seen as a

super-class of many sub-problems and instantiated with various scenario settings and contexts.

This raises the challenge of choosing the abstraction level, along with the choice of what elements

must be included in the abstract model, and which ones are part of an instance.

Research Question 2. How can we define a uniform representation of the different solution

methods?

The genericity must consider not only the problem instances but also the solution approaches.

Solution methods to ODT problems are various. In addition to a huge variety of allocation

mechanisms, they can be based on a central dispatcher, individual autonomy, or collective and

cooperative decisions, as well as differ in the choice of information sharing and cooperativeness

levels.

The challenge here is to define a generic multiagent model for the solutions to this problem. This

model should adapt to different solution methods by defining abstraction levels for autonomy,

cooperativeness, and allocation mechanism.

Research Question 3. How can we define a uniform representation of vehicle communication

models?

The second cornerstone in our thesis is connectivity. Vehicle communication technologies com-

prise equipment, applications, and systems to enable vehicle-to-everything (V2X) communica-

tion, including Dedicated Short Range Communication (DSRC), LPWAN protocols, and Cellular

V2X (C-V2X). ODT solutions can either use the global communication portal architecture or lo-

cal peer-to-peer communication. The challenge here is to define a communication model capable

of scaling to every different alternative.

Research Question 4. How can we assess the feasibility and quality of solution methods?

The third cornerstone of our thesis is to achieve a fair and comprehensive assessment of solution

methods. Once the above-mentioned uniform representations are defined, solution methods are

classified into categories. We explore these categories and implement example algorithms of

each. The challenge here is to define fair evaluation criteria suitable to all categories.

In particular, the quality of an allocation can be characterized by a set of functional and tech-

nical indicators. The computation of these indicators should be independent of the allocation

mechanism and still helps assessing its feasibility and performance.

Research Question 5. Is it possible to define a solution method that is efficient and responsive

for a dynamic setting and whose allocation mechanism allows to avoid conflicts ?

In the traditional solution to ODT using the communication portal architecture, passenger de-

mands are sent to a portal. A transit operator calculates best allocation of vehicles to requests

in the back end, then dispatches vehicles to serve them. This requires the dispatcher to have
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complete knowledge about demand, supply and the environment at the beginning of the calcu-

lation, which makes it too difficult to scale for problem dynamics (see Challenge 2).

This architecture requires the vehicles to have continuous access to the portal via global com-

munication infrastructure, which may cause a critical communication bottleneck on the portal

side (Challenge 3).

One could suggest the use of a decentralized solution method with an efficient conflict resolution

mechanism such as auctions through local communication. This may lead to increase the solu-

tion responsiveness. However, it may also make it unattainable to achieve satisfactory allocation

in online scenarios, because shared information are limited in space and time. (Challenge 1).

Dissertation outlines

This dissertation is organized into four pars:

In Part I, we analyze the state-of-art in search of related models and technologies. We discuss

in Chapter 1 the formalization of related transport problems and classify them by mentioning

related works from both Operations Research and Multiagent domains.

We look at the Multiagent Resource Allocation (MARA) paradigm in Chapter 2 detailing its

modeling components and existing solution models. We then position this work with respect to

agent-based modeling and simulation research domains in Chapter 3.

Part II is dedicated to modeling the problem and its solution methods. In Chapter 4, we in-

troduce the (AV-OLRA) problem and propose a generic model to formalize it. We illustrate the

model components and their abstract attributes and define the main allocation quality evaluation

criteria via a set of functional and technical indicators, in addition to defining the formulations

of objective (utility) functions that we consider in this study.

In Chapter 5, we define in further detail our proposed generic multiagent oriented program-

ming model for AV-OLRA solution methods. We Illustrate the multiagent system architecture,

defining the environment components and the abstract agent behavior.

We classify solution methods to AV-OLRA into different categories (Dispatching, Selfish, Co-

operative, and Market-based). In Part III, we identify the general implementation guidelines for

each category and list some examples of approaches with detailed implementation requirements.

Chapter 6 is dedicated to centralized dispatching and proposing an adaptive linear programming

model to work on dynamic settings. In Chapter 7 we present the decentralized solution detailing

the specification of Selfish, Cooperative, and Market-based approaches. Then in Chapter 8, we

describe our contributed market-based approach (ORNInA) as an efficient, online responsive

approach with continuous quality improvement.

In Part IV, we validate our proposal experimentally. We implement a generic multiagent

framework for on-demand transport problems based on our generic model proposal. This frame-

work, that we describe in Chapter 9, serves as a simulation-based comparison test bed for a

variety of solution methods. We describe in detail the methods we implemented and the experi-

mental settings. We conduct tests on both synthetic and real-world scenario data. In Chapter 10,

the scenario generation is described in addition to the used data set structure. The evaluation

result is then discussed and analyzed.

Finally, we conclude this dissertation with a summary of our work and highlight future

research directions.
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Chapter 1

Background on On-demand Transport

Problems

On-Demand Transport (ODT) systems have attracted increasing attention in recent years, par-

ticularly concerning road systems. ODT systems have never been considered for the replacement

of public transport services but as an extension of them. According to Bellini et al., the concept

of ODT was formulated for the first time in the United States around 1990 as a solution to the

growing disaffection of potential users, especially at night [14].

Within ODT, allocation problems rise as the most studied optimization problems in the lit-

erature. The Autonomous Vehicles - Online Localized Resource Allocation (AV-OLRA) problem

concerns assigning, in dynamic settings, transport requests to vehicles under a set of constraints.

Transportation problems can be classified into different categories depending on whether

their primary purpose is to minimize the cost, or to maximize the profit of shipping goods, or

people.

The problem at hand that we refer to in the rest of this review as Dial-A-Ride Problem (DARP)

is know in the literature of Operations Research to belong to the family of Pick-up and Delivery

(PD) problems. It can be considered as a special variant of the Vehicle Routing Problem with

Pick-up and Delivery and time windows (VRPPDTW) and can be seen as a problem combining

scheduling, allocation and routing sub-problems. This chapter presents an overview of the avail-

able scientific literature on the principal aspects related to AV-OLRA. We provide an overview

of the various vehicle routing problems problems, the specifications of DARP, and their existing

solution methods in the literature of the Operations Research.

1.1 Vehicle Routing Problems

Vehicle Routing Problems (VRPs) lie at the heart of distribution management. Thousands of

companies and organizations are involved in the delivery and collection of goods or people deal

with such problems every day. VRPs are defined through a set of locations to be visited. The

distances between all pairs of location are given. In addition to distance values, other values can

be used, such as travel time or the cost of the required amount of fuel. A set of vehicle routes

such that the total distance, travel time, or total cost, respectively, is minimized, is sought for.

The basic VRP problem is the Capacitated Vehicle Routing Problem (CVRP). Having a fixed
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CHAPTER 1. BACKGROUND ON ON-DEMAND TRANSPORT PROBLEMS

Figure 1.1: The vehicle routing problem

fleet of vehicles with associated vehicle capacity, in the CVRP, we seek for a set of m routes

with minimized total cost subject to the following constraints:

• Each route starts and ends at a depot, and is performed by one vehicle

• Each vehicle has a capacity, and performs at most one route

• Each customer has an associated demand, and is visited exactly once by a route

• Customer demands served by a route do not exceed the vehicle capacity Q, which is the

same for all vehicles

Moreover, a constraint can be imposed s.t. The length of each route does not exceed the

predefined limit (L) that corresponds to vehicle average energy consumption by distance unit

and its (fuel/electric) depot capacity.

Vehicle Routing Problems (VRPs) are NP-hard problems as the CVRP (the basic one) generalizes

the travelling salesman problem (TSP) which is a special case of the CVRP where Q =∞. NP-

hardness implies that no algorithm is known capable of solving each instance in polynomial time

w.r.t. the size of the instance itself, and it is believed that no such algorithm exists. However,

there is no mathematical proof of this assumption. Efficient algorithms have been found for

special variants, or to calculate approximate solutions (heuristic algorithms) with convenient

solution-quality/computation-time ratio, so as to provide near optimal solutions for instances

with a real application interest [37]. In some of the worst common variations of the (C)VRP,

vehicles can differ in their capacity [9], or feature a route length limit to model their autonomy

in terms of fuel or electric power (distance constrained VRP [5]), or be allowed to perform more

than one route during a day shift VRPs [25], possibly refilling at designated facilities (VRP with

Intermediate Replenishment Facilities [61]).

1.1.1 Pick-up and Delivery Problem

In Pick-up and Delivery Problems (PDP), transport operations must be performed from a set

of origins to a set of corresponding destinations without transshipment elsewhere [138].

The transport network is modeled as a complete graph G = (N,E) where N is the set of

nodes representing geographical locations and E is the set of all edges between nodes. A fleet
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CHAPTER 1. BACKGROUND ON ON-DEMAND TRANSPORT PROBLEMS

of vehicles is available to manage the routes. Each vehicle has a certain capacity, a place of

departure, and a place of arrival. Each transport request specifies the load to be transported,

as well as its origin and destination, and must be served by exactly one vehicle. On the other

hand, each vehicle can serve more than one transport request. A solution to PDP is a feasible

pickup and delivery plan minimizing the operational cost. More precisely:

Given a set of vehicles V , and a transport network G = (N,E), a pickup and delivery plan

is a set of routes R := {Rv|v ∈ V } such that:

• Rv is a pickup and delivery route for each vehicle v ∈ V .

• Each Rv is a sequence of ni ∈ Nv where {Nv|v ∈ V } is a partition of N

• For each vehicle v ∈ V , the capacity of v is respected all along the route Rv

In the work of Savelsbergh and Sol [138], the Generalized Pick-up and Delivery Problem

(GPDP) is defined as the general framework for all Pick-up and Delivery problems. In it, n

requests must be served, each associated with a set of origins and destinations to be visited,

respectively, to pick-up or deliver goods or people. A fleet of m heterogeneous vehicles, each

with its own capacity, is used to serve requests. A request is unsplittable (must be served entirely

by a single vehicle), and all origins must be visited before any destination, without transshipment

in intermediate locations. Each vehicle has specific start and end locations and can serve more

than one request, provided that all along its service route, its load is nonnegative and within its

capacity. VRP is the particular case of the GPDP with the same capacity for all the vehicles

and only one origin or destination per request, the depot, which also acts as the start/end-point

of all routes. Another particular case of GPDP is the VRPPD, in which each request has one

origin and one destination, and the vehicles are heterogeneous but all based at a depot[36].

Cordeau et al. also call it the n-commodities PDP to distinguish it from the single-commodity

and two-commodity PDPs, which can arise in some special cases, for example, in the delivery of

beverages in which vehicles deliver full bottles and collect empty ones.

In the same line of work, the Vehicle Routing Problem with Pick-up and Delivery and time

windows (VRPPDTW) is tackled, motivated by the fact that most practical VRPPD applications

enforce restrictions on time slots in which a vehicle can visit a site. VRPPDTW is defined on a

directed graph with 2n + 2 nodes, i.e., as many nodes as twice the request plus the two nodes

needed to be able to represent outgoing and incoming trips of the depot at which vehicles are

based. Vehicles are heterogeneous and must complete their routes within a given time horizon,

and service at a node must begin within a time window associated with it. VRPPDTW is NP-

hard as it generalizes the TSP with Time Windows and Precedence Constraints (TSP-TWPC),

which is known to be NP-hard (see e.g. Mingozzi et al. [111]). The 3-index Mixed-Integer

Linear Programming (MILP) formulation proposed by Cordeau et al. [36] allows to consider a

variant in which vehicles have different start and endpoint, and which is not easier than the

basic VRPPDTW version.

1.2 Dial-A-Ride Problems

In the previous section we overviewed the specification of some VRP variants in the literature.

Here we dig into the Dial-A-Ride Problems (DARPs) which define a set of variants of VRP

dedicated to the transportation of people. In DARP, requests involve transporting passengers.

Origins are more often called pick-up points, and destinations are called delivery or drop-off

points (see Figure 1.2).
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Figure 1.2: The dynamic Dial A Ride Problem with some of its real world applications

1.2.1 Variations of Dial-a-Ride Problem

A common example in many countries is door-to-door transportation for the elderly or disabled

persons (i.e. Paratransit [23, 24]). Häll et al. presented an integrated version of the DARP

(IDARP), in which some parts of each journey can be carried out by a fixed route public transport

service, without synchronizing timetables, which assumes the services are frequent. In many of

the practical cases described by IDARP, it is useful and reasonable to allow a request to end its

journey on a transfer node near its drop-off node without taking another vehicle for the last leg

(part) of the journey [69]. Likewise, there may be cases where it is reasonable, from reducing

costs and user-inconvenience points of view, to start the journey on a transfer node rather than

on the original pick-up locations. This has led Posada et al. to propose the integrated dial-a-ride

problem with timetables (IDARP-TT), in which, under some circumstances, requests may start

or end the journey from/to transfer nodes sufficiently close to the pick-up or drop-off nodes

without involving the vehicles in the first or last part of the journey. Each request has a given

origin, destination, and demand for a set of resources, such as regular seats, wheelchair spaces,

and baggage. A request can be served by a single vehicle or transferred between a demand-

responsive vehicle and fixed routing system. A heterogeneous fleet of vehicles is located in a

depot and used to serve requests; they have different speeds, operating costs, and capacities.

The goal is to find vehicle routes that minimize the cost of service on demand and the cost of

using the fixed routing system [123]. Bellini et al. propose a classification of DARP based on

four operative levels, moving from lower to a higher level provides more flexibility for customers

while the related problems get to be more complex [14]:

1. Fixed line service: it is based on fixed routes and fixed stations. Users must reserve the

service. Sometimes schedules are also fixed, and buses only make trips if booked; minimal

flexibility while scheduling and management is simplest.

2. Fixed routes with the possibility of circumvention: in this case, the paths and schedules

are partially fixed; they can be changed at the user’s request with potential conversions at

certain fixed points, and the entire path integrating the whole itinerary with fixed optional

stops. In some cases, this service is called a ”corridor service” simply to indicate the limit

of the spatial circulation that the trip may be. This level presents a similar configuration

to the previous alternative but introduce possible variations of itineraries.

3. Service with free routes within fixed points, where it is possible to specify:
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• Zoned service, based on transport routes to fixed public interest points such as parking

spaces and railway stations (many-to-few mode).

• Wide service, operating in large areas in general, with complete flexibility over time

and free routes at fixed breakpoints (many-to-many mode).

These services range from fixed timetables to on-demand, real-time services.

4. Free route service between unspecified points. This level provides free routes between

unspecified stops. Works like taxi service (door to door mode), but it introduces the

possibility of variable size of parties and sharing the service with other people along a

similar route.

1.2.2 Specifications of Deal-a-Ride Problems

As stated by Cordeau et al., DARP is actually a version of the basic VRPPD in which the

objective mostly revolves around Quality of Service (QoS) [36]. The vehicle capacity is typically

limited in DARP, while it is often redundant in VRPPD applications (particularly those related

to the collection and delivery of letters and small parcels [34]). In some variants of the problem,

users associated with separate requests can share the same vehicle as long as its capacity is not

exceeded. More specific DARPs allow for one passenger only and thus also restrict vehicles’

capacity to 1. Also, a maximum travel time is associated with each request. It corresponds to

the maximum travel time between the pick-up point and the delivery point.

The work of Cordeau et al. then reviews the different cases of DARP in the literature,

like single and multi vehicle cases, or the different functions to model passenger inconvenience

(possibly giving rise to quadratic or convex functions) and how its minimization is dealt with.

Quality of Service can replace, or being evaluated along with, some cost related terms, as well

as DARP-specific constraints, as e.g. maximum waiting time or maximum excess in user ride

times.

For Parragh et al. [119], the notion of time-window is integrated into the basic definition

of DARP, as we will consider in the following of the present work. They review some of the

most common real-world aspects that are dealt with in literature, especially for what concerns

the diversity of vehicles, which can differ not only in capacity but also for what concerns e.g.

speed, travel cost, equipment, number of persons that can be transported, transportation mode

depending on the passengers, the possibility of accompanying persons. As Cordeau and Laporte

pointed out, the primary consideration in some of such a diversity of problems is to tackle the

strategic problem of determining size and composition of the fleet that will satisfy the entire

demand, while in others, the goal is to maximize the number of trips that can be offered with a

fleet of fixed dimensions [34]. A compromise is to serve part of the demand with a basic fleet of

vehicles and -if necessary- use additional vehicles (e.g., regular taxis). Parragh et al. also propose

a wide review of exact methods for static DARP variants, as well as and heuristic approaches

for static, dynamic, and stochastic variants that are found in the literature [119].

Along with static dial-a-ride services, in which all requests for transport are known in advance,

there also exist dynamic services, in which requests are progressively revealed throughout the

day, or existing requests are canceled, and vehicle routes are adjusted in real-time accordingly,

trying to do so without causing too much trouble for other passengers. In the literature, dynamic

variants of DARP can be found, although in practice, pure dynamic DARPs rarely exist because

a subset of requests is often known in advance, according to Cordeau and Laporte, who report

some examples of dynamic DARP. Madsen et al. [106] developed an insertion algorithm, REBUS,

based on the ADARTW procedure of Jaw et al. [78] for a real-life problem involving services

to elderly and disabled people in Copenhagen [34]. Requests arrive dynamically along a time

horizon and are inserted in existing routes considering the difficulty of insertion. The algorithm

is reportedly capable of reasonable quality-time compromise solutions on a 300-customer, 24-

vehicle instance. Colorni and Righini use three different objectives: the number of serviced
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requests, the perceived QoS level by users, and the traveled distance. The insertion of new

requests is based on a clustering phase and a routing phase. The routing algorithm applies

branch-and-bound to a set of requests that are closer to occur according to time windows [33].

The authors report that they have performed experiments in two cities in northern Italy. Finally,

Coslovich et al. used an off-line/on-line two-phase strategy for inserting a new request into an

existing route, the objective being minimum user dissatisfaction [38].

To conclude this review of Dial-A-Ride Problems, we cite some more recent works.

Gschwind and Drexl define an Adaptive Large Neighborhood Search (ALNS) to find a set of

minimum-cost routes on a DARP variant with time windows and additional constraints on and

maximum user ride times [66]. Muelas et al. propose a distributed algorithm to solve large

scale DARP instances: tests on a set of 24 different scenarios with up to 16,000 requests or

32,000 locations in the city of San Francisco prove it useful [114]. Vallee et al. tackle a dynamic

DARP found in a mobility service operated by a private company, in which service requests

are either in advance or in real-time and get an immediate answer about being accepted or

rejected. The main goal is to maximize the number of accepted requests. Three main on-line

reinsertion heuristics (HDR, GH, IGH) based on different neighborhoods are proposed [154].

Bongiovanni et al. present the e-ADARP, a DARP variant which considers the use of autonomous

electric vehicles, thus introducing battery management, charging stations, recharge times. The

problem’s goal is to minimize a weighted objective function of vehicles’ total travel time and

excess ride-time of the users. They propose a 3-index and a 2-index MILP formulations, along

with a branch-and-cut algorithm with new valid inequalities [16]. Brevet et al. address the

dial-a-ride problem (DARP) using private vehicles and alternative nodes (DARP-PV-AN), in

which to achieve greater flexibility, the on-demand transportation service can be done either by

a public fleet or by clients that use their private vehicles. Several pickup/delivery nodes for the

transportation requests are considered to address the resulting privacy concerns. A compact

MILP model and an Evolutionary Local Search (ELS) algorithm are proposed [19].

Summary

Under a set of constraints, assigning demands to vehicles can be seen as an intersection between

resource allocation and constraint optimization problems. There are many variants of such

problems extending the VRPs that we overviewed in this chapter highlighting their specifications.

The problem described by the illustrative scenario (Figure 1.2) is a variant of DARP, which

belongs to the family of Pick-up and Delivery problems and can itself be considered as a particular

case of the Vehicle Routing Problem with Pick-up and Delivery (VRPPD) with time windows.

This problem can be seen as both a scheduling and allocation problem. The classical modeling

approach for such problems is based on the traditional VRP model. Then Linear Programming

(LP), and more specifically, MILP (Mixed Integer LP) can be used to solve OR problems, among

which, VRP.
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Chapter 2

Multiagent Systems and Resource Allocation

The problem of resource allocation across multiple entities is a central concern in both Computer

Science and Economics. It is about finding a feasible allocation of a set of resources to a set of

consumers in a such way that minimize the cost of the allocation or maximize the cumulative

benefits for the consumers. It has interdisciplinary characteristics that make it relevant for

different application areas, including industrial production and planning, network routing, traffic

management, transportation, and logistics.

A Multiagent System (MAS) is a computerized system composed of multiple interacting

intelligent entities, called agents. Usually, a MAS consists of the Agents and their Environment.

The Agents of a MAS may be software entities, robots, people or groups of people; a MAS can

contain combined human-agent teams.

Features of MASs make them relevant to model complex systems in which autonomous agents are

capable of achieving their goals without user intervention. MAS has been used in several areas

such as supply chain coordination [161], change order trading [128], equipment management[148],

sustainability assessment [153] and recently in smart cities, smart buildings and other Internet

of Things (IoT) applications [30, 31].

Multiagent Resource Allocation (MARA) is a domain that studies how to efficiently distribute

multiple resources among multiple agents [97], and how agents can affect the allocation [28].

In this chapter, we overview the efforts done in the literature of MAS and MARA and

their applicability to the problem of our interest (AV-OLRA). In section 2.1 we describe the

main components of a MARA system, then we describe their common properties in Section 2.2.

More specifically, Section 2.2.3 emphasizes works that studied how agents, in a distributed way,

can optimize a global objective function. We overview their application in resource allocation

as Constraint Satisfaction Problems (CSPs) or Constraint Optimization Problems (COPs) in

section 2.3. Then we overview in section 2.4 another paradigm of MARA in which the conflict

resolution follows market-based protocols.

2.1 Components of Multiagent Resource Allocation

MARA is relevant for a wide range of application domains, Chevaleyre et al. introduced in a

survey four of these problem domains, which are: Industrial procurement, Earth observation

satellites, Manufacturing systems, and Grid and cloud computing [28], but MARA has also
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been applied to many other areas, such as network routing [107], public transport [150], e-

commerce [26], social activities [58], and scheduling [95].

The AV-OLRA problem that we are interested in is an ODT problem that can be seen as

a MARA problem, where the resources are the trip requests; the agents (the consumers) are

the autonomous vehicles; and the allocation must satisfy the constraints of both requests and

vehicles. We aim at simulating the behavior of agents for the different solution methods in order

to compare their performance. In what follows, we examine the essential components related to

the definition of a MARA problem and discuss its main parameters.

2.1.1 Agents

An agent is defined as “a computer system located in a dynamic environment and able to present

an autonomous and intelligent behavior to achieve its design objectives” [133].

Traditional object-oriented programming for simulation uses software objects as entities to

perform tasks. Objects have no intelligence to react to unexpected events to achieve a goal or a

state because they only follow the instruction provider, i.e. human users or other objects. Objects

can only change their policy if and when other objects or users provide an update. On the other

hand, autonomy is a key feature of agent-based systems. An (autonomous) agent can perform

activities with its own motor or intelligence to solve a problem without external interference

from human users or other agents. It can respond to different situations and apply alternative

strategies to achieve certain goals [79]. Autonomy, however, can lead to conflicts between the

interests of different agents. In such cases, one approach is to assign to a special agent the

responsibility to coordinate and resolve these contradictions. Other approaches specify conflict

resolution protocols to be followed by agents to handle these contradiction in decentralized

manner.

Agents have individual beliefs that represent their informational state, in other words the state

that the agent owns about the world (including itself and other agents). Beliefs can also include

inference rules, allowing the chain to lead to new beliefs. The use of the term “belief” rather

than “knowledge” recognizes that what an agent believes is not necessarily true (and may even

change in the future).

Agents may or may not have preferences about the resources they receive. This also holds

for resources received from other agents: in the case of network connections, for example, the

value of a resource decreases if too many users share it. The latter kind of preferences is called

externalities [28]. Note that agents may or may not explicitly declare their preferences (e.g.,

when negotiating with other agents on several options).

So far, to model the behavior of agents in any solution method to AV-OLRA, it is essential

to specify the level of autonomy of agents and their preferences for resources in form of a

prioritizing function, as well as the communication rules that the agents will follow to avoid or

resolve conflicts in form of coordination protocols.

2.1.2 Resources

Generally speaking, resources refer to items required to perform a task, which need to be as-

signed/allocated to entities in charge of performing it. They can be classified into two types:

continuous and discrete.

Continuous resources such as electricity, can be shared simultaneously by multiple agents for a

given lapse of time. A Discrete resource, like a passenger, is inseparable. Therefore, once such a

resource is assigned to an agent, the other agents can no longer use it. Chevaleyre et al. use the

term “divisible/indivisible resources” to refer to different types of a resource. Different agents
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can receive different fractions of a divisible resource, while in the case of indivisible resources, it

may or may not be possible for different agents to share (jointly use) the same resource. Some

examples of indivisible but sharable resources are roads [4], and access to network connections as

opposed to items of clothing [28]. In the case of non-sharable indivisible resources, an allocation

is a partition of the set of resources amongst the agents. For many purposes, task allocation

problems can be considered as MARA instances if we consider tasks as associated resources with

a cost rather than a benefit [28]. The type of resource is also distinguished by its behavior as

a function of time. Resources that do not change their properties during the assignment phase

are called static resources, otherwise they are known as non-static (or dynamic). In most cases,

resources are not static because, at some point, changes are likely to occur, either by their num-

ber or other properties. The type of resource can have a significant impact on the allocation

process later [97].

In this work, we consider passenger requests as non-static, non-sharable indivisible resources.

A request may change, for example, its status (announced, picked-up, delivered or unsatisfied)

at runtime and it cannot be shared between vehicles.

2.1.3 Objective Function

The objective function represents the global objective of the allocation procedure in terms of

aggregation of utilities and preferences. Examples are: maximize social welfare for agents,

minimize total waiting time for passengers, minimize costs, and so on [97].

The purpose of resource allocation is either to find a feasible allocation of resources to agents,

(for example, looking for any assignment of requests to agents with no potential conflict); or

to find an optimal allocation. In the latter case, the allocation in question could be optimal

for an entity that manage the process from a global point of view (for example, a solution

that maximizes the total income of the fleet); or optimal against an adequate aggregation of

the preferences of the individual agents in the system (for example, a resource allocation that

maximizes the average utility of the agents). Combinations are also possible: the goal may be

to find an optimal allocation in a small series of achievable allocations; and what is considered

optimal could depend both on the preferences of a central entity and on the aggregation of the

individual preferences of the agents. Of course, when the calculation of an optimal allocation

is not possible (e.g. due to computation complexity or lack of time), any progress towards the

optimum can be considered as a success [28].

2.1.4 Allocation Procedure

The allocation procedure of MARA is the mechanism to distribute the resources in a way that

attempts to optimize a defined objective function [94]. Such procedure can be centralized or dis-

tributed. In the centralized case, a single entity decides on the final allocation of resources among

the agents, eventually after having obtained the agents preferences over alternative allocations.

Typical examples are combinatorial auctions, where the central entity is the auctioneer, and the

declaration of preferences takes the form of auctions. On the other hand, in purely distributed

approaches, allocations appear as a result of a sequence of local negotiation phases [28].

In practice, both centralized and decentralized approaches to MARA have their advantages

and disadvantages. An important argument against centralized approaches is that it may be

challenging to find an agent capable of assuming the role of central dispatcher or auctioneer

(for example, given his computational skills or reliability). Moreover, in a complex environment,

much of the knowledge relevant to the resource allocation problem remains local to specific agents

and could also be highly dynamic. This makes centralized optimization techniques impractical.

The distributed model seems even more natural in practice, when it is impossible to find optimal

allocations, an acceptable way to proceed is to take an initial solution and then progressively,
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incrementally improve it by small modifications, which are more likely to happen locally instead

of being driven centrally. Progressive improvements to the status can be naturally modeled in

Distributed bargaining or Distributed Auction frameworks. Distributed bargaining is a competi-

tive bargaining strategy also known as zero-sum negotiations, it is used as negotiation strategy in

which one agent gains only if the other agents loses something [126]. Distributed-auction-based

approaches such as Consensus-Based Auction Algorithm (CBAA) and its generalization to multi

assignment, Consensus-Based Bundle Algorithm (CBBA) use a market-based decision strategy

as the mechanism for decentralized resource selection, and use a consensus routine based on local

communication as the conflict resolution mechanism by achieving agreement on the winning bid

values [20].

2.2 Properties of Multiagent Resource Allocation

The concepts that we overviewed in the last section represent the essential components of any

MARA system. However, MARA solutions can be characterized by their considerations of several

properties such as the agent’s utility function, social welfare and cooperativeness.

2.2.1 Utility Function

The utility function represents the degree of satisfaction of an agent for a given allocation.

Every agent has a utility value expressed as an explicit value or a relation that determines the

most satisfactory solution. An allocation procedure attempts to provide agents with alternative

resources that match their utilities as much as possible. Having a set of resources R and a set of

agents A; let us define XR as the set of all possible allocations of resources from R to A. Then,

the utility function of each agent a ∈ A takes the following form:

ua : XR → R+, a ∈ A

which returns a numeric value corresponding the level of satisfaction of a for each alternative.

2.2.2 Social Welfare

This term refers to social welfare as studied in Economics and Social Choice Theory. Examples

include utilitarian social welfare, in which the goal is to maximize the sum of individual public

services, and egalitarian social assistance, in which the goal is to maximize the individual welfare

of the agent at the worst moment [28].

Social welfare represents the aggregation of the utility functions of all individuals, that could

be calculated in different ways [97].

Welfare Engineering refers to the systematic selection of appropriate social welfare orders for a

given MARA application (and possibly the design of new orders); and the design of appropriate

criteria of rationality and mechanisms of social interaction for negotiating agents, taking into

account different notions of social welfare.

2.2.3 Cooperativeness

Stan Franklin proposes a typology of cooperation, positioning it in the context of multiagent

systems [47] as shows Figure 2.1. For him, a multiagent system is considered as independent

(non-cooperative) if each agent pursues its own tasks independently of the others. On the other
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Figure 2.1: Multiagent Cooperativeness typology according to [47]

hand, the cooperation between agents is not necessarily intentional. In this case, from the

observer’s point of view, the agents appear to be working together, but from the point of view

of agents, they are not, as they are simply carrying out their own individual behavior.

Cooperative systems are achieved when the behavior of the agents includes acting together in

some way. Such cooperativeness can either be communicative (agents communicate intention-

ally sending signals to each other in order to carry out their mutual tasks) or it can be non-

communicative. In the latter case, the agents coordinate their cooperative activity by observing

and reacting to each other’s behavior [47].

In order to study how agents, in a distributed way, can optimize a global objective function,

Shoham examined four families of techniques that work cooperatively: Distributed Constraint

Optimization and Distributed Dynamic Programming; Distributed Markov decision processes;

Negotiation; and Coordination on social laws and conventions [144].

On the other side, there exist also non-cooperative techniques that are mostly based on Game

Theory, which is defined as a mathematical study to understand situations in which decision-

makers interact. A game is meant in the everyday sense as “a competitive activity, in which,

players contend with each other according to a set of rules.” [77]. In non-cooperative game

theory, the basic modeling unit is the individual (including his beliefs, preferences, and possible

actions).

A Self-Interested Agent is an agent that has his own description of which states of the world

he prefers and that acts in an attempt to induce these states of the world.

Agents will always have utility functions, and they want to maximize the expected utility

values. This suggests that acting optimally in an uncertain environment is conceptually simple,

at least as long as the results and their probabilities are known to the agent and can be succinctly

represented. Agents simply need to choose the action plan that maximizes the expected utility.

However, things can become much more complicated when the world contains two or more agents

maximizing their utilities with actions that may affect the profits of others.

2.3 Cooperative Resource Allocation

In dynamic MARA, agents can act either competitively or cooperatively. In the field of MAS

for distributed problem solving, there is a mathematical framework that combines Artificial

Intelligence and Operations Research called Constraint Reasoning (CR) that exploits the ho-

mogenization and collaborative interaction of agents [166].
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2.3.1 Constraint reasoning

Constraint reasoning techniques help to ensure that the dynamic knowledge that resides in

system entities solves the resource allocation optimization problem without imposing unrealistic

requirements that all agents continuously communicate their local knowledge to a traditional

optimization solver. It is a paradigm in which problems are solved by satisfying the constraints

between variables. The notion of a constraint, seen as a restriction on the combinations of values

that a set of variables can take, is natural enough to have appeared very early in the history of

artificial intelligence.

Figure 2.2: Constraint graph example for map coloring problem

A constraint network (a.k.a constraint graph) is a graph whose node set consists of variables,

each taking a value in its respective domain, and it’s edges represent the constraints that restrict

the possible combinations of values between the variables. An example of constraint graph is

shown in Figure 2.2 for an instance of the map coloring problem, in this we look for assigning

color values (r, g, b) to map regions (A,B,C, and D) in a way that each pair of neighboring

regions mast have different colors.

A Constraint Satisfaction Problem (CSP) is the problem of deciding whether a given con-

straint network has solutions, that is, an assignment of values to all variables that satisfies all

constraints. In general, constraint satisfaction is NP-complete, and constraints are generally

expressed as binary constraints. Shoham defines CSP by a set of variables, domains for each

of the variables, and constraints on the values that the variables could take at the same time.

The role of constraint satisfaction algorithms is to assign values to variables consistently with

all constraints or to determine that such an assignment does not exist [144].

Constraints can either be Hard Constraints, that specify certain requirements for the variables

that must be satisfied, or Soft Constraints, that have certain values of variables that are penalized

in the objective function if, and to the extent that, the requirements on the variables are not

satisfied. Many real-world problems are naturally formed as optimization problems where the

task is to assign values to variables in such way to maximize utility, minimize cost, etc. while

complying with problem-specific constraints. Therefore, CSPs can be extended from satisfaction

to optimization by the notion of soft constraints [135].

A Constraint Optimization Problem (COP) is the problem of finding a variable assignment

to all variables that satisfies all hard constraints and at the same time optimizes the global cost

function. COP is a generalization of CSP in a sense that it allows constraints to be soft associated

with a cost of violation, and attempts to minimize the total cost of the solution. Distribution can

be considered as a useful extension of classical centralized algorithms to solve CSP where each

agent is responsible for assigning one (or several) variables with relative autonomy. Even if it

doesn’t have a global vision, every agent can communicate with his neighbors in the constraints

network. We can then introduce the idea of Distributed Constraint Satisfaction Problem (DCSP)

as an idea inspired by classical centralized algorithms to solve CSP and so for Distributed

Constraint Optimization Problem (DCOP).
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2.3.2 Distributed Constraint Optimization Problem

DCOP is a formalism that captures the advantages and costs of local interactions in a MAS

in where each agent chooses a set of individual actions. DCOP is a structure able to model

a large number of problems of coordination, programming, and tasks assignment of MAS that

is already applied to areas such as sensor networks, scheduling of meetings, and traffic light

timing [157]. DCOP has been formalized by Yokoo [166] as a 5-uplet < A,X,D,C, ϕ > where

A = {A1,A2, ...,Ak} is a set of agents, < X,D,C > is a COP with:

• X: is a finite set of variables, X = {X1,X2, ...,Xn}.

• D: is a set of domains, containing a finite and discrete domain for each variable:

D = {Di|i ∈ {1, ..., n},Di 3 Xi}

• C: is a set of constraints, C = C(R1),C(R2), ...,C(Rm), where each Ri is an ordered subset

of variables and each constraint C(Ri) is a set of tuples indicating mutually coherent values

of the variables in Ri.

and ϕ : X→ A is a matching function that partitions variables from X to agents from A. DCOP

aslo has:

• a cost function fij : Di ×Dj → N

• an objective function F : D→ N evaluating an assignment of A with Fij(Xi,Xj) for each

pair Xi,Xj

In distributed algorithms to solve a COP, each agent works in a protocol that combines local

processing and communication with its neighbors. A good algorithm ensures that the process

ends quickly with a feasible solution (or with the knowledge that there is no feasible solution).

2.3.3 DCOP Algorithms

DCOP algorithms are varied, and the choice between them is dependent on the objective of the

solution and the context of the problem. The run-time characteristics of the DCOP algorithm

(execution-time, number/size of messages, and memory requirement per agent) is an essential

factor when dealing with on-line dynamic problems.

DCOP algorithms can be classified in several ways, for example upon their completeness, run-

time characteristics, solution exploration process and synchronization among agents. Fioretto

et al. provided a comprehensive overview of the DCOP research area. The survey addresses

the different DCOP classifications and applications, including a description of the most typical

algorithms of each DCOP family. In terms of the quality of the solution, the algorithms are

characterized as either complete (exact), if the optimal solution can be reached, or incomplete,

if non-optimal solutions are found ( heuristics in which there is a trade-off for reduced computa-

tional and communication overhead between the agents). Concerning the constraint information

of the agents, DCOP algorithms are partially centralized when agents delegate some constraint

information to a central agent, or fully decentralized when each agent has only its own constraint

information (e.g., when privacy is a priority issue). In terms of performance of the algorithms,

DCOP algorithms are synchronous if the agent’s operations and actions are strictly subject to

the output of their neighbors, or asynchronous when the agent reacts exclusively based on its

perception of the problem.
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There are several more classifications such as agent/environment behavior (deterministic

or stochastic), algorithm strategy (search, inference...) and complexity measures (time, agent

memory, agent communication...), among others [56].

The runtime characteristics of DCOPs identify their memory and communication requirements

(e.g., the amount and size of messages) and whether agents only communicate with their neigh-

bors or also with non-neighbor agents.

The resolution (or solution exploration) process of a DCOP algorithm fell into one of the follow-

ing categories [165]:

• Search algorithms: use search techniques to explore the solution space, typically extend

centralized search algorithms such as depth-first search.

• Inference algorithms: allow agents to exploit the constraint graph structure to aggregate

costs from neighborhood. These algorithms are derived from dynamic programming and

belief propagation techniques.

• Sampling algorithms: rely on sampling the search space to approximate a function such as

probability distribution.

According to the way agents update their local information, DCOP algorithms can be categorized

as synchronous or asynchronous. Asynchronous DCOPs allow agents to update their allocation

based only on their local view of the problem, and thus independently of the actual decisions

of other agents. On the other hand, synchronous algorithms force the decisions of the agents

to follow a particular order, usually dictated by the implemented representation structure. The

implementation details and the specific features of every specific DCOP algorithm is out of the

scope of this manuscript. However, taxonomy of DCOP algorithms as presented by Fioretto

et al. is shown in Figure 2.3.

Figure 2.3: DCOP algorithms taxonomy
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2.4 Market-based Resource Allocation

The main challenges of resource allocation in distributed systems are critical users acting in their

own best interest, and rapidly and unpredictably changing demand. This should be handled

efficiently in low latency way. A common solution is a proportional share, where agents each

get resources in proportion to their predefined weights. However, this does not allow agents to

differentiate the value of their assignments, which leads to economic inefficiency [88].

The function of a market-based resource allocation mechanism is to guide agents in the

decisions that determine the flow and consumption of resources. When an agent has to select

an action from its available options for each decision, not all actions are possible options at

every moment, and some combination may cause conflicts. Thus, the feasibility of an action

can be divided into individual feasibility and compatibility. Naturally, an allocation mechanism

may guide the agents towards actions that are at least feasible, which can be itself problematic.

However, in classical welfare economics, the resource allocation requirements are usually more

than feasibility, e.g., attributes such as business efficiency or service quality [76].

Since ancient times, auctions have been used to answer the most fundamental questions in

Economy: who should get the goods and at what price? Therefore, auction theory is one of

the most significant and widely studied topics in Economics. Some types of auctions are well

known, such as the ascending-bid auction or the first-price auction used in many public markets.

Auctions are distinguished not only by the terms and conditions of the auction but also by the

characteristics of the environment in which they take place, including the number of participants,

the number of items traded, the parties preferences, and the form of private information that

participants have about their preferences.

A common aspect of auction forms is that information, in the form of bids, is received from

potential participants about their willingness to pay the price, and the result –i.e., who wins

what and how much has to be paid– is determined exclusively based on the information re-

ceived. This implies that auctions are universal, in the sense that they can be used for many

scenarios to determine winners [86], especially in resource allocation [28, 144]. A great deal

of coordination approaches have elements that are both centralized and distributed and there-

fore fit in the middle of the spectrum. Dias et al. position market-based systems under this

hybrid category. Market mechanisms can retain the benefits of distributed approaches, includ-

ing robustness, flexibility and speed. Auctions quickly and concisely gather the information

of participants in one place to make decisions about resource allocation; in some cases, they

provide solution quality guarantees. Market-based approaches may also incorporate methods

for opportunistically coordinating sub-teams in a centralized manner. However, market-based

approaches have some weaknesses. In domains where fully centralized approaches are feasible,

market-based approaches may be needlessly complex in design and have greater communication

and computational requirements [45].

Summary

Allocation problems are central concern in managing ODT systems. Solving resource allocation

problems in dynamic environments, such as ODT systems, must challenge the allocation in real-

time. This challenge makes it an elusive goal in practice to achieve an optimal solution. However,

the design of approaches that start from feasible solutions and then improve them is a suitable

alternative to tackle the dynamic aspect issues; this requires taking the communication aspect

into account and providing robust and efficient communication and coordination mechanisms.

MARA solutions are identified by the behaviors of individual agents and their coordination

mechanisms so that various solution schemes exist. We can define three dimensions for the

features of these mechanisms:
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• The level of decision autonomy of agents, that identify whether they take fully decentralized

autonomous decisions or they follow some centralized instructions.

• The level of cooperativeness of agents, that defines their intention to share information

about their decisions or not.

• The allocation method adopted by the individual agents, that define how an agent priori-

tizes a particular resource and insert int into its potential schedule

We have overviewed in this chapter several MARA approaches that we can classify based on

their consideration of these dimensions as follows:

• autonomy can take value from the set {centralized, decentralized, partially-centralized}

• cooperativeness value is either sharing or no-sharing of decision information

• allocation methods are varied, some examples are Auctions, DCOP algorithms, Linear

programming solutions, etc.
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Chapter 3

Applying Multiagent Resource Allocation to

DARP

In recent years, the number of articles devoted to applying agent-based technologies to trans-

port and communications engineering has increased significantly. Bazzan and Klügl review

the existing literature on agent-based modeling and simulation of transport. They stated that

agent-based approaches are well suited to traffic and transport management, given the geo-

graphic, functional, and temporal distribution of data and control, as well as the frequent and

flexible interactions between participants and their environment. Ronald et al. investigate the

application of agent-based simulation for studying ODT systems. They identified that existing

works and applications are strongly focused on optimizing trips, usually in favor of the operator,

and rarely consider individual preferences and needs of customers. In order to make better use

of existing transport infrastructure, ODT systems are gaining ground internationally. However,

many systems fail due to poor implementation, planning, or marketing, and thus, being able to

realistically assess the viability of a system in particular cases is essential.

In this chapter we investigate the application of MARA to an ODT system defined as in

the DARP which we introduced in Section 1.2. We first provide an overview of existing MARA

approaches to solve DARP, then we define the set of criteria to be used for evaluating the

existing work in the literature. After that, we overview the most relevant contributions to solve

DARP and the common modeling and simulation frameworks that are used for evaluating such

contribution. Finally in section 3.4, we address some limitation of the state-of-the-art models.

3.1 Existing MARA solutions for DARP

Traditional approaches for ODT consider a centralized dispatcher architecture like in Egan and

Jakob [49], Shen and Lopes [143] or a decentralized Multiagent System (MAS) to reduce the

problem complexity to be handled by a central coordinator like in El Falou et al. [53], Grau

et al. [65]. There exist several approaches for decentralized decisions and self-coordination, like

Glaschenko et al. [62] which introduce a multiagent bid-based real-time scheduling solution in

fully decentralized settings. Here each vehicle represented by an agent can negotiate via ra-

dio channels with flexible decision criteria. A pattern recognition algorithm is used to predict

the most likely locations for the next demand using agent-based data mining to recommend

movements to these locations. Investigating the applicability of Genetic Programming (GP) for

developing decentralized MAS that solve dynamic DARP, van Lon et al. present a method to
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(a) Central dispatcher (global communication) (b) Decentralized decisions (local communications)

Figure 3.1: Centralized vs. Decentralized architectures

automatically generate a MAS that can solve the DARP for a specific set of scenarios. GP is

used to generate a heuristic that is effective in solving the DARP compared to centralized solu-

tions. This approach’s best result is by planning only one demand in advance by vehicle, which

maximizes the agent’s local interests (greedy) and produces a feasible solution very fast [155].

Grau and Romeu propose an agent-based model based on simulated events for the real taxi

market, where supply and demand matching depends on event-based interactions. According to

their conclusion, one of the main limitations is the assumption of uniform distribution of demand

in the service area [64]. Agatz et al. aimed at addressing the uncertainty caused by the dynamic

nature of online demands. With ignoring the time required to execute a planning algorithm, they

proposed the use of a deterministic rolling-horizon solution approach. Plans in the rolling-horizon

approach are drawn up using all known information in a planning horizon, that is “rolled” forward

to include more available information [2]. Based on vehicle coordination via message passing,

and extending the generic model for Online Localized Resource Allocation (OLRA) [167], using

P2P communication, the work of Picard et al. propose the Online Localized with Communication

Constraint Resource Allocation (OLC2RA) for concurrently solving the allocation problem over

a fleet of autonomous taxis, in which a vehicle decide its next destination (scheduling only one

demand in advance) [122]. On the contrary, ALMA decentralized heuristic proposed by Danassis

et al. is wholly decoupled and does not require direct communication between the participants.

They demonstrate an upper bound of the speed of convergence which is polynomial to the

desired quantity of resources and competing agents per resource; in the realistic case where the

mentioned quantities are limited whatever the total number of agents/resources, the convergence

time remains constant as the total size of the problem increases [40]. However, conflict detection

still requires communication with other vehicles, resources, or a central entity to enable resources

to share information about their status, such as the blackboard coordination mechanism.

3.2 Evaluation Criteria

In the following, we define evaluation/identification criteria to classify existing works accordingly.

To assess contributions related to DARP and its agent-based modeling, allocation procedures,

solution results, and simulation framework implementation, we define in what follows seven-

teen criteria classified by their evaluation purpose into five categories: Problem Model, Agency,

Procedure, Solutions, and Implementation.
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3.2.1 Problem Model

The problem at hand could be dynamic in several aspects. These criteria define how flexible and

generic the model is to deal with the dynamic aspect of the problem.

EC 1. Demand model : this criterion concerns the demand parameters considered in the

reviewed work, in addition to the nature of the demand distribution, is it statically known in

advance or dynamic, is it deterministic or stochastic ...

EC 2. Assessment scenario generation: this criterion is related to the assessment of the

proposed models: whether it relies on synthetic data simulation or on real world data sets.

EC 3. Fleet’s heterogeneity: This criterion defines if the model supports scenarios with

heterogeneous fleets or not.

EC 4. Environment model: this criterion is about the interface between system entities and

their environment, Defining such an interface is not obvious. An essential aspect is to respect

their autonomy and to ensure the application of environmental rules. Dynamic environments

include endogenous processes that allow the state of the environment to dynamically evolve

outside the control of the system. In a static environment, this process is not included.

3.2.2 Agency

These criteria describe the general characteristics of the agent models and their abstract system

architecture including:

EC 5. Decision autonomy: this defines if agent decisions are taken autonomously or they

follow centralized or hierarchical orders.

EC 6. Agent cooperativeness: this defines the level of information sharing between agents

and how does this affect their individual decisions.

EC 7. Allocation mechanism: this defines the method to resource allocation e.g. based on

combinatorial optimization, constraint optimisation problem, market based auctions, etc.

3.2.3 Procedure

The purpose of these criteria is to describe the features of the allocation procedures to assess

their feasibility and performance.

EC 8. Optimality: An exact method always finds optimal solutions and yields an optimality

proof, although it can be computationally challenging. An approximation method finds a sub-

optimal solution offering a guarantee of approximation on the quality of the solution found. A

heuristic approach finds a non-optimal solution whose quality can only be verified experimentally.

However, it is sometimes best to deal with the problem and solve it heuristically, especially

in the presence of large-scale problems. EC 8 identifies if the reviewed work proposes exact,

approximation or heuristic approach to solve the problem.

EC 9. Objective function: this criterion allows to classify the reviewed works depending on

the parameters they considered in their objective function.

EC 10. Communication-wise robustness: this criterion classifies the systems based on how

they will deal with communication issues such as message loss, message non-conformity, and

communication range limitation. This criterion address system robustness by comparing its
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performance when confronted to a variety of communication issues cases.

EC 11. Information-wise robustness : This criterion addresses the system robustness against

the frequent update in information-related dynamic changes in environment, schedules, demand,

and status of system entities.

3.2.4 Solutions

These evaluation criteria concern indicators and metrics for operational assessment of solution

methods on specific problem instances

EC 12. Quality of Business (QoB) indicators: these indicators can be seen as perceptual,

conditional and subjective attributes, and can be interpreted differently by different people.

Consumers may focus on the quality of a product/service’s specifications or comparison with

market competitors, while service providers could measure the QoB as degree of compliance

w.r.t. the manufacture specifications, or by the revenues achieved by reducing expenses and

increasing profits.

EC 13. Quality of Service (QoS) indicators: this criterion is influenced by human factors

identified by set of indicators including: stability of service quality, service availability, wait

times, and user information. Here we focus on how the authors answered to QoS aspects and

what are the parameters they considered in order to achieve QoS.

EC 14. Technical indicators: this criterion defines the technical factors of the proposed

solution influenced by reliability, scalability and efficiency. Technical indicators include among

others: solution computing costs, communication costs, and ease of maintenance.

3.2.5 Implementation

Here we focus on the implementation of the proposed model, simulation framework, and their

limitations.

EC 15. Simulation goals: The purpose of this criterion is to identify the main focus of the

simulation scenarios and the supported evaluation metrics.

EC 16. Framework genericity: we are interested in identifying whether the contribution

build the model as an ad-hoc implementation specific to ODT or develop it on top of a generic

framework

EC 17. Transport problem specification: the purpose of this criterion is to specify if the

transport characteristics must be coded or is included in the proposed framework, and for those if

the ODT specifications (basic vehicle behaviors, solution strategies) are or must be implemented,

and so for the communication management and constraints.

3.3 Agent-based Modeling and Simulation

Agent-based approaches can contribute to design and control intelligent transport systems [10]

because of their following characteristics:

• they can solve natural and intuitive problems involving active entities with a (potential)

local perspective, that are harder to model with than complex centralized entities whose

knowledge cannot include all the details and restrictions necessary, because it would be
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too burdensome. It can provide adaptive and powerful services thanks to its ability to

self-organize;

• autonomous agents provide an appropriate basis for modeling heterogeneous systems. Each

entity can have its own structure, representation, and behavior. Therefore, a particular

level of detail can be included in a simulation model or in a problem-solving structure that

is arbitrarily developed and applied at the agent level;

• high-level abstractions can be used to describe agents and interact with them. Therefore,

they provide an intuitive level of interaction between human users and the agent-based

system;

• MASs allow to manage the evolution in the system structure elegantly and efficiently.

Agents can control the amount of time in which they interact. These (dynamic) relation-

ships can be controlled, separated, or established from a local perspective;

• agents can eventually adapt their behavior to achieve an evolving self-organization capacity.

This flexibility can be very useful in the transport and communications sectors.

It is generally accepted that the construction of analytical models (equational) is difficult. This

motivated the development of agent-based modeling, which allows to model complex systems

simply by involving much simpler modeling of the behavior and interactions of the agents that

make up the system.

3.3.1 Evaluating Solution Methods via Transport Simulation

The recent development of Intelligent Transportation Systems (ITS) has led to a growing atten-

tion on improving the efficiency and reliability of transit systems. This attention has led to the

need for appropriate methodologies and tools to assess ITS efficiency. To this end, a suitable eval-

uation tool is simulation. The use of simulation is intended as an experimentally-based method

to design and create a model of transportation system for use in numerical experiments. The goal

is to understand better the behavior of such a system under a given set of requirements [42]. In

recent years, agent-based transport simulation approaches have been proven able to acquire the

necessary level details to reproduce realistic phenomena. Agents can represent drivers, vehicles

or other transport entities. They are explicitly present as active and heterogeneous entities in an

environment that represents the road network where they can present complex elaborations of

information and perform arbitrary decision-making. Their behavior can be viewed, monitored

and validated individually, opening up to new possibilities for analysis, development and illus-

tration of traffic phenomena. The main difficulties of these approaches are computing power

limitations, computer memory and (perhaps the most critical) data availability [10].

In the literature, vehicle mobility models are generally classified as microscopic or macroscopic.

Microscopic mobility models focus on the mobility of each individual vehicle, while Macroscopic

approaches focus on the complete road flow taking into account the general traffic density,

vehicles distributions, and various constraints (as crossroads and traffic lights) [71].

The basic structure of microscopic models, such as the Dynamic Route Assignment Combining

User Learning and micro-simulation (DRACULA), developed at the Institute for Transport

Studies of the University of Leeds (UK) by Liu et al. [96], takes into account two concepts of

fundamental importance. The first focuses on the travel choices made by an individual to make a

trip: travel objectives, travel needs, perceptions, behavior, and cognitive abilities that influence

choice processes derived from the state of these variables when the choice is made. The second,

consists in modeling how the network status changes over time, and in considering how the

spatial knowledge of a driver changes constantly depending on the movements performed on the

entire network.
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Rossetti et al. [132] described an extension of the DRACULA traffic simulator to model drivers

decision-making without information, with information provided just before the start of the trip,

or with information provided both before and during the trip. So that agents update their belief

base and select plans (routes) and departure time. This extension combines demand genera-

tion, departure-time choice, route choice and micro-simulation of environment with a formal

agent-based model for driver’s cognitive decision-making, using BDI-based 1 agent specifications

Agentspeak language.

3.3.2 Common Simulation Tools

TaxiSim is one of the most common simulation platforms for taxi fleets. Cheng and Nguyen [27]

introduced TaxiSim as a multiagent simulation platform, to simulate the operation of taxi fleets.

TaxiSim is designed to model individual driver strategies at the micro level. It is also designed

to be scalable so as to simulate thousands of vehicles at the same time. Actual operating data, if

available, can also be imported into TaxiSim, allowing to create an extremely realistic simulation

environment.

To study cooperation behavior of vehicles in order to optimize a flexible transport service,

Lammoglia et al. [89] developed a model of a theoretical transport system in the open source mul-

tiagent programmable modeling environment Netlogo [116], that compares different optimization

processes for two types of services. The first service is driven by stop location attractiveness

(selfish vehicles) and the second service is a simple process of communication and cooperation

between vehicles (cooperative vehicles). The main objective is to understand if the cooperation

between vehicles have a significant effect on the efficiency of the global service. For this study,

the authors simulated the combination of the two models to be analyzed, i.e. competition against

cooperation. Although it is not surprising that cooperation improves transport efficiency, these

experiments show that statistical deviations are important between the two evaluated services.

The results of [89] open questions about the integration of competing services. One can clearly

believe that any cooperation between different methods can be of importance. This does not

seem to be the case when cooperative and selfish vehicles are connected to the same service.

In future work, it will be interesting to analyze the sensitivity and relationship between these

transport systems: how can one make them cooperate and maintain a good balance between

conflicting goals on many levels (taxis, taxi fleets, local transport authority, carrier, etc)? should

different parameters be used for different systems which partially overlap or divide only space?

The simulation must incorporate a realistic dynamic of customer demand, traffic flow, and

fleet management operations. These aspects are even more important when considering urban

areas due to the stronger dynamics of traffic flows, with a consequent continuous evolution of

travel time. Using microscopic traffic simulators, especially when tackling dispatching problems,

evaluates the performance of the service in different scenarios, often extreme, such as sport/cul-

tural events, bad weather or transport strikes. To keep track of the vehicles, it is necessary to

simulate them individually. For the same reason, requests must be microscopic [103]. Maciejew-

ski and Nagel [103], Maciejewski [100], Maciejewski and Bischoff [101] describe how the open

source MATSim-simulator [108] can be used to generate problematic instances for a dynamic

VRP (DVRP). This is done by coupling a DVRP optimizer to MATSim. Maciejewski et al. [105]

designed a Dynamic extension of the Vehicle Routing Problem to MATSim to be highly general

and customizable to simulate a wide range of dynamic VRPs.

The extension allows to link several algorithms that are responsible for the continuous re-

optimization of the routes in response to changes in the system. The DVRP extension has

been used in many research and commercial projects related to the simulation of electric and

autonomous taxis, Receptive transportation on demand, fast personal transportation, free car-

pooling and parking search.

1Belief-Desire-Intention (BDI): a software model in agent programming provides a mechanism for separating
the plan selection activity from the currently running active plans.
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The performance of ODT services with MARA and MAS coordination depends largely on

two key factors: (1) the transport control mechanism used for resource allocation and scheduling;

(2) the parameters of the implementation scenario, in particular the topology of the underly-

ing road network and the spatio-temporal structure of passenger demand. Understanding how

these factors affect the performance of the transport system is essential for the development and

implementation of ODT services. For this reason, Čertický et al. [171] and Čertický [170] pro-

posed an open-source agent-based simulation test bed that allows to evaluate the performance of

multiagent ODT schemes and to compare them: centralized and decentralized solutions, static

and dynamic passenger allocation, as well as vehicle routing mechanisms under various condi-

tions. The test-bed is built on top of the transport simulation framework AgentPolis [3], which

is a fully agent-based simulator in order to model transportation systems. Individual entities in

the transport system are represented as autonomous agents with continuous asynchronous con-

trollers capable of interacting with their environment and other agents. This allows modeling

scenarios where agents modify their plans at any time of the day based on their observations

about the environment and/or communicate with other agents.

The work of Cich et al. [29] aimed at evaluating the profitability of precision flow service

providers in several years of activity in a specific public compensation condition. Focusing

on ODT, Cich et al. proposed a co-simulation model and a framework for simulating supply

and demand, particularly for instances with low density flows of trip demands. The cooperative

multiagent model which is implemented using the General-purpose Agent-Oriented Programming

Language SARL is responsible for providing negotiations between agents, while the MATSim

agent-based simulator is responsible for travel planning.

3.4 Analysis of Multiagent Contributions to DARP

It is worthy to mention that the above mentioned models vary in the flexibility degree regarding

the characteristics of demand model (EC 1), assessment scenarios (EC 2), fleet heterogeneity

(EC 3) and environment dynamics (EC 4). The variety of works in ODT literature relying

on these platforms also differ in their consideration of these characteristics. Table 3.1 list the

different characteristics for the flexibility criteria, from which the choice of any hypothetical

combination is possible to define simulation scenario attributes.

EC 1 (Demand model) EC 2 (Assessment scenarios) EC 3 (Fleet heterogeneity) EC 4 (Environment dynamics)

Spatio-temporal (distances)

Announcement Scenario data Structural

(on-line/off-line ) (synthetic/realistic) (capacity, speed, etc) Traffic (artifacts, flow, etc.)

Distribution Scenario generation Behavioral Communication model

(uniform/deterministic/stochastic) (Parametric/Statistical) (strategy, preferences, etc)

Observability

Table 3.1: Flexibility criteria attributes considered by modeling and simulation approaches

The variety of conceptual and experimental models for the problem at hand and its solution

methods provides a rich, fundamental background for researchers to develop and assess their

contributed approaches to solve ODT instances. However, to the best of our knowledge, the

literature of ODT and MARA lacks for the definition of guidelines for implementing analytical

tools to assess these approaches. Using uniform representations of problem instances and their

solutions should allow the implementation of a generic multiagent framework for comparing al-

ternative methods to ODT problem variants. Then, analytical tools could be used for supporting

decisions among different solution methods in different contexts.

The dynamic nature of the problem rises the challenge of uncertainty, this leads to the absence

in practice of feasible methods which guarantee to achieve optimal solutions. Therefore, works

proposing MARA approaches to solve ODT instances focus either on achieving feasible solutions
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that are robust against problem dynamics and communication issues, or on reaching good results

regarding quality criteria by letting the challenges related to the dynamic aspect of the problem

aside.

In Section 3.1, we mentioned that there exist several approaches for decentralized decisions

and self-coordination approaches to solve DARP, like Glaschenko et al. [62], van Lon et al. [155],

Seow and Lee [142]. Many surveys overviewed these works like Bazzan and Klügl [10], Parragh

et al. [118], Desjardins et al. [43]. In what follows, based on these surveys and the evaluation

criteria (EC 5. to EC 14.) defined in the previous section, we assess the works in the literature

of MAS to solve DARP.

Recalling EC 5 (decision autonomy), on the one hand, traditional approaches for ODT in

literature consider the centralized dispatcher architecture. Some multiagent approaches keep this

architecture like in Maciejewski et al. [104], Egan and Jakob [49], Shen and Lopes [143], Ga-

cias and Meunier [59], Kümmel et al. [87]. Some others propose decentralized MAS to reduce

problem complexity but still using this architecture in the sake of conflict management using a

central coordinator like in El Falou et al. [53], Grau et al. [65].

Considering EC 11 (Information-wise robustness) it is impractical to find optimal allocations.

However, the mentioned works considered that heuristics with continuous improvements over an

initial feasible allocation of resources would be a success (EC 8).

The cooperation (EC 6) in these architectures depend on the global communication of infor-

mation with the central entity, which is supposed to be trust-worthy in handle the conflict

management and achieve feasible solutions. One of the main issues here is the communication

bottleneck, and the robustness against communication issues (EC 10). To the best of our knowl-

edge, none of the mentioned works focuses on robustness against these issues.

The most considerable difference between these approaches is the adopted allocation mechanism.

The feasible solution in these approaches are achieved by applying a variety of straightforward

allocation methods (EC 7), Alshamsi et al. [6], Shen and Lopes [143], Maciejewski et al. [104]

used greedy methods with different priority functions, Gacias and Meunier [59] used the inser-

tion heuristic (see Solomon [147]), while Kümmel et al. [87] proposed an adapted version of the

Gale–Shapley algorithm for stable matching (see Gale and Shapley [60]).

On the other hand, the decentralized approaches can differ to a greater extent than alloca-

tion mechanisms. Table 3.2 classifies some example contributions based on the level of agent

cooperativeness (EC 6) into three categories: global, limited-range, and no information sharing.

Unlike the ordinary models where vehicles are considered as autonomous agents, both Bazzan

et al. [11] and Egan and Jakob [49] considered the passengers to be the agents who take decisions

and negotiate with the supply entities.

Cooperativeness

level

Contributions

No information sharing van Lon et al. [155], Egan and Jakob [49], Hrnč́ı̌r et al. [75]

Sharing within limited-

range

Winter and Nittel [159], Glaschenko et al. [62], Seow and Lee [142],

Jin and Jie [81],

Global sharing Lammoglia et al. [89], Bazzan et al. [11], El Falou et al. [53], Kalina

et al. [83]

Table 3.2: Classification of decentralized approaches based on EC 6.

The allocation mechanisms that are adopted by the reviewed works vary considerably, al-

though market-based mechanisms (Negotiation and Auctions protocols) appear in about 50%

of the papers (see Figure 3.2). Other common allocation mechanisms depend on straightfor-

ward methods like greedy, insertion and local search heuristics. To ensure optimal allocation,

complete decentralized algorithms can be used. For example, El Falou et al. [53] introduced
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Figure 3.2: Usage of different allocation mechanisms (EC 7)

an adapted A* algorithm requiring global communication, but the robustness of this algorithm

was not assessed regarding the problem dynamics. However, heuristic approaches are the most

common in the literature.

The allocation objective function (EC 9) describes the overall potential of the solution from

the point of view of either the passengers or the service provider. The objective of the service

provider is usually to minimize costs and maximize the profits: works focused on its point of

view defined their allocation objectives to maximize the QoB. Passengers usually want to be

served with the lowest waiting time and less transfers. Works aimed at increasing passengers’

satisfaction focus on maximizing QoS. However, some works combined measures from both point

of views for multi objective allocation. Table 3.3 list the most common solution indicators for

QoB (EC 12), QoS (EC13) and technical (EC 14) criteria.

QoB indicators QoS indicators Technical indicators

Fleet size Satisfied requests rate Computation time

Relative gain (profit) Waiting time Optimization rate

Travel distance nb waiting requests Priority function choice

Time operational cost nb transitions Connectivity

Vacant distance Response time Search depth

Idle time Service stability nb egotiation rounds

Occupancy rate nb Messages

Vacant rate Charging (rate/time)

Table 3.3: Quality and technical indicators (EC 12, EC 13 and EC 14) of solution approaches

Works that propose zone-based communication are Kalina et al. [83], Alshamsi et al. [6],

while flexible communication models are proposed by e.g. Jin and Jie [81], Winter and Nittel

[159] to form efficient infrastructure, avoid bottlenecks and scale for handling connection issues.

On the other hand, no sufficient information to answer to (EC 10) is found in the works based

on global communication and shared memory such as Lammoglia et al. [89], Maciejewski et al.

[104].
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Similar to centralized approaches, decentralized approaches that consider the dynamic aspect

of the problem (Jin and Jie [81], Lammoglia et al. [89], Egan and Jakob [49]) apply continuous

optimization or frequent rescheduling to improve the solution quality and avoid issues related to

the uncertainty about demand and the environment.

Recalling the implementation criteria EC 15, EC 16 and EC 17, we notice that advances in

multiagent technology have motivated researchers to build microscopic simulation frameworks

either as ad-hoc implementations (Deflorio et al. [42], Furtado et al. [58], Hampshire and Sinha

[70]) or using generic platforms (e.g. Repast Simphony [117], Netlogo [116]) in which transport

characteristics must be coded.

On the other hand, there are MAS platforms dedicated to transport problems, often mainly

focused on traffic (e.g. Sumo [13], Movsim [151], Matsim [8], MITSimLab [15]).

The initial goals of these platforms are to simulate traffic flows and demonstrate how traffic states

may evolve over time. These models identify and track the behavior of individual vehicles (often

referred to as car-following models). To assess the performance of fleet management and control

mechanisms, ODT specifications (strategy, basic vehicle behavior, etc.) must be implemented

on top of these platforms.

Some notable open source multiagent ODT simulators exist such as RinSim [155], Agents4ITS

Mobility testbed [170], and TaxiSim [27] in which communication management, communication

constraints and different solution models require to be coded.

Summary

The modeling and development of decentralized systems are well suited to the multiagent do-

main. Therefore, vehicle allocation is a relevant application area for such techniques. On the

other hand, centralization of the allocation process with an automatic dispatcher is still quite

common in multiagent approaches. In this chapter we provided a literature review on applying

MARA approaches to ODT applications. We first defined the set of evaluation criteria that we

used in this review, then depending on these criteria we conducted an analysis on the works that

proposed solution methods. The solutions for DARP as a resource allocation problem in ODT

systems within dynamic environments must challenge schedules of vehicles in real-time. This

challenge makes the achievement of an optimal solution in practice an elusive goal. However, de-

signing improving approaches for feasible solutions is a suitable alternative to tackle the dynamic

aspect issues; this requires taking the communication aspect into account and providing robust

and efficient communication and coordination mechanisms. Solution methods vary on mutable

dimensions, so that a uniform representation and categorisation of different solution models is

necessary in order to compare their performance in different context fairly and efficiently. We

also overviewed the main notable works in literature that propose modeling and simulation tools.

The variety in consideration of problem characteristics express the need for a uniform, scalable

representation of problem instances.

To the best of our knowledge, such representations specific to DARP are missing in the

literature of MARA and ODT.
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Chapter 4

Modeling the Autonomous Vehicle Fleets

Allocation Problem

In On-Demand Transport (ODT) systems, allocation problems consist of finding feasible allo-

cations of requests to vehicles, with respect to some domain-specific constraints and objectives.

Being autonomous, the vehicles of a taxi fleet can be responsible for their choice of allocation to

requests (making decentralized decisions), or follow the schedules that are centrally decided by a

dispatcher. In practice, the feasibility and efficiency of the choice to centralize/decentralize the

solution depend on the problem complexity, its constraints and the environmental dynamics.

For a better understanding of the Multiagent Resource Allocation (MARA) for ODT problem,

we provide an illustrative scenario based on an instance of this problem in section 4.1. In the

rest of this chapter, we overview a generic model for the Online Localized Resource Allocation

(OLRA) [167] in section 4.2. Then, we propose in section 4.3 an extension to this model dedicated

to our problem with the specification of communication and additional time constraints.

4.1 Illustrative Scenario

Let us assume the simple scenario illustrated in Figure 1.2 on Page 10. We have a fleet V of

connected autonomous vehicles distributed through the city: each vehicle v ∈ V is defined by

its capacity, cost per distance unit and average speed. The city road network is represented

by a complete graph. At any point in time, vehicles can communicate by messages, and share

information about their current situation:

• location: defines where the vehicle is currently situated in the road network graph,

• load status: specify the current number of free seats,

• planning: the vehicle knows its schedule for a specific period of time (next 24 hours for

example), and may share partial or full information about it.

We consider that vehicles can communicate via an ad-hoc Vehicle-to-Vehicle (V2V) network,

in which the communication range of vehicles could be limited. Thus it is important in such cases

to consider communication robustness, which require efficient scalable network management.
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Passenger requests occur online in a non-predictable manner. Each request takes the form of a

query to travel defining

• pickUp: the origin location of the request from which the passenger is picked,

• dropOff : the passenger destination,

• datetime : the desired service time,

• type : defines if the request is specified by desired delivery time (DDT) or by desired

pick-up time (DPT),

• time window: defines the maximum accepted deviation on the upper bounds on the

actual (scheduled) time of the proposed solution from the desired datetime. i.e. it defines

the maximum accepted delay of the service from the desired time.

Requests may also specify a set of constraints such as: trip duration that defines the maximum

in-vehicle time, and budget that defines the maximum accepted trip cost.

A solution to this problem is defined by a set of proper schedules for vehicles that allow to

serve a set of requests satisfying their constraints. An optimization of this solution may target

maximizing the number of satisfied requests, minimizing waiting time (QoS objective), maximize

profit by minimizing vehicle travel costs (QoB objective) or a combination of these objective that

may increase the level of satisfaction of the users.

This problem can be expressed as a MARA problem in which we have a set of Consumers

(vehicles) aiming at consuming (serving) a set of Resources (requests) under a set of constraints

in dynamic settings.

4.2 OLRA Problem Model

In the context of transportation problems, Zargayouna et al. [167] proposed the Online Localized

Resource Allocation (OLRA) problem considering both the geographical location of consumers

and resources and their online appearance concurrently. Resources and consumers appear in a

non-deterministic manner and can, subsequently, change their position at any time. Resources

can be, for instance, vehicle seats, parking lots, electric car charging places, etc. Each resource is

defined by a set of properties and has a dynamic state. An allocation changes the resource state,

but the resource-defining properties remain the same. A consumer typically starts searching

for a resource at non-deterministic time instances, i.e. the appearance time and availability

period of resources are neither predefined nor predictable for consumers but discovered during

the process.

The compliance of a resource with the requirements of the consumer depends on their spatial

and temporal situations, as well as on the consumer constraints and preferences for the state

and properties of the resource (as in all resource allocation problems). A consumer preference

for resources is measured with an individual utility function. The local objective of consumers

is to maximize their own utility, while the global objective is generally to minimize the total

distance traveled and/or the total travel time.

4.2.1 Problem Formulation

An OLRA problem is defined as a tuple:

OLRA =
〈
R,C,G,D

〉
(4.1)

36



CHAPTER 4. MODELING THE AUTONOMOUS VEHICLE FLEETS ALLOCATION
PROBLEM

where: R is the finite set of resources, C is the finite set of consumers, G =
〈
N,E

〉
is a graph,

with a set of nodes N, a set of edges E = {eij |i, j ∈ N, i 6= j}, and D = {dij ∈ R+|eij ∈ E} is

the set of distance values dij associated with each edge eij ∈ E.

The distance between two adjacent nodes is fixed, while the travel times may vary according to

the environment dynamics. At any time, one or more resources from R can be located on the

same node.

Environment Dynamics

The following two functions define the dynamic travel time between nodes of G and the dynamic

positions of resources and consumers.

τ : E× T → R+ (4.2)

ρ : R ∪ C× T → N (4.3)

Where T is the time domain (time horizon), and τ(e, t) is the trip duration to cross an edge e

at time t ∈ T. The trip duration to go from node i to node j (eij /∈ E) is the sum of duration of

the edges on the shortest path at t. ρ(r, t) (resp. ρ(c, t)) is the node where a resource r (resp. a

consumer c) is located at time t. A resource r or consumer c moving on edge eij is considered

positioned on i until it reaches j. Thus, to determine whether a resource r ∈ R and a consumer

c ∈ C are located at the same node or not, the following function is defined:

same location : R× C× T → {0, 1} (4.4)

same location(c, r, t) =

{
1 if ρ(c, t) = ρ(r, t),

0 otherwise

At time t, for a consumer c and a resource r, same location is a boolean function whose value

at time t is 1 if and only if the consumer location ρ(c, t) is the same as the resource location

ρ(r, t).

Availability

The availability of a consumer or a resource is determined by its dynamic status attributes; a

parking spot which is occupied by a vehicle at some time instance t is an example of unavail-

able resource, similarly, a vehicle (as a consumer) being in pan or having maximum number

of passenger on-board is considered unavailable to consume more requests. To represent the

non-deterministic availability of a consumer or resource, the following function is defined:

available : (R ∪ C)× T → {0, 1} (4.5)

If the resource r (or consumer c) is available at time t for the allocation process, the value of

available(r, t) = 1 (resp. available(c, t) = 1).

Compliance

The function compliant(c, r) defines whether or not the values of the properties of the resource

r correspond to the requirement of the consumer c, in which case its value is 1. A value of 0

means that the resource r cannot be assigned to consumer c.

compliant : C× R× T → {0, 1} (4.6)
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4.2.2 Allocation Constraints and Objectives

A solution to an OLRA instance is an allocation of resources to consumers. The determination

of a solution is based on the function γ, which specifies whether a consumer actually consumes

a resource at a particular time:

γ : C× R× T → {0, 1} (4.7)

γ(c, r, t) takes value 1 if a consumer c uses a resource r at t, 0 otherwise.

Allocating a resource r to consumer c at t is constrained by the status of both c and r at t (i.e.

their positions, availability and compliance) the allocation feasibility is defined by the following

function:

feasible : C× R× T → {0, 1} (4.8)

where:

feasible(c, r, t) = same location(c, r, t)× available(c, t)

× available(r, t)× compliant(c, r, t) (4.9)

A consumer c cannot consume a resource r at t unless feasible(c, r, t) = 1.

γ(c, r, t) ≤ feasible(c, r, t) ∀c ∈ C, r ∈ R, t ∈ T (4.10)

Besides, this allocation is also constrained by the resource shareability and how many resources

a consumer can take simultaneously.∑
c∈C

γ(c, r, t) ≤ kr,∀r ∈ R,∀t ∈ T (4.11)∑
r∈R

γ(c, r, t) ≤ lc,∀c ∈ C,∀t ∈ T (4.12)

Constraints1 (4.11) specify that the sharable resource r can be simultaneously taken by at most

(kr ∈ N) consumers; the case kr = 1 means the resource is not shareable. Constraints (4.12)

specify the consumption capacity of the consumer c in terms of the maximum number of resources

(lc ∈ N) that it can take simultaneously.

Utility and Local Objectives

The aim of every individual consumer is to consume the resources that maximize its benefit.

The benefit of allocating a resource to a consumer is given by the following utility function:

µ : C× R× T → R+ (4.13)

µ(c, r, t) is the utility value of allocating a resource r to consumer c at time t. As a consequence,

the local objective of a consumer c is to maximize the sum of the utilities µ(c, r, t) associated

with being allocated some resources r all along the time horizon (∀t ∈ T), i.e. of the utilities

associated with allocation choices γ(c, r, t) = 1.

Global Objective

The global objective of the solution for an OLRA problem instance is generally to minimize

the total operational costs which can be expressed in terms of the consumers’ travel distance

1the relation 4.11 defines a set of constraints, each is applied for a couple (r, t) and so relation 4.12 for (c, t)
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and travel time. The following functions, δ and ϕ represent the total distance traveled by the

consumer, and its total travel time.

δ : C→ R+ (4.14)

ϕ : C→ R+ (4.15)

The operational cost of a consumer c is calculated as the weighted sum

cost(c) = αδ(c) + βϕ(c)

where δ(c) and ϕ(c) are normalization of δ(c) and ϕ(c) to express the function terms in the same

unit, α and β are positive numbers weighting the relative importance of time and space in the

specific problem that is considered. α and β are considered as integrate scaling factors to reflect

the weights of time and space s.t. α+ β = 1, i.e. they encode the cost per distance and cost per

time as probability to keep normalized scale for cost(c).

Thus, the global objective function is expressed as minimizing the sum of the operational costs

for all consumers:

min
∑
c∈C

cost(c) (4.16)

However, A system may perform well on the consumer’s local objectives while the global is not

optimized, or it may show good results for the global objective while the individual goals are of

poor quality. This could happen because the allocation decisions for a consumer affect the status

of resources and thus affect the feasibility of other consumers allocation options. Therefore, a

significant increase in a consumer benefit could result in a decrease in the benefit of others, and

possibly an increase in the total operational cost. As usual in this type of problem, there is a

trade-off between these goals that should be found via proposed solutions.

4.3 Extension: AV-OLRA Model

To map the OLRA problem model to the illustrative scenario we expounded in section 4.1, we

propose the AV-OLRA problem model, a specialization of OLRA with autonomous vehicles.

AV-OLRA extends OLRA with the communication and additional time constraints modeling.

Defining a time sampling unit tick we formulate the AV-OLRA problem as follows:

AV-OLRA :=
(
R,V,G,T

)
(4.17)

where the set of resources R defines a dynamic set of trip requests that occur to be available

for a specific time window during the execution; the set of consumers V represents a fleet of

m autonomous vehicles that are mobile and can only communicate within a limited range (V

specialize C in OLRA); G =
〈
N,E, ω

〉
is a graph, with N the set of nodes, E the set of edges, and ω

is a valuation function that associates each edge e ∈ E with the value based on a temporal distance

measure (e.g., average driving time in ticks), which will be used to calculate the operational

costs of vehicle trips. Here the graph G represents an urban road network in which ω encodes

D from the original OLRA in terms of trip duration instead of spatial distance. We enforce the

time horizon of the problem T to be expressed as a discrete list of ticks T = {t0, t1, . . . , tend}
which simplifies the computation of schedules and time conflict detection.

Definition 1 A trip request r ∈ R is characterized by four constant properties:

• origin or ∈ N defining the pick-up location

• destination dr ∈ N defining the drop-off location
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• a time-window twr[lr, ur] defining the lower- and upper-bound of accepted service time

• size sr ∈ N+ specifying the number of required seats

and has a dynamic (time-dependent) property denoting for every time tick t its status

sttr ∈ {announced, available, picked, satisfied, delayed, expired}

r :=
(
or, dr, twr, sizer, st

t
r

)
(4.18)

Definition 2 An autonomous vehicle v ∈ V is characterized by three constant properties

• capacity cv ∈ N

• driving cost per traveled distance cpdv ∈ R+

• a limited communication range rngv ∈ R+

It has also a set of time-dependent properties which are

• current location loctv

• current destination desttv

• the number of currently available seatstv

• last taken decision dectv

• the requesttv on-board if exists

v :=
(
cv, cpdv, rngv, loc

t
v, dest

t
v, seats

t
v, dec

t
v, request

t
v

)
(4.19)

4.3.1 Connected Sets and Sub-problem Instances

Vehicle connectivity is mainly constrained by the communication range. The intensity of radio

waves over distance obeys the inverse-square law of electromagnetic propagation, which accounts

for loss of signal strength over distance.

For each vehicle v ∈ V the communication range rngv defines the maximum distance to which v

can send messages (shown in Figure 4.1a). The communication range value depends only on the

used communication technology standard. Considering it in our model adds another dimension

of genericity. However, radio signal drops not only because of distance but also because of

obstacles like buildings, mountains, and tunnels (as shown in Figure 4.1b).

The binary function d ctd defines if two vehicles are connected directly to each other.

d ctd : V× V× T → {0, 1} (4.20)

Assuming the absence of obstacles and other environmental factors that may lead to blocking

or distorting the signal, the connectivity between two vehicles v ∈ V is achieved if the distance

between them is less than or equal to the minimum of their communication ranges. Considering

a function distance : N × N → R+ that returns the euclidean distance between two points

(i, j ∈ N), we can express d ctd as follows:

d ctd(v1, v2, t) =

{
1, if distance

(
loctv1 , loc

t
v2

)
≤ min(rngv1 , rngv2)

0, otherwise
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(a) Ideal settings: No obstacles (b) obstacle reduces connectivity

Figure 4.1: The limited range connectivity

Figure 4.2: The transitive connectivity and connected sets

However, two vehicles v1 and v2 being too distant from each other w.r.t. their communication

ranges, can still be aware of each other via other intermediate vehicles and connected transitively.

This is achieved if there exists v′ that is connected directly or transitively to both of them. The

binary function ctd generalizes the d ctd with the transitive connectivity.

ctd : V× V× T → {0, 1} (4.21)

ctd(v1, v2, t) =


1, if d ctd(v1, v2, t) = 1

or ∃v′ ∈ V \ {v1, v2} : ctd(v′, v1, t)× ctd(v′, v2, t) = 1

0, otherwise

This leads to the definition of connected sets:

Definition 3 The Connected Set (CS) of a vehicle is the set of vehicles that are connected to it

directly or by transitivity.

CS : V× T → 2V (4.22)
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CS(v, t) = {v′ ∈ V | ctd(v, v′, t) = 1}

Connected sets are dynamic entities; they are created, split, merged at run-time based on the

movement of the vehicles. Thus, based on the previous definitions, a vehicle may communicate at

time t only with the members of its connected set. The limited communication ranges implicitly

partitions the fleet into multiple connected sets (see Figure 4.2). The shorter the communication

ranges are, the smaller, the more connected sets exist. A fleet with long enough communication

range could result in only one connected set with global knowledge sharing. Decentralized

decision-making is an operation that is highly correlated to natural conflicts [82]. When resource

allocation decisions are made, an important challenge is that these decisions can sometimes

conflict with each other; for example, when two consumer agents simultaneously plan to use

the same resource. In such circumstances, consumers must manage these conflicts. Conflict

management approaches in MAS can be aimed at either avoiding conflicting decision or detecting

and resolving the existing conflicts. The key to conflict avoidance is to have a method to identify

potential conflicts before making a decision, while conflict resolution approaches allow consumers

to first make decisions and then use a method to detect and resolve the resulting conflicts when

exist.

Definition 4 A solution for AV-OLRA for a connected set is an aggregation of the allocations

of requests to all vehicles in this set, in which each request is allocated to at most one vehicle

(i.e. absence of allocation conflicts).

Definition 4 implies that a solution to an AV-OLRA instance defined for the vehicles and the

requests may be sub-optimal because several vehicles consider the same request or because the

optimal solution is not the union of the optimal solutions in each connected set. Also, any

solution is time-dependent according to the online dimension of the problem.

4.3.2 Quality of Resource Allocation

The quality of an allocation is characterized by functional and technical indicators whose com-

putation is independent of solution approaches, and can therefore help compare suitability of

these approaches. The functional indicators are measures of optimality of the allocation process

defined by its objective function, while the technical indicators are used to assess the feasibility

and applicability of the allocation process and to predict its costs in different settings. In this

work, we characterize the quality of AV-OLRA solutions in ODT scenarios by the following

indicators:

Quality is the percentage of satisfied (consumed) requests from all announced requests known

by the agents. Therefore, this indicator points to the Quality of Service (QoS) level.

Utility is the total utility of schedules from a global point of view. It points to the total revenue

of the fleet, the calculation of which is derived from the distances of successful trips (driven

with passengers on board from source to destination) in addition to the fixed service fee

per served request, which defines the profit for the ODT service provider.

Cost is the operational cost, derived from the total driven distances of the vehicles.

MsgCount is the total number of messages exchanged during the allocation process.

MsgSize is the average size of messages exchanged during the allocation.

The relation between Utility and Cost indicators defines the Quality of Business (QoB).

The two last communication indicators can be used to estimate the technical cost of the solution

and predict if such a solution is applicable in terms of communication, i.e., if it could cause

critical communication overload.
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4.3.3 Utility, Constraints and Objectives

In this model, we define the utility function of a vehicle based on the indicators of the quality

of solution described in section 4.3.2. The vehicles aim to satisfy as many requests as possible

in order to maximize their utility. Hence, if we consider a local version of the Quality indicator

calculated individually for each vehicle v ∈ V we can define the vehicle utility in terms of the

percentage of request allocated to v among its all known requests. Allocating a request r to a

vehicle v is constrained by the spatial and temporal availability of both v and r. We consider

the origin and destination of requests to be constants, and a request is available to pick-up only

at its origin during its defined time-window twr = [lr, ur]. Thus, allocating r to v requires that

v can arrive in origin point of r at a time t in between the lower-bound lr and the upper-bound

ur that define the time-window of r.

Whether car-sharing scenarios are considered or not, the fleet of vehicles could be hetero-

geneous, thus the request size (required seats) and the vehicle capacity should be taken into

account. This implies that the compliance function is subject to the capacity constraint:

∃t ∈ twr : seatstv ≥ sizer (4.23)

Thus the feasibility of allocating a request r to a vehicle v is then subject to finding a time t at

which they both are available and existing at the same location, and to have enough number of

seats in v to pick r.

From a global perspective of ODT as a business model, the main objective of ODT service

providers is optimize their benefits by reducing costs and raise the profit. From this point of

view we can define the objective function F to be maximized by the allocation process based on

the relation between the Utility and Cost indicators:

F =
∑
r∈Rs

(P + p · dist(r))−
∑
v∈V

cpdv · driven(v) (4.24)

where Rs ⊆ R is the set of all satisfied requests, P is a fixed price (service fee) per request, p is

a pricing factor per unit of travelled distance, dist(r) is the total trip distance for a request r

and driven(v) is the total driven distance by v.

Summary

This chapter aimed at proposing a model for a resource allocation problem encountered in the

management of autonomous vehicle fleets. We define the AV-OLRA problem model, a special-

ization of OLRA with autonomous vehicles, and an extension with the modeling of additional

communication and time constraints.

Taking into consideration the limited communication range of vehicular ad-hoc networks, we

defined the concept of connected sets, in which vehicles can exchange direct and transitive

messages and thus coordinate between each other about their allocation decisions.

Our model is well-suited to the ODT domain, where fleets respond to passenger requests in

dynamic online environments, and can handle different types of constraints and allow different

approaches to find solutions to coordinate vehicles.
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Chapter 5

Multiagent Approach to AV-OLRA

This chapter presents the MAS architecture to deploy the Cyber-Physical System (CPS) of AV-

OLRA. Recalling its definition in Chapter 2, a Multiagent system consists of Agents and their

Environment. Agents are autonomous entities that decide and act in the system by interacting

together and with the resources in the shared environment. The environment is the place in

which the agents are situated and can move following its topology. It is also the place where

resources and tools (passive or active entities that we call artifacts from now on) are located. In

what follows, we describe the main components that are essential to model and program a MAS

for AV-OLRA. These interacting components that share information through Vehicle to Vehicle

(V2V), Vehicle to Infrastructure (V2I) and Pedestrian to Infrastructure (P2I) communication

modes are illustrated in Figure 5.1.

Figure 5.1: AV-OLRA multiagent system components and their interaction
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5.1 Environment

The environment is defined on two topologies:

• Physical: represent the spatial urban network represented by the graph G of AV-OLRA.

• Communicational: represent the message exchange and routing infrastructure, in terms

of a scalable dynamic connection graph that is composed of all connected sets (CSs)

Unlike agents, artifacts in the MAS environment are considered as non-autonomous decision

entities. Agents act on artifacts through artifact-owned operations and can perceive some of

their states and properties. An artifact is described by a set of properties that could be perceived

by agents and by a set of operations that are accessible to agents to act on the environment.

The types of artifacts that are found in this dynamic environment are described in the following

sections.

5.1.1 Source Artifact

The request emission sources are non-mobile road-side units (RSUs) distributed over the urban

spatial network. The source artifact is responsible for emitting trip requests that could be

collected by vehicles. When emitted, the request information remains active (i.e., continuously

announced in the source communication range) until it is picked up or expires when the upper-

bound of its time-window is exceeded. The source artifact is not interactive (i.e., it does not

provide any operations to the agents). However, it provides agents with one property:

• requests: a list that contains information about active requests, including their constant

and time-dependent properties (see Definition 1 on page 39).

5.1.2 Vehicle Artifact

As a physical object a vehicle has non-autonomous parts that can be seen as an artifact composed

of the on-board units to provide the driving control and communication functionalities to the

autonomous vehicle agent (see Figure 5.2). An agent can act on the Vehicle artifact to move in

the physical environment from one location to another, stop, and communicate with agents in

its connected set i.e. its communicational environment.

• Vehicle properties:

The vehicle artifact has the following set of properties:

– location: defines the location of the vehicle at a specific moment of time (loctv)

– destination: defines the vehicle’s target location at a specific moment (desttv)

– schedule: defines the vehicle’s plan as a list of steps (each step is a tuple representing

a location to visit and its potential visit time).

– state: defines the operational state of vehicle at a specific point of time

(state ∈ {moving, waiting, picking up, delivering, unavailable}).
– request : defines request of the passenger that is currently on-board (requesttv), if

any.

– seats: defines vehicle capacity by the number of free seats at a specific point of time

(seatstv)
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Figure 5.2: Vehicle on-board unit interface

– connected : defines a list of entities with whom the vehicle can communicate (i.e. the

members of its connected set) at a specific point of time (see equation 4.22)

– known: defines the set of requests that the vehicle is aware of at a specific moment

of time, it can be expressed as knowntvi .

One can notice that some of these properties correspond to the time-dependent properties

from the vehicle definition ( Definition 2) while others are specific to the implementation

of the CPS.

• Vehicle operations:

The vehicle artifact provide the following set of operations that its agent can invoke:

– go to(l): activating this operation on a vehicle v at time t changes the property desttv
to l, sets the vehicle state to moving and forces the vehicle to start moving in the

spatial network toward the new target, obviously this will change dynamically the

value of loctv.

– stop(): terminates vehicle movement in the spatial network, changes the value of

desttv to NULL and changes the vehicle state to waiting.

– send(receiver, topic, payload): sends through the communication network a

message composed of a topic, and a payload (i.e. message body) to a receiver belong-

ing to the connected set of the vehicle.

– broadcast(topic, payload): sends through the communication network a message

composed of a topic and payload to all agents belonging to the connected set of the

vehicle.

5.1.3 Resource Artifact

This artifact has all properties which are common to any type of consumable resources situated

in physical environment. Resource artifacts may represent any object that has constrained and

limited availability to be consumed by an agent. For instance, we may have artifacts for parking

slots, tolls, transport requests, charging/fuel stations, or any other facility. In this work, we

are mainly interested in trip requests as resources. A trip request resource artifact is a virtual

entity representing the properties of the passengers (or transported objects), the request dynamic

status and its interaction model (Equation 4.18).

• Request resource properties:

– resourceInfo: a description in the form of a list of tuples (key, value) representing

static properties that characterize the resource; in the case of trip request resource,
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its origin or, destination dr, size sizer, time window twr, and other optional static

constraints.

– status: the dynamic status of the resource; in the case of a trip request this property

refers to the sttr.

– location: the position of the resource in the urban network at a given time (Equa-

tion 4.3).

• Request resource operations:

The operations of resource artifacts depend on the resource type and define the function-

alities that enable agents to interact with, benefit from and consume the resource. For trip

request resources we define the following operations.

– pick up(): performing this operation on a request r at a time t requires that its

status sttr = available. Once activated, this will changes sttr to picked. After

being picked, the resource artifact moves along with the vehicle, which means that

its location property will change dynamically.

– drop off(): the status of the request artifact r must be picked at the time t when

this operation is performed (sttr = picked). As consequences, if the time constraints

of the request is violated, the status sttr is set to delayed, otherwise sttr is set to

satisfied.

5.2 Agents

In this work we consider only one type of agents. An autonomous vehicle (AV) agent is associ-

ated with each vehicle in the system. We can distinguish three different sub-behaviors (acting,

communicating, and planning) of an AV. As we model AV-OLRA in discrete time space, the

time horizon is defined as a set of ticks. At each time tick every agent performs the following

actions as shown in Figure 5.3 where the abstract elements are to be implemented according to

the specifications of the solution method:

1. read the received messages and update the context (communicating sub-behavior)

2. choose the locations to visit (planning sub-behavior)

3. act by performing a driving action (acting sub-behavior)

4. broadcast its context information (communicating sub-behavior)

Communicating

Acting

Planning

information sharing

coordination

update schedule

update beliefs

Sub-behavior

state

Abstract sub-

behavior state
Belief baseTransitionAbstract transition

Figure 5.3: Generic vehicle behavior
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5.2.1 AV Acting Sub-behavior

Based on the presence of passengers on-board, the vehicle location, and its knowledge about

upcoming requests, in the acting sub-behavior the AV agent can be in one of the following

states, as shown in Figure 5.4:

Marauding the vehicle has no passenger on-board and is looking around for its next destination;

Moving the vehicle has a destination and is moving in the urban topology towards this desti-

nation;

Picking up the vehicle is located at the origin location of the passenger p’s request to perform

the pick up(p) action and then start moving again;

Dropping off the vehicle is located at the destination location of the passenger p’s request to

perform the drop off(p) action and then look for a new destination.

Marauding Moving

Dropping

off

Picking

up

request
to serve

no passenger
at origin

clie
nt

ser
ved

arrived
at destination

pas
sen

ger

at
orig

in

rea
dy

to

dri
ve

clie
nt

Figure 5.4: Acting sub-behavior

The AV acting states represent the operational states of the vehicle artifact except for unavailable

in which the acting sub-behavior is never triggered. the Marauding is a state defining that the

vehicle has no information about available request, thus it is waiting to receive new messages

to decide its next destination. This can be realized either in communication topoloy only or in

both topologies. In the first case the state of the vehicle artifact is waiting until receiving new

request messages either from a nearby source or from another vehicle that joins its connected

set. In the later case, the vehicle artifact is moving in the spatial network towards random

neighboring destinations to increase the probability of being in the range of other vehicles and

thus the probability of receiving new information messages. In the specific context of this work,

we consider the second case.

Transitions between acting sub-behavior states are based on the following set of events (shown

in Figure 5.4):

request to serve: the vehicle v has no passenger on board and a request r is selected to be

served, this implies the vehicle has a new destination to go to;

passenger at origin: the vehicle v arrived at the origin location of request r, or, and the

passengers of r are present in or so v can start to pick up;

ready to drive client : the passengers of a request r got on vehicle v that is now ready to drive

to the destination location dr;

arrived at destination: the vehicle v has passengers on board of a request r and arrived at

the destination location dr;

client served : the vehicle v is free to choose a request to serve, after delivering passengers at

their destination, and may look around for the next request to serve;

no passenger at origin: the vehicle v has no request on board, arrived at the origin or of a

request r, but the passengers of r are absent. the vehicle becomes then free again.
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5.2.2 AV Communicating Sub-Behavior

As communicating agents, AVs have a communication behavior with other surrounding entities

through the dynamic connection scheme (Connected sets) illustrated in Figure 4.2 ; they can

join/leave connected sets, broadcast, send, and receive messages:

• join(c): an agent joins a connected set c as a result of being in the communication range

of one of its members;

• leave(c): an agent recognizes that it is leaving its connected set c as a result of being

disconnected from all its members;

• send(m, a): an agent sends a message m to another agent a, provided that they are in the

same connected set;

• receive(m): an agent receives a message m from another agent in its connected set (once

received and read, the message is stored in the agent belief base);

• broadcast(m) similar to send(m, a) but here the agent doesn’t specify the receiving agent,

instead it broadcasts the message to all the other members of the connected set.

A message has a source (the sender identifier) a target (the recipient identifier in case of direct

message or “broadcast” otherwise ), a topic (a character string defining the subject), and a

payload ( the message body content). Table 5.1 lists a set of communication event examples

and their corresponding message specifications. The message payload is processed by the target

agent based on its topic. For instance, on receiving a message with “new req” topic, the agent v

add the information of the request r from the message payload to its set of known request Rv.

the same happens for the list of requests received in the payload of messages with “known” and

“join” topics.

Event
message

source target topic payload

new request r source artifact broadcast new req
(
or, dr, typer, twr, sizer, st

t
r

)
v′ joins a CS v′ broadcast join Rv′ = {r ∈ R : v′ knows r}

received:

(v′,join,Rv′) v ∈ CS v′ known {r ∈ R \ Rv′ : v knows r}

Table 5.1: Generic message types and their specifications

5.2.3 AV Planning Sub-Behavior

The planning sub-behavior of AVs depends on the chosen coordination mechanism that could be

centralized/decentralized (see Section 2.1.4) in which agents can adopt cooperative or competi-

tive behaviors (see Section 2.2.3). Figure 5.5 illustrates the common components of the generic

planning sub-behavior of AVs. The implementation specifications of these components for in-

stances of AV depend on the adopted coordination mechanism, they are detailed in Part III.

Generally speaking, an agent has at each time tick a set of planning options (e.g. add a re-

quest to schedule, abandon a request, make an exchange offer to another vehicle, ..). The set

of available options changes dynamically based on the current context of the problem, vehicle

status and its adopted coordination mechanism. For updating its schedule, an AV continuously
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looks for planning options. If any option is found, the AV selects one and depending on the

coordination mechanism it communicates or not its decision to its neighbors belonging to the

same CS. The CS members reach an agreement or disagreement, depending on the coordination

mechanism and the selected option. On agreement, the AV updates its schedule and looks for

the next option and so on until no option is available.

Updating

schedule

Choosing

option

Coordinating

options
available

out of
options
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ent

opt
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Figure 5.5: AV generic planning sub-behavior

5.2.4 AV Coordination Mechanisms

A coordination mechanism CM is defined by 3-tuple

CM = (DA,AC,AM) (5.1)

where DA denotes the level of decision autonomy which is either centralized (C) or decentralized

(D); AC denotes the agents cooperativeness level with (S) or without (N) sharing of schedule

information, and AM is the allocation mechanism (see Section 2.1.4). Although the proposed

model supports the application of several coordination mechanisms, in this document and for

all experimental scenarios, we consider that agents of the same fleet are homogeneous, i.e. they

have the same coordination mechanism to prevent any ambiguous action.

According to this formulation and based on the different types of solution methods pre-

sented in Chapters 2 and 3, we can instantiate our generic model to implement coordination

mechanisms from literature like: classical selfish behavior 〈D,N,Greedy〉 van Lon et al. [155],

centralized dispatching 〈C, S,MILP〉 El Falou et al. [53], Lee et al. [91], Yang et al. [162], coop-

erative teams using DCOP to coordinate 〈D,S,DCOP〉 Fioretto et al. [56], and auction-based

allocation 〈D,S,Auction〉 Daoud et al. [41], Egan and Jakob [50].

Mechanism Functional specifications

Selfish Priority function heuristic

Conflict detection and resolution protocol

Centralized dispatching Selecting the dispatching responsible agent

Context information gathering and solution broadcasting protocol

Cooperative The decision coordination protocol

Conflict detection, avoidance, and resolution

Auctions Priority function heuristic

Auctioneer selection and auction initiation mechanism

Winner determination

Table 5.2: Functional specification for different coordination mechanisms
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To implement any of these coordination mechanisms, it is necessary to specify the coordinated

activities that could occur throughout the interaction between the agents. The coordination

functional specifications are not generic but strongly dependent on the used strategy for solving

AV-OLRA. We can thus instantiate our generic model to implement variety of coordination

mechanisms, each of which defines its own functional specifications (See Table 5.2). In the

following chapter we explain in detail these coordination mechanisms and their social rules

interaction protocols, and functional specifications.

Summary

This chapter aimed at proposing a multiagent-oriented programming model and defining the

requirements to deliver the AV-OLRA model in which agents can communicate with each other

via radio channels using peer-to-peer messages.

The communication model supports direct, broadcast, and transitive message transmission and

is based on the concept of connected sets.

We aimed to provide a generic model; the proposed MAS will offer genericity on both com-

munication and coordination dimensions. On the one hand, the limited communication range

defines an attribute for the problem that affects the level of connectivity and thus bounds the

achievable centralization. On the other hand, being dependent on the allocation process, the

choice of the planning sub-behavior of AVs defines the coordination mechanism that affects the

dynamic spatial-temporal context of the problem instances.
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Solution Methods (to AV-OLRA)
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Chapter 6

Centralized Dispatching

Solving the AV-OLRA resource allocation problem consists in optimally allocating vehicles to

requests. We mentioned in the previous chapter that such a problem can be solved by different

methods and algorithms depending on the problem constraints, as well as the chosen coordina-

tion mechanism. Traditional solutions rely on dispatching, in which a special entity (so-called

dispatcher) is responsible for assigning available vehicles to requests. Once computed, the opti-

mal schedules are communicated to the vehicles. This chapter describes in details the centralized

dispatching approach, detailing the communication architecture and the problem formulation as

an Integer Linear Program (ILP). Since the allocation process is centralized, in the coordina-

tion mechanism formulation (see equation 5.1), the decision autonomy of agent is centralized

(DA = C). The role of the agent is to update its schedule based on what he receives from the

dispatcher.

The rest of this chapter is organized as follows. In Section 6.1 we describe our proposed

dispatcher-based coordination mechanism detailing the information gathering and dispatcher

selection within the connected sets. In Section 6.2 we introduce a traditional formulation of

the problem as an ILP. In Section 6.3 we present an extension to the previous formulation that

takes into consideration solving a sub-problem per connected set whenever the problem context

changes.

6.1 Agent Coordination and Connected Sets Architecture

In this centralized model, during the planning phase, the AVs continuously ask a communica-

tion entity to update their schedules. Therefore, the coordinating state of AVs consists of a

request/response protocol after which AVs are sent new schedules as an agreement.

Theoretically, the centralization aspect of this decision problem makes it possible to address

it as an Integer Linear Problem and more specifically as a DARP (see Chapter 1). Even the

dynamics of the problem (online requests, variable fleet size, traffic problems, and other envi-

ronment dynamics) have been dealt with in the literature [119]. However, these problems are

NP-Hard: this means that in reality if a globally central (omniscient) dispatcher exists, the

complexity of its task grows quickly with the problem size (size of the fleet and the number of

requests), and so do its response times, making it very difficult to keep the pace of the ongoing

execution.
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Figure 6.1: centralized dispatching via global communication

Moreover, querying the coordination entity according to the aforementioned request/response

protocol requires vehicles to have continuous access to the dispatcher via a global communication

infrastructure such as the Long-Term Evolution (LTE) communication or 5G (See Figure 6.1

in which the dispatcher is a communication portal), whose data traffic is expensive for the

required usage density of such a persistent operation, and can cause a critical bottleneck on the

dispatcher side. On the other hand, interacting through inexpensive means such as Dedicated

Short-Range Communication (DSRC) implies constraining the vehicle communication by the

hardware limitations of these means (e.g. the communication range). To handle these issues, we

recall the Connected Set (CS ) model for limited range communication presented in section 4.3.1

(at page 40).

Figure 6.2: Dispatching per CS via limited range communication

We propose a model in which one dispatcher per CS is needed (as illustrated by Figure 6.2).

Since AV-OLRA considers only one type of agents, the AVs, the dispatcher of a CS is one of its

members: once a CS is created (or updated), one of its members becomes the dispatcher (see

the following section). The chosen AV will be responsible for:

1. gathering the information from other agents about the requests (AC = S according to the

notation introduced in Section 5.2.4);

2. computing by ILP optimal schedules (or optimally updating previous ones) for the AVs of
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the CS (AM = MILP );

3. sending to other vehicles of the CS their (currently) optimal schedules.

6.1.1 Selecting the Dispatcher Agent

Any agent in a CS can be selected as representative of all members to communicate with and

play the role of the dispatcher (so-called dispatcher agent). A trade-off between communication

bandwidth, choice stability, information robustness, and method responsiveness should be con-

sidered in the design of the method to choose a dispatcher agent.

Message exchange through transitive communication requires rerouting of messages through

intermediary vehicles to their destination. The resulting data traffic may eventually lead to

flooding or jamming in some areas of the network. The dispatcher agent should repeatedly

receive context information from the CS members and send them their schedules. Hence, choos-

ing one with maximum direct connectivity with other agents may effectively decrease the data

traffic.

Figure 6.3: Communication centroid vs. lower ID dispatcher agent selection in a CS

(Green lines represent the direct connection links)

If the dispatcher agent leaves the CS, a new one must be chosen among the remaining members.

A new information-gathering round is then required in order to allow the new dispatcher to take

over the dispatching task. According to Definition 3, CS s are dynamic entities that change,

split, merge, and are created repeatedly based on the context dynamics. Therefore, the fre-

quency and required computational time to select the dispatcher agent must be carefully taken

into consideration.

Several strategies can be considered to choose the dispatching agent: here we will consider the

lower id agent and the centroid agent selection methods. In any selection method, if two or

more agents in a CS share the highest value of the selection criteria, then the one having lowest

id among them is selected to be the dispatcher randomly.

When they are first instantiated, agents are associated with ascending IDs. In the lower id agent

strategy, the agent who has the lower ID is selected to be the dispatcher. One potential advantage

of this method is the implementation and computation simplicity. On the other hand, the

position of AVs in the communication topology of the CS is neglected. This could lead to a

premature new dispatcher selection if the old one is located near to the CS border, and thus is

more likely to leave it than others. Alternatively, one may consider the centroid agent method

to make a stabler choice. The centroid agent is positioned in the center of the CS topology, thus

it has less probability to leave it and has more direct connectivity links with other members (as

shows Figure 6.3).
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A consequence of the centroid agent selection method is that it requires more computational

time, which will be added to the time to compute the new optimal routes immediately after the

change in the CS status (which led to the dispatcher change). As the IDs of AVs are essential

parts of exchanged message i.e. sources and targets (see Section 5.2.2), in this work and seeking

implementation simplicity, we use the lower id agent method for our experiments.

6.1.2 Information Gathering

Due to the problem dynamics, agents must continuously share the context information, and

questions about communication bandwidth and information robustness in the CS arise. Exam-

ples are: the method to choose dispatcher agent, or any situation in which an agent detects a

change in his set of known request or in the urban network, and must report it by broadcasting

a message to all members of CS.

To allow the dispatcher to calculate up-to-date solutions, all CS members must share with

the dispatcher information about their current location, destination, available seats and current

request on board if any. This information must be gathered by the dispatcher only, immediately

prior to his computation of the solution ( pre-dispatching messages). In addition to the generic

message types presented in Table 5.1 on Page 50, some specific message types are required

corresponding to information gathering and dispatching events. Table 6.1 shows these events

with their corresponding information messages.

Event
message

source target topic payload

pre-dispatching v ∈ CS dispatcher state (loctv, dest
t
v, seats

t
v, request

t
v

)
at t

{(r, tr) : r ∈ Rv ⊂ R}
dispatching dispatcher v ∈ CS schedule Rv: v’s assigned requests

tr: potential time to serve r

Table 6.1: Centralized dispatching messages

Once the dispatcher calculates a feasible solution, it sends a schedule message to each vehicle

v in its CS, the payload consisting of a list of tuples (r, t), each of which specifies a request r

assigned to v and the corresponding pick up time t.

6.2 AV-OLRA as an Integer Linear Program

Let a weighted oriented graph G =
〈
N,E, ω

〉
defines a one-to-one representation of an urban

network, where N is a set nodes representing city locations, the edge set E ⊆ N ×N defines the

direct links between nodes, and ω defines the travel time matrix associated with E. ωij is the

travel time associated with edge (i, j) if (i, j) ∈ E, otherwise it is ∞) as shown in the example

illustrated by Figure 6.4 and Table 6.2.
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Figure 6.4: Urban network graph G (example)

a b c d e

a 0 2 4 ∞ ∞
b 2 0 ∞ 3 ∞
c 5 ∞ 0 ∞ 1

d ∞ 3 ∞ 0 2

e ∞ ∞ 1 2 0

Table 6.2: Travel times ω associated with the

example of Figure 6.4

6.2.1 Urban Network Pre-processing

The base graph for every AV-OLRA instance is derived from G by completing it with the shortest

paths between nodes. We get a graph G =
〈
N,A, t

〉
in which N = N, A = {(i, j) : i, j ∈ N, i 6= j}

is a set of arcs between all nodes in N , and t = {ti,j : (i, j) ∈ A} defines the set of shortest-

path lengths of arcs in A, i.e. the shortest travel time between two distinct nodes in N . These

computations are done offline, i.e. once for the whole urban network before instantiating any

scenario. Figure 6.5 illustrate the generation of G from G.

Figure 6.5: Generating the base graph G from the urban network graph G

6.2.2 Formulation

Let us consider n requests to be served and a fleet of k vehicles available to serve them. Each

vehicle v has an initial location in the considered scenario to which it must return by the end of

its shift. The maximum shift duration, defined by the time horizon T , cannot be exceeded by

vehicle routes. A graph Gs = (Ns, As, ts) represents the considered scenario, we define it in the

following along with all other notations.

• A node set Ns = {1, ..., 2n + k} made up of pick-up nodes P = {1, ..., n}, corresponding

drop-off nodes d = {n+ 1, ..., 2n}, and vehicle initial locations V = {2n+ 1, ..., 2n+ k};

• a set of arcs As = (V ×P )∪Apd∪(D×V ), where Apd = Ad∪Ap is the set of pick-up/drop-off

arcs, composed of:

– drop-off arcs Ad = {(i, n + i) : i ∈ P} used by a vehicle during its shift to reach the

drop-off spot of a picked request;
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– pick-up arcs Ap = {(j, i) : j ∈ D, i ∈ P, j 6= i+n} used to go to a new pick-up location

for another request after a drop-off;

the arcs in V ×P (resp. D×V ) allow vehicles to go from their starting point to the pick-up

spot of the first served request (resp. from the drop-off of the last served request back to

their initial locations) at the beginning (resp. at the end) of their shift;

• the edges in As are associated with finite running times ti,j ≥ 0 as rounded-up integer

values, and cost proportional to the running time by a factor q. The case ti,j = 0 can

occur for (i, j) ∈ (V × P ) ∪Ap ∪ (D × V ), whereas for (i, j) ∈ Ad, ti,j is strictly positive.

Further features of the problem being defined: K = {1, ..., k} is the set of vehicles, each k ∈ K
being associated with the starting point 2n + k ∈ V ; a set R of n requests is defined, each

r ∈ R being a couple made up of a unique pick-up node i(r) ∈ P and a pick-up time window

TW (r) = [lr, ur], i.e. the time interval in which the client will accept to be picked up: not sooner

than lr and not later than ur:

0 ≤ lr ≤ ur ≤ T − (ti(r),i(r)+n + min
k∈K

ti(r)+n,2n+k)

where the upper bound on ur accounts for the possibility having at least one vehicle capable of

serving r before the end of its shift.

For the sake of conciseness, it seems appropriate to introduce an abuse of notation and use

symbol i to denote both a pick-up spot and the request in R to which such spot is associated

with (instead of r). Consequently, the associated time window is noted TWi = [li, ui]. The min

in the bound on ui becomes a max in case we impose that all vehicles (instead of at least one)

should be able to serve client i. The service of a request is not compulsory.

We also define the profit coefficients c0 and c related to the service of a request: serving request

i ∈ R gives rise to a profit c0 + c · ti,n+i, i.e. the sum of a fixed service fee c0 and a variable fee

proportional by c to the time to reach drop-off from pick-up. Coefficients c0, c and q are defined

in such a way that choosing between serving a request or not is not trivial.

We can now define AV-OLRA as an Integer Linear Program (ILP) by introducing the fol-

lowing decision variables:

• binary variables xki,j , with k ∈ K and (i, j) ∈ Apd, and xki,j = 1 ⇔ vehicle k goes from

node i to node j;

• binary variables yki , with k ∈ K and i ∈ P ∪D, and yki = 1, i ∈ P ⇔ vehicle k begins its

shift from pick-up point i, or ykj = 1, j ∈ D ⇔ vehicle k ends its shift after drop-off point

j;

• integer variables zi, i ∈ P ∪D, zi = time of arrival at pick-up/drop-off node i.

The objective function of the AV-OLRA ILP is the net income ∆, which we aim to maximize:

∆ =
∑

i∈P,k∈K

(c0+c·ti,i+n)·xki,i+n−q·
∑
k∈K

(
∑

(i,j)∈Apd

ti,j ·xki,j+
∑
i∈P

t2n+k,i ·yki +
∑
j∈D

tj,2n+k ·ykj ) (6.1)

Therefore, AV-OLRA can be represented by the following ILP model:
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max ∆

s.t.
∑
i∈P

yki =
∑
j∈D

ykj ≤ 1 ∀k ∈ K (6.2)

∑
k∈K

xki,n+i ≤ 1 ∀i ∈ P (6.3)

yki +
∑

(j,i)∈Ap

xkj,i = xki,n+i ∀i ∈ P, k ∈ K (6.4)

xkj−n,j =
∑

(j,i)∈Ap

xxj,i + ykj ∀j ∈ D, k ∈ K (6.5)

∑
k∈K

t2n+k,i.y
k
i ≤ zi ∀i ∈ P (6.6)

zi + ti,i+n ≤ zi+n + T · (1−
∑
k∈K

xki,i+n) ∀i ∈ P (6.7)

zj + tj,i ≤ zi + T · (1−
∑
k∈K

xkj,i) ∀(j, i) ∈ Ap (6.8)

li ≤ zi ≤ ui ∀i ∈ P (6.9)

zj + tj,2n+k ≤ T.(2− ykj ) ∀j ∈ D, k ∈ K (6.10)

xki,j ∈ {0, 1} ∀k ∈ K, (i, j) ∈ Apd (6.11)

yki ∈ {0, 1} ∀k ∈ K, i ∈ P ∪D (6.12)

zi ∈ Z ∀i ∈ P ∪D (6.13)

Constraints (6.2) state that a vehicle could be used or not, but if used, then its shift must begin

by visiting some pick-up spot and end after visiting some drop-off spot. Inequalities (6.3) state

that a request must be served by at most one vehicle.

Equations (6.4) and (6.5) enforce the fact that if a request is served, then the vehicle visiting

its pick-up spot (be it the first of the vehicle shift or not) must be the same that goes to the

drop-off spot, as well as the same that leaves it to either serve a new request or end the shift.

Inequalities (6.6) give a lower bound to the arrival time at the pick-up spot of a visited request,

forcing it to be not less than the time required for the vehicle assigned to the request to reach it

from its starting point, in case the request is the first of the vehicle shift. Based on inequalities

(6.7), the arrival time at a drop-off point j is at least the arrival time at the corresponding

pick-up spot j − n, plus the travel time between the two spots, provided that the request is

served by a vehicle, otherwise the relation is loosened.

Similarly, inequalities (6.8) establish a relation between the arrival time at a drop-off spot and

that of the (possibly) following pick-up spot visited by the same vehicle. Relations (6.9) force

arrival times at pick-up spots to be comprised within the associated time windows, while (6.10)

enforce that the arrival time of a vehicle to any of the dropoff spots must leave the vehicle enough

time to go back to its starting point before the end of the shift. The domain of the decision

variables is defined by (6.11) - (6.13).

The present model is valid under the following assumptions:

• The number of places associated with requests is neglected, i.e. every vehicle can fit every

request;

• after pick-up, the only possible next node is the matching drop-off spot, i.e. no overlap of

request services.
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6.3 Dynamic Rescheduling with Central Dispatcher

When not all requests are known in advance, i.e., new ones can pop out at runtime, the nature

of the problem changes, and a dynamic version of AV-OLRA must be designed.

Suppose to have a solution Sopt0 consisting of an optimal set of schedules for the requests known

at a given date t0.

Consider now a later date t1 > t0 in which not all of the schedules of Sopt0 have been completed

yet, i.e. some requests are still waiting to be picked up or dropped off, and suppose that at t1 a

set of new requests have appeared that were not known at t0.

The best insertion of those requests in the vehicle schedules of Sopt0 cannot guarantee the op-

timality of the solution. A new solution must then be computed from scratch, considering the

whole set of previously known but not yet served requests, and the new ones that have appeared

between t0 and t1.

6.3.1 Dynamically Computing a New Solution as an AV-OLRA Prob-
lem

The AV-OLRA problem as it has been formulated in section 6.2 can come at hand to perform

such a dynamic reassignment of requests. We let:

• t0 and t1 denote the dates of, respectively, the last computed solution, and that at which a

new solution must be computed to accommodate new requests appeared in the meantime;

• Rt denotes the whole set of requests known at a generic t and whose service has not yet

begun at t. At any time τ > t, Rt is partitioned into four sets, namely:

– Rτ :wt , the requests of Rt that are still waiting at τ ;

– Rτ :pt , the requests of Rt that have been picked up, but not yet dropped off, at τ ;

– Rτ :rt , the requests of Rt that have been rejected because impossible to serve, at τ ;

– Rτ :ct the requests of Rt whose service has been completed at τ ;

• Rt,t′ denotes the set of further requests that have appeared at any time τ s.t. t < τ ≤ t′.

The dynamic problem of re-optimizing the schedules at time t1 can be seen as an AV-OLRA in

which:

• the request set is Rt1 = Rt1:wt0 ∪ Rt0,t1 . Indeed, requests in Rt1:ct0 and Rt1:rt0 are over, while

the service of those in Rt1:pt0 is ongoing and the assignment of a vehicle to them makes no

longer the object of a decision

• the vehicles are not required to go back to their starting point after dropping off the last

request

6.3.2 Deriving the AV-OLRA Instance Graph Gs

Dynamic re-optimizing can occur multiple times and successive runs will possibly share a part of

the spatial information, since they will concern sub-parts of the same city scenario. This is why

it is important, at the very beginning and once for all, to trace a 1-to-1 representative graph of

the city scenario G, and complete it to obtain a graph G (as it has been explained in section
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6.2.1) from which the graph Gs (see section 6.2.2) on which each re-optimization run is based

will be derived.

The graph Gs = (Ns, As, ts) on which we define AV-OLRA instances to perform dynamic

reassignment is derived from the list of requests and the city scenario graph G:

• pick-up and drop-off spots P and D of node set Ns can be directly obtained from the node

set N of graph G, it is sufficient to specify the mappings N → P and N → D

• subset Apd = Ad ∪Ap of arc set As can be directly inferred from the arc set A of graph G

• as for the initial positions of vehicles (nodes V of node set Ns), they are either:

(a) their starting position if they have never been used, or

(b) their current position if they are empty, waiting, or, more generally, marauding, or

(c) somewhere between a pick-up spot and the related drop-off spot, if they are performing

a request service at the date t1 when the dynamic reassignment must be solved.

The third case in particular shows that vehicle initial positions could correspond to any of the

nodes of the underlying urban network. This, along with the fact that vehicles do not need to go

back to initial positions, suggests defining the node set V = {2n+ 1..2n+ k} as a set of dummy

nodes and the arc sets (V × P ) and (D × V ) as sets of dummy arcs. The travel time t2n+k,p
associated with an arc (2n+ k, p) ∈ (V × P ) are:

• if the initial position of a vehicle at date t1 matches a node i′ ∈ N : the travel time ti′,p to

reach the considered pick-up spot

• if the initial position of a vehicle at date t1 does not match any of the nodes in N : the travel

time to reach the nearest node i′ ∈ N , plus the travel time ti′,p to reach the considered

pick-up spot. This holds in particular for a vehicle who is performing a request r′ at t1:

the travel time will be the residual time to reach the drop-off spot d′ ∈ N , plus the travel

time td′,p.

Note that node d′ (as well as node i′ in the previous cases) does not need to be included in Ns:

only the related travel time need to be taken into account in time t2n+k,p associated with arc

(2n+ k, p).

One last aspect to be dealt with is how to take into account the fact that vehicles do not need

to return to the starting point. This can be modeled as follows:

1) associate travel times equal to 0 to the arcs in (D × V ). By doing so, the last term of

objective function (6.1) will be neglected, and the second term at left-hand side in (6.10)

will not count, and

2) choose for the time horizon T the value maxi∈P (ui+ ti,i+n)− t1, i.e. the timespan between

the latest possible drop-off time and the time t1 at which the re-optimization solution must

be made available

In this case the objective function becomes:

∆ =
∑

i∈P,k∈K

(c0 + c · ti,i+n) · xki,i+n − q ·
∑
k∈K

(
∑

(i,j)∈Apd

ti,j · xki,j +
∑
i∈P

t2n+k,i · yki ) (6.14)

i.e. the last term is explicitly removed, while inequalities (6.10) become

zj ≤ T · (2− ykj ) ∀j ∈ D, k ∈ K (6.15)
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An alternative to Point 1) consists in defining a particular version Gcs = (Ncs, Acs, t) of

graph Gs in which Ncs ≡ Ns and Acs = (V × P ) ∪Apd, i.e. the part (D× V ) of As is explicitly

omitted.

Graph Gcs is a bipartite graph (see Harris et al. [72]), as Ncs is partitioned into two sets, namely

V ∪ D and P , which are stable sets, and the journey of each vehicle in a feasible solution is a

bipartite walk in graph Gcs starting and ending in V ∪D as shows Figure 6.6.

Figure 6.6: Bipartite graph and bipartite walks

Note that in both cases (explicitly removing arcs of D × V or assigning them null travel

times) the concept of “shift duration” makes no sense anymore and the time horizon is kept only

for compliance with the previous model. To this end, the timespan between the latest possible

drop-off time and t1 seems the most appropriate choice for T .

Figure 6.7: Vehicle initial locations

Known requests

r1(a→ d, [8, 10])

r2(e→ b, [9, 11])

r3(c→ d, [5, 7])

r4(b→ a, [10, 13])

r5(e→ a, [7, 9])

Table 6.3: Request set

Example 1 Figure 6.7 illustrates a scenario of k = 3 vehicles (blue, red, yellow) positioned

respectively at (c, b, e) in an urban network represented by the base graph G = (N,A, t) which is

the same shown in Figures 6.4 and 6.5. The set of requests consists of n = 5 requests {r1, ..., r5}
shown in Table. 6.3, each as a tuple (or → dr, twr). so that P = {a, e, c, b, e} D = {d, b, d, a, a}.
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P1 P2 P3 P4 P5 D1 D2 D3 D4 D5

(a) (e) (c) (b) (e) (d) (b) (d) (a) (a)

P1(a) 5

P2(e) 5

P3(c) 3

P4(b) 2

P5(e) 6

D1(d) 2 3 3 2

D2(b) 2 6 0 5

D3(d) 5 2 3 2

D4(a) 0 5 4 5

D5(a) 0 5 4 2

V1(c) 5 1 0 6 1

V2(b) 2 5 6 0 5

V3(e) 6 0 1 5 0

Table 6.4: Matrix representation of Gcs(Ncs, Ecs, tcs)

The spatial constraints of this instance can be encoded in a bipartite graph Gcs(Ncs, Ecs, tcs)

consisting of 2n + k = 13 nodes connected by a set of edges whose weights t are shown in

Table 6.4.

Summary

In this chapter we described the centralized dispatching approach to solve AV-OLRA. With this

approach, a central dispatcher is associated with every connected set to solve dynamic instances

of the problem. We discussed in detail through this chapter the dispatcher agent selection

methods, information gathering and message types, the ILP representation of AV-OLRA static

instances, and finally the necessary change to the initial ILP in order to deal of with the dynamic

reassignment.
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Chapter 7

Decentralized Solutions

In Chapter 4, we presented our generic model (AV-OLRA) for the ODT allocation problem

within a dynamic context. We discussed the communication architecture and the functional

specifications of the centralized approach to solve AV-OLRA in Chapter 6.

The problem at hand is considered as dynamic in both spatial and temporal dimensions. In

the temporal dimension, the requests are not known in advance but announced in a stochastic

manner at run-time. Moreover, the knowledge of the vehicles is also limited to the information

shared with its connected set: this implies the dynamics in spatial dimension as the vehicle

location affects the context of the problem. This dynamics may affect the quality of upcoming

planning decisions dramatically and reduces the benefits of the already taken planning decisions.

In this chapter, we explore the direction of decentralized solutions in which vehicles are considered

as autonomous agents and can interact in peer-to-peer manner to coordinate their local decisions

to avoid the potential conflicts. We have defined in Section 5.2 the sub-behaviors of the AV agent

and argued that the implementation of the planning sub-behavior is what defines the solution

method, which is characterized by the adopted coordination mechanism CM = (DA,AC,AM).

Hence, all the approaches presented in what follows, have in common the decision autonomy

attribute pointing to decentralized allocation (DA = D), while they differ in their level of infor-

mation sharing and cooperativeness (AC), and the allocation mechanism (AM) that each agent

follows to build his local solution.

7.1 Selfish Decentralized Allocation

Being a selfish agent signifies that it does not care about the preferences of other agents when

making a decision; i.e., it may take them into account, but finally, what dictates its choice

between possible alternative decisions are the benefits that these decisions bring to it. Moreover,

the decisions taken at moment t are those bringing maximum direct benefits for the agent

concerning only the problem context at t no matter what the context will be at an upcoming

moment t′ > t.

For our problem, the set of available options for a selfish AV agent is its set of known requests

if the agent has no passenger on board, otherwise no option is considered. Because of that, the

state Coordinating of the planning sub-behavior is ignored (as if it reaches an agreement for

any chosen option), so that the quality of the solution is dependent on the ranking and priority
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functions of the agents for the upcoming requests. In general we may refer to greedy algorithms

to implement allocation methods for this kind of approaches.

Among the most recent examples of selfish approach is the work of van Lon et al. [155]. When

a vehicle is not already carrying customers, it has to decide which request it will handle first,

depending on the information it has about available requests. A heuristic computes a priority

value for each request. Then, the agent handles the request with the highest priority value first.

Conflicts can arise, but are solved simply by applying the first arrival policy.

7.1.1 Specifications of Greedy Algorithms

The term “greedy” defines not only one but a family of algorithms that make the locally optimal

choice at each stage without ever calling int into question during following stages. The choices

that a greedy algorithm makes may rely on the choices made so far, but not on future choices.

This is the main difference with the other alternatives such as Backtracking, that incrementally

builds candidates to the solutions, and abandons (“backtracks”) a candidate as soon as it deter-

mines that the candidate cannot possibly be completed to a valid solution or to a solution that

is better than the currently best known one.

Using greedy approaches is common in many resource allocation problems, and not only in

transport. For example, when a space in a homeless shelter becomes available, the agency may

offer it to the household ranked as being in the highest need; when deceased donor livers become

available, they are offered first to those who are medically matched and with the highest measure

of need (e.g. MELD1 scores).

So far, what identifies a greedy algorithm is the priority function, which chooses at each step

the best candidate to be added to the solution, i.e. a function that assign scores to the available

options so the algorithm can pick the option with the highest score.

The challenge here lies in the design or choice of such a function where only local and incomplete

information are available. The work of van Lon et al. addresses this problem by using genetic

programming2 to compute the fitness of individual priority functions for vehicle agents to solve

dynamic DARP instances and automatically choose appropriate ones.

Figure 7.1: Cases of failure of greedy algorithms

Greedy algorithms usually fail to find the overall optimal solution because they usually do

not operate exhaustively on all the data. They may commit to certain choices too early, which

prevents them from finding the best global solution later, as in Figure 7.1. In this simple example

we have a decision tree in which each path to a leaf node from the root defines the set of decision

steps (nodes) to reach a feasible solution. The profits of each individual decision is shown by

the label for the corresponding node. A solution to the problem here is to choose, starting from

the root node, a path to a leaf node maximizing the sum of profits at each step. The greedy

1The Model for End-Stage Liver Disease, or MELD, is a scoring system for assessing the severity of chronic
liver disease

2Genetic programming is an evolutionary approach that works by defining a goal in the form of a quality
criterion (or fitness) and then using this criterion to evolve a set (population) of candidate solutions (individu-
als) [156].
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algorithm will choose what appears to be the best immediate choice, so it will choose 7 instead

of 2, and will not reach the best solution, which is 26.

However, the ability of greedy algorithms to quickly find feasible solutions makes them more

scalable, and hense very popular for solving several real-world, real-time problems which typically

feature dynamic settings and online decision-making process.

7.1.2 Greedy Heuristic to Solve AV-OLRA

Recalling the AV agent planning sub-behavior of AV-OLRA model defined in Section 5.2.3,

having a greedy behavior means that agents do not rely on each other and never exchange their

plans information (AC = N). The allocation mechanism to this model is a greedy-based one

(AM = Greedy), in which the vehicle may consider only one request in advance (e.g., the closest

one to shorten the empty driving distance); to gain the most immediate utility, without taking

into account future arrivals.

The heuristic we consider as an example of the selfish approach in this work is based on the

results obtained by van Lon et al. under the assumption that vehicle agents can schedule only one

request in advance (considering dynamic DARPs, long term planning is not beneficial because

of the rapidly changing dynamics). In this approach, when a vehicle is not already carrying

passengers, it has to decide which request it is going to handle first depending on information it

has about available requests.

Decision Mechanism

In the following we make use of the notations introduced in Sections 4.3 and 5.1. The set of

available options for a vehicle agent vi at a time t is:

• The set Rtvi of, unsatisfied, available requests, known by vi at t, if vi is not carrying a

passenger on board.

Rtvi = {r ∈ knowntvi : sttr ∈ {announced, available}}

• The empty set Φ if the vehicle is carrying a passenger, and hence cannot schedule requests.

A priority function is used by the vehicle agent to compute a priority value for each request.

Then, the agent handles the request with the highest priority value first. The priority values

for all available requests are recomputed every time tick, and agents do not share information

about request priorities.

We consider that the vehicle agents are homogeneous. Therefore, they use the same formula

for the priority function. Given a vehicle v, the priority function returns for a request r a value

that is inversely proportional to the cost of selecting the r to be the next request for v.

prioritytv : Rtvi → [0, 1]

prioritytv(r) =
1

costtv(r)

Thus, the lower the cost is, the higher the priority the resource has. In its simplest form, the

cost function returns at a moment t the distance of reaching or the pickup location of r from the

location loctv of v, thus agents assign the highest priority to the request with the nearest pick-up

location, with respect to their current location. Figure 7.2 illustrates an instance of AV-OLRA

with three vehicles (V1, V2, V3) aware of two requests (R1, R2). The weight of each edge stand
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Figure 7.2: A scenario with 2 requests and 3 greedy vehicles using the closest-request priority

for the average trip duration. Every vehicle sorts its list of known requests by the descending

priority based on the closest request priority function (considering the temporal distance). As a

consequence, V1 and V2 prioritize R2, while V3 prioritizes R1.

Conflict Resolution

Working in a shared environment, each agent would like its own interests to be given the most

consideration. Unfortunately, the interests agents may overlap, leading to the conflicts. In our

scenarios, conflicts arise when two or more vehicles are interested in the same request. The selfish

behavior implies that vehicles do not coordinate their decisions by sharing information about

their schedules, and conflicts cannot be avoided. However, they could be handled by applying

the first arrival policy. i.e. the vehicle who arrives first to the pick-up location takes the request.

Figure 7.3: Conflict resolution with first arrival policy

Recalling the previous example, two vehicles V1 and V2 were prioritizing R2 at t0, accordingly
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they both leave towards E. At t0 + 2, One of them (V2) arrives at E while the other is midway

between F and E as shows Figure 7.3. Applying the first arrival policy, V2 handles R2 that

disappears from the list of available requests, while V1 is forced to choose another one. The

drawback here is the ignorance of what lies ahead of the taken decisions and the fact that conflicts

are not resolved until a very late stage, which reduces the QoB because of the operational cost

of the frustrated trips, such as for V1 in our example.

One possible way to reduce this loss in QoB is to bring forward the detection of the conflict,

by establishing commitments that change the status of requests when they are chosen by a

vehicle (a blackboard coordination) as done by Danassis et al. [40]. To handle this in our model

we need to give vehicles an access to a shard memory in which they can store information about

vehicle decisions, or make them announce their schedules via message exchange without violating

the specifications of the selfish behavior. However, this requires additional computation and

verification of the context data validity and trustworthiness of messages in such a competitive

environment.

7.2 Coordination-based Approaches

As with human beings, autonomous agents performing in challenging domains can potentially

achieve better results by working in teams than by working alone. Ideally, agents will coordinate

to reallocate resources among them in a way that allows them to achieve their goals in a reliable

and efficient manner. Coordination can lead to faster task execution, increased robustness,

higher quality solutions, and the accomplishment of goals that are unachievable for a single

agent. In this case, the coordination mechanism is decentralized (DA = D), the agents share

messages to coordinate their decisions (AC = S), and a coordination protocol is applied by the

allocation process. There exist several approaches to implement such a coordination mechanism

like market-based approaches [45, 50, 2] and distributed constraint optimization (DCOP) [56].

7.2.1 Market-Based Coordination

Market-based multiagent coordination approaches have received a great deal of attention and are

gaining popularity in both Economics and Computer Science. With increasingly sophisticated

market economies, humans have had to deal with coordination challenges for thousands of years.

In such economies, individuals and self-interested communities exchange goods and services to

maximize their own profit; such reallocation of goods and services results in more benefits to the

system as a whole [45].

Market-based coordination is one of the effective and proven ways to resolve conflicts in dis-

tributed systems [39]. In the last fifty years, researchers have applied the principles of market

economies to multiagent coordination. The earliest examples of market-based multiagent coor-

dination that appeared in the literature are the work of Farber and Larson [55] and the Contract

Net protocol by Smith [146]. In market-based multiagent systems, agents are conceived as selfish

actors operating in a virtual economy. The goals to achieve and the resources available are valued

commodities that can be exchanged. For example, in this domain, trip requests can be assigned

to vehicle agents via market mechanisms such as auctions. When an agent completes a trip, it

receives some sort of reward in the form of virtual income. However, the agent must also be

charged for the time and resources it consumed to serve the request, i.e. the operational cost of

the trip. The essence of market-based approaches is that, in a well-designed system, the process

of exchanging tasks and resources between agents to maximize individual profit simultaneously

improves global efficiency of the team.

The rest of this section consists in a general overview of the most known market-based multi-

agent coordination paradigms, describing their main features in addition to the general architec-
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ture of a market-based mechanism, while we explain our contributed auction-based coordination

mechanism in Chapter 8.

Auction Theory

Since ancient times, auctions have been used to answer the most fundamental questions in

Economics: who should get the goods and at what price?

A common aspect of auctions is that they receive information, in the form of bids, from potential

participants about their willingness to pay the price, and the result –i.e., who wins what and

how much has to be paid– is determined exclusively based on the information received. This

implies that auctions are universal, in the sense that they can be used for many scenarios to

determine winners [86], especially in resource allocation [28, 144].

Given a set of bids B in a combinatorial auction on a set of resources R, as shows Figure 7.4,

the winner determination problem (WDP) is defined as finding an allocation of items to bidders

that maximizes the auctioneer’s revenue [92]. The WDP is known to be an NP-hard problem

because each subset of bids would have to be checked for feasibility, and the revenue that this

subset of bids provides, computed and they are in a number that is exponential in the number

of bidders. In its simple form, when the auction is about a single, indivisible resource r ∈ R, the

question becomes, “to whom r should be allocated?”, which can be expressed as:

winner : R→ B ∪ φ

Figure 7.4: General architecture of an auction system

Negotiation

Negotiation is a topic of interest in multiagent research, likewise in Economics and Political

Science. Negotiation can be used to address conflicts in a wide variety of multiagent domains

[80]. Usually, a negotiation-based conflict resolution framework for multiagent systems, along

with agents and their actions in dynamic environments, involves a set of negotiation strategies

and a negotiation protocol.Agents must propose offers consistent with their preferences. If they

reject the opponent’s offer, they must propose a counter-offer.

A negotiation strategy is a policy for generating the next offer. It helps the negotiator to

decide whether to concede or offer an alternative, i.e. a settlement. Each agent has knowledge

of what the world could be (usually incomplete knowledge). A negotiation strategy is chosen

by an agent based on its knowledge. A negotiation protocol is the set of rules that governs the

interactions during a negotiation session (also called “thread”). It covers the possible participant
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types, negotiation states, events that can change the negotiation states, and the valid actions of

negotiators.

A variety of negotiation protocols have been proposed in the literature of Economics and Com-

puter science. Many of them have been implemented for multiagent conflict resolution, the most

common being the Contract Net [146], the alternative offer [115], the monotonic concession [48],

and the one-step negotiation [131] protocols.

Market Equilibrium

In market-based system, an agent is considered to be acting competitively when he makes an

offer, ignoring the impact of his own action on the market’s equilibrium price. Under the assump-

tion of perfect competition, the constrained optimization problem of each agent is parameterized

by the cost and utility functions. We say that an agent is in equilibrium if its current set of

offers matches the outcome of its optimal solution of the problem. If all agents and all resources

are in equilibrium, the allocation of resources determined by the auction results is a competitive

equilibrium. A competitive equilibrium has several desirable properties from a mechanism design

perspective, including the two fundamental welfare theorems of general equilibrium theory:

1. All competitive equilibria are Pareto optimal, as no agent can do better without another

doing worse.

2. Any Pareto optimal allocation of resources represents a competitive equilibrium for some

initial endowment.

Competitive equilibria provably exist and can be computed [158], for example, by algorithms

based on fixed-point methods [139] and gradient-based optimization techniques [163]. How-

ever, by using equilibrium equations, these methods violate the decentralization concerns that

motivate the current problem.

7.2.2 Distributed Constraint Optimization Approach

In this class of coordination mechanisms, agents exchange information and cooperate to achieve

a common objective, avoiding conflicts while optimizing the solution quality. Constraint reason-

ing techniques help to ensure that the dynamic knowledge that resides in system entities solves

the resource allocation optimization problem without imposing unrealistic requirements that all

agents continuously communicate their local knowledge to a traditional optimization solver.

The constraint reasoning generally refers to Constraint Satisfaction Problem (CSP) and Con-

straint Optimization Problem (COP). CSP represent the entities in a problem as a homogeneous

finite collection of constraints over variables, which is solved by constraint satisfaction methods.

In general, constraint satisfaction is NP-complete and constraints are generally expressed as

binary constraints. Distribution can be considered as an extension of classical centralized CSP

where each agent is responsible for assigning one or several variables with relative autonomy.

Distributed Constraint Optimizartion Problems (DCOPs) [166] can be expressed as constraint

graphs, in which the vertices are the variables and the edges are the constraints. DCOPs rep-

resent problems in which agents coordinate their allocations of values in a decentralized way

in order to optimize their own objective functions. Even if it does not have a global vision,

every agent can communicate with his neighbors in the constraints graph. DCOPs typically

address the issue of reaching a global optimum given the interaction graph of a set of agents.

This approach can be used to model and solve efficiently a diverse range of problems. Problem

solving and communication strategies are closely related within DCOP. This feature allows the

computational components of a DCOP to use the interaction graph structure of the agents to

generate powerful solutions [56].
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7.2.3 DCOP Model for AV-OLRA

In a DCOP approach to the AV-OLRA problem which is the subject of our study, agents could

decide on their own but coordinate with agents of the same connected set (CS) using a distributed

constraint optimization algorithm to avoid conflicts within the connected set.

Once an agent detects a change in the context of the problem (e.g. a change in set of known

requests or in number of agents in the CS), this change should be reported by broadcasting a

message to all members of its CS. Upon receiving this message, all agents broadcast their current

location, destination, available seats and current request on board if any. Once this information

is exchanged, a DCOP
(
A,X,D,C, ϕ

)
is generated from the AV-OLRA instance to maximize

objective function in Equation 4.24, as follows:

• A defines the set of agents in the connected set

• X defines the set of decision variables in three subsets (xvij ’s, y
v
r ’s and zvr ’s):

– xvij is a binary variable that takes 0 as a value if vehicle v moves on an arc (i, j),

– yvr is a binary variable that takes 1 if and only if the request r is the first request to

be served by v,

– finally, zvr is an integer variable defining at what time a request r is visited by v,

• D defines the domains of variables:

– binary {0, 1} for xvij and yvr , ∀v, i, j, r
– a set domains defining the time-window range [lj , uj ] for each zvi ,

• C defines the set of constraints, which consists of hard constraints (spatio-temporal avail-

ability, and time windows) similar to what is expressed in relations (6.2) -(6.10), and soft

constraints defining the cost and utility of the allocation decision (used to calculate the

value of the objective function).

In this model we have mainly two functions that are used to calculate the values of soft

constraints:

– loss function, used to compute the operational cost of the movement of a vehicle v

from an origin node i to a destination node j

loss(v, i, j) = −cpdv · dist(i, j) · xvij

where dist(i, j) is the trip distance from i to j.

– profit function, used to compute a positive value defining the individual profit of a

vehicle v from serving a request r, i.e. when xvor,dr = 1

profit(v, r) = (P + p · dist(or, dr)) · xvor,dr

where P is the service fee (fixed price) and p is the coefficient for price per distance.

• ϕ defines the partition of variables from X to agents from A. In the most straightforward

way, every vehicle agent is considered responsible for the variables that directly concerns

it. i.e. an agent v′ is responsible of the set of variables xv
′

i,j , y
v′

r and zv
′

r ∀i, j, r

Thus, at each time a change is detected in the context of a CS, a new DCOP is is generated rep-

resenting the sub-problem instance. Once agents receive their local versions of the DCOP (their

subsets of variables, domains and constraints), the adopted algorithm is triggered, and agents

start exchanging messages accordingly until reaching a solution or detecting the impossibility

to solve the DCOP instance at hand. In the first case, each agent update its schedule with the

new allocations. Agents keep from their old schedules only the trips that have already started,

as they were not been part of the DCOP instance. In the other case, agents keep their entire

old schedules and continue their journeys as planned until a new scheduling round.
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Summary

In this chapter, we explored the direction of decentralized approaches to solve the ODT alloca-

tion problem. We overviewed these approaches from te coordination mechanism (CM) point of

view of the planning sub-behavior of AV-OLRA agents.

In this family of solution methods, the coordination mechanism is based on the decision auton-

omy of agents to produce a decentralized allocation (DA = D). We classified these approaches

based on the cooperativeness level (AC) of agents, and more precisely into: Selfish in which

agents do not rely on each other and never exchange their plans (AC = N); and Coordination-

based approaches (AC = S) where a coordination protocol is applied by the allocation process.

Based on the applied coordination and the implemented allocation methodAM , the coordination-

based solutions are categorized as competitive and cooperative families: the first family is that of

Market-based approaches, while the second family is that of DCOP-based approaches. For each

of these families, we explained the features, requirements and solution architecture. In the next

chapter we explain in details our contributed decentralized, market-based heuristic (ORNInA)

for efficiently solving AV-OLRA instance in dynamic settings with runtime optimization. The

implementation details for centralized dispatching and the different decentralized approaches in-

cluding Selfish, ORNInA, and DCOP are presented in Chapter 9, then experimental evaluation

and result analysis of these approaches are shown in Chapter 10.
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Chapter 8

Combining Dynamic responsiveness Together

with Solution Quality Refinement

According to Bellini et al. [14], ODT optimization should be able - as its most prominent features

- to:

• yield transportation solutions that are as much as possible door-to-door solutions;

• minimize waiting times, walking paths, and vehicle changes.

The computational complexity of ODT allocation problems makes it difficult to a central dis-

patcher to handle real-world size instances of ODT problem, and the dynamics of the problem

during execution (online requests, variable fleet size, traffic problems, and other environment

dynamics) increase the difficulty of the task. Therefore one may expect that decentralization

can be an appropriate solution to these problems.

In the context of ODT, we proposed in Chapter 4 the AV-OLRA problem model, illustrated

in Figure 8.1. In Chapter 7 we explored the direction of decentralized solutions and coordination

mechanisms. We notably overviewed the features of market-based coordination mechanisms.

In what follows, we propose ORNInA, a new market-based decentralized heuristic for the

AV-OLRA. ORNInA benefits from the fast responsiveness of insertion heuristics and the good

results gained by k-opt optimization techniques.

Figure 8.1: A sample AV-OLRA problem instance, with demand sources (triangles) and taxis

(circles) with their respective communication ranges (in blue).
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Figure 8.2: The road network of a sample AV-OLRA instance

8.1 Auction-based Insertion Heuristics

ORNInA stands for “Online Rescheduling with Neighborhood exchange, based on Insertion

heuristic and Auctions”. This section presents our new insertion heuristic, and how vehicles

coordinate their decisions through auctions. The main objective of vehicle agents is to provide

feasible schedules that maximize their utility by minimizing the global operational cost of serving

the maximum number of requests.

Given a vehicle v having a potential demand set Dv, providing a schedule for v that satisfies

all the requests d ∈ Dv means solving a routing sub-problem to produce the best ordering of

requests in the schedule. Considering the dynamic aspects of our model, we use an insertion

heuristic like the one described by Solomon [147] to adapt local vehicle schedules continuously.

This type of insertion heuristics aims to select requests whose insertion costs minimize a measure

of total route distance and time (so called Marginal Cost). The result of this algorithm is a set

of requests; each of them is associated with the potential time at which a vehicle will be at the

pick-up location.

Insertion heuristics are a wildly used method for solving a variety of scheduling and routing

problems, as they allow to quickly find a feasible solution even if with no guarantee on solution

quality, as it is the case for every heuristic approach. For instance, in Vehicle Routing Problem

(VRP), solutions are created by repeatedly inserting unscheduled demands in a partially con-

structed route or as the first demand in a new route. Local search, e.g. with the k-exchange

neighborhoods (k-opt), can then improve the co-constructed solution. Insertion heuristics are

proven to be efficient in finding feasible schedules very fast [22], even though, since the schedul-

ing of requests is handled one by one, performances depend on the number and the order of

demands.

To cope with this limitation, an improvement phase based on k-opt can be applied. k-opt is

a path improvement algorithm, at each iteration, k segments from the current plan are replaced

by k segments to get a cheaper path [73].

8.1.1 Priority Function

In our model, the agents handle the new requests based on their priority order. An agent uses

a priority function to assign priority values to the requests he knows. Given a vehicle v, the

priority function, similar to the greedy one (see Section 7.1.2) computes at time t for a request
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r a value that is inversely proportional to the marginal cost of inserting r in the schedule of v:

prioritytv(r) =
1

costtv(r)

Thus, the higher priority is given to the new request with lower insertion cost. The cost value

costtv(r) is time dependent, i.e. it is computed at a moment of time t by a vehicle agent v

depending on its beliefs on the current problem context that could change in the future. In

its simplest form, the cost function returns the distance of the pick-up location of d from the

location of v. Thus agents assign the highest priority to the request with the nearest pick-up

location w.r.t. their current location.

Each agent determines his schedule to maximize the measure of quality of its solution. Since

several vehicles may be interested in the same request, we need a coordination mechanism to

resolve conflicts. Here we will use an auction-based mechanism for this purpose.

8.1.2 Agents Bid Criterion

In our model, we use a first-price auction form [86] to answer the question “which vehicle will

consume the request and at what cost?”. When a vehicle v becomes aware of a request r, it

ranks it in its queue according to the priority it has assigned to it. At the time t, v selects a

request rselected which is the first in the queue, generates a set of alternatives, each of which

is a potential schedule resulting from the insertion of rselected in a feasible step (that does not

violate any of rselected constraints) of its current schedule. Every alternative is associated with

a cost, which is the marginal operational cost of adding this request to the schedule. The choice

with the best cost is considered to broadcast an offer:

Bidrselectedv (tstart, cost)

with tstart the time of pickup for rselected. Listing 1 presents the pseudo code of the functions

to update the request priority queue and selecting the highest priority request to bid for it.

Listing 1 Priority update and bidding for requests

Function updatePriorities():
priorities←− [ ];

foreach r ∈ knownRequests do

if myBids.getBid(r) == Null then
p= computePriority(r);

priorities.insert(< p, r >)
end

end

if priorities.size() > 0 then
bid(priorities.getFirst().getRequest())

end
End Function

Function bid(Request r):
c = computeCost(r);

t = computePickupTime(r);

sendBidMessage(r,c,t);
End Function

In this work, we consider the operational cost of trips as a linear relation to their lengths,

so that for a vehicle whose cpd = 1, the cost of a trip is simply its total length (sum of the

distances, as shown in Figure 8.2). We consider the value of cpdv = 1 for every vehicle in the

following examples. Therefore, the marginal cost of insertion is the difference in path length

between the initial path and the new path.
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8.1.3 Winner Determination in ORNInA

Recalling the winner determination formalism presented in Section 7.2.1, the question “which

bidder vehicle wins the request r ∈ R that is a single, indivisible, unsharable resource?” can be

expressed as a linear relation. Seeking decentralization, we introduce a binary version of this

relation corresponding to our problem

win : V ×R→ {0, 1}

where the bidders are the vehicles and the resource items are the requests. In this decentralized

winner determination mechanism, every vehicle v ∈ V that is aware of a request r is responsible

for determining the value of win(v, r) and thus whether to insert r (if win(v, r) = 1) in its

schedule or not as shows Listing 2.

We assume all agents to be truthful collaborating agents. The default value for win(v, r) is 0.

After their announcement, the bids remain available for a specific time period texpire. Until

texpire the vehicle listen to bids of other vehicles on r, if it receives a better offer, it assigns the

value 0 to win(v, r) which means it determines itself as a looser and withdraws from the auction.

On texpire if the bid cost of v is less than any other bid Bidrv′ received at tBidrv + texpire to serve

a request r, v considers itself the winner of the auction (i.e. assigns 1 to win(v, r)), and updates

its schedule with the new bid path. This mechanism implies that on texpire of each auction, r is

allocated to at most one vehicle (in the CS).

Listing 2 Decentralized winner determination

Function updateSchedule(Request r):
currentSchedule.insert(r);

End Function

Function handleBidExpiry(Bid b):

if (b.isTimeOut()) then
updateSchedule(b.request);

mybids.remove(b);
end

End Function

Function evaluateBid(Bid b):
b1= myBids.getBid(b.request);

if b1 6= Null then

if b1.cost < b.cost then
broadcast(b1);

else
mark unfeasible(b1);

end

end
End Function

8.2 Online Solution Improvement in ORNInA

The dynamics of AV-OLRA dynamics may affect the quality of upcoming planning decisions

dramatically and reduces benefits of the already taken long-term planning decisions [155]. In

the following, we illustrate some examples of the effects of environment’s dynamics on the per-

formance of the insertion heuristic and then propose a local optimization protocol to improve

the quality of the solution.

Example 2 The simple scenario in Figure 8.3 shows two vehicles V1 and V2 located in A and

B, with empty schedules at the beginning. Considering the time is sampled as a series of ticks
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Figure 8.3: V1 wins the auction to serve d1 from C to H

{t0, t1, t2, ...}, and the weights of arcs represent trip duration in ticks (temporal distance). At

tick t1, the first request d1 is announced: d1 :< C,H, [t10, t30], 1, “announced” >. Both vehicles

now know d1. V1 can serve it by following the path A → C → E → F → H, so V1 places the

offer Bidd1V1
(t10, 11). V2 can serve it via the path B → D → C → E → F → H, so issues the

offer Bidd1V2
(t10, 13). Note that both vehicles can reach C earlier than t10. However, to comply

with the request constraint, the potential pickup time of the bid should belong to the request time

window whose lower-bound is t10. When V2 receives Bidd1V1
it determines itself as a looser by

setting win(V2, d1) = 0, while receiving Bidd1V2
by V1 will not change anything for V1. Assume

the bids are available only for one tick duration, at t2 the vehicle V1 stops listening to other

vehicle bids on d1, considers itself as the winner, and adds d1 to its schedule, so that the overall

operational cost of the fleet is now 11.

8.2.1 Dynamic Settings

The problem at hand is considered as dynamic in both spatial and temporal dimensions. An

example of these dynamics is the stochastic announcement of requests and being unknown in

advance as shows Example 3.

Example 3 Figure 8.4 shows a situation where the use of the bid-based insertion heuristic

guarantees the reactivity, but not the achievement of the best possible scheduling.

After bidding on d1 at t1 and adding it to V1 at t2 as shown in the previous example, a new

request d2 :< J,K, [t15, t40], 1, “announced” > arrives at t3 and both vehicles become aware of

it and place their possible bids. In the absence of any exchange capacity, V1 still has d1 in its

schedule (with an initial cost of 11), so the best offer it can place is to serve both requests (d2
then d1) with a marginal cost of 14. While V2 places the winning bid Bidd2V2

(t15, 11), it adds d2
to its schedule, and the overall cost becomes 22. Note that in this case, serving d2 with V1 and

letting V2 take care of d1 (as shown in Figure 8.5) results in an overall gain of global operational

cost which becomes 21, but this solution is never realized because d1 is already scheduled on V1.

To be able to make effective bids for new requests or improve the solution, we also propose

that the vehicles exchange their planned requests, as illustrated in Figure 8.5. In the following,

we propose a local optimization protocol to improve the quality of the solution for similar cases.

This protocol is based mainly on a relocation heuristic [125] that replaces k segments from

the vehicle schedule by k segments from the schedule of a neighbor vehicle. This heuristic works
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Figure 8.4: With no demand exchange, V2 wins d2 and V1 keeps d1
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Figure 8.5: Global improvement when V1 abandons d1 to serve d2

in a similar manner of the k-opt that relocates segments in the same vehicle route in order to

optimize its operational cost, while the difference is that we consider the relocation happens

between two routes of different vehicles. In its simplest settings, k is set to 1, so we introduce

1−reloc, in which for each iteration, at most one demand can be relocated from a vehicle schedule

to another. In this work, we seek the implementation of the simple auction mechanism 1-reloc

to avoid dealing with the NP-complete winner determination of the combinatorial auctions.

However, if vehicles want to exchange more than one requests they are still able to do so by

several iterations, each is 1-reloc.

Example 4 Let’s consider another case shown in Figure 8.6, where V1 has d1 in its schedule,

V2 has empty schedule, and a new demand is announced d′ :< (t10, t20), D, F >. V1 offers two

alternative bids Bidd1,d
′

V1
((t10, t12),+4), and Bidd

′

V1
(t10,+15)(taking into account abandoning d1),

while V2 can only offer Bidd
′

V2
(t10,+13).

Obviously Bidd1,d
′

V1
is the winner and V1 takes the charge of both demands with global cost +15,

while the optimal solution in this case is that V2 who takes both demands which make the global

cost only +13, but using the auctions with abandon strategies lets V2 in this case either bid for d′

alone when it is announced, or bid for d1 alone in response of the abandon suggestion by V1. So

in this case, the optimal solution is not achievable with the aforementioned abandon strategies.
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Figure 8.6: While it can serve both demands, V2 can only bid for one demand at a time

8.2.2 Pull-demand Optimization Bids

In this section, we introduce the pull-demand protocol; an optimization protocol to improve our

heuristics, which is similar to some extent to what Agatz et al. [2] proposed as the rolling horizon

strategy with few differences.

In the rolling horizon strategy, all the schedules of vehicles are considered temporary, until

they are below a temporal threshold called the planning horizon, and thus any request is available

to be scheduled by any vehicle, unless it is considered as a committed request by particular events;

for example, a vehicle v has started serving (moving towards) a demand d, whose upper-bound

of time-window becomes below the planning horizon threshold that is rolled forward periodically

at runtime.

The application of this strategy requires that all vehicle schedules information are shared, so

that when a vehicle vi offers to serve a request d, it knows if it is scheduled by another vehicle

vj , and therefore if it should send its offer cost to vj . Then vj will calculate its estimation to the

global gain (or loss) in operating cost by abandoning d compared to the cost proposed by vi. If

there is a gain, it agrees to abandon d and then vi updates its schedule with d, otherwise the

bid is rejected. In our protocol, we do not use the concept of committed request or the planning

horizon, but a vehicle can determine, based on its believes, whether it can satisfy a request or

not; and thus it can only bid on requests that it can satisfy, so requests that are rescheduled or

that do not have enough time to be rescheduled are automatically ignored by the agent.

Another difference is that we don’t have access to a shared memory. Agents exchange information

about the environment and requests through information messages. Moreover, in the work of

Agatz et al., optimization is performed periodically at a predefined frequency [2], while the

protocol we propose is executed in parallel with the auction-based insertion strategy to have a

fast rescheduling for continuous announcement of requests. Based on shared information of the

current context, the optimization protocol is executed in each connected set of vehicles when

any change in the set is detected (the set of vehicles in the connected set is changed) or at least

one of them becomes aware of some requests already scheduled by others. This strategy is thus

performed as a protocol of five steps as follows:

Step 1 A set of new demands enters the system sorted according to their announcement time.

Step 2 Each new request is distributed to the connected set to which the sources (see Section 5.1.1)

belong. Each agent in this set can select among new requests, and scheduled and unsched-

uled requests that have not yet reached their scheduled departure time.
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Step 3 Each agent enters the auction process to serve demands it has chosen in Step 2 in similar

auction criteria of that we explain in Section 8.1.2.

Step 4 Each agent searches among its scheduled requests for the one to satisfy the next tick. Let

us assume that the list of potential requests is not empty, and let dnext be the one chosen

to be satisfied in the next tick. The agent broadcasts a message to inform other agents

that it handles dnext, and each receiver deletes it from its list of potential requests.

Step 5 Each agent deletes any request that reaches its time window upper-bound because staying

any longer available for rescheduling would violate its time constraints.

Step 6 The scheduled and unscheduled requests that still have time remain announced by their

sources (Step 2). This allows better planning in the next tick if new requests are announced

or some new agents join the connected set.

This protocol, performed by each agent to comply with ORNInA coordination mechanism, can

be represented by a state machine as shows Figure 8.7. The agent moves from one state to

another based on inner events, time constraints or on receiving messages from other agents.

Listing 3 Bid criteria and pull-demand auctions

Function improveCandidates():
improvementCandidates ←− [ ]; . State Improving Candidates

foreach v ∈ CS do

foreach r ∈ v.schedule do
g=computeGain(r);

if g ≥ 0 then
improvementCandidates.insert(< g, r, v >)

end

end

end

if improvementCandidates.size() > 0 then
pullBid(improvementCandidates.getFirst()) . select the best pull-demand candidate

end
End Function

Function updatePriorities() . first check winner determination for previous bids:

foreach b ∈ myBids : b is not marked “unfeasible” do
handleBidAnswer(b,null)

end

priorities ←− [ ]; . sort requests by priority

foreach r ∈ knownRequests do

if myBids.getBid(r) == Null then
p= computePriority(r);

priorities.insert(< p, r >)
end

end

if priorities.size() > 0 then
bid(priorities.getFirst()) . select the highest priority request

end
End Function

Function bid(float priority, Request r) . State Bidding, requires Listing 6:
c,t = computeCostAndTime(r);

sendBidMessage(r,c,t);
End Function

Function pullBid(float gain, Request r, Vehicle owner) . State Bidding, requires Listing 6:
c,t = computeCostAndTime(r);

sendPullDemand(r, c, t, owner.id);
End Function
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Figure 8.7: ORNInA coordination mechanism

Listing 3 extends Listing 1 with the pull-demand auctions (Function pullBid(gain, request,

owner)) whose rescheduling candidates are determined by the Function improveCandidates().

Note that in this 1-reloc, at each time, only the highest gain candidate becomes a subject

of exchange. The decentralized winner determination mechanism is also extended to handle the

cases of pull-demand auction in addition to the basic bids. Listing 4 illustrates this mechanism.

Listing 4 Winner determination

Input: Schedule currentSchedule, List myBids . Requires: Listing 5, Listing 6

Function evaluateBid(Bid b, int bidderId):

if b is Pull-Bid then
l= computeLoss(b.r);

if l < b.gain then
m=Message(this, “bid answer”, bidderId, {bid=b, answer=“accept”});
m.send(); . Message(senderId,topic,receiverId,payload)

abandon(b.r) . accept the exchange
else

m=Message(this, “bid answer”, bidderId, {bid=b, answer=“reject”});
m.send(); . reject the exchange

end

else
b1= myBids.getBid(b.request); . look for its own bid on the same request

if b1 6= Null then

if b1.cost < b.cost then
broadcast(b1); . reject b and remind others about b1

else
mark unfeasible(b1); . determines its loss and withdraw

end

end

end
End Function

Function handleBidAnswer(Bid b, Message m):

if (b.isTimeOut()) or (m.payload.answer==“accept”) then
updateSchedule(b.request);

mybids.remove(b);
end

End Function
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Finally, the basic methods of schedule update and message handling that are necessary to

implement these algorithms are illustrated by Listings 5 and 6.

Listing 5 Schedule update

Input: Schedule currentSchedule, List myBids

Function updateSchedule(Request r):
currentSchedule.insert(r);

End Function

Function abandon(Request r):
currentSchedule.delete(r);

End Function

Listing 6 Communication in ORNInA

Input: knownRequests priorities mybids improvementCandidates

Function readMessage(Message m):

switch m.topic do

case “new req” do
knownRequests.add(m.payload);

updatePriorities();
end

case “join” do
improveCandidates()

end

case “known” do
knownRequests.addAll(m.payload);

updatePriorities();

improve();
end

case “bid” do
evaluateBid(m.payload)

end

case “pull” do
evaluateBid(m.payload)

end

case “bid answer” do
handleBidAnswer(m.payload.bid, m.payload.answer)

end

end
End Function

Function sendBidMessage(Request r, float cost, Time t):
m= Message(sender=this,topic=“bid”, receiver=“all”, payload=Bid(r,cost) );

myBids.add(Bid(r,cost, t), currentTime+defaultBidAvailability);

m.broadcast();
End Function

Function sendPullDemand(Request r, float cost, Time t, int ownerId):
m= Message(sender=this,topic=“pull”, receiver=ownerId, payload=PullBid(r,cost));

myBids.add(PullBid(r,cost,t), currentTime+defaultBidAvailability);

m.send();
End Function
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8.2.3 Discussion

Given the decentralized context, the insertion heuristic is very efficient in terms of response

time. The temporal complexity of the basic insertion heuristic for the Vehicle Routing Problem

(VRP) is of O(n3)[22]. This type of heuristic is often used to solve dynamic DARPs, where

new incoming requests have to be continuously processed in real-time and integrated into the

evolving schedules of vehicles. The usage of other local search heuristics (e.g. k-opt or relocate)

may give local improvements to the solution returned by the insertion heuristic based on the

current context. However, the Pull-demand protocol can significantly improve the quality of

the solution for other values of k rather than 1, regardless of the complexity of dealing with

combinatorial auctions , as illustrated in the following example.

Example 5 Let us consider again the case of Example 4 illustrated in Figure 8.6, The bids of

the vehicles are thus Bidd
′

V1
(t12,+4), and Bidd

′

V2
(t10,+13). Bidd1,d

′

V1
is the winner, and V1 will

handle the two requests with an overall cost of 15. With the Pull-demand protocol, d1 and d′

enters in the set of candidate requests for V1 and V2, so that the vehicles can make combinatorial

offers: Bidd1,dV1
((t10, t12), 0) and Bidd

′,d1
V2

(−2). The cost of V2 is 13 and the gain of V1 is 15). V1
has nothing to change in its schedule. V2 wins and the solution is improved with an additional

optimization round. Let’s look at the applied protocol, step by step.

Step 1: d′ enters the system at t2 and both vehicles are aware of this, V1 wins the auction with

an overall cost of 15

Step 2: d1 and d′ are now in the set of requests known by both vehicles, V2 calculates the costs

to serve d1 alone (13), d′ alone (9) and both requests together making 13. It then selects

the two requests as its potential requests. V1 has no potential request because it already

has the two requests in its schedule.

Step 3: V2 places a bid Pull Bidd
′,d1
V2

((t10, t12), 13). For V1 the cost to serve both requests is 15

so it accepts Pull Bidd
′,d1
V2

because it causes a gain of 2.

Step 4: None of the requests reach their scheduled service time, thus none of the agents select a

dnext.

Step 5: None of the requests reach the upper-bound of their time window.

Step 6: All known requests remain announced and available for the next potential improvement.

Summary

In this chapter, we proposed ORNInA, a decentralized coordination mechanism for the exchange

of requests, based on an insertion heuristic and auctions, to allocate requests to vehicles in the

context of dynamic on-demand transport with V2V communication. We model this allocation

problem with connectivity constraints as an AV-OLRA instance.

The difference from the previously detailed mechanisms is that the agents act competitively,

but share information about their decisions to pursue their common objectives, and follow

market-based protocols to achieve agreements.

Here the allocation mechanism is auction-based (AM = Auctions), bids and rescheduling

messages are exchanged between agents (AC = S) to coordinate in a peer-to-peer manner about

the decentralized scheduling decisions of their fleet of autonomous vehicles (DA = D).

This mechanism is proposed to perform in dynamic settings, between vehicle agents that

belong to a connected set in which they can receive and send direct or broadcast messages.
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Agents interested in some request initiate first-price auctions for it, and the winner adds it

to its schedule; the winner determination is completely decentralized process. To improve the

scheduling efficiency in dynamic settings, agents are allowed to exchange their scheduled requests

at run-time, with additional auction rounds (called ”pull-demand” bids) to decide if this exchange

increase the value of the objective function within the connected set.

We showed through examples that the request exchange protocol can be a promising improve-

ment in the quality of the solutions. In the following chapters, we describe the implementation

details and provide experimental analysis on the performance of this heuristic comparing it to

other solution methods.
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Chapter 9

Experimental Framework

The ODT problem has several variants. Several solution methods exist for the same problem,

and their quality depends on the definition of the problem and the properties of its instances

(e.g., demand, road network).

The engineering of dynamic systems of transport and logistic is a difficult task, simulators

are often used during development. Simulation environments are non-trivial software with com-

plex requirements: time management, event management, scalability and configurability for

experiments. Advances in multiagent technology have prompted researchers to build simula-

tion frameworks, either as ad-hoc implementations [42, 58, 70], or using generic platforms (e.g.,

Repast Simphony [117], Netlogo [116]) in which transportation characteristics must be coded.

On the other hand, there are MAS platforms dedicated to transportation problems, often mainly

focused on traffic (e.g. Sumo [13], Movsim [151], Matsim [8], MITSimLab [15]) in which ODT

specifications (strategy, basic vehicle behavior, etc.) have to be implemented. Because of their

emphasis on modification, one can use open-source frameworks to address the specification of

problems that could be unique to his interests. Some notable open-source multiagent ODT sim-

ulators exist such as RinSim [155], Agents4ITS Mobility testbed [170], and TaxiSim [27] in which

communication management, communication constraints, and various solution models must be

coded.

In this chapter, we propose the design and software engineering behind a simulation frame-

work namely AV-SIM with specific ODT tools (transportation data processing, demand gener-

ation), a multiagent model with common vehicle behaviors, communication management, and

application integration to consider MAS alternatives and specific coordination libraries. This

architecture supports the multiagent approach to AV-OLRA model (see Chapter 4).

9.1 AV-SIM Testbed

An important feature of the AV-SIM is its explicit separation of problem and solution. This

design decision simplifies development of the multiagent solution methods since it forces design-

ers to separate these two aspects and thus focus on the planning sub-behavior of autonomous

vehicle agents. The AV-SIM architecture is implemented for the traffic and transport simulation

component of the WebGIS Plateforme Territoire1 (see Figure 9.1), providing tools for design-

ing problem instances (e.g. road network and request definitions), visualizing solving process

1https://territoire.emse.fr/
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Figure 9.1: A screenshot of the ODT simulator of the territoire platform, showing an AV-OLRA

instance with clients (phone) and taxis (vehicle) with their communication ranges (in green).

execution (e.g., vehicle behaviors and states) and results (indicators for assessment).

Territoire platform supports the design of integrated solutions for territorial decision problems.

Indeed, a solution may integrate environment, building, mobility, and logistic expertise. This

platform aggregates dynamic or static data coming from sensors, web, or local resources.

9.1.1 Framework Architecture

Territoire is a Java-based service-oriented platform, and a solution method is a composition of

REST services belonging or not to the platform with specific applications. To foster reusability

and solve the interoperability problem between services, Territoire services are described fol-

lowing a common knowledge model, and input/output data of the services are in JSON. The

architecture of the AV-SIM is represented by Figure 9.2. We consider ODT solutions are based

on three types of components:

• generic data processing services for the extraction of transportation network data and

specific services for filtering, cleaning, and computing the biggest connected component

for a specific geographical zone;

• dedicated, mobility-related or logistic algorithms like Dijkstra or sample vehicle routing

algorithms;

• dedicated mobility simulation engine.

It is inspired by the four-step travel model [110]; a service or an application is associated with

each step of this model

1. Trip Generation: the flow quantification and simulation setting: Network(s) parameters,

multiagent parameters, demand parameters, i.e. the scenario of the simulation.

2. Trip Distribution: the trips’ creation, i.e., the triples (origin, destination, temporal win-

dow) definition according to the scenario (synthetic/real data).
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Figure 9.2: Components of the AV-SIM testbed

3. Modal Choice: the choice of the mobility mode. For ODT, it corresponds to the route

computation by agents in the simulator.

4. Route Assignment: the simulation process. It is composed by the allocation process of the

vehicles to the requests and the vehicle trip execution.

The two first steps are offline and correspond to the simulation scenario generation, while

the next two are online and concern the mobility simulator, which has three main features.

The first is the management of communication between simulated elements (client and vehicle)

using local communication (VANET) or not. To do this, the simulator considers the concept

of connected sets (CS). The composition of these CS changes with the vehicles’ movement (see

Chapter 4), and the simulator manages the CS’s dynamics. All sent messages in a CS are

received by all vehicles in this CS. Global communication corresponds to the management of a

unique CS.

The second feature is management of the demand. The appearance/disappearance of the clients’

requests is managed according to the demand definition, i.e., the request origin’s spatial-temporal

parameters for client appearance and the temporal window or request satisfaction for the client

disappearance.

The third is the microscopic multiagent simulation of the autonomous vehicles (see next section).

In Figure 9.1, there are 3 requests, 7 vehicles, with 5 CS (one with 3 vehicles is identified).

9.1.2 Implementing the MAS Approach to AV-OLRA with AV-SIM

In this section we explain the implementation requirements for our multiagent system presented

in Chapter 5 using AV-SIM framework. This MAS is used to simulate and assess solution

methods to the AV-OLRA problem. An autonomous vehicle agent (AV), the only type of agent

in our model, is associated with each vehicle in the system. The behavior of the vehicle has to

consider two activities:

1. activities related to the execution of trips;

2. activities related to the allocation process.

There are three different sub-behaviors (see Section 5.2). First, the Acting sub-behavior is com-

mon to all agents and represents the AV life-cycle as a transport vehicle that can pick-up/drop-off
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Figure 9.3: Abstraction of AV agent class diagram

passengers, move and stop. These actions affect the spatial status of the vehicle and its avail-

ability beliefs. Second, the Communicating sub-behavior is common too (the communicated

information are specific to the allocation process). When a message is received and read by

an agent, it is stored in its belief base. This message may concern shared information between

vehicles and/or a coordination protocol. Finally, the Planning sub-behavior represents how an

AV obtains its dynamic schedule in run-time to serve its requests, affecting both spatial and

temporal beliefs. This behavior depends on the allocation process.

From an object-oriented point of view, an agent can be seen as an instance of the AV class which

is composed of an instance of BeliefBase class and 3 sub-behavior objects, which are instances of

ActingSubBehavior, CommunicatingSubBehavior, and PlanningSubBehavior as shows Figure 9.3.

Agent’s Belief base

The agent’s belief base represents what the agent knows about himself and the context of its

surrounding environment. The BeliefBase class represents this knowledge as a dictionary that

maps properties (keys) to their values; a tuple < key, value > is a belief. It has also methods

to add, remove and update these beliefs. The essential beliefs of a vehicle agents are:

• status: a list of vehicle status properties (seats, location, etc.)

• schedule: a list of tuples < request, time > defining the set of potential requests to serve

associated with their potential pick-up times.

• known: the list of all known, unexpired requests.

• connected: the list of vehicles that are member of the current connected set.

Acting Sub-behavior

As a transport entity, an autonomous vehicle should be able to move across the physical envi-

ronment and interact with its components. It must have functionalities to goTo a destination

node, stop moving, and pickUp or dropOff passengers. The acting sub-behavior represents these

actions in the form of a finite state machine (FSM) as shows Figure 5.4 on Page 49.

For each experimental scenario, every AV agent has access through its ActingSubBehavior to the

urban network instantiated for this scenario. The urban network is an instance of the class
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Network and is composed of a set of Source objects where the Request objects have their origins

and destinations. The Network class provide functions to compute the paths between sources

and determine traffic states of these paths.

The ActingSubBehavior class disposes functions to handle acting events, thus the transitions in

the FSM and updating the state of the vehicle. These functions update also the AV’s belief base

with the vehicle location, state, requests on board and availability.

Figure 9.4: AV agent class diagram

Communicating Sub-behavior

Being a communicating agent, an AV should be able to send/receive messages and update

its belief with the information included in these messages. Considering the properties and

constraints of DSRC (e.g. VANET) an AV can only broadcast messages to vehicle located in its

communication range. To increase the connectivity by applying the concept of connected sets,

once a vehicle receives a message for the first time, it broadcasts it again to apply the transitive

connectivity and ensure the receiving of the message by the maximum number of vehicles.

A message is an instance of class Message. It has a header and body, the header contains the

senderId, the message topic, and optionally a specific destination. Depending on the message

topic the receiving agent determines how to update its knowledge base with the information

included in the message body. By default, a message should concern every agent in the con-

nected set. Assigning a value to the destination attribute specifies the id of the agent who

should handle it. Thus, an agent updates its belief base only with messages that have either

its id or NULL as a value for the destination attribute. The CommunicatingSubBehavior class

implements this protocol through send, receive, broadcast, and updateContext methods.
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Planning Sub-behavior

The decision autonomy of an AV implies its ability to take planning decisions to build its schedule

(i.e. to decide which requests it will serve and at what time). In Chapter 5, we explained that

the implementation of the planning sub-behavior depends basically on the adopted solution

method which is characterized by the coordination mechanism CM =< DA,AC,AM >. This

sub-behavior can be abstracted by the FSM shown in Figure 5.5 on Page 51.

The PlanningSubBehavior class is an abstract class that is inherited from extending classes that

encapsulate the different solution methods. This class implements two interfaces. The first is the

OptionHandling interface that groups methods related to looking for available scheduling options,

checking their feasibility and thus selecting a feasible one. Implementing these methods is what

define the value of DA. The second interface is the CoordinationMechanism whose methods are

used to specify the adopted allocation method (defines AM value) and how to coordinate the

planning decisions with other agents, i.e. the message types that should be exchanged during

the coordination rules that dictates reaching an agreement or not (defines AC value).

To apply a solution (say solutionX) to AV-OLRA as a multiagent coordination mechanism, one

should have a class SolutionXPlanningSubBehavior that extends PlanningSubBehavior implement-

ing all its abstract methods. Then assign an instance of this class to the AV agents as a planning

sub-behavior (See Figures 9.4 and 9.5).

The AV agent and the details of its sub-behaviors are illustrated in Figure 9.4. It shows

also the representation of the spatial and communicational environment: spatial environment is

represented by the Network and Source classes while the communicational environment is repre-

sented by the ConnectedSet. In the next section, we describe the implementation specification

of the planning sub-behaviors for the different methods we used in our experimental scenarios.

9.2 Implementing Solution Methods

Based on the different values of DA, AC, and AM we can obtain a variety of coordination mech-

anisms. In Chapter 5 we classified these mechanisms into centralized DA = C and decentralized

DA = D, and shown that decentralized mechanisms can base on individual decisions with in-

formation sharing AC = S (thus coordinated decisions) or not (AC = N) while AM stands for

the allocation method that is used to build the agents’ schedules. We have defined 4 categories

of solution methods and described in details the functional properties of methods belonging to

each of these categories in Chapters 6, 7 and 8. In this section, we explain the implementation

guidelines of these methods that we’ll use in our experiments using the AV-SIM architecture.

9.2.1 Centralized Dispatching Based on ILP

To implement the dispatching mechanism described in Chapter 6, it is necessary to have a

DispatchingPlanningSubBehavior class that extends the PlanningSubBehavior and implements its

abstract methods (see Figure 9.5). We consider the Lower ID strategy for the dispatcher selec-

tion. Each vehicle has a belief entry dipatcherId that identifies the connected set dispatcher.

When instantiated, a vehicle v consider itself as the dispatcher. Once messages are received from

other vehicles, v becomes aware of their ids and thus it assigns the minimum id to dipatcherId

value. When a vehicle detects its loneliness in a connected set, it rests the dipatcherId value

to its own id.

The boolean function isDispatcher() encapsulate the process of determining whether the vehicle

consider itself as a dispatcher or not.
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Figure 9.5: Implementations of planning sub-behavior

Planning Options

An AV that has dispatching-based planning sub-behavior can choose at each time cycle its

planning decision from a set of 3 options:

• update schedule: this option is only feasible when the vehicle receives a message of topic

schedule. It is then the only available option. When chosen the schedule of the vehicle

should be replaced by the one received in the message body.

• compute solution: this option is only feasible when the vehicle considers itself as a dis-

patcher ( this.isDispatcher()== true) . Choosing this option triggers the allocationMethod().

• share context information: This option is always feasible unless when the vehicle has to

update its schedule. Once this option is chosen, the vehicle broadcasts a message of topic

context whose body contains information about its location, current request on-board if

any, and the list of known requests.

Allocation Method and Coordination

The allocation method that we implement here is based on calling an ILP solver (e.g. IBM ILOG

CPLEX Optimizer2). The basic implementation of the allocationMethod() consists in forming the

beliefs of the agent into an ILP instance using the solver’s Optimization Programming Language.

Then running the solver to obtain a solution consisting in a set of allocations for vehicles to

requests. The dispatcher agent is then responsible for parsing the solution and transforming it

into schedules.

Once the dispatcher agent has the set of schedules, it has to share these schedules with other

agents. This is handled by the coordinate() method in which a set of messages are sent to other

members. Each message has a specific agent id as destination and the string “schedule” as

topic. The payload of each of these messages contains the new computed schedule that is

extracted from the solution for each agent in the connected set.

2https://www.ibm.com/analytics/cplex-optimizer
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9.2.2 Greedy Decentralized Decisions (Selfish Behavior)

For scenarios in which vehicles behave selfishly, i.e. a vehicle agent does not care about other

vehicles’ decisions, every vehicle agent has to decide by its own whether it will take a specific

request or not based on its own vision about the context of the surrounding environment. We

assume for this kind of scenarios that agents can only decide for one request at a time, and they

do not have schedules for long term (or in other words, the size of the vehicle schedule is set to

one, so it can hold only one request), similar to what van Lon et al. [155] proposed.

Planning Options

The set of planning options for a vehicle agent at a time tick is composed by a set of potential

decisions, each of which is dedicated to take one of the known requests as the potential next

request for the vehicle. The feasibility of any planning options is determined as follows:

• when a vehicle is carrying a request on board, or when it has chosen a request and is going

to serve it, all planning options are infeasible.

• otherwise, the feasibility of deciding on a request r is determined by the possibility of

serving the request without violating its constraints. It is a function of the request’s time

window twr and the road temporal distance between the vehicle location and the request

origin, in addition to the compliance between the request and the vehicle properties.

Allocation Method

The allocation method here is simple, for each vehicle we have a list of all feasible options, this

list is ordered by priority of the concerned request for the vehicle. When this list is not empty,

the vehicle agent picks the first request in the list and decides it will be its next request. The

priority function is the one described in Chapter 7.

Coordination

In this kind of solution methods, there is no real coordination; the conflicts are resolved upon

their appearance by the first arrival policy. Implementation-wise, we consider the function

coordinate() simply results in an agreement without sending any message. When a vehicle picks

up a request, the request disappears, and if another vehicle was intending to serve the same

request, it simply does not receive its information anymore, which make it determine that the

request will not be found at its origin, and thus the vehicle becomes empty with no potential

request again, so it can choose the new highest priority request.

9.2.3 Cooperative Decentralized Decisions (DCOP)

To implement the cooperative behavior of the DCOP approach, we used FRODO library, which

is a Java open-source framework for distributed combinatorial optimization, initially developed

at the Artificial Intelligence Laboratory (LIA) of École Polytechnique Fédérale de Lausanne

(EPFL), Switzerland. A three-layer, modular architecture is chosen to design FRODO: the

algorithms layer builds upon the solution spaces layer and the communication layer in order

to provide distributed algorithms to solve DCOPs. FRODO takes in two types of files: files

defining optimization problems to be solved, and configuration files defining the nature and the

settings of the agents (i.e. the algorithm) to be used to solve them. The benefit of using such a
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framework is the separation between problem instances and the algorithms to solve them. The

problem instance is described with XCSP 2.1 format 3.

In our experiments, we use FRODO as external library to facilitate the comparison of different

solving algorithms without the need of re-implementing them in the agent behavior.

Planning Options

Planning options and their feasibility for DCOP algorithms depend on their implementation char-

acteristics that we illustrated in Chapter 7. However, generally these options concern assigning

values to the decision variables at runtime. Here we will not dig in the details of the DCOP

algorithms, but we describe the specification of agent behavior to adapt for using FRODO. In

our implementation of the DCOPPlanningSubBehavior, we have two special planning options:

• form XCSP : this option is similar to share context information of the DispatchinPlanning-
SubBehavior, always feasible unless when the vehicle has to update its schedule. Once

this option is chosen, the vehicle broadcasts a message of topic context whose body con-

tains information about its location, current request on-board if any, and the list of known

requests. and upon received context each agent build an XCSP representing its local infor-

mation about the DCOP. Note that we consider here that all vehicles are autonomous and

belong to the same fleet, thus sharing the whole DCOP information between CS members

is not a subject of privacy issues. However, if privacy is considered, agents should share

only the global constraints information, and each agent will have a set of constraints whose

information are local to the agent.

• update schedule: this option is only feasible when the solution is computed. It is then the

only available option. When chosen the schedule of the vehicle should be replaced by the

one received in the message body.

Allocation Method and Coordination

In FRODO, an algorithm is implemented as a policy that describes what should be done upon

the reception of such or such message by an agent’s queue, and what messages should be sent

to other agents, or to another of the agent’s modules. This modular design makes algorithms

highly and easily customizable, and facilitates code reuse and maintenance. FRODO takes in

an agent configuration file that defines the algorithm to be used, and the various settings of

the algorithm’s parameters when applicable. Thus for each DCOP solving algorithm we have a

distinct agent configuration file. As the vehicle properties and the list of known requests form

the common knowledge of the agents in the connected set, we assume that the information in

the XCSP files for all agents to be identical, and thus any agent can trigger the DCOP solver

to build agents schedules as a solution for the local DCOP of the CS. In our experiments the

Lower ID agent is the one who triggers it. Once the solution is computed, it is broadcasted

to all agents in the CS so that they can replace their schedules by the new ones. If no feasible

solution is achieved, no schedule update is performed.

9.2.4 Auction-based Coordinated Decisions (ORNInA)

To experimentally evaluate our contributed ORNInA approach, we implement it as a planning

sub-behavior of AV agents. The class ORNInAPlanningSubBehavior also extends the abstract

PlanningSubBehavior class and implements its abstract methods as follows.

3http://www.cril.univ-artois.fr/~lecoutre/#/benchmarks
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Planning Options

Similar to the SelfishPlanningSubBehavior implementation, we have a set of planning options for

a vehicle agent at a time tick composed by a set of potential decisions, each of which is dedicated

to make an offer bid for inserting one of the known request in the schedule of the vehicle. This

stands for the implementation of the auction-based insertion heuristic.

Also, the set of planning options contains pull bid options, standing for the implementation of

the Pull-demand protocol. A pull bid option is similar to bid options, the only difference is that

the set of pull bid ones stands for the requests that are already scheduled by other vehicles, while

the set of bid options is dedicated to unscheduled available known requests.

The feasibility of both kinds of option is dictated by the compliance between the request and

both properties and current schedule of the vehicle.

Allocation Method

The allocation method of ORNInA is based on first-price auctions. Similar to the greedy ap-

proach, each AV agent has a list of all feasible options, this list is ordered by priority of the

concerned request for the vehicle. When this list is not empty, the agent picks the first request

in the list and decides to bid for it. The priority function to order the requests is proportional to

the marginal cost of inserting the request in the vehicle schedule. Once an AV chooses a request

it must coordinate about this decision with other agents.

Coordination

The coordination mechanism is defined by the winner determination mechanism. Once an option

is chosen, the method coordinate() is triggered. Depending on if the request is scheduled by

another vehicle or not, the AV forms its decision either to broadcast a bid or to send a pull bid

message. The difference between these two messages is that the bid one is broadcasted to the

connected set and any agent can make a counter offer to answer it, while the pull bid has a

destination agent who is the only one allowed to accept the offer or not. For the bid options,

an agreement is achieved if no counter offer is received before the offer’s timeout. Otherwise, it

is a disagreement. For pull bid options, the agreement should be explicitly announced with an

accept offer message sent by the agent who hold the request in its schedule.

Summary

In this chapter, we presented AV-SIM our experimental framework that implements AV-OLRA

model and provides the possibility to implement a variety of solution methods. We described the

implementation requirements of this framework, and illustrated the abstract and detailed class

diagram of how this framework architecture is implemented within Plateforme Territoire. We

also described the implementation details of the 4 different examples of coordination mechanisms

that we compare in this study. In the next chapter, we present and analyze the experimental

result of comparing these mechanisms on different types of scenarios.
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Experimental Results

Being autonomous, the vehicles within a fleet can be responsible for their choice of allocation to

requests making decentralised decisions as we have seen in Chapters 7 and 8, or simply follow

the schedules that are centrally decided by a dispatcher as shown in Chapter 6. In Chapter 9, we

have presented the requirements and guidelines to implement the behaviors of vehicles for the

different solution methods using the AV-SIM architecture and simulate their performance within

Plateforme Terriroire. Following these guidelines, we can instantiate the AV-OLRA model with

the multiagent model described in Chapter 5, supporting the different types of coordination

mechanisms. In this chapter, we present the experimental results of this work. The purpose of

these experiments is to assess the feasibility of providing, based on AV-OLRA model, a generic

framework for modeling different approaches to the allocation problem in vehicle fleets and then

compare their performance on different scenarios.

10.1 Experiments with Synthetic Scenarios

The aim of these experiments was mainly to focus on the feasibility of the AV-OLRA model and

its scalability for the various solution methods. We were able to create symptomatic situations

on which we can tune the different algorithms. We also aimed at achieving an assessment of

the performance of our contributed coordination mechanism, namely ORNInA, compared to the

other ones. In the rest of this section, we present the extraction and post-processing of urban

network data, simulation parameters, and the analysis on the obtained results.

10.1.1 Simulation Scenarios

The city map of Saint-Étienne was chosen for the simulation as a medium-scale urban network.

We use a unique urban infrastructure map for all our experiments. For a district located between

(45.4325,4.3782) and (45.437800,4.387877), more than 1400 edges have been extracted from Open

Street Map (OSM), and post-processed by Plateforme Territoire. In all of these experiments, we

set the number of sources |S| = 40, i.e. 40 locations uniformly distributed through the map were

selected for being demand emission sources, having a set ES ⊂ E of edges, such that |ES | = 71

connecting the sources. Each edge has a number of points which varies according to its length

and the information extracted from OSM. The distance between two consecutive points is about

40 meters.
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Simulation Parameters

We evaluate the performance of four families of coordination mechanisms: Selfish, Dispatching,

Market-based, and DCOP. The Java-based MAS and IBM ILOG CPLEX Optimizer Version

12.9.0 have been executed on an octa-core Intel R© CoreTM i7-8650U CPU @ 1.90GHz, with 32GB

DDR4 RAM. For DCOP algorithms, we make use of the implementation from FRODO library

[90]. A fleet V of n vehicles is distributed randomly through S at the beginning of execution.

Each vehicle v ∈ V moves (on the points) from one point to the next on the same edge during

each simulation cycle. When vehicles have to directly exchange messages, we consider they

communicate via DSRC with a realistic communication range of 250 meters. Vehicles are also

able to communicate by transitivity to any other vehicle in their connected set. The number of

generated requests and the number of vehicles are parameters of the simulation. The passenger

requests are generated randomly with pick-up and delivery locations belonging to the set of

sources. All scenarios were 1000-cycle long, and at each time cycle, 0 or 1 request is generated.

Each instance of these tests is executed 10 times with different random generator seeds.

10.1.2 Selecting and Tuning DCOP Algorithms

In FRODO library, an algorithm is implemented as one or more policies that describe what

should be done upon the reception of such or such message by an agent, and what messages

should be sent to other agent. FRODO supports a set of algorithms including local search,

inference and sampling ones. These algorithms vary also in terms of their optimality.

The choice of suitable algorithms and tuning their parameters is not straightforward but

depends on the nature of the problem and the computational and communicational constraints.

To do so, we have tested with small instances a wide variety of these algorithms, namely:

• Complete:

– Search: SynchBB, AFB and ADOPT,

– Inference: DPOP and its variant ASO-DPOP,

• Incomplete

– Search: DSA (variants A, C, and E), MGM, and MGM-2,

– Inference: Max-Sum.

The problem size in these experiments is defined in terms of number of variables nbvar that

grows with both number of agents and number of requests, and so for the number of constraints.

A comparison of the above-mentioned algorithms in terms of communication load and execution

time as a function of problem size is shown in Figure 10.1. This comparison allowed to eliminate

the ones requiring exponential execution time and/or huge communication load.

ADOPT, DPOP, ASO-DPOP, SynchBB and AFB are known to be complete algorithms that

find optimal solutions but have exponential algorithmic complexity. On the other hand Max-

Sum is incomplete algorithm with efficient execution time, but it requires an exponential memory

size regarding the average number of agent neighbors in the constraint graph, i.e. exponential

memory regarding the number of constraints.

Max-Sum operates on a factor graph that is a bipartite graph in which variables and con-

straints are represented by nodes. Each node representing a variable in the DCOP is connected

to all function nodes that represent the constraints in which it is involved. Similarly, a function

node is connected to all variable nodes that represent variables in the original DCOP that are

included in the constraint it represents. Each agent adopts the role of the node representing
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Figure 10.1: Runtime comparison of DCOP algorithms
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Figure 10.2: Solution quality of local search DCOP algorithms

its own variable and the role of one of the function nodes representing a constraint in which it

is involved. Thus, in our case with the highly constrained instances, Max-Sum requires a large

amount of memory for the communication load and may not converge because the factor graph

will include cycles of different sizes.

The remaining ones are the incomplete local search algorithms whose general structure is

synchronous. At each step of the algorithm, an agent sends its assignment to all its neighbors

in the constraint network and receives the assignment from all its neighbors. They differ in

the method agents use to decide whether to replace their current value assignments to their

variables, for example, in the max gain message (MGM) algorithm; the agent that can improve

its state the most in its neighborhood replaces its assignment. In MGM-2, the first step is to

decide which subset of agents is allowed to make offers. Each agent generates a random number

uniformly from [0, 1] and considers itself an offerer if the random number is below a threshold q.

If an agent is a offerer, it cannot accept offers from other agents. All agents that are not offerer

are considered receivers. Each receiver will randomly (uniformly) choose a neighbor and send it

an offer message, which consists of all coordinated moves between the offerer and the receiver

that will bring a local utility gain to the receiver in the current context. A stochastic decision to

replace an assignment is made by agents in the distributed stochastic algorithm (DSA), similar

to MGM-2, each agent in DSA generates a random number from a uniform distribution on [0, 1]

and acts if that number is less than some threshold p. The lower threshold value reduces the

number of agents who can act at each cycle, which means lower message load and slightly lower

solution quality, while higher thresholds means that every agent has more chance to act every

iteration, which means more improvement rounds on the solution with their expenses in terms

of communication.

A comparison on solution quality of these algorithms is shown in Figure 10.2. This comparison

shows that the different variants of DSA perform almost the same on our instances when having

the same p value. For both DSA and MGM variants, the quality of solutions grows during the

execution time for each cycle until reaching some stabilization point after-which the improvement
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becomes very small. By setting p = 0.5, q = 0.5, DSA and MGM-2 algorithms reach this

stabilization point after around cycles 30 to 50 iterations. More specifically, with variant A of

DSA, the stabilization point of 80% is reached on 45 iterations when p = 0.5, and MGM-2 reach

its 82% on 40 iterations when q = 0.5.

Based on these results we limit our experiments on DCOPs to MGM-2 (q = 0.5) and DSA

(variant A, p = 0.5)

10.1.3 Results on Synthetic Data

The results illustrated in this section concern the synthetic scenarios presented in Section 10.1.1.

We have executed several instances of problems that vary with the size of the fleet n ∈ [4..20]

over 1000 cycles for each scenario.

Quality of the Solutions

Figures 10.3 and 10.4 illustrate the performance of the five selected coordination mechanisms

in terms of QoB and QoS indicators. Every point on these diagrams represents the average,

minimum, and maximum indicator value aggregated over 1000 cycles of simulations. They show

how the quality of the solution evolves with increasing fleet size.
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Figure 10.3: QoB evolution with fleet size
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Figure 10.4: QoS evolution with fleet size

We can notice the increase in QoS and QoB with the increasing number of vehicles in the fleet

until reaching a threshold of repletion, after which it is not possible to improve the quality by
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adding more vehicles. We can still increase the QoS by adding more vehicles, but the amount of

increase in QoS achieved by each additional vehicle gradually diminishes, while the operational

cost of these vehicles increases, which leads to a decrease in the QoB. The values obtained by the

Dispatching mechanism represent, to some instinct, an upper-bound for the objective function

(QoB) as the central dispatcher calculates for each instance the optimal solution (locally optimal

considering the context of the connected set). The performances of the four other mechanisms

vary between the indicators. Figures 10.5 and 10.6 show how the quality indicators evolve during

the execution of fixed-size fleet scenario. At the beginning vehicles have empty schedules, and

any movement means a loss in QoB. Gradually vehicles become aware of more request and add

them to their schedules, thus serve them and increase the values of QoB and QoS as a result.

The performance of the DCOPs, ORNInA and the Dispatching mechanisms highly depends

on the amount of shared information so that there are no quality discrepancies between the four

approaches. With a low number of vehicles, the connected sets are small and, as a consequence,

the amount of shared information is reduced. With higher fleet sizes, more information is shared

in the connected sets. Additionally, vehicles switch from one CS to another more frequently.

The DCOPs and ORNInA approaches perform almost similarly and achieve reasonable values

of QoS. To achieve the same values with the Selfish behavior, more vehicles in the fleet are

required.
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Figure 10.5: QoB evolution during execution
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Figure 10.6: QoS evolution during execution

Considering the DCOP algorithms (DSA and MGM-2), at time t, and starting from some

feasible solution st−1 achieved at time t − 1, each of these approaches tries to obtain a new

solution st in which the value of the objective function is improved. DCOP algorithms focus

on maximizing the individual utility of agents to maximize the global objective, which means
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assigning to agents requests that increase its gain. The more (potentially successful) trip requests

assigned to an agent, the more individual utility is achieved. Of course this will increase QoB,

but the main effect will be on the QoS value.

On the other hand, every agent in ORNInA, at each time step, tries to add to its schedule at

most one request that can improve its utility and thus QoS and QoB values, then the schedule

improvement phase, defined by the pull-demand protocol, tries to reallocate requests in a way

that maximizes the global gain even if this reallocation decreases the gain of the agent who

abandons the request. The pull-demand protocol affects only the value of QoB as the number

of scheduled (to be served) requests does not change, they are only reallocated to other agents.

So, while the auction-based coordination of ORNInA performs better than the DCOP search

algorithms in QoB, it is outperformed by both of them in terms of QoS.

Communication Load

Table 10.1 shows values of the indicators related to communication obtained by simulating a

scenario with 10 vehicles over 1000 cycles with different behaviors. Here the second and third

columns report the maximum and average size of exchanged messages (in bytes) representing

the MsgSize indicator. The fourth column reports the MsgCount indicator in terms of the

average number of messages received by an agent per simulation cycle.

Even with Selfish behavior, agents exchange information messages about the new requests

announced. New types of messages are used in the Dispatching mechanism: the query and

response messages exchanged between the vehicles and the central dispatcher. Query messages

are simply the whole context of the connected set of vehicles that ask the dispatcher to build

their schedules. Response messages are sent from the dispatcher to the individual vehicles and

contain each individual’s potential schedule. These messages can be large, depending on the size

of the sub-problem.

Bid and answer messages used by the Auction-based coordination mechanism are light-

weight, so that the values of the MsgSize indicator stay close to the no-coordination one,

while the MsgCount value becomes polynomial in the number of agents in the connected set

and number of their known requests.

In the two Cooperative coordination mechanisms (DSA and MGM-2), agents in a connected

set instantiate a DCOP framework between each other each time they need to decide on a

schedule update. Achieving a solution by one of these algorithms requires the exchange of

a large number of messages, both of these algorithms are not complete, meaning that they

continue their trials to improve the solution until reaching the timeout or local optimum. This

will lead to more message exchange. On the other hand, the size of messages exchanged by these

two approaches is very small compared to the other approaches.

For each iteration, DCOP agents exchange as many messages as constraints. In average,

for our scenarios, each agent sends about 25 messages per iteration. Recalling the findings in

Section C.6.2, a stabilization point is achieved after 40 iterations for MGM-2 and 45 iterations

for DSA which means at least around 1000 messages are exchanged to achieve such a solution

quality. In our experiments, to guarantee this solution quality level, we need to set number

of iteration to a value higher than the minimum required, by default in FRODO, this value is

(nbCycles = 200) thus we kept it, which leads to have 5040 messages per MGM-2 agent, and

5015 messages per DSA agent.
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max avg msg per comm. reschedule
Coordination msg size msg size agent load period

Selfish 140 88 6 2.21 MB 2.0
Dispatching 3500 168 21 11.2 MB 3.0
Auction 140 112 53 37.7 MB 1.5
MGM-2 210 25 5040 297.6 MB 12.0
DSA 236 20 5015 75.1 MB 13.0

Table 10.1: Communication cost and statistics for different coordination mechanisms for scenar-

ios with ten vehicles

Stability of Schedules

Table 10.1 reports the rescheduling period by considering the average interval between two sim-

ulation cycles in which vehicles update their schedules. The higher this value is, the more stable

the vehicle schedules. In dynamic settings, having stable schedules for a long time means that no

new requests are inserted, affecting the QoS. On the other hand, when vehicle schedules change

frequently, vehicles may change their destination and oscillate for a while before performing a

successful trip, which could decrease QoB. In our scenarios, DCOP coordination provides very

stable and good quality schedules at the expense of a higher communication load. ORNInA

agents, on the other hand, because of their pull-demand protocol, update their schedules more

frequently in order to improve the global QoB. If stability is not a constraint, but communication

bandwidth is limited, ORNInA is still a good candidate.

10.2 Experiments With Real-world Scenarios

The purpose of these experiments is to have more evaluation on the performance of the different

approaches and their scalability to real-world instances, and to analyze in-depth the relationship

between communication load, stability, completeness, and feasibility of these solutions. To do

so, we need to systematically compare performance, quality, feasibility, stability, and technical

issues for these approaches in practice.

10.2.1 The New-York City Urban Network

New York City urban network is divided into five boroughs: the Bronx, Brooklyn, Manhattan,

Queens and Staten Island in addition to the Newark Liberty International Airport (EWR)

neighborhood. New York City’s transportation system consists of a complex infrastructure

network. Unlike most cities, whose roads are planned in a spoke and wheel layout, New York

City’s streets and avenues follow a primarily horizontal and vertical cross direction. Manhattan is

the most densely populated and geographically the smallest of New York City’s five boroughs. It

is the urban core of the New York metropolitan area. In Manhattan, there are twelve numbered

avenues that run parallel to the Hudson River, and 220 numbered streets that run perpendicular

to the river. Similar to the synthetic scenarios in Saint-Étienne, using OpenStreetMap data, we

extracted the post-processed Manhattan urban network. This large resulting network, with 4535

arcs, was chosen because cabs and on-demand ride-sharing vehicles are an extremely popular

form of transportation in this city, with over 500,000 trips per day.

Starting from 2016, Transport authorities in New York City such as NYC-TLC used geo-

graphical zones to encode pickup and delivery locations in their trip records instead of providing

the exact geocode of each pickup or delivery location. The NYC network is then composed of

265 zones, from which 69 zones are in Manhattan (see Figure 10.7). As shows the figure, Zones

in Manhattan vary in their geographical area; look for example the difference between Central
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Figure 10.7: Boroughs and Taxi zones in NYC

Park (Zone 43) and its neighboring zone (Zone 163), this means to reach different geographical

location in a zone x from a location in a zone y the path lengths could be very different. To

cope of with this, we have chosen 100 locations uniformly distributed through these zones for

being demand emission sources for their nearby requests.

10.2.2 The NYC-TLC Trip Records Data-Set

The New York City Taxi and Limousine Commission (TLC), established in 1971, is the agency

responsible for the licensing and regulation of New York City cabs, for-hire vehicles (community

livery, black cars and luxury limousines), commuter vans and paratransit vehicles. TLC collects

data, such as trip records, number of vehicles, and fares. Yellow and green taxi trip records in-

clude fields recording pick-up and drop-off dates/times, pick-up and drop-off locations, distances

traveled, detailed fares, fare types, payment types, and driver-reported passenger counts. The

data sets were collected and provided to the NYC Taxi and Limousine Commission (TLC) by

licensed technology providers under the Taxicab and Livery Passenger Enhancement Programs.

The data set is provided in form of CSV files per month per vehicle type (Yellow Taxis, Green

Taxis, For-Hire Vehicles, and High Volume For-Hire Vehicles). What we are interested in are

the traditional Yellow Taxis as they are the most popular and (to the best of our knowledge)

have access to operate in any zone in the city. To avoid the particular case of COVID-19 and

its impact on the daily operations of small businesses that could affect the taxi demand in the

past three years we decided to work on the Yellow Taxi Trip Records from 2018. Each row

in the CSV files represents a trip data with 17 capturing: pick-up and drop-off dates/times,

pick-up and drop-off locations, trip distances, itemized fares, rate types, payment types, and

driver-reported passenger counts. We are interested in only four of them for our experiments:

• tpep pickup datetime: defines the actual pick-up time,

• tpep dropoff datetime: defines the actual drop-off time,

• PULocationID: defines the pick-up zone id (the origin),

• DOLocationID: defines the drop-off zone id (the destination).
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Location data including TLC taxi zone location IDs, location names and corresponding boroughs

for each ID are provided by NYC-TLC in form of shape files.

10.2.3 Data Analysis on NYC-TLC Trip Records

In NYC there are more than 13k taxis to satisfy the huge density of requests. Thus if we need

to achieve a high quality of service in our experiments with any allocation mechanism we need

similar fleet size. However, doing microscopic simulation on fleets of such size is not practical.

Therefore, we need to produced lower size instances that are well representative for these data.

To do so, we studied the statistical model of the data, in what follows we visualize some data

analysis on one CSV file from NYC-TLC trip records data set for the month of January 2018. The

Python Shapefile Library (pyshp) that provides read and write support for the ESRI Shapefile

format, and Matplotlib for 2D plotting library are used for data visualization.

Figure 10.8: Most popular pick-up/drop-off borough in NYC

Figure 10.9: Most popular pick-up/drop-off zones in NYC
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Spatial distribution of requests

To study the spatial distribution of requests, we aggregate the count of requests over one month

by extracting locations of pickup/drop-off and their counts from the CSV file. The results are

visualized as heat maps in Figures 10.8 and 10.9. We can see that Manhattan is obviously the

most popular borough, containing the top popular pick-up and drop-off zones. Staten Island is

the least popular borough. Queens and Brooklyn are also popular, although their pickup/drop-

off count is less than 10% of Manhattan’s.

Temporal distribution

Here we are interested in identifying the peak hours of pick-up and drop-off, and tracking the

number of requests that pops up along the day.

Figure 10.10: The accumulated number of taxi trips at different Time slots

We can see in Figure 10.10, according to the NYC Taxi records of January 2018 that the

peak hours are around 6PM to 7PM. And the off-peak hours are around 5AM. The temporal

distribution of requests differs also upon the trib distance since the purpose for short trips is not

the same as that of long trips.

Based on the findings shown in Figure 10.11, we can observe that for short trips, the peak

hours are from 6PM to 10PM. While for long trips ( longer than 30 miles), they are from 1PM

to 4PM. The off-peak hours are always the same for both cases.

10.2.4 Simulation Parameters

Similar to the synthetic scenarios, we valuated the performance of the same five coordination

mechanisms. The Java-based MAS and IBM ILOG CPLEX Optimizer Version 12.9.0 have been

executed on a virtual environment using UNIX based calculation server with 12 cores Intel R©
Xeon R© E-2146G CPU @ 3.50GHz and with 32GB DDR4 RAM. We reduced to the half the

number of decision cycles of the DCOP algorithms for these experiments in order to reduce the

computation time. This was done by setting the attribute nbCycles = 100 instead of 200. In

all experiments the communication range of vehicles is set to 250 meters.

Based on the statistical model of NYC-TLC trip records shown in the previous section, we

produced lower size instances of trip records that holds (almost) a similar spatial and temporal

distribution of requests but in lower density. For each instance we chose a limited number of

zones, well distributed geographically in Manhattan, and vary in their request density. Then

we selected from the Original CSV files a subset of short requests between these zones having

pickup/drop-off times corresponding to the temporal distribution of the original data. Fig-

ures 10.12a and 10.13 illustrate the spatial and temporal distribution of requests in one of the
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Figure 10.11: Pick-up/Drop-off time for short and long trips

reduced instances. If we consider only Manhattan, the reduced examples are well representative

of the original short trip data despite that the number of pick-up and drop-off zones is limited.

we have in these examples zones that vary (in the same manner of the original data) from very

crowded zones such as Times-square to very uncrowded zones on the boundaries. also we have

the same temporal scheme of peak hours.

Passenger requests has been extracted from the CSV files as follows:

• Having the set of sources S , we define a subset of zone Ids Z of Manhattan network. Each

zone must contain at least one source s ∈ S.

• The scenario time interval is defined by date/times of beginning and end :

scduration = [tbegin, tend]

• The date/time values can be encoded as discrete time ticks using the function dateToTick(Date

date)

• The length of requests time-windows is a constant twl (by default twl = 20 time ticks);
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(a) Reduced data set

(b) Original data set

Figure 10.12: Comparing spatial distribution of requests in Manhattan for both datasets

• Using Pandas1 library, a subset of records Reccsv is extracted from the CSV data file; for

each record rec ∈ Reccsv the following conditions should be satisfied:

– tpep pickup datetime ∈ scduration
– tpep dropoff datetime ∈ scduration
– PULocationID ∈ Z
– DOLocationID ∈ Z

• For each record rex ∈ Reccsv, a trip request r is generated having:

– or = s
′ ∈ S is a random source located in the zone zPULocationID (having the same

id as PULocationID)

– dr = s
′′ ∈ S is a random source located in the zone zDOLocationID (having the same

id as DOLocationID)

– twr = [t− twl/2, t+ twl/2] where t = dateToTick(tpep pickup datetime)

1https://pandas.pydata.org/
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Figure 10.13: temporal distribution of requests in the reduced data set

The tpep dropoff datetime is not used by the request constructor, It is only used for

filtering the CSV records in order to avoid requests that cannot be satisfied during the

scenario execution.

The number of vehicles, the set of sources, the input CSV file, and scenario duration are pa-

rameters of the experiment. The number of requests during each scenario is determined by the

process of request extraction from CSV which is constrained by the set of sources and scenario

duration.

10.2.5 Results on NYC Trip Record Scenarios

The results shown in this section are extracted from simulations on real-world scenarios presented

in Section 10.2 with larger instances in terms of the network size, fleet size, and number of

requests. We also have executed several instances of problems that vary in the size of the fleet

n ∈ [50..650] over 24 hours long (time in data set) each scenario.

Quality of the Solutions

It is not surprising that the evolution of the QoB and QoS for the real-world scenarios shown

in Figures 10.14 and 10.15 follows a similar pattern to what is shown in the synthetic data

experiments. i.e. the increase in QoS and QoB with the increasing number of vehicles and then

reaching a threshold of repletion for QoB. Having a small fleet of m vehicles, for any approach,

each vehicle v can contribute in achieving a portion qosv of the QoS and a portion qobv of

the QoB. qobv and qosv refer to the utility of individual vehicles for achieving certain level of

solution quality. Increasing the number of vehicles to m′ will increase both QoB and QoS values,

but the values of portions qobv and qosv that a vehicle can contribute to decrease as shown in

Figures 10.16 and 10.17. The decrease in qobv can be explained by the increased operational cost

for the new vehicles, while the decrease in qosv is caused by the inutility of some added vehicles

for acheiving the same QoS. This evolution in qobv and qosv values continues with growing size

of fleet, and thus causes reaching the repletion point.

However, the experiments show that the QoS achieved by fleets notably increases in such

scenarios with high density of requests compared to the small instances with lower number of

requests. This can be seen more clearly for the Selfish fleets and thus supports the hypothesis

of van Lon et al. [155] regarding the efficiency of scheduling only one request in advance. The

set of options for a vehicle grows linearly with the number of requests in its neighborhood, and

thus even if a conflict happened, the vehicle who loses a request can easily switch to next closest

one with few extra operational cost.

Anyway, the scheduling approaches based on local search and coordination still providing
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Figure 10.14: QoB vs fleet size for NYC-TLC trips Scenarios
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Figure 10.15: QoS vs fleet size for NYC-TLC trips

better quality results in terms of QoS and QoB. We can also notice that even when their QoS

levels are so similar, the market-based coordination mechanism (ORNInA) outperforms the

DCOP (DSA and MGM-2) algorithms. This does not contradict with the preliminary results

we had, as these algorithms keep continuously improving the solution quality until reaching a

local optimum. Thus reducing the number of decision can slightly affect the quality of the final

solution.

Achieve a certain QoS level requires a minimum number of vehicles, this number varies

between the different approaches, for example serving 90% of requests2 (illustrated by the dashed

black line on Figure 10.14) requires optimally 240 vehicles with the Dispatching approach, while

the number increases to more tan 350 for the Selfish one. Figure 10.18 compare the Five

approaches in terms of the required fleet size to achieve this 90% QoS. Figure 10.18b shows that

the Selfish mechanism requires an additional number of vehicles that is almost twice of DCOPs

and 3 times of ORNInA (regarding the optimal one for Dispatching).

Connectivity

Being distributed through the urban network of Manhattan with surface area about 59km2

and communication via DSRC with 250m communication range, the fleet is split into a set of

connected sets. At the beginning of the execution, the vehicles are distributed randomly around

the demand emission sources, then they start moving towards their potential requests. This

2In practice serving 90% of requests represent a low QoS. However, this threshold is chosen as an example for
comparison purpose, the same comparison can be done with any higher or lower threshold
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Figure 10.16: Vehicle utility for QoB Evolution for NYC-TLC trips Scenarios
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Figure 10.17: Vehicle utility for QoS Evolution for NYC-TLC trips Scenarios

movement affects the structure of the connection graph and make the CSs change dynamically.

The number of connected sets is inversely proportional to the connectivity between vehicles, the

higher the number of CSs is, the lower the number of vehicles in a single CS.

Figure 10.19 illustrates the evolution of the number of connected sets during the execution of

scenarios with 250 vehicles. At the beginning and regarding the random distribution of vehicles,

we have about 85 small CSs. When they start to move towards their requests, more vehicles

become connected and thus the number of CSs decreases, but still changing in a stable manner.

It is worthy to notice that for the Selfish fleets, the number of CSs is relatively lower than in

other approaches. This means that Selfish vehicles keep close to each others. Keeping in mind

that Selfish vehicles prefer the closest requests and don’t exchange their plans with each others.

We can explain this by the fact that vehicles of the same connected set will have the same

(a) nb vehicles (b) additional vehicles by other approaches to to

acheive the same QoS as of Dispatching

Figure 10.18: Required vehicles to serve 90% of requests
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Figure 10.19: Evolution of the number of connected sets during the execution

Figure 10.20: Average number of vehicles in connected set

preferences to some extent about the surrounding requests. So there will be for every instance

many vehicles going to the same request direction, one of them will manage to pick it up, the rest

will have to choose another one and so on. This behavior causes a kind of flocking phenomenon

and explains to some extent why the greedy algorithm is less efficient in terms of QoB. On the

other hand, the coordination based approaches don’t have this behavior. Once a sub-problem is

solved each vehicle move in a separate direction to serve its next potential request. Therefore,

they may leave and join connected sets more frequently.

When the fleet size grows, the connectivity between vehicles increases. Tracking the evolution

of the CS size with varying fleet size, Figure 10.20 illustrates a comparison between the average

CS sizes for the five solution methods on scenarios with 50, 250, 450, and 650 vehicles. We can

notice that for our experiments the connectivity grows almost linearly with the fleet size for any

of these mechanisms.

Communication Load

Figures 10.21 and 10.22 compare the five mechanisms in terms of message load. In Figure 10.21

we illustrate the growing average number of messages (MsgCount) received by an agent relative

to the number agents in his connected sets. These values represent the MsgCount required to

solve a single sub-problem instance defined by the CS members and their known requests.

Similar to the preliminary scenarios, the highest MsgCount is required by the DCOP algorithms

(DSA and MGM-2) while the lower ones are for the Selfish vehicles as their messages only concern

the request announcement, and has nothing to do with the vehicle decisions.
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Figure 10.21: Average number of message received by a vehicle in connected set

Figure 10.22: Average message size received by a vehicle in connected set

Denoting for time t and for a connected set cs the number of vehicle agents ntcs and mt
cs the

total number of requests known by cs members, MsgCount for single sub-problem can be

proportional to ntcs for Selfish, ntcs×mt
cs for ORNInA, 2ntcs for Dispatching and ntcs

2
for DCOPs.

Figure 10.22 illustrate the relative average message size (MsgSize). In general, the size of

request information messages (which is the common message type for all mechanisms) grows

linearly with mt
cs, and thus with the CS size.

For the Dispatching mechanism, we have in addition query and response messages whose size is

proportional to ntcs×mt
cs. Auction and Pull-demand bid messages for ORNInA have stable size

that is independent from the sub-problem size, as each of these is one-to-one message concerning

only one request at a time. Same for the decisions messages of DCOP, who are small-size. The

communication load per simulation cycle of each of the approaches is presented in Table 10.2.

The higher size messages for DCOPs are information messages, thus we have the same value

of max MsgSize for Selfish, MGM-2 and DSA lines. However, the density of DCOPs decision

messages highly reduce the effect of information message size on the average MsgSize values,

so we can see the lines of DSA and MGM-2 in Figure 10.22 as almost constant.
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Mechanism MsgCount MsgSize Max MsgSize (Bytes) Rescheduling period

Selfish O(n) O(m) 140 4

ORNInA O(n ∗m) O(200) 262 3

MGM-2 O(n2) O(25) 140 15

DSA O(n2) O(20) 140 17

Dispatching O(2n) O(n ∗m) 30k 5

Table 10.2: Communication load for different approaches

Summary

In this chapter, we aimed at answering Research Question 4 of this dissertation, which is:

“How can we assess the feasibility and quality of solution methods ?”

In addition, we aimed at experimentally proving that our contributions all along this dissertation

answer to the other research questions.

We illustrated and analyzed the experimental results achieved during this work. First, we

have presented the two kinds of scenarios: 1) Synthetic data scenarios in Saint-Étienne urban

network, and 2) Real-world data scenarios in New-York City urban network extracted from

TLC trip records data set. A data analysis is done on this data set in order to produce lower

sized instances that are well representative of the spatio-temporal distribution in this data set.

After that we presented the results in form of comparison between five coordination mechanism

(Dispatching, Selfish, ORNInA, DCOP with DSA, and DCOP with MGM-2). This comparison

has been done in terms of quality of solution metrics (QoS and QoB), Communication load

metrics (MsgSize and MsgCount) and Connectivity (CS size and number of CSs).

It is not surprising that the evolution of these metrics follow the same schema for both types

of scenarios. However, There was slight differences in some values, this my have been caused by

the differences in the density of requests between these scenarios.

In addition to the quantitative and qualitative results obtained by this comparison. These

experiment also proved the genericity of the AV-OLRA model (answering to Research Ques-

tion 1) and its multiagent approach that was used to implement the AV-SIM framework and

deploy different types of solution methods (answering to Research Question 2 and Research

Question 3) then experiment them on different types of scenarios varying in the urban net-

work scale, fleet size, request distribution and request announcement density. These experiments

shows that heuristic solutions based on local search and runtime improvement of the quality,

like DCOPs (MGM-2 and DSA) or the market-based ORNInA can provide time-efficient, and

good quality solutions in dynamic settings (answering to Research Question 5).
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Conclusion and perspectives

This dissertation presented our work on the resource allocation problem in the on-demand trans-

portation domain. The goal of this work is to explore different methods for solving the problem

of allocating autonomous vehicles to online requests in a decentralized manner. Given a fleet

of autonomous vehicles deployed in an urban network to meet a large number of passenger

requests that arise at runtime in different locations in the city. Without prior knowledge of

the spatial or temporal distribution of such demands, the vehicles in the fleet are required to

be capable of dynamically updating their schedules to meet newly announced demands. The

objective of this work is to model the different aspects of decision-making and optimization

problems related to this more general problem. As a result of the modeling of these problems,

the question of the choice of centralized and decentralized solution methods arises. In this work,

we investigate the directions and compare the performance of distributed constraint optimiza-

tion (DCOP) techniques, self-organizing multiagent techniques, market-based approaches and

centralized operations research solutions.

The problem of allocating resources among multiple entities is a central concern in Computer

Science and Economics. In the past few years, allocation problems have become one of the most

studied optimization problems in the literature. In Part I, we presented an overview of the

available scientific literature on the main aspects related to the problem in question. We provide

in Chapter 1 an overview of different vehicle routing problems, specifications of DARP, and

their existing solution methods in the operations research literature. In Chapter 2, we review the

efforts in the literature of Multiagent Systems and Multiagent Resource Allocation. We conclude

from this literature review that MARA solutions are identified by the behaviors of individual

agents and their coordination mechanisms so that various solution models exist. We can define

three aspects for the characteristics of these solutions which are: 1) the level of autonomy of the

agent, 2) the level of cooperation of the agent, and 3) the agent’s allocation mechanism. After

that, we study the applicability of MARA to ODT in Chapter 3, from which we can infer the

need for a unified and adaptive way of representing problem instances. Also, solution methods

vary on multiple aspects, so that a unified way of representing and categorizing different solution

methods is needed to fairly and effectively compare their performance in different contexts. To

the best of our knowledge, such DARP-specific representations have been lacking in the literature

of MARA and ODT.

The Contributions of this Dissertation

In this section, we briefly resume the major contributions of this dissertation in answer to the

research questions formulated in the Introduction. These contributions have been presented

in peer-reviewed, national and international, scientific events (workshops and conferences), and
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thus been published as peer-reviewed papers in the proceedings, post-proceedings, or journal

special issues of these venues, listed on Page 125. The main hypothesis of this thesis were

presented at the doctoral consortium of the 30th International Joint Conference on Artificial

Intelligence (IJCAI-21) and included as a short paper it its proceedings [P2].

In Part II, we aimed at filling the aforementioned gap in the literature by proposing AV-

OLRA, a generic model for resource allocation problem encountered in the management of

autonomous vehicle fleets.

Our first contribution is defining a scalable communication model. Considering

the variety of communication technologies that can be used when deploying autonomous vehicle

fleets, we needed to define a communication model that scales for every different alternative

aiming at answering the Research Question 3. We defined this model in Chapter 4 ( this

contribution is associated with a paper presented in the 12th Workshop on Optimization and

Learning in Multiagent Systems [P7], included as a a short paper in the proceedings of the 20th

International Conference on Autonomous Agents and Multiagent Systems [P8] and included as

extended version in the proceedings of the French conference on Multiagent Systems3 JFSMA-21

[P9]). We started by defining the connectivity between two components in the system, which is

achieved by direct messages within limited communication ranges. Being a deployment param-

eter, the communication range adds another dimension of genericity to AV-OLRA model. To

maximize their connectivity, if two vehicles are not close enough to each others to communicate

directly, we allow them to communicate transitively upon the existence of another vehicle that

is connected directly or transitively to both of them. This led to the definition of connected sets

as dynamic sets of entities connected to each other directly or by transitivity.

Our second contribution is to define the main elements requred for the problem

formalization. In Chapter 4, we introduced our generic model for online resource allocation

problem with autonomous vehicles AV-OLRA, aiming to answer Research Question 1. This

model defines the hypothesis of the problem (components, constraints) and the indicators to

evaluate the different allocation strategies (associated publications are [P7], [P8], and [P9]).

We formulate the AV-OLRA problem in form of four components: a dynamic set of passenger

requests defining the resources; a fleet of autonomous vehicles defining the set of consumers; a

directed connected graph representing the urban road network and a time horizon within which

vehicles must respond to passenger requests. This model extends a state-of-art model for the

Online-Localized Resource allocation (OLRA) adding the specifications of ODT and connected

autonomous vehicles. Then, in Chapter 5, we presented the MAS architecture to deliver the AV-

OLRA model in which agents can communicate with each other via radio channels using peer-to-

peer messages in connected sets. We proposed a multiagent oriented programming requirements

build this generic model. Our hypothesis is that the proposed MAS offers genericity on both

communication and coordination dimensions.

Our third contribution is proposing a unified representation of solution methods

in form of coordination mechanisms. With this contribution presented in [P7], [P8], and

[P9] we aimed at answering to Research Question 2 . AV-OLRA problem can be solved by

different methods and algorithms. These methods can be categorized based on the properties

of the adopted coordination mechanisms. Thus, they can vary from centralized dispatching to

fully decentralized individual decisions, and from cooperative to competitive. In Part III we

describe in details the specification of each of these various mechanisms. In Chapter 6, we

overview the traditional formulation of the problem as a linear program and describe how to

adapt this to the dynamic setting and consider the AV-OLRA sub-problem instances defined

by the connected sets. Then in Chapter 7, we explore the direction of decentralization. We

have three types of vehicle behaviors here; Selfish behavior with no coordination, Market-based

coordination behavior, and Cooperative coordination behavior. We presented the specifications

of each of these mechanisms.

3Les Journées Francophones sur les Systèmes Multi-Agents (JFSMA)
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Our fourth contribution is combining the dynamic responsiveness and solution

optimization in one solution method. To provide an answer to the Research Question 5,

based on the theoretical pros and cons of the presented mechanisms, we proposed in Chapter 8 a

new market-based coordination mechanism in which vehicles achieve fast feasible schedules using

first price auctions to avoid and handle conflicts. And then starting from these feasible schedules

they can initiate peer-to-peer auctions to exchange their scheduled requests in order to improve

the quality of solutions. This approach was first presented at the 11th International Workshop

on Agents in Traffic and Transportation [P4], and in two French venues (RJCIA-214 [P3] and

AFIA/ROADEF-215 [P1]) organized by the French Association of Artificial Intelligence (AFIA),

then been published in the special issue Agents in Traffic and Transportation (ATT 2020) at AI

Communication journal [P6].

Our final contribution is proposing a simulation experimental framework built

according to AV-OLRA specifications. Part IV was dedicated to experimental validation

of the model and to the compare the performance of the solution methods that follow a variety

of coordination mechanism. This evaluation was based on the technical and qualitical criteria

we defined to asses solution methods aiming to answer Research Question 4. In Chapter 9

we overviewed the software engineering behind the experimental framework and the guidelines

to implement five coordination mechanisms. Then in Chapter 10 we present the experimental

results of the simulation based comparison between the implemented coordination mechanisms.

These experiments have been run on two types of scenarios. The first one is based on synthetic

data generated on the urban network of Saint-Étienne, while the second is based on real-world

data extracted from New York City TLC trip records. The comparison is done in terms of solu-

tion quality, communication load, connectivity, and solution stability. Part of these experiments

results was included in [P6], [P7], and [P8].

Findings, Limitations, and Future Directions

Simulation results shows that relying on DCOP or auctions to coordinate decentralized de-

cisions provides reasonable quality allocations compared to optimal one-shot allocation and

non-coordinated taxis. DCOP-based allocation strategies do not change vehicle schedules too

frequently but still induce more communication than the auction-based strategy.

A limitation of our communication model is the phenomena of spatially obscure demands.

Those are requests announced far from vehicles and could remain unknown to any connected

set for a while until a vehicle passes close to their sources, so they may not be met within their

time-window constraints. However, in this work, we considered very dynamic scenarios in the

spatial and temporal dimensions so that no such situation would occur in any of our experimental

scenarios.

We believe that this work deserves to be further developed; for example, exploring the di-

rection of defining further constraints on vehicle motion to achieve more connectivity between

vehicles or to ensure that each emission source is located within the communication space of at

least one vehicle.

Another direction to explore is if the vehicles have access to a statistical or machine learning

model to predict the future requests, how could that affect their decision quality and what are

the effect of such knowledge on the final quality of solution. To improve the quality of AV

planing decisions, it could be helpful to use more complex priority functions that consider not

only the current context of problem, but also some expectation of how the problem context in

the near future will look like. Here arise two questions:

4Rencontres des Jeunes Chercheur·ses en Intelligence Artificielle
5Le congrès annuel de la société Française de Recherche Opérationnelle et d’Aide à la Décision
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• Can we make vehicles predict the distribution of requests in space and time?

• How this knowledge could affect the quality of their decisions?

In Appendix A, we introduce a future work proposal to answer these questions.

Finally, we believe that the choice between the various solution methods cannot be considered

a straightforward decision. Moreover, these cannot be only seen as technical issues. The need for

matching human satisfaction and controllable decisions requires these decisions to be transparent

and self-explainable. Our vision on future direction is to apply these findings towards building

a fully automatized, self-explainable analytical tool that functions as a recommendation system

for resource allocation methods for ODT scenarios. This potential tool takes as input the

set of parameters for the scenario (vehicle fleet properties and request distribution model),

user’s objective function, and preferences, in addition to the environment model (road network

and traffic model). Then it recommends specific allocation mechanisms that match the user

objectives and preferences. This proposal illustrated in Appendix B has been presented at the

3rd International Workshop on EXplainable and TRAnsparent AI and Multi-Agent Systems

(EXTRAAMAS 2021) and included as a book chapter in its post-proceedings [P5].
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Appendix A

Future Direction: Supporting Allocation

Mechanisms with Demand Prediction Models

The selection of a heuristic (priority function) plays a major role in the efficiency of allocation

mechanisms especially for greedy algorithms. To improve the quality of AV planing decisions,

it could be helpful to use more complex priority functions that consider not only the current

context of problem, but also some expectation of how the problem context in the near future

will look like. Suppose an agent has the ability to predict a proximate value for the next steps,

then the priority of his choices could be affected in order to optimize the quality of solution.

A.1 Illustrative example

Let’s consider that a greedy agent wants to solve the problem shown in Figure 7.1. At the

beginning he sees only two nodes associated with initial direct gains of 2 for the green and 7

for the blue, he doesn’t look for the values of their children nodes. Within the initial settings,

the agent chooses 7 and thus his final solution would be the path in blue. Giving the agent the

ability to predict an approximation of the children nodes for each option (e.g. predicting the

average value of children nodes), he can prioritize his options in different ways. Thus, for each

option he calculates the approximation value of children nodes and add it to initial gain, then

he choose the best among them. As shows Figure A.1, the average value prediction gives 13.67

to the path on left side and 4 to the one on right side. the potential gains are now 15.67 for

choosing the green node and 11 for the blue one. Thus the agent prioritizes the green path and

potentially becomes able to reach a global optimum. To apply this kind of approaches to the

Figure A.1: potential solution improvement when predicting upcomming context (average value

prediction)
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problem at hand, AV agents should somehow simulate the taxi drivers expertise in predicting

the zones that are most likely to have requests during a certain time of the day. Here raise two

questions:

1. Can we make vehicles predict, even partially, the distribution of requests in space and

time?

2. How this knowledge could affect the quality of their decisions?

To answer the first question, one may consider building a prediction algorithm tat predict the

number of potential requests in a certain zone of the city, during a certain time slot in the

future. Structuring these predicted values correctly in the agent belief base then could lead to

more efficient decisions. Defining the way of structuring this knowledge and affecting the priority

function is what answer the second question.

A.2 Request Prediction Models

We aim to build a mechanism to support the agent’s decisions by predicting future context

information, so that agents can consider to improve the efficiency of their decisions. Obviously

no algorithm is capable of making predictions for unlimited time into future. So in terms of time

we need to take into consideration that our prediction will be until a certain horizon. Dividing

an urban aria into a set of zones Z and sampling the temporal dimension on a sequence of time

slots, we can introduce the main hypothesis of the potential model as:

“Given at a time slot t the sequence nzt−p, ..., n
z
t of passenger numbers during the last p time

slots in a certain zone z ∈ Z, can we predict n′ the approximate number of passengers in the

same zone z at next time slot t+ 1 ?”

Designing an efficient prediction model and proving its accuracy and performance is out of

the scope of this dissertation. However we can find in the literature of Machine Learning and

Data Science several applicable prediction models that can fit with our needs. An interesting

contribution here is the sequence learning model proposed by Xu et al. This model is based

on recurrent neural networks (RNN)1 for learning the pattern of taxi demand occurrence in the

future based on the requests in the past. Since a model that can learn time series data is necessary

here. To let the model learn time series data they used Long short-term memory (LSTM) Layers.

The model was capable to continuously make real-time prediction of taxi demand for the entire

New-Yourk city with a high level of accuracy [160]. Some other approaches are based on data

analysis, for instance Zhang et al. propose a passenger hot-spots recommendation system by

analyzing the existing taxi trips. The hot-spots represent the most likely zones to be crowded

with passenger requests. They extract hot-spots in each time step and assign a hotness score for

each one. This score will be predicted in each time step and combined with the taxi’s location.

Then the top k hot-spots are recommended [168].

A.3 Planning Options utilities

For our problem scenarios, the vehicle decisions can be supported by information gathered from

an efficient request prediction model, such as the sequential learning proposed by Xu et al..

Having an access to such a model allows vehicle to update its belief base at every time tick

with an approximate number of potential future requests for any geographical zone of interest.

These beliefs are then used as additional factors for computing evaluating the utility of vehicle

1RNN is a special type of neural network designed for sequence problems
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Figure A.2: Vehicle planning options when future requests are predictable

decisions. In what follows we consider vehicles with Selfish behavior to explain how can request

prediction affect the planning option utilities. Figure A.2 illustrates a snapshot of planning

options for three vehicles having access to such a prediction model. This example fits with any

decentralized solution method in which vehicles prioritize their options based on their utilities.

However, for the seek of simplicity here, we consider the three AV s to have the selfish behavior

explained Section 7.1.2. We can distinguish two cases:

• The vehicle is marauding when it is not aware of any announced request, in the initial

settings it moves randomly towards other zone. However, by predicting the occurrence

of potential requests in the surrounding zones, it can prioritize the zone the most likely

to have requests to be its marauding destination. In this example the blue vehicle will

prioritize z3 among others.

• The vehicle is aware of announced requests thus it calculates the priority of requests

not only based on the distance from the pickup location, but also using predicted infor-

mation about the drop-off zone. An agent assigns a score sctz for each zone, representing

the normalized value of its potential crowdedness between 0 and 1. The priority function

includes as always a value proportional to the cost, but it also consider the additional

information. It becomes a weighted sum of these values.

prioritytv(r) =
a

costtv(r)
+ b.sctz | dr ∈ z

where a and b are parametric weighting factors that defines the importance of operational

cost and crowdedness score in computing the priority (a+ b = 1).

Having equal cost choices to serve r1 or r2, the red vehicle in Figure A.2 may prioritize r1
as its drop-off location dr1 belongs to z3 in which the probability to have future request is

higher than z1 that contains dr2 . In the same way the yellow vehicle prioritize r2 over r3.
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Appendix B

Future Direction: A Proposal Towards

Explainable Recommender System for ODT

Coordination Mechanisms

We aim to design an analytical tool that functions as a recommendation system for on-demand

transport (ODT) authorities. This tool recommends specific allocation mechanisms that match

the authority’s objectives and preferences to solve allocation problems for particular contextual

scenarios. The proposal emphasizes the need for transparency and explainability of resource

allocation decisions in ODT systems to be understandable by humans and move toward a more

controllable resource allocation. We propose in this preliminary work a multiagent architecture

and general implementation guidelines towards meeting these requirements.

There are several stakeholders involved in ODT systems including passengers, drivers, service

providers, etc.). What we mean by the term User in this document is a human user representing

the transport authority and looking for the best solution method to solve the problem regarding

the authority’s preferences and the actual context parameters.

This potential tool takes as input the set of parameters for the scenario (vehicle fleet prop-

erties and request distribution model), user’s objective function, and preferences, in addition to

the environment model (road network and traffic model).

This system simulates the problem scenario and its solutions with different classes of AI meth-

ods, then produces to the user the recommended solution model (the solution method and its

tuned parameters) that produce results matching the user objective and preferences for the input

scenario.

In future Artificial Intelligence (AI) systems, it is vital to guarantee a smooth human-agent

interaction, as it is not straightforward for humans to understand the agent’s state of mind,

and explainability is an indispensable ingredient for such interaction [113]. Recent works in

the literature highlighted explainability as one of the cornerstones for building trustworthily

responsible and acceptable AI systems [93, 124, 130]. Consequently, the emerging research field

of eXplainable Artificial Intelligence (XAI) gained momentum both in academia and industry [67,

7, 21]. XAI is allowing, through explanations, users to understand, trust, and effectively manage

the next generation of AI solutions [68].

Providing users with some form of control over the recommendation process can be realized

by allowing them to tell the system what they like or by engaging them in adjusting the rec-

ommendation profile to synthesize recommendations from different sources [152]. High-quality
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explanations allow a better understanding of the results and help the user to make the right

decisions. Reliable answers increase confidence in the system, while explanations that reflect

system inaccuracies allow the user to modify the system’s reasoning or control the weighting

parameter that reorganizes or regenerates recommendations.

B.1 About the Need for Explainability

The human perspective is what differentiates ODT from most routing and transport problems;

in addition to the technical factors, the quality of the service is influenced by human satisfac-

tion factors, including the stability of service quality, service availability, wait-time, information

privacy, passengers’ special constraints, and preferences [35].

The following examples show that global system decisions may not fit all stakeholders’ prefer-

ences: a decision may make some people dissatisfied.

Figure B.1: Passenger request distribution at rush hours.

Scenario 1: Dial-a-ride in rush hours. At rush hours, taxi-ride demand is usually con-

centrated at specific parts of the city, e.g., city center and train stations, as seen in Fig. B.1.

The objective of the transport authority is to maximize the number of satisfied requests while

reducing operational costs. An efficient allocation mechanism will dispatch as many vehicles as

possible to the crowded areas to serve passengers, prioritizing the requests whose destinations

are near other crowded areas. As a consequence, in this example, most of the vehicles move back

and forth between the two areas, which reduces the chance of far passengers and makes them

wait for a long time for being served, regardless of the urgency level of their requests that may

be higher than those who do their ordinary work-home trips from the city center.

Scenario 2: Emergency management ODT. The example of Fig. B.2, introduced by Aalami

and Kattan [1] represents a disaster management situation. However, this kind of emergency

transport can be modeled as an ODT system [141, 164, 17]. In this example, a failure in facility

X leads to a leak of toxic substances. The leakage grows over time and threatens both com-

munities A and B. The inhabitants of these communities need to be relocated to refuge R as

soon as possible. A fleet of shuttles is available to relocate people. However, suppose that the
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Figure B.2: An example of an emergency scenario.

fleet’s size is not large enough to evacuate either community in one hour. Because of the wind

direction, the time it takes for the substance to reach community A is double that of community

B; however, community A’s toxic density will be higher than in community B (assuming the

density degrades with distance). Also, community B’s population is three times the population

of community A. The round-trip time from community A to the refuge is twice the round-trip

time from community B to the refuge. In other words, a shuttle assigned to community B can

carry twice the number of evacuees compared to the same shuttle assigned to community A. If

the goal is to maximize the number of evacuees moved to the refuge within one hour, the answer

would be to assign the entire fleet to community B since the round trip time is shorter for this

community. However, if the goal is to evacuate high-risk individuals as quickly as possible, the

answer would be to assign the entire fleet to community A. While both of these responses seem

correct for the corresponding objective, neither seems fair.

Providing explanations for the system decision may increase people’s satisfaction [18], and

maintain the AI system’s acceptability. When a recommendation mechanism is too complicated

for lay users, the system may need to justify why the recommendation has been made [44, 149].

The EU General Data Protection Regulation introduces a right of explanation for citizens to

obtain “meaningful information about the logic involved” for automated decisions [63]. Generat-

ing explanations of autonomous decisions in multiagent environments is even more difficult than

providing explanations in other contexts [85]. In addition to identifying the technical reasons

that led to the decision, it is necessary to convey the agents’ preferences. It is necessary to de-

cide what to reveal about other agents’ preferences to increase user satisfaction while considering

other agents’ privacy, and how those features led to the final decision.

To provide useful explanations, it is necessary to identify the features of the context and

decisions relevant to a specific user. Given these features, other relevant agents’ preferences

should be identified, and any relevant statements that touch on important concepts such as

fairness should be generated. Using these features, preferences, and concepts, various explana-

tions could be generated using subsets of them. The selected subset should be transferred in

a certain communication form. The personalization of explanations could also be used at this

stage since explanations are subjective and depend on multiple factors [145]. As to personalize

explanations, there is a need to build a user, or mental model [74] that influences the generation

of explanations.

In our resource allocation scenario in vehicle fleets, the allocation process can provide a set

of constraints that lead to the proposed allocation. It will be necessary to identify the relevant

constraints and generalize statements related to other agents’ preferences and general system
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Figure B.3: MA and AV agents interaction.

constraints related to fairness [99]. Then, we can use user satisfaction models to choose the best

constraints, and generalized statements to present.

B.2 Explainable MAS for AV-OLRA recommendation

In this section, we introduce EX-AV-OLRA, an extension to AV-OLRA metamodel with explainability-

related components. We present a multiagent model for an explainable recommendation system

that realizes the EX-AV-OLRA model. we propose to formulate the EX-AV-OLRA model as:

EX-AV-OLRA :=
(
R,V,G,T,X

)
(B.1)

Where
(
R,V,G,T

)
define an AV-OLRA and X defines the explaining mechanism.

We aim to design a recommender system in which a human user sets the scenario parameters

to create an AV-OLRA instance, setting objective and utility preferences. The system’s output

is a recommendation to use the solution method that is the best match to user preferences,

supported with multi-level explanations of why particular methods are recommended and why

others are discouraged.

The multiagent model for the explainable recommender system extends the AV-OLRA model.

An additional agent type Monitor Agent (MA) plays the role of proxy for AV s to produce

human-readable personalized explanations for the recommended methods. Unlike the inter-AV s’

limited-range communication model, the MA can interact with AV s globally (See Fig. B.3).

This interaction is only to monitor the performance of AV agents and logging the explanations

of their actions during the simulation. The MA’s role is to aggregate the explanations of AV s’

actions during the simulation to enable building explainable recommendations. In practice, only

the AV s are deployed. Their communication constraints in real world scenarios should be taken

into account during the simulation. To do so, this global interaction means should never be used

for communication between AV s.

In this work, we propose to add another sub-behavior (the explaining sub-behavior) to the

AV model. This sub-behavior consists of two phases generating explanation and monitor-agent

interacting as shown in Fig. B.4.

Generating explanation phase is triggered whenever a decision is taken (in planning sub-

behavior). The AV gathers all information related to the taken decision (the leading constraints,

context information, potential improvement in the solution quality, etc.), in addition to the

changed decision variables and their values. This information, together with the contextual data

gathered in the previous steps from the agent belief base, are used to generate an understandable
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Figure B.4: Explainable AV agent behavior in EX-AV-OLRA

Solution DA AC AM Explanation examples

Selfish D N Greedy Why prioritizing a specific request?

Dispatching C S MILP Which constraints are violated?

Market D S Auctions How winner determination computed?

Why accepting some trade options?

Cooperative D S DCOP What are individual costs and utilities?

Table B.1: Examples of solution models and what should be explained.

explanation for the taken decision. When the explanation is generated, the agent moves to

the monitor-agent interacting phase. In the monitor-agent interacting phase, the generated

explanations are sent to the monitor agent and stored in the AV belief base. To reflect the

behavior of AV s in real world scenarios, the MA should never play the role of communication

mediator between AV s.

The set of possibly explainable actions and decisions depend basically on the chosen solution

model. Table B.1. lists some examples of solution models in line with their possibly explainable

decisions.

B.2.1 Monitor Agent ’s Behavior

The role of the MA is to be a proxy between AV s and the user. It interacts with the user via

dialogues to build a user profile that simulates the user preferences and objectives. MA could

be formed in a group of agents for fault tolerance and backup reasons and to avoid having a

bottleneck in the model. Additionally, members inside this group may execute different expla-

nations behaviors and interact/cooperate to provide the explanation to the human. The most

important point is to have one interface with the human user to avoid overwhelming her/him

with many interfaces. We can look at the monitor agent as the personal assistant of the human

that could be embedded in his/her smartphone for example. Therefore, and even with a group

ofMAs, the interface with the human is preferably unified through one agent as a representative

of the group.

MA gathers the statistics of decisions and their explanations from AV s. It aggregates these

explanations in several abstraction levels. Following a similar approach of [127], the MA builds

a multilevel explanation tree. The leaves of this tree correspond to particular agent’s actions

explanations. The root corresponds to the global abstract explanation for the final recommenda-

tion, and intermediate levels correspond to explanations for the evolution of evaluation metrics.

At the end of the simulation scenario, it ranks the different solution methods based on their

matching to the user profile providing a summary explanation for the ranking decision. The

user could ask for a detailed explanation –to handle this, the MA defines a new granularity

for selecting the right level of explanation that is communicated to the user. While the user
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is asking for more details, MA proceeds from the root to leaves gradually, providing at every

step the corresponding level of explanations. It stops when the user stops asking or reaching

the leaves representing the atomic details that can not be expanded. The next section discusses

how an MA computes its recommendation.

B.2.2 Computing the recommendations

The objective of MA is to assign values to its decision variable by the end of the scenario ex-

ecution. MA has three sets of variables: profiles, recommendation and explanation variables.

The recommendation variables are the ranking values for the different candidate methods. The

explanation variables aggregate individual AV s’ explanations and MA’s reasoning on the evolu-

tion of the evaluation metrics during the execution. The profile variables define a model based

on the available features of allocation methods that match the user-defined features profile. If

we manage to get such a model, then making recommendations for a user is relatively easy. We

need to look at the user profile and compute its similarity to the different candidate methods.

The candidates are then ranked based on their similarity value.

The user profile u in the set of user profiles U is represented by a vector of n features

u = [u1, ..., un] defines the user’s preferred values for the different evaluation metrics. Given that

the system implements k solution methods that are potential candidates, this set of candidate

methods is represented by M = {m1, ...,mk}; m ∈ M is the feature vector of the candidate

m = [fm1 , ..., f
m
n ] we define a distance dist function to calculate the n-dimensional euclidean

distance between feature vectors:

dist : U ×M → R+

dist(x, y) =

√√√√ n∑
i=1

(xi − yi)2

A perfect-match method m′ to user profile u if exists, will have dist(u,m′) = 0 otherwise the

following similarity function will be used to rank the candidate methods:

sim : U ×M → [0, 1]

In its simplest form, sim function is the inverse of dist.

sim(x, y) =
1

dist(x, y)

so that the highest recommended method m′ to user u is the one with higher value of sim(u,m′).

B.2.3 Creating and communicating the explanations

As seen before, we need explanations that are scalable for multiple levels, we can distinguish two

types of actions to be explained: the AV ’s individual decisions and the aggregated decision by

MA.

The classical approach in XAI is the straightforward design of interpretable models on the

original data to reveal the logic behind actions proposed by the system. State-of-the-art inter-

pretable models, including decision trees, rules, and linear models; are considered to be under-

standable and readable by humans [112]. This applies to the individual decisions of AV s in

our model, every AV is an autonomous agent having predefined interpretable behavior, and can

justify his decisions with their technical and social reasons (based on its believes of itself and

the context).

Another XAI approach is the post hoc interpretability, given the decisions made by the

system, the problem consists of reconstructing an explanation to make the system intelligible
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without exposing or modifying the underlying model internally. The generation of explanations

is an epistemic and computational action, carried out on-demand according to the current state

of a model, and meta-knowledge on the functionalities of the system. It is intended to produce a

trustworthy model based on features or exemplars. This applies to the aggregation of decisions

made by MA, to the statistics-based matching, and to the recommendations.

An explanation can indeed be in any type of interaction. The advantage of human-like

interaction is that it provides to the user higher levels of satisfaction, trust, confidence, and

willingness to use autonomous systems. For this reason, many techniques have been developed to

generate natural language (NL) descriptions of agent behavior and detected outliers or anomalies.

This entails answering questions such as, why did an agent choose a particular action? Or what

training data were most responsible for that choice? The internal state and action representations

of the system are translated into NL by techniques such as recurrent neural networks [51],

rationale generation [52], adding explanations to a supervised training set such that a model

learns to output a prediction as well as an explanation [32].
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Appendix C

Synthèse des parties clés de la thèse

Parmi les questions importantes dans la gestion des systèmes de transport à la demande (ODT)

nous retrouvons les problèmes d’allocation de demandes de courses aux véhicules qui soient

réalisables et efficaces. Les taxis autonomes sont une catégorie de véhicule sans conducteur qui

en plus de leur autonomie de déplacement dans le trafic ont l’autonomie du choix des clients à

servir. Cela signifie qu’ils sont responsables de leur choix d’affectation aux demandes (en prenant

des décisions décentralisées) ou d’exécuter les plannings qui sont décidés de manière centralisée

par un répartiteur. En pratique, la faisabilité et l’efficacité du choix de centraliser/décentraliser

la solution dépendent de la complexité du problème, de ses contraintes (e.g. la topologie du

réseau et la structure de la demande) et de la dynamique de l’environnement (e.g. le trafic

routier, les aléas de conduite).

Dans cette thèse:

1. Nous proposons AV-OLRA, un modèle générique pour le problème d’allocation des ressources

en ligne avec des véhicules autonomes. Ce modèle est générique car il est indépendant des

solutions mises en oeuvre. Ainsi nous modélisons les données du problème (composantes,

contraintes) et les indicateurs permettant d’évaluer les différentes stratégies d’allocation ;

2. Nous proposons un modèle multi-agents générique support de solutions au problème des

système ODT, où les véhicules autonomes (agents) communiquent avec leurs voisins via

une communication pair-à-pair au sein d’ensembles connectés ; Ce modèle est générique

car il supporte la réalisation des solutions en limitant les nouveaux développements aux

particularités de la méthode d’allocation.

3. Nous classons les différentes méthodes d’allocation en fonction du comportement de coor-

dination des agents;

4. Nous présentons un nouvel algorithme heuristique décentralisé d’insertion (ORNInA) par

lequel les véhicules coordonnent leurs décisions via un système d’enchères. Le mécanisme

de décision de cette approche est fondé sur une approche classique consistant à associer les

véhicules aux demandes les plus proches dans le temps et l’espace, étendue par une phase

d’optimisation afin d’améliorer la qualité de la solution.

5. Nous évaluons et comparons expérimentalement différentes méthodes de résolution (opti-

misation linéaire en nombres entiers, auto-évaluation, enchères et optimisation sous con-

traintes distribuée).
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Ce chapitre résume les plus importants éléments de cette thèse. Il est structuré comme

suit. La section C.1 résume la partie I (état de l’art) en présentant quelques travaux relatifs

à l’allocation de ressources multi-agents avec un focus sur les travaux concernant les systèmes

ODT. Sur la base de cette analyse de l’état de l’art, nous exposons le problème AV-OLRA

en section C.2, et un modèle multi-agents générique pour le résoudre dans la section C.3. La

section C.4 examine plus en détail les différents mécanismes de coordination investigués dans

cette étude, y compris ORNInA auquel nous consacrons la section C.5. Ces mécanismes de

coordination sont ensuite évalués expérimentalement dans la section C.6.

C.1 Allocation de ressources multi-agents et système ODT

Ces dernières années, le nombre d’articles consacrés à l’application des technologies fondées sur

les agents dans le domaine des transports a considérablement augmenté attestant les bénéfices

de cette approche pour ce domaine d’application. [129] propose une synthèse des publications

concernant des simulations et modèles pour systèmes ODT. Dans ce domaine, mieux répondre à

la demande est considéré comme un défi et doit prendre en compte les personnes avec leur com-

portement et leur interaction avec un environnement de transport complexe. La vision MARA

(Multi-Agent Resource Allocation) est pertinente pour la résolution des problèmes ODT et a été

mise en oeuvre selon différentes approches. Ainsi, la centralisation du processus d’allocation

avec un répartiteur automatique est encore assez courante dans les approches multi-agents

[50, 102, 143]. D’autre part et pour réaliser une planification en temps réel des services ODT,

plusieurs modèles décentralisés ont été proposés [62, 84]. Un modèle théorique de système de

transport est développé dans [89] pour étudier le comportement de coopération des véhicules,

avec une perspective globale ; la stratégie permettant d’obtenir la meilleure efficacité est de

partager les informations entre véhicules coopérants dans un réseau de transport flexible (i.e les

horaires et itinéraires sont variables). Dans le cas contraire (absence de communication entre

les agents), [155] a proposé d’utiliser la programmation génétique pour développer des systèmes

multi-agents décentralisés qui résolvent les problèmes dynamiques des systèmes ODT. Les au-

teurs ont conclu que la planification à long terme n’est pas bénéfique dans de tels contextes en

raison de la très forte dynamique ; ainsi, les agents ne devraient examiner qu’une seule demande

à l’avance.

L’un des principaux défis que pose l’utilisation des approches MARA et plus généralement

multi-agents, pour résoudre les problèmes liés à l’ODT est le goulot d’étranglement en matière

de communication. Une solution est une organisation spatiale des agents, e.g. une zone de plan-

ification limitée par agent et pas de communication [81]. Un second défi concerne la dynamique

du système. Les solutions aux problèmes d’allocation de ressources pour un système ODT dans

des environnements dynamiques doivent remettre en question les plannings des véhicules en

temps réel. Cette remise en cause rend dans la pratique l’objectif de proposer une solution op-

timale inaccessible. Cependant, la conception d’approches itératives pour obtenir des solutions

réalisables en temps raisonnable est une alternative appropriée pour aborder l’aspect dynamique

; cela nécessite de considérer le besoin de communication (pour mettre à jour les informations)

et donc de fournir des schémas de communication et de coordination solides et efficaces.

De même, un cadre de modélisation générique, c’est-à-dire indépendant de la solution/s-

tratégie de résolution, du problème d’allocation de ressources localisées en ligne (OLRA), et un

système multi-agents pour résoudre le problème de la gestion du stationnement urbain ont été

proposés dans [167]. La solution repose sur une communauté de conducteurs qui partagent leurs

connaissances locales sur la disponibilité des places de stationnement. Notre travail s’appuie sur

ce dernier modèle pour proposer un modèle spécifique au problème de l’allocation des ressources

à la demande dans les flottes de véhicules autonomes.
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C.2 Modèle de problème AV-OLRA

Dans ce travail, nous définissons le problème AV-OLRA comme une spécialisation du modèle

OLRA pour l’allocation de ressources en ligne avec des véhicules autonomes, et une extension

pour la prise en compte de la communication et la modélisation de contraintes temporelles

supplémentaires.

Nous formulons donc le problème AV-OLRA comme suit :

AV-OLRA :=
(
R,V,G,T

)
(C.1)

R = {ri|i ∈ N} (C.2)

V = {vi|i ∈ N} (C.3)

G =
(
N,E, ω

)
(C.4)

T := {t0, t1, . . . , tend} (C.5)

où R définit un ensemble dynamique de demande des passagers (les ressources dans le modèle

OLRA) qui sont disponibles sur une fenêtre temporelle spécifique au moment de l’exécution ;

l’ensemble des véhicules V (ensemble des consommateurs C dans le modèle OLRA) représente une

flotte de m véhicules autonomes qui sont mobiles et ne peuvent communiquer qu’à une portée

limitée ; G est un graphe dirigé, avec N l’ensemble des nœuds (carrefours), et E l’ensemble des

arcs (routes), eij ∈ E est l’arc entre les nœuds i et j, ω est une fonction d’évaluation qui associe

à chaque arc e ∈ E une valeur ωe sur la base d’une mesure de distance temporelle (par exemple,

le temps de conduite moyen en minutes), qui sera utilisée pour calculer les coûts opérationnels

des déplacements des véhicules. Enfin T, est l’horizon temporel du problème.

Definition 5 Un véhicule autonome v ∈ V est caractérisé par sa capacité (nombre maximum

de passagers) c, son coût de trajet par distance parcourue cpd et une portée de communication

limitée rng

v :=
(
c, cpd, rng

)
ainsi qu’un ensemble de propriétés dépendantes du temps qui sont

• loc : V× T → N ∪ E sa localisation actuelle,

• dest : V× T → N sa destination actuelle,

• seats : V× T → N+ le nombre de sièges actuellement disponibles,

• dist : V× T → N+, la distance parcourue depuis t0

• distR : V× T → N+, la distance parcourue avec un client depuis t0

• rk : V× T → N+, le nombre de demandes connues depuis t0

• rs : V× T → N+ le nombre de demandes satisfaites depuis t0

• messageC : V× T → N+ × N+ le nombre de messages envoyés depuis t0

• messageS : V× T → N+ × N+ le volume de messages envoyés depuis t0 .

La communication entre deux composants du système est réalisée si la distance qui les sépare

est inférieure ou égale à leur portée de communication. Cependant, comme la portée de commu-

nication des véhicules est limitée, et pour maximiser leur connectivité, deux véhicules peuvent

être connectés par transitivité. Cela conduit à la définition suivante d’un ensemble connecté :
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Definition 6 Un ensemble connecté (noté CS pour connected set) est un ensemble d’entités

connectées directement ou par transitivité.

Les CSs sont des entités dynamiques ; ils sont créés, divisés, fusionnés en cours d’exécution en

fonction du mouvement des véhicules. Ainsi, selon la définition précédente, un véhicule ne peut

communiquer au temps t qu’avec les membres de son CS par des messages directs ou diffusés.

De même, il ne peut recevoir que les demandes accessibles au sein de l’ensemble connecté selon

les mêmes règles de communication. La portée de communication limitée divise implicitement

la flotte en plusieurs ensembles connectés.

Definition 7 Une solution à un problème AV-OLRA est définie pour chaque ensemble connecté

comme une agrégation des allocations de tous les consommateurs de cet ensemble qui évite tous

les conflits.

Cette définition implique qu’une solution à un problème AV-OLRA défini pour des véhicules

et des demandes peut être sous-optimale parce que la solution optimale n’est pas l’union des

sous-solutions optimales de chaque CS. En outre, toute solution dépend du temps à cause de

l’aspect en ligne du problème.

La portée de communication dépend de la technologie de communication utilisée (formalisée

par la propriété rng de vehicule) et de la densité du réseau (propriété de transitivité de formation

des ensembles connectés). Considérer cette dimension dans notre modèlisation du problème

contribue à sa généricité en permettant de considérer son impact sur différents types de solution.

Ainsi, plus la portée de communication est faible, plus il existe d’ensembles connectés ; cela

signifie que pour une communication à courte portée, même avec des approches centralisées, le

calcul de la solution est décentralisé vers plusieurs répartiteurs. Une flotte ayant une portée

de communication suffisamment longue pourrait revenir à un seul ensemble connecté à l’échelle

d’une ville avec un partage global des connaissances. Une approche centralisée conduit alors à

un répartiteur central pour déterminer la solution globale.

La qualité d’une allocation est caractérisée par des indicateurs fonctionnels et techniques

dont le calcul est indépendant des approches de résolution mais qui permet de comparer leur

faisabilité et leur qualité. Les indicateurs fonctionnels sont des mesures de l’optimalité du proces-

sus d’allocation défini par sa fonction objectif, tandis que les indicateurs techniques sont utilisés

pour évaluer la faisabilité et l’applicabilité du processus d’allocation et pour prévoir ses coûts

opérationnels dans différents contextes.

Dans ce travail, nous caractérisons la qualité d’une solution AV-OLRA dans les scénarios

ODT par les indicateurs suivants calculés à partir de la définition des véhicules autonomes :

Quality est le pourcentage de demandes satisfaites (consommées) sur toutes les demandes an-

noncées. Par conséquent, cet indicateur indique le niveau de qualité de service (QoS). Son

calcul repose sur l’utilisation des propriétés k et r

Utility est l’utilité totale des plannings des véhicules, dérivée des distances des voyages réalisés

(effectués avec un passager à bord, de la source à la destination distR), qui définit le gain

pour l’entreprise.

Cost est le coût opérationnel, dérivé des distances totales parcourues par les véhicules dist. La

relation entre les indicateurs Utility et Cost définit la qualité des affaires (QoB).

MsgCount est le nombre total de messages échangés au cours du processus d’allocation dérivé

de messageC.

MsgSize est la taille moyenne des messages échangés pendant l’allocation dérivé de messageS.
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Ces deux derniers indicateurs de communication estiment le coût technique de la solution et

permettent de prédire si elle est applicable en termes de charge de communication, c’est-à-dire

si elle pourrait provoquer des goulets d’étranglement critiques. Ces indicateurs sont génériques

car fondée sur l’utilisation de données issues de des activités élémentaires des véhicules.

C.3 Approche multi-agents pour AV-OLRA

Dans cette section, nous décrivons notre modèle multi-agents support aux solutions au problème

AV-OLRA. L’environnement du problème AV-OLRA représente la topologie de l’infrastructure

urbaine G et le modèle de communication des agents tel que décrit par la définition 6.

Il n’y a qu’un seul type d’agents dans notre modèle. Un agent véhicule autonome (AV)

est associé à chaque véhicule du système. Nous pouvons distinguer trois sous-comportements

différents (acting, communicating et planning). Comme nous modélisons AV-OLRA dans un

espace de temps discret, l’horizon temporel est défini comme un ensemble de pas d’exécution. À

chaque pas, chaque agent effectue les actions suivantes, comme le montre la figure 5.3 à la page

48 :

1. lire les messages reçus et mettre à jour le contexte (sous-comportement de communication,

communicating) ;

2. choisir les lieux à visiter (sous-comportement de planification, planning) ;

3. agir en effectuant une action de conduite (sous-comportement d’action, acting) ;

4. diffuser ses informations contextuelles (sous-comportement de communication, communi-

cating).

Le sous-comportement de planification, planning et ses relations aux autres sont à spécialiser

pour chaque solution (représentation en pointillé figure 5.3) alors que les autres seront identiques

pour chaque solution.

C.3.1 Sous-comportement d’action

En fonction de la présence de passagers à bord, de la localisation du véhicule et de sa connaissance

des demandes à venir, une agent AV peut se trouver dans l’un des états suivants (figure 5.4 à la

page 49) :

Marauding : le véhicule n’a pas de passager à bord et cherche sa prochaine destination ;

Moving : le véhicule a une destination et sy rend selon la topologie urbaine ;

Picking up : le véhicule est à l’emplacement d’origine de la demande du passager p afin

d’effectuer l’action pick up(p) avant de reprendre son déplacement ;

Dropping off : le véhicule est à l’emplacement de destination de la demande du passager p

afin d’effectuer l’action drop off(p) avant de rechercher une nouvelle destination.

Les transitions entre ces états sont illustrées dans la figure 5.4.
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C.3.2 Sous-comportement de communication

En tant qu’agents communicants, les AV ont un comportement de communication avec les autres

entités environnantes ; ils peuvent rejoindre/quitter des ensembles connectés (CS), diffuser,

envoyer et recevoir des messages.

• join(cs) : l’agent rejoint le CS cs du fait qu’il se trouve dans le rayon de communication

d’au moins un de ses membres ;

• leave(cs) : l’agent quitte le CS cs car il n’est plus dans le rayon de communication d’au

moins un membre ;

• send(m, a) : l’agent envoie un message m à un autre agent a à condition qu’ils soient dans

le même CS ;

• receive(m) : l’agent reçoit un message m d’un autre agent de son CS (une fois reçu et lu,

le message est stocké dans la base de croyances de l’agent) ;

• broadcast(m) : similaire à send(m, a) mais ici l’agent ne spécifie pas l’agent récepteur, il

diffuse plutôt le message à l’ensemble des membres de son CS.

C.3.3 Sous-comportement de planification

Le comportement des AVs en matière de planification dépend du mécanisme d’allocation choisie

(centralisée/décentralisée, coopérative/compétitive, avec/sans modèle de coordination). La fig-

ure 5.5 à la page 51 illustre le comportement de planification abstrait et générique des AVs. Pour

mettre à jour son planning, un AV recherche en permanence des options de planification. Si une

option est trouvée, l’AV en sélectionne une et communique (ou pas selon le modèle de coordina-

tion) sa décision à ses voisins (les autres agents de son CS). Le voisinage parvient à un accord

ou à un désaccord, selon le mécanisme de coordination et l’option choisie. En cas d’accord,

l’AV met à jour son planning et recherche l’option suivante et ce, jusqu’à ce qu’aucune option

ne soit disponible. La nature des options de planification dépend également du mécanisme de

coordination.

Bien que nous soutenions plusieurs modèles de coordination, nous souhaitons étudier chacun

individuellement et non les conséquences de leurs interactions. Par conséquent, nous considérons

que l’ensemble des agents de la flotte est homogène. Dans la section C.4, nous présentons en

détail différents mécanismes de coordination que nous utilisons pour valider notre modèle, y

compris certaines approches coopératives avancées comme l’usage d’algorithmes DCOP et un

mécanisme d’enchères pour le comportement de coordination des agents. Ce dernier répond

aux exigences du problème AV-OLRA en fournissant une solution utilisant des calculs légers,

dynamiques et continuellement sujets à amélioration.

C.3.4 Utilité, contraintes et objectif

Dans tout problème MARA, la fonction d’utilité représente le degré de satisfaction d’un agent

pour une allocation donnée [28]. Chaque agent a une valeur d’utilité exprimée sous la forme

d’une valeur explicite ou d’une relation qui révèle la solution la plus satisfaisante (optimale).

Une procédure d’allocation tente de fournir aux agents des ressources qui correspondent autant

que possible à leur exigence. Dans notre modèle, nous définissons la fonction d’utilité des agents

AV sur la base des indicateurs de la qualité de solution décrits dans la section C.2. Nous

considérons que plus un agent satisfait de demandes, plus il doit gagner en valeur d’utilité.

Ainsi, l’indicateur Quality, s’il est considéré individuellement pour chaque agent a ∈ V, définit
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son utilité :

ua =
rs(a, tend)

rk(a, tend)
(C.6)

Bien entendu, l’attribution de la demande r à l’agent a est contrainte par la disponibilité spatiale

et temporelle de a et de r. Nous considérons que l’origine et la destination de chaque demande

sont des constantes, et qu’une demande n’est disponible pour être prise en charge qu’à son

origine pendant sa fenêtre temporelle définie wr[lr, ur]. Ainsi, l’affectation de r à a exige que a

puisse arriver au point d’origine de r à un moment t situé entre la limite inférieure lr et la limite

supérieure ur de la validité temporelle de r.

Dans ce document, nous n’envisageons pas de scénarios de partage de véhicules. Nous sup-

posons qu’un trajet en véhicule est consacré à une seule demande, mais nous devons tout de

même tenir compte de la taille de la demande (nombre de sièges requis) et de la capacité du

véhicule. Cela implique que la définition de la disponibilité doit également inclure la contrainte

de capacité :

∃t ∈ wr[lr, ur] : seats(a, t) ≥ sr & loc(a, t) = or (C.7)

Le fait d’être membre d’une flotte impose aux AV d’être coopératifs et de suivre le mécanisme de

coordination prédéfini pour atteindre leur objectif global. Dans une perspective globale d’ODT

en tant que modèle commercial, l’objectif principal des prestataires de services ODT est de

gagner la satisfaction des utilisateurs. Cela signifie que leur objectif est de réduire les coûts

et d’augmenter les gains. De ce point de vue, nous pouvons définir la fonction objectif F à

maximiser par le processus d’allocation fondé sur la relation entre les indicateurs Utility et

Cost :

F =
∑
v∈V

(P + p ∗ dist(v, tend))−
∑
v∈V

cpdv ∗ distR(v, tend) (C.8)

P est un prix fixe (frais de service) par demande, p est un facteur de tarification par unité de

distance parcourue.

C.4 Mécanismes de coordination

Cette section illustre certains comportements de coordination que les flottes de véhicules suivent

habituellement pour atteindre un objectif global d’allocation. Pour chacun, nous présentons

le modèle de coordination correspondant. Un mécanisme de coordination est défini par trois

composantes 〈DA,AC,AM〉, où DA indique le niveau d’autonomie de décision qui est soit

centralisé (C) soit décentralisé (D) ; AC indique s’il y a coopération des agents en notant S s’ils

coopèrent et partagent des informations sur les plannings et N s’il n’y a pas de coopération.

AM est le nom du processus d’allocation.

C.4.1 Comportement égöıste

Le mécanisme de coordination noté 〈D,N,Greedy〉 est fondé sur un processus d’allocation

décentralisé avec des agents compétitifs et sans coordination explicite. Dans ce mécanisme,

les agents ne s’appuient pas sur les décisions des autres et n’échangent jamais leurs plans. Dans

les scénarios du monde réel, une stratégie de ce modèle est fondée sur l’avidité, dans laquelle

le véhicule ne considère qu’une seule demande à l’avance et la meilleure pour lui (par exemple,

la plus proche, afin de raccourcir la distance de conduite à vide) [155]. Lorsqu’un véhicule ne

transporte pas déjà des clients, il doit décider quelle demande il traitera en premier, en fonction

des informations dont il dispose sur les demandes disponibles. Une heuristique calcule une valeur

de priorité pour chaque demande. Ensuite, l’agent traite en premier la demande ayant la valeur

de priorité la plus élevée. Des conflits peuvent survenir, mais ils sont résolus simplement en
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appliquant la politique du “ premier arrivé, premier servi ”., Alors, si l’agent n’a pas de passager

à bord ses options sont ses demandes connues et réalisables, sinon aucune option n’est prise

en compte. L’état coordinating est ignoré (comme s’il parvenait à un accord pour toute option

choisie), de sorte que la qualité de la solution dépend de la stratégie de l’agent pour choisir la

demande suivante.

C.4.2 Comportement avec répartiteur

Ici, le mécanisme de coordination est centralisé, le rôle de l’agent est de mettre à jour son planning

en fonction de ce qu’il reçoit du répartiteur. 〈C, S,MILP〉 est un exemple de ce type de mécanisme

avec la résolution MILP (Mixed-Integer Linear Problem) comme processus d’allocation. Dans

notre modèle, nous avons besoin d’un répartiteur par ensemble connecté (CS). Ainsi, lors de la

création (ou de la mise à jour), un membre d’un CS (par exemple, celui qui a l’indice le plus

bas dans l’ensemble) devient le répartiteur qui sera responsable de collecter les informations

des autres agents et sur demande. Il doit aussi faire le calcul d’allocation par lui-même, ou

en appelant un service externe pour obtenir une allocation optimale (résolvant un MILP), puis

envoyer à chaque autre véhicule son planning potentiel, comme dans [53, 91, 162]. Dans ce

modèle centralisé, le rôle du comportement de planification des AVs est de demander à l’agent

responsable (sur un portail ou un véhicule) de mettre à jour leur planning en permanence. Dans

ce cas, la seule option disponible est de requêter le portail, et l’état coordinating consiste en un

protocole de demande/réponse qui enverra le nouveau planning sous forme d’accord.

C.4.3 Comportements réellement coordonnés

Dans ce cas, de type 〈D,S, PC〉, le mécanisme de décision est décentralisé, les agents sont

coopératifs et un protocole de coordination (PC) est appliqué pour l’allocation. Dans cette

catégorie de mécanismes de coordination, les agents échangent des informations et coopèrent

pour atteindre un objectif commun, en évitant les conflits et en optimisant la qualité de la

solution. Il existe plusieurs approches pour atteindre ce comportement, comme l’optimisation

sous contraintes distribuées (DCOP) [56], les protocoles de négociation [84, 50] et les enchères

[120]. Nous instancions ici des solutions par enchères et par DCOP.

Coordination par enchères. Les enchères sont très courantes dans les situations quotidi-

ennes et fournissent une base conceptuelle générale pour comprendre les problèmes d’allocation

des ressources au sein d’ensembles d’agents [144]. Nous présentons ici un exemple de mécanisme

collaboratif de construction de plannings de véhicules, dont notre proposition ORNInA (voir

[41]), noté 〈D,S,Auction〉, fondé sur des enchères pour coordonner de manière pair-à-pair les

décisions de planification de flottes de véhicules autonomes. Ce mécanisme est proposé pour fonc-

tionner dans un cadre dynamique, entre des agents véhicules qui appartiennent à un ensemble

connecté dans lequel ils peuvent recevoir et envoyer des messages directs ou diffusés. Les agents

intéressés par une demande donnée lancent des enchères au premier prix pour cette demande, et

le gagnant l’ajoute à son planning. La détermination du gagnant est un processus complètement

décentralisé. Afin d’améliorer l’efficacité de la planification dans des contextes dynamiques, les

agents sont autorisés à échanger leurs demandes planifiées au moment de l’exécution, avec des

tours d’enchères supplémentaires pour décider si cet échange augmente la valeur de la fonction

objectif au sein du CS. Les agents communiquent entre eux par des messages directs ou indirects

pour partager des informations ou coordonner leurs décisions.

Coordination par DCOP. Dans 〈D,S,DCOP〉, les agents décident seuls mais se coor-

donnent avec les agents du même ensemble connecté en utilisant un algorithme d’optimisation

sous contraintes distribuée afin d’éviter les conflits au sein du CS. À chaque fois qu’un ensem-

ble connecté change, un DCOP P = 〈A,X,D,C〉 est généré à partir de l’instance AV-OLRA

pour maximiser la fonction objectif dans l’équation C.8, comme suit. A définit l’ensemble des
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agents dans l’ensemble connecté. X définit l’ensemble des variables de décision dans trois sous-

ensembles (xij ’s, yij ’s et zij ’s) : xij ∈ X est une variable binaire égale à 1 si le véhicule vi sert

la requête rj ; yij est une variable binaire égale à 1 seulement si la requête rj est la première

requête à être servie par vi. Enfin, zij est une variable entière qui définit à quel moment une

requête rj est visitée par vi. D définit les domaines des variables : {0, 1} pour les xij et les yij ,

et un ensemble de domaines de plages de temps définissant la fenêtre [lj , uj ] pour chaque zij . C

définit l’ensemble des contraintes, qui se compose de contraintes dures (capacité, disponibilité

spatio-temporelle et fenêtres temporelles) et de contraintes souples définissant le coût et l’utilité

de la décision d’allocation (utilisées pour calculer la valeur de la fonction objectif).

Les algorithmes DCOP sont variés, et le choix dépend de l’objectif de la solution et du

contexte du problème. Les caractéristiques d’exécution de l’algorithme (temps d’exécution,

nombre/taille des messages et besoin en mémoire par agent) sont des facteurs essentiels pour

traiter les problèmes dynamiques en ligne.

C.5 ORNInA: L’heuristique d’insertion et amélioration con-

tinue par enchères

Dans cette approach, nous utilisons une heuristique d’insertion comme celle décrite par Solomon

[147] pour adapter en continu les plannings locaux des véhicules. Le résultat de cet algorithme

est un ensemble de demandes avec pour chacune l’horaire auquel un véhicule sera à la position

de son origine. Chaque agent détermine ses horaires pour maximiser la valeur de la qualité de

sa solution. Comme plusieurs véhicules peuvent être intéressés par une même demande, nous

avons besoin d’un mécanisme de coordination pour résoudre ces conflits. Nous utiliserons pour

cela un mécanisme d’enchères, qui est l’un des moyens efficaces et éprouvés pour résoudre de

tels problèmes [39].

Lorsqu’un véhicule v a connaissance d’une demande d, il la classe dans sa file d’attente selon

la priorité qu’il lui a attribuée.

Au temps t, v choisit la première demande ds dans la file d’attente, génère un ensemble

d’alternatives, chacune étant un planning potentiel résultant de l’insertion de ds dans une étape

réalisable du planning actuel de v. Le coût opérationnel marginal de l’ajout de cette demande

au planning est noté cost. Le choix avec le meilleur cost est considéré pour diffuser une offre

Biddv(tstart, cost)

avec tstart le moment de pick up pour ds.

En considérant le coût opérationnel d’un voyage comme la longueur totale de son trajet. Le

coût marginal d’insertion est donc la différence de longueur de trajet entre le trajet initial et le

nouveau trajet. Les offres restent disponibles pendant une période de temps spécifique texpire.

Ainsi, si le coût de l’offre de v est inférieur à toute autre offre reçue à t + texpire pour servir

une demande d, il se considère comme gagnant de l’enchère, et met à jour son planning avec le

nouveau chemin de l’offre.

Afin de pouvoir faire des offres efficaces pour de nouvelles demandes ou pour améliorer la

solution, nous proposons que les véhicules échangent leurs demandes planifiées. Dans ce qui

suit, nous proposons un protocole d’optimisation locale pour améliorer la qualité de la solution.

Ce protocole est déclenché à chaque cycle de simulation au cours duquel les véhicules d’un

ensemble connecté peuvent échanger des parties de leur planification. Les étapes d’exécution de

ce protocole sont :

Étape 1 Des nouvelles demandes entre dans le système par ordre d’annonce.
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Étape 2 Chaque demande est diffusée dans l’ensemble connecté auquel les sources appartiennent.

Chaque agent de cet ensemble sélectionne ses demandes potentielles parmi toutes leurs

demandes : les nouvelles demandes, les demandes planifiées et non planifiées qui n’ont

pas encore atteint leur heure de départ prévue.

Étape 3 Les agents débutent l’enchère pour servir leurs demandes potentielles.

Étape 4 Chaque agent recherche parmi ses demandes planifiées celle à satisfaire au prochain

tick, cette demande est appelée dnext. Si dnext existe, l’agent diffuse un message

”clear demand” pour informer les autres agents de sa prise en charge de dnext. Chaque

récepteur efface cette dernière de leurs ensembles de demandes potentielles et connues.

Chaque agent efface toute autre demande qui atteint sa limite de temps.

Étape 5 Les demandes programmées et non programmées qui ont encore du temps restent dif-

fusées par leurs sources (Étape 2). Cela permet une meilleure planification dans le

prochain tick, étant donné que de nouvelles demandes peuvent être annoncées.

À l’instar de la stratégie Rolling Horizon de Agatz et al. [2], nous proposons un protocole

d’optimisation d’offres pour améliorer notre heuristique. Dans la stratégie Rolling Horizon, tous

les plannings des véhicules sont considérés comme temporaires et disponibles pour être planifiés

par n’importe quel véhicule, à moins qu’ils ne soient considérés comme des demandes engagés

par des événements particuliers (par exemple, v a commencé à servir (se diriger vers) d, dont le

temps restant pour le servir est inférieur au seuil de l’horizon). L’application de cette stratégie

exige que tous les plannings des véhicules soient en mémoire partagée, de sorte que lorsqu’un

véhicule vi offre de servir une demande d, il sache s’il est programmé par un autre véhicule vj ,

et donc s’il doit envoyer son coût d’offre à vj . Ensuite, vj calculera le gain (ou la perte) de coût

opérationnel en abandonnant d et le coût pour vi. S’il y a un gain, il accepte d’abandonner d et

ensuite vi met à jour son planning avec d, sinon l’offre est rejetée.

Dans notre proposition de protocole, nous ne faisons pas appel au concept de demande

engagée, mais un véhicule ne peut faire des offres que pour des demandes qu’il peut satisfaire, de

sorte que les demandes qui sont reprises ou qui n’ont pas assez de temps pour être reprogrammées

sont automatiquement ignorées par l’agent. Une autre différence ici est que nous n’avons pas de

mémoire partagée. Les agents échangent des informations sur le contexte de l’environnement et

sur les demandes par des messages d’information. En plus de la proposition de Agatz et al. [2],

où l’optimisation est effectuée périodiquement à une fréquence prédéfinie, le protocole que nous

proposons doit être exécuté en parallèle avec une stratégie fondée sur des enchères d’insertion,

sur la base des informations partagées sur le contexte courant pour avoir une replanification

rapide pour les demandes en continu.

Compte tenu du contexte décentralisé, l’utilisation de l’heuristique d’insertion est très efficace

en termes de temps de réponse. La complexité temporelle de l’heuristique d’insertion de base

pour le VRP est en O(n3)[22]. Ce type d’heuristique est souvent utilisé pour résoudre des

DARP, où les nouvelles demandes entrantes doivent être traitées en continu et intégrées dans les

plannings évolutifs des véhicules.

C.6 Évaluation expérimentale

Dans cette section, nous présentons les résultats expérimentaux de l’instanciation du modèle AV-

OLRA avec le modèle multi-agents décrit dans la section C.3, en prenant en charge les différents

types de mécanismes de coordination de la section C.4. Le modèle est mis en œuvre en tant que

système multi-agents avec un simulateur de transport en temps discret.
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C.6.1 Cadre expérimental

Nous explorons deux types de scénarios pour nos expérimentations. Le premier, sur données

synthétiques, est fondé sur le réseau routier de la ville de Saint-Étienne. Plus de 1400 arcs

ont été extraits de Open Street Map (OSM)1 et post-traités pour un quartier situé entre les

coordonnées GPS (45.4325,4.3782) et (45.437800,4.387877) pour produire un graphe formé de

71 arcs. Les demandes des passagers sont générées aléatoirement avec des lieux de ramassage

et de dépôt appartenant à un ensemble spécifique de lieux appelé sources. 40 lieux répartis

uniformément sur la carte ont été sélectionnés comme sources pour l’émission de la demande.

Le second scénario est fondé sur le réseau urbain en forme de grille de l’arrondissement de

Manhattan dans la ville de New-York. Pour ce scénario, les demandes des passagers ont été

extraites de l’ensemble de données de NYC-TLC2.

L’idée principale qui motive l’utilisation de deux types de scénarios est d’expérimenter notre

modèle SMA et la performance des approches de solution dans une variété de situations. Les

scénarios de données synthétiques permettent de contrôler la taille du problème et la distribu-

tion de la demande lors de la création des instances du problème. Ils sont donc idéaux pour

diagnostiquer les paramètres symptomatiques et pour régler les paramètres des algorithmes.

D’autre part, l’extraction d’instances à partir de jeux de données tels que NYC-TLC permet

d’expérimenter la performance des solutions sur des instances plus grandes (avec des tailles de

flotte plus importantes et une plus grande densité de demandes) sur la base d’une distribution

similaire au déploiement dans le monde réel.

Lorsque les véhicules doivent échanger directement des messages, nous considérons qu’ils

communiquent via DSRC3 avec une portée de communication réaliste de 250 mètres. Le nombre

de demandes générées et le nombre de véhicules sont des paramètres de la simulation. Tous les

scénarios ont une durée de 1000 cycles et, à chaque cycle, 0 ou 1 demande est générée. Nous

évaluons la performance des 5 mécanismes de coordination vus en section C.4 dont celui fondé

sur un DCOP avec l’algorithme DSA, variante A, p = 0.5 [169] 〈D,S,DCOP(dsa)〉, et celui

fondé sur un DCOP avec l’algorithme MGM-2 [121] 〈D,S,DCOP(mgm-2)〉.

Le système multi-agents et le simulateur hébergé par la plateforme Territoire4, implémentés

en Java, ont été exécutés sur un processeur Intel R© Xeon R© E-2146G CPU @ 3.50GHz, avec 32

Go de RAM DDR4. Les algorithmes DCOPs ont été mis en œuvre en utilisant la bibliothèque

FRODO [90].

C.6.2 Le choix et le paramétrage des algorithmes de DCOP

Compte tenu des caractéristiques de notre problème, une comparaison (sur données synthétiques)

des algorithmes DCOP en termes de charge de communication et de temps d’exécution en fonc-

tion de la taille du problème est présentée dans la Figure 10.1 à la page 103. Cette comparaison

a permis d’éliminer ceux qui nécessitent un temps d’exécution trop important et/ou une charge

de communication trop élevée.

ADOPT, DPOP, ASO-DPOP, SynchBB et AFB sont connus pour être des algorithmes com-

plets qui trouvent des solutions optimales mais ont une complexité algorithmique exponentielle.

D’autre part, Max-Sum est un algorithme incomplet avec un temps d’exécution raisonnable,

1urlhttps://www.openstreetmap.org
2 The New York City Taxi and Limousine Commission (NYC-TLC) collecte des données, telles que les enreg-

istrements des trajets, le nombre de véhicules et les tarifs dans la ville de New York sous forme de fichiers CSV
par mois et par type de véhicule (taxis jaunes, taxis verts, véhicules de location et véhicules de location à gros
volume)

3La communication de véhicule à véhicule via la communication dédiée à courte portée (DSRC) offre une
connectivité réseau rapide et à faible latence dans un rayon de communication allant jusqu’à 300 mètres.

4territoire.emse.fr
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mais qui nécessite une taille de mémoire exponentielle par rapport au nombre moyen de voisins

de l’agent dans le graphe de contraintes, c’est-à-dire une mémoire exponentielle par rapport à

l’arité des contraintes.

Max-Sum opère sur un graphe de facteurs qui est un graphe biparti dans lequel les variables

et les contraintes sont représentées par des nœuds. Chaque nœud représentant une variable dans

le DCOP est connecté à tous les nœuds de fonction qui représentent les contraintes (ou facteur)

dans lesquelles elle est impliquée. De même, un nœud de facteur est connecté à tous les nœuds de

variable qui représentent les variables dans le DCOP original qui sont incluses dans la contrainte

qu’il représente. Chaque agent adopte le rôle du nœud représentant sa propre variable et le rôle

d’un des nœuds de fonction représentant une contrainte dans laquelle il est impliqué. Ainsi,

dans notre cas avec les instances fortement contraintes, Max-Sum nécessite une grande quantité

de mémoire pour la charge de communication et peut ne pas converger car le graphe factoriel

comprend des cycles de tailles différentes.

Les autres sont les algorithmes DCOP de recherche locale dont la structure générale est

synchrone. À chaque étape de l’algorithme, un agent envoie son affectation à tous ses voisins

dans le réseau de contraintes et reçoit l’affectation de tous ses voisins. Ils diffèrent par la méthode

que les agents utilisent pour décider s’ils doivent changer leurs affectations de valeurs actuelles

à leurs variables. Par exemple, dans l’algorithme MGM (Maximum Gain Message), l’agent qui

peut améliorer le plus son état dans son voisinage remplace son affectation. Dans MGM-2,

la première étape consiste à décider quel sous-ensemble d’agents est autorisé à faire des offres.

Chaque agent génère un nombre aléatoire de manière uniforme parmi [0, 1] et se considère comme

un offrant si le nombre aléatoire est inférieur à un seuil q. Si un agent fait une offre, il ne peut pas

accepter les offres des autres agents. Tous les agents qui ne font pas d’offre sont considérés comme

des récepteurs. Chaque récepteur choisit aléatoirement (uniformément) un voisin et lui envoie un

message d’offre, qui consiste en tous les mouvements coordonnés entre l’offreur et le récepteur qui

apporteront un gain d’utilité locale au récepteur dans le contexte actuel. La décision stochastique

de remplacer une affectation est inspirée de l’algorithme stochastique distribué DSA. Dans DSA

un agent génère un nombre aléatoire à partir d’une distribution uniforme sur [0, 1] et agit si ce

nombre est inférieur à un certain seuil p. Une valeur seuil plus faible réduit le nombre d’agents

qui peuvent agir à chaque cycle, ce qui signifie une charge de messages plus faible et une qualité

de solution légèrement inférieure, tandis qu’un seuil plus élevé signifie que chaque agent a plus

de chances d’agir à chaque itération, ce qui signifie plus de cycles d’amélioration de la solution

avec leurs dépenses en termes de communication.

Une comparaison (sur données synthétiques) de la qualité des solutions des algorithmes de

recherche locale DCOP est présentée dans la Figure 10.2 à la page 104. Cette comparaison

montre que les différentes variantes de DSA ont des performances presque identiques sur nos

instances lorsqu’elles ont la même valeur p. Pour les variantes DSA et MGM, la qualité des

solutions augmente avec le temps d’exécution de chaque cycle jusqu’à atteindre un point de

stabilisation après lequel l’amélioration devient très faible. En fixant p = 0.5, q = 0.5, les

algorithmes DSA et MGM-2 atteignent ce point de stabilisation après environ les cycles 30 à

50 itérations. Plus précisément, avec la variante A de DSA, le point de stabilisation de 80%

est atteint en 45 itérations lorsque p = 0, 5, et MGM-2 atteint ses 82% en 40 itérations lorsque

q = 0.5. Sur la base de ces résultats, nous limitons nos expérimentations aux seuls algorithmes

DCOP MGM-2 (q = 0, 5) et DSA (variante A, p = 0, 5).

C.6.3 Extraction d’instances AV-OLRA à partir de jeux de données
NYC-TLC

À New York, il y a plus de 13 000 taxis pour satisfaire l’énorme densité de demandes. Ainsi,

si nous voulons obtenir une qualité de service élevée dans nos expériences avec n’importe quel

mécanisme d’allocation, nous avons besoin d’une flotte de taille similaire. Cependant, faire
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une simulation microscopique sur des flottes de cette taille demande beaucoup de ressources.

Par conséquent, nous devons produire des instances de taille inférieure qui restent toutefois

représentatives de ces données. Pour ce faire, nous avons étudié le modèle statistique des données

et, dans ce qui suit, nous présentons quelques analyses de données sur un fichier CSV provenant

de l’ensemble des données d’enregistrement des trajets de NYC-TLC pour le mois de janvier

2018.

Sur la base du modèle statistique de jeux de données NYC-TLC, nous avons produit des

instances de taille inférieure d’enregistrements de trajets qui contiennent une distribution spatiale

et temporelle similaire des demandes, mais avec une densité inférieure. Pour chaque instance,

nous avons choisi un nombre limité de zones, bien distribuées géographiquement dans Manhattan,

et dont la densité de demandes varie. Puis nous avons sélectionné dans les fichiers CSV originaux

un sous-ensemble de demandes courtes entre ces zones ayant des heures de prise en charge et

de dépose correspondant à la distribution temporelle des données originales. Les figures 10.10,

10.12 et 10.13 aux pages 111, 113, et 114 illustrent une comparaison de la distribution spatiale et

temporelle des demandes dans l’une des instances réduites et les données originales. Si nous ne

considérons que Manhattan, les exemples réduits sont bien représentatifs des données originales

sur les trajets courts, malgré le fait que le nombre de zones de prise en charge et de dépôt soit

limité. Nous avons dans ces exemples des zones qui varient (de la même manière que les données

originales) de zones très encombrées comme Times Square à des zones très peu encombrées en

périphérie. Nous avons également le même schéma d’heures de pointe.

C.6.4 Resultats

Les figures 10.14 et 10.15 à la page 115 illustrent les performances des cinq approches en termes

d’indicateurs de qualité de service (QoS) et de qualité des affaires (QoB) avec une analyse

comparatives. Chaque point de ce diagramme représente la valeur de l’indicateur agrégée sur

1000 cycles de simulation. Ces deux figures montrent comment la qualité des solutions évolue

avec l’augmentation de la taille de la flotte. Nous pouvons remarquer l’augmentation de la QoS

et de la QoB avec l’augmentation du nombre de véhicules dans la flotte jusqu’à atteindre un

point de bascule, après lequel il n’est plus possible d’améliorer la QoB en ajoutant des véhicules

supplémentaires et la QoS n’est amélioré qu’à la marge.

Les valeurs obtenues par le comportement avec répartiteur représentent une limite supérieure

pour la QoB car le répartiteur central calcule pour chaque cas la solution localement optimale

compte tenu du contexte de l’ensemble connecté. Les performances des quatre autres approches

varient selon les indicateurs. Ainsi, si Enchères domine DCOP DSA-A (QoS et QoB), sa domi-

nation sur DCOP MGM dépend du nombre de véhicules selon les indicateurs.

Étant fondé sur un algorithme glouton, dont le temps d’exécution est linéaire par rapport à

la taille du problème, l’approche égöıste est très efficace en termes de temps de prise de décision.

La raison en est qu’elle ne nécessite pas beaucoup de calculs pour sélectionner la demande la

plus proche. L’inconvénient est ici l’ignorance de ce qui précède les décisions prises et le fait

que les conflits de décisions entre différents véhicules (par exemple, deux véhicules vont vouloir

prendre le même passager) ne sont résolus que tardivement, ce qui réduit la QoS. Avec un faible

nombre de véhicules, les ensembles connectés sont peu nombreux et, par conséquent, la quantité

d’informations partagées est réduite.

Les performances des approches coopératives et de l’approche avec répartiteur dépendent

fortement de la quantité d’informations. Ayant des quantités similaires d’informations partagées,

la qualité des quatre approches ne semble pas être très différente.

Avec des flottes de taille plus importante, davantage d’informations sont partagées dans les

ensembles connectés. En outre, les véhicules passent plus fréquemment d’un ensemble connecté

à un autre. Les trois approches coopératives ont des performances presque similaires. Pour
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atteindre les mêmes valeurs de QoS avec une approche égöıste, il faut davantage de véhicules

dans la flotte.

Si l’on considère les algorithmes DCOP (DSA et MGM-2), au temps t, et en partant d’une

solution réalisable st−1 obtenue au temps t − 1, chacune de ces approches tente d’obtenir une

nouvelle solution st dans laquelle la valeur de la fonction objectif est améliorée. Les algorithmes

DCOP se concentrent sur la maximisation de l’utilité individuelle des agents pour maximiser

l’objectif global, ce qui signifie attribuer aux agents des demandes qui augmentent son gain. Plus

les demandes de voyage (potentiellement réussies) assignées à un agent sont nombreuses, plus

l’utilité individuelle est élevée. Bien sûr, cela augmentera la QoB, mais l’effet principal sera sur

la valeur de la QoS. D’autre part, chaque agent dans ORNInA, à chaque pas de temps, essaie

d’ajouter à son planning au maximum une demande qui peut améliorer son utilité et donc les

valeurs de QoS et QoB, puis la phase d’amélioration du planning, définie par le protocole pull-

demand, essaie de réallouer les demandes de manière à maximiser le gain global même si cette

réallocation diminue le gain de l’agent qui abandonne la demande. Le protocole pull-demand

n’affecte que la valeur de la QoB car le nombre de demandes programmées (à servir) ne change

pas, elles sont seulement réaffectées à d’autres agents. Ainsi, alors que la coordination basée sur

les enchères d’ORNInA est plus performante que les algorithmes de recherche DCOP en termes

de QoB, elle est surpassée par les deux en termes de QoS.

Pour atteindre un certain niveau de QoS, il faut un nombre minimum de véhicules, ce nombre

varie selon les différentes approches, par exemple servir 90% des demandes5 (illustré par la ligne

noire pointillée sur la figure 10.15) nécessite de manière optimale 240 véhicules avec l’approche

Répartiteur, tandis que ce nombre augmente à plus de 350 pour l’approche Egöıste. A la page

116, les figures 10.18 comparent les cinq approches en termes de taille de flotte requise pour

atteindre cette QoS de 90%. La figure 10.18b montre que le mécanisme Egöıste nécessite un

nombre supplémentaire de véhicules qui est presque le double de DCOP et 3 fois de ORNInA.

(concernant l’optimal pour le Dispatching).

Le tableau 10.1 à la page 108 présente des indicateurs liés à la communication obtenus

en simulant un scénario sur 1000 cycles, avec 10 véhicules, pour les différents comportements

étudiés. Ici, les deuxième et troisième colonnes indiquent la taille maximale et moyenne des mes-

sages échangés (en octets) représentant l’indicateur MsgSize. La quatrième colonne rapporte

l’indicateur MsgCount en termes de nombre moyen de messages reçus par un agent par cycle

de simulation.

Même sans coordination, les agents échangent des messages d’information sur les nouvelles

demandes annoncées. Ce type de message dépend du mécanisme de coordination. De nouveaux

types de messages sont utilisés dans le mécanisme avec répartiteur : les messages de requête

et de réponse échangés entre les véhicules et le répartiteur central. Les messages de requêtage

contiennent simplement le contexte global de l’ensemble des véhicules connectés qui deman-

dent au répartiteur de construire leurs plannings. Les messages de réponse sont envoyés par le

répartiteur aux véhicules de manière individuelle et contiennent le planning potentiel de chacun.

Ces messages peuvent être volumineux, en fonction de la taille du sous-problème. Les messages

d’offre et de réponse utilisés par le mécanisme de coordination basé sur les enchères sont légers,

de sorte que les valeurs de l’indicateur MsgSize restent proches de l’approche égöıste, tandis

que la valeur MsgSize devient polynomiale dans le nombre d’agents dans l’ensemble connecté

et le nombre de leurs demandes connues. Dans les deux mécanismes de coordination basés sur

un DCOP (DSA et MGM-2), les agents d’un ensemble connecté instancient un DCOP entre eux

chaque fois qu’ils doivent décider d’une mise à jour du planning. L’obtention d’une solution

par l’un de ces algorithmes nécessite l’échange d’un grand nombre de messages. Ces deux al-

gorithmes ne sont pas complets, ce qui signifie qu’ils poursuivent leurs essais pour améliorer la

solution jusqu’à atteindre le timeout ou un optimum (local). Ceci accrôıt le nombre de messages

5En pratique, servir 90% des demandes représente une faible QoS. Cependant, ce seuil est choisi à titre
d’exemple à des fins de comparaison, la même comparaison peut être effectuée avec n’importe quel seuil supérieur
ou inférieur
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échangés. D’autre part, la taille des messages échangés par ces deux approches est très faible

par rapport aux autres approches.

On note pour le temps t et pour un ensemble connecté cs le nombre d’agents véhicules ntcs
et mt

cs le nombre total de demandes connues par les membres de cs, MsgCount pour un seul

sous-problème peut être proportionnel à ntcs pour Selfish, ntcs ×mt
cs pour ORNInA, 2ntcs pour

Dispatching et ntcs
2

pour DCOPs. La figure 10.22 à la page 118 illustre la taille moyenne relative

des messages (MsgSize). En général, la taille des messages d’information sur les demandes (qui

est le type de message commun à tous les mécanismes) crôıt linéairement avec mt
cs, et donc avec

la taille du CS. Pour le mécanisme Dispatching, nous avons en plus des messages query et

response dont la taille est proportionnelle à ntcs ×mt
cs. Les messages d’enchère et de demande

de tirage pour ORNInA ont une taille stable indépendante de la taille du sous-problème, car

chacun d’eux est un message biunivoque ne concernant qu’une seule demande à la fois. Il en

va de même pour les messages de décisions du DCOP, qui sont de petite taille. Cependant, la

densité des messages de décision des DCOPs réduit fortement l’effet de la taille des messages

d’information sur les valeurs moyennes de MsgSize, ainsi nous pouvons voir les lignes de DSA

et MGM-2 dans la Figure 10.22 comme presque constantes.

Le tableau 10.1 présente également la fréquence des reprogrammations de plannings en con-

sidérant l’intervalle moyen entre deux cycles de simulation au cours desquels les véhicules mettent

à jour leur plannings. Plus cette valeur est élevée, plus les plannings des véhicules sont stables.

Dans ces contextes dynamiques, le fait d’avoir des plannings stables pendant une longue période

signifie qu’aucune nouvelle demande n’est insérée, ce qui affecte la qualité de service. D’autre

part, lorsque les horaires des véhicules changent fréquemment, les véhicules peuvent changer

de destination et osciller pendant un certain temps avant d’effectuer un trajet réussi, ce qui

peut diminuer la qualité de service. Dans nos scénarios, la coordination fondée sur des DCOPs

permet d’obtenir des horaires très stables et de bonne qualité au détriment d’une charge de

communication plus importante. Si la stabilité n’est pas une contrainte, mais que la communi-

cation est limitée, une approche utilisant des enchères est une très bonne alternative de stratégie

d’allocation.

Sommaire

ce chapitre récapitule le contenu de la thèse afin d’en faciliter la lecture pour les francophones.

Nous avons proposé un modèle générique pour un problème d’allocation des ressources ren-

contré dans la gestion de flottes de véhicules autonomes connectés. Notre modèle est bien

adapté au domaine de l’ODT, où les flottes répondent en ligne aux demandes des passagers

dans des environnements dynamiques. La composante communication de notre modèle prend

en charge la transmission directe, par diffusion de messages et transitivité, et repose sur le

concept d’ensembles connectés. Nous proposons également un modèle SMA comme support

au déploiement de différentes approches pour trouver des solutions et coordonner les véhicules.

L’utilisation de ces deux modèles offre une généricité sur les dimensions de la communication et

de la coordination. D’une part, la portée limitée de la communication caractérise le problème en

affectant le niveau de connectivité et en limitant ainsi les possibilités de centralisation. D’autre

part, étant donné qu’il dépend du processus d’attribution, le choix du sous-comportement de

planification des véhicules définit le mécanisme de coordination qui affecte le contexte spatio-

temporel dynamique des instances du problème.
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Appendix D

Conclusion de la thèse

Cette thèse a présenté nos travaux sur le problème d’allocation de ressources dans le domaine du

transport à la demande. L’objectif de ce travail est d’explorer différentes méthodes pour résoudre

le problème d’allocation de véhicules autonomes aux demandes en ligne de manière décentralisée.

Étant donné une flotte de véhicules autonomes déployés dans un réseau urbain, nous cherchons

des solutions pour répondre à un grand nombre de demandes de passagers qui surviennent au

moment de l’exécution dans différents endroits de la ville. Sans connaissance préalable de la

distribution spatiale ou temporelle de ces demandes, les véhicules de la flotte doivent être capa-

bles de mettre à jour dynamiquement leurs horaires pour répondre aux demandes nouvellement

annoncées. Plusieurs méthodes existent déjà pour résoudre ce type de problème. La solution

traditionnelle est fondée sur une unité centrale qui recueille toutes les informations nécessaires

pour programmer les véhicules et les répartir ensuite pour répondre aux demandes potentielles.

L’un des inconvénients de cette solution traditionnelle est sa charge de calcul et de communi-

cation lors de la recherche d’un horaire optimal et à jour. D’autre part, il existe également

un certain nombre d’approches décentralisées sur les techniques des systèmes multi-agents dans

lesquels un ensemble d’agents autonomes prennent des décisions collectivement et s’adaptent dy-

namiquement aux changements de leur environnement. L’objectif de ce travail est de modéliser

les différents aspects des problèmes de prise de décision et d’optimisation liés à ce problème

plus général. Suite à la modélisation de ces problèmes, la question du choix des méthodes de

résolution centralisées et décentralisées se pose. Dans ce travail, nous étudions les orientations et

comparons les performances des techniques d’optimisation distribuée des contraintes (DCOP),

des techniques multi-agents auto-organisées, des approches basées sur le marché et des solutions

centralisées de recherche opérationnelle.

Le problème de l’allocation des ressources entre plusieurs entités est une préoccupation cen-

trale en informatique et en économie. Au cours des dernières années, les problèmes d’allocation

sont devenus l’un des problèmes d’optimisation les plus étudiés dans la littérature. Dans la par-

tie I, nous avons présenté un aperçu de la littérature scientifique disponible sur les principaux

aspects liés au problème en question. Nous fournissons dans le chapitre 1 une vue d’ensemble des

différents problèmes de routage de véhicules, des spécifications de Dial-A-Ride Problem (DARP),

et de leurs méthodes de résolution existantes dans la littérature de recherche opérationnelle. Dans

le chapitre 2, nous passons en revue les efforts déployés dans la littérature de “Multiagent Sys-

tems (MAS)” et “Multiagent Resource Allocation (MARA)”. Nous concluons de cette revue de

littérature que les solutions MARA sont identifiées par les comportements des agents individuels

et leurs mécanismes de coordination de sorte que divers modèles de solutions existent. Nous

pouvons définir trois aspects pour les caractéristiques de ces solutions qui sont : 1) le niveau

d’autonomie de l’agent, 2) le niveau de coopération de l’agent, et 3) le mécanisme d’allocation
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de l’agent. Ensuite, nous étudions l’applicabilité de MARA à ODT dans le chapitre 3, d’où nous

pouvons déduire le besoin d’une manière unifiée et adaptative de représenter les instances du

problème. De plus, les méthodes de solution varient sur de nombreux aspects, de sorte qu’une

manière unifiée de représenter et de catégoriser les différentes méthodes de solution est nécessaire

pour comparer équitablement et efficacement leurs performances dans différents contextes. À

notre connaissance, de telles représentations spécifiques au DARP font défaut dans la littérature

de MARA et ODT.

Les réponses aux questions de recherche

Dans cette section, nous résumons brièvement les principales contributions de cette thèse en

réponse aux questions de recherche formulées dans l’introduction. Ces contributions ont été

présentées lors d’événements scientifiques nationaux et internationaux (ateliers et conférences)

évalués par des pairs, et ont donc été publiées sous forme d’articles évalués par des pairs dans

les actes, les comptes rendus ou les numéros spéciaux de ces événements, répertoriés sur la page

125. Les principales hypothèses de cette thèse ont été présentées au consortium doctoral de la

30e Conférence internationale conjointe sur l’intelligence artificielle (IJCAI-21) et incluses dans

les actes de cette conférence sous la forme d’un article court [P2].

Nous faisons référence à la publication évaluée par les pairs associée à chacune de ces contri-

butions. Dans la partie II, nous avons cherché à combler le vide susmentionné dans la littérature

en proposant AV-OLRA, un modèle générique pour le problème d’allocation de ressources ren-

contré dans la gestion de flottes de véhicules autonomes.

Notre première contribution est de définir un modèle de communication évolutif.

Compte tenu de la variété des technologies de communication pouvant être utilisées lors du

déploiement de flottes de véhicules autonomes, nous avons dû définir un modèle de communica-

tion évolutif pour chaque alternative différente visant à répondre à la Question de recherche 3.

Nous avons défini ce modèle dans le chapitre 4 ( cette contribution est associée à un article

présenté lors du 12ème atelier sur l’optimisation et l’apprentissage dans les systèmes multi-agents

[P7], inclus comme un un article court dans les actes de la 20ème Conférence Internationale sur

les Agents Autonomes et les Systèmes Multi-Agents [P8] et inclus en version étendue dans les

actes des Journées Francophones sur les Systèmes Multi-Agents (JFSMA-21) [P9]).

Nous avons commencé par définir la connectivité entre deux composants du système, qui

est obtenue par des messages directs dans des portée de communication limitées. Étant un

paramètre de déploiement, la portée de communication ajoute une autre dimension de généricité

au modèle AV-OLRA. Pour maximiser leur connectivité, si deux véhicules ne sont pas assez

proches l’un de l’autre pour communiquer directement, nous leur permettons de communiquer

de manière transitive en fonction de l’existence d’un autre véhicule qui est connecté directement

ou de manière transitive à ces deux véhicules. Ce modèle de communication permet de réduire la

complexité du problème en le divisant en sous-problèmes définis par les membres des ensembles

connectés et leur requête connue.

Notre deuxième contribution est de définir les principaux éléments nécessaires

à la formalisation du problème. Dans le chapitre 4, nous avons présenté notre modèle

générique pour le problème d’allocation de ressources en ligne avec des véhicules autonomes AV-

OLRA, visant à répondre à Research Question 1. Ce modèle définit l’hypothèse du problème

(composantes, contraintes) et les indicateurs pour évaluer les différentes stratégies d’allocation

(les publications associées sont [P7], [P8], et [P9]). Nous formulons le problème AV-OLRA sous

la forme de quatre composantes : un ensemble dynamique de demandes de passagers définissant

les ressources ; une flotte de véhicules autonomes définissant l’ensemble des consommateurs ; un

graphe orienté connecté représentant le réseau routier urbain et un horizon temporel dans lequel

les véhicules doivent répondre aux demandes des passagers. Ce modèle étend un modèle d’état
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de l’art pour l’allocation de ressources localisées en ligne (OLRA) en y ajoutant les spécifications

de l’ODT et des véhicules autonomes connectés. qui étend un modèle précédent appelé OLRA.

AV-OLRA ajoute au modèle précédent les spécifications des ODT et des véhicules autonomes

connectés, en l’étendant avec la modélisation des contraintes de communication et de temps des

ODT. Ensuite, dans le chapitre chapter:av-olra-mas, nous avons présenté l’architecture MAS

pour fournir le modèle AV-OLRA dans lequel les agents peuvent communiquer entre eux via

des canaux radio en utilisant des messages peer-to-peer dans des ensembles connectés. Nous

avons proposé une exigence de programmation orientée multi-agents pour construire ce modèle

générique. Notre hypothèse est que le MAS proposé offre une généricité sur les deux dimensions

de communication et de coordination.

Notre troisième contribution consiste à proposer une représentation unifiée des

méthodes de solution sous forme de mécanismes de coordination. Avec cette contribu-

tion présentée dans [P7], [P8], et [P9] nous avons voulu répondre à la question de recherche

2. . Le problème AV-OLRA peut être résolu par différentes méthodes et algorithmes. Ces

méthodes peuvent être classées en fonction des propriétés des mécanismes de coordination

adoptés. Ainsi, elles peuvent varier d’un dispatching centralisé à des décisions individuelles

entièrement décentralisées, et d’un système coopératif à un système compétitif. Dans la par-

tie III, nous décrivons en détail la spécification de chacun de ces différents mécanismes. Dans

le chapitre 6, nous donnons un aperçu de la formulation traditionnelle du problème sous forme

de programme linéaire et décrivons comment l’adapter au cadre dynamique et considérer les

instances du sous-problème AV-OLRA définies par les ensembles connectés. Ensuite, dans le

Chapitre Chapitre4, nous explorons la direction de la décentralisation. Nous avons ici trois

types de comportements de véhicules : le comportement Selfish sans coordination, le comporte-

ment Market-based de coordination et le comportement Cooperative de coordination. Nous avons

présenté les spécifications de chacun de ces mécanismes.

Notre quatrième contribution est de combiner le dynamisme et l’amélioration en

continu de la solution dans une seule méthode. Pour répondre à la question de recherche 5,

nous avons proposé au chapitre 8 un nouveau mécanisme de coordination basé sur le marché dans

lequel les véhicules établissent rapidement des horaires réalisables en utilisant des enchères au

premier prix pour éviter et gérer les conflits. Puis, à partir de ces horaires réalisables, ils peuvent

lancer des enchères de pair à pair pour échanger leurs demandes d’horaires afin d’améliorer

la qualité des solutions. Cette approche a été présentée pour la première fois lors du 11ème

atelier international sur les agents dans le trafic et le transport (11th International Workshop

on Agents in Traffic and Transportation), et lors de deux rencontres françaises (RJCIA-21).

[P3] et AFIA/ROADEF-211 [P1]) organisé par l’Association Française d’Intelligence Artificielle

(AFIA), puis a été publié dans le numéro spécial Agents in Traffic and Transportation (ATT

2020) de la revue AI Communication [P6].

Notre contribution finale est de proposer un cadre expérimental de simulation

construit selon les spécifications AV-OLRA. La quatrième partie a été consacrée à la

validation expérimentale du modèle et à la comparaison des performances des méthodes de

résolution qui suivent une variété de mécanismes de coordination. Cette évaluation était basée

sur les critères techniques et qualitatifs que nous avons définis pour évaluer les méthodes de

solution visant à répondre à la Research Question 4. Dans le chapitre 9, nous avons présenté

le génie logiciel qui sous-tend le cadre expérimental et les directives pour mettre en œuvre

cinq mécanismes de coordination. Ensuite, dans le chapitre 10, nous présentons les résultats

expérimentaux de la comparaison basée sur la simulation entre les mécanismes de coordination

implémentés. Ces expériences ont été réalisées sur deux types de scénarios. Le premier est basé

sur des données synthétiques générées sur le réseau urbain de Saint-Étienne, tandis que le second

est basé sur des données du monde réel extraites des enregistrements de trajets du TLC de la

ville de New York. La comparaison est effectuée en termes de qualité de la solution, de charge

de communication, de connectivité et de stabilité de la solution. Une partie des résultats de ces

expériences a été incluse dans [P6], [P7], et [P8].

1Le congrès annuel de la société Française de Recherche Opérationnelle et d’Aide à la Décision
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Résultats, limites et orientations futures

Les résultats de la simulation montrent que le recours à la DCOP ou aux enchères pour coor-

donner les décisions décentralisées permet d’obtenir des allocations de qualité raisonnable par

rapport à l’allocation optimale one-shot et aux taxis non coordonnés. Les stratégies d’allocation

basées sur le DCOP ne changent pas les horaires des véhicules trop fréquemment mais induisent

tout de même plus de communication que la stratégie basée sur les enchères.

Une limitation de notre modèle de communication est le phénomène des demandes spatiale-

ment obscures. Il s’agit de demandes annoncées loin des véhicules et qui peuvent rester inconnues

de tout ensemble connecté pendant un certain temps jusqu’à ce qu’un véhicule passe à proximité

de leur source, de sorte qu’elles peuvent ne pas être satisfaites dans les limites de leur fenêtre

temporelle. Cependant, dans ce travail, nous avons considéré des scénarios très dynamiques dans

les dimensions spatiales et temporelles afin qu’une telle situation ne se produise dans aucun de

nos scénarios expérimentaux.

Nous pensons que ce travail mérite d’être approfondi, par exemple en explorant la possibilité

de définir des contraintes supplémentaires sur le mouvement des véhicules afin d’obtenir plus

de connectivité entre les véhicules ou de s’assurer que chaque source d’émission est située dans

l’espace de communication d’au moins un véhicule.

Une autre direction à explorer est la suivante : si les véhicules ont accès à un modèle statis-

tique ou d’apprentissage automatique pour prédire les demandes futures, comment cela pourrait-

il affecter la qualité de leurs décisions et quels sont les effets de ces connaissances sur la qualité

finale de la solution. Pour améliorer la qualité des décisions de planification des AV, il pourrait

être utile d’utiliser des fonctions de priorité plus complexes qui tiennent compte non seulement du

contexte actuel du problème, mais aussi d’une certaine anticipation de la façon dont le contexte

du problème se présentera dans un avenir proche. Deux questions se posent alors :

• Peut-on faire en sorte que les véhicules prédisent la distribution des demandes dans l’espace

et le temps ?

• Comment cette connaissance pourrait-elle affecter la qualité de leurs décisions ?

Dans l’annexe A, nous présentons une proposition de travaux futurs pour répondre à ces ques-

tions.

Enfin, nous pensons que le choix entre les différentes méthodes de solution ne peut être

considéré comme une décision simple. De plus, il ne s’agit pas seulement de questions tech-

niques. La nécessité de faire correspondre la satisfaction humaine et les décisions contrôlables

exige que ces décisions soient transparentes et auto-explicables. Notre vision de l’orientation

future est d’appliquer ces résultats à la construction d’un outil analytique entièrement au-

tomatisé et auto-explicable qui fonctionne comme un système de recommandation pour les

méthodes d’allocation des ressources pour les scénarios ODT. Cet outil potentiel prend en entrée

l’ensemble des paramètres du scénario (propriétés du parc de véhicules et modèle de distribu-

tion des demandes), la fonction objective de l’utilisateur et ses préférences, en plus du modèle

d’environnement (réseau routier et modèle de trafic). Il recommande ensuite des mécanismes

d’allocation spécifiques qui correspondent aux objectifs et aux préférences de l’utilisateur. Cette

proposition illustrée dans l’annexe B a été présentée au 3rd International Workshop on EXplain-

able and TRAnsparent AI and Multi-Agent Systems (EXTRAAMAS 2021) et incluse en tant que

chapitre de livre dans son post-proceedings [P5]. Nous prévoyons également d’analyser en pro-

fondeur la relation entre la stabilité, la complétude et la faisabilité des solutions à l’avenir. Pour

ce faire, nous devons mettre en œuvre des approches plus soutenues de différents types et com-

parer systématiquement les performances, la qualité, la faisabilité, la stabilité et les problèmes

techniques pour l’application pratique de ces approches.
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Résumé :

Le développement de véhicules autonomes, capables de communiquer de pair à pair, ainsi

que l'intérêt  pour les  solutions  à la demande (par  exemple,  Uber,  Lyft,  Heetch),  sont les

principales  motivations  de  cette  étude.  Plus  précisément,  nous  nous  intéressons  ici  à  la

résolution du problème d'allocation de véhicules autonomes de manière décentralisée. Une

flotte  de  véhicules  autonomes  est  déployée  pour  répondre  à  de  nombreuses  demandes

provenant de différents endroits de la ville.

Typiquement,  ce problème est  résolu en centralisant  les demandes dans un portail  où un

gestionnaire de flotte les répartit aux véhicules. Cela impose que les véhicules aient un accès

permanent au portail (via un réseau cellulaire, par exemple). Cependant, l'accès à une telle

infrastructure  de  commutation  globale  (pour  la  collecte  des  données  et  la  livraison  des

commandes)  est  coûteux  et  peut  représent  un  goulot  d'étranglement  critique.  L'idée  est

d'utiliser des technologies de communication de véhicule à véhicule (V2V) à faible coût pour

permettre aux véhicules de se coordonner sans infrastructure de communication globale.

Nous  proposons  de  modéliser  les  différents  aspects  des  problèmes  de  décision  et

d'optimisation liés à ce défi  plus général.  Ensuite,  la question se pose du choix entre  les

méthodes  de  solution  centralisées  et  décentralisées.  Sur  le  plan  méthodologique,  nous

explorons les orientations et comparons les performances des techniques d'optimisation des

contraintes distribuées (DCOP), des techniques multi-agents auto-organisées, des approches

sur  marché et des solutions centralisées de recherche opérationnelle.
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