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CHAPTER 1

INTRODUCTION

This thesis is a cotutelle thesis between Le Mans University, LMM-IRA and Tunis El-Manar
University (UTM), LAMSIN-ENIT. I realized during this thesis, a set of 3 works on the stochastic
mean field control problem and dynamic progressive utility. The works that are part of this thesis
are the following:

• A. Matoussi, M. Mnif and C. Ziri. Linear quadratic control problems for mean field stochas-
tic differential equation with Jumps. Preprint (2021), submitted for publication [88].

• S. Ben Aziza and C. Ziri. Numerical approximation for a class of mean field games. Forth-
coming paper [14].

• M. Mrad and C. Ziri. Learning dynamic utilities. Forthcoming paper [94].

1.1 Mean field control problem and application to production of
an exhaustible resource

The first part of this thesis is dedicated to the study of linear quadratic control problems for
mean field stochastic differential equation with jumps (LQ-MF SDE in short) and application to
the production of an exhaustible resource. This chapter is based on co-work with Matoussi and
Mnif [88].

1.1.1 An overview of mean field stochastic differential equations

Historically, the mean-field stochastic differential equations, also known under the name of
McKean Vlasov SDE, can be traced back to the works by Kac [65] and McKean [90]. These
equations are SDEs whose drift and diffusion coefficients depend not only on the state of the
unknown process, but also on its law of probability. Recently, this type of equation has been
the subject of renewed interest in the context of mean field game theory and mean field control
problems. So, we will dedicate the following part to introduce the main results of mean field
BSDEs in the framework with and without jumps.
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Introduction

Mean field backward stochastic differential equations: Continuous setting Recently in
2009, Buckdahn et al. [109] have introduced a new type of backward stochastic differential
equations and they have called them the mean field backward stochastic differential equations
( MF BSDEs in short). They showed that the BSDE can be obtained by an approximation in-
volving N-particle systems with weak interaction. Afterwords, Buckdahn, Li and Peng [23] gen-
eralized their previous results on mean field BSDEs in which the initial data (t, x) were frozen
in the law variable of the coefficients, they investigated the associated nonlocal PDE.

More precisely, the authors [23] assumed the following Assumptions:

Assumption 1.1.1. • There exists a constant C ≥ 0 such that, P-a.s., for all t ∈ [0, T ], y1,
y2, y

′
1 ,y

′
2 ∈ IR, z1, z2, z

′
1, z

′
2 ∈ IRd,

|f(t, y′
1, z

′
1, y1, z1)− f(t, y′

2, z
′
2, y2, z2)| ≤ C(|y′

1 − y
′
2|+ |z

′
1 − z

′
2|+ |y1 − y2|+ |z1 − z2|).

• f(·, 0, 0, 0, 0) ∈ H2
F(0, T ; IR).

The authors established the following existence result:

Theorem 1.1.1. ( Buckdahn, Li and Peng [23])
Under Assumptions 1.1.1. For any random variable ξ ∈ L2(ω,FT ,P), the mean field BSDE

Yt = ξ +
∫ T

t
E

′ [f(s, Ys, Y
′

s , Zs, Z
′
s)]ds+

∫ T

t
ZsdWs, (1.1.1)

where E′
is an operator defined by

E
′(Γ(., ω)) :=

∫
Ω
γ(ω′

, ω)P(dω′), ∀γ ∈ L1(Ω1+1,F ⊗ F,P⊗ P),

has a unique solution (Y, Z) ∈ S2
F(0, T : IR)×H2

F(0, T : IRd).

Y 1
t ≤ Y 2

t , t ∈ [0, T ],P-a.s.

In 2016, Li, sun and Xiong [84] was the first to study the stochastic linear quadratic problem
for mean field BSDEs. They have established the result of existence and uniqueness for the
following linear mean field BSDE which depends on the laws of the state Y and the control α:dYt = (At Yt + Ât E[Yt] +Bt αt + B̂t E[αt]) + Ct Zt + Ĉt E[Zt])dt+ ZtdWt t ∈ [0, T ],

YT = ξ,

(1.1.2)

8



Introduction

where ξ is an FT -measurable random vector andA, Â,B, B̂, C, Ĉ are given deterministic matrix-
valued functions that satisfied

A, Â ∈ L1(0, T : IRn×n), B, B̂ ∈ L2(0, T : IRn×m), C, Ĉ ∈ L2(0, T : IRn×n).

Moreover, there exist a constant K > 0, independent of ξ and α, such that

E
[

sup
t≤s≤T

|Ys|2 +
∫ T

t
|Zs|2ds

]
≤ KE

[
sup

t≤s≤T
|ξ|2 +

∫ T

t
|αs|2ds

]
.

Recently, Li [80] introduced a class of mean field reflected BSDEs which makes the connection
between the results of classical reflected BSDEs (RBSDEs in short) [100] and those of MF
BSDEs [23, 109]. Later, Djehiche, Elie and Hamadéne [42] deepen the mean field reflected
forward backward SDEs by adding the dependence on the distribution of the component of the
solution. Since MF BSDE has important application in Mathematical finance as optimal control,
we refer the reader for example to [7,22,42,43,64,80,81,84,117,118].

Mean field backward stochastic differential equations : Discontinuous setting One of
the directions who attracted many researchers is the case involving a discontinuity in the dy-
namics of the state solution. In this setting, the mean field BSDE is no longer driven by Brow-
nian motion, but also by a random jump measure. Roughly speaking, the mean field backward
stochastic equation with jumps has the following form on a filtered probability space (Ω,F,F,P)
on which the filtration F = (Ft)t satisfies the usual conditions of completeness and right conti-
nuity dYs = −f(s, Ys, Zs, Rs,P(Ys,Zs,Rs))ds+ ZsdWs +

∫
χRs(e)π̃(ds, de),

YT = ξ,
(1.1.3)

where

• W = (Wt)0≤t≤T is a Brownian motion with respect to its natural filtration under P.

• π(dt, de) is a random jump measure defined on IR+ × χ where χ ⊂ IRl\{0} is non-empty
open set equipped with its Borel field B(χ).
To be more precisely, π̃ is the compensated random measure of π defined as following

π̃(dt, de) = π(dt, de)− η(dt, de).

where the associated compensator η is absolutely continuous with respect to λ⊗ dt (i.e)

η(dt, de) = λ(de)dt.

9
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for a σ-finite measure λ on (χ,B(χ)) satisfying∫
E

(1 ∧ |e|2)λ(de) <∞.

In [83], Li were the first interested by a mean field BSDE driven by a Browian motion and an
independent Poisson random measure. The author study the existence and uniqueness of MF
BSDE with jumps under following assumptions

Assumption 1.1.2. (i) f(·, ·, 0, 0, 0, δ0) ∈ H2
F(0, T ).

(ii) f is Lipschitz with respect to (y, z, r, µ) ∈ IR×IR2×L2(χ,B(χ), λ)×P2(IRd+1+d×L2(χ,B(χ), λ)),
uniformly with respect to (s, w).

(iii) ξ ∈ L2(FT ).

Theorem 1.1.2. ( Li [83] )
Under the Assumption 1.1.2, the mean field BSDE with jumps (1.1.3) has a unique solution

(Y,Z,R) ∈ S2
F(0, T : IR)×H2

F(0, T : IRd)×H2
ν(0, T : IR).

In 2016, Tang and Meng [114] study linear quadratic optimal control problem for mean
field backward stochastic differential equations driven by a Poisson random measure and a
Brownian motion which depend on the law of the state X and the control α. They established
the existence and uniqueness of linear quadratic BSDE with jumps in the following form

dYt =
(
At Yt + Ât E[Yt] +Bt αt + B̂t E[αt] + Ct Zt + Ĉt E[Zt]

+
∫

χ
DtRt(e)λ(de) +

∫
χ
D̂tE[Rt(e)]λ(de)

)
dt+ ZtdWt +

∫
χ
Rt(e)π̃(de, dt),

YT = ξ,

(1.1.4)

where ξ is an FT -measurable random variable and A, Â,B, B̂, C, Ĉ,D, D̂ satisfy assumption
1.1.3:

Assumption 1.1.3. The matrix valued functions A, Â,B, B̂, C, Ĉ,D, D̂ are uniformly bounded
measurable functions

Under the above assumptions, the existence result is stated as follows

Theorem 1.1.3. ( Tang and Meng [114])
Let Assumption 1.1.3 be satisfied, then for any (ξ, α) ∈ L2(FT ) × A, the state equation (1.1.4)
has a unique solution (Y,Z,R) ∈ S2

F(0, T : IR)×H2
F(0, T : IRd)×H2

ν(0, T : IR).

In 2016, Min and Li [82] considered a new type of BSDEs namely MF BSDEs with jumps
coupled with the value function. The authors proved that this type of BSDEs admits a unique
solution, and established a comparison theorem as well as a dynamic programming principal.
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Introduction

1.1.2 Mean field control approach

Stochastic optimal control has been widely studied in recent decades due to its applications
to mathematical finance, insurance, economics, engineering, etc. Recently, stochastic optimal
control problems for mean field stochastic differential equations ( in short MF SDEs) have at-
tracted more attention. The control problems of mean field type are stochastic optimal control
problems where the cost function and the parameters of the dynamics depend on the law of the
controlled stochastic process. In general, such problems correspond to the control of a large
number of agents by a global planner. This theory is referred to mean field control (e.g., by
Bensoussan, Frehse, and Yam [17]) or control of McKean Vlasov dynamics (e.g., by Carmona
and Delarue [34]). It has found applications such as risk management, portfolio management,
insurance, economics, engineering, see [6,11,31,57,87,91].

To be more precisely, let us consider the following mean field optimal control, with the state
following equation dXt = bt(Xt,PXt , αt,Pαt)dt+ σt(Xt,PXt , αt,Pαt)dWt,

X0 = x,
(1.1.5)

and the following cost functional

J(α) := E
[∫ T

0
e−ρtft(Xt,PXt , αt,Pαt)dt+ e−ρT g(XT ,PXt)

]
. (1.1.6)

The main goal in the control problem is to minimise the cost functional J over the set of admis-
sible controls A defined for ρ ≥ 0 as,

A := {α : Ω× [0, T ]→ IRm s.t α is IF -adapted and
∫ T

0
e−ρtE[|αt|2]dt <∞}.

An admissible control α∗ ∈ A is said the optimal control if

J(α∗) = inf
α∈A

J(α).

In general there is two possible approach to solve a stochastic optimal control: The dynamic
programming, developed by Richard Bellman in the 1950’s and the stochastic maximum princi-
ple formulated by Pontryagin and his group in the 1950’s also.

Stochastic maximum principle : The pioneering works on the stochastic maximum principle
were written by Kushner [68,69]. Since then there have been a lot of works on this subject, like

11
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Bensoussan [15], Peng [104]. The original version of Pontryagin’s maximum principle was first
introduced for deterministic control problems in the 1960’s by Pontryagin et al. as in classical
calculus of variation. The basic idea is to perturb an optimal control and to use some sort of
Taylor expansion of the state trajectory around the optimal control, by sending the perturbation
to zero, one obtains some inequality, and by duality.

In 2010, Buckdahn, Djehiche and Li [20] were the first to be interested in the optimal con-
trol for stochastic differential equations of mean field type. They introduce a problem in which
the coefficients depend on the expected value of the state of the solution process. The authors
were establish a Peng-type general stochastic maximum principle, specifying a necessary con-
ditions for optimality, for a general action space, using the classical spike perturbation. This
maximum principle differs from the classical one in the sense that here the first order adjoint
equation turns out to be a linear mean-field backward SDE, however, the second order adjoint
equation remains the same as in Peng’s stochastic maximum principle.

Buckadahn et al. [21] extended the approach of Peng in the classic framework by consider-
ing the second order variational equations and the corresponding second order adjoint process
in the mean field setting. Many authors have made contributions on optimal control problems
for mean field SDEs, see for example the works of Anderson and Djehiche [7] and Carmona
and Delarue [34] under some convexity assumptions. We can also refer the reader to Alasseur
et al. [6] where the authors develop a model for the optimal management of energy storage and
distribution in a smart grid system through an extended MFG.
Recently, motivated by economic examples, Graber [57] studied mean field control problem for
a linear stochastic differential equation with common noise. The author characterize the solu-
tion both in the term of a stochastic maximum principle and a Riccati equation. He reformulated
the Nash equilibrium for MFG as an optimal control problem in order to discuss the case where
a mean field Nash equilibrium is also the solution to an optimal control problem.

Dynamic programming approach Other approach to solve the mean field control problem
is the dynamic programming approach. The classical dynamic programming principle is a fun-
damental principle in the theory of stochastic control. The basic idea of the approach is to
consider a family of control problems by varying the initial state values, and to derive some re-
lations between the associated value functions. This principle, called the dynamic programming
principle were initiated in the 1950s by Bellman. This approach yields a certain partial differ-
ential equation (PDE in short), of second order and nonlinear, called Hamilton-Jacobi-Bellman
(HJB in short). When this PDE can be solved by the explicit or theoretical achievement of a
smooth solution, the verification theorem validates the optimality of the candidate solution to

12
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the HJB equation. This method is a weak formulation of the standard martingale optimality
principle, where the verification theorem for stochastic control problem is a crucial step ( see
e.g EL Karoui [47] and Pham [105]).

For mean field control problems, stochastic dynamic programming requires adaptation. Opti-
mality conditions for mean field control problem are derived either by stochastic calculus of vari-
ation ( see e.g [7]) or by stochastic dynamic programming in the quadratic case ( see e.g [17]),
but not in the general case for the fundamental reason that Bellman’s principle does not apply
in its original form on the stochastic trajectories of say Xt if those depend also on its law. There-
fore, the idea which is proposed by several researchers (Lions [85], Bensoussan et al. [18]), is
to formulate the problem without any such restriction if we work with the probability measure of
Xt and use the Fokker-Planck equation.
In 2014, Lauriere and Pironneau [79] under some density assumption on the probability law
of the state process, show that Bellman’s principle applies to the dynamic programming value
function V (τ, ρτ ), where the dependency on ρτ is functional as in Lion’s analysis of mean field
games. Later, Pham and wei [106] derive also the Bellman equation for mean field stochastic
control problem, and they prove a verification theorem in a McKean Vlasov framework. The
authors give an explicit solutions to the Bellman equation for the linear quadratic mean field
control problem, with applications to the mean-variance portfolio selection and a systemic risk
model.
Recently, Pham et al. [11,91] propose an other approach for solving linear quadratic mean field
stochastic control problems. The authors introduce the martingale formulation for verification
theorem for solving a linear quadratic mean field stochastic problems. The optimal control in-
volves the solution to a system of Riccati ordinary differential equations and to a linear mean
field backward stochastic differential equation.
The verification theorem, the key of this approach, is introduced in the following form :

Theorem 1.1.4. (Finite horizon Verification Theorem [11])
Let {Wα

t , t ∈ [0, T ], αt ∈ A} be a family of F-adapted process in this form Wα
t = wt(Xα

t ,E[Xα
t ])

for some F−adapted random field {wt(x, x̄), t ∈ [0, T ], x, x̄ ∈ IRd} satisfying

wt(x, x̄) ≤ C(Xt + |x|2 + |x̄|2), t ∈ [0, T ], x, x̄ ∈ IRd,

for some positive constant C, and non-negative process X with supt∈[0,T ] E[|Xt|] <∞, and such
that

(i) wT (x, x̄) = g(x, x̄), x, x̄ ∈ IRd.
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(ii) The map t ∈ [0, T ] 7−→ E[Sα
t ], with

Sα
t = e−ρtWα

t +
∫ t

0
e−ρsfs(Xα

s ,E[Xα
s ], αt,E[αt])ds,

is non-decreasing for all α ∈ A.

(iii) The map t 7−→ E[Sα∗
t ] is constant for some α∗ ∈ A.

Then, α∗ is an optimal control and E[w0(X0,E[X0])] is the value of the LQ MF control problem
(1.1.6)

V0 = E[w0(X0,E[X0])] = J(α∗).

Moreover, any other optimal control satisfies the condition (iii).

In [11], Basei and Pham interested to solve a linear quadratic control problem. Roughly speak-
ing, they consider a quadratic cost functional of the following type, where α ∈ A,

J(α) := E
[∫ T

0
e−ρtft(Xα

t ,E[Xα
t ], αt,E[αt])dt+ e−ρT g(XT ,E[XT ])

]
, (1.1.7)

where for each t ∈ [0, T ], x, x̄ ∈ IRd and a, ā ∈ IRm

ft(x, x̄, a, ā) := (x− x̄)tQt(x− x̄) + x̄T (Qt + Q̃t)x̄+ 2aT It(x− x̄) (1.1.8)

+ 2āT (It + Ĩt)x̄+ (a− ā)TNt(a− ā) + āT (Nt + Ñ)ā+ 2MT
t x+ 2HT

t a,

and
g(x, x̄) := (x− x̄)TP (x− x̄) + x̄T (P + P̃ )x̄+ 2LTx, (1.1.9)

subject todX
α
t = ( βt +Atx+ Ãtx̄+Bta+ B̃tā)dt+ (γt + Ctx+ C̃tx̄+Dta+ D̃tā)dWt,

X0 = x,
(1.1.10)

under the following Assumptions :

Assumption 1.1.4. The coefficients in equation (1.1.10) satisfy:

(i) β, γ ∈ L2
F(Ω× [0, T ], IRd),

(ii) A, Ã, C, C̃ ∈ L∞([0, T ], IRd×d), B, B̃,D, D̃ ∈ L∞([0, T ], IRd×m).

Assumption 1.1.5. The coefficients in equation (1.1.8)-(1.1.9) satisfy:

(i) Q, Q̃ ∈ L∞([0, T ], Sd), ,P, P̃ ∈ Sd, N, Ñ ∈ L∞([0, T ], Sm), I, Ĩ ∈ L∞([0, T ], IRm×d),
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(ii) M ∈ L2
F(Ω× [0, T ], IRd), H ∈ L2

F(Ω× [0, T ], IRm), L ∈ L2
F(IRd),

(iii) There exists ξ > 0 such that, for each t ∈ [0, T ],

Nt ≥ ξIm, P ≥ 0, Qt + IT
t N

−1
t It ≥ 0.

(iv) There exists ξ > 0 such that, for each t ∈ [0, T ],

Nt + Ñt ≥ ξIm, P + P̃ ≥ 0, (Qt + Q̃t)− (It + Ĩt)T (Nt + Ñt)−1(It + Ĩt) ≥ 0.

Remark 1.1.5. The uniform positive definite assumption on N and N + Ñ is a standard and
natural coercive condition when dealing with linear-quadratic control problems.

Thanks to the weak formulation of verification theorem (see, Theorem 1.1.6) and some tech-
niques, Basei and Pham have proved the existence of an optimal control:

Theorem 1.1.6. (Basei and Pham [11] )
Under Assumptions 1.1.4-1.1.5, there exists an optimal control α∗ for LQMF problem (1.1.6)

giving by the following explicit form

α∗
t = −S−1

t Ut(X∗
t − X̄∗

t )− S−1
t (ϵt − ϵ̄t)− S−1

t (VtX̄
∗
t + Θt), ∀t ∈ [0, T ] P− a.s.,

where X∗ = Xα∗
is the state process where the α∗ is the optimal control and the deterministic

coefficients S, Ŝ U and V and the stochastic coefficients ϵt and Θt, are defined by

St := Nt +D⊤
t KtDt,

Ŝt := N̂t + D̂⊤
t KtD̂t,

Ut := It +D⊤
t KtCt +B⊤

t Kt,

Vt := Ît + D̂⊤
t KtĈt + B̂tΛt,

Θt := H̄t + D̂⊤
t Ktγ̄t + D̂Z̄Y

t .

(1.1.11)

And (K,Λ, Y, ZY , φ) ∈ L∞([0, T ],Sd)×L∞([0, T ],Sd)×S2
F(Ω× [0, T ],Rd)×L2

F(Ω× [0, T ],Rd)×
χ, IRd)× L∞([0, T ], Sd), is the unique solution to the decoupled system (1.1.20):

dKt =
.
Ktdt, 0 ≤ t ≤ T, KT = P,

dΛt =
.
Λtdt, 0 ≤ t ≤ T, Λ = P̂ ,

dYt =
.
Y tdt+ ZY

t dWt, 0 ≤ t ≤ T, YT = L,

dφt = .
φ, 0 ≤ t ≤ T, φT = 0.

(1.1.12)
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In [91], Pham and Miller propose an approach based on weak martingale optimality principle
together with a fixed point argument in the space of controls for solving a stochastic differential
game with linear McKean-Vlasov dynamics and quadratic cost functional. They characterize
the Nash equilibria by a terms of systems of Riccati ordinary differential equations and linear
mean field backward stochastic differential equations.

1.1.3 Main results and contributions

Motivation In this work, we are motivated by an energy market to produce energy from an
exhaustible resource such as oil. Roughly speaking, each producer optimizes production rate
that drives her revenue, as well as exploration effort to replenish her reserve. This exploration
activity is modeled by a jumps process that leads to stochastic increments to reserves level.
This model, represented by a model of production of exhaustible resource with accumulating
or maintaining a level of reserves, is inspired by a series of works extended from the Hotelling’s
model [63]. In the classic Hotelling’s model, the dynamic market evolution is driven by the use of
existing reserves of an exhaustible reserves to produce energy without possibility to exploration
and/or discovery of new reserves. However, many studies have made it possible to ensure that
there are still resource bases to be explored over time, that is to say that the reservation rate can
be increased. Particularly we can see the paper of Pindyck [107] that considered a determin-
istic model of exploring for a non-renewable resource. The author assumed exploration to be
incremental and represented as a deterministic reserve addition. A series of works extended
Prindyck’s model [107] for the case of stochastic discoveries such as: Deshmukh et al. [41],
Arrow and Chang [9] and Keller et al. [60]. This increase in reserve discoveries occurs stochas-
tically via the Point process, it should be noted that this increase is smaller, and it is the reason
that the resources always remain exhaustible. In this work, we are particularly motivated by a
continuous model of the production of an exhaustible resource recently introduced by Guèant
et al. [59] where they have considered a mean field version of a this model with a quadratic cost
function. Roughly speaking, the authors consider a large number of oil producers, which can
be viewed either as wells or from a more macro standpoint as oil companies. Each oil produc-
ers i initially has a reserve xi

0 where are distributed according to an initial distribution. These
reserves Xi will of course contribute to production αi such that, for any specific producer i, his
reserve dynamic is given by the following stochastic differential equationdXi

t = −αi
t dt+ σXi

t dW
i
t ,

Xi
0 = xi

0,
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where W i is Brownian motion specific to each producer. Each production need to optimize a
profit criterion of the following form

max
αi

E
(∫ ∞

0
e−r t

[
αi

t pt − C(αi
t))
]
dt

)
, s.t. α ≥ 0, Xt ≥ 0, (1.1.13)

where

• p is the selling price for producer i follows. The price p of producer i is related to his
production and also to the production of all other producers.

• C is the cost functions of production, defined as

C(α) := δα+ β
α2

2 .

In this work, we introduce a model of production of exhaustible resource with accumulating or
maintaining a level of reserves. Reserves level Xi

t of each producer decreases at a controlled
production rate αi ≥ 0, and also has random discrete increment due to exploration. We use a
Poisson point process π̃i to model the new discoveries. To be more precisely, π̃i has intensity
λ(t)ai

t, where is the effort of the exploration controlled by player i. So the reserve dynamic of
each producer is given by the following stochastic differential equationdXi

t = −αi
t dt+ σXi

t dW
i
t + η

∫
X
Xi

t π̃
i(de, dt),

Xi
0 = xi

0,
(1.1.14)

where xi
0 is the initial reserves level and η is the unit amount of discoveries .

Each player i wants to maximize his own profit (1.1.15)

J(α) := E
(∫ ∞

0
e−ρ t

[
αi

t pt(αi
t)− Cp(αi

t)− Cex(αi
t, X

i
t)
]
dt

)
, (1.1.15)

where

• P i
t is the selling price for producer i. It follows a linear inverse demand rule, defined as:

P i
t := Pt(αi

t) = P 0
t − δ αi

t − ε
∫ t

0

1
N

N∑
j=1

αj
sds.

Here δ, ε are positive constants and P 0 is a deterministic function. It will be the same
for all producers. The price P i of producer i is related to his production and also to the
production of all other producers.
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• Cp is the cost functions of production, defined as:

Cp(αi
t) := c1Var(αi

t).

• Cex is the cost functions of exploration defined as:

Cex(αi
t, X

i
t) := c2 α

i
t(
xi

0 −Xi
t

xi
0

).

with c1 and c2 are positive constants and represent respectively the cost of production and the
cost of extraction where are the same for the all producers. In the following, we will propose a
explicit method to solve this problem.

Our main result : Our first contribution presented in this thesis to study the solvability of
linear quadratic stochastic control problem for mean field stochastic differential equation with
jumps in the both finite and infinite horizon. The mean field LQ optimal control problem was
initially studied by Yong [117] and was generalized later by Huang, Li and Yong [64], Li, Sun
and Xiong [84] to variant cases. Along with the development of mean field LQ optimal control
problems, the LQ differential game for mean field SDEs have also attracted extensive research,
among which, we would like to mention Bensoussan et al. [17] and Graber [57].

Here, we propose an approach to solve the linear quadratic control problems for mean field
stochastic differential equation with jump defined as :

V (α∗) = inf
α
J(α), (1.1.16)

where

J(α) :=E

[∫ T

0
e−ρt

(
(x− x̄)tQt(x− x̄) + x̄T (Qt + Q̃t)x̄+ 2aT It(x− x̄) (1.1.17)

+ 2āT (It + Ĩt)x̄+ (a− ā)TNt(a− ā) + āT (Nt + Ñ)ā+ 2MT
t x+ 2HT

t a,
)
dt

+ e−ρT
(
(x− x̄)TP (x− x̄) + x̄T (P + P̃ )x̄+ 2LTx

)]
,

subject to
dXα

t = ( βt +Atx+ Ãtx̄+Bta+ B̃tā)dt+ (γt + Ctx+ C̃tx̄+Dta+ D̃tā)dWt

+
∫
X

(δt + Ft(e)x+ F̃t(e)x̄+Gt(e)a+ G̃t(e)ā)π̃(de, dt),

X0 = x,

(1.1.18)

under Assumptions 1.1.4-1.1.5 by adding also the following one:
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Assumption 1.1.6. The coefficients in equation (1.1.18) satisfy:

(i) δ ∈ L2
F(Ω× [0, T ], IRd),

(ii) G(.), G̃(.) ∈ K2([0, T ]× χ, IRd×d) , F (.), F̃ (.) ∈ K2([0, T ]× χ, IRd×m).

Our approach is a weak formulation of the standard martingale optimality principle used in the
verification theorem for stochastic control problems. Roughly speaking, using the Verification
Theorem 1.1.6 introduced in [91], we get an explicit form of the optimal control:

Theorem 1.1.7. Under Assumptions (1.1.4)-(1.1.5)-(1.1.6), there exists an optimal control α∗

for LQMF problem (2.3.14) giving by the following explicit form

α∗
t = −S−1

t Ut(X∗
t − X̄∗

t )− S−1
t (ϵt − ϵ̄t)− S−1

t (VtX̄
∗
t + Θt), ∀t ∈ [0, T ] P− a.s.,

where X∗ = Xα∗
is the state process where the α∗ is the optimal control and the deterministic

coefficients S, Ŝ U and V and the stochastic coefficients ϵt and Θt, are defined by

St := Nt +DT
t KtDt +

∫
χ
GT

t (e)KtGt(e)λ(de),

Ŝt := N̂t + D̂T
t KtD̂t +

∫
χ
ĜT

t (e)KtĜt(e)λ(de),

Ut := It +DT
t KtCt +BT

t Kt +
∫

χ
GT

t (e)KtFt(e)λ(de),

Vt := Ît + D̂T
t KtĈt + B̂tΛt +

∫
χ
ĜT

t (e)KtF̂t(e)λ(de),

Θt := H̄ + D̂T
t Ktγ̄t + B̂T

t Ȳt + D̂tZ̄
Y
t +

∫
χ
ĜT

t (e)Ktδ̄tλ(de) +
∫

χ
ĜT

t R̄
Y
t (e)λ(de),

ϵt := Ht +DT
t Ktγt +BT

t Yt +DT
t Z

Y
t +

∫
χ
GT

t (e)Ktδtλ(de) +
∫

χ
GT

t (e)RY
t (e)λ(de).

(1.1.19)
And (K,Λ, Y, ZY , RY , φ) ∈ L∞([0, T ], Sd)×L∞([0, T ],Sd)×S2

F(Ω×[0, T ],Rd)×L2
F(Ω×[0, T ],Rd)×

K2(Ω× [0, T ]×χ, IRd)×L∞([0, T ],Sd), is the unique solution to the following decoupled system:

dKt =
.
Ktdt, 0 ≤ t ≤ T, KT = P,

dΛt =
.
Λtdt, 0 ≤ t ≤ T, Λ = P̂ ,

dYt =
.
Y tdt+ ZY

t dWt +
∫

χ
RY

t (e)π̃(de, dt), 0 ≤ t ≤ T, YT = L,

dφt = .
φ, 0 ≤ t ≤ T, φT = 0.

(1.1.20)

By the theory developed above, we will solve a control problem for a model of production of
exhaustible resource with accumulating or maintaining a level of reserves.
In our work, we assume that the common price P 0

t = p0, for all t ≥ 0 where p0 is interpreted
as a substitute price for the exhaustible resource. In the next proposition, we gives an explicit
solution to the problem (1.1.15).
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Proposition 1.1.8. We assume that p0 = c2+εx0 for all t ≥ 0, x0 is large enough and 1 > ρ2+2ε
δ .

Then the solution of (1.1.15) is given by

α∗
t = Kc1,c2X

∗
t− + (Λε −Kc1,c2)X̄∗

t− .

Finally, we discussed two different cases: The first one, when p0 = c2 + εx0 i.e. p0 coincides
with c2 + εx0 which is the cost of extraction for the last unit of resource. The second case when
p0 < c2 + εx0 (i.e.) the Hotelling rent is negative. It is not obvious to check the positivity of the
the state process and the optimal strategy. We study the stationary level of the reserve and the
optimal production rate in mean.

1.2 Numerical approach for a class of mean field games

The second part of this thesis is dedicated to the numerical resolution of a mean field game
problem. We will introduce an approach, called Markov chain approximation ( MCA in short)
where was developed by H. Kushner and P.G. Dupuis [70]. This method applies a Markov chain
approximation to continuous time and continuous space state control problem. This chapter is
based on co-work with Ben Aziza [14].

1.2.1 Mean field game approach

The theory of mean field games( MFG in short) is a recent branch of dynamic games that aims
at modeling and analyzing complex decision processes involving a large number of agents,
which have individually a small influence on the overall system, and are influenced by the be-
havior of other agents. The MFG is presented by a control problem that approximate a large
number of players in interaction. It’s devoted to mathematically analyze a problem where there
are large number of small players, who have similar references. The theory was introduced
since 2006 in series of seminal papers, by Lasry and Lions [73,75,77], Caines et al. [25]. Since
its inception, the mean field games theory has expanded tremendously, and has become an
important tool in the study of dynamical and equilibrium behavior of large systems.

Let us consider a game of a N players who act in terms of the strategies of the other play-
ers. The players are in interaction taking into account the global behaviors of the flow. Each
player takes his decision in a strategic way considering the decisions of the others presented
through the law distribution of the field.
Let Xi be the state of player i, i = 1, ..., N , which satisfies the following stochastic differential
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equation {
dXi

t = −αi
tdt+

√
2σdBi

t,

Xi
0 = xi,

where σ is a fixed positive constant, (Bi
t)1≤i≤N are N Brownian Motion independents and αi

the control associated to the player i. Each individual player i will need to choose his strategy
αi to minimize his cost functional J i over the period [0, T ], which is influenced by the state of
other players:

J i(αi, (αj)i ̸=j) := E[
∫ T

0
(L(s,Xi

s, α
i
s,m

i
s)ds+G(Xi

T ,m
i
T )], (1.2.21)

where g is the terminal cost and L is measurable and locally bounded functions which satisfies
the coercivity condition

lim
|α|→∞

|L(t,Xt, αt,mt)|
|α|

= +∞,

with mi
i =

∑
i ̸=j δXj

t
is the probability measure of other players and δ is the Dirac measure.

For a fixed number N of players, the player i solves his optimization problem assuming that the
other players have already made their decisions, in order to find the Nash equilibrium.

Definition 1.2.1. (Nash equilibrium)
(α1, ..., αN ) is a Nash equilibrium of the system of N players if

J(αi, (αj)i ̸=j) ≤ J(α, (αj)i ̸=j), for all i ∈ {1, ..., N} and α ∈ A.

The Nash equilibrium is thus such that no player regrets his choice in view of the choice of the
others, he could not have done better. Often Nash equilibrium is presented as a situation where
each player adopts the best answer "given" the choice of the others.

Let us introduce a Hamiltonian system of N players satisfy the following equation :

H(x,m, p,m) = sup
α∈IRd

{−pα− L(t, x, α,m)},

and define the Nash system of N players by the following equation
−∂tu

i − ν∆ui +H(xi,mi, Dui) = f(xi,mi
t),

u(xi, T ) = ϕ(xi,mi
T ).

(1.2.22)

When a solution to the above system exists and is regular, a Nash equilibrium is given by the
control functions

αi = −H i
p(t, xi,∇xiui,mi).
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Then, when players use these controls, ui is called the value function of player i, and represents
the lowest average cost that player i can achieve between times t and T if its state is given by
x at time t. The system (1.2.22) is a system of N coupled Hamilton-Jacobi equations. We refer
the reader to the work of Crandall and Lions, for a thorough study of the Hamilton-Jacobi equa-
tions and the framework in which they are well posed the theory of viscosity solutions and to
the work of A. Bensoussan and J. Frehse [16,17]. The main difficulty in the study of the system
(1.2.22) consists in the fact that a player, when he changes his strategy, affects all the other
players. Thus, the existence and uniqueness of solutions of (1.2.22) are in general complicated
problems. However, when the number of players is large, any qualitative or quantitative study of
the behavior of the solutions of (1.2.22) becomes impossible because of the number of equa-
tions and their strong coupling. Contrary to what the previous remark suggests, the structure
of Nash equilibrium should simplify when the number of players becomes very large since the
effect of each player on the system becomes negligible. This is the founding idea of the theory
of mean field games, developed at the same time in the initial independent works of Lasry and
Lions [74,76,85] and of Huang, Caines and Malhamé [25].

The MFG problem is mathematically described through a system of two non linear partial dif-
ferential equations introduced by a following system



−∂tu− ν∆u+H(x,m,Du) = f(x,m), in Td × (0, T ),

∂tm− ν∆m− div(DpH(x,m,Du)m) = 0, in Td × (0, T ),

m(0) = m0,

u(x, T ) = ϕ(x,m(T )),

(1.2.23)

where ν is a non-negative parameter, and m0 and mt are the probability or the density.
The Hamiltonian H : (x, p) ∈ Rd×IR→ H(x, p) ∈ IR is convex function with respect to p defined
by

H(x,m, p) = sup
α
{−pα− L(x, α)}.

This is a forward-backward system. The first equation is called a Hamilton-Jacobi equation
where is associated with an optimal control problem. This equation describes the reaction of
players to the mass. It presents the decisions based on where you want to be in the future. The
second one is called a transport or Fokker-Planck equation for the distribution of the agents. The
equation describes the aggregation of the action of all players. It presents where the population
behavior actually ends up based on the initial distribution. The existence of solutions of HJB-FP
system (1.2.23) is treated in many works [16, 25, 26, 32, 33, 58, 74]. A uniqueness criterion for
the solution of the field game system was presented by J.M. Lasry and P.L. Lions in their first
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work [74] on the theory of mean field games called Lasry-Lions monotonicity condition defined
as : ∫

(f(x,m)− f(x,m′)d(m−m′)(x) ≥ 0 ∀m,m′ ∈ P,

and ∫
(ϕ(x,m)− ϕ(x,m′)d(m−m′)(x) ≥ 0 ∀m,m′ ∈ P.

The interpretation of the above Monotonicity conditions is that the players dislike congested
regions and prefer configurations in which they are scattered.

Many works have treated this system in the periodic setting, for example [27, 28, 74, 78, 85].
They establish the existence result of classical solution under a wide range of sufficient condi-
tions on H, f and ϕ, and the uniqueness result under the uniform convexity of the Hamiltonian
and Lasry-Lions monotonicity condition. Here, we consider a mean field game model where
any players controls its private state Xt at time t, by taking an action αt in a closed convex sub-
set A, where the dynamic of state is driven by the following the stochastic differential equation

dXt = αtdt+
√

2σdBt, (1.2.24)

where Bt is a standard Brownian motion, σ is a fixed positive constant and A is the set of
admissible control.
Each player will need to choose his strategy to minimize his cost functional (1.2.25) over the
period [0, T ], which is influenced by the state of other players:

J(x, t, α,m) = E[
∫ T

t
(L(Xα

s , αs) + F (Xα
s ,ms))ds+ Φ(Xα

T ,mT )]. (1.2.25)

The problem of differential games with an infinite number of agents is articulated in the following
form:

(i) for each fixed deterministic flow of probability measures m on IRd, solve the standard
stochastic control problem:

V (x, t) := inf
α∈A

J(x, t, α,m). (1.2.26)

(ii) Find a flow m such that L(X̂t) = mt for all t ∈ [0, T ], where X̂t is a solution to the above
SDE (1.2.24).

We can see that the first step provides the best response of a given player interacting with the
statistical distribution of the states of the other players if this distribution m is assumed to be
given by t, when the second step solves a fixed point problem in the goal of the search for fixed
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points of the best response function. Once these two steps have been taken successfully, if
the fixed-point optimal control α̂ identified in step (ii) is in feedback form α∗

t = ϕ(t,Xα
t ,mt), for

some deterministic function ϕ on [0, T ] × Td × P(IRd). Then, if the players use α∗
t , the mean

field equilibrium {mt}0≤t≤T with value in P(K) should coincide with the law of X and satisfy the
Fokker-Planck equation.
The literature MFG has grown considerably: many authors work on this subject, see : Cardaliaguet
[27], Bensoussan et al. [17], Carmona and Delarue [33], Gomes et al. [52–54]. A lot of MFG
problems have explicit or semi-explicit solutions, but it’s not always obvious or easy to solve
a coupled MFG PDE system. Therefore, numerical simulations of MFGs play a crucial role to
solve this models.

1.2.2 Numerical methods

Numerical resolution has been interested by many authors and there is still an active on go-
ing research dealing with the numerical approximation of different types of MFG systems most
of them are based on the PDE system introduced by Lions and Lasry in [77]. Finite differ-
ence methods has been the first method of approximation the PDE system whose proposed by
Achdou et al. in [3]. They propose a finite difference scheme with monotone approximations of
the Hamiltonian and a discrete weak formulation of the Fokker-Planck equation, both in finite
and infinite horizon.

To introduce the approximation of HJB-FP system (1.2.23) proposed by Achdou et al. [3], let
us consider two positive integers NT and Nh and ∆t = T/NT and h = 1/Nh and tn = n ×∆t,
xi = i × Nh for (n, i) ∈ {0, ..., NT } × {0, ..., Nh}. We approximate u and m respectively by
vectors U and M such that for each (n, i) ∈ {0, ..., NT } × {0, ..., Nh},

u(tn, xi) ≈ Uh
i,n, and, m(tn, xi) ≈Mh

i,n.

Remark 1.2.2. To simplify the notation, we present the scheme in the framework of a one
dimension.

Finite difference operators : Let us introduce the elementary finite difference operators:

DtU
h
i,n :=

Uh
i,n+1 − Uh

i,n

∆t , for 0 ≤ i ≤ NT − 1,

DUh
i,n :=

Uh
i+1,n − Uh

i,n

h
, for 1 ≤ i ≤ Nh − 1,

∆hU
h
i,n = −

2Uh
i,n − Uh

i+1,n − Uh
i−1,n

h2 , for 1 ≤ i ≤ Nh − 1, (1.2.27)

∇hU
h
i,n := ((DU)i, (DU)i−1)T , for 0 ≤ k ≤ Nh − 1.
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We consider H̃ the discrete Hamiltonian and assume that it satisfy the following Assumptions:

Assumption 1.2.1. Let (x, p1, p2) 7→ H̃(x, p1, p2) be a discrete Hamiltonian, assumed to satisfy
the following properties

1. Monotonicity : for any x ∈ T, H̃ is nonincreasing in p1 and nondecreasing in p2.

2. Consistency : for any x ∈ T, p ∈ IR, H̃(x, p, p) = H(x, p).

3. Differentiability : for any x ∈ T, H̃ is of class C1 in p1 and p2.

4. Convexity : for any x ∈ T, (p1, p2) 7→ H̃(x, p1, p2) is convex.

The continuous Hamiltonian H will be approximated by H̃ at (xi, tk). Then, the discret HJB
equation will be in the following form:

{
−DtU

h
i,n − ν∆hU

h
i,n + H̃(xi,∇hU

h
i,n) = fh(xi,M

h
i,n+1),

Uh
i,Nt

= ϕh(Mh
i,Nt

),

where the operators fh satisfies the following Assumption:

Assumption 1.2.2. 1. We assume that fh is continuous on Kh.

2. The numerical cost fh is monotone in the following sense:

(fh(mk)− fh(mk),mk −mk)2 ≤ 0, ⇒ fh(mk) = fh(mk). (1.2.28)

3. There exists a constant C independent of h such that for all times t and for all grid function
m ∈ P(Kh),

||fh[m]||∞ ≤ C, and |(fh[m])i,j − (fh[m])k,l| ≤ CdT(xi,j , xk,l),

where dT(x, y) is the distance between the two points x and y in the torus T2.

4. For all sequence mh, there exists a continuous and bounded function ω : IR+ → IR+ such
that ω(0) = 0 and

||fh[m]− fh[mh]||L∞(Gh) ≤ ω(||m−mh||L1(T2)).

The main idea in [4] is to discretise also the Fokker-Planck equation as the HJB equation based
on a weak formulation. Let us consider a smooth test function Φ ∈ C∞([0, T ]×T)” which involve
the following expression

−
∫
T
∂x(Hp(x, ∂xu(t, x))m(t, x))Φ(t, x)dx =

∫
T
Hp(x, ∂xu(t, x)∂xΦ(t, x)dx, (1.2.29)
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where they used an integration by parts and the periodic boundary conditions. In view of that
precedes, it is quite natural to propose the following discrete version of the right hand side of
(1.2.29)

h
Nh−1∑
i=0

Mh
i,n+1

(
H̃(xi,∇hU

h
i,n)Φi+1,n − Φi,n

h
+ H̃(xi,∇hU

h
i,n)Φi,n − Φi−1,n

h

)
. (1.2.30)

Performing a discrete integration by parts, we obtain

−h
Nh−1∑
i=0

Ti(Uh
i,n,M

h
i,n+1)Φi,n,

where Ti is a discrete transport operator

Ti(Uh,Mh) = 1
h

(Mh
i,nH̃p1(xi,∇hU

h
i,n)−Mh

i−1,nH̃p1(xi−1,∇hU
h
i−1,n)

+Mh
i+1,nH̃p2(xi+1,∇hU

h
i+1,n)−Mh

i,nH̃p2(xi,∇hU
h
i,n).

Then, the Fokker-Planck equation can be approximated in a short way by:{
−DtM

h
i,n − ν∆hM

h
i,n+1 + Ti(Uh

i,n,M
hi, n+ 1) = 0,

Mh
i,0 = m̄0(xi).

Summarizing, the discrete problem is to look for two grid functions U and M on Gh,t:
−DtU

h
i,n − ν∆hU

h
i,n + H̃(xi,∇hU

h
i,n) = fh(xi,M

h
i,n+1),

−DtM
h
i,n − ν(∆hM

h
i,n+1)i + Ti(Uh

i,n,M
h
i,n+1) = 0,

UNt
i = ϕh(MNt

i ),
Mh

i,0 = m̄0(xi).

(1.2.31)

The uniqueness for the discretized problems can be obtained by similar arguments as those
used in the continuous case, using Lasry-Lions monotonicity condition

Theorem 1.2.3 (Achdou and Capuzzo-Dolcetta [4]).
We assume furthermore that H is convex w.r.t. to (q1, q2) and that the operator fh and ϕh are
strictly monotone (i.e) satisfies Lasry-Lions monotonicity condition:

(fh(Mk)− fh(Mk),Mk −Mk)2 ≤ 0, ⇒ fh(Mk) = fh(Mk),

(ϕh(Mk)− ϕh(Mk),Mk −Mk)2 ≤ 0, ⇒ ϕh(Mk) = ϕh(Mk).

Then the problem 1.2.31 has a unique solution.
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The convergence of this scheme was discussed by Achdou et al. in [3] where they consider a
particular case. They considered an Hamiltonian has the following form H(x, p) = H(x) + |p|β

for β > 1 and H is continuous function. The first result of convergence theorems [1, 4] make
some assumption that the MFG system of PDEs has a unique classical solution and a strong
versions of Lasry-Lions monotonicity assumptions. Under this assumptions, the solution of the
discrete system converges towards the classical solution as the grid parameters tend to zero.
In [5], Achdou and Porretta showed that the solutions of the discrete system converges to a
weak solution of the forward-backward system. In [72], Lachapelle, Salomon and Turinici pro-
vided an iterative scheme using a discrete Markov decision problem. They proved that as the
grid steps tend to zero, the solution of the discretized MFG system con verges to a weak solu-
tion.
Recently, Chassagneux, Carmona, Delarue and the others [8] have introduced two algorithms
for numerically solving FBSDEs of McKean Vlasov type, which can be used to formulate the
solutions to mean field game problems. The first algorithm, which is based on the paper of
Chassagneux, Crisan, and Delarue [39], relies on a tree structure to represent the pathwise
law of the solution. The second algorithm takes the algorithm presented in the paper of De-
larue and Menozzi [40] for solving FBSDEs and extends it to the mean field framework.

In recent work, Bayraktar, Budhiraja, and Cohen tebayraktar2017numerical used the Markov
chain approximation method to construct an approximation for the MFG with reflecting barriers.
They formulate the MFG model in terms of a controlled reflected diffusion with a cost function
and study the convergence of their numerical scheme is established for a small time horizon T.
The idea is that for a fixed measure on the path space, they define a Markov decision problem
after a time and space discretization. The authors proved that the discrete numerical scheme is
an almost contraction. Roughly speaking, the solution of the discrete MFG considered can be
seen as the solution of a fixed point problem on the space of probability measures on certain
path space. The Markov chain approximation is recently used by Ben Aziza and Toumi [13] to
solve the system based on the construction of a discrete mean field game where the controlled
state is a Markov chain approximatting the controlled SDE. Our work can be seen as the gen-
eralization of [13]. For more results on the numerical methods for mean field games, we refer
the reader to [2,3,8,29,30,58].

1.2.3 Main results and contributions

Let us consider a mean field game model where any players controls its private state Xt at time
t, by taking an action αt in a closed convex subset A, where the dynamic of state is driven by
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the following the stochastic differential equation

{
dXα

t = b(t,Xα
t , αt)dt+ σdBt,

Xα
0 ∼ m0,

(1.2.32)

where Bt is a standard Brownian motion, σ is a fixed positive constant and A is the set of
admissible control control.
In this work, we introduce a Markov chain approximation method. This approach was inspired
from the works of Kushner et al. [70, 71]. It’s based on the approximation of the stochastic
control problem by a control problem for a discrete time and discrete space controlled Markov
chain. An important advantage of this method is that the Markov chain approximation facilitates
convergence proofs for the numerical methods in terms of probabilistic argument. The idea
behind this approach is to construct a Markov chain ξh and its state space. This chain admits
a continuous interpolation which approximates the state process Xt. Roughly speaking, for
positive k, we define (ξh

k )k the Markov chain on the state space where his transition probabilities
are defined by

p(ξh
k , η|αk) = P(ξh

k+1 = η|ξh
j , αj , j ≤ k), (1.2.33)

for transitions of the Markov chain from stage ξh
k to the stage ξh

k+1 under control policy αk.
These transition probabilities must satisfy the non-negativity p > 0 and conservation

∑
p = 1.

The Markov chain transition probabilities p(ξh
k , η|αk) are constructed from the finite difference

approximation of HJB equation. Its law νn at time n is defined by νn := νn+1p. By iterating this
equality, we obtain for any n ≥ 1,

νn = Pnν0,

where ν0 is the initial distribution. Roughly speaking, we start by approximate the HJB equation
using difference finite method as follows:

−(Ui,k+1 − Ui,k

∆t )− 1
2σ

2(Ui+1,k − 2Ui,k + Ui−1,k

h2 ) +H(x, Ui+1,k − Ui−1,k

2h ) = F (Mh
i,k, xi),

(1.2.34)

with

H(xi,
Ui+1,k − Ui−1,k

2h ) = inf
α
{b(tk, xi, αi,k).(Ui+1,k − Ui−1,k

2h ) + L(xi, αi,k)}, (1.2.35)

where we assume the following boundary conditions

U−1,k = U0,k, UNh
x +1,k = UNh

x ,k, 1 ≤ i ≤ Nh
x . (1.2.36)

28



Introduction

Therefore, it leads to the following approximation of HJB equation



Ui,k−1 = inf
α∈Ah

[(
Lh(xi, αi,k) + F h(xi,M

h
i,k)
)
dt + Ui,k

(
1− σ2 ∆t

h2

)
+Ui−1,k

(
σ2

2
∆t
h2 + ∆t

2h b(xi, αi,k)
)

+Ui+1,k

(
σ2

2
∆t
h2 −

∆t
2h b(xi, αi,k)

)]
,

Ui,Nh
t

= Φh(xi,M
h
i,Nh

t
), 0 ≤ i ≤ Nh

x .

(1.2.37)

Then, from the finite differential approximation (1.2.37), we define a transition probabilities such
that at each time tk, ph(tk, νi,k, αi,k; k, k + 1) = P h(k, αi,k) is a matrix of transition probabilities
for the approximated Markov Chain defined as follows:

P h
i,i−1(k, αi,k) = σ2

2
∆t

(h)2 + ∆t
2h b(xi, αi,k), 1 ≤ i ≤ Nh

x − 1, (1.2.38)

P h
i,i(k, αi,k) = 1− σ2 ∆t

h2 , 1 ≤ i ≤ Nh
x − 1,

P h
i,i+1(k, αi,k) = σ2

2
∆t
h2 −

∆t
2h b(xi, αi,k), 1 ≤ i ≤ Nh

x − 1.

In this work, we define the law associated to discrete Markov chain problem Mh from its transi-
tion probabilities as follows{

Mh
∗,0 = πh

0 ,

Mh
∗,k = (P h(k, α∗k))tMh

∗,k−1, for 1 ≤ k ≤ Nh
t ,

(1.2.39)

with (P h(k, α∗k))t is the transposed matrix of (P h(k, α∗k)). Then, we will show that it
converges weakly to the solution of the Fokker Planck equation.
The first main result of this part is Theorem 1.2.4 given below, where we prove an existence and
uniqueness results of the solution of our discrete version of mean field system (1.2.37)-(1.2.39):

Theorem 1.2.4. Under some assumptions and if F and Φ satisfy the Monotonicity condition.
Then there exist a unique solution of the system (1.2.37)-(1.2.39).

Based on the results of Billengsley [19], our second main result in this part is the following
convergence Theorem 1.2.5:

Theorem 1.2.5. Let (Mh)h be the discrete MFG equilibrium and ξh being its associated opti-
mally controlled Markov chain. Let (mh)h ∈ P(D[0, T ]) be the law of the continuous-time-space
piecewise constant interpolated process ξ̃h.
Then, the sequence (mh)h≥0 converges weakly to some m in P(D[0, T ]) where m is an equilib-
rium of MFG problem.

To prove the convergence result, we need the results in Kushner and Dupuis [70] for weak
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convergence of time-continuous controlled Markov chains on the space of càdlàg processes
D[0;T ] which is a separable and complete for the Skorohod topology. We need to add some
boundary condition, to force the state variable X to stay in the domain. In fact, with the local
reflection direction, if the chain tries to leave the state space then it is returned immediately in
space.

It will be also necessary to introduce a new class of control, the relaxed control which pro-
vide a very powerful tool in the study of the convergence properties of sequences of optimally
controlled processes. The idea of relaxed control is to replace the A-valued process αt with a
P (A)-valued process αR

t , where P (A) is the space of probability measures equipped with the
topology of weak convergence. According to the result of Kushner and Dupuis in [70] and for
any m ∈ P , we get

inf
αR,∗

J(αR,m∗) = inf
α
J(α,m∗).

The last part of this work is dedicated to a comparison between an almost explicit simulated
solution and the numerical solution corresponding to the convergent discrete MFG solution for
a linear model.

1.3 Learning dynamic utilities

The third part considers the task of learning dynamic preferences of an agent from observed
sequence of his decisions at discrete dates (possibly random) (τi)i. There are many settings
in which this capability is very useful. In cooperative setting, we want to help the agent make
good decisions. This is the principle of robo-advisors which are online investment management
services that employ mathematical algorithms to provide financial advice with minimal human
intervention. Based on online questionnaires to obtain information about the client’s degree of
risk-aversion, financial status, and desired return on investment, the robo-advisors use different
algorithms to manage and allocate client assets in the most possible efficient way according to
his preferences. In a more competitive setting, we want to predict the agent’s actions in order
to optimize better our own payoffs, this is the case of two-players A and B, where A is trying
to learn the utility of B, to optimize his/her own payoff which also depends on the actions and
utility of B. This chapter based on co-work with Mrad [94].

1.3.1 Dynamic utilities

From a theoretical and application point of view this problem of recovering the utility of an agent
from observations is an old inverse problem: Same questions were addressed by the economist
Samuelson in the 40’s [111,112], with the theory of "revealed preference" where the observable
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is the consumption process. Since then, the theory has grown in interest under the pressure
of the economic reality, which created news incentives for different approaches, see Chambers
& Echenique [36]. An example is the evolutionary economics by Arthur [10]. Economies are
considered as complex evolutionary systems, where the agents try to predict the outcomes of
their actions, and how the market would be modified by their decisions.
Beyond the fields of economics and finance, in the last few decades this forward-looking view-
point has been also considered in many optimization problems as a consequence of the ex-
pansion of computer science and e-commerce. The forward modeling allows anticipations on
the future values of observables. But, the agents also need to adjust their (random) prefer-
ences over time, following an "inverse thinking" approach as has been suggested by Gomez-
Ramirez [55].

In the field of machine learning, we refer for example to Friedman and Sandow [49], Chajewska,
Koller, and Ormoneit [35]: and Stahl [113] and Hibbard [62]. As well, reasoning with preferences
has been recognized as a particularly promising research direction for artificial intelligence see
Nielsen and Jensen. [101] and Qi, Xu, and Lafferty. [108]. For e-commerce, see [116]: The
principal idea is to build the utility function of a user from his search history and purchases on
the Internet. This utility will then be used to target the user by proposing products or baskets of
goods that we know are likely to be of interest to him and at specific prices evaluated from this
utility function.

Before presenting our learning approach that allow the robo-advisor to predict the agent’s util-
ity, we first introduce the concept of dynamic utilities and recall some of the main results in this
theory which we will use extensively in this work.

In the classical framework, the utilities are chosen deterministic independently of the the in-
vestment universe (very dynamic). In fact, in this classical portfolio optimization program, the
investor set at time t = 0 his utility U for maturity T , he then optimizes his expected utility over
all admissible strategies and find the associated optimal policy and then the optimal portfo-
lio. The problem is that this optimal process is strongly dependent on the maturity T and it is
found independently of the market evolution and do not take into account the new investment
constraints imposed on this agent. Actually, this is not consistent with the periods of crisis that
have been quite frequent in recent years and that can significantly influence the choices and
preferences of any agent with regard to products that become much too risky or more prof-
itable. Moreover, this optimal portfolio is not time consistent: if the investor decides to continue
investing until a new maturity T ′ > T , the two portfolios obtained for two different maturities do
not usually coincide at T when they should (because they represent the same preferences). In
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order to rectify this inconsistency, we have no choice: by the principle of dynamic programming,
the utility must be a stochastic process to allow a flexibility to modify our strategy if it is neces-
sary and to readjust the agent preferences over time.

In 2002, Musiela and Zariphopoulou [95] introduced the notion of "Forward utility" which are
dynamic, progressive utilities, consistent with a given financial market if they satisfy some given
conditions (see Definition 1.3.2 below) . A dynamic utility is a random field U(t, z, ω) adapted
to the available information, and at each time t, it is a standard utility function. See [95, 97, 98]
for more detailed discussions and motivations. Aprogressive utility gives an adaptative way to
include new information on environment evolution available to economic agents. Since these
utilities are stochastic, time dependent and moving forward, we consider them as a family of
semi-martingales depending on a parameter, the wealth of the agent in the economic context.

A dynamic utility should represent, possibly changing over time, individual preferences of an
agent starting with a today’s specification of his utility, U(0; z) = u(z). The preferences are af-
fected over time by the available information represented by the filtration (Ft)t≥0 defined on the
probability space (Ω,P,F). The filtered probability space (Ω,P, (Ft)t≥0) is assumed to satisfy
usual conditions of right continuity and completeness. The filtration F0 is not necessarily as-
sumed to be trivial, so that the initial condition U(0, z) is not necessarily a deterministic function.

We start by introducing the definition of a progressive utility as a progressive random field
with concavity property:

Definition 1.3.1 (Progressive Utility). A progressive utility is a càdlàg progressive random field
on , U = {U(t, z); t ≥ 0, z > 0} such that,

• UTILITY PROPERTY: U is strictly concave, strictly increasing, and non-negative.

• REGULARITY PROPERTY: U is a C2-random field, with continuous first and second deriva-
tives random fields Uz and Uzz.

• INADA CONDITIONS: U goes to 0 when x goes to 0 and the derivative Uz goes to∞ when
z goes to 0, and to 0 when z goes to∞.

The notion of progressive utility is very general and should be specified so as to represent
more realistically the dynamic evolution of the individual preferences of an investor in a given
financial market. Once his consistent progressive utility is defined, an investor can then turn to
a portfolio optimization problem in a larger financial market or to calculate indifference prices.
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Musiela and Zariphopoulou [96, 98] introduced the following definition of a consistent dynamic
utility:

Definition 1.3.2 (Consistent dynamic utility). A consistent dynamic utility U = {U(t, z); t ≥
0, z > 0} is a progressive utility with the following additional properties:

Consistency with the test-class: For any admissible wealth process X,

E(U(t,Xt)/Fs) ≤ U(s,Xs), ∀s ≤ t a.s.

Existence of optimal wealth: For any initial wealth x > 0, there exists an optimal wealth
process X∗ such that X∗

0 = x, and for all s ≤ t,

U(s,X∗
s ) = E(U(t,X∗

t )/Fs) ∀s ≤ t a.s.

In short for any admissible wealth X, U(., X.) is a positive supermartingale and a martingale
for the optimal-benchmark wealth X∗.

Motivated by Zariphoupolou et al [95], El Karoui and Mrad [45] study and fully characterize the
consistent dynamic utility in an Itô incomplete market. The key idea of [45] is to study in details
the marginal utility Ux(t, x) instead of U(t, x) and to consider at the same time the dual problem.
They establish the fully non-linear stochastic partial differential equation (SPDE) satisfied by
the marginal utility and link it with the SDEs that satisfy the optimal primal and dual processes.
Under some regularity assumption, the authors give sufficient conditions ensuring concavity,
monotonicity, differentiability both for random field and for solution of SDE. They establish a
dynamics of consistent utilities and their convex conjugate and a fully characterization of the
marginal utility. In 2020 [46], the authors study the problem of revealed utility from observed
data and then give a consistent way to generate the utility of the agent from the informations
given by observing his choices over time. The result of this last paper are established in a very
general framework (no regularity assumptions on time and without reference to any market)
which makes it applicable to a continuous or discrete framework for vast and varied field like
e-commerce, Robo-Advisor, artificial intelligence...

In 2021, Matoussi and Mrad [89] study consistent dynamic utilities in an incomplete Itô’s market
driven by a multidimensional brownian motion and a general Lévy measure.
Let us briefly present the idea and different steps of the revealed dynamic utility problem as
in [46]. By definition, the observable is a so-called dynamic positive characteristic process
{Xt(x)} considered for different values of its initial condition X0(x) = x > 0, and assumed
to be increasing in x (to be coherent with the expected utility criterium). The goal is to recover,
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from a given initial utility function u, a stochastic dynamic utility U = {U(t, z, ω), z > 0}, "re-
vealed optimally" in the sense that at any (stopping) time τ , the preference for the observable
process is in mean equal to its value at time 0, E(U(τ,Xτ (x))) = u(x): from the probabilistic
dynamic view point, on a given filtered probability space, the performance process "U(t,Xt(x))
is a martingale". Focusing on the concavity of the utility criterium U, tools of convex analysis
play a key role, especially the invertible decreasing marginal utility Uz(t, z). Its allows to define
the convex Fenchel-Legendre transform Ũ(t, y) of U(t, x), by U(t, z)−z Uz(t, z) = Ũ(t, Uz(t, z)),
but also to linearize the recovery problem, by using the one to one correspondence between
the class of dynamic utilities U (revealed by X) and the adjoint processes Y candidate to play
the role of Uz(t,Xt), more precisely {Yt(uz(x)) = Uz(t,Xt(x))}. Since the characteristic pro-
cess is invertible, the triplet {(u,Xt(x), U(t, z))} is in one to one correspondence with the triplet
{
(
u,Xt(x), Yt(uz(x))

)
}. In fact, denoting by {Xt(z) := (Xt)−1(z)} the inverse flow of X, the

authors have the characterization

Uz(t, z) = Yt(uz(Xt(z)), and U(t, z) = U(t, z0) +
∫ z

z0
Yt(uz(Xt(x))dz.

Note that in the continuous semimartingale [45] and semimartingale with jumps framework [89],
the authors have shown that if U is a regular dynamic utility, consistent with a given financial
market, it is necessary in this form with X being the optimal portfolio and Y being the optimal
state price density process.

To illustrate some of the main results of dynamic utilities [89], let us consider a filtered prob-
ability space (Ω,F,P) supports a q-dimensional standard Brownian motion B = (B1, . . . , Bq)
on and an independent q′-dimensional Poisson random measure π on [0,∞[×IRq′

with con-
stant time dependent intensity measure λdt × ν(de) defined on the filtered probability space
(Ω,F,F,P). λ is the intensity of jumps and ν is a finite positive measure on IRq′

, satisfying
standard integrability assumptions. We also denote by π̃ the compensated version of π:

π̃(dt, de) = π(dt, de)− ν(de)λ(t)dt.

Let us consider two IRd-valued stochastic processesX and Y , solutions of the following stochas-
tic differential equations (SDE for short)

dXt(x) = µ(t,Xt(x))dt+
q∑

i=1
σi(t,Xt(x))dBi

t +
∫

IRq′
h(t,Xt−(y), e)π̃(dt, de), X0(x) = x,

(1.3.40)

dYt(y) = b(t, Yt(y))dt+
q∑

i=1
γi(t, Yt(y))dBi

t +
∫

IRq′
g(t, Yt−(y), e)π̃(dt, de), Y0(y) = y, (1.3.41)
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where µ, b, σi, γi are deterministic functions from IR+ × IRd into IRd and h, g are deterministic
functions from IR+ × IRd × IRq′

into IRd×q′
, globally Lipschitz in space to ensure the existence

of a unique strong solution under the following assumptions :

Assumption 1.3.1. • (HP1) There exist CY and CY (e) s.t. for any t ∈ [0, T ], x, y ∈ IRd and
e ∈ IRq′


|b(t, x)− b(t, y)| ≤ CY |x− y|, |µ(t, 0)| ≤ CY ,

|γ(t, x)− γ(t, y)| ≤ CY |x− y|, |γ(t, 0)| ≤ CY ,

|g(t, x, e)− g(t, y, e)| ≤ CY (e)|x− y|, |g(t, 0, e)| ≤ CY (e),
(1.3.42)

where CY (e) satisfies
∫

IRq′ [CY (e)]pν(de) <∞, ∀p ≥ 2.

• (HP2) b, γ and g are continuously space-differentiable functions s.t. ∇yb,∇yγ and ∇yg

satisfy (HP1) with (CY,∇, CY,∇(e)) in place of (CY , CY (e)).

• (HP3) b, γ and g are αY -Hölder continuous in time, locally in space,{
|b(t, x)− b(s, x)|+ |γ(t, x)− γ(s, x)| ≤ CY (1 + |x|)|t− s|αY

.

|g(t, x, e)− g(s, x, e)| ≤ CY (e)(1 + |x|)|t− s|αY
.

(1.3.43)

• (HP4) ∇yb,∇yγ and ∇yg satisfy (HP3) with (CY,∇, CY,∇(e)) in place of (CY , CY (e)).

Assumption 1.3.2. (HP1) and (HP3) are satisfied for µ, σ and h (instead of b, γ and g) with
coefficient CX , CX(e) and αX (instead of CY , CY (e) and αY ).

The novelty of [89] is that the authors have succeeded in linking the solutions of these SPDE to
those of two SDEs. They have shown that the marginal utility is represented as the compound
of the solutions of two SDEs. This explains the need to study the composition of the approxi-
mations of the two SDEs instead of trying to discretise the SPDEs directly, which is not an easy
task. To be clearer, the dynamic utility of an investor is a random map (t, z, ω) → U(t, z, ω),
depending on time t and wealth. Let us assume that it is of type Itô driven by a Lévy process,

dU(t, z) = β(t, z)dt+ γ(t, z)dBt +
∫

IR
H(t, z, e)π̃(dt, de),

where B is a d-dimendional Brownian motion and π̃ is the compensated version of independent
Poisson random measure π on [0,∞] × IR with intensity measure λ(t)dt × ν(de). The triplet
(β, γ,H) denotes the local characteristics of U with values in IR × IRd × IR. Denotes by Uz

and Uzz the first and the second derivative of U with respect to z. Then, the dynamic utility U ,
associated to the investor’s portfolio optimization, is consistent if it solves the second-order fully
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nonlinear SPDE driven by Lévy noise and of HJB type

dU(t, z) =
(
− zUz(t, z)rt +

∫
IR

(U(t, z) +H(t, z, e))ν(de)− Q(t, z, κ∗)
)
dt

+ γ(t, z)dWt +
∫

IR
H(t, z, e)π̃(dt, de), (1.3.44)

where

Q(t, z, κ∗) :=
∫

IR

(
U +H

)(
t, z(1 + κ∗

t .h
S(t, e))

)
ν(de)

+ 1
2Uzz(t, z)∥zκ∗

t + γz(t, z) + Uz(t, z)(ηt − αt)
Uzz(t, z) ∥2

+ 1
2Uzz(t, z)∥γz(t, z) + Uz(t, z)(ηt − αt)

Uzz(t, z) ∥2.

With r and η denotes the interest rate and the risk premium of the market. And zκ∗
t (z) denotes

the strategy of the investor defined as

zκ∗
t (z) = −γ

R
z (t, z) + Uz(t, z)(ηt − αt)

Uzz(t, z) −

∫
IR

(Uz +Hz)
(
t, z(1 + κ∗

t (z).hS(t, e)
)
.hS(t, e)ν(de)

Uzz(t, z) .

(1.3.45)
In this work, we wish to apply these results [46,89] in the field of machine learning for a financial
model with defects, in other word a financial model with jumps. Therefore, we will dedicate the
following section to introduce the main result of Matoussi and Mrad [89]:

Let us consider a stochastic process depending on a spatial parameter x. This parameter x,
motivated by economic considerations, represents the initial wealth of an investor, taking no
negative values in IR+. It can be viewed as a progressive random fields, in other word, it is a
random variable measurable w.r.t. IF∞ ⊗B(IR+)⊗B(IR0

+), which is a collection of progressive
processes t 7→ X(t, x). This approach is mainly based on stochastic flows technics. The idea
in [89], is to established the forward dynamics of the inverse flow X of a regular semi-martingale
X, monotone with respect to its initial condition. In [48], Authors study the regularity of semi-
martingales random field from the regularity of its local characteristics (ν, σ, h) and conversely
( [48, Theorem 1.3]). They establish in particular the backward dynamic of the inverse flow X

of a regular semimartingale X, monotonic with respect to its initial condition. In Matoussi and
Mrad [89] under some sufficient conditions, the authors are concerned by the forward dynamic
of the inverse flow of an Itô random field. This is a key result to establish the main results of
the paper and particularly to show that the marginal utility is a compound of two stochastic flow
satisfying a SDEs with jumps. So as in El Karoui and Mrad [46], the regularity of the coefficients
of SDEs is a fundamental.
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Therefore, we start by introducing a certain notion of differentiable random fields called Km,δ
loc -

regular as follows:

(i) X is said to be Km,δ
loc -regular (resp. Km,δ

loc -regular) if X is Cm,δ-random fields such that for
any compact K ⊂]0,+∞[, and any T ,

∫ T

0
∥ϕ∥m,δ:K(t, ω) <∞, (resp.

∫ T

0
∥ψ∥2m,δ:K(t, ω)dt <∞).

(ii) X is said to be K̂m,δ
loc,ν-regular if X is Cm,δ-random fields such that for any compact K ⊂

]0,+∞[, and any T ,

∫ T

0

∫
IR
∥ψ∥2m,δ:K(t, e, ω)ν(de)dt <∞.

(iii) We use the notations Km
b ,K

m
b , Km,δ

b ,Km,δ
b , K̂m

b,ν and K̂m,δ
b,ν , when these different norms are

well-defined on the whole space ]0,+∞[ where the derivatives (up to a certain order) are
bounded in the spatial parameter, with integrable (resp. square integrable) in time random
bound.

As we have previously mentioned, the key point in [45,46,89] is to show that the marginal utility
as the compound maps of Y and the inverse flow X. So we need to find the forward dynamics
of the inverse flow X of a regular semi-martingale X which is monotonic with respect to its initial
condition.

Theorem 1.3.3. (Matoussi and Mrad [89])
Let X be a solution of the following SDE(µ, σ, h),

dXt(x) = µ(t,Xt(x))dt+ σ(t,Xt(x))dWt +
∫

IR
h(t,Xt−(x), e)π̃(dt, de). (1.3.46)

Let δ ∈ [0, 1[ and assume (µ, σ, h) ∈ K2,δ
b ×K2,δ

b × K̂2,δ
b,ν .

(i) Then, the SDE(µ, σ, h) admits a unique strong solution X(z), starting from z at time t = 0.

(ii) If in addition, the maps z 7→ z+h(t, z, e) are homeomorphic, the map z → Xt(z) is strictly
increasing with inverse flow X(t, x) satisfying the following second order SPDE,

dX(t, x) =
[
Xx(t, x)

(
− µ(t, x) +

∫
IR
h(t, x, e)ν(de)

)
+ 1

2∂x

(
Xx(t, x)∥σ(t, x)∥2

)
− X(t, x) +

∫
IR
ψ(t, x, e)ν(de)

]
dt− Xx(t, x)σ(t, x)dWt

+
∫

IR

(
− X(t−, x) + X(t−, ψ(t, x, e))

)
π̃(dt, de), (1.3.47)
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where ψ(t, z, e) is the inverse map of z 7→ z + h(t, z, e).

Remarks 1. For the proof in [89], the authors use an extension of Iôt-Ventzel’s formula which
was established by Oksendal and Zhang [102].

As mentioned above, see details in [45, 46, 89], we study the marginal utility along the optimal
portfolio Uz(t,Xt) and show that Uz(t,Xt) is a price density process solution of some specific
SDE (the optimal SDE of the dual problem satisfied by the optimum Y ), regularity on the co-
efficients of this SDE show the existence and uniqueness and then leads to the main result:
Uz(t, z) = Y ◦ Uz(Xt(z)).

Using the above theorem and the Iôt-Ventzel’s formula, Matoussi and Mrad [89] introduce the
following results in order to gives the dynamics of the compound map Y ◦ X,

Corollary 1.3.4 (Matoussi and Mrad [89]). Let Y be a K2,δ
loc-semimartingale and X a K3,δ

loc-
semimartingale for some δ ∈]0, 1[, satisfying the dynamics

 dXt(x) = µ(t,Xt(x))dt+ σ(t,Xt(x))dWt +
∫

IR h(t,Xt−(x), e)π̃(dt, de),

dYt(y) = b(t, Yt(y))dt+ γ(t, Yt(y))dBi
t +

∫
IRq′ g(t, Yt−(y), e)π̃(dt, de).

(1.3.48)

Assume X to be monotonic with respect to its initial condition and let X denotes its inverse flow.
Then the compound map Φ(t, x) := Yt(X(t, x)) satisfies the following second order SPDE

dΦ(t, x) =
(
µY (t,Φ(t, x))− Φx(t, x)

[
µ(t, x) + σY

y (t,Φ(t, x))σ(t, x)
]

+1
2∂x

(
Φx(t, x)∥σ(t, x)∥2

))
dt

+
∫

IR

(
H(t, x, e)− hY (t,Φ(t, x), e) + Φx(t, x)h(t, x, e)

)
ν(de)dt

+
(
σY (t,Φ(t, x))− Φx(t, x)σ(t, x)

)
dWt +

∫
IR
H(t, x, e)π̃(dt, de),

with H(t, x, e) := Φ
(
t−, ψ(t, x, e)

)
+ hY (t,Φ(t−, ψ(t, x, e)), e)− Φ(t−, x).

According to [46, 89], the marginal utility is written as Uz = Y ◦ uz(Xt(z)), under Monotonicity
assumptions and the following necessary and sufficient condition:

Proposition 1.3.5. In the particular case where U(t, z) = zYt with

dYt = µY (t, Yt)dt+ σY (t, Yt)dWt +
∫

IR
hY (t, Yt− , e)π̃(dt, de). (1.3.49)
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The product XY follows the dynamics

d(XtYt) =
(
Xtµ

Y (t, Yt) + Ytµ
X(t,Xt) + σX(t,Xt)σY (t, Yt)

)
dt+

(
Xtσ

Y (t, Yt) + Ytσ
X(t,Xt)

)
dWt

+
∫

IR

hY (t, Yt, e)hX(t,Xt, e)ν(de)dt (1.3.50)

+
∫

IR

(
Xt−hY (t, Yt− , e) + Yt−hX(t,Xt− , e) + hY (t, Yt− , e)hX(t,Xt− , e)

)
π̃(dt, de).

Therefore, the process (XtYt)t is a local martingale if and only if

Xtµ
Y (t, Yt) + Ytµ

X(t,Xt) + σX(t,Xt)σY (t, Yt) +
∫

IR
hY (t, Yt, e)hX(t,Xt, e)ν(de) = 0, dt⊗ P.

Note that this result also characterizes a class of solutions of the SPIDE (1.3.44), making a
connection with those of two SDEs (1.3.40) and (1.3.41). From a numerical point of view we
can then propose a simple scheme to solve the SPIDE, by combining two Euler schemes to
solve the optimal SDEs, as established in [51,93].

On the field of forward utilities, the agent needs to adjust his preferences over time, then the
idea is to use the Forward approach to anticipate the future value observable and apply the
inverse problem using this prediction to deduct the value of the parameters that characterize
the system and this leads us to a family of forward model solutions consistent with the data and
not with a prediction.

As mentioned above, this forward thinking is suitable for the study of revealed preference
problems in vast and varied field like E-commerce, Robo-Advisor, artificial intelligence. It is
a learning approach based on the observation of the behavior of an agent. Roughly speak-
ing, the objective is always to learn about the utility of an agent (player, investor, e-commerce
customer) by observing its behavior in front of the important change of its fundamental param-
eters. So this work is a direct application of ideas developed in El Karoui and Mrad [45] to the
framework of robo-advisors.

1.3.2 Main results and contributions

Motivation Automated investment managers or robo-advisors, were imposed these last years
in the financial and economic world to replace or alternate with traditional human advisors. The
robo-advisors are online platforms that provide financial advice or portfolio management to an
investor or client. The performance of the robo-advisor strongly depends on its ability to ac-
curately assess the investor’s risk tolerance. They have many advantages over the investment
services offered by traditional management consultants. It knows the investor better than a
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traditional asset manager. Because of this better knowledge, the robo-advisor may propose
a more appropriate asset allocation. In addition, robo-advisor performs the task in a system-
atic way and implements an automated rebalancing process. From the client’s perspective, the
biggest advantage of robo-Advisors is that it provides a low-cost alternative to traditional invest-
ing.

The idea of this platforms is to develop a new investment framework in which the robo-advisor
not only manages the client’s portfolio, but also reacts regularly with him to obtain updated
information on his performance over time. More precisely, the client communicates his prefer-
ences to the robo-advisor only at specific update dates (τi)i. So between two update times,
the robo-advisor does not receive any information from the customer. Therefore, it develops
a framework to learn the investor’s preferences between two update times. In other words, by
observing the data communicated by the client at interaction dates, robo-advisor approximates
the preferences of the client to make investment decisions and it interacts repeatedly with the
client to update its information by asking the investor his new data to avoid making decisions
based on stale information. In general, the robo-advisor solicits this information through tar-
geted online questionnaires, and transfers it to digital data.

We assume that we have observations for several different initial conditions (zj)j . Such in-
formations are not necessarily collected in the questionnaires of the Robo-Advisors, but maybe
it is necessary because we know very well that the choices of an agent are strongly conditioned
by its initial position (its initial wealth). Moreover, without these observations, we have a little
chance to find the dynamic utility of the agent, see the papers [44–46,89].

Contribution In this work, we are interested in learning the dynamic utility. In other words,
even the robo-advisor builds the client’s utility U at specific update dates τi ( where is an in-
creasing sequence of jumps times ), it wants to approximate it all the time t. Therefore, we set
the following steps to achieve our goal:

1. Simulate the inverse flows X of the wealth process defined as a pure jumps process.

2. Build the price density process Y .

3. Build the dynamics of marginal utility Uz(t, z) = Yt(uz(Xt(z))).

4. Build the client’s utility U(τi, .) at τi update times.

5. Approximate utility U(t, .) at an intermediate date t ∈]τi, τi+1[ to be able to make decisions
for him.
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In this work, we have two main parts, the first to simulate the utility of the client based on
the results of the Mrad and its co-authors [46, 89, 93] and the second one is dedicated to the
utility learning between two update times. Therefore, in the following we propose algorithms to
approximate the inverse flow of X and Y in order to construct the marginal utility.

Simulation of inverse flow of (1.3.40) as a backward in time SDE :

In 2018, Gobet and Mrad [51] have discussed different approaches to the inverse flow of SDE
solution in the continuous framework (see Section 4 in [51]). Among these approaches, we are
interested in algorithm of inverse flow as a backward in time SDE which it has recently been
extended by Mrad [93] to the discountinuous case ( see section 4 [93]). In the following we
introduce some scheme to approximate the inverse flow of X.

Let us consider Xs,t(x) the solution, starting from x at time s, of the SDE with coefficients
(µ, σ, h). Denote by Xs,t the inverse map of Ys,t which can also be defined by Xs,t(x) :=
Xt(Xs(x)). This approach asks to consider the dynamics of Xs,t(x) in the variable s: doing
so, we aim at computing the inverse of Y backward in time instead of forward in time.
Simulating the inverse flow as a solution of a stochastic differential equation backward in time
was employed in [51] in a continuous case. With this result in hand, the approximation of Xs,t

is made possible simply using a standard Euler scheme like for Y n. Using similar notations as
below:

Scheme 1.3.1. Based on this key result, the approximation of the inverse flow X is achieved by
the following steps.

• Set XN
t,t(z) = z. If t = θk for some k ∈ J1, JK, set XN

t−,t(z) = z−k(t, z, Ek) else XN
t−,t(z) = z.

- For s ∈]τt, t], set

XN
s,t(z) = XN

t−,t − σ(t,XN
t−,t(z)) · (Bt −Bs) (1.3.51)

−
[
µ(t,XN

t−,t(z))− ∂zσ(t,XN
t−,t(z)) · σ(t,XN

t−,t(z))−
∫

IR
X(t,XN

t−,t(z), e)ν(de)
]
(t− s).

• For l ∈ J0, N + JK} satisfying tl < τt,

- if tl = θk for some k ∈ J1, JK, set XN
t−
l

,t
(z) = XN

tl,t
(z) − k(tl,XN

tl,t
(z), Ek) else XN

t−
l

,t
(z) =

XN
tl,t

(z)
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- and for s ∈ [t(l−1), tl[

XN
s,t(z) = XN

t−
l

,t
(z)− σ(tl,XN

t−
l

,t
(z)) · (Btl

−Bs) (1.3.52)

−
[
σ(tl,XN

t−
l

,t
(z))− ∂zσ(tl,XN

t−
l

,t
(z)) · σ(tl,XN

t−
l

,t
(z))−

∫
IR
h(tl,XN

t−
l

,t
(z), e)ν(de)

]
(tl − s).

Simulation of the price density process (1.3.41) using Euler schema

Let us consider a sequence e1, e2, ... of independent random variables with common exponential
distribution with parameter 1. We define

Λ(t) =
∫ t

0
λ(s)ds, t ∈ [0, T ].

To simplify, we take λ(t) = 1. The number of jumps of the random Poisson measure N(dt, de)
in an interval [0, t] is determined as

J(t) = max{k :
k∑

j=1
ej ≤ Λ(t)}.

We denotes by J = J(T ) the total number of jumps in [0, T ] and The jump times (τk)k of the
Poisson measure defined by

τk = Λ−1(
k∑

j=1
ej), k ∈ {1, ..., J},

where Λ−1 is the right continuous inverse of Λ. The jump times can be computed recursively by

ek =
∫ τk

τk−1
λ(s)ds, k ∈ {1, ..., J}.

Once the jump times are computed, we proceed to sample the marks {Ek}, that, conditionally
on the values of the jumps times, are independent random variables distributed respectively
according to {ν(de)}. The random measure with intensity λ(t)dtÖν(de) can then be constructed
as

π(dt, de) =
J∑

k=1
δ(τk,Ek)(dt, de).

Consequently, the stochastic intergal with respect to the Poisson random measure can be de-
fined as ∫ t

0

∫
IRd

h(s,Xs− , e)π(dt, de) =
J(t)∑
k=1

h(τk, Xτ−
k
, Ek), t ∈ [0, T ].
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Let N ≥ 1 and let us consider the discretization family {t̄i := i T
N , i ∈ J0, NK} of [0, T ]. We

consider also the jump times {τk, k ∈ J1, JK} with corresponding marks {Ek, k ∈ J1, JK}. Then,
we consider the argumented partition given by the union

PN = {tl, l ∈ J0, N + JK} =
{
t̄i := i

T

N
, i ∈ J0, NK

}
∪
{
τk, k ∈ J1, JK

}
.

Thus, using Euler scheme, the discretization of Y (1.3.41) is given by the following steps

Scheme 1.3.2. The Euler scheme to approximate the solution Y of the SDE (1.3.41) is given
by the following steps

• Set Y N
0 (x) = x.

• For k = 0, ...., N + J − 1, if t ∈ (tk, tk+1], then

Y N
t− (x) = Y N

tk
(x) + b(tk, Y N

tk
(x))(t− tk) + γ(tk, Y N

tk
(x))(Bt −Btk

).

• If tk+1 = τl for some l ∈ J1, JK, then we introduce a correction due to jumps discontinuities

Y N
tk+1(x) = Y N

tk
(x) + g(tk+1, Y

N
k+1(x), El).

Simulation of dynamic utility UN : According to Proposition 1.3.5, we must ensure that the
product XY remains a local martingale for the building of process X and Y . To ensure this
constraint, we must take care that the parameters of the jumps V and W (which help us to build
Y and X) are independent.

Once we have simulated X and Y , we can construct the marginal utility Uz as follows

UN (t, z) =
n∑

i=1
Y N

t (uz(XN
t (zi)))(zi+1 − zi)

which converges to

UN (t, z) =
∫ z

z0
Y N

t (uz(XN
t (x)))dx. (1.3.53)

Remark 1.3.6. It should be mentioned that the approximated utility must be concave with re-
spect to its wealth z.

This approach is based on the work of Mrad and his co-authors [45, 46, 89], it allows us to
estimate the agent’s utility at dates and interaction points. This is a very important step as until
now there was no idea how to quantify the preferences of an agent from these choices. The
goal then, starting from the values obtained (U(ti, zj))i,j , is to estimate U(t, z) for all (t, z) and
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to predict its future decisions. For this we will use different machine learning algorithms and we
will compare them.

Learning utilities method

In the second part, we propose different methods to learn client’s utilities. Let’s assume that the
client has enough sufficient interaction with the machine. Can we approximate/learn his utility
until the next interaction date so that the machine can make decisions for him while remaining
consistent with his preferences and past decisions ?
The aim in the following is to propose an algorithm for learning the preferences of the agent.
As we do not have an access to a real data, we will simulate our own data, the client’s utility
from the observations (X)i,j and (Y )i,j for (i, j) ∈ J1, JK × J1, nK using the above procedure.
The generated values U(τi, zj) will play the role of starting data for our learning algorithms.
This kind of algorithm could clearly be used on robo-advisor platforms, since it can ”predict”
(over a short period of time) the preferences of an agent and therefore can make decisions for
him/her.

Machine Learning algorithms automatically learn to perform a task or make predictions from
data and improve their performance over time. Once trained, the algorithm will be able to find
patterns in new data. Depending on the information available during the learning phase, learn-
ing is qualified in different ways. If the data are labeled (i.e., the response to the task is known
for these data), it is supervised learning. It is called classification if the labels are discrete, or
regression if they are continuous. If the model is learned in an iterative way, according to a
reward received by the program for each action taken, it is called reinforcement learning. In
the most general case, without labels, we try to determine the underlying structure of the data
(which can be a probability density) and it is then called unsupervised learning.

Here, we are interested in supervised learning. Our task is to predict a target value which
is the value of utility at fixed time τi, denoted by (Ui

j)j∈J1,nK a vector of the matrix (U(τi, zj)), for
(i, j) ∈ J1, NK× J1, nK from different initial wealth values (zj)J1,nK and fixed value τi:

Ui
j := (U(τi, zj))j∈J1,nK.

In Machine Learning, all starts from a Dataset which contains our data. In supervised learning,
the Dataset contains the questions (Zj)j∈J1,nK and answers (Ui

j)j∈J1,nK to the problem that the
machine must solve.

In this work, we have chosen to use Scikit-learn library of Python contains all the math-
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ematical functions which are necessary for learning problems. Scikit-learn is an open source
machine learning library that supports supervised and unsupervised learning. It also provides
various tools for model fitting, data preprocessing, model selection and evaluation and many
other utilities. In a few lines, we can develop a learning models as follows:

• Create the Dataset. (Zin,Ui) such that

– Zin are the input datas. It contains different initial values of wealth (zj)j∈J1,nK, (i.e)

(Zi
j)j∈J1,nK = (zj)j∈J1,nK.

– Ui are the target. It contains a vector of the approximated utility matrix (U(τi, zj)) for
(i, j) ∈ J1, NK× J1, nK.

• Define our model: choose the best model to fit our data set among the predefined models
in the package.

• Fitting SKlearn.fit(Zin,Ui) : The objective is fitted the model, (i.e), the machine must
learn from the model.

1. The samples matrix Zin. The size of Zin is typically (n_samples, n_features), which
means that samples are represented as lines and features are represented as columns.

2. The target values Ui is usually 1d array where the i-th entry corresponds to the target
of the i th sample of Zin.

• Predicting: SKlearn.predict(Zin): Once the estimator is fitted, it can be used for predicting
target values of new data. For this step we have as output :

Up,i := SKlearn.predict(Zin),

such that Up represents the value predicted with our model.

• Evaluation: SKlearn.score(Zin,Ui): We can now observe the accuracy of our model us-
ing the function Model.score. This function returns the coefficient of determination R2 of
the prediction. The coefficient R2 is defined as

R2 = 1− (Ui − Up,i)2

(Ui − Ū)2 ,

with Ū := 1
N

N∑
j=1

Ui
j represents the mean of (Ui

j)j .
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In this work, we propose to use two packages from Scikit-learn library create our model and
we will compare the results:

• Support vector Machine : In machine learning, support-vector machines (SVM in
short) are supervised learning models with associated learning algorithms that analyze
data for classification and regression analysis, developed by Vladimir Vapnik et Alexey
Chervonenkis. The problem of Support Vector regression ( SVR) is to find a function that
approximates mapping from an input domain of real numbers on the basis of a training
sample. The objective, when we are moving on with SVR, is to basically consider the
points that are within the decision boundary line. The best fit line is the hyperplane of the
equation ajZ

in
j + b, ∀j ∈ J1, nK that has a maximum number of points.

Thus, to summarize, we are looking for a hyperplane such that most of train observation
are inside the marge ϵ and we need to add a supplementary constraint

Ui
j − (ajzj + b) ≤ ϵ+ ξj , if the point is above the margin, (1.3.54)

and
(aizj + b)− Ui

j ≤ ϵ+ ξ∗
j , if the point is below the margin, (1.3.55)

where

1. Zin = (Zin
j )j∈J1,nK represents the input defined by different initial values of the wealth.

2. (a, b) represent the parameters of weigth (ai)i and biais b: we choose it randomly at
the beginning then we try to find the optimal values in the algorithm.

3. Ui = (Ui
j)j := (U(τi, zj))j represents the target: the value which we try to predict. We

remain that the target is defined by a column vector of the matrix U(τi, zj)i∈J1,NK,j∈J1,nK

at fixed τi.

4. ϵ is the width of the margin of hyperplan.

5. (ξj)j , (ξ∗
j )j ≥ 0 represent the error of the observations outside the hyperplane.

This problem allow some observations to fall on the wrong side of the margin, but will
penalized them by the parameter C. Finally, we can introduce our optimization problem:

min
a∈IRn,b∈IR

1
2 ||a||

2 + C
l∑

j=1
(ξj + ξ∗

j )

 , (1.3.56)

where l is the number of the points outside the margin, under the constraint 1.3.54-
1.3.55.
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Remarks 2. The optimization problem (4.3.10)-(4.3.11) can be solved in a numerical way
very efficiently by the SVR model described above.

Basically, the idea of SVR model is to minimize the sum of squared weights by taking into
account the misclassified observations in order to maximize the margin.
The second idea of support vector machine is the kernel method. It is an extension to
non-linear cases. It is quite simple and relies on the projection of the data in a higher
dimensional space in which the problem becomes linear. The kernel method is a mathe-
matical trick to solve this problem elegantly, by defining the transformations ϕ and scalar
products via a kernel k(a, b) = ϕ(a)Tϕ(b) such that the equation of hyperplan is as follow

Up
j := ajϕ(Zin

j ) + b.

Therefore, using the kernel method, the optimization problem (1.3.57)-(1.3.58) becomes

min
a∈IRn,b∈IR

{
1
2 ||a||

2 + C
l∑

i=1
(ξj + ξ∗

j )
}
, (1.3.57)

where l is the number of the points outside the margin and we remains that ξj = Ui
j −

(aj ϕ(zj) + b− ϵ) and ξ∗
j = (aj ϕ(zj) + b+ ϵ)− Ui

j ,
under the following constraint

Ui
j − (aj ϕ(Zin

j ) + b) ≤ ϵ+ ξj ,

(aj ϕ(Zin
j ) + b)− Ui

j ≤ ϵ+ ξ∗
j ,

ξj , ξ
∗
j ≥ 0,∀j.

(1.3.58)

We also chose to use the NuSVR model of the SVM class: for this model, we add a
new parameter ν which controls the number of support vectors and allows to compute
automatically ϵ.
Then, for ν ∈ (0, 1], the optimization problem becomes for fixed time t:

min
a∈IRn,b∈IR

{
1
2 ||a||

2 + C(ν ϵ+ 1
l

l∑
i=1

(ξi + ξ∗
i )
}
, (1.3.59)

where l is the number of the points outside the margin and we remains that ξj = Ui
j −

(aj ϕ(zj) + b− ϵ) and ξ∗
j = (aj ϕ(zj) + b+ ϵ)− Ui, under the same constraint.

• Neural Network model : A neural network is an artificial neural network with multiple lay-
ers between the input and output layers. In general, it is made up of three types of layers:
the first layer is called the input layer, the last layer is called the output layer and possi-
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bly other layers called hidden layers. we use the Multi-layer Perceptron model of Neural
Network class of SKlearn library. Multi-layer Perceptron (MLP) is a supervised learning
algorithm that learns a function Ui by training on a dataset. Given a set of features Zin

and a target Ui, it can learn a non-linear function approximator for either classification or
regression. It is different from logistic regression, in that between the input and the output
layer, there can be one or more non-linear layers, called hidden layers.
The idea of Machine Learning is to let the machine find the parameters θl,i

k := (a, b) for
the l-th and k-th node layer of the model that minimize the cost function J . In order to do
this, we need to use a back-propagation learning algorithm.
Actually, the differences between these outputs Up and the desired outputs U t form er-
rors that are corrected via back-propagation, the weights of the neural network are then
changed. By applying this step several times, the error tends to decrease and the network
offers a better prediction.
Then for a fixed neural network structure, number of layers, number of neurons in each
layer and fixed activation functions, the program therefore amounts to determine the set
of parameters such that

θ∗ := arg min
θ
J(θ).

In this work, we choose the LBFGS solver as Back-propagation algorithm of the op-
timization problem. LBFGS is named from the initials of the mathematicians Broyden,
Fletcher, Goldfarb and Shanno, who discovered it independently in the late 1960s. This
learning algorithm is based on Newton’s method which fits the weights using additionally
the Hessian matrix H gives the second derivatives of the cost function J with respect to
the weights in the following way:

θl,i
k,j = θl,i

k,j − αH
−1∂J(θl,i

k )
∂θl,i

k,j

, j = 0, ..., nl + 1, for the l-yh hidden layer and the k-th node.

At the end of this work, we implemented these methods in order to predict the dynamic utility
of an agent and compared these different learning methods implemented.

Finally, we can deduce that the neural network model is the best prediction model for our
dataset. Beside the other models used in this work are not so bad. Unfortunately, there are no
clear rules to follow to choose the model to use from the beginning. In fact, it is recommended
to start with the easiest and simplest examples, if these models do not work then consider using
a more sophisticated model.

48







CHAPTER 2

MEAN FIELD CONTROL PROBLEM AND

APPLICATION TO PRODUCTION OF AN

EXHAUSTIBLE RESOURCE

2.1 Introduction

Our ain in this chapter is to study a linear quadratic optimal control for mean field stochastic
differential equation with jumps. We will use a weak formulation of the standard martingale
optimality principle to solve our control problem. This approach is used in the verification theo-
rem for stochastic control problem which is a crucial step in the classical approach to dynamic
programming ( see e.g [47, 66]). We prove the existence of an unique optimal control on finite
horizon, by using this method under some assumptions on the coefficients. The optimality of
the control is derived by the stability of an decoupled system of Riccati equation and backward
stochastic differential equation with jumps. We also consider the problem with common noise
adding up some assumptions on the coefficients. On the other hand, we introduce also the
linear quadratic problem on the infinite case. This work can be regarded as an extension of the
work of Basei and Pham [11] to the case with jumps.
The main motivation behind this work comes from stochastic model of production of an ex-
haustible resource, such as oil. It was inspired by Pindyck [107] from Hotelling’s work [63] and
it was adapted later on many works [37,38,41,86]. In the model, the reserves of an exhaustible
are a depleted resource, but there was a possibility of exploration and discovery of new re-
serves which ensure the accumulating or maintaining a level of this reserves. We modelled the
new discoveries occur according to a jump process with intensity given by the exploration effort.
The outline of this chapter is a follows. After recalling some notation, we give in Section 2.3 a
detailed description of the techniques used to show the existence of the unique optimal con-
trol, we then use the weak formulation of verification theorem introduced in previous section. In
Section 2.4, we extend our results to the case where a common noise is present, so we add a
new assumptions for the new parameters.
We adapt also our results to the infinite-horizon case, in Section 2.5. Here, we kept the similar
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steps as the case of the finite horizon to apply verification theorem on this case, except that we
should look for the stability of decoupled system of Riccati equation on infinite horizon.
Finally, in Section 2.6, we introduce an application of production of of exhaustible resource with
accumulating or maintaining a level of reserves where this increments of reserves is repre-
sented via a Poisson process. This work is concertized in the preprint [88].

2.2 Framework: Notations and setting

Let T > 0 be a given time horizon and (Ω,F,F := (Ft)t≤T ,P) be a stochastic basis such that
F0 contains all the P -null sets of F, Ft+ = ∩ε>0Ft+ε = Ft, and we suppose that the filtration is
generated by the two following mutually independent processes :

(i) a standard real Brownian motion B := (Bt)0≤t≤T and

(ii) a Poisson random measure π on IR+ × χ, where χ ⊂ IR \ {0} is equipped with its Borel
field B(χ). Throughout this paper the measure λ(.) is assumed to be finite on (χ,B(χ))
i.e.

∫
χ λ(de) <∞. Let η(dt, de) = λ(de)dt be its compensated process, i.e., {π̃([0, t]×A) =

(π − η)([0, t]×A)}t≤T is a martingale for every A ∈ B(χ).

Let ρ ≥ 0 be the discount factor and define A the set of admissible controls as follows:

A := {α : Ω× [0, T ]→ IRm s.t α is IF -predictable and
∫ T

0
e−ρtE[|αt|2]dt <∞}.

Let Sd be the set of symmetric matrices and (H, |.|) a normed space. We define the following
sets:

• L∞([0, T ],H) :=
{
ϕ : [0, T ]→ H s.t. ϕ is measurable and sup

0≤s≤T
|ϕs| <∞

}
,

• K∞([0, T ]× χ,H) :=
{
ϕ : [0, T ]→ H s.t. ϕ is measurable and sup

0≤s≤T,e∈χ
|ϕs(e)| <∞

}
,

• L2([0, T ],H) := {ϕ : [0, T ]→ H s.t. ϕ is measurable and E
[∫ T

0
e−ρs|ϕs|2ds

]
<∞},

• L2
FT

(H) :=
{
ϕ : Ω→ H s.t. ϕ is FT -measurable and E[|ϕs|2] <∞

}
,

• S2
F(Ω× [0, T ],H) := {ϕ : Ω× [0, T ]→ H s.t. ϕ is F-progressively measurable

and E[ess sup
s∈[0,T ]

|ϕs|2] <∞},

• L2
F(Ω× [0, T ],H) := {ϕ : Ω× [0, T ]→ H s.t. ϕ is F-progressively measurable

and
∫ T

0
e−ρsE[|ϕs|2]ds <∞},
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• K2
F(Ω× [0, T ]×χ,H) := {K : Ω× [0, T ]×χ→ H s.t. K is P⊗B(χ)-measurable process

and E[
∫ T

0

∫
χ
|Ks(e)|2 λ(de)ds] <∞},

where P denote the σ−field of F-predictable sets on Ω× [0, T ].

We define the controlled linear mean field stochastic differential equation in IRd, for a given
F−measurable random variable X0 and a control α ∈ A, by:

dXα
t = bt(Xα

t ,E[Xα
t ], αt,E[αt])dt+ σt(Xα

t ,E[Xα
t ], αt,E[αt])dWt

+
∫
X
Rt(Xα

t− ,E[Xα
t− ], αt,E[αt], e)π̃(de, dt),

Xα
0 = X0,

(2.2.1)

where for each t ∈ [0, T ], x, x̄ ∈ IRd, a, ā ∈ IRm and e ∈ χ, we set:

bt(x, x̄, a, ā) := βt +Atx+ Ãtx̄+Bta+ B̃tā, (2.2.2)

σt(x, x̄, a, ā) := γt + Ctx+ C̃tx̄+Dta+ D̃tā,

Rt(x, x̄, a, ā, e) := Rt(x, x̄, a, ā)(e)

:= δt(e) + Ft(e)x+ F̃t(e)x̄+Gt(e)a+ G̃t(e)ā.

Here β, γ are vector-valued F−progressively processes, δ is vector-valued F−predictable pro-
cess, and A, Ã, B, B̃, C, C̃, D, D̃, F , F̃ , G, G̃ are deterministic matrix-valued functions
such that A, Ã, C, C̃ : [0, T ] → IRd×d, B, B̃,D, D̃ : [0, T ] → IRd×m. In the other hand
F, F̃ : [0, T ]×Ω×χ→ IRd×d and G, G̃ : [0, T ]×χ→ IRm×d are P⊗B(χ)-measurable process .
We consider a quadratic cost functional to be minimized over α ∈ A of the following type:

J(α) := E
[∫ T

0
e−ρtft(Xα

t ,E[Xα
t ], αt,E[αt])dt+ e−ρT g(XT ,E[XT ])

]
, (2.2.3)

where for each t ∈ [0, T ], x, x̄ ∈ IRd and a, ā ∈ IRm

ft(x, x̄, a, ā) := (x− x̄)⊤Qt(x− x̄) + x̄⊤(Qt + Q̃t)x̄+ 2a⊤It(x− x̄) (2.2.4)

+ 2ā⊤(It + Ĩt)x̄+ (a− ā)⊤Nt(a− ā) + ā⊤(Nt + Ñ)ā+ 2M⊤
t x+ 2H⊤

t a,

and
g(x, x̄) := (x− x̄)⊤P (x− x̄) + x̄⊤(P + P̃ )x̄+ 2L⊤x. (2.2.5)

The coefficients M,H,L defined in (2.2.4) and (2.2.5) are vector-valued F−progressively mea-
surable processes such that M : [0, T ] × Ω → IRd, H : [0, T ] × Ω → IRm and L : Ω → IRd

and the other coefficients Q, Q̃, P, P̃ ,N, Ñ , I, Ĩ, are deterministic matrix-valued functions such
that Q, Q̃ : [0, T ]→ Rd×d, P, P̃ ∈ Rd×d, N, Ñ : [0, T ]→ Rm×m and I, Ĩ : [0, T ]→ Rm×d. The
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symbol ⊤ denotes the transpose operator of any vector or matrix.
Now, we assume the following conditions on the coefficients of the problem :

(H1) The coefficients in equations (2.2.2) satisfy:

(i) β, γ ∈ L2
F(Ω× [0, T ], IRd) and δ ∈ K2

F(Ω× [0, T ]× χ, IRd),

(ii) A, Ã, C, C̃ ∈ L∞([0, T ], IRd×d), B, B̃,D, D̃ ∈ L∞([0, T ], IRd×m),
G(.), G̃(.) ∈ K∞([0, T ]× χ, IRd×m) , F (.), F̃ (.) ∈ K∞([0, T ]× χ, IRd×d) .

(H2) The coefficients in equations (2.2.4)-(2.2.5) satisfy:

(i) Q, Q̃ ∈ L∞([0, T ], Sd), P, P̃ ∈ Sd, N, Ñ ∈ L∞([0, T ],Sm), I, Ĩ ∈ L∞([0, T ], IRm×d),

(ii) M ∈ L2
F(Ω× [0, T ], IRd), H ∈ L2

F(Ω× [0, T ], IRm), L ∈ L2
F(IRd),

(iii) there exists ξ > 0 such that, for each t ∈ [0, T ],

Nt ≥ ξIm, P ≥ 0, Qt − I⊤
t N

−1
t It ≥ 0,

(iv) there exists ξ > 0 such that, for each t ∈ [0, T ],

Nt + Ñt ≥ ξIm, P + P̃ ≥ 0, (Qt + Q̃t)− (It + Ĩt)⊤(Nt + Ñt)−1(It + Ĩt) ≥ 0.

In order to simplify, we denote Xt for Xα
t , X̄t for E[Xα

t ], ᾱ for E[αt] and bt(x, x̄), σt(x, x̄),
Rt(x, x̄)(e) for bt(x, x̄, α, ᾱ), σt(x, x̄, α, ᾱ) and Rt(x, x̄, α, ᾱ)(e). The following lemma gives an
estimate for the solution of mean field SDE (2.2.2).

Lemma 2.2.1. Let Assumption (H1) be satisfied. Then for any admissible control α, the equa-
tion (2.2.1) has a unique solution (Xt)t ∈ S2

IF . Moreover, we have the following estimate:

E
[

sup
0≤t≤T

|Xt|2
]
≤ C(1 + E

[
|X0|2

]
), (2.2.6)

where C is a positive constant which depends on α.

Proof. We will use the fixed point argument of an appropriate map l defined from L2
F(Ω ×

[0, T ], IRd) into itself such that (Xt)t := l((xt)t) where (Xt)t is solution of the SDE:

dXt = bt(xt,E[xt])dt+ σt(xt,E[xt])dWt +
∫

χ
Rt(xt,E[xt])(e)π̃(de, dt), (2.2.7)
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Given x1, x2 ∈ L2
F(Ω× [0, T ], IRd), we define X1 and X2 by using equation (2.2.7). We asssume

that X1
0 = X2

0 . We define L = ||A||∞ ∨ ||Ã||∞ ∨ ||C||∞ ∨ ||C̃||∞ ∨ ||F ||∞ ∨ ||F̃ ||∞. Then

E[|X1
t −X2

t |2] ≤ 2E[|
∫ t

0
bs(x1

s,E[x1
s])− bs(x2

s,E[x2
s])ds|2]

+ 2E[|
∫ t

0
σs(x1

s,E[x1
s])− σs(x2

s,E[x2
s])dBs|2]

+ 2E[|
∫ t

0
Rs(x1

s− ,E[x1
s− ])(e)−Rs(x2

s− ,E[x2
s− ])(e)π̃(de, ds)|2].

From the definition of bs and using Cauchy Scharwz’s inequality, we have:

|bs(x1
s,E[x1

s])− bs(x2
s,E[x2

s])|2 = |As(x1
s − x2

s) + Ãs(E[x1
s]− E[x2

s])|2

≤ 2L2(|x1
s − x2

s|2 + E[|x1
s − x2

s|2]).

Using again Cauchy Scharwz’s inequality, we have:

E[|
∫ t

0
bs(x1

s,E[x1
s])− bs(x2

s,E[x2
s])ds|2] ≤ 4L2T

∫ t

0
E[|x1

s − x2
s|2]ds. (2.2.8)

For the stochastic integral terms, we have:

E[|
∫ t

0
σs(x1

s,E[x1
s])− σs(x2

s,E[x2
s])dBs|2] ≤ 4L2

∫ t

0
E[|x1

s − x2
s|]ds (2.2.9)

E[|
∫ t

0
Rs(x1

s− ,E[x1
s− ])(e)−Rs(x2

s− ,E[x2
s− ])(e)π̃(de, ds)|2]

≤ 4L2λ(χ)
∫ t

0
E[|x1

s − x2
s|2]ds. (2.2.10)

Plugging inequalities (2.2.8)-(2.2.10) into (2.2.7), we obtain:

E[|X1
t −X2

t |2] ≤ 4L2(1 + T + λ(χ))
∫ t

0
E[|x1

s − x2
s|2]ds.
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For a positive constant c, we define the norm ||x||2c := E[
∫ T

0 e−cs|xs|2ds]. Then, we have:

||X1 −X2||2c :=
∫ T

0
E[|X1

t −X2
t |2]e−ctdt

≤ 4L2(1 + T + λ(χ))
∫ T

0

∫ t

0
E[|x1

s − x2
s|2]dse−ctdt

≤ 4L2(1 + T + λ(χ))
∫ T

0
E[|x1

s − x2
s|2]

∫ T

s
e−ctdtds

≤ 4L2(1 + T + λ(χ))
c

∫ T

0
E[|x1

s − x2
s|2]e−csds

= 4L2(1 + T + λ(χ))
c

||x1 − x2||2c .

For c large enough, we have 4L2(1+T +λ(χ))
c < 1. Therefore l is a contraction mapping on L2

F(Ω×
[0, T ], IRd) into itself, and so l has a unique fixed point X ∈ L2

F(Ω × [0, T ], IRd) which is the
unique solution to the mean field SDE (2.2.1).
We turn to prove estimate (2.2.6). For n ∈ IN , we define τn := inf{t ≥ 0, |Xt −X0| ≥ n} and
fn(t) := E[sup

s≤t
|Xs∧τn −X0|2]. For all t ≤ T , we have:

sup
t≤T
|Xt∧τn −X0|2 ≤ 2(sup

t≤T
|
∫ t∧τn

0
bs(Xs,E[Xs], αs,E[αs])ds|2

+ sup
t≤T
|
∫ t∧τn

0
σs(Xs,E[Xs], αs,E[αs])ds|2

+ sup
t≤T
|
∫ t∧τn

0

∫
χ
Rs(Xs− ,E[Xs− ], αs,E[αs], e)π̃(de, ds)|2).

Using Cauchy Scharwz’s inequality and Burkholder-Davis-Gundy Inequality, we have:

E[sup
t≤T
|Xt∧τn −X0|2] ≤ C(TE[

∫ T

0
|bs∧τn(Xs∧τn ,E[Xs∧τn ], αs∧τn ,E[αs∧τn ])|2ds

+ E[
∫ T

0
|σs∧τn(Xs∧τn ,E[Xs∧τn ], αs∧τn ,E[αs∧τn ])|2ds]

+ E[
∫ T

0

∫
χ
|Rs∧τn(Xs∧τn ,E[Xs∧τn ], αs∧τn ,E[αs∧τn ], e)|2λ(de)ds], (2.2.11)

where C is a positive constant which could change from line to line. For α ∈ A and using the
definition of the drift of the state process X (See Equation(2.2.1)), under (H1), we have:

E[
∫ T

0
|bs∧τn(Xs∧τn ,E[Xs∧τn ], αs∧τn ,E[αs∧τn ])|2ds] ≤

∫ T

0
CE[1 + |Xs∧τn |2 + E[|Xs∧τn |]2]

≤
∫ T

0
C(1 + E[|X0|2] + fn(s))ds (2.2.12)
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Similarly, we have:

E[
∫ T

0
|σs∧τn(Xs∧τn ,E[Xs∧τn ], αs∧τn ,E[αs∧τn ])|2ds]

+ E[
∫ T

0

∫
χ
|Rs∧τn(Xs∧τn ,E[Xs∧τn ], αs∧τn ,E[αs∧τn ], e)|2λ(de)ds]

≤
∫ t

0
C(1 + E[|X0|2] + fn(s))ds. (2.2.13)

Plugging inequalities (2.2.12) and (2.2.13) into (2.2.11) and using Gronwall’s lemma, we obtain

E[sup
s≤T
|Xs∧τn −X0|2] ≤ C(1 + E[|X0|2]).

Sending n to infinity, by monotone convergence theorem, we obtain E[sup
s≤T
|Xs −X0|2] ≤ C(1 +

E[|X0|2]) and so the estimate (2.2.6) is obtained.

2.3 Linear quadratic mean field control problem on finite horizon

To solve a linear quadratic mean field control problem ( LQMF control problem in short), we
have to find a strategy α∗ ∈ A, such that

V := J(α∗) = inf
α∈A

J(α), (2.3.14)

where the criterion J is defined by (2.2.3). By Assumption (H2) and the estimate (2.2.6), the
LQMF control problem (2.3.14) is well defined. The aim of this section to solve this control
problem on finite horizon by proving a suitable verification theorem.
We are going to use a weak formulation of the standard martingale optimality principle, see
e.g [47,66].

Lemma 2.3.1. (Finite horizon Verification Theorem, Lemma 3.1 in [11])
Let {Wα

t , t ∈ [0, T ], αt ∈ A} be a family of F-adapted process in this form Wα
t = wt(Xα

t ,E[Xα
t ])

for some F−adapted random field {wt(x, x̄), t ∈ [0, T ], x, x̄ ∈ IRd} satisfying

wt(x, x̄) ≤ C(Xt + |x|2 + |x̄|2), t ∈ [0, T ], x, x̄ ∈ IRd, (2.3.15)

where C is a positive constant, X is a non-negative process satisfying supt∈[0,T ] E[|Xt|] < ∞,
and

(i) wT (x, x̄) = g(x, x̄), x, x̄ ∈ IRd,
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(ii) the map t ∈ [0, T ] 7−→ E[Sα
t ], with Sα

t = e−ρtWα
t +

∫ t
0 e

−ρsfs(Xα
s ,E[Xα

s ], αt,E[αt])ds, is
non-decreasing for all α ∈ A,

(iii) the map t 7−→ E[Sα∗
t ] is constant for some α∗ ∈ A.

Then, α∗ is an optimal control and E[w0(X0,E[X0])] is the value of the LQMF control problem
(2.3.14) i.e.

V0 = E[w0(X0,E[X0])] = J(α∗).

Moreover, any other optimal control satisfies the condition (iii).

Proof. From the growth condition (2.3.15) and the estimate (2.2.6), for all t ∈ [0, T ] and α ∈
A, E[Sα

t ] is well defined. From condition (i), we have E[e−ρTWα
T ] = E[e−ρT g(XT , X̄T )], which

implies E[Sα
T ] = J(α).

From condition (ii), we have

E[Wα
0 (X0, X̄0)] = E[Sα

0 ] ≤ E[Sα
T ] = J(α).

In the other side, for α = α∗ and using condition (iii), we have

E[Wα∗
0 (X0, X̄0)] = E[Sα∗

0 ] = E[Sα∗
T ] = J(α∗),

which ensures the optimality of control α∗.
Moreover, we consider an another optimal control α̃ ∈ A, then we have

E[Wα̃
0 (X0, X̄0)] = E[Sα̃

0 ] = E[Sα∗
0 ] = E[Sα∗

T ] = J(α∗) = J(α̃).

Since the map t→ E[Sα̃
t ] is non-decreasing, so it is constant, and we conclude the proof.

We start by introducing the following notations:

Â := A+ Ã, B̂ := B + B̃, Ĉ := C + C̃, D̂ := D + D̃, F̂ := F + F̃ ,

Ĝ := G+ G̃, Î := I + Ĩ , N̂ := N + Ñ , Q̂ := Q+ Q̃, P̂ := P + P̃ .

Our aim is to find the expression of the random field wt(x, x̄) which satisfies the assumptions
of Lemma (2.3.1).
From the quadratic form of the cost functional ft in (2.2.4) and the terminal cost gt in (2.2.5),
we guess the quadratic form of random field {wt(x, x̄), t ∈ [0, T ], x, x̄ ∈ IRd} i.e.

wt(x, x̄) = (x− x̄)⊤Kt(x− x̄) + x̄⊤Λtx̄+ 2Y ⊤
t x+ φt, (2.3.16)
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where (K,Λ, Y, φ) are valued in Sd × Sd × IRd × IR and solution of the following system:

dKt =
.
Ktdt, 0 ≤ t ≤ T, KT = P,

dΛt =
.
Λtdt, 0 ≤ t ≤ T, Λ = P̂ ,

dYt =
.
Y tdt+ ZY

t dWt +
∫

χ
RY

t (e)π̃(de, dt), 0 ≤ t ≤ T, YT = L,

dφt = .
φtdt, 0 ≤ t ≤ T, φT = 0.

(2.3.17)

The deterministic functions (
.
K,

.
Λ, .
φ) are valued in Sd × Sd × IR, the processes (

.
Y , ZY ) are

F-adapted valued in IRd × IRd and RY is F-predictable process valued in IRd. For α ∈ A, we
consider Sα defined as:

Sα
t = e−ρtwt(Xt, X̄t) +

∫ t

0
e−ρsfs(Xs, X̄s, αt, ᾱt)ds, t ∈ [0, T ]. (2.3.18)

Then E[Sα
t ] satifies the following ODE:

dE[Sα
t ] = e−ρtE[Dα

t ]dt,

where the drift E[Dα
t ] is defined as follows:

E[Dα
t ] = E

[
−ρwt(Xt, X̄t) + d

dt
E[wt(Xt, X̄t)] + ft(Xt, X̄t, αt, ᾱt)

]
.

From the dynamics of Xt (See equation (2.2.1)), we have:

dX̄t = [β̄t + ÂtX̄t + B̂tᾱt]dt, (2.3.19)

and

d(Xt − X̄t) = [(βt − β̄t) +At(Xt − X̄t) +Bt(α− ᾱt)]dt (2.3.20)

+ [γt + Ct(Xt − X̄t) + ĈtX̄t +Dt(αt − ᾱt) + D̂tᾱt]dWt

+
∫

χ
[δt + Ft(e)(Xt− − X̄t−) + F̂t(e)X̄t− +Gt(e)(αt − ᾱt) + Ĝt(e)ᾱt]π̃(de, dt).

We apply the Itô’s formula to wt(Xt, X̄t), we use the quadratic form of the running cost ft and
the dynamics of equations (2.3.19), (2.3.20) and (2.2.1), we obtain :

E[Dα
t ] =E

[
(Xt − X̄t)⊤(

.
Kt + ϕt)(Xt − X̄t) + X̄⊤

t (
.
Λt + ψt)X̄t (2.3.21)

+2(
.
Y t + ∆t)⊤Xt + .

φt − ρφt + Γ̄t + κt(α)
]
,
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where, for t ∈ [0, T ],

ϕt := −ρKt +KtAt +A⊤
t Kt + C⊤

t KtCt +Qt +
∫

χ
F⊤

t (e)KtFt(e)λ(de) = ϕt(Kt),

ψt := −ρΛt + ΛtÂt + Â⊤
t Λt + Ĉ⊤

t KtĈt + Q̂t +
∫

χ
F̂⊤

t (e)KtF̂t(e)λ(de) = ψt(Kt,Λt),

∆t := −ρYt +A⊤
t (Yt − Ȳt) + Â⊤

T Ȳt + C⊤
t (ZY

t − ZY
t) + Ĉ⊤

t Z
Y

t

+Kt(βt − β̄t) + Λtβ̄t + C⊤
t Kt(γt − γ̄t) + Ĉ⊤

t Ktγ̄t +Mt

+
∫

χ
F⊤

t (e)(RY
t (e)− R̄Y

t (e))λ(de) +
∫

χ
F̂t(e)⊤R̄Y

t (e)λ(de)

+
∫

χ
F⊤

t (e)Kt(δt(e)− δ̄t(e))λ(de) +
∫

χ
F̄t(e)⊤Ktδ̄t(e)λ(de)

= ∆t(Kt,Λt, Yt, Ȳt, Z
Y
t , Z

Y
t, R

Y
t , R

Y
t),

Γt := γ⊤
t Ktγt + 2β⊤

t Yt + 2γ⊤
t Z

Y
t +

∫
χ
δt(e)⊤Ktδt(e)λ(de) + 2

∫
χ
δt(e)⊤RY

t (e)λ(de)

= Γt(Kt, Yt, Z
Y
t , R

Y
t ),

and

κt(α) := (αt − ᾱt)⊤St(α− ᾱt) + ᾱ⊤
t Ŝtᾱt + 2(Ut(Xt − X̄t) + VtX̄t + Θt + ϵt − ϵ̄t)αt. (2.3.22)

Here St, Ŝt, Ut, Vt,Θt which appear in (2.3.22), are defined as follows

St := Nt +D⊤
t KtDt +

∫
χ
G⊤

t (e)KtGt(e)λ(de),

Ŝt := N̂t + D̂⊤
t KtD̂t +

∫
χ
Ĝ⊤

t (e)KtĜt(e)λ(de),

Ut := It +D⊤
t KtCt +B⊤

t Kt +
∫

χ
G⊤

t (e)KtFt(e)λ(de),

Vt := Ît + D̂⊤
t KtĈt + B̂tΛt +

∫
χ
Ĝ⊤

t (e)KtF̂t(e)λ(de),

Θt := H̄t + D̂⊤
t Ktγ̄t + B̂⊤

t Ȳt + D̂tZY
t +

∫
χ
Ĝ⊤

t (e)Ktδ̄t(e)λ(de) +
∫

χ
Ĝ⊤

t (e)RY
t(e)λ(de),

(2.3.23)
and

ϵt := Ht +D⊤
t Ktγt +B⊤

t Yt +D⊤
t Z

Y
t +

∫
χ
G⊤

t (e)Ktδt(e)λ(de) +
∫

χ
G⊤

t (e)RY
t (e)λ(de),

ϵ̄t := H̄t +D⊤
t Ktγ̄t +B⊤

t Ȳt +D⊤
t Z

Y
t +

∫
χ
G⊤

t (e)Ktδ̄t(e)λ(de) +
∫

χ
G⊤

t (e)RY
t(e)λ(de).

(2.3.24)
We notice that the matrices St and Ŝt are definite positive in Sm. This follows from the non-
negativity of the matrix K, conditions (iii)-(iv) in (H2) and the non-negativity of the integral∫

χ
G⊤

t (e) Kt Gt(e)π(dt, de). In this case, one could find a deterministic IRm×m-valued Υ such
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that for all t ∈ [0, T ]
ΥtStΥ⊤

t = Ŝt,

for all t ∈ [0, T ]. This implies, that we can rewrite the expectation of κt(α) as

E[κt(α)] = E
[
(αt − ᾱt + Υ⊤

t ᾱt − ηt)⊤St(αt − ᾱt + Υ⊤
t ᾱt − ηt)− ζt

]
,

where

ηt = a0
t (Xt, X̄t) + Υ⊤

t a
1
t (X̄t) dt⊗ dP a.e., (2.3.25)

with a0
t (Xt, X̄t) a centred random variable and a1

t a deterministic function

a0
t (x, x̄) := −S−1

t Ut(x− x̄)− S−1
t (ϵt − ϵ̄t), a1

t (x̄) := −Ŝ−1
t (Vtx̄+ Θt),

and

ζt := (Xt − X̄t)⊤(U⊤
t S

−1
t Ut)(Xt − X̄t) + X̄⊤

t (VtŜ
−1
t Vt)X̄t + 2(U⊤

t S
−1
t (ϵt − ϵ̄t)

+ V ⊤
t Ŝ−1

t Θt)⊤Xt + (ϵt − ϵ̄t)⊤S−1
t (ϵt − ϵ̄t) + Θ⊤

t Ŝ
−1
t Θt.

It yields that one could write (2.3.21) in the following form :

E[Dα
t ] = E [ (Xt − X̄t)⊤(

.
Kt + ϕ0

t )(Xt − X̄t) + X̄⊤
t (

.
Λt + ψ0

t )X̄t

+ 2(
.
Y t + ∆0

t )⊤Xt + .
φt − ρφt + Γ̄0

t

+
(
αt − a0

t (Xt, X̄t)− ᾱt + Υ⊤
t (ᾱt − a1

t (X̄t)) )⊤St

(αt − a0
t (Xt, X̄t)− ᾱt + Υ⊤

t (ᾱt − a1
t (X̄t))

)]
,

where

ϕ0
t := ϕt − U⊤

t S
−1
t Ut = ϕ0

t (Kt),

ψ0
t := ψt − V ⊤

t Ŝ−1
t Vt = ψ0

t (Kt,Λt),

∆0
t := ∆t − U⊤

t S
−1
t (ϵt − ϵ̄t)− V ⊤

t Ŝ−1
t Θt = ∆0

t (Kt,Λt, Yt, Ȳt, Z
Y
t , Z̄t

Y
, RY

t , R̄
Y
t ),

Γ0
t := Γt − (ϵt − ϵ̄t)⊤S−1

t (ϵt − ϵ̄t)−Θ⊤
t Ŝ

−1
t Θt = Γ0

t (Kt, Yt, Z
Y
t , R

Y
t ).

(2.3.26)

By choosing (K,Λ, Y, φ) s.t. for all t ∈ [0, T ], we have

.
Kt + ϕ0

t = 0,
.
Λt + ψ0

t = 0,
.
Y t + ∆0

t = 0, .
φt − ρφt + Γ̄0

t = 0, (2.3.27)
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we obtain

E[Dα
t ] = E [ (αt − a0

t (Xt, X̄t)− ᾱt+Υ⊤
t (ᾱt − a1

t (X̄t)))⊤ St (αt − a0
t (Xt, X̄t)

−ᾱt + Υ⊤
t (ᾱt − a1

t (X̄t)))
]
, (2.3.28)

which is non-negative for all t ∈ [0, T ], α ∈ A. This shows that Sα satisfies the condition (ii) of
the verification theorem (See Lemma 2.3.1).
In the following lemma, we study the existence of a unique solution to the system of ODEs-
BSDE (2.3.17) satisfying (2.3.27).

Lemma 2.3.2. The decoupled system

dKt = −ϕ0
t (Kt)dt, 0 ≤ t ≤ T, KT = P,

dΛt = −ψ0
t (Kt,Λt)dt, 0 ≤ t ≤ T, ΛT = P̂ ,

dYt = −∆0
t (Kt,Λt, Yt, Ȳt, Z

Y
t , Z̄t

Y
, RY

t , R
Y
t )dt+ ZY

t dWt,

+
∫

χR
Y
t (e)π̃(de, dt), 0 ≤ t ≤ T, YT = L,

dφt = (ρφt − E[Γ0
t (Kt, Yt, Z

Y
t , R

Y
t )])dt, 0 ≤ t ≤ T, φT = 0,

(2.3.29)

where the processes ϕ0, ψ0, ∆0 and Γ0 are defined in (2.3.26), admits a unique solution
(K,Λ, Y, ZY , RY , φ) in L∞([0, T ],Sd) ×L∞([0, T ], Sd) ×S2

F(Ω× [0, T ],Rd) ×L2
F(Ω× [0, T ],Rd)×

K2
F(Ω× [0, T ]× χ, IRd)× L∞([0, T ],Sd).

Proof.

• We start by introducing the following multi-dimensional Riccati-type equations



.
Kt +Qt − ρKt +KtAt +A⊤

t Kt + C⊤
t KtCt +

∫
χ
F⊤

t (e)KtFt(e)λ(de)

−
(
It +D⊤

t KtCt +B⊤
t Kt +

∫
χ
G⊤

t (e)KtFt(e)λ(de)
)⊤

(
Nt +D⊤

t KtDt +
∫

χ
G⊤

t (e)KtGt(e)λ(de)
)−1

(
It +D⊤

t KtCt +B⊤
t Kt +

∫
χ
G⊤

t (e)KtFt(e)λ(de)
)

= 0,

KT = P,

(2.3.30)

Where the unknown is the matrix K. It is known that the equations (2.3.30) are related to
the linear quadratic stochastic control problem:

vt(x) := inf
α∈A

E
[∫ T

t
e−ρs

(
(X̃α,x

s )⊤QsX̃
α,x
s + 2α⊤

s IX̃
α,x
s + α⊤

s Nαs

)
ds

+ e−ρT (X̃α,x
T )⊤PX̃α,x

T

]
,
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where for α ∈ A, the process X̃ is solution of the following SDE:
dX̃s = (AX̃s +Bαs)ds+ (CX̃s +Dαs)dWs

+
∫
X(Fs(e)X̃α,x

s +Gs(e)αs)π̃(de, ds),

X̃0 = x.

(2.3.31)

A straightforward extention of Yong and Zhou ( [118], Theorem 7.2 p.320 ) to the jump
diffusion case, and under the assumptions (H1) and (H2) (i)-(iii), there exists a unique
solution K ∈ L∞([0, T ], Sd) to the equation (2.3.30) and the solution satisfies Kt ≥ 0.

• Given K, we consider the following equation for Λ:



.
Λt + Q̂t − ρΛt + ΛtÂt + Â⊤

t Λt + Ĉ⊤
t KtĈt +

∫
χ
F̂⊤

t (e)KtF̂t(e)λ(de)

−
(
Ît + D̂⊤

t KtĈt + B̂tΛt +
∫

χ
Ĝ⊤

t (e)KtF̂t(e)λ(de)
)⊤

(
N̂t + D̂⊤

t KtD̂t +
∫

χ
Ĝ⊤

t (e)KtĜt(e)λ(de)
)−1

(
Ît + D̂⊤

t KtĈt + B̂tΛt +
∫

χ
Ĝ⊤

t (e)KtF̂t(e)λ(de)
)

= 0,

ΛT = P̂ .

(2.3.32)

We rewrite this multi-dimensional Riccati equations as follows:
.
Λt + Q̂K

t − ρΛt + ΛtÂt + Â⊤
t Λt − (ÎK

t + B̂⊤
t Λt)⊤ (N̂K

t )−1(ÎK
t + B̂⊤

t Λt) = 0

ΛT = P̂ ,

(2.3.33)

where Q̂K
t , Î

K
t , N̂

K
t are defined by

Q̂K
t := Q̂t + Ĉ⊤

t KtĈt +
∫

χ
F̂⊤

t (e)KtF̂t(e)λ(de),

ÎK
t := Ît + D̂⊤

t KtĈt +
∫

χ
Ĝ⊤

t (e)KtF̂t(e)λ(de),

N̂K
t := N̂t + D̂⊤

t KtD̂t +
∫

χ
Ĝ⊤

t (e)KtĜt(e)λ(de).

From Assumption (H2)(iv), we have P̂ ≥ 0, and N̂t ≥ ξIm. As K ∈ L∞([0, T ], Sd) and
Kt ≥ 0 for all t ∈ [0, T ], then N̂K

t ≥ ξIm. It remains to check that for all t ∈ [0, T ], we have
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Q̂K
t − ÎK

t (N̂K
t )−1ÎK

t ≥ 0. In fact, we have

Q̂K
t − (ÎK

t )⊤(N̂K
t )−1ÎK

t (2.3.34)

= Q̂t + Ĉ⊤
t KtĈt +

∫
χ
F̂⊤

t (e)KtF̂t(e)λ(de)− (Ît + D̂⊤
t KtĈt +

∫
χ
Ĝ⊤

t (e)KtF̂t(e)λ(de))⊤

(N̂t + D̂⊤
t KtD̂t +

∫
χ
Ĝ⊤

t (e)KtĜt(e)λ(de))−1(Ît + D̂⊤
t KtĈt +

∫
χ
Ĝ⊤

t (e)KtF̂t(e)λ(de))

= Q̂t − (Ît)⊤(N̂t)−1Ît + (Ĉt − D̂tN̂
−1
t Ît)⊤K(Ĉt − D̂tN̂

−1
t Ît)

− (D̂⊤
t K(Ĉt − D̂⊤

t (N̂t)−1Ît))⊤(N̂t + D̂⊤
t KD̂t)−1(D̂⊤

t Kt(Ĉt − D̂⊤
t (N̂t)−1Ît))

+
∫
X

(F̂t(e)− Ĝt(e)N̂−1
t Ît)⊤K(F̂t(e)− Ĝt(e)N̂−1

t Ît)λ(de)

−
∫
X

(Ĝt(e)⊤Kt(F̂t(e)− Ĝ⊤
t (e)(N̂t)−1Ît))⊤λ(de)(N̂K

t )−1∫
X

(Ĝt(e)⊤K(F̂t(e)− Ĝ⊤
t (e)(N̂t)−1Ît))λ(de)

As Kt ≥ 0, we have N̂K
t ≥ N̂t ≥ ξIm > 0, then

(D̂⊤
t K(Ĉt − D̂⊤

t (N̂t)−1Ît))⊤(N̂K
t )−1(D̂⊤

t Kt(Ĉt − D̂⊤
t (N̂t)−1Ît)) (2.3.35)

≤ (D̂⊤
t K(Ĉt − D̂⊤

t (N̂t)−1Ît))⊤(D̂⊤
t KD̂t)−1(D̂⊤

t Kt(Ĉt − D̂⊤
t (N̂t)−1Ît))

As K ∈ L∞([0, T ], Sd) and Kt ≥ 0, then by Cauchy Schwarz inequality, we have∫
X

(F̂t(e)− Ĝt(e)N̂−1
t Ît)⊤Kt(F̂t(e)− Ĝt(e)N̂−1

t Ît)λ(de) (2.3.36)

≥
∫
X

(F̂t(e)− Ĝt(e)N̂−1
t Ît)⊤λ(de)Kt

∫
X

(F̂t(e)− Ĝt(e)N̂−1
t Ît)λ(de)

From inequalities (2.3.34)-(2.3.36), by algebraic manipulations, we deduce

Q̂K
t − (ÎK

t )⊤(N̂K
t )−1ÎK

t ≥ Q̂t + Î⊤
t (N̂t)−1Ît ≥ 0

As in the first step and according to [114] and to Yong and Zhou [118], we deduce that
equation (2.3.33) admits a unique solution Λ ∈ L∞([0, T ],Sd) with Λt ≥ 0.

• Given (K,Λ), we consider the following mean field BSDE
dYt = −∆0

t (Kt,Λt, Yt, Ȳt, Z
Y
t , Z̄t

Y
, RY

t , R̄
Y
t )dt+ ZY

t dWt +
∫

χ
RY

t (e)π̃(de, dt)

YT = L.

(2.3.37)
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It could be written in the following form

dYt = (ct+ θ⊤
t (Yt − E[Yt]) + θ̂⊤

t E[Yt] + ϑ⊤
t (ZY

t − E[ZY
t ]) + ϑ̂⊤

t E[ZY
t ]

+
∫

χ
ϱ⊤

t (e)(RY
t (e)− E[RY

t (e)])λ(de) +
∫

χ
ϱ̂⊤

t (e)E[RY
t (e)]λ(de)

)
dt

+ZY
t dWt +

∫
χ
RY

t (e)π̃(de, dt),

YT = L,

(2.3.38)

where the stochastic process (ct)t ∈ L2
IF (Ω× [0, T ], IRd) is defined by, ∀t ∈ [0, T ] P p.s

ct :=−Mt −Kt(βt − β̄t)− Λtβ̄t − C⊤
t Kt(γt − γ̄t)− Ĉ⊤

t Ktγ̄t

−
∫

χ
F⊤

t (e)Kt(δt(e)− δ̄t(e))λ(de)−
∫

χ
F̂⊤

t (e)Ktδ̄t(e)λ(de)

+ U⊤
t S

−1
t

(
Ht − H̄t +D⊤

t Kt(γt − γ̄t) +
∫

χ
Gt(e)⊤Kt(δt(e)− δ̄t(e))λ(de)

)
+ V ⊤

t S−1
t (H̄t + D̂⊤

t Ktγ̄t +
∫

χ
Ĝ⊤

t (e)Ktδ̄t(e)λ(de)),

and the deterministic coefficients θ, θ̂, ϑ, ϑ̂ ∈ L∞([0, T ], IRd×d), and ϱ, ϱ̂ ∈ K∞([0, T ] ×
χ, IRd×d) are defined by

θt := ρId −At +Bt S
−1
t Ut, θ̂t := ρId − Ât + B̂t Ŝ

−1
t Vt,

ϑt := −Ct +Dt S
−1
t Ut, ϑ̂t := −Ĉt + D̂t Ŝ

−1
t Vt,

ϱt(e) := −Ft(e) +Gt(e)S−1
t Ut, ϱ̂t(e) := −F̂t(e) + Ĝt(e)Ŝ−1

t Vt.

By Tang and Meng [114] (see Lemma 2.2.), under (H1) the BSDE (2.3.37) admits a unique
solution (Y,ZY , RY ) ∈ S2

F(Ω× [0, T ],Rd) ×L2
F(Ω× [0, T ],Rd)×K2

F(Ω× [0, T ]× χ, IRd).

• Given (K,Λ, Y, ZY , RY ), the linear ordinary differential equation for φ:

dφt = (ρφt − E[Γ0
t ])dt, φT = 0, (2.3.39)

where Γ0
t is defined by (2.3.26), admits a unique explicit solution given by:

φt =
∫ ⊤

t
e−ρ(s−t)lsds.
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The deterministic function l is defined, for all t ∈ [0, T ] by:

lt := −E
[
γ⊤

t Ktγt + 2β⊤
t Yt + 2δ⊤

t Z
Y
t + 2

∫
χ
δ⊤

t R
Y
t (e)λ(de)

+
∫

χ
δ⊤

t Ktδtλ(de)− ϵ⊤t S−1
t ϵt

]
− ϵ̄⊤t S−1

t ϵ̄t + Θ⊤
t Ŝ

−1
t Θt.

The next theorem gives a connection between the solution to the decoupled system (2.3.29)
and the solution to the LQMF problem (2.3.14).

Theorem 2.3.3. Under Assumptions (H1)-(H2), there exists an optimal control α∗ for LQMF
problem (2.3.14) giving by the following explicit form

α∗
t = −S−1

t Ut(X∗
t− − X̄∗

t−)− S−1
t (ϵt− − ϵ̄t−)− S−1

t (VtX̄
∗
t− + Θt), dt⊗ P− a.e.

where X∗ = Xα∗
is the state process, and α∗ is the optimal control. The corresponding value

of the problem is

V0 = J(α∗) = E
[
(X0 − X̄0)TK0(X0 − X̂0) + X̄T

0 Λ0X̄0 + 2Y T
0 X0 + φ0

]
.

Proof. We proved in Lemma 2.3.2 the existence of (K,Λ, Y, ZY , RY , φ) solution to the sys-
tem (2.3.29). We consider the candidate {wt(x, x̄)} given by (2.3.16).As K,Λ, R are bounded
and Y satisfies a square-integrability condition, then the growth condition of the random field
{wt(x, x̄)} i.e condition (2.3.15)) in the verification theorem (see Lemma 2.3.2) is satisfied.
Thanks to the choice of (K,Λ, Y, ZY , RY , φ), the terminal conditions satisfied {wT (x, x̄)} =
g(x, x̄), and so Assumption (i) of Lemma 2.3.2 is satisfied. From equation (2.3.28), we deduce
that E[Dα

t ] is non-negative for all α ∈ A. It yields that Assumption (ii) of the verification in Lemma
2.3.2 is satisfied. Moreover, one could prove that E[Dα∗

t ] = 0 for some α = α∗ if and only if

α∗
t − a0

t (X∗
t , X̄

∗
t)− ᾱ∗

t + Υ⊤
t (ᾱ∗

t − a1
t (X̄∗

t)) = 0 dt⊗ dP a.e. (2.3.40)

Taking the expectation and using the fact that E[a0
t (X∗

t , X̄
∗

t)] = 0 and Υt is an invertible matrix,
we get ᾱ∗

t− a1
t (X̄∗

t) = 0. Then we obtain α∗
t = a0

t (X∗
t , X̄

∗
t) + a1

t (X̄∗
t). As the strategy α∗ must

be IF−predictable and the number of jumps of the state process X is finite a.s. over the time
interval [0, T ], then the optimal strategy α∗ satisfies

α∗
t = −S−1

t Ut(X∗
t− − X̄∗

t−)− S−1
t (ϵt− − ϵ̄t−)− S−1

t (VtX̄
∗
t− + Θt).

Under Assumptions (H1)-(H2), S−1, Ŝ−1, U , V are bounded and Θ, ϵ are square-integrable
respectively in L2([0, T ], IRm) and L2

F(Ω × [0, T ], IRm). As X∗ satisfies the square integrability
condition (See inequality (2.2.6)), then α∗ ∈ A. We proved that there exists a random field
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wt(x, x̄) that satisfies the assumptions of Lemma 2.3.2. Then, by the verification theorem, we
conclude that α∗ is the optimal control for the LQMF problem (2.3.14).

2.4 Extensions of LQMF problem on the case of common noise

In this section, we extend the results of Theorem 2.3.3, to the case with a common noise. Let
W and W 0 be two independent real Brownian motions and π̃ be an Poisson random measure
defined on the same filtered probability space (Ω,Ft, (P,P0)) where IF = (Ft)t∈[0,T ] be the
filtration generated by the (W,W 0, π̃) and we denote by IF 0 = {F0

t }t∈[0,T ] the filtration generated
by W 0. As in section (2.3), for any r.v. X0 and α ∈ A, the controlled process Xα

t is defined by:
dXα

t = bt(Xα
t ,E[Xα

t |F0
t ], αt,E[αt|W 0

t ])dt+ σt(Xα
t ,E[Xα

t |F0
t ], αt,E[αt|F0

t ])dWt+

σ0
t (Xα

t ,E[Xα
t |F0

t ], αt,E[αt|F0
t ])dW 0

t +
∫
X
Rt(Xα

t− ,E[Xα
t− |F0

t ], αt,E[αt|F0
t ])(e)π̃(de, dt),

Xα
0 = X0,

(2.4.41)

where for each t ∈ [0, T ], x, x̄ ∈ IRd and a, ā ∈ IRm we set:

bt(x, x̄, a, ā) := βt +Atx+ Ãtx̄+Bta+ B̃tā, (2.4.42)

σt(x, x̄, a, ā) := γt + Ctx+ C̃tx̄+Dta+ D̃tā,

σ0
t (x, x̄, a, ā) := γ0

t + C0
t x+ C̃0

t x̄+D0
t a+ D̃0

t ā,

Rt(x, x̄, a, ā)(e) := δt(e) + Ft(e)x+ F̃t(e)x̄+Gt(e)a+ G̃t(e)ā.

For this case, we assume that

(H3) (i) A, Ã, B, B̃, C, C̃, D, D̃, C0, C̃0, D0, D̃0, F , F̃ , G, G̃ are essentially bounded IF 0-
adapted processes,

(ii) β, γ, γ0 are square-integrable IF -adapted processes and δ is square-integrable IF -
predictable process.

The LQMF control problem is to find α∗ ∈ A s.t.

V0 := J(α∗) = inf
α∈A

J(α), (2.4.43)

where

J(α) := E
[∫ ⊤

0
e−ρtft(Xα

t ,E[Xα
t |F0

t ], αt,E[αt|F0
t ])dt+ e−ρT g(Xα

T ,E[Xα
t |F0

T ])
]
, (2.4.44)
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and the coefficients f , g defined in (2.2.4)-(2.2.5), satisfy the following assumptions:

(H4) (i) Q, Q̃, I, Ĩ, N, Ñ are essentially bounded IF 0-adapted processes,

(ii) P, P̃ are essentially bounded F0
T -measurable random variables,

(iii) M,H are square-integrable IF -adapted processes,
and L is a square-integrable FT -measurable random variables.

As in the previous section, we guess a quadratic form for wt(x, x̄) i.e.

wt(x, x̂) = (x− x̂)TKt(x− x̂) + x̄T Λtx̄+ 2Y T
t x+ φt,

where the processes K, Λ, Y and φ are to be determined later. As the quadratic terms in ft

and g are IF 0−adapted, we guess that K and Λ are IF 0−adapted. Since the affine coefficients
in bt, σt and σ0

t and the linear coefficients in ft and g are IF− adapted, then Y is IF− adapted
i.e. depends on W , W 0 and π̃. We look for processes (K,Λ, Y, φ) valued in Sd × Sd × IRd × IR
and satisfy the following system:

dKt =
.
Ktdt+ ZK

t dW
0
t , 0 ≤ t ≤ T, KT = P,

dΛt =
.
Λtdt+ ZΛdW 0

t , 0 ≤ t ≤ T, ΛT = P̂ ,

dYt =
.
Y tdt+ ZY

t dWt + ZY,0
t dW 0

t +
∫

χ
RY

t (e)π̃(de, dt), 0 ≤ t ≤ T, YT = L,

dφt = .
φt, 0 ≤ t ≤ T, φT = 0,

(2.4.45)

for some IF 0−adapted processes
.
K,

.
Λ, ZK , ZΛ valued in Sd and some IF−adapted processes

.
Y , ZY , ZY,0 valued in IRd, an IF−predictable process RY valued in IRd and a continuous func-
tion .

φ valued in IR.
We keep the notations of section 2.3 and we add the following notations:

Ĉ0
t = C0

t + C̃0
t , D̂

0
t = D0

t + D̃0
t .

For α ∈ A and t ∈ [0, T ], we set Sα in the following form:

Sα
t = e−ρtWα

t +
∫ t

0
e−ρsfs(Xα

s ,E[Xα
s |F0

s ], αs,E[αs|F0
s ])ds. (2.4.46)

As in Section 2.3, we compute
d E[Sα

t ] = e−ρtE[Dα
t ]dt,

where

E[Dα
t ] = E

[
−ρwt(Xα

t ,E[Xα
t |F0

t ]) + d

dt
E[wt(Xα

t ,E[Xα
t |F0

t ])] + ft(Xα
t ,E[Xα

t |F0
t ], αt,E[αt|F0

t ])
]
.
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As in the previous section, we denote by X̄t for E[Xα
t |F0

t ] and ᾱt for E[αt|F0
t ]. By applying Itô’s

formula to Sα
t and using the quadratic form of the cost ft and the dynamics of X̄t and Xt − X̄t,

we obtain:

dX̄t = [βt + ÂtX̄t + B̂tᾱt]dt, (2.4.47)

and

d(Xt − X̄t) = [(βt − β̄t) +At(Xt − X̄t) +Bt(αt − ᾱt)]dt (2.4.48)

+ [γt + Ct(Xt − X̄t) + ĈtX̄t +Dt(αt − ᾱt) + D̂tᾱt]dWt

+ [γ0
t + C0

t (Xt − X̄t) + Ĉ0
t X̄t +D0

t (αt − ᾱt) + D̂0
t ᾱt]dW 0

t

+
∫

χ
[δt + Ft(e)(Xt− − X̄t−) + F̂t(e)X̄t− +Gt(e)(αt − ᾱt) + Ĝt(e)ᾱt]π̃(de, dt).

Using the same arguments as in the previous section, we obtain:

E[Dα
t ] =E

[
(Xt − X̄t)T (

.
Kt + ϕt)(Xt − X̄t) + X̄⊤

t (
.
Λt + ψt)X̄t (2.4.49)

+2(
.
Y t + ∆t)Xt + .

φt − ρφt + Γ̄t + κt(α)
]
,

where

ϕt := −ρKt +KtAt +A⊤
t Kt + ZK

t C
0
t + (C0

t )⊤ZK
t + C⊤

t KtCt + (C0
t )⊤KtC

0
t +Qt

+
∫

χ
F⊤

t (e)KtFt(e)λ(de) = ϕt(Kt, Z
K
t ),

ψt := −ρΛt + ΛtÂt + Â⊤
t Λt + ZΛ

t C
0
t + (C0

t )⊤ZΛ
t + Ĉ⊤

t KtĈt + (C0
t )⊤ΓtC

0
t + Q̂t

+
∫

χ
F̂⊤

t (e)KtF̂t(e)λ(de) = ψt(Kt,Λt),

∆t := −ρYt +A⊤
t Yt + Ã⊤

T Ȳt + C⊤
t Z

Y
t + (C0

t )⊤ZY,0
t + (C̃0

t )⊤ZY,0
t + C̃⊤

t Z
Y

t

+Kt(βt − β̄t) + Λtβ̄t + C⊤
t Kt(γt − γ̄t) + Ĉ⊤

t Ktγ̄t +Mt + ZK
t (γ0

t − γ̄0
t ) + ZΛ

t γ̄
0
t

+(C0
t )⊤Kt(γ0

t − γ̄0
t ) + (Ĉ0

t )⊤Λtγ̄
0
t +

∫
χ
F⊤

t (e)(RY
t (e)− R̄Y

t (e))λ(de)

+
∫

χ
F̂t(e)⊤R̄Y

t (e)λ(de) +
∫

χ
F⊤

t (e)(δt(e)− δ̄t(e))λ(de)

+
∫

χ
F̂t(e)⊤δ̄t(e)λ(de) = ∆t(Kt, Z

K
t ,Λt, Z

Λ
t , Yt, Ȳt, Z

Y
t , Z

Y
t, R

Y
t , R

Y
t),

Γt := γ⊤
t Ktγt + (γ0

t − γ̄0
t )⊤Kt(γ0

t − γ̄0
t ) + 2(δt)⊤ZY,0

t + (γ0
t)⊤Λt(γ0

t) + 2β⊤
t Yt

+2γ⊤
t Z

Y
t +

∫
χ
δ⊤

t (e)Ktδt(e)λ(de) + 2
∫

χ
δt(e)⊤RY

t (e)λ(de)

= Γt(Kt, Yt, Z
Y
t , R

Y
t ),
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and

κt(α) := (αt − ᾱt)⊤St(αt − ᾱt) + ᾱ⊤
t Ŝtᾱt + 2(Ut(Xt − X̄t) + VtX̄t + Θt + ϵt − ϵ̄t)αt. (2.4.50)

Here St, Ŝt, Ut, Vt,Θt are defined as follows:

St := Nt +D⊤
t KtDt + (D0

t )⊤KtD
0
t +

∫
χ
G⊤

t (e)KtGt(e)λ(de),

Ŝt := N̂t + D̂⊤
t KtD̂t + (D̂0

t )⊤KtD̂
0
t +

∫
χ
Ĝ⊤

t (e)KtĜt(e)λ(de),

Ut := It +D⊤
t KtCt +B⊤

t Kt + (D0
t )⊤KtC

0
t + (D0

t )⊤ZK
t +

∫
χ
G⊤

t (e)KtFt(e)λ(de),

Vt := Ît + D̂⊤
t KtĈt + B̂tΛt + (D0

t )⊤ZΛ
t + (D0

t )⊤Kt(C0
t ) +

∫
χ
Ĝt(e)KtF̂t(e)λ(de),

Θt := H̄t + D̂⊤
t Ktγ̄t + (D̂0

t )⊤Ktγ̄t + B̂⊤
t Ȳt + (D̂0

t )⊤Z̄Y,0
t + D̂⊤

t Z̄
Y
t

+
∫

χ
Ĝ⊤

t (e)Ktδ̄tλ(de) +
∫

χ
Ĝ⊤

t (e)R̄Y
t (e)λ(de),

(2.4.51)



ϵt := Ht +D⊤
t Ktγt +B⊤

t Yt +D⊤
t Z

Y
t + (D0

t )⊤ZY,0
t + (D0

t )⊤Kt(γt)

+
∫

χ
G⊤

t (e)Ktδtλ(de) +
∫

χ
G⊤

t (e)RY
t (e)λ(de),

ϵ̄t := H̄t +D⊤
t Ktγ̄t +B⊤

t Ȳt +D⊤
t Z

Y
t + (D0

t )⊤ZY,0
t + (D0

t )⊤Kt(γ̄t)

+
∫

χ
G⊤

t (e)Ktδ̄tλ(de) +
∫

χ
G⊤

t (e)RY
t(e)λ(de).

(2.4.52)

Completing the square in the expression of E[Dα
t ] (See equation (2.4.49)) and getting rid of the

terms which not depend in α, the computations lead to the following decoupled system,

dKt = −ϕ0
t (Kt, Z

k)dt+ ZKdW 0
t , 0 ≤ t ≤ T, KT = P,

dΛt = −ψ0
t (Kt,Λt, Z

Λ)dt+ ZΛdW 0
t , 0 ≤ t ≤ T, ΛT = P̂ ,

dYt = −∆0
t (Kt, Z

K
t ,Λt, Z

Λ
t , Yt, Ȳt, Z

Y
t , Z̄t

Y
, RY

t , R̄
Y
t )dt+ ZY

t dWt

+ZY,0dW 0
t +

∫
χ
RY

t (e)π̃(de, dt), 0 ≤ t ≤ T, YT = L,

dφt = (ρφt − E[Γ0
t ])dt, 0 ≤ t ≤ T, φT = 0,

(2.4.53)

with 

ϕ0
t := ϕt − U⊤

t S
−1
t Ut,

ψ0
t := ψt − V ⊤

t Ŝ−1
t Vt,

∆0
t := ∆t − V ⊤

t Ŝ−1
t Θt − U⊤

t S
−1
t (ϵt − ϵ̄t),

Γ0
t := Γt − (ϵt − ϵ̄t)⊤S−1

t (ϵt − ϵ̄t)−Θ⊤
t Ŝ

−1
t Θt.

(2.4.54)

One could prove that (K,Λ) is the unique solution to the Stochastic Backward Riccati Equation
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in (2.4.53). Given (K,Λ), we have also the existence of a unique solution (Y,ZY , ZY,0, RY ) of
the mean field backward stochastic differential equation in (2.4.53). Then from Lemma 2.3.1,
we have the following proposition which gives the structure of the optimal control α∗.

Proposition 2.4.1. Under Assumptions (H3)-(H4), the optimal control α∗ for optimal problem
(2.4.43)-(2.4.44) is defined as follows

α∗
t =− S−1

t Ut(X∗
t− − E[X∗

t− |F0
t ])− S−1

t (ϵt− − E[ϵt− |F0
t ])− Ŝ−1

t (Vt − E[X∗
t− |F0

t ] + Θt).

Proof. The proof is similar to that of Theorem 2.3.3.

2.5 Linear quadratic mean field control problem on infinite hori-
zon

Let us consider the infinite horizon case. For ρ > 0, we define the set of admissible controls as
follows:

A := {α : Ω× IR+ → IRm s.t α is IF -predictable and
∫ ∞

0
e−ρtE[|αt|2]dt <∞}.

The controlled process is defined on [0,∞) by:


dXα

t = bt(Xα
t ,E[Xα

t ], αt,E[αt])dt+ σt(Xα
t ,E[Xα

t ], αt,E[αt])dWt

+
∫
X

Rt(Xα
t− ,E[Xα

t− ], αt,E[αt])(e)π̃(de, dt),

Xα
0 = X0,

(2.5.55)

where for each t ≥ 0 ,x, x̄ ∈ IRd, we use the same formulation as in Section 2.3:

bt(x, x̄, a, ā) := βt +Ax+ Ãx̄+Ba+ B̃ā, (2.5.56)

σt(x, x̄, a, ā) := γt + Cx+ C̃x̄+Da+ D̃ā,

Rt(x, x̄, a, ā)(e) := δt(e) + F (e)x+ F̃ (e)x̄+G(e)a+ G̃(e)ā.

For the infinite horizon case, the coefficients of the linear terms are constant vectors, and the
coefficients β, γ and δ are stochastic processes. The control problem on infinite horizon is
formulated as:

V0 := inf
α∈A

J(α), (2.5.57)
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where
J(α) := E

[∫ ∞

0
e−ρtft(Xα

t ,E[Xα
t ], αt,E[αt])dt

]
, (2.5.58)

and, for each t ≥ 0, x, x̄ ∈ IRd and a, ā ∈ IRm, we define f as in Section 2.2 i.e.

ft(x, x̄, a, ā) :=(x− x̄)⊤Q(x− x̄) + x̄⊤(Q+ Q̃)x̄+ 2a⊤I(x− x̄) (2.5.59)

+ 2ā⊤(I + Ĩ)x̄+ (a− ā)⊤N(a− ā) + ā(N + Ñ)ā+ 2M⊤
t x+ 2H⊤

t a.

Here, we note that the coefficients of the quadratic terms are constant matrices, and the coef-
ficients H and M may be stochastic processes.
Let (H, |.|) be a normed space, and ρ̂ a positive constant. We define the new spaces:

• L∞(IR+,H) :=
{
ϕ : IR+ → H s.t. ϕ is measurable and supt≥0 |ϕt| <∞ a.e.

}
,

• K∞(χ,H) := {K : χ→ H, K is B(χ)-measurable and sup
e∈χ
|K(e)| <∞},

• L2,ρ̂
F (Ω× IR+,H) := { ϕ : Ω× IR+ → H s.t. ϕ is F-progressively measurable

and
∫ ∞

0
eρ̂tE[|ϕt|2]dt <∞}

• K
2,ρ̂
F (Ω×IR+×χ,H) := {K : Ω×IR+×χ→ H, K is P⊗B(χ)-measurable processes and

E
[∫ ∞

0

∫
χ
eρ̂t|Kt(e)|2 λ(de)dt

]
<∞},

where P denote the σ−field of F-predictable sets on Ω× IR+.

We consider the following assumptions on the coefficients of the problem in the infinite horizon
case.

(H1′
) The coefficients in equation (2.5.55) satisfy:

(i) β, γ ∈ L2,ρ̂
F (Ω× IR+, IRd) and δ ∈ K

2,ρ̂
F (Ω× IR+ × χ, IRd),

(ii) A, Ã, C, C̃ ∈ IRd×d and B, B̃,D, D̃, J, J̃ ∈ IRd×m,

(iii) F, F̃ ∈ K∞(χ, IRd×d) and G, G̃ ∈ K∞(χ, IRd×m).

(H2′
) The coefficients in equation (2.5.59) satisfy:

(i) Q, Q̃ ∈ Sd, N, Ñ ∈ Sm, I, Ĩ ∈ IRm×d,

(ii) M ∈ L2,ρ̂
F (Ω× IR+, IRd), H ∈ L2,ρ̂

F (Ω× IR+, IRm),

(iii) N > 0, Q+ ITN−1I ≥ 0,

(iv) N + Ñ > 0, (Q+ Q̃)− (I + Ĩ)T (N + Ñ)−1(I + Ĩ) ≥ 0.

(H3′
) ρ > 2 max{|A|+ |C|2 +

∫
χ |F (e)|2λ(de), |Â|}.
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Proposition 2.5.1. Under (H1′
) and (H3′

), the following estimate holds for each square-integrable
variable X0 and α ∈ A, ∫ ∞

0
e−ρtE[|Xα

t |2]dt ≤ Cα(1 + E[|X0|2]), (2.5.60)

where Cα is a positive constant.

Proof. By Itô’s formula and Young’s inequality, we have the following estimate

d

dt
E[e−ρt|X̄t|2]

= e−ρt(−ρ|X̄t|2 + 2b̄⊤
t X̄t)

≤ e−ρt(−ρ|X̄t|2 + 2(|β̄t||X̄t|+ |B̂||ᾱt||X̄t|+ X̄⊤
t ÂX̄t))

≤ e−ρt[(−ρ+ 2|Â|+ ϵ)|X̄t|2 + cϵ(|β̄t|2 + |ᾱt|2)],

where cϵ is a positive constant. We define:

ζϵ := |X̄0|2 + cϵ

∫ ∞

0
e−ρtE[|β2

t |+ |α2
t |], ηϵ := ρ− 2|Â| − ϵ.

Under (H1′
) and as α ∈ A, we have ζϵ < ∞ and for ϵ small enough, we have ηϵ > 0. By

Gronwall’s lemma, we get: ∫ ∞

0
e−ρt|X̄t|2dt ≤ cα,ϵ(1 + |X̄0|2), (2.5.61)

where cα,ϵ is positive constant. Using again Itô’s formula and Young’s inequality, we have the
following estimate:

d

dt
E[e−ρt|Xt − X̄t|2]

= e−ρtE[−ρ|Xt − X̄t|2 + 2(bt − b̄t)⊤(Xt − X̄t) + |σt|2 +
∫

χ
|Rt(e)|2λ(de)]

≤ e−ρtE[−ρ|Xt − X̄t|2 + 2(|βt − β̄t||Xt − X̄t|+ |B||αt − ᾱt||Xt − X̄t|+ (Xt − X̄t)⊤A(Xt − X̄t))

+ 2(|γt|2 + |C|2|Xt − X̄t|2 + |Ĉ|2|X̄t|2 + |D|2|αt|2 + |D̃|2|ᾱt|2)

+ 2(
∫

χ
|δt(e)|2λ(de) +

∫
χ
|F (e)|2λ(de)|Xt − X̄t|2 +

∫
χ
|F̂ (e)|2λ(de)|X̄t|2 +

∫
χ
|G(e)|2λ(de)|αt|2

+
∫

χ
|G̃(e)|2λ(de)|ᾱt|2)]

≤ e−ρtE[(−ρ+ 2|A|+ 2|C|2 + 2
∫

χ
|F (e)|2λ(de) + ϵ)|Xt − X̄t|2

+ c
′
ϵ(|βt|2 + |γt|2 +

∫
χ
|δt(e)|2λ(de)|+ |αt|2 + |X̄t|2)],
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where cϵ is a positive constant. We define:

ζ
′
ϵ := c

′
ϵ

∫ ∞

0
e−ρtE[|βt|2 + |γt|2 +

∫
χ
|δt(e)|2λ(de)|+ |αt|2 + |X̄t|2]dt,

η
′
ϵ := ρ− 2|A| − 2|C|2 − 2

∫
χ
|F (e)|2λ(de)− ϵ.

Under (H1′
), inequality (2.5.61) and as α ∈ A, we have ζ

′
ϵ <∞ and for ϵ small enough, we have

η
′
ϵ > 0. By Gronwall’s lemma, we get

E[
∫ ∞

0
e−ρt|Xt − X̄t|2dt] ≤ c

′
α,ϵ(1 + |X̄0|2), (2.5.62)

for a suitable c
′
α,ϵ > 0. From inequalities (2.5.61) and (2.5.62), we obtain (2.5.60).

From assumption (H2′
) and the estimate (2.5.60), the problem (2.5.57) is well defined. The

following lemma is a verification theorem based on the weak martingale approach in the inifinite
horizon case.

Lemma 2.5.2. Let {Wα
t , t ≥ 0, α ∈ A} be a family of F−adapted process in the form Wα

t =
wt(Xα

t ,E[Xα
t ]) for some F−adapted random field {wt(x, x̄), t ∈ [0, T ], x, x̄ ∈ IRd} satisfying

wt(x, x̄) ≤ C(χt + |x|2 + |x̄|2), t ∈ [0,∞), x, x̄ ∈ IRd,

for some positive constant C, and non-negative process χ s.t. e−ρtE[χt] converge to zero as
t→∞, and such that:

(i) the map t ∈ IR+ 7−→ E[Sα
t ], with Sα

t = e−ctWα
t +

∫ t

0
e−csfs(Xα

s ,E[Xα
s ], αt,E[αt])ds, is

non-decreasing for all α ∈ A,

(ii) the map t ∈ IR+ 7−→ E[Sα∗
t ] is constant for some α∗ ∈ A.

Then, α∗ is an optimal control and E[w0(X0,E[X0])] is the value of the LQMKV control problem
(2.5.57) i.e.

V0 = E[w0(X0,E[X0])] = J(α∗).

Moreover, any other optimal control satisfies the condition (ii).

We extend the results in Theorem 2.3.3 to the infinite horizon case, where we kept the steps
similar to the finite horizon case. We prove our result by applying the lemma 2.5.2. We should
look for the stability of decoupled system on infinite horizon.

We adopt the same approach as in the finite time horizon. We cnsider a candidate for the
random field ωt(x, x̄) in the form:

wt(x, x̂) = (x− x̄)TKt(x− x̄) + x̄T Λtx̄+ 2Y T
t x+ φt,
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where (K,Λ, Y, φ) valued in Sd × Sd × IRd × IR satisfying the following system:

dKt = −ϕ0
tdt, t ≥ 0,

dΛt = −ψ0
t dt, t ≥ 0,

dYt = −∆0
tdt+ ZY

t dWt +
∫

χ
RY

t (e)π̃(de, dt), t ≥ 0,

dφt = (ρφt − E[Γ0
t ])dt, t ≥ 0.

(2.5.63)

The maps ϕ0, ψ0,∆0,Γ0 are defined by (2.3.26), where in this case the coefficients A, Ã, B, B̃,
C, C̃, D, D̃, Q, Q̃, N , Ñ , I, Ĩ, F (.), F̃ (.), G(.), G̃(.) are constant i.e. independent of time.
We note that there are no terminal conditions in the system, as we are in the infinite horizon
case. We need to show the existence of a solution to the system (2.5.63).

Lemma 2.5.3. We assume (H1′
)-(H2′

). Then, the system (2.5.63) admits a solution
(K,Λ, Y, ZY , RY , φ) ∈ L∞([0,∞], Sd)×L∞([0,∞], Sd)×L2,ρ̂

F (Ω×[0,∞],Rd)×L2,ρ̂
F (Ω×[0,∞],Rd)×

K2,ρ̂(Ω× [0,∞]× χ, IRd)× L∞([0,∞], Sd).

Proof. We prove the existence of a solution to the decoupled system (2.5.63).

• We introduce the following Riccati-type equation:

Q− ρK +KA+A⊤K + C⊤KC +
∫

χ
F⊤(e)KF (e)λ(de)

−
(
I +D⊤KC +B⊤K +

∫
χ
G⊤(e)KF (e)λ(de)

)⊤

(
N +D⊤KD +

∫
χ
G⊤(e)KG(e)λ(de)

)−1

(
I +D⊤KC +B⊤K +

∫
χ
G⊤(e)KF (e)λ(de)

)
= 0. (2.5.64)

We prove the existence of a solution to (2.5.64) by relating it to a suitable infinite-horizon
linear-quadratic control problem. For T ∈ IR+∪{∞} and x ∈ IRd, we consider the following
control problem:

V T (x) := inf
α∈AT

E
[∫ T

0
e−ρt

(
(X̃α,x

t )⊤QX̃α,x
t + 2α⊤

t IX̃
α,x
t + α⊤

t Nαt

)
dt

]
,

where AT is defined by:

AT := {α : Ω× IR+ → IRm s.t α is IF predictable and
∫ T

0
e−ρtE[|αt|2]dt <∞},
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and for α ∈ AT , the process X̃ := X̃α,x is solution of the following SDE:

dX̃t = (AX̃t+Bαt)dt+(CX̃t+Dαt)dWt+
∫
X

(F (e)X̃t+G(e)αt)π̃(de, dt), X̃0 = 0. (2.5.65)

Thanks to the integrability condition for α ∈ AT , we have
∫ T

0
e−ρtE[|X̃α,x

t |2]dt < ∞, and

so the problems V T are well-defined for any T ∈ R+∪{∞}. If T <∞, as already recalled
in the finite-horizon case, (H1′

)-(H2′
) imply that there exists a unique symmetric solution

(KT
t )t∈[0,T ] to Riccati equations:



d
dtK

T
t +Q −ρKT

t +KT
t A+A⊤KT

t + C⊤KT
t C +

∫
χ
F⊤(e)KT

t F (e)λ(de)

−
(
I +D⊤KT

t C +B⊤KT
t +

∫
χ
G⊤(e)KT

t F (e)λ(de)
)⊤

(
N +D⊤KT

t D +
∫

χ
G⊤(e)KT

t G(e)λ(de)
)−1

(
I +D⊤KT

t C +B⊤KT
t +

∫
χ
G⊤(e)KT

t F (e)λ(de)
)

= 0,

KT
T = 0,

(2.5.66)

and that for every x ∈ IRd we have V T (x) = x⊤KT
0 x. It is easy to check from the definition

of V T that V T (x)→ V ∞(x) as T goes to infinity, from which we deduce that

V ∞(x) = lim
T →∞

x⊤KT
0 x = x

(
lim

T →∞
KT

0

)
x, for all x ∈ IRd.

This implies the existence of the limit K = limT →∞KT
0 . By passing to the limit in T in

ODE (2.5.66) at t = 0, we obtain by standard arguments (see Lemma 2.8 in [?]), that K
satisfies (2.5.64). Moreover, K ∈ Sd and K ≥ 0.

• Given K, we consider the following equation of Λ:

Q̂K − ρΛ + ΛÂ+ Â⊤Λ− (ÎK + B̂⊤Λ)⊤(N̂K)−1(ÎK + B̂⊤Λ) = 0, (2.5.67)

where 

Q̂K := Q̂+ Ĉ⊤KĈ +
∫

χ
F̂⊤(e)KF̂ (e)λ(de),

ÎK := Î + D̂⊤KĈ +
∫

χ
Ĝ⊤(e)KF̂ (e)λ(de),

N̂K := N̂ + D̂⊤KD̂ +
∫

χ
Ĝ⊤(e)KĜ(e)λ(de).

Existence of a solution to (2.5.67) is obtained by the same arguments used for (2.5.64)
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under (H2′
).

• Given (K,Λ), we consider the following mean field BSDE with jumps on infinite horizon:

dYt =
(
ct + (ρId + θ)⊤(Yt − E[Yt]) + (ρId + θ̂)⊤E[Yt] + ϑ⊤(ZY

t − E[ZY
t ]) + ϑ̂⊤E[ZY

t ]

+
∫

χ
ϱ⊤(e)(RY

t (e)− E[RY
t (e)])λ(de) +

∫
χ
ϱ̂⊤(e)E[RY

t (e)]λ(de)
)
dt

+ ZY
t dWt +

∫
χ
RY

t (e)π̃(de, dt), (2.5.68)

where the stochastic process c ∈ L2,ρ̂
F (Ω× [0,∞],Rd) is defined by:

ct :=−Mt −K (βt − β̄t)− Λ β̄t − C⊤K (γt − γ̄t)− Ĉ⊤K γ̄t

−
∫

χ
F⊤(e) K (δt(e)− δ̄t(e))λ(de)−

∫
χ
F̄⊤(e) K δ̄t(e)λ(de)

+ U⊤S−1
(
Ht − H̄t +D⊤K(γt − γ̄t) +

∫
χ
G(e)⊤K (δt(e)− δ̄t(e))λ(de)

)
+ V ⊤Ŝ−1

(
H̄t + D̂⊤K γ̄t +

∫
χ
Ĝ⊤(e)Kδ̄t(e)λ(de)

)
,

the coefficients θ, θ̂, ϑ, ϑ̂ are constant in IRd and are defined by:

θ := −A+B S−1U,

θ̂ := −Â+ B̂ Ŝ−1V,

ϑ := −C +D S−1U,

ϑ̂ := −Ĉ + D̂ Ŝ−1V,

and ϱ, ϱ̂ : χ −→ IRd are defined by:

ϱ(e) := −F (e) +G(e)S−1U, ∀e ∈ χ,

ϱ̂(e) := −F̂ (e) + Ĝ(e)Ŝ−1V, ∀e ∈ χ.

To simplify the notations let us denote:

− f(t, Yt, Zt, Rt,E[Yt],E[Zt],E[Rt]) = ct + (ρId + θ)⊤(Yt − E[Yt]) + (ρId + θ̂)⊤E[Yt]

+ ϑ⊤(Zt − E[Zt]) + ϑ̂⊤E[Zt] +
∫

χ
ϱ⊤(e)(Rt(e)− E[Rt(e)])λ(de) +

∫
χ
ϱ̂⊤(e)E[Rt(e)]λ(de).
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We prove that the following linear BSDE with jumps defined by: for t ≥ 0,
dYt = −f(t, Yt, Zt, Rt,E[Yt],E[Zt],E[Rt])dt+ ZtdWt +

∫
χ
Rt(e)π̃(de, dt)

lim
t→∞

Yt = 0.
(2.5.69)

has a solution (Y, Z,R) in L2,ρ̂
F (Ω× IR+,Rd)×L2,ρ̂

F (Ω× IR+,Rd)×K2,ρ̂(Ω× IR+ × χ, IRd),
where ρ̂ is a positive constant which will be fixed later.
Existence: Let (Y n, Zn, Rn) be a solution on [0, n] of the following BSDE

Y n
t =

∫ n

t
fn(s, Y n

s , Z
n
s , R

n
s ,E[Y n

s ],E[Zn
s ],E[Rn

s ])ds−
∫ n

t
Zn

s dBs

−
∫ n

t

∫
χ
Rn

t (e)π̃(de, ds), t ∈ [0, n],

where

fn(t, Y n
t , Z

n
t , R

n
t ,E[Y n

t ],E[Zn
t ],E[Rn

t ]) = ct1[0,n](t) + (ρId + θ)⊤(Y n
t − E[Y n

t ])

+ (ρId + θ̂)⊤E[Y n
t ] + ϑ⊤(Zn

t − E[Zn
t ]) + ϑ̂⊤E[∆Zn

t ] +
∫

χ
ϱ⊤(e)(Rn

t (e)− E[Rn
t (e)])λ(de)

+
∫

χ
ϱ̂⊤(e)E[Rn

t (e)]λ(de),

and we take (Y n
t , Z

n
t , R

n
t ) = (0, 0, 0) on (n,∞).

We fix m > n. Applying Itô’s formula to eρ̂t|Y m
t − Y n

t |2, we get for all t ≥ 0,

eρ̂T |Y m
T − Y n

T |2 − eρ̂t|Y m
t − Y n

t |2

=
∫ T

t
eρ̂s
(
ρ̂|Y m

s − Y n
s |2 + |Zm

s − Zn
s |2 +

∫
χ
|(Rm

s −Rn
s )(e)|2λ(de)

)
ds

− 2
∫ T

t
eρ̂s(Y m

s − Y n
s )⊤∆n,mfsds

+ 2
∫ T

t
eρ̂s(Y m

s − Y n
s )⊤(Zm

s − Zn
s )dBs +

∫
χ
eρ̂s(Y m

s− − Y n
s−)⊤(Rm

s −Rn
s )(e)π̃(de, ds),

where

∆n,mfs := fm(s, Y m
s , Zm

s , R
m
s ,E[Y m

s ],E[Zm
s ],E[Rm

s ])−fn(s, Y n
s , Z

n
s , R

n
s ,E[Y n

s ],E[Zn
s ],E[Rn

s ]).
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We focus on the dependence in Y , we obtain:

eρ̂T |Y m
T − Y n

T |2 − eρ̂t|Y m
t − Y n

t |2

=
∫ T

t
eρ̂s
(
ρ̂|Y m

s − Y n
s |2 + |Zm

s − Zn
s |2 +

∫
χ
|(Rm

s −Rn
s )(e)|2λ(de)

)
ds

− 2
∫ T

t
eρ̂s((Y m

s − Y n
s )− E[Y m

s − Y n
s ])⊤(ρId + θ)(Y m

s − Y n
s )ds

− 2
∫ T

t
eρ̂sE[Y m

s − Y n
s ]⊤(ρId + θ̂)(Y m

s − Y n
s )ds− 2

∫ T

t
eρ̂s(Y m

s − Y n
s )⊤∆n,mf0

s ds

+ 2
∫ T

t
eρ̂s(Y m

s − Y n
s )⊤(Zm

s − Zn
s )dBs +

∫
χ
eρ̂s(Y m

s− − Y n
s−)⊤(Rm

s −Rn
s )(e)π̃(de, ds).

where

∆n,mf0
s := fm(s, 0, Zm

s , R
m
s , 0,E[Zm

s ],E[Rm
s ])− fn(s, 0, Zn

s , R
n
s , 0,E[Zn

s ],E[Rn
s ]).

Taking the expectation, the contribution of the stochastic integrals vanishes. Using the
Young’s inequality 2ab ≤ ϵa2 + 1

ϵ b
2, where ϵ > 0, and Cauchy Schwarz’s inequality, we

obtain:

2E
[∫ T

t
eρ̂s((Y m

s − Y n
s )− E[Y m

s − Y n
s ])⊤(ρId + θ)(Y m

s − Y n
s )ds

]

+ 2E
[∫ T

t
eρ̂sE[Y m

s − Y n
s ]⊤(ρId + θ̂)(Y m

s − Y n
s )ds

]

≤ 2ρE
[∫ T

t
eρ̂s|Y m

s − Y n
s |2

]
ds+ 2

∫ T

t
eρ̂s|θ|E

[
|Y m

s − Y n
s |2

]
ds

+ 2
∫ T

t
eρ̂s|θ|E [|Y m

s − Y n
s |]

2 ds+ 2
∫ T

t
eρ̂s|θ̂|E [|Y m

s − Y n
s |]

2

≤ 2ρE
[∫ T

t
eρ̂s|Y m

s − Y n
s |2

]
ds+ 2

∫ T

t
eρ̂s(2|θ|+ |θ̂|)E

[
|Y m

s − Y n
s |2

]
ds.
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Similar calculus for the term
∫ T

t eρ̂s(Y m
s − Y n

s )⊤∆n,mf0
s ds, shows that:

E
[∫ T

0
eρ̂s
(
ρ̂|Y m

s − Y n
s |2 + |Zm

s − Zn
s |2 +

∫
χ
|(Rm

s −Rn
s )(e)|2λ(de)

)
ds

]

≤ E[ eρ̂T |Y m
T − Y n

T |2] + (δ + 1
ϵ

+ 2ρ+ C) E
[∫ T

0
eρ̂s|Y m

s − Y n
s |2ds

]

+ Cϵ
(
E
[∫ T

0
eρ̂s|Zm

s − Zn
s |2ds

]
+ E

[∫ T

0

∫
χ
eρ̂s|(Rm

s −Rn
s )(e)|2λ(de)ds

]

+ 1
δ
E
[∫ T

0
eρ̂s|cs|21[n,m](s)ds

] )
.

where C := 2|θ|+ |θ̂|+ 2|ϑ|+ |ϑ̂|+ 2
∫

χ |ϱ(e)|2λ(de) +
∫

χ |ϱ̂(e)|2λ(de). Under (H1′
)(iii), C is

finite. By choosing 0 < ϵ < 1
2C , ρ̂ and δ > 0 s.t. ρ̂ > δ + 1

ϵ + 2ρ+ C + 1
2 , we deduce:

E
[∫ T

0
eρ̂s
(
|Y m

s − Y n
s |2 + |Zm

s − Zn
s |2 +

∫
χ
|(Rm

s −Rn
s )(e)|2λ(de)

)
ds

]

≤ 2
δ
E
[∫ T

0
eρ̂s|cs|21[n,m](s)ds

]
.

Sending T to infinity, by the monotone convergence theorem, we obtain:

E
[∫ ∞

0
eρ̂s
(
|Y m

s − Y n
s |2 + |Zm

s − Zn
s |2 +

∫
χ
|(Rm

s −Rn
s )(e)|2λ(de)

)
ds

]
≤ 2

δ
E
[∫ ∞

0
eρ̂s|cs|21[n,m](s)ds

]
.

As c ∈ L2,ρ̂
F (Ω × [0,∞],Rd), then |cs|21[n,m](s) −→ 0, dt ⊗ dP a.e., s ≥ 0 when n goes to

infinity. By using the dominated convergence theorem for the right hand side, we deduce
that the sequence (Y n, Zn,Kn) is a Cauchy sequence in L2,ρ̂

F (Ω× [0,∞],Rd)× L2,ρ̂
F (Ω×

[0,∞],Rd) × K2,ρ̂(Ω × [0,∞] × χ, IRd) and that the limit (Y, Z,K) is a solution of a MF
BSDE with jumps (2.5.69).

• Given (K,Λ, Y, ZY , RY ), the linear ordinary differential equation for φ

dφt = (ρφt − E[Γ0
t ])dt. (2.5.70)

where Γ0
t = Γt − (ϵt − ϵ̄t)⊤S−1

t (ϵt − ϵ̄t)−Θ⊤
t Ŝ

−1
t Θt is defined in (2.3.26), admits a unique

explicit solution given by: φt =
∫ ∞

t
e−ρ(s−t)E[Γ0

s]ds.

Then, we proved the existence of solutions of the decoupled system (2.5.63).
The following theorem gives the structure of the optimal control for LQMF problem (2.5.57).
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Theorem 2.5.4. Under Assumptions (H1′
)-(H2′

), the optimal control for LQMF problem (2.5.57)
is given by

α∗
t = −S−1U(X∗

t− − X̄∗
t−)− S−1(ϵt− − ϵ̄t−)− S−1(V X̄∗

t− + Θt),

where X∗ = Xα∗
is the state process where the α∗ is the optimal control and the deterministic

coefficients S, Ŝ, U and V and the stochastic coefficients ϵt and Θt are defined in Section 2.3.

2.6 Application to production of an exhaustible resource

In this section, we study a model of production of exhaustible resource with accumulating or
maintaining a level of reserves, inspired by a series of works extended from the Hotelling’s
model [63]. In the classic Hotelling’s model, the dynamics market’s evolution is driven by the
use of existing reserves of an exhaustible reserves to produce energy without possibility to
exploration and/or discovery of new reserves. But many studies have made it possible to ensure
that there are still resources to be explored over time, that is to say that the reservation rate
can be increased. We can refer to the series of works extended from Prindyck’s model [107],
Deshmukh et al. [41], Arrow and Chang [9], and Keller et al. [60]. The increase in reserve
discoveries occurs stochastically via the Poisson process. It should be noted that this increase
is smaller, and it is the reason that the resources always remain exhaustible.
We consider an energy market with N producers (players). Each producer uses exhaustible
resources, such as oil, to produce energy. The quantity Xi

t represents the reserve’s level of
player i, at time t, i = 1, ..., N . It takes values in the set IR+. The reserve level Xi

t decreases
at a controlled production rate αi

t ≥ 0 dt ⊗ dP a.e., and also has random discrete increment
due to exploration. We use N independent Poisson point process πi, i = 1...N to model the
new discoveries and we denote by λi(de)dt the associated compensator. We assume that the
dynamics of the reserve has a noise which is proportional to the current level of the reserve. The
reserve’s dynamics of each producer i is given by the following stochastic differential equation:dXi

t = −αi
t dt+ σXi

t dW
i
t + η

∫
X
Xi

t− π̃i(de, dt),

Xi
0 = xi

0,
(2.6.71)

where xi
0 is the initial reserve’s level of player i, σ > 0, W i, i = 1...N are independent standard

Brownian motion and independent of πi, i = 1...N , and η > 0 is the rate of new discoveries.
The cost functional for producer i is given by:

J i(α1, ..., αn) := E
(∫ ∞

0
e−ρ t

[
−αi

t Pt(αi
t) + Cp(αi

t) + Cex(αi
t, X

i
t)
]
dt

)
, (2.6.72)
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where

• P i
t is the selling price for producer i. It follows a linear inverse demand rule, defined as:

P i
t := Pt(αi

t) = P 0
t − δ αi

t − ε
∫ t

0

1
N

N∑
j=1

αj
sds.

Here δ, ε are positive constants and P 0 is a deterministic function. It will be the same
for all producers. The price P i of producer i is related to his production and also to the
production of all other producers.

• Cp is the cost functions of production, defined as:

Cp(αi
t) := c1Var(αi

t).

• Cex is the cost functions of exploration defined as:

Cex(αi
t, X

i
t) := c2 α

i
t(
xi

0 −Xi
t

xi
0

).

The constants c1 and c2 are positive and represent respectively the cost of production and the
cost of extraction. They are the same for the all producers. From the theory of propagation
of chaos, the individual level of reserve Xi and the price process P i, i = 1, ..., N , become
independent and identically distributed, when N goes to infinity, with a common distribution
given by the law of the solution (X,P ) to the stochastic Mckean-Vlasov equation

dXt = −αt dt+ σXt dWt + η

∫
X
Xt− π̃(de, dt), X0 = x0, (2.6.73)

Pt = P 0
t − δ αt − ε

∫ t

0
αsds, (2.6.74)

where W is a Brownian motion and αt = a(t,Xt) ,t ≥ 0, for some measurable function a on
IR+ × IR. We reduce the problem to a representative producer with initial reserve x0 > 0. The
state process is given X (see (2.6.73)). The control processes are given by (α, P ), where P

satisfies (2.6.74). The aim of the representative producer is to minimise the cost functional
given by:

J(α) := E
[∫ ∞

0
e−ρ tαt (−P 0

t + δ αt + ε

∫ t

0
ᾱsds) + c1Var(αt) + c2 αt(

x0 −Xt

x0
)dt
]
, (2.6.75)
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under the constraints that αt ≥ 0 and Xt ≥ 0 P a.s. for all t ≥ 0. As X̄t = x0 −
∫ t

0
ᾱsds, then

J(α) = E
[∫ ∞

0
e−ρ tαt (−P 0

t + δ αt + ε(x0 − X̄t)) + c1Var(αt) + c2 αt(
x0 −Xt

x0
)dt
]
,

and we are in the framework of Section 2.5 with d = m = 1 (one-dimensional state variable
and control), the coefficients of the state process and the cost functional are given by

B = −1, C = σ, F (e) = η, for all e ∈ χ,

and

N + Ñ = δ, N = δ + c1, I + Ĩ = −c2 + εx0
2x0

, I = − c2
2x0

, Ht = c2 + εx0 − P 0
t

2 ,

where the other coefficient are equal to zero. We define λ(χ) :=
∫

χ λ(de). Notice that under the
assumption ρ > σ2 +λ(χ)η2, (H1′

) and (H3′
) are satisfied. By following the approach developed

in section 2.5, the optimal control is given explicitly. We have to solve the decoupled system of
Ricatti equations and BSDEs with jumps (2.5.63). The Riccati equations (2.5.64) for K and Λ
(2.5.67) are given by:

(
K + c2

2x0

)2

δ + c1
+ (ρ− σ2 − λ(χ)η2)K = 0, (2.6.76)(

Λ + c2+εx0
2x0

)2

δ
+ ρΛ− (σ2 + λ(χ)η2)K = 0. (2.6.77)

Let us also remark that the condition (H2′
) is not satisfied, but we have the existence of a

solution (K,Λ) to (2.6) such that Kc1,c2 :=
K + c2

2x0

δ + c1
> 0 and Λε :=

Λ + c2+εx0
2x0

δ
> 0, and given

by:

Kc1,c2 =
−(ρ− σ2 − λ(χ)η2) +

√
(ρ− σ2 − λ(χ)η2)2 + 2c2

ρ−σ2−λ(χ)η2

x0(δ+c1)

2 > 0,

and

Λε =
−ρ+

√
ρ2 + 2ρ(c2+εx0)+2(σ2+λ(χ)η2)K

δx0

2 > 0.

Therefore, we can write the linear BSDE (2.5.69) with jumps as:

−dYt =
(Λε

2 (c2 + εx0 − P 0
t )− (ρ+Kc1,c2)Yt + (Kc1,c2 − Λε)Ȳt (2.6.78)

−σZY
t + η

∫
χ
RY

t (e)λ(de)
)
dt− ZY

t dWt −
∫

χ
RY

t (e)π̃(de, dt).
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One could check that a solution of the BSDE (2.6.78) is given by:

(Y,ZY , RY ) = (
∫ ∞

t
e−(ρ+Λε)(s−t)

(
Λε
c2 + εx0 − P 0

s

2

)
ds, 0, 0)0≤t≤T . (2.6.79)

In the remaining part of the paper, we assume that P 0
t = p0 for all t ≥ 0: p0 is interpreted

as a substitute price for the exhaustible resource. We study two cases. The first one, when
p0 = c2 + εx0 i.e. p0 coincides with c2 + εx0 which is the cost of extraction for the last unit of
resource. In other words, the Hotelling rent Hr := p0 − c2 − εx0 is equal to zero. The second
case when p0 < c2 +εx0 i.e. the Hotelling rent is negative. The next proposition gives an explicit
solution to the problem (2.6.75) when Hr = 0.

Proposition 2.6.1. We assume that p0 = c2+εx0 for all t ≥ 0, x0 is large enough and 1 > ρ2+2ε
δ .

Then the solution of (2.6.75) is given by

α∗
t = Kc1,c2X

∗
t− + (Λε −Kc1,c2)X̄∗

t− .

Proof. Since (H1′
) and (H3′

) are satisfied and the Riccati equations have a solution, then, by
Theorem (2.5.4), the optimal control is then given by:

α∗
t = Kc1,c2(X∗

t− − X̄∗
t−) + ΛεX̄

∗
t− − 1

2δ

(
c2 + εx0 − P 0

t − Yt
)
.

As P 0
t = p0 = c2 + εx0 for all t ≥ 0, then the solution of the BSDE (2.6.79) satisfies Yt = 0 for

all t ≥ 0 which yields:

α∗
t = Kc1,c2(X∗

t− − X̄∗
t−) + ΛεX̄

∗
t− .

It remains to show that the optimal strategy satisfies the constraint α∗
t ≥ 0 P a.s. for all t ≥ 0.

As x0 is large, by using Taylor’s formula, we have

2 (Λε −Kc1,c2) = −ρ+
√
ρ2 + 2ε

δ
(1 + ρc2 + 2(σ2 + λ(χ)η2)K

δx0(ρ2 + 2ε
δ )

)− c2ρ

x0(δ + c1) + o( 1
x0

)

= −ρ+
√
ρ2 + 2ε

δ
+ c2ρ

x0
( 1
δ
√
ρ2 + 2ε

δ

− 1
δ + c1

) + 2(σ2 + λ(χ)η2)K
δx0

√
ρ2 + 2ε

δ

+ o( 1
x0

).

As 1 > ρ2 + 2ε
δ , then

Λε −Kc1,c2 ≥ 0. (2.6.80)
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We define the stopping time τ∗ as follows:

τ∗ := inf{t ≥ 0 s.t. X∗
t ≤ 0}.

Then on the set {t < τ∗}, from inequality (2.6.80), we have α∗
t ≥ 0 P a.s. On the set {t = τ∗},

the state process X∗
τ∗ = 0, which implies α∗

τ∗ = 0. Since the drift, the diffusion and the jump
terms of the state process are equal to zero, then the process X∗ remains at the level 0 for all
t ≥ τ∗ and the optimal strategy α∗ is the null strategy for all t ≥ τ∗.

In the second case, we assume that p0 < c2 + ϵx0. It is not obvious to check the positivity of
the the state process and the optimal strategy. We study the stationary level of the reserve and
the optimal production rate in mean. From the definition of X∗, we have

X̄∗
t = x0 −

∫ t

0
α∗

sds = x0 −
∫ t

0
ΛεX̄

∗
sds

+
∫ t

0

1
2δ

(
c2 + εx0 − p0 −

∫ ∞

s
e(−(ρ+Λε)(u−s))

(
Λε
c2 + εx0 − p0

2

)
du

)
ds

which implies

X̄∗
t = x0 + (2ρ+ Λε)(c2 + ϵx0)

2δ
1− e−Λεt

2Λε(ρ+ Λε)

− p0

2δ

∫ t

0
e−Λε(t−s)(1−

∫ ∞

s

Λε

2 e(ρ+Λε)(u−s)du)ds.

It yields that lim
t→∞

X̄∗
t = (2ρ+ Λε)(c2 + ϵx0 − p0)

4δΛε(ρ+ Λε) . As the Hotelling rent Hr := p0 − c2 − ϵx0 is

negative, then lim
t→∞

X̄∗
t exists and is positive. As lim

t→∞
X̄∗

t = x0 −
∫ ∞

0
ᾱ∗

sds, then lim
t→∞

ᾱ∗
t = 0. It

means that when we switch to substitute good, there is a remaining resource and we stop the
production of exhaustible resource.
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CHAPTER 3

NUMERICAL APPROACH FOR A CLASS OF

MEAN FIELD GAMES

3.1 Introduction

In this work, we want to apply this method for a MFG problem where the drift depends not only
on α but also on X. Therefore, our mean field game problem is written in the following form:

inf
α
J(x, t, α,m) := inf

α
E
[∫ T

t
f(Xα

s , αs,ms)ds+ Φ(Xα
T ,mT )

]
, (3.1.1)

subject to {
dXα

t = b(t,Xα
t , αt)dt+ σdBt

Xα
0 ∼ m0.

In this work, we introduce the Markov chain approximation approach to solve a mean field game
problem. This approach was inspired from the work of Kushner and Dupuis [70]. It’s based on
the approximation of the stochastic control problem by a control problem for a discrete time
and discrete space controlled Markov chain. In recent work, E. Bayraktar, A. Budhiraja, and
A. Cohen [12] used the Markov chain approximation method to construct an approximation
for the MFG with reflecting barriers. They formulate the MFG model in terms of a controlled
reflected diffusion with a cost function and study the convergence of their numerical scheme
is established for a small time horizon T. The idea is that for a fixed measure on the path
space, we define a Markov decision problem after a time and space discretization. Roughly
speaking, the solution of the discrete MFG considered can be seen as the solution of a fixed
point problem on the space of probability measures on certain path space. Then the discrete
scheme is interpreted as a formulation of a discrete mean field game where the controlled state-
variable is described by a Markov chain chosen to be consistent with the controlled stochastic
differential equation associated to the original problem, [70]. The Markov chain corresponds
to an optimally controlled one by some representative agent for which we define the discrete
control problem. Existence and uniqueness of solution of the discrete MFG equilibrium is proved
using an attractive probabilistic formulation. This work is concertized in the preprint [14].
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3.2 Framework: Notations and setting

Let us consider a mean field game model where each players i controls its private state Xi
t at

time t, by taking an action αt in a closed convex subset A, where the dynamic of state is driven
by the following the stochastic differential equation

{
dXi

t = b(t,Xi
t , αt)dt+ σdBt,

Xi
0 ∼ m0,

(3.2.2)

where Bt is a standard Brownian motion, σ is a fixed positive constant and A is the set of
admissible control,

A :=
{
α : Ω× [0, T ]→ A s.t α is IF -adapted and

∫ t

0
|αt|dt <∞

}
.

We consider K a non empty compact of IRd and let us assume that the function b satisfy the
following assumptions 3.2.1 :

Assumption 3.2.1. The function b is defined on [0, T ]×K×A in IR as follows

b : [0, T ]×K×A → IR

(t, x, α) 7→ b(t, x, α).
(3.2.3)

We assume that the function has the linear form : b(t, x, α) = b1(t, x) + b2(t)α, where

(bh1) The mapping b1is measurable and bounded function on [0, T ]×K.

(bh2) The mapping b2 is measurable and bounded function .

Each player will need to choose his strategy to minimize his cost functional J over the period
[0, T ], which is influenced by the state of other players. The problem of differential games with
an infinite number of agents is articulated in the following form:

(i) for each fixed flow of probability measures m on IRd, solve the standard stochastic control
problem:

u(x, t) := inf
α∈A

J(t, x, α,m), (3.2.4)

subject to {
dXα

t = b(t,Xα
t , αt)dt+ σdBt

Xα
0 ∼ m0.
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(ii) Find m such that L(Xα
t ) = mt for all t ∈ [0, T ], where Xα

t is a solution of the above
stochastic differential equation.

We can see that the first step provides the best response u of a given player interacting with the
stochastical distribution of the states of the other players. If this distribution m is assumed to
be given, when the second step solves a fixed point problem in the goal of the search for fixed
points mt of the best response function. Once these two steps have been taken successfully,
if the fixed-point optimal control α∗ identified in step (i) is in feedback form α∗

t = ϕ(t,Xα
t ,mt)

for some deterministic function ϕ on [0, T ] × Td × P(K). Then if the players use α∗
t , the mean

field equilibrium {mt}0≤t≤T with value in P(K) should coincide with the law of X and satisfy the
Fokker Planck equation.

Definition 3.2.1. (MFG equilibrium )
We say that m∗ ∈ P(K) is an equilibrium for the MFG associated to the initial probability density
m0 if and only if there exist α∗ ∈ A such that

J(t,Xα
t , α

∗,m∗) = inf
α∈A

J(t,Xα
t , α,m

∗), (3.2.5)

and m∗
t = L(Xα

t ), ∀t ∈ [0, T ]. (3.2.6)

The objective is to minimize a cost function of the following form :

J(x, t, α,m) = E
[∫ T

t
(f(Xα

s , αs,ms)ds+ Φ(Xα
T ,mT )

]
, (3.2.7)

where f is a measurable function defined in this form that we will adapt for the rest of the paper:

f(Xα
s , αs,ms) := L(Xα

s , αs) + F (Xα
s ,ms).

with F and L are a measurable functions satisfied assumptions (3.2.2)-(3.2.3) respectively in-
troduced below:

We introduce first the Wasserstein distance W1 as

W1(ν, ν ′) = min

{∫
|x− y| dµ such that µ ∈ Π(ν, ν ′)

}
,

where

Π(ν, ν ′) :=
{
π ∈ P(K×K), π(A×K) = ν(A), π(K×A) = ν

′(A) for eachA ∈ B(K)
}
.
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Assumption 3.2.2. The function F is defined on P×K in IR as:

F : P×K → IR

(m,x) 7→ F (m,x).

(Fh1) F is KF -Lipschitz and KF is independent of m, i.e.

| F (m,x)− F (m, y) |≤ KF | x− y |, ∀m ∈ P and (x, y) ∈ K×K.

(Fh2) F is Lipschitz from the space P endowed with W1 to the space C(K), endowed with the
uniform norm, i.e. there exist CF > 0, such that

∥F (m1, x)− F (m2, x)∥ ≤ CF W1(m1,m2), ∀ m1,m2 ∈ P(K) and x ∈ K.

(Fh3) ∂xF exists and is C∂F -Lipschitz from the space P(K) endowed with W1 to the space C(K),
endowed with the uniform norm. i.e. there exist
L∂F > 0, such that

∥∂xF (m1, x)]− ∂xF (m2, x)∥ ≤ C∂FW1(m1,m2), ∀m1,m2 ∈ P(K) and x ∈ K.

Assumption 3.2.3. The function L is defined on K×A in IR as follows

L : K×A → IR

(x, α) 7→ L(x, α).

(Lh1) L is KL-Lipschitz and KL is independent of α, i.e.

| L(x1, α)− L(x2, α) |≤ KL | x1 − x2 |, ∀(x1, x2) ∈ K×K and α ∈ A.

(Lh2) L is strictly convex with respect to α, i.e.

∂αL(x, α1)(α2 − α1) ≤ L(x, α2)− L(x, α1), ∀α1, α2 ∈ A and x ∈ K.

(Lh3) For all x ∈ K, the function α 7→ ∂αL(x, α) is continuous function.

Assumption 3.2.4. The function Φ is defined on K× P in IR as:

Φ : P×K→ IR

(m,x) 7→ Φ(m,x).

92



Numerical approach for a class of mean field games

(Φh1) Φ is KΦ-Lipschitz and KΦ is independent of m,

| Φ(x,m)− Φ(y,m) |≤ KΦ | x− y |, ∀m ∈ P(K) and (x, y) ∈ K×K.

(Φh2) Φ is CϕLipschitz from the space P endowed with W1 to the space of continuous functions
C(K), endowed with the uniform norm .i.e. there exists CΦ > 0, such that ∀m1,m2 ∈ P

∥Φ(x,m1)− Φ(x,m2)∥ ≤ CΦW1(m1,m2).

(Φh3) ∂xϕ[m] exists and is C∂ϕ-Lipschitz on P space endowed with W1 to the space C(K),
endowed with the uniform norm .i.e. there exists C∂ϕ > 0, such that

∥∂xϕ(x,m2)− ∂xϕ(x,m2)∥ ≤ C∂ϕW1(m1,m2), ∀m1,m2 ∈ P(K) and x ∈ K.

According to [27], the control problem is mathematically described through a system of two
non linear partial differential equations introduced by a following system



−∂tu− ν∆u+H(x,m,Du) = f(x,m), in Td × (0, T ),

∂tm− ν∆m− div(DpH(x,m,Du)m) = 0, in Td × (0, T ),

m(0) = m0,

u(x, T ) = ϕ(x,m(T )),

(3.2.8)

where σ is a non-negative given parameter, T > 0 is a fixed time horizon, K is a compact subset
of IR, P is the space probability measures on K and m0 is a measure on P(K). H : (x, p) ∈
K× IR→ H(x, p) ∈ IR is the Hamiltonian, a convex function with respect to p defined by

H(x,m, p) = sup
α
{−pα− L(x, α)}.

Then we will introduce a numerical method to solve the coupled system of forward-backward
partial differential equations, with variables u and m.
We will refer to the system forward-backward PDEs system (3.2.8) as the mean field game
PDEs system (MF PDE in short). The first equation is backward in time. It is called a Hamilton-
Jacobi equation where is associated with an optimal control problem. This equation describes
the reaction of players to the mass. It presents the decisions based on where you want to be
in the future. The second one is forward in time. This is called a transport or Fokker-Planck
equation for the distribution of the agents. The equation describes the aggregation of the action
of all players. It presents where the population behavior actually ends up based on the initial
distribution. The existence of solutions of HJB-FP system (3.2.8) is treated in many works
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[16, 25, 26, 32, 33, 58, 74]. A uniqueness criterion for the solution of the field game system was
presented by J.M. Lasry and P.L. Lions in their pioneer work [74] on the theory of mean field
games called Lasry-Lions Monotonicity condition.

3.3 Numerical Approximation

In this section, we propose a numerical method to approximate mean field control problem. We
introduce Markov chain Approximation developed by Kushner [70]. The approximating Markov
chain is chosen such that certain local properties of the approximating chain are "similar" to
those of the original controlled process. A cost function for the Markov chain model which is an
appropriate analogue to that for the original model is then found.
This method applies a Markov chain approximation to continuous time, continuous state stochas-
tic control problems by renormalizing finite differences forms as proper Markov chain transition
probabilities. These transition probabilities arise when deriving finite difference versions of the
dynamic programming equation. An important advantage of this method is that the Markov
chain approximation facilitates convergence proofs for the numerical methods in terms of prob-
abilistic argument.

3.3.1 Approximating Markov chain

The idea behind this approach is to construct a discrete time space Markov chain ξh and its
state space. This chain admits a continuous interpolation which approximates the state process
Xt. Roughly speaking, we define a Markov chain ξh, on the state space where his transition
probabilities denoted by p(t, ν, α;x, x+ h). These transition probabilities must be positive p > 0
and satisfies ∑

y∈{x±h}
p(t, ν, α;x, y) = 1.

According to the construction of a Markov chain, its probability measure νn at time n is defined
by

νn = νn+1p(t, ν, α;x, y).

By iterating this equality, we obtain for any n ≥ 1,

νn = (p(t, ν, α;x, y))nν0,

where (p)n is the transition matrix and ν0 is the initial distribution.
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3.3.2 Discretization setting

In this part, we consider T a terminal time T > 0, and K = [−R,R] with R > 0. We define
h = 2R

Nh
x

and ∆t = T
Nh

t
where Nh

x and Nh
t as the mesh step and the time step for our discrete

scheme, for two positives integers Nh
x and Nt. Denote xi := −R + ih, tk := k∆t, we consider

the space grid Gh and the time-space grid Gh,dt defined by

Gh := {xi, 0 ≤ i ≤ Nh
x } and Gh,dt = {(xi, tk), 0 ≤ i ≤ Nh

x , 0 ≤ k ≤ Nh
t }.

We denote the approximation of u and m respectively by vectors U and M such for each (i, k),

u(tk, xi) ≈ Ui,k, and M(tk, xi) ≈Mh
i,k.

Then for the discretization of the HJB equation, we begin by introducing the finite difference
schemes. So for the approximation of ∂xu at (xi, tk) ∈ Gh,dt we define the following discrete
operators:

DUi,k := Ui+1,k − Ui−1,k

2h , for 1 ≤ i ≤ Nh
x − 1, (3.3.9)

For the approximation of ∆u we will use the standard operator

∆hUi,k = Ui+1,k − 2Ui,k + Ui−1,k

h2 , for 1 ≤ i ≤ Nh
x − 1, (3.3.10)

and for approximate ∂tu at (xi, tk) ∈ Gh,dt we introduce the following operator

DUi,k := Ui,k − Ui,k−1
∆t , for 1 ≤ k ≤ Nh

t − 1. (3.3.11)

Let us consider also Lh, F h and Φh be approximated operators respectively of L , F and Φ as:

Lh : Gh ×Ah → IR, F h : P(Gh)× Gh → IR, Φh : P(Gh)× Gh → IR,

where Ah is the set of control αh.
If ξh

k′ = xi ,∀Mh ∈ P(Gh,dt), ∀αh ∈ Ah

[Lh(αh)]i,k′ := L(xi, α
h
i,k′),

[F h(Mh)]i,k′ := F (xi,M
h
∗k′),

[Φh(Mh)]i,k′ := Φ(xi,M
h
tk′ ).
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3.3.3 Construction of Markov chain associated to MFG problem

Discret problem problem Using the implicit scheme (3.3.11) for ∂tu, the explicit scheme
(3.3.10) and the centered scheme (3.3.9), we discretize the HJB equation in (3.2.8) as

−(Ui,k+1 − Ui,k

∆t )− 1
2σ

2(Ui+1,k − 2Ui,k + Ui−1,k

h2 ) +H(x, Ui+1,k − Ui−1,k

2h ) = F (xi,M
h
i,k),

(3.3.12)

with

H(xi,
Ui+1,k − Ui−1,k

2h ) = inf
α
{b(tk, xi, αi,k).(Ui+1,k − Ui−1,k

2h ) + L(xi, αi,k)}. (3.3.13)

Therefore, it leads to the following discretized form of HJB equation for (x, t) ∈ G:



Ui,k−1 = inf
α∈Ah

[(
Lh(xi, αi,k) + F h(xi,M

h
i,k)
)
dt + Ui,k

(
1− σ2 ∆t

h2

)
+Ui−1,k

(
σ2

2
∆t
h2 −

∆t
2h b(tk, xi, αi,k)

)
+Ui+1,k

(
σ2

2
∆t
h2 + ∆t

2h b(tk, xi, αi,k)
)]

,

Ui,Nh
t

= Φh(xi,M
h
i,Nh

t
), 0 ≤ i ≤ Nh

x ,

(3.3.14)

and for x ∈ ∂(G × [0, T ]), discretized form of HJB equation satisfies the following boundary
conditions:

U0,k−1 =
(
L(x0, α0,k) + F h(x0,M

h
i,k)
)

∆t+ U0,k

(
1− σ2

2
∆t
h2 + ∆t

2h b(tk, x0, α0,k)
)

+U1,k

(
σ2

2
∆t
h2 −

∆t
2h b(tk, x0, α0,k)

)
,

UNh
x ,k−1 =

(
L(xNh

x
, αNh

x ,k) + F h(xNh
x
,Mh

i,k)
)

∆t+ UNh
x ,k

(
1− σ2

2
∆t
h2 + ∆t

2h b(tk, xNh
x
, αNh

x ,k)
)

+UNh
x −1,k

(
1− σ2

2
∆t
h2 −

∆t
2h b(tk, xNh

x
, αNh

x ,k)
)
.

(3.3.15)

We assume also the following boundary conditions

U−1,k = U0,k, UNh
x +1,k = UNh

x ,k, 1 ≤ i ≤ Nh
x . (3.3.16)

Transition probabilities for discrete Markov chain Once we discretize the HJB equation
in this form (3.3.14), then, we define (ξh

k )0≤k≤Nh
x

a controlled Markov chain characterized by
its transition probabilities determined explicitly from the HJB approximation (3.3.14). In other
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words, from the finite differential approximation, we define the transition probabilities as follows
p(tk, νi,k, αi,k; k, k+1) = P h(k, αi,k) such that at each time tk, (P h

i,j(k, αi,k))0≤i,j≤Nh
x

is the matrix
of transition probabilities for the controlled Markov Chain, defined by

P h
i,i−1(k, αi,k) = σ2

2
∆t
h2 −

∆t
2h b(tk, xi, αi,k), 1 ≤ i ≤ Nh

x − 1, (3.3.17)

P h
i,i(k, αi,k) = 1− σ2 ∆t

h2 , 1 ≤ i ≤ Nh
x − 1,

P h
i,i+1(k, αi,k) = σ2

2
∆t
h2 + ∆t

2h b(tk, xi, αi,k), 1 ≤ i ≤ Nh
x − 1.

With some transition probability with respect to boundary condition

P h
0,0(k, α0,k) = 1− σ2

2
∆t
h2 + ∆t

2h b(tk, x0, α0,k), (3.3.18)

P h
0,1(k, α0,k) = σ2

2
∆t
h2 −

∆t
2h b(tk, x0, α0,k)),

P h
Nh

x ,Nh
x

(k, αNh
x ,k) = σ2

2
∆t
h2 −

∆t
2h b(tk, xNh

x
, αNh

x ,k),

P h
Nh

x ,Nh
x −1(k, αNh

x ,k) = σ2

2
∆t
h2 + ∆t

2h b(tk, xNh
x
, αNh

x ,k).

The P h
i,j(k, αi,k) represents the conditional probability that the state of the chain ξh at time tk+1

is xj given the state xi at time tk, and the control action α∗k, given by P h
ij(k, αi,k). Therefore,

the symmetric finite difference approximation HJB (3.3.14) can be written in the following form

Ui,k = inf
αi,k

(L(xi, αi,k) + F (xi,M∗k)) dt+
Nh

x∑
j=0

P h
ij(k, αi,k)Uj,k+1

 . (3.3.19)

Let us denote by Ah the set of all policies (αh, ξh) for the controlled Markov chain (mh
0 , α

h,

{P h(k, αh
∗k), 0 ≤ k ≤ Nh

t }),

Ah := Ah
(
mh

0 ;α; (P h(k, α∗k))0≤k≤Nh
t

)
.

Remark 3.3.1. An important advantage of this method is that the Markov chain approxima-
tion facilitates proofs of convergence of numerical methods in terms of probabilistic argument.
Roughly speaking, by approximating the state variable process by a Markov chain, we obtain
the appropriate transition probabilities of the Markov chain, we will show that converges to the
solution of the Fokker Planks equation.

According to Kushner and Dupuis [70], the Markov chain approximation variation ∆ξh
k = ξh

k+1−
ξh

k with |∆ξh
k | = o(h) must satisfy the local consistency conditions. This means that from a local

point of view, the conditional mean and covariance of the changes in state of the chain are
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proportional to the local mean drift and covariance for the original process.

Definition 3.3.2. (Local consistency Kushner and Dupuis, 2013, [70] ).
We say that {P h(k, α∗k), 0 ≤ k ≤ Nh

t } is locally consistent with the state process (Xt) defined
by (3.2.2) if for any admissible policy (µh, ξh) the following local consistency condition holds

Eα
i,k[∆ ξh

k ] = b(tk, Xtk
, αtk

)dt+ o(h), (3.3.20)

and

Eα
i,k[|∆ξh

k − Eα
i,k[∆ξh

k ]|2] = 2σ2dt+ o(h), (3.3.21)

where ∆ξh
k := ξh

k+1 − ξh
k and Eα

i,k is the conditional expectation given ξh
k = xi.

Remark 3.3.3. According to Kushner and Dupuis [70], under a local consistency condition the
minimal cost function associated to the approximated Markov chain converge to the minimal
cost function associated to the original problem.

Lemma 3.3.4. Let (P h(k, α∗k))0≤k≤Nh
t

be given by (3.3.17)-(3.3.18). For all k, we choose h and
∆t such that

∆t ≤ h2

σ2 and h ≤ σ2

sup
i,k
{b(tk, xi, α)} , (3.3.22)

then (P h(k, α∗k))0≤k≤Nh
t

is a family of transition probabilities matrices.

Proof. We must check that 0 ≤ P h
i,i ≤ 1. Then

0 ≤ 1− σ2 ∆t
h2 ≤ 1⇔ 0 ≤ σ2 ∆t

h2 ≤ 1⇔ ∆t ≤ h2

σ2 .

And we check that 0 ≤ P h
i,i−1 ≤ 1.

0 ≤ σ2

2
∆t
h2 −

∆t
2h sup

i,k
(b(tk, xi, αi,k)) ≤ 1⇔ 0 ≤ ∆t σ2

h2 (1
2 − h

sup
i,k

(b(tk, xi, αi,k))

2σ2 ) ≤ 1.

Then

0 ≤ (1
2 − h

sup
i,k
{b(tk, xi, αi,k)}

2σ2 ) ≤ 1 ⇔ h ≤ σ2

sup
i,k
{b(tk, xi, αi,k)} .

The law of the controlled Markov Chain is defined through the matrix of transition probabilities
(3.3.17)-(3.3.18). The idea in this work is instead of discretizing the Fokker Planck equation,
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we define the probability measure of the controlled discrete Markov chain using its transition
probability matrix, {

Mh
∗,0 = mh

0 ,

Mh
∗,k = (P h(k, α∗k))tMh

∗,k−1, for 1 ≤ k ≤ Nh
t ,

(3.3.23)

where we denote by Mh
∗,k the vector (Mh

i,k)0≤i≤Nh
x

, for all the i and fixed k, and by (P h(k, α∗k))t

the transposed matrix of (P h(k, α∗k)).

Remark 3.3.5. In [2], Achdou and Capuzzo-Dolcetta introduce a numerical method using the
finite difference methods. They propose a finite difference scheme with monotone approxima-
tions of the Hamiltonian and also of the discrete formulation of the Fokker-Planck equation. For
our approach, we do not look to discretize the Fokker-Planck equation. From finite difference
approximation of HJB equation (3.3.14), we define the law mh of the Markov chain from its
transition probabilities, and we will show that it converges weakly to the solution of the Fokker
Planck equation.

3.3.4 Discrete MFG equilibrium

Now, we can define the MFG equilibrium for the Markov chain control problem (3.3.19) as follow

Definition 3.3.6. (Discrete MFG equilibrium)
We say that Mh ∈ P(Gh,dt) is an equilibrium for the discrete MFG control problem if there exists
an admissible strategy (αh, ξh) such that

(αh, ξh) = arg min
(α,ξ)∈Ah

Jh(i, k, α, ξ,M), (3.3.24)

where

Jh(i, k, αh, ξh, Mh) = E

[∑
k′≥k

(
Lh(ξh

k′ , αh
∗k′ ) + F (ξh

k′ , Mtk′ )
)

dt + Φh(ξh
Nh

t
, MT ]) | ξh

ℓ , αh
∗ℓ, ℓ ≤ k; ξh

k = xi

]
,

(3.3.25)

and Mh is the discrete distribution law of the discrete-time-space controlled Markov chain
(mh

0 , α
h , {P h(k, αh

∗k), 0 ≤ k ≤ Nh
t }) and satisfies Mh

∗0 = mh
0 ,

Mh
∗k =

(
P h(k, αh

∗k)
)t
Mh

∗k−1 =
(∏

ℓ≤k−1(P h(ℓ, αh
∗ℓ))t

)
mh

0 , 1 ≤ k ≤ Nh
t .

(3.3.26)
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3.4 Existence and uniqueness results of discrete MFG solution

In this section, we will study the existence and uniqueness of discrete MFG equilibrium.

3.4.1 Existence result

To show the existence of a solution of discrete MFG problem, we use the result of Brouwer’s
fixed point theorem. The idea is to show that a function Γh admits at least a fixed point using
this theorem. Therefore, we define the function Γh, for a given h > 0, as follows

Γh : P(Gh,dt) → P(Gh,dt)
mh 7→ Γh(mh) = Mh,

(3.4.27)

such that Mh = Γh(mh) is the law of the discrete-time-space controlled Markov chain (mh
0 , α

h,

{P h(k, αh
∗k), 0 ≤ k ≤ Nh

t }) according to the following equation: Mh
∗,0 = mh

0 ,

Mh
∗,k = (P h(k, αh

∗k))tMh
∗,k−1 =

(∏
ℓ≤k−1(P h(ℓ, αh

∗ℓ))t
)
mh

0 , for 1 ≤ k ≤ Nh
t ,

(3.4.28)

with αh is associated to the optimal admissible policy

(αh, ξh) = arg min
(νh,ξh)∈Ah

Jh(i, k, νh, ξh,Mh). (3.4.29)

Proposition 3.4.1. Under assumptions (3.2.1)–(3.2.3), there exists at least one solution of the
system (3.3.19)–(3.3.26).

Proof. As we have that the set P(Gh,dt) being convex compact, indeed, according to Billengsley
( [19], Theorem 1.3), the space P(Gh,dt) is a compact set since Gh,dt is also compact set. So
we need Brouwer’s fixed point theorem to prove that the function Γh is continuous function on
P(Gh,dt) and in consequence prove the existence of an equilibrium of the discrete MFG control
problem (3.3.19)–(3.3.26).
Let us consider that

Mh,n = Γ(mh,n) and Mh = Γ(mh),

where mh,n , mh ∈ P(Gh,dt), such that Mh,n ( respectively Mh ) satisfies equation (3.3.26)
associated to αh,n ( respectively αh ).
In other hand, we can write the above equations in the following form

Mh,n
i,k+1 = P h

i,i(k, α
h,n
i,k )Mh,n

i,k + P h
i+1,i(k, α

h,n
i,k )Mh,n

i−1,k + P h
i−1,i(k, α

h,n
i,k )Mh,n

i+1,k,
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and
Mh

i,k+1 = P h
i,i(k, αh

i,k)Mh
i,k + P h

i+1,i(k, αh
i,k)Mh

i−1,k + P h
i−1,i(k, αh

i,k)Mh,n
i+1,k,

with P h are the probability transitions defined by (3.3.17)-(3.3.18).
Then, we take the difference between Mh,n

i,k+1 and Mh
i,k+1, for all 0 ≤ i ≤ Nh

t ,

Mh,n
i,k+1 −M

h
i,k+1 =

(
1− σ2 ∆t

h2

)(
Mh,n

i,k −M
h
i,k

)
+ σ2

2
∆t
h2

(
Mh,n

i−1,k −M
h
i−1,k

)
+ σ2

2
∆t
h2

(
Mh,n

i+1,k −M
h
i+1,k

)
Mh

i,k−1 + ∆t
2h b(tk, xi−1,k, α

h,n
i−1,k) Mh,n

i+1,k

+ ∆t
2h b(tk, xi+1,k, α

h
i+1,k) Mh

i−1,k −
∆t
2h b(tk, xi+1,k, α

h,n
i+1,k) Mh,n

i−1,k −
∆t
2h b(tk, xi−1,k, α

h
i−1,k) Mh

i+1,k.

We know that b is bounded, then we get

Mh,n
i,k+1 −M

h
i,k+1 ≤

(
1− σ2 ∆t

h2

)(
Mh,n

i,k −M
h
i,k

)
+ σ2

2
∆t
h2

(
Mh,n

i−1,k −M
h
i−1,k

)
+ σ2

2
∆t
h2

(
Mh,n

i+1,k −M
h
i+1,k

)
+ ∆t

2hCb( Mh,n
i+1,k − Mh

i+1,k)− ∆t
2hCb( Mh,n

i−1,k − Mh
i−1,k).

Then, we have

|Mh,n
i,k+1 −M

h
i,k+1| ≤

(
1− σ2 ∆t

h2

)
|Mh,n

i,k −M
h
i,k|

+ (σ
2

2
∆t
h2 + ∆t

2hCb)|Mh,n
i−1,k −M

h
i−1,k|+ (σ

2

2
∆t
h2 + ∆t

2hCb)|Mh,n
i+1,k −M

h
i+1,k|.

We take the maximum on i in the both side, we obtain

max
i
|Mh,n

i,k+1 −M
h
i,k+1| ≤

(
1− σ2 ∆t

h2

)
max

i

∣∣∣Mh,n
i,k −M

h
i,k

∣∣∣
+ (σ

2

2
∆t
h2 + ∆t

2hCb) max
i
|Mh,n

i,k −M
h
i,k|+ (σ

2

2
∆t
h2 + ∆t

2hCb) max
i
|Mh,n

i,k −M
h
i,k|

≤
(

1 + ∆t Cb

2h2

)
max

i

∣∣∣Mh,n
i,k −M

h
i,k

∣∣∣
From the discret Gronwall’s lemme, if (vn) satisfy vn+1 ≤ (1 + η)vn + k, then

vn ≤ exp(nη)v0 + k
n−1∑
i=1

exp(iη),

Hence, we obtain

∣∣∣∣∣∣Mh,n
∗,k+1 −M

h
∗,k+1

∣∣∣∣∣∣ ≤ C
∥∥∥mh

0 −mh
0

∥∥∥ = 0, where C = exp(∆t Cb

2h2 ).
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Finally, we proved the mapping Γh, defined by (3.4.27), is continuous on a convex compact set
P(Gh,∆t). Then from Brouwer’s fixed point theorem, we get the existence of equilibrium of the
discrete MFG control problem.

3.4.2 Uniqueness result

Using the same argument of Lions-Lasry Monotonicity method ( [74], Theorem 4.1), we will
prove the uniqueness of discrete MFG equilibrium.

Proposition 3.4.2. Under assumptions (3.2.2)–(3.2.4) and if F h and Φh satisfy the Monotony
condition, (i.e.),

(F h(M∗k)− F h(M∗k),M∗k −M∗k)2 ≤ 0 IR F h(M∗k) = F h(M∗k).

(Φh(M∗k)− Φh(M∗k),M∗k −M∗k)2 ≤ 0 ⇒ Φh(M∗k) = Φh(M∗k).

Then there exist at least one solution of the system (3.3.19)–(3.3.26).

Proof. Let M and M ∈ P(Gh) be two equilibrium for the discrete MFG control problem (α, ξ) (
resp. (α, ξ)) and U (resp. U ) be respectively the optimal policy and the discrete value function
associated to M (resp. M ) satisfying the following equations respectively:

Ui,k = inf
αi,k∈Ah

(Lh(xi, αi,k) + Fh(xi,Mi,k)
)
dt+

Nh
t∑

j=0
Ph

ij(k, αi,k)Uj,k+1

 ,

U∗,Nh
t

= Φh(M∗,Nh
t

),

(3.4.30)

and 
U i,k = inf

αi,k∈Ah

(Lh(xi, αi,k) + Fh(xi,M i,k)
)
dt+

Nh
t∑

j=0
Ph

ij(k, αi,k)U j,k+1

 ,

U∗,Nh
t

= Φh(M∗,Nh
t

),

(3.4.31)

Taking the scalar product of the difference between the equations satisfied by U and U multi-
plied by the difference M −M , we obtain

Nh
t∑

k=0

(U∗,k − U∗,k, M∗,k −M∗,k)2 = (U∗,Nh
t
− U∗,Nh

t
, M∗,Nh

t
−M∗,Nh

t
)2

+
Nh

t −1∑
k=0

(P h(k, α∗,k)U∗,k+1, M∗,k −M∗,k)2 −
Nh

t −1∑
k=0

< P h(k, α∗,k)U∗,k+1, M∗,k −M∗,k)2 (3.4.32)

+ ∆t

Nh
t −1∑

k=0

(Lh(x, α∗,k)− Lh(x, α∗,k), M∗,k −M∗,k)2 + ∆t

Nh
t −1∑

k=0

(F h(x, M∗,k)− F h(x, M∗,k), M∗,k −M∗,k)2.
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Using the fact thatM andM are two solutions of (3.3.26), then satisfy the same initial condition,
i.e.

M∗0 = mh
0 = M∗0.

Therefore, we have the following equality

Nh
t∑

k=0
(U∗,k − U∗,k,M∗,k −M∗,k)2 =

Nh
t −1∑

k=0
(U∗,k+1 − U∗,k+1,M∗,k+1 −M∗,k+1)2.

On the other hand, we know that

(P h(k, α∗,k)U∗,k+1,M∗,k+1)2 = (U∗,k+1, P
h(k, α∗,k)t M∗,k+1)2 = (U∗,k+1,M∗,k+1)2.

Then, the equation (3.4.32) becomes

(U∗,Nh
t
− U∗,Nh

t
,M∗,Nh

t
−M∗,Nh

t
)2 + ∆t

Nh
t −1∑

k=0
(Fh(x,M∗,k)− Fh(x,M∗,k),M∗,k −M∗,k)2

= ∆t
Nh

t −1∑
k=0

(Lh(x, α∗,k)− Lh(x, α∗,k),M∗,k)2 −∆t
Nh

t −1∑
k=0

(Lh(x, α∗,k)− Lh(x, α∗,k),M∗,k)2

+
Nh

t −1∑
k=0

((Ph(k, α∗,k)− Ph(k, α∗,k))U∗,k+1,M∗,k)2 −
Nh

t −1∑
k=0

((Ph(k, α∗,k)− Ph(k, α∗,k))U∗,k+1,M∗,k)2.

Using the explicit expression of the transition probabilities, we calculate (P h(k, α∗,k)−P h(k, α∗,k)),
for all 0 ≤ k ≤ Nh

t − 1, we have :

P h
0,0(k, α0,k)− P h

0,0(k, α0,k)) = −∆t
2h (b(tk, x0, α0,k)− b(tk, x0, α0,k)),

P h
0,1(k, α0,k)− P h

0,1(k, α0,k)) = ∆t
2h (b(tk, x0, α0,k)− b(tk, x0, α0,k)),

P h
Nh

x ,Nh
x

(k, αNh
x ,k)− P h

Nh
x ,Nh

x
(k, αNh

x ,k))

= ∆t
2h (b(tk, xNh

x
, αNh

x ,k)− b(tk, xNh
x
, αNh

x ,k)),

P h
Nh

x ,Nh
x −1(k, αNh

x ,k)− P h
Nh

x ,Nh
x −1(k, αNh

x ,k))

= −∆t
2h (b(tk, xNh

x
, αNh

x ,k)− b(tk, xNh
x
, αNh

x ,k)),

103



Numerical approach for a class of mean field games

and

P h
i,i−1(k, αi,k)− P h

i,i−1(k, αNi,k)) = ∆t
2h (b(tk, xi, αi,k)− b(tk, xi, αi,k)),

P h
i,i(k, αi,k)− P h

i,i(k, αi,)) = −∆t
2h (b(tk, xi, αi,k)− b(tk, xi, αi,k)),

P h
i,i+1(k, αi,k)− P h

i,i+1(k, αNi,k)) = ∆t
2h (b(tk, xi, αi,k)− b(tk, xi, αi,k)).

Then by iterating, we get

(P h(k, α∗,k)− P h(k, α∗,k))U∗,k+1 ≤
∆t
h

(b(xi, αi,k)− b(xi, αi,k))DUi,k+1.

Then, using Assumption 3.2.1 and the fact that ∂αL = −b2(t) DU , we get,

(U∗,Nh
t
− U∗,Nh

t
, M∗,Nh

t
−M∗,Nh

t
)2 + ∆t

Nh
t −1∑

k=0

< F h(x, M∗,k)− F h(x, M∗,k), M∗,k −M∗,k)2

≤ −∆t

Nh
t −1∑

k=0

(Lh(x, α∗,k+1)− Lh(x, α∗,k+1), M∗,k)2 + ∆t

Nh
t −1∑

k=0

(Lh(x, α∗,k+1)− Lh(x, α∗,k+1), M∗,k)2

+ C

Nh
t −1∑

k=0

((αi,k+1 − αi,k+1) ∂αL(x, αi,k+1), M∗,k)2 − C

Nh
t −1∑

k=0

((αi,k+1 − αi,k+1) ∂αL(x, αi,k+1), M∗,k)2.

Moreover, we have that L is strictly convex with respect to α, i.e.

∂αL(x, α1)(α2 − α1) ≤ L(x, α2)− L(x, α1), ∀α1, α2 ∈ A.

Therefore,

(U∗,Nh
t
− U∗,Nh

t
,M∗,Nh

t
−M∗,Nh

t
)2 + ∆t

Nh
t −1∑

k=0
(F h(x,M∗,k)− F h(x,M∗,k),M∗,k −M∗,k)2 ≤ 0.

Then F h and Φh satisfy the Monotony condition. Therefore, we obtain the uniqueness of the
solution.

3.5 Convergence results

This Markov Chain Approximation approach was initiated by Dupuis and Kushner [70] to con-
struct numerical solution for the HJB equation. The authors prove the existence of approximat-
ing consistent Markov chain which converges to an stochastic process X̃.

In order to study the convergence of our discrete-MFG equilibrium (3.3.24) to the continuous
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one, we need the results of Kushner and Dupuis [70] for weak convergence of time-continuous
controlled Markov chains on the space of Càdlàg processes D[0;T ] which is a separable and
complete for the Skorohod topology. We will use the same arguments used by Ben Aziza et al.
in [13].

Remark 3.5.1. From the results of Billingsley ( [19], Theorem 6.8 page 73), since the space
of Càdlàg processes D[0;T ], then the space of probability measures for Càdlàg processes
P(D[0;T ]) is also separable and complete. Moreover, the relative compactness of any family of
probability measures is equivalent to the tightness ( [70], Theorem 9.1.1)

Before announcing the main results of this work, we must introduce some mathematical
notions and tools that will be useful to prove this convergence.

To force the state process X to stay in the domain, we need to add the following Neumann
boundary condition

∀x ∈ ∂K, ∀t ∈ [0, T ], ∂xu(x, t).r(x) = 0, (3.5.33)

and
∀x ∈ ∂K, ∀t ∈ [0, T ], ∂xm(x, t) = 0, (3.5.34)

where r(x) is the reflection direction at x and ∂K is the boundary set of K.
In the following we propose a concise description of the limit Mean Field Game related to the
system (3.2.8) with boundary conditions (3.5.33)-(3.5.34).

Let (Ω,F,P, IF = {Ft}) be a filtered probability space, and let us consider a population of
players where a representative player is described by a state variable Xα,ϵ ∈ K, we recall that
K is a compact set. {

dXα
t = b(t,Xα

t , αt)dt+ σdBt

Xα
0 ∼ µ0,

(3.5.35)

where B is a standard Brownian motion, α an admissible control process .

In this case, we must deal with the convergence of the controls, in addition to the conver-
gence properties of the processes. Therefore, we need to define a new class of control, the
relaxed control which provide a very powerful tool in the study of the convergence properties of
sequences of optimally controlled processes. This is due to the fact that under general condi-
tions, arbitrary sequences of relaxed controls have compact closure. This is not true of ordinary
controls. The relaxed control is a class of control were first introduced by Yong to establish ex-
istence of a minimizing control for problem for the calculus of variations. This class were later
used especially to prove the convergence properties of the approximation numerical problem.
(See [70] chapter 9 for more details ).

105



Numerical approach for a class of mean field games

The idea of relaxed control is to replace the A-valued process αt with a P(A)-valued pro-
cess αR

t , where P(A) is the space of probability measures equipped with the topology of weak
convergence.

Definition 3.5.2. An admissible relaxed control is a measure αR on B(A× [0, T ]) such that, for
all t ∈ [0, T ]

αR(A× [0, t]) = t.

For B ∈ B(A), we define

αR
t (B) = lim

δ→0

αR(B × [t− δ, t])
δ

,

then we can write
αR(du, dt) = αR

t (du)dt.

Let us denote R the set of relaxed controls.

We consider then the relaxation of the stochastic control problem where the drift function b is
replaced by the function bR : [0, T ]×K× R defined as

bR(t, x, αR) :=
∫
A
b(s, x, u )αR

s (du),

and the function L is replaced by the function LR : K × R defined as

LR(x, αR) :=
∫
A
L(x, u)αR

s (du)

For any relaxed control αR, we associate a cost function giving by

JR(αR
t ,m, t) = E[

∫ T

t
[
∫
A
L(XαR

s
s , u)αR

s (du) + F (XαR
s

s ,ms)]ds+ Φ(XαR
t

T ,mT )], (3.5.36)

where XαR
t

t is solution of the following relaxed model

{
dXαR

t =
∫
A b(s,XαR

s , u )αR
s (du)ds+ σdBt,

XαR
0 ∼ m0.

(3.5.37)

Definition 3.5.3. (Relaxed MFG Equilibrium)
We say thatm∗ ∈ P [0, T ] is a relaxed equilibrium for the MFG associated to the initial probability
density µ0 ∈ P if and only if it exist αR,∗ ∈ R such that

J(t, xαR,∗,m) = inf
αR∈R

J(t, x, αR,m), and m∗ = L(XαR

t ), ∀t ∈ [0, T ]. (3.5.38)

Proposition 3.5.4. According to the result of Kushner and Dupuis in [70] and for any m ∈ P ,
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we get
inf

αR∈R
J(t, x, αR,m) = inf

α∈A
J(t, x, α,m). (3.5.39)

Proof. To prove (3.5.39), see the result of Kushner et al. [70], Section 4.6, for more details.
The idea is that, given a relaxed control αR ∈ R, there exists a sequence (αn)n ∈ A of ordinary
controls such that the random measure δαn(t)(du)dt converges weakly to αR(du)dt P-a.s.

Remark 3.5.5. The class of relaxed controls will be of importance in the convergence proof
only. They do not enter into the numerical algorithms.

In this section, we will give the main result on this section, using the intermediate tool introduced
above.

Theorem 3.5.6. Let Mh be the discrete MFG equilibrium (3.3.24) and ξh being its associated
optimally controlled Markov chain defined by (3.3.17). Let mh ∈ P(D[0, T ]) be the law of the
continuous-time-space piecewise constant interpolated process ξ̃h.
Then, the sequence

{
mh
}

h≥0
converges weakly to some m in P(D[0, T ]) where m is an equi-

librium of the MFG (3.5.38).
Moreover, let αR,h be the relaxed control process associated to the time-space piecewise inter-
polated process αR,h, then αR,h converges weakly to some relaxed process αR such that

JR(t, X̄t, α
R,∗,m) = min

αR∈R
JR(t, X̄t, α

R,m) and mt = L(X̄αR

T ), ∀t ∈ [0, T ],

where the process XαR

t is a weak solution of

{
dX̄αR

t =
∫
A b(s, X̄αR

s , u )αR
s (du)dsdt+ σdBt + dz(t),

X̄αR

0 ∼ m0.
(3.5.40)

Remark 3.5.7. In this theorem, we had to change the frame and add a local reflection direction
to force the process X̄ to return to the space if it leaves it. where z being a reflecting term on K

associated to reflecting directions r(∂K), such that there exist a process γ : [0, T ]→ IR, γ(s) ∈
r(Xα,ϵ

s ) almost surely with respect to the random measure induced by |z(.) |:

|z | (.) =
∫ t

0
1K(X̄α,ϵ

s )d | z | (s), (3.5.41)

and

z(t) =
∫ t

0
γ(s)d |z | (s). (3.5.42)

In fact, for the discretization of our HJB equation, we have imposed boundary conditions ** **
to force the result to remain in the set, which can avoid the discretization of the reflection term.
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Alternatively, we can also present a discretization of the HJB by taking the reflection term into
account, by agreeing on Kushner’s approximation [70], Section 11 in the multidimensional case
IRd , where they has to consider with 2 cases:

• if x ∈ K, u satisfy the same discrete equation

Ui,k = inf
αi,k

(L(xi, αi,k) + F (xi,M∗k)) dt+
Nh

x∑
j=0

P h
ij(k, αi,k)Uj,k+1

 ,
• if x ∈ ∂K, they consider a bounded and differentiable C s.t. ∂xC(x)γ > 0, for any γ ∈ r(x),
x ∈ ∂K, where u satisfy the following equation

Ui,k = inf
αi,k


Nh

x∑
j=0

P h
ij(k, αi,k)Uj,k+1 + ∂xC(xi)∆zh(xi)

 .
with the state ξh

n = x is in K as ∆zh(x) = Eh
n[∆ξh

n].

It should be mentioned that, according to [70], the Markov chain in this case is always locally
consistent with the reflected diffusion (3.5.35)-(3.5.41)-(3.5.42) , if it is locally consistent with
(3.2.2) in K and is also locally consistent with the reflection direction r(x).

The proof of this theorem is done in many steps, we start by studying the convergence of the
approximating Markov Chain to stochastic controlled process X̄ and its law m converges in
the space P(D[0, T ]) to some m̄. Then by injecting this limit X̄ in the control problem (3.5.36)-
(3.5.37), we show that L(X̄) associated to X̄ converges to the same limit m̄.
Thurs, the first step is to show that the controlled Markov chain {ξh, h > 0} converges to a
Càdlàg process on D[0, T ] and the law mh of the chain converges to m̄ = L(ξh) on P(D[0, T ]).
So we start by study the tightness of {ξh, h > 0} which will give us the convergence of Markov
chain.

Remark 3.5.8. By our construction, the Markov chain {ξh}h>0 defined by (3.3.17)-(3.3.18)
satisfies the local consistency conditions (3.3.20)-(3.3.21).

First, we need to announced the following theorem:

Theorem 3.5.9. (Kushner and Dupuis [70])
Consider an arbitrary collection of processes {xn, n ∈ N} defined on the probability space

(Ω,F,P) and taking values in D[0,∞[. Assume that for each t ∈ [0,∞[ and δ > 0 there exists
compact Kt,δ such that

sup
n

P[xn(t) /∈ Kt,δ] ≤ δ. (3.5.43)
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Define Fn
t to be the σ-algebra generated by xn, n ≤ t. Let Tn

T be the set of Fn
t -stopping times

which are less than or equal to T with probability one, and assume for each T ∈ [O,∞[ that

lim
δ→0

sup
n

sup
τ∈Tn

T

E[1 ∧ |xn(τ + δ)− xn(τ)|]] = 0. (3.5.44)

Then {xn, n ∈ N} is tight.

Now we can announced the following result:

Proposition 3.5.10. The collection {ξh, h > 0} is tight.

Proof. We will show that the conditions (3.5.43)-(3.5.44) hold for the process {ξ̂h, h > 0}
associated to the transition probabilities (3.3.18)-(3.3.17).
Step 1: In fact, for xi ∈ Gh, we have

ξh(t)− x = ξh
k − ξ0 =

Nh
t −1∑
i=0

∆ξh
i+1 =

Nh
t −1∑
i=0

[
Eα

i,k[∆ξh
k ] + ∆ξh

i+1 − Eα
i,k[∆ξh

k ]
]
.

We apply Young’s inequality , we get

∣∣ξh(t)− x
∣∣2 =

∣∣Nh
t −1∑
i=0

[
Eα

i,k[∆ξh
k ] + ∆ξh

i+1 − Eα
i,k[∆ξh

k ]
] ∣∣2

≤ 2

∣∣
Nh

t −1∑
i=0

Eα
i,k[∆ξh

k ]|2 + |
Nh

t −1∑
i=0

∆ξh
i+1 − Eα

i,k[∆ξh
k ]
∣∣2 .

We take the conditional expectation Eα
i,k,

Eα
i,k

[∣∣ξh(t)− x
∣∣2] ≤ 2

Eα
i,k

∣∣Nh
t −1∑
i=0

Eα
i,k[∆ξh

k ]
∣∣2Eα

i,k

∣∣Nh
t −1∑
i=0

∆ξh
i+1 − Eα

i,k[∆ξh
k ]
∣∣2 .

From Remark 3.5.8, the chain {ξh}h satisfies the local consistency conditions (3.3.20)-(3.3.21).
Then we obtain

Eα
i,k

[∣∣ξh(t)− x
∣∣2] ≤ 2

Eα
i,k

∣∣Nh
t −1∑
i=0

b(ξh
k )∆t|2

+ Eα
i,k

Nh
t −1∑
i=0
|2σ∆t+ o(∆t(ξh

k ))
∣∣

≤ 2K2t2 + 2(K + o(h))t,

where K is a bound for |b(x)| ∨ |σ(x)| for all x. Finally, from Tchebyshev’s inequality, the first
condition (3.5.43) is hold.
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Step 2: Verifying that

lim
δ→0

sup
n

sup
τ∈Tn

T

E[1 ∧ |xn(τ + δ)− xn(τ)|] = 0.

Thanks to the local consistency condition, we have

E[1 ∧ |ξh(τ + δ)− ξh(τ)|] ≤
(
E[|ξh(τ + δ)− ξh(τ)|]

)1/2

≤
(
2K2δ2 + 2(K + o(h) )δ

)1/2
−→
δ→0

0

Finally, from the result 3.5.9 of Kushner and Dupuis [70], we obtain that the chain {ξh, h > 0} is
tight.
Therefore, we have the following result:

Lemma 3.5.11. The sequence (ξh)h converges to a Càdlàg process X̄ in D[0, T ] such that
L(X̄) corresponds to the limit of L(ξh).

Proof. By tightness proved on Proposition 3.5.10, we may extract a weakly convergent subse-
quence, again referred to as (ξh, h > 0).
To prove that ξh converges weakly to X̄ ∈ D[0, T ] such that L(X̄) corresponds to the limit of
L(ξh), we need to use the result of Billingsley, 2013, ( [19], theorem 13.4, page 142 ). Then we
should prove the almost sure continuity of the limit process trajectories X̄.
So, thanks to the construction of ξh, we get

sup
0<t<T

|ξh(t)− ξh(t−)| = dx = h −→
h→0

0.

Then we conclude that ξh converge to a Càdlàg process X̄ in D[0, T ].
Based also on the tightness of m and the results of Billingsley [19], we get

Lemma 3.5.12. Let (mh)h the sequence of laws associated to ξh in P(D[0, T ]), as mentioned in
previous Theorem 3.5.6. Then, the sequence (mh)h is tight and there exists an subsequence,
still noted (mh)h converging weakly to some m̄ in P(D[0, T ]).

Proof. From remark 3.5.1, the space P(D[0, T ]) is a complete and separable space. According
results of Billengsley ( [19]„ Theorem 1.3) each probability measure on P(D[0, T ]) is tight. Thurs
the sequence (mh)h is tight then we can extract a sub-sequence that converge to some limit m̄
in P(D[0, T ]).

And finally we conclude

Lemma 3.5.13. For all (ti)i a finite sequence in [0, T ], we have

L(ξh(t1), ... , ξh(tk)) ≡ mh
t1 ⊗ .... ⊗m

h
tk
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converges to m̄t1 ⊗ .... ⊗ m̄tk
when h→ 0.

Proof. To prove this last point of the lemma, thanks again to the results of Billingsley ( [19],
theorem 2.7, page 21) and the Lemma 3.5.11, we have the almost sure continuity of the limit
process trajectories X̄. As it explained in section 13 of Billingsley [19] for tightness in D[0, T ],
we conclude that .

Thus we inject (m̄, ξh) into the control problem (3.4.29) in order to show that the solution of
Fokker-Planck and the solution of equation (3.3.26) converge to the same limit.

So let us denote by (ᾱh, ξ
h) the optimal policy associated to the control problem

(ᾱh, ξ̄h) = arg min
(αh,ξh)∈Ah

J̃h(i, k, αh, ξh, m̄). (3.5.45)

Then, similarly to (3.3.19), we obtain the following equations for the associated discrete value
function Uh

Ūh
i,k = inf

α∈Ah

(Lh(xi, α∗,k) + F [m̄tk
](xi)

)
dt+

∑
j

P h
ij(k, αi,k)Ūh

j,k+1]

 ,
with terminal condition

Ūh
∗,Nh

t
= Φ[m̄T ].

Moreover, ∀ 0 ≤ k ≤ Nh
t − 1 and ∀ 1 ≤ i ≤ Nh

x , the optimal action ᾱ verifies

ᾱh
i,k = arg min

α∈Ah

[Lh(α)]i,kdt+
∑

j

P h
ij(k, α)Ūh

j,k+1

 .
Let us define m̄h as the law of the controlled Markov chain (mh

0 , ᾱ
h, {P h(k, ᾱh

∗k), 0 ≤ k ≤ Nh
t })

with its piecewise constant interpolation density function m̄h(x, t). m̄h
∗k = P h(k, ᾱh

∗k)T M̄h
∗k−1 =

(∏
ℓ≤k−1(P h(ℓ, ᾱh

∗ℓ))T
)
mh

0 , for 1 ≤ k ≤ Nh
t ,

m̄h
∗0 = mh

0 ,
(3.5.46)

Proposition 3.5.14. αh,R converges weakly to some relaxed process αR as h→ 0 such that

JR(x, t, αR,m) = inf
αR∈R(A×[0,T ])

JR(x, t, αR,m), ∀t ∈ [0, T ], (3.5.47)
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where XαR

t is a weak solution of dXαR

t =
∫
R b(s,XαR

s , u )αR
s (du)dt+ σdBt + dz(t)

X
αR

s
t ∼ m0,

such that L(XαR

t ) = mh, with z is a reflecting process defined in (3.5.41)-(3.5.42).

The last step is to show that mh converges to the same limit as mh, using the following
result of Bayraktar et al [12] :

Lemma 3.5.15. There exist a T̂ > 0, h0 > 0 and q ∈ (0, 1), such that for every T ≤ T̂ ,
m1,m2 ∈ P(D(0, T ), G) and h ∈ (0, h0 ∧ T̂ ),

W2
1

(
L(ξ̂h,m1),L(ξ̂h,m2)

)
≤ q

(
h2 + W2

1(m1,m2)
)

Lemma 3.5.16. mh converges weakly to m, the weak limit of mh.

Proof. To prove this convergence, we will use the Wassertein distance W1.
Using the following inequality

W2
1(m̄h, m̄) ≤W2

1(m̄h,mh) + W2
1(mh, m̄).

From Lemma 3.5.15, we have that W2
1(mh, m̄) −→

h→0
0. So we just need to prove that

W2
1(m̄h,mh) −→

h→0
0.

We remind that m̄h and mh are respectively the law of the optimal controlled Markov chain
(mh

0 , ᾱ
h, {P h(k, ᾱh

∗k), 0 ≤ k ≤ Nh
t }) and (mh

0 , ᾱ
h, {P h(k, ᾱh

∗k), 0 ≤ k ≤ Nh
t }).

From Lemma 3.5.15, we have

W2
1(m̄h,mh) ≤W2

1(L(ξ̄h),L(ξh))

≤ q(h2 + W2
1(mh, m̄)).

Moreover, mh and mh present the induced measures associated to mh and m̄ respectively.
Consequently, we get that mh and mh converge weakly to the same limit m̄.

Concluding, the previous results collected together lead to the convergence result that we
look to prove in this work. In one hand we have that the tow families of probability measures
{m̄h, h > 0} and {mh, h > 0} converge weakly to the same limit law m̄. On the other hand, the
limit law m̄ is a equilibrium of the MFG continuous problem (3.2.5).
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Then, the solution of a MFG discrete problem (3.3.24) converges weakly to a solution of a MFG
continuous problem (3.2.5).

3.6 Numerical simulation

The theoretical study of the approach proposed in this thesis pushes the numerical validation.
Therefore in order to validate our approach, we study the case of Linear Quadratic Mean Field
Games(LQ-MFG for short). First we present the class of LQ-MFG. Later we solve the associ-
ated MFG PDEs using the Markov chain approximation approach. To compare the results and
certify it we applied for a model with explicit solution.

3.6.1 Linear quadratic model

We introduce a Linear Quadratic model of MFG where the cost functional is quadratic in all
state variables, control variables and the mean field terms, while the controlled dynamics are
linear. The Linear Quadratic model was well studied in Bensoussan et al. [17]. Let us consider
the following linear quadratic form for L, F, b and Φ:

L(x, α) := 1
2 (x∗Qx + α∗Rα) ,

F (m, x) := 1
2

(
x− S

∫
εm(ε)dε

)∗

Q̄

(
x− S

∫
εm(ε)dε

)
,

b(t, x, α) := Ax + Bα,

Φ(m, x) := 1
2

(
x∗QT x +

(
x− ST

∫
εm(ε)dε

)∗

Q̄T

(
x− ST

∫
εm(ε)dε

))
,

where A, B, R, Q, Q̄, S are given constants.
We remain that we look to solve the following coupled HJB-FP system of PDE

−∂tu(t, x)− 1
2σ

2∆u(t, x) +H(x, ∂xu(t, x)) = F [m(t, x)](x)

∂tm(t, x)− 1
2σ

2∆m(t, x)− ∂x(m(t, x)∂pH(x, ∂xu(t, x)) = 0

u(T, x) = Φ(m(T, x), x), m(0, x) = µ0(x).

(3.6.48)
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3.6.2 Explicit solution

In this section, we have to solve the system of HJB-FP equations introduced by 3.6.48 which
reads as follows

−∂tu(t, x)− 1
2σ2∆u(t, x) = −∂xu∗ BR−1B∗∂xu + ∂xuA x+

+ 1
2

(
x∗Qx +

(
x− S

∫
εm(ε)dε

)∗
Q̄
(
x− S

∫
εm(ε)dε

))
,

∂tm(t, x)− 1
2σ2∆m(t, x)− ∂x(m(Ax−BR−1B∗∂xα)) = 0,

u(T, x) = 1
2

(
x∗QT x +

(
x− ST

∫
εm(ε)dε

)∗
Q̄T

(
x− ST

∫
εm(ε)dε

))
,

m(x, 0) = m0(x).

(3.6.49)

We look for a solution u(t, x) of the following quadratic form

u(t, x) := 1
2x

∗P (t)x+ x∗r(t) + s(t), (3.6.50)

so we get
∂xu(t, x) = P (t)x+ r(t), ∆u(t, x) = P (t).

Then the FP equation be written as

∂tm(t, x)− 1
2σ

2∆m(t, x)− ∂x(m((A−BR−1B∗P (t))x−BR−1B∗r(t))) = 0. (3.6.51)

We set z(t) =
∫
xm(t, x)dx the mean of m. It easy to see that z(t) satisfies the following

equation 
dz

dt
=
(
BR−1Br(t)−A

)
z(t) +BR−1Br(t),

z(0) = z0.
(3.6.52)

Using the quadratic form of u, we get the coupled system of differential equations:

dP

dt
+AP (t) + P (t)A− P (t)BR−1BP (t) +Q+ Q̄ = 0 (3.6.53)

dr

dt
= −Ar(t) + 2P (t)BR−1Br(t) + Sz(t)Q, (3.6.54)

ds

dt
= −σ

2

2 + r(t)BR−1Br(t)− 1
2Sz(t)Q̄Sz(t), (3.6.55)

P (T ) = Q+ Q̄, r(T ) = −Q̄Sz(T ), s(T ) = 1
2z(T )SQ̄Sz(T ). (3.6.56)

The difficulty of the numerical resolution is the resolution of the coupled forward backward sys-
tem (3.6.52)-(3.6.55). Thanks to shooting method (see [24, 99]), we can solve it. The shooting
method is a method for solving a boundary value problem by reducing it to the system of an
initial value problem. Roughly speaking, we shoot our trajectories in different directions until we
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find a trajectory that has the desired boundary value.
In other words, by initializing z0, we solve the equation (3.6.52) by replacing z by z0. Then we
inject the solution z1 in (3.6.55) and solve it by initializing r0. We repeat these steps by injecting
each time the solution found zk in the equations for the next step and so on. We repeat this
procedure until we find c.

Algorithm 1 Shooting method

Initial (z0, r0).
for i = 0 to N − 1 do:

Find zk+1 solution of (3.6.52)
dz

dt
=
(
BR−1Brk

t −A
)
zk

t +BR−1Brk
t ,

Find rk+1 (3.6.55)
dr

dt
= −Ark

t + 2PtBR
−1Brk

t + Szk+1
t Q,

Return (zN , rN )
Repeat until found rk

T = rT .

Therefore, the first step is to solve (3.6.54) and the second one is to solve the coupled
system (3.6.52)-(3.6.55) for z and r using shooting method and we end up with find the solution
s of (3.6.56). To simplify the calculation, we take the Gaussian probability density defined as
follows

m(t, x) = 1√
2πv(t)

exp (x− z(t))2

2v2(t) .

Moreover, we know that the optimal control αk is defined as follows

αk = min
α
J(x, t, α,m).

Thus, in this linear quadratic framework, we obtain this explicit form :

αk := −B
R
∂xu(t, x). (3.6.57)

3.6.3 Numerical results

The numerical solution of the problem is based on a fixed point argument. The distribution is
initialized and then an iteration method is applied to the optimal policies. At each iteration the
optimal strategy is computed, then the value function and the new distribution until stability.
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Algorithm 2 Point fixe algorithm

Initial M0 and some threshold ϵ > 0.
while ||Mk+1 −Mk|| < ϵ and ||Uk+1 − Uk|| < ϵ do:

for k = N − 1 to 0 do:
calculate Uk (3.3.19),
calculate Mk (3.3.23),
calculate αk (3.6.57).

end while.

Here, we compare both explicit and numerical solutions for the same initial probability den-
sity m0 = N(0, 0.5) for A = 0.01.

Let us start by setting the parameters chosen for the numerical experiments:

T = 1, σ = 0.35, Q = 2, Q̄ = 1, S = 0.5, K = [−5, 5].

Test 1 :

From figures 3.1 and 3.2, we can see that the probability densities are more and more
similar when evolving in time. The evolution of the probability distributions seems to be toward
a centered Gaussian one.

Figure 3.1: Explicit and Numerical probabil-
ity measure at T

Figure 3.2: The explicit probability measure at
T/2

The probability measure: FP solution
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Figure 3.3: The explicit probability measure
Figure 3.4: The numerical probability mea-
sure

As for the probability densities, it is clear from figures 3.5 and 3.6, that the value functions are
more and more similar when evolving in time

Figure 3.5: Explicit and numerical value
function at T .

Figure 3.6: Explicit and numerical value
function at T/2.

The value function : HJB solution

Figure 3.7: The explicit value function Figure 3.8: The numerical value function

Actually, according to the numerical implementations, once we take a larger value of A, we
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lose the convergence of the explicit solution to the numerical solution.

Test 2 : For A = 0.5, we get the following numerical result:

Figure 3.9: Explicit and Numerical probabil-
ity measure at T

Figure 3.10: The explicit probability measure at
T/2

Figure 3.11: Explicit and Numerical value
function at T

Figure 3.12: The explicit value function at T/2

Test 3 : For A = 1, we get the following numerical result:
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Figure 3.13: Explicit and Numerical proba-
bility measure at T

Figure 3.14: The explicit probability measure at
T/2

Figure 3.15: Explicit and Numerical value
function at T

Figure 3.16: The explicit value function at T/2

It is clear, from figures (3.9)-(3.10)-(3.13)-(3.14) that we lose the convergence of the m den-
sity. In fact, if A is increasingly large then the discretization path dx is increasingly small and
therefore the conditions (3.3.22) are not verified. Numerically, we risk to have values very close
to zero and we lose the compact criterion of the discretization set G{t,h} and consequently the
convergence of the numerical solution is lost.

In the following, we take the same values of the X and Y parameters, however we will ex-
pand the time intervals [0, T ] = [0, 10] and K = [−10, 10], we obtain the following numerical
results:

Test 4 : We take A = 0.5.
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Figure 3.17: Explicit and Numeri-
cal value function t t0

Figure 3.18: Explicit and Nu-
merical value function at
T/2

Figure 3.19: Explicit and Nu-
merical value function at T

Figure 3.20: Explicit and Numeri-
cal probability measure at t0

Figure 3.21: Explicit and Nu-
merical probability measure
at T/2

Figure 3.22: Explicit and Nu-
merical probability measure
at T

By extending these intervals, we notice, according to the figures above, that the numerical
solution of the value function is closer to the explicit solution. On the other hand, the numerical
solution of the probability measure, for this test, is also closer to the explicit solution. On the
other hand, for a larger value of A, we also lose the convergence of the solutions.
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CHAPTER 4

LEARNING DYNAMIC UTILITIES

4.1 Introduction

This chapter aim to propose an algorithm to learn the utility of an agent by observing her deci-
sions at discrete (possibly random) dates (τi)i. There are many settings in which this capability
is very useful. In cooperative setting, we may want to help the agent make good decisions. This
is the principle of robo-advisors which are online investment management services that employ
mathematical algorithms to provide financial advice with minimal human intervention. Based on
online questionnaires to obtain information about the client’s degree of risk-aversion, financial
status, and desired return on investment, the robo-advisors use their algorithms to manage and
allocate client assets in the most efficient way possible. In a more competitive setting, we may
want to predict the agent’s actions so as to better optimize our own payoffs, this is the case of
two-player A and B where A is trying to learn the utility’s of B, to optimize her own payoff which
also depends on B’s actions and utility.
From a theoretical and application point of view this problem of recovering the utility of an agent
from observations is an old inverse problem: Same questions was addressed by the economist
Samuelson in the 40’s [111, 112], with the theory of "revealed preference" where the observ-
able is the consumption process. Since then, the theory has been growing in interest under
the pressure of the economic reality, which created news incentives for different approaches,
see Chambers & Echenique [36]. An example is the evolutionary economics by Arthur [10].
Economies are considered as complex evolutionary systems, where the agents try to predict
the outcomes of their actions, and how the market would be modified by their decisions.
Beyond the fields of economics and finance, in the last few decades this forward-looking view-
point has been also considered in many optimization problems as a consequence of the ex-
pansion of computer science and e-commerce. The forward modeling allows anticipations on
the future values of observations But, the agents also need to adjust their (random) prefer-
ences over time, following an "inverse thinking" approach as has been suggested by Gomez-
Ramirez [55].
In the field of machine learning, we refer for example to Friedman and Sandow [49], Chajewska,
Koller, and Ormoneit [35]: and Stahl [113] and Hibbard [62]. As well, reasoning with preferences
has been recognized as a particularly promising research direction for artificial intelligence see
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Nielsen and Jensen. [101] and Qi, Xu, and Lafferty. [108]. For e-commerce, see [116]: The
principal idea is to build the utility function of a user from his search history and purchases on
the Internet. This utility will then be used to target the user by proposing products or baskets of
goods that we know are likely to be of interest to him and at specific prices evaluated from this
utility function.
Since the problem is posed forward in time and given the randomness of the universe, the util-
ity that we seek to construct from the observations must be a dynamic utility coherent in time
and consistent with this universe (in a sense that we specify further on). For these reasons,
we are concerned, in this work by, the concept of ”forward” dynamic utilities which was first
introduced and considered by Musiela and Zariphopoulou [95,97,98] to model the preferences
of an agent in a continuous semimartingale financial market, see also Henderson and Hob-
son [61], El Karoui and Mrad [45] and El Karoui & al [44] for a model with consumption. See
also Matoussi and Mrad [89] for a semimartingale market with Jumps.
Recently in [46], the authors have addressed the problem of revealed utility in a general dy-
namic framework beyond finance and economics. They establish a necessary and sufficient
condition for the existence of at least one solution to the "revealed" utility problem and given
a simple way for recovering the utility of an agent provided that the observed process X(x)
is monotonic with respect to its initial condition x, which is an assumption that is satisfied in
finance and economics, one does not invest more to earn less. In a more general framework,
it also remains true as soon as we have some regularity (Lipschitz is enough) on the diffusion
coefficients of X.
They are the results of this last paper that we implement in this work. Let us briefly present
the idea and different steps of the revealed dynamic utility problem as in [46]. By definition,
the observable is a so-called dynamic positive characteristic process {Xt(x)} considered for
different values of its initial condition X0(x) = x > 0, and assumed to be increasing in x (to
be coherent with the expected utility criterium). The goal is to recover, from a given initial utility
function u, a stochastic dynamic utility U = {U(t, z, ω), z > 0}, "revealed optimally" in the sense
that at any (stopping) time τ , the preference for the observable process is in mean equal to its
value at time 0, E(U(τ,Xτ (x))) = u(x): from the probabilistic dynamic view point, on a given
filtered probability space, the performance process "U(t,Xt(x)) is a martingale". Focusing on
the concavity of the utility criterium U, tools of convex analysis play a key role, especially the
invertible decreasing marginal utility Uz(t, z). Its allows to define the convex Fenchel-Legendre
transform Ũ(t, y) of U(t, x), by U(t, z) − z Uz(t, z) = Ũ(t, Uz(t, z)), but also to linearize the re-
covery problem, by using the one to one correspondence between the class of dynamic utilities
U (revealed by X) and the adjoint processes Y candidate to play the role of Uz(t,Xt), more
precisely {Yt(uz(x)) = Uz(t,Xt(x))}. Since the characteristic process is invertible, the triplet
{(u,Xt(x), U(t, z))} is in one to one correspondence with the triplet {

(
u,Xt(x), Yt(uz(x))

)
}. In
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fact, denoting by {Xt(z) := (Xt)−1(z)} the inverse flow of X, we have the characterization

Uz(t, z) = Yt(uz(Xt(z)), and U(t, z) = U(t, z0) +
∫ z

z0
Yt(uz(Xt(x))dz.

Note that in the continuous semimartingale [45] and semimartingale with jumps framework [89],
the authors have shown that if U is a regular dynamic utility, consistent with a given financial
market, it is necessarily in this form with X being the optimal portfolio and Y being the optimal
state price density process.
The goal, in the revealed utility problem, is then to identify the class of the adjoint processes
{Yt(y)} in bijection with a revealed dynamic utility U, such that U(t,Xt(x)) is a martingale. A
quasi-necessary condition on the triplet {

(
u,Xt(x), Yt(y)

)
is "{Xt(x)Yt(y)} is a supermartingale

for any x, y and {Xt(x)Yt(uz(x))} is a martingale for y = uz(x) "; this last condition guarantees
that the conjugate dynamic process {Ũ(t, Yt(y))} read along the adjoint process {Yt(y)}, is a
martingale.
Note that the revealed utility problem does not necessarily have a unique solution, there are
as many utilities as there are processes Y satisfying this last condition. From a financial point
of view, the observable X is the optimal portfolio of the investor and Y is his optimal state
price (pricing kernel). If the market is complete, Y is unique and corresponds, up to a discount
factor, to the risk neutral density. However, if the market is incomplete, several choices of Y are
possible. This work is concertized in the preprint [94].

4.2 Preliminary results on the numerical approximation of dynamic
utility

Automated investment managers or robo-advisors were imposed these last years in the finan-
cial and economic world to replace or alternate with traditional human advisors. The robo-
advisors are online platforms that provide financial advice or portfolio management to an in-
vestor or a client. The performance of the robo-advisor strongly depends on its ability to ac-
curately assess the investor’s risk tolerance. They have many advantages over the investment
services offered by traditional management consultants. Robo-advisor knows the investor bet-
ter than a traditional asset manager. Because of this better knowledge, the robo-advisor may
propose a more appropriate asset allocation. In addition, it performs the task in a system-
atic way and implements an automated rebalancing process. From the client’s perspective, the
biggest advantage of robo-Advisor is that it provides a low-cost alternative to traditional invest-
ing.
The idea of these platforms is to develop a new investment framework in which the robo-advisor
not only manages the client’s portfolio but also reacts regularly with him/her to obtain updated
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information on his/her performance during time. More precisely, the client is giving an infor-
mation about his/her preferences to the robo-advisor only at specific update dates (τi)i. So,
between two update dates, the robo-advisor does not receive any information from the cus-
tomer. Therefore, it develops a framework to learn the investor’s preferences between two up-
date dates. In other words, by observing the data communicated by the client at interaction
dates, robo-advisor approximates the preferences of the client to make investment decisions
and it interacts repeatedly with the client to update its informations by asking from the investor
his/her new data in order to avoid making decisions based on stale information. In general, the
robo-advisor solicits this information through targeted online questionnaires, and transfers it to
digital data. We assume that we have observations for several different initial conditions (zj)j .
Such informations are not necessarily collected in the questionnaires of the robo-Advisors, but
maybe it is necessary because we know very well that the choices of an agent are strongly
conditioned by its initial position (e.g initial wealth). Moreover, without these observations, we
have a little chance to find the dynamic utility of the agent, see the papers [44–46, 89]. In this
work the idea is the following

• Step 1: From the observations Xτi(zj) and Yτi(yj) we construct the marginal utility at
the points (τi, zj), using the characterization Uz(τi, zj) = Yτi(uz(Xτi(zj))), where Xt(z) =
X−1

t (z) denotes the inverse maps of z → Xt(z).

• Step 2: We integrate numerically with respect to the spatial parameter and get U(τi, zj).

• Step 3: This data is used as a starting point to learn the utility U at any point (t, z), using
several artificial intelligence methods, specifically the deep learning method.

• Step 4: Finally we try to predict the utility at a reasonable horizon (to be able to make
decisions in place of the client) and we conclude with a comparison of these different
approaches.

Note, as we do not dispose of observations, we will generate them by ourselves and this by
assuming that the processes X and Y evolve according to two stochastic differential equations
with jumps.

4.2.1 The model

In this section, we suppose that the filtered probability space (Ω,F,P) supports a q-dimensional
standard Brownian motion B = (B1, . . . , Bq) on and an independent q′-dimensional Poisson
random measure N on [0,∞[×IRq′

with constant time dependent intensity measure λdt×ν(de)
defined on the filtered probability space (Ω,F,F,P). λ is the intensity of jumps and ν is a finite
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positive measure on IRq′
, satisfying standard integrability assumptions. We also denote by Ñ

the compensated version of N :

Ñ(dt,de) = N(dt, de)− ν(de)λ(t)dt.

We are concerned by two IRd-valued stochastic processes X and Y , solutions of the following
stochastic differential equations (SDE for short)

dXt(x) = µ(t,Xt(x))dt+
q∑

i=1
σi(t,Xt(x))dBi

t +
∫

IRq′
h(t,Xt−(y), e)Ñ(dt, de), X0(x) = x,

(4.2.1)

dYt(y) = b(t, Yt(y))dt+
q∑

i=1
γi(t, Yt(y))dBi

t +
∫

IRq′
g(t, Yt−(y), e)Ñ(dt, de), Y0(y) = y, (4.2.2)

where µ, b, σi, γi are deterministic functions from IR+ × IRd into IRd and h, g are deterministic
functions from IR+ × IRd × IRq′

into IRd×q′
, globally Lipschitz in space to ensure the existence

of a unique strong solution.

Assumption 4.2.1 ( For Y ). (HP1) There exist CY and CY (e) s.t. for any t ∈ [0, T ], x, y ∈ IRd

and e ∈ IRq′


|b(t, x)− b(t, y)| ≤ CY |x− y|, |µ(t, 0)| ≤ CY ,

|γ(t, x)− γ(t, y)| ≤ CY |x− y|, |γ(t, 0)| ≤ CY ,

|g(t, x, e)− g(t, y, e)| ≤ CY (e)|x− y|, |g(t, 0, e)| ≤ CY (e),
(4.2.3)

where CY (e) satisfies
∫

IRq′ [CY (e)]pν(de) < ∞, ∀p ≥ 2. (HP2) b, γ and g are continuously
space-differentiable functions s.t. ∇yb,∇yγ and ∇yg satisfy (HP1) with (CY,∇, CY,∇(e)) in place
of (CY , CY (e)). (HP3) b, γ and g are αY -Hölder continuous in time, locally in space,

{
|b(t, x)− b(s, x)|+ |γ(t, x)− γ(s, x)| ≤ CY (1 + |x|)|t− s|αY

.

|g(t, x, e)− g(s, x, e)| ≤ CY (e)(1 + |x|)|t− s|αY
.

(4.2.4)

(HP4) ∇yb,∇yγ and ∇yg satisfy (HP3) with (CY,∇, CY,∇(e)) in place of (CY , CY (e)).

Assumption 4.2.2 (For X). (HP1) and (HP3) are satisfied for µ, σ and h (instead of b, γ and g)
with coefficient CX , CX(e) and αX (instead of CY , CY (e) and αY ).

Before giving the Euler scheme, we first expose how to simulate the integral with respect to
the Poisson measure. We follow the presentation of [92].

Simulation of the integral with respect to the Poisson random measure Let us consider a
sequence e1, e2, ... of independent random variables with common exponential distribution with
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parameter 1. We define

Λ(t) =
∫ t

0
λ(s)ds, t ∈ [0, T ].

To simplify, we take λ(t) = 1.
The number of jumps of the random Poisson measure N(dt, de) in an interval [0, t] is deter-

mined as

J(t) = max{k :
k∑

j=1
ej ≤ Λ(t)}.

We denotes by J = J(T ) the total number of jumps in [0, T ] and the jump times (τk)k of the
Poisson measure defined by

τk = Λ−1(
k∑

j=1
ej), k ∈ J1, JK,

where Λ−1 is the right continuous inverse of Λ. The jump times can be computed recursively by

ek =
∫ τk

τk−1
λ(s)ds, k ∈ J1, JK.

Once the jump times are computed, we proceed to sample the marks {Ek}, that, conditionally
on the values of the jumps times, are independent random variables distributed respectively
according to {ν(de)}. The random measure with intensity λ(t)dtÖν(de) can then be constructed
as

N(dt, de) =
J∑

k=1
δ(τk,Ek)(dt, de).

Consequently, the stochastic integral with respect to the Poisson random measure can be de-
fined as ∫ t

0

∫
IRd

g(s, Ys− , e)N(dt, de) =
J(t)∑
k=1

G(τk, Yτ−
k
, Ek), t ∈ [0, T ].

4.2.2 Euler schemes

Let N ≥ 1 and let us consider the discretization family {t̄i := i T
N , i ∈ J0, NK} of [0, T ]. We con-

sider also the jump times {τk, k ∈ J1, JK} with corresponding marks {Ek, k ∈ J1, JK}. Consider
the augmented partition given by the union

PN = {tl, l ∈ J0, N + JK} =
{
t̄i := i

T

N
, i ∈ J0, NK

}
∪
{
τk, k ∈ J1, JK

}
.

Scheme 4.2.1. The Euler scheme to approximate the solution Y of the SDE (4.2.2) is given by
the following steps
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• Set Y N
0 (x) = x.

• For k = 0, ...., N + J − 1, if t ∈ (tk, tk+1], then

Y N
t− (x) = Y N

tk
(x) + b(tk, Y N

tk
(x))(t− tk) + γ(tk, Y N

tk
(x))(Bt −Btk

).

• If tk+1 = τl for some l ∈ J1, JK, then we introduce a correction due to jumps discontinuities

Y N
tk+1(x) = Y N

tk
(x) + g(tk+1, Y

N
k+1(x), El).

Inverse flow as a backward in time SDE One last difficulty remains to be overcome: How to
invert X ? They are at least four approaches for computing the inverse flow: (a) as an inverse of
a random function; (b) as a forward in time SPDE; (c) as a forward in time SDE with stochastic
coefficients; (d) as a backward in time SDE with standard coefficients. In Gobet et Mrad [51],
the authors discussed these different approaches in detail (see [51, Section 4]) and they have
exposed the main difficulties of each method. The simplest, most efficient and less expensive
is the backward method, it allow us to approximate the inverse flow X using the Euler’s scheme.
Without going into detail, this is the method we will adopt here.

Let (Xs,t(x))t≥s be the solution, starting from x at time s, of the SDE with coefficients (µ, σ, h).
Denote by Xs,t the inverse map of Xs,t which can also be defined by Xs,t(x) := Xt(Xs(x))
where Xt(x) ̸= X0,t(x), focuses on the dynamics of Xs,t(x) in the variable s: doing so, we aim
at computing the inverse of Y backward in time instead of forward in time. This approach relies
on the following key result.

Theorem 4.2.1 ( [67, Theorems 3.11 and 3.13 ]). Suppose the coefficients µ, σ and h of
the SDE (4.2.1) satisfy Assumption 4.2.1. Assume further that the maps ϕ(t, ., e) : z 7→ z +
h(t, z, e); IR→ IR are homeomorphic with 1 + ∂zh(t, z, e) being invertible in z for a.e (t, e).

(i) Then the solution X defines a stochastic flow of C1-diffeomorphisms.

(ii) Let ψ(t, ., e) be the inverse maps of ϕ(t, ., e) and k(t, z, e) = z − ψ(t, z, e). Assume γ ∈ C1,2

in (t, x) and
∫

IR |k(t, z, e) − h(t, z, e)|ν(de) is bounded. Then the inverse flow X satisfies
the following backward SDE

dXs,t(z) =
[
µ(s,Xs,t(z))− ∂zσ(s,Xs,t(z)) · σ(s,Xs,t(z)−

∫
IR
h(s,Xs,t(z), e)ν(de)

]
d̂s

+ σ(t,Xs,t(z)) · d
←−
B s +

∫
IR
k(s,Xs,t(z), e)N(d̂s, de), s ≤ t. (4.2.5)

Xt,t(z) = z.
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The notations d̂s and
←−
B s are to remind that the integrals must be considered in a backward

way1. With this result in hand, the approximation of Xs,t is made possible simply using a stan-
dard Euler scheme like for Y n. Using similar notations as below,

Scheme 4.2.2. Based on this key result, the approximation of the inverse flow X is achieved by
the following steps.

• Set XN
t,t(z) = z. If t = θk for some k ∈ J1, JK, set XN

t−,t(z) = z−k(t, z, Ek) else XN
t−,t(z) = z.

- For s ∈]τt, t], set

XN
s,t(z) = XN

t−,t − σ(t,XN
t−,t(z)) · (Bt −Bs) (4.2.6)

−
[
µ(t,XN

t−,t(z))− ∂zσ(t,XN
t−,t(z)) · σ(t,XN

t−,t(z))−
∫

IR

X(t,XN
t−,t(z), e)ν(de)

]
(t− s).

• For l ∈ J0, N + JK} satisfying tl < τt,

- if tl = θk for some k ∈ J1, JK, set XN
t−
l

,t
(z) = XN

tl,t
(z) − k(tl,XN

tl,t
(z), Ek) else XN

t−
l

,t
(z) =

XN
tl,t

(z)

- and for s ∈ [t(l−1), tl[

XN
s,t(z) = XN

t−
l

,t
(z)− σ(tl,XN

t−
l

,t
(z)) · (Btl

−Bs) (4.2.7)

−
[
σ(tl,XN

t−
l

,t
(z))− ∂zσ(tl,XN

t−
l

,t
(z)) · σ(tl,XN

t−
l

,t
(z))−

∫
IR

h(tl,XN
t−

l
,t

(z), e)ν(de)
]
(tl − s).

It is well known that the Euler scheme, whether forward (as for Y N ) or backward (as for XN ),
converges, under regularity assumptions (like Lipschitz-type), to the solution of the stochastic
differential equation at the rate 1

N
1
2

. However, few results give us the rate of convergence of
the compound of two approximation schemes. Thanks to the results of the paper [93], we know
that our compound process Y N

0,t(uz(XN
0,t(z)))t≥0 converges to the marginal utility Uz(t, z) at the

rate 1
N1/2 .

Theorem 4.2.2 (Mrad [93]). Assume that the coefficients (b, γ, g) of Y satisfy Assumption 4.2.1
and the coefficients (µ − ∂zσ · σ −

∫
hν(de), γ, k) of X.,t, equation (4.2.5), satisfy Assumption

4.2.2. Denote by XN
0,. the Euler approximation associated to X0,., with time step T/N , and by

XN
0,t the Euler approximation of the inverse flow X0,t of Xt, with time step T/N , according to

(4.2.6)-(4.2.7).
Then, for any concave function u with Lipschitz marginal utility uz, the compound Euler scheme

1
∫ t

s
µ(s, Xu)d̂u := lim

|∆|→0

∑n−1
k=0 µ(tk+1, Xtk+1 )(tk+1 − tk)∫ t

s
σ(s, Xu)d←−B u := lim

|∆|→0

∑n−1
k=0 σ(tk+1, Xtk+1 )

(
Btk+1 −Btk

)
,

where ∆ = {s = t0 < t2 < · · · < tn = t} and |∆| = max0≤k≤n−1(tk+1 − tk).

130



Learning dynamic utilities

XN
. (uz(ξN

. )) converges to Uz(., .) in any Lp-norm, at the order β := min(αX , αY , 1
2) w.r.t. N : For

any p > 0, t ∈ [0, T ] and any z,

∣∣|Y N
0,t(uz(XN

0,t(z)))− Uz(t, z)
∣∣|Lp = O(N−β).

Thus with a simple integration, we can calculate an approximation U of the utility U at any
time ti, by

U(ti, zj) =
j−1∑
k=0

Y N
ti

(uz(XN
ti

(zk))(zk+1 − zk),

since z0 = 0 and we assume u(t, 0) = 0 a.s. for any t ≥ 0.
This approach allows us to generate the utility of the agent at the dates τi of interaction with the
robo-advisor on a grid (zj) points. Here are some numerical results obtained by applying this
process, scheme 1 for simulating Y and scheme 2 for the inverse of X.

Figure 4.1: Simulation of utility at each time τ .

Figure 4.2: Monotonocity and Concavity of
approximated utilities U(t, z)

Figure 4.3: Dynamic of approximated utili-
ties U(t, z)

This approach is based on the work of Mrad and his co-authors [45,46,89], it allows us to esti-
mate the agent’s utility at dates and points of interaction . This is a very important step as until
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now there was no idea how to quantify the preferences of an agent from these choices. The
goal then, starting from the values obtained (U(ti, zj))i,j , is to estimate U(t, z) for all (t, z) and
to predict its future decisions. For this we will use different machine learning algorithms and we
will compare them.

The aim in the following is to propose an algorithm for learning the preferences of the agent.
As we do not have access to real data, we will simulate our own data Xτi(zj) and Yτi for
(i, j) ∈ J1, JK× J1, nK. Once these values have been simulated we proceed to approximate the
utility U at the points (ti, zj) (using the above procedure). The generated values U(τi, zj) will
play the role of starting data for our learning algorithms. This kind of algorithm could clearly be
used on robo-advisor platforms, since it can ”predict” (over a short period of time) the prefer-
ences of an agent and therefore can make decisions for him/her.

4.3 Machine Learning methods

Machine Learning algorithms automatically learn to perform a task or make predictions from
data and improve their performance over time. Once trained, the algorithm will be able to find
patterns in new data. Depending on the information available during the learning phase, learn-
ing is qualified in different ways. If the data are labeled (i.e., the response to the task is known
for these data), it is supervised learning. It is called classification if the labels are discrete, or re-
gression if they are continuous. If the model is learned in an iterative way according to a reward
received by the program for each action taken, it is called reinforcement learning. In the most
general case, without labels, we try to determine the underlying structure of the data (which can
be a probability density) and it is then called unsupervised learning. Machine learning can be
applied to different types of data, such as graphs, trees, curves or more simply feature vectors,
which can be continuous or discrete qualitative or quantitative variables.
In this work, we are interested in supervised learning. Our task is to predict a target value
which is the value of utility at fixed time τi, denoted by (Ui

j)j∈J1,nK a vector of the matrix
(U(τi, zj))(i,j)∈J1,NK×J1,nK from different initial wealth values (zj)J1,nK and fixed value τi:

Ui
j := (U(τi, zj))j∈J1,nK,

such that (τi)i∈J1,NK are the dates we built in the first simulation step.
From this dataset, we create a model, which is nothing else than a mathematical function. Once
we have created it, we develop and train our model with new data (Zi

j) = (zj)j∈J1,nK in order to
predict the target or the answer (Ui

j)j .
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4.3.1 Machine Learning programs using Python

Most of the time, it is not necessary to develop its own algorithm, thanks to PYTHON, they
are already developed in open source libraries. For example, Scikit-learn library contains all
the mathematical functions which are necessary for learning problems. Scikit-learn is an open
source machine learning library that supports supervised and unsupervised learning. It also
provides various tools for model fitting, data preprocessing, model selection and evaluation and
many other utilities.
With Scikit-learn, it is enough to write a few lines to develop models of linear regression and
classification:

• Create the Dataset. (Zin,Ui) such that

– Zin are the input data. It contains different initial values of wealth (zj)j∈J1,nK, (i.e)

(Zin
j )j∈J1,nK = (zj)j∈J1,nK.

– Ui are the target. It contains a vector of the utility matrix (U(τi, zj))(i,j)∈J1,NK×J1,nK

approximated in Section 4.2.2. In other words, Ui is utility values at a fixed time τi

and for different values of (z)j∈J1,nK:

(Ui
j)j∈J1,nK := (U(τi, zj))j∈J1,nK.

• Choice of the model: choose the best model to fit our data set. Among the predefined
models in SKlearn library, we can mention

– Decision Tree

– Support vector Machine ( SVM)

– Neural Network

– K nearest neighbors ( KNN).

• Fitting SKlearn.fit(Zin,Ui) : The objective is to fit the model, (i.e), the machine must learn
from the model:

1. The samples matrix Zin. The size of Zin is typically (n_samples, n_features), which
means that samples are represented as lines and features are represented as columns.

2. The target values Ui is usually 1d array where the i th entry corresponds to the target
of the i th sample of Zin.
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• Predicting: SKlearn.predict(Zin): Once the estimator is fitted, it can be used for predicting
a future value Up,i using the following syntax ( we use the notation ”p” for prediction)

Up,i := SKlearn.predict(Zin).

• Evaluation: SKlearn.score(Zin,Ui): The accuracy of our model is obtained using the
function Model.score. This function returns the coefficient of determination R2 of the
prediction. The coefficient R2 is defined as

R2 = 1− (Ui − Up,i)2

(Ui − Ū)2 ,

with Ū := 1
n

∑n
j=1 U

i
j represents the mean of (Ui

j)j . The best possible score is 1.0 and it
can be negative (because the model can be arbitrarily worse).

Remarks 3. Train the model using all the Data, an also use it to test the result is not a good
way to measure the performance of our model and may involve overfitting. So to avoid this, we
choose to split the data, usually we make 80/20: Train set (80%) and Test set (20%).
To create a train set and test set, thanks to python again, we use the train_test_split function
of Sklearn. SKlearn.train_test_split is a function in Sklearn model selection for splitting data
arrays into two subsets: for training data and for testing data. With this function, we don’t need
to divide the data manually. As we said above, using the same dataset for both training and
testing steps, increases the chances of inaccurate predictions.

In this section, we use the method described above to learn the utility of an investor. Firstly,
we create the target, then we want to implement (separately) two packages from Scikit-learn
library: Support vector Machine and Neural Network model to create the model and we
compare the results. To recap, we are looking to implement the following algorithm 3 for SVM
and Neural Network models

Algorithm 3 Implementation algorithm in Python
Import sklearn libraby.
Get Data Zin.
Get Target Ui.
Create the model.
Split into training and test set:

Zin
train, Z

in
test,U

i
train,U

i
test = sklearn.train_test_split(Zin,Ui, train_size = 0.8, test_size = 0.2).

Fit the model: sklearn.fit(Zin
train,U

i
train).

Evaluation the model with training data:sklearn.score(Zin
train,U

i
train).

Evaluation the model with test data: sklearn.score(Zin
test,U

i
test).

Predict the model: sklearn.predict(Zin
test).
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We want to apply the learning methods described above to predict the utility of an investor
according to the information observed by the Robo-Advisor, the preferences of the customer or
the response of the customer to a questionnaire.

4.3.2 Support Vector Machine

SVM approach

In machine learning, support-vector machines (SVM in short) are supervised learning models
with associated learning algorithms that analyze data for classification and regression analysis,
developed by Vladimir Vapnik et Alexey Chervonenkis. Support Vector Regression (SVR) uses
the same principle as SVM, but for regression problems. The problem of regression is to find
a function that approximates mapping from an input domain to real numbers on the basis of a
training sample. The objective, when we are moving on with SVR, is to basically consider the
points that are within the decision boundary line. The best fit line is the hyperplane of equation
ajZ

in
j + b = 0, ∀j ∈ J1, nK that has a maximum number of points between the two decision

boundary lines.
Thus, to summarize, we are looking for a hyperplane such that most of train observation are
inside the marge ϵ satisfying the following constraints

Ui
j − (ajZ

in
j + b) ≤ ϵ, ∀j ∈ J1, nK, if the point is above the margin, (4.3.8)

and
(ajZ

in
j + b)− Ui

j ≤ ϵ, ∀j ∈ J1, nK, if the point is below the margin, (4.3.9)

where

1. Zin = (Zin
j )j∈J1,nK represents the input defined by different initial values of the wealth.

2. (a, b) represent the parameters of weight (ai)i and biais b: we choose it randomly at the
beginning then we try to find the optimal values in the algorithm.

3. Ui = (Ui
j)j := (U(τi, zj))j represents the target. We remain that the target is defined by a

column vector of the matrix U(τi, zj)i∈J1,NK,j∈J1,nK at fixed τi.

4. ϵ is the width of the margin of hyperplan.

The idea is to build a plane of equation ax + b = 0 with a margin ϵ, in other words, we want to
build a hyperplane of width 2ϵ (see figure 4.4) in order to have the maximum of points between
the two decision bounds (4.3.8)-(4.3.9) (which is the black points on figure 4.4. The green points
on the decision bounds are called the support vectors which play a main role in this problem).
By constructing this hyperplane with a margin of tolerance , we can have points outside the
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margin (the red points in figure 4.4), so the difference with the classical regression is that
Support Vector Regression problem also takes into consideration the points which are outside
the margin or the misplaced points (the red points in figure 4.4).

y

x

Dicision boundary : a · z+ b = ε

Dicision boundary : a · z+ b = −ε

Hyperplan: a · z+ b = 0

0

−ε

ε

ξ0 = U i
0 − (a · z0 + b− ε)

U i
0 : misplaced point

Supports Vector : U i
1

U i
3 in the margin

ξ∗2 = (a · z2 + b+ ε)− U i
2

U i
2 : misplaced point

Figure 4.4: Graph illustrating a Support vector regression SVR

Therefore, the constraint can be relaxed by allowing that a point may not be of the same label
as the majority of the points as long as it is not too far from the boundary. Any value that lies
outside the margin ξ, we can indicate its deviation from the margin as ϵ. In practice, we often
cannot have Ui

j − (aj zj + b) > ϵ, for all j ∈ J1, nK, we relax by introducing a positive variables ξ
such that

Ui
j − (ajzj + b) ≤ ϵ+ ξj , if the point is above the margin,

and
(aizj + b)− Ui

j ≤ ϵ+ ξ∗
j , if the point is below the margin.

The variable (ξj , ξ
∗
j )j represent the error of the observations outside the hyperplane,

ξj := Ui
j − (aj zj + b− ϵ) ≥ 0, for misplaced points above the margin,

and
ξ∗

j := (aj zj + b− ϵ)− Ui
j ≥ 0, for misplaced points below the margin.
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This problem allow some observations to fall on the wrong side of the margin, but will penalized
them by the parameter C. Finally, we can introduce our optimization problem:

min
a∈IRn,b∈IR

1
2 ||a||

2 + C
l∑

j=1
(ξj + ξ∗

j )

 , (4.3.10)

under the following constraint 
Ui

j − (ajZ
in
j + b) ≤ ϵ+ ξj ,

(ajZ
in
j + b)− Ui

j ≤ ϵ+ ξ∗
j ,

ξj , ξ
∗
j ≥ 0, ∀j,

(4.3.11)

where l is the number of the points outside the margin.

Remarks 4. The optimization problem (4.3.10)-(4.3.11) can be solved in a numerical way very
efficiently by the SVR model described above.

Basically, the idea of SVR model is to minimize the sum of squared weights by taking into
account the misplaced observations in order to maximize the margin.
A second idea is the kernel method. It is an extension to non-linear cases. It is quite simple
and relies on the projection of the data in a higher dimensional space in which the problem
becomes linear. The kernel method is a mathematical trick to solve this problem elegantly, by
defining the transformations ϕ and scalar products via a kernel k(a, b) = ϕ(a)Tϕ(b) such that
the equation of hyperplan is as follow

Up
j := ajϕ(Zin

j ) + b.

Actually, it is far from being easy to identify the transformation function ϕ, so the second problem
is rather than choosing ϕ, we choose the kernel function k. A kernel is a function k capable of
computing the scalar product ϕ(a)Tϕ(b) based only on the original vector a and b without having
to compute the transformation ϕ. In practice, this function is used ϕ indirectly, without knowing
it. The most used kernels are

• Linear : k(a, b) = aT b.

• Polynomial : k(a, b) = (γaT b+ r)d.

• Gaussian RBF : k(a, b) = exp(−γ||a− b||2).

Nevertheless, there is no rule for choosing the most adapted kernel for a specific problem. This
technique is based on distance minimization.
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Using the kernel method, the optimization problem (4.3.10)-(4.3.11) becomes

min
a∈IRn,b∈IR

1
2 ||a||

2 + C
l∑

j=1
(ξj + ξ∗

j )

 , (4.3.12)

where l is the number of the points outside the margin and we remain that ξj = Ui
j− (aj ϕ(zj) +

b− ϵ) and ξ∗
j = (aj ϕ(zj) + b+ ϵ)− Ui

j ,
under the following constraint 

Ui
j − (aj ϕ(Zin

j ) + b) ≤ ϵ+ ξj ,

(aj ϕ(Zin
j ) + b)− Ui

j ≤ ϵ+ ξ∗
j ,

ξj , ξ
∗
j ≥ 0,∀j.

(4.3.13)

y

x

Transformation by the kernel method

y

φ(x)

Hyperplan: w · φ(z) + b = 0

Decision Boundary: w · φ(z) + b = ε

Figure 4.5: Graphic illustration of SVM model using the kernel method.

There are different implementations from the SVR : SVR, NuSVR and LinearSVR. LinearSVR
is a SVR with a linear kernel often used for linearly separable data. The SVR and NuSVR
models are similar methods, but with slightly different parameter sets and different mathematical
formulations. In NuSVR, we introduce a new parameter ν which controls the number of support
vectors and margin errors (ξ, ξ∗).
In this work, we implement the algorithm with the two models SVR and NuSVR.

Numerical results of SVR prediction

First, we consider a SVR model, and we take a vector of approximated Utility (U(t, z)) at fixed
time t (simulated in previous Section 4.2.2 ) as a target value Ui. We wish to predict this target
Ui from the input parameters z.
More precisely, we start by defining our data (Zin,Ui). We take as input Zin := (Zin

j )j = (zj)j

138



Learning dynamic utilities

in different initial values of wealth and as target Ui = (Ui
j)j the utility value for a fixed value of

time τi and different values (zj)j .
Then, under given parameters C > 0 and choosing Gaussian RBF as kernel k, defined by:

k(zi, zj) = exp(−γ||zi − zj ||2).

This kernel function is typical and very widely used since it allows with an appropriate setting
to represent any function. The Gaussian kernel represents a measure of similarity between
samples (xi, xj).
We assume that the equation of hyperplan is as follow

Up
j := ajϕ(Zin

j )+b, where ϕ is the implicit mapping embedded in the RBF kernel k(x, y), see [115].

Then, the equation of the decision boundary becomes

aj ϕ(Zin
j ) + b = ϵ , aj ϕ(Zin

j ) + b = −ϵ.

Actually, there is no rule to choose the regularization parameter C, we need to just test to find
the most adjusted value to keep.
Solving the following optimization problem under the constraint (4.3.11):

min
a∈IRn,b∈IR

{
1
2 ||a||

2 + C
l∑

i=1
(ξi + ξ∗

i )
}
,

we find the learned or predicted value denoted by Up. To evaluate SVR model, we visualize, on
figure 4.6, the evolution of the Mean Squared Loss defined by

Ei
err,k := 1

2 N

n∑
j=1

(Ui
j − U

p,k
j )2, which is the error at the k-th iteration. (4.3.14)

We chose to evaluate the error of our learning model for the last vector of the utility matrix in
order to have more visibility on the last step of the learning process.

139



Learning dynamic utilities

Figure 4.6: Evolution of SVR model’s utility learning error at ti = tN fixed for 1000 iteration

We can clearly see from Figure 4.6 that the error rate decreases, which ensures that our model
has successfully learned. In fact, if the margin of error is small, the results are even more
precise and the probability that they are close to the target value is greater. This justifies that
the model has learned well.
After implementing Algorithm 3 for the SVR class of the SVM package and taking C = 100, we
get the following prediction.

Figure 4.7: Prediction Utility with SVR model for fixed value of τi.

Looking to Figure 4.7, we notice that the SVR model is not the best one for our data, even
the score R2 = 0.8.
In order to perform some more tests with this learning model, we take, in this time, a column
vector of the approximated utility matrix for different values of t and a fixed wealth value z as
input data. Will it be possible to predict the dynamics of utility as a function of time t ?

In other words, we try to learn the dynamic of utility. We define our data (T j ,Uj) in follow-
ing way: as input T j := (ti)i in different values of times between two update τi and τi+1 and as
target

Uj := (U(τi, zj))i∈J1,JK,

where Uj is the j-th vector-line of the generated utility matrix (U(τi, zj))(i,j)∈J1,JK×J1,nK.
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Then, with a R2 = 0.52, we can deduce that SVR model is not the best model to predict
the dynamic of utility. It is clear form Figure 4.8 that the prediction misses a lot of points which
justifies that the value of R2 is not high.

Figure 4.8: Predict dynamic of utility for fixed value of z.

After a multitude of tests, the following table 4.1 gives the values of the various indices of
performances concerning the prediction built by SVR. These performances show that is not the
best model to predict the agent’s utility. Moreover, the errors (mean squared error, MSE = 3.38
and mean absolute error, MAE = 1.22) are important which shows that SVR model did not
succeed in predicting the utility. In fact, this is due to the linearity of the SVR model which does
not allow to find the concavity of our data. In order to have an objective evaluation, we have to
calculate the ratio R̄test of the MSE performance of our model and the average of the test data
values defined by

R̄test := MSE

Ūtest
, with Ūtest := 1

n

n∑
j=1

Utest. (4.3.15)

This ratio must be as close as possible to zero, in other words, the lower the MSE value is
compared to the average value, the better it is. It is better that this ratio is lower than 0.4 ( 0.5
is much higher ). Unfortunately this is not the case here. This leads us to conclude that SVR
model is not the best fit for our data.

R2 MSE MSA R̄test

0.52 3.38 1.22 0.45

Table 4.1: Performance of SVR model

For this test, we talk about underfitting problem. It is a learning problem that should be avoided.
Underfitting means that the predictive model generated during the learning phase does not fit
the training set. The SVR model is not able to obtain a sufficiently low error value on the training
set.
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Numerical results of NuSVR prediction

In this paragraph, we we will test the NuSVR model of SVM package with a regularization pa-
rameter C = 100.

As before, Zin := (Zin
j )j = (zj)j is an input data and Ui := (U(τi, zj))j∈J1,nK is the target

vector of values. Ui is the i-th column vector of the utility matrix (U(τi, zj))(i,j)∈J1,JK×J1,nK.
In this model, the parameter ν allows us to control controls the number of support vectors and
allows to compute automatically ϵ.
As on SVR model, we take Gaussian RBF as kernel k and for ν ∈ (0, 1], we want to solve the
following optimization problem for fixed time t:

min
a∈IRn,b∈IR

{
1
2 ||a||

2 + C(ν ϵ+ 1
l

l∑
i=1

(ξi + ξ∗
i )
}
, (4.3.16)

where l is the number of the points outside the margin where ξj = Ui
j − (aj ϕ(zj) + b − ϵ) and

ξ∗
j = (aj ϕ(zj) + b+ ϵ)− Ui

j , under the following constraint


(aj ϕ(Zin

j ) + b)− Ui
j ≤ ϵ+ ξj ,

Ui
j − (aj ϕ(Zin

j ) + b) ≤ ϵ+ ξ∗
j ,

ξj , ξ
∗
j ≥ 0,∀i.

(4.3.17)

where we remain that ξ represents the errors of the points outside the hyperplane and ϕ is a
transformation maps such that k(x, y) = ϕ(x)Tϕ(y).

Remarks 5. • If ϵ increases, the quantity
1
l

l∑
i=1

(ξi +ξ∗
i ) decreases (as less samples outside

the margin), the function smoothness 1
2 ||a|| increases and the accuracy decreases.

• If ϵ decreases, the term νϵ decreases, but the quantity
1
l

l∑
i=1

(ξi + ξ∗
i ) increases (as more

samples outside the margin), the function 1
2 ||a|| is less smoothed and the the accuracy

increases.

As for the SVR test model, we visualize the evolution of the error rate, we execute our algo-
rithm in a for loop several times taking the Mean Squared Loss defined by (4.3.14).

After implementing many times, we calculated the error rate each iteration (see figure 4.9),
comparing with the error rates for SVR model ( see figure 4.6), we can conclude that we suc-
ceeded in reducing the error by adding the ν parameter.
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Figure 4.9: Evolution of the NuSVR error at
ti = T fixed for n = 1000 iteration

Figure 4.10: Prediction Utility with NuSVR
model

By performing several implementations, we succeeded to keep the concavity of the prediction
for each one ( see Figure 4.10, the impact of the ν parameter is visible which allows to have a
small margin of error.

For the following test, we want to learn client’s utility at different values of τ . We take differ-
ent values of wealth z in a for loop by changing at each step the values of τ .
Then, with a for loop from i = 1 to N , we run the following steps for different values of time
τi: (Zin

j )j = (z)j still the input, the target is (Ui
j)j = (U(τi, zj))j . Then, we train the model with

Fit((Zin
j )j) and finally, we test it by predict((Zin

j )j ,(Ui
j)j).

Figure 4.11: Utility’s map: (τ, z) 7→ Up(τ, z)

Figure 4.12: z 7→ Up(t, z) : Concavity of util-
ity for different values of z for N = 200.

Figure 4.13: Dynamics : t 7→ Up(τ, z) for dif-
ferent values of t for n = 150.
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From Figure 4.11, we can see that predict values of utilities for different points of t are concave
with respect to z which satisfies the dynamic utility properties. The NuSVR learned better from
our data, we find the concavity and Monotonicity of the utility even by making few iterations. It
illustrates that by adding the parameter ν, we reduce the learning error (see table 4.2).

Concerning the learning of the utility dynamics with the Neural Network model, we take a data
(T j ,Uj) in the following way: as input T j := (ti)i∈J1,NK for different values of times between two
update τi and τi+1 and as target

Uj = (Uj
i )i = (U(τi, zj))i∈J1,NK.

We remain that (U(τi, zj))i is a line vector with utility value for a fixed value of wealth z and
different values of (τi)i∈J1,NK.

Figure 4.14: Dynamic of Utility for a fixed trajectory at fixed z.

We can see from Figure 4.14, that in the prediction there are a lot of missing values, especially
for the part [0, 4, 0, 8], the prediction of the dynamics of utility with NuSVR model is not the best
model to make the predictions but still it behaves better than SVR model in terms of R2 coef-
ficient. We get also more important MSE and MAE errors than the SVR model, see Table 4.2.
In fact, the presence of ν parameters plays an important role. This parameter represents the
lower and upper limit of the number of examples that are on the wrong side of the hyperplane.
Essentially, Nu Support Vector regression improves on Support Vector regression by allowing
the hyperplan width to automatically fit the data.

R2 MSE MSA R̄test

0.73 2.04 1.06 0.23

Table 4.2: Performance of NuSVR model

In the next section, we will try these learning tests with the Neural Network model, we will see
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if it will be better than SVR and NuSVR models.

4.3.3 Learning utility with Neural Network

Neural Network Approach

In this paragraph, we try to learn the investor’s utility, using the Neural Network model from the
SKlearn library of Python. The Neural Network is the most used technique in Machine learning.
It is an artificial Neural Network with multiple layers between the input and output. There are
different types of Neural Networks and they always consist of the same components: neurons,
synapses, weights, biases, and functions. These components functioning similar to the human
brains and can be trained like any other Machine Learning algorithm. In general, Neural Net-
work consists of three types of layers: the first one is called the input layer, the last one is called
the output layer and the remaining one are called hidden layers.
For the computation implementation, we use the Multi-layer Perceptron classifier from the
SKlearn library in Python. Multi-layer Perceptron (MLP) is a supervised learning algorithm
that learns a function U by training on a dataset. Given a set of features X and a target y, it
can learn a non-linear function approximator for either classification or regression. It is different
from logistic regression, in that between the input and the output layer, there can be one or
more non-linear layers, called hidden layers. MLPRegressor model implements a multi-layer
perceptron (MLP) that trains using back-propagation with no activation function in the output
layer, which can also be seen as using the identity function as activation function.
For this model, we have three important parameters to set

• Hidden layer sizes, to fix the number of neurons and number of hidden layer.

• Activation function for the hidden layer

– identity, useful to implement linear bottleneck, returns f(x) = x.

– logistic: the logistic sigmoid function, returns f(x) = 1/(1 + exp(−x)).

– tanh: the hyperbolic tan function, returns f(x) = tanh(x).

– Relu: the rectified linear unit function, returns f(x) = max(0, x)

• The solver for weight optimization:

– lbfgs is an optimizer in the family of quasi-Newton methods.

– sgd refers to stochastic gradient descent.

– adam refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik,
and Jimmy Ba.
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Example: We develop a simple example of a Neural Network. We introduce a model with three
hidden layers and we set the activation function as Activation=tanh:

1. Input layer : it contains the data Zin = (Zin
j )j , j = 1, ...., n0.

2. First hidden layer: it contains n1 perceptron having for input (Zin
j )j∈{1,...,n0} ∈ IRn0 and

for output Z1,i ∈ IRn1 defined as, for a1,i ∈ IRn1,n and b1,i ∈ IRn1 ,

Z1,i
k = σ(

∑
j=1,...,n0

Zin
j a

1,i
k,j + b1,i

k ), ∀k ∈ {1, ..., n1},

where we take σ(x) = tanh(x).
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Figure 4.15: Graph illustrating the transition from the input layer to the first hidden layer.

3. Second hidden layer: it contains n2 perceptron having for input (Z1,i
j )j∈{1,...,n1} ∈ IRn1

and for output Z2,i ∈ IRn2 given by , for a2,i ∈ IRn2,n1 and b2,i ∈ IRn2 ,

Z2,i
k = σ(

∑
j=1,...,n1

Z1,i
j a2,i

k,j + b2,i
k ), ∀k ∈ {1, ..., n2},

where we take σ(x) = tanh(x).
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4. Third hidden layer: it contains n3 perceptron having for input (Z2,i
j )j∈{1,...,n2} ∈ IRn2 and

for output Z3,i
j ∈ IRn3 defined as for a3,i ∈ IRn3,n2 and b3,i ∈ IRn3 ,

Z3,i
j = σ(

∑
j=1,...,n2

Z2,i
j a3,i

k,j + b3,i
k ), ∀k ∈ {1, ..., n3}

where we take σ(x) = tanh(x).

5. Output layer : It contains the predict value Up ∈ IRn4 given by, for a4,i ∈ IRn4,n3 and
b4,i ∈ IRn4 ,

Up
k = σ(

∑
j=1,...,n3

Z3,i
j a4,i

k,j + b4,i
k ) =

∑
j=1,...,n3

Z3,i
j a4,i

k,j + b4,i
k , ∀k ∈ {1, ..., n4},

with for output layer σ(x) = identity(x).
This corresponds to

Up
k =

∑
h=1,...,n3

σ

 ∑
u=1,...,n2

σ

 ∑
p=1,...,n1

σ

 ∑
j=1,...,n0

Zin
j a1,i

p,j + b1,i
p

 a2,i
u,p + b2,i

u

 a3,i
h,u + b3,i

h

 a4,i
k,h + b4,i

k .

where activation function for the hidden layers is σ(x) = tanh(x).
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Figure 4.16: Neural Network graph of a 5-layer perceptron with n input units and m output units and 3 hidden
layers where n1 = 5, n2 = 3 and n3 = 5.
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For the Neural Network, we start from the input Z (first layer) to reach the output Up (output
layer), so that the information flows in a forward way. This is called forward propagation. During
training, forward propagation can continue onward until it produces a cost J .
The idea of Machine learning is to let the machine find the parameters θl,i

k := (a, b) for the l-th
and k-th node layer of the model that minimize the cost function J . In order to do this, we need
to use a back-propagation learning algorithm: the most common example of such an algorithm
is Gradient Descent. This back-propagation algorithm allows the information from the cost J to
flow backward through the network in order to compute the gradient ∇J and to update the set
of parameters θl,i

k = (a, b) as follows:

θl,i
k,j = θl,i

k,j − α
∂J(θl,i

k )
∂θl,i

k,j

, j = 0, ..., nk + 1, for the l-th hidden layer and the k-th node,

where nl is the number of nodes for the l-th layer and α is a given learning rate.
Actually, the differences between these outputs Up and the target U form errors that are cor-
rected via back-propagation, the weights of the Neural Network are then changed. By applying
this step several times, the error tends to decrease and the network offers a better fitting or
prediction.
Then for a fixed Neural Network structure, number of layers, number of neurons in each layer
and fixed activation functions, the program therefore amounts to determine the set of parame-
ters such that

θ∗ := arg min
θ
J(θ).

In this work, we choose the LBFGS solver as Back-propagation algorithm of the optimization
problem. LBFGS is named from the initials of the mathematicians Broyden, Fletcher, Goldfarb
and Shanno, who discovered it independently in the late 1960s. This learning algorithm is based
on Newton’s method which fits the weights using additionally the Hessian matrix H gives the
second derivatives of the error function with respect to the weights in the following way:

θl,i
k,j = θl,i

k,j − αH
−1∂J(θl,i

k )
∂θl,i

k,j

, j = 0, ..., nk + 1, for the l-th hidden layer and the k-th node.

For this algorithm, we choose to optimize the squared-loss function J defined as

J(θ) := J(a, b) := 1
2 N

n∑
i=1

(Ui − (a zi + b))2.

in the following way
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1. Calculate the gradient and the Hessian of the Cost Function,

∂J(θ)
∂θi

and H(J) =
(∂2J(θ)
∂θi∂θj

)
i,j
, with θ = (a, b)

such that
∂J(a, b)
∂a

= 1
N

n∑
i=1

(Ui − (a zi + b))zi,

∂2J(a, b)
∂2a

= 1
N

n∑
i=1

(zi)2,

∂J(a, b)
∂b

= 1
N

n∑
i=1

(Ui − (a zi + b)),

∂2J(a, b)
∂2b

= 1,

2. Update the parameters θl,i
k,j to this form:

θl,i
k,j = θl,i

k,j − αH
−1∂J(θl,i

k )
∂θl,i

k,j

, j = 0, ..., nk + 1, for the l-th hidden layer and the k-th node.

where α is the learning rate and nk is the number of nodes for the (l − 1)-th layer.

3. Start the forward propagation again, i.e. we repeat the Neural Network algorithm with the
new parameters θ and find a new prediction Up.

4. If we get
|Up − U| ≤ ϵ, for a given ϵ, (4.3.18)

we keep the output Up.
Else we repeat steps 1, 2 and 3 until verifying the condition (4.3.18).

Numerical results of Neural Network prediction

In this section, as the other models, we want to learn client’s utility at different points of time τ .
We run algorithm 3 for different values of wealth z and for different points of time τ in a for loop.
Therefore, we take a data set ((Zin

j )j , (Ui
j)j) such that input set is give by (Zin

j )j = (z)j and the
target value (Ui

j)j is given by

(Ui
j)j = (U(τi, zj))j ,∀j ∈ J1, nK.
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As the other models, machine succeeded the prediction of utility for different points of time t (
see Figure 4.17), we see that Neural Network model is better than the others (SVR and NuSVR
models), it succeeded in predicting for values of wealth z ∈ [0, 0.5].
In fact, for the neural network model, we start with random values of weight a and bias b and
work backwards, several times, to improve the output. The difference with the other methods
tested in this work, that for the Neural Network model we have local predictions for each layer
and each forward passage in the loop. Which allows to decrease the error each iteration and
give a better prediction or fitting compared to SVR or NuSVR models.

Figure 4.17: Predict utility (t, z)→ Up(t, z)

Figure 4.18: z 7→ Up(t, z) : Concavity of util-
ity for different values of wealth z

Figure 4.19: Dynamics : t 7→ Up(t, z) for dif-
ferent points of time t

Concerning the learning of dynamic of utility with the Neural Network model, we take a data
(T j ,Uj) in the following way: as input T j := (τi)i in different values of times and as target

Uj = (Uj
i )i = (U(τi, zj))i,

where (U(τi, zj))i is a line vector with utility value for a fixed value of wealth zj and different
points of time τ .

We can deduce that the Neural Network prediction is better than the other predictions with
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SVR and NuSVR models ( see Figure 4.20).

Figure 4.20: Dynamic of Utility for fixed
value of z.

Figure 4.21: Dynamic of Utility for fixed
value of z with missing data.

The prediction of this model was more accurate than the other models, with a determination
scoreR2 = 0.95. We can conclude that this is the most successful model for our data. According
to Table 4.3, we have a value very close to zero for the rate R̄ which is a good indication,
that MSE is very low compared to the mean value of the data. Even for making the test with
hidden/unseen data the Neural Network model managed to predict better, see Figure 4.21.

R2 MSE MSA R̄test

0.9 0.80 0.56 0.06

Table 4.3: Performance of Neural Network model

The Neural Network model provided good prediction capabilities with respect to the regression
problem of SVR models. In fact, with increasing input size the svm model is having lineary
increasing number of parameters, on the other hand, Neural network model is not having. Even
if we are mainly interested in three hidden layer, Neural Network can have as more than three
hidden layers. This implies that a deep Neural Network with the same number of parameters as
an SVM is always more complex than the lattest one. Support vector machines effectively use
only a subset of a data set as training data. This is because they reliably identify the decision
boundary based on only the support vectors. Therefore, for well-separated classes, the number
of observations required to train an SVM is not large.
We will dedicate the Section 4.5 to compare the three models used in this work to predict the
dynamic utility of an investor.
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4.4 Learning utility with missing data

In this part, we want to show the impact of data lack where the agent is not telling all the data
to the robo-advisor. We propose a simpler example of the model (4.2.1)-(4.2.2). We consider a
pure jump process X whose size depends on its value at the previous time, defined by

Xτi+1 = Xτi (1 + Vτi), for i = 1, ..., N, (4.4.19)

where N is a random variable representing the jump’s number assumed to follow a uniform law
on [0, T ] and V = (Vi)1≤i≤N , a sequence of random variables, represents the jump sizes and
(τn)n a sequence of jump times.

4.4.1 Learning with SVR model

In this section, we take the SVR model. We consider the vector of targeted values Ui as a fixed
value of the dynamic utility U(τ, z) at fixed time τi

(Ui
j)j∈J1,nK := (U(τi, zj))j∈J1,nK,

to solve the optimization problem (4.3.10)-(4.3.11).

Then, for the following test, we hid the part of the data for z ∈ [10, 20] and z ∈ [30, 50] in
our input data and the target value. We obtain the following prediction with R2 = 0.89.

Figure 4.22: Prediction utility with missing data for a fixed t.

In the previous part, we try to learn the dynamic of utility using the SVR model. We define
our data (T j ,Uj) in following way: as input T j := (ti)i in different values of times between two
update τi and τi+1 and as target Uj = (Uj

i )i the utility value for a fixed value of wealth zj and
different values of t :

(Uj
i )i∈J1,NK := (U(τi, zj))i∈J1,NK.
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Figure 4.23: Prediction of dynamic utility with missing data for a fixed z.

4.4.2 Learning with NuSVR model

We use the same data (Zin,Ui) to solve the optimization problem (4.3.16)-(4.3.17) associated
to NuSVR model.
Similar to the SVR test, we make predictions for the case with missing values for the parts
where z ∈ [10, 20] and z ∈ [30, 50].

Figure 4.24: Prediction with missing data.

We also test the prediction for dynamic of utility with missing data. According to figure 4.25, we
can see that the machine doesn’t predict the hidden data. It is clear that the machine misses
several values and it is not precise enough.
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Figure 4.25: Prediction of dynamic utility with missing data.

4.4.3 Learning with Neural Network model

We suppose that the robo-advisor has collected more information than the one communicated
by the agent, can it still predict the utility of the client from this data. Roughly speaking, we take
a vector of data that contain more samples than the initial one. Then we get the following result,
using the same data (Zin, U t,i),

Figure 4.26: Dataset with
60 samples, Implementation
time 0.145 seconds

Figure 4.27: Dataset with
70 samples,Implementation
time 0.145 seconds

Figure 4.28: Dataset with
100 samples,Implementation
time 0.142 seconds

Another case that can be encountered with real data is the missing data. So for the next part,
we hide some data, in other words, we don’t communicate all the target values to the machine.
Then we hid the parts where z ∈ [10, 20] and z ∈ [30, 50]. Contrary to the other models, we
obtain a good prediction for the unseen or missing values, see figure 4.29. The neural network
model predicts the hidden values better than the other models, especially the values for z ∈
[30, 50].
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Figure 4.29

For the previous test, we hide the information in the middle and at the end to give the
machine the form or appearance of the target value. Thus, we perform this test one more time
by hiding the first values of the input and we can realize that the model finds the concavity of
utility.

Figure 4.30 Figure 4.31

4.5 Comparison of machine learning models

In this section, we aim to compare between different methods of machine learning considered
in this chapter Thus, we implemented the three models for the same input values and the same
values of targeted utility built the previous section.
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Figure 4.32: Comparison of 3 methods for a prediction of a trajectory for τi fixed.

In the following table we represent the values of R2 obtained for each prediction model for
fixed τi and the running time of the prediction algorithm for a fixed τi to perform the tests. We
can see that the values of R2 are almost the same for the NuSVR and Neural Network models,
but that the Neural Network model is faster than the other, it takes only 0.02 seconds to predict
utility, compared to 0.40 seconds for the NuSVR model.

Up
SVR Up

NuSVR Up
Neural Network

R2 for a fixed τi 0.883409 0.999989 0.998356
Prediction’s running times 0.054069 0.404845 0.021763

Table 4.4: R2 and running time for the 3 methods for a fixed trajectory.

For the following test, we implemented the three models for the same input values and the
same values of targeted utility, to learn the dynamic of utility for fixed value of z.

Figure 4.33: Comparison of 3 methods for a prediction of a trajectory at fixed zj .

In the following table, we represent the values of R2 obtained for each prediction model
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and the compilation time to perform the tests. we can observe that the values of R2 associated
to the Neural Network model is more important than the others and that it is faster than the
others, it takes only 0.06 seconds to predict the utility, compared with 0.10 seconds for the
NuSVR model.

Up
SVR Up

NuSVR Up
Neural Network

R2 for fixed zj 0.580844 0.717010 0.816211
Prediction’s Runing times 0.058962 0.101724 0.061751

Table 4.5: R2 and running time for the 3 methods for a fixed trajectory.

According to Figure 4.33, we can clearly see that the Neural Network class better than the other
models. It misses less points when predicting, but the other models clearly miss more points.
Actually, the SVR model suffers here from a problem called underfitting, which is a very phe-
nomenon in Machine Learning and that you must absolutely avoid. Underfitting means that the
predictive model generated during the learning phase does not fit the training set well. In other
words, the predictive model does not even manage to capture the correlations of the training
set. Obviously, the predictive model will also not generalize well the unseen data. In fact, we
can say that the SVR model is unable to provide accurate predictions. It should be mentioned
that the Neural Network model is not an overfitting the data. In fact, the term "overfitting" is
used to describe the fact that the model has become too specialized on the data and has lost
all sense of generalization. It is clear here that this is not the case, see Figure 4.34.

Figure 4.34: Neural Networks prediction vs. target utility.

To compare the prediction of each method, we zoom in on two time interval [0, 1] and [0.25, 0.6]
to see which predicted values are closer to the target values.
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Figure 4.35: Predict utility for τi ∈ [0.4, 0.8] Figure 4.36: Predict utility for τi ∈ [0.2, 0.6]

In the following table, we present some of the predicted values (at randomly selected times)
obtained using the 3 methods on the test set:

U t,j
test Up

NuSVR Up
SVR Up

Neural Network

0.440249 0.427372 0.410366 0.433389
0.566508 0.541622 0.480728 0.482669
0.502611 0.694972 0.602699 0.584770
0.441064 0.416489 0.499655 0.444093
0.456763 0.430144 0.433427 0.431930
0.438289 0.436985 0.452408 0.433529
0.456289 0.431692 0.438223 0.432147
0.448934 0.471556 0.390601 0.470345
0.728282 0.754597 0.788956 0.712515
0.550927 0.526230 0.525660 0.534294

mean value 0.83751 0.83502 0.82775 0.83758

Table 4.6: A sample of the few predicted values via Target value on Test set for different models.

The mean of the values predicted by the neural network is very close to the mean of the
target values, which reinforces and confirms our conclusions.

Conclusion and perspectives We deduce that the Neural Network model is the best predic-
tion model for our dataset. But the other models are not so bad as well. Unfortunately, there
are no clear rules to follow to choose the model to use from the beginning. In fact, it is rec-
ommended to start with the easiest and simplest examples, if these models do not work then
consider using a more sophisticated model.
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Basically, to know which is the best model to use, we have to test all the models and then to
choose the one with the best performance, the one, with, a higher determination score R2. The
data are always very different, we can never define a precise rule to fix the model that works at
a hundred percent, that’s why we are based on the performance of our models.
In our future work, we will adapt the Neural Network model, the best performing among the
tested models, as a learning model in a generalized market model framework. We also wish
to generalize our learning algorithms to more advanced models, such as the Recurrent Neural
Network and/or Reinforcement Learning.
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Titre :  Contrôle stochastique et applications : types Champ moyen et utilités dynamiques  

Mots clés :  Problème de contrôle de type mean field, énergies épuisables, jeux à champ moyen, utilités dynamiques, 
machine Learning 

Résumé :  Cette thèse est consacrée à l’étude des 
contrôles stochastiques et leurs applications. Dans le 
premier chapitre, on a étudié un problème de contrôle 
linéaire quadratique type mean field dans le cadre avec 
saut. On a utilisé une approche basée sur une formulation 
faible du principe d’optimalité des martingales standard 
dans la théorie du contrôle stochastique afin de prouver 
l’existence d’un contrôle optimal. Nous avons étendu le 
résultat trouver pour un modèle du production d’énergies 
épuisables avec extraction. Dans le deuxième chapitre, 
on s’est intéressé à la résolution numérique d’un 
problème des jeux à champ moyen (Mean field Game). La 
caractérisation des stratégies optimales des agents en 
interaction est obtenue vie l’étude d’un système d’EDP 
non linéaires couplées permettant la détermination de la 
caractéristique de l’agent ainsi que la distribution de ces 
caractéristiques dans la population. Nous avons présenté 
un schéma numérique pour déterminer le couple  

(u,m)  associé à la fonction de valeur et à la densité de 
probabilité, en se basant sur un argument de point fixe 
du système couplé de l’équation de Hamilton Jacobi 
Bellman et l’équation Fokker Planck. Nous avons 
appliqué notre approche pour un exemple linéaire 
quadratique avec une solution explicite afin de comparer 
les deux solutions numérique et explicite. Dans le 
troisième chapitre, on introduit un algorithme pour 
« prédire » l’utilité dynamique d’un agent en observant 
ses décisions à des dates discrètes (éventuellement 
aléatoires). C’est le principe des Robo-advisors qui sont 
des services de gestion d’investissement en ligne qui 
utilisent des algorithmes mathématiques pour fournir des 
services financiers avec un minimum d’intervention 
humaine. L’idée de ce travail est l’apprentissage de 
l’utilité dynamique d’un investisseur sur un marché 
financier avec défauts en utilisant des différentes 
méthodes de Machine Learning. 
 

 

Title :   Stochastic control and applications : Mean field types and dynamic utilities  

Keywords : Mean field control problem, exhaustible energy production, mean field games, Markov chain 

approximation, dynamic utilities, machine learning 

Abstract :  This thesis is devoted to the study of 
stochastic controls and their applications. In the first 
chapter, we studied a linear quadratic mean field 
control problem in the framework with jump. We used 
an approach based on a weak formulation of the 
optimality principle of standard martingales to prove 
the existence of an optimal control. We have 
extended the result found for a model of exhaustible 
energy production with extraction. In the second 
chapter, we are interested in the numerical solution 
of a mean field game problem. The characterization 
of the optimal strategies of the interacting agents is 
obtained by studying a system of coupled nonlinear 
PDEs allowing the determination of the agent's 
characteristics as well as the distribution of these 
characteristics in the population. We have presented 
a numerical  

scheme to determine the couple (u,m) associated to 
the value function and the probability density, based 
on a fixed point argument of the coupled system of 
the Hamilton Jacobi Bellman equation and the 
Fokker Planck equation. We applied our approach 
for a linear quadratic example with an explicit 
solution in order to compare the two numerical and 
explicit solutions. In the third chapter, we introduce 
an algorithm to "predict" the dynamic utility of an 
agent by observing its decisions at discrete dates. 
This is the principle of Robo-advisors which are 
online investment management services that use 
mathematical algorithms to provide financial 
services with minimal human intervention. The idea 
of this work is to learn the dynamic utility of an 
investor in a financial market with defaults using 
different Machine Learning methods. 
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