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Chapter One

Introduction

Computational geometry studies algorithms that solve geometric problems,

and, as a consequence, problems that can be stated in terms of geometry.

Some of its applications are related to computer graphics, robotics, computer-

aided design, machine learning or augmented reality. The earliest studies

related to computational geometry date back to the second half of the 19th

century with work on quadratic forms by Dirichlet [26] and Sylvester [58].

Computation geometry emerged in the 1970’s from fields such as mathematical

programming [14] and computer-aided design [33]. Convex hulls were one of

the first topics of attention in computational geometry with a first paper by

Chand and Kapur in 1970 [14], and then in 1972 by Graham [36]. Convexity is

still to this day very present in computational geometry and will be the main

topic of attention of this dissertation.

Digital geometry, a field closely related to computational geometry, studies

the geometry of points with integer coordinates, those points are also known

as lattice points [46]. The motivation behind digital geometry comes from the

fact that digital devices such as cameras, lidars or scanners in medical imaging
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provide a discrete representation of the real world. As a consequence, contin-

uous geometry is not adapted to work on such inputs and usually involves a

transformation on the inputs that implies approximations. In this context,

the goal of digital geometry is to build an alternative geometry based on a

restricted class of objects such as pixels, voxels, or lattice sets, and relying

heavily on integer arithmetic. As a consequence, digital geometry arises a lot

of questions concerning the connection that exists between the discrete and

the continuous. Despite studies related to digital geometry existing since the

end of the 19th century with works such as Minkowski’s on the geometry of

numbers [52], or results like Pick’s theorem [53], digital geometry started in

the 1960’s for computer graphics, because a screen is just a lattice or a grid

of pixels, with algorithms such as Bresenham’s [10] line drawing algorithm.

From there, questions arose and the field expanded with topics such as digital

topology, digital manifolds, the study of properties of digital sets or tomog-

raphy. Nowadays, some of the main application areas of digital geometry are

in image analysis [47] (notably medical imaging [31]), computer graphics [45],

and integer linear programming [56].

Not unlike in computational geometry, convexity is a core component in

digital geometry. Some of the earliest work related to digital geometry where

about counting points in convex polyhedra. Minkowski’s theorem [52] relates

the number of lattice points inside a convex centrally symmetric polytope to

its volume. In 2 dimension, Pick’s theorem [53] gives an equality relating the

number of lattice points inside and on the boundary of a convex polygon P ,

whose vertices are lattice points, to the area of P . Studies on this topic of
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Figure 1.1 Digital Convex Sets. Example of two digital convex
sets that are not connected in term of induce grid subgraph.

reporting lattice points inside convex polytopes continued throughout the 20th

century and are still considered to this day, with work related to Ehrart’s poly-

nomials [29, 49] and Barvinok’s algorithm [6]. A natural definition of digital

convexity that arises is the following:

A lattice set S ∈ Zd is said to be digital convex if there exists a convex polytope

P ∈ Rd such that P ∩ Zd = S. We can easily notice that if such a polytope

P exists then the convex hull of S, that we denote conv(S), also satisfies the

property conv(S) ∩ Zd = S. Hence an equivalent but simpler definition of

digital convexity is the following:

A lattice set S ∈ Zd is said to be digital convex if conv(S) ∩ Zd = S. This

definition of digital convexity is the one that we will use throughout this dis-

sertation. However, it is worth noting that several other definitions of digital

convexity have been investigated throughout the years [16, 18, 41, 42, 44, 48].

These definitions were created in order to guarantee that a digital convex set

is connected (in terms of the induced grid subgraph), which simplifies several

algorithmic problems. Indeed, in a digital convex set S of n points, the dis-

tance between a point p and its nearest neighbour p1 ∈ S is not bounded by

any function of n. Moreover, The diameter of a digital convex set of at least

2 points can be arbitrarily large (Fig. 1.1).
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The presence of convex sets in the core of fundamental problems, as well

as their peculiar geometric properties motivates the study of their properties.

1.1 Results

The main results of this dissertation are algorithms related to the recognition

of digital convex sets.

First, for any unordered lattice set S of n points, we present an algorithm

relying on the quickhull algorithm that tests digital convexity in linear time

relative to n. Previous algorithms testing digital convexity in linear time, such

as those presented in [11, 25] relied on a specific input representation which

meant they couldn’t be applied on arbitrary unordered sets. We then use

this result to solve the optimal digital convex polygon problem in linear time

relative to n. This problem whose decidability has been shown in 2017 [34]

asks, for a digital convex set S, to find a polygon P ∈ R2 that verifies P ∩Z2 =

S such that P is minimal in regard to the number of vertices.

Finally, this dissertation considers a problem stated in 2005 in [17], which is

the digital versions of the potato peeling problem [15], and presents a polyno-

mial time algorithm that finds, for any lattice set S the largest digital convex

subset C ∈ S, as well as the first polynomial time algorithm that finds, for

any lattice set S, and any integer k > 1 the largest subset C ∈ S defined as

C = C1 ∪ C2 ∪ ... ∪ Ck ∈ S such that for all i ∈ 1..k Ci is digital convex.

This dissertation is divided as follows.

In Section 2.1, we present the convexity and several convex hull algorithms

4



introducing classic strategies used in computational geometry, such as "divide

and conquer" and angular sorting. One of the presented algorithms will be

used in the result presented in this dissertation.

In Section 2.2, we cover some basic concept associated to digital geometry,

number geometry and digital convexity.

Section 2.3 presents previous work on simplex range searching, with an

emphasis on linear size data structures, as well as data structures that allows

logarithmic query time.

In Chapter 3 we present our results on digital convex set recognition, and

in Chapter ?? we do the same with our results concerning the digital potato

peeling problem.

Finally, in Chapter 5 we present conclusions along with directions for future

works in computational digital geometry.
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Chapter Two

Literature review

In this chapter, we present terms and results that will be used throughout this

dissertation, as well as some other related well known results.

In Section 2.1, we present convexity and its uses in computational geometry,

along with several convex hull algorithms. In Section 2.2, we introduce digital

geometry and digital convexity. In Section 2.3, we present several simplex

range searching structures that are commonly used in computational geometry.

2.1 Convexity

In this section we present the concepts of convexity and convex hull, and we

present several known algorithms that compute the convex hull of any set of

points. In geometry, a subset S of an Euclidean space is convex if and only if

for any pair of points p1, p2 ∈ S, the line segment p1p2 ∈ S. The convex hull of

a set S, denoted conv(S) throughout this dissertation, is the smallest convex

set such that S ∈ conv(S).
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2.1.1 The QuickHull Algorithm

Quickhull is one of the many early algorithms to compute the convex hull of a

given set of n points S. In dimension 2 its worst-case time is O(n2). Despite its

running time being vastly dependant on the number of vertices on the convex

hull, quickhull has shown to be an effective algorithm for inputs having a low

number of convex hull vertices relative to the number of input points, such as

uniformly distributed input points for instance. Furthermore, for some inputs

and variations of the algorithm, the complexity is reduced to O(n) [8, 37].

In order to compute the convex hull of a given set of points S, the quickhull

algorithm starts by initializing a convex polygon in the following manner. First

it computes the top-most and bottom-most points of the set. Surely, these two

points belong to the convex hull. Let ℓ be the line defined by these two points.

Then, the algorithm computes the farthest point from ℓ, on both sides of ℓ.

The (at most) four points we computed describe a convex polygon that we

call a partial hull, which is a subset of the vertices of the convex hull of S.

All points contained in the interior of the partial hull are discarded from S as

they surely do not belong to its convex hull (Fig. 2.1).

After the initialization step, the algorithm adds vertices one by one to the

partial hull until it obtains the entire convex hull. For each edge e of the partial

hull, the following elimination procedure is applied. Let v denote e’s outwards

normal vector. The algorithm searches for the extreme point in direction v.

If this point’s distance from the edge e is 0, then the edge e is an edge of the

convex hull. Otherwise, we add to the convex hull the farthest point found,

and the points that are inside the new partial hull are discarded. (Fig. 2.2).
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Figure 2.1 Quickhull initialization. Points inside the partial hull
(light brown) are discarded. The remaining points are potentially part
of the hull.

v v

Figure 2.2 Elimination step Points inside the triangle added to
the partial hull (light brown) are discarded. The remaining points are
potentially part of the hull.

2.1.2 Graham Scan Algorithm

Graham scan [36] is a convex hull algorithm. For an input set S of n points

that Graham scan runs in O(n log n) time, which is the lower bound [60] for

convex hull algorithms in the decision tree model. Graham scan relies on the

fact that computing the convex hull of a simple polygon can easily be done

in linear time relative to the number of vertices of the polygon. Obtaining a

simple polygon going through each vertex of a given point set S can be done
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p p p

p0

p1

p2

p7

p11

Figure 2.3 Simple polygon from sorting. By sorting all the points
around p, we can obtain a simple polygonization of the set S.

picking any point p in S, and sorting the points of S angularly around p. The

polygon that visits the points of S in the sorted order is a simple polygon

(Fig. 2.3).

Now, assuming the points are sorted clockwise, around p, in order to obtain

the convex hull of S we just have to scan through the vertices of the polygon,

and remove the points where the polygon makes a right turn. Note that when

removing a point from the polygon, the previous vertex has to be tested again

for a right turn. This occurs at most n times as any point from the set can

only be removed once. The algorithm hence requires O(n log n) time in order

to sort the points around p, and then an additional O(n) time in order to

compute the convex hull from the simple polygon. Hence the total running

time of the Graham scan algorithm is O(n log n).

2.1.3 Jarvis March Algorithm

Jarvis March, also known as gift wrapping is an output sensitive convex hull

algorithm. In two dimensions, its running time complexity for an input set S

of n points is O(nh), where h is the number of vertices on the convex hull. As
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a consequence, its worst-case time is O(n2) when all the points are in a convex

position.

Jarvis March starts by computing a point p0 ∈ S that is on the convex hull

of S, such as the left-most point of S for instance. We then, greedily compute

one by one the vertices pi of the convex hull. Knowing pi−1, and in order to

compute pi, the next point of the convex hull, we simply look for the point pi

such that all points of S are located to the right of the line pi−1pi. We then

repeat this process until we reach back to p0. As computing each pi takes O(n)

time, the total running time of the algorithm is equal to O(nh).

2.1.4 Chan’s Algorithm

Chan’s algorithm [12] is an output sensitive algorithm that runs in O(n log h)

time in two or three dimensions. It is not the only, nor the first, algorithm that

obtains this complexity [43], but it is arguably the simplest. Chan’s algorithm

is a combination of the Graham scan algorithm 2.1.2, and Jarvis march 2.1.3.

In a first time we describe the algorithm assuming that h, the number of

vertices of the convex hull of S, is known. We will then explain how to adapt

the algorithm when h is unknown.

First, we start by arbitrarily separating S into at most 1 + n
h

subsets Si of

at most h points. Then, we compute the convex hull of each Si using Graham

scan. This takes O(h log h) time for each Si, as there are at most 1 + n
h
,

computing all those convex hulls takes O(n log h) time.

Second, we use a method similar to Jarvis March to compute the convex

hull of S. Hence, knowing pi a vertex of the convex hull of S, we are looking

10



p0

pj1
pj2

pj3

Figure 2.4 Jarvis march step. We are looking for the point pj such
that all the other vertices of the convex hull are located to the right of
pipj. Once we computed such a pji for each subset Si, we know that
pj is one of the ji , and hence only to look among those.

for pi+1 ∈ S such that ∀pj ∈ S, j ̸= i pj is located to the right of the line pipi+1.

As pi+1 is necessarily in the convex hull of a subset Si we only have to consider

the points that are vertices of those convex hulls. For a given subset Si, that

has at most h points, the points pk ∈ Si such that all pj ∈ Si are located to the

right of the line pipk can be computed in O(log h) using a binary search on the

convex hull of Si (Fig. 2.5). Once we computed the candidate point for each

subset, the usual Jarvis march step can be used on the O(n
h
) candidate points

to find pi+1 (Fig. 2.4). Hence, overall it takes O(n
h
log h) time to compute pi+1.

As we repeat this process exactly h time in order to compute the convex hull

of S, the total running time of the algorithm is O(n log h) when h is known.

We now, explain how we can use the previously described algorithm, that

assumes that h is known, in order to compute the convex hull of S in O(n log h)

without knowing h. The idea, is to guess a value for h, and square our guess

until we finally reached a value bigger than h. First, we chose a small value,

11



pk

pk/2

p0

pi
pk

p0

pk/2pi
pk

pi
pk/2

p0

a) b) c)

Figure 2.5 Binary search. We are looking for the point pj such
that all the other vertices of the convex hull are located to the right
of pipj. a) pk/2−1 is on the left of pipk/2, hence pj is in between p0
and pk/2. b) pk/2+1 is on the left of pipk/2, hence pj is in between pk/2
and pk. c) Both pk/2−1 and pk/2+1 are on the right of pipk/2, hence
pj = pk/2.

h1 = 2 for instance. We then run the previously described algorithm until

we reach the 3rd step of the algorithm. At this point, the Jarvis march steps

either successfully came back to the starting point, which means we found the

convex hull, or we realize that h is actually bigger than h1 = 3. In this second

situation, we stop computation, and start all over again with h2 = h2
1. We

repeat this process until we guess a value hk larger than h, which results in us

computing the convex hull. For each guess we made, the running time is equal

to O(n log hi), which result in a total running time of
∑log log h

k=0 O(n log 22
k
) =

O(n log h).

2.2 Digital Geometry

Digital geometry is the field of mathematics that studies the geometry of points

with integer coordinates, also known as lattice points [46]. In this section we

present some common tools and notions of digital geometry that will be used

12



throughout this dissertation.

Transformation of Z2

In most cases, in computational geometry, the points are assumed to be

in general position. This is clearly not the case in digital geometry where

multiple points often have the same x or y coordinate. Not all affine trans-

formations are bijective from Z2 to Z2, but those who do are interesting in

the context of digital geometry. We say that those transformations preserve

the lattice grid. A transformation matrix that preserves the lattice grid must

have integer coefficients, and their determinant must be equal to ±1. These

transformations are called unimodular affine transformations SL2(Z) [5, 38]

when the determinant is equal to one.

One of those transformations is called shearing or transvection [39]. Hori-

zontal shearings are the linear transformations whose transformations matrices

are of the form

1 k

0 1

, k ∈ Z∗. Similarly, we call vertical shearing a linear

transformation whose transformation matrix is

1 0

k 1

, k ∈ Z∗. It is clear

that both horizontal and vertical shearing define a bijection from Z2 to Z2

(Fig. 2.6).

It is interesting to note that shearings generate SL2(Z) [3]. For a given lin-

ear transformation L ∈ SL2(Z), as the determinant of the matrix representing

L is equal to 1, the composition of shearings equivalent to L can be obtained

simply by using the extended Euclidean algorithm. Lemma 1 states that for

any line ℓ going through any two lattice points, there is a linear transformation

13



3

6

9

Figure 2.6 Shearing. On the left: A set of points before a horizontal
shearing of three. Relatively to the bottom row, points from the
second row are moved to the right by three, points from the third row
are moved to the right by six, and so on. On the right: The same set
of points after the shearing.

L ∈ SL2(Z) that maps ℓ to a horizontal line. Lines supported by at least two

lattice points are called Diophantine lines and actually go through an infinite

number of lattice points. Their equations are of the form ax + by = c, such

that a,b, and c are integers, and such that a and b are co-prime.

Lemma 1. For every Diophantine line ℓ there exists a linear map L ∈ SL2(Z)

such that ImL(ℓ) is an horizontal line.

Proof. Let ℓ be a Diophantine line. Let p(xp, yp) and q(xp + a, yp + b) be two

consecutive lattice points on ℓ, that is the line segment pq only contains two

lattice points, namely p and q. This implies that we have GCD(a, b) = 1. Let

x and y be the Bézout coefficients of a and b, those are the two integers x and

y such that ax + by = 1. We now consider the matrix M =

 x y

−b a

. By

construction det(M) = ax + by = 1. Hence M defines a linear map L such

that

ImL(p) = Mp =

 xxp − yyp

−bxp + ayp



14



ImL(q) =

 xxp + ax− yyp + by

−bxp − ab+ ayp + ab

 =

xxp − yyp + 1

−bxp + ayp

 = ImL(p)+

1
0


Hence ImL(d) is an horizontal line and ImL(Z2) = Z2.

We say that two Diophantine lines ℓ1 : a1x+b1y = c1 and ℓ2 : a2x+b2y = c2

are consecutive if a1 = a2, b1 = b2 and |c1 − c2| = 1. Lemma 2 states that no

lattice point is located in between ℓ1 and ℓ2, and a corollary of this lemma is

that for any co-primes a and b, all points from Z2 are located on a Diophantine

line of equation ax+ by = k, k ∈ Z.

Lemma 2. For any pair a and b of co-prime numbers, for any two consecutive

Diophantine lines ℓ1 : ax + by = c and ℓ2 : ax + by = c + 1. There are no

lattice points located in between ℓ1 and ℓ2.

Proof. Consider a lattice point p(xp, yp), as a, b, xp, and yp are integers so is

axp + byp, which hence cannot be in the interval (c, c+ 1)

Digital Connectivity

Connectivity, does not have the same meaning in digital geometry as in

classic Euclidean geometry. However, two simple notions of connectivity are

used in digital geometry in the plane. We say that two lattice points p1 and

p2 are 8-connected (resp. 4-connected) if their Chebyshev distance L∞ (resp.

Euclidean distance) is one. We say that a set S of lattice points is 8-connected

(resp. 4-connected) if for all pair of points p1 and p2 in S there is a chain of

8-connected (resp. 4-connected) points in S going from p1 to p2.

15



Convex

Not convex

Figure 2.7 Digital convexity. The first set is digital convex, while
the second set is not because of the red lattice points that are inside
the convex hull of the set but not in the set itself.

Digital Convexity

Although the subsets of Zd are not convex in the usual meaning of the

term, a simple notion of convexity is induced by the convexity of Rd [55]. A

set of lattice points S ⊂ Zd is digital convex if conv(S) ∩ Zd = S, where

conv(S) denotes the convex hull of S in Rd (Fig. 2.7). In other words, S is

digital convex if it is the intersection of a convex subset of Rd with the lattice

Zd. Digital convex lattice sets are then directly related to the lattice polytopes

investigated in geometry of numbers since the works of Minkowski [52]. Digital

convexity is preserved by homeomorphisms of Zd.

Let us remark that a digital convex set S is not necessarily connected while

the convex sets of Rd are arc-connected or simply connected. In Z2 and Z3,

the lack of connectivity has, throughout the years and today still, motivated

the introduction of some alternative definitions of digital convexity [16, 18, 41,

42, 44, 48] that we will not consider here. Despite this lack of connectivity,

different bounds have been established between the different characteristics of
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a digital convex set S. We denote n be the number of lattice points in any

lattice set S, h the number of edges of conv(S), and r the diameter (largest

Euclidean distance between two points) of S. It is clear that for a given

number of edges h, the number of points n and the diameter r are not bounded

(consider for instance very long and skinny triangles). Similarly, for a given

number of points n, the diameter r is not bounded (consider the pair of points

(0, 0) and (1, r)). However the number of vertices (or edges) h is bounded by

O(n1/3) [23]. At last, given the diameter r, the number of points n is clearly

at most O(r2) and h is at most O(r2/3) [61].

Some other measures, specific to digital geometry, also exists. For instance,

the lattice diameter ℓ(S) of a digital convex set S is the measure of the longest

string of co-aligned lattice points in S. The width also has its digital analogous,

and the lattice width is defined as follow in digital geometry. We first define

ωu(S) the width of S along a direction u ̸= (0, 0) as:

ωu(S) = max
x,y∈S

(u(x− y))

More intuitively, the width of S along a direction u is equal to −1 plus the

number of consecutive parallel line supported by lattice points and of direction

orthogonal to u that are required to cover S (Fig. 2.8). The lattice width of

S is:

ω(S) = min
u∈Z2\(0,0)

ωu(S)

It is worth noting that both lattice diameter and lattice width are invari-

ant under the group of unimodular affine transformations, and that ω(S) ≤
4
3
ℓ(S) + 1 [4].
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ωu(S) = 7
u v

ωv(S) = 3 ω(S) = 2

Figure 2.8 Lattice width. Example of width of a lattice set along
two directions, and its lattice width.

2.3 Range Searching

In this section we present existing works on range searching. Section 2.3.1

describes a triangle range counting algorithm that we will make use of in

Section 4.1, whereas Section 2.3 proposes a quick overview of existing work on

simplex range searching.

2.3.1 Triangular Range Counting

In this section, we present a preprocessing method in O(n2) time and space,

that for a set of points S allows to retrieve the number of points inside any

triangle in S in constant time. Note that the triangles requested must have

their vertices in S, which is why the query time is better than the known lower

bound on generic polytope range searching [20]. The structure introduced

in [30] stores, for each pair of points (p1, p2) in S the number of points in the

vertical strip below the line segment p1p2. Let below(ab) denote the number

of points below the line segment ab. The request can compute the number of

points inside any triangle p, q, r (p the left-most point and r the right-most
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p
q

r

p

q

r

Figure 2.9 Range counting. The two possibilities for the triangle
pqr. On the left: we have to remove the points below pq and qr from
the points below pr. On the right: we have to remove the points below
pr from the points below pq and qr.

one) thanks to the fact that the number of points inside the triangle is equal

to |below(pq) + below(qr)− below(pr)| (Fig. 2.9) which takes O(1) time given

the preprocessing.

In order to compute the number of points below each segment, the line

segments are treated from left to right according to the right-most point. All

line segments with the same right-most point r are treated in clockwise order

in the following manner:

- All points located to the left of r are sorted in clockwise order around r

(p1, p2, ..., pk).

- For all pi in order, we compute below(pir) in the following manner:

If pi lies to the left of pi−1 then

below(pir) = below(pi−1r) + below(pipi−1) + 1.

Else pi lies to the right of pi−1 then

below(pir) = below(pi−1r)− below(pi−1pi).

As pi−1 and pi are consecutive in the clockwise ordering around p, we

know that the triangle pi−1pir does not contain any other point from S,
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rpi−1

pi

rpi−1

pi

Figure 2.10 Range counting preprocessing. In both cases the
dark red cones contain no points from S. On the left: The points
below pir are the points below pipi−1 and the points below pi−1r. One
the right: The points below pir are the points below pi−1r minus the
points below pi−1pi.

and hence the method we just describe correctly computes the number

of points below the edges whose right-most point is r (Fig.2.10).

Sorting all points clockwise around each point can be done in O(n2) time

using the dual [8, Chapter 11]. The remaining of the computation takes O(n)

time for each of the O(n) right-most points, hence the total preprocessing time

is O(n2).

2.3.2 Simplex Range Searching

In this section, we propose an overview of the history of data structures used

to solve simplex range searching problems. We will first look at data structures

that allow a logarithmic query time, and then will consider the data structures

that only use linear space. More often than not, the data structures used in

order to solve simplex range searching problem are partition trees. A partition

tree T is a data structure that partitions a point set S into subsets. Each point
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of S is stored in exactly one leaf of T , and each leaf contains at most a constant

number of points. Each node N of T stores a polyhedron P (N) of size O(1).

All points stored in the leaves underneath N are enclosed by P (N), and no

other point in S is enclose by P (N). In addition, each node N stores the

number of points enclosed by P (N).

Given a set H of n hyperplanes H1, H2, ..., Hn, an ϵ-cutting C is a division

of Rd into simplices C0, C1, ...Ck such that the Ci are mutually disjoint and

the interior of any Ci is intersected by at most ϵn hyperplanes Hi.

Linear size data structures

The majority of linear size data structures used to solve simplex range search-

ing problems are based on partition trees. Given a set S of n points in Rd, a

partition tree partitions the space into a small number of regions, each con-

taining approximately the same number of points, then recursively partition

each region in a similar way. Partition trees where first introduced in the plane

in [59] and relied on the following ham-sandwich theorem [28].

Theorem 3. For any two sets S1 and S2 of n1 and n2 points in the plane,

there is a halfplane h such that S1 ∩ h =
⌊
n1

2

⌋
and S2 ∩ h =

⌊
n2

2

⌋
.

Using the ham-sandwich theorem, we find two hyperplanes h1 and h2 such

that each one of the four quadrants induced by h1 and h2 contains n
4

points.

The root of the partition tree stores h1, h2 and n. Then, for each quadrant,

we recursively construct a subtree in the same manner. The total size of the

data structure is proportional to
∑log4 n

k=0 4k and is hence linear, and can be

computed in O(n log n) time. Using this partition tree, a halfplane h range
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counting query can be answered as follows. For each of the four quadrants Qi

attached to the root of the tree we do the following. If the line lh induced by

the halfplane h intersects the quadrant, then we visit the children of Qi. If

Qi∩h = ∅, then we do nothing. Finally, if Qi ⊂ h, we add all the points in Qi

to the global count. As the quadrant are induced by two lines, lh intersects at

most three quadrants, the query time is O(nlog4 3). The same procedure can be

applied to answer simplex range counting queries in the same time complexity,

and simplex range reporting in O(nlog4 3 + k), where k is the number of points

reported.

A data structure that reaches an optimal worst case query time of

O(n1−1/d), where d is the dimension, for linear structure [21] in the arith-

metic model was presented in [51]. This data structure is based on the

following partition tree theorem from [50]

Theorem 4. For any set S of n points in Rd, and any r such that 1 < r < n
2

there is a family of pairs set/simplex Γ = (S1, P1), ..., (Si, Pi), ..., (Sk, Pk) such

that for each i, Si ⊂ S is located inside Pi, for all i ̸= j Si ∩ Sj = ∅, and

n
r
≤ |Si| ≠ 2n

r
, and there is a constant c such that any hyperplane crosses at

most cr1−
1
d Pi.

A partition tree can be built by computing the partition described in the

previous theorem 4. For each simplex Pi, we recursively construct a subtree

in the same manner. The total size of the data structure is linear, and can

be computed in O(n log n) time. Using this partition tree, a halfspace h range

counting query can be answered as follows. For each simplex Pi attached to the

root of the tree we do the following. If the hyperplane lh that is the boundary
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of the halfplane h intersects Pi, then we visit the children of Pi. If Pi ∩ h = ∅,

then we do nothing. Finally, if Pi ⊂ h, we add all the points in Pi to the global

count. As lh crosses at most cr1−
1
d simplex, the query time is O(n1− 1

d
+logr c),

by choosing r = nϵ, this results to a query time of O(n1− 1
d logO(1) n).

Finally, a data structure with O(n1−1/d log n) query time, O(n) space, and

O(n log n) preprocessing was presented by Chan [13], and is based on the two

following results.

Lemma 5. For any set S of n points in Rd, there is a set H of nO(1) hyper-

planes such that for any collection of disjoint cells each containing at least one

point p ∈ S, if k is the maximum number of cells crossed by a hyperplane in

H, then the maximum number of cells crossed by any hyperplane is O(k).

Theorem 6. For any set S of n points, let H be a set of m hyperplanes in

Rd. Given l disjoint cells covering S such that each cell contains at most 2n/l

points of S and each hyperplane in H crosses at most k cells. Then, for any

constant c, every cell can be subdivided into O(c) disjoint subcells such that

each subcell contains at most 2n/(cl) points in S, and each hyperplane crosses

at most O((cl)1−1/d + c1−1/(d−1)k + c log l logm)

Using the set H of hyperplanes from Lemma 5, and successively applying

Theorem 6 to the tree consisting of simply a root cell containing all n points

of S, we successively construct hierarchies denoted Π1,Πc,ΠC2 ... of 1, c, c2, ...

cells. Πc gives the first depth of a partition tree, then Πc2 results in the second

depth and so on. In the end, we obtain a partition tree of degree O(c). Let

k(cj) denote the maximum number of cells of Πcj crossed by any hyperplane,
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then: k(cj+1) ≤ O((cl)1−1/d + c1−1/(d−1)k(cj) + c log l log n). The resulting tree

has height O(log n), order (1− 1/d) and query cost O(n1−1/d log n).

Logarithmic query time data structures

In order to solve simplex range searching, we will first consider the simpler

halfspace range counting problem, in which we only want to retrieve the num-

ber points in a given halfspace. Using duality, and the following property of

duality that states that a point p is above a hyperplane h if and only if the dual

point h∗ of h is above the dual hyperplane p∗ of p, we can see that the halfs-

pace range counting problem is actually equivalent to counting the number of

halfplanes that are located above a query point.

To do so, we make use of the following cutting theorem presented in [19]:

Theorem 7. For any set of n hyperplanes H in Rd, r ≤ n, and constant

b > 1, there exist k = logb r cuttings C1, C2, ..., Ck such that Ci is a 1
bi

cutting

of size O(bid). Each Ci is composed of simplices each contained in a simplex

of Ci−1, and each simplex Ci contains a constant number of simplices of Ci+1.

Such a cutting can be computed in O(nrd−1) time.

By choosing r = n
log2 n

, and constructing the cuttings from theorem 7

Chazelle [19] achieved a data structures of size O( nd

logd−1n) that can answer

a halfspace range query in O(log n) time in the following manner, using the

dual. For each simplex S of Ci, we store the simplices of Ci+1 that are located

in Ci, and the number of hyperplanes located above S. For the last layer of

the cutting, Ck, we also have to store the list of hyperplanes that intersects

each simplex.
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In order to answer a query, we simply go through the tree in order to find

the simplex S ∈ Ck that contains our query point p. We then simply return the

number of hyperplanes above S plus the number of hyperplanes intersecting

S above p.
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Chapter Three

Digital Convex Set Recognition

In this chapter, we develop algorithms to recognize digital convex sets.

In Section 3.1, we present a near linear time algorithm to test digital con-

vexity. The algorithm is based on the quickhull algorithm presented in Sec-

tion 2.1.1.

In Section 3.2, we present a near linear time algorithm that given any digital

convex set S finds a polygon P with vertices in R2 with minimum number of

edges such that P ∩ Z2 = S.

3.1 Testing Digital Convexity

In this section, we consider the question of determining whether a given finite

lattice set S is digital convex. Previous related works considered structured

data in which S is assumed to be connected [11, 25]. Notice also that if the

set is ordered, its convex hull can be computed in linear time. In this section

we consider the input to be an unstructured lattice sets.
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Problem Test Convexity

Input: A set S ⊂ Z2 of n lattice points given by their coordinates.

Output: Determine whether S is digital convex or not.

Herein we present an algorithm that solves the Test Convexity problem

in O(n+h log r) time, where n = |S|, h is the number of edges of conv(S), and

r is the diameter of S. The algorithm makes use of the quickhull algorithm

and relies on the following Theorem 8 that states that the quickhull algorithm

is able to find the convex hull of any digital convex set S in linear time and

space relative to the cardinality of S.

Theorem 8. If the input is a digital convex set of n points, then the quickhull

algorithm has O(n) time and space complexities.

Proof. During the quickhull algorithm, we discard from S the points located

inside the partial hull, and add some of them as vertices of the partial hull.

Theorem 8 is a consequence of the following two propositions, which we prove

next: (i) At least half of the remaining points are discarded at each iteration.

(ii) At each step, the running time is linear in the number of points remaining

in S. We start by proving proposition (i).

We consider one step of the quickhull algorithm as described in 2.1.1. Let

ab be the edge of this step. When the point a was added to the hull, it was

the farthest point in a given direction. Hence, there is no point beyond the

line orthogonal to this direction going through a. We call this line ℓa (Fig.

3.1-b). The same holds for point b, we call the associated line ℓb. Let c be

the intersection point of ℓa and ℓb. We know that any remaining point of S
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Figure 3.1 Quickhull regions. The preserved region (region in
which we look for the next vertex to be added to the partial hull)
is a triangle. This stays true when adding new vertices to the hull
(as shown here in the bottom right corner). The partial hull (whose
interior is shown in light brown) grows at each vertex insertion to the
partial hull. The points in or on the boundary of the new region of
the partial hull are discarded.

in the outward direction of ab relative to the partial hull is in the interior of

△abc. We proceed with the remaining points of S in △abc as follows. We

are looking for the point that is the farthest from the line ab in the triangle

△abc (Fig. 3.2). Three cases might occur. If the triangle △abc does not

contain any remaining point, then ab is an edge of the partial hull and we

stop the computation for this edge in the following steps. If there is a unique

remaining point of the triangle △abc which is the farthest from the line ab,

then we denote it d. If there are multiple points which are farthest from ab in

the interior of the triangle △abc, we denote the two extreme points of S on

this segment d and d′.

Let us consider the case where the point d is the unique farthest point

from the line ab. Let e and f be the intersections between the line parallel

to ab going through d, and respectively ac and bc. The point d is the unique
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Figure 3.2 Symmetrical regions. At each step, we discard from
S all the points of the triangle △abc which are not in the interior
of △ade or of △dbf (△d′bf in b). By considering the symmetries
through c1 and c2, any of these remaining points has a symmetric
lattice point in the interior of △abd which is discarded.

remaining point in the triangle △cef . (Fig. 3.1-b) Adding d to the partial

hull creates two other edges to be further processed: one is ad and the other

is bd. Then we insert the vertex d in the partial hull and remove from S all

the points which are neither in the interior of the triangles △ade nor △bdf .

The points of S in the interior of the triangle △abc that we do not discard are

allocated either to the interior of △ade or △bdf according to their positions.

It is important to note for the complexity of the algorithm that each point is

allocated to at most one triangle.

We denote respectively c1 and c2 the midpoints of ad and bd. All the lattice

points in the interior of the triangles△ade and△dbf have different symmetric

lattice points towards c1 and c2 in the interior the triangle △ade. Since S is

digital convex, those lattice points are in S, they also are discarded due to
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their positions. (Fig. 3.2-a). In other words, at this step, for each remaining

point of S, one point of S is discarded. It proves (i).

This proposition also holds in the case where there are two extreme points

d and d′ from S on the line ef . In this case, we insert the two vertices d and

d′ in the partial hull. We discard from S all the points of the triangle △abc

which are not in the interiors of the triangles △ade and △d′bf . As previously,

any of the remaining points has a different symmetric point which is discarded

(Fig. 3.2-b). It proves (i) in this case. In both cases our initial assumption is

preserved: all the remaining points are in the interior of the triangle to which

they are allocated. At last, we can easily provide an initialization of the partial

hull and of the set of remaining points satisfying this condition.

For proving (ii), the computation of the farthest point from the line ab

among the remaining points of S in the triangle △abc takes linear time. For

all points in the triangle we test if they are in the interior of either the trian-

gles △ade or △dbf (or △d′bf in the second case). We allocate them to their

containing triangle or discard them. The operation takes constant time per

point. In the second case, where we have two extreme points d and d′, these

two points are also computed in linear time; This proves (ii). Consequently,

the number of operations at each step is proportional to the number of re-

maining points, which is at most half the number of points of the previous

step. Therefore the total number of operations is bounded by n
∞∑
i=0

(1
2
)i = 2n,

hence the quickhull algorithm runs in linear time for digital convex sets.

By running quickhull on any given set S, and stopping the computation if
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any step of the algorithm discards less than half of the remaining points, we

ensure both that the running time is linear, and that quickhull finishes for any

set S that is digital convex. However, if the computation finishes for S, we

still need to test its digital convexity. To do so, we use the computed convex

hull.

If the number of convex hull vertices h is larger than (8π2n)1/3, then S is not

digital convex (see [2, 54], the upper bound h ≤ (8π2A)1/3 is given according

to the area A of the convex hull of a digital convex set S, but if S is not a

set of colinear points, Pick’s formula gives A < n which gives h ≤ (8π2n)1/3

for convex lattice sets where n = |S|). We can assume that h is lower than

(8π2n)1/3. Then we compute | conv(S)∩Z2| using Pick’s formula [53]. The set

S is digital convex if | conv(S) ∩ Z2| = |S|.

Theorem 9. The digital convexity of a set S can be tested in O(n + h log r)

time, where h = | conv(S)| ≤ O(n1/3) and r is the diameter of S.

Proof. As we run the quickhull algorithm, but stop if less than half of the

remaining points have been removed, the running time of the quickhull part

is bounded by the series n
∞∑
i=0

(1
2
)i = 2n, and is hence linear. If the quickhull

algorithm has been stopped, then the set S is not digital convex. Otherwise,

if the number of convex hull vertices h is larger than (8π2n)1/3, then we know

that the set S is not digital convex. We now consider the remaining case

where h ≤ (8π2n)1/3. Computing | conv(S)∩Z2| using Pick’s formula requires

the computation of both the area of conv(S) in O(h) time and the number of

boundary lattice points, which requires the computation of a greatest common

divisor for every edge. Hence, this takes O(h log r) time where h = | conv(S)|
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and r is the diameter of S. As S is digital convex if and only if |S| = | conv(S)∩

Z2|, we can effectively test digital convexity in O(n+ h log r) time.

3.2 Optimal Digital Convex Polygon

In this section, as in Section 3.1, we consider the fundamental question of

pattern recognition that is the recognition of digital convex polygons. In this

version of the problem, we are given a set S ⊂ Z2 of n points and an integer

q, the goal is to determine the existence of a convex polygon P with q edges

such that P ∩ Z2 = S. Notice that in this problem the vertices of P are

not necessarily lattice points. We provide an algorithm to solve the planar

recognition of digital convex polygons in linear time. The algorithm is more

general and actually solves the following minimization problem:

Problem 1. Edge Minimization

Input: Set S ⊂ Z2 of n lattice points given by their coordinates.

Output: A convex polygon P with minimum number q of edges verifying

P ∩ Z2 = S.

We note that the problem Edge minimization can be rephrased as the fol-

lowing polygonal separation problem with the set IN = S and its complement

OUT = Z2 \ S (Fig. 3.3).

Problem 2. Polygonal Separation

Input: A set IN ⊂ Z2 of inliers and a set OUT ⊂ Z2 of outliers.
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Figure 3.3 Edge Minimization and Polygonal Separation. To
the left, an example of the edge minimization problem. The lattice
set represented by the blue points is separated from the remainder of
Z2 by the black triangle. To the right, an example of the polygonal
separation problem. The black triangle encloses all points from the
blue set and none from the red set.

Output: A convex polygon P ⊂ R2 with as few edges as possible and such

that all points of IN and none of OUT are inside P .

Polygonal separability has been widely investigated in the literature. An

optimal algorithm for Polygonal Separation that takes O((|IN | + |OUT |)

log(|IN | + |OUT |)) time is presented in [27]. However, it cannot be directly

applied to Edge minimization since the set of outliers OUT = Z2 \ S is not

finite.

In order to solve Edge minimization we use the following three steps

strategy:

The first step consists in testing the digital convexity of S in linear time

using Theorem 9. If S is not digital convex, then there is no solution to the

Edge minimization problem. Otherwise, the quickhull algorithm computes

the convex hull of S in O(n) time and we can proceed to the second step.

The second step of the algorithm takes the h ≤ O(n1/3) edges of conv(S) as
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an input and consists in reducing the set of outliers OUT = Z2 \ S to a finite

subset OUT ′ ⊆ OUT of O(n) points. The cardinality of OUT ′ is proportional

to the number of lattice points located on the edges of conv(S), which is O(n)

in the worst case. To keep the complexity of the step almost linear in h we

do not explicitly compute OUT ′. Instead, we compute an implicit description

of OUT ′ of size O(h) in O(h log r) time, where h is the number of edges of

conv(S).

In the third step we separate OUT ′ from S using the smallest number of

edges possible. To do so we could use the polygonal separability algorithm

from [27], but that would lead to a running time of O(n log r + n log n) =

O(n log r). Instead, we provide an algorithm that takes benefit of the lattice

structure to achieve a running time of O(h log r) for this step. After the

convex hull computation and digital convexity tests of the first step, the whole

algorithm takes O(n+h log r) time. However, if the convex hull of S is provided

the algorithm runs in O(h log r) time.

As the first step, i.e. testing the digital convexity, is already addressed in

the previous Section 3.1, we present the second and third steps of the algorithm

in the two following sections.

3.2.1 Outliers Reduction

In this section we assume that the set S is digital convex and show how to

reduce the set of outliers OUT = Z2 \ S to a finite set of O(n) points. To

do this, we use the notion of jewels introduced in [22, 35] for testing digital

circularity and recognizing digital polyhedra. We say that a point p ∈ Z2 \S is
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a b

Figure 3.4 Jewel’s hull. In black, the set S, its convex hull is
in dark red. The point a is not a jewel because of the red point, any
convex polygon that includes both S and a also includes the red point.
The point b is a jewel because its union S ∩{b} with S is still convex.
In other words, the convex hull of the union S ∩ {b} does not contain
any other lattice points.

a jewel of S if conv(S∪p)∩Z2 = S∪p (Fig. 3.4). The set of all the jewels of S

is denoted Jewel(S) and it has the property that a convex set separates S from

Z2 \ S if and only if it separates separates S from Jewel(S) [35]. Hence, the

infinite set of the outliers of our separability can be reduced from OUT = Z2\S

to OUT ′ = Jewel(S).

It has been proven that the number of jewels is infinite if and only if S is the

intersection of a line segment and Z2 [35]. In this case it is clear that the set

S forms a digital triangle. A simple way to establish bounds on the number of

jewels has been discovered by French high school students during the national

contest TFJM2017 https://tfjm.org/editions-precedentes/edition-2017. They

presented the following structure of the set of jewels: the jewels of the lattice

set S are the lattice points located on the edges of a polygon J surrounding

the convex hull of S. This surrounding polygon J ⊃ conv(S) is the arithmetic

dilation of conv(S) obtained by moving the support lines of the edges of the

conv(S) to the next Diophantine lines towards the exterior (Fig. 3.5). We

define J as the jewel hull of S (Fig. 3.5) and define it more formally as follows.
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Figure 3.5 Jewels. In black, the set S, its convex hull is in dark
red. The halfplanes H ′

i are delimited by the dashed lines, and form
the jewel hull that surrounds the convex hull of S. The jewel hull has
three properties: its edges are parallel to the ones of the convex hull
of S, there are no point between the convex hull and the jewel hull
and all the jewels (drawn in red) are on its boundary.

Given S, let E = {e1, e2, ...eh} be the edges of conv(S). For each i from 1

to h, let HPi : aix + biy + ci ≤ 0 (ai and bi co-prime integers) be the closed

supporting halfplane associated with the edge ei such that S ⊂ HPi. Notice

that conv(S) =
⋂

iHPi. Consider the open halfplanes HP ′
i : aix+biy+ci < 1.

Notice that there is no integer point in HP ′
i \HPi. The jewel hull of S is the

closure of the intersection of the half-planes HP ′
i (Fig. 3.5).

The jewel hull J of S has three main properties. (i) By construction, its

edges are parallel to the edges of conv(S). (ii) It is clear that there is no integer

point in the surface located between conv(S) and the jewel hull J . Finally,

(iii) A corollary of the next lemma is that the jewels of S are a subset of J ,

more precisely jewel(S) = (J ∩ Z2) \ S.

Lemma 10. For any three lattice points p1, p2, p3 such that p1, p2 are located

on the line ax + by + c = 0 (coefficients a and b are coprime) and p3 does

not, we have that the triangle p1p2p3 either contains a lattice point on the line

ax+ by + c+ 1 = 0 or on the line ax+ by + c− 1 = 0.

Proof. Up to a lattice preserving affine isomorphism, we can assume p1 = (0, 0)
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and p2 = (0, u) while the images of the two lines are x = −1 and x = 1.

We assume p3 is located on the right of p1p2 (the other case is identical by

symmetry). Hence, there exists three integers u, v, w with u, v > 0 such that

p1 = (0, 0), p2 = (0, u), and p3 = (v, w) and we want to prove that the triangle

p1p2p3 contains an integer point on the line x = 1. The lower and upper

points of the triangle in the line x = 1 are the two intersection points of x = 1

and each of the two segments p1p3 and p2p3. Their coordinates are respectively

(1, w
v
) and (1, u+ w−u

v
). Then the intersection of the line x = 1 and the triangle

p1p2p3 contains an integer point if and only if the interval [w
v
, uv+w−u

v
] contains

an integer namely if the interval [w,w + u(v − 1)] contains a multiple of v,

which is trivially true since there is necessarily a multiple of v in any interval

[w,w + v[ and then in [w,w + v − 1] ⊂ [w,w + u(v − 1)] as u ≥ 1, and thus

u(v − 1) ≥ v − 1.

The area of the jewel hull of S is finite unless all the points of S are colinear.

However, in this case there exists a triangle with vertices in R2 that separates

S from Z2 \ S.

The jewel hull consists of the intersection of a set of h halfplanes. Comput-

ing the vertices of the intersection of halfplanes is the dual [8, Chapter 8] of

the computation of the convex hull of a given points set. In the general case,

computing the intersection of h halfplanes takes O(h log h) time [8, Chapter 4].

However, since we already have the h halfplanes sorted by slope, we can use

Graham scan [8, Chapter 1] to compute the jewel hull in O(h) time. Notice

that not all h halfplanes appear on the boundary of the jewel hull, which is

the dual of the fact that some points may be in the interior of the convex hull.
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3.2.2 Jewel Separation

The jewel separation is the final step to solve the Edge minimization prob-

lem. The jewel hull J has been computed and the problem is the polygonal

separation of IN = S and the jewel set OUT ′ = Jewel(S). The previous step

does not provide the set of jewels but the ordered list of edges of the jewel hull

J as a sequence of linear equalities ℓi : aix+ biy+ ci = 1 with coprime integers

ai and bi. An initial lattice point di of each given Diophantine straight line

ℓi can be computed with the extended Euclid algorithm in O(log r) time. We

can go from this first point to the other integer points of the line ℓi through

translations of vectors k
−−−−−→
(−bi, ai) where k ∈ Z. Nevertheless, J is a rational

polytope. Its vertices are the intersection points of consecutive Diophantine

lines ℓi but they are not necessarily integer points. It is even possible that

some edges of the jewel hull do not contain any integer point. By computing

the vertices of each edge ei we can count all the jewels on ℓi and obtain a

generating formula for them in O(1) time and space for each edge. The jewels

on ℓi are:
⋃

k di + k(−bi, ai). The computation of an integer point di per line

ℓi for each one of our at most h Diophantine lines takes O(h log r) time. The

computation of the vertices of J takes O(h) time, and hence the computation

of the formulas generating the jewels takes O(h log r) time and O(h) space.

The jewels are determined in counterclockwise order according to their

order of appearance in the jewel hull. Their cyclic index i goes from 0 to

|jewel(S)| − 1. Furthermore, any pair of indices i, j with i < j defines two

intervals of indices, the interval Ii→j containing the indices of the successors

of i until j and the interval Ij→i containing the indices of the successors of j
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until i. We introduce now the precise meaning of separation. We say that a

real line ℓ separates some jewels from S if S is located entirely on one side of ℓ

while the jewels are located strictly on the other side. The fact that all jewels

are located on the boundary of a convex polygon leads to the following simple

lemma:

Lemma 11. If ℓ is a line separating the jewels of indices i and j from S, then

the line ℓ separates S from either the jewels with indices in Ii→j or the jewels

with indices in Ij→i.

A naive approach to solve the polygonal separation problem of the sorted

set of jewels from S is the following: Choose a starting jewel of index i0. Search

for the index j0 such that the jewels with indices in the interval Ii0→j0 can be

separated from S and |Ii0→j0| is maximized. The method used to compute j0 in

constant time using our representation of the jewels will be detailed later. We

then define i1 as the successor of j0 and repeat the process: search for j1 such

that Ii1→j1 can be separated from S and the number of jewels in the interval

is maximized. We repeat until we find an interval Iik→jk which contains the

predecessor of i0. The number of lines of the solution is the number k + 1 of

intervals considered. This algorithm is illustrated Fig. 3.6. We call this greedy

algorithm the turn routine since the strategy is to turn around the set S from

a starting jewel pi0 .

The difficulty of this approach is that different choices of the starting point

pi0 may lead to different numbers of separating lines (actually, they may differ

by at most 1 line). The strategy to find the minimum number of separating

lines is to test several starting jewels. Dynamic programming approaches might
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Algorithm 1 turn(conv(S), Jewel(S),i0)
Require: the convex hull conv(S), the ordered list of its jewels Jewel(S), and

a starting jewel p of index i0.

Ensure: A separating polygon with S inside and Jewel(S) outside.

1: Initialize i0 as the index of the starting jewel, k = 0 and Ii−1→j−1 as an

empty interval

2: while predecessor(i0) ̸∈ Iik−1→jk−1
do

3: Compute jk such that the jewels with indices in the interval Iik→jk can

be separated from S and |Iik→jk | is maximized.

4: ik+1 ← successor(jk)

5: k = k + 1

6: return The polygon obtained from the separating lines

be used to find an optimal solution as in [32], but in the framework of our

Edge minimization problem in the lattice, we are able to obtain a major

simplification.

The strategy to simplify the problem is the following. There are two fam-

ilies of jewels: the ones which chosen as starting jewel in the turn routine

provide a minimal number of lines, their indices are denoted IOPT , and the

ones that provide a non optimal number of lines. Notice that if the index i0

is in IOPT , then all the indices ik computed during the turn routine are also

in IOPT since it can be easily seen that they provide also optimal solutions.

In the general case of polygonal separability, a large set of starting points has

to be investigated until finding one leading to an optimal solution but in the

framework of the separation of IN = S and OUT ′ = Jewel(S), we can provide
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Figure 3.6 Turn algorithm. We start from a chosen starting jewel
pi0 and search for its last successor pj0 that can be separated from S
simultaneously with pi0 by a single line. We then take the successor
of pj0 as new starting jewel pi1 and search for the last successor pj1
of pi1 that can be separated with pi1 ... We repeat the process until
reaching the predecessor of pi0 .

a subset of at most 4 jewels containing at least one in IOPT . It means that

testing these four jewels as starting points of the turn routine is enough to

find the optimal solution. The properties of the set IOPT are presented in the

next two lemmas.

The first lemma states that there is no line that simultaneously separates

two jewels of a line ℓi and two jewels of ℓi+1.

Lemma 12. Let ℓ1 and ℓ2 be two jewel lines. (i) If ℓ1 ∩ ℓ2 /∈ Z2 then there is

no line that separates two jewels of ℓ1 and two jewels of ℓ2. (ii) If ℓ1 ∩ ℓ2 ∈ Z2

then there is no line that separates three jewels of ℓ1 and three jewels of ℓ2.

Proof. (i) Let order the jewels on ℓ1: J1 = {p1_1, p1_2, ...} according to their

distance to ℓ2, and order the jewels on ℓ2: J2 = {p2_1, p2_2, ...} according
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`1
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p1−1

p1−2

p2−1conv(S)

p2−2

`i

`i+1

conv(S)

`j

ei+1

a) b)

Figure 3.7 Jewel separation. a) If a single line separates
both p1_2 and p2_2, then the triangle △p1_1p1_2p2_2 is larger than
△p1_1p1_2p2_1 and hence must contain a fourth lattice point, which
is impossible. b) No jewels are located between ei+1 and ℓi+1 hence
it is impossible to separate simultaneously jewels from ℓi and jewels
from ℓj.

to their distance to ℓ1. Assume that there is a line l such that l sepa-

rates two jewels of ℓ1 and two jewels of ℓ2 from conv(S). Then l separates

p1_1, p1_2, p2_1 and p2_2 from conv(S). Hence the triangle △p1_1p1_2p2_2

is located inside the jewel hull and outside of conv(S) (Fig. 3.7.a). As the

triangle △p1_1p1_2p2_1 is not degenerated we have Area(△p1_1p1_2p2_1) ≥
1
2
. Hence the inequality Area(△p1_1p1_2p2_2) > Area(△p1_1p1_2p2_1) leads

to Area(△p1_1p1_2p2_2) > 1
2
. Using Pick’s theorem we can conclude that

△p1_1p1_2p2_2 contains at least four lattice points. However, since p1_1p1_2

are two consecutive lattice points of ℓ1, this means that there is a lattice

point strictly inside the jewel hull and outside conv(S), which is impossible.

Hence l does not exist. The proof of (ii) is the same, we just have to consider

p1_0 = p2_0 = ℓ1 ∩ ℓ2.

We complete Lemma 12 with a lemma about the separation of jewels which

are not in consecutive lines ℓi and ℓi+1.
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Lemma 13. If ℓi and ℓj are two non consecutive jewels lines: j ≥ i+ 2, then

there is no line that separates any jewel that belongs only to ℓi and any jewel

that belongs only to ℓj.

Proof. Consider ℓi+1 and its associated edge on conv(S): ei+1. By construc-

tion, there is no lattice point between ℓi+1 and ei+1 (Fig. 3.7.b ). Assume

that there is a line l that separates jewels of both ℓi and ℓj As all the jewels

belonging only to ℓi and all the jewels belonging only to ℓj are located on the

same side sj of ei+1 as S, l has to be in sj to separate jewels of ℓi, then has to

leave sj in order to not intersect conv(S), and finally has to go back in sj to

separate jewels of ℓi+1. Hence l intersects ei+1 twice which is impossible.

We now explain how to use Lemmas 12 and 13 to determine at most four

jewels such that at least one of them leads to an optimal solution with the

turn routine. In other words, we provide four indices with the guarantee that

at least one of them is in IOPT . For convenience, the successor of the index

s is now simply denoted s + 1 and so on with the successor of the successor

denoted s + 2. In the same manner, we also use s− 1, s− 2, ... to denote the

predecessors of s. When looking for a jewel in IOPT , several cases might occur:

1. The jewel hull J has an edge ei which does not contain any integer

point. If we denote s the index of the first jewel after this edge, then

IOPT contains s. It is a corollary of Lemma 13. Considering an optimal

solution, the vertex of index s cannot be included in the interval Iir→jr

containing s − 1 because the interval would contain jewels of the lines

ℓi−1 and ℓi+1 which is excluded by Lemma 13. Hence the index s is a
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starting index namely an index of the form ir of the considered optimal

solution. As the indices ir of the intervals Iir→jr computed from an

optimal starting index i0 are also optimal, s is included in IOPT .

2. The jewel hull J has an edge ei with only one jewel s, hence IOPT con-

tains either s or s + 1. Considering an optimal solution, it follows from

Lemma 13 that s−1 and s+1 cannot be in an interval of the form Iir→jr

since they are on distant lines ℓi−1 and ℓi+1. Hence, there exist either an

index ir equal to s or to s+ 1. It proves that one of these two indices s

or s+ 1 is in IOPT .

3. The jewel hull has an edge with only two jewels. Their indices are s

and s+ 1. Considering an optimal solution, according to Lemma 13 the

indices s − 1 and s + 2 cannot be in the same interval Iir→jr because

they belong to the distant lines ℓi−1 and ℓi+1. Hence, there is at least a

beginning of interval in s, s + 1 or s + 2. One of these three indices s,

s+ 1, s+ 2 is in IOPT

4. The edges of the jewel hull all contain at least three jewels. We choose

any edge ei and denote s, s+1, s+2 the indices of its three firsts jewels.

According to Lemma 12 the indices s + 2 and s − 2 cannot be in the

same interval Iir→jr . Hence, there is at least a beginning of interval in

s− 1, s, s+ 1 or s+ 2. One of these four indices s− 1, s, s+ 1, s+ 2 is

in IOPT .

In any case, we can determine a set of at most four starting jewels with the

guarantee that the turn algorithm provides an optimal solution for at least
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one of them. We now explain how, in the turn algorithm 1, for a given jewel

pi we compute its last successor pj that can be separated alongside him with

a single line. Let pi be on the jewel line ℓi, and let vi be the end vertex of the

edge of the convex hull parallel to ℓi. Consider the line pivi. S is located on

one side of pivi, all the jewels that are located strictly on the other side can be

separated alongside pi (Fig. 3.6). It is clear that all jewels located on ℓi can

be separated with pi, and using Lemma 13 we know that the jewels located on

ℓi+2 cannot. Hence, all we have to do is determine the last jewel of ℓi+1 that

is located on the correct side of pivi. This is easily done by computing the

intersection point q of pivi and ℓi+1 and expressing q as di+1 + λ(−bi+1, ai+1)

(We remind that the jewels on ℓi+1 are expressed as:
⋃

k di+k(−bi, ai)). From

there a separating line can be computed by rotating slightly pivi around any

points in between pi and vi.

The time complexity of the turn algorithm 1 is hence O(h) = O(n1/3).

This follows from the fact that h is an upper bound to the number of edges

of the solution of the Edge minimization problem and h = O(n1/3). Starting

from any jewel, the algorithm computes a polygon that has at most one edge

more than the optimal solution and each edge is computed in O(1) time.

As the jewel hull is computed in O(h log r) time, the set of O(1) starting

jewels can be computed in constant time, and the turn algorithm 1 runs in

O(h) time. Hence the edge minimization algorithm, once provided with the

convex hull of S, runs in O(h log r) time.
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Algorithm 2 edge minimization(S)
Require: S a set of points.

Ensure: A minimal separating polygon if S is digital convex.

1: Test the digital convexity of S and compute conv(S) using quickhull

2: Compute the jewel hull of S using Graham scan

3: Compute at most four starting jewels

4: for all starting jewels do

5: Compute the minimal separating polygon using the given starting jewel

using algorithm 1

6: return The minimal separating polygon
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Chapter Four

Digital Convex Subsets

In this chapter, we develop algorithms to compute digital convex subsets. More

precisely, we investigate a digital version of the potato peeling problem [15]

that we call digital potato peeling and in which the goal is, given a set S, to

find the largest digital convex subset of S. This problem has been stated in

2004, and a first heuristic given in 2005 [17].

In Section 4.1, we propose an embedding of the digital potato peeling

problem in a directed acyclic graph (DAG) that leads to an O(n4 + n2 log r)

algorithm to solve the digital potato peeling problem. Then, using the same

strategy, we present an optimization of the algorithm that leads to a dynamic

programming algorithm that runs in O(n3 + n2 log r) time.

In Section 4.2, we consider the k-digital potato peeling problem in which

we look for the largest union of k subsets of S. Once again, we propose

an embedding of the problem in a DAG, leading to an O(n4k+1 + n2 log r)

algorithm. We then show how a similar optimization as in Section 4.1 leads

to a dynamic programming algorithm that runs in O(n4k + n2 log r) time.

In this chapter, we consider the largest digital convex subsets to be the
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ones with the maximum number of points. However the algorithms described

can easily be adapted to instead maximize the area, or even the convex hull’s

perimeter.

4.1 Digital Potato Peeling

In this section, we present an algorithm to solve the digital potato-peeling

problem in O(n3 +n2 log r) time, where n is the number of input points and r

is the diameter of the point set. We define the digital potato-peeling problem

as follows:

Problem 3. Digital potato-peeling

Input: A set S ⊂ Z2 of n lattice points given by their coordinates.

Output: The largest set K ⊆ S that is digital convex (i.e., conv(K)∩Z2 = K),

where largest refers to |K|.

We note that a digital convex set K can be described by its convex hull

conv(K), and that the vertices of conv(K) are lattice points. In order to

solve the digital potato-peeling problem, instead of explicitly building K, our

algorithm constructs conv(K). We also note that any convex polygon P with k

vertices can be triangulated using k− 2 triangles that share a common vertex,

the bottom-most vertex ρ of P for instance. We name such a triangulation

a fan triangulation (Fig. 4.1). In order to solve problem 3 we first consider

the following rooted variation of the digital potato-peeling problem, where the

point ρ has been given as part of the input.
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ρ

Figure 4.1 Fan triangulation. A digital convex set, its convex hull,
and a fan triangulation from its bottom-most point ρ

Problem 4. Problem Rooted digital potato-peeling

Input: A set S ⊂ Z2 of n lattice points given by their coordinates. We define

ρ as the bottom-most point in S.

Output: The largest set K ⊆ S that is digital convex and has ρ as the right-

most point at the bottom-most row of K.

The difference between the digital potato-peeling problem and its rooted

variation is that in the digital potato peeling the bottom-most point is not

necessarily in the solution, whereas the bottom-most point is forced to be in

the solution in the rooted version of the problem. The idea we develop in this

section consists in solving the digital potato peeling problem by testing all

possible roots for the rooted version of the problem.

In the rooted version of the problem, we only have to consider points in S

that are located either above ρ or on the same row as ρ to its left. We refer

to this subset of S as Sρ, and we refer of ρ as the root. Let p1, . . . , pn denote

the points of Sρ sorted clockwise around ρ, starting from the left.

Let △i,j denote the (closed) triangle whose vertices are ρ, pi, pj with i < j.

We say that a triangle △i,j is valid if △i,j ∩ Z2 = △i,j ∩ S, that is if all the

lattice points inside △i,j are in S. To algorithmically verify that △i,j is valid,
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we compare |△i,j ∩S| and |△i,j ∩Z2|. The value of |△i,j ∩Z2| is determined as

follows. Pick’s theorem states that the area of a triangle with lattice vertices is

equal to nb/2+ni−1, where nb is the number of boundary lattice points and ni

is the number of interior lattice points. The value of nb can be computed using

a GCD computation for each edge in O(log r) time, where r is the diameter

of the triangle. Plugging in the area of the triangle, we obtain the number of

lattice points |△i,j ∩ Z2| = nb + ni. To compute |△i,j ∩ S| we use a triangle

range counting query described in Section 2.3.1. We remind that those queries

can be answered in O(1) time after preprocessing S in O(n2) time [30]. Hence,

the total time to test the validity of a triangle (after preprocessing) is O(log r).

However, on the account that there is O(n3) triangles and only O(n2) edges,

we preprocess the number of lattice points on each edge in O(n2 log r) time

and are able to test the validity of triangle in O(1) time after a preprocessing

of O(n2 log r) time.

We now consider Ki, a digital convex subset of Sρ whose root is ρ. We can

build conv(Ki) by appending the triangles of its fan triangulation clockwise.

All the triangles used have lattice vertices, are valid, and their bottom-most

vertex is ρ. Now; in order to solve the rooted digital potato-peeling problem,

we want to find the appending that results in the largest Ki possible.

4.1.1 Directed Acyclic Graph embedding

We start by showing how to find the largest digital convex subset Ki by build-

ing a DAG G that represents all the possible ways to append rooted triangles

in a convex manner. Then, in a second time, we will present a faster dynamic
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programming algorithm which is based on the same construction. In order to

avoid confusion with the geometric terms, we will refer to the graph vertices

as nodes, and the graph edges as arcs (Fig. 4.2).

G is built in the following way:

- Each node Ni of G represents a valid rooted triangle. Analogously, all

valid rooted triangles are represented by a node in G

- There is an arc Aij from the node Ni towards the node Nj if and only

if:

(i) The union of the triangle △i associated to Ni and the the triangle

△j associated to Nj is a convex quadrilateral qij, and

(ii) △i is the first triangle in the clockwise rooted fan triangulation of

qij.

- The weight of an arc Aij is equal to the number of lattice points in △j

not in △i, that is the number of lattice points in △j minus the number

of lattice points on the edge shared by △i and △j.

- A starting node A∅ is added to G

- Initialization arcs A∅,i are added from the starting node towards each

other node Ni. Their weight is equal to the number of lattice points in

△i

Solving the rooted digital potato-peeling problem is equivalent to finding

the longest path in G. This property is a corollary of the following lemma.
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Figure 4.2 Rooted peeling graph. Example of a DAG built to
solve the rooted peeling problem for 6 valid triangles. For two tri-
angles to be connected by an arc in the graph, they need to have a
common edge that starts from ρ, and their union must be a convex
polygon. The weight of each arc is equal to the number of lattice
points inside the right-most triangle that are not located on the com-
mon edge between the two triangles.

Lemma 14. (i) Every path in G represents a digital convex set. The length

of the path is equal to the number of lattice points in the digital convex

set.

(ii) Each digital convex subset of S is represented by a path in G

Proof. Let △i be the triangle represented by the node Ni in G. Note that ρ

is a vertex of △i. Let p1 and p2 be the two other vertices of △i such that

the points ρp1p2 are oriented clockwise. We call ρp1 the left edge of △i, and

ρp2 the right edge. By construction, all arcs starting from Ni end into a node

representing a triangle whose left edge is ρp2. Furthermore, if we denote p3
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the third vertex of this triangle, we have the point p1p2p3 oriented clockwise.

Hence, every path (N∅,Ni1 ,Ni2 ,Nik−1
) in G represents the fan triangulation

of a polygon P = (p1, p2, ..., pk) such that the points ρ, p1, p2, ..., pk are all in

convex positions. As only the valid triangles are represented in G, all lattice

points inside P are in S, and hence P ∩ S is digital convex. The length of the

path is equal to the sum of the number of lattice points inside each triangle,

minus the lattice points on the edges: (ρp2, ρp3, ..., ρpk−1), which is equal to

the number of lattices inside P (Fig. 4.2). This proves (i).

Let P be the convex hull of a digital convex subset of S. Let △1△2...△k

be the rooted fan triangulation of P . By construction, for each i from 1 to k

we know that △i is represented by Ni in G, and for each i from 1 to k − 1,

we know that there is an arc from Ni to Ni+1. Hence, there is a path in G

representing P . This proves (ii).

Computing the longest path in the DAG G takes linear time in the number

of arcs in G. The number of nodes in G is at most O(n2), and each of these

nodes has at most n incoming arcs. Hence the number of arcs in G is O(n3)

and the rooted digital potato peeling problem can be solved in O(n3) time

after O(n2 log r) time preprocessing.

Now, in order to solve the digital potato-peeling problem, we solve the

rooted digital potato-peeling for each of the n possible roots. As the prepro-

cessing is common to each instance of rooted potato-peeling problem, we only

have to preprocess once. Which leads to an O(n4+n2 log r) algorithm to solve

the digital potato-peeling problem.
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4.1.2 Dynamic programming

We now show that the same idea of fan triangulation and clockwise triangles

appending can lead to a dynamic programming algorithm that runs in O(n3+

n2 log r) time. This algorithm makes use of the same precomputation as the

DAG one we just presented.

Once again, we present an algorithm that solves the rooted potato-peeling

problem, and we then use this algorithm to solve the potato-peeling problem

by trying every root possible.

The algorithm incrementally builds the fan triangulation of conv(K) by

appending valid triangles in clockwise order using dynamic programming. At

each step, we ensure the digital convexity through the following property. Let

conv(K ′) be the convex hull of a digital convex set K ′ rooted at ρ with △h,i

as the right-most triangle. If △i,j is valid and △h,i ∪ △i,j is convex, then

K ′ ∪ (△i,j ∩ Z2) is digital convex.

First, we sort all the points around ρ clockwise. The idea of the algorithm

is the following: for all pairs of points pi, pj ∈ Sρ with i < j such that △i,j is

valid, we want to compute the largest convex polygon amongst that have △i,j

as their last triangle in the clockwise rooted fan triangulation. We refer to this

largest convex polygon as Ci,j. The key property to efficiently compute Ci,j is

Ci,j = △i,j ∪max
h

Ch,i, where h < i is such that △i,j ∪△h,i is convex.

In order to compute Ci,j, we do the following. For each value of i, we

sort all valid △i,j for j > i in counter-clockwise order of pj around pi into

a list of triangles Ti, obtaining n lists of O(n) triangles each. Sorting all
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angular sequences can be done in O(n2) time using the dual[8, Chapter 11].

Moreover, testing the validity of each triangle takes O(1) time, which gives a

total running time of O(n2). Next, we explain the dynamic programming part

of the algorithm.

For each i from 1 to n, we do the following. First, we sort all values of

Ch,i for h < i by decreasing value into a list Ci. Then, we consider every

△i,j in the order given by Ti, testing each Ch,i from the largest area to the

smallest. If Ch,i ∪ △i,j is convex, then we set Ci,j = Ch,i ∪ △i,j. Otherwise,

we permanently remove Ch,i from the list Ci (Fig. 4.3). Next, we justify the

correctness of this procedure, especially the fact that we are allowed to remove

the aforementioned values of Ch,i from Ci.
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Figure 4.3 Dynamic algorithm for the rooted peeling. a) At
this step, we consider the point i .The four largest convex polygons
ending at the point i: Ch0i, Ch1i, Ch2i, and Ch3i were previously com-
puted by the algorithm. They are sorted according to their respective
score. We will consider them in order from largest to smallest. In
this step, we are computing Cij0 , Cij1 , Cij2 , and Cij3 . The points j0,
j1, j2, and j2 are sorted around i. We will treat them in their sorted
order. b) We test ρij0 with the largest polygon Ch3i. Their union is a
convex polygon therefore Cij0 = Ch3i∪ρij0. c) We test ρij1 with Ch3i.
Their union is a convex polygon therefore Cij1 = Ch3i ∪ ρij1. d) We
test ρij2 with Ch3i. Their union is not a convex polygon. We forget
about Ch3i for the remainder of the step, and we move on to the next
largest convex polygon. e) We test ρij2 with Ch2i. Their union is a
convex polygon therefore Cij2 = Ch2i∪ρij2. f) We test ρij3 with Ch2i.
Their union is not a convex polygon. g) We test ρij3 with Ch1i. Their
union is not a convex polygon. h) We test ρij3 with Ch0i. Their union
is not a convex polygon. As there is no convex polygons left we can
conclude that Cij3 = ρij3.
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Since we sorted the list Ti of △i,j counter-clockwise by pj around pi, we

have the following key property. For each △i,j preceding △i,k in the ordering

Ti, we have that for all h < i if Ch,i ∪ △i,j is not convex, then Ch,i ∪ △i,k is

not convex either. Hence, the values of Ch,i removed from Ci cannot form a

convex polygon with the triangles △i,j that appear later in the list Ti.

The running time of the dynamic programming part for each value of i

is the following. First, we retrieve the angular sorted list of valid triangles

Ti. This step only takes O(n) time as we preprocess the angular sorting of all

points around i. The remaining part also takes O(n) time since at each step,

we either remove a convex polygon Ch,i from Ci or we advance through the list

of triangles Ti. Considering all n values of i and the initial sorting, the total

time to solve Problem 4 is O(n2). In order to solve Problem 3, we test all n

possible values of ρ ∈ S, proving the following theorem.

Theorem 15. There exists an algorithm to solve Problem 3 (digital potato

peeling) in O(n3 + n2 log r) time, where n is the number of input points and r

is the diameter of the input.

4.2 k-Digital Potato Peeling

In this section we give interest and present an algorithm to solve the k-digital

potato-peeling problem that we define as follows.

Problem 5. k-digital potato-peeling

Input: A set S ⊂ Z2 of n lattice points given by their coordinates, and a value

k ∈ N.
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a) b)

Figure 4.4 k-peeling solutions. The convex hulls can intersect any
number of times as shown in a). Furthermore, for 3 or more polygons,
holes can appear as shown in b).

Output: k subsets Ki ∈ S that are digital convex (i.e., conv(K) ∩ Z2 = K),

such that K =
⋃
i

Ki is the largest, where largest refers to |K|.

Note that the 1-digital potato peeling problem is the potato peeling prob-

lem that we solved in O(n3+n2 log r) time in Section 4.1. In 2018, we published

a specific algorithm for the 2-digital potato peeling [24], its running time is

roughly O(n9). Here we present the first algorithm that solves the more general

k-digital potato peeling. Its running time is O(n4k +n2 log r), which improves

our previous best known algorithms for the 2-potato peeling problem [24]. The

k-potato peeling introduces some new complications compared to the simpler

digital potato peeling. Some of those complications come from the fact that

the convex hull of two sets in a solution can intersect an arbitrarily large num-

ber of times, or that holes can be present in the middle of the union of several

convex hulls (Fig. 4.4).

Once again, as in Section 4.1, we will characterize a digital convex subset

by its convex hull. We note that any convex hull can be separated into two

x-monotone polylines that we respectively name the upper hull, which is the
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p1
pn

Figure 4.5 Upper and lower hull. The upper hull (in blue) and
the lower hull (in red) that both go from the leftmost point(p1) to the
rightmost point (pn).

part of the convex hull going from the leftmost point to rightmost point in

clockwise order, and its counter clockwise counterpart that we name the lower

hull (Fig. 4.5).

For two x-monotone polylines PL1, PL2 both going from p1 to pn to repre-

sent a convex hull, it is necessary and sufficient that one polyline always turns

right and that the other polyline always turns left. Using this representation,

we can incrementally build any convex polygon. While incrementally building

the upper and lower hulls, we can ensure the convexity by simply testing the

orientation of the angle when appending edges to the upper or lower hull. This

means that during the construction of the hull, and at any time only the last

appended edge needs to be known for each partial half hull. The construction

is finished once both half hulls ends at the same point.

4.2.1 Computing the number of points inside the hull

The previous method, allows to build a set of edges that represent a convex

polygon P while only maintaining the knowledge of 2 edges at any time. In

this section, we show how we can use this method to compute the surface

inside P while only maintaining the knowledge of 2 edges at any time.
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Unlike the appending done in Section 4.1 in order to solve the digital

potato peeling problem, the method we just described does not directly append

surfaces together, but edges. Hence, using the method as is, the number of

points inside P cannot be computed. In order to do so, we add the following

ordering rule during the construction.

When choosing whether we append an edge to the top hull or to the bottom

hull, we chose to only append an edge to the least advanced of the two currently

known edges. We define the least advanced edge as follows:

Given two edges e1 and e2 respectively delimited by the points (p1(x1, y1),

p2(x2, y2)), and the points (p3(x3, y3), p4(x4, y4)), such that xmaxe1 =

Max(x1, x2) and xmaxe2 = Max(x3, x4). e1 (resp. e2) is the least ad-

vanced edge if and only if xmaxe1 ≤ xmaxe2 (resp. xmaxe2 ≤ xmaxe1).

In other words, the least advanced edge is the one with the smallest maximal

x-coordinate. This definition can be extended to more than two edges.

We now explain how this least advanced edge rule allows us to effectively

compute the surface of the convex polygon P we are building, while only

maintaining the knowledge of at most two edges at a time. We call horizontal

span of any geometrical object O the smallest interval I such that for each

point p(x, y) ∈ O, x ∈ I.

At each step of the computation only two edges are known: one for the

upper hull and one for the lower hull. We define Iu (resp. Il) to be the

horizontal span of the currently known upper edge (resp. lower edge), and

I = Iu ∩ Il. Let Hu (resp. Hl) be the half plane that is located below the

upper edge (resp. above the lower edge), and let V be the vertical strip of
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Figure 4.6 Edge advancing. Of the two edges, only the least ad-
vanced one moves forward. Then the surface of the trapezoid (shown
in dark orange) located between the upper edge and the lower edge is
computed.

∞ height whose horizontal span is I. In order to compute the surface inside

P , what we do is that when appending an edge, we compute the trapezoid

defined as: Hu ∩Hl ∩ V (Fig. 4.6).

P is equal to the union of all the trapezoid, in deed: Consider any edge

eu of the upper hull. By only appending an edge to the least advanced half

hull we ensure that for every edges of the lower hull el such that eu and el

have an intersecting horizontal span, both eu and el, at some point during

the construction, will be known at the same time. Hence the entirety of the

surface inside the convex hull will be considered, without any overlap.

As P is equal to the union of all the trapezoid, and as the intersection on

any two adjacent trapezoid is a segment that is known during the computation,

we can compute the area, or the number of lattice point inside P .
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We now generalize this method in order to compute the surface of the union

of any fixed number k of convex polygons. This time the construction requires

us to know 2k edges at any time, that is 2 edges for each polygon, one for each

half hull. The idea stays exactly the same as for one convex polygon. At each

step of the computation, only the least advanced of the 2k edges is allowed

to advance, and we only compute the area in the vertical strip of common x-

coordinates to all the 2k edges. However, a special attention must be paid to

polygons that have not started yet, or have already been finished. Those two

situations are detected and dealt with in the following manner: if the upper

edge and the lower edge of a same convex polygon start (resp. end) at the

same point, this means that those are the starting (resp. ending) edges of said

polygon. In this case we consider that the abscissa of those edges spans starts

from −∞ (resp. goes until∞)) when computing the common horizontal span.

We know that all convex polygons have been computed when, for each convex

polygon, the upper edge and the lower edge end at the same point (Fig. 4.7).

Now, we will show how using the aforementioned representation, we can

build the succession of edges (that we call convex path) that describes and

allows to compute the cardinality of any union of k digital convex polygons in

S, while working with only 2k edges at a time. In order to solve the k-potato

peeling problem, we want to find the convex path that leads to the largest

union of k digital convex sets. We call partial convex path the beginning of

any convex path. Unlike a convex path, the end upper edges and lower edges

of a partial path does not necessarily meet.

An upper edge ue and a lower edge le are said compatible if there is a convex
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Figure 4.7 Visualisation of the k-peeling algorithm. Only the
surface in the abscissa common to all edges is computed. When the
two edges of a same convex polygon start from the same point (as seen
in a) ), we extend the abscissa of those edges from −∞. Similarly
when the two edges of a same convex polygon end at the same point
(as seen in f) and g) ), we extend the abscissa of those edges towards
∞.

polygon P such that in the construction we previously described both ue and

le can appear at the same time under the least advanced constraint(Fig. 4.8),

that is if:

• the lower edge is located entirely within the half plane below the upper

edge, and if

• the upper edge is located entirely within the half plane above the lower

edge, and

• if the lower edge and the upper edge have at most one common point

(namely the starting or ending point), and if

• the intersection of their horizontal span different to ∅, and if

• the intersection of the convex hull of the two edges with S is digital

convex.
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a) b) c)

e)d)

Figure 4.8 Compatible edges. In a) the lower edge is not located
below the upper edge. In b) the upper edge is not located above the
lower edge. In c), the upper and lower edge have more than one point
in common. In d) the horizontal spans of the lower and upper edge are
distinct. In e) The intersection of S (shown in blue crosses) with the
trapezoid is different from the intersection of Z2 with the trapezoid.
One lattice point is missing.

Furthermore, in the context of the k-digital potato peeling, in order to ensure

that the result polygon P is not only convex, but also represents a digital

convex subsets of S, we add the constraint that conv(ue, le) ∩ Z2 ⊂ S.

We now present two algorithms that solve the k-digital potato peeling

problem using the aforementioned construction to describe a union of k convex

polygons. The first algorithm embeds the problem in a DAG and runs in

roughly O(n4k+1) time. The second algorithm relies on dynamic programming

for a total running time of roughly O(n4k).

4.2.2 Using a DAG

The strategy is to encode the problem in a DAG G(V,E) whose longest path

corresponds to the solution of the problem. Once again, to avoid confusion,

we use the terms node and arc when referring to a DAG and keep the terms
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vertex and edge when referring to polygons.

We build G in the following manner. Each node of G represents k ordered

pairs of compatible edges. Within a node, each pair of compatible edge rep-

resents the upper edge and the lower edge of a convex polygon. As there are

O(n4) pairs, we have at most O(n4k) nodes in G.

Let N(C1(u1, l1), C2(u2, l2), ..., Cn(un, ln)) denote a node of G, where

Ci(ui, li) represent a pair of compatible edges, and where ui (resp. li) denotes

the upper edge (resp. lower edge) associated to the representation of the ith

convex polygon.

We put an arc from the node N1 towards the node N2 if ∃j ∈ [1..n]

such that ∀i∈[1..n],i ̸=j : N1(Ci) = N2(Ci), and N1(Cj(uj)) = N2(Cj(uj)), and

N1(Cj(lj)) ends at the same points that N2(Cj(lj)) starts, and such that

N1(Cj(lj)) and N2(Cj(lj)) forms a convex angle. We also put an arc between

from N1 towards N2 if ∃j ∈ [1..n] such that ∀i∈[1..n],i ̸=j : N1(Ci) = N2(Ci),

and N1(Cj(lj)) = N2(Cj(lj)), and N1(Cj(uj)) ends at the same points that

N2(Cj(uj)) starts, and such that N1(Cj(uj)) and N2(Cj(uj)) forms a convex

angle. In more simple terms, we put an arc between two nodes if and only if

only one edge changes between these two nodes, the changed edge has to be

the least advanced one in order to respect the least advanced rule, and the

new edge has to be compatible with both: the edge it replaces (preserving

convexity), and its associated lower/upper edge.

As there are at most n arcs exiting a node, there are at most O(n4k+1)

total arcs in G.

We now explain how we weight the nodes in G. Let I be the interval
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corresponding to the common horizontal span of all the edges of a given node

N . Let Si be the surface in between the upper edge N(Ci(ui)) and the lower

edge N(Ci(li)) of the ith convex polygon within the horizontal span defined

by I (Fig. 4.6). The weight of a given node N is equal to the number of

lattice points in: Sunion =
⋃

i∈[1..k]
Si minus the number of lattice points in Sunion

whose x-coordinate are equal to the minimal x-coordinate in Si, unless the

lattice point is the starting point of both the currently known edges of the

same convex polygon (and hence is the starting point of both partial hull).

This represents the lattice points inside the surface of the intersection of all

the different convex polygons in the common horizontal span minus those that

where already accounted for in the previous node.

We add to G a start node and an end node. There is an arc from the start

node to N if ∀i N(Ci(ui)) and N(Ci(li)) start from the same point, that is if all

convex polygons are still being represented by their first pair of edge. Similarly,

there is an arc from N towards the end node if ∀i N(Ci(ui)) and N(Ci(li))

end at the same point, that is if all convex polygons are being represented by

their last pair of edge.

We now explain, in Lemma 16 why each path in G represents the union of

k digital convex sets and why the number of lattice points of the intersections

of the convex hull of those sets is properly computed.

Lemma 16. Every path in G going from the start node to the end node repre-

sents the union of k digital convex sets. And the length of the path is equal to

to the number of lattice points inside the union of those k digital convex sets.

Proof. We consider any path in G that goes from the start node to the end
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node. The first node visited after the start node gives, two edges for each one

of the k convex polygons we are building. For each polygon, these two edges

are the start of the bottom hull and the start of the top hull. From now on,

thanks to the way the arcs were added to the graph, each node visited, to the

exception of the end node, will change exactly one edge to one polygon in the

representation of the k convex polygons. This edge is added in such a way

that ensures convexity with the one it replaces. As for each of the k polygons

Pi, their top hull Ti and bottom hull Bi do start at the same point si and end

at the same point ei, we know that they do represent a convex polygon.

Now, the fact that the number of lattice points in the union of the k convex

polygons is properly computed comes from the fact that:

• At each node, we only considered the surface in the common horizontal

span (A special attention is given to the left limit of this horizontal

span). This ensure that no overlap exists between two different nodes of

the same path.

• Each arc only allows to change the least advance edge. This makes

sure that, for every node, the common horizontal span is adjacent to

the common horizontal path of its predecessor. This ensure that all the

surface of the union of the convex polygons is considered (Fig. 4.7).

Finally, as only pairs of compatible edges are present in every node of G,

we know that every convex polygon represented in a path in the graph is a

digital convex subset of S.
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Furthermore, as all compatible edges are considered in the graph, naturally

all unions of k convex digital subsets are indeed represented by a path in

G, and hence finding the longest path in G is equivalent to solving the k-

digital potato peeling problem. Since there are O(n4k+1) arcs in G this part

of the algorithm takes O(n4k+1) time. In addition, in order to compute G,

the algorithm requires to compute the compatible pair of edges. This can

be done by iterating on all of the O(n4) pairs of edges, and testing whether

their convex hull represents a digital convex subset of S or not. This test

takes O(1) time after a preprocessing time of O(n2 log r) required in order to

compute the number of lattice point on each edge, and an extra preprocessing

time of O(n2) required for the triangular range counting algorithm presented

in Section 2.3.1. Solving the k digital potato peeling using a DAG hence result

in a time complexity of O(n4k+1 + n2 log r) using O(n4k+1) space.

4.2.3 Dynamic programming

We can use the same strategy that we used in Section 4.1 that allowed us to

go from an O(n4) time algorithm using a DAG representation to roughly an

O(n3) time algorithm using dynamic programming. This way, we can propose

a roughly O(n4k) time algorithm to solve the k-digital potato peeling problem.

To do so, we consider the following sub-problem:

Problem 6 (partial k-digital potato peeling). Given k pairs of compatible

edges, what is the maximal partial convex path that has those edges as currently

known edges.
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The answer to the k-digital potato peeling problem is the largest answer

to the partial k-digital potato peeling problem amongst all the O(n3k) pairs of

edges such that for each pair of edges the upper edge and the lower edge meet

at the same end point. The algorithm we propose dynamically computes the

solution to the partial k-digital potato peeling problem for each of the O(n4k)

pairs of edges of S.

First we compute all the compatible pairs of edges. To do so, for each

of the O(n4) pairs of edges within S we test each condition mentioned in

the definition of compatible edges. In order to test the digital convexity of the

convex hull of the two edges, we test the following equality: |Q∩S| = |Q∩Z2|.

First using Pick’s formula, we compute |Q ∩ Z2|. This takes O(1) time after

O(n2 log r) preprocessing time, where r is the diameter of S. The preprocessing

is required in order to compute the number of lattice point located on each

edge. Then, we compute |Q ∩ S| in O(1) time after O(n2) preprocessing time

using the method described in Section 2.3.1. Hence we can determine whether

or not Q ∩ S = Q ∩ Z2 in O(1) time after O(n2 log r) preprocessing time.

Once all the compatible pair of edges are computed, we sort all the points

of S, from left to right. Let pi denote the ith point of S in this sorted order.

We then iterate on the pi in their sorted order and will consider the partial

path that ends at pi. We hence consider two distinct possibility: pi is in a

upper edge and pi is in a lower edge. As those two situations are treated

with the exact same approach, we only describe the case where pi in an upper

edge. At this point, we fetch every point pj, j > i and sort them around pi

counter-clockwise, we also fetch all the points ph, h < i and sort them around
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pi clockwise. This order gives us the following property which will be useful

later.

Lemma 17. For any given pair of points ph and pj such that h < i < j: if

phpipj turns right then:

• For each p′h preceding ph in the ordering p′hpipj turns right

• For each p′j preceding pj in the ordering phpip
′
j turns right

also if phpipj does not turn right then:

• For each p′h following ph in the ordering p′hpipj does not turn right

• For each p′j following pj in the ordering phpip
′
j does not turn right

We then fetch the O(kn4k−1) previously computed largest partial convex

paths that have pi as one of their upper hull end point of an upper edge, such

that pi is the left most of all the 2k end points of edges, and such that all the

pair of edges are compatible. We split those O(kn4k−1) partial convex paths

into O(n4k−2) lists, so that all the members of a same list have their 4k − 2

points that are not part of the upper edge that ends with pi identical.

For a given partial convex path, let ph be the point located on the same

upper edge as pi. The lists are sorted according to the position of ph around pi

clockwise. Those lists are now effectively ordered according to the orientation

of the edge that ends at pi, and effectively their easiness to "turn right", and

hence preserve convexity. All the O(kn4k−2) lists will be treated iteratively in

the same manner. Let consider one of those list and name it L. At this point,

the weight of each partial convex path on L is the largest that ends precisely
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with phpi (and the other 4k− 2 points associated to L), we now update those

weights so that they represent the size of the largest partial convex path that

ends with phpi (and the given 4k − 2 points associated to L) or a harder to

turn right edge than phpi. To do so, iteratively we update the weight of each

element in the following manner: If the weight of the element is lower than the

weight of the element directly before it, we set the weight of this element to the

weight of the element directly before it. After this, the weight of each element

is effectively the max of its own weight and the weight of all the elements

before it. Now, for all pj, j > i, taken iteratively in their counter-clockwise

sorted order we look for the largest partial convex path that ends with phpi

(and the 4k−2 other points) in L, starting from the end. We then replace the

edge phpi with the edge pipj (if pipj is compatible with the associated lower

edge), and add the weight associated to the addition of this edge, and update

the largest partial convex path that ends with pipj (and the 4k− 2 associated

points). When moving forward to the next pj, we do not have to start from

the back of L all over again, we can simply continue from where we were with

the previous point thanks to Lemma 17.

Complexity analysis

We first compute the compatible pair of edges by iterating on all of the

O(n4) pairs of edges, each verification takes O(1) time, but requires O(n2 log r)

preprocessing. We then iterate on O(n) points pi. For each of those points we

sort two lists in O(n log n) time (Note that all angular sorting could be obtained

in O(n2) time instead of the O(n2 log n) time described in this algorithm, but
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this does not change the global complexity of the algorithm), we then fetch

O(n4k−1) elements that we sort into O(n4k−2) lists each of size O(n) (as all

the sorting is done according to the previously computed angular sorting, this

step takes only O(n4k−1) time), then for each of those O(n4k−2) lists we update

the weight and do the appending to the pj, j > i in O(n) time. Hence the

following theorem:

Theorem 18. The k-potato peeling problem can be solved in O(n4k +n2 log r)

time where r is the diameter of S, and n its cardinality.
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Chapter Five

Conclusion

In this dissertation we investigated algorithms for finding convexity in digital

sets. We investigated two problems related to this topic and presented the first

generic linear time algorithm for digital convex set recognition and solving the

optimal digital convex polygon problem in 2 dimensions. The approach we use

relies on two properties.

The first one is the quickhull algorithm and the fact that, in 2 dimensions,

quickhull runs in linear time relative to the number of points for digital convex

sets. A question worthy of investigation that naturally arises from this question

is the complexity of the 3 dimensional quickhull algorithm on digital convex

sets. While known bounds on the number f of faces of any digital convex set S

in 3 dimensions, f = O(V 1/2), where V is the volume of the convex hull S [1]

might help proving that the worst case scenario for the quickhull algorithm

for digital convex set in 3 dimension is not O(n2), this approach seems unable

to prove, nor disprove, that the time complexity upper bound for 3d digital

convex sets might be lowered to O(n).

The second property used, allowed us to reduce the edge minimization
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problem to a polygonal separation problem with a linear number of points

relative to the size of the input. This property is tightly tied to Diophantine

lines and Pick’s theorem, as a consequence the lack of result similar to the

Euclidean algorithm in 3 dimension makes a similar approach unlikely to work

in higher dimensions.

We then changed the topic from finding smallest enclosing convex polygons

to finding the largest included ones. Our investigation of this topic resulted

in us presenting the first polynomial time algorithm running in roughly O(n3)

time for the digital potato peeling problem, and the first polynomial time

algorithm for the digital k-potato peeling problem (when k is fixed). The ap-

proach used to solve the potato peeling is similar to the one used to solve the

optimal island problem [7], with an adaptation to test the digital convexity.

However, using the same technique of embedding the problem in a DAG, but

using another representation of the convex hulls, moving from a fan triangu-

lation approach to a top-bottom hull separation we were able to propose a

polynomial time algorithm for the k-potato peeling problem. Note that the

approach used to solve the digital k-potato peeling can also be adapted to

solve an extension of the optimal island problem where the goal would be to

find the largest union of k monochromatic islands instead of simply the largest

monochromatic island.

Interestingly, several problems simpler than digital potato peeling have no

known algorithms that are quicker than the use of the digital potato peeling

algorithms presented in this dissertation. Given a lattice set S, one such

problem asks to find the largest digital convex triangle, i.e. a digital convex
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subset whose convex hull has only 3 vertices. Despite the apparent simplicity

of the problem, it is not trivial to find a better approach than naively testing

all triplets of points in S and leads to the same complexity as the potato

peeling algorithm.

Another, arguably more interesting example is the recognition of the union

of two digital convex sets. While the problem can be solved in roughly O(n8)

time using the digital 2-potato peeling algorithm, it seems unlikely for this

method to be optimal. Furthermore, in continuous geometry, the recognition

of the union of two convex polygons can be solved in O(n) time [57], while

solving the continuous potato peeling problem takes O(n7) time [15]. While

comparing the complexities of the continuous and digital version of the prob-

lems is not really relevant due to the different nature of the inputs (a set of

vertices representing a polygon in continuous geometry, and a set a lattice

points in the digital) the apparent simplicity of the problem in continuous

geometry seems to be an indication that a better approach is possible for the

digital problem. Moreover, while the continuous approach for the recognition

of the union of two convex polygons can not be directly used for the digital

version of the problem due to the fact that a clear unique contour is not defined

for a lattice set, similar techniques deserve to be investigated.

Beyond the fact that the principle of computational digital geometry that

consists in treating problems with digital inputs might lead to better results,

investigating the connections between problems in computational geometry

and digital geometry, such as covering and packing problems [9, 40] for in-

stance, could lead to new tools for both communities.
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