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Manuscript summary

Medical genetics is a young emerging medical specialty created in France in 1995. It

aims to solve the diagnostic odyssey of patients suffering from genetic diseases and

coordinate their care. According to data from the Alliance Maladies Rares, 3 million

people are affected in France (i.e., one person in 20), and more than 6000 different

diseases are already described.

The practice of medical genetics has recently seen significant progress with the

arrival of the Next Generation Sequencing (NGS), shifting from medical genetics to

genomic medicine1. In 2022, we can now sequence a human genome for $1,000 in

just a few days. In contrast, the Human Genome Project initially cost €2 billion and

mobilized an international research effort over several years. The limitation is no

longer the sequencing but the bioinformatic processing of the massive genomic data

generated by the NGS and their clinical interpretation. The democratization of

genome sequencing has made it possible to discover the molecular involvement of

many new genes at the origin of pediatric and adult rare diseases 2,3. Genetic tests

are increasingly prescribed and included in healthcare systems due to the

decreasing sequencing costs, increasing performance of technologies (cloud

computing, etc.), and new applications of genomic medicine 4,5. However, many

patients remain undiagnosed after genome sequencing.
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Using bioinformatics and data science, my thesis project aimed to manage current

bottlenecks of genomic medicine in patient care to improve rare disease diagnoses.

Even if I was the main contributor to the present work, it was only possible to achieve

thanks to the fantastic team in SeqOne Genomics and CHU Grenoble Alpes.

This manuscript contains four chapters, starting with definitions of the notions and

concepts in Genomic medicine mainly adapted from the “MOOC BiG - Introduction to

BioInformatics and Genomic Medicine” I co-led. The second chapter sets the context

for this thesis and presents a report on pedagogical works I realized during this Ph.D.

Then I described two main scientific projects I led during this Ph.D. The third chapter

is about Genome Alert!, an open-source method that monthly reassesses variant

pathogenicity and gene-phenotype associations by data-mining the collaborative

ClinVar database while highlighting changes likely to impact diagnosis. The final

chapter will narrate the development of PhenoGenius, a machine-learning technique

to thwart fuzzy clinical descriptions from physicians’ phenotyping.
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Chapter I - an introduction to genomic medicine

Tow���s � �a�� p���wa� �� g��o��c ���ic���

Genomic medicine profoundly changes medical practice and allows unprecedented

access to precise diagnoses, personalized care, preventive actions, and targeted

therapeutic adaptations. This introduction chapter aimed to define notions in

genomic medicine necessary to understand the scientific advancements presented

in the following chapters. As genomic medicine relies on human genetic

characteristics, I first explained the basic concepts of genetics and the diversity of

genetic variations. As I was interested in improving the diagnosis of rare diseases, I

presented the NGS revolution that significantly improved their diagnostic yield. This

revolution has also profoundly changed medical practices and has allowed the rise

of genomic and precision medicine, an evolution to which my work is linked.
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Notions of genetics

The information vehicle of the living

DNA is the information carrier of life

DNA, Deoxyribonucleic acid, is a macromolecule (large molecule) central in the cell

and carries the capacity to support information within it. This information and the

ability to transmit it is fundamental for the living. Indeed, it is thanks to the DNA

molecule that organisms living on earth can transfer the information necessary for

self-maintenance of their system from one generation to the next. But also, through

mechanisms of random mutation of the information, evolutionary changes rise to

individuals whose biological functions or physical traits are altered. Evolution, as

related to genetics and as described by Darwin 6, refers to the process by which living

organisms change over time through changes in the genome 7.

History of 3.2 billion letters in 23 volumes

DNA is a macromolecule composed of an assembly of smaller molecules,

nucleotides (or bases) Adenine, Thymine, Guanine, and Cytosine (A, T, G, and C) 8.

These nucleotides connect to form a very long DNA molecule. Two single-stranded

DNA molecules stick together by weak chemical bonds, matching Thymines with

Adenines and Cytosines with Guanines.

As described by Watson and Crick in 1953 based on Franklin's work, this

double-stranded structure takes the form of a DNA double helix resembling a ladder

13

https://paperpile.com/c/uaTmmx/NFPa
https://paperpile.com/c/uaTmmx/cMNV
https://paperpile.com/c/uaTmmx/yxAT


whose backbone is a sequence of nucleotides, and the ladder's steps are the bases

linked two by two 9,10.

In our cells, protected in the nucleus, there is not only one double-stranded molecule

but 23 pairs of these molecules, which correspond to 23 pairs of chromosomes. 22

pairs of these are called autosomes and are similar for men and women. The 23rd

pair corresponds to the sex-indicating chromosomes called gonosomes: a pair of X

for women and the X and Y chromosome for men. We speak about pairs of

chromosomes because our cells have two almost identical copies of their genetic

information. We also say that our cells are diploid. If we measure the total length of

human DNA, we will result in a sequence of 2 copies of 3.2 billion base pairs 11.

The genetic code enables us to go from sequences to proteins

The DNA molecule is the information storage medium for our cells. The cell encrypts

the information using specific successions of bases, like our computers using binary

sequences of 0 and 1. Similar to binary, which, to make a byte, cuts the information

into blocks of 8, the cell cuts the information in particular regions into blocks of 3,

triplets, also named codons. These codons allow correspondence between the

genetic information in the DNA and the production of proteins from amino acids.

This corresponds to the genetic code deciphered by the Nirenberg team from

1961-1966 12 (Figure 1).
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We can determine the sequence of nucleotides via sequencing techniques. The

entire sequence of nucleotides is called the ‘genome’, which provides the entire

genetic information of an individual. We also use the word "genome" for the process

of "genome sequencing".

In summary, DNA is the human body’s information molecule. This information is a

sequence of A, T, G, and C nucleotides in succession. For human beings, the

information is present in 2 almost identical copies of about 3.2 billion base pairs.

The genetic code is the “rosetta stone” between blocks of three nucleotides and

amino acids (needed to build proteins). There are techniques called sequencing that

allow us to know the order of nucleotides.

Figure 1. Genetic code representation, from NIH National Human Genome Research

Institute (https://www.genome.gov/genetics-glossary/Genetic-Code).
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From genetic information to its expression in the human body

Genotype and phenotype represent our genetic and physical features

As a human, we are not only determined by our genetic heritage. We are, as an

organism, the simultaneous expression of our genetic heritage influenced by the

environment. Our features, our physical and psychological characteristics are what

we call the phenotype. It is what is visible and recognizable about an individual.

Some phenotypic features seem to be transmitted from one generation to the next

and are most probably linked to genetic traits. Following the example of the word

“phenotype”, we have defined the term “genotype”, which corresponds to an

individual's genetic features 13.

The coding parts of our genome are the templates of our proteins

From a genetic perspective, the word gene defines a region of DNA that can be

transcribed into ribonucleic acid or RNA. Many regions in the genome can be

transcribed into RNA; some of these allow the cell to produce proteins, which are

biological tools in a broader sense 8. These protein-producing genes are called

"coding genes,'' and there are just over 20,000 known coding genes in human beings

14. In the RNA of these coding genes, there are two types of regions, which are

actually used to make a protein, called “exons”, and regions with no link with protein

production, called “introns”.
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To produce a protein, the RNA of a coding gene will undergo a step that eliminates

the introns and keeps only the exons. This step is called splicing and is very

important to obtain a messenger RNA (mRNA) which will leave the nucleus to allow

the production of a protein 8. Note that to determine all the genetic information

contained in these coding regions, we would sequence all DNA regions

corresponding to the exons of nearly 20,000 genes. This is known as exome

sequencing, and in everyday language, we say we "do an exome" 15.

Each human being has their own genetic variations

Between individuals of the same species, we are genetically very close but not

identical. We are all made up of millions of genetic variations, the vast majority of

which are polymorphism (no effect on the phenotype). Moreover, these genetic

variations can identify an individual and the population from which he comes and

shares genetic features 16.

These variations can affect a base (for example, an Adenine becomes a Guanine),

and we speak then about “SNV” (for Single Nucleotide Variant). When the variation

affects several thousands of bases or even millions of bases, we speak of “SV” (for

Structural Variation, Variation in the structure of the DNA) 17 (Figure 2). These can be

called translocations (2 chromosomes exchanging genetic information), insertions,

or inversions of genetic information. Among these SVs, there can be a gain of
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genetic information (duplication, triplication, ...) or a loss of information (deletion)

that we define as CNV for Copy Number Variation 18.

Figure 2. All types of structural variations reported in the human genome. Adapted

from James Hutson from Garvan Institute for Medical Research.
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In a nutshell, the phenotype is a set of an individual's visible "physical" features. The

genotype is a set of genetic features of an individual. There is a correlation between

the genotype and the phenotype of an individual. Genes are subunits of genetic

information linked to production, some of which are known as "coding" and allow the

production of proteins. We are all made of thousands of variations of all sizes, often

benign, but some can have substantial deleterious impacts.

Genetics or genomics?

Genetics is a study of genes and heredity

Genetics is the study of heredity, or how the characteristics of living organisms are

transmitted from one generation to the next via DNA. Medical genetics is the branch

of medicine that involves diagnosing and managing hereditary disorders, using

genetic knowledge in human diseases. Because sequencing techniques were limited

in scale until the 2010s, it has typically focused on variations in a single gene when

determining the cause of a health condition 19.

Genomics describes the study of the whole genome

Genomics describes the study of the whole person's genetic information (the

genome) (Figure 3). In addition to the medical genetics benefits, genomic medicine

offers new possibilities such as pharmacogenomics but also provides new

challenges like incidental finding management 20.
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Figure 3. Genomics vs Genetics Fact Sheet. Adapted from the Genomic Education

Programme from the NHS’ Health Education England.

Overall, this section defined biological concepts and genetics vocabulary used in the

medical interpretation of genome sequencing. In the next paragraph, I introduced

applications of these concepts into rare disease diagnosis and provided an overview

of the revolution of NGS in clinical practice.
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Genomic medicine for rare diseases

Rare diseases are not rare!

According to EURORDIS - Rare Diseases Europe organization

(https://www.eurordis.org/) statistics, a rare disease in Europe is a disease affecting

less than 1 in 2000 people. 3% of births are affected, and 7-8% of adults live with a

rare disease among the 6000 currently described (Figure 4). In Europe, 25,000,000

people are concerned, 50% are children under five years old, and rare diseases cause

10% of deaths in those under five years old. Although rare diseases are individually

rare, they are collectively frequent. The conditions are often chronic, severe and lead

to an alteration in the quality of life. 10% of people lose autonomy, and 50% of people

have a motor, sensory or intellectual deficit.

An estimated 72% of rare diseases are genetic in origin. This genetic origin is

essentially monogenic, i.e., the alteration of a unique gene is responsible for the rare

disease. The diagnosis of rare diseases is complex due to the clinical and genetic

diversity (heterogeneity) of these diseases. This diagnostic challenge is responsible

for delays in diagnosis.

The diagnosis of a rare disease is essential for several reasons 21 , e.g.

- Personalize care: specific follow-up can be initiated according to known

disease complications and offer appropriate care.
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- Genetic counseling: evaluate the risk to future offspring or close relatives

inheriting the condition

- Disability recognition: Informing patients and families about the disease and

getting disability recognition by society.

Figure 4. Infographic for rare disease day, a yearly event that raises awareness of

rare diseases for the general public.

Next Generation Sequencing, a game changer

A massively parallel sequencing

While Sanger sequencing, a historical technique, allows the analysis of only one DNA

fragment at a time, NGS can sequence many fragments simultaneously, hence its

name “massively parallel sequencing”.

22



The main NGS technology available is based on the sequencing by synthesis of

Polymerase Chain Reaction (PCR) colonies, developed by Shendure et al. 22 and

proposed by Illumina company. In brief, the base calling or identification with

Illumina sequencing technology is obtaining nucleotide sequences from fluorescent

signals. DNA fragments are fixed on a plate called a “flow cell” and amplified using

PCR. PCR relies on a DNA polymerase that "reads" the existing DNA strands to create

two new strands that match the existing ones, thus replicating the DNA. This

amplification allows to take pictures of big enough fluorescent DNA colonies (or

clusters) and obtain DNA sequences (Figure 5).

In detail, sequencing takes place in several cycles, each corresponding to a base's

identification. Each cycle consists of several steps. In the first step, the polymerase

and the four types of nucleotides, which are fluorescent and carry a chain terminator,

are in solution. The polymerase will incorporate only one nucleotide during this step

because the chain terminator prevents the other nucleotides from binding. During the

second step, a camera will take a picture of the flow cell to highlight the fluorescence

signals corresponding to the incorporation of the nucleotide. The third step is a

washing step to get rid of the fluorescence and the chain terminator. The cycles will

follow one another until the complete sequence is obtained.
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Figure 5. Illustration of massively parallelized NGS compared to Sanger sequencing.

Adapted from Muzzet, Evans, and Lieber (2015) 23

A shift from medical genetics to genomic medicine

The NGS revolution has led the transition from medical genetics to the genomic

medicine era: from the end of the 2010s to the present day, genetic sequencing has

gone from a few genes to the whole genome 24. With genome sequencing

accessibility, rare disease diagnosis shifted from this phenotype-first approach to a

genotype-first approach 25. The possibility of exploring all human genes in NGS

makes it possible to respond to the extreme heterogeneity of rare diseases. For

example, in the context of intellectual disability, more than 1000 different genes are

involved. Diagnostic yields for many other rare diseases have been greatly improved

since its appearance 26.

Still, getting the DNA sequence is insufficient to provide a patient with a genetic

diagnosis. While sequencing is no longer limited, several studies have pointed out

that NGS data processing constitutes a limitation called the bioinformatics

bottleneck of genomic medicine 27,28.

A big data challenge

As a complement to clinical and laboratory genetics, bioinformatics and data

science have become critical elements in genomic medicine. It responds to a very
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concrete need linked to the rapid increase in the volume of tests, the volume of data,

the volume of clinical knowledge, and the type of data.

From sequences to variant interpretation

The processing of raw sequencing data from NGS to obtain a list of characterized

alterations and their interpretation in the medical context requires the use of various

tools whose algorithm has been optimized for the following specific tasks 29:

- The alignment corresponds to finding the place of each DNA read in the

human genome by comparing the sequence of the read to a human reference

genome built by the Genome Resource Consortium

(https://www.ncbi.nlm.nih.gov/grc). We obtain millions of reads to compare

for each genome sequencing.

- The next step is called variant calling. The general idea is to detect

differences between the patient's DNA and the reference genome used for the

alignment. Different algorithms are required depending on the type of

alterations sought.

- Finally, the detected alterations are annotated by comparing the positions and

types of events with the different available databases (frequency in

population, effect of variants, etc...). This task is the most diverse and

evolutive in genomic medicine.

Improving these tools allows for the detection and medical interpretation of novel

variants that can lead to diagnostic solving 30.
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Rare disease knowledge overwhelms human learning abilities

The formulation of medical diagnostic hypotheses relied on identifying symptoms

and evaluating their joint associations with diseases. Although such associations

could be easily done for common disorders, they pose a significant challenge for rare

diseases where over 6000 diseases must be matched with clinical features. Rare

disease knowledge overwhelms human learning abilities and is constantly increasing

31. Moreover, in the genome sequencing era, rare disease diagnosis is currently

limited by human bottlenecks such as the time-consuming clinical reassessment

step, where physicians reanalyze clinical observations according to the genome

sequencing analysis 32.

This bottleneck is currently tackled by computational phenotype analysis

development aiming to better integrate clinical data into genome analysis workflow

33, a fundamental step to the rise of precision medicine.

Precision medicine using artificial intelligence

Precision medicine aims to define disease at a higher resolution by genomic and

other technologies to enable more precise targeting of disease subgroups to

improve diagnosis, prognosis, and medical treatment 34. Citing Peter M. Krawitz,

“human and artificial intelligence (AI) need to join efforts” is the only way to succeed

in this medicine revolution.

Based on structured clinical, biological, and imaging data of an Electronic Health

Record (EHR), precision medicine has proven to benefit healthcare through
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phenotypically rich EHR and large sequencing cohorts. Pilot studies such as

DiscovEHR Collaboration between the Regeneron Genetics Center and Geisinger

Health System reported valuable insights and redefinition of genetic diseases as

hundreds of individuals with rare variants are linked to novel phenotypes 35,36.

Genomic England’s “100,000 Genomes Project” recently reported its first insights on

precision medicine's impact on rare diseases diagnostic yield 37.

Moreover, deep phenotyping provides additional features to characterize patients

better 38. As an example, recent studies have demonstrated that facial analysis

technologies may support the capabilities of expert clinicians in syndrome

identification, even undescribed by clinical geneticists 39. Indeed numerous genetic

disorders may have recognizable facial features, accessible through expert clinical

examination by an expert in the field. For non-expert clinicians, considering hundreds

of diagnostic hypotheses is rarely feasible. Facial image analysis frameworks such

as GestaltMatcher use computer vision and deep-learning algorithms that quantify

similarities to hundreds of syndromes and identify facial phenotype descriptors 40

(Figure 6).
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Figure 6. Illustration of GestaltMatcher. Using a deep convolutional neural network,

GestaltMatcher enables clinicians to match patients with facial similarity and thus,

possibly diagnose patients with an ultra-rare disorder or delineate a new syndrome in

similar patients 40.

In a nutshell, rare disease diagnosis relies incrementally on machine learning and

bioinformatics programs to exploit clinical and sequencing data to improve patient

care.
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Chapter II - context and motivation

It’s a lo�� wa� to t�e to� if yo� wa�� ge����c

me����ne…

Thesis motivation

I described in Chapter I basic notions of medical genetics and introduced the

increasing need for bioinformatics and data science in genomic medicine. A lot is

still to be built to implement precision medicine in the routine clinic (Figure 7).
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Figure 7. Ten challenges for achieving precision medicine. Adapted from Kohane

Science (2015) 41.

Nation-wide and population genomics programs have increased the global

knowledge of the population genetic variability and provided access to genome

sequencing in healthcare 42,43. Despite the accessibility of genome sequencing in

clinical routine, a majority of patients are still in a diagnostic deadlock 37, meaning

that all of the investigations currently available in clinical practice to determine the

precise cause of the disease are exhausted. It concerns patients suffering from an

atypical form of a known disease or a disease whose genetic or other cause has not

yet been recognized. One issue is in the management of the data: we can no longer

read everything, we can no longer learn to diagnose everything, yet we must follow

the progress and bring accurate information to the patients. Moreover, for medical

genetic practitioners, new skills are expected to meet the challenges of tomorrow. In

France, the national sequencing plan “France Médecine Génomique 2025”

implementation illustrates the need to acquire notions of sequencing, algorithms,

data analysis, modeling, statistics, and massive data management

(https://pfmg2025.aviesan.fr/le-plan/formation-continue-et-professionnelle/).

To pursue the adoption of genomic medicine in healthcare, bioinformatics and data

science concepts must be learned to understand current and future multi-omics

techniques and dialogue with bioinformaticians responsible for sequencing analysis.

In addition, new methods using AI need to be invented to decipher knowledge from
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genome sequencing data and be accessible to the community to ensure genomic

medicine implementation.

In this context, I did my Ph.D. in the framework of an academic-industrial partnership

(Université Grenoble Alpes - SeqOne Genomics) with three objectives: First, providing

a resource to teach notions of genomic medicine and bioinformatics with my

academic team. Second, performing scientific explorations and developing methods

to manage current bottlenecks in genomic medicine both with academic and

industrial groups. Third, industrializing these methods to maintain them and make

them accessible to the community with the industrial team.

Communication and teaching are crucial elements in raising awareness of genomic

medicine and supporting necessary changes in the practice of the medical

community. In the following paragraphs of this Chapter, I reported the two main

actions I led: developing a Massive Online Open Course (MOOC) in bioinformatics for

genomic medicine and participating in the 3-Minutes Thesis competition.

In the following chapters of the manuscript, I then described the two main focuses of

my scientific work:

- Chapter III: The perpetual updating challenge and reinterpretation bottleneck

of previously unsolved genomic analysis detailed. New medical discoveries

could solve previously undiagnosed patients, but no clear workflow or

recommendations exist to provide this crucial task to the clinic.
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- Chapter IV: The clinical data computation challenge, where medical coding or

physician’s phenotyping are reported heterogeneous. This scanty phenotyping

is a significant barrier to precision medicine, to exploit medical data, and

provide computationally-detected clinically relevant groups of patients.

To be noticed, I also participated in developing bioinformatics pipelines to improve

the clinical workflow of genomic analysis 44,45, provide better insights into precision

medicine in breast cancer 46 and explore applications of deep learning methods in

Kabuki syndrome diagnosis 39.

33

https://paperpile.com/c/uaTmmx/Z6g0+hfyY
https://paperpile.com/c/uaTmmx/LBkE
https://paperpile.com/c/uaTmmx/ijPD


The BIG MOOC

Following the rise of precision medicine and ensuring its adoption in rare disease

management, I was regularly asked to teach lectures in Bioinformatics by the

community. I have organized and taught Bioinformatics lectures to French residents

since 2018. But faced with the high demand that bioinformatics teachers cannot

keep up with, I started to build the project of a MOOC in bioinformatics for genomic

medicine and developed it during my Ph.D. Joined by Evan Gouy as a co-project

leader and Julien Thevenon as coordinator, this work led to the construction of the

educational storytelling that inspired the sections of the Ph.D. manuscript.

The MOOC BiG "Introduction to BioInformatics and Genomic Medicine" aims to

address all the bioinformatics aspects necessary for the production and

interpretation of Next Generation Sequencing (NGS) data within a clinical genetics

laboratory with examples of rare diseases and oncogenetics

(https://www.fun-mooc.fr/en/courses/big-introduction-bioinformatics-genomic-medi

cine/) (Figure 8).

This introductory course was intended for health professionals using genomics. Its

objective is to provide specific and adapted content to enable them to understand

the different steps from phenotyping to molecular diagnosis and to have a critical

eye on the analyses while considering the pitfalls and limits of NGS.

Each teaching unit explored a step of NGS processing by focusing on different

themes with videos, texts, and self-correction exercises. Interactive content, such as
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Python-based Jupyter notebooks, permitted to go further in genome interpretation

and programming.

Sixteen teachers from 11 institutes participated in the making of educational units.

European volunteers from the French Medical Genetics Resident Society (SIGF,

https://interne-genetique.org/) and ESHG Young

(https://www.eshg.org/index.php?id=eshgy) were crucial in proofreading to ensure

the MOOC clarity. Nearly 12,000 learners in two years subscribed to the course from

134 different countries, providing a global learning resource in genomic medicine.

This MOOC was the subject of one master thesis and one MD thesis.

The MOOC B.I.G. initiative was financed by the AnDDI-rare healthcare pathway

(Health Sector Developmental Disabilities with or without Intellectual Disability of

Rare Causes, http://anddi-rares.org/), the ERN ITHACA (European Reference Network

for Rare Malformation Syndromes, Intellectual and Other Neurodevelopmental

Disorders, https://ern-ithaca.eu/), and SFMPP (French Society of Predictive and

Personalized Medicine, https://www.sfmpp.org/). The realization and hosting were

supported by the MOOC factory of the Center for Interdisciplinary Research (CRI,

https://cri-paris.org/) and the Université Numérique en Santé et Sport (UNESS,

https://www.uness.fr/).
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Figure 8. A screenshot of the MOOC BIG.
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3-minutes Thesis

An essential part of a research/thesis project is communication about the topic. It

helps to have feedback on one's work to improve the storytelling and get a better

impact on the community. Part of this communication process was my participation

in the French 3-minutes thesis competition in 2021. After a workshop on Scientific

communication provided by Université Grenoble Alpes and Ludovic LECORDIER from

“Spontanez-vous” (https://spontanez-vous.fr/), I was selected as a Finalist in the

French Alps (Figure 9). Here’s the presentation I performed on March 9th, 2021.

[Speech transcript translated from French]

“Genetics on a sling

Chromosomes in the atmosphere

Taxis to the galaxies

And my flying carpet?

[Translated lyrics from French by Noir Désir song, Le vent nous portera]

Don't you find these words a bit suspicious between you and me? So I'm not on any

substance, but dear listeners of 3-minutes Thesis FM Radio, I take control of the radio

station so we can try to see things more clearly together.

My name is Kevin, I'm a medical geneticist, and I'd like to tell you about my

breadcrumb trail. I am dedicated to exploring the human genome in search of a lucky

star, a diagnosis for my patients with rare diseases.
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So get ready. We're going to do a little flashback. Here we are in 2001, "Le vent nous

portera" had just been released, and at the time, we hadn't even finished sequencing

the first human genome...

And twenty years later, we have the incredible ability to read all the letters that make

up our genetic heritage in just a few days. The genome is like a library of recipes that

allow you and me to build ourselves as human beings. But unfortunately, sometimes,

spelling mistakes can cause rare diseases. These spelling mistakes are called variants

in our jargon. And to find the variant that causes my patient's disease, in the 3 billion

letters of the genome, heeeee.... is a bit complicated.

I had to learn to rely on a machine; I had to learn to code, write computer programs,

and be a geek! Well, you'll tell me I already have the look. All I had to do was to be able

to code a compass that would guide me through the genome to solve too-long

diagnostic odysseys.

After learning a second job, I realized that it is sometimes easier to talk to a machine

than to a human being, so I created an artificial intelligence that I summarized in four

words. "Back to the future" because it uses today's knowledge to solve yesterday's

enigmatic cases.
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Genome Alert! identifies relevant new information from the literature to guide a journey

to old, unsolved genetic analyses. And attempts to change the present by

automatically targeting new potential diagnostic variants.

And hold onto your hats. With a wave of the magic wand, Genome Alert! has scanned

over 5000 analyses, solved the diagnostic puzzle of at least six patients, and changed

their management. And that's just the beginning.

So dear listeners, the wind carried me towards a desire, I would say, unexpected to IT.

For this thesis, I put away my trusty stethoscope and learned to rely on my computer.

And I believe I will continue to do so that none of my patients will remain without an

answer/diagnosis.”

[End of speech transcript]

The intervention (in French) is available at this link:

https://youtu.be/7bDEPShzxp4?t=4475.
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Figure 9. French 3-Minutes Thesis competition poster of the French Alps Final.
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Chapter III - the reinterpretation challenge

Div��� �n�o G���me A���t!

As sequencing is no longer limited in genomic medicine, one of the main challenges

in rare disease diagnosis is the interpretation and iterative re-interpretation of the

multitude of variants detected. Indeed the diagnostic yield of NGS depends on

clinical entities, but globally, a majority of patients were undiagnosed after

sequencing 26. Studies have already reported that reanalysis of previous genomic

analysis could significantly improve diagnostic yield. However, the reinterpretation

task was said to be highly manual, time-consuming, and primarily uncovered in

healthcare systems 3,52. There is a need for guidelines in variant reinterpretation that

can facilitate implementing a low-cost, scalable, and accessible approach in

genomic centers worldwide 53. If progress has been made to automate genomic

variant interpretation, the American Society of Human Genetics statements reinforce

the need for a standardized approach to genomic reanalysis 54.

I first described how the sequence variant interpretation is performed to provide

more context on this challenge we were trying to tackle.
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The variant interpretation challenge

NGS detects a significant amount of genetic variation, approximately 20,000 SNV per

individual in the coding genome. If a Mendelian genetic disease is suspected (i.e., a

variant or a few variants cause the patient's disease), the interpretation of

constitutional variants corresponds to identifying the variant(s) of interest amongst

this considerable mass of data.

Discrepancies and Subjectivity of Interpretation

Since the early 2010s, NGS has been used for medical diagnostics, especially in the

field of rare diseases and oncology. However, significant differences in variant

interpretation have been reported between different testing centers and genetic

centers 47. The complexity of the interpretation process can account for these

differences: the combination of multiple sources of evidence relating to clinical data,

biological data, population genetic data, etc... To manage this, the genetics

community has established and approved guidelines, specifically the ACMG-AMP

2015 guidelines 48. These describe different criteria used as evidence when

interpreting genetic variants and the weighting for each piece of evidence.

A Bundle of Arguments to Question

Features used in variant interpretation include several categories: clinical relevance

of the gene, the molecular impact of a variant, segregation of the variant to affected

and unaffected relatives in a family, and functional studies. First, the clinical

relevance of a genetic variant is assessed by comparing the patient’s phenotype (or
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symptoms) to features known to be associated with the disease caused by the gene.

This is done by consulting the medical literature. As a result, detailed phenotypic

data allows for more accurate variant interpretation.

Next, the molecular impact of a variant on the protein and gene function is

determined by several arguments: in silico computational predictions about the

variant’s effect on protein structure, evolutive conservation across species of the

amino acid, population frequency of the variant, or reports of this variant in other

affected individuals.

Finally, in some cases, the search for the variant in other family members

(segregation study) or an extensive functional analysis (in vitro studies) of the

variant must be conducted to make a decision.

The Outcome of Interpretation: a 5 Tier Classification System

After combining all the evidence, the final aim of variant interpretation is to classify

the variant into one of five classifications. These classifications provide a standard

communication method between clinicians and scientists and were rapidly applied

by a large part of the medical community worldwide. They indicate the criteria to be

evaluated in the interpretation process, the weight to be given to them, and the

algorithm for assigning them a classification from class 1 (benign variant) to class 3

(a variant of uncertain significance) to class 5 (pathogenic variant). The criteria can

be in favor of pathogenicity (P) or favor of benignness (B). Criteria are weighted

according to the level of confidence: stand-alone or absolute (A), very strong (VS),

strong (S), moderate (M), or supporting (P). It should be noted that despite the

impossibility of quantifying the uncertainty related to the interpretation of the
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variants, classes 2 (likely benign variant) and 4 (likely pathogenic variant) correspond

to a probability of more than 90% that the variant is benign or pathogenic,

respectively.

To summarize, sequencing and detecting variants is no longer the limiting factor in

the NGS era. The real challenge lies in interpretation. A combination of evidence is

required to conclude that variants are pathogenic. To standardize the interpretation

of variants, recommendations exist, such as those proposed by the ACMG-AMP.

Unfortunately, in most cases, the variant impact remains of uncertain significance.

Data sharing, a key element in genomic medicine

As variant interpretation is a challenging task, sharing data becomes a central

element in genomic medicine, as it allows us to benefit from the dynamics of

scientific publication (slow) and the diagnostic progress of the international

community (fast).

Salvation from data sharing

To facilitate variant interpretation, it is necessary that the available data is shared

and the interpretations made are also shared to solve diagnoses and discover new

genotype-phenotype correlations 49. Using an interpretation already performed by

other biologists saves time for the patient. Sharing data is even more helpful when a
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variant is rare or difficult to interpret. This is especially true for variants involved in

very rare diseases where the amount of data is small 50. There are several initiatives

in this area, and the current most active resource in genomic medicine is ClinVar.

ClinVar, a community-driven database

ClinVar, supported by the National Institutes of Health (NIH), is a free, public

database listing interpretation of known variations with clinical information and

criteria useful for interpretation 51. The variants are classified according to the ACMG

recommendations and the level of evidence provided. It will have a star rating:

ratings range from 0 stars (little or no documented methodology) to 4 stars (practice

guidelines). Over one million variants interpreted in a clinical context are available. It

is one of the gold standard resources for medical genetics.

Motivation

As a physician, I was frustrated by not being able to provide reinterpretations for

unsolved patients. I put a lot of effort into asking clinical laboratory specialists to

perform reinterpretation only when patients needed it urgently. With the current

technology available, I couldn’t understand why we didn't yet have access in

hospitals to a semi-automated system to help us monitor new clinical knowledge in

variant classification and alert us when it could change the patient's diagnosis.
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We bet exploiting data-sharing databases could provide a method to standardize

genomic analysis reinterpretation and supply a scalable and affordable system that

the community can adopt. To prove it, we decided to take advantage of the database

ClinVar. ClinVar's highly accessible collaborative platform

(https://www.ncbi.nlm.nih.gov/clinvar/) is widely recognized as one of the most

dynamic genomic databases55. ClinVar is updated weekly with thousands of changes

and additions that can impact diagnostic performance. Surprisingly, ClinVar doesn’t

provide the history of classification changes in the database, and no tools were

available to do it either.

Overall, we described in a scientific article the development and evaluation of a

semi-automated method for reassessing variant pathogenicity and

genotype-phenotype knowledge in the ClinVar database called Genome Alert! that

solves numerous diagnostics. This study is published in the Genetics in Medicine

journal with an open access 56

(https://www.gimjournal.org/article/S1098-3600(22)00654-2/fulltext). A webapp to

use this method is accessible at https://genomealert.univ-grenoble-alpes.fr/ and

open source code at https://github.com/SeqOne.

I was the principal investigator of the scientific project and coordinated this work

with our collaborators (Eurofins Biomnis, Cerba, and CHU de Rouen). With the help of

Jerôme Audoux, Sacha Beaumeunier, Nicolas Soirat, Abdoullaye Diallo, Raphael

Lanos and Melanie Broutin from SeqOne Genomics, I programmed scientific

experiments, scripts and webapp to make these methods accessible to the
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community. I supervised Quentin Fort, who participated in scientific experiments

during his internship at SeqOne Genomics. Julien Thevenon supervised me for the

manuscript writing.
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Introduction

Genetic tests are increasingly prescribed and included in
health care pathways for diverse clinical indications.1,2

Several countries have developed population genomics or-
ganizations that are revolutionizing medical practices.3,4

However, many of these genomic analyses remain incon-
clusive owing to limitations in genomic and medical
knowledge available at the time of analysis.

The American College of Medical Genetics and Geno-
mics/Association for Molecular Pathology (ACMG/AMP)
recommendations for variant classification aim at standard-
izing variant interpretation practices in genomic centers, in
the context of medical interpretation.5 Recently, tools have
been published to automatically classify genomic variants
on the basis of these recommendations.6-8 Meanwhile,
evolving medical knowledge and rapid adoption of clinical
genome sequencing have influenced the standard practices
and have created additional needs. A current and major
preoccupation in this field is the definition of standards for
periodic and prospective reanalysis of existing sequencing
data. Indeed, reanalyzing existing genomic data improves
diagnostic yield (7% increase per year).9,10

In practice, such an in-depth reinterpretation is mainly
manual and time-consuming, with major bottlenecks such as
human and funding resources or lack of consistency be-
tween centers. Clinical recommendations from the Amer-
ican and European Societies of Human Genetics reinforce
the need for a standardized and automated approach to the
reinterpretation of genomic analyses.11-14 Some companies
offer paid black box services, with poorly detailed methods
that cannot be reproduced.15,16

Clinical knowledge of rare diseases is contained in expert-
curated databases (such as OMIM17 or Clinical Genome
Resource [ClinGen]18), peer-reviewed medical literature, and
information sharing between health practitioners through
community-based platforms (such as MatchMaker Ex-
change19 or ClinVar20). Reliability and exhaustiveness of
information vary widely across these data sources. Further-
more, careful monitoring of clinical knowledge by every
laboratory represents an organizational challenge for a pro-
spective reanalysis of acquired data. To enable a systematic,
reproducible, and prospective genome interpretation, a
collaborative approach for clinical knowledge aggregation
combined with automated medical knowledge monitoring
and curation is needed.

The main community-based repository of genomic
knowledge is ClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/), a shared variant interpretation database that
featured 1 million submissions in 2020. ClinVar is updated
weekly with several thousands of modifications of variant
classifications that could affect the diagnostic yield of pre-
vious analyses. There is currently no monitoring system that
can highlight these changes at a scale for the complete
database. Besides variant classification, gene–phenotype

association catalogs are crucial because they are
commonly used to design phenotype-specific gene panels
for dry-lab filtering and set the frontiers for clinical genome
analysis.21,22 Although not their primary purpose, variant-
centered databases could also theoretically provide a com-
plementary resource to gather gene–phenotype knowledge.

In this article, we detail an automated method for the
reassessment of variant pathogenicity and gene–phenotype
associations through ClinVar follow-up. This procedure,
called Genome Alert!, aims at performing a routine and
systematic reinterpretation of existing genomic data. The
procedure’s effectiveness was evaluated through a 29-month
multicentric series (2018-2019) of 5959 consecutive in-
dividuals screened using targeted sequencing (4929 in-
dividuals with hereditary cancers) and exome sequencing
(1000 analyses including 356 undiagnosed individuals with
suspected Mendelian disorders).

Materials and Methods

Genome Alert! standardized procedure

ClinVCF, Variant Alert!, and ClinVarome are a suite of
tools that constitute the heart of the Genome Alert! stan-
dardized procedure.

ClinVCF: A ClinVar quality processing method
Before comparing different versions of the same source,
data consistency needs to be verified. This first step is based
on ClinVCF tool, and once every submission has been
tracked, data will be processed for the next step.

ClinVCF imports monthly updated ClinVar Xtensible
Markup Language (XML) files. XML format was preferred
over VCF mainly because of better consistency and trace-
ability across versions for the ClinVar Variation ID, the
history of changes in each variant classification, and the
additional gene–phenotype data availability in XML.
ClinVCF considers an automatic reclassification of variants
with at least 4 submissions and conflicting interpretations of
pathogenicity status. Consensus classification according to
ClinVar policies sets the conflicting interpretations of
pathogenicity status when at least 1 conflict in submission is
observed, except if an expert consortium (as ClinGen) has
defined classification (details available in Supplemental
Method 1). On the basis of the provided classifications
transformed from literal transcription (eg, likely pathogenic)
to class number (eg, class 4), if ≥4 submissions are avail-
able, a new consensus is proposed after outlier submissions
removal according to the 1.5* Interquartile Range (IQR)
Tukey method.23 We only reclassify variants from con-
flicting status to likely pathogenic or pathogenic status.
ClinVCF provides a 3-tier reclassification confidence score
detailed in Supplemental Figure 1. As an output, ClinVCF
writes a Variant Calling File (VCF) v4.2 file.
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Variant Alert!: A variant knowledge monitoring tool
Variant Alert! tool aims at identifying changes in variant
classification across 2 versions of the database. Changes
were defined as (1) a modification in the classification of an
existing variant and (2) the creation or suppression of a
variant entry.

Stratification of the consequences in classification
modification was proposed (Supplemental Table 1). Major
classification modification was defined as a change that may
affect the clinical management of a patient (eg, uncertain
significance to likely pathogenic status). Minor classification
modification was defined as a change that may not affect the
clinical management of a patient (eg, pathogenic to likely
pathogenic status).

Variant Alert! writes 2 files: (1) the list of variants that
were modified, added, or removed and (2) the list of genes
that were added to or removed from the database. This gene
list is notably used by ClinVarome.

ClinVarome: A method for automated gene–disease
association evaluation
ClinVarome tool aims to periodically and automatically
evaluate gene–disease association in the ClinVar database.
To differentiate genes on the basis of their clinical validity,
the work from European Molecular Biology
Laboratory–European Bioinformatics Institute Gene2Phe-
notype,24 ClinGen,18 and Genomic England PanelApp25

were first compared. Although theoretically comparable,
their rationales and contents were partially overlapping and
with conflicting classifications. To discriminate candidate
genes from definitive gene–disease associations, we decided
to use an unsupervised clustering model. Only the genes
with at least 1 likely pathogenic or pathogenic variant
(single nucleotide variant or indel affecting a single gene) in
ClinVar were considered in a list called ClinVarome. As a
consensus criterion, we chose to assess the strength of a
gene–disease association through the quantification of 4
variables: (1) count of likely pathogenic and pathogenic
variants, (2) highest variant classification (CLNSIG, likely
pathogenic or pathogenic), (3) highest ClinVar review
variant confidence (CLNREVSTAT, from 0 to 4 stars), and
(4) time interval between the first and the last pathogenic
variant submission (replication of the gene– disease asso-
ciation event). For these 4 variables, values were gathered
through periodic monitoring of changes in the database
following the ClinVCF and Variant Alert! tool procedures.
Clustering variants according to these variables allowed us
to define clusters of genes according to their clinical val-
idity. The scikit-learn Agglomerative Clustering tool
(parameters: Euclidean affinity, ward linkage) was used, and
t-distributed stochastic neighbor embedding representation
(parameters: 2 components, perplexity 150, 2000 iterations,
and 1000 iterations without progress) was performed. Gene-
disease validity classification was computed per gene but
not per disease. The Gene Curation Coalition (GenCC)
(https://thegencc.org/) database was released recently and
was used to evaluate ClinVarome. To compare ClinVarome

clusters and GenCC classification, GenCC submissions
were summarized into 3 categories (Green, Orange, Red)
(Supplemental Methods 2).

Study design and participants

To evaluate the clinical impact of Genome Alert!, we
collected 5929 consecutive germline sequencing data sam-
ples from 3 centers in France between July 2017 and
December 2019 as part of their routine genetic investigation:
(1) a variant database gathering all class 3 (uncertain sig-
nificance), class 4 (likely pathogenic), and class 5 (patho-
genic) variants identified in a colon cancer–targeted
sequencing (14 genes) sequenced in 2540 individuals in the
Rouen University Hospital; (2) a cancer-targeted sequencing
data set of 2389 individuals by the Cerba laboratory (66
genes); and (3) exome sequencing data of individuals with
developmental disorders, rare kidney diseases, or other rare
diseases as follows: 108 probands from the Rouen Univer-
sity Hospital, 477 probands (with 356 negative analysis)
from the Cerba laboratory, and 415 probands from the
Eurofins Biomnis laboratory. Patient samples, together with
a basic phenotype description and molecular diagnosis
(when available), were anonymized. Two main clinical
evaluations were performed: (1) variant-centered reanalysis,
which aims at matching individuals that carry exact variants
with potential clinical significance reported by Genome
Alert!, and (2) gene-centered reanalysis, which aims at
matching individuals who carry candidate variants in high-
confidence clinical genes referenced in ClinVarome and
not in OMIM. Initial analyses were performed between
0 and 2 years before this reanalysis.

Selection of variants with potential clinical
significance

All sequencing data were systematically reinterpreted ac-
cording to Genome Alert!’s report and compared with the
initial variant interpretation. For targeted sequencing and
exome reanalysis, genomic positions of variants with major
changes in classification were queried in the existing pa-
tient’s variant calling files (variant-centered analysis). For
exome data, we performed a reanalysis of variants in VCF
with the following criteria: (1) among 75 ClinVarome
morbid genes, which were not available in OMIM, and with
a second event of gene–disease validation (including a likely
pathogenic or pathogenic variant with ClinVar review
confidence ≥ 2 stars and a likely pathogenic or pathogenic
variant entry subsequent to the initial entry); (2) variant not
shared with another individual in the series; (3) sufficient
sequencing quality (variant allele fraction > 25% and read
depth > 20 reads); (4) rare in Genome Aggregation Data-
base26 population (frequency <10–5 if heterozygous geno-
type or 10–4 if homozygous genotype); and (5) protein
consequence among nonsense, frameshift, missense
(missense are selected with Combined Annotation
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Dependent Depletion27 score > 30 and MetaSVM28 = D),
or splice variants (based on dbscsnv RF29 predicted impact
score > 0.6) (gene-centered reanalysis).

Results

ClinVar knowledge dynamics

To get insights into variant classification and gene–disease
association and to estimate the amount of new clinically
relevant information in the ClinVar database available
through time, a retrospective analysis of ClinVar sub-
missions over 29 months was performed (July 2017
[included] to December 2019). Of note, VCF genomic po-
sitions in ClinVar were introduced in July 2017 and prob-
ably are associated with the largest injection in the ClinVar
database.

The number of variants with ACMG/AMP classification5

increased from 144,943 to 491,838. Among modifications in
the database, the count of major changes was 107,167 in
ACMG/AMP classification, and among these, 103,615
resulted in a pathogenicity status, which was previously
unreported, whereas 3552 resulted in the revocation of a
previously established pathogenicity (Figure 1A). These
changes varied significantly according to disease groups the
between gene panels (according to Genomics England
PanelApp), in which the oncogenetic panels were on top of
the list of panels. The panels and disease groups presenting
most of the changes per gene are presented in Figure 1B and
C and Supplemental Table 2. Clinical gene entries in Clin-
Var were also monitored. A median of 23 ClinVar morbid
genes per month that were newly associated with Mendelian
disease was observed (Figure 2).

Changes in variant classification

To evaluate the robustness of clinical variant information,
the consistency of variant classification was explored and is
described in Supplemental Table 3. Among 144,943

Figure 1 ClinVar variant classification monitoring between
July 2017 and December 2019. A. Bar chart distribution of every
2 months of changes in variant classification. The bar chart was

split for better readability. Bold numbers and dark red color
represent new (likely) pathogenic variant entries, green represents
number of revoked (likely) pathogenic variants, orange represents
number of minor change variants (eg, pathogenic to likely patho-
genic), yellow represents number of changes with uncertain clinical
impact (VUS or conflict entry), and purple represents number of
changes leading to variant disappearance. B. Bar chart of top
panels with clinically significant changes per gene (major changes).
Dark red color represents (likely) pathogenic variant entries, and
green represents revoked (likely) pathogenic variants. C. Bar chart
of top disease group with clinically significant changes per gene
(major changes). Dark red color represents (likely) pathogenic
variant entries, and green represents revoked (likely) pathogenic
variants. GI, gastrointestinal tract; VUS, variant of uncertain
significance.
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variants available in July 2017, 10,254 (7%) were reclassi-
fied between July 2017 and December 2019, ie, we
observed only a small portion of variants being reclassified
over time. These reclassifications included automatically
reclassified variants with conflicting interpretations. More
precisely, among the 11,417 likely pathogenic variants,
1125 (9.94 %) variants were reclassified as benign variants,
likely benign variants, variants of uncertain significance, or
variants with conflicting interpretations of pathogenicity.

Automatic variant reclassification with conflicting
interpretations

A criticism of the ClinVar database is the misclassification
of pathogenic variants, such as the well-known HFE path-
ogenic variant NM_000410.3:c.845G>A. We observed that
it was mostly due to a unique outlier submission with a
classification for a distinct condition (eg, cutaneous photo-
sensitivity porphyrinuria phenotype). We evaluated our
method to remove such outlier submissions. Among all the
variants available in ClinVar in December 2019, 22,973 of a
total of 503,994 (4.5%) variants were classified with a
conflicting interpretation of pathogenicity. Genome Alert!
automatic reclassification method proposes to detect outlier
submissions to suggest a consensus classification. This

allowed the reclassification of 188 variants from conflict to
likely pathogenic or pathogenic classification in 135 genes
and 1625 variants in 436 genes from conflict to likely
benign or benign classification (Supplemental Table 4,
Supplemental Figures 1 and 2).

Variants automatically reclassified as likely pathogenic or
pathogenic in cancer (n= 9) and cardiogenetic disease (n= 11)
were presented to FrenchNational experts in the field. Of these
20 automatic reclassifications, 17 were confirmed as accurate
by experts and 3 remained as variants of uncertain significance,
lacking evidence of pathogenicity for our experts.

Clinical impact of changes in variant classification

To assess the clinical impact of Genome Alert!’s changes in
variant classification, previously analyzed cancer-
predisposition targeted sequencing data were assessed
(4929 individuals from 2 genetic centers) (variant-centered
reanalysis, Figure 3). Among all variants detected in this
cohort, this method highlighted 45 variants with major
changes between the time of analysis and December 2019,
which were proposed for manual review by their referring
geneticists (Supplemental Tables 5 and 6).

Among the 45 variants, 30 had been already manually
reported by the clinical geneticists as likely pathogenic or

Figure 2 ClinVar clinical genes entries associated with new or deprecated Mendelian disease (morbid status) distribution between
December 2017 and December 2019. The bar chart was split for better readability. Dark red represents morbid genes entries (first variant
with likely pathogenic or pathogenic status), and green represents revoked morbid genes. White numbers represents number of new morbid
gene entries by 2 months.
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pathogenic at the initial time of analysis, meaning that these
classifications were ahead of the ClinVar database. The 15
unreported variants were manually curated, looking for
additional diagnoses. Among them, 14 variants were newly
classified as likely pathogenic or pathogenic and 1 was
downgraded as a variant of uncertain significance (VUS) in
ClinVar. The manual curation of these 14 variants lead to
the conclusion that 6 corresponded to a carrier status for a
recessive disorder, 3 were manually classified as VUS, and 5
were submitted to a multidisciplinary meeting for external
review. Finally, 4 of these latter 5 were classified as likely

pathogenic or pathogenic by experts leading to additional
diagnoses. One variant remained classified as a VUS, and
complementary studies on the patient’s messenger RNA
were proposed before conclusion (PALB2,
NC_000016.9(NM_024675.3):c.3350+4A>G). Finally, an
89% validation rate (40 of 45) of major changes were
observed. This variant reclassification tracking system
allowed an additional diagnosis per 1000 analyses.

Replication of the variant-centered reanalysis was per-
formed in the exome sequencing cohort, looking for variant
exact match. Selective reanalysis in previous exome

45 variants identified

4,929 targeted sequencing from 0 to 2 years
since time of analysis were enrolled

15 variants with major change remained in
negative analysis and reviewed by expert

30 variants were already
considered likely pathogenic or

pathogenic

4 variants were classified  
likely pathogenic or pathogenic

3 patients had a direct impact on patient care

1 variant needed additional splicing
studies to confirm 

1 variant in a gene not yet
recommended by institution

6 variants as carriers status for
autosomal recessive disease

1 variant remains Likely pathogenic
despite downgrade to VUS in ClinVar

Variant-centered reanalysis 
(December 2019)

3 variants remain VUS despite
ClinVar classification

Figure 3 Experimental design of the variant-centered reanalysis. Flow charts describing how the sequencing data were reinterpreted
according to variant reclassification only. Green box represents new diagnosis. Light green boxes represent confirmed variant classification.
Orange boxes represent excluded variants. VUS, variant of uncertain significance.
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sequencing analysis (1000 individuals in 3 genomic centers)
highlighted <1 variant per exome (only 297 variants) with
major changes between the time of analysis and December
2019. These 297 variants were then explored by clinical
geneticists. Among all 297 variants, 1 variant (POLG,
NM_002693.2:c.2243G>C) was automatically reclassified
as pathogenic by our IQR outlier submission method and
was initially reported as VUS, thus helping us to confirm the
diagnosis. Compound heterozygosity was observed for a
pathogenic variant (POLG, NM_002693.3:c.1399G>A).
Exome sequencing reanalysis with the variant-centered
reanalysis also provides an additional diagnosis per 1000
analyses.

Monitoring ClinVar gene–disease association
knowledge

A focus has been toward exploring rarely explored
gene–disease association in ClinVar data. To discriminate
candidate genes from definitive gene–disease associations in
ClinVarome, unsupervised clustering was performed on the
basis of the following criteria: (1) count of likely pathogenic
and pathogenic variants, (2) highest variant classification,
(3) highest ClinVar review variant confidence, and (4) time
interval between the first and the last pathogenic variant
submission. According to distances between clusters and
model dendrogram, the number of clusters was set to 4
(Figure 4). Careful observation of these clusters identified
objective patterns to understand the classification. We
observed that all genes in the first and second clusters had a
reproducibility event (a new likely pathogenic or pathogenic
variant entry, the confirmation of the likely pathogenic or
pathogenic classification by another submitter or expert
panel) in pathogenicity status, thus giving them strong
confidence. Genes from the first cluster hold pathogenic
variants with ClinVar’s ≥2 stars of review confidence and
the second cluster genes include pathogenic variants with
different entry dates and <2 stars of review confidence.
Genes in the third cluster had 1 strong argument for path-
ogenicity but needed another event to be fully confirmed
(the third cluster genes contained at least 1 pathogenic
variant and all pathogenic entries were added at the same
date). Because genes in the fourth cluster were only likely
pathogenic variants, their gene–disease association
remained to be confirmed (Supplemental Table 7).

To assess the exhaustivity of the ClinVarome, a compar-
ison with the OMIM database was performed. In December
2019, there was a 95% overlap (3675/3858) between OMIM
morbid clinical genes and ClinVarome morbid genes. Over-
all, 365 genes were referenced only in OMIM and not in
ClinVarome. We observed patterns that were not available in
ClinVar. These patterns include nonconfirmation of a disor-
der as a genuine Mendelian disorder (only 1 publication or
isolated patient reports), susceptibility to multifactorial dis-
orders or infection, referencing of genes belonging to

molecular mechanism distinctive from a single gene disorder
as microdeletion or microduplication syndromes, Mendelian
traits that are not diseases, epigenetic loci, genes with targeted
pathogenic complex variants, and very recently described
diseases. The evaluation focused on these 519 specific genes,
referenced only in ClinVar and not in OMIM, to assess their
potential value in additional diagnoses.

Among the 519 ClinVarome only genes in December
2019, 15 genes were in the first cluster, 60 genes were in the
second cluster (ie, 75 high-confidence genes), 140 genes
were in the third cluster, and 304 genes were in the fourth
cluster. Then, we monitored their inclusion in the OMIM
morbid list in the upcoming months. Among the 519 genes
exclusively referenced in ClinVarome in December 2019,
55 were reported OMIM morbid 8 months later in August
2020, including 15 of the 75 (20%) initial high-confidence
genes. Moreover, 125 of the 140 OMIM morbid genes
additional entries between December 2019 and August 2020
were also referenced in ClinVarome release of August 2020.
This observation suggested that candidate genes in

Figure 4 ClinVarome morbid genes exploration and
gene–disease validity classification. A. Agglomerative clustering
dendrogram of ClinVarome in December 2019. B. t-distributed
stochastic neighbor embedding representation of ClinVarome 4
variables by gene data. Green represents fourth cluster (390 genes),
yellow represents third cluster (987 genes), blue represents second
cluster (1538 genes), and purple represents first cluster (1377
genes).
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ClinVarome may be considered as diagnostic genes before
the OMIM validation of the gene–disease causality.

Clinical impact of ClinVarome morbid genes not
available in OMIM

We evaluated the relevance of this approach by performing
a selective reanalysis of a subsample of the new entries in
the ClinVarome, focusing only on the 75 genes that were
absent from OMIM morbid list and were referenced in
ClinVarome’s first and second clusters (gene-centered
reanalysis). This experiment highlighted 42 variants in 356

negative exome sequencing data. In this data set, 42 variants
were prioritized and were proposed for further interpreta-
tion. Among them, 39 were excluded by the expert. The
experts’ arguments included the presence of variants unre-
lated to the disease phenotype or a single case series
available in the literature. A total of 3 variants were further
explored with Sanger sequencing validation, of which 2
were excluded because of artifact status or discordant in-
heritance pattern (Figure 5).

Overall, this method could ascertain a new diagnosis
from the 356 negative exome sequencing data. A nonsense
DLG4 variant NM_001128827.1:c.1840C>T was reported

42 variants identified

356 consecutive exome sequencing patients with negative
results from 0 to 2 years since time of analysis were

enrolled

1 variant was classified likely pathogenic and had a direct
impact on patient care

3 variants were discussed through multidisciplinary meeting
and Sanger validation if needed

39 variants were excluded 
- discordant phenotype with
literature 
- not enough informations in
the literature

Selection of variants with potential clinical
significance:

good sequencing quality,  
rare in general population (gnomAD) 

in silico predicted impact if missense or affecting splice 

 2 variants were excluded 
- 1 artifact 
- 1 discordant inheritance 

Gene-centered reanalysis 
75 genes in cluster 1 and 2 and not OMIM morbid  

(December 2019)

Figure 5 Experimental design for a targeted gene-centered reanalysis. These 75 genes were reported in ClinVarome and not in OMIM
and classified as related to a disease (clusters 1 and 2). This list of 75 genes was used for the reinterpretation of negative exome sequencing
data (n = 346). Green box represents new diagnosis. Orange boxes represent excluded variants. gnomAD, Genome Aggregation Database.
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as likely pathogenic, responsible for the patient’s phenotype
(intellectual disability and microcephaly). Although the first
report of DLG4 association to intellectual developmental
disorder was described back in 2016, this gene–disease as-
sociation was added to the OMIM database only in
February 2020.

ClinVarome comparison with the GenCC database

A comparison of gene–disease validity confidence and
exhaustivity of ClinVarome with the GenCC database was
performed. In October 2021, there was a 65% (3332 of
5187) gene overlap between the 2 databases. Nonoverlap-
ping genes represent mostly the uncertain gene–disease as-
sociations from these 2 databases. Exclusive genes in
GenCC (n = 334) were significantly enriched in orange and
red genes (151 of 745 orange genes [P < .0001], 158 of 252
red genes [P < .0001]). Exclusive genes in ClinVarome (n =
1471) were significantly enriched in third and fourth cluster
genes (407 of 501 third cluster genes [P < .0001], 448 of
743 fourth cluster genes [P < .0001]). The 2 databases
present a high concordance in gene–disease association
confidence (Supplemental Table 8).

Discussion

With the increasing amount of genetic testing performed in
health care, there is a critical need for standardized methods
to enable prospective genomic data reinterpretation in clin-
ical routine. Through the reassessment of variant pathoge-
nicity and gene–phenotype associations in ClinVar, Genome
Alert!’s data mining method proposes the automatic report
of a handful of variants that can reasonably be manually
interpreted. Our method was applied to a multicentric series
of 4929 sequencing tests with various local bioinformatic
systems. Genome Alert! successfully allowed new di-
agnoses in targeted and exome sequencing through query of
laboratory’s VCFs or variant database and proposed a
portable and open-source framework for an automated
reanalysis of sequencing data.

Retrospective monitoring of the cutting-edge medical
literature on existing genomic data is a major concern for
paving the way to genomic medicine.30 There are numerous
technical and medical challenges in setting up a routine
procedure for reanalysis. This work explored the dynamics
of change across all fields of genomic medicine in ClinVar.

Several medical indications for genomic testing were
noticed to bear numerous changes in variant classification.
Retrospective analysis of the ClinVar database provided an
estimation of new clinically relevant information reported
each month, which may lead to additional diagnoses in the
existing data.31 Overall, 9.94 % (1125) of likely pathogenic
variants were eventually downgraded and reclassified as
benign variants, likely benign variants, variants of uncertain
significance, or variants with conflicting interpretation of

pathogenicity in ClinVar over the study period
(Supplemental Table 3). This analysis highlights the
required carefulness in returning results to the families for
likely pathogenic variants because such information could
be used for genetic counseling and patient management.

Genome Alert! methods are based on the processing of
submissions from the ClinVar full XML release, with no
distinction made between submissions with different con-
texts (eg, somatic or germline status and distinct conditions).
Besides, Genome Alert! attributes a unique variant ID on the
basis of VCF nomenclature. As such, these variants with
potential clinical significance reported by Genome Alert!
should be queryable a priori in each genomic center.
However, VCF nomenclature is not easy to use with com-
plex variation, which could lead to errors. A switch to the
Variation Representation specification from the Global
Alliance for Genomics and Health could provide an inter-
esting improvement step.

Clinical effect of changes in variant classification
(variant-centered reanalysis) provided in our targeted and
exome sequencing cohort provided an additional diagnosis
per 1000 analyses. Because time from initial analysis varies
from 0 to 2 years, this diagnostic yield will certainly in-
crease with time. This automated system is better for large
cohorts of targeted sequencing, with a low number of var-
iants to reinterpret and reaching 10% diagnostic yield in the
re-examined variants. Recent literature emphasizes the
importance of a standardized procedure adapted for
sequencing data reanalysis for considering few candidate
variants after an accurate annotation of new gene–phenotype
associations and filtering procedure.30

A particular effort was made to evaluate confidence in the
reported information to reach a consensus across multiple
annotations. The prospective reassessment of ClinVar high-
lighted numerous conflicts in variant classification. Although
our system rarely reclassifies variants with conflicting in-
terpretations, this automatic reclassification method aims to at
least remove these potential errors. The expert review of
ClinVCF automatic reclassification validates this method on
the basis of outlier submission removal using the IQR
method, and succeeds in reclassifying abnormalities such as
the HFE pathogenic variant NM_000410.3:c.845G>A. This
work highlights the value of the persistence over time of a
classification for relevant genomic information. This work
specifically focused on oncogenetics and cardiogenetics,
fields in which variant interpretations are particularly con-
flicting and shifting.32,33 Overall, in the ClinVar database,
188 variants could be reclassified in 29 months (ranging from
2017 to 2019). After 8 months, in August 2020, a total of 307
variants were reclassified, highlighting the importance of a
systematic and partially automated variant reassessment
(Supplemental Figure 2).

Existing literature for gene-centered reanalysis has
emphasized the importance of OMIM as an updated resource
but not exhaustive.34 To explore and evaluate specifically the
ClinVar database for gene-centered reanalysis, we chose to
focus our reanalysis on 75 high-confidence ClinVarome
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morbid genes (first and second clusters) not available in
OMIM morbid genes list. Complementary to OMIM morbid
genes, these high-confidence ClinVarome morbid genes from
the first and second clusters could provide additional di-
agnoses in exome or genome sequencing analysis (gene-
centered reanalysis). One additional diagnosis was identified
with this tight subsampling of variants among the 356
negative exomes, validating the proof of concept. Additional
experiments could be performed to fully evaluate the Clin-
Varome, such as reanalysis with the full list of ClinVarome
morbid genes not found in OMIM, additional cohorts, or an
extended analysis considering the variants with different
phenotypes not reported in the literature.

On the basis of literature data and feature engineering
processes from all ClinVarome features during clustering
model development, we identified 4 discriminative features
for gene–disease clinical validity available in ClinVarome
data. Overall, the evaluation relies mainly on the amount of
knowledge but also on reported review confidence and more
importantly on the time-scale of entries. The Genome Alert!
gene-curation via machine learning methods provides an
original attempt for automated evaluation of gene confi-
dence in disease. Genome Alert! proposes a standardized
clinical validity confidence score that could allow a pro-
spective gene–phenotype association assessment. As such,
this approach could be useful to update in silico gene panels.
This procedure proposes a complementary approach to the
aggregation of multiple expert-reviewed databases such as
DDG2P, Genomic England PanelApp, or ClinGen
gene–disease validity available in the GenCC database.35

However, ClinVarome gene–disease validity confidence is
defined for all diseases associated with a gene, which is less
precise than curations submitted to the GenCC database. As
ClinVarome is a more exhaustive database, this resource
could prioritize genes to be curated by GenCC submitters,
particularly in the first and second clusters.

In summary, Genome Alert! highlights changes with po-
tential clinical significance and provides a large retrospective
study of a partially automated system for sequencing data
reinterpretation. This procedure enables the systematic and
reproducible reinterpretation of acquired sequencing data in a
clinical routine, with a limited human resource effect and a
diagnostic yield improvement. Genome Alert! provides an
open-source accessible framework to the community, thus
hoping to be applicable in every genetic center.

Data Availability

Software summary
Project name: Genome Alert!
Project home page: https://genomealert.univ-grenoble-alpes.
fr/
Operating system(s): UNIX (Mac, Linux)
Programming language: Nim, Python, R
License: Apache Licence 2.0

Any restrictions to use by nonacademics: No
Genome Alert! results are publicly available at https://

genomealert.univ-grenoble-alpes.fr/. Relevant data used to
generate Genome Alert! results are available from ClinVar
FTP (all monthly ClinVar full XML release data were
downloaded from https://ftp.ncbi.nlm.nih.gov/pub/clinvar/
xml/) and in the following resources: OMIM (https://
omim.org/), Genomic England PanelApp (https://panelapp.
genomicsengland.co.uk/), and RefSeq annotation (ftp://ftp.
ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh38_
latest/refseq_identifiers/GRCh38_latest_genomic.gff.gz).
All codes for generating Genome Alert! procedures are
available at public GitHub repositories: ClinVCF tool for
ClinVar XML full release processing and extraction to VCF
format (https://github.com/SeqOne/clinvcf), Variant Alert!
tool to compare ClinVCF release (https://github.com/
SeqOne/variant_alert), ClinVarome tool to evaluate clin-
ical validity of ClinVar morbid genes (https://github.com/
SeqOne/clinvarome), and the Genome Alert! shiny app
(https://github.com/SeqOne/GenomeAlert_app).
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Supplementary Methods S1: ClinVCF gene name attribution and classification attribution.

For each variant entry, ClinVCF query the gene name in a two-step process. When a gene symbol

is provided and semantically correct according to the NCBI RefSeq GFF, the gene symbol is

retained. Otherwise, the variant entry is annotated by ClinVCF according to the NCBI GFF. Then,

ClinVCF proposes a consensus classification according to ClinVar policies (aggregation of

ACMG/AMP variant classifications interpretations provided in submitted records per variant,

according to the level of expertise of submitters) and gathers additional information provided by

submitters  (e.g. clinical terms or disease name).

In detail, ClinVCF processes VCV interpretations by gathering MesureSet tags in the ClinVar XML

Full Release. We filter GenotypeSet with heterozygous compound value and keep submissions

only with standardized ACMG/AMP classifications (which remove Pharmacogenomics

haplotypes). Per VCV, a submitter vote is only counted once (submitter ID check). As with ClinVar

aggregation policies, when there is a submission from an Expert panel or from a group providing

practice guidelines (such as ClinGen), only the interpretation from that group is reported in the

aggregate record, even if other submissions provide different interpretations. If there are

submissions with one star or more, we only use these submissions in the aggregation. Otherwise,

we use all submissions. No distinction was made between somatic and germline submissions. A

comparison between NCBI’s ClinVar VCF and ClinVCF VCF is possible via the compvcf binary file

available in the ClinVCF GitHub repository.

In December 2019, ClinVCF provided almost perfect concordance (99.99%) CLNSIG and

REVSTAT (99.9%) tags with the NCBI’s ClinVar VCF, except some variations because of

non-ACMG standard submissions. 2 variants are missing in ClinVCF VCF (Pharmacogenomics

haplotype as expected). ClinVCF VCF has 90 additional variants missed in NCBI’s ClinVar VCF;

no clear patterns were observed to explain this missing information.

ClinVCF provides a three-tier reclassification confidence score. We reclassify variants from

conflicting status to likely pathogenic or pathogenic and likely benign or benign status, with a

default first-tier confidence score. To ascertain the robustness of this reclassification method, we



have evaluated this automatic reclassification when adding a variant of unknown significance

(VUS) in the data submissions. Adding noise can be considered as a defensive approach, in a

similar idea to what is being used in deep learning 1. This test aims at verifying if the amount of

data is sufficient to draw similar conclusions, in the event of an additional virtual VUS submission

(second-tier confidence). As some reclassifications only rely on likely pathogenic submissions, a

definitive reclassification is performed only if at least one pathogenic or benign submission is

available (third-tier confidence). As an output, ClinVCF writes a VCF v4.2 file adding the following

annotations if an automatic reclassification is performed: proposed reclassification in CLNSIG,

ClinVar conflicting interpretations of pathogenicity stats in OLD_CLNSIG, reclassification

confidence score in CLNRECSTAT.

Supplementary Methods S2: Genome Alert! comparison with public database resources

Monthly ClinVar full XML release data from 2017-06-20 to 2019-12-01 and from 2019-12-01 to

2020-08-03 were downloaded. From 2017-06-20 to 2019-12-01 data were used for the ClinVar

retrospective and the sequencing analysis reinterpretation. The impact of changes were measured

on gene groups based on the in silico gene panels and disease groups from the Genomics

England PanelApp 2 API on 01-06-2020.

Gene symbols gathered from multiple resources (OMIM, ClinVar, and PanelApp) were unified with

their NCBI Gene ID (via NCBI RefSeq annotation). To evaluate the exhaustivity of ClinVar morbid

gene knowledge, a comparison between the list of all ClinVar morbid genes named ClinVarome

with the gold standard OMIM database morbid clinical gene list was performed 3. An OMIM gene is

defined as a morbid clinical gene if at least one phenotype or disease syndrome was associated

with the gene at that time.

ClinVar data from 2019-12-01 to 2020-08-03 were used to validate ClinVarome. Identification of

the gene-phenotype morbid list was made through the OMIM morbid map list (downloaded on

2019-11-14 and 2020-08-24) via the OMIM API3.

GenCC data (https://thegencc.org/) were downloaded in 2021-10-29 and were compared with the

October 2021 release of ClinVarome. GenCC submissions were summarized into 3 categories

https://paperpile.com/c/TZjESr/tIw8Z
https://paperpile.com/c/TZjESr/x53AV
https://paperpile.com/c/TZjESr/T6hCu
https://paperpile.com/c/TZjESr/T6hCu
https://thegencc.org/


(Green, Orange, Red). Green corresponds to Strong or Definitive classification. Orange

corresponds to Moderate, Supportive, and Limited classification. Red corresponds to Disputed,

Refuted evidence, Animal model, and No known disease relationship classification. If there are

only concordant submissions, then the gene category is corresponding to the category

submission. If there are Orange and Red or Green submissions, then the gene status will be Red

or Green. Conflicting submissions may be observed when Green and Red submissions are

available for a gene and were removed from comparative analysis. Enrichment of genes was

performed by the scipy Exact Fisher test (one-sided, alternative “greater”) with Bonferroni

correction.
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Supplementary Table S7. Median per cluster of the four variables used to classify gene-disease clinical validity.

Supplementary Table S8. Comparison between ClinVarome and GenCC gene-disease association confidence in November 2021.



Supplementary Table S1. Genome Alert! Clinical impact change status definition.

Previous New Clinical impact
Variant

Absent

.. null

Benign and/or likely_benign null

Uncertain_significance or Conflicting_interpretations_of_pathogenicity unknown

Likely_pathogenic major: new pathogenicity

Pathogenic major: new pathogenicity

Benign and/or likely_benign

.. deleted from database

Uncertain_significance or Conflicting_interpretations_of_pathogenicity unknown

Likely_pathogenic major: new pathogenicity

Pathogenic major: new pathogenicity

Uncertain_significance or
Conflicting_interpretations_of_pathogenicity

.. deleted from database

Benign and/or likely_benign minor

Likely_pathogenic major : new pathogenicity

Pathogenic major : new pathogenicity

Likely_pathogenic or Pathogenic/Likely_pathogenic

.. deleted from database

Benign and/or likely_benign major: revoked pathogenicity

Uncertain_significance or Conflicting_interpretations_of_pathogenicity major : revoked pathogenicity

Pathogenic minor

Pathogenic

.. deleted from database

Benign and/or likely_benign major: revoked pathogenicity

Uncertain_significance or Conflicting_interpretations_of_pathogenicity major: revoked pathogenicity

Likely_pathogenic minor

Gene
.. NEW_PATHOGENICITY major : new pathogenicity

Any LOST_PATHOGENICITY major: revoked pathogenicity



Supplementary Table S2. Monitoring of variant classification specific for Genomics England PanelApp panels from July 2017 to December 2019.

In Supplementary Excel spreadsheets.



Supplementary Table S3.  Variant classification evolution in December 2019 among 144.943 variants available in July 2017. Perc. change

category = percentage of variant classification changes by ACMG/AMP variant classifications.

Old classification type count Initial number Number of changes
Percentage
changes Perc. change category

Benign

warning 59

14255 1502 10.54

0.41

Likely benign 1262 8.85

Uncertain significance 180 1.26

Likely pathogenic 0 0.00

Pathogenic 1 0.01

Likely benign and
Benign/Likely benign

warning 38

31612 2658 8.41

0.12

Benign 578 1.83

Uncertain significance 2038 6.45

Likely pathogenic 2 0.01

Pathogenic 2 0.01

Uncertain significance
and Conflicting
interpretations of
pathogenicity

warning 555

59683 2157 3.61

0.93

Benign 185 0.31

Likely benign 962 1.61

Likely pathogenic 350 0.59

Pathogenic 105 0.18

Likely pathogenic and
Pathogenic/Likely
pathogenic

warning 23

11417 1513 13.25

0.20

Benign 1 0.01

Likely benign 2 0.02

Uncertain significance 1109 9.71
Pathogenic 378 3.31

Pathogenic

warning 246

27976 2429 8.68

0.88

Benign 9 0.03

Likely benign 5 0.02

Uncertain significance 574 2.05

Likely pathogenic 1595 5.70



Supplementary Table S4. List of reviewed variants by clinical experts for validation of Genome Alert! automatic reclassification of conflicting

interpretation of pathogenicity status.

Conflicting variants reclassified as (likely) pathogenic - December 2019 Gene name Reclassification confidence Expert classification

NM_170707.4:c.725C>T LMNA 1 Class 5

NM_000258.2:c.427G>A MYL3 1 Class 4

NM_001080116.1:c.494C>T LDB3 1 Class 4

NC_000011.9(NM_000256.3):c.3815-1G>A MYBPC3 1 Class 5

NC_000011.9(NM_000256.3):c.2905+1G>A MYBPC3 1 Class 5

NM_000256.3:c.1504C>T MYBPC3 3 Class 3 or 4

NM_000257.4:c.2011C>T MYH7 1 Class 5

NM_000257.4:c.1324C>T MYH7 1 Class 5

NM_000257.4:c.728G>A MYH7 1 Class 5

NM_001018005.2:c.644C>T TPM1 1 Class 4

NC_000018.9(NM_024422.4):c.2125+1del DSC2 1 Class 5

NC_000001.10(NM_001048174.1):c.849+3A>C MUTYH 3 Class 5

NM_001128425.1:c.820C>T MUTYH 1 Class 3

NM_001048171.1:c.267G>A MUTYH 3 Class 4

NM_000179.2:c.1109T>C MSH6 1 Class 3

NM_000179.2:c.1295T>C MSH6 2 Class 3

NM_000179.2:c.3725G>A MSH6 2 Class 4

NM_000535.7:c.2521del PMS2 1 Class 4

NM_001126112.2:c.646G>A TP53 1 Class 5

NM_001126112.2:c.374C>T TP53 2 Class 5



Supplementary Table S5. Genome Alert! variant classification tracking system analysis of laboratory 1 variant database from the oncogenetic

targeted sequencing panel.

In Supplementary spreadsheets.

Supplementary Table S6. Genome Alert! variant classification tracking system analysis of oncogenetic panels from laboratory 2.

In Supplementary spreadsheets.

Supplementary Table S7. Median per cluster of the four variables used to classify gene-disease clinical validity.

cluster
name

Highest ACMG/AMP
variant classifications
found in a variant per

gene

Highest ClinVar review confidence
(from 0 to 4 stars) found in likely

pathogenic or pathogenic variants
per gene

Time interval between the first entry and last entry
of a likely pathogenic or pathogenic variant per

gene (in months)
Count of likely pathogenic or
pathogenic variants per gene

4th 4 1 0 1

3rd 5 0 0 2

2nd 5 1 19 7

1st 5 2 26 24



Supplementary Table S8. Comparison between ClinVarome and GenCC gene-disease association confidence in November 2021. Genes in 1st

cluster (n=1710) and 2nd cluster (n=1226) are mostly Green (93%, 72% respectively), in comparison of genes in 3rd (n=70) and 4th cluster

(n=291) which are mostly Orange and Red (71% and 60%, respectively).

ClinVarome \ GenCC Green Orange Red

1st cluster 1588 (93%) 116 (7%) 6 (<0%)

2nd cluster 886 (72%) 294 (24%) 46 (4%)

3th cluster 26 (29%) 36 (51%) 14 (20%)

4th cluster 115 (40%) 148 (50%) 28 (10%)



Supplemental Figures

Supplementary Figure S1. Automatic reclassification of variants with conflicting interpretations of pathogenicity workflow from July 2017 to

December 2019 and August 2020

Supplementary Figure S2. Evolution of conflicting interpretation of pathogenicity status variants reclassified by Genome Alert! from December

2017 and December 2020.



Supplementary Figure S1. Automatic reclassification of variants with conflicting interpretations of

pathogenicity workflow from July 2017 to December 2019 and August 2020



Supplementary Figure S2. Evolution of conflicting interpretation of pathogenicity status variants reclassified by Genome Alert!. Green:

reclassification to Likely Benign or Benign class, Red: reclassification to Likely Pathogenic or Pathogenic class.



Chapter IV - the phenotyping challenge

As� �he P�����en���

The key element in genome sequencing interpretation is to find the variant that

causes the patient’s disease, also called the symptom-gene or genotype-phenotype

correlation. Switching from phenotype-first to genotype-first approach in rare

diseases diagnosis improved the diagnostic yield of rare diseases. Still, it provided

new challenges, such as computational phenotype analysis, where physicians'

knowledge and phenotyping need to be digitalized to successfully interpret the

massive amount of detected variants. To do so, humans and machines must speak

the same language using a common ontology.
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Ontologies for precision medicine

Phenotyping

If the phenotype is the set of observable characteristics of an individual, phenotyping

is the process of describing these characteristics deviating from normal morphology,

physiology, and behavior. It is the transcription of a physician’s clinical and

paraclinical examination 57.

Standardization and Ontology

One working hypothesis is that the standardization of phenotyping is necessary to

help us collectively to recognize diseases that are too rare or subtle to diagnose

alone. Clinical geneticists are trained to recognize a few hundred conditions, yet it is

estimated that around 6,000 rare diseases exist. Teams have been working on an

"ontology of human phenotypes " for over ten years 58. An ontology groups a set of

terms linked together as a tree structure. The further one moves away from the

"trunk" of the tree (i.e., deeper in the ontology), the more precise the description is.

As an example to describe a symptom, we could start from a broad category (e.g.,

abnormality of the limbs) to a more and more detailed description (e.g., absence of

the nail on the 5th finger).

Human Phenotype Ontology

The Human Phenotype Ontology (HPO) is the most commonly used ontology in

phenotyping at present 59. The tree structure of HPO is ordered according to human
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development. Each level of the tree corresponds to a code. For example, partial

agenesis of the corpus callosum is coded HP:0001274. Physicians will collect these

codes corresponding to the patient's clinical picture as accurately as possible to

weigh the relevance of a particular variation. The combination of symptoms and

clinical signs observed in a patient can be processed by diagnostic support

algorithms 60.

To summarize, genetic tests are interpreted in a detailed clinical context. The clinical

description using ontology standards allows the integration of medical information

into the analyses. HPO ontology represents the ontology of human development and

associated phenotypes.

A constellation of resources

If HPO is a way to describe patients, we need to link a patient's phenotype to known

genetic diseases. Since the 1990s and computer democratizations, clinical

geneticists query databases such as London Dysmorphology Database or POSSUM

as clinical decision support 61. These genotype-phenotype databases compiled the

literature information on genetic diseases, describing the expected phenotypic

elements, their frequency, and the genetic causes involved. These databases make it

possible to decide, among other features, on the imputability of a variation on all or

part of a patient's clinical picture. I would like to give you three examples that we

used in our method :
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OMIM

OMIM (Online Mendelian Inheritance in Man), currently maintained by the

McKusick-Nathans Institute of Genetic Medicine, stems from the work of Dr. Victor

McKUSICK in the 1960s to classify Mendelian diseases and their phenotypic traits 62.

The content is edited by a team of researchers who report content related to

important articles on the disease or gene in question. More than 6,000 rare diseases

with a known molecular basis are listed, and more than 15,000 diseases remain

without a known molecular basis.

Orphanet

Orphanet is a French INSERM initiative that was created just before the year 2000,

before becoming European and then international, with more than 40 countries

involved (https://www.orpha.net/). It has two main objectives: to develop a

terminology for rare diseases to be integrated into health information systems and

provide access to relevant information on rare diseases, their diagnosis, and

management for healthcare professionals and patients.

DDG2P

The gene2phenotype dataset (G2P) is produced and curated by UK consultant

clinical geneticists for the Deciphering Developmental Disorders (DDD) study 63.

DDG2P integrates data on genes, variants, and phenotypes related to developmental

disorders. It is constructed entirely from published literature and is primarily an
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inclusion list to allow targeted filtering of genome-wide data for diagnostic purposes,

and it also provides HPO terms associated with genes.

Aggregating the literature

Clinical knowledge on genetic diseases is spread into diverse databases, which

makes it challenging to use in clinical routine. These databases follow the constant

evolution of scientific and medical literature but are manually curated, which

provides an unconstant pace in updates. However, most of these databases are not

following the HPO format. To facilitate the query on clinical knowledge, some

initiatives integrate literature data by querying databases, automatically interpreting

the retrieved texts, and looking for gene names, disease names, and signs

referenced in HPO. For example, the Monarch Initiative provides a catalog of

symptom-gene associations, and NCBI’s MedGen provides pages of gene clinical

summary 64. In addition, as most of the clinical information is available in scientific

articles, systems like NCBI’s LitVar 65 were developed to identify genes and variants

contained in articles.

Motivation

When I was a young resident in medical genetics, I was scared by the amount of

knowledge that I needed to learn. I was afraid of being an unworthy physician, afraid

of missing a diagnosis. Later in my residency, I understood that more than the
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knowledge I earned, I needed to know how to query the clinical knowledge available

in the medical literature. But if public resources can efficiently present what you were

looking for, systems that help in diagnostic reflection as Phenomizer 66 weren’t

efficient enough in the medical setting. This would be one of the main challenges for

the next generation of clinical geneticists.

Even if we use the HPO to describe a patient’s symptoms, I was surprised by the

variety of phenotyping practices from my colleagues and myself. Physicians use

scheme-induced reasoning based on our own experience 67. If I see a young child

with hypotonia, I will assume that he could have a delayed age of walking and maybe

intellectual disability later on. But the available informatic system couldn’t guess

what physicians’ schemes had in mind. It took me a Ph.D. time of reflection and

exploration to attempt the digitalization of medical reasoning and make machines

able to understand heterogeneous clinical descriptions from physicians’.

Gene panel selection was the current model used by the medical community to

digitalize the physician’s phenotype in genomic analysis. Initiatives like PanelApp 68

provide human-made groups of genes related to a common clinical entry point. Even

if it was an incomplete way to describe a patient, I noticed that physicians already try

to gather clinical assumptions around related genes.

Inspired by the clinical entry point - gene association from gene panels and aiming to

model medical inductive reasoning, we developed methods based on the association
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of symptoms with the same genetic disorder to overcome this phenotyping

heterogeneity.

Overall, we described in a scientific article the first analysis of phenotyping practices

in a clinical sequencing setting and the development of symptom interaction models

in genetic diseases to provide standardized clinical descriptions and interpretable

matches between symptoms and genes. We published this study currently as a

preprint in medrXiv 69

(https://www.medrxiv.org/content/10.1101/2022.07.29.22278181). We have filed

two patent applications based on this work. A webapp to use models in clinical

practice is accessible at https://phenogenius.streamlitapp.com, and the open source

code is on GitHub (https://github.com/kyauy/PhenoGenius).

I was the principal investigator of the scientific project. I collected the majority of

clinical observations from literature, in addition to the cohort from the PhenoGenius

consortium gathered by Julien Thevenon and Quentin Testard. With the help of

Nicolas Duforet from SeqOne Genomics, I programmed scientific experiments,

scripts, and webapp to make these methods accessible to the community. I was

supervised by Nicolas Duforet, Denis Bertrand, and Julien Thevenon for the scientific

exploration and writing of the manuscript.
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Abstract

Observing phenotyping practices from an international cohort of 1,686 cases revealed

heterogeneity of phenotype reporting among clinicians. Heterogeneity limited their

exploitation for diagnosis as only 43% of symptom-gene associations in the cohort were

available in public databases. We developed a symptom interaction model that summarized

16,600 terms into 390 groups of interacting symptoms and detected 3,222,053 novel

symptom-gene associations. By learning phenotypic patterns in genetic diseases, symptom

interaction modeling handled heterogeneity in phenotyping, to the extent of covering 98% of

our cohort’s symptom-gene associations. Using these symptom interactions improved the

diagnostic performance in gene prioritization by 42% (median rank 80 to 41) compared to the

best algorithms. Symptom interaction modeling will provide new discoveries in precision

medicine by standardizing clinical descriptions.

One sentence summary

Learning phenotypic patterns in genetic disease by symptom interaction modeling addresses

physicians' heterogeneous phenotype reporting.
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Precision medicine relies on patient stratification and recognition of clinically relevant groups

to improve diagnosis, prognosis, and medical treatment 1. Phenotyping allows homogeneous

groups of individuals to be constituted, where physicians report characteristics deviating from

normal morphology, physiology, and behavior using standardized descriptions in the Human

Phenotype Ontology (HPO) 2,3. Despite a common ontology and abundant clinical data,

medical records often lack consistency and comparability between descriptions and

practitioners, which is referred to as fuzzy matching in phenotype profiles 4. This inconsistent

phenotyping is a major hurdle to fully exploiting the clinical data contained in medical

records. Nevertheless, no studies about phenotyping practices in clinical sequencing are

known to have been undertaken until now.

1. Phenotyping practices in large cohorts

Through four international studies, including 1,686 patients in total, we collected 2501

different symptoms in HPO format and 849 different disease-causing genes 5–7 (Table S1).

Nearly half of the patients in the multi-center cohort had symptoms belonging to the

Abnormality of the nervous system (HP:0000707) and Abnormality of the musculoskeletal

system (HP:0033127) classes, illustrating the current focus on those rare disorders in clinical

practice 8 (Figure S1). Reflecting the genetic heterogeneity of rare diseases, 538 of 849 genes

were declared only once in the cohort and the most frequently mutated gene occurred in less

than 2% of cases (ABCC6, n=21, Table S2).

We observed heterogeneity in HPO selection terms, as 47% of terms were used only once

(Figure 1A, Table S3). The median number of HPO terms per physicians’ clinical description

varied across observations, ranging from three (Peng et al. 7) to seven (PhenoGenius

consortium, Seo et al. and Trujillano et al. 5,6) (Figure 1B). The heterogeneity of physicians’
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clinical descriptions was also observed for patients with identical genetic diagnoses. For

genes involved in diagnosis of more than ten patients, 67 % of symptoms were declared in

only one clinical description.

To exclude the possibility that the observed heterogeneity was due to variability in clinical

examinations, we next investigated whether heterogeneity in clinical descriptions was

reported if physicians phenotyped the same clinical observations. We settled on a prospective

experiment where 12 clinical geneticists with various levels of expertise (Table S4) were

asked to phenotype three independent clinical reports associated with genetic test

prescription, i.e. to convert free text to phenotypes in HPO format. We observed

heterogeneity in terms of the number and diversity of symptoms declared per clinical

observation (Figure 1C). For instance, two to nine symptoms were declared in clinical

descriptions of the Kleefstra syndrome observation with the EHMT1 pathogenic variant. A

total of 29 different terms were provided; 17 of these terms were used by two or more

physicians, and none of the terms were mentioned by all 12 physicians.

2. Quantifying the overlap of symptoms-gene associations between
the retrospective cohort and the medical literature

To assess if the clinical descriptions of our cohort matched available knowledge in the

medical literature, we mapped the cohort’s 11,526 unique symptom-gene associations to the

734,931 associations available in HPO-structured databases (Orphanet, DDG2P 9, and the

Monarch Initiative or MI 3). From these databases, only 4,913 associations (43%) matched,

meaning that 57% were missing (Figure 2A).
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As the clinical descriptions of genetic diseases in medical literature are mainly available in

free-text format, we developed a text-mining algorithm based on Elasticsearch to extract

symptom-gene associations from free-text data in HPO format. Applied to OMIM 10,

MedGen 11, and abstracts from PubMed, this text-mining algorithm identified an additional

1,049,522 symptom-gene associations. This approach resulted in a 3.2-fold increase in

HPO-structured database associations (Figure 2B).

The text-mining algorithm provided symptom-gene associations where symptoms were

significantly deeper in the ontology compared to the HPO-structured databases (median depth

6.7 and 5.2 respectively, Kolmogorov-Smirnov test p-value < 10-215, Figure S2). This

underlines the complementarity of these approaches, as illustrated in Figure 2C where

KMT2D was associated with Abnormal morphology of the great vessels (HP:0030962) in the

MI database and Tetralogy of Fallot (HP:0001636) in the OMIM database. Reflecting the

variability across individuals in selecting an HPO term to summarize a clinical observation,

76% of associations were exclusive to one database. We hypothesized that text-mined

symptom-gene associations in the literature were related to associations available in

HPO-structured databases. This hypothesis embodies the fuzzy phenotyping concept,

providing human-determined alternative wordings of the same information.

To evaluate this hypothesis, for each gene we compared the average distance in the ontology

of exclusive symptom-gene associations to the MI database and the text-mined OMIM

database, respectively the largest database of each type (Figure 2B). Compared with a

random choice of an HPO term, the average distance of the exclusive symptom-gene

associations was significantly lower, suggesting these associations are related

(Kolmogorov-Smirnov test p-value < 10-215, Figure 2D).

5



Although in this exercise the number of symptom-gene associations increased from 734,931

(MI, DDG2P, Orphanet database) to 1,784,453 (with associations found with the text mining

algorithm), a match with the cohort’s symptom-gene associations was only available for

6,226 of 11,526 (57%) associations, meaning that 43% of matches were still missing (Figure

2A).

3. From symptom-gene to symptom-symptom associations modeling

We investigated whether modeling associations between symptoms of the same genetic

disorder improved matches. As the Human Phenotype Ontology is ordered according to

human development, it may not represent the interaction of symptoms in disease (Figure 3A).

We explored an alternative approach to measure symptom-symptom associations in genetic

diseases. We considered a node similarity algorithm based on a knowledge graph that stored

the symptom-gene associations we collected from the literature.

We found a high correlation between symptom-symptom similarity pair scores and their

frequency of co-occurrence in clinical observations (Spearman correlation coefficient: 0.99).

No correlation was observed between symptom-symptom similarity pair scores and the

distance between symptoms in the HPO (Spearman correlation coefficient: -0,02, Figure S3),

reflecting that symptom-symptom associations cannot be solely derived from the ontology

architecture.

According to similarity score distributions, we posited that similarities above 80% were

potential substitutes or highly similar symptoms in diseases (Figure S4). This resulted in the
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selection of 565,943 pairs of highly similar symptoms, corresponding to the 10% highest

symptom-symptom association scores (Figure 3B). A total of 26% of these pairs were

observed for symptoms in the same ontology class (145,611 of 565,943), mostly from the

Abnormality of the musculoskeletal system (HP:0033127) class (51%, 73,817 of 145,611).

Inter-classes pairs of symptoms represented 74% of highly similar symptoms, where the most

recurrent pair was Abnormality of metabolism/homeostasis (HP:0001939) with Abnormality

of the nervous system (HP:0000707) (8%, 35,476 of 420,332).

We illustrate these similarities in Figure 3C, using the symptom Hypotonia (HP:0001290)

reported by six of the 12 practitioners in our exercise on the Kleefstra syndrome with the

EHMT1 pathogenic variant. In the symptom-symptom association graph, the closest term to

Hypotonia is Neurodevelopmental delay (HP:0012758), with a symptom-symptom similarity

pair score measuring 86%. In the HPO, these symptoms are separated by ten nodes and

belong to two different main classes: Abnormality of the musculoskeletal system

(HP:0033127) and Abnormality of the nervous system (HP:0000707) respectively.

We then investigated to what extent considering two highly similar symptoms as substitutes

improved the coverage of symptoms-gene associations. Among the cohort’s 11,526 unique

symptom-gene associations, only 6,226 associations were found in HPO-structured and

text-mined databases, but this number rises to 8,350 when accounting for similarities.

Considering substitutes provided additional 1,506,469 symptom-gene associations to the

previous 1,784,453 associations from MI, DDG2P, Orphanet, and text-mined databases.

Modeling associations between symptoms revealed a majority of inter-HPO classes included

similar symptoms, highlighting the missing aspect of symptom relationships in the HP
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ontology. Enhancing symptoms with their highly similar pairs improved coverage of

symptom-gene associations in the cohort, but 27% of associations were still missing.

4. From symptom-gene associations to groups of symptoms modeling

Symptom-symptom associations were evaluated independently when identifying substitutes

based on node similarity. To gain better coverage of symptom-gene associations, we

considered a more elaborate collaborative filtering approach based on non-negative matrix

factorization (NMF) 12.

Using the topic coherence measure 13, we determined that the 16,660 HPO terms could

optimally be reduced to 390 groups of interacting symptoms or phenotypic patterns (Figure

S5). Each symptom was positioned in the graph with group weights determined by the

algorithm (Figures 4A-4B). Each gene was associated in a median of 36 groups and a group

with a median of 501 genes. To compare the recall of the NMF and the node similarity

model, we kept only the top 10% of 390 symptom-groups weights (Figure S6). Overall in this

selection, there were 43,308 symptom-group associations leading to 5,971,755 pairs of

symptoms.

We investigated to what extent the coverage of symptoms-gene associations was improved by

considering that two symptoms belonging to the same group were substitutes. Using these

pairs of symptom associations enhanced the coverage of symptom-gene associations to

11,340 of the 11,526 associations from the cohort, leaving less than 2% of matches missing.

This new manner of detecting associations resulted in the addition of 2,163,663 NMF-based

symptom-gene associations to the previous 1,784,453 associations obtained from MI, DD2P,
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Orphanet, and text-mined databases. NMF-based symptom-gene associations overlapped with

99% of similarity-based associations (1,497,601 of 1,506,469).

To evaluate if these 390 phenotypic patterns represented the clinical spectrum of genetic

diseases, we projected the cohort into the groups of symptoms dimension and performed a

UMAP visualization 14. We applied agglomerative clustering to the cohort and compared

clustering patient performance using this projection and the 16,600 HPO dimension. Using

the initial list of 16,600 symptoms, 152 patients were found in 14 clusters significantly

enriched in symptoms (Fisher exact test with p-value < 0.05 with Benjamini Hochberg

correction) (Figures S7-S8). Applying the projection in groups of symptoms, 1,136 patients

were found in 51 clusters significantly enriched in groups of symptoms (Figure S9, Figure

S10). To evaluate if this projection could standardize clinical descriptions, we applied it to the

three clinical reports phenotyped by the 12 physicians in our experiment. We demonstrated

the high coherence of our method even with symptom heterogeneity when sufficient numbers

of HPO terms were given (KMT2D report) (Figure 4C, Figure S11). When fewer than 5 terms

were provided, clinical description projections still grouped patients but with lower

homogeneity (EHMT1, C3).

The delineation of 390-groups of interacting symptoms enabled an increase in coverage of

the available knowledge on genetic disorders and provided a way of building on HP ontology

to standardize clinical descriptions. Next, we used symptom interaction modeling to develop

a phenotype matching system.
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5. Symptom interaction models as an efficient and robust system for
phenotype matching

To evaluate the clinical relevance of symptom interaction models, we designed phenotype

matching and diagnostic gene ranking experiments. We defined a phenotype match when at

least one symptom in the clinical description was related to the diagnostic gene (Figure 5A).

According to the count of matches per gene, a personalized ranked list of genes was provided

(Figure S12). These experiments were performed on the clinical observations of 1,686

patients.

Using the HPO-structured databases (MI, DDG2P, Orphanet), we obtained a phenotype

match for 1,566 clinical observations with a median diagnostic gene rank of 251. Applying

text-mined associations led to a match for 1,628 clinical observations with a median rank of

40 (Figure 5B). The best performance in median diagnostic rank was provided by node

similarity symptoms association (median rank 37, compared to 58 with NMF), but NMF was

able to get a more exhaustive coverage of clinical observations (1682, compared to 1663 with

node similarity). This coverage gap was exclusively observed where the clinical descriptions

contained five terms or less (four unmatched descriptions, compared to 25 with node

similarity). As each symptom interaction model provides a different level of inductive

reasoning, we conditionally applied a model according to the number of symptoms in the

clinical description. The combined system, which we called PhenoGenius provided the best

performance (median rank 41) and reached a nearly full phenotype match of diagnostic genes

(99.8%, 1682/1686) for all clinical descriptions.

To illustrate this phenotype-matching system, we considered a clinical description containing

two symptoms of the Kleefstra syndrome observation with the EHMT1 pathogenic variant:
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Sparse hair (HP:0008070) and Moderate global developmental delay (HP:0011343). There is

no match between these terms and EHMT1 in HPO-structured databases. No match is

identified from text-mined symptom-gene associations either. Symptom interaction modeling

achieves phenotype matches, ranking 1244 out of 5235 (top 25% of genes) with the similarity

model and 851 out of 5235 (top 17% of genes) with the NMF model and PhenoGenius

combined system.

We then compared PhenoGenius to four recently published algorithms for phenotype-driven

gene prioritization: PhenoApt, Phen2Gene, CADA, and LIRICAL 7,15–17. Despite using

different prioritization methodologies, these four programs demonstrated similar

performances in phenotype matching (Figure 5C). Using symptom interaction modeling,

PhenoGenius (median rank 41) increased the median diagnostic gene rank by 42% compared

to the best competitor, Phen2Gene (median rank 71, 73 to 80 for other methods). This

improvement was replicated across each study subgroup in the cohort, highlighting the

clinical relevance of symptom interactions in genetic disease models (Figure S13).

To assess the robustness of gene prioritization, we randomly removed each symptom from

clinical descriptions with two terms or more and measured the consequence on the

disease-causing gene ranking for descriptions in the top-ranked half of the cohort (rank 41 or

lower). Overall, 701 clinical descriptions led to 6,331 symptom removal experiments. In most

cases, phenotype matching remained robust with symptom removal (Figure 5D).

Disease-causing gene ranking was identical in 35% of cases (2,274 of 6,331) and the median

of absolute differences between ranks was only one. However, nine extreme drops in the

ranking (> 1000) were observed with clinical descriptions with three or fewer terms,
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including two complete loss of phenotype matches for descriptions with two symptoms. For

clinical descriptions with four or more terms, we found no extreme drops in gene rankings.

Discussion

This study used symptom interaction modeling to learn phenotyping patterns in genetic

diseases. This method adds to the precision medicine toolbox with a way of standardizing

clinical descriptions and matching physicians' phenotyping to the medical knowledge of

genetic diseases.

This study provides an in-depth analysis of phenotyping clinical practice by analyzing 1,686

phenotyping reports of patients with a definitive genetic diagnosis 5–7. In addition, a

qualitative comparison of three clinical reports phenotyped by 12 physicians was performed.

Complementary to recent reports 8,18, this study provides original insights on heterogeneous

patient phenotyping, both in the cohort’s clinical descriptions and the medical literature. In

our qualitative experiment, the main observation was the diversity of terms chosen by

physicians to describe the exact same clinical description. These observations suggest that

clinical description should be standardized, following harmonization of symptom description

with HP ontology.

As well as encouraging richness of clinical description, tools must address the medical reality

of summarized or partial clinical information. Lacking time or omitting symptoms in their

clinical routine, physicians provide scanty phenotyping. Symptoms may be chosen based on

strong clinical a priori or learned phenotypic patterns. Medical inductive knowledge often

proposes patterns or groups of hypotheses based on recurrently associated symptoms in the
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physician’s own experience and in the literature. Defining groups of symptoms represent a

natural behavior of medical inductive reasoning 19,20. This could explain the heterogeneity of

phenotyping across clinical observations, independently from the innate clinical

heterogeneity of a disorder.

To handle heterogeneous phenotyping, we developed symptom interaction models to

standardize clinical descriptions and evaluate their clinical relevance through gene

prioritization experiments. Based on symptom interaction models, PhenoGenius decreases the

rank of the diagnostic gene by 42% compared to the best competitor. Its simplicity in scoring

allows a complete understanding of phenotype matching, thus providing an interpretable

measure of potential genotype-phenotype correlation. To lower the risk of missing a

phenotype match because of a fuzzy description, clinical descriptions with four or more terms

are recommended. Our approach contrasts with state-of-the-art phenotype-driven gene

prioritization software, which mostly relies on complex scoring or symptom relationships

based on HPO architecture.

Current algorithms address phenotyping heterogeneity using the ontology structure either to

extract additional symptom-gene associations from literature or to evaluate the semantic

similarity of symptoms 21. In contrast to these approaches, we used HPO as a dictionary of

symptoms and considered relationships between symptoms only through their co-occurrence

in genetic diseases found in HPO-structured and text-mined databases. Our algorithm

uncovered the missing pieces of medical inductive reasoning in clinical descriptions through

symptom similarity modeling and collaborative filtering using NMF methods 12. As such,

projection into the symptoms interaction model dimension could provide a path to

standardizing clinical descriptions. Moreover, the application of this algorithm is
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reproducible and interpretable, and these features are fundamental in a medical context 22. In

addition, node similarity and NMF allow free association of symptoms, which is important

since the same symptom may belong to different disease groups.

Our AI system performed well for gene prioritization. However, evaluation of our system’s

performance in detecting gene/symptom associations is incomplete. In our international

cohort, only 43% of symptom-gene associations were described in public databases. We have

shown that the recall rate (percentage of detected associations among known associations)

increased when considering similarity measures or techniques based on NMF. However, as

the list of associations increased, an increase in recall came at a price of reduced precision,

i.e. a reduced proportion of true associations among the detected associations. Evaluation of

precision is impossible because some true associations are missing, highlighting the need to

improve data sharing of physicians’ phenotype information.

As current knowledge overwhelms human learning abilities, an overarching goal in precision

medicine is to overcome digital bottlenecks to succeed in deep phenotyping and identification

of clinically relevant groups of patients. Progressive adoption of the Monarch Initiative’s

HPO in clinical symptoms description, the development of automatic extraction of symptoms

in HPO format from electronic medical records 23, and the definition of the Phenopackets

standard file format by GAG4H 24 bring the community one step forward. A current

challenge is integrating multiple data sources from electronic health records for deep

phenotyping 25. Complementary to this challenge, we seek to standardize and improve the

exploitation of clinical descriptions available in clinical practices using symptom interaction

models. Long-standing aspirations are to be able to answer the question, “Have I seen a case
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like that before?” among extensive clinical data, and to identify undescribed symptom-gene

associations 26.

Clinical description standardization using symptom interaction modeling may overcome

several clinical bottlenecks in precision medicine. PhenoGenius is open-source, accessible

through an interactive graph browser (https://github.com/kyauy/PhenoGenius), and a web app

(https://phenogenius.streamlitapp.com/). This work paves the way for a set of tools to help

identify new genes in disease, expand their clinical spectrum, and provide an easily

interpretable clinical decision support system. If we can successfully deal with fuzzy

phenotypic profiles and inductive medical reasoning in rare diseases, clinical data can be used

for computational phenotype analysis, to improve the feasibility of precision medicine, and to

support the adoption of genomic medicine.

Data availability

The PhenoGenius source code is available for resource generation and scientific experiments

in Apache License 2.0, including an interactive graph browser, on GitHub

(https://github.com/kyauy/PhenoGenius). A web app is accessible at

https://phenogenius.streamlitapp.com.
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Fig 1. The landscape of phenotyping practices from a retrospective cohort of 1,686

patients and a prospective experiment of clinical reports phenotyped by multiple

physicians. A. Treemap chart of the HPO terms frequency across the retrospective cohort. B.

Violin plot of HPO term counts per clinical description for each subgroup of the cohort. C.

Violin plot of HPO term counts per clinical description for each clinical report phenotyped by

12 physicians.
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Fig 2. Quantifying the overlap of symptoms-gene associations between the retrospective

multicenter cohort of 1,686 patients and the medical literature. A. Venn diagram of

symptom-gene associations observed in cohort overlapped with public HPO-structured

databases and text-mined associations in free-text databases. B. Count distribution of

symptoms-gene association exclusive to each database. C. Illustration of exclusive

symptom-gene associations found in Monarch Initiative database (blue) and text-mined

OMIM database (green), using KMT2D as an example. Gray associations were unfound. D.

Distribution of the mean lowest distance in the ontology between exclusive terms in the

Monarch Initiative database and our text-mined OMIM database, compared to a random

choice of HPO terms.
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Fig 3. Modeling symptom-symptom interaction in rare diseases using node similarity

algorithms on collected symptoms-gene associations. Node color represents the main HPO

class. A. Graph visualization of symptom relationships based on the human development

architecture of HPO. B. Graph visualization of symptoms relationships with node similarity >

80%. C. Illustration of symptom relationships with the Kleefstra syndrome clinical report

with EHMT1 variant, phenotyped by 12 geneticists. Blue arrows linked the closest symptom

in HP ontology and red arrows the symptom with the highest node similarity among declared

symptoms.
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Fig 4. Modeling symptom-symptom interactions in genetic disease using non-negative

matrix factorization. A. Visualization of symptom relationship based on 390 groups of

interacting symptoms from medical literature. Group 273 is highlighted by the black box and

arrow. B. Illustration of group 273 with the main symptom Autoimmunity (HP:0002960). For

graphs in figures A and B, the line thickness is proportional to the weights of symptoms in

the group. Colors correspond to the main HPO class and groups are in black. For readability,

only the top 10% of symptom-group associations are displayed. C. UMAP visualization of

cohort’s clinical descriptions projected into the group of symptom dimension, colored by the

number of symptoms. Boxes represent clinical reports description phenotyped by twelve

physicians.
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Fig 5. Modeling symptom interactions as an efficient system for phenotype matching. A.

Illustration of the principle of phenotype matching, looking for the most connected genes to

the clinical description containing two symptoms of the Kleefstra syndrome observation with

the EHMT1 variant: Sparse hair (HP:0008070, yellow) and Moderate global developmental

delay (HP:0011343, purple). Line thickness is proportional to the probability score of

symptom-gene associations available with joint HPO-structured and text-mined databases. B.

Performance benchmark metrics of diagnostic gene prioritization ranking (median rank, left

side) and phenotype matching (count of unmatched description, right side) according to a

maximum number of symptoms in clinical descriptions of the cohort. C. Benchmark of a

selection of state-of-the-art gene prioritization programs. The fraction of cases correctly

diagnosed (y-axis) is plotted against a cumulative causal gene rank. D. Ranking differences

after removing one symptom according to the number of terms in clinical descriptions.
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Materials and Methods

Clinical data collection

We collected anonymized clinical cases from four international cohorts leading to a total of 1,686
patients with a genetic diagnosis and their clinical description in HPO terms. This cohort is
composed of 307 patients gathered from the PhenoGenius consortium from Centre hospitalier
universitaire (CHU) Grenoble Alpes, CHU de Dijon, CHU de Montpellier, CHU de Rennes,
CHU de Brest and Hospices Civils de Lyon, 140 patients from Seo et al. (1), 298 patients from
Trujillano et al. (2), and 941 from Peng et al. (3). We also collected clinical descriptions in HPO
format from 12 clinical geneticists from 12 different French hospitals (CHU Lille, CHU
Montpellier, CHU Rennes, CHU Rouen, CHU La Réunion, CH Alençon, CHU Poitiers, CHU
Limoges, CH Versailles, CHU Toulouse, and CHU Tours). Each physician extracted HPO terms
from the same three clinical reports of patients with different diagnostic genes (KMT2D,
KMD6A, and C3), one case each from three physicians in French hospitals (CHU Montpellier,
CHU Grenoble Alpes, and APHP). Patients or legal guardians provided informed written consent
for genetic analyses in a medical setting. Consent from the clinical geneticists was obtained
through a survey that also collected their responses.

Database of medical literature

Databases were downloaded in May 2022. Human Phenotype Ontology was downloaded in
OBO format from the Monarch Initiative website (https://hpo.jax.org/). Clinical databases in
HPO format were downloaded from the Monarch Initiative website in the phenotype to genes
format, EBI initiative DD2GP’s (4) CSV files from https://www.ebi.ac.uk/gene2phenotype/, and
Orphanet’s XML data from https://www.orpha.net/. Free-text databases were downloaded
through API requests for OMIM (https://www.omim.org/), NCBI’s MedGen (5)
(https://www.ncbi.nlm.nih.gov/medgen/) and NCBI’s PubMed abstracts. For the PubMed
abstracts, we used the list of all likely pathogenic and pathogenic variants from the ClinVar
database (6) to select abstracts of potential interest through LitVar (7) API.

Text matching algorithm

Methods
We developed a methodology to extract symptoms-gene associations based on Elasticsearch®
v5.6 from free-text data in HPO terms and NCBI gene ID format. We first processed these
databases to associate free-text data with the corresponding gene in JSON format. An
Elasticsearch query was performed to match every HPO available in each gene-free-text related
data and provide a list of HPO-gene associations per database. We limited the number of
gene-HPO associations created to the top 100 ranked associated genes for an HPO.

Mean distance in the ontology between exclusive terms
For each exclusive symptom-gene association from the MI database, we computed ontology
distance for every exclusive symptom-gene association from text-mined OMIM in a common

2
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gene and kept the lowest distance. For each gene, we processed the mean distance in the
ontology between exclusive terms of the MI database and our text-mined OMIM database. We
performed the same experiment in the opposite direction, from exclusive association in
text-mined OMIM database to MI database. To compare the distribution of mean distance against
a random distribution, we computed ontology distance with a randomly selected HPO term
instead of an exclusive term from the other database.

Knowledge data frame structure
A list of symptom-gene associations from each database was stored in a data frame containing
16,600 symptoms in columns and 5,235 genes in rows. Each cell includes the probability of
symptom-gene association according to its overlap between databases (consensus score based on
a mean, e.g. an association found in half of the databases received a score of 0.5). Databases
structured in HPO format (MI, DDG2P, and Orphanet) were considered a unique resource, as
DDG2P and Orphanet provided associations mostly overlapping with the MI database and with
only 3,492 and 1,849 exclusive associations, respectively.

Node similarity
We transposed the symptoms-gene associations' data frame into a symptom-symptom association
data frame based on symptoms association in the same genes. We injected all existing symptoms
to symptoms relationships into a Neo4j® database v4.4.0. The similarity between all pairs of
symptoms was processed using the node similarity algorithm
(https://neo4j.com/docs/graph-data-science/current/algorithms/node-similarity/), and due to
technical reasons (RAM limit due to number of combinations), for each symptom, we extracted
symptoms with a similarity score > 0.4 and limited to a maximum of 1500 associated symptoms.
A similar pair of symptoms was reported if the similarity score was higher than 0.8.

Collaborative filtering

Methods
Using sci-kit learn v.0.24.2 Non-Negative Matrix Factorization with Nonnegative Double
Singular Value Decomposition initialization, we transposed the symptoms-gene associations data
frame into a symptoms-groups of symptoms association data frame based on symptoms
association in the same genes. This algorithm provides the numbers of groups requested, the
weights of symptom-group associations, and the weight of gene-group associations. For
interpretability and illustration, we filtered symptoms-group association keeping only the 10%
highest l2-normalized weight of symptoms-group association (>0.04). In phenotype matching
evaluation, we use the complete symptoms-group associations.

Identification of an optimal number of symptoms group
We applied a coherence score metric to processed groups of symptoms to select their optimal
number. Using gensim v4.2 implementations of the coherence topic evaluation
(https://radimrehurek.com/gensim/models/coherencemodel.html), we sought the range of group
numbers with the highest coherence score and also the lowest coefficient of variation using five
random state initialization. We looked for consistency of coherence among different random
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states to reproduce the same performance with additional data or updates. This is necessary for
clinical implementation.

UMAP and clustering
Using sci-kit learn’s v0.24.2 agglomerative clustering implementation (affinity=”euclidean” and
linkage=”ward” parameters), we obtained hierarchical clusters. Data were normalized per
clinical observations and also per group of symptoms. 75 clusters of clinical descriptions were
retained to avoid single observation clusters. Dendrograms were obtained using Scipy v1.8.
hierarchy module. UMAP visualization was performed using the umap v0.5.3 module, with the
following parameters: neighbours = 3 & minimum distance = 0.9 for 390 groups of symptom
dimension and neighbours = 2 & minimum distance = 0.9 for 16,600 symptoms dimension. We
determined these parameters after observing dispersion and clustering of clinical descriptions
according to a range of neighbors from (2 to 5) and minimum distance (0.1 to 0.99).

Graph visualization
Exploration plots were processed using python’s plotnine v0.9 package. Graph visualization was
obtained using software Gephi v0.9 (https://gephi.org/) with ForceAtlas2 (8) and Neo4j Bloom
v2.3. Retina (https://ouestware.gitlab.io/retina/beta/) was used to provide users with a visual
browser of graphs.

Phenotype matching
A phenotype match occurred if at least one symptom in the clinical description was related to the
diagnostic gene in the database. We developed a phenotype matching system that matches
clinical descriptions with lists of symptoms-gene associations available in the knowledge data
frame structure. According to the combination of symptoms from clinical descriptions, the data
frame was filtered to contain only selected symptoms or groups of symptoms columns. The sum
of the consensus score per row or gene was processed, and genes ranked according to the sum
score in descending order. In the case of equal scoring, we applied the worst rank to all equal
genes. The evaluation of this phenotype matching using databases in HPO format and text-mined
associations used only symptoms declared in the clinical description. The phenotype matching
system based on symptoms similarity used declared symptoms and added a virtual symptom
containing all highly similar symptoms sharing its weight. The method based on NMF’s
collaborative filtering projected symptoms into 390 groups of interacting symptoms dimension
using a trained model. Each gene is also projected in the 390 groups dimension with different
weights. The ranking is calculated based on the normalized Euclidean distance between the 390
group projection of each gene and the patient phenotypes. The gene with the highest distance
gets the best ranking.

Comparisons of phenotype-driven gene prioritization systems
We benchmarked the performance of four different phenotype-driven gene prioritization
algorithms: PhenoApt, Phen2Gene, CADA, and LIRICAL (3, 9–11). As each tool provides a
different maximum limit for the gene ranking list, we performed our diagnostic performance
evaluation based on the top 100 cumulative causal gene ranks to be interpretable. PhenoApt
(https://www.phenoapt.org/API) and Phen2Gene (https://phen2gene.wglab.org/api) evaluations
were processed using the software’s API in May 2022. CADA
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(https://github.com/Chengyao-Peng/CADA, unique release) and LIRICAL
(https://github.com/TheJacksonLaboratory/LIRICAL, v.1.3.4) evaluations were processed using
the desktop version via GitHub.

Statistics
Statistical metrics (Kolmogorov-Smirnov test, Spearman correlation coefficient, Fisher exact
test) were obtained using Python’s SciPy module v1.8. Benjamini Hochberg correction was
obtained using the multipy package v0.16.
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Fig. S1. A. Treemap chart of the HPO terms in the cohort per main class ontology.
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Fig. S2.  Violin plot of the mean depth of HPO terms from root ontology according to each
database.

8



Fig. S3. Violin plot of pair of symptoms similarity score according to the ontology distance.
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Fig. S4. Distribution of 1% subsampling of similarity pair score.
The dashed red line corresponds to the 80% similarity threshold and represents 10% of similarity
pairs.
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Fig. S5. Topic coherence evaluation to determine the optimal number of groups.
Colors represent iterative training experiments according to random state initialization.
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Fig. S6. Violin plot of symptom-group weight association.
Dashed horizontal line corresponds to the top 10% of symptom-group associations normalized
weight threshold (>0.04).
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Fig. S7. Dendrogram of hierarchical clusters of clinical observations obtained using agglomerative clustering on the
retrospective cohort using the 16,600 symptoms from HPO. The count of observations per cluster was reported (n). Colors
represented branches of the hierarchy.
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Fig. S8. UMAP visualization of clinical description from the retrospective cohort of 1,686 cases using the 16,600 symptoms
from HPO.
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Fig. S9. Dendrogram of hierarchical clusters of clinical observations obtained using agglomerative clustering on cohort
projection in 390 groups of interacting symptoms dimension. The count of observations per cluster was reported (n). Colors
represent branches of the hierarchy.
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Fig. S10. UMAP visualization of cohort’s clinical descriptions projected using the 390 groups of interacting symptoms, colored
and annotated by agglomerative cluster. White boxes represent clinical reports description phenotyped by twelve physicians.
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Fig. S11. UMAP visualization of cohort’s clinical descriptions projected using the 16,600 symptoms from HPO, colored by the
number of symptoms. Boxes represent clinical reports description phenotyped by twelve physicians.
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Fig. S12. Illustration of phenotype matching and gene prioritization system. According to
symptoms of a clinical description in HPO format, the knowledge dataframe is filtered. A
personalized and interpretable ranking of genes is provided according to the sum of associated
symptom-gene associations available.
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Fig. S13. Benchmark of a selection of state-of-the-art phenotype-driven gene prioritization
per sub-group cohort.

The fraction of cases correctly diagnosed (y-axis) is plotted against a cumulative causal gene
rank.
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Table S1. Clinical data collection of 1,686 patients in our international cohort.

ID Description
Count of

Patients Genes Terms
Total | Unique

French multicenter
cohort from
PhenoGenius consortium

Gathered from CHU Grenoble Alpes,
CHU de Dijon, CHU de Montpellier,
CHU de Brest, and Hospices Civils de
Lyon

307 220 3243 989

Seo et al. (1) Unselected series of consecutive
patients, clinically suspected of
carrying a genetic disorder, from
non-consanguineous families, who
presented at the Medical Genetics
Center, Asan Medical Center, Seoul,
South Korea, from April 2018 to
August 2019.

140 120 1135 347

Trujillano et al. (2) Consecutive, unrelated patients
referred by physicians from 54
countries on different continents have
been included in this study. All
patients with suspected Mendelian
disorders were referred for diagnostic
exome sequencing between January
2014 and January 2016.

298 241 2411 789

Peng et al. (3) Collection of 435 descriptions from
German hospitals and 506 ClinVar
submissions.

941 528 6439 1814
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Table S2. Top ten recurring genes in the four groups in our cohort.

Gene name Count (n=1,686) Percentage

ABCC6 22 1.29

ANKRD11 21 1.23

ARID1B 20 1.18

NSD1 18 1.06

BLM 16 0.94

FBN1 15 0.88

MECP2 15 0.88

NF1 15 0.88

PTPN11 14 0.82

PKD1 13 0.76
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Table S3. Top ten recurring HPO terms in the four groups in our cohort.

HPO Description Count (n=13,228) Percentage

HP:0001263 Global developmental delay 373 2.82

HP:0000750 Delayed speech and language
development

241 1.82

HP:0001249 Intellectual disability 231 1.75

HP:0000252 Microcephaly 209 1.58

HP:0001250 Seizure 205 1.55

HP:0001252 Hypotonia 170 1.29

HP:0004322 Short stature 168 1.27

HP:0001270 Motor delay 126 0.95

HP:0001622 Premature birth 108 0.82

HP:0000486 Strabismus 102 0.77
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Table S4. Description of clinical geneticist profiles in the prospective phenotyping
experiment.

ID Profile Self-estimated expertise in
phenotyping using HPO format (from

1 to 10)

1 Clinician 7

2 Clinician 1

3 Clinician 5

4 Resident in medical genetics 9

5 Clinician 5

6 Clinician 1

7 Clinician and laboratory specialist 1

8 Clinician 6

9 Clinician and laboratory specialist 5

10 Resident in medical genetics 6

11 Clinician 3

12 Resident in medical genetics 1
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Conclusions

The aim of my thesis project was to leverage bottlenecks in genomic medicine using

bioinformatics and data science, and help pursue precision medicine adoption in

healthcare. For the teamwork achievements I described in this manuscript, I was

awarded the 2021 “Sabatier d’Espeyran” scientific prize in Montpellier, France

(https://www.ac-sciences-lettres-montpellier.fr/). I hope I succeeded in making my

contribution to spreading genomic medicine awareness in the community and

providing technical solutions to improve rare diseases’ patient care.

We provided for the community Genome Alert! semi-automated system for genomic

analysis reinterpretation that solves numerous diagnostics. Since Genome Alert!

publication, 621 different visitors from ten countries have visited the website, 1,683

read the publication and got its first citation in July 2022. Still, Genome Alert!

monitoring method of the ClinVar database represents a partial response to the

reinterpretation task of previous genomic analysis. It doesn’t cover all processes that

could improve sequencing data reinterpretation, such as upgrading the variant

detection pipeline to catch additional variant types from NGS or changing reference

genome 30. Of course, it will never be as efficient as a complete reinterpretation

performed by a clinical laboratory scientist. But I believe it provided a scalable and

affordable approach to tackle this challenge. Following this method based on the

data sharing community, the following steps will be to monitor other data sources of

clinical knowledge, such as the challenging PubMed literature in scientific articles.
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My main focus during this Ph.D. was computational phenotype analysis, as I believe

the expertise gathered around this thesis was unique to tackle this challenge.

The Monarch Initiative provides tremendous collective efforts to provide the Human

Phenotype Ontology and gather symptom-gene associations described in the

medical literature. Studies reported methods to identify the specificity of symptoms

to genes 70,71. These accomplishments provided significant progress in

computational phenotype analysis. However, with the current associations available

in databases, half of the symptoms declared in the collected cohort of clinical

descriptions were not considered. Several studies try to tackle fuzzy physicians’

phenotyping using semantic interrelationships between terms 66,72,73 to match clinical

descriptions to the knowledge database. In contrast to our approach, they rely on the

HPO architecture, which is ordered according to human development, so it may not

represent the interaction of symptoms in disease.

Inspired by medical inductive reasoning, we describe an original method that models

symptom interaction in the global spectrum of symptom-gene associations. This

model learned physicians’ phenotypic patterns, successfully handled heterogeneous

phenotyping, and provided an almost complete relationship between physicians’

clinical descriptions and medical literature knowledge.

I hope this work will open a whole new field in computational phenotype analysis,

helping to identify new genes in disease, expand their clinical spectrum and provide

an easily interpretable clinical decision support system. I’ll use this system in the

upcoming years to tackle new bottlenecks in variant interpretation and clinically

relevant group definition using the clinical phenotypes powered by symptom

interaction modeling.
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Thesis abstract

Rare diseases are individually rare but collectively frequent, with more than 7% of

living adults affected by one of the 6000 currently described diseases. An estimated

72% of rare diseases are genetic in origin. Since the next generation sequencing

(NGS) technology revolution, the rare diseases diagnosis bottleneck is no longer the

sequencing but the analysis of the massive amount of data produced. Despite

genome sequencing accessibility in clinical routine, the majority of patients suffering

from rare diseases are still undiagnosed. Using bioinformatics and data science, my

thesis project aimed to manage current bottlenecks of genomic medicine to improve

rare disease diagnoses. This manuscript is focused on two main projects I led during

this Ph.D. with SeqOne Genomics and CHU Grenoble Alpes.

First, I tackled the reinterpretation challenge of previous sequencing analysis that

remained unsolved. This reinterpretation was reported manually, and the lack of

human resources and automated methods made it difficult to apply in routine

diagnosis. Taking advantage of the collaborative and dynamic database ClinVar of

shared variant interpretation, we developed Genome Alert!, an open-source

automated method that monitors ClinVar and monthly reassesses variant

pathogenicity and symptom-gene associations. The re-interpretation of 4,929

analyses revealed 45 changes with potential clinical impact, leading to four

additional diagnoses. This work represents a first large validation study of an

automated sequencing data re-interpretation system that could become a standard

in genomic medicine.
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Lastly, I explored the clinical data computation challenge, aiming to improve the

medical coding or physician’s phenotyping use in genomic analysis. We report the

first study focusing on phenotyping practices in clinical sequencing analysis,

analyzing the records of 1,686 patients from four international groups. Despite the

adoption of a common standard called Human Phenotype Ontology, we found a

highly heterogeneous approach to phenotyping as regards the number and choice of

symptoms, even for the same patients. This fluctuating description is a major

challenge that has to be overcome to enable us to exploit the clinical data in medical

records. As an illustration, less than half (43%) of declared symptom-gene

associations in the cohort were covered in public databases.

Aiming to model the medical inductive reasoning that could explain the

heterogeneity of phenotyping across clinical observations, we developed methods

based on the association of symptoms with the same genetic disorder. Using graph

algorithms and collaborative filtering, we trained a symptom interaction model that

projects clinical descriptions in HPO format including 16,600 symptoms into the

dimension of interacting symptoms containing 390 groups and 1,131,886 pairs of

associated symptoms in diseases. This model uncovered the missing pieces of the

incomplete clinical descriptions puzzle, achieving 99.8% coverage of the medical

observations with knowledge in the medical literature. To evaluate its clinical

relevance, we applied this symptom interaction model to phenotype-driven gene

prioritization in the cohort and improved the diagnostic performance by 42 %

compared to the best current competitor. This method should enable discoveries in

precision medicine by standardizing clinical descriptions.
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With the work described in this manuscript, I hope I succeeded in making my

contribution to spreading genomic medicine awareness in the community and

providing technical solutions to improve rare diseases’ patient care.

1000 characters abstract :

Despite genome sequencing accessibility in clinical routine, a majority of patients

suffering from rare diseases are still undiagnosed. Using bioinformatics and data

science, my thesis project aimed to manage current bottlenecks of genomic

medicine in patient care to improve rare disease diagnoses.

First, I tackled the reinterpretation challenge of previous sequencing analysis that

remained unsolved. We developed a semi-automated method for reassessing variant

pathogenicity in the ClinVar database called Genome Alert! that solves numerous

diagnostics.

Lastly, I explored the clinical data computation challenge, aiming to improve the

medical coding or physician’s phenotyping use in genomic analysis. Here I described

the first analysis of phenotyping practices in a clinical sequencing setting and the

development of symptom interaction models in genetic diseases to provide

standardized clinical descriptions and interpretable phenotype matches between

symptoms and genes.
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Résumé de la thèse

Les maladies rares sont individuellement rares mais collectivement fréquentes. Plus

de 7% des adultes sont affectés dans le monde par l'une des 6000 maladies

actuellement décrites. 72 % des maladies rares sont d'origine génétique. Depuis

l’apparition du séquençage de nouvelle génération, le diagnostic des maladies rares

n'est plus limité par le séquençage en lui-même mais l'analyse des données

générées par le séquençage. Malgré l'accessibilité en routine clinique du séquençage

du génome, la majorité des patients souffrant de maladies rares restent sans

diagnostic. Mon projet de thèse visait à résoudre des défis actuels dans l'analyse du

séquençage pour améliorer le diagnostic des maladies rares. Ce manuscrit est axé

sur deux principaux projets que j'ai menés au cours de ce doctorat avec l'équipe de

SeqOne Genomics et le CHU Grenoble Alpes.

Premièrement, je me suis attaqué au problème de la réinterprétation des données de

séquençage de patients restés sans diagnostic. Cette étape de réinterprétation est

manuelle, et le manque de ressources humaines la rend difficile à réaliser en routine.

Nous avons développé Genome Alert!, une méthode automatisée et libre qui

monitore les changements dans la base de données de partage d'interprétation des

variants ClinVar. Ce monitoring permet de réévaluer mensuellement et

automatiquement la pathogénicité des variants et les gènes impliqués en maladies

humaines. La réinterprétation de 4 929 analyses avec cette méthode a révélé 45

changements ayant un impact clinique potentiel et a conduit à quatre diagnostics

supplémentaires. Ce travail représente la première validation à grande échelle d'un
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système automatisé de réinterprétation des données de séquençage qui pourrait

devenir un standard en médecine génomique.

En seconde partie, j'ai exploré le défi de la numérisation des données cliniques, avec

pour objectif d’améliorer l’utilisation du phénotypage (ou codage médical) des

cliniciens dans l'analyse génomique. Nous rapportons la première étude axée sur les

pratiques de phénotypage, en analysant 1 686 descriptions de patients provenant de

quatre groupes internationaux. Malgré l'adoption d'une norme commune appelée

Human Phenotype Ontology, nous avons constaté une approche très hétérogène du

phénotypage en ce qui concerne le nombre et le choix des symptômes, et ce même

pour les mêmes patients. Cette description fluctuante est un défi majeur qui doit être

surmonté pour nous permettre d'exploiter les données cliniques des dossiers

médicaux. En effet, moins de la moitié (43%) des associations symptôme-gène

déclarées dans la cohorte étaient retrouvées dans les bases de données publiques.

Dans le but de modéliser ce raisonnement médical inductif qui pourrait expliquer

l'hétérogénéité du phénotypage entre les observations cliniques, nous avons

développé des méthodes basées sur l'association conjointe de symptômes au sein

des maladies génétiques.

À l'aide d'algorithmes graphes, nous avons entraîné un modèle d'interaction des

symptômes en maladies génétiques qui projette les descriptions cliniques en format

HPO (16,600 symptômes) dans la dimension des symptômes en interaction

contenant 390 groupes et 1 131 886 paires de symptômes. Pour évaluer la

pertinence clinique de ce modèle, nous l’avons utilisé comme système de
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priorisation de gènes en fonction du phénotype et avons amélioré les performances

de priorisation de 42 % par rapport au meilleur concurrent actuel. Ce modèle devrait

permettre de nouvelles découvertes en médecine de précision par sa capacité à

exploiter des descriptions cliniques hétérogènes.

Au travers ce travail de thèse, j'espère avoir réussi à apporter ma pierre à l'édifice

pour sensibiliser à la médecine génomique dans la communauté médicale et fournir

des solutions techniques pour améliorer la prise en charge des patients atteints de

maladies rares.

Résumé de 1000 caractères :

Malgré l'accessibilité en routine du séquençage du génome, la majorité des patients

souffrant de maladies rares restent sans diagnostic. Mon projet de thèse avec

SeqOne Genomics et le CHU Grenoble Alpes visait à résoudre des défis de l'analyse

du séquençage pour améliorer le diagnostic des maladies rares.

Je me suis attaqué au problème de la réinterprétation des données de séquençage

de patients restés sans diagnostic. Nous avons mis au point la première méthode

semi-automatique de réévaluation de la pathogénicité des variants dans la base de

données ClinVar, appelée Genome Alert!, qui permet de résoudre de nombreux

diagnostics.

J'ai aussi exploré le défi de la numérisation des données cliniques, pour améliorer

l’utilisation du phénotypage (ou codage médical) dans l'analyse génomique. J'y

décris la première analyse des pratiques de phénotypage et le développement de

150



modèles d'interaction des symptômes dans les maladies génétiques afin d’obtenir

des descriptions cliniques standardisées.
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