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Mots clés : Champ B, Anomalies, Compactifications de cordes

Résumé : Cette thèse aborde certains as-
pects des compactifications perturbatives et non-
perturbatives des cordes. Pour le côté perturbatif,
nous étudions les compactifications de cordes hé-
térotiques et de type II sur deux classes de variété
plates à cinq dimensions (orbifolds) qui préservent
la moitié des supersymétries. Nous trouvons que les
cordes hétérotiques compactes sur ces deux classes
de variété sont équivalentes l’une à l’autre. L’équi-
valence des théories de cordes de type II com-
pactées sur ces deux classes de variété nécessite
des configurations de champs B supplémentaires.

Nous discutons de ces configurations de champs
B comme un mécanisme perturbatif de la singu-
larité gelée et nous le comparons avec le méca-
nisme non-perturbatif de la singularité gelée. Pour
le côté non-perturbatif, nous étudions la théorie
(F) M compactifiée sur des plis de Calabi-Yau 3-
folds (elliptiques) et soulignons les relations entre
les contraintes géométriques des plis de Calabi-Yau
3-folds elliptiques et certaines conditions de cohé-
rence récemment proposées pour les théories de
gravité quantique.
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Abstract : This dissertation discusses some as-
pects of perturbative and non-perturbative string
compactifications. On the perturbative side, we
study Heterotic and type II strings compactifica-
tions on flat five dimensional manifolds (orbifolds)
preserving half of the supersymmetries. By inclu-
ding non-trivial holonomy for Wilson lines. we de-
monstrate that Heterotic strng compactifications
on different classes of internal geometries can be
equivalent. Similar equivalence of type II string

theories compactifications requires additional B-
field configurations. We further discuss these B-
field configurations and show how they lead to
a perturbative freezing sigularities. On the non-
perturbative side, we study (F) M theory com-
pactifications on (elliptic) Calabi-Yau 3-folds and
point out the relations between the geometric
constraints of elliptic Calabi-Yau 3-folds and re-
cently proposed general consistency conditions for
theories of quantum gravity in six dimensions.
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Abstract

This dissertation discusses some aspects of perturbative and non-perturbative string compactifica-
tions. On the perturbative side, we study Heterotic and type II strings compactifications on flat five
dimensional manifolds (orbifolds) preserving half of the supersymmetries. By including non-trivial
holonomy for Wilson lines. we demonstrate that Heterotic strng compactifications on different
classes of internal geometries can be equivalent. Similar equivalence of type II string theories
compactifications requires additional B-field configurations. We further discuss these B-field con-
figurations and show how they lead to a perturbative freezing sigularities. On the non-perturbative
side, we study (F) M theory compactifications on (elliptic) Calabi-Yau 3-folds and point out the
relations between the geometric constraints of elliptic Calabi-Yau 3-folds and recently proposed
general consistency conditions for theories of quantum gravity in six dimensions.





Résumé

Cette thèse aborde certains aspects des compactifications perturbatives et non-perturbatives des
cordes. Pour le côté perturbatif, nous étudions les compactifications de cordes hétérotiques et de
type II sur deux classes de variété plates à cinq dimensions (orbifolds) qui préservent la moitié
des supersymétries. Nous trouvons que les cordes hétérotiques compactes sur ces deux classes de
variété sont équivalentes l’une à l’autre. L’équivalence des théories de cordes de type II compactées
sur ces deux classes de variété nécessite des configurations de champs B supplémentaires. Nous
discutons de ces configurations de champs B comme un mécanisme perturbatif de la singularité
gelée et nous le comparons avec le mécanisme non-perturbatif de la singularité gelée. Pour le côté
non-perturbatif, nous étudions la théorie (F) M compactifiée sur des plis de Calabi-Yau 3-folds
(elliptiques) et soulignons les relations entre les contraintes géométriques des plis de Calabi-Yau
3-folds elliptiques et certaines conditions de cohérence récemment proposées pour les théories de
gravité quantique.





Introduction

Currently superstring theory is the most promising framework of quantum gravity. The consis-
tent formulation of superstring theory requires a 10 dimensional spacetime so 6 dimensions must
be compactified. Furthermore, string compactification provides lots of exotic higher dimensional
theories, e.g. 6d (2, 0) SCFT, which shed new light on our current understanding of quantum
field theory. In this thesis, we investigate both perturbative and non-perturbative aspects of string
compactifications.

In the perturbative string compactifications, we apply standard worldsheet CFT analysis. What
we find is that stringy T-duality relates two different spacetime backgrounds, one is smooth and the
other one is singular: We find that Heterotic string compactified on these two classes of manifolds are
equivalent to each other, while equivalence of type II string theories compactified on these two classes
of manifolds requires additional flat B-field configurations. We further discuss the connections
between these flat B-field configurations and the flat Ramond-Ramond field configurations studied
in [24]

In the non-perturbative string setup, we study (F) M theory compactified on (elliptic) Calabi-
Yau 3-folds (CY3), whose low energy supergravity description depends on the internal geometric
strucutre. We first study BPS strings in the supergravity theories and single out the "supergravity
strings" from the BPS string spectrum. By applying both the geometric constraints arising from
elliptic CY3 [82] and unitarity constraints proposed in [92] to these "supergravity strings", we find
the relations between the geometrical and physicial constraints.

Perturbative string compactification

In this part we will be mostly concerned with orbifold conformal theories and the associated
string compactifications.

Much of the fascination with orbifold compactification on Y/G comes from the presence of
singular points, which correspond to points in Y fixed by the action of G [11, 12]. Despite these
singularities, the string theory on Y/G can be perfectly well-defined, and computations of various
quantities from the worldsheet perspective have lead to important insights into geometry, such as
the notion of stringy Hodge numbers and finer cohomological structures on orbifolds and algebraic
varieties (e.g. see [13] for an introduction).

The study of orbifolds has also led to insights into the moduli space of string compactifications,
for example by showing that certain limits of compactification on smooth manifolds such as K3 or
a Calabi-Yau 3-fold where the geometry becomes singular can nevertheless be understood entirely
in perturbative string theory. In addition, orbifolds have provided insights into non-trivial dualities
such as mirror symmetry. They have also been used extensively in string phenomenology, and
there are impressive classification results, such as the description of all symmetric orbifolds of the
six-torus T6 that preserve spacetime supersymmetry [14].

In recent years orbifolds of toroidal compactifications have received renewed interest in rela-
tion to the swampland program; see, for example, [15–20]. This recent work involves asymmetric
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orbifolds that acts on the toroidal geometry by shifts, while having a non-trivial action on the
gauge sector. The results provide important insights into the various disconnected components
in the moduli space of toroidal compactification that generalize the CHL construction [21, 22]
and are intimately related to the study of heterotic compactifications with non-trivial flat connec-
tions [23, 24] and related type II/M-theory/F-theory constructions with background RR fluxes and
frozen singularities [25, 26]. It will be interesting to extend these efforts to cases with less space-
time supersymmetry, where classification will be even more challenging, but also the physics will
be richer. Our work is just a small indication of some of the interesting structures that emerge in
this larger setting.

In this part we begin our study with 5-dimensional compactifications on X5 = T5/G that
preserve half of spacetime supersymmetry, and where G = ZN acts freely on T5.1 To obtain a free
and supersymmetric action, we write T5 = T4×S1, and choose G to have a supersymmetric action
on T4, so that T4/G has holonomy ZN ⊂ SU(2). The orbifold X5 is nevertheless smooth because
the action on T4 is combined with an order N shift on the 5-th circle.

Since these spaces lack fixed points, we can access their physics from both supergravity and
worldsheet perspectives, and that allows us to uncover a number of their properties. For example,
we discuss how we can interpret these compactifications from a six-dimensional spacetime point
of view: it is possible to think of the theories as S1 compactifications of a 6-dimensional theory,
where a holonomy is turned on for a discrete ZN gauge symmetry; the holonomy breaks half of
the supersymmetry and modifies the spectrum in other ways. This point of view should be useful
in fitting these compactifications in the framework of F-theory/type II — heterotic duality, for
example along the lines explored in [28, 29].

Second, we show that in heterotic string theory these compactifications are dual to more familiar
compactifications on T4/G × S1 and are therefore connected to conventional compactification on
K3. That this should be the case was already suggested in [30], and we are able to establish the
claim beyond an analysis of massless spectrum. We also note that the duality exchanges spaces
with different topologies, thus providing another example of stringy geometry relating topologically
distinct geometries.

The equivalence we establish is based on the observation that there are orbifold actions on the
T5 worldsheet CFT, G1 ' G and G2 ' G that are related by a conjugation: there is an element
t ∈ O(21, 5,Z) that gives an isomorphism t : G1 → G2, with t : g 7→ t−1gt. While the quotient
by G1 leads to the smooth geometry X5, the quotient by G2 leads to T4/G × S1. The induced
isomorphism on the moduli of the two CFTs acts as a T-duality on the radius of the non-trivial S1

in combination with a shift of the Wilson line parameters by a lattice vector.
It is then natural to interpret the isomorphism as a T-duality of the X5 CFT, but there is a

subtlety in applying the standard paradigm of Buscher rules for a non-linear sigma model, despite
the fact that the X5 CFT can be perfectly well described by a large radius non-linear sigma model.
The trouble is that the natural circle fibration structure

S1 X5

B

has B = T4/G, i.e. the base is singular! Our results indicate that T-duality extends to such singular
fibrations, with the benefit of enlarging the possibilities for topology change via T-duality beyond
those discussed in the context of principal torus bundles over smooth manifolds, e.g. in [31, 32].

1As the recent work [27] indicates, if one is willing to abandon spacetime supersymmetry, then compact flat
manifolds already become interesting in compactifications to 7 dimensions.
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Next, we consider these backgrounds in the context of type II string theory compactification
and find that compactification on X5 is T-dual to compactification on T4/G× S1 equipped with a
topologically non-trivial flat B-field gerbe.

At the level of the orbifold CFT this illustrates, along the lines described in [33], that the gerbe
data gives a natural geometric meaning to certain shift orbifold phases. One example of such phases
is a choice of discrete torsion [34, 35], but these are absent in all of our examples.

Non-perturbative string compactification

Local anomaly cancellation is not the only consistency condition one can impose on six-
dimensional minimal supergravities. A more recently developed criterion is based on the com-
pleteness conjecture of the spectrum of the charged BPS objects in supergravity theories. In six
dimensions, there are string-like BPS objects that cannot be consistently decoupled from gravity
(we shall follow [92, 93] and call them “supergravity strings”), provided certain conditions on their
charges are satisfied. These will be spelled out in Section 5.4. These BPS strings support two-
dimensional (0, 4) superconformal theories on the worldsheet, whose central charges are completely
fixed by the bulk anomaly cancellation, i.e. the coefficients of different couplings in GS terms. They
couple to the gauge fields in the bulk for gauge group G =

∏
iGi, and hence the unitarity of the

worldsheet theory requires that the total central charge associated with the current algebras of Gi
is not larger than the left moving central charge:∑

i

c(Gi) ≤ cL (0.0.1)

The consequences of this bound for six-dimensional theories have been analysed in [92]. In contrast,
the five-dimensional theories, even those that are obtained from a circle reduction, have a different
way of packaging the information, and the expression for the (0, 4) central charges is rather different.
We find that the five-dimensional view on the supergravity strings is somewhat more convenient and
leads to constraints that are slightly more stringent. Interestingly, for the theories that come from a
circle reduction the constraints are still associated with the (reduced) six-dimensional supergravity
strings rather than strings carrying KK charges.2

Of course, it is natural to compare any ostensibly consistent minimally supersymmetric theory
in six dimensions to F-theory constructions. In addition to the requirements imposed by physical
considerations, these are subject to additional constraints that are associated with the geometry of
elliptic fibrations. These constraints can be formulated either in terms of the data of the effective
theory or in geometrical language. In the F-theory picture, the non-Abelian gauge groups Gi arise
from D7-branes wrapping singular gauge divisors Si in the base manifold B. The CY condition,
i.e. the triviality of the canonical bundle of the elliptic fibration, relates K, the canonical divisor
of B, to the locus of singular fibers. In addition the Kodaira positivity condition (KPC) states
that a residual divisor Y = −12K −

∑
i xiSi should be effective. The coefficients xi are given by

the vanishing order of the discriminant on Si. These can be found in Table 1 in Section 6.3. In
particular this means the non-negativity of the intersection

D · (−12K −
∑
i

xiSi) = D · Y ≥ 0, (0.0.2)

2Based on the anomaly inflow and local counterterms in the bulk, we can see a mismatch of BPS string spectrum
in 6d and 5d supergravities, as discussed in Section 5.1. As we shall argue this is explained by noticing that the 5d
BPS strings, carrying KK charges, are lifted to certain geometric background (Taub-NUT space) that preserves half
of the supersymmetry rather that BPS strings in 6d supergravity.
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for any nef divisor D (nef divisors, by definition, intersect every effective divisor non-negatively).
The supergravity strings in F-theory models originate from D3-branes wrapping D.

The unitarity conditions (UC) are formulated directly in terms of the data of the effective
theory. Assuming that there is an underlying elliptic CY3 the five-dimensional UC that we derive
here can be geometrised, and cast as bound on intersection forms with any nef divisor D. It can
also be reformulated as an extra constraint on the residual divisor Y :

D · Y ≥ 3−
∑
i

(xi − yi)D · Si , (0.0.3)

where yi = dimGi

1+h∨i
and h∨i is the dual Coxeter number of Gi. Comparative values of xi and yi (as

we shall see for any group Gi, xi − yi ≥ 1) and the details of the analysis of the condition (0.0.6)
can be found in Section 6.3.2. A word of caution is due. This is the strongest form of the unitarity
constraint, where the value of the coefficients yi has been computed under the assumption that
D ·Si = 1 holds. In the vast majority of cases this bound is automatically satisfied if (0.0.5) holds.
If it is violated, the validity of D · Si = 1 needs to be checked before concluding that UC indeed
imposes additional constraints on the residual divisor Y . In Section 6.3.3.1 we catalogue all the
cases where UC imposes extra constraints.

Notice that an example where the implications of six-dimensional UC were stronger than those
imposed by KPC was already presented in [92]. We find that in generic situations 5d UC is more
constraining than 6d UC and has the advantage of being cast in a form directly comparable to KPC.
In general it is less constraining than KPC, and hence can be useful in delineating the boundaries
of the region between the six-dimensional F-theory models and the swampland (which is likely to
contain a finite number of theories [94]). The fact that it does in special situations impose additional
constraints allows for the intriguing possibility of finding more refined structure in elliptic CY3 with
certain singularity structures. Both cases would deserve further study.

Structure

This thesis is divided into three parts and it is organized as follows:
The first part consists of two chapters. In the first chapter we give a brief introduction to

perturbative string theory formulation, we discuss the 5 most common superstring theories and
address their properties. We point out that these 5 different superstring theories are in fact closely
connected to each other by duality web. In the second chapter we introduce two non-perturbative
formulations of string theory, M and F theory. We introduce some methods and ideas through
examples in M and F theory framework that will be applied and explored in the second and thrid
part, e.g. anomaly inflow, MSW string, frozen singularity, etc..

The second part studies perturbative string compactification. We first introduce two classes
of flat five dimensional manifolds (orbifolds) that preserve half supersymmetry. Then we study
Heterotic and type II string compactifications on these two classes of manifolds and discuss their
connections. We found Heterotic string compactifies on these two classes of manifolds are equivalent
to each other through T-duality. This equivalence in type II string compactifications requires
additional data, no-trivial flat B-field configuration. We point out that the non-trivial flat B-field
configuration may provide one perturbative interpretation of frozen singularity.

The last part focus on non-perturbative string compactifications, i.e. (F) M theory compacti-
fied on (elliptic) CY3. F theory compactified on elliptic CY3 gives a sunset of the infinite families
of 6d anomaly free supergravity theories with 8 supercharges. Some consistency conditions based
on extended objects of these supergravity theories (BPS strings) has been proposed to rule out
infinite families of 6d supergravity theories [92, 94]. We examine these conditions in the F theory
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compactification framework and point out the relations between this consistency condition and one
geometric condition of elliptic CY3.

Notes added

This thesis is based on two papers [115, 144]. Part I is a review of relevant background and
techniques.

Part II is based on [144]. In this paper we showed the moudli space of Heterotic strings
compactified on two different geometries are connected to each other by T-duality, verifies the low
energy observations made by [30]. We also studied the relevant T-duality in type IIA framework
and demonstrated their T-dual are equivariant gerbes by constructing the precise group actions
on the spacetime gerbe background. The applications to freezing singularities and correspondence
spaces are discussed.

Part III is based on [115]. In this paper we investigated the perturbative anomalies in odd
dimensional theory from circle compactification of an even dimensional anomalous one. Addition-
ally, we also studied the spectrum of BPS strings in 5d/6d supergravity with 8 supercharges and
suggested one way to match them in context of circle compactification. We also showed the rela-
tionship between the Kodaira condition [82] and the unitarity condition [92] by compactfying 6d
supergravity on a circle.





Synthèse en français

De nos jours, la théorie des supercordes est le cadre le plus prometteur de la gravité quantique. La
formulation cohérente de la théorie des supercordes nécessite un espace-temps à 10 dimensions, de
sorte que 6 dimensions doivent être compactifiées. De plus, la compactification des cordes permet
d’obtenir de nombreuses théories exotiques de plus haute dimension, par example des théorie de
champ supraconforme à 6 dimensions avec supersymétrie (2,0), qui jettent de nouvelles lumières sur
notre compréhension actuelle de la théorie quantique des champs. Dans cette thèse, nous étudions
les aspects perturbatifs et non-perturbatifs des compactifications de cordes.

Dans les compactifications perturbatives des cordes, nous appliquons l’analyse standard de
la théorie des champs conformes aux surfaces d’univers. Nous avons découvert que la T-dualité
des cordes relie deux arrière-plans spatiaux différents, l’un est lisse et l’autre est singulier : Nous
constatons que les compactification de cordes hétérotiques sur ces deux classes de variété sont
équivalentes l’une à l’autre, tandis que l’équivalence des théories de cordes de type II sur ces deux
classes de variété nécessite des configurations de champs B plats supplémentaires. Nous discutons
en outre des connexions entre ces configurations de champs B plats et les configurations de champs
Ramond-Ramond plats étudiées en [24].

Dans le cadre de la configuration non-perturbative des cordes, nous étudions la théorie (F) M
compacte sur les (elliptiques) Calabi-Yau de dimension 3 (CY3), dont la description de supergravité
à basse énergie dépend de la structure géométrique interne. Nous étudions d’abord les cordes BPS
dans les théories de supergravité, puis nous distinguons les "cordes de supergravité" du spectre des
cordes BPS. En appliquant à la fois les contraintes géométriques issues de l’ellipse de CY3 et de la
supergravité [82] et les contraintes d’unitarité proposées dans [92] à ces "cordes de supergravité",
nous trouvons les relations entre les contraintes géométrique et physiques.

Compactification perturbative des cordes

Dans cette partie, nous nous intéresserons principalement aux théories conformes aux orbifolds
et aux compactifications de cordes associées.

Une grande partie de la fascination exercée par la compactification des orbifolds sur Y/G
provient de la présence de points singuliers, qui correspondent aux points de Y fixés par l’action
de G [11, 12]. Malgré ces singularités, la théorie des cordes sur Y/G peut être parfaitement bien
définie, et les calculs de diverses quantités du point de vue de la surface d’univers ont conduit
à d’importantes découvertes en géométrie, comme la notion de nombres de Hodge "stringy" et de
structures cohomologiques plus fines sur les orbifolds et les variétés algébriques (voir par exemple [13]
pour une introduction).

L’étude des orbifolds a également permis de mieux comprendre l’espace des modules des com-
pactifications de cordes, par exemple en montrant que certaines limites de la compactification sur
des variété lisses tels que K3 ou un Calabi-Yau 3-folds où la géométrie devient singulière peuvent
néanmoins être entièrement comprises dans la théorie perturbative des cordes. En outre, les orb-
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ifolds ont permis de comprendre des dualités non triviales telles que la symétrie miroir. Ils ont
également été largement utilisés en phénoménologie des cordes, et il existe des résultats de classifi-
cation impressionnants, tels que la description de tous les orbifolds symétriques du six-torus T6 qui
préservent la supersymétrie de l’espace-temps [14].

Ces dernières années, les orbifolds des compactification toroïdales ont reçu un regain d’intérêt
en relation avec le programme de "Swampland" ; voir, par exemple, [15–20]. Ce travail récent
implique des orbifolds asymétriques qui agissent sur la géométrie toroïdale par décalages, tout en
ayant une action non triviale sur le secteur de jauge. Les résultats fournissent un aperçu important
des diverses composantes déconnectées dans l’espace modulaire de la compactification toroïdale qui
généralisent la construction CHL [21, 22] et sont intimement liées à l’étude des compactifications
hétérotiques avec des connexions plates non triviales [23, 24] et des constructions connexes de type
II/M-théorie/F-théorie avec des flux RR d’arrière-plan et des singularités gelées [25, 26]. Il sera
intéressant d’étendre ces efforts à des cas avec moins de supersymétrie spatio-temporelle, où la
classification sera encore plus difficile, mais aussi la physique sera plus riche. Notre travail n’est
qu’une petite indication de certaines des structures intéressantes qui émergent dans ce cadre plus
large.

Dans cette partie, nous commençons notre étude avec des compactifications à 5 dimensions sur
X5 = T5/G qui préservent la moitié de la supersymétrie de l’espace-temps, et où G = ZN agit
librement sur T5. 3 Pour obtenir une action libre et supersymétrique, nous écrivons T5 = T4 × S1,
et choisissons G pour avoir une action supersymétrique sur T4, de sorte que T4/G a une holonomie
ZN ⊂ SU(2). L’orbifold X5 est néanmoins lisse car l’action sur T4 est combinée avec un décalage
d’ordre N sur le 5-ième cercle. Malgré l’absence de points fixes, qui conduisent à une grande partie
de la structure intéressante dans la compactification des orbifolds, ces exemples sont des géométries
de cordes non triviales, et leur simplicité nous permet d’avoir un aperçu et de tirer des leçons qui
devraient s’appliquer à des contextes plus généraux.

Comme ces espaces n’ont pas de points fixes, nous pouvons accéder à leur physique à la fois
du point de vue de la supergravité et du point de vue des surface d’univers, ce qui nous permet de
découvrir un certain nombre de leurs propriétés. Par exemple, nous discutons de la manière dont
nous pouvons interpréter ces compactifications du point de vue d’un espace-temps à six dimensions
: il est possible de considérer les théories comme des compactifieés S1 d’une théorie à 6 dimensions,
où une holonomie est activée pour une symétrie de jauge discrète ZN ; l’holonomie brise la moitié
de la supersymétrie et modifie le spectre d’autres manières. Ce point de vue devrait être utile
pour insérer ces compactifications dans le cadre de la F-théorie/type II — dualité hétérotique, par
exemple selon les lignes explorées dans [28, 29].

Deuxièmement, nous montrons que dans la théorie hétérotique des cordes, ces compactifica-
tions sont duales aux compactifications plus familières sur T4/G× S1 et sont donc connectées à la
compactification conventionnelle sur K3. L’idée que ce soit le cas a déjà été suggérée dans [30], et
nous sommes capables d’établir cette affirmation au-delà d’une analyse du spectre sans masse. Nous
notons également que la dualité échange des espaces avec des topologies différentes, fournissant ainsi
un autre exemple de géométrie "stringy" reliant des géométries topologiquement distinctes.

L’équivalence que nous établissons est basée sur l’observation qu’il existe des actions orbitales
de T5 sur la CFT à surfaces d’univers, G1 ' G et G2 ' G qui sont liées par une conjugaison : il
existe un élément t ∈ O(21, 5,Z) qui donne un isomorphisme t : G1 → G2, avec t : g 7→ t−1gt. Alors
que le quotient par G1 conduit à la géométrie lisse X5, le quotient par G2 conduit à T4/G × S1.
L’isomorphisme induit sur les modules des deux CFTs agit comme une dualité T sur le rayon du S1

non triviale en combinaison avec un décalage des paramètres de la ligne de Wilson par un vecteur
de réseau.

3Comme l’indique le travail récent [27], si l’on est prêt à abandonner la supersymétrie de l’espace-temps, alors les
variété plates compactes deviennent déjà intéressantes dans les compactifications à 7 dimensions.
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Il est alors naturel d’interpréter l’isomorphisme comme une T-dualité de la CFT X5, mais il y a
une subtilité dans l’application du paradigme standard des règles de Buscher pour un modèle sigma
non linéaire, malgré le fait que la X5 peut être parfaitement bien décrite par un modèle sigma non
linéaire à grand rayon. Le problème est que la structure de fibration du cercle naturel

S1 X5

N B

a B = T4/G, c’est-à-dire que la base est singulière ! Nos résultats indiquent que la T-dualité s’étend
à de telles fibrations singulières, avec l’avantage d’élargir les possibilités de changement de topologie
via la T-dualité au-delà de celles discutées dans le contexte des faisceaux de torus principaux sur
des variété lisses, par exemple dans [31, 32].

Ensuite, nous considérons ces fonds dans le contexte de la compactification de la théorie des
cordes de type II et trouvons que la compactification sur X5 est T-dual à la compactification sur
T4/G× S1 équipée d’un gerbe de champs B topologiquement non-trivial et plat.

Au niveau de la CFT orbifold, ceci illustre, selon les lignes décrites dans [33], que les données
du gerbe donnent une signification géométrique naturelle à certaines phases orbifoldes de décalage.
Un exemple de telles phases est un choix de torsion discrète [34, 35], mais celles-ci sont absentes
dans tous nos exemples.

Compactification non perturbatrice des cordes

L’annulation de l’anomalie locale n’est pas la seule condition de cohérence que l’on peut imposer
aux supergravités minimales à six dimensions. Un critère développé plus récemment est basé sur
la conjecture de complétude du spectre des objets BPS chargés dans les théories de supergravité.
En six dimensions, il existe des objets BPS de type corde qui ne peuvent pas être découplés de la
gravité de manière cohérente. (nous suivrons [92, 93] et les appellerons "cordes de supergravité"),
à condition que certaines conditions sur leurs charges soient satisfaites. Celles-ci seront expliquées
dans la section 5.4. Ces cordes BPS supportent des théories supraconformes bidimensionnelles (0, 4)

sur la surface d’univers. sur le worldsheet, dont les charges centrales sont complètement fixées par
l’anomalie intérievre. complètement fixées par l’annulation de l’anomalie de masse, c’est-à-dire les
coefficients des différents couplages en termes GS. Elles se couplent aux champs de jauge dans le
bulk pour le groupe de jauge G =

∏
iGi, et donc l’unicité de la théorie du worldsheet exige que la

charge centrale totale associée aux algèbres de courant de Gi ne soit pas plus grande que la charge
centrale "left moving" : ∑

i

c(Gi) ≤ cL (0.0.4)

Les conséquences de cette limite pour les théories à six dimensions ont été analysées dans [92]. En
revanche les théories à cinq dimensions, même celles qui sont obtenues à partir d’une réduction
du cercle, ont une manière différente de grouper l’information, et l’expression pour les charges
centrales (0, 4) est plutôt différente. Nous constatons que la vision à cinq dimensions des cordes de
la supergravité est un peu plus pratique et conduit à des contraintes légèrement plus strictes. Il est
intéressant de noter que pour les théories qui proviennent d’une réduction circulaire, les contraintes
sont toujours associées aux cordes de supergravité à six dimensions (réduites) plutôt qu’aux cordes
portant des charges KK. 4

4Sur la base du flux entrant d’anomalies et des contre-termes locaux dans la masse, nous pouvons constater une
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Bien sûr, il est naturel de comparer toute théorie ostensiblement cohérente minimalement su-
persymétrique en six dimensions aux constructions de la F-théorie. En plus des exigences imposées
par les considérations physiques, celles-ci sont soumises à des contraintes supplémentaires qui sont
associées à la géométrie des fibrations elliptiques. Ces contraintes peuvent être formulées soit en
termes de données de la théorie effective, soit en langage géométrique. Dans l’image de la théorie
F, les groupes de jauge non abéliens Gi proviennent de D7-branes enveloppant des diviseurs de
jauge singuliers Si dans la variété de base B. La condition CY, c’est-à-dire la trivialité du fais-
ceau canonique de la fibration elliptique, relie K, le diviseur canonique de B, au locus des fibres
singulières. En outre, la condition de positivité de Kodaira (KPC) stipule qu’un diviseur résiduel
Y = −12K −

∑
i xiSi doit être effectif. Les coefficients xi sont donnés par l’ordre d’annulation

du discriminant sur Si. Celles-ci peuvent être trouvées dans le tableau 1 de la section 6.3. En
particulier, cela implique la non-négativité de l’intersection

D · (−12K −
∑
i

xiSi) = D · Y ≥ 0, (0.0.5)

pour tout nef diviseur D (les nef diviseurs, par définition, intersectent chaque diviseur effectif de
manière non négative). Les cordes de supergravité dans les modèles de F-théorie proviennent de
D3-branes enveloppant D.

Les conditions d’unitarité (UC) sont formulées directement en termes de données de la théorie
effective. En supposant qu’il existe un CY3 elliptique sous-jacent, les UC à cinq dimensions que nous
dérivons ici peuvent être géométrisées, et exprimées comme une limite sur les formes d’intersection
avec n’importe quel nef diviseur D. Elle peut également être reformulée comme une contrainte
supplémentaire sur le diviseur résiduel Y :

D · Y ≥ 3−
∑
i

(xi − yi)D · Si , (0.0.6)

où yi = dimGi

1+h∨i
et h∨i est le nombre de Coxeter dual de Gi. Les valeurs comparées de xi et yi (comme

on le verra pour tout groupe Gi, xi−yi ≥ 1) et les détails de l’analyse de la condition (0.0.6) peuvent
être trouvés dans la section 6.3.2. Un mot d’avertissement s’impose. Il s’agit de la forme la plus
forte de la contrainte d’unitarité, où la valeur des coefficients yi a été calculée en supposant que
D · Si = 1 existe. Dans la grande majorité des cas, cette contrainte est automatiquement satisfaite
si (0.0.5) tient. Si elle est violée, la validité de D ·Si = 1 doit être vérifiée avant de conclure que UC
impose effectivement des contraintes supplémentaires sur le diviseur résiduel Y . Dans la section
6.3.3.1, nous répertorions tous les cas où l’UC impose des contraintes supplémentaires.

Remarquez qu’un exemple où les implications de l’UC à six dimensions étaient plus fortes que
celles imposées par KPC a déjà été présenté dans [92]. Nous constatons que, dans des situations
génériques, les UC 5d sont plus contraignantes que les UC 6d et ont l’avantage d’être formulées dans
une forme directement comparable à la KPC. En général, elle est moins contraignante que la KPC,
et peuvent donc être utile pour délimiter. Les limites de la région entre les modèles de la théorie
F à six dimensions et le "Swampland" (qui est susceptible de contenir un nombre fini de théories).
théories [94]). Le fait qu’elle impose, dans des situations particulières, des contraintes additionnelles,
permet d’envisager la possibilité de trouver une structure plus raffinée dans les CY3 elliptiques avec
certaines structures de singularités. Les deux cas mériteraient une étude plus approfondie.

discordance du spectre des cordes BPS dans les supergravités 6d et 5d, comme discuté dans la section 5.1. Comme
nous le verrons, cela s’explique par remarquant que les cordes BPS 5d, portant des charges KK, sont élevées à un
certain fond géométrique (espace Taub-NUT) qui préserve la moitié de la supersymétrie plutôt que la moitié de la
supersymétrie. la moitié de la supersymétrie plutôt que les cordes BPS dans la supergravité 6d.
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Structure

Cette thèse est divisée en trois parties et s’articule comme suit:
La première partie est composée de deux chapitres. Dans le premier chapitre, nous donnons

une brève introduction à la formulation perturbative de la théorie des cordes, nous discutons les
5 théories des supercordes les plus courantes et nous abordons leurs propriétés. Nous soulignons
que ces 5 différentes théories des supercordes sont en fait étroitement liées les unes aux autres
par le réseau de dualités. Dans le deuxième chapitre, nous introduisons deux formulations non-
perturbatives de la théorie des cordes, la théorie M et la théorie F. Nous introduisons quelques
méthodes et idées à travers des exemples dans le cadre des théories M et F qui seront appliquées
et explorées dans la seocde et troisième partie, par exemple l’influx d’anomalie, la corde MSW, la
singularité gelée, etc.

La deuxième partie étudie la compactification perturbative des cordes. Nous introduisons
d’abord deux classes de variété plates à cinq dimensions (orbifolds) qui préseveraient la demi-
super-symétrie. Nous étudions ensuite les compactifications de cordes hétérotiques et de type II sur
ces deux classes de variété et discutons de leurs connexions. Nous avons trouvé que les compacités
de cordes hétérotiques sur ces deux classes de variétés sont équivalentes l’une à l’autre grâce à la
dualité T. Cette équivalence dans les compacités de cordes de type II nécessite une donnée supplé-
mentaire, la configuration non triviale du champ B plat. Nous soulignons que la configuration plate
non triviale du champ B peut fournir une interprétation perturbative de la singularité gelée.

La dernière partie se concentre sur la compactification non-perturbative des cordes, c’est-à-dire
la compactification de la théorie (F) M sur CY3 (elliptique). La théorie F compacte sur CY3 ellip-
tique donne un coucher de soleil des familles infinies de théories de supergravité 6d sans anomalie
avec 8 supercharges. Certaines conditions de cohérence basées sur des objets étendus de ces théories
de supergravité (cordes BPS) ont été proposées pour exclure les familles infinies de théories de su-
pergravité 6d [92, 94]. Nous examinons ces conditions dans le cadre de la compactification de la
théorie F et soulignons les relations entre cette condition de cohérence et une condition géométrique
du CY3 elliptique.

Notes ajoutées

Cette thèse est basée sur deux articles [115, 144]. La partie I est une revue du contexte et des
techniques pertinentes.

La partie II est basée sur [144]. Dans cet article, nous avons montré que l’espace moudli des
cordes hétérotiques compactées sur deux géométries différentes sont reliées entre elles par la dualité
T, vérifie les observations à basse énergie faites par [30]. Nous avons également étudié les T-dualités
pertinentes dans le cadre du type IIA et démontré que leurs T-duels sont des gerbes équivariantes en
construisant les actions de groupe précises sur le fond de gerbe de l’espace-temps. Les applications
aux singularités gelées ("frozen singularities") et aux espaces de correspondance sont discutées.

La partie III est basée sur [115]. Dans cet article, nous avons étudié les anomalies perturbatives
dans la théorie de dimension impaire à partir de la compactification circulaire d’une théorie anomale
de dimension paire. De plus, nous avons également étudié le spectre des cordes BPS dans la super-
gravité 5d/6d avec 8 supercharges et suggéré une façon de les faire correspondre dans le contexte
de la compactification circulaire. Nous avons également montré la relation entre la condition de
Kodaira [82] et la condition d’unitarité [92] en compactant la supergravité 6d sur un cercle.





Part I

Some perturbative and
non-perturbative aspects of string

theory





15

Chapter 1

Peturbative string theory

In this chapter we provide some elementary discussion of the formulation of perturbative string
theory, i.e. 2d conformal field theories (CFTs) describe strings propagate in target spacetime. We
start with general features of 2d CFT and then briefly introduce the CFTs that give rise to 5
superstring theories. We end this section by pointing out these 5 string theories are connected to
each other by duality web.

1.1 2d CFT

1.1.1 Conformal symmetry in 2 dimensions

Generically quantum field theory (QFT) is hard to study roughly due to its infinite degrees of
freedom. Here is one easiest example:

Example: φ4 theory on R3,1 Consider a real scalar field theory on Mikowski space time R3,1,
its largarangian is:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4 (1.1.1)

canonical quantization tells us for every x, y ∈ R3 we have:

[φ(x, t), φ̇(y, t)] = iδ3(x− y) (1.1.2)

In other words, every point the space will be associated with a dynamical degree of freedom, hence
infinite overall.

Despite general difficulties one may encounter in studying QFT, many times symmetries help
us derive non-trivial conclusions. Here we are going to discuss one special kind of symmetry that
emerged at the end of many renomalization group flows (RG flow): conformal symmetry.

Conformal symmetry Conformal symmetry acts on the manifold (M, g) (g is the metric on the
manifold M) that QFT is formulated on, it acts in the following way:

ρ : (M, g)→ (M,ρ∗g) = (M, e2σg) (1.1.3)

where σ is a function on M . Locally this can be expressed as:

g′ρσ (x′)
∂x′ρ

∂xµ
∂x′σ

∂xv
= e2σ(x)gµv(x), x′ = ρ(x) (1.1.4)
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Now put M = Rd and g is chosen to be the standard Eucldean metric gE . For an infinitesimal
conformal transformation x′ = x+ ε(x), we have:

∂µεν + ∂νεµ =
2

d
(∂ · ε)gEµν (1.1.5)

Hit both sides by ∂ν and sum over index ν, we get:

(gEµν�+ (d− 2)∂µ∂ν) (∂ · ε) = 0 (1.1.6)

From this, we see conformal symmetry in 2 dimension is special [1]. 1.1.6 tells us that the conformal
algebra on space Rp,q with p+q ≥ 2 is a finite dimensional lie algebra so(p+1, q+1). For conformal
algebra of R2, it is convenient to treat it as C by setting z = x1 + ix2. Then the solution of 1.1.6
is:

ε1(x, y) + iε2(x, y) = ε(z) (1.1.7)

ε(z) =
∑
n∈Z

εn
(
−zn+1

)
, ε̄(z̄) =

∑
n∈Z

ε̄n
(
− ¯zn+1

)
(1.1.8)

So the generators of 2d conformal algebra are: ln = −zn+1∂z and l̄n = −z̄n+1∂z. This algebra
is infinite dimensional and is the double copies (holomorphic and anti-holomorphic )of Witt algebra:

Witt algebra and 2d conformal algebra

• Witt algebra:
[lm, ln] = zm+1∂z

(
zn+1∂z

)
− zn+1∂z

(
zm+1∂z

)
= (n+ 1)zm+n+1∂z − (m+ 1)zm+n+1∂z

= −(m− n)zm+n+1∂z

= (m− n)lm+n

(1.1.9)

• 2d conformal algebra:
[lm, ln] = (m− n)lm+n[
l̄m, l̄n

]
= (m− n)l̄m+n[

lm, l̄n
]

= 0

(1.1.10)

The infinite dimensional nature makes 2d CFT can be studied algebraically, i.e. study the repre-
sentations of this symmetry algebra ( we only consider unitarity representations).

In quantum physics , symmetry group is realized on Hilbert space projectively. Translates into
algebra level, the relevant symmetry algebra should be the central extension of Witt algebra.

Central extension of Witt algebra: Virasoro algebra The central extension of an Lie algebra
g is classified byH2(g,C). For Witt algebraH2(Witt,C) = C, which means there is only one central
extension, the Virosoro algebra:

[Lm, Ln] = (m− n)Lm+n + δm,−n
ĉ

12

(
m3 −m

)
(1.1.11)

Here ĉ is a generator in the Virasoro algebra, it gives a complex number when it acts on the modules
of Virasoro algebra.

We end this subsection by addressing a few points:



1.2. String theory CFTs 17

• Virasoro algebra is the minimal symmetry algebra for 2d CFTs. Generally 2d CFTs could
have a larger symmetry algebra, which the Virasoro algebra is embedded into, e.g. current
algebra, superconformal algebra etc...

• The eigenvalues of ĉ on physical Hilbert space of 2d CFTs are constrained by centain properties
of 2d CFTs. For example, unitarity would require the eigenvalues of ĉ is real and non-negative.

• To define a good 2d CFT, Virasoro algebra itself is not enough, we also need to impose
modularity.

• For CFTs, there is a nice one to one correspondence between local operators and physical
states. This is not true in general QFTs.

1.2 String theory CFTs

String theory requires the central charge of the underlie 2d CFT should be 26 for bosonic case and
15 for fermionic case. In this section we briefly explain the reason [10].

1.2.1 2d CFT for bonsonic strings

Bosonic string theory1in Polyakov formulation requires to sum over surfaces:∑∞
g=0

∫
DgabDXµ exp {−S [Xµ, gab]} (1.2.1)

From above equation 1.2.1, the path integral in string theory needs to sum over both topological
and analytical structures on the Riemann surfaces. Frist, to get rid of the components in Dgab that
come from diffeomorphisms2 and Weyl transformation of the metric, i.e.

Dgab = JDσDδvDg⊥ab (1.2.2)

Here σ is the Weyl transformation δgab = σgab, δv is the diffeomorphism transformation δgab =

∇avb +∇avb 3. Dg⊥ab is the physical one4, it is a 3h− 3 dimensional complex spaceMh. J is the
Jacobian.

To analyze the Jacobian, we choose a complex structure and write the metric in the following
form:

gabdx
adxb = ρ(z, z̄)dzdz̄ (1.2.3)

Now we introduce an infinite series of holomorphic bundles equipped with Hermitian metric by
tensoring the canonical bundle K⊗n(n ∈ Z), as well as the maps between them:®

∇z(m) : Km → Km−1 ∇z(m)φ = (gzz̄)
−1 ∂

∂z̄φ⊗ (dz)−1

∇(m)
z : Km → Km+1 ∇(m)

z φ = (gzz̄)
m ∂
∂z (gzz̄)

−m
φ⊗ dz

(1.2.4)

Now we define Laplacian:
∆(m) = −2∇(m−1)

z ∇z(m) (1.2.5)

and introduce the following objects:

Z(n)(g) ≡
Det′∆(n)

det (φj , φk)g det (ψa, ψb)g
(1.2.6)

1For simplicity, the target spacetime is R1,d−1 with Minkowski metric.
2Here we limit ot Reimann surface with genus h ≥ 2.
3∇ is the LC connection of the metric gab.
4modulo mapping class group, which gives us the moduli of curvesMh
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where φj ∈ Ker∇(n−1)
z , ψa ∈ Ker∇z(n), (, ) is the standard Hermitian metric 5.

With above defined objects, eq 1.2.2 is:

Dgab = Z−1(g)DσDδvdyidȳi, i = 1, ..., 3h− 3 (1.2.7)

where yis are complex coordinates ofMh.
The matter part of the string CFT in path inetgral gives∫

DXµ exp {−S [Xµ, gab]} = Z0(g)
−d
2 detN

d
2

1 (1.2.8)

where:
detN1 = det(ψa, ψb), ψa,b ∈ Ker∇z1 (1.2.9)

Using eq 1.2.7,1.2.8, we have∫
DgabDXµ exp {−S [Xµ, gab]} =

∫
Mh

dyidȳi(

∫
DσDδv)Z−1(g)Z0(g)

−d
2 detN1

d
2 (1.2.10)

Now
∫
DσDδv cannot be dropped consistently as Z−1,0 depend on the Weyl scaling Dσ. So only

when the combination Z−1(g)Z0(g)
−d
2 is independent of Weyl scaling can

∫
DσDδv be dropped

(note detN1 doesn’t depend on the Weyl scaling parameter). Heat kernel method gives:

δσ logZj(g) ∝ C(j)

∫
δσρ−1∂∂̄ log ρd2xi, C(j) = 6j2 − 6j + 1 (1.2.11)

So
δσ logZ−1(g)− d

2
δσ logZ0(g) = 0→ C(−1)− d

2
= 0 (1.2.12)

Hence, the consistency of bosonic string requires 26 spacetime dimensions.
For superstrings. The same argument gives consistency condition:

C(−1)− C(−1

2
)− d

2
(C(0)− C(

1

2
)) = 0 (1.2.13)

which gives d=10, consistent superstring theories require a 10 diemsnisonal spacetime.

1.2.2 C(n) and Mumford isomorphsim

In above discussions the function C(n) = 6n2 − 6n+ 1 plays an important role. In this section ,we
discuss another interpretation of this function [2].

To start with, we need one fact that the Z−1Z
−13
0 = F (y)F̄ (ȳ) admits a holomorphic-antiholomorphic

factorization [3]6. F (y) is a section of the holomorphic determinant line bundle det∂̄−1 ⊗ det∂̄−13
0

overMh. Then det∂̄−1 ⊗ det∂̄−13
0 should be nonvanishing over the moduli space. Actually this is

Mumford theorem:

Mumford Isomorphism Consider the line bundles Ln = ∧dimCH
0(Σh,K

n)ωn where ωn are the
holomorphic sections of Kn over genus h Riemann surface Σh

7. We have the line bundle isomor-
phism:

Ln ' LC(n)
1 = L6n2−6n+1

1 (1.2.14)
5For the sections φi,j of Km, (φi, φj) =

∫ √
gd2x(gzz̄)mφ̄i(x)z̄,z̄,..φj(x)z,z,...

6Only the combination Z−1Z0−13 rather than each single one enjoys such a property
7ωns give H0(Σh,K

n) complex dimension vector space for every Σh with a complex structure, i.e. every point
of moduliMh. Therefore they give a holomorphic H0(Σh,K

n) complex dimension vector bundle over H0(Σh,K
n)

from which we can construct Ln = ∧dimCH
0(Σh,K

n)ωn .
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Using this theorem and identify det∂̄−1 as L2, det∂̄0 as L1, we indeed see that the line bundle
det∂̄−1 ⊗ det∂̄−13

0 ' L2 ⊗ L−13
1 ' L13

1 ⊗ L−13
1 is trivializable, i.e. it admits a nowhere vanishing

holomorphic section. This provides another interpretation of C(n) appeared above.

1.3 Superstring CFTs and their connections

In this section we summarize the 5 superstring theories and their connections, all the details can
be found in e.g. [4]

1.3.1 Five different superstring CFTs

Type II strings Type II CFTs are left-right symmetric CFTs.Some of their features are the
following:

• There are 8 bosons and 8 Majorana-Weyl fermions on the worldsheet89 both for left and
right moving part. For the bosonic part, each bonson contribute to the vacuum energy − 1

24 .
For the fermionic part, we have two sectors, the Ramond (R) sector sets all eight femions to
be periodic (ψ(σ1 + 2π) = ψ(σ))while Neveu Schwarz (NS) sector sets all eight fermions to
be anti-periodic(ψ(σ1 + 2π) = −ψ(σ)). Each R sector fermion contribute 1

24 while each NS
sector contribute − 1

48 . Combine all bonsons and fermions, the Hamiltonians of left-moving
and right-moving worldsheet CFT are:

R− sector : HL = L0,HR = L̄0 (1.3.1)

NS − sector : HL = L0 −
1

2
,HR = L̄0 −

1

2
(1.3.2)

• R-sector has zero-mode fermions ψi0(i=1,2...,8) due to their periodicity, quantization of them
give spacetime fermions:

{ψi0, ψ
j
0} = δij (1.3.3)

This equation 1.3.3 means ψi0s span the clliford algebra Cl(R8). Hence the quantization gives
physical states of a spacetime massless Dirac fermion, i.e. a pair of spacetime Weyl fermions
with different chirality. Similarly for the right-moving part.

NS-sector has half-integer mode fermions due to their antiperiodicity, their quantization gives:

{ψin+ 1
2
, ψj

m− 1
2

} = δn,−m, n,m ∈ Z (1.3.4)

From their quantizations we see the NS-sector will give spacetime bosons. As a result,
Type II CFT possesses 4 sectors: (Left moving, Right moving)=(NS,NS),(NS,R)(R,NS)(R,R),
where (NS,NS),(R,R) sectors give spacetime bosons and (NS,R)(R,NS) sectors give spacetime
fermions.

• We furthur need to impose the GSO projection 1+exp(iπF )
2 (F is the fermionic number oper-

ator) to get rid of the tachyon and achieve spacetime supersymmetry. This is also necessary
from the 2d worldsheet CFT point of view, as it is required by mutual locality of the vertex
operators. There are two different GSO projections, the type IIB one is left-right symmetric
and gives chiral10 massless spectrum whose low energy limit is type IIB supergravity, while

8We choose the light cone gauge
9Here we consider the worldsheet to be a cylinder, i.e. spatial dimension σ1 ∼ σ1 + 2π

10From spacetime point of view
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the type IIA one is left-right asymmetric and gives non-chiral massless psectrum whose low
energy limit is type IIA supergravity.

• GSO projection projects out the NS-sector vacuum state |0〉NS to get rid of the tachyon and
requires the physical states in NS-sector has odd number of fermions. As each fermionic mode
in NS sector contributes at least 1

2 to the energy, together with the fact the in NS sector the
Hmiltonian is L0− 1

2 . GSO projection requires the massless spectrum can only be created by
fermionic modes ψi− 1

2

|0〉NS . Therefore, GSO projection rules out the enhanced non-abelian
symmetry at T-dual fixed point of the moduli space as it would be in pure bosonic CFTs.

• Based on the spectrum after GSO projection and the fact that D-branes carry Ramond-
Romand charges, we see thatDp branes exist in IIA/B if and only if p is even/odd. In addition
to Dp branes, the soliton spectrum of IIA/B also consist of NS5 branes and fundamental
strings, which are the carrier of magnetic and electric charges of two form B field sits in the
NS sector.

Type I strings Type IIB is left-right symmetric even after GSO projection, so it has a parity
symmetry Ω on the worldsheet. After gauging this symmetry we get the following features of Type
I superstring:

• It is an open string theory, which has 16 spacetime supersymmetry.

• Only D1,D5,D9 could appear in its solitonic sepctrum as others are being projected out.

• Tadpole cancellation (vanishing of the amplitudes by summing over Cylinder, Klein bottle
and Möbius strip) requires 16 D9 branes on top of O−9 orentifold plane fill out the spacetime,
which gives SO(32) gauge symmetry in the 10d spacetime.

Heterotic strings Heterotic string is a mixture between bosonic string theory and superstring
theory. Based on the fact the left-moving and right-moving parts of the worldsheet CFT are
decoupled, we can put different theories on left and right moving part of the CFT. Heterotic strings
is obtained by putting bosonic string CFT (central charge of the matter part cL = 26) on the
left moving part and superstring CFT (central charge of the matter part cR = 15) on the right.
The target spacetime is 10d and the left moving part of Heterotic string has an internal CFT with
central charge cintL = 16. Here are some of the properties of the Heterotic strings:

• Given modularity and central charge constraints, the internal left moving part can described
by a CFT of 32 Majorana Weyl fermions, or a bosonic CFT attached to rank-16 even self
dual Euclidean lattices. These two are equivalent by bosonization and we will use the bosonic
description.

• There are only 2 rank-16 even self dual lattices: Spin(32)/Z2 and ΓE8
⊕ ΓE8

. Hence there
are 2 different Heterotic strings.

• Since left moving part is pure bosonic string, the left moving Hamiltonian is:

HL = L0 − 1 = NL +
1

2
pL · pL +

1

2
pi · pi (1.3.5)

where pi is the spacetime momentum and pL is a point in the internal lattice. Here we see
that every root vector (length 2) in the lattice gives a spacetime massless state. Combining
with right moving sector, they give spacetime gauge vector bosons and their superpartners
(the spacetime supercharges are the same as in Type I) associated with gauge algebra e8⊕ e8

or so(32).
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• Since there is no R-sector in the left moving, there are no Dp branes sit in the solitonic
spectrum of heterotic strings. The solitonic objects in heterotic strings are fundamental
strings and NS5 branes.

• One very important property is that due to the chirality of Heterotic worldsheet CFT, there
will be ’t Hooft anomaly in the 2d worldsheet CFT. As the global symmetry on the worldsheet
will be gauge symmetry from the spacetime point of view, such ’t Hooft anomaly will destroy
the consistency of superstring theory. The way to resolve this problem is called Green Schwarz
mechanism, we recall them both from worldsheet and spacetime point of view:

’t Hooft Anomaly cancellation on the world-sheet The ’t Hooft anomaly polynomial
on the worldsheet consists of two part. The right moving fermions has SO(8) flavor symmetry
(they carry spacetime index) and the pull back of spacetime tangent bundle connection is the
background gauge field for SO(8) on the worldsheet. The related ’t Hooft anomaly is:

IRight4 =
1

4
tr(R2

SO(8)) (1.3.6)

where RSO(8) is the spacetime curvature.

For the left moving, there is a level-1 e8⊕e8 or so(8) current algebra and the anomaly attached
is:

ILeft4 = − 1

4h∨
Tradj(F

2) = − 1

120
Tradj(F

2) (1.3.7)

where F the the field strength for spacetime gauge connection. So overall the anomaly is:

I4 =
1

4
tr(R2

SO(8))−
1

120
Tr(F 2) (1.3.8)

Under the spacetime gauge and diffeomorphism transformation parametrized by Λ, ε, the ’t
Hooft anomaly gives a term in the Largrangian:

I2
2 =

1

4
tr(ΛRSO(8))−

1

120
Tradj(εF ) (1.3.9)

Note on the worldsheet CFT, there is a topological term
∫
φ∗B (φ∗B is the pull back from

spacetime 2-form B field). To cancel this term and make the theory anomaly free, we need to
give a non-trivial transformation to the B:

δB = −I2
2 = −1

4
tr(ΛRSO(8)) +

1

120
Tradj(εF ) (1.3.10)

After this transformation, we see the worldsheet CFT is free of ’t Hooft anomaly.

Gauge and gravitational anomaly cancellation in the Spacetime Here we go to the
low energy supergravity limit, the related anomaly is:

I12 = (
1

4
tr(R2

SO(8))−
1

120
Tradj(F

2)) ∧X8 (1.3.11)

where X8 is an eight form constructed from R,F . To cancel this anomaly we need to use one
term in the supergravity lagrangian B ∧X8 and give the following transformation law for B
field:

δB = −1

4
tr(ΛRSO(8)) +

1

120
Tradj(εF ) (1.3.12)
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Now the anomaly is cancelled and the supergravity is consistent, but the transformation 1.3.12
gives non-trivial Bianchi identity for H-flux:

dH = −1

4
tr(R2

SO(8)) +
1

120
Tradj(F

2) (1.3.13)

This Bianchi identity will impose some tadpole cancellation conditions when studying some
Heterotic compactification cases.

• Thanks to the fact that the left moving part of Heterotic string is purely bosonic case, the
phenomena of enhanced non-abelian symmetry at T-dual fixed point could appear, as in
bosonic string theory.

1.3.2 Dualities between the five superstring theories

In this section we discuss one of the most amazing features in superstring theories: all the five
superstring theories are related to each other by dualities.

• Type IIA/B are T-dual to each other on a circle.

• Heterotic Spin(32)/Z2 and E8 × E8 are T-dual to each other on a circle.

• Type I string theory is S-dual to Heterotic string theory

• Heterotic string theory on T 4 is dual to Type IIA on K3

• Heterotic string on T 2 is dual to type IIB on certain non-perturbative background, i.e. F-
theory on elliptic K3 manifolds.

• etc...

To discuss the duality web would require studying string theory at non-perturbative level, which is
the topic of next chapter.
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Chapter 2

Non-perturbative string theory

String theory coupling gs is not an input data, instead it is determined by the dynamics of string
theory itself as it is charaterized by the expectation value of gs = 〈exp(φ)〉 where φ is a dynamical
field of string theory. When gs � 1, string perturbation thoery applied. When gs � 1, i.e.
strong coupling regime of string theory, non-perturbative effects become important and we need
new methods to study them. One way to study them is using BPS objects1. In string theory, the
common BPS objects are Dp branes, NS5 branes and fundamental strings F1 etc.

The tension of Dp branes have the following nice properties:

τp ∝
1

gs
(2.0.1)

which means that when gs →∞, τp → 0, the Dp branes become massless hence they dynamics are
not freezed out and become important even at IR limit. The physical understanding of these new
dynamical degree of freedom will be one of the topics of this chapter.

2.1 M-theory

11d M-theory originally appeared as the strong coupling limit of 10d type IIA string theory [6].

2.1.1 11d M theory from 10d type IIA string theory

Consider D0 particles in type IIA, the mass of D0 particle carrying charge n under RR 1-form field
is:

MD0,n ∝
|n|
gs

(2.1.1)

When gs →∞, the entire tower of such D0 particles go massless.
Now, recall standard Kaluza Klein compactification of a real scalar field on a circle with radius

r gives a tower of scalar fields with mass 2π|n|
r . When r → ∞, a similar situation appears:a tower

of scalars go massless. This example suggests the physical interpretation of above case should be a
hidden dimension (with circle radius r ∝ gs) opening up in strong coupling limit of 10 dimensional
IIA string theory: 11 dimensional M theory.

M-theory has the following basic features:

• The low energy description is 11d supergravity, the bosonic field contents are φ, gµν , Cµνρ
where Cµνρ is a three-form field. Compactified on a circle gives type IIA supergravity.

1In supersymmetric unitary theories, BPS states are the lightest states given fixed quantum number, hence they
are stable generically.
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• The solitonic spectrum consists of M2 and M5 branes. Put M theory on a circle, M2 brane
wraps on the circle gives type IIA elementary string, M2 brane does not have a leg on the circle
gives D2 brane. Similarly D4 and NS5 branes can be obtained from M5 branes. D0 branes
are the Kaluza Klein modes from circle compactification. D6 branes are lifted to Taub-NUT
background in M theory

2.1.2 M5 brane and anomaly inflow

In this section, we give one example of M5 branes and its related anomaly cancellations which will
be used later [5, 99, 100].

M5 brane is a BPS soliton in the low enegy limit of M theory, i.e. 11d supergravity. The low
enegy degree of freedom on the M5 brane is a 6d (2, 0) tensor multiplet whose field contents are:

• 1 anti self-dual 2-form tensor field B−µν .

• 5 scalars φ. They transform as vector under the spin(5) R-symmetry of the 6d (2, 0) super-
symmetry.

• 4 Majorana Weyl fermions with negative chirality 4 ψ− transform as 4 under the R symmetry
spin(5).

The R-symmetry spin(5) comes from the structure group of the normal bundle SO(5). The gravi-
tational and R-symmetry anomaly2 for this multiplet is

I8 = − 1

48
p2(N) +

1

96
p1(N)p1(TW 6)− 1

192

(
p2

1

(
TW 6

)
+ p2

1(N)− 4p2

(
TW 6

)
(2.1.2)

Here TW 6 is the tangent bundle of the M5 brane worldvolume, corresponds to gravitational
anomaly for the worldvolume low energy theory. N is the normal bundle of the M5 brane world-
volume and signals spin(5) R symmetry anomaly.

In the bulk it is a 11d supergravity with topological coupling:

L11d−sugra = C3 ∧X8 −
1

6
C ∧ dC ∧ dC (2.1.3)

with

X8 = − 1

48

(
p1

(
TW 6

)2
+ p1(N)2 − 2p1

(
TW 6

)
p1(N)

4
− p2

(
TW 6

)
− p2(N)

)
(2.1.4)

In the bulk the M5 brane is a δ-source for the bianchi identity:

dG4 = δ5
(
W 6 ↪→M11

)
(2.1.5)

As a result, C3 is not well defined with the presence of the M5 brane in the bulk and the right way
to write the first term in 2.1.3 is:

C3 ∧X8 = C3 ∧ dX(0)
7 = G4 ∧X(0)

7 (2.1.6)

But G4 ∧X(0)
7 is not invariant under the local diffeomorphism transformation in the bulk, instead

it picks up a piece:
G4 ∧ δX(0)

7 = G4 ∧ dX(1)
6 = −dG4 ∧X(1)

6 (2.1.7)

2They are ’t Hooft anomaly on the worldvolume.
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Due to the M5 brane, the Bianchi identity for G4 is

dG4 = δ5
(
W 6 ↪→M11

)
(2.1.8)

From 2.1.7,2.1.8 we see the anomalous term in the bulk will be localized near the M5 brane:∫
M11

I
(1)
inflow = −

∫
M11

δ5
(
W 6 ↪→M11

)
∧X(1)

6 = X
(1)
6 |W 6 , (2.1.9)

Hence the anomaly polynomial on the M5 brane worldvolume from the bulk will be:

Iinflow = −
∫
M11

δ5
(
W 6 ↪→M11

)
∧X8 = −X8|W 6 (2.1.10)

The entire 11d supergravity should be anomaly free, hence we should have I8 from eq 2.1.2 com-
pletely cancels Iinflow from eq 2.1.10. However, we have:

Iinflow + I8 = I8 −X8|W 6 = − 1

24
p2(N) (2.1.11)

Part of the normal bundle anomaly remains3.

The way to solve this problem is to give a more refined interpretation of the Bianchi identity.
There is a smoothed-out (UV) solution to the Bianchi identity:

dG = δ5
(
W 6 ↪→M11

)
= dρ(r) ∧ e

2
(2.1.12)

Here ρ(r) is a function only depends the radial direction and satisfies ρ(r ≤ ε
2 ) = −1, ρ(r ≥ ε) = 0

(smoothed-out version of the δ source) and e is angular form satisfies
∫
S4
r
e = 2 (S4

r is the 4-sphere
transverse to the M5 brane with radial distance r). Actually e is an equivariant Euler class, so
Wess-Zumino decsendent procedure can be defined on it. The smooth G solution is:

G = dC − dρ(r) ∧ e
(0)

2
(2.1.13)

Like Green-Schwarz mechanism, G should be invariant under the gauge transformation, hence the
gauge transformation for C is:

δC = −dρ(r) ∧ e
(1)

2
(2.1.14)

Now we have:

G− ρ(r)
e

2
= d(C − ρ(r)

e(0)

2
) (2.1.15)

As the Chern-Simons term has the form x ∧ dx ∧ dx, the modified Chern-Simons term in presence
of M5 brane is:

(C − ρ(r)
e(0)

2
) ∧ (G− ρ(r)

e

2
) ∧ (G− ρ(r)

e

2
) (2.1.16)

Now under the gauge transformation δ(C − ρ(r) e
(0)

2 ) = −d(ρ(r) e
(1)

2 ) and the anomalous transfor-
mation of the Chern-Simons term on M11 − S4

ε/2(M5) (S4
ε/2(M5) is the sphere bundle over M5

3Notice one important assumption of using anomaly inflow for G4 ∧X(0)
7 is the validity of treating M5 brane as

δ-source in the bulk, i.e. the thickness of M5 brane profile should not be able to be probed in the bulk low energy
effective theory, i.e. 11d supergravity.
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brane at radial distance ε/2)gives:

−1

6

∫
M11−S4

ε/2
(M5)

δ(C − ρ(r)
e(0)

2
)∧ (G− ρ(r)

e

2
)∧ (G− ρ(r)

e

2
) =

1

48

∫
S4
ε/2

(M5)

e(1) ∧ e∧ e (2.1.17)

Now we can use the Cattaneo-Bott formula∫
Sε/2(M5)

e4 ∧ e4 ∧ e(1)
2 = 2

∫
W 6

p
(1)
2 (N) (2.1.18)

to get the anomaly inflow from the bulk Chern Simons term:

Iinflow,CS =
1

24
p2(N) (2.1.19)

Together with 2.1.11, we have:

Iinflow + I8 + Iinflow,CS = 0 (2.1.20)

The entire theory is anomaly free.
The anomaly inflow mechanism can also be used to calculate the ’t Hooft anomaly of the theory

lives on Q M5 branes, under the assumption that the entire system is anomaly-free:

IQM5 +QIinflow +Q3Iinflow,CS = 0 (2.1.21)

hence
IQM5 = −QIinflow −Q3Iinflow,CS (2.1.22)

2.1.3 M-theory on Calabi-Yau threefold: anomaly inflow and MSW string

In this section we study another example of anomaly inflow: 5d supergravity with 8 supercharges
obtained form M theory compatified on Calabi-Yau threefold (CY3) [101].

The low energy spectrum of 5d supergravity from M theory on a generic CY3 has h1,1(CY 3)

U(1) gauge fields AI=1,..,h1,1

, and the topological coupling descended from 2.1.3 is:

1

96
AI ∧ tr(R2)(

1

4

∫
CY 3

ωI ∧ tr(R2
CY 3))− 1

6
AI ∧ F J ∧ FK(

∫
CY 3

ωI ∧ ωJ ∧ ωK) (2.1.23)

=
1

96
aIA

I ∧ tr(R2)− 1

6
cIJKA

I ∧ F J ∧ FK (2.1.24)

Now, consider a M5 brane wraps an semi-ample divisor D =
∑
QIPD(ωI)4 on CY3, it gives a

(4, 0) BPS string in 5d supergravity carries the U(1) magnetic charges QI . In the low energy, the
Bianchi identity will become:

dF I = QIδ3
(
W 2 ↪→M5

)
(2.1.25)

From 2.1.23, we can calculate anomaly inflow:

Iinflow =
QIaI

48
(p1(W 2) + p1(N)) +

cIJKQ
IQJQK

24
p1(N) +

1

6
cIJKQ

IF J ∧ FK (2.1.26)

then anomaly cancellation gives the ’t Hooft anomaly for the 2d (4, 0) SCFT lives on the BPS

4Here we use the ωIs whose Poincare dual PD(ωI) span the lattice H4(CY 3,Z)
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string:

IW 2 = −Q
IaI
48

p1(W 2) + {cIJKQ
IQJQK

6
+
QIaI

12
}c2(so(3)R)− 1

6
cIJKQ

IF J ∧ FK (2.1.27)

Here so(3)R is the R-symmetry of the (4, 0) supersymmetric algebra comes from the normal bundle.
The (4, 0) supersymmetric algebra also gives

cL = 6kL (2.1.28)

while gravitational anomaly is given by:

Igrav =
cL − cR

24
p1(W 2) (2.1.29)

2.1.27 gives kL = ( cIJKQ
IQJQK

6 + QIaI
12 and cL − cR = −Q

IaI
2 . From 2.1.28 2.1.29 we read out:

cL = cIJKQ
IQJQK +

QIaI
2

, cR = cIJKQ
IQJQK +QIaI (2.1.30)

With the knowledge of the UV origin of the BPS string considered here, we can also derive the
central charges in eq 2.1.30 by counting degrees of freedom on the UV side. To do this we need the
divisor D to be very ample, i.e. can be represented by smooth four-manifold.

• The moduliMD of divisor D insides CY gives both dimRMD left and right moving bosons
on the BPS string of 5d sugra. dimRMD is given by Hirzebruch–Riemann–Roch theorem
(HRR) together with vanishing theorem associated with the very ampleness of divisor D.

dimRMD = 2

∫
CY 3

Å
P 3

6
+

1

12
Pc2(CY 3)

ã
− 2 (2.1.31)

where P = PD(D) ∈ H2(CY 3,Z).

• There is one anti self-dual tensor on the M5 branes, it gives b2+ left moving bosons and b2−
right moving bosons. b2± are calculated by index theorem (This is the requirement of very
ampleness for D, that is D should be represented by a smooth four manifold so index theorem
can be applied.).

χ = b2+ + b2− + 2 =

∫
CY 3

(
Pc2(CY 3) + P 3

)
(2.1.32)

Notice b1,3(D) = 0 due to Lefschetz hyperplane theorem.

σ = b2+ − b2− = −
∫
CY 3

Å
1

3
P 3 +

2

3
Pc2(CY 3)

ã
(2.1.33)

• Together with bosons correspond to the three transversal modes of the BPS string, we get
the number of right and left moving bosons:

NL =

∫
CY 3

2

3
P 3 +

1

3
c2(CY 3)P,NR =

∫
CY 3

P 3 + c2(CY 3)P (2.1.34)

Together with the (4, 0) supersymmetry, we get

cL =
3

2
NL =

∫
CY 3

P 3 +
1

2
c2(CY 3)P, cR = NR =

∫
CY 3

P 3 + c2(CY 3)P (2.1.35)
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• Using P = PD(D) =
∑
I Q

IωI , we can see eq 2.1.35 and eq 2.1.30 agrees with each other
(Notice that the notation we used differs from the notation in the literature up to the notation
of the supersymmetry, i.e. (0, 4) or (4, 0), we will switch to the standard notation (0, 4) in
part III).

We end this section by pointing out that the anomaly inflow method is more general than
microscopic counting (MSW string), as later requires the divisor has some very nice properties:
vanishing theorem and can be represented by smooth four manifold.

2.1.4 10d supergravity and swampland

In [92], the authors use anomaly inflow to discuss a swampland condition 5. For 10d supergravity,
anomaly cancellation gives four possibilities for gauge algebra:so(32), e8 ⊕ e8, e8 ⊕ u(1)248, u(1)496.
String theory can only realize the first two. Using anomaly inflow, there is a swampland condition
to rule out the later two.

Put a BPS string in the 10d supergravity, which gives a (0, 8) SCFT in the IR on its worldsheet.
The bulk supergravity picks up an action due to the BPS string:

Sstr10d =

∫
M10

B ∧ δ8
(
W 2 ↪→M10

)
(2.1.36)

This term will cause anomaly inflow under gauge and diffeomorphism transformation according to
Green Schwarz mechanism:

δΛ,ΘS
str = −

∫
W 2

[∑
i

1

4h∨i
Tr (ΛiFGi)−

1

4
tr(ΘR)

]
(2.1.37)

’t Hooft anomaly of the (0, 8) SCFT can be read out:

ISCFT =
∑
i

1

4h∨i
Tr(F 2

Gi)−
1

4
tr(R2) =

∑
i

1

4h∨i
Tr(F 2

Gi) +
1

2
p1(W 2)− c2(SO(8)R) (2.1.38)

and the central charges cL, cR:

cR − cL = −12, cR = 12kR = 12, cL = 24 (2.1.39)

The SCFT on the worldsheet is factorized to two parts, one is a free (0, 8) multiplet from the
transversal mode of the BPS string and contribute:

cfreeL = 8, cfreeR = 12 (2.1.40)

The other part is an interacting SCFT with central charges

cintL = 16, cintR = 0 (2.1.41)

The gauge anomaly part 1
4h∨i

Tr(F 2
Gi

) requires there are current algebras with group Gi and level
1 on the left moving side, each will contribute left moving central charge ci = dimGi

1+h∨ (ci = 1 for
Gi = U(1)). Since the overall left moving central chagre is 16, unitarity requires:

∑
i

dimGi
1 + h∨

≤ 16 (2.1.42)

5See [[116]-[143]] for part of recent progress of this vast program
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This condition is satisfied for so(32), e8 ⊕ e8 but not for e8 ⊕ u(1)248, u(1)496. So the later two
supergravity theories are not consistent.

2.2 F-theory

Type IIB string theory is believed to have SL(2,Z) duality group under which the NS-NS 2-form
B2, RR 2-form C2 and the axiodilaton τ = C0 + ie−φ consists of RR 0-form C0 and dilation φ

transform as:

τ → aτ + b

cτ + d
,

Ç
C2

B2

å
→M

Ç
C2

B2

å
, M =

Ç
a b

c d

å
∈ SL(2,Z) (2.2.1)

F theory [75, 84, 85] is type IIB string theory with 7-branes (D7 and its SL(2,Z) duality transfor-
mation) source the axiodilation τ . Hence τ varies in spacetime and can be represented as modulus
of an elliptic curve over spacetime and F theory should be compactified on elliptically fibered CY
n-fold (we only consider n = 2, 3 in this section). Singular fiber signals the location of 7-branes.

M/F theory duality Put M-theory on a elliptically fibered Calabi-Yau n-fold (CYn), lable the
two cycle S1 on the elliptic curve fiber S1

A, S
1
B . First compactified on S1

A gives type IIA, further
compactify on S1

B then T-dualize it gives F-theory compactified on CYn×S1, sending S1
B → 0 gives

F-theory compactified on CYn. The complex structure of the fiber on M-theory side maps to τ on
F-theory side.

Ellitptic CYn We only consider standard conventions for the elliptic fibrations over base B with
section (see e.g. [84, 85]). The elliptical fiber on a CYn is defined by an equation

y2 = x3 + f(ui)x+ g(ui) (2.2.2)

in an affine patch of the weighted projective space WP2,3,1, with ui one set of affine coordinates on
the base B, fixed. Then f ∈ Γ(−4K) and g ∈ Γ(−6K) (K is the canonical divisor of base B). The
degeneration loci of the elliptic fiber is given by zeros of the discriminant:

∆ = 4f3(ui) + 27g2(ui) (2.2.3)

∆ ∈ Γ(−12K). The enhanced non-Abelian gauge symmetry Gi comes from the singularities of
elliptic fibration which gives divisors niDi on the base B with multiplicity ni determined by the
singularity type. As the entire degeneration loci is given by −12K, the divisor Y

Y = −12K −
∑
i

niDi (2.2.4)

must be effective. The relation between this geometric condition and the physical conditon in sect
2.1.4 will be discussed in part III

2.2.1 F-theory on elliptic CY2

The only elliptic CY2 is ellipticK3 6, i.e. an elliptic curve fibered over the base P1. The degeneration
loci is −12KP1 = 24 pt (pt is a point on base P1), i.e. 24 7-branes.

6We ignore the trivial T 4 case
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A special CY2 case: T 4/Z2 For T 4/Z2 case, the axiodilation τ is a constant on spacetime [7].
So there are two descriptions when string coupling is weak:

• Perturbative analysis: Type IIB compactified on T 2/Z2 with 4 O7− orientifold planes and 4
D7 branes on top of each orientifold. The gauge algebra is so(8)⊕4

• Non-perturbative analysis; F-theory on elliptic CY2: Since the background has constant τ ,
the j-invariant j(τ(z)) = 4·(24f)3

27g2+4f3 must be a constant. The corresponding CY2 model is:

y2 = x3 + f(z)x+ g(z) (2.2.5)

with

g = φ3, f = αφ2, φ =

4∏
i=1

(z − zi) (2.2.6)

zi=1,2,3,4 are 4 points on P1 and j(τ) = 4·(24α)3

27+4α3 is indeed a constant in this model. This model
also gives gauge algebra so(8)⊕4. But the interpretation now is 6 D7 branes on each point zi.

The way to connect two interpretations is first slightly deforming the system, i.e. pulling the 4
D7 branes out of O7− plane, then each O7− plane will be splitted into 2 D7 branes by quantum
corrections and hence matches the F-theory interpretation. This splitting is very similar to 4d
N = 2 Seiberg-Witten theory: Consider the pure N = 2 SO(3) gauge theory. The classical vacua
at origin of the moduli space gets splitted to dyon and monopole points by instanton corrections.

Frozen singularity O7− plane with 8 D7 branes has the same R-R charge as O7+ plane and they
cause the same monodromy for τ so they appear in elliptic CY2 in the same way: I∗4 singularity.
But their physical interpretations are different.

• For O7−+8D7, it gives gauge algebra so(16) after compactification. The associated Coulomb
branch can be characterized by the positions of 8 D7 branes on P1.

• For O7+, it doesn’t give rise to any gauge algebra after compactification as there is no Coulomb
branch associated to it, i.e. no D7 branes.

This phenamena is called frozen of singularity, i.e. moduli space attached with the sigularity gets
frozen [8]. We will discuss a similar case of frozen singularity in perturbative string regime in part
II

2.2.2 F-theory on elliptic CY3

In the most common cases, the base B of CY3 is P2 or F 0≤n≤12 (Hirzebruch surfaces) or bolw up
thereof [76, 77]. F-theory compactified on elliptic CY3 gives 6d supergravity with 8 supercharges
and it has the following features:

• The low energy spectrum contains nT = h1,1(B)− 1 anti self-dual tensor multiplet (one self-
dual tensor in the gravity multiplet). All the tensors come from divisor classes on the base
B, which has signature (1, nT )7

• Non-abelian gauge symmetry comes from the singularity of elliptic fibration, and blow up
the singularity still gives a CY3 but without elliptic fibration structure8. So CY3 after blow
up non longer makes sense in F- theory compactification but still makes sense in M-theory
compactification. This geometric fact matches with 5d/6d supersymmetry (SUSY) with 8

7Note h2,0(B) = 0 for base B.
8More precisely, we only consider singularity types with this property.
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supercharges. 6d vector multiplets with 8 supercharges doesn’t have scalars hence doesn’t
have Coulomb branch attached with it, while 5d vector multiplets do.

We use one example to end this chapter [104]

Phase transition in M/F theory Heterotic E8 × E8 compactify on K3 gives 6d supergravity
with 8 supercharges. Due to tadpole cancellation eq 1.3.13, the gauge bundle on K3 is required to
have (12 + n, 12− n) (0 ≤ n ≤ 12) instantons for E8 × E8. It is dual to:

• M-theory on K3 × I, together with instanton number (12 + n, 12 − n) at each of the E8

Hořava-Witten domain wall, i.e. 12± n M5 branes dissolve into each E8 domain wall.

• F-theory compactified on elliptic CY 3 with base Hirzebruch surface Fn.

One fact is Fn and Fn±1 can be related by blowup-blowdown procedure. In F-theory this geometric
transition first introduces one tensor multiplet and then gets rid of one tensor multiplet. In M-theory
this is a transition between (12 + n, 12− n) and (12 + n± 1, 12− n∓ 1):

• One E8 domain wall emits one M5 brane.

• Then the second E8 domain wall absorbs this M5 brane

Notice there is one tensor multiplet lives on M5 brane (sect 2.1.2). So the first process adds a
tensor multiplet and the second process reduces one. This is the M-theory interpretation of the
geometric transition between Hirzebruch surfaces Fn.





Part II

On perturbative side of string
compactification
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Chapter 3

Heterotic compactification on X5

In this chapter1, we study perturbative E8 × E8 Heterotic compactificaton on two classes five
diemnsional flat manifold X5 which preserves half supersymmetry:

• Orbifolds X5 = T4/Z2,3,4,6 × S1. Using coordinate description the Z action is:

g(z1, z2, θ) =
(
ζNz1, ζ

−1
N z2, θ

)
. (3.0.1)

• Seifert manifolds X5 = (T4 × S1)/Z2,3,4,6. Using coordinate description the Z action is:

g(z1, z2, θ) =

Å
ζNz1, ζ

−1
N z2, θ +

2π

N

ã
. (3.0.2)

E8 ×E8 Heterotic string theory compatify on the first class of orbifolds has been very-well studied
using standard embedding techniques. We first review relevant results and then discuss connections
between E8×E8 Heterotic string compactifications on these two classes of flat manifolds (orbifolds).

3.1 Heterotic compactification to six dimensions: set up

We begin our study of heterotic compactification onX5 with a review of the well-known construction
of heterotic theory compactified on T4. This compactification yields a d = 6 (1,1) supergravity
theory with massless content consisting of the (1,1) supergravity multiplet and a number of vector
multiplets. Each vector multiplet contains 4 scalars that transform in the adjoint of the gauge
algebra. At a generic point in the scalar moduli space Gr(20, 4)/O(Γ20,4) the gauge algebra is
u(1)⊕20.2 At special points the gauge algebra can be enhanced, and the enhanced symmetries and
the corresponding loci in the moduli space have been recently studied in [16]. For our purposes it
will be sufficient to consider the locus where the gauge algebra is e8⊕ u(1)⊕4 ⊕ e8: this locus has a
standard RNS worldsheet realization, which will make it easy to describe the constructions we wish
to consider. In this section we will summarize some of the relevant details, and in the next section
we will apply them to some classic examples.

We work in light-cone gauge on a Euclidean worldsheet with coordinates z, z, with worldsheet
supersymmetry on the right (anti-holomorphic) side of the string. In addition to the degrees of
freedom for the Minkowski directions, the internal CFT consists of the scalar fields Φi(z, z) and

1This part is based on [144]
2Here Gr(20, 4) is the coset SO(20, 4,R)/ SO(20,R)× SO(4,R), and O(Γ20,4) is the group of lattice isomorphisms

of the even self-dual lattice Γ20,4, often written as O(20, 4,Z).
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their right-moving Majorana-Weyl superpartners, 8 left-moving Weyl fermions, and a level 1 e8
current algebra for the “hidden E8” that will play a spectator role in our analysis.

We find it convenient to break up the left-moving fermions into 2 Weyl fermions γ1,2(z) and
their conjugates γ1,2(z), and 6 more Weyl fermions ξI(z), ξ

I
(z); similarly, we organize the right-

moving fermions into a Weyl pair ψ1,2(z), with conjugates ψ
1,2

(z). This gives a decomposition of
the corresponding level 1 current algebras

so(16)L ⊃ so(12)L ⊕ su(2)L ⊕ su(2)′L , so(4)R ' su(2)R ⊕ su(2)′R . (3.1.1)

The fermions transform in the following representations. On the holomorphic side we have

ξ ∈ (12,1,1) , γ, γ ∈ (1,2,2) , (3.1.2)

while on the anti-holomorphic side we have ψ,ψ ∈ (2,2) of su(2)R ⊕ su(2)′R.
This structure is a special case of a (0,4) SCFT necessary [47] for the preservation of (1,0)

supersymmetry in R1,5. As our ultimate aim will be study compactifications with 8 supercharges,
we will now describe some features in this more general setting, focusing on the identification of
states in the worldsheet theory with massless fermions in spacetime.

The key to making this connection is through the current algebra, which is now of the form
so(12)L ⊕ su(2)L on the left and su(2)R on the right.3 The latter is the R-symmetry of the N=4
superconformal algebra (SCA), and it contains u(1)R an R-symmetry for an N=2 subalgebra of the
N=4 SCA with current J and operator charges labeled by q. We will also choose u(1)L ⊂ su(2)L
with current J and charges q to label our states, and we similarly define the currents and charges
J ′, q′ for u(1)′L ⊂ su(2)′L and J

′
, q′ for u(1)′R ⊂ su(2)′R. The currents give simple expressions for the

left- and right-fermion numbers that are necessary for the GSO projections: we have (−1)Fγ = eiπJ0 ,
while (−1)Fψ = eiπJ0 .

We can now use the familiar rules—see e.g. [48, 49]—to identify worldsheet states with massless
multiplets in spacetime.

• The identity operator of the internal CFT gives rise to a (1,0) supergravity multiplet and a
(1,0) tensor multiplet.4

• The spacetime gauge bosons arise in two ways: every holomorphic current gives rise to a
spacetime gauge boson, and every anti-holomorphic operator with weight h = 1/2 (i.e. a free
fermion) gives rise to an abelian gauge boson. The latter, when present, complete the (1,0)
gravity multiplet and the (1,0) tensor multiplet to a (1,1) supergravity multiplet.

In all of our examples the holomorphic current algebra will be of the form e8⊕ u(1)⊕k ⊕ g,
and in most of our examples g ⊃ e7⊕ u(1)′L.

5 Note that the “linearly realized” currents
so(12) ⊕ su(2)L ⊕ u(1)′L are completed to e7 by additional currents from the left-moving
Ramond sector in the (32,1)⊕ (12,2) representation.

In some of our examples the u(1)′L current will be enhanced to su(2)′L, and when there are
h = 1/2 holomorphic operators transforming in 2 of su(2)′L, the left-moving Ramond sector
will produce currents in

(32,2,1)⊕ (12,2,1)⊕ (32′,1,2)⊕ (12,1,2) , (3.1.3)

3In general (0,4) theories the su(2)L symmetry factor will be reduced to u(1)L or be entirely absent. It will be
present in all theories we consider and will simplify the analysis.

4Details of the multiplet structure in d = 6, as well as in the d = 5 case of interest to us can be found in the
recent pedagogical review [50].

5In some of our later discussions we will break the e7 factor further by introducing a Wilson line.
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that complete g to g = e8.

Finally, the u(1)⊕k factor arises from additional currents neutral with respect to g. For
example in T4 compactification, k = 4 with the currents i∂Φi.

• The remaining spacetime massless fields reside in (1,0) 1
2–hypermultiplets. These are in one

to one correspondence with the NS chiral primary states with q = 1 and holomorphic weight
h = 1. Their gauge transformations are determined by the left-moving sector: each worldsheet
state with q = 0 leads to an e7–neutral 1

2–hypermultiplet, while each worldsheet state with
q = 1 leads to a state transforming in 56 of e7.

Let us apply these rules to the T4 example, focusing on the (1,0) vector and hypermultiplets. The
R-charge assignments to the right-moving fermions are

ψ1 ψ2 ψ
1

ψ
2

q +1 +1 −1 −1

q′ +1 −1 −1 +1

(3.1.4)

We can easily see that the spectrum is consistent with (1,1) spacetime supersymmetry: for every
holomorphic current J we have the operators Jψ1 and Jψ2 that together give rise to a (1,0)
hypermultiplet transforming in the same way as the current J under the gauge symmetry.

3.1.1 T4/ZN compactifications

We now turn our attention to more interesting (1,0) theories that are built by considering symmetric
orbifolds T4/ZN . In each case, we take the ZN action to be just the action described in (3.0.2) on
the T4 part, extending it to act on the worldsheet fermions in the standard left-right–symmetric
fashion: the generator g of the ZN action is set to be

g = exp
[

2πi
N J ′0

]︸ ︷︷ ︸
=gγ

exp
î

2πi
N J

′
0)
ó

︸ ︷︷ ︸
=gψ

. (3.1.5)

The ZN action is diagonally embedded in U(1)′L × U(1)′R. For N = 2 the action is contained in
the center of each corresponding SU(2) factor, so that the su(2)′L ⊕ su(2)′R algebra is left invariant,
while for N > 2 the invariant subalgebra is u(1)′L ⊕ u(1)′R. We are of course by no means the first
to consider these orbifolds—see, for example [42–44, 51, 52] and references therein for earlier work
on these orbifolds and some of their non-symmetric generalizations. However, we will recall some
of the details and give a view that will be useful for what follows.

Untwisted massless states

To describe the untwisted massless states, we just need to apply the projection onto ZN–invariant
states. We first observe that for all N > 0 the special anti-holomorphic states with h = 1/2 are
projected out, and therefore the spacetime supersymmetry is reduced. However, since the projection
keeps the su(2)R current algebra and leaves the vacuum of the internal theory invariant, we are
guaranteed (1,0) supersymmetry. This makes the preceding discussion of the multiplet structure
well-adapted to understand the projection.

The invariant content of the (1,1) supergravity multiplet is exactly the (1,0) supergravity and
tensor multiplets. To analyze the invariant content of the (1,1) vector multiplets, we use the
decomposition

(1,1) vector = (1,0) vector⊕ (1,0) hyper . (3.1.6)
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The ZN action on each multiplet is a combination of an SU(2)′L gauge symmetry, an SU(2)′R R-
symmetry, as well as Gab ' ZN , which acts on the abelian (1,1) vector multiplets corresponding to
the u(1)⊕4 factor according to (3.0.2). To describe that action, we package the 4 vector multiplets
into two complex combinations that transform according to

1ζN ⊕ 1ζ−1
N

(3.1.7)

under the action of Gab.
Consider first the (1,1) vector multiplets corresponding to the hidden e8 symmetry. While the

(1,0) vector submultiplets of these are left invariant, every 1
2 -hyper is projected out, so we are left

with just the (1, 0) vector multiples of e8.
Next, we examine the (1, 1) abelian vectors: now each (1, 0) vector is projected out, but because

of the additional action in SU(2)′R, the (1, 0) hypermultiplet content is more interesting: under
SU(2)′R ×Gab the 1

2–hypermultiplets transform as

2ζN ⊕ 2ζ−1
N

, (3.1.8)

or decomposing further with respect to U(1)′R, as

11,ζN ⊕ 1−1,ζN ⊕ 11,ζ−1
N
⊕ 1−1,ζ−1

N
. (3.1.9)

Thus, if N = 2, then all of these are invariant, while if N > 2 then half of these are invariant. So,
we find 4 neutral hypers for N = 2 and 2 neutral hypers for N > 2.

To discuss the e8 vectors, we first decompose

e8 ⊃ e7⊕ u(1)′L

248 = 1330 ⊕ 10 ⊕ 56+1 ⊕ 56−1 ⊕ 1+2 ⊕ 1−2 . (3.1.10)

From this we see that for N > 2 the invariant (1, 0) vectors transform in the adjoint of e7⊕ u(1)′,
while for N = 2 we find the adjoint of e7⊕ su(2)′L. To obtain the invariant 1

2 -hypers, we tensor this
with 2 of su(2)′R, or equivalently with 1+1 ⊕ 1−1 of u(1)′R:

248 = 1330,+1 ⊕ 1330,−1 ⊕ 10,+1 ⊕ 10,−1

⊕ 56+1,+1 ⊕ 56+1,−1 ⊕ 56−1,+1 ⊕ 56−1,+1

⊕ 1+2,+1 ⊕ 1+2,−1 ⊕ 1−2,+1 ⊕ 1−2,−1 . (3.1.11)

The invariant 1
2 -hypers are those with q′ + q′ = 0 mod N . The result is the following invariant

spectrum from the untwisted sector (as promised, we ignore the hidden e8):

ZN gauge symmetry hypers

Z2 e7⊕ su(2)′L 1⊕4
0 ⊕ (56,2)

Z3 e7⊕ u(1)′L 1⊕2
0 ⊕ 12 ⊕ 561

Z4,6 e7⊕ u(1)′L 1⊕2
0 ⊕ 561 (3.1.12)

Twisted sector contributions

A simple approach to work out the twisted sector contributions is to model each fixed point of
the orbifold by C2/ZN and use free field techniques to calculate the quantum numbers of states
in the twisted sector. It is then not too difficult to read off the twisted sector states that yield
spacetime massless states. We will not have need for details of the construction, so we will simply
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quote the results from the literature [42, 44]. The twisted sectors make no contribution to the gauge
symmetry, but they do produce additional hypermultiplets arranged as follows:

ZN twisted hypers

Z2 (2,1)⊕32 ⊕ (1,56)⊕8

Z3 56⊕9
−1/3 ⊕ 1⊕45

2/3 ⊕ 1⊕18
−4/3

Z4 56⊕4
−1/2 ⊕ 1⊕8

3/2 ⊕ 1⊕24
1/2 ⊕ 56⊕5

0 ⊕ 1⊕32
1

Z6 1⊕8
1/3 ⊕ 1⊕2

−5/3 ⊕ 56−2/3 ⊕ 1⊕22
2/3 ⊕ 1⊕10

−4/3 ⊕ 56⊕5
−1/3 ⊕ 1⊕22

1 ⊕ 56⊕3
0

The reader can check that in all cases the six-dimensional anomaly cancelation condition Nhyper −
Nvector = 244 is satisfied.

Each of these theories has a Higgs branch: we can Higgs the su(2)′L for N = 2 and the u(1)′L
for N > 2 to obtain a spectrum with gauge algebra e7 and hypermultiplets in (56)⊕10—which is
exactly the massless spectrum of heterotic compactification on K3 with standard embedding. We
expect this result since each of these singularities is a degeneration limit of the K3 surface.6

3.1.2 Compactification on T4/ZN × S1

Having obtained the d = 6 theory, it is a simple matter to compactify further on a circle. If
we treat the circle as completely decoupled, then the massless spectrum is obtained by standard
Kaluza-Klein reduction [50]:

• the reduction of the (1,0) supergravity and tensor multiplets leads to a (minimal) d = 5

supergravity multiplet and 2 abelian vector multiplets7;

• each d = 6 vector multiplet in representation r of the gauge algebra reduces to a d = 5 vector
multiplet, which now has a real scalar transforming in the same representation;

• similarly, each d = 6 hypermultiplet reduces to a d = 5 hypermultiplet in the same represen-
tation of the gauge algebra.

All in all, the gauge algebra is now u(1)⊕2 ⊕ e8⊕ g, where the first factor is due to the vector
multiplets obtained from the reduction of supergravity and tensor (1,0) multiplets, and the hyper-
multiplet spectrum is unmodified.

The new feature in d = 5 is the existence of a Coulomb branch. Giving a generic set of
expectation values to the scalars in the vector multiplets breaks the gauge group to u(1)⊕18 and
leaves 4 neutral hypermultiplets in the Z2 orbifold and just 2 neutral hypermultiplets for Z3,4,6.
Observing that under e7 ⊃ e6⊕ u(1)

56 = 27+1 ⊕ 27−1 ⊕ 1+3 ⊕ 1−3 , (3.1.13)

we see that for the Z3,4,6 compactifications there is a Coulomb branch with unbroken g = u(1)2 ⊕
e8⊕ e6⊕ u(1)′ where all of the twisted sector matter is lifted, and there are 2 neural massless
hypermultiplets. A special feature of the Z3 example is that it is possible to lift all of the twisted
sector states by just going on the u(1)′ Coulomb branch, where the full gauge algebra g is preserved.

6The limit in the non-linear sigma model’s moduli space is subtle due to a choice of B-field on the collapsing
two-cycles of the degenerating K3 surface: see [45, 46] for further discussion.

7One of these is obtained by dualizing a d = 5 abelian tensor multiplet.
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3.1.3 Compactification on X5

Having reviewed the well-known compactifications on T4/ZN×S1, we now consider compactification
on X5. From the worldsheet point of view, the new ingredient relative to the preceding discussion
is a ZN shift orbifold of the circle. By itself this theory is easy to understand: starting with a CFT
for a circle of radius r, the shift orbifold is a CFT of radius r/N [53]. In the full quotient CFT for
X5 = (T4 × S1)/ZN , we just need to combine the twisted sectors of the T4/ZN and S1/ZN CFTs
and impose the orbifold projection. With a view to later developments, we will first describe the
construction of the S1 shift orbifold in some detail.

The ZN shift orbifold of the circle

Consider a compact c = 1 boson at a generic radius r. Splitting the worldsheet field Φ(z, z) into
left- and right-moving components, we have the defining OPEs

ΦL(z)ΦL(w) ∼ − 1
r2 log(z − w) , ΦR(z)ΦR(w) ∼ − 1

r2 log(z − w) . (3.1.14)

The theory enjoys a Kac-Moody U(1)shift
L ×U(1)shift

R symmetry with currents

J = ir∂ΦL , J = ir∂̄ΦR , (3.1.15)

and the (Kac-Moody) primary states |p〉 are labeled by the momentum and winding modes n,w ∈ Z.
More precisely,

p = we+ ne∗ ∈ Γ1,1 , (3.1.16)

with Γ1,1 ⊂ R1,1 the even self-dual lattice spanned by two lattice vectors e and e∗ satisfying
e.e = e∗.e∗ = 0 and e.e∗ = 1. Here a.b denotes the inner product on R1,1 induced by the bilinear
pairing on the lattice. Note that for our discussions of lattices here and in what follows, we will
take RnL,nR to have Lorentzian metric

η =

Ç
−1nL 0

0 +1nR

å
. (3.1.17)

Our theory has a one-dimensional moduli space, which we can think of as a specification of a
spacelike 1-plane Π ⊂ R1,1. We can always choose a basis vector for Π

π = e+ r2e∗ , (3.1.18)

so that π̃ = e− r2e∗ spans the orthogonal complement Π⊥.

With that preparation, we write the operator corresponding to the state |p〉 as

Vp = : C(p) exp
î
i√
2
(π.p)ΦR(z) + i√

2
(π̃.p)ΦL(z)

ó
: . (3.1.19)

Here C(p) is a “cocycle operator” in the literature, is necessary to ensure proper commutation
relations of the vertex operators. Using the OPEs, it is now straightforward to see that Vp carries
U(1)shift

L ×U(1)shift
R charges

qshL =
π̃.p

r
√

2
, qshR =

π.p

r
√

2
(3.1.20)
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and weights

hL = 1
2 (qshL )2 = 1

4r2

(
n− wr2

)2
, hR = 1

2 (qshR )2 = 1
4r2

(
n+ wr2

)2
. (3.1.21)

The spin of the operator is

s(p) = hL − hR = − 1
2p.p = −nw . (3.1.22)

Note that in these conventions the self-dual radius is r = 1, with the T-duality map being r 7→ 1/r

and (n,w) 7→ (w, n).
With this preparation, we define the action of the shift symmetry Zshift

N , taking its generator
gsh to act as

gsh|p〉 = e2πin/N |p〉 . (3.1.23)

Since the momentum quantum number n is conserved, this is clearly a symmetry of the spectrum,
of the OPE, and of the correlation functions. Moreover, we can represent this action in terms of
the conserved shift currents (or, rather, the corresponding conserved charges):

gsh = e
2πi
N Q , (3.1.24)

with the charge Q given by

Q = r√
2

(
J sh
L,0 + J sh

R,0

)
. (3.1.25)

The orbifold projection is then onto states with Q ∈ NZ.
This is a key simplification in the orbifold analysis, since it allows us to directly construct the

twisted Hilbert space—see [49] for a recent pedagogical discussion.8 To carry this out, we find a
twist field of the form

Σk(z, z) = exp
î
−i r

2
√

2
τkΦR − i r

2
√

2
τ̃kΦL

ó
, (3.1.26)

where the parameters τk and τ̃k are chosen so that the OPE Vp(z, z) and Σk(z, z) has the correct
monodromy, i.e. so that under a continuous rotation z → eiθz, we obtain

Vp(e2πiz, e−2πiz)Σk(0) = e
2πikn
N Vp(z, z)Σk(0) (3.1.27)

The field Σ then gives the k-th twisted ground state |0; k〉 = limz,z→0 Σ(z, z)|0〉, and the full Hilbert
space in the k-th twisted sector is constructed from |p; k〉—obtained by acting further with the Vp
on the |0; k〉—by acting with all possible oscillators.

In our example a quick computation shows that choosing

τk = − k
N , τ̃k = k

N (3.1.28)

produces the correct monodromy. Moreover, it is straightforward to read off the shifts in the weights
and charges due to the twist, i.e. the weights and charges of the state |p; k〉:

qshL (p; k) =
π̃.p− τ̃kr2

r
√

2
, qshR (p; k) =

π.p− τkr2

r
√

2
, (3.1.29)

8A recent discussion of the more general situation is given in [54].
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and the weights are again

hL(p; k) = 1
2 (qshL (p; k))2 hR(p; k) = 1

2 (qshR (p; k))2 . (3.1.30)

Not only do we know the twisted Hilbert spaces, but we also know how to implement the projection
onto invariant states: we just need to project onto states with

Q(p; k) =
r√
2

(
qshL (p; k) + qshR (p; k)

)
∈ NZ . (3.1.31)

For our circle shift orbifold it is easy to check that Q(p; k) = Q(p), and also that the spin satisfies

s(p; k) = hL(p; k)− hR(p; k) = s(p)− k

N
Q(p; k) , (3.1.32)

so that ZN–invariant states are guaranteed to have integer spin.
Carrying out the construction for the N−1 twisted sectors, we find the expected structure: the

projection sets the momentum modes to be valued in NZ, as is consistent with a circle of radius
r/N , while the k-th twisted sector adds in the winding modes with w ∈ k

N + Z, which are the
“extra” winding modes for a circle of radius r/N relative to that of radius r.

The X5 orbifold

Having understood the shift orbifold in detail, we could easily construct the full partition function
for the X5 CFT. The only modification to our previous discussion of the T4/ZN compactification is
to treat the right-moving superpartner of Φ(z, z) as part of the internal CFT rather than belonging
to the CFT describing the R1,5 degrees of freedom.9

If our interest is in the massless spectrum, then the effect of the extra shift at generic radius
is simple to understand: the untwisted massless states are exactly those of the T4/ZN × S1 CFT,
while all of the twisted sector states are massive. This observation was the starting point for our
study, since it suggests a close relationship between the two theories.

A spacetime picture

There is another way to think about the X5 compactification:

T4 X5

S1

µcir .

We start in the d = 6 (1,1) obtained by heterotic compactification on T4. The worldsheet symmetries
we identified in our discussion of the T4/ZN orbifold are interpreted as spacetime gauge symmetries,
and in particular there is a discrete gauge symmetry G = ZN which is a subgroup

G ⊂ Gab × SU(2)′L × SU(2)′R , (3.1.33)

the latter action being part of the spacetime R-symmetry group of the d = 6 (1,1) theory. Given
the presence of this discrete spacetime gauge symmetry, when we compactify the theory on a circle
with coordinate θ ∼ θ + 2π, we can choose to turn on a holonomy for G. That is, we modify the

9There are some subtleties in applying the usual RNS rules in odd-dimensional compactification, but they can be
easily avoided by introducing an additional spectator circle with its superpartner; see e.g. [55].
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periodicity conditions on the fields as

φ(x, θ + 2π) = g · φ(x, θ) . (3.1.34)

The holonomy will have the effect that only G–invariant fields will have zero modes in the θ

expansion, so that the low energy theory obtained in this way will have the same massless spectrum
as compactification on X5. Because G involves an SU(2)′R action, half of the gravitinos will be
lifted in the process, reducing supersymmetry from 16 to 8 supercharges.

Our point of view is that the orbifold construction of the heterotic string on X5 is a UV
completion of circle compactification of the spacetime theory with a G-holonomy. Note we are not
suggesting a spacetime interpretation relating compactification based on a CFT to that based on
the orbifold CFT. Instead, the relationship is between a compactification based on a freely acting
orbifold and a circle compactification of a theory from one dimension higher.

It is clear that the existence of a UV completion is a non-trivial condition because not every
global discrete symmetry of the heterotic CFT leads to a modular-invariant orbifold, yet we expect
such symmetries to still correspond to gauge symmetries in the spacetime theory. Thus, there
should in general be obstructions to turning on non-trivial holonomy for a discrete spacetime gauge
symmetry G. We hope to return to a study of these in the future.

3.2 The heterotic worldsheet and duality

In the previous section we presented two classes of d = 5 heterotic compactifications that preserve
8 supercharges. While we saw that their spectra are closely related, and in particular are identical
when restricted to the massless untwisted states, in general the theories appear to be distinct. As a
stark difference we noted that T4/ZN ×S1 compactifications can be deformed to K3×S1 by going
on the Higgs branch, while no such Higgs branch appears to be present in the X5 compactifications.

Nevertheless, we will now show that by enlarging the moduli space to include Wilson lines we
can establish an isomorphism between these classes of theories. Thus, not only are these compact-
ifications connected in moduli space, they are in fact identical.

3.2.1 Bosonic construction

Turning on Wilson line parameters is best described in the bosonized construction of the heterotic
worldsheet CFT on Td [56, 57]. Grouping the left-moving fermions into 16 Weyl fermions ξa, ξ

a
,

so that the currents Ja = : ξaξ
a

: generate a Cartan algebra of e8⊕ e8, we bosonize these as
Ja = i∂X aL. The bosonic OPEs now depend on the metric gij on Td:

ΦiL(z)ΦjL(w) ∼ −gij log(z − w) , ΦiR(z)ΦjR(w) ∼ −gij log(z − w) ,

X aL(z)X bL(w) ∼ −δab log(z − w) . (3.2.1)

The vertex operators are now labeled by p ∈ Γd+16,d ⊂ Rd+16,d. The lattice isomorphism Γd+16,d '
(Γ1,1)5 + Γ8 + Γ8—see e.g. [16, 58] for details of the isomorphism relevant to the relation between
the E8×E8 and Spin(32)/Z2 heterotic strings—induces an isomorphism Rd+16,d ' Rd,d⊕R8⊕R8,
and we can use this to pick a basis that isometrically respects this splitting. For the Rd,d factor we
choose lattice vectors ei, e∗i satisfying

ei.e
∗j = δji , ei.ej = 0 , e∗i.e∗j = 0 , (3.2.2)

while for each of the Γ8 factors we choose the set of simple roots αI , I = 1, . . . , 8, of e8, with
αI · αJ the Killing metric, taken to be negative in our conventions. The αI are encoded in the
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Dynkin diagram written in terms of the standard orthonormal basis for R8, denoted by va, with
a = 1, . . . , 8 and va · vb = −δab:

1
v1 − v2

2
v2 − v3

3
v3 − v4

4
v4 − v5

5
v5 − v6

6
v6 − v7

7 −v1 − v2

8 1
2
(v1 + · · · + v8)

γ
v7 − v8

To accommodate the second (our hidden) e8 factor, we will let the indices I, a run through 9, . . . , 16

as well, but this will play no role in our analysis.

With the lattice set up complete, a point in the Narain moduli space corresponds to a choice
of spacelike d-plane Π spanned by the vectors πi, which can be taken to be of the form10

πi = ei + (gij + bij − 1
2Ai ·Aj)e

∗j +Ai , Ai = AIiαI = Aai va . (3.2.3)

In addition to the torus metric gij , this also encodes the choice of constant B-field bij and Wilson
lines Aai valued the Cartan subalgebra of e8.

The spacelike vectors satisfy πi.πj = 2gij , and it is easy to find a basis for the orthogonal
complement Π⊥, a timelike (d+ 16)–plane. We take it to be spanned by

π̃i = πi − 2gije
∗j , π̃a = va +Aai e

∗i . (3.2.4)

These two sets of vectors are orthogonal to the πi and each other, and satisfy π̃i.π̃j = −2gij and
π̃a.π̃b = −δab. Extending our discussion of the compact boson, we arrive at the vertex operators

Vp = : C(p) exp
î
i√
2
(πi.p)Φ

i
R(z) + i√

2
(π̃i.p)Φ

i
L(z) + i(π̃a.p)X aL(z)

ó
: (3.2.5)

for all

p = wiei + nie
∗i + λ ∈ Γ16+d,d , λ ∈ Γ8 + Γ8 . (3.2.6)

The weights of these operators11 are given by a generalization of (3.1.21):

hR(p) = 1
4 (πi.p)g

ij(πj .p) , hL(p) = 1
4 (π̃i.p)g

ij(π̃j .p) +
∑
a

1
2 (π̃a.p)

2 , (3.2.7)

and the spin satisfies

s(p) = hL(p)− hR(p) = − 1
2p.p = −niwi − 1

2λ · λ . (3.2.8)

Since Γ8 is an even lattice the last term is an integer for all λ, so that s(p) ∈ Z.

Finally, to complete the heterotic construction we need to add the right-moving superpartners
of the Φi, the fermions ψi(z). For all of our applications we will be able to group these into the two
Weyl fermions ψ1,2, ψ

1,2
for the T4 directions, and the extra Majorana-Weyl ψ5 for the additional

circle direction.

10We follow, with some small adjustments, the presentation given in [46]
11The factor C(p) will be addressed later.
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3.2.2 Two orbifolds

Starting with this presentation of the heterotic string on T5, we now consider the special locus
where the T4 factor admits a G = ZN symmetry with generator g. The ZN symmetry leads to
significant simplification in the CFT moduli: both gi5 and bi5 must be zero for i 6= 5, and the Ai 6=5

may be set to zero as well.12

To understand how G acts on the states, we reconsider the actions described in our RNS
discussion. These were the geometric orbifold action on T4, accompanied by its supersymmetric
extension to the right-moving fermions, the translation on S1, and the action on the left-moving
fermions γ1,2. We will now translate each of these into the bosonic description.

First, the geometric action on the T4 bosons induces an action on the associated vectors ~p ∈ Γd,d.
If the Φi coordinates transform as

gT · Φi = RijΦ
j , (3.2.9)

then we have

gT · wi = Rijw
j , gT · ni = (R−1)jini . (3.2.10)

This clearly preserves the spin of every Vp, and, because it is a torus isometry, it preserves the
weights as well. The right-moving fermions also transform accordingly, and as we discussed around
equation (3.1.5), it is convenient to represent the action by gψ = exp[ 2πi

N J
′
0].

Second, the translation in the circle direction is precisely the shift symmetry gsh described in
section 3.1.3. It leaves the lattice vectors invariant and acts on states by a ZN -valued phase.

Finally, we have the action on the γ fermions, represented by gγ = exp[ 2πi
N J ′0]. This is the only

one that is not quite obvious in the bosonized description, but because we can write it in terms of
the current J ′, finding the corresponding action on the X a is not too difficult. Taking a look at our
Dynkin diagram, we see that

J ′ = i∂X 7 − i∂X 8 , (3.2.11)

i.e. it is the current that corresponds to the extended root of the diagram. Thus, gγ turns out to
be another shift action in the bosonized description:

gγ |p〉 = e
2πi
N (v7−v8).p|p〉 . (3.2.12)

We can see this gives the expected structure for the unbroken symmetry with A = 0. In this case
the e8 currents that survive the projection are the Cartan currents i∂X a, as well as all the roots
αI orthogonal to v7 − v8. For N > 2 this gives rise to the e7⊕ u(1)′ current algebra, and in the
special case of N = 2 the state corresponding to the v7 − v8 root is left invariant as well, leading
to the u(1)′ → su(2)′ enhancement.

As above, we have two ZN symmetries by which we can orbifold: G, generated by g =

gT gψgγgsh, leads to the X5 orbifold, while G′, generated by g′ = gT gψgγ , produces the T4/ZN ×S1

orbifold.
Both of the symmetries are consistent with turning on a Wilson line A5 along the shift circle, and

by including this degree of freedom, we will demonstrate that, despite appearances, the two orbifolds
are equivalent. We will do this by finding an element t of the T-duality group O(Γ17,1) ⊂ O(Γ21,5)

12Note the Ai 6=5 Wilson lines are not required to be set to zero by our ZN symmetry because there is an accompa-
nying action on the left-moving fermions, or equivalently on the Xa. In the orbifold theory these symmetry-preserving
Wilson line parameters describe hypermultiplet expectation values.
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such that

g′ = t−1gt . (3.2.13)

To give this construction, we will have to delve a little bit into the structure of the heterotic
T-duality group.

3.2.3 Elements of O(Γ17,1)

The T-duality group O(Γ16+d,d) arises from lattice isomorphisms, and each such isomorphism in-
duces a (possibly trivial) action on the moduli. A discussion of its generators is given in [16, 59].
In our discussion two elements will play a role: the T-duality transformation on the 5-th circle, as
well as a shift of the Wilson line associated to the circle by a lattice vector in Γ8.

Typically, the induced action on the moduli is complicated. For example, a T-duality on a single
circle usually involves a non-trivial action all of the gij , bij and Ai components [16, 59]. However,
since we assume the ZN symmetry, the moduli are restricted, so that we may as well think of our
transformations as living in O(Γ17,1).

A vector in Γ17,1 has the form

p = we+ ne∗ + λ , (3.2.14)

and using (3.2.7) with g55 = r2, and A5 = A, we find the weight and spin

hR(p) = 1
4r2 (π.p)

2
, s(p) = hL(p)− hR(p) = − 1

2p.p = −nw − 1
2λ · λ , (3.2.15)

with

π.p = n+
(
r2 − 1

2A ·A
)
w +A · λ . (3.2.16)

The T-duality action on the lattice is simply the exchange (n,w)→ (w, n). Let us call this action
g1(p). Clearly g1(p).g1(p) = p.p for all p, which is necessary and sufficient for g1 to be a lattice
isomorphism. Moreover, we can find an induced action the moduli (r,A), so that

(g∗1hR)(p) = hR(g1(p)) : (3.2.17)

(r′, A′) = g∗1(r,A) , r′ =
r

r2 − 1
2A ·A

, A′ =
A

r2 − 1
2A ·A

. (3.2.18)

The lattice vector shift of the Wilson line arises through a more elaborate lattice isomorphism,
depending on a choice of lattice vector ρ ∈ Γ8 + Γ8:

g2(p) = p+ (ρ · λ− 1
2ρ · ρw)e∗ − ρw , (3.2.19)

or more explicitly,

g2(n,w, λ) = (n+ ρ · λ− 1
2ρ · ρw,w, λ− ρw) . (3.2.20)

This action also preserves the lattice since g2(p).g2(p) = p.p , and the induced map on the moduli
is simply

(r′, A′) = g∗2(r,A) = (r,A+ ρ) . (3.2.21)
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Having reviewed the form of these basic maps, we will now use them to construct an isomorphism
between the two orbifold theories, i.e. the compactification on X5 and the T4/ZN × S1 orbifold.

3.2.4 Heterotic isomorphism

Let t = g1g2. We claim that this combination of O(Γ17,1) elements leads to the desired equiva-
lence (3.2.13) for an appropriate choice of lattice vector ρ. Since t does not act on the T4 bosons
or right-moving fermions, and our two actions g and g′ act in the same way on those degrees of
freedom, it is sufficient to check the claim for p ∈ Γ17,1.

We set the ρ to be proportional to the root α6 = v6 − v7:

ρ = (1−N)α6 , (3.2.22)

and we define for convenience γ = v7 − v8. Note that γ · ρ = 1−N . We now compute

t|n,w, λ〉 = |w, n+ ρ · λ− 1
2ρ · ρw, λ− ρw〉 , (3.2.23)

and therefore

t−1gt|n,w, λ〉 = exp
[

2πi
N (w + γ · (λ− ρw))

]
|n,w, λ〉 = e

2πi
N γ·λ|n,w, λ〉 = g′|n,w, λ〉 . (3.2.24)

In the second equality the phase dependence on the winding mode w drops out precisely because
γ · ρ = 1−N . Thus, despite appearances, the two orbifold CFTs are isomorphic!

Special features of N = 3

As we remarked above, the correspondence between the theories is particularly nice when N = 3,
since there it is possible to match the massless spectra by turning on a single Wilson line for the
u(1)′ vector multiplet. We can see these special features from the point of view of our isomorphism
as well. Precisely when N = 3 we can set the Willson line shift to be ρ = γ, and the winding mode
will again drop out from the phase factor.

In this case, then, we can identify the X5 theory with radius r and circle Wilson line A5 = aγ

with the T4/Z3 × S1 theory with radius r′ and circle Wilson line A5 = a′γ via

r = r′

r′2+(a′−1)2 , a = a′−1
r′2+(a′−1)2 . (3.2.25)

As expected, the duality is a stringy one. For example, setting a′ = 1, which corresponds to
the a = 0 X5 theory analyzed above, we find that a large radius circle on the T4/Z3 × S1 side
corresponds to X5 with a small shift circle.

Note that a′ = 1 is equivalent to a′ = 0 in the T5 theory, but that is not the case in the orbifold,
where the Wilson line compactness is instead through the equivalence a′ ∼ a′ + 3. This is closely
related to the appearance of the fractional U(1)′L charges in the twisted sector states, and it is thus
not surprising that such massless states are lifted for a′ = 1.

3.3 Cocycle subtleties and their resolution

We now explain the need for the factor C(p) in eq 3.2.5 and point out that in general their presence
can lead to subtleties in the analysis of CFT symmetries. We will also see, however, that in this
case we are lucky: all of the potential subtle factors drop out, and the duality conclusions reached
in the previous section remain unmodified. Nevertheless, since the general observations here may
lead to subtleties in closely related discussions, we will include them. In addition to the standard
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textbook references [60, 61], which supply some of the background, our thinking about these issues
was guided by the work [62].

A class of CFT symmetries

We are interested in discussing a class of CFT symmetries of Narain compactification that are
realized as the following G action on the vertex operators. For every g ∈ G there is a map
ϕg : Γ→ Γ and a factor U(g, p) ∈ C such that

g ◦ Vp = U(g, p)Vϕg(p) . (3.3.1)

Not all CFT symmetries can be realized in this fashion. For example, the SU(2)×SU(2) symmetries
of the compact boson at self-dual radius take a more general form and also mix the Vp with non-
Kac-Moody primary operators such as ∂Φ and ∂̄Φ.

We wish the g-action to be invertible and to be consistent with the OPE, and it must preserve
the weights of the operators. Therefore it must be that for every g the factor U(g, p) ∈ C∗, and ϕg
is a lattice isomorphism. We will insist that the action is unitary, which means U(g, p) is a pure
phase. Since we also want composition to be consistent with the group product structure, i.e.

(g2g1) ◦ Vp = g2 ◦ (g1 ◦ Vp) , (3.3.2)

We also learn that the phases must obey

U(g2g1, p) = U(g2, g1(p))U(g1, p) , (3.3.3)

and similarly the ϕg should satisfy ϕg1g2(p) = ϕg1(ϕg2(p)). We now see that ϕ must be a map to
the group of automorphisms of the lattice, i.e. ϕ : G→ O(Γ). The resulting subgroup of O(Γ)

GΓ ' G/ ker(ϕ) (3.3.4)

is in general smaller than G: for example, the circle shift symmetry has G = ZN and GΓ = 1.
These are sensible constraints determined by the group structure, but there are further con-

straints on the factors U(g, p), and this is where the cocycles make an appearance.

A look at the cocycles

The factors C(p) are introduced to resolve an issue with commutation properties of the naive
vertex operators Vnaive

p which lack these factors: the OPE of two such operators has a non-trivial
monodromy as we transport one operator around the other, which leads to

: Vnaive
p1 (−z/2) : : Vnaive

p2 (z/2) : = eiπp1.p2 : Vnaive
p2 (z/2) : : Vnaive

p1 (−z/2) : . (3.3.5)

Thus, the operators appear to anticommute whenever p1.p2 is odd. To resolve this, the operators
are modified to include the C(p), which are chosen so that

VqCp = ε(q, p)CpVq , CpCq = Cp+q (3.3.6)

for some phase ε(q, p). Including these factors will remove the unwanted factor eiπp1.p2 if the phases
obey

ε(p2, p1) = (−1)p1.p2ε(p1, p2) . (3.3.7)
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Associativity of the OPE places further non-trivial conditions on the phases:

ε(p1, p3)ε(p2, p3) = ε(p1 + p2, p3) , (3.3.8)

and

ε(p1, p2)ε(p1 + p2, p3) = ε(p1, p2 + p3)ε(p2, p3) . (3.3.9)

The second of these justifies the name of cocycle, i.e. ε ∈ H2(Γ,U(1)). Consider the maps Γ×Γ→
U(1), denoted by c(p1, p2). The coboundary map to the group of homomorphisms Γ×Γ×Γ→ U(1)

is taken to be

δ32c(p1, p2, p3) =
c(p2, p3)

c(p1 + p2, p3)

c(p1, p2 + p3)

c(p1, p2)
, (3.3.10)

Similarly, starting with maps Γ→ U(1) denoted by f(p), we have

δ21f(p1, p2) =
f(p1)f(p2)

f(p1 + p2)
, (3.3.11)

and the reader can check δ32(δ21f) = 1. The condition (3.3.9) is the statement that δ32ε = 1, i.e.
that ε is a cocycle that defines a class in H2(Γ,U(1)). On the other hand, the condition (3.3.7)
shows that ε(p1, p2) cannot be a coboundary.

Cocycles and symmetry phases

Finally we come to our key point: the cocycle factors and the phases U(g, p) are intertwined, and
the consistency of the OPE with the symmetry action, i.e.

: g ◦ Vp(z1) : : g ◦ Vq(z2) : = g ◦ ( : Vp(z1) : : Vq(z2) : ) (3.3.12)

require the phase factors to obey [62]

U(g, p+ q)

U(g, p)U(g, q)
=
ε(ϕg(p), ϕg(q))

ε(p, q)
. (3.3.13)

There are two ways to read this equation. On one hand, it shows that the ratio of cocycles
ε(ϕg(p),ϕg(q))

ε(p,q) is a coboundary, and U(g, p) is the trivializing cycle. On the other hand, whenever
the ratio is not 1, it gives an obstruction to choosing U(g, p) to be a group homomorphism from
the lattice to U(1).

There are two obvious questions about this result: how does the it depend on the choice of
cocycle? to what extent does it determine the phases U(g, p)? We leave it to the reader to check
that a modification of ε by a coboundary f(p) modifies U(g, p)→ U(g, p)f(g(p))/f(p), and the new
U(g, p) so obtained is consistent with the group structure. As far as the second question goes, it is
clear that if U1(g, p) and U2(g, p) both solve (3.3.13) with the same ε, then their ratio U1/U2 is a
homomorphism from Γ to U(1) for all g.

Duality unmodified

We just discussed at length that symmetry actions of the sort we used to prove the duality between
X5 and T4/ZN × S1 heterotic compactifications in general come with extra phase factors caused
by T-duality action t. Since the whole point of our duality claim was a match of phase factors for
two group actions, this is a non-trivial concern.
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To allay this worry, we write the correct form for the symmetry action on the states, taking
into account the possible extra phases. In keeping with the spirit of this section, we distinguish
in our notation between the action on the states and the action on the lattice vectors, so that we
have, coming back to (3.2.13),

t−1gt|p〉 = U(t, p)U(g, ϕt(p))U(t−1, ϕgt(p))|ϕt−1gt(p)〉 . (3.3.14)

The group multiplication properties imply the relation

1 = U(t−1t, ϕt−1(p)) = U(t−1, p)U(t, ϕ−1
t (p)) , (3.3.15)

so that

U(t−1, p) =
1

U(t, ϕ−1
t (p))

. (3.3.16)

But, since we have ϕt−1gt(p) = p, the phase factor becomes

t−1gt|p〉 = U(t, p)U(g, ϕt(p))
1

U(t, p)
|ϕt−1gt(p)〉 = U(g, ϕt(p))|p〉 , (3.3.17)

but that is exactly the factor we showed to be equal to U(g′, p) in eq 3.2.24.
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Type II string compactification on X5

We have seen Hetertoic string compactified on orbifolds T4/Z2,3,4,6×S1 are equivalent to Heterotic
string compactified on smooth Seifert manifolds (T4 × S1)/Z2,3,4,6. In this chpater we study per-
turbative Type II string compactification on these two classes of flat manifolds (orbifolds), whose
low energy limit is 5d dupsergravity with 16 supercharges.

4.1 T-dual of Type II string compactifies on Seifert manifolds: a space-
time point of view

Without loss of generality, we study type IIA on Seifert manifold T 5/Z2. This Seifert manifold can
be considered as S1 fibered over orbifold T 4/Z2. One fact about this Seifert manifold is that when
one moves around a non-trivial loop around the 16 fixed points on the base caused by the orbifold
Z2 action, a half circle shift on the S1 fiber accompanied. So if we compactify the type IIA on the
S1 fiber first, we get a 9d theory on the orbifold T 4/Z2 together with a Wilson line of 9d KK vector∫
π1
gµ9 = 1

2
1 around each fixed point (π1 corresponds to the nontrivial loop due to the orbifold

action)
T dual the S1 fiber exchanges Bµ9 and gµ9. Hence T dual gives a 9d theory (IIB on the dual S1)

on orbifold T 4/Z2 with Wilson line configuration
∫
π1
Bµ9 = 1

2 . Now if we lift to 10d, the internal
configuration of compactification would be a S1 bundle over T 4/Z2 together with non-trivial B-flux∫
π1×S1 B = 1

2 centered around the fixed points on the base. The S1 fiber is trivial and the geometric
picture on the IIB side is S1 × T 4/Z2

2

This spacetime viewpoint also suggests one possible meachnism of frozen singularity that is
discussed in 2.2.2. Notice a gernic case of type IIA on Seifert manifold (T4 × S1)/Z2 gives a 5d
supergravity with 4 U(1) vector multiplets, while type IIB on T4/Z2 × S1 gives 20 U(1) vector
multiplets with 16 come from 16 singularities on T 4/Z2. Remember these 5d supergravities have 16
supercharges so the moduli space of two supergravity theories cannot be connected to each other, as
5d supergravities have 16 supercharges only consist of Coulomb branch. So the non-trivial B field
configuration around singularities obtained from T-dualizing the Seifert circle fibration, freezes these
singularities out. It is also interesting to notice that this frozen singularity mechanism is purely
perturbative.3

1The quantity
∫
π1
gµ9 should be undestood as holonomy

2Recall the standard T-duality argument: Starts with a non tivial S1 fibration and trivial B field configuration,
T-dual gives a trivial S1 fibration with non trivial B field configuration.

3This mechanism is related to the known non-perturbative mechanism of frozen singularity [24] through SL(2,Z)
duality, as we will discuss later.
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4.2 Equivariant gerbes and orbifold CFT

In this section we connect the spacetime perspective with an explicit worldsheet computation.
Equivariant gerbes is used to treat the non-trivial B-field configuration. Equivairant gerbes mean
that the orbfold group acts on the entire space of spacetime manifold together with B field structure,
rather than just spacetime manifold(see appendix B for an introduction).

The notion that equivariant gerbes enter the construction of the orbifold partition function
was developed in [33, 35], and the second reference showed that pure holonomy equivariant gerbes
produce the kinds of shift orbifold factors that are necessary to relate the X5 and T4/ZN × S1

orbifolds. We will now review those ideas and illustrate in an example that they do lead to the
expected phases and partition functions.

Let Z0,0 denote the genus 1 partition function of a CFT which admits the action of a discrete
abelian group G with 0 the additive identity element. The orbifold partition function then takes
the familiar form

Z =
1

|G|
∑
a,b∈G

Za,b , Za,b = TrHb ρb(a)qL0−c/24qL0−c/24 , (4.2.1)

where ρb(a) is the representation of the G-action on the Hilbert space Hb, i.e. the space of states
twisted by the element b. In general the choice of representation ρb is not unique. For example, if
ρb(a) leads to a consistent choice of modular-invariant and unitary partition function, then so does

ρ̃b(a) = ρb(a)
ωa,b

ωb,a
(4.2.2)

for any representative of a class [ω] ∈ H2(G,U(1))—this is the discrete torsion of [34].
The observation from [35] is that the equivariant gerbe data for a G = ZN quotient enters the

choice of ρb(a) through a factor4

Pa,b = exp

ï
i

∫
Φ∗(B)

ò
exp

ñ
i

∫ 1

0

Φ∗(Ab)− i
∫ τ

0

Φ∗(Aa)

ô
(4.2.3)

in the Lagrangian computation of Za,b. This is also counterpart of B-field holonomy around sin-
gualrities in the covering space X = T5. Here Φ : T 2 → X is the map from the worldsheet torus
with complex structure τ = τ1 + iτ2 to the targetspace with

Φ(0) = x , Φ(1) = ϕa(x) , Φ(τ) = ϕb(x) , Φ(1 + τ) = ϕab(x) . (4.2.4)

Here ϕa(x) is the the image of x under action of group element a in the covering space T5. The
integration contours in the z plane of the worldsheet torus are along the left and bottom boundaries
of the parallelogram:

0 1

τ + 1
τ z

(4.2.5)

The expression Pa,b is not easy to interpret on a general targetspace. However, our interest is
in X = Td/ZN × S1, where the interpretation is straightforward in the situation when B-field
configuration is flat, i.e. fully characterized by its holonomies. Focusing on the bosonic part of the

4When H2(G,U(1)) 6= 1, there is in general an extra term in the expression that accounts for the choice of discrete
torsion: Pa,b should be further multiplied by ωa,b/ωb,a.



4.3. Frozen singularities and a dual perspective 53

CFT, the original theory’s configuration space decomposes into sectors labeled by their periodicities
under shifts of z → z + 1 and z → z + τ . The x5 field corresponding to S1, which is neutral under
the orbifold action, has configurations

x5(z, z) = i
2τ2

(w − ñτ) z + i
2τ2

(−w + ñτ) z . (4.2.6)

While w has the interpretation as the winding quantum number, ñ is not the momentum mode n of
the Hamiltonian formulation—the two are related through a Poisson resummation. In constructing
the path integral of Za,b we must also consider fluctuations around this classical solution, but those
do not enter the phase factor Pa,b.

In our examples above, the gerbes with B = 0 have Aa = 2πa
N dx55, and these lead to phases

Pa,b = exp
[

2πi
N (aw − bñ)

]
. (4.2.7)

The contribution to the circle partition function can be evaluated by including the integration over
the fluctuations around the semi-classical solution [53]. Including the phase Pa,b the result is (our
conventions are given in appendix A)

Zcir
a,b = 1

ηη

∑
w

e2πi
aw
N
√
τ2
r

∑
ñ

exp
[
−S0(ñ, w, τ, r)− 2πi bN ñ

]
, (4.2.8)

where S0 is the classical action evaluated on the solution (4.2.6). Making a Poisson resummation
on ñ, we therefore obtain

Zcir
a,b = 1

ηη

∑
w

e2πi
aw
N
√
τ2
r

∑
n

∫ ∞
−∞

dx exp
[
−S0(x,w, τ, r)− 2πi bN x− 2πixn

]
. (4.2.9)

When b = 0, this leads to the usual expression for the circle partition function with an extra phase:

Zcir
a,0 = 1

ηη

∑
n,w

e2πi
aw
N qhn,wqhn,w , (4.2.10)

but now the form of the b-dependence under the x integral shows that more generally including b
just leads to the shift n→ n+ b/N in the weights hn,w and hn,w. But this is precisely the partition
function of the T-dual of the shift orbifold of the circle! Since the remaining degrees of freedom,
i.e. the fermions and the bosons of the Td theory, are treated in the same way in both the X5

and Td/ZN × S1 orbifolds, we therefore see that the gerbe data and the associated phase correctly
reproduce the T-dual of the ZN quotient that leads to the smooth X5 geometries.

4.3 Frozen singularities and a dual perspective

The geometry T4/G×S1 is familiar to every string theorist as a limit of compactification on K3×S1.
The resulting spacetime physics depends on the way in which the limit is taken. For example, if
we focus on type II compactification, then the choice of B-field determines whether the limiting
theory will lead to additional massless gauge degrees of freedom (in IIA) or tensionless strings (in
IIB) [45, 64, 65]. These arise at points in the moduli space where the CFT breaks down, and
worldsheet non-perturbative effects are crucial. On the other hand, there is a choice of B-field such
that the limit leads precisely to the orbifold CFT for T4/G. In each of these cases it is possible
to perturb the moduli to a more generic point and arrive at a smooth K3 geometry with some

5This is the data in the covering space T5 to produce the holonomy around singularities on T4/Z2 × S1
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small cycles. From the point of view of the orbifold CFT these deformations correspond to massless
spacetime fields that arise from the twisted sectors.

As we have seen, in 5–dimensional compactification there is a new possibility: by turning
on a pure holonomy gerbe with support on the full K3 × S1 geometry, we can obtain a theory
without moduli associated to any of the blow-up modes. The disappearance of the moduli is easy
to understand in the T-dual picture, since the dual geometry is smooth, and every twisted sector is
massive. On the other hand, in the original formulation the singularity is frozen by the holonomy
of the gerbe.

In terms of the local structure of the geometry, we can think of this as follows.6 The equivariant
gerbe implies that the orbifold geometry T4/G× S1 carries non-trivial gerbe holonomy: a curve γ̃
in T4 with γ̃(0) = x and γ̃(1) = ϕa(x) projects to a closed curve γ, and the cycle γ×S1 then carries
a gerbe holonomy e2πia/N , and this topological feature is responsible for freezing the moduli.

This local discussion has a string-dual description: starting with IIB compactified on T4/G×S1

with a pure holonomy gerbe, we use SL(2,Z) duality to obtain IIB compactified on the same space,
but now with a holonomy for the Ramond-Ramond C2 field on the same cycle γ×S1. Taking another
T-dual, we obtain IIA on T4/G×S1, but now with holonomy for C1 on the loop γ. These different
descriptions can understood by compactifying M-theory on X5 × S1 and then reducing either on
the trivial circle or on the circle of the X5 fibration. This is exactly the picture described in [24]
for the freezing of the singularities, and we see that our construction gives the same mechanism at
the level of spacetime physics, but one accessible in standard worldsheet analysis.

If we reconsider the T4/Z2×S1 case, we see that all the B-field holonomy are localized around the
singualrities. This leads to a natural question: is it possible to turn on different gerbe holonomies
at different singularities to freeze a arbitrary number of singularities? As pointed out in [24],
there are global constraints that prevent us from turning on such holonomies independently: some
combinations of the cycles are homologous, and unless the holonomies are chosen in a consistent
manner, they would necessarily lead to non-zero curvature for dC1. The number of singularity
points that are allowed to turn on non-trivial gerbe holonomy can only be 0, 8, 16.

As we argued the two frozen singularity mechanisms are equivalent by SL(2,Z). These global
constraints are also reflected in our worldsheet analysis. This can be seen explicitly by focusing on
the bosonic sector of the theory. For example, the partition function for T4/Z2×S1—see appendix A
for the relevant CFT details—has twisted sector contributions that come with an overall factor of
16 = 24, one for each of the orbifold fixed points:

Ztwist = 24Zcir(r)

®Å
ηη

ϑ4ϑ̄4

ã2

+

Å
ηη

ϑ3ϑ̄3

ã2
´
. (4.3.1)

A CFT model of turning on a local gerbe on k of the singularities is to split the twisted sector
contribution into k terms for which we introduce the phases associated to the gerbe, and the
remaining 16− k terms which we leave untouched. Thus, we have

Z(k)
twist = (16− k)Zcir(r)

®Å
ηη

ϑ4ϑ̄4

ã2

+

Å
ηη

ϑ3ϑ̄3

ã2
´

+ k

®
Z +

sh−

Å
ηη

ϑ4ϑ̄4

ã2

+ Z −
sh−

Å
ηη

ϑ3ϑ̄3

ã2
´
. (4.3.2)

Can this be the twisted sector of a worldsheet Z2 orbifold CFT? If so, we should be able to obtain
the untwisted sector partition function by applying worldsheet SL(2,Z) transformations. However,

6In this discussion we stick to the pure holonomy equivariant gerbe with B = 0.
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when we do this, we find that the resulting partition function fails to have an integral q expansion
unless k = 0 mod 8.

A similar analysis can be carried out for the Z3 example: there the number of frozen singularities
can be 0, 6, 9 [24], and those are precisely the values for which the procedure just outline yields a
well-behaved worldsheet partition function.





Part III

On non-perturbative side of string
compactification
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Chapter 5

BPS strings in six and five
dimensions

We now turn to supergravity theories in 5 and 6 dimensions following chpater 21.
Six and five-dimensional theories - even those related by a simple circle reduction - have a rather

different way of packaging geometric information. For example, for reductions of F and M theory
on elliptic Calabi-Yau manifolds, the trilinear couplings of the former correspond to only a part of
the intersection form of the CY manifold (where one of the two-forms is necessarily related to the
pull-back from the base of the elliptic fibration), while the latter sees the entire intersection form.
In a similar way, we shall argue that five-dimensional theories offer a better (and more geometric)
view on the consistency of six dimensional theories (after compactifying on a circle).

In this chapter, we study the spectrums of BPS strings in 6d and 5d minimal supergravity
(eight supercharges) and point out some of the differences between them. Then we offer one way
to relate the BPS strings in 6d and their counterpart in d = 5 after compactification on a circle.

5.1 BPS stings in six and five-dimensional theories with 8 supercharges

We consider six-dimensional theories with minimalN = 1 supersymmetry with nT tensor multiplets,
Yang-Mills multiplets with a group G =

∏
iGi and hypermultiplets in different representations of

the gauge group. A necessary condition for the Green-Schwarz anomaly cancellation mechanism is
the sum-factorisation of 6d N = 1 anomaly polynomial:

I8 =
1

2
Ωαβ X

α
4 X

β
4 (5.1.1)

where α, β = 0, 1, ...nT and Ωαβ is the symmetric inner product on the space of tensors with
signature (1, nT ), and2

Xα
4 =

1

8
aαtrR2 +

∑
i

bαi
1

4h∨i
TrAdjF

2
i (5.1.2)

The vectors a, bi ∈ R1,nT are determined by the field content of the theory. The anomaly cancellation
condition ensures that all mutual inner products are integers. A GS term is added to the six-
dimensional action to cancel the anomaly encoded in I8 via the descent formalism.

1This part is based on [115]
2Our normalisations of the curvatures R and F are such that they contain a factor 1/2π.
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In the presence of solitonic strings, which are the dyonic sources for self dual tensor fields, both
the Green-Schwarz couplings and the Bianchi identities for the tensor fields are modified:

dHα = Xα
4 +Qα

4∏
a=1

δ (xa) dxa , (5.1.3)

where Hα satisfy a self-duality condition. The 4-form distribution is the Poincaré dual to the string
source and Qα are string charges.

In addition to the standard lack of invariance under gauge transformations and diffeomorphisms,
the GS term will lead to anomalous terms restricted to the string worldsheet W2 in the presence of
such a BPS solitonic string. They must cancel the anomaly of the worldsheet theory. One should
bear in mind that in (5.1.3) the string source term is given in a particular representation of the
Thom class Φ for i : W2 ↪→ M6, and in general it follows from the Thom isomorphism that the
pull-back i∗Φ = χ(N), where for the SO(4) ' SU(2)1 × SU(2)2 structure group of the normal
bundle χ(N) = c2(SU(2)1) − c2(SU(2)2) is the Euler class of the normal bundle N of the string.
Using trR2|TW2

= −2 p1(TW2) − 2 p1(N) and p1(N) = −2(c2(SU(2)1) + c2(SU(2)2)), one infers
that the anomaly two-form on W2 is obtained via descent from

I4 = −Ωαβ Q
α

Å
Xβ

4 (M6)|W2 +
1

2
Qβχ (N)

ã
(5.1.4)

= −1

4
ΩαβQ

α
(
aβp1(TW2)− 2

(
Qβ + aβ

)
c2(SU(2)1) + 2

(
Qβ − aβ

)
c2(SU(2)2) + ...

)
The ellipsis stands for the pullback of the YM part in (5.1.2) which is not needed for the following
analysis.

The theory on the worldsheet flows in the IR to a (0, 4) SCFT and the information about
the left and right central charges as well as the level of the SU(2) R-symmetry current algebra is
contained in I4. As discussed in sect 2.1.4, the SCFT splits into a free center of mass SCFT and an
interacting SCFT. The former consists of a hypermultiplet with left and right central charges 4 and
6, respectively. Its R-symmetry group is not contained in the SO(4) from the normal bundle as the
four scalars, which are neutral under the R-symmetry, transform as a vector of SO(4). From the
point of view of the worldsheet theory it is an accidental symmetry. The contribution of the c.o.m.
part to I4 is − 1

12p1(TW2) − c2(SU(2)1). In particular it does not interfere with the R-symmetry
of the interaction part of the SCFT, which is SU(2)2. Using the (0, 4) relation cR = 6 kR between
the central charge and the level of the R-current algebra, we can read off cintR from the c2(SU(2)2)

part of I4 and cintR − cintL from the coefficient p1(TW2) of the gravitational anomaly. Adding the
contribution of the c.o.m. part one finds

cL − cR = −6 Ωαβ a
αQβ ≡ −6Q · a

cR = 3 Ωαβ Q
αQβ − 6 Ωαβ a

αQβ + 6 ≡ 3Q ·Q− 6Q · a+ 6 (5.1.5)

We have defined here an inner product denoted by · using the metric on the space of tensors Ωαβ .

Following [92, 93] we shall be interested in supergravity strings,3 whose worldsheet R-symmetry
descends from the structure (sub)group of the normal bundle. This condition restraints the values
of the admissible Q charges. Once such restrictions are imposed, the worldsheet SCFT should be
unitary, i.e. the central charge cL should serve as a bound for the contribution of the left moving

3i.e. BPS strings that cannot be consistently decoupled from gravity.
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current algebra for G at level k: ∑
i

ki · dimGi
ki + h∨i

≤ cL − 4 (5.1.6)

where for Abelian gauge factors h∨ = 0.
So far we have discussed solitonic strings in d = 6. Most of the subsequent analysis will be

five-dimensional, and we shall in particular be interested in the five-dimensional solitonic strings
obtained via circle reduction, when the S1 is transverse to the six-dimensional string. To get the
anomaly formula of the resulting (0, 4) SCFT on the string, we simply let the normal bundle be
R3 × S1. To go to five dimensions, we take c2(SU(2)1) = c2(SU(2)2) = c2(N), where N is the S2

normal bundle fiber inside R3. Imposing this in (5.1.4) leads to

cL = 2 cR = −12 Ωαβ a
αQβ ≡ −12Q · a (5.1.7)

preserving the difference cL−cR (5.1.5). Such five-dimensional solitonic strings with central charges
linear in Q are magnetic sources for the U(1) gauge fields obtained from the reduction of the six-
dimensional tensor fields.

We now turn to the generic string sources in five-dimensional N = 1 supergravity. Such a BPS
string also hosts a (0, 4) 2d SCFT on its worldsheet, hence we can obtain cL, cR for this 2d SCFT
via anomaly inflow caused by 5d bulk Chern-Simons terms:

− 1

96
aIA

Itr(R ∧R) +
1

6
CIJKA

I ∧ F I ∧ F J (5.1.8)

From these Chern-Simons terms we obtain [93, 99, 100]

cR = CIJKQ
IQJQK +

1

2
aIQ

I

cL = CIJKQ
IQJQK + aIQ

I (5.1.9)

The index I runs over all d = 5 vectors. In 6d language, I = 1, ..., nT + nV + 1.
The structure of central charges of (0, 4) SCFTs hosted on 5d BPS strings is very different from

6d ones. While in general for 6d strings the leading behaviour for both cL and cR is quadratic in Q,
due the quadratic terms in the anomaly polynomial (5.1.1), in five dimensions it is generally cubic.
Moreover, in five dimensions the anomaly inflow cannot produce central charges with quadratic
scaling in Q.

For the vector fields originating form six-dimensional tensors, the coefficient of the gravitational
coupling does not renormalise upon reduction and the triple self-intersection does not get generated.
One recovers the central charges as in (5.1.7) linear in Q and with cL = 2cR. So the conclusion would
be that for the 5d BPS strings from 6d BPS string compactified on a transverse circle, the central
charge cL, cR on the (0, 4) SCFT it hosted will have vanishing cubic term (i.e. CIJKQIQJQK = 0

in (5.1.9)).
For the remaining U(1) vectors in 5d N = 1 supergravity, including the graviphoton A0,

integrating out of the massive KK tower in general cases generates the gravitational couplings with
coefficients aI and the the trilinear self-intersections with (non-zero) coefficients CIJK . The central
charge of these strings in general have a cubic dependance on Q. We shall refer to these types of
BPS strings as linear(central charge with vanishing cubic term CIJKQ

IQJQK = 0) and cubic for
the cases in the subsequent discussion.4

4A little clarification is due. “Linear strings” can have trilinear dependance in the central charges which can
however be set to zero by appropriate choices of the charge vector. This is the case with the self-dual string in N = 1
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In next chapter we shall concentrate on the linear strings, and re-examine the unitarity con-
straints in sect 2.1.4 of the six-dimensional theories from five-dimensional view-point. Given the
change in the nature of cL in passage form six to five dimensions, the unitarity constraints, as we
shall see, are different both in substance (they are in general a bit stronger) and in form (they
appear to be more geometric). We did not find the cubic strings to be amendable to such analysis
and to produce useful constraints. However in the remainder of this chapter we shall elucidate their
six-dimensional origin.

5.2 5d strings from 6d geometry

We will now argue that the five-dimensional cubic strings strings originate from the six-dimensional
geometry R1,1 ×MTN, i.e. when the circle on which the theory is reduced is non-trivially fibered.
Moreover, every cubic string should carry some KK (magnetic)charge. As we shall see this argument
is consistent with F-theoretic considerations.

We have already seen that the reduction of six-dimensional strings, which are charged under
the tensor fields, yields only linear strings. Hence the cubic strings can only be charged under the
vectors that come from the reduction of six-dimensional vector multiplets or under the KK vector
gµ5. One could wonder if there is a solitonic object (a membrane) in six dimensions that is charged
under the U(1) fields and whose reduction yields the cubic strings, but such an BPS object is not
allowed by supersymmetric algebra. Also, if this is the case, the (0, 4) SCFT on the 5d string should
arise from 3d N = 2 QFT on the membrane compactified on a S1. This generally cannot produce
a chiral theory in two dimensions (notice that our 2d theory is obtained from a compactification
of a 3d theory on a circle, not via restriction to the boundary of a 3d theory). Also, obviously the
magnetic sources for the KK vector after circle compactification do not arise from any wrapped
object in 6d either as the 6d theory itself does not have the KK vector.

To find the 6d origin for the cubic BPS strings after circle compactification, let us recall that for
five-dimensional supergravities obtained from the compactifications of M-theory on an elliptically
fibered CY3, the (0, 4) cubic strings arise from M5 branes wrapping a smooth ample divisor5. So
let us have a closer look at ample divisors in a smooth elliptically fibered CY3:

Eτ → CY3 → B . (5.2.1)

These can comprise the base B and π−1(Σi), which are pullbacks of curves in the base, and an
expectional divisor X. Hence the generic ample divisor D can be written as

D = aB + b π−1(Σ) +X . (5.2.2)

It follows from the Nakai-Moishezon ampleness condition for D, which implies

D ·D ·D > 0 and D · C > 0 (5.2.3)

for any effective curve C, that a 6= 0, i.e. any ample divisor in a smooth CY3 necessarily contains
some copies of the base. Indeed, this follows immediately if we take C to be the intersection of two
π−1(Σi), and use that

π−1(Σi) · π−1(Σj) · π−1(Σk) = 0 and π−1(Σi) · π−1(Σj) ·X = 0 . (5.2.4)

theory after circle reduction. As we shall see, their central charges can acquire contributions ∼ Q2
KKQ. However

QKK can be consistently taken to zero. The cubic strings, on the contrary, are charged with respect to vector fields
that have a cubic self-coupling.

5In order to see the microscopic origin on the central charge formula in terms of the zero modes of the fields on
M5 one should assume that the divisor is very ample [101].



5.2. 5d strings from 6d geometry 63

Moreover, in the M theory picture, an M5 brane wrapping the base is a magnetic source for the KK
vector. So from the M/F theory points of view, the cubic string should carry some magnetic charge
of the KK vectors. In general this implies that the six-dimensional counterpart of these strings
should contain the KK monopole configuration, which is naturally given by Euclidean Taub-NUT
geometry (see e.g. [102]):

ds2
6 = −dt2 + dy2 + ds2

TN (5.2.5)

with

ds2
TN =

Å
1 +

QR0

r

ã (
dr2 + r2dΩ2

)
+R2

0

Å
1 +

QR0

r

ã−1

(2 dψ +QA)2 (5.2.6)

Here Q ≡ QKK, the KK monopole charge, is a integer; we will restrict to the positive integer case
for simplicity and without loss of generality. dA = dΩ2 is the volume element on the unit 2-sphere
and ψ ' ψ + 2π. The TN space is a S1 fibration over R3 (except the locus where the S1 fiber
shrinks to zero size). Far away from the origin the space is S1 × R3 where the radius of the circle
is 2R0. This is the circle we want to compactify on. It shrinks to zero size at the origin at r = 0

where the space has a AQ−1 singularity. This is the limit of an Q-centered TN space where all
centers coincide (here at the origin r = 0).

For a fixed small distance r = ε, we can neglect the constant in the harmonic function and the
metric becomes that of an S1 fibration over S2 (a cyclic Lens-space)

S1 → S3 → S2 (5.2.7)

It is characterised by the first Chern number of the KK vector

lim
ε→0

∫
S2
ε

FKK

2π
= QKK (5.2.8)

The argument that 5d cubic strings should come from the 6d theory on a Taub-NUT background
after compactification on the circle fiber, can be generalised to include six-dimensional U(1) vector
fields following the generalised Taub-NUT solution in [103]. These will give solitonic string-like
objects which carry both KK as well as the related U(1) magnetic charges after compactification
on the circle. As the Taub-NUT metric is a gravitational instanton, half of the supersymmetry is
preserved by this background, just as it is expected for the string solitons with (0, 4) worldsheet
supersymmetry.

Finally this picture also accounts qualitatively for the chirality of the theory on the string world-
sheet. Given that the six-dimensional theory has a self-dual tensor field in the gravity multiplets
and nT anti-self-dual tensors in tensor multiplets, their decomposition along the basis of self-dual
and anti-self-dual two forms on MTN yield two-dimensional modes b(t, y), where (t, y) denote the
coordinates along R1,1, i.e. the string worldsheet, such that

(∂t ∓ ∂y) b(t, y) = 0 . (5.2.9)

Note this is only part of the spectrum and this analysis is on the 6d UV side. So we cannot use this
argument to determine cL and cR of the resulting (0, 4) SCFT individually. However the chirality of
spectrum implies ‘t Hooft anomalies, which match between the UV and the IR. Hence the resulting
solitonic string from Taub-NUT reduction should support a chiral spectrum in the IR. The more
direct argument is using anomaly inflow of the compactified five-dimensional theory, as we did
before.

We can consider more general configurations. Six-dimensional N = 1 supergravity theory in
a (generalised) Taub-NUT background and a BPS string at the locus where the S1 fiber shrinks
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to zero size (the two objects preserve the same set of supercharges), after compactification yields
five-dimensional supergravity with solitonic BPS strings. Moreover, these 5d BPS strings carry
magnetic charges for the U(1) gauge fields as well as the KK charge. Since upon such reduction
cubic self-couplings of the U(1) fields are generated these string configuration will, in general, have
cubic central charges.

In summary, we have argued that cubic BPS strings in 5d N = 1 supergravity obtained from
minimal 6d supergravity originate from a (generalised) Taub-NUT background.

5.3 On graviphoton couplings in five dimensions

The claim that in five-dimensional theories, obtained via circle reduction of six-dimensional N = 1

supergravity, the cubic solitonic strings arise from non-trivial geometric backgrounds, immediately
leads to the following requirement:

Since we can always turn on a purely geometric Taub-NUT background with arbitrary KK
monopole charge, there should always be a solitonic string which only carries KK magnetic
charge and supports a (0, 4) or (4, 0) SCFT.6 The superconformal algebra and unitarity then
require cR (or cL) = 6 kSU(2)R ∈ Z+.

To this end, it suffices to consider the Chern-Simons-like couplings to the KK vector in five dimen-
sions. For the S1 reduction of the Taub-NUT background, the magnetic string charged under the
KK vector is at the position where the S1 shrinks to zero size. Far away from this string, the five-
dimensional physics can be derived by just putting a (0, 1) theory on a circle. So the corresponding
Chern-Simons level can be obtained by integrating out the massive charged modes in a one-loop
Feynman diagram calculation [87]. The relevant couplings are given by

LCS = −k0

6
AKK ∧ FKK ∧ FKK +

kR
96
AKK ∧ trR2 (5.3.1)

and the ensuing central charges cL and cR are obtained from the inflow arguments (for a (0, 4)

SCFT on the string) as

cR = k0Q
3
KK +

kR
2
QKK cL = k0Q

3
KK + kRQKK (5.3.2)

where QKK is the KK string charge.
The coefficients k0, kR depend on the six-dimensional field content. They have been essentially

calculated in [87]:

k0 = 2(9− nT ), kR = 8(12− nT ) (5.3.3)

Obviously cR (or cL) = 6kSU(2)R ∈ 6Z+ is satisfied.

5.4 Five-dimensional view on the unitarity condition

Six-dimensional gravitational and gauge anomalies in 6d minimal supersymmetric theories allow
not only to read off the central charges of stringy objects with (0, 4) worldsheet supersymmetry,
but also the level kL of the current algebra that couples to the left-movers. The condition that
the left-moving central charge is large enough to allow for a unitary representation of the current

6To determine (0, 4) vs (4, 0) is by looking at the SU(2) R-symmetry part of the anomaly polynomial which is
±kRc2(SU(2)R). Here kR is the level of the SU(2)R current algebra, which unitarity requires to be positive. For
the minus sign we have a (0,4) and for the plus sign a (4,0) SCFT on the string worldsheet.
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algebra at level kL was used in [92] as a consistency condition of quantum gravity in order to
rule out some anomaly-free 6d minimal supergravity theories (as reviewed in sect 2.1.4). We shall
re-examine these constraints, for which we shall use the shorthand “unitarity conditions”, from a
five-dimensional perspective.

As mentioned previously, the chiral two-dimensional theories that live on the string worldsheet
are (0, 4)(or (4, 0)) SCFT, i.e the SU(2)R symmetry inherited from the normal bundle of this string
belongs to the right-moving (left-moving) sector. Unitarity of the worldsheet theory requires that
the central charges are positive. This should in particular be true for the string charged under the
KK vector for which cR = 6 kR (or cL = 6 kR) is given in (5.3.2). However a closer look at this
expression seems to lead to a puzzle:

• for nT ≤ 9, the string SCFT has (0, 4) supersymmetry and cR = 6 kR = 2(9− nT )Q3
KK +

4(12− nT )QKK > 0 for QKK > 0;

• for nT ≥ 12, the string has a (4, 0) worldsheet SCFT and cL = 6 kR = 2(nT − 9)Q3
KK +4(nT −

12)QKK > 0 for QKK > 0;

• for nT = 10, 11, something unpleasant happens. Take nT = 10 for example, then 2(9− nT )Q3
KK+

4(12 − nT )QKK = −2Q3
KK + 8QKK, which gives 6, 0,−30 for QKK = 1, 2, 3, respectively. This

would seem to indicate that the string has (0, 4) supersymmetry for QKK = 1 and (4, 0) super-
symmetry for QKK = 3. But if this KK monopole string indeed originates in the Taub-NUT
background in six dimensions, all positive values of QKK should be allowed, and it is hard to
imagine such changes from a change in the value of QKK.

The puzzle is resolved by realising that our considerations of the BPS strings have implicitly
assumed that QKK is sufficiently large. Indeed, the Taub-NUT metric (5.2.6) has an intrinsic
scale, the radius of the compactification circle 2R0. Therefore, the five-dimensional supergravity
description can only be trusted below the energy scale Λ5d-SUGRA ' 1

2R0
. On the other hand, the

anomaly inflow calculation leading to (5.1.8) and (5.1.9) required a smeared-out version of the
Bianchi identity dF = Q

2 dρ(r) ∧ e2, see [99, 100] for relevant details, which involves a function
ρ(r) of the distance away from the string. As this bump function, which interpolates between −1

and 0, hides UV physics which is not visible in the 5d supergravity description, its radial compact
support should be of the order 2R0. On the other hand, in the 5d supergravity description which
we used above, the string source should be treated as a δ-function in the directions transverse to
its worldsheet. In other words its thickness δr should go to zero. Using the explicit form of the TN
metric (5.2.6), this translates into the condition∫ δr

0

…
1 +

R0QKK

x
dx = 2R0 with δr → 0 (5.4.1)

This leads to δr ∼ R0

QKK
→ 0 for fixed R0, i.e. QKK should be large. It is under this condition that

the values of the central charge derived from bulk anomaly inflow can be trusted.
In the M-theory picture, where the string arises from an M5-brane wrapping a divisor, this

translates into the very ampleness condition on the divisor [101].
This requirement is obviously too strong. Heterotic string on K3 with 9 or 10 five-branes respec-

tively and an SU(2) instanton (with instanton number 15 or 14) easily provides counterexamples
to this. Given the cubic dependance of cL on QKK this requirement is easily satisfied for larger
charges.

As a result, we have shown that we only have to distinguish two situations depending on the
value of nT

• nT ≤ 9, KK monopole string supports (0,4) supersymmetry
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• nT > 9, KK monopole supports (4,0) supersymmetry

Note that the value of nT = 9 is somewhat special. For the F-theory models on elliptically-
fibered CY3 X, nT = 9 + χ(X)/60 where χ(X) is the CY Euler number. When χ vanishes, i.e.
nT = 9, the effective theory has another set of hidden supersymmetries (and can be thought of as
a gauged supergravity theory with 16 supercharges) [105]. Correspondingly one would expect that
the solitonic supergravity string may also display extra worldsheet supersymmetry and be enhanced
to (0, 8). If so the superconformal algebra will require cR ∈ 12Z. The KK monopole strings satisfies
this requirement, as one easily sees from (5.3.2) and (5.3.3) with nT = 9.

There is an immediate consequence of the large QKK requirement for the unitarity analysis. Due
to the presence of Q3

KK, the left-moving central charge cL grows very fast, and hence does not give
strong constraints. As we have argued, every cubic string in five-dimensional theories (obtained
from a circle compactification of 6d supergravity) carries KK charge. It being large renders a generic
cubic string rather useless as far as the unitarity constraints go. Of course this is not the case for the
linear strings that come from the six-dimensional supergravity strings. Hence our five-dimensional
unitarity analysis will be applied to the very same objects that have been analysed in [92].

One can argue quite generally that the dimensional reduction should not be imposing any new
consistency conditions (even if, as it is the case here, it can repackage these in a new and useful
fashion). Although we know that sometimes IR properties can be used to constrain the possible
UV completion (e.g. c-theorem in 2d, or a-theorem in 4d, or the obstructions of liftability discussed
previously), this is not the case in the current 5d/6d context. Here we know both the 6d UV
side and 5d IR side, as well as the correspondence of the extended objects on both sides. Since
the Taub-NUT background does not cause any inconsistencies on the six-dimensional UV side, no
inconsistencies should be generated along the RG flow.
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Chapter 6

Unitarity condition for linear BPS
strings

In this chpater we study consistency conditions (see sect 2.1.4) in 5d and 6d supergravity .

6.1 Unitarity condition for 6d supergravity

Before considering five-dimensional theories in detail, we recall the unitarity condition for 6d N = 1

supergravity theories proposed in [92]. The anomaly polynomial for the worldsheet theory, which
can be computed from anomaly inflow from the bulk, was already given in eq. (5.1.4). From this we
need to subtract the contribution of a free (0,4) hypermultiplet, whose bosonic components describe
the position of the string in the four transverse directions:

Ifree4 = − 1

12
p1 (TW2)− c2(1) (6.1.1)

Recall that c2(1) and c2(2) correspond to the subbundles of the normal bundle SO(4) ∼= SU(2)1 ×
SU(2)2. We identify SU(2)1 with the SU(2)R-symmetry of the interacting (0, 4) SCFT in the IR.
The anomaly polynomial of the interacting theory is then (cf. also Section 5.1 for further details
on the notation)

Iint4 = − 1
12 (3Q · a− 1) p1 (TW2) +

∑
i

Q · bi
1

4h∨i
TrAdj(F

2
Gi)

− 1
2 (Q ·Q−Q · a) c2(1) + 1

2 (Q ·Q+Q · a+ 2) c2(2)

⊃ − 1
24 (cintR − cintL ) p1(TW2) +

∑
i

ki
1

4h∨i
TrAdj(F

2
Gi)− kR c2(SU(2)R)

(6.1.2)

Note that the positivity of the central charge of the SU(2)2 current algebra requires Q·Q+Q·a+2 ≥
0.

This leads to the expression for the central charges of the interacting SCFT

cintL − cintR = −6Q · a+ 2

cintR = 6 kR = 3 (Q ·Q−Q · a)
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and to the unitarity requirement

∑
i

(Q · bi) · dimGi
Q · bi + h∨i

≤ cintL = 3Q ·Q− 9Q · a+ 2 (6.1.3)

where we have used the relation between the levels ki = Q · bi of the left-moving current algebras
and their contribution to the central charge. In general, Eq. (6.1.3) gives strong constraints when
the charge Q is small.

As discussed in Section 5.1, when putting this 6d supergravity on a circle transverse to the
string, we identify c2(1) = c2(2) = c2(SU(2)R). The resulting central charges are then:

cR = 6 kR = −6Q · a and cL = −12Q · a

Again, subtracting the free part of the central charge, we have

cintR = −6Q · a− 6 , cintL = −12Q · a− 3 (6.1.4)

On the other hand, the gauge anomaly should not be changed by compactifying our theory on a
circle1. Since if a 6d theory is good, it should also be good after S1 compactification, so we derive
the following unitarity condition:

∑
i

(Q · bi) · dimGi
Q · bi + h∨i

≤ cintL = −12Q · a− 3 (6.1.5)

A remark is in order here. Notice that the above central charge calculation in 5d differs from
the 6d case. First, in 6d there is a second SU(2) on the right moving side while in 5d generically we
only have SU(2)R symmetry. Second, the −3 contribution which appears in 5d central charge cintL
is due to the fact that for the 5d strings we only have three transverse bosons on the left moving
side. The left moving compact boson from compact transverse circle may belong to the interacting
part of the CFT. However, due to the (0,4) supersymmetry, the right moving compact boson should
sit in the free hypermultiplet together with the other three right moving transverse bosons.

6.2 Charges of supergravity strings

In order to use the unitarity condition (6.1.5), we must find a way to single out supergravity strings
[93] (i.e. strings that cannot be consistently decoupled from gravity). In order to read off the central
charge of the (0, 4) SCFT on the BPS string, it is essential to indentify the SU(2)R symmetry of
the (0, 4) 2d SCFT with the structure (sub)group from the normal bundle. However, as [92, 93]
already pointed out that for the BPS strings that can be consistently decoupled from gravity (i.e.
BPS strings in 6d/5d SCFT ), the SU(2)R symmetry of the (0, 4) 2d SCFT may no longer come
from the structure (sub)group of the normal bundle (for example, it may be mixed with the SU(2)

R-symmetry from the bulk in the SCFT limit).
The conditions for the six-dimensional N = 1 theory to have a well defined moduli space were

analysed in [92], and can be summarise using a (1, nT ) vector j (related to the Kähler form on the
base of the elliptic fibration B) on the tensor branch of the theory

j · j > 0, j · bi > 0, j · a < 0. (6.2.1)

1No Wilson line is turned on on the circle
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In order for the string to have a non-negative tension, j ·Q ≥ 0 also needs to be imposed. Finally,
unitarity of the (0, 4) 2d SCFT hosted on the BPS string imposed

Q ·Q+Q · a ≥ −2, Q · a < 0 and Q · bi ≥ 0 (6.2.2)

as ki = Q · bi is the level of affine current algebra on the left moving side of the (0, 4) SCFT
and cR = −6Q · a for the (0, 4) 5d BPS strings that comes from (0, 4) BPS strings in 6d after
circle compactification. Any five-dimensional theory obtained from a circle reduction should also
be subject to these constraints. As our main interest is in BPS strings in 6d N = 1 supergravity
and their counterpart in 5d N = 1 supergravity after circle compactification, we shall impose the
above conditions (6.2.1) and (6.2.2).

Now we shall argue that non-negative Q · Q is a sufficient condition for a BPS string to be
identified as a supergravity string. This argument is carried out in two steps:

• First, notice that the strings which can be decoupled from gravity (i.e. not supergravity
strings) must go tensionless at some point of the Kähler moduli space.

• Then we argue the strings with Q ·Q ≥ 0 can never go tensionless on the Kähler moduli space
at any finite distance point.

As a byproduct of this discussion, we can show that all the 5d U(1) gauge fields from 6d
tensors associated with supergravity strings, can never be enhanced to non-Abelian gauge fields in
5d supergravity. When gravity is decoupled, the U(1)’s related to the supergravity strings will also
decouple. The U(1)’s sourced by the other strings may be enhanced to non-Abelian gauge fields in
the field theory limit.

Which strings can be consistently decoupled from gravity? The energy scale associated
to a magnetic string is given by its tension T , while gravity sets the energy scale MPl. In order
for a string to decouple from gravity, it should be possible to take the limit T

MPl
→ 0, where the

backreaction of the string can be neglected. Working in the supergravity regime, we may chose to
keep MPl fixed and, as a result, need to have T → 0 in the decouplings limit. One may equivalently
state:

Any string that can be decoupled from gravity, must go tensionless at some point of the
Kähler moduli space.

For six-dimensional theories obtained from F-theory on a Kähler base B of a elliptically fibered
Calabi-Yau manifold, this can be also understood geometrically. The string source is given by a
D3-brane wrapping a curve D ⊆ B, and the two energy scales

T ∼ vol(D), MPl ∼ vol(B) (6.2.3)

Usually in order to go to the field theory (decoupling) limit, one takes vol(B)→∞, i.e. the internal
manifold is taken to be non-compact. Here instead we take vol(B) = 1 (which is j · j = 1 for j a
(1, nT ) vector which parameterizes the Kähler moduli space in 6d N = 1 supergravity language).
Then the decoupling is achieved by

vol(D)→ 0 , (6.2.4)

which indicates that the submanifold D on which D3 wraps should be be shrinkable. This is
equivalent to D ·D < 0 and translates into the condition Q · Q < 0 for the BPS string charge Q.
Such strings should be excluded from our analysis.
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On the contrary, when a D3 brane wraps a semi-ample divisor, we expect to have a supergravity
string [93] that cannot be decoupled from gravity consistently and is subject to the unitarity con-
straints. An semi-ample divisor is not shrinkable while keeping the base being an algebraic surface,
and has the property D ·D ≥ 0 ⇐⇒ Q ·Q ≥ 0. We also assume the divisor which the D3 brane
wraps is irreducible.

Strings with Q ·Q ≥ 0 are supergravity strings. In order to see that strings with Q ·Q ≥ 0

will not become tensionless on the Kähler moduli space, first recall that the string tension is given
by j ·Q. We have fixed j · j = 1, and can now choose the inner product and Kähler parameter to
be respectively:

Ω = diag(1,−1, ...,−1), and j = (
»
|~j|2 + 1,~j) (6.2.5)

If Q ·Q ≥ 0, we may take:
Q = (

»
| ~Q|2 +m, ~Q) (6.2.6)

where m is a non-negative integer.
Now the tension can be evaluated directly:

j ·Q =
»
|~j|2 + 1 ·

»
| ~Q|2 +m− ~Q ·~j ≥

»
|~j|2 + 1 ·

»
| ~Q|2 +m− |~j| · | ~Q| > 0 (6.2.7)

and is strictly positive on the Kähler moduli space. One may, of course, have |~j| → ∞ at infinite
distance at the boundary of the moduli space. However, there the entire effective supergravity
description may break down and the full stringy picture needs to be considered, very much in analogy
with the distance conjecture. As a result, in the supergravity theory, that we are considering, these
BPS strings cannot go to tensionless limit and cannot be consistently decoupled from gravity.

As we shall see, due to the absence of the quadratic piece Q · Q in the unitarity condition,
the five-dimensional unitarity condition is in general stronger than the six-dimensional condition
of [92]. The only exception to this is when Q ·Q + Q · a = −2. When this holds, the 6d unitarity
condition imposes slightly stronger constraints than the 5d one.

6.3 Unitarity condition as a weak Kodaira positivity condition

In the F-theory framework, the upper bound on the rank and the type of non-Abelian gauge groups
in six-dimensional N = 1 theories arises naturally, and is due to the purely geometric condition,
the Kodaira positivity (KPC), on the elliptically fibered threefold. The purpose of this section is to
compare the implications of the KPC with the unitarity condition (UC) discussed in Section 5.4.
This comparison will be complete for the theories without Abelian gauge groups. This does not
lead to a significant loss of generality due to the fact that generally U(1) factors in F-theory models
appear due to Higgsing of a non-Ableian gauge group as argued in [107].

In order to carry out this comparison we should rewrite the UC (6.1.5)

∑
i

(Q · bi) · dimGi
Q · bi + h∨i

≤ −12Q · a− 3 (6.3.1)

in a more convenient form. This is possible due to the fact that it involves −12Q · a. In the F-
theoretic models, when mapping the anomaly data to the geometric data of elliptically-fibered CY3,
a is mapped to the canonical divisor K. The fact, that the elliptic fibration requires that all the
gauge divisors should be contained in the effective divisor −12K, hints at a possible interpretation
of the UC as a physical counterpart of the purely geometrical KPC. If the six-dimensional minimally-
supersymmetric theory is obtained from F-theory on an elliptically-fibered CY3, the comparison is
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direct (as we shall see in Section 6.3.2). However, the UC should apply without any assumption on
the model having a F-theory realisation.

A remark on notation: In F-theoretic models, we are interested in the BPS strings that originate
from D3-branes wrapping effective divisors in the base manifoldB. As we shall see these BPS objects
correspond to supergravity strings when the divisor in question is semi-ample, i.e. the linear system
associated to a positive power of this divisor is base-point free. On the other hand, all effective
nef divisors, i.e. the divisors that have a nonnegative intersection with every curve in B, are semi-
ample. Since we are discussing only the effective divisors wrapped by D3-branes we just use the
label nef divisors, hopefully without causing any confusion.

6.3.1 Rewriting the unitarity condition

The Kodaira positivity condition states that all singular divisors should be contained in the divisor
of the discriminant of the Weierstrass model.2 This requires the residual divisor Y given by

Y = −12K −
∑
i

xiSi (6.3.2)

to be effective.
Here Si are the divisors with singular elliptic curve that host non-Abelian gauge groups [108]

and xi is the vanishing order of the discriminant on Si (i.e. ord(∆) in Table 1). Every effective
divisor satisfies

jB · (−12K −
∑
i

xiSi) = jB · Y ≥ 0, (6.3.3)

where jB is the Kähler form on the base B. In fact, the following

D · (−12K −
∑
i

xiSi) = D · Y ≥ 0, (6.3.4)

holds for any nef (or semi-ample) divisor D, as nef divisor should intersect every effective divisor
non-negatively.

One can recast this condition in a form that just uses the data of six-dimensional supergravity,
notably the four-form Xα

4 entering the anomaly polynomial, and does not invoke the elliptically
fibered CY3 explicitly [82]

j · (−12a−
∑
i

xiSi) ≥ 0 (6.3.5)

where j is a (1, nT ) vector on the tensor branch of our six-dimensional theory which satisfies
j · j > 0, j · bi ≥ 0, j · a < 0. For any 6d minimal supergravity theory not obtained from an
elliptically-fibered CY3, condition (6.3.5) would appear to be not physically motivated and does
not have to be satisfied.

On the other hand, the condition (6.3.1) follows from the worldsheet unitarity of supergravity
strings and is expected to hold for all 6d minimal supergravity theories that are consistent at

2We are using the standard conventions for the elliptic fibrations with section (see e.g. [84, 85]). The elliptical
fiber on a CY3 is defined by an equation

y2 = x3 + f(u, v)x+ g(u, v)

in an affine patch of the weighted projective space WP2,3,1, with u and v, one set of affine coordinates on the base
B, fixed. Note, f ∈ Γ(−4K) and g ∈ Γ(−6K). The degeneration loci of the elliptic fiber are given by zeros of the
discriminant:

∆ = 4f3(u, v) + 27g2(u, v) ,

and, ∆ ∈ Γ(−12K).
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quantum level. When applied to an F-theoretic model, it can be rewritten as

D · (−12K −
∑
i

Si
dimGi

D · Si + h∨i
) ≥ 3 . (6.3.6)

One has to bear in mind that the divisor D is wrapped by a D3-brane, and is required to be nef as
we are talking about supergravity strings. To see why this is so, recall that the direct analogue of
Q ·Q ≥ 0 for the supergravity charges is given by D ·D ≥ 0 for an irreducible effective divisor D.
Irreducibility of D will be assumed throughout this paper.

Without assuming that the 6d minimal supergravity theory has an F-theoretic origin, one still
needs to augment (6.3.1) by the following:

Q ·Q+Q · a+ 2 ≥ 0 , ki = Q · bi ≥ 0 and −Q · a > 0 (6.3.7)

These can be interpreted as constraints on admissible values of the charge Q, in addition to Q·Q ≥ 0.
The first two conditions are the requirements that the levels of current algebras are larger than 0,
while the last one is the positivity of the right-moving central charge of the (0, 4) worldsheet theory
(recalling cR = −6Q · a after the circle compactification).

It is not hard to see that the strongest constraints following from (6.3.1) are when Q · bi = 1 in
the denominator (although Q · bi = 1 may not be achieved as intersection of divisors of a base B
when we consider F theory model). In the following we shall compare the KPC with the following

Q · (−12a−
∑
i

bi(
dimGi
1 + h∨i

)) ≥ 3 . (6.3.8)

Indeed when this condition is satisfied, (6.3.1) will hold also for Q · bi > 1.
The failure of the (6.3.8) to hold does not immediately signify any inconsistency. Indeed, one

has to first verify that Q · bi = 1 is possible.3 We shall see that in general (6.3.8) is weaker than
KPC, and hence it may serve as a useful measure for the 6d minimal supergravity theories that have
no F-theoretic realisation. On the contrary, for the 6d theories originating from F theory, (6.3.8)
may provide finer information about the effective divisor Y = −12K −

∑
i xiSi in some special

cases, where the constraints imposed by the UC turn out to be stronger than those following from
KPC.

6.3.2 Comparing KPC and UC

It is useful to recall the types of singularities present in the elliptically fibered CY3 and the ensuing
local gauge groups. These are conveniently summarised by the Kodaira data and can be found in
Table 1, which we have augmented by some data entering the UC.

We can directly compare the quantity yi = dimGi

1+h∨i
and the Kodaira multiplicity xi = ord(∆)

one by one:

• For E6,7,8, we have yE6,7,8 = xE6,7,8 − 2 = 6, 7, 8

• For SU(n ≥ 2), we have ySU(n) = n− 1 = xSU(n)− 1 for type In and ySU(2) = 1 = xSU(2)− 2

for type III, IV

• For F4, G2, we have yF4,G2 = 14
5 ,

52
10 while xF4,G2 = 6, 8

• For SO(2n+ 1), n ≥ 3, we have ySO(2n+1) = n+ 1
2 , while xSO(2n+1) = n+ 3

3We will do the full comparison between UC (rather than its strongest version as here) and KPC in 6.3.3. So
the UC in the strong form (6.3.8) serves as a red flag: if the strong condition fails, UC as given in (6.3.1) should be
checked. In fact we have found situations where it fails, but Q · bi = 1 fails as well.
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type ord(f) ord(g) ord(∆) sing. g split y = dimG
1+h∨ K-type

I0 ≥ 0 ≥ 0 0 − − − −
I1 0 0 1 − − − −
II ≥ 1 1 2 − − − −
III 1 ≥ 2 3 A1 su(2) 1 K2

IV ≥ 2 2 4 A2
sp(1) IV ns 1

K2su(3) IV s 2

Im 0 0 m Am
sp([m2 ]) Insm 2[m2 ]− 3[m2 ]

[m2 ]+2 K1/K2

su(m) Ism m− 1 K1

I∗0 ≥ 2 ≥ 3 6 D4

g2 I∗ns0 14/5
K2so(7) I∗ss0 7/2

so(8) I∗s0 4
I∗2n−5, 2 3 2n+ 1 D2n−1

so(4n− 3) I∗ns2n−5 2n− 3/2
K2n ≥ 3 so(4n− 2) I∗s2n−5 2n− 1

I∗2n−4, 2 3 2n+ 2 D2n
so(4n− 1) I∗ns2n−4 2n− 1/2

K2n ≥ 3 so(4n) I∗s2n−4 2n

IV ∗ ≥ 3 4 8 E6
f4 IV ∗ns 52/10

K2e6 IV ∗s 6
III∗ 3 ≥ 5 9 E7 e7 7 K2

II∗ ≥ 4 5 10 E8 e8 8 K2

non-min. ≥ 4 ≥ 6 ≥ 12 non-can. − − −

Table 6.1. The left side of this Table summarises the Kodaira-Tate data for singular fibers of the Weierstrass
model. The Weierstrass data f , g and ∆ define the type of singularity. Some of the singularities can lead
to different gauge algebras. This is governed by the refined Tate fiber type (see e.g. [85] for details). In the
last column of the left side of the Table, ns, s and ss stand for non-split, split and semi-split respectively.
In our context the most important column is ord(∆) which defines the xi multiplicities of the divisors with
singular fibers Si.The right side of the Table summarises the values of yi multiplicities that appear in the
UC. The last column, K-type, is determined by the difference xi − yi (see also Table 2).

• For SO(2n), n ≥ 4, we have ySO(2n) = n, while xSO(2n) = n+ 2

• For Sp(k), we have ySp(k) = 2k − 3k
k+2 , xSp(k) = 2k, 2k + 1

From above, we see xi > yi = dimGi

1+h∨i
, hence we naturally have on any elliptic CY3:

D · (−12K −
∑
i

yiSi) > D · (−12K −
∑
i

xiSi) (6.3.9)

for any nef divisor D.
Given the respective forms of our unitarity condition

D · (−12K −
∑
i

yiSi) ≥ 3 (6.3.10)

and the Kodaira positivity condition :

D · (−12K −
∑
i

xiSi) = D · Y ≥ 0 (6.3.11)

few more steps are needed to see which one leads to stronger constraints. The Kodaira positivity
is a necessary condition that is satisfied in all elliptically fibered CY3. In cases where our unitarity
constraints turns out to be weaker, we are not learning much new in the context of elliptically
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Type of gauge algebra xi − yi Gauge algebra
K1 < 2 su(m), sp(1), sp(2), sp(3) in Kodaira type I
K2 ≥ 2 All other groups in Table 1

Table 6.2. Classification of gauge groups in Table 1 based on the minimal value of xi − yi. Notice that
sp(1), sp(2), sp(3) in the first row come from I2, I4, I6 respectively.

fibered CY3.4 When they are stronger, it should follow that the CY3 in question should satisfy
extra hidden conditions.

To proceed, notice that when the gauge algebra is su(m), as well sp(1), sp(2), sp(3) when these
are in Kodaira type I (as opposed to sp(1) in Kodaira type IV , su(2) in type III and su(3) in
type IV ), we have yi + 1 ≤ xi < yi + 2. We label gauge groups of this type as K1. For all other
gauge groups we have xi ≥ yi + 2, and we label these as type K2. In the subsequent analysis we
shall label the gauge group as G = {K1,K2} when it can be of any type, either K1 or K2 (see Table
2).

The UC applies to any supergravity theory, but the comparison to KPC requires to adapt it
to the elliptically fibered CY3, where it can be formulated as a condition on divisor D in the base
B, wrapped by a D3-brane. B is a smooth algebraic surface. In addition to an irreducible effective
divisor D it has the gauge divisors Si. The gauge divisor Si should also be an effective divisor so
that it can be wrapped by D7 branes.

We may recall that the charges for the supergravity strings Q should satisfy j ·Q > 0, Q · bi ≥ 0

and Q · a < 0. We shall also impose Q · Q ≥ 0 (and comment on Q · Q = −1 case momentarily).
These conditions can be translated into geometric statements for the D

D ·D ≥ 0, D · Si ≥ 0, D ·K < 0. (6.3.12)

These conditions already contain a great deal of information: D is a nef divisor, and hence it
intersects any effective divisor E on the base non-negatively D · E ≥ 0.5

Q · Q = −1 case: Notice that we have restricted Q so that Q · Q ≥ 0. Before turning to
the analysis of the conditions on D, we comment on Q · Q = −1 case. For this case, we have
D · D + D · K = −2 as D · D = −1 and D · K < 0, and hence D is a rational curve with
self intersection −1. So it corresponds to blowing up a point on a smooth base σ : B → B′,
which means that this exceptional divisor can be smoothly shrunk to zero size. As a result, the
corresponding string could be tensionless and be consistently decoupled from gravity. (Actually the
metric on B which gives zero size for this exceptional divisor can be interpreted as a metric on B′.
See [109, 110] and also [111] for a related physical discussion)

6.3.3 General nef divisor D

We can now turn to the general case, where we require only that D is a nef divisor and analyse KPC
and UC more carefully with a purpose of singling out the cases which KPC is satisfied coarsely (if
we just ignore the effective divisor Y = −12K−

∑
i xiSi) while UC is violated. These are the cases

where UC should be revealing a hidden finer structure in the elliptic CY3 involved.
Let us start by collecting a slightly rewriting KPC and UC (in its general form, and not the

4These cases are important however for understanding the part of the not-swamped landscape of theories not
covered by F-theory constructions.

5Note that the condition Q ·Q+Q · a+ 2 ≥ 0 is automatically satisfied in F-theory models due to the adjunction
formula.
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strong form (6.3.8)):

−12D ·K = D · Y +
∑
i

xiD · Si

−12D ·K ≥ 3 +
∑
i

dimGi
D · Si + h∨i

D · Si = 3 +
∑
i

µiD · Si (6.3.13)

where as before Gi is the (non-Abelian) gauge group hosted on (singular) gauge divisor Si, and we
have defined µi = dimGi

D·Si+h∨i
. When D · Si = 1, µi = yi, otherwise µi < yi. Replacing µi by yi result

in the strongest version of UC (as already notice, in some cases this strong version may fail, while
the UC (6.3.8) actually holds).

Note that −12D ·K ∈ 12Z+, and hence:∑
i

xiD · Si ≤ D · Y +
∑
i

xiD · Si = −12D ·K = 12n

3 +
∑
i

µiD · Si ≤ −12D ·K = 12n (6.3.14)

for a positive integer n. It is not hard to see that there are three possibilities

• If for all gauge divisors, D · Si = 0, the two conditions are equivalent trivially. This is very
unlikely to happen in a base B.

• If at least three gauge divisors S1,2,3 have the property that D · S1,2,3 > 0 (this holds for a
generic Si), then even the strongest version of UC is weaker than KPC. The same conclusion
holds for the case of at least two gauge divisors where at least one yields a K2 type gauge
group (due to xi − µi ≥ xi − yi ≥ 2 for K2 type).

• For the remaining cases, let us notice that positive integer solution for D ·Si exist only when

12n− 3 <
∑
i

µiD · Si ≤ 12n−
∑
i

(xi − µi)D · Si (6.3.15)

is satisfied. This condition implies that while KPC is respected, UC is violated. For these
cases, UC can lead to stronger constraints than KPC and Y = −12K −

∑
i xiSi cannot be

numerically 0 in order for F-theory models not to violate UC.

Obviously we are interested only in the last situation, where we can divide the nontrivial solutions
of condition (6.3.15) into two cases:

• There are two gauge divisors S1 and S2 in gauge groups of type K1, and D · S1,2 > 0. The
cases are where UC is more constraining than KPC are:

− SU(n)× SU(m) with m+ n ∈ 12Z and D · S1,2 = 1.

− SU(12n − 2) × Sp(1), SU(12n − 4) × Sp(2) and SU(12n − 6) × Sp(3) with D · S1,2 = 1.
Here Sp(1), Sp(2) and Sp(3) should come from I2, I4 and I6 type singularities (see Table 1).

For these gauge groups we need to impose a further condition on the effective divisor D ·Y ≥ 1

in order for UC not be violated by F-theory models.

• There is only a single gauge divisor S with the propertyD·S > 0. UC can be more constraining
than KPC only for the gauge groups

− SU(12n), SU(12n− 1) with D · S = 1.
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− SO(24n− 5), SO(24n− 4) and Sp(6n) with D ·S = 1. Here Sp(6n) should come from I12n

type singularity (see Table 1).

In all these cases µi = yi. Only when the divisor Y = −12K −
∑
i xiSi satisfies D · Y ≥ 2 for

SU(12n− 1) and D · Y ≥ 1 for the rest, UC is not violated in F-theory models.

For completeness, we can present an example of a group where no extra constraints emerge. For
E6, UC would be stronger than KPC only if we have a solution for

12n− 3 < µE6D · SE6 ≤ 12n− (xE6 − µE6)D · SE6 . (6.3.16)

This would require

3 > (xE6
− µE6

)D · SE6
≥ (xE6

− yE6
)D · SE6

= 2D · SE6
→ D · SE6

= 1 (6.3.17)

leading to µE6 = yE6 = 6. However, then 12n−3 < µE6D ·SE6 ≤ 12n−(xE6−µE6)D ·SE6 becomes
12n − 3 < 6 ≤ 12n − 2 which doesn’t have a solution! Similar arguments can be applied to other
cases.

6.3.3.1 Special cases where UC is stronger than KPC

Following the discussion in the previous section, we can give a precise statement about what UC
may teach us about elliptic Calabi-Yau threefolds through F-theory models:

For F-theory on an elliptic CY3 over base B, only when there exist gauge (singular) divisors {Si}
and a nef divisor D on the base B, which satisfy some (very special) numerical conditions, UC hints
at a finer information than contained in KPC, on the effective divisor Y = −12K − xiSi.

There are three types of models where this can happen:

A: There exists one gauge divisor S1 ∈ {Si} hosting a gauge group SU(12n) or SU(12n−1), and
a nef divisor D satisfying D ·S1 = 1 and D ·Si = 0 for all other i 6= 1, as well as −D ·K ∈ Z+.
Then such a nef divisor D should satisfy D ·Y ≥ 1 for SU(12n) and D ·Y ≥ 2 for SU(12n−1)

in order for UC to be satisfied by F-theory models

B: There exists one gauge divisor S1 ∈ {Si} hosting a gauge group SO(24n − 5), SO(24n − 4)

or Sp(6n) (which comes from I12n type singularity), and a nef divisor D satisfying D ·S1 = 1

and D ·Si = 0 for all i 6= 1, as well as −D ·K ∈ Z+. Then such a nef divisor D should satisfy
D · Y ≥ 1 in order for UC to be satisfied by F-theory models

C: There exist two gauge divisors S1, S2 ∈ {Si} hosting gauge group SU(a) × SU(12n − a),
Sp(1)× SU(12n− 2), Sp(2)× SU(12n− 4) or SU(12n− 6)× Sp(3)(where Sp(1), Sp(2) and
Sp(3) come from I2, I4 and I6 type singularities) and a nef divisor D satisfying D · S1,2 = 1

and D · Si = 0 for all i 6= 1, 2, as well as −D · K ∈ Z+. Then such a nef divisor D should
satisfy D · Y ≥ 1 in order for UC to be satisfied by F-theory models

Note that an example in class C has been discussed in Section 6.3.3.2, and has appeared previously
in [92], where it was pointed out that (six-dimensional) unitarity condition can lead to stronger
constraints than KPC.

To conclude, in a generic F-theory model UC leads to weaker constraints than KPC. Under
some special conditions UC hints at finer information about the possible elliptic CY3 than KPC on
the remaining effective divisor Y = −12K −

∑
i xiSi on the base.

In the next section we shall briefly discuss some examples, but we finish this section with some
remarks.
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• In all special cases, where UC is stronger than KPC, the numerical constraints on the gauge
divisors and on the residual divisor Y are rather strong. We have not studied if and how
many non-trivial realisations of these conditions exist in elliptic CY threefolds.

• A general lesson provided by UC in all above special cases for elliptic CY3 is that the residual
divisor Y on the base of the elliptic CY3 should have nontrivial numerical properties and not
be numerically equivalent to 0, and in general the gauge divisors do not sweep out the entire
−12K.

• All cases where UC is stronger than KPC involve at most two gauge divisors (of fixed type)
intersecting the nef divisor D. The corresponding supergravity models can however contain
more than two gauge factors. The extra gauge groups should come from singular divisors that
do not intersect D.

• Only in one special case, 6d UC in [92] is stronger than the 5d UC discussed in this paper.
This happens when an additional condition D ·D+D ·K = −2 is satisfied, and the nef divisor
D is a genus 0 curve. For this very special situation, we need to decrease the upper bound of
UC by 1.6

• Further compactification on a circle to four dimensions does not lead to further unitarity
constraints.

6.3.3.2 Examples

In order to illustrate the previous discussion, we may consider three examples of elliptic CY3

which are fibrations over Hirzebruch surfaces Fn (the details of the geometry of these examples
can be found in e.g. [84]). For all these examples, we shall see that the residual divisor Y is
indeed numerically nontrivial (its intersections with all nef divisors are strictly positive). Our forth
example has already appeared in the text and in [92], and, to the best of our knowledge, has no
known F-theoretic realisation. We shall see that if such realisation exists, it would require Y to be
numerically nontrivial.

First we collect some data on Fn, which will be useful in the first three examples. The effective
divisor is spanned by Dv and Ds. Their intersection data are

Dv ·Dv = −n, Dv ·Ds = 1, Ds ·Ds = 0 (6.3.18)

and the canonical divisor K satisfies

−12K = 24Dv + 12(m+ 2)Ds . (6.3.19)

Example 1. 6d supergravity with a single SU(N) can be modelled on base F2. These types of
F-theory models have some overlap with special case A in Section 6.3.3.1. In these cases, gravity
anomaly cancellation requires N ≤ 15. The gauge divisor on F2 is S = Dv, and the residual effective
divisor Y is given by

Y = −12K −NDv = (24−N)Dv + 48Ds (6.3.20)

6As in the case when the nef divisor is a rational curve, it is not hard to see from (6.1.3) that the upper bound
set by 6d UC is −12D ·K − 4 rather than −12D ·K − 3 set by 5d UC. In this case, UC is stronger than KPC only
when there exist positive integer solutions for D · Si satisfying 12n − 4 <

∑
i µiD · Si ≤ 12n −∑

i(xi − µi)D · Si.
As a result, since the lower bound is relaxed by 1 when compared with (6.3.15), some new special cases will appear.
The conclusion will still be the same: for these cases Y = −12K −∑

i xiSi should satisfy some numerical properties
in order for F-theory models not to violate UC.
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Hence any nef divisor D with D ·Dv > 0 has to have the form αDv + βDs for some integers α and
β with β > 2α. Requiring in addition that D ·K < 0 and D ·D ≥ 0 yields α ≥ 0, β > 0. So any
such nef divisor will have D · Y = (24−N)β + 2Nα ≥ 9.

Example 2. 6d supergravity with gauge group SO(16) × SU(4) × SU(4) is modelled over F4.
The gauge divisors are S1 = Dv, S2 = Dv + 4Ds and S3 = Dv + 8Ds. The residual effective divisor
is given by:

Y = −12K − 10Dv − 4(Dv + 4Ds)− 4(Dv + 8Ds) = 6Dv + 24Ds (6.3.21)

It is not hard to see that the conditions α ≥ 0, β > 0, β ≥ 2α are required in order for any divisor
D = αDv + βDs to satisfy D ·D ≥ 0, D ·K < 0 and D · Si ≥ 0. As a result, D · Y = 6β ≥ 6.

Example 3. 6d supergravity with gauge group U(1)×SU(8) is modelled on F0. For our purposes,
we can ignore the Abelian factor. The relevant gauge divisor is S = 2Dv + 2Ds, and the residual
effective divisor Y is given by

Y = −12K − 8(2Dv + 2Ds) = 8Dv + 8Ds (6.3.22)

Any nef divisor D = αDv + βDs satisfies D ·K < 0, D · (2Dv + 2Ds) ≥ 0, D ·D ≥ 0 only provided
that α + β > 0 and αβ ≥ 0. As a result, D · Y = 8α + 8β ≥ 8. Notice that this theory passes the
unitarity test even with the additional U(1) included (since any U(1) factor can only contribute 1

to the central charge).

UC and KPC criteria can also be translated to conditions on some physical data of general 6d
anomaly free minimal supergravity without knowing whether it can be realised in F-theory or not.
The following is one example of applying UC and KPC to a 6d anomaly free minimal supergravity
model.

Example 4. 6d supergravity with SU(N)×SU(N) with two bifundamentals and 9 tensor multi-
plets is an anomaly free theory [92]. The relevant data (the constant vectors in the GS couplings)
are given by:7

Ω = diag
(
+1, (−1)9

)
, a =

(
−3, (+1)9

)
b1 =

(
1,−1,−1,−1, 06

)
, b2 =

(
2, 0, 0, 0, (−1)6

) (6.3.23)

Choosing the string charge as Q = (1, 0, 0, 0,−1, 0.., 0)., we obtain Q · Q = 0, Q · a = −2 and
Q · b1 = Q · b2 = 1. The unitarity condition (6.3.8) gives us:

2(N − 1) ≤ 24− 3 (6.3.24)

Note that in this case Q · Q + Q · a = −2, and thus the 6d unitarity condition of [92] is slightly
stronger than 5d UC: a shift by 1 on right hand side is needed and 2(N − 1) ≤ 24− 4. Either way,
the bound is N ≤ 11, while the Kodaira positivity condition yields:

2N ≤ 24 → N ≤ 12 (6.3.25)

We see that in this case UC is slightly stronger than KPC. Also notice that SU(12)×SU(12) case,
which satisfies KPC but violates UC, belongs to case C, enumerated in Section 6.3.3.1.

7Note that the string charge here is different from the one used in [92]. The choice of Q in [92] leads to
Q ·K = Q · Q = −1 and the putative corresponding divisor D on the base B of elliptic Calabi-Yau side would no
longer be nef.
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Assuming that this theory has an F-theoretic realisation and that there is an underlying elliptic
CY3, the residual effective divisor would be

−12K = NS1 +NS2 + Y (6.3.26)

Restricting for simplicity to the case N ≥ 4, the singular divisors are of type IN (see Table 1).8

Then we have S1 ·K = S2 ·K = 0. Since there are two hypers in the bifundamental and no hypers
in the adjoint, we should take S1 · S1 = −2 = S2 · S2 and S1 · S2 = 2, while nT = 9 translates into
K ·K = 0. Based on the above discussion, we can see that the new lesson UC offered in this case
is that the relation

−12K = 12S1 + 12S2 (6.3.27)

cannot be realised on the base B of an elliptic Calabi-Yau threefold with the required singularity
structure, and the residual effective divisor Y = −12K − 12S1 − 12S2 has to be numerically non-
trivial.

8We explude SU(2) and SU(3) gauge groups since they may also be realised by III,IV -type singularities.
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Conclusion and future directions

In this thesis, we discussed some aspects of string compactifications, both in perturbative and
non-perturbative framework. We see the prominent role played by string dualities in these areas.

We point out several possible directions to conclude this thesis:

• As mentioned in part I, there is a duality between Heterotic string on T4 and Type IIA on
K3. Applying adibatic duality argument for Hetertoic string on Seifert manifold X5 would
require studying "quantum K3" geometry on type IIA side [114]. A question is can we have a
geometric picture if we lift the IIA theory to M-theory and what is the M-theory background
that gives the dual of Heterotic string on X5? This direction currently is under investigation.

• In part II, we discussed the role of B-field in the worldsheet CFT: it gives a phase to each
(g, h) sector Zg,h of the partition function in a way that satisfies modularity. However, its
relation to second group cohomology H2(G,U(1)) is not very clear. Could these phases given
by B-field be realized by H2(G,U(1)) if we go to a specific covering space? Or some of these
phases could not be realized purely by H2(G,U(1)) in any way? These questions are under
investigation.

• In part III, we mentioned in some very speical cases, unitarity condition hints finer information
about elliptic fibration structure of Calabi-Yau threefold. It would be interesting to study
these finer structures directly from geometry of elliptic Calabi-Yau threefold and derive these
conditions in a geometric way.

• From the discussion of equivariant gerbes, it is clear that spacetime singularities may or may
not affect the low energy effective theory, i.e. it depends on additional stringy background.
In the duality between IIA/CY 3 and Het/K3 × T2, a similar situation appears as the flat
C3 holonomy could be turned on over the three cycles of the CY 3 and obstructs the related
extremal trainsitions ([145]). Moreover,in [145] the authors argued the local picture of CY 3

dual of Heterotic standard embedding involves non-trivial C3 holonomy. It would be interest-
ing to generalize the local argument to global ones and find the exact type IIA background
dual to Heterotic on K3× T2 with standard embedding.

We end this thesis with some general (and rough) remarks. Notice we mainly discussed string
theory compactified on compact manifolds. We could also consider the non compact manifolds hence
decouple gravity in the low energy effective theory. A natural question is how the stringy background
(non-trivial B-field and RR-field holonomies) affects the resulting quantum field theories and the
implications on their dynamics . We would like to explore these directions in the future.
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Appendix A

Bosonic toy model

In this appendix we discuss the bosonic partition function for compactification on X5 in the case of
the Z2 quotient. This will illustrate some features of the decompactification limit to six dimensions
discussed in section 3.1.3, and it will also set up conventions for some later developments. While
the Z2 quotient is particularly simple, there is a straightforward to the remaining ZN actions.

A.1 Shift orbifold of S1 : partition function

We described the construction of the shift orbifold of the circle in section 3.1.3. Starting with the
circle partition function

Z(r) =
1

ηη

∑
n,w∈Z

qhn,wqhn,w , η = q1/24
∞∏
n=1

(1− qn) , (A.1.1)

where

hn,w = hR(p) =
(
n
2r + rw

2

)2
, hn,w = hL(p) =

(
n
2r −

rw
2

)2
, (A.1.2)

the partition function of the shift orbifold for the Z2 quotient is

Zsh(r) = 1
2

(
Z +

sh+ + Z −
sh+ + Z +

sh− + Z −
sh−
)
, (A.1.3)

with

Z +
sh+ = Z(r) , Z −

sh+ =
1

ηη

∑
n,w∈Z

eiπnqhn,wqhn,w ,

Z +
sh− =

1

ηη

∑
n,w∈Z

qh
−
n,wqh

−
n,w Z −

sh− =
1

ηη

∑
n,w∈Z

eiπnqh
−
n,wqh

−
n,w , (A.1.4)

where the weights in the twisted sector are

h
−
n,w =

(
n
2r + r

2 (w + 1
2 )
)2

, h−n,w =
(
n
2r −

r
2 (w + 1

2 )
)2

. (A.1.5)

This is just a fancy rewriting of Z(r/2), but the split into the sectors will be useful for building the
X5 orbifold CFT.
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A.2 A reflection orbifold of S1

Another familiar quotient of the compact boson is the x → −x orbifold. In this case the action
does affect the oscillators, and it acts on the states |p〉 by g′|p〉 = | − p〉. As discussed in [53], the
orbifold partition function can be obtained by explicitly constructing the untwisted sector with the
g′ projection, and the the twisted sector contributions are obtained by taking orbits of SL(2,Z).
The result is

Zre(r) = 1
2

(
Z +

re+ + Z −
re+ + Z +

re− + Z −
re−
)
, (A.2.1)

with

Z +
re+ = Z(r) , Z −

re+ = 2

 
ηη

ϑ2ϑ̄2
, Z +

re− = 2

 
ηη

ϑ4ϑ̄4
, Z −

re− = 2

 
ηη

ϑ3ϑ̄3
. (A.2.2)

Our conventions for the Jacobi theta functions ϑi are as in [53]. The crucial factors of 2 in the
twisted sector contributions reflect the presence to two fixed points for the orbifold action, at x = 0

and x = 1/2.

A.3 Bosonic CFT for X5

To make contact with our compactification of X5, we first generalize the S1 reflection orbifold to a
reflection orbifold of Td. Since the reflection symmetry is present for all parameters of the Td CFT,
we have

Z +
re+ = ZTd , Z −

re+ = 2d
Å
ηη

ϑ2ϑ̄2

ãd/2
, Z +

re− = 2d
Å
ηη

ϑ4ϑ̄4

ãd/2
, Z −

re− = 2d
Å
ηη

ϑ3ϑ̄3

ãd/2
.

(A.3.1)

Finally, to obtain the bosonic CFT for X5, we combine the orbifold actions on Td × S1 and find
the orbifold partition function

Z = 1
2

(
Z+

+ + Z−+ + Z+
− + Z−−

)
, (A.3.2)

with

Z+
+ = Z(r)ZTd , Z−+ = Z −

sh+Z
−

re+ , Z+
− = Z +

sh−Z
+

re− , Z−− = Z −
sh−Z

−
re− . (A.3.3)



85

Appendix B

Equivariant flat gerbes

In this appendix we review aspects of abelian gerbes and equivariant structures on gerbes, follow-
ing [33, 35, 72] .

Consider a compact smooth Riemannian manifold X that admits an action of a finite group
G: for every a ∈ G there is a diffeomorphism ϕa : X → X, and the composition respects the group
structure: ϕa(ϕb(x)) = ϕab(x) for all x ∈ X. It is possible to choose a good cover U = {Uα}α∈I
such that G has an action on the indexing set I, with a : α → a(α), and ϕa(Uα) = Ua(α) and
similarly for all non-empty intersections Uαβ , Uαβγ , etc. [73]. We will assume that such a cover
has been chosen, so that the various Čech cochain manipulations that are to follow have a simple
interpretation.1

B.1 Čech cochains and Hermitian line bundles

For what follows, it will be convenient to work in the language of Čech cochains and the coboundary
operator δ, so we will take a moment to review that language and fix our conventions.2 We consider
a sheaf valued in an abelian group F defined over our cover U. We will denote the cochains by
Ck(X,F), with k = 0 denoting the space of sections defined on each Uα, k = 1 on the Uαβ , and
so on. The coboundary operator δ then takes σ ∈ Ck(X,F) to (δσ) ∈ Ck+1(X,F) in the familiar
way: for example, if σ0 ∈ C0(X,F), and σ1 ∈ C1(X,F), then we have

(δσ0)αβ = σ0
α − σ0

β , (δσ1)αβγ = σ1
αβ + σ1

βγ + σ1
γα . (B.1.1)

The signs and ordering are chosen so that δ2 = 0. We say a section σ is a cocycle if δσ = 0, and it
is a coboundary if it can be written as σ = δλ. Note that we will have occasion to use both additive
and multiplicative abelian groups; in the latter case the cocycle condition is written as δσ = 1.

The cochains that will show up in our discussion are:

• Ck(X,Ωp), where Ωp denotes smooth p-forms;

• Ck(X,S1), where S1 = U(1) denotes circle-valued constants;

• Ck(X,S1), where S1 denotes smooth circle-valued functions.

A key result in Čech cohomology is that for sheaves that admit partitions of unity, such as Ck(X,Ωp),
the Čech cohomology groups Ȟk(X,Ωp) are trivial for k > 0: every cocycle is a coboundary.

1This is not strictly speaking necessary, but it makes for simpler arguments. A complete treatment would involve
also proving that the results are independent of the choice of cover; we will leave that to the references [72].

2A readable introduction is given in [74].
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Hermitian line bundles: conventions

Consider now a Hermitian line bundle π : L→ X with transition functions gαβ : Uαβ → S1 obeying

gαβgβγgγα = 1 (B.1.2)

on all non-empty triple overlaps Uαβγ , as well as connection 1-forms Aα defined on each Uα and
satisfying

Aα = Aβ − id log gαβ (B.1.3)

on each Uαβ . Gauge transformations are encoded by functions hα : Uα → S1, which act by

gαβ → gαβhα(hβ)−1 , Aα → Aα − id log hα . (B.1.4)

A gauge transformation is global if on every overlap hα = hβ , so that hα is a restriction of a
circle-valued function defined on X to the set Uα.

This data is elegantly presented in the Čech language: the data for a line bundle with connection
is a pair (g,A) with g ∈ C1(X,S1), A ∈ C0(X,Ω1) subject to

δg = 1 , δA = −id log g , (B.1.5)

and gauge transformations are encoded by h ∈ C0(X,S1), and they act by

g → gδh , A→ A− id log h . (B.1.6)

A global gauge transformation satisfies δh = 1.
Two bundles L → X, L′ → X with data (g,A) and (g′, A′) respectively, are isomorphic if and

only if it is possible (after a suitable refinement of the covers) to find a gauge transformation h such
that (g′, A′) = (gδh,A− id log h).

In what follows, we will take all of our line bundles to be Hermitian, so that the transition
functions are circle-valued.

Equivariant line bundles

Given a line bundle L→ X with transition functions g and connection A, we would like to lift the
action of G on X to an action on L. For every a ∈ G we can use ϕa to construct the pull-back
bundle ϕ∗a(L). We say L → X is G-equivariant if and only if ϕ∗a(L) ' L, and the isomorphisms,
which we denote by Ra ∈ C0(X,S1) are compatible with the group multiplication law. That is, we
have the diagram

ϕ∗a(L) ' L

X X
ϕa

(B.1.7)

and for any section of L, s ∈ C0(X,Ω0), we have

ϕ∗a(s) = s(ϕa(x)) = Ra(x)s(x) . (B.1.8)

Since ϕ∗ab(s) = ϕ∗bϕ
∗
a(s),

Rabs = Rbϕ∗b(R
a)s , (B.1.9)
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for any section s, and we conclude that for all a, b ∈ G

Rab = Rbϕ∗b(R
a) . (B.1.10)

Since s also satisfies δs = g—this is the Čech language for the perhaps more familiar relation
sα = gαβsb for all Uαβ—consistency with the pull-back requires

ϕ∗a(g) = gδRa . (B.1.11)

This implies that the G-action preserves the first Chern class of the bundle, i.e. ϕ∗a(c1(L)) = c1(L),
which is a necessary condition for the lift to exist. We will be interested in lifts that also preserve
the connection, meaning that the covariant derivative Ds = ds − iAs satisfies ϕ∗a(Ds) = Ra(Ds).
This requires

ϕ∗a(A) = A− id logRa . (B.1.12)

Notice that the G–action preserves the curvature F = dA: ϕ∗a(F ) = F .
It is not hard to check that the definition is consistent with gauge transformations: if Ra provide

the lift for the bundle data (g,A), then

Ranew = Ra
ϕ∗a(f)

f
(B.1.13)

provide a lift for the gauge equivalent data (gnew, Anew) = (gδf,A− id log f).
Geometrically, all of this amounts to finding a G-action on the total space of the line bundle

that is consistent with the projection and choice of connection.

B.2 Gerbes: basic structure

Having reviewed the case of line bundles, we now extend the discussion to G-equivariant gerbes.
We begin with the defining data of a gerbe over X with connection: (ϑ, β,B),

ϑ ∈ C2(X,S1) , β ∈ C1(X,Ω1) , B ∈ C0(X,Ω2) (B.2.1)

satisfying

δϑ = 1 , δβ = id log ϑ , δB = dβ . (B.2.2)

Two gerbes with connections are equivalent if and only if (after a suitable refinement of cover)
they are related by a 0- and 1-gauge transformations, with parameters f ∈ C1(X,S1) and η ∈
C0(X,Ω1), which act by

ϑ→ ϑδf , β → β + id log f + δη , B → B + dη . (B.2.3)

We will call the full transformation (f, η) a gerbe gauge transformation. Note that (f, η) leave the
gerbe data invariant if and only if f defines transition functions for a flat line bundle over X with
a compatible flat connection η.

The gerbe curvature H = 1
2πdB is a closed 3-form on X. Like the curvature of a line bundle,

the curvature H is gerbe gauge-invariant, and its cohomology class characterizes gerbes at the level
of topology.
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B.3 G-action on the gerbe data

In the situation of a line bundle, we had a clear geometric perspective on finding a lift of the
G–action to L: we were essentially finding a set of diffeomorphisms on the total space of the line
bundle compatible with the projection to X. Such a perspective is not immediately available for
a gerbe, but we can, as in [35], study the action on (ϑ, β,B), and we will show that the solution
to the consistency requirements of that action allows for more general results than those obtained
in [35].

Starting with the defining relations of the gerbe we demand that for every a ∈ G we have
(fa, ηa) such that

ϕ∗a(ϑ) = ϑδfa , ϕ∗a(β) = β + id log fa + δηa , ϕ∗a(B) = B + dηa . (B.3.1)

Applying ϕ∗b , we find that consistency with the group law require

ϑδfab = ϑδf bϕ∗b(δf
a) ,

−id log
fab

f bϕ∗b(f
a)

= δ
(
ηab − ηb − ϕ∗b(ηa)

)
,

0 = d
(
ηab − ηb − ϕ∗b(ηa)

)
. (B.3.2)

These conditions are solved by

fab = f bϕ∗b(f
a)ka,b , ηab = ηb + ϕ∗b(η

a) + τa,b , (B.3.3)

where (ka,b, τa,b) is the data for a flat line bundle T a,b → X.

Associativity

There are non-trivial conditions from associativity of the group product. Imposing fa(bc) = f (ab)c

and ηa(bc) = η(ab)c in (B.3.3), requires

T a,bc ⊗ T b,c ' T ab,c ⊗ ϕ∗c(T a,b) , (B.3.4)

with

ka,bckb,c = kab,cϕ∗c(k
a,b) , τa,bc + τ b,c = τab,c + ϕ∗c(τ

a,b) . (B.3.5)

Any flat connection τa,b can be written as

τa,b = id log ha,b (B.3.6)

for some ha,b ∈ C0(X,S1) satisfying

δha,b = ta,b
(
ka,b

)−1
(B.3.7)

for some Čech cocycle ta,b ∈ C1(X,S1). Recall that any flat line bundle admits a trivialization with
constant transition functions, and the choice of such constant transition functions is a flat structure
on the bundle [63]; ta,b is such a flat structure on the line bundle T a,b → X.

The relations (B.3.5) are equivalent to

δ

Ç
hab,cϕ∗c(h

a,b)

ha,bchb,c

å
=
tab,cϕ∗c(t

a,b)

ta,bctb,c
, d

Ç
hab,cϕ∗c(h

a,b)

ha,bchb,c

å
= 0 . (B.3.8)
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Therefore for every a, b, c ∈ G there exists a locally constant phase ψa,b;c ∈ C0(X,S1) such that

ϕ∗c(h
a,b) = ψa,b;c

ha,bchb,c

hab,c
, ta,bctb,c = δ(ψa,b;c)tab,cϕ∗c(t

a,b) . (B.3.9)

So, we see that ψa,b;c is a constant gauge transformation relating the flat structures on the flat
bundles in (B.3.4). Letting ϕ∗d act on both sides of the first equation in (B.3.9), we find that ψ is
a group cocycle, i.e. for each patch Uα, the constants ψa,b;cα define a class in the group cohomology
H3(G,U(1)).

The appearance of the line bundles T a,b is a new feature compared to the analysis of [35], and
it in principle allows for more general G-actions. As with many matters involving non-trivial gerbe
structures, it would be useful to have concrete classes of examples that realize these seemingly more
exotic possibilities.

Discrete torsion

From the first of the expressions in (B.3.9) we can already see the possibility of discrete torsion
of [34]. Let λa,b be a G 2-cocycle, i.e. λ : G×G→ U(1), such that

λa,bcλb,c

λab,cλa,b
= 1 . (B.3.10)

In that case, if we have found ha,b that satisfy (B.3.9) with some ψa,b;c, then we obtain a new
solution to (B.3.9) with the same ψa,b;c by setting

ha,bnew = ha,bλa,b . (B.3.11)

As we will see below, the factors ha,b only enter the orbifold CFT partition function through
combinations ha,b/hb,a for commuting elements a, b ∈ G. Therefore, shifting λa,b → λa,bξaξb/ξab

for any G 1-cochain ξ leave the partition function invariant; said another way, the partition function
only depends on the cohomology class [λ] ∈ H2(G,U(1)).

Action on a topologically trivial gerbe

As for line bundles, the familiar exponential short exact sequence

0 Z R U(1) 0e2πi· (B.3.12)

and the associated long exact sequence in cohomology can be used to relate differential data encoded
in the connections to topological information. For example, the cohomology class of the curvature
[H] ∈ H3(X,R) of a gerbe is the image of a class in H3(X,Z), and this latter class characterizes
the gerbe at the level of topology.

A gerbe is flat if and only if its curvature vanishes: H = 0. Flat gerbes are classified by the
cohomology group H2(X,U(1)) [113], which encodes the holonomy of the B-field on 2-cycles. Using
the long exact sequence associated to (B.3.12), we find

0 H2(X,R)/H2(X,Z) H2(X,U(1))
{
H3(X,Z)

}tors
0 , (B.3.13)

where the last term is the torsion subgroup of H3(X,Z). The right-hand-side encodes a possible
non-trivial topology of the flat gerbe, while the left-hand-side encodes the choice of B up to gauge
transformations. This is analogous to the characterization of connections on flat line bundles, where
the same description holds with cohomology degrees reduced by 1.



90 Appendix B. Equivariant flat gerbes

A gerbe with data (ϑ, β,B) is topologically trivial if and only if ϑ is a Čech coboundary. For
any topologically trivial gerbe it is possible to make a gerbe gauge transformation that sets ϑ = 1

and β = 0. This a partial gauge fixing, and the gerbe gauge transformations that preserve the
choice are (f, η) = (g,A), where (g,A) is data for a line bundle L → X; these act by

B → B + dA . (B.3.14)

We now consider the G-action on a topologically trivial gerbe. Following our previous line of
reasoning, we specify line bundles La → X with data (ga,Aa) for every a ∈ G such that

ϕ∗a(B) = B + dAa . (B.3.15)

The group structure imposes further requirements on this data. Specializing (B.3.3) to the topo-
logically trivial gerbe, we find that the data for the flat T a,b bundles is determined by the data for
the La bundles that specify the G-action. Denoting the dual bundle to L by L∨,

T a,b ' Lab ⊗
(
Lb ⊗ ϕ∗b(La)

)∨
, ta,b =

gab

gbϕ∗b(g
a)
δha,b , id log ha,b = Aab −Ab − ϕ∗b(Aa) .

(B.3.16)

Bundle and gerbe gauge transformations

Are these structures are consistent with gauge transformations of the gerbe and of the individual
line bundles La? If the latter does not hold, then we could not speak of the G-action as encoded in
a choice of line bundles; if the former does not hold, then our G-action would depend on a particular
representative B. We dispel both of these concerns, starting with bundle gauge transformations.

Given (ga,Aa) and ha,b satisfying (B.3.9), (B.3.15), and (B.3.16), we can pick gauge-equivalent
data for the La

ganew = gafa , Aanew = Aa − id log fa , (B.3.17)

and set

ha,bnew = ha,bf bϕ∗b(f
a)fab

−1
. (B.3.18)

It is straightforward to check that the factor ξa,b = f bϕ∗b(f
a)(fab)−1—a gauge transformation on

T a,b—satisfies

ξab,cϕ∗c(ξ
a,b)

ξa,bcξb,c
= 1 , (B.3.19)

So, we see that (ganew,Aanew) give a consistent G-action.

Next, consider a gerbe gauge transformation specified by a line bundle L→ X with data (gL,Λ)

and

Bnew = B + dΛ . (B.3.20)

Suppose that we have a G-action on the gerbe with connection B specified by line bundles La such
that

ϕ∗a(B) = B + dAa . (B.3.21)
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We can then obtain a G-action on the gerbe with connection Bnew by taking new bundles

Lanew = La ⊗ ϕ∗a(L)⊗ L∨ , (B.3.22)

with data accordingly satisfying

ganew = gaϕ∗a(gL)(gL)−1 , Aanew = Aa + ϕ∗a(Λ)− Λ . (B.3.23)

Trivial T a,b

In the special situation that ta,b = 1, (B.3.16) gives isomorphisms

Lb ⊗ ϕ∗b(La) ' Lab , gbϕ∗b(g
a) = gabδha,b , Ab + ϕ∗b(Aa) = Aab − id log ha,b . (B.3.24)

As we discussed in section B.1, such isomorphisms have a geometric interpretation at the level of
sections, or, equivalently, as diffeomorphisms on the total space of the bundle that commute with
projection to X: for a point (x, ξ) in the total space of Lb ⊗ ϕ∗b(La) we have

Lb ⊗ ϕ∗b(La)→ Lab , (x, ξ) 7→ (x, ha,b(x)ξ) . (B.3.25)

The associativity of the group multiplication law then requires the diffeomorphisms to satisfy

ϕ∗c(h
a,b)hab,c = ha,bchb,c . (B.3.26)

Using these relations in (B.3.9), we see that ψa,b;c = 1. A bit more generally, if ta,b = δsa,b for some
sa,b ∈ C0(X,S1), then we can absorb the sa,b into a redefinition of ha,b while preserving (B.3.24).
The associativity of the bundle isomorphisms then again implies (B.3.26), so that the ψa,b;c = 1.
We also see that (B.3.26) is consistent with multiplying ha,b by a representative of H2(G,U(1)),
and modifying it by a group coboundary can be absorbed into the gauge transformations of the
individual bundles La—again, this is the discrete torsion of [34]. In this way, we recover the results
of [35] when T a,b are trivial bundles. The nice properties3 given by trivial T a,b also suggests trivial
T a,b should be encoded in the possible definition of equivariant gerbes, i.e. the G-action on gerbes
should give isomorphism Lb ⊗ ϕ∗b(La) ' Lab.

B.4 A trivial flat gerbe on Rd and orbifold CFT

Following [35], we now discuss how the equivariant structure just defined allows us to define the
contribution of the B-field to the orbifold partition function for the theory on X/G. This is not
easy for a general X equipped with a gerbe, but it is manageable and instructive in the special case
that X = Rd, G is abelian, and the gerbe is trivial and flat.4

Taking the worldsheet to be a torus, we fix a map from T 2 → X with image Sa,b(x):

•
x

•
ϕb(x)

•ϕab(x)•
ϕa(x)

(B.4.1)

3see also next section
4The results are also relevant for non-abelian G, since the orbifold construction restricts the a, b to mutually

commuting elements in G.
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We then define the phase factor

Pa,b = exp i

ñ∫
Sa,b(x)

B

ô
exp i

ñ∫ ϕa(x)

x

Ab −
∫ ϕb(x)

x

Aa
ô
ha,b(x)

hb,a(x)
. (B.4.2)

This phase factor is precisely the holonomy of the gerbe on X/G associated to the cycle that lifts
to Sa,b(x), and it enjoys three important properties.

• It is independent of the basepoint x.

First observe that
∫
Sa,b(x)

B is base-point independent because Sa,b(x) and Sa,b(x + v) are
homologous for any v ∈ Rd and H = 0. So, under a variation of x→ x+ v, we have

−iδv logPa,b = Liev

ñ∫ ϕa(x)

x

Ab −
∫ ϕb(x)

x

Aa
ô
− iLiev log

ha,b

hb,a
(x)

= vx
(
ϕ∗a(Ab)−Ab − ϕ∗b(Aa) +Aa

)
− ivxd log

ha,b

hb,a
= 0 . (B.4.3)

• It is invariant under gerbe gauge transformations.

This follows because∫
Sa,b

Bnew =

∫
Sa,b

B +

Ç∫ ϕa(x)

x

−
∫ ϕb(x)

x

+

∫ ϕab(x)

ϕa(x)

−
∫ ϕab(x)

ϕb(x)

å
Λ

=

∫
Sa,b

B +

∫ ϕa(x)

x

(Λ− ϕ∗b(Λ))−
∫ ϕb(x)

x

(Λ− ϕ∗a(Λ)) , (B.4.4)

and the last two terms are canceled by the Λ transformations of the Aa from (B.3.23).

• It is invariant under bundle gauge transformations.

To see this, we note that B does not transform under (B.3.17), whileñ∫ ϕa(x)

x

Ab −
∫ ϕb(x)

x

Aa
ô
→
ñ∫ ϕa(x)

x

Ab −
∫ ϕb(x)

x

Aa
ô
× faϕ∗a(f b)

f bϕ∗b(f
a)

. (B.4.5)

The last factor is then canceled by the transformation of the ratio ha,b/hb,a.

While these properties make the factor well-defined, it is not obvious that including such a factor
leads to a well-behaved orbifold CFT. Fortunately, if we assume that the X/G orbifold CFT is well-
behaved without this phase factor, then the necessary and sufficient conditions for a well-defined
partition function at any genus are well-known from the classic work [34]: the phases should satisfy

Pa,bPb,a = 1 , Pa,a = 1 , Pab,c = Pa,cPb,c . (B.4.6)

Using (B.4.2) we see that

Pa,bPb,a = exp i

ñ∫
Sa,b(x)

B +

∫
Sb,a(x)

B

ô
. (B.4.7)

The two integrals cancel because Sa,b and −Sb,a are homologous, and H = 0. Moreover, since the
integrals cancel exactly, we also see that Pa,a = 1.
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To study the last condition, we write

Pa,b = PBa,bP
A
a,bP

h
a,b (B.4.8)

and study the ratios for the different terms in turn.

The ratio of the B- factors,

PBab,c
PBa,cP

B
b,c

, (B.4.9)

involves the integral
∫
Sab,c

B. We can relate this to the other integrals by constructing a closed
surface as follows (we drop the x dependence and just label the points by elements of G):

•
1

•
ab

•abc•c •
a

•ac

(B.4.10)

Because H = 0,∫
Sab,c(x)

B =

∫
Sa,c(x)

B +

∫
Sb,c(ϕa(x))

B −
∫

Σa,b(x)

B +

∫
Σa,b(ϕc(x))

B , (B.4.11)

where Σa,b is the oriented surface with ordered vertices 1, a, ab. We then obtain∫
Sab,c(x)

B −
∫
Sa,c(x)

B −
∫
Sb,c(x)

B =

∫
Sb,c(x)

(ϕ∗a(B)−B) +

∫
Σa,b

(ϕ∗c(B)−B)

=

∫
Sb,c(x)

dAa +

∫
Σa,b

dAc . (B.4.12)

So, we conclude

PBab,c
PBa,cP

B
b,c

= exp i

ñ∫
Sb,c(x)

dAa +

∫
Σa,b

dAc
ô
. (B.4.13)

Next we tackle the PAab,c factor. Using (B.3.16) to eliminate the Aab term in PAab,c we arrive at

PAab,c
PAa,cP

A
b,c

= exp i

ñÇ∫ ϕab(x)

x

−
∫ ϕa(x)

x

−
∫ ϕb(x)

x

å
Ac +

∫ ϕc(x)

x

(Aa − ϕ∗b(Aa))

ô
ϕ∗c(h

a,b)

ha,b
. (B.4.14)

We rewrite the first term asÇ∫ ϕab(x)

x

−
∫ ϕa(x)

x

−
∫ ϕb(x)

x

å
Ac = −

∫
Σa,b

dAc −
∫ ϕb(x)

x

(Ac − ϕ∗a(Ac)), (B.4.15)

Because G is abelian, we have the relation

Aa − ϕ∗c(Aa) + id log hc,a = Ac − ϕ∗a(Ac) + id log ha,c , (B.4.16)
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so thatÇ∫ ϕab(x)

x

−
∫ ϕa(x)

x

−
∫ ϕb(x)

x

å
Ac = −

∫
Σa,b

dAc −
∫ ϕb(x)

x

(Aa − ϕ∗c(Aa) + id log hc,a

ha,c ) , (B.4.17)

and combining factors we learn that

PBab,c
PBa,cP

B
b,c

PAab,c
PAa,cP

A
b,c

= exp i

ñ∫
Sb,c(x)

dAa +

∫ ϕc(x)

x

(Aa − ϕ∗b(Aa)−
∫ ϕb(x)

x

(Aa − ϕ∗c(Aa)

ô
× ϕ∗c(h

a,b)

ha,b
ϕ∗b

Å
hc,a

ha,c

ã
ha,c

hc,a
(B.4.18)

The square bracket is zero, and we have

PBab,c
PBa,cP

B
b,c

PAab,c
PAa,cP

A
b,c

=
ϕ∗c(h

a,b)

ha,b
ϕ∗b

Å
hc,a

ha,c

ã
ha,c

hc,a
. (B.4.19)

Combining this with the ratio Phab,c/P
h
a,cP

h
b,c, we find

Pab,c
Pa,cPb,c

=
hab,c

hc,ab
hc,b

hb,c
ϕ∗c(h

a,b)

ha,b
ϕ∗b

Å
hc,a

ha,c

ã
. (B.4.20)

Using the constraint from (B.3.9) we can eliminate the pullbacks from this expression, and we find
the necessary and sufficient condition for a well-defined CFT partition function at any genus:

Pab,c
Pa,cPb,c

=
ψa,b;cψc,a;b

ψa,c;b
= 1 . (B.4.21)

We saw above that in the case ta,b = 1 we have ψa,b;c = 1, so the orbifold partition function is
consistent for every equivariant gerbe with trivial T a,b.
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