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RÉSUMÉ DE LA THÈSE 
 

INTRODUCTION 

La transmission de virus de l'animal à l'homme est une menace majeure pour la santé 
humaine, la pandémie de VIH-1 en étant un exemple clair. Chacun des quatre groupes du 
VIH-1 est issu d'une transmission zoonotique indépendante du virus simiens à l'homme. Les 
groupes M et N dérivent de SIVcpzPtt (Gao et al., 1999; Keele et al., 2006), tandis que les 
groupes O et P dérivent de SIVgor (Plantier et al., 2009; D’Arc et al., 2015). Bien que le groupe 
M et le groupe O partagent des origines géographiques et temporelles similaires (Korber et 
al., 2000; Lemey et al., 2004; Leoz et al., 2015), ils ont rencontré des succès épidémiologique 
largement différents. Alors que le groupe M est responsable de la pandémie de SIDA, 
infectant environ 39 millions de personnes dans le monde, le groupe O a un succès 
épidémiologique très inférieur, infectant environ 100 000 personnes, principalement dans la 
région centre-ouest de l'Afrique (Peeters et al., 1997; Mourez et al., 2013). Les raisons de cet 
écart ne sont que partiellement connues à ce jour, bien que constituant une problématique 
centrale pour identifier les propriétés critiques permettant la transmission et la diffusion inter-
espèces. 

Leurs origines zoonotiques différentes et la diversification subséquente des séquences chez 
l'hôte humain sont responsables de la grande diversité génétique intergroupe entre les 
groupes M et O qui peut atteindre près de 50 % dans le gène env (Santoro and Perno, 2013). 
Malgré cela, ils ont des phénotypes globalement convergents et, à ce jour, seules quelques 
différences fonctionnelles ont été mises en évidence entre leurs protéines et leurs enzymes. 
Parmi ceux-ci, la plus marquée concerne la neutralisation des propriétés antivirales de la 
protéine cellulaire tetherin, qui est exercée par Vpu dans le VIH-1 M alors qu'elle est 

partiellement réalisée par Nef dans le cas du VIH-1 O (Kluge et al., 2014; Bego et al., 2016). 

La réplication du VIH nécessite l'intégration de l'ARN génomique, rétrotranscrit pour former 
un ADN double brin, dans le génome de la cellule infectée. Cette étape clé est réalisée par 
l'intégrase (IN), l'une des trois enzymes virales. IN est une polynucléotidyl-transférase 
catalisant deux réactions séquentielles de transestérification SN2 dépendantes du 
magnésium, le traitement en 3' et le transfert de brin (Engelman et al., 1991), conduisant à 
l'intégration. Cette étape est irréversible et établis l’infection permanente de la cellule cible. 
IN est constitué de trois domaines reliés par des lieurs flexibles : le domaine N-terminal (NTD), 
le domaine central catalytique (CCD) et le domaine C-terminal (CTD) (Engelman and Craigie, 
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1992; Engelman et al., 1993; van Gent et al., 1993). Chacun de ces domaines est spécialisé 
dans une ou plusieurs fonctions. Le NTD est important pour la multimérisation et la 
stabilisation de la forme active de l'intégrase (Zheng et al., 1996; Eijkelenboom et al., 1997), 
qui est un multimère hautement organisé formé de plusieurs dimères de dimères (Passos et 
al., 2017, 2020). Le CCD est impliqué dans la liaison à l'ADN et contient la triade d'acides 
aminés responsable de l'activité catalytique de l'enzyme (Kulkosky et al., 1992), mais c'est 
aussi le domaine impliqué dans la dimérisation des protéines et il est responsable de 
l'interaction avec le LEDGF/p75, un facteur de l’hôte requis pour le succès de l'infection par 
le VIH-1 (Busschots et al., 2005). Enfin, le CTD est impliqué dans la liaison de l'ARN/ADN 
viral à différentes étapes du cycle infectieux (Engelman et al., 1994; Kessl et al., 2016; Elliott 
et al., 2020; Engelman and Kvaratskhelia, 2022), et dans l'interaction avec la reverse 
transcriptase virale (Zhu et al., 2004; Wilkinson et al., 2009). 

Les intégrases M et O partagent 84% d'identité de séquence ainsi que la même organisation 
des domaines et les mêmes fonctions. En exploitant la rupture du réseau de coévolution, en 
construisant des intégrases chimériques entre le groupe M et le groupe O, le laboratoire a pu 
identifier un motif fonctionnel spécifique au groupe dans le CTD de IN M (N222K240N254K273) 
(Kanja et al., 2020). Le motif est très conservé dans le groupe M et est composé d’une 
alternance de deux acides aminés chargés positivement (K) et de deux acides aminés 
amidiques polaires (N). Les deux se sont révélés essentiels à l'intégration, en effet, lorsque 
le N ou le K sont mutés, l'intégration est abolie (Kanja et al., 2020). D'autres expériences ont 
montré comment les caractéristiques importantes des deux acides aminés composant le 
motif étaient, pour le K, leur charge positive, et pour le N, leurs chaînes latérales amidiques. 
En effet, en les remplaçant par des acides aminés aux caractéristiques similaires (N remplacé 
par Q ; K remplacé par R), l'intégration n'a pas été affectée (Kanja et al., 2020). Pour cette 
raison, le motif a été renommé motif "C-terminal lysins amidic" (CLA), par moi-même et les 
co-auteurs de mon manuscrit de doctorat. Malgré sa conservation in vivo, le motif a montré 

des niveaux importants de flexibilité génétique en culture de cellules. En effet, il était possible 
de conserver la fonctionnalité lorsque des acides aminés similaires remplaçaient ceux 
d'origine (QRQR). Il était même suffisant de ne conserver que deux lysines dans le motif, avec 
les autres positions occupées par des acides aminés amidiques (N, Q) (Kanja et al., 2020) 
pour maintenir un niveau de fonctionnalité comparable à celui de la protéine sauvage. Cette 
caractéristique est probablement due au fait que les quatre acides aminés composant le 
motif CLA, forment une surface chargée positivement, conservée dans les lentivirus (Kanja 
et al., 2020). Cette découverte, ainsi que la flexibilité génétique montrée par le motif, ont 
conduit Kanja et ses collègues à émettre l'hypothèse que la fonction possible du motif 
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pourrait être d'interagir avec un partenaire chargé négativement mais qui ne présente pas 
une séquence spécifique, comme le squelette de phosphates d’une molécule d’ARN ou 
d’ADN, 

Sur toutes les combinaisons testées possedant 2 K, seules deux ont montré un défaut dans 
l'étape d'intégration, le phénotype le plus sévère étant à 25% d'intégration par rapport au wt 
en présence de la séquence d'acides aminés NQKK. De façon surprenante, la séquence 
NQKK constitue la séquence consensus trouvée aux positions CLA dans l'intégrase du 
groupe O, soulevant la question de savoir comment le groupe O a pu sélectionner une 
séquence avec une si faible efficacité apparente. Répondre à cette question était l'objectif 
principal de ce travail. 

Un deuxième objectif lié au motif CLA, bien que moins développé, a également été poursuivi 
au cours de ma thèse de doctorat. Comme indiqué ci-dessus, une caractéristique essentielle 
de ce motif sont les charges positives portées par les lysines. En effet, un motif portant quatre 
K (KKKK) a les mêmes niveaux d'intégration que le wt. Néanmoins, les acides aminés 
amidiques présents dans le motif se sont également avérés jouer un rôle essentiel. En effet, 
abolir la nature polaire de l'acide aminé, en remplaçant à la fois N par L, même longueur de 
chaîne latérale mais pas de polarité, abolit l'intégration, indiquant que la polarité était une 
caractéristique cruciale dans ces positions. Cependant, la polarité seule n'était pas 
suffisante, car lorsque les N ont été remplacés par deux T (polaires et avec une chaîne latérale 
de taille similaire aux asparagines, mais portant un groupe OH au lieu du groupe amidique), 
l'intégration a chuté à des niveaux à peine détectables (2 à 5 % par rapport à wt IN), ce qui 
indique que la nature du groupe porté par la chaîne latérale est également importante. Ces 
résultats avaient été obtenus par Marine pendant son travail de doctorat, mais seulement 
une partie d’entre eux a été incluse dans l’article publié dans Journal of Virology, pour 
préserver la clarté du message de cet article qui aurait été diminué par l’inclusion d’un 
message focalisé sur un deuxième sujet. 

Dans les travaux de Kanja et al, il a été effectué une estimation théorique de la contribution 

de chaque type de défaut observé dans les différentes étapes du cycle infectieux avec les 
différents mutants (comme une diminution de l'import nucléaire du produit de transcription 
inverse, par exemple) à l'efficacité globale de l'intégration. Cela a été fait en supposant, par 
exemple, qu’une diminution de 30 % observée dans l'import nucléaire (pour s'en tenir à 
l'exemple donné ci-dessus) pour un mutant par rapport à wt IN, si c'est l'unique défaut, 
devrait entrainer une diminution de 30 % du nombre de provirus générés par rapport à 
l’enzyme sauvage. En suivant cette approche, le laboratoire est arrivé à la conclusion que les 
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défauts observés dans l'import nucléaire et dans le traitement en 3' pourraient expliquer la 
totalité de la diminution d'intégration observée avec chacun des mutants des K du motif. 
Lorsque la même analyse a été réalisée pour les mutants LKLK et TKTK, alors les défauts 
observés en import nucléaire et en traitement 3' n'étaient pas suffisants pour rendre compte 
de l'amplitude de la diminution d'intégration observée avec ces mutants. Pour les trois 
mutants des résidus K, les valeurs sont (efficacité observée par rapport à wt IN vs fréquence 
attendue par rapport à wt IN) : 0,03 vs 0,09, 0,24 vs 0,26 et 0,00 vs 0,05, témoignant d'une 
similitude remarquable entre résultats observés et attendus. À l'opposé, les mutants où le N 
a été remplacé par L ou T ont montré des valeurs d'intégration observées qui ne 
correspondaient pas aux valeurs attendues : "0,01 contre 0,27 et 0,05 contre 0,47, pour les 
mutants L et T, respectivement. Ces résultats suggèrent que des défauts supplémentaires 
étaient présents avec ces mutants. Pour ces mutants nous avons évalué la plupart des étapes 
de la génération depuis l'ARN génomique jusqu'à celle de l'ADN proviral, nous nous sommes 
concentrés sur l'un des rares paramètres que nous n'avions pas pris en compte jusque-là : 
le choix des sites d'intégration. En effet, dans notre système expérimental, nous évaluons 
l'efficacité de l'intégration sur la base de l'expression d'un transgène inséré dans l'ADN 
proviral. Si le choix des sites d'intégration était affecté chez les mutants, cela pourrait 
influencer notre lecture, introduisant éventuellement un écart entre les résultats attendus et 
observés. L'interaction de IN avec LEDGF/p75 est particulièrement importante pour le choix 
des sites d'intégration. Le modèle actuel de ciblage de l'intégration prend en effet en charge 
un mécanisme en deux phases. Premièrement, CPSF6 permet la libération du complexe 
RTC/PIC du complexe de pores nucléaires, en liant CA, puis le conduit au-delà de la 
périphérie nucléaire, vers les régions internes du noyau et, en particulier dans les "speckles-
associated domains" (SPAD) (Sowd et al., 2016; Bejarano et al., 2019; Francis et al., 2020; Li 
et al., 2020), des régions génomiques associées aux speckles nucléaires (Chen et al., 2018; 
Chen and Belmont, 2019). Ensuite, via la liaison LEDGF/p75 à l'IN, l'intégration se fait 
préférentiellement dans les corps géniques, sous l'influence potentielle des machineries 

cellulaires d'épissage de l'ARNm et/ou d'élongation transcriptionnelle (Ciuffi et al., 2005; 
Gijsbers et al., 2010; Singh et al., 2015). LEDGF/p75 interagit avec l'IN via les domaines CCD 
et NTD et non le CTD. Néanmoins, un rôle de l'IN CTD, indépendant de LEDGF/p75, dans la 
liaison à la chromatine et le ciblage d'intégration a été montré (Demeulemeester et al., 2014; 
Benleulmi et al., 2017; Mauro et al., 2019; Winans et al., 2022). Par conséquent, nous avons 
commencé à cartographier les sites d'intégration obtenus avec le mutant TKTK (l'intégration 
avec le mutant LKLK était si faible qu'il n'aurait pas été possible d'obtenir du matériel pour 
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ces analyses). L'analyse des sites d'intégration a été réalisée en collaboration avec le Dr 
Marina Lusic, à l'Université de Heidelberg, où j'ai passé un mois pour démarrer le projet. 

 

RESULTATS ET DISCUSSION 

 

Identification des propriétés et des origines phylogénétiques spécifiques des 

intégrases du VIH-1 M et O 

Pour comprendre le rôle du motif CLA dans l'intégrase du groupe O, nous avons remplacé 
dans IN O la séquence dans les positions CLA par NQNQ (IN O/NQNQ), une séquence qui 
s'est avérée abolir l'intégration dans les isolats M (Kanja et al., 2020). Dans le groupe O, 
contrairement à ce qui a été observé pour le groupe M, le remplacement de la séquence 
d'origine dans les positions CLA par NQNQ n'a pas affecté l'intégration dans les cellules 
HEK293T et Jurkat. Ce résultat indique que les isolats O ne nécessitent pas la fonction 
exercée par le motif CLA ou que cette fonction est assurée soit par une autre région de 
l'intégrase soit par une autre protéine. En construisant des chimères entre les intégrases O 
et M nous avons pu identifier que c’était le NTD de IN O qui permettait au groupe O de 
contourner le besoin du motif CLA pour l'intégration. Ensuite, pour identifier les acides 
aminés responsables de ce phénotype, nous avons aligné les séquences d'acides aminés de 
IN NTD O et M et avons remarqué que 10 positions différaient entre les deux. Selon le score 
de la matrice BLOSUM62 (Henikoff and Henikoff, 1992), le remplacement de quatre de ces 
résidus (Q7, G27, P41, H44) induit des changements plus drastiques dans les propriétés de 
la protéine par rapport à la substitution des autres résidus. Pour tester si les quatre résidus 
Q7G27P41H44 du NTD O étaient ceux permettant la complémentation de la fonctionnalité 
assurée par le motif CLA, nous les avons insérés dans le NTD du IN M qui abrite, aux 
positions CLA, la séquence consensus des isolats O (IN M/QGPH/NQKK). Ces deux 
mutations ont été suffisantes pour passer d’une efficacité d'intégration de 25 % de IN 
M/NQKK à 100 % de wt IN M, à la fois dans les cellules HEK293T et Jurkat. Les mêmes 
résultats ont été obtenus en remplaçant le NTD M entier par le NTD O (IN M/NTD-O/NQKK). 
Par conséquent, nous avons conclu que les Q7G27P41H44 sont les acides aminés suffisants 
pour complémenter fonctionnellement l'absence du motif CLA dans le groupe O et nous 
avons décidé de désigner ces positions par le motif "N-terminal O group" (NOG). La 
restauration des niveaux d'intégration lorsque le motif NOG est inséré dans IN M/NQKK est 
obtenue en augmentant la quantité de produits de transcription inverse (RTP) et en favorisant 
leur intégration en améliorant le traitement en 3'. Dans les cellules Jurkat, ces effets étaient 
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concomitants à une augmentation de la stabilité de la capside, qui pourrait potentiellement 
favoriser les deux processus en augmentant le temps de séjour des acides nucléiques dans 
la capside (Forshey et al., 2002; Stremlau et al., 2006; Eschbach et al., 2020). 

Comment des domaines aussi différents ont-ils pu converger pour assurer des fonctions 
aussi similaires qu'interchangeables ? L'explication la plus simple est qu'ils sont impliqués 
dans la même étape mécanistique du cycle infectieux, probablement par une interaction 
essentielle avec la même molécule. Le laboratoire avait montré, au cours du travail de 
doctorat de Marine, que les trois premiers résidus du motif (N222K240N254) formaient une 
surface chargée positivement, absente dans le cas de la séquence N222Q240K254 (Kanja et al., 
2020). Il a été proposé que cette surface interagisse, avec la contribution éventuelle du K273 
supplémentaire, avec un partenaire redondant chargé négativement (Kanja et al., 2020) tel 
que le squelette des molécules d'ADN ou d'ARN. Dans IN O, la présence du motif NOG 
devrait induire la formation d'une surface chargée positivement, ce qui pourrait conduire 
l'interaction à impliquer préférentiellement le NTD. 

Pour comprendre comment ces deux motifs divergents ont pu émerger, nous avons retracé 
l'origine et l'évolution des motifs NOG et CLA en examinant les mêmes positions dans les IN 
des virus qui sont à l'origine des groupes O et M, SIVgor et SIVcpzPtt respectivement. La 

séquence QGPH, est hautement conservée dans le groupe O et dans SIVgor et on la retrouve 
également dans l'isolat supposé être le plus proche du fondateur du VIH-1 O, SIVgor BQID2 
(D’Arc et al., 2015). Ces observations suggèrent fortement que ce motif a été sélectionné 
dans le virus du singe et est resté inchangé après transmission à l'homme. Dans le cas de 
SIVcpzPtt, bien que les résidus trouvés dans les positions CLA soient majoritairement K et 
N, les mêmes que le motif CLA essentiel dans HIV-1 M, aucun conservation ne se dégage, 
hormis la conservation de K273. Pour évaluer la possibilité que la séquence NKNK était 
néanmoins présente dans l'isolat transmis à l'homme et conservé depuis, nous avons 
comparé les séquences trouvées dans les deux isolats de SIVcpzPtt identifiés comme les 

plus proches du VIH-1, isolats SIVcpzPtt MB897 et SIVcpzPtt LB715 (Heuverswyn et al., 
2007). Dans aucun des deux cas, la séquence était NKNK. Le fait qu'aucune des 
combinaisons de ces acides aminés n'ait été sélectionnée dans le virus simien pourrait 
indiquer que la fonction exercée par ce motif n'était pas requise dans les cellules simiennes. 
Alternativement, on pourrait imaginer que, même si nécessaire, la pression sélective pour le 
motif CLA n'était pas aussi forte qu'elle semble l'être chez l'homme, permettant la 
coexistence de plusieurs séquences fonctionnelles chez le virus simien. Dans les deux cas, 
il est tentant de supposer que l'émergence du motif NKNK faisait partie du processus 
d’adaptation au nouvel hôte. Ce sujet a soulevé la question de savoir pourquoi la sélection 
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pour le même motif n'a pas émergé également après le transfert de SIVgor aux humains. En 
principe, la présence dans ce virus d'un motif déjà fonctionnel (celui du NOG) n'excluait pas 
l'ajout d'un second motif (comme celui du CLA) qui aurait pu conférer un avantage 
supplémentaire au virus porteur des deux. Toutefois, lorsque nous avons testé cette 
possibilité en remplaçant la séquence NQKK par NKNK dans l'isolât O, nous n'avons observé 
aucune augmentation de l'intégration, apportant une réponse potentielle à la question. Ces 
résultats, ainsi que l'observation que le groupe O n'a pas besoin du motif CLA pour 
l'intégration, sont plutôt évocateurs de la présence d'une épistasie dominante des positions 
qui constituent le motif NOG par rapport à celles constituant le motif CLA. 

Néanmoins, nous avons voulu comprendre si un virus avec un IN de SIVcpzPtt mais avec la 

séquence NKNK dans les positions CLA pouvait avoir été infectieux dans les cellules 
humaines. Nous avons donc procédé au remplacement de la séquence KKKK dans les 
positions CLA de l'intégrase MB897 de l'isolat SIVcpzPtt par NKNK et l'avons testée dans la 
lignée lymphocytaire humaine Jurkat. Ce changement était suffisant pour réduire l'intégration 
à environ 10 % par rapport à wt IN SIVcpzPtt. Le remplacement des acides aminés dans les 
positions CLA par NQNQ, condition qui a aboli l'intégration dans IN M, a provoqué une chute 
de l'intégration à des niveaux indétectables, ainsi qu'une diminution significative des niveaux 
de transcription inverse. Au bilan, ces résultats indiquent que, dans SIVcpzPtt, la séquence 

dans les positions CLA est cruciale pour déterminer les niveaux d'intégration, comme pour 
l’IN M. Contrairement à l’IN M, cependant, dans SIVcpzPtt, la séquence NKNK n'a pas assuré 
des niveaux élevés d'intégration. 

Dans l'ensemble, avec ce travail, nous documentons que les intégrases des groupes M et O 
du VIH-1 ont développé deux motifs fonctionnels spécifiques au groupe phylogénétique qui 
peuvent se complémenter mutuellement. Un motif (CLA) est localisé dans le CTD de la 
protéine du groupe M, l'autre (NOG) dans le NTD des isolats du groupe O.  

 

Le rôle des acides aminés amidiques dans le motif CLA 

Pour comprendre si le mutant TKTK conduit à un changement dans le choix des sites 
d'intégration, une transduction de cellules Jurkat avec des particules virales portant soit le 
IN M wt soit le M/TKTK a été réalisée. Une bibliothèque enrichie en sites d'intégration de 
l'ADN génomique a ensuite été préparée, séquencée et analysée. A partir des cellules 
infectées avec un virus portant une IN wt, un total de 4 674 sites ont été cartographiés, tandis 
que pour le mutant TKTK, les sites cartographiés ont été 1 375. De manière frappante, le 
pourcentage de sites d'intégration intra- et intergéniques était différent entre les deux 
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intégrases, la wt ciblant préférentiellement les sites intragéniques (72%) comme décrit dans 
la littérature, tandis que le mutant TKTK ne s'intègre dans ces régions que 56% du temps. 
De plus, en examinant les niveaux d'expression des gènes ciblés, il était clair que le mutant 
s'intègre avec une fréquence plus élevée dans les gènes à faible expression et/ou réduits au 
silence par rapport à l’intégrase sauvage. Ces résultats pourraient expliquer l'écart entre les 
niveaux d'intégration attendus et observés pour le mutant TKTK. L'efficacité d'intégration 
observée est en effet mesurée grâce à la présence de gènes rapporteurs dans le génome 
viral modifié par les VLP (PUROR). Par conséquent, notre détection d'événements 
d'intégration est limitée à ceux qui sont situés dans des régions transcriptionnellement 
actives. Les niveaux d'intégration plus élevés attendus sur une base théorique, pour le 
mutant TKTK peuvent donc s'expliquer car une partie importante des événements 
d'intégration se produisent dans des régions où les gènes rapporteurs ne peuvent pas être 
transcrits. En effet, on peut estimer que l'efficacité d'intégration observée du mutant TKTK à 
partir de la cartographie est d'environ 30% par rapport au wt, ce qui correspond mieux à la 
valeur attendue trouvée lorsque l'intégration a été estimée sur les défauts de traitement 3' et 
d'importation nucléaire. 

Le mutant TKTK présente également des préférences de chromatine différentes, avec une 
tendance inverse par rapport au wt. En effet, ses sites d'intégration sont moins associés aux 
caractéristiques signature de chromatine ouverte H3K4me1, H3K27Ac et H3K36me3 (Wang 
et al., 2007; Roth et al., 2011; Kvaratskhelia et al., 2014; Sowd et al., 2016). H3K4me1 et 
H3K27Ac sont des signatures de super-enhancer, qui sont des sites cibles préférentiels du 
VIH-1. Cependant il semble maintenant que cette préférence soit une conséquence de 
l'abondance des super-enhancer dans les SPAD, l'une des cibles privilégiées pour 
l'intégration (Bedwell et al., 2021; Singh et al., 2022). H3K36me3, au contraire, est associé 
aux corps de gènes. De plus, c'est la modification préférentiellement reconnue par le 
domaine PWWP de LEDGF/p75. Le phénotype du mutant TKTK ne dépend probablement 
pas de son incapacité à se lier à LEDGF/p75, car il interagit avec le NTD et le domaine CCD 

de l'IN, tandis que le mutant TKTK a deux mutations ponctuelles dans le CTD. Une étude 
récente a mis en évidence la façon dont les sites d'intégration du VIH-1 semblent être plus 
fortement corrélés avec les gènes associés à H3K36me3, plutôt qu'avec les gènes associés 
à LEDGF/p75 liés à la chromatine (Singh et al., 2022). Cette observation suggère que le 
H3K36me3 pourrait être la cible de l'intégration du VIH-1 même de manière non corrélée 
LEDGF/p75. L'existence de ce type de mécanisme pourrait expliquer comment les sites 
d'intégration du mutant TKTK sont moins associés au marqueur H3K36me3, alors que sa 
liaison avec LEDGF/p75 n'est pas perturbée. À l'inverse, le mutant TKTK a montré plus 
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d'affinité pour les marques répressives de la chromatine telles que H3K9me2/3 et H3K27me3 
(Wang et al., 2007; Roth et al., 2011; Sowd et al., 2016). 

Si la phase initiale du ciblage du site d'insertion est connue, les phases ultérieures, dont le 
contact avec la chromatine de l'hôte, sont mal caractérisées. Nos résultats, dans la lignée de 
ceux trouvés dans la littérature, vont dans une direction où l'IN CTD apparaît responsable du 
choix des sites d'intégration, et en particulier du tethering de la chromatine. Si l'observation 
peut s'expliquer par un effet direct des mutations CTD, la possibilité qu'un ou plusieurs 
facteurs cellulaires non encore identifiés soient impliqués n'est pas à exclure. Ils pourraient 
être impliqués, de manière directe ou indirecte, dans l'orientation de l'événement 
d'intégration vers des corps de gènes transcriptionnellement actifs. L'identification de ce/ces 
facteur(s) cellulaire(s) représenterait une étape cruciale pour la poursuite de ce projet. 

 

CONCLUSIONS 

Grâce au projet principal de ma thèse de doctorat, qui portait sur l'étude du rôle du motif 
CLA dans le groupe O, nous avons pu mettre en évidence l'existence de deux motifs 
fonctionnels groupes spécifiques dans les intégrases des groupes M et O se complétant 
fonctionnellement : le motif du groupe M CLA (N222K240N254K273), localisé dans le CTD, et le 
motif du groupe O NOG (Q7G27P41H44), localisé dans le NTD. Ce résultat est important à la 
lumière de la compréhension du succès épidémiologique du groupe M sur le groupe O. Après 
transmission inter-espèces à l'homme, les caractéristiques génétiques de chaque groupe 
sont ce qui, plus que d'autres facteurs, a probablement déterminé le succès de réplication 
des isolats. Le fait que le groupe M ait optimisé et sélectionné son motif CLA en tant 
qu'adaptation au nouvel hôte pourrait représenter l'une des nombreuses caractéristiques 
conférant à ce groupe un avantage de réplication pour la réplication dans l'hôte humain. 
Comprendre ces mécanismes est important pour mieux comprendre l'histoire derrière les 
menaces importantes pour la santé humaine telles que la pandémie de VIH-1 groupe M et 
pour pouvoir la combattre avec des outils optimisés. 

Un projet secondaire a été réalisé en collaboration avec le Dr Marina Lusic et son équipe à 
l'Université de Heidelberg, axé sur la compréhension du rôle des acides aminés amidiques 
présents dans le motif CLA. L'investigation sur le N du motif a conduit à découvrir un nouveau 
rôle potentiellement LEDGF/p75-indépendant du IN dans le choix des sites d'intégration. Au 

total, bien que limité à quelques résultats préliminaires, cette partie de mon travail de thèse 
a démontré avec succès le rôle de l'IN CTD dans le choix des sites d'intégration. Comprendre 
le mécanisme derrière ce phénotype pourrait ouvrir de nouvelles perspectives intéressantes 
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dans la thérapie à base de vecteurs lentiviraux. Il est clair que le mutant TKTK a un grave 
défaut d'intégration et son intégration dans des régions non transcriptionnellement actives, 
ce qui rend difficile d'imaginer son emploi pour la thérapie. Cependant, élucider le 
mécanisme pour lequel le VIH-1 IN choisit ses sites d'intégration, pourrait permettre de le 
"hacker" pour cibler des régions génomiques spécifiques du génome humain, ce qui pourrait 
réduire drastiquement la possibilité d'induire une mutagenèse insertionnelle (et 
potentiellement une oncogenèse) dans les cellules cibles. 

Enfin, au cours de ma thèse, j'ai travaillé sur un troisième projet, dont l'objectif était de 
comprendre le rôle du motif CLA dans le mécanisme de « uncoating » de la capside virale. 
Bien que ce projet n'ait pas atteint le niveau requis pour prévoir la publication des résultats 
obtenus, il m'a permis d'acquérir des connaissances techniques et théoriques pertinentes 
sur le sujet. Pendant que je travaillais dessus, une nouvelle vague d'articles mettant en 
évidence l'entrée nucléaire de noyaux de capsides intacts ou presque intacts est sortie. Ainsi, 
lorsque le premier confinement causé par la pandémie de Covid est arrivé, j'ai profité de 
l'arrêt imposé à mon activité expérimentale, pour exploiter mes connaissances sur l'étape de 
de « uncoating » pour rédiger une revue sur le sujet, mettant l'accent sur les avancées 
récentes décrites dans la littérature. La revue a été publiée dans Frontiers in Microbiology et 
est cosignée avec le Dr Daniela Lener et le Dr Matteo Negroni et peut être trouvée en annexe 
1. Un deuxième aspect pour lequel ce projet s'est avéré déterminant pour mon travail de 
doctorat était qu'il a permis m'a permis de transférer les compétences que j'avais acquises 
(par exemple, le test EURT) au dernier développement du projet qui a conduit à l'article de 
recherche présenté dans les résultats de cette thèse. 
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HIV-1: GENERAL INTRODUCTION 

 

HIV-1 structure and genome 

The human immunodeficiency virus (HIV) is a lentivirus responsible for the acquired 
immunodeficiency syndrome (AIDS) pandemic in humans. Two types of HIV have been 
defined: type 1 (HIV-1) and type 2 (HIV-2). HIV-1 is further subdivided into four groups: M for 
major, O for outlier, N for non-M-non-O, and P suspected to stand for “Plantier” the 
discoverer. HIV-2 instead has been divided in eight groups (A-H). Among all these 
phylogenetic categories, only HIV-1 group M has established a stable and worldwide 
infection in the human population, being responsible for 98% of HIV infections in the world. 

 

HIV-1 viral particle 

HIV-1 genome is an RNA of positive polarity that must be reverse transcribed, and the reverse 
transcription product integrated in the genome of the host cell, for viral replication to occur. 
The diameter of the viral particle is approximately 100-150 nm with an external lipidic bilayer 
envelope, carried along during budding from the infected cell. For this reason, both viral and 
cellular proteins can be found at the surface of the viral particles. The viral envelope proteins 
are necessary for recognition of the cellular receptor CD4 and the following viral entry. 
Underneath the envelope there is a protein lattice that surrounds an “inner envelope”, a 
fullerene cone-shaped core that protects the viral genome (Figure 1).  

 

HIV-1 genome structure 

The HIV-1 genome is around 9 kb and is found in a viral particle as two single stranded RNA 
molecules that dimerize near their 5’ extremities. The viral RNA (vRNA) is flanked by non-
coding regions called the 5’ and 3’ untranslated regions (UTRs) that contain regulatory 
sequences mediating different steps of the viral cycle. At the 5' R and U5 are found, while at 
the 3' there are U3 and R. R contains the trans-activating response region (TAR), and the 
polyA signal that at the 5’ of the genome adopts a conformation that results in the loss of 
functionality while, at the 3’ end of the genome, it is functional (Berkhout and Jeang, 1989; 
Das et al., 1999). Downstream the 5'UTR region, two other important regulatory cis-elements 
are present, the primer-binding site (PBS) and the core encapsidation signal psi (ψ). PBS is 
the site from which reverse transcription is started (Rhim et al., 1991; Kleiman, 2002). ψ is 
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composed by four sequential RNA stem-loops (SL1-4) which are essential for the packaging 
of the full vRNA into the progeny virus particles, as well as dimerization of the two RNA copies 
of the viral genome (Kuzembayeva et al., 2014). 

 

Figure 1. Schematic representation of a HIV-1 viral particle. The HIV-1 viral particle has an external lipidic 
bilayer covered in envelope "spikes", which are necessary for the viral entry. Inside this, a lattice of matrix (MA) is 
found, and a mature core, formed by the viral protein capsid (CA), which contains the two copies of the viral RNA 
genome (vRNA), complexed with the nucleocapsid (NC), and the viral enzymes reverse transcriptase (RT) and 
integrase (IN). Adapted from Toccafondi et al., 2021. 

After reverse transcription and the formation of the double-stranded vDNA the 5' and 3' UTR 
regions are replaced by two identical regions at the 5' and 3' extremities of the proviral DNA 
(vDNA) called the long terminal repeats (LTRs), both composed by U3, R, and U5 (Resnick et 
al., 1984; Das et al., 1994; Zhang and Crumpacker, 2022) (Figure 2). The 5' LTR U3 region 
contains the promoter sequence, a core enhancer and amodulatory region, which are 
essential for the provirus transcription (Gaynor, 1992). Between the two LTRs are located the 
regions encoding the 9 viral proteins (Figure 2), organized in three large open reading frames 
(gag, pol, and env) and a set of individual genes coding for accessory proteins (vif, vpr, tat, 

rev, vpu, nef), which play important roles in the counteraction of the host restriction response 
and facilitate viral replication. 

 

Viral proteins: Gag, Pol, Env 

The viral genome carries three main open reading frames coding for the major structural and 
functional elements of the virus as well as the viral enzymes: Gag, Pol, and Env (Figure 2). 

The gag gene codes a polyprotein, Pr55Gag, that, once processed by the viral protease, 

generates the individual structural proteins: matrix (MA), capsid (CA), spacer peptide 1 (SP1), 
nucleocapsid (NC), spacer peptide 2 (SP2) and p6 (Bukrinskaya, 2007). The MA protein forms 
a hexameric protein lattice, just underneath the viral lipid membrane. Indeed, MA anchors the 
cell membrane through its myristoylated N-ter domain (Dorfman et al., 1994; Spearman et 
al., 1994; Hill et al., 1996; Qu et al., 2021). This binding is particularly important during the 
formation of a new viral particle, generating the Pr55Gag precursors lattice. CA is a 24kDa 
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protein, composed of two globular domains, N-ter and C-ter, connected by a flexible linker. 
Mature CA is the smallest unit forming the capsid core as it assembles into around 250 
hexamers and 12 pentamers, forming the fullerene cone structure inside the viral particle, 
which is about 120 nm long and 60 nm wide. The stability of the capsid core and its 
disassembly are two key elements of the infectious cycle, regulated by many factors. Indeed, 
being the most exposed viral protein during its journey across the cytoplasm, from the cell 
membrane to the nucleus, CA is the target of several restriction factors, and it mediates the 
interaction with cellular cofactors of the infection. NC is a small protein, less than 100 aa, 
containing two highly conserved zinc-finger domains formed by the CX2CX4HX4C sequence 
(CCHC motif). NC, as domain of Pr55Gag and mature protein, binds the genomic vRNA 
molecules, encapsidating them inot the budding viruses and stabilizing and compacting them 
to favor their packaging into the capsid core during the maturation of a new budded viral 
particle (Aldovini and Young, 1990; Clavel and Orenstein, 1990; Gien et al., 2022). The small 
peptide p6 has been shown to have multiple functions during the formation and maturation 
of a new viral particle, as inducing Vpr incorporation into the new particle (Paxton et al., 1993) 
and helping the budding off of the virion from the host cell membrane (Yu et al., 1995). In HIV-
1 M, SP1 and SP2 are 12 and 16 aa long respectively. SP1 is involved in CA maturation and 
assembly, indeed, its depletion leads to the formation of abnormal Gag and CA lattices 
(Accola et al., 1998; Gross et al., 2000). SP2 is crucial for incorporation in the viral particles 
of Pr55Gag and Pr160Gag-Pol precursors (Hill et al., 2006).  

 

Figure 2. Schematic representation of the HIV-1 proviral genome. The three main retroviral core genes, gag, 
pol, and env, are shown in blue, orange, and green respectively. Each of them is segmented to show the proteins 
for which they are coding. The genes encoding the regulatory proteins, tat and rev, are shown in yellow and lime 
green respectively, while the genes encoding the other accessory proteins, vif, vpr, vpu, and nef, are shown in 
pink. At the two ends of the genome are drawn in grey, the two identical long-terminal repeats (LTRs). Image from 
Meissner et al., 2022. 

The gene pol codes for the viral enzymes: protease (PR), reverse transcriptase (RT) and 

integrase (IN). These enzymes are first found as part of a large precursor: Pr160Gag-Pol. 
Gag-Pol is produced by ribosomal frameshifting in the course of translation of the viral RNA, 
a process that occurs at a frequency of around 5%, determining a stoichiometry of 1:20 for 
the components of pol with respect to gag (Jacks et al., 1988). The dimerization of the Gag-
Pol precursor, leads to the dimerization of PR, activating the enzyme that first cleaves itself 
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from the polyprotein and then to proceeds to the release of all the individual components of 
the precursors (Erickson-Viitanen et al., 1989; Louis et al., 1994; Pettit et al., 2005; Meng et 
al., 2012). The mature form of the RT is a heterodimer, composed of a p66 and a p51 subunit. 
p51 is produced by cleavage of one p66 subunit of a p66/p66 homodimer, between the DNA 
polymerase and the RNase H domains, which is lost. This cleavage triggers a conformational 
change of p51 that also inactivates its polymerase activity, leaving to this subunit only a 
structural role of support for p66 (Jacobo-Molina et al., 1993; Wang et al., 1994; Jaeger et 
al., 1998). The p66 therefore is in charge of the two catalytic activities of the enzyme, the 
RNA/DNA dependent DNA polymerase, responsible for the conversion of the vRNA into 
double stranded DNA, and the RNase H activity that degrades the RNA component of 
RNA/DNA hybrids. This activity is required for removing the genomic RNA, once copied into 
its complementary sequence, from the nascent DNA. This is essential to allow the transfer of 
the nascent DNA, whose synthesis is blocked at the 5’ end of the RNA genome (minus DNA 
strong stop) to the second copy of R present at the 3’ end of the gRNA. The structure of p66 
is similar to the one of a right hand, where the sub-domains “fingers”, “thumb" and "palm" 
are taking contact with the nucleic acid complex (RNA/DNA hybrid). The "palm" contains the 
active site (D110D185D186), that catalyzes the nucleophilic attack of the incoming nucleotide. IN 
is composed of three structural domains connected by flexible linkers and catalyzes the 
integration of the vDNA into the chromosomal DNA. It is a multifunctional protein that is also 
in charge of interacting with several viral and cellular partners. An exhaustive description of 
the protein structure and its functions is presented below (see Integrase – Catalytic activity). 

The env gene encodes the viral envelope glycoproteins that are first translated as a precursor 
called gp160. Gp160 is glycosylated in the endoplasmic reticulum and then cleaved by a 
cellular furin protease in the Golgi apparatus, generating the surface protein (SU), 
glycoprotein gp120, and the transmembrane (TM) glycoprotein gp41 (Bernstein et al., 1994; 
Zhu et al., 2006). Gp120 is composed of five conserved domains (C1-5) and five variable 
regions (V1-5). Gp41 consists of three domains, the N-ter extra-cellular domain, the 
transmembrane domain and the C-ter cytoplasmatic tail (Douglas et al., 1997). The 
gp120/gp41 heterodimers assemble in trimers to constitute a “spike” (Figure 1), the functional 
form of the viral envelope.  

 

Viral proteins: accessory proteins 

The viral genome codes also for six additional proteins with regulatory and auxiliary functions. 
The RNA splicing regulator (Rev) and the transactivator protein (Tat) function as regulatory 
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proteins of viral replication and cell metabolism. The viral protein unique (Vpu), the viral 
infectivity factor (Vif), the viral protein r (Vpr), and the negative regulatory factor (Nef), have 
critical roles in enhancing viral pathogenesis, modulating various parameters as cellular 
response to infection, counteracting restriction factors and ultimately favoring viral 
replication. 

Rev is a regulatory protein with a role in the processing of the newly transcribed vRNA during 
infection. It increases the amount of partial or completely unspliced vRNA (Felber et al., 1989) 
in the cytoplasm. Indeed, Rev, by binding to the Rev response element (RRE) (Kalland et al., 
1994; Meyer and Malim, 1994) present on the nascent vRNA, exports the partially spliced or 
unspliced vRNA from the nucleus. The unspliced vRNA will then either be translated into the 
Gag and Gag-Pol precursors or incorporated into nascent viral particles as full genomic RNA. 
Rev is able to perform this function thanks to the concomitant presence of nuclear localization 
and nuclear export signals. 

The trans-activator of transcription (Tat) is a regulatory protein that enhances transcription of 
HIV-1 provirus by binding to TAR (Rice, 2017). In addition, Tat is also modulating host cell 
gene expression, by favoring immune suppression, apoptosis and oxidative stress (Badou et 
al., 2000; Chen et al., 2002; El-Amine et al., 2018), which are processes involved in the 
progression of HIV-1 infection and its symptoms.  

Nef (negative factor) is a myristoylated protein associated with the cytoplasmatic membrane, 
abundantly expressed during the early phases of the viral infection. It is essential to maintain 
prominent levels of viral load and to accelerate CD4+ T cells depletion (Kestier et al., 1991; 
Arien and Verhasselt, 2008; Arhel and Kirchhoff, 2009). To reach this goal, Nef is involved in 
various aspects of the infectious process, as inducing changes in cellular trafficking 
complexes and in receptors surface expression (Arien and Verhasselt, 2008; Kirchhoff et al., 
2008). Nef is also responsible for affecting survival functions of bystander cells and hamper 
communication between antigen-presenting cells and T cells (Thoulouze et al., 2006; Arhel 
and Kirchhoff, 2009; Lenassi et al., 2010).  

Vif (virion infectivity factor) is essential for viral replication in vivo where it counteracts the 
effect of the viral restriction factor apoliprotein B mRNA-editing enzyme catalytic 
polypeptide-like (APOBEC) (Malim and Emerman, 2008; Chiu and Greene, 2009; Malim, 
2009; Planelles and Benichou, 2009), which restriction mechanism is discussed more in 
details below (see HIV-1 origin and evolution – Adaptation to overcome the cross-species 
barrier).  
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Vpr (viral protein R) is incorporated in viral particles and enhances viral replication by altering 
both viral and cellular mechanisms. Vpr was found to enhance infection in macrophages 
(Cohen et al., 1990; Hattori et al., 1990; Balliet et al., 1994; Connor et al., 1995) and CD4+ T 
cells (Iijima et al., 2004). The protein was found to be part of the pre-integration complex (PIC) 
and it was therefore believed to facilitate its nuclear import (Popov et al., 1998; Vodicka et 
al., 1998). However, our new understanding of the uncoating and nuclear import steps 
(discussed below) questions whether Vpr role as a part of the PIC complex could be related 
to some other aspects. Vpr induces G2 cell-cycle arrest (He et al., 1995). The G2 phase block 
enhances viral transcription, since transcription is more active during this cell phase (le 
Rouzic and Benichou, 2005).  

Vpu (viral protein U) is a membrane protein with two main functions. First, it downregulates 
the expression of CD4 at the surface of the infected cells, by binding to it and recruiting an 
ubiquitin ligase complex to promote its proteasomal degradation (Willey et al., 1992; van 
Damme and Guatelli, 2008). Reducing CD4 expression in the infected cell prevents the 
interaction of viral envelope glycoproteins with it in the Golgi apparatus, allowing a higher 
number of envelope glycoproteins to be exposed on the nascent viral particles. Second, it 
facilitates viral particles release by counteracting the cellular restriction factor tetherin (Neil et 
al., 2007, 2008; van Damme et al., 2008). This role is discussed more in detail below (see 
HIV-1 origin and evolution – Adaptation to overcome the cross-species barrier). 

 

HIV-1 life cycle 

The HIV-1 life cycle can be roughly separated into early and late phases (Figure 3). The early 
phase starts with the viral entry and ends with the integration of the product of reverse 
transcription to generate a provirus. Transcription and translation from the provirus begin the 
late phase that ends with the maturation of the budding viral particle. 

 

Early phase 

Recognition of the viral receptors by the gp120 marks the beginning of the infection. When 
the gp120 recognizes the cellular receptor CD4 (Klatzmann et al., 1984), a conformational 
change occurs, resulting in the generation of a surface on the gp120 that allows its binding 
to the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) 
that act as co-receptors for viral entry (Raja et al., 2003). This interaction triggers a further 
conformational change, this time of both gp120 and gp41 subunits, during which gp41 inserts 
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its fusion peptide into the cell membrane. The last major conformational change brings the 
cell and viral membranes into proximity, ultimately leading to membrane fusion (Kielian, 
2006). CD4+ cells, therefore, are the target of HIV-1 infections. These cells are helper and 
regulatory T cells, CD4+ T cells, macrophages, monocytes, and dendritic cells (Weiss, 2002). 
The viral tropism is determined by which co-receptor is used during viral entry. It can be M-
tropic, when the co-receptor used is CCR5, T-tropic, when it is CXCR4, or dual-tropic, when 
both can be used (Alkhatib et al., 1996; Feng et al., 1996; Zhang et al., 1996). Viral entry ends 
with the release of the viral capsid core into the cytoplasm of the cell. 

 

Figure 3. The HIV-1 life cycle. The early phase of the HIV-1 life cycle starts with viral entry, thanks to the binding 
of the viral envelope proteins to the cellular receptor CD4 and co-receptor CCR5 or CXCR4. After membrane 
fusion, the capsid core is released into the cytoplasm and starts its journey towards the nucleus. Once imported 
in the nucleus and reverse transcription is complete, the formation of the pre-integration complex (PIC) allows 
integration into the host genome to happen. The late phase starts with transcription of the provirus, export of the 
mRNAs, and translation of the viral proteins. The assembly of the new viral particle at the cellular membrane leads 
to its budding from the infected cell. The released viral particle will then go through a maturation process, at the 
end of which a mature viral particle, ready to start a new replication cycle, is formed. Source of the image: 
https://scienceofhiv.org/wp/life-cycle/. 

Contrary to what previously believed, recent studies support a model where the intact capsid 
core enters the nucleus, and, only after nuclear entry, the uncoating step takes place, near 
the sites of integration. In the same way, recent works highlighted how reverse transcription 
is most likely terminated only once into the nucleus (Burdick et al., 2020; Dharan et al., 2020; 
Francis et al., 2020a; Selyutina et al., 2020). The current most supported model describes 
that the capsid core, once released into the cytoplasm, starts to move toward the nucleus 
exploiting the microtubules system. Once reached the nuclear pore complex, an active 
nuclear import process starts. Indeed, the CA lattice interacts with several proteins that are 
either part of the nuclear pore complex or are located close to it. Among them there are the 
nucleoporins 153 (Nup153) and 358 (Nup358), cyclophilin A (CypA), transportin 3 (TNPO3), 
and the cleavage and splicing factor 6 (CPSF6). All these host proteins are believed to support 
viral infection and to compose the main pathway used by the core to get to the nucleus and 
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to allow the integration of the pre-proviral DNA into actively transcribed regions. It is still not 
clear whether partial uncoating or remodeling of the capsid core is necessary in order for this 
to happen, but it is more and more believed that an intact or almost intact capsid is 
transported into the nucleoplasm, as said before. 

 

Figure 4. Reverse transcription process of HIV-1. A Schematic representation of the viral genome (vRNA, in 
black). The R, U5 and U3 regions are shown, as well as the main genes. The central PPT (cPPT) and the 3'PPT 
are shown in red. The PBS and the tRNALys3 binding to it are depicted. B Synthesis of the viral DNA (vDNA, in 
blue) starts with the (-)sDNA synthesis which shortly generates the -sssDNA, followed by the first strand transfer 
(dotted line). C After strand transfer thanks to the annealing of the identical R sequences, the (-)sDNA synthesis 
is continued (the square shows the part that will be represented in panels D-G). D The (-)sDNA synthesis pursues 
towards interior regions of the genome. The cPPT and 3'PPT are resistant to RNase H cleavage and prime the 
synthesis of the (+)sDNA. E The (+)sDNA synthesis, that started at the 3'PPT, reaches the tRNALys3 and copies 
18 nt, removing the rest. This generates the +sssDNA. F The PBS sequence is synthetizes also in the (-)sDNA, 
allowing the second strand transfer, as shown in panel G, to happen. H Synthesis of the (+)sDNA is completed, 
leading to the formation of the double stranded LTRs and the central flap. I Schematic representation of completed 
double-stranded vDNA, flanked at each end by the LTRs. Image from Cappy et al., 2017. 

During the journey of the core toward the nucleus, reverse transcription is started, triggered 
by the higher concentration of nucleotides present in the cell environment. Reverse 
transcription begins using as primer the tRNALys3, packaged in the core, annealed to the 
primer binding site (PBS) sequence adjacent to the 3’ end of the 5' UTR of the viral genome 
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(Figure 4). This binding is facilitated and stabilized by the NC (Auxilien et al., 1999; Tisne, 
2005). RT recognizes this RNA/RNA primer template complex and starts to synthetize the 
minus-strand DNA [(-)sDNA] from the 3’ end of the tRNALys3. Meanwhile, the RNase H domain 
degrades the template RNA in the RNA/DNA hybrid created by the polymerization of the 
DNA. This process pauses (minus strand strong stop DNA, -sssDNA) when the RT reaches 
the 5' of the gRNA, after copying the U5 and R regions (Figure 4). The presence of these 
complementary regions on the (-)sDNA and the dissociation of the RNA fragments cleaved 
by the RNase H, allow the transfer of the nascent DNA to the R region present at the 3' 
extremity of the gRNA (Figure 4). Here, RT can re-start to reverse transcribe the rest of the 
genome, until it reaches the PBS sequence (the same where reverse transcription started). 
During the completion of the synthesis of the (-)sDNA, the RNA template is completely 
degraded, excepts for the highly conserved polypurine tracts 3’PPT and cPPT, which are 
RNase H resistant. These two sites are then used as starting points to synthetize the plus-
strand DNA [(+)sDNA] (Figure 4). The synthesis that started at the 3’PPT, as it happened for 
the minus strand before, pauses (plus strand strong stop DNA, +sssDNA) at the 5' extremity 
of the (-)sDNA, after copying 18 nt at the 3’ end of the tRNALys3, which is then cleaved. This 
pause is followed by a second strand transfer event, the plus-strand transfer, which is started 
because of the complementarity between the (-)sDNA PBS sequence and the (+)sDNA PBS 
(the copied 18nt at the 3’ end of the tRNALys3) and propagated thanks to the strand 
displacement due to the (+)sDNA synthesis started at the cPPT (Figure 4). The plus-strand 
synthesis can then be finished, and reverse transcription end with the formation of a double-
stranded vDNA flanked by two LTRs. When both reverse transcription and uncoating steps 
are completed, the vDNA forms the pre-integration complex (PIC) together with, at least, a 
tetramer of IN, and several other proteins. Then, IN catalyzes two subsequent reactions:  the 
3’ processing and the strand transfer. Both of them are the same enzymatic reaction, which 
is a magnesium dependent SN2 transesterification reaction, although they differ for their 
substrates. In the 3’ processing one substrate is a water molecule through which IN 

hydrolyzes vDNA ends adjacent to conserved CA-3’ dinucleotides, creating two reactive CA-
3’OH ends (Brown et al., 1989; Roth et al., 1989; David Pauza, 1990; Engelman et al., 1991). 
These ends are used to attack, in a staggered way on both DNA strands, the 5'-phosphate 
groups in a major groove of the host chromosomal DNA, leading to transesterification and 
covalent joining of vDNA to the chromosome (Fujiwara and Mizuuchi, 1988; Brown et al., 
1989; Engelman et al., 1991). This results in an integration intermediate that needs to be 
repaired by the host cell enzymes, yielding the integrated vDNA flanked by the duplication of 
the chromosome cut sequence (Maertens et al., 2022).  
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Late phase 

Once integrated, the vDNA is called provirus and with its transcription starts the late phase 
of the viral cycle. The majority of integration events lead to active transcription and the 
generation of new viral particles (Eisele and Siliciano, 2012). However, another fate of the 
provirus is to be transcriptionally silent, starting a latent infection. It was suggested that the 
latent reservoir can be originated from infections of active CD4+ T cells that than transition 
to their resting state (Finzi et al., 1999; Pace et al., 2012; Shan et al., 2017), but the 
mechanisms behind the establishment of latency are not clear. When the provirus is 
transcribed it behaves as a regular gene. The U3 region at the 5' of the provirus contains the 
promoter, as well as other regions which can affect transcription. General cellular 
transcription factors bind to one of these regions and recruit the RNA polymerase II at the 

promoter. Other regions are recognized by NF-kB and AP-1, which activate transcription. 

Another important transcriptional regulatory region is the Tat responsive element (TAR). Tat 
is one of the first viral proteins to be translated. Once it accumulates, it binds to the TAR 
stem-loop present at the 5’ extremity of the 5'UTR of newly nascent mRNA to be translated 
(Dingwall et al., 1990). This is a crucial step as it allows to end the promoter proximal pause 
of the RNA polymerase II more efficiently. Indeed, the binding of Tat to TAR leads to the 
recruitment of the positive transcriptional elongation factor (P-TEFb) (Zhu et al., 1997), which 
phosphorylates the C-ter of the RNA polymerase II inducing its transition into the elongation 

phase (Cujec et al., 1997; Taube et al., 1999). The transcription product has different fates: it 
can either be unspliced, or partially or completely spliced. The unspliced and partially spliced 
products are exported from the nucleus by Rev, which binds to the RRE sequence present 
on these mRNA. The unspliced mRNA is either incorporated in the new viral particle, 
constituting the viral genome (vRNA), or is translated into the two different polyproteins 
precursors: Gag and Gag-Pol. Once the polyprotein precursors acummulate, the CA C-ter 
domains of different precursor interact with each other and allow the oligomerization of the 
precursors in the cytoplasm of the cell (Lanman et al., 2003; Eichorst et al., 2018). NC of Gag 
recognize and bind to the ψ sequence of two copies of the complete and unspliced vRNA 
(Aldovini and Young, 1990; Jowett et al., 1993; Sundquist et al., 2012). Accumulation to the 
cell membrane of the Gag and Gag-Pol multimers, leads to the formation of the immature 
Gag lattice, with MA pointing toward the exterior and, proceeding toward the interior, CA, 
SP1, NC, SP2, and p6 domain, respectively. The lattice forces a curvature at the plasma 
membrane and the formation of a spherical particle that ultimately buds from the cell (Rose 
et al., 2020). To bud HIV-1 exploits the endosomal sorting complexes required for transport 
(ESCRT), by recruiting Tsg101 and ALIX factors, through the p6 domain of Gag (Garrus et al., 
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2001; Martin-Serrano et al., 2001; Strack et al., 2003). During and/or after the newly formed 
viral particle release, multimerization of Gag-Pol precursor activates the viral protease, which 
proceeds to an ordered sequence of cuts that cleave the Gag and Gag-Pol precursors into 
their individual components (Pettit et al., 1994, 2005). The first cut happens between SP1 and 
NC, allowing the formation of the ribonucleoprotein complex of the vRNA bound to NC. Once 
released, MA and CA dissociate and spontaneously re-assemble to form respectively the 
matrix lattice and the capsid core, which contains the two copies of vRNA complexed with 
the NC, along with the RT and IN proteins. Several host and viral accessory proteins are also 
found in the mature viral particle, which is now able to start a new viral cycle (Pornillos and 
Ganser-Pornillos, 2019). 

 

Disease progression and therapy 

AIDS is a main threat for human health with more than 39 million people living with this 
disease in 2020. The main symptom of this disease is a severe immune deficiency with a 
drop in the amount of lymphocytes T CD4+. While antiretroviral treatment in the recent years 
has significantly reduced the number of AIDS related deaths, the countries where the higher 
mortality and morbidity is found are also the one where is more difficult to have access to 
therapy. HIV-1 is transmitted by sexual, percutaneous, and perinatal routes (Hladik and 
McElrath, 2008; Cohen et al., 2011). Surprisingly, the efficiency of sexual virus transmission, 
which represent the 80% of all infections, is poor and it is mostly caused by a single "founder" 
virus (Keele et al., 2008). However, a single infection can be enough to induce AIDS 
progression and lead to the death of the infected person, through a rapid and progressive 
elimination of memory CD4+ helper T cells in lymphoid tissues (Brenchley et al., 2004). 

Once the infection is established there are four subsequential phases of disease progression. 
(1) The eclipse phase, which occurs in the first couple of weeks after transmission. This phase 
is asymptomatic, but the virus starts to circulate and replicate in the infected individual, 
although at undetectable levels and without an associated immune response (Coffin and 
Swanstrom, 2013). (2) The acute phase starts 2 to 4 weeks post-infection and is characterized 
by a significant increase in the viral load as well as the onset of the immune response. Also, 
a depletion of CD4+ T cells concomitant with the appearance of the first flu-like symptoms, 
is observed (Schacker et al., 1996; Veazey et al., 1998; Brenchley and Douek, 2008; Lackner 

et al., 2012; Coffin and Swanstrom, 2013). (3) Once the viral load is stabilized, starts the 
chronic phase, which can last 1 up to more than 20 years. This phase can be asymptomatic 
or with very few symptoms. (4) When the viral load increases again and the CD4+ T cell count 
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starts to be exceptionally low, the immune system is severely compromised, and the infected 
individual is exposed to pathogen-related diseases and/or cancer development (Lackner et 
al., 2012; Coffin and Swanstrom, 2013). This is the final AIDS phase which, if not treated, can 
lead to the death of the infected individual. 

Several drugs anti-HIV-1 have been approved since the beginning of the pandemic. These 
compounds target some of the main steps of the viral cycle to block the replication, as viral 
entry, reverse transcription, integration, and the maturation step. The viral entry inhibitors are 
classified in two categories, those that block the binding to the cellular receptor and co-
receptor, and those that interfere with membrane fusion (Kuritzkes, 2009). The reverse 
transcription inhibitors are grouped in the nucleoside RT inhibitors (NRTI) and the 
nonnucleoside RT inhibitors (NNRTI). NRTI are chain terminator nucleoside analogues that 
compete with the natural deoxynucleotides for incorporation by the RT, in the nascent DNA 
chain. Once incorporated, they abort DNA synthesis (Menéndez-Arias, 2008). The NNRTI, 
instead, exploit steric hindrance to inhibit polymerization, by binding to the RT, and blocking 
conformational changes that are required to transition from one conformational state of the 
RT to another during polymerization (Kohlstaedt et al., 1992). The inhibitors of protease (PI) 
mimick the natural substrate of the PR and therefore they compete for binding to the active 
site of the enzyme, preventing viral particle maturation (Sundquist et al., 2012). The inhibitors 
of integration are discussed more in detail below (see Integrase – Integrase as a target of 

antiviral therapy), but can also be grouped in two main categories: the strand transfer 
inhibitors (INSTI) that bind to the catalytic site, and the allosteric IN inhibitors (ALLINI) that 
block IN dimerization by binding to the surface of dimerization between two monomers of IN. 
However, all currently available drugs can select resistant variants that have indeed been the 
main cause of treatment failure and justify the constant search for new drugs. 

The most common therapeutic treatment nowadays is the combined antiretroviral therapy 
(cART), formerly called the highly active antiretroviral treatments (HAART), where the NRTIs, 
NNRTIs, PIs, and INSTIs drugs are used simultaneously, in various qualitative and 
quantitative combinations (Cihlar and Fordyce, 2016). INSTIs, in particular, showed to be 
successful and the most recent guidelines recommend using a second-generation INSTI 
(dolutegravir or bictegravir) in combination with two NRTIs (Saag et al., 2020). To date, more 
than 23 HIV-1 drugs combinations have been approved by the Food and Drug Administration 
(FAD). They are formulated in a single daily pill, and, over the years, they have become more 
potent and with less adverse effects. 
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INTEGRASE 

 

Structure 

IN is constituted of three structural domains, the N-terminal domain (NTD), the catalytic core 
domain (CCD), and the C-terminal domain (CTD) (Drelich et al., 1992; Bushman et al., 1993; 
Vink et al., 1993; Andrake and Skalka, 1996) (Figure 5). Each domain is essential for the 
catalytic activity of the enzyme, but each also has a specific role in the protein. 

 

Figure 5. Schematic representation of HIV-1 integrase. The HIV-1 integrase (IN) three domains, NTD (in gren), 
CCD (in orange), and CTD (in purple) are shown. The first and the last amino acid positions of each domain is 
shown in blue. Amino acids of the conserved functional domains among retroviruses (HHCC in the NTD, and DDE 
in the CCD) are shown. Image from Passos et al., 2021. 

The NTD is 47 aa long and is folded in a three-helix bundle (Cai 1997). It contains a highly 
conserved motif, among retroviruses, harboring two histidines (H) and cysteines (C), the 
H12H16C40C43 motif (Figure 5). This motif coordinates a Zn2+ and it is important for proper 
folding of the domain into its three-helix bundle (Cai 1997), IN multimerization, as well as for 
the catalytic activity (Burke et al., 1992; Engelman and Craigie, 1992; Bushman et al., 1993; 
Zheng et al., 1996; Lee et al., 1997). Indeed, when mutated, integration is abolished (Zheng 
et al., 1996). 

The CCD spans 143 aa and is folded like an RNase H domain (Dyda et al., 1994). It harbors 
the catalytic triad, three non-contiguous amino acids (D64D116E152) (Figure 5), highly conserved 
among all retroviral IN and also bacterial transposase (Engelman and Craigie, 1992; Kulkosky 
et al., 1992; van Gent et al., 1992). The triad coordinates two divalent metal ions (Mg2+ in 
physiological conditions or Mn2+ in vitro), essential for both enzymatic reactions exerted by 
IN. Different regions and residues of the CCD are binding the vDNA (Heuer and Brown, 1997; 
Esposito and Craigie, 1998; Chen et al., 2006), while others are taking contact with the host 
DNA (Engelman et al., 1994; Harper et al., 2001; Passos et al., 2017). The CCD contains the 
dimerization and multimerization surfaces, essential for protein functionality (Berthoux et al., 
2007; Serrao et al., 2012), as well as the interaction surface with one of the most important 
host factors for HIV-1 replication, the lens epithelium growth factor (LEDGF/p75) (Cherepanov 
et al., 2005a, 2005b; Rahman et al., 2007), which role will be further discussed below (see 
Integrase – Choice of the integration sites). 
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The CTD consist of 76 aa and it is composed of 5 beta-sheet, which are structured in a Src 

homology 3 (SH3)-like b-barrel fold (Eijkelenboom et al., 1995; Lodi et al., 1995). The CTD is 

the least conserved domain among the three. It is rich in basic aa, which bind the vDNA and 
were more recently shown to bind also the vRNA (Lutzke and Plasterk, 1998; Kessl et al., 
2016; Passos et al., 2017; Elliott et al., 2020; Rocchi et al., 2022). The CTD is involved in IN 
multimerization and binding the RT (Engelman et al., 1993; van Gent et al., 1993; Jenkins et 
al., 1996; Wilkinson et al., 2009; Tekeste et al., 2015; Rocci et al., 2022).  

The domains are connected by flexible linkers, with the one connecting the NTD to the CCD 
being ~10 aa long and the one between the CCD and the CTD being ~20 aa long. It is 
important to mention that, while the NTD-CCD linker is flexible, the CCD-CTD one is 
structured in an alpha-helix, reducing the flexibility of this linker (Ballandras-Colas et al., 2017; 
Passos et al., 2017). Also, a flexible tail of ~18 aa is present at the end of the CTD (Dar et al., 
2009; Mohammed et al., 2011). 

Integration is mediated by the pre-integration complex (PIC), a large nucleoprotein complex 
(Bowerman et al., 1989; Farnet and Haseltine, 1990) containing multimers of IN bound to the 
linear ends of the ~10 Kbp vDNA, the CA (Bedwell and Engelman, 2020), as well as host 

proteins, including barrier-to-autointegration factor (BAF) (Lee and Craigie, 1998; Lin and 
Engelman, 2003), high mobility group protein A1 (HMGA1) (Farnet and Bushman, 1997), lens 
epithelium-derived growth factor (LEDGF/p75) (Llano et al., 2004), and histones (Machida et 
al., 2020; Winans and Goff, 2020). Within the PIC, IN is found in its active form, a high ordered 
oligomer, which when complexed with the vDNA forms the intasome (Miller et al., 1997; Chen 
et al., 1999; Passos et al., 2017, 2020). The number of protomers present in an intasome 
varies in function of the virus considered and it is dictated by the composition of its CCD-
CTD linker (Ballandras-Colas et al., 2016). For example, this linker is about 50 residues long 
in PFV, allowing the CTDs of the active IN protomers (which are the ones in charge of the 
catalytic activity) to bind the vDNA. In lentiviruses this linker is about 15-20 residues long and 
is structured in an alpha-helical conformation (Chen et al., 2000; Ballandras-Colas et al., 
2017), creating a structural constraint that precludes the CTDs of the active molecules to bind 
the vDNA, consequently increasing the numbers of minimum molecules needed for this 
interaction to occur. The stoichiometry of HIV-1 intasome is still debated, with structures 
obtained by cryo-EM and negative-stain electron microscopy, containing between 4 and 16 
IN molecules (Passos et al., 2017; Cook et al., 2020; Li et al., 2020a). Despite intasomes from 
different retroviruses vary in their IN composition, they all share the same conserved intasome 
core (CIC), which coincides with the PFV intasome structure. In this structure, two CCDs are 
flanked on one side by the vDNA and on the other side by another CCD, which does not bind 
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the vDNA, with which they dimerize (Figure 6). The NTDs of the two CCDs involved in binding 
the vDNA are crossed over the acid nucleic molecules, and their CTDs are flanking the vDNA 
(Figure 6). Therefore, the minimal number of IN monomers in lentiviruses is four (to generate 
a tetramer) with two molecules involved in the catalytic activities and the other two supporting 
the binding to the vDNA as well as the inter-molecular interactions. The vDNA complexed 
with the IN molecules is extensively interacting with all three IN domains. 

 

Figure 6. HIV-1 intasome core structure. A The intasome core of HIV-1 is composed by 4 IN monomers. The 
catalytic CCDs are shown in blue and green, taking contact with the vDNA (in magenta and orange). Their NTDs 
are crossing over the vDNA (in blue and green). Both their CTDs (in pink) are stabilizing the binding to the vDNA. 
Each catalytic CCD is dimerizing with another CCD (in light blue) from another IN monomer. PDB accession code: 
6PUT. Adapted from Engelman and Kvaratskhelia, 2022. B Schematic representation of the intasome core. The 
two catalytic protomers are shown in green and cyan. The catalytic site localization in the CCDs is shown with a 
red dot. Each CCD is dimerizing with an outer CCD on the opposite side of the vDNA. Adapted from Lesbats et 
al., 2016. 

 

Catalytic activity 

IN is a polynucleotidyl transferase that catalyzes two sequential magnesium-dependent SN2 
transesterification reactions, the 3’ processing and the strand transfer (Engelman et al., 1991), 
leading to integration, which is an irreversible step establishing a permanent infection of the 
target cell (Figure 7). In the course of 3’ processing a water molecule is used as a nucleophile 
to hydrolyze vDNA ends adjacent to conserved CA-3’ dinucleotides, revealing two reactive 
3’ CAOH ends (Brown et al., 1989; Roth et al., 1989; David Pauza, 1990; Engelman et al., 1991) 
(Figure 7). The two divalent metal ions, coordinated by the DDE triad, play the key role in 
neutralizing the negative charge of the substrate phosphodiester bond and assisting the 
deprotonation of the attacking nucleophile (Hare et al., 2012). After binding to a major groove 
of the target DNA, the same mechanism allows the strand transfer step to happen, but, this 
time, IN uses the reactive 3’OH vDNA ends as nucleophile to cut the chromosomal DNA in a 
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staggered fashion and simultaneously joining them to the 5’-phosphate groups of the cut 
double-stranded chromosomal DNA (Fujiwara and Mizuuchi, 1988; Brown et al., 1989; 
Engelman et al., 1991) (Figure 7). Strand transfer can only happen once 3' processing is 
completed, since the hydrolysis of the dinucleotide would be sterically incompatible with 
transesterification with the chromosomal DNA.  

 

Figure 7. Catalytic activity of the viral integrase. The reverse transcription product, the double-stranded vDNA, 
is shown in lavender. At each ends it contains a copy of the LTR, composed by U3 (in blue), R (in yellow), and U5 
(in pink). The 5'LTR is followed by the PBS sequence (purple box), while the 3'LTR is preceded by the PPT 
sequence (lavender box). During 3' processing IN hydrolyzes, at each strand 3' end, the GT dinucleotide, adjacent 
to a conserved CA dinucleotide. The cleaved ends are used to promote vDNA transfer to the host target DNA (in 
grey with targeted green sequence). Both reactions proceed via SN2 transesterification at phosphorus atoms and 
require a pair of divalent metal cations (Mg2+ or Mn2+) as cofactors. The gap created by the strand transfer is then 
repaired by the host machinery, yielding a target site duplication flanking the provirus. Image from Engelman, 
2019. 
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The conformations of the intasome vary depending on the step of the process of integration 
process considered (Figure 8). The initial stable synaptic complex (SSC) is formed by a 
multimer of IN and a pair of vDNA ends that, after cleaving, switches to the cleaved synaptic 
complex (CSC). When this complex binds the host genomic DNA the target capture complex 
(TCC) is formed. Finally, the covalent joining of viral and chromosomal DNA results in the 
strand transfer complex (STC) (Hare et al., 2012; Engelman and Cherepanov, 2017) (Figure 
8). 

The product of the strand transfer is a hemi-integrated form with unjoined 5’ vDNA ends that 
need to be repaired by the host cell enzymes, ending with the integrated vDNA being flanked 
by a 5-bp long sequence duplication of the cleaved chromosomal sequence (Vincent et al., 
1990; Vink et al., 1990; Maertens et al., 2022). In order for the host cell machinery to be able 
to repair the gap left from the strand transfer step, the STC complex must disassemble. 
Indeed, it was shown that, when expressed in an ectopic way, IN is ubiquitinated and 
eliminated in a proteasome-dependent way (Mulder and Muesing, 2000; Devroe et al., 2003; 
Llano et al., 2004). Similarly, von Hippel-Lindau binding protein 1, a cellular subunit of the 
prefoldin chaperone, was shown to be essential for HIV-1 replication and to be implicated in 
proteasome-mediated IN degradation (Mousnier et al., 2007). After STC disassembles from 
the host DNA, three independent enzymes are necessary to repair the gaps and complete 
integration by covalently joining the 5’ vDNA ends to chromosomal DNA: a DNA polymerase, 
a 5' flap endonuclease, and a ligase. Cell-based studies highlighted the involvement in this 
DNA repair step of enzymes of the BER (base excision repair) pathway of oxidative DNA 
damage (Espeseth et al., 2011; Yoder et al., 2011) and of the nonhomologous end-joining 
(NHEJ) pathway (Li et al., 2001; Knyazhanskaya et al., 2019). The STC disassembly and the 
following DNA repair performed by the cell machinery, however, are the steps of the 
integration process less characterized. 

 

Figure 8. Intasome complex conformations. Schematic representation of the sequential conformations 
assumed by the intasome throughout the viral cycle. The viral DNA (vDNA) and the required amount of IN 
monomers assembly to form the stable synaptic complex (SSC). Then IN cleaves two nucleotides from the 3' 
ends of vDNA, forming the cleaved synaptic complex (CSC). With the capture of the target DNA (tDNA) the 
complex forms the target capture complex (TCC). Finally, IN catalyzes the strand transfer to form the post-
catalytic strand transfer complex (STC) where the vDNA and the tDNA are still bound to the IN. Image from Passos 
et al., 2021. 
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Unintegrated forms of vDNA 

 

Figure 9. Unintegrated forms of vDNA. The linear vDNA, the product of reverse transcription, is susceptible to 
face different fates other than integration (green box) into the host genome. The final product of each path (specify 
in the orange boxes) is shown. Image from Sloan and Wainberg, 2011. 

Various forms of non-integrated vDNA are also found in the infected cells. They can result 
either from events of autointegration or by the host cell DNA repair machinery. The non-
integrated forms can be linear (the unintegrated product of reverse transcription) or circular 
(Figure 9). Circularization by the non-homologous end joining (NHEJ) forms the 2LTR circles 
(2LTRc) (Miller et al., 1995; Li et al., 2001). Another circular form, with only one LTR, 1LTR 
circles (1LTRc) can result from defective reverse transcription (Miller et al., 1995), auto-
integration or homologous recombination of 2LTRc (Cara and Klotman, 2006).  Both circular 
forms can alternatively be formed from vDNA that was or not processed, leading in the case 
of 2LTRc to the obtention of a "perfect junction", when the vDNA is not processed, or 
"imperfect junction", when it is, instead, processed. 2LTRc, due to their unique LTR-LTR 
junction and the fact that they are present exclusively in the nucleus where the NHEJ 
machinery is located, are of particular interest for research purposes as good marker for the 
nuclear import of the RTC/PIC complex. 2LTRc are also used as a marker of integration 
default (Engelman et al., 1995, 1997; Wiskerchen and Muesing, 1995; Leavitt et al., 1996; Lu 
et al., 2005; Johnson et al., 2013). In fact, although representing a small percentage of the 
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total vDNA forms, they are generally considered to be inversely proportional to the amount 
of proviruses since a hypothetical default in the integration step would leave more substrate 
material for the formation of 2LTRc.  

The physiological role of the unintegrated DNA is still controversial. For long time these 
molecules were considered to be dead-end products, then it was shown that unintegrated 
forms of vDNA can be transcriptionally active (Brussel and Sonigo, 2004; Wu, 2004; Sloan et 
al., 2010; Chan et al., 2016; Meltzer et al., 2018), therefore having a potential role in viral 
replication. However, 2LTRc were found to be quickly silenced in the nucleus by host proteins 
(Zhu et al., 2018; Geis and Goff, 2019; Machida et al., 2020; Dupont et al., 2021; Geis et al., 
2022). Interestingly, it was also highlighted how 2LTRc can constitute a viral genome reservoir 
for integration (Thierry et al., 2015; Richetta et al., 2019). 

 

Choice of the integration sites 

The genomic region where the provirus is integrated impacts viral replication, by inducing 
active viral expression or transcriptional silencing and, therefore, (Jordan et al., 2001; 
Maldarelli et al., 2014; Anderson and Maldarelli, 2018). While IN is highly specific for the 
interaction with its vDNA, it does not have the same selectivity for the host DNA. However, 
integration sites are not randomly distributed among the host genome, but they are 
preferentially located in genomic regions with high gene density and histone modifications 
associated with active chromatin (Lusic and Siliciano, 2017). To make its way across the 
nuclear landscape and specifically target active regions of the host DNA, HIV-1 exploits 
numerous host factors as the lens epithelium-derived growth factor (LEDGF/p75) and the 
cleavage and polyadenylation specificity factor 6 (CPSF6) with which it interacts via IN and 
CA, respectively (Engelman and Singh, 2018). 

LEDGF/p75 is a ubiquitous chromosome associated transcriptional co-factor that belongs to 
the hepatoma-derived growth factor-related protein (HRP) family (Nishizawa et al., 2001). It 
is composed of two globular domains, a N-ter PWWP chromatin reader domain (Izumoto et 
al., 1997; Qin and Min, 2014), and a downstream PHAT domain composed of two helix-
hairpin-helix motifs that is also the integrase binding domain (IBD) (Cherepanov et al., 2004) 
(Figure 10). The PWWP belongs to the Tudor family, and it has a preference for histone H3 
tri-methylated on K36 (H3K36me3), an epigenetic mark associated with transcription 

elongation (Pradeepa et al., 2012; Eidahl et al., 2013; van Nuland et al., 2013; Wang et al., 
2020). The IBD binds the dimerization surface of two IN. More in details, its residues I365 and 
D366 bind to a pocket in the CCD dimerization interface (Cherepanov et al., 2005a, 2005b). 
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Other IBD residues, K401, K402 and N405 are taking contact with IN NTD (Hare et al., 2009b), 
meaning that LEDGF/p75 is taking contact with the CCD and the NTD, the two domains 
involved in multimerization and intasome assembly. Hence, it is not surprising that adding 
LEDGF/p75 to IN in vitro increases both dimer stabilizaty and catalytic activity (Cherepanov 
et al., 2003; Turlure et al., 2006; Hayouka et al., 2007; McKee et al., 2008; Hare et al., 2009a, 
2009b; Tsiang et al., 2011). While the IBD is in charge of the interaction with the IN, it is the 
PWWP domain that direct the IN towards the integration sites, indeed, by swapping it with 
the chromatin-binding domain of another factor, it was possible to redirect integration sites 
towards the regions bound by that factor (Ferris et al., 2010; Gijsbers et al., 2010; Silvers et 

al., 2010).  

Cellular depletion of LEDGF/p75 causes a reduction in integration levels (Emiliani et al., 2005; 
Llano et al., 2006; Vandekerckhove et al., 2006; Marshall et al., 2007; Shun et al., 2007; 
Schrijvers et al., 2012; Wang et al., 2012), as well as a decrease of proviruses in the mid-
regions of gene bodies (Shun et al., 2007; Singh et al., 2015; Sowd et al., 2016) with a 
concomitant increase in transcription start sites (Ciuffi et al., 2005; Marshall et al., 2007; Shun 
et al., 2007), and GC-rich regions (Ciuffi et al., 2005). LEDGF/p75 interacts with numerous 
mRNA splicing factors (Pradeepa et al., 2012; Singh et al., 2015) and is able to overcome the 
transcription block created by nucleosomes in vitro (LeRoy et al., 2019), suggesting that 
integration targeting might involve the cellular mRNA splicing and/or transcriptional 
machineries. Accordingly, a correlation between integration sites and genes with numerous 
introns was found (Singh et al., 2015, 2022; Sowd et al., 2016). 

LEDGF/p75 also modulates the IN-intrinsic chromatin-binding property to H4 histone tail 
(Lapaillerie et al., 2021). Indeed, for integration to occur IN has to interact with the 
nucleosome and this interaction is happening between the IN-CTD and the H4 histone tail 
(Benleulmi et al., 2017; Mauro et al., 2019). A recent work showed how this interaction is 
enhanced and redirected towards LEDGF/p75-enriched sites in presence of LEDGF/p75 
(Lapaillerie et al., 2021). 

Interestingly, when LEDGF/p75 was depleted, integration still occurred preferentially in gene-
dense regions with a higher frequency than expected on a random basis (Marshall et al., 
2007; Shun et al., 2007; Schrijvers et al., 2012; Singh et al., 2015), suggesting that other 
proteins, either binding IN or not, might play a role in it. The hepatoma-derived growth factor 
like 2 (HDGFL2) is the only HRP family member, other than LEDGF/p75, that possesses a 
functional IBD (Figure 10). It binds to IN (Cherepanov et al., 2004) and play a minor role in 
directing integration into highly transcribed genes (Schrijvers et al., 2012; Wang et al., 2012). 
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A combined depletion LEDGF/p75 and HDGFL2 further decreased integration in 
transcriptional units, compared to LEDGF/p75 depletion alone, but the preference was not 
completely lost (Wang et al., 2012). 

 

Figure 10. LEDGF/p75 and HDGFL2 schematic representation. LEDGF/p75 and HDGFL2 are shown in their 
domain organization with numbers indicating domain boundaries and interdomain lengths. The IBD domain 
present in both proteins is the one taking contact with HIV-1 IN. Image from Engelman and Maertens, 2018. 

The choice of the integration sites does not concern only the characteristic of the target 
regions (e.g., intragenic or intergenic), but also their localization inside the chromatin 
architecture of the nucleus. Nuclear import of the RTC/PIC is a key step in the infectious cycle 
of lentiviruses and it is the entry point for the viral genomic material into the nucleus. The 
ability of lentiviruses to infect non-dividing cells is mediated by CA and its role in RTC/PIC 
nuclear import (Lewinski et al., 2006). Several host factors participate to this process by 
interacting with CA, as Nup358 (Schaller et al., 2011), Nup153 (Buffone et al., 2018; Bejarano 
et al., 2019), CPSF6 (Lee et al., 2012; Price et al., 2012, 2014; Bhattacharya et al., 2014) and 
cyclophilin A (CypA) (Franke et al., 1994; Gamble et al., 1996). HIV-1 integration occurs 
preferentially in peripheral chromatin regions of the nucleus, close to nuclear pores. Indeed, 
depletion of Nup153, a component of the nuclear pore complex, shifted the integration sites 
to more central nuclear regions (Koh et al., 2013; Marini et al., 2015), suggesting that nuclear 
entry and integration are two closely related steps of the viral cycle. Even before entering the 
nuclear pore complex, the interaction with CypA ensures that a nuclear import pathway 
involving Nup358 and Nup153 is used (Schaller et al., 2011). Once on the nuclear side, 
however, it is mostly CPSF6 that takes the relay. 

CPSF6 is an SR-like protein with a N-ter RNA recognition motif (RRM), a central Pro-rich 
domain (PRD), and a C-ter RS-like domain (RSLD) (Rüegsegger et al., 1998; Dettwiler et al., 
2004). It binds the CA through its PRD domain (Lee et al., 2012; Price et al., 2012), which has 
more affinity for CA hexamers rather than CA monomers (Bhattacharya et al., 2014; Price et 
al., 2014). CPSF6 is part of the cleavage factor I mammalian (CFIm) complex, which is in 
charge of regulating polyadenylation in the 3’UTR of mRNAs (Rüegsegger et al., 1996; Gruber 
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et al., 2012; Martin et al., 2012). Nevertheless, it was shown that its role as an HIV-1 co-factor 
is independent from the other subunits of the complex (Rasheedi et al., 2016). CPSF6 can be 
found in both cytoplasm and nucleus, and, in the latter, is found preferentially in nuclear 
paraspeckles (Dettwiler et al., 2004). CPSF6 binds to the same CA region of Nup153 (Price 
et al., 2014), and it is thought to compete for CA binding and its release from the nuclear pore 
complex (Bejarano et al., 2019). When CA mutants (N74D, A77V) that cannot bind CPSF6 
were evaluated, an accumulation of proviruses in lamina-associated domains (LADs) with a 
concomitant reduction in speckles-associated regions (SPADs) was observed (Chin et al., 
2015; Achuthan et al., 2018; Burdick et al., 2020; Francis et al., 2020b; Li et al., 2020b). LADs 
are gene-sparse heterochromatin regions located at the periphery of the nucleus, while 
SPADs are genomic regions associated to nuclear speckles (Chen et al., 2018; Chen and 
Belmont, 2019), which are nuclear domains located in interchromatin regions enriched in pre-
mRNA splicing factors, as CPSF6, and transcriptional factors (Spector and Lamond, 2011; 
Galganski et al., 2017). These domains are surrounded by gene-enriched and 
transcriptionally active chromatin regions, as SPADs, which explain them being the 
preferential target of HIV-1 for integration.   

 

Figure 11. Nuclear landscape of HIV-1 integration. Integration of HIV-1 is happening preferential in open and 
actively transcribed chromatin. For this HIV-1 is guided through the nuclear landscape mostly by two cellular 
cofactors: CPSF6 and LEDGF/p75 (LEDGF). CPSF6 binds to the capsid (CA) and guides the pre-integration 
complex (PIC, in red) towards more internal region, away from the lamina-associated domain (LAD). Then, LEDGF 
bind to the HIV-1 and tether the PIC to active chromatin. Image from Lusic and Siliciano, 2017. 
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The current model for the choice of the integration sites is supporting a two-phase 
mechanism (Bedwell and Engelman, 2020; Singh et al., 2022) (Figure 11). First, CPSF6 allows 
the release of the RTC/PIC complex from the nuclear pore complex, by binding CA, and then 
leads it beyond nuclear periphery, towards inner regions of the nucleus and, in particular into 
SPADs. Then, via LEDGF/p75 binding the viral IN, integration is happening preferentially into 
gene bodies, under a potential influence of the cellular mRNA splicing and/or transcriptional 
elongation machineries. 

 

Non-catalytic activities 

IN is a pleiotropic protein and, when mutated, can affect several steps of the viral cycle. IN 
mutations are separated in two classes, class I and class II, based on the different 
phenotypes they can give. Class I mutations are strictly connected to the inability of these 
mutants to integrate, leading to an accumulation of non-integrated forms of vDNA, and they 
usually correlate with amino acidic substitutions in the catalytic triad, or with substitutions 
proximal to the catalytic site. Class II mutations, instead, affect one or more steps of the viral 
cycle while retaining, at least partially, the catalytic activity of IN (Engelman, 1999). The most 
common phenotype observed in these mutants is a reduction in the reverse transcription 
products (RTPs). However, the variety of phenotypes class II mutations can cause and the 
different mechanisms behind them, recently led to a new subclassifications of them into 
classes IIa, IIb, and IIc (Engelman and Kvaratskhelia, 2022), that will be discussed later. 

One of the most relevant non-catalytic activities of IN is during viral particle morphogenesis 
(Engelman et al., 1995; Quillent et al., 1996; Kessl et al., 2016; Elliott et al., 2020). HIV-1 IN 
interacts with the vRNA in a specific way, by binding preferentially to structural elements, like 
the TAR stem-loop (Kessl et al., 2016). In vitro, IN effectively shows vRNA bridging activity 

exclusively in its tetrameric form and not in the monomeric or dimeric ones, indicating that IN 
multimerization is necessary for this to happen. Different works highlighted how the amino 
acids involved in this binding are all located in the CTD and are specifically K246, K266, R269, 
and K273 (Johnson et al., 2013; Kessl et al., 2016; Elliott et al., 2020). Disruption of this 
interaction leads to the formation of eccentric particles, where the vRNA is mislocated outside 
of the capsid core (Kessl 2016, Elliot 2020, Jurado 2013). These particles are non-infectious 
since the vRNA, as well as viral proteins, not being protected from the capsid core, are quickly 
eliminated once in the target cell, causing defects in reverse transcription and all the 
subsequent steps (Fontana et al., 2015; Madison et al., 2017). 
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It is this non-catalytic activity of IN that led to further diversification of class II mutations 
(Engelman and Kvaratskhelia, 2022). The disruption of the IN-vRNA interaction, indeed, can 
occur via three mechanisms, which also define the three subclasses. Class IIa mutations are 
characterized by a specific and direct disruption of IN-vRNA binding, without affecting other 
functional aspects of the protein or protein multimerization. Substitutions of residues K264, 
K266, R269 or K273 belong to this subclass. Class IIb mutations are those that disrupt the 
multimerization of IN and, consequently, prevent binding to the vRNA, while affecting also 
other IN functions. Class IIc mutants are characterized by a poor efficiency in viral release 
and processing, resulting in an amount of IN that is insufficient to correctly incorporate vRNA 
into virion cores. Overall, these observations suggest that the defaults in early steps of the 
viral cycle can be collectively caused by malfunctions in viral morphogenesis when IN-vRNA 
interaction is impaired. 

However, not all class II mutants have impaired levels of mature viral proteins (Masuda et al., 
1995; Leavitt et al., 1996; Wu et al., 1999) and the IN appears to have a more direct role in 
other steps of the viral cycle, like, for example, reverse transcription. Magnetic resonance 
spectroscopy identified the aa in the CTD of IN that interact with the RT (Tekeste et al., 2015). 
This interaction favors reverse transcription by increasing its processivity (Dobard et al., 2007; 
Tekeste et al., 2015; Rocchi et al., 2022). A study showed how the integrase can influence 
the uncoating, by regulating the CypA-CA interaction, helping to maintain the correct stability 
of the core (Briones et al., 2010). IN was suggested to have a role in the nuclear import, by 
finding different NLS signals on the protein, as well as showing its interaction with different 
host proteins involved in the nuclear import of the RTC/PIC (Gallay et al., 1997; Bouyac-
Bertoia et al., 2001; Zaitseva et al., 2009; Jayappa et al., 2011; de Houwer et al., 2014)  

A recent study highlighting the role of IN in regulating the switch from the post-catalytic STC 
to transcriptionally active proviruses, led to the creation of a third class of IN mutations, class 
III mutants (Knyazhanskaya et al., 2019). Knyazhanskaya and colleagues showed that the IN 
double mutant E212A/L213A, which is not able to interact with Ku70 (Anisenko et al., 2017), 

causes an important delay in the repair of the strand transfer hemi-integrant (Knyazhanskaya 
et al., 2019). Contrary to class II mutants, these mutations retain partial infectivity. A similar 
phenotype was observed also with the quadruple mutant K258R/K264R/K266R/K274R, 
which at early times post-integration, showed to have a transcription defect caused by 
altered levels histone modifications at the provirus LTR (Winans and Goff, 2020). 
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Cellular co-factors binding IN 

Apart from the interaction with LEDGF/p75, described above, the viral IN was able to turn 
other host factors into viral co-factor and, by interacting directly with them, ensure a 
functional integration. 

Among them there is SMARCB1, initially known as IN interactor 1 (INI1) (Kalpana et al., 1994), 
a member of the chromatin remodeling complex SWI/SNF. This host factor is incorporated 
into the nascent viral particle, and it has been shown to positively affect several steps of the 
viral cycle, as reverse transcription, integration, transcription, and particle assembly/release 
(Yung et al., 2001; Ariumi et al., 2006; Sorin et al., 2006; Lesbats et al., 2011; Mathew et al., 
2013; la Porte et al., 2016). The mechanism through which this factor acts on reverse 
transcription, in particular, was elucidated. INI1 mediates the incorporation of Sin3a-
associated protein 18 kDa (SAP18) and histone deacetylase 1 (HDAC1) into viral particles, 
which directly favors reverse transcription. Viral particles carrying inactive HDAC1 (H141A), 
in fact, were not able to synthetize vDNA (Sorin et al., 2009). INI1 was shown to bind the IN 
tetramer complexed with LEDGF/p75, stabilizing it and preventing non-specific interactions 
and auto integration, until capture of the target DNA, which displaces INI1 (Maillot et al., 2013) 
(Figure 12). Furthermore, the IN-INI1 interaction influences integration activity that is 
enhanced thanks to the presence of the SWI/SNF complex (Lesbats et al., 2011). 

 

Figure 12. Structure and function of the IN/LEDGF/INI1IBD/vDNA complex. A Two dimers of IN (light and 
dark, with each monomer shown in blue and gold) are complexed with the vDNA (yellow) and LEDGF/p75 (LEDGF, 
grey) in a conformation that is compatible with 3' processing. B When INI1IBD (positions 174-289, in purple) is 
added to the complex the conformation is not compatible with 3' processing anymore, but it is compatible with 
chromatin targeting. C The removal of INI1IBD and the capture of the tDNA lead to the formation of the strand 
transfer complex. Image from Maillot et al., 2013. 

As mentioned above, BAF and HMGA1 were identified for being part of the PIC complex. 
BAF (barrier to autointegration factor) is a host protein stimulating the integration in vitro 
(Chen and Engelman, 1998; Lin and Engelman, 2003). The suggested mechanism is that by 
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binding the vDNA it alters its structure, facilitating integration (Skoko et al., 2009). HMGA1 
(high mobility group chromosomal protein A1) is a DNA-binding protein regulating chromatin 
structure and transcription. Similarly to BAF, it stimulates integration in vitro, by binding to 
the vDNA and making it more compact and prone to strand transfer (Farnet and Bushman, 
1997). 

 

Integrase as a target of antiviral therapy 

The essential role of IN in HIV-1 life cycle and the lack of homologous protein in human cells, 
make this protein the ideal target for anti-viral therapy. However, the scientific community 
was initially skeptical about the efficacy that drugs against the IN could have. This came from 
the observation that although the stoichiometry in the viral particle of IN, PR and RT is the 
same (around 120), while PR and RT are able to catalyze more than 12,000 chemical reactions 
each, IN is catalyzing only four chemical reactions, posing the problem of how a molecule 

can efficiently block these reactions with such an excess of enzyme present (Engelman, 
2019). What was not yet known at that time, however, was the fact that while 3’ processing 
is happening right after, if not at the same time, of reverse transcription (Miller et al., 1997; 
Munir et al., 2013), the strand transfer happens only hours or even days later (Cardozo et al., 
2017), creating a large window of time for a molecule to block this step. 

A class of inhibitors that target specifically this “weak point” of the viral cycle, blocking strand 
transfer, are the IN strand transfer inhibitors (INSTIs). INSTIs are inhibitors acting specifically 
on the catalytical site of IN and have the same effects as class I IN mutations, with the only 
differences that they inhibit specifically the strand transfer step (Hazuda et al., 2000), while 
class I mutations block both catalytic steps. There are currently five molecules approved by 
United States Food and Drug Administration (FDA): Raltegravir and Elvitegravir, from first 
generation INSTIs, and second generations INSTIs Dolutegravir, Bictegravir, and 
Cabotegravir. These molecules are able to target IN only when it is complexed with the vDNA, 
competing with it to bind the active site (Hare et al., 2010), and they result to be particularly 
efficient thanks to their unusually long binding half-life. All INSTIs share the same structure 
and mechanism. In their core, three electronegative atoms (normally oxygen atoms) chelate 
the metal cations from the IN catalytic triad (Grobler et al., 2002; Hare et al., 2010), while a 
halogenated benzene ring, connected to the core via a flexible linker, interacts with the 
reactive end of the vDNA displacing it from the IN active site (Hare et al., 2010). 

The appearance of several resistance mutations (Y143C, G140S/Q148H, N155H) (Cooper et 
al., 2008) after the use of first-generation INSTIs led to the development of the second-
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generation ones. These molecules are also composed of two ligands with the same 
properties as the first generations drugs but improved on some aspects. First, the flexible 
linker is longer allowing the halogenated benzene ring to have a stronger interaction with the 
vDNA. Second, the core was enlarged generating more surface contacts with IN active site. 
In general, they are more efficient in binding to the intasome and occupying the catalytic site 
(Hare et al., 2011; DeAnda et al., 2013; Zhao et al., 2016, 2017), as well as causing fewer and 
less efficient cases of resistance compared to the first-generation compounds (Quashie et 
al., 2012), although it still occurs (Anstett et al., 2017).  

Another class of IN inhibitors has been developed more recently, the allosteric IN inhibitors 
(ALLINIs). Subclasses of ALLINIs, based on their mechanism of action, are LEDGF-interaction 
site inhibitors (LEDGINs) (Christ et al., 2010), noncatalytic site IN inhibitors (NCINIs) 
(Balakrishnan et al., 2013), IN-LEDGF allosteric inhibitors (IN-LAI) (le Rouzic et al., 2013), and 
multimeric IN inhibitors (MINI) (Sharma et al., 2014). ALLINI molecules have a backbone made 
by pyridine-like structure harboring a carboxylic and t-butoxy group connected by a carbon 

arm. ALLINIs bind to the dimerization surface, far from the catalytic active site, leading to 
formation of IN aggregates (Gupta et al., 2014; Sharma et al., 2014; Feng et al., 2016), which 
are unable to assemble with vDNA (Kessl et al., 2012), consequently blocking the integration 
step and HIV-1 infection (Christ et al., 2010; Tsiang et al., 2012; Balakrishnan et al., 2013; 
Desimmie et al., 2013; Jurado et al., 2013; le Rouzic et al., 2013). 

However, while ALLINI compounds do have an effect on the choice of the integration site, 
suggesting that they indeed disrupt IN-LEDGF/p75 binding (Sharma et al., 2014; Feng et al., 
2016; Vranckx et al., 2016), it does not seem as the main mechanism of action to block HIV-
1 infection, since the main effect of this class of compounds can be observed in the viral 
particles formation and maturation (Kessl et al., 2012; Desimmie et al., 2013; Jurado et al., 
2013; le Rouzic et al., 2013; Sharma et al., 2014; Fontana et al., 2015), similarly to IN class II 
mutations (Engelman et al., 1995; Desimmie et al., 2013; Jurado et al., 2013; Gupta et al., 
2016). In fact, in the presence of ALLINIs, eccentric viral particles are formed with the viral 
genetic material localized outside the capsid core (Engelman et al., 1995; Balakrishnan et al., 
2013; Johnson et al., 2013; Jurado et al., 2013; Fontana et al., 2015), causing its rapid 
degradation once the particle enters into a cell (Madison et al., 2017). While being powerful 
compounds, ALLINIs seem to have a lower genetic barrier to resistance compared to INSTIs 
(Christ et al., 2010, 2012; Tsiang et al., 2012; Fenwick et al., 2014; Sharma et al., 2014). 

Nevertheless, the therapeutic approach of combining INSTIs and ALLINIs remain a very 
powerful tool to counteract HIV-1 infection and both their clinical development is still relevant. 
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HIV-1 ORIGIN AND EVOLUTION 

 

Early steps of the AIDS pandemic 

 

Figure 13. Early spread dynamic of HIV-1 group M. The reconstruction of the first decades of HIV-1 group M 
spread in the Democratic Republic of Congo (in grey) is shown in the figure. The virus appeared in Kinshasa, to 
then spread via waterways and railways in the surrounding towns. Image from Faria et al., 2014. 

The first reports of AIDS and the identification of HIV-1 and 2 date back to the 80’s in the 
United States (Gottlieb et al., 1981; Barré-Sinoussi et al., 1983; Gallo et al., 1983). Early after, 
it was found that the disease was well established in the heterosexual population of 
Cameroon (van de Perre et al., 1984), suggesting that the disease had a more complex and 
important pandemic history. Indeed, the beginning of the AIDS pandemic dates back way 
before its discovery and started in the West-Africa region, as it is supported by the fact that 
the genetic diversity in the Democratic Republic of Congo (DRC) (Vidal et al., 2000; Kalish et 
al., 2004), known back then as Zaire, in the Republic of Congo (Bikandou et al., 2004; Niama 
et al., 2006), in Cameroon and in Gabon (Pandrea et al., 2002; Carr et al., 2010), is more 
complex than in the rest of the world (Vidal et al., 2000; Kalish et al., 2004). If we started to 
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gain more information about the epidemiology of the pandemic in the late 1980s, very little is 
known about the initial phase. The oldest HIV-1 sequences, in fact, were found in Kinshasa 
(the capital of DRC) and are dated 1959-1960 (Zhu et al., 1998; Worobey et al., 2008), while 
the tMRCA (time to the most common ancestor) of group M is estimated to be in the first 
decades of the 1900s (Korber et al., 2000; Worobey et al., 2008), meaning that the virus 
spread for 50-70 years before it was discovered. Further studies confirmed that Kinshasa 
could be the place where the M pandemic originated (Vangroenweghe, 2001; Faria et al., 
2014), a thesis also supported by the fact that Kinshasa is the place where we find the most 
HIV-1 genetic diversity to date (Vidal et al., 2000; Kalish et al., 2004) (Figure 13).  

From Kinshasa the virus had spread initially to the closest towns (Bikandou et al., 2004; 
Niama et al., 2006; Faria et al., 2014), and then to the other towns located in central Africa 
thanks to the transportation system present at that time (Quinn, 1994; Gray et al., 2009; Faria 
et al., 2014) (Figure 13). These movements are thought to have taken place between 1920-
1950 and represent the first wave of exponential growth of group M (Faria et al., 2014). After 
1960, group M entered a second faster phase of exponential growth (Faria et al., 2014) and 
it is during this period that the divergence between groups M and O started to emerge. In 
fact, groups M and O share the same tMRCA (around 1920) (Korber et al., 2000; Lemey et 
al., 2004; Worobey et al., 2008) and during the first exponential wave of group M, group O 
showed to have a similar rate of growth. Later, group O did not go through the same increase 
in growth rate as group M, remaining confined to the West-Africa region (Peeters et al., 1997). 
This is interesting because if a difference in the early phases after human transmission could 
be explained by the genetic differences of the two viral populations, the gap that occurred 
only some decades later could not be explained on a genetic level, since it would be highly 
improbable that a positive mutation could have occurred at the same time in all the M strains, 
which were already spread in several countries. It is most likely, instead, that the second 
wave was caused by ambient and social factors, as, for example, the passage from a more 
restricted patient group composed by high-risk subjects to a more wide-spread and 

heterogeneous one. New analysis of group O epidemiology showed how it also went through 
a second exponential phase, but only later (1970-1990) compared to group M and on a 
smaller scale in terms of absolute numbers (Leoz et al., 2015). Finally, after the two 
exponential phases, group M encountered a stabilization of the pandemic in the 1980-1990 
that is still present today (Nzilambi et al., 1988; Mulanga-Kabeya et al., 1998; Faria et al., 
2014). 
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The cross-species transmissions that led to HIV 

Several non-human primate species are infected with SIV, each of them being species-
specific (Aghokeng et al., 2010). All of the known transmissions from apes to humans, which 
have originated HIV types and groups, happened in the same geographical area, the Congo 
River basin (Peeters et al., 1997; Ayouba et al., 2000; Vallari et al., 2011), and are believed to 
have occurred because of hunting of primates and/or capture of apes as pets (Hahn et al., 
2000). 

 

Figure 14. HIV-1 origins. The phylogenetic relationship for a region of the pol gene among SIVcpzPtt, SIVcpzPts, 
SIVgor and the four HIV-1 groups (M, N, O, P) are shown. SIVcpz sequences are shown in black, SIVgor in green, 
HIV-1 group M in red, group N in light blue, group P in brown, group O in blue. White circles represent the possible 
chimpanzee-to-gorilla transmissions. Black circles represent the possible chimpanzee/gorilla-to-human 
transmissions. Image from Sharp and Hahn, 2011. 

It is in the south-east region of Cameroon, that chimpanzee populations, in particular of the 
sub-species Pan troglodytes troglodytes, were found to be infected with the simian 
immunodeficiency virus (SIV) most closely related to group M (Keele et al., 2006; Heuverswyn 
et al., 2007) (Figure 14). This local transmission probably arrived in Kinshasa via ferry following 
the Sangha River (Sharp and Hahn, 2011), in fact, fluvial connections during that time were 
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quite frequent because of the exploitation of rubber and ivory during the German colonization 
of Cameroon (de Sousa et al., 2012). SIVcpzPtt was transmitted to humans in another 
independent cross-species event originating group N (Gao et al., 1999; Keele et al., 2006) 
(Figure 14). Group N is more recent than group M, with its tMRCA estimated to be around 
1963 (Wertheim and Worobey, 2009). While group M was already pandemic, as previously 
discussed, group N was identified in 1998 (Simon et al., 1998) and it has been limited to less 
than 20 cases, all of them found in Cameroon (Ayouba et al., 2000; Roques et al., 2004). 
SIVcpzPtt itself is the result of an inter-species transmission and a recombination event 

between the ancestors of at least two SIV lineages: the SIV infecting the red capped 
mangabey (SIVrcm) and the SIV infecting Cercopithecus species, including greater spot-
nosed (C. nictitans), mustached (C. cephus), and mona (C. mona) monkeys 
(SIVgsn/mus/mon) (Bailes, 2003). In particular, the 5’ half of the genome (5’ LTR, gag, pol) is 

more closely related to SIVrcm, while the 3’ part of the genome (vpu, tat, rev, env, nef, 3'LTR) 
is phylogenetically closer to SIVgsn/mus/mon. A more recent work, however, highlighted how 
the SIVcpzPtt genome origin might be more complicated than this (Bell and Bedford, 2017). 
Bell and colleagues found phylogenetic evidence to support that the SIVcpzPtt genome 

portion including the IN gene, vif, and vpr, is equally related to SIVrcm and SIVmnd-2, which 
infects mandrils. Also, they found that the 5' portion of SIVcpzPtt genome, including the 
5'LTR, gag, the PR and RT genes, and the 3'LTR, do not correlate with any SIV genome 

known (Bell and Bedford, 2017) (Figure 15). It is possible that further sampling of lentiviruses 
lineages could resolve the identity of this genome portions ancestor, while it is not to exclude 
that SIVcpzPtt has sufficiently diverged from this putative ancestor and therefore it is not 
identifiable.  

 

Figure 15. SIVcpzPtt mosaic genome origins. A schematic representation of the SIVcpzPtt genome is shown, 
with breakpoints used for the phylogenetic analysis indicated by dashed lines and the genome position. Segments 
from 1 to 4, plus the 3'LTR, do not correlate with any SIV genome known to date. Segments 5 to 7 equally correlate 
with SIVrcm and SIVmnd-2. Segments 8 to 12 correlate with SIVgsn/mus/mon. Image from Bell and Bredford, 
2017. 

SIVcpzPtt cross-species events are not limited to the two that originated HIV-1 groups M and 
N in human, but they also include other species. The SIV infecting gorillas (Gorilla gorilla 

gorilla), SIVgor, in fact, originated from a single zoonotic transmission from SIVcpzPtt, 
estimated to have happened 100-200 years ago (Takehisa et al., 2009; D’Arc et al., 2015) 
(Figure 14). SIVgor is much less prevalent in gorillas than SIVcpz in chimpanzees (Neel et al., 
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2010; D’Arc et al., 2015), although it could be that clusters of SIVgor are present in parts of 
Africa that have not been evaluated yet. Chimpanzees are known to hunt other small 
monkeys, and this can easily explain how they came across SIV in the first place, on the other 
hand, gorillas are herbivores, and they tend to avoid physical encounters with other primates 
(Nishihara, 1995; Stanford and Nkurunungi, 2003), making it more difficult to understand how 
the cross-species transmission could have occurred. It is true, though, that the chimpanzee 
and gorilla populations overlap in some areas, and it is in these locations that at least one 
transmission event must have occurred (D’arc et al., 2015). Two independent zoonotic 
transmission from SIVgor to human originated groups O and P (Keele et al., 2006; 
Heuverswyn et al., 2007; Plantier et al., 2009) (Figure 14). Group O is the second most 
widespread group with around 100,000 thousand cases, mostly concentrated in Cameroon 
where it is endemic (Mourez et al., 2013), with some sporadic cases in other African countries 
(Peeters et al., 1997), the United States (Rayfield et al., 1996), and Europe (Charneau et al., 
1994; Loussert-Ajaka et al., 1995). Group P was discovered in 2009 in a woman from 
Cameroon living in France (Plantier et al., 2009) and there was only another case reported so 
far of another person from Cameroon (Vallari et al., 2011). It is difficult to infer its tMRCA since 
only these two sequences are available. 

SIVmmb infecting sooty mangabey originated HIV-2 (Gao et al., 1992; Chen et al., 1997) that 
remained confined to West-Africa, and it is recently getting “replaced” by HIV-1 (van der Loeff 
et al., 2006; Hamel et al., 2007). Eight lineages of HIV-2 exist, each of them originated from 
an independent zoonotic transmission from SIVsmm to human, called groups A-H (Sharp and 
Hahn, 2011).  Among the eight cross-transmission events, however, 6 of them resulted in a 
single observed infection (Gao et al., 1992; Chen et al., 1997), with just groups A and D able 
to established sustained transmission chains and presently circulating (Pieniazek et al., 1999; 
Damond et al., 2001; Ishikawa et al., 2001; Visseaux et al., 2016). The natural history of HIV-
2 differs from that of HIV-1 in both disease progression and transmission. In fact, most of the 
people infected with HIV-2 do not develop AIDS (Rowland-Jones and Whittle, 2007; van der 

Loeff et al., 2010). Also, HIV-2 is less infectious than HIV-1, both in horizontal and vertical 
transmissions, and that can be explained by its lower viral load (Popper et al., 2000; Berry et 
al., 2002).  

It is interesting to note that among the four subspecies of chimpanzee existing, only two of 
them appear to be infected with SIV. The other subspecies infected is the eastern 
chimpanzee (Pan troglodytes schweinfurthii). This could be the outcome of two possible 
scenarios: either the virus infected the common ancestor of the central-eastern clade, then 
therefore inherited by the two subspecies, either their infection occurred after the subspecies 
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division and it is comparatively recent (Santiago et al., 2002; Switzer et al., 2005; Keele et al., 
2006; Heuverswyn et al., 2007; Li et al., 2012; Schmidt et al., 2019; Pawar et al., 2022). 
SIVcpzPts is located in central Africa with a prevalence similar to the one of SIVcpzPtt (Keele 
et al., 2006, 2009; Rudicell et al., 2010). No transmission to human of this virus is known to 
have happened and several hypotheses could explain this. SIVcpzPtt and SIVcpzPts are quite 

divergent with a genetic diversity of 30% and 50% respectively in their Gag-Pol and Env 
genes (vanden Haesevelde et al., 1996). Also, there could be a different frequency in ape-
human encounters of this sub-species compared to Pan troglodytes troglodytes. Finally, of 
course, some zoonotic transmission to human might have happened, but led to a dead-end 
infection and/or could have not been detected yet. It is also not to exclude that new zoonotic 
transmission of SIVcpzPts, as well as the other primate lentiviruses, could happen again in 

the future.  

 

Adaptation to overcome the cross-species barrier 

A hallmark of adaption from apes to humans is found at position 30 of the MA protein. While 
in HIV-1 this position is occupied by a conserved basic amino acid (R or K) within all HIV-1 
groups, excepts group P, for which only one of the two sequences available showed to have 
this mutation (Wain et al., 2007; Plantier et al., 2009; Vallari et al., 2011), in SIVcpzPtt and 
SIVgor, it was originally occupied by a M (Wain et al., 2007; Takehisa et al., 2009). This 
suggest that this mutation might have played a key role in the adaption to the new host. This 
observation was further confirmed with two experiments. In one, a chimpanzee was infected 
with HIV-1 and, after propagation in vivo, a reversion of this position to a methionine was 
found (Wain et al., 2007). In another experiment they observed how a virus with M30 is 

replicating more effectively in CD4+ T chimpanzee lymphocytes than of a virus carrying the 

M30R mutation (Wain et al., 2007). Similarly, a SIVcpzPtt isolate carrying the M30R mutation 
was shown to significantly better replicate in human CD4+ T cells than the wt (M30) (Sato et 
al., 2018). However, when tested in a different experimental setting as a humanized mice, the 
same SIVcpzPtt mutant showed the same replication kinetics as the wt (Sato et al., 2018).  
Although the exact role of this amino acid is yet to be understood, it is clear that this position 
was under strong selective pressure once transmitted to the new host. 

The adaptation steps to which a protein is submitted are reflected in the genome and 
correlates with a change in the rate of evolution. The rate of evolution of a given protein is 
not necessarily constant over the time, resulting in what are called rate shifts. In viral proteins, 
rate shifts are frequently associated to infection of new hosts, by cross-species transmission. 
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In these occasions, the ability of a protein to adapt to a new environment is particularly 
important. In a recent work, the analyses of rate shift along the entire genome of all the HIV 
and SIV sequences available, highlighted that the genes coding for the accessory proteins 
have a higher rate shift than the other genomic regions (Gelbart and Stern, 2020), suggesting 
a significant role of these proteins in species jump. They also highlighted how group M and 
group O went through independent models of human adaptation. In particular, they observed 
how group O had about twice the rate shift of group M (Gelbart and Stern, 2020). This could 
be partially explained by the fact that group O originated from gorillas, which are 
phylogenetically more distant from humans than are chimpanzees, likely requiring more 
extensive adaptation to cross the new species barrier (Hasegawa et al., 1985; Ruvolo, 1997). 
To date, the adaptation path of several viral proteins was traced back and, indeed, most of 
the proteins which went through major changes are the accessory proteins. This is mostly 
because they are the proteins in charge of facing the host restriction factors, which are often 
species-specific. 

 

Figure 16. Lentiviral restriction factors. A APOBEC3 proteins are encapsidated into nascent HIV-1 viral particle. 
Once reverse transcription takes place in the target cell, APOBEC proteins catalyze the deamination of cytosines 
to uracils in vDNA, causing hypermutations in the vDNA. The viral protein Vif counteracts APOBEC3 restriction in 
the producer cell by recruiting an E3 ubiquitin (Ub) ligase complex to polyubiquitinate APOBEC3 proteins leading 
to their degradation by the 26S proteasome. B Tetherin block viral production by tethering budding virions to the 
cell surface. HIV-1 Vpu can either sequestering tetherin in internal compartments (and also shown in the figure 
HIV-2 Env) or recruit an E3 ubiquitin ligase complex to ubiquitinate and target tetherin for degradation in 
lysosomes (Vpu only). C SAMHD1 blocks reverse transcription by depletion of dNTPs. HIV-2/SIV Vpx overcomes 
the SAMHD1 restriction by recruiting an E3 ubiquitin (Ub) ligase complex to ubiquitinate and target SAMHD1 for 
degradation by the 26S proteasome. Image from Harris et al., 2012. 

Noteworthy, the viral response to the restriction factor tetherin is a distinctive mark of cross-
species adaptation. Tetherin is anchored to the cell membrane and is formed by a 

cytoplasmic N-terminal region, a trans-membrane domain, a coiled-coiled extra cellular 
domain, and a C-terminal glycosylphosphatidylinositol (GPI) anchor. It is normally not highly 
expressed in primary CD4+ T cells, but its expression is induced by type I interferons (Neil et 
al., 2007), which are triggered by HIV-1 infection (Soper et al., 2018). This host protein is able 
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to block the release of new viral particles from the infected cell membrane by "tethering" the 
viral membrane to the cellular one (Figure 16). This action is countered in SIVcpzPtt and 
SIVgor by the viral protein Nef that targets the cytoplasmic domain of tetherin, inducing its 
degradation (Jia et al., 2009; Zhang et al., 2009). After zoonotic transmission from SIVcpzPtt 

to SIVgor, Nef adaptation was most likely smooth, since chimpanzee and gorilla's tetherin 
differ for only two amino acids (Sauter et al., 2009). When SIVcpzPtt passed to humans, 
though, it found a more complicated situation. In fact, as viruses evolve in order to counteract 
restriction factors, the latter are rapidly changing to fight back the virus. Genes encoding for 
restriction factors, especially, have a fast-paced evolution history (Sawyer et al., 2004, 2005; 
McNatt et al., 2009; Lim et al., 2010), constituting the barrier that need to be overcome by 
zoonotic viral transmissions. An example of this adaptation in response to the pression 
exerted by viral protein is the human tetherin, which has a five-codon deletion in its 
cytoplasmic domain (Sauter et al., 2009). This means that when SIVcpzPtt and SIVgor passed 

to humans their Nef protein, it was not able to counteract the human tetherin. As mentioned 
above, SIVcpzPtt originated from SIVrcm and SIVgsn/mus/mon and it most likely inherited 
its anti-tetherin activity from both of them, in particular through SIVrcm Nef, and 
SIVgsn/mus/mon Vpu (Schindler et al., 2006). However, only Nef activity was selected and 
evolved to be more efficient against chimpanzee tetherin over Vpu, probably for sequence 
similarities between the cytoplasmatic domains of the monkeys tetherin (Sauter et al., 2010). 
Therefore, once in humans, one possibility of adaptation was switching back to using Vpu as 
SIVcpzPtt monkey ancestors (Sauter et al., 2009; Schmökel et al., 2011). This is, indeed, what 
happened in HIV-1 groups M and N, where Vpu is in charge of this counteraction (Neil et al., 
2008; van Damme et al., 2008). HIV-1 M and N Vpu targets the tetherin membrane-spanning 

domain (Iwabu et al., 2009; Rong et al., 2009) and induces its proteasomal and/or lysosomal 
degradation (Douglas et al., 2009; Goffinet et al., 2009; Mangeat et al., 2009) (Figure 16). 
However, while group M Vpu was able to gain a potent anti-tetherin activity (Sauter et al., 
2009), group N Vpu not only was not as highly effective (Sauter et al., 2009; Kirchhoff, 2010), 
but it also lost its ability to down-modulate CD4. In fact, the other activity of Vpu, is to degrade 
CD4 receptors in the infected cell in order to avoid the internalization of excreted viruses, and 
it is conducted equally in SIVcpz, SIVgor and all the HIV-1 groups (Sauter et al., 2009). Group 
O Nef protein is able to down-modulate tetherin at the cell-surface, but with just a mild effect 
on virus release (Sauter et al., 2009; Kluge et al., 2014; Bego et al., 2016), nevertheless this 
group is still able to successfully infect the human host. Yet, another pathway to counteract 
tetherin was taken by HIV-2 that, by inheriting the anti-tetherin activity from SIVmmb that was 
carried by Nef, found itself helpless against human tetherin. HIV-2 group A then evolved 
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envelope glycoprotein gp41 to exert this activity (le Tortorec and Neil, 2009) (Figure 16), while 
in the other HIV-2 groups no anti-tetherin functionality is observed. Overall, the loss of the 
cytoplasmic domain of human tetherin seem to have represented an important barrier to 
overstep for non-human primate lentiviruses, that only group M was able to successfully 
surmount, raising the speculations that this could be one of the reasons behind its global 
success compared to the other groups (Gupta and Towers, 2009; Sauter et al., 2009; 
Kirchhoff, 2010; Bego et al., 2016; Sato et al., 2018). 

Adaptation is not always a straightforward process and some evolutionary advantages, as 
gaining a new functionality, might come at a cost. This is what happened with the ability to 
counteract the restriction factors APOBEC3G (A3G) in SIVcpzPtt and HIV-1. APOBEC3 

proteins are a family of cytosine deaminases that catalyze the deamination of cytosine to 
uracil in the ssDNA substrate (Harris and Dudley, 2015; McDaniel et al., 2020). There are 7 
APOBEC3 proteins encoded by the human genome (A3A-D, A3F-H), and 4 of them (A3D, 
A3F, A3G, A3H) have been shown to restrict HIV-1 infection. A3G, in particular, is the one 
with the strongest restriction phenotype against HIV-1 (Meissner et al., 2022). A3G blocks 
viral infection by being packaged into the assembling virion (Mariani et al., 2003; Stopak et 
al., 2003) and, once a new viral cycle starts, it inhibits vDNA synthesis during reverse 
transcription (Holmes et al., 2007; Miyagi et al., 2007; Bishop et al., 2008), and catalyzes 
deamination of cytidine to uridine during negative-strand transfer DNA synthesis (Conticello 
et al., 2005) (Figure 16). The hypermutations (G-to-A) accumulation lead to either degradation 
of the reverse transcription product, by cellular uracil DNA glycosylase (Okada and Iwatani, 
2016), or, after integration, to an inactive provirus (Kirchhoff, 2010). SIVcpzPtt and HIV-1 Vif 
are able to efficiently counteract A3G, by interacting with it and recruiting a ubiquitin ligase 
complex to start the proteasomal degradation of A3G, therefore preventing its encapsidation 
into the assembling virions (Mangeat et al., 2003; Bishop et al., 2008) (Figure 16). SIVcpzPtt 

Vif resulted from a recombination event, which made it more efficient against its species-
specific A3G, but also to human A3G, conferring to the virus an advantage for cross-species 
transmission (Etienne et al., 2013; Sato et al., 2018). However, the same recombination event 
led to the concomitant loss of SIVrcm vpx gene, making SIVcpz, and consequently HIV-1, 
not able to antagonize the SAM and HD domain-containing protein 1 (SAMHD1) (Etienne et 
al., 2013) (Figure 17). 

SAMHD1 is an antiviral factor that limits viral reverse transcription by decreasing the 
intracellular concentration of dNTPs (Lahouassa et al., 2012) (Figure 16). HIV-2 and SIVsmm 
Vpx induces SAMHD1 proteasomal degradation by tying it to the ubiquitin-proteasome 
system (Hrecka et al., 2011; Laguette et al., 2011). The SIVcpzPtt ancestor, SIVrcm, as 
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mentioned above, also encodes Vpx and it is able to counteract SAMHD1. SIVgsn/mus/mon, 
instead, do not possess a vpx gene, but they are still able to escape to SAMHD1 restriction 
through their Vpr protein (Lim et al., 2012). Vpx originated from a gene duplication of Vpr in a 
lentiviral precursor virus, thus, the two proteins have similar sequences and share similar, but 
not identical, functions (Lim et al., 2012). Noteworthy, HIV-1 Vpr is able to both facilitate 
infection in macrophages (Balliet et al., 1994; Connor et al., 1995) and induces cell-cycle 
arrest. In HIV-2 and SIVsmm these two functions are split, with Vpr inducing the cell-cycle 
arrest in G2 phase, and Vpx enhancing the infection in macrophages (Yu et al., 1991; Goujon 
et al., 2006, 2008). 

 

Figure 17. SIVcpz Vif resulted from recombination. The same genome region is shown for SIVrcm (on top) and 
SIVcpz (below). The 3 reading frames are indicated on the left and proteins ORFs are represented as large arrow 
(protein length is indicated below each protein name). In green are represented protein portions which were 
present in SIVrcm and inherited by SIVcpz; in white and green stripes are represented sequences unique to 
SIVrcm; in light purple are represented new amino acids acquired by SIVcpz; in dark purple are represented 
sequences that were not expressed in SIVrcm but that are expressed in SIVcpz. The dashed lines indicate the 
breakpoint of the recombination event. Asterisks indicate stop codons. Image from Etienne et al., 2013. 

The fact that SIVcpzPtt is not able to counteract SAMHD1, but can more efficiently counteract 
A3G restriction, suggests that the selective pressure to counteract the latter was higher than 
the one to counteract SAMHD1 and conferred to the virus an advantage in the adaptation to 
the new host (chimpanzee). Furthermore, SIVcpzPtt Vif efficiently antagonizes human A3G, 

opening to tempting speculations such as that the adaptation SIV went through in 
chimpanzee, facilitated somehow the cross-species jump that started the pandemic (Etienne 
et al., 2013). 
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HIV-1 genetic diversity 

HIV has a high genetic variability and is evolving around one million times faster than 
mammalian DNA (Lemey et al., 2006). This high genetic diversity is due in part to its 
phylogenetic origins and in part to its high mutation rate caused by the lack of a proof-reading 
mechanism of the viral RT and recombination happening during reverse transcription 
(Roberts et al., 1988). These aspects, when combined to the high rate of replication of the 
virus (Ho DD et al., 1995), are contributing to increase the genetic diversity of the HIV-1 
population both intra- and inter- patient (Korber et al., 2001), constituting one of the main 
obstacles for virus eradication. 

 

Figure 18. Global distribution of HIV-1 group M subtypes and recombinant forms. The size of the pie chart 
on every region represents the relevance of the percentage of people living with HIV over the total population. A 
detail of the Central Africa region distribution is shown. Global distribution, with percentage values, is shown. 
Image from Hemelaar, 2012. 

For all these reasons, from the beginning of the pandemic until now, the intra-group genetic 
diversity has severely increased, requiring further classifications. Within group M, 10 
subtypes are recognized: A, B, C, D, F, H, J, K, L (Worobey et al., 2008; Bbosa et al., 2019; 
Yamaguchi et al., 2019). Subtype C is the most widespread, being responsible for around 
half of the world infections and it is prevalent in Africa (Hemelaar et al., 2011) (Figure 18). This 
subtype originated in DRC to then spread, probably via migrant labor, to South Africa 
(Jochelson et al., 1991; Hemelaar et al., 2011; Faria et al., 2014), where it is most prevalent 
today (Figure 18). The different subtypes were shown to have different evolutionary rates 
(Abecasis et al., 2009), and the intra- and inter-subtypes genetic diversity is increasing with 
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time (Rambaut et al., 2001). Overall, the genetic distance within a subtype can be between 
15 and 20%, whereas across subtypes can reach 35% (Hemelaar et al., 2006). 

Group O classifications changed with time. Isolates O were first divided in 3 clades 
(Quiñones-Mateu et al., 1998; Roques et al., 2002), then 5 clusters (Yamaguchi et al., 2002), 
and moreover in two lineages (Tebit et al., 2010). At the moment the accepted classification 
is in two sub-groups: the head, or H strain, and the tail, or T strain (Leoz et al., 2015). The H 
strains is formed by three subclusters, H1, H2 and H3, while the T strain is composed of two 
subclusters, T1 and T2 (Leoz et al., 2015). The H strain is the most dominant clade and 
exhibits the greatest variability (Roques et al., 2002; Leoz et al., 2015). Groups P and N are 
constituted by only few cases and their isolates are all closely related (Roques et al., 2004; 
Vallari et al., 2011). 

As mentioned above, among the causes of the high variability of HIV, the RT plays a key role. 
The enzyme does not have a proof-reading activity, introducing 1 to 3 mutations per genome 
per cycle (Preston et al., 1988; Smyth et al., 2012). Furthermore, during the reverse 
transcription process, two events of strand transfer are necessary for the formation of a 
complete vDNA molecule with a duplicated complete LTR (van Wamel and Berkhout, 1998). 
Further strand transfer events can occur in internal regions of the genome. These last strand 
transfer events, in particular, when occurring in heterozygous viruses, can amplify genetic 
diversity, by combining several different polymorphisms present in the two copies of genomic 
RNA present in the virion (Hu and Temin, 1990; Chen et al., 2009). 

 

Figure 19. Generation of recombinant viruses. When two genetically distinct strains co-infect the same cell this 
could lead to the formation of heterozygous viral particles, which, when infecting a new cell, will generate 
recombinant viruses during reverse transcription. Adapted from Simon-Loriere and Holmes, 2011. 

Recombination is one of the main reasons for the high genetic variation found in HIV-1 and it 
can involve viruses from different subtypes or, albeit less frequently, groups (Peeters et al., 
1999; Rousseau et al., 2007) co-infecting the same cell (Figure 19). Recombination is so 



 

 
 

65 

extensive in HIV-1 M group that a classification for the recombinant form was also necessary. 
The recombinants between different subtypes are called either circulating recombinant forms 
(CRFs), when found in more than three epidemiologically unrelated individuals and fully 
sequenced, or unique recombinant forms (URFs), when these criteria are not fulfilled 
(Robertson et al., 2000). There are more than 98 circulating CRFs and they can be formed by 
two fragments of two different subtypes (e.g. CRF01_AE, CRF02_AG) or form a more 
complex mosaic of recombination events, as to comprise up to five or six different subtypes 
(e.g. CRF04_cpx). Some of these recombinant forms appeared shortly after the zoonotic 
transmission to human, like the CRF01_AE and the CRF02_AG. With more subtypes 
cocirculating all over the world, recombinant forms are growing at an impressive rate, 
doubling the number of reported CRFs in the last ten years (Bbosa et al., 2019). 

The fast rate at which HIV is evolving, and especially recombination, poses an important 
challenge for epidemiologically-based investigations as well as accurate diagnosis and 
antiretroviral treatments. As already mentioned, recombination happens when a viral particle 
is carrying two vRNA containing divergent sequences, which are created as a consequence 
of superinfections of two or more distinct subtypes and/or groups. In the heterozygous viral 
particles recombination takes place during the synthesis of the minus DNA strand. In this 
step, the nascent DNA switches from one copy to another in a process known as copy 
choice, leading to the formation of a new recombinant proviral DNA and, therefore, genomic 
RNA. What triggers the template switch is still debated. Initially, it was believed that the switch 
occurred when the RT found a damage on the RNA and was therefore forced to change 
template, as explained by the "forced copy choice" model (Coffin, 1979). Then, it was 
proposed that pausing of the RT, caused by the difficult incorporation of a nucleotide for 
different reasons as, for example, the presence of an RNA structure, could promote template 
switching (Wu et al., 1995; Suo and Johnson, 1997). Further studies highlighted how 
recombination breakpoints did not necessarily correlate with RT pausing sites, but with highly 
structured regions of the acceptor RNA template, the one onto which the synthesis is 

transferred (Negroni and Buc, 2000). These models are not mutually exclusive and all of them 
might explain recombination events occurring at different positions of the genome. No matter 
the trigger, template switch is more likely to occur when the two RNA templates share a 
certain degree of sequence identity near the breakpoint (Baird et al., 2006b, 2006a). 
Nevertheless, recombinants involving phylogenetically distant isolates were reported, as, for 
example, recombinants between isolates from group HIV-1 group M and O (de Oliveira et al., 
2017, 2018) indicating that recombination presents a certain degree of tolerance to genetic 
divergence.  
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Recombination has important consequences on viral evolution, since it can combine 
fragments of genomes carrying several mutations previously selected in each isolate, 
creating new potentially advantageous combinations. In the same way, recombinant viruses 
can also result to be non-infectious, because of an incompatibility of the assembled 
fragments and/or the rupture of the coevolution network that was present in each isolate. The 
viral genome encodes for highly conserved residues, which usually are in charge of providing 
features that are essential throughout the whole viral population, and less- or non-conserved 
amino acids. Non-conserved amino acids, however, can be as essential as the conserved 
ones as being part of the coevolution network present in one isolate. The mutations and the 
consequent compensatory mutations carried in one protein or even among different proteins 
cross-talk to each other in order to maintain functionality. This is why, non-conserved amino 
acids become particularly important in the light of recombinant viruses. Their different 
distribution and combinations can lead to the acquisition of new advantageous functionalities 
and/or resistance to therapy (Mansky, 2002), as well as favoring the elimination of deleterious 
mutations and/or damaged DNA (Simon-Loriere and Holmes, 2011). 

Although in theory recombination events could happen along the entire genome of HIV-1, the 
breakpoints frequency distributions in circulating viruses clearly shows that they map 
preferentially in specific hot spots (Fan et al., 2007). This non-random distribution of 
recombination events is caused by limitations of the recombination event per se (as sequence 

similarity or the RNA structure), but also of the consequent selective pressure for specific 
recombinants forms, which are first of all functional and can also be more advantageous for 
the virus, rather than others. One of the reasons behind this selection can be that 
recombination is breaking coevolution networks, formed by the genetic interplay between 
conserved as well as non-conserved residues of the same or different protein, present in the 
genome (Galli et al., 2010; Woo et al., 2014). 
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OBJECTIVES OF THE STUDY 

By exploiting the rupture of the above-mentioned co-evolution network, by building chimeric 
integrases between group M and group O, the laboratory was able to identify a group-specific 
functional motif in the CTD of IN M (N222K240N254K273) (Kanja et al., 2020). The motif is highly 
conserved in group M, as observed when more than seven thousand sequences from this 
group were aligned (Figure 20A). The motif is composed by an alternance of two positively 
charged (K) and two polar amidic amino acids (N) and both were shown to be essential for 
integration, indeed, when either the N or the K are mutated, integration is abolished (Kanja et 
al., 2020) (Figure 20B, C). Further experiments showed how the important features of the two 
amino acids composing the motif were, for the K, their positive charge, and for the N, their 
amidic side chains. Indeed, by replacing them with amino acids with similar characteristics 
(K replaced by R; N replaced by Q), integration was not affected (Kanja et al., 2020) (Figure 
20D). For this reason, the motif was renamed in the article manuscript on the main project of 
my thesis work, by myself and co-authors, the C-terminal lysins amidic (CLA) motif. 

 

Figure 20. The CLA motif is highly conserved and essential for integration in group M. A Conservation logo 
obtained with WebLogo of positions 222, 240, 254, 273 in group M. B Integration levels for the N mutants (LKLK 
and TKTK) of the motif relative to the wt (NKNK). C Integration levels for the K mutant (NQNQ). D Integration levels 
for the conservative mutant of the K (NRNR), of the N (QKQK) and of the double mutants (QRQR). Panels A-C 
adaptated from Kanja et al., 2020. Panel D adapted from Kanja, 2017 (doctoral thesis).  

Despite its conservation in vivo, however, the motif showed to have important levels of 

genetic flexibility. Indeed, it was not only possible to retain functionality when similar amino 
acids replaced the original ones (QRQR, Figure 20), but functionality was also retained to wt 
levels when 2 or more lysines were present in any of the four positions composing the motif, 
with the remaining ones being occupied by amidic amino acids (N, Q) (Kanja et al., 2020) 
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(Figure 21A). This feature is probably due to the fact that the four amino acids composing the 
CLA motif, form a positively charged surface, conserved in lentivirus (Kanja et al., 2020) 
(Figure 22). This finding, together with the genetic flexibility showed by the motif, led Kanja 
and colleagues to hypothesize that the possible function of the motif could be to interact with 
a negatively charged partner, most likely with a repetitive negative charge, since swapping 
the positive charges inside the motif did not affect the phenotype in most of the cases. 

Out of all the combination with 2 K tested, only two showed to have a default in the integration 
step, with the most severe phenotype being at 25% of integration levels of the wt in the 
presence of the NQKK amino acidic sequence (Figure 21B). Surprisingly, the NQKK sequence 
constitutes the consensus sequence found at the CLA positions in integrase from group O 
(Article Figure 1), raising the question on how could group O have selected such a sequence. 

Answering to this question was one of the objectives of this work (OBJECTIVE 1). 

 

Figure 21. Genetic flexibility of the CLA motif. A Integration levels for the CLA motif mutants carrying 0 (NQNQ), 
1, 2, 3 or 4 lysines (K) among the four positions. B Integration levels for every mutant with 2 K tested. Adapted 
from Kanja et al., 2020. 

As stated above, an essential feature of this motif are the positive charges carried by the 
lysins. Indeed, a motif carrying four K (KKKK) has the same integration levels as the wt (Figure 
21A). Nevertheless, the amidic amino acids present in the motif also showed to play an 
essential role (Figure 20B). Despite the fact that the observed phenotype is the same when 
either the K or the N are mutated, the analyses of different pre-integration steps to understand 
whether the default observed was specific to the integration step or not, gave contrasting 
results. Indeed, while when the K were mutated, the default observed in 3' processing and in 
the 2LTRc levels was coherent with the observed loss of integration efficiency, this was not 
the case when the N were mutated (Table 1). For both mutants, LKLK and TKTK, the 
integration default observed were more severe than what expected, suggesting that the N 
might be involved in further pre-integration steps that were not checked yet. This observation 

constituted one of the starting points of this work (OBJECTIVE 2). 
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To conclude, the main objectives of this thesis work are two: 

1. To understand whether the CLA motif could have an essential role in IN O, where a 
conserved sequence that is barely functional in IN M is present at its CLA positions. 

2. To investigate the role of the N in the CLA motif, which appear to be involved in other 
pre-integration steps not checked yet.  

 

Figure 22. The CLA motif forms a positive charged surface. Structural analysis of IN M CTD showed how the 
first three positions of the CLA motif (the K273 was not resolved as it is located in a too flexible region) form a 
positive charged surface. A, B Side view (A) and top view (B) of the IN CTD. C, D Surface electrostatic potential 
representation of IN CTD. Adapted from Kanja et al., 2020. 
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METHODS 
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Cell lines 

HEK293T and Jurkat cells were obtained from the American Type Culture Collection (ATCC). 
HEK293T were cultured in DMEM while Jurkat were cultured in RPMI. Both mediums were 
completed with 10% fetal bovine serum and 1% PenStrep. HEK293T and Jurkat culture 
conditions were at 37°C in 5% CO2. 

 

Viral strains and sequence alignments 

The primary HIV-1 isolates used in this study were: isolate HXB2 (GenBank accession 
number: K03455.1), isolate A2 (GenBank accession number: AF286237) from group M, 
subtype A2, (named "isolate M" in this study) obtained from the NIH AIDS Research and 
Reference Reagent Program; isolate RBF206 (GenBank accession number: KU168298) and 
isolate BCF120 (GenBank accession number: KU168297) both from group O, kindly provided 
by J.C. Plantier (CHU Rouen, France). Isolates AF286237 and RBF206 were chosen because 
they were used in the work that originated the present study (Kanja et al., 2020). Isolate 
BCF120 was chosen as the isolate O carrying the consensus sequence in the two motifs 
considered in this work. The SIVcpzPtt isolate employed in this work is the MB897 (GenBank 
accession number: EF535994) and it was chosen being one of the two isolates which are the 
most phylogenetically related to group M. 

For the creation of the conservation logos, by using WebLogo 
(http://weblogo.threeplusone.com) (Schneider and Stephens, 1990; Crooks et al., 2004), we 
performed sequence alignments for all the sequences covering the NOG and CLA motif 

positions of isolates from HIV-1 group M, group O, group P, group N, SIVcpzPtt, SIVcpzPts, 
SIVrcm, SIVmnd-2, and SIVgor. The alignement was performed with the CLC Genomics 
Workbench 22. All the sequences were obtained from the Los Alamos National Laboratory 
HIV database (https://www.hiv.lanl.gov/content/index).  

 

Plasmid and molecular cloning 

The plasmid p8.91-MB previously described (Kanja et al., 2020), was used as backbone for 
all cloning procedures. Therefore, all our constructs have the gag and the protease-coding 
sequences from HXB2 (group M). RT and IN coding-sequences, instead, varied. In isolate M 
the RT and IN was from isolate A2, while in isolates O it was either from isolate O206 or O120. 
In the chimpanzee isolate the RT and IN was from MB897. All IN mutant coding sequences 
were inserted between the BspEI and SalI restriction sites of p8.91-MB by Gibson assembly. 
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The plasmid used to produce the genomic RNA of the VLPs, carrying the two reporter genes 
used to evaluate integration efficiency (nGFP/nRFP and PUROR), is a modified version of the 
previously-described pSRP (Kanja et al., 2020) where the nuclear RFP was replaced by the 
nuclear GFP, giving the pSGP. 

The pEUrep-RNA (da Silva Santos et al., 2016) was kindly provided by Andrea Cimarelli. The 
plasmid is coding for an mRNA containing the RNA packaging sequence (Ψ) and the cDNA 
of the Firefly luciferase followed by a polyA signal. 

Two plasmids, both previously described (Kanja et al., 2020), were employed for the creation 
of standard curves in the quantitative PCR assays. The pJet-1LTR for the detection of late 
RTPs and the pGenuine2LTR for the evaluation of the 3’ processing efficiency. 

 

Transfection and VLPs collection 

To produce virus-like particles (VLPs) HEK293T cells were seeded the day before and co-
transfected with the plasmid coding for the vesicular stomatitis virus glycoprotein (VSV-G) 
(Naldini et al., 1996), the plasmid carrying HIV-1 Gag-Pol gene (p8.91MB with different IN) 
and the plasmid with the modified viral genome with the reporter genes to follow the infection 
(pSGP). For the EURT assay the pEU-repRNA plasmid, coding for the EU-repRNA, was either 
added to the mix or used in the place of pSGP. All transfections were done by using 5 µg of 
total DNA and polyethyleneimine (PEI, Polyscience) following the manufacturer’s instructions. 
The medium was changed after 6 h and VLPs were collected and filtered with a 0.45 µm filter 
after 48-72 hours. The amount of VLPs was estimated by quantifying the p24 via ELISA 
(Fujirebio). 

 

Western blot analysis 

The same volume of VLPs was concentrated by centrifuging them through a 20% sucrose 
for 2 h at 20,000 g and at 4°C. Pellets were resuspended in 3x Laemmli buffer and viral 
proteins were separated on a CriterionTM TGX Strain-Free 4-15% gradient gel (Bio-Rad) and 
then blotted on a PVDF membrane. To evaluate Pr55Gag proteolytic processing, polyproteins 
and mature capsid proteins were detected by probing the membrane with a mouse 
monoclonal anti-CA primary antibody (NIH AIDS Reagent Program) and a secondary anti-
mouse HRP-conjugated antibody (Millipore). ECL reagent (Bio-Rad) was added to the 
membrane and images were taken with Bio-Rad Chemidoc Touch and analyzed with the 
Image Lab software (Bio-Rad). The Pr55Gag processing efficiency was expressed as the ratio 
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of mature CA signal on the total CA signal (unprocessed, partially processed and fully 
processed CA proteins). 

 

Cell fractionations 

HEK293T and Jurkat were transduced by spinoculation with polybrene (Sigma-Aldrich) and 
an amount of VLPs corresponding to a nominal MOI of 0,1. 24-hpt cells were resuspended 
in fractionation buffer, incubated on ice, and passed multiple times in a 27-gauge needle to 
separate the nuclei from the cytoplasm. After centrifugation, the supernatant was collected 
and stored as the cytoplasmic fraction, while nuclei were washed with fractionation buffer, 
passed multiple times through a 26-gauge needle, and centrifuged again. After centrifugation, 
the pellet was stored as the nuclear fractions. Fractions were split, one part was used to 
perform a Western Blot to check their quality (protocol as above with the following primary 
antibodies: Mouse mAb GAPDH (#GT239, GeneTex), Mouse mAb Nucleolin (#E5M7Km Cell 
Signaling Technology), and one part was used to extract DNA and quantify late reverse 
transcription products (protocol in the next paragraph).  

 

Quantitative PCR for viral DNA and its forms 

HEK293T or Jurkat cells were transduced by spinoculation with polybrene (Sigma-Aldrich) 
and an amount of VLPs corresponding to a nominal MOI of 1. Prior to infection, VLPs were 
incubated with Benzonase nuclease (Sigma-Aldrich) to remove non-internalized DNA. 24-
hours post-transduction (hpt) cells were collected, and total DNA was extracted with DNeasy 
Blood & Tissue Kit (QIAGEN). All qPCR assays were designed with the Taqman® hydrolysis 
probe technology using the IDT Primers and Probes design software (IDT), with dual 
quencher probes (one internal ZEN™ quencher and one 3' Iowa Black™ FQ quencher). 
qPCRs were performed with the iTaq Universal Probes Supermix (Bio-Rad) on a CFX96 (Bio-
Rad) thermal cycler according to the manufacturer’s protocols. Standard curves and analysis 
were conducted with the CFX Manager (Bio-Rad). 

Late reverse transcription products were quantified with oligos amplifying the U5-Psi 
junction. This was normalized by the amount of genomic DNA that was quantified by 
amplifying an exon of the actin gene. Absolute quantification was performed by creating a 
standard curve with known quantities of pJet-1LTR for RTPs and the genome extracted from 
a known quantity of cells for actin quantification. 
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To evaluate the 3’ processing efficiency we first quantified the quantity of 2LTR circles 
(2LTRc) with oligos and probe annealing to the 2LTRc junction and then we evaluated the 
nature of this junction (perfect or imperfect, which are respectively the unprocessed and 
processed 3’ ends) with oligos and probes annealing specifically only to the perfect junction. 
The imperfect junction ratio was subsequently calculated as 1-perfect junction, where 1 
represents the total amount of 2LTRc. For both 2LTRc and perfect junction quantification, 
the same standard curve was used done with pGenuine2LTR. All the oligos and probes used 
for the qPCR assays can be found in Table S.  

 

Evaluation of integration 

HEK293T or Jurkat cells were transduced by spinoculation with polybrene and an amount of 
VLPs corresponding to a nominal MOI of 0.01. 24hpt puromycin was added to HEK293T with 
a final concentration of 0.6 µg/ml and integration was measured by counting the puromycin-
resistant clones 1-week post-transduction. As previously shown, this method is comparable 
to the classical Alu-gag quantitative PCR method (Kanja et al., 2020). For Jurkat cells 
integration was measured by FACS 72-hpt by counting the percentage of nGFP positive cells. 
This time was chosen after having established that no signal would be detected using a 
catalytically inactive IN (D116A), to exclude the possibility that the signal of our constructions 
would derive from episomal forms of the viral DNA. Since integration depends on the 
availability of the RTPs and since reverse transcription is affected by the viral IN, in both 
HEK293T and Jurkat, results were normalized by the reverse transcription efficiency 
evaluated by qPCR as described above. Namely, the amount X1 of RTP was estimated for 
sample 1, for example. The number of puro resistant clones (PX) for HEK293T cells or the 
intensity of the nGFP signal (F1) by FACS for Jurkat cells, was computed for the same sample. 
The normalized integration values were then computed as P1/X1 or F1/X1. 

 

Assessment of the capsid stability 

As described above VLPs employed in this assay contain either two RNAs, the EUrep-RNA 
and the SGP-RNA, or the EUrep-RNA alone. The corresponding quantity of VLPs of a nominal 
MOI of 0.5 was used to transduce either HEK293T or Jurkat cells. 8-hpt cell protein extract 
was obtained, and Luciferase assay was performed with the Luciferase Assay System 
(Promega). Luminescence (RLU) was normalized for protein concentration measured by the 
Bradford assay and therefore expressed as RLU per mg of protein extract (RLU/mg). 
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Structure and molecular modelling 

The NTD and CTD structures of IN M show in the manuscript belong to PDB 6PUT (Naldini 
et al., 1996; Passos et al., 2020). The NTD and CTD structures of IN O were obtained from 
molecular modelling of isolate O120 made with AlphaFold2 (Jumper et al., 2021; Varadi et 
al., 2022) by Patrice Gouet. Pictures used in the manuscript were obtained with PyMOL2.5. 

 

Statistical analysis 

All statistical tests were performed on at least three independent experiments (n is indicated 
in every figure legend) using Prism 9. ANOVA with Tukey’s multiple comparisons correction 
was used when more than three groups were compared. An unpaired t-test was used when 
two samples were directly compared 

 

Chromatin immunoprecipitation sequencing1 

10x106 million Jurkat cells were grown in a 15 cm cell culture dish. Medium was removed 
and cells washed once in PBS (+1 mM sodium butyrate for H3K27ac IP to block 
deacetylases). Cells were fixed with 1% formaldehyde/PBS (1 mM sodium butyrate for 
K27ac) for 7 min at RT followed by quenching with 0.125 M glycine/PBS for 7 min at RT. After 
removing all liquid, 2 times 5 ml ice cold PBS was added to scrape cells and cells were 
pelleted by centrifugation (1200xg, 7 min).  After washing with 10 ml of cold PBS, pellet was 
resuspended in swelling buffer (10 mM HEPES/KOH pH 7.9, 85 mM KCl, 1mM EDTA, 0.5% 
IGEPAL CA-630, 1x protease inhibitor cocktail (Roche)) and incubated for 10 min rotating at 
4°C. Pellet was dounced 10x before centrifugation 10 min, 3500xg for 10 min at 4°C. One 
extra wash with swelling buffer without IGEPAL CA-630 was performed before resuspending 
the nuclei in cold sonication buffer (TE pH=8, 0.1% SDS, protease inhibitor tablet). Sonication 
was done with a Covaris S220 Focused Ultrasonicator for 18 min (Duty cycle 20%, Intensity 
5, Cycles/burst 200). DNA size was followed by agarose gel. DNA fragments should be 
between 200-500 bp. Triton-X was added to the lysate to a final concentration of 1% and 
incubated for 10 min on ice. Lysate was cleared by centrifugation at 18000xg 4°C for 5 
minutes. Magna ChIP Protein A and G magnetic beads (Millipore) were washed twice with TE 
0.1% SDS and 1% TritonX and added to the lysate to preclear for 1h at 4°C rotating. 2-8 mg 
of chromatin were incubated with corresponding amounts of antibody overnight at 4°C. 1% 
of chromatin was saved as input. The used antibodies were the following: H3K36me3 
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(ab9050, Abcam), H3K27ac (ab4729, Abcam), H3K27me3 (C36B11, Cell Signaling), 
H3K4me1 (ab8895, Abcam), H3K9me3 (ab8898, Abcam), H3K9me2 (ab1220, Abcam), Rabbit 
control IgG (ab46540, Abcam), Mouse control IgG2a (ab18413, Abcam). 

The next day, protein A and G magnetic beads were washed twice with sonication buffer plus 
1% TritonX and incubated for 2 h at 4°C with the lysates. Beads were washed twice 10 min 
with cold buffer I (150 mM NaCl, 1% Triton X-100, 0.1% SDS, 2 mM EDTA, protease inhibitor 
cocktail (Roche)), once 10 min with cold buffer II (10 mM Tris/HCl pH 7.5, 250 mM LiCl, 1% 
IGEPAL CA-630, 0.7% Deoxycholate, 1 mM EDTA, protease inhibitor cocktail (Roche)), twice 
10 min with cold TET buffer (10 mM Tris/HCl pH7.5, 1 mM EDTA, 0.1% Tween-20, protease 
inhibitor cocktail (Roche)) and eluted with TE buffer, 1% SDS, 100 mM NaCl. 0.5 mg/ml 
Proteinase K were added, and samples were incubated for 2 h at 55°C and overnight at 65°C. 
The next day, 0.33 mg/ml RNAse A (Thermo Fisher Scientific) was added and incubated for 
1 h at 37°C. Supernatant was removed from the magnetic beads and DNA was purified with 
AMpure beads XP clean up according to manufacturer’s instructions. Concentrations were 
determined by Qubit Fluorometer and enrichment was determined by qPCR on a CFX96 
C1000 Touch Thermal Cycler (BioRad) with SsoFast™ EvaGreen® Supermix (BioRad) and 
the following primers: Human Negative Control Primer Set 2 (ActiveMotif), Human Positive 
Control Primer Set GAPDH-1 (ActiveMotif), Human Positive Control Primer Set MYT1 
(ActiveMotif), Human Positive Control Primer Set ACTB-2 (ActiveMotif), SimpleChIP® Human 
Sat2 Repeat Element Primers (CellSignaling). ChIP libraries were prepared using NEBNext® 
Ultra™ II DNA Library Prep Kit for Illumina® (NEB) and NEBNext® Multiplex Oligos for 
Illumina® (Index Primers Set 1) (NEB) according to manufacturer’s instructions. Libraries 
were sequenced at c.ATG sequencing core facility at Tübingen University on a NextSeq 
instrument 2x75 bp.  

 

ChIP-Seq data processing1 

Reads were trimmed by TrimGalore (v0.4) with maximum allowed error rate 0.3 and default 
filtering parameters. Trimmed reads were aligned to the human genome assembly hg38 using 
Bowtie2 (v2.3) with default settings for paired-end sequencing (Langmead et al., 2009). Peaks 
were called by MACS2 (v2.1) on the merged replicates in each condition using the —nomodel 
option, broad cut-off=0.1, and false-discovery rate threshold 0.05 (Zhang et al., 2008). See 

Supplementary Table S2 for QC values. 

Super-enhancers were defined using H3K27ac peaks through the findPeaks function from 
HOMER (v4.10) using the ‘-style super -o auto’ parameters (Heinz et al., 2010). 
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All profile plots and metagene plots were generated using soGGi (v1.20) from RPKM-
normalized bigwigs generated by bamCompare (Ramírez et al., 2016). 

 

Integration site sequencing1 

Infected Jurkat cells were harvested at 72 hpt and DNA was isolated with Qiagen blood and 
tissue kit according to manufacturer’s instructions. DNA was sonicated with Covaris S220 
Focused Ultrasonicator 450 s (Duty factor 10%, 200 cycles per burst) and size was monitored 
by agarose gel analysis. 

The LM PCR protocol was adapted from (Serrao et al., 2016). Sonicated gDNA ends were 
repaired using End-It™ DNA End-Repair Kit (Epicentre) according to manufacturer’s 
instructions. Sample was purified with PCR purification Kit (MacheryNagel) according to 
manufacturer’s instructions. A-tailing was performed using NEBNext® dA-Tailing Module 
(NEB). The reaction was incubated in a thermal cycler for 30 minutes at 37°C and purified 
with PCR purification Kit (MN) according to manufacturer’s instructions. An asymmetric 
double stranded linker was annealed overnight at 12°C (800 U T4 ligase, 10x ligase buffer, 
1.5 μM linker). After purification with PCR purification kit or 0.9x AMpure XP clean up beads 
according to manufacturer’s instructions, first nested PCR with linker and LTR specific 
primers was performed. 25 μl PCR reaction was set up with 1 μM LTR specific primer, 0.2 
μM linker specific primer, 5x buffer, 2.5 mM dNTPs, Phusion polymerase (NEB) and 100 ng 
ligation reaction. The thermal cycler program was the following: 94°C 2 min, - 94°C 15’, 64°C 
30’, 72°C 30’ – 25x, 72°C 10 min. PCR reactions were purified with PCR purification kit (MN) 
according to manufacturer’s instructions (or 0.9x AMpure XP clean up beads). The second 
nested PCR with the same linker specific primer and an inner LTR specific primer containing 
Illumina sequencing index was performed under the same conditions as the first PCR, with 
increased cycle number (30 cycles). PCR reactions were purified with PCR purification kit 
(MN) according to manufacturer’s instructions (or 0.9x AMpure XP clean up beads). Quality 
of the library was analyzed by Bioanalyzer and NEBNext® Library Quant Kit for Illumina® 
(NEB). IS libraries were sent for sequencing to c.ATG sequencing core facility at Tübingen 
University and sequenced on a MiSeq instrument 2x150 bp. 
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Integration site determination1 

A BLAT-based pipeline was created to process the LM-PCR raw data. The method was 
adapted to be used on both single-end (SE) and paired-end (PE) sequencing. Reads with LTR 
sequence (PE on the first pair/SE) or with Linker sequence (PE, on the second pair) were 
selected (allowing for 2 mismatches) and trimmed with Cutadapt (v3.2) (Martin and Wang, 
2011) to improve alignment. Resulting reads shorter than 15bp were excluded. Trimmed 
reads were converted to fasta format and aligned to a chimeric genome (hg38 and HIV-1 
genome) using BLAT (parameters: -stepSize=6 -minIdentity=97 -maxIntron=0 -minScore=15) 
(Kent, 2002). 

Only BLAT results that align at least 30 bp (SE) or 10bp (PE) with the genome and where the 
alignment start was from 0 and the first 5bp were kept (PE/SE). Uniquely mapped reads were 
kept for further processing steps in both PE and SE. Non-standard chromosomes and 
internal integrations on the HIV-1 genome were excluded. In the case of multi-mapped reads 
on SE, only BLAT results where the difference between the longest aligned portion and the 
second longest were higher or equal to 25bp were kept. On PE, pairs shown to be in the 1 
kb vicinity were considered properly paired and kept. 

Integrations were considered to be duplicates if the distance in between them was less or 
equal to 10 bp. PE (N=1,771) and SE (N=2,822) integration sets were merged (N = 4,590).  

Integrations were annotated to the nearest gene using ChIPpeakAnno (v3.24.2) and the 
GRCh38 annotation package EnsDb.Hsapiens.v86 (v2.99) (Lihua J Zhu et al., 2010).  

Gene ontology analysis (made on genes with genic integrations) was performed using 
clusterProfiler (v3.18.1) (Yu et al., 2012).  

 

  

 

 

1  Methods performed in collaboration with Dr. Marina Lusic's team (adapted from 
Rheinberger et al., in preparation) 
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OBJECTIVE 1: DIFFERENT ZOONOTIC TRANSMISSION EVENTS LED TO DISTINC 

MECHANISTIC PATHS TO ENSURE INTEGRATION IN HIV-1 ISOLATES OF GROUPS M 

AND O 

HIV-1 group M originated from a zoonotic transmission of SIVcpzPtt to human (Gao et al., 
1999; Heuverswyn et al., 2007), believed to have happened in the first decades of the 1900 
in the Cameroon region (Sharp and Hahn, 2011; Hemelaar, 2012). Since then, it spread, first 
in Africa, and then across the rest of the world, establishing the current AIDS pandemic, 
which caused millions of victims and still counts millions of infected individuals.  

HIV-1 group O originated from SIVgor (D'arc et al., 2015) and was first identified in a 
Cameroonian patient living in Belgium in the 1990s (Gürtler et al., 1994; vanden Haesevelde 
et al., 1996), but it is estimated to be circulating in the human population since the 1920s 
(Korber et al., 2000; Lemey et al., 2004; Leoz et al., 2015). Nowadays, group O is dominant 
in three countries of West and Central Africa (Cameroon, Gabon, and Equatorial Guinea), but 
its prevalence is decreasing steadily.  

The genetic diversity between group O and M varies with the region of the genome, but is 
overall high, being 33% in gag, 27% in pol and reaching its highest value, 44% in the env 

gene. Also, the accessory proteins (Vif, Vpr, Tat, Vpu) present sequence divergence between 
the two groups, with a mean divergence of 18%. Their integrases M and O differ for 16% of 
their amino acids. They share the same structural organization in domains, and they possess 
the same functional properties. 

In the CTD of IN M, the laboratory has previously identified the CLA motif (N222K240N254K273), 
which highly conserved and essential for integration in this group (Kanja et al., 2020). At the 
same positions of IN from group O another highly conserved sequence is present 
(N222Q240K254K273), composed by amino acids that have similar characteristics to those found 
in group M. Strikingly, this specific sequence (NQKK) is the one conferring the worst 
phenotype in IN M, when all the possible combinations with 2 K in the CLA positions were 
tested (Figure 21). This observation raised the question of whether the amino acids occupying 
the CLA positions could exert the same role in group O as they do in group M. Investigating 
this constituted the starting point of my PhD main project. The results obtained on this matter 
allowed us to write and submit for publication an original work, which I inserted below. The 
work is followed by further results that were not included in the work mentioned, but that 
complete the results therein described and that constitute an interesting potential starting 
point for further works. 
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ABSTRACT 

Transmissions of simian viruses to humans gave rise to the different groups of HIV-1. We 
recently identified a functional motif (CLA), in the C-terminal domain of integrase, essential 
for integration in group M. Here, we found that the motif is dispensable for group O isolates, 
because of the presence, in their N-terminal domain of another specific motif, NOG, which is 
mutually interchangeable with the CLA motif. While the NOG motif is already highly conserved 
in the simian ancestors of group O, SIVgor, in SIVcpzPtt, HIV-1 M ancestor, no conservation 
for the CLA motif is found, suggesting that it was selected after transmission to humans. 
Functional characterization of NOG-motif-containing integrases traces the mechanistic paths 
followed by these two viruses to ensure efficient integration, improving our understanding of 
the viruses evolution and of their multifunctional proteins in human infections. 

 

KEYWORDS: integrase, integration, hiv-1, group M, group O, SIVcpzPtt, SIVcpz, SIVgor, 

evolution, multifunctional proteins 
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INTRODUCTION  

Transmission of viruses from animals to human is a main threat to human health, with the 
HIV-1 pandemic being a clear example of this. The four HIV-1 groups, in fact, all originated 
from an independent zoonotic transmission of simian viruses to humans. Group M and group 
N both derive from SIVcpzPtt (Gao et al., 1999; Keele et al., 2006), while group O and P derive 
from SIVgor (D’Arc et al., 2015; Plantier et al., 2009). Although group M and group O share 
similar geographic and temporal origins (Korber et al., 2000; Lemey et al., 2004; Leoz et al., 
2015), they encountered a largely different epidemiological success. While group M is the 
responsible for the AIDS pandemic, infecting around 39 million people all over the world, 
group O has a largely lower epidemiological success, infecting around 100 thousand people 
mostly in the west-central region of Africa (Mourez et al., 2013; Peeters et al., 1997). The 
bases for this discrepancy are only partially known to date, although they constitute a central 
question to identify critical properties allowing cross-species transmission and diffusion. 

Their different zoonotic origin and the subsequent sequence diversification in the human host 
are responsible for the large intergroup genetic diversity between groups M and O that can 
reach almost 50% in the env gene (Santoro and Perno, 2013). Despite this, they have globally 
convergent phenotypes and, to date, only few functional differences have been highlighted 
between their proteins and enzymes. Among those, the most marked one concerns the 
counteraction of the antiviral properties of the cellular protein tetherin, that is exerted by Vpu 
in HIV-1 M while it is partially carried out by Nef in the case of HIV-1 O (Bego et al., 2016; 
Kluge et al., 2014). 

HIV replication requires the integration of the reverse transcribed genomic RNA into the 
genome of the infected cell. This key step is catalyzed by the integrase (IN), one of three viral 
enzymes. Integrases M and O share 84% of sequence identity as well as the same domain 
organizations and the same functions. IN is constituted by three domains connected by 
flexible linkers: the N-terminal domain (NTD), the catalytic core domain (CCD), and the C-
terminal domain (CTD) (Engelman and Craigie, 1992; Engelman et al., 1993; van Gent et al., 
1993). Each of these domains is specialized in one or more functions. The NTD is important 
for the multimerization and stabilization of the active form of the integrase (Eijkelenboom et 
al., 1997; Zheng et al., 1996), which is a highly organized multimer formed by several dimers 
of dimers (Passos et al., 2017, 2020). The CCD is involved in DNA binding and contains the 
amino acidic triad responsible for the catalytic activity of the enzyme (Kulkosky et al., 1992), 
but it is also the domain involved in protein dimerization and it is in charge of the interaction 
with LEDGF/p75, a fundamental host factor required for the successful infection by HIV-1 
(Busschots et al., 2005). Finally, the CTD is involved in binding viral RNA/DNA at different 
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steps of the infectious cycle (Elliott et al., 2020; Engelman and Kvaratskhelia, 2022; Engelman 
et al., 1994; Kessl et al., 2016), and in the interaction with the viral reverse transcriptase 
(Wilkinson et al., 2009; Zhu et al., 2004). 

It is in the CTD of the IN from group M that we previously identified a functional motif, 
constituted by four non-contiguous amino acids (positions 222, 240, 254, and 273) (Kanja et 
al., 2020). We will refer to the consensus sequence N222K240N254K273 of integrases M (that is 
the one yielding the highest levels of integration in group M while also assuring the highest 
levels of reverse transcription) as the "CLA (C-terminal lysine-amidic) motif" and to the same 
positions, irrespectively of the amino acids harbored, as the CLA positions. Despite its high 
conservation in vivo, the positions of the four residues could be permutated within the motif, 

in most cases, without affecting the efficiency of integration in cell culture (Kanja et al., 2020). 
In fact, as long as at least two lysine are present within the motif and the remainders are 
amidic residues (N or Q), functionality is retained to wt levels in most of the possible 
combinations (Kanja et al., 2020). The combination where the integration efficiency was the 
most affected, dropping to 25% of the wt, is NQKK. We previously determined the structure 
of the CTD for this variant showing that the protein folded into a structure similar to that of 
the wt CTD, but with a different distribution of charges at its surface (Kanja et al., 2020). 
Astoundingly, this exact aminoacidic sequence constitutes the consensus sequence of group 
O CLA positions. This observation raised the question of how such a poorly efficient 
sequence could have been selected in group O. Verifying this constituted the starting point 
of this work. 

 

MATERIALS AND METHODS 

Cell lines 

HEK293T and Jurkat cells were obtained from the American Type Culture Collection (ATCC). 
HEK293T were cultured in DMEM while Jurkat were cultured in RPMI. Both mediums were 
completed with 10% fetal bovine serum and 1% PenStrep. HEK293T and Jurkat culture 
conditions were at 37°C in 5% CO2. 

 

Viral strains and sequence alignments 

The primary HIV-1 isolates used in this study were: isolate HXB2 (GenBank accession 
number: K03455.1), isolate A2 (GenBank accession number: AF286237) from group M, 
subtype A2, (named "isolate M" in this study) obtained from the NIH AIDS Research and 
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Reference Reagent Program; isolate RBF206 (GenBank accession number: KU168298) and 
isolate BCF120 (GenBank accession number: KU168297) both from group O, kindly provided 
by J.C. Plantier (CHU Rouen, France). Isolates AF286237 and RBF206 were chosen because 
they were used in the work that originated the present study (Kanja et al., 2020). Isolate 
BCF120 was chosen as the isolate O carrying the consensus sequence in the two motifs 
considered in this work. The SIVcpzPtt isolate employed in this work is the MB897 (GenBank 
accession number: EF535994) and it was chosen being one of the two isolates which are the 
most phylogenetically related to group M. 

For the creation of the conservation logos, by using WebLogo 

(http://weblogo.threeplusone.com) (Crooks et al., 2004; Schneider and Stephens, 1990), we 
performed sequence alignments for all the sequences covering the NOG and CLA motif 
positions of isolates from HIV-1 group M (7,684), group O (50), SIVcpzPtt (14) and SIVgor (8). 
All the sequences were obtained from the Los Alamos National Laboratory HIV database 
(https://www.hiv.lanl.gov/content/index).  

 

Plasmid and molecular cloning 

The plasmid p8.91-MB previously described (Kanja et al., 2020), was used as backbone for 
all cloning procedures. Therefore, all our constructs have the gag and the protease-coding 
sequences from HXB2 (group M). RT and IN coding-sequences, instead, varied. In isolate M 
the RT and IN was from isolate A2, while in isolates O it was either from isolate O206 or O120. 
In the chimpanzee isolate the RT and IN was from MB897. All IN mutant coding sequences 
were inserted between the BspEI and SalI restriction sites of p8.91-MB by Gibson assembly. 

The plasmid used to produce the genomic RNA of the VLPs, carrying the two reporter genes 
used to evaluate integration efficiency (nGFP and PUROR), is a modified version of the 
previously-described pSRP (Kanja et al., 2020) where the nuclear RFP was replaced by the 
nuclear GFP, giving the pSGP. 

The pEUrep-RNA (da Silva Santos et al., 2016) was kindly provided by Andrea Cimarelli. The 
plasmid is coding for an mRNA containing the RNA packaging sequence (Ψ) and the cDNA 
of the Firefly luciferase followed by a polyA signal. 

Two plasmids, both previously described (Kanja et al., 2020), were employed for the creation 
of standard curves in the quantitative PCR assays. The pJet-1LTR for the detection of late 
RTPs and the pGenuine2LTR for the evaluation of the 3’ processing efficiency. 
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Transfection and VLPs collection 

To produce virus-like particles (VLPs) HEK293T cells were co-transfected with the plasmid 
coding for the vesicular stomatitis virus glycoprotein (VSV-G) (Naldini et al., 1996), the 
plasmid carrying HIV-1 Gag-Pol gene (p8.91MB with different IN) and the plasmid with the 
modified viral genome with the reporter genes to follow the infection (pSGP). For the EURT 
assay the pEU-repRNA plasmid, coding for the EU-repRNA, was either added to the mix or 
used in the place of pSGP. All transfections were done by using 5 µg of total DNA and 
polyethyleneimine (PEI, Polyscience) following the manufacturer’s instructions. The medium 
was changed after 6 h and VLPs were collected and filtered with a 0.45 µm filter after 48-72 
hours. The amount of VLPs was estimated by quantifying the p24 via ELISA (Fujirebio). 

 

Western blot analysis 

The same volume of VLPs was concentrated by centrifuging them through a 20% sucrose 
for 2 h at 20,000 g and at 4°C. Pellets were resuspended in 3x Laemmli buffer and viral 
proteins were separated on a CriterionTM TGX Strain-Free 4-15% gradient gel (Bio-Rad) and 
then blotted on a PVDF membrane. To evaluate Pr55Gag proteolytic processing, polyproteins 
and mature capsid proteins were detected by probing the membrane with a mouse 
monoclonal anti-CA primary antibody (NIH AIDS Reagent Program) and a secondary anti-
mouse HRP-conjugated antibody (Millipore). ECL reagent (Bio-Rad) was added to the 
membrane and images were taken with Bio-Rad Chemidoc Touch and analyzed with the 
Image Lab software (Bio-Rad). The Pr55Gag processing efficiency was expressed as the ratio 
of mature CA signal on the total CA signal (unprocessed, partially processed and fully 
processed CA proteins). 

 

Quantitative PCR for viral DNA and its forms 

HEK293T or Jurkat cells were transduced by spinoculation with polybrene (Sigma-Aldrich) 
and an amount of VLPs corresponding to a nominal MOI of 1. Prior to infection, VLPs were 
incubated with Benzonase nuclease (Sigma-Aldrich) to remove non-internalized DNA. 24-
hours post-transduction (hpt) cells were collected, and total DNA was extracted with DNeasy 
Blood & Tissue Kit (QIAGEN). All qPCR assays were designed with the Taqman® hydrolysis 
probe technology using the IDT Primers and Probes design software (IDT), with dual 
quencher probes (one internal ZEN™ quencher and one 3' Iowa Black™ FQ quencher). 
qPCRs were performed with the iTaq Universal Probes Supermix (Bio-Rad) on a CFX96 (Bio-
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Rad) thermal cycler according to the manufacturer’s protocols. Standard curves and analysis 
were conducted with the CFX Manager (Bio-Rad). 

Late reverse transcription products were quantified with oligos amplifying the U5-Psi 
junction. This was normalized by the amount of genomic DNA that was quantified by 
amplifying an exon of the actin gene. Absolute quantification was performed by creating a 
standard curve with known quantities of pJet-1LTR for RTPs and the genome extracted from 
a known quantity of cells for actin quantification. 

To evaluate the 3’ processing efficiency we first quantified the quantity of 2LTR circles 
(2LTRc) with oligos and probe annealing to the 2LTRc junction and then we evaluated the 
nature of this junction (perfect or imperfect, which are respectively the unprocessed and 
processed 3’ ends) with oligos and probes annealing specifically only to the perfect junction. 
The imperfect junction ratio was subsequently calculated as 1-perfect junction, where 1 
represents the total amount of 2LTRc. For both 2LTRc and perfect junction quantification, 
the same standard curve was done with pGenuine2LTR. All the oligos and probes used for 
the qPCR assays can be found in Table S.  

 

Evaluation of integration 

HEK293T or Jurkat cells were transduced by spinoculation with polybrene and an amount of 
VLPs corresponding to a nominal MOI of 0.01. 24hpt puromycin was added to HEK293T with 
a final concentration of 0.6 µg/ml and integration was measured by counting the puromycin-
resistant clones 1-week post-transduction. As previously shown, this method is comparable 
to the classical Alu-gag quantitative PCR method (Kanja et al., 2020). For Jurkat cells 
integration was measured by FACS 72-hpt by counting the percentage of cells expressing 
the nGFP. This time was chosen after having established that no signal would be detected 
using a catalytically inactive IN (D116A), to exclude the possibility that the signal of our 
constructions would derive from episomal forms of the viral DNA. Since integration depends 
on the availability of the RTPs and since reverse transcription is affected by the viral IN, in 
both HEK293T and Jurkat, results were normalized by the reverse transcription efficiency 
evaluated by qPCR as described above. Namely, the amount X1 of RTP was estimated for 
sample 1, for example. The number of puro resistant clones (PX) for HEK cells or the number 
of nGFP positive cells (F1) by FACS for Jurkat cells, was computed for the same sample. The 

normalized integration values were then computed as P1/X1 or F1/X1. 
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Assessment of the capsid stability 

As described above VLPs employed in this assay contain either two RNAs, the EUrep-RNA 
and the SGP-RNA, or the EUrep-RNA alone. The corresponding quantity of VLPs of a nominal 
MOI of 0.5 was used to transduce either HEK293T or Jurkat cells. 8-hpt cell protein extract 
was obtained, and Luciferase assay was performed with the Luciferase Assay System 
(Promega). Luminescence (RLU) was normalized for protein concentration measured by the 
Bradford assay and therefore expressed as RLU per mg of protein extract (RLU/mg). 

 

Structure and molecular modelling 

The NTD and CTD structures of IN M show in the manuscript belong to PDB 6PUT (Passos 
et al., 2020). The NTD and CTD structures of IN O were obtained from molecular modelling 
of isolate O120 made with AlphaFold2 (Jumper et al., 2021; Varadi et al., 2022) by Patrice 
Gouet. Pictures used in the manuscript were obtained with PyMOL2.5. 

 

Quantification and statistical analysis 

All statistical tests were performed on at least three independent experiments (n is indicated 
in every figure legend) using Prism 9. ANOVA with Tukey’s multiple comparisons correction 
was used when more than three groups were compared. An unpaired t-test was used when 
two samples were directly compared. 

 

RESULTS 

The CLA motif is dispensable in isolates of group O 

While, as mentioned above, the influence on integration of the amino acids that occupy the 
CLA positions has been well characterized for group M, their effect is unknown for group O 
isolates. To shed light on this aspect, we used two isolates from this group, BCF120 and 
RBF206 (named hereafter O120 and O206, respectively) that present in the CLA positions 
either the consensus sequence of group O (NQKK, isolate O120, Figure 1A) or a different 
sequence (KQKQ, isolate O206 that was chosen as outlier). In both isolates we replaced the 
sequence in the CLA positions by NQNQ (O120/NQNQ and O206/NQNQ, Figure 1B and 1C), 
a sequence that was shown to abolish integration in isolates M (Kanja et al., 2020). In sharp 
contrast to what observed for group M, for both isolates the replacement of the original 
sequence in the CLA positions by NQNQ did not affect integration neither in HEK293T nor in 
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Jurkat cells (Figures 1B and 1C). The same replacement in isolate M AF286237 (referred 
hereafter as "isolate M"), used as a control, led to undetectable levels of integration (Figure 
1D). These observations indicate that isolates O do not require the function exerted by the 
CLA motif or that this function is endorsed either by another region of the integrase or by 
another protein. 

 

Figure 1. The CLA motif is dispensable in isolates of group O. A Sequence conservation logo of the CLA motif 

positions in isolates of group O. B-D Top of each panel: schematic representation of IN tested for integration. 

Color code is white for isolates M and black for isolates O. When mutated with respect to the sequence of the wt, 
the amino acids of the CLA motif are shown in capital letters. Bottom of each panel: normalized levels of 

integration relative to the level of the wt IN. B n=3 for HEK293T and n=5 for Jurkat. C n=5. D n=4. Data are shown 

as the average ± SD.  ****p ≤ 0.0001. ns, not significant (two-tailed, unpaired Student’s t-test). 

 

The NTD of isolates O complements the function of the CLA motif of isolates M 

We first investigated whether another region of group O integrases exerts the same function 
of the integrases M CLA motif. To this end, we replaced, in O206/NQNQ, five large regions 
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with the homologous ones of isolate M and measured integration in HEK293T (Figure 2A). In 
isolate M, the replacement of the NKNK sequence, the CLA motif, by NQNQ was sufficient 
to abolish integration (Figure 1B) indicating that no other region complements the default in 
the CLA motif in this group. Therefore, if a region that, in IN O206/NQNQ ensures the 
functions of the CLA motif is present, when it will be replaced by the homologous region of 
isolate M, integration should no longer occur. 

Integrase is a pleiotropic protein. As such, if mutated, it can influence different steps of the 
infectious cycle, several of which can affect the generation of proviral DNA. Among these are 
reverse transcription and, when IN is still part of the Gag-Pol precursor, Pr160Gag-Pol 
proteolytic processing, a step required to obtain a mature infectious particle. Mutating IN 
could therefore affect the formation of a provirus even at various levels before integration of 
the pre-proviral DNA into the cell genome. For these reasons, for each mutant generated in 
this work, we evaluated, besides the formation of proviral DNA, the efficiency of reverse 
transcription and that of Pr55Gag proteolytic processing. Furthermore, if less reverse 
transcription products (RTPs) are produced with a mutant, less proviral DNAs will be 
generated even if the mutant is not affected in the step of integration itself. For this reason, 
to measure the efficiency of integration per se we expressed the levels of integration 

normalized by the amount of late reverse transcription products (see Material and Methods) 
throughout the study. 

The estimates of the efficiency of integration for the chimeras shown in Figure 2A clearly 
indicate that integration was abolished for two of them (chimeras O206/NTD-M/NQNQ and 
O206/CCD1-M/NQNQ, Figure 2B), corresponding to the chimeras where either the NTD or 
the N-terminal part of the CCD were replaced by the homologous regions of isolate M. The 
effect on these two mutants was specific for integration since proteolytic processing of 
Pr55Gag was unaffected with respect to wt IN O206 in all chimeras as well as in O206/NQNQ 
(Figures S1A and S1B) while reverse transcription was reduced to approximately 60% of wt 
IN O206, although in a comparable manner across the chimeras (Figure 2B). 

The inability of O206/NTD-M/NQNQ and O206/CCD1-M/NQNQ to produce proviral DNAs 
could be due to the absence of the functionality provided by the equivalent of the CLA motif 
or to other defects such as, for example, protein misfolding. To ascertain whether the lack of 
integration was related to the absence of the region that ensures the function of the CLA 
motif, we replaced NQNQ (non-functional CLA motif) by NKNK (functional CLA motif), 
obtaining chimeras O206/NTD-M/NKNK and O206/CCD1-M/NKNK (Figure 2C). We also 
inserted the sequence NKNK in wt IN O206 (O206/NKNK) to verify that this insertion did not 
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affect the functionality of the enzyme. As shown in Figure 2D, neither integration nor reverse 
transcription were affected in this mutant. Integration was fully restored for the chimera 
containing the NTD M, while it remained undetectable for O206/CCD1-M/NKNK (Figure 2D). 
Therefore, the default of chimera O206/NTD-M/NQNQ appears related to the lack of the 
region that exerts the function of the CLA motif, whereas for O206/CCD1-M/NKNK the loss 
of integration was unrelated to the functionality ensured by the CLA motif (Figure 2D; Figure 
S1B). These results indicate that the NTD of isolate O206 can complement the absence of a 
functional CLA motif. Furthermore, the high similarity between the NTD of O206 and the 
consensus sequence O (only one substitution, K46R), suggests that this is likely the case for 
integrases of group O in general. 

 

Figure 2. The NTD of isolates O complements the function of the CLA motif of isolate M. A Schematic 

representation of the chimeras with the NQNQ sequence in the CLA motif positions and of IN O wt, as reference 

at the top of the drawing. Color code is black for isolates O and white for isolates M. B Normalized levels of 

integration (left graph) and amount of RTPs (right graph), relative to the wt IN, for the chimeras shown in panel A 

(n=5 for O206 wt and O206/NQNQ, n=3 for the remaining samples). C Schematic representation of the mutants 

used to discern whether the loss of functionality of the two chimeras shown in panel B is related to the functionality 

of the CLA motif. D Normalized levels of integration (left graph) and amount of RTPs (right graph), relative to the 
wt IN, for the chimeras shown in panel C (n=7 for O206 wt and O206/NKNK, n=3 for the remaining samples). Data 

are shown as the average ± SD. ****p ≤ 0.0001. **p ≤ 0.01. *p ≤ 0.05. ns, not significant (one-way ANOVA with 
Tukey’s multiple comparisons correction). 

 

 

O206 wt (1)

NQNQ

NQNQ

NQNQ

NQNQ

NQNQ

NQNQ

O206/NQNQ (2)

O206/NTD-M/NQNQ (3)

O206/CCD1-M/NQNQ (4)

O206/CCD2-M/NQNQ (5)

O206/CCD3-M/NQNQ (6)

O206/Linker-M/NQNQ (7)

A

B

C

D

FIGURE 2

O206 wt (1)

O206/N
QNQ

(2)

O206/N
TD-M

/N
QNQ

(3)

O206/C
CD1-M

/N
QNQ

(4)

O206/C
CD2-M

/N
QNQ

(5)

O206/C
CD3-M

/N
QNQ

(6)

O206/Linker2-M
/N

QNQ
(7)

0.0

0.5

1.0

1.5

2.0

In
te

gr
at

io
n

re
la

tiv
e

to
w

t

HEK293T

ns ✱✱✱✱

✱✱✱✱

ns

ns

ns

O206 wt (1)

O206/N
QNQ

(2)

O206/N
TD-M

/N
QNQ

(3)

O206/C
CD1-M

/N
QNQ

(4)

O206/C
CD2-M

/N
QNQ

(5)

O206/C
CD3-M

/N
QNQ

(6)

O206/Linker2-M
/N

QNQ
(7)

0.0

0.5

1.0

1.5

2.0

R
TP

s
re

la
tiv

e
to

w
t

HEK293T

ns ✱

✱

ns

✱

✱✱

O206/N
TD-M

/N
QNQ

(3)

O206/C
CD1-M

/N
QNQ

(4)

O206/C
CD2-M

/N
QNQ

(5)

O206/C
CD3-M

/N
QNQ

(6)

O206/Linker2-M
/N

QNQ
(7)

O206/N
TD-M

/N
QNQ

(3)

O206/C
CD1-M

/N
QNQ

(4)

O206/C
CD2-M

/N
QNQ

(5)

O206/C
CD3-M

/N
QNQ

(6)

O206/Linker2-M
/N

QNQ
(7)

O206 wt (1a)

O206/N
KNK

(2a)

O206/N
TD-M

/N
KNK

(3a)

O206/C
CD1-M

/N
KNK

(4a)
0.0

0.5

1.0

1.5

2.0

R
TP

s
re

la
tiv

e
to

w
t

HEK293T

ns ✱

✱✱

O206 wt (1a)

O206/N
KNK

(2a)

O206/N
TD-M

/N
KNK

(3a)

O206/C
CD1-M

/N
KNK

(4a)
0.0

0.5

1.0

1.5

2.0

In
te

gr
at

io
n

re
la

tiv
e

to
w

t

HEK293T

ns ns

✱✱✱✱

FIGURE 2

O206 wt (1)

O206/N
QNQ

(2)

O206/N
TD-M

/N
QNQ

(3)

O206/C
CD1-M

/N
QNQ

(4)

O206/C
CD2-M

/N
QNQ

(5)

O206/C
CD3-M

/N
QNQ

(6)

O206/Linker2-M
/N

QNQ
(7)

0.0

0.5

1.0

1.5

2.0

re
la

tiv
e

to
w

t

HEK293T

ns ✱✱✱✱

✱✱✱✱

ns

ns

ns

O206 wt (1)

O206/N
QNQ

(2)

O206/N
TD-M

/N
QNQ

(3)

O206/C
CD1-M

/N
QNQ

(4)

O206/C
CD2-M

/N
QNQ

(5)

O206/C
CD3-M

/N
QNQ

(6)

O206/Linker2-M
/N

QNQ
(7)

0.0

0.5

1.0

1.5

2.0

R
TP

s
re

la
tiv

e
to

w
t

HEK293T

ns ✱

✱

ns

✱

✱✱

O206/C
CD1-M

/N
QNQ

(4)

O206/C
CD2-M

/N
QNQ

(5)

O206/C
CD3-M

/N
QNQ

(6)

O206/Linker2-M
/N

QNQ
(7)

O206/N
TD-M

/N
QNQ

(3)

O206/C
CD1-M

/N
QNQ

(4)

O206/C
CD2-M

/N
QNQ

(5)

O206/C
CD3-M

/N
QNQ

(6)

O206/Linker2-M
/N

QNQ
(7)

O206 wt (1a)

O206/N
KNK

(2a)

O206/N
TD-M

/N
KNK

(3a)

O206/C
CD1-M

/N
KNK

(4a)
0.0

0.5

1.0

1.5

2.0

R
TP

s
re

la
tiv

e
to

w
t

HEK293T

ns ✱

✱✱

O206 wt (1a)

O206/N
KNK

(2a)

O206/N
TD-M

/N
KNK

(3a)

O206/C
CD1-M

/N
KNK

(4a)
0.0

0.5

1.0

1.5

2.0

In
te

gr
at

io
n

re
la

tiv
e

to
w

t

HEK293T

ns ns

✱✱✱✱

O206/C
CD1-M

/N
QNQ

(4)

O206/C
CD2-M

/N
QNQ

(5)

O206/C
CD3-M

/N
QNQ

(6)

O206/Linker2-M
/N

QNQ
(7)

O206/N
TD-M

/N
QNQ

(3)

O206/C
CD1-M

/N
QNQ

(4)

O206/C
CD2-M

/N
QNQ

(5)

O206/C
CD3-M

/N
QNQ

(6)

O206/Linker2-M
/N

QNQ
(7)

O206 wt (1a)

O206/N
KNK

(2a)

O206/N
TD-M

/N
KNK

(3a)

O206/C
CD1-M

/N
KNK

(4a)
0.0

0.5

1.0

1.5

2.0

R
TP

s
re

la
tiv

e
to

w
t

HEK293T

ns ✱

✱✱

O206 wt (1a)

O206/N
KNK

(2a)

O206/N
TD-M

/N
KNK

(3a)

O206/C
CD1-M

/N
KNK

(4a)
0.0

0.5

1.0

1.5

2.0

In
te

gr
at

io
n

re
la

tiv
e

to
w

t

HEK293T

ns ns

✱✱✱✱

O206 wt (1a)

NKNK

NKNK

NKNK

O206/NKNK (2a)

O206/NTD-M/NKNK (3a)

O206/CCD1-M/NKNK (4a)



 

 
 

91 

Identification and characterization of the N-terminal O group (NOG) motif 

The consensus sequences of the NTDs M and O differ for 10 residues (Figure 3A). According 
to the score of the BLOSUM62 matrix (Henikoff and Henikoff, 1992), the replacement of four 
of these residues (Q7, G27, P41, H44, highlighted by a star in Figure 3A and highly conserved 
in group O as shown in Figure 3B) introduces more drastic changes in the properties of the 
protein than the substitution of the other residues. To test if the four residues Q7G27P41H44 of 
the NTD O are the ones allowing for the complementation of the functionality ensured by the 
CLA motif, we inserted them in the NTD of the IN M that harbors, in the CLA positions, the 
consensus sequence of isolates O (IN M/QGPH/NQKK, Figure 3C). This double mutant 
recovered an integration efficiency from 25% of IN M/NQKK to 100% of wt IN M, both in 
HEK293T and Jurkat cells (Figure 3D). The same results were obtained by replacing the whole 
NTD M by the NTD O (IN M/NTD-O/NQKK in Figure 3D). For both cell types, the replacement 
of the QGPH, also led to an improvement of reverse transcription by an approximately two-
fold factor (Figure 3E) while no differences were observed in the efficiency of Pr55Gag 
processing for all constructions compared to the wt (Figure S3C). We refer collectively to the 
amino acids Q7G27P41H44 as the NOG motif, for “N-terminal O group” motif. 

To understand if the NOG and the CLA motifs have an additive effect on the efficiency of 
integration, we then inserted the NOG motif in wt IN M (IN M/QGPH, Figure 3F). If this is the 
case, this IN should give levels of integration higher than wt IN M (because of the presence 
of the NOG motif). No improvement was instead observed for integration, nor for reverse 
transcription or Pr55Gag processing neither in HEK293T nor in Jurkat cells (Figures 3G and 
3H; Figure S1D). All the efficiencies remained comparable between wt IN M and M/QGPH, 
indicating that no additive effect of the NOG and the CLA motifs.  

 

Tracing the phylogenetic origins of the NOG and CLA motifs 

To understand how these functional differences between IN M and O could have emerged, 
we analyzed the NOG and the CLA motifs positions in the simian viruses assumed to be the 
ancestors of HIV-1 M and O: SIVcpzPtt and SIVgor, respectively (Figure 4A). The sequence 

QGPH, is highly conserved in group O and in SIVgor (Figure 4A) and it is also found in the 
isolate supposed to be the closest to the founder of HIV-1 O, SIVgor BQID2 (D’Arc et al., 
2015) (Figure 4A). These observations strongly suggest that this motif has been selected in 
the great ape virus and, after transmission to humans, it has remained unaltered. In SIVcpzPtt 
the NOG positions are highly conserved (KNDQ) and they are identical and also highly 
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conserved in HIV-1 M where, according to our data though, it is conserved for reasons 
unrelated to the functions of the QGPH sequence of group O (Figure 4A). 

 

Figure 3. Identification and characterization of the N-terminal O group (NOG) motif. A Alignment of the amino 

acid consensus sequences of the NTD of IN M (top row) and IN O (bottom row). Unchanged amino acids in IN O 
with respect to IN M are indicated by a dash. Positions differing in the two sequences are in bold. Residues whose 

replacement gives a BLOSUM62 matrix score difference ≤ 1 are highlighted by a star. B Sequence conservation 

logo for positions 7, 14, 41 and 44 of IN O. C Schematic representation of the mutant IN used to evaluate the 

function of the NOG motif. White for isolate M and black for isolate O120. When mutated with respect to the 

sequence of the wt, the amino acids of the NOG or of the CLA motifs are shown in capital letters. D Normalized 
levels of integration relative to the wt IN, for the chimeras shown in panel C (n=3 for M/NTD-O/NQKK; n=6 for all 

the remaining samples). E Amounts of RTPs, relative to the wt IN, for the chimeras shown in panel C (n=3 for 

M/NTD-O/NQKK; n=6 for all the remaining samples). F Schematic representation of IN M/QGPH. (G and H) 

Normalized levels of integration (panel G) and amount of RTPs (panel H), relative to the wt IN, for IN M/QGPH (n=6 

for all the samples). Data are shown as the average ± SD. ****p ≤ 0.0001. ***p ≤ 0.001. **p ≤ 0.01. ns, not significant 
(one-way ANOVA with Tukey’s multiple comparisons correction for panels D and E. Two-tailed, unpaired 
Student’s t-test for panels G and H). 
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Concerning the CLA positions, in SIVgor the consensus sequence is NTKK while in HIV-1 O 
it has been mutated to N/KQKK (Figure 4A). This could reflect adaptation to the new host, 
but NQKK is also the sequence of the isolate BQID2, the one assumed as the closest SIVgor 
to HIV-1 O (Figure 4B). Therefore, it is also possible that this sequence was transmitted to 
humans directly from a minor variant of the simian virus that crossed the species barrier. In 
the case of SIVcpzPtt, although the residues found in the CLA positions are mostly K and N 
and therefore the same of the essential CLA motif in HIV-1 M, no conservation emerges, apart 
for K273 (Figure 4A). To evaluate the possibility that the NKNK sequence was, nevertheless, 
present in the isolate that was transferred to human and was conserved ever since, we 

compared the sequences found in the two isolates of SIVcpzPtt that have been identified as 
the closest to HIV-1 M, isolates SIVcpzPtt MB897 and SIVcpzPtt LB715 (Heuverswyn et al., 
2007). In neither case, the sequence was NKNK (Figure 4B). These observations suggest that 
a specific selection for this motif occurred after transmission to the human host. 

 

Figure 4. Tracing the phylogenetic origins of the NOG and CLA. A Sequence conservation logos of the NOG 

and CLA motifs in IN of groups M and O and in their ancestor viruses (SIVgor and SIVcpzPtt). B Sequences of the 

isolates of SIVgor and SIVcpzPtt supposed to be the closest to the isolates that were transmitted to human. 
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Nevertheless, we wanted to understand if a virus with an IN from SIVcpzPtt but with the 
NKNK sequence in the CLA positions could have been infectious in human cells. To address 
this issue, we first produced viral particles in which we replaced the RT and IN of HIV-1 M by 
those of isolate SIVcpzPtt MB897, hereafter simply referred to as “SIVcpzPtt”, that has the 

KKKK sequence in the CLA positions (Figure 5A). The goal was to verify that the chimeric 
nature of these viruses (Gag and protease from HIV-1 M; RT and IN from SIV) was not an 
obstacle for infection. The chimeric particles were fully processed by the protease (Figure 
S1E) and integration levels were twice those obtained with wt IN M (Figure 5B). 

 

Figure 5. SIVcpzPtt CLA motif is important for integration. A Schematic representation of wt IN M and IN 

SIVcpzPtt. B Normalized levels of integration (left graph) and amounts of RTPs (right graph) relative to isolate M 

for the IN shown in panel A (n=6). C Schematic representation of IN SIVcpzPtt wt and the two mutants for the 

CLA motif positions tested for integration and reverse transcription in panel D. When mutated with respect to the 

sequence of the wt, the amino acids of the NOG or of the CLA motifs are shown in capital letters. D Normalized 

levels of integration (left graph) and amounts of RTPs (right graph) relative to SIVcpzPtt wt (n=6 for MB897 wt; 
n=5 for SIVcpzPtt/NKNK; n=3 for SIVcpzPtt/NQNQ). Data are shown as the average ± SD. ****p ≤ 0.0001. **p ≤ 

0.01. *p ≤ 0.05. (Two-tailed, unpaired Student’s t-test for panel B. One-way ANOVA with Tukey’s multiple 
comparisons correction for panel D). 

Reverse transcription was also increased with respect to wt IN M (Figure 5B). In conclusion, 
the chimeric nature of the virus, did not affect its functionality. We therefore proceeded to 
replace the KKKK sequence in the CLA positions of the SIV integrase by NKNK (Figure 5C). 
This change was sufficient to reduce integration to around 10% with respect to wt IN 
SIVcpzPtt (Figure 5D), while reverse transcription and Pr55Gag processing were slightly 
(Figure 5D) or completely unaltered (Figure S1F) respectively. This result markedly differs from 
what had been observed for IN M, for which the two sequences (KKKK and NKNK) yielded 
comparable levels of integration (Kanja et al., 2020). The replacement of the amino acids in 
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the CLA positions by NQNQ, condition that abolished integration in IN M, caused a drop of 
integration to undetectable levels, as well as a significant decrease in reverse transcription 
levels (Figure 5D). Pr55Gag processing levels, instead, were still unaltered (Figure S1F). 
Altogether, these results indicate that in SIVcpzPtt, the sequence in the CLA positions is 
crucial to determine the levels of integration, like for IN M. In contrast with IN M, though, in 
SIVcpzPtt the NKNK sequence did not ensure high levels of integration. 

 

The fate of the reverse transcription products in the presence of the NOG motif 

To understand by which means, in IN M, the NOG motif compensates for the lower efficiency 
of integration triggered by mutations in the CLA motif, we characterized the RTPs produced 
with the different mutants. We quantified the proportion of RTPs that were processed at their 
3' end (removal, by the IN, of the terminal GT dinucleotide sequences at each 3’ end of the 
RTP), a prerequisite essential for integration. Replacing the NKNK sequence by NQKK in IN 
M (Figure 6A) reduced 3' processing by a two-fold factor both in HEK293T and Jurkat cells 
(Figure 6B). The replacement of the NOG motif residues of isolates M by QGPH (Figure 6A) 
rescued the defect, partially in HEK293T, and totally in Jurkat cells for which 3' processing 
was comparable to that observed for wt IN M (Figure 6B). 

Finally, we looked for possible differences, with the various IN mutants used, into the process 
of dismantling of the capsid, since this could alter the levels of RTPs available for integration, 
even if equal amounts of RTPs were measured in the cell. For instance, premature uncoating 
can lead to the dissociation of IN from the RTPs, while closed capsid prevents the RTPs from 
interacting with the genome of the infected cell (Eschbach et al., 2020; Forshey et al., 2002; 
Stremlau et al., 2006). To this end, we used the EURT assay approach (da Silva Santos et al., 
2016), in which the stability of the capsid is measured through the expression of a reporter 
gene carried by the VLP. The coding sequence is carried by an RNA (EUrep-RNA) that cannot 
be reverse transcribed but can be translated, leading to the synthesis of the firefly luciferase 
(Figure 6C). The experiment can be carried out copackaging with the EUrep-RNA another 
RNA that can be reverse transcribed (in our case "SGP" RNA, Figure 6C). In this case the 
luciferase signal provided by heterozygous EUrep/SGP viruses will evaluate the stability of 
the capsid in the presence of reverse transcription, that is the condition relevant for the 
present study. If only EUrep-RNA is used (Figure 6D), the assay will measure the stability of 
the capsid in the absence of reverse transcription. 
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Figure 6. The fate of the reverse transcription products in the presence of the NOG motif. A Schematic 
representation of the IN used to evaluate the effect of the NOG motif on 3' processing. When mutated with respect 

to the sequence of the wt, the amino acids of the NOG or of the CLA motifs are shown in capital letters. B 
Efficiency of 3' processing, relative to the wt IN, for the mutants shown in panel A, in HEK293T and in Jurkat cells 

(n=4 for all samples). C Outline of the EURT assay, with reverse transcription, adapted from ref. 35. The two types 

of RNA that are co-packaged in the viral particles are shown with their essential functional features. Ψ: packaging 
sequence, RBS: ribosome binding site, F-luc: firefly luciferase coding sequence, AAA(A): polyA sequence, R, U5 
and U3: elements of HIV-1 LTRs, PBS, HIV-1 primer binding site. The SGP-RNA also has a poly-A tale, but it is 

not shown for clarity, not being relevant for this experimental setting. D Outline of the EURT assay, without reverse 

transcription. E Luciferase expression, with reverse transcription happening inside the capsid, relative to the wt 

IN, for the mutants shown in panel A, in HEK293T (n=6) and in Jurkat cells (n=3). F Luciferase expression, without 
reverse transcription happening inside the capsid, relative to the wt IN, for the mutants shown in panel A, in 
HEK293T (n=3) and in Jurkat cells (n=3). Data are shown as average ± SD. ****p ≤ 0.0001. ***p ≤ 0.001. **p ≤ 0.01. 

*p ≤ 0.05. ns, not significant (one-way ANOVA with Tukey’s multiple comparisons correction). 
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To study the stability in the presence of reverse transcription, VLPs are produced by 
transfection of cells that express equimolar amounts of two types of RNAs. Since the 
packaging and the dimerization signals are the same in the two RNAs, the resulting viral 
population is expected to be constituted by 50% heterozygous EUrep/SGP virions, 25% 
EUrep/EUrep and 25% SGP/SGP homozygous virions. While SGP/SGP viruses will not give 
any luciferase signal, homozygous EUrep/EUrep RNAs will interfere with the signal provided 
by the heterozygous EUrep/SGP particles. For this reason, the experiment was also 
performed in the absence of reverse transcription, to evaluate the contribution of 
homozygous EUrep/EUrep virions to the results obtained in the presence of reverse 
transcription and take this into account for the interpretation of the results. 

The experiments were run using wt IN M, IN M/NQKK and IN M/QGPH/NQKK (Figure 6A) in 
HEK293T and in Jurkat cells. In the presence of reverse transcription (Figure 6E) the 
replacement of NKNK by NQKK in the CLA motif led to a modest increase in the expression 
of the luciferase, indicating that the mutant NQKK triggers a slight decrease of the stability of 
the capsid. The addition of the NOG motif had no effect in HEK293T cells (Figure 6E) while it 
markedly increased the stability of the capsid in Jurkat cells that became even more stable 
than what observed with wt IN M (Figure 6E). In the absence of reverse transcription, instead, 
no change in the stability of the capsid was observed among the different mutants and cells 
tested (Figure 6F). Therefore, the specific changes in the stability of the capsid observed in 
the experiment performed in the presence of reverse transcription are due to the 
heterozygous virions and are thus related to the ongoing reverse transcription in the viral 
particles.  

 

DISCUSSION 

In this work, we document that integrases of HIV-1 groups M and O have developed two 
phylogenetic-group specific functional motifs that can cross-complement each other. One 
motif (CLA) is located in the CTD of the protein of group M, the other (NOG) in the NTD of 
isolates of group O. This observation highlights for the first time that, depending on the 
phylogenetic sequence considered, two different domains of the same HIV-1 protein carry 
out functions that can mutually complement each other during the infectious cycle. 

We previously showed that, when at least two K are present among the four amino acids that 

constitute the CLA motif, the positions of the individual residues can be permutated without 
affecting integration in eight of the ten possible combinations (Kanja et al., 2020). In the two 
other cases, integration was significantly reduced with the most marked decrease (to around 
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25% of the wt IN M) observed with the sequence N222Q240K254K273. Despite this, NQKK 
constitutes the consensus sequence of HIV-1 O, raising the question of how it could have 
been selected. We find here that IN O has a motif in its NTD (NOG, Q7G24P41H44) that allows 
to bypass the need for the CLA motif, ultimately yielding levels of integration comparable to 
IN M. Indeed, when in IN M, both motifs of IN O are present (M/QGPH/NQKK) the levels of 
integration are brought back to those of wt IN M. This is achieved by increasing the amount 
of reverse transcription products (RTPs) and favoring their integration by improving 3' 
processing. In Jurkat cells these effects were concomitant to an increase of the stability of 
the capsid, that could potentially favor both processes by increasing the residence time of 
the nucleic acids within the capsid core (Eschbach et al., 2020; Forshey et al., 2002; Stremlau 
et al., 2006). Dismantling of the viral capsid is a central step in the control of infectivity 
(Toccafondi et al., 2021). An implication of the IN in ensuring the optimal stability of the viral 
core by favoring the interaction between the capsid protein and cyclophilin A had been 
previously described (Briones et al., 2010). Reverse transcription favors dismantling of the 
capsid core in vitro and the generation of full-length RTPs has been proposed to be the main 

motor promoting its disassembly (Christensen et al., 2020; Rankovic et al., 2017). Our results 
indicate that, from the complementary standpoint, an increased stability of the capsid can 
favor reverse transcription. 

How could such different domains have converged to ensure functions as similar as to be 
mutually interchangeable? The simplest explanation is that they are involved in the same 
mechanistic step of the infectious cycle, likely through an essential interaction with the same 
molecule. We showed that the three first residues of the motif (N222K240N254) form a positively 
charged surface, absent in the case of the N222Q240K254 sequence (Kanja et al., 2020). This 
surface was proposed to interact, possibly with the contribution of the additional K273, with a 
repetitive, negatively charged partner (Kanja et al., 2020) (Figure 7A) as the backbone of DNA 
or RNA molecules. In IN O, the presence of the NOG motif is predicted to induce the formation 
of an alternative positively charged surface, shown in Figures 7B and 7C, which could drive 
the interaction to involve preferentially the NTD (Figure 7D). 

The CTD of IN binds the viral RNA and altering this interaction results in dislocation of the 
gRNA outside the capsid, severely affecting reverse transcription (Elliott et al., 2020; Kessl et 
al., 2016). In this work, we evaluated the efficiency of integration of a given mutant by 
normalizing integration for RTPs generated with the same mutant. If the gRNA were the 
interacting partner of the CLA and of the NOG motifs, a decrease in reverse transcription 
would be observed first of all, and, after normalization, no defect in integration would be 
observed. This is not what we observe, though, suggesting that the function of the integrase 
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we highlight is a different one. This does not rule out the possibility that the interacting partner 
for these motifs is the gRNA, but it suggests that, if this is the case, this interaction concerns 
a different step than the one discussed above. The role of the interaction with the nucleic 
acids could mediate the control of the stability of the capsid in relation to the progression of 
reverse transcription, since these parameters are all modified with our mutants. 

 

Figure 7. Model for the complementation of the CLA and NOG motifs. A CTD and NTD of IN M, PDB 6PUT 
(Passos et al., 2020), are shown in green, facing each other. This distribution could happen between two different 

IN being part of the same intasome. In this case, the CLA motif, located in the CTD, is forming a positively charged 

surface (in blue) that is interacting with a negatively charged partner (in red). B, C NTD M (in green) and O (in 
magenta) with their cartoon representation on the left, showing their orientation, and with their surface 
electrostatic potential on the right. The positively charged surface position exposed when the NOG motif is present 

is highlighted by a yellow circle. D CTD and NTD of IN O (obtained with AlphaFold2), are shown in magenta, facing 
each other. Here, the NOG motif is inducing the formation of a positively charged surface (in blue) in the NTD that 
will interact with a negatively charged partner (in red). 

A possible scenario for the emergence of these two motifs with interchangeable 
functionalities is that the NOG motif was generated in the simian virus infecting gorillas (or in 
its ancestors) where it is highly conserved, at least within the limits of an analysis carried out 

on only 8 sequences available for SIVgor. The emergence of the CLA motif, instead, appears 
to date after transmission of the virus to the human host, since no conservation of sequence 
is found in this region in SIVcpzPtt, although an overall trend for the presence of N and K 
residues (which are those that compose the consensus motif in HIV-1 M) is found. The fact 
that none of the combinations of these amino acids was selected in the simian virus, which 
instead was what occurred after transfer to humans, could indicate that the function exerted 
by this motif was not required in the simian cells. Otherwise, even if required, the selective 
pressure for the CLA motif was not as strong as it appears to be in human, allowing the co-
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existence of multiple functional sequences. In both cases it is tempting to speculate that the 
emergence of the NKNK motif was part of the process of viral adaptation to the new host. 

At this regard, the sequence NKNK in the CLA positions is found in two isolates (SIVcpzPtt 
EK505 and Marilyn) across the population of SIVcpzPtt, indicating that, per se, its presence 

is compatible with replication of simian viruses in simian cells. Therefore, NKNK could have 
been selected as a consensus already in the simian virus. The fact that this was not the case, 
instead, suggests that the advantage conferred by this motif, with respect to the other 
sequences in apes cells, was not as important as it is in the human ones. Thus, at least two 
paths could have led to the establishment of the NKNK motif in HIV-1 M: the transfer of the 
motif to humans by a virus that already contained it and its subsequent positive selection, or 
the generation of the NKNK sequence from a virus that did not initially contain the motif, 
followed by positive selection. When we inserted the NKNK motif in the RT-IN coding region 
of the SIVcpzPtt and generated a chimeric HIV-1 carrying RT-IN of SIVcpzPtt, integration was 
around 10% of that observed with its wt sequence (KKKK) (Figure 5D) in Jurkat cells. This 
result has been obtained using a chimerical HIV-1/SIV virus, which provides the advantage 
of focusing specifically on the effect of the IN and RT sequences of ape origin. However, this 
also raises the issue of whether the low integration levels observed could be due to the 
chimerical nature of the viral particles themselves. This possibility, though, appears unlikely 
since the same chimeric viral particles gave high levels of integration when carrying the wt 
sequence of SIVcpzPtt IN (Figure 5B). Altogether, these results rather support the view that, 

once the simian virus has been transferred to humans, both sequences (RT and IN) have 
undergone a stepwise adaptation process to the new host that finally generated the genetic 
context in which the NKNK sequence in the CLA positions became optimal. The genetic 
flexibility that we described for the CLA locus, with several permutated sequences retaining 
integration ability (Kanja et al., 2020), could constitute what remains of the swarm of 
sequences generated by genetic drift and from which selection for the successful NKNK 
sequence occurred.  

Noteworthy in its CLA motif positions group N also carries the NKNK sequence (Figure S2) 
and, also in this case, it appears from the analysis of the 11 sequences available for this virus, 
to be conserved in this group. The closest phylogenetically isolate of SIVcpzPtt to group N is 
EK505, which, as mentioned above, carries the NKNK sequence. It seems therefore that for 
both cases of transmission of SIVcpzPtt to human that resulted in the establishment of human 

infectious viruses (HIV-1 M and N), transmission was likely followed by selection of the NKNK 
sequence in the CLA motif positions, either by fixation or adaptation, as previously discussed. 
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This issue raised the question of why selection for the same motif did not emerge also after 
transfer of SIVgor to humans. In principle, the presence in this virus of an already functional 
motif (the NOG one) did not exclude the addition of a second motif (like the CLA one) that 
could have conferred a further advantage to the virus carrying both. However, here, when we 
tested this possibility by replacing in isolate O, the NQKK sequence by NKNK, we did not 
observe any increase in integration, providing a potential answer to the question. These 
results, together with the observation that group O does not need the CLA motif for 
integration, instead, are evocative of the presence of dominant epistasis of the positions that 
constitute the NOG motif over those making the CLA motif. 

Dominant epistasis, relieving selective pressure from the CLA motif, would have allowed this 
region of IN O to develop, potentially, new accessory functions. Indeed, HIV-1 integrase is a 
multifunctional protein that, logically, acquired its diverse functions, and optimized those 
already acquired, progressively during evolution. Increasing evidence supports the notion 
that in multifunctional proteins, the initial steps toward the establishment of a new function 
are undertaken by genetic drift before selection for the new function is applied (Aharoni et al., 
2005; Chothia et al., 2003; O’Brien and Herschlag, 1999). Intra-patient expanding HIV 
populations are characterized by extensive genetic drift, driven by neutral selection 
(Maldarelli et al., 2013), thereby creating favorable conditions for the generation of new 
functionalities in its proteins (Bloom et al., 2007). The presence in the CLA positions of 
SIVcpzPtt of the same type of amino acids that would then have generated the NKNK motif 

in HIV-1 M, but still without selection for a consensus sequence, could constitute a snapshot 
of such early phases of genetic drift in the process of generation of what will then become 
an essential motif for integration in HIV-1 M. 

In conclusion, this work sheds light on crucial aspects of the process of evolution of two 
phylogenetic-group specific motifs of the integrase of HIV-1, from their simian ancestors 
across the barrier of the zoonotic transmission to humans. By deciphering how optimization 
of integration is achieved in these two cases, this work contributes to improve our 
understanding of the rules governing viral evolution and the evolution of multifunctional viral 
proteins in the context of human infections. 
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SUPPLEMENTARY MATERIAL 

 

Figure S1. Pr55Gag processing of IN tested in this work was not affected. A Results for Pr55Gag processing 

for the constructions shown in figure 2A. Pr55Gag is not affected for all the constructions tested (n=3). B Results 

for Pr55Gag processing for the constructions shown in figure 2C. Pr55Gag is not affected for all the constructions 

tested (n=3). C Results for Pr55Gag processing for the constructions shown in figure 3C. Pr55Gag is not affected 

for all the constructions tested (n=3). D Results for Pr55Gag processing for the constructions shown in figure 3F. 
Pr55Gag is not affected for all the constructions tested (n=3). Data are shown as the average ± SD. ns, not 

significant (one-way ANOVA with Tukey’s multiple comparisons correction).  

 

 

Figure S2. Group N CLA motif has the same amino acidic sequence found in group M. A Sequence 

conservation logo of the CLA motif in isolates of group N. Obtained with WebLogo by aligning 11 sequences. 
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Table S1. Oligos used for qPCR. 

Table S1 

Target Oligos/probe Sequence Fluorophore 

Late RTPs U5Psi fwd GTGACTCTGGTAACTAGAGA   

 U5Psi probe CGCTTTCAAGTCCCTGTTCGGG  FAM 

 U5psi rev GAGAGCTCCTCTCCTTTC   

Genomic DNA 

(ACTB) 
IDT Assay ID: Hs.PT.56a.40703009.g HEX 

2LTR circles 2LTR fwd CCCTTTTAGTCAGTGTGGAA   

 2LTR probe TTCACTCCCAACGAAGACAAGATATCCTT  FAM 

 2LTR rev GTAGCCTTGTGTGTGGTAGA   

Perfect junctions 2LTR PJ fwd TGTGGAAAAATCTCTAGCAGTAC   

 2LTR probe TTCACTCCCAACGAAGACAAGATATCCTT  FAM 

 2LTR rev GTAGCCTTGTGTGTGGTAGA   
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RESULTS NOT INCLUDED IN THE ARTICLE 

 

The NOG and the CLA motifs are mostly conserved within HIV-1 and SIV phylogenetic 

groups 

The phylogenetic analyses presented in the manuscript are strictly focused on HIV-1 groups 
M and O and their ancestor simian viruses, infecting chimpanzees Pan troglodytes 
troglodytes and gorillas. In the manuscript, we show that, with one exception, the NOG and 

CLA positions are highly conserved within HIV-1 groups M and O, as well as in SIVcpzPtt and 
SIVgor, even if the consensus sequences identified are not necessarily the same in the four 
cases. In one case, though (the CLA motif of SIVcpzPtt ) no conservation of sequence could 
be found. We also observed that the sequence of the eleven isolates of HIV-1 group N was 
identical to the consensus sequence of HIV-1 M, both in the CLA and in the NOG motifs 
(Figure 23). Similarly, the NOG motif of group P (three isolates) had the same sequence of 
SIVgor and HIV-1 group O (Figure 23). For the CLA motif, while HIV-1 O and SIVgor differ for 
the second amino acid of the motif, HIV-1 P matched the consensus of the simian viruses 
(NTKK) instead of that of HIV-1 O (NQKK) (Figure 23). Interpretations and discussions on HIV-
1 P are obviously limited by the small number of samples available. Considering these 
limitations, data from groups N and P have not been included in the manuscript. 

However, we reasoned that besides the cases mentioned above (included in the manuscript 

submitted for publication), a broader analysis of these motifs, including other SIV, will improve 
our understanding of their role in evolution of human and simian viruses in the context of 
cross-species transmission. We therefore extended our analyses to three other simian 
viruses: SIVrcm, SIVmnd-2 and SIVcpzPts. SIVrcm and SIVmnd-2 are equally considered to 
be the ancestors viruses of the 3' pol portion of SIVcpzPtt, therefore including the IN ORF. 
The sequences available for SIVrcm and SIVmnd-2 for the NOG and the CLA positions differ 
in their number and are specified for each position in their conservation logos (Figure 23). At 
the CLA positions, distinct levels of conservation are found among the four positions in both 
viruses. In SIVrcm, the first and the last positions are conserved, while the middle ones show 
no conservation (Figure 23), while SIVmnd-2 shows a fully conserved sequence among the 4 
isolates available. The two central positions of both viruses are occupied by amino acids (E, 
G) significantly different compared to those found in the CLA motif of group M. However, it 
is interesting to note that, for both viruses, the first amino acid is identical to the one found 
in group M CLA motif, while the last, is the same one (K) for SIVmnd-2, and the other positively 
charged amino acid (R) for SIVrcm (Figure 23). Interestingly, the laboratory showed that, in IN 
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M, the two K of the motif could be replaced by R without affecting the efficiency of integration 
(Figure 20). It is therefore justified to expect that, in the context of SIVrcm, the R plays the 
same role of the corresponding K in the other viruses. Noteworthy, SIVrcm is the only 
lentivirus, among the ones studied so far, that does not carry a K in position 273. At SIVrcm 
NOG positions a relatively conserved sequence, with amino acids similar to those found in 
both M and O, is present. In SIVmnd-2 the last two NOG positions are highly conserved 
whereas the first two are less conserved, but yet occupied by recurrent amino acids, and 
overall, the sequence shows similarities with both HIV-1 group M and O motifs.  

 

Figure 23. CLA and NOG motif phylogenetic history. Conservation logos for NOG positions (7, 27, 41, 44) and 
for CLA positions (222, 240, 254, 273) are shown in grey and black respectively. Under each logo is indicated the 
number of sequences used to obtain it. Dashed arrows represent the possible zoonotic transmissions that 
originated each virus (or the pol region of the genome as it is the case of SIVcpzPtt).  

Finally, we wanted to check the sequences of the other SIV infecting chimpanzees, 
SIVcpzPts. No transmission to humans from this virus has been described so far. This could 
be due to trivial factors as different ways of living of these animals and, in general, a more 
limited promiscuity with humans. However, this could also suggest that the cross-species 
barrier to cross is higher than the one separating Pan troglodytes troglodytes from humans. 

At the CLA positions, the conserved sequence NRGK is deduced from the 5 sequences 
available (Figure 23). Except for G254, once again the amino acids found in these positions 
are constituted by amidic polar and positively charged residues. At the NOG positions, a 
sequence fairly conserved is present, constituted by amino acids found in other NOG motifs 
analyzed (N, P and H), but, unique for this virus, we also find an acidic residue (E) occupying 
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the first position where usually an amidic or a positively charged amino acid is present (Figure 
23). 

The amino acids found at the two motifs (NOG and CLA) are globally conserved in most the 
phylogenetic groups considered, and it is indicative of a positive selection for their 
conservation within each clade. The exceptions constituted by the CLA motifs of SIVcpzPtt 
and SIVrcm raise the issue of why selective pressure should not be effective in these hosts. 
It is tempting to propose that dominant intragenic epistasis (from another domain of the 
protein) could have released the functional constraints that forced sequence conservation in 
this region, as we have proposed to be the case for the nog locus over the cla one in group 

O. If this were the case, the nature of the epistatic interaction between the two domains, 
should be different in the variants carried by these two apes viruses, specifically. It would be 
interesting and possible at the same time, to test this hypothesis experimentally, the moment 
a sufficient number of these isolates will be sampled and characterized. 

At the same time, though, if it is true that the sequences were conserved within a phylogenetic 
group, it is also true that they were rarely the same when comparing the phylogenetic groups 
between them. This can indicate that, in the various hosts, the requirements were so different 
as to lead to the sequence divergences that are now observed in these two motifs among 
the various types of viruses. However, this can also be due to coevolution as an indirect 
consequence of the adaptation of the virus to the new host.  

Indeed, if a given sequence (X) is selected in a virus in response to a host-specific 
requirement, after cross-species transmission three possible scenarios might occur: (1) it 
might become dispensable (if no such requirement exists in the new host); (2) it might be 
strictly preserved (if he same requirement exists in the new host); (3) it might be adapted to 
new requirement (if a similar but not identical requirement is present in the new host). In case 
1, with time X will be likely heavily mutated, potentially acquiring new functions, becoming 
too different from the original X to be identified as a related sequence or it might be even 
deleted. In case 3, depending on how different the requirements in the new host are, the 
phylogenetic relationship between the two sequences can or cannot still be inferred once 
optimization is completed. Whichever of the three cases mentioned above one considers, 
though, the rest of the genome (i.e. outside locus x) will almost certainly undergo adaptation 

in response to various physiological differences between the two hosts, eventually leading to 
the generation of a new virus specific for the new host. During this process of adaptation, 
mutations at the site X could be selected because of coevolution requirements needed to 
preserve infectivity in response to mutations occurring outside X itself. This will lead to a 
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modification of X, also in the case 2, where its strict preservation was initially expected. 
Therefore, distinguishing between mutations directly related to the functionality of a motif 
from those that constitute “side effects” of coevolution, is important for identifying host 
specific requirements that allow or hamper transmission to a new host. The set of sequence 
identified in this work in the CLA and NOG motifs and their functional relationship provide, in 
our opinion, a precious material for such studies. 

Indeed, based on our results the NOG motif of SIVgor and HIV-1 groups O and P seems to 
have found the same functional requirements in both the gorilla and the human host, and its 
sequence consequently remained unchanged. Furthermore, the coevolution that led to the 
adaptation in the new host did not affect this sequence. On the contrary the CLA motif of 
SIVcpzPtt and HIV-1 M was most likely affected by coevolution, as our results of the SIV IN 

carrying the NKNK sequence at its CLA positions are showing. This mutant, in fact, although 
carrying the optimal group M CLA motif sequence, was not able to replicate in human cells, 
suggesting that further adaptation in, or even outside, the IN was required to select the NKNK 
sequence in group M. Further investigations are needed in order to understand whether the 
functional requirements in chimpanzee and in human were the same or not for the CLA locus. 
Indeed, although no conservation is found at the CLA positions of SIVcpzPtt, amino acids 
with the same characteristics (positive and amidic), if not exactly the same amino acids, are 
recurrently found among its isolates, suggesting that selective pressure was present for these 
residues. 

 

The O CLA motif when inserted in IN M increases the levels of 2LTRc  

Among the different evaluations employed to better characterize the phenotype of the 
mutants tested in this work, 2LTRc levels were also used. 2LTRc are usually used as a marker 
of nuclear import of the RTPs, since they can only be formed by cellular nuclear enzymes, as 
well as a marker of integration efficiency. In fact, since 2LTRc and the integration product are 
formed starting from the same substrate (the linear proviral DNA), an increase of 2LTRc 
amounts when integration is impaired is expected to be observed. This trend was indeed 
found when 2LTRc levels of the M/NQKK mutant (25% of integration relative to M wt) were 
measured, being 2-fold higher than those of the wt, either in HEK293T or Jurkat cells (Figure 
24A). In the same way, the mutant M/QGPH (integration 100% relative to M wt) showed to 
have similar levels of 2LTRc than the wt, as expected from its integration levels (Figure 24A). 
Strikingly, the double mutant M/QGPH/NQKK (integration 100% relative to M wt) also had 



 

 
 
112 

significantly higher levels of 2LTRc in both HEK293T and Jurkat cells (Figure 24A), despite 
the observed rescue in the integration efficiency.  

 

Figure 24. 2LTRc levels of IN M and O. A 2LTRc levels, relative to M wt, for the mutants carrying the O CLA and 
NOG sequences in HEK293T (on the left, n=5) and in Jurkat (on the right, M wt and M/NQKK n=7, M/QGPH/NKNK 
and M/QGPH/NQKK n=6). B 2LTRc levels, relative to M wt, for O120 wt and O206 wt in HEK293T (on the left, 
n=3) and Jurkat (on the right, n=3). Data are shown as average ± SD. ****p ≤ 0.0001. ***p ≤ 0.001. **p ≤ 0.01. *p ≤ 
0.05. ns, not significant (one-way ANOVA with Tukey’s multiple comparisons correction). 

Since the mutant has both functional motifs (NOG and CLA) of group O, this result raised the 
question of whether having higher levels of 2LTRc could be a signature feature of group O. 
Therefore, the O isolate carrying the O consensus sequences in both motifs (QGPH and 
NQKK) used in this work, O120, was tested for its 2LTRc level against M wt in HEK293T and 
Jurkat cells. As a control to check whether this could be due to the NQKK sequence or to a 
general feature of the group, the same experiment was conducted in parallel with isolate 
O206 (carrying the same NOG motif sequence, but the KQKQ sequence in the CLA positions). 
In both cell types, isolate O120 showed to have 2LTRc levels similar to those of M wt (Figure 
24B), while isolate O206 appears to be slightly below or above the M one, in HEK293T and 
Jurkat cells respectively (Figure 24B). Overall, this result confuted the hypothesis that group 
O could have higher 2LTRc levels per se, suggesting that the mutant M/QGPH/NQKK is 
producing more 2LTRc for other reasons. 
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As stated above, 2LTRc can be used as markers of RTPs nuclear import. Another possible 
explanation for the observed increase of 2LTRc could indeed be an alteration of the RTPs 
nuclear import, which, for example, could be more efficient for the mutant M/QGPH/NQKK. 
To assess this hypothesis, transduced cells were fractioned at the same time point at which 
2LTRc are measured (24-hpt), and the amount of RTPs was measured in the nuclear and the 
cytoplasmic fractions. The experiment was performed with the M wt as well as the same 
mutants tested above (M/NQKK, M/QGPH, M/QGPH/NQKK) on HEK293T and Jurkat cells. 
In both cells, the RTPs were 100% localized in the nuclear fraction at 24-hpt for all the IN 
evaluated (Figure 25), suggesting that the nuclear import of the RTPs is equal for all of them. 
However, the limit of our fractionation method is that we cannot distinguish between what 
has really been imported and, therefore, present in the nucleoplasm and what is blocked at 
the nuclear membrane, therefore it is not possible to completely exclude the possibility that, 
indeed, the nuclear import could be responsible for the alteration in the 2LTRc levels 
observed with the mutant M/QGPH/NQKK. 

 

Figure 25. RTPs levels in cytoplasmic and nuclear fractions. RTPs fraction levels in the nuclear (square) and 
cytoplasmic (circle) fractions are shown for M wt, M/NQKK, M/QGPH, M/QGPH/NQKK (n=3). Data are shown as 
average ± SD. 
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OBJECTIVE 2: THE ROLE OF THE AMIDIC AMINO ACIDS IN THE CLA MOTIF 

My PhD work dealt, essentially, with the characterization of a motif recently identified by the 
hosting laboratory. As mentioned above, this motif is highly conserved in IN M and 
constituted by the four non-contiguous amino acids NKNK. The laboratory showed that the 
four positions are functionally linked, which led to define this as a motif, because of the 
possibility of permutating the amino acids in the four positions, generally retaining 
functionality (Kanja 2020). The work performed subsequently was more oriented on the study 
of the role of the K than on that of the N of the motif. This was essentially justified by the 
observation that, in the process of inferring the influence of the number of K residues present 
in the motif on integration, it was shown that the mutant containing four K (KKKK) was as 
functional as the wt enzyme (Kanja et al., 2020). However, since this mutant is deprived of 
amidic residues, this result also indicated that the importance of the K is, somehow, dominant 
on the need for an amidic residue in the motif. In contrast, the NQNQ mutant, which has four 
amidic residues but no lysines, has no detectable integration levels, indicating that, if the 
absence of amidic residues can be bypassed by the presence of additional that of lysines, 
the reverse is not true. 

The analysis of the importance of the amidic residues in the motif was performed, by 
replacing the N residues (present in the NKNK motif of IN M) by two Q that have physical-
chemical properties very similar to asparagine, being both polar and carrying an amidic group 
in their lateral chain. In this case the integration efficiency was unaltered with respect to the 
wt enzyme (Kanja et al., 2020). In contrast, abolishing the polar nature of the amino acid, by 
replacing both N by L, same length of the lateral chain but no polarity, abolished integration, 
indicating that polarity was a crucial feature in these positions (Figure 20). However, polarity 
alone was not sufficient, since when the N were replaced by two T (polar and with a lateral 
chain of similar size of asparagines, but carrying an OH group instead of the amidic one) 
integration dropped to barely detectable levels (in the 2-5 % range with respect to wt IN) 
(Figure 20), indicating that the nature of the group carried by the lateral chain is also important 
(Kanja et al., 2020). 

A theoretical estimate of the contribution of each type of defect (as a decrease of nuclear 
import of the reverse transcription product, for example) to the overall efficiency of integration 
was performed. This was done by assuming that if a decrease of 30%, for instance, was 

observed in nuclear import (to stick to the example given above) with a mutant with respect 
to wt IN, if that was the unique defect, one would expect to observe a decrease of integration 
with respect to the use of the wt protein, of 30%. By following this approach, the lab reached 



 

 
 

115 

the conclusion that the defects observed in nuclear import and in 3’ processing could 
account for the whole decrease in integration observed with each of the mutants of the K of 
the motif. This was published as Table 1 in the Kanja’s paper. The same analysis was 
performed for the LKLK, and TKTK mutants, but, as the paper focused on the role of the 
lysine of the motif, it was not inserted in the publication. Interestingly this analysis indicated 
that, in contrast to what observed for the mutants of the K, in this case the defects observed 
in nuclear import and in 3’ processing were not sufficient to account for the amplitude of the 
decrease in integration observed with these mutants. This is manifest from Table 1 where the 
same values published in Kanja et al. are reported, side by side with those of the mutants of 
the N. By comparing, for each mutant, the values of the first line with those of the last, one 
compares the observed values for the efficiency of integration with those expected if 3’ 
processing and nuclear import were the only defects in integration found with that given 
mutant. For the three mutants of the K residues the values are (observed efficiency with 
respect to wt IN vs expected frequency with respect to wt IN): 0.03 vs 0.09, 0.24 vs 0.26, and 

0.00 vs 0.05, witnessing a remarkable similarity between observed and expected results. In 
sharp contrast, the mutants where the N were replaced by L or T showed values of observed 
integration that did not match with the expected values: 0.01 vs 0.27 and 0.05 vs 0.47, for 
the L and the T mutants, respectively. These results suggested that additional defects were 
present with these mutants. 

   K mutants N mutants 

 wt D116A NQNK NKNQ NQNQ LKLK TKTK 

Observed integration relative to wt 1.00 0.00 0.03 0.24 0.00 0.01 0.05 

Nuclear import relative to D116A 1.00 1.00 0.31 0.35 0.33 0.67 0.53 

3' processing relative to wt 1.00 0.00 0.28 0.74 0.15 0.41 0.89 

Expected integration relative to wt 1.00 0.00 0.09 0.26 0.05 0.27 0.47 

 

Table 1. Observed and expected integration for the K and N mutants of the CLA motif. In the table observed 
and expected levels of integration (lines highlighted in grey) for the K and T mutants, as well as for the IN wt and 
the catalytically inactive IN (D116A) are shown. The observed integration values were obtained from our 
experimental method (see Methods). The nuclear import and 3' processing levels were calculated as explained in 
the Kanja et al. paper. The expected integration values were obtained by multiplying the nuclear import values for 
the 3' processing values. Adapted from Kanja et al., 2020. 

In the previous work (Kanja et al., 2020) several steps of the replication cycle were evaluated 
for these mutants. During my thesis we focused on one of the few pre-integration parameters 
that we did not take into account before: the choice of the integration sites. Indeed, in our 
experimental system, we evaluate the efficiency of integration on the basis of the expression 
of a transgene inserted in the proviral DNA. If the choice of the integration sites were affected 

in the mutants, this could influence our readout, possibly introducing a discrepancy between 
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expected and observed results. Therefore, we started looking at the integration sites with the 
TKTK mutant, since integration with the LKLK mutant was so low that it would not have been 
possible to obtain material for these analyses. The analysis of the integration sites was carried 
out in collaboration with Dr. Marina Lusic, at the University of Heidelberg, where I spent one 
month to start the project. 

 

The CLA motif amidic amino acids are influencing the choice of the integration sites 

To understand if the TKTK mutant leads to a change of the integration sites, transduction of 
Jurkat cells with viral particles carrying either the IN M wt or TKTK was performed. A library 
enriched in integration sites of the genomic DNA was then prepared, sequenced, and 
analyzed. 

 M wt M/TKTK 

Total sites 4674 1375 

Intragenic 3401 (72%) 779 (56%) 

Intergenic 1273 (28%) 596 (44%) 

 

Table 2. Integration sites retrieved for IN M wt and IN M/TKTK. In the table the total number of integration 
sites retrieved for IN wt and the TKTK mutant is shown, along the fractions found in intra- or intergenic positions. 

From the cells infected with IN wt a total of 4,674 sites were retrieved, while for the TKTK 
mutant the rescued sites were 1,375 (Table 2). Strikingly, the percentage of intra- and 
intergenic integration sites was different between the two integrases, with the wt 
preferentially targeting the intragenic sites (72%), while the TKTK mutant is integrating in 
these regions only 56% of the times (Table 2). Additionally, when looking at the expression 
levels of the targeted genes, it was clear that the mutant is integrating with a higher frequency 
in low-expression and/or silenced genes compared to wt IN (Figure 26). These first results 
support the hypothesis for which the discrepancy observed between the expected levels of 
integrations and the real ones, might be caused by a non-expression of the reporter genes, 
and consequently a non-detection of the integration event. 

To further investigate this redirection of the integration sites, an analysis of the chromatin 
profile around them was performed. Results showed that the TKTK mutant integration sites 
are generally less-correlated, compared to the wt, with open chromatin markers that are 
typically associated to HIV-1 integration sites (Wang et al., 2007; Roth et al., 2011; 
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Kvaratskhelia et al., 2014; Sowd et al., 2016). The TKTK mutant integrates less in regions with 
markers H3K4me1 and H3K27Ac, which are super-enhancer signatures, typically abundant 
in SPADs (Bedwell 2021, Singh 2022). H3K36me3 modification is normally associated with 
gene bodies and transcription elongation and is recognized by the PWWP domain of 
LEDGF/p75. However, LEDGF/p75 is known to interact with the viral IN through its NTD and 
CCD domains, therefore a possible perturbation of this binding caused by the two-point 
mutations present in the CTD of the TKTK mutant is unlikely to happen. Conversely, an 
increase of integration sites correlating with repressive chromatin marks was observed for 
the TKTK mutant compared to the wt. Indeed, the study of the chromatin marker landscape 
shows that the mutant redirects, at least partially, the integration sites towards non-actively 
transcribed regions (Figure 27B), that are not normally targets for integration by HIV-1 
normally (Wang et al., 2007; Roth et al., 2011; Sowd et al., 2016). 

 

Figure 26. Relative expression levels of IN wt and the TKTK mutant integration sites. The relative expression 
is color coded as shown on the right. Integration sites expression levels of the IN wt and the TKTK mutant are 
shown as the percentage of the respective number of total sites. The absolute number of each category is shown 
in white. 

Overall, these preliminary results suggest that the choice of the integrations sites of the TKTK 
mutant is indeed redirected compared to the wt enzyme. Interestingly, since the LEDGF/p75 
binding site on IN does not involve the CTD, the mechanism responsible for this phenotype 
seems to be LEDGF/p75-independent, suggesting that it could constitute an alternative 
pathway to the classical one.  
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Figure 27. Signature chromatin features of IN wt and IN TKTK mutants integration sites. B, C Distribution of 
markers of open chromatin (panel B) and repressive chromatin (panel C) for the integration sites of IN wt (in blue) 
and the TKTK mutant (in yellow). 
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HIV-1 groups M and O originated from two independent zoonotic transmissions from 
SIVcpzPtt and SIVgor respectively (Gao et al., 1999; Heuverswyn et al., 2007; Keele et al., 
2008; D’Arc et al., 2015). This resulted in considerable levels of genetic diversity between the 
two viruses, but, beside this, no significant functional difference that could contribute to 
explain their notably different epidemiology is known. 

HIV-1 integrase is a multifunctional protein as well as one of the key viral enzymes. It is one 
of the most conserved viral proteins among all HIV-1 groups and subtypes (Li et al., 2015; 
Nagata et al., 2017). Indeed, the protein is exposed to evolutionary constraints in order to 
maintain its catalytic and non-catalytic functions while also being the partner of viral and host 

proteins. Accordingly, integrases of M and O differ for just 16% of their amino acids. They 
share the same domain organization, the same functional motifs (e.g., HHCC, DDE) 
conserved among retroviruses, and the same functionalities. On these bases, although no 
structure of IN O is available, it is expected that the overall fold would be similar to IN M. In 
support of this, most IN O/M chimeras generated in this work, are functional. Indeed, among 
the five chimeras obtained by replacing a region of IN O with the homologous one of IN M, 
only two of them (O/NTD-M/NQNQ and O/CCD1-M/NQNQ) resulted to be non-functional 
(Article Figure 2). Though, the insertion of the NKNK motif rescued the integration level of the 
NTD chimera but not that of the chimera of the first part of the CCD (Article Figure 2). These 
results indicated that the chimera of the NTD was non-functional because of the lack of 
functional motifs (carrying NQNQ at its CLA positions, and KNDQ at its NOG ones) and 
suggested that the loss of functionality of the CCD-1 chimera was related to other reasons, 
as it could be an incorrect folding. Overall, the results showing that the majority of the chimera 
were still functional, suggest a high level of structural identity between IN M and O. Knowing 
this, it is interesting to observe how the same enzyme found two different and independent 
evolutionary pathways to converge to the expression of the same phenotype in two 
phylogenetically distant context such as HIV-1 group M and group O. 

In this work, along with the identification of the motifs and their characterization, we proposed 
that their ability to functionally complement each other relies on the binding of the same 
partner thanks to the two motifs (the CLA motif in M and the NOG motif in O). More 
specifically, as it was previously proposed by Kanja and colleagues, with a negatively 
charged partner through a positively charged surface. How is the NOG motif contributing to 
the formation of such a positively charged surface without containing any positively charged 
amino acids itself? We found that Q7, G27, P41, and H44 forming the NOG motif were 
sufficient to exert the functionality, indicating that no other amino acid present in the NTD is 
necessary. However, this does not exclude the possibility that less than these four amino 
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acids are actually needed. Based on their localization, as well as the biochemical and 
structural properties, amino acids P41 and H44 might be sufficient to observe the same 
phenotype as with the four amino acids. P41, especially, could play a key role. By looking at 
the IN O predicted structure obtained with AlphaFold, we localized a positively charged 
surface in the C-ter part of the NTD, right before the linker that connects the NTD to the CTD. 
This positive surface is formed by K42, H44 and K46. These three amino acids lateral chains 
are located on the same geometrical plane forming a positive flat surface (Figure 28). 
Interestingly, K42 and K46 are present also on IN M NTD, but the surface positive charge 
appears weaker than in O. We deduced, from the comparison of the structure M and the 
prediction of the structure O, that the reason for this is to be found in the presence, in NTD 
O, of the P and the H at positions 41 and 44 respectively, that are instead occupied in group 
M by a D and a Q. The presence of the H44 is locally intensifying the positive charge, 
contributing to it with its lateral chain. The role of the P is indirect, but perhaps more 
important. 

 

Figure 28. The positive surface of NTD O. A Structure of IN O NTD (AlphaFold model) is shown in orange. Lateral 
chains of aa K42, H44, and K46 are shown in blue. A triangle with yellow border and blue transparent fill highlights 
the positive plan formed by the three amino acids. B Structure of IN M NTD (PDB 6PUT) is shown. Lateral chains 
of aa K42 and K46 are shown in blue. The same triangle formed by the three positive aa in the NTD O is reported 
here, with an arrow highlighting the displacement out of the positive surface of K46. 

While the C-ter part of IN M NTD is more structured, forming a small alpha-helix, the presence 
of the proline in the NTD O is disrupting this secondary structure resulting in the 
rearrangements of the amino acids that follow, most notably the 42-44-46 triad (Figure 28). 
Indeed, thanks to its structural characteristics, P41 is creating a turn in the NTD of IN O which 
results in the alignment on the same plane of the three amino acids (K42, H44 and K46), 
therefore forming the positive surface, and in the exposition toward the solvent side of the 
latter. Several experiments need to be conducted to validate (1) whether it is true that the 
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P41 and H44 (or even the P41 alone) are sufficient to obtain the phenotype we observe and 
(2) if the positive surface formed by K42, H44 and K46 (or just K42 and K46) is essential for 
having a functional integrase. (1) By following the same strategy employed in our work, we 
would start from the mutant M/NQKK. This mutant carries the O CLA consensus sequences, 
and it has a default of integration (Article Figure 3) that allows to screen for a gain of function 
when mutating the NOG positions, knowing that the M/QGPH/NQKK mutant has wt levels of 
integration (Article Figure 3). First, a mutant where only the two last positions of the NOG are 
mutated (M/PH/NQKK, with positions 7 and 27 occupied by the original M sequence, K7 and 
N27) can be created and assessed for its integration levels. If our hypothesis is correct (P41 
and H44 being the most important aa of the motif), we would expect to see the same 
restoration of integration levels as when the four amino acids are replaced (from 25% to 
100% relative to the wt). Otherwise, if integration efficiency is not recovered, it would mean 
that also these two amino acids (Q7 and G27) are important to form the positive surface, or 
that they might contribute in other way which we would further investigate. Similarly, to check 
the role of the P41 alone, the mutant M/P/NQKK can be assessed for integration. If integration 
would be at wt levels also in this case, this would suggest that the two lysines are sufficient 
to form the positive surface, as well as confirming the crucial role of the P in relocating them. 
(2) Similarly, IN mutants for the three amino acids contributing to the positive surface (K42A, 
H44Q, K46A), of for only the two lysins (K42A and K46A), could be prepared in a 
M/QGPH/NQKK background (or with the M/PH/NQKK or M/P/NQKK if the results will confirm 
our hypothesis), allowing to evaluate the role of these mutations through a loss of 
functionality. Mutants will be assessed for integration to check, first of all, if the positive 
surface is essential and, then, whether the contribution of the H44 is significant or not. 
Removing the K from the O positive surface is a similar strategy to the one that highlighted 
the essential role of the K in the CLA motif (M/NQNQ mutant) (Kanja et al., 2020).  

No matter the mechanism through which the interaction with the partner occurs, this partner 
must be identified. Indeed, the most likely explanation for the two functional motifs to be able 

to complement for each other is that they are interacting with the same partner. What can 
this partner be? As observed by Kanja and coworkers, the fact that the positive charges can 
be permutated among the four positions of the CLA motif suggest that the possible partner 
might have a repetitive pattern of negative charges. This feature matches with the charges of 
the backbone of a nucleic acid. Several studies showed how the positive charged amino 
acids present in IN CTD are binding to the viral RNA (Kessl et al., 2016; Elliott et al., 2020). 
This binding appears to be essential for the correct assembly/morphogenesis of the capsid 
core and the encapsidation of the genomic RNA inside it. Mutations of these amino acids 
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cause the formation of "eccentric" viral particles with the genomic RNA located outside the 
capsid core (that could be intact or affected in its assembly), leading to an unsuccessful 
infection since the vRNA would be quickly released into the cytoplasm of the infected cell 
and degraded, causing an early block of the viral life cycle. Although it is true that we did not 
check the binding affinity of our mutants to the vRNA, we believe that the defaults we 
observed do not derive from the formation of an eccentric particle. First of all, thanks to the 
results obtained with the EURT method, we can exclude the possibility that our mutants are 
affecting the formation of a regular capsid core. In the EURT experiments conducted in the 
absence of the SGP-RNA, indeed, we observed the same uncoating kinetic for the IN wt and 
the mutants. These results indicate that no abnormal capsid cores were present. Moreover, 
if the default in reverse transcription of mutant M/NQKK was caused by a default in the 
encapsidation of vRNA, by normalizing the integration products for the RTPs we would see 
no default for integration, which is not the case, meaning that the default is specific for 
integration. While the possibility that the vRNA is the motifs binding partner is not to exclude, 
it is clear that it would not be limited to this specific IN functionality during viral 
morphogenesis. Most of the effects we observed when the motifs were mutated were 
connected to steps involving either the vRNA, vDNA or the genomic DNA. In fact, both the 
CTD and the NTD have been shown to bind the vDNA (Vink et al., 1993; Engelman et al., 
1994; Puras Lutzke et al., 1994; Hare et al., 2010, 2012; Maertens et al., 2010). Therefore, the 
option that our unknown partner could be one or more of these molecules could partially 
explain our results.  

Then, of course, the partner could be a protein, either a viral protein or one of host origin. IN 
is known to interact with several viral and host proteins (van Maele et al., 2006; Raghavendra 
et al., 2010) and among them there could be the alleged partner of the functional motifs we 
identified. The interactant might also be a yet unknown partner of the integrase. If we want 
to speculate what this protein might be, based on our results, a few features can be predicted. 
Of course, it has to be a protein with a negatively charged domain and, preferentially, with a 

repetitive negative pattern. It could be an RNA/DNA binding protein (therefore with also a 
positively charged domain) that might help and/or facilitate IN in taking contact with the 
vRNA/vDNA. Also, based on the observed effect on the reverse transcription step, and 
assuming that the reverse transcription is completed inside the capsid core, the partner 
protein might be encapsidated during the formation of new viral particles.  

The two scenarios, one where the binding partner is a nucleic acid and one where it is a 
protein, are non-mutually exclusive and it can be, for example, that some of the defaults we 
are observing are coming from the possible perturbations of the IN-DNA/RNA binding, while 
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other can derive from the loss of interaction with the alleged protein partner. Have a better 
understanding of the mechanism behind the motifs and identifying the partner/s constitute a 
crucial point for the continuation of this work. Among the different experiments that can be 
performed to try to shed light on this point, there are a few that could be a good starting 
point. On one hand, IN could be purified, in either its full-length form or just the domains we 
are interested in and tested for its ability to bind nucleic acids. Moreover, the motifs could be 
wt or mutated. On the other hand, IP could be performed on IN wt vs IN mutants, to try to 
identify the possible protein partner. 

How could such a difference between the two groups have emerged in the same protein? By 
analyzing the sequence conservation at the CLA and NOG positions of different simian 
viruses we traced back the evolutionary history of the two motifs. The NOG motif sequence, 
QGPH, appears for the first time in the SIVgor (Figure 23), where it is present in all the 
analyzed sequences (although their relatively small number). We therefore supposed that this 
motif and its functionality were established in SIVgor, and that, once the virus transferred to 
humans, it did not need adaptation and was, therefore, fixed in HIV-1 group O and P (Figure 
23). However, we did not check whether or not the NOG motif might have the same essential 
role in SIVgor or in group P as it has in group O. While a SIVgor chimeric construction might 
be more difficult to test, because of the phylogenetic distance between gorillas and humans, 
an IN from group P could be tested in the same chimeric context used to test SIVcpzPtt IN. 

Although not responding directly to the question whether this motif was already functional 
and essential in SIVgor, results obtained from group P IN might help to understand the 
evolutionary scenario. In fact, if comparable results to those observed for IN O will be found, 
this would support the hypothesis that the motif functionality was indeed already present in 
SIVgor and that it was "passively" inherited by these two groups. 

The CLA motif as we know it, NKNK, contrary to the NOG, appears for the first time in 
humans, in the two groups derived from SIVcpzPtt, M and N (Figure 23). In both groups high 
conservation is present at these positions. The fact that the same conserved amino acidic 
sequence is present in both groups, despite the lack of conservation present at the same 
positions in SIVcpzPtt, is noteworthy, especially since the path to arrive to this sequence 

seems to be different for each group. In fact, while group N is most closely related to a 
SIVcpzPtt isolate carrying the NKNK sequence (EK505), group M closest isolates do not carry 
the CLA motif sequence (MB897 KKKK, LB715 KKQK) (Article Figure 4). Of course, it cannot 
be excluded that group M might have originated from an isolate carrying the NKNK sequence, 
but the fact that the motif is present and conserved in both groups (especially in group M 
considering the number of isolates existing in this group) makes it hard to believe that this 
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motif was just passively inherited. Interestingly, although the CLA motif sequence is found 
only in HIV-1 M and N groups, amino acids with similar characteristic, if not exactly the same 
ones, are often found at these positions throughout all the HIV and SIV taken in consideration. 
Surprisingly, the virus where the least conservation is found at the CLA positions is the 
precursor of the two groups carrying the NKNK sequence, the SIVcpzPtt (Figure 23). It is, for 
example, the only time a conserved N is not present at position 222. Nevertheless, by 
analyzing every single sequence of SIVcpzPtt isolates is clear that, although not conserved, 

these positions were subjected to some kind of selective pressure, allowing only certain 
amino acids to occupy these positions (N/Q and K/R are always present with only one 
exception) (Figure 29).  

 

Figure 29. Frequency of amidic and positive amino acids at the CLA positions of SIVcpzPtt. The amino acidic 
positions 222, 240, 254, and 273 are shown for SIVcpzPtt isolates. Color code is blue for positive amino acids (K, 
R) and orange for amidic amino acids (N, Q). The only amino acids not fitting in any of these two categories (T) is 
shown in black.  

As mentioned above, we hypothesize that of the four amino acids composing the NOG motif, 
only the latter two, if not only the P, might be sufficient to explain the observed phenotype. 
While this is definitely a hypothesis that we need to confirm, it is intriguing to speculate that 
what might have caused this need to adapt the amino acids present at the CLA positions in 
SIVcpzPtt is, indeed, the lack of the P41. The P is present in both SIVrcm and SIVmnd2, the 
two possible ancestors of the pol portion coding for IN of SIVcpzPtt, but not in SIVcpzPtt IN 

(Figure 23). Furthermore, the two lysins (K42 and K46) we believe are responsible to form the 
positive surface in the NTD, are also present in SIVrcm and SIVmnd2, as well as being highly 
conserved in each virus analyzed in this work. Therefore, the NTD of these viruses, thanks to 
the presence of the P41, K42 and K46 could have the same organization of NTD from group 
O and, therefore, the same functionality. However, when after cross-species transmission to 
chimpanzee the P was lost, probably as an adaptation to the new host, the K were no longer 
forming the positive platform, as is it is the case for the NTD of IN M. Therefore, with no 
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optimized NOG motif sequence and consequently no positive surface, the integrase of 
SIVcpzPtt had to adapt its CLA motif locus, and the lack of conservation found at these 
positions might reflect this evolution time frame. This hypothesis would suggest that a 
crosstalk between the NTD and the CTD of the integrase exists. Linkage constraint between 
different regions of the integrase have been previously showed, highlighting, among them, a 
link between the NTD and the CTD (Meixenberger et al., 2017). Indeed, our results also 
support a link between the two domains. In group O, a phenomenon of epistasis is observed 
of the nog locus over the cla one. Epistasis is described to be important in the evolution of 

viruses and is not new to HIV-1 (da Silva et al., 2010; Martínez et al., 2011). When the 
phenotype of a given mutation is under epistatic control, it means that the same mutation 
can have opposite effects on different genetic backgrounds (Storz, 2016). This is the case for 
the CLA motif mutation “NQNQ” that abolishes completely integration in the group M context, 
while, thanks to the epistatic effect of the NOG motif over it, it has no effect in group O (Article 
Figure 1). Epistasis can also explain the lack of evolution in O CLA motif, in fact, if the NOG 
motif was already present in the ancestor sequence, as it is the case for SIVgor, its epistatic 
effect could have affected the mutational pathway of its CLA motif, by making the beneficial 
mutations (as for example NKNK) less or not at all required. This seems to be confirmed by 
the fact that the insertion of the optimized NKNK sequence in the CLA motif positions of IN 
O does not lead to a better fitness of the protein. Similarly, the narrowing of the possible 
evolution pathways to a better phenotype and therefore the enhancement of the repeatability 
of the possible substitutions, as observed in the CLA motif of SIVcpzPtt, might be a 
consequence of epistasis. 

However, the perfect conditions for the NKNK sequence to be fixed arose only after cross-
species transmission to humans, where a strong positive selective pressure was exerted at 
these positions, selecting the NKNK sequence. This is supported by the observation that a 

SIVcpzPtt integrase mutated to carry the NKNK sequence, showed to be less functional than 
its wt (KKKK), in human cells. These results, while giving us an idea of what could have 
happened when an isolate of SIV was transferred to humans, do not really give us information 
about the role of the CLA motif in the SIVcpzPtt. This, because not only the SIV IN was tested 
in a HIV-1 context, but also in human cells. To have a better understanding of the role of the 
CLA motif in SIV we wanted to test the same SIV chimeric constructions in EB176 (JC), which 
is an EBV transformed lymphoblastoid cell line from the peripheral lymphocytes of a male 
chimpanzee. While we were able to find and obtain this cell line, we encountered severe 
obstacles in culturing them and they died before we could have the chance to perform any 
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experiment on them. This part of the project, therefore, represents another starting point for 
further explorations in the future. 

While we successfully identified the NOG motif and characterized its functionality, by showing 
that it is ensuring good levels of integration by increasing the substrate for integration (3' 
processed full RTPs), and, more indirectly, optimizing the uncoating step, a result we cannot 
yet explain is the one we obtained when 2LTRc levels were measured. Indeed, we found that 
the double mutant carrying the consensus sequences for both O motifs (M/QGPH/NQKK) 
has significantly higher level of 2LTRc relative to the wt (Figure 24). While the similar results 
obtained with mutant M/NQKK can be explained by the default in integration of this mutant, 
meaning that more linear vDNA was left as potential substrate for circularization by the 
nuclear enzymes, for the M/QGPH/NQKK, which has wt level of integration, this result is hard 
to understand. We also ruled out the possibility that this might be a group O feature by 
measuring 2LTRc levels of IN O120 and IN O206, which appear to be non-significantly 
different from the M ones (Figure 24). One possibility was that the nuclear import of this 
mutant could be more efficient, however when RTPs were measured in the cytoplasmic and 
nuclear fractions, we observed that 100% of them was located in the nuclear fractions for all 
the samples tested. Although it is true that with our protocol, we are not able to discriminate 
between what is at the nuclear membrane and what is in the nucleoplasm, it is hard to believe 
that a significant portion of the 100% could be associated with the nuclear membrane, 
especially at 24-hpt. Another possibility could be that the nuclear import difference could be 
observed at earlier time points than the one we used (24-hpt, the same at which 2LTRc are 
detected). Indeed, we tried to conduct the same experiments at 6- and 8-hpt (results not 
shown), but it was too early to detect late RTPs and early RTPs were too divergent among 
repetitions to draw any conclusion. Maybe an optimization of the protocol could solve this 
problem and finally shed light on the nuclear import kinetic of this mutant. A simpler 
explanation could be that the M/QGPH/NQKK double mutant is somehow influencing, either 
in a direct or non-direct way, the NHEJ machinery in charge of the formation of 2LTRc. While 

interactions between components of the NHEJ as Ku80 and Ku70 and the PIC (Li et al., 2001), 
and a direct interaction between IN and Ku70 (Knyazhanskaya et al., 2019) are known, they 
are believed to be essential for the chromosomal DNA repair after integration and not related 
to the formation of 2LTRc. Perhaps, the interaction of our mutant with these factors is 
affected in a way that is shifting the normal pathway to another one that leads to the formation 
of more 2LTRc. Nevertheless, it was shown that 2LTRc, especially when accumulated, as it 
is the case for the double mutant M/QGPH/NQKK, can serve as an alternative substrate for 
integration (Richetta et al., 2019). Therefore, while the mechanism behind the higher 2LTRc 
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level of this mutant are yet to be explained, they can participate to the recovery of the 
integration levels of this mutant. 

One of the main limits of our model is that it does not explain the role of the N in the CLA 
motif, focusing more on the importance of the positive surface formed by the Ks. While it is 
true that it was previously shown that the role of Ks at the CLA positions seem to be more 
relevant than the one of Ns, as observed when four K are present at the CLA positions 
(M/KKKK 100% integration of the wt) (Figure 21), on the other hand, it was also shown how 
mutating the N in non-polar or polar but not amidic amino acids, led to a total loss of the 
integration efficiency (M/LKLK 0% integration of the wt, M/TKTK 5% integration of the wt) 
(Figure 21). Therefore, although dispensable when replaced by a positively charged amino 
acids, the amidic feature of N side chain appears to be essential in the other cases. Moreover, 
by analyzing the conservation of the CLA positions, it was clear that a strong positive 
selective pressure to have a highly conserved N in position 222 is present in all the lentiviruses 
analyzed. The only exception was found in SIVcpzPtt where a K is more often found and in 

general for the CLA motif no conservation is present, yet polar amidic amino acids (N, Q) are 
often recurrent (Figure 29). 

The high level of conservation of N222 across HIV-1 and the SIV analyzed in this work, along 
the loss of integration observed when N222 and N254 of IN M were replaced by L or T, point 
out an important role of the amidic amino acids present in the CLA motif. Furthermore, when 
trying to understand if the integration default could be explained by the impaired pre-
integration steps analyzed, Kanja and colleagues found that there was indeed a correlation 
between the two when the K were mutated in the CLA motif. The expected levels of 
integration when taking in account the 2LTRc accumulation (as a marker of nuclear import) 
and the 3' processing default were perfectly correlating with the integration default observed. 
However, this was not the case for the N mutants. Both, the LKLK and TKTK, had levels of 
expected integration significantly higher than the observed ones, raising the question whether 
other pre-integration steps were affected (Table 1). Indeed, we found that the TKTK mutant 
affects the choice of integration sites. In particular, its integration sites are more often found 
to be in intergenic positions compared to wt (Table 2), while the intragenic sites are less 
frequent and more frequently found in non-transcriptionally active genes compared to the wt 
(Figure 26). These results might explain the gap between the expected and observed levels 
of integrations for the TKTK mutant. The observed integration efficiency, indeed, is measured 
thanks to the presence of reporter genes in the VLPs modified viral genome (PUROR). 
Therefore, the detection of our integration events is limited to those that are located in 
transcriptionally active regions. The expected levels of integration for the TKTK mutant can 
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therefore be explained because a significant part of the integration events occurs in regions 
where the reporter genes cannot be transcribed. Indeed, by comparing the integration events 
involving transcribed regions, which are the only ones we can detect with our system, of IN 
wt (2,669 integration events) and IN/TKTK (465 integration events), and knowing that the 
nominal MOI used for IN/TKTK was half of the wt, we can estimate an integration efficiency 
of the TKTK mutant of about 30% of the wt, which better correlates with the expected value 
found in Table 1.  

Directing of integration sites towards interior regions of gene bodies and actively transcribed 
regions are explained, by the current models, by the interaction of the CA and the IN with 
cellular factors CPSF6 and LEDGF/p75. While CPSF6 has the role of directing the PIC 
towards internal SPADs regions, LEDGF/p75 is mainly targeting the PIC in the interior regions 
of gene bodies. LEDGF/p75 binds the viral IN, through its IBD, at the CCD and at the NTD. 
Our mutant has two-point mutations in the CTD (the only domain not involved in the binding 
of this cellular factor) reducing the possibility that the binding with LEDGF/p75 could be 
affected. This suggest that the shift towards intergenic regions might be caused by other 
mechanisms, as, for example, the perturbation of the binding with another cellular factor or 
a direct role of the IN in tethering the chromatin. Indeed, depletion of LEDGF/p75 does not 
abolish the preference for the gene bodies for integration, suggesting that other factors might 
be involved in this. Another known protein with a similar role to LEDGF/p75 is HDGFL2. 
However, its role in our results could also be excluded, since this protein shares the same 
protein organization of LEDGF/p75 and is probably binding to the IN in the same way. To 
check whether the TKTK mutant binding to LEDGF/p75 is not perturbed, several methods 
can be employed. First, their binding might be directly checked via coIP of IN (wt and TKTK 
mutant) and LEDGF/p75 (wt and ∆IBD). Second, the integration sites map obtained with the 
TKTK mutant could be confronted with a map of integration sites obtained with cells infected 
in presence of LEDGINs, to check whether a correlation between the two distribution is 
present or not. 

Moreover, the TKTK mutant shows to have different preferential choices for chromatin with 
given properties albeit with an inversed trend compared to the wt (Figure 27). Indeed, its 
integration sites are less associated with signatures of the open chromatin, like H3K4me1, 
H3K27Ac and H3K36me3 (Wang et al., 2007; Roth et al., 2011; Kvaratskhelia et al., 2014; 
Sowd et al., 2016). H3K4me1 and H3K27Ac, in particular, are super-enhancer signatures that 
constitute preferential HIV-1 target sites. Although it now seems that this preference is a 
consequence of the fact that SPADs, one of the favored targets for integration, have an 
abundance of super-enhancer regions (Bedwell et al., 2021; Singh et al., 2022). H3K36me3, 
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instead, is associated with gene bodies and is induced by transcription elongation. 
Furthermore, it is the modification preferentially recognized by the PWWP domain of 
LEDGF/p75. As mentioned above, however, the TKTK mutant phenotype is likely not 
dependent on its inability to bind to LEDGF/p75. A recent study highlighted how HIV-1 
integrations sites appear to correlate more strongly with H3K36me3 associated genes, rather 
than chromatin-bound LEDGF/p75 associated genes (Singh et al., 2022). This observation 
suggest that the H3K36me3 could be the target of HIV-1 integration even in a LEDGF/p75 
non-correlated way. The existence of this kind of mechanism could explain how the TKTK 
mutant orients integration toward sites less associated with the H3K36me3 marker, despite 
its binding to LEDGF/p75 should not perturbed. Conversely, the TKTK mutans integrates 
more frequently in sites with chromatin marks such as H3K9me2/3 and H3K27me3, 
associated with heterochromatin and transcriptional repression, which are normally avoided 
by the wt (Wang et al., 2007; Roth et al., 2011; Sowd et al., 2016). 

A direct role of HIV-1 IN, and in particular its CTD, in interacting directly with chromatin and 
histone tails has been previously shown (Lesbats et al., 2011; Benleulmi et al., 2017; Matysiak 
et al., 2017; Mauro et al., 2019; Rocchi et al., 2022). Mutations in this domain, indeed, affected 
the insertion site selection based on chromatin density (Demeulemeester et al., 2014; 
Benleulmi et al., 2017). This chromatin binding was shown to be LEDGF/p75 independent, 
as it is happening also in its absence. However, the presence of LEDGF/p75 enhances the 
affinity of IN to bind chromatin and redirects the targeting (Lapaillerie et al., 2021). Overall, 
these data suggest that the IN might have a chromatin-binding functionality that is, at least 
partially, directly participating to the choice of integration site. 

A recent study showed a redirection of integration sites caused by a single point mutation in 
the IN CTD, K258R (Winans et al., 2022). This mutation causes a 10-fold shift, compared to 
wt IN, of integration sites into centromeric alpha satellite repeat sequences. To understand 
the mechanism responsible for this redirection, the authors of the study performed an 
immunoprecipitation of IN wt and IN K258R to identify the interacting host proteins by mass 

spectrometry. An enhanced binding of IN K258R was found for two factors involved in mitotic 
chromosome condensation (NCAPD3 and SMC4) and for several components of the catalytic 
core of the protein phosphatase I (PPI) complex (Winans et al., 2022), which are involved in 
heterochromatin formation and regulation at the centromere (Samoshkin et al., 2009; Leonard 
et al., 2015; de Castro et al., 2017; Wang et al., 2017). However, when co-IP, followed by 
western blot, was performed on IN wt or IN K258R and their identified binding partner 
NCAPD3, SMC4, and two PPI complex components, overexpressed in cells, no higher 
binding affinity was found for IN K258R in comparison to wt IN for these cellular factors 
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(Winans et al., 2022). Therefore, the mechanism behind this shift was not elucidated, but the 
authors assume that LEDGF/p75 is likely not involved in it, since the point mutation of their 
mutant was located in the CTD, therefore mapped outside the binding site of LEGDF/p75 on 
IN (Winans et al., 2022).  

The mechanism by which the TKTK mutant retargets integration also needs to be elucidated. 
Similarly to what Winans and colleagues did, we should clarify how much of the observed 
phenotype (shift in the integration sites) is due to a direct role of the CTD or to the potential 
disruption (caused by the two point mutations) of the interaction with a protein partner with 
a role similar to LEDGF/p75 (if not LEDGF/p75 itself). Identifying this/these cellular factor/s 
would represent one of the crucial steps for continuing this project.  

If the initial phases of the mechanism of targeting of the insertion site are known, the later 
ones, among which the contact with the host chromatin are not well characterized. At this 
regard, our results, along the same lines of those found in the literature, are going into a 
direction where the IN CTD (directly or through the interaction with cellular factors) appears 
to be responsible for the choice of integration sites, and, in particular, for the tethering of the 
chromatin. 
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Through the main project of my doctoral thesis, that was focused on the investigation of the 
role of the CLA motif in group O, we were able to highlight the existence of two group-specific 
functional motifs in groups M and O integrases that complement each other functionally: 
group M CLA motif (N222K240N254K273), located in the CTD, and group O NOG motif 
(Q7G27P41H44), located in the NTD. This result is important in the light of understanding the 
epidemiological success of group M over group O. After cross-species transmission to 
human, the genetic features of each group are what, more than other factors, probably 
determined the replication success of the isolates. The fact that group M optimized and 
selected its CLA motif as an adaptation to the new host could represent one of the several 
features that conferred to this group a replication advantage in the human host. 
Understanding these mechanisms is important to better comprehend the story behind 
important threats to human health such as the pandemic of HIV-1 group M and to be able to 
fight it with optimized tools. 

A secondary project was carried out in collaboration with Dr. Marina Lusic and her team at 
the University of Heidelberg, focusing on understanding the role of the amidic amino acids 
present in the CLA motif. The investigation on the N of the motif led to discover a new 
potentially LEDGF/p75-indipendent relevant role of the IN in the choice of the integration 
sites. Altogether, although limited to some preliminary results, this part of my PhD work 
successfully demonstrated the role of the IN CTD in the choice of integration sites. 
Understanding the mechanism behind this phenotype could open to interesting new 
perspectives in lentiviral vector-based therapy. Clearly the TKTK mutant has a severe 
integration default and it is integrating in non-transcriptionally active regions, making it 
difficult to imagine its employment for therapy. However, elucidating the mechanism for 
which HIV-1 IN choose its integration sites, could allow to "hack" it to target specific genomic 
regions in the human genome, which could drastically reduce the possibility of inducing 
insertional mutagenesis (and potentially oncogenesis) in the target cells.  

Finally, during my thesis I worked on a third project, whose objective was to understand the 

role of the CLA motif in the mechanism of uncoating of the viral core capsid. Although this 
project did not reach the level required to foresee the publication of the results obtained, it 
allowed me to gain relevant technical and theoretical knowledge on the subject. While I was 
working on it, a new wave of papers highlighting nuclear entry of intact, or almost intact, 
capsid cores came out. Hence, when the first lockdown caused by the Covid pandemic 
came, I took profit of the stop imposed to my experimental activity, to exploit my knowledge 
on the uncoating step to write a review on the subject, focusing on the recent breakthroughs 
described in the literature. The review was published in Frontiers in Microbiology and is co-
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signed with Dr. Daniela Lener and Dr. Matteo Negroni and can be found as Annex 1. A second 
aspect for which this project resulted to be instrumental for my PhD work was that it allowed 
me to transfer the skills I had acquired (e.g., EURT assay) to the latest development of the 
project that led to the Research Article presented in the results of this thesis. 
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The first step of the intracellular phase of retroviral infection is the release of the viral
capsid core in the cytoplasm. This structure contains the viral genetic material that
will be reverse transcribed and integrated into the genome of infected cells. Up to
recent times, the role of the capsid core was considered essentially to protect this
genetic material during the earlier phases of this process. However, increasing evidence
demonstrates that the permanence inside the cell of the capsid as an intact, or almost
intact, structure is longer than thought. This suggests its involvement in more aspects
of the infectious cycle than previously foreseen, particularly in the steps of viral genomic
material translocation into the nucleus and in the phases preceding integration. During
the trip across the infected cell, many host factors are brought to interact with the
capsid, some possessing antiviral properties, others, serving as viral cofactors. All these
interactions rely on the properties of the unique component of the capsid core, the
capsid protein CA. Likely, the drawback of ensuring these multiple functions is the
extreme genetic fragility that has been shown to characterize this protein. Here, we
recapitulate the busy agenda of an HIV-1 capsid in the infectious process, in particular
in the light of the most recent findings.

Keywords: HIV-1, capsid, uncoating, reverse transcription, cellular cofactors, restriction factors, genetic fragility,
nuclear transport

INTRODUCTION

Retroviral infection begins with the fusion of the viral and cell membranes, carried out by the viral
envelope proteins (Coffin et al., 1997). This causes the entry in the cytoplasm of the viral capsid
core (also simply referred here as the core), a shell constituted by approximately 1,500 copies of
the capsid protein CA. The capsid core contains the viral genomic RNA (gRNA) and protects it
from cellular sensors of innate immunity and antiviral factors. The infectious cycle requires the
reverse transcription of the gRNA to convert it into double-stranded DNA. The capsid core favors
this step by providing a confined environment where the concentration of the viral components is
high. At the moment of integration, though, the genetic material must have been released from the
core, in order to interact with, and integrate into, the chromosomes. When and how the protective
shell is dismantled is still not clear. According to the earliest models, disassembling of the core
occurred soon after its entry into the cytoplasm (Bukrinsky et al., 1993; Miller et al., 1997; Fassati
and Goff, 2001). This view has been challenged recently by an increasing number of observations
that support the idea that capsid cores remain intact or almost intact, long after their entry into
the cell, and even once in the nucleus (Burdick et al., 2020; Dharan et al., 2020; Selyutina et al.,
2020b). This implies that the core constitutes a protective shell all along the trip from entry to
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almost the occurrence of integration. This review focuses on
these aspects of viral infection: how and where the capsid
core is dismantled in the light of the latest observations and
which cellular factors, including those that control its stability,
it comes across during its longer than expected presence in the
newly infected cell.

STRUCTURAL BASES DETERMINING
THE STABILITY OF THE CAPSID CORE

The capsid core is generated by the proteolytic processing of the
Gag and Gag-Pol precursors that must free the CA protein. In
the immature budding particle, these precursors assemble with
each other to form the immature Gag lattice, a spherical protein
shell located immediately underneath the lipidic envelope of the
particle (Briggs et al., 2009). This structure is constituted by a
vast majority of Gag precursors that include, from the N to the
C terminus, the matrix (MA), the capsid (CA), the spacer peptide
1 (SP1), the nucleocapsid (NC), the spacer peptide 2 (SP2), and
peptide 6 (p6) domains (Henderson et al., 1992; Figure 1A).
Present in the lattice (at a ratio of approximately 1:20 with respect
to Gag) are some molecules of Gag-Pol precursors, that contain
MA, CA, SP1, and NC fused to the protease (PR), the reverse
transcriptase (RT), and the integrase (IN) domains (Jacks et al.,
1987; Reil et al., 1993; Figure 1A).

The structure of CA has been determined for the free
protein, showing an organization in two globular domains (the
N-terminal, NTD, and the C-terminal, CTD, domains) connected
by a flexible linker (Figure 1B). The NTD is composed of
seven alpha-helices and a beta-hairpin on the amino-terminal
side while the CTD is composed of four alpha-helices (Gamble
et al., 1996, 1997; Gitti et al., 1996). This structural arrangement
has then been confirmed also for the CA domain in the Gag
precursor (Tang et al., 2002; Schur et al., 2016; Wagner et al.,
2016b). In the immature Gag lattice, MA points toward the
exterior of the viral particle and, proceeding toward the interior,
are present the NTD and CTD of CA and the SP1 domain,
respectively (Figure 1C). Each of these domains multimerizes
forming hexamers (Wright et al., 2007; Briggs et al., 2009; Schur
et al., 2015, 2016). The interaction among CTDs of CA, stabilized
by the six-helix bundles formed by SP1, is responsible for the
formation of the immature Gag lattice, while the NTD of CA is
not strictly required for assembly and it rather has the role of
spacing the hexamers within the Gag lattice (Accola et al., 2000;
Wright et al., 2007; Briggs et al., 2009; Bharat et al., 2012; Schur
et al., 2016; Wagner et al., 2016b; Figure 1D).

Multimerization, which occurs soon after budding, activates
the viral protease, embedded in the Gag-Pol precursor. Once
activated, the PR proceeds to an ordered sequence of cuts that
cleave the Gag and Gag-Pol precursors into their individual
components (Pettit et al., 1994, 2005). For CA, the first cleavage
occurs at the junction between MA and CA. Subsequently, SP1
undergoes a conformational switch that allows the cleavage of the
CA-SP1 junction releasing the free CA protein (Pettit et al., 2005).
Once released, CA dissociates from the hexamers of the Gag
lattice and spontaneously re-assemble to reform hexamers and

form pentamers. The arrangement of CA NTD and CTD in the
hexamers of mature capsid is different from that of the hexamers
of the lattice. The orientation is inverted, with the NTDs that
point toward the center of the structure and, by interacting with
each other, stabilize the structure of the hexamer. The CTDs, in
contrast, are located toward the exterior, in a radial disposition,
and are involved in inter-hexamers interactions, holding together
the capsid core (Ganser-Pornillos et al., 2007; Byeon et al.,
2009; Pornillos et al., 2009; Zhao et al., 2013; Mattei et al.,
2016; Figure 1E). Approximately 250 hexamers are involved,
together with 12 pentamers, in the formation of the fullerene cone
structure, 120 nm long and 60 nm wide (Ganser et al., 1999; Li
et al., 2000; De Marco et al., 2010; Zhao et al., 2013; Figure 2A).
Even for a given virus, the fullerene cones can vary in number
of CA molecules, shape, and positioning of the 12 pentamers.
This variability makes this structure highly pleiomorphic, which
endows it with a certain conformational flexibility, an important
feature for a viral component that has a central role in the
interaction with several factors both of viral and of cellular origin
(Ganser-Pornillos et al., 2004; Mattei et al., 2016). Pentamers
are highly similar to hexamers in their structure, although the
pocket between the CA domains in hexamers that, as discussed
below, interacts with host factors, is unfolded in pentamers
(Figure 2B). It is therefore expected that this interaction, if
still occurring, is modified in the case of the pentamers. Also,
the interactions between the monomers are slightly different in
pentamers (Ganser et al., 1999; Cardone et al., 2009; Pornillos
et al., 2011; Mattei et al., 2016). A detailed knowledge of the
interactions established between CA monomers is important
since several cellular components specifically recognize only the
multimerized form of the protein, implying that the interactions
between CA monomers generate functional elements per se.

TURNING CELL PROTEINS INTO VIRAL
COFACTORS

The infectious cycle is strictly intertwined with the cell
components. The viral proteins, indeed, interact with various cell
proteins that can act as antiviral factors or as viral cofactors.
Among these, some have been shown to interact directly with
the capsid. They include the cyclophilin A (CypA) (Luban et al.,
1993), the cleavage and polyadenylation specificity factor 6 (F6)
(Lee et al., 2010), two proteins that are part of the nuclear pore
complex (NPC) (Nup358 and Nup153), and the transportin 3
(TNPO3) (Brass et al., 2008; König et al., 2008; Table 1).

The first intracellular protein to be described to interact with
HIV-1 CA was CypA that was identified through a two-hybrid
screening of a human cDNA library of proteins interacting with
Gag (Luban et al., 1993). Importantly, ever since this observation,
the interaction with CypA has been shown not to be specific for
HIV-1 but to be common among lentiviruses, for which it has
been documented to exist for millions of years (Katzourakis et al.,
2007; Gilbert et al., 2009; Goldstone et al., 2010; Malfavon-Borja
et al., 2013; Mu et al., 2014). CypA is a peptidylprolyl isomerase
that is incorporated in the viral particle via an interaction with
G221 and P222 of Gag (G89 and P90 in mature capsid), and it
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FIGURE 1 | Capsid forms throughout the HIV life cycle. (A) Gag and Gag-Pol precursors simplified structures. Gag precursor includes the matrix protein (MA), the
capsid (CA, depicted with the NTD in green and the CTD in magenta), the spacer peptide 1 (SP1), the nucleocapsid (NC), the spacer peptide 2 (SP2), and the
peptide 6 (p6). A frameshift during translation allows the production of Gag-Pol precursor, with a ratio of 1:20 with respect to the Gag precursor. In this structure the
NC is fused to the protease (PR), the reverse transcriptase (RT), and the integrase (IN) domains. (B) Structure of CA monomer. CA is composed of two domains
connected by a flexible linker: the NTD (in green), formed by a beta-hairpin and seven alpha-helices, and the CTD (in magenta), formed by four alpha-helices. The
CypA binding loop in the NTD is indicated. PDB ID: 6WAP (Lu et al., 2020). (C) Schematic structure of the Gag precursor composed from top to bottom of MA,
CA-NTD, CA-CTD, SP1, NC, SP2, and p6. (D) Schematic structure of a hexamer in the immature lattice, after the first proteolytic cleavage, which occurs between
SP1 and NC. The MA are attached to the membrane through their myristoylated domain. Proceeding toward the center of the viral particle there are three hexameric
structures composed by the CA-NTDs, CA-CTDs, and SP1. (E) Schematic top view of the mature capsid lattice where CA monomers are arranged in hexamers and
are connected to each other through the NTDs, while the CTDs are involved in the interactions between hexamers.

FIGURE 2 | Capsid core structure. (A) The mature capsid core has the shape of a fullerene cone, formed by 125 hexamers (in orange) and 12 pentamers (in yellow).
Image republished with permission of Nature Publishing Group (Pornillos et al., 2011). (B) Top and lateral view of pentameric and hexameric capsid assemblies. In
both structures, the NTDs (in green) are forming the inner ring while the CTDs (in magenta) are forming the external ring. The pocket present in the hexamer, at the
NTD-CTD interface (involved in the interaction with host factors, see main text) is indicated. The pocket is absent in the pentamer. PDB IDs: 5MCX, 5MCY (Mattei
et al., 2016).
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TABLE 1 | Host factors interacting with the viral capsid.

Host factor Gene Biological rolea Role in HIV-1 Infection Interaction with the capsid

Bicaudal D2 Protein BICD2 Links the dynein motor complex to
its cargos.

• Promotes the trafficking of viral cores
toward the nucleus (Dharan et al.,
2017).

Interacts with the assembled core
through its C-terminal domain (Dharan
et al., 2017; Carnes et al., 2018).

Cleavage and
Polyadenylation
Specificity Factor 6

CPSF6 One of the four subunits of the
cleavage factor Im (CFIm), required
for 3′-end RNA cleavage and
polyadenylation processing.

• Participates in the nuclear import of the
RTC/PIC complex (Chin et al., 2015;
Burdick et al., 2020).
• Involved in the choice of the integration

sites (Chin et al., 2015; Rasheedi et al.,
2016; Sowd et al., 2016; Achuthan
et al., 2018; Francis and Melikyan,
2018; Bejarano et al., 2019).

Binds the hexameric form of CA in the
nucleus at the NTD-CTD pocket (Lee
et al., 2012; Price et al., 2012, 2014;
Bhattacharya et al., 2014).

Cyclophilin A PPIA Cytoplasmatic peptidylprolyl
cis-trans isomerase involved in
proteins folding.

• Helps to maintain the stability of the
capsid core (Li et al., 2009; Setiawan
et al., 2016).
• Involved in the choice of the nuclear

import pathway (Schaller et al., 2011).
• Protection from host restriction factors

like TRIM5 (Kim et al., 2019; Selyutina
et al., 2020a; Yu et al., 2020).

Binds to the capsid core in the
cytoplasm by recognizing a conserved
loop present in the NTD of CA (Franke
et al., 1994; Gamble et al., 1996).

Extracellular
Signal-Regulated
Kinase 2

MAPK1 Serine/threonine-protein kinase part
of the MAP kinase signal
transduction pathway.

• Indirectly involved in promoting the
uncoating step since its
phosphorylation substrate is then
recognized by Pin1 (Misumi et al.,
2010; Dochi et al., 2014).

Phosphorylates the Ser16 of CA (Dochi
et al., 2014).

Fasciculation and
Elongation Protein Zeta
1

FEZ1 Kinesin-1 adaptor protein
participating in the transport of
cargos along microtubules.

• Promotes trafficking of the capsid core
toward the nucleus (Malikov et al.,
2015; Huang et al., 2019).

Binds the core at the hexamer pore
(Huang et al., 2019).

Maternal Embryonic
Leucine Zipper Kinase

MELK Serine/threonine-protein kinase
involved in many cellular pathways.

• Promotes viral uncoating (Takeuchi
et al., 2017).

Phosphorylates the Ser149 of CA
(Takeuchi et al., 2017).

MX Dynamin Like
GTPase B

MX2 Interferon-induced dynamin-like
GTPase protein located in the
peripheric region of the nucleus.

• Blocks viral nuclear entry (Dicks et al.,
2018; Kane et al., 2018).
• Reduces integration efficiency (Kane

et al., 2013; Liu et al., 2013; Matreyek
et al., 2014).

Interacts with a negatively charged
surface of CA (Smaga et al., 2019).

Non-POU Domain
Containing Octamer
Binding

NONO RNA-binding protein with various
roles in the nucleus including
transcriptional regulation and RNA
splicing.

• Restricts infection by activation of the
immune response, via cGAS, after
recognition of CA (Lahaye et al., 2018).

Binds to CA associated with the
RTC/PIC complexes in the nucleus
(Gao et al., 2013; Lahaye et al., 2013,
2018).

Nucleoporin 153 NUP153 NPC protein located in the nuclear
basket of the complex with a role in
the nucleocytoplasmic transport of
proteins and mRNAs.

• Participates in the nuclear import of the
viral complex (König et al., 2008;
Matreyek and Engelman, 2011; Di
Nunzio et al., 2012, 2013).
• Directly or indirectly involved in the

choice of the integration site (Koh et al.,
2013; Marini et al., 2015).

It interacts with the multimeric form of
CA at the NTD-CTD pocket at the
same binding site of CPSF6 (Buffone
et al., 2018; Bejarano et al., 2019).

Nucleoporin 358 RANBP2 RAN-binding protein located on the
cytoplasmatic filaments of the NPC
that promotes the nuclear import of
large cargos.

• Favors the nuclear import of the viral
complex (Schaller et al., 2011; Di
Nunzio et al., 2012; Meehan et al.,
2014; Dharan et al., 2016; Burdick
et al., 2017).
• Promotes uncoating of the capsid core

at the NPC (Bichel et al., 2013).

Binds to the NTD domain of CA via a
cyclophilin-homology domain as it
approaches the NPC (Schaller et al.,
2011).

Peptidylprolyl Cis/Trans
Isomerase,
NIMA-Interacting 1

PIN1 Peptidyl-prolyl cis/trans isomerase
that specifically binds to
phosphorylated ser/thr-pro motifs.

• Participates in the uncoating step
(Misumi et al., 2010).

Recognizes the phosphorylated Ser16
of CA (Misumi et al., 2010).

Transportin 1 TNPO1 Involved in nuclear protein import
as a receptor for nuclear
localization signal.

• Involved in keeping the correct stability
of the capsid core (Fernandez et al.,
2019).
• Helps the viral nuclear import

(Fernandez et al., 2019).

Binds to the CypA binding-loop
(Fernandez et al., 2019).

(Continued)
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TABLE 1 | Continued

Host factor Gene Biological rolea Role in HIV-1 Infection Interaction with the capsid

Transportin 3 TNPO3 Beta-karyopherin protein involved
in the nuclear import of
serine/arginine-rich (SR) proteins.

• Participates in the nuclear import step
(Christ et al., 2008; Logue et al., 2011).
• Involved in post-nuclear entry steps

(Valle-Casuso et al., 2012; Shah et al.,
2013).
• Favors infection by participating in the

nuclear localization of CPSF6 (De Iaco
et al., 2013; Fricke et al., 2013).

Even if TNPO3 is also found in the
cytoplasm, it most likely interacts with
CA in the nucleus (Valle-Casuso et al.,
2012; Shah et al., 2013).

Tripartite Motif
Containing 5

TRIM5 Member of the tripartite protein
family (TRIM) located in the
cytoplasm of the cell where it
autoassembles in cytoplasmic
bodies.

• Affects the stability of the capsid core by
either reducing it (Stremlau et al., 2006;
Roa et al., 2012) or increasing it (Lu et al.,
2015; Quinn et al., 2018).
• Induces CA degradation via the

proteasome (Lukic et al., 2011; Danielson
et al., 2012; Kutluay et al., 2013) and/or the
autophagy pathway (O’Connor et al., 2010;
Mandell et al., 2014; Keown et al., 2018).

Forms a net around the intact capsid
core in the cytoplasm by binding near
or at the CypA binding site on CA
(Quinn et al., 2018; Kim et al., 2019;
Selyutina et al., 2020a; Yu et al., 2020).

aAdapted from RefSeq.

is found with a stoichiometry of approximately 1:10 (CypA:Gag)
(Franke et al., 1994; Braaten et al., 1996b). Despite the fact that
CypA is packaged in the viral particle from the infected cell,
which could suggest that it plays a role at the level of the producer
cells, it has been shown that it is the interaction between CA and
the CypA molecules present in the target cells to be the major
determinant for the effect exerted by CypA on HIV-1 infection
(Hatziioannou et al., 2005). CypA interacts with the capsid core
in two different ways. On one hand, the active site interacts with
G89 and P90 of the P85VHAGPIAP93 loop (Gamble et al., 1996;
Figure 1B) and, due to its isomerase activity, could destabilize
the core (Braaten et al., 1996a,b; Bosco et al., 2002; Ylinen et al.,
2009). On the other hand, other parts of the protein contact
the hexamer interface and, bridging hexamers, likely stabilize the
capsid core (Liu et al., 2016; Ni et al., 2020). Indeed, the effect
of CypA on infection is to alter the stability of the capsid core,
albeit the results are rather controversial since, depending on the
cell type, it has been shown either to increase or to decrease it (Li
et al., 2009; Setiawan et al., 2016). However, since mutating the
CypA binding site on CA or the use of cyclosporin A (CsA), a
drug that competes with the CA for CypA binding, both severely
interfere with HIV infectivity (Franke et al., 1994; Braaten et al.,
1996b) it appears that the virus relies on the interaction with
this cellular cofactor to reach the optimal stability of the core.
Another role of CypA during infection is to avoid the recognition
by the tripartite motif (TRIM) containing protein TRIM5 of the
capsid core either by inducing a conformational change through
its isomerase activity or by steric hindrance (Kim et al., 2019; Ni
et al., 2020; Selyutina et al., 2020a; Yu et al., 2020). Finally, the
interaction between CA and CypA also appears to regulate the
pathway of nuclear import of the reverse transcription and/or
pre-integration complexes (RTC/PIC) that differs, according to
whether CypA interacts with CA or not (Schaller et al., 2011).

Many cytoplasmic factors interact with the capsid core, on
its way to the nucleus. Bicaudal D2 protein (BICD2) and the
fasciculation and elongation protein zeta 1 (FEZ1) are two

dynein adaptor proteins, required for HIV-1 infection, that
interact with HIV-1 assembled multimeric cores (Malikov et al.,
2015; Dharan et al., 2017; Carnes et al., 2018; Huang et al.,
2019). Their depletion results in impaired cytoplasmic trafficking,
uncoating, and nuclear import (Dharan et al., 2017; Huang
et al., 2019). Uncoating has also been shown to be influenced
by other host factors, as Pin1, MELK, ERK2, and TRN-1.
Pin1 is a peptidyl-prolyl isomerase that facilitates HIV-1 core
disassembly by interacting with the phosphorylated Ser16-Thr17
motif (Misumi et al., 2010). Responsible for the phosphorylation
of Ser16 is the extracellular signal-regulated kinase 2 (ERK2), a
cellular factor that is incorporated in the viral particle through
its interaction with CA (Dochi et al., 2014). Another kinase
involved in destabilizing the viral capsid, in this case through
phosphorylation of Ser149, is the maternal embryonic leucine
zipper kinase (MELK). The mutant where Ser149 is replaced
by the phosphor-mimetic amino acid Glu undergoes premature
disassembly of the capsid core and is impaired in nuclear import
of the reverse transcription products (Takeuchi et al., 2017).
Finally, β-karyopherin transportin 1 (TRN-1) recognizes the
CypA binding site with high affinity and it can displace CypA
from its association to the core. Knock out of TRN-1 leads to
reduced infection and premature uncoating (Fernandez et al.,
2019). Overall, the trend observed with these factors indicates
that they are required in order to maintain in balance the subtle
equilibrium between uncoating and retention of a closed capsid
required to accomplish infection. Defects in nuclear import
observed by depleting these factors appear to be a consequence
of alteration of capsid uncoating rather than a direct interference
with the import process.

Nuclear pore complex proteins regulate trafficking between
the nucleus and the cytoplasm in eukaryotic cells (Strambio-
De-Castillia et al., 2010; Labokha and Fassati, 2013). Two of
these proteins are well-characterized interactants of HIV-1 CA:
Nup153 and Nup358 (also known as RANPB2) (Brass et al.,
2008; König et al., 2008). Nup358 is associated with filaments
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that stem from the pore into the cytoplasm and it promotes the
recruitment of nuclear import cargos (Hutten et al., 2009). It
contains a cyclophilin-homology domain that is responsible for
the interaction with CA (Schaller et al., 2011). As CypA, Nup358
has a cis-trans prolyl isomerization activity through which it
can promote capsid core uncoating by catalyzing isomerization
of CA (Bichel et al., 2013). This suggests that uncoating of the
viral core could occur, at least partially, at the nuclear pore,
once docked onto Nup358. Accordingly, depletion of Nup358
severely affects HIV-1 nuclear import, with a reduction of the
amount of RTC/PIC docked at the NPC (Zhang et al., 2010;
Schaller et al., 2011; Di Nunzio et al., 2012; Meehan et al.,
2014; Dharan et al., 2016; Burdick et al., 2017). Nup153 is one
of the components of the nuclear basket involved in the NPC
formation and Nups recruitment (Vollmer et al., 2015). Through
its C-terminal domain it binds the NTD-CTD pocket of CA
(Buffone et al., 2018; Bejarano et al., 2019) and it favors its
translocation into the nucleus (König et al., 2008; Matreyek and
Engelman, 2011; Di Nunzio et al., 2012, 2013). Its depletion
also alters the choice of the sites of integration (Koh et al.,
2013; Marini et al., 2015). Since Nup153 binds CA hexamers
with high affinity compared to monomeric CA (Matreyek and
Engelman, 2011; Di Nunzio et al., 2012; Buffone et al., 2018), this
translocation likely involves capsid cores that, if not intact, are at
least partially assembled.

Another cellular protein interacting with CA is CPSF6, a pre-
mRNA splicing factor, and a member of the serine/arginine-rich
protein family (Rüegsegger et al., 1998). CPSF6 is part of the
cleavage factor I (CFIm), together with CPSF5 and CPSF7, but
its activities related to HIV-1 do not involve the other proteins
of the complex (Rasheedi et al., 2016). CPSF6 binding site on
CA is bipartite as CPSF6 binds at the N-terminal region of
CA monomers but also at the NTD-CTD pocket of adjacent
monomer on CA hexamers (Lee et al., 2012; Price et al., 2012,
2014; Bhattacharya et al., 2014). CPSF6 was initially identified to
be relevant for HIV-1 infection through the functional screening
of a mouse cDNA expression library that led to the isolation
of a truncated form of CPSF6 (CPSF6-358) inhibiting HIV-1
replication (Lee et al., 2010). The truncation removes in CFSP6-
358 the C-terminal arginine-serine like domain (RSLD) that
is required for its nuclear import by transportin 3 (TNPO3)
(Jang et al., 2019). As a consequence, the two forms of CPSF6
display different localizations inside the cell, with CPSF6 being
predominantly nuclear while CPSF6-358 is found exclusively in
the cytoplasm (Lee et al., 2010). This difference is responsible
for the antiviral effect exerted exclusively by CPSF6-358 that
blocks HIV-1 infection by interacting with the capsid core in the
cytoplasm and preventing nuclear import (Lee et al., 2010). The
integral form of CPSF6, in contrast, favors HIV-1 infection. Its
effect is dependent on the cell type considered. Indeed, CPSF6 is
an important factor in primary CD4+ T cells and macrophages,
where it directs integration toward euchromatin regions, and its
deletion leads to an accumulation of RTC/PIC complexes at the
nuclear pore and integration in chromatin regions close to the
nuclear pore (Chin et al., 2015; Rasheedi et al., 2016; Sowd et al.,
2016; Achuthan et al., 2018; Francis and Melikyan, 2018; Bejarano
et al., 2019; Burdick et al., 2020). These effects are not observed

in HeLa or HEK 293T cells (Lee et al., 2010; Kane et al., 2018;
Bejarano et al., 2019). The CPSF6 binding site on CA appears
to overlap the region recognized by the nuclear pore protein
Nup153, important for HIV-1 nuclear import, as discussed above,
implying a competition for CA binding that could favor, once
imported in the nucleus, the release from Nup153 to allow
CPSF6 binding and its translocation into deeper nuclear regions
(Bejarano et al., 2019).

Transportin 3 is a β-karyopherin that transports
serine/arginine-rich splicing factors in the nucleus (Kataoka
et al., 1999; Lai et al., 2000). It binds to HIV-1 CA and its
depletion affects HIV-1 infection (Christ et al., 2008; Krishnan
et al., 2010; Logue et al., 2011; Zhou et al., 2011; Valle-Casuso
et al., 2012; Shah et al., 2013). The role of TNPO3 in HIV-1
infection is still debated. Some studies suggest a role in nuclear
import (Christ et al., 2008; Logue et al., 2011) while others
rather suggest an implication in post-nuclear import, but prior
to integration (Zhou et al., 2011; Valle-Casuso et al., 2012; Shah
et al., 2013). However, TNPO3 is also responsible for the nuclear
import of CPSF6 (De Iaco et al., 2013; Maertens et al., 2014; Jang
et al., 2019) which, in HIV-1 infection, favors nuclear transport,
as discussed above. It is therefore possible that the effects on
HIV-1 infectivity attributed to TNPO3 are not only direct but
also a consequence of the effect of TNPO3 on CPSF6 (De Iaco
et al., 2013; Fricke et al., 2013). In support of this view is the
observation that another effect of the depletion of TNPO3 is a
change in the choice of the integration sites (Ocwieja et al., 2011),
which is the same phenotype observed when depleting CPSF6.

Besides assisting various steps of the infectious process from
the mechanistic standpoint, as capsid uncoating or nuclear
translocation, these host factors also have a role in the escape
from innate immunity. For example, infection by viruses with
mutated CA that no longer interact with several of these factors
(CPSF6, CypA, and Nup358), triggers an interferon-mediated
antiviral response in human monocyte-derived macrophages
(Rasaiyaah et al., 2013). Consequently, the capsid is subject
to positive selection for maintaining the interaction with these
proteins. At the same time, it is also the target of several cellular
factors endowed with antiviral activity, from which it has to
escape, adding a layer of selective pressure. The most well-
characterized of these factors are constituted by a member of
the tripartite motif-containing proteins family TRIM5 (Stremlau
et al., 2004), the myxovirus resistance gene A and B (MxA and
MxB) (Liu et al., 2013), and the non-POU domain-containing
octamer binding protein (NONO) (Lahaye et al., 2018; Table 1).

ANTIVIRAL FACTORS TARGETING THE
CAPSID

An important cellular antiviral factor directed against the
capsid is TRIM5α. TRIM5α was isolated from rhesus macaque
(TRIM5αrh) in the context of studies aimed at understanding
the reasons for the inability of HIV-1 to establish productive
infections in Old World monkey cell lines (Shibata et al., 1995;
Hofmann et al., 1999; Besnier et al., 2002; Cowan et al., 2002).
Independently, a variant of this protein (TRIMCyp), exclusive
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to owl monkeys, was identified for its ability to confer the same
phenotype of restriction to HIV-1 infection (Sayah et al., 2004;
Stremlau et al., 2004). In both cases, the viral target was identified
to be the capsid and, in particular, the assembled core rather than
the monomeric form of CA (Cowan et al., 2002; Hatziioannou
et al., 2004; Stremlau et al., 2006).

As members of the TRIM family, TRIM5αrh and TRIMCyp
are composed of a N-terminal tripartite motif constituted by
the RING domain, a B-box 2 domain, and a coiled-coil domain
(Reymond et al., 2001). The TRIM is followed by a C-terminal
domain: cyclophilin A in TRIMCyp, and the PRYSPRY in
TRIM5α. These domains bind the CA protein at or near the
CypA-binding domain (Figure 3; Quinn et al., 2018; Kim et al.,
2019; Selyutina et al., 2020a; Yu et al., 2020). TRIM5α and
TRIMCyp dimerize through the coiled-coil domain, which places
the two B-box 2 domains at each extremity of an antiparallel
dimer. The B-box 2 domain can form trimers allowing the
formation of a network of hexamers. These hexamers can
assemble into a hexagonal lattice around an incoming retroviral
capsid core, in which the C-terminal domains interact with the
capsid (Sebastian and Luban, 2005; Li et al., 2016; Wagner et al.,
2016a; Quinn et al., 2018; Yu et al., 2020). If the mechanisms
of binding of TRIM5 to the capsid core are well understood,
by which means it restricts HIV-1 infection is still debated.
Some studies suggest that the ability of the protein to form a
net around the capsid is sufficient to perturb the capsid core
stability and, therefore, infectivity. The net would either induce
the destabilization of the capsid core, resulting in a premature
and non-productive uncoating (Stremlau et al., 2006; Zhao et al.,
2011; Roa et al., 2012), or increase its stability by reducing the
intrinsic flexibility of the core and of the CypA-binding loop in
particular (Lu et al., 2015; Quinn et al., 2018). In both cases,
infectivity would be perturbed. Other works indicate alternative
pathways, activated by TRIM5α, to degrade the capsid core,
as the recruitment of the proteasome, thanks to the ability of
TRIM5α to undergo self-ubiquitylation, thanks to the RING
domain (Fletcher et al., 2018) while associated to the capsid core
(Lukic et al., 2011; Danielson et al., 2012; Kutluay et al., 2013)
or by inducing selective autophagy of the capsid core (O’Connor
et al., 2010; Mandell et al., 2014; Keown et al., 2018). However,
neither blocking the proteasome nor the pathways leading to
autophagy abolishes the restriction activity of TRIM5α suggesting
that several, non-exclusive, pathways are activated in response
to the recognition of the viral core (Perez-Caballero et al., 2005;
Anderson et al., 2006; Diaz-Griffero et al., 2006; Wu et al., 2006;
Kutluay et al., 2013; Imam et al., 2016; Keown et al., 2018).

The wealth of information concerning the restricting function
of TRIM5α comes primarily from studies of the rhesus monkey
protein. Indeed, the human ortholog of TRIM5α does not
block HIV-1 infection in cell lines (Hatziioannou et al., 2004;
Stremlau et al., 2004; Yap et al., 2004), although it protects
human cells from the infection by some non-human retroviruses
(Hatziioannou et al., 2004; Keckesova et al., 2004; Perron et al.,
2004; Yap et al., 2004). Furthermore, a stabilized form of TRIM5α,
obtained by producing a fusion protein with mCherry, protects
human T cells in humanized murine models of HIV-1 infection
(Richardson et al., 2014). Human TRIM5α is also involved in

FIGURE 3 | Interaction between TRIM and the capsid. TRIM5α and TRIMCyp
are represented in their dimeric form. Each monomer (in orange and in blue) is
formed by the RING domain, the B-Box 2 domain, the coiled-coil domain and
the C-terminal domain which is the one responsible for the interaction with the
capsid core. In TRIM5α this domain is the PRYSPRY domain while in
TRIMCyp is CypA.

IFNa-induced inhibition against HIV-1 infection (Kane et al.,
2016; OhAinle et al., 2018; Jimenez-Guardeño et al., 2019).
In fact, high levels of IFNa activate the immunoproteasome,
inducing a rapid turnover of TRIM5α that, being bound to the
capsid core, drives to its degradation blocking viral replication
(Jimenez-Guardeño et al., 2019).

The weak restriction of HIV-1 by human TRIM5α is suggested
to be due to inefficient recognition of the capsid core (Stremlau
et al., 2005; Yap et al., 2005; Merindol et al., 2018). The fact
that the binding site of CypA on capsid cores overlaps (at least
partially) the region bound by TRIM5α could lead to competitive
inhibition of binding of TRIM5α, contributing to the inefficient
recognition of the core by TRIM5α (Kim et al., 2019; Selyutina
et al., 2020a; Yu et al., 2020). The lack of effectiveness of the
human TRIM5α protein against infection with the human variant
of the virus may reflect the recent exposure of humans to this
virus. Alternatively, it could be imagined that HIV possesses a yet
to be defined activity that counteracts that of TRIM5α.

The human myxovirus resistance (Mx) B protein (MxB, also
known as Mx2) is an important anti-HIV factor that targets the
viral capsid (Goujon et al., 2013; Kane et al., 2013; Liu et al., 2013;
Matreyek et al., 2014). It is a dynamin-like GTPase, a family of
proteins highly conserved in all vertebrates (Verhelst et al., 2013).
MxB is constituted by a globular GTPase domain, a C-terminal
stalk domain, a bundle signaling element (BPE), and a non-
structured N-terminal domain (Gao et al., 2011). It localizes on
the cytoplasmic side of the nuclear envelope, near the NPC (King
et al., 2004). This antiviral factor is effective against herpesvirus,
murine cytomegalovirus (MCMV), and HIV-1 (Goujon et al.,
2013; Kane et al., 2013; Liu et al., 2013; Crameri et al., 2018;
Jaguva Vasudevan et al., 2018; Schilling et al., 2018). In the
N-terminal domain of MxB there is a positively charged motif,
the 11RRR13 motif, that recognizes a negatively charged surface
highly conserved among lentiviral capsid cores (Smaga et al.,
2019). This interaction is responsible for the restriction of the
infection (Goujon et al., 2015; Schulte et al., 2015) that, depending
on the experimental conditions used, has been attributed either
to a decrease of nuclear import of the RTC/PIC complexes by
interfering with nuclear pore associated proteins (Dicks et al.,
2018; Kane et al., 2018) or to a decrease of integration levels
(Kane et al., 2013; Liu et al., 2013; Matreyek et al., 2014). Finally, a
possible implication of MxB in the restriction response of the host
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restriction factor SAMHD1 has been recently suggested although
it is still not clear how this is exerted (Buffone et al., 2019).

Another host factor with anti-HIV-1 activity related to
targeting the viral capsid is the non-POU domain-containing
octamer-binding protein (NONO), a member of the Drosophila
behavior/human splicing (DBHS) family. The proteins of this
family are characterized by the presence of two N-terminal
RNA recognition motifs (RRMs), a NonA/paraspeckle domain
(NOPS), and a C-terminal coiled-coil domain (Knott et al., 2016).
NONO is a nuclear protein and has both RNA- and DNA-
binding properties and it is involved in the activation of the innate
immune response in dendritic cells and macrophages upon HIV
infections, with a more efficient response against HIV-2 than
HIV-1 (Lahaye et al., 2018). In the nucleus, NONO binds CA
associated with the RTC/PIC complexes, and its restriction effect
is exerted through the DNA sensor cyclic GMP-AMP synthase
(cGAS), which activates the innate immune response by sensing
the viral double-stranded DNA (Gao et al., 2013; Lahaye et al.,
2013, 2018). Without NONO, cGAS is found in the cytosol and it
does not activate the immune response (Lahaye et al., 2018).

THE VIRAL UNCOATING STEP AND THE
IMPORTANCE OF ITS TIMING

The timing of dismantling of the viral capsid is a crucial aspect
for a successful infection since premature disassembly would
expose the components of the reverse transcription complex to
the antiviral responses of the host cell and it would dilute the viral
components by releasing them into the cytoplasm. On the other
hand, the delayed dismantling of the capsid core could affect the
process of integration by sequestering the reverse transcription
products. To date, not only when and where reverse transcription
and dismantling of the capsid core occurs is still an open question,
but it is even still debated if and how the two processes are
connected. Indeed, while some works show that DNA synthesis
promotes uncoating (Hulme et al., 2011, 2015; Yang et al., 2013;
Cosnefroy et al., 2016; Francis et al., 2016; Mamede et al., 2017;
Rankovic et al., 2017), others show that the inhibition of reverse
transcription neither affects uncoating nor the nuclear import of
the RTC/PIC (Lukic et al., 2014; Burdick et al., 2017; Bejarano
et al., 2019; Selyutina et al., 2020b).

Answering these questions is technically challenging, though.
A major difficulty comes from the intrinsic properties of
the capsid cores, discussed above, that is at the origin of
the generation of polymorphic capsid cores, most of which
intrinsically unstable and, therefore, non-infectious (Thomas
et al., 2007; Mattei et al., 2016). It is, in fact, considered that only
a minority of viral particles entering the cell leads to successful
infection, while the majority is constituted by defective cores
that undergo proteasomal degradation. The earliest studies on
the capsid were mostly based on the biochemical tracking of the
intact capsid in the infected cell. These analyses, consequently,
followed the fate of the capsids at the “population” level and
documented a rapid dismantling of the capsid after entry into
the cell. The minority of stable capsids that, according to recent
data, is responsible for productive infection, was not detected.

FIGURE 4 | Models for the timing of uncoating. HIV-1 enters the cell after
recognition by the envelope glycoproteins of the cellular receptor CD4 (in gray)
and the cellular co-receptor CXC4 or CCR5 (in black). This leads to the fusion
of the cell and viral membranes and to the release of the capsid core in the
cytoplasm. In the figure, the three models of uncoating covered in this review
are depicted: the cytoplasmic uncoating (on the left), the uncoating at the
nuclear pore complex (NPC) (in the center), and the nuclear uncoating (on the
right). In each model the reverse transcription of the viral genomic RNA (vRNA)
(in red) into viral DNA (vDNA) (in green) has to be completed, allowing its
integration in the host genome (in blue). The reverse transcription complex
(RTC) is schematically shown as the association of a molecule of reverse
transcriptase (RT, in purple) to the vRNA and single-stranded vDNA. The
completed vDNA forms the pre-integration complex (PIC), shown as the
double-stranded vDNA bound to a tetramer of integrase (IN, in orange).

The advent of techniques that allow following, by different means,
the individual capsids has permitted focusing on the minority of
capsids that persist in the cell changing our view of the timing of
uncoating of the particles relevant for productive infection. The
different scenarios that have been depicted for the dismantling of
the capsid core are recapitulated hereafter.

Cytoplasmatic Disassembly
According to the earliest models, uncoating occurs in the
cytoplasm, soon after viral entry (early cytoplasmic disassembly)
(Miller et al., 1997; Fassati and Goff, 2001). This model was
supported by biochemical studies showing the lack of detectable
CA in the cytoplasm (Bukrinsky et al., 1993; Miller et al., 1997;
Fassati and Goff, 2001). However, increasing evidence showing
the presence of CA and/or capsid cores in the cytoplasm of the
infected cells has subsequently challenged this view (McDonald
et al., 2002; Forshey et al., 2005; Shi and Aiken, 2006; Stremlau
et al., 2006; Kutluay et al., 2013; Yang et al., 2013). It has thus
been proposed that uncoating still occurs in the cytoplasm (Miller
et al., 1997; Fassati and Goff, 2001) but delayed with respect
to viral entry (late cytoplasmic disassembly) and coupled with
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FIGURE 5 | Relay race of the capsid core in the host cell. From left to right a temporal view of how CA is passed between host factors in its trip toward the nucleus.
The capsid core is schematically represented as a purple triangle with two host factors binding sites highlighted: the CypA binding-loop (the circle) and the NTD-CTD
pocket (the square). The first to bind to the core is CypA, which recognizes the CypA-binding domain, located in the CA-NTD. The same binding site is recognized
by Nup358 and its binding anchors the capsid core at the NPC, allowing its nuclear import. Then, Nup153 binds to the NTD-CTD pocket of the assembled capsid,
which is the same recognition site of CPSF6. When CPSF6 takes the place of Nup153 on the binding site it can translocate the capsid core (intact or not) to deeper
nuclear regions.

reverse transcription (Hulme et al., 2011; Cosnefroy et al., 2016).
A longer presence of an assembled capsid in the cytoplasm
appeared also more plausible since it accounted for the protective
role of the capsid from the exposure of the viral genome to
host restriction factors and to the potential activation of the
IFN-mediated antiviral response (Iwasaki, 2012). To date, it is
accepted that uncoating in the cytoplasm concerns a fraction
of the infecting particles and that, in general, it is only partial,
with capsid hexamers that remain associated with the RTC/PIC
complex, where they exert important functions in late steps of
the infectious cycle (see below).

Disassembly at the Nuclear Pore
As lentiviruses, unique among retroviruses, are able to infect
non-replicating cells, entry into the nuclear compartment must
proceed through the nuclear pore. Since the capsid core is larger
than the nuclear pore, it was considered that the intact capsid
could not be imported into the nucleus and, rather, it was
blocked once docked at the level of the NPC (Arhel et al., 2007;
Matreyek and Engelman, 2011; Schaller et al., 2011; Burdick et al.,
2017; Francis and Melikyan, 2018; Francis et al., 2020; Zurnic
Bönisch et al., 2020). Uncoating would then occur in situ, before
import of the RTC/PIC could be possible. In support of this view
came the measure of the time of residence of the viral complex
at the nuclear pore that, for HIV-1, spans between 30 and
90 min (Burdick et al., 2017; Francis and Melikyan, 2018). Since

macromolecular complexes of sizes similar to the RTC/PIC of
HIV-1 have very short times of nuclear entry and a total binding
time to the NPC of few milliseconds (Kelich et al., 2015), it was
inferred that the longer time observed for HIV reflected the need
for the capsid core to be dismantled and release the RTC/PIC.
This way, the capsid core would protect the RTC/PIC from
exposure to the proteasome until it has reached the proximity of
the point of entry into the nucleus (Francis and Melikyan, 2018).

Nuclear Disassembly
Increasing evidence, though, supports the possibility that, despite
the apparent incompatibility in terms of size, the capsid core
enters the nucleus intact or almost intact, and disassembles
only once inside it. It has indeed been shown that several host
factors interact, at the nuclear level, with the assembled capsid
rather than CA monomers (Matreyek and Engelman, 2011;
Di Nunzio et al., 2012; Valle-Casuso et al., 2012; Chin et al.,
2015; Buffone et al., 2018; Bejarano et al., 2019). Furthermore,
assuming that uncoating is favored by reverse transcription
(Hulme et al., 2011, 2015; Cosnefroy et al., 2016; Francis et al.,
2016; Mamede et al., 2017; Rankovic et al., 2017), if it constitutes a
requirement for nuclear import of the RTC/PIC, blocking reverse
transcription would be expected to affect nuclear import. This
was not the case though, while increasing evidence supports a
model where reverse transcription is completed only once in the
nucleus (Burdick et al., 2017, 2020; Francis and Melikyan, 2018;
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Bejarano et al., 2019; Dharan et al., 2020; Francis et al., 2020;
Rensen et al., 2020; Selyutina et al., 2020b). The most compelling
evidence in favor of the idea that uncoating can occur in the
nucleus then came from a series of recent works (Burdick et al.,
2020; Dharan et al., 2020; Selyutina et al., 2020b). By labeling the
capsid core with the GFP, producing a GFP-CA fusion protein,
Burdick and coworkers observed that the core enters the nucleus
while still intact (or almost intact), that reverse transcription
is completed, and, finally, that uncoating occurs close to the
integration sites approximately 1.5 h before integration (Burdick
et al., 2020). In a concomitant work, Dharan et al. (2020)
employed an inducible blockade of nuclear import at different
time points and then evaluated the fate of the capsid cores that
had entered the nucleus. In this setting, two main observations
were made. One was that the completion of reverse transcription,
as inferred by sensitivity to treatment with an inhibitor of reverse
transcription, was posterior to nuclear import. The second
observation was that, even after blocking nuclear import, the
infection was susceptible to treatment with PF74. Since this
compound inhibits infection through binding specifically the
interface between CA monomers, these observations indicated
that assembled (or partially assembled) capsid cores were present
in the nuclear fraction. Finally, the observations that uncoating
and reverse transcription are completed in the nucleus, have
also been confirmed by the biochemical analyses of the purified
cytosolic and nuclear fractions in infected cells by Selyutina et al.
(2020b).

These various models of dismantling of the capsid core are
not mutually exclusive and it is possible that, depending on
the cell type considered, the relative predominance of one or
the other scenario is found. Might this be under the form of
RTC/PIC deprived of CA, of a partially dismantled or of an intact
capsid core, the viral element containing the genetic material
must however, be translocated across the nuclear pore of the
cell (Figure 4).

GETTING INTO THE NUCLEUS,
SOMEHOW

The main nuclear import pathway of HIV-1 appears as a relay
race where the capsid core is passed from CypA to Nup358,
which passes it across the nuclear pore to Nup153 that will finally
pass it to CPSF6 (Figure 5). However, alternative pathways exist.
Mutants N74D and A77V of CA, identified for their less efficient
binding to CPSF6 no longer require CypA, Nup153, Nup358, and
TNPO3 (Lee et al., 2010; Schaller et al., 2011; Ambrose et al.,
2012; Saito et al., 2016; Buffone et al., 2018). Despite this, they
retain levels of infectivity comparable to those of the wt viruses,
in primary cells. This suggests that, in these cells, alternative
pathways are favored by these mutations. Concomitantly, these
mutations induce uncoating at the nuclear pore and shift the
integration sites to perinuclear regions (Burdick et al., 2020), in
line with studies that show the importance of CPSF6 for nuclear
import and the choice of the integration sites (Chin et al., 2015;
Rasheedi et al., 2016; Sowd et al., 2016; Achuthan et al., 2018;
Francis and Melikyan, 2018; Bejarano et al., 2019). Along the

same lines, blocking transport across the nuclear pore by an
inducible NPC blockade (Dharan et al., 2020), neither abolished
nuclear import of the capsid nor blocked infection, indicating
that nuclear pores can present a heterogeneous composition
of nucleoporins and that factors alternative to the canonical
Nup153, Nup358, and TNPO3 can also be used by the virus to
achieve integration, in accordance with previous observations
(Dicks et al., 2018; Kane et al., 2018). It is tempting to speculate
that the use of these alternative factors is indicative of ancestral,
less efficient, pathways at the expense of which the current
canonical pathways of infection have evolved. On this note, the
interaction between CA and CPSF6 seems to be preserved by
selective pressure in vivo (Henning et al., 2014; Saito et al., 2016).
This shift in the nuclear entry pathway would be a consequence of
the use of previously unemployed cellular cofactors that allowed
to optimize various steps of the infectious cycle and to improve
escape from innate immunity.

Size also matters for nuclear import. Depending on where
disassembly occurs (Figure 4), the nature and, consequently, the
size of the complex that must cross the nuclear barrier changes
considerably. The intact capsid core is around 60 nm wide (Briggs
et al., 2003) while the nuclear pore is no larger than 40 nm
(Von Appen et al., 2015). As discussed above this incongruence
has long been considered a reason to exclude the possibility
that the intact capsid core can be imported into the nucleus.
Recently, by using a new method of visualization of capsid cores,
based on immunogold labeling, Blanco-Rodriguez et al. (2020)
showed that the capsid core undergoes important structural
rearrangements before, during, and after nuclear import, leading
to the formation of a pearl necklace-like shape that decorates
the reverse transcribed DNA. The CA molecules, present in
this structure that is considerably less wide than the intact
capsid, could more easily mediate nuclear import. The possibility
that structural rearrangements also involve the nuclear pore
counterpart has been foreseen. Indeed, the NPC displays a
marked structural flexibility that can be involved in the passage
of large complexes as viral capsids (Knockenhauer and Schwartz,
2016; Mahamid et al., 2016). Furthermore, recent measurements
of the inner diameter of the NPC by using cryo-EM on intact
infected T cells have estimated a width of the internal channel
of the pore of 64 nm, thereby slightly larger than the capsid core
(Zila et al., 2021). The structure of the nuclear pore was dilated
rather than rearranged with respect to previous observations
made on HeLa cells where the canal appeared considerably
narrower (Von Appen et al., 2015). In conclusion, increasing
evidence supports the view that still “structured” capsid cores do
enter the nucleus, this might be due to either partial uncoating
that induces higher plasticity of the capsid core, either to
structural rearrangements of the nuclear pore, either both.

GENETIC FRAGILITY OF THE CAPSID: A
MARK OF MULTIPLE CONSTRAINTS?

The retroviral capsid core is responsible for chaperoning the
viral genetic material all along from the fusion of the viral and
cellular membranes till its entry (or even after) into the nucleus.
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To accomplish this, the mature CA protein must meet several
structural requirements to retain its ability to multimerize in
order to assemble into the capsid core (and this relying on two
different types of contacts, one giving rise to CA hexamers, the
other generating pentamers, as discussed above), to interact with
numerous cellular factors (Table 1) and to escape from adaptive
immunity, being a target of cytotoxic T lymphocytes (CTLs)
(Troyer et al., 2009). Furthermore, as a domain of Gag and Gag-
Pol precursors, it must retain structural arrangements that do
not interfere with the proteolytic processing of these molecules.
Altogether, these constraints can account for the extreme genetic
fragility of the protein (Rihn et al., 2013).

Genetic robustness is the ability to retain functionality when
mutations are introduced in the protein (Visser et al., 2003;
Wagner, 2005). Two main factors contribute to determining the
genetic robustness of a protein. One is the number of functions
the protein has to ensure and, consequently, the number of
interactants it must come into contact with, in order to carry
out its functions. The other is its architectural organization. For
example, the presence of intrinsically disordered regions confers
genetic robustness to proteins (Brown et al., 2002; Hultqvist et al.,
2017). In the case of HIV-1 CA, the high number of partners it
interacts with is likely the main determinant.

Local fluctuations in the degree of fragility are observed in
CA. Internal regions of the protein are less tolerant of mutations
as well as helices regions in the NTD rather than in the CTD
and in the interhelical loops among which, surprisingly, the
loop interacting with CypA. In particular, the region with the
highest fragility is the one encoding the alpha-helices present
in the NTD (Manocheewa et al., 2013; Rihn et al., 2013).
This region is responsible, in the assembled core, for the
interaction of each monomer with each other on the internal
side of the hexamer, to form the internal ring (Figure 2B; Li
et al., 2000; Pornillos et al., 2009, 2011). In addition, NTDs
interact with the CTDs of adjacent monomers on the external
portion of the CA (Lanman et al., 2003, 2004; Pornillos et al.,
2009). These interactions must be finely tuned since during the
extracellular life of the virus they must be stable enough to
maintain a closed capsid core, but once inside the target cell
they must allow the progressive dismantling of the structure,
with the appropriate timing, as discussed above (Forshey et al.,
2002). Maintaining this delicate equilibrium can account for the
fragility of these regions. Of particular interest are the epitopes
recognized by CTLs that appear particularly vulnerable to the
introduction of genetic polymorphisms. A similar situation is
found for the external regions of the HIV-1 envelope, which
are the target of heavy artillery by the immune response, in
this case humoral. It has been shown that in these regions the
genomic sequence has evolved in such a way as to reduce the

mutation rate (Geller et al., 2015), an observation interpreted
as a mechanism to limit the cost of deleterious mutations,
particularly high in these regions (Simon-Loriere et al., 2009;
Hamoudi et al., 2013; Gasser et al., 2016). Marked genetic fragility
could therefore constitute a common signature of regions under
strong immune selection. Finally, several mutations that have
a positive effect on viral replication in vitro were not found
in natural populations, suggesting the existence of additional,
presently unknown, sources of selection that counterselect
some positive mutants but not others (Rihn et al., 2013).
Identifying these sources of selection appears an important
step for understanding the molecular bases of successful viral
replication in vivo.

The marked genetic fragility of the capsid therefore likely
derives from the cumulative requirements for interacting with a
plethora of cellular factors that the virus has learned to deal with,
for an optimal adaptation to its host. This fragility is probably
responsible for the limited capacity of the capsid to avoid the
immune response of the host (Troyer et al., 2009) and encourages
to design new drugs targeting this protein. Drugs from which, in
strict analogy to what occurs for the immune response, it should
be difficult to escape.

CONCLUDING REMARKS

The ultimate goal of a retrovirus is to reach the genetic material of
the infected cell to integrate its own. To do so, the infectious cycle
passes through two phases, an extracellular and an intracellular
one. For each of these, a shell has been optimized. We now know
that, as many vulnerable aspects of the envelope proteins are
largely not accessible until the target cell has not been reached,
also for the intracellular delivery of its genetic material, the virus
does not leave a large window of opportunity for the host cell
to sense and attack its genetic material. This, until the final
destination is almost reached.
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Elenia TOCCAFONDI 

Identification des propriétés phylogénétiques spécifiques des 
intégrases M et O du VIH-1 

Résumé 
Les transmissions de virus simiens à l'homme ont donné naissance aux différents groupes de VIH-1. 
Nous avons récemment identifié un motif fonctionnel (CLA), dans le domaine C-terminal de 
l'intégrase, essentiel pour l'intégration dans le groupe M. Ici, nous avons constaté que le motif est 
dispensable pour les isolats du groupe O, en raison de la présence, dans leur domaine N-terminal 
d'un autre motif spécifique, NOG, qui est mutuellement interchangeable avec le motif CLA. Alors que 
le motif NOG est déjà hautement conservé chez les ancêtres simiens du groupe O, SIVgor, chez 
SIVcpzPtt, l'ancêtre du VIH-1 M, aucun consensus pour le motif CLA n'est trouvé, suggérant que le 
motif a été sélectionné après transmission à l'homme. La caractérisation fonctionnelle des intégrases 
contenant le motif NOG retrace les voies mécanistes suivies par ces deux virus pour assurer une 
intégration efficace, améliorant notre compréhension de l'évolution des virus et de leurs protéines 
multifonctionnelles dans les infections humaines. 

 

Mots-clés : intégrase, intégration, VIH-1, groupe M, groupe O, protéine multifonctionnelle, évolution, 
SIV 

 

Summary 
Transmissions of simian viruses to humans gave rise to the different groups of HIV-1. We recently 
identified a functional motif (CLA), in the C-terminal domain of integrase, essential for integration in 
group M. Here, we found that the motif is dispensable for isolates of group O, because of the 
presence, in their N-terminal domain of another specific motif, NOG, that is mutually interchangeable 
with the CLA motif. While the NOG motif is highly conserved already in the simian ancestors of group 
O, SIVgor, in SIVcpzPtt, the ancestor of HIV-1 M, no consensus for the CLA motif is found, suggesting 
that the motif was selected after transmission to humans. Functional characterization of NOG-motif-
containing integrases traces the mechanistic paths followed by these two viruses to ensure efficient 
integration, improving our understanding of the evolution of viruses and of their multifunctional 
proteins in human infections. 

 

Keywords: integrase, integration, HIV-1, group M, group O, multifunctional protein, evolution, SIV 
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