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A B S T R A C T

Mastering robotic grasping is a necessary skill for a robot to perform
tasks involving the manipulation of one or more objects. As automa-
tion increases, these tasks are nowadays found in more and more
fields of industry such as car manufacturing, waste sorting, or food
processing. In such cases, the environment can not be fully controlled,
and it is, therefore, necessary to use systems capable of analyzing their
environment and interacting with them, instead of just doing a set of
preprogrammed tasks.

To do this, detecting the configuration of instances of objects in a
scene using their 3D models is not always possible. In some cases, the
models are not available. It is then possible to use a geometric approach
to detect opportunities for grasp positions in images. However, these
approaches require many parameters to be set manually so that the
geometric criteria are adapted to the scene. To overcome this problem,
methods based on deep learning can be used: from a large number
of annotated images and good grasping positions, a deep neural
network can learn how to predict good positions on new images.
The acquisition of such a large amount of annotated data, however,
represents an obstacle for robotics.

In collaboration with Siléane, a French industrial robotics company,
the aim of this work is therefore to develop solutions for learning
robotic grasping through simulated data, which are available in large
quantities. This work has two main contributions.

Firstly, we propose a new neural network architecture that predicts
grasp positions for a parallel-jaw gripper on images of isolated ob-
jects. Previous state-of-the-art work used small amounts of manually
annotated data. In this work, we build a new large-scale dataset of
synthetic images with automatically generated annotations through
physics simulation and train our network using it. The use of a large
amount of diverse data, rather than just a few images, allows the
network to be trained on a wider range of situations, and thus be able
to handle more different unknown cases.

Secondly, the work presented here deals with the detection of grasp
locations in bin-picking context, i.e. in scenes with many objects oc-
cluding each other. While traditional approaches for this problem
use local information, classifying the potential quality of a grasp ac-
cording to the surrounding data in the image, our proposed network
completes this information by adding the notion of object instances.
Trained on self-supervised simulated images, it can thus estimate the
quality of a grasp position based not only on local information but
also on the global context of the object present at the considered posi-
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tion in the image. Based on extensive experiments, we show that this
double approach allows improving the quality of predictions, both in
a simulated environment and in real robotic tasks.

Keywords: deep learning, simulation, robotic grasping, bin-picking,
neural networks, synthetic data, self-supervision
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R É S U M É

La maîtrise de la préhension robotique par un robot est nécessaire
pour l’accomplissement de toutes les tâches nécessitant la manipula-
tion d’un ou plusieurs objets. Avec une automatisation croissante de
l’industrie, ces tâches se retrouvent aujourd’hui dans de nombreux
domaines de l’industrie tels que l’automobile, le tri des déchets ou
encore l’agro-alimentaire. Dans de tels cas, l’environnement ne peut
pas être totalement contrôlé, et il est donc nécessaire de faire appel à
des systèmes capables d’analyser leur environnement pour interagir
avec eux.

Pour ce faire, on ne peut pas toujours utiliser les modèles 3D des ob-
jets pour détecter la configuration des instances dans une scène. Dans
certains cas, les modèles ne sont pas disponibles. Il est alors possible
d’utiliser une approche géométrique pour détecter des opportuni-
tés de prises robotiques dans des images. Cependant, ces approches
nécessitent de régler de nombreux paramètres manuellement pour
que les critères géométriques soient adaptés à la scène. Pour pallier
à ce problème, il est possible d’utiliser des méthodes à base d’ap-
prentissage automatique : à partir d’un grand nombre d’exemples
d’images et de bonnes positions de prises, un réseau de neurones
profond est capable d’apprendre à prédire des bonnes positions sur
de nouvelles images. L’acquisition d’une telle quantité de données
annotées représente cependant un obstacle pour la robotique.

En collaboration avec Siléane, une entreprise de robotique indus-
trielle française, l’objectif de ce travail est donc de développer des
solutions pour l’apprentissage de la préhension robotique à travers les
données simulées, disponibles en grandes quantités. Dans ce domaine,
ce travail apporte deux contributions.

Premièrement, nous proposons une nouvelle architecture de réseau
de neurones permettant de prédire des positions de prises pour une
pince à mors parallèles sur des images d’objets isolés. Les précédents
travaux de l’état de l’art utilisaient de faibles quantités de données
annotées manuellement. Dans ce travail, nous construisons une très
grande base de données d’images synthétiques annotées automatique-
ment par simulation physique, que nous utilisons pour entrainer notre
réseau. L’utilisation d’une grande quantité de données diversifiées,
plutôt que de quelques images seulement, permet au réseau d’être
entrainé sur des situations plus variées, et ainsi de pouvoir gérer de
plus nombreux cas différents.

Dans un deuxième temps, les travaux présentés ici s’intéressent à
la détection de prises au sein d’un vrac, i.e. d’un enchevêtrement de
nombreux objets avec de forts recouvrements entre eux. Alors que les
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approches traditionnelles dans ce domaine utilisent une vision locale,
classifiant la qualité potentielle d’une prise en fonction des données
alentours dans l’image, le réseau proposé complète cette information
en ajoutant la notion d’instances d’objets. Entrainé sur des images
simulées de manière auto-supervisée, il peut ainsi estimer la qualité
d’une position de prise en se basant non seulement sur une informa-
tion locale, mais également sur le contexte global de l’objet présent à
la position considérée dans l’image. A partir de plusieurs expériences,
nous montrons que cette double approche permet d’améliorer la qua-
lité des prédictions, aussi bien dans un environnement simulé que
dans de vrais contextes robotiques.

Mots-clés : apprentissage profond, simulation, préhension robo-
tique, dévracage, réseau de neurones, données synthétiques, auto-
supervision
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I see a beautiful city and a brilliant people rising from this abyss.
[. . . ] I see the lives for which I lay down my life, peaceful, useful,
prosperous and happy. [. . . ] I see that I hold a sanctuary in their
hearts, and in the hearts of their descendants, generations hence. [. . . ]
It is a far, far better thing that I do, than I have ever done; it is a far,
far better rest that I go to than I have ever known.

— Charles Dickens, A Tale of Two Cities
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1
I N T R O D U C T I O N

As early as 1804, the development of the Jacquard machine in Lyon
made it possible to simplify the textile manufacturing process, in-
creasing the production capacities of the factories. Then, automation
developed strongly in all sectors of industry, reducing the drudgery of
work, and increasing productivity. Robots were introduced in factories
in the second half of the 20

th century. Initially operated by humans
to manipulate hazardous materials in the emerging nuclear industry,
they were soon fully autonomous on simple tasks, with fixed paths.
Today, they can be found in more and more diversified and complex
applications.

This diversification also makes processes more complex: a robot
must no longer simply act on its environment, but must also perceive
and understand it correctly to interact with it. Most often, this per-
ception is made in the form of visual information, obtained through
cameras. The better the analysis and understanding of this visual
information is, the more robots can perform increasingly complex
tasks. Thus, in an industry where the desire for automation is ever
increasing, the design of robots capable of working in random or
uncontrolled environments is crucial.

In collaboration with Siléane1, a French company specialized in
industrial robotics in unknown environments, this work aims at ex-
ploring solutions for a crucial part of automation: robotic grasping.
Robot grasping is one of the key skills a robotic system has to master
to be able to physically interact with the environment. Specifically, our
goal is to generalize the training of neural networks able to predict
successful grasping locations from visual information. Current ap-
proaches to perform this task are either using strong knowledge about
the target objects, such as full 3D models, or manually annotated data.
However, they are not always available, or practical to gather.

Therefore, we explore the use of simulation to easily collect a large
amount of annotated data that can be used to train deep neural
networks for robotic grasping. Specifically, we address three main
questions:

1 www.sileane.com
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2 introduction

• As collecting a large amount of annotated data in robotics is a
long and tedious process, how can we use simulation to easily
generate such data?

• How to best learn efficient models able to extract successful
grasp locations for either isolated or piled objects from visual
information, without human supervision?

1.1 problems and objectives

For many tasks a robot might have to handle in a factory, object
manipulation is required. Now, although it is natural for human
beings, accustomed to grasping objects since the very first day of their
life, grasping is a skill that robots do not have naturally: they have to
be taught, or programmed, how to analyze what they perceive to find
how to grasp objects.

Given the importance of this subject for the industry, it has re-
ceived increasing interest from research communities, particularly in
computer vision. Due to the many different situations that can be
encountered when working on grasp detection, as illustrated by Fig-
ure 1.1, data-oriented approaches quickly became the preferred way.
Deep learning [63] has shown in recent years its capacity to achieve
human-level performances on many computer vision tasks and is,
therefore, a very common approach for grasp detection. However, to
successfully train neural networks for a task, a large amount of data is
required.

Unfortunately, gathering such a quantity of annotated data in
robotics is not as simple as for other domains. Traditional approaches
typically use manually annotated datasets [19], or data gathered using
a physical robot [92]. Both these kinds of approaches share the same
issue: they are very time-consuming, and can’t be reasonably used
to generate the quantity of data required by modern deep learning
techniques. To overcome this issue of data gathering, the first objective
of this work is to develop simulation environments that can be used
to quickly and reliably gather data ready to train neural networks.

With a large amount of data available, efficient grasp detection
neural networks can be trained. Most of the work for grasp detection
is done by adapting object detection methods. Features are extracted
from the image, and the network predicts a quality estimation at
different positions, as well as some parameters for the final gripper
position [133], similarly to what is done to detect objects in images.
Our second objective is to develop new deep learning approaches
outperforming existing baselines by leveraging the specificity of the
grasping problem.
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Figure 1.1: Various examples of scenes encountered in grasp detection sce-
narios. Top images are isolated objects, bottom ones are piles
of objects, homogeneous or heterogeneous, typically found in
bin-picking applications.

1.2 contributions

Our work is dedicated to solve the two problems discussed above
in two different situations: grasping an isolated object, and grasping
in a pile of objects, i.e. in a highly cluttered environment. The two
situations have their own specifics and have to be handled differently.
In both cases, simulation is used for data generation, and specificities
of grasp detection problem are leveraged to create more efficient
neural networks.
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1.2.1 Grasping isolated objects

The first part of our work focus on grasping isolated objects, i.e.
predicting grasps from an image containing only one object.

• our first contribution for the isolated object problem lies in the
public release2 of the Jacquard dataset [23], similar in nature to
the widely used Cornell dataset [19], but with orders of mag-
nitude more data. To ensure a large diversity in shapes, our
Jacquard dataset was built using the 3D models of the publicly
available ShapeNet dataset [16]. Once the object is loaded in
a simulation environment, multiple grasps with a parallel-jaw
gripper are physically simulated, trying to lift the object and
move it away. Using the outcome of this simulation, a list of
all grasping possibilities on the object is created. In parallel,
an image of the scene including the object is rendered using a
modern ray-tracing engine, resulting in a high degree of realism.
Combining the outcome of the gripper simulation and the ren-
dered images results in annotated data that can be used to train
neural networks to predict new grasp locations on unseen ob-
jects. Overall, the Jacquard dataset contains 54k images of more
than 11k different objects. All these images are annotated with
multiple successful parallel-plate gripper locations (1.1M unique
locations in the whole dataset), as can be seen on Figure 1.2.

Moreover, in addition to the dataset, a web interface is avail-
able for researchers to submit their predictions on images of the
dataset. These submissions are then tested using the same simu-
lator used for training, resulting in a success or failure outcome.
This simulation interface can be used as a common baseline to
test the accuracy of different models on the dataset, without hav-
ing the exact same robotic system and objects in each laboratory
working on this problem.

• our second contribution is a new network architecture improv-
ing the grasp detection rate for isolated objects. Contrary to
state-of-the-art approaches [133] [18] that, inspired by object
detection methods, predict separately a score and a deformation
for a reference grasp, our proposed method used the specificity
of the grasping problem and explicitly uses the correlation be-
tween the predicted deformation and score. We also performed
experiments to compare our architecture to state-of-the-art base-
lines. Our network, using the correlation between the score and
the grasp prediction, performed better on the Jacquard dataset,
while maintaining similar performance than state-of-the-art ap-
proaches on the Cornell dataset.

2 The dataset is available for researchers at https://jacquard.liris.cnrs.fr/
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Figure 1.2: Examples of annotated synthetic images from our Jacquard
Dataset. Rectangles represent successful parallel-jaw gripper loca-
tions.

1.2.2 Grasping in piles

The second part of our work focuses on detecting grasp opportunities
in piles of objects. Contrary to the isolated object case, this is more chal-
lenging, because of occlusions in the image and interactions between
the objects during the grasping process. Our main contribution is a
new object-aware grasp detection network trained in a self-supervised
way using an interactive simulation environment.

The environment can handle the simulation of multiple piles of
many objects in real-time, as well as multiple grasping devices (parallel-
jaw gripper and suction cups), and their interactions with the objects.
This environment is also designed to be interactive, with a two-way
communication channel. In one way, a training module can connect
and receive images from the simulation, and in the other way, the
environment can receive grasp proposals and execute them.

Interacting with this simulation environment, we train our new
object-aware network in a self-supervised way: the network predicts
grasps that are then tested in simulation, and learns from the response
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of the simulator. Using a self-supervised approach allows the network
to learn from relevant examples, without having to pre-generate some
annotated data using a heuristic or a third-party method.

The network of our architecture follows the U2-Net backbone [95],
with two cascaded decoders. The first one predicting a newly intro-
duced graspable segmentation, i.e. a segmentation of the image in
which only the graspable instances of the objects are separated from
the other and the background. The second decoder is responsible
for the actual grasp prediction and takes as input the concatenated
features of both the encoder and the segmentation decoder. The grasp
prediction decoder can thus benefit from the information inferred by
its segmentation counterpart.

We extensively tested our object-aware architecture using both sim-
ulated and real-case images. Results showed that our network was
able to learn a useful representation to detect successful gripper lo-
cations in highly cluttered scenes, found in typical applications like
bin-picking.

1.3 publications

Three papers have been published in international conferences based
on the work done during this thesis. Due to direct industrial applica-
tions by Siléane for the bin-picking part, only work done on isolated
object grasping has been published.

• [23] Amaury Depierre, Emmanuel Dellandréa, and Liming Chen.
"Jacquard: A large scale dataset for robotic grasp detection."
Published in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2018).

• [90] Maxime Petit, Amaury Depierre, Xiaofang Wang, Emmanuel
Dellandréa and Liming Chen. "Developmental Bayesian Opti-
mization of Black-Box with Visual Similarity-Based Transfer
Learning." Published in 2018 Joint IEEE 8th International Confer-
ence on Development and Learning and Epigenetic Robotics (ICDL-
EpiRob).

• [24] Amaury Depierre, Emmanuel Dellandréa, and Liming Chen.
"Optimizing Correlated Graspability Score and Grasp Regres-
sion for Better Grasp Prediction." Accepted at 2021 IEEE/RSJ
International Conference on Robotics and Automation (ICRA 2021).

[23] presents our synthetic Jacquard dataset, and shows that it is
suitable to train deep learning models for grasp detection tasks.

[90] uses the simulation environment developed during this thesis
to automatically optimize parameters from a black-box algorithm
through developmental bayesian optimization.
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[24] presents our proposed architecture explicitly correlating grasp
parameters generation and grasp quality estimation for isolated object
grasp detection.

1.4 contents

This work is organized as follows:
In Chapter 2, we review the state-of-the-art on the robotic grasping

problem, with a focus on data-based approaches, i.e. methods using a
machine learning algorithm.

In Chapter 3, we present our work on grasp detection for isolated
objects. Specifically, we describe how we built the synthetic Jacquard
dataset. Then, we detail our proposed neural network architecture
explicitly correlating grasp parameters generation and grasp quality
estimation, and show its performances compared to other approaches,
on both the Jacquard dataset and real data.

In Chapter 4, we lay out our contributions on grasp detection in
a bin-picking context, i.e. with many instances of objects and a high
rate of occlusion between them. In detail, we describe our architecture
combining global information, with graspable instance segmentation,
and local information with grasp quality estimation. We also present
the way we train this architecture in a self-supervised way. We con-
duct experiments and ablation studies to demonstrate the benefits
of this approach compared to others and show that, despite being
trained only on simulated data, such a model can be used in real-life
applications.

In Chapter 5, we finally summarize our work and contributions and
give some directions for possible future improvements of this work.





2
S TAT E - O F - T H E - A RT

In this chapter, we review the state-of-the-art of vision-based machine
learning methods for robotic grasping. The rest of this chapter is
organized as follows. Section 2.1 describes the object grasping problem
and categorizes the methods used to solve this problem. Section 2.2
presents the model-based methods, while Section 2.3 details the model-
free approaches. Section 2.4 then shows the datasets used in grasp
detection and Section 2.5 concludes the chapter.

2.1 robotic grasping overview

In this section, we review the different approaches for object grasping
and categorizes them more precisely in subcategories. Object grasping
methods are generally divided into analytic [106] and data-driven
methods [9]. In analytic approaches, the object shape is processed
to find an adequate grasp location for the gripper [77]. Data-driven
approaches, on the other hand, are based on machine learning algo-
rithms. They have become more and more popular, mainly due to
three factors: data availability, better computational power, and sig-
nificant progress in machine and deep learning algorithms [63]. The
following of this chapter will be focused on data-driven approaches,
as they are currently the most studied and efficient methods for object
grasping. For extensive surveys on analytical methods, readers can
refer to [112], [7], or [106].

Data-driven approaches can then be separated as model-based or
model-free, depending on whether or not they are using knowledge
of a 3D model of the target object. Model-based methods typically
start with a search algorithm to find the location of an object, before
trying to predict grasp positions for this specific object. This allows
precise object handling and positioning. On the other hand, model-free
methods directly predict grasp locations based on the gripper abilities
and are generally better at generalizing to new unseen objects. As can
be seen on Figure 2.1, these two approaches follow the same global
three steps process:

1. Data acquisition: one or multiple sensors create a visual repre-
sentation of the scene. Sensors are typically cameras (RGB or

9
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Data acquisition Data processing Grasp execution

Object pose detection

Grasp prediction

Grasp prediction

Figure 2.1: Typical pipeline for robotic grasping applications with data-
driven methods. Model-based approaches (top row) typically
first determine object poses in space before finding suitable grasp
locations on them. Model-free approaches (bottom row) directly
infers grasp location from visual information.

multispectral), 3D sensors, or a combination of them. Figure 2.2
shows some examples of such sensors.

(a) uEye CP, IDS (b) FX10, Specim (c) MotionCam-3D,
Photoneo

(d) Stereovision
Kamira, Sileane

(e) Multicamera
setup

Figure 2.2: Example of visual sensors. (a) RGB camera, (b) Multispectral
camera, (c) 3D sensor, (d) Stereo-vision camera, (e) Multi-camera
setup, combining a RGB camera and a depth sensor

2. Data processing: one or more algorithms are used to process
the scene representation from the data acquisition module. The
result is a grasp candidate that can be forwarded to the third
component. This step is the one this work studies.

3. Grasp execution: the grasp candidate extracted from the previ-
ous step is sent to a robotic system (examples can be seen in
Figure 2.3) which is responsible for executing it. This involves
path planning to the location and actual grasp execution, which
can be performed with various kinds of grippers, as illustrated
by Figure 2.4. However, while some research is done on soft
grippers [14] [113], or multi-fingers grippers to get closer to how
human grasp objects [104] [30], most of the works in grasp de-
tection are done for the two most used kinds: the parallel-plate
gripper and the vacuum-based suction cups. This work focuses
on these two types of grippers exclusively.
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(a) Poly-articulated
robotic arm, Fanuc

(b) Delta robot, Omron (c) Scara robot, Epson

Figure 2.3: Different kinds of robots used in the industry. Each of them has
specificities and has been developed to be more adapted to one
task than the others. (a) Poly-articulated robotic arm, the most
common industrial robot, (b) Delta robot, composed of parallel
links connected to a common base, they can perform tasks at very
high speeds (c) Scara robot, useful for tasks requiring precise
lateral movements in the X-Y plane

(a) Parallel-jaw grip-
per, Robotiq

(b) Vacuum suction
cup, Robotiq

(c) Gecko gripper,
OnRobot

(d) mGrip,
Soft Robotics

(e) Universal gripper,
University of
Chicago

Figure 2.4: Examples of robotic grippers of various kind. (a) Parallel-jaw
gripper, (b) Vacuum-based suction cup gripper, (c) Adhesive
Gecko gripper, (d) Soft multi-fingers gripper, (e) Universal coffee
grains based gripper

This work mainly focuses on the second step, data processing. How-
ever, due to the large diversity in the first and third steps (respectively
data acquisition and grasp execution), a grasp prediction algorithm
can not be taken individually and always has to be seen as part of a
specific pipeline, i.e. one has to consider the abilities of the robotic sys-
tem and its end-effector when designing a grasp detection algorithm.
Keeping that in mind, robotic grasping approaches can furthermore
be categorized using many criteria depending on the type of data
they process, how they process them, and how they interact with the
robotic system that actually performs the grasp. Some of these criteria
are:

• the type of objects the method can work on. Some algorithms
can only be used on known rigid objects [123], while others
can generalize to unknown shapes, or objects with flexible or
deformable parts [98].
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• the configuration of the scene. While some methods are trained
to find the best suitable position to grasp an isolated object
[64], some others are focused on extracting one object from a
pile, with cluttered background [115] (this task is also called
bin-picking).

• data used as inputs. Due to the diversity in sensors, different
approaches have been developed using RGB images [55], depth
images [73], RGB-D images [132] and point clouds [26] [96].

• the class of machine learning algorithm. Training can be per-
formed with supervised learning [74] (with either manually
defined ground truth or self-generated labels), reinforcement
learning [49], or unsupervised learning [82].

• the way the predicted grasps are proposed. With discriminative
[75], grasp candidates are sampled and then ranked using a clas-
sification algorithm (typically a neural network). With generative
methods [98], suitable grasp locations are directly generated in
an end-to-end trained way.

• gripper degrees of freedom. In a scenario where an object must
be picked from a plane, a 2D planar grasp [98] detection system
is sufficient. With more complicated scenes or grippers, 6 DoF
[58] grasp coordinates might be necessary.

• the frequency of interactions between the robot and the grasp
detection method. In a typical open-loop system [98], there is
no feedback between the robotic system and the grasp detection
algorithm. However, in a closed-loop system, the robot position
is continuously updated depending on the visual information
[66]. This kind of control is also called hand-eye coordination.

2.2 model-based grasping

In a model-based robotic grasping method, grasp detection is gener-
ally a two-steps process. First, one or multiple poses of objects are
estimated. Then, once the location and orientation of the object are
known, a grasp location is generated and sent to the robotic system
responsible for executing the grasp. Section 2.2.1 and Section 2.2.2 will
describe these first and second steps respectively.

2.2.1 Object pose detection

Object pose detection methods aim at estimating the full pose (spatial
location and orientation) of one or multiple rigid objects. This pose
is generally expressed relative to a reference frame, typically either
the camera or the robot. Such a task is not an easy one to master
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for a learning algorithm due to many factors like noise in the input
data, occlusions between objects, or variations in lighting conditions,
as illustrated by Figure 2.5. Moreover, symmetries in object shape
can lead to similar, if not identical, visual representation for different
poses. Taking symmetries into account when estimating the pose is
a whole research interest field [43] [45] [12] [13] and allow a more
precise and robust grasp prediction.

Figure 2.5: Object pose estimation in a pile of objects. This task is not easy
due to occlusions and possible difficult lighting conditions. Left
is the input image, right is the result of the detection with [102]

As shown in [27], methods using object knowledge for grasp pre-
diction very often require a lot of manual tuning and configuration
to achieve good performance, which is a limiting factor for scalability
and generalization to new objects. For example, early template match-
ing strategies [41] [42] require either a huge number of templates, or
an approximation of the shape with geometric primitives [93], [86] to
be able to locate an object in an arbitrary position. Therefore, most
of the recent research on model-based object detection is focused on
automatic systems with minimal to no manual input required and
good generalization abilities.

The success of deep neural networks (DNN) for image processing
problems inspired research in object pose estimation and most of the
recent works used them. They can either be used as classification tools
with a pose space discretization [57] [118] or as direct pose estimator
with regression [120] [26] [58]. [123] is a good example of a neural
network used for pose estimation: Tremblay et al. designed DOPE
(Deep Object Pose Estimation) to predict the 2D coordinates of the
corners of the object’s bounding box in an image. The final object 6D
pose is then obtained using EPnP [65].

Instead of working on images, some works directly use point clouds
as inputs. In [26], the authors use PointNet++ [94] to estimate per
point pose estimation. Points are then regrouped into clusters and
the average pose is kept as the final prediction. With OP-Net [58],
Kleeberger and Huber proposed a much faster and more precise
way of predicting pose in highly cluttered scenes. Inspired by object
detection methods in 2D [100], they discretize the 3D search volume in
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small elements, and predict, for each cell, one pose and one confidence
score.

2.2.2 Grasp generation from object pose

Once the object position is determined, one still has to predict a correct
location on this object for the gripper to grasp it, as illustrated by
Figure 2.6. Even if this task is a less studied one than pose estimation,
it is nonetheless a crucial part of the final grasping pipeline. As the
3D model of the object is known in this case, a traditional approach is
to (1) predetermine many feasible grasps on the object using either a
human expert or an analytic method, and (2) sort all these grasps in
the context of the object pose using heuristics to find the best accessible
gripper location [116]. Further work proposed to replace the heuristics
in the second step with deep learning, using a neural network to
perform the search faster [117].

Figure 2.6: Grasp locations on 3D models for a parallel-jaw gripper. One of
these grasps will be selected based on its accessibility given the
detected pose of the object, and send to the robot for execution.

Regardless of the kind of approach, model-based methods always
need a 3D model of the object and therefore require efforts to gen-
eralize to new shapes. As industry tends to automatize more and
more tasks with robots, including tasks for which no 3D models are
available (because each object has a unique shape like in waste sorting,
or because objects are deformable like in traditional food industry
applications). Model-free solutions have been developed to deal with
this issue.

2.3 model-free grasping

In a model-free approach, no prior knowledge about the objects is
used. There is therefore no localization step to estimate the pose before
a grasp is predicted. They are generally more able to generalize to new
unseen objects and shapes [110], and trained end-to-end. For these
reasons, they are a very active field of research in the robotic grasping
community. Section 2.3.1 and Section 2.3.2 will deal with discrimina-
tive and generative methods respectively, while Section 2.3.3 will re-
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view the works using a reinforcement learning approach. Section 2.3.4
will end this section by presenting works done about model-free grasp
detection in piles of objects.

2.3.1 Discriminative methods

In discriminative methods, a set of grasp candidates is generated
(for example with a cross-entropy method [105]) and the role of the
learning algorithm is to sort them by grasp success likelihood. The
robotic system can then choose one of the highest-ranked candidates
and execute it. These methods are usually slower as they require many
forward passes to evaluate each candidate. However, they have the
advantage of being able to evaluate an arbitrary number of grasp
candidates and are not limited by the necessity of a discretization of
the grasping prediction space. An additional learning step can also be
applied afterward to improve the grasp [82].

In [66], Levine et al. trained a CNN to predict the success of a
proposed grasp from a RGB image. This CNN was then able to directly
control the robot using hand-eye coordination to lead its gripper to
a good location. While this proved the feasibility of this method, the
800,000 data samples they used were collected during 2 months on 14

robots, and thus the approach was not easily generalizable to other
physical setups. Any significant modification in the camera placement
or the robot model would require new data to be collected.

With Dex-Net [72] [73], a Grasp Quality CNN is also trained to
predict the success of a proposed grasp. However, the grasp is not
presented as a location in the image but is rather encoded directly in
the image itself. The image is thus a local patch of the scene, centered
and aligned around the proposed gripper location. The network was
trained on synthetic depth images annotated using analytic physics
metrics and showed good abilities to generalize to new unseen objects.
Mahler et al. then extended their approach to other gripper types, like
vacuum gripper [74], and even multi-gripper systems [75].

To avoid the expensive sampling and ranking of grasp proposals,
fully convolutional networks can also be used [108]. Leveraging the
parallelization abilities of GPUs, they can estimate the quality of
thousands of grasps simultaneously.

2.3.2 Generative methods

Generative methods aim at directly predict a grasp configuration given
an input image. They are usually associated with parallel-jaw grippers,
as they require additional parameters prediction (like orientation
or opening) compared to simpler gripper types like suction cups.
Predictions, therefore, take the form of an oriented rectangle [52] in the
image frame as can be seen on Figure 2.7. Just like in traditional object
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detection [100] [32], the problem can be summed up to a rectangle
detection in the image. However, in the case of grasp detection, not
only the position and size of the rectangle have to be predicted, but
also its orientation.

θ
w

h

(x, y)

Figure 2.7: Example of a rectangle grasp representation for a parallel-jaw
gripper. Green sides are the jaws while yellow sides represent the
opening of the gripper.

For the problem of grasping an isolated object on a plane, Redmon
and Angelova developed a neural network predicting an oriented
rectangle given an image (RGB or RGD, where the blue channel of
the image is replaced by depth information) [98]. Their network is
also able to predict multiple grasps, one in each region of the image,
with an associated score. This idea has then been adapted for object
detection, leading to the YOLO (You Only Look Once) approaches
[100] [99]. Object detection with two-stage systems like Faster-RCNN
[101], also have counterparts for robotic grasp detection. In [64], the
first stage is responsible for output candidates, while the second stage
ranks them by grasp success likelihood. This illustrates how the two
problems are closely linked, and ideas developed for one can often
benefit the other.

Increasing depth and complexity of neural networks can increase
performance [62] [3], but also computing time and required resources.
Keeping the same network backbone based on a ResNet architecture
[40], some works have been focused on using a better data represen-
tation to improve the accuracy in grasp prediction. In [38] and [18],
the authors proposed to use reference grasps, also called anchors. The
network is then trained to predict deformations with regards to these
anchors, instead of directly predict the grasp parameters. Zhou et al.
in [133] used only one size anchor box with multiple orientations
instead of multiple axis-aligned grasps with different sizes. Using
these anchors helps the network to learn, as it gives it prior knowledge
of the expected size of the final grasp detections.

It is also possible to achieve good grasping performance using
smaller fully convolutional neural networks. GG-CNN [80] [81] pre-
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dicts in real-time both a quality estimation and grasp parameters for
each pixel of the input image. As the network is small, predictions
can be performed very quickly, allowing real-time grasp evaluation
while the grasp is performed, and thus performing the prediction in a
closed-loop way.

Jointly learning a secondary task in addition to grasping can also
help the network to be more robust. TossingBot [132] is trained to both
grasp and throw an arbitrary object at a given location. The algorithm
is trained end-to-end using self-supervision and can both grasp an
object and then throw it correctly by predicting its release velocity.

2.3.3 Reinforcement-Learning methods

Reinforcement learning [119] is not a new field of research in robotics.
However, its combination with the progress in deep learning lead
to new interesting results using deep reinforcement learning, allow-
ing complex behaviours to be learned from trial and error in many
domains, including robotics [59].

Contrary to traditional approaches, reinforcement learning consid-
ers a grasp as a sequence of actions. This allows the network to learn
direct hand-eye coordination [66] [55] [50], or more high-level actions,
like pushing [130] or shifting [5] objects before grasping them to
optimize the grasp success likelihood.

In [97], Quillen et al. propose a simulated benchmark for reinforce-
ment learning driven robotic grasping, and evaluate the performances
of multiple deep reinforcement methods like DDPG [67] and double
Q learning [126].

Using human demonstrations is also a possibility to train deep
reinforcement learning algorithms. In [115], the network learns 6 DoF
closed-loop grasping policies of novel objects by observing human
grasping demonstrations.

When a system learns from trial and error, just like in reinforcement
learning, but without using the temporal aspect of sequential actions,
the more generic term of self-supervised learning is preferred. Self-
supervised learning can be used to directly learn to grasp objects [6],
or to collect additional data while performing grasping like depth [35]
or pose estimation [114].

2.3.4 Model-free grasping in piles

Grasping an object out of a pile of them is a common issue, also
referred to as bin-picking. This is a typical use case for which model-
based approaches are the most suitable, but not always applicable,
due to the lack of explicit models of the objects. Most of the time,
algorithms developed for grasping isolated objects can generalize well
on scenes with multiple instances [64], or even in small piles [81]



18 state-of-the-art

[71]. But new approaches have been developed to deal specifically
with very dense piles, with highly cluttered backgrounds. They can be
subdivided into two categories: gripper-oriented and object-oriented.

2.3.4.1 Gripper-oriented methods

Gripper-oriented model-free methods aim at detecting grasp oppor-
tunities with respect to a considered end-effector. While early grasp
detection systems relied on analytics heuristics [25], deep learning has
also been quickly adopted.

Leveraging the power of convolutional neural networks (CNN),
methods were developed for vacuum-based suction cups and parallel-
plate grippers. Similarly to what is done in semantic segmentation [4]
[17], pixel-wise affordance maps are inferred [2] [84] [131], as illus-
trated by Figure 2.8. These affordance maps can later be sampled to
get a grasp location that is estimated to be successful by the network.
Such methods, using CNNs, are very fast. They indeed use the full
power of modern GPU architectures to predict many grasps simul-
taneously, which is much faster than performing multiple forward
passes in one network. For these reasons, these methods are nowadays
very common for grasp detection in model-free bin-picking contexts.

Figure 2.8: Typical process of a segmentation-inspired gripper-oriented
method [131]. The input data, represented as images with multi-
ple channels are sent through an encoder-decoder convolutional
architecture, outputting an image with multiple probability chan-
nels. The value of each pixel of each output channel represents
the likelihood of a given grasp to succeed at this location.

2.3.4.2 Object-oriented methods

Object-oriented methods aim at mimicking model-based ones without
the need for an actual object model. The generic idea is the same as
with a model: estimating instance positions in the image and predict-
ing grasps for one or more of these instances.

Just like a network can find cars or planes in images without ex-
plicitly knowing what they look like, it is possible to use a generic
object detection architecture like Faster-RCNN [101] or YOLO [100]
to estimate the position of objects in cluttered scenes [127]. However,
for densely populated scenes, which are very common when dealing
with bin-picking issues, a box detection of objects is often not suffi-
cient. Multiple instances can indeed be found inside one detection box,
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and thus be ambiguous for the grasp detection step, as illustrated by
Figure 2.9.

Figure 2.9: In object piles with many instances, a box detection algorithm
is not sufficient to determine the location of objects. Multiple
instances can lie inside each of the detected rectangles.

An alternative to rectangle box detection methods is instance seg-
mentation, assigning each pixel to only one single instance. Early work
are built on heuristics to progressively merge pixels into objects [1]
[124]. Further works take advantage of the advancements in deep
learning to propose end-to-end learning-based methods for instance
detection at pixel level, either by detecting instance boundaries [128]
[37] or by directly segmenting instances [17]. Once the instances are
detected, one can select the easiest to grasp, i.e. the topmost one, with
the less occlusion, and grasp can be inferred. This grasp inference is
performed either with simple heuristics like the estimated instance
centre of mass [36], or more complex methods using point clouds and
gripper models [89].

2.3.4.3 Discussion

Gripper-oriented methods focus more on local information, looking for
areas suitable for a specific gripper. On the other hand, object-oriented
methods analyze the information to find information about how in-
stances are located in relation to each other. In this work, we pro-
pose to combine the advantages of both gripper and object-oriented
model-free methods, by using a deep neural network trained to si-
multaneously predict instance segmentation and grasp quality esti-
mation.

2.4 datasets for robotic grasping

Deep learning improved robotic grasping detection performances by
a huge margin. However, its main drawback is that it requires a lot
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of data at training time. Depending on the studied problem, data can
take various shapes, as illustrated by Figure 2.10.

(a) (b) (c)

(d) (e) (f)

Figure 2.10: Examples of datasets used in robotic grasping for the two main
tasks: object detection (top row) and grasp detection (bottom
row). (a) manually annotated 6D pose of an object from the
LINEMOD dataset [43] (b) multiple manually annotated object
poses from the T-LESS dataset [46] (c) automatically generated
poses of objects using fiducial markers from [12] (d) RGB im-
age from collected using hand-eye coordination method [66] (e)
depth images from Dex-Net [73], the image is centered on the
grasp and is labeled as either positive of negative (f) RGB image
from the Cornell dataset [19], each image is manually annotated
with multiple successful parallel-jaw grasps

The Columbia Grasp Database [33] has been the first attempt to
build a large-scale grasp database. Built using an analytic grasp plan-
ner, it was composed of more than 230k grasp positions on thousands
of objects with multiple hands, and lead the path to a new algorithm
for grasp planning from 3D models.

Contrary to other image processing tasks, where large, real-world,
annotated datasets are available [22] [28] [68], gathering such a dataset
is quite difficult for robotic applications. Generate data on a real-world
system is indeed both expensive and time-consuming. Pinto and Gupta
used a Baxter robot to collect more than 700h of grasp trials [92]. The



2.4 datasets for robotic grasping 21

final result was only 50,000 data points, which is a lot for robotic
systems, but quite small compared to traditional image datasets used
in deep learning. Sharing experience between multiple robots allows
to parallelize the data collection process and though speed it up [88].
Using 14 robots and two months, Levine et al. successfully trained a
robust grasping algorithm from 800,000 grasp attempts [66], while it
took several weeks and 7 robots to get 560,000 grasps in [55]. However,
these datasets are bound to the setup they were generated on, and are
hard to use for more generic purposes (different gripper, camera to
object distance, robot position etc...).

It is also possible to generate data without using a robot. For 6D
pose estimation, fiducial markers can be used to get the position of
an object in the camera frame, like in the T-Less dataset [46]. For
grasp annotations, asking humans to annotate real images is also a
solution, like in the Cornell dataset [19], which is one of the most
used grasping datasets. In both cases, the lack of diversity is a major
issue for very deep networks. Cornell contains indeed only 8019 grasp
annotations on 885 images of 240 objects. T-Less has almost 40,000

images, but with only 30 different objects. Moreover, the images are
highly correlated as many are images from the same scene viewed
from multiple viewpoints.

To avoid these issues, simulation is a common alternative to ob-
tain data. Simulation environments like Gazebo [60], MuJoCo [122],
Blender [8] or PyBullet [20] can be used to quickly simulate either
physics, camera rendering or both. Simulation is not only fast and
highly parallelizable but also easily customizable as all parameters
of the environment are perfectly controlled. Examples of datasets
generated using simulation are Siléane dataset [12] for object pose
estimation or Dexnet 6.7 million synthetic grasp images and success
annotations.

For parallel-jaw grasp prediction, the most used dataset is the Cor-
nell dataset. With only 885 images of 240 objects, it lacks diversity and
is thus not ideal to train very recent neural network architectures. In
this work, we introduce a new large-scale dataset, with more than
50k high-quality RGB-D images with multiple annotated grasps for
a parallel-jaw gripper.

The real world is never as perfect as a simulation is. No matter how
carefully the simulation is programmed (gripper model, rendering
parameters ...), there is always what is called a reality gap between
the synthetic and the real data [10]. Reducing this gap is an ongoing
research subject, and many techniques have been proposed besides
improving the realism of the simulation. Examples of such techniques
are domain randomization [121] [48] [49] [83], in which synthetic data
distribution is massively expanded in order to include real data dis-
tribution, or domain adaptation [31] [11], in which synthetic and real
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data distributions are brought together, for example using Generative
Adversarial Networks (GANs) [34].

2.5 conclusion

Robotic grasping can be learned in many ways, with or without object
models, from real or synthetic images. As we want our work to be
usable in context where object models are not available, we focus our
attention on learning model-free grasp detection. We also advocate
a massive use of simulation to collect larger quantity of data than
with human annotation or robot automatic collection. And lastly, we
use self-supervision to let the learning agent generate relevant data
samples, without any human intervention needed.



3
I S O L AT E D O B J E C T G R A S P I N G

In this chapter, we focus on the grasp detection problem on images
of isolated objects. To do so, we present a new method to generate a
large-scale dataset in Section 3.1, and an extension of a state-of-the-art
grasp detection network in Section 3.2, trained using this previously
generated dataset.

3.1 generating a large-scale dataset

Data-driven methods for grasp detection are based on learning algo-
rithms that need data to be trained on. Unlike other publicly avail-
able datasets built with manual annotations or by gathering robotic
trials, we advocate the use of simulation to gather a large number
of realistic images annotated with successful grasp locations in a
fully-automatized way. Figure 3.1 illustrates our proposed generation
pipeline. Applying this process to every object in a subset of ShapeNet
[16], namely ShapeNetSem [109], we created a large-scale dataset for
robotic grasping with a parallel-jaw gripper. This dataset, named the
Jacquard dataset [23], has more than 50k images of 11k different ob-
jects, with 1 million unique successful grasp positions annotated, and
is available for the research community [47]. A summary of the prop-
erties of publicly available grasp datasets can be found in Table 3.1 for
comparison.

Dataset
Number of

objects
Modality

Number of

images

Multiple gripper

sizes

Multiple grasps

per image

Grasp

location

Number of

grasps

Automatized

generation

Levine et al. [66] - RGB-D 800k No No Yes 800k No

Mahler et al. [73] 1500 Depth 6.7M No No No 6.7M Yes

Cornell [19] 240 RGB-D 1035 Yes Yes Yes 8019 No

Jacquard (ours) [23] 11k RGB-D 54k Yes Yes Yes 1.1M Yes

Table 3.1: Summary of the properties of publicly available grasp datasets
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3D Models database

Scene creation

Rendering

Grasps simulation Successful grasps

Random grasps
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Figure 3.1: Our pipeline to generate annotated images from 3D models. A
model from the database is selected and dropped in a stable
position. Random grasps are generated from a probability map
obtained with a simple heuristic algorithm before being tested
in the simulation environment. In the rendering part, a synthetic
camera renders the different images.

3.1.1 Dataset generation

3.1.1.1 Scene creation

Scenes are all created in the same way. A plane with a white texture is
created, the texture being randomly rotated and translated to avoid
constant background. Then, an object from a pool of CAD models is
selected and loaded into the simulation environment. As the objects
might have a wide range of scales, we rescale the model so the longest
side of its bounding box has a length between 8 and 90 cm. We also
give the object a mass depending on its scale: 80 g for an 8 cm long
object and 900 g for a 90 cm one. The mass distribution is independent
of the shape of the object. For example, the mass of a hammer is evenly
distributed instead of concentrated in the head. Upon loading, the
object is dropped from a random position and orientation above the
centre part of the plane. Once the object is in a stable position and is
not moving or oscillating anymore, the object position and location
are saved as a scene configuration. Figure 3.2 represents a view of one
scene with an object lying on the plane.

This scene configuration is then sent to two independent modules:
one to render the images and one with a physics simulation engine to
generate the grasp annotations. For our Jacquard dataset, we created
up to five scenes for each object. This number was chosen as a balance
between computation time for generating many scenes, and diversity
in object views. This can however be changed to adapt to the type
of object used. Objects having a lot of symmetries(typically a sphere)
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Figure 3.2: Example of a scene generated in the simulation environment

would require fewer views as they only have one possible stable
position.

3.1.1.2 Image rendering

All the renderings of the scene are done using Blender [8] through its
Cycles Renderer. Cycles is a ray-tracing physically-based rendering
engine, allowing us to produce more realistic images than the renderer
integrated inside the physics simulation environment (see Figure 3.3).

Figure 3.3: Comparison between the integrated Blender Renderer (left) and
the ray-tracing Cycles Renderer (right).

A binary mask separating the object and the background, and two
depth images are also rendered in addition to the RGB image. The
first depth image is a perfect one, which is available as we are in a
simulated environment. The second one is a more realistic, noisy one.
Instead of adding some Gaussian noise to the depth as in [53], we
follow the idea developed in [12]: two additional RGB renderings of
the scene are made, and an off-the-shelf stereo-vision algorithm [44] is
applied to them to get a depth image with realistic noise. To facilitate
the matching between the two images during the stereo-vision process,
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we simulate a projected pattern on the object. To do so, a grid mesh
with randomly placed holes is generated and placed under a spotlight
directed at the object above the scene. The result is a fine speckle all
over the rendered scene. Visuals of all images created by the rendering
module can be seen on Figure 3.4.

(a) (b) (c)

(d) (e) (f)

Figure 3.4: Visuals of all the output images of our rendering module. (a) RGB
image (b) binary mask of the object (c) perfect depth image (d) left
RGB image with the projected grid-pattern for the stereo-vision
process (e) right RGB image with the projected grid-pattern for
the stereo-vision process (f) noisy depth image obtained using (d)
and (e)

3.1.1.3 Annotation generation

To generate grasp annotations, the real-time physics library PyBullet
[20] is used. Contrary to the rendering module, the object model is
not directly sent to the environment. Instead, we split the object into a
hierarchical approximate convex decomposition [76] before loading it
in the physics environment. This step reduces drastically the number
of triangles in the model and therefore speed-up the calculations with a
similar collision behaviour. A visual comparison of the model used for
the rendering module and the one used for the physics environment
can be found on Figure 3.5. As the PyBullet environment is not used
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for any image rendering, the texture information is not necessary and
is therefore not kept during this simplification process.

Figure 3.5: Visual comparison of an original model (left) and its three parts
decomposed VHACD collision model (right).

Different grippers with parallel-jaws are also simulated with two
simple collision boxes sliding along an axis. For our Jacquard dataset,
we set the max opening to 10 cm and a jaw size comprised in {1, 2, 3, 4,
6} cm. Having multiple jaw sizes for the gripper, combined with varied
scales of objects, ensures that a wide range of grasp configurations
can be performed during the data generation.

All our candidates and annotations are represented as planar grasps.
This means that they are only composed of five values. A grasp
example is shown by Figure 3.6, and can be described as:

g = {x, y, h, w, θ} (3.1)

where (x, y) is the centre of a rectangle, (h, w) its size, and θ its orien-
tation relative to the horizontal axis of the image. This representation
differs from the seven dimensions one described in [52] but Lenz et
al. show in [64] that it works well in practice. The main advantage
of this representation is that the grasp can be simply expressed in
the image coordinates’ system, without any information about the
physical scene: both the z position of the parallel plates and the ap-
proach vector can be inferred from the depth image. Of course, unlike
a simulation environment, when the grasp is performed by a real
robot, h and w are respectively fixed and bounded by the shape of the
physical gripper attached to it.

Planar grasp annotations are generated in a three steps process. First,
thousands of random grasp candidates are generated, covering the
whole area under the camera. All these potential grasp candidates are
then tested through rigid body simulation using a gripper with a jaw
size of 2 cm. Finally, all the successful positions of the previous step
are once again tested with all the gripper sizes. The result is a set of
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θ

w

h

(x, y)

Figure 3.6: Example of a rectangle grasp representation for a parallel-plate
gripper. Green sides are the jaws while yellow sides represent the
opening of the gripper.

successful grasp locations, each having between 1 and 5 associated jaw
sizes. Just like in a real robotic setup, a simulated grasp is considered
successful if the object is correctly lifted, moved away, and dropped at
a given location by the simulated robot (see Figure 3.7). Once all the
random candidates have been tested, a final pass is performed on all
the successful grasps to remove the ones which are too close to each
other. This last step is necessary to ensure that all grasps are annotated
only once as two random candidates could have been generated very
close to each other.

Figure 3.7: Simulation of two grasps inside the PyBullet environment. Left
is a successful grasp, as the object will be lifted and correctly
dropped away, right is a failed one

As the number of possible grasps for one image is very large, a non-
uniform probability distribution is used to generate the initial random
candidates: more candidates are generated in the most promising
parts of the image, and less in the empty areas of the image, where
a grasp is less likely to succeed. Theoretically, candidates could be
generated with a uniform distribution, but in this case, many grasps
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would fall in an empty area, and it would be a waste of time and
computation power to test them. For our Jacquard dataset, we used a
simple heuristic looking for aligned edges in the image and generating
the probability distribution from the density of such edges. However,
our experiments showed us that any reasonable heuristic leads to a
similar final grasps distribution in the image, sometimes at the cost
of more random trials. With this method, the required number of
grasp attempts to annotate a scene is reduced by orders of magnitude,
while keeping diversity in grasp locations, as illustrated by Figure 3.8.
Keeping diversity in the grasp distribution is very important for deep
learning-oriented methods.

Figure 3.8: Examples of annotated synthetic images from our Jacquard
Dataset. Rectangles represent successful parallel-jaw gripper loca-
tions. Darker sides indicate the position of the jaws, lighter ones
the opening of the gripper.

3.1.1.4 Simulated grasp trial-based criterion

With traditional grasping datasets (like for example the Cornell Dataset
[19]), the criterion used to determine whether a prediction is correct
or not is a rectangle-based metric. With this criterion, a grasp is
considered to be correct if both:

• The angle between the prediction and the ground-truth grasp is
smaller than a threshold (a typical value is 30

◦)

• The intersection over union ratio between the prediction and the
ground-truth grasp is over a threshold (typically 25%)
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While useful, as it can compare the performance of different meth-
ods on a common dataset, this criterion can however produce a lot
of visually false-positives, i.e., grasps that, from our human expertise,
look bad, but that the rectangle metrics predict as good, as well as
false-negatives, i.e., grasps that, from our human expertise, look good,
but that the rectangle metrics predict as bad. Such examples can be
seen on Figure 3.9.

Figure 3.9: Examples of misclassification with the rectangle metrics. Predic-
tion is in yellow and green, ground truth is in red and purple. On
the top row, predictions are considered good by the geometric
criterion, but will not succeed when performed with a real robot
because of collisions. On the bottom row, predictions are consid-
ered good, but could reasonably be thought of as good locations
for a real parallel-jaws gripper.

With the Jacquard dataset, we introduce a new criterion based
on the simulation environment, subsequently called simulated grasp
trial-based criterion (SGT). Specifically, when a new grasp should be
evaluated as successful or not, the corresponding scene is rebuilt in the
simulation environment, and the grasp is performed by the simulated
gripper, in the exact same conditions as during the generation of the
annotations. If the outcome of the simulated grasp is a success, i.e., the
object is successfully lifted and moved away by the simulated robot
using the predicted grasp location, the prediction is then considered
as a good grasp. This novel SGT criterion is much closer than the
rectangle metrics to real-world situations, where a single object can
have many successful grasp locations, including some slightly away
from the annotated ones. Just like the rectangle metrics, the SGT
criterion is independent of the method used to predict grasp locations.
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For the purpose of reproducible research, we are releasing along
with the Jacquard dataset a web interface [47] allowing researchers to
send grasp requests to the simulation environment. Their requests are
then processed, and the outcome of the SGT is sent back to them.

3.1.2 Dataset validation

In order to evaluate the relevance of our Jacquard dataset, we carried
out two series of experiments:

• cross-dataset grasp prediction with the Cornell and Jacquard
datasets in Section 3.1.2.2

• evaluation of grasp predictions using a real robot and gripper in
Section 3.1.2.3

We start this section by describing the grasp prediction algorithm
we used for both sets of experiments.

3.1.2.1 Training setup

For all our experiments, we used an off-the-shelf CNN, i.e. AlexNet
[61]. The network’s convolution weights have been pre-trained on Im-
ageNet [22]. The top classification fully-connected layers are removed
and replaced with a new fully-connected layer trained from scratch.
This layer output is a vector of size 5, corresponding to one predicted
grasp value for the image. To be able to use the AlexNet model with
an RGB-D image, we simply normalize the depth image to get values
close to color channels ones and duplicate the filters corresponding to
the blue channel in the first pre-trained convolution layer. The network
is trained through Stochastic Gradient Descent for 100k iterations,
with a learning rate of 0.0005, a momentum of 0.9, and a weight decay
of 0.001. The learning rate is divided by 10 after the first 75k iterations.
To compute the error of the network, the Euclidean distance between
the prediction and the closest annotation is used:

L = min
g∈G
‖g− ĝ‖2 (3.2)

where G is the set of all the annotations for the image and ĝ is the
network prediction.

Before training, we perform data augmentation by translating, ro-
tating, and mirroring the images. For synthetic data, we also use the
object’s segmentation mask to replace the default background with
different textures (cardboard, paper, wood, grass ...) to generate more
variabilities. Images used as background can be found in Appendix A.
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3.1.2.2 Cross-dataset evaluation

This series of experiments aims to show that: 1) our Jacquard grasp
dataset, despite being totally synthetic, can be used to train DNNs
to predict grasp locations on real images; 2) the diversity of objects
and grasp locations is important for a trained CNN to generalize on
unseen objects. To do so, two datasets are used to train the network
on:

• the Cornell dataset, with its 885 RGB-D images of 240 objects,
and 8019 hand-labeled grasp locations

• a subset of our Jacquard dataset, with 15k RGB-D images of
3k randomly selected objects, for a total of 316k different grasp
annotations

To highlight 1), the neural network is trained on Jacquard and tested
on Cornell; for 2), it is trained on Cornell and tested on Jacquard. For
comparison, we also display a baseline performance trained and tested
on the same dataset, i.e. Cornell or Jacquard. For this purpose, we per-
formed training and testing of the network with 5-fold cross-validation,
leading to 5 variants of the network with slightly different accuracies
on each dataset. Each variant trained on Cornell (Jacquard, respec-
tively) is then tested on the whole Jacquard (Cornell, respectively)
dataset to evidence 1).

Training Dataset
Rectangle Metrics SGT

Cornell Jacquard Jacquard

Cornell 86.88% ± 2.57 54.28% ± 1.22 42.76% ± 0.91

Jacquard (ours) 81.92% ± 1.95 74.21% ± 0.71 72.42% ± 0.80

Table 3.2: Accuracy of AlexNet trained on Cornell and Jacquard datasets

Table 3.2 summarizes the experimental results evaluated by both
rectangle metrics and SGT criterion. As can be seen, when the network
is trained on the simulated Jacquard dataset and tested on real images
from Cornell, it achieves a grasp prediction accuracy of 81.92%, which
is quite close to the baseline performance of 86.88%. Furthermore, it
can also be noticed that this network tends to predict grasps that are
visually correct on real, hand-labeled images, despite being classified
as wrong by the rectangle metrics. Examples of such predictions are
shown on the bottom line of Figure 3.9.

In contrast, when AlexNet is trained on Cornell and tested on
Jacquard, with a much wider diversity of objects and grasps, it de-
picts a grasp prediction accuracy of only 54.28%, which records a
performance decrease of 20 points in comparison with its baseline per-
formance. As for the other training, part of this gap could be explained
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by the misclassification of the rectangle metrics. However, this perfor-
mance decrease is confirmed by our SGT criterion: the network trained
on Cornell only displays a grasp prediction accuracy of 42.76%, which
is 30 points behind the 72.42% accuracy of the same CNN trained on
Jacquard.

All these figures suggest that Jacquard can indeed be used to train
CNNs for effective grasp location prediction. Furthermore, thanks
to the diversity of objects and grasp locations, Jacquard enables the
trained CNN to be much better for generalization.

3.1.2.3 Real-robot testing

How good is a grasp predicted by a DNN trained with our synthetic
data, in real? To answer this question of possible reality gap, we
mounted a parallel plate gripper on a Fanuc M-20iA robotic arm (see
Figure 3.10). To ensure a wide variability in shapes, material, and
scales, we selected 15 everyday objects (both toys and furniture), and
13 industrial components. To determine whether or not a grasp is suc-
cessful, we used the same criterion as in the simulation environment,
but this time using the aforementioned real grasping robot instead of
the simulated one: the grasp is considered successful only if the object
is lifted, carried away and correctly dropped. For this test, we once
again compared the two networks trained on the Cornell dataset and
a subset of our Jacquard dataset.

Figure 3.10: Picture of the robot performing a grasp predicted by a trained
neural network on one of our real objects. The camera is located
above the grasping area, looking downwards.

The experimental results show that the grasp predictor using AlexNet
trained on the Jacquard dataset displays a grasp successful rate of
78.43%, which is even 6 points higher than its grasp accuracy inside the
simulation environment using the SGT criterion (see Table 3.2). This
generalization skill of the trained grasp predictor can be explained
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by the large diversity of shapes and grasp locations in the Jacquard
dataset. For most of the failed cases, the proposed grasp was not stable
enough: the rectangle in the image was visually good, and the object
was successfully lifted but dropped during the movement of the robot.
Now with the same network trained on Cornell, the robot succeeded
only 60.46% of the time, mostly due to bad rectangle localization in
the image. Figure 3.11 shows some examples of the objects for which
the network trained on Cornell failed to predict a good grasp, but the
one trained on Jacquard succeeded.

Figure 3.11: Samples of grasps predictions on real-life objects using the net-
work trained on Cornell (top row), and Jacquard (bottom row)

3.2 learning to grasp objects

In Section 2.4, we presented a method to automatize the gathering of a
large-scale grasping dataset using simulation. State-of-the-art methods
for grasp detection in such annotated images of an isolated object rely
on neural networks predicting multiple grasp locations, each with
an associated score to order them [38] [133] [18]. Inspired by object
detection methods like [100], this kind of approach assumes that the
predicted score is not highly correlated to the predicted location. As
shown by Figure 3.12, this is not the case when the prediction is an
oriented grasp: a small error on the prediction can lead to a very
different outcome when the grasp is performed. To overcome this
issue, we present a novel DNN architecture, which directly correlates
its grasp quality evaluation with its grasp prediction to improve grasp
regression through a newly introduced loss.
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Figure 3.12: Error comparison between axis-aligned (left) and oriented boxes
(right). The L2-error between the green and the orange box is
the same in both cases. For axis-aligned boxes, the small error
does not change the score that has to be predicted: the object
is still contained in the box. For oriented boxes, the same small
error changes the outcome of the grasp: one of the jaws will
collide with another part of the object, preventing the grasp to
be successful.

3.2.1 Grasp prediction using a scorer

In this section, we present our neural network architecture to predict
grasps locations from images of isolated objects. For this purpose,
we consider only planar grasps and use the 5D grasp representation
defined in Equation 3.1.

3.2.1.1 Anchor boxes

To simplify the regression problem, prior knowledge about the posi-
tion, size and orientation of the grasp is introduced through oriented
reference grasps as proposed in [133]. These reference grasps, also
called anchor boxes, are defined as ga = (gax, gay, gaw, gah, gaθ). The
grasp is then defined as a deformation δ = (δx, δy, δw, δh, δθ) of a
reference grasp according to the following equation:

x = δx ∗ gaw + gax

y = δy ∗ gah + gay

w = exp(δw) ∗ gaw

h = exp(δh) ∗ gah

θ = δθ ∗ (180/k) + gaθ

(3.3)

where k is the number of different anchor boxes. Figure 3.13 illustrates
three different examples of oriented anchor boxes.
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Figure 3.13: Three examples of oriented anchor boxes with the same dimen-
sions and angles of -45

◦, 0
◦ and 45

◦ respectively. They are all
centered on the same pixel of the feature map.

3.2.1.2 Network architecture

Figure 3.14 presents the global architecture of our network. It contains
three main components: a feature extractor (FE), a primary grasp
predictor (PGP), and a scorer, a new module compared to state-of-the-
art models. Given a feature delivered by FE from an input image, PGP
aims to predict grasp parameters along with a primary grasp score
indicating the quality of the corresponding grasp. This primary grasp
score is predicted independently from the grasp parameters, although
the same feature map is used as input for both predictions. As a result,
the scorer refines this primary grasp score and delivers a final one for
each set of predicted grasp parameters and the visual neighbourhood
of the corresponding grasp position.

feature extractor (fe) For our experiments, we have chosen
to use the popular ResNet-50 network [40]. Of course, any other fully
convolutional backbone can be used as a feature extractor. The fully
convolutional constraint is important: it allows the backbone to be
used with any input image size, instead of being restricted to one
specific size. For example, instead of the traditional 224× 224 input
size of ResNet, our network takes an image of size 320× 320 pixels.
In our experiments, the output of the FE is the result of the fourth
convolution block. Therefore, the output feature maps have a size of
20× 20× 1024.

primary grasp predictor (pgp) The second part of our net-
work is an oriented anchor box-based grasp detector. We used the
state-of-the-art architecture presented in [133], with two heads. Specifi-
cally, two separate convolutional layers are added to predict separately
from an input feature map, for each pixel of this feature map, and for
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Figure 3.14: Global view of our architecture and its three components: the
feature extractor, the intermediate grasp predictor, and the scorer
network.

each reference anchor box, five regression values δ̂ = (δ̂x, δ̂y, δ̂w, δ̂h, δ̂θ),
as well as a primary grasp quality score p̂. This primary grasp quality
score shows the quality of the corresponding oriented reference grasp:
a score close to 1 means high confidence of a good location, while a
score close to 0 indicates an inadequate position or orientation for a
parallel plate gripper. It is important to note that this primary grasp
prediction network does not have the anchors as input: it only predicts
a deformation that is afterward applied to the corresponding anchor.

scorer The primary grasp quality score, predicted by the previous
PGP, only depends on the visual features and not on the final predicted
grasp parameters ĝ. So a reference grasp on a good location could
have a high score despite being a bad prediction, once the final grasp
ĝ is computed through Equation 3.3. Moreover, the score estimation
cannot be used to improve regression quality. To deal with these issues,
we extend this state-of-the-art network by a third component: a scorer
network. Inspired by two-stage object detection architectures [101]
this scorer is implemented on the top of PGP. However, unlike in
object detection, its role is not to refine the predicted grasp parameter
by PGP but its grasp quality score. Similarly to the Grasp Quality
CNN used in different versions of Dex-Net [73] [74] [108], the scorer
network predicts the likelihood p̂s that a proposed grasp is a good
one, using not only visual information but also the actual predicted
grasp parameters.

In Figure 3.14, we can see the detailed implementation of this scorer
network. We kept this network small to avoid adding too many com-
putation costs and memory usages. It takes as input the visual neigh-
bourhood of a grasp position along with a set of estimated grasp
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parameters. Specifically, a 3× 3 area from the feature map around the
grasp position is sent through a 1× 1 convolutional layer with 1024

filters. Its output is then flattened to a vector of size 9216 (3× 3× 1024).
As for each potential grasp position, there exist k anchors with the
corresponding grasp parameters, we encode the input of grasp param-
eters for a given grasp as a vector of size 5× k, where every value is set
to 0 except the 5 values corresponding to the considered anchor box,
which are set to the δ̂ output from PGP. Keeping a 5× k dimension
vector allows the network to differentiate the k base anchors, while
not having to transform the δ̂ coordinates with Equation 3.3. This
5× k vector is passed through a 512 neuron fully connected layer,
and the result is concatenated with the image vector. The result is a
9728 dimensional vector processed by two last fully connected layers,
resulting in a graspability score and a non-graspability score. These
two scores are then processed by a softmax to get a grasp success
likelihood. All the layers of the scorer network (except the last one)
are followed by a leaky ReLU [70] with a negative slope set to 0.1.

In short, our whole model with its three components takes one
image as input and predicts three outputs:

• a grasp parameter prediction from PGP

• a primary grasp quality score from PGP describing the likelihood
that the corresponding reference anchor box is a good grasp

• a final score from Scorer delivering the likelihood that the actual
predicted grasp is a good one

3.2.1.3 Loss functions

There are three different loss functions in our architecture. Loss func-
tions for the prediction of the primary grasp quality score by PGP
and the refined grasp quality score from the scorer are both softmax
cross-entropy losses. They are both computed only on a subset of the
predictions: P positive and 3P negative using PGP, and T grasps for
the scorer.

Lintermediate( p̂) = − 1
4P

4P

∑
i=1

pi log( p̂i) +

(1− pi)) log(1− p̂i)

(3.4)

Lscorer(δ̂, p̂s) = −
1
T

T

∑
i=1

psi(δ̂i) log( p̂si) +

(1− psi(δ̂i)) log(1− p̂si)

(3.5)
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where pi (resp. psi(δ̂i)) is the ground truth associated with the ith

primary score prediction (resp. scorer score prediction) calculated as
explained in Section 3.2.1.4.

The regression loss for the prediction of grasp parameters is com-
posed of two terms: a classic smooth L1 function to ensure the pre-
dicted grasps match the annotated ground truth, and a newly intro-
duced second term using the scorer output to guide the gradients in a
direction that improves the estimated quality of the predicted grasp.

Lreg(δ̂, p̂s) =
α

P

P

∑
i=1

∑
m∈{x,y,w,h,θ}

L1smooth(δmi − δ̂mi)

− 1
T

T

∑
i=1

log( p̂si)

(3.6)

where δi are the ground truth values obtained from the annotated
grasp inverting Equation 3.3. For all our experiments, α is set to 2.

As we do not want to update PGP’s weights to predict grasps that
are easier to classify for the scorer (i.e. reducing Lscorer), gradients from
Lscorer are only used to update the scorer and the FE networks. Simi-
larly, gradients from Lreg are not used to update the scorer network
but only PGP and the FE networks.

3.2.1.4 Training procedure

anchor selection As all the grasp parameter predictions are
generated with respect to reference anchors, choosing them correctly
is crucial for the performance of the whole network. In [18], Chu,
Xu, and Vela used 3 different scales and aspect ratios for a total of 9
axis-aligned anchors. However, [133] showed that orientation is more
important for accuracy than the dimensions of the box. Therefore, we
also used for our experiments only one anchor with k = 6 different
orientations.

Instead of using a ratio of 1:1 with an arbitrary, manually set size,
we compute, before the training process, a mean box of all the ground-
truth grasps from the training dataset. This approach gives us values
for h and w of the anchor boxes and has been proven to yield good
results in object detection [99]. As grasps usually have a larger w than
h, using a mean grasp helps as it provides network reference grasps
closer to the real ones than when using a 1:1 ratio, while also reducing
the number of hyperparameters needing manual optimization.

grasp selection The primary score of PGP is trained using the
fast but less accurate Angle Matching strategy presented in [133]: the
ground truth score p is set to 1 if the distance between the angles of
the corresponding anchor and an annotated ground truth grasp is
under a threshold and set to 0 otherwise. The scorer network uses
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Jaccard Matching instead: the ground truth score ps of a predicted de-
formation δ̂ is set to 1 if the corresponding grasp ĝ calculated through
Equation 3.3 is both close in orientation and has an intersection over
union with a ground-truth grasp over a threshold. As this is more
time-consuming than Angle Matching, not all the 20× 20× k predic-
tions are evaluated during training. Only a subset of all the predictions
is used to compute the gradients involving our scorer network. To
determine which of the grasps are selected, we use the primary score
delivered by PGP only based on the visual input. The T anchor boxes
with the highest scores are selected and only the corresponding T
grasps are evaluated by the scorer network and used for training. At
test time, all the grasps are evaluated by the scorer.

3.2.2 Experimental evaluation

In this section, we present the experimentations we made using our
architecture. Specifically, we define the experimental setup in Sec-
tion 3.2.2.1, then analyse the results (Section 3.2.2.2), and finally present
the performance on a real robotic setup in Section 3.2.2.3.

3.2.2.1 Experimental setup

datasets To be able to compare our architecture with other models,
we used the widely adopted Cornell Grasping Dataset [19]. State-of-
the-art models achieve very high accuracy rates on this dataset, and
the few unsuccessful detection results are in fact visually consistent
with good grasp locations, even if they do not match any ground
truth grasp with traditionally used Jaccard Matching. For this reason,
we also used the larger Jacquard Dataset presented in Section 3.1.1.
Just as in the previous work, we divided the dataset into 5 parts and
performed cross-validation. This separation was carried out object-
wise, which means that images containing one object are either all in
the training dataset or all in the testing one. Presented performances
are the averaged accuracy over the five tests.

training and evaluation details As overfitting is a common
issue with neural networks, especially when fully connected layers are
deployed, we used online data augmentation to make sure the network
does not see twice the exact same image during the whole training
process. In detail, the RGB image is randomly rotated around its center,
mirrored, shifted up to 50 pixels in both axes, and finally rescaled to
320× 320 pixels before feeding to the network. This augmentation is
not performed at testing time.

To help the training, all the weights of the feature extractor are
initialized from a pretraining phase on the large RGB dataset ImageNet
[22]. Weights for the other layers are randomly initialized. The network
is trained through Stochastic Gradient Descent with a momentum of
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Algorithm Backbone
Dataset

Cornell Jacquard

Depierre et al. [23] AlexNet 86.88% 74.21%

Chu et al. [18] ResNet-50 95.5% -

Zhou et al. [133]
ResNet-50 94.91% 82.13%*

ResNet-101 96.61% -

Morrisson et al. [81]
GG-CNN 88% 78%

GG-CNN2 - 84%

Ours (using primary score) ResNet-50 95.02% 83.61%

Ours (scorer) ResNet-50 95.2% 85.74%

*our implementation

Table 3.3: Grasp detection accuracies of multiple models on Cornell and
Jacquard dataset

0.9 for 100k iterations. The batch size is set to 10 for all the models. The
learning rate is set to 0.001 and the weight decay to 0.0001. To train
the scorer network, T is set to 64 as we found this was a good trade-off
to balance positive and negative examples, as well as being a value
small enough to avoid overly increasing training time. To train the
scorer, we used Jaccard Matching with thresholds of 15

◦ and 25% for
the intersection over union. For evaluation, we used the more common
30
◦ criterion (and 25% for the intersection over union) to be consistent

with previous work.

3.2.2.2 Results

Once trained with the whole architecture (FE, PGP, and Scorer), our
proposed model delivers from an input RGB image 3 outputs: re-
gressed grasp parameters for each potential grasp position by PGP, a
primary grasp quality score from PGP, and a refined final one from
Scorer for each anchor on that position. To evaluate the influence of
our scorer network on performances, we compared the success rate
of multiple architectures on both the Cornell and Jacquard datasets.
For our model, we evaluated accuracy using both the primary grasp
probability from PGP and the final refined one from the Scorer, al-
though they were trained together during the training procedure. The
results are presented in Table 3.3. To obtain a baseline of comparison
with a similar architecture to ours without the scorer network, we also
trained the algorithm proposed in [133] on the Jacquard Dataset.

As the results show, our proposed architecture performs similarly
to the state-of-the-art on the Cornell Dataset with 95.2% compared to
95.5% for the network from [18] with the same ResNet-50 backbone,
and is only 1.4 points behind the performance of [133] with a much
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larger ResNet-101 backbone. On the Jacquard dataset, our architecture
achieves state-of-the-art performances with an accuracy of 85.74%,
outperforming the previous state-of-the-art performance by 1.74 points.
Compared to a baseline at the third row with similar architecture (FE,
PGP) but without the scorer part, our model performs 3.61 points
better, showing that the scorer and its associated loss are useful for the
grasp prediction problem. By comparing the last two lines of Table 3.3,
we also observe that the grasp quality score predicted by the scorer,
based on the visual input and the grasp parameter prediction, is more
accurate than the primary one, based only on the visual information.

Figure 3.15 shows some predictions made by our architecture on
both the real-images of the Cornell dataset and synthetic images
from our Jacquard dataset. As can be seen, our network is capable of
predicting correct grasping positions in a wide range of configurations.
Some proposed grasps are wide, with a large opening to wrap around
the object, while some others are quite small, to fit a thinner part.

Figure 3.15: Grasp predictions for a parallel-plate gripper made by our net-
work. Green lines represent the jaws, and yellow lines the open-
ing of the gripper. Images on the top row are real ones from
the Cornell dataset and images on the bottom row are synthetic
ones from our Jacquard dataset.

anchor size influence Contrary to [133] in which only one
anchor of size 54× 54 with multiple orientations is used, in our ar-
chitecture, the size of the anchor is computed by averaging all the
ground-truth grasps in the training dataset. To evaluate the influence
of this parameter on the final accuracy, we trained our model on the
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Anchor size 54x54 54x27 108x54 108x27 Mean (91x26)

Accuracy 84.62% 85.39% 84.06% 84.53% 85.74%

Table 3.4: Accuracy of our model with different anchor sizes on the Jacquard
Dataset

Jacquard dataset with different anchor sizes and ratios. The results
are presented in Table 3.4. We can deduce from this table that anchor
size is not the most crucial hyperparameter for this kind of approach,
with an accuracy of 84.06% for the worst network and 85.74% for the
best one with the mean anchors. However, using the mean box does
not only provide the best performance but also simplifies the training
process, as it removes the need for an intensive grid-search to optimize
this hyperparameter.

grasp selection influence To evaluate the effect of the selec-
tion of the T grasp parameter predictions using the primary score, we
compared our full model to the same architecture but trained without
this selection process: at training time, all the 20× 20× k grasp propos-
als were processed by the scorer during the forward pass, and the T
with the highest final score were used for back-propagation (instead of
the T with the highest primary score). This model, in addition to being
slower and consuming more memory during training, only has an
accuracy of 82.36%, 3.38 points less than the model using the primary
score predicted by PGP. This shows that using the primary quality
score to train the scorer on hard examples (which are potentially good
based on the visual input but not necessarily good once the real cri-
terion is evaluated) helps the network to converge towards a better
solution.

3.2.2.3 Real robot testing

One important question when training models on datasets is how they
can generalize on real applications. Therefore, to evaluate this reality
gap, we tested our model on a real robotic arm. We used 15 common
household objects and 10 industrial parts to ensure a wide diversity
in shapes, colors, and materials. Figure 3.16 shows our physical setup
performing a grasp on one of the household objects. Similarly to what
we did in Section 3.1.2.3, we considered a grasp was successful when
the robot could lift the object, move it away, and put it back on the
gripping area without dropping it in the middle. With this setup, we
achieved an accuracy of 88.1% for our baseline without the scorer
and 92.4% for our full model. Both were trained on the full Jacquard
Dataset. This 4.3 points difference shows that not only our architecture
performs better on the dataset it was trained on but also that it has a
better internal grasp representation, allowing it to be more accurate in
real case applications.
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Figure 3.16: Picture of the robot performing a grasp predicted by our trained
neural network with the scorer module on one of the household
objects. The camera is located above the grasping area, looking
downwards.

3.3 conclusion

3.3.1 Summary

In this chapter, we proposed a new method to generate synthetic im-
ages with grasp annotations, and we applied this method to a database
of 3D models to create a large-scale dataset for robotic grasping, re-
ferred to as the Jacquard dataset. We also presented a new neural
network architecture to learn grasp prediction from such images.

Specifically, we first detailed the proposed process to be able to
generate realistic images with grasp annotations for a parallel-plate
gripper using simulation. We evaluated the dataset generated with
this method against the commonly used Cornell dataset [19] on a
simple neural network architecture, and showed our larger Jacquard
dataset leads to a better generalization ability of the network. We then
presented in detail our new neural network architecture, using a scorer
module to extend state-of-the-art approach [133]. We finally showed
that this extension leads to both better grasp predictions on unseen
images from the training dataset and better grasp performances on a
real robotic system and real images of isolated objects.

3.3.2 Contributions

State-of-the-art approaches for grasp detection in images predict at
the same time grasp propositions and quality scores and are trained
on hand-labeled real images. Unlike them, our proposed architecture
scores graspability based on grasp prediction and achieves state-
of-the-art performances on our large Jacquard dataset composed of
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automatically annotated synthetic images, while performing similar
to other approaches on the Cornell dataset. Our Jacquard dataset is
available online1 for the research community and has been used by
over 130 research teams since its release in 2018.

3.3.3 Extension to bin-picking

The presented method only applies to images of isolated objects. As
shown by Figure 3.17, it requires an additional segmentation step to
be applied to bin-picking, with many instances in the image. However,
this two steps process for bin-picking has some limitations and is not
always able to generate an actual good grasp in the bulk context. Seg-
mentation can indeed be incomplete, and thus the image of the object
on which grasps are detected does not represent the real shape of the
object. And even with a perfect segmentation, the grasp predicted on
the isolated object can sometimes be unfeasible by the robot when
transposed back in the bulk context. Figure 3.18 shows some of these
cases where the approach can fail to grasp an object.

Moreover, this approach is based on supervised learning. While
useful when large quantities of data are available for the studied
problem, it can only lean on existing data. A new dataset has to
be generated in case we want to change the considered gripper for
example.

In Chapter 4, we will further investigate end-to-end self-supervised
learning from the base image to overcome these limitations.

Object segmentation Isolated object  
grasp detection Object grasping

Figure 3.17: A two steps grasp detection process. First, the object is isolated
from the background through segmentation. Then a grasp is
predicted on the image of the isolated object. Last, this grasp is
performed on the original scene.

1 https://jacquard.liris.cnrs.fr/
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Figure 3.18: Examples of failed grasp detections on bulk images. Left: failure
is due to an incomplete segmentation. Right: segmentation is
correct, but the grasp is not valid in the context due to a collision
with the containing box.
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S E L F - S U P E RV I S E D O B J E C T AWA R E B I N - P I C K I N G

Segmenting objects out of bulk context to predict grasps on them is
useful for model-free approaches. However, it causes issues when the
context in the cluttered scene is crucial to predict the grasp outcome.
To overcome this issue, we propose in this chapter a new model-free
data-driven method trained in a self-supervised way using simulation.
This chapter is organized as follows: Section 4.1 explains why and
how we use self-supervision to train our network instead of traditional
supervision, then Section 4.2 presents the simulation environment we
built for interactive bin-picking, and Section 4.3 describes the architec-
ture of our object-aware grasp detection network. The experiments we
conducted to test our network against other approaches are detailed
in Section 4.4, while Section 4.5 shows how our architecture can be
quickly adapted to new situations. Finally, we conclude this chapter
in Section 4.6.

4.1 self-supervised training

4.1.1 Motivations

In Chapter 3, the network is trained with images of many different
isolated objects, annotated with all the possible good grasp locations.
This diversity of shapes seen during its training allows the network
to be very generic, and therefore generalize well to almost any object.
However, generating such a dataset for piles of objects would be much
more difficult for two reasons:

• simulating a pile of objects is slower than an isolated object, due
to the many collisions occurring between them

• there are a lot more possible grasp locations to test in a pile than
for an isolated object

Thus, obtaining a dataset with as many objects as the one presented
in Chapter 3 would not be feasible in practice. Obviously, this requires
a paradigm change: the network can no longer be trained on thousands
of different objects and shapes. Instead, we use a self-supervised

47
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approach to train our network, progressively generating data when
they are needed.

4.1.2 Self-supervised learning

Self-supervised learning is a generic term defining approaches where
a system can generate the data it needs to learn. In reinforcement
learning, for example, an agent collects data samples interacting with
its environment and learns from a reward signal [119]. Unlike rein-
forcement learning, the time aspect is not considered in our case. A
grasp is not defined as an episode, with multiple steps sequentially
executed: each successive grasp is considered independently from the
other. However, the network still interacts with the environment and
learns from a trial and error process. Our self-supervised method thus
lies between traditional supervised learning [21], because it learns in
a supervised way, and reinforcement learning, because of the way it
interacts with its environment to get data samples.

The network generates the data it needs during the training by
interacting with its environment. As the data are generated on-the-fly
using the network itself, and not before the training, no heuristics or
third-party detection methods have to be used. A base version of the
network is thus trained on a few objects, learning core concepts of
robotic grasping in this particular situation. Then, when a case with
a different configuration is encountered, the network can be used to
generate more data using the same self-supervised approach and be
fine-tuned with them if necessary. This approach is ideal for real-life
applications, as the whole adaptation process can be automatized,
without any human intervention (either image annotations, or coding
to adapt the simulation environment to a new situation). Figure 4.1
summarizes the two approaches: a generic network trained in a super-
vised way, and an adaptable network trained with self-supervision.

4.1.3 Proposed self-supervised approach

To perform the self-supervised training, two processes are running
simultaneously: one to train the neural network using the generated
data, and one to generate data using the partially trained neural net-
work. Figure 4.2 illustrates this training loop. This loop is independent
of the nature (simulated or real) of the environment used to gather
annotated data.

The data generation module runs in parallel to the training module:
while the network is learning from previously generated data, new
ones are generated using a copy of the same network. It means that
except for the initial data generated to initialize the network, using
our self-supervised approach does not add any additional time to the
overall duration of the training procedure.
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Object 1

Object 2

Object 3

Object 4

Object 5

Trained Generic 
Neural Network

Object 1

Object 2

Object 3

Object 4

Object 5

Trained Base 
Neural Network

Self-supervised
fine tuning when

necessary

Supervised learning

Self-supervised learning

Large annotated dataset

+
Few 3D models Simulation environment

Figure 4.1: Comparison between supervised and self-supervised approaches.
In the self-supervised approach, the network is less generic but
can be more easily fine-tuned to be adapted to new situations,
like new objects.

The data module takes trained weights as an input, uses them to
generate new data by interacting with the environment, and outputs
some new data to be used to train the network.

Both network weights and generated data are not transferred from
and to the other module in real-time. Instead, the synchronization
is performed at each training epoch, similarly to what is done in
reinforcement learning [111]. When the network has seen each data
sample once, the weights of the data generation network are updated
with the new ones, and the generated data are sent to the learning
module to be stored in a replay buffer. To avoid infinite memory usage
due to the many samples that are generated, the oldest samples are
discarded and replaced by the newest ones. Algorithm 1 summarizes
the process used for data generation.

As the simulation environment does not regenerate a new pile
of objects after each grasp attempt, but rather only when the bin is
almost empty, successive data samples created on the same simulation
setup are highly correlated, sometimes with part of the image being
strictly identical. Initially developed for reinforcement learning [78],
this approach of storing the data in a replay buffer instead of using
them in real-time helps to stabilize the training by breaking this
correlation, distributing successive data samples into different batches
for the training.
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Network Training Data Generation

Annotated data

Trained model

Figure 4.2: Illustration of our self-supervised training loop. The network
training module updates the weights of the neural network, while
the data generation module uses these weights to propose grasp
parameters to the robotic environment (which can be either simu-
lated or real).

4.2 simulation environment

Data-driven methods for grasp prediction require data to be trained
on. This is even more true for self-supervised training, where data
have to be generated on-the-fly during the training procedure. Using
humans to annotate images is not feasible for training that can last
for many days. As robots do not need to sleep or eat, it is possible
to use them to gather data automatically [66] [55], but it can take
several months in these conditions for one training to be performed.
Waiting such a long time is not acceptable in many -if not all- real-life
applications in the industry.

To overcome this issue, we advocate once more the use of simulation
to quickly gather a large amount of data. However, as data have to be
generated during the training procedure, it is not possible to use an
offline data generation similar to the one used in Chapter 3 to create a
large-scale database before starting the training. Instead, we need an
interactive environment that is capable of quickly generating data as
they are needed by the training. More specifically, the environment
needs to meet multiple constraints:

• physics: simulating bulks of objects require a physics engine
capable of handling many collisions and propagating them in a
realistic way in real-time

• rendering: as we want to train on images, the environment has
to be able to simulate camera output in real-time
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Algorithm 1: Detailed data generation process for one training
epoch
Input: Wtrain, network trained weights
Output: data, set of annotated data samples
data←− [ ]

I ←− ∅
g←− ∅
r ←− 0
update the network copy with Wtrain
while training epoch is not finished do

I ←− image from an idling agent in the simulation
environment

feed the network with I and get a grasp proposal g
send g to the agent
r ←− outcome of g
data←− [data, {I, g, r}] // append new sample to data

end while
send data to the training module

• communication: the environment must have a two-way commu-
nication channel with the neural network to allow self-supervised
training as described in Section 4.1

To implement such an environment, we used the Unity software
[125]. Unity’s main purpose is developing video games. As such, it is
developed to emulate a real-time simulation of virtual worlds, with
physics interactions, and rendering through synthetic cameras. It also
has an ML-Agents toolkit [54] that can handle two-way communication
to train machine learning algorithms and has been proved to be
useful to generate synthetic data to train object detection algorithms
[51]. Figure 4.3 illustrates how a learning agent and the environment
interact with each other during our self-supervised training loop.

To speed up the generation process and generate data for multi-
ple objects simultaneously, the individual robotic simulated setup is
cloned multiple times. This results in parallel agents collecting data
samples independently from each other, which has been proven to
be more efficient for reinforcement learning tasks [79]. In our exper-
iments, we used a simulated environment with 12 agents. They all
have the same characteristics and behave exactly the same.

4.2.1 Physics simulation

Simulating bulks of objects colliding with each other is much more
difficult than simulating the collisions of one isolated object as pre-
sented in Chapter 3. Instead of just computing the reaction of the floor
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Figure 4.3: Interactions between the learning agent and the simulation envi-
ronment

on the object, the forces applied by one object on all of its neighbours
have to be calculated, and propagated to their own neighbours, until
an unmovable object (like the floor, or one side of the containing box)
is met. In our simulation environment, all these calculations are made
by Nvidia’s PhysX [87] physics engine.

4.2.1.1 Training objects selection

Even if PhysX has been improved to handle cases like that with its
version 4, accurately simulating large piles of objects is still difficult,
and can often lead to instabilities, with large and unpredictable forces
created inside the stack. This phenomenon occurs mainly when the
collision models of the objects are complex, with many faces, or with
long and pointy parts.

Because of this reason, it is not possible to use any arbitrary 3D
model as we did in Chapter 3. Instead, we used a set of objects scanned
with a 3D scanner. Some examples of these objects can be seen on
Figure 4.4. To reduce even more the physics simulation costs, the
collisions are not computed directly on the models, but on simplified
versions using V-HACD decomposition [76]. The difference between
visual 3D models and the decompositions can be seen on Figure 4.5.
All the models have been manually scaled and tested, to ensure the
resulting simulated pile was stable, even with stacks of many objects.
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Figure 4.4: Examples of our scanned 3D objects used to generate piles of
objects. Objects have various shapes and textures.

4.2.1.2 Bulk generation

To generate stacks of objects that are as close as possible to those
encountered in real-cases applications, all the objects are placed inside
a rectangular box. This box is stationary and measures 600× 400× 300
mm. The models are scaled so that the box can contain roughly 50

independent objects. The mass of the object is arbitrarily assigned
to 1 kg. Having a different mass would not change the behaviour of
the simulation, but having a constant mass of 1 kg makes it easier
to set the parameters of the grippers. To ensure diversity in the piles
of objects, each object is instantiated with a random position and
orientation above the box and then falls to form a stack with high
levels of occlusions and cluttering. Figure 4.6 shows examples of
simulated homogeneous stacks inside the simulation environment.

During the simulation, new piles are not generated after each grasp
attempt, as it would be too slow. Instead, piles are always initialized
with 50 objects, which are then removed one by one as interactions
with the learning module occur. To avoid a deadlock in the simulation
in case the last object is not graspable at all, the pile is regenerated
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Figure 4.5: Comparison of the two models used. Left is the detailed model
used for visual rendering, right is the simplified model composed
of multiple convex parts used for collisions.

when it has less than 5 objects left instead of 0. Given the scale of
the objects and the size of the bin they are in, the objects are very
often far apart from each other when the reset happens. Therefore, the
images with less than 5 objects or less are very similar, with almost no
occlusion, meaning using this early reset does not reduce the diversity
in the data.

4.2.2 Image generation

Unlike in Chapter 3, it is not possible to render multiple images with
ray-tracing to get realistic images. Even if rendering an image with
ray-tracing is possible in real-time with modern GPU, it would be
too slow to be done multiple times in parallel for multiple agents.
Instead, the rendering of the images is done through rasterization, a
much faster technique than ray-tracing. The output images are not
as realistic as they could be with a ray-tracing method, but it allows
much faster rendering times, which are necessary to generate data to
feed the neural network on-the-fly.

As the environment is entirely simulated, not only it is possible to
get RGB and depth images, but also other information, without any
human involvement needed. In our simulation, each of the stacks of
objects is rendered 4 times in total, resulting in 4 different images:

• RGB image, showing the objects with their textures

• depth image, showing how far is each pixel from the camera
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Figure 4.6: Examples of simulated stacks of objects in our simulation envi-
ronment. With many objects, there is a high rate of occlusions
and cluttering.

• segmentation image, where each object is colored with a unique
grey value

• normal image, with three channels representing the components
along x, y and z of the normal vector at any given pixel

Examples of images from the simulation environment can be seen
on Figure 4.7.

4.2.3 Grasp simulation

Simulating stacks of objects and rendering images is not sufficient
to generate data to learn grasp prediction. The environment also has
to be able to determine whether or not a grasp proposition is valid.
Unlike in the Dex-Net approaches [73] [74], where the grasp outcome
is predicted with static analysis, we are leveraging the power of the
physics engine to simulate not only the grasp but also its stability
when the object is pulled out of the stack and transported away.

We implemented two of the most used kind of grippers in our
environment: a vacuum suction-cup-based gripper and a parallel plate
gripper. The two next sections will present each of these grippers’
implementations.
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(a) RGB (b) Depth

(c) Segmentation (d) Normals

Figure 4.7: Visuals of all the output images of our rendering module

4.2.3.1 Parallel-jaw gripper

A parallel-jaw gripper is composed of two parallel fingers that enclose
an object. When the gripper is closing, the object lying between the
fingers is pinched.

The simulation of this process is done in a very similar way to
the one presented in Chapter 3 by simulating the forces naturally
generated by the collisions between the object and the jaws. The
closing force of the jaws is set so the gripper can lift our 1 kg objects
with a little margin. This means that, if the grasp is far from the object’s
centre of mass, the object can slip and rotate around the grasping axis.
To be considered successful, an object has to be correctly extracted
from the pile and moved away to a designed location outside of the
box. To maximize the chances of being successful, a grasp has thus to
be not only correctly aligned over an object but also to be centered on
it, to avoid the object dropping during the transport phase. Figure 4.8
illustrates the different phases of a grasp.

To be performed in the simulation environment, a grasp requires
8 parameters: {gx, gy, gz, δ, θ, gnx, gny, gnz}, where {gx, gy, gz} are the
three space coordinates representing the position of the middle point
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between the two fingers on axes x, y and z respectively, δ is the
opening between the two fingers, θ is the orientation of the jaws and
{gnx, gny, gnz} is the normal along which the gripper approaches the
object before closing the jaws. To be closer to real-life applications, the
width of the jaws is not a grasp parameter, but rather a simulation
parameter instead. Of course, multiple grippers with different widths
can be used, but they can not be changed after the environment is
loaded.

(a) (b) (c) (d)

Figure 4.8: visualisation of the different steps of a parallel-jaw grasp in a
stack-free environment for better visualisation. (a) the fingers are
placed around the object at the designated location (b) the gripper
is closed and the object is grasped (c) as the gripper is moved
away from the grasping location, the object is rotated around the
grasping axis due to its own weight (d) the object is successfully
lifted

4.2.3.2 Vacuum gripper

A vacuum gripper can be as simple as one suction cup, but more com-
plicated structures also exist and are commercially used, as illustrated
by Figure 4.9. They work in the same way, but with multiple grasping
points, allowing either to catch several objects simultaneously or to
catch one object more stably.

To grasp an object, a vacuum gripper uses an air pressure difference
between the inside and the outside of a membrane. This pressure
difference is created by a vacuum generator removing the air inside
the membrane, creating a force between the gripper and the object
obstructing the hole in the membrane. This force can obviously only
exist if the pressure inside the membrane is very low, i.e. if there is
no major leak between the membrane and the object. Even if there is
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Figure 4.9: Examples of vacuum grippers with different numbers of suction
cups and dispositions.

no air leak, the success of the grasp is not guaranteed: the object may
also fall during transport. Figure 4.10 illustrates the process of a grasp
using a vacuum gripper.

Contrary to the parallel-plate gripper, which is simulated only using
collisions and forces resulting from them, air pressure effects can not
be directly simulated inside the environment. Instead, we approximate
the phenomenon using position constraints. The following of this
section will describe how we simulate the grasp for one suction cup,
but the same process can of course be applied to multiple suction cups
simultaneously.

A suction cup grasp requires 6 parameters to be performed in our
simulation environment: {gx, gy, gz, gnx, gny, gnz}, where {gx, gy, gz}
are the three space coordinates representing the position of the cen-
tre of the suction cup disc on axes x, y and z respectively, and
{gnx, gny, gnz} is the normal along which the gripper approaches the
object.

air leak check During the approach phase along the normal,
whenever a collision between the gripper and the objects occurs, the
surface of contact between the suction cup disc and the object is
estimated. To do so, we check the distance between the gripper and
the collided object at N points sampled over the suction cup surface
and assume that contact is indeed locally formed for each point if this
distance is under 10 mm. This threshold has been chosen to model
the maximum deformation of the flexible membrane of the suction
cup. To sample those points inside the disc, we do not use a uniform
distribution over r and θ, as it would lead to a higher concentration on
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go to
grasp

position

air leak? failure

item trans-
portation

item fall? failure

success

no

yes

no

yes

Figure 4.10: Process of a suction cup grasp. The grasp can fail either because
the suction cup is badly positioned, or because the grasp is not
stable enough to carry the object to the drop position.

the centre of the disc. Instead, we use the following equation to sample
them along a spiral and uniformly cover the whole disc surface:

 ri =
√

i
N

θi = iπ(1−
√

5)
(4.1)

where i is the index of the ith points on the disc. Figure 4.11 shows
the resulting distribution of the points with N = 100, as well as two
examples of distance checks inside the simulated environment.

If the estimated contact surface is over 95%, the contact is considered
sufficient, with no major air leak preventing the grasp to be performed.
This 95% threshold has been set empirically by observing real vacuum
grippers and their behaviour regarding partial contact grasp.
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(a)

(b) (c)

Figure 4.11: Examples of disc sampling. (a) uniform sampling of 100 points
on a disc using Equation 4.1 (b) and (c) distance check in the
simulation environment. Points where the suction cup is con-
sidered as locally in contact with the object are drawn in green,
points where there is no contact in red.

robustness check Having a good contact surface with the object
does not guarantee a successful grasp outcome: the grasp also has to
be stable enough to hold the object during the transportation of the
object to its final position. To simulate this step of the process using
the physics engine, we add a position constraint between the gripper
and the object. This constraint forces the object to remain at the same
position relative to the gripper from the moment the constraint is
created, i.e. at grasp time, to the moment it is dropped to its final
location.

Both force and torque applied to the object by the constraint to main-
tain it in position are limited. This means that if at any moment, either
the force or the torque applied is above a threshold, the constraint is
destroyed, and the object is dropped from the gripper. To be consistent
with real-life applications, in which larger vacuum grippers can be
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used to lift bigger objects, we set the thresholds relative to the suction
cup radius R. Specifically, we used the following equation to set them:

{
Fmax = 50 R

0.02

τmax = 1.5 R
0.02

(4.2)

where R is expressed in meters.
As these values depend on R, multiple vacuum grippers with dif-

ferent properties can be created inside the simulation environment.
With a smaller radius, it is easier to fulfill the surface contact criterion,
but the grasp will be weaker and has to be performed on the centre
of mass of the object to avoid too much torque breaking the link. On
the opposite, a larger radius allows the gripper to be strong enough
to grasp objects even from an off-centered position but will be more
difficult to place on a flat surface to avoid air leaks.

The maximum values have not been chosen to maximize realism.
Instead, they have been so grasping in the simulation environment
is a challenging task, with different behaviours between multiple
suction cups with different radii. Thus, the network does not only
have to understand where the gripper should be sent to grasp an
object but also has to carefully select the gripper that best matches the
characteristics of the grasp.

4.2.4 Interactive environment

We used the ML-Agents toolkit [54] to implement the two-way com-
munication channel required to have an interactive environment. The
simulation sends images and rewards corresponding to grasp outcome,
and receives grasp locations, as illustrated by Figure 4.3.

To speed up data generation, and allow the generation of data from
multiple objects simultaneously, the simulated robotic setup is du-
plicated multiple times, similarly to what is done in reinforcement
learning [79]. Each of them has an independent bin, cameras, and
grippers. Whenever one of these instances is idling, i.e. is not per-
forming a grasp, all its cameras render the scene and the resulting
images, as well as a unique identifier of this instance, are sent through
the two-way communication channel, to be processed. The instance
then waits for an answer as grasp coordinates. Once received, the
corresponding grasp is simulated and the outcome sent back through
the communication pipeline, before returning in an idling state and
continuing the cycle.

Of course, the communicating agent does not have to learn from
the data and can be replaced without any change in the simulation
code, as long as it is able to propose grasps to the simulated robotic
instances.
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4.3 object-aware grasp detection network

Images of piles contain, by definition, many instances that can occlude
each other. Achieving good grasping performance in these conditions
requires an understanding of how objects are located in the scene.

A traditionally used approach by model-free methods is to predict
object instances to then send the gripper to an estimated object centroid
[36]. In this section, we present our object-aware architecture, which
can predict both object instances and grasp quality estimations.

4.3.1 Network architecture

The global architecture of our network can be seen on Figure 4.12.
Similar to previous approaches [81] [108], our architecture is a Fully
Convolutional Network (FCN), capable of estimating the quality of
hundreds of potential grasps simultaneously. The following para-
graphs describe each of its components in detail.

4.3.1.1 U2-Net backbone

The backbone of our network is based on the recent U2-Net architec-
ture [95]. Besides being a state-of-the-art network for Salient Object
Detection, U2-Net architecture is known for its simplicity and ability
to be trained from scratch, without using pre-trained weights from
image classification tasks. This is important for grasp detection tasks,
especially in bin-picking, as data follows a distribution very different
from datasets traditionally used for pre-training, like ImageNet [22].

Just like the U-Net network [103], U2-Net is an encoder-decoder
architecture. The data is processed by a set of modules, with downsam-
pling (respectively upsampling) steps between them in the encoder
(respectively in the decoder). However, instead of being sequentially
chained, the output of each module of the encoder is linked not only to
the next module but also to the corresponding module of the decoder,
giving a U-shape to the global architecture.

In addition to this global U-shape, each individual module of the
encoder and the decoder are themselves built as small U-Nets, called
ReSidual U-block (or RSU), thus the 2 in U2-Net. These RSU blocks
increase the depth of the whole architecture without significantly
increasing the computational cost. Figure 4.13 presents the detailed
architecture of an RSU block. An RSU block has multiple parameters
defining its internal structure:

• its depth, in number of convolution blocks D

• the number of filters in each convolution blocks M

• the number of channels in the input features Cin
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• the number of channels in the output features Cout

4.3.1.2 Cascaded decoders

Compared to a network used for Salient Object Detection, our network
does not only need to predict a segmentation of the image for instance
object estimation but also grasp quality estimation. To do so, we used
a cascaded decoders approach [37]. Cascaded decoders have originally
been developed for edge detections, with multiple modalities (like
boundaries and occlusions) predicted by chained decoders. Instead
of using only the encoder features as input, as in traditional encoder-
decoder architectures, each decoder also has the output of all the
previous decoders to base its prediction on. This allows the decoders
to use not only the generic features extracted by the encoder but also
the specific features created by the previous decoders. In our case, we
use a structure with two decoders: one for the instance segmentation,
and one for the grasp quality estimation. They are both identical
architecture-wise, except for the top convolution, which is different
depending on the considered task.

graspable instance segmentation Using the multi-scale fea-
tures from the encoder, the first decoder task is to predict a segmenta-
tion of the instances in the image. As images can contain many objects
in bin-picking scenarios, segmenting out all the instances of the objects
in the image, even the small part of an almost fully occluded instance,
is a quite difficult task. Knowing that kind of information is moreover
not very useful for the grasping problem, as most of the time, to be
successful, a grasp has to be performed on an object that is on the top
of the pile.

That is the reason why we introduce a new kind of segmentation,
named graspable segmentation. The goal of the decoder is not to
predict a full segmentation of the image anymore. Instead, we focus
on the information that is indeed useful to help the grasp prediction:
instances that are on top of the pile, i.e. objects that do not have a part
of them occluded by another one. Figure 4.14 shows the difference
between the two types of segmentation, while Algorithm 2 details the
process to compute the graspable segmentation from a depth and a
full segmentation image. Thus, the problem is much more simple for
the network, as the output becomes a single-channel image where
each pixel has to be set to 1 if it is part of a graspable instance, and 0
otherwise.

To perform its task successfully, the network has to analyze fea-
tures at different scales in the image. To help in doing so, each RSU
block is followed by a 3x3 convolution, trained to predict the same
segmentation at different scales. Thus, our segmentation decoder has
6 output Ŝ(i)

seg, one for each scale factor. In addition, there is one more
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Figure 4.13: Detailed architecture of an RSU block with a depth of 7. The in-
put features are downscaled and upscaled back to their original
size so in total the dimension of the features does not change
in the process. For each convolution block, the text represents
input channels, kernel size, and output channels respectively.
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Algorithm 2: Graspable segmentation generation algorithm
Input: d, depth image
Input: s, full segmentation image
Output: Sseg, graspable segmentation ground-truth image
Sseg ←− 0
for object o ∈ s do

is_occluded←− false
for pixel p ∈ o do

neighbours←− pixels adjacent to p
for pixel p′ ∈ neighbours do

if d(p′) < d(p) and s(p′) 6= s(p) and p′ /∈ background
then

is_occluded←− true
end if

end for
end for
if not is_occluded then

for pixel p ∈ o do
Sseg(p)←− 1

end for
end if

end for

3x3 convolution at the top of the decoder, taking as inputs all these
intermediate results Ŝ(i)

seg and outputting the final decoder prediction
Ŝseg.

grasp quality estimation The second decoder of our architec-
ture is the one actually responsible for estimating the grasp quality
of grasps at many locations. Depending on the number and nature
of the grippers the network is trained for, the output of this decoder
can vary. In this section, we will describe the architecture trained to
predict grasps for three suction cups of different radii, as illustrated on
Figure 4.12, but the top layers could be adapted for any combinations
of suction cups and parallel-jaw grippers.

As the grasp prediction decoder is located after the segmentation
one in the architecture, it takes as input not only the encoder multi-
scale features but also the features previously calculated by the seg-
mentation decoder. These features are concatenated before each RSU
block and then processed by all the blocks in the grasp prediction
decoder.

Just like for the graspable segmentation, the grasp parameters are
predicted at each scale in the decoder, concatenated, and then fed
to a convolution layer outputting the final prediction. In total the
decoder has 7 outputs: 6 intermediate Ŝ(i)

g and one final Ŝg. Each one
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(a) Input image (b) Full instance segmentation (c) Graspable instance segmenta-
tion

Figure 4.14: Comparison of two types of segmentation applied on the same
input depth image (a). (b) full instance segmentation, each pixel
is colored depending on the instance it belongs to (c) our gras-
pable segmentation, only the pixels belonging to the instances
that are on the top of the pile are set to 1.

of these outputs is a 3 channels images. Each one of these channels
corresponds to one of the suction cups considered. For example, the
value of each pixel of the first channel represents the estimation of
the success likelihood of a grasp attempt with the first gripper at the
location of this pixel.

4.3.2 Self-supervised grasp selection

The output of the network is composed of one segmentation map Ŝseg

and one grasp quality estimation map Ŝg. From these two images, one
must extract only one position to actually send the gripper to. To do
so, we first multiply each channel of Ŝg, i.e. the success estimation
for each gripper, with the segmentation map. As both Ŝseg and Ŝg

have values between 0 and 1, the result of this multiplication is a new
image, Ŝ f inal , of the same shape as Ŝg, also with values between 0
and 1. Figure 4.15 illustrates this process. Then, a pixel is sampled
from this resulting image, with a probability depending on its value:
the closer to 1 its value is, the more often it is selected. Using this
approach rather than selecting the pixel with the highest value creates
some variability in the data generation: even if a pixel is predicted
with a small score because such configuration has never been seen
before, it has a small chance of being picked, therefore expanding the
dataset with this new situation.

Once a pixel is selected, it has to be transposed into a full suction cup
grasp {gx, gy, gz, gnx, gny, gnz}. gx, gy, and gz are determined by both
the projection of the selected pixel in the world space and its value in
the depth image. The three orientation parameters {gnx, gny, gnz} are
determined by the normal at the considered pixel. In the simulation,
the normal can directly be taken from the rendered normal image.
However, such information is often not available for real setups. In
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Figure 4.15: Example of multiplication of the two outputs Ŝseg and Ŝg from
our network to obtain a segmentation and grasp success com-
bined estimation. Pixels with a value close to 1 in the combined
image must be part of both a top object and at good grasp
locations.

this case, the normal is instead estimated from the depth image using
the following equation:

nx,y = normalize
(
− dx+1,y−dx−1,y

2 ,− dx,y+1−dx,y−1
2 , 1

)
(4.3)

where dx,y (respectively nx,y) represents the depth value (respectively
the normal) at pixel (x, y).

4.3.2.1 Network training

The training of our architecture is made through two different losses:
one for the graspable segmentation, Lseg, and one for the grasp success
estimation Lg:

L = wsegLseg + Lg (4.4)

where wseg is a weight to balance the importance of the segmentation
loss compared to the grasp quality estimation loss. In practice, we set
wseg to 0.05 in all our trainings.

Both the losses are based on cross-entropy, defined as:

CE (p, q) = p log(q) + (1− p) log(1− q) (4.5)

graspable segmentation loss For the graspable segmentation
loss, the ground truth is a full image Sseg of the same size as the input
image HxW, in which the value of a pixel is set to either 0 or 1. At
each scale level of the network, the output Ŝ(i)

seg is also an image of size



4.4 experiments 69

HxW, taking values between 0 and 1. The final output of the decoder
Ŝseg shares the same format. The graspable segmentation loss is thus:

Lseg = − 1
HW

W

∑
x=1

H

∑
y=1

(
CE
(

Ssegx,y
, Ŝsegx,y

)
+

6

∑
i=1

w(i)
segCE

(
Ssegx,y

, Ŝ(i)
segx,y

)) (4.6)

where w(i)
seg is a weight associated to the output at the ith scale level.

This weighted sum of cross-entropy losses ensures that the inference
of the network is consistent with the ground-truth at each level, and
for each pixel in the image. In practice, all the w(i)

seg are often set to 1,
avoiding a laborious hyperparameter search.

grasp success estimation loss Contrary to the graspable
segmentation loss, the ground truth for the grasp success estimation
loss is not a full segmented image, but rather the reward obtained
when attempting to grasp an object at one given position, with a given
tool. Formally, let (x, y) be the pixel coordinates of the grasp attempt,
t the index of the tool used for this grasp, and r ∈ {0, 1} the outcome
of the grasp attempt (0 if the grasp was a failure, 1 if it succeeded).
The grasp success estimation loss is then:

Lg = −
(

CE
(

r, Ŝgt,x,y

)
+

6

∑
i=1

w(i)
g CE

(
r, Ŝ(i)

gt,x,y

))
(4.7)

where w(i)
g is a weight associated to the output at the ith scale level.

Just like for the graspable segmentation, all the w(i)
g are often set to 1

in practice.

4.4 experiments

The goal of this section is to explore the abilities of our self-supervised
object-aware grasp detection neural network. Specifically, we want to
answer the following questions:

1. What is the performance of our approach, and how does it
perform compared to other methods?

2. What is the influence of each part of our architecture on the final
performance of the method?

We first detail the procedure we use to train and evaluate the
network in Section 4.4.1. Then, Section 4.4.2 and Section 4.4.3 present
the experiments we made to answer (1). Finally, analysis to answer (2)
are performed in Section 4.4.4.
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4.4.1 Training details

4.4.1.1 Images used

Our network is a Convolutional Neural Network, which means that it
takes images as inputs.

image nature Depth sensors are now very common and almost as
cheap as RGB cameras. Depth information is also required to transform
a grasp from pixel coordinates to world coordinates. Moreover, in an
industrial context, processed objects can sometimes have no texture
information at all, as can be seen on Figure 4.16. In this case, a depth
image carries more information than an RGB one. For these reasons,
we have decided to use only the depth information as input for our
training. The input of the network is then a single channel HxW image,
with values between 0 and 1 representing the distance to the camera:
0 means very close to it, and 1 very far.

Figure 4.16: Example of a pile of textureless objects. An RGB image does not
contain a lot of information to work on for this kind of industrial
parts.

image resolution Our network follows an encoder/decoder
architecture, with the output images having the same resolution as
the input one. Thus, the size of the input image is a crucial factor for
two reasons:

• it has a significant impact on the inference time and the memory
usage of the network

• it directly controls the distance in world coordinates between
two pixels in the output map: as the size of the bin does not
change, the more pixels there are in the output image, the less
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distance there is between two of them, and the more precise the
grasp position can be determined.

Table 4.1 presents different characteristics of the network regarding
the chosen input resolution. Given these numbers and the fact our
smallest suction cup has a radius of 1 cm, the chosen input resolution
for our training is 64x96. While 128x192 seems to be a better choice,
training with this resolution is 25% slower than with 64x96. As a full
training session lasts almost two days due to our deep backbone, these
25% represents 12 additional hours of training. 64x96 is therefore a
good trade-off between precision in world coordinates and training
time. The memory usage for a batch of 8 is also low, thanks to the
architecture of the RSU blocks, making our network compatible with
lower-ends GPUs with less memory, even for training.

Input image

resolution

Training iteration

time (s)

Training memory

usage (Gb)

Output resolution in

world coordinates (cm)

32x48 0.41 2.1 1.25

64x96 0.40 2.6 0.63

128x192 0.50 4.9 0.31

192x288 0.81 9.1 0.21

Table 4.1: Characteristics of the network for different input resolutions. Time
is measured for one full forward, backward and weights update
iteration on a GTX 1080Ti. For both the time and the memory
usage, a batch of size 8 is considered.

4.4.1.2 Optimizer details

The weights of the network are updated using the AdamW optimizer
[69], with a learning rate of 1e−4. We do not use any pre-trained
weights, all layers are initialized using the Kaiming method [39] and
are trained from scratch for 40 epochs. An epoch is defined as one
complete training step over the whole replay memory buffer. The
replay buffer is composed of 90000 data samples, that are sent in
batches of size 8 to the network. Before the training starts, the replay
memory is filled up by gathering data using uniform sampling over
all the pixels of all the considered tools. At the end of each epoch, the
oldest 10000 data in the replay memory are replaced with the newest
ones, gathered during the training of the previous epoch.

4.4.1.3 Grippers

For our training, we considered a simulated robot with three different
suctions cups, with three different radii R in {1, 2, 3} cm. The strength
of their simulated vacuum is defined by Equation 4.2. Figure 4.17
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shows the size of these suction cups compared to a typical pile of
objects in our simulation environment. The output of the network
is therefore a HxWx3 image, the ith channel being associated with
the corresponding ith radius size. For extension of the network to
parallel-plate gripper, see Section 4.5.

Figure 4.17: The three suction cups used to train the network in the context
of a typical object pile in our simulation environment.

4.4.1.4 Evaluation metrics

For all compared methods, the evaluation procedure is the same. We
use the same simulation environment with different objects than the
one used at training. Then, we use the currently studied method to
sample grasps on a succession of a large number of images (depending
on the method, but a typical order of magnitude is tens of thousands
of grasps, but less for humans). Evaluating the process on such large
sets of images allows us to see many situations, from full bins with
many objects to almost empty bins with only a few instances. The
grasp is executed in the simulation environment, under the exact same
conditions as during data generation for training: when the gripper
successfully grasps the object and carries it away to a drop position,
it is considered a success. The final score of the method is thus the
percentage of such successful grasps among all the attempts.

4.4.2 Quantitative analysis

As the performance in the simulation environment can not be directly
linked to a performance in a real-world application due to the reality
gap, we compare our method to multiple other approaches inside our
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environment. The same set of objects is used for all methods requiring
a training step. All approaches are also evaluated using the same set
of objects, but different from the ones used from training.

4.4.2.1 Testing grasp selection

At evaluation time, we use a method similar to the one presented in
Section 4.3.2 to select a grasp from a grasp quality estimation map.
In [108], the authors used an argmax approach: the grasp with the
highest estimated quality is selected to be performed. This approach
can be dangerous in bin-picking tasks: if this predicted grasp does
not modify the image (because the predicted location fails to grasp
the object for example), the picking task enters a blocked state, from
which it can not escape, as the same grasp will be predicted over and
over.

To solve this problem, we instead use a thresholded version of
the grasp selection method presented in Section 4.3.2. Given a grasp
quality estimation map, we first set all the values inferior to T times
the maximum value to 0. Then, the final grasp is sampled according
to their relative values: a higher value has more chances to be selected
than a lower value. The overall operation results in the selection of a
high-quality grasp, but with some variation, preventing the process to
fall in an infinite loop. In our experiments, we set T to 0.9. A study of
the influence of T on the performance can be found in Section 4.4.4.

4.4.2.2 Compared methods

random selection The first baseline we compared our method
to is a random selection based one. To get a grasp location from the
image, we simply sample a pixel over the output image of size HxWx3
with a uniform probability distribution. While the performance of a
random grasp planner can not be expected to be very high, it is still
relevant information to have, as it defines a lower bound that any
other algorithm should exceed.

industrial baseline In addition to the random comparison,
we also compare our approach to an analytic approach used in the
industry. Developed at Siléane, and used in bin-picking applications,
it is based on image analysis techniques, searching for potential areas
in the image where a suction cup can successfully grasp an object. An
example of detections can be seen on Figure 4.18. As the approach
is only based on geometric criteria, we add a post-processing step to
remove all grasps that are predicted on non-object parts of the image
(for example on the borders or the bottom of the box containing the
objects). It is not a data-based approach, and it has not been developed
to succeed in the simulation environment. Therefore, its performances
in the simulation do not necessarily reflect how good it is when used
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on real data due to the reality gap, but it is an interesting performance
to compare our method to.

Figure 4.18: Detection results of the industrial baseline on an image from
our simulation environment. Detections on the border of the box
containing the objects are removed in a post-processing step.

human click and pick To get an idea of how difficult the task
in the simulation environment is, we also evaluate human perfor-
mance. To do so, a variation of the simulation environment has been
developed. Instead of sending the images to a learning component,
it displays it to a human operator, asking him to select a suction cup
and click on one pixel to send the gripper to. Because 64x96 is quite
a small image for human eyes, the image is upscaled to a 640x960
resolution using a nearest-neighbour interpolation, i.e. without adding
new information. An example of our human interface can be seen
on Figure 4.19. As it is difficult to ask a human to perform several
thousand clicks while staying focused on the task, we instead asked
a dozen different people to play with this simulation environment.
Some of these people were familiar with bin-picking, while others did
not have any knowledge about it. However, they were all explained
their task in the same way before the testing session begins.

other learning method To get a performance comparison with
another data-driven approach, we trained the recent GG-CNN2 net-
work [81]. This network is also a CNN, with a grasp quality estimation
head. As our simulation environment has three suction cups, we du-
plicated the last convolution filter two times to get three grasp quality
estimation maps, one for each of our suction cups. As the authors
provide weights pre-trained on depth images, we used them as start-
ing point. Then, trained the network on images from our simulation
environment in two ways:
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Figure 4.19: Human interface for our click and pick simulation. A lock is
displayed as long as one grasp is being performed. When it is
removed, the human operator knows he has to click on a pixel
to perform the next grasp. When switching the selected suction
cup, a preview of the one that will be used is displayed for a
short time in the top right corner.

• by following the official code provided with the paper 1, i.e. in a
supervised way, using pre-generated images from our simulation
environment.

• by following our self-supervised approach, i.e. by progressively
generating data using the partially trained network during the
training.

At test time, we used the same approach as for our network to
sample a grasp from the predicted grasp quality map, as explained in
Section 4.4.2.1. For both ways, we independently trained the network 5
times, and the reported performance is the average of all the training.

4.4.2.3 Performance comparison

Table 4.2 reports the results of the methods presented in Section 4.4.2.2.
For each method, we measured the success grasping rate, i.e. the
number of predicted grasp that indeed picked an object divided by the
total amount of attempted grasp, and the inference time, i.e. the time
the method takes to analyze the image and select one grasp location.
As all the grasps are performed in the same simulated environment,
the execution time of the grasp by the robot is not considered here: it
is the same for all methods. All reported times are measured for one
image on the same Windows 10 computer, with an Intel I7-7700 CPU
and an Nvidia GTX 1080 Ti GPU.

1 https://github.com/dougsm/ggcnn
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Method Success Rate
Inference

Time (ms)

Random 3.25% 0.003

Industrial

Baseline
16.10% 128

Human

(average)
50.98%± 6.07 1200

Human

(best)
59.44% 860

GG-CNN2 [81]

(supervised)
22.46%± 6.05 5.2

GG-CNN2 [81]

(self-supervised)
43.40%± 0.47 5.2

Ours 62.77%± 0.21 78.1

Table 4.2: Performances and inference time of multiple grasp detection meth-
ods.

The first thing that can be said about the overall results is that the
gap between simulated physics and reality is important. We could
indeed expect humans to have a much better performance than 50.98%
(even if they are not experts in bin-picking), and the industrial baseline
to be at least at 80% instead of 16.10%.

This gap can be explained by two main reasons: first, all our objects,
including the container box, are not deformable, and second, the joint
between the grasped object and the gripper is a strict position con-
straint. These two facts combined mean that, whenever the grasped
object collides with the box, i.e. when the displacement done during
one simulation time-step makes its volume intersecting the container
one, an infinite force has to be applied to maintain the grasp position
constraint. Obviously, this infinite force breaks the thresholds defined
by Equation 4.2, resulting in a failed grasp attempt. A more detailed
description of this behaviour is available in Appendix B. In real-life,
objects and suction cups joints are not so rigid and allow some com-
pliance in case of such small collisions. The simulation environment
is therefore more challenging than real-life. Performances of different
methods inside the simulation can nevertheless be compared to each
other, to see how good they perform in these adversarial conditions.

By comparing the performances of the two training of the GG-CNN2,
we can directly see the advantage of the self-supervised approach
compared to the pre-generated data used in a classical supervised
way: the successful grasp rate almost doubles, from 22.46% to 43.40%.
This is due to the fact that the more the network is trained, the more it
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can generate data bringing more information than the pre-generated
ones. For example, once the network has learned that sending the
gripper on a pixel belonging to the containing box always fails, keeping
many data samples of this kind is not useful, as they don’t bring new
information. However, replacing them with new adversarial examples,
where the network made a mistake predicting a success, helps it to
correct the weights to prevent similar mistakes in the future.

From the last two lines of the table, we can also see that our
deeper object-aware architecture performs better than the shallower
GG-CNN2 one, with an average success rate of 62.77% against only
43.40%. This shows that thanks to its more complex structure, our
deeper architecture can extract more precise information, and thus to
better estimate the grasp outcome at each position. Obviously, having
a deeper neural network, with more layers, has a drawback: the in-
ference time is higher, i.e. it takes more time to get a grasp position
from the sensor image. It takes 78.1ms for our full architecture with
the graspable segmentation decoder, more than 15 times slower than
the 5.2ms of the GG-CNN2. While this prevents our network to be
used at very high frame-rates, it can be used in industrial bin-picking
applications, as it is still almost 40% faster than the currently used
industrial baseline.

Another interesting fact to note is that our full architecture outper-
forms the best human in our test set, with a success rate of 62.77%
against 59.44%. This means that our network has indeed learned to
consider not only the shape of the surface at the proposed grasping
point but also its surroundings and the dynamics involved in the
extraction of the object afterward, like a human would do.

4.4.2.4 Segmentation performances

Even if we do not explicitly use the output of the first decoder to
create a binary segmentation of the input, we can still artificially create
such an image to evaluate the segmentation performance. To do so,
we apply a binarization threshold to Ŝseg: pixels with predicted values
below the threshold are assigned to 0, while the others are set to
1. The result is a binary image that can be compared to its ground-
truth counterparts Sseg. By varying this threshold between 0 and 1,
we can have a good understanding of the network’s behaviour when
presented images of the unknown objects.

evaluation metrics We compute two indicators measuring the
performance of our graspable segmentation decoder:

• the IoU, or intersection over union, representing how well the
predicted segmentation instances overlap the ground-truth ones.

• the precision and recall. Precision indicates how good is the
model to return only instances that are indeed indicated as
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graspable in the ground-truth, while recall represents the ability
of the network to detect all graspable instances.

The way we compute the graspable segmentation ground-truth is
quite strict: a single occluded pixel of an instance can switch it all from
graspable to non-graspable. A very small change in the input depth
image can thus cause a very large modification of the ground-truth
image, making it hard for the network to generate a prediction for
lightly occluded instances. To measure the impact of this, we generate
variations of the ground truth, that we also compare to the prediction.
Specifically, we create ground-truth images where more instances are
defined as graspable by adding a tolerance factor on the occlusion of
the objects. For example, with a 10% tolerance, objects that are less
than 10% occluded will still be considered graspable. Details on how
we estimate the occlusion of an instance can be found in Appendix B.

results Results obtained with a threshold varying between 0 and
1 can be found on Figure 4.20. As can be seen on the IoU curve with
0% tolerance, the network prediction does not match the ground-truth
perfectly, with only a top IoU of 0.487 achieved for a threshold value
of 0.296. However, we can see that part of the mismatch is due to how
our graspable segmentation ground-truth is defined. By increasing
the occlusion tolerance, we can see that the IoU of the same network
increases, with for example a peak IoU of 0.637 when considering
objects that are only 10% occluded. This confirms that the network
tends to predict more graspable instances than there actually is in the
ground-truth.
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Figure 4.20: Plot of the IoU (left) and the precision-recall curve (right) of our
network for various binarisation thresholds, and multiple level
of tolerance in the objects occlusion level for the ground-truth.

This phenomenon is also visible on the precision-recall curves. With
a 0% occlusion tolerance, the precision decreases quite rapidly when
the recall increases, meaning that more instances are misclassified
as graspable. However, the higher the tolerance is, the slower is this
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decrease in precision. With a 10% occlusion tolerance on the ground-
truth, the network predicts 80% of the pixels set to 1 in the ground-
truth with a precision of 0.728.

Even if it tends to predict more instances than the ones in the
ground-truth, the graspable segmentation decoder of our network is
still capable of predicting useful segmentation information. In fact,
predicting more instances can sometimes be an advantage in a bin-
picking context. With many objects, all of them may be at least slightly
occluded. In this case, the ground-truth is, per definition, fully black.
However, it is preferable that our network predicts non-zero segmen-
tation values, as we could not be able to select a grasp otherwise.

4.4.3 Qualitative analysis

Figure 4.21 shows the visual outputs obtained from the same input
depth image for three different networks:

• our full architecture, with its graspable segmentation decoder

• our architecture deprived of the graspable segmentation decoder

• the smaller GG-CNN2 network

All networks have been trained using our self-supervised learning
approach, with the same simulation environment. Multiple things can
be inferred from these images.

First, we can see that the output of the graspable segmentation (the
sixth column) matches the desired ground-truth pretty well. Almost
all the pixels of the instances marked as not occluded, i.e. set to 1
in the ground-truth, have values close to 1 in Ŝseg. This means that
the network has integrated the notion of non-occluded object, and
is able to correctly infer it, even for new objects with similar, but
different, shapes. Due to how the graspable segmentation ground-
truth is defined, a minor change in the depth image, for example the
occlusion of only one pixel of an object, can cause a large change
in the ground-truth, setting all the pixels to 0 instead of 1. For this
reason, we can also see some additional objects, not set to graspable
in the ground-truth, but predicted with higher values in Ŝseg. These
additional segmented objects are however not a real problem, as they
are still some lightly occluded objects and thus good candidates for
grasping.

Through these images, one can also understand the difference in
performances between the networks using the U2-Net backbone, and
the smaller GG-CNN2. The GG-CNN2 network does not have enough
layers to extract a good representation of a grasping location. There
is almost no difference in the predictions for the smallest and the
medium suction cups, revealing it couldn’t learn how different they
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behave when used for grasping in the simulation environment. More-
over, the grasp quality estimations generally have lower values, with a
maximum value under 0.5, showing that the network does not have
a very high level of confidence that proposed locations are indeed
correct ones.

On the other hand, the U2-Net based architectures can output spe-
cific quality maps for each of the suction cups. This is particularly
visible for the second input image, for which each suction cup radius
has different grasping opportunities: the smallest can’t grasp objects
that are too occluded, while the largest one can, but has to be located
farther from the borders of the objects because of its size. This is also
visible with the spherical objects: due to the size of the grippers and
the curvature of the object, medium and large suction cups can’t fit
the surface and thus fail to fit the air leak criterion for a successful
grasp, as described in Section 4.2.3.2.

By comparing Ŝ f inal for the first two lines for each image, one can
understand how the use of the graspable segmentation changes the
behaviour of the network, pushing it to output higher grasp quality
on non-occluded objects. Graspable segmentation does not only forces
the network to focus on non-occluded objects but also helps it to see
grasp opportunities that are otherwise ignored. This is visible on the
last image, with a very thin box placed vertically. In this configuration,
the box is very easily graspable, as it can’t be occluded (otherwise it
would fall on its side due to the weight of the occluding box), and as
the extraction will be performed along the vertical, meaning no chance
of collision with the containing box, or other objects. However, only
the smallest suction cup is able to perform such a grasp, as the other
ones are too wide to fit on the thin side of the box. In this specific
case, the network trained with graspable segmentation has indeed
understood that case, while the one without the segmentation decoder
failed to predict a good grasp quality on such locations.

4.4.4 Parameters influence

Our network architecture is composed of several components. In this
section, we evaluate the influence of different parameters on the final
success rate of the network.

4.4.4.1 Ablation studies

To determine which parts of our proposed architecture are crucial for
grasp quality estimation, we perform multiple training of our network
deprived of some parts. In details, we studied the influence of four
different parts of the architecture: the use of the multi-scale loss, the
presence or absence of the segmentation decoder during the training
phase, its use or not during the testing phase (i.e. whether Ŝ f inal or
Ŝg is used to select the grasp), and the influence of the cascaded
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decoders architecture over the same architecture without link between
the decoders. For each test, we trained each network 5 times and get
the average performance between the 5 runs. Results are presented in
Table 4.3.

Segmentation

decoder

during training

Segmentation

decoder

during testing

Segmentation

decoder linked

to grasp decoder

Multi-scale

loss
Performance

7 7 7 7 60.79%± 1.47

7 7 7 3 60.62%± 0.87

3 7 7 3 41.39%± 0.98

3 3 7 3 57.03%± 0.65

3 7 3 3 60.38%± 0.60

3 3 3 3 62.77%± 0.21

Table 4.3: Performances of our architecture deprived of some of its compo-
nents. Each reported performance is the average and standard
deviation between 5 independent training with the same configu-
ration.

multi-scale loss To see the influence of the multi-scale loss, we
trained two networks with all w(i)

g set to 0 for i ∈ [1..6] to remove
the multi-scale loss, and set to 1 to use it. These two results are in
lines 1 and 2 of Table 4.3. As we can see, the multi-scale loss does
not directly improve the performance of the network, as the network
using a multi-scale loss has a performance of 60.62%, very similar to
the one without which successfully grasps an object in 60.79% of the
attempts. However, the presence of the multi-scale loss brings stability
in the training, reducing the variability in the performances, with a
reduced standard deviation of 0.87 instead of 1.47.

segmentation decoder during training Simply adding the
graspable segmentation task to the network does not help the network
to learn better grasp quality estimation. As we can see comparing
the second and third lines of Table 4.3, this leads to a large drop in
performance, from 60.62% for the model without the graspable seg-
mentation task, to only 41.39% for the network with two independent
decoders for graspable segmentation and grasp quality estimation.
This drop in performance is not very surprising: the network is asked
to perform a new task that is not directly linked to the previous one.

segmentation decoder during testing If the graspable seg-
mentation decoder is present in the architecture, it can be used at
inference for the final prediction, as presented in Section 4.3.2. Be-
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tween lines 3 and 4, the trained architecture is the same. The only
difference is that in the first case, Ŝg is directly used to sample a grasp,
while in the second, Ŝg is multiplied by Ŝseg before the grasp is se-
lected from the quality estimation. Using the graspable segmentation
at inference has two main effects: first, it improves the overall perfor-
mance, from 41.39% to 57.03%, and second, it decreases the variability
in trained networks, from 0.98 to 0.65. Having a low variability is
crucial, as it avoids having to train a network multiple times to get a
good one.

linked cascaded decoders The last parameter we tested in our
ablation studies is the connection between the graspable segmentation
and the grasp quality estimation decoders. The third and fifth lines of
Table 4.3 show the performance of the same architecture with only one
difference: in the network of the fifth line, the grasp quality estimation
decoder does not only have the encoder outputs as inputs, but also the
outputs from the segmentation decoder. This link strongly connects
the two tasks for the network, increasing the final performance, from
41.39% to 60.38%.

These ablation studies show that the presence of the graspable
segmentation task in the network is not sufficient to improve the
grasp performance. This segmentation task must be linked to the
grasp quality estimation task both in the architecture and in the final
inference to get our best performance. Moreover, the presence of this
segmentation task helps the trainings to be consistent, with a very
small variability in the network’s performances. This approach can
thus be used in real-life applications without having to train the same
network multiple times to get a good performance.

4.4.4.2 Inference threshold influence

Our network outputs only a grasp quality estimation map for each
possible location. To select a grasp from this map, we use an approach
with a threshold T, as described in Section 4.4.2.1. T can take any value
between 0 and 1, 0 being the grasp selection method used at training,
i.e. a random selection weighted by the values of the network. When
T equals 1, the selection becomes equivalent to an argmax selection.

Figure 4.22 presents the grasp success rate of our trained network for
multiple values of T. As expected, the grasp success rate increases with
the value of T: locations with lower predicted quality are discarded,
and better locations are therefore selected more often. However, a too
high value can reduce the success rate due to the deadlock that can
occur when the image is not changed after a failed grasp attempt.
For these reasons, we selected an intermediate value of 0.9 for T. It
allows the network to achieve peak performance, without being totally
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blocked by letting the possibility to select any location with a predicted
grasp quality close to the maximum value.
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Figure 4.22: Plot of the grasp success rate of our network versus the value of
the threshold T applied to the estimated grasp quality map.

4.5 adaptation to new situations

The goal of this section is to answer the following question: how does
our network adapt when faced with new situations? To answer this
question, we conducted two sets of experiments: one using modified
versions of our simulation environment, and one using a real robotic
setup. In both cases, the objective is to see the performance of the
network when faced with situations it was not trained on, and how it
can be efficiently adapted to them.

4.5.1 Modified simulation

The easiest way to test the adaptability of our network is by modifying
the simulation environment, and see how quickly it can adapt to these
new conditions.

4.5.1.1 Simulation modifications

We tested four different types of modifications inside our simulated
world: the object that has to be grasped, the data available for training,
the image returned by the simulated depth sensor, and the nature of
the gripper end-effector.

challenging object For our adaptation experiments, we wanted
an object different from the ones seen in training. To do so, we have
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carefully chosen a model previously seen in Chapter 3 that has proper-
ties presenting a challenge in our simulated context. Specifically, this
object is a bottle model as shown on Figure 4.23. We scaled this object
so that around 50 of them could fit inside our simulation box. The
final simulated object is then 25 cm high, and approximately 6.4 cm
wide, and is challenging for multiple reasons:

• Compared to a more spherical or cubic shaped object, this model,
with its elongated shape, is more prone to be partially occluded
by multiple other instances when piled up

• the thinner head part of the bottle makes it harder to grasp:
grippers with larger radius do not have a surface large enough to
create a successful grasp, while smaller suction cups positioned
at this location would fail due to the torque being created by the
distance to the centre of mass

• due to the air leak criterion described in Section 4.2.3.2, the
cylindrical shape and its curvature impose a small suction cup
radius. Given the scale of the object in the simulation environ-
ment, any suction cup with a radius over 1.5 cm would thus
have no possibility at all to grasp this object

Figure 4.23: Bottle model used for our network adaptation experiments. Its
shape and size have been carefully selected to ensure a challeng-
ing task in the simulation environment.

data available for training Unlike in simulated environ-
ments, it is very difficult to get a segmentation ground-truth in real-
life. Even if our graspable segmentation is much easier and quicker
to create for a human than a full segmentation, it is still a limiting
factor, preventing the fine-tuning procedure to be fully automatized.
Therefore, we also performed our fine-tuning procedure using only
the grasp outcome. In details, we set wseg to 0 in Equation 4.4. In
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addition, as we want to preserve the segmentation abilities of the
network, all the layers of the encoder and the first decoder are frozen,
and thus not updated. Only the weights of the last decoder, estimating
grasp quality, are updated with the gradient from the grasp loss Lg.

noisy sensor In real-life applications, depth sensors do not return
perfect images, but noisy ones. Depending on the technology used,
this noise can have various profiles, but they always have one thing in
common: missing data. For some pixels, the depth sensor is not able
to determine the distance to the camera. In this situation, the pixel is
often filled in with a predetermined value (either 0 or 1 for example).
This placeholder value can be troubling for a network that did not see
any of such images during its training.

To simulate this phenomenon, we added a post-processing step
to our image capture pipeline. This step uses the normal map to
replace the value of some pixels with 1. To get a noise effect similar
to what can be seen on real depth images, these pixels are selected
on the angle between their normal and the vertical. Thus, the depth
information of all pixels with a normal forming an angle of more than
60◦ is discarded. Examples of this process can be seen on Figure 4.24.
While not perfect, this quite simple process is sufficient to evaluate
the behaviour of the network when adapted to images with missing
data points.

Figure 4.24: Comparison between perfect depth images (top row) and, noisy
depth images, after applying our noise post-processing effect.
The depth value of all pixels having a normal too far from the
vertical is discarded and replaced with 1 instead.

change in suction cups radius Our base neural network is
trained for suction cups with a radius of size 1, 2, and 3 cm. It is
unlikely that all the applications it will be used for would use the
exact same set of grippers. So, to evaluate if our network can quickly
learn to adapt to new grippers, we changed the suction cups to have a
radius of 0.5, 1, and 1.5 cm, in this order.

parallel-plate gripper A grasp with a parallel-plate gripper is
not defined by a radius, but rather by an opening, and an orientation.
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To adapt our architecture to this new type of gripper, we followed
the approach of [108], and discretised the orientation space into 6
possible orientations: 0◦, −30◦, 30◦, −60◦, 60◦ and 90◦. The opening
of the gripper is constant, and set to 9 cm, thus leading to 6 possible
grasps at each location. As we are dealing with homogeneous piles
of objects without too complicated shapes, this quite coarse set of
possible grasps is sufficient.

To adapt to this grasp representation, only the top layers of the
grasp quality estimation decoder have to be changed, from 3 channels
representing the radius to 6, one for each orientation. These modified
layers have to be initialized before the fine-tuning process begins.
Using the weights trained with the suction cups could be an option, as
a good location for a vacuum-based gripper could also be potentially
good for a parallel-plate gripper. However, doing so would focus the
network attention on suction cups grasps during the data generation
process. That’s why we instead reinitialized the replaced layers using
the Kaiming method [39], as if they were trained from scratch.

4.5.1.2 Fine-tuning procedure

The ultimate goal of our method is to be applied to real-life problems
rather than simulation ones. We thus adapted our self-supervised
training procedure to add constraints consistent with real problems.

The main issue when working with real robotic setups is data
gathering time. Usually, only one robotic cell is available, and a whole
grasping cycle (including data acquisition, data processing, and grasp
planning and execution) can take several seconds. As consequence,
we removed all the parallelization inside the simulation environment:
only one pile of objects is being simulated at any time. In addition, we
also limited the number of data that can be acquired at each epoch.
Considering an average of 10 seconds for a full grasping cycle as a
typical value, we set the number of data samples gathered for each
epoch at 120, i.e. the equivalent of 20 minutes of real-time. The full
length of the fine-tuning procedure is 72 epochs or the equivalent of
one full day of self-supervised data collection for a real robot.

Unlike the full training procedure, in which the network is evaluated
only at the end, and on unseen objects, we evaluate the performance
of the network at the end of each epoch, on new images of the object it
is currently fine-tuned for. In this way, it is also possible to determine
how quickly the network adapts to the new conditions. This is crucial
information, as in some industrial contexts, the production should not
be stopped for training more than a few hours, and thus the full 72
epochs fine-tuning is not feasible in totality.
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4.5.1.3 Adaptation results

Due to how they are simulated in different ways, the grasping rates
with suction cups and with a parallel-plate gripper can’t be directly
compared. Thus, we present the results from their respective fine-
tuning experiments separately.

suction cups Figure 4.25 presents the evolution of the perfor-
mance of our network during the fine-tuning procedure for four
situations, with the challenging new object. One of these situations
is our unmodified simulation environment. This will act as a base-
line for the bottle object, allowing us to compare the performances
achieved by the network when presented with an altered version of
the environment.
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Figure 4.25: Evolution of the grasp accuracy of our network during the
fine-tuning process for different variations of the simulation
environment.

From the curve of the baseline, we can already see that our base
network does not directly generalize well to this particular new object,
with a grasping rate of only 39.25% before the fine-tuning. However,
the network is able to quickly adapt to this new shape, reaching
performance of 55% in only 15 epochs. 15 epochs in our fine-tuning
procedure are the equivalent of only 5 hours of automatized trials by
a robot, or only 1800 grasp attempts. The performance plateau around
59% is reached in 30 epochs, or 10 hours. This quick adaptation makes
this approach viable in the industry: the learning of a new reference
can be automatized, and quickly performed when the robot is not in
production (for example during one night).
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When the segmentation ground-truth is not available during the
fine-tuning operation, the training curve still follows the same path,
with a small drop in the final reached performance, from 59% to
57.55%. This means that the segmentation decoder is quite able to
generalize to new objects, even without fine-tuning. However, the
final grasp decoder requires an adaptation step to increase the overall
performance from 39.15% to 57.55%.

Modifications of the grippers causes, as one could expect, a massive
drop in the initial performance, from 39.25% for the baseline to 18.65%.
However, this does not change the peak performance the network can
reach, nor the number of grasp attempts needed to reach this peak
performance. This shows that even if our base network is trained using
some radius for the gripper, it can still be used on applications with
different end-effector configurations, without any loss of performance
after fine-tuning (assuming the new configuration allows to grasp the
considered object).

When the input data distribution is changed, for example by adding
pixels with missing data, the performance also drastically drops. When
applied on noisy inputs, our base network trained on perfect depth
images has a grasping rate of only 13.7%. By applying our fine-tuning
process, the performance rapidly increases, reaching 37.55% after only
10 epochs (or 1200 grasp attempts). It then continues to grow slowly to
51.3% at the end of the 72 epochs. This 7.7 points gap with the baseline
can be explained in part by the introduction of the noise: the network
is asked to extract the same information, but with missing pixels, i.e.
from fewer input data. The number of epochs necessary to reach a top
performance is also larger: as the input data distribution is modified,
not only the top convolution layers have to be adapted, but also
the ones inside the encoder, to learn a better internal representation
ignoring the missing data.

parallel-plate gripper Results of the fine-tuning of the base
network to a network predicting the grasp quality for the 6 orientations
of a parallel-plate gripper are presented on Figure 4.26. As we can
see, even with randomly initialized top layers for the grasp decoder,
the network still has a performance of 23.9% before the fine-tuning
begins. Due to the segmentation decoder being trained, initial grasps
are indeed not uniformly distributed over the whole image, but rather
only over the graspable objects.

As long as the fine-tuning process runs, the performance of the
network increases, until it reaches a plateau around 73% after 40
epochs. Fine-tuning for a completely new kind of gripper is thus
possible. However, reaching the top performance requires more time
and trials than when keeping the same gripper, but with slightly
modified parameters.
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Figure 4.26: Evolution of the grasp accuracy of our network during the fine-
tuning process when suction cups are replaced by a parallel-plate
gripper with 6 possible orientations.

4.5.2 Transfer to real-life applications

As explained in previous sections, our simulation environment does
not perfectly match real conditions. To evaluate the reality gap and
see to what extent learning on simulated data can improve predictions
on real data, we tested our approach on a real robotic environment.

4.5.2.1 Testing details

To evaluate our network, we used a Fanuc robotic arm, equipped with
a vacuum-based suction cup. Data acquisition is performed using a
depth sensor from Photoneo, located above the grasping area. A photo
of our complete real setup can be seen on Figure 4.27. Just like in the
simulation, the objects are placed in a rectangular bin, of similar size
as the one in our simulated environment. Using this setup, we tested
our network on two different tasks, also illustrated on Figure 4.27.

The first task is a semi-organized object pile: many objects, identical
in shape, are placed in the box, in a regular pattern. We used egg
boxes, as they are easy to acquire in large quantities, light enough to be
grasped by the suction cup, and have an interesting shape. Grasping
an egg box is quite easy: if the gripper is on the top flat part of the box,
the grasp is almost guaranteed to be a success. However, the more
complex parts on the sides and back of the box make it impossible
to successfully grasp it in any other location. Boxes then have to be
extracted from the pile in order, with non-occluded first. Otherwise,
occluding boxes could overturn and become impossible to grasp.
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(a)

(b) (c)

Figure 4.27: Images of our real robotic setup. (a) The global setup, the robotic
arm controls a vacuum-based suction cup to grasp objects in the
orange bin. The depth sensor is located above the grasping area,
pointing downwards. (b) Example of RGB image for our easier
semi-organized bin-picking task. (c) Example of RGB image for
the more complex heterogeneous bin-picking problem.

The second task is a more common bin-picking application. Using
objects from the YCB dataset [15]. Objects are randomly placed inside
the bin, creating a heterogeneous pile with various shapes and scales.
This task is much more difficult, as not all surfaces are suitable for
a suction cup, and occlusion rates are much higher than in a semi-
organized pile. Moreover, as our network has only seen homogeneous
piles during training, this task is a real challenge, and thus a suitable
one to evaluate the generalization abilities of our approach.

For both tasks, we evaluated two networks: our full architecture,
with the graspable segmentation decoder and the grasp quality one,
and the same architecture trained without the segmentation decoder,
i.e. a simple encoder-decoder architecture with a U2-Net backbone.
This will allow us to measure the impact of the graspable segmentation
decoder in real-cases. Both networks are fully trained on the same
objects, as described in Section 4.4.1. Then, a fine-tuning process
is applied, still in simulation with the same objects, but with some
artificial noise added to the input depth, as explained in Section 4.5.1.1.
This fine-tuning step with noise is crucial, as otherwise, the network
would have to deal with the holes in the real data, without having seen
some during its training. The robotic system only uses one suction
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Ours

(no segmentation)

Ours

(with segmentation)

Egg boxes 97.4% 97.7%

YCB objects 89.7% 92.3%

Table 4.4: Performance of our network, with and without the segmentation
decoder, on the two presented real tasks.

cup radius, we thus merge the three predictions in one map by taking
for each pixel the maximum predicted value between the three radii.

4.5.2.2 Real applications results

Table 4.4 presents the accuracy of our network, with and without the
graspable segmentation decoder, on the two tasks presented in the
previous section.

egg boxes task As expected, both networks have a very good
performance on the simple egg boxes problem, with an average of
only one failed grasp attempt for each session of 40 objects grasped,
resulting in a grasping rate of around 97.5%. For most of these failed
attempts, the reason is that the suction cup is sent above an edge
instead of the centre of the object, preventing a good vacuum to be
formed. Besides these few failed attempts, the networks are always
able to correctly predict a good location for the suction cup, as we can
see on Figure 4.28. However, the adaptation is not complete. While
the grasp predictions are correct and most of the time centered on
the objects, the segmentation has some objects only partially labeled.
This is not an issue for the overall performance, as long as at least one
object is correctly segmented as graspable.

heterogeneous bin-picking The problem of heterogeneous
bin-picking is more complex than the egg boxes one, especially for a
network trained only on homogeneous images generated in simulation.
Our network still achieves good performances, with a 92.3% success
rate for the version with the segmentation decoder, and 89.7% for the
version without. This shows once more that adding the segmentation
decoder helps the network to focus on more interesting instances.

Due to the nature of the images, most of the time, only one in-
stance is non-occluded. This is confirmed by the predictions of the
segmentation decoder, as can be seen on Figure 4.29. Sg and S f inal are
very close, the multiplication with the segmentation only resulting in
removing grasp predictions on other objects, with more occlusions.
This is visible in the first column of the network with segmentation:
the SPAM can is predicted with a high grasp quality score, but not
segmented as a graspable object, and thus the quality estimation on
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Ours, with
segmentation

Ours, no
segmentation

Overlay color  
Scale

Figure 4.28: Outputs of our network for multiple egg boxes configurations.
Ŝ f inal = Ŝg when there is no segmentation prediction from the
network. Results are displayed over the RGB image for better
visualisation, however, the network only uses the depth as input.

this object is lowered in the final prediction Ŝ f inal . The effect of the
segmentation decoder is also visible when comparing the prediction
for the water pot: the object-aware network is able to understand the
shape of this large object much better than the other, trained without
object instance notions. This results in a grasp quality higher on the
centre of the object, compared to a grasp quality higher on the border
of the object.

Figure 4.30 shows some closer look on some grasp attempted by the
robotic setup. Most of the failed cases can be categorized into three
categories:

• badly considering two close objects as one and thus predicting a
bad grasp on the junction between the two

• predicting a grasp on a surface that is not vertical enough, re-
sulting in a grasp failing when the object is extracted

• ignoring an object that is in the corner of the container. As these
objects are very difficult to grasp in the simulation due to the
collision mechanism, the network often ignores them in real-life.
In this kind of situation, like the last image of the second row in
Figure 4.30, no grasp with high quality is predicted, and thus a
grasp with low estimated quality is selected.
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Ours, with
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Ours, no
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Overlay Color  
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Figure 4.29: Outputs of our network for multiple heterogeneous bin-picking
configurations. Ŝ f inal = Ŝg when there is no segmentation pre-
diction from the network. Results are displayed over the RGB
image for better visualisation, however, the network only uses
the depth as input.

Despite the scarcity of these cases, as evidenced by the overall
grasping rate of 92.3%, they could still be problematic for industrial
use cases. However, it is important to note that the network was
trained only on simulated data of homogeneous piles, quite far from
this heterogeneous pile situation, with many objects having unknown
shapes. It is thus reasonable to think that the network could perform
better when fine-tuned on a few images of such piles.

4.6 conclusion

4.6.1 Summary

In this chapter, we proposed a novel object-aware fully convolutional
neural network architecture for grasp detection in piles. The proposed
architecture is composed of one encoder and two decoders, for gras-
pable segmentation and grasp quality estimation respectively. The
whole architecture is trained in a self-supervised way, using simula-
tion.

Specifically, we first detailed the self-supervision process used dur-
ing training, before describing our architecture. It distinguishes itself
from state-of-the-art approaches [36] [131] by combining graspable
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Figure 4.30: Close look at some grasps predicted by our network. Blue circle
is the location of the suction cup. They are displayed over the
RGB image for better visualisation. Some allow the network to
successfully grasp the object (top row), while others fail at this
task (bottom row).

instance segmentation and grasp quality estimation in one network
trained end-to-end. We detailed the simulation environment we devel-
oped specifically for grasp detection in piles, for both vacuum-based
suction cups, and parallel-plate gripper. We then conducted multiple
experiments to demonstrate the advantage of using our network with
combined prediction, as well as ablation studies to highlight the role
of each component of our architecture. Last but not least, we showed
that our network trained in simulation can be quickly and successfully
adapted to new situations, both in simulation and real-life robotic
setups.

4.6.2 Contributions

Unlike state-of-the-art approaches for grasp detection in piles, which
rely on either predicting instance segmentation, and then grasp lo-
cation, or directly grasp quality, jointly predicting them improves
the final grasping rate. As a result, our proposed approach, using
instance segmentation to filter out grasp candidates outperforms
other approaches, only based on grasp quality estimation.

Our network can be trained in a self-supervised way, interacting
with our simulated environment, allowing it to learn from more
relevant data, and removing the need of using manual annotations or
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heuristics to generate many annotated samples prior to the training.
This allows the training of much deeper, and thus more performant,
neural networks.

Our experiments and ablation studies showed that both of these con-
tributions are important. The network with the best performance is our
deep U2-Net based architecture, trained in a self-supervised way, and
using both the decoders to output graspable instance segmentation
and grasp quality estimation.

As networks trained on synthetic data tend to perform worse on real
ones, due to the reality gap, we also conducted a set of experiments
to show that our network is able to quickly adapt to new situations,
either in simulation or in real-life, by performing a self-supervised
fine-tuning. This makes our network suitable for real-life industrial
applications, such as bin-picking tasks.



5
C O N C L U S I O N

This chapter concludes our work, and is organized as follows: first,
we summarize our work in Section 5.1. Then, we recapitulate our
contributions in Section 5.2. Finally, we discuss the research directions
that could be explored for future work in Section 5.3.

5.1 summary

In this work, we addressed the problem of model-free robotic grasping
from images. In details, the goal is to extract a location from an image
where a robotic system can send an end-effector to successfully grasp
an object. State-of-the-art approaches are typically trained using either
manly annotated real images, or data gathered through robotic trial
and error. However, such data gathering methods are not scalable,
making it difficult using the full power of very deep neural networks.
We thus propose to leverage physics simulation to generate the amount
of data required to train such architectures.

In Chapter 2, we reviewed the state-of-the-art for robotic grasping,
and more especially for model-free grasping. Grasp detection is usu-
ally performed by learning a grasp quality estimator, whose role is
to rank grasp candidates by potential success likelihood. The robotic
system can then select the highest ranked one, and perform the grasp.

In Chapter 3, we studied the problem of grasping in the case of
isolated objects. Specifically, we first described a simulation pipeline
developed to generate large-scale annotated dataset from 3D models,
as well as our synthetic Jacquard dataset that we created using this
method. We also extended a state-of-the-art approach by adding an ex-
plicit correlation between the predicted grasp and its estimated quality
by the network. Finally, we compared a network using this correlation,
and trained on our large data to its state-of-the-art counterpart.

The method proposed in Chapter 3 does not generalize directly to
images with many objects, with high rates of occlusion. We presented
in Chapter 4 a novel architecture, designed specifically to deal with
the grasping problem in such conditions, a problem also referred to
as bin-picking. We explained how we used self-supervision to train
the network using an interactive real-time simulation environment.
We also detailed the object-aware architecture we proposed to use on
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images of piles of objects, before analyzing the results of the experi-
ments we made to compare it to other approaches. Finally, we showed
that this object-aware network, while trained in simulation, was able
to generalize well to new unknown situations, through automatic
self-supervised fine-tuning.

5.2 contributions

Our contribution for model-free robotic grasping is three-fold: a large-
scale synthetic dataset for robotic grasping, an extension of state-
of-the-art approaches for isolated object grasping, correlating grasp
prediction and quality estimation, and a novel object-aware net-
work that can be trained in a self-supervised way for bin-picking
problems.

Specifically, we proposed in Chapter 3 our large-scale synthetic
Jacquard dataset. Being orders of magnitude larger than previously
manually annotated dataset, we also showed that, due to its size
and diversity, it can improve performance of neural networks on real
images, despite being totally synthetic. In addition, the presented
method is fully automatized, meaning that, providing some compute
power, more data can be easily generated if needed.

Explicitly using the correlation between the grasp prediction and its
quality estimation when training a network improves its performance.
As demonstrated in Chapter 3, using our scorer module on top of a
state-of-the-art grasp detection method increases the performance of a
network from 88.1% to 92.4% on a set of real objects.

For bin-picking problems, simulation can also be used to train
deep neural networks, as we showed in Chapter 4. Our object-aware
network is able to jointly predict graspable instance segmentation and
grasp quality estimation. The segmentation helps the network to focus
on objects that are easy to grasp, i.e. those that are not occluded, while
the grasp quality estimation finds local areas suitable for the gripper
mounted on the robot. Training this object-aware network is possible
in simulation, for which segmentation data are easy to obtain. Despite
this simulation only training, we demonstrated that our network can
quickly adapt to new problems and situations, either simulated or in
real-life.

5.3 perspectives

In this section, we present some future research directions for the
presented work.

physics simulation All the work presented here are based on
rigid objects simulation. In real-life, objects are never totally rigid, but
rather deformable to some extent. Simulating interactions between
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a gripper and a deformable object is possible [129] [107]. Therefore,
simulating this deformation could lead to an increased level of realism,
reducing the reality gap between the simulation and the real-world.
This is particularly true for domains for which objects are very often
deformable, such as the food industry.

Simulation could also be extended to get tactile information from
the gripper. Simulating tactile sensors is possible [91] [56] and could
open the path to add force control learning for a parallel-jaw gripper.

new modalities Our object-aware model bases its grasp pre-
dictions on two information: object segmentation and grasp quality
estimation. However, more modalities correlated to the final grasp
success could also be used. Examples of such modalities are normals
or material estimation. More decoders could be added in our archi-
tecture, each used to predict one of these modalities. The final grasp
prediction would then be determined based on all these modalities.
Material estimation would be useful if, for example, a grasp is physi-
cally possible on some parts of the object, but not suitable, because
the material on this location is more fragile.

better transfer from simulation to real After training
in simulation, we either directly apply our network on real images,
or use a fine-tuning to adapt it. This approach could be improved to
reduce the size of the reality gap, and thus facilitate the adaptation.
Reducing the reality gap in the images can be performed with GAN
trying to match the simulated images and real ones [31] [11]. Another
way to reduce the reality gap is called domain randomization [121]
[48] [49] [83]: instead of looking for more realism in the simulated
data, we try to expand it to be as much varied as possible, hoping that
simulated data distributions would eventually include real data ones.

Beside changing the data used by the network, it is also possible
to modify the way the network is trained, using meta-learning. Meta-
learning aims at replacing a network learning a task with a network
learning to learn a task [29] [85]. In our case, a task would for example
be an object. The network would thus be presented with multiple
objects during the training procedure, and learn to quickly adapt to
new ones. Then, when presented with new real objects, the network
would be able to adapt its weights in only a few trials.
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A
I S O L AT E D O B J E C T G R A S P I N G

a.1 background augmentation

In Chapter 3, we trained our network to detect grasp opportunities
on synthetic images of isolated objects. As we want the network to
be generic, we augmented the data by replacing the default constant
background with a new one. This new background is randomly picked
from a list with varied textures, as illustrated by Figure A.1. All the
images have been selected to ensure a large diversity in both color
and textures.

Figure A.1: All background images used during our data augmentation
process. Images have been chosen to be very diverse in color and
texture.
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B
E N D - T O - E N D B I N - P I C K I N G

b.1 rigid collision simulation

In Chapter 4, we simulate a unmovable box containing many instances
of rigid objects. These instances can be picked up by a simulated
suction cup. To emulate the vacuum force created by this kind of
gripper, a position constraint is created between the gripper and the
object being picked up. This constraint creates a force and a torque
that maintain the object in place at any time step. If either the required
force of torque is over the thresholds defined by Equation 4.2, the joint
breaks, and the object is dropped. While this simulation behaviour
is quite close to real-life in most cases, it is not when collisions with
rigid and unmovable objects happen. Such an example of a collision is
illustrated by Figure B.1.

During one simulation time step, the movement of the gripper
pushes the object inside the containing box. As the box is unmovable
and rigid, the physics engine does not allow the object to penetrate
it, and instead it stays in contact with it. However, the link with the
gripper has to maintain the position of the object relative to the gripper
by creating a force to push it inside the containing box. This infinite
force breaks the thresholds defined by Equation 4.2 and thus the object
is dropped.

This collision issue does not only happen with the box, but also
with other objects. When one object collide with another, there are two
possibilities: either the second object can move freely in the desired
direction, or it is in contact with an obstacle in that direction. In the
first case, the obstacle will be moved by the force of the joint, within
the limits of the thresholds. But in the second case, the infinite force
created by the obstacle will propagate to the grasped object, breaking
the link with the gripper.

When such cases happen in real-life, it does not always lead to a
failed grasp. Contrary to simulation, real objects are very rarely fully
rigid. In fact, most of the time, the suction cups are made of soft
plastics that can easily bend to absorb such small collisions. This com-
pliance makes them much more robust than the one in our simulation.
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Figure B.1: Collision between an object carried by a simulated suction cup
and the containing box. Due to the collision, the link between the
object and the gripper is broken.

b.2 graspable instance segmentation

In Chapter 4, we introduced the concept of graspable segmentation,
computed using Algorithm 2. To evaluate the performance of our
network, we also used a slightly different definition, with an adaptable
tolerance to occlusion. Algorithm 3 presents the modified algorithm
used to generate ground-truth with different tolerance levels. As it is
not possible to estimate the occluded surface of an object only from
the depth image and the full segmentation, we instead compute the
number of pixels of the border of the instance that are under or over
their neighbours. While the border can not be directly linked to the
surface, this is a good indicator of how much an instance is occluded.

The result of this algorithm for multiple values of tolerance is
illustrated by Figure B.2. As can be seen, the more tolerant we are
with occlusion, the more instances are set as graspable. The border
criterion seems to be a good approximation, as the instances that are
progressively set to graspable when we increase the tolerance look
indeed not too much occluded.



B.2 graspable instance segmentation 119

Algorithm 3: Graspable segmentation with occlusion tolerance
algorithm
Input: d, depth image
Input: s, full segmentation image
Input: T ∈ [0, 1], tolerance level
Output: Sseg, graspable segmentation ground-truth image
Sseg ←− 0
for object o ∈ s do

border_pixels←− 0
occluded_border_pixels←− 0
for pixel p ∈ o do

is_border ←− false
is_occluded←− false
neighbours←− pixels adjacent to p
for pixel p′ ∈ neighbours do

if s(p′) 6= s(p) then
is_border ←− true
if d(p′) < d(p) and and p′ /∈ background then

is_occluded←− true
end if

end if
end for
if is_border then

border_pixels += 1
end if
if is_occluded then

occluded_border_pixels += 1
end if

end for
if occluded_border_pixels

border_pixels ≤ T then
for pixel p ∈ o do

Sseg(p)←− 1
end for

end if
end for
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Figure B.2: Examples of graspable segmentation ground-truth images with
multiple values of occlusion tolerance. Top images are the input
depth. Segmentation is overlaid in white on top of the depth
images.
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