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A B S T R A C T

The modeling of natural processes relies on a physical description that pre-
scribes the changes in the state of the studied system. The use of domain specific
knowledge about the system allows the translation of physical principles into
models, which are then validated by experimental data. With its successes in
many domain like text generation and image classification, machine learning, and
in particular deep learning, has become a powerful tool for the modeling of phys-
ical processes, thanks to the significant increase in the amount of data available
from sensors. Nonetheless, statistical learning of physical processes by a sole data-
driven approach suffers from several limitations such as interpretation difficulties,
stability during the learning phase and reduced generalization capabilities.

A major objective of this work is to provide tools in order to perform data-
driven learning of physical processes and more generally spatio-temporal sys-
tems. In particular, we will study spatio-temporal phenomena which dynamics
obey a differential equation. More precisely, we focus on incorporating domain
and physical knowledge in learning algorithms. Depending on the application, an
approximation of the differential equation at stake is often accessible; the comple-
ment remains to be estimated by a neural network. This leads us to study hybrid
physical-statistical systems for the modeling of physical processes. Thus, we will
identify the problems related to the formulation of hybrid dynamics learning and
then propose a framework including constraints adapted to deep networks to
improve the interpretability and the performance of the learned algorithms.

Conversely, physics and the theory of dynamical systems have provided nu-
merous tools to improve and better understand statistical models. However, neu-
ral networks, although efficient for a large number of tasks, remain qualified as
"black boxes" because they are not interpretable. The black box behavior of neural
networks is particularly true for complex task such as text generation or video
predictions. Thus, we will attempt to open the black box and propose more inter-
pretable neural network architectures with increased generalization performances
for the modeling of spatio-temporal systems.
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R É S U M É

La modélisation de processus naturels repose en large partie sur une descrip-
tion physique qui prescrit les changements dans l’état observé du système. L’utili-
sation de connaissances spécifiques relatives au système permet la traduction de
principes physiques en modèles, ensuite validés par des données expérimentales.
Fort de succès dans de nombreux domaines comme la génération de texte et
la classification d’images, l’apprentissage machine et en particulier profond, est
devenu un outil puissant pour la modélisation de processus physiques grâce à
l’augmentation significative de la quantité de données disponibles provenant de
capteurs. Toutefois, l’apprentissage statistique de processus physiques par une
approche uniquement guidée par les données souffre de plusieurs limites comme
les difficultés d’interprétation, l’instabilité lors de la phase d’apprentissage et les
capacités de généralisation réduites.

Un objectif majeur de ce travail réside dans la construction d’outils permettant
la prédiction de systèmes physiques, ou plus généralement spatio-temporels. En
particulier, nous étudierons les systèmes spatio-temporels dont l’évolution des
observations obéit à une équation différentielle. Plus précisément, il sera question
d’incorporer de la connaissance physique à priori dans les algorithmes d’appren-
tissage. En effet, en fonction du domaine d’application, une première estimation,
peut-être grossière, de la dynamique du système considéré est souvent acces-
sible ; le complément restant à être estimé à partir de réseaux de neurones. Cela
nous pousse donc à étudier les systèmes hybrides physiques-statistiques pour
la modélisation de processus physiques. Ainsi, nous identifierons les problèmes
liés à l’apprentissage de dynamiques hybrides puis proposerons un cadre et des
contraintes adaptés aux réseaux profonds afin d’améliorer l’interprétabilité et la
performance des algorithmes ainsi appris.

Réciproquement, la physique et l’étude des systèmes dynamiques ont proposé
nombre d’outils pour améliorer le fonctionnement et la compréhension de mo-
dèles statistiques. Toutefois, les réseaux de neurones, bien qu’efficaces pour un
grand nombre de tâches, restent qualifiés de "boîte-noire" car non interprétables.
Le comportement de "boîte-noire" des réseaux neuronaux est particulièrement
vrai pour les tâches complexes telles que la génération de textes ou les pré-
dictions vidéo. Ainsi, nous tenterons d’ouvrir la boîte noire et de proposer des
architectures de réseaux de neurones plus interprétables et aux capacités de gé-
néralisation accrues pour la prédiction de systèmes spatio-temporels.
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C O N T E X T

Thanks to the increase in the availability of adapted computational power such
as Graphics Processing Unit (GPU) and of data sources, along with the advances
in optimized software, the use of Deep Neural Network (DNN) for the Machine
Learning (ML) community has become standard in various tasks such as classifi-
cation and regression. Indeed, Deep Learning (DL) performances scale better than
most traditional approaches such as Support Vector Machines, or Linear Regres-
sion. In that perspective, traditional classification (ImageNet, CIFAR, MNIST) or
regression tasks are well-handled by DL based approaches. A common explana-
tion for such gain in performances is the capacity of DNN to extract meaningful
features tailored for the downstream task as soon as the amount of available data
is large enough. Successes on traditional machine learning tasks pave the way
to the application of DL to more challenging and complex problems. From this
standpoint emerging topics such as video prediction, image inpainting, natural
language processing etc. have seen significant progresses with the introduction
of DNN architectures.

Unlike recent machine learning tasks, the modeling of physical processes is
nearly as old as statistics. Indeed, from animal and population census to as-
tronomical ephemeris, statistical knowledge is gathered to confront a model to
empirical evidences. Over the last few years, the number of sensors and satellite
missions measuring and monitoring Earth climate drastically increased. This in-
crease in data accessibility provides a great opportunity for the machine learning
community to test the applicability of DL methods to atmospheric and climate
data.

The collected data serve several goals. First of all, these satellite observations
enable a fine monitoring of various quantities of crucial interest, e.g. the Sea
Surface Temperature (SST), that control the variations of Earth Climate. Also, on
a more recent basis, thanks for example to Sentinel satellite mission, greenhouse
gazes such as NOx and CO2 are now monitored. Besides the measurement of
climate variables, these observations evidence complex ocean and atmospheric
dynamics. Theses dynamics are an intense subject of research in various fields.
For instance, climatology and oceanography build dynamical models aiming to
explain at best Earth Climate. These models are crucial to understand the root
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causes and the dynamics of climate change. Besides practical fields, theoretical
fields are also interested in such dynamics, studying for example the smoothness,
the uniqueness or the stability of Navier-Stokes equations.

On the first hand theoreticians are confronted to non-linearity, smoothness and
dimensional issues. Practitioners on the other hand often face several difficulties
when dealing with real-life data as incomplete observations, exogenous and un-
observed terms (e.g. forcing terms that account for changes in the radiative heat
balance) or complex and unknown interactions (e.g. ocean-atmosphere, surface-
deep ocean layers). More generally, ML is a promising alternative for scientific
problems whose underlying processes are not fully understood, or when the
computational cost to run physical simulation is prohibitive. Then, DL methods,
able to extract complex features from data, provide prior-free methods to learn
the observed phenomenon. Indeed, a strength of such prior-free and data-driven
methods is that they do not rely on any physical principle. The physical principle
is learned by the algorithm and depends on the considered task.

Besides climate and Earth sciences, several other natural sciences have seen the
introduction of ML and DL methods to help the modeling. For example Chem-
istry is now assisted by ML methods for drug and molecular discovery. ML has
also helped material science in the prediction of macroscopic properties from
microscopic characteristics. Finally, ML algorithms have been proven helpful in
medicine since cancer detection in medical images defines a classical computer
vision task, for which DL excels.

However, DL approaches have mainly shown remarkable results either on prob-
lems of limited complexity or on complex problems at the cost of gathering a large
amount of data. Modeling Physical processes raises new problems and challenges
for the ML community.

In particular, the modeling of spatio-temporal dynamics is challenging. Indeed,
spatio-temporal modeling involves the learning of the interactions between high
dimensional variables at various spatial and temporal ranges. These challenges
pave the way to a new area of research: the statistical learning of spatio-temporal
phenomena.
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O B J E C T I V E A N D C O N T R I B U T I O N S

The objective of this thesis is to establish bridges between physical modeling of
spatio-temporal phenomena and machine learning. After introducing elementary
notations, we present the major challenges encountered when modeling dynami-
cal systems with DL. Then, we introduce our research works and link them to the
evidenced learning difficulties.

2.1 Elementary Notations for Dynamical Systems

To set the framework of this thesis, we begin by providing notations and de-
scribing the addressed learning tasks. Studying spatio-temporal systems, we focus
on modeling the system’s dynamics.

Such a modeling in practice amounts to a forecasting task that can be formu-
lated as follows: from past observations of the studied phenomenon, we want to
be able to predict future ones. In general, we denote the observed state X , where
at each time t, Xt ∈ Rd. Similar to time series models, we want to predict X at
t + 1 from the observation of X at t − k, ..., t. With fψ a parametric model, with
the parameters ψ to be optimized, we write X̂t+1 the estimated value of X at t+ 1

as:
X̂t+1 = fψ(Xt−k, ..., Xt) (2.1)

A particular case, yet broadly used in various natural sciences, is when the
dynamics of the system state X follows a differential equation, so that we can
write:

dX(t)

dt
= f(X, t) (2.2)

Equation (2.2) describes the (continuous) variations of the state X with the time.
It is a very general formulation that can account for both Ordinary Differential
Equation (ODE) and Partial Differential Equation (PDE) (and in that case f is a dif-
ferential operator). Therefore such a dynamical model encompasses a wide range
of possible phenomena spanning population dynamics, Newtonian mechanics,
fluid dynamics ... Then, the prediction task amounts to approximating f with
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a learned function, or more precisely at learning how to accurately integrate a
given initial condition. This task is also known as a forward problem.

When dealing with dynamical systems, several other tasks may emerge besides
forecasting, e.g. the estimation of physical quantities from data. Such a task is
often referred to as learning an inverse problem. For instance, we consider in
this work the estimation of the parameters of ODE or PDE from data. The latter
task is related to system identification, which aims at estimating the parameters
governing the dynamics of an observed system. This research topic, originating
from the dynamical system research field, has now emerged in the scientific ML

community. Finally, another prototypical inverse modeling task emerge from the
study of dynamical systems: complete state estimation. The task is to recover the
complete state of a system from limited measurements. Let Zt = (Xt, Yt) be our
system of interest and let Zt be partially observed, i.e. suppose that Xt is observed
while Yt is not. The objective is the estimation of the unobserved Y given the
measurements of the observedXt. This task is at stake in oceanography where two
fields are intricated: an observed scalar tracer field Xt (that accounts for instance
for the ocean temperature, or more generally that describes the concentration of
a physical quantity), and a vector velocity field Yt describing the transport of Xt

in time. Because, it is in practice much easier to observe the tracer quantity Xt,
inverse models are calibrated to obtain velocity fields Yt given the observations
of Xt.

Besides forward and inverse modeling, natural sciences raise several challenges
for the ML community. Of crucial importance for physicists is uncertainty quan-
tification, that instead of learning a function f mapping inputs x to output y,
aims at characterizing the distribution p(y|x), enabling a finer analysis than just
a pointwise regression. Also, the automatic discovery of governing equations is a
longstanding topic of statistics that aims at estimating the differential operator
acting on a system. Finally, data generation that aims at sampling from a distribu-
tion, finds application for example in chemistry or in drug design, where given
a chemical property x, the goal is to find potential molecule y satisfying such a
property, i.e. one want to be able to sample in p(y|x).

2.2 The Difficulties of Machine-Learning for Dynam-
ical Systems

Despite theoretical results showing the approximation capacities of Neural
Network (NN), the training of a NN on dynamical systems data can be unstable
and difficult, leading to inaccurate estimation and prediction. In sections 2.2.1
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to 2.2.3 we describe the major challenges in machine learning for dynamical
systems.

2.2.1 Generalization

Consider for example the learning of a forward model, approximating the
dynamics of the data. In this setting, several difficulties arise. The major one is the
conservation of physical properties. For example, one can think of the preservation
of the total energy in mechanics. Other crucial issues include the stability of the
model for long term prediction and robustness to out-of-distribution data. Indeed,
if the learned model is inaccurate for long-term prediction, it could mean that the
learned statistical model misses a critical physical law underlying the observed
phenomenon. Likewise, the non-robustness to out-of-distribution data means
that the learned predictor is unable to generalize; thus, the model is only able
to interpolate between the observed data points. When aiming to learn a model,
the latter point is crucial to assess whether the physics of the studied system is
actually learned. To sum up, when learning the dynamics of a system the two
following difficulties may arise:

1. generalization for long-term prediction.

2. generalization on novel initial conditions or out-of-distribution data.

2.2.2 Incorporating Physical Prior

Another crucial area of research in the machine learning community addresses
the inclusion of prior knowledge in the design of NN architectures. This task has
motivated several topics of machine learning research. For instance Convolutional
Neural Network (ConvNet) and their equivariance to translation improved sig-
nificantly computer vision results on a wide variety of tasks such as classification.
Recently, equivariant-NN are an active research topic with applications for ex-
ample in molecular synthesis. Besides these general algebraic approaches, the
inclusion of prior (physical) knowledge over a dynamical system is still largely
unexplored. This topic is crucial since most purely NN approaches fail to provide
an acceptable physical prediction. Hence, the inclusion of prior physical knowl-
edge and the physical plausibility of an output are crucial for the learning of
dynamical systems.
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2.2.3 Interpretability

Finally, by construction, a NN extracts complex relationships between the
input variables, and make the resulting NN difficultly interpretable. This un-
interpretability characterizes a model for which the input to output mapping
is not understandable. In other words, one cannot explicit the changes in the in-
puts causing a change in the outputs. Then, NN are often referred to as black-box
models. This prevents the use of NN in several industrial applications where the
interpretability is a prerequisite.

Our goal in this thesis, is to propose methods addressing these highlighted
issues. The remaining of this chapter is dedicated to a brief review of our propo-
sitions. In section 2.3, we present an instance of a weak-prior on the structure
of a NN prediction system to increase interpretability and forecast performances.
Section 2.4 introduces the incorporation of prior physical knowledge in a NN with
a particular focus on differential system and show how it can help generaliza-
tion. Finally, in section 2.5, we describe a new method for learning from multiple
environments, adapted to dynamical system data, to improve generalization.

2.3 Disentanglement for Spatio-Temporal Systems

We ask ourselves whether strong inductive biases, inspired by differential sys-
tems, can guide the design of DL algorithms. Several DL-based models for spatio-
temporal systems exist, for example deploying Long Short Term Memory (LSTM)
or more complex RNN schemes. However, such models are not interpretable due
to the models being black-box and are prone to over-fitting, struggling to extrapo-
late in time. Therefore, we follow a recent trend in machine learning that aims at
separating factors of variations in the prediction. This property is referred to as dis-
entanglement. We propose to perform disentanglement to model a spatio-temporal
phenomenon with a focus on a prediction task. We show in chapter 6 that the
proposed algorithm increases interpretability and provides accurate long-term
prediction, hence addressing two of the issues raised above.

2.3.1 Disentanglement in ML

Let D be a NN that reconstructs a signal X from a latent space Z , i.e. for
z ∈ Z : X = D(z). Disentanglement is a property of the tuple (Z, D), so that
when one coordinate zi in z varies, only one observable attribute in the decoded
signal varies. In other words, consider z̃ ∈ Z , so that ∀i 6= i0 z̃i = zi and z̃i0 6=
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zi0 , then the decoded signals X = D(z), and X̃ = D(z̃), vary by exactly one
characteristic (associated to the coordinate i0). Such a behavior is often obtained
by enforcing a factorized probabilistic prior in the latent space Z . Note that a
factorized probabilistic prior over the latent space Z , for instance via variational
auto-encoding, induces that the coordinates of z ∈ Z are independent and it is
often used in practice.

In these models, interpretability is increased thanks to the fact that the practi-
tioner has a finer understanding on how each variable of the input z impacts the
prediction D(z).

2.3.2 Disentanglement in Spatio-Temporal Data

Disentanglement finds extension for time-varying phenomena: spatio-temporal
disentanglement that also aims at separating factors of variation in a latent space
(associated with a decoder network D). We focus on the dissociation of the dynam-
ics and visual aspects of the data. This definition encompasses various proposi-
tion such as foreground-background decomposition or the building of structured
frame representations. More precisely, we focus on constructing an algorithm
providing us with a separation of content and motion information.

Finally, besides interpretability, we make the hypothesis that separating static
from dynamical information enables us to increase prediction performance. In-
deed, adapted inductive biases have been shown to facilitate learning and gener-
alization.

Learning Task

We address both a representation learning and a structured prediction task as
we aim not only at providing accurate prediction but also separating dynamic
from static content in a sequence. The learning task is twofold as we want to
learn:

1. a dynamic and a static representation from a sequence of observations.

2. a forward model of the observed system from the learned representations.

More formally, let X be our observed system of interest, we aim at extracting
a static (time invariant) representation S and a dynamic representation T . For
Xt−τ :t = (Xt−τ , ..., Xt), it writes as

S, Tt = ES(Xt−τS :t), ET (Xt−τT :t), (2.3)
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where ES and ET are encoder networks. Then, from the extracted representations
S and T , we aim at learning a decoder D, that forwards X in time as:

X̂t+1 = D(S, Tt) (2.4)

This structured learning presents several advantages. First, learning directly
the dynamics of a spatio-temporal phenomenon in the pixel space may be hard
because of long-range interactions and high dimension. Also, the above formula-
tion decomposes the initial prediction task, into simpler sub-problems. Finally, it
provides the practitioners with a finer understanding of the model by separating
motion from static information.

2.3.3 Contribution

In our proposition, we aim at providing an effective framework, yielding
adapted inductive biases for spatio-temporal disentanglement. The proposed
method, inspired by the separation of variable, a resolution method of PDE, was
published as a conference paper:

Jérémie Donà, Jean-Yves Franceschi, Sylvain Lamprier, and Patrick Gallinari
(May 2021). “PDE-Driven Spatiotemporal Disentanglement”. In: The Ninth In-
ternational Conference on Learning Representations. International Conference on
Representation Learning. Vienne, Austria. url: https://hal.archives-
ouvertes.fr/hal-02911067.

2.4 Hybrid Modeling, Bridging Physical and Statisti-
cal Models

Hybrid modeling aims at completing prior physical knowledge with a statisti-
cal component. In particular, we focus on spatio-temporal dynamics defined by
differential equations. This task receives an increasing focus in the machine learn-
ing community. Indeed, as previously evoked, several natural processes such as in
oceanography or other climate science, involve unknown interactions that need to
be taken into account to build an accurate dynamical model. More specifically, we
aim at enhancing a physical model with a statistical component. In that perspec-
tive, we are looking for a well-posed formulation that enables to bridge a physical
hypothesis with a data-driven component. Two main advantages result from
using a hybrid model. First of all, hybrid models are more easily interpretable
compared to black-box models. Also, because physics based models rely on first

https://hal.archives-ouvertes.fr/hal-02911067
https://hal.archives-ouvertes.fr/hal-02911067
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principles (conservation of energy, mass ...) their prediction performances do not
suffer from out-of-distribution samples; Thus, we expect hybrid models to gener-
alize better than purely data-driven method. This motivates the need of bridging
physics based models and data driven algorithms. The learning of hybrid models
then defines a twofold task. First of all, we want to be able to predict accurately
the observed phenomenon. Moreover, because the physical hypothesis may de-
pend on unknown parameters, we want to estimate them precisely. Therefore,
this problem amounts to the resolution of a forward and an inverse problem.

Before detailing our contribution, we begin by providing further elements on
the addressed tasks.

2.4.1 A Short Introduction to Hybrid Models

Hybrid models use physical assumptions about the dynamics f , as defined in
eq. (2.2), in the design of the learning algorithm. Incorporating prior knowledge
or physical assumption in the learning of eq. (2.2) for hybrid modeling can take
various forms. A first one makes use of a closed-form solution to eq. (2.2) as in
(Bézenac et al. 2018b). This closed-form solution depends on parameters. Thus,
the objective of hybrid modeling is to find an adapted way to learn the parameters
that fit the observed dynamics. Another assumption on f is to assume an additive
decomposition of f as f = fk + fu, where one of the component is known, (Rico-
Martinez et al. 1994).

In particular, we tackle in this work the latter : the learning of partially known dy-
namics. Several natural phenomena are well-described by physicist using domain
specific knowledge. However, for complex dynamics, some part of the dynamics
might not be known to the practitioner. This may be due to various factors, such
as idealized assumptions, computational constraints prescribing a fine grain mod-
eling unknown external factors, forces and source etc... NN are then interesting
candidates to complete the partial knowledge over the system dynamics. There-
fore, our goal is to augment the domain specific models with ML. We rely in this
part on the hypothesis of an additive decomposition for the overall dynamics.

That is, we denote fk the prior (domain specific) knowledge the practitioner
has about the dynamics f , and fu the complementary dynamics to model f (that
can be unknown). We can re-write eq. (2.2) using the additive decomposition
hypothesis as:

dXt

dt
= f(Xt, t) = fk(Xt, t) + fu(Xt, t), (2.5)
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2.4.2 Learning Problem

Prediction:

The resolution of the forward problem amounts to integrate any state X at time
t0 up to t1, using an approximation of f . Given the domain specific knowledge
fk, we aim at learning hu approximating fu so that:

Xt1 = Xt0 +

∫ t1

t0

f(X(t), t)dt ≈ Xt0 +

∫ t1

t0

(fk + hu)(X, t)dt

Because, we aim at solving the forward problem, i.e. approximating f , few
practical difficulties may occur when dealing with the above integration. The first
concerns the complexity and the relative importance of fu. For instance fu can be
non-smooth hence harder to learn. Second, depending on the prediction horizon,
the prediction error may become large leading to exploding gradients making the
optimization difficult.

Parameter Identification:

More critically, fk may depend on parameters θ that are unknown. That is, we
know the form of fk but ignore the values of its parameters. We write the true
fk(X, t) as fk(X, t, θ?), and denote Hk the space of functions associated to fk, with
Hk = {hk : Rp 7→ Rp|∃ θ, s.t hk(X, t) = fk(X, t, θ) }.

In this case, our goal is to learn (θ, hu) so that:

Xt1 = Xt0 +

∫ t1

t0

f(X, t)dt ≈ Xt0 +

∫ t1

t0

(hk(X, t, θ) + hu(X, t))dt, (2.6)

With hu a free-form model, e.g. a NN. In this setting, we are facing an ill-posedness
issue: it may exist an infinite number of decompositions (θ, hu) providing a good
approximation to eq. (2.6). Therefore, we concentrate on solving the ill-posedness
to recover both accurate trajectories of the state X and a physically sound estima-
tion of the parameters θ attached to the physical hypothesis. The estimation of θ
is referred to as an inverse problem. Note that, the geophysical community devel-
oped data-assimilation methods, see (Moore 1991), using for instance a prediction
model to solve an inverse problem, thus intricating the estimation of physical
parameters and the ability to predict the observed state of the system.
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2.4.3 Contributions

We address the simultaneous resolution of both the forward problem (to model
accurately the observed dynamics) and the inverse problem (to estimate param-
eters of the associated ODE or PDE) with adapted learning constraints. This axis
of research has lead to two publications studying the augmentation of physical
models with deep learning:

1. Yuan Yin, Vincent Le Guen, Jérémie Donà, Emmanuel de Bezenac, Ibrahim
Ayed, Nicolas Thome, and Patrick Gallinari (2021b). “Augmenting Physical
Models with Deep Networks for Complex Dynamics Forecasting”. In: The
Ninth International Conference on Learning Representations. url: https://
openreview.net/forum?id=kmG8vRXTFv.

2. Jérémie Donà, Marie Déchelle, Patrick Gallinari, and Marina Lévy (2022).
“Constrained Physical-Statistics Models for Dynamical System Identification
and Prediction”. In: The Tenth International Conference on Learning Representa-
tions. url: https://openreview.net/forum?id=gbe1zHyA73

2.5 Learning Neural Dynamics from Several Environ-
ments

Another crucial application of machine learning arises when the data to learn
from originate from several environments. This learning setting has gained mo-
mentum for classification tasks, with frameworks such as Meta-Learning or Multi-
Task Learning.

This setting is also encountered when learning dynamical systems. Indeed, it is
common to observe several trajectories of the same phenomenon, with variations
in the underlying dynamics. These changes in the dynamics can be caused by a
change in the values of the parameters of the underlying ODE, or a change in the
initial or border condition leading sometimes to radically different trajectories.
This setting then defines an essential task in the learning of dynamical systems
tightly linked with generalization.

https://openreview.net/forum?id=kmG8vRXTFv
https://openreview.net/forum?id=kmG8vRXTFv
https://openreview.net/forum?id=gbe1zHyA73
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2.5.1 Task And Contribution

Suppose we observe a set of trajectories De, where e ∈ E characterizes the con-
text, i.e. we have for some example i of environment e, Dei = {Xe

t0
, Xe

t1
, ..., Xe

tn}
that verifies:

dXe

dt
= f e(Xe) (2.7)

so that ∀e ∈ E , f e ∈ F , and F is a function space. Since the trajectories depict
the same phenomenon, a particular example of learning from multiple environ-
ments occurs when f ei and f ej share the same parametric form but with different
parameters.

Let gθ be a neural network, with θ ∈ Θ ⊆ Rn. A common approach to solve the
prediction associated to eq. (2.7) is:

min
θ

∑
e∈E

L(gθ(x
e
t ), f

e(Xe
t )), (2.8)

This setting can be thought of as finding one function gθ suitable for all trajectories,
hence often referred to as a One-for-all learning setting. This approach is prone
to under-fitting and often misses the specificities of each trajectories. Another
approach consists in fitting one NN gθe for each environment solving:

min
θe
L(gθe(X

e
t ), f

e(Xe
t )) ∀e ∈ E , (2.9)

Since it learns one function per environment this approach does not leverage the
common behavior of all environments, is prone to over-fitting and is computa-
tionally expensive.

Contribution We address the drawbacks of the above approaches and develop
a novel algorithm to learn from several environments. To do so, we leverage
the fact the trajectories depict a common dynamics, and assume the existence
parameters θc ∈ Θ from which a deviation of limited complexity in the parameter
space enables us to find for all environment e a parameter θe adapted to the
trajectories in De using an hyper-network approach. This work is currently under
review:

Matthieu Kirchmeyer, Yuan Yin, Jérémie Donà, Nicolas Baskiotis, Alain Rako-
tomamonjy, and Patrick Gallinari (Jan. 2022). “Generalizing to New Physical Sys-
tems via Context-Informed Dynamics Model”. working paper or preprint. url:
https://hal.archives-ouvertes.fr/hal-03547546

https://hal.archives-ouvertes.fr/hal-03547546
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M O D E L I N G D Y N A M I C A L S Y S T E M S

Our work lies between several areas of research. Instead of proposing an exhaus-
tive review of all evoked research areas, we give a contextual overview enabling
us to provide the reader with the necessary elements to understand and grasp the
essential notions, the background and the novelty of our proposed approaches.

This section is organized as follows. In section 3.1 and section 3.2, we begin by
reviewing classical approaches to model times series from a statistical standpoint.
In section 3.3, we show how machine learning, and in particular DL developed
tools to capture and model the temporal dependency in the data. Because our
work heavily relies on ODE and PDE, we present their treatment through a statisti-
cal approach in a dedicated part, chapter 4.

3.1 Time Series Modeling

Despite being a longstanding tool for natural sciences, the statistical analysis
of time series is relatively young. Indeed, econometrics tools investigating the
estimation of predictive time series models date from the 1970s.

Consider an observed variable (Xt)t∈[|1:n|]. Unless said otherwise, we consider
Xt to be scalar for the rest of the subsection. We start by considering econometric
modeling of time series. Such models treat the observed time series as a stochastic
process, i.e. as a (ordered) sequence of observations in a probabilistic space and
rely on two main assumptions: stationarity and ergodicity.

Definition 3.1 (Stationarity). Let (Xt)t a stochastic process. (Xt)t is said to be
stationary in a weak sense if:

1. It has constant mean, i.e. ∀s,E(Xt) = E(Xt+s)

2. Its auto-covariance function defined by K(t, s) = E[(Xt−E(Xt))(Xs−E(Xs))],
depends only on the difference between the time steps t and s, i.e. :
K(t, s) = K(t− s, 0)

3. The second order moments are finite for all times, i.e. : E(|Xt|2) <∞.

17
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The above definition relaxes strong-stationarity that states that for all s, t1, ..., tn,
the joint distribution of (Xt1 , ..., Xtn) and (Xt1+s, ..., Xtn+s) are similar. Stationar-
ity implies that the main statistical properties of the sequence (Xt1 , ..., Xtn) are
conserved by considering a lag in the series.

Unlike stationarity characterizing statistical properties of the time series, ergod-
icity establishes a link with the actually observed dynamical systems.

Definition 3.2 (Ergodicity). Let (Xt)t be a stochastic process. (Xt)t is ergodic
(in the first order), if its mean converges towards its expected value, i.e. if
limT→+∞

1
T

∫ T
0
X(t)dt = E(Xt)

This definition finally says that the mean of the random process corresponds
to the mean of the observations, provided that we have enough observations. The
stationarity of the process is a key property of a time series, that enables to make
prediction, ergodicity is a technical condition not often discussed in ML. Statistical
modeling literature flourishes with time series models. In the following, we briefly
review the most classical ones.

3.1.1 Autoregressive Models (AR)

Econometrics proposes to investigate the case where Xt depends linearly on
its previous value, modulo a random perturbation of zero average and time inde-
pendent variance. This kind of model is referred to as auto-regressive. Assuming
0-mean for the observed process Xt, an auto-regressive model of order p ∈ N,
denoted AR(p) writes as:

Xt =

p∑
i=1

aiXt−i + εt (3.1)

where εt is a white noise.

We can write eq. (3.1) equivalently as (1 −∑p
i=1 aiL)Xt = εt where L is a lag

operator. Defining the characteristic polynomial by χ(x) = (1 −∑p
i=1 aix

i). The
process modeled by eq. (3.1) is stationary if and only if the roots of χ(x) are strictly
outside the unit circle.

The estimation of the coefficients (ai)i∈[|1,p|] can be conducted for example using
ordinary least squares or maximum likelihood.
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3.1.2 Moving Average Models (MA)

Unlike AR models, moving average models of orders q denoted MA(q), involve
exogenous i.i.d. shocks denoted ε, impacting durably the time series as:

Xt = εt +

p∑
i=1

aiεt−i (3.2)

Notably Xt is stationary as the sum of stationary processes. Of interest for mod-
eling and estimation, Moving Average models are said invertible when they can
be re-written as an AR(∞) model. In general the estimation of the parameters of
eq. (3.2) is conducted via maximum likelihood.

Extensions Moving average models are interesting since according to Wold
theorem (Fuller 1976), any covariance stationary process Xt, can be represented
using a MA(∞) (whose coefficients are square summable), plus a deterministic
term. The estimation of the deterministic term has led to a refinement denoted
ARMA(p,q) that combines an AR(p) and a MA(q) models. To cope with potential
non-stationarity, ARIMA(p,i,q) models were developed; instead of modeling the
original time series Xt models the difference of order i of Xt: ∆iX . The differenti-
ation process eliminates potential polynomial trends in the time series enabling
to recover a stationary time series.

When Xt is a vector of observation, Vector Autoregressive (VAR) models gener-
alize AR models by modeling a vectorial times series instead of modeling a scalar
times series. They enable to incorporate the influence of other variables in the
modeling process.

The above methods are variants of the linear regression model, hence assuming
constant variance of the error. This assumption has been criticized: inspired by
financial time series, (G)ARCH models (Engle 1982) deals with the time depen-
dent intrinsic volatility (i.e. standard deviation) of the time series by modeling
the heteroscedasticity. With m a regression function of parameters β, a classical
model is:

Yt = m(Xt; β) + εt

E[εt|εt−1] = 0 and V(εt|εt−1) = σ2
t

σ2
t = α0 +

p∑
i=1

αiεt−i
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3.2 State-Space Models and Kalman Filter

State-space models are crucial examples of how probabilistic modeling can
help modeling observed dynamical systems. By definition, states-space models
separate the dynamical model from the observation model. The dynamical model
operates on an unobserved state X , whereas an observation model links the
(unobserved) state X to the actual measurements z. In Bayesian statistics given
observations (z1, .., zt) common tasks are:

1. smoothing: for n < t estimate p(Xn|z1, ...zt, θ)

2. filtering: estimate p(Xt|z1, ...zt, θ)

3. prediction: estimate p(Xt+1|z1, ..., zt)

In general state-space models have the following form:

Xt = f(Xt−1) + ε

zt = g(Xt) + η

Where f, g are respectively the dynamical model and the measurement (or emis-
sion) function, and ε, η are i.i.d. noises.

Perhaps the most famous example of state-space model is the linear and Gaus-
sian case that leads to the Kalman filter. Given a linear dynamical and measure-
ment model, the Kalman filter proposes a solution to the filtering problem, along
with a simple method for prediction. Indeed, it introduces two essential equa-
tions: a linear stochastic difference equation (i.e. a linear dynamical model) and a
measurement equation:

Xk = FXk−1 +Buk + wk−1 (3.3)

zk = HXk + vk (3.4)

Where Xk is the signal of interest with dynamics given by eq. (3.3), uk is a control
vector, F is a transition matrix, B and H are respectively a control and a measure-
ment matrix, and both (wk, vk) represent process and measurement noise, so that
p(w) ∼ N (0, Q), and p(v) ∼ N (0, R) (with Q,R covariance matrices).

The objective of the Kalman filter is to provide estimate for Xk given: the initial
state X0, the information about the system F,B,H,Q,R and observation z1, ..., zk.
Note that in practice, Q and R are not known and are parameters to be tuned,
whereas F,B and H are known matrices. The Kalman filter procedure introduces
P , accounting for the predicted error covariance. Kalman filtering alternates a
two steps procedure:
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1. Prediction Step: update the estimated prediction and the covariance of the
error:

State X̂−k = FX̂+
k−1 +Buk−1 (3.5)

Predicted Error Covariance P−k = FP+
k−1F

T +Q (3.6)

2. Update Step: compute:

Residual ỹk = zk −HX̂−k (3.7)

Kalman Gain K−k = P−k H
t(R +HP−k H

t)−1 (3.8)

Update state estimate X̂+
k = X̂−k +Kkỹk (3.9)

Predicted Error CovarianceP+
k = (I −KkH)P−k (3.10)

By design, such a procedure minimizes the estimated error covariance, and is in
that sense optimal. Initially designed for inference and smoothing in the context
of vehicle motion, a major limitation of the Kalman filter is the knowledge of the
transition matrix F . To alleviate this drawback, several techniques exists to learn
the transition matrix F , such as the Expectation-Maximization (EM) algorithm, by
maximizing the conditional likelihood of the parameters given the observations
or iterative least squares.

Kalman filter finds extension in non-linear settings via the formalism of the
extended Kalman filter. For more complex observation function and dynamics,
e.g. non linear dynamics and measurements, inference smoothing and prediction
can be conducted using non linear Monte Carlo methods as for example the
particle filter and Sequential Monte Carlo (SMC), see (Doucet et al. 2000).

3.3 Recurrent Neural Networks

The time-series models of section 3.1 model directly the observations. On the
other hand, state-space models as described in section 3.2 model the dynamic of
an unobserved state. Traditional models and particle filter approaches become
intractable when the Markov assumption is relaxed or when the dynamics is
unknown. NN and RNN are gifted with universal approximation capacities. Simply
put, RNN learns a representation of the data in a latent space to simplify the
modeling of the dynamics. As a reminder, a short overview of NN architecture is
available in appendix A.

Besides, the accuracy of NN predictions for long horizons depend strongly
on the capacity of the model in producing accurate outputs at each time-step,
otherwise error may accumulate leading to aberrant or unrealistic predictions.
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Figure 3.1. – Because the inputs X1:T are treated sequentially, RNN can han-
dle a wide variety of temporal tasks. Schema taken from: http:
//karpathy.github.io/2015/05/21/rnn-effectiveness/

3.3.1 Introduction and Notation

A way to bypass this limitation is to model the dynamics in a smaller dimen-
sional latent space in which the data are well-represented. More specifically, as
soon as sequential data are involved, RNN are used to extract dynamical informa-
tion from the input sequence. Similarly to classical NN, see appendix A, the main
objective objective for RNN is the accurate modeling of an output y ∈ Rd given a
sequence of output X1:t = X1, ..., Xt, thus to maximize:

log pθ(y|X1:t) (3.11)

In the case of sequence modeling, i.e. when the task is to predict y1:t, where
yk ∈ Rd eq. (3.11) rewrites as:

log pθ(y1:t|X1:t) =
t∑

k=1

log pθ(yk|X1:k) (3.12)

Thanks to their ability to handle data sequentially, RNN can handle several tasks
as illustrated in fig. 3.1. In that perspective, RNN have found several application
fields such as in Natural Language Processing (NLP) for text generation and trans-
lation, multimodal learning with for instance image captioning, spatio-temporal
prediction, image inpainting by modeling sequentially the likelihood of the pixels
(Oord et al. 2016).

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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For modeling the conditional distribution pθ(yt|X1, ..., Xt), a RNN learns a vec-
torial (or tensorial) representation denoted ht which current value at time t de-
pends on ht−1. The classical architecture of a RNN obeys the following equation:
ht = fθ(Xt, ht−1) and its conventional implementation denoted vanilla-RNN is:

ht = tanh(Wx.Xt +Wh.ht−1 + b) (3.13)

ŷt = gψ(ht) (3.14)

Where Wx,Wh are weight matrices and gψ is a NN mapping the learned represen-
tation ht to the output space. Note that

However, eq. (3.13) has several drawbacks as its training relies on the
BackPropagation Through Time (BPTT) algorithm. Indeed, let ŷt be the estimated
output of the RNN, according to the chain rule the derivative of the loss L with
respect to the matrix Wh writes as:

∂L
∂ŷt
∝

t∑
k=1

∂ŷt
∂ht

∂ht
∂hk

∂hk
∂Wh

A term can cause trouble: ∂ht
∂hk

:

∂ht
∂hk

=

j=t−1∏
j=k

∂hj+1

∂hj
=

j=t−1∏
j=k

(1− tanh2(Wx.xt +Wh.hj−1 + b))Wh (3.15)

As noted in (Y. Bengio et al. 1993), two main problems emerge from the above
derivation. First, the term 1 − tanh2 tends to quickly saturate at 0 when the
output deviates from 0. The second problem that emerges from eq. (3.15) is
the multiplication by Wh (k − t)-times. Therefore, if the norm of Wh is high,
this term increases geometrically, leading to an instability in the training called
exploding gradients. Conversely, if the norm of Wh is low, this term decreases
geometrically towards 0, leading to vanishing gradients problem. In either case,
the corresponding gradient will not help modeling the conditional pθ(yt|x1:t).

Several solutions have been proposed to learn vanilla- RNN, as for example
truncating terms in eq. (3.15) (Williams and Peng 1990) or value clipping as
(Pascanu et al. 2013). Besides the stability of the backward pass, another area of
research concerns NN-architectures.
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3.3.2 Models and Architectures

Several architectures propose to enhance traditional RNN notably for the learn-
ing of long term dependencies.

GRU

The idea behind the GRU is to enable a better flow of information through the
recurrent cell, that would also prevent gradient related issues. To do so, a GRU-
cell manages two gates that enables to deal with the data flow throughout the
sequence:

1. reset gate denoted r

2. update gate denoted z

Figure 3.2. – Schematic Overview of the computations in a GRU-cell. Illustration
taken from (Pan et al. 2018)

Given an input Xt and a previous state ht−1 the reset and update state follow:

rt = σ(WrxXt +Wrhht−1 + br) (3.16)

zt = σ(WhxXt +Wzhht1 + bz) (3.17)

zt, rt and h have similar dimension and Wrx,Wrh,Whx,Wzh are weight matrices
of appropriate dimension.

An intermediate state h̃t is introduced, following:

h̃t = tanh(WhxXt +Whh(rt � ht−1) + bh) (3.18)
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h̃t combines an innovation from the new incoming data Xt via WhxXt and the
possibility to forget all past information of the previous state ht−1 via rt � ht−1.
Finally this intermediate state is combined with the previous state following:

ht = zth̃t + (1− zt)ht−1 (3.19)

Equation (3.19) shows that zt is learned to optimally mix innovation i.e. h̃t and
the previous state ht−1. These equations can be summarized schematically as in
fig. 3.2

GRU, introduced in (Cho et al. 2014), combines the gradient advantages of
LSTM, as will be detailed in the next session or see (Rehmer and Kroll 2020),
while alleviating slightly the computational cost of LSTM since LSTM requires an
additional matrix multiplication compared to GRU.

Long-Short Term Memory Networks

Originally proposed in (Hochreiter and Schmidhuber 1997), LSTM aims at ad-
dressing both shortcomings of RNN, i.e. modeling long-term dependency and
training instabilities. Similarly to what is done in GRU cells, LSTM introduces sev-
eral gating mechanisms: an input gate it and a forget gate denoted ft control the
information flow in the LSTM cell, along with a cell state denoted ct. With σ the
sigmoid activation, � the element wise product, and [a, b] the concatenation of
a and b, the LSTM equations are given by eqs. (3.20) to (3.24), and a schematic
illustration is provided in fig. 3.3.

it = σ(Wi[ht−1, Xt] + bi) (3.20)

ft = σ(Wf [ht−1, Xt] + bf ) (3.21)

ot = σ(Wo[ht−1, Xt] + bo) (3.22)

c̃t = tanh(Wc[ht−1, Xt] + bc) (3.23)

ct = ft � ct−1 + it � c̃t (3.24)

ht = ot � tanh(ct) (3.25)

In that case, we have: ∂ct
∂ct−1

= ft, therefore since ft is the output of a sigmoid layer
it is between [0, 1], and the gradients neither geometrically increase nor decrease
as in the vanilla RNN case. Finally, exhaustive experimental comparison concluded
to that GRU and LSTM obtain comparable results on sequence modeling tasks.
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Figure 3.3. – Schematic illustration of (stacked) LSTM cells. The forget gate
and input gate enables a better gradient flow preventing gra-
dient issues during learning https://distill.pub/2019/
memorization-in-rnns/

RNN Refinements

RNN architectures can be refined: RNN cells can be stacked, the output ht of the
first RNN being the input of the following RNN-cell as illustrated in fig. 3.3, so on
and so forth. Also, the sequence can be processed using a positive and a negative
time axis, i.e. processing the sequence in two ways (Schuster and Paliwal 1997):
one from X1, ..., Xt the other from Xt, ..., X1. The intuition behind the latter is that
processing the sequence both ways will provide a better grasp of the context.

Attention Based Networks

Both LSTM and GRU are now considered traditional deep learning approaches
to sequence modeling. Recently, a novel approach: attention, brought a significant
improvement in both NLP and computer vision tasks. Crucially, it does not imply
recurrent computations for sequence modelling, breaking a significant bottleneck
of traditional RNN approaches.

Introduced in (Bahdanau et al. 2015), the attention mechanism enables to focus
on the desired part of a sequence. In its original formulation, it comprises 3 main
parts:

1. A RNN-Encoder that encodes the input sequence (Xi)i∈[|1,t|] as (hi)i∈[|1,t|].

2. A RNN-Decoder Network: let yi∈[|1,t|] the sequence to be reconstructed,
the task is formulated as maximizing: p(yk|yk−1, sk, c) parameterized as

https://distill.pub/2019/memorization-in-rnns/
https://distill.pub/2019/memorization-in-rnns/
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g(yk−1, sk, c), where sk is the state of a RNN, and c is an context vector. si is
given by si = f(yi−1, si−1, ci).

3. The construction of the context vector or attention mechanism focuses on
how to compute the ci to facilitate learning. The core idea is to find which
representations in the sequence of hj mostly influence the output to be
emitted at time i.

The attention proposed in (Bahdanau et al. 2015) computes the ci as a
weighted average of all the hidden representations hj . The weights, denoted
α, express the dependence between the hidden representation hj and the
word to be emitted at time i, represented by si−1, and is usually parameter-
ized by a Multi-Layer Perceptron (MLP) taking as input the concatenation
[hj, si−1].

Finally, we write ci =
∑j=t

j=1 αi,jhj . And for all i, αi,. is a probability distri-
bution over the integer [|1, ..., t|], so that ci is a weighted average of the hj .
Practically, αi,j is the output of a neural network a(hj, si−1).

Other attention mechanisms exist, see (Luong et al. 2015). For instance, the
self-attention computes the fitness weights α between the observations of the input
sequence X1:t. Combined with Positional Encoding, a learned representation of
the position of the input within the sequence, self-attention led to the Transformer
architecture, see (Vaswani et al. 2017). Since their introduction, Transformer-based
architectures have succeeded in increasing performances on several NLP tasks
(Ott et al. 2018; Dai et al. 2019). Besides NLP tasks, Transformer architectures
have spread to computer vision for image classification tasks (Dosovitskiy et al.
2021). Recently, the use of transformers for spatio-temporal tasks as video and
dynamical system prediction (Weissenborn et al. 2020; Geneva and Zabaras 2021)
shows promising results.

3.3.3 RNN for Dynamical Systems

Let aside traditional applications to language models, a significant research
track focuses on the application and adaption of RNN to the modeling of dy-
namical systems. Direct applications of RNN to dynamical systems date back to
(Funahashi and Nakamura 1993) in which the authors prove that any finite trajec-
tory dynamical system can be realized by a RNN. Besides the application to model
univariate or multivariate time series (Cai et al. 2019; Che et al. 2018; Hewamalage
et al. 2021), this theoretical motivation inspired several papers to use directly RNN

to learn the dynamics of physical systems (X. Jia et al. 2021; Wan et al. 2018).

A milestone in this field is the introduction of ConvLSTM by (Shi et al. 2015):
with the objective of short time forecasting, the authors introduced a novel re-
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current cell combining the behavior of LSTM with the spatialized treatment of
convolutional neural networks. Notably this architecture designs a latent embed-
ding that does not linearize the data and treat them as images, hence preserves
and enhances local structures. (Y. Wang et al. 2019b) proposed a ConvLSTM archi-
tecture designed for non stationary spatio-temporal data using Memory in Memory
blocks that differentiate the time series, just like in an ARIMA model, making it
stationary.

Spatio-Temporal prediction is a challenging task due to the variance in the
changes that can occur and to the difficulty to generate likely images. Even so-
phisticated RNN architectures as (Y. Wang et al. 2018) struggle with accurate frame
prediction. Yet, RNN-encoders are still used for this task together with generative
models (Babaeizadeh et al. 2018; A. X. Lee et al. 2019; Denton and Fergus 2018).
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L E A R N I N G O D E A N D P D E F R O M D ATA

The task of learning the dynamics of a system from data is a longstanding
problem in the machine learning community and is one of the reasons for the
development of RNN. Note that other research fields, such as system identification
and data assimilation have also addressed the task of learning ODE parameters
from data. As a starting point, consider an ODE describing the evolution of a
quantity X ∈ Rd through time t

dXt

dt
= f(X, t) (4.1)

Several problems in machine learning are reformulated as learning a function f

that satisfies eq. (4.1). Learning eq. (4.1) amounts to approximating f through a
parametric class of function, F(θ), large enough to represent a wide variety of
functions f .

This chapter is organized as follows, in section 4.1 we provide brief and intuitive
elements for the understanding of ODE and PDE based models. Afterwards, we
provide details over 3 main learning problems:

1. Prior-Free Forecasting: this approach leverages trajectories of observations
Xt0 , ..., Xtn for learning a parametric function f : Xt−τ :t 7→ Xt+1. Assuming
a dynamics following eq. (4.1), a simple discretization writes as:

Xt+1 = Xt + dtfθ(Xt, t), (4.2)

with dt the integration step-size. section 4.2 is dedicated to explain Residual
Network (ResNet) (K. He et al. 2016) defined by eq. (4.2) along with its
continuous version introduced in (R. T. Q. Chen et al. 2018).

2. ODE-PDE resolution, see section 4.3. Unlike the previous approach that relies
on data trajectories, this learning task, in its simplest form, assumes that f
and the initial condition X0 are known and propose to learn the solution to
eq. (4.1).

3. Hybrid and grey-box modeling, see section 4.4. As detailed in section 2.2.2,
one core machine learning issue lies in the incorporation of prior knowledge

29
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in learning algorithms. A prototypical example, illustrated in section 2.4, is
the learning of a residual dynamics:

dXt

dt
= f(Xt, t) = fk(Xt, t)︸ ︷︷ ︸

prior knowledge

+ fu(Xt, t)︸ ︷︷ ︸
neuralnet

(4.3)

4.1 Brief Introduction to ODE and PDE models

We present introductory elements about ordinary differential equations in sec-
tion 4.1.1 and partial differential equations in section 4.1.2.

4.1.1 Ordinary Differential Equations

The existence and uniqueness of the solution to eq. (4.1) given an initial condi-
tion X0 and the Lipschitz behavior of f is ensured by the Cauchy-Lipschitz lemma
(Cartan and Kouneiher 1967). For less restrictive assumptions, the uniqueness is
not guaranteed, as illustrated by the Cauchy-Peano-Arzelà theorem (Cartan and
Kouneiher 1967).

Given f , expressing the solution X to eq. (4.1) can be cumbersome, or even
infeasible, making the differential formulation of eq. (4.1) impractical. In general,
given eq. (4.1) and an initial condition X0, one major task for dynamical systems
practitioners and physicists is the forecast of the quantity X . Thus, developing in-
tegration methods for ODE is a longstanding problem in numerical analysis. Their
quality is expressed through three main characteristics: Convergence, Consistency,
and Stability, see (Arnold 2015). Informally, convergence refers to the fact that the
numerical solution converges towards the true solution when the stepsize (or in-
tegration step) goes to 0. Consistency refers to the adequacy of the true solution to
the discretized one. Finally, stability refers to the bounded behavior of the numeri-
cal scheme with respect to the initial condition. As an example, consider the Euler
method that discretized eq. (4.1) writing dX

dt
as Xt+h−Xt

h
. Its local-truncation error,

i.e. its one step ahead prediction error is proportional to (h2). On the other side,
the Grönwall lemma provides us with an upper bound for the global-truncation
error (GTE) (i.e. prediction from t0 up to t): C(L, ||X ′′||)× h(expL(t−t0)−1), where
C is a constant that depends on L, the Lipschitz constant of f ; and on the norm
of the second order derivative of X . For an exhaustive discussion on the subject,
we refer the reader to (Butcher and Goodwin 2008).
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4.1.2 Partial Differential Equation

While ODE describes the evolution of scalar and vectorial quantities with time,
potentially in a very complex manner, PDE introduces a dependency of the target
solution X with respect to a vectorial variable or coordinate x ∈ Rl so that X
writes as X(x). However, in practice, time is separated from spatial coordinates so
one writes X(t, x). If X is a scalar field, i.e. X : R+×Rl 7→ R, PDE refers to the fact
that the values of X varies both with time t and space x. Therefore the variations
of X involve a differential operator with respect to x. If x is a one-dimensional
space coordinate, a partial differential equation can often write as:

∂X(x, t)

∂t
= N (X,

∂X

∂x
,
∂2X

∂x2
, ...), (4.4)

whereN is a generic function. General conditions to retrieve existence and unique-
ness to eq. (4.4) do not exist as such. Indeed, each PDE problem has its own
specificities requiring an ad-hoc treatment. However, the Lax-Milgram theorem, a
general tool from linear algebra extending Riez representation lemma, enables to
recover the well-posedness of eq. (4.4) for a wide class of PDE, provided adapted
initial and boundary conditions. For exhaustive considerations on this matter,
see (Renardy and Rogers 2006). Regarding numerical simulations of PDE, several
solutions exist depending on the considered equation: Finite Difference Method
(FDM), Finite Element Methods (FEM), Finite Volume Methods (FVM). While the
FDM discretizes the PDE both in space and time then solve the associated equa-
tion on a grid; finite elements and finite volumes methods rather divide the space
on which the solution is computed using "elements" (or cells). Then, the target
solution is either approximated using a basis of functions in the case of FEM, or
rely on conservation of a quantity in the case of FVM see (Ames 1977).

Besides prediction of the system states, several learning tasks emerge when
relying on eqs. (4.1) and (4.4). For example, in parametric differential equation
solving, the parametric form of f is known, but its coefficient are to be estimated.
The system identification literature tackled this subject providing methods to
estimate the parameters θ so that dX

dt
= fθ(X, t), see (Ljung 1998). Another classical

example, common in natural sciences such as oceanography, is the identification
of some unobserved component in X , as in (Béréziat and Herlin 2015). This task
can be solved using data assimilation methods (Carrassi et al. 2018).
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4.2 Statistical Learning of ODE and PDE

In this section we describe the adjoint method in section 4.2.2 and details
on ResNet and other NN architectures inspired by ODE integration schemes in
sections 4.2.1 and 4.2.3

4.2.1 Residual Networks

In its simplest form, residual networks (K. He et al. 2016) writes as:

Xt+1 = fθ(Xt) +Xt, (4.5)

where θ are learnable parameters.

Its original implementation presents two convolutional weights layers and a
ReLU activation as illustrated in fig. 4.1. Also, since the introduction of ResNet

Figure 4.1. – Schematic illustration of a Residual layer. Illustration taken from (K.
He et al. 2016)

by K. He et al. (2016) and the remarkable results for classical computer vision
tasks such as classification and object detection, the use of the dynamical system
formalism has thrived in the DL community. Note that, it is not the analogy with
numerical scheme that initially motivated the use of ResNet for ML tasks but rather
its stability during training, solving vanishing gradient problems and enabling
very deep architectures (Zaeemzadeh et al. 2020).
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4.2.2 Neural-ODE and the Continuous Adjoint Method

Following the path opened by ResNet, (R. T. Q. Chen et al. 2018) proposed
Neural-ODE, a continuous version of ResNet that addresses the following learning
problem:

min
z
J(z(T ), y) (4.6)

s.t : dz/dt = f(z(t), t, θ) z(0) = x

where J : Rd × Rd 7→ R is some cost function, and y is typically a data point.
For instance, in a dynamical system perspective, y corresponds to the observed
output of the system state at time T .

Solving eq. (4.6) actually mobilizes a method called the Adjoint Method. The ad-
joint is a theoretical method for computing gradients. It finds two instantiations: a
continuous mode that computes the gradient of ∂f/∂θ analytically, and a discrete
mode that computes the gradient based on explicit discretization, similarly to the
backpropagation algorithm. The core idea behind the adjoint method is to avoid
cumbersome and expensive estimation of differential terms.

The adjoint method recovers the gradient of J with respect to θ solving eq. (4.6)
and writing the Lagrangian L, with λ the Lagrange multiplier function:

L(z(T ), θ, λ) = J(z(T ), y) +

∫ T

0

λ(t)[
dz

dt
− f(z(t), t, θ)]dt (4.7)

We now take the derivative of L w.r.t z and λ. The partial derivative of L w.r.t
to λ amounts to the ODE equality: dz/dt = f(z, t, θ). Obtaining the derivative of
L w.r.t to z(t) directly is cumbersome. However, recall the following lemma:

Proposition 4.1. Let f : Rd 7→ R be a differentiable function at point P . Then, we
have: df

dt
(P + tv)|t=0= ∇pf.v This generalizes not only to lines but also to curves :

df
dt

(c(t)) = ∇Pf.c
′(t)

We use Proposition 4.1 and we consider a small variation z(t) + εz(t), for some
arbitrary function z we write:

L(z(t)+εz(t), θ, λ) = J(z(t)+εz(t))+

∫ T

0

λ(t)T [
dz(t) + εz(t)

dt
−f(z(t)+εz(t), t, θ)]dt

(4.8)
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We have for all t, we have: ∂L
∂z(t)

= dL
dε
|ε=0. Thus:

dL
dε
|ε=0 =

∂J

∂z

>
z(T ) +

∫ T

0

λ(t)T [
dz(T )

dt
− ∂f(z(t), t, θ)

∂z(t)
z(t)]dt

=
∂J

∂z(T )
z(T ) +

∫ T

0

λ(t)>[
dz(t)

dt
− ∂f

∂z(t)
z(t)]dt

=
∂J

∂z(T )

>
z(T ) +

∫ T

0

λ(t)>[
dz(t)

dt
+

∂f

∂z(t)
z(t)] + λ′(t)>z(t)− λ′(t)>z(t)dt

=
∂J

∂z(T )

>
z(T ) + [λz(t)]T0 −

∫ T

0

λ′(t)>z(t) + λ(t)
∂f

∂z(t)
z(t)]

= [
∂J

∂z(T )
+ λ(T )]>z(T )− λ(0)z(0)−

∫ T

0

z(t)[λ′(t) +
∂f

∂z(t)

>
λ(t)]dt

Moreover, because the initial condition is fixed, z(0) = 0. Thus, having computed
all gradients, we can write the K.K.T. necessary condition for optimality for z(t):

∂J

∂z
+ λ(T ) = 0 (4.9)

λ′(t) +
∂f

∂z

>
λ(t) = 0 (4.10)

We now derive the last term: ∂L
∂θ

, that writes as:

∂L
∂θ

= −
∫ T

0

λ(t)>
∂f

∂θ
(4.11)

In this setting, the variable λ is called the negative adjoint variable and Equa-
tions (4.9) to (4.11) are sufficient to define the adjoint method as:

1. Solve z forward in time and compute the loss J(z(T ), y) and according to
eq. (4.9): λ(T ) = −∂J

∂z

2. Using eq. (4.10), solve λ(t) backward in time (from T 7→ 0) .

3. Using eq. (4.11), compute the gradient w.r.t θ.

Note that backward integration defined by eq. (4.10) can be conducted with similar
computations than the forward integration for z.

The adjoint method for the optimization of Neural-ODE models presents sev-
eral advantages. One interesting property of continuous adjoint based optimizers
is the possibility to use non-differentiable solvers in the forward resolution steps
as the gradients w.r.t to θ are analytically computed. Indeed, ∂L

∂θ
depends only on

the terminal value z(T ), not on the whole trajectory of z(t). Moreover, it allows
efficient memory use.
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This approach is often called optimize-then-discretize as a reference to the ana-
lytical gradient computation scheme, the discretization occurring only for the nu-
merical evaluation of the gradients. On the other-hand, the discretize-then-optimize
approach discretizes the time integration in the ODE defined by eq. (4.6), then
performs optimization based the actual computations, for instance using auto-
matic differentiation. This setting amounts to the backpropagation algorithm as
the gradients w.r.t θ are estimated based on the explicit computations of the NN.
This approach can be computationally more costly but can lead to substantial
gain in performances (Onken and Ruthotto 2020a). Indeed, the original adjoint
for NN method proposed by (R. T. Q. Chen et al. 2018), involves both a forward
(for loss computation) and a backward (for gradient estimation) resolution of z(t).
The discrepancy between the forward and the backward resolution could lead
to numerical errors in the gradient estimation. In that perspective, Zhuang et al.
(2020) and Gholaminejad et al. (2019) proposed to keep in memory the forward
resolution of z (i.e. from z(t = 0) = x 7→ z(T )), and perform the backward integra-
tion of λ (from T 7→ 0) between the timesteps defined by the forward resolution of
z, guaranteeing the adequacy between the forward and the backward resolution
while avoiding redundant computations.

4.2.3 ResNet and Neural-ODE Applied to Dynamical System
Modeling

ResNet interpreted as an Euler step and Neural-ODE have provided a regain
of interest for neural prediction of dynamical systems. It is nonetheless a long-
standing issue in the community since Runge-Kutta computations rules in fact
define recurrent computations that was used in early works such as (Y.-J. Wang
and C.-T. Lin 1998). For instance, given z(t), h and f , RK(2) prediction scheme
writes as:

ẑ(t+ h/2) = z(t) + h/2f(t, z(t))

ẑ′(t+ h/2) = f(t+ h/2, zt+h/2)

ẑ(t+ h) = z(t) + hẑ′(t+ h/2)

The application of Neural-ODE and the adjoint frameworks for dynamical systems
is easy to understand as soon as in eq. (4.6) J(z(t+ 1), y) = ‖z(t+ 1)− xt+1‖ and
z(t) = x(t). It then amounts to a prediction tasks under the constraints that the
estimated state z obeys an ODE defined by f . In that perspective (K. He et al.
2016; R. T. Q. Chen et al. 2018) paved the way to ML developments for dynamical
systems estimation and prediction, for instance, when the system state is partially
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observed (Ayed et al. 2019), or when the time-sampling of the observation is
irregular (Rubanova et al. 2019).

4.2.4 ResNet and Neural-ODE Extensions

Residual Networks analogy with Euler discretization paved the way to more
complex and expressive integration scheme based on NN, for instance by aggre-
gating several data representations within one Residual Block, e.g. (Ouala et al.
2019; Xie et al. 2017; Y. Lu et al. 2018). Besides expressivity, (Haber and Ruthotto
2017) propose adapted constraints for ResNet for increasing training stability.

Since the (re)introduction of the adjoint method for the optimization of the
Neural-ODE algorithm several refinements were introduced, palliating the draw-
back of the original method. Indeed, consider a classification problem of two
different input images of the same class: Cauchy-Lipschitz ensures that to one
z(0) matches only one z(T ); However, in a classification task, to two initial data
zi(0) and zj(0) may be associate to the same output z(T ) (the class label). Thus, a
direct application of Neural-ODE for classification tasks is irrelevant. To palliate
such a drawback, ANODE Dupont et al. (2019) augments the state of Neural-ODE
to enable two different inputs to map the same output, enriching the space of
possible dynamics then enabling to map two different inputs to the same out-
put. (Finlay et al. 2020) also evidence the potential complexity of the integration
path of vanilla Neural-ODE and implements optimal-transport inspired regular-
izations, penalizing both the norm of the learned f and its gradients ∇zf along
the integration paths.

While Neural-ODE and ResNet provide an interesting learning setting, the
learned function remains nonetheless difficultly interpretable. Recent works show
that a partially observed physical system can be subject to accurate prediction
by a ResNet-like integration method but the learned hidden state violates physics
principles (Ayed et al. 2020). To palliate such observations, one can enforce physi-
cal properties by considering additional penalty besides the sole prediction loss.
Of particular interest in natural sciences, Neural-solver (section 4.3) Hybrid and
Grey box (section 4.4) approaches aim at opening the black box using stronger
inductive biases to guide the model towards physically acceptable solutions. The
first one, described in section 4.3, tackles directly the learning of the solution to a
given PDE or ODE. The second one; described in section 4.4, models the evolution
of a system state through time.
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4.3 Solving Differential Equations with Neural Net-
works

As previously stated a significant part of the literature tackles the learning
of the solution to a given ODE or PDE problem by directly parameterizing the
solution by a NN.

A first research track investigated in the literature aims at learning the solution
to a PDE using a NN without data. These approaches consider available initial and
border conditions, but also the differential equation along with its parameters.
This task amounts to solve the known differential equation given the border
condition g and an initial condition u0. We write u this (unknown) function
depending on space x ∈ Ω ⊆ Rd and time t, solution on the spatial domain Ω to
the following PDE :

ut = N (x, ux, uxx, ...) ∀x ∈ Ω (4.12)

u(t = 0, x) = u0(x), ∀x and u(t, x) = g(t, x),∀x ∈ ∂Ω,∀t (4.13)

where in this setting ux denotes the partial derivative of u with respect to x and
N is a function. Given samples in Ω for the initial condition u0, and on ∂Ω for the
border condition, denoted g, and knowing N , the Physics-Informed-Neural-Network
(PINN) approach developed in (Maziar Raissi et al. 2019a) and concurrently in
(Sirignano and Spiliopoulos 2018), parameterizes u by a NN denoted uθ, taking
explicitly as input the spatial coordinates x and time t, denoted uθ that aims at
minimizing the following loss:

LPINN =
∑

(x)∈Initial condition

‖uθ(0, x)− u0(x)‖+
∑

(x,t)∈Border condition

‖uθ(t, x)− g(t, x)‖

+
∑
(x,t)

‖uθt (t, x)−N (x, uθx(t, x), ..., )‖

(4.14)

Where each term respectively accounts for the respect of the initial, border and dif-
ferential conditions. Note that thanks to automatic differentiation the differential
terms uθt and uθx are relatively cheap to compute.

A second learning task aims at learning jointly the solution uθ and its differen-
tial equation N . In this setting, one considers access to observation of the solution
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sampled at interior domain points : (ti, xi) denoted ui. Given a maximal order of
differentiation of u with respect to x, N can be learned by minimizing:

L =
∑
i

‖uθ(ti, xi)− ui‖+ λ‖uθt (ti, xi)−N (xi, u
θ
x(ti, xi), u

θ
xx(ti, xi))‖, (4.15)

In the case of eq. (4.15), N is unknown and can parameterized by a NN or learned
using sparse dictionnary (Brunton et al. 2016).

These approaches, developed in (Maziar Raissi 2018), have been proven useful
but on simple problems such as Burgers equation. Combining both approaches
enables the resolution of inverse problems, such as recovering velocity fields from
observations a scalar field (Maziar Raissi et al. 2020).

In practice, the aforementioned methodologies suffer from several issues (Kr-
ishnapriyan et al. 2021; S. Wang et al. 2021b). The most evidenced one is the bias
towards low frequency, i.e. the model has difficulties to represents high frequen-
cies (both spatial and temporal) in its predictions. Another issue, is that PINN
models suffer from mode collapse, eventually learning the null solution except
near the initial condition. Finally, difficulty in time and space extrapolation arise
even for simple problems. The main reason for such difficulties have been proven
not to be the expressivity of the neural-networks (Krishnapriyan et al. 2021), but
rather comes from either the differential penalty that generates ill-conditioned
gradients, or the ‖.‖2 as evidenced in a Neural Tangent Kernel analysis. These
considerations led to potential solutions palliating the existing drawbacks of such
meshless approaches: for instance curriculum training, i.e. learning the solution
for physical parameters of increasing complexity (somehow similar to numerical
continuation) or the use Fourier features (Krishnapriyan et al. 2021; S. Wang et al.
2021a).

4.4 Hybrid and Grey-Box Integration Methods

The previous approaches require neither a uniform sampling nor a fixed mesh
but rather learn the solution to a PDE. On the contrary, several methods modeling
data resulting from either in-situ observations or physical model simulations,
are subject to a more structured and rigid sampling. They can then leverage
specific architectures of NN such as convolution or Graph Neural-Network. Such
constraints are common in numerical simulations of physical phenomena because
they involve a discretization in space and time such as FEM, FVM or the Galerkin
method.

Specific convolutional architectures has been developed to make deep auto-
regressive models efficient to extrapolate in time (Geneva and Zabaras 2020). How-
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ever, stronger inductive biases can be imposed on NN to mimic spatial-differential
operator. For instance, Sobolev filters define differential operations. With appro-
priate constraints, convolutional filters can approximate differential operations,
generalizing Sobolev filters and can be trained within a ResNet as in (Long et
al. 2018; Long et al. 2019). Such a proposition defines a strong inductive bias
and increase interpretability in residual models by structurally enforcing a PDE

on the model. Indeed, given a differentiation filter one can easily identify the
differentiation axis.

Closer to our work, early studies propose to mix a physical-hypothesis and data-
driven component in order to generalize better on simulated chemical reaction
data (Rico-Martinez et al. 1994; Thompson and Kramer 1994; Psichogios and
Ungar 1992). Interestingly, all these works rely on some knowledge about the
phenomena at stake and learn a NN in places where time-evolving parameters
are unknown for instance as defined in the decomposition of eq. (4.3). Instead
of chemical reactions, mechanistic principles often rely on the conservation of
the Hamiltonian, providing practitioners with time-dependent equations on a
reduced sets of variables. Recently, Greydanus et al. (2019) and S. Lee et al. (2021)
proposed structural constraints on NN forcing them to obey the Hamiltonian
formalism and integration schemes, thus learning to simulate mechanical systems
obeying a conservative principle such as the coordinate and momentum variables
of an ideal pendulum from pixel observations. This approach to regularize NN

has been generalized to Lagrangian motions (Cranmer et al. 2020).

The seminal researches of (Rico-Martinez et al. 1994; Thompson and Kramer
1994; Psichogios and Ungar 1992) have found recent echoes in the ML community
and several works now aim at augmenting a dynamical assumption (originating
from physics) with a learned data driven components. For instance, (Mehta et al.
2020; San and Maulik 2018; Young et al. 2017; Saha et al. 2020b) augment a physi-
cal models with a learned NN to compensate for inaccurate or unobserved physics.
This can also be done within a Variational Auto-Encoder (VAE)-framework such
as in (Linial et al. 2021; Tait and Damoulas 2020; Saemundsson et al. 2020). An
interesting side-effect of latter VAE-based approaches is the possibility to sample
from a latent space, that can either account for unobserved states or unknown
parameters, which can be of great help for physicists for uncertainty quantifica-
tion. However, for now such models only address low dimensional dynamical
systems. These works differ mainly in the application and implementation as the
principle remains either the refining of a physical prediction (i.e. learning a model
that takes as input the physical prediction to better fit the data), or the additive
decomposition between a physical assumption and a NN. Both are in practice
equivalent since the learned residual dynamics in the first case can be recovered
by simply subtracting the known physical input from the estimated output of the
model. Lastly, inspired by transfer learning, (X. Jia et al. 2019) learns the profile
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temperature in a lake (real data), by first pre-training the NN on simulated data
obeying a simpler dynamics yet close in principle to the real one. The idea in this
work is to leverage simpler data to guide the learned model towards acceptable
solutions since the direct learning violates physical principles. Such a learning
procedure can be thought as similar to curriculum learning in PINN frameworks.

Besides early and recent works on low dimensional systems, computational
fluid dynamics is nowadays a crucial subject of interest for the community.
In that perspective, several works have focused on transport phenomena, well-
represented by the PDE with an advection component. For instance, (Bézenac et al.
2018a) use a closed-form solution of an advection-diffusion PDE in order to learn
the associated velocity field. Other works such as (Tompson et al. 2017a; Wandel
et al. 2021a) tackle the generalization of deep learning approaches and combine
numerical solvers and NN in order to learn fluid dynamical models.

While the above works rely on regular grid sampling, thus operating on images,
a novel line of research has emerged to address non uniform sampling, common
in fluid simulation. Such data are better represented under the form of graphs.
In order to learn on such structured data, Graph Neural Network (GNN) are a
generalization of MLP and define operations either on the full-graph, or on local
neighbors of each node in the graph defining graph convolutional neural net-
works. For a thorough review on existing methods and application see (J. Zhou
et al. 2020). In that perspective, several works adopt the GNN framework. Partic-
ularly adapted for fluid simulations, this paradigm has been proven effective in
order to predict a high resolution data from a coarse resolution model originating
from a computational fluid dynamic simulator, alleviating significantly the com-
putational cost for generating high resolution data. Specific GNN architectures
adapted to the prediction of both the system state and the discretization are also
an intense subject of study (Pfaff et al. 2021).
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Particularly useful to model complex data, generative models aim at sampling
from a complex distribution pX . Besides being a particular active field in the ML

community, this task has several real world applications for natural sciences. For
instance, weather forecast and analysis rely on the analog methods (Lorenz 1969),
that constructs scenarii from already observed initial conditions that resemble our
current observation. Generative methods can serve as samplers on the space of
analogs, or even bypass the analog methods directly sampling the whole scenarii.
Another application of Generative methods is the uncertainty quantification since
some methods treat the data probabilistically, it provides us with quantities that
can vouch for uncertainty. While traditional methods lack expressivity to model
the variety of natural data, several techniques involving DL have been developed
in order to perform this task.

This chapter is organized as follows, before describing the variational autoen-
coder and its application to dynamical system in section 5.2, we provide some
details on the autoencoder in section 5.1 Finally, we describe recent generative
methods, the GAN in section 5.3 and the normalizing flows in section 5.4 and
how they can help model dynamical system.

5.1 Autoencoder

Autoencoders, originating from (Rumelhart and McClelland 1987) and further
analyzed in (G. E. Hinton and R. R. Salakhutdinov 2006), propose a two-folded
networks to enable dimensional reduction in the data. Let x be our data of interest,
the auto-encoder is defined as two jointly trained neural networks (fθ, gψ) as:

z = fθ(x)

x̃ = gψ(z)

Such a network is trained using gradient descent minimizing the loss: L = ‖x− x̃‖.
Strictly speaking, the autoencoder is not a generative model since it does not offer
the possibility to sample from the data.

41
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However, a simple refinement, the denoising autoencoder presents such a prop-
erty. The denoising auto-encoder follows the same training rule as the conven-
tional autoencoder except that the datum x is altered by some noise (it can be
Gaussian additive, pixel-block etc.). (Yoshua Bengio et al. 2013c) propose a Markov
Chain algorithm to enable the sampling from a denoising autoencoder. This al-
gorithm paves the way to Stochastic Generative Networks popularized by the
Variational Autoencoder and Generative Adversarial Networks.

5.1.1 Extension and Application to Dynamical Systems

The field of representation learning has greatly benefited from the advances
and expressivity of the NN to embed high dimensional observations onto a smaller
dimensional space (or manifold) in which the dynamics is supposed to be simpler
or at least learnable.

Perhaps one a the most critical example is the Koopman operator. Koopman
analysis of ODE proves, provided the adequate assumptions, the existence of a
space (of potentially infinite dimension) in which the dynamics is linear. In that
setting, the goal of the encoder network is to learn a space (maybe of infinite
dimension) in which the system obeys a linear dynamics. The decoder is learned
to project back into the space of observations. This property has been exploited
in several ways. For instance, (Lusch et al. 2018) proposes a Koopman-operator
based autoencoders involving 3 components: an encoder (φ), a matrix (K), a
decoder (φ−1), learned by minimizing a linear sum of 3 cost functions enforcing an
autoencoding penalty (‖φ−1(φ(x))−x‖), a forecast penalty (‖Kmφ(Xt)−φ(Xt+m‖),
and consistency penalty (the code of an observation at time t+k must be equal to
the code predicted from the observations at time t, i.e. ‖φ−1(Kmφ(Xt))−Xt+m]‖).
The above proposition assumes the possibility to truncate the infinite dimensional
space into a finite dimensional one. (Takeishi et al. 2017) follows similar principles
but relies on a sequence of observations as inputs. Non-linear latent dynamics
can be learned by an ODE approximated using a NN for example helping to model
irregularly sample time series (Rubanova et al. 2019).

5.2 The Variational AutoEncoder

With the aim to bridge representation power and learning capacities of auto-
encoders and the capacity to sample a prior distribution, (Diederik P. Kingma
and Welling 2014a) introduced the VAE. The VAE framework has provided two
major contributions. First it enables to learn the distribution of the data, given a
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flexible enough parameterized prior distribution. It bypasses the complex task of
directly learning to sample from the data distribution by instead considering the
sampling from an (unobserved) latent space and learning the conditional p(x|z).
Second, it has proposed to estimate gradients from stochastic nodes through a
simple and effective trick: reparameterization.

5.2.1 Posterior and Inference Models

Given observations x ∼ p?, the objective of the VAE is to optimize the parameters
θ of a distribution model pθ to approximate p?. The data x is supposed to depend
on a latent variable z, so that we have: pθ(x) =

∫
z
pθ(x, z)dz. The VAE framework

addresses settings in which it is difficult or intractable to sample z given x or
equivalently to get pθ(x). Indeed, following Bayes rule, both intractabilities are re-
lated according to pθ(z|x) = pθ(x, z)/pθ(x). The idea is to use amortized inference
to learn both the posterior or recognition model pθ(z|x) (denoted qφ(z|x)) and the
inference model pθ(x|z) using neural networks maximizing a workaround of the
loglikelihood:

log pθ(x) = E
z∼qφ(z|x)

log pθ(x)

= E
z∼qφ(z|x)

log
pθ(x, z)

pθ(z|x)

= E
z∼qφ(z|x)

log
pθ(x, z)qφ(z|x)

pθ(z|x)qφ(z|x)

= E
z∼qφ(z|x)

log
pθ(x, z)

qφ(z|x)
+ E

z∼qφ(z|x)
log

qφ(z|x)

pθ(z|x)

The first term, Lθ,φ = Ez∼qφ(z|x) log pθ(x,z)
qφ(z|x)

is called the ELBO (evidence lower

bound) while the second term Ez∼qφ(z|x) log
qφ(z|x)

pθ(z|x)
defines a Kulblack-Leibler di-

vergence: KL(qφ(z|x), p(z|x)). Because KL(qφ(z|x), p(z|x)) > 0, the ELBO Lθ,φ =

Eqφ(z|x)(log pθ(x, z)− log qφ(z|x)) defines a lower bound of the original likelihood.

Practical optimization is conducted by employing another version of the
Evidence Lower Bound (ELBO), writing Lφ,θ as:

Lφ,θ = E
z∼qφ(z|x)

log
pθ(x, z)

qφ(z|x)

= E
z∼qφ(z|x)

log
pθ(x|z)p(z)

qφ(z|x)

= KL(qφ(z|x), p(z)) + E
z∼qφ(z|x)

log pθ(x|z) (5.1)
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The first term in eq. (5.1) defines the distance between the (learned) condi-
tional posterior qφ(z|x) and the prior p(z). When qφ(z|x) and p(z) are Gaussian,
KL(qφ(z|x), p(z)) has an analytical form allowing for direct optimization. The
second-term can be understood as: given z sampled according to qφ(z|x), the goal
of pθ(x|z) is to provide an accurate estimate of x. Indeed with a Gaussian prior,
pθ(x|z) amounts to an `2 loss, i.e. a reconstruction loss.

5.2.2 The Reparameterization Trick for Gradient Estimation

In practice, one wants to use NN in order to parameterize pθ(x|z) and qφ(z|x).
The gradients of Lφ,θ with respect to θ are not an issue here, as with the appropri-
ate assumptions to permute ∇ and E, we have:

∇θLφ,θ = ∇θKL(qφ(z|x), p(z)) + E
z∼qφ(z|x)

log pθ(x|z)

= ∇θ E
z∼qφ(z|x)

log pθ(x|z)

= E
z∼qφ(z|x)

∇θ log pθ(x|z)

The difficulty in the optimization of eq. (5.1) lies in the fact that the param-
eters φ are variables of the sampled distribution qφ(x|z). Therefore, we can-
not permute ∇φ and E. The core idea of the reparameterization trick is not
to directly sample z according to z ∼ qφ(z|x) but rather to write z as a dif-
ferentiable transformation of ε, where ε is sampled from a fixed distribution,
i.e. to write z as z = g(ε, x, φ), where g is differentiable. That way we can write:
Ez∼qφ(z|x) log pθ(x|z) = Eε log pθ(x|g(ε, x, φ)). A common prior on qφ(z|x) is the Gaus-
sian one. Thus, in practice, given a data x, one learns a mean µ and a diagonal
covariance vector σ using two NN respectively denoted fµ and fσ and in that case,
with ε ∼ N (0, 1), g(ε, x, φ) = fµ(x) + fσ(x) � ε. We refer to (Diederik P. Kingma
and Welling 2019) for an exhaustive presentation of the VAE framework and the
properties of the gradients computed using the reparameterization trick.

5.2.3 Extension and Application to Dynamical Systems

Several variants of the original VAE framework, such as β − VAE (Higgins et al.
2017) enable a finer control over the equilibrium in the losses defined by eq. (5.1).
Adversarial autoencoders (Makhzani et al. 2016), propose another decomposition
of log pθ(x) and learning a critic network that discriminates learned latent space
qφ(z|x) from the true prior p(z).



5.3 generative adversarial networks 45

The VAE-framework has also been leveraged to model time series as in (Gregor
et al. 2019) and state-space models (Karl et al. 2017). Recent works learn either
PDE parameters or a full dynamics using supervision over observed states (P. Y. Lu
et al. 2020; Linial et al. 2021; Tait and Damoulas 2020; Saemundsson et al. 2020).
Finally, because the variance of the latent code z is learned in the VAE-setting, the
estimated variance of the predicted normal law can be assimilated as uncertainty
quantification about the estimated code µ.

5.3 Generative Adversarial Networks

I. Goodfellow et al. (2014) developed Generative Adversarial Networks (GAN)
introducing a novel way for data generation that originates from a simple prin-
ciple. Consider a dataset D, and a generation method G. The core idea of the
adversarial generation is to learn G so as the samples it produces (denoted DG)
are indistinguishable from samples of D. Originally, the indistinguishable property
is enforced using a critic network denoted D, often called discriminator that esti-
mates the probability for a sample to come either from D or from the generated
DG.

The learning problem is then framed as a classification task and the GAN aims
at solving the following optimization problem: G must generate samples that
"confuse" D while D must be able to recognize the samples originating from G.
It is then a min−max game formulated as:

min
G

max
D

V (G,D) = E
x∼DG

log(1−D(x)) + E
x∼D

log(D(x)) (5.2)

In practice, G admits as entry a random (Normal) noise, so one does not sample
DG but rather z ∼ pz. The parameters ofG andD are learned alternately following:

1. with DG fixed, update D by performing a gradient in the direction
∇DV (G,D).

2. with D fixed, update G by performing a gradient update in the direction
∇GV (G,D).

Interestingly, the cost function defined by eq. (5.2) is shown to minimize a
Jenson-Shannon divergence.

5.3.1 Extension and Application to Dynamical Systems

This learning framework has been experimentally proven useful for data gen-
eration and has seen a wide variety of refinements. The original GAN framework
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has seen a wide variety of improvements. A major axis of improvement has been
the investigation regarding the training loss leading to consider simpler distances
such as least square (Mao et al. 2017). Considering the adversarial losses as a
Wasserstein distance (from optimal transport theory) has provided practitioners
with constraints to stabilize the training of GAN (Arjovsky et al. 2017; Gulrajani
et al. 2017). Also beside unconditional data generation, the computer vision com-
munity has leveraged this learning framework for several tasks such as domain
translation and style transfert (Isola et al. 2017b; J.-Y. Zhu et al. 2017), denoising
(Bora et al. 2018), features and disentangled representation learning (Donahue
et al. 2017; X. Chen et al. 2016b).

Closer to our subject of interest adversarial data generation has also been ap-
plied to video prediction (Mathieu et al. 2016a) for which classical regression
methods fail at providing accurate and realistic output. Sequence generation of
discrete tokens has also been trained using adversarial networks (Lantao Yu et al.
2017). Nonetheless, the generation of images or sequence that respects the un-
derlying physics is still an open area of research. In that perspective, (Kashinath
et al. 2019) propose a discriminator based on sample statistics, e.g. covariance
matrix, for improved data generation of physical systems. To ensure a realistic
timeline in the generated images, (Chu and Thuerey 2017) developed a GAN-based
framework for fluid-flows prediction and generation that include a discriminator
network that guides the generator towards accurate temporal changes.

5.4 Normalizing Flow

We now provide elements to understand a recent research track for uncondi-
tional generative models: normalizing flows. Normalizing flows propose to use a
simple statistical property of transformation of measures. Let z ∈ Rd be a ran-
dom variable of known density pz and let x = f(z) where f is an invertible
transformation. According to the change of formula variables, we have 1:

px(x) = pz(f
−1(x))|detJf−1(x)| (5.3)

The application to density estimation and sampling is straightforward. Suppose,
one accesses samples i.i.d. samples x1, .., xn ∼ pdata and let z a real random
variables distributed according to pz, where pz is known, we have:

log p(x1, ..., xn) =
∑
i

log pdata(xi) =
∑
i

log(pz(f
−1(xi))) + log|detJf−1(xi)| (5.4)

1. Note that a more formal definition based on the change of measure can be conducted to
derive an expression similar to eq. (5.3)
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Crucial advantages of the use of normalizing flows appear in eq. (5.4). First of all,
sampling from pdata is simplified. Indeed, if the flow f is known (or learned), f(z)

follows pdata. Moreover, thanks to maintained tractability, the likelihood of the
observations are accessible. As soon as the defined flow is differentiable w.r.t to
its parameters, f can be optimized using gradient descent so that the loglikelihood
of the observation is maximized

Yet, Optimization difficulties arise in eq. (5.4). First of all the computation
of the log-determinant in eq. (5.4) can be expensive. A simple way to dodge
this computational difficulty is to design specifically f so that it has a diagonal
(or triangular) Jacobian matrix, and thus so will f−1. Also, the flow f must be
invertible and at a reasonable computational cost. This condition is not ensured
when dealing with NN, thus specific architectures have been defined in order to
use normalizing flows for data generation.

The simplest class of normalizing flows, linear flows, can be considered, i.e. x =

Az + b which are computationally cheap for the inverse and the log-determinant
computation. Naturally, the expressivity of linear flows is limited. Generaliz-
ing linear flows, planar transformation defined in (Rezende and Mohamed 2015)
allows for more expressive data generation following: f(z) = z + uh(wT z + b).
where h is a smooth non linearity and u is a vector. Sylvester transformations
introduced in (Van Den Berg et al. 2018) generalize planar flows by considering
U and w as matrices increasing expressivity. Other structural prior can be learned
using carefully designed coupling layers, cutting the signal in half and combining
both components using a transformation, producing a diagonal Jacobian facilitat-
ing the optimization of eq. (5.4) as (Dinh et al. 2015; Dinh et al. 2017). It gives for
additive coupling layers from a signal x ∈ RD:

y1:d = x1:d

yd+1:D = xd+1:D +m(x1:d)

Adaptation to convolutional architectures have been developed in (Durk P
Kingma and Dhariwal 2018). Also, flows can be combined in an autoregressive
manner in order to increase the expressiveness of the generator NN, see (Durk P
Kingma et al. 2016) We refer to (Kobyzev et al. 2021) for an exhaustive considera-
tion on this subject.

A drawback of using flow is the dimension the computation. Indeed, to remain
invertible, all computations must be of the dimension of the data, which can be
prohibitive even for small images.
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5.4.1 Extension and Application to Dynamical Systems

Normalizing flows are now tightly linked to dynamical systems through ODE,
Residual Networks (K. He et al. 2016), and Langevin diffusion process.

Recall that ResNet are defined by: Xt = Xt−1 + fθ(Xt−1), hence approximating
a forward Euler-step. Coupling Layers can be designed in a ResNet fashion, for
example as in (Gomez et al. 2017; Jacobsen et al. 2018);

y1 = x1 + f(x2)

y2 = x2 + g(y1)

Behrmann et al. (2019a) do not rely on the traditional splitting/coupling scheme
but exhibit a fixed point iteration method to recover the inverse f−1 thanks to the
invertibility retrieved by constraining the Lipschitz-norm of the learned residual
blocks below 1. The log-determinant estimation is conducted using a stochastic
approximation.

The continuous version of ResNet, i.e. NeuralODE defined by (R. T. Q. Chen
et al. 2018), does not need structural constraints to ensure bijectivity. Indeed, by
definition, the flow of an ODE is a bijection thanks to Cauchy Lipschitz Lemma:
provided that f is Lipschitz, for any initial condition z0, it exists one and only one
solution to dz

dt
= f(z, t) with z(t = 0) = z0. (Grathwohl et al. 2019) exploits this

property to define an instantaneous change of variables:

∂ log p(z(t))

∂t
= −Tr(

∂f(z(t), t)

∂z(t)
)

Hence bypassing the computational complexity of calculating the det of a Jacobian,
for example using the identity: Tr(A) = Eε∼N (0,I)(ε

TAε).

A last dynamical system inspiration to construct normalizing flows originate
from Langevin Stochastic Differential Equation (SDE), describing the speed v of a
particle of mass m subject to friction (P. 1908):

m
dv

dt
= −λv + ηt

The above equation defines the density p of finding the particle at state x at time
t through the Fokker-Planck equation that generally writes as:

∂p(x, t)

∂t
= −∇x · (b(x, t)p(x, t)) +

∑
i,j

∂2

∂xi∂xj
Di,j(x, t)p(x, t)
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The core idea in this literature is to provide a framework for learning efficiently b
and Di,j as in (C. Chen et al. 2018).

Besides, the use of dynamical model formalism and ODE to help modeling
fixed densities, normalizing flows are also used to learn stochastic dynamics as
in (Urain et al. 2020) and for time series prediction (R. Deng et al. 2020)
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P D E - D R I V E N S PAT I O T E M P O R A L
D I S E N TA N G L E M E N T

Chapter abstract

In this chapter, we investigate the possibility to increase the interpretability in
spatio-temporal prediction systems. Born in variational auto-encoding, a core
idea in statistical learning to increase interpretability is to isolate independent
factors of variations. Such a separation is denoted disentanglement. For dy-
namical systems, a specific form disentanglement takes place: spatio-temporal
disentanglement that amounts to separating variations that accounts for the
dynamics from variations in the content. We propose in this chapter a novel
learning framework to learn to predict spatio-temporal systems in a disentan-
gled manner. Specifically, we leverage the separation of variables, an analytical
tool to solve PDE in order to derive a grounded algorithm.

The work in this chapter has led to the publication of a conference paper:

Jérémie Donà, Jean-Yves Franceschi, Sylvain Lamprier, and Patrick Gal-
linari (May 2021). “PDE-Driven Spatiotemporal Disentanglement”. In:
The Ninth International Conference on Learning Representations. Interna-
tional Conference on Representation Learning. Vienne, Austria. url:
https://hal.archives-ouvertes.fr/hal-02911067

6.1 Introduction

The interest of the machine learning community in physical phenomena has
substantially grown for the last few years (Shi et al. 2015; Long et al. 2018; Grey-
danus et al. 2019). In particular, an increasing amount of works studies the chal-
lenging problem of modeling the evolution of dynamical systems, with applica-
tions in sensible domains like climate or health science, making the understanding
of physical phenomena a key challenge in machine learning. To this end, the com-
munity has successfully leveraged the formalism of dynamical systems and their
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associated differential formulation as powerful tools to specifically design effi-
cient prediction models. In this work, we aim at studying this prediction problem
with a principled and general approach, through the prism of Partial Differential
Equations (PDEs), with a focus on learning spatiotemporal disentangled repre-
sentations.

Prediction via spatiotemporal disentanglement was first studied in video pre-
diction works, in order to separate static and dynamic information (Denton and
Birodkar 2017) for prediction and interpretability purposes. Existing models are
particularly complex, involving either adversarial losses or variational inference.
Furthermore, their reliance on Recurrent Neural Networks (RNNs) hinders their
ability to model spatiotemporal phenomena (Yıldız et al. 2019; Ayed et al. 2020;
Franceschi et al. 2020). Our proposition addresses these shortcomings with a sim-
plified and improved model by grounding spatiotemporal disentanglement in the
PDE formalism.

Spatiotemporal phenomena obey physical laws such as the conservation of en-
ergy, that lead to describe the evolution of the system through PDEs. Practical
examples include the conservation of energy for physical systems (Hamilton 1835),
or the equation describing constant illumination in a scene (Horn and Schunck
1981) for videos that has had a longstanding impact in computer vision with opti-
cal flow methods (Dosovitskiy et al. 2015; Finn et al. 2016). We propose to model
the evolution of partially observed spatiotemporal phenomena with unknown
dynamics by leveraging a formal method for the analytical resolution of PDEs:
the functional separation of variables (Miller 1988). Our framework formulates
spatiotemporal disentanglement for prediction as learning a separable solution,
where spatial and dynamic information are represented in separate variables.
Besides offering a novel interpretation of spatiotemporal disentanglement, it con-
fers simplicity and performance compared to existing methods: disentanglement
is achieved through the sole combination of a prediction objective and regular-
ization penalties, and the temporal dynamics is defined by a learned Ordinary
Differential Equation (ODE). We experimentally demonstrate the applicability,
disentanglement capacity and forecasting performance of the proposed model on
various spatiotemporal phenomena involving standard physical processes and
synthetic video datasets against prior state-of-the-art models.

6.2 Related Work

Our contribution deals with two main directions of research: spatiotemporal
disentanglement and the coupling of neural networks and PDEs.
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Spatiotemporal Disentanglement. Disentangling factors of variations is an
essential representation learning problem (Yoshua Bengio et al. 2013a). Its cardi-
nal formulation for static data has been extensively studied, with state-of-the-art
solutions (Locatello et al. 2019) being essentially based on Variational Autoen-
coders (VAEs; Diederik P. Kingma and Welling 2014b; Rezende et al. 2014). As for
sequential data, several disentanglement notions have been formulated, ranging
from distinguishing objects in a video (Hsieh et al. 2018; Steenkiste et al. 2018)
to separating and modeling multi-scale dynamics (Hsu et al. 2017; Yingzhen and
Mandt 2018).

We focus in this work on the dissociation of the dynamics and visual aspects
for spatiotemporal data. Even in this case, dissociation can take multiple forms.
Examples in the video generation community include decoupling the foreground
and background (Vondrick et al. 2016), constructing structured frame represen-
tations (Villegas et al. 2017b; Minderer et al. 2019; Z. Liu et al. 2019), extracting
physical dynamics (Le Guen and Thome 2020), or latent modeling of dynamics
in a state-space manner (Fraccaro et al. 2017; Franceschi et al. 2020). Closer to our
work, (Denton and Birodkar 2017), (Villegas et al. 2017a) and (Hsieh et al. 2018)
introduced in their video prediction models explicit latent disentanglement of
static and dynamic information obtained using adversarial losses (I. Goodfellow
et al. 2014) or VAEs. Disentanglement has also been introduced in more restrictive
models relying on data-specific assumptions (Kosiorek et al. 2018; Jaques et al.
2020), and in video generation (Tulyakov et al. 2018). We aim in this work at
grounding and improving spatiotemporal disentanglement with more adapted
inductive biases by introducing a paradigm leveraging the functional separation
of variables resolution method for PDEs.

Spatiotemporal Prediction and PDE-based Neural Network Models. An in-
creasing number of works combining neural networks and differential equations
for spatiotemporal forecasting have been produced for the last few years. Some
of them show substantial improvements for the prediction of dynamical systems
or videos compared to standard RNNs by defining the dynamics using learned
ODEs (Rubanova et al. 2019; Yıldız et al. 2019; Ayed et al. 2020; Le Guen and
Thome 2020), following (R. T. Q. Chen et al. 2018), or adapting them to stochastic
data (Ryder et al. 2018; X. Li et al. 2020; Franceschi et al. 2020). Most PDE-based
spatiotemporal models exploit some prior physical knowledge. It can induce the
structure of the prediction function (Brunton et al. 2016; Avila Belbute-Peres et
al. 2018) or specific cost functions, thereby improving model performances. For
instance, (Bézenac et al. 2018a) shape their prediction function with an advection-
diffusion mechanism, and (Long et al. 2018; Long et al. 2019) estimate PDEs and
their solutions by learning convolutional filters proven to approximate differential
operators. (Greydanus et al. 2019), (Z. Chen et al. 2020a) and (Toth et al. 2020)
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introduce non-regression losses by taking advantage of Hamiltonian mechanics
(Hamilton 1835), while (Tompson et al. 2017b) and (Maziar Raissi et al. 2020)
combine physically inspired constraints and structural priors for fluid dynamic
prediction. Our work deepens this literature by establishing a novel link between
a resolution method for PDEs and spatiotemporal disentanglement, thereby in-
troducing a data-agnostic model leveraging any static information in observed
phenomena.

6.3 Background: Separation of Variables

Solving high-dimensional PDEs is a difficult analytical and numerical problem
(Bungartz and Griebel 2004). Variable separation aims at simplifying it by decom-
posing the solution, e.g., as a simple combination of lower-dimensional functions,
thus reducing the PDE to simpler differential equations.

6.3.1 Simple Case Study

Let us introduce this technique through a standard application, with proofs in
appendix B.1.1, on the one-dimensional heat diffusion problem (Fourier 1822),
consisting in a bar of length L, whose temperature at time t and position x is
denoted by u(x, t) and satisfies:

∂u

∂t
= c2 ∂

2u

∂x2
, u(0, t) = u(L, t) = 0, u(x, 0) = f(x). (6.1)

Suppose that a solution u is product-separable, i.e., it can be decomposed as:
u(x, t) = u1(x) · u2(t). Combined with eq. (6.1), it leads to c2u′′1(x)/u1(x) =

u′2(t)/u2(t). The left- and right-hand sides of this equation are respectively in-
dependent from t and x. Therefore, both sides are constant, and solving both
resulting ODEs gives solutions of the form, with µ ∈ R and n ∈ N:

u(x, t) = µ sin
(
nπx/L

)
× exp

(
−
(
cnπ/L

)2
t
)
. (6.2)

The superposition principle and the uniqueness of solutions under smoothness
constraints allow then to build the set of solutions of eq. (6.1) with linear combi-
nations of separable solutions (Le Dret and Lucquin 2016). Besides this simple
example, separation of variables can be more elaborate.
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6.3.2 Functional Separation of Variables

The functional separation of variables (Miller 1988) generalizes this method. Let
u be a function obeying a given arbitrary PDE. The functional variable separation
method amounts to finding a parameterization z, a functional U , an entangling
function ξ, and representations φ and ψ such that:

z = ξ
(
φ(x), ψ(t)

)
, u(x, t) = U(z). (6.3)

Trivial choices ξ = u and identity function as U , φ and ψ ensure the validity
of this reformulation. Finding suitable φ, ψ, U , and ξ with regards to the initial
PDE can facilitate its resolution by inducing separate simpler PDEs on φ, ψ, and
U . For instance, product-separability is retrieved with U = exp. General results
on the existence of separable solutions have been proven (Miller 1983), though
their uniqueness depends on the initial conditions and the choice of functional
separation (Polyanin 2020).

Functional separation of variables finds broad applications. It helps to solve
refinements of the heat equation, such as generalizations with an advection term
(see appendix B.1.2) or with complex diffusion and source terms forming a general
transport equation (H. Jia et al. 2008). Besides the heat equation, functional separa-
tion of PDEs is also applicable in various physics fields like reaction-diffusion with
non-linear sources or convection-diffusion phenomena (Polyanin 2019; Polyanin
and Zhurov 2020), Hamiltonian physics (Benenti 1997), or even general relativity
(Kalnins et al. 1992).

Reparameterizations such as eq. (6.3) implement a separation of spatial and
temporal factors of variations, i.e., spatiotemporal disentanglement. We introduce
in the following a learning framework based on this general method.

6.4 Proposed Method

We propose to model spatiotemporal phenomena using the functional variable
separation formalism. We first describe our notations and then derive a principled
model and constraints from this method.

6.4.1 Problem Formulation Through Separation of Variables

We consider a distribution P of observed spatiotemporal trajectories and cor-
responding observation samples v = (vt0 , vt0+∆t, . . . , vt1), with vt ∈ V ⊆ Rm and
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t1 = t0 + ν∆t. Each sequence v ∼ P corresponds to an observation of a dynamical
phenomenon, assumed to be described by a hidden functional uv (also denoted by
u for the sake of simplicity) of space coordinates x ∈ X ⊆ Rs and time t ∈ R that
characterizes the trajectories. More precisely, uv describes an unobserved continu-
ous dynamics and v corresponds to instantaneous discrete spatial measurements
associated to this dynamics. Therefore, we consider that vt results from a time-
independent function ζ of the mapping uv(·, t). For example, v might consist in
temperatures measured at some points of the sea surface, while uv would be the
complete ocean circulation model. In other words, v provides a partial informa-
tion about uv and is a projection of the full dynamics. We seek to learn a model
which, when conditioned on prior observations, can predict future observations.

To this end, we posit that the state u of each observed trajectory v is driven
by a hidden PDE, shared among all trajectories; we discuss this assumption in
details in appendix B.3.1. Learning such a PDE and its solutions would then al-
low us to model observed trajectories v. However, directly learning solutions to
high-dimensional unknown PDEs is a complex task (Bungartz and Griebel 2004;
Sirignano and Spiliopoulos 2018). We aim in this work at simplifying this resolu-
tion. We propose to do so by relying on the functional separation of variables of
eq. (6.3), in order to leverage a potential separability of the hidden PDE. There-
fore, analogously to eq. (6.3), we propose to formulate the problem as learning
observation-constrained φ, ψ and U , as well as ξ and ζ , such that:

z = ξ
(
φ(x), ψ(t)

)
, u(x, t) = U(z), vt = ζ

(
u(·, t)

)
, (6.4)

with φ and ψ allowing to disentangle the prediction problem. In the formalism
of the functional separation of variables, this amounts to decomposing the full
solution u, thereby learning a spatial PDE on φ, a temporal ODE on ψ, and a PDE
on U , as well as their respective solutions.

6.4.2 Fundamental Limits and Relaxation

Directly learning u is, however, a restrictive choice. Indeed, when formulating
PDEs such as in eq. (6.1), spatial coordinates (x, y, etc.) and time t appear as
variables of the solution. Yet, unlike in fully observable phenomena studied by
(Sirignano and Spiliopoulos 2018) and (Maziar Raissi 2018), directly accessing
theses variables in practice can be costly or infeasible in our partially observed
setting. In other words, the nature and number of these variables are unknown.
For example, the dynamic of the observed sea surface temperature is highly
dependent on numerous unobserved variables such as temperature at deeper
levels or wind intensity. Explicitly taking into account these unobserved variables
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Figure 6.1. – Computational graph of the proposed model. ES and ET take con-
tiguous observations as input; time invariance is enforced on S; the
evolution of Tt is modeled with an ODE and is constrained to co-
incide with ET ; Tt0 is regularized; forecasting amounts to decoding
from S and Tt.

can only be done with prior domain knowledge. To maintain the generality of
the proposed approach, we choose not to make any data-specific assumption on
these unknown variables.

We overcome these issues by eliminating the explicit modeling of spatial co-
ordinates by learning dynamic and time-invariant representations accounting
respectively for the time-dependent and space-dependent parts of the solution.
Indeed, eq. (6.4) induces that these spatial coordinates, hence the explicit resolu-
tion of PDEs on u or U , can be ignored, as it amounts to learning φ, ψ and D such
that:

vt = (ζ ◦ U ◦ ξ)
(
φ(·), ψ(t)

)
= D

(
φ, ψ(t)

)
. (6.5)

In order to manipulate functionals φ and ψ in practice, we respectively introduce
learnable time-invariant and time-dependent representations of φ and ψ, denoted
by S and T , such that:

φ ≡ S ∈ S ⊆ Rd, ψ ≡ T : t 7→ Tt ∈ T ⊆ Rp, (6.6)

where the dependence of ψ ≡ T on time t will be modeled using a temporal ODE
following the separation of variables, and the function φ, and consequently its
spatial PDE, are encoded into a vectorial representation S. Besides their separa-
tion of variables basis, the purpose of S and T is to capture spatial and motion
information of the data. For instance, S could encode static information such as
objects appearance, while T typically contains motion variables.

S and Tt0 , because of their dependence on v in eqs. (6.5) and (6.6), are in-
ferred from an observation history, or conditioning frames, Vτ (t0), where Vτ (t) =

(vt, vt+∆t, . . . , vt+τ∆t), using respectively encoder networks ES and ET . We param-
eterize D of eq. (6.5) as a neural network that acts on both S and Tt, and outputs
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the estimated observation v̂t = D(S, Tt). Unless specified otherwise, S and Tt
are fed concatenated into D, which then learns the parameterization ξ of their
combination.

6.4.3 Temporal ODE

The separation of variables allows us to partly reduce the complex task of
learning and integrating PDEs to learning and integrating an ODE on ψ, which
has been extensively studied in the literature, as explained in section 6.2. We
therefore model the evolution of Tt, thereby the dynamics of our system, with a
first-order ODE:

∂Tt
∂t

= f(Tt) ⇔ Tt = Tt0 +

∫ t

t0

f(Tt′) dt′ (6.7)

Note that the first-order ODE assumption can be taken without loss of generality
since any ODE is equivalent to a higher-dimensional first-order ODE. Following
(R. T. Q. Chen et al. 2018), f is implemented by a neural network and eq. (6.7) is
solved with an ODE resolution scheme. Suppose initial ODE conditions S and
Tt0 have been computed with ES and ET . This leads to the following simple
forecasting scheme, enforced by the corresponding regression loss:

v̂t = D

(
S, Tt0 +

∫ t

t0

f(Tt′) dt′

)
, Lpred =

1

ν + 1

ν∑
i=0

1

m
‖v̂t0+i∆t − vt0+i∆t‖2

2, (6.8)

where ν+1 is the number of observations, and m is the dimension of the observed
variables v.

eq. (6.8) ensures that the evolution of T is coherent with the observations; we
should enforce its consistency with ET . Indeed, the dynamics of Tt is modeled
by eq. (6.7), while only its initial condition Tt0 is computed with ET . However,
there is no guaranty that Tt, computed via integration, matches ET

(
Vτ (t)

)
at any

other time t, while they should in principle coincide. We introduce the follow-
ing autoencoding constraint mitigating their divergence, thereby stabilizing the
evolution of T :

LAE =
1

m

∥∥∥∥D(S,ET (Vτ (t0 + i∆t)
))
− vt0+i∆t

∥∥∥∥2

2

, with i ∼ U
(
J0, ν − τK

)
. (6.9)



6.4 proposed method 61

6.4.4 Spatiotemporal Disentanglement

As indicated hereinabove, the spatial PDE on φ is assumed to be encoded into S.
Nonetheless, since S is inferred from an observation history, we need to explicitly
enforce its time independence. In the PDE formalism, this is equivalent to:

∂ES
(
Vτ (t)

)
∂t

= 0 ⇔
∫ t1−τ∆t

t0

∥∥∥∥∥∂ES
(
Vτ (t)

)
∂t

∥∥∥∥∥
2

2

dt = 0. (6.10)

However, enforcing eq. (6.10) raises two crucial issues. Firstly, in our partially
observed setting, there can be variations of observable content, for instance when
an object conceals another one. Therefore, strictly enforcing a null time derivative
is not desirable as it prevents ES to extract accessible information that could be
obfuscated in the sequence. Secondly, estimating this derivative in practice in our
setting is unfeasible and costly because of the coarse temporal discretization of the
data and the computational cost of ES ; see appendix B.2 for more details. We in-
stead introduce a discretized penalty in our minimization objective, discouraging
variations of content between two distant time steps, with d being the dimension
of S:

LSreg =
1

d

∥∥∥ES(Vτ (t0)
)
− ES

(
Vτ (t1 − τ∆t)

)∥∥∥2

2
. (6.11)

It allows us to overcome the previously stated issues by not enforcing a strict
invariance of S and removing the need to estimate any time derivative. Note that
this formulation actually originates from eq. (6.10) using the Cauchy-Schwarz
inequality (see appendix B.2 for a more general derivation).

Abstracting the spatial ODE on φ from eq. (6.4) into a generic representation
S leads, without additional constraints, to an underconstrained problem where
spatiotemporal disentanglement cannot be guaranteed. Indeed, ES can be set to
zero to satisfy eq. (6.11) without breaking any prior constraint, because static
information is not prevented to be encoded into T . Accordingly, information in S

and T needs to be segmented.

Thanks to the design of our model, it suffices to ensure that S and T are dis-
entangled at initial time t0 for them be to be disentangled at all t. Indeed, the
mutual information between two variables is preserved by invertible transforma-
tions. eq. (6.7) is an ODE and f , as a neural network, is Lipschitz-continuous,
so the ODE flow Tt 7→ Tt′ is invertible. Therefore, disentanglement between S

and Tt, characterized by a low mutual information between both variables, is pre-
served through time; see appendix B.3 for a detailed discussion. We thus only
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constrain the information quantity in Tt0 by using a Gaussian prior to encourage
it to exclusively contain necessary dynamic information:

LTreg =
1

p
‖Tt0‖2

2 =
1

p

∥∥∥ET (Vτ (t0)
)∥∥∥2

2
. (6.12)

6.4.5 Loss Function

The minimized loss is a linear combination of eqs. (6.8), (6.9), (6.11) and (6.12):

L(v) = E
v∼P

[
λpredLpred + λAE · LAE + λSreg · LSreg + λTreg · LTreg

]
, (6.13)

as illustrated in fig. 6.1. In the following, we conventionally set ∆t = 1. Note that
the presented approach could be generalized to irregularly sampled observation
times thanks to the dedicated literature (Rubanova et al. 2019), but this is out of
the scope of this paper.

6.5 Experiments

We study in this section the experimental results of our model on various
spatiotemporal phenomena with physical, synthetic video and real-world datasets,
which are briefly presented in this section and in more details in appendix B.4. We
demonstrate the relevance of our model with ablation studies and its performance
by comparing it with more complex state-of-the-art models. Performances are
assessed thanks to standard metrics (Denton and Fergus 2018; Le Guen and
Thome 2020) Mean Squared Error (MSE, lower is better) or its alternative Peak
Signal-to-Noise Ratio (PSNR, higher is better), and Structured Similarity (SSIM,
higher is better). We refer to appendix B.6 for more experiments and prediction
examples, to appendix B.5 for training information and to the supplementary
material for the corresponding code 1 and datasets.

6.5.1 Physical Datasets: Wave Equation and Sea Surface Tem-
perature

We first investigate two synthetic dynamical systems and a real-world dataset in
order to show the advantage of PDE-driven spatiotemporal disentanglement for

1. Our source code is also publicly released at the following URL: https://github.com/
JeremDona/spatiotemporal_variable_separation.

https://github.com/JeremDona/spatiotemporal_variable_separation
https://github.com/JeremDona/spatiotemporal_variable_separation
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Figure 6.2. – Example of predictions of compared models on SST. Content swap
preserves the location of extreme temperature regions which deter-
mine the movement while modifying the magnitude of all regions,
especially in temperate areas.

forecasting physical phenomena. To analyze our model, we first lean on the wave
equation, occurring for example in acoustic or electromagnetism, with source
term like (Saha et al. 2020a), to produce the WaveEq dataset consisting in 64× 64

normalized images of the phenomenon. We additionally build the WaveEq-100

dataset by extracting 100 pixels, chosen uniformly at random and shared among
sequences, from WaveEq frames; this experimental setting can be thought of as
measurements from sensors partially observing the phenomenon. We also test
and compare our model on the real-world dataset SST, derived from the data
assimilation engine NEMO (Madec 2008) and introduced by (Bézenac et al. 2018a),
consisting in 64× 64 frames showing the evolution of the sea surface temperature.
Modeling its evolution is particularly challenging as its dynamic is highly non-
linear, chaotic, and involves several unobserved quantities (e.g., forcing terms).

We compare our model on these three datasets to its alternative version with
S removed and integrated into T , thus also removing LSreg and LTreg. We also
include the state-of-the-art PhyDNet (Le Guen and Thome 2020), MIM (Y. Wang
et al. 2019b), SVG (Denton and Fergus 2018) and SST-specific PKnl (Bézenac et al.
2018a) in the comparison on SST; only PhyDNet and PKnl were originally tested
on this dataset by their authors. Results are compiled in table 6.1 and an example
of prediction is depicted in fig. 9.2.
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Table 6.1. – Forecasting performance on WaveEq-100, WaveEq and SST of com-
pared models with respect to indicated prediction horizons. Bold
scores indicate the best performing method.

Models

WaveEq-100 WaveEq SST

MSE MSE SSIM

t+ 40 t+ 40 t+ 6 t+ 10 t+ 6 t+ 10

PKnl — — 1.28 2.03 0.6686 0.5844

PhyDNet — — 1.27 1.91 0.5782 0.4645

SVG — — 1.51 2.06 0.6259 0.5595

MIM — — 0.91 1.45 0.7406 0.6525

Ours 4.33× 10−5 1.44× 10−4 0.86 1.43 0.7466 0.6577
Ours (without S) 1.33× 10

−4
5.09× 10

−4
0.95 1.50 0.7204 0.6446

On these three datasets, our model produces more accurate long-term predic-
tions with S than without it. This indicates that learning an invariant component
facilitates training and improves generalization. The influence of S can be ob-
served by replacing the S of a sequence by another one extracted from another se-
quence, changing the aspect of the prediction, as shown in fig. 9.2 (swap row). We
provide in appendix B.6 further samples showing the influence of S in the predic-
tion. Even though there is no evidence of intrinsic separability in SST, our trained
algorithm takes advantage of its time-invariant component. Indeed, our model
outperforms PKnl despite the data-specific structure of the latter, the stochastic
SVG and the high-capacities PhyDNet and MIM model, whereas removing its
static component suppresses our advantage.

We highlight that MIM is a computationally-heavy model that manipulates
in an autoregressive way 64 times larger latent states than ours, hence its better
reconstruction ability at the first time step. However, its sharpness and movement
gradually vanish, explaining its lower performance than ours. We refer to ap-
pendix B.6.3 for additional discussion on the application of our method and its
performance on SST.

6.5.2 A Synthetic Video Dataset: Moving MNIST

We also assess the prediction and disentanglement performance of our model
on the Moving MNIST dataset (Srivastava et al. 2015) involving MNIST digits
(LeCun et al. 1998) bouncing over frame borders. This dataset is particularly chal-
lenging in the literature for long-term prediction tasks. We compare our model to
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Table 6.2. – Prediction and content swap scores of all compared models on Mov-
ing MNIST. Bold scores indicate the best performing method.

Models
Pred. (t+ 10) Pred. (t+ 95) Swap (t+ 10) Swap (t+ 95)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SVG 18.18 0.8329 12.85 0.6185 — — — —
MIM 24.16 0.9113 16.50 0.6529 — — — —
DrNet 14.94 0.6596 12.91 0.5379 14.12 0.6206 12.80 0.5306

DDPAE 21.17 0.8814 13.56 0.6446 18.44 0.8256 13.25 0.6378

PhyDNet 23.12 0.9128 16.46 0.3878 12.04 0.5572 13.49 0.2839

Ours 21.70 0.9088 17.50 0.7990 18.42 0.8368 16.50 0.7713

competitive baselines: the non-disentangled SVG (Denton and Fergus 2018) and
MIM (Y. Wang et al. 2019b), as well as forecasting models with spatiotemporal
disentanglement ablities DrNet (Denton and Birodkar 2017), DDPAE (Hsieh et al.
2018) and PhyDNet. We highlight that all these models leverage powerful ma-
chine learning tools such as adversarial losses, VAEs and high-capacity temporal
architectures, whereas ours is solely trained using regression penalties and small-
size latent representations. We perform as well a full ablation study of our model
to confirm the relevance of the introduced method.

Results reported in table 6.2 and illustrated in fig. 6.3 correspond to two tasks:
prediction and disentanglement, at both short and long-term horizons. Disentan-
glement is evaluated via content swapping, which consists in replacing the content
representation of a sequence by the one of another sequence, which should result
for a perfectly disentangled model in swapping digits of both sequences. This is
done by taking advantage of the synthetic nature of this dataset that allows us to
implement the ground truth content swap and compare it to the generated swaps
of the model.

Reported results show the advantage of our model against all baselines. Long-
term prediction challenges them as their performance and predictions collapse in
the long run. This shows that the baselines, including high-capacity models MIM
and PhyDNet that leverage powerful ConvLTSMs (Shi et al. 2015), have difficul-
ties separating content and motion. Indeed, a model separating correctly content
and motion should maintain digits appearance even when it miscalculates their
trajectories, like DDPAE which alters only marginally the digits in fig. 6.3. In con-
trast, ours manages to produce consistent samples even at t+ 95, making it reach
state-of-the-art performance. Moreover, we significantly outperform all baselines
in the content swap experiment, showing the clear advantage of the proposed
PDE-inspired simple model for spatiotemporally disentangled prediction.
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Figure 6.3. – Predictions of compared models
on Moving MNIST, and content
swap experiment for our model.

Figure 6.4. – Fusion of content
(first column) and
dynamic (first row)
variables in our
model on 3D Ware-
house Chairs.

Ablation studies developed in table B.1 confirm that this advantage is due to the
constraints motivated by the separation of variables. Indeed, the model without
S fails at long-term forecasting, and removing any non-prediction penalty of the
training loss substantially harms performances. In particular, the invariance loss
on the static component and the regularization of initial condition Tt0 are essential,
as their absence hinders both prediction and disentanglement. The auto-encoding
constraint makes predictions more stable, allowing accurate long-term forecasting
and disentanglement. This ablation study also confirms the necessity to constrain
the `2 norm of the dynamic variable (see eq. (6.12)) for the model to disentangle.
Comparisons of table 6.2 actually show that enforcing this loss on the first time
step only is sufficient to ensure state-of-the-art disentanglement, as advocated in
section 6.4.4.

Finally, we assess whether the temporal ODE of eq. (6.7) induced by the separa-
tion of variables is advantageous by replacing the dynamic model with a standard
GRU RNN (Cho et al. 2014). Results reported in table B.1 show substantially bet-
ter prediction and disentanglement performance for the original model grounded
on the separation of variables, indicating the relevance of our approach.
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Table 6.3. – Prediction MSE (×100× 32× 32× 2) of compared models on TaxiBJ,
with best MSE highlighted in bold.

Ours Ours (without S) PhyDNet MIM E3D C. LSTM PredRNN ConvLSTM

39.5 43.7 41.9 42.9 43.2 44.8 46.4 48.5

Figure 6.5. – Example of ground truth and prediction of our model on TaxiBJ. The
middle row shows the scaled difference between our predictions and
the ground truth.

6.5.3 A Multi-View Dataset: 3D Warehouse Chairs

We perform an additional disentanglement experiment on the 3D Warehouse
Chairs dataset introduced by (Aubry et al. 2014). This dataset contains 1393 three-
dimensional models of chairs seen under various angles. Since all chairs are
observed from the same set of angles, this constitutes a multi-view dataset en-
abling quantitative disentanglement experiments. We create sequences from this
dataset for our model by assembling adjacent views of each chair to simulate its
rotation from right to left. We then evaluate the disentanglement properties of our
model with the same content swap experiments as for Moving MNIST. It is simi-
lar to one of (Denton and Birodkar 2017)’s experiments who qualitatively tested
their model on a similar, but smaller, multi-view chairs dataset. We achieve 18.70

PSNR and 0.7746 SSIM on this task, outperforming DrNet which only reaches
16.35 PSNR and 0.6992 SSIM. This is corroborated by qualitative experiments in
figs. 6.4 and B.7. We highlight that the encoder and decoder architectures of both
competitors are identical, validating our PDE-grounded framework for spatiotem-
poral disentanglement of complex three-dimensional shapes.

6.5.4 A Crowd Flow Dataset: TaxiBJ

We finally study the performance of our spatiotemporal model on the real-
world TaxiBJ dataset (Zhang et al. 2017), consisting in taxi traffic flow in Beijing
monitored on a 32× 32 grid with an observation every thirty minutes. It is highly
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structured as the flows are dependent on the infrastructures of the city, and
complex since methods have to account for non-local dependencies and model
subtle changes in the evolution of the flows. It is a standard benchmark in the
spatiotemporal prediction community (Y. Wang et al. 2019b; Le Guen and Thome
2020).

We compare our model in table 6.3 against PhyDNet and MIM, as well as
powerful baselines E3D-LSTM (E3D, Y. Wang et al. 2019a), Causal LSTM (C.
LSTM, Y. Wang et al. 2018), PredRNN (Y. Wang et al. 2017) and ConvLTSM (Shi
et al. 2015), using results reported by (Y. Wang et al. 2019b) and (Le Guen and
Thome 2020). An example of prediction is given in fig. 6.5. We observe that we
significantly overcome the state of the art on this complex spatiotemporal dataset.
This improvement is notably driven by the disentanglement abilities of our model,
as we observe in table 6.3 that the alternative version of our model without S
achieves results comparable to E3D and worse than PhyDNet and MIM.

6.6 Conclusion

We introduce a novel method for spatiotemporal prediction inspired by the
separation of variables PDE resolution technique that induces time invariance
and regression penalties only. These constraints ensure the separation of spatial
and temporal information. We experimentally demonstrate the benefits of the
proposed model, which outperforms prior state-of-the-art methods on physical
and synthetic video datasets. We believe that this work, by providing a dynamical
interpretation of spatiotemporal disentanglement, could serve as the basis of
more complex models further leveraging the PDE formalism. Another direction
for future work could be extending the model with more involved tools such as
VAEs to improve its performance, or adapt it to the prediction of natural stochastic
videos (Denton and Fergus 2018).
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Abstract

In this part, we propose two learning frameworks in order to learn hybrid mod-
els. These models are made of two components. The first one is a fixed physical-
prior with unknown parameters. The second component is learned solely from
data. The components are summed and integrated in order to model trajectories
matching the data. Two tasks are at stake for this modeling: the correct estimation
of the parameters of the prior physical model, and the learning of the data-driven
model. The direct learning of the two components is ill-posed. The main pitfall
in this task is to learn a DL component that overtakes the physical model. In our
first proposition, we constrain the norm of the data-driven component, recovering
theoretically the existence and the uniqueness of the decomposition. In our second
work, we generalize the previous approach and illustrate how several constraints
can be imposed on both the physical model and the data-driven component in
order to recover a physically sound decomposition.

The work in this part has led to the publication of two conference papers:

• Yuan Yin, Vincent Le Guen, Jérémie Donà, Emmanuel de Bezenac, Ibrahim Ayed,
Nicolas Thome, and Patrick Gallinari (2021b). “Augmenting Physical Models with
Deep Networks for Complex Dynamics Forecasting”. In: The Ninth International Con-
ference on Learning Representations. url: https://openreview.net/forum?id=
kmG8vRXTFv.

• Jérémie Donà, Marie Déchelle, Patrick Gallinari, and Marina Lévy (2022). “Con-
strained Physical-Statistics Models for Dynamical System Identification and Predic-
tion”. In: The Tenth International Conference on Learning Representations. url: https:
//openreview.net/forum?id=gbe1zHyA73

https://openreview.net/forum?id=kmG8vRXTFv
https://openreview.net/forum?id=kmG8vRXTFv
https://openreview.net/forum?id=gbe1zHyA73
https://openreview.net/forum?id=gbe1zHyA73
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7.1 Motivation

Combining physical models (denoted MB for model-based) and ML is an emerg-
ing trend to develop the interplay between the two paradigms. For example,
(Brunton et al. 2016; Long et al. 2018) learn the explicit form of PDE directly
from data, (Maziar Raissi et al. 2019b; Sirignano and Spiliopoulos 2018) use NNs
as implicit methods for solving PDE, (Seo et al. 2020) learn spatial differences
with a graph network, (Ummenhofer et al. 2020) introduce continuous convolu-
tions for fluid simulations, (Bézenac et al. 2018b) learn the velocity field of an
advection-diffusion system, (Greydanus et al. 2019; Z. Chen et al. 2020b) enforce
conservation laws in the network architecture or in the loss function.

The large majority of aforementioned MB/ML hybrid approaches assume that
the physical model adequately describes the observed dynamics. This assumption
is, however, commonly violated in practice. This may be due to various factors,
e.g. idealized assumptions and difficulty to explain processes from first princi-
ples, computational constraints prescribing a fine grain modeling of the system,
unknown external factors, forces and sources which are present. Free-form ML

models have become a complementary approach to traditional physics based mod-
els (MB) (Reichstein et al. 2019; Dueben and Bauer 2018). Both offer advantages:
whereas MB approaches generalize and extrapolate better, ML high expressivity
approaches benefit from the ongoing explosive growth of available data such as
satellite observations, with reduced costs compared to data assimilation.

In chapters 8 and 9, we propose two approaches to leverage prior dynamical
ODE/PDE knowledge in the situation where the prior physical model is incom-
plete, i.e. unable to represent the whole complexity of observed data.

Our first proposition described in chapter 8 illustrated in fig. 8.1 on the pendu-
lum problem, relies on a control of the norm of the data-driven augmentation. In
our second work (chapter 9), we aim at providing a general framework for the
learning of MB/ML decompositions.
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7.2 Elementary Notations

We consider a dynamical system with state at time t denoted Zt = Z(t). Zt
might be fully or only partially observed: we write Zt = (Xt, Yt), where Xt is the
observed component and Yt the unobserved one. The evolution of Z is governed
by a differential equation with dynamics :

dZt
dt

=
d

dt

(
Xt

Yt

)
=

(
fX(Zt)

fY (Zt)

)
(7.1)

The objective is to predict trajectories of X , i.e. to model the evolution of the
observable part following dXt

dt
= fX(Zt). For simplicity, we omit the index X in fX

and write f(.)
∆
= fX(.).

Dynamical Hypothesis We assume that the dynamics of the observable part
Xt is partially known and writes as:

dXt

dt
= f(Zt) = fk(Zt) + fu(Zt) (7.2)

where fk ∈ Hk, accounting for the prior knowledge, is a known operator with
unknown parameters θ∗, and fu is the unknown residual dynamics. Hk denote
a space of functions, for example as illustrated in section 2.4.2. Note that the
additive hypothesis in eq. (7.2) is not restrictive and is discussed in appendix D.2.

A critical aspect of learning (fk, fu) so that f = fk+fu, is that the decomposition
(fk, fu) is in general not unique. More specifically, all the dynamics could be
captured by the fu component. Therefore, learning the decomposition (fk, fu) is ill-
defined preventing clear interpretability in the learned functions and decreasing
generalization performances.
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A U G M E N T I N G P H Y S I C A L M O D E L S W I T H D E E P
N E T W O R K S

Designing a general method for combining MB and ML approaches is still a
widely open problem, and a clear problem formulation for the latter is lacking
(Reichstein et al. 2019). Our contributions in this section towards these goals are
the following:

• We introduce a simple yet principled framework for combining both ap-
proaches. We decompose the dynamics into a physical and a data-driven
term such that the data-driven component only models information that can-
not be captured by the physical model. We provide existence and uniqueness
guarantees (section 8.1) for the decomposition given mild conditions, and
show that this formulation ensures interpretability and benefits generaliza-
tion.

• We propose a trajectory-based training formulation along with an adaptive
optimization scheme (algorithm 8.1 and section 8.3) enabling end-to-end
learning for both the physical and the deep learning components. This allows
APHYNITY to automatically adjust the complexity of the neural network to
different approximation levels of the physical model, paving the way to
flexible learned hybrid models.

• We demonstrate the generality of the approach on three use cases (reaction-
diffusion, wave equations and the pendulum) representative of different
PDE families (parabolic, hyperbolic), having a wide spectrum of application
domains, e.g. acoustics, electromagnetism, chemistry, biology, physics (sec-
tion 8.4). We show that APHYNITY is able to achieve performances close to
complete physical models by augmenting incomplete ones, both in terms of
forecasting accuracy and physical parameter identification.
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(a) Data-driven Neural ODE (b) Simple physical model (c) Our APHYNITY framework

Figure 8.1. – Predicted dynamics for the damped pendulum vs. ground truth
(GT) trajectories ∂2θ

∂t2
+ω2

0 sin θ+α∂θ
∂t

= 0. We show that in (a) the data-
driven approach (R. T. Q. Chen et al. 2018) fails to properly learn the
dynamics due to the lack of training data, while in (b) an ideal pen-
dulum cannot take friction into account. The proposed APHYNITY
framework shown in (c) augments the simplified physical model in
(b) with a data-driven component. APHYNITY improves both fore-
casting (MSE) and parameter identification (Error T0) compared to
(b).

8.1 Decomposing Dynamics into Physical and Aug-
mented Terms

We set ourselves in a fully observable setting, i.e X = Z. As introduced in
Section 7.2, we consider the common situation where incomplete information is
available on the dynamics, under the form of a family of ODEs or PDEs charac-
terized by their temporal evolution fk ∈ Hk ⊂ F . The APHYNITY framework
leverages the knowledge of Hk while mitigating the approximations induced
by this simplified model through the combination of physical and data-driven
components. F being a vector space, we recall Equation (7.2):

f = fk + fu

The learning of (fk, fu) is difficult, indeed, all the dynamics could be captured by
the statistical component fu. This decomposition is thus ill-defined and hampers
the interpretability and the extrapolation abilities of the model. In other words,
one wants the estimated parameters of fk to be as close as possible to the true
parameter values of the physical model and fu to play only a complementary
role w.r.t fk, so as to model only the information that cannot be captured by the physical
prior. For example, when f ∈ Hk, the data can be fully described by the physical
model, and in this case it is sensible to desire fu to be nullified; this is of central
importance in a setting where one wishes to identify physical quantities, and for
the model to generalize and extrapolate to new conditions. In a more general
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setting where the physical model is incomplete, the action of fu on the dynamics,
as measured through its norm, should be as small as possible.

This general idea is embedded in the following optimization problem:

min
fk∈Hk,fu∈F

‖fu‖ subject to ∀X ∈ D,∀t, dXt

dt
= (fk + fu)(Xt) (8.1)

The originality of APHYNITY is to leverage model-based prior knowledge by
augmenting it with a neurally parametrized dynamics. It does so while ensuring
optimal cooperation between the prior model and the augmentation.

A first key question is whether the minimum in eq. (8.1) is indeed well-defined,
in other words whether there exists indeed a decomposition with a minimal norm
fu. The answer actually depends on the geometry of fk, and is formulated in the
following proposition proven in appendix C.2:

Proposition 8.1 (Existence of a minimizing pair). If Hk is a proximinal set 1, there
exists a decomposition minimizing eq. (8.1).

Proximinality is a mild condition which, as shown through the proof of the
proposition, cannot be weakened. It is a property verified by any boundedly
compact set. In particular, it is true for closed subsets of finite dimensional spaces.
However, if only existence is guaranteed, while forecasts would be expected to be
accurate, non-uniqueness of the decomposition would hamper the interpretability
of fk and this would mean that the identified physical parameters are not uniquely
determined.

It is then natural to ask under which conditions solving problem eq. (8.1) leads
to a unique decomposition into a physical and a data-driven component. The
following result provides guarantees on the existence and uniqueness of the
decomposition under mild conditions. The proof is given in appendix C.2:

Proposition 8.2 (Uniqueness of the minimizing pair). If Hk is a Chebyshev set1,
eq. (8.1) admits a unique minimizer. The fk in this minimizer pair is the metric projection
of the unknown f onto Hk.

The Chebyshev assumption condition is strictly stronger than proximinality
but is still quite mild and necessary. Indeed, in practice, many sets of interest are
Chebyshev, including all closed convex spaces in strict normed spaces and, if F =

L2, Hk can be any closed convex set, including all finite dimensional subspaces.
In particular, all examples considered in the experiments are Chebyshev sets.

Propositions 8.1 and 8.2 provide, under mild conditions, the theoretical guar-
antees for the APHYNITY formulation to infer a correct MB/ML decomposition,

1. A proximinal set is one from which every point of the space has at least one nearest point.
A Chebyshev set is one from which every point of the space has a unique nearest point. More
details in appendix C.1.
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thus enabling both recovering the proper physical parameters and accurate fore-
casting.

8.2 Solving APHYNITY with Deep Neural Networks

In the following, both terms of the decomposition are parametrized and are
denoted as f θkk and f θuu . Solving APHYNITY then consists in estimating the param-
eters θk and θu. θk are the physical parameters and are typically low-dimensional,
e.g. 2 or 3 in our experiments for the considered physical models. For fu, we need
sufficiently expressive models able to optimize over all F : we thus use deep neu-
ral networks, which have shown promising performances for the approximation
of differential equations (Maziar Raissi et al. 2019b; Ayed et al. 2019).

When learning the parameters of f θkk and f θuu , we have access to a finite
dataset of trajectories discretized with a given temporal resolution ∆t: Dtrain =

{(X(i)
k∆t)0≤k≤bT/∆tc}1≤i≤N . Solving eq. (8.1) requires estimating the state deriva-

tive dXt/dt appearing in the constraint term. One solution is to approximate this
derivative using e.g. finite differences as in (Brunton et al. 2016; Greydanus et al.
2019; Cranmer et al. 2020). This numerical scheme requires high space and time
resolutions in the observation space in order to get reliable gradient estimates.
Furthermore it is often unstable, leading to explosive numerical errors as dis-
cussed in appendix C.4. We propose instead to solve eq. (8.1) using an integral
trajectory-based approach: we compute X̃ i

k∆t,X0
from an initial state X(i)

0 using
the current f θkk + f θuu dynamics, then enforce the constraint X̃ i

k∆t,X0
= X i

k∆t. This
leads to our final objective function on (θk, θu):

min
θk,θu

∥∥∥f θuu ∥∥∥ subject to ∀i, ∀k, X̃(i)
k∆t = X

(i)
k∆t (8.2)

where X̃(i)
k∆t is the approximate solution of the integral

∫ X(i)
0 +k∆t

X
(i)
0

(f θkk +f θuu )(Xs)dXs

obtained by a differentiable ODE solver.

In our setting, where we consider situations for which f θkk only partially de-
scribes the physical phenomenon, this coupled MB + ML formulation leads to
different parameter estimates than using the MB formulation alone, as analyzed
more thoroughly in appendix C.3. Interestingly, our experiments show that using
this formulation also leads to a better identification of the physical parameters θk
than when fitting the simplified physical model f θkk alone (section 8.4). With only
an incomplete knowledge on the physics, θk estimator will be biased by the addi-
tional dynamics which needs to be fitted in the data. Appendix C.6 also confirms
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that the integral formulation gives better forecasting results and a more stable
behavior than supervising over finite difference approximations of the derivatives.

8.3 Adaptively Constrained Optimization

The formulation in eq. (8.2) involves constraints which are difficult to enforce
exactly in practice. We considered a variant of the method of multipliers (Bertsekas
1996) which uses a sequence of Lagrangian relaxations Lλj(θk, θu):

Lλj(θk, θu) = ‖f θuu ‖+λj · Ltraj(θk, θu) (8.3)

where Ltraj(θk, θu) =
∑N

i=1

∑T/∆t
h=1 ‖X

(i)
h∆t− X̃

(i)
h∆t‖. This method needs an increasing

sequence (λj)j such that the successive minima of Lλj converge to a solution (at
least a local one) of the constrained problem (8.2). We select (λj)j by using an
iterative strategy: starting from a value λ0, we iterate, minimizing Lλj by gradient
descent 2, then update λj with: λj+1 = λj + τ2Ltraj(θj+1), where τ2 is a chosen
hyper-parameter and θ = (θk, θu). This procedure is summarized in algorithm 8.1.
This adaptive iterative procedure allows us to obtain stable and robust results, in
a reproducible fashion, as shown in the experiments.

Algorithm 8.1 APHYNITY
Initialization: λ0 ≥ 0, τ1 > 0, τ2 > 0 for epoch = 1 : Nepochs do

for iter in 1 : Niter do
for batch in 1 : B do

θj+1 = θj − τ1∇
[
λjLtraj(θj) + ‖fu‖

]
end

end
λj+1 = λj+ τ2Ltraj(θj+1)

end

8.4 Experimental Validation

We validate our approach on 3 classes of challenging physical dynamics:
reaction-diffusion, wave propagation, and the damped pendulum, representa-
tive of various application domains such as chemistry, biology or ecology (for
reaction-diffusion) and earth physic, acoustic, electromagnetism or even neuro-
biology (for waves equations). The two first dynamics are described by PDEs and

2. Convergence to a local minimum isn’t necessary, a few steps are often sufficient for a
successful optimization.
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thus in practice should be learned from very high-dimensional vectors, discretized
from the original compact domain. This makes the learning much more difficult
than from the one-dimensional pendulum case. For each problem, we investi-
gate the cooperation between physical models of increasing complexity encoding
incomplete knowledge of the dynamics (denoted Incomplete physics in the follow-
ing) and data-driven models. We show the relevance of APHYNITY (denoted
APHYNITY models) both in terms of forecasting accuracy and physical parameter
identification.

8.4.1 Experimental Setting

We describe the three families of equations studied in the experiments. In
all experiments, F = L2(A) where A is the set of all admissible states for each
problem, and the L2 norm is computed on Dtrain by: ‖f‖2≈ ∑i,k‖f(X

(i)
k∆t)‖2. All

considered sets of physical functionals Hk are closed and convex in F and thus
are Chebyshev. In order to enable the evaluation on both prediction and pa-
rameter identification, all our experiments are conducted on simulated datasets
with known model parameters. Each dataset has been simulated using an ap-
propriate high-precision integration scheme for the corresponding equation. All
solver-based models take the first state X0 as input and predict the remaining
time-steps by integrating f through the same differentiable generic and common
ODE solver (4th order Runge-Kutta) 3. Implementation details and architectures
are given in appendix C.5.

Reaction-diffusion Equations

We consider a 2D FitzHugh-Nagumo type model (Klaasen and Troy 1984). The
system is driven by the PDE

∂u

∂t
= a∆u+Ru(u, v; k)

∂v

∂t
= b∆v +Rv(u, v)

where a and b are respectively the diffusion coefficients of u and v, ∆ is the Laplace
operator. The local reaction terms are Ru(u, v; k) = u− u3− k− v,Rv(u, v) = u− v.
The state is X = (u, v) and is defined over a compact rectangular domain Ω with
periodic boundary conditions. The considered physical models are:

3. This integration scheme is then different from the one used for data generation, the rationale
for this choice being that when training a model one does not know how exactly the data has
been generated.
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• Param PDE (a, b), with unknown (a, b) diffusion terms and without reaction
terms:

Hk = {fa,bk : (u, v) 7→ (a∆u, b∆v) | a ≥ amin > 0, b ≥ bmin > 0}

• Param PDE (a, b, k), the full PDE with unknown parameters:

Hk = {fa,b,kk :(u, v) 7→ (a∆u+Ru(u, v; k), b∆v +Rv(u, v) |
a ≥ amin > 0, b ≥ bmin > 0, k ≥ kmin > 0}

Damped-wave Equations

We investigate the damped-wave PDE:

∂2w

∂t2
− c2∆w + k

∂w

∂t
= 0

where k is the damping coefficient. The state is X = (w, ∂w
∂t

) and we consider a
compact spatial domain Ω with Neumann homogeneous boundary conditions.
Note that this damping differs from the pendulum, as its effect is global. Our
physical models are:

• Param PDE (c), without damping term:

Hk = {f ck : (u, v) 7→ (v, c2∆u) | c ∈ [ε,+∞) with ε > 0}

• Param PDE (c, k):

Hk = {f c,kk : (u, v) 7→ (v, c2∆u− kv) | c, k ∈ [ε,+∞) with ε > 0}

Damped Pendulum

The motion of a pendulum damped by viscous frictions follows the ODE

d2θ/dt2 + ω2
0 sin θ + αdθ/dt = 0,

where θ(t) is the angle, ω0, the proper pulsation (T0 the period) and α the damping
coefficient. With state X = (θ, dθ/dt), the ODE is fω0,α

k : X 7→ (dθ/dt,−ω2
0 sin θ−αdθ/dt).

Our physical models are:

• Hamiltonian (Greydanus et al. 2019), a conservative approximation, with

Hk = {fHp : (u, v) 7→ (∂yH(u, v),−∂xH(u, v)) | H ∈ H1(R2)},
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H1(R2) is the first order Sobolev space.

• Param ODE (ω0), the frictionless pendulum:

Hk = {fω0,α=0
p | ω0 ∈ [ε,+∞) with ε > 0}

• Param ODE (ω0, α), the full pendulum equation:

Hk = {fω0,α
p | ω0, α ∈ [ε,+∞) with ε > 0}

Baselines

As purely data-driven baselines, we use Neural ODE (R. T. Q. Chen et al.
2018) for the three problems and PredRNN++ ((Y. Wang et al. 2018), for reaction-
diffusion only) which are competitive models for datasets generated by differen-
tial equations and for spatio-temporal data. As MB/ML methods, in the ablations
studies (see appendix C.6), we compare for all problems, to the vanilla MB/ML
cooperation scheme found in (Y. Wang et al. 2019b; Mehta et al. 2020). We also
show results for True PDE/ODE, which corresponds to the equation for data sim-
ulation (which do not lead to zero error due to the difference between simulation
and training integration schemes). For the pendulum, we compare to Hamilto-
nian neural networks (Greydanus et al. 2019; Toth et al. 2020) and to the the
deep Galerkin method (DGM, (Sirignano and Spiliopoulos 2018)). See additional
details in appendix C.5.

8.4.2 Results

We analyze and discuss below the results obtained for the three kind of dy-
namics. We successively examine different evaluation or quality criteria. The
conclusions are consistent for the three problems, which allows us to highlight
clear trends for all of them.

Forecasting Accuracy The data-driven models do not perform well compared
to True PDE/ODE (all values are test errors expressed as log MSE): -4.6 for Pre-
dRNN++ vs. -9.17 for reaction-diffusion, -2.51 vs. -5.24 for wave equation, and
-2.84 vs. -8.44 for the pendulum in table 8.1. The Deep Galerkin method for the
pendulum in complete physics DGM (ω0, α), being constrained by the equation,
outperforms Neural ODE but is far inferior to APHYNITY models. In the incom-
plete physics case, DGM (ω0) fails to compensate for the missing information.
The incomplete physical models, Param PDE (a, b) for the reaction-diffusion, Param
PDE (c) for the wave equation, and Param ODE (ω0) and Hamiltonian models for the
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Table 8.1. – Forecasting and identification results on the (a) reaction-diffusion, (b)
wave equation, and (c) damped pendulum datasets. We set for (a)
a = 1 × 10−3, b = 5 × 10−3, k = 5 × 10−3, for (b) c = 330, k = 50 and
for (c) T0 = 6, α = 0.2 as true parameters. log MSEs are computed
respectively over 25, 25, and 40 predicted time-steps. %Err param.
averages the results when several physical parameters are present. For
each level of incorporated physical knowledge, equivalent best results
according to a Student t-test are shown in bold. n/a corresponds to
non-applicable cases.

Dataset Method log MSE %Err param. ‖fu‖2

(a)
Reaction-
diffusion

Data-
driven

Neural ODE -3.76±0.02 n/a n/a
PredRNN++ -4.60±0.01 n/a n/a

Incomplete
physics

Param PDE (a, b) -1.26±0.02 67.6 n/a
APHYNITY Param PDE (a, b) -5.10±0.21 2.3 67

Complete
physics

Param PDE (a, b, k) -9.34±0.20 0.17 n/a
APHYNITY Param PDE (a, b, k) -9.35±0.02 0.096 1.5e-6
True PDE -8.81±0.05 n/a n/a
APHYNITY True PDE -9.17±0.02 n/a 1.4e-7

(b)
Wave
equa-
tion

Data-driven Neural ODE -2.51±0.29 n/a n/a

Incomplete
physics

Param PDE (c) 0.51±0.07 10.4 n/a
APHYNITY Param PDE (c) -4.64±0.25 0.31 71.

Complete
physics

Param PDE (c, k) -4.68±0.55 1.38 n/a
APHYNITY Param PDE (c, k) -6.09±0.28 0.70 4.54

True PDE -4.66±0.30 n/a n/a
APHYNITY True PDE -5.24±0.45 n/a 0.14

(c)
Damped

pendulum

Data-driven Neural ODE -2.84±0.70 n/a n/a

Incomplete
physics

Hamiltonian -0.35±0.10 n/a n/a
APHYNITY Hamiltonian -3.97±1.20 n/a 623

Param ODE (ω0) -0.14±0.10 13.2 n/a
Deep Galerkin Method (ω0) -3.10±0.40 22.1 n/a
APHYNITY Param ODE (ω0) -7.86±0.60 4.0 132

Complete
physics

Param ODE (ω0, α) -8.28±0.40 0.45 n/a
Deep Galerkin Method (ω0, α) -3.14±0.40 7.1 n/a
APHYNITY Param ODE (ω0, α) -8.31±0.30 0.39 8.5
True ODE -8.58±0.20 n/a n/a
APHYNITY True ODE -8.44±0.20 n/a 2.3

damped pendulum, have even poorer performances than purely data-driven ones,
as can be expected since they ignore important dynamical components, e.g. fric-
tion in the pendulum case. Using APHYNITY with these imperfect physical mod-
els greatly improves forecasting accuracy in all cases, significantly outperforming
purely data-driven models, and reaching results often close to the accuracy of the
true ODE, when APHYNITY and the true ODE models are integrated with the
same numerical scheme (which is different from the one used for data genera-
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tion, hence the non-null errors even for the true equations), e.g. -5.92 vs. -5.24 for
wave equation in table 8.1. This clearly highlights the capacity of our approach to
augment incomplete physical models with a learned data-driven component.

Physical Parameter Estimation Confirming the phenomenon mentioned in
the introduction and detailed in appendix C.3, incomplete physical models can
lead to bad estimates for the relevant physical parameters: an error respectively up
to 67.6% and 10.4% for parameters in the reaction-diffusion and wave equations,
and an error of more than 13% for parameters for the pendulum in table 8.1.
APHYNITY is able to significantly improve physical parameters identification:
2.3% error for the reaction-diffusion, 0.3% for the wave equation, and 4% for the
pendulum. This validates the fact that augmenting a simple physical model to
compensate its approximations is not only beneficial for prediction, but also helps
to limit errors for parameter identification when dynamical models do not fit data
well. This is crucial for interpretability and explainability of the estimates.

Ablation Study We conduct ablation studies to validate the importance of the
APHYNITY augmentation compared to a naive strategy consisting in learning
f = fk + fu without taking care on the quality of the decomposition, as done in (Y.
Wang et al. 2019b; Mehta et al. 2020). Results shown in table 8.1 of appendix C.6
show a consistent gain of APHYNITY for the three use cases and for all physical
models: for instance for Param ODE (a, b) in reaction-diffusion, both forecasting
performances (log MSE =-5.10 vs. -4.56) and identification parameter (Error=
2.33% vs. 6.39%) improve. Other ablation results are provided in appendix C.6
showing the relevance of the trajectory-based approach described in section 8.2
(vs supervising over finite difference approximations of the derivative f ).

Flexibility When applied to complete physical models, APHYNITY does not
degrade accuracy, contrary to a vanilla cooperation scheme (see ablations in ap-
pendix C.6). This is due to the least action principle of our approach: when the
physical knowledge is sufficient for properly predicting the observed dynamics,
the model learns to ignore the data-driven augmentation. This is shown by the
norm of the trained neural net component fu, which is reported in table 8.1 last
column: as expected, ‖fu‖2 diminishes as the complexity of the corresponding
physical model increases, and, relative to incomplete models, the norm becomes
very small for complete physical models (for example in the pendulum experi-
ments, we have ‖fu‖= 8.5 for the APHYNITY model to be compared with 132

and 623 for the incomplete models). Thus, we see that the norm of fu is a good in-
dication of how imperfect the physical models Hk are. It highlights the flexibility
of APHYNITY to successfully adapt to very different levels of prior knowledge.
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(a) Param PDE (a, b),
diffusion-only

(b) APHYNITY Param
PDE (a, b)

(c) Ground truth simula-
tion

Figure 8.2. – Comparison of predictions of two components u (top) and v (bottom)
of the reaction-diffusion system. Note that t = 4 is largely beyond
the dataset horizon (t = 2.5).

(a) Neural ODE (b) APHYNITY Param
PDE (c)

(c) Ground truth simula-
tion

Figure 8.3. – Comparison between the prediction of APHYNITY when c is esti-
mated and Neural ODE for the damped wave equation. Note that
t + 32, last column for (a, b, c) is already beyond the training time
horizon (t+ 25), showing the consistency of APHYNITY method.

Note also that APHYNITY sometimes slightly improves over the true ODE, as it
compensates the error introduced by different numerical integration methods for
data simulation and training (see appendix C.5).

Qualitative Visualizations Results in Figure 8.2 for reaction-diffusion show
that the incomplete diffusion parametric PDE in Figure 8.2(a) is unable to prop-
erly match ground truth simulations: the behavior of the two components in
Figure 8.2(a) is reduced to simple independent diffusions due to the lack of
interaction terms between u and v. By using APHYNITY in Figure 8.2(b), the
correlation between the two components appears together with the formation of
Turing patterns, which is very similar to the ground truth. This confirms that fu
can learn the reaction terms and improve prediction quality. In Figure 8.3, we
see for the wave equation that the data-driven Neural ODE model fails at ap-
proximating dw/dt as the forecast horizon increases: it misses crucial details for the
second component dw/dt which makes the forecast diverge from the ground truth.
APHYNITY incorporates a Laplacian term as well as the data-driven fu thus
capturing the damping phenomenon and succeeding in maintaining physically
sound results for long term forecasts, unlike Neural ODE.
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Extension to Non-stationary Dynamics We provide additional results in ap-
pendix C.7 to tackle datasets where physical parameters of the equations vary
in each sequence. To this end, we design an encoder able to perform parameter
estimation for each sequence. Results show that APHYNITY accommodates well
to this setting, with similar trends as those reported in this section.

Additional Illustrations We give further visual illustrations to demonstrate
how the estimation of parameters in incomplete physical models is improved
with APHYNITY. For the reaction-diffusion equation, we show that the incom-
plete parametric PDE underestimates both diffusion coefficients. The difference
is visually recognizable between the poorly estimated diffusion (fig. 8.4(a)) and
the true one (fig. 8.4(c)) while APHYNITY gives a fairly good estimation of those
diffusion parameters as shown in fig. 8.4(b).

(a) a = 0.33 × 10−3, b =
0.94 × 10−3, diffusion
estimated with Param
PDE (a, b)

(b) a = 0.97 × 10−3, b =
4.75 × 10−3, diffu-
sion estimated with
APHYNITY Param
PDE (a, b)

(c) a = 1.0×10−3, b = 5.0×
10−3, true diffusion

Figure 8.4. – Diffusion predictions using coefficient learned with (a) incomplete
physical model Param PDE (a, b) and (b) APHYNITY-augmented
Param PDE(a, b), compared with the (c) true diffusion

8.5 Conclusion

In this work, we introduce the APHYNITY framework that can efficiently aug-
ment approximate physical models with deep data-driven networks, performing
similarly to models for which the underlying dynamics are entirely known. We
exhibit the superiority of APHYNITY over data-driven, incomplete physics, and
state-of-the-art approaches combining ML and MB methods, both in terms of fore-
casting and parameter identification on three various classes of physical systems.
Besides, APHYNITY is flexible enough to adapt to different approximation levels
of prior physical knowledge.
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C O N S T R A I N E D P H Y S I C A L - S TAT I S T I C S
M O D E L S F O R D Y N A M I C A L S Y S T E M
I D E N T I F I C AT I O N A N D P R E D I C T I O N

9.1 Introduction

As illustrated in chapter 8, learning a linear MB/ML decomposition with the
sole supervision on the system trajectories is ill-posed and admits an infinite
number of decompositions. This highlights the need to incorporate physically
motivated constraints in the learning of hybrid models, e.g. through regularization
penalties. In chapter 8, we have introduced a first principled approach to this
problem. Different authors have also introduced ad-hoc schemes to guide the
model towards physical solutions (X. Jia et al. 2019; Linial et al. 2021). In this
chapter, we introduce an extension of chapter 8 that generalizes several previous
attempts in the regularization of hybrid models. This allows us to introduce
more diverse and general sets of constraints providing a grounded alternative to
previous methods. Our contributions in this chapter are :

• In section 9.3.1, we introduce a novel way to recover well-posedness in the
learning of hybrid MB/ML models through the control of an upper bound.
We further extend our framework to incorporate auxiliary data when avail-
able to handle complex real-world problems.

• In section 9.3.2, we propose an alternate optimization algorithm to learn hy-
brid models. In section 9.3.3, we provide convergence analysis in a simplified
case and experimentally evidence the soundness of our approach on more
complex settings including challenging real world problems (section 9.4).

9.2 Background and Problem Setup

Dynamical Hypothesis We assume partial knowledge of the dynamics of the
observed Xt:

dXt

dt
= f(Zt) = fk(Zt) + fu(Zt) (9.1)

87
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where fk ∈ Hk is a known operator with unknown parameters θ∗, and fu ∈ Hu is
the unknown residual dynamics. Hk and Hu denote function spaces.

Learning Problem Our objective is to approximate f with a function h learned
from the observed data. According to eq. (9.1), we assume h = hk + hu. hk ∈ Hk

belongs to the same hypothesis space as fk, i.e. it has the same parametric form.
Its parameters are denoted θk. Note that hk(., θ∗) = fk. hu ∈ Hu is represented by
a free form functional with parameters θu, e.g. a neural network. The learning
problem is then to estimate from data the parameters of hk so that they match
the true physical ones and those of hu so as to approximate at best the unknown
dynamics f . In this regard, an intuitive training objective is to minimize a distance
d between h = hk + hu and f :

d(h, f) = EZ∼pZ‖h(Z)− f(Z)‖2, (9.2)

where pZ is the distribution of the state values Z that accounts for varying initial
states. Each Z then defines a training sample. Again, minimizing eq. (9.2) with
h = hk + hu enables to predict accurate trajectories but may have an infinite
number of solutions. For instance, hu may bypass the physical hypothesis hk.
Thus, interpretability is not guaranteed. We develop in the following section a
method to overcome this ill-posedness.

9.3 Method

In hybrid modeling, two criteria are essentials: 1. identifiability, i.e. the esti-
mated parameters of hk should correspond to the true physical ones; 2. prediction
power, i.e. the statistical component hu should complete hk so that h = hk + hu
performs accurate prediction over the system states. To control the contribution
of each term hk and hu, we work upper bounds out of eq. (9.2) (section 9.3.1). We
then propose to minimize d(h, f) while constraining the upper bounds, which
provide us with a well-posed learning framework (section 9.3.2). Besides, we
show that several previous works that introduced constrained optimization to
solve related problems are specific cases of our formulation notably (X. Jia et al.
2019; Linial et al. 2021) and our approach of chapter 8. Finally, we introduce an
alternate optimization algorithm which convergence is shown in section 9.3.3 for
a linear approximation of f .
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9.3.1 Structural Constraints for Dynamical Systems

To ensure identifiability, we derive regularizations on hk and hu flowing from
the control of an upper bound of d(h, f). In particular, to minimize d(hk, fk)

would enable us to accurately interpret hk as the true fk, and thus hu as the
residual dynamics fu. However, since we do not access the parameters of fk,
computing d(hk, fk) is not tractable. We then consider two possible situations.
In the first one, the only available information on the physical system is the
parametric form of fk (or equivalently of hk), training thus only relies on observed
trajectories (eq. (9.3)). In the second one, we consider that auxiliary information
about fk is available and will be used to minimize the distance between hk and fk
(eq. (9.4)). While the first setting is the more general, the physical prior it relies on
is often insufficient to effectively handle real world situations. The second setting
makes use of more informative priors and better corresponds to real cases as will
be shown in the experimental section (see section 9.4.2).

Controlling the ML Component and the MB Hypothesis

We propose a general approach to constrain the learning of hybrid models when
one solely access the functional form of hk. In this case, to make hk accountable
in our observed phenomena, a solution is to minimize d(hk, f). Following the
triangle inequality we link up both errors d(h, f) and d(hk, f) (computations
available in appendix D.3.1):

d(h, f) ≤ d(h, hk) + d(hk, f) = d(hu, 0) + d(hk, f) (9.3)

We want the physical-statistical model h = hk + hu to provide high quality fore-
casts. Minimizing the sole upper bound does not ensure such aim, as hu is only
penalized through d(hu, 0) and is not optimized to contribute to predictions. We
thus propose to minimize d(h, f) while controlling both d(hu, 0) and d(hk, f).
Such a control of the upper bound of eq. (9.3) amounts to balancing the contri-
bution of the ML and the MB components. This will be formally introduced in
section 9.3.2.

Link to the Literature The least action principle on the ML component i.e. con-
straining d(hu, 0) is invoked for a geometric argument in chapter 8, and appears
as a co-product of the introduction of d(hk, f) in eq. (9.3). Optimizing d(hk, f)

to match the physical model with observations is investigated in (Forssell and
Lindskog 1997).
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The general approach of eq. (9.3) allows us to perform prediction (via h) and
system identification (via hk) on simple problems (see section 9.4.1). The learning
of real-world complex dynamics, via data-driven hybrid models, often fails at
yielding a physically sound estimation, as illustrated in section 9.4.2. This sug-
gests that learning complex dynamics requires additional information. In many
real-world cases, auxiliary information is available in the form of measurements
providing complementary information on fk. Indeed, a common issue in physics
is to infer an unobserved variable of interest (in our case fk parameters θ?) from
indirect or noisy measurements that we refer to as proxy data. For instance, one
can access a physical quantity but only at a coarse resolution, as in (Um et al.
2020; Belbute-Peres et al. 2020) and in the real world example detailed in section
9.4.2. We show in the next subsection how to incorporate such an information in
order to approximate d(hk, fk).

Matching the Physical Hypotheses: Introducing Auxiliary Data

We here assume one accesses a proxy of fk, denoted fprk ∈ Hk. Our goal is
to adapt our framework to incorporate such auxiliary information, bringing the
regularization induced by fprk within the scope of the control of an upper bound.
This enables us to extend our proposition towards the solving of real world
physical problems, still largely unexplored by the ML community. We have:

d(h, f) ≤ d(h, hk) + d(hk, f
pr
k ) + Γ = d(hu, 0) + d(hk, f

pr
k ) + Γ (9.4)

where Γ is a constant of the problem that cannot be optimized (see ap-
pendix D.3.2). In that context, we can benefit from auxiliary information pro-
viding us with coarse estimates of θ?, denoted θpr, such that fprk = hk(., θ

pr) ≈ fk.
To use the available θpr to guide our estimation towards the true parameters θ?

of fk, a simple solution is to directly enforce the minimization of d(hk, f
pr
k ) in

the parameter space by minimizing ‖θk − θpr‖2, where θk are the parameters of
hk. Indeed, because fk and fprk have identical parametric forms (as both belong to
the same functional space Hk), minimizing ‖θk − θpr‖2 will bring hk closer to fprk
and thus to fk. As above, we propose to minimize d(h, f) while controlling both
d(hu, 0) and d(hk, f

pr
k ), as described in section 9.3.2.

Link to the Literature In (Linial et al. 2021) fprk stands for true observations
used to constrain a learned latent space, minimizing d(hk, f

pr
k ). (X. Jia et al. 2019)

use synthetic data as fprk to pre-train their model which amounts to the control an
upper bound, see appendix D.3.3. Finally, this setting finds an extension, when
the model fprk is a learned model, for example trained using eq. (9.3), leading to a
self-supervision approach described in appendix D.3.4.
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9.3.2 Learning Algorithm and Optimization Problem

From the upper bounds, we first recover the well-posedness of the optimiza-
tion and derive a theoretical learning scheme (section 9.3.2). We then discuss its
practical implementation (section 9.3.2).

Well-Posedness and Alternate Optimization Algorithm

Recovering Well-Posedness We reformulate the ill-posed learning of
minhk,hu∈Hk×Hu d(h, f), by instead optimizing d(h, f) while constraining the upper
bounds. Let us define Sk and Su as

Sk = {hk ∈ Hk | `(hk) ≤ µk } Su = {hu ∈ Hu | d(hu, 0) ≤ µu } (9.5)

where µk, µu are two positive scalars and `(hk) = d(hk, f) in the case of sec-
tion 9.3.1 and `(hk) = d(hk, f

pr
k ) in the case of section 9.3.1. Our proposition then

amounts to optimizing d(h, f) over the Minkowski-sum Sk +Su = {h = hk + hu |
hk ∈ Sk, hu ∈ Su } :

min
h∈Sk+Su

d(h, f), (9.6)

This constrained optimization setting enables us to recover the well-posedness of
the optimization problem under the relative compactness of the family of function
Hk (proof in appendix D.4.3).

Proposition 9.1 (Well-posedness). Under the relative compactness of Sk, eq. (9.6) finds
a solution h that writes as h = hk + hu ∈ Sk + Su. Moreover, this solution is unique.

Alternate Optimization Algorithm As the terms in both upper bounds of
eqs. (9.3) and (9.4) specifically address either hk or hu, we isolate losses relative
to hk and hu and alternate projections of hk on Sk and hu on Su, as described in
Algorithm 9.1. Said otherwise, we learn h by alternately optimizing hk (hu being
fixed) and hu (hk being fixed). In practice, we rely on a dual formulation (see
section 9.3.2 and the SGD version of Algorithm 9.1 in Appendix D.6).

Algorithm 9.1 Alternate estimation: General Setting
Result: Converged hk and hu
Set h0

u = 0, h0
k = minhk∈Hk d(hk, f), tol ∈ R+

while d(h, f) > tol do
hn+1
k = arg min

hk∈Sk
d(hk + hnu, f); hn+1

u = arg min
hu∈Su

d(hn+1
k + hu, f) (9.7)

n← n+ 1
end
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The convergence of the alternate projections is well studied for the intersection
of convex sets or smooth manifolds (Neumann 1950; Lewis and Malick 2008) and
has been extended in our setting of Minkowski-sum of convex sets (Lange et al.
2019). Notably, our proposition amounts to the Alternating Direction Method
of Multipliers (Boyd et al. 2011). Because d as defined in eq. (9.2) is convex, Su
and Sk are convex sets as soon as Hk and Hu are convex (Appendix D.1). Thus,
if d(., f) is strongly convex, eq. (9.7) finds one and only one solution (Boyd et
al. 2004). However, neither the convexity of Hu nor of Hk is practically ensured.
Nonetheless, we recover the well-posedness of eq. (9.6) and show the convergence
of Algorithm 9.1 in the simplified case where h is an affine function of Xt (see
section 9.3.3). For complex PDE where convexity may not hold, we validate our
approach experimentally and we evidence in section 9.4 that this formulation en-
ables us to recover both an interpretable decomposition h = hk+hu and improved
prediction and identification performances.

Practical Optimization

Equation (9.5) involves the choice of µk and µu. In practice, we implement the
projection algorithm by descending gradients on the parameters of hk and hu,
with respect to the following losses:

Lk(hk) = λh d(h, f) + λhk`(hk) Lu(hu) = λh d(h, f) + λhu d(hu, 0) (9.8)

where λh, λhk , λhu are positive real values, dynamically increased/decreased dur-
ing training. Indeed, d(hu, 0) can be interpreted as a stability loss, preventing the
neural networks to trump the physical component. On the other hand, d(hk, f)

can be interpreted has an initialization loss yield a first estimate of θk explaining
the dynamics.

Yet, f being unknown: d(h, f) is not tractable. To estimate d(h, f), we rely on
the trajectories associated to the dynamics. We minimize the distance between
the ODE flows φh and φf defined by h and f , dφ(φh, φf ), over all initial conditions
X0:

dφ(φh, φf ) = EX0

∫ t

t0

∥∥φh(τ,X0)− φf (τ,X0)
∥∥

2
dτ (9.9)

We have: dφ(φh, φf ) = 0⇔ d(h, f) = 0. Definitions of flows for ODE and in depth
consideration on these distances are available in appendix D.1. The gradients
of dφ(φh, φf ) with respect to the parameters of hk or hu can be either estimated
analytically using the adjoint method (R. T. Q. Chen et al. 2018) or using explicit
solvers, e.g. Rk45, and computing the gradients thanks to the backpropagation, see
(Onken and Ruthotto 2020b). To compute eq. (9.9), we rely on a temporal sampling
of X : our datasets are composed of n sequences of observations of length N , X i =
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(X i
t0
, . . . , X i

t0+N∆t), where each sequence X i follows eq. (9.1) and corresponds
to one initial condition X i

t0
. We then sample the space of initial conditions X i

t0

to compute a Monte-Carlo approximation to dφ(φh, φf ). Let ODESolve be the
function integrating any arbitrary initial state xt0 up to time t with dynamics h,
so that xt = ODESolve(xt0 , h, t). The estimate of dφ(φh, φf ) then writes as:

dφ(φh, φf ) ≈
1

n

n∑
i=1

N∑
j=1

∥∥∥ODEsolve(X i
t0
, h, tj)−X i

tj

∥∥∥
2

Note that the way to compute ODEsolve differs across the experiments (see
section 9.4).

9.3.3 Theoretical Analysis for a Linear Approximation

We investigate the validity of our proposition when approximating an unknown
derivative with an affine function (interpretable first guess approximators). We
here consider hk as a linear function. We do not assume any information on f ,
thus relieving this section from the need of an accurate prior knowledge fk. In
this context, we show the convergence of the learning scheme introduced in Al-
gorithm 9.1 with ` = d(hk, f), hence demonstrating the validity of our framework
in this simplified setting. For more complex cases, for which theoretical analysis
cannot be conducted, our framework is validated experimentally in section 9.4.
All proofs of this section are conducted using the distance dφ. Let Xs be the
unique solution to the initial value problem:

dXt

dt
= f(Xt) with Xt=0 = X0 (9.10)

With hk(X) = AX and hu(X) = DA, the affine approximation of f writes as:

dXt

dt
= AXt +DA with Xt=0 = X0 (9.11)

where A ∈ Mp,p(R), DA ∈ Rp. We write XD the solution to eq. (9.11) and XA the
solution to eq. (9.11) when DA = 0. The alternate projection algorithm with the
distance dφ writes as:

Â = arg min
A

∫ t

t0

∥∥∥Xs(τ)−XD(τ)
∥∥∥

2
dτ + λA

∫ t

t0

∥∥∥Xs(τ)−XA(τ)
∥∥∥

2
dτ (9.12)

D̂A = arg min
DA

∫ t

t0

∥∥∥Xs(τ)−XD(τ)
∥∥∥

2
dτ + λD‖DA‖2 (9.13)
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where λD, λA > 0. As the optimization of eq. (9.12) is not convex on A, the
solution existence and uniqueness is not ensured. The well-posedness w.r.t A can
be recovered by instead considering a simple discretization scheme, e.g. Xt+1 ≈
(AXt + DA)∆t + Xt and solving the associated least square regression, which
well-posedness is guaranteed, see details in appendix D.4.2. Such strategy is
common practice in system identification. Generic theoretical considerations on
existence and uniqueness of solutions to eqs. (9.12) and (9.13) are hard to retrieve.
Nonetheless, if A is an invertible matrix, we prove in appendix D.4.4:

Proposition 9.2 (Existence and Uniqueness). If Â is invertible, There exists a unique
DA, hence a unique XD, solving eq. (9.13).

Finally, formulating Algorithm 9.1 as a least square problem in an affine set-
ting (see appendix D.4.5), we prove the convergence of the alternate projection
algorithm (appendix D.4.6) :

Proposition 9.3. For λD and λA sufficiently high, the algorithm that alternates between
the estimation of A and the estimation of DA following eqs. (9.12) and (9.13) converges.

9.4 Experiments

We validate Algorithm 9.1 on datasets of increasing difficulty (see ap-
pendix D.5), where the system state is either fully or partially observed (resp.
section 9.4.1 and section 9.4.2). We no longer rely on an affine prior and explicit
hk and hu for each dataset. Performances are evaluated via standard metrics: MSE
(lower is better) and relative Mean Absolute Error (rMAE, lower is better). We
assess the relevance of our proposition based on eqs. (9.3) and (9.4), against Neu-
ralODE (R. T. Q. Chen et al. 2018) and state of the art Aphynity (Yin et al. 2021b)
and ablation studies. We denote Ours eq. (9.3) (resp. Ours eq. (9.4)) the results
when ` = d(hk, f) i.e eq. (9.3), (resp. ` = d(hk, f

pr
k ) i.e. eq. (9.4)). When d(hk, f)

(resp. d(hu, 0)) is not considered in the optimization, we refer to the results as
d(h, f) + d(hu, 0) (resp. d(h, f) + d(hk, f)). When h is trained by only minimizing
the discrepancy between actual and predicted trajectories the results are denoted
«Only d(h, f)». We report between brackets the standard deviation of the metrics
over 5 runs and refer to Appendices D.6 and D.7 for training information and
additional results.
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9.4.1 Fully Observable Dynamics

To illustrate the learning scheme induced by eq. (9.3), we focus on fully ob-
served low dimensional dynamics: a simple example emerging from Newtonian
mechanics and a population dynamics model.

Damped Pendulum (DPL) Now a standard benchmark for hybrid models, we
consider the motion of a pendulum of length L damped due to viscous friction
(Greydanus et al. 2019; Yin et al. 2021b). Newtonian mechanics provide an ODE
describing the evolution of the angle x of the pendulum:

ẍ− g/L sin(x) + kẋ = 0 (9.14)

We suppose access to observations of the system state Z = (x, ẋ). We consider as
physical motion hypothesis hk(x, θk) = θk sin(x). The true pulsation θ∗ = g/L of
the pendulum has to be estimated with θk. The viscous friction term kẋ remains
to be estimated by hu.

Population Dynamics (LV) Lotka-Volterra ODE system models a
prey/predator population dynamics describing the growth of the preys (x)
without predators (y), and the extinction of predators without preys, the non
linear terms expressing the encounters between both species:

ẋ = αx− βxy, and ẏ = −γy + δxy (9.15)

We observe the system state Z = (x, y) and set as prior knowledge: hk(x, y) =

(θ1
kx,−θ2

ky). θ? = (α, γ) has to be estimated by θk = (θ1
k, θ

2
k). hu accounts for the

non linear terms (βxy, δxy).

Experimental Setting For both DPL and LV experiments, we consider the fol-
lowing setting: we sample the space of initial conditions building 100/50/50

trajectories for the train, validation and test sets. The sequences share the same
parameters; respectively ( g

L
, k), for DPL, and (α, β, γ, δ) for LV. The parameter θk

is set to a neuron (of dimension 1 in the pendulum and 2 for LV) and hu is a
2-layer MLP. Further experimental details are available in appendices D.5.1, D.5.2
and D.6.

Identification and Prediction Results Table 9.1 shows that despite accurate
trajectory forecasting, the unconstrained setting «Only d(h, f)» fails at estimat-
ing the models parameters, showing the need for regularization for identification.
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Figure 9.1. – Affine Case : Evolution of the MSE between estimated dynamics
(Â, D̂) and the true one (A,D) with the number of gradients steps
for linearized DPL.

Constraining the norm of the ML component can be insufficient: for LV data, both
Aphynity and d(h, f) + d(hu, 0) do not accurately estimate the model parameters.
However, the control of d(hk, f), following eq. (9.3), significantly improves the
parameter identification for both datasets. Indeed, in the PDL case, hk and f are
(pseudo)-periodic of the same period, hence the gain in the performances. Finally,
our proposition based on eq. (9.3) is able to identify the parameters of DPL and
LV equation with a precision of respectively 1.56% and 7.8% beating all consid-
ered baselines. Regarding prediction performances, in under-constrained settings
( «Only d(h, f)» in Table 9.1), hu learns to corrects the inaccurate hk. Table 9.1 and
figs. D.2 and D.3 (appendix D.7.1) show that our proposition provides more con-
sistent prediction performances. These experiments confirm that the constraints
on hk and hu arising from the control of the upper bound of eq. (9.3) increase
interpretability and maintain prediction performances.

Throwback to the Affine Case We verify the convergence proved in sec-
tion 9.3.3 using the damped pendulum (eq. (9.14)) linearized in the small os-
cillations regime (see appendix D.5.1). Making an affine hypothesis following
eq. (9.11), we apply our alternate projection algorithm and optimize A and DA

alternately using SGD. Figure 9.1 shows that we are able to accurately estimate
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Table 9.1. – Experimental Results for PDL and LV data. The presented metric for
parameter evaluation is the rMAE reported in %. Pred. columns report
the prediction log MSE on trajectories on test set.

Model PDL LV
rMAE(θk, θ

?) Pred. logMSE rMAE(θk, θ
?) Pred. logMSE

Ours eq. (9.3) 1.56 (0.009) -13.7 (0.84) 7.80 (0.011) -9.28 (0.75)
Only d(h, f) 9.35 (0.04) -13.3 (0.65) 24.5 (0.017) -9.21 (0.91)
d(h, f) + d(hk, f) 1.82 (0.01) -13.4 (0.56) 7.91 (0.02) -9.01 (0.99)
d(h, f) + d(hu, 0) 11.1 (0.03) -12.9 (0.29) 9.80 (0.098) -9.45 (0.55)
Aphynity 6.15 (0.009) -12.2 (0.13) 21.1 (0.016) -9.89 (0.53)

A and D using our proposition, recovering both the oscillation pulsation and the
damping coefficient.

9.4.2 High Dimensional Dynamics

We now address the learning of transport equations, describing a wide range of
physical phenomena such as chemical concentration, fluid dynamics or material
properties. We evaluate the learning setting induced by eq. (9.3) and (9.4) on
two physical datasets depicting the evolution of the temperature T advected by a
time-dependent velocity field U and subject to forcing S, following:

∂T

∂t
+∇.(TU) = S(U) (9.16)

The system state Z = (T, U, S) is partially observed, we only access T . Every
quantities, observed or to estimate, are regularly sampled on a spatiotemporal
grid: at each timestep t, the time varying velocity field Ut writes as Ut = (ut, vt)

and ut, vt, Tt and the forcing term St are all of size 64× 64.

Experimental Setting We consider as physical prior the advection i.e
hk(T, θk) = −∇.(Tθk). Thus, θk is time-dependent, as we learn it to approxi-
mate θ? = U . We identify the velocity field θk from observations of T , learning
a mapping between T and U parameterized by a neural network Gψ, so that
θk = Gψ(Tt−l, ..., Tt) ≈ Ut, which is common practice in oceanography (Béréziat
and Herlin 2015). Gψ is optimized following eq. (9.8). S remains to be learned
by hu. hk implements a differentiable semi-Lagrangian scheme (Jaderberg et al.
2015) (see appendix D.5.3) and hu is a ResNet. Gψ is a UNet. Training details and
a schema of our model are to be found in appendix D.6.
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Figure 9.2. – Best viewed in color. Estimations of S, T and U = (u, v) on Adv+S.
Prediction ranges from 1 to 20 half-days.

Synthetic Advection and Source (Adv+S) To test the applicability of the learn-
ing setting induced by eq. (9.3) on partially observed settings, we first study a
synthetic setting (denoted Adv+S) of eq. (9.16) by generating velocity fields U ,
simulated following (Boffetta et al. 2001) and adding a source term S inspired by
(Frankignoul 1985). The simulation details are given in appendix D.5.3.

Real Ocean Dynamics (Natl) We consider a complex dataset emulating real
world observations of the North ATLantic ocean (denoted Natl) (Ajayi et al. 2019).
Modeling the evolution of T in Natl is particularly challenging as its dynamics
is chaotic and highly non-linear. This simulation is representative of the com-
plexity encountered in real world data. The principled approach corresponding
to eq. (9.3) is insufficient here and one must resort to additional physical in-
formation. To illustrate the extension developed in section 9.4.2, we make use
of available auxiliary data: measurements from satellite observations provide a
coarse estimate of the surface ocean currents velocity fields (see appendix D.5).
Then, the learning goal is to refine the approximated velocity fields to fit the ocean
dynamics. Therefore we proceed as described in eq. (9.4) and enforce d(hk, f

pr
k )

by supervising Gψ with the proxy data (see appendix D.5.3).
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Table 9.2. – Results for Adv+S and Natl data. We report the MSE (× 100) on the
predicted observations T , the velocity fields U and the source term S
over 6 time steps on test set.

Models
Adv+S Natl

T U S T U S

Ours eq. (9.3) 0.74 (0.05) 1.99 (0.13) 0.17 (0.01) 8.27 (0.06) 11.72 (0.07) 6.01 (0.08)
Ours eq. (9.4) – – – 6.86 (0.12) 6.81 (0.07) 4.35 (0.11)
Aphynity 0.85 (0.35) 3.07 (0.74) 0.18 (0.05) 8.18 (0.16) 11.75 (0.49) 6.02 (0.02)
NODE 1.35 (0.02) – – 8.83 (0.98) – –

Identification and Prediction Results Table 9.2 indicates that for Adv+S
dataset, we estimate accurately the unobserved velocity fields. Qualitatively, Fig-
ure 9.2 shows that controlling our proposed upper bound eq. (9.3) facilitates the
recovery of truthful velocity fields U along with an accurate prediction of T . For
the highly complex Natl, Table 9.2 shows that the introduction of auxiliary data
following the formulation in eq. (9.4) significantly helps identification, as the dy-
namics is too complex to be able to recover physically interpretable velocity fields
using the bound of eq. (9.3).
Regarding prediction performances on the Adv+S data, Table 9.2 shows that
thanks to our truthful estimates of U , our model provides more precise prediction
than NODE and Aphynity. For real world data, thanks to the proxy data our
model recovers better velocity fields terms while providing a better estimate for T .
Besides, adding prior knowledge in the prediction systems improves prediction
performances: appendix D.7 shows that NODE minimizes d(h, f) by predicting
average and blurred frames. This shows the need for regularization when learning
on structured physical data.

Ablation Study We present in Table 9.3 an ablation study on the Adv+S dataset
evidencing the influence of our learning choices on the resolution of both identifi-
cation and prediction tasks (see appendix D.7 for detailed results). “Joint” rows of
Table 9.3 indicate that the learning of hu and hk is done simultaneously. As shown
in Table 9.3, the sole optimization of d(h, f) fails at estimating physically sounded
U . This evidences the ill-posedness in such unconstrained optimization. Table 9.3
indicates that all introduced regularizations improve the recovery of U w.r.t. the
«Only d(h, f)» baseline, while adding d(hu, 0) significantly improves both predic-
tion performances and velocity fields estimation. We highlight that the alternate
optimization performs better compared to optimizing jointly all parameters of
hk and hu. Notably, our proposition to optimize hk and hu alternately beats all
baselines on both T prediction and U identification (Table 9.3, Joint rows). Finally,
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jointly trained models fail at estimating U in Table 9.3, forcing hu to capture the
whole dynamics.

Table 9.3. – Ablation Study on Adv+S. We report the MSE (× 100) on the predicted
observations T , the velocity fields U and the source term S over 6 time
steps. “Joint” rows refer to the simultaneous optim. of hk and hu.

Training Models T U S

Ours (U known) 0.52 n/a 0.19

Alternate

Ours eq. (9.3) 0.74 (0.05) 1.99 (0.13) 0.17 (0.01)
Only d(h, f) 1.02 (0.16) 4.08 (0.23) 0.19 (0.06)
d(h, f) + d(hk, f) 1.02 (0.09) 3.66 (0.15) 0.19 (0.03)
d(h, f) + d(hu, 0) 0.77 (0.06) 2.38 (0.17) 0.19 (0.01)

Joint Ours eq. (9.3) 1.44 (0.08) 3.30 (0.18) 0.30 (0.03)
Only d(h, f) 1.38 (0.19) 6.96 (0.21) 0.39 (0.08)

9.5 Discussion

We propose in this work an algorithm to learn hybrid MB/ML models. For
interpretability purposes, we impose constraints flowing from an upper bound
of the prediction error and derive a learning algorithm in a general setting. We
prove its well posedness and its convergence in a linear approximation setting.
Besides theoretical considerations, we empirically evidence the soundness of our
approach thanks to ablation studies and comparison with recent baselines on
several low and high dimensional datasets. This work can see several extensions,
e.g. considering non uniform 3-D grid for climate models, further considerations
on the investigated upper bounds, or less restrictive decomposition hypothesis.
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Chapter abstract

Data-driven approaches to modeling physical systems fail to generalize to un-
seen systems that share the same general dynamics with the learning domain,
but correspond to different physical contexts. We propose a new framework
for this key problem, context-informed dynamics adaptation (CoDA), which
takes into account the distributional shift across systems for fast and efficient
adaptation to new dynamics. CoDA leverages multiple environments, each
associated to a different dynamic, and learns to condition the dynamics model
on contextual parameters, specific to each environment. The conditioning is
performed via a hypernetwork, learned jointly with a context vector from ob-
served data. The proposed formulation constrains the search hypothesis space
to foster fast adaptation and better generalization across environments. It
extends the expressivity of existing methods. We theoretically motivate our
approach and show state-of-the-art generalization results on a set of nonlinear
dynamics, representative of a variety of application domains. We also show,
on these systems, that new system parameters can be inferred from context
vectors with minimal supervision. This work is under review and available at:

Matthieu Kirchmeyer, Yuan Yin, Jérémie Donà, Nicolas Baskiotis, Alain Rako-
tomamonjy, and Patrick Gallinari (Jan. 2022). “Generalizing to New Physical
Systems via Context-Informed Dynamics Model”. working paper or preprint.
url: https://hal.archives-ouvertes.fr/hal-03547546.

10.1 Introduction

Neural Network (NN) approaches to modeling dynamical systems have re-
cently raised the interest of several communities leading to an increasing number
of contributions. This topic was explored in several domains, ranging from simple
dynamics e.g. Hamiltonian systems (Greydanus et al. 2019; Z. Chen et al. 2020c)
to more complex settings e.g. fluid dynamics (Kochkov et al. 2021; Zongyi Li
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et al. 2021; Wandel et al. 2021b), earth system science and climate (Reichstein
et al. 2019), or health (Fresca et al. 2020). NN emulators are attractive as they
may for example provide fast and low cost approximations to complex numerical
simulations (Duraisamy et al. 2019; Kochkov et al. 2021), complement existing
simulation models when the physical law is partially known (Yin et al. 2021b)
or even offer solutions when classical solvers fail e.g. with very high number of
variables (Sirignano and Spiliopoulos 2018).

A model of a real-world dynamical system should account for a wide range
of contexts resulting from different external forces, spatio-temporal conditions,
boundary conditions, sensors characteristics or system parameters. These contexts
characterize the dynamics phenomenon. For instance, in cardiac electrophysiology
(Neic et al. 2017; Fresca et al. 2020), each patient has its own specificities and
represents a particular context. In the study of epidemics’ diffusion (Shaier et al.
2021), computational models should handle a variety of spatial, temporal or even
sociological contexts. The same holds for most physical problems, e.g. forecasting
of spatial-location-dependent dynamics in climate (de Bézenac et al. 2018c), fluid
dynamics prediction under distinct external forces (Zongyi Li et al. 2021), etc.

The physics approach for modeling dynamical systems relies on a strong prior
knowledge about the underlying phenomenon. This provides a causal mechanism
which is embedded in a physical dynamics model, usually a system of differen-
tial equations, and allows the physical model to handle a whole set of contexts.
Moreover, it is often possible to adapt the model to new or evolving situations,
e.g. via data assimilation (Kalman 1960; Courtier et al. 1994).

On the other hand, Expected Risk Minimization (ERM) based machine learning
(ML) fails to generalize to unseen dynamics. Indeed, it requires i.i.d. data for train-
ing and inference while dynamical observations are non-i.i.d. as the distributions
change with initial conditions or physical contexts. Thus any ML framework that
handles this question should consider other assumptions. A common one used
e.g. in domain generalization (J. Wang et al. 2021), states that data come from
several environments a.k.a. domains, each with a different distribution. Train-
ing is performed on a sample of the environments and test corresponds to new
ones. Domain generalization methods attempt to capture problem invariants via
a unique model, assuming that there exists a representation space suitable for all
the environments. This might be appropriate for classification, but not for dynam-
ical systems where the underlying dynamics differs for each environment. For
this problem, we need to learn a function that adapts to each environment, based
on a few observations, instead of learning a single domain-invariant function.
This is the objective of meta-learning (Thrun and Pratt 1998), a general framework
for fast adaptation to unknown contexts. The standard gradient-based methods
(e.g. (Finn et al. 2017)) are unsuitable for complex dynamics due to their bi-level
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optimization process and are known to overfit when little data is available for
adaptation, as in the few-shot learning setting explored in this paper (Mishra
et al. 2018). Like invariant methods, meta-learning usually handles basic tasks
like classification or regression on static data or simple sequences. Generalization
for modeling real-world dynamical systems is a recent topic. Simple simulated
dynamics were considered in Reinforcement Learning (Kimin Lee et al. 2020;
Clavera et al. 2019) while physical dynamics were modeled in recent works (Yin
et al. 2021a; R. Wang et al. 2021). These approaches consider either simplified
settings or additional hypotheses e.g. prior knowledge and do not offer general
solutions to our adaptation problem (details in Section 10.6).

We propose a new ML framework for generalization in dynamical systems,
called Context-Informed Dynamics Adaptation (CoDA). Like in domain gen-
eralization, we assume availability of several environments, each with its own
specificity, yet sharing some physical properties. Training is performed on a sam-
ple of the environments. At test time, we assume access to example data from a
new environment, here a trajectory. Our goal is to adapt to the new environment
distribution with this trajectory. More precisely, CoDA assumes that the underly-
ing system is described by a parametrized differential equation, either an ODE or
a PDE. The environments share the parametrized form of the equation but differ
by the values of the parameters or initial conditions. CoDA conditions the dynam-
ics model on learned environment characteristics a.k.a. contexts and generalizes
to new environments and trajectories with few data. Our main contributions are
the following:

• We introduce a multi-environment formulation of the generalization problem
for dynamical systems.

• We propose a novel context-informed framework, CoDA, to this problem. It
conditions the dynamics model on context vectors via a hypernetwork. CoDA
introduces a locality and a low-rank constraint, which enable fast and efficient
adaptation with few data.

• We analyze theoretically the validity of our low-rank adaptation setting for
modeling dynamical systems.

• We evaluate two variations of CoDA on several ODEs/PDEs representative
of a variety of application domains, e.g. chemistry, biology, physics. CoDA
achieves SOTA generalization results on in-domain and one-shot adaptation
scenarios. We also illustrate how, with minimal supervision, CoDA infers
accurately new system parameters from learned contexts.

The paper is organized as follows. In Section 10.2, we present our multi-
environment problem. In Section 10.3, we introduce the CoDA framework. In
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Section 10.4, we detail how to implement our framework. In Section 10.5, we
present our experimental results. In Section 10.6, we present related work.

10.2 Generalization for Dynamical Systems

We present our generalization problem for dynamical systems, then introduce
our multi-environment formalization.

10.2.1 Problem setting

We consider dynamical systems that are driven by unknown temporal differen-
tial equations of the form:

dX(t)

dt
= f(X(t)), (10.1)

where t ∈ R is a time index, X(t) is a time-dependent state in a space X and
f : X → TX a function that maps X(t) ∈ X to its temporal derivatives in the
tangent space TX . f belongs to a class of vector fields F . X ⊆ Rd (d ∈ N?) for
ODEs or X is a space of functions defined over a spatial domain (e.g. 2D or 3D
Euclidean space) for PDEs.

Functions f ∈ F define a space Df(X ) of state trajectories X : I → X , mapping
t in an interval I including 0, to the state X(t) ∈ X . Trajectories are defined by
the initial condition X(0) , X0 ∼ p(X0) and take the form:

∀t ∈ I,X(t) = X0 +

∫ t

0

f(X(τ))dτ ∈ X (10.2)

In the following, we assume that f ∈ F is parametrized by some unknown
attributes e.g. physical parameters, external forcing terms which affect the trajec-
tories.

10.2.2 Multi-environment Learning Problem

We propose to learn the class of functions F with a data-driven dynamics model
gθ parametrized by θ ∈ Rdθ . Given f ∈ F , we observe N trajectories in Df(X )

with the form in Equation (10.2). The standard ERM objective considers that all
trajectories are i.i.d. Here, we propose a multi-environment learning formulation
which considers that observed trajectories of f form an environment e ∈ E . We
denote f e and De , {Dei }Ni=1 the corresponding function and set of trajectories.



10.3 the coda learning framework 107

We assume that we observe a set of known functions in training environments
Etr, {f e}e∈Etr . The goal is to learn gθ that adapts easily and efficiently to new
environments Ead, corresponding to unseen functions {f e}e∈Ead (“ad” stands for
adaptation). We define ∀e ∈ E the corresponding Mean Squared Error (MSE) loss,
over De as

L(θ,De) ,
N∑
i=1

∫
t∈I
‖f e(Xe,i(t))− gθ(Xe,i(t))‖2

2dt (10.3)

In practice, f e is unavailable and we can only approximate it from discretized
trajectories. We detail later in Equation (10.10) our approximation method based
on an integral formulation. It fits observed trajectories directly in state space.

10.3 The CoDA Learning Framework

We introduce CoDA, a new context-informed framework for learning dy-
namics on multiple environments. It relies on a general adaptation rule (Sec-
tion 10.3.1) and introduces two key properties: locality, enforced in the objective
(Section 10.3.2) and low-rank adaptation, enforced in the proposed model via
hypernetwork-decoding (Section 10.3.3). The validity of this framework for dy-
namical systems is analyzed in Section 10.3.4 and its benefits are discussed in
Section 10.3.5.

10.3.1 Adaptation Rule

The dynamics model gθ should adapt to new environments. Hence, we propose
to condition gθ on observed trajectories De,∀e ∈ E . Conditioning is performed via
an adaptation network Aπ, parametrized by π, which adapts the weights of gθ to an
environment e ∈ E according to

θe , Aπ(De) , θc + δθe, π , {θc, {δθe}e∈E} (10.4)

θc ∈ Rdθ are shared parameters, used as an initial value for fast adaptation to new
environments. δθe ∈ Rdθ are environment-specific parameters conditioned on De.
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10.3.2 Constrained Optimization Problem

Given the adaptation rule in Equation (10.4), we introduce a constrained opti-
mization problem which learns parameters π such that ∀e ∈ E , δθe is small and g

fits observed trajectories. It introduces a locality constraint with a norm ‖·‖:

min
π

∑
e∈E

‖δθe‖2 s.t. ∀Xe(t) ∈ De, dXe(t)

dt
= gθc+δθe(X

e(t))

We consider an approximation of this problem which relaxes the equality con-
straint with the MSE loss L in Equation (10.3).

min
π

∑
e∈E

(
L(θc + δθe,De) + λ‖δθe‖2

)
(10.5)

λ is a hyperparameter. For training, we minimize Equation (10.5) w.r.t. π over
training environments Etr. After training, θc is freezed. For adaptation, we mini-
mize Equation (10.5) over new environments Ead w.r.t. {δθe}e∈Ead .

The locality constraint in the training objective Equation (10.5) enforces δθe

to remain close to the shared θc solutions. It plays several roles. First, it fosters
fast adaptation by acting as a constraint over θc ∈ Rdθ during training s.t. min-
imas {θe?}e∈E are in a neighborhood of θc i.e. can be reached from θc with few
update steps. Second, it constrains the hypothesis space at fixed θc. Under some
assumptions, it can simplify the resolution of the optimization problem w.r.t. δθe

by turning optimization to a quadratic convex problem with an unique solution.
We show this property for our solution in Theorem 10.1. The positive effects of
this constraint will be illustrated on an ODE system in Section 10.3.3.

10.3.3 Context-Informed Hypernetwork

Solving Equation (10.5) involves learning δθe for each environment. For adap-
tation, δθe should be inferred from few observations of the new environment.
Learning such high-dimensional parameters is prone to over-fitting, especially
under scarce data. We propose a hypernetwork-based solution to solve efficiently
this problem by operating on a low-dimensional space. It yields fixed-cost adap-
tation and enables efficient sharing of information across environments.

Formulation We estimate δθe through a linear mapping of conditioning in-
formation, called context, learned from De and denoted ξe ∈ Rdξ . W =

(W1, · · · ,Wdξ) ∈ Rdθ×dξ is the weight matrix of the linear decoder s.t.

Aπ(De) , θc +Wξe, π , {W, θc, {ξe}e∈E} (10.6)
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Figure 10.1. – CoDA generates parameters θe of a prediction model g on environ-
ment e as θe = θc + Wξe. This model satisfies a low-rank property
i.e. θe − θc lies on a subspace of small dimension.

W is shared across environments and defines a low-dimensional subspaceW ,
Span(W1, ...,Wdξ), of dimension at most dξ, to which the search space of δθe is
restricted. ξe is specific to each environment and can be interpreted as learning
rates along the rows of W . In our experiments, dξ � dθ is small, at most 2. Thus,
adaptation to new environments only requires to learn very few parameters, which define
a completely new dynamics model g.

Aπ corresponds to an affine mapping of ξe parametrized by {W, θc}, a.k.a. a
linear hypernetwork. Note that hypernetworks (Ha et al. 2017b) have been de-
signed to handle single-environment problems and learn a separate context per
layer. Our formalism involves multiple environments and defines a context per
environment for all layers of g. Linearity of the hypernetwork is not restrictive as
contexts are directly learned through an inverse problem detailed in eqs. (10.7)
and (10.8), s.t. expressivity is similar to a nonlinear hypernetwork with a final
linear activation.
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Objectives We derive the training and adaptation objectives by inserting Equa-
tion (10.6) into Equation (10.5). For training, both contexts and hypernetwork are
learned with Equation (10.7):

min
θc,W,{ξe}e∈Etr

∑
e∈Etr

(
L(θc +Wξe,De) + λ‖Wξe‖2

)
(10.7)

After training, θc is kept fixed and for adaptation to a new environment, only the
context vector ξe is learned with:

min
{ξe}e∈Ead

∑
e∈Ead

(
L(θc +Wξe,De) + λ‖Wξe‖2

)
(10.8)

Implementation of eqs. (10.7) and (10.8) is detailed in Section 10.4. We apply gra-
dient descent. In Theorem 10.1, we show for ‖·‖= `2, that Equation (10.8) admits
an unique solution, recovered from initialization at 0 with a single preconditioned
gradient step, projected onto subspaceW defined by W .

Proposition 10.1 (Proof in Appendix E.2). Given {θc,W} fixed, if ‖·‖ = `2, then
Equation (10.8) is quadratic. If λ′W>W or H̄e(θc) = W>∇2

θL(θc,De)W are invertible
then H̄e(θc) + λ′W>W is invertible except for a finite number of λ′ values. The problem
in Equation (10.8) is then also convex and admits an unique solution, {ξe?}e∈Ead . With
λ′ , 2λ,

ξe∗ = −
(
H̄e(θc) + λ′W>W

)−1

W>∇θL(θc,De) (10.9)

Interpretation We now interpret CoDA by visualizing its loss landscape around
θc in Figure 10.2, following H. Li et al. (2018). We consider the Lotka-Volterra sys-
tem, described in Section 10.5.1. Loss values are projected onto subspace W ,
where dξ = 2. We make three observations. First, across environments, the loss
is smooth and has a single minimum around θc. Second, the local optimum of
the loss is close to θc across environments. Finally, the minimal loss value on W
around θc is low across environments. The two first properties were discussed
in Section 10.3.2 and are a direct consequence of the locality constraint on sub-
space W . When ‖·‖= `2, it makes the optimization problem in Equation (10.7)
quadratic w.r.t. ξe and convex under invertibility of H̄e(θc) + λ′W>W as detailed
in Theorem 10.1. We provided in Equation (10.9) the closed form expression of
the solution. It also imposes small ‖ξe‖ s.t. when minimizing the loss in Equa-
tion (10.7), θc is forced to be close to local optimas of all training environments.
The final observation illustrates that CoDA is able to find a subspaceW on which
there are environment-specific parameters with low loss values i.e. that low-rank
adaptation performs well. We provide in Appendix E.8, some further comparison
with the loss landscape of ERM, projected onto the Span of the two principal
gradient directions. We show that ERM does not find low loss values, as it aims
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at finding θc with good performance across environments, thus cannot model
several dynamics.
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Figure 10.2. – CoDA’s loss landscape centered in θc, marked with ×, for 3 envi-

ronments on the Lotka-Volterra ODE. Loss values are projected onto
subspace W , with dξ = 2. ∀e, → points to the local optimum θe?

with loss value reported in yellow.

10.3.4 Validity for Dynamical Systems

We further motivate low-rank decoding in our context-informed hypernetwork
approach by providing some evidence that gradients at θc across environments
define a low-dimensional subspace. We consider the loss L in Equation (10.3) and
define the gradient subspace in Theorem 10.2.

Definition 10.2 (Gradient directions). With L in Equation (10.3), ∀θc ∈ Rdθ param-
eterizing a dynamics model gθc , the subspace generated by gradient directions at
θc across environments E is denoted Gθc , Span({∇θL(θc,De)}e∈E).

We show, in Theorem 10.3, low-dimensionality of Gθc for linearly parametrized
systems.

Proposition 10.3 (Low-rank under linearity. Proof in Appendix E.2). Given a class
of linearly parametrized dynamics F with dp varying parameters, ∀θc∈Rdθ, subspace Gθc
in Theorem 10.2 is low-dimensional and dim(Gθc)≤dp�dθ.

The linearity assumption is not restrictive as it is present in a wide variety of
real-world systems e.g. Burger or Korteweg–De Vries PDE (M. Raissi et al. 2019),
convection-diffusion (Long et al. 2018), wave and reaction diffusion equations
(Yin et al. 2021b) etc. Under nonlinearity, we do not have the same theoretical
guarantee, yet, we show empirically in Appendix E.4 that low-dimensionality of
parameters of the dynamics model gθ still holds for several systems. This prop-
erty is comforted by recent studies that highlighted that gradients are low-rank
throughout optimization in single-domain settings, meaning that the solution
space is low-dimensional (Gur-Ari et al. 2019; C. Li et al. 2018; H. Li et al. 2018).
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In the same spirit as CoDA, this property was leveraged to design efficient solu-
tions to the learning problems (Frankle and Carbin 2019; Vogels et al. 2019).

10.3.5 Benefits of CoDA

We highlight the benefits of CoDA w.r.t. related methods, with further details
in Appendix E.1.1. The adaptation rule in Equation (10.4) is similar to the one
used in gradient-based meta-learning. Yet, our first order joint optimization prob-
lem in Equation (10.5) considerably simplifies the complex bi-level optimization
problem (Antoniou et al. 2019). Moreover, CoDA introduces the two key prop-
erties of locality constraint and low-rank adaptation which guarantee efficient
adaptation to new environments as discussed in Section 10.3.3. It generalizes con-
textual meta-learning methods (Garnelo et al. 2018; Zintgraf et al. 2019), which
also perform low-rank adaptation, via the hypernetwork decoder (details in Ap-
pendix E.1.2). Our decoder learns complex environment-conditional dynamics
models while controlling their complexity. CoDA learns context vectors through
an inverse problem as Zintgraf et al. (2019). This decoder-only strategy is par-
ticularly efficient and flexible in our setting. An alternative is to infer them via
a learned encoder of De as Garnelo et al. (2018). Yet, the latter was observed to
underfit (Kim et al. 2019), requiring extensive tuning of the encoder and decoder
architecture. CoDA is easy to implement and maintains expressivity with a linear
decoder.

10.4 Framework Implementation

We detail how to perform trajectory-based learning with our framework and
describe two instantiations of the locality constraint. We detail the corresponding
pseudo-code.

Trajectory-Based Formulation As derivatives in Equation (10.3) are not di-
rectly observed, we use in practice for training a trajectory-based formulation of
Equation (10.3), defined over N trajectories {Dei }Ni=1, discretized over a uniform
temporal and spatial grid. ∆t,∆s are the temporal and spatial resolutions and
T, S the temporal horizon and spatial grid size. Each trajectory includes T

∆t

(
S

∆s

)ds
states, where for PDEs ds is the spatial dimension and for ODEs ds = 0. With
tk = k∆t, and sj the jth spatial coordinate, we denote xe,i(tk, sj) the state value
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Table 10.1. – Test MSE (↓) in training environments Etr (In-Domain) and new adap-
tation environments Ead (Adaptation).

LV (×10−5) GO (×10−4) GS (×10−3) NS (×10−4)

In -domain Adaptation In -domain Adaptation In -domain Adaptation In -domain Adaptation

MAML 60 .3±1 .3 3150±940 57 .3±2 .1 1081±62 3 .67±0 .53 2 .25±0 .39 68 .0±8 .0 51 .1±4 .0
ANIL 381±76 4570±2390 74 .5±11 .5 1688±226 5 .01±0 .80 3 .95±0 .11 61 .7±4 .3 48 .6±3 .2
Meta -SGD 32 .7±12 .6 7220±4580 42 .3±6 .9 1573±413 2 .85±0 .54 2 .68±0 .20 53 .9±28 .1 44 .3±27 .1
LEADS 3 .70±0 .27 47 .61±12 .47 31 .4±3 .3 113 .8±41 .5 2 .90±0 .76 1 .36±0 .43 14 .0±1 .55 28 .6±7 .23

CAVIA-F iLM 4 .38±1 .15 8 .41±3 .20 4 .44±1 .46 3 .87±1 .28 2 .81±1 .15 1 .43±1 .07 23 .2±12 .1 22 .6±9 .88

CAVIA-Concat 2 .43±0 .66 6 .26±0 .77 5 .09±0 .35 2 .37±0 .23 2 .67±0 .48 1 .62±0 .85 25 .5±6 .31 26 .0±8 .24

CoDA-`2 1 .52±0 .08 1 .82±0 .24 2 .45±0 .38 1 .98±0 .06 1 .01±0 .15 0 .77±0 .10 9 .40±1 .13 10 .3±1 .48

CoDA-`1 1.35±0.22 1 .24±0 .20 2 .20±0 .26 1 .86±0 .29 0 .90±0 .057 0 .74±0 .10 8 .35±1 .71 9 .65±1 .37

in trajectory i from environment e at spatial coordinate sj and time tk. Our loss
writes as:

L(θ,De) =
N∑
i=1

(S/∆s)ds∑
j=1

T/∆t∑
k=1

∥∥∥Xe,i(tk, sj)− X̃e,i(tk, sj)
∥∥∥2

2

X̃e,i(tk) = Xe,i(tk−1) +

∫ tk

tk−1

gθ

(
X̃e,i(τ)

)
dτ (10.10)

where X(t) = [X(t, s1), · · · , X(t, s
(S/∆s)

ds )]> is the state vector over the spatial

domain at t. We apply for integration a numerical solver (E. Hairer et al. 2000) as
detailed later.

Locality Constraint Instead of penalizing λ‖Wξe‖2 in Equation (10.7), we
found it more efficient to penalize separately W and ξe. We thus introduce the
following regularization:

R(W, ξe) , λξ‖ξe‖2
2+λΩΩ(W ) (10.11)

It involves hyperparameters λξ, λΩ and a norm Ω(W ) which depends on the
choice of ‖·‖ in Equation (10.5). We consider two variations of ‖·‖. CoDA-`2 sets
‖·‖ , `2(·) and Ω , `2

2, constraining Wξe to a sphere. CoDA-`1 sets ‖·‖ , `1(·)
and Ω = `1,2 over rows i.e. Ω(W ) ,

∑dθ
i=1‖Wi,:‖2 to induce sparsity and find most

important parameters for adaptation. `1,2 constrains W to be axis-aligned; then
the number of solutions is finite as dim(W) is finite. Minimizing R(W, ξe) can be
interpreted as minimizing an upper-bound to ‖·‖, derived in appendix E.5 for
each variation.

Pseudo-code We solve Equation (10.7) for training and Equation (10.8) for
adaptation using eqs. (10.10) and (10.11) and Algorithm 10.1. We back-propagate
through the solver’s internals with torchdiffeq (R. T. Q. Chen 2021) and apply
exponential Scheduled Sampling (Goyal et al. 2016) to stabilize training.
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Figure 10.3. – Adaptation results with CoDA-`1 on LV. Parameters (β, δ) are sam-
pled in [0.25, 1.25]2 on a 51× 51 uniform grid, leading to 2601 adap-
tation environments Ead. • are training environments Etr. We report
MAPE (↓) across Ead (Top). On the bottom, we choose four of them
(×, e1–e4), to show the ground-truth (blue) and predicted (green)
phase space portraits. x, y are respectively the quantity of prey and
predator in the system in Equation (E.4).



10.5 experiments 115

Algorithm 10.1 CoDA Pseudo-code: Training and Adaptation
Training
Data: Etr ⊂ E , {De}e∈Etr with ∀e ∈ Etr,#De = N ;
Input: π = {W, θc, {ξe}e∈Etr} where W ∈ Rdθ×dξ , θc ∈ Rdθ are randomly initialized

and ∀e ∈ Etr, ξ
e = 0 ∈ Rdξ ;

while Not Converged do

π ← π − η∇π

(∑
e∈Etr

N∑
i=1

L(θc +Wξe,Dei )+R(W, ξe)
)

(10.12)

Adaptation
Data: e ∈ Ead; De where #De = N ;
Input: Trained W ∈ Rdθ×dξ , θc ∈ Rdθ and ξe = 0 ∈ Rdξ

while Not Converged do

ξe←ξe− η∇ξe
( N∑
i=1

L(θc +Wξe,Dei ) +R(W, ξe)
)

(10.13)

10.5 Experiments

We validate our approach on four classes of challenging nonlinear temporal and
spatiotemporal physical dynamics, representative of various fields e.g. chemistry,
biology and fluid dynamics. We evaluate in-domain and adaptation prediction
performance and compare them to related baselines. We also investigate how
learned context vectors can be used for system parameter estimation. We con-
sider a few-shot adaptation setting where only a single trajectory is available at
adaptation time on new environments.

10.5.1 Dynamical Systems

We consider four ODEs and PDEs described in Appendix E.6.1. ODEs include
Lotka-Volterra (LV, (Lotka 1925)) and Glycolitic-Oscillator (GO, (Daniels and Nemen-
man 2015)), modelling respectively predator-prey interactions and the dynamics
of yeast glycolysis. PDEs are defined over a 2D spatial domain and include Gray-
Scott (GS, (Pearson 1993)), a reaction-diffusion system with complex spatiotem-
poral patterns and the challenging Navier-Stokes system (NS, (Stokes 1851)) for
incompressible flows. All systems are nonlinear w.r.t. system states and all but
GO are linearly parametrized. The analysis in Section 10.3.4 covers all systems
but GO. Experiments on the latter show that CoDA also extends to nonlinearly
parameterized systems.
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10.5.2 Baselines

We consider three families of baselines, compared in Appendix Figure E.1 and
detailed in Section 10.6. First, Gradient-Based Meta-Learning (GBML) methods
MAML (Finn et al. 2017), ANIL (Rusu et al. 2019) and Meta-SGD (Zhenguo Li et al.
2017). Second, the Multi-Task Learning method LEADS (Yin et al. 2021a). Finally,
the contextual meta-learning method CAVIA (Zintgraf et al. 2019), with condi-
tioning via concatenation (Concat) or linear modulation of final hidden features
(FiLM, (Perez et al. 2018)). Baselines consider also the loss in Equation (10.10).

10.5.3 Architecture, Optimizer and Hyperparameters

We use MLPs for ODEs, ConvNets for GS and Fourier Neural Operators Zongyi
Li et al. 2021 for NS (details in Appendix E.6.2). Adam optimizer Diederik P.
Kingma and Ba 2015 is used for all datasets. We tuned dξ and observed that dξ =

dp, the number of system parameters that vary across environments, performed
best. This is reported in an ablation study in Section 10.5.5. Solvers, optimization
and regularization hyperparameters are detailed in Appendix E.6.2.

10.5.4 Experimental Setting

Each environment e ∈ E is defined by system parameters and we denote pe ∈
Rdp those that vary across E . dp represents the degrees of variations in F and is
set to dp = 2 for LV, GO, GS and dp = 1 for NS. We define in Appendix E.6.1 for
each system the number of training and adaptation environments (#Etr and #Ead)
and the corresponding parameters. We also define in Appendix E.6.1 the number
of training trajectories N per environment and the distribution p(X0) from which
are sampled initial conditions.

We perform two types of evaluation: in-domain generalization on Etr (In-domain)
and out-of-domain adaptation to new environments Ead (Adaptation). Evaluation is
performed on 32 new test trajectories per environment with initial conditions sam-
pled from p(X0). We report, in our tables, mean and standard deviation of Mean
Squared Error (MSE) across test trajectories (Equation (10.10)) over four different
seeds. We report, in our figures, Mean Absolute Percentage Error (MAPE) in %

over trajectories, as it allows to better compare performance across environments
and systems. We define MAPE(z, y) between a d-dimensional input z and target y
as 1

d

∑
j=1...d:yj 6=0

|zj−yj |
|yj | . Over a trajectory, it extends into

∫
t∈I MAPE(X̃(t), X(t))dt,

with X̃ in Equation (10.10).
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10.5.5 Generalization Results

In Table 10.1, we observe that CoDA improves significantly test MSE w.r.t. our
baselines for both In-Domain and Adaptation settings. We visualize trajectories for
PDE systems in Appendix E.7 and also notice improvements. Across datasets, all
baselines are subject to a drop in performance between In-Domain and Adapta-
tion while CoDA maintains remarkably the same level of performance in both
cases. In more details, GBML methods (MAML, ANIL, Meta-SGD) overfit on
training In-Domain data especially when data is scarce. This is the case for ODEs
which include less system states for training than PDEs. LEADS performs better
than GBML but overfits for Adaptation as it does not adapt efficiently. CAVIA-
Concat/FiLM perform better than GBML and LEADS, as they leverage a context,
but are less expressive than CoDA. Both variations of CoDA perform best as they
combine the benefits of low-rank adaptation and locality constraint. CoDA-`1 is
better than CoDA-`2 as it induces sparsity, further constraining the hypothesis
space.

We evaluate in Figure 10.3 CoDA-`1 on LV for Adaptation over a wider range of
adaptation environments (#Ead = 51×51 = 2601). We report mean MAPE over Ead

(Top). We observe three regimes: inside the convex hull of training environments
Etr, MAPE is very low; outside the convex-hull, MAPE remains low in a neighbor-
hood of Etr; beyond this neighborhood, MAPE increases. CoDA thus generalizes
efficiently in the neighborhood of training environments and degrades outside
this neighborhood. We plot reconstructed phase space portraits (Bottom) on four
selected environments and observe that the learned solution closely follows the
target trajectories.

1 2 3 4 5
← dξ →

1.0%
1.5%

2.0%

MAP
E(%

)

LV (dc = 2)
LV (dc = 4)
GO (dc = 2)

Figure 10.4. – Dimension of the context vectors (dξ) and test In-Domain MAPE (↓)
with CoDA-`1. “?” is the minimum of MAPE.
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Table 10.2. – `2 locality constraint and In-Domain test MSE (↓).

LV (×10−5) GO (×10−4)

CoDA W/o `2 With `2 W/o `2 With `2

Full 2 .28±0 .29 1 .52±0 .08 2 .98±0 .71 2 .45±0 .38

F irstLayer 2 .25±0 .29 2 .41±0 .23 2 .38±0 .71 2 .12±0 .55
LastLayer 1 .86±0 .24 1 .27±0 .03 28 .4±0 .60 28 .4±0 .64

10.5.6 Ablation Studies

We perform two studies on LV and GO. In a first study in Table 10.2, we eval-
uate the gains due to using `2 locality constraint on In-Domain evaluation. On
line 1 (Full), we observe that CoDA-`2 performs better than CoDA without local-
ity constraint. Prior work perform adaptation only on the final layer with some
performance improvements on classification or Hamiltonian system modelling
(Raghu et al. 2020; Y. Chen et al. 2020). In order to evaluate this strategy, we man-
ually restrict hypernetwork-decoding to only one layer in the dynamics model gθ,
either the first layer (line 2) or the last layer (line 3). We observe that the impor-
tance of the layer depends on the parameterization of the system: for LV, linearly
parametrized, the last layer is better while for GO, nonlinearly parametrized, the
first layer is better. CoDA-`1 generalizes this idea by automatically selecting the
useful adaptation subspace via `1,2 regularization, offering a more flexible ap-
proach to induce sparsity.

In a second study in Section 10.5.5, we analyze the impact on MAPE of the
dimension of context vectors dξ for CoDA-`1. We recall that dξ upper-bounds the
dimension of the adaptation subspaceW and was cross-validated in Table 10.1. In
the following, dp is the number of parameters that vary across environments. We
illustrate the effect of the cross-validation on MAPE for dp = 2 on LV and GO as in
Section 10.5.5 and additionally for dp = 4 on LV. We observe in Section 10.5.5 that
the minimum of MAPE is reached for dξ = dp with two regimes: when dξ < dp,
performance decreases as some system dimensions cannot be learned; when
dξ > dp, performance degrades slightly as unnecessary directions of variations
are added, increasing the hypothesis search space. This study shows the validity
of the low-rank assumption and illustrates how the unknown dp can be recovered
through cross-validation.
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10.5.7 Parameter Estimation

In Figure 10.5a (Left), we visualize on LV the learned context vectors ξe (Red)
and the system parameters pe (Black), ∀e ∈ Etr ∪ Ead. We observe empirically a
linear bijection between these two sets of vectors. Such a correspondence being
learned on the training environments, we can use the correspondence to verify
if it still applies to the new adaptation environments. Said otherwise, we can
check if our model is able to infer the true parameters for new environments.
We evaluate in Table 10.3 the parameter estimation MAPE over LV, GS and NS.
Figure 10.5 displays estimated parameters along estimation MAPE for LV and NS.
This visualization is provided for GS in Figure E.6 (Appendix E.9). Experimen-
tally, we observe low MAPE inside the convex-hull of training environments and
even outside it. This shows that CoDA identifies accurately the unknown system
parameters pe with little supervision.

We justify these empirical observations theoretically in Theorem 10.5 under the
conditions in Theorem 10.4:

Assumption 10.4. (a) the dynamics in F are linear w.r.t. inputs and system pa-
rameters, (b) the dynamics model g and hypernetwork A are linear, (c) ∀e ∈ E ,
the system parameters of f e, pe ∈ Rdp , are unique, (d) the dimension of context
vectors dξ is fixed to dp, (e) the system parameters pi of dynamic fi ∈ B, where B
is a basis of F , are known.

Proposition 10.5 (Identification under linearity. Proof in Appendix E.3). Under
Theorem 10.4, system parameters are perfectly identified on new environments if the
dynamics model g and hypernetwork A satisfy ∀fi ∈ B, gA(pi) = fi.

Intuitively, Theorem 10.5 says that given some observations representative of the
degrees of variation of the data (a basis of F) and given the system parameters
for these observations (condition (d) in Theorem 10.4), we are guaranteed to
recover the parameters of new environments for a family systems. This strong
guarantee requires strong conditions described in Theorem 10.4. (a), (b) state
that the systems should be linear w.r.t. inputs and that the dynamics model
should be linear too. Linearity of the hypernetwork is not an issue as detailed in
Section 10.3.3. (c) applies to several real-world systems used in our experiments
(cf. Appendix E.3 lemmas E.1 and E.2). (d) is not restrictive as we showed that dp
is recovered through cross-validation (Section 10.5.5). We propose an extension of
Theorem 10.5 to nonlinear systems w.r.t. inputs and nonlinear dynamics model g
in Appendix E.3 Theorem E.4. This alleviates the linearity assumption in (a), (b)
and fits our experimental setting.
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Figure 10.5. – Parameter estimation with CoDA-`1 in new adaptation environ-
ments on LV (a) and NS (b). On LV, we visualize, on the left, context
vectors ξ (red) and true parameters (β, δ) (black). On other figures,
we visualize estimated parameters with corresponding estimation
MAPE (↓). • are training environments Etr with known parameters.
- - delimits the convex hull of Etr.

10.6 Related Work

We review OoD, Multi-Task Learning (MTL) and meta-learning methods and
extensions to dynamical systems.

Learning in Multiple Environments OoD methods extend the ERM objective to
learn domain invariants e.g. via robust optimization (Sagawa et al. 2020) or Invari-
ant Risk Minimization (IRM) Arjovsky et al. (2019) and Krueger et al. (2021). How-
ever, they are not adapted to our problem as an unique model is learned. CoDA is
closer to meta-learning and MTL. A standard meta-learning approach is gradient-
based meta-learning (GBML), which learns a model initialisation through bi-level
optimization. GBML can then adapt to a new task with few gradient steps. The
standard GBML method is MAML (Finn et al. 2017), extended in various work.
ANIL (Raghu et al. 2020) restricts meta-learning to the last layer of a classifier
while other work improve adaptation by preconditioning the gradient (Y. Lee



10.7 conclusion 121

Table 10.3. – Parameter estimation MAPE (↓) for CoDA-`1 on LV (#Etr = 9), GS
(#Etr = 4) and NS (#Etr = 5).

In -convex -hull Out -of -convex -hull Overall

MAPE (%) #Ead MAPE (%) #Ead MAPE (%)

LV 0 .15±0 .11 625 0 .73±1 .33 1976 0 .59±1 .33

GS 0 .37±0 .25 625 0 .74±0 .67 1976 0 .65±0 .62

NS 0 .10±0 .08 40 0 .51±0 .35 41 0 .30±0 .33

and Choi 2018; Flennerhag et al. 2020; Park et al. 2019) e.g. Meta-SGD (Zhen-
guo Li et al. 2017) learns dimension-wise inner-loop learning rates. Contextual
meta-learning approaches in Zintgraf et al. (2019) and Garnelo et al. (2018) parti-
tion parameters into context parameters, adapted on each task, and meta-trained
parameters, shared across tasks. CoDA follows the same objective of learning
a low-dimensional representation of each task but generalizes these approaches
with hypernetworks. For MTL, a standard approach is hard-parameter sharing
which shares earlier layers of the network (Caruana 1997). Several extensions were
proposed to learn more efficiently from a set of related tasks (S.-A. Rebuffi et al.
2017; S. Rebuffi et al. 2018). Yet, MTL does not address adaptation to new tasks,
which is the focus of CoDA. Some extensions have also considered this problem,
mainly for classification (H. Wang et al. 2021; Requeima et al. 2019).

Generalization for Dynamical Systems Only few work have considered gener-
alization for dynamical systems. LEADS (Yin et al. 2021a) is a MTL approach that
performs adaptation in functional space. CoDA operates in parameter space, mak-
ing adaptation more expressive and efficient, and scales better with the number of
environments as it does not require training a full new network per environment
as LEADS does. A second work is DyAd (R. Wang et al. 2021), a context-aware
meta-learning method. DyAd adapts the dynamics model by decoding a time-
invariant context, obtained by encoding observed states. However, unlike CoDA,
DyAd uses weak supervision obtained from physics quantities to supervise the
encoder, which may not always be possible. Moreover, it performs AdaIN modula-
tion (instance normalization + FiLM), a particular case of hypernetwork decoding,
which performed worse than CoDA in our experiments.

10.7 Conclusion

We introduced CoDA, a new framework to learn context-informed data-driven
dynamics models on multiple environments. CoDA generalizes with little retrain-
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ing and few data to new related physical systems and outperforms prior methods
on several real-world nonlinear dynamics. Many promising applications of CoDA
are possible, notably for spatiotemporal problems, e.g. partially observed systems,
reinforcement learning, or NN-based simulation.
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Chapter abstract

We consider the task of feature selection for reconstruction which consists in
choosing a small subset of features from which whole data instances can be
reconstructed. This is of particular importance in several contexts involving
for example costly physical measurements, sensor placement or information
compression. To break the intrinsic combinatorial nature of this problem, we
formulate the task as optimizing a binary mask distribution enabling an accu-
rate reconstruction. We then face two main challenges. One concerns differen-
tiability issues due to the binary distribution. The second one corresponds to
the elimination of redundant information by selecting variables in a correlated
fashion which requires modeling the covariance of the binary distribution. We
address both issues by introducing a relaxation of the problem via a novel
reparameterization of the logitNormal distribution. We demonstrate that the
proposed method provides an effective exploration scheme and leads to efficient
feature selection for reconstruction through evaluation on several high dimen-
sional image benchmarks. We show that the method leverages the intrinsic
geometry of the data, facilitating reconstruction.

The work in this chapter has led to the publication of a conference paper:

Jérémie Dona and Patrick Gallinari (2021). “Differentiable Feature Se-
lection, a Reparameterization Approach”. In: The European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases. European Conference on Machine Learning, Principles, and
Practice of Knowledge Discovery in Databases. Vienne, Austria

125
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11.1 Introduction

Learning sparse representations of data finds essential real-world applications
as in budget learning where the problem is limited by the number of features
available or in embedded systems where the hardware imposes computational
limitations. Feature selection serves similar objectives giving insights about vari-
able dependencies and reducing over-fitting (Guyon and Elisseeff 2003). Com-
bined with a reconstruction objective, feature selection is a sensible problem
when collecting data is expensive which is often the case with physical processes.
For example, consider optimal sensor placement. This task consists in optimizing
the location of sensors measuring a scalar field over an area of interest (e.g pres-
sure, temperature) to enable truthful reconstruction of the signal on the whole
area. It finds applications in climate science (Haeberli et al. 2007; McPhaden et
al. 2009), where key locations are monitored to evaluate the impact of climate
change on snow melt and Monsoon. These examples illustrate how feature selec-
tion for reconstruction may be critically enabling for large scale problems where
measurements are costly.

Common practices for feature selection involves a `1-regularization over the
parameters of a linear model to promote sparsity (Tibshirani 1996). Initiated by
(Tibshirani 1996), several refinements have been developed for feature selection.
For example, (Yang et al. 2019) employs a `2,1-norm in a linear auto-encoder. (Han
et al. 2017) impose a `1-penalty on the first layer of a deep auto-encoder to select
features from the original signal. Finally, Group-Lasso methods extended lasso
by applying the sparse `1-penalty over pre-computed chunks of variables to take
prior knowledge into account while selecting features. Theses approaches suffer
from two main limitations: the design of the groups for Group-Lasso methods and
the loss of the intrinsic structure of the data as both (Yang et al. 2019; Han et al.
2017) treat the input signal as a vector. Moreover, non-linear `1 based methods for
feature selection and reconstruction are intrinsically ill posed. Like Group-Lasso
methods, our proposition aims at selecting variables in a correlated fashion, to
eliminate redundant information, while leveraging the structure of the data. We
illustrate its efficiency on images but it can be adapted to exploit patterns in other
types of structured data as graphs.

We propose a novel sparse embedding method that can tackle feature selection
through an end-to-end-approach. To do so, we investigate the learning of binary
masks sampled from a distribution over binary matrices of the size of the image,
with 1 indicating a selected pixel. We alleviate differentiability issues of learning
categorical variables by relying on a continuous relaxation of the problem. The
learned latent binary distribution is optimized via a stochastic exploration scheme.
We consider the dependency between the selected pixels and we propose to
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sample the pixels in the mask in a correlated fashion to perform feature selection
efficiently. Accordingly, we learn a correlated logitNormal distribution via the
reparameterization trick allowing for an efficient exploration of the masks space
while preserving structural information for reconstruction. Finally, sparsity in the
embedding is enforced via a relaxation of the `0-norm. To summarize, we aim at
learning a binary mask for selecting pixels from a distribution of input signals x,
with x ∈ Rn×n for images, enabling an accurate reconstruction. We formulate our
problem as learning jointly a parametric sampling operator S which takes as input
a random variable z ∈ Z ⊆ Rd and outputs binary masks, i.e. S : Z → {0, 1}n×n.
We introduce two ways to learn the sampling operator S. For reconstruction, an
additional operator denoted G learns to reconstruct the data x from the sparse
measurements s � x. Our proposed approach is fully differentiable and can be
optimized directly via back-propagation. Our main contributions are:

• We introduce a correlated logitNormal law to learn sparse binary masks,
optimized thanks to the reparameterization trick. This reparameterization is
motivated statistically. Sparsity is enforced via a relaxed `0-norm.

• We formulate the feature selection task for 2-D data as the joint learning of a
binary mask and a reconstruction operator and propose a novel approach to
learn the parameters of the considered logitNormal law.

• We evidence the efficiency of our approach on several datasets: Mnist, CelebA
and a complex geophysical dataset.

11.2 Related Work

Our objective of learning binary mask lies in between a few major domains:
density modeling, feature selection and compressed sensing.

Density Modeling via Reparameterization

Sampling being not differentiable, different solutions have been developed in
order to estimate the gradients of the parameters of a sampling operator. Gradient
estimates through score functions (Williams 1992; Yoshua Bengio et al. 2013b) usu-
ally suffer from high variance or bias. Reparameterization (Diederik P. Kingma
and Welling 2013) provides an elegant way to solve the problem. It consists in sam-
pling from a fixed distribution serving as input to a parametric transformation
in order to obtain both the desired distribution and the gradient with respect to
the parameters of interest. However, the learning of categorical variables remains
tricky as optimizing on a discrete set lacks differentiability. Continuous relaxation
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of discrete variables enables parameters optimization through the reparameteriza-
tion trick. Exploiting this idea, (Maddison et al. 2016; Jang et al. 2017) developed
the concrete law as a reparameterization of the Gumbel max variable for sampling
categorical variables (Luce 1959). Alternative distributions, defining relaxations of
categorical variables can be learned by reparameterization such as the Dirichlet or
logitNormal distribution (Figurnov et al. 2018; Kočiský et al. 2016). Nonetheless,
most previous approaches learn factorized distribution, thus selecting variables
independently when applied to a feature selection task. In contrast, we rely on
the logitNormal distribution to propose a reparameterization scheme enabling
us to sample the mask pixels jointly, taking into account dependencies between
them and exploiting the patterns present in 2-D data.

Feature Selection

Wrapper methods, (Guyon and Elisseeff 2003; Xing et al. 2001; Maldonado and
Weber 2009) select features for a downstream task whereas filter methods (X. He
et al. 2006; Lei Yu and H. Liu 2003; Koller and Sahami 1996) rank the features
according to tailored statistics. Our work belongs to the category of embedded
methods, that address selection as part of the modeling process. `1-penalization
over parameters, as for instance in Lasso and in Group Lasso variants (Yuan and
Y. Lin 2006; Simon et al. 2013; Y. Zhou et al. 2010), is a prototypical embedded
method. `1-penalty was used for feature selection for example in (P. Zhu et al.
2015; Yang et al. 2019) learning a linear encoding with a `2,1-constraint for a
reconstruction objective. Auto-encoders (G. Hinton and R. Salakhutdinov 2006)
robustness to noise and sparsity is also exploited for feature selection (Vincent
et al. 2008; Makhzani and Frey 2013). For example, AEFS (Han et al. 2017) extends
Lasso with non linear auto-encoders, generalizing (P. Zhu et al. 2015). Another
line of work learns embedding preserving local properties of the data and then
find the best variables in the original space to explain the learned embedding,
using either `1 or `2,1 constraints (C. Deng et al. 2010; Hou et al. 2014). Closer to
our work, (Abid et al. 2019) learn a matrix of weights m, where each row follow
a concrete distribution (Maddison et al. 2016). That way each row of matrix m

samples one feature in x. The obtained linear projection m.x is decoded by a
neural network, and m is trained to minimize the `2-loss between reconstructions
and targets. Because x is treated as a vector, here too, the structure of the data is
ignored and lost in the encoding process. Compared to these works, we leverage
the dependencies between variables in the 2-D pixel distribution, by sampling
binary masks via an adaptation of the logitNormal distribution.
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Compressed Sensing

Our work is also related to compressed sensing (CS) where the objective is
to reconstruct a signal from limited (linear) measurements (Donoho 2006). Deep
learning based compressed sensing algorithms have been developed recently:
(Bora et al. 2017) use a pre-trained generative model and optimize the latent code
to match generated measurements to the true ones; The measurement process can
be optimized along with the reconstruction network as in (Wu et al. 2019). Finally,
(Manohar et al. 2018) use a CS inspired method based on the pivots of a QR
decomposition over the principal components matrix to optimize the placement
of sensors for reconstruction, but scales poorly for large datasets. Our approach
differs from CS. Indeed, for CS, measurements are linear combinations of the
signal sources, whereas we consider pixels from the original image. Thus, when
CS aims at reconstructing from linear measurements, our goal is to preserve
the data structural information to select a minimum number of variables for
reconstruction.

11.3 Method

We now detail our framework to learn correlated sparse binary masks for fea-
ture selection and reconstruction through an end-to-end approach. The choice of
the logitNormal distribution, instead of the concrete distribution (Maddison et al.
2016), is motivated by the simplicity to obtain correlated variables thanks to the
stability of independent Gaussian law by addition as detailed below. We exper-
imentally show in section 11.4 that taking into account such correlations helps
the feature selection task. This section is organized as follows : we first introduce
in section 11.3.1 some properties of the logitNormal distribution and sampling
method for this distribution. We detail in section 11.3.2 our parameterization for
the learning of the masks distribution. Finally, in section 11.3.3 we show how to
enforce sparsity in our learned distribution before detailing our reconstruction
objective in section 11.3.4.

11.3.1 Preliminaries: logitNormal Law on [0, 1]

Our goal is to sample a categorical variable in a differentiable way. We propose
to parameterize the sampling on the simplex by the logitNormal law, introduced
in (Aitchison and Shen 1980). We detail this reparameterization scheme for the uni-
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dimensional case since we aim at learning binary encodings. It can be generalized
to learn k-dimensional one-hot vector. Let z ∼ N (µ, σ), and Y defined as:

Y = sigmoid(z) (11.1)

Then Y is said to follow a logitNormal law. This distribution defines a probabil-
ity over [0, 1], admits a density and its cumulative distribution function has an
analytical expression used to enforce sparsity in section 11.3.3.

This distribution can take various forms as shown in fig. 11.1 and be flat as
well as bi-modal. By introducing a temperature in the sigmoid so that we have,
sigmoidλ(z) = 1

1+exp−z/λ
, we can polarize the logitNormal distribution. In Theo-

rem 11.1 we evidence the link between the 0-temperature logitNormal distribution
and Bernoulli distribution:

Proposition 11.1 (Limit Distribution). Let W ∈ Rn be a vector and b ∈ R a scalar. Let
Y = sigmoidλ(W.z

T + b) , where z ∼ N (0, In), when λ decrease towards 0, Y converges
in law towards a Bernoulli distribution and we have:

lim
λ→0

P(Y = 1) = 1− Φ(
−b√∑
i

w2
i

) (11.2)

lim
λ→0

P(Y = 0) = Φ(
−b√∑
i

w2
i

) (11.3)

Where Φ is the cumulative distribution function of the Normal law N (0, 1),

Theorem 11.1 characterizes the limit distribution as the temperature goes down
to 0, and Y defines a differentiable relaxation of a Bernoulli variable. This propo-
sition is used to remove randomness in the learned distribution, see section 11.4.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4
: 0, : 1.78
: 0, : 3
: 2, : 1

Figure 11.1. – Density of the logitNormal law for various couple (µ, σ): (µ = 0, σ =
1.78) (dashed line), (µ = 0, σ = 3) (dotted line) (µ = 2, σ = 1)
(dotted and dashed).

We relax the objective of learning of a binary mask in {0, 1} by learning in [0, 1]

using the logitNormal law. Let m ∈ N, be the dimension of the desired logitNor-
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mal variable Y . A simple solution for learning the logitNormal distribution of the
masks is via independent sampling.

Independent Sampling

A common assumption is that the logitNormal samples originate from a fac-
torized Normal distribution (Kočiský et al. 2016). Thus, the learned parameters
of the distribution are: the average µ ∈ Rm and the diagonal coefficients of the
covariance matrix σ ∈ Rm, according to:

Y = sigmoidλ(µ+ z � σ) (11.4)

where � is the element-wise product and Y ∈ Rm. Note that, for feature selection
on images, one aims at learning a binary mask and thus the latent space has the
same dimension as the images, i.e. m = n× n, then z ∈ Rn×n.

This sampling method has two main drawbacks. First, the coordinates of z are
independent and so are the coordinates of Y , therefore such sampling scheme
does not take correlations into account. Also, the dimension of the sampling space
Z is the same as Y which might be prohibitive for large images.

We address both limitations in the following section, by considering the rela-
tions between the pixel values. In that perspective, Group-Lasso selects variables
among previously designed group of variables (Yuan and Y. Lin 2006), reflecting
different aspects of the data. Similarly, we want to select variables evidencing
different facets of the signal to be observed. Indeed, finding the best subset of
variables for the reconstruction implies to eliminate the redundancy in the signal
and to explore the space of possible masks. We propose to do so by selecting the
variables in a correlated fashion, avoiding the selection of redundant information.

Correlated Sampling:

To palliate the limitations of independent sampling, we model the covariance
between latent variables by learning linear combinations between the variables
in the prior space Z . Besides, considering dependencies between latent variables,
this mechanism reduces the dimension of the sampling space Z , allowing for a
better exploration of the latent space. In order to generate correlated variables
from a lower dimensional space, we investigate the following transformation: let
z ∼ Nd(0, Id) ∈ Z = Rd with d << m, W ∈Mm,d(R) a weight matrix of size m× d
and b ∈ Rm a real vector, then

Y = sigmoidλ(Wz + b) (11.5)
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represents m-one dimension logitNormal laws due to the stability of independent
Gaussian laws by addition. However, the Normal law induced by Wz+ b has now
a full covariance matrix and not only diagonal coefficient as in eq. (11.4). This
reparameterization provides a simple way to sample correlated (quasi)-binary
variables, even for high dimension latent space, i.e with m large. Compared to
(Abid et al. 2019), our proposition offers a significant advantage for feature selec-
tion in images. Indeed, let G be the neural network aiming to reconstruct data x
from the selected variable. With our proposition G can access a sparse version of
the original signal Y � x and can thus leverage both the pixel values and their
position in the image for reconstruction. In (Abid et al. 2019) only the selected
feature values without structural information are available for the reconstruction.

11.3.2 Parameterizing logitNormal Variables for Feature Selec-
tion

Now we have established how to compute correlated logitNormal variables
following eq. (11.5), we detail our parameterization for learning. Let S : Z →
[0, 1]n×n be our sampling operator that generates a binary mask from a random
sample z. We consider two approaches to parameterize S so that it follows a
logitNormal law. Our first proposition denoted vanilla parameterization directly
optimizes W and b from eq. (11.5), while our second approach proposes to explore
and optimize the spaces of linear combinations W and biases b.

Recontruction Sampling

Figure 11.2. – Algorithmic flow of our framework for feature selection for recon-
struction. Sθ(z) has a correlated logitNormal distribution. We sam-
ple z ∼ N (0, 1). S̄θ(z) defines the binary masks and Gφ estimate x
from xobs = S̄θ(z)� x.
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Vanilla Parameterization:

A simple approach is to parameterize S as Sθ according to eq. (11.5). Then,
the optimized parameters are: θ = (W, b) with W ∈Mn×n,d(R) and b ∈ Rn×n. This
sampling process can be summarized by eq. (11.6):


Initialize W ∈Mn×n,d(R), b ∈ Rn×n

z ∼ N (0, Id)

Sθ(z) = sigmoid(W.z + b)

(11.6a)

(11.6b)

In that case each variable in Sθ(z) follows a logitNormal law. The selected
variables are indicated for Sθ = 1. The optimization process allows two degrees
of freedom (b and W ) for the control of the variance, of the covariance and of the
average of the variables of the masks. Note that, this parameterization corresponds
to a linear layer followed by a sigmoid activation so that besides tractability for the
distribution of Y , it presents the advantage of a simple implementation. Unlike
(Abid et al. 2019), our proposition preserves the structure of the data.

HyperNetworks Parameterization:

Aiming to learn a matrix W and a bias vector b that fully characterizes our
logitNormal law as eq. (11.5), we leveraged in eq. (11.6) the stability of indepen-
dent Gaussian law by addition. However, the space of the linear combinations
to be learned is high dimensional and structured, hence hard to learn. Also, the
optimization of the parameterization as eq. (11.6) is highly dependent on the
initialization, as we optimize W and b from a (randomly) chosen start point.
Therefore, we want to be able to reach a wider space of parameters W, b. To do
so, we build on (Karras et al. 2019) that successfully leverages latent code pre-
processing with neural network in the context of adversarial learning for image
generation, and (Ha et al. 2017a) where a neural network generates the weights
of another neural network to facilitate learning. Therefore, instead of learning
directly W, b as in the vanilla approach we propose to learn to sample on the
space of linear combination W and biases b. The core idea is to leverage neural
networks expressivity to enrich the space of reachable matrices W and vectors b
compared to the vanilla approach. To do so we use the random sample z to extract
a representation vector r ∈ Rk. This representation r serves as input to neural net-



134 feature selection via reparameterization

works Fb, FW providing estimates of W and b. To sum up, in the HyperNetwork
approach we learn a logitNormal law according to:

z ∼ N (0, Id), r = Frep(z) ∈ Rk,

W = FW (r) ∈Mn×n,d(R),

b = Fb(r) ∈ Rn×n, and finally:

Sθ(z) = sigmoid(Fb(r) + FW (r).z),

(11.7a)

(11.7b)

(11.7c)

(11.7d)

Note that as desired Sθ(z) follows a logitNormal law LN (Fb(r), FW (r)T .FW (r)).
This proposition presents several advantages. First, in eq. (11.6) W is a randomly
initialized weight matrix, then we only explore one trajectory of optimization
from this (randomly chosen) starting point. Also, instead of learning a distribu-
tion of masks, this parameterization learns a distribution of transport matrices
and biases. Therefore, both FW and Fb stochastically explore a direction for each
sample of z, providing more feedback with respect to the objective of feature
selection for reconstruction. This parameterization of W and b offers a way to
explore efficiently the space of biases and linear combinations. Also, because it
rely on matrix multiplication, this procedure is computationally barely less effi-
cient than the naive one when FW and Fb are small neural networks. We show
experimentally the superiority of this approach in section 11.4.

11.3.3 Sparsity Constraint: `0-Relaxation

We detail our approach promoting sparsity. Frequently, sparsity in regression
settings is enforced thanks to a `1 penalty on the parameters. However, `1 ap-
proaches may suffer from a shrinking effect due to ill-posedness. Consequently,
we introduce an alternative approximation of the `0-formulation better suited
to our feature selection application: we minimize the expected `0-norm, i.e the
probability of each variable in our binary mask to be greater than 0. Thus, we
need a non zero probability of sampling 0 which is not the case with the current
scheme. Accordingly, we introduce a stretching scheme to obtain a non-zero mass
at points 0 and 1 while maintaining differentiability.

Stretched Distribution

To create a mass at 0, we proceed as in (Louizos et al. 2017). Let Y ∈ [0, 1]m be
a logitNormal variable, γ < 0 and η > 1 and HT be the hard-threshold function
defined by HT (Y ) = min(max(Y, 0), 1), the stretching is defined as:

Ȳ = HT{(η − γ)Y + γ} (11.8)
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Thanks to this stretching of our distribution, we have a non zero probability to be
zero, i.e P(Ȳ = 0) > 0 and also P(Ȳ = 1) > 0. We can now derive a relaxed version
of the `0-norm penalizing the probability of the coordinates of Ȳ .

Sparsity Constraint:

Let L0(Ȳ ) the expected `0-norm of our stretched output Ȳ . Using the notation
in eq. (11.8), we have:

L0(Ȳ ) = E[`0(Ȳ )] =
m∑
i=1

P(Ȳi > 0) =
m∑
i=1

1− FY (
−γ
η − γ ), (11.9)

where FY denotes the cumulative distribution function (CDF) of Y . This loss
constrains the random variable Y to provide sparse outputs as long as we can
estimate FY in a differentiable way. In the case of the logitNormal law, we maintain
tractability as Y satisfies eq. (11.5) or eq. (11.4). Thus, for our m-dimensional
logitNormal law defined as in eq. (11.5), we have:

L0(Ȳ ) =
∑
i

1− Φ
( log(−γ

η
)− b√∑

j

W 2
j,i

)
, (11.10)

where Φ is the CDF of the unitary Normal law. Minimizing eq. (11.10) promotes
sparsity in the law of Y by minimizing the expected true `0-norm of the realisation
of the random variable Y . We have developed a constraint that promotes sparsity
in a differentiable way. Now we focus on how to learn efficiently the parameters
of our correlated logitNormal law.

11.3.4 Reconstruction for Feature Selection

We have designed a sparsity cost function and detailed our parameterization
to learn our sampling operator, we focus on the downstream task. Consider data
(xi, yi)i∈[1..N ], consisting in paired input x and output y. Feature selection consists
in selecting variables in x with a mask s, so that the considered variables: s � x
explain at best y. Let G be a prediction function and L a generic cost functional,
feature selection writes as:

min
s,f

Ex,y L(G(s� x), y) s.t ||s||0< λ, (11.11)
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In this work we focus on a reconstruction as final task, i.e y = x. Besides the
immediate application of such formulation to optimal sensors placement and
data compression, reconstruction as downstream task requires no other source
of data to perform feature selection. Naturally, this framework is adaptable to
classification tasks. As a sparse auto-encoding technique, feature selection with
a reconstruction objective aims at minimizing the reconstruction error while con-
trolling the sparsity. In this case Gφ : Rn×n → Rn×n is our reconstruction network
(of parameter φ) taking as inputs the sparse image. The feature selection task with
an `2-auto-encoding objective writes as:

min
θ,φ

Ex||Gφ(S̄θ(z)� x)− x||2+λsparseL0(S̄θ(z)) (11.12)

A schematic view of our proposition, illustrating the sampling and the reconstruc-
tion component is available in Figure 11.2.

11.4 Experiments

We provide experimental results on 3 datasets: MNIST, CelebA and a geophys-
ical dataset resulting from complex climate simulations (IPSL 2018; Sepulchre
et al. 2019). We use the traditional train-test split for MNIST and a 80-20 train-
test split for the other datasets. The geophysical dataset is composed of surface
temperatures anomalies (deviations between average temperature at each pixel
for a reference period and observations) and contains 21000 samples (17000 for
train). The data have both high (Gulf stream, circum-polar current ...) and low fre-
quencies (higher temperature in the equatorial zone, difference between northern
and southern hemispheres ...) that need to be treated accurately due to their in-
fluence on the Earth climate. Accuracy in the values of reconstructed pixel is then
essential for the physical interpretation. These dense images represent complex
dynamics and allow us to explore our method on data with crucial applications
and characteristics very different from the digits and faces.

11.4.1 Experimental and Implementation Details

Baselines

Besides our models Vanilla logitNormal, denoted VLN, and its hyper-networks
couterpart denoted HNet-LN, we consider as competing methods the following
approaches:

1. Concrete-Autoencoder (Abid et al. 2019) denoted CAE.
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2. To assess the relevance of our correlated proposition, we investigate a binary
mask approach based on the independent logitNormal mask that corresponds
to equation eq. (11.4) denoted ILN,

3. Another independent binary mask method based on the concrete law (Mad-
dison et al. 2016), denoted SCT.

Implementation Details

For all binary mask based methods, we use a ResNet for Gφ, (K. He et al. 2015)
following the implementation of (Isola et al. 2016). Frep, FW and Fb are two layers
MLP with leaky ReLU activation. For CAE, because the structure of the data is
lost in the encoding process, we train Gφ as a MLP for MNIST and a DcGAN for
geophysical data and CelebA. The code is available at: https://github.com/
JeremDona/feature_selection_public

Removing Randomness:

All masked based algorithms learn distributions of masks. To evaluate the
feature selection capabilities, we evaluate the different algorithms using fixed
masks. We rely on theorem 11.1 to remove the randomness during test time. Let
S0
θ be the 0-temperature distribution of the estimated Sθ. We first estimate the

expected `0-norm of the 0-temperature distribution: L0(S0
θ ). We then estimate two

masks selecting respectively the 10×bL0(S0
θ )

10
c and 10×dL0(S0

θ )

10
emost likely features

(rounding L0(S0
θ ) up and down to the nearest ten). This method has the advantage

of implicitly fixing a threshold in the learned mask distribution to select or reject
features.

We now illustrate the advantage of selecting features in a correlated fashion.

11.4.2 Independent vs Correlated Sampling Scheme:

Is a Covariance Matrix Learned ?

Because we model the local dependencies in the sampling by learning linear
mixing of latent variables z, we first verify the structure of the covariance matrix.
Figure 11.3 reports the learned covariance matrix of the sampling for MNIST
dataset using eq. (11.6) method. Besides the diagonal, extra-diagonal structures
emerge, revealing that local correlations are taken into account to learn the sam-
pling distribution.

https://github.com/JeremDona/feature_selection_public
https://github.com/JeremDona/feature_selection_public
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Figure 11.3. – Covariance matrix learned with eq. (11.6), with ≈ 30 pixels selected.
Yellow values indicates high positive covariance, blue ones low neg-
ative covariance

Independent Sampling Does not Choose

We show in fig. 11.4 the empirical average of the sampled masks for each
masked base competing algorithm where all algorithms were trained so that
at L0(S0

θ ) ≈ 30. Figure 11.4 clearly shows that concrete base algorithm (SCT)
and in a lesser sense (ILN) do not select features, but rather put a uniformly
low probability to sample pixels in the center of the image. This means that
both algorithms struggle at discriminating important features from less relevant
ones. On the other hand, our correlated propositions, Vanilla logitNormal (V-
LN, eq. (11.6)) and particularly the hyper-network approach (HNetL, eq. (11.7))
manage to sparsify the distribution prioritizing the selection of important pixels
for reconstruction.

SCT ILN V-LN HNetLN

Figure 11.4. – Masks empirical distribution for competing binary masks algo-
rithms on the MNIST datasets for about 30 features in the sampled
mask
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Table 11.1. – Average Reconstruction Error (MSE) on MNIST, Climate and CelebA
datasets for all considered baselines

MNIST Climat CelebA

# Features 20 30 50 100 200 300 100 200 300

CAE 3.60 3.05 2.40 2.07 1.98 1.96 7.65 6.42 5.7

ILN 3.67 2.41 1.41 1.44 1.05 0.83 7.1 2.56 1.87

SCT 3.72 3.61 2.60 2.20 1.89 1.51 7.99 3.31 2.44

VLN (Ours) 3.22 2.19 1.33 1.11 0.93 0.79 3.11 1.96 1.50

HNet-Ln (Ours) 2.15 1.53 1.06 1.78 0.96 0.60 2.81 1.7 1.46

11.4.3 Feature Selection and Reconstruction

We now quantitatively estimate the impact of our choices on the reconstruc-
tion error on the various datasets. First, the mean squared error reconstruction
results from table 11.1 tells us that considering the spatial structure of the data
enhances reconstruction performance. Indeed, mask based methods consistently
over-perform CAE where the data structure is linearized in the encoding process.
Furthermore for mask based method, correlated sampling (row V-LN and HNet-
LN) also consistently improves over independent sampling based method (row
ILN and SCT). Finally, our hyper-network HNet-Ln proposition also improves
over the vanilla approach validating our proposition.

11.4.4 Quality of the Selected Features: MNIST Classification

We now assess the relevance of the selected features of our learned masks on
another task. To do so, for each learned distribution we train a convolutional
neural network, with a DcGAN architecture on MNIST classification task. Here
also, the randomness in test set is removed. For each mask we run 5 experiments
to account for the variability in the training. Classification results reported in
table 11.2 indicate that both our correlated logitNormal propositions consistently
beat all considered baselines, validating our choices to learn a sampling scheme
in a correlated fashion. Indeed, our propositions systematically reach the lowest
minimum and average classification error.

11.4.5 Extension: cGAN

We detailed in the previous experiments feature selection results obtained
thanks to an `2-auto-encoding approach. This choice was motivated because in
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Table 11.2. – Classification error in percent for MNIST on test set for all considered
baselines. Minimum and average are taken over 5 runs.

# Features 20 30 50

Metric Min Mean Min Mean Min Mean

CAE 24.4 31.64 8.89 19.60 5.45 6.65

ILN 21.58 28.26 7.96 16.63 4.17 5.33

SCT 20.88 32.79 9.49 18.22 4.11 6.77

VLN (Ours) 12.15 24.74 6.38 15.07 3.32 4.67
HNet-LN (Ours) 19.23 25.07 7.24 17.80 2.84 6.45

Figure 11.5. – Examples of masks (first row), reconstructions (second row) and
true data (last row) for CelebA dataset using either a cGAN (4 first
columns) or simple auto-encoding (4 last columns) for 200 selected
features. Best viewed in color.

physical measurement all points are equals: we don’t want to favor the reconstruc-
tion of some part of the image while neglecting another. However, for images such
as CelebA this assumption does not hold. Indeed, a realistically reconstructed
face can be preferred to a truthful background. Moreover, `2-auto-encoding suffers
from blur in the reconstruction. In that perspective, we can leverage conditional
generative adversarial networks (cGAN) approaches (Mirza and Osindero 2014;
Isola et al. 2016) that solves the blurriness occurring in `2-decoding. We imple-
ment the cGAN approach of (Isola et al. 2016). Figure 11.5 illustrates that despite
both method show good reconstruction, the cGAN approach on CelebA enables
a stronger focus on faces facilitating realistic reconstruction.

11.5 Conclusion

In this work, we formulate the feature selection task as the learning of a binary
mask. Aiming to select features in images for reconstruction, we developed a
novel way to sample and learn a correlated discrete variable thanks to a reparam-
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eterization of the logitNormal distribution. The proposed learning framework also
preserves the spatial structure of the data, enhancing reconstruction performance.
We experimentally show that our proposition to explore the space of covariance
matrices and average vectors as in eq. (11.7) is efficient providing us with a sam-
pling with lower variance. Finally, we experimentally evidenced the advantage of
learning a correlated sampling scheme instead of independent ones.
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C O N C L U D I N G R E M A R K S

In this thesis, we have investigated the learning of spatiotemporal data through
various prisms. The first part of this thesis explores the construction of inductive
biases for deep learning algorithms. In particular, for a spatio-temporal prediction
task, we asked ourselves how to design an efficient algorithm that enables inter-
pretability with time-extrapolation performances. The second part of this thesis
addressed the learning of dynamical systems with an emphasis on the general-
ization performances. To do so, we first consider efficient cooperation between
numerical models and NN. Then, we proposed a novel approach to generalize to
unobserved (but close in some sense) dynamics via an hypernetwork approach.

For each part, we begin by summarizing our contributions and develop ele-
ments of perspectives.

12.1 Weak Prior for Neural Networks Architectures

Chapter 6 is dedicated to the construction of purely data-driven algorithms
for video-prediction, grounded on an analytical method that aims at solving PDE.
It shows promising results to enable the separation of content and motion into
two separated representations, hence increasing interpretability. This method
relies on several penalties flowing from the separation of variables method. In
particular: the content variables is constrained to evolve minimally with time and
the temporal variables should evolve in order to match future frames. The use
of more involved tools, such as variational encoding, or adversarial learning is a
promising way to handle more complex data.

We believe this work contributes to a research track that studies the inductive
biases in the design of learning algorithms, especially neural networks. Indeed,
the design of NN architectures grounded on physics or PDE is an active topic that
has seen recent advances, for example the use of PDE-motivated network archi-
tectures for physical data (Lienen and Günnemann 2022; Eliasof et al. 2021). Yet,
such physically inspired inductive priors require careful experimental examina-
tions since the source of their gain in performances is insightful (and sometimes
unexpected) (Gruver et al. 2022). Also, inductive biases have brought significant

145
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successes to the ML tasks, with for instance the use of convolutions instead of
MLP for classification and regression, enforcing the equivariance through trans-
lation. Therefore, the incorporation of symmetries and equivariance in learning
algorithms, which is a very active research line (Villar et al. 2021; Finzi et al. 2021)
in particular for DL algorithm, is a promising path to both explain and improve
the performances of DL-algorithms for dynamical system modeling.

12.2 Learning Hybrid-Models from Data

The second component of this thesis, chapters 8 and 9, provides insights on how
to bridge physical numerical simulations of dynamical systems and statistical
methods. Because of the flexibility of DL, we design constraints that aim at a
better cooperation between physical and statistical models. Both propositions of
chapters 8 and 9 echoe the difficulties of training of deep networks for physical
systems.

In that perspective we developed and analyzed a first framework constraining
the magnitude of the statistical component. In a second work, we propose to
interpret constraints on either the physical or statistical component as a control
of an upper bound of the original forecast error, yielding a general framework
to learn hybrid ML-Physical models. These propositions enable us to learn an
interpretable hybrid ML-Physics decompostion with increased prediction perfor-
mances for both forward and inverse problems.

Both our works, addressing the learning of forward and inverse models for
dynamical systems, deepen the flourishing literature of NN-based PDE solutions
(Maziar Raissi et al. 2019b) and gradient estimates of ODE-solvers (R. T. Q. Chen
et al. 2018) that suffer from training and optimization difficulties (Krishnapriyan
et al. 2021; S. Wang et al. 2021b; Haber and Ruthotto 2017). Therefore, a task of ut-
most interest for the scientific machine learning community resides in extending
the proposed works to domain specific and real-life applications. Also, an essential
extension of these works consist in extending physical constraints to a broader
range of Physics-ML decomposition.

12.3 Generalization by Learning from Several Envi-
ronments

Our last work of chapter 10, close to Meta-Learning and Multi-task learning,
tackles the learning of dynamical systems which obeying different dynamics. In
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this work, the various dynamics share the same paramteric form but the value
of the parameters may differ. To leverage the common nature of all observed
dynamics, we propose to learn an affine space in the space of parameters of NN

along with the (optimal) coordinate for each environment. This simple formula-
tion enables to adapt efficiently to novel environments with only a small amount
of data.

Such a proposition reflects a real-life scenario and enables us to learn from
several sources of data. In that perspective, several opportunities emerge. First,
a natural extension of this work considers variations in the border and initial
conditions instead of variations in the dynamics. Then, considering the topology
of the dynamics to learn from could yield more adapted inductive biases for the
design of the hyper-network. Eventually, both latter extensions would provide us
with a finer understanding on how to learn dynamical systems with NN. Finally,
our proposition paves the way towards learning jointly from real-life and simu-
lation dynamics in an efficient way, making an essential step towards handling
real-world data.
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N E U R A L N E T W O R K S : A S H O RT
I N T R O D U C T I O N

We here provide a synthetic overview of Neural Network (NN) models for
supervised learning. Supervised learning refers to learning settings in which we
are interested in predicting a variable y, given covariables x in particular with a
particular clas of parametric models: NN.

For simplicity, we consider Multi-Layer Perceptron (MLP), that consists in alter-
nating the application of matrix multiplication and a fixed non-linearity called
activation function. Consider a (p + 1)-layer MLP, it is defined by its weights
θ = (W 1, ...,W p), where ∀i, Wi is a weight matrix, and by its non-linear acti-
vation function denoted σ. A NN defines a computational graph defined by the
following equations:


A0 = x

Ai = σ(W i.Ai−1), ∀i ∈ {1, ..., p− 1}
O = ψ(W pAp−1)

(A.1a)

(A.1b)

(A.1c)

eq. (A.1a) is the input layer and x is simply our data. eq. (A.1b) defines the hidden
layer computations, Ai are called the activations. Finally, eq. (A.1c) defines the
output layer and ψ is a predefined function (sigmoid, softmax, tanh, etc.).

With these notations, the neurons’ outputs simply are gated activations of the
matrix multiplication, i.e the output of the neuron j at depth i is Aij = σ(Ai−1T .W i

j ),
where W i

j is the jth line of W i.

A noticeable property of such a MLP is the universal approximation theorem that
states that with a single hidden layer neural network (with enough neurons, i.e.
with the dimension of W 1 large enough) one can approximate uniformly any
continuous function (over a compact set), see (Cybenko 1989).

In general, NN are optimized by minimizing the conditional negative log-
likelihood (or equivalently maximizing the conditional log-likelood of the model):
The likelihood function writes as:

L(y;x; θ) = pnn(y|x) (A.2)
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In this setting a training set, denoted DT is made of n-pairs, so that DT = (yi;xi),
we can rewrite it as:

L(y1; ...., yn;x1, ..., xn; θ) = pnn(y1, ..., yn|x1, ..., xn) = Πn
i=1pnn(yi|xi). (A.3)

Taking the log out of the last term, we obtain:

log(L)(y1; ...., yn;x1, ..., xn; θ) =
n∑
i=1

log pnn(yi|xi) ≈ Ex,y∼pdata log pnn(yi|xi) (A.4)

Let f(x; θ) a NN obeying the computation of eq. (A.1), and using a simple Gaussian
prior for pnn i.e, so that pnn(y|x) ∼ N (y; f(x, θ);σ2), eq. (A.4) writes as:

log(L)(y1; ...., yn;x1, ..., xn; θ) = −λ×
∥∥y − f(x; θ)

∥∥2
+ constant (A.5)

where λ is a proportionality constant independant of the NN ψ (and so is the
constant).

Therefore maximizing the loglikelihood logL, assuming a Gaussian setting
amounts to minimize the ‖ . ‖ between the model prediction f(x, θ) and the ob-
served output y. Given the differentiability of f with respect to the parameters θ,
we can compute the gradients of − logL, and optimize the θ in the steepest direc-
tion. This training procedure is called Gradient Descent (GD). For compuational
memory and robustness reasons, practical optimization evaluate the gradients
∂ logL
∂θ

on small subset of the training set DT defining an optimization procedure
called Stochastic Gradient Descent (SGD).
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A P P E N D I C E S T O S PAT I O T E M P O R A L
D I S E N TA N G L E M E N T

B.1 Proofs

B.1.1 Resolution of the Heat Equation

In this section, we succinctly detail a proof for the existence and uniqueness
for the solution to the two-dimensional heat equation. It shows that product-
separable solutions allow to build the entire solution space for this problem,
highlighting our interest in the research of separable solutions.

Existence through separation of variables. Consider the heat equation prob-
lem:

∂u

∂t
= c2 ∂

2u

∂x2
, u(0, t) = u(L, t) = 0, u(x, 0) = f(x). (B.1)

Assuming product separability of u with u(x, t) = u1(x)u2(t) in eq. (B.1) gives:

c2u
′′
1(x)

u1(x)
=
u′2(t)

u2(t)
. (B.2)

Both sides being independent of each other variables, they are equal to a con-
stant denoted by −α. If α is negative, solving the right side of eq. (B.2) results to
non-physical solutions with exponentially increasing temperatures, and impos-
ing border condition of eq. (B.1) makes this solution collapse to the null trivial
solution. Therefore, we consider that α > 0.

Both sides of eq. (B.2) being equal to a constant leads to a second-order ODE
on u1 and a first-order ODE on u2, giving the solution shapes, with constants A,
B and D: u1(x) = A cos

(√
α x
)

+B sin
(√

α x
)

u2(t) = De−αc
2t

. (B.3)
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Link with initial and boundary conditions. We now link the above equation to
the boundary conditions of the problem. Because our separation is multiplicative,
we can omit D for non-trivial solutions and set it without loss of generality to 1,
as it only scales the values of A and B.

Boundary condition u(0, t) = u(L, t) = 0, along with the fact that for all t > 0,
u2(t) 6= 0, give:

A = 0, Be−αc
2t sin

(√
α L
)

= 0, (B.4)

which means that, for a non-trivial solution (i.e., B 6= 0), we have for some n ∈ N:√
α = nπ/L. We can finally express our product-separable solution to the heat

equation without initial conditions as:

u(x, t) = B sin

(
nπ

L
x

)
exp

(
−
(
cnπ

L

)2

t

)
. (B.5)

Considering the superposition principle, because the initial problem is homo-
geneous, all linear combinations of eq. (B.5) are solutions of the heat equation
without initial conditions. Therefore, any following function is a solution of the
heat equation without initial conditions.

u(x, t) =
+∞∑
n=0

Bn sin

(
nπ

L
x

)
exp

(
−
(
cnπ

L

)2

t

)
. (B.6)

Finally, considering the initial condition u(x, 0) = f(x), a Fourier decomposition
of f allows to choose appropriate values for all coefficients Bn, showing that, for
any initial condition f , there exists a solution to eq. (B.1) of the form of eq. (B.6).

Uniqueness. We present here elements of proof for establishing the uniqueness
of the solutions of eq. (B.1) that belong to C2

(
[0, 1]× R+

)
. Detailed and rigorous

proofs are given by Le Dret and Lucquin (2016).

The key element consists in establishing the so-called Maximum Principle
which states that, considering a sufficiently smooth solution, the minimum value
of the solution is reached on the boundary of the space and time domains.

For null border condition as in our case, this means that the norm of the solution
u is given by the norm of the initial condition f . Finally, let us consider two smooth
solutions U1 and U2 of eq. (B.1). Then, their difference v = U1−U2 follows the heat
equation with null border and initial conditions (i.e, v(x, 0) = 0). Because v is as
regular as U1 and U2, it satisfies the previous fact about the norm of the solutions,
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i.e, the norm of v equals the norm of its initial condition: ‖v‖ = 0. Therefore, v is
null and so is U1 − U2 = 0, showing the uniqueness of the solutions.

Therefore, this shows that solutions of the form of eq. (B.6) shape the whole set
of smooth solutions of eq. (B.1).

B.1.2 Heat Equation with Advection Term

Consider the heat equation with a complementary advection term, for x ∈
(−1, 1), t ∈ (0, T ) and a constant c ∈ R+.

∂u

∂t
+ c

∂u

∂x
= χ

∂2u

∂x2
, . (B.7)

We give here details for the existence of product-separable solutions of eq. (B.7).
To this end, let us choose real constants α and β, and consider the following
change of variables for u:

u(x, t) = v(x, t)eαx+βt. (B.8)

The partial derivatives from eq. (B.7) can be rewritten as functions of the new
variable v:

∂u

∂t
=
∂v

∂t
eαx+βt + βveαx+βt (B.9)

∂u

∂x
=
∂v

∂x
eαx+βt + αveαx+βt (B.10)

∂2u

∂x2
=
∂2v

∂x2
eαx+βt + 2α

∂v

∂x
eαx+βt + α2veαx+βt (B.11)

Using these expressions in eq. (B.7) and dividing it by eαx+βt lead to:

∂v

∂t
+
(
β + cα− α2χ

)
v + (c− 2αχ)

∂v

∂x
= ν

∂2v

∂x2
. (B.12)

α and β can then be set such that:

β + cα− α2χ = 0 c− 2αχ = 0, (B.13)

to retrieve the standard two-dimensional heat equation of eq. (B.1) given by:

∂v

∂t
= χ

∂2v

∂x2
, (B.14)
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which is known to have product-separable solutions as explained in the previous
section. This more generally shows that all solutions of eq. (B.7) can be retrieved
from solutions to eq. (B.1).

B.2 Accessing Time Derivatives of S and Deriving a
Feasible Weaker Constraint

Explicitly constraining the time derivative of ES
(
Vτ (t)

)
as explained in sec-

tion 6.4.4 is a difficult matter in practice. Indeed, ES does not take as input
neither the time coordinate t nor spatial coordinates x and y as done by Maziar
Raissi 2018 and Sirignano and Spiliopoulos 2018, which allows them to directly
estimate the networks derivative thanks to automatic differentiation. In our case,
ES rather takes as input a finite number of observations, making this derivative
impractical to compute.

To discretize eq. (6.10) and find a weaker constraint, we chose to leverage the
Cauchy-Schwarz inequality. We presented and used a version where we applied
this inequality on the whole integration domain, i.e., from t0 to t1 − τ∆t. We
highlight that this inequality can also be applied on subintervals of the integration
domain, generalizing our proposition. Indeed, let p ∈ N∗ and consider a sequence
of t(k) for k ∈ J0, pK such that t0 = t(0) ≤ t(1) ≤ . . . ≤ t(p) = t1 − τ∆t. Then, using
the Cauchy-Schwarz inequality, we obtain:

∫ t1−τ∆t

t0

∥∥∥∥∥∂ES
(
Vτ (t)

)
∂t

∥∥∥∥∥
2

2

dt =

k=p∑
k=0

∫ t(k)

t(k−1)

∥∥∥∥∥∂ES
(
Vτ (t)

)
∂t

∥∥∥∥∥
2

2

dt

≥
k=p∑
k=0

1

t(k) − t(k−1)

∥∥∥∥∥
∫ t(k)

t(k−1)

∂ES
(
Vτ (t)

)
∂t

dt

∥∥∥∥∥
2

2

≥
k=p∑
k=0

1

t(k) − t(k−1)

∥∥∥∥∥ES
(
Vτ

(
t(k)
))
− ES

(
Vτ

(
t(k−1)

))∥∥∥∥∥
2

2

.

(B.15)
Our constraint is a special case of this development, with p = 1. Nevertheless,
we experimentally found that our simple penalty is sufficient to achieve state-of-
the-art performance at a substantially reduced computational cost. We notice that
other invariance constraints such as the one of Denton and Birodkar 2017 can also
be derived thanks to framework, showing the generality of our approach.
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B.3 Of Spatiotemporal Disentanglement

B.3.1 Modeling Spatiotemporal Phenomena with Differential
Equations

Besides their increasing popularity to model spatiotemporal phenomena (see
section 6.2), the ability of residual networks to facilitate learning (Haber and
Ruthotto 2017) as well as the success of their continuous counterpart (R. T. Q.
Chen et al. 2018) motivate our choice. Indeed, learning ODEs or discrete approxi-
mations as residual networks has become standard for a variety of tasks such as
classification, inpainting, and generative models. Consequently, their application
to forecasting physical processes and videos is only a natural extension of its
already broad applicability discussed in section 6.2. Furthermore, they present
interesting properties, as detailed below.

B.3.2 Separation of Variables Preserves the Mutual Informa-
tion of S and T through Time

Invertible Flow of an ODE

We first highlight that the general ODE eq. (6.7) admits, according to the
Cauchy–Lipschitz theorem, exactly one solution for a given initial condition, since
f is implemented with a standard neural network (see appendix B.5), making it
Lipschitz-continuous. Consequently, the flow of this ODE, denoted by Φt and
defined as:

Φ: R× Rp → Rp

(t0, Tt0) 7→ Φt(Tt0) = Tt0+t

is a bijection for all t. Indeed, let Tt0 be fixed and t0, t1 be two timesteps; thanks
to the existence and unicity of the solution to the ODE with this initial condition:
Φt0+t1 = Φt0 ◦Φt1 = Φt1 ◦Φt0 . Therefore, Φt is a bijection and Φ−1

t = Φ−t. Moreover,
the flow is differentiable if f is continuously differentiable as well, which is not a
restrictive assumption if it is implemented by a neural network with differentiable
activation functions.
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Preservation of Mutual Information by Invertible Mappings

A proof of the following result is given by Kraskov et al. 2004. We indicate
below the major steps of the proof. Let X and Y be two random variables with
marginal densities µX , µY . Let F be a diffeomorphism acting on Y , Y ′ = F (Y ). If
JF is the determinant of the Jacobian of F , we have:

µ′
(
x, y′

)
= µ(x, y)JF

(
y′
)
.

Then, expressing the mutual information I in integral form, with the change of
variables y′ = F (y) (F being a diffeomorphism), results in:

I
(
X, Y ′

)
=

∫∫
x,y′

µ′
(
x, y′

)
log

µ′(x, y′)

µX(x)× µY ′(y′)
dx dy′

=

∫∫
x,y

µ(x, y) log
µ(x, y)

µX(x)× µY (y)
dx dy

I
(
X, Y ′

)
= I(X, Y ).

B.3.3 Ensuring Disentanglement at any Time

As noted by X. Chen et al. 2016a and Achille and Soatto 2018, mutual infor-
mation I is a key metric to evaluate disentanglement. We show that our model
logically preserves the mutual information between S and T through time thanks
to the flow of the learned ODE on T . Indeed, with the result of mutual informa-
tion preservation by diffeomorphisms, and Φt being a diffeomorphism as demon-
strated above, we have, for all t and t′:

I(S, Tt) = I
(
X,Φt′−t(Tt)

)
= I(S, Tt′). (B.16)

Hence, if S and Tt are disentangled, then so are S and Tt′ .

The flow Φt being dicretized in practice, its invertibility can no longer be guar-
anteed in general. Some numerical schemes (Z. Chen et al. 2020a) or residual
networks with Lipschitz-constrained residual blocks (Behrmann et al. 2019b) pro-
vide sufficient conditions to concretely reach this invertibility. In our case, we
did not observe the need to enforce invertibility. We can also leverage the data
processing inequality to show that, for any t ≥ t0:

I(S, Tt0) ≥ I(S, Tt), (B.17)

since Tt is a deterministic function of Tt0 . Since we constrain the very first T
value Tt0 (i.e., we do not need to go back in time), there is no imperative need
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to enforce the invertibility of Φt in practice: the inequality also implies that, if S
and Tt0 are disentangled, then so are S and Tt for t ≥ t0. Nevertheless, should
the need to disentangle for t < t0 appear, the aforementioned mutual information
conservation properties could allow, with further practical work to ensure the
effective invertibility of Φt, to still regularize Tt0 only. This is, however, out of the
scope of this paper.

B.4 Datasets

B.4.1 WaveEq and WaveEq-100

These datasets are based on the two-dimensional wave equation on a functional
w(x, y, t):

∂2w

∂t2
= c2∇2w + f(x, y, t), (B.18)

where ∇2 is the Laplacian operator, c denotes the wave celerity, and f is an arbi-
trary time-dependent source term. It has several application in physics, modeling
a wide range of phenomena ranging from mechanical oscillations to electromag-
netism. Note that the homogeneous equation, where f = 0, admits product-
separable solutions.

We build the WaveEq dataset by solving eq. (B.18) for t ∈ [0, 0.298] and x, y ∈
[0, 63]. Sequences are generated using c drawn uniformly at random in [300, 400]

for each sequence to imitate the propagation of acoustic waves, with initial and
Neumann boundary conditions:

w(x, y, 0) = w(0, 0, t) = w(32, 32, t) = 0, (B.19)

and, following Saha et al. 2020a, we make use of the following source term:

f(x, y, t) =

 f0e
− t
T0 if (x, y) ∈ B

(
(32, 32), 5

)
0 otherwise

, (B.20)

with T0 = 0.05 and f0 ∼ U
(
[1, 30]

)
. The source term is taken non-null in a circular

central zone only in order to avoid numerical differentiation problems in the case
of a punctual source.

We generate 300 sequences of 64 × 64 frames of length 150 from this setting
by assimilating pixel (i, j) ∈ J0, 63K× J0, 63K to a point (x, y) ∈ [0, 63]× [0, 63] and
selecting a frame per time interval of size 0.002. This discretization is used to
solve eq. (B.18) as its spatial derivatives are estimated thanks to finite differences;
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once computed, they are used in an ODE numerical solver to solve eq. (B.18)
on t. Spatial derivatives are estimated with finite differences of order 5, and the
ODE solver is the fourth-order Runge-Kutta method with the 3/8 rule (Kutta
1901; Ernst Hairer et al. 1993) and step size 0.001. The data are finally normalized
following a min-max [0, 1] scaling per sequence.

The dataset is then split into training (240 sequences) and testing (60 sequences)
sets. Sequences sampled during training are random chuncks of length ν+1 = 25,
including τ+1 = 5 conditioning frames, of full-size training sequences. Sequences
used during testing are all possible chunks of length τ + 1 + 40 = 45 from full-size
testing sequences.

Finally, WaveEq-100 is created from WaveEq by selecting 100 pixels uniformly
at random. The extracted pixels are selected before training and are fixed for both
training and testing. Therefore, train and test sequences for WaveEq-100 consist of
vector of size 100 extracted from WaveEq frames. Training and testing sequences
are chosen to be the same as those of WaveEq.

B.4.2 Sea Surface Temperature

SST is composed of sea surface temperatures of the Atlantic ocean generated
using E.U. Copernicus Marine Service Information thanks to the state-of-the-art
simulation engine NEMO. The use of a so-called reanalysis procedure implies
that these data accurately represent the actual temperature measures. For more
information, we refer to the complete description of the data by Bézenac et al.
2018a. The data history of this engine is available online. 1 Unfortunately, due to
recent maintenance, data history is limited to the last three years; prior histories
should be manually requested.

The dataset uses daily temperature acquisitions from Thursday 28
th December,

2006 to Wednesday 5
th April, 2017 of a 481 × 781 zone, from which 29 zones of

size 64 × 64 zones are extracted. We follow the same setting as Bézenac et al.
2018a by training all models with τ + 1 = 4 conditioning steps and ν − τ = 6

steps to predict, and evaluating them only on zones 17 to 20. These zones are
particularly interesting since they are the places where cold waters meet warm
waters, inducing more pronounced motion.

We normalize the data in the same manner as Bézenac et al. 2018a. Each daily
acquisition of a zone is first normalized using the mean and standard deviation
of measured temperatures in this zone computed for all days with the same date
of the year from the available data (daily history climatological normalization).

1. https://resources.marine.copernicus.eu/?option=com_csw&view=
details&product_id=GLOBAL_ANALYSIS_FORECAST_PHY_001_024.

https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_PHY_001_024
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_PHY_001_024
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Each zone is then normalized so that the mean and variance over all acquisitions
correspond to those of a standard Gaussian distribution. These normalized data
are finally fed to the model; MSE scores reported in table 6.1 are computed
once the performed normalization of the data and model prediction is reverted
to the original temperature measurement space, in order to compute physically
meaningful scores.

Training sequences correspond to randomly selected chunks of length ν = 10

in the first 2987 acquisitions (corresponding to 80% of total acquisitions), and
testing sequences to all possible chunks of length ν = 10 in the remaining 747

acquisitions.

B.4.3 Moving MNIST

This dataset involves two MNIST digits (LeCun et al. 1998) of size 28× 28 that
linearly move within 64× 64 frames and deterministically bounce against frame
borders following reflection laws. We use the modified version of the dataset
proposed by Franceschi et al. 2020 instead of the original one (Srivastava et al.
2015). We train all models in the same setting as Denton and Birodkar 2017, with
τ + 1 = 5 conditioning frames and ν − τ = 10 frames to predict, and test them to
predict either 10 or 95 frames ahead. Training data consist in trajectories of digits
from the MNIST training set, randomly generated on the fly during training. Test
data are produced by computing a trajectory for each digit of the MNIST testing
set, and randomly pairwise combining them, thus producing 5000 sequences.

To evaluate disentanglement with content swapping, we report PSNR and SSIM
metrics between the swapped sequence produced by our model and a ground
truth. However, having two digits in the image, there is an ambiguity as to in
which order target digits should be swapped in the ground truth. To account for
this ambiguity and thanks to the synthetic nature of the dataset, we instead build
two ground truth sequences for both possible digit swap permutations, and report
the lowest metric between the generated sequence and both ground truths (i.e.,
we choose the closest ground truth to compare to with respect to the considered
metric).

B.4.4 3D Warehouse Chairs

This multi-view dataset introduced by Aubry et al. 2014 contains 1393 three-
dimensional models of chairs seen under the same periodic angles. We resize
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the original 600× 600 images by center-cropping them to 400× 400 images, and
downsample them to 64×64 frames using the Lanczos filter of the Pillow library. 2

We create sequences from this dataset for our model by assembling the views
of each chair to simulate its rotation from right to left until it reaches its initial
position. This process is repeated for each existing angle to serve as initial position
for all chairs. We chose this dataset instead of Denton and Birodkar 2017’s multi-
view chairs dataset because the latter contains too few objects to allow both tested
methods to generalize on the testing set, preventing us to draw any conclusion
from the experiment. We train models on this dataset with τ + 1 = 5 conditioning
frames and ν − τ = 10 frames to predict, and test them to predict 15 frames
within the content swap experiment. Training and testing data are constituted
by randomly selecting 85% of the chairs for training and 15% of the remaining
ones for testing. Disentanglement metrics are computed similarly to the ones on
Moving MNIST, but with only one reference ground truth corresponding to the
chair given as content input at the position of the chair given as dynamic input.

B.4.5 TaxiBJ

This crowd flow dataset provided by Zhang et al. 2017 consists in two-channel
32× 32 frames representing the inflow and outflow of taxis in Beijing, each pixel
corresponding to a square region of the city. Observations are registered every
thirty minutes. It is highly structured as the flows are dependent on the infras-
tructure of the city, and complex since methods have to account for non-local
dependencies and model subtle changes in the evolution of the flows.

We follow the preprocessing steps of Y. Wang et al. 2018 and Le Guen and
Thome 2020 by performing a min-max normalization of the data to the [0, 1]

range. We train models on this dataset with τ + 1 = 4 conditioning frames and
ν− τ = 4 frames to predict, and test them to predict 4 frames like our competitors
on the last four weeks of data which are excluded from the training set. MSE on
this dataset is reported in the [0, 1]-normalized space and multiplied by a hundred
times the dimensionality of a frame, i.e. by 100× 32× 32× 2.

B.5 Training Details

Along with the code in the supplementary material, we provide in this section
sufficient details in order to replicate our results.

2. https://pillow.readthedocs.io/

https://pillow.readthedocs.io/
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B.5.1 Reproduction of Baselines

PKnl. We retrained PKnl (Bézenac et al. 2018a) on SST using the official imple-
mentation and the indicated hyperparameters.

SVG, MIM and DDPAE. We trained SVG (Denton and Fergus 2018), MIM (Y.
Wang et al. 2019b) and DDPAE (Hsieh et al. 2018) on our version of Moving
MNIST using the official implementation and the same hyperparameters that the
authors used for the original version of Moving MNIST.

We trained MIM on SST using the recommended hyperparameters of the au-
thors, and SVG by retaining the same hyperparameters as those used on KTH.

DrNet. We trained DrNet (Denton and Birodkar 2017) on our version of Mov-
ing MNIST using the same hyperparameters originally used for the alternative
version of the dataset on which it was originally trained (with digits of different
colors). To this end, we reimplemented the official Lua implementation into a
Python code in order to train it with a more recent infrastucture. We also trained
DrNet on 3D Warehouse Chairs using the same hyperparameters used by its
authors on the smaller multi-view chairs dataset on which they trained their
method.

PhyDNet. We trained PhyDNet (Le Guen and Thome 2020) on SST and our
version of Moving MNIST using the official implementation and the same hy-
perparameters that the authors used for SST and the original version of Moving
MNIST. We removed the skip connections used by the authors on the Moving
MNIST dataset in order to perform a fairer comparison with other models, such
as ours, in our experimental study that do not incorporate skip connections on
this dataset.

B.5.2 Model Specifications

Implementation

We used Python 3.8.1 and PyTorch 1.4.0 (Paszke et al. 2019a) to implement our
model. Each model was trained on an Nvidia GPU with CUDA 10.1. Training is
done with mixed-precision training (Micikevicius et al. 2018) thanks to the Apex
library. 3

3. https://github.com/nvidia/apex.

https://github.com/nvidia/apex
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Architecture

Combination of S and T . As explained in section 6.4, the default choice of
combination of S and T as decoder inputs is the concatenation of both vectorial
variables: it is generic, and allows the decoder to learn an appropriate combination
function ζ as in eq. (6.4).

Nonetheless, further knowledge of the studied dataset can help to narrow the
choices of combination functions. Indeed, we choose to multiply S and T before
giving them as input to the decoder for both datasets WaveEq and WaveEq-100,
given the knowledge of the existence of product-separable solutions to the homo-
geneous version of equation (i.e., without source). This shows that it is possible
to change the combination function of S and T , and that existing combination
functions in the PDE literature could be leveraged for other datasets.

Encoders ES and ET , and decoder D. For WaveEq, the encoder and decoder
outputs are considered to be vectors; images are thus flattened before encoding
and reshaped after decoding to 64× 64 frames. The encoder is a MultiLayer Per-
ceptron (MLP) with two hidden layers of size 1200 and internal ReLU activation
functions. The decoder is an MLP with three hidden layers of size 1200, inter-
nal ReLU activation functions, and a final sigmoid activation function for the
decoder. The encoder and decoder used for WaveEq-100 are similar to those used
for WaveEq, but with two hidden layers each, of respective sizes 2400 and 150.

We used for SST a VGG16 architecture (Simonyan and Zisserman 2015), mir-
rored between the encoder and the decoder, complemented with skip connections
integrated into S (Ronneberger et al. 2015) from all internal layers of the encoder
to corresponding decoder layers, also leveraged by Bézenac et al. 2018a in their
PKnl model. We adapted this VGG16 architecture without skip connections for
the 32× 32 frames of TaxiBJ by removing the shallowest upsampling and down-
sampling operations in the VGG encoder and decoder. For Moving MNIST, the
encoder and its mirrored decoder are shaped with the DCGAN discriminator and
generator architecture (Radford et al. 2016), with an additional sigmoid activa-
tion after the very last layer of the decoder; this encoder and decoder DCGAN
architecture is also used by DrNet and DDPAE. We highlight that we leveraged in
both SST and Moving MNIST architectural choices that are also used in compared
baselines, enabling fair comparisons.

For the two-dimensional latent space experiments on SST (see appendix B.6.3),
we use a modified version of the VGG encoder / decoder network by removing the
two deepest maximum pooling layers, thus preserving the two-dimensional latent
structures. The decoder mirrors the encoder complemented with skip connections.
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Regarding 3D Warehouse Chairs, we also followed the same architectural
choices as DrNet with a ResNet18-like architecture for the encoders and a DC-
GAN architecture, followed by a sigmoid activation after the last layer for the
decoder.

Encoders ES and ET taking as input multiple observations, we combine them
by either concatenating them for the vectorial observations of WaveEq-100, or
grouping them on the color channel dimensions for the other datasets where
observations are frames. Each encoder and decoder layer was initialized from a
normal distribution with standard deviation 0.02 (except for biases initialized to
0, and batch normalizations weights drawn from a Gaussian distribution with
unit mean and a standard deviation of 0.02).

ODE solver. Following the recent line of work assimilating residual networks
(K. He et al. 2016) with ODE solvers (Y. Lu et al. 2018; R. T. Q. Chen et al.
2018), we use a residual network as an integrator for eq. (6.7). This residual
network is composed of a given numberK of residual blocks, each block i ∈ J1, KK
implementing the application id+gi, where gi is an MLP with a two hidden layers
of size H and internal ReLU activation functions. The parameter values for each
dataset are:

• WaveEq and WaveEq-100: K = 3 and H = 512;

• SST (with linear latent states): K = 3 and H = 1024;

• Moving MNIST, 3D Warehouse Chairs and TaxiBJ: K = 1 and H = 512.

Each MLP is orthogonally initialized with the following gain for each dataset:

• WaveEq, WaveEq-100, SST (with linear latent states), 3D Warehouse Chairs
and TaxiBJ: 0.71;

• Moving MNIST: 1.41.

For SST with two-dimensional states, the MLPs are replaced by convolutional
layers with kernel size 3, padding 1 and a number of hidden channels equal to H =

128. We set K = 2 and an orthogonal initialization gain of 0.2. ReLU activations
are replaced by Leaky ReLU activations and preceded by batch normalization
layers.

Latent variable sizes. S and T have the following vectorial dimensions for
each dataset:

• WaveEq and WaveEq-100: 32;
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• SST, respectively 196 × 16 × 16 and 64 × 16 × 16; for the linear version, both
are set to 256.

• Moving MNIST and TaxiBJ: respectively, 128 and 20;

• 3D Warehouse Chairs: respectively, 128 and 10.

Note that, in order to perform fair comparisons, the size of T for baselines
without static component S is chosen to be the sum of the vectorial sizes of S
and T in the full model. The skip connections of S for SST cannot, however, be
integrated into T , as its evolution is only modeled in the latent space, and it is
out of the scope of this paper to leverage low-level dynamics.

B.5.3 Optimization

Optimization is performed using the Adam optimizer (Diederik P. Kingma
and Ba 2015) with initial learning rate 4× 10−4 for WaveEq, WaveEq-100, Moving
MNIST, 3D Warehouse Chairs and SST and 4× 10−5 for TaxiBJ, and with decay
rates β1 = 0.9 (except for the experiments on Moving MNIST where we choose
β1 = 0.5) and β2 = 0.99.

Loss function. Chosen coefficients values of λpred, λAE, λSreg, and λTreg are the
following:

• λpred = 45;

• λAE = 45 for TaxiBJ; 10 for SST (linear)and Moving MNIST; 1 for WaveEq,
WaveEq-100 and 3D Warehouse Chairs; 0.1 for SST;

• λSreg = 100 for SST; λSreg = 45 for WaveEq, WaveEq-100, SST (linear) and Moving
MNIST; 1 for 3D Warehouse Chairs; 0.0001 for TaxiBJ;

• λTreg = 1
2
p × 10−3 for WaveEq, WaveEq-100, Moving MNIST, 3D Warehouse

Chairs and TaxiBJ (where p is the dimension of T ); 1
2
p× 10−2 for SST (linear);

5× 10−6 for SST.

The batch size is chosen to be 128 for WaveEq, WaveEq-100, Moving MNIST
and 3D Warehouse Chairs, and 100 for SST and TaxiBJ.

Training length. The number of training epochs for each dataset is:

• WaveEq and WaveEq-100: 250 epochs;
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• SST: 30 epochs; SST (linear): 80 epochs;

• Moving MNIST: 800 epochs, with an epoch corresponding to 200 000 trajecto-
ries (the dataset being infinite), and with the learning rate successively divided
by 2 at epochs 300, 400, 500, 600, and 700;

• 3D Warehouse Chairs: 120 epochs;

• TaxiBJ: 550 epochs, with the learning rate divided by 5 at epochs 250, 300, 350,
400 and 450.

B.5.4 Prediction Offset for SST

Using the formalism of our work, our algorithm trains to reconstruct v =

(vt0 , . . . , vt1) from conditioning frames Vτ (t0). Therefore, it first learns to recon-
struct Vτ (t0).

However, the evolution of SST data is chaotic and predicting above an hori-
zon of 6 with coherent and sharp estimations is challenging. Therefore, for the
SST dataset only, we chose to supervise the prediction from t = t0 + (τ + 1)∆t,
i.e, our algorithm trains to forecast vt0+(τ+1)∆t, . . . , vt1 from Vτ (t0). It simply con-
sists in making the temporal representation ET

(
Vτ (t0)

)
match the observation

vt0+(τ+1)∆t instead of vt0 . This index offset does not change our interpretation of
spatiotemporal disentanglement through separation of variables.

B.6 Additional Results and Samples

B.6.1 Ablation Study on Moving MNIST

We report in table B.1 the results of an ablation study of our model on Moving
MNIST, that we comment in section 6.5.2.

B.6.2 Preliminary Results on KTH

The application of our method to natural videos is an interesting perspective,
but would motivate further adaptation of the model (see perspectives in the
conclusion), in particular regarding the integration of stochastic dynamics. Indeed,
there is a consensus in the literature (e.g.: Denton and Fergus 2018; Villegas et al.
2019; Weissenborn et al. 2020) indicating that human motion datasets require
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Table B.1. – Prediction and content swap PSNR and SSIM scores of variants of
our model.

Models
Pred. (t+ 10) Pred. (t+ 95) Swap (t+ 10) Swap (t+ 95)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Ours 21.70 0.9088 17.50 0.7990 18.42 0.8368 16.50 0.7713
Ours (without S) 20.46 0.8867 14.95 0.6707 — — — —
Ours (λAE = 0) 21.61 0.9058 16.58 0.7611 18.21 0.8309 15.79 0.7399

Ours (λSreg = 0) 15.99 0.6900 12.31 0.5702 13.73 0.5476 12.07 0.5556

Ours (λTreg = 0) 15.63 0.7369 14.02 0.7253 14.91 0.7154 13.95 0.7234

Ours (GRU) 21.66 0.9088 15.45 0.4888 17.70 0.8178 14.77 0.4718

Table B.2. – FVD score of compared models on KTH. The bold score indicates
the best performing method.

Ours PhyDNet SVG DrNet

330 384 375 383

stochastic modeling because of the inherently highly random events occurring in
these videos. Tackling this issue would require to incorporate stochasticity in our
model, for example leveraging variational autoencoders like Denton and Fergus
2018, or supplement it with adversarial losses on the image space, for instance
like Mathieu et al. 2016b and A. X. Lee et al. 2018. These changes are feasible, but
are out of the scope of this paper.

Nonetheless, we investigate the realistic video dataset KTH (Schüldt et al. 2004),
which is an action recognition video database featuring various subjects perform-
ing actions in front of different backgrounds. We trained our model, SVG, DrNet
and PhyDNet on this dataset. DrNet and PhyDNet are powerful deterministic
approaches, while SVG is a standard stochastic video prediction model. We com-
pare all models in terms of FVD (Unterthiner et al. 2018, lower is better), which
is a metric based on deep features that evaluates the realism of the generated
videos.

Results are reported in table B.2. We observe that our model substantially
outperforms the considered baselines. These significant results against powerful
deterministic baselines, and even the standard stochastic method SVG, confirm
our advantage at modeling complex dynamics and support our claim that our
model lays the foundations for domain-specific methods, such as a stochastic
version for natural videos.
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Reproductibility. We use the following training parameters for KTH:

• we follow the same dataset processing and evaluation procedure as Denton
and Fergus 2018;

• we train our model on 125 epochs with batch size 100, with an epoch being
defined as 100 000 training sequences;

• we set the learning rate to 2× 10−4 and the same optimizer parameters as for
SST;

• λpred = 45, λAE = 10 = λSreg = 10, λTreg = p× 10−4;

• the size of S and T are respectively 128 and 50;

• the ODE is solved with a flat latent architecture and parameters K = 1 and
H = 512;

• the encoder and decoder architecture is VGG16 with skip connections inte-
grated into S from ES to D, and with the decoder output being given to a
final sigmoid activation.

We reproduced SVG, DrNet and PhyDNet using the recommended hyperpa-
rameters of their authors. We trained PhyDNet for 125 epochs, like our model, to
obtain a fair evaluation despite its low efficiency (six times slower than ours).

B.6.3 Modeling SST with Separation of Variables

We present in table B.3 results of table 6.1 for SST, complemented with an
alternative version of our model obtained using vectorial representation for S
and T and MLPs to compute the derivative of T . The latter setting corresponds
to a strictly enforced separation of spatial and dynamical variables, with results
significantly outperforming powerful methods PhyDNet, PKnl and SVG thanks
to this separation, as attested by the corresponding ablation without a static
component.

However, sea surface temperature exhibits highly local structure that can be
assimilated to a flow in a coarse approximation. For example, there is transport of
large bodies of hot and cold water. Accordingly, performances may be enhanced
by considering local dependencies in the dynamics, as also implemented by MIM
and PhyDNet. We propose to do so by considering like the latter methods two-
dimensional latent states for the static S and the dynamical T , and convolutional
networks to model the derivative of T .
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Table B.3. – Forecasting performance on SST of PKnl, PhyDNet and our model
with respect to indicated prediction horizons. Bold scores indicate the
best performing method.

Models
MSE SSIM

t+ 6 t+ 10 t+ 6 t+ 10

PKnl 1.28 2.03 0.6686 0.5844

PhyDNet 1.27 1.91 0.5782 0.4645

SVG 1.51 2.06 0.6259 0.5595

MIM 0.91 1.45 0.7406 0.6525

Ours 0.86 1.43 0.7466 0.6577
Ours (without S) 0.95 1.50 0.7204 0.6446

Ours (linear) 1.15 1.80 0.6837 0.5984

Ours (linear, without S) 1.46 2.19 0.6200 0.5456

Accounting for such locality in the dynamics amounts to implementing another
separation than the usual separation between t and spatial variables. Indeed, it
rather excludes unknown content variables from the dynamics. The resulting
dynamics is then a PDE over time t and the observation coordinates x and y

that we implement using convolutional neural networks, following Long et al.
2018 and Ayed et al. 2020. This different kind of separation of variables simplifies
learning by estimating a PDE that is simpler than the original one, since it acts
on fewer variables. It highlights the generality of our intuition of using the sepa-
ration of variables, which may be used in other settings that strict spatiotemporal
disentanglement. This approach, while still maintaining disentangling properties,
significantly improves prediction performances.

Note that our proposition remains computationally much lighter than the alter-
natives MIM, PhyDNet and SVG.

B.6.4 Additional Samples

WaveEq

We provide in fig. B.1 a sample for the WaveEq dataset, highlighting the long-
term consistency in the forecasts of our algorithm.

We also show in fig. B.2 the effect in forecasting of changing the spatial code S
from the one of another sequence.
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Figure B.1. – Example of predictions of our model on WaveEq.

Figure B.2. – Evolution of the scaled difference between the forecast of a sequence
and the same forecast with a spatial code coming from another
sequence for the WaveEq dataset.

SST

We provide an additional sample for SST in fig. B.3.

Moving MNIST

We provide two additional samples for Moving MNIST in figs. B.4 and B.5.

3D Warehouse Chairs

We provide a qualitative comparison for the content swap experiment between
our model and DrNet for 3D Warehouse Chairs in fig. B.7. We notice that DrNet
produces substantially more blurry samples than our model and has difficulties
to capture the exact dynamic of the chairs.
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Figure B.3. – Example of predictions of compared models on SST.

Figure B.4. – Example of predictions of compared models on Moving MNIST.
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Figure B.5. – Example of predictions of compared models on Moving MNIST.

Figure B.6. – Fusion of content and
dynamic variables in
Dr Net on 3D Ware-
house Chairs.

Figure B.7. – Fusion of content and
dynamic variables in
Our model on 3D Ware-
house Chairs.
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A P P E N D I C E S T O A P H Y N I T Y

C.1 A reminder on Chebyshev sets

We begin by giving a definition of Chebyshev sets, taken from (Fletcher and
Moors 2014):

Definition C.1. A Chebyshev set of a normed space (E, ‖·‖) is a subset C ⊂ E such
that every x ∈ E admits a unique nearest point in C.

In Euclidean spaces, Chebyshev sets are simply the closed convex subsets. The
question of knowing whether it is the case that all Chebyshev sets are closed
convex sets in infinite dimensional Hilbert spaces is still an open question. In
general, there exists examples of non-convex Chebyshev sets, a famous one being
presented in (Johnson 1987) for a non-complete inner-product space.

Given the importance of this topic in approximation theory, finding necessary
conditions for a set to be Chebyshev and studying the properties of those sets
have been the subject of many efforts. Some of those properties are summarized
below:

• The metric projection on a boundedly compact Chebyshev set is continuous.

• If the norm is strict, every closed convex space, in particular any finite dimen-
sional subspace is Chebyshev.

• In a Hilbert space, every closed convex set is Chebyshev.

C.2 Proof of Existance and Uniqueness

We prove the following result: We prove the following result which implies
both propositions in the article:

Proposition C.2. The optimization problem:

min
fk∈Hk,fu∈F

‖fu‖ subject to ∀X ∈ D,∀t, dXt

dt
= (fk + fu)(Xt) (C.1)

211
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is equivalent a metric projection onto Hk.

If Hk is proximinal, (C.1) admits a minimizing pair.

If Hk is Chebyshev, (C.1) admits a unique minimizing pair which Fp is the metric
projection.

Proof. The idea is to reconstruct the full functional from the trajectories of D. By
definition, A is the set of points reached by trajectories in D so that:

A = {x ∈ Rd | ∃X· ∈ D,∃t, Xt = x}

Then let us define a function FD in the following way: For a ∈ A, we can find
X· ∈ D and t0 such that Xt0 = a. Differentiating X at t0, which is possible by
definition of D, we take:

FD(a) =
dXt

dt

∣∣∣∣
t=t0

For any (fk, fu) satisfying the constraint in (C.1), we then have that (fk+fu)(a) =
dXt
dt |t0

= FD(a) for all a ∈ A. Conversely, any pair such that (fk, fu) ∈ Hk ×F and
fk + fu = FD, verifies the constraint.

As Hk is a Chebyshev set, the optimization problem:

min
fk∈Hk

‖FD − fk‖

has a unique minimum which is the projection of FD on Hk and which we denote
f ?k . Taking f ?u = FD − f ?k , we have that f ?k + f ?u = FD so that (f ?k , f

?
u) verifies the

constraint of (8.2). Moreover, if there is (fk, fu) satisfying the constraint of eq. (8.2),
we have that fk + fu = FD by what was shown above and ‖fu‖= ‖FD − fk‖≥
‖FD − f ?k‖ by definition of f ?k . This shows that (f ?k , f

?
u) is minimal. Finally, by

uniqueness of the projection, if fk 6= f ?k then ‖fu‖> ‖f ?u‖. Thus the minimal pair
is unique.

C.3 Parameter Estimation in Incomplete Physical
Models

Classically, when a set Hk ⊂ F summarising the most important properties of
a system is available, this gives a simplified model of the true dynamics and the
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adopted problem is then to fit the trajectories using this model as well as possible,
solving:

min
fk∈Hk

EX∼DL(X̃X0 , X) (C.2)

subject to ∀g ∈ I, X̃g
0 = g and ∀t, dX̃

g
t

dt
= fk(X̃

g
t ) (C.3)

where L is a discrepancy measure between trajectories. Recall that X̃X0 is the
result trajectory of an ODE solver taking X0 as initial condition. In other words,
we try to find a function fk which gives trajectories as close as possible to the
ones from the dataset. While estimation of the function becomes easier, there is
then a residual part which is left unexplained and this can be a non negligible
issue in at least two ways:

• When the dynamics f 6∈ Hk, the loss is strictly positive at the minimum.
This means that reducing the space of functions makes us lose in terms of
accuracy. 1

• The obtained function fk might not even be the most meaningful function
from Hk as it would try to capture phenomena which are not explainable
with functions in Hk, thus giving the wrong bias to the calculated function.
For example, if one is considering a dampened periodic trajectory where only
the period can be learned in Hk but not the dampening, the estimated period
will account for the dampening and will thus be biased.

This is confirmed in section 8.4: the incomplete physical models augmented
with APHYNITY get different and experimentally better physical identification
results than the physical models alone.

Let us compare our approach with this one on the linearized damped pendulum
to show how estimates of physical parameters can differ. The equation is the
following:

d2θ

dt2
+ ω2

0θ + λ
dθ

dt
= 0

We take the same notations as in the article and parametrize the simplified physi-
cal models as:

fak : X 7→ (
dθ

dt
,−aθ)

1. This is true in theory, although not necessarily in practice when f overfits a small dataset.



214 appendices to aphynity

where a > 0 corresponds to ω2
0 . The corresponding solution for an initial state X0,

which we denote Xa, can then written explicitly as:

θat = θ0 cos
√
a t

Let us consider damped pendulum solutions X written as:

θt = θ0e
−t cos t

which corresponds to:

F : X 7→ (
dθ

dt
, 2(θ − dθ

dt
))

It is then easy to see that the estimate of a with the physical model alone can be
obtained by minimizing: ∫ T

0

|e−t cos t− cos
√
a t|2

This expression depends on T and thus, depending on the chosen time interval
and the way the integral is discretized will almost always give biased estimates. In
other words, the estimated value of a won’t give us the desired solution t 7→ cos t.

On the other hand, for a given a, in the APHYNITY framework, the residual
must be equal to:

F a
r : X 7→ (0, (2− a)θ − 2

dθ

dt
)

in order to satisfy the fitting constraint. Here a corresponds to 1 + ω2
0 not to ω2

0 as
in the simplified case. Minimizing its norm, we obtain a = 2 which gives us the
desired solution:

θt = θ0e
−t cos t

with the right period.

C.4 Discussion of Supervision over Derivatives

In order to find the appropriate decomposition (fk, fu), we use a trajectory-
based error by solving:

min
fk∈Hk,fu∈F

‖fu‖ (C.4)

subject to: ∀g ∈ I, X̃g
0 = g and ∀t, dX̃

g
t

dt
= (fk + fu)(X̃

g
t )

subject to: ∀X ∈ D, L(X, X̃X0) = 0
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In the continuous setting where the data is available at all times t, this problem
is in fact equivalent to the following one:

min
fk∈Hk

E
X∼D

∫
‖dXt

dt
− fk(Xt)‖ (C.5)

where the supervision is done directly over derivatives, obtained through finite-
difference schemes. This echoes the proof in appendix C.2 of the Supplementary
where f can be reconstructed from the continuous data.

However, in practice, data is only available at discrete times with a certain time
resolution. While eq. (C.5) is indeed equivalent to eq. (C.4) in the continuous
setting, in the practical discrete one, the way error propagates isn’t anymore:
For eq. (C.4) it is controlled over integrated trajectories while for eq. (C.5) the
supervision is over the approximate derivatives of the trajectories from the dataset.
We argue that the trajectory-based approach is more flexible and more robust for
the following reasons:

• In (C.4), if fu is appropriately parameterized, it is possible to perfectly fit the
data trajectories at the sampled points.

• The use of finite differences schemes to estimate f as is done in (C.5) neces-
sarily induces a non-zero discretization error.

• This discretization error is explosive in terms of divergence from the true
trajectories.

This last point is quite important, especially when time sampling is sparse (even
though we do observe this adverse effect empirically in our experiments with
relatively finely time-sampled trajectories). The following gives a heuristical rea-
soning as to why this is the case. Let F̃ = f + ε be the function estimated from the
sampled points with an error ε such that ‖ε‖∞≤ α. Denoting X̃ the corresponding
trajectory generated by F̃ , we then have, for all X ∈ D:

∀t, d(X − X̃)t
dt

= f(Xt)− f(X̃t)− ε(X̃t)

Integrating over [0, T ] and using the triangular inequality as well as the mean
value inequality, supposing that f has uniformly bounded spatial derivatives:

∀t ∈ [0, T ], ‖(X − X̃)t‖≤ ‖∇f‖∞
∫ t

0

‖Xs − X̃s‖+αt
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which, using a variant of the Grönwall lemma, gives us the inequality:

∀t ∈ [0, T ], ‖Xt − X̃t‖≤
α

‖∇f‖∞
(exp(‖∇f‖∞t)− 1)

When α tends to 0, we recover the true trajectories X . However, as α is bounded
away from 0 by the available temporal resolution, this inequality gives a rough
estimate of the way X̃ diverges from them, and it can be an equality in many cases.
This exponential behaviour explains our choice of a trajectory-based optimization.

C.5 Implementation Details

We describe here the three use cases studied in the paper for validating
APHYNITY. All experiments are implemented with PyTorch Paszke et al. 2019b
and the differentiable ODE solvers with the adjoint method implemented in
torchdiffeq. 2

C.5.1 Non-linear pendulum

We consider the non-linear damped pendulum problem, governed by the ODE

d2θ

dt2
+ ω2

0 sin θ + λ
dθ

dt
= 0

where θ(t) is the angle, ω0 = 2π
T0

is the proper pulsation (T0 being the period) and
λ is the damping coefficient. With the state X = (θ, dθ

dt
), the ODE can be written

as dXt
dt

= f(Xt) with f : X 7→ (dθ
dt
,−ω2

0 sin θ − λdθ
dt

).

Dataset For each train / validation / test split, we simulate a dataset with 25

trajectories of 40 timesteps (time interval [0, 20], timestep δt = 0.5) with fixed ODE
coefficients (T0 = 12, λ = 0.2) and varying initial conditions. The simulation inte-
grator is Dormand-Prince Runge-Kutta method of order (4)5 (DOPRI5) Dormand
and Prince 1980. We also add a small amount of white gaussian noise (σ = 0.01)
to the state. Note that our pendulum dataset is much more challenging than the
ideal frictionless pendulum considered in Greydanus et al. 2019.

Neural network architectures We detail in Table C.1 the neural architectures
used for the damped pendulum experiments. All data-driven augmentations

2. https://github.com/rtqichen/torchdiffeq

https://github.com/rtqichen/torchdiffeq
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for approximating the mapping Xt 7→ f(Xt) are implemented by multi-layer
perceptrons (MLP) with 3 layers of 200 neurons and ReLU activation functions
(except at the last layer: linear activation). The Hamiltonian Greydanus et al. 2019

is implemented by a MLP that takes the state Xt and outputs a scalar estimation of
the Hamiltonian H of the system: the derivative is then computed by an in-graph
gradient of H with respect to the input: f(Xt) =

(
∂H

∂(dθ/dt)
,−∂H

dθ

)
.

Table C.1. – Neural network architectures for the damped pendulum experiments.
n/a corresponds to non-applicable cases.

Method Physical model Data-driven model

Neural ODE R. T. Q. Chen et al. 2018 n/a MLP(in=2, units=200, layers=3, out=2)

Hamiltonian Greydanus et al. 2019; Toth et al. 2020 MLP(in=2, units=200, layers=3, out=1) n/a
APHYNITY Hamiltonian MLP(in=2, units=200, layers=3, out=1) MLP(in=2, units=200, layers=3, out=2)

Param ODE (ω0) 1 trainable parameter ω0 n/a
APHYNITY Param ODE (ω0) 1 trainable parameter ω0 MLP(in=2, units=200, layers=3, out=2)

Param ODE (ω0, λ) 2 trainable parameters ω0, λ n/a
APHYNITY Param ODE (ω0, λ) 2 trainable parameters ω0, λ MLP(in=2, units=200, layers=3, out=2)

Optimization hyperparameters The hyperparameters of the APHYNITY op-
timization algorithm (Niter, λ0, τ1, τ2) were cross-validated on the validation set
and are shown in Table C.2. All models were trained with a maximum number
of 5000 steps with early stopping.

Table C.2. – Hyperparameters of the damped pendulum experiments.

Method Niter λ0 τ1 τ2

APHYNITY Hamiltonian 5 1 1 0.1
APHYNITY ParamODE (ω0) 5 1 1 10

APHYNITY ParamODE (ω0, λ) 5 1000 1 100

C.5.2 Reaction-diffusion equations

The system is driven by a 2D FitzHugh-Nagumo type PDE Klaasen and Troy
1984

∂u

∂t
= a∆u+Ru(u, v; k),

∂v

∂t
= b∆v +Rv(u, v)

where a and b are respectively the diffusion coefficients of u and v, ∆ is the Laplace
operator. The local reaction terms are Ru(u, v; k) = u− u3− k− v,Rv(u, v) = u− v.

The state X = (u, v) is defined over a compact rectangular domain Ω = [−1, 1]2

with periodic boundary conditions. Ω is spatially discretized with a 32 × 32 2D
uniform square mesh grid. The periodic boundary condition is implemented with



218 appendices to aphynity

Table C.3. – ConvNet architecture in reaction-diffusion and wave equation exper-
iments, used as data-driven derivative operator in APHYNITY and
Neural ODE (R. T. Q. Chen et al. 2018).

Module Specification

2D Conv. 3× 3 kernel, 2 input channels, 16 output channels, 1 pixel zero padding
2D Batch Norm. No average tracking
ReLU activation —
2D Conv. 3× 3 kernel, 16 input channels, 16 output channels, 1 pixel zero padding
2D Batch Norm. No average tracking
ReLU activation —
2D Conv. 3× 3 kernel, 16 input channels, 2 output channels, 1 pixel zero padding

circular padding around the borders. ∆ is systematically estimated with a 3× 3

discrete Laplace operator.

Dataset Starting from a randomly sampled initial state Xinit ∈ [0, 1]2×32×32, we
generate states by integrating the true PDE with fixed a, b, and k in a dataset
(a = 1× 10−3, b = 5× 10−3, k = 5× 10−3). We firstly simulate high time-resolution
(δtsim = 0.001) sequences with explicit finite difference method. We then extract
states every δtdata = 0.1 to construct our low time-resolution datasets.

We set the time of random initial state to t = −0.5 and the time horizon to
t = 2.5. 1920 sequences are generated, with 1600 for training/validation and
320 for test. We take the state at t = 0 as X0 and predict the sequence until the
horizon (equivalent to 25 time steps) in all reaction-diffusion experiments. Note
that the sub-sequence with t < 0 are reserved for the extensive experiments in
Section C.7.1 of the Supplementary.

Neural network architectures Our fu here is a 3-layer convolution network
(ConvNet) in the APHYNITY. The two input channels are (u, v) and two output
ones are (∂u

∂t
, ∂v
∂t

). The purely data-driven Neural ODE uses such ConvNet as its
F . The detailed architecture is provided in table C.3.

The estimated physical parameters θk in fk are simply a trainable vector (a, b) ∈
R2

+ or (a, b, k) ∈ R3
+.

Optimization hyperparameters We choose to apply the same hyperparameters
for all the reaction-diffusion experiments: Niter = 1, λ0 = 1, τ1 = 1 × 10−3, τ2 =

1× 103.
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C.5.3 Wave equations

The damped wave equation is defined by

∂2w

∂t2
− c2∆w + k

∂w

∂t
= 0

where c is the wave speed and k is the damping coefficient. The state is X =

(w, ∂w
∂t

).

We consider a compact spatial domain Ω represented as a 64 × 64 grid and
discretize the Laplacian operator similarly. ∆ is implemented using a 5×5 discrete
Laplace operator in simulation whereas in the experiment is a 3 × 3 Laplace
operator. Null Neumann boundary condition are imposed for generation.

Dataset δt was set to 0.001 to respect Courant number and provide stable inte-
gration. The simulation was integrated using a 4th order finite difference Runge-
Kutta scheme for 300 steps from an initial Gaussian state, i.e for all sequence at
t = 0, we have:

w(x, y, t = 0) = C × exp
(x−x0)2+(y−y0)2

σ2 (C.6)

The amplitude C is fixed to 1, and (x0, y0) = (32, 32) to make the Gaussian curve
centered for all sequences. However, σ is different for each sequence and uni-
formly sampled in [10, 100]. The same δt was used for train and test. All initial
conditions are Gaussian with varying amplitudes. 250 sequences are generated,
200 are used for training while 50 are reserved as a test set. In the main paper
setting, c = 330 and k = 50. As with the reaction diffusion case, the algorithm
takes as input a state Xt0 = (w, dw

dt
)(t0) and predicts all states from t0 + δt up to

t0 + 25δt.

Neural network architectures The neural network for fu is a 3-layer convo-
lution neural network with the same architecture as in table C.3. For fk, the
parameter(s) to be estimated is either a scalar c ∈ R+ or a vector (c, k) ∈ R2

+.
Similarly, Neural ODE networks are build as presented in table C.3.

Optimization hyperparameters We use the same hyperparameters for the ex-
periments: Niter = 3, λ0 = 1, τ1 = 1× 10−4, τ2 = 1× 102.
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C.6 Ablation study

We conduct ablation studies to show the effectiveness of APHYNITY’s adaptive
optimization and trajectory-based learning scheme.

C.6.1 Ablation to vanilla MB/ML cooperation

In Table C.4, we consider the ablation case with the vanilla augmentation
scheme found in (Le Guen and Thome 2020; Q. Wang et al. 2019; Mehta et al.
2020), which does not present any proper decomposition guarantee. We observe
that the APHYNITY cooperation scheme outperforms this vanilla scheme in all
case, both in terms of forecasting performances (e.g. log MSE= -0.35 vs. -3.97 for
the Hamiltonian in the pendulum case) and parameter identification (e.g. Err
Param=8.4% vs. 2.3 for Param PDE (a, b for reaction-diffusion). It confirms the
crucial benefits of APHYNITY’s principled decomposition scheme.

C.6.2 Detailed ablation study

We conduct also two other ablations in Table C.5:

• derivative supervision: in which fk + fu is trained with supervision over approx-
imated derivatives on ground truth trajectory, as performed in (Greydanus
et al. 2019; Cranmer et al. 2020). More precisely, APHYNITY’s Ltraj is here
replaced with Lderiv = ‖dXt

dt
−f(Xt)‖ as in eq. (C.5), where dXt

dt
is approximated

by finite differences on Xt.

• non-adaptive optim.: in which we train APHYNITY by minimizing ‖fu‖without
the adaptive optimization of λ shown in Algorithm 8.1. This case is equivalent
to λ = 1, τ2 = 0.

We highlight the importance to use a principled adaptive optimization algo-
rithm (APHYNITY algorithm described in paper) compared to a non-adpative
optimization: for example in the reaction-diffusion case, log MSE= -4.55 vs. -5.10

for Param PDE (a, b). Finally, when the supervision occurs on the derivative, both
forecasting and parameter identification results are systematically lower than
with APHYNITY’s trajectory based approach: for example, log MSE=-1.16 vs. -
4.64 for Param PDE (c) in the wave equation. It confirms the good properties of
the APHYNITY training scheme.



C.7 additional experiments 221

Table C.4. – Ablation study comparing APHYNITY to the vanilla augmentation
scheme (Q. Wang et al. 2019; Mehta et al. 2020) for the reaction-
diffusion equation, wave equation and damped pendulum.

Dataset Method log MSE %Err Param. ‖fu‖2

Reaction-
diffusion

Param. PDE (a, b) with vanilla aug. -4.56±0.52 8.4 (7.5±1.4)e1

APHYNITY Param. PDE (a, b) -5.10±0.21 2.3 (6.7±0.4)e1

Param. PDE (a, b, k) with vanilla aug. -8.04±0.03 25.4 (1.5±0.2)e-2
APHYNITY Param. PDE (a, b, k) -9.35±0.02 0.096 (1.5±0.4)e-6

True PDE with vanilla aug. -8.12±0.05 n/a (6.1±2.3)e-4
APHYNITY True PDE -9.17±0.02 n/a (1.4±0.8)e-7

Wave
equation

Param PDE (c) with vanilla aug. -3.90 ± 0.27 0.51 88.66

APHYNITY Param PDE (c) -4.64±0.25 0.31 71.0

Param PDE (c, k) with vanilla aug. -5.96 ± 0.10 0.71 25.1
APHYNITY Param PDE (c, k) -6.09±0.28 0.70 4.54

Damped
pendulum

Hamiltonian with vanilla aug. -0.35±0.1 n/a 837±117

APHYNITY Hamiltonian -3.97±1.2 n/a 623±68

Param ODE (ω0) with vanilla aug. -7.02±1.7 4.5 148±49

APHYNITY Param ODE (ω0) -7.86±0.6 4.0 132±11

Param ODE (ω0, α) with vanilla aug. -7.60±0.6 4.65 35.5±6.2
APHYNITY Param ODE (ω0, α) -8.31±0.3 0.39 8.5±2.0

Augmented True ODE with vanilla aug. -8.40±0.2 n/a 3.4±0.8
APHYNITY True ODE -8.44±0.2 n/a 2.3±0.4

C.7 Additional experiments

C.7.1 Reaction-diffusion systems with varying diffusion pa-
rameters

We conduct an extensive evaluation on a setting with varying diffusion pa-
rameters for reaction-diffusion equations. The only varying parameters are diffu-
sion coefficients, i.e. individual a and b for each sequence. We randomly sample
a ∈ [1× 10−3, 2× 10−3] and b ∈ [3× 10−3, 7× 10−3]. k is still fixed to 5× 10−3 across
the dataset.

In order to estimate a and b for each sequence, we use here a ConvNet encoder
E to estimate parameters from 5 reserved frames (t < 0). The architecture of
the encoder E is similar to the one in Table C.3 except that E takes 5 frames
(10 channels) as input and E outputs a vector of estimated (ã, b̃) after applying
a sigmoid activation scaled by 1 × 10−2 (to avoid possible divergence). For the
baseline Neural ODE, we concatenate a and b to each sequence as two channels.
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Table C.5. – Detailed ablation study on supervision and optimization for the
reaction-diffusion equation, wave equation and damped pendulum.

Dataset Method log MSE %Err Param. ‖fu‖2

Reaction-
diffusion

Augmented Param. PDE (a, b) derivative supervision -4.42±0.25 12.6 (6.8±0.6)e1

Augmented Param. PDE (a, b) non-adaptive optim. -4.55±0.11 7.5 (7.6±1.0)e1

APHYNITY Param. PDE (a, b) -5.10±0.21 2.3 (6.7±0.4)e1

Augmented Param. PDE (a, b, k) derivative supervision -4.90±0.06 11.7 (1.9±0.3)e-1
Augmented Param. PDE (a, b, k) non-adaptive optim. -9.10±0.02 0.21 (5.5±2.9)e-7
APHYNITY Param. PDE (a, b, k) -9.35±0.02 0.096 (1.5±0.4)e-6

Augmented True PDE derivative supervision -6.03±0.01 n/a (3.1±0.8)e-3
Augmented True PDE non-adaptive optim. -9.01±0.01 n/a (1.5±0.8)e-6
APHYNITY True PDE -9.17±0.02 n/a (1.4±0.8)e-7

Wave
equation

Augmented Param PDE (c) derivative supervision -1.16±0.48 12.1 0.00024

Augmented Param PDE (c) non-adaptive optim. -2.57±0.21 3.1 43.6
APHYNITY Param PDE (c) -4.64±0.25 0.31 71.0

Augmented Param PDE (c, k) derivative supervision -4.19±0.36 7.2 0.00012

Augmented Param PDE (c, k) non-adaptive optim. -4.93±0.51 1.32 0.054

APHYNITY Param PDE (c, k) -6.09±0.28 0.70 4.54

Augmented True PDE derivative supervision -4.42 ± 0.33 n/a 6.02e-5
Augmented True PDE non-adaptive optim. -4.97±0.49 n/a 0.23

APHYNITY True PDE -5.24±0.45 n/a 0.14

Damped
pendulum

Augmented Hamiltonian derivative supervision -0.83±0.3 n/a 642±121

Augmented Hamiltonian non-adaptive optim. -0.49±0.58 n/a 165±30

APHYNITY Hamiltonian -3.97±1.2 n/a 623±68

Augmented Param ODE (ω0) derivative supervision -1.02±0.04 5.8 136±13

Augmented Param ODE (ω0) non-adaptive optim. -4.30±1.3 4.4 90.4±27

APHYNITY Param ODE (ω0) -7.86±0.6 4.0 132±11

Augmented Param ODE (ω0, α) derivative supervision -2.61±0.2 5.0 3.2±1.7
Augmented Param ODE (ω0, α) non-adaptive optim. -7.69±1.3 1.65 4.8±7.7
APHYNITY Param ODE (ω0, α) -8.31±0.3 0.39 8.5±2.0

Augmented True ODE derivative supervision -2.14±0.3 n/a 4.1±0.6
Augmented True ODE non-adaptive optim. -8.34±0.4 n/a 1.4±0.3
APHYNITY True ODE -8.44±0.2 n/a 2.3±0.4

In Table C.6, we observe that combining data-driven and physical components
outperforms the pure data-driven one. When applying APHYNITY to Param PDE
(a, b), the prediction precision is significantly improved (log MSE: -1.32 vs. -4.32)
with a and b respectively reduced from 55.6% and 54.1% to 11.8% and 18.7%. For
complete physics cases, the parameter estimations are also improved for Param
PDE (a, b, k) by reducing over 60% of the error of b (3.10 vs. 1.23) and 10% to 20%
of the errors of a and k (resp. 1.55/0.59 vs. 1.29/0.39).

The extensive results reflect the same conclusion as shown in the main article:
APHYNITY improves the prediction precision and parameter estimation. The
same decreasing tendency of ‖Fa‖ is also confirmed.
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Table C.6. – Results of the dataset of reaction-diffusion with varying (a, b). k =
5× 10−3 is shared across the dataset.

Method log MSE %Err a %Err b %Err k ‖Fa‖2

Data-
driven Neural ODE (R. T. Q. Chen et al. 2018) -3.61±0.07 n/a n/a n/a n/a

Incomplete
physics

Param PDE (a, b) -1.32±0.02 55.6 54.1 n/a n/a
APHYNITY Param PDE (a, b) -4.32±0.32 11.8 18.7 n/a (4.3±0.6)e1

Complete
physics

Param PDE (a, b, k) -5.54±0.38 1.55 3.10 0.59 n/a
APHYNITY Param PDE (a, b, k) -5.72±0.25 1.29 1.23 0.39 (5.9±4.3)e-1
True PDE -8.86±0.02 n/a n/a n/a n/a
APHYNITY True PDE -8.82±0.15 n/a n/a n/a (1.8±0.6)e-5

C.7.2 Additional results for the wave equation

We conduct an experiment where each sequence is generated with a different
wave celerity. This dataset is challenging because both c and the initial condi-
tions vary across the sequences. For each simulated sequence, an initial condition
is sampled as described previously, along with a wave celerity c also sampled
uniformly in [300, 400]. Finally our initial state is integrated with the same Runge-
Kutta scheme. 200 of such sequences are generated for training while 50 are kept
for testing.

For this experiment, we also use a ConvNet encoder to estimate the wave speed
c from 5 consecutive reserved states (w, ∂w

∂t
). The architecture of the encoder E is

the same as in Table C.3 but with 10 input channels. Here also, k is fixed for all
sequences and k = 50. The hyper-parameters used in these experiments are the
same than described in the Section C.5.3.

The results when multiple wave speeds c are in the dataset are consistent
with the one present when only one is considered. Indeed, while prediction
performances are slightly hindered, the parameter estimation remains consistent
for both c and k. This extension provides elements attesting for the robustness
and adaptability of our method to more complex settings. Finally the purely
data-driven Neural-ODE fails to cope with the increasing difficulty.
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Table C.7. – Results for the damped wave equation when considering multiple c
sampled uniformly in [300, 400] in the dataset, k is shared across all
sequences and k = 50.

Method log MSE %Error c %Error k ‖fu‖2

Data-
driven Neural ODE 0.056±0.34 n/a n/a n/a

Incomplete
physics

Param PDE (c) -1.32±0.27 23.9 n/a n/a
APHYNITY Param PDE (c) -4.51±0.38 3.2 n/a 171

Complete
physics

Param PDE (c, k) -4.25±0.28 3.54 1.43 n/a
APHYNITY Param PDE (c, k) -4.84±0.57 2.41 0.064 3.64

True PDE (c, k) -4.51±0.29 n/a n/a n/a
APHYNITY True PDE (c, k) -4.49±0.22 n/a n/a 0.0005

C.7.3 Damped pendulum with varying parameters

To extend the experiments conducted in the paper (section 8.4) with fixed pa-
rameters (T0 = 6, α = 0.2) and varying initial conditions, we evaluate APHYNITY
on a much more challenging dataset where we vary both the parameters (T0, α)
and the initial conditions between trajectories.

We simulate 500/50/50 trajectories for the train/valid/test sets integrated with
DOPRI5. For each trajectory, the period T0 (resp. the damping coefficient α) are
sampled uniformly in the range [3, 10] (resp. [0, 0.5]).

We train models that take the first 20 steps as input and predict the next 20

steps. To account for the varying ODE parameters between sequences, we use an
encoder that estimates the parameters based on the first 20 timesteps. In practice,
we use a recurrent encoder composed of 1 layer of 128 GRU units. The output of
the encoder is fed as additional input to the data-driven augmentation models
and to an MLP with final softplus activations to estimate the physical parameters
when necessary (ω0 ∈ R+ for Param ODE (ω0), (ω0, α) ∈ R2

+ for Param ODE
(ω0, α)).

In this varying ODE context, we also compare to the state-of-the-art univariate
time series forecasting method N-Beats (Oreshkin et al. 2020).

Results shown in Table C.8 are consistent with those presented in the paper.
Pure data-driven models Neural ODE (R. T. Q. Chen et al. 2018) and N-Beats
(Oreshkin et al. 2020) fail to properly extrapolate the pendulum dynamics. Incom-
plete physical models (Hamiltonian and ParamODE (ω0)) are even worse since
they do not account for friction. Augmenting them with APHYNITY significantly
and consistently improves forecasting results and parameter identification.
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Table C.8. – Forecasting and identification results on the damped pendulum
dataset with different parameters for each sequence. log MSEs are
computed over 20 predicted time-steps. For each level of incorporated
physical knowledge, equivalent best results according to a Student
t-test are shown in bold. n/a corresponds to non-applicable cases.

Method log MSE %Error T0 %Error α ‖fu‖2

data-
driven

Neural ODE (R. T. Q. Chen et al. 2018) -4.35±0.9 n/a n/a n/a
N-Beats (Oreshkin et al. 2020) -4.57±0.5 n/a n/a n/a

Incomplete
physics

Hamiltonian (Greydanus et al. 2019) -1.31±0.4 n/a n/a n/a
APHYNITY Hamiltonian -4.72±0.4 n/a n/a 5.6±0.6
Param ODE (ω0) -2.66±0.9 21.5±19 n/a n/a
APHYNITY Param ODE (ω0) -5.94±0.7 5.0±1.8 n/a 0.49±0.1

Complete
physics

Param ODE (ω0, α) -5.71±0.4 4.08±0.8 152±129 n/a
APHYNITY Param ODE (ω0, α) -6.22±0.7 3.26±0.6 62±27 (5.39±0.1)e-10

True ODE -8.58±0.1 n/a n/a n/a
APHYNITY True ODE -8.58±0.1 n/a n/a (2.15±1.6)e-4
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D.1 Distance

D.1.1 Distance Between Dynamics

We here give the definition of the distance d. Let u and v be two functions of
L2(Rp,Rp). We consider the distance:

d(u, v) = EX∼pX
∥∥u(X)− v(X)

∥∥
2

(D.1)

Naturally, eq. (D.1) verifies the triangle inequality, the symmetry and the posi-
tiveness. Moreover, in this case, for all functions f , d(., f) is convex. Indeed, for
u, v two functions, and λ ∈ [0, 1]:

d(λu+ (1− λ)v, f) = EX∼pX
∥∥λu(X) + (1− λ)v(X)− f(X)

∥∥
2

= EX∼pX
∥∥λu(X)− λf(X)− (1− λ)f(X) + (1− λ)v(X)

∥∥
2

≤ λEX∼pX
∥∥u(X)− f(X)

∥∥
2

+ (1− λ)EX∼pX
∥∥v(X)− f(X)

∥∥
2

Hence the convexity of d(., f). This consideration suffices to ensure the convex-
ity of Sk and Su defined in section 9.3.

D.1.2 Distance Between Flows

Consider the ODE with X(t), X0 ∈ Rp:

dX(t)

dt
= f(X(t)), X(t = 0) = X0 (D.2)

227
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Equation (D.2) admits a unique solution as soon as f is Lipschitz. We note X?

this solution. Then, we can defined the flow φf of such ODE as :

[0,T ]×Rp → Rp

t, X0 → φf (t,X0) = X?(t)
(D.3)

With the definition of eq. (D.3), we can define the distance between two flows
of ODE as:

dφ(φu, φf ) = EX0∼pX0

∫ τ

t0

‖φu(t,X0)− φf (t,X0)‖ dt (D.4)

dφ is positive and symmetric. Let φu, φv be two flows, we have the triangle in-
equality:

dφ(φu, φf ) = EX0∼pX0

∫ τ

t0

‖φu(t,X0)− φf (t,X0)‖ dt

= EX0∼pX0

∫ τ

t0

‖φu(t,X0)− φv(t,X0) + φv(t,X0) + φf (t,X0)‖ dt

≤ EX0∼pX0

∫ τ

t0

‖φu(t,X0)− φv(t,X0)‖+‖φv(t,X0) + φf (t,X0)‖ dt

≤ dφ(φv, φv) + dφ(φv, φf )

Let φf be fixed, we also have the convexity of dφ(., φf ) with respect to the first
argument. Indeed for λ ∈ [0, 1]:

dφ(λφu + (1− λ)φv, f) = EX0∼pX0

∫ τ

t0

∥∥λφu(t,X0) + (1− λ)φv − φf (t,X0)
∥∥ dt

= EX0∼pX0

∫ τ

t0

∥∥λφu(t,X0) + (1− λ)φv − λφf (t,X0)− (1− λ)φf (t,X0)
∥∥ dt

≤ λ dφ(φu, φv) + (1− λ) dφ(φv, φf )

However, in this case the convexity is not ensured with respect to u and vThis is
the reason why for theoretical investigations, we consider the distance d instead
of dφ.

Nonetheless, dφ(φu, φf ) = 0 =⇒ φu = φf =⇒ u = f .

D.2 Remark on Additive Decomposition

First, note that in the case of a metric space the decomposition as defined in
eq. (9.1) always exists.
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We now detail an intuition for the well-posedness of such decomposition.

Let Hk be a closed convex subset of functions of an Hilbert space (E,<,>),
and f the function we want to approximate with partial knowledge (represented
by the space of hypothesis Hk). Then, thanks to Hilbert projection lemma, we
have the uniqueness of the minimizer of ming∈Hk‖f − g‖, i.e it exists one unique
hk ∈ Hk such that: ∀g ∈ Hk, ‖f − hk‖ ≤ ‖f − g‖.

Finally, the additive decomposition hypothesis presents a remarkable advantage
in the case of a vector space. Indeed, if Hk is a (closed) vector space, let H⊥k
be its supplementary in E, then we have the uniqueness in the decomposition:
f = fHk + fH⊥k , where fH⊥k ∈ H

⊥
k and fHk ∈ Hk.

The existence and uniqueness flowing directly from the additive decomposition
hypothesis, this can explain why such assumption is common when bridging ML
and MB hypothesis.

D.3 Upper Bounds

D.3.1 Derivation of Equation (9.3)

The first upper bound is a simple use of the triangle inequality:

d(h, f) = d(h, f) + d(hk, f)− d(hk, f)

≤ d(hk, f) + | d(h, f)− d(hk, f)|
≤ d(hk, f) + d(h, hk)

D.3.2 Derivation of Equation (9.4)

To derive the second upper bound, we assume that fprk comes from an overall
dynamics fpr obeying the additive decomposition hypothesis of eq. (9.1) so that
fpr and fprk verifies: fpr = fprk + fpru . First, with computations similar to eq. (9.3),
we have:

d(h, f) ≤ d(h, fpr) + d(fpr, f) (D.5)
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Then:

d(h, fpr) = d(h, fpr) + d(hk, f
pr
k )− d(hk, f

pr
k )

≤ d(hk, f
pr
k ) + | d(h, fpr)− d(hk, f

pr
k )|

≤ d(hk, f
pr
k ) + | d(h, fpr)− d(h, fprk )− d(h, fprk ) + d(hk, f

pr
k )|

≤ d(hk, f
pr
k ) + | d(h, fpr)− d(h, fprk )|+| d(hk, f

pr
k )− d(h, hk)|

≤ d(hk, f
pr
k ) + d(fpr, fprk ) + d(h, hk) (D.6)

Combining Equations (D.5) and (D.6), we retrieve eq. (9.4):

d(h, f) ≤ d(hk, f
pr
k ) + d(h, hk) + d(fpr, fprk ) + d(fpr, f) (D.7)

and we have: Γ = d(fpr, fprk )+ d(fpr, f). Γ is a constant of the problem that cannot
be optimized.

D.3.3 Upper-Bound Using Auxiliary Dynamics f pr

Let fpr be the dynamics of model data, we can link up the error made by h on
true data (following dynamics f ) and the error made by h on model data (with
dynamics fpr) via:

d(h, f) ≤ d(h, fpr) + d(fpr, f) (D.8)

Thus a pre-training on auxiliary data of dynamics fpr amounts to control the term
d(h, fpr) in the upper-bound of eq. (D.8).

D.3.4 Self-Supervision

Let h = hk +hu be the function to learn and Gψ the recognition network provid-
ing an estimate θ̂ik of the parameters from an initial sequence (X i

t0
, . . . , X i

t0+k∆t).
This learning setting corresponds to how velocity fields are learned from consec-
utive measurements of the tracer fields T in section 9.4.2.

To compute d(hk, f
pr
k ) in the case where fpr = h?, where h? = h?k + h?u is a

learned model, we rely on the computed θk associated to h?k (thanks for example
to the algorithm of section 9.3.2 associated to eq. (9.3)) to generate a synthetic
dataset with achievable supervision in the space of the parameters θk.

From a real initial sequence (X i
t0
, . . . , X i

t0+k∆t), we can estimate the unknown
parameter θik associated to sequence i with the recognition network G?

ψ learned
with h?, i.e θik = G?

ψ(X i
t0
, . . . , X i

t0+k∆t). Then, integrating from the initial condition
X i
t0

, we generate a trajectory of known parameters θik with dynamics h? denoted
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by: X̃ i = (X̃ i
t0
, . . . , X̃ i

tn). Sampling the space of initial conditions, we obtain a syn-
thetic dataset: ((X̃1, θ1

k), . . . , (X̃
m, θmk )) enabling us to perform self-supervision for

Gψ. Let θ̂ik be the parameters estimated by Gψ from the simulated (X̃ i
t , . . . , X̃

i
t+k∆t),

we make the following approximation:

d(hk, fk) ≈
1

m

m∑
i=1

∥∥∥θ̂ik − θik∥∥∥
2

(D.9)

D.4 Proofs to Propositions

D.4.1 Note on the Convexity

Convexity of Sk
Proof. Let u, v ∈ Sk:

d(tu+ (1− t)v, f) =
∥∥tu+ (1− t)v − f

∥∥ =
∥∥tu− tf + (1− t)v − (1− t)f

∥∥
≤ tµ1 + (1− t)µ1 = µ1

Hence the convexity of Sk.

Convexity of Su
Proof. Let t ∈ [0, 1] and u, v ∈ Su.

d(hk, hk + tu+ (1− t)v) = d(0, tu+ (1− t)v)

≤ t d(u, 0) + (1− t) d(v, 0)

≤ µ2

Hence the convexity of Su.

D.4.2 ODE Identification

Consider the following set: SA = {X(t) ∈ C1([0, T ],Rp) such that: ∃A ∈
Mp,p(R), X ′ = AX}, where T > 0.
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SA is not a convex set. Consider u and v in SA, and consider Au and Av so that
u′(t) = Auu(t) and v′(t) = Avv(t). For λ ∈]0, 1[: we have:

[λu+ (1− λ)v]′ = λu′ + (1− λ)v′

= λAuu+ (1− λ)Avv

In general the last term is not equal to Aλu+(1−λ)v(λu+ (1− λ)v), for some matrix
Aλu+(1−λ)v. Thus SA is not a convex set. However, discretizing the trajectories and
employing a simple integration scheme leads to considering the following cost
function:

L(A) =
∑
t

‖(Xs(t+ 1)− (A∆t+ Id)XA(t))‖2
2, (D.10)

As a least square regression problem, L(A) is convex with respect to A. A least
square regression setting can also be recovered using more complex integration
schemes, or several time steps integration.

D.4.3 Proof for Well-posedness of 9.6

We set ourselves in the Hilbert space of squared integrable functions with the
canonical scalar product (L2(Rp,Rp), <,> ). For further consideration on such
functional space we refer to (Droniou 2001).

We assume that Hk hence Sk is convex and a relatively compact family of
functions.

Convexity of Sk + Su Let S = Sk + Su = {f |∃fk ∈ Sk, fu ∈ Su, f = fk + fu}.
Let f, g ∈ S and λ ∈]0, 1[:

λf + (1− λ)g = λfk + (1− λ)gk + λfu + (1− λ)gu ∈ Sk + Su

Hence the convexity of S.

Closeness of Su We show that Su is a closed set. Indeed, Su = g−1([0, µu]),
where g(u) = ‖u‖, Because g is 1-Lipschitz (using the triangle inequality), g is
continuous. Therefore Su is closed set as the inverse image of a closed set by
continuous function.

Sequential Limit We now show that S is a closed set thanks to the sequential
characterisation: let fn a converging sequence of elements of S and denote f its
limit. We prove that fn converges in S.
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Because ∀n, fn ∈ S, we have: fn = fnk + fnu , where fnu ∈ Su and fnk ∈ Sk.
Thanks to the relative compactness of Sk, we can extract a converging sub-

sequence, of indexes nj , from fnk so that fnjk → fk ∈ Sk.

Because fn → f , the sub-sequence fnj converges: fnj → f .

By definition, fnju is a sequence of Su and we also have that: fnju = fnj − fnjk .
Because the right member of the equation converges (as a sum of converging
functions), the left member of the equation converges i.e. fnju converges.

Since Su is a closed set fnju converges in Su. We write fu its limit. Therefore,
f
nj
u = fnj − fnjk → f − fk = fu ∈ Su. Hence, f = fu + fk with fu ∈ Su and fk ∈ Sk.

Therefore S is a closed set.

Finally, we can apply Hilbert projection lemma on the closed convex set S and
retrieve the uniqueness of the minimizer of eq. (9.6).

Remark The relative compactness of a family of functions is a common as-
sumption in functional analysis. For example, in the study of differential equation
Cauchy-Peano theorem provides the existence to the solution of an ODE under
the assumption of relative compactness.

Also, Ascoli theorem provides the relative compactness of a family of function
F under the hypothesis of the equi-continuity of F and the relative compactness
of the image space A(x) = {f(x)|f ∈ F}.

D.4.4 Proof of Theorem 9.2

We now set ourselves in the Hilbert space (L2([0, T ],Rp), <,> ) of squared
integrable functions, where <,> is the canonical scalar product of L2([0, T ],Rp).

Proof. Let A be a given invertible matrix. We consider the following space SD =

{X ∈ C1([0, T ],Rp) such that: ∃D ∈ Rp, X ′ = AX + D and X(t = 0) = X0}, where
T > 0. We show that SD is a closed convex set.

Convexity Indeed, let λ ∈]0, 1[ and u, v ∈ SD. λu+ (1−λ)v is differentiable and:

[λu+ (1− λ)v)]′ = λu′ + (1− λ)v′ = A(λu+ (1− λ)v) +D,

Where D = λDu + (1− λ)Dv. Hence λu+ (1− λ)v ∈ SD.

Closeness via Affine-Space To prove the closeness of SD, we prove that it is
an affine space of finite dimension.

Let g the application that to any vector D ∈ Rd associate the solution XD.
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Let D0 ∈ RD, we show that gD0 : D → g(D0 +D)− g(D0) is a linear application.

Naturally, for gD0(0Rp) = 0L2 . Then for D 6= 0Rp we have:

gD0(D) = eAt(X0 + A−1(D0 +D))− A−1(D0 +D)− eAt(X0 + A−1(D0) + A−1D0

= eAtA−1D

Therefore gD0 is a linear function and g is an affine function.

Moreover, g is an injection. Indeed, if two functions are equals, then they have
at most one inverse image by g thanks to Cauchy-Lipschitz theorem. Therefore
it defines a bijection of Rd in g(Rd). Since, SD = g(Rd), SD is an affine space of
dimension p and g is continuous in particular for the canonical norm induced on
L2([0, T ],Rp). Therefore SD is an affine space of finite dimension and is a closed
set.

Finding a Unique Minimizer We conclude by applying Hilbert projection
lemma: our problem of minimizing

∫ T
0

∥∥Xs(τ)−XD(τ)
∥∥, amounts to an orthogo-

nal projection problem. Because SD is a closed convex set, we have existence and
uniqueness of such projection. Therefore, it exists a unique function XD ∈ SD and
a unique vector D minimizing its distance to the function Xs.

D.4.5 Algorithm in Linear Setting

We detail in Algorithm D.1 the alternate projection algorithm in a linear set-
ting. We denote Y = (X i

t0+∆t, X
i
t0+n∆t) and X = (X i

t0
, X i

t0+(n−1).∆t). For readability
purposes we set ∆t = 1.

Algorithm D.1 Alternate estimation: Linear Setting
Result: A ∈Mp,p(R), D ∈ Rp

k = 0, D0 = 0, A−1
0 = 0 A0

0 = minA‖Y −XA‖
while ‖Dk −Dk−1‖> ε and ‖Ak − Ak−1‖> ε do
Dk+1 = minD‖Y −XAk −D‖2

2+λ‖D‖2
2

Ak+1 = minA‖Y −XA−Dk+1‖2
2+γ‖Y −XA‖2

2

k ← k + 1
end

D.4.6 Proof to Theorem 9.3

Naturally, one could estimate jointly D and A using least square regression.
However, the idea is to verify the convergence of such alternate algorithm in a
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simple case. We conduct the proof for the first dimension of Y to lighten notations,
meaning that we are regressing the first dimension of Y against the X .

A similar reasoning for the other dimension completes the proof.

Proof. We first give the analytical solution for D. Let An be fixed.

Estimation of D Consider:

LD = ‖Y −XAn −D‖2
2 + λ‖D‖2

2 (D.11)

where D = (d, . . . , d) ∈ RQ. For Q samples, we find d so that ∂L
∂d

= 0:

∂L

∂d
= 0⇔ −2 ∗

Q∑
i=1

(yi −XiA
n − d) + 2λd = 0

⇔ Qd+ λd =

Q∑
i=1

(yi −XiA
n)

⇔ d(Q+ λ) =

Q∑
i=1

(yi −XiA
n)

⇔ d =
Y −XA
1 + λ/Q

where Y −XA = 1
Q

∑Q
i=1(yi −XiA

n).

Estimation of A Let D be fixed and consider:

LA = ‖Y −XA−D‖2
2 + γ‖Y −XA‖2

2 (D.12)
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Similarly, we aim to cancel the first derivative of LA with respect to all parame-
ters of A = (a1, .., ap):

∂LA
∂aj

= 0⇔− 2 ∗
Q∑
i=1

xi,j(yi − a0xi,0 + · · ·+ apxi,p − d)

− 2γ ∗
Q∑
i=1

xi,j(yi − a0xi,0 + · · ·+ apxi,p) = 0

⇔− 2X t(Y −XA−D)− 2γX t(Y −XA) = 0

⇔(1 + γ)X tXA−X t(Y −D)− γX tY = 0

⇔(1 + γ)X tXA = X t(γY + (Y −D))

⇔A =
B−1X t

1 + γ
((1 + γ)Y −D) (D.13)

where B = X tX . Equation (D.13) indicates that as soon a D converges, An con-
verges. Thus, we now prove the convergence of (Dn). Then, for n > 1 consider:

∥∥Dn+1 −Dn
∥∥ =

1

1 + λ/Q

∥∥∥Y −XAn − Y −XAn−1

∥∥∥
=

1

1 + λ/Q

∥∥∥X(An − An−1)
∥∥∥

=
1

(1 + λ/Q)(1 + γ)

∥∥∥XB−1X t([(1 + γ)Y −Dn]− [(1 + γ)Y −Dn−1)]
∥∥∥

=
1

(1 + λ/Q)(1 + γ)

∥∥∥XB−1X t[Dn−1 −Dn]
∥∥∥

≤ K

(1 + λ/Q)(1 + γ)

∥∥Dn−1 −Dn
∥∥

where K = ‖XB−1X t‖.
Therefore, for λ, γ, sufficiently large, K

(1+λ/Q)(1+γ)
< 1. ‖Dn −Dn−1‖ converges as

a positive decreasing sequence. Finally, the sequence of (Dn) converge and so the
sequence of (An).

In conclusion, the proposed algorithm converges.

D.5 Datasets

In this section, we provide exhaustive simulation details for the damped pen-
dulum, Lotka-Volterra, and both geophysical datasets.
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D.5.1 Damped-Pendulum

For the damped pendulum data, eq. (9.14) is integrated with ∆t = 0.2s using
a Runge-Kutta 4-5 scheme from t = 0 up to t = 10s. Both the pulsation ω0 and
the damping coefficient k are fixed across the dataset. We generate 100/50/50

sequences respectively for train, validation and test sampling over the initial con-
ditions so that (θ, θ̇) ∼ U([−π/2, π/2]× [−0.1, 0.1]).

Small Oscillations To linearize the pendulum, we consider the small oscilla-
tions regime and take the initial conditions so that : (θ, θ̇) ∼ U([−π/6, π/6] ×
[−0.1, 0.1]). In that case eq. (9.14) writes as:

d

dt

(
θ̇

θ

)
=

(
−λ g

L

1 0

)(
θ̇

θ

)
(D.14)

and following notations of section 9.3.3, we have: DA = 0 and A =

(
−λ g

L

1 0

)

D.5.2 Lotka-Volterra

For Lotka-Volterra data, eq. (9.15) is integrated with ∆t = 0.05 using a Runge-
Kutta 4-5 scheme from t = 0 up to t = 20. All parameters α, β, γ, δ are set to
1 across the dataset. We generate 100/50/50 sequences respectively for train,
validation and test sampling over the initial prey and predators populations so
that (x, y) ∼ U([0, 2]2).

Practical Issues and Adaptation Assuming that α and γ have positive values
makes the following problem arises: the trajectories defined by hk for the prey
are unbounded, whereas the trajectories defined by eq. (9.15) are. Minimizing
d(hk, f) over long term horizon will lead in an underestimation of α to match
the bounded behaviour of true data. Therefore, we enforce d(hk, f) on the prey
component as soon as the number of predator is small. In practice, we set this
threshold to 0.15.

D.5.3 Geophysical Datasets

We present in this section introductory tools for the understanding of the fluid
dynamics data presented in section 9.4.2. We first introduce the physical modeling
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of ocean dynamics. Then, we outline the Adv+S dataset simulation which draws
from ocean modeling. Finally, we introduce the Natl dataset and the proxy data
used in the experiments.

Introduction To Ocean Modeling The increase in ocean observations thanks to
satellites and floats enabled a great development in Earth modeling over the last
decades. The ocean circulation, that is the current velocity fields dynamics, are
now realistically modeled in tri-dimensional structured models such as NEMO
(Madec 2008).

Such models rely on in-depth physical knowledge of the studied system and
its representation through partial differential equations. Integrated over depth,
the equations associated to the transport of the Sea Surface Temperature T by a
time-varying horizontal velocity field U can be written as:

∂T

∂t
= −∇.(TU) +DT + F T (D.15)

∂U

∂t
= −(U.∇)U + f ∧ U − g′∇h+DU + FU (D.16)

where f is the Coriolis parameter, h the depth of the surface layer obtained from
sea surface height (SSH) observations, g′ the reduced gravity which takes the
stratification in density of the ocean into account such that g′ ≈ g.10−3. In a two-
dimensional setting, ∇.(TU) refers to the advection of a scalar quantity T by a
velocity field U = (u, v) and writes as : ∇.(TU) = ∂T

∂x
u + ∂T

∂y
v. The mixing terms,

referred to as DT/U and the forcings F T/U , are not known.

In the context of the presented work, the physical state Zt = (Tt, Ut), fX and
fY from eq. (7.1) can be interpreted as follows: fX represents the dynamics of
the observed T , i.e. fX(T ) = −∇.(TU) +DT + F T in eq. (D.15). fY represents the
dynamics of U in eq. (D.16), i.e. fY (U, h) = −(U.∇)U + f ∧ U − g′∇h+DU + FU .

Whereas T is observed by satellites, U is not known. However, the Sea Surface
Height (SSH) could be used to compute coarse estimates of U . Indeed, under
hypothesis such as stationarity (∂U

∂t
= 0), incompressibility ((U.∇)U = 0)), forcings

can be omited. In this case, eq. (D.16) can be rewritten into

f ∧ U = −g′∇h (D.17)

When projected onto x and y axis, eq. (D.17) becomes

− fv = −g′∂h
∂x
, fu = −g′∂h

∂y
, (D.18)
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Note that eq. (D.17) and eq. (D.18) do not hold at fine scales as the stationarity
and incompressibility assumptions only hold at large scale. In this case, the SSH
h can be regarded as a stream function.

Both datasets considered in the paper follow the same equations approximating
the tracer equation (eq. (9.16)) inspired by eq. (D.15):

∂T

∂t
= −∇.(TU) + S (D.19)

We study the equations D.15 and D.16 in an incremental approach. In the
following parts, we describe how T , U and S are computed in both datasets
Adv+S and Natl.

Adv+S

We first investigate a dataset generated following simplifying assumptions
(Adv+S). We don’t rely on true U and S, we instead build them so that they
correspond to our hypothesis.

Building a Velocity Field U Under stationarity and incompressibility hypothe-
sis, U can be approximated from a stream function H. Note that, in this dataset,
H is not equal to the SSH h, it is simulated following (Boffetta et al. 2001):

H(x, y, t) = − tanh[
y −B(t)× cos kx√

1 + k2B(t)2 × sin2kx
] + cy, (D.20)

As introduced precedently (see eq. (D.17)), eq. (D.16) can be simplified and we
compute U = (u, v) so that it follows:

u = −∂H
∂y

, v =
∂H
∂x

(D.21)

Note that B varies periodically with time according to B = B0 + ε cos(ωt+ φ). We
compute 10 different velocity fields sampling random parameters B0, k, c, ω, ε, φ.

Building a Source Term S In eq. (D.15), the diffusion term DT is omitted. We
generate the source term S so that it represents the forcing term F T in eq. (D.19).
To illustrate heat exchanges, we draw from Frankignoul (1985). This source term
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is a non linear transformation of U = (u, v) multiplied by the difference between
the ocean temperature and a reference temperature:

S(U, T ) = we × (T − Te) where we =

{
0 if ∂H

∂t
< 10−4

1 otherwise.

where Te is the sequence mean image (computed without source).

Dataset Generation Using computed U and S, we integrate eq. (D.19) with
∆t = 8640s over 30 days, using a Semi-Lagrangian scheme (see explanations
below). We generate 800/100/200 sequences respectively for train, validation
and test sampling over the initial conditions, which are images of size 64 × 64

sampled from Natl dataset. Finally, for integration, we impose East-West periodic
conditions, implying that what comes out the left part re-enters at the right, and
reciprocally. We also impose velocity to be null on both top and bottom parts of
the image.

Semi-Lagrangian Integration Unlike Eulerian scheme, relying on time dis-
cretization of the derivative, the semi Lagrangian scheme relies on the constancy
of the solution of a PDE along a characteristic curve. Consider a solution to the ad-
vection equation, i.e. eq. (D.19) with S = 0. The method of characteristics consists
in exhibiting curves (x(s), t(s)) along which the derivative of the solution T is
simple, i.e ∂T

∂s
(x(s), t(s)) = 0. For a 1D constant advection scheme, computations

lead to:

dt

ds
= 1 =⇒ s = t

dx

ds
= U =⇒ x = x0 + Ut

giving therefore, T (x, t) = T0(x− Ut), linking the value of the solution at all time
to its initial condition. Therefore from a single observation at t0, it suffices to
estimate the original departure points x0 − Ut to infer the prediction at t.

However, when U is not constant in time, the method remains doable, not along
characteristic lines defined by : (x0 +Ut), but along characteristic curves which are
given by:

dt

ds
= 1 =⇒ s = t

dx

ds
= U(x, t) (D.22)
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A great deal in the semi-Lagrangian literature involves solving correctly eq. (D.22).
We use the conventional mid-point integration rule and the semi-Lagrangian is
implemented using Pytorch function gridsample, following in (Jaderberg et al.
2015). Further developments can be found for example in (Diamantakis 2014).

Natl

This second dataset depicts the actual ocean circulation, i.e. we consider both
eq. (D.15) and eq. (D.16). In this case, no assumptions are made on U and S

represents both diffusion terms DT and forcing terms F T . We access daily data
over a year of ocean surface temperature of the North Atlantic observations model
resulting from (Ajayi et al. 2019) 1. The dataset covers a 2300km× 2560km zone
at 1.5km resolution, in the North Atlantic Ocean.

In this real-life dataset, sea surface height (SSH) partial derivative with respect
to x and y serves as proxies to the (unobserved) velocity fields U . Indeed, recall
that simplifying hypotheses led us to eq. (D.18).

We divide the Natl zone into 270 patches of size 64 × 64. For each region, we
extract sea surface temperatures, velocity fields, source terms and height variables.
We sample 200/20/50 sequences of 1 year, for respectively train, validation and
test. In this case, ∆t = 86400s (1 day).

D.6 Training Details

All experiments were conducted on NVIDIA TITAN X GPU using Pytorch
(Paszke et al. 2019a).

Hyper-Parameters Interpretation From eq. (9.3), two independent terms ap-
pear justifying an alternate projections approach.

First, we highlight that strictly minimizing d(hk, f) biases our estimation of
hk. However, it may yield a good estimation of hk provided that fk contributes
significantly to the prediction of f . Hence, we interpret this loss as an initialization
loss. Thus, in most applications, we progressively decrease its magnitude along
training as detailed in appendices D.6.1 to D.6.3.

On the other hand, d(hu, 0) aims at constraining the free form function hu to
make its action as small as possible. We interpret this loss as a stability penalty.

1. Details available at : https://meom-group.github.io/swot-natl60/
access-data.html

https://meom-group.github.io/swot-natl60/access-data.html
https://meom-group.github.io/swot-natl60/access-data.html
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Finally, aiming to recover exact trajectories of observations, we proceed as sug-
gested in (Yin et al. 2021b) progressively increasing the hyper-parameters associ-
ated to d(h, f).

The practical implementation is summarized in the following algorithm:

Algorithm D.2 Alternate estimation: Practical Setting
Initialization: θ0

u = 0, θ0
k = minhk∈Hk d(hk, f), λh, λhk , λhu

for epoch = 1 : Nepochs do
for batch = 1 : Bk do

θn+1
k = θnk − τ1∇θk [λh d(h, f) + λhk`(hk)]

end
for batch = Bk : Bu do

θn+1
u = θnu − τ1∇θu [λh d(h, f) + λhu d(hu, 0)]

end
λh = τ2λh; λhk = 1

τ2
λhk ; λhu = 1

τ2
λhu

end

D.6.1 Damped Pendulum

Architecture Details The physical parameters to be learned is a scalar of dimen-
sion 1, and hu is a 1-hidden layer MLP with 200-hidden neurons with leaky-relu
activation.

Optimization For this dataset we use RMSProp optimizer with learning rate
0.0004 for 100 epochs with batch size 128. We supervise the trajectories up to
t = ∆t× 50, i.e we enforce dφ over (t0 + ∆t, .., t0 + 50∆t). Overall the number of
optimization subsequences for training is 17000. We alternate projection on Sk
and Su by descending the gradient 10-batches on hk then 10-batches on hu.

Hyperparameters We initialize λhk = 0.1 and decrease it geometrically down
to λhk = 0.001. We initialize λh = 0.1 and increase it geometrically up to λh = 100.
λhu is fixed through training at 0.1.

The hyper-parameters were chosen by randomly exploring the hyper-
parameters space by sampling them so that λ ∼ U(1, 0.1, . . . , 10−4). We select
the ones with the lowest prediction errors, i.e with lowest dφ(h, f).

For the ablation study of Table 9.1, we set to 0 the hyper-parameters associated
to the non-considered loss.
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The training time for this dataset is 1 hour.

D.6.2 Lotka-Volterra

Architecture Details The physical parameters to be learned is a vector of di-
mension 2 accounting for (α, β) in eq. (9.15), and hu is a 1-hidden layer MLP with
200-hidden neurons with leaky-relu activation.

Optimization We use Adam optimizer with learning rate 0.0005 for 200 epochs
with batch size 128. Overall the number of sequences for training is 15000. We
supervise the trajectories up to t = ∆t× 25, i.e we enforce dφ over (t0 + ∆t, .., t0 +

25∆t). We alternate projection on Sk and Su by descending the gradient 10-batches
on hk then 10-batches on hu.

Hyperparameters We initialize λhk = 0.1 and decrease it geometrically down
to λhk = 0.001. We initialize λh = 0.001 and increase it geometrically up to λh = 1.
λhu is fixed through training at 0.001.

The hyper-parameters were chosen by randomly exploring the hyper-
parameters space by sampling them so that λ ∼ U(1, 0.1, . . . , 10−4). We select
the ones with the lowest prediction errors (i.e lowest d(h, f)).

For the ablation study of Table 9.1, we set to 0 the hyper-parameters associated
to the non-considered loss.

The training time for this dataset is 2 hours.

D.6.3 Adv+S

Architectures Details The physical parameters to be estimated are the velocity
fields U , of dimension (2, 64, 64). As U varies over time, we follow data assimi-
lation principles to map a sequence of 4 consecutive measurements of the tracer
field T to the associated velocity field (Gaultier et al. 2013). To do so, we param-
eterize a recognition network Gψ by U-net with at most 512 latent channels also
following the implementation of (Isola et al. 2017a), taking as input a sequence
of 4 time steps of T : (Tt0 , .., Tt0+3∆t). The residual dynamics hu is learned by a
convolutional ResNet, with 1 residual block taking as entry the same sequence
of T . We implement hk via a semi-lagrangian scheme, taking as input Tt and the
estimated Ut to predict Tt+1.
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Optimization We use Adam optimizer with learning rate 0.0001 for 30 epochs
with batch size 32. We supervise the trajectories up to t = ∆t× 6, i.e we enforce
dφ on (Tt0+∆t, ..., Tt0+6∆t). Overall the number of sequences for training is 36800.
We alternate projection on Sk and Su by descending the gradient 4-batches on hk
then 6-batches on hu.

Figure D.1. – Best viewed in color. Schematic view of our model in the context of
section 5.2, applied on the Adv+S dataset.

Hyperparameters, setting of eq. (9.3) We initialize λhk = 0.1 and decrease
it geometrically down to λhk = 0.00001. We initialize λh = 0.01 and increase it
geometrically every epoch up to λh,f = 1000. λhu is fixed through training at
0.1. We select the hyperparameters with the lowest prediction errors (i.e lowest
d(h, f)). For the ablation study of Table 9.1, we set to 0 the hyper-parameters
associated to the non-considered loss.

The training time for this dataset is 8 hours.

D.6.4 Natl

Architecture Details The architectures in this setting are identical to the ones
described in appendix D.6.3.

Optimization We use Adam optimizer with learning rate 0.00001 for 50 epochs
with batch size 32. Overall the number of sequences for training is 67000. We
enforce dφ over 6 time-steps, i.e we supervise the predictions on timesteps: (t0 +

∆t, .., t0 + 6∆t). We use dropout in both Gψ and hu.
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Hyperparameters, setting of eq. (9.3) For this setting, λh geometrically in-
creases from 0.01 up to 100. We initialize λhk = 0.1 and decrease it geometrically
down to λhk = 0.00001. λhu is fixed through training at 0.1. We alternate projection
on Sk and Su by descending the gradient 10-batches on both hk and hu.

The selected model is the one with lowest prediction errors on validation set (i.e
lowest d(h, f)), sampling uniformly the hyperparameters: λ ∼ U(1, 0.1, . . . , 10−4).

Hyperparameters, setting of eq. (9.4) Because the dynamics of Natl is highly
non linear and chaotic, we follow (X. Jia et al. 2019) and first warm-up the param-
eters recognition network Gψ on the velocity fields proxies for 10 epochs. For this
setting, λh geometrically increase from 0.01 up to 1. λhk is set equal to λh. λhu is
fixed through training at 0.01.

After warm-up, we alternate projection on Sk and Su by descending the gra-
dient 100-batches on hk and 300 on hu. In this setting of eq. (9.4), the selected
model is the one with lowest d(h, f) + d(hk, f

pr
k ) error, sampling uniformly the

hyperparameters: λ ∼ U(1, 0.1, . . . , 10−4).

The training time for this dataset is 12 hours.

Baselines We train NODE (R. T. Q. Chen et al. 2018) and Aphynity (Yin
et al. 2021b) on both the Adv+S and Natl dataset. For the training of Aphin-
ity, we set the learning rate at 0.0001 and train on 30 epochs. We initialize
λh = 0.01 and increase it geometrically every epoch up to λh = 100. λhu is
fixed through training at 0.1. For the training of NODE, we set the learning
rate at 0.00004 and train on 50 epochs. To perform prediction, we first encode
the 4-consecutive measurements of T (as a 3 × 64 × 64 state) then learn to in-
tegrate this state in time thanks to a network h. h is a 3-layer convolutional
networks, with 64 hidden channels. It is integrated using RK4 scheme available
from https://github.com/rtqichen/torchdiffeq.

D.7 Additional Results and Samples

D.7.1 Results for Pendulum and Lotka-Volterra Datasets

We provide respectively in figs. D.2 and D.3 phase diagrams for the damped
pendulum and Lotka-Volterra experiments. Both graphs in the phase space in-
dicate that the trajectories and their nature are well handled by the learned de-
composition, providing a periodic phase space for Lotka-Volterra (fig. D.3), and a
converging spiral for the damped pendulum (fig. D.2).
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Figure D.2. – Damped Pendulum Phase Diagram. The true phase diagram (blue)
and learned (orange dashed) are close, indicating consistency in the
prediction

D.7.2 Results for Adv+S and Natl

In this section, we provide additionial results on both Adv+S and Natl datasets.
A thorough ablation study (table D.1) gives results with constant hyperparameters
λh and λhk (row Vanilla Optim), which validates our hyper-parameters interpre-
tation. Indeed, the results are better when respectively increasing and decreasing
λh and λhk . Besides, the row Ours eq. (9.4) refers to a training performed as in-
troduced in appendix D.3.4 with fpr = h? trained on eq. (9.3). Figure D.5 shows
predictions up to 4 days on the Adv+S data. Finally, figs. D.7 and D.9 provide
results on Natl dataset associated to training relying on both eq. (9.3) and eq. (9.4)
and with NODE (R. T. Q. Chen et al. 2018).
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Figure D.3. – Lotka-Volterra Phase Diagram. The true phase diagram (blue) and
learned (orange dashed) are close, indicating consistency in the pre-
diction

Table D.1. – Ablation Study on Adv+S. We report the MSE (× 100) on the pre-
dicted observations T , the estimated velocity fields U and the residual
source term S over 6 and 20 time steps from an initial datum t0. Un-
like alternate training, i.e. Algorithm 9.1, “Joint” rows refer to the
simultaneous optimization of hk and hu.

Training Models
t0 + 6 t0 + 20

T U S T U S

Ours (U known) 0.52 n/a 0.19 2.0 n/a 0.32

Alternate

Ours eq. (9.3) 0.74 1.99 0.17 8.49 2.26 0.31

only d(h, f) 1.02 4.08 0.19 10.59 4.19 0.32

d(h, f) + d(hk, f) 1.02 3.66 0.19 11.42 3.84 0.34

d(h, f) + d(h, hk) 0.77 2.38 0.19 9.5 2.45 0.34

Ours eq. (9.4) 0.75 2.77 0.17 8.36 2.84 0.29

Vanilla optim. 1.51 3.77 0.3 13.33 4.1 5.15

Joint Ours eq. (9.3) 1.44 3.3 0.3 12.82 3.5 0.5
only d(h, f) 1.38 6.96 0.39 11.9 7.09 0.54
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Figure D.4. – Best viewed in color. Estimations, targets and differences between
estimations and targets on T , U = (u, v) and S for Adv+S. Each
column refers to a time step, ranging from 1 to 6 half-days. On the
left, true and estimated U = (u, v) over 6 time steps, and differences
between targets and estimations. On the right, prediction of T and S
over 6 time steps, and differences between targets and estimations.

Figure D.5. – Best viewed in color. Estimations and targets on T , U = (u, v) and
S for Adv+S. Each column refers to a time step, ranging from 1 to
8 half-days. On the left, sequence of T inputs (4 time steps). In the
middle, prediction of T , U = (u, v) and S over 8 time steps. On the
right, true T , U and S over 8 time steps.
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Figure D.6. – Best viewed in color. Estimations, targets and differences between
estimations and targets on T , U = (u, v) and S for Adv+S. Each
column refers to a time step, ranging from 1 to 5 half-days. On the
left, true T , U and S over 5 time steps.. In the middle, prediction
of T , U = (u, v) and S over 8 time steps. On the right, differences
between targets and estimations.

Figure D.7. – Best viewed in color. Sequence of estimations on U = (u, v) for the
Natl data. The second and third row respectively refer to training ac-
cording to eq. (9.3) and eq. (9.4). The loss term d(hk, f

pr
k ) in eq. (9.4)

enables our model to learn more accurate velocity fields than when
only trained following eq. (9.3).
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t+1 t+3t+2 t+4 t+5 t+6

True SST

Ours eq.5

Neural-ODE

Figure D.8. – Best viewed in color. Sequence of prediction on T for the Natl data.
Contrary to our model (row eq. (9.4)), NODE (row Neural-ODE)
struggles to predict any motion in T .

Figure D.9. – Best viewed in color. Sequence of prediction on T, u, v, S for the Natl
data across 3 days trained using proxy data according to eq. (9.4)
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E.1 Discussion

We discuss in more details the originality and differences of CoDA w.r.t. several
Multi-Task Learning (MTL) and gradient-based or contextual meta-learning meth-
ods illustrated in Figure E.1. We consider CAVIA (Zintgraf et al. 2019), MAML
(Finn et al. 2017), ANIL (Raghu et al. 2020), hard-parameter sharing MTL (Caru-
ana 1997; Ruder 2017), LEADS (Yin et al. 2021a).

E.1.1 Adaptation Rule

We compare the adaptation rule in Equation (10.4) w.r.t. these work.

GBML Given k gradient steps, MAML defines

θe = θc + (−η
k∑
i=0

∇θL(θei ,De)) (E.1)

where

 θei+1 = θei − η∇θL(θei ,De) i > 0

θe0 = θc i = 0

With δθe , −η∑k
i=0∇θL(θei ,De), Equation (10.4) thus includes MAML. ANIL and

related GBML methods (Kwonjoon Lee et al. 2019; Bertinetto et al. 2019) restrict
Equation (E.1) to parameters of the final layer, while remaining parameters are
shared.

MTL MTL models can be identified to Equation (E.1). They fix θc , 0, removing
the ability of performing fast adaptation as parameters are retrained from scratch
instead of being initialized to θc. Hard-parameter sharing MTL restricts the sum
in Equation (E.1) to the final layer, as ANIL. LEADS sums the outputs of a shared

251
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Figure E.1. – Illustration of representative baselines for multi-environment learn-
ing. Shared parameters are blue, environment-specific parameters
are red. (a) CAVIA-Concat acts upon the bias of the first layer with
conditioning via concatenation. (b) MAML acts upon all parameters
without penalization nor prior structure information. (c) ANIL re-
stricts meta-learning to the final layer. (d)Hard-sharing MTL train
the final layer from scratch, while the remaining is a hard-shared. (e)
LEADS sums the output of a common and a environment-specific
network. (f) CoDA acts upon a subspace of the parameter space with
a locality constraint.

and an environment specific network, thus splits parameters into two independent
blocks that do not share connections.

E.1.2 Decoding for Context-Informed Adaptation

We show that conditioning strategies in contextual meta-learning for decoding
context vectors ξe into δθe are a special case of hypernetwork-decoding. The two
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main approaches are conditioning via concatenation and conditioning via feature
modulation a.k.a. FiLM (Perez et al. 2018).

Conditioning via Concatenation

We show that conditioning via concatenation is equivalent to a linear hypernet-
work Aφ : ξe 7→ Wξe + θc with φ = {θc,W} that only predicts the bias of the first
layer of gθ.

We assume that gθ has N layers and analyze the output of the first layer of gθ,
omitting the nonlinearity, when the input x ∈ Rdx in an environment e ∈ E is
concatenated to a context vector ξe ∈ Rdξ . We denote x‖ξe the concatenated vector,
nh the number of hidden units of the first layer, W 1 ∈ Rnh×(dx+dξ) and b1 ∈ Rnh the
weight matrix and bias term of the first layer, W 2, · · · ,WN and b2, · · · , bN those of
the following layers. The output of the first layer is

y1 = W 1 · x‖ξe + b1

We split W 1 along rows into two weight matrices, W 1
x ∈ Rnh×dx and W 1

ξ ∈ Rnh×dξ

s.t.
y1 = W 1

x · x+W 1
ξ · ξe + b1

b1
ξ , W 1

ξ ·ξe+b1 does not depend on x and corresponds to an environment-specific
bias. Thus, concatenation is included in Equation (10.4) when

θc , {W 1
x , b

1,W 2, b2, · · · ,WN , bN}
δθe , { 0 , b1

ξ , 0 , 0 , · · · , 0 , 0}

where δθe is decoded via a hypernetwork with parameters {θc,W ,
(0,W 1

ξ , 0, · · · , 0)}.

Conditioning via Feature Modulation

We show that conditioning via FiLM is equivalent to a linear hypernetwork
Aφ : ξe 7→ Wξe + θc with φ = {θc,W} that only predicts the batch norm (BN)
statistics of gθ.

For simplicity, we focus on a single BN layer and denote {hi}Mi=1, M feature
maps output by preceding convolutional layers. These feature maps are first
normalized then rescaled with an affine transformation. Rescaling is similar to a
FiLM layer that transforms linearly {hi}Mi=1 with:

∀i ∈ {1, · · · ,M},FiLM(hi) = γi � hi + β
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where γ, β ∈ RM are output by a NN fψ conditioned on the context vectors ξe

i.e. [γ, β] = fψ(ξe). In general, fψ is linear s.t. fψ(ξe) , Wξξ
e+ bξ, with ψ = {Wξ, bξ}.

Then γ = W γ
ξ ξ

e + bγξ , β = W β
ξ ξ

e + bβξ .

Thus, for this layer, modulation is included in Equation (10.4) when

δθe , Wξe = {W γ
ξ ξ

e,W β
ξ ξ

e}
θc , bξ = {bγξ , bβξ }

where δθe is decoded via hypernetwork fψ , Aφ with parameters φ = {θc ,
bξ,W , Wξ}.

E.2 Proofs

Proposition E.1. 10.3 Given a class of linearly parametrized dynamics F with dp varying
parameters, ∀θc ∈ Rdθ , subspace Gθc in Theorem 10.2 is low-dimensional and satisfies
dim(Gθc) ≤ dp � dθ.

Proof. We define the linear mapping ψ : p ∈ Rdp → f ∈ F from parameters to
dynamics s.t. ψ(Rdp) = F . Given this linear mapping, we first prove the following
lemma: dim(F) ≤ dp. The proof is based on surjectivity of ψ onto F , given by
definition. We define {bi}dpi=1 a basis of Rdp . Given f ∈ F , ∃p ∈ Rdp , ψ(p) = f . We
note p =

∑dp
i=1 λibi where ∀i, λi ∈ R. Then ψ(p) =

∑dp
i=1 λiψ(bi). We extract a basis

from {ψ(bi)}dpi=1 and denote df ≤ dp the number of elements in this basis. This
basis forms a basis of F i.e. df = dim(F) ≤ dp.

Now, given f e ∈ F and θ ∈ Rdθ ,

L(θ,De) , Ex∈De‖(f e − gθ)(x)‖2
2= ‖f e − gθ‖2

2

The gradient of L(θ,De) is then

∇θL(θ,De) = −2

(
dgθ
dθ

)>
(f e − gθ)

where the adjoint of a linear map h is denoted h>. f 7→ −2
(

dgθ
dθ

)>
f is a linear

map as θ 7→ dgθ
dθ

is linear (differential of gθ) and the adjoint preserves linearity, s.t.
dim Span({∇θL(θ,De)}e∈E) ≤ dim(F) ≤ dp.

Proposition E.2. 10.1 Given {θc,W} fixed, if ‖·‖ = `2, then Equation (10.8) is quadratic.
If λ′W>W or H̄e(θc) = W>∇2

θL(θc,De)W are invertible then H̄e(θc) + λ′W>W is
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invertible except for a finite number of λ′ values. The problem in Equation (10.8) is then
also convex and admits an unique solution, {ξe?}e∈Ead . With λ′ , 2λ,

ξe∗ = −
(
H̄e(θc) + λ′W>W

)−1

W>∇θL(θc,De)

H̄e(θc) + λ′W>W is invertible ∀λ′ except a finite number of values if H̄e(θc) or λ′W>W

is invertible.

Proof. When ‖·‖= `2, we consider the following second order Taylor expansion of
Lreg(θ,De) = L(θ,De) + λ‖θ − θc‖2

2 at θc, where δθe = θ − θc = Wξe.

Lreg(θc + δθe,De) = L(θc,De) +∇θL(θc,De)>δθe+
1

2
δθe>

(
∇2
θL(θc,De) + 2λId

)
δθe + o(‖δθe‖3

2) (E.2)

With δθe = Wξe, we expand Equation (E.2) into

Lreg(θc +Wξe,De) = L(θc,De) +
(
W>∇θL(θc,De)

)>
ξe+

1

2
ξe>
(
W>∇2

θL(θc,De)W + 2λW>W
)
ξe + o(‖δθe‖3

2)

i.e. with H̄e(θc) = W>∇2
θL(θc,De)W and λ′ = 2λ

Lreg(θc +Wξe,De) = L(θc,De) +
(
W>∇θL(θc,De)

)>
ξe

+
1

2
ξe>
(
H̄e(θc) + λ′W>W

)
ξe + o(‖δθe‖3

2) (E.3)

Equation (E.3) is quadratic. If H̄e(θc) + λ′W>W is invertible, then the problem is
also convex with unique solution

ξe∗ = −
(
H̄e(θc) + λ′W>W

)−1

W>∇θL(θc,De)

H̄e(θc) and λ′W>W are two square matrices. The application p : λ′ 7→
det(H̄e(θc) + λ′W>W ) is well-defined and forms a continuous polynomial. Thus
either it equals zero or it has a finite number of roots. If H̄e(θc) or λ′W>W is
invertible, then p(0) = det(H̄e(θc)) 6= 0 or p(∞) ∼ det(λ′W>W ) 6= 0. Thus p 6= 0

has a finite number of roots i.e. H̄e(θc) + λ′W>W is invertible ∀λ′ except a finite
number of values corresponding to the roots of p.
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E.3 System Parameter Estimation

We show in Theorem 10.5 that parameters of new systems can be recovered
under Theorem 10.4.

Proposition E.3. 10.5 Under Theorem 10.4, system parameters are perfectly identified
on new environments if the model g and hypernetwork A satisfy ∀fi ∈ B, gA(pi) = fi.

Proof. We define the linear mapping ψ : p ∈ Rdp → f ∈ F from parameters to
dynamics s.t. ψ(Rdp) = F (Theorem 10.4 (a)). Unicity of parameters (Theorem 10.4
(c)) implies that ψ is bijective with inverse ψ−1, thus dim(F) = dim(Rdp) = dp.
Given a basis B = {fi}dpi=1 of F , we denote pi = ψ−1(fi). We fix g, A s.t. ∀i ∈
{1, ..., dp}, gA(pi) = fi = ψ(pi). This is possible as fi and g are linear w.r.t. inputs
(Theorem 10.4 (a) and (b)) and pi are known (Theorem 10.4 (e)).

∀i ∈ {1, ..., dp}, fi ∈ Im(gA(·)), thus F ⊂ Im(gA(·)) i.e. dp ≤ dim(Im(gA(·))).
g, A are linear (Theorem 10.4 (b)), thus gA(·) is linear with inputs in Rdξ . Then,
dim(Im(gA(·))) ≤ dξ and dp ≤ dim(Im(gA(·))) ≤ dξ. dξ = dp (Theorem 10.4 (d))
i.e. dim(Im(gA(·))) = dp. As F ⊂ Im(gA(·)), this implies that F = Im(gA(·)) i.e. gA(·)

is surjective onto F . As dim(F) = dξ, gA(·) is bijective.

By bijectivity of ψ, {pi}dpi=1 forms a basis of Rdp . gA(·) and ψ map this basis to
the same basis {fi}dpi=1 of F . As both mappings are bijective, this implies that
gA(·) = ψ(·). This means that ∀e ∈ E , gA−1(f e) = ψ−1(f e) i.e. system parameters pe

are recovered.

Proposition E.4 (Extension to Nonlinear Dynamics). For linearly parametrized sys-
tems, non-linear w.r.t. inputs and nonlinear dynamics model gθ where θ is output by
a linear hypernetwork A, ∃α > 0 s.t. system parameters are perfectly identified on all
environments e ∈ E that satisfy ‖ξe‖≤ α, if ∀i ∈ J1, dpK, gA(α

pi
‖pi‖

) = fi.

Proof. On environment e ∈ E , gθe is differentiable w.r.t. θe = A(ξe) = θc+Wξe ∈ Rdθ .
We perform a first order Taylor expansion of gA(·) around 0. We note α > 0, s.t.
∀ξe ∈ Rdξ that satisfy ‖ξe‖< α, we have gθe = gθc +∇θgθcWξe. gA(·) is then linear
in the neighborhood of 0 defined by α. ∀i, α pi

‖pi‖ belongs to this neighborhood s.t.
the proof of Theorem 10.5 applies to this neighborhood if ∀i ∈ J1, dpK, gA(α

pi
‖pi‖

) =

fi.

We now show the validity of the unicity condition (Theorem 10.4c) for two
linearly parametrized systems.

Lemma E.1. There is an unique set of parameters in R4 for a Lotka-Volterra (LV) system.

Proof.

With ψ : c , (α, β, δ, γ) 7→
[( x

y

)
7→
( αx− βxy
δxy − γy

)]



E.4 low -rank assumption 257

a surjective linear mapping from R4 to F (all LV systems are parametrized). In-
jectivity of ψ i.e. ψ(c1) = ψ(c2) ⇐⇒ c1 = c2 will imply bijectivity i.e. unic-
ity of parameters for a LV system. As ψ is linear, injectivity is equivalent to
ψ(c) = 0 ⇐⇒ c = 0, shown below:

ψ(c) = 0 ⇐⇒ ∀
( x

y

)
,
( αx− βxy
δxy − γy

)
=
( 0

0

)
⇐⇒ ∀

( x

y

)
,
( x(α− βy)

(δx− γ)y

)
=
( 0

0

)
⇐⇒ ∀

( x

y

)
,
( α− βy
δx− γ

)
=
( 0

0

)
⇐⇒ c = (α, β, δ, γ) = (0, 0, 0, 0)

Lemma E.2. There is an unique set of parameters in Rd+1, where d is the grid size, for a
Navier-Stokes (NS) system.

Proof. With ψ : c , (ν, f) 7→
[
w 7→ −v∇w+ ν∆w+ f

]
, a surjective linear mapping

from Rd+1 to F (all NS systems are parametrized), bijectivity of ψ is induced by
injectivity i.e. ψ(c1) = ψ(c2) ⇐⇒ c1 = c2, shown below:

ψ(c1) = ψ(c2)

⇐⇒ ∀w,−v∇w + ν1∆w + f1 = −v∇w + ν2∆w + f2

⇐⇒ ∀w, (ν1 − ν2)∆w = −(f1 − f2)

⇐⇒ (ν1, f1) = (ν2, f2) ⇐⇒ c1 = c2

E.4 Low-rank Assumption

When the systems are nonlinearly parametrized, we show empirically with Fig-
ure E.2 that the low-rank assumption is still reasonable for two different systems.

Glycolitic-Oscillator (GO) We consider the Glycolitic-Oscillator system (GO),
described in Appendix E.6.1, which is nonlinear w.r.t. K1. We vary parameters
k1, K1 in Equation (E.5) across environments. We observe in Figure E.2 (Left,
Middle) that there are three main gradient directions with SVD. The first is the
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Figure E.2. – Ranked singular values of the gradients across environments Etr, Gθc
for CoDA-`1. On the Left and Middle, we consider GO where k1 and
K1 vary across E . On the right, we consider Sin.

most significant one while the second and third ones are orders of magnitude
smaller.

Sinusoidal (Sin) We consider a sinusoidal family of functions S(n) = {f : R→
R|f(x) =

∑N
i=1 λi sin(ωix+φi)} (Sin). We sample 20 environments that correspond

each to different amplitudes (uniformly sampled in [0, 1]), frequencies (uniformly
sampled in [0, 10])) and phases (uniformly sampled in [0, 3.14]). We depict in
Figure E.2 (Right) the evaluation of the singular values at initialization. Figure E.2
(Right) shows that the number of directions to consider for convergence is small
and that a single direction accounts for a significant amount of the variance in
the gradients. This corroborates the low-rank assumption.

E.5 Locality Constraint

We derive the upper-bounds to ‖·‖ for two variations.

‖·‖ = `2: we apply triangle inequality to obtain Ω = `2
2

‖Wξe‖2
2 ≤ ‖W‖2

2‖ξe‖2
2

‖·‖ = `1: we apply Cauchy-Schwartz inequality to obtain Ω(W ) = `1,2(W ) ,∑dθ
i=1‖Wi,:‖2

‖Wξe‖1 =

dθ∑
i=1

|Wi,:ξ
e| ≤ ‖ξe‖2

dθ∑
i=1

‖Wi,:‖2

Equation (10.11) minimizes the log of the above upper-bounds.
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E.6 Experimental Settings

We present in Appendix E.6.1 the equations and the data generation specificities
for all considered dynamical systems.

E.6.1 Dynamical Systems

Lotka-Volterra (LV, (Lotka 1925)) The system describes the interaction between
a prey-predator pair in an ecosystem, formalized into the following ODE:

dx

dt
= αx− βxy

dy

dt
= δxy − γy

(E.4)

where x, y are respectively the quantity of the prey and the predator, α, β, δ, γ
define how two species interact.

We generate trajectories on a temporal grid with ∆t = 0.5 and temporal horizon
T = 10. We sample on each environment N = 4 initial conditions for training from
a uniform distribution p(X0) = Unif([1, 3]2). We sample for evaluation 32 initial
conditions from p(X0). Across environments, α = 0.5, γ = 0.5. For training, we
consider #Etr = 9 environments with parameters β, δ ∈ {0.5, 0.75, 1.0}2. For adap-
tation, we consider #Ead = 4 environments with parameters β, δ ∈ {0.625, 1.125}2.

Glycolytic-Oscillator (GO, (Daniels and Nemenman 2015)) GO describes yeast
glycolysis dynamics with the ODE:

dS1

dt
= J0 −

k1S1S6

1 + (1/Kq
1)Sq6

dS2

dt
= 2

k1S1S6

1 + (1/Kq
1)Sq6

− k2S2(N − S5)− k6S2S5

dS3

dt
= k2S2(N − S5)− k3S3(A− S6)

dS4

dt
= k3S3(A− S6)− k4S4S5 − κ(S4 − S7)

dS5

dt
= k2S2(N − S5)− k4S4S5 − k6S2S5

dS6

dt
= −2

k1S1S6

1 + (1/Kq
1)Sq6

+ 2k3S3(A− S6)− k5S6

dS7

dt
= ψκ(S4 − S7)− kS7

(E.5)
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where S1, S2, S3, S4, S5, S6, S7 represent the concentrations of 7 biochemical species.
We generate trajectories on a temporal grid with ∆t = 0.05 and temporal horizon
T = 1. We sample on each environment N = 32 initial conditions for training from
a uniform distribution p(X0) defined in Table 2 in (Daniels and Nemenman 2015).
We sample for adaptation 1 initial condition from p(X0). Across environments,
J0 = 2.5, k2 = 6, k3 = 16, k4 = 100, k5 = 1.28, k6 = 12, q = 4, N = 1, A = 4, κ =

13, ψ = 0.1, k = 1.8. For training, we consider #Etr = 9 environments with param-
eters k1 ∈ {100, 90, 80}, K1 ∈ {1, 0.75, 0.5}. For adaptation, we consider #Ead = 4

environments with parameters k1 ∈ {85, 95}, K1 ∈ {0.625, 0.875}.

Gray-Scott (GS, (Pearson 1993)) The PDE descibes a reaction-diffusion system
with complex spatiotemporal patterns through the following 2D PDE:

∂u

∂t
= Du∆u− uv2 + F (1− u)

∂v

∂t
= Dv∆v + uv2 − (F + k)v

(E.6)

where u, v represent the concentrations of two chemical components in the spa-
tial domain S with periodic boundary conditions. Du, Dv denote the diffusion
coefficients respectively for u, v and F, k are the reaction parameters.

We generate trajectories on a temporal grid with ∆t = 40 and temporal
horizon T = 400. S is a 2D space of dimension 32×32 with spatial resolu-
tion of ∆s = 2. We define initial conditions (u0, v0) ∼ p(X0) by uniformly
sampling three two-by-two squares in S. These squares trigger the reactions.
(u0, v0) = (1 − ε, ε) with ε = 0.05 inside the squares and (u0, v0) = (0, 1) out-
side the squares. We sample on each environment N = 1 initial conditions
for training. We sample for adaptation 1 initial condition. Across environments,
Du = 0.2097, Dv = 0.105. For training, we consider #Etr = 4 environments with pa-
rameters F ∈ {0.30, 0.39}, k ∈ {0.058, 0.062}. For adaptation, we consider #Ead = 4

environments with parameters F ∈ {0.33, 0.36}, k ∈ {0.59, 0.61}.

Navier-Stokes (NS, (Stokes 1851)) NS describes the dynamics of incompress-
ible flows with the 2D PDE:

∂w

∂t
= −v∇w + ν∆w + f

∇v = 0

w = ∇× v

(E.7)

where v is the velocity field, w = ∇ × v is the vorticity. Both v, w lie in a spa-
tial domain S with periodic boundary conditions, ν is the viscosity and f is the
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constant forcing term in the domain S. We generate trajectories on a temporal
grid with ∆t = 1 and temporal horizon T = 10. S is a 2D space of dimen-
sion 32×32 with spatial resolution of ∆s = 1. We sample on each environment
N = 16 initial conditions for training from p(X0) as in Zongyi Li et al. (2021).
We sample for adaptation 1 initial condition from p(X0). Across environments,
f(X, Y ) = 0.1(sin(2π(X+Y ))+cos(2π(X+Y ))). For training, we consider #Etr = 5

environments with parameters ν ∈ {8 · 10−4, 9 · 10−4, 1.0 · 10−3, 1.1 · 10−3, 1.2 · 10−3}.
For adaptation, we consider #Ead = 4 environments with parameters ν ∈
{8.5 · 10−4, 9.5 · 10−4, 1.05 · 10−3, 1.15 · 10−3}.

E.6.2 Implementation and Hyperparameters

Architecture and Solver We implement the dynamics model gθ with the fol-
lowing architectures:

• for LV and GO, 4-layer MLPs with 64-dimension hidden layers

• for GS, 4-layer ConvNet with 64-channel hidden layers, and 3× 3 convolution
kernels

• for GS and a Fourier Neural Operator Zongyi Li et al. 2021 with 4 spectral
convolution layers for NS. The number of frequency modes is 12 and the
hidden layers have 10 dimensions.

We apply Swish activation (Ramachandran et al. 2018) on all architectures and
RK4 solver for LV, GS, GO and Euler solver for NS. The hypernet A is a single
affine layer NN.

Optimizer We use the Adam optimizer (Diederik P. Kingma and Ba 2015) with
learning rate 10−3 and (β1, β2) = (0.9, 0.999). We apply early stopping. All experi-
ments are performed with a single NVIDIA Titan Xp GPU on an internal cluster.
For GBML methods, we choose a single inner-loop / outer-loop step to maintain
low running times. We distribute training by batching together predictions across
trajectories to reduce running time. States across batch elements are concatenated.

Hyperparameters We define hyperparameters for the following models:
(a) CoDA: • LV: λξ = 10−4, λ`1 = 10−6, λ`2 = 10−5 • GO: λξ = 10−3, λ`1 = 10−7,
λ`2 = 10−7 • GS: λξ = 10−2, λ`1 = 10−5, λ`2 = 10−5 • NS: λξ = 10−3, λ`1 = 2 · 10−3,
λ`2 = 2 · 10−3 (b) LEADS: we use the same parameters as Yin et al. (2021a).
(c) GBML: the outer-loop learning rate is 10−3, we apply 1-step inner-loop update
for training and adaptation, and the inner-loop learning rate for each system is:
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MAML

LEADS
CAVIA-Concat
CoDA(Ours)

GroundTruth

(a) Predicted trajectory

MAML

LEADS
CAVIA-Concat
CoDA(Ours)

(b) Prediction MSE

Figure E.3. – Adaptation to new GS system - (F, k) = (0.033, 0.061)

• LV: 0.1 • GO: 0.01 • GS: 10−3 • NS: 10−3. These values are also used to initialize
the per-parameter inner-loop learning rate in Meta-SGD.

E.7 Trajectory Prediction Visualization

We visualize in Figures E.3 and E.4 predicted trajectories by MAML, LEADS,
CAVIA-Concat and CoDA-`1 along ground truth trajectories on the PDE systems
NS and GS. We consider a new test trajectory on an Adaptation environment e ∈ Ead

with parameters defined in the caption.

E.8 Loss Landscape Visualization

We visualize loss landscapes of CoDA, ERM in Figure E.5.
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MAML

LEADS
CAVIA-Concat
CoDA(Ours)

GroundTruth

(a) Predicted trajectory

MAML

LEADS
CAVIA-Concat
CoDA(Ours)

(b) Prediction MSE

Figure E.4. – Adaptation to new NS system - νe = 1.15 · 10−3
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Figure E.5. – Loss landscapes around θc (CoDA’s loss (Row 1) is projected onto
subspace W , with dξ = 2. ERM’s loss (Row 2) is projected onto the
two principal directions of the gradients computed with Singular
Value Decomposition.
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E.9 System Parameter Estimation
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Figure E.6. – Parameter estimation MAPE (↓) and estimated parameters on GS
over environments defined by (F, k) ∈ [0.0225, 0.0435]× [0.056, 0.064]
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F.1 The logitNormal Distribution:

The logitNormal distribution defines a probability distribution over the simplex,
see Aitchison and Shen 1980 Initially introduced to describe compositional data
Aitchison 1982, it is defined has:

Definition F.1. LogitNotmal Let X be random variable defined over Rn such that
X ∼ N (µ, σ). Then, consider the following transformation:

Y−n = eX/(1 +
n∑
j=1

eXj), and Yn+1 = 1−
n∑
j=1

Yj

Then the vector Y = (Y1, ...Yn+1) follows a logitNormal distribution denoted
LN (µ, σ) and is defined over the Rn+1 simplex. Moreover, Y admits a density and
can be found in Aitchison and Shen 1980.

If Y ∼ LN (µ, σ), it defines a probability distribution over the simplex which
makes it practical to model compositional data, i.e data where the involved data
forms some sort of proportion of a whole Aitchison 1982.

F.2 Reparametrizing the logitNormal Distribution:

Using Theorem F.1 of the logitNormal distribution, we can use the reparameter-
ization trick in order to learn the parameters of a logitNormal law from samples
of Normal law.

265
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Theorem F.2. Reparameterization: Let X = (Xi)i≤n such that Xi ∼ N (0, 1) and all Xi

are iid (X ∈ Rn), W ∈Mm×n(R), and b ∈ Rm, then :

Y−n = exp(WX + b)/(1 +
∑
i

exp(Wi.X + bi))

Y = (Y−n, 1−
n∑
j=1

Yj) (F.1)

Y ∼ LN (b,Σ) (F.2)

This comes from the simple fact that an affine transformation of i.i.d. N (0, 1)

follows also a Normal law, which co-variance matrix can be expressed through the
matrix of linear weights. Moreover, this advantageously correspond to a neural
network layer with an extended sigmoidal function.

F.3 Proof For 0-Temperature

Here we prove the convergence of the reparameterization of the logitNormal
law for the zero temperature.

Proof. Let (λn)n≥0 be a positive sequence decreasing towards 0. We prove the 0-
temperature convergence for z ∼ N (µ, σ). Let Yn = sigmoidλn(z). We investigate
the convergence in distribution of Yn towards a Bernoulli distribution. Let f be a
continuous bounded function. We have:

E(f(Yn)) =

∫ 1

0

f(Yn)dPYn =

∫
R
f(sigmoidλn(z))dPz

=

∫
R
f(sigmoidλn(z))

1√
2π σ

exp−
1
2

( z−µ
σ

)2

dz

We first have point-wise convergence of the sequence of function inside the inte-
gral. Indeed,

If z > 0, limn→∞ sigmoidλn(z) = 1.

If z < 0, limn→∞ sigmoidλn(z) = 0. We have:

lim
n→∞

f(sigmoidλn(z))
1√

2π σ
exp−

1
2

( z−µ
σ

)2

=
1√

2π σ
f(δz>0) exp−

1
2

( z−µ
σ

)2

The domination is verified using the function:

g(z) =
1√

2π σ
||f ||∞× exp−

1
2

( z−µ
σ

)2
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We can finally apply the theorem of dominated convergence:

lim
n→∞

E(f(Yn)) = E( lim
n→∞

f(Yn))

=

∫
1√

2π σ
f(δz>0) exp−

1
2

( z−µ
σ

)2

dz

=
1√

2π σ
f(0)

∫ 0

−∞
exp−

1
2

( z−µ
σ

)2

dz +
1√

2π σ
f(1)

∫ +∞

0

exp−
1
2

( z−µ
σ

)2

dz

= f(0)Φ(−µ
σ

) + f(1)(1− Φ(−µ
σ

))

= Eb∼B(1−Φ(−µ
σ

))f(b),

where B denotes Bernoulli distribution. Finally, we can conclude that Yn converges
in law towards a Bernoulli distribution such that: Yn → B(1− Φ(−µ

σ
))

F.4 Proof L0-logitNormal:

L0(Sθ(z)) =
∑
i

1− P(z̄ ≤ 0)

=
∑
i

1− P(sigmoid(Wz + b) ≤ −γ/(η − γ))

=
∑
i

1− P(Wi.z ≤ log(
−γ
η

)− b)

as Wi.z has a normal law N (0,

√∑
j

w2
j,i )

=
∑
i

1− Φ(
log(−γ

η
)− b√∑

j

W 2
j,i

)

F.5 Ill poseness of the `1-formulation:

Consider the auto encoding setting with a `1-norm instead of the derived L0.
The optimization problem is:

L`2 = λ`2Ex∼px||x−Gφ(Sθ(z)� x)||2+λs.L1(Sθ) (F.3)
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Let (G∗φ, S
∗
θ ) be an optimal solution, i.e that realizes the minimum of the above

optimization cost function. Then, consider: S2 = S∗θ/2 and G2 defined as G2(x) =

G∗θ(2 ∗ x). Then the MSE term of eq. (F.3) for the couple (G2, S2) is equivalent as
the one with (G∗φ, S∗θ), however the `1-norm of (S2) is lower. Therefore (G∗φ, S

∗
θ )

is not optimal and the problem of eq. (F.3) is ill-posed. However, note that, in the
case of binary vectors, `0-norm and `1-norm are equals.

F.6 On the Stretching Scheme:

We initially start from a distribution p that lives in [0, 1] and need to transform
it in order to obtain a non zero probability of sampling 0 while maintaining both
tractability and differentiability. We denote this function f . We need f−1(0) to be
a non-zero measure set of the original support. In other words, we need f to be a
surjection, and f−1(0) to be Lebesgue measurable with a non zero mass. Instead
of the HT function we could have used a stretched relu function. One significant
advantage of the chosen function is that it also creates a non-zero probability of
sampling 1 therefore enforcing the binary behaviour of our masks. Unbalanced
binary scheme can also be investigated in future works. Indeed one can think of
creating a higher portion of the stretched distribution above one, enforcing the
binary behaviour of the mask.

F.7 Algorithm

We present here the algorithm for the proposed logitNormal based feature
selection algorithm.

F.8 Practical Consideration on the Temperature:

As duely noted by Maddison et al. 2016, the temperature in sigmoid activation
plays a crucial role in the training. This remark holds for our work. Indeed, in our
work decreasing the temperature in the sigmoid, amounts to increase the variance
and the absolute value of the average of the initial Gaussian distribution.

Also aiming at approximating binary distribution, we don’t want any inte-
rior mode as in the green curve depicted in fig. 11.1: LN (0, 1) has an interior
maximum point. This case is not acceptable for the approximation of Bernoulli
random variable as, it could allow a leakage of information, i.e the distribution is
not approximating a binary distribution anymore. Therefore, during training one
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Algorithm F.1 Differentiable Feature Selection
Result: Converged S Gφ

Initialize θ = (W, b) and Gφ

while Convergence not reached do
sample batch x = (x1, ...xn) and z = (z1, ..., zn), such that zi ∼ N (0, Id)
Compute Sθ(z) = sigmoidλ(Wz + b) and the observations xobs = S̄θ(z)� x
Estimate reconstruction x̂ = Gφ(xobs)
L = ||x− x̂||2+λsparseL0(S̄θ(z))
Update φ and θ:

φ← φ− ∂L

∂φ

θ ← θ − ∂L

∂θ

end

should ensure that the learned distribution has no interior maxima. Fortunately,
it suffices to sufficiently decrease the temperature λ of the sigmoid in order to
recover two modes at 0 and 1. Indeed, decreasing sufficiently the temperature
in the sigmoid pushes the interior maximum towards the edges. In practice, we
observe that initializing our W so that W.z with a variance higher than 0.5 with a
temperature of λ = 0.3 suffices.

F.9 Removing the Randomness

Both our propositions of eq. (11.6) or eq. (11.7) estimates distribution in the
spaces of binary variables. To collapse the distribution, one can take advantage of
theorem 11.1 and select the K desired number of features. One can also, empir-
ically select the K features the mask with the highest probability to be selected.
Both approaches lead to similar results in practice. Note that in both cases, if K is
far from the observed number of pixel, the selected features may not be the best
subset of the learned distribution.

In practice, we chose to collapse the distribution using Theorem 11.1: We first
estimate the expected `0-norm of the distribution, which equals to

∑
(1− φ(−µi

σi
)).

Let L0 be the value of the expected `0-norm of our learned distribution. We then
select two masks made of the most likely features to be selected: the first one has
L0 rounded down to the nearest ten pixels. The other one has L0 rounded up to the
nearest ten selected pixels. Note that, for SCT baseline, we use a property similar
to Theorem 11.1 for the concrete distribution, available in Maddison et al. 2016.
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F.10 Concrete Law

Introduced by Maddison et al. 2016 to approximate discrete variables, binary
concrete random variable is defined as follows:

u ∼ U([0, 1])

G = log(u)− log(1− u)

X = sigmoid
( log(α) +G

λ

)
,

And X follows a relaxed binary concrete law.

F.11 Experimental Details

All experiments were trained on Titan XP GPU via using Pytorch framework
and mixed precision training. For all experiments the expected `0-norm is normal-
ized by the number of pixels in the signal. Also for all algorithms trained using
correlated logitNormal approach, the dimension of z is 16, i.e. z ∼ N (0, I16).

For all mask based methods, Gφ is a resent following the implementation of
Isola et al. 2016 with 2 residual blocks and 16 filters.

F.11.1 Mnist

All masked based algorithms were trained using ADAM optimizer with β =

(0.9, 0.99) and a learning rate of 2.10−4 for 550 epochs with batch size 256. CAE
method was trained for 1400 epochs with a temperature decreasing form 10 to
0.01 following recommendation of the authors.

F.11.2 Climate Data

All masked based algorithms were trained using ADAM optimizer with β =

(0.9, 0.99) and a learning rate of 2.10−4 for 550 epochs with batch size 128. CAE
method was trained for 1400 epochs with a temperature decreasing form 10 to
0.01 following recommendation of the authors.
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F.11.3 CelebA

All masked based algorithms were trained using ADAM optimizer with β =

(0.9, 0.99) and a learning rate of 2.10−4 for 140 epochs with batch size 128. CAE
method was trained for 400 epochs with a temperature decreasing form 10 to 0.01

following recommendation of the authors.

F.11.4 Hyperparameters Search

Except for CAE where the number of selected features is a structural constraint,
we search the hyperparameter space by sampling from the interval [10−2; 1] dis-
cretized by steps of 3.10−2. For all dataset, the CAE method was trained with a
decreasing temperature from 10 to 0.01 following the guidelines of the authors
Abid et al. 2019. For the mask method based on the concrete distribution the
temperature of the sigmoid was set to λ = 2/3 following the recommendation
of Maddison et al. 2016. For logitNormal based algorithm, the temperature was
fixed to λ = 0.3.

F.11.5 Initialization

For all mask based methods, we chose the initialization parameters so that the
resulting distribution of the each variable in the mask is symmetrical, with as
many chances to be sampled than to be rejected, i.e. for all variable i in the masks:
P(Sθ(z)i < ε) ≈ P(Sθ(z)i > 1− ε) ≈ 0.2. That way, all distribution can explore the
space of binary masks. Also, in order to verify whether a covariance matrix is
learned during training for the logitNormal sampling method of eq. (11.6), W is
initialized with using an uniform law.

F.12 Additional Samples:

F.13 cGAN Details and Samples

Simply speaking, a cGAN has two main learnable functions: a discriminator
network with parameters ψ named Dψ trained to differentiate "true" data labeled
as 1 from data generated by Gφ labeled as 0. A generative network with parameter
φ denoted Gφ. Gφ : Rp × Rn×n → Rn takes as input a random variable γ ∈ Rp

and our conditional information xobs = S̄θ(z)� x ∈ Rn×n, and aims at fooling Dψ,
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Figure F.1. – Sample of masks (first row), Reconstruction (second row) and True
Data (Last row) for CelebA dataset on all considered algorithms for
200 features with `2-encoding

Figure F.2. – Sample of masks (first row), Reconstruction (second row) and True
Data (Last row) for Mnist dataset on all considered algorithms for
20 selected features with `2-encoding

Figure F.3. – Sample of masks (first row), Reconstruction (second row) and True
Data (Last row) for the Geophysical Dataset on all considered algo-
rithms for 200 features with `2-encoding

making it classify the conditionally generated images as true. For our experiments
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Mask

Reconstruction

Truth

Figure F.4. – Samples of masks (first row), reconstruction (second row) and true
data (last row) for Mnist dataset obtained using a cGAN approach
following Isola et al. 2016, i.e including a `1+Gan loss as reconstruc-
tion objective for approximately 15 sampled pixels (λs = 100)

Mask

Reconstruction

Truth

Figure F.5. – Samples of masks (first row), reconstruction (second row) and true
data (last row) for CelebA dataset obtained using a cGAN approach
following Isola et al. 2016, i.e including a `1+Gan loss as reconstruc-
tion objective for approximately 1.7% sampled pixels (λs = 100)
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we used the cGAN implementation of Isola et al. 2016 optimizing the following
loss, with xobs = x� S̄θ(z):

min
φ,θ

max
ψ

Ez,x logDψ(x, xobs) + Ez,x log {1−Dψ(Gφ(xobs), xobs)}

+ λsparse × `0(S̄θ(z)) + λrec × `1(x−Gφ(xobs)), (F.4)

Consider Sθ fixed, one interesting advantage about the cGAN approach is that
we can prove that the optimal distribution pGφ for Gφ is given xobs: pGφ(x, xobs) =

px∼data(x|xobs) which means that Gφ will sample according to the observed data
distribution.

Proof. To lighten notation, we will use the notation y = x� S̄θ(z) as conditioning
variable, giving the following game value function:

V (G,D) = Ex,y logD(x, y) + Ez,y log{1−D(G(z, y), y)}

Following I. J. Goodfellow et al. 2014, we can write:

V =

∫
x,y

logD(x, y)px(x, y)dxdy +

∫
z,y

log{1−D(G(z, y), y)}pz(z)py(y)dzdy

if G induce a distribution pg,

V =

∫
x,y

[logD(x, y)px(x|y)py(y) + log{1−D(x, y)}pg(x|y)py(y)dxdy]

=

∫
y

(∫
x

logD(x, y)px(x|y) + log{1−D(x, y)}pg(x|y)
)
py(y)dy

Then classically the maximal value of x→ a log(x) + b log(1− x) is reached in a
a+b

Thus, given y, the optimal distribution followed by D:

pD(x, y) =
px(x|y)

px(x|y) + pG(x|y)

The optimal distribution ofG is completely doable at y fixed following the original
reasoning of I. J. Goodfellow et al. 2014
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