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Résumé

Le domaine de l’information quantique a attiré une grande attention scienti�que au cours
des dernières décennies, en raison de la variété des questions théoriques ouvertes et des im-
plémentations expérimentales des technologies quantiques dans di�érentes architectures.
Cette thèse est divisée en deux parties, qui visent toutes deux à mettre en œuvre de nou-
velles technologies d’information quantique. Dans la première partie, nous avons étudié la
faisabilité de la distribution de clés quantiques avec des variables continues (CVQKD) entre
un satellite en orbite et une station à la surface de la Terre. L’implémentation en variables
continues évite l’utilisation de détecteurs à photons uniques, car les composants de télé-
communication courants peuvent être utilisés à la place, ce qui augmente l’applicabilité du
protocole. En outre, la liaison avec un satellite en orbite ouvre la porte à la construction
potentielle d’un réseau mondial puisqu’elle permet de surmonter le problème de la com-
munication à longue distance. Nous avons donc réalisé une étude théorique où nous avons
considéré des paramètres physiques réalistes dans ce scénario a�n de montrer les conditions
de faisabilité du CVQKD par satellite avec une technologie de pointe.

Dans la deuxième partie du manuscrit, nous décrivons la conception et les résultats
expérimentaux montrant les performances d’une source optique pour la génération d’états
graph en variables continues aux longueurs d’onde des télécommunications, que nous avons
construite à partir de zéro. La préparation d’états graph, également appelés états de clusters,
peut être utilisée pour la mise en œuvre de protocoles de cryptographie quantique, de calcul
quantique basé sur la mesure (MBQC) ou de simulation quantique. Nous faisons correspon-
dre les nœuds et les liens de l’état du graphe à l’état quantique multimode à partir d’une
interaction non linéaire de la lumière dans un guide d’ondes. Après le guide d’ondes, nous
obtenons un ensemble d’états de vide comprimés non corrélés, qui peuvent être manipulés
dans un graphe souhaité par une transformation unitaire passive appropriée. Nous étudions
la quantité de niveaux de compression de l’état de vide comprimé multimode et le nombre
de compresseurs, qui sont liés au nombre de nœuds et à la quantité de corrélations EPR dans
les états potentiels du graphe après le changement de base approprié. Nous avons préparé
une expérience dans laquelle nous avons directement mesuré, par détection homodyne, la
compression multimode après l’interaction de la lumière dans le guide d’ondes non linéaire,
montrant ainsi la fonctionnalité de la source. Nous donnons en�n les perspectives à court
terme pour l’optimisation de la source et certaines de ses potentialités à long terme.
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Abstract

The �eld of Quantum Information has drawn a lot of scienti�c attention in the last decades,
due to the variety of both theoretical open questions and experimental implementations
of quantum technologies in di�erent architectures. This thesis was part of two scienti�c
projects, and it is hence divided into two parts, which both aims at implementing new quan-
tum information technologies. In the �rst part, we investigated the feasibility of perform-
ing Quantum Key Distribution with Continuous Variables, (CVQKD) between an orbiting
Satellite and a ground station at the Earth’s surface. The implementation in continuous
variables avoids the use of single-photon detectors, as current o�-the-shelf telecommuni-
cation components could be used instead, which increases the applicability of the protocol.
Furthermore, the link with an orbiting satellite opens the door to the potential construction
of a global network since it allows to overcome the long distance communication problem,
due to both the inherent losses in the optical �bers and the fact that signal ampli�cation
without introducing noise is not possible (no-cloning theorem). We therefore performed a
theoretical study where we considered realistic physical parameters in this scenario to show
the conditions for the feasibility of satellite CVQKD with state-of-the-art technology.

In the second part of the manuscript, we describe the design and the experimental results
showing the performance of a continuous variable optical source for the generation of graph
states at telecom wavelengths, that we built from scratch. The preparation of graph states,
also called cluster states, can be used for implementing quantum cryptographic protocols,
measurement-based quantum computation (MBQC) or quantum simulation. We map the
graph state nodes and links to the multimode state from a non-linear interaction of light in
a waveguide. After the waveguide, we obtain a set of uncorrelated squeezed vacuum states,
than can be manipulated into a desired graph by an appropriate passive unitary transfor-
mation, hence multiport interferometry. We study the amount of the squeezing levels of
the multimode squeezed vacuum state and the number of squeezers, that are related to the
number of nodes and the amount of EPR correlations in the potential graph states after
the appropriate basis change. We prepared an experiment where we directly measured,
via homodyne detection, multimode squeezing after the light interaction in the non-linear
waveguide, hence showing the functionality of the source. We �nally give the short-term
prospects for the optimization of the source and some of its long-term potentialities.
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Introduction

The discovery of Quantum Mechanics at the beginning of the XXth century completely
revolutionized the �eld of Physics. At the time, it was thought that the equations of mo-
tion of the whole universe were already derived, we just needed to know the position and
velocity of all the particles in the universe, together with an unimaginable computational
power, and we could trace all their past and predict their future. Conceptually, though,
there was nothing to improve, the universe was seen like a big deterministic machine. The
famous experiments on the black body radiation in 1900, where Max Planck introduced
the concept of radiation quanta, the photoelectric e�ect in 1905, or the famous double slit
experiment, serve to start turning upside down this view of the world. Light, classically
viewed as an electromagnetic wave, appeared to be nevertheless composed by minimum
energy packets, the photons. In parallel, the work on Brownian motion, also in 1905, and
the Geiger-Marsden experiments (also known as the Rutherford experiment), showed the
existence of atoms, the units of matters, and its constituents, the already known electron
and the positively charged nucleus.

At this point, it seems like we were discovering the very limits of the microscopic scale,
the fact that one cannot in�nitely divide either light nor matter, but that there were some
irreducible objects, that we called photons, electrons and nuclei, that cannot be reduced any
further. However, probably the most interesting discovery, at least in essence, was not the
constituents of light and matter themselves, but the breaking of the usual physical laws that
we thought governed the universe when applied to these microscopic objects.

We had to invent a new physical framework to make sense of the weird behavior of
these dual particles/waves, that we called Quantum Mechanics. The cost to construct this
new framework was nevertheless conceptually revolutionary, since we had to completely
abandon the deterministic view of the world. We had to accept that even the word pre-
dict was actually in danger; Nature was probabilistic at its very core. Moreover, we had
to admit the reality of a highly counter intuitive behavior in order to account for the mi-
croscopic world. The view of reality was completely substituted, with all its philosophical
implications.

Obviously, the quantum theory got a number of detractors at the time of its develop-
ment, in the 20’s and 30’s, that refused to believe the idea of the total abandoning of deter-
minism. Humans are stubborn by nature, but Nature does not care. Until late XXth century,
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INTRODUCTION

we examined new phenomena that emerge from quantum theory, revolutionizing �elds of
Physics, like Astrophysics, Cosmology or Thermodynamics, or even creating new ones, like
Nuclear Physics, Particle Physics or Quantum Optics, that can be grouped into Quantum
Field Theories, providing new exciting open questions in fundamental Science. At the time
of writing, Quantum Field theory is the best experimentally proven description of reality
that we know.

In 1981, Alan Aspect et al published an experimental article showing the violation of the
Bell inequalities, proposed by John Bell in 1964, proving that the nature of reality is non-
local. No hidden (deterministic) variables could explain the e�ect of quantum entanglement.
After that, the acceptance of the quantum mechanical behavior was settled. We then started
asking ourselves di�erent questions, could we actually use this physical theory to our ben-
e�t? In other words, is Quantum Mechanics able to provide solutions to problems that are
not solvable with classical physics only? Can we apply this e�ects to improve technology?
We made the logical transition from the understanding of the counter intuitive behavior
of quantum particles, to trying to control that behavior in order to perform actual tricks.
In 1980, Paul Benio� proposed a quantum mechanical version of the Turing machine, and
shortly afterwards Richard Feynman and Yuri Manin suggested that a quantum computer
could potentially simulate things that a classical computer cannot. The �eld of quantum
computation was emerging. In 1984, Charles Bennett and Gilles Brassard proposed the �rst
quantum protocol to distribute a secret key between two users, opening the �eld of quan-
tum cryptography and quantum communication. From the 90’s to the current date, a whole
variety of theoretical quantum protocols have been proposed for communication, compu-
tation and simulation, and giants steps have been taken for their implementation in the lab,
in a range of di�erent architectures: photons, trapped ions, superconducting circuits, quan-
tum dots... Even quantum protocols applied to arti�cial intelligence are now under research,
in the �eld of quantum machine learning. The emergence of all these new research �elds,
combining engineering, computer science, and physics, gathered in the so-called Quantum
Information framework, is sometimes referred to as the second quantum revolution.

This thesis is therefore enclosed in the general �eld of Quantum Information, and aims to
contribute to the scienti�c research of quantum cryptography and quantum optics, from an
application point of view. Both theoretical and experimental original work will be presented
in the manuscript.

The thesis is divided into two parts, that correspond to two di�erent projects for quan-
tum cryptography and quantum optics. In the �rst part we aim to theoretically study a
Quantum Key Distribution (QKD) scenario where the two parties that want to share a se-
cret key are in an orbiting satellite and a ground station, respectively. The motivation of
that scenario is a limitation in long distance quantum communications due to optical losses
in �bers and the impossibility to amplify a quantum signal without adding noise, due to the
no-cloning theorem, that can be thus tackled with satellites. An actual satellite link for QKD
has already been demonstrated, but in the framework of Discrete Variables. Through out all
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INTRODUCTION

this thesis, we will focus in the somewhat less treated framework of Continuous Variables,
and their advantages with respect to Discrete Variables will be outlined. This part consti-
tutes the �rst two Chapters of the manuscript. In Chapter 1 we will give a brief introduction
to the physical and mathematical tools used in quantum cryptography, while in Chapter 2
we present our work in the feasibility study of satellite QKD with Continuous Variables.

The second part of the Thesis consists in describing the design and construction, from
scratch, of a continuous variable quantum source for graph states of light, that form what
we called a Quantum Network. The �eld of work in the second part can be referred as Multi-
mode Quantum Optics. This source would open the door to the implementation of quantum
protocols in continuous variables (including QKD), Measurement-Based Quantum Compu-
tation (MBQC), and even quantum simulation. In order to build the source, we use the
non-linear interaction of light in waveguide structures that prepares multimode squeezed
vacuum states in the frequency domain, and we show why these multimode quantum states
can be thought to be directly related to con�gurable quantum networks.

In Chapter 3, we brie�y discuss the multimode character of the electromagnetic �eld,
that leads to introducing Ultrafast Optics, describing ultrashort pulses of light both spatially
and temporally. We also describe our characterization of the laser source and the experi-
mental tools we used for pulse manipulation, namely the pulse compressor and the pulse
shaper, showing the experimental results. In Chapter 4, we introduce classical non-linear
optics, and discuss theoretically the waveguide physical characteristics. We also show a
numerical �nite-element method simulation we performed for our waveguides for the dis-
cretization of spatial modes in the structure, and compare the result with the experimental
characterization of the spatial modes in the actual waveguide. In Chapter 5, we present the
quantum formalism applied to the calculation of the quantum states after the light inter-
action in the non-linear waveguide. We show how multimode EPR correlations (entangle-
ment), is related to squeezing, and how a multimode squeezed vacuum state results from
the non-linear process. In Chapter 6, we de�ne the quantum networks as graph states in the
frequency domain, that can be directly obtained with the results of the previous Chapter.
We also show our calculations for the experimental design of the source, and in particular
the dependence of the multimode quantum states on the controllable degrees of freedom
in the experiment. Finally, in Chapter 7, we show the rest of the experimental results in
the thesis. We divide the experiment in six blocks and show the characterization and de-
tails of all of them. We show the results of a Phase Sensitive Ampli�cation experiment by
constructing an Optical Parametric Ampli�er with the waveguides that allows us to show
parametric gain, a precondition for squeezing, and give an order of magnitude of the poten-
tial squeezing level. To �nish the Chapter, we show the multimode squeezing measurement
of the source via homodyne detection, characterizing the multimode quantum states. We
�nish the manuscript with the concluding remarks and the prospects for the near objectives
to considerably improve the squeezing measurement, and the long-term potentialities of the
constructed quantum source.
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Satellite Continuous Variable Quantum
Key Distribution
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Chapter 1

Introduction to Quantum
Cryptography

“We can only see a short distance ahead, but we can see plenty there that needs to be
done”

– Alan Turing, Computing machinery and intelligence

Contents
1.1 Introduction to Cryptography . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Key Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Quantum Key Distribution . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 BB84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 QKD work�ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Entanglement-based and Prepare-and-Measure Protocols . . . . . . 15

1.4 Long distance communication . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Secure Key-Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 CVQKD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6.1 Coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6.2 GG02 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6.3 Coherent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6.4 Imperfections and excess noise . . . . . . . . . . . . . . . . . . . . 23

This Chapter aims to give a brief introduction to the �eld of Cryptography, and in par-
ticular we will set the grounds to introduce Quantum Key Distribution (QKD), as one of the
�rst quantum protocols that is already commercialized in real-world applications and that is
able to provide information theoretic security. We will present the main challenge for QKD
nowadays, namely the long distance communication problem due to the inherent optical
losses and the impossibility to amplify a quantum signal without adding noise due to the
no-cloning theorem. We will derive the basic notions and tools needed for Quantum Key
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Distribution in the context of Continuous Variables, CV-QKD, de�ning the main variables
and formulas in the GG02 protocol [1], which is a prepare-and-measure protocol with coher-
ent states. Our work in the next Chapter will focus on the feasibility of the GG02 protocol
presented here in a satellite-ground station link, tackling the long distance communication
problem.

1.1 Introduction to Cryptography
The word Cryptography comes from the ancient Greeks, where kryptos stands for "secret,
hidden" and graphein stands for "to write". It is therefore the discipline that tries to conceive
secure systems of communication between two parties, that are historically called Alice and
Bob, against possibly malicious third parties, called the Eavesdroppers or simply Eve.

There is record of cryptographic codes from the time of Julius Caesar [2], 2000 years ago.
With the advent of computers after the Second World War, and the decoding of the nazi’s
Enigma machine [3], the cryptographic systems started to become increasingly complex.

In cryptography, the message to be communicated is called the plaintext, p, that is en-
crypted into an unintelligible form called the chiphertext, c, using an algorithm called a
cipher. For the message to be communicated secretly a (ideally short) string of characters
could be shared between Alice and Bob, the Key, that is used for encrypting and decrypting
the messages. This type of encryption/decryption algorithms are known as symmetric-key
cryptography.

Even though many encrypting methods have been invented throughout History, a re-
current process can be identi�ed in the most basic and practical schemes:

• Alice has a box with two inputs: the plain message p and the secret key k. Alice will
encrypt the text with the key, resulting in the ciphertext m.

• The encrypted message m is transmitted through a channel to Bob who receives it,
but the untrusted Eve can also read and manipulate the message.

• Bob has a box with two inputs: the received encrypted message m and the secret key
k′ = k (the equality here implies symmetric cryptography). Bob will decrypt m with
the key, obtaining the original message, p.

The security of the procedure relies on two factors: the secrecy of the key and the al-
gorithms performed. If the security relies entirely on the design of the boxes for Alice and
Bob, the security is said to be "security by obscurity", which is not very recommended in
practice since an adversary could get to know the boxes and break the system.

The current trend is to rely only on the secrecy of the key to guarantee con�dentiality
of the communication, the design of the boxes being public.

Of course the algorithms performed by the boxes must be non elementary because in
that case it would be possible for an attacker to guess the key. For example, shift cipher (or
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Caesar’s cipher [2]) is a simple cryptographic method where the boxes only shift the letters
of the alphabet by the value of the key. If the alphabet is known and relatively small, it
would be possible for Eve to guess the message trying iterations of the key.

The previous example raises the question of whether some algorithms are more secure
than others or even if it is possible to construct a perfectly secure algorithm. In practice,
the attacker will need to perform some computation to try to decipher the messages in the
channel. We can quantify the attacker’s potential, thus, by processing power. In this case,
it is possible to run benchmarks on the average number of operations required to decipher
a message encrypted by a particular algorithm, which is typically a function of the number
of bits used in the key. Most of the modern algorithms require an exponential processing
time with respect to the size of the key, which makes them intractable in most cases. The
performance of the cryptoanalysis benchmarks for a particular algorithm can improve for
two reasons: either a conceptual error is discovered in the cryptography scheme or a better
algorithm to treat the problem is discovered.

From all the algorithms invented until now, the most well known symmetric cipher is the
AES [4] which is the NIST standard at the moment of writing. As long as no breakthrough
discovery happens, it will remain a reliable resource of security.

Even though symmetric cryptosystems are thought to be secure for the short and medium
term, their security is always related to the computational resources of the attacker, so the
uncertainty about whether a message was decoded cannot be ruled out. Strategies to mit-
igate this assumption are key refreshment (renew the key every few time units) or the in-
crease of the key size (also a�ecting the computational requirements for the trusted parties).

It is possible, though, to have a communication scheme in which the security does
not depend on the computational resources of the attacker. Those schemes are said to be
information-theoretic secure.

The paradigm of an information-theoretic secure protocol is the one time pad, (proved
information-theoretic secure by Shannon [5] in 1945). However, this protocol presents some
practical limitations: the key should be as long as the message, it can only be used once and
it should be truly random, which limits its practical use.

More importantly, it has been proven that any other cipher with the property of perfect
secrecy must use keys with e�ectively the same requirements as one time pad keys [5].
Hence, the implementation of these information-theoretic security protocols is indeed not
practical for large-scale use.

1.2 Key Distribution
As mentioned before, all current cryptosystems rely on the secrecy of the keys and their
renewal. Therefore, if we �nd a way of distributing the keys without any computational
assumption on a potential adversary, prior to the message encryption and decryption by
Alice and Bob, we will obtain an information-theoretic secure protocol. The problem of
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establishing this key prior to the communication is the Key Distribution problem.
It is instructive to give a �avor of the most common key distribution protocol used nowa-

days: the Di�e-Hellman key exchange protocol [6].
In the Di�e-Hellman key exchange, there is a (big) prime number, p, and a generator g ∈

Z∗p, where Z∗p is the ensemble of co-primes of p smaller than p. These two values are public.
Alice and Bob select privately and randomly additional numbers a ∈ Z∗p−1 and b ∈ Z∗p−1

respectively. Alice (resp. Bob) compute A = ga mod p (resp. B = gb mod p) and send it to
Bob (resp. Alice), making it public. Then Alice computes K = (gb mod p)a = gab mod p
and Bob computes K = (ga mod p)b = gab mod p which is the secret key shared by them
for any information they want to secretly communicate afterwards.

A potential adversary to this protocol, Eve, would know p, g, A and B, since they are
public values. However, for Eve to get the key, K , she would need to know either a or
b. The only way Eve can get the key (not considering authentication attacks), is inverting
the function f(x) = gx mod p, i.e. solving x = logp(f(x)), where logp is here the discrete
logarithm in base p. It is well known that solving the discrete logarithm problem is compu-
tationally intractable [7] if p has around 200 or more digits and does not present a number
of weakening characteristics, which can be easily chosen since p is a public number. Thus,
under this computational assumption, the secrecy of the key is guaranteed.

It is also known that solving the discrete logarithm problem is equivalent to solving
the prime factoring problem [8], i.e. �nding the prime factors of a given number, which
is an exponentially hard problem to solve, which means that it would take an exponential
computational time to solve it. Thus, the Di�e-Hellman protocol is broken if the prime
factorization problem becomes computationally reachable.

This is exactly what happened during the 90’s, when Peter Shor proposed a quantum
algorithm showing that prime factoring is not exponentially hard for quantum computers
[9]. Therefore this is also the case for the discrete logarithm problem, breaking the Di�e-
Hellman exchange protocol. Although fault-tolerant quantum computers are still not at
the point of solving prime factorization e�ciently for practical numbers, it was of primal
necessity to come up with a di�erent set of key distribution protocols that are unbreakable
even in the event of Eve possessing a universal fault-tolerant quantum computer.

A set of classical cryptographic algorithms that are thought to be resistant even if the at-
tacker has a quantum computer have been developed in the last years. This trend is known
as post-quantum cryptography and its security lays on the assumption that the set of NP
(non-deterministic polynomial time) problems is not fully contained in the BQP (bounded-
error quantum polynomial time) complexity class, which contains the problems that could
be solved e�ciently by a quantum computer. However, there is no proven certainty about
the existence of NP problems outside BQP, making the frontier between NP and BQP un-
clear. For instance, prime factorization does not belong to P (polynomial time) but it belongs
to BQP. For a particular problem, we only know that no known quantum algorithms exist
at the moment, but they could be discovered in the future. The challenge in post-quantum
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cryptography is to discover classical algorithms for which no counter analysis algorithm is
known (even within quantum algorithms). This classical nature could make them very �ex-
ible, since a simple software update would su�ce to deploy them, but their main weakness
is that the security might decrease over time, since new algorithms could be discovered. For
this reason their security cannot be excluded to be compromised in the future.

Fortunately, quantum physics is the source of these new problems in cryptograpy, but it
also proposes a solution. There exist quantum protocols whose security can be proven even
for quantum attackers. It is the �eld of Quantum Cryptography, with Quantum Key Dis-
tribution (QKD) being one of the most prominent protocols, already in use for commercial
applications.

One of the features of QKD protocols is that they heavily rely on the characterization of
the communication channel. This fact makes their implementation more challenging with
respect to the classical counterparts, because the latter mainly rely on mathematical abstrac-
tion and hence can be implemented by software only. In fact, the channel characterization
will be one of our main topics for the next Chapter.

In the following section we study the most relevant characteristics of QKD systems.

1.3 Quantum Key Distribution
In QKD, our two familiar users, Alice and Bob, can share information in two di�erent chan-
nels. One of the channels is an authenticated classical public channel. Classical here is
referring to the fact that the information that can be communicated in this channel presents
no quantum correlations. It can be thought as a channel where classical bits of information
can be exchanged. For security reasons, it is important that the classical channel is authen-
ticated, i.e. that Bob is con�dent that the messages exchanged in this channel comes from
Alice and viceversa.

Furthermore, Alice and Bob can exchange information using a quantum channel, with
which Eve can interact. The quantum channel is therefore de�ned as the channel in which
quantum information can be exchanged. The quantum information is contained in quantum
states (typically of light, but not necessarily) that Alice and Bob can share. The Hilbert space
of the states could be �nite (qubits or qudits states) or in�nite (continuous variable states).
For this reason, the QKD protocols can be divided into discrete variable and continuous
variable protocols, as we will see in the following.

The fundamental principle underlying quantum the key distribution is that any mea-
surement in an individual quantum object leaves a trace. In other words, it is impossible
for Eve to read the information from the quantum channel without perturbing it. This per-
turbation can be detected by Alice and Bob, that can communicate in the classical public
channel. We will treat this in more rigorous details in the next sections.

In order to get a �avor about how QKD works, it is instructive to see the �rst QKD
protocol proposed by Charles Bennet and Gilles Brassard in 1984 [10], hence called BB84,
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Figure 1.1: BB84 basic scheme. Alice encodes her states in two conjugate basis, here repre-
sented by the photon polarization states, and send the states to Bob, who chooses randomly
to measure the polarization in either of the two basis. For more details see text.

that encapsulates the basic properties of all QKD schemes that came after.

1.3.1 BB84
The quantum states that are used in the BB84 protocol are qubits, i.e. two-level quantum
systems, that can be implemented in di�erent physical platforms, the photon polarization
being the most popular.

Hence, we can write the general quantum state shared in the quantum channel as a
linear superposition in a given two dimensional Hilbert space basis:

|ψ〉 = α |0〉+ β |1〉 (1.1)

where α and β are two complex numbers that normalizes the state |ψ〉, |α|2 + |β|2 = 1. The
basis {|0〉 , |1〉} is usually called the computational base.

We can also write the state in a rotated basis {|0′〉 , |1′〉} using its relation to the compu-
tational basis, by a rotation in the Bloch Sphere:(

|0〉
|1〉

)
=

(
cos θ − sin θ
sin θ cos θ

)(
|0′〉
|1′〉

)
(1.2)

where θ is the rotation angle. In the BB84 protocol we will work with the computational
basis and the so-called diagonal basis, {|+〉 , |−〉}, which is the rotated base with an angle
of θ = 45o. Explicitly: (

|0〉
|1〉

)
=

1√
2

(
1 −1
1 1

)(
|−〉
|+〉

)
(1.3)

The BB84 protocol starts with Alice choosing randomly the basis in which she encodes
her state, preparing correspondingly one of the states between |0〉 / |1〉 or |+〉 / |−〉 and
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sending it to Bob. Bob would also choose randomly the basis in which measuring the state.
If Alice and Bob happened to have chosen the same basis, then Bob’s measurement would
always correspond to Alice’s state. If Bob chooses the wrong basis, then his bit of informa-
tion has a 50% chance of being 0 or 1 and his measurement is completely uncorrelated with
the state that Alice sent. A scheme of the protocol is represented in Fig.1.1.

In order for Alice and Bob to know what were the right basis choices, Bob communicates
through the classical authenticated channel his basis choice and Alice checks which ones
were correct, i.e. which ones corresponded to her choice. This step in the protocol is called
reconciliation.

Since their results are completely correlated when the choice of basis was correct, then
Alice and Bob keep only those instances, obtaining the key.

For Eve to get information about the states that Alice sent, she would need to interact
with the quantum channel and measure the state in a given basis. For her to not be noticed,
she should also prepare the same state she has measured and send it to Bob.

However, this attack can be detected by Alice and Bob. Bob would communicate by the
classical channel some subset of his measurement results to Alice, who will compare with
the states she prepared. There are cases were Eve measures in the wrong basis, getting a
completely random result and preparing the state in the wrong basis to Bob. Therefore,
half of the times that Bob would measure this state sent in secret by Eve, he would obtain
a result that does not correspond to Alice’s choice, since Eve has changed the basis after
intercepting the state in the quantum channel. Thus, the presence of Eve produces errors
in the �nal string of bits after reconciliation.

In particular, the probability of an error is the probability that Eve measures Alice’s
state in the wrong basis (50%) times the probability that Bob’s gets the wrong result from
the state sent by Eve (50%), and so 25%. Therefore, if Alice and Bob are willing to sacri�ce
n bits from the key by revealing them, they can detect Eve in the channel with probability
1− (3/4)n. Subsequent classical post-processing phases can purify the correlated values of
Alice and Bob as a function of the measured errors to obtain a perfectly secret key. The attack
described here is a basic intercept-and-resend attack that we are using here to illustrate an
example of the security issues in QKD.

Three important remarks from this protocol are:

• The errors are considered to be caused by Eve, even though in practice they can be
produced by imperfections in the system.

• Alice and Bob should have available a physical system capable of producing on-demand
qubits with su�ciently good �delity. Single photon emitters are considered at Alice’s
side.

• Perfect preparation and measurement of the qubits is also considered. In the case of
implementation with light, single photon detectors are considered at the Bob’s side.
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• A certain number of assumptions are used to construct a mathematical framework
that will allow the analysis of the security.

Many more QKD protocols have been invented since BB84, but the great majority share
all these characteristics. The backbone of QKD is to build a physical model of the commu-
nication system and develop a mathematical framework that includes the laws of quantum
mechanics. This mathematical framework is usually called security proof, that is valid only
when the hypotheses of the model are valid. The security of a given model is typically
quanti�ed with the probability of success for a potential eavesdropper, that must be arbi-
trary small within the context of the model for having perfect security.

1.3.2 QKD work�ow
Most of the QKD protocols follow a series of steps that are common to all of them:

− Distribution of quantum states: Quantum states are prepared, transmitted and
measured between the parties. After this step, Alice and Bob share two strings of
correlated values.

− Parameter estimation: Alice and Bob reveal a random part of their correlated values
in order to characterize the quantum channel. The revealed values will not be used in
the �nal key, so there is a trade-o� between the quantity of values revealed to have an
accurate estimation of the channel and the �nal key length. The channel estimation
includes the possibility of a possible eavesdropper, that will be detected by noticing
extra noise due to the perturbation of the quantum states while eavesdropping.

− Error correction: Because of the di�erent imperfections in the systems, the correla-
tion in the two sets between Alice and Bob is not perfect and needs to be corrected.
Classical error correcting codes can be used for this purpose. After the application of
these codes the parties share the same string of values with no errors.

− Privacy ampli�cation: Even after the error correction phase, some information
could have been leaked to a eavesdropper, so an additional classical protocol is per-
formed in order to increase the secrecy of the key at the expense of reducing the �nal
key length. The remaining shared string after this phase is the �nal secret key shared
between Alice and Bob.

In this thesis, we will be interested mainly on the �rst two phases, distribution of quantum
states and parameter estimation, since they are the only ones that involve quantum mechan-
ics directly, the rest of the steps being completely classical and generally well-known. In
fact, in proof-of-principle scenarios, it is common use to complete these two steps, and draw
the conclusions from there. More speci�cally, the security proof will predict the length of
the key after the parameter estimation phase. After that phase, the only parameter that is
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relevant for the key length is the reconciliation e�ciency, that is in turn given by the clas-
sical error correction codes. For this reason, in the next Chapter, we will consider a typical
value of the reconciliation e�ciency from the literature and compute the secret keys taking
only into account the QKD protocol until parameter estimation.

1.3.3 Entanglement-based and Prepare-and-Measure Protocols
In 1991 Artur Ekert [11] published E91, a QKD algorithm that was conceptually di�erent
from BB84, since the quantum resource assuring security was entanglement. Other proto-
cols based on entanglement, like BBM92 [12] followed soon.

In these types of protocols there is a third untrusted party, Charlie, who prepares a state
composed of two subsystems presenting quantum correlations between them (entangle-
ment). This could be two-photon Bell pair states. Charlie distributes each part of the entan-
gled system to Alice and Bob, that perform consecutive measurements in a random basis, as
in BB84. Since the system had entanglement, the states at Alice and Bob are completely cor-
related. After the distribution phase Alice and Bob would communicate their basis choice
and compute statistics in the channel of the type of Bell test inequalities [13], which would
indicate whether there were real quantum correlations in the states that Charlie sent. The
rest of the classical steps proceed the same way as in the BB84 protocol.

Very soon after E91 was proposed, it was proven that entangled and non-entangled based
protocols, also called prepare-and-measure protocols, are equivalent. For every entanglement-
based protocol, there exist a prepare-and-measure protocol that is equivalent in terms of
security1.

Usually, however, the security proofs are easier to show for entanglement-based pro-
tocols, while the real implementation of the protocol is performed with the corresponding
equivalent prepare-and-measure counterpart.

1.4 Long distance communication
The uncertainty principle in quantum mechanics has as a consequence the impossibility
of making a measurement of a quantum system without disturbing it. As we have already
seen, this is the theoretical working principle in QKD protocols, since it allows the detection
of the eavesdropper. Another way to look at this is via the so-called no-cloning theorem,
which came as an evolution of the no-go theorem in [14], and that states the impossibility of
perfectly copying a quantum system. This feature, however, comes with the inconvenience
that long distance communication becomes a challenging aspect for practical QKD. As the
communication channel is longer, the losses in the channel increase. Classically, the signal
would be re-ampli�ed using a repeater, but this is not possible in QKD, where the quantum

1The equivalence referred here do not consider Device Independent protocols, in which entanglement is
required, and that are therefore not possible to implement with prepare-and-measure protocols .
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signal cannot be copied. The typical optical losses in �ber at the time of writing are around
0.2 dB/km [15], which will limit the communication distance to a value that depends on the
sensitivity to losses of the particular QKD protocol to be implemented, but that is no longer
than few hundreds of kilometers.

This is a very important constraint in the context of secure quantum networks and for
quantum cryptography in general. If we are to build a global network whose links are
secured by QKD, we would need to �nd a way of circumventing the long distance problem.

One of the ways to solve the problem is by the use of trusted nodes, dividing a long
communication distance into several shorter point-to-point links. In this way, a network of
trusted users could be constructed at the cost of the necessity of trusting each node. There
should be also some physical security mechanism to ensure that the intermediate devices
are not tampered with. The most extensive trusted node network at the moment of writing
expands for more than 2000 km between several major cities in China [16].

Another approach to overcome the distance limit is to divide the channel into pieces and
perform entanglement swapping at each step [17, 18]. This approach is known as quantum
repeaters. The idea behind quantum repeaters consists in extending the classical signal am-
pli�ers to the quantum realm by the use of quantum teleportation, guaranteeing the distri-
bution of entangled photons between two locations. It is a promising but challenging �eld
that would be useful not only for QKD, but for other communication protocols as well.

Finally, there is also the possibility of using satellites to establish link-to-link commu-
nication with a ground station. This approach is simply known as satellite-QKD [19]. The
losses in �ber or free-space on Earth’s surface are exponential with the distance, follow-
ing the optical absorption law, whilst they are only quadratic after the atmosphere, where
only di�raction is present. Since the atmosphere e�ectively covers only 10 km in height, it
is possible to establish a QKD key with an orbiting Satellite, pushing the distance limit of
repeaterless QKD protocols to link with satellites. One way of setting a quantum network
protected by QKD in this way could be to �rst distribute a QKD key between a ground
station and a satellite, then perform yet another QKD protocol between the satellite and
another ground station in a di�erent part of the Globe (even passing through a communi-
cation phase with other intermediate satellite), so the two points on Earth can share the
secure key.

1.5 Secure Key-Rate
The level of security of any QKD protocol depends on the assumptions in the technological
capabilities of the potential eavesdropper. In the security proofs, the types of attacks are
classi�ed into three di�erent groups [20]:

Individual attacks: Eve performs an independent and identically distributed (i.i.d.) attack
on all signals, i.e. she prepares separable ancilla states each of which interacts individually
with one signal pulse in the quantum channel. The states are stored in a quantum memory
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until the post-processing step, and subsequently measured independently from one another.
Collective attacks: Eve performs an i.i.d. attack with separable ancilla states, stores her

states in a quantum memory and performs an optimal collective measurement on all quan-
tum states at any later time (in particular, after post-processing).

Coherent attacks: The most general attack where no (i.i.d.) assumption is made. In partic-
ular, Eve may prepare an optimal global ancilla state whose (possibly mutually dependent)
modes interact with the signal pulses in the channel and are then stored and collectively
measured after the classical post-processing.

Apart from this classi�cation, security proofs can be framed either in the asymptotic
limit, where an in�nite number of symbols is transmitted, or in the case where a �nite
number of transmitted symbols is considered. The asymptotic limit is useful because it
can give an upper bound for non-asymptotic security proofs and the formulas are easier to
obtain.

In this manuscript we consider the application of the formulas that are known to be
secure against collective attacks in the asymptotic limit. Additionally, in the next chapter
we will also compute some corrections for �nite-key sizes.

In general, the secure key rate is given by:

K = fsymr (1.4)

where fsym is the symbol rate (measured in symbols per second), that depends on the com-
munication speed in the quantum channel, and r is the secret fraction (measured in bits per
symbol), i.e. the secure key rate per symbol.

In the asymptotic limit, Devetak and Winter derived a lower bound for the secret fraction
considering collective attacks as [21]:

rasymp.
col. ≥ IAB − χE (1.5)

where IAB is the mutual information between Alice and Bob’s strings, which is a quanti�ca-
tion of the amount of information obtained in one of their string when observing the other
one, and χE is the Holevo bound, which is a bound on the amount of information that Eve
can obtain from the key.

In practice, we can add to this bound the fact that the error correction codes do not
operate at the asymptotic limit. If we consider that some blocks of the key will fail to be
corrected we can multiply the mutual information by an e�ective number β ∈ [0, 1] that
represents this fraction. The number β was mentioned before and it is called the recon-
ciliation e�ciency. Also, a certain fraction of the key, p, will be revealed for the classical
post-processing phase, and so the �nal bound for the secure key rate in a practical scenario
can be written as:

rasymp.
col. ≥ (1− p)(βIAB − χE) (1.6)

This formula is taken into account every time a QKD protocol should be analyzed, and
compared with actual key obtained from experimental implementations.
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In the analysis of a QKD protocol, one usually assumes that Eve can perform the best
attack possible, maximizing the Holevo bound, and the equality holds in Eq.(1.6).

1.6 CVQKD
The QKD protocols we have mentioned until now, including our example on BB84, are
based on Discrete Variables (DVQKD), in the sense that the quantum information is en-
coded into systems with a discrete number of degrees of freedom. For instance, in BB84,
the quantum states needed are qubits, two-level quantum systems, so the Hilbert Space is
two-dimensional.

The use of DVQKD simpli�es the analysis of the system, but can make the implementa-
tion di�cult, since those states can be di�cult to generate or detect. Often weak coherent
states are employed for generating single-photons at Alice’s side, instead of pure single-
photon emitters. However, single-photon detectors are necessary at Bob’s side, which are
expensive and cumbersome for some real-world applications.

Nevertheless, the Hilbert space of the states used in QKD can be extended to in�nite
dimensions simply by using quantum states derived from a hamiltonian whose eigenvalues
take an in�nite range of possible values. This type of QKD is called Continuouos Variable
QKD (CVQKD). In this case one can use coherent (for prepare-and-measure protocols) or
squeezed (for entanglement-based protocols) states of light.

By moving to an in�nite Hilbert Space, the security proofs and the classical crypto-
graphic steps (error correction codes and private ampli�cation) are more involved than in
the DV case. However, the main advantage of CVQKD with respect to DVQKD is the simpli-
�cation in the implementation. A laser naturally emits coherent states, and no single-photon
detector is needed, so practical QKD system can be envisioned and implemented using only
o�-the-shelf optical components.

1.6.1 Coherent states
Coherent states of light are eigenstates of the annihilation operator â. We de�ne the quadra-
ture operators, q̂ and p̂ as:

q̂ = â+ â† (1.7)
p̂ = i(â† − â) (1.8)

so that any coherent state, |α〉 ful�lls:

â |α〉 = α |α〉 (1.9)

where α = 1
2
(q + ip), and q and p are the eigenvalues of the quadrature operators. Since

these eigenvalues are real numbers, the spectrum of possible outcomes in a quadrature mea-
surement is continuous, and hence the use of the name Continuous Variables.
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Furthermore, since the quadrature operators do not commute ([q̂, p̂] = iI) then, by the
uncertainty relation, there is a minimum value in the product of the quadrature variances:

δqδp ≥ 1 (S.N.U.) (1.10)

That is to say, a measurement of these observables cannot be performed with an in�nite
precision. For a coherent state, the equality in Eq.(1.10) holds, minimizing the uncertainty
relation with an equal value of the quadrature variances.

Coherent states can be represented in phase space, which is the 2D plane whose axes
are the �eld quadratures values q and p. Since the uncertainty relation is ful�ll with equal
variances, a coherent state can be represented as a circle-like object in phase-space, centered
at the mean value of the quadratures, and with a variance given by 1 shot noise unit.

1.6.2 GG02 Protocol
The speci�c CVQKD protocol that was studied in this thesis is called GG02[1], after P.
Grangier and F. Grosshans. It is of the type prepare-and-measure, using coherent states
of light. The protocol goes as follows:

Distribution of coherent states:

The protocol starts with Alice choosing a set of random numbersQ = {q} and P = {p}
following a normal probability distribution with 0 mean and variance VA:2

Q ∼ P ∼ N(0, VA) (1.11)

VA is simply calledAlice’s variance. Every pair of the form {qj, pj} is associated to a coherent
state |αj〉 = |qj + ipj〉. Hence:

â |αj〉 = αj |αj〉 = (qj + ipj) |αj〉 (1.12)

where â = 1
2
(q̂ + ip̂) is the annihilation operator and q̂ and p̂ are the quadrature operators

as de�ned above.
The photon number operator is de�ned as:

n̂ = â†â =
1

4
(q̂2 + p̂2)− 1

2
(1.13)

and its expectation value for the j-th coherent state is:

〈n̂〉j = 〈αj|n̂|αj〉 = |αj|2 = q2
j + p2

j (1.14)

2Although not necessary for practical cases, Alice should use a Quantum Random Number Generator
(QRNG), [22], for assuring the randomness in her sampling of the distributions.
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Since these numbers are sampled from the gaussian distribution, then the ensemble mean
number of photons, n̄ is3:

n̄ = Q̄2 + P̄ 2 = 2VA (1.15)

Alice’s Variance VA is not to be confused with the so-called modulation variance, Vm, that is
the total variance in the modulation, and it is de�ned as the sum of of Alice’s variance and
the intrinsic noise of the coherent state (1 S.N.U.), i.e. Vm ≡ VA + 1. Note that even in the
case of VA = 0 the quadratures still carry a variance of 1 shot noise unit, as required by the
uncertainty relation, and hence the total modulation variance is still 1. Eq.(1.15) is therefore
the mean photon number in terms of the total Alice’s variance. Hence, Alice’s variance is
directly related to the mean number of photons sent to Bob. We will see in the next chapter
that the typical values of the modulation variance is between 2 and 4 shot noise units.

Alice then prepares the modulated states |α1〉 |α2〉 |α3〉 ... and sends them to Bob through
the gaussian quantum channel.

Bob receives the states and performs coherent detection, that permits him to retrieve the
quadrature values, either by homodyne detection (measuring one quadrature) or heterodyne
detection (measuring a pair of conjugate quadratures).

Parameter Estimation:
After the measurements performed by Bob, both Alice and Bob will reveal a random subset
of their data in order to estimate the total transmission of the gaussian channel and the ex-
cess noise present. They will compute the mutual information, IAB and the Holevo bound
for Eve’s information, χE. As we will see next, we will consider the case of reverse recon-
ciliation, which means that Alice will correct her bit string according to Bob’s information.
For this reason, from now on we denote the Holevo bound as χEB, since it is the maximal
amount of information that Eve can get from Bob during the reconciliation.

IfχEB > βIAB, following Eq.(1.6), then the potential eavesdropper has more information
than the one shared by Alice and Bob, and the protocol is aborted. Otherwise, they will
proceed with the next steps in the protocol. Note that the protocol abortion could happen
even when there is no eavesdropper, if the channel is su�ciently noisy, resulting in a high
value in the estimation of χEB.

Information Reconciliation:
In this step one-way information reconciliation is performed, which is a type of error cor-
rection. Typically, low-density parity-check (LDPC) codes are used for this step [23]. In the
case in which Alice sends the classical information to Bob in order for him to correct the
errors in his string, this is called direct (or forward) reconciliation. However, this necessi-
tates a channel transmittance, T , bigger than 0.5 (or 3 dB), which is hence not practical for
long-distance communication [24]. This limitation can be overcome by reverse reconcilia-
tion, in which Bob sends the information to be corrected by Alice. In this case, since Alice’s
information on Bob’s measurement is always greater than Eve’s, the mutual information

3Note that here, the symbol .̄..means an average over the normal distribution, while 〈...〉 is the mean value
of the quantum mechanical operator inside the brakets over the state under consideration.
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can remain always greater than the Holevo bound during the reconciliation. As mentioned
above, we will consider reverse reconciliation for the rest of the text.

Privacy ampli�cation: A brief step of con�rmation can be performed, in which Alice
and Bob use a family of hash functions [25] that is made public and perform it to their
key, communicating the result. In this way, they bound the failure probability of the error
correction phase. If the hash is the same for Alice and Bob, they proceed with the protocol,
otherwise, they abort it.

At this step Alice and Bob already share identical bit strings with a very high probability,
but some information could have been leaked to Eve in the whole process. In order to reduce
the probability that Eve could guess a part of the key, they perform a privacy ampli�cation
protocol to their bit strings [26]. A secure key with a certain length is �nally shared between
Alice and Bob and the protocol is �nished.

1.6.3 Coherent detection

After the distribution of the quantum states, Bob measures the states sent by Alice to proceed
with the parameter estimation phase. In the case of DVQKD, the states are single photons,
and therefore Bob should have single photon detectors in order to recover the information
from the states. This could be technologically challenging in some cases, which reduces the
practicality of the system.

In the case of CVQKD, the information is encoded into the quadratures of the coher-
ent states sent by Alice. In order to recover this information, Bob could perform coherent
detection, which does not require any single photon detector, but photodiodes.

The coherent detection used in CVQKD protocols is called homodyne detection, and per-
mits to obtain one general quadrature value from the light state. Sometimes, both a speci�c
given quadrature and the corresponding conjugate quadrature (the quadrature rotated by
90 degrees in phase space) are to be measured. In this case, one can simply perform two ho-
modyne measurements in parallel with a phase di�erence of 90 degrees, which is known as
heterodyne detection in the literature. We therefore refer to heterodyne detection as double
homodyne detection here.4

The principle of homodyne detection is to mix the light that is to be measured with a
bright coherent state, called the Local Oscillator (LO). The LO serves as the modal reference
(frequency, space, and polarization), and can be generated directly at Bob’s side. Both the
quantum states and the LO are mixed in a beamsplitter and then sent to two photodetectors.
The photodetectors convert the optical energy impinging on them into an electronic signal,
hence measuring the optical intensity. If both output signals are electronically subtracted,
the �nal signal that remains is proportional to the quadrature that is in phase with the LO.

To see this more precisely, notice that we can treat the LO as a classical coherent state

4The protocols featuring heterodyne detection are also known as "no-switching" protocols.
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with intensity |αLO|2 and relative phase θ with respect to the signal5

αLO = |αLO|eiθ (1.16)

Recalling the beamsplitter (BS) action in the matrix representation, with {âin1, âin2} as input
modes to the BS, and {âout1, âout2} the output modes6(

âout1

âout2

)
=

1√
2

(
1 1
1 −1

)(
âin1

âin2

)
(1.17)

By mixing our LO with a quantum signal represented by the operator âin1 = â, the output
modes after the BS are therefore:(

âBS1

âBS2

)
=

1√
2

(
â+ αLO

â− αLO

)
(1.18)

The intensity of an optical �eld Â is proportional to the mean number of photons, N̂ = Â†Â,
and therefore the intensity at the beamsplitter outputs are proportional to:

N̂out1 = â†BS1âBS1 =
1

2

(
â†â+ |αLO|2 + â†αLO + âα∗LO

)
(1.19)

N̂out2 = â†BS2âBS2 =
1

2

(
â†â+ |αLO|2 − â†αLO − âα∗LO

)
(1.20)

The subtraction of both intensities then gives the following operator:

∆N̂ = N̂out1 − N̂out2 = â†αLO + âα∗LO = |αLO|(â†eiθ + âe−iθ) (1.21)

by the de�nition of the quadratures in Eq.(1.8), one has:

â†eiθ + âe−iθ =
1

2

(
q̂
(
eiθ + e−iθ

)
+ ip̂

(
−eiθ + e−iθ

))
(1.22)

= q̂ cos θ + p̂ sin θ ≡ q̂θ (1.23)

where the de�ned qθ is a generalized quadrature, that corresponds to a quadrature rotated
θ degrees with respect to q̂. Hence, if the phase di�erence between the LO and the signal
is 0 (90 degrees), the di�erence number operator, which is the output of the homodyne
measurement, is proportional to q̂ (p̂). Therefore, by measuring the homodyne signal we
get samples of the quadrature operator that is in phase with the LO.

A scheme of the GG02 CVQKD protocol with the distribution of the states and the co-
herent detection is shown in Fig.(1.2).

5Actually, in general, we do not need the LO to be a coherent state, just that its number of photons is much
higher than the photons in the signal, and small �uctuations of the operators with respect to the mean �eld
value, so we can treat the LO as a classical object.

6Note that we write here the modes as operators since we are dealing with their quantum nature, but the
exact relation also holds when the �elds are classical, only removing the operator nature.
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Figure 1.2: GG02 basic scheme. Alice prepares a set of coherent states whose quadratures
are obtained from two gaussian distributions with a certain variance. Then she sends the
states to Bob, who recovers the information in the quadratures by coherent detection. For
more information see text.

1.6.4 Imperfections and excess noise

It is important in these type of protocols to be able to calibrate the imperfections that add
noise to the measurement at Bob’s. The computation of these errors is performed in the
parameter estimation phase. The main parameters to be estimated in a practical scenario
are:

• Channel Transmittance, T 27 a characterization of the channel should be performed
where the channel losses are treated. This characterization becomes more involved
when the losses depend on time, as we will see in the next Chapter. For a �ber-type
experiment, the transmittance is �xed. The loss coe�cient of the �ber per unit lenght
is typically of about 0.2 dB/km [15].

• Detector E�ciency, η, accounting for the detectors’s losses when measuring the op-
tical intensity. It is usual to account the detector coupling and measure e�ciencies as
part of the total channel transmittance.

• The electronic noise, νel, due to the thermal noise of the detectors even without the
presence of any light.

• The modulation variance, VA, known to Alice, when preparing the coherent states.
7We denote T the transmission coe�cient, and τ = T 2 the channel transmittance.
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• The excess noise, ξ, that is de�ned as the rest of noise sources that cannot be calibrated
by Alice and Bob8. In the security proofs, this noise is assumed to be completely due
to the presence of the eavesdropper in the quantum channel. A protocol would be
useful whenever the computed key rate after parameter estimation (and therefore
after considering the excess noise) is positive. In reality, there could be sources of
excess noise that are not known precisely to Alice and Bob that will play a role at
the parameter estimation phase. Examples of excess noise are the discretization in
the gaussian modulation values, the Raman scattering that is present in the �bers
(that can slightly change the light frequency) or phase �uctuations in either the LO
or the signal. The excess noise is one of the crucial parameters in a cryptographic
Continuous Variable protocol, since it is the parameter perturbed by the action of the
eavesdropper [27, 28] during the execution of the protocol.

All the sources of noise have as a consequence the reduction of the signal-to-noise ratio
(SNR) when Bob measures the states, hence reducing the mutual information IAB, having
an impact on the secure key that can be generated.

In order to compute the actual key rate, one should analyze the variance expected by
Bob when measuring the states.

We stress that the total modulation variance, Vm is the sum of Alice’s variance when
preparing the states, VA and the intrinsic variance of the coherent states, which is 1 shot
noise unit, Vm = VA + 1. We can model the noise contribution from the channel, Ec, and
from the detectors, Ed, with [20]:

Ec =
1− T 2

T 2
+ ξ Ed =

1− η
η

+
νel

η
(1.24)

whereEc is the loss-induced vacuum noise (due to the channel losses) plus the excess noise,
and Ed is the detector and electronic noise. One can furthermore de�ne the noise �gure of
merit as:

E = Ec +
Ed
T 2

(1.25)

where the detector noise is divided by the channel transmittance in order to refer the noise
to Bob’s output.

The variance measured by Bob can be then computed as:

VB = T 2η(VA + 1 + E) (1.26)
8There are di�erent scenarios depending on the con�dence in the noise sources. The realistic scenario is

the one we are describing in this section, in which we assume Alice and Bob laboratories can be trusted, so we
can calibrate the noise in Alice’s variance and Bob’s detectors. One could likewise assume that all sources of
noise, including channel losses and detector e�ciencies, are also in control of Eve. This is called the untrusted
(or paranoid) scenario, and in this case obtaining a secure key is much more challenging given the current
technological state-of-the-art.
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Using Eq.(1.25) with Eq.(1.24) one arrives to the expression of the variance at Bob’s:

VB = T 2η(VA + ξ) + 1 + νel (1.27)

We can also include the fact that the coherent detection could be either homodyne (as
in our analysis until now) or heterodyne. In the last case one has to divide both T 2 and ξ by
a factor of two, since an additional beamsplitter at Bob would be necessary for dividing the
signal in order to measure two quadratures at the same time. We can in general write:

VB =
T 2η

h
VA + 1 +

T 2ηξ + νel

h
(1.28)

where h = 1 for homodyne detection, and h = 2 for heterodyne detection.
In order to compute the secret key of Eq.(1.6), we need to compute the mutual informa-

tion and the Holevo bound. Here, we are in conditions for already calculating the mutual
information, whilst the Holevo bound will be treated in the next Chapter.

First, we de�ne the signal-to-noise ratio as the ratio between the signal power and the
noise power. Looking at Eq. (1.28) is clear that the �rst part of the equation is the actual
signal variance, while the extra shot noise unit and the excess noise account for the noise
in the state. Thus:

SNR =
T 2ηVA/h

1 + (T 2ηξ + νel) /h
(1.29)

is the signal-to-noise ratio at Bob’s output.
The mutual information as de�ned in Eq.(1.5) can be computed from entropic arguments

[29] and it is directly related to the SNR as:

IAB =
h

2
log2(1 + SNR) (1.30)

Using the formula we just found for the SNR we can write:

IAB =
h

2
log2

(
1 +

T 2ηVA

h+ T 2ηξ + νel

)
(1.31)

Note that the heterodyne measurement (h = 2 instead of h = 1) increases the proportion-
ality factor by 2, but it also adds an extra shot noise unit to the excess noise, then decreas-
ing the SNR. This extra shot noise unit comes from the uncertainty relation, since we are
measuring two complementary observables at the same time, and so at least a shot noise
unit should be paid according to the commutator relation between conjugate quadratures.
Hence, the performance of homodyne or hetedoryne measurements are dependent on the
speci�c setup.

Often in the literature, the detector’s e�ciency is accounted inside the transmission
e�ciency, T 2 → T 2η/h, and the total noise is accounted in a single parameter, σ2 = 1+T 2ξ,
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with the new ξ being ξ → ξ + νel/(hT
2), so that the expression for the mutual information

reduces to:
IAB =

h

2
log2

(
1 +

T 2VA

σ2

)
(1.32)

Eq.(1.32) constitutes our formula for computing the mutual information in the GG02
protocol, that will be applied in the following Chapter.
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Chapter 2

Satellite CVQKD: feasibility study

“ We choose to go to the Moon in this decade and do the other things, not because
they are easy, but because they are hard”

– John F. Kennedy
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With the tools derived in the previous Chapter, we aim to present a feasibility study of
Satellite CVQKD developed during this thesis, that can be also found in the publication [30].
We will describe the scenario of a Satellite QKD link with realistic parameters, in which the
channel �uctuations will take a central role, and then derive the secret key rate formula in
this case and compute it for di�erent con�gurations.

2.1 Motivation for a Satellite link

As we outlined in the previous Chapter, a fundamental limitation in the implementation of
QKD technologies is extending the communication range in which a secure key rate can
be obtained. Nowadays, this communication range has evolved from few centimeters to
several hundreds of kilometers with modern technology.
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However, the realization of an intercontinental QKD link requires covering thousands
of kilometers, which would be impossible, given the most advanced technology, due to the
exponential attenuation of the quantum signal in optical �bers, i.e. the exponential growth
of losses with distance between terrestrial nodes.

One possible solution is the use of quantum repeaters [17, 18], whose functioning relies
on entanglement distribution and in most cases on quantum memories. However, despite
progress in the �eld [31, 32], the technology is still far from being applicable to interconti-
nental quantum communication.

As remarked in the previous Chapter, another possible solution is the use of orbiting
terminals to distribute cryptographic keys among ground stations. Studies investigating
the feasibility of quantum communication using satellites have been ongoing for a decade,
see for example [33], but a milestone was reached in 2017 with the �rst complete satellite-to-
ground QKD implementations realized with the Chinese satellite Micius [34, 35]. Later the
same year, QKD from satellite was also implemented by means of a small payload onboard of
the Tiangong-2 space laboratory [36]. Soon after these demonstrations, the Micius satellite
was used for the realization of the �rst intercontinental quantum-secured communication
[37], thus opening the era of satellite QKD.

Although these results represent a major step in the �eld, several issues still need to
be addressed for the realization of a global QKD network based on satellite communica-
tion. To this end, a possible breakthrough may come from the transition from DVQKD to
CVQKD protocols. As mentioned in the previous Chapter, these protocols have the main ad-
vantage of using standard telecommunication components, since they typically involve the
preparation of coherent states and their coherent detection, therefore allowing to exploit
the heritage of classical optical communication both in terms of high-speed components
and of their space quali�cation.

Nonetheless, whether this technology can be used for secret key generation in a realistic
satellite-based scenario remains an open question. In this Chapter we aim to shine a light
on this by considering the GG02 protocol, together with realistic (state-of-the-art) physical
parameters for the atmospheric link and the satellite payload.

2.2 Channel characterization

2.2.1 Channel �uctuations

In a satellite scenario, the channel is a free-space link, ranging from some hundreds to tens of
thousands of kilometers. A small part of the distance transverses the atmosphere (e�ectively
around 10 km), where di�erent physical phenomena can occur, like absorption or scattering,
as we will see in the following. Through the atmospheric part, the losses scale exponentially
with distance, as in �ber protocols. The rest of the channel consists in propagation in empty
space, where the light is only subject to di�raction. Since the power of light decreases as
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the inverse square of the distance, the losses in this path scale only quadratically, making
possible the link with a satellite that is potentially one order of magnitude further away
than the best QKD implementation on Earth. In this respect, the initial laser waist dictates
the amount of divergence that the light would su�er until it reaches the detector. This waist
can be quanti�ed with the emitter’s telescope diameter, or, equivalently, with the divergence
angle. The divergence angle, denoted θd, is de�ned as the angle between the beam’s center
spot and the point where the beam’s power is reduced to 1/e2 ≈ 13% (see Fig.(2.1)). As
the divergence angle increases, the spot size at the receiver also increases, since the laser
waist isW = Sθd, where S is the distance to the Satellite. We note here that the divergence
angle is considered constant along the light’s path because we are working with traveling
distances way bigger than the Rayleigh length of the laser. We use the nominal value of
10 µrad for the divergence angle in our study, which has been demonstrated with a 30 cm
aperture telescope on-board of the Micius satellite [34].

The satellite orbits can be approximately divided into three categories with respect to
the distance to the Earth’s surface: the Low Earth Orbits (LEO), are the closest orbits to the
Earth, at a maximum of around 2000 km from sea level. At LEO orbits, the orbital period are
128 minutes or less (with orbital speeds of the order of 7.5 km/s). The majority of satellites
�y at LEO orbits. The next altitude orberts are the Medium Earth Orbits (MEO), between
2000 km and 35786 km, where some satellite constellations are placed, like the GPS or the
Galileo constellations. At 35786 km, the orbital period of the satellite coincides with the
Earth’s rotation period, and hence the satellite appears to be still in the sky from any point
on the Earth’s surface. These are known as the geosynchronous orbits, or also geostationary
(GEO) orbits. Finally, orbits beyond GEO are known as High Earth Orbits (HEO). For GEO
orbits, since the satellite is not moving with respect to the ground, the channel �uctuations
are reduced. However, geostationary orbits occur at very far radius (35786 km from the
Earth’s surface), and so the losses are typically too large to obtain a secret key rate. We
will then not consider them in our study, although this particular situation is of interest for
on-going works in Satellite QKD.

While the channel losses are �xed in a QKD scenario between two ground stations, it
is clear that this will not be the case in a Satellite to ground link. The channel is not �xed,
mainly due to two factors:

• First of all, the satellite is moving, and therefore the distance between Alice and Bob
is a function of time during the state transmission. As the propagation takes place in
free-space, there exist an error due to the alignment of the satellite with the ground
station, that is known as pointing error. This error can be quanti�ed with the angle
between the straight line linking the satellite with the ground station, and the real
angle of the light emitted by the satellite (see Fig.(2.1)). We will denote this angle
as θp. A pointing error of the order of 1 µrad has been obtained in LEO satellite-to-
ground communication links [34]. This is used as the nominal value in our analysis.

• There are several disturbance e�ects that occur during beam propagation in the at-
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Figure 2.1: Schematic diagram of the CV-QKD communication scheme analyzed in this
Chapter. A �xed ground station (Bob) follows the trajectory of a satellite (Alice), equipped
with a tracking system, passing over its zenith point. An adaptive optics (AO) system is
required in order to correct the wavefront distortions due to the atmosphere and maximize
the signal to noise ratio at the receiver. θd is the divergence angle, and θp is the pointing
error.
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mosphere, which can be classi�ed as systematic or of random nature.
The systematic e�ects are theoretically predictable physical processes that perturb
and attenuate the signal, and they include the refraction of the beam in the di�erent
atmospheric layers and the extinction of light owing to absorption or scattering by air
molecules or aerosols. The former is owing to the variation in the optical refractive
index of the atmosphere as a function of altitude and it causes the light to deviate
from a straight line, resulting in an elongation of its physical path. Reference [38]
provides a detailed calculation of the elongation factor (the ratio of the total length
of the beam trajectory to the geometric path length) as a function of the apparent
elevation angle of the satellite, i.e., the angle with respect to the horizon at which the
satellite appears owing to refraction and which di�ers from the real elevation angle.
In this work, we restrict our analysis to elevation angles above 20 degrees, where the
elongation factor remains close to 1 and therefore this e�ect can be neglected . The
latter e�ect, namely extinction owing to absorption and scattering, depends on the
link length and on the molecule and aerosol distribution model [38]. It also strongly
depends on the sky condition and the transmission wavelength. For elevation angles
above 20 degrees, the atmospheric transmission e�ciency τatm (which is the square of
the atmospheric transmission coe�cient), scales as:

τatm = τ sec(θzen)
zen (2.1)

where θzen is the zenith angle and τzen is the transmission e�ciency at zenith [39].
The estimation of the zenith transmission e�ciency relies on the MODTRAN code
[40], a widely used atmospheric transmittance and radiance simulator. Considering
a 1550 nm wavelength, mid-latitude summer atmospheric model with visibility of 23
km (corresponding to clear sky condition), the MODTRAN web app calculator gives
τzen = 0.91 for both rural and urban aerosol models [41]. We remark that the main
parameter that a�ects the transmission e�ciency is the sky visibility; in particular,
we �nd τzen = 0.85, 0.75, 0.53 for a 10, 5, 2 km visibility, respectively.
In addition to such systematic e�ects, random variations in the atmospheric temper-
ature lead to �uctuations in the refractive index that have the statistical properties
of turbulent scalar �elds. The most important consequence of this atmospheric tur-
bulence are intensity �uctuations (scintillation), increased beam wandering and beam
broadening, which induce fading, namely �uctuations in the received optical power
and hence in the transmissivity of the channel. The strength of these e�ects also
depends on the altitude and hence on the elevation angle, as discussed in detail in
[38]. The atmospheric turbulence is also responsible for the deformation of the beam
pro�le. This is crucial, especially in the context of CVQKD, where mode matching be-
tween the received signal and the phase reference (LO) is important for the coherent
detection [42]. To avoid mode mismatch, we assume the use of single-mode �bers as
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spatial-mode �lters of the incoming beam, together with an advanced adaptive optics
system [43] to improve the coupling e�ciency of the incoming light into the single-
mode �ber core. Acting as a spatial-mode �lter, the coupling to a single mode �ber
removes components of the signal that would not interact with the LO and contribute
to the detected signal. This �ltering hence reduces the noise in the detection apparatus
and also facilitates the use of components like integrated coherent receivers, which
are typically available as commercial o�-the-shelf and standardized devices. We re-
mark that recent advances in this �eld have experimentally demonstrated a coupling
e�ciency in a single-mode �ber exceeding 50% for a large aperture telescope [44].

Additionally, we will also consider here a downlink scenario, with Alice in the satellite,
sending the states to Bob, at ground. This is more convenient since the losses in a downlink
are smaller with respect to the uplink. The reason is the channel asymmetry with respect to
the atmosphere’s position. The atmosphere is the main agent of perturbation. In an uplink
scenario, the atmosphere a�ects the light just after the states are sent to the satellite, when
the beam starts to diverge, and therefore any deviation would be considerably ampli�ed by
the time the light arrives to the receivers in the Satellite. On the other hand, in a downlink
scenario, the light is only a�ected at the end of its path, when the light spot is already
bigger than the telescope at Earth, and so the atmospheric e�ect has a lower impact in the
signal. As a consequence, the di�erence in optical power received (i.e. in losses) between a
downlink and an uplink scenario could reach about 20 dB in favor of the downlink, or 100
times less losses.

Without loss of generality, we will consider the satellite trajectory that passes just at
the zenith angle with respect to the ground station. Given a satellite, these trajectories are
optimal in terms of losses, since the time that the satellite spends in the tracking zone is
maximal, and the distance between satellite and ground station is minimal. Generalizing it
to any kind of trajectory is also possible. A scheme of the downlink scenario considered is
depicted in Fig.(2.1).

2.2.2 Probability Distribution of the Transmission E�ciency

The mathematical function that describes the statistical behavior of the transmission ef-
�ciency of our channel, τ , is straightforwardly called the Probability Distribution of the
Transmission E�ciency (PDTE). The square root of the transmission e�ciency is the chan-
nel transmittance, T , used in the previous Chapter of this thesis to derive the mutual infor-
mation of the CVQKD protocol, Eq.(1.32).

Since our channel has a �uctuating nature, the transmission e�ciency τ is a random
variable. Here we follow the lines of [45] to calculate the PDTE from �rst principles.

The situation is depicted in Fig.(2.2) (a). The receiver telescope has an aperture of a, and
the light center spot is at a distance r from the center of the telescope and has a waist of W .
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Given the de�nition of the divergence angle θd and denoting the distance satellite-
ground station as S, we remark that the beam width at the telescope is simply W = Sθd.
For example, in Fig.(2.2) (a), we use θd = 10 µrad and S = 400 km, which would give a
width at the surface of 4 m.

Assuming the beam can be described by a superposition of gaussian beams with di�erent
wavenumbers, k, traveling along the z−axis, its waveform pro�le can be written as:

U(x, y, z, k) = S(x, y, z, k) exp(ikz) (2.2)

where S(x, y, z, k) is the beam’s envelope, that should satisfy the paraxial wave equation
from Maxwell’s equation.1

It can be shown that the envelope solution of the wave equation for a gaussian beam,
considering a de�ection distance r in the x direction, can be written as:

S(x, y, z, k, r) =

√
2

πW 2
exp

(
−
[

1

2W 2
− ik

2R

] [
(x− r)2 + y2

])
exp(iΨ) (2.3)

where W , R and Ψ are the waist, the radius of curvature and the phase at a distance z. See
reference [45] for details of these functions.

Considering the beam travels a distance z0 from the emitter, the channel transmittance
would then be the intensity of the waveform integrated in the joint area between the re-
ceiving telescope and the beam at z0, i.e:

T 2(r) =

∫ ∫
A

|U(x, y, z0, k0, r)|2dxdy =

∫ ∫
A

|S(x, y, z0, k0, r)|2dxdy (2.4)

where A is this joined area and we have approximated the superposition of gaussians with
wavenumber k to just one gaussian with k = k0. This means we have ignored the signal’s
spectral width.

Manipulating Eq.(2.4) with Eq.(2.3) and taking into account the geometry of Fig.(2.2) (a),
it is possible to write the transmittance in terms of the incomplete Weber integral:

T 2(r) =
2

πW 2
e−2r2/W 2

∫ a

0

ρe−2ρ2/W 2

I0

(
4
rρ

W 2

)
dρ (2.5)

where ρ is the radial distance from the center of the telescope, and I0 is the zero-th order
modi�ed Bessel function. An approximated solution of this integral is:

T 2(r) = T 2
0 exp

[
−
( r
R

)λ]
(2.6)

1To write this expression, some approximations were assumed, see [45] for the details.
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where:

T 2
0 = 1− e−l2/2 (2.7)

λ = 2l2
e−l

2
I1(l2)

1− e−l2I0(l2)

[
log

(
2T0

1− e−l2I0(l2)

)]−1

(2.8)

R = a

[
log

(
2T0

1− e−l2I0(l2)

)]−1/λ

(2.9)

l = 2
a

W
(2.10)

To summarize, we have derived a formula, Eq.(2.6) giving the transmittance as a function
of the de�ection distance, r, that depends solely on the quotient between the telescope’s
aperture and the spatial width of the beam, a/W = a/(Sθd).2

The functional form of Eq.(2.6) is showed in Fig.(2.2) (b) for a/W = a/(Sθd) = 0.1875.
All the sources of channel �uctuations we have discussed are translated into �uctuations

in the de�ection distance r. If we assume that the beam �uctuates in the transversal coor-
dinates x and y following a two-dimensional gaussian function centered at the receiving
telescope, with variances σ2

x and σ2
y , then the de�ection distance r =

√
x2 + y2 follows a

Weibull distribution with variance σ2
r :

P (r) =
r

σ2
r

exp

(
−
(

r√
2σr

)2
)

(2.11)

In Fig.(2.2) (c) we show the behaviour of the probability distribution as a function of r/a.
If we now substitute Eq.(2.6) into the relation between the transmittance and the de�ec-

tion angle, Eq.(2.11), and use the chain rule, we would �nd the probability distribution of
the transmittance. Given that the transmission e�ciency is τ = T 2 we can use once more
the chain rule to obtain the probability distribution of the transmission e�ciency, the PDTE,
depicted in Fig.(2.2) (d).

The variance in Eq.(2.11), σ2
r , contains the �uctuations in the channel. We consider here

the �uctuations due to the pointing error σ2
p , and the atmospheric turbulence, σ2

t . Since they
are independent phenomena we can write:

σ2
r = σ2

p + σ2
t (2.12)

The variance due to the pointing error at a distance S is characterized with a pointing angle
θp and can be written as σp = Sθp.

In the weak turbulence regime, the variance due to atmospheric turbulence can be ex-
pressed as σt ' 1.919C2

nz
3(2W0)−1/3, [46], and depends on the distance traveled by the

beam in the atmosphere, z, and on the beam waist when entering the atmosphere, W0.
2Note that all variables T0, R and λ are only functions of a/W .
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Figure 2.2: Example of the characterization of an atmospheric channel at a �xed satellite-
to-ground slant distance of S = 400 km. The values for the variables are θp = 1 µrad,
θd = 10 µrad, a = 0.75 m. (a) Schematic of the beam and receiver telescope aperture. (b)
Transmission coe�cient as a function of the de�ection distance. (c) Probability distribution
of the de�ection distance. (d) Probability distribution of the transmission e�ciency (PDTE).
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For stronger turbulence, this expression represents an upper bound, as σ2
t saturates and an

increase of the path length or turbulence strength will not increase its value [46]. The pa-
rameter C2

n is the refractive index structure parameter that characterizes the strength of the
atmospheric turbulence. In case of moderate turbulence and considering a wavelength of
1550 nm, we have C2

n ' (10−14 − 10−15) m2/3. In addition, considering the length of the
atmosphere to be around 10 to 15 km, and the beam waist coming from a divergence angle
of θd = 10 µrad, the variance due to turbulence would be maximum of the order of 10−4

m2. Since a pointing error of θp = 1 µrad gives a pointing error of the order of 10−1 m2 for
a satellite altitude of 300 km and it increases with the altitude, then:

σ2
t << σ2

p (2.13)

therefore, under weak turbulence e�ects and in our realistic con�guration, we see that the
pointing error dominates over the turbulence. Hence:

σ2
r ' σ2

p (2.14)

The PDTE shown in Fig.(2.2) (d) characterizes the atmospheric link for a �xed satellite-
ground station distance, S. During the CVQKD protocol, though, the satellite follows a
trajectory with respect to the ground station that can be calculated from the satellite’s orbit
equation. We therefore need to account for the whole satellite’s orbit in order to compute
the total PDTE in a satellite pass.

In order to do that, we consider circular orbits that are passing at the zenith of the
ground station. We can write the radius of such orbits as RO = RT + hs, were RT is
the Earth’s radius and hs the Satellite’s altitude with respect to the ground. The angular
velocity of the Satellite is then ω2 = GMT/R

3
O, where MT is the Earth’s mass and G is the

gravitational constant. From the ground station point of view, the satellite’s distance during
the its visibility time (when the Satellite can be seen at least at 20 degrees from the horizon),
is:

R(t) =
√
R2
T +R2

O − 2RTRO cos(ωt) (2.15)

We then proceed as follows:

� The orbit is divided into a set of points de�ned by the position of the satellite at a
certain time, R(ti) (i runs with the number of points), given by the orbital equation,
Eq. (2.15).

� For each one of these points, both the PDTE(R(ti)) and the time di�erence between
consecutive points of the orbit, denoted ∆ti = ti−ti−1, are computed. The PDTE(R(ti))
includes as a multiplicative factor the atmospheric transmission e�ciency, Eq.(2.1),
for the elevation angle corresponding to R(ti). The value PDTE(R(ti))∆ti gives the
distribution of the times with di�erent transmission e�ciencies inside the computed
interval.
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Figure 2.3: PDTE for three di�erent orbits of increasing satellite altitude. The values of the
variables for each orbit are the same as in Fig.(2.2).

� Therefore, if we sum PDTE·∆ti over all the points we obtain the �nal distribution for
the time spent by the satellite with a certain transmission e�ciency, τ . Indeed, we are
mimicking the integral over the �ight time, FT:

1

FT

∑
i

PDTE(τ, R(ti))∆ti −→
1

FT

∫
PDTE(τ, t)dt (2.16)

Because we are considering circular orbits, we can label each orbit with its altitude,
which is the distance satellite-Earth, and that hence coincides with the distance satellite-
ground station when the satellite is exactly above the ground station. For such orbits and
following the procedure described above, we show in Fig.(2.3) the PDTE for three di�erent
orbits of increasing altitude for a telescope with aperture radius a = 0.75 m. We remark
that for higher orbits the variance of the distribution decreases, as well as the mean value
of the transmission e�ciency. The intuitive idea behind this fact is that as the satellite’s
altitude is higher, the losses due to divergence increases, decreasing the mean transmission.
At the same time, the beam width at the receiver telescope is bigger, and, from Eq.(2.6), the
transmission is �atter with the de�ection distance, i.e. there are less variance in the values
of T , which �nally translates in having a smaller variance in the PDTE. As described in the
following, this fact has an impact on the noise introduced in time-varying channels.
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Figure 2.4: Average attenuation per pass as a function of satellite altitude.

For completeness, we show in Fig.(2.4) the average attenuation of a satellite pass as a
function of satellite orbit.

2.3 Key rate in a �uctuating channel

One of the questions that arose when preparing this work is how to calculate the secure key
rate over a �uctuating (also known as fading) channel. We considered the GG02 protocol
with heterodyne detection described in the previous chapter. This theoretical derivation
was done by our collaborator Anthony Leverrier.

For this purpose, recalling Eq.(1.6) from Chapter 1, we need to compute the mutual
information IAB and the Holevo bound χEB over a channel whose transmission e�ciency
�uctuates following the probability distribution of Fig.(2.3).

It is important to understand how fast the fading process is. The main idea here is that
this process, whose timescale is typically of the order of 1–10 ms owing to atmospheric
turbulence, is much faster than the time needed to distill a secret key, which in our case
corresponds to a complete satellite pass. In other words, the channel transmission coe�cient
�uctuates signi�cantly over N uses of the channel, but this coe�cient is relatively stable
over consecutive uses of the channel, which occur with ns separation. As a consequence,
Alice and Bob can exploit classical signals to roughly monitor the current transmission
value of the channel and adapt their error correction procedure accordingly. This implies
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notably that for the error correction procedure, we can assume that Alice and Bob know
(approximately) the value of T for every k-th use of the channel (for every symbol sent
from Alice to Bob). This allows them to use good error-correcting techniques developed
for the fading channel where the fading process is known to the receiver. We can therefore
compute the mutual information as an average of the usual IAB over the PDTE. That is to
say, we can take the expectation value of Eq.(1.32) for the mutual information:

IAB =

〈
log2

(
1 +

T 2VA

σ2

)〉
PDTE

(2.17)

On the other hand, the Holevo bound can be estimated with the covariance matrix cal-
culated in the entanglement-based protocol. The covariance matrix is a matrix containing
the variances of the quadratures operators of a given quantum optics state in its diagonal
entries, and the covariances between quadratures in its non-diagonal entries. The covari-
ance matrix, here denoted Γ, completely describes any gaussian quantum state, like the ones
typically considered in CVQKD (coherent or squeezed states).

The Holevo bound is a function of the covariance matrix as [47, 48]:

f(Γ) = g(ν1) + g(ν2)− g(ν3)− g(ν4) (2.18)

where g is an entropic function of the form:

g(x) =
x+ 1

2
log2

(
x+ 1

2

)
− x− 1

2
log2

(
x− 1

2

)
(2.19)

and νi, i = {1, 4} are known as the symplectic eigenvalues [49] of the covariance matrix, Γ.
In the entanglement-based version of the protocol, the covariance matrix of the bipartite

state shared by Alice and Bob can be written as:

Γ(T ) =

(
V I2

√
T
√
V 2 − 1σz√

T
√
V 2 − 1σz (T (V − 1) + ξ)I2

)
(2.20)

where V = VA + 1, I2 is the two-dimensional identity matrix and σz is a the Pauli z matrix,
σz = diag(1,−1).

As observed in [48], when the �uctuation of the transmission e�ciency is considered,
the resulting state is a mixture of the individual �xed-transmission states, giving an overall
covariance matrix equal to:

Γ = 〈Γ(T )〉 =

(
V I2 〈

√
T 〉
√
V 2 − 1σz

〈
√
T 〉
√
V 2 − 1σz (〈T 〉 (V − 1) + ξ)I2

)
(2.21)

Comparing the covariance entries for the �xed channel, Eq. (2.20) and the �uctuating
channel, Eq.(2.21), we can identify an e�ective transmission for the fading channel equal to
〈T 〉. In particular, the variance of Bob’s system can be written:

〈T 〉 (V 2 − 1) + ξ = 〈
√
T 〉

2
(V 2 − 1 + ξf ) + ξ (2.22)
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where we have de�ned an extra excess noise due to the fact that the channel is �uctuating,
ξf , apart from the excess noise from a �xed channel, ξ:

ξf =
〈T 〉 − 〈

√
T 〉2

〈
√
T 〉2

(V 2 − 1) (2.23)

In other words, Eve’s information in the presence of fading corresponds to her information
for a �xed Gaussian channel with transmission e�ciency 〈

√
T 〉2 and an added noise given

by 〈T 〉−〈
√
T 〉2

〈
√
T 〉2

(V 2 − 1). This extra noise will be detrimental to the performance of the QKD

system unless 〈T 〉 − 〈
√
T 〉2 << 1

V−1
. By re-writing the fading case as a �xed case with an

e�ective transmission e�ciency and excess noise, it is possible to calculate the symplectic
eigenvalues of Eq.(2.18) using reference [50].

To summarize, the equation for the key rate in a �uctuating channel, that is secure
against collective attacks in the asymptotic limit is:

Kf = β

〈
log2

(
1 +

T 2VA

σ2

)〉
PDTE

− f (〈Γ(T )〉PDTE) (2.24)

that is the secure key rate formula used in the results of the next section.

2.4 Key rate in Satellite CVQKD

2.4.1 Asymptotic key

We are now ready to use the results derived above to estimate the expected key rate achiev-
able for a satellite-to-ground CV-QKD link under our assumptions. To properly account for
the expected noise, we include in our modeling the noise contribution related to the phase
recovery between the signals generated by Alice and measured by Bob. The technique that
we consider here has been proposed in [51, 52] and consists in sending periodic reference
symbols (pilots) along with the quantum signal. At the receiver side, Bob uses a free running
LO, which must be tuned to compensate for the Doppler frequency shift introduced by the
satellite motion, to measure both the pilot and the quantum signals, in a so-called “local”
LO con�guration. Two noise contributions arise from this technique, which are due to laser
instability and shot noise.

We remark that at telecom wavelength, the Doppler shift ranges from several GHz for
LEO to several hundreds of MHz for MEO [53]. This problem is well known in classical laser
communication and several solutions have been proposed, such as optical [54] or digital
[55] phase-locked loops. With these techniques, it is possible to achieve an a posteriori
determination of the satellite velocity with a precision of <1 mm/s, which would correspond

40



CHAPTER 2. SATELLITE CVQKD: FEASIBILITY STUDY

Parameter Symbol Reference Value
Pointing Error θp 1 µrad
Divergence Angle θd 10 µrad
Fixed Attenuation Att 3.8 dB
Zenith Transmittance τz 0.91
Electronic Noise νel 10% S.N.U.
Detection E�ciency η 0.4
Fixed Excess Noise ξ 1-5 % S.N.U.
Classical beacon symbol energy Eref 0.1 nJ
Reconciliation E�ciency β 0.95
Transmission symbol rate fR 1 Gsymbol/s
Receiving Telescope Radius a 0.75 m

Table 2.1: Summary of the main simulation parameters used in our study, together with
their reference values.

to a residual frequency shift of <1 kHz [56]. Moreover, in the case of “local” LO CV-QKD,
an alternative solution is to exploit the pilots to measure the residual Doppler shift.

According to the previous section in this chapter, the overall excess noise is composed
by the the fading noise and an additional �xed contribution owing to experimental imper-
fections, which includes all other possible sources of noise contribution.

Table 2.1 summarizes the main experimental parameters that in�uence the key rate gen-
eration , together with their reference values, which represent a high-performance satellite
optical communication system. A detailed analysis of the e�ect of individual parameters on
the key rate is given in Appendix A.

We remark that in our simulations, the signal variance VA is optimized over the key rate
for every satellite orbit. Recall that a big signal variance (or equivalently a greater number
of photons per symbol sent by Alice) implies an increasing mutual information, but also
an increase in the Holevo bound. Intuitively, this is because an intense signal increases the
signal to noise ratio at Bob’s, but also increases the amount of information that can be leaked
to an eavesdropper. The optimized values of VA in our study are in general between 2 and
4 shot noise units (S.N.U.), depending on the speci�c orbit.

In Fig.(2.5) we show the fading noise given by the PDTE that we obtain for orbits going
from 400 km to 22000 km. As we see, an increase of the noise is present for LEO orbits, since
the variance of the channel transmission is bigger for closer orbits, as discussed above and
seen in Fig.(2.3). Moreover, it is worth noting that when the pointing error is much smaller
than the beam divergence, the fading e�ect is mainly due to the variation on the satellite
distance.

Binning:
To reduce the e�ect of fading excess noise, a natural strategy is to reduce the variance of the
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Figure 2.5: Fading excess noise trend, ξf , in percentage of the shot noise units, as a function
of the satellite altitude for several values of pointing error and a �xed value of the divergence
angle.

transmission e�ciency. This can be achieved as follows: Alice and Bob can approximately
monitor the value of the transmission e�ciency of the channel, seen by the quantum sym-
bols τk, by multiplexing in some degree of freedom an intense optical signal that serves as
beacon and experiences a transmission e�ciency τb. An intensity detection of the beacon at
Bob’s, sampled at rates higher than the atmospheric coherence time (typically 1 kHz), can
provide an accurate estimation of the channel transmittance evolution with time τb(t). This
information can be used to classify the detected quantum symbols in groups as a function of
the expected transmittance so that for each group g the PDTE is reduced to a transmittance
interval PDTE(g) for which the contribution of the fading is less detrimental. The CVQKD
protocol can be performed independently for each of these groups to obtain a secret key
rate per symbol Kf (PDTE(g)) and an aggregated secret key rate per symbol of:

Kagg = P (τ ∈ PDTE(g))Kf (PDTE(g)) (2.25)

This technique is known as binning.
It is clear that in order to reduce the e�ect of fading, narrow PDTE intervals are desirable,

but this can magnify �nite-size e�ects3, since the number of symbols per group will be
reduced. This compromise between PDTE interval width and the number of symbols per

3Recall that our key rate formula assumes an in�nite amount of symbols transmitted from Alice to Bob.
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Figure 2.6: Asymptotic key rate vs group factor. Secret key rate for channel subdivision
from 1 to 100 equally spaced intervals for a 400 km altitude satellite. The �xed excess noise,
ξ, is, in S.N.U, 1 % (red), 3% (blue) and 5% (green), respectively.

group can be taken into account in order to optimize the division of the PDTE so that Kagg

is maximal for a given PDTE and orbit duration.

In our analysis, we chose a uniform division of the PDTE, hence dividing the whole range
of transmission values in equally spaced intervals, going from a single group (corresponding
to analyzing the data altogether) to 100 intervals (i.e., close to the asymptotic limit). The
results are reported in Fig.(2.6) for a satellite at 400 km and for three values of �xed excess
noise. We note that without channel subdivision no key would be possible for a 400 km orbit
due to the �uctuations of the channel. To analyze the e�ect of the channel subdivision for
all the orbits, we selected subdivisions of 3, 10, and 100 intervals for all the satellite altitudes.
As shown in Fig. 2.7, the division of the channel transmission e�ciency in 10 groups gives
a total rate close to the asymptotic limit for all satellite altitudes. We underline that for this
simulation the same values of beam divergence and pointing error have been used in all
cases, to emphasize the impact of the orbit altitude on the key generation rate. However,
owing to the di�erent satellite size and environmental disturbance, MEO satellites could in
general reach better performance in terms of beam quality.

We note here that Fig.(2.7) constitutes the main result of this work, since it states clearly
the feasibility of performing the GG02 CVQKD protocol in the conditions discussed in this
chapter, justifying the implementation of Satellite CVQKD.
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Figure 2.7: Asymptotic key rate vs satellite altitude. Secret key rate for channel subdivision
in 3, 10, and 100 groups and di�erent values of the �xed excess noise, ξ: (in S.N.U), 1% (red),
3% (blue), and 5%(green). The key rate in bits/s can be calculated by multiplying by the
transmission symbol rate.

2.4.2 Finite key

For completeness, it is worth modifying the statistics of the parameters for accounting pos-
sible �nite size e�ects due to the limited amount of symbols transmitted from Alice to Bob.
It is worth noting that in satellite communication the maximum amount of time for trans-
mission is given by the orbital parameters and can range from a few minutes to hours,
depending on the satellite altitude. As the satellite altitude increases, the amount of time
the satellite is in the tracking zone of the ground station also increases, and the channel
transmission variance decreases. Both of these e�ects make the �nite size e�ects to be re-
duced. The problem of �nite size e�ects is hence important when considering LEO orbits. If
also a highly dense subdivision of the channel transmission e�ciency is desired in order to
mitigate the fading e�ects, the number of symbols per group will decrease, increasing the
�nite size e�ects.

Following [57], it is possible to account for �nite size e�ects by considering a lower
bound on the transmission coe�cient T =

√
τ and an upper bound of the parameter σ2 =

1 + τξ:

Tmin '
√
τ + zεPE/2

√
1 + τξ

mVA
(2.26)

σ2
max ' 1 + τξ + zεPE/2

(1 + τξ)
√

2√
m

(2.27)
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Figure 2.8: Finite-size vs asymptotic key rate. Comparison of the key rate for LEO between
the asymptotic regime (solid line) and considering �nite-size e�ects (dashed line), which
have been calculated for a symbol rate of 1 Gsymbol/s. The �xed excess noise, ξ, is 1% (red),
3% (blue) 5% (green).

where m is the number of symbols used for parameter estimation and zεPE/2
is a parameter

related to the failing probability of the parameter estimation, denoted εPE. Here we consider
εPE = 10−10 which gives zεPE/2

=
√

2erf−1(1− εPE) = 6.5, where erf−1 is the inverse error
function.

The results for the given parameters are shown in Fig. (2.8) and highlight how the �nite-
size e�ects have a remarkable impact on higher orbits, e�ectively precluding CV-QKD op-
eration beyond 2000 km when the key distillation is performed on a single satellite pass.
For lower orbits, below 800 km, the e�ect is only limited to a drop in the key rate. The
�nite-size e�ects could be reduced by increasing the transmission rate and optimizing the
orbit subdivision, as well as accumulating multiple satellite passes.

2.5 Conclusions about the Feasibility study

To summarize the this Chapter, we presented a study analyzing the feasibility of CV-QKD
from a satellite to a ground station. First we characterized the transmission channel by
calculating the Probability Distribution of the Transmission E�ciency, taking into account
realistic values for pointing error, divergence angle, and considering favorable atmospheric
turbulence conditions. We then integrated the satellite orbit to obtain the PDTE of the
whole satellite pass. We calculated the secret key formula in the asymptotic case, taking
into account the �uctuating nature of the channel, and identi�ed an extra excess noise in
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this case that is related to the variance in the PDTE, i.e. in the strength of these �uctuations.
Using the PDTE and the key rate formula, we computed the secret key for di�erent satellite
altitudes. To cope with channel �uctuations, we proposed a method of data analysis based
on orbit subdivision and proved its e�ectiveness in improving secret key generation. This
subdivision makes the �nite size e�ects to become important in some cases, so we modi�ed
the secret rate formula for taking them into account for our analysis.

The simulations provide an estimate of the expected key rate of satellite-to-ground CV-
QKD and allows to constraint of the experimental parameters for its realization. The ob-
tained results show that coherent state modulation and detection is a viable option for quan-
tum communication with LEO satellites. The communication with higher orbits, achievable
in the asymptotic limit, can be a�ected by �nite-size e�ects if the transmission rate is low or
the orbit subdivision is not optimized. We note however that by merging multiple satellite
passes, or with the implementation of higher repetition rate systems, it would be possible
to extend the communication range beyond 2000 km.
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Chapter 3

Ultrashort Light Pulses in Linear Media

“ If you want to �nd the secrets of the Universe, think in terms of energy, frequency,
and vibration. ”

– Nikola Tesla
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This Chapter introduces concepts from classical optics that will serve as theoretical and
experimental tools for the experiment performed during this thesis. In particular, we will
develop a modal analysis of the electromagnetic �eld, that is, we will �nd solutions to
Maxwell’s equations, de�ned in a base of electromagnetic modes, in the case of a linear,
isotropic and homogeneous medium. The resulting spatial and temporal modes are able to
describe the ultrashort pulses of light that we aim to manipulate in the laboratory.

Then, we will apply the theoretical concepts to show the experimental characterization
of our laser source (that is a broadband pulsed source in the femtosecond regime, at telecom
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3.1. THE WAVE EQUATION

wavelengths). To �nish the Chapter, we will provide the experimental tools that we will
need for pulse manipulation, namely the pulse compressor and the pulse shaper, and their
characterization in the laboratory.

3.1 The Wave Equation
We de�ne a mode of the electromagnetic �eld as a spatio-temporal vector function u(r, t)
that is a normalized solution to Maxwell’s equations [58]. A set of modes {um(r, t)}, with
m an integer number, can form an orthogonal basis, so that any electric �eldE(r, t) can be
written as a linear superposition of the family modes with di�erent weights:

E(r, t) =
∑
m

Emum(r, t) (3.1)

with Em the electric �eld value associated with the m-th mode.
In this Chapter, we are concerned with the modal solutions to Maxwell’s equations in

the context of a linear, homogeneous and isotropic medium, while in the next Chapter, we
will consider the case of non-linear media.

We write Maxwell’s equations for a linear, isotropic and dielectric media, in the absence
of charges, with scalar electric permitivity ε and magnetic permeability µ0, and in terms of
electric and magnetic �elds, E(r, t) andH(r, t), as:

∇ ·E(r, t) = 0 ∇ ·H(r, t) = 0 (3.2)

∇×E(r, t) = −µ∂H(r, t)

∂t
∇×H = ε

∂E(r, t)

∂t
(3.3)

Using the vector identity and the �rst equation we have that∇×∇×E = ∇(∇·E)−∇2E =
−∇2E. Adding further the Maxwell equation for the curl of E, we arrive to the equation:

∇2E(r, t) +
1

c2

∂2E(r, t)

∂t2
= 0 (3.4)

which is known as the Wave Equation [59] (there is an identical equation for the magnetic
�eld H). Here, c is the speed of light in the medium, c = 1/

√
µ0ε. By use of Eq.(3.1), it is

clear that any modal component of the electric or magnetic �eld, that we denote here just
as um(r, t), also follows the wave equation:

∇2um(r, t) +
1

c2

∂2um(r, t)

∂t2
= 0 (3.5)

This equation is at the heart of the rest of this Chapter, since its solution in di�erent physi-
cal contexts and boundary conditions provides the framework to write the spatio-temporal
modes describing the ultrashort pulses of light that we will manipulate in the laboratory.
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CHAPTER 3. ULTRASHORT LIGHT PULSES IN LINEAR MEDIA

3.2 Spatial Modes: the Hermite-Gauss Beam

We �rst investigate the spatial solutions of the Wave equation. To this end, let’s write the
electric and magnetic �eld modes in terms of a complex amplitude in the form:

um(r, t) = Re[Um(r) exp(iωt)] (3.6)

that is to say, we are reducing for now the temporal part to a monochromatic plane wave
of frequency ω. This assumption will be relaxed later in this Chapter.

Substituting Eq.(3.6) into Eq.(3.5) it is easy to arrive to:

∇2Um(r) + k2Um(r) = 0 (3.7)

where k = ω/c = 2π/λ is the wavevector, (λ being the wavelength). Eq.3.7 is known as the
Helmholtz equation.

As we are going to consider waves propagating in a certain direction, we now write the
solutions to the Helmholtz equation in the form of a plane wave propagating along z and
modulated by a complex envelope Am(r):

Um(r) = Am(r) exp(−ikz) (3.8)

If we assume that the complex envelope, Am(r), varies slowly within a wavelength step, λ,
then it follows that:

∂Am(r)

∂z
<< kAm(r)⇒ ∂2Am(r)

∂z2
<< k2Am(r) (3.9)

which is known as the paraxial approximation. By substituing Eq.(3.8) into Eq.(3.7) and
neglecting the ∂2Am(r)/∂z2 by virtue of the paraxial approximation, one arrives to the
so-called paraxial Helmholtz equation:

∇2
⊥Am(r)− 2ik

∂Am(r)

∂z
= 0 (3.10)

where∇⊥ = ( ∂
∂x
, ∂
∂y
, 0) is a transversal di�erential operator. The solutions to this equation

are the so-called paraxial waves [60]. Paraxial waves are waves in which the wavefront
normals are paraxial rays, i.e. they follow the optic axis with small angle deviations.

It can be shown, [60], that the family of Hermite-Gauss functions, that will appear recur-
rently in this manuscript, is a complete set of solutions to the paraxial Helmholtz equation.
This means that any solution of Eq.(3.10), and hence any paraxial wave, can be expressed
as a linear superposition of di�erent Hermite-gauss functions. Since they obey Maxwell’s
equations, these functions constitute a set of spatial modes of the electromagnetic �eld. They
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3.2. SPATIAL MODES: THE HERMITE-GAUSS BEAM

Figure 3.1: Spatial intensity pro�le of some beams in pure Hermite-gauss modes. The num-
bers refer to the respectives mode orders (l, n).

can be explicitly written as:

Aln(x, y, z) =

(
W0

W (z)

)
HGl

( √
2x

W (z)

)
HGn

( √
2y

W (z)

)

exp

(
−ikx

2 + y2

2R(z)
+ i(l + n+ 1) tan−1(z/z0)

) (3.11)

where the modal subscripts l, n = 0, 1, 2..., that we denoted until here with a single subscript
m, are known as the mode orders, are used to label the family of Hermite-Gauss functions
HGl/n(x). Here, z0 is the Rayleigh length,W0 is the beam waist, and the functionsW (z) and
R(z) are the beam waist and the beam radius of curvature at position z. They are de�ned
as:

W (z) = W0

√
1 +

(
z

z0

)2

(3.12)

R(z) = z

[
1 +

(z0

z

)2
]

(3.13)

where the beam waist W0 is related to the Rayleigh length z0 via the wavelength, λ, as
z0 = πW 2

0 /λ.
The Hermite-Gauss functions are de�ned here as:

HGl(x) =
1√

π2l+1l!
Hl(x) exp

(
−x2/2

)
(3.14)

and Hl(x) is the l-th order Hermite polynomial.
The spatial intensity of the �eld can be obtained from |Uln(r)|2 = |Aln(r)|2 from Eq.(3.8).

An example of di�erent �eld intensities in the transversal plane to the propagation direction
z, for pure Hermite-gauss spatial modes, is depicted in Fig.(3.1).
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CHAPTER 3. ULTRASHORT LIGHT PULSES IN LINEAR MEDIA

The �rst Hermite-gauss mode, of order (l = 0,n = 0), is a two-dimensional gaussian
function with the same width in both transversal directions x and y. This solution is known
as the gaussian beam, and it is the most relevant in the context of this thesis, since it is
approximately the spatial mode provided by current cavity-based laser sources, including
ours, as we will characterize later in this Chapter.

The description of a gaussian beam propagating in a certain direction is therefore com-
plete with two parameters among (W0, λ, z0), from which the beam waist, the intensity
pro�le and the radius of curvature at any given point can be calculated. More explicitly, we
can plug Eq.(3.11) with l = n = 0 into Eq.(3.8) and obtain the explicit paraxial spatial mode
for the gaussian beam:

U0(x, y, z) =

(
W0

2πW (z)

)
e
−x2+y2

W2(z) e
−ik

(
x2+y2

2R(z)
+z+tan−1 z

z0

)
(3.15)

which is completely de�ned by z0 and λ = πW 2
0 /z0. The description of the gaussian beam

that we have just derived, together with the transformation of the gaussian beam waist and
Rayleigh length through a thin lens (that will be shown later in this Chapter), will serve
as our experimental tool for controlling the spatial properties of our light pulses in the
laboratory.

3.3 Temporal Modes: Ultrafast Optics

Until now we have only considered the spatial characteristics of the electromagnetic �eld,
assuming a temporal dependence of exp(iωt) in Eq.(3.6) that can be approximately accom-
plished by Continuous Wave (CW) laser sources. However, there are two main reasons why
the use of pulsed laser sources is needed in our context. First of all, our experiment will be
based on the nature of the temporal modes of the light �eld, rather than the spatial ones,
since we will encode the quantum information into those modes. The pulses of light guar-
antee optical power to be shared between di�erent wavelengths by virtue of the Fourier
transform, which implies a frequency broadband spectrum. Secondly, as we will derive in
the next Chapter, one of the constraints for producing considerable non-linear optical e�ects
is high �eld amplitudes. Compared to the CW case, in pulsed lasers the mean optical energy
is condensated into the short pulses, and hence the optical peak powers are high enough to
produce measurable non-linear e�ects both in bulk crystals and waveguide structures.

3.3.1 Decoupling of the spatial and temporal degrees of freedom

As we are now dealing with light pulses propagating in the z direction, following the same
arguments that were given in the paraxial approximation, Eq.(3.9), we write the more gen-
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3.3. TEMPORAL MODES: ULTRAFAST OPTICS

eral complex �eld amplitude as:

Um(r, t) = Am(r, t) exp(−ik0z) exp(iω0t) um(r, t) = Re[Um(r, t)] (3.16)

where now we have to specify the carrier frequency ω0 associated with the wavevector k0.
If we now consider that the complex envelope Am(r, t) is slowly varying in propagation
distance1, z and in time2, t, then it should be the case that:

∂2Am(r, t)

∂z2
<< k2

0Am(r, t)
∂2Am(r, t)

∂t2
<< ω2

0Am(r, t) (3.17)

which is known as the slowly varying envelope (SVE) approximation. By substituing Eq.(3.16)
into the Wave Equation, Eq.(3.5), and making the SVE approximation of Eq.(3.17), we arrive
to the Paraxial SVE Equation:

∇2
⊥Am(r, t)− i2k

(
∂Am(r, t)

∂z
+

1

c

∂Am(r, t)

∂t

)
= 0 (3.18)

Note that for a CW laser, the envelope would be time-independent and we would recover
the paraxial Helmholtz equation from the section before, Eq.(3.10).

It can be seen by direct substitution that Eq.(3.18) is satis�ed for any function of the
form f(t − z/c)A0(r), where f is an arbitrary function. Thus, A0(r) should itself satisfy
the paraxial Helmholtz equation. Therefore, in this approximation, any spatial paraxial
wave with envelope A0(r) can be modulated temporally without disturbation of its spatial
behavior. That is to say, under the SVE approximation, we can decouple the spatial and
temporal modes, where the spatial modes satisfy the paraxial Helmhotz equation, and hence
can be written as a superposition of Hermite-Gauss modes. This approximation allow us to
analyze the temporal and spatial modes independently.

In our particular case, the frequency bandwidth of our laser source will be around ∆λ ∼
60 nm, and the carrier frequency corresponds to a wavelength of λ0 = 1560 nm. On the
other hand, the typical beam diameter is of the order of W0 ∼ 2 mm. This means that
∆λ/λ0 ∼ 0.029 and W0/λ0 ∼ 0.0008 and the SVE approximation holds.

3.3.2 The gaussian pulse
Focusing hence on the temporal degree of freedom, we can therefore write the pulse wave-
form, with complex amplitude U(t), as a carrier wave of frequency ω0 modulated by a com-
plex amplitude A(t):

Um(t) = Am(t) exp(iω0t) = |Am(t)| exp(i(φ(t) + ω0t)) (3.19)
1The �eld envelope changes slowly in a wavelength distance λ.
2The �eld envelope changes slowly compared to one cycle of the carrier frequency ω0.
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CHAPTER 3. ULTRASHORT LIGHT PULSES IN LINEAR MEDIA

The pulse intensity is |Am(t)|2. In ultrafast optics, it is usually easier to work in frequency
space by means of the Fourier transform:

Um(ω) =

∫ ∞
−∞

Um(t) exp(−iωt)dt = |Vm(ω)| exp(iφ(ω)) (3.20)

where |Vm(ω)|2 is the spectral intensity, Vm(ω) is centered at ω0, and φ(ω) is the spectral
phase.

The typical pulses coming from lasers have a gaussian (or sometimes also sech2) in-
tensity pro�les, and a frequency-independent spectral phase φ(ω) = Constant. This pulse
mode is known as the gaussian pulse. The property of a �at spectral phase makes the pulse to
be transform-limited, which means that the product of pulse duration and frequency band-
width, the time-bandwidth product, is the minimum given by the properties of the Fourier
transform. Any gaussian pulse with a di�erent spectral phase would have a longer pulse
duration. We can calculate the time-bandwidth product by writting the gaussian pulse, de-
noted G(t), in the time domain3:

G(t) = G0 exp(−t2/τ 2) (3.21)

and noticing that the Fourier transforms gives another gaussian function of the formG(ω) ∝
exp(−τ 2ω2). The temporal Full Width Half Maximum (FWHM) of the pulse is ∆t =

√
2 log 2τ .

The time-bandwidth product for a transform-limited gaussian pulse is hence readily calcu-
lated to be:

∆t ·∆ω = 2π∆t∆ν = 2π · 0.44 (3.22)

The time-bandwidth product can also be written in terms of the wavelength using the rela-
tion ω = 2πc/λ:

∆λ ' λ2
0

c
∆ν (3.23)

which gives us a way of experimentally verifying how much our pulses are di�erent from
a transform-limited gaussian pulse.

At the left of Fig.(3.2) we depict the temporal form of the �eld for a transform-limited
gaussian pulse.

3.3.3 Temporal dispersion
Consider a transform-limited gaussian pulse traveling through a lossless and dispersive
medium. Since there are no losses, the pulse amplitude remains constant as the pulse prop-
agates in the z direction. However, at position z, the pulse would acquire a frequency-
dependent spectral phase of φ(ω) = k(ω)z according to the dispersion relation k(ω) in the

3Note that here we drop the indexm since we are considering the particular temporal mode of the gaussian
pulse.
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Figure 3.2: Evolution of a transform-limited gaussian pulse through a dispersive medium in
the case where the GVD is positive (above), and negative, (below).

medium. At this point in space, the pulse can thus be written as:

G(ω) = G0
τ

2
√
π

exp

(
−1

4
τ 2ω2

)
exp(ik(ω)z) (3.24)

which is the product of the gaussian pulse in the frequency domain with the medium re-
sponse exp(ik(ω)z).

We can expand the dispersion relation into a Taylor series in order to understand the
di�erent physical e�ects that play a role in the correction of the spectral phase through the
dispersive medium:

k(ω) = k(ω0) +
dk

dω

∣∣∣∣∣
ω0

(ω − ω0) +
1

2

d2k

dω2

∣∣∣∣∣
ω0

(ω − ω0)2 + ... (3.25)

By de�nition, dk/dω|ω0 ≡ (vg(ω0))−1 is the inverse of the group velocity at ω0, i.e. the
speed at which the electric �eld wavepacket travels in the propagation direction. On the
other hand, d2k/dω2|ω0 ≡ GVD(ω0) is known as the Group Velocity Dispersion (GVD) at ω0.
By direct substitution we arrive to:

k(ω) = k(ω0) +
1

vg(ω0)
(ω − ω0) +

GVD(ω0)

2
(ω − ω0)2 + ... (3.26)

The constant phase k(ω0)z is a global phase factor that does not change the pulse in any
form. Furthermore, by Fourier transform, the linear frequency dependence in the phase is
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CHAPTER 3. ULTRASHORT LIGHT PULSES IN LINEAR MEDIA

mapped to just a time delay for the pulse. This means that the linear term in the Taylor
expansion is correcting for the fact that the wavepacket does not travel at the speed of light
in vacuum, but with the group velocity vg(ω0), and therefore corresponds to a time delay.
The pulse form is therefore not altered by the two �rst terms of Eq.(3.26).

The last term of Eq.(3.26), however, adds a quadratic phase by means of the group ve-
locity dispersion, that makes the pulse to stretch in time, hence transforming the pulse into
a not transform-limited pulse. It can be seen as an e�ect by which the frequencies that
are far away from the carrier frequency travel faster than the ones near it, hence the pulse
gets modulated in frequency (also known as getting chirped), and the pulse duration in-
creases. This e�ect is known as temporal dispersion. Depending on the sign of GVD(ω0)
the pulse can get up-chirped (GVD(ω0) > 0, high frequencies are faster) or down-chirped
(GVD(ω0) < 0, low frequencies are faster). Fig.(3.2) shows the e�ect of temporal disper-
sion on a transform-limited pulse in the time domain, su�ering from both up-chirping and
down-chirping depending on the sign of the GVD.

Higher order e�ects can be important if one has either a very dispersive medium, where
d3k(ω)/dω3|ω0 is not negligible, or a very wide bandwidth ∆ω = ω − ω0. In the context
of this thesis, however, it will be su�cient to take into account up to the quadratic phase
when treating the temporal form of our pulses.

Note that even if the medium is dispersive, due to its linearity, the pulse spectral intensity
|G(ω)|2 does not change as the wave travels through it, as can be seen from Eq.(3.24).

We can deduce the changes in amplitude and temporal duration if we know the disper-
sion characteristics of the medium. Let’s consider an initial transform-limited pulse, with
pulse duration τ1 and amplitude G1. After some distance, z, we denote b the quadratic co-
e�cient associated with the quadratic spectral phase, b ≡ GVD(ω0)z. The pulse can then
be written as:

G(ω) = G1
τ1

2
√
π

exp

(
−1

4
(τ 2

1 + ib)ω2

)
(3.27)

which can also be cast as a chirped gaussian pulse with a new pulse duration τ2 and a new
amplitude G2. It is clear from Eq.(3.27) that cascading two physical materials with total
chirping coe�cients b1 and b2 has the same e�ect as considering a unique total chirp of
b = b1 +b2. This fact allows to think about correcting the chirp b1 of a pulse by exploiting an
optical e�ect that has a total chirp coe�cient of−b1, which is the basis of pulse compressors.

Since we can write the general complex envelope of a chirped gaussian pulse in time
and frequency as:

G(t) = G2 exp

(
−1

4
(1 + ia2)t2/τ 2

)
(3.28)

G(ω) = G2
τ2

2
√
π(1− ia2)

exp

(
−1

4

(
τ 2

2

1 + ia2

)
ω2

)
(3.29)

where here a2 ≡ b/τ 2
1 = GVD(ω0)z/τ 2

1 , then by equating the amplitudes and the exponents
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of Eq.(3.27) and Eq.(3.29) we obtain the pulse amplitude and duration after the transmission
through the dispersive medium:

τ2 = τ1

√
1 +

(
GVD(ω0)z

τ 2
1

)2

G2 =
G1√

1 + iGVD(ω0)z/τ1

(3.30)

These equations are important for experimentally controlling the quality of light pulses.
A similar calculation can be done if we assume that the initial pulse was already chirped
with a certain chirp coe�cient. In our case, we have considered that the chirp comes from
traveling a distance z though a dispersive medium, and hence b = GVD(ω0)z in Eqs.(3.30),
but in general, chirp could also come from di�erent optical e�ects. Eqs.(3.30) are always
correct if we include all those e�ects into the total chirp parameter b.

We can also derive the explicit dependence of the group velocity and the GVD on wave-
length and index of refraction, which are known quantitites in the laboratory, allowing the
access to indirect experimental measurements of the temporal dispersion. We start by writ-
ting the general relation between the wavevector, k(ω) and the index of refraction of the
material, n(ω):

k(ω) =
ω

c
n(ω) (3.31)

In ultrafast optics, it is usual to work with wavelengths instead of frequencies, that we can
interchange by ω = 2πc/λ. By computing the derivative of Eq.(3.31), and changing the
variable to λ, we obtain:

vg(λ) =
c(

n(λ)− λdn(λ)
dλ

) ≡ c

Ng(λ)
(3.32)

GVD(λ) =
λ3

2πc2

d2n(λ)

dλ2
(3.33)

where Ng(λ) is known as the group index of the material. Therefore, the dispersion proper-
ties of a material can be completely predicted by knowing the dependence of the refractive
index on wavelength, n(λ). There exist empirical equations �tting this function, known as
the Sellmeier Equations, that are available in databases for the majority of the materials.

3.4 Laser Characterization
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Figure 3.3: Left: Simpli�ed scheme of the laser system. Right: the Laser in our laboratory.

3.4.1 The Laser

The laser source in our experiments is a telecom �ber laser from MenloSystems [61]. The
laser can be divided into two main parts: a mode locking system and an optical ampli�cation
system.

The mode-locking system consists in a single-mode �ber forming a loop, which is equiv-
alent to a Fabry-Perot cavity in free space. In the �ber there is the laser medium, and a
semi-transparent dielectric that couples to an Erbium-doped �ber, that makes the light to
present phase shifts due to the phenomenom of self-modulation. This makes this small frac-
tion of the loop to become an arti�cial saturable absorber i.e. a material in which light is
not absorbed after a certain intensity threshold [62]. The presence of the saturable absorber
modulates the losses in the cavity, �xing a phase relation between the frequency compo-
nents that are resonator modes (hence the term mode-locking), and in turn enforcing the
generation of ultrashort pulses that circulates in the main resonator in a steady state. The
pulse repetition rate can be adjusted with the length of the �ber loop. The technique just
described is known as additive-pulse mode locking [63]. This part of the laser is called the
"oscillator".

After the pulses leave the oscillator via an output coupler, they pass to a low-noise optical
ampli�er, consisting in a loop mirror with an Erbium doped �ber ampli�er inside (EDFA),
[64]. Pulse ampli�cation is obtained thanks to a non-linear interference e�ect in the loop.

Fig.(3.3) shows a simpli�ed scheme of the laser and a photo of the actual laser from our
laboratory.

The output of our laser are free-space ultrashort pulses centered atλ = 1560 nm, linearly
polarized in the vertical direction with respect to the optical table (which we denote as s
polarization), and at a repetition rate of fr = 100 MHz. An auxiliary output electrical
signal synchronized with the pulses is also provided, which will be useful for the pulse
synchronization in the experiment.
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3.4. LASER CHARACTERIZATION

Figure 3.4: Left: Example of a Spatial intensity pro�le measured for our Fiber femtosecond
laser. Right: Beam waist measurement as a function of distance, giving the beam waist and
a M2-factor of around 1.1.

After our discussion about the modal analysis of the electromagnetic �eld, we are going
to mathematically model the output �eld of our laser source as a train of linearly polarized
temporal gaussian pulses, described by Eq.(3.21), propagating in a given space direction, and
with spatial amplitudes described by the the gaussian beam of Eq.(3.15).

3.4.2 Spatial characteristics of the Laser
The spatial characterization of our laser can be achieved using an infrared CCD camera and
measuring the beam pro�le in di�erent positions along the propagation direction.

With this aim, in order to �nd the beam waist W0, and hence the Rayleigh length z0, we
measured the beam pro�le at di�erent distances from the laser’s output. For every distance,
z, we measure the beam radius in the x and y directions (that are approximately equal in all
cases) and take the mean value. The data values of these measurements are �tted to Eq.(3.13)
giving a beam waist of W0 = 1.06± 0.05 mm, and hence z0 = 2.71± 0.13 m (see Fig.(3.4)).
Obviously, we can make this measurement more precise simply by taking more data points
at di�erent distances, however, these results were already in very good concordance with
the values provided by the manufacturer.

A parameter that quanti�es the quality of a beam, i.e. the deviation of the beam’s pro�le
from a gaussian form, is the so-called M2-factor, de�ned as:

M2 =
πWbθb
λ

(3.34)
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Figure 3.5: Transmission of a gaussian beam through a thin lens. Figure taken from [60].
All quantities are de�ned in the text.

where Wb is the measured beam waist and θb is the measured divergence angle, which for a
gaussian beam is de�ned as θ0 = πλ

W0
. It is clear that with that de�nition,M2 = 1 for a perfect

gaussian beam. A good quality beam is usually considered from M2 < 1.3. We performed
several intensity pro�le measurements using a CCD camera (optimized for λ = 1550 nm),
in order to obtain the beam waist W0 and the divergence angle θ0 of our laser, and hence
the M2 factor, which turned out to be M2 = 1.10± 0.05, see Fig.(3.4).

It is important to be able to control the beam spatial characteristics for any experiment
in optics. With regard to the spatial characteristics, the use of thin lenses permits to change
the beam waist and the Rayleigh length without changing the gaussian form of the beam
pro�le.

The equations of the beam transformation after passing through a lens system has been
extensively studied (see for example [60]). Here we make a summary of the main results for
a thin lens of focal length f , depicted in Fig.(3.5). The transformation of the beam follows:

New beam waist W ′
0 = MW0 (3.35)

Waist location (z′ − f) = M2(z − f) (3.36)
New Rayleigh length z′0 = M2z0 (3.37)

Magnification M =

∣∣∣∣ f

z − f

∣∣∣∣ (1 +
z2

0

(z − f)2

)−1/2

(3.38)

Fig.(3.5) shows the beam’s parameters before and after the thin lens.
With the lens equations and the characterization of our laser we have the basic experi-

mental tools for manipulating the spatial characteristics of the beam in our experiment.

3.4.3 Temporal characteristics of the Laser
The time scale for ultrashort pulses is in the range of femtoseconds, where 1 fs = 10−15 s.
This time scale is too small compared to the time response of any commercial photodetector.
Hence, the pulses are typically too fast to be directly measured with a direct intensity mea-
surement, which would nevertheless provide the average power Pavg of the pulses. Since
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we know the repetition rate, a direct power measurement allows to calculate the energy per
pulse. For instance, our laser has an average power of Pavg ' 500 mW and a repetition rate
of f = 100 MHz, thus the corresponding energy per pulse is Epulse ' 5 nJ.

A measurement of the time duration of the pulses can be done using an optical autocor-
relator [65]. An autocorrelator is an interferometric device where two copies of the pulses
interfere in a non-linear crystal. A variable time delay is set in one arm of the interferom-
eter. Autocorrelators commonly measure the intensity of the second harmonic generation
in the non-linear crystal as a function of the time delay, T . Our autocorrelator measures
instead two-photon absorption intensities in the non-linear crystal, but the basic concept
remains the same. The output intensity signal for a given time delay is the autocorrelation
signal:

Aut(T ) =

∫
|E(t)|2|E(t+ T )|2dt (3.39)

where the integration limit is the temporal range encapsulating a single pulse. The tempo-
ral waveform of the pulse determines the form of the autocorrelation signal, and the corre-
sponding temporal width is related to the width of the autocorrelation signal. The typical
pulse waveforms are gaussian, sech2, and lorentzian.

An important remark is that the temporal dispersion of the optical components should
be characterized in order to precisely measure the pulse duration at any given point, since
this will cause the pulse to expand temporally, which could lead to incorrect conclusions.
This can nevertheless be done by consecutive measurements of the autocorrelation signals
in which optical components are added to or subtracted from the optical path. Application
of Eq.(3.30) provides the total chirp coe�cient, which is the sum of the chirp coe�cients
of every component4. Another way of working is to obtain beforehand the GVD value per
unit length of the material from which the optical component is made of, for example from
a database like [66], and then compute the chirp coe�cient as the product of that value with
the thickness of the material. We used ultrafast mirrors and beamsplitters throughout the
majority of the experiment, for which the GVD is engineered so that almost no temporal
dispersion is present in the pulses.

The autocorrelation signal coming directly from the laser is depicted in Fig.(3.6) (a),
giving a pulse envelope of sech2 (although a gaussian pulse also appropriately �ts the data)
with a pulse duration of τFWHM = 57± 1 fs. The data for the calculation of the GVD of our
optical materials also matches very well the GVD per unit length given in the database used
in the thesis [66].

The knowledge of the pulse envelope makes it possible to compute the peak power of the
pulses, which for a sech2 (resp. gaussian) pulse is Ppeak ' 0.88Epulse/τFWHM (resp. Ppeak '
0.94Ep/τFWHM). Adding the spatial characterization presented above, we can calculate the

4Technically, we should consider the dispersion of the optical components together with the air dispersion.
However, at our wavelength, the GVD of air is around 0.03 fs2/mm [66], which is several orders of magnitude
less than the typical GVD in dispersive materials, and can therefore be ignored.
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(a) (b)

Figure 3.6: (a) Autocorrelation signal and (b) spectrum of the ultrashort pulses at the output
of the laser.

power density of our laser, which is a relevant parameter for both the non-linear e�ects
that will take place in the experiment, and the components damage threshold that we can
handle in the laboratory.

To see if the pulses are approximately transform-limited at the output of the laser, we
also measured the spectrum of the signal, shown in Fig.(3.6) (b). We observe a large band-
width of wavelengths in the spectrum, although the gaussian waveform is not well observed.
We �t this data to a gaussian function anyway (with a R2 �t value of 88%) for having an
estimation of the frequency bandwidth, which gives ∆λ = 75± 1 nm. However, this is an
overestimation in the gaussian �t due to the two spectral "wings" appearing at the end of the
spectrum. For this reason, we decided to take as another estimator the spectrum’s FWHM
ignoring those wings. In this case this gives ∆λ ' 66.0 nm, which seems more reasonable
than the �t, given our spectral data. With this data the time-bandwidth product is estimated
to be τFWHM∆ω = 0.47, that should be compared with the theoretical value for sech2 pulses
(0.315). Given the form of the spectrum, a bit away from a gaussian, we considered this re-
sult close enough for our purposes. From another point of view, the autocorrelator value of
the pulse duration, (57 fs) gives a transform-limited bandwidth of around 45 nm for sech2

pulse-type, which is reasonable from the measured spectrum, Fig.(3.6) (b).
Table 3.1 presents a summary of the results just discussed that characterized the ultra-

short pulses of our laser.
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Laser Parameter Value
Central Wavelength 1560± 2 nm

Polarization Linear, s
Average Power 500± 10 mW
Repetition Rate 100 MHz
Pulse Duration 57± 1 fs
Pulse Envelope sech2

Spectral Width FWHM 66± 5 nm
Pulse energy 5.0± 0.1 nJ
Peak Power 77.2± 1.5 kW
M2-factor 1.10± 0.05

Beam waist 1.06± 0.05 mm
Peak Power Density 2.2± 0.1 MW/cm2

Table 3.1: Experimental summary of the Laser characterization.

3.5 Tools for Pulse Manipulation

If we are to produce e�cient non-linear optical e�ects in our experiment, it is important to
being able to maintain an approximately transform-limited pulse through the whole optical
path. As we have seen, the presence of temporal chirp increases the temporal width of
the pulses and decreases the �eld peak amplitude, deteriorating the pulse quality. A lower
�eld amplitude would decrease the e�ective non-linear interaction. Furthermore, and most
importantly, chirped pulses could generate spatio-temporal coupling e�ects in non-linear
processes, reducing the e�ective interaction strength and complicating considerably the
output states of light. The �rst pulse manipulation tool that we will present, the pulse
compressor, will take care of these issues.

Besides that, in our experiment, that will be detailed in the following Chapters, we will
need to have some reference pulses, that will act as a Local Oscillator (LO) for homodyne
measurements. We will need to shape the temporal spectrum of the LO pulses, for which
another pulse manipulation tool, namely the pulse shaper, will come in handy.

3.5.1 The Pulse Compressor

As we have seen, if a transform limited pulse is transmitted through two optical elements
with chirp coe�cients b1 and b2, the total chirp coe�cient is simply b = b1 + b2. If we then
manage to construct an optical circuit in which the sign of the chirp coe�cient is opposite
to the total initial chirp, we would reduce the total dispersion experienced by the pulse
(b = b1 + b2 < b1) hence decreasing the pulse duration. Ideally, we would want to have
b1 = −b2, so the total chirp is zero and the pulse returns to the transform-limited case,
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Figure 3.7: Scheme of the pulse compressors built in the lab exploiting angular dispersion
in prisms.

where the duration is minimum. This optical circuit is hence called a pulse compressor.
There are several ways of constructing pulse compressors, mainly distinguished by the

physical mechanism in which a desired chirp coe�cient can be obtained, i.e. by exploiting a
wavelength-dependent physical quantity or e�ect. Examples of wavelength-dependent phe-
nomena are material dispersion, angular dispersion, non-linear dispersion or polarization
dispersion, among others.

For our experiment, we constructed pulse compressors exploiting angular dispersion in
prisms. A scheme of the pulse compressor is depicted in Fig.(3.7), and a photo of an actual
pulse compressor in the lab is shown in Fig.(3.8). The �rst prism disperses the light with a
wavelength-dependent angle θ(λ), measured with respect to the angle made by the central
wavelength, λ0, so that θ(λ0) = 0. The second prism collimates the beam, and the mirror
makes the beam to pass back through both prisms, undoing the operations, such that the
beams entering and leaving the compressor are spatially identical.

To minimize the losses, the apex angle of the prisms is near the Brewster angle for the
given wavelength and the beam should enter both prisms at the Brewster angle.

It can be geometrically shown that the wavelength-dependent path after the �rst prism
is:

l(λ) = L cos(θ(λ)) (3.40)

where L is the distance between the apex of both prisms. Therefore, the phase shift encoun-
tered by the wavelength λ is:

ψ(λ) =
2π

λ
l(λ) =

2πL

λ
cos(θ(λ)) (3.41)

By expanding ψ(λ) in a Taylor series we obtain the linear coe�cient, associated with
a time delay, and the quadratic coe�cient, associated with a temporal chirp. The linear
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Figure 3.8: Photo of a prism Pulse Compressor mounted in the laboratory.
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coe�cient trivially corresponds to a time delay of L/c, and the second coe�cient reads:

dψ(λ)

dλ

∣∣∣∣∣
λ0

=
λ3

0

2πc2

(
d2l(λ)

dλ2

∣∣∣∣∣
λ0

)
(3.42)

Following the approach of [67], the above second derivative can be written as:

d2ψ

dλ2

∣∣∣∣∣
λ0

=
λ3

0

2πc2

4L

d2n(λ)

dλ2

∣∣∣∣∣
λ0

+

(
2n(λ0)− 1

n3(λ0)

)(
dn

dλ

∣∣∣∣∣
λ0

)2
 sin β

− 2

(
dn

dλ

∣∣∣∣∣
λ0

)
cos β

)
+ 16

(
d2n(λ)

dλ2

∣∣∣∣∣
λ0

)2

Wb

 (3.43)

where β ' −2dn
dλ

∆λ and Wb is the beam waist at the input prism assuming collimated
beams. We have measured ∆λ ' 66 nm and dn/dλ(1560 nm) ∼ −0.01 µm−1 for the
two prism materials we are considering, which are SF10 and fused silica. This data gives
a dispersion angle of β ∼ (10−10)o, that allows us to approximate sin β << cos β and
cos β ' 1. This approximation simpli�es considerably the above expression:

d2ψ

dλ2

∣∣∣∣∣
λ0

=
λ3

0

2πc2

−8L

(
dn

dλ

∣∣∣∣∣
λ0

)
+ 16

(
d2n(λ)

dλ2

∣∣∣∣∣
λ0

)2

Wb

 (3.44)

The �rst term of this equation is the actual negative chirp added by angular dispersion in the
pulse compressor, while the second term takes into account the material dispersion within
the prisms. In normal conditions, the �rst term dominates over the second. Since this term
is always negative, pulse compressors built in this way can only compress initial up-chirped
pulses, i.e. pulses with a positive initial chirp coe�cient.

Furthermore, the chirp added by the compressor is adjustable via the proportionality
dependence of Eq.(3.44) with the distance between the prisms, L.

We built and tested prisms compressors made both in fused silica and SF10. In order to
obtain the experimental amount of compression, we measured the pulse duration as a func-
tion of the distance between the two prisms. Fig.(3.9) (a) shows the experimental results for
fused silica. We observed a minimum of pulse duration corresponding to the point in which
the compressor compensates all the initial chirp from the pulse. From this measurement we
can infer the chirp coe�cient added by the compressor using Eq.(3.30), and compare them
to the theoretical values obtained from Eq.(3.44). The result is shown in Fig.(3.9) (b) again
for fused silica. A compression of 85 ± 7 fs2/cm is obtained from this experimental data,
in agreement with the theoretical value. Similar results are obtained with SF10 prisms, the
compression being 143± 8 fs2/cm at λ0 = 1560 nm.
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(a) (b)

Figure 3.9: (a) Pulse duration as a function of the distance between the fused silica prisms.
Central wavelength: 1560 nm. (b) Chirp coe�cient added by the compressor as a function
of the distance between the fused silica prisms and comparison with the theoretical model
described in the manuscript.

This characterization permits us to add the pulse compressor as the �rst pulse manipu-
lation tool in our experiment, that will constitute one the main blocks in which we divided
the main experiment, to be presented in Chapter 7.

3.5.2 The Pulse Shaper

The pulse shaper, as the name suggests, allows for the manipulation of the amplitude and
phase of the di�erent wavelengths present in a given light �eld. It was originally introduced
for picosecond lasers, [68], and later extended to femtosecond lasers [69].

The pulse shaping technique we use in this work is often referred to as Fourier Optical
Processing [70]. The working principle is the following: using a di�racting element, we spa-
tially separate the di�erent wavelengths composing our beam and collimate them using an
appropriate lens. The beam is sent to the screen of a Spatial Light Modulator (SLM), where
each pixel of the screen (corresponding to a small interval of wavelengths) can be addressed
independently. The phase of each pixel is modi�ed and the resulting beam is recombined
with another di�racting element. This modulation in the phase can also change the am-
plitude of each pixel with a trick that will be detailed below. The result is a pulse that has
been spectrally (and hence also temporally) shaped. The general principle is schematized in
Fig.(3.10). For us, the di�raction elements are di�raction gratings, and we will use a single
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Figure 3.10: General scheme of a Pulse Shaper. A Spatial Light Modulator changes indepen-
dently the amplitude and phase of the frequency components that arrive spatially di�racted
from a di�raction element. After the SLM, the beam is recombined with the �nal lens and
grating. Figure taken from [71].

cylindrical mirror to collimate the input beam and recombine the shaped beam. Fig. (3.11)
shows a photo of the actual shaper mounted in our experiment.

3.5.3 Pulse shaper characterization
The di�raction grating is an optical element that presents a �ne surface structure with a
characteristic size of the same order of magnitude than the wavelength, known as the grating
pitch, d. Constructive interference after hitting the structure is achieved when the phase
di�erence between the incident rays is a multiple of the wavelength, λ:

sin θi(λ) + sin θd(λ) = m
λ

d
m ∈ Z (3.45)

where θi is the incident angle and θd is the di�racted angle.
The di�erent values of m for which we have constructive interference are known as

the di�raction orders. The zero-th order m = 0 corresponds to the standard re�ection law.
The particular shape of the grating pattern will determine the repartition of light between
the various di�raction orders. Our particular grating is optimised to di�ract maximally in
a single di�raction order, that corresponds to m = −1; this type of gratings are called
blazed grating. Moreover, it is also designed to be more e�cient when the di�raction angle
coincides with the incidence angle, this is called the Littrow con�guration. In our experiment
we use a d = 800 gr/mm holographic grating model PC 0800 50x50x10 NIR from Spectrogon
[72]. The order -1 di�racted angle is readily found from Eq.(3.45):

θd(θi, λ) = − arcsin

(
λ

d
+ sin θi

)
(3.46)
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Figure 3.11: Pulse Shaper photo from the experimental lab. CM: Cylindrical Mirror, SLM:
Spatial Light Modulator.
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On the other hand, our Spatial Light Modulator was a liquid crystal SLM (LCOS-SLM
model X15213-08 from Hamamatsu [73]), which is a 2D array of liquid crystals that can be
individually addressed with an electrical signal. The liquid crystals act as tunable wave-
plates that change the phase of light re�ected by the SLM surface without any intensity
change. The SLM has 1272 × 1024 square pixels of size δxpx = 12.5 µm.

In principle, therefore, the SLM a�ects the phase but not the amplitude of the incoming
beam. However, in our experiment we used a trick to also be able to a�ect the amplitude
of our pixels. Since light is di�racted horizontally by our grating, using a vertical sawtooth
structure in the SLM, the light is only di�racted in orders 0 and 1 from the SLM. If we �x
the grating pitch and make sure we �lter the �rst order on the output, we can then tune the
amplitude of each spectral component by modulating the magnitude of the vertical grating
pattern. Additionally, the relative phase between horizontally adjacent components can be
tuned by shifting vertically the grating pattern (see [74, 75] for more details).

The e�ects of geometrical and optical limits in the resolution of the pulse shaper can be
found in [71]. Here, we limit ourselves to the application of those results in our particular
case. The quality of a pulse shaper is often expressed in terms of its complexity, that is the
maximum number of features one can imprint on a given spectrum. The complexity due to
the geometry of our setup is given by:

ηpx =
∆λ

δλpx

=
f∆λ

dδxpx cos(θd(λ0))
(3.47)

where f is the focal length of the cylindrical mirror, ∆λ = 66 nm is the spectral width of
our pulses and δxpx = 12.5 µm is the pixel size. We used a cylindrical mirror with focal
length f = 200 mm, θd(1560 nm) = 38.6 o, and a groove density of 1/d = 800 gr/mm. The
geometrical complexity is then computed to be ηpx = 1081.

Eq.(3.47) considers the beam to be formed by polychromatic planes waves, which would
be vertically focused to a single point in the SLM. In practice, this is not true, and we would
have a �nite vertical spot in the SLM, which limits the complexity of the pulse shaper. The
spot size after the grating, w′, can be calculated with:

w′ =
cos θd(λ0)

cos θi(λ0)
wi (3.48)

where ωi is the input waist to the grating. Given the difraction of the gaussian beam, derived
in section 3.2, during a distance f , we �nd that the corrected pixel size, δxopt, is:

δxopt = 2
λ0f

πw′
= 2

cos θi(λ0)

cos θd(λ0)

λ0f

πwi
(3.49)

which gives a wavelength resolution of:

δλopt = 2
dλ0 cos θi(λ0)

πwi
(3.50)
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and a corresponding complexity of:

ηopt =
πwi∆λ

2d cos θi(λ0)λ0

(3.51)

In our experiment, λ0 = 1560 nm, wi = 2 mm, 1/d = 800 gr/mm and θi(1560 nm) = 38.6 o,
giving a complexity of η = 136.

The value of the real complexity is the smallest value between the pixel and the optical
complexities, ηpx and ηopt. In our con�guration, we are limited by the complexity due to
the optical features of our beam and optical elements. In any case, we are able to shape our
pulses with 136 "features", which is more than enough for the purpose of the experiment.

It can also be shown [71] that a misalignment in the distance between the cylindrical
mirror and the SLM produces both temporal and horizontal chirp to the beam. In the ideal
case, when the distance is exactly f , the total dispersion is compensated due to the 4f con-
�guration of the setup (free dispersion line). If the distance between the cylindrical mirror
and the SLM is instead f +α, then there is an e�ective chirp coe�cient added to the optical
circuit of:

bPS =
αλ3

0

2πd2c2 cos2(θd(λ0))
(3.52)

Giving an order of magnitude, if we have a misalignment of the cylindrical mirror - SLM
distance by α = 3 mm, then the corresponding chirp coe�cient for our experimental values
would be bPS = 21104 fs2, which is pretty high at the femtosecond scale.

For this reason, we measured the duration of our pulses with the autocorrelator at the
ouput of the pulse shaper, and moved the cylindrical mirror with a precision translation
stage, so that we minimize the pulse duration and hence the temporal dispersion due to
the misalignment. We can nevertheless alternatively correct some of the temporal chirp by
using a correction mask in the SLM interface.

On the other hand, an incorrect distance between the cylindrical mirror and the SLM
would make the beam to get away from collimation, and therefore create an angle between
the di�erent frequency components after hitting the SLM, that would deteriorate the recom-
bination in the grating, and therefore di�erent parts of the beam would present di�erent
spectrum5. This e�ect is known as spatial chirp. An experimental feature of spatial chirp is
seen in the lab as ellipticity in the beam pro�le. We controlled the spatial chirp by measuring
the spatial pro�le with the CCD camera after the pulse shaper and adjusting the position of
the SLM with its corresponding precision screws.

3.5.4 Hermite-gauss frequency modes
In this thesis, we were interested in shaping the LO temporal pulses into the family of
time/frequency Hermite-Gauss modes. After the pulse shaping alignment, we applied the

5Typically, the spectrum at the extremes of the beam is narrower than in the center.
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Figure 3.12: Spectrometer data from the �rst 4 Hermite-Gauss masks after the pulse shaper
and corresponding �ts to the Hermite-Gauss functions.

corresponding mask to the SLM through our prepared interface and measured the resulting
spectrum with a spectrometer. The result is shown in Fig.(3.12), together with the Hermite-
gauss �ts.

As we can see, the measured spectra are in excellent agreement with the corresponding
�ts to the Hermite-Gauss modes as de�ned in Eq.(3.14). Even though we showed here the
�rst 4 modes, our interface can reach up to the last order Hermite-Gauss mode compatible
with the pulse shaper complexity.
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Chapter 4

Non-Linear Optics in Waveguides

“ It does not say in the Bible that all laws of nature are expressible linearly! ”

– Enrico Fermi
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After introducing the theory on ultrashort pulses of light and the experimental tools
characterized in the lab for their manipulation, we are ready to present the theoretical tools
needed for the non-linear components of the experiment. In this Chapter, we present the
basic notions in classical non-linear optics needed for the understanding of the quantum
mechanical description, that will be presented in Chapter 5. We will consider the case of
waveguide structures, and will perform simulations of the characteristic spatial modes of
our waveguides given our experimental parameters. Finally, we will show the actual spatial
mode characterization of our waveguides in the laboratory and compare with the numerical
simulations.
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4.1 Non Linear Optics

When an external electric �eld is applied to a dielectric medium, the atoms composing the
medium get polarized, and, to a �rst approximation, electric dipoles are created. These
dipoles oscillate in response to the electric �eld and hence emit electromagnetic radiation
themselves. The electromagnetic radiation emitted by the material can interfere with the
original external electric �eld. If the external �eld amplitude or the susceptibility of the
material is small, the oscillations are harmonic and the response of the medium is linear.
We then recover the e�ects of refraction, di�raction or dispersion, described by the Wave
Equation, Eq.(3.5). However, when the material’s susceptibility and/or the �eld amplitudes
are high enough, as it is the case in waveguides due to the strong light con�nement, the �eld
can drive the dipoles into the anharmonic regime, where non linear optical e�ects emerge.

4.1.1 Non-linear Polarization

If we denote byE the external electric �eld, the dipole moment per unit volume,P , induced
in the medium is:

P = ε0χE (4.1)

where ε0 is the permittivity of free space and χ is the electric susceptibility. In order to
understand the whole variety of non-linear e�ects that can arise it is advisable to expand
Eq.(4.1) into a power series of the electric �eld:

P = ε0
(
χ(1)E + χ(2)EE + χ(3)EEE + ...

)
≡ PL + PNL (4.2)

where χ(n) is the n-th order non-linear susceptibility, which is a n+1-rank tensor. We have
also de�ned the linear response, PL, that corresponds to the �rst term in the power series,
and the non-linear response,PNL, that comprises all the other terms. It is interesting to give
an order of magnitude estimation of the susceptibilities just described. For common dielec-
tric materials, χ(1) is of the order of unity1, while the second and third order susceptibilities
are2 [76]:

χ(2) ∼ 10−12 m/V (4.3)
χ(3) ∼ 10−24 m2/V2 (4.4)

(4.5)

1The index of refraction of a non-magnetic linear material is n =
√
χ(1) + 1, and n is typically between 1

and 3.
2We took the case of a speci�c non-linear material, namely KTP, although the order of magnitude is similar

for the materials typically used in non-linear optics experiments.
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In this manuscript, our �eld amplitude inside the waveguides is calculated to be3 of the order
of |E| ∼ 2.5 · 105 V/m. Hence we can compare the order of magnitude of the second and
third order terms in the power series, Eq.(4.2):

χ(2)|E|2

χ(3)|E|3
= 4 · 106 (4.7)

which means that the second order term is already 6 orders of magnitude bigger than the
third term. This estimation justi�es the truncation of the power series of the polarization
taking into account only the �rst two terms. Therefore, in our case, we expect that the
non-linear e�ects are caused by the second order induced polarization:

PL = ε0χ
(1)E (4.8)

PNL = ε0χ
(2)EE (4.9)

Due to the presence of the new non-linear term in Maxwell’s Equations, the Wave Equation
Eq.(3.5) is modi�ed to4:

∇2E(r, t) +
1

c2

∂2E(r, t)

∂t2
=

1

ε0c2

∂2PNL(r, t)

∂t2
(4.10)

For each component of the �elds, these are equations of a harmonic oscillator driven by
the non-linear term PNL. The non-linear term can therefore drive the oscillator into the
anharmonic regime, creating therefore new frequencies in the system. We thus see that
non-linear e�ects in a dielectric material can give rise to frequency conversion processes.

4.1.2 Three-wave mixing

Since the non-linear polarization depends quadratically on the external �eld, Eq.(4.9), the
generation of new radiation at second order requires the coupling of three electric �elds
(two from the non-linear polarization and the external �eld). For this reason, the processes
associated with χ(2) are called three-wave mixing processes.

3The calculation comes from intensity measurements of our pulses before the non-linear material. Con-
sidering a gaussian pulse, the electric �eld amplitude can be estimated with:

|E| =
√

P

πd2cε0n
(4.6)

where n ∼ 2 is the index of refraction of the non-linear material (KTP), P is the mean power, and d ∼ 3µm
is the beam size inside the waveguide. With this data we obtain |E| ∼ 2.5 · 105 V/m.

4One can arrive to the new wave equation by rewriting Maxwell’s equations with the displacement oper-
atorD instead of E, and do the same trick that we did in Chapter 3.
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To understand the possible three-wave mixing e�ects, it is instructive to consider �rst a
monochromatic plane wave travelling along the x direction as the external �eld applied to
the material:

E(x, t) = E0 exp(i(ω0t− k(ω0)x)) + c.c. (4.11)
where ω0 is the wave frequency, k(ω0) is its wavevector, and c.c. stands for complex conju-
gate from now on. The non-linear polarization can be written using Eq.(4.9):

PNL = ε0χ
(2)E(x, t)2 = 2ε0χ

(2)|E0|2 + ε0χ
(2)(E2

0 exp(i(2ω0 − 2k(ω0)x) + c.c.) (4.12)

The �rst term is responsible for the process of optical recti�cation, that will not be considered
in this work, while the second term oscillates at double the original frequency of the external
�eld. This process is known as Second Harmonic Generation (SHG), since the �eld oscillating
at double the frequency is known as the second harmonic of the �eld. We can also see that
the phase of the generated second harmonic �eld has a space dependency of 2k(ω0)x. Since
the new wave oscillates at 2ω0, the phase of the SHG waves acquired during propagation is
k(2ω0)x. This generally leads to the cancellation of the Second Harmonic �eld generated at
di�erent positions along the medium due to destructive interference, unless the generated
and propagated waves ful�ll the condition 2k(ω0) = k(2ω0). This condition is known as the
phasematching condition, where the SHG builds up along the medium in a coherent fashion.

More generally, consider now the case in which the applied electric �eld is the sum of
two monochromatic waves:

E(x, t) = E1 exp(i(ω1t− k(ω1)x)) + E2 exp(i(ω2t− k(ω2)x)) + c.c. (4.13)

The non-linear polarization is then:

PNL = ε0χ
(2)E(x, t)2 = ε0χ

(2)(E2
1 exp(i(2ω1 − 2k(ω1)x) + E2

2 exp(i(2ω2 − 2k(ω2)x)

+ 2E1E2 exp(i(ω1 + ω2)− (k(ω1) + k(ω2))x)+

2E1E
∗
2 exp(i(ω1 − ω2)− (k(ω1)− k(ω2))x)) + c.c. (4.14)

Now the two Second Harmonic �elds of the original planes waves can be generated, as
well as two extra �elds at the sum frequency ω1 + ω2 and di�erence frequency ω1 − ω2.
These two extra processes are consequently known as Sum Frequency Generation (SFG) and
Di�erence Frequency Generation (DFG). Again, for one of these processes to coherently build-
up in the medium, a phasematching condition is needed. The phasematching for SFG (resp.
DFG) is k(ω1 + ω2) = k(ω1) + k(ω2) (resp. k(ω1 − ω2) = k(ω1)− k(ω2)).

In the general case, all the frequency components of an incident electric �eld can produce
the generation of radiation �elds at the respective second harmonics, as well as sum and
di�erences of pairs of frequencies of the �eld with the condition that the corresponding
phasematching condition of the process is ful�lled.

An extensive analysis of the production of the classical SHG, SFG and DFG �elds can
be performed by studying the amplitudes of the �elds with the non-linear Wave Equation,
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Eq.(4.10). This is done for example in [77, 78]. As a comment, this approach is useful for
�nding the quantum counterparts, which are the Heisenberg equations of motion for the
quantum operators. In the next Chapter, however, we will consider the hamiltonian ap-
proach for going from the classical to the quantum description of the processes.

4.1.3 Quasi-phasematching

In general, the choice of the material under consideration dictates the phasematching condi-
tions for tuples of frequencies following the dispersion relation k(ω) = n(ω)ω/c, allowing
or not for a speci�c three-wave mixing process.

A possible solution to tackle this problem is to use the so-called birefringence phase-
matching [79], in which the external and generated �elds may not follow the same optical
axis. It basically consists in exploiting the dependence of the index of refraction in the in-
cident electric �eld angle. However, this technique is not very adequate for waveguides,
where the coupled external �eld and the generated �elds are naturally collinear along the
waveguide direction.

Another technique that allows for perfect phasematching at an arbitrary tuple of fre-
quencies is the quasi-phasematching technique (QPM). In this technique, a sign modulation
of the second order susceptibility is achieved along the crystal with a certain spatial period,
Λ, known as the poling period. This modulation can be achieved by applying a high voltage
to those regions of the waveguide (or bulk crystal) where the non linearity should be �ipped
[80]. The modulation makes the uniform non linear coe�cient to become:

χ(2) −→ χ(2)

∞∑
m=−∞

Gm exp(imkQPMx) (4.15)

where kQPM = 2π/Λ is known as the grating vector, m is the quasi-phasematching order
and Gm are the Fourier coe�cients that dictate the strength of a given order.

The modulation of Eq.(4.15) adds an extra term to the wavevector mismatch equations.
For example, for SHG:

∆kSHG = k(2ω0)− 2k(ω0) + kQPM (4.16)

hence, by tuning the poling period Λ, one can achieve perfect phasematching (∆kSHG = 0)
for any frequency ω0. In practice, the value of Λ providing phasematching for the di�erent
three-wave mixing processes is in the order of tens of micrometers (see for example [81]).

Additionally, for obtaining experimental �ne tuning of the phasematching, one can use
the temperature dependence of the index of refraction, and hence of the wavevectors. This
is done by introducing the non-linear material into an oven with a temperature controller.

As we will see, the waveguide allows propagation into a discrete set of spatial modes,
each one with a characteristic propagation constant, βn(ω), n = 0, 1, 2..., that are the coun-
terparts of the wavevectors for plane waves. Therefore, both the dispersion relation and the
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phasematching condition are in general mode-dependent. All the non-linear materials used
in this work rely on QPM and were designed to work with the fundamental spatial mode
for all �elds generated in the medium.

4.1.4 Anisotropic media

Once we know the non-linear material that will be used, a cartesian coordinate system is
set to de�ne the propagation direction (along the waveguide), and the transversal direc-
tions (cross section of the waveguide). This is important, since the non-linear materials are
anisotropic, and the coupling of di�erent non-linear e�ects are related to the susceptibility
tensor χ(2), which depends on the combination of cartesian coordinates under considera-
tion. In Appendix B we brie�y describe the symmetries in the susceptibility tensor that
de�ne the cartesian coordinate used along this manuscript.

As we have seen, the intrinsic anisotropic behavior of the material is encoded into the
permittivity tensor, ε, i.e. into the di�erent indices of refraction along the di�erent spatial
directions. Since there always exists a coordinate system where the permittivity tensor is
diagonal, we can associate the elements of the diagonal tensor to the permittivity value seen
by light polarized in that direction. There will therefore be a maximum of three di�erent in-
dices of refraction for a given non-linear material, provided by the diagonal elements in the
appropriate coordinate system. Light linearly polarized in one of the cartesian coordinates
will "see" the corresponding index of refraction of that coordinate.

There are two types of non-linear optical crystals, uniaxial crystals and biaxial crystals.
For uniaxial crystals, the permittivity elements are such that one of them is di�erent from
the other two in the diagonal basis. Therefore, we can associate two indices of refraction,
called ordinary and extraordinary indices, for two di�erent polarizations5. In biaxial crystals,
all three permittivity elements are di�erent in the diagonal basis, and so we have three
di�erent indices of refraction for every spatial direction, x, y, z. In this thesis, we used
Lithium Niobate (LN), that is a uniaxial crystal, for a SHG process, and Potassium Tytanil
Phosphate (KTP), a biaxial crystal, for the waveguides.

Taking as an example the KTP case, we de�ne the propagation direction to be x, the
vertical direction to be z, and the transversal direction to be y. We therefore associate those
directions to three indices of refraction nx, ny and nz , that we will consider functions of
wavelength and temperature following speci�c Sellmeier Equations 6 (nj = nj(λ, T )). The
Kleinman symmetry, described in Appendix B, allows us to know the non-linear e�ects
allowed by the material, and the corresponding polarizations for input and output optical
�elds. We can compute the di�erent wavevectors using kj(λ, T ) = 2πnj(λ, T )/λ and hence

5Since we are considering optical waves traveling in a cartesian coordinate, the index of refraction corre-
sponding to the propagation direction is irrelevant for us.

6For the waveguide modelling, we will also consider dependence on the vertical direction, nj = nj(z), the
so-called index pro�le that will be treated later in this Chapter.
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the dispersion properties of the material in that speci�c process, in particular the wavevector
mismatch ∆k providing, or not, phasematching.

In the next Chapter, we will derive the quantum states of light due to the non-linear
optical e�ects that we brie�y introduced here classically. Even in the quantum regime, our
discussion about phasematching, Kleinmann symmetry and material anisotropy are valid
and used both in the design of our experiment and in the actual implementation of the
non-linear processes.

4.2 Waveguides
Waveguides are structures used to con�ne optical waves by means of total internal re�ection
on their surface [82]. They present a core region, surrounded by a substrate and air, the
geometry depending on the type of structure. For light con�nement to be possible, the
index of refraction in the core should be higher than that of the substrate and air. They
can be classi�ed into Planar waveguides (con�ning light in two dimensions), and Channel
Waveguides (con�ning light in three dimensions).

In the context of this manuscript and the experiment performed in this thesis, we will
focus on channel waveguides, although a brief derivation of modal �elds in planar waveg-
uides will be shown as well. The �rst non-linear experiments in optical waveguides were
introduced in the 1970’s, and since then, extensive research work has been accomplished in
waveguide theory, waveguide materials and fabrication, and implementation of a number
of passive, active, and functional devices. Examples of such a device are optical couplers,
�lters or modulators, optical memories or sensors.

The combination of non-linear optics and waveguide technology is somewhat natural.
Because of the con�nement of light, high optical intensity in a small cross sectional area can
be maintained along the waveguide dimensions, removing di�raction and hence obtaining a
long interaction length. This gives rise to higher order non-linear optical e�ects, even when
pumping at low or moderate power. A review of research work on waveguide nonlinear
optics can be found in [83, 84], and a more modern treatment is given in [85].

4.2.1 General considerations

We are interested in describing the con�nement properties of waveguides by the discretiza-
tion of the spatial modes of light inside the structure, due to its geometry and dimensions
compared to the light carrier wavelength, λ0. The rest of this Chapter will be hence ded-
icated to the description of those modal �elds, that will prove useful in the next Chapter,
when we will present the quantum states produced by the non-linear interaction in the
waveguide.

First of all, we will consider monochromatic waves with a certain wavelength λ for the
calculation of the waveguide’s spatial modes. This is justi�ed in Chapter 3, Section 3.3.1,

81



4.2. WAVEGUIDES

where we discussed the conditions for the decoupling of the temporal and spatial degrees
of freedom. Since the SVE approximation is valid in our case, the spatial modes computed
with monochromatic waves will also apply in the case of ultrafast pulses of light with our
discussed bandwidth.

The waveguides that we have used for our experiment are fabricated by Rb exchange
into a non-linear substrate7 using a mask, so that only an approximately rectangular region
of the substrate su�ers the chemical exchange and therefore slightly increases the index of
refraction in the waveguide core, allowing total internal re�ection, [86].

This fabrication process leaves in general a good homogeneity of the waveguide along
the propagation direction (taken here as the x direction). Due to the nature of the exchange
process, the Rb atoms will be more di�used near the surface, and hence we expect to have
an index of refraction that is in general a function of the cross-section (or transversal) co-
ordinates, n = n(y, z). This dependence of the index of refraction is known as the index
pro�le of the waveguide. Furthermore, the length of the vertical direction were the Rb ex-
change is applied depends on the time left for the chemical process to act, and is called the
waveguide’s depth.

Because of the anisotropic properties of materials described in Section 4.1.4, a given
polarization of the �elds will be associated with a particular index of refraction (ordinary or
extraordinary for uniaxial crystals, and nx/y/z for biaxial crystals). Therefore, for each one
of those cases, the Wave Equation of Chapter 3 is valid if we substitute the scalar index of
refraction n of homogoneous, linear media with the component of the anisotropic index of
refraction associated with that particular input polarization.

In order to calculate the spatial modes allowed by the waveguide, we consider monochro-
matic optical waves with frequency ω0 travelling in the x axis:

E(x, y, z, t) = E(y, z) exp(−iβx) exp(iω0t)

H(x, y, z, t) = H(y, z) exp(−iβx) exp(iω0t)
(4.17)

where β is known as the propagation constant. By substituing these �elds into Maxwell’s
equations and eliminating the magnetic �eldH using the identity∇×∇×E = −∇2E it
is easy to arrive to:

∇2
⊥E(y, z) + (k2n2(y, z)− β2)E(y, z) = 0 (4.18)

where ∇⊥ = (0, ∂/∂y, ∂/∂z) is a transverse di�erential operator, k = ω0
√
ε0µ0 = ω0/c

is the wavevector of a monochromatic electromagnetic wave in vacuum and we have used
that ε(y, z)/ε0 = n2(y, z). The resulting equation is the new version of the Wave Equation
Eq.(3.5), in which we added the anisotropy of the medium and used the ansatz of Eq.(4.17).
The new modal functions solving Eq.(4.18) are therefore the electromagnetic spatial modes
in our waveguides.

7A substrate of KTP, in our case.
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When �nding the modes of Eq.(4.18) with appropriate boundary conditions, two types
of solutions are found. There are solutions where the �eld amplitudeE(x, y) is large in the
core and decays exponentially away from it. These solutions are known as guided modes,
due to the mode con�nement in the waveguide. These are the relevant discrete set of modes
we want to describe in this manuscript. The other type of solutions do not decay exponen-
tially away from the waveguide, and hence they represent light propagating away from the
structure. These modes are known as radiation modes, and there is an in�nity number of
them.

The propagation constant of any speci�c mode can be written as:

β = Nk (4.19)

and N is the so-called e�ective index of refraction, or mode index.
As we have already discussed, the modes are orthogonal and complete, and therefore

any arbitrary �eld inside the waveguide can be expressed as a weighted superposition of
the modal �elds.

In the great majority of cases it is impossible to solve analytically Eq.(4.18) for the mode
pro�les E(x, y) and H(x, y), and numerical methods should be used. However, it is inter-
esting to model the simplest case scenario, in which analytical solutions can be found, in
order to get insights into the physics of the modal �elds inside the waveguide.

4.2.2 Planar waveguides
Planar waveguides, also known as slab waveguides, are the simplest waveguide structure
that can be found. They con�ne light only over a single transversal direction, here denoted
z, as shown in Fig.(4.1). By considering a step index pro�le of the form:

n(z) =


na z ≥ 0

nc 0 ≤ z ≤ −t
ns z ≤ −t

(4.20)

analytical solutions for the modal functions can be found. Here, t is the waveguide thickness,
and the constants na, nc and ns are the values of the index of refraction of air, core and
substrate respectively. The solutions for the electric and magnetic �elds can be classi�ed
into two polarization mode base, because they leave only one non-zero component of either
the electric or magnetic �eld. For this reason they are called Transverse Electric (TE) and
Transverse Magnetic (TM) modes.

TE and TM modes

The Transverse Electric modes can be obtained by setting Hx = 0. This condition implies
that Ex = Ez = 0 and the only non-zero component of the electric �eld is Ey(z), which

83



4.2. WAVEGUIDES

Figure 4.1: Planar waveguide modal �elds. (a): The index of refraction pro�le is considered
to be a step function between the air, core and substrates. (b): First three guided TE modal
pro�les.

follows the wave equation Eq.(4.18). Since we suspect the form of the �elds, we make the
ansatz for Ey(z) as:

Ey(z) =


Ea exp(−γaz) z ≥ 0

Ec cos(κcz + φa) 0 ≤ z ≤ −t
Es exp(γs(z + t)) z ≤ −t

(4.21)

where Ea, Ec and Es are constants, and:

γa = k
√
N2 − n2

a γs = k
√
N2 − n2

s κc = k
√
n2
c −N2 (4.22)

The solution is completed by the electromagnetic boundary conditions of the �elds at x = 0
and x = −t, that lead to the following condition:

κct− φa − φs = mπ, m = 0, 1, 2... (4.23)
φa = arctan(γa/κc) φs = arctan(γs/κc) (4.24)

which indeed provides a discrete set of modal �elds labeled with the integer m. Eq.(4.24)
determines the modal index N of a given mode. Finally, the �eld amplitudes are related by
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Ea = Ec cos(φa) and Es = Ec(−1)m cos(φs). Fig.(4.1) shows the index pro�le and the �rst
three modal TE �elds solutions.

Since the only non-zero �eld component isEy, these guided modes are known as Trans-
verse Electric, or TE, modes, associated with light polarized in the y direction. However, an
equivalent set of solutions can be found by setting Ex = 0 instead. In this case, the only
non-zero component of the magnetic �eld is Hz , that can also be written as a trigonomet-
ric function decaying exponentially at the boundaries. For this reason, these guided modes
are known as Transverse Magnetic (TM) modes, and are associated with the orthogonal
polarization of the TE modes.

The mode index, N , lies between ns and nc, and depends on the wavelength, the core
thickness, the polarization and the mode order. It is possible to �nd con�gurations in which
there is an arbitrary number of guided modes by con�guring properly those parameters.
Two cases are relevant in general: a single-mode waveguide, only supporting one mode,
known as the fundamental mode, and a multimode waveguide, in which more than one
solution is found. A useful parameter that quanti�es how much a given mode is guided is
the normalized propagation constant, b, de�ned as:

b =
N2 − n2

s

n2
c − n2

s

(4.25)

whose values are between 0 and 1. As the index contrast (nc−ns) of the waveguide increases,
the light is well con�ned and b → 1. However, in this case the waveguide would also tend
to become multimode, which could not be desired in some applications. The waveguides
that we will consider in this thesis are weakly-guided waveguides, in which the index con-
trast is small (nc − ns ∼ 0.01), and so only few modes are supported by the waveguide.
Our particular KTP waveguides were designed to be approximately single-mode at telecom
wavelengths.

4.2.3 Channel waveguides
As anticipated before, the waveguides used in this thesis con�ne light over the two transver-
sal directions, y and z, and are called Channel Waveguides.

As with planar waveguides, the modal �elds are calculated from Eq.(4.18) and appropri-
ate boundary conditions, where here the index pro�len(y, z) is in general a two-dimensional
function.

Although no analytical solutions can be found in this case, the physical behavior and
analysis for the planar waveguides are conserved for channel waveguides. This can be seen
by approximating the channel waveguide as two planar waveguides in the y and z directions.
For example, we could take inspiration of the TE modes from planar waveguides, write the
electric �eld as Ey(y, z) ' Ey(y)Ey(z) and apply the same ansatz solution to each of these
�elds, with the presence of two di�erente mode indices. This way of calculating the modes
is known as the e�ective index method.
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Figure 4.2: Channel waveguide. Left: Rectangular core enclosed by a substrate surrounded
by air. Right: Cross section area of the channel waveguide, where W and H are the waveg-
uide width and depth, and na/s/c is the index of refraction in air/substrate/core.

Another more precise method for the calculation of the modes is Marcatili’s method, in
which the waveguide cross-section is divided as in Fig. (4.2) and the electric �eld dominant
component is decomposed as trigonometric functions inside the core and exponential decay
at the core’s boundaries [87]. The application of the boundary conditions gives similar
characteristic equations to those of the planar waveguide. The modes can be labeled by two
integers (m, p) for the depth and width directions, and the modes can then be denoted as
Em,p (or Hm,p for TM-like modes).

To be precise, the �eld components that are exactly zero for TE and TM modes in planar
waveguides are non-zero in the channel waveguide case. Strictly speaking, the modes in
the channel waveguides are hybrid between pure TE and TM modes. However, in weakly
guiding structures, as we are considering in this text, the components of the �eld that are
not dominant are small, and therefore these solutions are also referred to as TE and TM
modes.

4.2.4 Simulation results

We numerically solved Eq.(4.18) for channel waveguides with the physical parameters of
our experiment in order to compute the spatial characteristics of light inside our structures.

The method we used for computing the modes can be found in [88]. It is a �nite di�erence
method, i.e. the cross-section of Fig. (4.2) is divided into a mesh of points and the di�eren-
tial equations for both electric and magnetic �elds, Eq.(4.18), are discretized on the mesh,
approximating the derivatives by small di�erences. The boundary conditions are also con-
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Figure 4.3: Left: Channel waveguide with a grading index pro�le in the vertical direction.
Right: Mathematical form of the index pro�le using the erf function. Symbols are de�ned
in the text.

sidered, hence obtaining a system of algebraic equations that can be solved computationally.

With the same de�nition of the cartesian coordinate system that we provided before
(propagation along x), the vertical and horizontal polarizations are associated with the TE
and TM modes of the channel waveguide. In our particular experiment, however, the po-
larization of all �elds that intervene in the non-linear interaction are polarized vertically
(along z) and hence we will focus on the computation ofEz

mp modes. The index pro�le seen
by light corresponds in this case to the component of the diagonal permittivity tensor in
the z direction, and depends on both transversal directions y and z, i.e. n = nz(y, z). For
generating light at a given wavelength λwe pump with the corresponding second harmonic
�eld, with a wavelength of λ/2, and we are thus interested in the spatial modes for both the
pump wavelength, 780 nm, and the telecom wavelength, 1560 nm.

Furthermore, we will also consider a speci�c vertical dependence on the index of refrac-
tion coming from the fabrication process. The index of refraction depends on the concentra-
tion of Rb exchange in the waveguide, that happens vertically. We will therefore consider a
uniform index along the horizontal direction (y), that �x the waveguide width, and a grad-
ual index along the vertical direction (z), which de�nes the waveguide depth. We model the
gradual depth as an error function, and de�ne the waveguide depth as the Full Width Half
Maximum (FWHM), denoted h, of this distribution. Therefore the index in the waveguide
only depends on z and is modelled as:

nz(z) = nmax −
∆n

2

(
1 + erf

(
4(z − h)

h

))
(4.26)

where nmax is the maximum index of refraction after the exchange and ∆n is the index
contrast between nmax and the substrate index, nKTP. Hence ∆n = nmax − nKTP. Eq.(4.26)
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Figure 4.4: First three TE modes (polarization along z) allowed by a KTP waveguide with
width 3 µm and depth of 3 µm, for light at λ = 1560 nm. Computation made based on the
�nite-element method of [88].

Figure 4.5: First three TE modes (polarization along z) allowed by a KTP waveguide with
width 3 µm and depth of 3 µm, for light at λ = 780 nm. Computation made based on the
�nite-element method of [88].

is written such that z = 0 is the intersection between air and the waveguide, and in z = h
the index value is exactly half between the bulk and the waveguide indices. In Fig.(4.3) we
show the channel waveguide and the index pro�le given by Eq.(4.26).

In Fig.(4.4) we show the �rst three computed TE modes (vertical polarization) allowed by
a KTP waveguide with both width and depth of 3 µm using the �nite-element method. Sim-
ilar results are found for the TM modes (horizontal polarization). The dashed lines indicate
the surface between the air and the waveguide and the width and depth of the waveguide
itself. We see the characteristic waveforms that we expected from the analytic results in
planar waveguides. This computation is done at a wavelength of λ = 1560 nm.

On the other side,in Fig.(4.5) we show the same mode calculation at half the wavelength,
λ = 780 nm. This is done in order to characterize the applied electric �eld, known as the
pump �eld, inside the waveguide.

Together with the modes, we also computed the corresponding mode indices, which
allows to obtain the normalized propagation constants of Eq.(4.25). A value of b = 1 rep-
resents a perfectly guided mode, while b = 0 would represent a radiation mode. In Table
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λ = 1560 nm λ = 780 nm
TE Modes (Pol. z) N b TE Modes (Pol. z) N b
Fundamental Mode 1.83712 0.718 Fundamental Mode 1.85546 0.889
1st Mode 1.82656 -0.343 1st Mode 1.85131 0.547
2nd Mode 1.82109 -0.886 2nd Mode 1.84340 -0.102
TMModes (Pol. y) TMModes (Pol. y)
Fundamental Mode 1.74276 0.806 Fundamental Mode 1.76748 0.650
1st Mode 1.73290 -0.179 1st Mode 1.76441 0.466
2nd Mode 1.72488 -0.976 2nd Mode 1.75499 -0.091

Table 4.1: Numerical modal index and propagation constants for TE and TM spatial modes.

4.1 we summarize the numerical results for both wavelengths and both polarizations. From
this data, it is clear that at the telecom wavelength, 1560 nm, only the fundamental mode is
allowed. This is because a negative value of the normalized propagation constant, that can
occur numerically, represents a non-physical solution and can be discarded. The waveg-
uide is therefore theoretically single-mode at telecom. This is not very surprising since the
waveguides were designed for this purpose. For the pump �eld, however, we �nd two modal
solutions that can be guided inside the structure.

The spatial modes computed in this section are to be compared with the experimental
spatial modes measured in the lab when injecting into our actual waveguide chips. In any
case, these computed modal �elds will serve us in the next Chapter, since they allow to
considerably simplify our discussion in the quantum regime.

4.2.5 Experimental waveguide’s spatial modes

To �nish this Chapter, we present the experimental spatial modes measured both for the
pump �eld and for light at telecom to check that the �nite element method employed in the
numerical calculation is su�ciently valid for our waveguides.

The actual waveguide KTP chip we used in our experiment was provided by AdvR Inc.
[89]. It is 15 mm long and 1.5 mm wide, as can be seen in the chip layout of Fig.(4.6). It
containts a total of 30 waveguides, divided in 5 groups. All the waveguides in our chip were
3 µm wide, and their depths vary from one to another following the pattern 2,3 and 4 µm.
Therefore, in each group there are two 3x2 µm, two 3x3 µm and two 3x4 µm waveguides,
for a total of 6. All groups are identical. We therefore label the waveguides as x.y, where x
indicates one of the �ve groups and y indicates the waveguide number inside the group.

We injected the waveguides with the pump �eld (λ0 = 780 nm, ∆λ = 2 nm, pump
power in the order of few mW) and measured the spatial modes at the output using an
aspherical lens with focal length fa = 10 mm to collimate the beam after the waveguide
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Figure 4.6: Waveguide chip layout, containing a total of 30 waveguides divided in 5 groups.
The chips dimensions are also shown.

and an infrared CCD camera. The same procedure was also performed with the light at
telecom wavelength (λ0 = 1560 nm, ∆λ = 66 nm, pump power in the order of few mW). A
spectral �lter could be placed for telecom light in order to reduce the frequency bandwidth,
but we checked that this �lter does not alter the measured spatial modes.

The spatial modes depend on some extent on the alignment of the waveguide. In our
case, we measured the coupling power (input/output power ratio in the waveguide) and we
show here the spatial modes obtained at the maximum value of the waveguide coupling.

In Fig.(4.7) we show six di�erent spatial modes measured at the pump wavelength λ =
780 nm with a vertical input polarization (TE modes). The measured modes are in good
agreement with the numerically computed modes of Fig.(4.5). We observe both the funda-
mental mode and the �rst mode in some of the waveguides. We characterized the spatial
modes of all 30 waveguides in the chip, that are similar to the modes of Fig.(4.7), for both
polarizations.

We performed the same measurement for the spatial modes at telecom wavelength. We
show the TE (vertical polarization) modal �elds of six di�erent waveguides in Fig.(4.8).
Again, we experimentally con�rm the approximate single-mode operation of our waveg-
uides at telecom, in good agreement with the numerically computed fundamental mode of
Fig.(4.4). Same conclusions are drawn from measurements with the TM (horizontal polar-
ization) modes.
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Figure 4.7: Example of 6 experimental spatial modes at the pump wavelength (780 nm) for
di�erent waveguide depths. The waveguides are labelled with x.y, where x indicates the
group and y numbers the waveguides inside the group.

Figure 4.8: Example of 6 experimental spatial modes at telecom wavelength (1560 nm) for
di�erent waveguide depths. The waveguides are labelled with x.y, where x indicates the
group and y numbers the waveguides inside the group.
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Chapter 5

From Classical to Quantum Optics

“ See that the imagination of nature is far, far greater than the imagination of man.”
– Richard P. Feynman
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In Chapter 4, we have settled the notions needed to understand the frequency conversion
processes due to the second order induced polarization in non-linear optics. In this Chapter,
we go a step further and bring up the quantum formalism to understand the quantum states
of light coming out of non-linear waveguides. In particular, among all the possible second-
order e�ects, we will concentrate in the speci�c case of Spontaneous Parametric Down
Conversion, or SPDC, since it will be the relevant e�ect for the generation of graph states.
The description of the state as graph states will come naturally from the analysis presented
in this Chapter.
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5.1 The Hamiltonian Approach to Non-linear Optics

5.1.1 Interaction Picture
Usually, there are two approaches taken from Quantum mechanics that allow us to quantize
the electromagnetic �eld in the presence of non-linear interactions. A �rst possibility is to
quantize the �eld amplitudes from the non-linear Wave Equation, Eq.(4.10) and �nd the
corresponding Heisenberg equations of the quantum operators in the Heisenberg picture,
[78]. A second approach, that will be used in this thesis, known as the hamiltonian approach,
consists in �nding a hamiltonian, typically inherited from classical mechanics, and quantize
the �elds in the hamiltonian from the classical �eld functions. The interaction picture is
adequate in this context, as we will see, and the evolution of the quantum state is given in the
form of a Schrödinger equation with the part of the hamiltonian describing the interaction.

In our particular case of an external applied �eld to a non-linear medium, the classical
hamiltonian can be expressed as [90]:

H(t) =
1

2

∫
dr(E2(r, t) +B2(r, t))−

∫
drP (r, t) ·E(r, t) (5.1)

whereE,B andP are respectively the applied electric �eld, magnetic �eld, and the induced
polarization in the medium. The �rst term of Eq.(5.1) is a quadratic free hamiltonian1 de-
scribing free propagation of the external �eld in the medium, denoted H0, while the second
term accounts for the light-matter interaction in the medium and will be denoted as HS(t).

The phenomenological quantization of this hamiltonian consists in substituing the clas-
sical �elds by their quantized operators. We obtain thus a hamiltonian of the type:

Ĥ(t) = Ĥ0 + ĤS(t) (5.2)

Ĥ0 =
1

2

∫
dr(Ê2(r, t) + B̂2(r, t)) (5.3)

ĤS(t) = −
∫

drÊ(r, t)P̂ (r, t) (5.4)

In the interaction picture, the quantum operators evolve following the free hamiltonian Ĥ0,
while the quantum state evolves following the Schrödinger equation on the hamiltonian
ĤI(t) = eiĤ0tĤS(t)e−iĤ0t.

The quantum state after the interaction can be calculated by solving the Schrödinger
equation with ĤI(t):

|ψ(T )〉 = T̂ exp

(
1

i~

∫ T

0

ĤI(t)dt

)
|ψ(0)〉 (5.5)

1The free hamiltonian H0 does not depend on time and it is analytically solvable.
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Here ~ = 2π
h

is the reduced Planck’s constant and T̂ is the time-ordering operator [91]. We
considered that the interaction takes place from time t = 0 to t = T .

In our particular case of three-wave mixing, we take only the second order non-linear
polarization in the light-matter interaction, and hence we can explicitly write the interaction
hamiltonian as:

ĤTWM(t) = −
∫

drP̂
(2)
NL (r, t)Ê(r, t) (5.6)

where from now the operators are implicitly assumed to be written in the interaction picture.
Recovering our expression of the non-linear polarization from Chapter 4, Eq.(4.9), we have
P̂

(2)
NL = ε0deffÊÊ, where deff is the e�ective non-linearity (for more information on deff , see

Appendix B). The strategy is therefore to obtain an expression of the electric �eld operator
in the waveguide in order to get a close form of Eq.(5.6) and solve Eq.(5.5) for the quantum
state after the interaction.

5.1.2 Field operators in waveguides
For the derivation of the quantized electromagnetic �elds in weakly guiding waveguides,
we start from associating the electric and magnetic �elds to the electromagnetic potential
Â(r, t):

Ê(r, t) =
∂Â(r, t)

∂t
B̂(r, t) = ∇× Â(r, t) (5.7)

where we also assume the Coulomb gauge, ∇ · Â(r, t) = 0. We divide the vector potential
in its positive and negative frequency components:

Â(r, t) = Â+(r, t) + Â−(r, t) (5.8)

Following the lines of [92], we write the quantized vector potential operator derived by
Bjorken and Drell for �elds propagating in the x direction along a dielectric material as:

Â+(r, t) =

∫
dkxdkydkz

(
~vg(ω)

16π3ε0cωn(ω)

)1/2

â(k)
∑
i,j

siS
′
i,j(ky, kz) exp(−i(ωt− kr))

(5.9)
Here k = (kx, ky, kz) is the wavevector of a three-dimensional plane wave, n(ω) is the in-
dex of refraction in the non-linear material, vg(ω) = ∂ω/∂k is the light’s group velocity
inside the waveguide, si is the unit vector indicating the polarization of the �eld, and â(k)
is the annhiliation operator of electromagnetic excitations inside the waveguide with asso-
ciated wavevector k. We have also introduced the modal functions S ′i,j(ky, kz) due to the
discretization of the spatial modes allowed by the waveguide structure, de�ned as:

S ′i,j(ky, kz) =
1

(2π)2

∫
dydzSi,j(y, z) exp(−ikyy − ikzz) (5.10)
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where Si,j(y, z) are the waveguide’s spatial modes that were computed from classical optics
in Chapter 4. Therefore, in Eq.(5.10), the index i selects either the set of TE or TM modes
in the waveguide, associated with the two possible linear polarizations, while the index j
counts the mode order inside the set of TE or TM modes.

The vectorial character of Eq.(5.9) is due to the polarization vector si, where again, i can
take two values, corresponding to horizontal and vertical polarization. However, by sym-
metry conditions (see Appendix B), the non-linear processes are associated with a speci�c
set of linear polarizations for the three waves involved in the interaction. We can therefore
consider in our calculation this single set of TM or TE modes, i.e. speci�c linear polariza-
tions, �xing the polarization index i, and therefore dropping the vectorial character of the
vector potential for the rest of the calculation.

Plugging the de�nition of the spatial modes, Eq.(5.10), into Eq.(5.9), we �nd the one
dimensional integral:

Â+(r, t) = 2π
∑
j

Sj(y, z)

∫
dkx

(
~vg(ω)

4πε0cωn(ω)

)1/2

â(kx) exp(−i(ωt− kxx)) (5.11)

We now transform the integral over kx into an integral over frequency by the change of
variables:

dkx =
dω

vg(ω)
â(kx) =

√
vg(ω)â(ω) (5.12)

obtaining:

Â+(r, t) = 2π
∑
j

Sj(y, z)

∫
dω

(
~

4πε0cωn(ω)

)1/2

â(ω) exp(−i(ωt− kxx)) (5.13)

We note here that, in order to account for propagation in a waveguide, we know from
Chapter 4 that the values of kx are actually the propagation constants {βj} associated to
the TE or TM set of spatial modes Sj(y, z).

The electric �eld operator can be obtained by computing the partial derivative of Eq.(5.13)
with respect to time:

Ê+(r, t) = i2π
∑
j

Sj(y, z)

∫
dω

√
~ω

4πε0cn(ω)
â(ω) exp(−i(ωt− βjx)) (5.14)

which is the �nal expression we need for the electric �eld operator in the non-linear waveg-
uide, also used in this form in [93].
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Figure 5.1: Schematics of di�erent χ(2) processes. a) SHG: In the classical approach, a single
monochromatic input �eld at frequency ω1 can produce radiation at double the frequency,
2ω1. b) SFG/DFG: if the input �eld contains two frequency components at ω1 and ω2, it can
produce radiation at the sum or di�erence frequencies, ω1±ω2. c) PG: quantum mechanics
allows the interaction between the input �eld and the vacuum �eld, that has an in�nite fre-
quency spectrum. Generation of new frequencies is thus possible even without the presence
of a second classical input �eld.

5.1.3 Three-wave mixing quantum hamiltonian

According to the classical framework that we have developed in Chapter 4, a monochro-
matic input �eld in a χ(2) crystal can only produce a SHG process (see Eq.(4.12)). Further-
more, in order to have SFG or DFG, the input �eld should contain more than one frequency
component (see Eq.(4.14)). The quantum treatment brings a new three-wave mixing non-
linear e�ect to the list, the parametric gain (PG). In essence, a single monochromatic input
�eld can mix with the quantum vacuum �uctuations in the non-linear crystal and therefore
produce new frequency components that cannot be classically explained. In other words,
the quantum vacuum state can serve as a seed in a DFG process with an input �eld if the
conservation of energy and phasematching conditions are favorable to the process.

The di�erent three-wave mixing e�ects are depicted in Fig.(5.1) for clarity. In Quantum
Optics, the e�ect of parametric gain is also known as Parametric Down Conversion (PDC).

Let’s now derive the three-wave mixing hamiltonian starting from Eq.(5.6). First of all,
we will consider the input �eld as a strong classical optical �eld that does not get depleted
during the process and that we will call the pump �eld, Ep, and an induced polarization in
the medium excited by the two quantum �elds, Ê1 and Ê2. It is useful to divide each �eld
into the positive and negative frequency components, such that:

Ep(r, t) = E+
p (r, t) + E−p (r, t) (5.15)

Ê1(r, t) = Ê+
1 (r, t) + Ê−1 (r, t) (5.16)

Ê2(r, t) = Ê+
2 (r, t) + Ê−2 (r, t) (5.17)

Plugging this information into Eq.(5.6) we obtain:
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Figure 5.2: Schematics of type II PDC, where two photon �elds, called signal and idler,
are created at expense of the pump �eld, here considered a classical object. Conservation of
energy, ensuring ωp = ωs+ωi, should be ful�lled, while the quasi-phasematching condition
(βp = βs + βi + 2π

Λ
) is also necessary to have an e�cient process.

ĤTWM(t) = −ε0
∫

dr

(
deffE

+
p (r, t)

(
Ê−1 (r, t)

)2

+ deffE
+
p (r, t)Ê−1 (r, t)Ê−2 (r, t)

+ deffE
+
p (r, t)Ê+

1 (r, t)Ê−2 (r, t) + h.c.
)

(5.18)

Coming back to the expression of the �eld operator of Eq.(5.14), we observe that Ê+

is related to the annhilation operator of �eld excitations, â, while Ê− is associated with
the creation operator of excitations, i.e. photons, â†. This fact helps us to understand the
di�erent terms of Eq.(5.18) and associate them to the underlying three-wave mixing e�ects
described before. For instance, in the �rst term of Eq.(5.18), two identical excitations are
created at the cost of destroying a single excitation from the pump �eld, which corresponds
to a PDC process of type I 2. The second term indicates the creation of two di�erent photon
�elds from the pump �eld, which will lead to a PDC process of the so-called type II. For
historic reasons, the two photon �elds in the type II case are called signal and idler �elds, and
are denoted respectively with the subscripts s and i. Finally, in the last term, a photon �eld is
created from both a pump �eld and an additional seed �eld excitations, which corresponds
to a SFG or DFG process depending on the frequency of the new �eld.

5.2 Ultrafast Parametric Down Conversion

5.2.1 Type II Hamiltonian
In this section, we are interested in calculating the quantum properties of light after a Para-
metric Down Conversion interaction in the waveguides. Given that type I PDC can be

2Note that the reverse process, contained among the h.c. terms, corresponds to SHG.
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formally seen as an speci�c case of type II, in which the two quantum �elds are identical
(Ê1 = Ê2) we will from now on restrict our attention only to the hamiltonian accounting
for type II3, i.e., for us:

ĤPDC(t) = −ε0
∫

drdeffE
+
p (r, t)Ê−1 (r, t)Ê−2 (r, t) + h.c. (5.19)

As mentioned above, we consider the pump �eld to be a classical �eld that is undepleted
by the non-linear e�ect. Hence, the �eld Ep is considered an ultrashort train of light pulses
traveling along x through the waveguide, that can be written as:

E+
p (x, y, z, ωp) =

∑
k

Ap,kSp,k(y, z)

∫
dωpαk(ωp) exp(−iωpt− βp,kx) (5.20)

where Sp,k(y, z) are the pump spatial modes with corresponding propagation constants βp,k
and peak amplitudes Ap,k. Note that this expression is the classical counterpart of our �eld
operator of Eq.(5.14) including more than a single spatial-mode. αk(ωp) is the pump enve-
lope spectrum,4 and we have accounted for the fact that di�erent spatial modes could have
di�erent spectra, hence the index k.

We can substitute the classical pump in Eq.(5.20) and the electric �eld operators in
Eq.(5.14) into Eq.(5.19), obtaining:

ĤPDC(t) = 4ε0π
2

(∑
k,j,m

∫
dxdydz

∫
dωpdωsdωideffAp,k

Sp,k(y, z)S
∗
s,j(y, z)S

∗
i,m(y, z)

√
~ωs

4πε0cn(ωs)

√
~ωi

4πε0cn(ωi)

αk(ωp) exp (−i(ωp − ωs − ωi)t+ i(βp,k − βs,j − βi,m)x) â†j(ωs)b̂
†
m(ωi) + h.c.

)
(5.21)

where we have introduced the spatial modes of signal, Ss,j(y, z), and idler, Ss,j(y, z). The
labels k, j,m are associated to the spatial modes of pump, signal and idler.

A �rst simpli�cation to this hamiltonian can be achieved with the Slowly Varying Am-
plitude (SVE) approximation. If we assume that the carrier frequency (also known as the
central frequency) oscillates much faster than the frequency envelope for the rest of the fre-
quencies involved in the spectrum (i.e. the central frequency is much smaller than the fre-
quency bandwidth), then the terms in square roots of Eq.(5.21) are approximately constants

3In any case, the calculation of the quantum states would follow the same lines for the rest of the three-
wave mixing processes.

4A Fourier Transform of α(ω) would give us the expression of the electric �eld as a function of time instead
of frequency.
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in the relevant frequency integration limits and can be taken out of the integral, substituting
the frequency variables inside the square roots by their respective central frequencies, that
will be denoted as ωs,0 and ωi,0 respectively for signal and idler.

Additionally, we de�ne the overlap integral between combinations of spatial modes as:

Skjm =

(∫
dydzSp,k(y, z)S

∗
s,j(y, z)S

∗
i,m(y, z)

)2

(5.22)

Note that these integrals can be computed from the classical spatial mode simulation pre-
sented in Chapter 4.

We also de�ne the frequency and phasematching mismatches as:

∆ω = ωp − ωs − ωi (5.23)

∆βkjm(ωs, ωi) = βp,k(ωs + ωi)− βs,j(ωs)− βi,m(ωi) +
2π

Λ
(5.24)

Finally, we also note that the integral over the x variable in Eq.(5.21) can already be
solved, considering that the interaction is on only for the time that the light pulses go from
x = −L/2 to x = L/2, where L is the waveguide’s length:∫ L/2

−L/2
dx exp(i∆βkjmx) = Lsinc (∆βkjmL/2) ≡ φkjm(ωp, ωs, ωi) (5.25)

where we have de�ned the phasematching function φkjm(ωp, ωs, ωi). 5

With all of the considerations, the hamiltonian of Eq.(5.21) reduces to:

ĤPDC(t) =
∑
k,j,m

∫
dωpdωsdωiCkjmαk(ωp)φkjm(ωp, ωs, ωi)e

−i∆ωtâ†j(ωs)b̂
†
m(ωi) + h.c.

(5.26)

where we have de�ned Ckjm as:

Ckjm = −4ε0π
2deffL

√
Skjm

√
~ωs,0

4πε0cn(ωs,0)

√
~ωi,0

4πε0cn(ωi,0)
(5.27)

Once we have the hamiltonian, the quantum state follows the evolution described in Eq.(5.5),
that we rewrite again:

|ψ(T )〉 = T̂ exp

(
1

i~

∫ T

0

ĤPDC(t)dt

)
|ψ(0)〉 (5.28)

5Note that the frequency dependence of the phasematching function comes through the dispersion rela-
tions βk = βk(ω).
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Firstly, we will ignore the possible e�ects of the time ordering operator T̂ . For more in-
formation about time ordering e�ects see [94, 95, 96, 97, 98]. Secondly, we can extend the
boundaries of the time integration in Eq.(5.28) to ±∞. The argument for doing so is that
the state |ψ(0)〉 is �xed before t = 0, as well as |ψ(T )〉 after t = T , since the interaction
term is only on when light travels through the waveguide.

Furthermore, the initial state |ψ(0)〉 is the vacuum state, since there are no quantum
excitations created before the interaction6. Because we are not seeding with any extra in-
put �eld, this type of Parametric Down Conversion is also called Spontaneous Parametric
Down Conversion (SPDC) in the literature. Thus, we calculate the quantum state after the
interaction, that we denote |ψ(T )〉 ≡ |ψ〉, as:

|ψ〉 = exp

(
1

i~

∫ ∞
−∞

ĤPDC(t)dt

)
|0〉 (5.29)

The time integral of this equation can readily be done as the only time dependence in the
hamiltonian of Eq.(5.26) is inside the exponential function:∫ ∞

−∞
dte−i(∆ω)t = 2πδ(ωp − ωs − ωi) (5.30)

where δ(x) is the Dirac delta function.
This in turn allows us to perform the integration in the pump frequency using the sifting

property of the Dirac delta7, and assures the conservation of energy since we extract the
integration function (which is αk(ωp)φkjm(ωp, ωs, ωi) evaluated in ωp = ωs + ωi). We also
de�ne the joint-spectral amplitude (JSA) as the following function:

Jkjm(ωs, ωi) = αk(ωs + ωi)φkjm(ωs, ωi) (5.31)

Note that despite its name, Jkjm contains not only all the information about the spectral
properties of the state, but also about the spatio-temporal coupling, mediated through the
indices kjm.

The quantum state after these considerations writes8:

|ψ〉 = exp

(∑
kjm

Ckjm
∫

dωsdωiJkjm(ωs, ωi)â
†
j(ωs)b̂

†
m(ωi) + h.c.

)
|0〉 (5.32)

6Rigourously speaking, the initial state is a classical coherent state in a certain frequency mode and vacuum
in the rest of the modes, but the hamiltonian does not a�ect the classical �eld, since we are considering it to
be undepleted.

7The 2π factor gets absorbed into the value of Ckjm in Eq.(5.27).
8Note that we also absorbed the factor 1/(i~) into the constant Ckjm.
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5.2.2 Schmidt Decomposition
The next step in the derivation of the quantum state is to perform a so-called Schmidt decom-
position of the joint-spectral amplitude Jkjm(ωs, ωi). This decomposition was introduced
by Everett [99] in 1957 and advanced later [100] in order to study correlations in bipar-
tite quantum systems. In 2000, Law, Walsmley and Eberly transferred the method to the
time-frequency degree of freedom [101].

A Schmidt decomposition of a two-dimensional function f(ωs, ωi) consists in writing
the function as a weighted sum of one-dimensional basis functions, h(ωs) and g(ωi):

f(ωs, ωi) =
∑
l

√
λlhl(ωs)gl(ωi) (5.33)

The weights are called Schmidt coe�cients, ful�lling
∑

l λl = 1. There is a unique way of
performing a Schmidt decomposition of a given function. This tool is highly powerful in the
study of bipartite quantum systems, since the amount of entanglement, (pair-wise quantum
correlations) can be derived from the decomposition. For instance, it is clear that if the
decomposition yields only one term, the general two-dimensional function can be written
as a product of two independent functions, and hence there is no entanglement between the
two parts of the bipartite system.

Applying the Schmidt decomposition to the JSA yields:

Jkjm(ωs, ωi) =
∑
l

√
λlhl,kjm(ωs)gl,kjm(ωi) (5.34)

which leads naturally to the de�nition of the so-called broadband or time-frequency mode
operators:

Â†l,kjm =

∫
dωshl,kjm(ωs)â

†
j(ωs) (5.35)

B̂†l,kjm =

∫
dωigl,kjm(ωi)b̂

†
m(ωi) (5.36)

where the operator Â†l,kjm (resp. B̂†l,kjm) creates a quantum excitation of the electromag-
netic �eld, i.e. a photon, in the frequency mode described by hl,kjm(ωs)

9 (resp. gl,kjm(ωi)).
Another way of looking at this transformation is as a basis change from the plane-wave
basis, in which we create pure plane wave frequency excitations via âj(ωs) and b̂m(ωi), to
a new basis where the excitations are created by Â†l,kjm(ωs) and B̂†l,kjm(ωi), and Eq.(5.36) is
the relation between the two bases. The basis de�ned by operators {Â†l,kjm, B̂

†
l,kjm} is also

known as the supermode basis [102].
9The photon created in this way is associated with the combination of three spatial modes Sk(ωp), Sj(ωs)

and Sm(ωi) for pump, signal and idler.
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Plugging the new information into Eq.(5.32), the quantum state in the supermode basis
reads:

|ψ〉 = exp

(∑
l,kjm

√
λlCkjmÂ†l,kjmB̂

†
l,kjm + h.c.

)
|0〉 (5.37)

We note that all the information about the state is enclosed in the joint-spectral amplitude
Jkjm(ωs, ωi), and this function depends on the Schmidt coe�cients and the supermode basis,
Eq.(5.34).

5.2.3 Spatial Modes Overlap
In the general case, the spatial and temporal modes are correlated via the mixing of the
temporal index l with the spatial mode indices k,j and m. In mathematical form, this fact
is translated into having a joint-spectral amplitude that depends on the spatial mode com-
bination, essentially coming from the mismatch in the propagation constants, that are both
spatially mode-dependent and frequency dependent. Explicitly, the equations for the joint-
spectral amplitude and the mismatch, Eq.(5.24) and Eq.(5.25), are:

Jkjm(ωs, ωi) = αk(ωs + ωi)sinc

(
∆βkjm(ωs, ωi)L

2

)
(5.38)

∆βkjm(ωs, ωi) = βp,k(ωs + ωi)− βs,j(ωs)− βi,m(ωi) +
2π

Λ
(5.39)

More insights and consequences of these spatio-temporal correlations in bulk crystals are
given in [103], and in the waveguide context in [104]. In general, spatio-temporal corre-
lations complicate the theoretical analysis and are detrimental for the experimental state
generation, since one typically focuses independently either on the spatial or temporal de-
gree of freedom. This is a reason for the convenience of single(spatial)-mode waveguides.

As we have seen in Chapter 4, our waveguides are approximately single(spatial)-mode
for telecom wavelength,which is the central wavelength for our signal and idler �elds. The
fundamental mode was depicted in Fig.(4.4). Hence, the indices j and m are just j = m = 0
in our case, where 0 labels the fundamental mode.

Moreover, for the pump �eld, at a central wavelength of 780 nm, our calculation gives
two spatial modes allowed by the waveguide, which are the two modes at the left of Fig.(4.5),
and therefore k = 0, 1.

Hence, we are left with only two spatial mode overlap integrals, Eq.(5.22), namely S0,0,0

and S1,0,0. These integrals can be computed given the numerical spatial �elds from the
�nite-element method. Since the �eld is normalized by the program, the intrinsic value of
the integrals is not meaningful, but their ratio tells us the relative contribution to the process
of one with respect to the other. We obtain:

S1,0,0

S0,0,0

= 0.0057 (5.40)
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which means that the second order spatial mode of the pump is practically not relevant
in our situation. This result is logical, since the �rst numerically computed spatial modes
are similar for pump and signal/idler �elds, and they form an orthogonal basis for every
wavelength.

In conclusion, the only expected contribution from the spatial modes in our waveguides
is given by the combination of the fundamental modes for pump, signal and idler. We have
therefore k = j = m = 0 and hence we can drop the spatial indices for the rest of this
manuscript.

5.3 Quantum States for Type II SPDC

5.3.1 EPR Correlations
Dropping the spatial mode indices in Eq.(5.37) the quantum state now is simpli�ed to:

|ψ〉 = exp

(∑
l

√
λlCÂ†l B̂

†
l + h.c.

)
|0〉 (5.41)

The scope of this section is to understand this state. In order to do that, let’s suppose for
the moment that we only have a single frequency pair of modes, λl = λ = 1. In that case
we can also drop the temporal index l, obtaining the state:

|ψ〉 = exp
(
CÂ†B̂† + h.c.

)
|0〉 ≡ Ŝ(AB)(C) |0〉 (5.42)

where we have introduced the operator ŜAB(C), called the two-mode squeezing operator, for
reasons that will be clear in the following.

If we consider the interaction to be weak, we can approximate the operator acting on
vacuum as:

exp
(
CÂ†B̂†

)
∼ I + CÂ†B̂† (5.43)

where I is the identity operator. It is easy to see that this approximated operator applied to
vacuum gives the state:

|ψ〉 '
(
I + C∗ÂB̂ + CÂ†B̂†

)
|0〉 = N (|0〉+ C |1, 1〉AB) (5.44)

where N is a factor introduced for normalizing the state |ψ〉. By postselection using single
photon detectors we can remove the vacuum state from Eq.(5.44). The state vector |1, 1〉AB

represents a pair of photons associated to the �eld operators Â and B̂, and therefore in
temporal modes h(ωs) and g(ωi) respectively. The interaction hamiltonian is therefore cre-
ating independent photon pairs in de�ned frequency modes h(ωs) and g(ωi). This separable
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state is widely used in Quantum Optics experiments to create heralded single-photon emit-
ters, where the detection of one photon in mode h heralds the emission of the additional
single-photon in mode g.

It is interesting to see what happens in the completely degenerate case, where the two
photons are indistinguishable, so h = g as well10. If we then make the following basis
change to new �eld operators Ĉ and D̂:

Ĉ =
1√
2

(Â+ B̂) (5.45)

D̂ =
1√
2

(−Â+ B̂) (5.46)

It is easy to verify that the state in the new basis reads:

|ψ〉 = |11〉AB =
|20〉CD − |02〉CD√

2
(5.47)

Since the transformation of Eq.(5.46) corresponds to a beamsplitter transformation, this re-
sult means that if we make the two single-photons interfere in a balanced beamsplitter
(BS), then we will always have both photons at one of the output of the BS, a phenomenon
known as the Hong-Ou-Mandel e�ect [105]11. The process is depicted in Fig.(5.3). The state
of Eq.(5.47) is a maximally entangled state that is a type of the so-called Bell states. This
state presents correlations of the EPR type, �rst proposed by Einstein Podoslsky and Rosen
in 1935, [106]. For this reason, these states are also called EPR states. Bell states are the
cornerstones in a great number of Quantum Optics and Quantum Information experiments.
Note that in this description the discrete nature of photons is taken into account for the
quantum correlations. Quantum information encoded in those states have a �nite number
of eigenvalues, and for this reason we talk about Discrete variable (DV) entangled states.

In this thesis, however, we are interested in Continuous Variable correlations. Never-
theless, we will see that the essence of the transformation derived for DV also applies in
the CV case. The main di�erence is the fact that we do not work with single-excitations
of the �elds, but rather with the �eld properties themselves. In DV, as already stated in
Part I of this thesis, the information is encoded in the naturally discrete set of observables
(polarization, for instance), while in CV, the information resides in the noise properties of
the �elds, i.e. in the statistical moments of the quadratures. In fact, the Continuous Vari-
able version of the EPR state can be obtained simply by not approximating the evolution
operator of Eq.(5.43) for a weak interaction and looking at the �eld quadrature correlations

10In practice, it is experimentally challenging to have a single source giving identical photons. Another way
of proceeding is to have two single-photon sources and herald one photon from each of them.

11Note that if the two photons are distinguishable, then they would not interfere in the BS and no quantum
correlations would be observed in the state. This is why if h 6= g, we obtain a separable quantum state from
the single-photon source.
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Figure 5.3: Schematics of the generation of entanglement in DV. A degenerate SPDC source
ideally generates an indistinguishable pair of photons that are mixed in a balanced beam-
splitter (BS). The result is a type of Bell state showing EPR correlations. For more informa-
tion see text.

of the total output quantum state. We are therefore looking at the correlations in the total
signal and idler �elds. Since the quadratures have an in�nite eigenvalue spectrum, the total
Hilbert space in this case is in�nite-dimensional, and hence the name Continuous Variables.
For clarity, in our current context, we de�ne the quadrature operators associated with the
quantum �elds Â and B̂ 12 as:

Q̂A = Â+ Â† Q̂B = B̂ + B̂† (5.48)
P̂A = i(Â† − Â) P̂B = i(B̂† − B̂) (5.49)

All the statistical moments of our state in Eq.(5.42), and in particular the mean value and
the quadratures variances, can be found by the action of the two-mode squeezing operator,
Ŝ(AB), on the �eld operators Â and B̂. It can be shown [107] that, by de�ning |C| ≡ R and
Arg(C) ≡ ϕ, where Arg(x) means the argument of x, we have the following relations:

Ŝ(AB)†(C)ÂŜ(AB)(C) = Â cosh(R)− B̂†eiϕ sinh(R) (5.50)
Ŝ(AB)†(C)B̂Ŝ(AB)(C) = B̂ cosh(R)− Â†eiϕ sinh(R) (5.51)

With these relations it is easy to check that the mean quadrature values of |ψ〉 vanish:

〈Q̂A〉ψ = 〈P̂A〉ψ = 〈Q̂B〉ψ = 〈P̂B〉ψ = 0 (5.52)

and the quadratures variances, de�ned as ∆Q̂2
A ≡ 〈Q̂2

A〉 − 〈Q̂A〉
2 (and equivalently for the

rest of quadratures) are given by:

∆Q̂2
A = ∆P̂ 2

A = ∆Q̂2
B = ∆P̂ 2

B = cosh2(R) + sinh2(R) (5.53)
12They have been already introduced in the context of Chapter 1, see Eq.(1.8).
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The variances found here are always above the quantum limit (which in our units and
de�nition of the quadratures is equal to 1). Therefore, because of the symmetry of the vari-
ances in Eq.(5.53), the state, from the point of view of the quadratures of each individual
bipartition A and B, is a so-called thermal state. If this set of quadratures are measured a
number of times, the statistics would show a gaussian centered at the origin with a variance
that is always greater than the vacuum noise. Hence, the thermal states are typically rep-
resented in phase-space by a ball-like object with a diameter bigger than the quantum limit
(of 1, in our units).

However, if we now perform the same change of basis that we have done in the DV case,
Eq.(5.46), corresponding to a beamsplitter transformation, we can de�ne the new quadra-
tures Q̂C ,P̂C , Q̂D and P̂D as in Eq.(5.49) with Ĉ and D̂ �elds. For our state |ψ〉, the mean
values of the new quadratures are also zero and the respective variances can be readily
calculated to be:

∆Q̂2
C = ∆Q̂2

D = exp(−2R) cos2(ϕ) + exp(2R) sin2(ϕ)

∆P̂ 2
C = ∆P̂ 2

D = exp(−2R) sin2(ϕ) + exp(2R) cos2(ϕ) (5.54)

and some of the quadratures go below the Heisenberg limit of 1 (what quadrature depends
on the value of ϕ). When the variance of a �eld quadrature goes below the Heisenberg
limit, at the cost of the variance of the conjugate variable to increase by the same amount,
we say that the former quadrature is squeezed, and the resulting state is a squeezed state
(and hence the name we gave to the quantum operator Ŝ(AB)). The amount of squeezing
for the given quadrature is given by R, that is known as the squeezing factor or squeezing
coe�cient. This result shows that in a two-mode squeezed state, the quadratures themselves
are not squeezed, but the correlations between the quadratures are, since, from the point
of view of the C and D bipartition, we have two single-mode squeezed states de�ned by
Eq.(5.54).

The correspondence with the EPR-type of correlations in DV is clear if we take the limit
of in�nite squeezing in the correlations: R→∞ 13. Then:

∆Q̂2
C = ∆Q̂2

D → 0

∆P̂ 2
C = ∆P̂ 2

D →∞ (5.55)

which means that measurements of the Q̂C quadrature are completely correlated with mea-
surements of the Q̂D quadrature, while the conjugate P̂C/D quadratures would yield a com-
pletely random result when measured. These are the original EPR correlations described in
[106]. In general, the level of squeezing, R, indicates the strength of the EPR correlations.

Therefore, if both modes of a two-mode squeezed state of the form of Eq.(5.42) are sent to
a balanced BS, we would obtain two uncorrelated single-mode states with squeezed quadra-
ture variances (of the form Eq.(5.54)). Since the mean value of the quadratures of this state

13Without loss of generality we also suppose that ϕ = π radians.
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Figure 5.4: Correspondence between a two-mode squeezed state, |TMSV〉AB , that is
the Continuous Variable EPR-like state, and two single-mode squeezed vacuum states,
|sqz vac〉C/D by a beamsplitter transformation. The dotted circles represent the quan-
tum limit in the quadrature variance given by the Heisenberg uncertainty principle on the
quadrature operators.

is 0, the single-mode squeezed state presented here is also known as a squeezed vacuum
state. The reverse process is also true, i.e., two single-mode squeezed vacuum states that are
mixed in a beamsplitter produce a two-mode squeezed state with EPR-type correlations.
The process is depicted in Fig.(5.4).

This analysis shows the relation between squeezing and entanglement. The beamsplitter
transformation, which is a basis change, makes two uncorrelated states presenting squeez-
ing, into a single non-squeezed state presenting quantum correlations in their quadratures.
Both squeezing and entanglement are therefore non-classical features that can be inter-
changed by appropriate basis changes14.

Note that, as in the DV case, the signal and idler �elds should be indistinguishable to have
a perfect interference in the BS. If we are to use a single non-linear waveguide, therefore,
we need the condition h(ω) = g(ω) in our analysis, which is one of the main topics for the
next Chapter.

14This property is however valid only for gaussian states, in the general case of non-gaussian states it’s
more complicated [108, 109]

108



CHAPTER 5. FROM CLASSICAL TO QUANTUM OPTICS

5.3.2 Multimode EPR state

The generalization of the EPR state of Eq.(5.42) to the multimode con�guration of Eq.(5.41)
is straightforward by noting that our state can be written as:

|ψ〉 = exp

(∑
l

√
λlCÂ†l B̂

†
l + h.c.

)
|0〉 =

∏
l

ŜABl (
√
λlC) |0〉 (5.56)

For each pair of modes with index l, the state is an EPR state of the form presented above.
We could therefore de�ne the quadrature operators associated with each pair of operators
Âl, B̂l that will present quadrature variances of the type of Eq.(5.54). Note that the squeezing
level, and hence the strength of the EPR correlations, for each pair is now mode-dependent,√
λlC. The di�erent EPR pairs of the multimode state are uncorrelated, since they act on the

di�erent operators in the supermode basis. The multimode EPR state is depicted in Fig.(5.5).
As in the single two-mode squeezed state, a beamsplitter transformation would mix

every EPR pair into two single-mode squeezed states. Since the frequency modes {hl(ωs)}
form an orthogonal basis, the output of an interference of the two set of frequency modes
in the BS would generate a multimode independent squeezed state, where each squeezed
state is decorrelated from the rest in the supermode basis. For this interference to perfectly
work, though, the signal and idler �elds just before the BS should be indistinguishable, and
therefore we must have the condition hl(ω) = gl(ω) ∀l. This condition will be explored in
Chapter 6.

5.4 Quantum States for Type 0/I SPDC

5.4.1 The di�erence between types of PDC: Field Indistinguishabil-
ity

The di�erence between type I and type II PDC processes according to our discussion is the
�eld distinguishability at the output of the waveguide. Following our three wave mixing
hamiltonian, type I PDC can be seen as a type II PDC where the signal and idler �elds are
indistinguishable, i.e. they are the same �eld. In type I, therefore, there would be only one
output �eld, that will be referred to as the signal �eld.

The types of PDC are usually de�ned according to the polarization of the output �elds.
In type II, the polarization of signal and idler are orthogonal (as shown in Fig.(5.5)), while
in type I, the polarization of signal and idler is the same, and orthogonal to the polarization
of the classical pump �eld. The vectorial character of the wavevectors makes possible to
ful�ll the phasematching condition in a non-collinear con�guration, and hence it is possible
to generate two non-collinear �elds with the same polarization, which would be a type I
process by de�nition but it would be regulated by the hamiltonian of distinguishable �elds
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Figure 5.5: Quantum state from a Type II SPDC process, pumping a non-linear waveguide
with phasematching φ(ωs, ωi) by a laser with spectrum α(ωp). The state is constituted by a
�nite number of uncorrelated EPR pairs in the supermode basis {hl(ωs), gl(ωi)}. The arrows
indicate the pump, signal and idler �eld polarizations.

(since they are propagating in di�erent directions). In waveguides, the propagation of the
generated �elds is always collinear with the pump direction.

Furthermore, there is an additional type of PDC, the type 0. In type 0 PDC the polar-
ization of all the �elds; pump, signal and idler, is the same. The type 0 case is formally the
same as type I, and all the conclusions drawn about the quantum states of type I PDC apply
exactly the same for type 0. However, for the non-linear materials considered in this the-
sis, which are KTP and LN, the e�ective non-linear coe�cient associated with type 0 PDC
is about 4 times larger than the corresponding coe�cient for type I, presenting therefore a
greater light-matter interaction, or equivalently, a greater level of squeezing under the same
experimental conditions.

5.4.2 Multimode squeezed vacuum state

As in the case of type II, we start the derivation of type 0/I from the hamiltonian describing
this e�ect, that in this case reads:

ĤPDC(t, type0/I) = ε0

∫
drdeffE

+
p (r, t)

(
Ê−1 (r, t)

)2

+ h.c. (5.57)

Noting that this is the type II hamiltonian that has been analyzed with Ê−1 (r, t) = Ê−2 (r, t),
all the arguments given to the derivation of the state for type II are also valid here.
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When performing the Schmidt decomposition of the joint-spectral amplitude for the
type 0/I case, now we obviously �nd that:

Â†l = B̂†l hl(ω) = gl(ω) ∀l (5.58)

where we have already dropped the spatial mode indices because of the dominance of the
single(spatial)-mode case, as with the type II process.

Therefore the quantum state after the waveguide for type 0/I is [107]:

|ψ〉 = exp

(∑
l

λlC
(
Â†l

)2

+ h.c.

)
|0〉 (5.59)

As in the case of type II, we can understand this state by considering a single frequency
mode in the Schmidt decomposition, i.e, dropping the index l:

|ψ〉 = exp

(
C
(
Â†
)2

+ h.c.

)
|0〉 ≡ ŜA(C) |0〉 (5.60)

and now the operator ŜA(C) is called the squeezing operator. The action of the operator on
the creation and annhiliation operator is:

ŜA†(C)ÂŜA(C) = Â cosh(R)− Â†eiϕ sinh(R) (5.61)

As in the type II scenario, we de�ne the quadratures associated with the �eld Â; in this case
there is only a single pair of quadratures:

Q̂A = Â+ Â†

P̂A = i(Â† − Â) (5.62)

and it is easy to check using Eq.(5.61) that the mean value of the quadratures vanish over
the state |ψ〉:

〈Q̂A〉ψ = 〈P̂A〉ψ = 0 (5.63)
while the quadrature variances are given by:

∆Q̂2
A = exp(−2R) cos2(ϕ) + exp(2R) sin2(ϕ)

∆P̂ 2
A = exp(−2R) sin2(ϕ) + exp(2R) cos2(ϕ) (5.64)

We see that, taking arbitrarily ϕ = π, the variance of the QA quadrature goes below
the quantum limit whenever R > 0, while the variance of the PA quadrature increases
in the same amount, so that the Heisenberg limit is saturated ∆Q̂2

A∆P̂ 2
A = 1. As we have

already discussed, this is the signature of a squeezed mode. Indeed, the variances of Eq.(5.64)
are identical to the ones calculated for each single-mode state in the CV EPR pair after the
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Figure 5.6: Quantum state from a type 0 or type I SPDC process, pumping a non-linear
waveguide with phasematching φ(ωs, ωi) by a laser with spectrum α(ωp). The state is con-
stituted by a �nite number of uncorrelated squeezed vacuum states in the supermode basis
{hl(ωs). Ql and Pl are the quadratures associated with the l-th frequency mode.

beamsplitter transformation, which can therefore be identi�ed as two single-mode squeezed
states. Therefore the output state is simply a single-mode squeezed state. In particular, since
it acts on vacuum (the mean value of the quadratures is 0), it is a single squeezed vacuum
state. Again, the value of R determines the level of squeezing in the state.

The generalization to the multimode scenario of Eq.(5.59) is straightforward, since we
have multiple uncorrelated squeezing operators acting on vacuum:

|ψ〉 = exp

(∑
l

√
λlC

(
Â†l

)2

+ h.c.

)
|0〉 =

∏
l

ŜAl (
√
λlC) |0〉 (5.65)

and therefore the state is an ensemble of single-mode squeezed states in the frequency
modes {hl(ωs)}. The level of squeezing in each mode is related to the Schmidt coe�cients
and the intrinsic strength of the interaction,

√
λlC. The state is depicted in Fig.(5.6).
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Chapter 6

Quantum State Engineering in
Waveguides

“ Physics is really nothing more than a search for ultimate simplicity, but so far all
we have is a kind of elegant messiness. ”

– Bill Bryson, A Short History of Nearly Everything
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After calculating the multimode quantum states that appear in a type 0,I and II PDC pro-
cess, now we are ready to motivate their application in the context of this manuscript. The
aim of the project is to prepare clusters states of light, also known as graph states, that can be
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abstractly envisioned as quantum networks. They present a great potential as quantum re-
sources for quantum communication protocols, quantum simulation or measurement-based
quantum computation (MBQC). In this Chapter, we develop a link between the relevant and
controllable physical parameters in a PDC experiment and the theoretical multimode quan-
tum states coming out from the source that we would later shape as graph states. The results
of this Chapter motivated the choice of the PDC waveguide used in the experimental setup,
that will be described in the next Chapter.

6.1 CV Quantum Networks as Graph States

6.1.1 De�nitions

The notion of a Quantum Network1 that will be used in this manuscript is a mathematical
abstraction in which an ensemble of nodes are linked in a regular or complex structure.

In a physical context, the nodes are represented by subparts of a physical system, and
the edges represent their correlations. If those correlations are from a quantum nature, then
the network is, not very surprisingly, called a quantum network. The types of states that re-
semble the network structure are cluster states, also known as graph states [111]. Depending
on how the quantum information is encoded and the nature of the quantum correlations,
the networks can be classi�ed in Discrete Variable (DV) Networks and Continuous Variable
(CV) networks.

These states are highly interesting in a wide variety of �elds in Quantum Information.
Implemented as multimode states, in Quantum Communication and Quantum Computa-
tion, they are at the heart of communication protocols [112, 113, 114], Measurement-Based
Quantum Computation (MBQC), [115, 116], Quantum Metrology [117, 118] and even Quan-
tum Simulation [119].

Since creating the network involves the preparation of a quantum state with an internal
structure that resembles the network, there are di�erent advantages and disadvantages in
using DV or CV quantum networks. In optical setups, one can prepare DV states with a
better �delity, but from a probabilistic process. The CV states, on the other side, are more
sensitive to losses and noise, but their preparation is deterministic, i.e. the state prepara-
tion always succeed. While both types of optical quantum networks are at the edge of our
current knowledge, DV networks have been considerably more implemented to the current
date, mainly in atomic systems [120, 121, 122, 123], but also in optical ones [124, 125, 126].
Impressive results have been obtained in the recent years also in the optical CV framework
[127, 128, 129, 130].

1In Quantum Information, the concept of quantum networks is often associated with the notion of quan-
tum internet [110]. In this manuscript, the quantum network notion and the graph state are completely inter-
changeable concepts.
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In this thesis, we are interested in constructing, from scratch, an optical quantum source
capable of producing con�gurable graph states of light in the CV regime via non-linear
waveguides. The physical system composing the network is the electromagnetic �eld and
hence the name optical graph states. The necessity of the system partition into subsystems
that represent the quantum nodes of the network leads naturally to consider the prepara-
tion of multimode quantum states of light. Any type of electromagnetic mode can serve as
the representation of the nodes, although it seems experimentally natural to take the pure
spatial or temporal modes of the light �eld, under the the spatial and temporal decoupling
approximation made in Chapter 3, section 3.3.1.

Spatial modes, in particular, could be used to represent the nodes of the network. How-
ever, if di�erent paths are needed for de�ning the di�erent spatial modes, the network con-
�gurability could be compromised, although di�erent solutions to this could be found in
the next years. On the other hand, preparing a single beam with correlations between its
internal spatial modes would also be possible, but avoiding spatio-temporal couplings with
current waveguide or bulk crystal technologies would be in general a di�cult task, which
in turn would deteriorate the quality of the states and reduce the state �delity [131].

We will therefore use temporal/frequency modes as the representation of the nodes of
the network. As we have seen in Chapter 5, in the context of a waveguide structure, the
spatio-temporal coupling can be modelled and discarded if the waveguides are su�ciently
single(spatial)-mode. Following the analysis of the states derived in that Chapter, we �rst
associate each node of the network with a frequency mode from the supermode basis:

{Nodes} −→ {hl(ωs)} (6.1)

6.1.2 Edges
The correlations between the frequency modes constitute the entanglement links in our
description of the quantum network. In order to understand the link and the con�gurability
of the network, it is worth to see the basic building block of the network, considering only
two nodes. The generalization toN nodes would be straightforward once the 2-node cluster
is described.

6.1.3 2-node graph
The simplest version of our quantum network is the case in which we have 2 nodes con-
nected by a single link, corresponding to a 2-mode optical cluster state in our context.

In the 2-node cluster state, two frequency modes h(ωs) and g(ωi) present CV quantum
correlations of the EPR-type2. This state is a two-mode squeezed state that was described
and analyzed in Chapter 5, section 5.3.1. As we have already seen, the amount of their

2To be completely rigorous, the CV EPR pair is not exactly the 2-node graph, (they di�er slightly in the
unitary performed to the single squeezed states), but the nature of its correlation is the same.
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entanglement is measured by the amount of squeezing in the quadratures on the mode
corresponding to a basis change by the beamsplitter transformation of Eq.(5.46). The quan-
tum state after the beamsplitter is therefore composed by two uncorrelated single-mode
squeezed states, Fig.(5.4).

We stress here that the reverse process is also true, as stated above, and hence two single-
mode squeezed vacuum states mixed in a balanced beamsplitter generates a CV EPR pair that
can be seen as a CV quantum network with two nodes. This fact makes the generalization
to generating multiparty EPR-like correlations in N nodes straightforward.

6.1.4 N-node Graph State
Mathematically, an ideal N node Graph state is de�ned by applying N CZ entangling gates
via the operator ĈZ(A), whereA is the adjacency matrix that de�nes the edges of the graph,
to N in�nitely squeezed state modes in the p quadrature, |0〉⊗

N

p [132, 133, 134]:

|Ψ〉 = ĈZ(A) |0〉⊗
N

p =
∏

1≤i<j<N

exp (iAij q̂i ⊗ q̂j) |0〉⊗
N

p (6.2)

and they are typically studied with the use of the set of nulli�er operators, {δ̂i} [135, 136,
137]:

δ̂i = p̂i −
∑

j∈Ne(i)

q̂j such that δ̂i |Ψ〉 = 0 (6.3)

In practice, graph states are imperfect, as in�nite levels of squeezing are unphysical, and
the quality of the graph state is given by the variance of the nulli�er operators. Instead of
applying CZ gates, which are experimentally hard to implement, graph states can also be
obtained from linear optics and squeezing, as it is the case for every gaussian state due to
the Bloch-Messiah reduction [138, 139, 140, 141]. The state can be therefore prepared from
a set of N single-mode squeezers and optical interferometry.

In particular, and following our discussion on the 2-mode EPR state, we prepare a state
composed of N uncorrelated single-mode squeezed vacuum states with di�erent levels of
squeezing {

√
λl}, associated with frequency modes {hl(ω)}, l = 1, 2, ...N . We then de�ne

the vector h as the column vector containing all the frequency modes:

h = (h1(ω), h2(ω), ..., hN(ω))T (6.4)

If we perform a passive unitary operation to the state, represented by the lxl matrix U , then
the new frequency modes after the transformation are simply g = Uh, and we will obtain
some quantum correlations (in the form of EPR-like correlations) between some modes in
the new basis, forming the particular graph state if its nulli�ers are well-de�ned3. This

3Not all linear combinations of the uncorrelated nodes creates a graph state, since the nulli�ers should
have a particular mathematical structure. However, the contrary is true, all graph states can be obtain by a
certain linear combination of the uncorrelated nodes.
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Figure 6.1: Schematics of the generation of a N -mode cluster state from a multimode inde-
pendent squeezed vacuum state and a passive unitary operation U . For more information
see text.

process is depicted in Fig.(6.1).
The topology of the resulting network depends on the unitary U that is applied to the

input multimode squeezed state, and the strength of the correlations in the output graph
state is a function of the squeezing levels of the original input �elds composing the initial
state, {

√
λl}.

Physically speaking, a passive unitary operation is implementable by passive linear op-
tics, i.e. by constructing a multiport interferometer. This means that we can experimentally
implement any particular network topology by �rst preparing the multimode squeezed state
in the supermode basis h and then making the light pass through the multiport interferom-
eter implementing the unitary U . The �nal network’s nodes can be addressed by measuring
the modes in the supermode basis h after the interferometer.

Alternatively, we can equivalently implement the network by preparing the multimode
squeezed state and directly measure it in the new basis g = Uh. This approach is more
appealing from the experimental point of view, since the network topology could be easily
manipulated because there would be no necessity of constructing di�erent multiport in-
terferometers every time a di�erent network is to be considered, but simply changing the
measurement basis. The basis change can be achieved by calculating the new modes g de�n-
ing the desired network topology and shape accordingly the pulses of a Local Oscillator for
homodyne measurements of the network. In this way, a con�gurable graph state is achieved
[142].
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This discussion leads to the conclusion that a CV Graph state source in the frequency
domain can be implemented by preparing multimode squeezed vacuum states and measure
them in a speci�c mode basis. We have seen that these states can be directly generated from
Spontaneous Parametric Down Conversion in non-linear waveguides, which was the topic
of Chapter 5. For type 0 and type I, the multimode state is already a set of independent
squeezers, (it is already in the supermode basis), while for type II the state is a set of EPR
pairs that are uncorrelated between them. For this reason, in the type II case, an extra
step of interference between the EPR pairs of signal and idler in a balanced beamsplitter is
necessary to recover the supermode basis of uncorrelated single-mode squeezers. For this
interference to be perfect, signal and idler �elds should then be made indistinguishable.

6.2 Designing the Multimode Quantum States conform-
ing the Graph States

A question that arises naturally from our discussion is what could be the in�uence of di�er-
ent physical parameters in a realistic experimental setup on the graph states. More precisely,
how the features of the graph state depend on the experimentally controllable degrees of
freedom of the waveguide and pump �eld. The tuning of these di�erent degrees of freedom
can be referred to as quantum state engineering. The theoretical work regarding this issue
lead to a publication during this thesis [143].

6.2.1 Multimode quantum state features
The �rst thing that we want to do is to identify both the relevant degrees of freedom that
can be controlled experimentally and the desired intrinsic properties of the generated state.

We recall here that, because of the spatial single-mode approximation in the waveguide
(justi�ed in Chapter 5), the output states are multimode frequency modes. The joint spectral
amplitude, containing all the information about the spectral properties of the states, can be
written in this case as:

J(ωs, ωi) = α(ωs + ωi)φ(ωs, ωi) =
∑
l

√
λlhl(ωs)gl(ωi) (6.5)

where α(ωs + ωi) is the pump spectrum, φ(ωs, ωi) is the phasematching function, and the
sum on the last term is the Schmidt decomposition of the two-dimensional function. The
�rst �gure of merit of our graph will be the so-called cooperativity or Schmidt Number [144],
de�ned as:

K =
1∑
l λ

2
l

(6.6)

This quantity counts the e�ective number of frequency modes present in the multimode
state, i.e. it counts the e�ective number of supermodes. We call it e�ective because we take
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into account the fact that some pair of modes would present less correlations than others.
It is a concept inherited from the entanglement of the photon pairs from the DV point of
view [145].

We can intuitively see this by looking at two examples: if the Schmidt number K is
equal to 1, then there is only one Schmidt coe�cient in the decomposition of Eq.(6.5) that is
consequently equal to 1 and it is clear that there is only one pair of frequency modes (in type
II) or a single squeezed mode (in type 0/I). The state when K = 1 is a separable state and
hence presents no correlations. In the case that there is a number N of Schmidt coe�cients
with equal weight in the decomposition, then λl = 1/N in order to ful�ll

∑
l λl = 1 and

therefore the Schmidt number isK = N and every mode is contributing in the same amount
to the total state correlation. In any other arrangements of Schmidt coe�cients, the Schmidt
number K would be smaller according to Eq.(6.6). We therefore have D ≥ K ≥ 1 where
D is the dimensionality of the state, i.e. the number of Schmidt coe�cient in the sum of
Eq.(6.5).

In the case of type 0 or type I SPDC, the two main �gures of merit in the simulations
are the Schmidt number, K , and the distribution of Schmidt coe�cients, {λl}. The �rst
accounts for the number of nodes in the network and the second for the distribution of the
squeezing levels in the multimode state.

In the case of type II, we need to make signal and idler �elds interfere in a beamsplitter
in order to recover the single-mode squeezers that can generate the graph states, and hence
we have an extra parameter that should account for the similarity of the pairs of frequency
modes {hl(ωs), gl(ωi)}. Naturally, this parameter will be the overlap integral between the
frequency mode pairs that we will compute in our simulations, de�ned as:

Ok =
1

N

∣∣∣∣∫ dωh∗k(ω)gk(ω)

∣∣∣∣ N =

√∫
dω |hk(ω)|2

∫
dω |gk(ω)|2 (6.7)

where N is a normalization constant assuring that Ok ∈ [0, 1]. Ok therefore measures the
similarity of the EPR pairs associated with the modes hk(ωs) and gk(ωi). Only if hk(ω) =
gk(ω) the overlap integral Ok = 1 and the interference between this pair of modes in the
beamsplitter would be perfect. In any other case, Ok < 1, the visibility in the interference
fringes would not be 1, and the �delity of the �nal pair of single-mode squeezed states after
the beamsplitter would decrease.

6.2.2 Controllable degrees of freedom

For answering the question of what are the main degrees of freedom that are controllable
in the experiment we look again at Eq.(6.5). The physical variables appearing in the joint-
spectral amplitude are the main relevant quantities that a�ect the state.
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First of all, we will consider a gaussian pump spectrum4, de�ned as the (square-normalized)
function:

α(ωs + ωi) =
1√√
πwp

exp

(
−(ωp,0 − (ωs + ωi))

2

2w2
p

)
(6.8)

where we have de�ned the pump central frequency ωp,0 and the pump spectral width wp,
that is simply the standard deviation of the gaussian.

Therefore, our �rst experimental degree of freedom is the pump width wp, since it com-
pletely de�nes the pump spectrum.

On the other hand, we recall the expression for the phasematching function:

φ(ωs, ωi) = sinc

(
L

2
∆β(ωs, ωi)

)
(6.9)

where L is the waveguide length, that will be added as a degree of freedom, and ∆β(ωs, ωi)
is the mismatch in the propagation constants:

∆β(ωs, ωi) = βp(ωs + ωi)− βs(ωs)− βi(ωi) +
2π

Λ
(6.10)

In our simulations, we will not consider the poling period Λ as a degree of freedom, because
we have the additional constraint of ful�lling phasematching for the central frequencies in
order to have an e�cient process, i.e. the poling period is �xed to the value:

Λ =
2π

βs(ωs,0) + βi(ωi,0)− βp(ωs,0 + ωi,0)
(6.11)

where ωj,0, j = p, s, i, are the central frequencies for the pump, signal and idler �elds. It is
easy to check with Eq.(6.10) and Eq.(6.11) that the poling period is such that ∆β(ωs,0, ωi,0) =
0, i.e. the central frequencies are phasematched.

At this point, we will model the dispersion relations βj(ω), as :

βj(ω) =
ω

c
nj(ω) (6.12)

where nj(ω) is the index of refraction associated with the polarization of pump, signal or
idler �elds.

Hence, potentially any variable that a�ects the index of refraction can be a degree of free-
dom in our calculation. We will consider the wavelength5, λ, temperature, T and waveguide

4In general, one could do pump shaping to change the spectrum of the pump and hence change the quantum
state after the waveguide. In this work, however, we restricted ourselves to the gaussian pump spectrum, since
it is approximately the spectrum directly coming from our laser source.

5The frequency dependence and the wavelength dependence are linked by the relationship between the
two variables:

ω =
2πc

λ
(6.13)
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characteristics as the main dependences of the index of refraction. The latter includes the
waveguide section size, with height h and widthw, and spatial mode order inside the waveg-
uide, de�ned by two integer numbers n and m (for more details about the spatial modes in
waveguides see Chapter 4). For the modelling of the index of refraction with the waveguide
characteristics we will use the so-called metallic waveguide approximation [146], in which
one assumes the waveguide to be surrounded by perfectly conducting edges. The reason is
that in this way we obtain an analytical expression of the index of refraction6

nj(λ, T, h, w, n,m) = nj(λ, T ) +

(
λ
n+ 1

2h

)2

+

(
λ
m+ 1

2w

)2

(6.14)

and nj(λ, T ) is the index of refraction associated with polarization j in the bulk crystal. For
uniaxial crystals, like LN, there will be two indices of refraction and hence two functions
of the form of Eq.(6.14), whereas for biaxial crystals, like KTP, there will be three indices of
refraction of the form of Eq.(6.14). The functions nj(λ, T ) are called the Sellmeier Equations
of the material, that are empirical equations whose coe�cients are found experimentally
under certain conditions. For LN, the Sellmeier equations used in this work can be found in
[148], while for KTP, the they can be found in [149]. The association between the indices of
refraction in uniaxial or biaxial crystals and the indices for pump, signal and idler are given
by the Kleinman symmetry (see Appendix B), allowing only certain con�gurations of input
and ouput polarizations for the di�erent PDC processes.

Furthermore, because of the approximation of single-mode waveguides that we justi�ed
in Chapter 5, we will always consider n = m = 0 for Eq.(6.14) in our simulations.

In Fig.(6.2) we show the schematics for a single simulation of the graph state from the
controllable degrees of freedom considered in this text.

6.2.3 Context for our simulations
In the following sections we will show the numerical simulations performed as a function
of the controllable degrees of freedom for SPDC type 0,I and II. These simulations helped us
to choose the non-linear waveguides suitable for the expected multimode quantum states.
Since we want to characterize the quantum state by the multimode squeezing in the super-
mode basis, we will study in quite detail the conditions for �eld indistinguishability, which
is necessary to obtain the set of uncorrelated single-mode squeezed states. In the case of
type 0 and I, this feature is already given naturally if one works in the degenerate case. For
type II, however, signal and idler �elds experience di�erent dispersion along the waveg-
uide because of their di�erent polarizations, which results in di�erent supermode spectral
widths. To recover indistinguishability, we would need to make the interference between
signal and idler �elds, and therefore the pairs of supermodes should be as similar as possible

6As we have stated, other numerical methods can also be used to model the index of refraction, like Mar-
catili’s method [87] or �nite-element methods [147].
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Figure 6.2: Schematics of a simulation of a graph state from the controllable degrees of
freedom. For more information see text.

for good visibility, which can be obtained under a certain con�guration, that we will call
the Symmetric Group Velocity Matching (SGVM) condition. Along these simulations, we
will work with PPKTP waveguides at telecom wavelengths (λ = 1550 nm, although the
code is valid for any non-linear material and central wavelength. For practical reasons that
will be outlined, the �nal experimental con�guration that we took was type 0 SPDC in a
15 mm long PPKTP waveguide, with dimensions assuring single(spatial)-mode propagation
(average waveguide height and width of about 3 µm).

6.3 Type 0 and Type I Simulations

The �eld indistinguishability discussed in Chapter 5 for type 0 and type I SPDC makes the
joint-spectral amplitude to be symmetric under the exchange of signal and idler �elds, i.e:

J(ωs, ωi) = J(ωi, ωs) (6.15)

Given the expression of the joint-spectral amplitude of Eq.(6.5), the pump spectrum is al-
ready symmetric under the exchange of signal and idler, since it is a function of the sum,
α = α(ωs + ωi). Hence, the condition reduces to φ(ωs, ωi) = φ(ωi, ωs), and using Eq.(6.9),
the mismatch should ful�ll ∆β(ωs, ωi) = ∆β(ωi, ωs).

To check the dispersion properties, we can expand the mismatch in the propagation
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constants in a Taylor series around the central frequencies up to �rst order:

∆β(ωs, ωi) = ∆β(ωs,0, ωi,0) + γs(ωs − ωs,0) + γi(ωi − ωi,0) + ... (6.16)

where the coe�cients are de�ned as:

γs/i =
∂βp
∂ω

∣∣∣
ωp,0

−
∂βs/i
∂ω

∣∣∣
ωs,0

(6.17)

Given the de�nition of the group velocity as vg(ω) = ∂ω/∂β, we directly see that the
coe�cients of the Taylor expansion are directly related to the group velocities of the �elds
as7:

γs/i =
1

vg,p(ωp,0)
− 1

vg,s/i(ωs/i,0)
(6.18)

We recall that since the �elds are indistinguishable, in type 0/I it should be the case that
ωs,0 = ωi,0 = ωp/0/2 by conservation of energy. Hence, for type 0/I, each linear coe�cient
is equal for signal and idler by symmetry, γs = γi ≡ γ.

Additionally, as discussed above, the constant term in the Taylor series is ∆β(ωs,0, ωi,0) =
0 by choosing the poling period of Eq.(6.11).

For femtosecond lasers and typical non-linear materials, the second or higher-order
terms in the Taylor series are small compared to the linear leading term in the frequency
bandwidth of the laserwp (see Appendix C for the calculation in KTP), and therefore we can
approximate the mismatch as:

∆β(ωs, ωi) ' γ(ωs − ωp,0/2) + γ(ωi − ωp,0/2) = γ(ωs + ωi)− γωp,0 (6.19)

This means that, for type 0/I, the phasematching amplitude is not only symmetric, but it is
also a function of ωs + ωi up to linear order in the mismatch:

φ(ωs, ωi) ' φ(ωs + ωi) Type 0/I (6.20)

A physical consequence of this mathematical fact is that the supermode’s number and band-
width gets larger for type 0/I with respect to type II, as we will argue in the following:

The joint-spectral amplitude, being a two-dimensional function, can be represented as
a surface in the plane de�ned by the axis ωs and ωi. It is useful to separately represent the
pump spectrum and the phasematching functions in that plane, since in the intersection
of these two functions the JSA would take non-zero values. By re�ection symmetry, any
function f of the form f = f(ωs + ωi) would make an angle of -45o with respect to the
horizontal axis of the plane. Since we have shown that for type 0/I, both the pump spectrum
and the phasematching are functions of the form f(ωs+ωi), and both are centered at ωs,0 =

7In the same way, the second order coe�cients in the Taylor expansion would be related to the Group
velocity dispersion.
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Figure 6.3: General example of the functional forms of pump spectrum, phasematching
function and joint-spectral amplitudes in the (ωs, ωi) plane. a) Type 0/I case, where the
phasematching function is approximately a function of the sum ωs + ωi. This leads to a
great intersection area between pump and phasematching and hence a larger number of
spectrally wider supermodes. b) Type II in the SGVM condition, where the angle of the
phasematching function is reversed and hence the interesection area is smaller, leading to
fewer and narrower supermodes.

ωi,0 = ωp,0/2, then they will present a large non-zero value intersection area along the line
ωs+ωi = ω0,p. The pump and phasematching functions starts diverging one from the other
when the quadratic term in Eq.(6.16) starts being comparable to the linear term, so the
phasematching function acquires some parabolic curvature in the plane. We depicted this
situation in Fig.(6.3) a). The curvature of the phasematching function at frequency values
far from the central frequency can be better observed in Fig.(6.6).

As a consequence, the number of modes in the Schmidt decomposition is typically large
(of the order of hundreds), and the supermode’s spectral widths are also large (they should
eventually become as large as the projection of the JSA into a given frequency axis). This
poses two practical problems: in the �rst place, only a small fraction of modes will be ex-
perimentally accessible from a type 0/I process. This is due to the nature of the homodyne
measurements, in which the quantum signal is mixed with a strong local oscillator (LO).
Obviously, modes whose bandwdith are bigger than the LO bandwidth will not mix well
in the beamsplitter (low visibility), and hence they will eventually become impossible to
be addressed experimentally. On the other hand, the total amount of squeezing is shared
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Figure 6.4: Schmidt number as a function of the pump spectral width and waveguide length
in type 0 for a (3x3) µm KTP waveguide. Along the dash lines the value of K is constant.

between all the modes, following the Schmidt distribution {λl}, and therefore the amount
of squeezing per mode could be so low in some cases that the experimental losses would
make the quantum nature of the state inaccessible.

Despite this, the typical e�ective non-linear coe�cients in processes of the type 0 are
larger than those of type I or II, and so the total amount of squeezing is expected to be
larger. For example, in KTP, the non-linearity of type 0 is about 5 times bigger than the
non-linearities associated with type I and type II. Additionaly, contrary to the type II case,
the output quantum state is already a multimode squeezed vacuum and therefore we do not
need to mix the signal and idler �elds after the waveguide to recover a single set of squeezed
supermodes. The signal/idler interference is an operation that could be considerably lossy
depending on the overlapsOl de�ned in Eq.(6.7). This means that we can �nd some con�g-
urations in type 0 and type I that are experimentally more favorable than those of type II in
a practical scenario and for our experimental purposes.

6.3.1 Simulations Results

We present here the simulation results for KTP waveguides for the type 0 and type I pro-
cesses. In the simulations, the temperature was set to T = 70 oC, providing poling periods
of Λ = 13.4 µm and Λ = 5.5 µm for type 0 and type I respectively, giving phasematching at
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Figure 6.5: Schmidt number as a function of the pump spectral width and waveguide length
in Type I for a (3x3) µm KTP waveguide. Along the dash lines the value of K is constant.

central wavelengths from λp,0 = 780 nm to λs,0 = 1560 nm under the metallic waveguide
approximation.

For the simulations shown in this section, the waveguide dimensions were set to h =
w = 3 µm, since these are the average single-mode waveguide dimensions at telecom wave-
lengths. In fact, in the experiment that will be shown in the next Chapter, the actual waveg-
uide dimensions took those values.

For KTP and the de�nition of the x, y, z axis de�ned along this thesis, the Kleinmann
symmetry allows for a type 0 process where all the �elds (pump, signal and idler) have
vertical polarizations (along z). The type I case corresponds to pump polarized in the vertical
direction, and signal and idler �elds polarized horizontally (along y).

Fig.(6.4) shows the dependence of the Schmidt number on the waveguide length and
the pump spectral width for type 0. We can see that the number of modes grows with
both variables in almost all the con�gurations, except when both are small. This is because
the waveguide length controls the phasematching width, that should be compared with the
pump width. The interplay between the two provides the symmetry of the JSA that re�ects
into the Schmidt number value.

Fig.(6.5) shows the same relationship for the Type I case, where the same conclusions
can be drawn. Note that the total number of modes is bigger with respect to the type 0 case
for KTP. Since the non-linear coe�cient is smaller for Type I, the squeezing per mode is
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expected to be the lowest between all the possible con�gurations.

Figure 6.6: Simulation of the type 0 joint-spectral amplitude of a non-linear waveguide with
the experimental parameters. For more information see text.

(a) (b)

Figure 6.7: Simulation of a type 0 waveguide. The experimental parameters where L = 15
mm, h = w = 3 µm, and wp = 2 nm. (a) Schmidt coe�cients distribution. (b) First three
frequency modes.

We remark here that it would be interesting to also see how the spectral width of the
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supermodes behave under changes of waveguide length and pump width. However, for
type 0 and I, typically there is a lot of degeneracy in the Schmidt coe�cients. As a conse-
quence, sometimes, the numerical singular value decomposition that performs the Schmidt
decomposition do not assign correctly the �rst mode to the �rst Schmidt coe�cient, and
even if we �nd it along the distribution of coe�cients, sometimes the mode is a superposi-
tion of di�erent modes due to degeneracy. This is however not the case for the simulation
just shown in Fig.(6.7). This numerical problem makes it harder to show a precise plot with
the simulation results in those cases. Nevertheless, it can be generally said that we roughly
obtained narrower modes with broader pumps and longer waveguides for both type 0 and
I.

Finally, we show the simulation with the experimental con�guration we have chosen for
the experiment described in the next Chapter. We chose a L = 15 mm PPKTP waveguide,
with dimensions of approximately h = w = 3 µm, poling period supporting type 0 SPDC,
and pumped with light showing a gaussian spectrum with width wp ' 2 nm. The resulting
joint-spectral amplitude is depicted in Fig.(6.6), while the Schmidt coe�cient distribution
and the �rst three supermodes are shown in Fig.(6.7). We chose those values based on the
Schmidt number and supermode’s width from a set of numerical type 0 and I simulations
like the one shown here.

6.4 Type II Simulations

6.4.1 SGVM Condition

In the type II case, the �elds are distinguishable, signal and idler present orthogonal polar-
izations, and hence their respective dispersion relations are di�erent, βs(ω) 6= βi(ω).

Since we need to make an interference between signal and idler after the waveguide in
order to recover a single set of supermodes representing the nodes of the graph, we would
require that the two �elds are the most indistinguishable possible in order to increase their
interference visibility. In central frequency, we can reach the degeneration condition when
ωs,0 = ωi,0 = ωp,0/2, that can be achieved by quasiphasematching with an appropriate
poling period. Assuming the waveguide to be spatially single-mode, we will be spatially
limited by the di�erence between the spatial modes for horizontal and vertical polarization.
For the fundamental mode, however, the overlap between the spatial modes for signal and
idler is expected to be high (about 97% according to spatial mode simulations of the (3x3)
µm KTP waveguides). Furthermore, one can use a PBS after the waveguide in a collinear
con�guration in order to match signal and idler polarizations.

Therefore, we require the spectral properties of signal and idler to be as close to each
other as possible. In particular, the overlap between the supermodes {hl(ωs)} and {gl(ωi)}
should be close to 1.

One can achieve this condition by symmetrizing the joint-spectral amplitude, which in
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turn means to symmetrize the mismatch ∆β(ωs, ωi) under the exchange of signal and idler.
Looking at the Taylor expansion of the mismatch of Eq.(6.16), it is clear that the condition
γs = γi symmetrize the mismatch up to �rst order, but this condition is obviously physically
impossible since βs(ω) 6= βi(ω). However, if we impose that γs = −γi ≡ γ, then:

∆β(ωs, ωi) ' γ(ωs − ωi) (6.21)

and hence the mistmach is antisymmetric under the exchange of signal and idler, ∆β(ωs, ωi) =
−∆β(ωi, ωs) up to �rst order in the Taylor expansion. Since the phasematching func-
tion is an even function on the variable ωs − ωi, (see Eq.(6.9)), then, under this condition,
φ(ωs, ωi) = φ(ωi, ωs), and in turn the joint spectral amplitude is symmetric under exchange
of signal and idler �elds. The spectral supermodes under this condition are identical and
their intereference would be spectrally perfect. The joint-spectral amplitude can be written
as:

J(ωs, ωi) = α(ωs + ωi)φ(ωs − ωi) (6.22)
Note that the condition we have found for symmetrization of the joint-spectral ampli-

tude, γs = −γi can be expressed as a condition on the group velocities of pump, signal and
idler, by using the de�nition of the coe�cients in Eq.(6.18):

1

vg,p(ωp,0)
=

1

2

(
1

vg,s(ωp,0/2)
+

1

vg,i(ωp,0/2)

)
(6.23)

that is, that the inverse group velocity of the pump is the mean of the inverse group velocities
of signal and idler, all of them evaluated at the central frequencies. We call this condition
the Symmetric Group Velocity Matching (SGVM) condition [150].

This scenario is the complementary case with respect to type 0/I. A function of the form
f = f(ωs − ωi) will make an angle of +45o with respect to the ωs axis. Therefore, both
functions α(ωs + ωi) and φ(ωs − ωi) are perpendicular in the (ωs, ωi) plane, and their in-
teresection area is minimized. Since this area is smaller than the type 0/I case, we therefore
expect fewer and narrower supermodes under the same conditions. This situation is de-
picted in Fig.(6.3) (b).

This con�guration is of great interest because it opens the possibility of having a graph
state in which all the modes are accessible, and therefore all the squeezing could be shared
between experimentally measurable supermodes, making full use of the multimode state.

We remark that, for the anti-symmetrization condition to hold, the higher order terms
in Eq.(6.16) should be much smaller than the linear term. This is the case in our non-linear
material, KTP, under the typical frequency bandwidths of the experiment. An analysis of
the higher order terms in our case can be found in Appendix C.

6.4.2 SGVM wavelength
In general, there is a unique wavelength in which the SGVM condition holds, that we will
denote as λSGVM. For bulk KTP, this natural wavelength is around 1570 nm.
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Figure 6.8: SGVM wavelength as a function of waveguide height and width for KTP. The
green area indicates the region where λSGVM ∈ [1549, 1551] nm. Temperature was set to
T = 70 oC.

However, it is evident that we want this wavelength to coincide with the central wave-
length of our signal and idler modes, i.e. we want λSGVM ' 1550 nm8.

Since the SGVM condition depends only on the dispersion properties of the material (in
particular the group velocities), we can tune it by changing two parameters, the temperature
and the waveguide dimensions. Temperature, however, produces very little changes on
the SGVM wavelength in our simulations, limiting its e�ect. In particular, for KTP, our
simulations give a change of around 4 nm in λSGVM for a change of 230 oC in temperature.
We then conclude that it seems more reasonable to �x temperature to the value giving
phasematching at central frequencies and then see the tuning that we can obtain with the
waveguide dimensions.

Fig.(6.8) shows the SGVM wavelength as a function of the waveguide width and height
for KTP in the metallic waveguide approximation [82]. As the waveguide size increases,
the surface �attens, making apparent the diminishing impact of the dispersion due to the
waveguide characteristics, which is expected looking at Eq.(6.14) and letting (h,w) → ∞.

8Here, the calculation was done for λ = 1550 nm instead of λ = 1560 nm because at that point of the
thesis we did not have the precise value of the central frequency of our laser. However, the conclusions drawn
in this Chapter are independent of this di�erence.
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Pump
Spectral Width

Waveguide
Dimensions

Waveguide
Length

Schmidt Number Minimum and
linear growth ∼ Independent Directly

proprotional

Mode FWHM Directly
proportional

Reverse for
signal and idler

Inversely
proportional

Overlap Independent SGVM condition Independent

Table 6.1: Columns are input variables, rows are the output features of the graph. Each
element expresses the behavior of the output with respect to the input variable.

The green area in this �gure marks values of λSGVM that lie in the interval between 1549 and
1551 nm. Therefore, we conclude that to work at 1550 nm in KTP, the waveguide should have
a size of about 9 by 9 µm in width and height under the metallic waveguide approximation.

We emphasize that the precise values of the waveguide dimensions depends heavily on
how we model the index of refraction for the waveguides. Better modeling of the waveg-
uides, for example with sophisticated �nite element methods [151, 152], would give more
precise values. The point of this section, however, is to show that in any case, a change in
the characteristics of the waveguide can be found in which the λSGVM could be engineered
to a desired value.

6.4.3 Simulations Results
Table 6.1 shows a summary of the dependencies between input and output variables as
de�ned in this Chapter. It could be used as a guide depending on the type of multimode
state that is desired.

All of the results of Table 6.1 can be understood from Fig.(6.9). As mentioned before,
the waveguide length controls the width of the phasematching function (the longer the
waveguide, the narrower the phasematching). This width has to be compared with the
pump width, giving a �rst �gure of merit. The second �gure of merit is the angle between
the phasematching and the pump, that can be controlled with the waveguide dimensions.
If the functions are perpendicular, then the projection on the frequency axis is identical for
signal and idler, and we obtain the SGVM condition. This is the reason why the SGVM
condition depends on the waveguide dimensions. Furthermore, if the ratio between the
pump width and the phasematching width is close to unity, then the number of modes in
the Schmidt decomposition will tend to 1 as well.

Note that if one is able to �x the angle with the waveguide dimensions so that we obtain
the SGVM condition, then the ratio between the widths will giveK ' 1 when both functions
have the same width to higher values when changing the waveguide length or the pump
width. Hence, a nice control of the supermodes, and hence on the number of nodes, can be
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Figure 6.9: General example of a JSA function in Type II, highlighting the impact of the
waveguide length L, pump spectral width, wp, and waveguide dimensions (w, h). For more
details see text.

performed. If the angle is not perpendicular, the behavior of the number of modes with the
ratio between widths will be the same, but the minimum of K would be higher in this case,
and the supermodes widths for signal and idler would be di�erent. This is the intuition that
allows to understand all the results that will be shown next.

The rest of this section will explore Table 6.1 in detail. The range of values adopted for
the input variables is the following: we consider pump widths from 1 to 12 nm, waveg-
uide dimensions between 4 and 10 µm, and waveguide lengths between 5 and 30 mm. The
pump width can be modi�ed by tuning the pump �eld that enters the waveguide, while the
waveguide dimensions and length are �xed during the waveguide fabrication process.

For the sake of clarity, we will refer to the elements of Table 6.1 like matrix elements.
For instance, the element 2.1 refers to the second row and �rst column, which corresponds
to the dependence of the mode FWHM on the pump width.

First row of Table 6.1, the Schmidt number : Fig.(6.10) (a) shows the Schmidt number as a
function of pump width for di�erent waveguide dimensions (elements 1.1 and 1.2 of Table
6.1). The Schmidt number, and thus the number of modes, grows linearly with the pump
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(a) Element 1.1 and 1.2, Table 6.1. (b) Element 1.3, Table 6.1.

Figure 6.10: Schmidt number as a function of: (a) pump width for di�erent waveguide di-
mensions, (b) waveguide length for di�erent pump functions.

width, while the waveguide dimensions have almost no in�uence. The waveguide length
was set to L = 10 mm for this simulation. This result can be interpreted in the following
way: as the pump width increases, the pump envelope does too, and hence its intersection
with the phasematching envelope. This creates frequency correlations between signal and
idler �elds and hence increases K. This is true because in this set-up the pump envelope is
bigger at any time than the phasematching envelope. In general, there would be a minimum
value of K when both envelopes have equal widths.

Fig.(6.10) (b) shows the Schmidt number as a function of the waveguide length for di�er-
ent pump widths. In this case we are changing the phasematching envelope, and we observe
the minimum value of K when both the pump envelope’s and the phasematching envelope’s
widths are equal. This is why we see that the waveguide length in which the minimum value
is reached depends on the pump width. Also, as mentioned above, the minimum value itself
would approximately equal 1 when the intersection of α and φ was at 90o, that is, at the
SGVM condition. This is interesting for applications in single photon sources, where K =
1 ensures maximum purity of heralded single photons (see for example [153]). After the
minimum point, increasing the waveguide length decreases the width of the phasematching
envelope, and so we are e�ectively in the same situation as in Fig.(6.10) (a), and we observe
the same type of behavior, which is a linear increase in K . It is important to note that in
Fig.(6.10) (b) we see that one can control the slope of the increasing linear regime by con-
trolling the pump width, which opens the possibility of modifying the number of modes
just by adjusting the pump �eld. In a realistic scenario, the maximum waveguide length
would be limited by the optical losses within the waveguide and the size of the available
substrate material. State of the art KTP waveguides have losses of 0.25 dB/cm, which would
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(a) Element 2.1, Table 6.1. (b) Element 2.2, Table 6.1.

(c) Element 2.3, Table 6.1.

Figure 6.11: First mode FWHM as a function of: (a) pump width, (b) waveguide dimensions,
(c) waveguide length.
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(a) Element 3.1, Table 6.1. (b) Element 3.3, Table 6.1.

Figure 6.12: Overlap of the �rst 6 Schmidt temporal modes as a function of: (a) pump width,
(b) waveguide length.

point toward waveguide lengths in between 10 and 20 mm. This is in accordance with the
maximum size of KTP substrates of roughly 30 × 30 mm2.

Equivalently, the Schmidt number increases rapidly by decreasing the waveguide length
before the minimum, because in that case the 1/L dependence on the phasematching width
is more important, creating strong wiggles in the sinc function in Eq.(6.9), and in turn pro-
ducing strong correlations between the output �elds, hence increasing K .

Second row of Table 6.1, the modes bandwidth: we remark that, given that the supermode
solutions are approximately a family of Hermite-Gauss modes9 , it su�ces to compute the
mode FWHM of the �rst mode (that is approximately Gaussian), as the rest would grow in
width as

√
n, where n is the mode order. Therefore knowing the �rst FWHM is su�cient

to approximately characterize all of them. Fig.(6.11)(a) shows the width of this mode as a
function of pump width, which corresponds to the element 2.1 in Table 6.1. The waveguide
dimensions were set to w, h = 6 µm, intentionally away from the SGVM condition. We can
see that indeed signal and idler modes have di�erent widths for all pump widths and hence
their interference would not be perfect with these waveguide dimensions, as expected from
the results of the SGVM analysis.

Fig.(6.11)(b) shows the modes FWHM as a function of the waveguide dimensions for
pump widths of 2 and 12 nm. Both signal and idler modes coincide at waveguide dimensions
near 9 µm (we considered square waveguides), as expected from the SGVM analysis before.
We show the plots for two di�erent pump widths to remark again that the similarity of

9Assuming a gaussian phasematching, the Hermite-Gauss set is exactly the solution. For a sinc phase-
matching, the modes are close, but in general they present some wiggles at the Hermite-Gauss wings inherited
from the sinc function. See the output modes depicted in Fig.(5.5).
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Figure 6.13: Overlap of the �rst 6 Schmidt temporal modes as a function of waveguide di-
mensions. Element 3.2 in Table 6.1.

signal and idler modes is independent of the pump width, as it is related to the waveguide’s
phasematching function. These relations correspond to the element 2.2 in Table 6.1.

Finally, Fig.(6.11)(c) shows the modes FWHM as a function of waveguide length forwp =
3 nm and w, h = 6 µm, again intentionally away from the SGVM condition. Both widths
decrease with length, which would point toward the use of the longest possible waveguide
if we are to measure the �elds by coherent detection. This relation corresponds to element
2.3 in Table 6.1.

Third row of Table 6.1, the mode overlap: Fig.(6.12) (a) shows the overlap of the �rst six
temporal modes as a function of pump width, leaving �xed the rest of the variables. We
can see that the overlap decreases with increasing mode order; the reason is discussed in
Appendix D, in which we showed that this e�ect is due to two factors: the increasing width
of the modes with the mode order, and the mathematical properties of the Hermite Gauss
modes themselves. The pump width does not change the overlap, even though we have
just seen that it changes the relative modes’ FWHM by up to 25%. This counter-intuitive
behavior arises due to the stability of the relative width of two Gaussian functions when
their relative widths change. The mathematical result is that for a relative width di�erence
of 25%, i.e. if the width of one Gaussian is 1.25 times the width of the other, then the change
in their overlap does not even reach 1%. This explains why we obtain a constant overlap
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for di�erent pump widths, although the modes’ widths change signi�cantly.
In a similar way, Fig.(6.12 (b) shows that the waveguide length has no e�ect on the mode

overlap. The Schmidt numbers, and hence e�ective mode numbers, for di�erent lengths are
marked in the plot. These two �gures correspond to the elements 3.1 and 3.3 in Table 6.1.

Completing Table 6.1, Fig.(6.13) shows the mode overlap as a function of the waveguide
dimensions. We observe that the individual temporal mode overlaps have a common maxi-
mum at waveguide dimensions around 9 µm, as we computed in the SGVM study. Also, for
every waveguide dimension, the similarity between modes decreases as the mode order in-
creases (again the reason for this can be found in appendix D). This dependence corresponds
to element 3.2 in Table 6.1.

6.5 Final Experimental Con�guration
The simulation results give type II under the SGVM condition as the most controllable quan-
tum state with a few number of modes. This con�guration would be adequate, for instance,
for implementing quantum information protocols in which few parties are involved, as se-
cret sharing [112], quantum electronic voting [113] or Multiparty Quantum Secure Com-
munications [114]. However, there were some technical problems while trying to obtain
type II waveguides. First of all, in order to have a more precise result on the values of the
waveguide dimensions that ful�ll the SGVM condition, a sophisticated modelling of the in-
dex of refraction, speci�c for a particular non-linear material, should be used. This in turn
meant that the speci�c type II waveguides should be fabricated with a new mask, increasing
considerably their fabrication time. Furthermore, the dimensions suggested by the SGVM
analysis gives waveguides that are fairly big compared to the central wavelength (9 µm vs
1.5 µm). We expect those waveguides to allow a set of discrete spatial modes, which could
create spatio-temporal correlations in the state. The impact of these correlations would be
in general di�cult to work with experimentally.

For this reason, we decided to perform the generation of the multimode squeezed states
with type 0 or type I waveguides, where no signal-idler interference is needed since the
�elds are indisinguishable in the �rst place, facilitating the experimental setup. According
to our simulations from this Chapter, type I, that has a lower non-linear coe�cient, also
presents many modes compared to type 0, and we therefore expect the squeezing per mode
to be much higher in type 0.

In conclusion, we decided to perform the experimental generation of the graph states via
type 0 SPDC in KTP waveguides. The dimensions of the waveguide in which we generated
the quantum state were (h,w) = (3, 3) µm, and the waveguide length was L = 15 mm.
The created states are centered at telecom wavelengths λs,0 = 1560 nm, and pumped with
ultrashort pulses centered at λp,0 = 780 nm.
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Chapter 7

Experimental Generation of CV
Multimode Squeezed Vacuum States in
the Frequency Domain

“ It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are.
If it doesn’t agree with experiment, it’s wrong.”

– Richard P. Feynman
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In this �nal Chapter, we aim to show the experimental results of the generation of CV
multimode squeezed states performed in the laboratory. For better comprehension, the ex-
periment will be divided into blocks, and we will detail every block separately. Some of the
blocks, however, have been already studied in precedent Chapters of this manuscript. The
long-term goal of the experiment is to show the generation of the con�gurable graph state,
that is, the experimental demonstration of the quantum source. For this purpose, we �rst
need to measure multimode squeezing in the telecom light coming out from the waveguides,
since this is the resource for the graph state generation.
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Figure 7.1: Experiment Scheme. The experiment is constituted by six blocks. For more
information see text.

7.1 Experimental Scheme
We divided the experiment into a total of 6 blocks. Each block has a purpose and the func-
tioning of all the blocks is necessary for the quantum source to work. In Fig.(7.1) we show
the scheme of the blocks constituting the experiment.

The blocks are therefore the following:

◦ Block 1: Laser source.
The laser serve as the source of ultrafast pulses needed for three-wave mixing in-
teraction in the non-linear waveguides. This block has been already discussed and
characterized. The results are in Chapter 3, Section 3.4.

◦ Block 2: Pulse Compressors.
We used one pulse compressor for compensating the temporal dispersion su�ered
by the pulses at telecom. Sometimes, another pulse compressor is needed also for
the pump wavelength at 780 nm. For the results of this Chapter, this extra pulse
compressor was �nally not used, but it is depicted in Fig.(7.1) for completeness. Pulse
compressors has also been discussed, and the experimental results can be found in
Chapter 3, Section 3.5.1.

◦ Block 3: Pulse Shaper.
At the very beggining of the experiment, we separate the laser’s beam, using an un-
balanced beamsplitter, into two paths. One path, known as the Local Oscillator (LO),
is sent to the pulse shaper, while the rest of the power is used for the non-linear
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processes in the experiment. The pulse shaper is needed to manipulate the tempo-
ral modes of the LO into the Hermite-Gauss basis, that is approximately the basis of
temporal modes after the SPDC in the non-linear waveguides, as seen in Chapter 6.
This will allow to perform the homodyne detection in order to access the nodes of the
Graph state, to be explained below.
We have also discussed the pulse shaper, the experimental results can be found in
Chapter 3, Section 3.5.2.

◦ Block 4: Second Harmonic Generation.
We realized a Second Harmonic Generation process using a PPLN bulk crystal in order
to double the frequency of the original laser source to a central wavelength of 780 nm.
This process prepares the pump �eld for the SPDC in the non-linear waveguides. We
take another part of the �eld with a 90/10 beamsplitter before the SHG crystal to
have a telecom �eld that was used as a seed �eld. The seed �eld serve for alignment
purposes in the rest of the blocks, since the SPDC light generated by the waveguides
is too dim to see it alone, and for the waveguide characterization at telecom light.

◦ Block 5: Non-linear Waveguide
The waveguides provide the quantum graph states as described in Chapters 5 and 6.
The multimode vacuum state is prepared by applying only the pump �eld at the input
facet of the waveguides. Additionally, when introducing the seed �eld, the PDC pro-
cess is stimulated via di�erence frequency generation. This e�ect produces ampli�ca-
tion or deamplication of the seed �eld at the output of the waveguides, depending on
the relative phase between the pump and the seed �elds. This e�ect is known as Phase
Sensitive Ampli�cation (PSA). A �rst PSA experiment shows the presence of paramet-
ric gain, precondition for squeezing, with a simpler detection mechanism, since no
homodyne detection is needed. It also serves for con�rming the synchronization of
the pulses, that will be discussed later in the Chapter.

◦ Block 6: Homodyne Detection. Homodyne detection is used to characterize the mul-
timode state, by mixing the LO and the quantum signal to measure the quadrature
values of the di�erent temporal modes constituing the total state. By changing the
relative phase between the LO and the quantum signal, the quadrature that is mea-
sured changes accordingly, spanning the whole phase space after the relative phase
goes from 0 to 2π. In the presence of squeezing, we should therefore see oscillations
in the noise of the quadrature value that is measured, indicating that a quadrature in
phase space has less variance when measured than the conjugate one. By changing
the LO temporal mode we measure the squeezing of each supermode independently,
therefore characterizing the full quantum available resource.

Apart from the blocks, there are two optical paths, for seed and LO, in Fig.(7.1). In each of
these paths we set a delay line, a group of lenses and a piezoelectric mirror. The delay lines
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are used for pulse synchronization, given the necessity of the seed to enter the waveguides
at the same time than the pump �eld for PSA, and the necessity of the LO pulses to mix
in the balanced beamsplitter of the homodyne detection. The lenses are used for spatial
mode-matching, in order to match the spatial pro�les of seed, LO and quantum signal. The
piezoelectrics are used for changing the relative phases of seed-pump, and LO-quantum
signal, respectively.

In this Chapter, we therefore explore Blocks 4, 5 and 6, showing their performance and
experimental details. Finally, we will show the �nal results of the experiment of phase
sensitive ampli�cation and multimode squeezing in the quantum signal.

7.2 Second Harmonic Generation

We performed simulations of SHG for predicting the output spectrum given the crystal
length and the input spectrum. Finally, we obtained two PPLN crystals, one long, L = 3
mm, from HCPhotonics [154], and the other short, L = 0.3 mm, from Covesion [155]. Both
crystals were introduced in an oven with a temperature controller that allows temperature
stabilization in ± 0.1 oC in a range of 30 oC to 200 oC.

Both crystals contain di�erent zones with slightly di�erent values of the poling period.
In our case, since our input spectrum is very large in bandwidth, we obtain second harmonic
power for every zone, with di�erent power levels, because, for the range of poling periods in
the crystal, there is always a wavelength in the input spectrum that is phasematched with
that zone. Therefore, the central wavelength in the output spectrum changes with zone
and with temperature. Optimization of the SHG for us means that we select the zone with
the highest output power and tune temperature to obtain a central wavelength of 780 nm.
Alignment of the chip is somewhat important since the input angle could generate spatial
chirp in the second harmonic beam.

A shorter crystal will present a smaller conversion e�ciency, since the interaction time
in the crystal is shorter. However, the phasematching bandwidth, that is inversely propor-
tional to the crystal length, will be consequently larger, and more wavelengths can intervene
in the process. The result would be a larger output spectrum in shorter crystals. Temporally
speaking, a shorter crystal will generate shorter pulses at the output, which is coherent with
the fact of having a larger spectral bandwidth. The pulse duration for long crystals is lim-
ited by an e�ect known as temporal walk − off [156]. In long crystals, due to the group
velocity di�erence between the pump wave and the second harmonic wave, the temporal
matching of both pulses in the crystal is lost after some interaction length, and no second
harmonic is generated after this e�ective length. This e�ect can also happen for shorter
crystals if the group velocity di�erence is high enough. The characteristic walk-o� time
can be obtained as:

τwalk−off = L

(
1

vg,p(ωp,0)
− 1

vg,s(ωs,0)

)
(7.1)

142



CHAPTER 7. EXPERIMENTAL GENERATION OF CV MULTIMODE SQUEEZED VACUUM STATES IN THE
FREQUENCY DOMAIN

where ωp,0 is here the pump to the SHG crystal (1560 nm), and ωs,0 is the second harmonic
central frequency (780 nm).

For a given crystal length, if the input pulse duration is bigger than the temporal walk-
o�, the second harmonic pulses will have a duration similar to the walk-o� time and the
pulse shape will be similar to a square pulse.

In both cases, the SHG process used was type 0, where the polarization of pump and
second harmonic are vertical (extraordinary index). Since we know the Sellmeier equations
for LN we can compute the group velocities and the walk-o� time for both SHG crystals,
obtaining1

τwalk−off(Covesion) = 91.1 fs (7.2)
τwalk−off(HCPhotonics) = 911.2 fs (7.3)

and this value should be similar to the minimum pulse duration we can have after the SHG
crystals.

As a comment, it is possible to reduce signi�cantly the walk-o� time in LN by means
of the type I process, where the pump is polarized along the ordinary axis and the SHG is
polarized along the extraordinary axis. In this case the walk-o� time is reduced ∼6.5 times
with respect to the type 0 case, giving τwalk−off(type I) = 140 fs for a 3 mm LN crystal.
Nonetheless, the non-linear coe�cient associated with type I is about 4 times smaller than
for type 0, and so the crystal e�ciency is also considerably smaller.

7.2.1 PPLN Covesion

We optimized the SHG from the Covesion crystal, �nding the second harmonic signal from
the di�erent zones with di�erent poling periods and tuning the temperature so that we
obtained a central wavelength of 780 nm and maximum second harmonic power.

In Fig.(7.2) we plot the measured output second harmonic power versus the input tele-
com power for the selected zone. We could reach up to 265 mW of input power. It is well
known that the output power of a SHG process goes with the square of the input power
[157]:

P
(SHG)
out ∝ P 2

in (7.4)

which in turn means that the e�ciency of the process grows linearly with the input power.
We obtain this behavior for the Covesion crystal and measured e�ciencies up to ∼ 4.5 %.
The e�ciencies are not very high since the crystal is quite short (0.3 mm).

However, in Fig.(7.3) we see that the spectrum is quite large (∼ 14 nm), and the pulses
considerably short, 150 fs.

1We did this calculation for a temperature of T = 90 oC. The temperature dependence is in any case quite
weak.
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(a) (b)

Figure 7.2: Covesion SHG Crystal. (a) Second harmonic power vs input telecom power. (b)
Corresponding SHG e�ciency.

(a) (b)

Figure 7.3: Covesion SHG Crystal. (a) Second harmonic Spectrum with a gaussian �t. (b)
Autocorrelation signal of the second harmonic, giving a pulse duration of 150 fs.

As we have seen in Chapter 6, a large pump spectrum to a SPDC process in general
increases the number of nodes in the Graph state. The spectrally broader pump that we
prepare with the Covesion SHG crystal could be particularly useful for a type II waveguide,
where the number of nodes is in general small and hence broader spectra are necessary for
increasing the multimode character of the states.
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Figure 7.4: SHG photo from the experimental lab. BS: Beam splitter, Lin: Input achromatic
lens for 1560 nm, Lout: output lens at 780 nm.
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7.2.2 PPLN HCPhotonics
We performed the same characterization of the SHG crystal provided by HCPhotonics. In
this case, the crystal is 10 times longer than before, and so the e�ciency is considerably
higher, as we can see in Fig.(7.5), reaching up to 30%. We also see saturation of the e�ciency,
that goes away gradually from the linear regime. We �rst thought that this saturation be-
havior was caused by another non-linear e�ects taking part in the non-linear material. In
particular, Green Induced Infrared Absorption (GRIIRA), [158, 159], since some green light
can be generated in PPLN, by a sum frequency process. This green light, even if quite dim
(we cannot resolve it with our spectrometer) induces absorption of telecom light, and hence
act as a non-linear source of losses. In Fig.(7.4), that is a photo of the actual SHG in the lab,
we can see the green light leading to GRIIRA. The GRIIRA e�ect depends on the doping el-
ements and concentrations of the LN crystal. However, this e�ect would be independent of
the Second Harmonic E�ect, and hence we should also have seen it in the Covesion crystal,
since the input powers were very similar, but this is not the case. Although the GRIIRA ef-
fect should take part in the phenomenon, the main reason for the saturation of the e�ciency
is another non-linear e�ect in the material, namely two-photon absorption in the high power
regime, see [160, 161, 162]. Here, we empirically modeled this e�ect as a contribution to the
e�ciency that goes as P−1

in , and the data �ts well in our experimental conditions.

Figure 7.5: HCPhotonics SHG crystal. E�ciency as a function of input telecom power. Sat-
uration due to two-photon absorption e�ects. See text for more information.

The second harmonic spectrum is hence shorter, ∆λSHG ∼ 2 nm, and the autocorrelation
signal is triangular, which corresponds to a squared pulse. This is because we are limited
by the temporal walk-o� in the crystal. The triangular �t gives a pulse duration around
τ = 850 fs, which is consistent with the numerical calculation we have done for the walk-
o� in Eq.(7.3). We show both the spectrum and the autocorrelation signal for the SHG of
the HCPhotonics crystal in Fig.(7.6). We can see the wiggles in the spectrum due to the sinc
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(a) (b)

Figure 7.6: HCPhotonics SHG Crystal. (a) Second harmonic Spectrum with a gaussian �t.
(b) Autocorrelation signal of the second harmonic, giving a square pulse duration of 850 fs.

nature of the phasematching function. The Fourier transform of the sinc function is exactly
a square function, which is the pulse waveform.

Finally, we decided to use the HCPhotonics PPLN crystal to prepare our pump �eld for
the waveguides in the experiments presented in this Chapter, due to the higher average
optical power. Since the pulse is already quite long temporally, no pulse compressor is
needed after the SHG for the pump, since our typical dispersion scale is relevant for shorter
pulses. The use of the Covesion SHG implies the potential mounting of an extra pulse
compressor before the waveguides. Also, our type 0 simulations in our waveguides suggest
that there are fewer modes with the HCPhotonics pump (narrower spectrum), and hence
the squeezing per mode is expected to be higher. The Covesion SHG could be nevertheless
interesting to test for a near-term experiment, and in particular for a type II waveguide,
where the number of modes is smaller than the type 0 or I case.

7.3 Waveguide Characterization
The waveguide chip of our experiment was described in Chapter 4, Section 4.2.5. We recall
that the chip, 1.5 mm wide, contains 30 waveguides, divided into 5 groups, that have dimen-
sions of 3x2, 3x3 and 3x4 µm, repeated along the chip in that order, as shown in Fig.(4.6). In
that Chapter, we presented the experimental spatial mode characterization, both at pump
and telecom wavelengths.

The experimental setup for the waveguides is shown in Fig.(7.7). We used a nanometric
6-axis translation stage from ElliotScienti�c [163] to be able to precisely manipulate the
waveguide alignment. The input lens is achromatic, optimized for pump wavelengths,
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with a focal length of fin = 10 mm. The ouput lens, used for collecting and collimating
light after the waveguide, is an aspheric lens with fout = 10 mm. For the waveguide charac-
terization at pump wavelengths, the lens is optimized for wavelengths around 800 nm. For
the actual experiment, we use a lens optimized for telecom wavelengths, since the pump
wavelength after the single-pass waveguide interaction is irrelevant. We spatially super-
pose the pump and seed at the input facet with a dichroic mirror, and we �ltered the trans-
mitted pump after the waveguide using another dichroic mirror. Finally, the waveguides
are mounted in a homemade holder inside an oven connected to a temperature controller,
that allow us to tune and maintain the waveguide temperature.

Figure 7.8: Coupling e�ciency at pump and seed wavelengths for every waveguide mea-
sured along the chip. In all cases the polarization was set to vertical.

We injected the seed and pump �elds independently and measured the optical powers
and spatial modes after the output lens collimates the beam. Since the light con�nement
is very high inside the waveguide, we have variable density �lters before the waveguide
to be able to tune the input pump and seed power. We are interested in injecting with a
few mW in order to be sure we do not burn the waveguides. Speci�cally, for the charac-
terization, we measured the power just before the waveguide chip to be Pseed, in = 11.8
mW and Ppump, in = 7.1 mW. Additionally, we control the input light polarization with
half-waveplates.

The ratio between the input and output power is known as the waveguide coupling. We
show the measured coupling for both pump and seed in Fig.(7.8). The couplings shown are
for beams polarized along the vertical direction, which is the direction that will be used for
squeezing generation. However, similar results are also obtained for horizontal input polar-
ization. The last three waveguides at the chip edge were not measured because the beams
clipped due to our geometrical homemade holder setup. We observe good homogeneity in
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Figure 7.7: Photo of the waveguide chip setup in the experimental laboratory. DM: Dichroic
mirror, Lin: input achromatic lens, Lout: output aspherical lens. Up left: close-up of the
homemade waveguide holder and the lenses. Up right: Zoom photo of the waveguide chip,
the light coupled to one of the thirty waveguides can be seen and it is rounded in red.
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Figure 7.9: Measured waveguide non-linearity as ηSHG ≡ PSHG/P 2
seed along the waveguide

chip.

the coupling along the waveguide chip. It is worth to note here that in our experiment we
will need to inject both beams at the same time and in the same waveguide. Therefore, the
input lens is common for both beams and should focus both. This is the reason why it is
important to use an achromatic lens. Otherwise, the light spot at the waveguide facet could
be so di�erent that the coupling of one of the two beams could be compromised. In our case
we observe good coupling for both the pump and seed.

Since the SHG generation is the reverse process of type 0 PDC, the waveguides are also
phasematched for SHG when pumped with the seed �eld and therefore generate second
harmonic light. This is very convenient for a number of reasons:

◦ First of all, it allows us to characterize the waveguides non-linearity by measuring the
proportion of second harmonic light with respect to the transmitted seed. Since we
know that the power relation is quadratic for SHG, we de�ne the quantity ηSHG =
PSHG/P 2

seed as a measure of the non-linearity of the waveguides. For a complete mea-
surement of ηSHG, several power measurements should be taken and then �tted to
the parabolic curve. However, since our objective is to characterize the waveguides,
we are only interested in comparing the non-linearities of the di�erent waveguides,
which can be done by measuring ηSHG once for all the waveguides at the same input
power. This measurement is shown in Fig.(7.9). We clearly see that all the waveguides
with dimensions 3x2 µm (�rst and fourth in every group) have a lower non-linearity.
The reason for this became clear when we measured the SHG spectrum associated
with this waveguides.
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Figure 7.10: Spectra of the SHG’s seed in three waveguides (3.1, 3.2 and 3.3). Each waveguide
has di�erent depths.

◦ Secondly, the spectrum of the generated second harmonic light serve to know if the
wavelengths of the PDC process are centered correctly. The SHG central wavelength
can be slightly modi�ed by changing the oven’s temperature. This method was used
to �x the waveguide temperature in the experiment. Additionally, the form of the
spectrum also spots if there is any inhomogeneity along the propagation direction.
In the absence of inhomogeneities, the SHG spectrum is that of a sinc function (if
the phasematching bandwidth is smaller than the seed bandwidth), or that of a gaus-
sian function (if the pump bandwidth is smaller than the phasematching bandwidth).
Intuitively, a sinc spectrum means that the waveguide temporal response to the inter-
action is that of a rectangular step function, which is the case if the waveguide has no
inhomogeneity in the second order coe�cient along the propagation direction. An
example of three SHG spectrums are shown in Fig.(7.10). These spectral forms were
nevertheless repeatedly obtained along the whole chip. We see that all the curves are
rather gaussian or similar, which indicates good homogeneities along the propagation
direction. However, while both the 3x3 and 3x4 µm waveguides are well centered at
780 nm, the 3x2 µm waveguides were systematically centered around 767 nm. This
fact indicates that the single fundamental spatial mode allowed by the 3x2 waveg-
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uides is indeed centered at 767 nm, and no spatial modes can be guided at 780 nm.
This reasoning would also explain why the non-linearity of those waveguides were
smaller, since the seed �eld is not centered at 767·2 = 1534 nm (but it does have a
su�ciently broad bandwidth to cover those wavelengths), the power associated with
the contributing wavelengths to the SHG is smaller, and hence the non-linearity as
well. Seen from another way, if a su�ciently narrow bandpass spectral �lter at 1560
nm would be set to the seed beam before the waveguide, no second harmonic would
be seen at all, and probably very small coupling e�ciency would also be measured for
the seed �eld. This would not be the case for the 3x3 and 3x4 µm waveguides. In the
actual experiment, thus, the 3x2 waveguides were not considered.

◦ Finally, the second harmonic light will serve us helpful for pulse synchronization, by
�nding its interference with the pump �eld, as we will show in the �nal results section
of this Chapter.

We therefore conclude the waveguide characterization with the measurement of the
coupling e�ciency, the spatial modes, the SHG spectra and the non-linearity coe�cients.

7.4 Mode Selective Homodyne detection: device charac-
terization

The quadrature measurement of the output multimode state is performed via homodyne
detection. Fig.(7.13) shows the actual optical circuit for homodyne in the laboratory.

The homodyne technique brie�y described in Chapter 1, section 1.6.3, that was �rst
introduced by Yuen and Chan, [164, 165] allows us to retrieve the quadrature value of a
single-mode optical signal by mixing the quantum signal and a strong and classical Local
Oscillator in a balanced Beamsplitter, and then subtracting the photodiode electric signal
from each output port of the beamsplitter. The speci�c quadrature that is measured depends
on the relative phase between the LO and the signal.

Here we want to see what happens if the quantum signal is multimode, as it is the case
for our set of frequency supermodes. For that purpose we will �rst assume the LO to be a
quantum signal as well. The quantum intensity operator can be written as [107]:

Î(r, t) = 2ε0cÊ
−(r, t)Ê+(r, t) (7.5)

and the photocurrent operator from the photodiode, that is measuring its eigenvalues, is
therefore:

î(t) = R

∫
Sdet

d2ρ

∫
dτr(τ)Î(r, t− τ) (7.6)

where R is the detector responsivity (0.84 A/W in our case), Sdet is the detector area, and
r(τ) is the detector temporal response, that is inversely proportional to the detector band-
width, τBW = 1/BW. Since the LO and signal �elds are mixed in a balanced BS before
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measuring each output port, we can obtain an expression of î(t) involving the LO operators
ÊLO(t) and the signal operator Ês(t). The homodyne photocurrent is obtained after the two
photocurrents from the photodiodes is subtracted. It can be written as:

îhom(t) = î1(t)− î2(t) (7.7)

î1(t) ∝
∫

dτr(τ)
(
Ê−LO(t− τ) + Ê−s (t− τ)

)(
Ê+

LO(t− τ) + Ê+
s (t− τ)

)
(7.8)

î2(t) ∝
∫

dτr(τ)
(
Ê−LO(t− τ)− Ê−s (t− τ)

)(
Ê+

LO(t− τ)− Ê+
s (t− τ)

)
(7.9)

By direct substitution of the photocurrent operators, the homodyne photocurrent is:

îhom(t) ∝
∫

dτr(τ)E−s (t− τ)E+
LO(t− τ) + h.c.

∝
∫

dτr(τ)âs(t− τ)â†LO(t− τ) + h.c.

(7.10)

It can be shown that in the Fourier frequency domain, the homodyne signal can be written
as [166]:

îhom ∝
∫

dωâs(ω)â†LO(ω) + h.c. (7.11)

For the quantum signal, the bosonic operator âs(ω) can be written as a sum of bosonic
operators {âs} associated with the supermodes described by the functions {h(ω)}:

âs(ω) =
∑
j

âs,jhj(ω) (7.12)

In fact, this decomposition can always be written as long as the frequency modes form a
well-de�ned mode basis.

We will furthermore consider the LO to be much more intense than the quantum signal
and we will neglect the LO quantum �uctuations with respect to its mean �eld. That is to
say, the LO is a classical �eld in a certain frequency mode gLO(ω):

aLO(ω) = αLOgLO(ω) (7.13)

where αLO =
√
NLOe

iθLO is the LO mean �eld value, with NLO the number of LO photons
and θLO the relative phase between the LO and the quantum signal.

Substituing Eq.(7.12) and Eq.(7.13) into Eq.(7.11) we obtain:

îhom ∝
∑
j

âs,jα
∗
LO

∫
dωhj(ω)g∗LO(ω) + h.c. (7.14)

and so the homodyne signal is proportional to the overlap integral between the signal and
the LO modes. If we choose the LO mode to coincide with one of the signal supermodes,
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gLO(ω) = hk(ω) for some k; then, by orthogonality, the integral reduces to the Kronecker
delta, δjk and therefore:

îhom ∝ α∗LOâs,j + αLOâ
†
s,j (7.15)

in terms of the jth mode quadratures:

îhom ∝
√
NLO (q̂s,j cos (θLO) + p̂s,j sin (θLO)) ≡

√
NLOq̂

θLO
s,j (7.16)

where q̂θLO
s,j is the generalized quadrature from the frequency mode selected by the relative

phase between the LO and the signal.
Eq.(7.16) shows that in a multimode con�guration, the homodyne detection �lters the

quadrature of the mode to be measured according to the overlap with the signal frequency
modes. Hence, homodyne measurements are mode selective, and each of the supermodes
in the multimode quantum state can be addressed independently by appropiately shaping
the LO spectrum. The quality of the homodyne signal depends on the polarization, spatial
and frequency matching between the LO and the signal. Since the frequency matching can
be manipulated with the pulse shaper, special attention should be put in the spatial and
polarization matching in the experiment.

As a consequence of Eq.(7.16), the noise in the homodyne signal is directly related to the
quadrature variance, ∆îhom ∝ NLO∆q̂θLO

s,j . In practice, in order to extract useful informa-
tion from the noise in the homodyne signal, we will demodulate it over a small frequency
bandwidth. There are two main reasons for that. First, the trans-impedance circuit in our
homodyne detector has a pass bandwidth around 10 MHz. This means that after that fre-
quency it will be harder to obtain a good signal to noise ratio. The second reason is that
classical noise sources dominate the signal at low frequencies. To get the best ratio of quan-
tum signal over classical noise we will therefore restrict our measurement to a band of a
hundreds of kHz centered at a frequency compatible with the detector’s bandwidth. Specif-
ically, we chose to measure at 2 MHz, in our case, since it is the spot with more clearance,
to be de�ned in the following. See [167] for more details about the spectral analysis of
homodyne measurements.

The characterization of our homodyne detector is done without the presence of the
quantum signal. We measure �rst the output homodyne signal without the LO and de-
compose its frequency components with a spectrum analyzer. The result is the black curve
of Fig.(7.11) a), which is the electronic noise of the detectors, since there is no light involved.
We then input the LO signal and balance the photodiodes. For the balancing, we �rst make
sure that the optical powers in both BS output arms are the closest possible by changing
slightly the angle of the 50/50 BS. In our case we had a ratio between the two outputs that
is around 1.03 in the best con�guration. Once this is done, we measure individually each
photodiode response with an oscilloscope and check that the voltage output is the closest as
well, tuning the photodiodes alignment with the mirrors at the BS output arms. We again
measure the frequency components of the homodyne signal, and repeat the process for dif-
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(a) (b)

Figure 7.11: Homodyne spectral signal. a) Electronic noise and LO shot noise curves with
di�erent optical powers. b) Electronic noise and LO shot noise spanning 110 MHz, showing
the peak at the laser repetition rate.

ferent LO powers. These characterization corresponds to the rest of the curves in Fig.(7.11)
a).

Due to the LO intrinsic shot noise, the noise at a given optical power and frequency
should be higher than the electronic noise, and it should grow linearly with the input power.
We will notice squeezing as oscillations in the shot noise levels as we change the relative
phase φLO. The ratio between the shot-noise, σ2

SN, and the electronic noise σ2
el, at a speci�c

frequency is the Signal-to-Noise ratio (at that frequency). Its value in dB is known as the
clearance, C :

SNR =
σ2

SN

σ2
el

C = 10 log10(SNR) (7.17)

The electronic noise can be modelled as an additional loss channel [168], with e�ciency
ηel, where:

ηel = 1− 1

SNR
(7.18)

and the total homodyne e�ciency, ηhom can be written as:

ηhom = ηPD · ηel · ηopt · ηmod (7.19)

where ηPD is the photodetector e�ciencies (conversion photon-to-electron), ηopt is related
to the total optical losses in the homodyne circuit, and ηmod is the mode-matching e�ciency,
that measures the polarization, spatial and frequency overlap between signal and LO. See
[169] for more details about the derivation of these e�ciencies.
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The homodyne measurement could hence be limited by any of these equivalent losses
channel. For the electronic noise, we are not limited if the clearance is higher than the
amplitude of the oscillations due to squeezing. Fig.(7.12) shows the measured clearance as
a function of LO optical power. The photodetector and optical e�ciencies ηPD and ηopt

are �xed for us, and depend respectively on the photodiode’s responsivity and the optical
components characteristics. Finally, ηmod will be maximized in the experiment by spatial
and temporal mode matching with the seed �eld after the waveguides. This e�ciency can
be measured via the square of the visibility, a quantity that will be de�ned in section 7.5.2.

In Fig.(7.11) b) we observe a high peak at 100 MHz, which coincides with the repeti-
tion rate of our laser. This peak is precisely due to the fact that the pulses traveling in
the two arms after the BS are not synchronized, giving periodic peaks in the temporal ho-
modyne signal, and hence a peak at this frequency component. In case of pulse synchro-
nization, the peaks amplitude is therefore reduced2. The level of reduction is known as the
CommonMode Rejection Ratio (CMRR), which is important is one wants to measure the
squeezing pulse by pulse [169]. In our speci�c experiment, our detectors do not have clear-
ance at this frequency. We are interested in measuring at 2 MHz, because of the bandwidth
nature of our detectors, that gives the best clearance at this frequency, and so we restrict
ourselves to check that the presence of the peak at 100 MHz do not saturate the electronic
ampli�ers in the homodyne circuit. However, we have developed homemade homodyne
circuits, that will be tested in the near-term, able to cover the full bandwidth of the signal,
hence opening the possibility of measuring squeezing pulse by pulse (when we measure the
frequency component of the noise at the repetition rate).

Figure 7.12: Clearance as a function of input power to the photodiodes at a frequency of 2
MHz.

2The peak is complicated to be completely eliminated even if the synchronization is perfect, since it also
depends on the similarity of the two photodiode’s response at that frequency.
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Figure 7.13: Photo of the homodyne detection setup in the experimental laboratory. Qs:
Quantum signal, LO: Local Oscillator, L1/2: Lenses for the photodiodes, PZO: piezoelectric.
The detectors are homemade detectors borrowed from the C2N laboratory at the Université
de Paris-Saclay.

7.5 Experimental Results on Multimode Squeezing

We ended up the description of the blocks de�ned in Fig.(7.1) composing the whole ex-
periment for the demonstration of the quantum source. This �nal section is dedicated to
detail the �nal results for the multimode squeezing, revealing the implementation of the
multimode squeezed vacuum state in the frequency domain.

We performed �rst an experiment of Phase Sensitive Ampli�cation with the seed �eld,
and �nally we implemented the homodyne detection setup for the multimode squeezing
measurement that characterizes the multimode quantum state.
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7.5.1 Phase Sensitive Ampli�cation

Phase sensitive ampli�cation is a parametric ampli�cation process, that can also be seen as
a DFG process, where the signal and idler �elds are degenerate, i.e. indistinguishable. In
type II, parametric ampli�cation occurs but it is not phase sensitive. The devices that ex-
ploit this e�ect are known as Optical Parametric Ampli�ers (OPAs), that open the door to
noiseless-ampli�cation [170], that in turn �nds applications in �ber communication [171],
or quantum-enhanced imaging and spectroscopy [172, 173, 174]. A schematic of phase sen-
sitive ampli�cation is depicted in Fig.(7.14).

Figure 7.14: Phase Sensitive Ampli�cation scheme. A seed and pump �elds are input into
the periodically poled waveguide. The seed �eld is ampli�ed (or deampli�ed) depending on
the relative phase between these two �elds.

The PSA experiment allows us to show the existence of parametric gain, precondition
of squeezing generation in the waveguide, even though the levels of multimode squeezing
cannot be measured in this way. Only an order of magnitude of the total expected squeezing
can be inferred from this data, but this will serve us useful for the �nal homodyne detection.

For the PSA experiment to succeed, we must match the seed beam and the pump in
polarization, and spatially and temporally into the waveguide. The spatial matching is nat-
urally achieved thanks to the discretization of the spatial modes in the waveguide, since the
same spatial modes for seed and pump are allowed to be guided in the structure at 1560 nm.
The polarization matching is trivially obtained using half-waveplates that �x the seed and
pump to be vertically polarized.

We are left with the temporal matching, that is, to get pulse synchronization when ar-
riving to the waveguide facet. For this, we built an optical path for the seed that has approx-
imately the same length as for the pump and we measure the pulses with a fast photodiode
just before the waveguides. The fast photodiode is not fast enough to "see" the pulses wave-
form, but it is su�ciently fast to resolve a signal from the individual pulses, since it can
measure faster than the laser’s repetition rate (100 MHz). We triggered the oscilloscope
with the RF signal from the laser, that is synchronized with the pulse generation, and mea-
sure, individually, the seed and the pump pulses at the same position. We take the di�erence
in the maximum of the measured photodiode responses as the arrival time di�erence be-
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tween pump and seed pulses. Assuming the pulses travel at the speed of light, we have a
rough measurement of the optical path di�erence that should be corrected in one of the
optical paths for synchronizing them. We add a micrometer delay line that allows to tune
the seed optical path in a total of 5.0 cm, and therefore match the temporal seed and pump
peaks in the fast photodiode.

Figure 7.15: Example of the pulse synchornization trick by measuring the interference be-
tween the second harmonic from the seed and the pump. For more information see text.

For �ne adjustment of the temporal matching, we take advantage of the SHG generated
in the waveguide by the seed �eld. Since the associated SHG process is type 0, the polar-
ization of all �elds are also vertically polarized after the waveguide. Therefore the seed’s
second harmonic and the pump would interfere if they are perfectly temporally matched.
We therefore measured the second harmonic and the pump with the 800 nm CCD camera
and adjust their power to approximately be equally bright in the camera. Then, we tune
the delay line until �nding the interference fringes. An example of the result is shown in
Fig.(7.15).

As a note, we should inject both the seed and the pump in the same waveguide, which is
possible by injecting the pump into the desired waveguide, monitor the output in the CCD
camera, and then exclusively tune the alignment of the seed path until we see its second
harmonic juxtapose with the pump in the camera, indicating they are traveling through the
same guide. Once this is done, we can also move the entire chip with the 6-axis mount so
that we can inject both �elds into di�erent waveguides. In our case, we used the waveguide
labelled as 3.5 (Group 3, waveguide number 5), which has dimensions of 3x3 µm. After
seed and pump matching in the waveguide, we �ltered the pump from the seed SHG with
an output dichroic mirror and measured the optical power at telecom wavelengths using a
slow photodiode. We mounted a piezoelectric mirror in the seed path powered with a ramp
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Figure 7.16: Phase Sensitive Ampli�cation. The saw-tooth waveform provides ramps ap-
plied to the piezoelectric to linearly change the relative phase between seed and pump. The
dark blue line corresponds at injecting only the seed, and the red is when we add the pump
�eld. The ampli�cation and deampli�cation e�ect with the phase shows the presence of
squeezing in the waveguide.

voltage, shown in Fig.(7.16), so that the relative phase between seed and pump changes
linearly. The ramp frequency was around 30 Hz, which is bigger than the natural phase
�uctuations in the experiment, that are around 2 Hz, so that the phase can be considered to
be only changed by the piezoelectric in a ramp period time.

When we block the pump, we obtain an approximately constant output power, the dark
blue line in Fig.(7.16). The small amplitude �uctuations that can be seen in this curve are due
to the fact that the piezoelectric is slightly changing the seed alignment, in the range of some
µm 3. The small periodic misalignment modulates the coupling e�ciency and hence the
output power present those small �uctuations, that are in any case small, with a maximum
amplitude of 2% from the mean signal.

When we add the pump �eld, we observe the phase sensitive ampli�cation in the sig-
nal, whose signature are the oscillations at the piezoelectric frequency seen in the slow
photodiode, the red curve in Fig.(7.16). We maximized the parametric ampli�cation in the
experiment with the waveguide alignment, the temperature and the polarization control.

From the theory on DFG [107, 175], the maximum and minimum gain, G± in the single-
3The piezoelectric range produces translation of the mirror that goes from 0 to 5 µm.
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Figure 7.17: Maximum and minimum parametric gain as a function of pump power. At high
powers, we report a deviation from the theoretical saturation behavior by a linear growth
indicating the presence of another non-linear e�ect in the waveguide.

mode CW case, are:
G± = exp(±2

√
ηDFGPpump) (7.20)

where ηDFG is the waveguide’s non-linear e�ciency, that in theory should be close to the
ηSHG de�ned in the waveguide characterization. We measured the maximum and minimum
parametric gain as a function of the pump power. The result is given in Fig.(7.17). Losses
can also be introduced in the model [176, 177], although we did not include them in these
calculations, since we were only interested in the rough behavior (we are not in a single-
mode, CW con�guration anyway).

We �nd that, at low pump powers, the gains �t well Eq.(7.20), with a non-linear coe�-
cient from the �t of η = 0.20 ± 0.01 mW−1, which is coherent with the value obtained in
the waveguide characterization. This linear coe�cient gives an estimation of the squeezing
parameter of

√
η · Ppump ' 0.44 at Ppump = 1 mW, which would correspond to a squeez-

ing level of 3.5 dB at this power. We note that the parametric gain occurs only within the
frequency matching between the seed and the supermodes generated in the waveguide,
some frequencies could have not contributed to the process, and hence we expect the value
from the PSA experiment to be an underestimation of the actual total parametric gain in the
waveguide.

However, at higher powers, we reported that the maximum gain deviates from the �t
curve and grows linearly with the pump power. At the same time, the deampli�cation tends
to grow to 1, and even higher values are obtained as we increase further the pump power.
We expected the possibility of having other non-linear e�ects in our waveguides, due to
the strong light con�nement, that could perturb the gain curve from some input power
value. Examples of non-linear e�ects in the waveguide at high enough powers are two-
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photon absorption, second harmonic of the pump �eld (hence at wavelengths around 390
nm, that corresponds to blue light that we can see at naked eye in the experiment) and
GRIIRA e�ects from green light generated by the seed �eld. These e�ects could act as a
power-dependent source of losses at telecom and would limit the useful pump power for
PDC. However, the addition of losses would reduce the parametric gain, and we actually
observe an ampli�cation of the signal above the theoretical curve for the parametric gain.
We think that this behavior could be due to the generation of telecom light from a non-
linear source in the waveguide, that is not identi�ed for the moment. This ampli�cation
will also be important for the multimode squeezing measurements. In any case, a linear
�t to the maximum gain curve gives a function of the type G+ = 1 + 2η′Ppump in which
we could de�ne a new empirical non-linear coe�cient η′, that happens to be η′ = 0.30 ±
0.02mW−1, higher than the non-linear coe�cient at low powers. Further investigations
about the behavior of the non-linear e�ects in the waveguide and the gain curves will be
tested in the near-term future to �gure out the origin of the extra ampli�cation at higher
powers.

In any case, the implemented theoretical gain curves assume a single frequency mode
state, which is obviously not the case in our experiment, so the gain �ts should be taken with
a grain of salt. We nevertheless show the presence of squeezing at telecom wavelengths in
the non-linear waveguide, and obtain an estimation of the parametric gain of few dB, which
are the main results we desired for the PSA experiment.

7.5.2 Multimode Squeezing
Finally, we performed homodyne detection with the temporally shaped LO for the demon-
stration of the experimental multimode squeezed state. As explained in the homodyne de-
tection section in this Chapter, we should mix the quantum signal with the LO in a balanced
beamsplitter. This interference should have enough visibility for measuring squeezing. The
visibility is measured in the lab by an interference measurement with the seed �eld. We
mix the seed and the LO after the beamsplitter, synchronize the pulses with the use of fast
photodiodes and a delay line in the LO path, and align the LO �eld until the interference
seen in a CCD camera does not present fringes, but the signal blinks randomly instead. The
blinking indicates that the spatial alignment is appropriate, and the random �uctuations are
due to the random phase �uctuations in the lab. We add a piezoelectric to the LO path that
linearly changes the relative phase of seed and LO faster than the random phase �uctua-
tions and substitute the camera by a slow photodiode. In this way, the interference is seen
as sinusoidal oscillations in the oscilloscope. The visibility, V , is then de�ned as:

V =
Vmax − Vmin

Vmax + Vmin

(7.21)

where Vmax/min are the maximum and minimum values of the voltage obtained from the
oscillations in the photodiode. We then maximize V with the alignment, the LO delay line,
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optical powers and polarizations. We also add a spectral �lter of 12 nm to the seed before
the BS, together with a 12 nm gaussian mask to the LO, so that we approximately match
spectrally seed and LO. This spectral �lter is removed for the squeezing measurements since
in that case we spectrally match the LO and quantum signal by changing the pulse shaper
mask.

Once a satisfactory visibility is obtained, we block the seed and balanced the homodyne
photodiodes. Finally we measure the LO shot noise in the spectrum analyzer while blocking
the quantum signal. This measurement is performed at the frequency component of 2 MHz,
with a 100 kHz window. Each measurement is done for 1 second and the piezoelectric
frequency was set to around 300 mHz. We unblock the quantum signal and observe the
noise oscillations around the shot noise due to the presence of squeezing. This value of
squeezing is associated to the temporal mode given by the LO mask.

An important remark is that even if the oscillations in the quadrature noise measure-
ments indicates the presence of squeezing, the minimum noise that is measured is at the
level of the shot noise itself. This means that we have not measure noise reduction below
the shot noise limit, limiting the application of these states in quantum communication and
computation protocols. The states that we have measured are known as Squeezed Thermal
states. The reason for the thermal character of our squeezing measurements is still not clear,
but it should be related with the deviation from the PSA curve seen in the section before.
An additional non-linear e�ect is taking place in the waveguides at a certain power that re-
sults in generation of telecom light. This extra process is incoherent with the spontaneous
parametric down conversion and hence is noisy to the process. The resulting thermal state
is squeezed and hence we measure the oscillations above the shot noise characteristic of
squeezed thermal states. More tests should be performed to clarify this hypothesis. Under-
standing the thermal source is a crucial near-term research goal in our experiment.

Fig.(7.18) show the (thermal) squeezing curves of up to 11 temporal modes. Each curve
is obtained by changing the pulse shaper mask to successive Hermite-gauss modes and op-
timize the squeezing amplitude with the spectral width of the speci�c mask. This is the �rst
time, to the best of our knowledge, that multimode squeezing from a non-linear waveguide
at telecom wavelengths is directly measured.

The distribution of squeezing amplitudes from the di�erent modes is shown in Fig.(7.19),
which is in agreement with the distribution predicted from the simulations in Chapter 6,
section 6.3.1. The total amount of squeezing oscillations is 5.12 dB, which is somewhat in
agreement with the PSA experiment results. We stopped measuring at mode number 11
because the variances of the noise starts to be comparable with the spectrum analyzer reso-
lution given the signal �uctuations, but the measurement indicates that there are probably
even more frequency squeezed modes in our beam.

On top of that, we also should take into account the optical losses. Optical losses also
make the oscillations around the shot noise to diminish. The main source of losses in our
case was the imperfect visibility in the homodyne detection, due to the di�erent spatial
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Figure 7.18: Squeezing curves. Multimode oscillations in the quadrature noise is measured
in up to 11 Hermite-Gauss modes. These curves correspond to squeezed thermal states,
since the oscillations are just above the shot noise level.
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Figure 7.19: Distribution of measured squeezing amplitudes.

mode-matching between the signal and the LO. The e�ciency due to the visibility, that we
denoted ηmod in section 7.4, grows with the square of the visibility [178]. In our case, our
visibility was around V ' 50 %, which is in general a low value compared with typical
homodyne measurements.

As mentioned above, the reason for the low visibility in our case must be the low spatial-
mode matching between the LO and the quantum signal, since the temporal, spectral, power
and polarization matching is well measured and controlled in the experiment. For the spatial
matching, however, low control is possible given our current setup, since the only spatial
mode-matching in the LO is done using thin lenses, and hence the LO beam keeps gaussian
all along, we just change the width of this gaussian to optimize the matching with the
quantum signal. However, we have seen that the spatial mode of the quantum signal are
not gaussian, but given by functions similar to those of Fig.(4.8). This results in the total 50
% of visibility that we measured in our experiment and that limits the squeezing levels.

A way of solving this issue would be to modify the pulse shaper mask in order to obtain
spatial modes speci�cally similar to those of the waveguide. However, this is a very unprac-
tical solution, because the exact form of the spatial modes are dependent on alignment and
other experimental variables, and changes from guide to guide. Furthermore, the behavior
of the lenses in the LO path could be in principle di�erent if the spatial beam di�ers too
much from a gaussian form. A more elegant and simple solution is to make the LO pass
through a waveguide of the same characteristics as that used for the pump �eld, so that
the waveguide naturally selects the spatial mode and changes spatially the LO accordingly,
increasing signi�cantly the visibility in the homodyne interference. This is a prospect for
the future in our experiment, that we did not have time to accomplish during the time of
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Figure 7.20: Squeezing below the shot noise limit obtained after improvement of the LO-
seed visibility.

this thesis, since the experience was moved to another experimental laboratory shortly after
�nding the results reported here.

In order to show the noise reduction under the shot noise limit, we managed to increase
the visibility by just a 6% working on mode-matching using lenses along the LO path. With
a visibility of around 56%, we observed reduction of the noise under the shot noise limit
for the �rst few modes. Hence, this is the �rst time, to the best of our knowledge, that
noise reduction below the shot noise limit is directly measured in multimode telecom light
coming from non-linear waveguides. In Fig.(7.20) we show the noise reduction, with a mean
amplitude of around 0.31 dB for the �rst Hermite-gauss frequency mode.

This proves our point on the problem in the spatial mode e�ciency. We therefore expect
to improve the noise reduction amplitude below the shot noise limit with the square the
visibility measured between LO and signal.

We therefore conclude this Chapter by showing the measurement of up to 11 squeezed
thermal states with di�erent levels of squeezing amplitudes, and showing the noise reduc-
tion under the shot noise limit when the visibility was improved. A thermal source from
unclear origins is also observed and new tests will be performed to understand its physical
origin. Additionally, optimization work in the near future, mainly with the visibility, would
unveil larger multimode squeezing below the shot noise at telecom wavelengths.
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This thesis was divided into two projects, that were re�ected in this manuscript as the two
parts that compose the document. Both projects are framed in the �eld of Quantum Infor-
mation with Continuous Variables.

In the �rst project, we studied a particular quantum cryptographic protocol, the pre-
pare and measure CVQKD with coherent states, for its possible actual implementation with
satellites. We studied the atmospheric characteristics that are relevant to the transmission
of quantum information from a satellite to a ground-station, and the consequences of those
physical features to the security proof of the quantum protocol.

We introduced the atmospheric channel from a characteristic rate of change of the trans-
missivity, which makes the channel to be called a fading channel with a certain probability
distribution. From this abstraction, we derived the conditions in which this fading channel
is secure against collective attacks in the asymptotic limit, concluding that the protocol is
still secure if the equation for the key rate is modi�ed, including a new excess noise term
that depends on the probability distribution of the transmissivity, called PDTE.

We therefore studied the behavior of the PDTE on the di�erent time-dependent noise
�gures that a�ect the transmisivity of the channel. The most prominent variables for the
quantum channel happened to be the divergence angle, that essentially depends on the
satellite-ground station distance and emitter telescope’s aperture, the pointing error from
the satellite, and the atmospheric turbulence. Under good or moderate atmospheric condi-
tions, we concluded that the main source of time-dependent noise comes from the pointing
error, given state-of-the-art technologies. With this, we computed the PDTE taking into
account an entire circular satellite orbit characterized by its altitude.

With this convoluted PDTE, and adding the noise sources that are accounted in usual
CVQKD studies, namely detector e�ciency, electronic noise or reconciliation e�ciency,
we derived the key rate that would be obtained in a real scenario given state-of-the-art
instruments, proving the possibility of having non-zero key rates for LEO and MEO satellites
if the total excess noise is not bigger than around 5%. We saw the dependencies of the key
rate in di�erent mentioned parameters, the most important being, again, the excess noise.
We also included the �nite size e�ects that are not accounted in the asymptotic key rate
formula, and propose a binning method for improving the key rate for LEO satellites, where
the fading noise is most relevant. We concluded that CVQKD with satellites is actually a
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feasible near-term option, specially for LEO satellites.
A logical continuation to this project is the actual implementation of a CVQKD experi-

ment in the laboratory, adding an arti�cial fading channel in which the amplitude and phase
of the coherent states are modulated before arriving to Bob. The parameters of the modula-
tion would simulate the actual atmospheric channel. The recovery of the secret key in the
experiment and the comparison with our study would prove even more the feasibility of the
quantum protocol. This experimental implementation is being currently performed in our
laboratories at Sorbonne Université, in Paris, France. If the results end up being positive,
one could think in actually performing the protocol with actual satellites in the not so long
term.

The second project of this thesis was the design and implementation, starting from
scratch, of a quantum source of CV graph states at telecom wavelengths in the labora-
tory, that would allow to implement quantum protocols in the CV framework. Examples
of such protocols are secret sharing, QKD, measurement-based quantum computation, and
quantum simulation, among others.

We showed how the graph states can be obtained from a multimode squeezed vacuum
state, and outlined the experimental con�gurability of the potentially generated graphs. The
experiment was therefore based on creating the source of the multimode quantum states in
a single pass SPDC experiment through a non-linear waveguide.

We �rst performed a quantum optics theoretical study in which we derive the in�uence
of the controllable degrees of freedom in the experiment on the multimode state, in particu-
lar on the number and form of the squeezed supermodes. This study allowed us to design the
experiment and choose the particular non-linear waveguide, that happened to be a 15 mm
long PPKTP waveguide with transverse dimensions compatible with single(spatial)-mode
propagation.

We constructed the multimode quantum source by designing an experiment based on
blocks with di�erent functionalities. We tested and characterized experimentally each of the
blocks, including a femtosecond laser centered at 1560 nm, pulse compressors, a pulse shaper
for the LO, a PPLN SHG crystal for generating the pump to the waveguides, homodyne
detection for the multimode squeezing measurement, and the mentioned non-linear PPKTP
waveguides. The di�erent frequency modes can be addressed independently by shaping
appropiately the homodyne LO with the pulse shaper.

We performed a Phase Sensitive Ampli�cation experiment that showed parametric gain,
a precondition for squeezing. We report a deviation from the theoretical curve where the
parametric gain grows linearly instead of saturating at su�ciently high powers, indicating
the presence of some other non-linear process generating telecom light. We directly mea-
sured multimode squeezing in up to 11 expected frequency supermodes and found squeezing
oscillations just above the shot-noise level, indicating the presence of multimode squeezed
thermal states. The levels of squeezing are in accordance with the expected value from the
PSA experiment. The origin of the thermal state is still not clear, and new tests should
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be performed to clarify its physical origin. It should be related to the anomalous ampli�-
cation seen in the PSA experiment by the unidenti�ed extra non-linear process, giving a
thermal character to our squeezed states. We also look forward to improving the optical
losses, mainly in the mode-matching e�ciency when interfering the LO with the quantum
signal. Finally, we managed to improve the visibility by mode-matching and we were able
to show some noise reduction below the shot noise limit, and hence real squeezing in a few
modes. This was the �rst time, to the best of our knowledge, that multimode squeezing
from non-linear waveguides at telecom wavelengths was directly measured.

The �rst prospect for this experiment is the source optimization, starting from the im-
provement of the mode-matching e�ciency via the visibility, since it would allow us to
considerably improve the squeezing amplitudes. The understanding of the thermal source
in the near-term is also crucial for the purity of the squeezing levels. Once the squeezing
levels will be optimized, the possible applications are certainly wide, as mentioned before.
Quantum CV protocols requiring a small number of nodes are the �rst candidates to be im-
plemented by our source. Another possibility is to prepare a copy of the multimode squeezed
state with the use of an extra waveguide and make the two quantum states to interfere, like
in [179], so that temporal correlations are added on top of the frequency ones, generating a
large cluster. Finally, another more fundamental possibility for the future of the source is to
add an extra step of photon subtraction or photon addition that makes the state to become
non-gaussian (see for example [180]), in order to understand the properties of these more
exotic states and �nd their potentialities when applied to the �eld of Quantum Information.
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Appendix A

Parameter analysis on Satellite CVQKD

In this Appendix we analyze the dependence of the secret key rate on several parameters of
our CVQKD study, to obtain a better insight into which parameters a�ect the most the over-
all performance and to reinforce our conclusions from Chapter 2. For this multiparameter
analysis, we consider the key rate in the asymptotic case for a �uctuating channel, given by
Eq.(2.24).

The parameters will be changed one by one, keeping the others to their reference values,
expressed in Table 2.1. The color code re�ects the value of the �xed excess noise and is the
same used in Chapter 2: red, blue, and green for ξ = 1, 3, 5% (in S.N.U.), respectively.

Figure A.1: Impact of the electronic noise on key rate. Comparison of secret key rate for
two di�erent electronic noise νel and three di�erent excess noise values.

In Fig.(A.1), we vary the electronic noise of the detectors from 0.01 to 0.1 S.N.U. We notice
that even with one order of magnitude increase in noise, the key rate is almost una�ected
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Figure A.2: Impact of the reference pulse energy on key rate. Comparison of secret key rate
for di�erent values of the reference symbol energy Eref , for the three di�erent excess noise
values considered along Chapter 2 and this Appendix.

for all cases. This is mainly due to the fact that in this analysis we consider the so-called
trusted or calibrated scenario, in which the electronic noise is known to Bob via a constant
calibration and cannot be exploited by Eve.

The second parameter we want to consider is the energy of the reference symbols used
for phase recovery in the classical pilot pulses. To illustrate the problem: considering a
simple phase estimation scheme operating at 1 Gsymbol/s with alternating signal and ref-
erence symbols. The time between two such symbols, ∆t = 1 ns, gives rise to a noise
contribution ξt = VA · 2π∆t∆f , where ∆f ' 1/(πτc) = 10 kHz is the linewidth of the two
lasers and τc their coherence time (assumed equal for Alice and Bob). On the other hand,
the phase measurement is a�ected by shot noise, introducing a noise of ξsn = VA/(2ηnref ,
where nref = Erefτ/Ephoton is the total number of photons collected, Eref is the energy of
the reference symbols and Ephoton is the photon energy. The e�ects for di�erent reference
symbol energies are shown in Fig.(A.2). Although the e�ect for LEO satellites is negligible
for energies above 10 pJ, for higher orbits stronger values of the reference are required to
avoid any detrimental e�ect owing to the phase alignment uncertainty, which might impose
restrictions in the dynamic range of the modulators, as the optimal variance VA decreases
as attenuation increases.

We also consider the impact of the downlink beam pointing error and beam divergence,
on the �nal key rate. This is depicted in Fig.(A.3) for di�erent combinations of θp and θd. As
expected, these parameters have a strong impact en the key, underlying the importance of
a high-quality beam propagation for satellite CV-QKD.

Finally, we analyze the role of atmospheric visibility, adding values of 5 km and 2 km,
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Figure A.3: Impact of the beam quality on key rate. Comparison of secret key rate for
di�erent values of pointing error, θp, and divergence angle, θd at the three excess noise
values.

Figure A.4: Impact of the sky visibility on key rate. Comparison of secret key rate for
di�erent values of sky visibility at the three excess noise values.

corresponding to haze and mist conditions, respectively, to the 23 km value used in Chapter
2 . In these two cases the atmospheric transmission e�ciency at zenith, τzen, is, respectively,
0.75 and 0.53. The results, reported in Fig.(A.4), show that the key rate is a�ected slightly
by haze condition, but drops signi�cantly for mist condition.
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Kleinman Symmetry

In the frequency domain, the second order susceptibility relates all the possible pairs of
cartesian components of the electric �eld, Ej(ω) and Ek(ω), to the orthogonal component
of the polarization �eld, Pi(ω). Furthermore, in general, the associated susceptibility co-
e�cients also depend on frequency, χ(2)

ijk = χ
(2)
ijk(ω). Considering that we have a three-

wave mixing process, there will be three frequencies involved in the process, ωn, ωm and
ω3 = ωn + ωm. Explicitly, the relation between the polarization and electric �eld compo-
nents is:

Pi(ωn + ωm) = ε0
∑
j,k

∑
n,m

χ
(2)
ijk(ωn + ωm, ωn, ωm)Ej(ωn)Ek(ωm) (B.1)

However, quite often in non-linear optics, and particularly when the external �eld fre-
quencies do not coincide with any atomic resonance, the second order susceptibility does not
depend on frequency. Under this condition (and the approximation of a lossless medium),
the third order tensor χ(2) presents full permutation symmetry. This condition states that
all of the frequency arguments of the nonlinear susceptibility can be freely interchanged, as
long as the corresponding cartesian indices are interchanged simultaneously. For instance,
one can show that:

χ
(2)
ijk(ω3 = ω1 + ω2, ω1, ω2) = χ

(2)
jki(ω1 = −ω2 + ω3, ω2, ω3) = χ

(2)
kij(ω2 = ω3 − ω1, ω3, ω1)

(B.2)
This result is known as the Kleinman Symmetry condition, and it allows to rewrite the sus-
ceptibility tensor in a contracted form, using a 3 by 6 matrix, usually denoted dil, following:

dil =
1

2
χ

(2)
i,(jk) (B.3)

jk : 11 22 33 23, 32 31, 13 12, 21 (B.4)
l : 1 2 3 4 5 6 (B.5)
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So we end up with the matrix:

dil =

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

 (B.6)

However, due to the symmetry condition, not all the elements of the matrix are linearly
independent. For example, d12 = d122 = d212 = d26. We �nally recover ten independent
elements:

dil =

d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14

 (B.7)

With this notation, we can write the components of the SHG process in the frequency do-
main as:

Px(2ω)
Py(2ω)
Pz(2ω)

 = 2

d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14




E2
x(ω)

E2
y(ω)

E2
z (ω)

2Ey(ω)Ez(ω)
2Ex(ω)Ez(ω)
2Ex(ω)Ey(ω)

 (B.8)

And similar relationships can also be written for SFG and DFG.
The two speci�c non-linear materials used in this work were Lithium Niobate (LN) and

Potassium Titanyl Phosphate (KTP). For both of them, the susceptibility tensor simpli�es
signi�cantly.

For LN, the susceptibility tensor is:

dLN =

 0 0 0 0 d15 −d22

d22 d22 0 d15 0 0
d31 d31 d33 0 0 0

 (B.9)

and for KTP:

dKTP =

 0 0 0 0 d15 0
0 0 0 d24 0 0
d31 d32 d33 0 0 0

 (B.10)

These tensors are important to account for the allowed processes in the crystals. For
instance, assume a mixing process of two input frequencies, one polarized along the x axis
and the other along the z axis, then the induced polarization would be oriented in the x
axis, since only the term d15 is coupling this combination. This particular combination is
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associated with a Type II PDC process, where a pump photon polarized along x is split into
two photons, one polarized along x and the other along z. Similar conclusions can be drawn
from the rest of �eld combinations and non-linear e�ects.

We �nally remark the importance of the crystal-cut, since it relates the propagation and
transversal directions in the crystal with the cartesian axes that we set when constructing
the susceptibility matrix. A di�erent crystal cut implies a change in the position of the
coe�cients in the dmatrix, so it should be taken into account when designing an experiment
involving non-linear bulk crystals or waveguides.

The non-linear d coe�cients for LN are, taken from [181]:

d31(type I) = 4.4 pm/V (B.11)
d15(type II) = 4.4 pm/V (B.12)
d22(type 0) = 2.1 pm/V d33(type 0) = 25 pm/V (B.13)

And the non-linear d coe�cients for KTP are, taken from [182]:

d31(type I) = 2.54 pm/V d32(type I) = 4.35 pm/V (B.14)
d24(type II) = 3.64 pm/V d15(type II) = 1.91 pm/V (B.15)
d33(type 0) = 16.9 pm/V (B.16)

These values are nevertheless wavelength and chemistry composition dependent, so they
should be taken only as references.
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High order terms in the mismatch

In Chapter 6, we have seen that one of the constraints for the SGVM condition to hold, and
hence identical signal and idler supermodes, is that the �rst order term in the Taylor series
of ∆β(ωs, ωi) should be much larger than the rest of the terms.

We can compute the �rst order coe�cients, γs and γi, as de�ned in Eq.(6.17), by using the
Sellmeier equations and its derivatives for the index of refraction of KTP, hence computing
the group velocities and evaluating them at the corresponding central frequencies of pump,
signal and idler. In this way we obtain the linear term, denoted here as F (ωs, ωi):

F (ωs, ωi) = γs(ωs − ωp,0/2) + γi(ωi − ωp,0/2) (C.1)

Paralelly, we can numerically compute the mismatch ∆β(ωs, ωi) by calculating the wavevec-
tors from the relation with the index of refraction:

∆β(ωs, ωi) = βp(ωs + ωi)− βs(ωs)− βi(ωi) (C.2)

=
1

c
((ωs + ωi)np(ωs + ωi)− ωsns(ωs)− ni(ωi)) (C.3)

Therefore, the di�erence between Eq.(C.1) and Eq.(C.3) gives the contribution of all the rest
of higher terms in the Taylor series. We call this contribution H(ωs, ωi):

H(ωs, ωi) = ∆β(ωs, ωi)− F (ωs, ωi) (C.4)

Fig.(C.1) shows the numerical mismatch, the linear term and its di�erence as a function
of signal and idler wavelength (by changing variables from frequency to wavelength, using
ω = 2π/λ). We compute them around the central wavelength and at the SGVM condition
γs = −γi. We observe that the mismatch function is e�ectively well described by the �rst
order term at least in the wavelength region considered (that is bigger than the Schmidt
modes bandwidth calculated in the paper).

We therefore conclude that, for KTP, and under our con�guration, the higher order terms
in the mismatch can be discarded in practice and the SGVM condition holds.
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Figure C.1: Left to right: numerical mismatch, ∆β(λs, λi), �rst order term, F (λs, λi) and
higher order terms, H(λs, λi) as a function of signal and idler wavelengths, λs, λi.
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Appendix D

Analytical mode overlap in Type II
SPDC

In Fig.(6.12) and Fig.(6.13), we observed that the overlap between the modes decreases as
the mode order increases. The aim of this Appendix is to argue deeper this result.

The reason for this fact is two-fold: �rst, as the mode order increases, their spectral
width does too, reaching frequencies further away from the central frequency, where the
Taylor expansion of Eq.(6.16) is less precise and hence the modes are expected to present
more di�erences between them. Their overlap is expected to be smaller, as we con�rm.

The second reason can be understood by the mathematical structure of the modes. If
we approximate the phasematching function (which is a sinc function on its arguments),
by a Gaussian function, the supermodes can be calculated analytically, giving two sets of
Hermite–Gauss modes of the form1:

HGn(x) =
1√

n!
√

2n+1πw
Hn(x)e−(x−x0)2/4w2 (D.1)

where Hn(x) is the n-th order Hermite polynomial and w is the associated width of
the zeroth-order function, which is a Gaussian. Our temporal modes are not exactly Her-
mite–Gauss, but they approximate them fairly well.

If we try to compute the n-th order overlap de�ned in Eq.(6.7) from two sets of Her-
mite–Gauss modes with di�erent widths, w and w′, we �nd, using Eq.(D.1):

On =

∫∞
−∞ dxH2

n(x)e−a1x
2+b1x√∫∞

−∞ dxH2
n(x)e−a2x2+b2x

∫∞
−∞ dxH2

n(x)e−a3x2+b3x
(D.2)

1The variable x would pysically correspond to the wavelenght λ or equivalently the frequency ω, given
that the function describes the temporal modes.
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a1 =
1

2

(
1

w2
+

1

w′2

)
b1 = x0

(
1

w2
+

1

w′2

)
(D.3)

a2 =
1

w2
b2 =

2x0

w2
(D.4)

a3 =
1

w′2
b3 =

2x0

w′2
(D.5)

and therefore the problem is reduced to �nding the integral:

L ≡
∫ ∞
−∞

dxH2
n(x)e−ax

2+bx (D.6)

For the solution of this integral one can de�ne both the whole family of two vari-
able Hermite polynomials Hn(x, y) and the family of two-indices Hermite polynomials
Hn,m(x, y, w, z|τ) [183]. By the method of the generating function, one �nds that the solu-
tion to the integral L in Eq.(D.6) is an evaluation of the two-index (with the same index n)
Hermite polynomial in speci�c coordinates depending only on a and b.

Figure D.1: Temporal modes overlap as a function of the mode order for two sets of Her-
mite–Gauss modes with relative widths of w/w′ = 0.95.

For typical values of relative widths for signal and idler temporal modes computed in
our simulations, the overlap between modes decreases slightly and linearly. If we also model
the fact that our modes are expected to be less similar as the mode order increases, due to
their larger spectral width, by making their relative widths to increase with the mode order,
then we obtain Fig.(D.1). In this �gure, the relative widths for the �rst modes (Gaussian)
is set to w/w′ = 0.95. From this value, we decrease their relative widths by 2% for every
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APPENDIX D. ANALYTICAL MODE OVERLAP IN TYPE II SPDC

higher mode order. We observe a decreasing overlap function with the mode order, in very
good accordance with the results from the simulations of Chapter 6. We conclude that both
the dispersion and the nature of the modes are responsible for the observed behavior of the
overlap as the mode order increases.
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