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A B S T R A C T

I first review the existing methods based on regularization for continual learn-
ing. While regularizing a model’s probabilities is very efficient to reduce for-
getting in large-scale datasets, there are few works considering constraints on
intermediate features. I cover in this chapter two contributions aiming to regular-
ize directly the latent space of ConvNet. The first one, PODNet, aims to reduce
the drift of spatial statistics between the old and new model, which in effect
reduces drastically forgetting of old classes while enabling efficient learning of
new classes. I show in a second part a complementary method where we avoid
pre-emptively forgetting by allocating locations in the latent space for yet unseen
future class.

Then, I describe a recent application of Class Incremental Learning (CIL) to
semantic segmentation. I show that the very nature of Continual Semantic Seg-
mentation (CSS) offer new specific challenges, namely forgetting on large images
and a background shift. We tackle the first problem by extending our distillation
loss introduced in the previous chapter to multi-scales. The second problem is
solved by an efficient pseudo-labeling strategy. Finally, we consider the common
rehearsal learning, but applied this time to CSS. I show that it cannot be used
naively because of memory complexity and design a light-weight rehearsal that
is even more efficient.

Finally, I consider a completely different approach to continual learning: dy-
namic networks where the parameters are extended during training to adapt to
new tasks. Previous works on this domain are hard to train and often suffer from
parameter count explosion. For the first time in continual computer vision, we
propose to use the Transformer architecture: the model dimension mostly fixed
and shared across tasks, except for an expansion of learned task tokens. With
an encoder/decoder strategy where the decoder forward is specialized by a task
token, we show state-of-the-art robustness to forgetting while our memory and
computational complexities barely grow.
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R É S U M É

Depuis le début des années 2010 la recherche en apprentissage automatique
a orienté son attention vers les efficaces réseaux de neurones profonds. Plus
particulièrement, toutes les tâches de vision par ordinateur utilisent désormais des
réseaux convolutionnels. Ces modèles apprennent à détecter des motifs d’abord
simples (contours, textures) puis de plus en plus complexes jusqu’à apprendre le
concept d’objets en particulier.

Malgré les grandes avancées dans le domaine des réseaux de neurones pro-
fonds, un problème important subsiste : comment apprendre une quantité crois-
sante de concepts, à la manière d’un élève durant sa scolarité, sans oublier les
précédentes connaissances. Ce problème d’apprentissage continu est complexe :
si non traité, les réseaux de neurones oublient catastrophiquement. L’objectif de
cette thèse était donc de résoudre de ce problème.

J’ai pu dans un premier temps développer plusieurs méthodes pour forcer un
comportement similaire entre la version du modèle ayant appris de nouveaux
concepts et sa précédente itération. Contrairement au reste de la littérature, qui
imposait des contraintes sur le comportement final du modèle, je me suis intéressé
aux représentations internes.

Dans un second temps, j’ai considéré l’apprentissage continu pour la tâche de
segmentation sémantique. Cette tâche complexe possède des problèmes inédits
dans un contexte continu en plus de l’oubli catastrophique. J’ai pu proposer
plusieurs approches complémentaires pour les résoudre. Plus précisément : une
nouvelle méthode de contraintes, une technique de pseudo-annotations et une
manière efficace de révisions d’objets.

Et enfin, dans un troisième et dernier temps, je m’intéresse aux réseaux de
neurones dynamiques, pouvant créer de nouveaux neurones à travers leur exis-
tence pour résoudre un nombre croissant de tâche. Les méthodes précédentes
grandissent avec peu de contrôles, résultant en des modèles extrêmement lourd,
et souvent aussi lents. Donc, en m’inspirant des récents transformers, j’ai conçu
une stratégie dynamique avec un coût pratiquement nul, mais ayant malgré tout
des performances à l’état-de-l’art.
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Total number of tasks T
Current task t
Classes of the current task Ct
Classes of the previous tasks C1:t−1

Classes of the future tasks Ct+1:T

Cardinality of a set of classes N t = card(Ct)
Image at task t xt

Ground-truth label at task t yt

Ground-truth segmentation map at task t yt

Feature extractor at task t f t(·)
Classifier at task t gt(·)
Learnable parameters at task t θt

Loss function L
Predicted label ŷt

Predicted segmentation map ŷt

Intermediary spatial features at level l ht` = f t` (·), ` ∈ {1, . . . , L}
Final embeddings post-Global Average Pooling ht = f t(x)
cth channel of a spatial tensor x x[c, :, :]
wth column of a spatial tensor x x[:, w, :]
hth row of a spatial tensor x x[:, :, h]
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I N T R O D U C T I O N

I believe that at the end of the
century, the use of words and
general educated opinion will have
altered so much that one will be
able to speak of machines thinking
without expecting to be
contradicted.

Alan Turing

In this thesis introduction, using layman terms, we describe Artificial Intelli-
gence, and, in particular, one of its instances: Deep Learning. Then, we lay out
the challenges of this thesis and our contributions.

The idea of thinking machines began in the previous century, from Karel
Çapek’s invention of the "robot" to the 1956’s Dartmouth workshop passing by
Turing & von Neumann’s reflections. Despite suffering from multiple "AI win-
ters" filled with disappointments and criticisms, Turing’s prediction on the rising
importance of Artificial Intelligence (AI) proved to be right as the first and the
second decades of the XXI century saw the advent of respectively Machine Learn-
ing (ML) (Bishop 2006) and Deep Learning (DL) (I. Goodfellow et al. 2016), two
major subfields of AI, related to statistical learning theories.

Providing a definition of AI is difficult, but its foremost domains, ML and DL,
can be defined as statistical algorithms that can improve automatically through
experience and the use of data. These methods are already ubiquitous: speech
recognition enabling us to control devices remotely (Amodei et al. 2016), recom-
mender systems proposing movies according to our taste (Töscher and Jahrer
2009), automatic translation (Vaswani et al. 2017), face recognition (Schroff et al.
2015), autonomous driving (P. Sun et al. 2020), etc. Less known but still useful
applications comprise accelerated physics simulation (Breen et al. 2020), protein
folding prediction (Jumper et al. 2021), molecule toxicity estimation (Advancing
Translational Sciences 2014), data center cooling system (Evans et al. 2016), control
of the magnetic coils of a nuclear fusion reactor (Degrave et al. 2022), etc.

1
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AI is increasingly more important in our daily lives with some applications rais-
ing ethical concerns: face recognition biased towards some populations (Grother
et al. 2019), loan grants (Anglekar et al. 2021), medical diagnosis (Larrazabal
et al. 2020), justice advice (Russel 2020), biased chatbots (Sheng et al. 2019), etc.
Therefore, we must pay a particular interest in the potential impact of this new
technology. Towards this goal, people from diverse backgrounds must participate
in the creation of such technology, and standardization bodies (Tommasi et al.
2021) should advise what types of AI systems can be used in which scenarios
(Gebru 2019).

1.1 PhD Thesis Context

I now contextualize my thesis with relation to my sponsor, how it influenced
our research, and what challenges we have aimed to tackle.

Heuritech This thesis was sponsored by the Parisian startup Heuritech 1 as a
CIFRE PhD. The company analyzes social networks such as Instagram and Weibo,
recognizes the clothes in pictures, estimates volumes of fine-grained types of
garments, and finally forecasts future trends. The company’s Computer Vision
(CV) models must recognize an ever-growing number of entities from features
(e.g. knitted, blue color, short cut) to brand models (e.g. Nike Air Max, Adidas
Stan Smith, Puma Suede). This requirement leads to two problems: (1) the time
spent to re-train a model is growing linearly, and (2) learning a new entity can
incur a performance loss on previously learned entities.

Continual Learning is a field that emerged in the 1990s but saw renewed inter-
est only very recently around the second half of the 2010s. The goal is to deal with
datasets that evolve through time. This evolution can take many forms, including
adding new entities to predict in a classification task (e.g. learning sneaker brands,
then high-heel brands) or adding samples from new sources (e.g. commercial pho-
toshoot then images from social media). Unfortunately, current State-of-the-Art
models struggle to learn continually from new data without losing performance
on previously seen data. This loss is so critical that the literature nicknamed it
“catastrophic forgetting” (Robins 1995; French 1999). Multiple methods can reduce
this forgetting, including rehearsal and constraints. Rehearsal involves review-
ing previously learned knowledge, as a human student would rehearse the last
semester’s course. However, this rehearsal is often limited in order to reduce com-
putational cost and because past data may not always be available for a variety

1. https://heuritech.com

https://heuritech.com
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of reasons, including privacy. On the other hand, constraints enforce the model
to keep a similar behavior as it learns new concepts, but defining the optimal
constraint is not trivial.

1.2 Contributions

This PhD thesis is structured around solving catastrophic forgetting in contin-
ual settings. We considered various specific situations and approaches declined
in several chapters:

• Chapter 3: visual feature -based regularizations

We first propose strategies to tackle catastrophic forgetting in deep neural
neworks in the context of the image classification. Our main goal is to
constrain the evolution of the network parameters during the continual
training to be relatively rigid while also avoiding completely freezing the
network. The work in this chapter has led to two conference publications:

• Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and
Eduardo Valle (2020). “PODNet: Pooled Outputs Distillation for Small-
Tasks Incremental Learning”. In: Proceedings of the IEEE European Con-
ference on Computer Vision (ECCV)

• Arthur Douillard, Eduardo Valle, Charles Ollion, and Matthieu Cord
(2021c). “Insights from the Future for Continual Learning”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshop

• Chapter 4: continual semantic segmentation

Then, we extend our focus to the task of semantic segmentation. We show
that this context brings new challenges, and we propose multiple comple-
mentary approaches to tackle them. The work in this chapter has led to one
conference publication and one submission to a journal:

• Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu Cord
(2021a). “PLOP: Learning without Forgetting for Continual Semantic
Segmentation”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR)

• Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu Cord
(2021b). “Tackling Catastrophic Forgetting and Background Shift in
Continual Semantic Segmentation”. In: Under review at TPAMI



4 introduction

• Chapter 5: dynamic strategy with transformers

Finally, in our last chapter, we consider the impact of the neural network
architecture for continual learning and in particular propose using the recent
Transformer. The work in this chapter has led to a conference publication:

• Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu
Cord (2022). “DyTox: Transformers for Continual Learning with DY-
namic TOken eXpansion”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR)
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R E L AT E D W O R K

In this chapter, we detail the related work needed to read this thesis. We first
briefly explain the learning procedure in Deep Learning (DL) and how the data
are structured. Then, we describe the main DL applications and architectures
in Computer Vision (CV). Finally, we introduce the main topic of this thesis —
Continual Learning— and showcase the challenges, benchmarks, and methods of
this domain. The notations introduced in this chapter and through the thesis are
listed in the Notations section.

2.1 Neural Network Learning

Neural Networks are based on the statistical learning theory (Vapnik 1999). In
the supervised setting, the goal of a neural network is to learn the best mapping
function f : X → Y between an input space X and an output space Y . We
consider a loss function L : Y ×Y → R+ that measures the disagreement between
a ground-truth label y and the network’s prediction ŷ = f(x). In the context of
image classification, x is the image pixels, y is the class label of the object present
in the image, and ŷ is a vector of probabilities, with one probability per class the
model has to predict. The class with the highest predicted probability/confidence
is chosen as the prediction. Given a training dataset D = {(x1, y1), ..., (xN , yN)},
training a neural network consists in finding the set of parameters θ∗ which
minimizes the loss function:

θ∗ = argminθ

 1

|D|
∑

(x,y)∈D

L(fθ(x), y)

 . (2.1)

However, the optimal set of parameters θ∗ minimizing the loss on the training
set, can fail to predict the correct label on the testing set. Therefore, to avoid this
overfitting phenomenon, regularization functions that limit the parameters space
are used as additional constraints in addition to the classification loss L.

In practice, the function fθ learned by a neural network is composed of a succes-
sion of linear transformations and non-linear activation functions. For example, a

5
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simple neural network, called Multi-Layer Perceptron (MLP), here with two layers,
could be defined as:

ŷ = fθ(x) = softmax(Woσ(Whx + bh) + bo)) , (2.2)

with Wh ∈ RH×D, bh ∈ RH , Wo ∈ RC×H , bo ∈ RC being the parameters θ of the
network. σ is a hidden non-linear activation, often a Rectified Linear Unit (ReLU)
(ReLU(x) = max(0, x)), and ŷ = softmax(ỹ) = eỹ/

∑
i e

ỹi is the final non-linear
activation.

Likewise, in practice for image classification, the loss is often the categorical
cross-entropy:

L(ŷ,y) = −
∑
c

yc log ŷc , (2.3)

with y a one-hot vector of the labels. Finally, to optimize the parameters of the
neural network (such as Equation 2.1), we often use the mini-batch Stochastic
Gradient Descent (SGD) algorithm or a variation thereof:

Algorithm 2.1 Procedure to optimize a neural network with gradient descent.
input: a dataset D with pairs of (xi,yi)
input: a loss function L
input: a model function fθ with θ the learned parameters
input: a learning rate η and a batch size b

1: while stopping criterion not satisfied do
2: (x,y)← sample mini-batch of size b from D
3: Forward pass: ŷ ← fθ(x)
4: Compute loss: L ← L(ŷ,y)
5: Compute the gradients: δ ← ∇θL
6: Update all parameters: θ ← θ − ηδ
7: end while

The learning rate η controls the step size when updating the parameters in
the direction of the gradient. The batch size b defines the number of images
seen during one update. The backpropagation algorithm (Rumelhart et al. 1986)
computes the gradients and the update of the parameters. In the case of image
classification and segmentation, the main topics explored in this thesis, we discern
the feature extractor from the classifier in the neural network. The former transforms
the input space so that the latter linearly discriminates classes. From now on, the
feature extractor will be denoted by f , and the classifier by g (see the notations).
The model is then g ◦ f .

The neural network in Equation 2.2 can be defined as shallow with only one
hidden layer. By extension, an important success of later neural networks came
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with training deep neural network with multiple hidden layers. More generally
in this thesis, we will refer to them as Deep Learning (DL) models. The majority
of DL models, in Computer Vision (CV), in Natural Language Processing (NLP),
or even in Audio are based on the same structure (linear transformations and
non-linear activations) and are trained with a form of gradient descent.

2.2 Deep Architectures for Computer Vision

A common type of architectures for computer vision is the Convolutional Neu-
ral Network (ConvNet). First defined by Fukushima (1980) and then trained with
backpropagation by LeCun et al. (1999), it is a neural network architecture whose
linear operators are convolutions. While handcrafted convolutions (Lowe 1999)
rely on well-defined features, a ConvNet learns the convolution kernels to de-
tect more complex patterns required to minimize the classification loss. In 2012,
thanks to a large dataset and more efficient code working on Graphics Processing
Units (GPUs) allowing training larger networks, Krizhevsky et al. (2012) won the
ILSVC competition (Russakovsky et al. 2015) where they had to classify a large
dataset —ImageNet— made of 1.28M training images and 1000 classes. From
that point forward, multiple improvements were made to ConvNets (Ioffe and
Szegedy 2015; K. He et al. 2016) and these methods have been applied not only
to classification but also object detection (Ren et al. 2015), semantic segmentation
(L.-C. Chen et al. 2018a), visual question answering (Antol et al. 2015; Ben-younes
et al. 2017), image generation (I. J. Goodfellow et al. 2014), image editing (Grechka
et al. 2021; Couairon et al. 2022), etc.

Most ConvNets follow a similar structure with blocks of convolutions and
pooling. Often, the final spatial features are flattened by Global Average Pooling
(GAP) and fed to a linear classifier predicting the classes probabilities. Figure 2.1
illustrates this general architecture.

Architectures: The 2010’s decade saw major improvements to ConvNets, both
in their architecture and in their training procedure. Srivastava et al. (2015)
and K. He et al. (2016) propose residual connections between blocks likewise:
y = x + σ(Conv(x)). By reducing the vanishing gradient problem (Hochreiter et al.
2001), it allows training deeper networks without accuracy degradation. This type
of connection is now quasi-ubiquitous in all DL based architectures. Other archi-
tecture changes include using convolutions of different kernel sizes in parallel as
in Inception (Szegedy et al. 2015), enabling a multi-scales view of the features.
These architectures are depicted in Figure 2.2.
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95% Cat

5% Dog

Edges Textures Patterns Parts Objects

Figure 2.1. – A Convolutional Neural Networks extracts more complex patterns
through its succession of convolutions. Yellow blocks are convolu-
tions, orange blocks are poolings, and the unique green block is the
classifier. Given an image, the ConvNet can assign to each possible
class a probability, all summing to 1. The detected shapes grow in
complexity with the depth of the network, from crude edges and
textures, to objects. Detected patterns taken from Olah et al. (2017).

Regularizations: While the architecture design has an impact on the model per-
formance, the training procedure has been shown to be essential in order to reach
state-of-the-art results (Wightman et al. 2021). Modern procedures include im-
provement of SGD with an adaptive learning rate per layer such as Adam (Kingma
and Ba 2014), an improved learning rate scheduling, stronger data augmentations
(Mü and Hutter 2021; Hongyi Zhang et al. 2018; Zhong et al. 2017), and regu-
larizations such as Dropout (Gal and Ghahramani 2016) and stochastic depth (G.
Huang et al. 2016).

Transformers: While convolution-based neural networks dominated Computer
Vision (CV) in the 2010’s decade, in the last few years, the transformer architec-
ture gained interest: it was originally designed for machine translation in NLP

(Vaswani et al. 2017) with an encoder/decoder structure and a self-attention block
between the words embeddings of a sentence. Each word is embedded into a high-
dimensional vector named a “token”. The self-attention operation of a transformer
has a quadratic complexity w.r.t. the number of tokens: in NLP, it is manageable
given a small sentence. However, when applying a transformer on images and
considering each pixel as a token, the complexity is too important. Dosovitskiy
et al. (2021), based on the encoder structure of BERT (Devlin et al. 2018), propose
instead to consider a patch of pixels as a token, reducing significantly the number
of tokens.

This architecture is illustrated in Figure 2.3: we concatenate a special learned
token, called “class token”, to the patch tokens. Moreover, we also sum these tokens
with a position embedding to facilitate learning tokens position. Then, successive
transformer blocks process all the tokens. Each block is made of LayerNorms
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73% Cat

27% Dog

(a) ResNet-like architecture

81% Cat

9% Dog

(b) Inception-like architecture

1x1

3x3

5x5

1x1

3x3

5x5

1x1

3x3

5x5

Figure 2.2. – Different ConvNet architectures: (a) illustrates a ResNet-like archi-
tecture where there are residual connections between blocks. Used by
the vast majority of modern architectures, these connections reduce
the vanishing gradient problem and thus enabling the training of
deeper networks. (b) showcases an Inception-like architecture where
at the same level convolutions with different kernel sizes are used.
Each detects patterns of different scales.

(Ba et al. 2016), a self-attention block, a MLP, and residual connections. Thus, the
self-attention block is:

Q = Wqx ,

K = Wkx ,

V = Wvx ,

A = Softmax
(
Q ·KT/

√
D/h

)
,

O = WoAV + bo ,

(2.4)

x are the N patch tokens and the class token, of shape (N,D), D being the em-
bedding dimension. The patch tokens are linearly transformed three times in
parallel into a Query, Key, and Value. An attention matrix A of shape (N,N) is
computed from the query Q and the key K. Its ith row contains the similarity
between the ith token with all other tokens. Finally, the multiplication between
the attention matrix and the value matrix V averages all tokens according to their
similarities. To extend the self-attention to its multi-heads variation (Multi-Head
Self-Attention (MHSA)), we use several Query/Key/Value transformations, each
used in a self-attention on a fraction of the embedding dimension.
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Figure 2.3. – The Vision Transformer (ViT): the image is cropped without over-
lap and projected using a convolution whose stride equals the kernel
size. A learned “class token“ is concatenated to the resulting patches,
which are then summed with a position embedding. The encoder
is made of multiple transformer blocks. Each block is made of two
(Layer) Norm layers, a MLP with a single hidden layer, and the Multi-
Head Attention block. Finally, only the special “class token” is used
at the end, and fed to a classifier (here denoted as the “MLP Head”).
Image from Dosovitskiy et al. (2021).

ViT (Dosovitskiy et al. 2021) is the seminal paper on vision transformer. How-
ever, its training was difficult and needed a large — and private — dataset called
JFT300M. Later works, including DeiT (Touvron et al. 2021a) proposed an efficient
optimization procedure enabling the training of transformers on smaller datasets
such as ImageNet (Russakovsky et al. 2015). Finally, multiple works improved
also the architecture itself, including CaiT (Touvron et al. 2021b), ConViT (d’Ascoli
et al. 2021), and Swin (Z. Liu et al. 2021). Notably, PerceiverIO (Jaegle et al. 2021)
proposed a general architecture whose output is adapted to different modalities
using specific learned tokens, and whose computation is reduced using a small
number of latent tokens.



2.3 continual learning 11

2.3 Continual Learning

Usually, when training a ConvNet, we assume the dataset is immutable and
i.i.d.: no new images nor new classes will be learned. The knowledge acquired on
one dataset A can be transferred to another dataset B with different classes using
transfer learning (Razavian et al. 2014). Then, the new model may be efficient on
the classes of dataset B but cannot predict anymore the classes of dataset A.

Continual Learning aims to learn a continually changing dataset without
forgetting the previous knowledge. The distribution of the dataset continually
changes: e.g. at each time-step t ∈ {1, ..., T}, new classes or new samples from po-
tentially new domains are added to the training dataset (Lomonaco and Maltoni
2017). We usually assume the test dataset evolves similarly. Multiple distribution
drifts exist in Continual Learning (Moreron-Torresa et al. 2012; Lesort et al. 2021),
and they have been called under various names in the literature. Given an input
sample x and its ground-truth y (a label in image classification, or a segmentation
map in semantic segmentation), the major drifts are:

• Covariate drift: when p(x) changes, it happens with the introduction of new
domains (Volpi et al. 2021).

• Prior drift: when p(y) changes; Class Incremental Learning (CIL) happens
with this kind of drift.

• Conceptual drift: when p(y|x) changes. Seldom covered in the literature, it
can be found in Continual Semantic Segmentation (CSS).

Learning an ever-growing dataset is possible by training from scratch a new
model on the union of past and new data. However, for multiple reasons like
privacy concerns, limited time, or small storage capacity (Vásquez et al. 2017),
there is a restriction on the amount of previous data that can be kept. In the
extreme case, a model only has access to new data but not old data. Evidently,
if the initialization of the parameters is random, the model cannot predict the
past data distribution. However, the new model parameters can be initialized
using the previous parameters (θt := θt−1

∗ ). Remark, from Equation 2.1, that the
optimization procedure of the old (t − 1) and new (t) model is different. Given
the average loss L(fθ,D) = 1/|D|

∑
(x,y)∈D L(fθ(x), y):

θt−1
∗ = argminθt−1

{
L(fθt−1 ,Dt−1)

}
,

θt∗ = argminθt
{
L(fθt ,Dt)

}
,

(2.5)
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Figure 2.4. – Training protocol for incremental learning. At each training task
we learn a new set of classes, and the model must retain knowledge
about all classes. The model is allowed a limited memory of samples
of old classes.

where the loss is minimized respectively with respect to the old (Dt−1) and new
dataset (Dt). Evidently, the optimal parameters θ∗ are different for the task t and t−
1. This difference results in what we call a forgetting: θt∗ is optimal for the new task
t but is suboptimal for the task t− 1, therefore performance on the previous task
may be degraded (L(fθt ,Dt−1)� L(fθt−1 ,Dt−1)). This performance drop is actually
so important that the literature names it a Catastrophic Forgetting (Robins 1995).
It is particularly critical in the context of image classification where each new task
brings new classes to be classified as described below.

Class-Incremental Example More concretely, a common benchmark in Class
Incremental Learning (CIL) is learning the image classification CIFAR100 dataset
(Krizhevsky and Geoffrey Hinton 2009), made of 100 classes, in multiple steps,
each made of several new classes. During the first step t = 1, the model g1 ◦ f 1

learns the first 10 classes Ct=1. During the second step t = 2, the model g2 ◦ f 2 is
initialized from the learned parameters of the previous model g1 ◦ f 1 and learns
the next 10 classes Ct=2., and so on, until all 100 classes are learned at the last
step t = T . After each step, we evaluate the model on the testing data of all seen
classes C1:t. Figure 2.4 illustrates such continual protocol, and Figure 2.5 depicts
the continual performance of a both trained from scratch on all data for each task
and a continual model finetuned only on new data. The continual model over-
predicts new classes (Davidson and Mozer 2020) and has a low overall accuracy
due to a forgetting of old classes. This clearly illustrates how important is the
catastrophic forgetting. While in this thesis we mainly tackle Class Incremental
Learning (CIL) benchmarks, we describe other continual benchmarks in detail in
the appendix (Section A.1).
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Figure 2.5. – Illustration of the forgetting in Class-Incremental Learning. or-
ange line displays the accuracy of a model which is re-trained from
scratch at each step on all previous training data C1:t. This model,
usually called Joint, is considered as a reasonable upper bound. On
the other hand, the blue line is a model finetuned solely on new
classes Ct without access to previous classes C1:t−1. The gap between
both models illustrates the catastrophic forgetting.

Single-Head vs Multi-Heads are the two main evaluation settings in Continual
Learning (Chaudhry et al. 2018). In the former setting, a model has to classify
samples among all seen classes C1:t, that could have been learned from any of the
seen steps. On the other hand, in a multi-heads setting, a model knows at test-
time the step/task identifier i of the samples. Thus, it only has to classify among
the limited number of classes brought by a step (Ci). Multi-Heads evaluation is
closely related to multi-tasks learning. During this thesis, we focus on the Single-
Head evaluation because it is more realistic as it is rarely possible to know from
which step a sample comes from in a real-life setting. This setting is also more
challenging because a unique classifier must discriminate among all tasks’ classes
instead of having a different classifier per task (Lesort et al. 2019b).

Metrics Multiple metrics exist in Continual Learning: the most common are
the final accuracy and average incremental accuracy. The former measures the
performance of the model on all tasks at the last step, the latter measures the
average of performance on all seen tasks after each new task learned (Rebuffi
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et al. 2017c). Practically, given Ai,t the accuracy of the ith task after learning the
tth task, the final accuracy is (assuming balanced tasks):

AccF =
1

T

T∑
i=1

Ai,T , (2.6)

and the average incremental accuracy:

Acca =
1

T

T∑
t=1

1

t

t∑
i=1

Ai,t . (2.7)

Average incremental accuracy is somewhat more important than simply the final
accuracy: a continual model should be good after every step because in a true
continual setting, there is not a “final task”.

Other metrics exist (Díaz-Rodríguez et al. 2018), such as forgetting (Chaudhry
et al. 2018) which records how much a model has lost performance-wise on a
task compared to the first time it has learned it. The interest of this metric is to
be agnostic of the absolute performance of the model used.

Finally, metrics such as speed (i.e. the number of images processed per second)
or used capacity (i.e. number of learned parameters) are important: Ramasesh et
al. (2022) recently showed that the larger a model was the lower was the forgetting.

2.4 Methods to reduce forgetting

Multiple approaches exist to reduce forgetting in Continual Learning. The
major ones are rehearsal of old data (Section 2.4.1), regularizations constraining
the model’s behavior (Section 2.4.2), and structural adaptations (Section 2.4.3).

2.4.1 Rehearsal Learning

The most efficient method to reduce forgetting is rehearsal learning where old
samples will be seen alongside the new samples. The amount of old samples
stored is extremely limited, otherwise, it would defeat the purpose of contin-
ual learning. Figure 2.6 illustrates how rehearsal learning happens in Continual
Learning. During the first step, a model is trained on all available samples. Then,
it stores a limited amount of those in a memory. During the second step, the model
has access to new samples but also all samples stored in the memory. In Class-
Incremental, an equal amount of samples per class is stored in memory. There are
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Figure 2.6. – Training with a rehearsal memory. After each task a fraction of the
data is stored in a memory to be used in the next task. Rehearsal
learning is the most efficient method to reduce forgetting, but unfor-
tunately the memory capacity is often extremely limited.

two major approaches to determine this amount: Rebuffi et al. (2017c) propose to
fully use a memory of sizeM among all C, while Hou et al. (2019) instead kept
fixed the number of samples stored per class to M/|C1:T |.

Herding is the action of choosing which samples per class to store in the re-
hearsal memory. The most naive herding method is to randomly sample images.
Despite its simplicity, it is quite competitive with more complex method (Castro
et al. 2018), echoing similar results in Active Learning (AL) (Gal et al. 2017). Other
herding methods include fetching samples close to the class mean in the feature
space (Castro et al. 2018) or close to an incremental barycenter (Rebuffi et al.
2017c).

Sampling is an important but yet fewly investigated topic in Continual Learn-
ing. Most models mix all memory samples with new samples without any under-
or over-sampling. Castro et al. (2018) propose to finetune for a few epochs, af-
ter training on a new step, on a balanced set of old and new classes samples.
Chaudhry et al. (2019b) oversample tiny memory with as low as one sample per
class, and show, in the context of Online Learning where models learn in only one
epoch, that continual models still do not overfit. In the same context, Aljundi et al.
(2019a) propose to over-sample the memory examples with the highest losses. In
an imbalanced situation for Continual Learning, over- and under-sampling can
be applied depending on the number of samples per class (C. D. Kim et al. 2020).

Efficient Storing is important for rehearsal learning: a bigger rehearsal memory
leads invariably to less forgetting (Hou et al. 2019). Thus, multiple works consider
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Figure 2.7. – Constraining the new model based on the old model. During each
task, after the first one, the new model is constrained to be similar
to the old model in order to reduce forgetting.

how to store more rehearsal samples given the same memory size: Hayes et
al. (2020) compress intermediate features of memory samples with a lossless
compression algorithm. Iscen et al. (2020) also store features but modify them
through the training to handle the inherent internal covariate drift.

Pseudo-rehearsal does not need to store samples but instead generates pseudo-
samples for rehearsal (Lesort et al. 2019a). The generation can be done with
auto-encoders from intermediate features (Kemker and Kanan 2018; Ayub and
Wagner 2021) or use Generative Adversarial Network (GAN) (Shin et al. 2017).
Unfortunately, those methods have several drawbacks: they struggle to scale to
large images, the generator size may be superior to a classic rehearsal memory
size which would defeat the goal of using less storage, and finally, the generator
may itself suffer from catastrophic forgetting (Zhai et al. 2019). Y. Liu et al. (2020)
propose instead a method halfway between rehearsal and pseudo-rehearsal: the
authors randomly sample real images, and then during continual training, slightly
modify them via bi-level optimization (T. Wang et al. 2018) to minimize forgetting.

2.4.2 Regularization-based Approaches

A common and efficient way to reduce forgetting is to minimize the difference
in behavior between the old and new models as illustrated in Figure 2.7. These
constraints can be expressed through various forms and are described below.
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2.4.2.1 Weight-based constraints

The most straightforward way to avoid completely forgetting is that the old
and new models stay identical. While the model would be rigid (no forgetting),
it is also not plastic (changing a lot) at all, and thus cannot learn any new tasks.
Thus, a line of research proposed to constrain only a portion of the neurons:

L(θt, θt−1) = Lt(θt) + λ
∑
i

Ωt−1
i (θti − θt−1

i )2 , (2.8)

where Lt(θ) is the loss at the current task t (e.g. the cross-entropy), θti and θt−1
i

respectively the ith neuron of the current and previous model, and Ωt−1
i a neuron-

wise importance factor. The intuition is that important neuron for the previous
task t− 1 should not change, while the others can be adapted to fit the new task t.

Kirkpatrick et al. (2017), followed by Zenke et al. (2017) and Chaudhry et al.
(2018) propose to use the diagonal Fisher information matrix as importance fac-
tors. The motivation behind was that the posterior p(θt−1|Dt−1) must contain the
information about which parameters are important to the previous dataset Dt−1.
This posterior can be approximated by a Gaussian distribution whose diagonal
precision is given by diagonal Fisher information matrix. A higher value means
a more important neuron for the previous task, and thus the constraint should
be increased proportionally. Thus, a lower value, for a less important neuron,
means that it can change drastically, which would facilitate learning new data.
This strikes a balance between rigidity (not changing and thus not forgetting),
and plasticity (changing, and thus learning new concepts). Note that Aljundi et
al. (2018) instead use the sensitivity of the model when small perturbations are
added to the neurons to measure their importance.

However, it is worth remarking that weight-based constraints are usually lim-
ited to the multi-heads setting where a task identifier is available at test time.
Lesort et al. (2019b) show that in the single-head setting, they struggle to re-
duce forgetting and are significantly outperformed by the simple (but somewhat
memory costly) rehearsal learning.

2.4.2.2 Gradient-Based methods

Lopez-Paz and Ranzato (2017) propose the GEM model that combines a con-
straint on the gradients and rehearsal learning. The algorithm requires that the
loss on a given stored sample must not increase despite the model learning new
classes. The authors, given a locality assumption, rewrite this formulation as en-
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Figure 2.8. – GEM’s gradient constraint forcing updates to be in the same di-
rection as the gradient w.r.t. old samples. In (a) the new gradient
gt is valid, while in (b) the new gradient violates the constraint of
〈gt, gt−1〉 ≥ 0. In (c), the invalid gradient gt is projected to the closest
valid alternative g̃.

forcing that the gradient of a new sample (g) to be in the same direction as the
gradient of all stored old samples (gi for all i ∈M):

〈g, gi〉 ≥ 0, for all i ∈M , (2.9)

withM the rehearsal memory. If the constraint is violated, the new gradient g is
projected to the closest in L2 norm gradient that satisfies the angle constraint by
minimizing a quadratic program. The constraint is illustrated in Figure 2.8. The
drawback of this method is the computational cost that can grow prohibitively
when the memory is too large. Chaudhry et al. (2019a) propose Averaged-GEM to
speed up GEM: the authors do not constraint the gradient of individual memory
samples but only the average of all memory samples. Aljundi et al. (2019c) also
improved GEM’s speed by selecting only a subset of the memory samples that
maximize the feasible region.

Differently, but still constraining the gradients: Farajtabar et al. (2020)’s OGD
forces the gradients of task t to be orthogonal to gradients of task t− 1. They use
the Gram-Schmidt procedure to orthogonalize the new gradients, allowing up-
dates for the new task that minimally interfere with the performance of old tasks.
Saha et al. (2021)’s GPM does likewise but uses instead a k-rank approximation
of the SVD of the representation matrix.
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2.4.2.3 Output-based constraints regularizations

Finally, the majority of Continual models that are benchmarked on large datasets
(e.g. ImageNet (Deng et al. 2009)) use a combination of rehearsal learning (Sec-
tion 2.4.1) and constraints on the model’s outputs.

LwF (Z. Li and Hoiem 2016) and iCaRL (Rebuffi et al. 2017c) apply the Knowledge
Distillation (KD) (Geoffrey Hinton et al. 2015) on the model’s probabilities. It
usually consists in minimizing the Kullback-Leiber divergence (KL) between the
probabilities of the old and new models:

LKD = KL(softmax(
ỹt−1

τ
)‖ softmax(

ỹt

τ
) , (2.10)

where ỹt−1 = gt−1(f t−1(x)) and ỹt == gt(f t(x)) are respectively the logits of the
old and new model, and τ a temperature to soften the probabilities in order to give
more importance to the model confidence in other classes than the top one. These
probabilities, nicknamed dark knowledge by Geoffrey Hinton et al. (2015), contain
additional information about the model which are useful to distil. Note that in the
context of Class-Incremental, the new model predicts more classes than the old
model, therefore, the KL is only applied on the logits common to both the old and
the new models. The KD is sometimes also defined as the binary cross-entropy
between the sigmoid-activated logits.

Constraining the probabilities is now so ubiquitous that most models include
it in their base losses. On the other hand, a few models considered constraining
intermediate outputs. MK2D (P. Zhou et al. 2019) uses the KD from both the final
classifier and an auxiliary classifier similarly to the Inception network (Szegedy et
al. 2015). Hou et al. (2019) maximize the cosine similarity between the embeddings
produced by the GAP. Dhar et al. (2019) minimizes the L1 distance between the
attention maps produced by GradCam (Selvaraju et al. 2017).

2.4.3 Structural Strategies

Multiple works also propose to adopt dynamic strategies where the configura-
tion of the neural network evolves after each task. Critically, not only the number
of neurons changes in the classifier gt (to incorporate new classes to predict), but
the feature extractor f t’s neurons count or organization will also differ from its
previous iteration f t−1.

Subnetworks The Lottery Ticket Hypothesis (Frankle and Carbin 2019) states
that subnetworks made of a fraction of the neurons and connections of a larger
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Figure 2.9. – Task-specific subnetworks that can be uncovered with a sparsity
loss or learned masking. Blue neurons are dedicated to the task
t, red neurons to the following task t + 1, and black neurons are
shared among all tasks. At test-time, a task identifier of the sample
is required to select the right subnetwork path.

network, can reach excellent performance. Several Continual Learning models
exploit that property by using a subnetwork per task. Those subnetworks can be
uncovered via genetic algorithms (Fernando et al. 2017), via induced L1 sparsity
(Golkar et al. 2019), or even learned masked Serrà et al. (2018) and Hung et al.
(2019). Usually, these methods require a task identifier at test-time in order to
select the right subnetwork (see multi-heads in Section 2.3). Later, Wortsman et al.
(2020) propose to infer the task identifier by selecting the subnetwork with the
lowest entropy. This subnetwork-based approach is illustrated in Figure 2.9.

Dynamically Expandable Networks A neural network can also be expanded
through its continual training to accommodate the growing amount of tasks to
solve. First, Rusu et al. (2016) propose to have one network per task, where the
ith network would depend both on the input and all previous networks’ interme-
diate features. Unfortunately, memory consumption is quickly prohibitive with
many tasks. Following works propose to only add blocks of parameters, and only
when deemed necessary (Veniat et al. 2021). While these dynamic networks often
require an identifier at test-time to select the right subset of parameters, recently,
DER (Yan et al. 2021) removed this need by learning a classifier upon the concate-
nated features of all tasks: Their dynamic expansion of the representation adds
a new feature extractor per task. All extractors’ embeddings would then be con-
catenated and fed to a unified classifier, discarding the need for a task identifier
at test-time. To limit an explosion in the number of parameters, they aggressively
prune each model after each task using the HAT (Serrà et al. 2018) procedure. Un-
fortunately, the pruning is hyperparameter sensitive. Therefore, hyperparameters
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are tuned differently on each experiment: for example, learning a dataset in 10

steps or in 50 steps use different hyperparameters. While being impracticable, it
is also unrealistic because the number of classes is not known in advance in a true
continual situation. Simple-DER (Zhuoyun Li et al. 2021) also uses multiple ex-
tractors, but its pruning method doesn’t need any hyperparameters; the negative
counterpart is that Simple-DER controls less the parameter growth.

Task Conditioning Rather than adding many new parameters, it is also possible
to only add a few parameters that will adapt the existing network behavior for
a task. Rebuffi et al. (2017a) propose to add a different residual per task: given
a task identifier, the associated residual is used, and the features are modulated
to best fit the given task. Instead of adapting the features, Wen et al. (2020) and
Q. Sun et al. (2019) propose to share most of the weights across tasks, but have
task-specific weights that directly modify the shared weights.

Mixture-of-Experts Mixture of experts (Masoudnia and Ebrahimpour 2014)
have also been proposed, where multiple experts combine their decision. Aljundi
et al. (2017) learn a gating system to use the right task-specific expert. Collier et al.
(2020) stress the importance on sharing experts when tasks are similar.

Classifier Correction Forgetting happens in both the feature extractor and the
classifier. Previously described rehearsal and regularization methods try to re-
duce it in both places. On the other hand, multiple works focus solely on the
classifier. They remark that in Class Incremental Learning (CIL), the classifier is
miscalibrated (Guo et al. 2017) where the model over-predicts new classes to the
detriment of old classes. Belouadah and Popescu (2019) compensate the bias to-
wards new classes by rectifying predictions of past classes using their recorded
accuracies and confidences. Wu et al. (2019) learn a linear model on validation
data to recalibrate the logits of the new classes. B. Zhao et al. (2020) normalizes
the norm of the classifier weights associated with new classes so that their average
norm becomes the same as that for old classes. Hou et al. (2019), aims for a simi-
lar result by replacing the dot product in the classifier with the cosine similarity,
resulting in unit norm classifier weights.

2.5 Positioning

Continual Learning encompasses very different benchmarks and methods. In
this PhD thesis, we tackle multiple types of continual drift using different ap-
proaches. All the proposed strategies consider the intermediary features of a
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neural network to reduce catastrophic forgetting. We summarize below the three
main chapters:

Feature-based Regularizations First in Chapter 3, we consider Class Incremen-
tal Learning (CIL) scenarios with a prior drift where new classes are continually
added. In this setting, our approach consists in rehearsal learning (Section 2.4.1)
and output-based regularizations (Section 2.4.2.3). Previous works reduced for-
getting by constraining either the final probabilities of the classifier (Z. Li and
Hoiem 2016) or the ultimate embedding of the feature extractor (Hou et al. 2019;
Dhar et al. 2019). In a first section (Section 3.2), we propose instead a regulariza-
tion applied on several intermediary levels of the features extractor. Moreover,
few considerations have been made on how the regularization loss makes the
model more rigid, leading to less forgetting on old classes but also impacting neg-
atively the learning of new classes. Instead, we carefully define a regularization
loss, through pooling, balance effectively the performance of old and new classes.
In a second section (Section 3.3), we consider if the forgetting could be avoided
preemptively. Aljundi and Tuytelaars (2019) consider allocating extra capacity
implicitly in the learned feature space for future classes using an unsupervised
sparsity loss. Differently, we choose to draw from weak metadata of the future
unseen classes (Han et al. 2020) to estimate their representation and thus explicitly
allocate capacity, reducing forgetting before it even happens.

Continual Semantic Segmentation Second, in Chapter 4, we tackle Continual
Semantic Segmentation (CSS). In this benchmark, defined recently by Cermelli
et al. (2020), images have a label per pixel, and only the current classes are la-
belized. Thus, both the prior and concept drifts happen where new classes are
added but also the signification of a pixel can change through time. In this setting,
all previous works only considered regularizations (Section 2.4.2.3) based on the
final probabilities (Michieli and Zanuttigh 2019; Cermelli et al. 2020). Instead,
we expand from our previous chapter to consider the multi-scale intermediary
features. Moreover, no work directly tackled the partial labelization of the im-
ages (Cermelli et al. 2020). We propose for this challenge an uncertainty-based
pseudo-labeling (Saporta et al. 2020), and a new rehearsal method (Section 2.4.1),
optimized for segmentation.

Dynamic Transformers In this third and last chapter (Chapter 5), we only aim
to solve the prior drift but using a method radically different from previous
chapters: dynamic networks (Section 2.4.3). Previous dynamic networks usually
expand their capacity by a large margin during the continual training to handle
the growing amount of tasks to learn (Yan et al. 2021). To avoid a parameter
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count unbounded growth, the models are usually pruned aggressively. The main
drawback of these methods is that the pruning can still result in models too
large and often need careful finetuning of hyperparameters. We propose in this
chapter, a dynamic expansion based on the transformer architecture with almost
no memory overhead contrary to concurrent works, that conditions (Perez et al.
2018) the intermediary features.
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Chapter abstract

Regularization-based methods are powerful to reduce catastrophic forgetting,
especially in challenging setting such as Class Incremental Learning (CIL)
with single-head where task identity is not known at test-time. However, they
often consider only constraining the final probability predictions of the net-
work, weakly constraining the model’s behavior and in turns falls short to
forgetting when faced to large amount of tasks.
In this chapter, we present two methods exploiting the intermediate features to
reduce forgetting. The first approach, nicknamed PODNet, aims to constrain
similar statistics to avoid a representation drift at all levels of the network. We
show that it scales particularly well on extreme scenarios where classes are
learned one by one for a long succession of iterations, due to its balancing of
rigidity (not forgetting old classes) - plasticity (learning new classes) tradeoff.
The second approach, named Ghost, pre-emptively allocate capacity for future
—yet to be seen— classes, avoiding forgetting before it even happens. We esti-
mate those class locations in the representation space by drawing inspiration
from the ZeroShot-Learning (ZSL) literature.
We evaluate our models on numerous benchmarks, from large image classifi-
cation datasets (e.g. ImageNet), to zeroshot datasets with class attributes (e.g.
AwA2), and perform ablations to validate the soundness of our methods.
The work in this section has led to a publication to two papers:

• Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and
Eduardo Valle (2020). “PODNet: Pooled Outputs Distillation for Small-
Tasks Incremental Learning”. In: Proceedings of the IEEE European
Conference on Computer Vision (ECCV)

• Arthur Douillard, Eduardo Valle, Charles Ollion, and Matthieu Cord
(2021c). “Insights from the Future for Continual Learning”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshop
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3.1 Introduction

Class Incremental Learning (CIL), where each task brings new classes, is among
the most challenging settings of Continual Learning (CL) (refer to Section 2.3).
When evaluated in single-head, where the task identity is not known at test-
time, the majority of the methods rely on rehearsal learning where a limited
amount of old data is replayed (Section 2.4.1). Furthermore, it is often combined
to regularizations that aim to limit forgetting (Section 2.4.2.3). Regularization-
based approaches defined in the literature have two drawbacks: (1) they focus
solely on the model’s output probabilities, disregarding all intermediary features,
and as a result only weakly constrain a model’s behavior; (2) the regularizations
are designed to avoid forgetting of old classes (rigidity) to the detriment of giving
enough slack to the continual model in order to learn new classes (plasticity). We
present in this chapter two novel regularizations that consider the intermediary
visual features.

Our first contribution, introduced in PODNet (Section 3.2), aims to regular-
ize the statistics shift at the intermediate feature-level to enforce a consistent
representation at multiple levels of the feature extractor across all steps of the
continual training. We design this regularization to balance efficiently the rigidity
(not forgetting old classes) and the plasticity (learning new classes) of continual
models.

Our second contribution, nicknamed Ghost (Section 3.3), on the other hand,
avoid pre-emptively forgetting by regularizing the feature space at locations
where the model estimates future classes will be. The future classes representation



3.2 podnet : reducing forgetting via intermediate feature statistics 27

is produced using a generative model that exploits detailed attributes of said
classes.

3.2 PODNet: reducing forgetting via intermediate
feature statistics

3.2.1 Related Work

We design our model explicitly for a Class Incremental Learning (CIL) setting
with a large number of classes. In this challenging setting, rehearsal learning is
essential. We use the simple but efficient rehearsal method of Rebuffi et al. (2017c),
refer to Section 2.4.1 for more information. Moreover, we limit the forgetting of our
continual model using a regularization-based approach that constrain the model’s
output. Furthermore, we aim to explicitly learn a robust feature representation
by drawing inspiration from the few-shot literature.

Regularization of the model’s output Regularizations constraining the rate
of change of the weights (Kirkpatrick et al. 2017) or the gradients (Farajtabar
et al. 2020) have been proposed. They reduce effectively the forgetting of the
feature extractors in a multi-heads setting where the task identity is known at
test-time. However, in the more challenging and realistic setting of single-head,
where classes from all tasks have to be predicted, these methods often fail to
improve a naive finetuning (Lesort et al. 2019b). Therefore, We focused on regu-
larizations applied on a model’s output. LwF (Z. Li and Hoiem 2016) first used
the Knowledge Distillation (KD) of Geoffrey Hinton et al. (2015): a KL divergence
between the probabilities of the old and new models. While simple, this loss —
with few variations— has been used by multiple following works (Rebuffi et al.
2017c; B. Zhao et al. 2020). Few works tried to constrain intermediate outputs
of the model: LwM (Dhar et al. 2019) proposed to minimize the L2 distance
between gradient-based attention maps produced by GradCam (Selvaraju et al.
2017). M2KD (P. Zhou et al. 2019) used a KD on both the final predictions and
intermediate predictions from an auxiliary classifier similar to Inception (Szegedy
et al. 2015). Hou et al. (2019) maximizes the cosine similarity between the final
embeddings before the classifier. Finally, Zagoruyko and Komodakis (2016), in the
context of model compression, investigated attention-based distillation for image
classifiers, by pooling the intermediate features of convolutional networks into
attention maps, then used in their distillation losses.
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Figure 3.1. – Training protocol for incremental learning. At each training task
we learn a new set of classes, and the model must retain knowledge
about all classes. The model is allowed a limited memory of samples
of old classes. In our experiments, the first task contain more classes
than the following tasks (50 vs 10 on this figure).

Representation learning was already implicitly present in iCaRL (Rebuffi et al.
2017c): it introduced the Nearest Mean Examplar (NME) strategy which averages
the outputs of the deep convolutional network to create a single proxy feature
vector per class that are then used by a nearest-neighbor classifier predict the final
classes. Hou et al. (2019) adopted this method and also introduced another, named
CNN, which uses the output class probabilities to classify incoming samples,
freezing (during training) the classifier weights associated with old classes, and
then fine-tuning them on an under-sampled dataset. Hou et al. (2019), in the
method called here UCIR, made representation learning explicit, by noticing that
the limited memory imposed a severe imbalance on the training samples available
for the old and for the new classes. To overcome that difficulty, they designed a
metric-learning model instead of a classification model. That strategy is often used
in few-shot learning (Gidaris and Komodakis 2018) because of its robustness when
faced to few data. Because classical metric architectures require special training
sampling (e.g. semi-hard sampling for triplets), Luo et al. (2018) chose instead to
redesign the classifier’s last layer of their model to use the cosine similarity.

3.2.2 Model

We follow the notations defined in the Notations. Our model is evaluated
in the class incremental setting with rehearsal memory (Section 2.4.1) depicted
Figure 3.1. Our strategy is made of two keys components: a distillation loss
applied at the intermediate feature-level, and a local-similarity classifier.
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Figure 3.2. – Different possible poolings. The output from a convolutional layer
ht`[c, w, h] may be pooled (summed over) one or more axes. The re-
sulting loss considers only the pooled activations instead of the indi-
vidual components, allowing more plasticity across the pooled axes.

3.2.2.1 POD: Pooled Outputs Distillation loss

Constraining the evolution of the weights is crucial to reduce forgetting. Each
new task t learns a new (student) model, whose weights are not only initialized
with those of the previous (teacher) model, but also constrained by a distillation
loss. That loss must be carefully balanced to prevent forgetting (rigidity), while
allowing the learning of new classes (plasticity).

To this goal, we propose a set of constraints we call Pooled Outputs Distillation
(POD), applied not only over the final embedding output by ht = f t(x), but
also over the output of its intermediate layers ht` = f t` (x) (where by notation
overloading f t` (x) ≡ f t` ◦ . . . ◦ f t1(x), and thus f t(x) ≡ f tL . . . ◦ f t` ◦ . . . f t1(x)).

The convolutional layers of the network output tensors ht` with components
ht`[c, w, h], where c stands for channel (filter), and w×h for column and row of the
spatial coordinates. The loss used by POD may pool (sum over) one or several of
those indexes, more aggressive poolings (Figure 3.2) providing more freedom, and
thus, plasticity: the lowest possible plasticity imposes an exact similarity between
the previous and current model while higher plasticity relaxes the similarity
definition.

Pooling is an important operation in Computer Vision, with a strong theoretical
motivation. In the past, pooling has been introduced to obtain invariant repre-
sentations (Lowe 1999; Lazebnik et al. 2006). Here, the justification is similar, but
the goal is different: as we will see, the pooled indexes are aggregated in the
proposed loss, allowing plasticity. Instead of the model acquiring invariance to the
input image, the desired loss acquires invariance to model evolution, and thus,
representation. The proposed pooling-based formalism has two advantages: first,
it organizes disparately proposed distillation losses into a neat, general formal-
ism. Second, as we will see, it allowed us to propose novel distillation losses, with
better plasticity-rigidity compromises. Those topics are explored next.
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Pooling of convolutional outputs As explained before, POD constrains the
output of each intermediate convolutional layer ht` = f t` (·) (in practice, each stage
of a ResNet (K. He et al. 2016)). All POD variants use the Euclidean distance
of `2-normalize tensors, here noted as ‖· − ·‖. They differ on the type of pooling
applied before that distance is computed. On one extreme, one can apply no
pooling at all, resulting in the most strict loss, the most rigid constrains, and the
lowest plasticity:

LPOD-pixel(h
t−1
` ,ht`) =

C∑
c=1

W∑
w=1

H∑
h=1

∥∥ht−1
` [c, w, h]− ht`[c, w, h]

∥∥2
. (3.1)

By pooling the channels, one preserves only the spatial coordinates, resulting in a
more permissive loss, allowing the activations to reorganize across the channels,
but penalizing global changes of those activations across the space,

LPOD-channel(h
t−1
` ,ht`) =

W∑
w=1

H∑
h=1

∥∥∥∥∥
C∑
c=1

ht−1
` [c, w, h]−

C∑
c=1

ht`[c, w, h]

∥∥∥∥∥
2

; (3.2)

or, contrarily, by pooling the space (equivalent, up to a factor, to a Global Average
Pooling), one preserves only the channels:

LPOD-gap(ht−1
` ,ht`) =

C∑
c=1

∥∥∥∥∥
W∑
w=1

H∑
h=1

ht−1
` [c, w, h]−

W∑
w=1

H∑
h=1

ht`[c, w, h]

∥∥∥∥∥
2

. (3.3)

Note that the only difference between the variants is in the position of the sum-
mation. For example, contrast equations Equation 3.1 and 3.2: in the former the
differences are computed between activation pixels, and then totaled; in the latter,
first the channel axis is flattened, then the differences are computed, resulting in
a more permissive loss.

We can trade a little plasticity for rigidity, with less aggressive pooling by
aggregating statistics across just one of the spatial dimensions:

LPOD-width(ht−1
` ,ht`) =

C∑
c=1

H∑
h=1

∥∥∥∥∥
W∑
w=1

ht−1
` [c, w, h]−

W∑
w=1

ht`[c, w, h]

∥∥∥∥∥
2

; (3.4)

or, likewise, for the vertical dimension, resulting in POD-height. Each of those
variants measure the distribution of activation pixels across their respective axis.
These two complementary intermediate statistics can be further combined:

LPOD-spatial(h
t−1
` ,ht`) = LPOD-width(ht−1

` ,ht`) + LPOD-height(h
t−1
` ,ht`) . (3.5)
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LPOD-spatial is minimal when the average statistics over the dataset, on both width
and height axes, are similar for the previous and current model. It brings the
right balance between being too rigid (Equation 3.1) and being too permissive
(Equation 3.2 and 3.3).

Constraining the final embedding After the convolutional layers, the network,
by design, flattens the spatial coordinates, and the formalism above needs adjust-
ment, as a summation over w and h is no longer possible. Instead, we set a flat
constraint on the final embedding ht = f t(x):

LPOD-flat(h
t−1,ht) =

∥∥ht−1 − ht
∥∥2

. (3.6)

Combining the losses, analysis The final POD loss combines the two compo-
nents:

LPOD-final(x) =
λc

L− 1

L−1∑
`=1

LPOD-spatial
(
f t−1
` (x), f t` (x)

)
+

λfLPOD-flat
(
f t−1(x), f t(x)

)
. (3.7)

The hyperparameters λc and λf are necessary to balance the two terms, due to
the different nature of the intermediate outputs (spatial and flat).

As mentioned, the strategy above generalizes disparate propositions existing
both in the literature of incremental learning, and elsewhere. When λc = 0, it
reduces to the cosine constraint of Less-Forget, proposed by Hou et al. (2019) for
incremental learning, which constrains only the final embedding. When λf = 0

and POD-spatial is replaced by POD-pixel, it suggests the Perceptual Features
loss, proposed for style transfer (Johnson et al. 2016). When λf = 0 and POD-
spatial is replaced by POD-channel, the strategy hints at the loss proposed by
Zagoruyko and Komodakis (2016) to allow distillation across different networks,
a situation in which the channel pooling responds to the very practical need to
allow the comparison of architectures with different number of channels.

As we will see in our evaluations of pooling strategies (Table 3.4), what proved
optimal was a completely novel idea, POD-spatial, combining two poolings, each
of which flattens one of the spatial coordinates. That relatively rigid strategy
(channels and one of the spatial coordinates are considered in each half of the
loss) makes intuitive sense in our context, which is small-task incremental learning,
and thus where we expect a slow drift of the model across a single task.
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Figure 3.3. – Overview of PODNet: the distillation loss POD prevent excessive
model drift by constraining intermediate outputs of the ConvNet f
and the LSC classifier g learns a more expressive multi-modal repre-
sentation.

3.2.2.2 Local Similarity Classifier

Hou et al. (2019) observed that the class imbalance of incremental learning
has concrete manifestations on the parameters of the final layer on classifiers,
namely the weights for the over-represented (new) classes becoming much larger
than those for the underrepresented (old) classes. To overcome this issue, their
method (called here UCIR) `2-normalizes both the weights and the activations,
which corresponds to taking the cosine similarity instead of the dot product. For
each class c, their last layer becomes

ŷc =
exp (η〈θc,h〉)∑
i exp (η〈θi,h〉)

, (3.8)

where θc are the last-layer weights for class c, η is a learned scaling parameter,
and 〈·, ·〉 is the cosine similarity.

However, this strategy optimizes a global similarity: its training objective in-
creases the similarity between the extracted features and their associated weights.
For each class, the normalized weight vector acts as a single proxy (Movshovitz-
Attias et al. 2017), towards which the learning procedure pushes all samples in
the class.

We observed that such global strategy is hard to optimize in an incremental
setting. To avoid forgetting, the distillation losses (Section 3.2.2.1) tries to keep
the final embedding h consistent through time so that the class proxies stay
relevant for the classifier. Unfortunately catastrophic forgetting, while alleviated
by current methods, is not solved and thus the distribution of h may change. The
cosine classifier is very sensitive to those changes as it models a unique majority
mode through its class proxies.
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Local Similarity Classifier The problem above lead us to amend the classifica-
tion layer during training, in order to consider multiple proxies/modes per class.
A shift in the distribution of h will have less impact on the classifier as more
modes are covered.

Our redesigned classification layer, which we call Local Similarity Classifier
(LSC), allows for K multiple proxies/modes during training. Like before, the
proxies are a way to interpret the weight vector in the cosine similarity, thus we
allow for K vectors θc,k for each class c. The similarity sc,k to each proxy/mode is
first computed. An averaged class similarity ŷc is the output of the classification
layer:

sc,k =
exp 〈θc,k,h〉∑
i exp 〈θc,i,h〉

, ŷc =
∑
k

sc,k 〈θc,k,h〉 . (3.9)

The multi-proxies classifier optimizes the similarity of each sample to its ground
truth class representation and minimizes all others. A simple cross-entropy loss
would work, but we found empirically that the NCA loss (Goldberger et al. 2005;
Movshovitz-Attias et al. 2017) converged faster. We added to the original loss a
hinge [ · ]+ to keep it bounded, and a small margin δ to enforce stronger class
separation, resulting in the final formulation:

LLSC =

[
− log

exp (η(ŷy − δ))∑
i 6=y exp ηŷi

]
+

. (3.10)

Weight initialization for new classes The incremental learning setting imposes
detecting new classes at each new task t. New weights {θc,k | ∀c ∈ Ct

N ,∀k ∈ 1...K}
must be added to predict them. We could initialize them randomly, but the class-
agnostic features of the ConvNet f , extracted by the model trained so far offer
a better prior. Thus, we employ a generalization of Imprinted Weights (Qi et al.
2018) procedure to multiple modes: for each new class c, we extract the features
of its training samples, use a k-means algorithm to split them into K clusters, and
use the centroids of those clusters as initial values for θc,k. This procedure ensures
mode diversity at the beginning of a new task and resulted in a one percentage
point improvement on CIFAR100.

3.2.2.3 Complete model formulation

Our model has the classical structure of a convolutional network f(·) acting as
a feature extractor, and a classifier g(·) producing a score per class. We introduced
two innovations to this model: (1) our main contribution is a novel distillation
loss (POD) applied all over the ConvNet, from the spatial features h` to the final
flat embedding h; (2) as further refinement we propose that the classifier learns a
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multi-modal representation that explicitly keeps multiple proxy vectors per class,
increasing the model expressiveness and thus making it less sensible to shift in
the distribution of h. The final loss for current model gt ◦f t, i.e., the model trained
for task t, is simply their addition L{f t;gt} = LLSC + LPOD-final. The overall model is
displayed in Figure 3.3.

3.2.3 Experiment Results

We compare our technique (PODNet) with three state-of-the-art models. Those
models are particularly comparable to ours since they all employ a sample mem-
ory with a fixed capacity. Both iCaRL (Rebuffi et al. 2017c) and UCIR (Hou et
al. 2019) use the same inference method –NME, although UCIR also proposes a
second inference method based on the classifier probabilities (called here UCIR-
CNN). We evaluate PODNet with both inference methods for a small scale dataset,
and the latter for larger scale datasets. BiC (Wu et al. 2019), while not focused
on representation learning, is specially designed to be effective on large scale
datasets, and thus provided an interesting baseline.

Datasets We employ three images datasets – extensively used in the literature
of incremental learning – for our experiments: CIFAR100 (Krizhevsky and Geof-
frey Hinton 2009), ImageNet100 (Deng et al. 2009; Hou et al. 2019; Wu et al. 2019),
and ImageNet1000 (Deng et al. 2009). ImageNet100 is a subset of ImageNet1000

with only 100 classes, randomly sampled from the original 1000.

Protocol We validate our model and the compared baselines using the chal-
lenging protocol introduced by Hou et al. (2019): we start by training the models
on half the classes (i.e., 50 for CIFAR100 and ImageNet100, and 500 for Ima-
geNet1000). Then the classes are added incrementally in steps. We divide the
remaining classes equally among the steps, e.g. for CIFAR100 we could have 5

steps of 10 classes or 50 steps of 1 class. Note that a training of 50 steps is actually
made of 51 different tasks: the initial training followed by the incremental steps.
Models are evaluated after each step on all the classes seen until then. To facilitate
comparison, the accuracies at the end of each step are averaged into a unique
score called average incremental accuracy (Rebuffi et al. 2017c) (Equation 2.7 in Fig-
ure 2.3). If not specified otherwise, the average incremental accuracy is the score
reported in all our results. The protocol is also illustrated in Figure 3.1.

For CIFAR100 and ImageNet100, we ran all experiments thrice, varying the
order of the classes. We report the averages and standard deviations in tables and
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CIFAR100, 50 steps of 1 increment
iCaRL (44.2 ± 0.98)
BiC (47.09 ± 1.48)
UCIR NME (48.57 ± 0.37)
UCIR CNN (49.3 ± 0.32)
PODNet (CNN) (57.98 ± 0.37)
PODNet (NME) (61.4 ± 0.55)

(a) 50 steps, 1 class / step
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CIFAR100, 25 steps of 2 increments
iCaRL (50.6 ± 1.06)
BiC (48.96 ± 1.03)
UCIR NME (56.82 ± 0.19)
UCIR CNN (57.57 ± 0.23)
PODNet (CNN) (60.72 ± 1.11)
PODNet (NME) (62.02 ± 0.96)

(b) 25 steps, 2 classes / step

Figure 3.4. – Incremental Accuracy on CIFAR100 over three orders for two differ-
ent step sizes. The legend reports the average incremental accuracy.

graphs. For ImageNet1000, whose models took much longer to train, we ran each
experiment once.

Following Hou et al. (2019), for all datasets, and all compared models, we limit
the memory Mper to 20 images per old class. For results with different memory
settings, refer to Table 3.5.

Implementation details For fair comparison, all compared models employ the
same ConvNet backbone: ResNet-32 for CIFAR100, and ResNet-18 for ImageNet.
We remove the ReLU activation at the last block of each ResNet end-of-stage to
provide a signed input to POD (Section 3.2.2.1). We implemented our method
(called here PODNet) in PyTorch (Paszke et al. 2017). We compare both ours and
UCIR’s implementation of iCaRL. Results of UCIR come from the implementa-
tion of Hou et al. (2019). We provide their reported results and also run their
code ourselves. We used our implementation of BiC (Wu et al. 2019) in order to
compare with the same backbone. We sample our memory images using herd-
ing selection (Rebuffi et al. 2017c) and perform the inference with two different
methods: the Nearest-Mean-Examplars (NME) proposed for iCarl, and also adopted
on one of the variants of UCIR (Hou et al. 2019), and the “CNN” method intro-
duced for UCIR (see Section 3.2.1). The training procedure is identical for both
inference scheme, their difference lies at test-time: “CNN” uses the argmax of
all classes probabilities. “NME” extracts features of all data (new classes data
and rehearsal data), builds class prototypes by averaging features per class, and
finally predictions using a K-NN. Please see Section A.2 in the appendix for the
full implementation details.
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CIFAR100

50 steps 25 steps 10 steps 5 steps
New classes per step 1 2 5 10

iCaRL* (Rebuffi et al. 2017c) — — 52.57 57.17

iCaRL 44.20± 0.98 50.60± 1.06 53.78± 1.16 58.08± 0.59

BiC (Wu et al. 2019) 47.09± 1.48 48.96± 1.03 53.21± 1.01 56.86± 0.46

UCIR (NME)* (Hou et al. 2019) — — 60.12 63.12

UCIR (NME) 48.57± 0.37 56.82± 0.19 60.83± 0.70 63.63± 0.87

UCIR (CNN)* — — 60.18 63.42

UCIR (CNN) 49.30± 0.32 57.57± 0.23 61.22± 0.69 64.01± 0.91

PODNet (NME) 61.40± 0.68 62.71± 1.26 64.03± 1.30 64.48± 1.32
PODNet (CNN) 57.98± 0.46 60.72± 1.36 63.19± 1.16 64.83± 0.98

Table 3.1. – CIFAR100 quantitative experiments: Average incremental accuracy
for PODNet vs state of the art. We run experiments three times (ran-
dom class orders) on CIFAR100 and report averages and standard
deviations. Models with an asterisk * are reported directly from Hou
et al. (2019). The initial task’s size is 50 classes, the remaining 50

classes are learned incrementally.

3.2.3.1 Quantitative results

The comparisons with all the State-of-the-Art are tabulated in Table 3.1 for
CIFAR100 and Table 3.2 for ImageNet100 and ImageNet1000. All tables show the
average incremental accuracy for each considered models with various number
of steps on the incremental learning run. The “New classes per step” row shows
the amount of new classes introduced per task.

CIFAR100 We run our comparisons on 5, 10, 25, and 50 steps with respectively
10, 5, 2, and 1 classes per step. We created three random class orders to run each
experiment thrice, reporting averages and standard deviations. For CIFAR100

only, we evaluated our model with two different kinds of inference: NME and
CNN. With both methods, our model surpasses all previous State-of-the-Art mod-
els on all steps. Moreover, our model relative improvement grows as the number
the steps increases, surpassing existing models by 0.82, 2.81, 5.14, and 12.1 percent
points (p.p.) for respectively 5, 10, 25, and 50 steps. Larger numbers of steps imply
stronger forgetting; those results confirm that PODNet manages to reduce drasti-
cally the said forgetting. While PODNet with NME has the largest gain, PODNet
with CNN also outperforms the previous State-of-the-Art by up to 8.68p.p.. See
Figure 3.4 for a plot of the incremental accuracies on this dataset. In the extreme
setting of 50 increments of 1 class (Figure 3.4a), our model showcases large differ-
ences, with slow degradation (“gradual forgetting” (French 1999)) due to forgetting
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ImageNet100 Imagenet1000

50 steps 25 steps 10 steps 5 steps 10 steps 5 steps
New classes per step 1 2 5 10 50 100

iCaRL* (Rebuffi et al. 2017c) — — 59.53 65.04 46.72 51.36

iCaRL 54.97 54.56 60.90 65.56 — —
BiC (Wu et al. 2019) 46.49 59.65 65.14 68.97 44.31 45.72

UCIR (NME)* (Hou et al. 2019) — — 66.16 68.43 59.92 61.56

UCIR (NME) 55.44 60.81 65.83 69.07 — —
UCIR (CNN)* — — 68.09 70.47 61.28 64.34

UCIR (CNN) 57.25 62.94 67.82 71.04 — —
PODNet (CNN) 62.48 68.31 74.33 75.54 64.13 66.95

± 0.59 ± 2.45 ± 0.93 ± 0.26

Table 3.2. – ImageNet quantitative experiments: Average incremental accuracy,
PODNet vs state of the art. Models with an asterisk * are reported
directly from Hou et al. (2019). The initial task’s sizes are respectively
50 and 500 classes for ImageNet100 and ImageNet1000. The remaining
classes are learned incrementally.

throughout the run, while the other models show a quick performance collapse
(“catastrophic forgetting”) at the start of the run.

ImageNet100 We run our comparisons on 5, 10, 25, and 50 steps with respec-
tively 10, 5, 2, and 1 classes per step. For both ImageNet100, and ImageNet1000

we report only PODNet with CNN, as the kNN-based NME classifier did not
generalize as well to larger-scale datasets. With the more complex images of Ima-
geNet100, our model also outperforms the State-of-the-Art on all tested runs, by
up to 6.51p.p..

ImageNet1000 This dataset is the most challenging, with much greater image
complexity than CIFAR100, and ten times the number of classes as ImageNet100.
We evaluate the models in 5 and 10 steps, and results confirm the consistent
improvement of PODNet against existing arts by up to 2.85p.p..

3.2.3.2 Further analysis & ablation studies

Ablation Studies Our model has two components: the distillation loss POD and
the LSC classifier. An ablation study showcasing the contribution of each compo-
nent is displayed in Table 3.3: each additional component improves the model
performance. We evaluate every ablation on CIFAR100 with 50 steps of 1 new
class each. The reported metric is the average incremental accuracy. The table
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Classifier POD-flat POD-spatial NME CNN

Cosine 40.76 37.93

Cosine 3 48.03 46.73

Cosine 3 54.32 57.27

Cosine 3 3 56.69 55.72

LSC-CE 3 3 59.86 57.45

LSC 41.56 40.76

LSC 3 53.29 52.98

LSC 3 61.42 57.64

LSC 3 3 61.40 57.98

Table 3.3. – Ablation study: Comparison of the average incremental accuracy on
CIFAR100 with 50 steps of the model when disabling parts of the
complete PODNet’s loss.

shows that our novel method of constraining the whole ConvNet is beneficial.
Furthermore, applying only POD-spatial still beats the previous state of the art by
a significant margin. Using both POD-spatial and POD-flat then further increases
results with a large gain. We also compare the results with the Cosine classi-
fier (Luo et al. 2018; Hou et al. 2019) against the Local Similarity Classifier (LSC)
with NCA loss. Finally, we add LSC-CE: our classifier with multimode but with a
simple cross-entropy loss instead of our modified NCA loss. This version brings
to mind SoftTriple (Qian et al. 2019) and Infinite Mixture Prototypes (Allen et al.
2019), used in the different context of few-shot learning. The latter only considers
the closest mode of each class in its class assignment, while LSC considers all
modes of a class, thus, taking into account the intra-class variance. That allows
LSC to decrease class similarity when intra-class variance is high (which could
signal a lack of confidence in the class).

Spatial-based distillation We apply our distillation loss POD differently for the
flat final embedding h (POD-flat) and the ConvNet’s intermediate features maps
h` (POD-spatial). We designed and evaluated several alternatives for the latter
whose results are shown in Table 3.4. Refer to Section 3.2.2.1 for their definition.
In this table, all losses are with POD-flat ("None" is using only POD-flat). Note
that We provide in the appendix (Section A.2) the same table without POD-flat.

Overall, we see that not using pooling results in bad performance (POD-pixels).
Our final loss, POD-spatial, surpasses all others by taking advantages of the statis-
tics aggregated from both spatial axis. For the sake of completeness, we also
included losses not designed by us: GradCam distillation (Dhar et al. 2019) and
Perceptual Style (Johnson et al. 2016). The former uses a gradient-based attention
while the later – used for style transfer – computes a gram matrix for each channel.
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Loss NME CNN

None 53.29 52.98

POD-pixels 49.74 52.34

POD-channels 57.21 54.64

POD-gap 58.80 55.95

POD-width 60.92 57.51

POD-height 60.64 57.50

POD-spatial 61.40 57.98

GradCam (Dhar et al. 2019) 54.13 52.48

Perceptual Style (Johnson et al. 2016) 51.01 52.25

Table 3.4. – Comparison of distillation losses based on intermediary features.
All losses evaluated with POD-flat. We report the average incremental
accuracy on CIFAR100 with 50 steps.

Forgetting and plasticity balance Forgetting can be drastically reduced by im-
posing a high factor on the distillation losses. Unfortunately, it will also degrade
the capacity (its plasticity) to learn new classes. When POD-spatial is added on top
of POD-flat (Table 3.4), we manage to increase the oldest classes’ performance (+7

percentage points) while the newest classes’ performance were barely reduced
(-0.2p.p.). Because our loss POD-spatial constraints only statistics, it is less strin-
gent than a loss based on exact pixels values as POD-pixel. The latter hurts the
newest classes (-2p.p.) for a smaller improvement of old classes (+5p.p.). Further-
more, our experiments confirmed that LSC reduced the sensibility of the model to
distribution shift, as the performance it brings was localized on the old classes.

Robustness of our model While previous results showed that PODNet im-
proved significantly over the state-of-the-arts, we wish here to demonstrate here
the robustness of our model to various factors. In Table 3.5, we compared how
PODNet behaves against the baseline when the memory size per class Mper

changes: PODNet improvements increase as the memory size decrease, up to
a gain of 26.20p.p. with NME (resp. 13.42p.p. for CNN) with Mper = 5. Notice
in our main experiments (Section 3.2.3.1), only 20 images per class are kept in
the memory. Remark that when few images per class can be stored, a continual
model must be rigid (to avoid forgetting old classes), while when numerous im-
ages can be stored, a continual model must be plastic (to learn efficiently new
classes and stored examples). UCIR (Hou et al. 2019) and BiC (Wu et al. 2019)
are respectively rigid- and plastic-oriented models, which can be seen from their
good performance with respectively small and large rehearsal memory. On the
other hand, PODNet excelled in all situations by efficiently trading rigidity and
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Mper 5 10 20 50 100 200

iCaRL (Rebuffi et al. 2017c) 16.44 28.57 44.20 48.29 54.10 57.82

BiC (Wu et al. 2019) 20.84 21.97 47.09 55.01 62.23 67.47
UCIR (NME) (Hou et al. 2019) 21.81 41.92 48.57 56.09 60.31 64.24

UCIR (CNN) 22.17 42.70 49.30 57.02 61.37 65.99

PODNet (NME) 48.37 57.20 61.40 62.27 63.14 63.63

PODNet (CNN) 35.59 48.54 57.98 63.69 66.48 67.62

Table 3.5. – Effect of the memory size per class Mper on the models performance.
Results from CIFAR100 with 50 steps, we report the average incre-
mental accuracy.

plasticity with the POD loss. More experiments validating our model’s robustness
are provided in the appendix (Section A.2).

3.3 Ghost: avoiding pre-emptively forgetting via ghost
features

Continual learning aims to perform equally well on past and present tasks. We
present instead a challenging new setting, prescient continual learning, in which
the model must perform well not only for present and past tasks, but also for
future ones, both avoiding catastrophic forgetting (using a limited number of
training samples for past classes), and giving the best possible estimates for the
future classes (using no training samples at all). To make the setting possible,
the model must know the classes and have some prior information about them:
our desiderata is to make room for future classes to avoid interference with old
classes once these new classes are actually learned. This could be done weakly by
increasing the sparsity of the latent representation, but, given classes metadata,
we present how to do it explicitly. In our setting, we know which labels we
will encounter, but the training data for those labels arrive incrementally. For
instance, in many real-world applications (e.g. fashion product classification), due
to budget constraints, models are released incrementally, with partial classes and
training data, despite the classes being known from the beginning, and being
well-characterized by attributes.

We design a framework, nicknamed Ghost, which estimates the representation
of future, yet unseen, classes using class attributes. We use these approximated
representations to regularize the latent space so that forgetting could be avoided
—or at least reduced— before even the introduction of disrupting new classes. This
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is orthogonal to the proposed PODNet strategy where forgetting was reduced
after a class introduction.

To develop our framework, we take inspiration from ZeroShot-Learning (ZSL)
(Lampert et al. 2009; Y. Xian et al. 2019), which allows classifying examples
from unseen classes by combining a vision model with an embedding possessing
knowledge about the classes (e.g. a word embedding (Mikolov et al. 2013; Pen-
nington et al. 2014) or an attribute matrix). Although several approaches exist for
zero-shot learning, we will focus on generating a representation for the future
classes (Bucher et al. 2017; Kumar Verma et al. 2018; Yongqin Xian et al. 2018).
The framework of representation learning will allow us to integrate continual
and zero-shot learning seamlessly, as we advance through the tasks and future
classes become present classes, and then past classes. Moreover, we will be able
to use ghost features, predicted features for the future classes, to make room in
the representation space for future classes. All those goals all integrated into a
simple, streamlined model due to a careful construction of the losses.

Our contributions are two-fold: (1) we propose a new challenging setting, pre-
scient continual learning, where the model must perform well on past, present,
and future classes; (2) we propose our Ghost model to address that setting, in-
tegrating continual and zero-shot learning into a coherent whole where future
classes are pre-allocated, reducing their —yet not happened— forgetting.

3.3.1 Setting: Prescient Continual Learning

We propose an enriched experimental setting, prescient continual learning, that
extend the class incremental setting used in Figure 3.3, in which each task is
evaluated on all classes C1:T : past (C1:t−1), present (Ct), and future (Ct+1:T ). In that
challenging new setting, we must not only avoid the catastrophic forgetting of
past classes (using the limited rehearsal training samples), but also give our best
estimates for future classes (using no training samples at all). That will only be
possible if we have some prior information about the classes, e.g. their hierarchy
in a semantic network (like WordNet (Fellbaum 1998)), an associated word em-
bedding (like Word2Vec (Mikolov et al. 2013)), or an attribute matrix. Such setting
is illustrated in Figure 3.5. We will shorthand the set of past and present classes
C1:t as the seen classes, and the set of future classes Ct+1:T as the unseen classes.
We denote individual samples by a superscript xi, the class label by a subscript
xc, and on which parameters a loss is applied by a subscript LΘ.
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Figure 3.5. – Prescient Continual Learning. At each training task, we learn a new
set of classes, but the model is evaluated on all classes — past, present,
and future. The model has to avoid catastrophic forgetting of past
classes (using a limited number of rehearsal training samples), as
well as make a good guess for future classes (using no training
samples at all).

3.3.2 Model

To address the setting described in the previous section, we propose our ghost
model, comprising three components: a convolutional feature extractor f , a feature
generator g, and a classifier clf. The feature extractor is the backbone of the model:
it learns to extract a feature vector from actual samples that can be fed to the
classifier. The generator learns the distribution of the features for all classes, aim-
ing to generate plausible samples of features for the future classes. The classifier
makes the final decision for all classes: past, present, and future. The classifier is
trained on future classes with features sampled from the generator, which we call
ghost features (since they must be “hallucinated” from the seen classes and some
prior knowledge about the classes).

The base model, on which Ghost is built, is either PODNet (detailed in Sec-
tion 3.2) or UCIR (Hou et al. 2019), both metric-based models.

3.3.2.1 Capacitating ghost model for future classes

The base model can deal with both present classes (with training samples
constrained only by their availability in the training set) and past classes (with
training samples severely constrained by the rehearsal memory). As discussed,
the introduction of a distillation loss prevents catastrophic forgetting of the latter.
We will now address future classes, with no training samples available. First, tak-
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ing inspiration from zero-shot learning, we will use prior information about the
classes to generate ghost features, plausible stand-ins for the unseen future classes’
features. Next, we will adapt the classifier to incorporate those ghost features into
the learning objective seamlessly. The representation learning framework will
allow us to integrate the entire learning apparatus into one coherent loss.

Generator The generative model estimates the distribution of the unseen classes
directly in terms of their features (instead of the input images). For the feature
generation to work, we must have exploitable prior information about the classes,
more precisely, we must be able to map the class labels c into a class attribute
space that makes semantic sense. The exact way to perform that mapping will be
data-dependent, but most often, either we will have an explicit set of attributes
linked to each class (color, size, material, provenance, etc.), or we will be able to
extract a latent semantic vector, using a technique like Word2vec (Mikolov et al.
2013; Pennington et al. 2014). The generator learns to link the attributes of the
seen classes to the actual feature vectors extracted from the training samples of
those classes. Thus, the first generator training must happen after the feature
extractor (its ground-truth) is learned. The generator is fine-tuned after each task
to handle distribution shift. Next, we ask the generator to draw random samples,
using the attributes of the unseen classes, creating counterfeit features that we call
ghost features. The strategy is agnostic to the generator model as long as it can
be conditioned by class attributes. At present, as detailed in Section 3.3.3.2, we
choose a Generative Moment Matching Network (Yujia Li et al. 2015): a shallow
multi-layer perceptron conditioned by class attributes and a noise vector trained
to minimize the Maximum Mean Discrepancy (Gretton et al. 2007; Gretton et al.
2012) between the estimated features h̃tc and the actual features htc for each class
c among the current classes Ct, produced by the feature extractor f .

Complete classifier Remind that the parameters {θc ,∀c ∈ C1:t} on the representation-
based classifier (Equation 3.9) may be interpreted as proxies for the classes C1:t.
The base model for task t will, thus, learnN 1:t = |C1:t| such proxies, one for each of
the seen classes. To extend the model for the unseen future classes, the complete
classifier will learn N 1:t +N t+1:T proxies, which changes Equation 3.10 to:

Lnca-ghost
Θf ,Θclf

=

− log
exp (ŷy − δ)∑

c6=y
c∈C1:t

exp ŷc +
∑

c 6=y
c∈Ct+1:T

exp ŷc


+

. (3.11)

This classification loss maximizes the similarity ŷy (or, conversely, minimizes the
distance) between sample feature hy and correct class proxy θy in the numerator.
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Figure 3.6. – Procedure to train our model applied at each task/step: (a) a com-
plete classifier is learned with seen and unseen features (Lnca-ghost).
The feature extractor is protected from catastrophic forgetting (Ldistill),
and constrained to separate seen classes from unseen/ghosts classes
(Lsvm-reg). (b) Once a task is done, the generator is fine-tuned on the
new latent space (LMMD) on seen classes. Notice that for the first and
last tasks, the classifier does not use the ghost features.

In the denominator, the loss pushes away all wrong class proxies, from both seen
and unseen (future) classes, by minimizing the similarities with yc, ∀c 6= y.

The participation of future classes in the classification loss has two effects. Most
obviously, it allows the model to perform zero-shot-like guesses for those classes
during test time. The representation-learning paradigm allows performing both
continual and zero-shot learning seamlessly, as we advance through the tasks and
future classes become present classes, and then past classes. Less evidently, but
vitally important, the learning of proxies for the future classes makes room in
the representation space for those classes, creating effective empty spaces that
push away the actual features of the seen classes (due to the repulsive term in the
denominator). As we advance through training, future classes become present,
their ghost placeholders disappear, and they can neatly fit in the newly vacant
region. Such a strategy reduces interference between classes throughout continual
learning, and, as we will see in both visual and quantitative experiments, has long-
range positive effects.

Naturally, the complete classifier has to be trained with samples from all classes.
For seen classes, actual data is available from the training and rehearsal data. For
unseen future classes data is not available, so we employ ghost features sampled
from the generator. Note that ghost features are produced once per task by the
generator and are kept fixed for the task duration.
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Figure 3.7. – Latent-space regularization establishes margin-based one-unseen-
class vs all-seen-classes linear separations. Those separations are
employed to directly condition the feature space, creating space for
future unseen classes. In the following task, some unseen classes will
become seen, and may occupy the feature space with less interfer-
ence.

Latent-space regularization As explained above, our Ghost classification loss
minimizes the intra-class distances and maximizes the inter-class distances. The
loss enforces those constraints to all proxies regardless of whether they represent
seen classes or not. We further promote an inter-class separation by optimizing the
latent representation of seen classes to avoid overlapping with the representation
of Ghosts. That loss constrains the features space directly and does not affect the
proxies and the intra-class distances.

We based this regularization loss on SVM (Cortes and Vapnik 2015) for simplic-
ity, but other methods could have similar behavior. To compute that loss, we learn
binary one-unseen-class-Vs-all-seen-classes SVM classifiers, one for each unseen
class. We employ a linear kernel, since the feature extractor and feature vector di-
mensionality (512) allows good linear separation, but more complex kernels could
be used. Those SVM define hyperplanes wc and biases bc, ∀c ∈ Ct+1:T , separating
each unseen region from the mass of seen features h(i) (Figure 3.7):

Lsvm-reg
Θf

=
1

N t+1:T

∑
c∈Ct+1:T

[wc · ht + bc + τ ]+ , (3.12)

where ht are seen features (classes in C1:t), [ · ]+ the hinge loss, and τ an additional
margin (higher values of τ push seen features further away from the ghost regions,
in practice, we set τ = 1 to repel beyond the support vectors).

The margin-based regularization of Equation 3.12 refines the ghost classification
loss of Equation 3.11. While the latter acts over the classifier conditioning the
feature space indirectly via the action of the class proxies, the former acts directly
over the latent/feature space and the feature extractor backbone that creates it.
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The computational overhead of training several SVMs, detailed in the appendix
(Section A.3), is negligible compared to the total training time.

Complete strategy All modules and losses fit neatly into the goal of learn-
ing continuously over seen and unseen classes. We train feature extractor (plus
classifier) and generator in alternation. We train the latter to mimic the features
of seen classes, and then ask it to extrapolate to unseen classes (ghost features).
Ghost features allow us both to unify seen and unseen classes into a complete
classifier (Lnca-ghost), and to enforce early allocation in the feature space for unseen
classes (Lsvm-reg). The complete loss, in addition to a distillation loss to counter-act
catastrophic forgetting (Ldistill), is:

L = Lnca-ghost
Θf ,Θclf

+ λ1Ldistill
Θf

+ λ2Lsvm-reg
Θf

. (3.13)

The model is illustrated in Figure 3.6 and Algorithm 3.1 is the algorithm of our
model in pseudocode, showcasing a procedural view of the execution of one task.

Algorithm 3.1 Task procedure of the Ghost model
Require:

task id t
f t, ct, and gt

Data from new task and rehearsal memory (X, y)
1: if t = 1 or t = T then
2: Train f t and gt with Lnca and Ldistill on (x, y) and Ghost samples.
3: else
4: Train f t and gt with Lnca-ghost, Lsvm-reg and Ldistill on (x, y) and Ghost samples.
5: end if
6: Evaluate on all classes: C1:t ∪ Ct+1:T .
7: if t 6= 1 and t < T − 1 then
8: Train gt with LMMD using attributes of seen classes Ec ,∀c ∈ C1:t

9: Generate Ghost samples for next task using attributes of unseen classes
Ec ,∀c ∈ Ct+2:T

10: end if

3.3.3 Experiment Results

3.3.3.1 Pictorial experiments

Before running our full-scale experiments, we perform a set of experiments
with a model that keeps the main components from the proposed model in a
simplified form that will allow us to link quantitative performances to intuitive
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visual plots of the feature spaces. For the experiments in this section we employ
the MNIST (LeCun et al. 2010) dataset, with an initial task of 6 classes (digits 0

to 5), then two more tasks of two classes each; the feature extractor comprises
two convolutional layers followed by a fully connected layer outputting a feature
vector of only two dimensions — a purposeful choice to allow easy visualization
of the feature space. Because MNIST classes have no attributes, we cannot apply
zero-shot learning directly. Instead, we employ the features of actual images from
the future classes instead of samples from the generator — which corresponds, in
some ways, to have a perfectly calibrated generator. Those features are extracted
once per task, and the feature extractor is never trained on unseen classes images.
As we will see in Table 3.9, integrating the generator in our full-scale model
outperforms using actual extracted features, so that necessary substitution does
not exaggerate the abilities of this small-scale model. The losses used to train the
small and the full-scale models are the same, but the SVM-based regularization
was not employed since it made little sense for a 2D latent space.

The 2D feature space allows us to directly visualize the evolution of the feature
space as the tasks progress, without the need for dimensionality reduction tech-
niques that complicate the analysis (e.g. t-SNE (Maaten and G.E. Hinton 2008)).
Figure 3.8 may be interpreted upfront: as the three tasks progress left-to-right,
we see the evolution of the feature space on the base model (PODNet, on the top
branch) and on the proposed model with ghost features (bottom branch). The base
model presents a strong overlap between the initial classes, and the latter added
8 (orange) and 9 (dark purple). That comes partially from shape similarities (‘8’
is similar to ‘0’ and ‘5’), partially from continual learning, and results in severe
forgetting of old classes in favor of new ones. The proposed model organizes bet-
ter the feature space, which is particularly visible between the second and third
steps, where the early allocation of ghost zones for the future classes (displayed
as empty black circles) is prominent. That better arrangement of the feature space
increases the final accuracy from 44 to 66%, a 22 p.p. improvement. The small
latent space of 2 dimensions explains the low performance for both models; a
model that learns on all classes in one step (i.e. not in a continual setting) reaches
only 69% of final accuracy. That said, our model shows a clear improvement both
qualitatively in Figure 3.8 and quantitatively. More experiments of this kind can
be found in the appendix (Section A.3).

3.3.3.2 Main experiments

Datasets & Protocols We perform our experiments on two datasets: AwA2 Y.
Xian et al. (2019), with 50 animals categories, each with 85 attributes; and AP&Y
Farhadi et al. (2009), with 32 everyday object classes, each with 64 attributes. We
employ two experimental protocols: one typical for continual learning, following
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Baseline
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Task 1 Task 2 Task 3

Figure 3.8. – Small-scale PODNet on MNIST with 3 steps (digits ’0’ to ’5’; then ’6’
and ’7’; then ’8’ and ’9’) with a features space of only two dimensions.
The early incorporation of ghost features/proxies in the second task,
denoted by dotted circles in the bottom row, enforces vacant space for
those unseen classes. When filled in the third task (last column), there
is less interference/overlap with previous classes. Such a strategy
improves the final accuracy by 22 p.p..

Hou et al. (2019), starting the first task with half the classes (i.e., 25 for AwA2, and
16 for aP&Y), then adding the remaining classes in evenly-sized tasks (5 tasks of 5

classes for AwA2, and 8 tasks of 2 classes for aP&Y); another inspired from zero-
shot learning, following Y. Xian et al. (2019), starting with a standard selection
of classes for each of the datasets (40 for AwA2, and 20 for aP&Y), and adding
the remaining classes in small increments (5 tasks of 2 classes for AwA2, and 6

tasks of 2 classes for aP&Y). Our evaluation protocol is akin to the challenging
and realist Generalized Zero-shot Learning (Scheirer et al. 2013; Chao et al. 2016)
protocol with no information on whether a sample is from a seen or unseen class
— but harsher, since classes are seen gradually, and training samples for past
classes data are limited by rehearsal memory.

Base Models We evaluate our contributions on top of two different representation-
based models, both based on ResNet18 (K. He et al. 2016) feature extractor back-
bones (with feature vector size of 512) and cosine classifiers. They differ on the
distillation loss Ldistil employed, the first model (PODNet) constraining the statis-
tics of the intermediate features after each residual block (Section 3.2), and the
second (UCIR) using Hou et al. (2019)’s distillation enforcing a cosine constraint
on the final flat latent space. The former performs better than the latter, but both
are improved by the innovations proposed with the Ghost framework. The cosine
classifier has a single proxy/representative per class but could easily be gener-
alized to multiple proxies. Implementation details are provided in the appendix
(Section A.3).
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Generator Following the work of Bucher et al. (2017) for zero-shot learning,
our generator is a Generative Moment Matching Network (GMMN) (Yujia Li et
al. 2015) gt(ξ,Ec), which takes as inputs a Gaussian noise vector ξ and a class
attributes vector Ec, and outputs a sample from the estimated distribution of
features for a class with the given attributes. In our experiments on AwA2 and
AP&Y, the class attributes vectors are the average of the attributes for the training
samples in the class. For each task t, the feature extractor f t and the generator
gt are trained to minimize the Maximum Mean Discrepancy (MMD) (Gretton
et al. 2007; Gretton et al. 2012) between the actual features of seen classes hc =

f t(xc) ,∀c ∈ C1:t and their distribution on the generator h̃c = gt(ξ,Ec) , ∀c ∈ C1:t.

We train the generator and the main model (feature extractor and classifier)
alternately, as shown in Figure 3.6. We always train the generator at the end of the
task, after the feature extractor has adapted to the new distribution (Figure 3.6b).
Then, we use the generator to produce ghost samples for the next task (unless we
have reached the last task, with no unseen classes) which are fed to the feature
extractor (Figure 3.6a).

When training the generator, we first extract features for all seen classes, with
free access to the training samples for the present classes, but only a limited
number (given by the rehearsal memory) for the past classes. For better numerical
behavior, we scale each dimension of the extracted features to the interval [0,
1] before feeding them to the generator (and then re-scale the output of the
generator back to the original intervals before feeding its samples to the classifier).
The generator is trained to minimize the Maximum Mean Discrepancy (MMD)
between the features of seen concepts hc = f t(xc) ,∀c ∈ C1:t and the representation
it generates h̃c = gt(ξ,Ec) ,∀c ∈ C1:t:

LMMD
Θg

=

∥∥∥∥∥ 1

N

N∑
i=1

φ
(
h(i)
c

)
− 1

N

N∑
j=1

φ
(
h̃(j)
c

)∥∥∥∥∥
2

, c ∈ C1:t , (3.14)

with φ(·) being a Gaussian kernel, and the superscript ·i denotes the ith sample.
The trained generator uses the attributes of the classes — which is the only
information we have about them — to estimate sample features that we call ghost
features. To better estimate the statistics, we use all the real features of a single
seen class per batch. We denote the number of real features by N . The generator
produces as many ghost features as real features.

Our main model has mechanisms to fight Catastrophic Forgetting, which we
found were sufficient also to protect the generator. The feature extractor has
an explicit distillation loss to prevent the problem, and since its output is used
to train the generator, the latter is also protected. We considered applying a
distillation loss to the generator, trying to minimize a drift between the produced
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AwA2 aP&Y
25 classes + 5 × 5 classes 16 classes + 8 × 2 classes

PODNet UCIR PODNet UCIR

Baseline 62.92 ± 0.12 54.80 ± 0.40 58.64 ± 0.66 43.42 ± 0.21

+ Lnca-ghost
68.31 ± 0.36 57.88 ± 0.27 62.08 ± 0.25 50.23 ± 0.29

+ Lnca-ghost + Lsvm-reg
68.46 ± 0.47 58.08 ± 0.46 62.73 ± 0.60 50.91 ± 0.56

Table 3.6. – Continual Accuracy on AwA2 and aP&Y for PODNet and UCIR.

AwA2 aP&Y
25 classes + 5 × 5 classes 16 classes + 8 × 2 classes

PODNet UCIR PODNet UCIR

Baseline 77.63 ± 0.06 67.07 ± 0.81 57.80 ± 0.97 42.23 ± 1.34

+ Lnca-ghost
78.70 ± 0.46 67.43 ± 0.08 62.47 ± 0.40 44.17 ± 1.48

+ Lnca-ghost + Lsvm-reg
79.08 ± 0.53 67.53 ± 0.45 63.30 ± 0.98 45.97 ± 0.26

Table 3.7. – Final Accuracy on AwA2 and aP&Y for PODNet and UCIR.

features of the previous and current generator. We measured such drift according
to several metrics: cosine similarity, Kullback-Leiber divergence, L2 distance, and
maximum mean discrepancy. The first metric, cosine similarity, gave the best
results. However, as the generator was well protected, we gained at most 0.50

Continual Accuracy p.p. on AwA2.

Continual Learning with Future Classes For continual learning, it is usual to
take into account the model’s performance as it evolves. We adapt the traditional
average incremental accuracy (Rebuffi et al. 2017c) (Equation 2.7 in Figure 2.3)
to take into account all classes, including the future ones, and call that metric
continual accuracy: the average of accuracy over all seen classes after each task. The
results appear in Table 3.6, which shows, for the datasets and protocols explained
in the top of this section, the performance for our two base models (Hou et al.
2019), and the improvements on those base models as we implement our proposed
model, with and without the SVM latent-space regularization refinement. The
ability to guess a future class’ representation brings large improvements on both
datasets, for both base models. The SVM-based regularization refinement also
improves the results, by up to 0.65 p.p..

Final Accuracy Once we reach the final task, the proposed model ability to
guess future classes provides no advantage due to all classes being now seen.
Still, as shown in Table 3.7 — where the metric is simply the accuracy at the final
task of each run (Equation 2.6 in Figure 2.3) — the proposed method outperforms
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(a) Ghost vs PODNet. (b) Ghost vs UCIR

Figure 3.9. – Difference of accuracy over all classes, only seen classes, and only
unseen classes Ghost model vs base models on AwA2.

AwA2 aP&Y
40 classes + 5 × 2 classes 20 classes + 6 × 2 classes
Continual Final Continual Final

PODNet 82.84 ± 0.10 84.70 ± 0.10 67.57 ± 0.41 65.23 ± 0.50

+ Lnca-ghost
84.99 ± 0.17 86.57 ± 0.49 68.80 ± 0.98 67.93 ± 1.24

+ Lnca-ghost + Lsvm-reg
84.47 ± 0.15 85.73 ± 0.40 69.02 ± 0.46 67.97 ± 0.60

Table 3.8. – Further experiments where the initial task size correspond to stan-
dard zero-shot seen classes Y. Xian et al. 2019. We report Continual
and Final Accuracies for PODNet on AwA2 and aP&Y.

the baselines, due to a better organization of the feature space. Although the
numerical advantages in this table are smaller than in the previous one, these
results are consequential, showing that the ability of the proposed model of in-
corporating knowledge about the classes is useful beyond the zero-shot scenario.
Again, the SVM-regularization refinement helps by up to 1.80 p.p..

Model Evolution To showcase how the models evolve, plots contrasting the
proposed methods with each base model (PODNet and UCIR) task by task appear
in Figure 3.9. The plots show how, on early tasks, the main advantage of the
proposed model is its ability to guess on the future classes, while on the final task
no future classes remain, but the proposed model still keeps a (more modest, but
definitive) advantage.

Zero-shot-like Initial Task Setting This set of experiments (Table 3.8) is in-
tended for comparison with zero-shot learning benchmarks (Y. Xian et al. 2019),
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AwA2 aP&Y
25 classes + 5 × 5 classes 16 classes + 8 × 2 classes
Continual Final Continual Final

Our model 68.46 ± 0.47 79.08 ± 0.53 62.73 ± 0.60 63.30 ± 0.98

with real features 67.65 ± 0.50 78.83 ± 0.31 61.88 ± 0.52 61.70 ± 0.26

Partial oracle 72.94 ± 0.25 84.60 ± 0.28 63.81 ± 0.29 68.03 ± 1.42

Full oracle — 95.40 ± 0.02 — 97.40 ± 0.30

Table 3.9. – Comparison of generated ghost features vs. actual features ex-
tracted from future classes’ samples with PODNet on AwA2 and
aP&Y.

which always use the same split of seen/unseen classes for a given dataset. Our
first task in the continual learning contains the classes defined in zero-shot bench-
mark as seen, and we learn next, in small increment, the remaining classes, i.e.,
those defined in the zero-shot benchmark as unseen. Because the initial task is
larger than previously, fewer future classes remain, and the base models have
better performance. Still, the proposed method improves both base methods in
both datasets significantly. The setting proposed is different from the — markedly
less challenging — setting appearing in Kankuekul et al. (2012) and Xue et al.
(2017), where the set of unseen classes is fixed, and only more seen classes are
added incrementally, without any sample limitations given by rehearsal memory.

Generator Validation The generator approximates the feature extractor for the
unseen future classes. To validate its effectiveness, we replace the generated fea-
tures with the actual features from the future images. This form of “cheating”,
of course, is not possible in actual real-world scenarios, but serves as a metric.
Table 3.9 shows the comparison, with the surprising result that generated features
performed better than the actual features from samples (respectively first and
second row). Note that the latter are extracted once per task. We hypothesize it
explains the score difference because the feature extractor was never adapted for
the unseen classes distribution. The "oracle" experiments in the third and fourth
rows in Table 3.9 establish an upper bound for what we could achieve by "cheat-
ing" around the experimental protocol restrictions. The partial oracle from third
row is the same model as the second row, fine-tuning the feature extractor with
samples coming from the future. The full oracle of the fourth line uses all images
from all classes without any restriction in a single task. Despite the partial oracle
has full access to real future data, we stress that our model’s performance with
generated future data is close to this upper bound.
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Dalmatian

Horse

Tiger

German 
Shepherd

(a) Generator interpolation for seen
classes.

Chimpanzee

Leopard

Persian Cat

(b) Generator extrapolation for un-
seen classes.

Figure 3.10. – t-SNE of the latent space. Dark colors indicate real features, while
lighter colors denote their generated homologous. Real features ex-
tracted with f t, and ghost features sampled from gt. Generation
in (a) is both well-located and tightly bound because the GMMN
was trained to approximate those seen classes. In (b), the gener-
ator is asked to extrapolate to unseen classes only from their at-
tributes, resulting in more spread features — still surprisingly, in
general, well-located. Notice that the even the real features in (b)
gets more spread, since the feature extractor was never trained on
those classes.

Ghost visualization We inspect the ghost samples created by our generator with
visualization in Figure 3.10: we compare the features extracted from the actual
images with their generated homologous, produced by the GMMN on the AwA2

dataset. To allow visualization, we reduce the dimensionality of the features to
two with t-SNE. In Figure 3.10a, we compare, at task t, the actual features (in
dark colors) to generated features (in light colors) for seen classes. The generated
features are, in most cases, near the clusters of real features, and all clusters —
real and generated are tightly bound. We then compare in Figure 3.10b the real
and generated features on unseen classes. Compared to Figure 3.10a, even the
real features show a bigger spread, due, we believe, to the feature extractor f t not
having met those unseen images. The generated features are also more spread
but are still, in general, reasonably placed, indicating the ability of the generator
to extrapolate — at least partially — the features for unseen classes from their
attributes.

3.4 Conclusion

In this chapter, we covered our works on regularizations of the feature space.
We proposed to regularize intermediate features instead of model’s outputs as



54 visual feature -based regularizations

done by the vast majority of the literature. In this context, we tackle catastrophic
forgetting via two approaches.

The first approach, PODNet, reduces the drift between the old and new mod-
els by constraining statistics of the intermediate features. We show that a naive
constraint balances poorly the plasticity-rigidity trade-off. Thus, we propose care-
fully designed pooling to directly exploit the spatial nature of the images. By
constraining long-range statistics of the horizontal and vertical axes, we reduce
drastically forgetting, especially in challenging settings with a large number of
tasks with few classes per task. Furthermore, we design a robust metric-based
classifier that exploits the multi-modality of the classes.

The second approach, Ghost, avoids pre-emptively forgetting by estimating
the future locations of yet unseen classes. This model, an extension of PODNet
when class attributes are available, incorporates capabilities of zero-shot learning
into the continual learning model in a seamless way using the paradigm of repre-
sentation learning. We refined that model with a novel SVM-based regularization
loss acting over the feature space to reinforce exclusion zones, reserved for future
classes.
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Chapter abstract

In Class Incremental Learning (CIL), most of the literature focuses on image
classification. In Continual Semantic Segmentation (CSS), the continual
setting is the same (incremental addition of new classes), but the implications
are wildly different. In Semantic Segmentation, an image has one label per
pixel. Therefore, an image could contain pixels from old, current, and future
classes.
In this chapter, we present a new approach for Continual Semantic Segmen-
tation: We first highlight the main challenges of this domain: an important
catastrophic forgetting linked to the higher complexity of segmentation im-
ages, and a background shift where images are partially labeled: the new
classes’ ground-truth labels are present but all other classes are unlabeled de-
spite their presence in an image. To tackle the background shift, we design an
uncertainty-based hard pseudo-labeling loss and an efficient object rehearsal
method. To reduce the catastrophic forgetting of old classes, we also propose a
multi-scale distillation loss inspired by our previous POD.
We evaluate our model on multiple datasets (e.g. VOC, ADE, Cityscapes),
propose new benchmarks, and perform extensive quantitative and qualitative
ablations validating the efficiency of our strategy.
The work in this section has led to the writing of two papers:

• Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu Cord
(2021a). “PLOP: Learning without Forgetting for Continual Semantic
Segmentation”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR)

• Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu Cord
(2021b). “Tackling Catastrophic Forgetting and Background Shift in Con-
tinual Semantic Segmentation”. In: Under review at TPAMI
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4.1 Introduction

Semantic segmentation aims to assign a label to each pixel of an image. It allows
the prediction of multiple objects in the same image, and moreover, their exact
position and shape. This task recently flourished (Tao et al. 2020; Hang Zhang et al.
2020; L. Chen et al. 2018) with larger datasets with thousands of fully annotated
images (B. Zhou et al. 2017; Neuhold et al. 2017), increased computational power,
and larger attention (H. Wang et al. 2020). Unfortunately, the recent research
in this area is often impracticable for real-life applications: they mostly need
fully annotated data and require to be retrained from scratch if a new class is
added to the dataset. Ideally, one would wish to regularly expand a dataset, only
adding and labeling new classes and updating the model in accordance. This
setup, referred here as Continual Semantic Segmentation (CSS), has emerged
very recently for specialized applications (Ozdemir et al. 2018; Ozdemir and
Goksel 2019; Tasar et al. 2019) before being proposed for general segmentation
datasets (Michieli and Zanuttigh 2019; Cermelli et al. 2020).

In particular, in this chapter, we argue that two problems arise when perform-
ing CSS with Convolutional Neural Networks (ConvNets). The first one, inherited
from continual learning, is catastrophic forgetting (Robins 1995), already well
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detailed in the previous chapters including Chapter 2. One of the most efficient
methods to avoid forgetting is rehearsal learning (Section 2.4.1) where we store
a few images from previous tasks. Unfortunately, this solution has difficulty in
the context of segmentation where multiple classes can be in the same image,
and where the storage cost is high and images are partially labeled. The second
challenge, specific to CSS, is the semantic shift of the background class. In a tra-
ditional semantic segmentation setup, all object categories are predefined, and
the "background" class contains pixels that do not belong to any of these classes.
However, in CSS, the background contains pixels that do not belong to any of the
current classes. Thus, for a specific learning step, the background can contain old
classes as well as future classes, not yet seen by the model. Thus, if nothing is
done to distinguish pixels belonging to the real background class from old class
pixels, this background shift phenomenon risks exacerbating the catastrophic
forgetting even further (Cermelli et al. 2020). This issue also has an impact on the
selection of the old data we want to store. Because some currently learned classes
are annotated as background in the old data, this may degrade the performance
of these classes if one naively treat them as background to fine-tune the current
model.

We tackle the first challenge of catastrophic forgetting by designing a constraint
enforcing a similar behavior between the old and current models. Specifically, we
leverage intermediary representations of the convolutional networks to ensure
that similar patterns are extracted through time. This feature-based constraints,
called Local POD, fully exploits the global and local scale necessary to se-
mantic segmentation through a multi-scale design. The second challenge, back-
ground shift, is greatly alleviated by a confidence-based pseudo-labeling strat-
egy to retrieve old class pixels within the background. For instance, if a current
ground truth mask only distinguishes pixels from class sofa and background, our
approach allows assigning old classes to background pixels, e.g. classes person,
dog or background (the semantic class). We name PLOP the model exploiting
those two contributions. We then propose an extension called PLOPLong that
aims to excel on long continual learning scenarios. This new model exploits
cosine normalization to adapt the classifier and the Local POD resulting in im-
proving robustness to the discrepancy between old and new classes. Moreover,
PLOPLong features a modified batch normalization which reduces the sensitivity
of the model to moving statistics seen across tasks in continual learning. Finally,
we are the first to investigate rehearsal learning in the frame of CSS. We propose
a baseline approach that is based upon rehearsing complete images. However,
in practice, this seemingly classic rehearsal is not as trivial in our context as the
labeling is partial: hence, once again, we need to complete the rehearsed images
after each step by filling the background with the missing old classes. While sig-
nificantly improving performances, we show that such approach has two main
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drawbacks. First, it is memory intensive, as the whole images shall be rehearsed
at each CSS step. Second, despite a large number of pixels in the images, we argue
that the images contain few, sparse useful information. Consequently, we design a
novel rehearsal method, that we named “Object Rehearsal“, that consists in se-
lecting only non-regular objects-centered patches as candidates for rehearsal.
Those objects, belonging to old classes, are combined into the images of new
classes via careful image editing. We empirically show that this new rehearsal
method surpasses classic rehearsal with pseudo-labeling, while being up to 146x
times more memory efficient.

From a practical point of view, our proposed methods (PLOP, PLOPLong, and
Object Rehearsal) showed three important results. First, we achieve the state-of-
the-art performance on several challenging datasets. Secondly, we propose several
novel scenarios to further quantify the performances of CSS methods when it
comes to long term learning, class presentation order, and domain shift. Last but
not least, we show that our model contributions largely outperform every CSS

approach in these scenarios.

To sum it up, our contributions are four-folds:

• We propose a multi-scale spatial distillation loss to better retain knowledge
through the continual learning steps, by preserving long- and short-range
spatial statistics, avoiding catastrophic forgetting.

• We introduce a confidence-based pseudo-labeling strategy to identify old
classes for the current background pixels and deal with background shift.

• We propose PLOPLong, a carefully designed refinement of our method for
dealing with long CSS scenarios. The extension comes from an adaptation of
PLOP’s classifier and Local POD distillation as well as batch re-normalization
for better handling of both catastrophic forgetting and background shift, re-
spectively.

• We design a novel memory-efficient Object rehearsal learning procedure that
consists in storing and carefully pasting objects through selective erasing
of foreground objects. It results in better performance for a fraction of the
memory cost imposed by classic rehearsal.

Additionally, we show that our PLOP significantly outperforms state-of-the-
art approaches in existing scenarios and datasets for CSS, as well as in several
newly proposed challenging benchmarks on new datasets. Furthermore, we show
that PLOPLong leads to superior performances on longer CSS scenarios. Last
but not least, we prove that CSS models’ performance can be greatly improved
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when rehearsal learning is an option. In such cases, the proposed Object rehearsal
allows reaching high accuracies with a small memory footprint.

4.2 Related Work

Continual Semantic Segmentation is a relatively young field that started getting
traction following Michieli and Zanuttigh (2019) and Cermelli et al. (2020). How-
ever, this field is at the intersection of many popular topics. Therefore, we start
this section with an overview of recent advances in segmentation. We then follow
with a more in-depth discussion of existing approaches to CSS. For a thorough
discussion of Continual Learning, please refer to Chapter 2.

Semantic Segmentation methods based on Fully Convolutional Networks
(FCN) (Long et al. 2015; Sermanet et al. 2014) have achieved impressive results
on several segmentation benchmarks (Everingham et al. 2015; Cordts et al. 2016;
B. Zhou et al. 2017; Caesar et al. 2018). These methods improve the segmentation
accuracy by incorporating more spatial information or exploiting contextual in-
formation specifically. Atrous convolution (L.-C. Chen et al. 2018a; Mehta et al.
2018) and encoder-decoder architecture (Ronneberger et al. 2015; Noh et al. 2015;
Badrinarayanan et al. 2017) are the most common methods for retaining spatial
information. Examples of recent works exploiting contextual information include
attention mechanisms (Yuan and J. Wang 2018; Hengshuang Zhao et al. 2018; Fu
et al. 2019; Z. Huang et al. 2019; Yuan et al. 2020; Tao et al. 2020; Hang Zhang
et al. 2020), and fixed-scale aggregation (H. Zhao et al. 2017; L.-C. Chen et al.
2018a; L. Chen et al. 2018; Hang Zhang et al. 2018).

Continual Semantic segmentation Despite enormous progress in the two
aforementioned areas respectively, segmentation algorithms are mostly used in an
offline setting, while continual learning methods generally focus on image clas-
sification. Recent works extend existing continual learning methods (Z. Li and
Hoiem 2016; Hou et al. 2019) for specialized applications (Ozdemir et al. 2018;
Ozdemir and Goksel 2019; Tasar et al. 2019) and general semantic segmentation
(Michieli and Zanuttigh 2019). The latter considers that the previously learned
categories are properly annotated in the images of the new dataset. This is an
unrealistic assumption that fails to consider the background shift: pixels labeled
as background at the current step are semantically ambiguous, in that they can
contain pixels from old classes (including the real semantic background class,
which is generally deciphered first) as well as pixels from future classes. Cermelli
et al. (2020) propose a novel classification and distillation losses. Both handle the
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background shift by summing respectively the old logits with the background
logits and the new logits with the background. We argue that a distillation loss
applied to the model output is not strong enough for catastrophic forgetting in
CSS. Furthermore, their classification loss does not preserve enough discriminative
power w.r.t the old classes when learning new classes under background shift. We
introduce our PLOP framework that solves more effectively those two aspects. Yu
et al. (2020) proposed to exploit an external unlabeled dataset in order to do self-
training with a pseudo-labeling loss; we show that our model, while not designed
with this assumption in mind, can outperform their performance. Cermelli et al.
(2021) create a novel setting of continual few-shots segmentation, we implement
their method in our setting and draw inspiration from it to further improve PLOP.
Michieli and Zanuttigh (2021) draw inspiration from the metric learning literature
to conceive a model for continual segmentation that exploits prototypes updated
with an exponential moving average of the mean batch features.

Positioning: Contrary to previous works in continual segmentation (Michieli
and Zanuttigh 2019; Cermelli et al. 2020) which reduced slightly forgetting through
a distillation of the probabilities, we propose a stronger constraint based on global
and local statistics extracted from intermediary features. Moreover, background
shift is often not considered (Michieli and Zanuttigh 2019) or only weakly tackled
(Cermelli et al. 2020), while we propose to eliminate it through segmentation
maps completion with pseudo-labeling. Finally, none of the work proposed re-
hearsal methods for CSS, while we propose a non-trivial method based on image
rehearsal and further improve it with a more data-efficient method based with
object rehearsal.

4.3 PLOP and PLOPLong models

The model description is organized as follows: we first detail the continual
protocol and the notations. Then, we tackle the issue of catastrophic forgetting
by designing an adapted distillation loss, and we alleviate the background shift
by proposing an uncertainty-based pseudo-labeling. Drawing ideas from the
continual learning literature, we propose an extension of PLOP specialized for
long-range continual training that we nickname PLOPLong. Finally, we detail the
limits of rehearsal learning in segmentation, propose a naive adaptation to the
problem, and then deliver our carefully designed method.
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Figure 4.1. – Local POD details and the complete PLOP strategy. (a) Local POD
consists in POD embeddings compute at multiple scale. The global
scale aggregates statistics across the whole features maps while the
local scale focuses on finer details. (b) The model incrementally
learns new classes (e.g. car, dog, person). Only the current class
(person) is labeled while previous classes are folded into the back-
ground. We use the previous model gt−1 ◦ f t−1 to generate pseudo-
labels Ŝt−1 regarding the old classes to alleviate this ambiguity, and
complete the labels St which are then used as ground-truth in Lpseudo.
The Local POD distillation is applied at multiple levels of the fea-
tures extractors f t−1 and f t.



62 continual semantic segmentation

4.3.1 Framework and notations

For the notations, please refer to the Notations. The slight difference with pre-
vious chapters, is that instead of working on pair of a classification image with a
single label (x, y), we will work on pairs of image and segmentation maps where
each pixel has a class (xt,yt). Here, the task identifier t is even more important
because the segmentation map y, for a same image, will evolve through the tasks.
Indeed, in the considered benchmarks (detailed later in Section 4.5), an image
is only labeled for the current classes yt. The previous C1:t−1 or future classes
Ct+1:T the image may contain are not labeled, and considered as the special class
“background”. However, at test-time, a model at step t must be able to discriminate
between all the classes that have been seen so far, i.e. C1:t.

This leads us to identify two major pitfalls in CSS: the first one, inherited from
continual learning, is catastrophic forgetting (Robins 1995). It suggests that a
network will completely forget the old classes C1:t−1 when learning the new ones
Ct.

Furthermore, catastrophic forgetting is aggravated by the second pitfall, specific
to CSS, that we call background shift: at step t, the pixels labeled as background are
indeed ambiguous, as they may contain either old (including the real background
class, predicted in C1) or future classes.

We define our model at step t as a composition of a feature extractor f t(·) (a
ResNet 101 (K. He et al. 2016) backbone and a classifier gt(·). The output predicted
segmentation map can then be written ŷt = gt ◦f t(x). We denote the intermediate
features at each layer of the feature extractor htl = f tl (·) , l ∈ {1, . . . L}. Finally, we
denote the set of learnable parameters of f t and gt as Θt.

4.3.2 Overcoming catastrophic forgetting in CSS with local
distillation

In this section, we propose to tackle the issue of catastrophic forgetting in
continual learning in general and in CSS in particular. An effective method for
doing so involves setting constraints between the old (gt−1 ◦ f t−1) and current
(gt ◦ f t) models. These constraints aim at enforcing a similar behavior between
both models and in turn reduce the loss of performance on old classes. A common
such constraint is based on applying knowledge distillation Geoffrey Hinton et al.
(2015) and Z. Li and Hoiem (2016) between the predicted probabilities of both
models. When applied to CSS, such distillation loss must be carefully balanced
to find a good trade-off between rigidity (i.e. too strong constraints, resulting in
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not being able to learn new classes) and plasticity (i.e. enforcing loose constraints,
which can lead to catastrophic forgetting of the old classes).

In Chapter 3, more precisely in Section 3.2, we designed POD, short for Pooled
Output Distillation. Rather than solely constraining the output model probabil-
ities, POD enforces consistency between intermediary statistics of both models.
Recall (Equation 3.5), for a feature map x, we define a POD embedding Φ(·) as:

Φ(x) =

[
1

W

W∑
w=1

x[:, w, :]

∥∥∥∥ 1

H

H∑
h=1

x[:, :, h]

]
∈ R(H+W )×C , (4.1)

where [· ‖ ·] denotes concatenation over the channel axis. The POD embedding
is thus computed as the concatenation of the H × C width-pooled slices and
the W × C height-pooled slices of x and captures long-range statistics across the
whole features maps. The POD distillation loss then consists in minimizing the
L2 distance between POD embeddings computed at several layers l ∈ {1, . . . , L},
w.r.t the current model parameters Θt:

Lpod(Θt) =
1

L

L∑
l=1

∥∥Φ(htl)− Φ(ht−1
l )
∥∥2

. (4.2)

POD yielded state-of-the-art results in continual learning for image classifica-
tion, especially when large numbers of tasks are considered, a case where the
aforementioned plasticity-rigidity trade-off becomes even more crucial. Another
interest arises in the context of CSS: the long-range statistics computed across an
entire axis (horizontal or vertical) which reminds concurrent work on attention for
segmentation (H. Wang et al. 2020; Zilong Huang et al. 2020; Park and Heo 2020)
which aim to enlarge the receptive field through global attention/statistics (H.
Wang et al. 2020). In the frame of classification, it is, to a certain extent, necessary
to discard spatial information through global pooling. However, semantic seg-
mentation requires the preservation of both long-range and short-range statistics,
making a distillation loss such as POD suboptimal for that purpose.

Following this reflection, and inspired by the multi-scale literature (Lazebnik et
al. 2006; K. He et al. 2014), we design a distillation loss, called Local POD retaining
the long-range spatial statistics while also preserving the local information. The
proposed Local POD consists in computing the width and height statistics at
different scales {1/2s}s=0...S , as illustrated in Figure 4.1 (a). At a given level l of the
feature extractor, s2 POD embeddings are computed per scale s and concatenated:

Ψs(x) =
[
Φ(xs1,1)‖ . . . ‖Φ(xss,s)

]
∈ R(H+W )×C , (4.3)
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where ∀i = 1 . . . s, ∀j = 1 . . . s, xsi,j = x[:, iW/s : (i+ 1)W/s, jH/s : (j + 1)H/s] is a
sub-region of the embedding tensor x of size W/s ×H/s. Then, we concatenate
(along the channel axis) the Local POD embeddings Ψs(x) of each scale s to form
the final embedding:

Ψ(x) =
[
Ψ1(x)‖ . . . ‖ΨS(x)

]
∈ RS×(H+W )×C . (4.4)

Similarly to POD, we compute Local POD embeddings for every layer l ∈ {1, . . . , L}
of both the old and current models. The resulting loss is thus:

LLocalPod(Θt) =
1

L

L∑
l=1

∥∥Ψ(f tl (I))−Ψ(f t−1
l (I))

∥∥2
. (4.5)

Thus, notice that the first scale of Local POD (1/20) is similar to the original
POD and models long-range dependencies across the entire image. The sub-
sequent scales (s = 1/21, 1/22 . . . ), enforce short-range dependencies. Thus, the
proposed Local POD tackles the problem of catastrophic forgetting by model-
ing and preserving long and short-range statistics between the old and current
models, throughout the CSS steps.

4.3.3 Pseudo-labeling to fix background shift

In addition to catastrophic forgetting, a successful CSS approach shall handle
the background shift problem, thus shall take into account the ambiguity of pixels
labeled as background at each step. We propose a pseudo-labeling strategy that
“completes” the ambiguous background labels. Pseudo-labeling (D.-H. Lee 2013) is
commonly used in domain adaption for semantic segmentation (Vu et al. 2019;
Yunsheng Li et al. 2019; Zou et al. 2018; Saporta et al. 2020) where a model is
trained to match both the labels of a source dataset and the pseudo-labels (usually
obtained using the same predictive model, in a self-training fashion) of an unla-
beled target dataset. In this case, the knowledge acquired on the source dataset
helps the model to generate labels for the target dataset. In the frame of CSS, at
each step, we use the predictions of the old model to decipher previously seen
classes among the ambiguous background pixels, as illustrated in Figure 4.1. The
pseudo-labeling relies on the previous model which can be uncertain for some
pixels due to inherent bias to the optimization and because of the forgetting.
Therefore, in order to avoid propagating errors through incorrect pseudo-labels,
we filter out the most uncertain ones based on an adaptive entropy-based thresh-
old.
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Formally, let N t = card(Ct) the cardinality of the current classes, excluding
the background class. Let ŷt ∈ RW,H,1+N 1:t denotes the predictions of the current
model (which includes the real background class, all the old classes as well as
the current ones). We define ỹt ∈ RW,H,1+N 1:t the target at step t, computed using
the one-hot ground-truth segmentation map yt ∈ NW,H,1+N t at step t as well as
pseudo-labels extracted using the old model predictions ŷt−1 ∈ RW,H,1+N 1:t−1 as
follows:

S̃t (w, h, c) =


1 if yt[cbg, w, h] = 0 and c = argmax

c′∈Ct
yt[c′, w, h])

1 if yt[cbg, w, h] = 1 and c =argmax
c′∈C1:t−1

ŷt−1[c′, w, h]

0 otherwise

(4.6)

In other words, in the case of non-background pixels we simply copy the ground
truth label. Otherwise, we use the class predicted by the old model gt−1(f t−1(·)).
This pseudo-label strategy allows assigning each pixel labeled as background his
real semantic label if this pixel belongs to any of the old classes. However, pseudo-
labeling all background pixels can be unproductive, e.g. on uncertain pixels where
the old model is likely to fail. Therefore, we only keep pseudo-labels where the
old model is deemed “confident” enough. Equation 4.6 is modified to take into
account this uncertainty:

S̃t (w, h, c)=


1 if yt[cbg , w, h]=0 and c=arg max

c′∈Ct
yt[c′, w, h]

1 if yt[cbg , w, h]=1 and c=arg max
c′∈C1:t−1

ŷt−1[c′, w, h] and u<τc

0 otherwise ,

(4.7)

By notation abuse, u is function u(yt(w, h)) that measures the uncertainty of
the current model given a pixel x[:, w, h]. τc denotes a class-specific uncertainty
threshold. Hence, in the case where the old model is uncertain (u ≥ τc) about
some pixels, they will be ignored in the final classification loss. Our frame-
work is agnostic to the type of uncertainty used, but in practice we define it
as the entropy. Therefore, we use for u the current model’s per-pixel entropy
u(yt[:, w, h]) = −

∑
c∈C1:t yt[c, w, h] log yt[c, w, h]. Likewise, the class-specific thresh-

old τc is computed from the median entropy of the old model over all pixels of
Dt predicted the class c for all c ∈ C1:t−1 as proposed by Saporta et al. (2020).
Consequently, the cross-entropy loss with pseudo-labeling of the old classes can
be written as:

Lpseudo(Θt) = − ν

WH

W,H∑
w,h

∑
c∈Ct

ỹ (w, h, c) log ŷt [c, w, h]) . (4.8)

We reduce the normalization factor WH proportionally to the number of dis-
carded pixels. To avoid giving disproportional importance to the pixels belonging
to new classes (which are not discarded), we introduce in Equation 4.8 an adap-
tive factor ν, which is the ratio of accepted old classes pixels over the total number
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of such pixels. i.e. if most of the image is uncertain, the overall importance of the
image relative to other images in the batch is reduced. The overall behavior of
our pseudo-labeling is illustrated in Figure 4.1.

We call our final model PLOP (standing for Pseudo-labeling and LOcal Pod).
PLOP’s final loss is a weighted combination of Equation 4.5 and Equation 4.8:

L(Θt) = Lpseudo(Θt)︸ ︷︷ ︸
classification

+λLlocalPod(Θt)︸ ︷︷ ︸
distillation

, (4.9)

with λ a hyperparameter. PLOP, while already very competitive, can face difficul-
ties when dealing with long continual settings, i.e. for which the number of steps
grows larger. For this reason, we propose PLOPLong, an extension of PLOP for
dealing with such cases.

4.3.4 PLOPLong: a specialization for long settings

While the proposed method already achieves satisfying results in traditional
CSS scenarios, it might struggle to deal with longer settings due to two major
drawbacks, namely specialization of the classifier towards the recent classes, and
the shifts of the batch normalization layers.

First, we observe that in CSS the classifier weights tend to be specialized for the
last classes to the detriment of older classes (Hou et al. 2019). Several solutions
exist that aim at correcting this bias (Wu et al. 2019; Belouadah and Popescu 2019;
B. Zhao et al. 2020; Luo et al. 2018), and we choose the cosine normalization. In
practice, we replace the classifier with a cosine classifier (Luo et al. 2018), where
the final inner product is discarded in favor of cosine similarity. By doing so, all
class weights –both old and new– have a constant magnitude of 1, which drasti-
cally reduces the bias towards new classes. The classifier gt is in segmentation a
pointwise (1× 1 kernel) convolution which does not alter the spatial organization
but maps the ch features channels to C1:t channels, one per class to predict. This
pointwise convolution can be seen as a fully-connected layer that is applied inde-
pendently to each pixel. Therefore, the classifier gt has {θtc ∈ Rch|∀c ∈ C1:t}. The
cosine normalization can then be expressed as:

Ŝ(w, h, c) =
α〈θtc,h(w, h)〉
‖θtc‖2‖h[:, w, h]‖2

(4.10)

with α a learned scalar parameter initialized to 1 and helping the convergence,
and h ∈ RW×H×ch the final features embedding before the classifier. First used
in continual learning by Hou et al. (2019), this classifier has more recently be
adopted by continual few-shot segmentation (Cermelli et al. 2021) or multi-modes
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continual learning (in PODNet, see Section 3.2.2.2). The new cosine classifier
weights that correspond to the new classifier can then be initialized with weight
imprinting (Qi et al. 2018) as recently adapted for segmentation by Cermelli et al.
(2021).

Furthermore, we propose to exploit the cosine normalization for intermediary
features: the comparison between the Local POD embeddings of the previous
model f t−1 with the current f t can be too constrained. We relax the constraints
by imposing not a low Euclidean distance between both embeddings, but rather
a high cosine similarity, which allows us better plasticity to learn new classes.
We need to alter Equation 4.5 by replacing the Φ(·) operator by Φ̄(·) = Φ(·)/|Φ(·)‖2.
However, note that the features from level l given to level l+ 1 are not normalized.
The normalization only happens for the Local POD embeddings.

Second, an almost ubiquitous component of modern deep computer vision
models is the Batch Normalization (Ioffe and Szegedy 2015). It normalizes internal
representation with the batch mean µB and batch standard deviation σB (resp.
running mean µ and running std σ) during training (resp. testing). Formally for
a batch normalization layer taking an input x and producing an output y:

y =
x− µB

σB
· γ + β (4.11)

with γ and β two learned parameters. The important drawback of this normaliza-
tion layer is its assumption that the data is sampled i.i.d. which is not the case in
continual segmentation where multiple shifts (Moreron-Torresa et al. 2012; Lesort
et al. 2021), happen in the training tasks, different from the testing tasks. Drawing
inspiration from the domain incremental (Lomonaco et al. 2020) and continual
few-shots segmentation (Cermelli et al. 2021) literature, we choose to replace the
batch normalization by batch renormalization (Ioffe 2017), i.e.:

y =
x− µB

σB
· r + d, where r =

σB
σ
, d =

µB − µ
σ

. (4.12)

Intuitively, batch renormalization avoids the discrepancy between training and
testing of the batch normalization. Furthermore, following Cermelli et al. (2021),
we freeze during training the statistics (µ and σ) after the first task to avoid
harmful statistics drifts.

All these improvements further increase performance for long series of tasks:
(1) Cosine classifier reduces the increased bias between recent and old classes.
(2) A cosine-based Local POD relax the constraints in order to correctly learn
the bigger number of new classes. (3) Frozen BatchReNorm reduces the inherent
drift of statistics that grow larger as the number of tasks increases. In what fol-
lows, we denote PLOPLong the model obtained from PLOP by adding all three
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improvements. We empirically saw that these contributions marginally improve
PLOP taken individually, but when used altogether provided an major boost of
performance in long-range scenarios.
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Figure 4.2. – Our Object Rehearsal strategy. In task t − 1, we select from
{xt−1, . . .} a limited amount of objects (here bus, bird, and dog),
which will be then mixed in the images {xt, . . .} from the current
task t; after pasting, the other present objects are erased. Finally, the
current model gt ◦ f t will be given the concatenation of the original
images and the augmented images {x′′t, . . .}. Our Object Rehearsal
allows to generate a wider diversity of images, resulting in higher
accuracies while being up to 146x more memory efficient.

4.4 Object Rehearsal

Neither the proposed PLOP nor PLOPLong did make use of previously seen
data {D1, . . . ,Dt−1} when considering step t. In this section, we explore how to
further improve CSS performance if a model is now allowed to rehearse a limited
amount of previous data. We first consider a traditional approach, namely Image
Rehearsal. We show that such a naive approach cannot work well in the frame of
CSS and propose innovative adaptations to make it work. Then, we highlight the
drawbacks of this rehearsal method and propose a novel approach named Object
Rehearsal, more effective both in terms of mean Intersection-over-Union (mIoU)
and memory consumption.
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4.4.1 Image Rehearsal

We first consider rehearsing a limited amount of images from previous tasks
during the current task. Image rehearsal is a well-studied problem in continual
image classification. However, it was rarely applied to other tasks. Contrary to
image classification, in CSS, images can have multiple labels if several objects
(e.g. car, sky) are present in the image. Moreover, as we described previously in
Section 4.3.1, the segmentation maps are partially labelized. For a given task t,
when rehearsing an image stored from task t−i, we only have labels of classes Ct−1.
Because of these two problems, we cannot naively apply image rehearsal on CSS.
To tackle the former problem, we propose to select M images for each class c ∈ Ct,
resulting in M × N t images for step t. We ensure that the selected images are
unique: as multiple classes can co-exist in the same image, the resulting amount
of sampled classes may be above M × N t. We select the images with a simple
random selection, which has been proved to generally perform as good as more
elaborate methods (Castro et al. 2018). The memory footprint will grow until all
tasks but the last are seen, resulting in a total amount of M×N 1:T−1 stored images.
To address the second problem (partial labelization, see also Section 4.3.3), we
fill the background using our proposed hard pseudo-labeling (see Section 4.3.3)
which completes the segmentation maps with old classes C1:t−i as well as new
classes Ct−i+1:t.

4.4.2 Object Rehearsal

The main drawback of image rehearsal is that CSS images are usually large
(from 512× 512 to 1024× 2048) yet they are sparsely informative, as a significant
part of the images consists in background pixels (Lin et al. 2017) (e.g. 63% of
Pascal-VOC (Everingham et al. 2015) pixels) or belongs to a majority class (e.g.
32% of Cityscapes (Cordts et al. 2016) pixels are roads).

To address both problems, instead of storing whole images from the previous
tasks {1, ..., t − 1}, we propose to store an informative portion that we will mix
with the images of the current task t. Image mixing is popular for classification
(Hongyi Zhang et al. 2018; Yun et al. 2019; Dabouei et al. 2020; Verma et al. 2019;
B. Li et al. 2021; Rame et al. 2021b) yet, to the best of our knowledge, sees limited
use for semantic segmentation (Fang et al. 2019; Olsson et al. 2021; J. Zhang et al.
2021; Tranheden et al. 2021; Ghiasi et al. 2020), and has never been considered to
design memory-efficient rehearsal learning systems. Formally, given an image x
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and the corresponding ground truth segmentation maps yt, we define a binary
mask Πc such that ∀c ∈ Ct:

Oc = I � Πc where Π[:, w, h] =

{
1, ifyt[:, w, h] = c

0, otherwise
, (4.13)

with Oc the selected object for class c. By nature, this patch is extremely sparse and
can be efficiently stored on disk by modern compression algorithms (ISO)10918).
The total memory footprint at task t is thus M ×N 1:t objects.

Then, when learning a task t > 1, the model will learn on both the task dataset
∪Ni (xti,y

t
i) and the object memory ∪c∈C1:t−1 ∪Mi Oc,i, with N being the total number

of images in the task dataset. The latter will augment the former through object
pasting. We augment each object by applying an affine transformation matrix
(Fang et al. 2019):

T =

 z cosα z sinα 0

−z sinα z cosα 0

0 0 1

 , (4.14)

with z a zoom factor, and α an in-plane rotation angle. Note that we do not
translate the object as its original position is often a good prior: indeed, objects
are usually located at the same location (e.g. pedestrian on the left and right
sidewalk, car on the middle road, etc.) We abuse the notation by denoting T (.) the
application of this transformation matrix. Once the data augmentation is done
on the object (and its mask), we paste it on an image xt that refers to the current
task:

x′
t

= xt � (1− T (Πc)) + T (Oc)� T (Πc) . (4.15)

The pasting can result in local incoherence where the pixel of a cow is pasted
on top or next to the pixel of a television. Naively the object borders can be
smoothed into the image with a Gaussian filter. Unfortunately, it results in impre-
cise contours, which are important in segmentation (Y. Chen et al. 2020).

This approach has already been envisioned as a form of data augmentation
in semantic segmentation, although the gains were small and to avoid the noise
induced by this pasting, the batch size is prohibitively large (up to 512) (Ghiasi
et al. 2020). We propose to reduce interference between the pasted object and the
destination images by selective erasing of the surrounding pixels. Indeed, given
a binary matrix Ξ(Π, S) of the same dimension as I and Π:

x′′
t

= x′
t � (1− Ξ) + κ� Ξ . (4.16)

We replace the pixels erased according to the mask Ξ with a RGB color κ ∈ R3.
This RGB vector could be chosen through in-painting (Fang et al. 2019) or be
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Dataset # classes Background? # train # test Image size

Pascal-VOC (Everingham et al. 2015) 20 3 10k 1.5k 512× 512
Cityscapes (Cordts et al. 2016) 19 7 3k 0.5k 512× 1024
ADE20k (B. Zhou et al. 2017) 150 7 20k 2.0k 512× 512

Table 4.1. – Description of the three datasets considered in this paper. For
datasets without explicit background class, one is created based on
unlabeled pixels.

Dataset Setting Mode # tasks # base classes # classes / inc. task

Pascal-VOC

19-1 class 2 19 1

15-5 class 2 15 5

15-1 class 6 15 1

10-1 class 11 10 1

Cityscapes

14-1 class 6 14 1

11-5 domain 3 11 5

11-1 domain 11 11 1

1-1 domain 21 1 1

ADE20k

100-50 class 2 100 50

50-50 class 2 50 50

100-10 class 6 100 10

100-5 class 11 100 5

Table 4.2. – Description of the 12 different benchmarks evaluated in this paper.
For some of these, each task brings new classes while, for others, it
comes with new domains.

random noise, but in practice, we choose a constant color gray. We also update
the segmentation maps accordingly:

y′′
t

= y′
t � (1− Ξ) + 255� Ξ , (4.17)

where 255 is a dummy class id used in segmentation to ignore some pixel labels
which will not be counted in the classification loss Equation 4.8. We illustrate our
rehearsal strategy in Figure 4.2.
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Figure 4.3. – Dataset visualization: of an example image and its segmentation
maps for Pascal-VOC, ADE20k, and Cityscapes.

4.5 Experiments

4.5.1 Datasets, Protocols, and Baselines

To ensure fair comparisons with state-of-the-art approaches, we follow the ex-
perimental setup of Cermelli et al. (2020) for datasets, protocol, metrics, and base-
line implementations. Although, we also propose to evaluate on new datasets
and on more challenging protocols. Furthermore, we explore in advanced ex-
periments, for the first time, how rehearsal can improve performance in CSS. We
provide the full implementation details in the appendix (Section A.4).

Datasets: We evaluate our model on three datasets, summarized in Table 4.1:
Pascal-VOC (Everingham et al. 2015), Cityscapes (Cordts et al. 2016) and ADE20k
(B. Zhou et al. 2017). VOC contains 20 classes, 10,582 training images, and 1,449

testing images. Cityscapes contains 2975 and 500 images for train and test, re-
spectively. Those images represent 19 classes and were taken from 21 different
cities. ADE20k has 150 classes, 20,210 training images, and 2,000 testing images.
All ablations and hyperparameters tuning were done on a validation subset of
the training set made of 20% of the images. For all datasets, we use random resize
and crop augmentation (scale from 80% to 110%), as well as random horizontal
flip during training time. The final image size for Pascal-VOC and ADE20k is
512× 512 while it is 512× 1024 for Cityscapes.
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CSS protocols: Cermelli et al. (2020) introduced the Overlapped setting where
only the current classes are labeled vs a background class Ct. Moreover, pixels
can belong to any classes C1:t−1 ∪ Ct ∪ Ct+1:T (old, current, and future). Those two
constraints make this setting both challenging and realistic, as in a real setting
there is not any oracle method to exclude future classes from the background. In
all our experiments, we respect the Overlapped setting. While the training images
are only labeled for the current classes, the testing images are labeled for all seen
classes. We evaluate several CSS protocols for each dataset, e.g. on VOC 19-1, 15-5,
and 15-1 respectively consists in learning 19 then 1 class (T = 2 steps), 15 then 5

classes (2 steps), and 15 classes followed by five times 1 class (6 steps). The last
setting is the most challenging due to its higher number of steps. Similarly, on
Cityscapes 14-1 means 14 followed by five times 1 class (6 steps) and on ADE
100-50 means 100 followed by 50 classes (2 steps). We provide a summary of all
these settings in Table 4.2.

Metrics: In Figure 2.3, we defined the final and average incremental accuracies.
In the context of semantic segmentation, we generalize those metrics to the mean
Intersection-over-Union (mIoU). Specifically, we compute mIoU after the last step
T for the initial classes C1, for the incremented classes C2:T , and for all classes C1:T

(final). These metrics respectively reflect the robustness to catastrophic forgetting
(the model rigidity), the capacity to learn new classes (plasticity), as well as its
overall performance (trade-of between both). We also introduce the avg metric
(short for average), novel in CSS, which measures the average of mIoU scores mea-
sured step after step, integrating performance over the whole continual learning
process. We stress that all four metrics are important, and we should not disregard
one for the other: a model suffering no forgetting but not able to learn anything
new is useless.

Baselines: We benchmark our model against the latest state-of-the-arts CSS

methods ILT (Michieli and Zanuttigh 2019), MiB (Cermelli et al. 2020), GIFS
(Cermelli et al. 2021), and SDR (Michieli and Zanuttigh 2021). Note that while
GIFS was created by Cermelli et al. (2021) for continual few-shots segmentation, we
adapt it for the more general task of CSS. Unless stated otherwise, all the results
are excerpted from the corresponding papers. We also evaluate general continual
models based on weight constraints (PI (Zenke et al. 2017), EWC (Kirkpatrick et al.
2017), and RW (Chaudhry et al. 2018)) and knowledge distillation (LwF (Z. Li
and Hoiem 2016) and LwF-MC (Rebuffi et al. 2017c)). Moreover, unless explicitly
stated otherwise, all the models (ours included), do not use rehearsal learning.
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19-1 (2 tasks) 15-5 (2 tasks) 15-1 (6 tasks)
Method 0-19 20 final avg 0-15 16-20 final avg 0-15 16-20 final avg

Fine Tuning† 6.80 12.90 7.10 2.10 33.10 9.80 0.20 1.80 0.60

PI† (Zenke et al. 2017) 7.50 14.00 7.80 1.60 33.30 9.50 0.00 1.80 0.50

EWC† (Kirkpatrick et al. 2017) 26.90 14.00 26.30 24.30 35.50 27.10 0.30 4.30 1.30

RW†
(Chaudhry et al. 2018) 23.30 14.20 22.90 16.60 34.90 21.20 0.00 5.20 1.30

LwF† (Z. Li and Hoiem 2016) 51.20 8.50 49.10 58.90 36.60 53.30 1.00 3.90 1.80

LwF-MC† (Rebuffi et al. 2017c) 64.40 13.30 61.90 58.10 35.00 52.30 6.40 8.40 6.90

ILT† (Michieli and Zanuttigh 2019) 67.10 12.30 64.40 66.30 40.60 59.90 4.90 7.80 5.70

ILT (Michieli and Zanuttigh 2019) 67.75 10.88 65.05 71.23 67.08 39.23 60.45 70.37 8.75 7.99 8.56 40.16

MiB† (Cermelli et al. 2020) 70.20 22.10 67.80 75.50 49.40 69.00 35.10 13.50 29.70

MiB (Cermelli et al. 2020) 71.43 23.59 69.15 73.28 76.37 49.97 70.08 75.12 34.22 13.50 29.29 54.19

SDR� (Michieli and Zanuttigh 2021) 71.30 23.40 69.0 76.30 50.20 70.10 47.30 14.70 39.50

GIFS (Cermelli et al. 2021) 57.88 32.82 56.69 67.05 23.61 16.43 21.90 50.97 59.36 13.89 48.53 61.43

PLOP 75.35 37.35 73.54 75.47 75.73 51.71 70.09 75.19 65.12 21.11 54.64 67.21

PLOPLong 74.75 39.68 73.08 74.32 75.95 48.31 69.37 73.58 72.00 26.66 61.20 70.02

Table 4.3. – Pascal-VOC 2021 quantitative experiments in mIoU (%). †: results
excerpted from Cermelli et al. (2020), � from Michieli and Zanuttigh
(2021). Other results come from re-implementation.

14-1 (6 tasks)
Method 1-14 15-19 final avg

MiB (Cermelli et al. 2020) 55.11 12.91 44.56 49.76

PLOP 56.59 13.07 45.71 51.28

PLOPLong 58.60 15.04 47.71 54.31

Table 4.4. – Cityscapes quantitative experiments on Cityscapes 14-1 in mIoU (%).

4.5.2 PLOP and PLOPLong experiments

4.5.2.1 Quantitative Evaluations

Pascal VOC 2012: Table 4.3 shows quantitative experiments on VOC 19-1, 15-5,
and 15-1. Both the proposed PLOP and PLOPLong outperform state-of-the-art
approaches, MiB (Cermelli et al. 2020), SDR (Michieli and Zanuttigh 2021), and
GIFS (Cermelli et al. 2021) on all evaluated settings by a significant margin. For
instance, on 19-1, the forgetting of old classes (1-19) is reduced by 4.39 percentage
points (p.p.) while performance on new classes is greatly improved (+13.76 p.p.),
as compared to the best performing method so far, MIB (Cermelli et al. 2020). On
15-5, our model is on par with our re-implementation of MiB, and surpasses the
original paper scores (Cermelli et al. 2020) by 1 p.p.. On the most challenging 15-1
setting, general continual models (EWC and LwF-MC) and ILT all have very low
mIoU. While MiB shows significant improvements, PLOP still outperforms it by a
wide margin. Furthermore, PLOP also significantly outperforms the best perform-
ing approach on this setting, GIFS Cermelli et al. (2021) (+6.11 p.p.). Moreover,



4.5 experiments 75

Figure 4.4. – mIoU evolution on Pascal-VOC 2012 15-1. While MiB’s mIoU quickly
deteriorates, PLOP and PLOPLong’s mIoU remains high, due to im-
proved resilience to catastrophic forgetting.

100-50 (2 tasks) 50-50 (3 tasks) 100-10 (6 tasks)
Method 0-100 101-150 final avg 0-50 51-150 final avg 0-100 101-150 final avg

ILT (Michieli and Zanuttigh 2019) 18.29 14.40 17.00 29.42 3.53 12.85 9.70 30.12 0.11 3.06 1.09 12.56

MiB (Cermelli et al. 2020) 40.52 17.17 32.79 37.31 45.57 21.01 29.31 38.98 38.21 11.12 29.24 35.12

PLOP 41.87 14.89 32.94 37.39 48.83 20.99 30.40 39.42 40.48 13.61 31.59 36.64

Table 4.5. – ADE20k quantitative experiments in mIoU (%).

mIoU for the joint model is 77.40%, thus PLOP narrows the gap between CSS and
joint learning on every CSS scenario. The average mIoU is also improved (+5.78 p.p.)
compared to GIFS, indicating that each CSS step benefits from the improvements
related to our method. This is echoed by Figure 4.4, which shows that while mIoU

for both ILT and MiB deteriorates after only a handful of steps, PLOP’s mIoU

remains very high throughout, indicating improved resilience to catastrophic for-
getting and background shift. Last but not least, while PLOP performs better than
PLOPLong on short setups (e.g. 19-1, 15-5), PLOPLong performs better, however,
on longer CSS benchmarks such as 15-1 (+2.81 p.p.).

Cityscapes: We also validate our method on Cityscapes in Table 4.4. In order to
design a setting similar to Pascal-VOC 15-1 (6 tasks), we design the 14-1 setting.
Also, we simulate a background class by folding together the unlabeled classes.
Here again, PLOP performs slightly better than MIB (+2.48 p.p. on the old classes,
+0.16 p.p. on the new ones, +1.15 p.p. on average). Moreover, PLOPLong performs
significantly better (+3.59 p.p. on the old classes, +2.13 p.p. on the new ones, +3.15

p.p. on average), indicating better robustness to both catastrophic forgetting and
background shift, especially when considering long continual learning setups. To
more precisely assess this phenomenon, we investigate the performance of both
methods when dealing with longer task learning sequences.
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VOC 10-1 (11 tasks)
Method 0-10 11-20 final avg

ILT (Michieli and Zanuttigh 2019) 7.15 3.67 5.50 25.71

MiB (Cermelli et al. 2020) 12.25 13.09 12.65 42.67

PLOP 44.03 15.51 30.45 52.32

PLOPLong 61.06 18.56 40.83 58.62

Table 4.6. – Pascal-VOC 2012 10-1 in mIoU (%).

ADE 100-5 (11 tasks)
Method 0-100 101-150 final avg

ILT (Michieli and Zanuttigh 2019) 0.08 1.31 0.49 7.83

MiB (Cermelli et al. 2020) 36.01 5.66 25.96 32.69

PLOP 39.11 7.81 28.75 35.25

Table 4.7. – ADE20k 100-5 in mIoU (%).

ADE20K: Table 4.5 shows experiments on ADE 100-50, 100-10, and 50-50. This
dataset is notoriously hard, as the joint model baseline mIoU is only 38.90%. ILT
has poor performance in all three scenarios. PLOP shows comparable perfor-
mance with MiB on the short setting 100-50 (only 2 tasks), improves by 1.09 p.p.
on the medium setting 50-50 (3 tasks), and significantly outperforms MiB with a
wider margin of 2.35 p.p. on the long setting 100-10 (6 tasks). In addition to being
better on all settings, PLOP showcased an increased performance gain on longer
CSS (e.g. 100-10) scenarios, due to increased robustness to catastrophic forgetting
and background shift.

Longer Continual Trainings: We argue that CSS experiments should push to-
wards more steps (Wortsman et al. 2020; Lomonaco et al. 2020; Castro et al. 2018)
to quantify the robustness of approaches w.r.t. catastrophic forgetting and back-
ground shift. We introduce two novel and much more challenging settings with
11 tasks, almost twice as many as the previous longest setting. We report results
for VOC 10-1 in Table 4.6 (10 classes followed by 10 times 1 class) and ADE 100-5
in Table 4.7 (100 classes followed by 10 times 5 classes). The second previous
State-of-the-Art method, ILT, has a very low mIoU (< 6 on VOC 10-1 and practi-
cally null on ADE 100-5). Furthermore, the gap between PLOP and MiB is even
wider compared with previous benchmarks (e.g. ×3.6 mIoU on VOC for mIoU of
base classes 1-10), which confirms the superiority of PLOP when dealing with
the long continual processes. Moreover, in such a case, PLOPlong really shines,
bringing significant improvements (+17.03 p.p. on the old classes, +3.05 p.p. on the
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new classes, +10.42 p.p. on average) due to a combination of cosine normalization
(both on the classifier and Local POD) and its frozen BatchReNormalization.

4.5.2.2 Models Introspection

We compare several distillation and classification losses on VOC 15-1 to stress
the importance of the components of PLOP and report results in Table 4.8. All
comparisons are evaluated on a validation set made with 20% of the training set,
therefore results are slightly different from the main experiments.

Distillation comparisons: Table 4.8a compares different distillation losses when
combined with our pseudo-labeling loss. ILT (Michieli and Zanuttigh 2019) used
the naive knowledge distillation of Geoffrey Hinton et al. (2015). CSC (Park and
Heo 2020) constrained spatial and channel correlation of intermediary features.
This work bears similarity with POD and Local POD, but it’s much more com-
putationally intensive as it computes pixel-by-pixel correlation and not as perfor-
mant. Finally, UNKD introduced in Cermelli et al. (2020) performs better than the
Knowledge Distillation (KD) of Geoffrey Hinton et al. (2015), but not at every step
(as indicated by the avg. value), which indicates instability during the training
process. POD (Section 3.2), improves the results on the old classes, but not on the
new classes (16-20). In fact, due to too much plasticity, POD model likely overfits
and predicts nothing but the new classes, hence a lower mIoU. Finally, Local POD
leads to superior performance (+20 p.p.) w.r.t. all metrics, due to its integration of
both long and short-range dependencies. This final row represents our full PLOP
strategy.

Classification comparisons: Table 4.8b compares different classification losses
when combined with our Local POD distillation loss. Cross-Entropy (CE) vari-
ants perform poorly, especially on new classes. UNCE, introduced in (Cermelli
et al. 2020), improves by merging the background with old classes, however, it still
struggles to correctly model the new classes, whereas our pseudo-labeling propa-
gates more finely information of the old classes, while learning to predict the new
ones, dramatically enhancing the performance in both cases. This penultimate row
represents our full PLOP strategy. Also, notice that the performance for pseudo-
labeling is very close to (Oracle) Pseudo-good (where the incorrect pseudo-labels
are removed), which may constitute a performance ceiling of our uncertainty
measure. A comparison between these two results illustrates the relevance of
our entropy-based uncertainty estimate. (Oracle) Pseudo-corrected is similar to the
previous oracle but instead fix the incorrect pseudo-labels; note that not all labels
are present as some pixels were not even pseudo-labelized due to their high un-
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Distillation loss 0-15 16-20 final avg

ILT (Michieli and Zanuttigh 2019) 19.91 5.49 16.48 49.43

CSC (Park and Heo 2020) 25.49 4.72 20.48 44.97

Knowledge Distillation (Geoffrey Hinton et al. 2015) 29.72 4.42 23.69 49.18

UNKD (Cermelli et al. 2020) 34.85 5.26 27.80 46.39

POD 43.94 4.82 34.62 53.35

Local POD (Equation 4.5) 63.06 17.92 52.31 65.71

(a) Distillation loss ablations: Pseudo loss (Equation 4.8) with different distilla-
tion losses.

Classification loss 0-15 16-20 final avg

CE only on new 12.95 2.54 10.47 47.02

CE 33.80 4.67 26.87 50.79

UNCE (Cermelli et al. 2020) 48.46 4.82 38.62 53.19

Pseudo (Equation 4.8) 63.06 17.92 52.31 65.71

(Oracle) Pseudo-good 63.69 23.35 54.09 66.05
(Oracle) Pseudo-corrected 66.88 16.88 54.98 66.50
(Oracle) CE + all labels 71.45 10.78 57.00 67.04

(b) Classification loss ablations: Local POD loss (Equation 4.5) with different
classification losses.

Table 4.8. – Comparison studies on Pascal-VOC 2012 15-1 on a validation subset
of 20% of the training set.
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Figure 4.5. – Robustness to class ordering: Boxplots of the mIoU of initial classes
(1-15), new (16-20), all, and average for 20 random class orderings.
PLOP is significantly better and more stable than MiB. PLOPLong
further improves upon PLOP by better retaining old class informa-
tion.

certainty. Finally, (Oracle) CE + all labels has access to all labels of previous and
current classes C1:t.

4.5.2.3 Robustness to class ordering

Continual learning methods may be prone to instability. It has already been
shown in related contexts (D. Kim et al. 2019) that class ordering can have a
large impact on performance. Unfortunately, in real-world settings, the optimal
class order can never be known beforehand: thus, the performance of an ideal CSS

method should be as invariant to class order as possible. In all experiments done
so far, this class order has been kept constant, as defined by Cermelli et al. (2020).
We report results in Figure 4.5 as boxplots obtained by applying 20 random per-
mutations of the class order on VOC 15-1. We report in Figure 4.5 (from left to
right) the mIoU for the old, new classes, all classes, and average over CSS steps.
In all cases, PLOP surpasses MiB in terms of avg mIoU. Furthermore, the stan-
dard deviation (e.g. 10% vs 5% on all) is always significantly lower, showing the
excellent stability of PLOP compared with existing approaches. Moreover, PLOP-
Long, while having more variance on the new classes, performs better overall as
compared to PLOP, not to mention MiB. This is due to the fact that PLOPLong,
due to improved distillation loss (at prediction and Local POD levels) and batch
re-normalization that allows to better retain information of the old classes, which
again is more conspicuous on longer CSS scenarios.
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15-1 (6 tasks)
Method Rehearsal Memory (Mb) ↓ Time (Hours) ↓ 0-15 16-20 final avg

PLOP — 0 1.8 65.12 21.11 54.64 67.21

PLOPLong — 0 1.8 72.00 26.66 61.20 70.02

Yu et al. (2020) Unlabeled COCO 20,000 7.0 71.40 40.00 63.60

PLOP Unlabeled COCO 20,000 1.4 72.57 45.08 66.03 71.85

PLOP Unlabeled VOC 2,000 1.4 75.32 52.59 69.91 75.21

PLOPLong Partial VOC 2.2 2.6 74.14 38.87 65.74 72.02

PLOPLong Partial VOC 22 2.6 74.18 43.22 66.81 72.48
PLOPLong Object VOC 0.26 2.7 73.32 42.86 66.07 72.21

PLOPLong Object VOC 2.6 2.7 73.79 45.78 67.12 72.42

Joint model — — — 79.10 72.60 77.40 —

Table 4.9. – Pascal-VOC quantitative experiments with rehearsal on Pascal-VOC
2012 15-1 overlap in mIoU (%). We only consider the time overhead
spent after the first task whose computation overhead is similar for
all methods.

4.5.3 Object Rehearsal experiments

4.5.3.1 Quantitative Evaluations

Pascal-VOC 15-1: We now allow CSS models to store information from the
previous steps and classes: in such a case, the overall model efficiency can be un-
derstood as to what extent it allows to find a good trade-off between its accuracy
(as measured by the aforementioned standard metrics) and the memory footprint
of the stored images or objects. Methods such as HRHF (Zilong Huang et al. 2021)
can not easily be understood in these terms as they do not store data, strictly
speaking, but rather use deep inversion (Yin et al. 2019) techniques to generate
synthetic data, which comes at a high time requirement: thus, we exclude this
method from our comparisons. We first consider the challenging Pascal-VOC 15-1
setting in Table 4.9. We use PLOP and PLOPLong as baselines with 0 memory
overhead, as both models only use data from the current task. Moreover, we com-
pare with Yu et al. (2020), where an unlabeled external dataset such as COCO (Lin
et al. 2014) is used through pseudo-labeling to improve performance on Pascal-
VOC, as both datasets present significant overlap in terms of classes and domains.
We reimplemented their method and also considered PLOP in this configuration.
Using the external COCO provide PLOP an important gain of mIoU for both old
classes (+7 p.p.) and new classes (+24 p.p.). Furthermore, PLOP with COCO is
significantly more performant than Yu et al. (2020)’s model (+5.43 p.p.) despite the
latter was designed explicitly to use such unlabeled external dataset. Notice also
how PLOPLong, without any kind of rehearsal, remains equivalent to Yu et al.
(2020) in terms of mIoU on 0-15 (72.00% vs 71.40%), despite the latter using a large
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pool of data (+20Go). Perhaps counter-intuitively the gain is located on the new
classes (26.66% vs 40.00%) as the rehearsal effect has a regularizing effect leading
to less over-predicting of the recent classes. A drawback of using COCO is that
the visual domain is not exactly the same as VOC, therefore we also considered
using PLOP with a rehearsal of the unlabeled VOC. Without surprise, it results in
a much better overall performance (+3.88 p.p. compared to using COCO). Another
setup that we consider is the image rehearsal paradigm, where, at each step, we
keep a number of (randomly selected) images along with their segmentation map.
These segmentation maps are, however, incomplete, due to the nature of the CSS

problem (see Section 4.4.2): hence, we refer to this setting as partial VOC. We
consider two amounts of images to keep: 10 images per class (22 Mb) and 1 image
per class (2.2 Mb). PLOPLong largely benefits from this rehearsal, most notably
on new classes (16-20); with a gain up to 16.56 p.p.. Finally, we compare our novel
Object Rehearsal denoted by “object VOC” where we store either one object per
class (0.26 Mb) or 10 objects per class (2.6 Mb). As shown on Table 4.9, The pro-
posed object rehearsal, in addition to being significantly more memory efficient
than whole image rehearsal (8.5× less space used), is equivalent or better in terms
of mIoU; especially for new classes (2.56 p.p.). The ensemble of our experiments
proves that rehearsal, when the partial or missing labeling is carefully handled,
can provide important performance gain. Furthermore, our novel object rehearsal
manages to strike the best trade-off with a minimal memory overhead without
impacting its performance.

Cityscapes: We propose more experiments with Object Rehearsal in Table 4.10

where we apply our model on Cityscapes 14-1. For the rehearsal, we sample either
10 images or objects per class. Cityscapes images are particularly large (even
resized to 512× 1024) and "empty" (most of it is road and sky). Consequently, the
memory overhead is extremely important compared object rehearsal (117 vs 0.8).
We show that both our novel image and object rehearsal improve performance of
the already competitive PLOPLong, and with object rehearsal providing the large
gain (+9 p.p. in all).

t

4.5.3.2 Object Rehearsal Introspection

Table 4.11 draws a comparison between several rehearsal alternatives in CSS.
We split methods according to three criterions: “type” denotes whether we store a
whole image, an object, or a patch. For both object and patch, we only rehearse a
small amount of the images: in object, only the pixel’s objects are used while for a
patch, we use the pixel’s object and the close surrounding pixels that contain back-
ground information. We insert the rehearsal data according to “mixing”, either by
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Figure 4.6. – Pixel distribution per class during the 5th step of Pascal-VOC 15-1.

ImageGTPLOPLong + 
Object Rehearsal PLOPLongPLOPMiB

Figure 4.7. – Visualization of the predictions of MiB, PLOP, PLOPLong, and
PLOPLong with Object Rehearsal on three test images at the 6th and
final step on VOC 15-1 scenario. The first image contains car, cow,
and person; the second plane and bus, and the third bicycle and
person. While MiB does not manage to predict the correct classes,
and tends to overpredict the most recent ones (e.g. train in light
green). PLOP mostly grasp the correct classes, though sometimes
with imprecision. PLOPLong and a fortiori PLOPLong + Object re-
hearsal captures all existing classes, with the latter predicting almost
perfect segmentation masks, compared to the ground-truth.
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14-1 (6 tasks)
Method Rehearsal Memory 1-14 15-19 final avg

MiB (Cermelli et al. 2020) — 0 55.11 12.91 44.56 49.76

PLOP — 0 56.59 13.07 45.71 51.28

PLOPLong — 0 58.60 15.04 47.71 54.31

PLOPLong Partial 117.0 58.93 19.55 49.09 55.74
PLOPLong Object 0.8 57.82 23.13 49.15 54.80

Table 4.10. – Cityscapes quantitative experiments with rehearsal on Cityscapes
14-1 overlap in mIoU (%).

15-1 (6 tasks)
Type Mixing Erase Memory ↓ final avg

Image Mixup —
22.20

61.77 69.88 I
— — 66.81 72.48 II

Patch
Pasting All

4.50

55.45 66.35 III
Pasting — 63.41 70.75 IV
Pasting Foreground 66.28 71.66 V

Object

Mixup —

2.60

63.25 70.91 VI
Mixup Foreground 64.45 71.65 VII
Pasting All 52.26 65.97 VIII
Pasting — 63.12 70.52 IX
Pasting Foreground 67.12 72.42 X

Table 4.11. – Rehearsal alternatives on Pascal-VOC 2012 in mIoU (%).
Object/Patch-based methods with 10 objects/patches per class, and
Image-based with 10 images per class. All experiments done with
PLOPLong.

pasting (see Section 4.4.2), by mixing pixels according to mixup (Hongyi Zhang
et al. 2018) rule, or in the case of image rehearsal, no mixing is done. Finally, we
consider two erasing methods: either all pixels are erased (All), or only pixels
belonging to non-background classes are erased (Foreground). Note that for the
latter method, it includes classes detected via pseudo-labeling. For all methods,
we randomly select 10 images/patches/objects per class for rehearsal. Without
surprise, Patch (III-V) and Object-based (VI-X) rehearsal are more data-efficient
than images (I and II) (4.50 and 2.60 vs 22.20 Mb). Mixing the rehearsed data
with mixup (VI and VII) is less efficient than direct pasting (III, IV, and VIII-X)
because segmentation, contrary to classification, requires sharp boundaries (Y.
Chen et al. 2020). We considered rehearsing each patch/object without mixing,
but because their shape may vary, no batching is possible resulting in a slower
training. Therefore, we investigate mixing patches/objects while erasing all others
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pixels (III and VIII). This does not work, which is probably linked to the altered
statistics of the batch normalization. On the other hand, we found that a selective
erasing that remove foreground objects (V, VII, and X) while keeping the back-
ground of the destination image proved to be very effective (63.12% to 67.12%
all mIoU for object). This confirmed our intuition that pasting in segmentation is
a delicate operation that may lead to confusion in the network, particularly on
object boundaries. The erased pixels are replaced by gray pixels. We considered
more complicated approaches such as in-painting (Fang et al. 2019) or textures
filling (Mallikarjuna et al. 2006), but were slightly less effective than our simpler
solution. Overall, through careful design, we manage to get the best performance
using our novel object rehearsal which was also the most memory-efficient.

Rehearsal alleviates pseudo-labeling’s limitation: All previous methods, PLOP
and PLOPLong included, did not consider rehearsal-learning. While popular in
image classification, it has not been explored for continual segmentation. An atten-
tive reader may wonder if rehearsal learning can provide benefits given the fact
that our pseudo-labeling can uncover “hidden” old classes in the images. Even
a perfect pseudo-labeling (considered in Table 4.8b) may fail in some particular
data situation where the class distribution of a step is almost Dirac. We show in
Figure 4.6 the distribution of pixels per class at the 5th step of Pascal-VOC 15-1.
The new class to learn, train, is abundant but also almost alone but the class
person. In this case, no amount of pseudo-labeling can uncover previous classes
like bicycle or cat. Our proposed rehearsal learning is complementary to our
pseudo-labeling loss where the former can reduce the weakness for the latter in
some cases.

4.5.4 Visualization

Figure 4.7 shows the predictions at the 6th and final step of VOC 15-1 for four
different models: MiB, PLOP, PLOPLong, and PLOPLong with Object Rehearsal.
MiB struggles to even find the correct classes: in the first image the car is pre-
dicted as train, in the second the plane as train, and in the third no classes are
detected. On the other hand, PLOP always manages to pick up the present classes,
although sometimes with imperfection. PLOPLong further refines results, and the
addition of Object Rehearsal produces a sharp and near perfect masks compared
to the ground-truths (GTs). We showcased the harmful effect of background shift
in Figure 4.8 where the class person is learned at 1st step and the class train
at 5th step. MiB completely forgets the former class and overpredicts the latter.
The background shift is efficiently mitigated with pseudo-labeling showed in the
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Figure 4.8. – Visualization of the predictions with a background shift of MiB,
PLOP, PLOPLong, and PLOPLong with Object Rehearsal across time
in VOC 15-1 on a test set image. At steps 1-4 only class person has
been seen. At step 5, the class train is introduced, causing dramatic
background shift. While MiB overfits on the new class and forget
the old class, PLOP is able to predict both classes correctly. PLOP-
Long and PLOPLong + Object Rehearsal further refine the predicted
masks, resulting in much sharper boundaries.
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third row of PLOP. Our efficient proposition of object rehearsal allows further
refinement of the predicted masks resulting in sharper boundaries.

4.6 Conclusion

Continual Semantic Segmentation (CSS) is an emerging but challenging com-
puter vision domain. In this chapter, we highlighted two major issues in CSS: catas-
trophic forgetting and background shift. To deal with the former, we proposed
Local POD, a multi-scale distillation scheme that preserves both long and short-
range spatial statistics between pixels. This leads to an effective balance between
rigidity and plasticity for CSS, which in turn alleviates catastrophic forgetting. We
then tackled background shift with an efficient uncertainty-based pseudo-labeling
loss. It completes the partially-labeled segmentation maps, allowing the network
to efficiently retain previously learned knowledge. Afterward, we showed that
carefully designed structural changes to the model could improve performance
on long CSS scenarios, namely a cosine normalization adaptation of the classifier
and Local POD followed by a modified batch normalization. Finally, we proposed
to introduce rehearsal learning to CSS, one based on partially-labeled whole im-
age rehearsal, and the other –much more memory-efficient– consisting in object
rehearsal. The latter further refines our already effective model performance and
enables real world applications of CSS with a stringent memory constraint. We
evaluated the proposed PLOPLong, with or without object rehearsal, on three
datasets and over twelve different benchmarks. Finally, we qualitatively validate
our model through extensive ablations in order to better understand the perfor-
mance gain.
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D Y N A M I C S T R AT E G Y W I T H T R A N S F O R M E R S

Chapter abstract

Continual models aim to learn an ever-growing number of tasks. Dynamic
architectures expand their parameters to tackle this increasing complexity.
However, existing approaches often require a task identifier at test-time, need
complex tuning to balance the growing number of parameters, and barely
share any information across tasks. As a result, they struggle to scale to a
large number of tasks without significant overhead.
In this chapter, we propose a transformer architecture based on a dedicated en-
coder/decoder framework. Critically, the encoder and decoder are shared among
all tasks. Through a dynamic expansion of special tokens, we specialize each
forward of our decoder network on a task distribution. Our strategy scales to
a large number of tasks while having negligible memory and time overheads
due to strict control of the expansion of the parameters. Moreover, as a result,
this efficient strategy doesn’t need any hyperparameter tuning to control the
network’s expansion.
We evaluate our model on multiple datasets and show the interest of our param-
eter expansion strategy, striking the right balance between performance and
overhead. We also extensively ablate our model to highlight each component
contribution.

• Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu
Cord (2022). “DyTox: Transformers for Continual Learning with DY-
namic TOken eXpansion”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR)
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5.1 Introduction

Recent works expand the network architectures or re-arrange their internal
structures using dynamic strategies (see Section 2.4.3). Unfortunately at test-time,
they require to know the task to which the test sample belongs — in order to
know which parameters should be used. More recently, DER (Yan et al. 2021) and
Simple-DER (Zhuoyun Li et al. 2021) discarded the need for this task identifier by
learning a single classifier on the concatenation of all produced embeddings by
different subsets of parameters. Yet, these strategies induce an important memory
overhead when tackling a large number of tasks, and thus need complex pruning
as post-processing.

To improve the ease of use of continual learning frameworks for real-world
applications, we aim to design a dynamically expandable representation (almost)
“for free” by having the three following properties:

1. limited memory overhead as the number of tasks grows,

2. limited time overhead at test time,

3. no setting-specific hyperparameters for improved robustness when faced to
an unknown (potentially large) number of tasks.

To this end, we leverage the computer vision transformers (refer to Section 2.2).
Transformers (Vaswani et al. 2017) offer a very interesting framework to satisfy
the previously mentioned constraints. Indeed, we build upon this architecture
to design a encoder/decoder strategy: the encoder layers are shared among all
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members of our dynamic network; the unique decoder layer is also shared, but
its forward pass is specialized by a task-specific learned token to produce task-
specific embeddings. Thus, the memory growth of the dynamic network is ex-
tremely limited: only a 384d vector per task, validating property #1. Moreover,
this requires no hyperparameter tuning (property #3). Finally, the decoder is ex-
plicitly designed to be computationally lightweight (satisfying property #2). We
nicknamed our framework, DyTox, for DYnamic TOken eXpansion.

Our strategy is robust to different settings, and can easily scale to a large num-
ber of tasks with minimal time and memory overheads. In particular, we validate
the efficiency of our approach on CIFAR100, ImageNet100, and ImageNet1000

for multiple settings. We also perform ablations confirming the soundness of our
dynamic strategy. In this chapter, we focus on continual dynamic networks (refer
to Section 2.4.3) that expand their parameters coupled with rehearsal learning
(Section 2.4.1). Moreover, to satisfy our desiderata listed previously, we base our
framework on the recent Transformer architecture (see Section 2.2).

Positioning with respect to PODNet Note that while our methods PODNet
(Section 3.2) and DyTox (presented in this chapter) are both designed for class-
incremental image classification, they differ in terms of both objective and bench-
mark: PODNet aims to constrain the features drift to reduce forgetting, while
DyTox conditions features to a particular task. Moreover, PODNet, a metric-based
model, requires a larger initial task size to perform well. Therefore, PODNet was
evaluated when half of the dataset’s classes are seen in the first step. On the other
hand, DyTox is considered here in the setting of Yan et al. (2021) where all steps,
including the first one, bring an equal number of new classes.

5.2 DyTox transformer model

We evaluate our framework in the Class Incremental Learning (CIL) setting
(Section 2.3) where each task brings an equal number of new classes. We also
use rehearsal learning (Section 2.4.1). The Figure 5.1 displays our DyTox frame-
work, which is made of several components (SAB, TAB, and Task Tokens) that we
describe in the following sections.

5.2.1 Background

The vision transformer (Dosovitskiy et al. 2021) has three main components:
the patch tokenizer, the encoder made of Self-Attention Blocks (SABs), and the
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Figure 5.1. – DyTox transformer model. An image is first split into multiple
patches, embedded with a linear projection. The resulting patch to-
kens are processed by 5 successive Self-Attention Blocks (SAB) (Sec-
tion 2.2). For each task (t = 1 . . . T ), the processed patch tokens are
then given to the Task-Attention Block (TAB) (Section 5.2.2): each
forward through the TAB is modified by a different task-specialized
token θt for t ∈ {1 . . . T} (Section 5.2.3). The T final embeddings are fi-
nally given separately to independent classifiers Clft each predicting
their task’s classes Ct. All |C1:T | logits are activated with a sigmoid.
For example, at task t = 3, one forward is done through the SABs
and three task-specific forwards through the unique TAB.
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Figure 5.2. – The Self-Attention Block (SAB) combines a Self-Attention (SA),
two Layer Norms, and one MLP with a single hidden layer. As in a
ResNet, two shortcuts are used with element-wise addition.

classifier. We described in the related work (Section 2.2) the general architecture.
A SAB is depicted in Figure 5.2.

Importantly, recall that in the original vision transformer ViT (Dosovitskiy et al.
2021), a learned vector called the “class token” is appended to the patch tokens after
the tokenizer. This special class token, when processed after all the SABs, is given
to a linear classifier with a softmax activation to predict the final probabilities.
However, more recent works, as CaiT (Touvron et al. 2021b), propose instead to
introduce the class token only at the ultimate or penultimate SAB to improve
classification performance.

5.2.2 Task-Attention Block (TAB)

Contrary to previous transformer architectures, we don’t have a class token,
but rather what we nicknamed “task tokens”; the learned token of the ith task
is denoted θi. This special token will only be added at the last block. To exploit
this task token, we define a new attention layer, that we call the Task-Attention. It
first concatenates the patch tokens xL produced by the ultimate SAB with a task
token θi:

zi = [θi, xL] ∈ R(N+1)×D . (5.1)

This is then given to the Task-Attention (TA), inspired by the Class-Attention of
Touvron et al. (Touvron et al. 2021b):

Qi = Wqθi ,

Ki = Wkzi ,

Vi = Wvzi ,

Ai = Softmax
(
Qi ·KT

i /
√
d/h

)
,

Oi = WoAiVi + bo ∈ R1×D ,

(5.2)
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with d being the embedding dimension, and h the number of attention heads
(Vaswani et al. 2017). Contrary to the classical Self-Attention, the Task-Attention
defines its query (Qi) only from the task-token θi without using the patch tokens
xL. The Task-Attention Block (TAB) is then a variation of the SAB where the
attention is a Task-Attention (TA):

c′ = c+ TA (Norm1 (z)) ,

c′′ = c′ + MLP (Norm2 (c′)) .
(5.3)

Overall, our new architecture can be summarized by the repetition of SA Blocks
{SABl}Ll=1 (defined in Equation 2.4) ended by a single TA Block TAB (defined in
Equation 5.3):

ei = TAB ◦ ([θi, SABl=L ◦ ... SABl=1(x0)]) ∈ RD . (5.4)

The final embedding ei is fed to a classifier clf made of a Normc and a linear
projection parametrized by {Wc, bc}:

ỹi = Clf(ei) = Wc Normc(ei) + bc . (5.5)

5.2.3 Dynamic task token expansion

We defined in the previous section our base network, made of a succession of
SABs and ended by a single TAB. As detailed, the TAB has two inputs: the patch
tokens xL extracted from the image and a learned task-token θi. We’ll now detail
how our framework evolves in a continual situation at each new step.

During the first step, there is only one task token θ1. At each new step, we pro-
pose to expand our parameter space by creating a new task token while keeping
the previous ones. Thus, after t steps, we have t task tokens (θi for i ∈ {1 . . . t}).
Given an image x — belonging to any of the seen tasks {1 . . . t} — our model
tokenizes it into x0, and processes it through the multiple SABs: this outputs the
patch tokens xL. Finally, our framework does as many forward passes through the
TAB as there are tasks: critically, each TAB forward passes is executed with a dif-
ferent task token θi, resulting in different task-specific forwards, each producing
the task-specific embeddings ei (see Figure 5.1):

e1 = TAB([θ1, xL]) ,

e2 = TAB([θ2, xL]) ,

. . .

et = TAB([θt, xL]) .

(5.6)
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Algorithm 5.1 DyTox’s forward pass at step t

Input: x0 (initial patch tokens), y ( ground-truth labels)
Output: ŷ1:t (predictions for all classes of C1:t)

1: xL ← SABl=L ◦... SABl=1(x0) . Section 5.2.1
2: for i← 1; i ≤ t; i++ do
3: ei ← TAB([θi, xL]) . Section 5.2.2
4: ŷi ← Clfi(ei) . Section 5.2.3
5: end for
6: ŷ1:t ← [ŷ1, . . . , ŷt]

Rather than concatenating all embeddings {e1, e2, . . . , et} together and feeding
them to one classifier, we leverage task-specific classifiers. Each classifier clfi
is made of a Ba et al. (2016)’s Layer Norm (Normi) and a linear projection
parametrized by {Wi, bi}, with Wi ∈ RCi×D and b ∈ RCi . It takes as input its
task-specific embedding ei and returns:

ŷi = Clfi(ei) = σ(Wi Normi(ei) + bi) , (5.7)

the predictions for the classes yi ∈ Ci, where σ(x) = 1/(1+e−x) is the sigmoid ac-
tivation. In comparison with the softmax activation, the element-wise sigmoid
activation reduces the overconfidence in recent classes. Consequently, the model
is better calibrated, which is an important attribute of continual model (Belouadah
and Popescu 2019; Wu et al. 2019; B. Zhao et al. 2020). The loss is the binary-cross
entropy. The independent classifiers paradigm coupled with the sigmoid activa-
tion and binary cross-entropy loss exclude explicitly a late fusion (Ramachandram
and Taylor 2017) of the task embeddings resulting in more specialized classifiers.

The overall structure of the DyTox strategy is illustrated in Figure 5.1. We
also show in Algorithm 5.1 the pseudo-code of a forward pass at test-time after
having learned the task t. Critically, the test image can belong to any of the pre-
viously seen tasks {1 . . . t}. Our dynamic task token expansion is more efficient
than a naive parameter expansion that would create a new copy of the whole net-
work for each new task. (1) Our expansion is limited to a new task token per new
task, which is only d = 384 new parameters. This is small compared to the total
model size (≈ 11 million parameters). The memory overhead is thus almost null.
(2) The computationally intensive blocks (i.e., the SABs) are executed only once de-
spite learning multiple tasks. In contrast, the TAB has as many forwards as there
are tasks. Though, this induces minimal overhead because the Task-Attention
has a linear complexity w.r.t the number of patches while the Self-Attention is
quadratic. Therefore, the time overhead is sub-linear. We quantitatively show this
in Section 5.3.
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Context The current transformer paradigm starting from BERT (Devlin et
al. 2018) and continuing with ViT (Dosovitskiy et al. 2021) is based on a en-
coder+classifier structure. Differently, our dynamic framework strays is a resur-
gence of the encoder/decoder structure of the original transformer (Vaswani et al.
2017): the encoder is shared (both in memory and execution) for all outputs. The
decoder parameters are also shared, but its execution is task-specific with each
task token, with each forward akin to a task-specific expert chosen from a mixture
of experts (Masoudnia and Ebrahimpour 2014). Moreover, multi-tasks text-based
transformers have natural language tokens as an indicator of a task (Raffel et al.
2019) (e.g. "summarize the following text"), in our context of vision we used our
defined task tokens as indicators.

Losses Our model is trained with three losses: (1) the classification loss Lclf, a
binary-cross entropy, (2) a knowledge distillation (Geoffrey Hinton et al. 2015)
Lkd applied on the probabilities, and (3) the divergence loss Ldiv. The distillation
loss helps to reduce forgetting. It is arguably quite naive, and more complex
distillation losses (Selvaraju et al. 2017; Hou et al. 2019) could further improve
results. The divergence loss, inspired from the “auxiliary classifier” of DER (Yan et
al. 2021), uses the current last task’s embedding et to predict (|Ct|+1) probabilities:
the current last task’s classes Ct and an extra class representing all previous classes
that can be encountered via rehearsal. This classifier is discarded at test-time and
encourages a better diversity among task tokens. The total loss is:

L = (1− α)Lclf + αLkd + λLdiv , (5.8)

with λ a hyperparameter set to 0.1 for all experiments. α correspond to the fraction
of the number of old classes over the number of new classes |C

1:t−1|
|C1:t| as done by

B. Zhao et al. (2020). Therefore, α is automatically set; this removes the need to
finely tune this hyperparameter.

5.2.4 Improved Continual Training Procedure

We nicknamed our model described previously DyTox. In this section, we pro-
pose two modifications of the training procedure aimed at improving the contin-
ual performance.

DyTox+ We introduce a new efficient training procedure for continual learning.
Using MixUp (Hongyi Zhang et al. 2018), we linearly interpolate new samples
with existing samples. The interpolation factor λ ∼ Beta(α, α) is sampled with
α = 0.8: the pixels of two images are mixed (x = λx1 + (1 − λ)x2) as their labels
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(y = λy1 + (1−λ)y2). MixUp was shown to have two main effects: (1) it diversifies
the training images and thus enlarges the training distribution on the vicinity
of each training sample (Chapelle et al. 2001) and (2) it improves the network
calibration (Guo et al. 2017; Thulasidasan et al. 2019), reducing the overconfidence
in recent classes. Thus, MixUp has shared motivation with the sigmoid activation.
When DyTox is combined with this MixUp procedure, nicknamed as DyTox+, the
forgetting is significantly reduced as shown in experiments.

DyTox++ We nicknamed DyTox+ our model when combined with a novel
continual procedure based on MixUp (Hongyi Zhang et al. 2018). We now re-
fine DyTox+ into DyTox++ by adding a new component during the training: the
Sharpness-Aware Minimizer (SAM) (Foret et al. 2021). Indeed, aiming for wider
minima is particularly important in continual learning (Kirkpatrick et al. 2017;
Verwimp et al. 2021). This is because sharp task-specific minima lead to over-
specialization to a particular task and consequently to a forgetting of all other
tasks. Weights constraints as EWC (Kirkpatrick et al. 2017) or second-order opti-
mization (J. Lee et al. 2020) have similar motivations. SAM estimates the worst
closest parameters during a first forward/backward pass, and then optimizes
the loss w.r.t. to them during a second forward/pass. In consequence, DyTox++
optimizes the loss not w.r.t. the current parameters but w.r.t. a region of possible
parameters leading to wide local minima that span across multiple tasks. In prac-
tice, we used the Adaptive SAM (ASAM) (Kwon et al. 2021), an extension of SAM
that is more robust to hyperparameters.

5.3 Experiments

5.3.1 Benchmarks & implementation

Benchmarks & Metrics We evaluate our model on CIFAR100 (Krizhevsky and
Geoffrey Hinton 2009), ImageNet100 and ImageNet1000 (Deng et al. 2009) (de-
scriptions in the supplementary materials) under different settings. The standard
continual scenario in ImageNet has 10 steps: thus we add 10 new classes per step
in ImageNet100, and 100 new classes per step in ImageNet1000. In CIFAR100,
we compare performances on 10 steps (10 new classes per step), 20 steps (5 new
classes per step), and 50 steps (2 new classes per step). In addition to the top-1
accuracy, we also compare the top-5 accuracy on ImageNet. We report the “Avg”
accuracy which is the average of the accuracies after each step as defined by (Re-
buffi et al. 2017c). We also report the final accuracy after the last step (“Last”).
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Hyperparameter CIFAR ImageNet
# SAB 5

# TAB 1

# Attentions Heads 12

Embed Dim 384

Input Size 32 224

Patch Size 4 16

Table 5.1. – DyTox’s architectures for CIFAR and ImageNet. The only difference
between the two architectures is the patch size, as the image sizes
vary between datasets.

Finally, in our tables, “#P” denotes the parameters count in million after the final
step.

Implementation details As highlighted in Table 5.1, our network has the same
structure across all tasks. Specifically, we use 5 Self-Attention Blocks (SABs), 1

Task-Attention Block (TAB). All 6 have an embedding dimension of 384 and 12

attention heads. We designed this shallow transformer to have a comparable pa-
rameters count to other baselines, but also made it wider than usual "tiny" models
(Dosovitskiy et al. 2021; Touvron et al. 2021a; Touvron et al. 2021b). We tuned
all hyperparameters for CIFAR100 with 10 steps on a validation set made of 10%
of the training set, and then kept them fixed for all other settings, ImageNet in-
cluded. The only difference between the two datasets is that ImageNet images are
larger; thus the patch size is larger, and overall the base transformer has slightly
more parameters on ImageNet than on CIFAR (11.00M vs 10.72M) because of a
bigger positional embedding. We use the attention with spatial prior (introduced
by ConViT (d’Ascoli et al. 2021)) for all SABs, which allows training transformers
on a small dataset (like CIFAR) without pretraining on large datasets or complex
regularizations. Following previous works (Rebuffi et al. 2017c; Yan et al. 2021),
we use for all models (baselines included) 2,000 images of rehearsal memory for
CIFAR100 and ImageNet100, and 20,000 images for ImageNet1000. The Contin-
uum library (Douillard and Lesort 2021) provides the implementations of the
continual scenarios. Our network implementation is based on the DeiT (Touvron
et al. 2021a) code base, which itself extensively uses the timm library (Wightman
2019). The code is released publicly 1. The full implementation details are in the
appendix (Section A.5).

1. https://github.com/arthurdouillard/dytox.

https://github.com/arthurdouillard/dytox


5.3 experiments 97

ImageNet1000 10 steps

#P top-1 top-5

Methods Avg Last Avg Last
ResNet18 joint 11.68 - - - 89.27
Transf. joint 11.35 - 73.58 - 90.60

LwF-MC (Rebuffi et al. 2017c) 11.68 - - 48.45 25.06

E2E (Castro et al. 2018) 11.68 - - 72.09 52.29

Simple-DER (Zhuoyun Li et al. 2021) 28.00 66.63 59.24 85.62 80.76

iCaRL (Rebuffi et al. 2017c) 11.68 38.40 22.70 63.70 44.00
BiC (Wu et al. 2019) 11.68 - - 84.00 73.20
WA (B. Zhao et al. 2020) 11.68 65.67 55.60 86.60 81.10
DER w/o P (Yan et al. 2021) 116.89 68.84 60.16 88.17 82.86

DER† (Yan et al. 2021) - 66.73 58.62 87.08 81.89

DyTox 11.36 71.29 63.34 88.59 84.49

Table 5.2. – Results on the ImageNet-1000 dataset, learned with 10 steps of re-
spectively 10 and 100 new classes. E2E and Simple-DER results come
from their respective papers, and used a different class ordering. Other
results come from Yan et al. (2021). The † symbol means that Yan
et al. (2021) needed setting-sensitive hyperparameters. Moreover, its
reported parameters count was an average over all steps (Yan et al.
(2021) reported 14.52M on ImageNet1000): the final parameters count
(necessarily higher) was not available.

5.3.2 Quantitative results

ImageNet We report performances in Table 5.2 and in Table 5.3 for respectively
the ImageNet-1000 and ImageNet-100 dataset. The † marks the DER with setting-
specific pruning, and DER w/o P is for the DER without pruning. Critically, on
the larger-scale ImageNet1000, DyTox systematically performs best on all metrics
despite having lower parameters count. Specifically, DyTox reaches 71.29% in
“Avg” top-1 accuracy, and 63.34% in “Last” top-1 accuracy. This outperforms the
previous state-of-the-art DER w/o P (68.84% in “Avg”, 60.16% in “Last”) which
has 10 ResNet18 in parallel and 116.89M parameters. Compared to the pruned
DER†, DyTox has a +4.56 p.p. in top-1 and a +1.51 p.p. in top-5 for the “Avg”
accuracy. In ImageNet100, DyTox reaches 69.10% and outperforms DER† by +3.04

percentage points (p.p.) in “Last” top-1 accuracy. Though, DyTox and DER w/o P
somehow perform similarly in “Avg” accuracy, DyTox+ and DyTox++ reach state-
of-the-art performance. Specifically, DyTox++, using our full improved continual
training procedure, improves the “Avg” top-1 accuracy of DER by 3.58 p.p..
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Methods #P top-1 top-5
Avg Last Avg Last

ResNet18 joint 11.22 - - - 95.1
Transf. joint 11.00 - 79.12 - 93.48

iCaRL (Rebuffi et al. 2017c) 11.22 - - 83.60 63.80
RPSNet (Rajasegaran et al. 2019) - - - 87.90 74.00
E2E (Castro et al. 2018) 11.22 - - 89.92 80.29

BiC (Wu et al. 2019) 11.22 - - 90.60 84.40
WA (B. Zhao et al. 2020) 11.22 - - 91.00 84.10
DER w/o P (Yan et al. 2021) 112.27 77.18 66.70 93.23 87.52

DyTox 11.01 77.15 69.10 92.04 87.98

DyTox+ 11.01 79.22 69.06 93.72 88.82

DyTox++ 11.01 80.76 72.46 94.40 90.10

Table 5.3. – Results on ImageNet-100 with 10 steps of 10 new classes each. WA
and DER w/o P results are reported from Yan et al. (2021). DyTox+
uses MixUp (Hongyi Zhang et al. 2018) in addition of the DyTox
strategy, DyTox++ further adds a sharpness-aware minimizer (Foret
et al. 2021).

All models evolutions on ImageNet-1000 and ImageNet-100 are illustrated in
Figure 5.3: DyTox constantly surpasses previous state-of-the-art models — despite
having a comparable performance at the first step and fewer parameters.

DyTox is able to scale correctly while handling seamlessly the parameter growth
by sharing most of the weights across tasks. In contrast, DER had to propose
a complex pruning method; unfortunately, this pruning required different hy-
perparameter values for different settings. Despite this, the pruning in DER† is
less efficient when classes diversity increase: DER† doubles in size between Im-
ageNet100 and ImageNet1000 (Yan et al. (2021) report 7.67M vs. 14.52M) while
handling the same amount of tasks (10). Note that these parameter counts re-
ported for DER† in Yan et al. (2021) are in fact averages over all steps: the final
parameters count (necessarily higher) was not available and thus is not reported
in our tables. Simple-DER also applies pruning but without hyperparameter tun-
ing; while simpler, the pruning is also less efficient and induces larger model
(28.00M parameters).

CIFAR100 Table 5.4 shows results for all approaches on CIFAR100. The more
steps there are, the larger the forgetting is and thus the lower the performances
are. Those settings are also displayed in Figure 5.4 after each task. In every
setting, DyTox is close to DER w/o P for much fewer parameters (up to 52x less).
Critically, DyTox is significantly above other baselines: e.g. DyTox is up to +25% in
“Last” accuracy in the 50 steps setup. Note that our improved continual training
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(a) ImageNet1000 (b) ImageNet100

Figure 5.3. – Performance evolution on ImageNet-{100, 1000}. The top-5 accu-
racy (%) is reported after learning each task. Our model DyTox (in
red) reaches state-of-the-art performance while using significantly
fewer parameters than concurrent models. Note that at the initial
step before the continual process begins, our model has performance
comparable to other baselines: the performance gain is achieved by
reducing catastrophic forgetting.

Figure 5.4. – Performance evolution on CIFAR100. The top-1 accuracy (%) is
reported after learning each task. Left is evaluated with 10 steps,
middle with 20 steps, and right with 50 steps.

procedure, with DyTox+ and DyToX++, further increases the results in all settings.
Notably DyTox++ increases the “Àvg” accuracy in the 50 setup over DER by +3.4
p.p.. Remark also that DER “Avg” accuracy degrades by 2.59 p.p. between the
easiest 10 steps setting and the hardest 50 steps setting. In comparison, DyTox++
only loses 1.65 p.p., proving a better robustness to forgetting as the number of
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10 steps 20 steps 50 steps
Methods #P Avg Last #P Avg Last #P Avg Last
ResNet18 Joint 11.22 - 80.41 11.22 - 81.49 11.22 - 81.74

Transf. Joint 10.72 - 76.12 10.72 - 76.12 10.72 - 76.12

iCaRL (Rebuffi et al. 2017c) 11.22 65.27± 1.02 50.74 11.22 61.20± 0.83 43.75 11.22 56.08± 0.83 36.62

UCIR (Hou et al. 2019) 11.22 58.66± 0.71 43.39 11.22 58.17± 0.30 40.63 11.22 56.86± 0.83 37.09

BiC (Wu et al. 2019) 11.22 68.80± 1.20 53.54 11.22 66.48± 0.32 47.02 11.22 62.09± 0.85 41.04

WA (B. Zhao et al. 2020) 11.22 69.46± 0.29 53.78 11.22 67.33± 0.15 47.31 11.22 64.32± 0.28 42.14

PODNet 11.22 58.03± 1.27 41.05 11.22 53.97± 0.85 35.02 11.22 51.19± 1.02 32.99

DER w/o P (Yan et al. 2021) 112.27 75.36± 0.36 65.22 224.55 74.09± 0.33 62.48 561.39 72.41± 0.36 59.08

DER† - 74.64± 0.28 64.35 - 73.98± 0.36 62.55 - 72.05± 0.55 59.76
DyTox 10.73 73.66± 0.02 60.67± 0.34 10.74 72.27± 0.18 56.32± 0.61 10.77 70.20± 0.16 52.34± 0.26

DyTox+ 10.73 75.54± 0.10 62.06± 0.25 10.74 75.04± 0.11 60.03± 0.45 10.77 74.35± 0.05 57.09± 0.13

DyTox++ 10.73 77.10± 0.08 64.53± 0.08 10.74 76.57± 0.18 62.44± 0.22 10.77 75.45± 0.19 58.76± 0.28

Table 5.4. – Results on CIFAR100 averaged over three different class orders. Base-
lines results are come from Yan et al. (2021). The † symbol means that
Yan et al. (2021) needed setting-sensitive hyperparameters. Moreover,
its reported parameters count was an average over all steps: the final
parameters count (necessarily higher) was not available. DyTox+ uses
MixUp (Hongyi Zhang et al. 2018) and DyTox++ uses both MixUp
and SAM (Kwon et al. 2021).

tasks increases. Remark that the results in this table of our PODNet, presented
in Chapter 3, can be explained because of the slightly different setting: PODNet
was designed for situation where half of the dataset’s classes were learned in a
single step, and thus providing a better initialization. PODNet, a metric-based
model (as also UCIR), excelled in those situations, but struggle when the initial
step contains few classes (as it is the case in this chapter) due to slower initial
learning. Arguably, in a real-life scenario, a model should be pretrained on a large
dataset and therefore this “weakness” of PODNet won’t materialize.

5.3.3 Model introspection on CIFAR100

Memory overhead We only add a vector of size d = 384 per task; thus, the
overhead in memory (not considering the growing classifier which is common for
all continual models) is only of +0.004% per step. Even in the challenging setting
of CIFAR100 with 50 tasks, our memory overhead is almost null (+0.2%).

Computational overhead The vast majority of the computation is done in the
SABs, thus shared among all tasks. The dynamical component of our model is
located at the ultimate TAB. Moreover, the Task-Attention, contrary to the Self-
Attention, has a time complexity linear in terms of tokens and not quadratic
reducing the time overhead to an acceptable sub-linear amount. Overall, for each
new task, one forward pass is only 2.24% slower than at the previous task. Further-
more, the procedure can be accelerated by doing a single forward pass through



5.3 experiments 101

Joint (1 step) 50 steps

Training Last (↑) Last (↑) Forgetting (↓)
DyTox 76.12 52.34 33.15

DyTox+ 77.51+1.39 57.09+4.75 31.50-1.65

DyTox++ 77.91+0.40 58.76+1.67 30.47-1.03

Table 5.5. – “Last” accuracy and forgetting on CIFAR100 for the joint (1 step, no
continual) and 50 steps settings.

the TAB with a masked attention (Vaswani et al. 2017): the query is the concate-
nation of all task tokens, then we mask the attention logits corresponding to an
interaction between task tokens. For an almost equivalent result (modulo numer-
ical imprecision), a new task only increases the time spent in a forward pass by
1.09%.

Training procedure introspection Our DyTox+ and DyTox++ strategies really
reduce catastrophic forgetting and does not just improve raw performances. This
is shown in Table 5.5, where we compare DyTox vs DyTox+ vs DyTox++ strategies
on CIFAR100. In the joint setting, our model slightly benefits from both MixUp
and ASAM: the gain is limited (+1.79 p.p.). On the other hand, those two methods
greatly improve the extreme continual setting of 50 steps (+6.42 p.p.). This shows
that the gain is not due to absolute improvements of the model performance.
Moreover, using the forgetting measure of Chaudhry et al. (2018), we compare
how much a model has forgotten relatively to its previous tasks. This metric is
therefore agnostic to absolute performance improvements. DyTox had a forgetting
of 33.15%, DyTox+ of 31.50%, and DyTox++ of 30.47%: a total reduction of 2.68

p.p.. This validates our novel training procedures that are particularly efficient
for continual learning. The computational overhead of ASAM is lower than more
complex second-order methods, but it still doubles the number of forward and
backward passes. For this reason, we didn’t evaluated DyTox++ on the large
ImageNet1000. However, future works could consider the promising Look-SAM
Anonymous 2021 to reduce the time overhead.
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Table 5.6. – Ablations of the different key components of our DyTox architecture.
We report the average accuracy and the last accuracy on CIFAR100

for the setting with 50 steps.

Model ablations We ablate the importance of the different components of Dy-
Tox in Table 5.6. We add on the base transformer a naive knowledge distillation
(Geoffrey Hinton et al. 2015) and a finetuning (Castro et al. 2018) applied after
each task on a balanced set of new data and rehearsal data. Finally, our DyTox
strategy exploits directly the very nature of transformers (separated task infor-
mation from the pixels information) to tackle catastrophic forgetting with three
components: (1) a task token expansion, (2) a divergence classifier, and (3) in-
dependent classifiers. All three greatly improve over the baseline transformer
(42.21%→ 52.34% in “Last”) while having almost no memory overhead (+0.2%).
The divergence classifier improves the diversity between task tokens: we observed
that the minimal Euclidean distance between them increases by 8%. Moreover, we
also remarked that having independent classifiers reduces the forgetting defined
by Chaudhry et al. (2018) by more than 24%.

5.4 Conclusion

In this chapter, we covered our work on dynamic architectures. While in pre-
vious chapters, we aimed to constrain the visual features, we decided here to
condition the features to specific tasks. With DyTox, a new dynamic strategy for
continual learning based on transformer architecture, all tasks share a common
encoding produced by self-attention layers. Then, task-specific tokens are used
to produce task-specialized embeddings through a new task-attention layer. This
architecture allows to dynamically process new tasks with very little memory
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overhead and does not require complex hyperparameter tuning. Our experiments
show that our framework scales to large datasets and an important number of
tasks efficiently while using significantly fewer parameters than concurrent dy-
namic strategies.
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C O N C L U S I O N

We now summarize the contributions of this thesis and offer some future direc-
tions of Continual Learning.

6.1 Contributions

During this thesis, we aim to learn an increasing number of classes with Deep
Learning (DL) architectures for Computer Vision (CV) without forgetting. We de-
sign multiple methods to achieve this goal, with a particular interest on how the
visual features of a continual model evolve through time. First, in Chapter 3, we
investigate how to constrain features while satisfying a rigidity-plasticity trade-off.
Then, in Chapter 4, we explore continual approaches for semantic segmentation.
Finally, in Chapter 5, we exploit the transformer architecture in a dynamic frame-
work to condition features per task.

Visual Features regularization We study in Chapter 3 Class Incremental Learn-
ing (CIL) for image classification. In this setting, regularization constraining a
model’s output is the most common approach. We challenge this paradigm by
outlining two drawbacks: it balances poorly the rigidity (not forgetting old classes)
vs plasticity (learning new classes) trade-off. Moreover, constraining intermediary
visual features is a stronger regularization. Then, we design two feature-based
regularizations: (1) PODNet minimizes the drift between statistics of the visual
features between the old and new models. The design of this method explicitly
reduces forgetting while letting enough slack to efficiently learn new classes. (2)
Our second approach, Ghost, avoids forgetting before it even happens by pre-
allocating areas of the latent space for future classes by drawing inspiration from
the zeroshot literature. For this second approach, we propose the Prescient Con-
tinual Learning setting where detailed attributes of each class are available. This
is a reasonable assumption in the fashion context of Heuritech, the company
sponsoring this PhD.
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Continual Semantic Segmentation We explore Continual Semantic Segmen-
tation (CSS) in Chapter 4. We highlight the two main challenges: an important
catastrophic forgetting linked to the higher complexity of segmentation images,
and a background shift where only classes of the current task are labeled. To
reduce the catastrophic forgetting of old classes, inspired by our previous POD,
we present a multi-scale distillation loss that constrains local regions of visual fea-
tures. Then, to tackle the background shift, we design an uncertainty-based hard
pseudo-labeling loss. We show that despite its usefulness, our pseudo-labeling can
fail for particular situations, and complement it with an efficient object rehearsal
method.

Dynamic Strategy with Transformers Finally, in Chapter 5, we propose to use
the recent transformer architecture with a dynamic strategy in Class Incremental
Learning (CIL) for image classification. Previous dynamic networks, that expand
their parameters as the number of learned tasks increases, struggle to limit their
memory and time overheads. We propose instead to share a common encoding
produced by self-attention layers, and to condition the features for each task using
task-specific tokens. This architecture allows us to dynamically process new tasks
with very little memory overhead even when faced to a large number of tasks.

6.2 Future Work

We now discuss some future directions of our work, both with respect to the
data/benchmark and to the architecture/optimization process.

Data & Benchmarks

Time Limitation Current works in the literature, including this thesis, focus on
using no rehearsal data or at least very few. The common justifications are about
private data that cannot be kept, or embedded device with little storage. In many
situations, those constraints are realistic. However, in other situations, given large
data centers, storage capacity is less a problem. In that case, the main constraint
is time: continually learn new data should be significantly faster than retraining
from scratch. Thus, a new setting with large-scale rehearsal memory for continual
learning would impose a time budget (Veniat and Denoyer 2018).

Universal Representation A major cause of forgetting in deep neural networks
is that they learn spurious features (Lesort 2022), useful for the current task, but
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that may cause interference with future tasks. Ideally, a network should learn
invariants (Arjovsky et al. 2019; Rame et al. 2021a) that generalizes better to new
distributions. Recently, it has been proposed that self-supervision could learn
more class-agnostic features and in turns drastically reduce forgetting (Gallardo
et al. 2021). Universal features, trained in self-supervision, with a metric-based
approach, on a wide diversity of modalities (RGB, depth, etc.), will enable better
continual models. First, they would forget less because the need to adapt the
representation to new tasks is reduced. Second, an adaptation to new tasks will
be extremely quick, where simply tuning a task token in a Dytox-like strategy
would result in good performances.

Architecture & Optimization

Deep Architectures for continual learning is a fewly explored topic as most
works focus on a fixed MLP or a ResNet-18. Initial findings remark that larger
networks forget less (Ramasesh et al. 2022), especially when scaling the width
(Mirzadeh et al. 2022). Going further than simply scaling, one may wonder if the
structure of current architectures, optimized for i.i.d. training, have inherent flaws
regarding continual learning. More particularly, Mixture-of-Experts (MoE) is an
interesting direction for continual learning (L. Caccia et al. 2022): large models
could learn universal features that could be conditioned with task-specific experts.
The usage of experts does not necessarily need to be exclusive to a particular task:
in fact a form of compositionality could be obtained where each expert specializes
a some concept. This compositionality could speed up the learning of new tasks
with little forgetting without requiring an important adaptation of the parameters.

Second-order optimization methods can help deep neural networks to find
wide local minima, which could encompass multiple task local minima (J. Lee
et al. 2020). As a result, the parameter drift between the optimal weights of a task
t and t+ 1 can be minimal, and in turn avoid the bulk of the forgetting. We briefly
explore this direction with the Sharpness-Aware-Minimizer (Foret et al. 2021) in
this thesis, but more work could be done on this topic. An important drawback
of current second-order methods is obviously the higher computational cost they
incur, thus faster alternative methods also seeking flat wide minima such as Cha
et al. (2021)’s SWAD could be explored.

Learning differently The vast majority of deep architectures, in all domains, are
trained with gradient descent (including fancier optimizers as Adam or LAMB).
The major drawback of this update rule is the “tug-of-war” (Hadsell et al. 2020)
where the gradient from each task pulls the solution towards its optimum. Dif-
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ferent update rules, more closely inspired from the biological brains, can be an
axis of investigation, as Hebbian learning for continual learning (Thangarasa et al.
2020). Moreover, instead of designing explicitly an update rule, it could be meta-
learned. This meta-learning could aim faster remembering of previous forgotten
tasks (X. He et al. 2019; M. Caccia et al. 2020).
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A.1 Specific variations of Continual Learning

While Class Incremental Learning (CIL), detailed in Chapter 2, is the most com-
mon benchmark in Continual Learning, there are multiple variations of bench-
mark regardless of which kind of shift is involved.

Multiple labels The main task in Continual Learning is classification of a sin-
gle class per sample, however it can also be expanded to multiple classes per
samples, e.g. object detection (Shmelkov et al. 2017) and semantic segmentation
(Michieli and Zanuttigh 2019; Cermelli et al. 2020). The latter has seen recently
interest from the community for its concrete application: hand labeling in seg-
mentation is extremely costly, and continual segmentation propose to labelize
only the new classes in an image, reducing greatly the labeling cost. In that sit-
uation, a segmentation maps (made of one label per pixel) will only be partially
labelized: new classes are labelized, but old classes are assumed to be background.
Moreover, our model may have encountered new classes in the past, when they
were themselves considered as background. It’s a case of concept shift, where the
conditional distribution p(y|x) changes through time. I detail in Chapter 4 the
existing benchmark in Continual Semantic Segmentation (CSS) and describe how
we tackled this problem.

Online Learning & Task drift detection In Continual Learning, a model learns
for multiple epochs for each task. On the other hand, in Online Learning, also
called Stream Learning, there are no notions of tasks nor epochs: a model must
learn on a stream of samples incoming one by one, and which cannot be replayed
by epochs (Aljundi et al. 2019d). The methods to reduce forgetting described in
Section 2.4 can still be applied in Online Learning. Modified versions of rehearsal
learning, often inspired by reservoir sampling (Knuth 1997), are often used (Hayes
et al. 2019; Aljundi et al. 2019b). Multiple regularization methods (Section 2.4.2)
needs to do some computation between tasks. For example, weight-based reg-
ularization (Section 2.4.2.1) must compute the task-specific importance weights.
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Figure A.1. – Task-free detection of drift in the input distribution by recording
the plateau in the loss followed by a peak. y-axis is the loss value,
and x-axis the update steps. Image from Aljundi et al. (2019b).

Because in Online Learning, there are no clear task separation, a heuristic must
determine when doing this computation. Aljundi et al. (2019b), working a stream
of images from soap operas, proposed to analyze the loss surface to find drift
in the distribution: at some point the model is experienced enough, and the loss
starts to plateau. When a drift happens, the loss will usually peak. This is a sign
of task-free drift of the distribution as illustrated in Figure A.1.

Continual-Meta Learning Continual Learning aims to not forget. However, we
–as humans– often forget, but we can also re-learn what was lost quicker than the
first time. The goal of Meta-Continual Learning (MCL) is therefore to recover as
quickly as possible –sample wise– the original performance on past tasks (X. He
et al. 2019). As the name implies, meta-learning methods, that aims to learn how
to learn, such as the MAML model (Finn et al. 2017) are used to that end. Then,
MCL has been extended to a more general framework where the model also has to
adapt quickly to new Out-of-Distribution (OoD) tasks (M. Caccia et al. 2020). Note
that Meta-Continual Learning (MCL) is not to be confused with Continual-Meta
Learning (CML) where in that case meta-learning is only used during pretraining
to provide better model initialization.

Zeroshot Continual Learning In Computer Vision, ZeroShot-Learning (ZSL)
(Lampert et al. 2009; Y. Xian et al. 2019) aims to classify classes that were never
seen before. To do so, models usually exploit an external knowledge source as a
word2vec embedding (Mikolov et al. 2013) trained on Wikipedia or an attribute
matrix. Several works have proposed to unify both Continual Learning and ZSL

where the future classes that haven’t been seen yet must be classified (Lopez-Paz
and Ranzato 2017; Wei et al. 2020; Gautam et al. 2020).
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Natural Language Processing Continual Learning can be applied to all modal-
ities. After Computer Vision (CV), the most common one is Natural Language
Processing (NLP). NLP saw its "ImageNet moment" with the advent of Transformers
(Vaswani et al. 2017), and more recently with multi-tasks learning (Raffel et al.
2019). Continual NLP Biesialska et al. (2020) aims naturally to learn multiple tasks,
but in a consecutive fashion with no –or few– replay of the old tasks data. Ap-
plications can be similar to CV with addition of new classes (Masson d’Autume
et al. 2019) or new domains (e.g. medical corpus, fiction, tweets, etc.) (Gerald and
Soulier 2021).

Reinforcement Learning Reinforcement Learning (RL) (Sutton and Barto 1998)
more often than not needs support from Continual Learning (Khetarpal et al.
2020): for example as an agent evolves in an environment, it usually needs re-
hearsal learning (also known as episodic memory) (Mnih et al. 2013). Multiple
methods originally developped for continual learning in Computer Vision (CV)
can also be applied for RL (Lesort et al. 2020).

A.2 Details on PODNet

We provide here more details on our PODNet model which was presented in
Section 3.2.

We also compared our model against baselines with a more flexible memory
Mtotal = 2000 (Rebuffi et al. 2017c; Wu et al. 2019), and with various initial task size
(by default it is 50 on CIFAR100). In the former case (Table A.1), models benefit
from a larger memory per class in the early tasks. In the later case (Table A.2),
models initialization is worse because of a smaller initial task size. In these settings
very different from Section 3.2.3.1, Pooled Output Distillation Network (PODNet)
still outperformed significantly the compared models, proving the robustness of
our model.

A.2.1 Implementation details

For all datasets, images are augmented with random crops and flips. For CI-
FAR100, we additionally change image intensity by a random value in the range
[-63, 63]. We train our model for 160 epochs for CIFAR100, and 90 epochs for both
ImageNet100 and ImageNet100, with a SGD optimizer with momentum of 0.9.
For all datasets, we start with a learning rate of 0.1, a batch size of 128, and cosine
annealing scheduling. The weight decay is 5 · 10−4 for CIFAR100, and 1 · 10−4 for
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Nb. steps

Loss 50 10

iCaRL (Rebuffi et al. 2017c) 42.34 56.52

BiC (Wu et al. 2019) 48.44 55.03

UCIR (Nearest Mean Examplar (NME)) (Hou et al. 2019) 54.08 62.89

UCIR (CNN) 55.20 63.62

PODNet (NME) 62.47 64.60
PODNet (CNN) 61.87 64.68

Table A.1. – Evaluation of an easier memory constraint: (Mtotal = 2000).

Initial task size

Loss 10 20 30 40 50

iCaRL (Rebuffi et al. 2017c) 40.97 41.28 43.38 44.35 44.20

BiC (Wu et al. 2019) 41.58 40.95 42.27 45.18 47.09

UCIR (NME) (Hou et al. 2019) 42.33 40.81 46.80 46.71 48.57

UCIR (CNN) 43.25 41.69 47.85 47.51 49.30

PODNet (NME) 45.09 49.03 55.30 57.89 61.40
PODNet (CNN) 44.95 47.68 52.88 55.42 57.98

Table A.2. – Varying initial task size: with Mper = 20, and followed by 50 to 90

tasks made of a single class.
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ImageNet100 and ImageNet1000. For CIFAR100 we set model hyperparameters
λc = 3 and λf = 1, while for ImageNet100 and 1000 we set λc = 8 and λf = 10.
Our model uses POD-spatial and POD-flat except when explicitly stated other-
wise. Following Hou et al. (2019), we multiply both losses by the adaptive scaling
factor: λ =

√
N/T with N being the number of seen classes and T the number of

classes in the current task.

For POD-spatial, before sum-pooling we take the features to the power of 2

element-wise. The vector resulting from the pooling is then L2 normalized.

A.2.2 Number of proxies per class

While our model’s expressiveness increases with more proxies in LLSC, it re-
mains fairly stable for values between 5 and 15, thus, for simplicity, we kept it
fixed to 10 in all experiments.

In initial experiments, we had the following pairs for the number of clusters
(k) and average incremental accuracy (acc): k=1, acc=56.80%; k=2, 57.14%; k=4,
acc=57.40%; k=6, acc=57.46%; k=8, acc=57.95%, and k=10, acc=57.98% — i.e., a 1.18

p.p. improvement moving from k=1 to k=10. On ImageNet100, with 10 steps/tasks
(increments of give classes per task), moving from k=1 to k=10 improved 1.51 p.p.
on acc.

A.2.3 Reproducibility

Code Dependencies The Python version is 3.7.6. We used the PyTorch (Paszke
et al. 2017) (version 1.2.0) deep learning framework and the libraries Torchvision
(version 0.4.0), NumPy (Oliphant 2006) (version 1.17.2), Pillow (version 6.2.1),
and Matplotlib (Hunter 2007) (version 3.1.0). The CUDA version is 10.2. Initial
experiments were done with the data loaders library Continuum (Douillard and
Lesort 2021). The code is released publicly 1. We provide all configuration files
necessary to reproduce results, including seeds and class ordering.

Datasets description I provide below extensive details on the content of the
three datasets considered for PODNet: CIFAR100, ImageNet100, and ImageNet1000.

cifar100 contains 32×32-pixel images in 100 classes, with 50k images for train-
ing and 10k for testing.

imagenet100 contains 224×224-pixel images in 100 classes, with∼128k images
for training and ∼5k for testing.

1. github.com/arthurdouillard/incremental_learning.pytorch

https://github.com/arthurdouillard/incremental_learning.pytorch
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imagenet1000 contains 224×224-pixel images in 1000 classes, with ∼1.28m
images for training and ∼50k for testing.

Spatial-based distillation I displayed the differences of performance between
spatial-based distillation in Table 3.2.3.2 (Table 3.4) when combined with POD-flat.
In this appendix, I also detail in Table A.3 the same spatial-loss without POD-
flat. The ranking between distillation losses is ostensibly the same. Notice that
POD-spatial —and its sub-components POD-width and POD-height– are the only
losses barely affected by POD-flat’s absence. Note that all alternative losses were
tuned on the validation set to get the best performance, including those from
external papers. Still, our proposed loss, POD-spatial, outperforms all, both with
and without POD-flat.

Loss NME CNN

None 41.56 40.76

POD-pixels 42.21 40.81

POD-channels 55.91 50.34

POD-gap 57.25 53.87

POD-width 61.25 57.51

POD-height 61.24 57.50

POD-spatial 61.42 57.64
GradCam (Dhar et al. 2019) 41.89 42.07

Perceptual Style (Johnson et al. 2016) 41.74 40.80

Table A.3. – Comparison of distillation losses based on intermediary features.
All losses evaluated without POD-flat. We report the average incre-
mental accuracy on CIFAR100 with 50 steps.

A.3 Details on Ghost

We provide here more details on our Ghost model which was presented in
Section 3.3.

A.3.1 Overhead of SVMs training

Training the SVMs for Lsvm-reg introduces a computational overhead. To minimize
it, we limit the number of features per class to 500. Moreover, as we advance
towards later tasks, fewer unseen classes remain, and thus we have fewer SVMs
to train. Overall, an experiment on AwA2, with our setting of 25 classes + 5 × 5
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classes, takes 5 hours to train. We observed that our SVM-based regularization
extends that time by less than 5 minutes on average, an overhead of less than 2%,
which we deemed acceptable. For reference, the SVMs were trained on a machine
with 10 CPU cores of 3.90GHz each.

A.3.2 Implementation Details

For all datasets and settings, we set the classification margin δ = 0.6, and the
SVM latent-space regularization additional margin τ = 1. We train the feature-
extractor-and-classifier pipeline for 90 epochs with an SGD optimizer, learning
rate of 0.1, cosine scheduling, and weight decay of 10−4. We train the generator
for 1200 epochs, with an Adam optimizer and a learning rate of 10−5. Finally,
following Hou et al. (2019) and our work on PODNet (Section 3.2), we fine-tune
the classifier for 60 epochs (with the feature extractor frozen and a small learning
rate of 10−4) at the end of every task (except the last one). We found useful to
balance the bias towards the seen classes against the unseen classes. With the POD
distillation (Section 3.2), we set λ1 = 3 for AwA2, and λ1 = 15 for aP&Y; with the
Less-Forget distillation of Hou et al. (2019), we set λ1 = 4 for both datasets. We
always set λ2 = 10−3, moreover we apply it on L2-normalized features. Finally,
we do not reinitialize the models between tasks: f t results from training f t−1 on
task t, etc. On the rehearsal memory limitation, we follow the strict setting of Hou
et al. (2019), keeping only s = 20 training images per past class.

A.3.3 Datasets details

We train our model on three datasets: MNIST, AwA2, and aP&Y. Baselines and
our Ghost models are run on the exact same data/class splits, with the exact same
preprocessing.

MNIST This dataset has ten classes: handwritten digits ranging from ’0” to ’9’.
It has a training set of 60,000 images and a test set of 10,000 images. We used
for validation set, a subset of 10,000 examples of the training set. Images are in
black&white (one channel) and of dimension 28×28. We convert the pixels values
to the range [0, 1] and then normalize by the mean and standard deviation of the
training dataset.

AwA2 This dataset has 50 animals classes. It has a training set of 29,857 images
and a test set of 7,465 images. We used for validation set a subset of 8,000 images
of the training set. Images are in RGB color. We convert the pixel values to the
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range [0, 1] and normalize by the mean and standard deviation of the training
dataset. Train images are randomly cropped to a square of 224 × 224 and are
randomly flipped horizontally. Test images are resized to 256 × 256 and then
center cropped to 224× 224.

aP&Y This dataset has 32 classes of everyday objects. It has a training set of
12,269 images and a test set of 3,068 images. We used for validation set a subset
of 4,000 images of the training set. Images are in RGB color. We convert the pixel
values to the range [0, 1] and normalize by the mean and standard deviation of
the training dataset. Train images are randomly cropped to a square of 224× 224

and are randomly flipped horizontally. Test images are resized to 256× 256 and
then center cropped to 224× 224.

A.3.4 Reproducibility

Code Dependencies The Python version is 3.7.6. We used the PyTorch Paszke
et al. (2017) (version 1.2.0) deep learning framework and the libraries Torchvision
(version 0.4.0), NumPy Oliphant (2006) (version 1.17.2), Pillow (version 6.2.1), and
Matplotlib Hunter (2007) (version 3.1.0). The CUDA version is 10.2. Experiments
on MNIST were done with the data loaders library Continuum Douillard and
Lesort (2021). The code is released publicly 2.

Hardware & Training duration We ran our experiments on 3 Titan Xp GPUs
with 12 Go of VRAM each. Each experiment had access to 10 CPU cores of
3.90 GHz each, and used at most 3 Go of RAM and 8 Go of VRAM. A single
experiment run on AwA2 took on average 5 hours and, on aP&Y, 3 hours. We ran
each experiment thrice with different random seeds (1, 2, and 3).

A.4 Details on PLOP

We provide here more details on our work done in Chapter 4.

A.4.1 Algorithm view of Local POD

In Algorithm A.1, we summarize the algorithm for the proposed Local POD.
The algorithm consists in three functions. At first, the function Distillation,

2. github.com/arthurdouillard/incremental_learning.pytorch

https://github.com/arthurdouillard/incremental_learning.pytorch
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loops over all L layers onto which we apply Local POD. Second, LocalPOD, com-
putes the L2 distance (L.26) between POD embeddings of the current (L.19) and
old (L.20) models. It loops over S different scales (L.14) and Φ computes the POD
embedding given two features maps subsets (L.19-20). ‖ = denotes an in-place
concatenation.

Algorithm A.1 Local POD algorithm

1: function D istillation(f t, f t−1, x, S)
2: loss← 0
3: for l← 0; l < L; l++ do
4: htl ← f tl (x)
5: ht−1

l ← f t−1
l (x)

6: loss← loss+ LocalPOD(htl ,h
t−1
l , S)

7: end for
8: return loss

L

9: end function
10:
11: function LocalPOD(ht, ht−1, S)
12: Pt ← [ ]
13: Pt−1 ← [ ]
14: for s← 0; s < S; s++ do
15: w ← W/2s

16: h← H/2s

17: for i← 0; i < W − w; i+ = w do
18: for j ← 0; j < H − h; j+ = h do
19: pt ← Φ(ht[i:i+w, j:j+h])
20: pt−1 ← Φ(ht−1[i:i+w, j:j+h])
21: Pt‖ = pt

22: Pt−1‖ = pt−1

23: end for
24: end for
25: end for
26: return ‖Pt −Pt−1‖2

27: end function

A.4.2 Reproducibility

Datasets: We evaluate our model on three datasets Pascal-VOC (Everingham et al.
2015), ADE20k (B. Zhou et al. 2017), and Cityscapes (Cordts et al. 2016). VOC
contains 20 classes, 10,582 training images, and 1,449 testing images. ADE20k has
150 classes, 20,210 training images, and 2,000 testing images. Cityscapes contains
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2975 and 500 images for train and test, respectively. Those images represent 19

classes and were taken from 21 different cities. All ablations and hyperparameters
tuning were done on a validation subset of the training set made of 20% of the
images. For Cityscapes and ADE20k, we resize the images to 512 × 512, with a
center crop. An additional random horizontal flip augmentation is applied at
training time. Cityscapes images are resized to 512× 1024.

Implementation Details: As in Cermelli et al. (2020), we use a Deeplab-V3

(L.-C. Chen et al. 2017) architecture with a ResNet-101 (K. He et al. 2016) backbone
pretrained on ImageNet (Deng et al. 2009) for all experiments and models but
SDR (Michieli and Zanuttigh 2021) which used a Deeplab-V3+ (L.-C. Chen et al.
2018b). For all datasets, we set a maximum threshold for the uncertainty measure
of Equation 4.7 to τ = 1e − 3. We train our model for 30, 60, and 30 epochs per
CSS step on Pascal-VOC, ADE20k, and Cityscapes, respectively, with an initial
learning rate of 1e− 2 for the first CSS step, and 1e− 3 for all the following ones.
Note that for Cityscapes, the first step is longer with 50 epochs. We reduce the
learning rate exponentially with a decay rate of 9e − 1. We use SGD optimizer
with 9e − 1 Nesterov momentum. The Local POD weighting hyperparameter λ
is set to 1e− 2 and 5e− 4 for intermediate feature maps and logits, respectively.
Moreover, we multiply this factor by the adaptive weighting

√
|C1:t|/|Ct| introduced

by Hou et al. (2019) that increases the strength of the distillation the further we
are into the continual process. For all feature maps, Local POD is applied before
ReLU, with squared pixel values, as in Zagoruyko and Komodakis (2016) or
PODNet (Section 3.2). We use 3 scales for Local POD: 1, 1/2, and 1/4, as adding
more scales experimentally brought diminishing returns. For PLOPLong only,
we L2-normalize all POD embeddings before distilling them as also done by
Section 3.2. Furthermore, for PLOPLong, the gradient norm-clipping is set at 1.0

for Pascal-VOC and 2.0 for Cityscapes. We use a batch size of 24 distributed on
two 12Go Titan Xp GPUs. Contrary to many continual models, we do not have
access to any task id in inference, therefore our setting/strategy has to predict a
class among the set of all seen classes

Classes ordering details: For all quantitative experiments on Pascal-VOC 2012

and ADE20k, the same class ordering was used across all evaluated models. For
Pascal-VOC 2012 it corresponds to [1, 2, ..., 20] and ADE20k to [1, 2, ..., 150]
as defined by Cermelli et al. (2020). For class-incremental Cityscapes to [1, 2,...,19] .
In this case, because Cityscapes does not have background class, it only appears
as “unlabeled” for past and future classes. For continual-domain cityscapes, the
order of the domains/cities is the following: aachen, bremen, darmstadt, erfurt,
hanover, krefeld, strasbourg, tubingen, weimar, bochum, cologne, dusseldorf,
hamburg, jena, monchengladbach, stuttgart, ulm, zurich, frankfurt, lindau, and
munster.
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In Figure 4.5, we showcased a boxplot featuring 20 different class orders for
Pascal-VOC 2012 15-1. For the sake of reproducibility, we provide details on these
orders:
[ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 ]
[ 1 2 , 9 , 20 , 7 , 15 , 8 , 14 , 16 , 5 , 19 , 4 , 1 , 13 , 2 , 11 , 17 , 3 , 6 , 18 , 5 ]
[ 9 , 12 , 13 , 18 , 2 , 11 , 15 , 17 , 10 , 8 , 4 , 5 , 20 , 16 , 6 , 14 , 19 , 1 , 7 , 3 ]
[ 1 3 , 19 , 15 , 17 , 9 , 8 , 5 , 20 , 4 , 3 , 10 , 11 , 18 , 16 , 7 , 12 , 14 , 6 , 1 , 2 ]
[ 1 5 , 3 , 2 , 12 , 14 , 18 , 20 , 16 , 11 , 1 , 19 , 8 , 10 , 7 , 17 , 6 , 5 , 13 , 9 , 4 ]
[ 7 , 13 , 5 , 11 , 9 , 2 , 15 , 12 , 14 , 3 , 20 , 1 , 16 , 4 , 18 , 8 , 6 , 10 , 19 , 17 ]
[ 1 2 , 9 , 19 , 6 , 4 , 10 , 5 , 18 , 14 , 15 , 16 , 3 , 8 , 7 , 11 , 13 , 2 , 20 , 17 , 1 ]
[ 1 3 , 10 , 15 , 8 , 7 , 19 , 4 , 3 , 16 , 12 , 14 , 11 , 5 , 20 , 6 , 2 , 18 , 9 , 17 , 1 ]
[ 3 , 14 , 13 , 1 , 2 , 11 , 15 , 17 , 7 , 8 , 4 , 5 , 9 , 16 , 19 , 12 , 6 , 18 , 10 , 20 ]
[ 1 , 14 , 9 , 5 , 2 , 15 , 8 , 20 , 6 , 16 , 18 , 7 , 11 , 10 , 19 , 3 , 4 , 17 , 12 , 13 ]
[ 1 6 , 13 , 1 , 11 , 12 , 18 , 6 , 14 , 5 , 3 , 7 , 9 , 20 , 19 , 15 , 4 , 2 , 10 , 8 , 17 ]
[ 1 0 , 7 , 6 , 19 , 16 , 8 , 17 , 1 , 14 , 4 , 9 , 3 , 15 , 11 , 12 , 2 , 18 , 20 , 13 , 5 ]
[ 7 , 5 , 3 , 9 , 13 , 12 , 14 , 19 , 10 , 2 , 1 , 4 , 16 , 8 , 17 , 15 , 18 , 6 , 11 , 20 ]
[ 1 8 , 4 , 14 , 17 , 12 , 10 , 7 , 3 , 9 , 1 , 8 , 15 , 6 , 13 , 2 , 5 , 11 , 20 , 16 , 19 ]
[ 5 , 4 , 13 , 18 , 14 , 10 , 19 , 15 , 7 , 9 , 3 , 2 , 8 , 16 , 20 , 1 , 12 , 11 , 6 , 17 ]
[ 9 , 12 , 13 , 18 , 7 , 1 , 15 , 17 , 10 , 8 , 4 , 5 , 20 , 16 , 6 , 14 , 19 , 11 , 2 , 3 ]
[ 3 , 14 , 13 , 18 , 2 , 11 , 15 , 17 , 10 , 8 , 4 , 5 , 20 , 16 , 6 , 12 , 19 , 1 , 7 , 9 ]
[ 7 , 5 , 9 , 1 , 15 , 18 , 14 , 3 , 20 , 10 , 4 , 19 , 11 , 17 , 16 , 12 , 8 , 6 , 2 , 13 ]
[ 3 , 14 , 6 , 1 , 2 , 11 , 12 , 17 , 7 , 20 , 4 , 5 , 9 , 16 , 19 , 15 , 13 , 18 , 10 , 8 ]
[ 1 , 2 , 12 , 14 , 6 , 19 , 18 , 17 , 5 , 20 , 8 , 4 , 9 , 16 , 10 , 3 , 15 , 13 , 11 , 7 ]

In the 15-1 setting, we first learn the first fifteen classes, then increment the five
remaining classes one by one. Note that the special class background (0) is always
learned during the first task.

Hardware and Code: For each experiment, we used two Titan Xp GPUs with 12

Go of VRAM each. The initial step t = 1 for each setting is common to all models,
therefore we re-use the weights trained on this step. All models took less than 2

hours to train on Pascal-VOC 2012 15-1, and less than 16 hours on ADE20k 100-10.
We distributed the batch size equally on both GPUs. All models are implemented
in PyTorch (Paszke et al. 2017) and run with half-precision for efficiency reasons
with Nvdia’s APEX library using O1 optimization level. Our code base is based
on Cermelli et al. (2020)’s code based that we modified to implement our strategy.
Our code is released publicly 3.

A.4.3 Additional Experiments

Model ablation: Table A.4 shows the construction of our model component by
component on Pascal-VOC 2012 in 15-5 and 15-1. For this experiment, we train
our model on 80% of the training set and evaluate on the validation set made of

3. github.com/arthurdouillard/CVPR2021_PLOP

https://github.com/arthurdouillard/CVPR2021_PLOP
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15-5 (2 tasks) 15-1 (6 tasks)

Model all avg all avg

CE 13.85 46.91 3.99 19.37

Pseudo 66.19 73.07 19.74 44.48

Pseudo + Local POD 70.29 75.13 50.41 64.95

νPseudo + Local POD 71.43 75.70 52.31 65.71

Table A.4. – Ablations of PLOP on the Pascal-VOC 2012 dataset in 15-5 and 15-
1. Scores are measured on a validation subset made of 20% of the
training set.

the remaining 20%. We report the mIoU at the final task (“all”) and the average
of the mIoU after each task (“avg”). We start with a crude baseline made of
solely cross-entropy (CE). Pseudo-labeling by itself increases by a large margin
performance (eg. 3.99 to 19.74 for 15-1). Applying Local POD reduces drastically
the forgetting leading to a massive gain of performance (eg. 19.74 to 50.41 for
15-1). Finally, our adaptive factor ν based on the ratio of accepted pseudo-labels
over the number of background pixels further increases our overall results (eg.
50.41 to 52.31 for 15-1). The interest of ν arises when PLOP faces hard images
where few pseudo-labels will be created due to an overall high uncertainty. In
such a case, current classes will be over-represented, which can in turn lead to
strong bias towards new classes (i.e. the model will have a tendency to predict
one of the new classes for every pixel). The ν factor therefore decreases the overall
classification loss on such images, and empirical results confirm its effectiveness.

A.5 Details on DyTox

We provide here more details on our PODNet model which was presented in
Chapter 5.

A.5.1 Experimental details

Datasets We use three datasets: CIFAR100 (Krizhevsky and Geoffrey Hinton
2009), ImageNet100, and ImageNet1000 (Deng et al. 2009). CIFAR100 is made of
50,000 train RGB images and 10,000 test RGB images of size 32×32 for 100 classes.
ImageNet1000 contains 1.2 million RGB train images and 50,000 validation RGB
images of size 224× 224 for 1000 classes. ImageNet100 is a subset of 100 classes
from ImageNet1000. We follow PODNet (Section 3.2) and DER (Yan et al. 2021)
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and use the same 100 classes they’ve used. Note that while we considered PODNet
in a setting where the initial step contained half of all the classes, while for DyTox
we consider that each step brings an equal amount of classes.

Implementation For all datasets, we train the model for 500 epochs per task
with Adam (Kingma and Ba 2014) with a learning rate of 5e−4, including 5 epochs
of warmup. Following UCIR (Hou et al. 2019), PODNet (Section 3.2), and DER
(Yan et al. 2021), at the end of each task (except the first) we finetuned our model
for 20 epochs with a learning rate of 5e−5 on a balanced dataset. In DyTox, we
applied the standard data augmentation of DeiT (Touvron et al. 2021a) but we
removed the pixel erasing (Zhong et al. 2017), MixUp (Hongyi Zhang et al. 2018),
and CutMix (Yun et al. 2019) augmentations for fair comparison. In contrast, in
DyTox+ we used a MixUp (Hongyi Zhang et al. 2018) with beta distribution
β(0.8, 0.8). During all incremental tasks (t > 1), the old classifiers Clfi, i < t and
the old task tokens θi, i < t parameters are frozen. During the finetuning phase
where classes are rebalanced (Castro et al. 2018; Hou et al. 2019; Yan et al. 2021),
these parameters are optimized, but the SABs are frozen. Our code is released
publicly 4.

Hyperparameter tuning In contrast with previous works (Yan et al. 2021), we
wanted stable hyperparameters, tuned for a single setting and then applied on all
experiments. This avoids optimizing for the number of tasks, which defeats the
purpose of continual learning (Farquhar and Gal 2018). We tuned hyperparame-
ters for DyTox using a validation subset made of 10% of the training dataset, and
this only on the CIFAR100 experiment with 10 steps. We provide in Table A.5 the
chosen hyperparameters. Results presented in Chapter 5 shows that those hyper-
parameters reach state-of-the-art on all other settings and notably on ImageNet.

Baselines E2E (Castro et al. 2018) and Simple-DER (Zhuoyun Li et al. 2021)
results come from their respective papers. All other baseline results are taken
from the DER paper (Yan et al. 2021). We now further describe their contributions.
iCaRL (Rebuffi et al. 2017c) uses a knowledge distillation loss (Geoffrey Hinton
et al. 2015) and at test-time predicts using a k-NN from its features space. E2E
(Castro et al. 2018) learns a model with knowledge distillation and applies a fine-
tuning after each step. UCIR (Hou et al. 2019) uses cosine classifier and euclidean
distance between the final flattened features as a distillation loss. BiC (Wu et al.
2019) uses a knowledge distillation loss and also re-calibrates (Guo et al. 2017) the
logits of the new classes using a simple linear model trained on validation data.
WA (B. Zhao et al. 2020) uses a knowledge distillation loss and re-weights at each

4. github.com/arthurdouillard/dytox

https://github.com/arthurdouillard/dytox
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Hyperparameter Range Chosen value

Learning rate 1e−3, 5e−4, 1e−4 5e−4

Epochs 300, 500, 700 500

λ 0.05, 0.1, 0.5 0.1
CIFAR’s patch size 4, 8, 16 4

ImageNet’s patch size 14, 16 16

Table A.5. – Hyperparameters that were tuned from the codebase of Touvron et
al. (2021a). We ran a gridsearch on CIFAR100 10 steps on a valida-
tion set made of 10% of the training set, and kept fixed the chosen
hyperparameters for all experiments (any number of steps and any
datasets).

epoch the classifier weights associated to new classes so that they have the same
average norm as the classifier weights of the old classes. PODNet (Section 3.2)
uses a cosine classifier and a specific distillation loss (POD) applied at multiple
intermediary features of the ResNet backbone. RPSNet (Rajasegaran et al. 2019)
uses knowledge distillation and manipulates subnetworks in its architecture, fol-
lowing the lottery ticket hypothesis (Frankle and Carbin 2019). DER (Yan et al.
2021) creates a new ResNet per task. All ResNets’ embeddings are concatenated
and fed to a unique classifier. ResNets are pruned using HAT (Serrà et al. 2018)
masking procedure. Note that DER pruning has multiple hyperparameters that
are set differently according to the settings. Furthermore, the reported parameters
count, after pruning, in (Yan et al. 2021) is an average of the count over all steps:
the final parameters count (necessarily higher) wasn’t available. Finally, Simple-
DER (Zhuoyun Li et al. 2021) is similar to DER, with a simpler pruning method
which doesn’t require any hyperparameter tuning.

A.5.2 Parameter sharing of the TAB

Previous dynamic methods as DER (Yan et al. 2021) and Simple-DER (Zhuoyun
Li et al. 2021) shared no parameters between tasks until the final classifier. We
proposed instead with DyTox to share the encoder (SABs) and the decoder (TAB)
parameters across tasks, leading to a minimal memory overhead while also shar-
ing common information between tasks. In Table A.6, we compare the impact of
sharing the TAB per task — and only maintain different tokens per task. In the
first row, a different TAB is created per task, while in the second row the same
TAB is used — which is the DyTox strategy. A different TAB per task leads to
better results (56% v.s. 52% in “Last” accuracy) because the network can be more
diverse with each TAB specialized to its associated task. This increased diversity
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TAB parameter sharing? #P Avg Last
7 97.59 72.20 56.00

3 10.77 70.20 52.34

Table A.6. – Investigation of the parameter sharing of TAB. We report the “Avg”
accuracy and the “Last” accuracy for the 50 steps setting on CI-
FAR100. The second row corresponds to DyTox.

Joint (1 steps) 50 steps
Patch size Last (↑) Last (↑) Forgetting (↓)

4 76.12 52.34 33.15

8 67.65 43.93 35.44

16 50.15 31.49 33.20

Table A.7. – Patch size effect on continual for the joint (1 step, no continual) and
50 steps settings on CIFAR100. We choose a patch size of 4 for our
main experiments: yet, it has only few impact on forgetting.

has a drawback: the memory overhead is too important (97M v.s. 10M param-
eters). We find in practice that DyTox strikes a good balance between memory
overhead and continual performance.

A.5.3 Patch size effect on forgetting

A key component of the transformer architecture is the patch tokenizer. The
number of patch tokens in an image is determined by the patch size: a larger
patch size means less tokens, and vice-versa. We wondered about the effect of the
patch size on forgetting and tested three different kind of patch sizes in Table A.7.
Echoing results in vision transformers (Dosovitskiy et al. 2021; Touvron et al.
2021a), a smaller patch size (4 vs. 8 and 16) performs best in a joint training.
However, the forgetting defined by Chaudhry et al. (2018) is relatively similar,
with 33.15% for a patch of size of 4, and 33.20% for a patch size of 16. Therefore, we
argue that the transformer architecture is hardly sensitive to the patch resolution
w.r.t its forgetting in continual learning.

A.5.4 ResNet backbone

DyTox is made of two main components: the SABs and the unique TAB. The
TAB structure, taking in input both patch tokens and a task token, is crucial to
our strategy. Yet, the SAB could be of any kind of features extractor, based on
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Encoder #P Avg Last

ResNet 10.68 68.53 50.05

SABs 10.77 70.20 52.34

Table A.8. – Hybrid network on CIFAR100 50 steps. While the features extractor
is made of SABs in DyTox, here we instead use a modified ResNet18.
Our framework still works well with a convolution-based approach.

CIFAR100 ImageNet100

Top-1 Top-5
Task decoder Avg Last Avg Last
Residual Adapters 70.00 52.38 91.25 85.00

FiLM 69.42 54.05 89.49 81.40

TAB (ours) 70.20 52.34 92.04 87.98

Table A.9. – Alternative task conditioner on CIFAR100 50 steps and ImageNet100

10 steps. While the simpler Residual Adapters (Rebuffi et al. 2017b)
and FiLM (Perez et al. 2018) perform similarly to our TAB on CI-
FAR100, they forget significantly more on the complex ImageNet100.

convolutions or attentions. Following the hybrid network proposed in ablations by
Dosovitskiy et al. (2021), we tried to replace the collection of SABs by a ResNet18.
The final features of the ResNet, before global pooling, of shape (W × H × D)

can be seen as W ×H tokens of D dimension. We made a few modifications to
this ResNet to boost its performance, namely removed the fourth and ultimate
layer, and added a pointwise convolution with 504 output channels (so it can be
divided by the 12 attention heads of the TAB), a batch normalization (Ioffe and
Szegedy 2015), and a ReLU activation. These simple modifications are sufficient
for our proof of concept, and thus we also didn’t tune deeply this model. We
display in Table A.8 the comparison of the two backbones on CIFAR100 50 steps:
(1) with ResNet, and (2) with SABs (DyTox). Performances are slightly lower than
DyTox with SABs, however, they are still significantly higher than previous state-
of-the-art like WA (B. Zhao et al. 2020), especially in “Last” accuracy. Moreover,
the parameters count is comparable to DyTox. This experiment shows that our
DyTox framework, while designed with a transformer backbone in mind, is also
efficient on non-token-based architectures such as a ResNet.

A.5.5 Alternative task decoders

We investigate here other approaches for conditioning features to the different
tasks. Residual Adapters (Rebuffi et al. 2017b) adds a different residual branch
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made of a pointwise convolution for each domain the model is learned (e.g. CIFAR
then ImageNet then SVHN). This model needs the task/dataset/domain identifier
at test-time to determine which residual to use. For VQA task (Antol et al. 2015),
FiLM (Perez et al. 2018) proposes to modify the visual features using the the
textual query.

We adapt these two feature conditioning strategies for our transformer back-
bone architecture. We perform a global token pooling after the ultimate SAB, and
apply for each learned task, a residual adapter or a FiLM. Residual adapter in
our case is a MLP, and FiLM parameters are directly learned. As for DyTox, we
forward each task-specific embedding to the respective task-specific classifier. We
showcase the continual performance in Table A.9 on CIFAR100 50 steps and Ima-
geNet100 10 steps. On the former dataset, smaller and easier, the residual adapters
and FiLM have similar performance as our TAB approach. On the other hand,
as soon as the task complexity increases with the more detailed ImageNet100

dataset, FiLM and Residual adapter based conditioning strategies forget signifi-
cantly more than our complete DyTox framework: TAB outperform the Residual
Adapters by +2.98 p.p. in “Last” top-5 accuracy and FiLM by +6.58 p.p..
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