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Résumé : Du fait de |'évolution des méthodes
électronique de calcul et de communication, le
concept de ville intelligente prend rapidement
forme. Les nombreux capteurs et actionneurs po-
sitionnés dans les espaces habités permettent un
meilleur contréle des données qui transitent entre
les usagers, et une optimisation du confort de vie.
L'utilisation de véhicules reste I'un des moyens de
déplacement les plus utilisés dans le monde. La-
aussi, les avancées technologiques ont permis des
évolutions permettant d'avoir des voitures qui se
déplacent par elle-méme, avec pas ou peu d'as-
sistance humaine. |l est cependant important de

considérer la sécurité des usagers de la route dans
cet environnement de plus en plus peuplé.

Cette thése propose d'améliorer la capacité de per-
ception d'un véhicule autonome grace a |'utilisa-
tion de drones. Du fait de leur positionnement
avantageux et de leur taille réduite, ces derniers
peuvent récolter des données de perception et les
transmettre au véhicule grace & une méthode sé-
curisée, par exemple une communication VLC. Les
données des différentes sources sont ensuite fédé-
rées et traitées grace a une base de connaissance
et un jeu de régles logiques.

Title : Perception Enhancement of an Autonomous Vehicle through the use of UAV
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Abstract : Due to the evolution of electronic cal-
culation and communication methods, the concept
of the intelligent city is rapidly taking shape. The
numerous sensors and actuators positioned in inha-
bited spaces allow a better monitoring of the data
that passes between users, and an optimization of
living comfort.

The use of vehicles remains one of the most widely
used means of travel in the world. Here too, tech-
nological advances have allowed evolution enabling
cars to drive themselves, with little to no human

assistance. However, it is important to consider
the safety of road users in this increasingly popula-
ted environment. This thesis proposes to improve
the perception capability of an autonomous vehicle
through the use of drones. Due to their advanta-
geous positioning and small size, they can collect
perception data and transmit them to the vehicle
using a secure method, such as VLC communi-
cation. The data from the different sources are
then federated and processed thanks to a know-
ledge base and a set of logical rules.
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1.1 Introduction

This chapter introduces the thesis context with four parts: context and motivation, prob-
lematic, thesis contributions, and finally, the thesis outline. The context and motivation
explains the reason of this subject. The problem statement is the expression of the prob-
lem specified in the motivation. The contribution outlines how this work can be useful for

the scientific community. Finally, the thesis outline details all chapters in the manuscript.

1.1.1 Context and motivation

Like many other fields, transportation technologies have seen important developments
during the last century. Thanks to the popularization of computers and electronics, we
have reached a level of advancement where a car can drive itself alone, without the need
of a human agent.

This progress has been happening at par with the road environment, which greatly ex-
panded too. There is an estimated 1.4 billion cars in the world[1], without considering
bicycles, motorcycles, scooters, or any other types of vehicle. It is then clear that when on
the road, the driver must constantly be aware of their surroundings and exercises caution.
This is all the more true for an autonomous vehicle, which is most of the time evolving in
an environment made up of both connected and non-connected agents. It would be then
dangerous to rely on the communication grid alone (which might be compromised), and
there is a necessity to have a dependable perception system.

Indeed, and as shown in figure 1.1, autonomous navigation process can be split in 4 steps
[2]: Perception is the step where the vehicle uses its sensors in order to gather informa-
tion about its surroundings. Localization and Mapping is the step where those data are
processed in order to generate a precise knowledge of the environment it is evolving in,
Decision-making is the step where an intelligence layer generates an optimal action de-
pending of said environment, and Action is the step where the vehicle physically executes

the selected decision. It is interesting to note that Perception is the very first node of the
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process. This is the proof that without a good grasp of its surroundings, it is difficult,
even dangerous for a vehicle to make a safe decision, and by improving it, we can improve

the whole process.

Localization and
mapping

Perception Decision-making > Actuators

Figure 1.1 — Overview of the autonomous navigation process

As an example, let us consider Figure 1.2 as a road with multiple smart vehicles and a
smart building. In a connected environment, those actors can exchange information and

allow for quick decision-making.

Figure 1.2 — Illustration of a road

However, in Figure 1.3, a single vehicle is in a situation where the perception is limited
(in this case because of an obstacle), and cannot take a safe decision because it is lacking
important data about the environment.

Hence, it is then clear that perception plays a key-role in ensuring the safety of road users:
It is only when provided with enough data that we can make sure an autonomous vehicle
can take the optimal choice with minimal risk of injuring passengers and other drivers.

Hence the need to make sure that the perception process is reliable.

15



Figure 1.3 — A vehicle in a limited-perception area

1.1.2 Problem statement

Nowadays, vehicles need to evolve in a more complex environment and need to react
faster. Improving their ability to sense and recognize their surroundings is a necessity to

ensure the safety of road users, hence the main problematic of this thesis :

“How can we improve a vehicle ability to perceive its surroundings?”

As stated above, vehicles are evolving in a more connected environment, and it is inter-
esting to ask if the surrounding flow of data cannot be used for the vehicle’s interest. Or
even if we cannot redirect the surrounding sensors to serve the vehicle’s purpose :

“Can we use a mobile external actor to expand the vehicle’s perception range?

b2

However, using an element that is outside of the vehicle raises the question of data ex-
change. The transmitted information are of a sensitive nature, and we must also ensure

that there is no security compromise during the transmission:

“How can we ensure a safe and reliable way to exchange perception data with

the surroundings? ”

And finally, if the vehicle is going to use information from an external source, we must
find a way to fuse them with the data gathered by the vehicle while making sure the

process remains secured:

16



“How can we safely manage the information gathered by both local and distant

sensors while maintaining their integrity and reliability? ”

Ultimately, the process shown in Figure 1.1 will be improved to look like the one in Figure
1.4: the UAV sensors will provide an external perception happening in parallel with the
local perception of the vehicle, and those data will be transmitted through a secured
channel. All the information are then stored in a knowledge-base from where they will
be managed and processed. The additional steps shown in the figure correspond to the

different contributions of this work.

Data fusion

Perception D Localization and
(Local) mapping

A
A

Decision-making Action

Secured
communication B

UAV sensors

Figure 1.4 — The autonomous navigation process with improved perception

1.2 Methodology and Contribution

The goal of this work is to design a new methodology to efficiently expand the vehicle’s
ability to perceive its surroundings. As stated above, we also need to consider the question
of communication safety. In order to complete the perception chain, it is important to
think about how the data are treated once they are safely received. The different parts
of this work can be represented as a methodology in Figure 1.5.

This methodology presents the different phases of this work and their assigned chapters

which are more detailed in the next section. The first step is a standard approach of
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Scientific literature

UAV technology

Step 1 - Problem defi-
nition and state of the
art

Step 2 - Use of an exter-
nal perception tool

Ontology

VLC communica-
tion o
RF communication

Step 3 - Data federation
and management

Step 4 - Security consid-
erations

scientific literature exploration in specific domains in order to obtain common knowledge

Step 5 - Implementation
and use case experimen-
tation

Step 6 - Synthesis

Figure 1.5 — Methodology

to find a way to resolve a problem.

The second step is about adding an external sensory tool (a drone) and using it to trans-

mit gathered information to the vehicle.

The third step is about the setup of a knowledge-base that will act as a way to store the
perceived element in both local and distant range of a vehicle, and process them through

a set of logical rules for a decision-making purpose. This set of rules will also include the
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documents
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Results

Discussion
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management of different entities and communication protocols available.

The fourth step is about ensuring the integrity of the exchanged data by building a robust

communication protocol based on a hybrid VLC/RF protocol.
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The fifth step is about experimenting the automated methodology on use cases to get
results. This is done in a simulated environment and by having multiple candidates nav-
igating different situations.

The sixth and last step is about a synthesis in which results are discussed and future

works are presented.

This thesis proposes the perception enhancement of an autonomous vehicle through 4

different steps:

1. Identification of the correct contextual environment by gathering perception data

and reinforcing them with completion algorithms.

2. The identification of the sensors working correctly in the environment inferred in

step 1.

3. The identification of the available entities (Drones) carrying the sensors chosen in

step 2.

4. The identification of the communication protocols working correctly in the envi-
ronment inferred in step 1, and that can be used with the entities chosen in step

3.

The first step relies on neural network and fuzzy logic algorithms for the completion of
the data, and logical rules for the correct identification of the environment. For the other
steps, an inference engine relies on a set of logical rules in order to identify the correct
elements.

The main contributions proposed from this work are the following :

e A knowledge-base dedicated to the road environment, able to store objects detected

from different sources and classify them.

e A set of logical rules relying on the knowledge-base elements for the identification

of the correct environment as well as the management of the different actors in a
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low-perception area.

e A comparison on different completion algorithms for the road environment data, as

well as a fuzzy logic approach for sensors’ reliability

A study on the different types of UAV-vehicle interactions, and a proposition of use

for perception purposes

A VLC/RF hybrid communication protocol for the protection of data integrity

through the transmission redundancy on two different channels

A driving simulator with realistic physics engine allowing the quick development of
scenario for testing, and a virtual data gathering and interfacing with the knowledge-

base and the reasoner.

1.3 Report Outline

In this report, Chapter 2 discusses the state of the art. It introduces a history of vehicu-
lar perception, before identifying the current limitations and axes for improvement. This
work focuses on the use of an external tool in order to reinforce the perception of a vehicle,
hence it includes a review on the use of UAV (drones) for vehicular applications, as well
as review on the VLC protocol and knowledge-bases, respectively for safe communication
and data storing and federation. The chapter concludes with a summary of the state of

the art as well as a presentation of the overall proposed system.

Chapter 3 starts with the definition of the notions around the thematic of knowledge. It
then introduces the works made for the management of perception data: a comparison of
different ways of dealing with missing data, and the presentation of the knowledge-base
developed for this work. The latter introduces the classes, objects and properties making
up the ontology, as well as a set of rules that the reasoner tool uses for the inferring

process. Indeed, in addition to storing the detected elements, the system also needs to
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manage the environment detection, management and activation of the different actors and
sensors, and the adequate communication protocols in order to ensure an optimal output:
we end up with an ontology dedicated to the driving environment which can record the
different road actors (vehicles, UAV, etc.) and their components (sensors and commu-
nication protocols) in order to have an accurate representation of the environment. We
built the ontology progressively, by implementing each new elements added to the study,
as well as its properties. We also set up a collection of logical rules which allows inference
of some more information about the context, for example the general context the vehi-
cle is evolving in (weather, brightness, etc.), as well as manage the perception elements
depending on the identified environment and based on the outputs of the rules (Is the
weather bad? Is there a UAV nearby? Does it hold the adequate sensors? Should we
require its assistance?). The work in this chapter leads to conference papers|3| [4] and

was featured in a journal [5].

Chapter 4 covers the topic of communication. It introduces different common ways of
securing communications. Most vehicular communications relies on radiofrequency (RF),
whose limitations are also discussed here. This work proposes the use of VLC (Visible
Light Communication) for the purpose of reinforcing the process and establish a more
secured communication channel, and its advantages are also presented in this chapter.
In order to ensure an optimal security, this thesis proposes a hybrid RF/VLC approach
with data and their hash transmitted on two different channels for data redundancy and
protection goals. The heavy information are sent through VLC, and the digest of the
payloads (which is smaller in size) is sent using an RF channel. The hash is re-computed
on the receiver side and if a corruption is detected, it requests another transmission. This
process offers data security thanks to redundancy. The communication protocols, simi-
larly to the sensors and entities presented in the previous chapter, are also managed by
the knowledge-base. They are identified in the ontology and this chapter also returns to

the logical rules specifically used for communication. Some potential usecases are shown
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in order to better illustrate the process (Train station and Vehicle/UAV interaction). The
work in this chapter was featured in a journal paper[5] and leads to a submitted under

review conference article.

The general model was tested in a simulated environment, detailed in Chapter 5. It intro-
duces the driving simulator, developed using the Unity engine and allowing for the quick
building and testing of scenarios. The driving data (speed, environment, sensor values...)
are gathered in the simulation and logged in the knowledge-base. By using the Unity
tool, we built multiple different scenarios varying in complexity, and we interfaced it with
the previously designed ontology in order to log and process the elements that inhabit it.
Multiple use cases were tested where human agents were asked to drive through defined
situations, wherein a driving assistance was provided thanks to the inferred deductions of
the reasoner based on the gathered driving data. The different behaviours are covered and

discussed in this chapter. The work in this chapter was also featured in a journal paper|5|.

And finally, the last chapter concludes this report and presents some future research

perspectives brought upon by this thesis.
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2.1 Introduction

The gathering and management of data is a critical step for every intelligent system.
Autonomous vehicles model their environment using a variety of sensors. This perception
process has greatly changed in the last decades, and the related research topics have been
shifting and adapting to the modern technological advances happening in parallel.
Indeed, the whole environment has been evolving, and smart cities are slowly becoming
a real concept. The whole surrounding is becoming an intelligent system thanks to the
presence of sensors, actuators and processing units. Another critical step of an intelligent
entity is the ability to communicate: different intelligent bodies must be able to exchange
information between them to guarantee comfort and security of concerned actors.

As presented in the previous chapter, this work’s goal is to find a way to improve the
perception abilities of a vehicle. This can be done by using an external perception tool
which will transfer the gathered information to the vehicle. In order to optimize the
gathering process, the additional perception source should present some advantageous
features, for example an advantageous positioning. There have been various studies on
the use of UAV (Drones) in a smart city environment, and they offer a strong potential for
our situation. Even so, there would still be a need to communicate safely and federate the
data from different sources. By its nature, the problem topic is the intersection of multiple
topics, hence the need to make a scientific review of subjects seemingly independent from
each other, but which will allow us to build an optimal solution.

This chapter presents the state of the art in four main areas: 1) a review of the perception
process in autonomous vehicles and the different ways to optimize it 2)UAV for vehicular
applications 3) The data fusion of multiple sources thanks to ontologies 4) VLC as a

communication protocol for vehicles
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AV Projects and Competitions through the Ages
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Figure 2.1 — Past and future evolution toward automated and cooperative driving. An
interesting comparison can be made with the vehicular challenges of the same eras [8] [9]

2.2 A review of the perception process

Visibility plays a key role in traffic accident prevention [6]. In fact, the World Health
Organization (WHO) states that "Seeing and being seen are fundamental prerequisites
for the safety of all road users" and "Inadequate visibility is an important factor that
influences the risk of a road crash among all types of road user" |7]. Those criteria are
initially aimed at a human driver visibility but can easily be extended to an autonomous
vehicle’s ability to perceive its surroundings.

The ability to perceive and understand the environment is a vital part of intelligent sys-
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tems, including smart vehicles. In their 2018 work, Van Brummelen et al. [9] made an
extensive review of the current state of vehicular perception. They define autonomous
vehicle navigation with four main components : Perception, Localization and Map-

ping, Decision Making, and Vehicle Control:
e Perception: using sensors in order to gather physical data about the surroundings.

e Localization and mapping: processing the raw data from the sensors in order to

assess the status of the environment.

e Decision-making: using the processed data in order to infer the optimal action

to take.

e Vehicle Control: physically executing the chosen operation thanks to the vehicle’s

actuators.

Perception is described as using "sensors to continuously scan and monitor the environ-
ment, similar to human vision and other senses". In order to achieve that, a considerable

amounts of different sensors can be considered [9][10][11]:

e Radars have been used for decades for vehicular applications|12][13]. This tech-
nology has proved itself to be great in mid-to-long range measurement and have a
great accuracy, in addition to doing well in a poor weather situation [14]. It is still
heavily present in vehicles but has a small FOV (Field Of View) and show poor
results in near-distance measurement and static object detection. There is also the

disadvantage of receiving interference from other sources or vehicles.

e Cameras have shown an interesting potential, in both single and stereo vision. When
considering the perception quality, they are the least expensive sensor that can be
used [11]. They allow a quick classification of an obstacle and a potential 3D map-
ping of the area. Stereoscopy in particular shows very good results in detecting
forms, depth, colors and velocity, although they require a substantial computa-

tional power|[15|. The most advanced models can also be used for long-range precise
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detection, but they have a more important cost [16]. However, its performance
highly depends on the weather and brightness [14], and the required computation

power can sometimes be heavy.

e LIDAR technology relies on measuring laser light reflection to infer the distance to
a target. It has been studied since the 1980’s[17]| but it is only in the early 2000
that it has found its way in vehicular application [18|[19]. It is a useful tool for 3D
mapping and localization, and can be used on a large FOV [14], but it relies heavily

on good weather conditions and is not efficient outside a defined range.

N
A N\

Perception
radius

Figure 2.2 — Local perception radius of a vehicle

Other types of sensor can be found on vehicles, such as ultrasounds. The combination of
different type of sensors allows for an efficient perception of the environment.

It is now clear that vehicular perception has known a consequent expansion in the previous
decades. The first "autonomous vehicle" can be dated back to 1926, where a radio-
controlled car strolled in Milwaukee, but it was followed by a human controller who still
needed to watch and monitor the surroundings|20]. The study to develop fully autonomous
vehicles has since been formalized and regulated, particularly thanks to the definition of
the 5 ADAS (Advanced Driver-Assistance Systems) levels milestones, as shown in Figure

2.3 [21]. Those milestones cover situations where the driver is decreasingly focusing on
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Figure 2.3 — The 5 milestones of ADAS. The consensus is that current commercial vehicles
are on Level 3

the driving activity: the first level of automation corresponds to traditional driving, with
no form of assistance. The second level offers assistance for the speed management of the
vehicle. The third level deals with basic maneuvers like parking or self-driving in optimal
situations. The fourth level takes the process even further with self-driving at higher
speed and complex actions like overtaking. And finally the last level is a situation where

the vehicle can fully drive itself in any situation with no assistance from a human driver.

2.2.1 Sensors limitations

No matter how reliable the sensors can be, they will still be limited by physical constraints
like line of sight requirement (LOS), range limitation or other forms or interference. Fur-
thermore, and as pointed by [9], due to limitations and high costs of available sensors,
most commercial vehicles only include Level 1 to Level 2 autonomy, which require con-
stant driver attention and control. The autonomous features in these vehicles generally

consist of emergency braking, blind spot detection, and/or lane keeping.
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2.2.2 Amelioration axes

Considering the current state of vehicular perception, at least five axes of amelioration

can be considered [9]:

e Vehicular perception in poor weather and lighting conditions

Vehicular perception in complex urban environments

Autonomous driving without heavy reliance on a priori perception data

Development of safety measures in case of faulty sensors/perception

Utilization of connected vehicle technology to improve accuracy, certainty and reli-

ability of perception

With the advent of the IOT (Internet of Things) and Smart Cities, more components
of daily life are getting connected and interacting with each other. The last point of
improvement might present an interesting potential: By requesting information from
another close intelligent entity, the vehicle could significantly improve its understanding

of the environment.

Figure 2.4 — Schematic description of UAV usecase
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2.3 Use of an external sensory organ

This enhancement of the perception ability can be made through the use of UAV (Un-
manned Aerial Vehicle), also referred to as Drones.

In their 2017 paper, Menouar et al.[22] submitted the idea of using UAV (Unmanned
Aerial Vehicles i.e. Drones) as supporting items of ITS (Intelligent Transport System),
proposing their multiple possible use. Indeed, UAV’s abilities to move in a 3D space at
high speed, as well as their advantageous small size that allows to transport packages
while remaining smaller than cars, give them important benefit in a world where trans-
portation is mainly 2D oriented.

For example, drones can be used for the delivery of goods. While terrestrial delivery-drone
are already starting to get exploited, such as Starship Technologies that has already made
more than 100.000 deliveries in 2019|23], there is still no aerial drone-delivery for the mass
market. Two GAFAM (Google Amazon Facebook Amazon Microsoft) companies, Google
and Amazon, are already actively working on UAV for deliveries, with their respective
projects Wing and Prime Air|24][25]. Another use would be for police assistance, pa-
trolling over roads looking out for possible offences, like overspeeding or improper lane
usage. They might then register the car’s license plate and send the information to the
authorities. However, as pointed out by Sakiyama in her PhD. Thesis, there might cur-

rently be strong legal and social opposition for this specific use of UAV [26].

The strength of UAV remains its ability to access spaces that vehicles or people cannot
access easily. They show a strong potential in case of dangerous events, such as a leak of
dangerous liquid or gas, industrial incidents or terrorist attacks. Back in 2011, Danzel et
al. already proposed the idea of UAS (Unmanned Aerial Systems) for homeland security,
deploying a fleet of drones to distribute mobile sensors in incident areas. They define the

main requirements for rescue-oriented UAV as follow:

e Low-cost: Police departments and fire brigades’ financial ressources are usually
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very limited

e High Throughput: Ideally, the drone should be able to livestream both audio
and video feeds, both requiring a high transmission speed to guarantee real-time

reaction

e Operating Time: A UAV should have enough autonomy to ensure reaching the

place of incident and staying on it until human operators arrive|27]

e Frequency Ownership: Spectrum Management is a real problem nowadays with
a lot of the saturated bands. When controlling a drone through RF, we must ensure

that there is no interference in case of incident.

e Payload weight: The UAV is not expected to carry heavy charges. It could
eventually be used to transport small things (i.e. first aid kits) but we favor speed

and autonomy over pulling strength.

Given their aerial position, UAVs have a good view of events happening on a road, in
addition to having less impact on the observed traffic. When equipped with a powerful
enough camera, it can easily detect and identify moving cars. In 2017, Xu et al. [28]
trained a Convolutional Neural Network (CNN) to find and follow cars from a height of
100m to 150m. Their neural networks showed a car detection success of 98.43%, with a
robustness to illumination changing and moving vehicles - allowing to use this algorithm
with both a static and moving UAV. The training time of the algorithm was about 21
hours, a decent time for this kind of applications, but the training was only made on car

detection, neglecting other road users (buses, pedestrians,etc.)

So far, UAV have shown great potential in a vehicular environment. If we want to build a
viable model, we need to set up a communication link between the drones and the other
actors of the vehicular environment. The integration of UAV in V2X protocol has already

been investigated by many researchers before : In 2018, Hadiwardoyo et al. [29] managed

31



to establish a communication link between a stationary drone and a moving vehicle. They
experimented on many parameters, such as the height of the drone and the orientation of
the transmitting antenna (horizontal or vertical) and made real tests on an empty road.
They managed to reach a transmitting ratio between 60% and 98% transmitting over a
maximum distance of 2.5km. They obtained their best results by pointing the antennas
to the vertical and positioning the drone at a 100m, the highest distance allowed by Eu-

ropean laws being 120m.

RSU 1 (Drone) RSU 2 (Drone)
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Figure 2.5 — Using UAV as communication relays [29|

V2X communication is sometimes referred to as VANET (Vehicular Ad-hoc NETwork),
the vehicular application of MANET (Mobile Ad-hoc NETwork) principles. MANET are
described as being "a continuously self-configuring, infrastructure-less network of mobile
devices connected wirelessly", meaning that there is no router in the network and the
nodes are used for routing instead, despite being in motion and connecting to different
other nodes over time. In the case of VANETSs, the nodes of the network are mostly
vehicles, but it can also be other infrastructures, such as RSU (RoadSide Unit) or even
pedestrians. Studies have already been made focusing on the use of UAV as network’s
nodes. In their review of applications and challenges of UAV in Smart Cities, Menour et
al. [30] already introduced the idea of UAV being part of a larger network. They proposed
a deployment method based on the CDS (Connected Dominating Set) graph theory algo-
rithm, that ensures that all nodes of the same area are always connected by constraining
the movements of the UAV (a UAV that goes too far might break the connection with its
closest nodes). They then could be used as hot-spots that can at the same time be used

for monitoring the traffic and as a device for routing informations in the network. Shi et
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al. [31] made a similar study focusing on the throughput and reached a speed of 1 to 2
MB/s in their simulations with UAV, comparing a regular 802.11p car-only communica-
tions with a 2.4GHz DSRC (Dedicated Short Range Communications) with a swarm of
drones. They also made an interesting remark on the quality of the service by pointing

out that a higher vehicle density generates a higher delay between messages.
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Figure 2.6 — Illustration of UAV /Vehicle interactions [22]

When studying the deployment of a swarm of UAV, one of the major constraints that stood
out is power supply. Currently, most drones have a battery lifetime of 20 to 30 minutes,
and the longer they stay on, the less performant they become. Galkin et DaSilva [27]

addressed this issue in their 2018 study and proposed 3 battery management solutions.

e UAV swapping: Having many drones to use and cycling between them. When the
active one is getting low in battery, it returns to the station to recharge and another

one takes it place. This solution requires having an important swarm of drones

e Battery hot-swapping: A single drone is used and when its battery is getting
low, it returns to the station where an automatic infrastructure quickly changes
its battery with a fully-charged one. However, this means that the network would
be lacking a node for the duration of the battery swap, and this can have critical

repercussions
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e Wireless power transfer: In 2018, Ouyang et al. submitted a model that would
technically allow to power an UAV with a high-power laser. Unfortunately, this
solution has not been tested in real conditions yet, and would require an almost

permanent LOS (Line Of Sight)

The proposed solutions are interesting, but they each have their own constraints. This
could be overcome by combining some of them together, like having a dedicated UAV
that would just serve as an energy refill and make short-time travel to the other UAV
that serve as nodes to recharge them quickly with a laser, since hot-swapping and a direct

physical connections would be dangerous or difficult to implement.

All those considerations highlight the potential of UAV as a dynamic data gathering tool
that can provide a useful service to intelligent vehicles. There will then be multiple feeds

of data that need to be stored and processed to allow perception enhancement

2.4 Federation of data from multiple sources

If data are gathered from multiple sensors and multiple sources, it is also important to

consider a way of merging and managing them.

There are a multitude of reasons that could lead to performance issues, for example the
accumulation of error over time. Through the combination and association of sensing
methods, it is possible to overcome the weaknesses of individual components.

In a broader sense, sensor fusion is considered as the "process of managing and handling
data and information coming from several types of sources in order to improve some
specific criteria and data aspects for decision tasks." [2]. Thanks to the redundancy
and complementarity of information, the obtained perception is optimized in order to
guarantee the best decision-making. It is a method generally applied to sensors embedded

on a single body, but in a smart city environment, this could also concern sensors from
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different entities.

Some studies have taken an ontological approach to this solution, as shown by the review
work of Bendadouche et al. [32]. For example, Calder et al.|33] used a reasoning approach
in order to validate the behaviour of multiple sensors in a coastal ecosystem. Through
the use of logical rules, they tried to infer if a sensor is functioning properly : Did the
sensor log a measurement? Was it done at the correct time? Is the registered value in an
acceptable range?

Compton et al. also worked on a sensors-dedicated ontology [34]. They aimed to make a
model abstracted enough to allow it. This consequent work would then allow an easy way
of both adding new sensors, and reading the gathered value. This work, as well as that
of Calder et al.[33] was later on merged in the SNN (Semantic Sensor Network) ontology
[35], which is described as an "ontology for describing sensors and their observations, the
wmwvolved procedures, the studied features of interest, the samples used to do so, and the
observed properties, as well as actuators”.

Those cited works highlight the necessity of federating the data from different sources in a
common base, and classify and treat them in the correct way. Knowledge-bases, especially

ontologies, seem to be an adequate candidate for this kind of task.

2.5 Communication protocol

Previous sections introduced the idea of gathering extra data from an UAV sensors and
merging them with the ones from the vehicles. This process would imply that some form
of communication exists between both entities, and we must ensure the safety of the com-

munication process.

VLC is an Optical Wireless Communication (OWC) technology where the signal is pro-
duced by a light source and the data are transmitted over the visible light spectrum. The

transmitter can either be a LED or a Laser Diode (LD). It has been around for a while
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now, the first practical use being that of Alexander Graham Bell in 1880, who invented
the photophone : By vibrating a mirror at a specific frequency, he managed to modulate
a voice signal and received it over 200m away with a parabolic receiver.

The invention of Laser (Light amplification by stimulated emission of radiation) enabled
a breakthrough in VLC communication : US scientists in the 1960’s managed to transmit
a voice signal modulated by laser over 190km. Nowadays, Japanese road networks use
IR (Infrared) devices to send traffic information directly to the vehicles: There are more
than 30000 IR beacons on the Japanese roads in a system called Vehicle Information and
Communication Systems (VICS)[36]. While VICS is not technically VLC, it proved that
we could use near-IR signals for V2X communications|37].

In 2001, Akanegawa et al. [38| suggested to extend the VICS system to LED traffic light.
Whilst they focused on downlink and one-way communication, their work is often quali-
fied as the first real VLC V2X study because they focused on the real qualities of VLC
and proposed a theoretically functional model.

In his PhD thesis, Bechadergue [39] focused on VLC in V2X communications and made
an in-depth comparative study between the use of Photodiode (PD) and cameras as VLC
receivers. As shown in Figure 2.7, the high-speed camera is better on every aspects, save
the data rate. However, in the general context of the work, it was deemed more interesting
to select a PD instead of a camera. Considering the linear and short-range transmission
in a platooning system, it makes sense to use a PD because of its narrow FOV and high

sensitivity.

In 2016, Goto et al.|40] created a new type of Optical Communication Image sensor (OCI).
This innovative high-speed camera model allows for the acquisition and treatment of data
with a much higher speed than what was previously used (up to 55mb/s). It has also been
successfully used in other experiments, such as the one conducted by Yamazato et al. in
2017 [41]: Yamazato and his team built a 32x32 LED array that modulates specific data,

and an OCl-equipped vehicle is driving towards it. The team managed to clearly receive
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Characteristic Photodiode Low-spegimg;h-spee d

Data rate > 100 kbps < 1 kbps ~10 kbps

Range < 100 m > 100 m > 100 m
Coverage Medium Wide Wide
Mobility Limited Good Good
Spatial distinction No Yes Yes
Sensitivity High Low Low
Cost Low Low High

Figure 2.7 — Comparison between Camera and Photodiode

Front car Rear car

Figure 2.8 — Illustration of the mirror-less vehicle from Jin et al.

and read the transmitted data regardless of the vibrations due to the car displacement,
and could also define the relative position of the vehicle from the LED array with an error

of about 0.5m for a distance of 30 to 60m.

In Jin et al.[42], a South Korean team from the Hoseo University tried to use the already-
present cameras in mirrorless cars as VLC receivers. Mirror-less cars are a new type of
concept car that replace rear-view and side-view mirrors with camera, hence granting the
driver a better FOV (Field of view) than with classical mirrors. This experiment was
conducted on a classical cars by positioning cameras near side-view mirrors, and using
daylight running lamps (DRL) of the following vehicle to transmit information, as shown
in Figure 2.8. The following car can transmit 2 kinds of information : the type of vehicle
and the kind of action it will execute.

In 2013, Yu et al.[43]. were amongst the first to make VLC experiments in a dynamic

context (with a moving vehicle). Their studies was aimed at comparing VLC and DSRC
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Figure 2.9 — Model of the scooter used in the work of Yu et al.

(dedicated short-range communications) technologies in a V2X context. DSRC uses radio
frequency for short-to-medium range communications. They built a VLC receiver on a
scooter and made tests at a varying speed from 10km/h to 40km/h. DSRC seems to
be better performing when having a vehicle communicating with its neighbors, but the
mutual interference is important, and the complexity grows with the distance between
the vehicles. Figure 2.9 describes the different modules mounted on the vehicle . Also

according to the same study, weather can have a strong impact on VLC communications.

VLC still showed good results. The FOV might be too narrow but in an overtaking sce-
nario the information were transmitted at a decent speed. The size and speed of a scooter,
and the ease of setting-up VLC tools on it, make it a good environment to run dynamic

tests.

In 2012 Cui et al. [44] made a study on how weather conditions and environment could
affect VLC communication. They isolated multiple source of noises, such as the sun and
neon lights on the streets (Figure 2.11) They then used electronical Passband Bandwith
Filters as well as plastic to make sure that the photodiode only reads from the stoplight’s
LEDs.
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Figure 2.10 — Illustration of the vehicle used in Yu et al. [43]

They also showed that weather can have a strong impact on VLC communications [43][44].
An in-depth study has been led by Kim et al. in 2015 [45|, mostly focusing on fog. In
a controlled environment, they tried to establish a VLC communication using LEDs of
different colors and fog of varying thickness. The results showed that red light passes
through fog more easily than green or blue lights. They paired it with a Fresnel lens to
focus the incoming light and saw an improvement in the overall data transmission.

VLC has the advantage of being immune to RF interference, but there are still many
sources of noise that can disturb the communications: working within the visible light
bandwidth, anything that can be visually perceived by the human eye is a potential source
of noise. This can be a real problem in V2X communications, considering that both the
emitter and receiver are moving and being outdoor, which means being exposed to mul-
tiple sources of lightning.

Multiple solutions have been proposed over the years. Most of them are for indoor appli-

cations but some can be exported to an outdoor environment. One of the easiest and most
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Figure 2.11 — Environment light as a noise source

common way is to use hardware analog filters [46] [47]. Cheap and small analog filters
have shown good performances in indoor environments and have potential for outdoor
environment too.

Software filtering has also been investigated. Since 2013, Paul Antony Haigh and his
teams have been working on the use of Neural Networks and Artificial intelligence for the

equalization of signals transmitted through VLC|[48][49][50]51][52].

Considering all the works made on VLC and specifically in vehicular application, it is

then clear that there is a real interest for us for its use.

2.6 Proposed perception enhancement model

As shown in Chapter 1, the core problem of this thesis is "How can we improve a
vehicle ability to perceive its surroundings ?" The previous sections presented a
literature review of vehicular perception as well as the current state of the art on UAV /Ve-

hicle interactions, VLC communications and knowledge-base for vehicular applications.
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Figure 2.12 — Proposed methodology

We believe that those elements allow for the formulation of a solution to this question.
Indeed, thanks to their embedded sensors and their advantageous positioning, UAVs can
gather information on events happening on the road and transmit them to the vehicle
through a secured means of communication, which can be comprised of VLC. The data
from the vehicle’s and UAV’s sensors are then gathered in the ontology and processed
thanks to the numerous logical rules implemented in the knowledge-base. An illustration
of the process can be found in Figure 2.12.

Even in a harsh environment where the UAV’s perception is also limited, its position and
small size would still allow it to gather data without endangering road users, making it
an interesting candidate for this process.

The general model proposed in this work is described in Figure 2.13:

1. The actions made by the vehicle (either through automatic driving or manual control
from the driver) will have a direct impact on the environment where it is evolving

and by moving around, the perceived surroundings will also change (1).

2. The Environment (2) is the context where the vehicle evolves (e.g rainy road, dark
area, etc.) . The sensors will allow a representation of this context and will generate
perception data (3 and 4) reflecting the different actors and elements of the road.

3. The perception data can be divided in two categories: surroundings (3) and envi-
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ronment (4) information. The latter serves for the identification of the actors and
elements (obstacles, other vehicles...), while the former is used for the correct iden-
tification of the environment. The determination of the correct environment is a
critical step of the process, which is why those data first go through a completion

process (5) in order to make sure that the environment is correctly inferred.

4. All the gathered data are then stored in a knowledge-base (6) where they will be

classified and assigned with corresponding properties.

5. The knowledge-base will process the information it was provided through a reasoner

(7), which will then start the decision-making process (B)

6. The reasoner will cross-reference the objects in the knowledge-base with a pre-
defined set of rules in order to identify the rules returning a positive result: After
inferring the correct environment, the system will also identify the adequate sensors
and communication protocols working correctly in said environment, then locate
the entities (drones) carrying them and request their activation if necessary. This

is the decision-making process (B), which is also represented in Figure 2.12.

Various data of different natures are generated during the driving process, some can be
elements related to the ego vehicle, which is the vehicle on which the model is centred,
(e.g. speed and position) or gathered from the vehicle’s exteroceptive sensors (e.g. bright-
ness or distance to obstacle). These elements can come from either the vehicle or another
intelligent agent, such as a drone, whose help could be requested through a secured com-
munication channel (for example VLC or a hybrid VLC/RF protocol). These data are
stored in an ontology, where they are classified in order to formally represent the environ-
ment the vehicle is evolving in.

A critical step in the process is the correct identification of the environment. In order
to strengthen this operation, the environmental data go through a data cleaning stage in
order to increase their reliability.

Once the storing process is completed, a reasoner is called upon by the knowledge-base
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in order to process the data stored in it. It is a tool that relies on logical rules in order
to infer an adequate output considering the situation. Once provided with the correct
set of rules, the system can identify the current environment and infer on what sensors
and communication protocols would perform best under given conditions, as well as to

determine the agents carrying those sensors and protocols and request for their assistance.

This approach offers multiple benefits:

e Extension of the perception range: thanks to their size and positioning, UAV

can cover areas where it would normally be dangerous for the vehicle to venture to

e Transmission integrity: by using two different physical communication protocol

for redundancy, the system makes sure the transmission is safe and robust

e Proper context identification: knowledge-bases offer a formal way of describ-
ing an environment. When correctly populated, it can be used for an accurate

recognition of the settings.

e Rigorous management of the enhancement process: logical rules make it
possible for the reasoner to manage the different actors of a scene. When feed with
the correct rules, the system can quick decide which sensors and communication

protocols should be activated to undertake proper response.

2.7 Conclusion

This chapter introduced a summary of today’s state of autonomous vehicle’s perception,
and raised the idea of using an external entity to gather information. Indeed, UAVs have
a strong potential as shown by some promising works that have already been conducted.
However, as pointed out in Chapter 1, having another data-gathering system raises the
problem of federating the locally perceived information with the ones collected by another

entity. Data need to be classified, merged and processed in order to assess an optimal
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inference of the environment and the adequate decision to take. A knowledge-base system
shows great potential for this type of situation. There is also the question of safely
transmitting data from one entity to another, which can be done with the use of VLC as

a stand-alone protocol or as part of a more hybrid approach
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3.1 Introduction

In the previous chapter, we presented the state of the art and explained the advantages

of using a knowledge-base for the federation and management of data from various sensors.

A knowledge-base allows for a formal representation of a context by offering a rigorous
classification of elements, their properties and the relationship existing between them.
With the use of an additional tool called a reasoner, it is possible to add a layer of intelli-
gence to the objects of the knowledge-base thanks to logical rules. Different situations can
be addressed thanks to set of rules, for example the identification of the environment the
vehicle is currently evolving in, or the selection of the adequate communication protocol.
This approach allows for the system to better manage the perception enhancement steps

while ensuring data integrity.

In this chapter, we will present our work towards our knowledge-based approach for driving
context detection. We will introduce the different notions of knowledge-representation,
including the different practical ways of doing so, as well as the logical rules to manage
them. The previous chapter discussed about a methodology for the perception process,
and a breakdown of it will be essayed in this chapter. Finally, the ontology developed in
the context of this thesis will be explained and detailed in this chapter, with both the

data elements and the reasoning process discussed in details.

3.2 Definitions

3.2.1 Knowledge

Knowledge is an abstract notion which exact definition changes depending of the topic it

"

is applied to. Zagzebski|53] define the cognitive meaning of knowledge as a "...relation

between a conscious subject and the portion of the reality to which the knower is directly or
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indirectly related. Nickols [54] gives a more formal definition, identifying 3 subcategories

of knowledge:

e Knowing as a state, which is about being aware or familiar with facts, methods,

principles or techniques.

e Knowledge as an action, making the effort to create a relationship between an

individual and an abstract or concrete element.

e And finally Knowledge as a codified set of facts that allows the precise and

distinct definition of an element.

In the scope of this thesis, knowledge will take a definition related to the last one. It will
represent the distinctive characteristics of an abstract or physical object, as well as the

different types of relationship linking it to the other elements of its surroundings.

3.2.2 Context

The literal definition of context, according to the Collins dictionary is "the set of facts or
circumstances that surround a situation or event”. There is however no real consensus of
the word’s meaning in the topic of context representation. In the scope of this thesis, the
definition chosen was the one given in Endsley’s work in 1995 [55|[56] and characterizes it
as "...the perception of elements in the environment within a span of space and time, the
comprehension of their meaning and the projection of their status in the near future.”.

Given the heterogeneity of data and the complexity of the notion, categorizing contexts
allows for a better management of information. Several propositions have been made in

this regards.
Schilit et al.[57| categorize context into two categories : primary and secondary. The

former contains all the information that can be directly gathered, and the latter is made

up of what can be deduced from them.
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Chen et Kotz|58| also propose two different categories : active and passive contexts, split-
ting the information into what has a direct influence on the action, and the secondary,

non-critical data.

Hofer et al[59] have a dual-class system too : physical context and logical context, with
data that can be mesured with sensors and those that contains information about the
interactions between objects.

Fuchs et al.[60] focused their work on a specific case, the Road context. They identified

multiple levels on which the the context could be subdivized.

e Spatial context corresponds to the whole physical environment the main vehicle

is currently evolving in

e Local context is a specific situation the vehicle will encounter in a defined space,

such as an intersection

e Traffic context the elements affecting traffic, like signs, pedestrians, markings, etc.

e Participants context comprises the elements related to the driver, such as his

tiredness level or driving experience

e Road conditions are the properties of the road the vehicle is currently evolving

in, for example the maximum speed allowed or the physical state of the road

An interaction context corresponds to a scenario. A scenario is a practical situation
from where knowledge is gathered and processed, and the inferred actions are applied.
A scenario needs a minimum amount of information related to the environment and the
objects to be modelled. Ontology will keep the meaning of any situation, current or
planned interaction and running scenario in a representation language close to natural

language.
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3.2.3 Knowledge-base and ontology

The "Principles of Modeling" [61] defines a model as a simplification of a real-world
problem. The modeling of a problem presents various advantages, such as a formalization
and logical description of a problem, a better understanding of the concerned data, and
a simplification of the testing procedure.

A knowledge-base is an object-model way of representing data. As an expert system [62],
it contains not only all the different actors and entities of a given situation, but also the
abstract concepts, properties and relationships among stored elements.

In addition to the structured data storage, the other important feature of a knowledge-
base is the intelligence layer that can be obtained through the use of inference rules. By
setting up an appropriate set of logical instructions, the stored data can be analyzed,

processed, compared and rearranged in order to produce an output that can be reused.

There are different ways to implement a knowledge-based model, such as logic program-
ming [63], a knowledge-graph [64] or an expert system [62]. This work focuses on the use

of ontologies.

An ontology usually serves as a hierarchical data structure containing all the entities
of a specific context and the different rules, axioms and properties regulating them. In
addition to the technical interest, the ontological approach shows some functional features

that make it an interesting choice :

e Scalability: Once the classes, properties and rules are defined, the instantiation is

managed by a Java API and it is easy to populate the ontology with new elements

e Exportability: The knowledge-base and its actors are ultimately independent from

the application and can be used for another operation set in a vehicular environment

The Stanford 101 Guide defines Ontology [65] as "a formal explicit description of con-

cepts in a domain of discourse, properties of each concept describing various features and
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attributes of the concept, and restrictions on slots". An ontology basically defines the
main actors within a domain of discourses and the different interactions and relationships

between them|[66]. Ontology may be represented by:

e Classes : Describe the concepts in the domain, whether they are abstract ideas or
concrete entities. Classes can be hierarchized by levels, for example having a Vehicle

as a top-class containing Car, Bus and Bike as sub-classes.

e Properties : The specific attributes related to a. They can be intrinsic to an

object, or extrinsic, representing the interconnections between different concepts

e Individuals : Real instances of classes, representing the elements of the ontology.

An ontology which is complete and filled with a full set of individuals, rules and properties
is referred to as a knowledge base. In technical terms, the knowledge base is composed
of the Thox and Abox, respectively Terminological Box and Assertion Box. The former
represents the ontology where the information are stored, and the latter encompasses the

rules and properties.

3.2.3.1 Data fusion

Multimodal data fusion is defined by [67] as "the analysis of several data sets such that
different data sets can interact and inform each other", meaning that the information
from different sources can be compared and cross-referenced to offer a better understand-
ing of the situation where an intelligent agent is evolving. The implementation of this
process requires an architecture capable of efficiently classifying data, and a necessary
processing power [68|. In a real driving situation, an important quantity of data needs
to be considered, and most of the time they are of different types. Being able to manage
and join seemingly unrelated information could be critical in this context.

As seen in the previous chapters, our solution relies on using a UAV to gather traffic data

and send them back to the vehicle. These data can then be merged with the ones from
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the vehicle sensors by storing them in an ontology and processing them with logical rules.

This concept can be extended to every other source of information.

3.2.4 Reasoning

An ontology allows the storage and management of different objects from a common
context. In addition to being able to represent all the elements of a situation, it is also
possible to add a layer of intelligence and reflection through the use of reasoners. A
reasoner is a tool that can infer logical conclusion from a set of given facts, making the
classification of an ontology easier. For example, if we declare an instance V as a Car,

and the class Car is a sub-class of vehicle, then the reasoner infers that V is a vehicle|69].

For a more complex situation, some reasoners can be supplied by logical rules. A rule is a
presentation of an Aristotleian syllogism, defined as "a discourse in which certain things
having been supposed, something different from the things supposed results of necessity
because these things are so" [70], meaning that if we assume a set of propositions to be
true, we can conclude another independent proposition to also be true. Rules are made
up of two distinctives parts : an antecedent set of conditions, and a consequent set of

actions. They are given in the form : IF <conditions> THEN <actions>.

There are multiple ways to implement rules into a knowledge-base. This work used the
SWRL approach (Semantic Web Rule Language)|71].As previously stated, it is a language
of logic description that enables the combination of different rules to build a more complex
axiom. The official documentation gives the following basic example to define the syntax
. hasParent(?x1,7x2) ~ hasBrother(?x2,7x3) -> hasUncle(?z1,%z3). By joining the two
axioms hasParent and hasBrother, it is possible to apply the hasUncle relation to the

individuals, hence making the individual X1 the child of X2 and the nephew of X3.
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3.3 Proposed model

3.3.1 Dealing with missing data
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Figure 3.1 — Data-reinforcement step in the general model

In order to guarantee an optimal logging and inferring process, we must ensure that we

have sufficient amount of data. However, due to various factors such as sensor malfunc-

tioning or an error in the logging process, we might end up with a lack of or faulty set of

data. It is interesting to consider this aspect to optimize the output of the system. There

are multiple way of preventing [72| and dealing with missing data|73]. In this thesis, we

consider this aspect and envision two approaches : A computational approach through

o4



comparison of different algorithms, and a fuzzy-logic approach to generate a "perception

score" of the existing data.

3.3.1.1 Data Cleaning

3.3.1.1.1 Presentation of the dataset

A set of data can take multiple forms, depending on the type of data that are being
considered. This section will introduce the dataset that served as a base for the data
completion process. It is important to note that this will not be the final set of data
on which this thesis work was focused on, but was instead used for the comparison of
different algorithms. On the road context, it is important to consider multiple factors in
order to infer the correct state of traffic. There are many types of data that can be used
for traffic prediction.

Traffic prediction has long been regarded as a statistical problem. In one of the earliest
studies in 1991, Davis and Nihan [74] compared the simple univariate linear prediction
on a regression model in an empirical measurement of traffic congestion. They choose a
Nearest-Neighbor approach and showed that this lazy-learning method was just slightly
better than a classical parametric regression method. However, and as noted by the au-
thors, the optimisation was not significant enough to be relevant, and the predictions were

still not accurate enough, sometimes being up to 30% incorrect.

In 2003, with access to higher-quality traffic data, Clark|75] proposed a Non-parametric
Regression model that would include other variables to consider in addition to speed, like
the day of the week. Non-parametric regression is a form of regression that is based on
available data, rather than a predetermined prediction function, hence being relevant in
the traffic topic since there is not a single "fixed" behaviour. Their model showed a great
potential, but they did not have a database big enough to accurately train it, and were

also lacking the computational power to properly calibrate it.
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As pointed out by Vlahgioanni et al. [76], traffic forecasting has been studied for al-
most 3 decades now. In their literature review, they came out with 10 possible axis of

improvement:
e Developing responsive algorithms and prediction schemes
e Freeway, arterial and network traffic predictions
e Short-term predictions: from volume to travel time
e Data resolution, aggregation and quality
e Using new technologies for collecting and fusing data
e Temporal characteristics and spatial dependencies
e Model selection and testing
e Compare models or combine forecasts
e Explanatory power, associations and causality
e Realizing the full potential of artificial intelligence

The last point has become the most interesting consideration over the years. This review
was made in 2014, a few months before the real surge of Deep Learning|77] and Artificial
Intelligence. Many studies have since been focused on the improvement of the proposition,
i.e. building neural networks and using Al for traffic forecasting.

Artificial Intelligence has already been used in recent works for traffic forecasting. In
2015, Ma et al. [78] implemented a Long-short-term memory neural network to predict
traffic situation. They used microwave detector to collect real-life data for a month and
trained their model with them. They showed good results with 97% accuracy on their
predictions. Even though the model made very accurate predictions, the only input it
had was the speed of cars that were going through the testing road, with no consideration

of environmental data.
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In 2011, Min et Wynter [79] developed a scalable method for traffic prediction up of to 15
min in a dynamic environment. The mathematical model they proposed was built upon
two variables : the distance, and average speed of vehicles. They showed excellent results
but using only two parameters made the computation process light enough to be fast.
One of the possible improvements they mentioned was adding external parameters, such

as "weather, incident data and roadwork, current or planned".

In order to compare algorithms, it was necessary to have an adequate dataset filled with
correct elements. Considering the review of previous works, the following variables have

been considered for the dataset :

e Weather : Sunny, Cloudy or Rainy

e Location : City, Highway, Isolated Road

e Day : Weekday, Week-end

e Time : Rush hours, calm hours

e Speed : Up to 120km/h

e Roadwork : Whether there are works on the road or not

e Traffic Incident : Whether there is a traffic incident or not

These specific parameters were chosen after the literature review made in Chapter 2, which
showed that traffic forecasting should at least include them. Data are either collected
by the vehicle’s sensors or the Smart City Broadcast, which is assumed to be by RF
transmission of notable event. These data are also classified into 3 categories : 1) Those
related to the surrounding of the vehicles (Weather, Day and Time) 2) the ones directly
related to the car’s behaviour (Speed and Location), and 3) the events that can happen
independently of the vehicle (Roadwork and traffic Incident). These data categories are

respectively detailed in Tables 3.1, 3.2 and 3.3. Based on the gathered information, we
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can predict the state of the traffic and categorize it into 4 different types : Light, Medium,
Heavy and Extremely Heavy. The main parameters to define the output are the Roadwork
and Traffic Incident variables, both being occasional and spontaneous events. They play
an important role in traffic congestion, and coupled with the other parameters, such as

the weather or the speed limitation, the traffic flow can be temporarily fully stopped.

Parameters name | Weather Day Time
Parameters values | Sunny, Cloudy or Rainy | Weekday, Week-end | Rush hours, calm hours |,
Gathering channel | Car Sensors Car System Car Sensors

Table 3.1 — Environment parameters

Parameters name | Position Speed
Parameters values | City, Highway or Isolated Road | Up to 120km/h |
Gathering channel | Car Sensors Car Sensors

Table 3.2 — Car parameters

Parameters name | Roadwork Traffic Incident
Parameters values | Yes or No Yes or No :
Gathering channel | City Broadcast | City Broadcast

Table 3.3 — Event parameters

3.3.1.1.2 Algorithm comparison

For this part, three completion algorithms from different methods are compared : 1) the
algebraic SVD (Singular Value Decomposition), 2) the statistical Mean Imputation and
3) the learning-based classifier KNN (K-Nearest Neighbor).

e The dataset technically being an integer matrix, it is possible to use algebraic algo-
rithms on it. One of the appropriate method is the SVD (singular value decompo-
sition), which has been proven to be useful for matrix completion [80].

SVD is an algebraic method, taking a mathematical approach to the problem. It
is used in the case of rectangular a rectangular that is split into three different

matrixes of smaller sizes for a better computation of the missing data.
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e The mean imputation is one of the easiest and most straightforward completion
methods and consists of calculating the mean value of each column and using it
as a replacement for the missing values. This method requires all the values to be

numerical.|81]

e The KNN method takes an incomplete row of data and compares it to the most
similar ones in order to predict the correct output. In this case it takes the road
and traffic conditions as inputs and tries to find similar cases in the knowledge base

and determine the traffic situation.|82]

The efficiency of these algorithms is evaluated based on the time they take to reconstruct
the dataset and the accuracy of their outputs. The one with the best results is chosen
as the optimal solution for the model. Different data sets were built, then some of their
elements were randomly dropped in order to simulate a malfunction in the gathering pro-
cess. The newly generated incomplete data set was then processed by the completion
algorithms, and the different outputs were compared to the original data. The differ-
ence ratio and the overall execution time were used to evaluate the performance of the
algorithm.

The first step in construction a model of traffic forecasting is the building of the dataset.
A Python program was developed that would generate 1000 set of events with their
respective outputs. As described in Algorithm 3.1, the parameters are randomly assigned
a numerical value that corresponds to the state of the variable. For example, Weather —
0 means that the weather is sunny and presents no problem, whereas a value of 2 means
it is a rainy day that may have a strong influence on the traffic. The Traffic Situation
output is computed by fusing the values of Weather, Location, Day, Time, Roadwork and
Traffic Incident. To simulate a more realistic situation where we could have a data loss, a
complementary script was added that would go through the dataset and randomly delete
an information, with a chance of 5%.

Once the incomplete dataset is ready, we started the augmentation phase. Data augmen-

tation is the process wherein the initial dataset is reinforced and completed. We searched
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for the optimal algorithm to clean it. Three methods have been considered and tested :
Mean Imputation, SVD and KNN classification methods. Table 3.4 shows a comparison
of the three algorithms performance. The KNN requires calibration in finding the value
of K, and the best results seem to be reached for K = 1, meaning that the algorithm
replaces a missing value with the closest set resembling it. This specific case of KNN,
known as the 1-nearest-neighbour, has already been shown to have excellent results for

low-dimension problems [83].

Algorithm 3.1: Complete Set

Input : None
Output: 1000*8 Training Set

Create Training Set;

Write the headers first;

for i < 0 to 1000 do

weather = randomValueOfWeather();

location = randomValueOfLocation();

speed = randomValueBetween|0:120] day = randomValueOfDay/();

time = randomValueOfTime();

trafficIncident = randomBoolean();

roadWork = randomBoolean();

trafficSituation = trafficComputation(weather,location,speed,day,time,
trafficIncident,road Work);

set = |weather,location,speed,day,time, trafficIncident,road Work,
trafficSituation|

Write the vector set in row ¢ of the Training Set
end

The SVD shows overall poor performances, which is not surprising considering that it
must make complex operations on the dataset. The algorithm needs to split the matrix of
data into smaller ones and process them in a specific order, hence the long execution time.
The performance value means that roughly a third of the predicted data were correct and
similar to the initial ones. This poor result could be explained because of the complex
size of the data set. The performance greatly increases in the two other algorithms. Mean
Imputation is a straightforward mathematical method and show great results as long as
all the data are numerical, while KNN is a ML algorithm relying on similar patterns

existing in the same data set. They both show overall similar results with an error rate
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Table 3.4 — Comparison between the completion algorithms.

Algorithm Execution time (in ms) | Performance
SVD 173 32%

Mean imputation | 107 99,3%

KNN 132 99,5%

of less than 1% and the KNN having a very small advantage, but the Mean Imputation is
slightly faster.The dataset being local, of 7 dimensions and of relatively small size, these

conditions happens to be the most advantageous for the algorithm.
Algorithm 3.2: Incomplete Set
Input : 1000*8 Training Set

Output: 1000*8 Incomplete training Set

Import the Training Set;
for 7 < 0 to 1000 do
j = randomValueBetween[0:100];
if j > 95 then
Random Cell from the row i = NA;

end

end

Save the new set as Incomplete Set;

3.3.1.2 Fuzzy Logic

3.3.1.2.1 Definition

Fuzzy logic is a method employed to handle the concept of partial truth, as opposed
to Boolean logic. It is a mathematical means of representing vagueness and imprecise

information. A fuzzy logic model is built on different parts:

e Meaning representation: The first step is to translate the given propositions
into a set of rigorous and usable constraints. The example given by Zadeh [84] is

the following : A fuzzy approach tries to copy a human’s ability to infer based on
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previous experiences and social norms, thus when we state that "usually Swedes are

blond", the term "usually" can be given an accuracy value between 50% and 80%

e Knowledge-base system: By definition, a knowledge-base is a way to store com-
plex structured and unstructured information, making it an "advanced" database.
The storing function is then completed by an inference engine, a tool that allows
the logical processing and reasoning on the stored elements. This process is enabled
using [F-THEN type of rules, which can particularly be useful when dealing with

fuzzy logic.

e Defuzzification: the last part of the process is the inverse transformation that is
opposite to the first one. It associates the results of the previous rules to a crisp
logic equivalent value. The receiving algorithm requires a real value in order to

function, and relies on the defuzzification output in order to do so.

By its nature, fuzzy logic allows for a better management of uncertainty in engineering,
and has found a fundamental role in many Al fields due to its potential in dealing with a

lack data.

3.3.1.2.2 Application

In Section 3.3.1.1.2, we tried to fill in empty information by looking for similar patterns
from the rest of the dataset. The fuzzy logic approach takes a different angle without
trying to generate new data.

Fuzzy logic relies on the notion of Membership function: an uncertain statement is
represented by a mathematical function covering a value ranging from 0 to 1. When
we refer to a sensor as functioning "Perfectly" or "Completely not functioning", those
are are the extreme possible value. But taking uncertainty into consideration means the
meanings of "Good" and "Poor" should be considered and represented. Membership

functions allow the representation on on how reliable an information is: when the Y-axis
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value of a fuzzy logic function is at 1, that is the equivalent of the literal expression
"Always" or "Definitely", while when it is 0, that would mean "Never" or "Definitely

Not". This is a proven way of representing just how certain an information can be.

We tried to apply this process for the management of sensor’s reliability. Indeed, due to
diverse reasons (shown in Chapter 2), sensors precision can sometimes drop because of
internal or environmental issues. A fuzzy logic approach would allow us to combine inputs
from multiple potentially faulty sources and try to infer a correct state of the environment

where the vehicle is evolving.

As stated in Chapter 2, the most common sensors in an autonomous vehicles are : Mono-
scopic camera, stereoscopic camera, infrared camera, radar, sonar and lidar.
They would however still need to reach a threshold of precision. In addition to internal
issues, the main uncertainty source on sensors come from brightness and weather states

[9]. When fusing their data, it is important to consider a margin of uncertainty.

In order to have a better grasp of the environment, all those variables are considered and
treated in order to produce a Perception score. This parameter will allow to categorize

the environment in which the vehicle is evolving, and influence the sensors activation.

The previous subsection mentioned that the Fuzzy logic method relied on three steps.
The membership functions allow for the transposition of fuzzy expressions into numeri-
cal, exploitable values. Once quantified, the inference and defuzzification processes can
happen. In the context of this work, we are looking for the evaluation of the perception
ability, meaning Perception will be quantified into different values: Poor, Average and

Good.

The logical rules combine the outputs of different variables in order to infer a general per-
ception value. They appear under the logical IF-THEN form, making it easy to combine
different variables. Examples can be found in Figure 3.2: In the first case, the brightness
is poor but the weather is great, making the general perception Average. In the second

case, both brightness and weather are good, making perception good too.

This approach can be applied to sensors too. Examples are shown in Figure 3.3. The first
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1. IF (brightness IS dark) AND (weather IS good) THEN (perception IS average)

2. IF (brightness IS good) AND (weather IS good) THEN (perception IS high)

Figure 3.2 — Defuzzification rules.

1. IF (cameraMono IS poor) THEN (perception IS poor)

2. IF (cameraMono IS good) AND (NOT(brightness IS good))
THEN (perception IS average)

3. IF (cameraMono IS good) AND (brightness IS good) AND
(weather IS good) THEN (perception IS good)

Figure 3.3 — Defuzzification rules for sensors.

rule is in the case the camera sensor is declared as poor, meaning it is unreliable due to
some malfunction or environmental condition. This situation would automatically impair
the perception score. In the second example, the sensor works well but the environment
is hindering, making the perception average. In the third example, the sensor functions
properly and the conditions are good, making the overall perception good.

The perception scores from the different functions are averaged to a single value which
will be the general output of the system. If the majority of the functions have a "Good"

perception value, it would be returned value to the Perception Class.

3.3.1.2.3 Weather has a value that ranges from "Sunny" to "Rainy" with numerical
associations in the range of |0;10]. It has a fuzziness equivalent of "Good","Poor", de-
pending of what is considered a "good weather" or a "bad weather". The representation
can be found in Figure 3.4.

The values were chosen in an arbitrary way of what a "good" or a "poor" value means. The
chart has two different functions: one for "poor" and one for "good". As stated above,
when the weather value is close to 0, the environment is sunnier, which is universally
considered to be the best weather, as well as the optimal situation for visual perception.

The "Good" function is at the max value for 0, which is a perfect sunny weather, and
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Figure 3.4 — Fuzzy representation of weather

starts to slowly decrease proportionally to the weather, reaching a null value for the bad
weather. On the other hand, the "Poor" function only starts to rise at the value of 6,
which would consist on a cloudy or light-rain situation (0 equals sunny, while 10 equals
rainy). At the max value, the membership function is at 1, meaning a rainy situation is

indeed considered a bad weather.

3.3.1.2.4 Brightness is a value that ranges from "Dark" to "Overbrightness" with
numerical associations in the range of [0;10]. It has a fuzziness equivalent of ["Dark",
"Good", "Bright"|, with an optimal brightness achieved at 5. The lowest values corre-
spond to Darkness and the highest to Overbrightness, both having a negative effect on
perception. The representation can be found in Figure 3.5.

The membership values for Brightness are split between three functions: "Dark", "Good"
and "Bright". The lower the brightness, the higher the "Dark" function membership value

is, while a too bright environment is considered as too "Bright", meaning overbright.

3.3.1.2.5 Sensors have each their own membership functions, but they all are sub-
divided into "Good" and "Poor" reliability. This can be altered due to weariness, en-

vironment, quality of the sensor or under-voltage. For example, a Stereoscopic camera,
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Figure 3.5 — Fuzzy representation of brightness

which is more expensive and of high quality, will be required to have a stricter definition
of "good functioning" than a Sonar, a cheaper and more common component. The details
of each membership functions are represented in Figure 3.6.

The X-axis defines the quality of the sensor, a variable depending on elements such as
the sensor current state or maintenance routine. The higher this value is, the more
confident we can be on the reliability of the gathered data. This is represented by a
higher membership value. The differences in the functions is related to the type of sensor:
some sensors can generate more data, or of better quality, hence the need to be more

strict in the the way they are trusted.

3.3.1.2.6 Knowledge-base implementation All those data are treated in order to
generate an output called PerceptionAccuracy which value varies in [0;3] with a higher

score representing a better Perception. This is later logged in the knowledge base.

In the knowledge-base, the perception score is classified as Poor, Average or Good. Its
value has an impact on how trusted the environmental detection is.
As stated at the beginning of this chapter, an ontology serves as the storage of different

elements making up a specific context as well as their properties and interlinked relation-

66



Membership degree

o
P

0.2
|

0.0

1.0 T
| good
poor
|

Membership degree

1.0 1.0
good | — good | good
/ poor poor poor
|

0.8

=)

o
°
EY

Membership degree

=)
IS

Membership degree
°
=

0.2 | 0.24 |

/ 0.0 0.0
6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
sonar cameraStereo cameraMono
1.0
| good

10
| good
poor

| poor

0.8 / 084 |
| |

0.6 064 | 06 ‘
|

Membership degree
°
a

Membership degree

0.44
|

0.24 0.24 ]
|
| |

0.0 J 0.0 0.0
R 6 8 10 B 6 8 10 R 6 8 10
cameralnfra lidar radar

Figure 3.6 — Fuzzy representation of sensors

ships. An important amount of elements classified will naturally result in a more precise
ontology:.
This section’s work was made in order to minimize the amount of data that could po-
tentially be lost due to hardware or low-level software issues. The dataset can either be
supplemented through completion algorithms, or fuzzy logic methods can be applied in
order to alleviate the uncertainty of the perception. This approach was mainly applied to
the environment detection.
Indeed, the correct identification of the environment is one of the most critical steps of
the process, from which most of the logical rules and decision-making process rely on (cf.

Figure 2.13), hence the need to reinforce it. This will allow for a better management of

the process for the rest of the process.
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3.3.2 Knowledge-base
3.3.2.1 Presentation

The work of this thesis relies on the use of a UAV in order to gather perception data and
sends them to a vehicle in order to merge and process them. As shown previously, an

ontology can do both of these operations.

Driver/Vehicle [«
Driving inputs Driving recommendations

Sensors perception data
(Veicle&UAV)

P | Knowledge-base

Environment (Ontology)

Environmental Completion
data algorithm Reasoner

Stored data Inferred result

Data completion process

.................

...................

Identification of the
environment

Selection of the
Selection of the Selection of the correct
correct sensors correct entity communication
protocol

Figure 3.7 — Knowledge-base step in the general model

An object in the knowledge-base can have properties. There are two type of properties: 1)
Data Properties link an individual to a numerical, literal, or boolean value and 2) Object
properties link individuals of the knowledge-base between them, regardless of their initial

class. There are multiple types of object properties, as illustrated in Figure 3.8, courtesy
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Figure 3.8 — Different types of properties

of the work of Horridge[85]:

e Functional property: is a property that links an individual to at most one other

individual.

e Inverse functional property: is a property where the inverse relationship is func-
tional. This means that the original individual can have multiple inverse functional
properties, but the targeted individuals only have that property toward the original

individual.

e Transitive property: is a property that get passed to other individuals. If in-
dividual A has a property related to individual B, and individual B has the same

property related to individual C, then individual A shares the property with C too.

e Symmetric property: is a property that applies similarly to all individuals that

share it.

e Asymetric property: is a property that can only happen in one way between two

individuals.
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3.3.2.2 Concepts of the knowledge-base

The ontology used for this study focuses on both the vehicle and its surroundings. The

general presentation can be found in Appendix A. It contains a variety of interlinked class:

3.3.2.2.1 Sensors

The Sensors class includes all the sensors that can be used in a road environment, as

shown in Chapter 2. They are subdivided in different sub-classes, as shown in Figure 3.9:

e Active Sensors: Sensors that rely on their own source of emission in order to gather
data. Lidars use a laser ray in order to map their surroundings. Radars generate
a high-frequency electromagnetic impulse and uses the Doppler effect|86] in order
to calculate the distance. Ultrasounds sensors rely on the same principle, but with

ultrasonic waves.

e Passive Sensors: Sensors that gather data without the need for generating any
form of emission. They mostly refer to cameras. There are 3 different types of
cameras : 1) Monoscopic cameras are the classical and most common ones, used
for classification and image processing. 2) Stereoscopic cameras rely on the same
principle except with more cameras, allowing for a depth perception. 3) Thermal
cameras are cameras using infrared radiations, allowing their use in bad weather
and poorly illuminated environments, but make the detection and classification of

elements harder.

e FEnvironmental Sensors: Sensors used for the detection of environmental variables,

including Rain, Fog and Brightness.

More details about the Sensors can be fond in the representation in Figure 3.10, especially

concerning their different properties:

o isWeakToRain property means that the sensor performs poorly in the case of rain.
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Figure 3.9 — Hierarchy of the Sensors class
e isWeakToFog property means that the sensor performs poorly in the case of fog.

o isWeakToBrightness property means that the sensor performs poorly in the case of

over brightness.

e isWeakToDark property means that the sensor performs poorly in the case of lack

of illumination.
e isUnreliable property means that the sensor performs poorly due to some reasons.
e hasMinRange property represents the minimal functioning range of a sensor.
e hasMaxRange property represents the maximal functioning range of a sensor.

e isActiveSensor property defines if a sensor should be activated or not depending on

the environmental situation.

3.3.2.2.2 Vehicle
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Figure 3.10 — Relationships and properties of the Sensors class

The Vehicle class includes all the different vehicles that can be encountered in a road
environment, including Cars,Trucks, Bikes, but also UAV. Here are the details of some

properties :

e hasDriver is a functional property between a vehicle and a driver. it allows for the

identification of the Ego Vehicle which will contain the MainDriver individual.

e hasSensor is a property that associates a vehicle with all the sensors embedded on

it

e hasDistanceFromVehicle: property allows the classification of the distance between
a vehicle and a physical obstacle on the road. It can have a value in the set
{Far,Medium,Close}. It can be associated to the boolean data property hasOb-

structed View.

o 1sCloseToUAV: applies when the ego vehicle is in communication reach of a UAV.

If the conditions are met, it can be associated to the boolean data property isAc-
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Figure 3.11 — Relationships and properties of the Vehicle class

tiveUAV for the data gathering request.

3.3.2.2.3 Communication Protocol

The CommunicationProtocol class includes the three possible disjoint communication pro-
tocol classes: RF, VLC and Hybrid. The only notable property of this class is isAc-
tive CommunicationProtocol which is a boolean nidicating which communication protocol
should be used depending on the situation. Protocols function differently depending on

the environment, and the hybrid approach, when available, allows for a reinforced data

transmission.

3.3.2.2.4 Objects

countered in a road environment, such as traffic light, pedestrians or road signs. it is sub-

divided in two generic sub-classes MovingObject and StaticObject. The individuals here
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Figure 3.12 — Relationships and properties of the Communication class

mainly have a role of populating the environment and being considered as "obstacles"
for the vehicle, but some of them can have special role, like a Building as a FireHazard

situation.

3.3.2.2.5 Action The Action class covers the main results of the decision-making

process, including the driving recommendations and the notable detected situations.

3.3.2.3 Logical rules

Once populated, the elements in the knowledge-base are processed through a reasoner

and a set of rules. Rules follow the logical IF-THEN pattern.
Reasoners work in a concurrent way, meaning that the rules are executed simultaneously
and not sequentially. However, for readability and clarity purposes, they have been re-

grouped in categories based on their common goal.

3.3.2.3.1 Environmental detection
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Identifying the correct environment is a critical part of the process. After the data rein-
forcement process, the object fed to the knowledge-base can be used in order to correctly

infer the environment. This is done thanks to logical rules.

e The environmental sensors gather the value of an environment variable and compare
it to a threshold IF (envSensor exists for environment X) AND (envSensor
returns envValue) AND (envValue bigger than threshold value) THEN

(environment is of type X ).

e In case different contexts can be linked to a single environment (for example, a
rainy or foggy context both correspond to a Bad Weather situation), this can also
be simplified by using logical rules IF (environment is Rain) THEN (environ-
ment is BadWeather) IF (environment is Fog) THEN (environment is

BadWeather)

e Some other situations can be covered, for example limited visibility IF (Object on
the road) AND (vehicle on the road) AND (object is very close to the
vehicle) THEN (the view is obstructed) or a fire hazard event IF (vehicle on
the road) AND (building nearby) AND (building is on fire) THEN (there
is a hazard of type FireHazard) AND (environment is of UnusualEnvi-

ronment type)

3.3.2.3.2 Entity, sensors and communication protocols management

The model is aware of what entity is in the vicinity of the vehicle, and based on the
environment, can also infer what sensors and communication protocols function properly

in a specified context. Those elements can be managed thanks to logical rules too.

e When a UAV is identified, there is a need to check if it contains the correct sensors IF
(there is a vehicle) AND (there is a UAV) AND (there is an environment

of type X) AND (there are sensors working on that specific environment)

76



AND (the UAV is carrying the sensors) AND (the UAYV is close enough
to the vehicle) THEN (the UAV is activated). Activating a UAV in the

knowledge-base means requesting perception data from it.

e Once activated, there is also a need to activate the sensors IF (there is a UAV)
AND (there are sensors working on that specific environment) AND (the
UAV is carrying the sensors) AND (the UAV is active) THEN (activate

the sensors on the UAV)

e The same methodology is applied to the communication protocol IF (there is
an environment of type X) AND (there are communication protocols
working on environment X) AND (there is a UAV) AND (the UAV can
communicate using the defined protocols) THEN (activate the commu-

nication protocols).

Due to the nature of a reasoning engine, these different tasks are actually implemented
in parallel. However, for better readability manipulation, the rules are regrouped in a

modular way.

3.3.3 Decision-making process

The previous sections introduced the different elements of the model as well as an in-
troduction to the logical rules used for this work. This section will dive deeper into the

SWRL rules covering the different situations.

3.3.3.1 Rules description

3.3.3.1.1 Environmental detection

In order to deal with the varying status of weather, different rules exist in order to identify

the situation that the vehicle is currently evolving in.
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Figure 3.15 — Decision-making step in the general model
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Due to the importance of a correct environmental detection, there is an additional Per-
ception Accuracy variable (cf. Section 3.3.1) which makes the data only trusted if the
general state of perception is considered good enough.

fogSensor(?7fogS) ~ hasFogValue(7fogS, 7fogV) ~

PerceptionAccuracy(?P)~ Good(7P)"
swrlb:greaterThan(7fogV, 50) ~ Weather(?W) -> Fog(7W)

rainSensor(?rainS) ~ hasRainValue(?rainS, ?rainV) -~
PerceptionAccuracy(7P)~ Good(7P)~
swrlb:greaterThan(?rainV, 50) ~ Weather(?W) -> Rain(?W)

snowSensor (?snowS) ~ hasSnowValue(?snowS, 7snowV) ~
PerceptionAccuracy(?P)~ Good(7P)~
swrlb:greaterThan(7snowV, 50) ~ Weather(?W) -> Snow(7W)

Figure 3.16 — Detection of weather using sensors.

Sun(?S) -~ Environment(?7Env) -> NormalEnvironment (7Env)

Fog(?F) ~ Environment(7Env) -> BadWeather (7Env)
Snow(?S) ~ Environment(?Env) -> BadWeather (7Env)
Rain(?R) ~ Environment(?Env) -> BadWeather (7Env)

Figure 3.17 — Classification of the environment depending of the weather .

The values from the environmental sensors are gathered and processed using the rules
shown in Figure 3.16. Using the environmental sensors, if the detected value is above a
certain threshold, the weather status is changed to the detected one (Fog, Rain or Snow).
The set of rules in Figure 3.17 will then rely on the Weather variable in order to infer the
Environment status. The default "Sun" value results in a Normal environment, while the

other status will lead to a BadWeather environment.

A similar approach is taken for the identification of brightness level of an environment.
The associated rule found in Figure 3.18 allows for the detection of a dark environment,

which can influence the contrast of the road.
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brightnessSensor (?brightS) ~ hasBrightnessValue(?brightS, 7brightV) -
swrlb:lessThan(?brightV, 50) ~ Environment(7Env) -> Dark(7Env)

Figure 3.18 — Detection of brightness using sensors.

3.3.3.1.2 Entity and sensors activations

hasSensor(?U, ?cm) ~ UAV(?U) ~

cameraStereo(?cm) ~ Vehicle(?V) ~ Object(?70) -
hasObstructedView(?V, ?0) ~ NormalEnvironment (?Env)
~isCloseToUAV(?V, ?U)

-> isActiveUAV(?U, true) ~

isActiveSensor(?cm, true)

Vehicle(?V) ~ hasDistanceFromVehicle(70, NearDistance)
~ Environment(?Env) ~ Object(70) ->
hasObstructedView(?V, ?70)

Figure 3.19 — Obstructed view

Fog(?7f) -~ UAV(?7u) ~ Radar(?r) ~ cameralnfra(?7c) ~
hasSensor(?u, 7c) ~ hasSensor(?7u, ?r) ->
isActiveUAV(?7u, true)

Figure 3.20 — Activation of a UAV

UAV(?u) ~ Radar(?r) -~ cameralnfra(?c) ~
hasSensor(?u, 7c) ~ hasSensor(?7u, ?r) ~ isActiveUAV(?u, true) ->
isActiveSensor(?r,true) ~ isActiveSensor(7c,true)

Figure 3.21 — Activation of the sensors of the UAV

Once an environment has been correctly assessed, the model needs to ask for perception
enhancement. Figure 3.2.3 illustrates a simple activation scenario : suppose that a vehicle
is in a situation wherein the view is obstructed. There is a UAV stationed there with
adequate sensor (in this case, a simple camera). If the vehicle is close to the UAV (the

isCloseToUAV condition is marked as True), then the system asks for the activation of
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the UAV and its sensors, effectively meaning the start of data gathering and transmission

by the drone.

3.3.3.1.3 Communication protocol

A. RF(?7r) -~ hasCommunicationProtocol(?U, ?v) ~
hasCommunicationProtocol(?U, 7h) ~ Hybride(?h) ~ VLC(?7v) -
BadWeather(?b) ~ UAV(?U) -~ hasCommunicationProtocol(?U, 7?r)
-> isActiveCommunicationProtocol(?r, true) ~
isActiveCommunicationProtocol(?v, false) ~
isActiveCommunicationProtocol(?h, false)

B. RF(?r) -~ hasCommunicationProtocol(?U, ?v) ~ Dark(?d)
~ hasCommunicationProtocol(?U, ?h) ~ Hybride(?h) ~
VLC(?v) ~ UAV(?U) -~ hasCommunicationProtocol(?U, ?r)
-> isActiveCommunicationProtocol(?h, true) ~
isActiveCommunicationProtocol(?v, true) ~
isActiveCommunicationProtocol(?r, true)

C. RF(?r) ~ hasCommunicationProtocol(?U, ?7v) ~
FireHazard(7f) ~ hasBrightnessValue(?br, 7bv) ~
hasCommunicationProtocol(?U, ?h) ~
brightnessSensor(?br) ~ Hybride(?h) =~ VLC(?7v) ~
UAV(?U) ~ hasCommunicationProtocol(?U, ?r) ~
UnusualEnvironment (7ue) ~ swrlb:greaterThan(?bv, 70)
-> isActiveCommunicationProtocol(?r, true) ~
isActiveCommunicationProtocol(?v, false) ~
isActiveCommunicationProtocol (?h, false)

D. RF(?r) -~ hasCommunicationProtocol(?U, ?v) ~
FireHazard(7f) -~ hasBrightnessValue(?br, 7bv) ~
hasCommunicationProtocol(?U, ?h) =
brightnessSensor(?br) ~ swrlb:lessThan(7bv, 70) ~
Hybride(?h) =~ VLC(?v) =~ UAV(?U) -~
hasCommunicationProtocol(?U, ?r) ~
UnusualEnvironment (7ue) ->
isActiveCommunicationProtocol(?h, true) ~
isActiveCommunicationProtocol (?v, true) ~
isActiveCommunicationProtocol (?r, true)

Figure 3.22 — Communication protocol
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As stated earlier, there are multiple possible communication protocols : a classical RF
protocol, a VLC-only protocol in case of interferences, and an optimal hybrid protocol
with a better quality of service thanks to the redundancy of data. The choice is made

according to the environmental situation the vehicle is evolving in.

As shown in Chapter 2, VLC relies on light and performs poorly in a bad weather envi-
ronment, because of the diffraction of the raindrops, fog and snowflakes. Rule A covers

this situation but only activating the RF protocol in a bad weather environment.

However, those characteristics also allow VLC to bring light in spaces with poor illumi-
nation, enhancing the general visibility and perception in a dark area. Thanks to that,
the hybrid approach presents a real interest in a Dark environment. This situation is

illustrated by Rule B.

In some specific situations, such as in a Fire Hazard, the illumination of an environment
can have an impact on the VLC sensors. Rules C and D cover two different scenarios

where, depending of the brightness of a fire hazard, the VLC protocol is activated or not.

3.3.4 Summary of the process

This work revolves around the perception enhancement of an autonomous vehicle, a pro-

cess done in four steps, as shown in Figure 3.23:

1. Environment detection : The system infers what kind of environment the vehicle is

advancing in

2. Sensor activation : The system decides what sensors works best in the current

environment

3. Entity activation : The system looks up nearby entities (UAV) carrying at least the

adequate sensors
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4. Communication protocol activation : The system selects the adequate communica-

tion protocol according to the environment.
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Figure 3.23 — Focus on the decision-making process

This modular approach ensures that all stacks of the process are addressed according to
their own parameters. The environment situation plays the most important role into the
proper functioning of the elements, but some other variables can influence each steps, such

as if the sensors are functional or not, or if the correct ones are present on the UAV or not.

The reasoner will consult the set of rules and apply them on the elements classified
in the knowledge-base. It will first use the available elements in order to identify the
environment, as shown in Figure 3.17. This will allow for the correct identification of
the context where the vehicle is evolving, and will have a direct impact on the resulting

reasonings:

83



e Thanks to the logical rules and data properties, the reasoner can correctly identify

which sensors can function well and which ones are weak in a particular situation.

e The knowledge-base also contains a list of different entities (UAV) available on site
and their embedded sensors, allowing for the system to select which ones should be

requested.

e [s also included the different communication protocols available on each entity, as

well as their respective weaknesses.

The logical rules were implemented by taking into consideration all these elements, and
allow for the reasoner to output different inferred elements: Current environment, re-
quest assistance on a specific entity, activation on specific sensors, activation

of specific communication protocols and, if possible, driving recommendations.

It is important to remember that an inference engine will run all the rules simultaneously,
meaning that the results are processed at the same time. However, for a specific situation,
if one of the steps is not validated, it will cancel the whole process. For example, if the
vehicle is in a rainy area and has no rain sensors, the environment will not be correctly
assessed and the perception enhancement process will not happen. Or if a UAV does not

have the correct sensors, then it will not be asked to transmit perception data.

A simple scenario: suppose that a vehicle is approaching an intersection where an obsta-
cle (a rock) is limiting its visibility, and the environment is a normal one, with correct
brightness and a sunny weather. There is a UAV stationed at the intersection. The sen-
sors of the vehicle will log their outputs in the knowledge-base and the reasoner will infer
that there is a need for perception enhancement. It will check that the UAV possesses
the correct sensors, in this case a simple camera, and will request its help. It will also
decide on the communication protocol depending on the environment. The hybrid proto-

col works fine in those conditions, and offers a better integrity of the data thanks to the
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transmission redundancy. The UAV informs the vehicle of an incoming vehicle, as well as

its position, allowing the ego vehicle to take act accordingly to the situation.

3.4 Conclusion

This chapter presented the notion of a knowledge-base as well as the ontology developed
for this thesis. The different classes making up the system were introduced, as well as
the different properties linking them. The individuals are managed through a system of

rules.

The knowledge-base gathers various driving and surrounding information from the ve-
hicle’s sensors and store them unto the appropriate classes, as well as their different
properties and relations. The inference engine is then called to process all those elements
with the use of logical rules, and outputs its conclusions : the status of the environment
as well as the actions that should be taken. If the visibility is limited, and if an adequate
UAV is available nearby, then it will be requested to collect additional data thanks to its

sensors and transmit these data to the vehicle.

That last part is also critical because perception data may be seen as sensitive and their
broadcasting needs to be done in a safe way. Indeed, the correct selection of the commu-
nication protocol is also managed by the knowledge-base, based on the available ones and
their compatibility with the current environment.

The details on the secured communication protocols is covered in the next chapter.
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Chapter 4

Secured communication process
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4.1 Introduction

In the context of the emergence of [oT and its implementation in smart cities, new is-
sues have appeared, notably in terms of services, infrastructures and safety. The onset
of autonomous vehicle and UAV are one of the most important reasons of these issues,
including the passengers’ safety and traffic issues. Considering the consequent intelligent
elements evolving in the road environment, it is vital to ensure that they have some mean
to communicate between them. VLC (Visible Light Communication) and Li-Fi (Light
Fidelity) are communication protocols that use visible light as information vector. The
emitters of these systems are luminous sources (LEDs or LASER) blinking at a high
enough frequency that it becomes invisible to the human eye. The blinking process allows
for the transmission of a signal. Equipped with emitters and sensors, the different parts

of the network can communicate through this system.

This chapter will introduce communication security, before focusing into the strenghts
and weaknesses of RF and VLC for vehicular communications. It will then present a
hybrid communication protocol merging both technologies and illustrates a few scenarios

where it would be interesting to use it.

4.2 Secured communications

Security threats are a key issue in today’s connected environment. They may compromise
the integrity of private data and could even endanger the lives of people. As a result,
real concerns about security have led to the advent of multiple research tracks in order to
ensure the protection of information.

The primary focus of this thesis is not on communication security, but it is still important

to know where the proposed solution fits in the existing methodology.
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Figure 4.1 — The communication part happens for data transfer between entities in the
same environment. The protocols are also managed by the set of rules used by the
reasoner.
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4.2.1 Cryptography

Encryption is a concept where a computational algorithm is used in order to alter the
content of a message and generate a new unintelligible message instead. The receiver will
then need a security key in order to backtrack the process and find the clear message. A
security key is a string of characters or numerals that is used with the associated decoding

algorithm in order to understand the encoded message.

Encryption is one of the oldest and most common way of protecting data. Julius Caesar
proposed a cipher system based on letter shifting|87], and the most advanced protocols

rely on quantum mechanic in order to guarantee unbreakable protection|88].

There are two different types of encryption algorithms used for data security :

e Symmetric: The key used for the encryption is the same one used for the de-
cryption. This means the distribution of the keys needs to be done before the
transmission of information. Some algorithms using this approach : Triple DES,

Blowfish, AES.

e Asymmetric: Two different keys are used for encryption, a public and a private
key. The public key is available for everyone and can be used for the encryption of
any message. The private key is kept secret and can only be used by the authorized
agents for the decryption of the message. Some algorithms using this approach :

RSA, DSS.

The actual applications can take a variety of forms, sometimes even mixing multiple ap-
proaches. For example, the Off-the-Record approach [89] relies on the AES encryption
and the SHA-1 hashing in order to ensure an optimal security. It also guarantees that

previous messages cannot be read in case the key is lost.

Identity-based encryption is another way of securing communication where the encryption
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key is defined by the receiver’s identity. The sender must first ensure that the receiver is
the correct one, and only if so a secured link is established between them. This ensures

that no malicious entity can access the message [90].

Encryption is then considered as a major way of protecting data privacy, but it is a
method relying mainly on software and mathematical approaches. It is possible to bring

data protection to an even lower abstract level.

4.2.2 Physical layer security

Most of the modern communications rely on electromagnetic RF technologies. There are
many advantages to this approach, for example the possibility to broadcast to multiple
agents or to send a message through opaque obstacles (walls). However, these properties
can also cause security issues because the signals can be intercepted or jammed by ill-

intentioned individuals.

These concerns stem from physical vulnerabilities, and can be addressed the same way.
As shown in Section 4.2.1, encryption algorithms rely on public and private keys, usu-
ally digitally generated and stored. Saving the private key on a physical media would
drastically reduce the number of potential attackers|91|. Security between two different
intelligent agents can also be reinforced by ensuring that a physically-wired connection is
required for them to communicate [92]. New communication technologies could allow the

use of an alternative physical link.

Taking everything into consideration, there are multiple ways to ensure that a commu-
nication between two agents is secured. The application presented in this thesis revolves
around Vehicle/UAV interaction, meaning that this aspect should not be left out. The
PHY layer (Physical layer) security increase would work well in our situation, especially

by using new technologies such as VLC.
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4.3 Communication protocols

4.3.1 RF communication

Wireless communication is the main method of communication in modern technological
agents. There are multiple wireless communication protocol [93], such as WiF1i, Bluetooth,
or even DSRC (Dedicated Short Range Communications) for vehicular communication.

These protocols however have their own set of drawbacks.

Indeed, communication issues can stem for a variety of reasons, such as the presence
of blocking material (concrete) or electromagnetic interference. These interferences can
come from malignant jamming or more natural causes. There are different events on a
road environment that can negatively impact RF communications, for example a Fire
Hazard.

Heat can be transferred through three different ways [94]:

e Conduction : The energy is transferred from one molecule to the other through

direct contact.
e Convection : The energy is transported by a moving fluid, such as water or air.
e Radiation : The energy is transferred by electromagnetic waves.

Wireless protocols rely on electromagnetic waves in order to transmit data. The presence
of other mitigating signals could alter the proper communication between two agents. A
high enough temperature is already known to be able to generate an electrical voltage,
as proven by the Seebeck Effect[95], but there are two ways by which fire could have an

impact on electromagnetic waves:

e Environment change : This situation is mostly known for underwater communica-
tions|96], where the attenuation factor of water restricts the communication range of

RF protocols. In a broader way, the phase difference between the air/water interface
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creates a discontinuous environment that can alter the propagation of electromag-
netic waves [97]. A similar concept can be applied to a cold air/hot air situation if

the heat difference is consequent enough.

e Electromagnetic generation : At a high enough temperature, fire can produce plasma
through air, which is one of the fourth state of matter. The exact conditions to
generate plasma are not exactly known with the current physics knowledge, but
plasma is known to have electromagnetic components by ionizing the air around

it[98].

Hence, in addition to the obvious damages a fire hazard could cause to communicating

infrastructures, there is also the risk of data being directly corrupted.

4.3.1.1 High-temperature behaviour

In order to verify these theories, some basic tests were made: A wireless communication
was established between a computer and a SOC (System On Chip), and a controlled fire
was ignited between them. Data were then exchanged and monitored.

In order to increase the chances of having the electromagnetic waves passing through the
ignited area, the devices were put in Faraday Cages. A Faraday cages is an enclosure used
to block electromagnetic fields : by wrapping a space in multiple layers of conductive
material, the incoming electromagnetic waves will be absorbed by the charges of the
covering material. As shown in Figures 4.2b-4.2a, there is a clear attenuation of the
signal depending of the orientation of the receiver.

An illustration of the process can be found in Figure 4.3.

The data were sent with the ping command. Packages were sized at 1024 bytes and sent
every 10ms. Around 5000 packages were sent for each experiment. The fire was located
near the emitter.

Results showed that the fire only had a small impact on the travelling time of packages,

with an average speed of 1.93 ms for the unlit fire situation and 2.1ms for the lit fire
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situation. There was however a difference in the packet loss rate : 36 packets were lost
for the unlit fire situation, and 129 for the lit fire situation. In the various repeated
experiments, the highest BER (Bit Error Rate) reached was 0.0314.

Tests were made by making adjustments to the temperature of the fire, varying between
350°C and 1750°C. A higher temperature seems to have more impact on the communica-
tion.

Although elemental, the results of this experiments reinforced the idea that a fire hazard

would have an effect on both communication structures and wireless protocol.

4.3.2 VLC

VLC (Visual Light Communication) is an optical wireless communication (OWC) tech-
nology wherein the signal is produced by a light source and the data are transmitted over
the visible light spectrum. The transmitter can either be a LED or a Laser Diode (LD).

It has been around for many decades now, the first practical use being by Alexander
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Graham Bell in 1880, who invented the photo-phone : By vibrating a mirror at a specific
frequency, he managed to modulate a voice signal and receive it over 200m away with a

parabolic receiver.

The invention of light amplification by stimulated emission of radiation (laser) enabled a
breakthrough in VLC communication : US scientists in the 1960’s managed to transmit
a voice signal modulated by laser over 190km. Nowadays Japanese road networks use IR
(Infra-Red) devices to send traffic information directly to the vehicles: There are more
than 30000 IR beacons over the Japanese roads in a system called Vehicle Information
and Communication Systems (VICS)[36]. While VICS is not technically VLC, it proved

that we could use near-IR signals for V2X communications|37].

In general, the concept of VLC is a simple one: by modulating light above a certain fre-
quency, information can be transmitted while ensuring there is no noticeable difference for
the human eye. The different steps of the technical process can be found in Figure 4.4[39].

As shown, the process is split in different steps :

Data emission In electronic communications, data are constituted of a succession of
bits. In order to improve the size, readability and security of the transmission, the data
can be encoded and modulated. Coding is the process where the bits are regrouped
according to different patterns and algorithms in order to compress the overall size of
the payload, and reduce the amount of data that needs to be transmitted. Modulation

depends of the mean of transportation and aims to adjust the carrier signal into the
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Figure 4.5 — Headlight of a vehicles used for data transmission

adequate form depending of the physical transportation method.

VLC being different from classical radiowaves-based protocol, there are multiple ways of
modulating a signal, for example Intensity Modulation of the light for generating data
according to the brightness of the LED. However, the most popular approach would also
be the easiest one : the On-Off-Keying (OOK) consists of turning the LED on and off
depending of the bit to be sent (On for 1, Off for 0), and over a certain frequency is
completely transparent for the naked eye.

The message emission can be done with the use of an LED. There is a significant advantage
in doing so considering LEDs are present in a lot of existing infrastructures (vehicles, traffic
light, etc.) and only need signal modulation in order to transfer data. In Figure 4.5, a

car’s headlights are used for transmission

Channel Transmission A VLC signal is emitted by using a light source, generally a
LED bc of the advantageous reliability, robustness and low-power consumption. While
other traditional means of communication rely on either physical connections (wires, op-
tical fiber) or high-frequency radio spectrum, VLC messages travel through natural en-
vironment, referred to as the Free-Space Optical (FSO) environment. This can be air,
outer space or vacuum.

"Light" has a frequency ranging from 10nm to 1mm, including Ultraviolet and Infrared.
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Figure 4.6 — Distance between the emitter and the receiver

Visible light is comprised between 400nm and 800nm. Compared to the wavelengths of
other frequencies, light can not go through opaque objects. This is the reason why VLC
requires a clear line-of-sight between the emitter and the receiver.

Depending of the environment, some parameters need to be considered too, such as light
diffraction or light noise. Those can be treated by using additional tools, for example
lenses or filtering algorithms .In Figure 4.6, the emitter and the receiver are separated by

15m in an indoor environment.

4.3.2.0.1 Data reception This is the opposite and complementary step to the Emis-
sion process. A light receiver is used in order to gather the transmitted signal, which is
then demodulated and decoded in order to find the original data payload.

There are different ways to read the incoming VL.C data. The two most popular method
are through the use of a camera or a Photodiode (PD). Cameras with a good enough
resolution and processing power can catch on the smallest variation of brightness and
reconstruct the message from it. A PD is a semiconductor device that can convert a
stream of photons into a current, and can generate an electronic message by receiving a
modulated light. In Figure 4.7, the receiver is a PD which is logging the data sent by the

emitter in Figure 4.5.
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Figure 4.7 — Photodiode as a receiver

4.3.2.1 Benefits of VLC

This thesis focuses on the communication between a vehicle and an UAV. In that regard,

VLC offers various benefits as a communication protocol[39] :

e The visible light spectrum corresponds to a huge bandwidth of around 300 THz that
is not regulated. In comparison, the RF communications cover a range of 400GHz

which are extremely regulated and overcrowded.

e The corresponding frequencies do not interfere with radio waves and cannot pass
through obstacles, which means VLC system can be used along with RF systems

while providing an increased privacy

e The LED, on the other hand, can be modulated at very high speed which means
data rates of hundreds of Mbps can be achieved with adapted modulations and

off-the-shelf, low-cost components

e The information is carried through visible light. This would mean that an ill-
intentioned individual would need to be physically close to the source in order to

intercept the data.

A summary of the main differences between VLC and RF communications can be found

in Table 4.1.
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Property VLC RF

Bandwith 400-800nm 300 GHz

Line Of Sight Yes No

Range Short to medium Short to long

Service [llumination and communication | Communication

Noise sources Sunlight and light sources Electromagnetic interferences
Power consumption || Low Medium

Mobility Limited Good

Coverage Narrow Wide

Table 4.1 — Comparison of various properties of VLC and RF

4.3.2.2 Setup validation

The VLC setup used for making tests was based on the OpenVLC project|99]. It is an
open-source, low-cost VLC platform allowing for the fast prototyping of VLC communi-
cation scenarios. The VLC setup can be seen in Figure 4.8: There is an emitter system
plugged on a car’s taillight and interfaced with the network commands, while the re-
ceiver was positioned at a 2m distance with a lens helping focus the signal. The network
payloads are transmitted through the taillight LED matrix and logged by the receiver.

For the basic communication experiments, the system was evaluated on the iperf network
measurement tool|100], sending packages at the speed of 100kb/s, a frequency at which
the blinking was undetectable to the human eye. As shown in Figure 4.9, the communi-
cation works perfectly with only 0.34% of data loss, due to some slight displacement of

the focusing lens.

4.4 Hybrid vehicular application

4.4.1 Advantages of a hybrid approach

No matter all its benefits, no system is perfect on its own. VLC is also considered as a

complementary means in hybrid communications.
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Figure 4.8 — Setup of the VLC testing
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In [101], it is stated that RF communication is sensitive to jamming attacks and interfer-
ence, and even if the use of Cognitive Radio (intelligent detection of unused transmission
channels) can minimize the risks, they still propose the addition of VLC communication to
strengthen security. Another experiment was conducted by [102|, where a joint 5G/VLC
prototype was set up. The smart city sensors data were gathered and transmitted to the
road infrastructures (traffic light) through 5G, and then to the cars via VLC. This hybrid
solution allows for the data to quickly reach vehicles while making sure the wireless net-
work is not saturated. A similar study is led by Rahaim et al. [103], where VLC would act
as a complementary protocol that would take over when WiFi reaches maximum capacity.
In 2016, Rakia et al. [104] introduced a dual-hop data transmission system. The first hop
transmits data on VLC to a relay node where an RF protocol will take over. In order
to optimize the energy consumption, the DC component of the received optical signal is
harvested and then used to power the RF communication. The proposed system showed
great throughput results, even if the DC bias and power-harvesting component could still
be improved, according to the authors. The work of Pan et al. [105] was also based on a
VLC energy-harvesting feature in a hybrid RF/VLC settings, this time focusing more on
data privacy. The hybrid VLC/RF approach allows to ensure only the designated receiver
acquires the message, preventing eavesdropping.

Section 3 introduced the global concept of this work as well the different communication
protocols considered in this study (RF, VLC and Hybrid) A VLC/RF hybrid approach is

suitable in this situation because :

e Intelligent Transport Systems can, by design, communicate with their surroundings

[106]
e VLC is a technology revolving around light, making for a brighter environment.

e The redundancy of information allows for a more secured communication and robust

system.

The method proposed in this work is to have VLC and RF as a hybrid communication
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Figure 4.10 — Illustration of the proposed communication protocol

protocol in order to ensure that no information is lost during data transmission between 2
agents : The "heavy" data is sent through VLC, because of its high-speed and reliability,
and the hash of the data (much smaller and used to verify the integrity of the transmitted
information) are sent through an RF channel. An illustration of this process can be found

in Figure 4.10.

4.4.1.1 Hashing algorithms

"Hashing" refers to a process where data are passed through a function that produces a
fixed-sized string of characters. There are some benefits to hashing, and it is a useful tool
in data security and data integrity: the same set of data will always produce the same
string of characters as output, meaning that if the initial information is compromised,

even by a few bits, the returned hash will be completely different from what is expected.

There are indeed many types of hash functions, with different level of safety guarantees.
The concept proposed in this thesis focuses on the protection against data loss during
transmission and speed transmission, and to this end a basic hashing algorithm such as

MD5 is acceptable [107]. Pamula et Ziebinski [108] proposed the real-time hashing of
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Table 4.2 — Transmission speed of some VLC studies

Transmission time
Study Speed (for 200Gb)

Haigh et al. 2013 [110] | 3Mb/s 18hrs

Haigh et al. 2016 [111] | 170Mb/s | 19mins

Shi et al. 2019[112] 5Gb/s 40s

a buffered live video stream by using FPGA (Field Programmable Gate Arrays). That
study managed to reach a hashing throughput of more than 400Mb/s for blocks of 512
bits thanks to hardware acceleration, generating a signature for each frame.

An FPGA validation system setup at the receiver would then be able to generate the hash

of 1Gb of data in about 65ms, and quickly ask for a resend if an error is detected.

4.4.1.2 VLC transmission speed

As stated in the previous sections, VLC also presents an advantageous transmission speed.
This would mean that, for a similar Round-Trip Delay (RTD), the size of the data frames
would be bigger than when using RF communication. This would allow for the acknowl-
edgement process and the hashing data check to happen more regularly too, enabling a

faster transmission of the data.

Depending on the type of LED and receivers used, the transmission rate can greatly vary:
Table4.2 offers an illustration of some of the throughputs reached by other works, as well
as the average unloading time of 200Gb of data. The first study used of OLED in order
to reach a speed of 3Mb/s, and the same team made an Artificial Neural Network as an
equalizer and high speed receivers in order to improve the speed to 170Mb/s. Another
study made use of FPGA and 64 QAM (Quadrature Amplitude Modulation[109]) to reach
a VLC throughput of 5Gb/s.

With the use of VLC the data can then be transmitted at an extremely high-speed,

ensuring a good transmission of the gathered data. Most digests generated by hashing
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Figure 4.11 — llustration of the hybrid testing setup

functions are only a few hundred bits long, making their transmission via RF light. In
addition, and as stated above, the computing of a new hash can be reduced to a few
nanoseconds with the use of FPGA technology, guaranteeing a fast verification of the

received data.

4.4.1.3 Hybrid setup

Once the setup was validated in Sec 4.3.2.2, we tested a hybrid communication approach
: both sides were equipped with WiFi dongles and a wireless sub-network was established
between them, in addition to the VLC one already existing. The ping function was then
used for validation : the emitter would send a payload by VLC, and the receiver would

acknowledge it using WiFi.

An illustration of the process can be found in Figure 4.11. The transmitter TX and
the receiver RX are connected to two different sub-networks : a WiFi wireless one, and
a VLC one. The devices are equipped of the physical accessories to connect on both
networks (WiFi dongles and VLC physical layers), and are assigned an IPv4 address for
each interface. Each technology using a different sub-network, they have different network
address: they can communicate via WiFi on the 192.168.1.X sub-network, and with VLC
using the 192.168.2.X addresses

This setup would allow us to experiment on hybrid communication. The concept proposed
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in this thesis is illustrated in Figure 4.12.

First, the image data is turned into a string of bytes.

The MD5 digest is generated using the string of bytes. The output is a much smaller

string of data attesting of the integrity of the data.

On the emitter side, two communication sockets are opened, managed by two dif-

ferent threads. The first socket is on the VLC sub-network, while the second in on

the WiFi one.

On the first communication channel, the raw string of bytes is transmitted.

On the second communication channel, only the generated digest is transmitted.

The receiver gathers data from both channels. It will use the MD5 algorithm on

the raw data in order to generate the digest and compare it to the received one.
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With this approach, the integrity of the data would be ensured thanks to the redundancy.
Using two parallel channels allows for a fast detection of error, and enables a quick answer

in case of detection of data corruption.

4.5 Typical applications

The hybrid approach shows an interesting potential for the transmission and verification

of heavy data. There are some scenarios where this approach would be interesting.

4.5.1 Train station use case

This is an ideal scenario which supports the hybrid communication concept presented
beforehand. The use case chosen here is a train transmitting an important amount of data
to a train station. In 2016, Ahamed [113] underlined that the UK Network Rail, similarly
to the APTA (American Public Transportation Association) , requires all footage inside
trains to be downloaded on a server when entering a depot /siting [114], and proposed the
idea of using VL.C in order to do so. The concept proposed here is based on the hybrid
approach. The train uses its headlights in order to communicate with photosensors located
in front of it. Once the communication is established, the video data are transmitted via
VLC into the station, after being parsed in smaller packets. In parallel, the hash of each
packet is transmitted via RF to the receiving server, which will compare it to the one it
computes from the transferred data. If an error occurs, the receiver can ask for a re-send
of the previous packet

Indeed, The VLC/RF hybrid approach is suitable in this situation because :

e The train is immobile and usually sheltered from light noise sources (the sun)

e Trains already possess light bulbs, and can modulate the output in order to com-

municate
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Figure 4.13 — Illustration of the usecase in Ahamed work|[113]

@Establish communication

a @ Transmit video data
@ Transmit data hash

.)))

= a
’ ®
In case of problem, requests new data Computes hash
— of data and
? compare it to the

one received

Figure 4.14 — Tllustration of the proposed model for hybrid train application.

e Train stations infrastructures are usually made of metal and concrete [115], making

it hard for RF waves to pass through|[116].

As stated by the last point, the architectural infrastructure of a train station can make
RF communication difficult, so it would be interesting to pair this protocol with a com-

plementary channel of communication.

The concept proposed in this section is illustrated in Figure 4.14. The train uses its
headlights in order to communicate with stationary photo-sensors located at the end of
the line ahead of it, as illustrated by Ahamed in Figure 4.13. Once the communication is
established, the video data are transmitted via VLC into the station, after being parsed in
smaller packets. In parallel, the hash of each packet is transmitted via RF to the receiving
server, which will compare it against the one it computes from the transferred data. If

an error occurs, the receiver can ask for a re-send of the previous packet.

This scenario could be one potential application for the hybrid system.
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UAV(?U) -~ hasSensor(?U, 7cm) ~

cameraStereo(?cm) ~ Vehicle(?V) ~ hasObstructedView(?V, ?70) -
NormalEnvironment (?Env) ~ isCloseToUAV(?V,?U)

-> isActiveUAV(?U, true) ~ isActiveSensor(?cm, true)

Figure 4.15 — Camera activation

UAV(?U) =~ RF(?r) = Hybride(?h) =~ VLC(?v) -~
hasCommunicationProtocol (?U, ?7v) ~
hasCommunicationProtocol(?U, 7h) ~
hasCommunicationProtocol (?U, 7r) ~
NormalEnvironment (?e)

-> isActiveCommunicationProtocol(?r, true) ~
isActiveCommunicationProtocol (?v, true) ~
isActiveCommunicationProtocol(?h, true)

Figure 4.16 — Communication protocol activation

4.5.2 UAV /Car application

This thesis focuses on the use of a UAV for perception assistance of a vehicle. The UAV
uses its sensors to gather information and send them to the vehicle.

There are multiple possible sensors that can be embedded, for example a camera. In
Chapter 3, we presented the logical rules that could result in the data gathering request
and the activation of sensors. A simple camera activation rule can be found in Figure 4.15.
These same rules can be used for the management of communication protocols. In Fig-
ure 4.16 there is a rule covering a simple case: if a UAV is equipped with both RF and
VLC technologies (making it equipped for the hybrid protocol), and if the environment
has no particular hazard, then the system can require the activation of the hybrid protocol

in order to reinforce communication. This would allow for a safer data communication.

In other cases, the system might evaluate that the VLC protocol cannot function properly
in some environment because of constraints. In Figure 4.17 is a situation wherein the VLC

protocol is not activated (and incidentally the hybrid one) because of the weather. Bad
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fogSensor(?fogS) ~ hasFogValue(7fogS, 7fogV) ~
PerceptionAccuracy(?P)~ Good(7P)"
swrlb:greaterThan(7fogV, 50) ~ Weather(?W) -> Fog(7W)

Fog(?F) ~ Environment(7Env) -> BadWeather (7Env)

UAV(?U) =~ RF(?r) = Hybride(?h) =~ VLC(?v) -~
hasCommunicationProtocol (?U, 7v) ~
hasCommunicationProtocol(?U, 7h) ~
hasCommunicationProtocol(?U, ?7r) ~
BadWeather(?7b)

-> isActiveCommunicationProtocol(?r, true) ~
isActiveCommunicationProtocol(?v, false) ~
isActiveCommunicationProtocol(?h, false)

Figure 4.17 — Example of a situation where the VLC protocol is not activated. Due to
the light diffraction caused by fog, it is harder for the message to be transmitted.

weather can have a strong impact on light diffraction and makes it harder for VLC to
function properly. In this case only the RF protocol is activated since it is not affected

by weather conditions.

Depending on the computing power of the two agents, the UAV could either parse the
data beforehand, or directly sends the video stream to the vehicle. In this case, it would
then be sending a consequent amount of data. According to the APTA (American Public
Transportation Association) guidelines [117], a CCTV camera covering a passenger area
must be able to record at a frequency of 5 to 15 fps at a minimum of 800*600 resolution.
With a H.264 coding [118], this would correspond to around 1.1 Mb/s of data generated
by one camera.

Considering, the sensitive nature of the environmental information, we must ensure that
the data are safely transmitted and minimize the loss and corruption rate during the

transfer.

As stated in Section 4.2, data protection can take place in the physical layer, for example

thanks to the VLC protocol. It also offers a throughput strong enough to carry heavy
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data and can hardly be intercepted. VLC would be suited for the data transfer of some
heavy data.

Also, in order to guarantee additional security and integrity during the transmission, the
hybrid approach would permit the reinforcement of the process thanks to the redundancy
of the data hash. The receiver would then be sure that no corruption happened during

the transmission.

4.6 Conclusion

The previous chapter introduced the knowledge-base model making the complete assis-
tance system. Multiple aspects are managed by it, including the communication protocol
(cf. Section 3.3.3.1.3), but it does so from a higher abstraction layer, with little in-
volvement in the technical methods. The communication protocols were detailed in this

chapter.

This chapter introduced the VLC technology and its potential for vehicular application.
Optical communications offer advantages that cannot be found with other electromagnetic
waves technologies, and an interest for their indoor and outdoor applications is starting to
grow. This chapter also presented a hybrid RF/VLC which would allow for a reinforced
data privacy thanks to information redundancy. Data are sent through a physical chan-
nel, and their digest are transferred through another one. If the generated hash does not
match the received one, the receiver then asks for a resend of the corrupted data. In an
environment where communications can be disturbed by external elements, this method

would allow for a sturdier exchange of data.
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5.1 Introduction

Previous chapters introduced the different concepts of this work. In order to validate the
model as a whole, there should be a way to make different tests in various use cases and

evaluate the performances of the decision-making system.

This chapter presents the simulator developed in order to make those tests. It will intro-
duce the Unity-based simulator as well as the different tools allowing for the gathering
and processing of driving data. Multiple users took part in different scenarios with the
assistance of the driving knowledge-base, and their outputs were logged and compared

with tests subjects who went through the same situation without assistance.

Driver/Vehicle [«
Driving inputs Driving recommendations

Sensors perception data

(Veicle&UAV)
Environment » | Knowledge-base
(Ontology)
Stored data Inferred result
Environmental Completion —
data algorithm Reasoner
Data completion process -
......... L 2

...................

Identification of the
environment

Selection of the
Selection of the Selection of the correct
correct sensors correct entity communication
protocol

Figure 5.1 — Simulation steps in the model. The experiments actually cover all the steps,
but only the main components are represented in this illustration.
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Figure 5.2 — View of the development aspect of the simulator.

5.2 Simulator

5.2.1 Presentation of the simulator

The validation of the model was done in a virtual simulator. The interface was based
on the Udacity|119] project, a car simulator built with the Unity engine[120]. It allows
for the building of driving surroundings (Roads, obstacles), driving conditions (Rain,
Fog, Physics constraints, etc.), and the manual control of the vehicle. The development
environment can be seen in Figure 5.2

On a technical level, the driving data are logged in a JSON format and sent via an engine
to the knowledge-base. The reasoner will then be called and infer the environmental
status.

The communication between the simulator and the knowledge-base is done through a
socket connection. We considered 2 different software tools to do so : the Java OWL API
[66] and the Owlready Python library. We compared both of those approaches in order
to choose the optimal one for our study.

In Figures 5.3 and 5.4, we compared both engines execution times. We executed both of

them on a similar environment where the vehicle encounters some heavy-processing events.
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Figure 5.3 — Computed inferring time for the Java tool

As we can see, and depending on the situation, the Python tool offers steady performances
with a processing time of around 1 second. The Java occasionally outperforms it, but it
has more trouble in harder contexts : we can observe a high peak when the car encounters
a fire hazard. The execution speed being an important factor, the choice was made to
go with the Owlready tool for this study. An illustration of the process can be found in

Figure 5.5, in which the XML object represents the ontology.

Each sensor has its own way of gathering and processing data. For example, cameras
relying on deep learning algorithms in order to classify objects [121], LIDAR technology
supporting this process with depth-computation [122| or radar sensors for the detection of
close elements [123|. The multiple types of methods and algorithms are not considered in
this work. The methodology proposed in this paper focuses on a higher lever of processing
aimed at the decision-making operation. This is made possible thanks to the simulated
environment that allows to virtually generate the necessary environmental data while
retaining the constraints of the studied sensors, which have been defined according to the

state of the art in Section 2.
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Figure 5.4 — Computed inferring time for the Python tool

Environment data

o~ 2

Sensors activation

Figure 5.5 — Illustration of the technical implementation.
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Figure 5.6 — Experimentation setup

5.2.2 Experimentation description

As specified in the previous section, the Udacity tool allows for the quick development of
multiple scenarios. The main goal of this study is to show that the use of a UAV allows
for the perception enhancement of a vehicle.

In the experiments, this concept was represented as an ADAS system. The experimen-
tation using the case description was made by having different human agents drive in
predetermined situations. The driver control the vehicle with an external racing wheel
and brakes(cf. Figure 5.6) and the simulator acts as as proxy for the vehicle’s sensors,
logging the environmental driving data into the knowledge base. These data are of vari-
ous natures and correspond to what a real vehicle would collect, such as the localisation,
speed of the vehicle or the presence of an obstacle in front of the vehicle. The simulator
allows the virtual generation of these data.

For instance, when the vehicle reaches an area where there is fog, the fog sensor of the
vehicle will receive a numerical value of 70, which is higher than the threshold value fixed
at 50 for fog-detection and the Weather individual will be classified as Fog. An illustration
of this process is shown in Figure 5.7. The raw data from the simulator are sent to the
ontology through the Python pipeline. Details of the transmitted data can be found in
Table 5.1.
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Human agent Protégé ontology and Pellet reasoner

p P
- o)
CEE—— Inference process

Car controls Driving data

©,

Inferred results

(9

Perception information

Unity driving simulator

Figure 5.7 — Interactions between different agents. The human agent controls the car,
the generated driving data are stored in the knowledge base, and the eventual important
information are displayed to the user in a widget.

Once logged in the knowledge base, they are processed by the set of logical rules and the
tools described in Section 5.2. If the system inference requires a perception enhancement,
and if the conditions are verified (i.e., available UAV within reach with all the correct
sensors), the additional information will be displayed on screen, as shown in Figure 5.10:
a message informs the user that an obstacle is at a certain distance of the vehicle. This
distance is computed thanks to the localization of the ego vehicle and the localization of
the obstacle detected by the UAV.

The limited-visibility areas are built so that the controlled vehicle would crash into sta-
tionary or moving obstacles if the driver is not careful enough. The obstacles are purposely
positioned to maximize the chances of a hit in case of bad driving, for example by over-
speeding. In each location, a stationary UAV is positioned in order to cover a specific
site. The UAV communicates with the vehicle to provide information on the covered
area. Upon request, it will transmit the gathered data to the vehicle, giving important
information such as the distance to an obstacle, as shown in Figure 5.10. In this way, the

ego vehicle gets knowledge of obstacles in a specific area in advance.
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An illustration of the general architecture can be found in Figure 5.8.

TCP Knowledge-base
SOCKETS

HMI component

e
one
\ Simulated environment /

Reasoner

Figure 5.8 — Global architecture of the simulator.

Simulated environment The simulated environment is where the core interaction
takes place. It is through it that the test subject can browse the environment, be advised
on their next surroundings, and complete the given course. The different elements of
the context are initiated here (vehicles, obstacles, hazards, etc.), and all the necessary
data are generated periodically during the experiment. It is in constant communication
with the knowledge-base via a TCP socket interface, sending data on the surroundings
and receiving the inferred results from the reasoner. The simulator runs in the Unity
software.

The simulated environment is made of three major components:

e The data generator component manages the virtual data that will be generated and

gathered by the system. There are three different types of data:

— The driving data, related to the ego vehicle controlled by the test subject and
influenced by the driving inputs (cf. Figure 5.6). Those are all the information
on which the test subject has a direct influence, such as the speed or the

steering angle.
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— The Environmental data are the data gathered by the Environmental sen-
sors. The simulator allows the manipulation of different variables, for example
brightness or rain level, and those can be used for the correct identification of

the environment.

— The Perception data are the data gathered by the other perception sensors,
for example distance or position sensors. They are generated by the sensors
embedded on the vehicles and UAV, and used for the identification of other

entities on the road.

e The knowledge-base interface component manages the interfacing of the simulated
environment and the knowledge-base. The generated data are encapsulated in a
JSON format before being sent to the knowledge-base via a TCP socket, and the
same channel is used for the receiving the inference results and driving recommen-

dation.

e The HMI (Human-Machine Interface) component allows the interaction between
the user and the simulator. The actions the driver take are shown in the simulator,
like the car moving when the driver uses the accelerator, and the assistance widget
displays the results of the inference engine, for example warning of the presence of

an obstacle ahead of them.

Knowledge-base The knowledge-base is where all the data are stored and processed.
It comes in the form of an ontology which needs to be setup beforehand: all the necessary
classes are initialized, as well as the logical rules for the reasoner. The different individuals
are declared based on the information incoming from the simulator’s data, and categorized
in the according Class. The ontology is stored in XML format and built thanks to the
Protégé software.

The data received from the simulator are used for populating the knowledge-base: the

individuals are stored in the right class, and their inner and shared properties are also
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declared. Those elements are sent to the reasoner in order to infer some new conclusions

from the existing entities. The ontology is also periodically saved in the XML format.

Reasoner The reasoner serves as the intelligence layer of the model. By cross-referencing
the knowledge-base individuals with the logical rules, the reasoner can infer new infor-
mation, such as the environment the vehicle is evolving in, or the action that it should
take. Those deductions are also stored in the knowledge-base in specific classes such as
the Action or Environment ones. The reasoner used is Pellet, and the logical rules editor
is a plug-in to the Protégé software (cf. Figure 5.9).

The reasoner part is made of the inference engine (Pellet), which crosses the knowledge-
base population with the pre-declared set of logical rules in order to infer new actions and

elements that will be sent back to the ontology and stored in a specific class.

Name Rule Comment
v P ~ ~ > ()
v s UAV(7u) ~ Car(7c) ~ sl
v 82 Fog(7f) ~ UAV(7u) ~ Ra
v awidFog Fog(7F) ~ UAV(?U) ~ Cal 2) > Different...
v avoidobstructed UAV(?U) ~ Car(?V) ~ isq rentLanes(?A)
v hame) ) Obstacle 2
v communication_BadWeat... RF(?r) ~ hasCommunica I-OMMunication_FireHazard_normalLit ) ~ hasCommuni... Obstacle 3 Communication
v communication Dark RF(7r) ~ hasCommunical Comment CommunicationP... Obstacle 2 Communication
[obstacle 4 Communication - no Iifi if too much brightness.
v communication_FireHazar... RF(?r) ~ hasCommunica| Status brightnessSensor... Obstacle 4 Communication - no Iifi if t...
v communication_Normal RF(?r) ~ hasCommunica| gi (2, ?h) ~ brightn... Obstacle 1 Communication
v hazard fireEnvronment  Vehicle(2V) ~ Hazard(?H Obstacle 4
@ methTest rainSensor(zr) ~ brighte] RECT) ~ NasCommMuNICatioNPTotocol7U, ) ~ FireHazard(7) ~ hasBrightnessValue(7br, 7bv) ~ [ > Brake(?a)
v obsctructedview Vehicle(v) ~ hasDistan| f1ascomm Pro 7h) 54 70) ~ Hybride(7h) Obstacle 1
v request UAV(?7u) ~ Action(7a) -] [VEC(V) ~ UAVI?U) = hasC 20, 7r) >
ActiveC: 7, true) ~ isActiveC . true) ~
v uavEnable | ~ uaf [SActveC b Obstacle 37
v uavEnable_standard hasSensor(?U, 7em) ~ u " Jronment(?Env) ->... Obstacle 1
v weather_SunDetection  Sun(?S) ~ Environment(
v weather_fogDetection  Fog(?F) ~ Environment(
v weather_fogSensorDetec... fogSensor(?fogs) ~ has| cancel ok Obstacle 3
v Rain(7R) ~ Obstacle 3

New | Edit | Clone | Delete

Control [Rules | Asserted Axioms | Inferred Axioms | OWL 2 RL |

Figure 5.9 — SWRL logical rules editor as it appears in the Protégé software.

Figure 5.10 — Informing the driver about the distance to an obstacle
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5.3 Scenarios

Different test groups were led through various situations and their reactions were logged
and evaluated. The scenarios ranged from some single basic situations to complex numer-
ous events.

The following scenarios were arbitrarily chosen because they illustrate different aspects

and allow the validation of the model.
e The first scenario is a simple case explaining the basic case and tools of the model.

e The second and third scenarios respectively cover how the system reacts to an
inclement weather and a poorly lit situations, and what kind of rules apply in those

situations.

e In the fourth scenario, we introduce a rainy situation where the model is not able
to perform correctly due to the lack of some parameters. Then we compare the

performances with the same scenario and a functioning model

e The last scenario is a complex one with multiple events the test subject needs to
cross. There is also an illustration on how the data cleaning and completion process

is used for more reliability in the gathered data.

Those different scenario allow us to cover different situations and validate our work in a

variety of situations.

5.3.1 Intersection with a moving vehicle

In the scenario of an intersection, a vehicle reaches an intersection where the visibility is
limited by a natural element (a rock). Another vehicle is incoming at the same intersection
and cannot be detected because of the obstacle. A UAV is stationed at the intersection
and transmits additional position data if requested. This experiment does not focus on

the scheduling priority of an intersection. An illustration can be found in Figure 5.11.
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The different elements of this scenario are represented in Table 5.2, along with their
matching expressions in the knowledge-base. Those are the main elements that will be
stored in the ontology during the course of the test, but not all of them have to be used
by the reasoner: for example a vehicle can be carrying multiple sensors, but only one of

them could be relevant or sufficient, depending on the context.

e my Vehicle is an individual of the Vehicle class serving as the main vehicle. inter-
sectionVehicle is the vehicle that can be encountered on the road and is hidden

by the obstacle

e UAV Crossroad is the UAV stationed in the intersection and covering the blind

spot made by the obstacle.

e LiFi, DSRC, and HybridProtocol are the different communication protocols
equipping the drone and the main vehicle. The individual names belong to different
classes in the ontology: They all belong to the CommunicationProtocol class, but

LiFi (Light-Fidelity) is a VLC technology, while DSRC (Dedicated Short-Range

Communications), is an RF techonology.

e Rock belongs to the Obstacle class, and is identified as so due to its proximity to

the main vehicle and the impact it has on the visibility.

e CameraS1, LidarL1l, LidarL2, RadarR1 are the names different sensors em-
bedded on the elements via the hasSensor property. The main Vehicle carries the
LidarL1l and RadarR1 sensors, while the UAV carries the CameraS1 and LidarL.2
sensors. Those elements belong to their respective classes in the ontology, but they

are all members of the Sensor parent class.

e NormalEnvironment and ObstructedView are elements used for the identifi-
cation of the context. The brightness and weather are fine, meaning the natural

surroundings are normal and the Environment class will stick to the default value,
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but there is an obstacle close, so the reasoner will infer the Action class as Obstruct-
edView. (The Action class serves for the storage of the deductions of the reasoner,

not only the physical driving recommendations)

my Vehicle .
inifersection\/ehicle Vehicle(?v)
UAV _ crossroad UAV(7u)
LiFI VLC(?v)
DSRC RE(7r)
HybridProtocol CommunicationProtocol(?c)
Rock Obstacle(?0)
CameraS1, CameraS2 S;l;lf(l";?‘cereo(?cs),
LidarL1, LidarL2 Radar("?r)
RadarR1, RadarR2, RadarR3 .

Sensor(7s)
NormalEnvironment Environment(?e)
ObstructedView Action(7a)

Table 5.2 — Elements of the first scenario as they are identified in the simulator and their
matching variable in the logical rule

Four drivers took part in the experiment. Two were guided by the reasoning system, and
two were not. The users were given some preparation time before in order to get used to

the driving commands. Results are summarized in Table 5.3.

The drivers had different approaches for this situation. Some tried to rush their way
through the intersection, while others proceeded with extreme caution. The non-assisted
test subject who decided to speed their way through the experiment crashed in the up-
coming vehicle and was ejected out of the road, resulting in the slowest completion time
of more than 40s. The one who decided to go slowly had to proceed at an extremely low
speed in order to make sure that they would encounter no incoming vehicle, an action
which took 27s.

Thanks to the UAV stationed at the right position, the assisted test groups were in-
formed of the presence of an incoming vehicle ahead of reaching the intersection. They

were also notified of the distance between them and the moving vehicle, and depending
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Figure 5.11 — Environment test with an obstructed view

Average speed | Time to complete the experiment | Incident
Non-assisted driver 1 | 19km/h 45s Yes
Non-assisted driver 2 | 11km/h 27s No
Assisted driver 1 17km/h 15s No
Assisted driver 2 16km/h 22s No

Table 5.3 — Results of the obstructed view driving experiment.
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Figure 5.12 — Environment test with an obstructed view

on it could either try to go through the intersection while the other vehicle is at a safe
enough distance, or wait for it to pass. The test subject who went with the former option
took 15s to complete the circuit, which is the fastest time, while the one who waited
showed a result of 22s.

In this scenario, the events are happening in a normal environment, which is a Sunny
situation where no real perturbation is applied on the sensors. Considering the nature of
the situation, a basic sensors, such as a stereoscopic camera, should be enough to improve
perception. The set of rules in Figure 5.13 allows for the handling of the situation : An
object in front of the vehicle and classified at NearDistance (20m) raises the Obstructed-
View property, meaning that the front visibility is reduced. Since there is a UAV nearby,

the system ensures it possesses the right sensor, and requests additional data from it.

Here is a breakdown of the rules used in this scenario. More explanations about the rules

can be found in Appendix A.

e In the first rule, the element Vehicle(?V) refers to the vehicle the driver is control-
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ling, known as myVehicle
e The Rock blocking the view is an Object on the road, making it Obstacle(?0O)

e The vehicle is close to the obstacle, which is expressed through the NearDistance

value of the hasDistanceFromVehicle property.

e The previous elements allow to conclude that the vehicle V has the property ha-

sObstructedView with the obstacle O.
The second rule includes some of the same elements in addition to new ones.

e In the second rule, the element UAV (?U) refers to the drone stationed at the

intersection, individually named UAV _Crossroad.

e The cameraStereo(?cs) element refers to a stereoscopic camera, and the hasSen-
sor(?U,?cs) property means that the sensor should be embedded on the UAV. As
shown in Table 5.2, those conditions are validated since the drone does carry the

adequate camera.

e NormalEnvironment(?Env) ensures that there is no specific constraint on the

environment, meaning the weather and brightness are adequate.

e isCloseToUAV (?V,?U) is a condition ensuring the vehicle and the drone are close

enough.

e Once all the conditions are validated, the isActiveUAV (?U,true) property is in-

ferred as true: the vehicle requests the assistance of the drone.

The third rule follows a similar approach for the management of the communication

protocols.

e RF(7r) and VLC(?v) respectively designates the RF and VLC communication

protocols, while the Hybride(?h) refers to the hybrid protocol
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Vehicle(?V) ~ Object(?70) ~ Environment(7Env) ~
hasDistanceFromVehicle(?0, NearDistance)
-> hasObstructedView(?V, 70)

UAV(?U) -~ cameraStereo(?cs) ~ hasSensor(?U, 7cs) ~
Vehicle(?V) ~ Object(?70) ~ hasObstructedView(?V, 70) ~
NormalEnvironment (?Env) ~ isCloseToUAV(?V,?U)->
isActiveUAV(?U, true)

UAV(?U) -~ cameraStereo(?cs) ~ hasSensor(?U, 7cs) ~
isActiveUAV(?U,true) -> isActiveSensor(?cs, true)

Figure 5.13 — Avoiding obstacle in fog

e The hasCommunicationProtocol(?U,?v) means the UAV is equipped with the
tools to establish a VLC communication. The same applies to the RF and Hybrid

objects.

e As for the previous rule, the NormalEnvironment(?E) indicates there is no real
noticeable event in the environment, meaning there is no constraint on the activation

of any protocol.

e Since the UAV assistance is already required, as shown by the property isAc-
tiveUAV (?U,true), the communication protocols can be activated thanks to the

property isActiveCommunicationProtocol

Since there is no specific element that could hinder the communication protocols, it is
safe to go with the hybrid protocol in order to improve the redundancy of information.
In order to do so, both RF and VLC need to be activated too, as shown in the SWRL

rules in Figure 5.14.

The variable in the knowledge-base are directly referencing objects and properties in the
simulator. For example, Vehicle(?V) represents the vehicle the test subject is driving,

while Object(?0) is the rock blocking the view.

128



UAV(?U) ~ RF(?7r) =~ VLC(?7v) ~ Hybride(7h)
~hasCommunicationProtocol (?U, ?7v)
~hasCommunicationProtocol (?U, ?7h)
~hasCommunicationProtocol (?U, ?r)
~“NormalEnvironment (7E)
~isActiveUAV(?U,true) ->
isActiveCommunicationProtocol (?r, true) ~
isActiveCommunicationProtocol (?v, true) ~
isActiveCommunicationProtocol (?h, true)

Figure 5.14 — Communication in a simple obstructed view scenario

5.3.2 Foggy area

In this situation, a vehicle is driving on a single lane when it enters a foggy area where
a UAV is stationed. An immobile vehicle is located on the same road and serves as an
obstacle, as well as some pedestrians crossing the road. The speed, weather and distance
data are gathered from the vehicle sensors and are transmitted to the knowledge-base. If
necessary, and if requested, there is a UAV nearby which can provide information of the

present elements.

The different elements of this scenario are represented in Table 5.4, along with their
matching expressions in the knowledge-base. Those are the main elements that will be

stored in the ontology during the course of the test.

e my Vehicle is an individual of the Vehicle class serving as the main vehicle.

e UAV Fog is the UAV stationed in the foggy area. It would still encounter the
same conditions and sensor hindrance than the vehicles, but the real interest here is
in the perception range enhancement: by being stationed further on the road,
the UAV has access on information concerning what the main vehicle will encounter.

Even with a limited radius, the advanced positioning still offers potential.

e LiFi, DSRC, and HybridProtocol are the different communication protocols

equipping the drone and the main vehicle. Their activation depends on the current
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Figure 5.15 — Environment test with fog

environment : for example, the light diffraction from the fog can be disabling for

the VLC techonology.

FogF belongs to the Fog class, itself a sub-class of Weather. It generates the
FogV numerical value, which is gathered by a FogSensor object and compared to a

threshold value to derive the weather state.

FogSensorF1, Camerall, LidarL1, LidarR1, RadarR2 are the names differ-
ent sensors embedded on the elements via the hasSensor property. FogSensorF1
is an EnvironmentalSensor used by the main vehicle for the identification of the en-
vironment. The main Vehicle also carries the LidarR1 and RadarR1 sensors, while
the UAV carries the Camerall and LidarR2 sensors. Those elements belong to their
respective classes in the ontology, but they are all members of the Sensor parent

class.

BadWeather is from the Environment class and is inferred by the elements of the

Weather class.
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my Vehicle .
movingVehicle Vehicle(?v)
UAV _Fog UAV(?u)
LiFl VLC(7v)
DSRC RF(7r)
HybridProtocol CommunicationProtocol(?c)
Fog(7f)
Fogl Weather(?7w)
5
FogSensorF1, FogSensor(7fs) '
Cameralnfra(?ci)
Camerall, .

. Lidar(71)
LidarLi1, Radar(?r)
RadarR1, RadarR2 adari 't

Sensor(7s)
BadWeather Environment(?e)

Table 5.4 — Elements of the second scenario as they are identified in the simulator and
their matching variable in the logical rule

Average speed Time to complete the experiment Max speed Incident
Non-assisted driver 1 | 41km/h 17s 69km /h No
Non-assisted driver 2 | 28km /h 48s 70km /h Yes
Assisted driver 1 46km/h 13s 84km /h No
Assisted driver 2 37km/h 15s 57km /h No

Table 5.5 — Results of the foggy driving experiment.

Four drivers took part in the experiment. Two were guided by the reasoning system, and
two were not. The users were given some preparation time before in order to get used to
the driving commands. Results are summarized in Table 5.5.

In general, the assisted drivers performed slightly better than the non-assisted group. In
fact, one of the non-assisted test subject crashed into the obstacle and could not recover
from the incident, despite going at a relatively low speed (28km/h). The assisted users
managed to complete the experiment faster: when informed about the presence of an
obstacle, they have enough time to plan for the overtaking process. Also, when asked
about their overall feedbacks, they stated that the presence of the assistance system gave

them more confidence into going at a faster speed.
With the assisted group, two different logical rules are applied. The rules in Figure 5.17

are the ones managing the detection of the environment and the decision-making, while
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Figure 5.16 — Illustration of the foggy simulated environment

the rule in Figure 5.18 manages the communication protocol. The former uses the virtual
sensors of the simulated car in order to evaluate the environment (inferred as "Foggy"
weather and "Bad Weather" environment). It will then ensure that the nearby UAV pos-
sesses the adequate sensors and requests its assistance. If it exists, the assisted rule will

advise the driver on the best action to make.

The second set of rules concerns the communication protocol. The strengths and weak-
nesses of the different communication protocols are covered in Chapter 4, and in this
particular scenario, the bad weather would have an impact on the VLC communication,

which makes it best to rely on RF communications instead.

This basic experiment validates the general usefulness of the model. The assisted users
showed both a safer behaviour and a faster average speed than the other test subjects. In
addition to the technical perception enhancement, the knowledge of being assisted seems

to also bring a psychological support to the driver.
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Vehicle(?v )~ FogSensor(7fogS) ~ hasSensor(7C,7fogS)

~ hasFogValue(7fogS, 7fogV) ~ swrlb:greaterThan(?fogV, 50)
~ Weather (7W)

->Fog(7W)

Fog(?F) ~ Environment (7Env)
-> BadWeather (7Env)

Fog(?F) =~ UAV(7u) ~“Radar(?7ra) ~ cameralnfra(?c)"
hasSensor(?u,?c) ~ hasSensor(?u,?ra)
-> isActiveUAV(?u,true)

UAV(?u) ~ Radar(?ra) ~ cameralnfra(?c)~
hasSensor(?u,?c) ~ hasSensor(?u,?ra) ~ isActiveUAV(?u,true)
-> isActiveSensor(?ra, true) ~ isActiveSensor(?c, true)

Figure 5.17 — Avoiding obstacle in a foggy situation

UAV(?U) ~ RF(?r) =~ VLC(?v) ~ Hybride(7h)
~hasCommunicationProtocol (?U, 7v)
~hasCommunicationProtocol (?U, 7h)
~hasCommunicationProtocol (?U, 7r) ~ BadWeather(?b)->
isActiveCommunicationProtocol(?r, true) ~
isActiveCommunicationProtocol(?v, false) ~
isActiveCommunicationProtocol(?h, false)

Figure 5.18 — Communication in a foggy situation
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Figure 5.19 — Environment test in a dark area

5.3.3 Dark environment

In the dark environment scenario, the users had to drive through a circuit with poor
brightness and extremely reduced visibility. There will be different UAV stationed at
some positions which will be providing light, and doubling as VLC-communication equip-

ment. An illustration can be found in Figure 5.19.

The different elements of this scenario are represented in Table 5.6, along with their
matching expressions in the knowledge-base. Those are the main elements that will be

stored in the ontology during the course of the test.

e my Vehicle is an individual of the Vehicle class serving as the main vehicle.

e UAV Dark is the UAV stationed in the foggy area. It would still encounter the
same conditions and sensor hindrance than the vehicles, but in the similar way to

the previous scenario, the interest here is in extending the perception range.
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my Vehicle Vehicle(?v)
UAV_ Dark UAV (7u)
LiFI VLC(7v)
DSRC RF(7r)
HybridProtocol CommunicationProtocol(?c)
i ?
BrightnessSensorBS1, BrlghtnessSensqr( 7bs)
Cameralnfra(?ci)
Camerall, .
. Lidar(71)
LidarLi1, Radar(7r)
RadarR1, RadarR2 adar 't
Sensor(7s)
Dark Environment(?e)

Table 5.6 — Elements of the third scenario as they are identified in the simulator and their
matching variable in the logical rule

e LiFi, DSRC, and HybridProtocol are the different communication protocols

equipping the drone and the main vehicle.

e BrightnessSensorBS1, Camerall, LidarL1, LidarR1, RadarR2 are the names
different sensors embedded on the elements via the hasSensor property. Bright-
nessSensorBS1 is an EnvironmentalSensor used by the main vehicle for the identifi-
cation of the environment. The main Vehicle also carries the LidarR1 and RadarR1
sensors, while the UAV carries the Camerall and LidarR2 sensors. Those elements
belong to their respective classes in the ontology, but they are all members of the

Sensor parent class.

e Dark is from the Environment class and is inferred by the value of the brightness.

The vehicle is maneuvering in a densely populated urban area, with potentially other
obstacles. An obstacle is stationed in the pathway, after an intersection with limited per-
ception, but can be avoided with the additional assistance of a UAV. Three test subjects

partook in this experiment in three different situations :

e Absence of UAV : There was no light source in the circuit and the driver could only

see a few meters ahead of them
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Figure 5.20 — Environment test in a dark area

e UAV without the necessary sensors : Some sensors, mostly cameras, work poorly

on a dark environment. They might not be able to transmit the correct data

e UAV with the necessary sensors : Even in a dark environment, the UAV provide

both brightness and information on the vehicle’s surroundings

Details of the results can be found on Table 5.7. As expected, the subject with no
additional lighting took the longest time to complete the course, with the slowest average
speed. Due to the speed constraint imposed by the nature of the experiment, it was
still able to avoid the obstacle after having spotted it. The user who had additional
illumination thanks to the UAVs went considerably faster, still going slowly in areas
that were not correctly brightened. Finally, the user who was assisted by the perception
system showed a globally similar speed but was able to foresee the presence of the obstacle,
preparing their maneuver in advance.

For the assistance experiment, the logical rules in Figure 5.22 and Figure 5.23 were acti-
vated. The former set manages the identification of the environment (classified as Dark)

thanks to the returned brightness sensor value, and asks for the assistance of a nearby
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Average speed | Time to complete the experiment | Incident
No UAV 12km/h 94s No
UAV illumination and no assistance | 16km/h 65s No
UAV assistance 17km/h 5Ts No

Table 5.7 — Results of the darkness environment driving experiment.

Figure 5.21 — Presence of the obstacle in a dark environment
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brightnessSensor (?brightS) ~ hasBrightnessValue(?brightS, 7brightV) -
swrlb:lessThan(?brightV, 50) ~ Environment (7Env)
-> Dark(7Env)

UAV(?U) ~ cameralnfra(?ci) ~ Radar(?r) ~ Lidar(?71) hasSensor(?U, 7ci) ~
hasSensor(?U, ?r) ~ hasSensor(?U, ?71) -~ hasSensor(?U, ?7r) ~
Vehicle(?V) ~ isCloseToUAV(?V,?7U) ~
Dark(7Env) ->
isActiveUAV(?U, true) ~ isActiveSensor(?ci, true) ~
isActiveSensor(?r, true) ~ isActiveSensor(?1l, true)

UAV(?U) ~ cameralnfra(?ci) ~ Radar(?r) -~ Lidar(?71) hasSensor(?U, 7ci) ~
hasSensor(?U, ?r) ~ hasSensor(?U, ?1) ~ hasSensor(?U, ?r) ~
isActiveUAV(?U, true) ->

isActiveSensor(?ci, true) -~

isActiveSensor(?r, true) ~ isActiveSensor(?l, true)

Figure 5.22 — Obstructed view

RF(?r) ~ hasCommunicationProtocol(?U, ?v) ~ Dark(?d)
~ hasCommunicationProtocol(?U, 7h) ~ Hybride(7h) ~
VLC(?v) ~ UAV(?U) -~ hasCommunicationProtocol(?U, 7?r)
-> isActiveCommunicationProtocol(?h, true) ~
isActiveCommunicationProtocol(?v, true) ~
isActiveCommunicationProtocol(?r, true)

Figure 5.23 — Communication in dark environment

UAV if it holds the adequate sensors.

The rule in Figure 5.23 is about the communication process. As stated earlier, VLC
can also serve to brighten an environment, making it an excellent choice for a situation
where perception is limited. In order to ensure the quality of service and security of the

transmitted data, the hybrid approach can even be considered.
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Figure 5.24 — Environment test in a rainy area

5.3.4 Rainy weather with inadequate sensors
5.3.4.1 Without adequate sensors

In the rainy scenario, the test subjects had to go through an area with a rainy situation.
There are multiple UAVs stationed, but not all of them have the necessary sensors to

navigate in such an environment. The assistance system is then compromised.

An illustration of the process can be found in Figure 5.24.
The different elements of this scenario are represented in Table 5.4, along with their
matching expressions in the knowledge-base. Those are the main elements that will be

stored in the ontology during the course of the test.
e my Vehicle is an individual of the Vehicle class serving as the main vehicle.
e UAV Rain is the UAV stationed in the rainy area.

e LiFi, DSRC, and HybridProtocol are the different communication protocols
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equipping the drone and the main vehicle. Their activation depends on the current
environment : for example, the light diffraction from the rain can be disabling for

the VLC techonology.

RainR belongs to the Rain class, itself a sub-class of Weather. It generates the
RAinV numerical value, which is gathered by a RainSensor object and compared to

a threshold value to derive the weather state.

RainSensorR1, Camerall, CameraS1, CameraS2, LidarL1, RadarR1 are
the names of different sensors embedded on the elements via the hasSensor prop-
erty. RainSensorR1 is an EnvironmentalSensor used by the main vehicle for the
identification of the environment. The main Vehicle also carries the CameraS1 and
CameraS?2 sensors. The first part of this scenario covers the case where the UAV
only carries the LidarLll sensor, which acts poorly in a rainy situation, and the
scenario is then completed by adding the Camerall and RadarR1 sensors, which

perform better in that context.

BadWeather is from the Environment class and is inferred by the elements of the

Weather class.

Four users took part in this experiment, divided into 2 groups of assisted and non-assisted

drivers. The experiment’s results can be found on Table 5.9.

Due to the lack of the appropriate sensors on some of the UAV, the assistance system could

not provide perception enhancement in all of the situations. For this reason, assisted and

non-assisted users encountered an incidental event. This is also due to the fact that the

rain event makes the road slippery and has a impact effect on the controls of the vehicle.

The second assisted driver still managed to complete the course with the fastest time and

with no incident, but the performances were only slightly better than the non-assisted

driver who also managed to do so, albeit going at a slower speed.
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my Vehicle Vehicle(?v)

UAV_ Rain UAV (7u)

LiFT VLC(7v)

DSRC RF(7r)

HybridProtocol CommunicationProtocol(?c)

. Rain(7r

RainRk Weat(hez(?w)
RainSensor(7rs)

RainSensorR1, Cameralnfra(?ci)

Camerall, CameraSterel(7cs)

CameraS1, CameraS2,

LidarL1, Lidar(?1)

RadarR1 Radar(7r)
Sensor(7s)

BadWeather Environment(7e)

Table 5.8 — Elements of the fourth scenario as they are identified in the simulator and
their matching variable in the logical rule

Average speed Time to complete the experiment Max speed Incident

Non-assisted driver 1 25km/h 72s 53km /h No
Non-assisted driver 2 30km/h 90s 55km /h Yes
Assisted driver 1 33km/h 81s 62km /h Yes
Assisted driver 2 31km/h 59s 59km/h No

Table 5.9 — Results of the rainy experiment.
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rainSensor(?rainS) -~ hasRainValue(?rainS, ?rainV) -~
swrlb:greaterThan(?rainV, 50) ~ Weather (7w)
-> Rain(?w)

Rain(?w) ~ Environment(?Env)
-> BadWeather (?Env)

Rain(?R)~ UAV(?7u)~ Radar(?ra)” cameralnfra(?c)~
hasSensor(?u,?c)~ hasSensor(?7u, 7ra)
-> isActiveUAV(?7u,true)

UAV(?u)~ Radar(?ra)” cameralnfra(?c)~
hasSensor(?u,?c)~ hasSensor(?u,?ra)

~ isActiveUAV(?u,true) ->
isActiveSensor(?ra,true) ~ isActiveSensor(?c,true)

Figure 5.25 — Set of rules for the management of a rainy environment.

The logical rules in Figure 5.25 are supposed to ensure that the UAV possesses the mini-
mum adequate sensors (Infrared camera and Radar) in order to function in a bad weather
environment. However, as shown in Figure 5.26, the UAV individual does not have those
necessary sensors, making it impossible for the rule to be validated. The isActiveUAV
property remains at the state false.

The first two rules of the set are used for the identification of the environment.

e In the first rule, the object rainSensor(?rainS) represents the elemental sensor
used for the identification of the rain. Through the hasRainValue property, it

links the gathered value of the sensor to the integer variable rainV.

e The gathered value needs to be compared to a threshold, which is done through the
swrlb:greaterThan(?rainV,50) property: the property is validated as true if the

value gathered by the sensor is greater than 50.

e This would allow the Weather(?w) object to be inferred as also belonging to
the Rain class, which would also imply the Environment to be of the sub-class

BadWeather
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* ¢ lidar2 ~

# uav02 \
* ¢ DSRC \

* @ Vehicle

Figure 5.26 — UAV agent as seen in the ontology

The two other rules of Figure 5.25 are related to the sensor and UAV activation.

e In the second rule, the element UAV (?U) refers to the drone stationed at the
intersection, individually named UAV _Rain. The Rain(?r) elements refers to a

rainy context.

e The Radar(?ra) and cameralnfra(?c) elements refer to the radar and infrared
camera respectively, and the hasSensor(?u,c) and hasSensor(?u,ra) proper-
ties mean that the sensors should be embedded on the UAV. However, as stated
earlier and shown in Figure 5.26, in this situation the UAV only carries a Lidar sen-
sor, invalidating this rule and making it impossible to request the UAV assistance

through the isActiveUAV (?u,true) property.

e The last rule should be about the sensor activations, but since the isActiveUAV

is not validated, the rule is not executed neither

This effectively means the UAV cannot assist the user. In addition, the rain makes the

roads slippery and has a direct impact on the vehicle’s road handling.
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UAV(?U) ~ RF(?r) -~ hasCommunicationProtocol(?U, ?7v) ~
hasCommunicationProtocol(?U, 7h) ~ Hybride(?h) =~ VLC(?v) -
BadWeather(?b) ~ hasCommunicationProtocol(?U, 7r)

-> isActiveCommunicationProtocol(?r, true) ~
isActiveCommunicationProtocol(?v, false) ~
isActiveCommunicationProtocol(?h, false)

Figure 5.27 — Communication protocol

: Communication protocol activation (] Protocols weaknesses @ Communicati activation (] Protocols weaknesses
@ Entity activation <:I Available sensors @ Entityxation <:| Available sensors
@ Sensor activation <: Sensors status @ Sensmnvaﬁon <::l Sensors status
ﬁ No adequate sensors F
@ Environment detection @ Environment detection
ﬁEnvironmental sensors data ﬁEnvronmental sensors data
(a) Normal process (b) Compromised process

Rain also has an impact on the communication protocol. The water drops have a refractive

effect that make VLC communication extremely difficult, triggering the rule in Figure 5.27

Due to the nature of the environment, both perception and control of the vehicle were
tampered. The assistance system performances were notably limited by the rainy en-
vironment and the lack of the adequate sensors : Even with a float of UAV deployed,
some of them were not really useful since their set of sensors presented weakness to the
environment.

In Section 3.3.3 we presented the process through which the inference system validates the
assistance request. In this experiment, the lack of adequate sensors cancelled the chain
of steps and led to the non-validation of the logical rules, making the assistance system

non-operational.

5.3.4.2 With adequate sensors

The same scenario was remade with a UAV carrying the proper sensors. The experiment’s

results can be seen in Table 5.10.
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Average speed Time to complete the experiment Max speed Incident

Assisted driver 1 38km/h 60s 67km/h No
Assisted driver 2 33km/h 72s 65km /h No
Assisted driver 3 29km/h 7Ts 64km /h No

Table 5.10 — Results of the rainy experiment.

In this situation, the rules in Figures 5.25 and 5.27 were validated thanks to the addition of
the Infrared camera and Radar sensors, making it possible for the perception enhancement
process to be implemented. The driving performances of the test subjects are improved
compared to the ones with a faulty assistance system.

This scenario covered a situation where one of the entities was lacking the proper sensors
and was not able to perform correctly. The assisted and non-assisted sets both perform
poorly. The tests that took place in the same environment but with all the correct sensors

performed noticeably better.

5.3.5 Complex scenario

This experiment combines multiple different elements in order to make a more complex
situation. The test users have to go through a circuit where they encounter an obstructed
view event, a foggy area, and a building with a fire hazard. Multiple UAV are stationed in
key positions in order to ensure assistance when necessary. An illustration of the process

can be found in Figure 5.29.

Section 3.3.1 covered different ways of dealing missing data. In this complex scenario, an
additional script was added that would randomly drop some of the numerical values. At
a given time T, the returned values of randomly-chosen sensors were dropped, and the
data-completion part was called in order to deal with those missing data. The set of data
gathered would initially look like in Figure 5.31.

This would mark the object PerceptionAccuracy as being Poor, resulting to most of the
the environment-identifying rules to not function. By using a completion algorithm like

KNN on different previous set of data, the system can try to fill the missing data with
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Figure 5.29 — Illustration of the complex scenario.

sensorName embeddedOn readValue
rainSensorl mainVehicle 0
brightnessSensorl mainVehicle 19
rainSensor2 uavl X
cameraMonol uavl 400

lidarl uavl X

lidar2 mainVehicle 370
radarl uav2 700

elementName position speed
mainVehicle 2733 59
uavl X441 0
uav2 17:45 X
obstacleVehiclel 29,46 30
uav3 53X X
obstacleVehicle2 51,39 X

Figure 5.30 — Some of the gathered data with random values dropped.
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sensorName embeddedOn readValue elementName position speed

rainSensorl mainVehicle 0 mainVehicle 27,33 59
brightnessSensorl mainVehicle 19 uavl 27:41 0
rainSensor2 uavl 0 uav2 17:45 0
cameraMonol uavl 400 obstacleVehiclel 29;46 30
lidarl uavl 380 uav3 53:47 0
lidar2 mainVehicle 370 obstacleVehicle2 51;39 40
radarl uav2 700

Figure 5.31 — Data set after the completion process.

some similar ones. As shown in Chapter 3, this solution is more than 95% accurate when
correctly trained, and allows the PerceptionAccuracy value to become Good.

Due to the complex nature of the scenario, multiple set of rules can be called by the
reasoner. They can be grouped depending of the specific situation encountered: rules
relative to the first step (obstructed view) can be found in Figure 5.32, the ones related
to the second step (foggy area) are in Figure 5.33, and the set of rules for the fire haz-
ard area can be found in Figure 5.34. It is interesting to note that due to the varying
intensity of the brightness and the impact it may have on VLC, there are two different
communication rules which can apply. For each variable of the rules, the corresponding

simulated environment can be found in Table 5.11.

5.3.5.1 Partial assistance

Previous section showed a situation where some of the UAVs were not adequately equipped
to deal with a specific environment. This experiment also presents some steps where the

the decision-making process cannot be completed. More details about this can be found

in Table 5.12.

Global results of the experiment can be found on Table 5.13. There was no noticeable
behaviour differences between the drivers, and all showed carefulness in their driving.

The unassisted test subject showing the highest completion time also had two driving
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my Vehicle Vehicle(?v)
UAV _ crossroad
UAV road UAV (7u)
UAV _urban
5
LiFi VLC(?v)
RF(7r)
DSRC .
HvbridProtocol Hybrid(7h)
ybriatrotoco CommunicationProtocol(?c)
Fog(7f)
Fog Weather(7w)
Rock Obstacle(?0)
? 7ci
CameraS1,CameraS2,Camerall C.ameraStereo( ’cs), Cameralnfra(?ci)
. . Lidar(?1)
LidarL1,LidarL2, Radar(7r)
RadarR1,RadarR2,RadarR3 e
Sensors(7s)
FogSensor(7fs)
FogDetector EnvironmentalSensor(7es)
Urban _buildingl Building(?b)
: FireHazard(?th)
FireEvent Hazard(?fh)
BadWeather
NormalEnvironment Envi t(%)
UnusualEnvironment pvironmmenti e
ObstructedView

Table 5.11 — Elements of the scenario as they are identified in the simulator and their
matching variable in the logical rules

Event where the UAV is stationed | Obstructed view | Fog | Fire Hazard
Adequate sensors Yes
Adequate communication protocol | Yes

Table 5.12 — Summary of the different situations with a faulty assistance.
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Vehicle(?V) ~ hasDistanceFromVehicle(?0, NearDistance)
~ Environment (?Env) ~ Object(?70) -
PerceptionAccuracy(?P)~ Good(7P)~

-> hasObstructedView(?V, 70)

UAV(?U) ~ cameraStereo(?cs) ~ hasSensor(?U, ?cs) ~
Vehicle(?V) ~ Object(?0) ~ hasObstructedView(?V, 70) ~
NormalEnvironment (?Env) ~ isCloseToUAV(?V,?U)->
isActiveUAV(?U, true)

UAV(?U) ~ cameraStereo(?cs) ~ hasSensor(?U, ?cs) ~
isActiveUAV(?U,true) -> isActiveSensor(?cs, true)

UAV(?U) =~ RF(?r) =~ VLC(?v) ~ Hybride(7h)
~hasCommunicationProtocol (?U, 7v)
~hasCommunicationProtocol(?U, 7h)
~hasCommunicationProtocol(?U, 7r)
~“NormalEnvironment (7E)
~isActiveUAV(?U,true) ->
isActiveCommunicationProtocol(?r, true) ~
isActiveCommunicationProtocol(?v, true) ~
isActiveCommunicationProtocol(?h, true)

Figure 5.32 — Set of rules for the obstructed section of the scenario
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Vehicle(?V )~ FogSensor(7fogS) ~ hasSensor(7C,7fogS)

~ hasFogValue(7fogS, 7fogV) ~ swrlb:greaterThan(?fogV, 50) ~
PerceptionAccuracy(7P)~ Good(7P)~

~ Weather (7W)

->Fog(7W)

Fog(?F) ~ Environment (7Env)
-> BadWeather (7Env)

Fog(?F) ~ Vehicle(?7V) =~ UAV(7u) ~Radar(?7ra) ~
cameralInfra(?c)~ hasSensor(?u,?c) ~
hasSensor(?u,?ra) ~ isCloseToUAV(?V,?U)

-> isActiveUAV(?u,true)

UAV(?u) ~ Radar(?ra) ~ cameralnfra(?c)~
hasSensor(?u,?c) ~ hasSensor(?u,?ra) ~ isActiveUAV(?u,true)
-> isActiveSensor(?ra, true) ~ isActiveSensor(?c, true)

UAV(?U) =~ RF(?7r) -~ hasCommunicationProtocol(?U, ?v) =
hasCommunicationProtocol (?U, 7h) ~ Hybride(?7h) =~ VLC(?7v) ~
BadWeather (?b) ~ hasCommunicationProtocol(?U, ?7r)

-> isActiveCommunicationProtocol(?r, true) ~
isActiveCommunicationProtocol(?v, false) ~
isActiveCommunicationProtocol(?h, false)

Figure 5.33 — Set of rules for the foggy section of the scenario
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Building(?7B) ~ isOnFire(7B, true) ~ Action(7A)~ -> FireHazard(7A)

FireHazard(?A) -~ Environment(7E) =
PerceptionAccuracy(?P)~ Good(7P)~
-> UnusualEnvironment (?7E)

Vehicle(?V) ~ Hazard(7H) -~ Environment(?7Env)->UnusualEnvironment (?Env)

UnusualEnvironment (?e) ~ FireHazard(?f) ~ Vehicle(?7v) ~
UAV(?u) ~ Radar(?ra) ~ Lidar(71)~ cameraStereo(?c)”
hasSensor(?u,?c) ~ hasSensor(?u,?l) ~

hasSensor(?u,?ra) ~ isCloseToUAV(?V,?U)

-> isActiveUAV(?u,true)

UAV(?U) ~ Radar(?ra) ~ Lidar(71)~ cameraStereo(?c)”
hasSensor(?u,?c) ~ hasSensor(?u,?l) ~
hasSensor(?u,?ra) ~ isActiveUAV(?U,true) ->
isActiveSensor(?c, true) ~ isActiveSensor(?1l, true)”
isActiveSensor(?ra, true)

RF(?r) ~ hasCommunicationProtocol(?U, ?v) ~ FireHazard(7f)
~ hasBrightnessValue(?br, 7bv) -
hasCommunicationProtocol(?U, 7h) ~ brightnessSensor(7br) -
swrlb:lessThan(?bv, 70) ~ Hybride(7h) =~ VLC(?7v) ~ UAV(?7U)
~ hasCommunicationProtocol(?U, ?r) -
UnusualEnvironment (7ue) ->
isActiveCommunicationProtocol(?h, true) ~
isActiveCommunicationProtocol(?v, true) ~
isActiveCommunicationProtocol(?r, true)

RF(?r) -~ hasCommunicationProtocol(?U, ?v) ~ FireHazard(?f)
~ hasBrightnessValue(?br, 7bv) -
hasCommunicationProtocol(?U, 7h) ~ brightnessSensor(7br) -
Hybride(?h) ~ VLC(?v) ~ UAV(?U) -
hasCommunicationProtocol(?U, 7r) -~ UnusualEnvironment(?7ue)
~ swrlb:greaterThan(7bv, 70) ->
isActiveCommunicationProtocol(?r, true) ~
isActiveCommunicationProtocol(?v, false) ~
isActiveCommunicationProtocol(?h, false)

Figure 5.34 — Set of rules for the fire hazard section of the scenario
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Average speed Time to complete the experiment Max speed Incident

Non-assisted driver 1 57km/h 118s 126km/h 0
Non-assisted driver 2 37km/h 161s 69km /h 2
Partially assisted driver 1 55km/h 108s 97km/h 0
Partially assisted driver 2 49km/h 121s 80km /h 1

Table 5.13 — Results of the complex course experiment without assistance

Event where the UAV is stationed | Obstructed view | Fog | Fire Hazard
Adequate sensors Yes Yes | Yes
Adequate communication protocol | Yes Yes | Yes

Table 5.14 — Summary of the different situations with adequate assistance.

incidents, while the other unassisted subject shows performances as good as one of the
other assisted driver.

This is due to the fact that because of the lack of adequate gear, the assistance process
was not correctly validated (cf. Figure 5.28b). For two out of the three events, the assisted
test subjects were in the same situation as the unassisted ones, meaning they only had

assistance on the first step.

5.3.5.2 Full assistance

Based on the same circuit, another experiment was made by fixing the faulty sensors and
communication tools, allowing for a better perception, as shown in Table 5.14. As shown
by the results in Table 5.15, this group performs considerably better than the partially
assisted one: the experiment was completed around 25% faster, and the average speed
was also higher, showing that the drivers were more confident when assisted. There was
only one incident noted, which was due to high-speed driving, as opposed to the three

incidents in the non-assisted group.

Average speed Time to complete the experiment Max speed Incident

Fully assisted driver 1 73km/h 96s 119km/h 0
Fully assisted driver 2 90km /h 89s 130km/h 1
Fully assisted driver 3 79km/h 99s 111km/h 0

Table 5.15 — Results of the complex course experiment with full assistance.
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5.3.6 Discussion

The different scenarios described in the previous sections allowed us to cover different
situations where our proposed model could be applied and offer the service of perception
enhancement to a vehicle through a UAV. When reaching an area where perception is
limited, the vehicle would ask for the UAV to gather data and transmit them through a

secured channel. There are some interesting points to discuss from there.

In general terms, the model performs positively, with increased driving performances and
lesser driving incidents in most of the situations. The average inference time is slightly
below 1 second, and both the environment inference and the perception data sharing
works correctly.

However, the model showed some limitations. In some situations, the results were not as
satisfying as they were expected to be, for example in a rainy situation. Bad weather has a
strong impact on both sensors and communication protocols. We did not cover or model
the effect of wind, which would have also had a strong impact on the UAV’s stability
and communication [124|, but weather in general was shown to have influence on both
driving and perception. On the other hand, obscurity, which is supposed to be the other
important factor in perception inhibition, can be controlled thanks to embedding lighting
systems on mobile agents. These elements can also double as communication tools, by
relying on VLC technology. The experiments being made in a simulated environment also
allowed us to bypass other regular issues that could be encountered in a real-life situation.
For example, we did not need to worry about the UAV batteries or fuel refills, nor did we

have to look for an adequate and large enough space to conduct our experiments.

Another important limitation of the model was due to the very nature of a knowledge-
base. Indeed, it is an approach showing great potential for our situation, but it is very
rigid and requires a rigorous approach, considering all the eventual elements that can

be encountered on a road environment. This applies especially to the logical rules : A
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The driving experience felt realistic 76%
The perception enhancement system was useful 90%
The perception enhancement system acted fast enough | 70%

Table 5.16 — Feedbacks of the test subjects on the system

single overlooked element could disable rule made up of various constraints. Hence the
importance of thoroughly reviewing the literature to make sure that all the situations are
covered. Many of the rules were added after preliminary tests.

Once they were done, the test subjects were asked to give their feedbacks on the general
experience and answer to three questions : Did the driving experience felt realistic? Was
the perception enhancement system useful? And was it fast enough when providing
information?

They were given the choice to answer by Yes or No to each question, and leave an optional
commentary. The first question was for the evaluation of the simulator, while the other
two referred to the deductions inferred by the model and their relevance. The results can
be found in Table 5.16. The 30 users were asked about the simulator and the perception
enhancement system. 76% of them found the driving in the simulation realistic enough.
The first users gave important feedbacks which allowed to improve the simulator and
provide a better experience for the later users. Regarding the perception enhancement
system, 90% of the participants found the assistance useful and were satisfied with the
assistance it provided them, showing a strong interest in the model in general, and a
favorable reaction for UAV applied to vehicular applications. However, 30% of them felt

the process to be a little slow, but not enough for it to hinder the experiment.

5.4 Conclusion

This chapter presented the simulator developed for this thesis, as well as the experiments

made and their results.

The simulator was made in Unity and represents a driving environment with a realis-
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tic physics engine. It can gather environment-generated driving data (speed, position,
weather...) and process them with the ontology thanks to a Python tool. Tests were
made by having test subjects drive through different situations and monitor their perfor-
mances with and without assistance of the knowledge-base inferring engine. The scenarios
were of different nature and variations were made on the environment, sensors, or general
situations in order to cover separate situations.

The results of the experiments showed that the proposed model brings an improvement
to the global driving behaviour. Indeed, most of the assisted users demonstrated a safer
conduct and a general faster course completion. This is due to the beforehand knowledge
of any potential obstacle that would be encountered.

The limitations of the model also emerged from the experiments. There are certain
environments where the UAV cannot perform correctly, and it reflects on the results.
As a consequence, the model underperformed in extremely bad weather or in unusual
environment like a Fire Hazard. It also relies heavily on the set of rules that it is fed, which
must be constantly updated according to the different situations that can be potentially

encountered.
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Chapter 6

(General conclusion and future works
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6.1 General conclusion

Perception plays a major part in the safety of road users. With the advent of smart ve-
hicles and the popularization of smart cities, it is important to find ways to reinforce this
process. In the context of this thesis, a collaborative UAV /Vehicle interaction protocol

was presented in order to propose an enhancement of the perception.

In Chapter 1, we introduced the motivation and problematic of this work, as well as the
security and data management questions arising from them. In Chapter 2, we reviewed
the current state of vehicular perception, the ontologies dedicated for road environments,
and existing work for UAV and VLC for vehicular applications. We also introduced the
general methodology presented in the paper. In Chapter 3, we present the notion of
knowledge-base, the ontology developed for this study and its different elements, the log-
ical rules serving as the intelligence layer and managing the system, and the steps of the
inferring process. In Chapter 4, we presented the VLC protocol, its potential and limi-
tations, and a proposed hybrid VLC/RF protocol for data security through redundancy
of transmitted data. Finally, in Chapter 5, we presented the driving simulator made in
Unity, the different scenarios where it was tested and a discussion of the results and the

different environments influences.

In this thesis, we focused on a way to enhance the perception of a vehicle. In order
to solve this problem, we tackled the challenges of finding an adequate external sensor,
having them communicate in a secured way, and merging efficiently the data from different
sources. From those challenges, we found some solutions and achieved the following

contributions :

e An ontology for the classification and storage of the road users, the road environ-
ment, and the different properties characterizing and linking individuals between

them.
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A study on driving data completion through a fuzzy logic approach on sensors’

reliability and comparison of different algorithms

A study on different uses of UAV on a road environment, and a proposition of use

for perception

A driving simulator made in Unity with realistic physics that allows for the quick
building and testing of scenarios, as well as virtual data gathering and communica-

tion with the ontology

A study on the potential strengths and weaknesses of VLC and RF communications

on a road environment

A VLC/RF Hybrid communication protocol for data protection through transmis-

sion redundancy

From the different conclusions drawn from the state of the art, we identified the problems
of vehicular perception needing assistance in some environments, and proposed the use
of UAV for data gathering, VLC for secured transmission and a knowledge-base for the
merging of those data and their processing.

The process is done in 4 steps, mostly managed by logical rules and an inference engine:
First, the correct identification of the environment, then picking the sensors working in
said environment and looking for the available UAV carrying them, before choosing the

communication protocol depending on the environment and the ones available on the

UAV.

6.2 Future works

During this thesis, we worked on the management of data completion and came up with a
KNN /Fuzzy logic methodology to deal with missing perception data. These elements have

been integrated onto the knowledge-base but we believe that this aspect can be utilized
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to give better results. This will probably lead to a denser population of the ontology, and
numerous other logical rules, which can only be an overall improvement of the system.
Naturally, by using a simulator we managed to bypass some of the common constraints we
could have encountered, such as the UAV short battery life. We mentioned some possible
solutions to this in Chapter 2, but this is a field where multiple works are made, and some
studies show promising results [125]. Furthermore, we believe there is a real potential in
the use of VLC as a complementary means of communication for security reinforcement.
The technology is showing a strong potential in vehicular applications [126]. In this
thesis, we presented the idea of using VLC for heavy data transmission and RF for the
transmission of the digest for validation purpose. Due to lack of time and the technical
complexity of the experiments, we only managed to obtain elemental results, but we would
like to go even further with this idea and work on the concept of a fast-switching protocol
that would take place on a PHY layer only, ensuring that one protocol takes over the
other in case of incident while being transparent to the final user.

We also plan to improve the simulator physics and data gathering process in order to

improve the inference time and driving experience of the test users
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Appendix A

Presentation of the knowledge-base

Definition of a knowledge-base

A knowledge-base is a formal way of representing knowledge in a specific context. In this
thesis, it took the form of an ontology dedicated to the driving environment.

A knowledge-base allows the representation of the various actors making up a given situa-
tion, as well as their inner properties and relationship linking them to each others. Those
actors are categorized in Classes, and each instance of an entity of a class is referred to
as an Indiwidual. Individuals can have Data properties or Object properties, respectively

their personal or shared properties.

Class | Individual Data property | Object property
Road Road North; Road West | hasMaxSpeed
Vehicle | car _A; bike Ajcar B hasSpeed isOnRoad

Table A.1 — A representative example of an ontology components

An example is given in Table A.1. In a driving environment, we can find elements like
Roads and Vehicles. There can be different elements of each, for example two different
roads. Classes can contain individuals of different Sub-classes, as long as they belong
to the same parent class: in this example, we can assume the existence of the Car and

Bike classes, which are both sub-classes of Vehicle.
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The elements also have their properties: for the Road objects, the hasMaxSpeed prop-
erty indicates a numerical value relative to the maximum speed allowed on said road, for
example 50 or 80 km/h. It can be related to the hasSpeed property of the Vehicles,
which is another numerical value depending of the current speed of the vehicle. Also, as
stated above, properties can be of the Object type and link objects between them. In this
scenario, a Vehicle can have the isOnRoad property, linking it to a Road individual :
for example car A isOnRoad Road West, stating the relationship between car A
and Road West.

It is interesting to note that an object can belong to multiple classes, as long they are
compatible. Indeed, in some cases, it is necessary to declare classes as Disjoint. For
example, the Vehicle and Pedestrian classes are not compatible, since an individual

can not be a vehicle and a pedestrian at the same time.

The knowledge-base is populated periodically every second. The new detected elements

are added, while the ones not detected anymore are deleted from it.

Main Classes of the ontology

This thesis revolves around enhancing the perception ability of an autonomous vehicle.
A drone is used for the gathering of additional perception a data, which should be fused
with the information the vehicle can generate. A knowledge-base is an adequate tool for

this task.

The ontology of this work was made with Protégé [127], an open-source ontology editor
developed by the Stanford University and that has been established as an important tool
for knowledge management. The important components of our knowledge-base will be

presented in this section.
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Class | Sub-classes | Properties
Car hasPhysics ->hasSpeed
Vehicle UAV hasSensor
Bike hasCommunicationProtocol
Bus hasDriver

Table A.2 — The Vehicle Class as it appears in the ontology

Vehicle

This thesis focuses on the the road environment, making it natural to have some obvious
classes, like the Vehicle class. It is represented in Table A.2

The parent class Vehicle covers all the different type of vehicles that can be found in
the environment, including Cars, Bikes, Buses but also UAV. The individuals of those

sub-classes can have different properties:

e hasSpeed (Object Property): represents the speed at which the vehicle is given.
In the knowledge-base, this value is not represented as an integer, but as a mem-
ber of the Speed class (itself a sub-class of the Physics class) and its sub-classes:
NoSpeed, ExtraSlowSpeed, LowSpeed, NormalSpeed, HighSpeed, Over-
Speed. The conversion from a numerical value to a class object is done during
the gathering process in order to facilitate the inferring process, hence making this

property an Object one instead of a Data one.

e hasSensor (Object Property): represents all the different sensors embedded on
the vehicle. It links the Vehicle object to the Sensors class and provides information

on what sensors are available for the gathering of data.

e hasCommunicationProtocol (Object Property): represents the different com-
munication protocols the vehicle can use, and is linked to the Communication-

Protocol class.

e hasDriver (Object Property): is a property primarily used for the identification

of the ego vehicle (the central vehicle of the experiment, from which knowledge is
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Class Sub-classes Sub-classes
Lidar
ActivSensor Sonar

Radar
cameralnfra
Sensors | PassiveSensor cameraMono
cameraStereo
brightnessSensor
EnvironmentalSensor | fogSensor
rainSensor

Table A.3 — The Sensors class as it appears in the ontology, and the different sub-classes
and sub-sub-classes

Class | Properties
isActiveSensor
hasMinRange
hasMaxRange
isWeakToDark
isWeakToRain
hasRainValue
hasFogValue
hasBrightnessValue

Sensors

Table A.4 — Properties of the Sensors class

built). It is linked to the Driver class, which has only one interesting individual

known as MainDriver.

Sensors

Sensors are a critical part of any autonomous entity. They allow the perception and
understanding of the surroundings for the purpose of making the right decision. There
are a variety of them, and both drones and intelligent cars have them embedded on in
order to maximize and diversify the data about the environment.

The sensors chosen for this study were based on the recurring ones appearing in the state
of the art from Chapter 2.

The different sub-classes of the Sensors class can be found in Table A.3. They are them-

selves split into different sub-classes.

166



e ActiveSensors: are sensors requiring an original impulse in other to measure a
value. They are mainly used for distance measurement.
— Sonar: are sensors using ultra-sound waves in order to measure a distance
— Lidar: are sensors using a laser in order to measure a distance
— Radar: are sensors using electromagnetic waves in order to measure a distance

e PassiveSensors: are sensors able to gather data without any form of impulse. It

mainly refers to Cameras.
— cameraMono: is a monoscopic camera. It can be used for image acquisition
allowing the detection of objects or patterns.

— cameraStereo: represents stereoscopic cameras. By using two different cameras,

we can also infer informations on the depth and distance of objects.
— cameralnfra: is an infrared camera. By using infrared technology, this sensor

can work in a bad weather or bad brightness conditions.

e EnvironmentalSensors: are sensors used for the identification of the environment
in which the vehicle is evolving. They are usually embedded on the ego vehicle (the
main vehicle)

— brightnessSensor: is used for the measurement of brightness
— fogSensor: is used for the measurement of fog
— rainSensor: is used for the measurement of rain

There are also different properties for the sensors, which can be found in Table A.4. Due

to the nature of the properties, not all of them can be applied to all the sensors.

e isActiveSensor (Data Property): is a a boolean property stating if a sensor
should be activated or not, depending of the environment and how well it can

perform in it.
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e hasMinRange (Data Property): is an integer property stating the minimum

distance it needs in order to function properly

e hasMaxRange (Data Property): is an integer property stating the maximum

distance it needs in order to function properly

e isWeakToDark (Data Property): is a boolean property informing if a specific

sensor functions poorly in a dark environment

e isWeakToRain (Data Property): is a boolean property informing if a specific

sensor functions poorly in a rainy environment

e hasRainValue (Data Property): is an integer property informing of the current

rain value being measure by a rainSensor individual.

e hasFogValue (Data Property): is an integer property informing of the current

fog value being measure by a fogSensor individual.

e hasBrightnessValue (Data Property): is an integer property informing of the

current brightness value being measure by a brightnessSensor individual.

CommunicationProtocol

In addition to be able to perceive, an intelligent transportation system must also be able
to communicate with its surroundings. There are different communication protocols, but

this thesis focuses on three possibilities (detailed in Chapter 4.

Class Sub-class | Properties

RF isActiveCommunicationProtocol
CommunicationProtocol | VLC

Hybrid

Table A.5 — The Vehicle Class as it appears in the ontology

The details of the class can be found in Table A.5. It is a relatively straightforward class,

with only three subclasses: one for VLC communication, one for RF communication, and
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Class Sub-class

Accelerate

Brake

ChangelLane
Environment | RemainInTheSameLane
SlowDown

BadWeather
FireHazard

Table A.6 — The Action Class as it appears in the ontology

one for the VLC/RF hybrid approach. The only property it has isActiveCommunica-
tionProtocol is a data property of boolean type indicating what communication protocol

is currently being used.

Action

The different elements of the knowledge-base are processed by the reasoner in order to
infer informations about the environmental context and the optimal actions to make. For
better readability, most of the potential outputs of the reasoner are grouped in a class
named Action.

By using the informations store din the knowledge-base, the inference engine can take
decisions on what the next move should be. It can be a direct instruction in the case of

an autonomous vehicle, or an ADAS recommendation for a human driver.

Accelerate: indicates that the vehicle should speed up.

Brake: indicates that the vehicle should brake. There are some sub-classes de-

pending on the origin of the instruction (BrakeForRedLight, BrakeForStop, Brake-
ForObstacle)

ChangeLane: indicates that the vehicle should change lane.

RemainInTheSameLane: indicates that the vehicle should stay in the same lane.

SlowDown: indicates that the vehicle should slow down.
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e BadWeather: indicates that a Bad Weather event has been detected, for example

rain.

e FireHazard: indicates that a Fire Hazard event has been detected.

e ObstructedView: indicates that the view in front of the main vehicle is obstructed

Environment

The correct identification of the context where the vehicle is evolving is a critical step
because it affects the performances of the sensors and communication protocols. The

potential environments can be found in the Environment Class, and presented in Ta-

ble A.7.
Class Sub-class
NormalEnvironment
. BadWeather
Environment
Dark
UnusualEnvironment

Table A.7 — The Environment Class as it appears in the ontology

e NormalEnvironment: is the typical environment, with an acceptable level of

brightness and weather

e BadWeather: represents an environment where the weather is inclement, for ex-

ample in case of rain or fog.

e Dark: is an environment where the brightness is really poor, and alters the proper

functioning of sensors

e UnusualEnvironment: is an environment different from the previous ones, but

which can still affect the sensors and communication protocols (e.g. a fire hazard)
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Other notable classes

There are multiple other objects used in the reasoning process, with a less complex hier-

archical declaration. They will be listed in this section.

e PerceptionAccuracy: in order to strengthen the perception process, an accuracy
value is defined, based on elements such as the sensors’ states or the environment.
It is attached to sensors through the hasPerceptionAccuracy property. The
different values in this class depend on the output of the data cleaning and fuzzy
logic process (cf. Section 3.3.1). When the perception is considered as "Good", the

model knows that the incoming data are reliable

e Object: are other objects that can be encountered on the road and potentially

serve as obstacles, for example Rocks or Traffic Lights.
e Hazard: is a class used when detecting an unusual event, such as a Fire Hazard

e Weather: is a class where the different types of weather are stored, including Sunny,

Rain, Fog and Snow.

Logical rules

Logical rules are rules that are fed to a reasoner engine in order to infer new classes and
properties of the existing individuals. They need to be declared before the knowledge-
base starts running. The reasoner will go through the knowledge-base population and the
logical rules in order to reclassify the objects and properties.

There are different rule languages, and this thesis uses the SWRL (Semantic Web Rule

Language) language. The official documentation of the language gives different examples.

Student (7X1) -> Person(7X1)
Figure A.1 — Example of a logical rule.

Figure A.1 illustrates one of the simplest syllogisms: if an individual is a student, then
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they are naturally a person. The 7 operator means Any individual, meaning if there is

at least one individual belonging to that class, the condition is validated.

| Property assertions: George =] CEs)
Object property assertions

mhasParent Bobby
mm hasUncle Steven

Figure A.2 — Individual reclassification as inferred by the reasoner. The highlighted part
represent the output of the reasoner.

For example, if there is a Student individual declared as Steven, then the reasoner will
automatically identify him as a Person too.

Student (Steven) -> Person(Steven)
Figure A.3 — Example of a logical rule targeted to a specific individual.

It is also possible to nominally identify an individual in logical rule, as shown in Figure A.3.
By omitting the 7 operator and explicitly declaring a name, only individuals bearing that
name will be concerned. Based on that rule, a student named Bobby would then not be
classified as a Person by the reasoner.

Rules can also rely on Properties between objects. This is covered in the example of
Figure A 4.

hasParent (?x1,7?x2) & hasBrother(7x2,7x3) -> hasUncle(7x1,7x3)
Figure A.4 — Example of a logical rule targeted to a specific individual.

In that situation, some properties are declared hasBrother, hasParent and hasUncle.
Those are all Object properties linking individuals from the Person class to others of
the same class. The rule states that if any individual has a hasParent property to an
individual with the hasBrother to property to a third individual, then the first and the
third are linked by the hasUncle property. In Figure A.5, George is declared as having
Bobby as a parent, who in turn has Steven as a brother, making Steven the Uncle of

George.
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| Description: Steven

Types
{ Student
¢ Person

Inferred

[ N RS | A P

Figure A.5 — New property inferred by the reasoner. The highlighted part represent the
output of the reasoner.
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Appendix B

Résumé de thése

La miniaturisation poussée des composants électroniques ainsi que leurs prix de plus en
plus abordables permettent d’implémenter une couche "d’intelligence" & de nombreux
objets du quotidien, ce qui leur permet de communiquer et de traiter des informations de

natures diverses afin d’améliorer la qualité de vie générale des humains.

L’environnement routier n’est pas en reste. En effet, il existe de plus en plus de véhicules
connectés et autonomes sur les routes, et une croissance de leur nombre est encore prévue
sur les années a venir. Il s’agit de véhicules qui ont la capacité de communiquer avec

d’autres entités intelligentes et de se déplacer avec une assistance humaine réduite.

Le processus de navigation d'un véhicule autonome repose sur quatre étapes : Percevoir,
Identifier, Décider et Agir. Il faut tout d’abord récupérer des informations sur I’environnement,
puis les interpréter afin d’identifier les éléments environnants et de prendre une décision
a partir de ses éléments avant de réaliser une action physique grace aux actionneurs du

véhicule.

Face au nombre croissant de véhicules autonomes, il est important de continuer de garantir
la sécurité des usagers de la route. Pour un conducteur humain, la sécurité est garantie par

divers éléments, notamment par une bonne visibilité de I’environnement. Une approche
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similaire peut étre prise pour les véhicules autonomes : en augmentant la capacité et le
rayon de perception initiale du véhicule, nous pouvons renforcer I’ensemble du processus

de navigation.

Cette these propose de réaliser cela grace a 1'utilisation de drones. La plupart des travaux
sur les drones dans un milieu routier proposent de les utiliser a des fins de communication,
néanmoins du fait de leur capacité a voler, leur légéreté et leur mobilité inhérente, ces
derniers peuvent étres déployés dans certaines zones ou la visibilité est réduite afin de

récolter des données de perception grace a divers capteurs embarqués.

Naturellement, ces données doivent ensuite étre transmises au véhicule de maniére sécurisé.
A cet effet, nous proposons 'utilisation d’un nouveau protocole de communication hybride
basé sur l'utilisation de la technologie VLC (Visible Light Communication). Cette tech-
nique consiste a moduler de la lumiére visible au dela d’une certaine fréquence afin de
pouvoir transmettre des informations tout en gardant un éclairage adéquat pour l'oeil
humain. Cette thése propose de coupler cette technologie avec des méthodes de com-
munication radio déja existantes afin de renforcer la sécurité et 'intégrité des données
transmises: les données seraient transmises par paquets sur un canal (VLC), tandis que
leur digests seraient communiqués sur un deuxiéme canal (RF). Cela garantirait une pro-
tection contre ’éventuelle corruption des données, et permettrait de détecter les paquets

défectueux et de demander un renvoi si nécessaire.

Les données de perception générées par le drone seraient alors transmises au véhicule
afin d’étre fusionnées avec celles récoltées localement. Ceci se fait via le biais d’une base
de connaissance, une méthode formelle pour la représentation des connaissances dun
contexte spécifique : les éléments détectés sont classifiés selon différents types, et leurs
propriétés spécifiques ainsi que leurs relations internes sont également inscrites dans la

base de connaissance.
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Un raisonneur est également rajouté en aval de la base de connaissance et plusieurs ré-
gles logiques lui sont fournis. Le traitement des différentes informations stockées dans la
base de connaissance permet d’identifier I’environnement dans lequel le véhicule avance,
ainsi que d’évaluer le niveau de perception global et de requérir 'utilisation de données

supplémentaires si besoin afin de prendre une décision adéquate.

Le modéle proposé dans cette thése a été validé grace a un simulateur de conduite virtuel
développé pour l'occasion : des données de capteurs de conduite sont générées au fil de
I’expérience, et sont stockées dans la base de connaissance avant d’étre traitées. Plusieurs
scénarios ont été développés et testés par des conducteurs volontaires, et il en résulte
une amélioration du comportement de conduite général, ainsi qu'un environnement plus

sécurisé.
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