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I) CD4 T cell: a central player of adaptive immunity 

1) CD4 T cell ontology 

a) Immunology basic concepts 

The immune system can be defined as our “body bodyguard”. Indeed, it has a protective role and 

defends our body against non-self-pathogens. More precisely, this system is divided into two 

different immune mechanisms, with specific functions: innate and adaptive immunities. 

On the one hand, the innate immune system acts as a first barrier to provide an immediate 

response against an identified exogenous pathogen. It is composed of phagocytic cells that can 

recognize and kill non-self-organisms rapidly and unspecifically. Different cell types are found 

according to the anatomical location. Granulocytes (neutrophils, eosinophils and basophils) and 

monocytes are present in the blood whereas macrophages and mast cells are present in tissues. 

Moreover, natural killer (NK) cells have important functions in innate immunity. 

On the other hand, adaptive immunity is longer to set up, but that is the price for developing a 

specific response against pathogens. CD4 and CD8 T cells and B cells belong to this second type of 

immunity. Contrary to innate cells that recognize antigens unspecifically, these cells recognize 

specific pathogenic antigen through particular receptors: T cell receptor (TCR) and B cell receptor 

(BCR). In the T cell lineage, CD4 T cells are also called CD4 T helper (Th) cells. As their name 

suggests, these cells help other cell types by providing them signals that impact their activation 

and behavior. Thus, CD4 T cells orchestrate immune response and guide it according to the 

encountered pathogen. CD8 T cells are specialized in fighting against intracellular pathogens such 

as viruses by killing infected cells. Finally, B cells that differentiate into antibody-producing plasma 

cells, are specialized in extracellular pathogen elimination.  

Between innate and adaptive immunities, one cell type orchestrates this complex organization: 

dendritic cells (DCs). 

This manuscript will be principally focused on CD4 T helper cells and their polarizing capacities. 
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b) CD4 T cell: from thymus to lymph node 

T lymphocyte precursors migrate from the bone marrow to populate the thymus and undergo 

their maturation. During the thymic development, TCR gene rearrangement and thymocyte 

proliferation occur. Moreover, this is the step where the TCR co-receptor is chosen. Cell-surface 

molecule modifications allow distinguishing the thymocyte population at different stages of 

maturation. Beyond these molecules, T cells notably express both CD4 and CD8 co-receptors at 

the beginning of their development and, after different steps of selections based on recognition 

of major histocompatibility complex (MHC) I or II, they will exit the thymus expressing only one of 

them. 

After becoming a mature naive CD4 T cell, the next step is to access secondary lymphoid organs, 

mainly lymph nodes. Particulate antigens, antigen-presenting cells (APC) and some leukocytes 

coming from peripheral tissues migrate to lymph nodes through the lymphatic system. On their 

side, naive CD4 T cells circulate in the bloodstream and enter lymph nodes by following a 

CCL19/CCL21 chemokine gradient and via specialized structures called high endothelial venules 

(HEV). Then, they gather in the paracortex, also called the T cell zone. Paracortex 

microarchitecture is supported and organized by a subset of fibroblastic reticular cells (FRC), the 

T cell zone reticular cells (TRC). These cells are essential to T cells homing, survival and migration 

by expressing a large panel of adhesion molecules and secreting the chemoattracting chemokines 

CCL19 and CCL21, and the survival factor interleukin (IL) 7. They also form a very dense meshwork 

all along the T cell zone, allowing DC and T cell migration and thus promoting their interaction 1. 

Afterwards, T cells have to get activated by a DC. T cells screen MHC-peptide complexes at the 

surface of DCs present in the same lymph node zone, looking for their specific antigen. Since one 

naive CD4 T cell is specific for one particular antigen, the screening has to be very efficient to set 

up an adaptive immune response as quickly as possible. A T cell encounters a multitude of DCs, 

with which it transiently interacts using adhesion molecules such as lymphocyte function-

associated antigen 1 (LFA-1). If a T cell does not find its specific MHC-peptide complex, it reaches 

the bloodstream to start again in another lymph node 1. 
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2) T cells and antigen presenting cells encounter in the lymph node  

a) Dendritic cell patrolling and activation 

Three different cell types can present antigen to T cells: DCs, macrophages and B cells. Here, the 

focus will be on dendritic cells, which are the most efficient to activate T cells. One of the reasons 

why DCs are professional antigen presenting cells (APCs) is that display more MHC and co-

stimulatory molecules than the others 2.  

DCs migrate from bone marrow to tissue through blood, seeking non-self-agents throughout the 

body. They are specialized in the uptake of broad variety of pathogens such as bacteria, fungi, 

parasites and viruses. 

To detect a wide range of pathogens from different natures, they display extracellular and 

intracellular signaling receptors. Immature DCs express pattern recognition receptors (PRRs), that 

can recognize pathogen-associated molecular patterns (PAMPs) and damage-associated 

molecular patterns (DAMPs). PRRs include mainly two groups of receptor: transmembrane 

proteins such as toll-like receptors (TLR), cytoplasmic proteins such as NOD-like receptors (NLRs) 

and C-type lectin receptor (CLR) 3. 

Immature DCs continuously patrol throughout tissues. The encounter between circulating 

immature DCs and danger signals (pathogens or inflammatory signals) engages a process of 

maturation, and their migration to the lymph node. Moreover, antigens that have been captured 

by DCs are processed as peptides and presented on MHC molecules, constituting a peptide-MHC 

complex. Thus, upon arrival in the lymph node, they highly express peptide-MHC complexes and 

co-stimulatory molecules, to be fully competent to prime naive T cells 4. In absence of pathogen 

or inflammatory signal (steady-state), DCs can present self-antigens instead of exogenous antigens 

from pathogens. The goal of this process is to prevent immunization against self-proteins, which 

is also known as tolerance. In the case of tolerance, self-antigen presentation leads to the 

induction of regulatory T cells (Treg). Instead of producing inflammatory signals to activate 

downstream immune effectors, Treg will secrete anti-inflammatory signals to dampen the 

inflammation. Recognition of self-antigen could also lead to anergy, which means that T cells are 

unable to mount a complete immune response. This is illustrated in Figure 1. 
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Finally, the T cell needs a third signal to bifurcate in the appropriate T cell polarization program. 

Thus, DCs secrete different cytokines and express a large set of surface molecules that constitute 

the last signal for T cell activation and differentiation, allowing CD4 T helper cells to be polarized 

in a subset with specific functions, consistent with the pathogen to eliminate 6. 

 

Figure 2: The three-signal theory of naive CD4 T cell activation 

1: TCR activation signal; 2: co-stimulatory molecule signal; 3: cytokine signal 

(Illustration adapted from Medzhitov et al. Nat Rev Immunol, 2001 7) 

A naive CD4 T cell can therefore mature into different types of T helper cell subsets, that will be 

studied in more detail in the next part. 

This Th differentiation model is very useful to have a clear idea of how do naive CD4 T cells 

polarize. However, many different views were published over the years, contradicting this 

theoretical version. Its limits will be reviewed in the second part of this introduction. 
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3) T helper cell diversity 

a) Historical highlight on the function of Th cells 

In the ‘60s, T lymphocytes started to be distinguished from B lymphocytes, but their functions 

were reduced to help B cells in their antibody production 8,9.  

In the ‘70s, T lymphocytes were classified according to their surface markers in either helper cells 

or cytotoxic cells 10.  

Finally, in the ‘80s, Mosmann and Coffman were the first to highlight the concept of Th subsets. 

After immunizing mice with antigen proteins, they managed to derive in vitro two Th clones: Th1 

and Th2 11. They differentiated Th1 and Th2 mostly according to the cytokines (at the time called 

lymphokines) they secreted. Th1 cells are specialized in secreting IL-2 and interferon (IFN) g and 

Th2 in secreting IL-4, IL-5 and IL-13 12.  

Three years later, they described in greater detail in the Annual Review of Immunology that, within 

T lymphocytes, subsets had distinct characteristics suggesting that T lymphocytes could have other 

functions apart from helping B cells. They hypothesized that Th1 led to cytotoxic mechanisms 

resulting in the elimination of intracellular parasites and tumor cells, whereas Th2 led to an 

antibody response 13. 

From this arose the concept of division of labor between Th subsets, allowing to efficiently fight 

against a large variety of pathogens. 

 

b) Th subset phenotypes and functions 

As described before, CD4 T helper subsets are defined principally by the cytokines they secrete. In 

this part, what is characterizing each Th subsets will be studied in detail. T helper cells are currently 

classified according to the three following parameters. First, how are they induced, what are the 

necessary signals to polarize a naive T cell in Th1 for instance? A second important factor 

distinguishing subsets is the transcription factor they express. Finally, they are separated 

according to the effector cytokines they produce. 
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i) Th1 and Th2 paradigm 

As seen previously, Th1 and Th2 were the first studied subsets. The main role of Th1 is the 

clearance of intracellular pathogens by different mechanisms such as helping macrophage 

activation 14 and cytotoxic CD8 T cell response 15. Based on this last function, Th1 is a major actor 

in antitumor immunity 16. 

A key signal that initiates Th1 polarization is the IL-12 cytokine. This integration induces the signal 

transducer and activator of transcription 4 (STAT4), following which the transcription factor T-bet 

is downstream activated to allow IFNg production 17,18. Additionally, IFNg can bind to its receptor 

at the T cell surface, leading to STAT1 activation, which also has the ability to interact with the 

Tbx21 gene (T-bet gene). This creates a positive feedback loop enhancing IFNg production and Th1 

commitment. Other molecules can activate STAT1 such as type I IFN and IL-27, an IL-12 cytokine 

family member 19.  

T-bet has a second pro-Th1 role. Indeed, it downregulates the Th2 master regulator GATA-3 not 

only in developing Th2 cells but also in established ones: the addition of a retroviral T-bet in T-bet 

knock-out (KO) mice decreases GATA-3 levels 20. Additionally, Djuretic et al showed that T-bet can 

also form a complex with the transcription factor Runx3. This cooperation activates the Ifng gene, 

inhibits Il4 gene 21 and interacts with GATA-3 to suppress its activity 22.  

Moreover, besides IFNg master Th1 secreted cytokine, these cells also produce IL-2, TNF-a and 

TNF-b 23.   

In addition to secreted cytokines, specific surface chemokine receptors have been identified on 

Th1 cells: CCR5 and CXCR3 24. 

Contrary to Th1 cells that induce cell-mediated immunity, Th2 cells act to help antibody 

production by B cells and elimination of extracellular pathogens such as parasites. They are 

induced by the IL-4 cytokine, which activates STAT6 and then GATA-3 25. This molecular 

mechanism leads to IL-4, IL-5, IL-6, IL-9, IL-13 and IL-31 cytokine secretion. Eventually, secreted IL-

4 enhanced Th2 profile by creating a feedback loop 26. Another GATA-3 activating pathway exists 

through IL-2-induced STAT5 27. 

Th2 cells also express specific surface markers: CCR3 and CCR4 24. 

Principal Th1 and Th2 differentiation mechanisms are summarized in Figure 3. 
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Figure 3: Th1 and Th2 induction model 

(Scheme from Amsen et al. Curr Opin Immunol, 2009 28) 

In line with Mosmann and Coffman’s work, studies on Th1 and Th2 provided evidence that CD4 T 

helper cells were composed of several subsets with different functions. This idea has been 

heightened by the discovery of new subsets, that will be studied in the next subparts. 

 

ii) Th17 cells 

The discovery of Th17-related cytokines led to the definition of Th17 cells as an independent CD4 

Th subset. The first important breakthrough occurred in 2000. IL-23, constituted of IL-12p40 chain 

and a new p19 chain, is discovered 29. A few years later, using experimental auto-immune 

encephalomyelitis (EAE) mouse model, two different studies demonstrated that IL-23 plays a 

critical role in the pathology, by driving the development of T cells secreting IL-17 30,31. The fact 

that these cells secreted IL-17 but low level of IFNg suggested that IL-17-producing T cells could 

be a distinct lineage from Th1 cells, despite the p40 chain common to IL-12. They were called Th17 

cells. 

Later on, inducer signals and transcription factors were associated with Th17. For mice, TFG-b and 

IL-6 were described as the principal inducer cytokines 32,33. 
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In human models, some teams tried to determine polarizing factors of the subset, a lot of 

contradictory results came out and it took a while to have a clear idea about how to induce Th17 

cells. Some cytokines were highlighted as participating in the differentiation: IL-23, IL-1b, IL-6, TFG-

b, IL-21. But cytokine combinations to obtain Th17 cells remained unclear, especially because the 

combination of TFG-b and IL-6 was not capable of polarizing human Th17 cells, like in mice 34,35. 

This raised another issue: human Th17 human differentiation seemed to be different from the 

mouse one, blurring the characterization even more 34. Finally, the role of TGF-b and the other 

cytokines in Th17 differentiation were clarified. Manel et al. showed that TFG-b, IL-1b and IL-23 

were required in human Th17 polarization. They also combined successfully TFG-b, IL-1b and IL-6 

or IL21 36. Their idea of adding IL-21 came up because this cytokine was secreted in response to 

IL-6 and this allowed Th17 differentiation in mice. This combination was also confirmed by Yang 

et al 37. Thus, IL-21 is not necessary but is an important stabilizer of Th17 cells. IL-21 is probably 

creating a positive feedback loop that enhances Th17 polarization. Eventually, Volpe et al. showed 

that adding TFG-b in an environment containing IL-23 and pro-inflammatory cytokines (IL-1b 

and/or IL-6) induced Th17 differentiation 38. 

Concerning transcription factors, RORgt as well as RORa were identified as being major 

transcriptional regulators in Th17 differentiation 36,39,40. IL-6 and IL-21 can induce RORgt and RORa. 

IL-23, IL-6 and IL-21 can also activate STAT3, which is necessary for RORgt induction 41,42. 

Moreover, regarding surface markers, Th17 cells express CCR6 and CCR4 43. 

Finally, Th17 cells produce different cytokines. Some of them have an important pro-inflammatory 

role such as IL-17A, IL-17F and IL-22. It has been demonstrated that these cytokines can induce 

antimicrobial peptide secretion by keratinocytes and epithelial cells 44,45. Moreover, IL-17A and IL-

17F can impact directly neutrophils and enhance their recruitment 46. Thus, Th17 cells protect 

against fungi and bacteria at the mucosal and epithelial surfaces. 

 

iii) Th22 cells 

Th22 cells have come a long way before being considered as a fully-fledged subset. 
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IL-22, the master cytokine of Th22 cells, belongs to IL-10 family 47. In the beginning, this cytokine 

was associated with Th1 cells since it was the first cell to be identified as an IL-22 producer. Wolk 

et al. studied the production of this recently described cytokine in human-polarized Th1, Th2 and 

regulatory T (Treg) cells and showed that Th1 was highly producing IL-22 48.   

Th17 were also described to produce IL-22. As seen above, IL-22 is commonly co-expressed with 

IL-17A and IL-17F Th17 cytokines. But actually, the Th17 context is not the optimal environment 

to obtain IL-22 production, because it is inhibited by TGF-b 49,50. 

Th22 as an independent subset was established after some studies described IL-22-producing Th 

cells, in the absence of IL-17, IL-4 or IFNg. Trifari et al. showed that naive CD4 T cells cultured with 

IL-1b and IL-23, in the presence or absence of IL-6, led to the production of IL-22 but not IL-17 51.  

Moreover, Volpe et al. demonstrated that IL-17 and IL-22 were differentially regulated and that 

IL-12 and IL-23 induced high levels of IL-22 52.  

Furthermore, Eyerich et al. provided evidence about Th22 cell phenotype stability. When re-

cultured with Th1, Th2, Th17 and Treg-polarizing cytokines, Th22 cells clones, established from 

psoriasis patient, kept producing IL-22 53. 

In addition to IL-22 production, Th22 cells express CCR6, CCR4 and CCR10 at their surface 51. 

Regarding transcription factors, despite a common regulator with Th17 cells, STAT3, the master 

transcription factor of Th22 cell is AHR 54. 

Th22 cells have similar effector functions than Th17 cells. Indeed, Th22 cells induce the production 

of antimicrobial agents by keratinocytes and epithelial cells, protecting against bacteria and fungi 

at mucosal and epithelial surfaces. A function that Th22 cells do not share with Th17 cells is that 

they participate in wound healing 53. 

 

iv) Th9 cells 

Th9 case is similar to the Th22 one in the sense that IL-9 was primarily defined as a Th2-associated 

cytokine 55.  

Th9 cells were discovered in 2008, when a study demonstrated that adding TGF-b on Th2 cells 

induced a new Th subset, producing IL-9. Th2 cells lost their capacities to secrete IL-4 and express 
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GATA-3, and only kept IL-10 production 56. At the same time, another study showing similar results 

added that IL-4 associated with TGF-b could directly differentiate naive CD4 T cells in Th9 cells, 

without passing through Th2 polarization. Additionally, they demonstrated that Th9 cells did not 

have suppressive activity despite IL-10 production 57. Moreover, it has recently been shown in 

mice that TNF-a promoted polarization, survival and proliferation of Th9 cells in vitro 58. 

Th9 cells require different transcription factors. The specific one for Th9 cells is PU.1 59. It has been 

described that PU.1 could interact directly with the IL-9 promoter region and interfere with GATA-

3 to inhibit Th2 polarization 60,61. However, GATA-3 and STAT6 also have an indirect role which 

seems consistent with the importance of IL-4 in Th9 differentiation. Although their role is not 

clearly established, they seemed to impact by downregulating FoxP3 (that is promoted by TGF-b) 

62,63. 

Th9 cells have been shown to impact mast cell recruitment and activation. In 2009, Veldhoen et 

al described an IL-9-induced mast cell activation against helminths, an intestinal nematode 56. This 

effect on mast cells showed also positive results on antitumor immunity. Purwar et al. showed 

that decrease of tumor growth correlated with IL-9 production and Th9 cells among tumor-

infiltrating lymphocytes (TILs) and with the presence of mast cells in mice melanoma and lung 

cancer. It was confirmed by adoptive transfer experiments 64. Moreover, another study supported 

the idea that Th9 cells played a role in antitumor immunity, without involving mast cells 65. 

 

v) Regulatory T cells 

First of all, regulatory T cells (Treg) are classified into two categories. On the one hand, naturally 

occurring Treg (tTreg) cells develop in the thymus over different selections. On the other hand, 

induced Treg (iTreg) cells are differentiated from naive CD4 T cells under tolerogenic conditions 

and TCR stimulation, outside the thymus. Here the focus will be only on iTreg polarization.  

Treg phenotype is commonly described ad CD4+CD25+FoxP3+, FoxP3 being the major transcription 

factor of this subset. Treg cells also express some characteristic, but not specific, surface molecules 

such as CTLA-4 and GITR 66,67. 
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A lot of studies described that iTreg generation depends on a high strength TCR signaling and the 

presence of IL-2 and TFG-b in the microenvironment. Indeed, a suboptimal TCR activation 

enhanced FoxP3 induction 68. This TCR activation goes along with the appropriate co-stimulation. 

CD28 binding to CD80/CD86 has been described to inhibit Treg differentiation. On the contrary, 

CTLA-4, CD28 competitor, promoted TGF-b-induced FoxP3 66. Moreover, TGF-b and IL-2 play a 

critical role in iTreg differentiation. TGF-b is required for FoxP3 induction and IL-2 for TGF-b-

mediated induction of FoxP3 69–71.  

FoxP3 inhibits pro-inflammatory cytokine production such as TNF-α, IFNg, IL-17, IL-4, by Treg. Treg 

cells secrete characteristic immunosuppressive cytokines such as IL-10 and TFG-b 72. 

Treg cells are essential actors of immune tolerance. They are indispensable to control 

autoimmunity and inflammation through the body by inducing tolerance. As seen above, 

immunosuppressive cytokines and co-inhibitory molecules play a role in inhibiting pro-

inflammatory responses of T cells and B cells but also dendritic cells, macrophages and NK 

cells 72,73. More recently, a study highlighted the role of IL-2 receptor in suppressive mechanisms, 

showing that IL-2 consumption by Treg helped to control CD8 response 74.  

 

vi) T follicular helper cells 

T follicular helper cells (Tfh) were first described in 2000 as CD4 T cell with special features, which 

were a high CXC Chemokine Receptor (CXCR) 5 expression and the ability to help B cell 

immunoglobulin (Ig) production directly into germinal center follicles 75. Besides, CXCR5 is also 

expressed by B cells that allow them to respond to CXCL13 and form follicles. With this same 

chemokine receptor, Tfh cells are capable to migrate at the T-B border to meet B cells. 

Nonetheless, it remains a challenging marker because it rapidly downregulated in vitro 76. 

Bcl6 and Ascl2 are the master transcription factors of Tfh cells. Bcl6 represses Blimp1, which is 

known  as a Bcl6 antagonist and as an inhibitor of Tfh differentiation 77. Ascl2 also acts as a 

suppressor of Th differentiation 78. 

The optimal cytokine context for Tfh differentiation is difficult to identify. In mice, IL-6 and IL-21 

have been described as important cytokines in this process 79. In human, some studies showed 

that IL-12 induces IL-21 secretion 80,81. Others showed an important role for IL-12 but also TFG-b 



 23 

and IL-23 82. It has also been observed that IL-2 was a limiting factor for Tfh development contrary 

to its positive effect on other Th subsets 83,84. In addition to cytokines, co-stimulatory molecules 

have been identified as important for Tfh induction, such as OX40 85,86 and inducible T cell co-

stimulator (ICOS) 87,88. Thereby, a clear pathway remains very difficult to establish since Tfh 

polarization seems to be the result of multiple steps and multifactorial mechanisms. 

To distinguish Tfh from Th cells, a first marker is CXCR5. Tfh cells also upregulate programmed cell 

death 1 (PD-1) and ICOS molecules and secrete IL-21, IL-4 and CXCL13, CXCR5 ligand 89,90. 

Tfh cells have different functions related to B cell help. They participate in B cell survival, 

proliferation, differentiation and maturation. Moreover, Tfh cells have been described to be 

involved in the germinal center formation and maintenance 91,92. 

All CD4 T helper cell characteristics are summarized in the following Table 1. 
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CD4 T 
helper 
subset 

Cytokine 
inducer 
signals 

Master 
transcription 

factors 

Secreted 
cytokines 

Effector functions 

Th1 

IL-12 

IL-27 

IFN 

T-bet 

STAT4 

STAT1 

IFNg 

IL-2 

TNF-a 

TNF-b 

Intracellular pathogen clearance 

Antitumor immunity 

Th2 IL-4 
GATA-3 

STAT6 

IL-4 

IL-5 

IL-6 

IL-9 

IL-13 

IL-31 

Extracellular pathogen clearance 

Humoral response 

Th9 
IL-4 

TFG-b 

PU.1 

GATA-3 

STAT6 

IL-9 

IL-10 

Parasite clearance 

Mast cell recruitment 

Antitumor immunity 

Th17 

TFG-b 

IL-1b 

IL-23 

IL-6 

IL-21 

RORgt 

RORa 

IL-17A 

IL-17F 

IL-21 

IL-22 

Antimicrobial properties against 

extracellular pathogen 

Neutrophil recruitment 

Th22 

IL-1b 

IL-23 

IL-6 

IL-12 

AHR 

STAT3 
IL-22 

Antimicrobial properties 

Wound healing 

Tfh 

Unclear, 

possibly a lot 

of different 

signals 

Bcl6 

Ascl2 

IL-21 

IL-4 

CXCL13 

B cell help 

Treg 
TFG-b 

IL-2 
FoxP3 

IL-10 

TGF-b 

Immune tolerance 

Anti-inflammatory function 

Table 1: Characteristics of human CD4 T helper cell subsets 
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c) Th subset distinction: an old way of thinking? 

In the previous part, the classical view of T helper subsets has been shown. This “separatist” vision 

is useful and necessary to better understand each subset functions and specificities. The idea of 

distinct subsets arose at the time when Mosmann and Coffman discovered Th1 and Th2, since 

before that CD4 T lymphocytes were considered only as a cell type helping B cells. It led to a 

dualistic view of Th subsets. After that, the identification of new subsets increased more and more 

the Th classification complexity. 

Figure 4 shows an overview of the Th subsets in perspective. 

 

Figure 4: Regulation of human Th differentiation by IL-12, IL-23 and TGF-b 

(Illustration from Schmitt et al. Curr Opin Immunol, 2015 93) 

This figure highlights two contradictory ideas. On the one hand, it draws attention to the fact that 

each subset can be easily classified according to only three cytokines IL-12, IL-23 and TFG-b. On 

the other hand, the fact that only three molecules can drive such different profiles with such 

distinct effector functions seems illusory.  
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As seen previously, subsets such as Th9 or Th22 were recognized after being associated with other 

subsets. Th2 and Th9 subsets are quite close on the three-dimensional cube. The only difference 

is the absence or presence of TFG-b. However, for the Th22 subset, that was blended with Th17, 

it appears that they localize further apart from each other. Contrary to Th2 and Th9 cells, that 

were separated by one dimension, Th17 and Th22 are separated by two dimensions: Th17 in 

presence of TFG-b and absence of IL-12 and Th22 in absence of TFG-b and presence of IL-12. Two 

out of the three dimensions of difference seems like a lot to define two subsets, considering that 

both produce IL-22 and that they share some of their effector functions. 

Similarly, Th2 and Tfh cells are localized on the opposite side of the cube whereas they both 

produce IL-4. 

Therefore, a lot of complexity is generated with the discoveries of new subsets and consequently, 

it becomes more and more difficult to classify Th subsets and determine the criteria on which to 

base the classification. 

Are inducer and secreted cytokines enough to explain this complexity? If not, how to explain this 

complexity and how is it generated? 

In the next part, the multiplicity of signals integrated by T cells that can impact Th polarization will 

be detailed.  
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II) Underlying mechanisms of T helper cell polarization 

In the early years of Th1/Th2 regulation, cytokines were commonly described as the only actors 

inducing Th polarization. However, other signals can be involved. In this section, the multiplicity 

of signals leading to T helper cell polarization will be examined.  

T cells integrate many different signals. At the T cell level, the complexity of Th differentiation can 

be dissected at different stages, from large to small: 

- The cellular impact: how DC parameters affect Th polarization? 

- The molecular impact: how molecular pattern diversity on DCs can influence Th 

polarization? 

Moreover, based on these parameters, the concept of context-dependency which can influence 

Th polarization and many, if not all, biological mechanisms, will be introduced. Indeed, naive CD4 

T cells respond to specific environments and Th polarization will be influenced by the signals 

specific to this particular environment. 

 

1) Influence of dendritic cell diversity on Th polarization 

a) Human DC ontology basics  

DCs constitute a complex cell family of APCs. Several subtypes, phenotypically and functionally 

distinct, have been identified. 

First, DCs have been classified according to their migratory capacities. Non-lymphoid tissue-

migratory DCs patrol peripheral tissues, seeking for antigens, and migrate to lymph nodes after 

activation to present antigenic peptides to T cells. Lymphoid tissue-resident DCs reside in lymph 

nodes, capture circulating antigens and directly present them to T cells 94. 

Secondly, DCs have been classified into two distinct groups: conventional DCs (cDCs) and 

plasmacytoid DC (pDCs). In human, within cDCs, two subsets have been identified: cDC1 and cDC2, 

defined as CD11c+ CD123-. On the one hand, cDC1 have been characterized by the expression of 
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BDCA-3 (also called CD141), XCR1 and CLEC9A. They have been described to highly cross-present 

antigens to CD8 T cells, and both resident and migratory cDC1 have been found 95. On the other 

hand, cDC2 have been characterized by the expression of BDCA-1 (also called CD1c) and CD11b. 

cDC2 can also be both resident or migratory and they are known for their capacity to polarize 

naive CD4 T cells 95.   

pDCs have been defined, in opposition to cDC, as expressing CD11c- CD123+. They have been 

shown to express BDCA-2 (also called CD303) and BDCA-4 (also called CD304) and to produce high 

amounts of type 1 IFN in response to viral infection 96.  

Furthermore, only present in the epidermis, another specific type of DC has been described: the 

Langerhans cells. They were the first DCs to be discovered and have been shown to express CD1a 

and Langerin. This particular phenotype makes them easily distinguishable from the other subsets. 

Moreover, another DC type, monocyte-derived DCs (MoDCs), has been firstly reported in mice. 

MoDCs have been described to be rare at steady-state and to arise during inflammation, such as 

in Leishmania-induced intestinal inflammation mouse model 97. Indeed, Leon et al. showed that 

MoDCs were differentiated from CD14 monocytes recruited on the inflammation site, as opposed 

to cDC and pDC that derived from a common DC progenitor. For this reason, they have also been 

called inflammatory DCs (infDC). They have been later observed in human, in physiopathological 

conditions in breast cancer ascites 98, and in physiological conditions in peripheral tissue 99.  

Based on MoDC differentiation, two teams showed that CD14+ monocytes could be differentiated 

into MoDC-like cells by GM-CSF and IL-4 stimulation 100,101. Although these in vitro-derived cells 

are less physiological and are known to be considerably different compared to primary DCs 102, 

this in vitro model is helpful due to the limited availability of DCs in blood and tissue. 

DC subset diversity is described in Figure 5. 

 

Figure 5: DC subset diversity 
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Recent studies have dug in more detail in DC classification thanks to single-cell RNA sequencing 

and mass cytometry technologies. Indeed, although flow cytometry and microscopy provided a 

lot of information on DCs at steady-state and in diseases, these methods were restricted regarding 

the number of analyzed parameters and the necessity to have prior knowledge on studied 

molecules. Thus, several papers came out recently, bringing a novel view of DC subsets 103–106. 

Notably, the cDC2 population has been particularly discussed concerning its heterogeneity and 

the possible existence of subpopulations.   

In this manuscript, the first definition of cDC2, in other words, cDC2 as one DC subtype, will be 

taken into consideration. Indeed, depending on the study: 1) the number of cDC2 subpopulations 

was variable, 2) the subpopulations were identified based on different markers and 3) identified 

subpopulations were either described as subsets or variability among donors. In this end, cDC2 

precise characterization remains controversial. Moreover, since these studies are very recent, 

evidence of a differential impact of these possible subpopulations on Th polarization are very 

limited. 

 

b) Impact of DC parameters on Th polarization 

i) Role of the DC subset on Th polarization 

DCs belong to a very broad family, with highly different subsets in regards to their markers and 

their migratory capacities, but also their morphology. In this part, many studies focusing on the 

role of these different DC subsets on CD4 T cells, notably on Th proliferation and polarization will 

be presented.  

Firstly, several studies compared the role of cDC1 and cDC2 on Th polarization. For instance, 

Segura et al. compared polarizing capacities of cDC1 and cDC2 from healthy donor blood and 

breast cancer noninvaded lymph nodes. They showed first that all DC subsets, migratory and 

resident, were equally competent in inducing CD4 T cell proliferation. Secondly, they showed that 

cDC1 and cDC2 were both inducing production of the Th1 cytokine IFNg by CD4 T cells, but poor 

production of the Th2 cytokine IL-5 and IL-13 107. Yu et al. also described that both cDC1 and cDC2 

were able to induce IFNg-producing CD4 T cells, but they added that cDC1 were more efficient to 
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induce Th2 polarization than cDC2, by measuring IL-4 and IL-13 T cell secretion 108. On the contrary, 

Jongbloed et al showed that blood cDC1 induced more Th1 responses compared with cDC2 109.  

Additionally, Durand et al. isolated DC subsets from human tonsils and compared their ability to 

polarize naive CD4 T cells into Tfh cells. They looked at Tfh surface markers, such as PD-1 and 

CXCR5, and secreted cytokines and chemokines, such as IL-21 and CXCL13. They observed that 

cDC2 population was the most efficient subset, compared to cDC1 and pDC, to induce Tfh 

polarization 110. 

Concerning inflammatory DCs, Segura et al. showed that this subset was highly competent in 

polarizing Th17 cells 98.  

Some studies were also conducted using the MoDC differentiation model. In a mouse study, Chow 

et al. compared the capacity of MoDC and cDC to influence Th polarization and proliferation. They 

showed that, although cDC were more competent in inducing CD4 T cell proliferation, MoDCs 

were more efficient at inducing Th1 and Th17-associated cytokines than cDC. They also added that 

MoDCs were efficient at inhibiting Th2 polarization via CCR2 111. 

Some studies were also conducted on DCs from the skin. Klechevsky et al. demonstrated that 

Langerhans cells were more efficient to induce a Th2 profile compared to dermal CD14+ DCs and 

cDC2. Moreover, they showed that dermal CD14+ DCs were the most potent to induce Tfh cells, 

followed by cDC2 and Langerhans cells 112. Furio et al. confirmed that Langerhans cells were more 

capable than cDC2 to induce a Th2 profile, but also a Th1 profile 113.  

To finish on Langerhans cells, two other studies showed that this subset was the most efficient to 

polarize naive CD4 T cells into Th22 cells, producing IL-22 in the absence of IL-17 114,115. 

 

ii) Role of the DC-activating stimulus on Th polarization 

The cellular impact on Th polarization can be due to the DC subset, as previously described. 

Moreover, this cellular impact can also be composed of a second important parameter, the DC-

activating stimulus. DCs express a broad variety of receptors, allowing them to recognize a wide 

range of pathogens, that can affect Th subset induction.  

First, a lot of studies have been conducted in vivo in mouse models. Using OVA mouse model, 

Pulendran et al. showed that Escherichia coli (E. coli) lipopolysaccharides (LPS) predominantly 
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induced Th1 polarization. However, Porphyromonas gingivalis LPS were not efficient in inducing 

Th1 but induced a Th2 response. Moreover, in line with these observations, they described that 

IL-12 secretion by CD11c+ CD8α+ DCs, the equivalent of human cDC1, was only induced by E. coli 

LPS 116.  

Using the same model, Dillon et al. confirmed in vitro that E. coli LPS stimulation was highly 

efficient in inducing IL-12 secretion by DCs and a Th1 response with IFNg production. Additionally, 

they used Pam3Csk4 (Pam3) stimulation and showed that it was efficient in inducing IL-10 

secretion by DCs and Th2 response, by measuring IL-4 and IL-5. Interestingly, they also performed 

in vivo analysis showing an interest in the impact of these stimuli on DC cytokine secretion. CD11c+ 

CD11b+ DCs (including cDC2) were more potent to secrete IL-10 and CD11c+ CD11b- (including 

cDC1) to secrete IL-12 117.  

In human, several studies also demonstrated an impact of these DC-activating stimuli on Th 

polarization. 

Agrawal et al also studied E. coli LPS. They showed that E. coli LPS stimulation induced high IL-12 

and TNF-α secretion by MoDCs. On the contrary, Pam3-stimulated MoDCs did not induce Th1-

polarizing cytokines. By co-culturing MoDCs with allogeneic CD4 T cells, they showed that E. coli 

LPS-stimulated MoDCs induced more IFNg secretion by T cells and that Pam3-stimulated MoDCs 

induced more IL-5 and IL-13 secretion by T cells 118. These results corroborated those in mice. A 

few years later, they stimulated human MoDC with other stimuli: Zymosan, prepared from yeast 

cell walls and stimulating TLR2 and dectin-1 CLR, and Curdlan, a dectin-1 agonist bacterial 

polysaccharide. They observed that Curdlan favored IL-23 secretion and both Curdlan and 

Zymosan favored IL-1b and IL-6 secretion by MoDCs. Consistent with these results, they showed 

that both dectin-1 stimuli promoted Th17 polarization of CD4 T cells 119. Interestingly, different 

pathogen stimuli on the same DC subset could lead to different Th polarizations. 

In addition to microorganism-derived stimuli, cytokines can also activate DCs and indirectly affect 

Th polarization. For instance, thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine 

belonging to the IL-2 cytokine family. It is produced by epithelial cells or other stromal cells and 

can activate DC-mediated inflammation in allergic diseases. In atopic dermatitis patients, it is 

especially secreted by keratinocytes 120.   

Soumelis et al. showed that CD11c+ DCs (including cDC1 and cDC2) stimulated with TSLP primed 

Th2 response by CD4 T cells by measuring IL-4, IL-5 and IL-13. Moreover, they observed that TSLP-

activated DCs induced TNF-α but inhibited IFNg and IL-10 production by CD4 T cells 121. Ito et al 



 32 

confirmed these observations by demonstrating that TSLP-stimulated DCs promoted TNF-α+ IL-10- 

Th2 cells from naive CD4 T cells 122. Moreover, TSLP-activated CD11c+ DCs have been described to 

induce Tfh differentiation. Indeed, TSLP-DC-polarized Tfh cells secreted high levels of IL-21, IL-4 

and IL-13, expressed Tfh markers such as CXCR5, PD-1 and ICOS, and were able to help B cells to 

secrete class-switched IgE 85. 

In addition to the DC subset and the DC-activating stimulus, another interesting parameter 

affecting Th polarization was identified. Tanaka et al. observed that Th polarization could be 

influenced by the number of DCs. In their study, they showed that in vitro stimulator/responder 

cell ratio could impact the differential regulation of Th1 and Th2 polarization. Using MoDC, they 

found that a low ratio (meaning few DCs compared to T cell number) induced preferentially a Th2 

profile, with IL-4, IL-5 and IL-13 secretion, whereas a higher ratio (meaning higher DCs number in 

the co-culture) induced preferentially a Th1 profile, with IFNg and IL-2 secretion 123.  

In conclusion, DC parameters, such as the DC type, the DC-activating stimulus and the DC/T cell 

ratio, can have an impact on Th polarization. In the next part, below the cellular impact, the 

molecular impact on Th polarization will be described.  

 

2) Influence of molecular pattern diversity on Th polarization 

In this part, surface molecules influencing Th differentiation will be studied. Indeed, in the first 

part of this introduction, the cytokine signal impact in the three-signal theory of T cell 

differentiation was mainly described but the two other signals were not lingered: TCR signaling 

and co-stimulatory molecule signals. 

 

a) Impact of TCR signal on Th polarization 

It has been recently shown that TCR signaling can importantly influence Th polarization. A critical 

point is that this influence can be quantitative, but also qualitative. 

In the ‘90s, several studies came out revealing the importance of the TCR signaling strength on 

Th1 and Th2 differential polarization. By using altered peptide ligands and wild-type peptides 
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coding for some residues of tobacco moth cytochrome c, two studies observed a high IL-4 

production in the case of naive CD4 T cell in the presence of the altered peptide ligand or a low 

dose of WT peptide, and on the contrary, a high IFNg production in the presence of the WT peptide 

124,125. Thus, Th1 cell induction required a stronger TCR signal strength than Th2 cell differentiation. 

One hypothesis was that, in naive CD4 T cells stimulated with a high concentration of peptides, 

the ERK pathway was induced at a high level, which led to GATA-3 suppression, transient blocking 

of STAT5 and Th2 failure 126. Another study using OVA peptide corroborated these data by showing 

Th2 induction with low antigen doses and Th1 induction with increasing antigen doses. They also 

added that increasing antigen doses can also lead to Th2 polarization, which complexifies even 

more the concept 127. 

Furthermore, Boyton et al. greatly illustrated Th polarization according to TCR affinity. The 

experimental system involved a bulk of CD4 T cells with a receptor of low or high affinities, and 

two microenvironments, one containing the Th1-polarizing cytokine IL-12 and the other 

containing the Th2-polarizing cytokine IL-4. In a “Th1 microenvironment”, Th1 polarization 

occurred only for CD4 T cell clones with high-affinity receptors. On the contrary, in a “Th2 

microenvironment”, both CD4 T cell clones, with high and low-affinity TCRs, could be 

differentiated into Th2 cells, with a preferential expansion of clones with low-affinity receptors 

(Figure 6) 128. 
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b) Impact of co-signal molecules on Th polarization 

Co-signals are composed of co-stimulatory and co-inhibitory molecules. They play a critical role in 

immune response activation and regulation. Nowadays, they are commonly called immune 

checkpoint molecules, since their preferential targeting in immunotherapies, mostly in cancer 

therapies. They include over thirty molecules, belonging to various molecular and structural 

subfamilies. Functionally, co-stimulatory molecules can boost T cell activation, whereas co-

inhibitory molecules play a role in the regulation of T cell responses. Immune checkpoints will be 

discussed in more detail in the last part of this introduction. 

Co-stimulatory and co-inhibitory molecules constitute the second signal of the three-signal theory 

of T helper cell differentiation. These molecules can both affect the strength and nature of the 

signal transmitted to T cell and thus, promote or inhibit specific subset differentiation. 

Most studies about co-signals influencing Th polarization have been conducted in mouse models, 

principally using knock-out mice of co-signal of interest. Given the large number of co-signals, few 

important ones, that illustrated well their impact on Th polarization, will be dissected in this part. 

CD28 constitutes a first essential signal, belonging to co-stimulatory signals. It is constitutively 

expressed on T cells and is essential for T cell survival, proliferation and differentiation.  

CD28 commitment is related to TCR strength and can lead to both Th1 and Th2 cell polarization. 

In presence of high TCR affinity or high antigen doses, it has been shown to promote Th1 

polarization 132. On the contrary, extended CD28 commitment tended to favor Th2 polarization 

133,134. Similarly to Th1 polarization, CD28 could also promote Th17 cells in the context of a strong 

TCR stimulation 131,135. 

Moreover, CD28 has the interesting role of promoting Th differentiation via another co-

stimulatory molecule named ICOS 136,137. ICOS is a CD28 homolog and is also essential for T cell 

activation and differentiation 138. Their signals have been described to be synergic for the 

induction of specific cytokines and complementary for others. In the case of Staphylococcus 

aureus enterotoxin B-infected mice, it has been described that ICOS was important for TNF-a and 

IL-10 secretion whereas CD28 was important to induce IL-2, IFNg and IL-4 139.  

Independently of CD28, several studies highlighted that ICOS deletion led to a lack of Th1 cells. 

For instance, in ICOS-deficient mouse model, Salmonella enterica infection took over because of 

Th1 response defect 140. Besides, ICOS-deficiency inducing Th1 cell impairment protected NOD 
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mice against diabetes 141. However, opposite effects have also been reported, showing that ICOS-

deficient mice developed exacerbated Th1 immune responses and enhanced IFNg production in 

many infection models such as Mycobacterium tuberculosis, Plasmodium chabaudi chabaudi or 

Schistosoma mansoni 142–144. Thus, ICOS influences Th1 cells but its impact stays controversial and 

seems to be highly dependent on the context.  

Contrary to its differential contributions to Th1 cells, ICOS has been clearly described to promote 

Th2 and Tfh polarizations. High ICOS expression has been observed on Th2 cells compared to Th1 

cells, blocking of ICOS importantly decreased IL-4 production 145,146 and impaired GATA-3 

expression has been noted in ICOS-deficient mice 147. Moreover, ICOS KO mice resulted in reduced 

Tfh cell number and germinal center collapse 148. Thus, ICOS seems to be greatly involved in 

polarization acting on B cell help.   

Moreover, ICOS promoted IL-21 production in Tfh cells, essential for their development and 

maintenance, but also in Th17 cells. However, ICOS was described to not be crucial for Th17 

polarization but to be a great enhancer 149,150.   

Finally, according to Akbari et al, ICOS was necessary for iTreg induction in hyperreactivity model 

151. Other papers connected ICOS to iTreg functionality. ICOS+ CD4 T cells, but not ICOS-, were 

described to prevent naive CD4 T cells proliferation in mixed-lymphocyte reaction (MLR) 

experiments 152. Moreover, ICOShi CD4 T cells have been associated with IL-10 anti-inflammatory 

cytokine secretion 153. 

Therefore, ICOS influence on Th polarization is complex. ICOS has the ability to prevent immune 

responses but also to induce pro-inflammatory Th cells. Its function seems to vary a lot according 

to the studied context and the signal promoting ICOS Ligand (ICOSL) on the APC. Furthermore, 

although co-signal molecule impact on Th cells is clearly demonstrated, it remains difficult to 

understand when they exactly impact. For instance, in the case of ICOS playing a role in Th1 cells, 

does ICOS affect the Th1 polarization process itself, or the Th1 cell expansion? When a decrease 

of Th1 cells and/or decrease of IFNg production is observed in mouse models, did we attend to a 

direct impact on naive T cell polarization or a Th plasticity after polarization?  

CD40L is also a co-stimulatory molecule described as important in Th polarization. As opposed to 

CD28 and ICOS, its contribution is indirect since the ligand is expressed on T cells. CD40-CD40L 

interaction induces an effect on the DC, which impacts the T cell afterwards.   

First, CD40L ligation has been shown to induce IL-12 secretion by DCs, promoting Th1 

polarization 154,155.  
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Moreover, some studies described the role of CD40-CD40L axis in Th17 polarization, which 

increased IL-6 and IL-23 secretion by DCs 156. Again, CD40-CD40L interaction allowed creating a 

beneficial cytokine environment for Th17 differentiation but did not impact CD4 T cell in a cell-

intrinsic manner. Iezzi et al corroborated these results and added that a strong TCR signaling 

strength up-regulated CD40L on T cells, promoting this phenomenon 157.  

Acting on DC cytokine secretion, the role of CD40L in Th polarization seems more straightforward 

than ICOS impact.  

Finally, co-inhibitory molecules can also impact Th polarization but in an opposite manner. T Cell 

Immunoreceptor With Ig And ITIM Domains (TIGIT) is an example of a co-inhibitory molecule. 

TIGIT shares the same ligands CD155 (PVR) and CD112 (nectin-2) with the co-stimulatory molecule 

CD226 (DNAM-1), similarly to CD28 and CTLA-4 which share the same ligands CD80 and CD86 

158,159. TIGIT is highly expressed on Treg cells but is also expressed by the others Th subsets after 

activation.  

TIGIT was shown to inhibit pro-inflammatory Th1 and Th17 cells, but interestingly not Th2 cells 160. 

Another paper even showed that TIGIT could promote Th2 polarization in an in vitro Th 

polarization system and an allergic disease mouse model 161. These results corroborate with what 

has been observed for TIGIT competitor, CD226, which promotes Th1 and Th17 axis 162,163.  

Even though few papers came out about TIGIT impact on Th polarization, it underlines that co-

inhibitory molecules can also do more than just inhibit T cell activation and functions. 

Of course, many other co-signal molecules have been reported to impact Th polarization such as 

CD30 and CD27/CD70 impacting Th17 polarization 164–166, or Notch receptor impacting Th9 

polarization 167. 

It should be noted that OX40 has also an important role in Th polarization. The last part of the 

introduction will be dedicated to this co-stimulatory molecule that will occupy a central position 

in this manuscript.  

Thus, it appears that many co-signals are involved in the polarization of several subsets. This 

highlights that the same molecule can have different roles and functions depending on the context 

in which the T cell is evolving. 
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The concept of context-dependency can be defined “in real life” as the following. One person 

evolves in different environments, is surrounded by many different people, etc. According to these 

elements and many others, the same person can behave and react differently in a situation. For 

instance, the same person may respond to the same question differently whether she is in her 

professional or personal environment. This concept can be applied to biology as well. 

A cell, a molecule can have different behaviors or functions depending on the context in which it 

is evolving. 

Cytokines frequently exhibit context-dependent functions. This is the case of TGF-b that can 

differentiate naive CD4 T cells into different Th subsets when it functions within specific cytokine 

environments. In conjunction with IL-2, TGF-b was shown to promote Treg 168. TGF-b was also a 

key inducer of Th17 cells, when it co-operated with IL-6, IL-1b and IL-23 38. In combination with IL-

4, TGF-b was involved in the polarization of Th9 cells 57. Moreover, Schmitt et al. showed that TGF-

b in presence of IL-12 and IL-23 could induce several Tfh markers from naive CD4 T cells such as 

CXCR5, ICOS, Bcl-6 and IL-21 82.  

IFN has also been studied in this perspective because of its pleiotropic functions. Touzot et al. 

explored the context-dependency of this cytokine in Th-polarizing cytokine contexts: Th0, Th1 (IL-

12), Th2 (IL-4) and Th17 (TGF-b, IL-6, IL-1b, IL-23). They showed that IFNa induced distinct 

transcriptional signatures in each of these Th contexts 169.  

These two examples illustrate that a single cytokine can drive multiple effects in target cells, here 

different Th polarizations or signatures, when it is combined with different other cytokines. 

Co-stimulatory molecules can also induce differential effects in target cells according to the 

immunological context.  

This can be illustrated by CD28 that induced functionally diverse Th cytokine secretion depending 

on the MoDC-activating stimuli. For instance, blocking of CD28 induced quantitatively different 

secretion of IL-6, IL-21 and IL-17A by CD4 T cells in co-culture with MoDC activated with LPS and 

Zymosan, compared to MoDC activated with Influenza virus 170.  

Moreover, multifaceted ICOS is a good example of the context-dependent role of a molecule for 

two reasons. First, concerning Th1 subset, it was presented above that ICOS can have opposite 

effects and that the physiopathological environment seems to highly influence either promotion 

or inhibition of Th1 cells. Besides, the fact that ICOS appears to be involved in many different 

cytokine secretions and many, if not all, Th subsets, is second evidence of the potential role of the 

context on ICOS functions. 
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In addition, Yu et al. compared Th polarization capacities between cDC1 and cDC2 activated with 

four different stimuli: Influenza virus, TSLP, Curdlan or Poly I:C. It can be assumed that the 

combination of DC types and DC-activating stimuli create 8 cellular contexts (e.g. influenza-cDC1, 

influenza-cDC2, TSLP-cDC1, TSLP-cDC2, etc.). Interestingly, they observed that both DC type and 

DC-activating stimuli impacted CD4 T cell secretion of IFNg and IL-13 108. 

These examples highlighted that microenvironmental contexts can influence T cell behaviors and 

T cell-activating molecule functions. 

 

4) Context-dependency in pathology: example of cancer 

The concept of context-dependency leads to consider differently immune responses in 

physiopathology and to grant more importance to the context. The example of cancer will be 

taken. Indeed, cancer is a very diverse pathology since it can have various tissue origins and tumor 

locations. Hence, given the number of cancer types that can be considered as different contexts 

in one single pathology, it is a great example to illustrate the concept of context-dependency. 

In this part, how Th subsets and Th cytokines are linked with specific tumor microenvironment in 

different cancer types and their associated context-dependencies will be studied. 

 

a) Tumor microenvironment composition 

The tumor microenvironment (TME) is a dense and complex cell network (Figure 8). It influences 

cell functions and interactions between cell types in their environment. But from another point of 

view, it is the result of many interactions and crosstalk between different cell types.  

Fibroblasts are a key element in the TME that greatly illustrates this crosstalk idea. Fibroblasts are 

specialized in extracellular matrix (ECM) synthesis, a dense macromolecule network supporting 

surrounding cells. On the one hand, TME signals modify fibroblast phenotype and these 

“activated” fibroblasts are commonly called cancer-associated fibroblasts (CAFs). On the other 

hand, CAFs impact TME and promote cancer progression by providing additional pro-tumoral 

signals 171. For instance, CAFs can remodel ECM and act on different parameters such as its 
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composition, structure, compactness, etc. In terms of antitumoral immunity, this affects T cell 

access to the tumor core by retaining them into the stroma 172. 

In addition to stromal cells, immune cells are a critical cell component in TME. T cells, NK cells, B 

cells, dendritic cells, macrophages, neutrophils, among others, are pieces of cancer heterogeneity. 

Regarding tumor-infiltrating T cells (TILs), CD8+ and CD4+ T cells under different differentiation 

states are found. The fact that Th polarization is also affected by TME signals will be shown later. 

TME sometimes includes tertiary lymphoid structures (TLSs). They resemble secondary lymphoid 

organs (SLOs) and can be found in several pathophysiological conditions and diseases. In cancer, 

they are more abundant in the stroma or the invasive margin than in the tumor core. As SLOs, 

they are composed of immune cells such as T cells, B cells and DCs, and stromal cells such as 

follicular dendritic cells (FDCs) organizing the lymphoid follicles 173. 

 

 

Figure 8: Schematic representation of TME cellular composition 

(Illustration adapted from Hackl et al. Nat. Rev. Genet, 2016 174) 

Th1



 42 

b) Th subsets and cancer immunoediting 

Cancer immunoediting theory states that cancer evolves in three phases: elimination, equilibrium 

and escape. TME is an essential actor for success in this process, by providing the necessary signals 

to the escape. A simplified view is often proposed.  

During the first phase, elimination, the immune system successfully fights against the tumor. On 

the tumor site, the pro-inflammatory microenvironment induces innate cell recruitment such as 

macrophages that produce IL-12, and NK cells that produce IFNg, critical cytokines for antitumor 

immunity. In tumor-draining lymph nodes, naive CD4 T cells are activated by mature DCs 

presenting tumor antigens, inducing Th1 polarization. These Th1 cells are necessary to help tumor-

specific CD8+ cytotoxic T cell (CTL) development via cross-presentation of tumor antigens on DC 

MHC I 175,176. On the tumor site, Th1 cells and CTL are fundamental providers of IFNg. IFNg 

downstream antitumoral effects are various and include for instance macrophage tumoricidal 

activity or CTL and NK cell enhancement, which can directly kill tumor cells 177. Th1 cells also 

release IL-2 that is essential for CTL survival and function 178.  

The second phase, the equilibrium, is highly dynamic, contrary to what is suggested by its name. 

T cells and innate cells fight against the tumor, tumor growth is contained but it is not enough to 

completely eradicate it.  

Finally, during the escape phase, tumor cell variants, which resisted the equilibrium phase by 

increasing resistance and reducing their immunogenicity, dominate the immune response 179. CTLs 

become less responsive and less efficient in eliminating cancer cells. Regarding CD4 T cells, this 

phase goes along with modifications in the TME that affect Th polarization. They also become less 

responsive and inefficient in providing suitable T cell help while TME promotes Treg cell induction. 

TME-driven regulatory phenotype occurs through different processes such as immunosuppressive 

cytokine secretion (e.g. TGF-b and IL-10) 180,181 and co-inhibitory molecule expression (e.g. PD-L1) 

182, among many others. Thus, the TME delivers signals that can affect Th polarization to favor 

malignancy progression. There is a lack of specific target to specifically deplete or functionally 

impair Treg, without affecting T helper cells and CTLs.  

Following this perspective, Treg cells have been reported to be a bad prognosis in breast cancer 

and melanoma for instance 183–185. However, they were also reported to be a good prognosis in 

head and neck cancer and colorectal cancer 186–188. The fact that Th subsets in cancer are not black 



 43 

and white and that context can highly influence T cell cytokine secretion, will be seen in the next 

part. 

 

c) Th subset and Th secreted cytokine context-dependencies in cancer 

Th cells and their functions are highly diverse; thus, it is not surprising that all Th subsets cannot 

be efficient in the antitumor immunity process. The focus will be on Th1 and Th17, which have 

been importantly studied in cancer.  

As previously described, Th1 subset is for now the principal one widely correlated with a good 

prognosis in solid cancer, although other subsets have been studied. The positive involvement of 

Th1 master cytokine IFNg is broadly recognized since multiple studies showed IFNg-dependent 

antitumor immunity by various pathways 177,189–191. Additionally, a study using adenocarcinoma 

and sarcoma mice models showed that IL-12 treatment induced IFNg-dependent tumor 

regression 192. Braumuller et al added more recently that TNF, also played a critical role in tumor 

control 193. In human, high infiltration of Th cells, exhibiting Th1-associated genes such as T-bet, 

was correlated with good prognosis in several cancer types 194–196, as well as Th1-circulating 

cytokines 197.  

Nevertheless, it has also been described that IFNg could have pro-tumoral effects in certain 

conditions. In colorectal carcinoma mouse model, mice deficient for SOCS-1, a tumor suppressor 

gene, spontaneously developed tumors, contrary to SOCS-1-/- IFNg-/- mice that did not develop any 

colon tumors or strong colitis. This suggested that IFNg could be a key actor in tumorigenesis 198. 

IFNg has been shown to be involved in papilloma development by increasing Th17 response 199. 

IFNg has also been described to upregulate PD-L1 in several cancer cell lines 200.  

These few examples, among many others, on IFNg in cancer highlight that the same molecule can 

have opposite effects in a singular pathology. Although IFNg has been mostly associated with 

antitumor benefits, it shows the importance of considering the context to study a molecule 

function. 

Opposite role in tumor immunity has also been described for other Th subsets. For instance, 

different studies associated Th17 cells with either a good or bad prognosis. On the one hand, 

several studies positively correlated a high level of Th17 cells or IL-17 cytokines with better patient 

outcomes in colorectal, cervical and ovarian human cancer types 201–203. Among these studies, 
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Kryczek et al showed in mice and human ovarian cancer that Th17 cells were positively correlated 

with IFNg-producing T cells, and that Th17 cells were negatively correlated with Treg cells in 

human 204,205. Moreover, two studies on adoptive transfer in B16 melanoma mouse model even 

showed that Th17 cells were even more efficient for tumor rejection than Th1 cells 206,207. 

However, melanoma is a great model illustrating the paradox of Th17 cells in cancer since Th17 

and IL-17 have also been associated with melanoma progression. IL-17 has been shown to 

promote tumor growth and more TILs and IFNg were observed in IL-17 KO B16 mice 208. Moreover, 

in other models and in human, several studies described protumoral effects of IL-17 199,209,210. 

Although it was not always very clear whether IL-17 cytokines were produced by Th17 cells, these 

articles show that the TME can enforce a differential regulation of Th17 function or at least IL-17 

function. 

All these studies show that Th subsets, or their secreted cytokines, can have different roles 

according to the tumor type, and even sometimes different roles within the same tumor type. It 

highlights the importance of the context on Th subsets in cancer. It also brings light on the fact 

that some TME parameters are either not enough understood yet, or not enough taken into 

consideration. 

Moreover, it leads to reconsider the way patients are treated, by better considering each TME 

context within tumor types, but also each patient as individual-specific contexts.  

In the next and final part of this introduction, the focus will be on an interesting immune 

checkpoint molecule influencing T cell activation and polarization: OX40 Ligand (OX40L). 
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III)OX40-OX40L: biology of a co-stimulatory immune checkpoint  

1) General concepts of immune checkpoint molecules 

Immune checkpoints are defined as regulator molecules of the immune system and play a key role 

in T cell biology as they accompany TCR signaling. Because of their targeting in immunotherapies, 

the term “immune checkpoint” is commonly used to describe immune checkpoint blockade in 

cancer therapy and therefore associated with inhibitory immune checkpoints. In this manuscript, 

the term “immune checkpoint” refers to both co-stimulatory molecules that stimulate immune 

processes, such as CD28 or ICOS (Figure 9a), and co-inhibitory molecules that inhibit immune 

processes, such as PD-1 or CTLA-4 (Figure 9b). In this line, immune checkpoint molecules are 

usually seen as the “brake” and “gas” of the immune system. However, interestingly, their 

definitions continuously evolve with the discovery of new co-inhibitory and co-stimulatory 

molecules, their biochemical characterization, their signaling pathways and their immunological 

functions. 

Co-signal interactions can be unidirectional, only affecting T cell fate, but can also be bidirectional, 

affecting the T cell carrying the receptor and the cell carrying the ligand. For instance, this is the 

case for CTLA-4. CTLA-4 can inhibit T cell activation and functions through its interaction with B7-

1 (CD80) and B7-2 (CD86). Moreover, this interaction induces indoleamine 2,3-dioxygenase (IDO) 

expression by the APC, which can suppress T effector cell activation and promote Treg function 

(Figure 9b). Bi-directional action of CTLA-4 can also occur during effector T cell and Treg 

interaction. On the one hand, CTLA-4 suppresses effector T cell functions and on the other hand, 

it increases Treg suppressive capacity (Figure 9c). PD-1 follows a similar pattern by suppressing 

effector T cell functions and promoting proliferation, survival and maintenance of Treg (Figure 

9c) 211. 

In addition, CTLA-4 is a great example of co-inhibitory and co-stimulatory molecule competition. 

Several co-signal receptors can bind to the same ligand and vice versa. CTLA-4 and CD28 can both 

bind to B7-1 and B7-2. Recently, it has been shown that CTLA-4 and CD28 could also bind to a third 

ligand named B7-H2 (ICOSL) (Figure 9d) 211.  
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In cancer, immune checkpoint blockades have remarkably changed the landscape of antitumor 

therapy. Immune checkpoint immunotherapies aim to restore immune response against the 

tumor. Several monoclonal antibodies directed against inhibitory immune checkpoints, anti-PD-1, 

anti-PD-L1 or anti-CTLA-4, have been approved by the U.S Food and Drug Administration (FDA) in 

various types of cancer. Other candidates, such as TIGIT (e.g. NCT03563716), T-cell 

immunoglobulin and mucin-domain containing-3 (TIM-3) (e.g. NCT03489343) and Lymphocyte-

activation gene 3 (LAG-3) (e.g. NCT03005782), are being actively tested. However, in the majority 

of cancers, less than 20% of patients develop objective and durable responses to co-inhibitory 

immune checkpoint blockade. Co-stimulatory immune checkpoint agonists are also developed 

and tested in clinical trials 211,212. 

In the last part of this manuscript, a specific co-stimulatory immune checkpoint couple will be 

dissected: OX40 and OX40L. 

 

2) OX40-OX40L couple function on T cell activation 

a) OX40 and OX40L discovery and classification 

OX40 was first discovered by Paterson et al. during the ‘80s at Oxford University. Using activated 

rat T cells and mouse monoclonal antibodies, Alan Williams team showed that one monoclonal 

antibody, MRC OX-40, recognized a new antigen of 50000 molecular mass on CD4 T cells, and 

increased their proliferation 213. In the ‘90s, OX40 antigen cDNA was cloned, sequenced and 

classified as a member of the tumor necrosis factor receptor superfamily (TNFRSF) 214.  

OX40L was discovered within the same period as OX40 215 but was confirmed to be its ligands only 

during the ‘90s 216,217.  

Later on, in 2006, murine and human crystal structures of the OX40-OX40L complex were 

described by Compaan et al. OX40L is a homotrimer and displays unusual features compared to 

its counterparts. Indeed, OX40L shares only 40% sequence identity and its trimer interface is highly 

compact compared to many other tumor necrosis factor superfamily (TNFSF) ligands. In contrast, 

OX40 is more similar compared to other members of the TNFRSF 218. Due to its expression under 

a trimeric form, OX40L binds to three OX40 molecules. 
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The tumor necrosis factor receptor and tumor necrosis factor superfamily, to which belong OX40 

and OX40L, plays an important role in cell activation, proliferation, differentiation and function of 

immune cells, in synergy with TCR and CD3 signaling. It is composed of about 30 receptors and 20 

ligands, such as CD40L/CD40 or 41BB/41BBL. TNF and its receptors are the most studied molecules 

in this superfamily and are targeted by therapeutic blocking antibodies in several inflammatory 

diseases 219. 

Moreover, OX40 and OX40L encoded genes, respectively TNFRSF4 and TNFSF4, are located on 

chromosome 1 220. 

 

b) OX40 and OX40L expression 

OX40 is predominantly expressed on activated T cells, CD4 including all Th subsets and Treg cells 

and CD8. Unlike the CD28 co-stimulatory molecule, it is not constitutively expressed on naive CD4 

and CD8 T cells, but only after activation. It has been described that TCR stimulation was sufficient 

to induce OX40 expression, but CD28 co-stimulation highly enhanced it. It is consistent with the 

fact that OX40 acts sequentially after CD28 221,222.  

Additionally, memory T cells do not express OX40 at baseline, but it can be rapidly re-expressed 

after activation. OX40 is also observed on NK cells, NKT cells and neutrophils, but at lower levels 

compared to activated T cells 223–225. 

OX40L is predominantly expressed on APCs. Indeed, it has been observed on blood DCs (bDCs) and 

MoDCs, but also on B cells and macrophage 226–228. Similar to OX40, OX40L is expressed after APC 

activation. Various stimulations can induce OX40L expression on APCs, for instance, inflammatory 

cytokines such as TSLP and IL-18 122,229.  

OX40L is also expressed on various other cell types including NK cells, mast cells, smooth muscle 

cells and vascular endothelial cells 230–233.  

Interestingly, OX40L has also been observed on activated T cells 234,235. Mendel et al. showed that 

OX40L was expressed on activated T cells after 6 days of in vitro culture with anti-CD3 and that it 

depended on anti-CD3 doses 236.  
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As a result of this complex formation, IkB is degraded and RelA, a sub-unit of NFkB, and p50 can 

enter the nucleus. In another process, dependent on TRAF6, IKKa can induce RelB entrance in the 

nucleus. 

OX40 complex can also phosphorylate STAT5 that can then enter the nucleus. 

Moreover, OX40 can increase AKT, by constituting a complex with PI3K and in a PDK-dependent 

manner. AKT is able to enhance signaling through IKK. 

Finally, OX40 can increase calcium entry into the T cells and activate calcineurin. As a result, NFAT 

is dephosphorylated and can enter the nucleus 237. 

All these signals promote T cell survival and maintenance of the immune response by, for instance, 

up-regulating genes coding for Bcl-XL, survivin (anti-apoptotic molecules) and Th cytokines, and 

down-regulating genes coding for FoxP3, CTLA-4 and TGFb. OX40-OX40L interaction functions will 

be described more in detail in the next part. 

 

d) OX40-OX40L interaction functions on CD4 T cells 

The first important function of OX40-OX40L was established upon OX40 discovery. OX40 agonist 

monoclonal antibodies on rat CD4 T cells amplified their proliferation 213. The same observation 

was made on mouse and human models 217.  

In line with its function on T cell proliferation, OX40 ligation has been shown to increase Th 

polarization and Th cytokine secretion 238. This function will be discussed in more detail in the next 

part. 

OX40L has also been described to be involved in CD4 T cell longevity by lengthening their 

activation, not through APC-T cell but T cell-T cell interaction. Indeed, Sorrosh et al. observed in 

vivo and in vitro that OX40L expressed on T cells promoted their survival by binding to OX40. They 

suggested that this allowed T cells to maintain OX40 signal after they separated from DCs, in an 

autocrine or paracrine manner, and thus to maintain their activation 235.  

In addition, it has been shown that OX40L deficiency or blocking was impairing memory CD4 T cell 

population, in terms of expansion and survival 239,240. 







 53 

3) Control of Th polarization and cytokine secretion by OX40L 

OX40 and OX40L are primarily described as a T cell co-stimulator couple that maintains T cell 

proliferation and survival. Consequently, this characteristic is for instance targeted in cancer 

immunotherapies to increase antitumoral T cell response. However, their role in T cell is much 

broader than the regulation of activation. In this part, what is known about OX40-OX40L effect on 

Th polarization will be explained in detail. 

 

a) OX40-OX40L and Th1/Th2 subsets 

OX40L has been reported to regulate both Th1 and Th2 subsets. Th1 and Th2 cytokine production 

are usually studied together.  

In naive CD4 T cells, OX40L was described as an inducer of Th2 polarization. This was observed in 

both mouse and human models, by measuring Th2 cytokine production 246,247.  

In Leishmania major infected mouse model, Akiba et al. also showed that the decrease of Th2 

cytokine in presence of OX40L blocking went along with an increase of IFNg Th1 cytokine 

production, in vitro and in vivo 247. So et al. described similar results under physiological conditions 

by comparing WT and OX40-deficient mice T cells in vitro 248. On the contrary, under physiological 

conditions as well, Murata et al. showed that the absence of OX40L led to IFNg inhibition 249. 

Finally, in a murine model of asthma, Jember et al. saw a decrease of Th2 cytokines in OX40-

deficient mice but they did not report any impact of OX40 absence on IFNg production 250.   

It seems that OX40L preferentially leads to Th2 differentiation and that OX40L-induced effect on 

Th1 polarization highly depends on the context of the experimental condition. 

In human studies, it has also been shown that OX40L promoted Th2 responses. Two studies 

showed that OX40L blocking in a TSLP-activating bDC context induced a decrease of IL-4, IL5 and 

IL-13 Th2 cytokines 122,251. They also both observed a decrease of TNF-a and an increase of IL-10. 

Regarding IFNg, Inagaki-Katashiba et al. did not see any effect of OX40L blocking whereas Ito et al. 

saw a little decrease (but it remained difficult to compare since Ito et al. did not perform any 

statistical analysis and showed only replicates of one unique donor on their graphs). These results 

were established using total CD11c+ bDCs. In another model of influenza virus-activated bDCs, Yu 
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et al. described that OX40L blocking during co-culture with naive CD4 T cells led to a decrease of 

Th2 cytokines, but only for co-culture with cDC1. Besides, they did not see any impact on IFNg 

production 108.  

 

b) OX40-OX40L and Th17 subset 

Opposite effects of OX40L on Th17 cell differentiation and Th17 cytokine secretion have been 

shown in different in vivo and in vitro models. 

First, in mouse models of Th17-associated diseases, OX40-OX40L induced positive effects. For 

instance, in EAE or rheumatoid arthritis (RA) mouse models, blocking antibody against OX40 or 

OX40L led to dramatic amelioration of disease severity 252–254. However, these studies, performed 

at the beginning of 2000, did not make any specific link between OX40-OX40L blocking positive 

effect on the disease and a decrease of Th17 cells. A few years later, another study showed that 

IL-17 production and RA disease were enhanced through OX40-OX40L interaction 255. 

Moreover, in a mouse uveitis disease model, it has been demonstrated that an up-regulation of 

OX40 enhanced Th17 cell functions and increased ocular inflammation. They also showed that 

blocking IL-17 improved the disease outcome. Regarding OX40, they showed that its activation 

with an agonist antibody increased IL-17 and IL-21 production, but they did not try to improve the 

disease using an anti-OX40 antagonist antibody 256.  

Finally, in a mouse intestinal inflammation model using Candida albicans, Xin et al. described the 

impact of Treg population ablation in WT and B7-deficient mice. After Treg depletion, they 

observed an expansion of IL-17-producing CD4 T cells in B7-deficient mice, but not in WT mice. In 

contrast, they observed an expansion of IFNg-producing T cells in WT mice. Adding an anti-OX40L 

antagonist antibody allowed to decrease the percentage of IL-17-producing cells, but not IFNg-

producing T cells in both WT and B7-deficient mice 257.  

This study highlights again the role of OX40L in promoting Th17 differentiation but it also 

remarkably shows how Th polarization can be context-dependent. Indeed, in the absence of Treg, 

Th1 and Th17 are differentially induced according to the presence or absence of B7 molecule. It 

demonstrates that two molecular contexts (here defined by the presence and absence of a 

molecule) can differentially affect one readout. 
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In contrast with all these studies, Remedios et al. recently described that OX40L attenuated the 

polarization of Treg cells exhibiting a Th17 phenotype 258. Indeed, it has been established that Treg 

cells can secrete IL-17 under inflammatory conditions. 259,260. They showed that, within the Treg 

cell population, FoxP3+ Treg cells were drastically diminished in OX40 KO mice, whereas they 

observed an increase of RORgt+ Treg cells. The same phenomenon was observed in CD27 KO mice, 

another TNFSF member 258.   

This system is a bit different from the previous one because they studied IL-17 and RORgt 

expression in the Treg population and not in the Th17 population, but it illustrates that OX40L 

might have a differential role on a given molecule, here IL-17, according to the context, here a 

cellular context (Th17 or Treg).  

In addition, it has also been shown that OX40 stimulation inhibited IL-17 production by CD4 T cells 

in vivo and in vitro, through histone activation and chromatin repression at the IL-17 locus 261. 

In human in vitro model, it has been shown that OX40L inhibited Th17 differentiation. Li et al. 

observed that OX40L down-regulated IL-17 production by CD4 T cell through up-regulation of IFNg 

production 262.  

 

c) OX40-OX40L and Th9 subset 

Two studies demonstrated an important role of OX40-OX40L in inducing Th9 cells. 

Xiao et al. cultured mouse naive CD4 T cells in Th9-polarizing cytokine condition (IL-4 + TGFb) in 

the absence or presence of an OX40L transgenic presenting cells or an agonist anti-OX40 antibody. 

When stimulating OX40, they showed an important increase of Th9 cell percentage, by looking at 

intracellular IL-9 staining. They described that this induction was independent of PU.1, Th9 

transcription factor, and occurred through TRAF6 and the non-canonical NF-kB pathway. In an in 

vivo airway inflammation model, they demonstrated that the injection of an anti-OX40 agonist 

antibody enhanced inflammation in WT mice whereas it had no impact on IL-9-KO and OX40-KO 

mice 263.   

In addition, they looked at the impact of OX40L not only in Th9 but also in Th17 and Treg-polarizing 

conditions. Interestingly, they observed that OX40L increased Th9 cell percentage but it 

dramatically decreased Treg and Th17 cell percentage in their respective polarizing contexts 263.  
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Corroborating Xiao et al. observations, another study showed that OX40L was a key contributor 

of naive CD4 T cell polarization into Th9 cells when primed by dectin-1-activated DCs. Still in mice, 

but this time in cancer models, the authors showed that dectin-1 directed Th9 polarization via the 

contribution of OX40L and another member of the TNFSF, and induced an antitumoral response 

in vivo that relies on IL-9 264.  

 

d) OX40-OX40L and Tfh subset 

OX40-OX40L interaction has been observed to highly influence Tfh development. Just before 2000, 

studies came out suggesting that OX40 could play a role in Tfh response. For instance, OX40L was 

shown to promote the expression of the chemokine receptor CXCR5 and to be involved in CD4 T 

cell migration into B cell zone and GC development 221,265. Then, a lot of studies reported a positive 

impact of OX40-OX40L on Tfh cells, in mouse and human models.  

In mouse model, Vogel et al. showed that OX40 and ICOS degradation by Roquin-1 and Roquin-2 

proteins controlled Tfh cells and that Roquin-1 and Roquin-2 deletion increased OX40 signaling 

and Tfh differentiation 266. 

More recently, in a vaccinia virus infection mouse model, Tahiliani et al. observed that OX40-

deficient mice displayed a huge decrease (about 70%) of Tfh cells in comparison with WT mice. In 

this line, they showed that OX40 signaling was crucial for GC development and antibody 

production. Finally, in addition to its action at the initial phase of Tfh response, OX40 was shown 

to maintain mature and GC Tfh cells 267. 

Regarding human studies, Jacquemin et al. showed that a human soluble recombinant OX40L 

protein induced characteristic Tfh-associated genes, IL-21, CXCR5 and Bcl-6 among others, by both 

naive and memory CD4 T cells from healthy donors, stimulating with anti-CD3/anti-CD28 86. 

These results were confirmed by Pattarini et al., this time in a co-coculture system. They 

demonstrated that co-culturing TSLP-activated CD11c+ DCs and allogeneic naive CD4 T cells with 

an anti-OX40L blocking antibody decreased key features of Tfh cells, such as IL-21 and CXCL13 

secretion and Bcl-6 expression 85. 

However, some papers showed that OX40-OX40L negatively regulated Tfh population.  

In murine infection model, Boettler et al. described that OX40-deficient mice lacked GC, were 
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impaired for T cell anti-viral response and failed to control lymphocytic choriomeningitis virus 

(LCMV) infection, suggesting that Tfh responses might be negatively affected 268. However, one 

year later, they published that treating LCMV infected mice with an anti-OX40 agonist antibody at 

the early phase of infection inhibited LCMV-specific humoral response and enhanced viral 

replication. They added that Tfh population was reduced in the anti-OX40 treated mice compared 

to the control group, most probably because OX40 induced Blimp-1 and T-bet expression and thus 

drove Th1 differentiation 269.   

On the other hand, Marriott et al. did not see any impact of OX40-OX40L interaction on Tfh cell 

number in Listeria infection mouse model 270. 

Another study described that anti-OX40L antagonist antibody treatment did not impair GC and 

CXCR5+ Tfh development, as opposed to anti-ICOSL antagonist antibody 271. 

 

e) OX40-OX40L and Treg subset 

OX40 ligation impact on Treg is a worthwhile topic, in particular since anti-OX40 agonist antibodies 

are being developed for cancer immunotherapies, where Treg promotion would be counter-

productive. Indeed, Treg cells in tumors are known to upregulate OX40 and up to 80% of Treg cells 

can express OX40 in some cancers 272. 

In mice, a lot of studies showed that OX40 induced a negative regulation of FoxP3 and thus Treg 

subsets and their suppressive functions in several models such as cancer or graft 273–276. 

More recently, Zhang et al. described how OX40 signaling led to FoxP3+ cell inhibition and thus 

Treg cell inhibitions through two molecular pathways, one involving basic leucine zipper ATF-like 

transcription factor 3 (BAFT3) that acted on chromatin compaction at the Foxp3 locus, and the 

other involving the AKT-mTOR pathway that excluded Foxo1/3, essential for FoxP3 transcription 

277. 

In human, Ito et al. demonstrated that OX40 stimulation abrogated IL-10-producing Treg (also 

called Tr1 cells) from naive and Tr1 memory CD4 T cells induced by dexamethasone and vitamin 

D3. OX40 also inhibited the generation of Tr1 cells from naive CD4 T cells induced by ICOSL or by 

the co-culture with immature DCs 278.  
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Voo et al. confirmed these observations by showing that anti-human OX40 agonist antibody 

inhibited Treg induction and suppressive function 279. 

Many articles also related OX40 molecule as a positive regulator of Treg cells and important for 

their homeostasis. The first straightforward evidence was that OX40 was highly expressed on Treg 

cells and on top of that, higher compared to non-Treg cells. 

In an OX40-deficient mouse model of colitis, it has been shown that OX40 promoted the 

accumulation of Treg cells in the colon and was required to inhibit T cell-induced intestine 

inflammation 280. 

Recently, Polesso et al. showed that anti-OX40 agonist treatment did not impair Treg function and 

actually enhanced CD4 T cells (including Treg) proliferation, in vitro and in vivo in tumor-bearing 

mice 281. This study is in line with a study from Takeda et al. showing that OX40 positively 

influenced Treg development, homeostasis and suppressive function 282. 

Thus, OX40-OX40L impact on Treg seems to highly depend on the context and this is greatly 

illustrated by Ruby et al. They showed in mice that Treg differentiation from naive CD4 T cells, 

induced by TGFb and OX40L, was dependent on the cytokines present in the medium. In addition, 

blocking IFNg and IL-4 increased Treg cell subset percentage 283. 

 

4) OX40 / OX40L in pathologies and clinical trials 

a) Cancer 

As described in the previous part, cancer is a very complex pathology. In contrast with 

chemotherapy, that kills tumor cells by targeting rapidly-dividing cells in the body, 

immunotherapy aims at boosting the patient immune system, for it to recognize and eliminate 

tumor cells. For now, only a few antagonist antibodies against co-inhibitory immune checkpoints 

were granted FDA licensure in specific cancer type but agonist antibodies against co-stimulatory 

immune checkpoints, such as anti-OX40, are under development. 

An interesting fact was reported in an OX40-deficient patient. So far, a single human has displayed 

homozygous recessive mutations in the OX40 gene, TNFRSF4, leading to very few OX40 at the T 
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cell surface and thus few OX40-OX40L interactions. In addition, this woman was diagnosed with a 

Kaposi Sarcoma (KS), a rare type of cancer affecting cells with an endothelial origin. KS is caused 

by the human herpes virus 8 (HHV-8), which is asymptomatic in almost all cases. This patient had 

a higher percentage of naive CD4 T cells, a lower percentage of non-naive T cells subsets in blood 

and an impaired memory CD4 T cell response. They correlated the loss of function of OX40 alleles 

with KS development 284.  

In the end, the rationale of targeting OX40 pathway in cancer is based on its ability to increase T 

cell proliferation, migration and survival, to enhance cytokine production and to increase memory 

T cell generation, useful features for antitumor immunity. 

An OX40 monoclonal antibody was tested in phase I clinical trial in advanced cancer 

(NCT01644968). It showed promising effects in 12 out of 30 patients, with at least one metastatic 

lesion regression and a significant increase of non-Treg CD4 and CD8 T cell proliferation 285. 

MedImmune launched several clinical trials with anti-OX40 agonist antibodies, in monotherapy or 

combination. MEDI6469, a murine agonist antibody, was tested in advanced solid tumors 

(NCT02274155). Its administration was safe and increased proliferation and activation of T cells in 

TME and peripheral blood of some patients 286. MEDI6469 was also tested in combination with 

chemotherapy or radiotherapy (NCT01303705, NCT01862900). MEDI0562 is also an anti-OX40 

monoclonal antibody, but a humanized form of MEDI6469. It was tested on advanced solid tumors 

in phase I (NCT02318394) and is now tested more specifically on head and neck squamous cell 

carcinoma (HNSCC), melanoma and ovarian cancer patients (NCT03336606, NCT03267589). Both 

MEDI6469 and MEDI0562 have been tested in combination with Durvalumad or Tremelimumab, 

monoclonal antibodies against PD-L1 and CTLA-4 respectively (NCT02205333, NCT02705482). 

Other humanized anti-OX40 agonist antibodies have been developed and tested in clinical trials 

by other companies, MOXRO0916 from Genentech (NCT02410512, NCT03029832) and 

GSK3174998 from GlaxoSmithKline and Merck (NCT02528357), and a fully human monoclonal 

antibody, PF-04518600, was created by Pfizer (NCT02315066). 

In addition to monoclonal antibodies, recombinant proteins have been conceived.  

MEDI6383 is a human OX40L fusion protein, tested in advanced solid tumors, alone or in 

combination with an anti-PD-L1 (NCT02221960).  

Moreover, recently, Shattuck Labs started a clinical trial using a PD-1-Fc-OX40L in advanced solid 

tumors and lymphomas (NCT03894618). This is a two-sided human fusion protein that can bind 
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to PD-L1/L2 and block PD-1 signaling, and stimulate OX40. PD-1-Fc-OX40L was observed in 

immune synapses and enhanced T cell proliferation and cytokine production. Interestingly, its 

functional activity was superior to anti-PD-1 antagonist antibody, anti-OX40 agonist antibody and 

the combination of both antibodies 287. 

 

b) Allergic diseases 

Allergies are defined by an allergic inflammation, caused by the patient immune system 

interacting with its environment. Allergy is composed of a sensitization phase and a specific 

immune response development against the allergen. Allergies can occur against several 

components, natural or chemical, it can be food, drug, a substance in the air such as pollen, dust 

mite, etc. They can be acute or chronic and are maintained by different mechanisms such as 

histamine, pro-inflammatory mediator and IgE release, eosinophils activation and mast cell 

degranulation 288. 

Allergic diseases have been rapidly associated with IL-4 cytokine and thus IL-4 producing Th2 and 

Tfh cells 289,290. Although OX40L functions on Th polarization seems to be highly dependent on the 

context, it has been shown previously that a lot of studies reported OX40L as a Th2 and Tfh 

promoting molecule. Hence this pathway is interesting to target in allergy, intending to block OX40 

and OX40L interaction, in contrast with agonist antibodies developed for cancer treatment.  

Atopic dermatitis (AD) is a chronic allergic disease. It is the most common form of eczema, in which 

the patient skin becomes red, dry and itchy. AD affects essentially children and usually disappears 

within a few years, but in 10% of cases, it can continue during adulthood. OX40 and OX40L have 

been shown to be up-regulated in AD patient skin lesions, even though they were not associated 

with disease severity 291.  

Several blocking antibodies against OX40 were conceived in this pathology. GBR830 is a 

monoclonal antagonist antibody targeting OX40 from Glenmark Pharmaceuticals. A first clinical 

trial phase, to assess the safety and the activity of the compound, was completed in May 2020 

(NCT02683928) and showed efficacy in moderate-to-severe AD. GBR830 was well tolerated by 

patients and around 75% of patients showed an improvement of eczema and severity index score. 

This antagonist also induced a decrease of Th1, Th2 and Th17 inflammatory markers, such as IFNg, 

IL-31 and IL-23 respectively 292. It is now in phase IIb clinical trial and was renamed ISB830 
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(NCT03568162). 

Another blocking antibody, KHK4083, produced by Kyowa Kirin Pharmaceutical Development, 

completed phase I (NCT03096223) and is now in phase II (NCT03703102). 

Another clinical trial, this time using an anti-OX40L monoclonal antibody, has also been conducted 

by Genentech, for mild asthma, on patients with allergen-induced airway responses 

(NCT00983658). The treatment was well-tolerated and induced a decrease of serum IgE level and 

sputum eosinophil numbers. However, OX40L blockade showed no significant effect on blood 

eosinophil numbers and allergen-induced airway hyperresponsiveness, and in the end, did not 

attenuate asthmatic hyperresponsiveness 293.  

 

c) Autoimmune diseases 

Autoimmune diseases are defined by an activation of T cells and/or B cells, in absence of foreign 

antigen. This abnormal activation is usually associated with the presence of autoantibodies 

targeting self-antigens. It can be either organ-specific, such as type I diabetes, or systemic, such 

as systemic lupus erythematosus (SLE) 294. 

OX40/OX40L-deficient mice or OX40/OX40L blockade revealed an important role of these 

molecules in autoimmune diseases, such as gastrointestinal autoimmune diseases including 

ulcerative colitis and Crohn’s disease, commonly named inflammatory bowel disease (IBD). 

Gastrointestinal autoimmune diseases are defined by an exacerbated immune response in the 

gastrointestinal tract 295. In IBD mouse models, blocking OX40-OX40L interactions have shown 

promising effects. Indeed, the authors described a clinical amelioration, associated with a 

decrease of T cell infiltration and inflammatory cytokine production in the colon 296,297. In humans 

with IBD, an increased density of OX40+ cells compared to healthy controls have been reported in 

the colon 298,299. 

The monoclonal antagonist antibody targeting OX40, KHK4083, the same one tested in AD, has 

been tested in moderate ulcerative colitis patients and is now in phase II (NCT02647866). For now, 

although targeting the OX40 pathway appears promising, this is the only clinical trial targeting 

OX40-OX40L pathway in autoimmune diseases. 



 62 

OBJECTIVES



 63 

CD4 T helper cells and their representative secreted cytokines play a central role in setting up an 

appropriate adaptive immune response against foreign pathogens. In the introduction, the 

complexity of the current CD4 Th cell subset classification, the polarization mechanisms of these 

subsets and how OX40L, a co-stimulatory immune checkpoint with the ability to boost T cell 

response, act on this polarization, have been presented. Moreover, it has been shown that the 

context in which a cell type, here CD4 T cells, is evolving can affect their global behavior at a large-

scale (at the population or cellular level) and at a smaller scale a molecule function. 

Regarding immune checkpoint molecules, current immunotherapies constitute a major advance 

for patient treatment in several pathologies, and particularly cancer. However, the positive rate 

response stays low and much remains to be done on the understanding of their mechanisms. In 

most studies, immune checkpoint functions were established by studying them individually, in 

specific conditions. However, the context may dramatically influence the function of biological 

molecules on a given output. For instance, it has been shown in the team that type I interferon 

response in CD4 T cell was highly dependent on the cytokine context 169. 

There is currently no framework to properly analyze the context-dependency of a molecule 

function in biological systems. In biology among other disciplines, context-dependency can be 

more difficult to study because of several reasons. In in vivo systems, the cause inducing a 

molecule context-dependent function can be difficult to determine at the level of a whole 

organism. In vitro, it requires highly controlled systems and a sufficient number of contexts for the 

detection and quantification of context-dependency to be relevant. 

To develop such a framework, we used the immune system as a model, because of the multiplicity 

of stimuli immune cells may sense, and the complexity of possible contexts. We established an 

experimental system including a stimulus of interest, applied to a specific immune cell type in 

several contexts. We chose to study OX40L function on CD4 Th cell differentiation, in four 

molecular and 11 cellular contexts. As described in the introduction, OX40L is an important 

immune checkpoint molecule in immunology and therapeutics. Moreover, CD4 Th cells are 

essential in physiological and physiopathological responses. As output response, we measured 17 

Th cytokine secretion because: 

- it has been shown that OX40L can modulate Th polarization and their specific cytokine 

secretion 
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- Th polarization is a major feature of CD4 T cells, and these 17 output cytokines are 

characteristic of Th subset responses  

- Both molecular and cellular contexts have the ability to induce Th polarization 

 

Thus, this work tried to address the following questions: 

- How to evaluate context-dependency of a biological molecule function? 

- Is it possible to quantify context-dependency? How? 

- What would be the best method to quantify context-dependency of a molecule? How 

statistical modeling can be applied to this concept and its quantification?  

- When several parameters define a context, how to determine their respective importance 

in context-dependent function of OX40L?  

 

Then, regarding the data themselves, other questions came out: 

- How to choose the experimental systems in which accurately quantify context-

dependency?  

- How to represent a large quantity of data without losing information?  In other terms, how 

to reduce dimensionality with minimal information lost in systems with many parameters? 
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Immune checkpoints are part of a broad signal diversity integrated by T cells. Immune checkpoints 

are known to play a key role during T cell activation and regulation. This family includes about 

thirty molecules and is divided into two functional categories. Co-stimulatory immune 

checkpoints, such as CD28, have the ability to boost T cell activation whereas co-inhibitory 

immune checkpoints, such as PD-1, play a role in T cell response regulation. 

In this study, we use CD4 T helper polarization as a model to highlight how microenvironment 

parameters can have an impact on internal parameters, such as a biomolecule function on a given 

output. We wanted to further explore this aspect of context-dependency and its possible impact 

on Th polarization and particularly on Th cytokine secretion. Moreover, we chose OX40L as an 

interesting immune checkpoint molecule to study this concept. As presented in the introduction, 

there are already clues on OX40L functions on Th polarization and cytokine secretion. However, 

how the context can influence its function has never been described. In addition, tools were 

available to study OX40L in our two experimental systems: human recombinant OX40L protein 

(rhOX40L) and human anti-OX40L blocking antibody. 

Consequently, we first decided to use a systematic approach by applying several cytokine contexts 

on T cells in the presence or absence of rhOX40L. To this aim, we used Th polarization culture 

system, with anti-CD3/anti-CD28 beads for TCR stimulation and Th polarizing-cytokines to induce 

Th0 (no cytokine), Th1 (IL-12), Th2 (IL-4) and Th17 (IL1β + IL-6 + IL-23 + TGF-β). A trimeric soluble 

rhOX40L protein was added to the culture to stimulate OX40 on T cells. 
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In a second step, we wanted to integrate a cellular context in our external parameters applied to 

T cells, to see the impact on OX40L function. These cellular contexts are composed of two 

parameters, the DC type and the DC-activating stimulus. We used two types of DCs: blood cDC2, 

directly isolated from healthy donor blood, and MoDCs, differentiated with IL-4 and GM-CSF from 

CD14+ monocytes, also isolated from healthy donor blood. To extend the number of contexts, each 

subset was activated using different stimuli, with broad physiopathological relevance to bacterial 

(LPS, HKSA, Curdlan) and fungal (Zymozan) infections, and to allergy (TSLP). In this case, we added 

an antagonist monoclonal antibody against OX40L to block DC-T communication through OX40-

OX40L interaction. 

In our two experimental systems, we analyzed the major 17 Th secreted cytokines (output 

cytokines), in the presence or absence of OX40L, with the hypothesis that context-dependency 

may occur on different output cytokines. These output cytokines were measured in 302 

observations to create a large dataset. By combining experimental systems and statistical 

modeling, we quantified and scored OX40L context-dependent functions on Th polarization, 

characterized by Th cytokine secretion. 

In terms of mathematical methods for data integration, we used two main statistical modeling 

tools in this work: linear mixed model (LMM) and Lasso analysis. To establish a relevant context-

dependency score, statistical modeling developments have been done first on Th molecular 

contexts since they are more simplistic compared to cellular contexts. We applied a linear mixed 

model on our Th dataset, independently for each output cytokine (Equation 1). In equation 1, Y 

(the variable we want to explain by the model) represents the OX40L-induced relative difference 

for a specific cytokine, in other terms, the OX40L-induced variation for a specific cytokine. 

! = α$%&%' +	 * β,-,
.%&/01/	,

+ ε  (1) 

 

Using this LMM, we estimated a b coefficient for each context, which represents the effect of the 

context on OX40L-induced cytokine variation, whilst taking into account the donor effect (a 

coefficient estimation). b coefficients correspond to the mean of OX40L-induced cytokine 

variation of donors for each context. Then, b coefficients were used to calculate OX40L context-

dependency scores, also independently for each output cytokine. To this end, we calculated the 
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distances between b’ (b/standard deviation) of each context two by two and the score was defined 

as the mean of these distances. 

This same statistical strategy was then applied to bDC and MoDC cellular contexts. As described 

previously, contexts were composed of two parameters. In this line, when several parameters 

define a context, how to determine their respective importance in the context-dependent 

function of OX40L? To answer this question, we used a Lasso model to perform variable selection. 

By applying increasing penalties on variables, the Lasso model forces the model to keep only the 

most important variable, which best explains OX40L context-dependency. 

To summarize, our mathematical modeling strategies allowed us to:  

1) Identify the cytokines for which OX40L context-dependency was the most important in each of 

our systems (LMM and OX40L context-dependency score). 

2) Define two different types of context-dependency, namely quantitative and qualitative context-

dependencies. 

3) Classify each context according to OX40L context-dependency (principal component analysis 

(PCA) and lollipop plot). 

4) Identify the most important parameter influencing OX40L context-dependency between the DC 

type and the DC-activating stimulus (Lasso analysis). 

Thus, among Th contexts, Th2 appeared as the one with the most influence on OX40L function, 

while in the bDC contexts, TSLP was by far the most influential. Finally, among cellular contexts, 

the DC type was found dominant in controlling OX40L context-dependency as compared to DC-

activating stimulus. 

In the end, our statistical model can be applied to any biomolecule, to decipher and quantify its 

context-dependency and evaluate its impact on the biomolecule function. 
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Abstract 25 

Context-dependency may explain large parts of the functional variability of physiopathological and 26 

pharmacological stimuli. Currently, there is no framework to analyze and quantify context-27 

dependency over multiple contexts and response outputs. We studied OX40 ligand (OX40L) function 28 

on T helper (Th) cell differentiation, in four molecular (Th0, Th1, Th2, and Th17), and 11 dendritic 29 

cell (DC) contexts (5 monocyte-derived DC, and 6 cDC2 conditions). We measured 17 Th cytokines 30 

in 302 observations, and developed a statistical modeling strategy to quantify OX40L context-31 

dependency. This revealed highly variable quantitative context-dependency scores, depending on 32 

the output cytokine and context type. Among Th contexts, Th2 was the most influential on OX40L 33 

function. Among DC contexts, DC type rather than activating stimuli was dominant in controlling 34 

OX40L context-dependency. This work unveils the complex determinants of OX40L function, and 35 

provides a unique framework to decipher and quantify the context-dependent functional variability of 36 

any biomolecule or drug. 37 

 38 



Introduction 39 

Context-dependency may induce tremendous variability in the function of any biomolecule or drug 1, 40 

2. It could explain large parts of the patient-to-patient variability in drug response 3, 4. Although studies 41 

in the past 5 to 10 years have brought increasing evidence of its potential impact, the context-42 

dependency of major functional molecules, such as growth factors, cytokines, and immune 43 

checkpoints (IC), remains mostly unknown.  44 

 45 

Progress in the field has been hampered by the underlying complexity 5, 6. First, a large number of 46 

possible molecular and cellular contexts may influence the function of a biomolecule of interest. For 47 

example, TNF-α in the context of rheumatoid arthritis may act differently than TNF-α in the context 48 

of cancer microenvironment. Second, context-dependency can be of different types, depending on 49 

the quantitative or qualitative differences observed across different contexts. The same type of 50 

output response (such as induction of protein X) observed at different magnitudes, would correspond 51 

to a quantitative context-dependency. Conversely, opposite effects observed in two different 52 

contexts would be qualitative context-dependency. Third, the nature and magnitude of the context-53 

dependency may depend on the functional outputs. There is currently no systematic framework to 54 

decipher and quantify context-dependency by taking into account these different levels of complexity. 55 

 56 

IC include over thirty molecules, and play a key role in T cell activation and regulation. Most IC 57 

functions were established by studying checkpoints individually, focusing on one function, in one 58 

stimulatory condition. However, IC act in variable microenvironmental contexts, at steady state and 59 

in pathologies, which might impact their function. Studies of IC context-dependency are scarce. The 60 

cytokine context was shown to impact the function of OX40 ligand (OX40L), a co-stimulatory IC, on 61 

Th2 7 and Tfh 8, 9 differentiation. We have recently shown that CD28 harbored different functions 62 

depending on variations in DC-expressed molecular contexts 10. These studies contributed to a 63 

proof-of-concept for IC context-dependency. Additionally, OX40/OX40L-targeting antibodies have 64 

been used in preclinical and clinical studies in allergy, autoimmune diseases and cancer 11, 12, 13. 65 

Hence, OX40L context-dependent functions may impact its biological role in immune responses, as 66 

well as the therapeutic response to OX40L targeting. 67 

 68 

In this study, we used OX40L as a model to dissect the impact of multiple molecular and cellular 69 

contexts on IC function. By combining experimental systems and statistical modeling, we were able 70 

to quantify and score OX40L context-dependency, and to specifically determine the impact of Th 71 

and DC contexts. Our integrated statistical framework has broad applicability to any biomolecule, 72 

and revealed potential mechanisms to tailor OX40L targeting based on individual inflammatory 73 

contexts. 74 

 75 

 76 



Results 77 

 78 

OX40L modulates multiple Th-derived cytokines in distinct Th-polarizing contexts 79 

IC molecules co-stimulate or co-inhibit T cells in different microenvironmental contexts that may 80 

influence their function. We sought to address the impact of the cytokine context on IC function in 81 

Th polarization. We focused on OX40L as a model costimulatory IC because of its known ability to 82 

influence Th polarization 7, 8, 9. We studied the function of OX40L in four prototypical Th-polarizing 83 

cytokine contexts: Th0 (no added cytokine), Th1 (IL-12), Th2 (IL-4), and Th17 (IL-1b+IL-6+IL-84 

23+TGF-b). Naive CD4 T cells purified from healthy donor blood were cultured in these four contexts, 85 

in the presence of anti-CD3/anti-CD28 beads. We verified OX40 expression on T cells by flow 86 

cytometry. OX40 is not constitutively expressed on naive CD4 T cells but is expressed as early as 87 

24 hours culture upon TCR stimulation (Figure S1a). OX40 triggering was obtained by using a 88 

soluble trimeric recombinant human OX40L (rhOX40L) protein in each of the Th cytokine context. 89 

We assessed the Th responses after 5 days of culture by protein level measurement of all 17 major 90 

Th-derived cytokines (hereafter “output cytokines”) in T cell culture supernatants. This generated a 91 

dataset composed of 17 Th output cytokine levels in four Th contexts, from 13 independent donors 92 

(Figures 1a and S2, Step 1). 93 

Each of the four Th contexts induced expected lineage-defining output cytokine secretion: IFNγ for 94 

Th1, IL-4, IL-5 and IL-13 for Th2, IL-17A and IL-17F for Th17. Of the remaining output cytokines, 95 

some were detected in all contexts, such as IL-2, IL-21 and TNF-α, and others in one or two specific 96 

contexts, such as IL-31 in Th2, and IL-9 in Th2 and Th17 (Figure S1b). 97 

In each of the Th contexts, we analyzed the expression of the 17 output cytokines in presence and 98 

absence of rhOX40L. Because of the large number of measurements (17 cytokines in 8 conditions 99 

for 13 donors), we represented the results in the form of a heatmap. We calculated absolute 100 

differences of each output cytokine concentration between presence and absence of rhOX40L, in 101 

each Th context (Figure S2, Step 2). This established whether each output cytokine was induced 102 

(red), inhibited (blue) or not impacted (white) by rhOX40L (Figure 1b). For example, rhOX40L 103 

decreased IL-10 secretion in all contexts, with a stronger decrease in Th2 context. rhOX40L also 104 

decreased GM-CSF production in Th0, Th1 and Th17 contexts, but not in Th2 context. Moreover, 105 

rhOX40L increased IL-21 secretion in Th0, Th2 and Th17 contexts but not in Th1 context (Figures 106 

1b and 1c). 107 

 108 

Next, we addressed the impact of rhOX40L on the global Th profile, by integrating all 17 output 109 

cytokines in a principal component analysis (PCA). On the basis of the 17-output cytokine profile, 110 

we could clearly distinguish Th0, Th1, Th2 and Th17 conditions, as represented by their barycenter 111 

distributed in the PCA space. Presence of rhOX40L induced a shift in the global output cytokine 112 

profile, representing its functional impact. The smaller shifts were observed in Th1 and Th17 113 

contexts, and projected along PC2 and PC1, respectively. The largest shifts occurred in Th2 along 114 



PC1, and in Th0 along both PC1 and PC2 (Figures 1d and S2, Step 3). Shifts induced by rhOX40L 115 

were quantitatively and qualitatively different for each context. Hence, rhOX40L induced a differential 116 

effect on output cytokine secretion according to the Th context in which T cells were evolving, 117 

establishing a context-dependent effect of rhOX40L on output cytokines.  118 

 119 

OX40L induces a significant context-dependent effect on five output cytokines  120 

In this first multivariate description, we noticed that OX40L context-dependent effects were also 121 

depending on the nature of the output cytokine. We developed a method to quantitatively score 122 

context-dependency of a biological stimulus on multiple output response variables.  123 

In order to compare the score across the different output cytokines, we transformed the dataset to 124 

obtain OX40L-induced relative differences, taking into account donor effect and normalized 125 

concentration levels between output cytokines (Figure S2, Step 4.1). For each output cytokine, we 126 

applied a Linear Mixed-effects Model (LMM) (Figure S2, Step 4.2). Then, we calculated the mean 127 

distances between the different Th contexts re-scaled estimate, b’ (i.e. !" #$⁄ ), to score context-128 

dependency (Table S1). Finally, we tested statistical significance of this context-dependency with a 129 

likelihood ratio test (Figures 2a and S2, Step 4.3). 130 

This method can generally be applied to any dataset, even if the output is not expressed in all 131 

contexts. However, in our Th settings, some cytokines were produced only under certain contexts, 132 

such as IL-4, IL-5, IL-9, IL-17A, IL-17F and IL-31, which are specific Th2 and Th17 lineage cytokines. 133 

In addition, they were not de novo induced in the presence of OX40L. Thus, taking into account 134 

these output cytokines would induce a bias in the final score, because they would appear as strongly 135 

context-dependent, only due to their very narrow expression pattern. To avoid this bias, we included 136 

in the analysis only the 11 output cytokines detected in all Th contexts. 137 

As previously, we represented the estimated OX40L-induced relative difference for the 11 output 138 

cytokines in the form of a heatmap (Figure 2b). Strikingly, we observed that OX40L effects on a 139 

given output cytokine were highly dependent on the Th context. We defined two types of context-140 

dependency: the first when OX40L was increasing or decreasing a given output cytokine 141 

concentration in all contexts but in different magnitudes (“quantitative context-dependency”), as was 142 

the case with IL-6 or IL-10 (Figure 2b); the second when OX40L had qualitatively different effects on 143 

a given output cytokine according to the context (“qualitative context-dependency”), as was the case 144 

with IL-22 or GM-CSF (Figure 2b). A combination of qualitative and quantitative context-145 

dependencies could be observed. 146 

 147 

Such statistical modeling strategy enabled to 1) directly compare OX40L context-dependency for 148 

different Th output cytokines, 2) assess the type of context-dependency, 3) assess its statistical 149 

significance (Figure 2c). Likelihood ratio tests highlighted significant context-dependencies for five 150 

output cytokines: IL-10, IL-22, IL-13, TNF-α, and IL-3 (Figures 2c and 2d). OX40L decreased IL-10, 151 

IL-13 and IL-3 in all contexts (one-way variation: black bars in Figure 2c), indicating quantitative 152 



context-dependency. On the contrary, IL-22 and TNF-α secretion increased or decreased in 153 

presence of OX40L according to the Th context (two-ways variation: black bars indicate dominant 154 

variation, Figure 2c), indicating qualitative context-dependency. This quantitative analysis of context-155 

dependency demonstrated that 1) the molecular context (represented by distinct Th conditions) could 156 

heavily impact the function of the IC OX40L, and 2) the intensity and type of context-dependency 157 

was highly variable for distinct OX40L functions. This implies that a context-dependent effect for a 158 

given function may not necessarily apply to another function. 159 

 160 

The impact of cellular blood DC contexts on OX40L function 161 

OX40L may be expressed by DC in various phenotypic and functional states, characterized by 162 

differences in multiple molecular signals delivered to T cells. We addressed the impact of such 163 

cellular contexts on OX40L functions in DC-T cell crosstalk. Immature primary cDC2 blood DC (bDC) 164 

were FACS-sorted from healthy donors and activated with 6 different stimuli, each defining one “bDC 165 

context”: Zymosan, PAM3CSK4 (PAM3), LPS, Heat-killed Staphylococcus aureus (HKSA), Curdlan 166 

or TSLP. These conditions were selected for inducing distinct DC activation states 10. We measured 167 

OX40L expression on bDC after 24 and 48 hours activation. OX40L was expressed in all bDC 168 

contexts even bDC cultured without stimulation (NT) (Figure S3a). After 24 hours stimulation, 169 

activated bDC were co-cultured with allogeneic naive CD4 T cells in presence of an anti-OX40L 170 

blocking antibody or matching isotype. As in Th context experiments, the output cytokines were 171 

measured after 6 days of co-culture and 24 hours restimulation (Figures 3a and S2, Step 1).  172 

We performed the same type of analysis as in Th contexts, and calculated absolute differences in 173 

cytokine concentrations between absence (anti-OX40L antibody) and presence (isotype control) of 174 

OX40L at the DC surface, in each bDC context (Figures 3b and S2, Step 2). As for Th contexts, 175 

results were represented in the form of a heatmap given the large number of measurements (17 176 

cytokines in 12 conditions for 9 donors). OX40L significantly increased IL-13 and TNF-b in 4 out of 177 

6 bDC contexts (PAM3, LPS, HKSA and Curdlan-bDC), but increased IL-22 only in LPS-bDC context 178 

(Figures 3b and 3c). We noticed that OX40L had a minor overall impact on output cytokines in the 179 

Zymozan-bDC context, as compared to the five other contexts. Strikingly, OX40L-induced effects on 180 

output cytokines in the TSLP-bDC context had a very different pattern, as compared to the five other 181 

contexts (Figure 3b). This observation was corroborated by a PCA showing that the directional shift 182 

from “TSLP+anti-OX40L” to “TSLP” conditions was in an opposite direction when compared to the 183 

shift in the other bDC-contexts. The PCA also revealed that the larger OX40L-induced shifts were 184 

observed in the PAM3, and Curdlan bDC contexts (Figures 3d and S2, Step 3). 185 

 186 

The TSLP-bDC context determines a qualitatively different OX40L-induced effect 187 

Next, we applied the same analysis strategy than in Th contexts to quantify OX40L-induced context-188 

dependency in bDC contexts (Figure S2, Step 4). The heatmap of estimated OX40L-induced relative 189 

difference for the 17 output cytokines revealed different patterns of output cytokine behaviors due to 190 



OX40L presence, across the 6 bDC contexts (Figure 4a). We found again both quantitative and 191 

qualitative context-dependencies. For example, OX40L effects on IL-21 and IL-9 were quantitatively 192 

context-dependent (one-way variations, different in magnitude), and OX40L effects on IL-22 and 193 

IFNγ were qualitatively context-dependent (two-ways variations) (Figures 4a and b). The likelihood 194 

ratio tests highlighted significant context-dependency for four output cytokines (Figures 4b and 4c), 195 

including IL-3 (quantitative context-dependency), GM-CSF, IL-2 and IFNγ (qualitative context-196 

dependency). In order to identify the contexts that were inducing these context-dependencies, we 197 

performed post-hoc likelihood ratio tests (Figures S3b and S2, Step 5 and Table S2). Confirming the 198 

PCA observation, they indicated that these qualitative context-dependent effects were mostly due to 199 

OX40L impact on output cytokines in the TSLP-bDC context, which was very different from the 200 

others. 201 

Thus, OX40L-induced effect on output cytokines was dependent on the bDC context, with a strikingly 202 

different pattern in the TSLP-bDC context. 203 

 204 

DC subsets differentially impact OX40L-induced effects on output cytokines 205 

We have started by defining cellular contexts based on distinct stimuli given to the same DC subset. 206 

Next, we assessed whether the DC type could also determine context-dependent OX40L functions. 207 

To answer this question, we compared OX40L-induced effects on output cytokines in bDC versus 208 

monocyte-derived DC (MoDC) contexts, each stimulated in the same 5 conditions (Zymosan, PAM3, 209 

LPS, HKSA or Curdlan). Since TSLP receptor was not expressed on MoDC 14, 15, we did not use 210 

TSLP to activate MoDC. We verified OX40L expression on MoDC after 24 and 48 hours activation 211 

in each of the MoDC contexts. OX40L expression was significantly higher in all MoDC contexts 212 

compared to MoDC cultured without any stimulation (NT) (Figure S4). After 24h stimulation, activated 213 

MoDC were co-cultured with allogeneic naive CD4 T cells in presence of an anti-OX40L blocking 214 

antibody or corresponding isotype. The same output cytokines as previously were measured in the 215 

supernatants after 6 days coculture, and 24 hours anti-CD3/CD28 restimulation (Figures 5a and S2, 216 

Step 1).  217 

To get a global view of OX40L effects on output cytokine secretion, we calculated absolute 218 

differences of cytokine concentration between absence and presence of anti-OX40L, in each MoDC 219 

context (Figure S2, Step 2). OX40L increased IL-13 in all MoDC contexts but in different magnitude, 220 

similar to bDC contexts (quantitative context-dependency). This was also observed for TNF-b, but 221 

this time it was not concordant with what was observed in bDC contexts. For IL-22, both MoDC and 222 

bDC contexts determined qualitative context-dependency (Figures 3b/c and 5b/c). PCA performed 223 

on MoDC contexts revealed a large shift in all MoDC contexts when comparing the presence and 224 

absence of OX40L (Figures 5d and S2, Step 3). Thus, OX40L-induced effects on Th output cytokines 225 

were more evenly distributed across MoDC contexts, as compared to bDC contexts. 226 

 227 



Next, we compared OX40L context-dependency scores for each output cytokine between bDC and 228 

MoDC contexts. Scores for bDC were re-computed without considering TSLP-bDC context, since 229 

MoDC were not stimulated with TSLP (Figures 6a, 6b, 6c and S2, Step 4). Interestingly, OX40L 230 

context-dependency scores showed different patterns in bDC and MoDC contexts (Figure 6b). The 231 

likelihood ratio tests highlighted significant context-dependency for four output cytokines in MoDC 232 

contexts and none in bDC contexts (Figures 6b and 6c). In MoDC contexts, OX40L induced an 233 

increase in IL-31 and GM-CSF concentrations in all contexts, which indicated that context-234 

dependencies were defined by a quantitative effect. IL-4 and IL-5 secretion increased or decreased 235 

in presence of OX40L according to the MoDC context, indicating qualitative context-dependency 236 

(Figure 6b). These behaviors were not observed in the corresponding bDC contexts. 237 

Thus, in addition to DC stimuli, DC type also had an impact on OX40L-induced effects on output 238 

cytokines. This established that the cellular context determined by either different activating stimuli, 239 

or different subsets, both affected OX40L function. 240 

 241 

DC type has more impact than DC-activating stimuli on OX40L context-dependent function 242 

Finally, we wanted to determine which parameter had the most impact on OX40L-induced 243 

modulation of Th output cytokines. We compared the impact of the Th contexts, bDC contexts and 244 

MoDC contexts on OX40L function. Based on the previous PCA, we first calculated the Euclidean 245 

distances in each context between presence and absence of OX40L. In the Th contexts, Euclidean 246 

distance calculations revealed a higher distance between Th2 and Th2+rhOX40L than in Th0, Th1 247 

and Th17. This suggested that OX40L had a greater impact on output cytokines within Th2 context, 248 

followed by Th0 context (Figure 7a). In bDC contexts, OX40L had a greater impact on output 249 

cytokines within TSLP-bDC context, as compared to the five other bDC contexts (Figure 7b). Finally, 250 

in MoDC contexts, we saw fewer striking differences than in Th and bDC contexts. Still, LPS-MoDC 251 

contexts conferred higher OX40L-induced impact on output cytokines (Figure 7b). This confirmed 252 

what we observed above, using only the first two components of the PCA. 253 

 254 

In addition, we went deeper in the analysis within DC contexts. In the previous analysis, we 255 

considered the DC context as bDC or MoDC activated with different stimuli. DC contexts were 256 

composed of two variables: the DC type and the DC-activating stimuli. Therefore, we sought to 257 

understand which of these two variables, composing DC context, revealed the strongest context-258 

dependent effect of OX40L. To this end, for each cytokine independently, we applied a LMM to 259 

remove intra-donor correlations, followed by a group-lasso model on the residuals. We displayed the 260 

model’s coefficients values according to the lasso penalty, so that the main variable involved in 261 

OX40L context-dependency would be the last to fall to zero (Figure 7c and d). We observed two 262 

distinct groups of cytokines, one for which OX40L context-dependency was predominantly due to 263 

the DC type (Figure 7c), and one for which OX40L context-dependency was predominantly due to 264 

the DC-activating stimuli (Figure 7d). However, for the majority of output cytokines (13 out of 17), 265 



the DC type was the main variable involved in OX40L context-dependency (Figure 7c). Thus, within 266 

tested cellular contexts, OX40L context-dependency on output cytokines was mostly due to the DC 267 

type. 268 

 269 

 270 

Discussion 271 

Context-dependency refers to the variability in the function of a biomolecule when acting in different 272 

contexts. A major challenge in studying context-dependency lies in the tremendous diversity of 273 

possible contexts, which can be viewed at several levels: different individuals, organs, sub-274 

anatomical locations or microenvironmental niches. Considering anatomical sites, it is known that 275 

the lung microenvironment promotes the development of Th2 responses 16, whereas the brain 276 

promotes regulatory T (Treg) cell responses 17. However, to our knowledge, there is no direct 277 

comparison of the function of the same biomolecules acting within lung versus brain 278 

microenvironments. This would allow to precisely determine the extent of that function that may 279 

depend on the anatomical microenvironment. Similar questions may be asked when considering 280 

different types of inflammatory contexts: is a given molecule functioning differently when expressed 281 

in distinct types of inflammation. We and others have shown that TSLP is expressed in atopic 282 

dermatitis and activates DC to promote a Th2 response 7, 15. However, in the context of skin psoriasis, 283 

TSLP may promote IL-23 production by DC, which would favor Th17 responses 18. This can only 284 

occur due to the lack of IL-4, which can inhibit DC-derived IL-23 18.  285 

 286 

Studies at the level of an organism, an organ or tissue may be important to raise the possibility of 287 

context-dependent functions, but cannot be used to definitely demonstrate and quantify context-288 

dependency. In order to do so, a controlled experimental system is required, in which specific output 289 

functions of a molecule of interest would be assessed in distinct contexts. This strategy was used to 290 

establish important functional dichotomies of cytokines. For example, the differential effect of TGF-291 

b on mouse CD4 Th cell polarization was demonstrated by comparing the absence and presence of 292 

IL-6, which promoted Treg cells and Th17 differentiation, respectively 19, 20. The importance of the 293 

cytokine context in human Th cell polarization was also established for Th17-promoting cytokines 21, 294 

and type I Interferon 6. However, the limited number of contexts (usually two) did not allow to quantify 295 

context-dependency, and to identify possible qualitative variations in a systematic manner. In our 296 

study, we considered 15 different contexts, which necessitated the use of quantitative statistical 297 

methods in order to precisely quantify context-dependency in the form of a score. This score could 298 

be assessed for various output functional response markers, which enabled to rank them according 299 

to context-dependency. This revealed that IL-10 was the most sensitive to OX40L context-300 

dependency in Th-polarizing contexts, meaning that the impact of OX40L stimulus on IL-10 301 

production was highly variable. If the inhibition of T cell-derived IL-10 would be a target function of 302 

antagonistic anti-OX40L antibody, we would expect high patient-to-patient variability. Conversely, 303 



the impact of OX40L on some other T cell-derived cytokines (IL-6, IL-21, TNF-β) was very robust to 304 

the context, suggesting a more consistent effect across patients and inflammatory contexts. 305 

 306 

Most studies evaluating the context-dependent effects of a molecule have used molecularly defined 307 

contexts 7, 8. Although useful in proof-of-concept studies, using the presence and absence of a 308 

cofactor to define a biological context has several limitations. First, it creates extreme scenarios of 309 

complete absence versus high concentrations of the molecular context. This would not reflect slight 310 

variations that may be observed in physiopathology. Second, it does not reflect the complexity of 311 

inflammatory contexts, which may involve variations in several contextual molecules of different 312 

nature. In our study, we have introduced the concept of “cellular context”, represented by different 313 

cell types, in different activation states. It is known that distinct DC-activating stimuli are associated 314 

to very different DC molecular and functional states 10. However, the impact of the DC state on the 315 

function of a given IC was never addressed. By studying the function of OX40L systematically across 316 

11 DC states, we could precisely quantify the impact of the cellular context on OX40L effects in T 317 

helper cell polarization. The use of group-lasso models allowed us to deconvolute the respective 318 

contribution of DC type versus DC-activating stimuli in the control of OX40L function. This revealed 319 

that the DC type was the most influential variable. This should encourage future studies of cell-320 

derived biological stimuli to consider the cellular context as a potentially key determinant of functional 321 

variability. 322 

 323 

OX40L context-dependency was very different when comparing molecular and cellular contexts. In 324 

molecular contexts, OX40L could enhance or decrease the production of an output cytokine (IL-22, 325 

TNF-α), depending on the Th-polarizing context considered. It also revealed previously unknown 326 

functions of OX40L, in particular the differential regulation of IL-17A versus IL-17F in the Th17 327 

context. On the contrary, OX40L preferentially increased output cytokines across cellular contexts. 328 

An exception was the TSLP-bDC context, which influenced OX40L in a qualitatively different manner, 329 

as compared to the other bDC contexts. Post-hoc tests and the analysis of bDC contexts without 330 

TSLP-bDC demonstrated that the TSLP-bDC context was the most impactful on OX40L context-331 

dependency (Table S2). This emphasizes the peculiarity of the TSLP-bDC context, and shows that 332 

the function of an IC cannot be dissociated from the state of the DC expressing it.  333 

 334 

The large variability of molecular and tissue contexts during inflammation raises the question of how 335 

broadly they may be represented and mimicked in experimental systems. In our study, we 336 

considered four molecular and 11 DC contexts, as defined by the combination of DC type and 337 

activating stimulus. This represents a large diversity of contexts, with broad physiopathological 338 

relevance to bacterial (LPS, HKSA, Curdlan) and fungal (Zymosan) infections, and to allergy (TSLP). 339 

However, number of inflammatory conditions may induce different DC states. In cancer, the 340 

microenvironment induces peculiar DC programs, which may either promote or control tumor 341 



development 22. Such complex tissue microenvironments are difficult to recapitulate in controlled 342 

systems, and require dedicated studies. The availability of data resources on tumor DC states 23, 24, 343 

and biological resources from human tumors, should facilitate the generation of tumor “DC contexts” 344 

for systematic studies. Our results suggest that distinct DC contexts may influence the function of 345 

various IC, and possibly modify the efficiency of IC targeting strategies. 346 

 347 

OX40 has been considered as a drug target to enhance or inhibit T cell responses for over 20 years 348 

25. OX40 blockade demonstrated promising effects in mouse models of rheumatoid arthritis 12, 26. 349 

Interestingly, OX40 agonists used in tumor models increased mice survival and tumor-specific CD4 350 

memory T cells in a manner that was dependent on cancer type model and anatomical site, 351 

suggesting that the context could significantly influence treatment efficiency 27, 28. More recently, 352 

OX40 agonists associated with PD-1 blockade increased antitumor immunity in a transplanted 353 

mouse mammary tumor model 29. In human clinical trials, OX40 targeting has yet to demonstrate an 354 

efficacy, although promising results were obtained in early stage studies 13, 30. Variable patient 355 

response to OX40 agonists in cancer echoes previous studies showing contextual effects in mouse 356 

models 27, 28, and in human Th polarization assays with limited number of contexts 7, 8. Our study now 357 

definitely establishes the context-dependency of OX40L function in molecular and cellular contexts, 358 

with a precise quantification and identification of the complex underlying determinants. Applying our 359 

conceptual and methodological framework to other IC in a systematic manner, could help quantifying 360 

their context-dependency, and identifying their most contextual functional outputs. Together, such 361 

new knowledge could help in a rational selection of IC to target in a given tumor type, and to identify 362 

the determinants of drug response variability in individual patients. On the contrary, ignoring major 363 

context-dependent effects may create an obstacle to the efficient targeting of highly contextual 364 

molecules and pathways. 365 

 366 

 367 

Methods 368 

 369 

PBMCs purification 370 

Fresh apheresis blood from healthy human blood donors was obtained from Etablissement Français 371 

du Sang (French Blood Establishment) after written informed consent, under an ethically-approved 372 

convention with Institut Curie and INSERM, according to national regulations. PBMCs were isolated 373 

by centrifugation on a density gradient (Lymphoprep, Proteogenix). 374 

 375 

Naive CD4+ T cells purification 376 

Naive CD4+ T cells were purified from PBMCs using the EasySep™ Human Naive CD4+ T Cell 377 

Isolation Kit (StemCell Technologies) to reach 95% purity as CD4+CD45RA+CD45RO- cells. 378 

 379 



Cytokine contexts for Th cell polarization 380 

Naive CD4 T cells were cultured for 5 days with only anti-CD3/anti-CD28 Dynabeads (Life 381 

Technologies) to obtain Th0, or in combination with either 10 ng/mL IL-12 (R&D Systems) (Th1), 25 382 

ng/mL IL-4 (R&D Systems) (Th2), or a cocktail of 100 ng/mL IL-23 (R&D Systems), 10 ng/mL IL-1β, 383 

1 ng/mL TGF-β and 20 ng/mL IL-6 to obtain Th17 (Peprotech) as already published 6. When 384 

indicated, 600 ng/mL rhOX40L (R&D Systems) was added to the T cell culture. At the end of the 385 

culture T cells were washed, counted and reseeded at 106 cells/mL and restimulated with anti-386 

CD3/CD28 Dynabeads (Life Technologies) for 24 hours before collecting supernatants for cytokine 387 

measurement. 388 

 389 

Monocyte-derived dendritic cells generation 390 

CD14+ cells were selected from PBMCs using magnetically labeled anti-CD14 Microbeads and 391 

MACS LS columns following manufacturer’s instructions (MiltenyiBiotec). CD14+ cells were then 392 

cultured with IL-4 (50 ng/mL) and GM-CSF (10 ng/mL) (MiltenyiBiotec) for 5 days in RPMI 1640 393 

Medium, GlutaMAX (Life Technologies) with 10% Fetal Calf Serum.  394 

 395 

Blood dendritic cells purification 396 

Blood DC were purified using the EasySep Human Myeloid-DC Enrichment Kit (Stem Cell 397 

Technologies). cDC2 dendritic cells were sorted on a MoFlo Astrios sorter (Beckman Coulter) to 398 

reach 98% purity as Lineage (CD3, CD14, CD16, CD19, CD20, CD56)-, CD4+ (BD), CD11c+ 399 

(Biolegend), BDCA1+ (ThermoFisher), BDCA3- (Miltenyi Biotec).  400 

 401 

DC and MoDC activation 402 

MoDC and sorted cDC2 were seeded at 106 cells/mL in a flat bottom 96-well plate and activated for 403 

24 hours using 10 µg/mL PAM3CSK4 (Invivogen), MOI 10 Heat-killed Staphylococcus aureus 404 

(Invivogen), 10 µg/mL Zymosan (Sigma-Aldrich), 10 µg/mL Curdlan (Invivogen) or 100 ng/mL LPS 405 

(Invivogen) in RPMI 1640 Medium, GlutaMAX (Life Technologies) with 10% Fetal Calf Serum 406 

(Hyclone) 100 U/mL Penicillin/Streptomycin (Gibco), MEM Non-Essential Amino Acids (Gibco) and 407 

1 mM Sodium Pyruvate (Gibco). cDC2 were also activated using 50 ng/mL TSLP (R&D Systems).  408 

 409 

DC/T coculture  410 

After 24 hours activation, bDC and MoDC were counted and cocultured with allogeneic naive CD4 411 

T cells, at a ratio of 1 DC for 5 T cells, in serum-free X-VIVO 15 medium (Lonza). When indicated, 412 

10 µg/mL anti-human OX40L monoclonal antibody (Oxelumab, Absolute Antibody) or matching 413 

human IgG1 isotype were added to the coculture and maintained for the whole duration of the 414 

coculture. After 6 days of coculture, T cells were washed and live cells were counted. T cells were 415 

reseeded at 106 cells/mL and restimulated with anti-CD3/CD28 Dynabeads (LifeTechnologies). 24 416 

hours later supernatants were collected to measure the T cell cytokines.  417 



 418 

Flow cytometry analysis 419 

For surface flow cytometry analysis, dead cells were first stained using Live/dead fixable yellow dead 420 

cell stain kit (ThermoFisher). T cells were stained with an antibody recognizing OX40 (Biolegend), 421 

while MoDC and bDC were stained with an antibody recognizing OX40L (BD). Cells were acquired 422 

on a ZE5 instrument (BioRad). 423 

 424 

Cytokine quantification 425 

Cytokines from T cell supernatants were quantified using CBA flex set for IL-2, IL-3, IL-4, IL-5, IL-6, 426 

IL-9, IL-10, IL-13, IL-17A, IL-17F, TNF-α, IFNγ and GM-CSF (BD), and Luminex for IL-21, IL-22, IL-427 

31 and TNF-β following the manufacturer’s protocol. 428 

 429 

Data availability 430 

All data generated and analyzed during this study are included in Supplementary material 431 

Code_and_Data. 432 

 433 

Software and code availability 434 

FACS data were analyzed using the FlowJo software (TreeStar).  435 

Software used for CBA analysis was FCAP Array v3. 436 

Statistical analysis was performed using the Prism software (GraphPad) and R software (version 437 

3.5.3). 438 

Code to reproduce the results is available in Supplementary material Code_and_Data. 439 

 440 

Cohorts description 441 

For the cytokine-induced Th cell polarization experiments, 13 independent donors were included, in 442 

five independent experiments. 443 

In each bDC-T cell and MoDC-T cell coculture experiment, one single bDC or MoDC donor was 444 

coupled to a different naive CD4 T cell donor. For the MoDC-T coculture experiments, 9 independent 445 

MoDC donors were included, and cocultured with 9 different T cell donors, in 3 independent 446 

experiments. For the bDC-T coculture experiments, 9 independent bDC donors were included, and 447 

cocultured with 9 different T cell donors in 6 independent experiments. The 9 TSLP-bDC donors 448 

were processed in different experiments than the 9 donors of the other bDC contexts, so the donors 449 

are different from the other bDC contexts. 450 

 451 

Statistical analysis 452 

All concentration values below the limit of detection (LOD): 10 pg/mL were set to LOD/2 (5 453 

pg/mL).	Luminex measurements (four cytokines) were realized later than CBA measurements (13 454 

cytokines). Because of the limited amount of material in some donors, we prioritized measurements 455 



of the output cytokines by CBA over Luminex. Supernatants from 12 samples (out of 108 samples) 456 

of the bDC-T coculture experiments and from 10 samples (out of 90 samples) of the MoDC-T 457 

coculture experiments were missing and measurement of four cytokines (IL-21, IL-22, IL-31 and 458 

TNF-β) could not be performed. To handle missing values, stochastic single imputation was 459 

performed using MICE (Multiple Imputation by Chained Equations). Absolute and relative differences 460 

in concentration induced by OX40L were computed. Two-sided paired Wilcoxon tests were used to 461 

compare raw concentrations and absolute differences across stimulation contexts; mean and 462 

standard deviation are displayed. 463 

 464 

Context-dependency score 465 

The following steps were used to compute the context-dependency score, for each output cytokine 466 

independently: (i) using the relative differences in concentration induced by OX40L, the estimated 467 

effect for each stimulation context (!"'()*+,*	-) and its standard deviation (#$'()*+,*	-) were obtained 468 

from a Linear Mixed Model (LMM) featuring the different contexts as fixed effects and donor-specific 469 

intercepts as random effects (equation (1)) ; 470 

 471 

. = 012324 +	 6 β-8-
9:;<=><	-

+ ?  (1) 472 

 473 

where Y is the relative difference in concentration induced by OX40L presence for a given cytokine 474 

; 8 is the indicator function, BC is the fixed effect for stimulation context k ; 012324 is the random 475 

intercept associated to each donor, with DE()(F ∼ H(0, νM) ; and ε ∼ H(0, #M) is the residual error 476 

term (Figure S2, Step 4.2); (ii) Pairwise Euclidean distances between the context-specific estimated 477 

effect divided by their standard deviation PQRSTUVWXV	YZ[STUVWXV	Y\ were computed (Figure S2); (iii) Last, the 478 

context-dependency score was obtained by taking the mean of the pairwise Euclidean distances. A 479 

likelihood ratio test, between the LMM with and without the context variable as a fixed effect, was 480 

performed to evaluate the significance of the context-dependency (Figure S2, Step 4.3).  481 

The scores were then represented according to the OX40L-induced effect on the different contexts: 482 

when OX40L effect was in the same direction for all contexts (output cytokine production either 483 

always induced or always inhibited), the score was represented with a positive value in black, 484 

however, when OX40L effect went in both directions (inducing or inhibiting the output cytokine 485 

production, depending on the context), the score was represented in two parts: a positive value in 486 

black, representing the main proportion of contexts affected in the same direction by OX40L, and a 487 

negative value in grey, representing the minor proportion of contexts affected in the other direction 488 

by OX40L. 489 

To evaluate difference in OX40L effect between pairs of contexts, likelihood ratio tests, between the 490 

LMM with and without the pair of context variable as a fixed effect, were performed (only observations 491 

for the two contexts were used). 492 



Relative importance of DC-type-context and stimuli-context on the context-dependent effect of 493 

OX40L was evaluated with a two-steps method, for each cytokine relative difference independently: 494 

(i) first a LMM including only an intercept as fixed and random effect was fitted; (ii) the residuals from 495 

this model were used as the response in a group-lasso model. All stimulation contexts were defined 496 

as one group in the lasso model in order to compare the two types of context: DC type and stimuli.  497 

 498 
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Figure Legends 643 

 644 

Figure 1: OX40L impact on Th cell polarization depends on the cytokine polarizing-context. 645 

a) Experimental design of the Th cell polarization assay. b) Heatmap representing OX40L-induced 646 

scaled absolute difference on the 17 output cytokines measured in each Th context. The absolute 647 

difference corresponds to the concentration of a given cytokine in a Th context in the presence minus 648 

absence of rhOX40L. The mean over 13 donors is represented. Paired Wilcoxon’s test was used to 649 

evaluate significance of OX40L effect. c) IL-10, GM-CSF and IL-21 production in each Th context in 650 

the presence (red dots) or absence (black dots) of rhOX40L. The mean ± SD, and individual values 651 

from 13 donors are represented. Paired Wilcoxon’s test was used for statistical analysis. d) Principal 652 

component analysis representing the barycenters of the four Th-polarizing contexts in the presence 653 

(red dots) and absence (black dots) of rhOX40L. * P ≤0.05; ** P ≤0.01; *** P ≤0.001. 654 

 655 

Figure 2: OX40L context-dependency across molecular contexts is the strongest on IL-10. a) 656 

Simplified mathematical modeling strategy used to quantify the context-dependent role of OX40L on 657 

output cytokine production (illustrated in b), and scoring of OX40L context-dependency (depicted in 658 

c). In the following analyses, IL-4, IL-5, IL-9, IL-17A, IL-17F and IL-31 were excluded to avoid bias 659 

because they were produced in only one or two contexts. b) Heatmap representing the estimated 660 

OX40L-induced relative difference for the 11 output Th-cytokines measured in each Th context, 661 

calculated using Linear Mixed-effects Models (LMM) on 13 independent donors. The estimated 662 

coefficients for the fixed effects from the models are represented. For a given cytokine, in a given Th 663 

context, the LMM’s fixed effect coefficient corresponds to the mean over donors of the concentration 664 

in the presence minus absence of rhOX40L, divided by the concentration in the absence of rhOX40L. 665 

c) Scoring of the context-dependency across the four Th-polarizing contexts ranked according to 666 

statistical significance. Black bars represent the variation of a considered output cytokine in one 667 

direction (increase or decrease) in the majority of the Th contexts in presence of OX40L. When 668 

present, grey bars indicate variation of an output cytokine in the opposite direction in at least one Th 669 

context due to the presence of OX40L. The scores were computed from 13 independent donors. 670 

Likelihood ratio tests, between the LMM with and without the context variable as a fixed effect, were 671 

performed to evaluate the significance of the context-dependency. * P ≤0.05; ** P ≤0.01; *** P 672 

≤0.001. d) Statistical significance (likelihood ratio test) of the context-dependency across the four 673 

Th-polarizing contexts. 13 independent donors were used in the analysis. Negative signs for context-674 

dependency scores were attributed to cytokines for which OX40L effect was positive (induction) for 675 

some contexts and negative (inhibition) for others. 676 

 677 

Figure 3: OX40L influence on Th cell differentiation varies depending on the bDC-activating 678 

stimulus. a) Experimental design of the bDC-T coculture. b) Heatmap representing the OX40L-679 

induced scaled absolute difference on the 17 output Th-cytokines measured in each bDC context. 680 



The absolute difference corresponds to the concentration of a given cytokine in a bDC context in the 681 

presence of the isotype (DC cont.) minus the concentration of the cytokine in that bDC context in the 682 

presence of anti-OX40L antibody (DC cont. +anti-OX40L mAb). The mean is represented. Paired 683 

Wilcoxon’s test was used for statistical analysis. c) IL-13, IL-22 and TNF-β production in each bDC 684 

context in the presence of anti-OX40L blocking (black dots) or isotype (red dots). The mean ± SD 685 

and individual values are represented. Paired Wilcoxon’s test was used for statistical analysis. d) 686 

Principal component analysis representing the barycenters of the six bDC contexts in the presence 687 

(black dots) and absence (red dots) of anti-OX40L blocking antibody, meaning absence and 688 

presence of OX40L on bDC, respectively. 9 independent donors were used in each analysis. * P 689 

≤0.05; ** P ≤0.01. 690 

 691 

Figure 4: TSLP-DC context determines a specific OX40L functional impact on Th output 692 

cytokines. a) Heatmap representing the estimated OX40L-induced relative difference on the 17 693 

output Th-cytokines measured in each bDC context, calculated using Linear Mixed-effects Models. 694 

The estimated coefficients for the fixed effects from the models are represented. For a given 695 

cytokine, in a given bDC context, the LMM’s coefficient corresponds to the mean over donors of the 696 

concentration in the presence of the isotype (DC cont.) subtracted by the concentration in the 697 

presence of anti-OX40L antibody (DC cont. + anti-OX40L mAb), divided by the concentration in the 698 

presence of anti-OX40L antibody (DC cont. + anti-OX40L mAb). b) Scoring of the context-699 

dependency across the six bDC contexts, ranked according to statistical significance. Black bars 700 

represent the variation of a considered output cytokine in one direction (increase or decrease) in the 701 

majority of the bDC contexts in presence of OX40L. When present, grey bars indicate variation of 702 

an output cytokine in the opposite direction in at least one bDC context due to the presence of 703 

OX40L. Likelihood ratio tests, between the LMM with and without the context variable as a fixed 704 

effect, were used to assess the significance of the context-dependency. c) Statistical significance 705 

(likelihood ratio test) of the context-dependency across the six bDC contexts. Negative signs for 706 

context-dependency scores were attributed to cytokines for which OX40L effect was positive for 707 

some contexts and negative for others. 9 independent donors were used for the analysis. * P ≤0.05; 708 

** P ≤0.01; *** P ≤0.001. 709 

 710 

Figure 5: High and variable impact of OX40L on Th cell polarization in the different MoDC-711 

activating contexts. a) Experimental design of the MoDC-T coculture. b) Heatmap representing the 712 

OX40L-induced scaled absolute difference for the 17 output Th-cytokines measured in each MoDC 713 

context. The absolute difference corresponds to the concentration of a given cytokine in a MoDC 714 

context in the presence of the isotype (DC cont.) subtracted by the concentration of the cytokine in 715 

that MoDC context in the presence of anti-OX40L antibody (DC cont. +anti-OX40L mAb). The mean 716 

is represented. Paired Wilcoxon’s test was used for statistical analysis. c) IL-13, IL-22 and TNF-β 717 

production in each MoDC context in the presence of anti-OX40L blocking (black dots) or isotype (red 718 



dots). The mean ± SD and individual values are represented. Paired Wilcoxon’s test was used for 719 

statistical analysis. d) Principal component analysis representing the barycenters of the five MoDC 720 

contexts in the presence (black dots) and absence (red dots) of anti-OX40L blocking antibody, 721 

meaning absence and presence of OX40L on MoDC, respectively. 9 independent donors were used 722 

in each analysis. * P ≤0.05; ** P ≤0.01. 723 

 724 

Figure 6: The cellular context highly impacts OX40L context-dependency effects on Th 725 

cytokine secretion. a) Heatmaps representing the estimated OX40L-induced relative difference for 726 

the 17 output Th-cytokines measured in each of the five bDC and MoDC contexts, calculated using 727 

Linear Mixed-effects Models. The estimated coefficients for the fixed effects from the models are 728 

represented. For a given cytokine, with a given DC type and in a given DC context, the LMM’s 729 

coefficient corresponds to the mean over donors of the concentration in the presence of the isotype 730 

(DC cont.) subtracted by the concentration in the presence of anti-OX40L antibody (DC cont. + anti-731 

OX40L mAb), divided by the concentration in the presence of anti-OX40L antibody (DC cont. + anti-732 

OX40L mAb). b) Scoring of the un-ranked context-dependency across the five bDC and MoDC 733 

contexts. Black bars represent the variation of a considered output cytokine in one direction (increase 734 

or decrease) in the majority of the bDC or MoDC contexts in presence of OX40L. When present, 735 

grey bars indicate variation of an output cytokine in the opposite direction in at least one bDC or 736 

MoDC context due to the presence of OX40L. Likelihood ratio tests were used to evaluate the 737 

significance of the context-dependency. c) Statistical significance (likelihood ratio test) of the context-738 

dependency across the five DC contexts. Negative signs for context-dependency scores were 739 

attributed to cytokines for which OX40L effect was positive for some contexts and negative for others. 740 

The TSLP-bDC context was removed for these analyses to compare the same contexts between 741 

bDC and MoDC. 9 independent donors were used in each analysis. * P ≤0.05; ** P ≤0.01; *** P 742 

≤0.001. 743 

 744 

Figure 7: OX40L context-dependency depends mainly on the DC type. a) Euclidean distance 745 

between presence and absence of rhOX40L for each Th context based on a PCA of the 17 Th-746 

cytokines measured. 13 independent donors were used in the analysis. b) Euclidean distance 747 

between presence (isotype) and absence (OX40L blocking) of OX40L on DC for each bDC and 748 

MoDC context based on a PCA of the 17 Th-cytokines measured. 9 independent donors were used 749 

in the analysis. c-d) For each of the 17 output Th-cytokines measured in DC-T cocultures, group-750 

lasso coefficients as a function of the penalization parameter (lambda) are represented. c) Cytokines 751 

for which OX40L context-dependency was predominantly due to the DC type. d) Cytokines for which 752 

OX40L context-dependency was predominantly due to the DC contexts. 753 

 754 

 755 

 756 



Supplementary Figure Legends 757 

 758 

Figure S1: Control Th cell profiles. a) Quantification of OX40 MFI on Th0, Th1, Th2 and Th17 at 759 

Day 0 (D0), 1, 2, 3, 4 and 5 of culture. Mean ± SD and individual values from 3 donors are 760 

represented. b) Output cytokine production in each of the four Th contexts. Mean ± SD and individual 761 

values from 13 independent donors are represented. Two-sided paired Wilcoxon’s test was used for 762 

statistical analysis. Statistical significance was annotated as follows: ns P >0.05; * P ≤0.05; ** P 763 

≤0.01; *** P ≤0.001.  764 

 765 

Figure S2: Detailed analysis strategy. Detailed mathematical modeling strategy used for data 766 

analysis and context-dependency scoring. 767 

 768 

Figure S3: OX40L expression on bDC. a) Quantification of OX40L MFI on bDC activated for 24 or 769 

48 hours without stimulation (NT), or with zymosan, PAM3, LPS, HKSA, Curdlan or TSLP. Mean ± 770 

SD and individual values from 3 donors are represented. Paired student’s test was used for statistical 771 

analysis. Statistical significance was annotated as follows: ns P >0.05; * P ≤0.05; ** P ≤0.01. b) 772 

Difference in OX40L-induced effect between pairs of contexts, evaluated by likelihood ratio tests, 773 

between the linear mixed models with and without taking into account the contexts. This analysis is 774 

associated to the context-dependency scores represented in Figure 4b. 9 independent donors were 775 

used for the analysis. Statistical significance was annotated as follows: * P ≤0.05; ** P ≤0.01; *** P 776 

≤0.001. Only P≤0.05 are displayed. 777 

 778 

Figure S5: OX40L expression on MoDC. Quantification of OX40L MFI on MoDC activated for 24 779 

or 48 hours without stimulation (NT), or with zymosan, PAM3, LPS, HKSA or Curdlan. Mean ± SD 780 

and individual values from 3 donors are represented. Paired student’s test was used for statistical 781 

analysis. Statistical significance was annotated as follows: * P ≤0.05; ** P ≤0.01. 782 

 783 

 784 

Supplementary Table Legends 785 

 786 

Table S1: Detailed rescaled estimates. Table showing the detailed rescaled estimates (estimates 787 

divided by their standard deviation) for each experimental setting: Th contexts, MoDC contexts, bDC 788 

contexts with and without TSLP context. 789 

 790 

Table S2: Context-dependency post-hoc tests. Table displaying the results of the likelihood ratio 791 

tests performed to evaluate the difference in OX40L effect between pairs of contexts, between the 792 

LMM with and without the pair of context variable as a fixed effect. One tab per experimental setting: 793 

Th contexts, bDC contexts, bDC contexts without TSLP context and MoDC contexts. 794 



Table S3: Detailed p-values. Table recapitulating p-values for each figure panel. 795 

 796 

 797 

Supplementary Material 798 

 799 

Code_and_data. Zip file containing all data and scripts used in this study. 800 
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FIGURE 2
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FIGURE 6
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FIGURE 7
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FIGURE S1
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FIGURE S2
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GENERAL	DISCUSSION	AND	

PROSPECTS
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I) Context-dependency concept 

1) Multidisciplinary importance of context-dependency 

The concept of context-dependency has been identified in many scientific fields and some papers 

tried to better understand its consequences very recently. 

Egushi et al. reflected on the importance of the context-dependency concept in the field of 

genetics and focused more specifically on the context-dependency of genetic mutation on 

phenotypes 300. The authors demonstrated that a genetic mutation function on a phenotype could 

vary according to several parameters such as genetic background, cell type, age, etc. They 

highlighted that context-dependency complicated phenotypic prediction from a mutation.  

As an aside, this is particularly interesting to consider at a time when single-cell RNA sequencing 

is very popular; measurement at the protein level remains highly important. Then, they 

interrogated how to predict a phenotype from a mutation when the context can actually influence 

it. They reviewed different approaches to study genetic context-dependency, for instance, 

measuring the phenotypic impacts of many gene deletions across many contexts in yeast, or 

quantifying the impact of several mutations (“mutation contexts”) on phenotypic impacts of a 

single protein mutation. Interestingly, this latter method is in the same frame of mind as our 

method. 

Context-dependency has also been studied on drugs, on animal models. Jackson et al. studied the 

context-dependent off-target effects of an antidiabetic compound, the dipeptidyl peptidase 4 

(DPP4) inhibitor 301. This drug is associated with frequent comorbidities, such as chronic kidney 

disease and hypertension, and it is of particular interest to understand the context in which these 

different comorbidities appear. In preclinical in vivo studies with animal models, they showed that 

long-term DPP4 inhibitor treatment increased arterial blood pressure in genetically hypertensive 

rats and on the contrary was antihypertensive in rats with metabolic syndrome and did not affect 

genetically normotensive rats. This greatly illustrated the impact of the context on disease side-

effect outcomes and its importance in therapy. 
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Also interesting, a study from 1981 focused on the impact of the environmental conditions on rat 

behavior injected with cocaine 302. They observed differences in rat behaviors and tolerance 

according to the environment in which they received the cocaine. 

Context-dependency has been highly studied in ecology, compared to other disciplines. For 

instance, it has been studied by quantifying trait variance and repeatability, to better understand 

evolutionary processes. Killen et al. focused on the context-dependent trait of wild fish 

populations 303. As for humans, animal populations are constituted of many individuals, each with 

different behavior and physiology. Thus, they questioned whether the best fish in a population 

(regarding swimming performances, stress responsiveness, metabolic rate, etc) is always the same 

one, or whether the best fish differs according to the environmental context, composed of several 

parameters such as temperature, pollutants, food and oxygen availability, etc. In other words, 

does an individual that has the greatest fitness in one context, will still be the best in another one? 

Until now, in animal populations, context-dependency has been applied to evolutionary ecology 

and to a lesser extend to ecology management and conservation. 

In another recent ecology article, Perring et al. studied the context-dependency of nitrogen 

deposition effects on forest understorey plant population responses 304. They demonstrated that 

the environmental context, defined by parameters such as pH or light, impacted how plants 

respond to nitrogen deposition. Here, the context-dependency concept is applied to plant 

physiological response to better understand and predict nitrogen deposition in understorey plant 

populations, with the aim to better conserve forest biodiversity. 

Finally, context-dependency has also been of interest in neuroeconomics, for instance in terms of 

valuation affected by context-dependent perception 305. 

 

2) Originality of our context-dependency statistical model 

All these articles highlight the importance of considering context-dependency in many disciplines. 

Some team built prediction models trying to include context-dependency in the equation 306. But 

although context-dependency has been examined and studied in many fields as seen above, few 

studies allow us to comprehensively quantify it directly. Context-dependency in its entirety is a 

difficult problem because it is actually the combination of an uncountable number of parameters, 
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each including many variant combinations. Therefore, such complexity needs to be formalized 

using an integrated mathematical modeling approach. As proof of concept, our study illustrates 

that context-dependency can be measured and quantified by a new statistical method strategy. 

About Th polarization, some studies looked at the induction of Th subsets in different contexts 

82,86,122. For instance, Schmitt et al. described that TGFb is a critical signal in Tfh cell induction, and 

that the cytokine context accompanying TGFb affected the polarization 82. However, the number 

of contexts was limited and context-dependency was not the focus of the study. An interesting 

study from Cano-Gamez et al. focused on characterizing naive and memory CD4 T cell responses 

to five different cytokine combinations 307. They observed the acquisition of distinct phenotypes 

according to the context but did not focus on context-dependency.  

Thus, to our knowledge, no study has quantitatively evaluated the context-dependency of a 

molecule functions, in a systematic manner and across many contexts. Moreover, more 

specifically, OX40L context-dependent effects on Th polarization and Th cytokine secretion had 

never been addressed, in various molecular and cellular contexts. As described throughout this 

manuscript, the notion of context-dependency refers to the variable function of molecules 

depending on the context. In this case, it means that OX40L can impact differently Th polarization 

according to the context in which the T cell is evolving. It can allow the description of some OX40L 

effects that would not be observed in a “mono-context” experiment. For example, IL-13 is a 

cytokine principally secreted by Th2 cells and as a consequence, it is mainly studied in Th2 cell-

focused studies. In our Th contexts, we observed that rhOX40L had no significant impact on IL-13 

secretion by T cells in a Th2 context. However, we observed that rhOX40L decreased IL-13 

secretion in Th0 and Th17 context, and it was associated with a significant context-dependency 

score. Here, context-dependency reflects the complex T cell signal integrations that act on Th 

polarization and Th cytokine secretion. 

To study OX40L context-dependent functions on Th polarization we used two experimental 

methods, a DC-free Th polarization system and a T cell-DC co-culture system. These methods, as 

well as tools to agonize or antagonize OX40L, were highly controlled since they were well 

established in the literature and the team 85,86,122,169,170. This allowed us to elaborate our model on 

well-known experimental systems. Moreover, it was also useful to already have available data 

about OX40L effects on Th polarization and Th cytokine secretion 85,170. As previously discussed, 

the study of context-dependency involves high numbers of parameters and combinations, and 
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thus, it calls initially for well-established experimental systems and trustable data to go beyond a 

standard experiment in one specific context.  

These aforementioned experimental systems were the base of our two types of contexts: 

molecular, using the presence of Th-polarizing cytokines, and cellular contexts. Both contexts 

conferred different advantages and drawbacks. For the few studies that observed different effects 

of OX40L on Th polarization, molecularly defined contexts were used 86,122. They are easier to 

control because each context induces a very specific panel of secreted cytokines by T cells, while 

contexts using activated DCs induced a mixed cytokine panel. We will discuss this aspect more in 

detail in the last part of the discussion. With cellular contexts, in which T cells are activated and 

polarized by DCs, we added complexity in our contexts and tried to get closer to physiological 

conditions compared to molecular contexts. 

For all this diversity of contexts applied to CD4 T cells, we measured systematically a big quantity 

of Th secreted cytokines, 17 output cytokines, compared to most studies which selected few 

cytokines of interest. We obtained a huge dataset containing 5046 data points:  

(302 conditions x 17 cytokines) - 88 missing values = 5046 data points  

(missing values are due to a lack of supernatants to perform Luminex for four cytokines (IL-21, IL-

22, IL-31 and TNF-b); CBA for the 13 other cytokines have been performed in all conditions). 

Regarding the mathematical and statistical modeling, we worked in close relationship with 

biostatisticians. The model was established in the first place on the Th molecular contexts because 

there are easier to control and involve less parameter. To understand the impact of the context 

on cytokine variation due to OX40L, we used LMM. This classical model in statistics allowed us to 

determine and quantify the link between the variable to be explained and explanatory variables. 

LMM was applied to each cytokine individually. The model estimated b coefficients, that quantify 

this impact of the context on the cytokine variation due to OX40L for each context. Then, for the 

context-dependency score, we first calculated a b’ value (b/standard deviation) for each context. 

This allowed us to consider the standard deviation, in other terms, the confidence in b coefficients 

estimated by the model. Subsequently, we calculated the distance between each b’ for each 

context two by two and our context-dependency score was defined as the mean of these 

distances. We made the decision to use the mean of these distances to define the context-

dependency score. Indeed, the mean enabled to consider b’ extreme values. We could have used 

the median but it would have excluded b’ extreme values while there are interesting in our setting 
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because they show different context impacts on OX40L function (the definition of context-

dependency). 

The second type of model we used in this study was Lasso analysis. Lasso model is used to perform 

variable selection principally in omics disciplines in biology, such as genomics, proteomics or 

metabolomics. It is commonly used in two types of analysis to improve accuracy 308,309: 

- In the case that a lot of variables are present compared to the number of 

samples/individuals. When we are confronted with a huge number of variables, the Lasso 

model allows finding the ones that could explain a variable to explain. By applying 

penalties, it forces variable coefficients to zero, meaning that these variables are removed 

from the model, hence sparsity. 

- In the case it is necessary to perform variable selection before applying a classical 

statistical model (i.e. linear model), to identify the best model to understand a variable to 

explain. Here, we look for the best penalty, associated only with explained variables. 

 

In our case, we used the Lasso model in a non-classical and original way to determine the variable 

that had the most importance in OX40L context-dependency. In cellular contexts, namely bDC and 

MoDC, contexts were composed of two parameters: the DC type and the DC-activating stimuli. By 

applying increasing penalties and forcing their coefficients to zero, the Lasso model helped us to 

identify the most influential parameter on OX40L context-dependency for each output cytokine, 

which was the DC type for 13 output cytokines on 17 totals. 

 

3) Context-dependency model applications 

In this study, we described an original approach to comprehensively and specifically analyze 

context-dependency and to better understand how the context influences the function of OX40L 

on Th polarization. We have analyzed the context-dependency of OX40L in various molecular and 

cellular contexts representing different immune and inflammatory microenvironments.  

In our model, we focused on molecular cytokine contexts and cellular DC contexts, we could also 

have included molecular immune checkpoint contexts for instance (Figure 13).  
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contexts can be defined as several parameters, first, it can be simply the same tumor type from 

different patients, that have their own tumor microenvironment. Then it can go deeper, including 

different tumor types, different tumor treatments, etc. Pieces of tumor tissue could be placed in 

culture for 24 hours in an appropriate medium. The day after, the supernatants would be 

recovered and used to culture T cells in presence of an immune checkpoint agonist or blocking 

antibody. Measuring and quantifying the context-dependency of an immune checkpoint function 

would be very interesting. In the case of one context defined by one patient tumor 

microenvironment, this kind of analysis might be the first step in better understanding the variable 

efficacy of immune checkpoint blockade. 

In line with defining one patient tumor microenvironment as one specific context, it could be 

interesting to address this question more globally, where the donor could be a context itself. For 

instance, in our setting, could some OX40L impact on output cytokines be controlled first by the 

donor effect before the DC activating stimulus or the DC type? This could draw a major conclusion 

useful for the community about the donor effect, which is usually removed from the analysis, 

including ours. To evaluate the context-dependency of OX40L function on Th polarization across 

donors, we would need to have several data points per donor for each condition (in the same way 

that we have several data points for TSLP-bDC for example in our model). 

To finish on context-dependency applications in cancer, we will discuss the use of organoids in 

preclinical studies. Organoids are three-dimensional in vitro cell culture. This model is more and 

more used to test immunotherapy treatment because they can recapitulate realistic 

microarchitecture of the TME. In mice and human models, some studies tested PD-1 blockade in 

organoids 313–315. Patient-derived organoids are also considered as a tool for personalized cancer 

treatments, to evaluate and choose the most efficient drug for each patient 316. It could be very 

interesting to quantify context-dependency in this model, still in the idea that one context is 

defined by one patient tumor microenvironment. 

Moreover, technically, it exists several methods for organoid generation, for instance hanging 

drop culture, matrix embedding culture or culture in low adherence plate 317. However, this 

parameter can influence the output response. Saitakis et al. studied T cell functions in 

polyacrylamide gels and generated three contexts defined by different stiffness values (0,5kPa, 

6,4kPa or 100kPa). They demonstrated that the stiffness of the environment to which T cells are 

exposed modulated their functions, including their morphology, migration, gene expression and 



 112 

cytokine secretion. For instance, they showed IFNg and TNF-a secretion increase with the gel 

stiffness 318. Thus, in the case of organoids with potential use in personalized medicine, it is 

important to consider that the physical properties of the surfaces can influence T cell functions. It 

would be interesting to apply our context-dependency model across physically different contexts 

defined by the stiffness to quantify the context-dependent function of an immune checkpoint, like 

OX40L, on cytokine secretion, and see the impact on the different cytokines. 

 

4) Context-dependency model limitations 

In this part, we will focus on the limits of our model and the rationale of these limits. 

The first limitation of context-dependency studies is of course the number of contexts. As said 

previously, a context can be composed of a multitude of parameters, which cannot all technically 

be considered in one experimental study. In our case, we first decided to take into account the 

cytokine context, because they are commonly described to be a major signal in Th polarization. 

We used a recombinant OX40L protein (rhOX40L) in a simplified experiment of polarization, 

without any DC intervention, using anti-CD3/anti-CD28 beads for T cell activation and synthetic 

cytokines for polarization. This setting allowed us to well-control all quantities of compounds. In 

addition, the fact that T cells come from one donor and react to a precise concentration of 

synthetized recombinant protein in a controlled cytokine context generates less donor variability. 

However, “extreme” scenarios can be created due to the simplification of the polarization process, 

in which only polarizing cytokines are present in high concentrations or not at all, and it obviously 

does not reflect the complexity of inflammatory contexts. 

Our second experimental setting using DCs to activate and polarize T cells aims to “upgrade” our 

contexts to get closer to the reality of Th polarization in lymph nodes. Nevertheless, increasing 

our context complexity goes along with decreasing controlled systems. Indeed, co-cultures imply 

one donor of T cell and one donor of DC, inducing more variability due to histocompatibility 

between two random donors. Secondly, although an excess of OX40L blocking antibody is added 

to the co-culture, the initial quantity of OX40L protein on DCs varies according to the DC activating 

stimulus, so it is different across contexts and this cannot be controlled. 
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Within cellular contexts, we could have done plenty of other choices for the contexts such as 

choose other DC activating stimuli for example. Unfortunately, adding more DC activating stimuli 

would have been difficult in regards to the number of DCs we obtained from a blood pocket. 

In terms of DC type, we only include two types of DCs, cDC2 and MoDCs. Co-cultures with these 

two subsets were routinely done in the team. We thought about adding co-cultures with cDC1 

and pDC, to increase our number of cellular contexts and have more diversity. However, both 

subset percentages in blood are very low 319 and it would have been difficult to perform 

experiments in the same conditions as with cDC2 and MoDCs. As we need a minimum number of 

50000 T cells to performed cytokine secretion analysis, we would not have been able to have all 

DC contexts for each donor. In addition, in the case of pDCs, Xvivo15, the medium we used for our 

experiments, is not optimal for co-culture with T cells. In the team and in the literature, pDCs and 

T cells are usually co-cultured in Yssel medium containing 10% of fetal bovine serum (FBS). We 

expressly chose to use a medium without FBS for our experiments to not induce a bias linked to 

the serum composition. Adding pDCs in the model would have compelled us to use Yssel + 10% 

FBS medium for all our experiments to have the same settings in all contexts and be able to 

compare them. It is known that the medium highly impacts cellular interaction in culture and plays 

a significant role in the reproducibility of results 320. Having a systematic study on context-

dependency related to medium could be very helpful for the scientific community. It would be 

interesting to include medium contexts in our model to determine how much the medium and the 

presence/absence of serum and even the type of serum (human versus fetal calf serum) can 

influence the function of OX40L on Th polarization (and it could be applied to other molecules and 

outputs). 

Overall, we summarized high quantity and diversity of data in understandable and various ways. 

We began with 32 dimensions (17 cytokines + 15 contexts) but managed to show them into two 

dimensions representations:  

- Simple graphs: cytokine concentrations versus contexts 

- PCA: with two principal components for global cytokine analysis 

- Lollipop plots: Euclidian distances between presence and absence of OX40L versus 

contexts 

- Heatmaps: one for absolute differences OX40L impact on cytokine concentrations and one 

for b coefficients estimated by the LMM 
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Within this type of context-dependency, we could also observe quantitative context-dependency, 

this important information is missed in our graphs representing context-dependency scores. For 

an easier comprehension of complex data, we decided to represent only qualitative context-

dependency when both were present. We considered qualitative context-dependency more 

important than quantitative context-dependency. Indeed, the fact that OX40L (or other 

biomolecules) can have opposite effects in different contexts is more impactful than different 

magnitudes of action. 

Although we took all precautions to avoid variability, we observed inter-donor variability (hence 

evaluating the context-dependent function of a molecule across donors, as previously suggested, 

can be very interesting). This inter-donor variability can be linked to many parameters that we 

cannot control, such as environmental factors. Indeed, although they are healthy donors, they are 

exposed to factors initiating immune responses and their accumulation modulates immune 

system responses 321. Thus, the historical immune reaction varies between an individual and 

another and can lead to variable responses in our experiments. Moreover, ethnic and social origins 

but also age and gender can also contribute to variability 322,323.   

The Immune Variation (ImmVar) is a project that aims to understand immune response variation 

among healthy donors. Among other things, they showed that a minor but meaningful percentage 

of RNA expression variation (around 20%) between two individuals from different origins can be 

explained by genetic factors 322. Moreover, Patin et al. showed that genetic factors, but also 

external parameters such as smoking, could alter immune system homeostasis 324.   

In our work, the donor effect was taken into account to calculate our context-dependency scores 

for each type of context (Th, cDC2 and MoDC contexts). Moreover, in the last figure of the paper, 

the donor effect was even removed from the Lasso analysis to not bias the analysis (otherwise it 

would have been considered as a parameter like the DC type and the DC-activating stimulus). 
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II) OX40L impact on Th cytokine secretion and its context-dependent 

effects 

As described in the introduction, OX40L role on Th polarization is very diverse and has been 

described on many Th subsets. In this part, we will discuss its role on specific cytokines and its 

context-dependent (or independent) impact on others. 

 

1) OX40L impact on Th main cytokines 

a) OX40L and IL-4 secretion 

Context-dependency may also be interesting to consider in the case of paradoxical results 

between different studies. In the case of OX40L, we were interested in IL-4 since a lot of studies 

linked OX40L to allergy, Th2 and Tfh cells 290. In our Th2 context, we observed a decrease of IL-4 

in presence of rhOX40L protein, as well as a decrease of IL-5 and IL-31 Th2 cytokines. Along similar 

lines, in our TSLP-bDC context, we observed an increase of IL-4 in presence of the anti-OX40L 

blocking antibody, which means that OX40L decreased IL-4.  

Up to now, OX40L has been classified as inducing Th2 in the literature. Ito et al. performed a 

prominent study, with settings close to ours, in which they used a co-culture system with human 

naive CD4 T cells and TSLP-bDC and described a decrease of IL-4 when blocking OX40L 122. 

However, they used neither the same DC type nor the same medium for their experiments. They 

used total blood CD11c+ DCs while we used blood BDCA1+ cDC2, and they used Yssel medium with 

human serum while we used serum-free Xvivo15 medium. Another recent study (in which Ito is a 

co-author) showed that anti-OX40L blocking decreased IL-4 secretion by T cells when co-cultured 

with TSLP-bDC 251. They still used total blood CD11c+ DCs and RPMI medium with human serum. 

We determined that the DC type was a very important parameter that could influence OX40L 

function (cf. Figure 7 of the article manuscript). Indeed, it has a greater impact on OX40L function 

on cytokine secretion compared to the DC-activating stimuli for the majority of output cytokines. 

This might be an explanation of the difference between our study and these regarding OX40L 

effect on IL-4 secretion.  

It can also be noted that in the study from Jacquemin et al., the authors performed intracellular 
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staining for IL-4 and showed a decrease of IL-4+ cells in presence of a rhOX40L protein, in a Th0 

context 86. The settings were very similar to ours, activating naive CD4 T cells with anti-CD3/anti-

CD28 and the same rhOX40L protein. 

 

b) OX40L and IL-17A/IL-17F secretions 

An interesting impact of OX40L in our data was observed on IL-17A and IL-17F cytokines. These 

two cytokines are only detected in the Th17 context because they necessitate a specific polarizing 

cytokine cocktail to be induced in absence of DCs 38. Moreover, using a similar setting to ours, 

Jacquemin et al. could not detect IL-17 in Th0 and Th1 contexts, even in presence of rhOX40L 86. 

As seen in the introduction, OX40L has been described to impact Th17 cell polarization. However, 

the majority of studies focused only on IL-17A 255–257,262 and the few ones measuring both IL-17A 

and IL-17F in mice models eventually focused on IL-17A 258,261. 

In our Th17 context, we noticed that OX40L had a differential regulation of IL-17A and IL-17F. IL-

17A concentration was decreased whereas IL-17F concentration was increased in presence of 

OX40L. Originally, IL17A and IL17F genes were proposed to be coordinately regulated 325.  

Up to now, few studies have reported a differential regulation of IL-17A and IL-17F. In mouse 

model, Gomez-Rodriguez et al. observed that naive CD4 T cells secreted less IL-17A, but not IL-

17F, in response to a low dose TCR stimulation or low dose of Calcineurin inhibitor. They noted 

normal levels of RORgt and RORa, however, they showed that IL-17A promoter had a binding site 

for Ca2+ sensitive Nuclear Factor of Activated T cell (NFAT) transcription factors, but not IL-17F 131. 

A few years later, two papers from the same team showed that cAMP-responsive element 

modulator α (CREMα) transcription factor was responsible for increasing IL-17A and decreasing 

IL-17F in SLE patients 326,327. Additionally, Adamik et al. described that distinct conditions mixing 

IL-1b, IL-23 and Prostaglandin E2 led to different induction levels of IL-17A and IL-17F in human 

primary memory Th17 cells. Moreover, they showed that IL17A and IL17F chromatin were 

differentially regulated because of divergent epigenetic architecture loci, which led to a 

preferential expression of IL17A 328. Finally, Grandclaudon et al. demonstrated that the 

combination of IL-12 and IL-1b induced the production of IL-17F, but not IL-17A 170.   

In the context of OX40L function on Th17 cells, no study reported yet a differential regulation of 

IL-17F and IL-17A cytokines. Our data provide new insights about OX40L role on these cytokines. 



 118 

It could help to better understand how they are differentially regulated in humans by performing 

RNA sequencing on Th17 cells and Th17 cells treated with rhOX40L for instance. Indeed, although 

they have similar or even sometimes synergic actions due to high homology, their role can also 

differ in certain contexts 329–332, hence there is an interest in a better comprehension of their 

secretion mechanism to be able to target them individually.  

 

c) OX40L and other Th cytokines 

In the introduction, we reviewed that OX40L had a positive impact on Th9 cells 263,264.  

In our data, we observed that IL-9 significantly increased or tended to increase in almost all Th and 

DC contexts. The only contexts in which OX40L had no impact is in Th0 and Th1 contexts. This is 

because IL-9 was not induced initially in these two contexts, it turned out that OX40L never 

induced a cytokine de novo in our settings. 

Regarding Th1 polarization, some papers described an inhibiting effect of OX40L on IFNg 247 and 

others showed a stimulating effect 249. We suggested in the introduction that OX40L-induced 

effect on Th1 polarization varied depending on the context of the experimental condition.  

In our Th contexts, IFNg significantly decreased or tended to decrease in all contexts. However, in 

bDC contexts, we observed a significant context-dependency score for IFNg, meaning that OX40L 

impact on IFNg depended on the bDC-context. This is interesting given the heterogeneity of 

responses in the literature. 

Before discussing context-dependency more in detail, it is interesting to notice that OX40L 

function in Th versus DC contexts is different at a global cytokine level. Although OX40L seems to 

increase and decrease cytokine concentrations more or less equally in Th contexts, we noticed 

that OX40L mainly increased cytokine concentrations in DC contexts. The only DC context in which 

OX40L induced clear concentration decrease for several cytokines is the TSLP-bDC context. It will 

be discussed more thoroughly in the next part. 
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2) OX40L context-dependent functions on Th cytokines 

Our model reveals a new level of complexity of OX40L responses, in terms of context-

dependencies. As previously detailed, we differentiated quantitative and qualitative context-

dependencies. 

In our Th contexts, we observed these two context-dependency types. On the one hand, OX40L 

increased or decreased IL-22 and TNF-a across contexts, hence OX40L has a qualitative context-

dependent function on these two output cytokines. On the other hand, OX40L played a 

quantitative context-dependent function on IL-10 and IL-13. Among these output cytokines, IL-10 

had the higher context-dependency score, meaning that it was the most sensitive, in a 

quantitative manner, to OX40L context-dependency in Th contexts, followed by IL-22, in a 

qualitative and quantitative manner. Interestingly, IL-10 and IL-22 both belong to the IL-10 

cytokine family. The main function of this cytokine family is to protect organs and tissues from 

damage caused by infections and inflammatory responses 47. Decrease of IL-10 in all Th contexts 

is interesting, for cancer treatment for instance. The fact that OX40L induced a quantitative 

context-dependent decrease of IL-10 could also suggest that we would expect patient-to-patient 

variability in the case of treatment with an OX40L agonist antibody. 

Within bDC context, OX40L context-dependency on IL-2, GM-CSF, IFNg and IL-3 output cytokines 

was highly dependent on the TSLP context. This is particularly obvious because after removing the 

TSLP context from the analysis to compared bDC and MoDC contexts, we could not observe 

context-dependency on any output cytokine (cf. Figures 4 and 6 of the article manuscript). At first 

sight, it looked coherent because the TSLP-bDC context is instinctively different from the five other 

ones. Indeed, in Zymozan, PAM3, LPS, HKSA and Curdlan-bDC contexts, the DC activating stimuli 

are mimicking an external pathogen, fungal or bacterial infections. On the contrary, TSLP is an 

inflammatory cytokine produced by epithelial cells or by other stromal cells, in a very distinct 

context that is allergy.  

As for Th contexts, we observed the two types of context-dependency. OX40L played a qualitative 

context-dependent function on IL-2, GM-CSF and IFNg. OX40L induced a decrease of these 

cytokines in the TSLP-bDC context, whereas it induced an increase in the five other ones. IL-2 and 

IFNg are principally defined as Th1 cytokines (even if they are secreted by other Th cells, we will 

discuss it in the next part of the discussion). GM-CSF can be secreted by several Th cells and is 
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known to stimulate the proliferation and activation of many cells such as macrophages, dendritic 

cells and monocytes, and to enhance phagocytosis, antigen presentation and proinflammatory 

cytokine secretion 333. Thus, the increase of these three cytokines by OX40L in fungal/bacterial 

infection contexts, and conversely the decrease in allergic contexts, seems consistent with the 

required immune response in these contexts.  

Besides, OX40L played a quantitative context-dependent function on IL-3, which increased in all 

bDC contexts but at different levels.  

The fact that TSLP-bDC context seems to be the main cause of OX40L context-dependency since 

this latter disappeared in absence of this context, could also let us think that Zymozan, PAM3, LPS, 

HKSA and Curdlan-bDC are contexts in which OX40L will always have the same function on output 

secreted cytokines. However, this idea is challenged by context-dependency scores obtained in 

MoDC contexts. As explained previously, we could not apply the TSLP stimulus on MoDC since 

they do not express the TSLP receptor 121,334. Thus, context-dependency scores were calculated 

only across Zymozan, PAM3, LPS, HKSA and Curdlan-MoDC contexts. In contrast to bDC contexts 

without TSLP, context-dependency scores for certain cytokines were significant. This was the first 

evidence that the DC-activating stimulus could not be the only parameter influencing OX40L 

context-dependent functions. Cytokines impacted by OX40L context-dependency in MoDC 

contexts were mainly Th2 cytokines. OX40L influenced differently IL-4, IL-5, IL-31 and GM-CSF 

across the different fungal and bacterial contexts. 

We could also have defined a “context-independent” behavior of OX40L on output cytokines. For 

instance, we observed no context-dependency of OX40L function on IL-21 secretion. OX40L 

similarly increased IL-21 cytokine in all our Th and DC contexts. The link between OX40L, IL-21 and 

Tfh cells has been well-established 85,86 and our model is consistent with the literature. 
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III)Relevance of Th cell classification 

As we saw in the introduction, Th subset classification is based on several parameters, mainly their 

distinct secreted cytokines. In this last part of the discussion, we will reflect on how the cytokine 

secretion analysis at a large-scale triggered conclusion that modifies, through its quantitative and 

qualitative aspects, the general concepts of Th differentiation. 

 

1) Narrow profile versus mixed profile of Th cytokine secretion 

In our study, we performed the analysis of OX40L function, in a systematic manner across many 

contexts, on one output, which is Th polarization. We decided to also be systematic regarding our 

output and for that, we analyzed in each context the global Th cytokines production. Figures 17 

and 18 gather together all the output secreted cytokines in Th1, Th2 and Th17 for Th contexts, 

and in PAM3-MoDC and TSLP-bDC for DC contexts (without any addition of rhOX40L in the Th 

contexts or OX40L blocking antibody in the DC contexts). 

We observe that Th contexts induced a narrow Th profile, meaning that each Th subset mainly 

secreted their specific subset-defining cytokines. However, when complicating our contexts by 

introducing activated DCs, we observed that T cells secreted a mixed profile of cytokines. 

In more details, in Th contexts, a first observation was that the cytokine secretion profiles were 

clear for each subset: Th1 context induced a high secretion of IL-2, IFNg, TNF-a, TNF-b (Figure 

17A); Th2 context induced IL-4, IL-5 (both in small quantity but present), IL-9, IL-10, IL-13, IL-31 

(Figure 17B); Th17 context induced IL-17A, IL-17F, IL-6 (Figure 17C). Globally, it seems that the Th2 

context was the most mixed between the three. To have a clearer Th2 profile, we could have 

added anti-IFNg or anti-IL-12, but we did not want to have an even more “extreme” context by 

adding blocking antibodies. Moreover, we noticed that IL-21 was secreted in all Th-polarizing 

contexts. IL-21 is principally produced by Tfh and Th17 cells 91,335. The fact that all subsets secreted 

IL-21 is interesting considering the sub-classification of human Tfh cells into Tfh1, Tfh2 and Tfh17 

cells, we will look deeper into this in the next part. We also have substantial production of IL-3 

and GM-CSF in Th1 and Th2 contexts only. Mosmann et al. noted that both of their Th1 and Th2 

clones secreted IL-3 and GM-CSF 11. IL-3 secretion by Th cells remains poorly described. GM-CSF 



 122 

has been more described at that time and can be secreted by Th1, Th2 and Th17 333. Interestingly, 

two recent studies showed that IL-3 and GM-CSF were typically co-expressed 336,337. 

 

Figure 17: Concentrations of all secreted output cytokines in Th contexts 

Concentrations of all secreted output cytokines in A) Th1 context, B) Th2 context and C) Th17 context. Each 

color represents one donor (n=13). 
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Figure 18: Concentrations of all secreted output cytokines in two very different DC contexts 

Concentrations of all secreted output cytokines in A) PAM3-MoDC context and B) TSLP-bDC context. Each 

color represents one donor (n=9). 

In Figure 18, for these two DC contexts that differ from the DC type and the DC-activating stimulus, 

we observed that the majority of cytokines are secreted in both contexts, but at different levels. 

For example, in the PAM3-MoDC context, we observed a high secretion of Th1 cytokines such as 

IFNg, TNF-a, TNF-b, IL-2, but also a secretion of IL-17F and Th2 cytokines, IL-4, IL-5 and IL-13 (Figure 

18A). In the TSLP-bDC context, we measured a lot of Th2 cytokines (IL-4, IL-5, IL-13, IL-31, GM-

CSF), but also Th1 cytokines, although at a lower concentration than in the PAM3-MoDC context 

(Figure 18B). Although it seems that there is a dominance of certain cytokines compared to others 

in the different contexts, a mixed profile of cytokines from distinct Th subsets is observed. 
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Comparing these results of narrow versus mixed profile of secreted cytokine by Th cells with the 

literature is difficult for several reasons: 

- Studies usually focus on specific Th subsets or specific cytokines and do not perform a 

systematic analysis of all main Th cytokines. 

- When analyzing a large panel of cytokines, most studies look at gene expression by single-

cell or bulk RNA sequencing, whereas we measured our cytokines at the protein level, and 

it has been shown by comparative studies that correlations between mRNA and protein 

levels can be relatively uncertain 338,339.  

Specifically in CD4 T cells, this was greatly illustration by Cano-Gamez study. They 

stimulated naive and memory CD4 T cells in a Th17 and iTreg stimulation contexts. For 

naive CD4 T cells, they observed 733 differentially expressed genes and only 455 

differentially expressed proteins between the two contexts. In the same line, for memory 

CD4 T cells, they observed 42 differentially expressed genes and no differentially 

expressed proteins 307. 

 

Wong et al. investigated the impact of tissue microenvironment on T cell differentiation. In this 

study, they used mass cytometry to measure many Th output parameters at the protein level, 

including cytokines and surface receptors. Interestingly, their data suggested that it is actually very 

difficult to distinguish distinct Th subsets across the different human tissues they studied. Similar 

to what we observed in DC contexts, they showed that Th cells could secrete multiple Th-

associated cytokines. For instance, they showed a co-secretion of IFNg, IL-17A and IL-22 340. 

The use of mass cytometry in this study has many advantages. First, it allows quantifying many 

different molecule expressions at the protein level. Secondly, this molecule expression 

quantification is done at the single cell level, and thus, it enabled them to look at cytokine co-

expression at the single cell level. On the contrary, in our data, we can only look at a simultaneous 

secretion of cytokines, but we cannot determine whether they are secreted from a unique cell or 

distinct ones within a population. For example, in the PAM3-MoDC context (Figure 18A), does the 

same T cell co-secrete IL-17F and IL-13? Or is Th population constituted of IL-17F+ cells and IL-13+ 

cells? Does co-secretion of cytokines by the same cell or co-presence of cytokines at the same 

location induce different immune responses?  

It would have been great to have this information in our systematic study that includes a lot of 
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cytokines to better understand global Th cytokine secretion. We could also have done intracellular 

cytokine staining, which is more easily accessible. However, it does not enable to include as many 

parameters in one panel compared to mass cytometry, and technically, to measure co-expression, 

they need to be assembled in one panel only. 

In our work, we polarized a pool of naive CD4 T cells. This pool of naive CD4 T cells is actually a mix 

of many different naive antigen-specific CD4 T cells, that can recognize many different antigens. 

In the present results, we did not take into consideration antigen specificity since we did not add 

antigen in Th contexts and we were in allogeneic condition in DC contexts. It could be very 

interesting to identify if naive antigen-specific CD4 T cells secrete a narrower cytokine profile when 

activated by their specific antigen. Indeed, the mixed cytokine secretion profile could be explained 

by the multiplicity of T cell clones.  

Rafi Ahmed team and Robert Thimme team are specialized in antigen-specific T cells, respectively 

of yellow fever virus (YFV) and hepatitis C virus (HCV). Akondy et al. characterized naive and 

memory YFV-specific CD8 T cells, from donors vaccinated or not against yellow fever 341. They used 

YFV-specific tetramer to enrich and sort naive YFV-specific CD8 T cells in unvaccinated donors and 

memory YFV-specific CD8 T cells in vaccinated ones. Besides, Wieland et al. studied memory HCV-

specific CD8 T cells in chronically HCV-infected patients 342. Both focused on antigen-specific CD8 

T cells, but the same principle could be applied to antigen-specific CD4 T cells.  

The use of tetramer could be a great tool to apply in our study. The idea would be first to stimulate 

a pool of naive CD4 T cells isolated from blood (it would necessitate a large number of naive T cells 

since antigen-specific T cell frequency is very low) with an antigen, flu for instance. Stimulation 

could be done either directly on T cells, using a flu optimal epitope and complemented with an 

anti-CD28, or through flu-activated DCs (certainly, CD4 responses in each context could be 

different). After 6 days of activation, flu-specific CD4 T cells would be sorted with flu tetramer. Flu-

specific CD4 T cells and the rest of the pool would be restimulated separately for 24 hours with 

anti-CD3/anti-CD28 beads and cytokine secretion measured by CBA and Luminex (same protocol 

as in the article manuscript). It would allow distinguishing whether flu-specific CD4 T cells 

activated by flu secrete a narrower cytokine profile compared to other antigen-specific CD4 T cells 

activated by flu. 
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In this plot, we can observe that 20,9% of Th cells only express IL-4, 10% of Th cells only express 

IFNg and 5,78% of Th cells co-express both cytokines. If we consider classical Th subsets, we would 

say that we have 20,9% of Th2 cells, 10% of Th1 cells and 5,78% of Th1/Th2 cells. These double-

positive cells are difficult to explain with the classical Th subset classification. 

Another example of an increasing level of Th subset complexity has been described in Treg cells. 

Dong et al. showed that Treg subset could be subdivided into three subpopulations and that two 

of them (CD4+FoxP3+CD45RA-HLA-DR- and CD4+FoxP3+CD45RA-HLA-DR+) were able to produce 

IFNg and IL-17A (not both cytokines within the same cell) 343. The secretion of pro-inflammatory 

cytokines by Treg cells that are supposed to induce tolerance greatly illustrates the growing 

complex heterogeneity of Th subsets. 

We saw previously, in Figure 17, that IL-21 was secreted in all our Th contexts. IL-21 is produced 

in large amounts by Tfh cells and this observation seems consistent with Tfh cell plasticity. Indeed, 

looking at CXCR5, CCR6 and CXCR3 surface markers in the CD4 memory cell compartment, Morita 

et al. described that human Tfh cells isolated from peripheral blood, usually called circulating Tfh 

cells, can be subdivided into different sub-subset that mirror Th cells: Tfh1, Tfh2 and Tfh17 344.  

The main characteristic of these cells is that they express CXCR5 chemokine receptor and secreted 

the specific cytokines of Th1, Th2 and Th17 subsets respectively, in addition to IL-21 and CXCL13 

secretion. Tfh2 and Tfh17 cells were capable of B cell help, contrary to Tfh1 cells that could not 

induce the secretion of Ig. But, this raises questions such as: is it coherent to name Tfh a cell that 

cannot provide help to B cells? 

Moreover, a new sub-subset of Tfh13 cells has been identified very recently in mice and human 

and was described as responsible for the production of high-affinity anaphylactic IgE 345.  

Mixed profiles of cytokine secretion by Th cells and new subset identification bring a main 

question: does the identification of new subsets or even sub-subsets is really relevant? Would it 

not be more relevant to reconsider Th cells by taking into consideration the global cytokine 

secretion (which would not exclude the fact that some cytokines can dominate compared to 

others)? In the example of Tfh13 cell study, only a few cytokines have been measured (principally 

IL-13 and IL-4). Does the identification of IL-13 not a bias toward a single cytokine inducing high-

affinity anaphylactic IgE production (which is amplified by the name given to the subset)? More 

generally, is defining a new subset on a handful of effector cytokines not biased? 
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The global understanding of all these Th subsets and their derived cytokines leads to re-examine 

Th association to disease. At the time when only Th1 and Th2 were identified, Th classification of 

diseases was binary and related to a specific pathogenic Th subset and their specific cytokine 

secretion between those two. A clear example of this fact is multiple sclerosis. IFNg-producing Th1 

cells were described as playing a major role in multiple sclerosis, which was clearly classified as a 

Th1-associated disease 346–348. Additionally, in line with the Th dichotomy described by Mossman 

and Coffman, EAE clinical improvements were correlated with the decrease of IFNg but also the 

increase of IL-4, and Th2 cytokines were described as protective against exacerbated Th1 cells 

349,350. However, the discovery of Th17 changed the view of multiple sclerosis as a Th1-associated 

disease and helped the understanding of immune responses that were unexplained by the Th1 

and Th2 paradigm 351, and after that, Th17 cells were shown to also play a pivotal role in multiple 

sclerosis disease 352. 

Multiple sclerosis is one example among others in which a disease was associated with a specific 

subset and finally with many subsets. The evolution from a bipolar view to a multipolar view of 

multiple Th subsets involved in a single pathology led to growing complexity of Th cells and Th 

cytokine association to diseases and disease states. This brings many questions. First, related to 

the disease itself, is a disease associated with a specific pathogenic Th subset or several ones? In 

the second case, how the identification of several Th subsets involved in one pathology can help 

the understanding and therapy of this disease?   

Moreover, Th plasticity questions what is the best strategy to treat patients when several Th 

subsets are involved? Targeting the signals in the microenvironment that induce pathogenic Th 

cells? Targeting directly these pathogenic Th cells? Targeting the pathogenic Th effector? As many 

questions that remain open on the classification of Th lymphocytes. 
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SUMMARY

Cell-cell communication involves a large number of

molecular signals that function as words of a com-

plex language whose grammar remains mostly un-

known. Here, we describe an integrative approach

involving (1) protein-level measurement of multiple

communication signals coupled to output responses

in receiving cells and (2) mathematical modeling to

uncover input-output relationships and interactions

between signals. Using human dendritic cell (DC)-T

helper (Th) cell communication as a model, we

measured 36DC-derived signals and 17 Th cytokines

broadly covering Th diversity in 428 observations.

We developed a data-driven, computationally vali-

dated model capturing 56 already described and

290 potentially novel mechanisms of Th cell specifi-

cation. By predicting context-dependent behaviors,

we demonstrate a new function for IL-12p70 as an

inducer of Th17 in an IL-1 signaling context. This

work provides a unique resource to decipher the

complex combinatorial rules governing DC-Th cell

communication and guide their manipulation for vac-

cine design and immunotherapies.

INTRODUCTION

Cell-cell communication involves the exchange of molecular

signals produced by a given cell and transmitting an effect

through specific receptors expressed on target cells. This pro-

cess requires integration of multiple communication signals

of different nature during homeostatic or stress-related re-

sponses. For example, differentiation of pluripotent hematopoi-

etic stem cells into mature myeloid or lymphoid blood cells

requires the collective action of multiple cytokines, growth fac-

tors, and Notch ligands (Balan et al., 2018). In the context of

stress, multiple signals need to be integrated by innate and

adaptive immune cells, including cytokines, growth factors, in-

flammatory mediators, and immune checkpoints (Chen and

Flies, 2013; Macagno et al., 2007). In most studies, these

communication molecules have been studied as individual

stimuli to a target cell by gain- and loss-of-function experi-

ments. This provides important knowledge regarding the

downstream effects of the signals but prevents us from

widely addressing their function in various contexts of other

co-expressed communication signals.

Context dependency is an important aspect of verbal lan-

guage communication that can directly affect the meaning

of individual words but also modify the logic of syntactic rules

(Cariani and Rips, 2017; Kintsch and Mangalath, 2011). Simi-

larly, context dependencies may dramatically affect the func-

tion of biologically active communication signals. For

example, we have shown that 90% of the transcriptional

response to type I interferon in human CD4 T cells depends

on the cytokine context (T helper 1 [Th1], Th2, or Th17; Touzot

et al., 2014). Other studies have identified major context-

dependent functions of immune checkpoints, such as OX40-

ligand (Ito et al., 2005), and regulatory cytokines, such as

transforming growth factor b (TGF-b) (Ivanov et al., 2006;

Manel et al., 2008; Volpe et al., 2008). These studies suggest

that communication molecules function as words of a com-

plex language with grammar defining combinatorial rules of

co-expression and mutual influence of one signal over the

function (meaning) of another signal.

Three levels of biological complexity need to be integrated to

decipher those combinatorial rules: (1) the multiplicity of input

communication signals to include as many possible contextual

effects; (2) communication signals at their naturally occurring

concentrations; and (3) a large number of output responses in

target cells, reflecting the effect of cell-cell communication quan-

titatively and qualitatively. Those three levels create a bottleneck

in deciphering cell-cell communication.
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Here we developed an integrative approach combining (1)

coupled protein-level measurement of multiple communication

signals and output responsemolecules in target cells; (2) a multi-

variate mathematical modeling strategy enabling us to infer the

input-output relationships for individual signals, taking into

account the context and configuration of all other signals; and

(3) experimental validation of model-derived hypotheses. We

applied this framework to decipher human dendritic cell (DC)-

Th cell communication, which potentially involves over 70

individual molecular stimuli (Chen and Flies, 2013), including

cytokines, tumor necrosis factor (TNF) family members, integ-

rins, nectins, Notch ligands, and galectins (Tindemans et al.,

2017; Zhu et al., 2010; Zygmunt and Veldhoen, 2011). These

molecules can all be expressed by DCs and function as commu-

nication signals to T cells (hereafter called Th stimuli). They can

be measured at the protein level by highly specific assays to

optimize biological relevance.

By using this unbiased data-driven approach, we could cap-

ture the simultaneous effects of large numbers of DC-T cell

communication signals in naturally occurring patterns and

expression levels. Our systems-level model revealed novel

emergent and context-dependent mechanisms controlling Th

cell differentiation. A similar framework can be applied to sys-

tematically decipher the communication of other cell types.

RESULTS

Generation of a Unique Multivariate Dataset of Human

DC-Th Cell Communication

To induce a broad range of DC molecular states expressing

various patterns of communication signals, human monocyte-

derived DCs (MoDCs) and primary blood CD11c+ DCs (bDCs),

were activated for 24 h with a diversity of DC-modulating signals

(hereafter called DC perturbators). These included 14 distinct

stimuli that were grouped in three categories reflecting various

physiopathological contexts: (1) the endogenous factors inter-

feron b (IFN-b), GM-CSF, TSLP, and PGE2; (2) the Toll-like re-

ceptor ligands lipopolysaccharide (LPS) (a Toll-like receptor 4

[TLR4] agonist), PAM3CSK4 (a TLR1 and 2 agonist), Curdlan (a

Dectin1 agonist), zymosan (a TLR2 and Dectin1 agonist), R848

(a TLR7 and 8 agonist), poly(I:C) (a TLR3 agonist), and aluminum

potassium sulfate (Alum, an NLRP3 inflammasome inducer); and

(3) the whole pathogens heat-killed Candida albicans (HKCA),

heat-killed Listeria monocytogenes (HKLM), heat-killed Staphy-

lococcus aureus (HKSA), heat-killed Streptococcus pneumoniae

(HKSP), and influenza virus (flu). These 14 DC perturbators were

used in distinct doses and combinations to further increase the

diversity of DC communication molecules and downstream

functional effects (Table S1). In each independent experiment,

we included a medium condition as a negative control and LPS

(100 ng/mL) and/or zymosan (10 mg/mL) as positive controls. A

total of 66 perturbators were used on MoDCs and 16 on bDCs,

totaling 82 distinct ‘‘DC conditions’’ (C1–C82; Table S1).

Under each DC condition, we measured 36 DC-expressed

molecules that influence Th cell differentiation in at least one

published study (STAR Methods) and can be measured with

a highly specific antibody-based assay. Twenty-nine were

measured by fluorescence-activated cell sorting (FACS) at the

DC surface (Figure S1A), and 7 were measured in the 24-h DC

culture supernatant (STAR Methods).

Following 24-h culture under each of the 82 DC perturbation

conditions, the same DC batch was used to stimulate naive

CD4 T cells in a heterologous co-culture system. On day 6 of

co-culture, we measured Th cell expansion fold (Exp Fold) and

a total of 17 distinct Th cytokines broadly representing the spec-

trum of Th cell output responses (STAR Methods). In total,

we produced a unique dataset of coupled measurements of

DC-derived Th stimuli and Th response cytokines from 428 inde-

pendent observations from 44 independent donors (Figure 1A;

Table S2).

Variability and Specificity of DC Communication Signals

We asked whether our systematic DC stimulation strategy could

generate important variations in the expression of individual DC-

derived Th stimuli. All Th stimuli were expressed over at least

three logs (Figure 1B) with high coefficients of variation (>0.44;

Figure 1C). Interleukins had higher variability (104–105) and

high coefficients of variation from 2.72 for interleukin-12 (IL-12)

p70 (IL-12) to 1.43 for IL-6. CD11a had a wide expression range

(104) but the smallest coefficient of variation (0.44), with values

distributed around the mean (Figure 1C). Hence, we were able

to generate highly variable expression patterns for all Th stimuli.

We sought to identify conserved and specific patterns of Th

stimuli in response to standard DC perturbators. We compared

the expression levels of DC-derived Th stimuli under three

conditions belonging to distinct classes of microbes—LPS

(100 ng/mL, bacteria), zymosan (10 mg/mL, fungi), and flu (13,

Viruses)—that were used across at least 17 MoDC biological

replicates (Figure 1D). Medium MoDCs (negative control) ex-

pressed lower levels of activation-associated communication

molecules (Figures 1D and S1B). We confirmed previous find-

ings, validating our experimental system: (1) zymosan induced

specifically IL-10 and IL-23, (2) flu induced a large amount of

IL-28a, and (3) LPS and zymosan induced a large amount of

IL-12 (Figures 1D and S1B). In addition, we identified novel spe-

cific inductions of DC-derived Th stimuli: zymosan-treated

MoDCs expressed the highest levels of CD54 and PVR, flu-

treated MoDCs specifically induced ICOSL, and LPS-treated

MoDCs induced the highest levels of CD30L and CD83 (Fig-

ure 1D). Specificity of expression of a given signal for a given

DC stimulation was determined using Wilcoxon statistical test

(Figure S1B). Hence, standard DC perturbators induced specific

patterns of Th stimuli.

Defining the Spectrum of DC Communication States

Next we aimed to assess the spectrum of DC communication

states, as defined by their expression pattern of communication

signals, across the 82 DC conditions. We computed the mean

expression of biological replicates for each DC-derived Th stim-

ulusandperformedunsupervisedhierarchical clustering to identify

classes of the most similar conditions (C1–C82, y axis) and DC-

derived Th stimuli (x axis) (Figure 2A). This revealed five groups

of DC conditions (Figure 2B). Each of the four standard DC condi-

tions (Figure 1D) belonged to a different group (Figure 2A).

Group 1 was defined by high expression of adhesion mole-

cules such as CD18, ICAM-2, ICAM-3, and CD29 and low levels
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Figure 1. Variability and Specificity of DC Communication Signals

(A) Experimental strategy.

(B) Raw expression values of the 36 DC communication signals (n = 428 data points).

(C) Statistical descriptors of the 36 DC communication signals: expression range (logmagnitude), percentage of positive observations among the 428 datapoints,

and coefficient of variation.

(D) Average expression values and SD for the four indicated DC signals for MoDCs.
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of co-stimulatory molecules and cytokines with the exception of

high IL-28a. Group 2 showed low expression for most DC-

derived Th stimuli but high levels of integrins, VISTA and B7H3,

suggesting a capacity to interact with T cells and transmit

co-inhibitory signals. Group 3 showed a complementary pattern,

lack of group 1- and group 2-specific molecules, and intermedi-

ate or high levels of co-stimulatory molecules such as CD83,

CD86, HLA-DR, 4-1BBL, and OX40L. This suggested potent

T cell stimulating functions. Group 4 exhibited high levels of mol-

ecules from the B7 and TNF superfamilies, such as CD80, CD86,

PDL1, PDL2, and CD40, but intermediate or low cytokine levels.

In contrast, group 5 showed the highest level of cytokines and

molecules of the B7 and TNF superfamilies (Figure 2B).

Next we sought to analyze intra-cluster heterogeneity. We

selected three pairs of perturbators most closely related

as defined by Euclidian distance (C32 [MoDC HKLM, MOI 1]

and C33 [MoDC HKCA, MOI 1], C47 [bDC LPS, 100 ng/mL] and

C48 [bDC HLKM, MOI 1], and C61 [MoDC R848, 1 mg/mL]
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Figure 2. The Diversity of DC States Is

Defined byUnique Combinations of Commu-

nication Molecules

(A) Heatmap showing expression values of each 36

DC-derived signal, performed with hierarchical

clustering on Pearson metrics for the DC signals

and Euclidian distances for the 82 DC conditions.

(B) Expression profiles (mean and SD) of the 36

communication molecules within the five groups of

DC conditions, defined by hierarchical clustering.

Expression data were logged and scaled so m rep-

resents the mean and s the SD of the expression of

a given DC signal across the whole dataset.

(C) Boxplot of selected DC signals for pairs of

stimulatory conditions defined as being the most

correlatedwithin our dataset by Pearson correlation

(t test).

(D) Best number of groups by Gaussian mixture

model, determined using the 428 points of the

36 DC parameters.

and C62 [MoDC PAM3, 10 mg/mL]) and

compared them regarding expression of

the 36 DC-derived Th stimuli (Figure 2C).

C32 and C33 did not exhibit significant dif-

ferences in CD80 and CD86 expression,

reflecting equal levels of DC activation.

They were statistically different only for

IL-6, with levels ranging from complete

absence in C33 to over 1 ng/mL in

C32 (Figure 2C). In contrast, the pairs

C47/C48 and C61/C62 showed significant

differences for multiple Th stimuli. C47 ex-

pressed significantly more CD86, PDL1,

and IL-1 than C48. On the contrary, C48

expressed higher levels of 4-1BBL. C61

and C62 showed marked differences

in CD70 and IL-12 (higher in C61) and

OX40L (higher in C62) levels. Hence,

each DC condition expressed unique

combinations of DC-derived Th stimuli, suggesting different

communication potential with CD4 T cells.

An unsupervised Gaussian mixture model showed that the

highest Bayesian information criterion (BIC) value corresponded

to 82 groups, confirming that each DC condition induced a

unique profile of the 36 communication molecules (Figure 2D).

Using principal-component analysis (PCA), we showed that

neither the date of the experiment nor the donor batch had ama-

jor effect on clustering (Figure S1C; STAR Methods).

TheHeterogeneityofDC-InducedThCytokineResponses

We characterized the diversity of CD4 T cell output responses,

as assessed by Th cytokine profiles, following co-culture of

naive CD4 T cells with activated DCs across the 82 conditions

described previously. Th cytokines exhibited important varia-

tions across the 428 observations (Figure 3A). Some cytokines,

such as IL-2, TNF-a, GM-CSF, TNF-b, and IL-3, were always

detected (Figure S2A).
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Figure 3. Th Cytokine Responses Mirror the Variability in DC Communication States

(A) Raw expression values of each of the 18 Th-derived parameters (n = 418 data points).

(B) Average expression values and SD for all Th-derived signals under the MoDC conditions medium, LPS, zymosan, and flu.

(C) Heatmap of expression values of each 18 Th parameters, performedwith hierarchical clustering on Pearsonmetrics for the DC signals and Euclidian distances

for the T cell conditions.

(D) Boxplot of Th signals for pairs of conditions selected as being the most correlated within our dataset by Pearson correlation (t test).

(E) Best number of groups by Gaussian mixture model, determined only using the 428 points of the 18 Th parameters.
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To identify Th subset signatures, we compared cytokine

expression under our four standard conditions: medium (negative

control), LPS, zymosan, and flu. The Th17 cytokines IL-17A and

IL-17F were induced predominantly in zymosan MoDCs. LPS

MoDCs induced mixed Th1, Th2, and Th9 responses character-

ized by high IFN-g, IL-13, IL-3, and IL-9 compared with medium.

Flu MoDCs induced the Th2 cytokines IL-4, IL-5, and IL-31 (Fig-

ures 3B and S2B). These results indicate that, under the LPS,

zymosan, and flu conditions, each DC state induced a distinct

set of Th cytokine responses corresponding to prototypical Th

signatures or mixed Th profiles.

Th Cytokine Responses Mirror the Variability in DC

Communication States

We asked whether Th cytokine responses would reveal distinct

patterns or a continuum of responses mirroring each of the DC

communication states (Figure 2A). We performed hierarchical

Pearson clustering on our 18 distinct Th-derived variables across

the entire 82 DC-activating conditions (Figure 3C). This revealed

6 distinct groups, although intra-group heterogeneity was

evident in almost all groups. Interestingly, DC perturbation con-

ditions (C1–C82) did not appear in the same order compared

with DC communication signal clustering (Figure 2A), indicating

that closely related patterns of DC-derived Th stimuli did

not necessarily induce the closest patterns in Th cytokine

responses.

Group 1 was dominated by production of IL-10, IL-22, IL-5,

GM-CSF, IL-3, IL-31, IL-13, and IL-4 (Figure S2C). Group 2

was the most heterogeneous and included the inflammatory cy-

tokines TNF-a and IL-6 co-expressed with variable levels of the

Th1 (IFN-g) and Th2 (IL-4 and IL-13) cytokines (Figure S2C).

Group 3 expressed IL-21, IFN-g, and IL-17F but no or low

IL-17A, suggesting the possibility of differential regulatory

mechanisms (Figure S2C). Group 4 was dominated by the

Th17 cytokines IL-17A and IL-17F, group 5 by IL-22, and group

6 by IL-2. Distinct sets of DC perturbation conditions and, hence,

patterns of DC-derived communication molecules were associ-

atedwith each of these groups (Figure 3C). This was the first sug-

gestion of specific rules underlying input-output relationships in

DC-Th communication.

Because of intra-group heterogeneity, we askedwhethermost

correlated conditions within the same cluster would differ from

each other (Figure 3D). C12 and C33were associated to different

levels in IL-17F, whereas C42 and C47 were different in IL-2 and

C46 and C49 were different in IL-6 and GM-CSF levels (Fig-

ure 3D). As for the DC dataset, we found that 82 was the best

number of groups in our Th-derived dataset, based on a

Gaussianmixture model (Figure 3E). This suggested that a single

DC profile of communication molecules would induce a unique

set of Th cytokines.

A Data-Driven Lasso Penalized Regression Model

Predicts Th Cytokine Responses from Combinations of

DC-Derived Th Stimuli

Having generated distinct patterns of DC-derived communica-

tion signals associated with a diversity of induced CD4 T cell

cytokine responses, the question of their relationship appeared

to be critical to decipher DC-Th communication. Given the

complexity of the dataset and the lack of clear hypotheses

concerning the majority of DC-derived Th stimuli, we applied

an unsupervised mathematical modeling strategy (Figure 4A).

The MultiVarSel strategy with stability selection performed

similarly as the internal positive control and better than other

methodologies tested (Figure S3A; STAR Methods). Therefore,

we applied MultiVarSel to the modeling of our experimental

data (Figure 4A). This methodology takes into account the

dependencies that may exist among Th cell cytokines and com-

bines Lasso criterion and stability selection to select associa-

tions between DC-derived signals (inputs) and Th cytokines (out-

puts) (STAR Methods).

Our multivariate model identified a large number of significant

positive (red) and negative (blue) associations of the 36 DC-

derived Th stimuli with the 17 Th-derived cytokines (Figure 4B).

White squares represent the absence of significant association

(Figure 4B). The frequency of selection obtained for each

input-output association is provided in Figure S3B.

Our mathematical model revealed (1) the effect of each DC

communication signal on Th output responses and (2) the critical

regulators for each Th cytokine. For example, negative regula-

tors of IL-10 were OX40L, 4-1BBL, IL-12, TNF-a, CD58, VISTA,

Galectin-3, CD80, CD29, IL-1, ICAM-3, SLAMF3, IL-28a, and

CD83, and positive regulators were Jagged-2, PDL1, IL-10,

CD11a, HLA-DR, ICOSL, CD100, CD30L, CD18, ICAM-2, and

CD86 (Figure 4B). Hence, the model can predict IL-10 produc-

tion by responding Th cells for any DC, given the expression level

of thesemolecules. It allows simulating loss or gain of function of

an input. Similar insight can be obtained for each of the 17 Th

cytokine responses, which may be explained by a combination

of DC-derived communication signals.

We used computational cross-validation to evaluate the error

of prediction of our model (Figure 4C). For all Th cytokines, the

multivariate outperformed the best univariate model (Fig-

ure S3C). We ranked Th cytokines based on their prediction

errors; the Th variables best explained by our model were IL-6,

IL-17F, Exp Fold, and IL-3 (Figure 4C).

To address DC type specificity in model performance, we

calculated the cross-validation error for each Th output of the

MoDC and bDC dataset, respectively. Our model predicted

equally well the majority of the outputs for the two DC types (Fig-

ure S3D). For a few outputs, mostly IL-22 and TNF-b, the model

was more error prone in bDCs than MoDCs (Figure S3D). Inter-

estingly, a higher prediction error was found for TNF-b in 5 of

118 observations (Figure S3E), where TNF-b levels were very

high (range, 6.7–22.2). This suggested that a TNF-b-promoting

input signal might be involved in those 5 cases but not included

in our model. For IL-22, more observations had a higher predic-

tion error in bDCs compared with MoDCs, but the prediction

error range and distributions were similar, suggesting that the

input-output relationship was conserved (Figure S3E).

We performed hierarchical clustering for both DC and T cell-

derived variables to identify co-regulations between Th outputs.

We retrieved relevant clusters of Th cytokines belonging classi-

cally to the same Th subset (Figure 4B). The Th2-related cyto-

kines IL-13, IL-31, IL-5, IL-4, IL-10, and GM-CSF were found in

the same cluster, suggesting that their induction would be

controlled by similar mechanisms. IL-17A and IL-17F were also
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in the same cluster, implying that the model associated them

with closely related DC communication signals (Figure 4B). Sur-

prisingly, ourmodel closely related IL-9 expression to IL-17A and

IL-17F, suggesting common regulators. It also clustered IL-22

closer to the Th2 than to the Th17 cytokines. IL-21 was associ-

ated with the Th1 cytokines IL-2 and IFN-g (Figure 4B).

TheMultivariate DC-ThModel Reveals Novel Regulators

of Th Cytokine Responses

We systematically compared our model results with the literature

as a knowledge-based validation but also novelty assessment.

We screened 178 relevant articles (STAR Methods) and ex-

tracted information regarding specific molecular control of a

given Th cytokine by DC-derived signals measured in our model

(Table S3). We computed a validation score based on the num-

ber of articles identifying the same associations than our model

(STAR Methods). IL-12 ranked as the top DC communication

signal for which our model predictions globally recapitulated

existing knowledge (8 of 13 predicted associations). Among

other known associations, IL-23 was positively associated with

IL-17A and IL-17F, IL-10 was positively associated with IL-10

and negatively with IFN-g, and CD40 was positively associated

with IFN-g.

However, the model also predicted 290 associations that were

not described previously. Putative novel regulatorswere identified

for all Th outputs (Table S4). The robustness of each prediction

could be estimated by the value of the coefficient and by the fre-

quency of detection of the association (Table S4). Examples of

high scores were B7H3 and CD83 association with IL-4, 4-1BBL

association with IL-9, ICOSL association with IL-13, and OX40L

negative association with IL-22 (Table S4). Overall, literature

knowledge was retrieved for 80 distinct input-output relationships

presented in our model (Figure 4B); 56were in agreement with our

model, representing a global literature validation score of 70%.

Systematic and Independent Experimental Validation of

Model’s Predictions

We performed systematic experimental validation by selecting a

subset of target inputs and systematically measuring the Th out-

puts selected by our model. We assessed the novelty of each

validated prediction (Table S3).

First we addressed systematic validations of model predictions

byblockingexperiments (Figure5A).Weperformeddouble in silico

knockout for CD80 and CD86 under the three conditions—LPS

(100 ng/mL), flu (13), and zymosan (10 mg/mL) MoDCs—in which

CD80andCD86were highly expressed and predicted an effect on

15 distinct Th outputs (Figure 5B), 11 of which were successfully

experimentally validated (STAR Methods). The positive role of

CD80 and CD86 on IL-3 and IL-31, to our knowledge, have not

been described elsewhere. The predictions we failed to validate

were for IL-4, IL-5, IL-10, and TNF-a (Figure S4A), all predicted

to be decreased by CD80/CD86.

Then we validated the effects of three additional inputs: IL-1,

ICOSL, and IL-12 used as exogenous factors (Figure 5C). First

we gave the selected input together with anti CD3/CD28 signals

(Th0) and systematically measured all Th outputs predicted by

the model to be influenced by that input. In the absence of any

effect, we gave the selected input under a Th2 (IL-4) or Th17

(IL-6, IL-1b, IL-23, and TGF-b) condition to detect additional syn-

ergistic or inhibitory effects required to validate the predicted

effect. For example, it is not possible to validate the inhibition

of a Th2 cytokine without significant production of this cytokine

at baseline.

We focused on the ten predictions made by our model for IL-1

(Figure 5D). By adding IL-1b to the Th0 condition, wewere able to

detect significant upregulation of IL-6 and IL-17F and significant

downregulation of IL-10 and IL-13. IL-10 downregulation and

IL-6 upregulation were also significant in the Th2 context (Fig-

ure S4B). Under a Th2 condition, we validated significant

upregulation of TNF-a and downregulation of IL-9 by IL-1b (Fig-

ure S4B), not seen in Th0 (Figure S4B). Under a Th17 condition,

we observed a positive effect of IL-1b on IL-17A. We could not

validate the predictions regarding IL-21, IL-31, and IL-22 (Fig-

ure S4B). In total, 7 of 10 predicted effects of IL-1 were validated.

Interestingly, the positive role of IL-1b on induction of IL-6 by Th

cells was not known (Table S3) and may suggest new biology

and amplification loops in an inflammatory context.

We used a similar strategy to validate predictions regarding

ICOSL using an anti-ICOS agonistic antibody. Overall, we vali-

dated 10 of 16 predictions (Figure 5E and S4C; STAR Methods).

Interestingly, five of the 10 validated predictions were novel

(Table S3; IL-5, IL-13, IL-3, GM-CSF, and IL-22), suggesting

common pathways to induce IL-22 and Th2 responses.

Finally, we experimentally tested the predictions regarding

IL-12 (Figure 5F). Adding IL-12 to the Th0 condition validated

an induction of IFN-g, IL-21, Exp Fold, and TFN-b. We also vali-

dated the inhibitory role of IL-12 on Th2 cytokine (IL-4, IL-5, and

IL-13), IL-6, and IL-22 production. Using the Th2 condition, we

further validated the inhibitory role of IL-12 on IL-10 and IL-31.

The effects of IL-12 on TNF-b, IL-31, and IL-6 have not been

described previously (Table S3).

Because our anti-CD3/CD28 system did not allow validating

IL-12 effects on IL-2, IL-17F, IL-3, and IL-9 (Figure S4D), we

wondered whether DC-dependent factors could affect the role

Figure 5. Independent and Systematic Experimental Validation of the Model’s Prediction

(A) CD28 blocking experimental design in DC-T co-culture.

(B) Comparison of the predicted versus observed fold change following CD28 blocking; n = 6 donors.

(C) Experimental scheme of the ‘‘adding’’ validation procedure used in (D)–(F).

(D) DC-free validation experiment studying the effect of adding IL-1b in Th0, Th2, and Th17. Naive T cells were stimulated by anti-CD3/CD28 beads; n = 6 donors.

(E) DC-free validation experiment studying the effect of adding ICOS in Th0 and Th17. Naive T cells were stimulated by coated anti-CD3 and ICOS antibodies and

soluble anti-CD28; n = 6 donors.

(F) IL-12 validation experiments in the DC-free system. Naive T cells were stimulated by anti-CD3/CD28 beads under Th0 and Th2 conditions; n = 8 donors.

(G) Validation of IL-12 predictions regarding IL-3 and IL-9. bDCs were cultured with naive CD4 T cells. IL-12 at 10 ng/mL was added for 6 days; n = 6 donors.

For (B) and (D)–(G), each panel shows the mean and SD of cytokine concentration, measured on restimulated Th supernatants (Wilcoxon test).
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of IL-12 on these cytokines.We selected DC conditions with very

low production of IL-12 (C51 and C55; Figure 2A) and performed

a co-culture with naive T cells, adding or not adding IL-12. As a

positive control, IL-12 was able to induce IFN-g in both zymosan

andHKSA conditions (Figure S4E).We did not validate the role of

IL-12 on IL-2 or IL-17F regulation (data not shown). However, we

validated that IL-3 was induced by IL-12 in both zymosan DCs

(C51) and HKSA DCs (C54) (Figure 5G), whereas IL-9 was signif-

icantly upregulated only in HKSA DCs. Overall, we were able to

experimentally validate 13 of 15 predictions regarding IL-12.

Our systematic strategy established a validated prediction of

the input-output relationship in 41 of 56 cases (73.2%), 13 repre-

senting newmechanisms identified by themodel. This number is

similar to or higher than the computational cross-validation (Fig-

ure 4C). Predictions with higher stability selection frequencies

were more validated than those with low stability selection (Fig-

ure S4F). However, the value of the model’s coefficients was not

statistically different between the two groups (Figure S4F), indi-

cating that the model efficiently captured associations with low

coefficient values.

Although IL-12 was the input best explained by our model, we

could not validate the predicted association between IL-12 and

IL-17F (Figure S4D), neither in the literature nor in our systematic

experimental validation. Previous studies have shown either no

effect (Volpe et al., 2008) or a negative effect (Acosta-Rodriguez

et al., 2007) of IL-12 on Th17 differentiation. We hypothesized

that context-dependent effects may lead to new functions of

IL-12, not accomplished by IL-12 as a single agent.

A Context-Dependent Model Reveals a Role of IL-12 in

Th17 Differentiation

We designed a strategy to capture context-dependent effects of

one input on any given output by integrating new composite vari-

ables into the model (Figure 6A). These new input variables were

based on the co-occurrence of a given input with other DC-

derived communication signals (i.e., contexts). They adopted

the value of the given input (for instance, IL-12) in each observa-

tion where the co-expressed DC signal was present, and they

took a zero value when the co-signal was absent. We could

derive 455 context-dependent variables.

The model including all context-dependent variables per-

formed less well (higher error of prediction) than our classical

MultiVarSel strategy (Figure S5A), most likely because of overfit-

ting issues dependent on the dataset size, with a number of input

variables exceeding the number of data points used to fit the

model. Therefore, we derived 36 models, each one integrating

the context dependencies of one input (Table S5). For each of

thesemodels, we reported the coefficient and the stability selec-

tion frequencies of each input (Table S5). To globally estimate the

influence of context dependencies within our data, we quantified

the number of times an input variable was selected, either

‘‘alone’’ or ‘‘with’’ another one. We derived percentages of

context dependencies and represented the results either per

input (Figure S5B) or per output (Figure S5C). The inputs most

likely to present ‘‘context-dependent’’ functions were PDL1

and SLAMF3, whereas CD11a and CD70 were mostly context-

independent (Figure S5B). When analyzing the outputs, the

models revealed that all cytokines could be regulated by

context-dependent mechanisms with relatively similar percent-

ages (range, 0.13–0.22) (Figure S5C).

We used this strategy to explain the role of IL-12 in the control of

Th17 differentiation through identification of context-dependent

effects. We found that adding context-dependent variables for

IL-12 improved the model predictions for IL-17F and performed

equallywell for IL-17A (Figure6B).We then focusedonDC-derived

signals that were kept significant by the model and observed

distinctassociationsof thenew IL-12context-dependentvariables

with IL-17A and IL-17F (Figure 6C), including some differentially

associated with IL-17A and IL-17F, respectively. Among various

contexts, we found that IL-12 in the context of IL-1, ICAM-2, or

Jagged-2 was associated with IL-17F, whereas IL-12 in the

context of CD70, IL-23, or LIGHT was associated with IL-17A.

As a first level of in silico validation, we selected a DC condition

under which IL-12 was co-expressed with many of these con-

texts, and DC-derived signals induced IL-17A and IL-17F by

responder Th cells. Zymosan (10 mg/mL) onMoDCs fulfilled these

criteria (Figures 1D and 3C). To study the specific effects of IL-12

in the context of all other DC communication signals induced by

zymosan, we performed in silico IL-12 knockout in the IL-12

context-dependent model. We compared predicted values for

IL-17A and IL-17F when IL-12 was kept or not kept in the model

(Figure 6D). In silico knockout of IL-12 diminished the production

of both IL-17A and IL-17F under the zymosan (10 mg/mL) condi-

tion. As experimental validation, we performed independent

DC/T cell co-culture experiments using MoDCs treated with

10 mg/mL zymosan in the presence and absence of IL-12-neutral-

izing antibody (Figure 6E). Blocking IL-12 significantly decreased

the production of IL-17A and IL-17F, as predicted (Figure 6E),

and inhibited IFN-g production (Figure S5D). The samemodel pre-

dicted no effect of blocking IL-12 in Curdlan MoDCs (Figure S5E),

which we validated experimentally (Figure S5F).

Synergistic Interaction between IL-12 and IL-1 Explains

Induction of IL-17F without IL-17A

Our model predicted distinct roles of IL-12 on IL-17A and IL-17F

production depending on the context in which IL-12 is expressed.

Interestingly, IL-12, IL-1, and CD80 were the top variables almost

systematically selected by the model to explain the differences

between IL-17A and IL-17F (Figure 7A). This corroborated the re-

sults in Figure 6C, where we found that IL-12 in the context of IL-1

was associatedwith IL-17Fbut not IL-17A. Themodel estimate for

a stability selection of less than 0.8 indicated that IL-12, IL-1, and

CD80 were positive contributors to the differences between

IL-17A and IL-17F (Figure S6A). Consequently, we hypothesized

that the combination of IL-12 with IL-1 would induce IL-17F inde-

pendent of IL-17A.

To experimentally validate our hypothesis, we used a DC-free

Th polarization assay, allowing us to specifically study the inter-

action between IL-12 and IL-1 regardless of any other molecular

context. Naive CD4 T cells were polyclonally activated with anti-

CD3/CD28 beads and put in distinct cytokine treatments: Th0

(no cytokine) and Th2 (IL-4) as negative controls; Th17

(IL-1b+IL-23+IL-6+TGF-b) as a positive control, IL-12, IL-1b,

and IL-12+IL-1b. IL-12 alone induced IFN-g and IL-21 and in-

hibited Th2-related cytokines, as expected (Figure S6B). IL-12

alone induced neither IL-17F nor IL-17A, but combining IL-12
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with IL-1b dramatically induced IL-17F at levels comparable with

the positive control, without a detectable amount of IL-17A,

which fully validated the model predictions (Figure 7B).

This effect was specific to the IL-12+IL-1b combination IL-6,

IL-23, or TGF-b alone or combined with IL-12 could not induce

IL-17F expression (Figure S6C). The exact same pattern of Th
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Figure 6. A Context-Dependent Model Reveals a Role of IL-12 in Th17 Differentiation

(A) Context-dependent modeling and application to IL-12. I, input; O, output.

(B) Error of prediction values obtained by 10-fold cross-validation for IL-17A and IL-17F, comparing the best univariate model (gray), MultiVarSel (yellow), and

MultiVarSel with context dependencies (blue).

(C) Heatmap of the model’s coefficient value of the context-dependent multivariate model explaining IL-17A and IL-17F.

(D) Model predictions regarding IL-12 in silico knockout (KO) under the zymosanMoDC condition for IL-17A and IL-17F values (blue) compared with experimental

values in the presence of IL-12 (yellow); paired t test.

(E) Concentrations of IL-17A and IL-17F produced by Th cells after differentiation with zymosan MoDCs in the presence of anti-IL-12 neutralizing antibody or a

matched isotype; n = 6 donors, paired t test.
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Figure 7. Synergistic Interaction of IL-12 and IL-1 Promotes IL-17F without IL-17A

(A) Stability selection frequencies of the different DC signals by a multivariate model, explaining the difference between IL-17F and IL-17A.

(B) Concentration of cytokines measured on restimulated Th supernatants. Naive CD4 T cells were differentiated for 5 days with anti-CD3/CD28 beads under the

indicated conditions; n = 6 donors, paired t test.

(C) The same experimental design as in (B), with conditions as annotated; n = 6 donors, Wilcoxon test.

(D) Coated anti-CD2 and anti-CD3 together with soluble anti-CD28 were given for 5 days to naive CD4 T cells under Th0 or Th17 conditions. Cytokine

concentrations were measured after 24-h restimulation on day 5. Mean and SD are shown; n = 8, Wilcoxon test.

(legend continued on next page)
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cytokine expression was obtained by combining IL-1a or IL-1b

with IL-12, which fit model predictions because those two vari-

ables were highly correlated (Figure S6D). The capacity of

IL-12+IL-1b to induce IL-17F was resistant to the presence of

other Th differentiation factors, such as IL-4 (Figure S6E). Using

CellTrace Violet (CTV; Figure S6F), we could show that the pro-

duction of IL-17F could not be attributed to the distinct prolifer-

ation capacity of Th cells under the IL-12+IL-1b condition.

Next we questioned whether Th cells generated under the

IL-12+IL-1b condition would express transcription factors clas-

sically associated with Th17 differentiation. We measured 63

RNA transcripts by qPCR under Th0, Th2, IL-1b, IL-12,

IL-12+IL-1b, and Th17 conditions (Table S6). The 63 genes

included master regulators of the Th1 and Th2 subsets, such

as T-bet and GATA3, respectively, and Th17 regulators, such

as RORc, STAT3, BATF, and SATB1 (Ciofani et al., 2012).

IL-17A and IL-17F regulation at the mRNA level mirrored the pro-

tein level (Figure S6H). IL-12+IL-1b induced significantly more

RORc, BATF, and Bcl6 than IL-12 or IL-1b alone (Figure S6H),

which could explain the induction of IL-17F and IL-21. Still, the

levels of RORc and Bcl6 were lower in IL-12+IL-1b than under

the Th17 condition (Figure S6H). T-bet was highly induced in

IL-12+IL-1b in comparison with the IL-12 or Th17 conditions,

indicating that Th1 differentiation was maintained and that

T-bet did not inhibit IL-17F production. IL-12Rb2, a Th1 marker,

was downregulated by IL-1b when added to IL-12, whereas

IL-12, IL-12+IL-1b, and Th17 conditions all induced the IL-23

receptor (Figure S6H). SATB1 was specifically upregulated in

IL-12+IL-1b in comparison with Th17 or IL-1b alone (Figure S6H),

suggesting that it could play a role in the specific upregulation

of IL-17F.

To globally assess the expression of the various Th lineage-

specific factors, across IL-12- and IL-1-containing conditions,

we performed a principal-component analysis (PCA) including

all 63 mRNA variables (Figure S7A). Cells from the IL-12+IL-1b

condition had an intermediate expression pattern between the

IL-12 (Th1) and Th17 conditions. By decomposing the PCA

space into vectors for each variable, we found that IL-17F,

IL-23R, ICOS, and T-bet projected predominantly along the

IL-12+IL-1b condition (Figure S7B), again pointing to mixed

Th1/Th17 features.

We then addressed the link between IL-12 and IL-17A in

various contexts. IL-12 with IL-23 was predicted to induce

IL-17A but not IL-17F (Figure 6C). In a DC-free Th polarization

assay, we used IL-12, IL-23, or IL-12+IL-23 and found that

none of these conditions induced IL-17A (Figure 7C). We hypoth-

esized that a third input could explain the positive link between

‘‘IL-12_with_IL-23’’ and IL-17A. Using an unsupervised analysis,

we found IL-1 as a top variable with the highest correlation (Fig-

ure S7C). In addition, IL-12 and IL-17A positive correlation was

significant specifically in the group of data points where IL-23

and IL-1 were expressed (Figures S7D and S7E) and was lost

when only IL-1 or IL-23 was expressed with IL-12 (Figure S7D).

Therefore, we tested whether IL-12+IL-23 would induce IL-17A

in the presence of IL-1b. We validated a significant induction of

IL-17A with no effect on IL-17F when IL-12 and IL-23 were given

in the presence of IL-1b comparedwith IL-12 or IL-23 (Figure 7C).

We measured IL-17A and IL-17F by qPCR and retrieved the

same induction pattern (Figure S7F). Last, we could show that

RORc was higher in IL-12+IL-23+IL-1b than in IL-12+IL-1b

(Figure S7F).

Finally, we observed that our modeling strategy always identi-

fied CD58 as a main Th17 inducer because it positively affected

both IL-17A and IL-17F (Figures 4B and 6C), an association that

we had not seen during our systematic literature review (Fig-

ure 4D; Table S3). To test this hypothesis, we used an agonist

anti-CD2 antibody that mimics the presence of CD58 (STAR

Methods). As predicted, IL-17A and IL-17F were not induced

by anti-CD2 alone under the Th0 condition. However, anti-CD2

significantly induced production of IL-17A and IL-17F under

Th17 conditions (Figure 7D), which was confirmed by intracel-

lular FACS staining (Figures S7H and S7I), with IL-17F upregula-

tion restricted to IL-17A-positive cells (Figure S7I).

To establish the cytokine co-expression profiles of

IL-12+IL-1b-treated Th cells at the single-cell level, we per-

formed intracellular cytokine staining (Figure 7E). We confirmed

that IL-12+IL-1b induced significantly more IL-17F-positive Th

cells without co-production of IL-17A (Figure 7F). In naive CD4

T cells polarized with the Th17 cytokine cocktail (IL-1b, IL-6,

TGF-b, and IL-23) we mainly found two subsets of Th17 cells

producing either IL-17A or IL-17F, with very few cells co-produc-

ing both cytokines. To check for in vivo existence of those IL-17A

and IL-17F single producers, we analyzed the human CD4 T cell

memory compartment by intracellular FACS in healthy donor pe-

ripheral blood mononuclear cells (PBMCs). We could identify a

small fraction of Th cells expressing only IL-17F in the absence

of IL-17A, suggesting that this phenotype constitutes a differen-

tiation endpoint (Figure 7G).

To gain more insight into the functional properties of these

‘‘Th17F’’ cells, we studied their co-production with IL-21,

IFN-g, and IL-22, all relevant to the Th17 and/or IL-12 pathways,

in vitro (Figure S7J) and ex vivo (Figure S7K). Among

IL-17F+IL-17A! cells generatedwith IL-12 and IL-1b, themajority

co-produced IFN-g (41.8%), IL-21 (10.5%), or both (24.1%) (Fig-

ure 7H), reflecting a dominant role of IL-12. IL-17F+/IL-17A!

memory CD4 cells preferentially co-expressed IL-21 (30.3%)

and IL-21 together with IFN-g (17.5%) (Figure 7I), whichmatched

the in vitro differentiated CD4 T cells. In addition, the percentage

of IL-17F+/IL-17A!/IL-22!/IL-21!/IFN-g! cells between in vitro

IL-12+IL-1b stimulation and the ex vivo restimulated memory

(E) Day 5 intracellular FACS analysis of Th cells differentiated as in (B). Dot plots show a representative donor.

(F) Quantification of live total CD4 T cells producing either IL-17A or IL-17F; n = 6 donors, paired t test.

(G) Representative donor of CD4 memory T cells with intracellular FACS staining for IL-17A versus IL-17F.

(H) Venn Diagrams of IL-17F+/IL17A! Th cells co-producing IL-22, IFN-g, and IL-21 of naive CD4 T cells under the IL-12+IL-1b. IL-12+IL; mean percentage and

confidence interval, n = 6 donors.

(I) Venn Diagrams of IL-17F+/IL17A! Th cells co-producing IL-22, IFN-g, and IL-21 of memory CD4 T cells stimulated for 5 h with PMA and ionomycin; mean

percentage of 6 donors with confidence interval.
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compartment was similar (22.2%), which indirectly supported

that IL-12+IL-1b induced the emergence of IL-17F single

producers.

Taken together, our results demonstrate a synergy between

IL-12 and IL-1 in inducing IL-17F single-producing Th cells with

possible physiopathological relevance.

DISCUSSION

Cell-cell communication may involve several tens of communica-

tion signals functioning concomitantly and possibly interacting

with each other. These signals, in turn, modify many molecular

and functional parameters in target cells. Such complexity cannot

be captured and formalized without an integrated mathematical

modeling approach. Theoretical models of Th cell differentiation

have already been established (Abou-Jaoudé et al., 2015; Naldi

et al., 2010) and include a large number of possible inputs to

T cells. However, they suffer from three limitations: (1) they include

input signals that may be expressed by diverse cell types in

different anatomical locations; (2) they do not recapitulate combi-

nations of input signals in their naturally occurring patterns and

concentrations; and (3) they use prior knowledge to infer input-

output relationships, which does not integrate possible context-

dependencies and interactions. In parallel, data-driven models

have been developed in response to predefined stimuli, such as

Th17 (Yosef et al., 2013) or Th1/Th2 (Antebi et al., 2013), which

do not recapitulate the integration of multiple communication sig-

nals. In our study, we applied an unbiased data-driven approach

specifically designed to model DC-Th communication. Combina-

tions and concentrations of input communication signals were

measured as naturally determined by their intrinsic biological

regulation. Subsequently, the input-output relationships were

learned from the experimental data and integrated into any

underlying context dependency and interaction, even when not

described previously. This maximizes the relevance of the model

and the potential for novel discoveries.

Cells can change state in response to environmental cues, a

concept defined as plasticity (da Silva-Diz et al., 2018; Liu et al.,

2001). Each cell state may be associated with different communi-

cation potential; i.e., different expression patterns of communica-

tion signals (Soumelis et al., 2002; Wang et al., 2014). To broadly

cover the possible DC states, we used various DC-stimulatory

conditions (cytokines, viruses, bacteria, fungi) at various doses

and combinations and across a large number of observations

(>400). This prevented us from biasing our observations toward

certain quantitatively or qualitatively extreme behaviors. After

the model has learned the rules from such an extended range of

observations, we anticipate that it should be able to predict

behaviors in situations not necessarily covered in our original da-

taset, as confirmed in our computational and experimental valida-

tions. This opens possibilities of application in many areas of

immunology, inflammation, and immunotherapy.

RNA sequencing (RNA-seq) has offered a means of capturing

the expression of many communication signals and their recep-

tors to infer cell-cell communication between various cell types

(Vento-Tormo et al., 2018). However, the RNA-to-protein corre-

lation can be rather low (Liu et al., 2016) and varies a lot depend-

ing on the gene (Edfors et al., 2016). Consequently, RNA copies

of a gene cannot be associated with a given functional output,

preventing quantitative mathematical modeling. Functional

response in target cells can only be estimated indirectly through

surrogate activationmarkers, which ismost often not performed.

In our approach, all measurements of communication signals

and output variables were done at the protein level, hence

directly measuring the bioactive communication molecules

with a direct link to a specific response in target cells. This

ensures robustness of the modeling strategy, as evidenced by

our model’s ability to recapitulate most of the known relation-

ships in DC-Th cell communication.

Modeling complex biological behaviors in a quantitativemanner

is challenging. In data-driven models, it relies in large parts on the

choice of explanatory (input) variables, which drive the induction

or regulation of output variables. Here we selected DC-derived

communication molecules through exhaustive literature mining.

The model was able to integrate 36 input and 18 output variables

in a quantitative manner, which makes it a reference in the field.

We have been able to describe patterns of DC communication

molecules in a way that goes beyond the classical view of imma-

ture versus mature DCs (Banchereau and Steinman, 1998; Guer-

monprez et al., 2002). In fact, we showed that almost every DC

stimulatory condition leads to a distinct DC state. This is a first

step in defining general combinatorial rules of DC-derived

communication molecules: co-expressed molecules form the ba-

sis of putative context-dependent effects. Through the large num-

ber of variables handled by the model, we identified 290 novel

associations explainingmajor immunoregulatory cytokines,which

may lead to the discovery of novel functions of known DC mole-

cules and suggest novel therapeutic targets.

Going further into the complexity of communication, we

explored context dependencies of communication signals. In ver-

bal communication, the context may dramatically alter the mean-

ing of an individual word. Currently, there is no systematic way to

search for context dependencies in biological communication. In

our modeling strategy, we devised a method that introduces

context-dependent variables for a givenmolecule. This allows un-

biased identification of context-dependent functions that would

have been missed by classical regression models. For example,

we identified a new function for IL-12 in promoting IL-17F produc-

tion by Th cells, which was completely unexpected based on prior

knowledge (Korn et al., 2009). Identifying such context depen-

dencies before therapeutic targeting of a DC-Th communication

molecule may improve the prediction of its effect.

Given that DC-Th communication is central to a large number of

physiopathological conditions (Keller, 2001), we can foresee mul-

tiple applications for the model. Based on expression pattern of

DCmolecules, themodel can predict the inducedThcytokine pro-

file. Quantitative measurements of DC communication molecules

in a given disease or in an individual patient ex vivo can be used to

simulate the corresponding Th response. Depending on the

outcome, strategies may be devised to re-orient the response

toward a protective or less pathogenic profile, again through

model-based predictions. Alternatively, starting from a Th profile

(cytokine or groups of cytokines), the appropriate molecular tar-

gets can be manipulated through gain- or loss-of-function exper-

iments to amplify or inhibit a given Th cytokine. Last, the model

can help predict the most appropriate vaccine adjuvant to obtain
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protective immunity against somemicrobes or to re-orient a path-

ogenic Th response. For example, all DC molecules positively

associated in the model to Th2 responses are potential targets

to decrease pathogenic Th2 allergic inflammation (Ito et al.,

2005; Nakayama et al., 2017; Soumelis et al., 2002).

Using DC-Th communication as a model, we established a

framework that can now be applied to other types of cell-cell

communication following 5 major steps: (1) systematic perturba-

tion of the ‘‘sender’’ cell to generate a diversity of communication

states; (2) broad, quantitative, and protein-level measurement of

communication molecules relevant to the sender cell; (3) sys-

tematic quantitative assessment of the response in ‘‘receiver’’

or target cells; (4) MultiVarSel modeling of the input-output rela-

tionship, which defines communication rules; (5) in silico and

experimental validation. Currently, we believe that cell type

specificities in expression of communication molecules and in

their function would prevent us from generalizing our DC-Th

model to other cell types. Comparing different quantitative

models of cell-cell communication will ultimately tell us whether

cells speak the same language (i.e., whether they express similar

patterns of communication molecules) and whether the same

communication molecule has the same meaning (function)

when expressed by two different cell types.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

FITC Mouse anti-human CD3 (Clone HIT3a) BD Cat# 555339; RRID:AB_395745

FITC Mouse anti-human CD14 (Clone TÜK4) Miltenyi Biotec Cat# 130-080-701; RRID:AB_244303

FITC Mouse anti-human CD16 (Clone NKP15) BD Cat# 335035

FITC Mouse anti-human CD19 (Clone LT19) Miltenyi Biotec Cat# 130-091-328; RRID:AB_244222

APC-Cy7 Mouse anti-human CD11c (Clone Bu15) BioLegend Cat# 337218; RRID:AB_10662746

PE-Cy5 Mouse anti-human CD4 (Clone 13B8.2) Beckman Coulter Cat# A07752

R-PE Mouse anti-human OX40L (Clone ANC10G1) Ancell Cat# 400-050

R-PE Mouse IgG1, k Isotype Control (Clone MOPC31C) Ancell Cat# 278-050

BV711 Mouse anti-human CD54 (Clone HA58) BD Cat# 564078; RRID:AB_2738579

BV711 Mouse IgG1, k Isotype Control (Clone X40) BD Cat# 563044

BV786 Mouse anti-human CD273 (Clone MIH18) BD Cat# 563843; RRID:AB_2738446

BV786 Mouse anti-human CD80 (Clone L307.4) BD Cat# 564159; RRID:AB_2738631

BV786 Mouse IgG1, k Isotype Control (Clone X40) BD Cat# 563330

FITC Mouse anti-human CD70 (Clone Ki-24) BD Cat# 555834; RRID:AB_396157

FITC Mouse IgG3, k Isotype Control (Clone J606) BD Cat# 555578; RRID:AB_395956

Alexa Fluor! 700 Mouse anti-human CD29 (Clone TS2/16) BioLegend Cat# 303020; RRID:AB_2130078

Alexa Fluor! 700 Mouse IgG1, k Isotype Control

(Clone MOPC-21)

BioLegend Cat# 400144

APC Mouse anti-human ICAM-3 (Clone CBR-IC3/1) BioLegend Cat# 330011; RRID:AB_1227570

APC Mouse anti-human Jagged-2 (Clone MHJ2-523) BioLegend Cat# 346906 (Discontinued)

APC Mouse IgG1, k Isotype Control (Clone MOPC-21) BioLegend Cat# 400121; RRID:AB_326443

BV650 Mouse anti-human CD86 (Clone IT2.2) BioLegend Cat# 305428; RRID:AB_2563823

BV650 Mouse IgG2b, k Isotype Control (Clone MPC-11) BioLegend Cat# 400352

BV711 Mouse anti-human HLA-DR (Clone L243) BioLegend Cat# 307644; RRID:AB_2562913

BV711 Mouse IgG2a, k Isotype Control (Clone MOPC-173) BioLegend Cat# 400272

FITC Mouse anti-human CD100 (Clone A8) BioLegend Cat# 328406; RRID:AB_2254362

FITC Mouse IgG1, k Isotype Control (Clone MOPC-21) BioLegend Cat# 400108

FITC Mouse anti-human ICAM-2 (Clone CBR-IC2/2) BioLegend Cat# 328507

FITC Mouse IgG2a, k Isotype Control (Clone MOPC-173) BioLegend Cat# 400209; RRID:AB_1134236

PE Mouse anti-human CD18 (Clone TS1/18) BioLegend Cat# 302107; RRID:AB_314225

PE Mouse anti-human Nectin-2 (Clone TX31) BioLegend Cat# 337410; RRID:AB_2269088

PE Mouse anti-human PVR (Clone SKII.4) BioLegend Cat# 337610; RRID:AB_2174019

PE Mouse IgG1, k Isotype Control (Clone MOPC-21) BioLegend Cat# 400112

PE/Cy7 Mouse anti-human CD40 (Clone 5C3) BioLegend Cat# 334321; RRID:AB_10643414

PE/Cy7 Mouse IgG1, k Isotype Control (Clone MOPC-21) BioLegend Cat# 400126; RRID:AB_326448

PE/Cy5 Mouse anti-human CD58 (Clone TS2/9) BioLegend Cat# 330909; RRID:AB_1227576

PE/Cy5 Mouse IgG1, k Isotype Control (Clone MOPC-21) BioLegend Cat# 400117

PerCP/Cy5.5 Mouse anti-human CD83 (Clone HB15e) BioLegend Cat# 305320; RRID:AB_2076530

PerCP/Cy5.5 Mouse IgG1, k Isotype Control (Clone MOPC-21) BioLegend Cat# 400150

Alexa Fluor! 488 Goat anti-human Galectin-3 R&D Systems Cat# IC1154G; RRID:AB_10890949

Alexa Fluor! 488 Normal Goat IgG R&D Systems Cat# IC108G; RRID:AB_10890944

Alexa Fluor! 700 Mouse anti-human VISTA (Clone 730804) R&D Systems Cat# FAB71261N

Alexa Fluor! 700 Mouse IgG2B Isotype Control (Clone 133303) R&D Systems Cat# IC0041N; RRID:AB_10973174

APC Mouse anti-human SLAMF3 (Clone 249936) R&D Systems Cat# FAB1898A; RRID:AB_2137949

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

APC Mouse IgG2A Isotype Control (Clone 20102) R&D Systems Cat# IC003A; RRID:AB_357243

APC Mouse anti-human 4-1BBL (Clone 282220) R&D Systems Cat# FAB2295A; RRID:AB_2207514

APC Mouse anti-human ICOSL (Clone 136726) R&D Systems Cat# FAB165A; RRID:AB_991955

APC Mouse IgG2B Isotype Control (Clone 133303) R&D Systems Cat# IC0041A; RRID:AB_357246

FITC Mouse anti-human B7H3 (Clone 185504) R&D Systems Cat# FAB1027F; RRID:AB_1208024

FITC Mouse IgG1 Isotype Control (Clone 11711) R&D Systems Cat# IC002F

FITC Goat anti-human SLAMF5 R&D Systems Cat# FAB1855F (Discontinued);

RRID:AB_2074764

FITC Normal Goat IgG R&D Systems Cat# IC108F; RRID:AB_10177332

PE Mouse anti-human LIGHT (Clone 115520) R&D Systems Cat# FAB664P; RRID:AB_2240851

PE Mouse IgG1 Isotype Control (Clone 133303) R&D Systems Cat# IC002P; RRID:AB_357242

PE Mouse anti-human CD30L (Clone 116614) R&D Systems Cat# FAB1028P; RRID:AB_2207494

PE Mouse IgG2B Isotype Control (Clone 133303) R&D Systems Cat# IC0041P; RRID:AB_357249

PerCP Mouse anti-human CD11a (Clone CR38) R&D Systems Cat# FAB35951C (Discontinued);

RRID:AB_10892335

PerCP Mouse IgG2A Isotype Control (Clone 20102) R&D Systems Cat# IC003C; RRID:AB_1207937

PerCP-eFluor710 Mouse anti-human PDL1 (Clone MIH1) ThermoFisher Scientific Cat# 46-5983-42; RRID:AB_11041815

PerCP-eFluor710 Mouse IgG1, k Isotype Control (Clone

P3.6.2.8.1)

ThermoFisher Scientific Cat# 46-4714-82; RRID:AB_1834453

Alexa Fluor! 488 Mouse anti-human IL-17A (Clone BL168) BioLegend Cat# 512308; RRID:AB_961386

Alexa Fluor! 488 Mouse IgG1, k Isotype Control (Clone

MOPC-21)

BioLegend Cat# 400134

PE-Cy7 Rat anti-human IL-17F (Clone SHLR17) ThermoFisher Scientific Cat# 25-7169-42; RRID:AB_10853673

PE-Cy7 Rat IgG1, k Isotype Control (Clone eBRG1) ThermoFisher Scientific Cat# 25-4301-82; RRID:AB_470198

PE Mouse anti-human IL-21 (Clone 3A3-N2) BioLegend Cat# 513004; RRID:AB_2249025

PE Mouse IgG1, k Isotype Control (Clone MOPC-21) BioLegend Cat# 400112

eFluor 660 Mouse anti-human IL-22 (Clone 22URTI) ThermoFisher Scientific Cat# 50-7229-42; RRID:AB_10598650

eFluor 660 Mouse IgG1, k Isotype Control (Clone P3.6.2.8.1) ThermoFisher Scientific Cat# 50-4714-82; RRID:AB_10597301

BV605 Mouse anti-human IFN-g (Clone B27) BD Cat# 562974; RRID:AB_2737926

BV605 Mouse IgG1, k Isotype Control (Clone X40) BD Cat# 562652; RRID:AB_2714005

Ultra-LEAF Purified anti-human CD3 Antibody (Clone OKT3) Biolegend Cat# 317347; RRID:AB_2571994

Ultra-LEAF Purified anti-human CD28 Antibody (Clone CD28.2) Biolegend Cat# 302943; RRID:AB_2616667

Mouse IgG1 kappa Isotype Control (Clone P3.6.2.8.1) ThermoFisher Scientific Cat# 14-4714-85; RRID:AB_470112

Human IL12 monoclonal blocking antibody (Clone B-T21) ThermoFisher Scientific Cat# BMS152; RRID:AB_10596494

Mouse IgG1 isotype control R&D Systems Cat# MAB002; RRID:AB_357344

Human CD2 monoclonal blocking antibody (Clone 299808) R&D Systems Cat# MAB18562

Mouse IgG2A isotype control R&D Systems Cat# MAB003; RRID:AB_357345

Anti-human CD28 monoclonal blocking antibody (Clone 9.3) BioXcell Cat# BE0248; RRID:AB_2687729

Anti-Unknown Specificity (Isotype control) Human IgG1,k Absolute Antibody Cat# Ab00178-10.0

Anti-human ICOS monoclonal blocking antibody N/A The agonist ICOS antibody was produced

for research purposes from the sequence

made publicly available by JOUNCE

THERAPEUTICS in the patent US

2016/0304610, INC. The produced antibody

corresponded to clone 37A10S713 with

a human IgG1 isotype.

Biological Samples

Human Healthy blood donors for primary MoDC, bDC, naive

and memory CD4 T cells

Etablissement Français du

Sang (French Blood Bank)

N/A

Human serum Sigma-Aldrich Cat# H4522

(Continued on next page)
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Chemicals, Peptides and Recombinant Proteins

Lymphoprep StemCell Technologies Cat# 07861

RPMI 1640 Medium, GlutaMAX Supplement ThermoFisher Scientific Cat# 61870010

Penicillin-Streptomycin ThermoFisher Scientific Cat# 15140122

Foetal Bovine Serum Research Grade Hyclone/Perbio Cat# CH30160.03

MEM Non-essential Amino Acids Solution (100X) ThermoFisher Scientific Cat# 11140050

Sodium pyruvate (100 mM) ThermoFisher Scientific Cat#11360070

X-VIVO 15 Chemically Defined, Serum-Free Hematopoietic

Cell Medium

Ozyme Cat# BE02-060F

HEPES Buffer ThermoFisher Scientific Cat# 15630056

UltraPure EDTA ThermoFisher Scientific Cat# 15575020

Phorbol 12-myristate 13-acetate Sigma-Aldrich Cat# P8139

Ionomycin calcium salt from Streptomyces conglobatus Sigma-Aldrich Cat# I0634

Brefeldin A Solution 1000X ThermoFisher Scientific Cat# 00-4506-51

Intracellular Fixation & Permeabilization Buffer Set ThermoFisher Scientific Cat# 88-8824-00

DAPI (4’,6-Diamidino-2-Phenylindole, Dihydrochloride) ThermoFisher Scientific Cat# D1306

Zombie NIR Fixable Viability Kit BioLegend Cat# 423105

LIVE/DEAD Fixable Yellow Dead Cell Stain Kit ThermoFisher Scientific Cat# L34959

CellTrace Violet Cell Proliferation Kit, for flow cytometry ThermoFisher Scientific Cat# C34557

Recombinant human IL-1a R&D Systems Cat# 200-LA

Recombinant human IL-1b Peprotech Cat# 200-01B

Recombinant human IL-4 R&D Systems Cat# 204-IL-010

Recombinant human IL-6 Peprotech Cat# 200-06

Recombinant human IL-12p70 R&D Systems Cat# 219-IL

Recombinant human IL-23 R&D Systems Cat# 1290-IL

Recombinant human TGF-b1 Peprotech Cat# 100-21

Recombinant human IL-4 Miltenyi Biotec Cat# 130-093-922

Recombinant human GM-CSF Miltenyi Biotec Cat# 130-093-865

PAM3CSK4 Invivogen Cat# tlrl-pms

Aluminum potassium sulfate Invivogen Cat# tlrl-alk

Heat-killed Staphylococcus aureus Invivogen Cat# tlrl-hksa

Heat-killed Candida albicans Invivogen Cat# tlrl-hkca

Heat-killed Listeria monocytogenes Invivogen Cat# tlrl-hklm

Heat-killed Streptococcus pneumoniae Invivogen Cat# tlrl-hksp

Poly(I:C) High molecular weight Invivogen Tlrl-pic

Curdlan Invivogen Cat# tlrl-curd

Zymosan Sigma-Aldrich Cat# Z4250

LPS-EB Ultrapure Invivogen Cat# tlrl-3pelps

Prostaglandin E2 Sigma-Aldrich Cat# P0409

R848 Invivogen Cat# tlrl-r848

Recombinant Human IFN-b Preprotech Cat# 300-02BC

Influenza A/PR/8/34 (H1N1) Allantoic Fluid Charles River Cat# 10100781

Recombinant human TSLP R&D Systems Cat# 1398-TS

Critical Commercial Assays

EasySep Human Pan-DC Pre-Enrichment Kit StemCell Technologies Cat# 19251

EasySep Human Naive CD4+ T Cell Isolation Kit StemCell Technologies Cat# 19555

CD14 MicroBead human Miltenyi Biotec Cat# 130-050-201

LS columns Miltenyi Biotec Cat# 130-042-401

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Memory CD4+ T Cell Isolation Kit, human Miltenyi Biotec Cat# 130-091-893

Dynabeads! Human T-Activator CD3/CD28 for T Cell

Expansion and Activation

ThermoFisher Scientific Cat# 11131D

Easy 50 EasySep Magnet StemCell Technologies Cat# 18002

Big Easy EasySep Magnet StemCell Technologies Cat# 18001

QuadroMACS Starting Kit (LS) Miltenyi Biotec Cat# 130-091-051

BD Cytometric Bead Array (CBA) Human Soluble Protein

Master Buffer Kit

BD Cat# 558265

BD Cytometric Bead Array (CBA) Human IL-1a Flex Set BD Cat# 560153

BD Cytometric Bead Array (CBA) Human IL-1b Flex Set BD Cat# 558279

BD Cytometric Bead Array (CBA) Human IL-2 Flex Set BD Cat# 558270

BD Cytometric Bead Array (CBA) Human IL-3 Flex Set BD Cat# 558355

BD Cytometric Bead Array (CBA) Human IL-4 Flex Set BD Cat# 558272

BD Cytometric Bead Array (CBA) Human IL-5 Flex Set BD Cat# 558278

BD Cytometric Bead Array (CBA) Human IL-6 Flex Set BD Cat# 558276

BD Cytometric Bead Array (CBA) Human IL-9 Flex Set BD Cat# 558333

BD Cytometric Bead Array (CBA) Human IL-10 Flex Set BD Cat# 558274

BD Cytometric Bead Array (CBA) Human IL-12p70 Flex Set BD Cat# 558283

BD Cytometric Bead Array (CBA) Human IL-13 Flex Set BD Cat# 558450

BD Cytometric Bead Array (CBA) Human IL-17A Flex Set BD Cat# 560383

BD Cytometric Bead Array (CBA) Human IL-17F Flex Set BD Cat# 562151

BD Cytometric Bead Array (CBA) Human GM-CSF Flex Set BD Cat# 558335

BD Cytometric Bead Array (CBA) Human IFN-g Flex Set BD Cat# 558269

BD Cytometric Bead Array (CBA) Human TNF-a Flex Set BD Cat# 558273

MILLIPLEX MAP Human TH17 Magnetic Bead Panel -

Immunology Multiplex Assay IL-21, IL-22, IL-31, TNF-b

Merck Millipore Cat# HTH17MAG-14K

MILLIPLEX MAP Human TH17 Magnetic Bead Panel -

Immunology Multiplex Assay IL-23, IL-28a

Merck Millipore Cat# HTH17MAG-14K

RNeasy Micro Kit (50) QIAGEN Cat# 74004

SuperScript II Reverse Transcriptase ThermoFisher Scientific Cat# 18064-071

Random primers Promega Cat# C1181

Oligo(dT)15 Primer Promega Cat# C1101

RNasin! Ribonuclease Inhibitors Promega Cat# N2515

dNTP Promega Cat# U1240

qPCR MasterMix Plus dTTP Eurogentec Cat# 05-QP2X-03+WOUN

Oligonucleotides

RORC [Hs01076112_m1] ThermoFisher Scientific Cat# 4331182

TBX21 [Hs00203436_m1] ThermoFisher Scientific Cat# 4331182

GATA3 [Hs00231122_m1] ThermoFisher Scientific Cat# 4331182

RORA [Hs00536545_m1] ThermoFisher Scientific Cat# 4331182

FOXP3 [Hs00203958_m1] ThermoFisher Scientific Cat# 4331182

FOXP1 [Hs00212860_m1] ThermoFisher Scientific Cat# 4331182

SH2D1A [Hs00158978_m1] ThermoFisher Scientific Cat# 4331182

PRDM1 [Hs00153357_m1] ThermoFisher Scientific Cat# 4331182

PDCD1 [Hs01550088_m1] ThermoFisher Scientific Cat# 4331182

BTLA [Hs00699198_m1] ThermoFisher Scientific Cat# 4331182

HLX [Hs00172035_m1] ThermoFisher Scientific Cat# 4331182

IRF1 [Hs00971965_m1] ThermoFisher Scientific Cat# 4331182

(Continued on next page)
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CMIP [Hs00286832_m1] ThermoFisher Scientific Cat# 4331182

MAF [Hs00193519_m1] ThermoFisher Scientific Cat# 4331182

RUNX1 [Hs00231079_m1] ThermoFisher Scientific Cat# 4331182

PU1 / SPI1 [Hs02786711_m1] ThermoFisher Scientific Cat# 4331182

CD200 [Hs01033303_m1] ThermoFisher Scientific Cat# 4331182

CXCL13 [Hs00757930_m1] ThermoFisher Scientific Cat# 4331182

IL-12RB2 [Hs00155486_m1] ThermoFisher Scientific Cat# 4331182

BCL6 [Hs00153368_m1] ThermoFisher Scientific Cat# 4331182

IRF4 [Hs00180031_m1] ThermoFisher Scientific Cat# 4331182

FOSL2 [Hs01050117_m1] ThermoFisher Scientific Cat# 4331182

BATF [Hs00232390_m1] ThermoFisher Scientific Cat# 4331182

KDM6B [Hs00996325_g1] ThermoFisher Scientific Cat# 4331182

NFKBIZ [Hs00230071_m1] ThermoFisher Scientific Cat# 4331182

SATB1 [Hs00962580_m1] ThermoFisher Scientific Cat# 4331182

BCL11B [Hs01102259_m1] ThermoFisher Scientific Cat# 4331182

EOMES [Hs00172872_m1] ThermoFisher Scientific Cat# 4331182

SKI [Hs01057032_m1] ThermoFisher Scientific Cat# 4331182

ATF6 [Hs00232586_m1] ThermoFisher Scientific Cat# 4331182

AES [Hs01081012_m1] ThermoFisher Scientific Cat# 4331182

CREM [Hs01582003_g1] ThermoFisher Scientific Cat# 4331182

DDIT3 [Hs00358796_g1] ThermoFisher Scientific Cat# 4331182

LEF1 [Hs01547250_m1] ThermoFisher Scientific Cat# 4331182

NFATC2 [Hs00905451_m1] ThermoFisher Scientific Cat# 4331182

ETV6 [Hs00231101_m1] ThermoFisher Scientific Cat# 4331182

SIRT2 [Hs01560289_m1] ThermoFisher Scientific Cat# 4331182

USP18 [Hs00276441_m1] ThermoFisher Scientific Cat# 4331182

NFATC1 [Hs00542675_m1] ThermoFisher Scientific Cat# 4331182

NFATC3 [Hs00190046_m1] ThermoFisher Scientific Cat# 4331182

SMAD3 [Hs00969210_m1] ThermoFisher Scientific Cat# 4331182

SMAD2 [Hs00998187_m1] ThermoFisher Scientific Cat# 4331182

SMAD7 [Hs00998193_m1] ThermoFisher Scientific Cat# 4331182

MINA [Hs01031255_m1] ThermoFisher Scientific Cat# 4331182

POUA2F1 [Hs01573369_m1] ThermoFisher Scientific Cat# 4331182

TNFRSF4/OX40 [Hs00937195_g1] ThermoFisher Scientific Cat# 4331182

TNFRSF8/CD30 [Hs00174277_m1] ThermoFisher Scientific Cat# 4331182

TIGIT [Hs00545087_m1] ThermoFisher Scientific Cat# 4331182

CD226/DNAM-1 [Hs00170832_m1] ThermoFisher Scientific Cat# 4331182

CD96 [Hs00976975_m1] ThermoFisher Scientific Cat# 4331182

IL17A [Hs00174383_m1] ThermoFisher Scientific Cat# 4331182

IL17F [Hs00369400_m1] ThermoFisher Scientific Cat# 4331182

STAT3 [Hs00374280_m1] ThermoFisher Scientific Cat# 4331182

ICOS [Hs00359999_m1] ThermoFisher Scientific Cat# 4331182

IL23R [Hs00332759_m1] ThermoFisher Scientific Cat# 4331182

AHR [Hs00169233_m1] ThermoFisher Scientific Cat# 4331182

IL1R2 [Hs01030384_m1] ThermoFisher Scientific Cat# 4331182

CCL20 [Hs01011368_m1] ThermoFisher Scientific Cat# 4331182

IL2RA [Hs00907779_m1] ThermoFisher Scientific Cat# 4331182

IL2RB [Hs01081697_m1] ThermoFisher Scientific Cat# 4331182

(Continued on next page)
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Vassili

Soumelis (vassili.soumelis@curie.fr). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects

Apheresis blood from healthy human blood donors were obtained from Etablissement Français du Sang (French Blood Establish-

ment) after written informed consent and in conformity with Institut Curie ethical guidelines. Gender identity and age from anonymous

donors were not available, but all donors were between 18 and 70 years old (age limits for blood donation in France).

METHOD DETAILS

PBMCs purification

PBMCs were isolated by centrifugation on a density gradient (Lymphoprep, Proteogenix).

MoDC generation and activation

CD14+ cells were selected from PBMCs using magnetically labeled anti-CD14 Microbeads and MACS LS columns following

manufacturer’s instructions (MiltenyiBiotec). CD14+ cells were then cultured with IL-4 (50 ng/mL) and GM-CSF (10 ng/mL) (Miltenyi-

Biotec) for 5 days in RPMI 1640Medium, GlutaMAX (Life Technologies) with 10%Fetal Calf Serum.Monocyte-derived Dendritic Cells

(MoDC) were activated for 24 hours using one or a combination of perturbators as described in Table S1.

Blood dendritic cells purification

A step of DC pre-enrichment was performed from PBMCs using the EasySep Human Pan-DC Pre-Enrichment kit (StemCell Tech-

nologies). Total DC were sorted on a MoFloAstrios (Beckman Coulter) as Lineage (CD3, CD14, CD16, and CD19)!, CD4+ (Beckman

Coulter), CD11c+ (BD), as described in Alculumbre and Pattarini (2016).

CD4+ T lymphocytes purification

Naive CD4+ T lymphocytes were purified from PBMCs using the EasySep Human Naive CD4+ T Cell Isolation Kit (StemCell Technol-

ogies). Memory CD4+ T cells were purified from PBMCs using the Memory CD4+ T cell isolation Kit (MiltenyiBiotec).

Paired protein measurement in DC/T coculture

After 24 hours DCorMoDC activation with DC stimuli listed in Table S1, culture supernatants were kept for cytokine analysis for IL-23,

IL-28a, IL-1, IL-10, IL-12p70, IL-6, TNF-a, while cells were washed in PBS. Some cells were used for for surface staining of the

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

IL2RG [Hs00953624_m1] ThermoFisher Scientific Cat# 4331182

IL17RA [Hs01064648_m1] ThermoFisher Scientific Cat# 4331182

CCR6 [Hs00171121_m1] ThermoFisher Scientific Cat# 4331182

B2M [Hs99999907_m1] ThermoFisher Scientific Cat# 4331182

RPL34 [Hs00241560_m1] ThermoFisher Scientific Cat# 4331182

Software and Algorithms

GraphPad Prism 6 – Version 6.01 GraphPad https://www.graphpad.com/

FlowJo V10 – Version 10.0.8 FlowJo https://www.flowjo.com

Bioplex Manager Software BioRad https://www.bio-rad.com/en-cn/product/

bio-plex-manager-software-standard-

edition?ID=5846e84e-03a7-4599-a8ae-

7ba5dd2c7684

FCAP Array – Version 3.0 BD http://www.bdbiosciences.com/us/

applications/research/bead-based-

immunoassays/analysis-software/fcap-

array-software-v30/p/652099

R version 3.5.2 The R Foundation https://www.r-project.org/
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following markers: B7H3, CD30L, 4-1BBL, PDL2, VISTA, CD40, CD54, CD58, ICAM-2, ICAM-3, CD18, CD29, SLAMF5, SLAMF3,

PVR, CD11a, CD100, LIGHT, Nectin-2, Jagged-2, Galectin-3, CD70, CD80, CD83, OX40L, PDL1, CD86, ICOSL and HLA-DR. And

the remaining cells were put in coculture with allogeneic naive CD4 T cells, at a ratio of 1 DC for 5 T cells, in X-VIVO 15 medium

(Lonza). For FACS staining, a single batch of commercially available antibodies was used across the study.After 6 days of coculture,

T cells were washed and live cells were counted at the microscope using trypan blue to calculate Exp Fold. T cells were reseeded at

1x106/mL and restimulated with anti-CD3/CD28 Dynabeads (LifeTechnologies). 24 hours later supernatants were collected to

measure the following T cell cytokines: IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17F, IL-21, IL-22, IL-31, GM-CSF,

IFN-g, TNF-a, TNF-b. In each coculture experiment, one single DC donor was coupled to a different single CD4 T cell donor. For

each DC/T cell pair, the measurement of DC derived signals and Th cytokines were performed in parallel, leading to the acquisition

of paired data for the 36 DC derived signals and the 18 T cell parameters measured.

IL-12 blocking experiment

For IL-12 blocking experiment, after 24 hours activation with Zymosan (10mg/mL) or curdlan (10 mg/mL), MoDC were incubated dur-

ing one hour at 37"C in the presence of 20 mg/mL of anti-IL-12p70 blocking antibody or its matched isotype control. Then, naive CD4

T cells were added to the culture. Antibodies were maintained for the duration of the co-culture. After 6 days of coculture cells were

washed and reseeded at 1x106/mL and restimulatedwith anti-CD3/CD28Dynabeads (LifeTechnologies). 24 hours later supernatants

were collected to measure T cell cytokines.

CD28 blocking experiment

For CD28 blocking experiment, MoDC were first activated for 24 hours with Flu (1X), LPS (100ng/mL) or Zymosan (10 mg/mL). Then,

activated DC were cocultured with allogeneic naive CD4 T cells in the presence of 5 mg/mL anti-CD28 blocking antibody or its

matched isotype control (Figure 5A). Antibodies were maintained for the duration of the co-culture. After 6 days of coculture cells

were washed and reseeded at 1x106/mL and restimulated with anti-CD3/CD28 Dynabeads (LifeTechnologies). 24 hours later super-

natants were collected to measure T cell cytokines. We systematically measured all Th outputs predicted to be associated either

to CD80 or CD86 (Figure 5B). Finally, we compared the estimated (in silico prediction) and the real (experimental) fold change

(FC) (Figure 5B). A FC higher or lower than one for a given Th output indicated an inhibitory versus inducer role of CD80/CD86,

respectively.

Addition of rhIL-12p70 during DC/T coculture

Sorted myeloid-DC were activated for 24 hours with zymosan (10 mg/mL) or HKSA (MOI 1). Then, 10,000 activated DC were cocul-

tured with 50,000 allogeneic naive CD4 T cells in the presence or absence of 10 ng/mL rhIL-12p70. After 6 days of coculture, 100,000

T cells were restimulated for 24 hours with anti-CD3/CD28 Dynabeads. Supernatants were then collected for cytokine

measurements.

DC-free Th cell polarization

Naive CD4 T cells were cultured for 5 days with only anti-CD3/CD28 Dynabeads (Life Technologies) to obtain Th0 or in combination

with either 10 ng/mL IL-12 (Th1), 25ng/mL IL-4 (Th2), 10 ng/mL IL-1b or IL-1a, 100 ng/mL IL-23, IL-12 plus IL-1b or amix of IL-1b, IL-23,

1 ng/mL TGF-b and 20 ng/mL IL-6 to obtain Th17 (Peprotech) as already published (Touzot et al., 2014). At the end of the culture cells

were used for intracellular staining or washed, reseeded at 1x106/mL and restimulated with anti-CD3/CD28 Dynabeads (Life Technol-

ogies) for 24 hours before collecting supernatants for cytokine measure and lysing cells in RLT buffer (QIAGEN) for qPCR analysis.

ICOS agonism

For experiments with anti-ICOS antibody, prior to culture 5 mg/mL anti-CD3 (OKT3 clone, Biolegend) with 5 mg/mL anti-ICOS or

matching isotype control were coated on a flat-bottom 96well plate (TPP) and incubated overnight at 4"C. The platewas thenwashed

3 times with PBS before seeding 32,000 naive CD4 T cells with 1 mg/mL anti-CD28 (CD28.2 clone, Biolegend) and cytokines as

described above in X-vivo medium (Lonza). After 5 days culture, T cells were counted and 100,000 cells were restimulated with

anti-CD3/CD28 Dynabeads for 24 hours before collecting supernatants for cytokine measure.

We were able to induce the following Th outputs in the Th0 condition: Exp Fold, IL,3, IL-5, IL-6, IL-10, IL-13, IL-22, TNF-a and

GM-CSF (Figure 5E). In a Th17 condition, we were able to demonstrate a positive effect of the ICOS pathway on the production

of IL-17A (Figure 5E). All these observations were statistically significant, and validated the model predictions. However, six predic-

tions on TNF-b, IL-2, IL-21, IL-17F, IL-4 and IL-31 could not be validated using these experimental settings (Figure S4C). For IL-17F,

IL-4 and IL-31 we could not detect a significant effect of ICOS (Figure S4C), suggesting possible lack of a co-factor. However, for

TNF-b, IL-2, IL-21 we found significant but opposite effects to the one predicted by the model, including the positive role of ICOSL

in the induction of IL-21 (Table S3).

CD2 agonism

For experiments with anti-CD2 agonist antibody, prior to culture 5 mg/mL anti-CD3 (OKT3 clone, Biolegend) with 5 mg/mL anti-CD2 or

matching isotype control were coated on a flat-bottom 96well plate (TPP) and incubated overnight at 4"C. The platewas thenwashed
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3 times with PBS before seeding 32,000 naive CD4 T cells with 1 mg/mL anti-CD28 (CD28.2 clone, Biolegend) and cytokines as

described above in X-vivo medium (Lonza). After 5 days culture, T cells were counted and 100,000 cells were restimulated with

anti-CD3/CD28 Dynabeads for 24 hours before collecting supernatants for cytokine measure.

We showed that our anti-CD2 antibody worked by studying the Exp Fold of naive T cells, cultured with anti-CD3 and CD28 with or

without anti-CD2. We found that anti-CD2 significantly induced T cell Exp Fold (Figure S7G).

Flow cytometry analysis

Antibodies and matched isotypes were titrated on the relevant human PBMC population. For surface FACS analysis on activated

MoDC and blood DC the complete list of antibodies and important information such as brand, final dilutions, reference, clone and

colors are given in Key Resources Table. Dead cells were excluded using DAPI (Miltenyi Biotec).

For intracellular cytokine staining, naive or memory CD4 T cells were stimulated with 100 ng/mL PMA, 500 ng/mL ionomycin and

3 mg/mL Brefeldin A (ThermoFisher) for 5 hours. To exclude dead cells, CD4 T cells were stained using the LIVE/DEAD Fixable yellow

dead cell stain kit, following manufacturer’s instructions (LifeTechnologies). Cells were fixed and permeabilized using the IC Fix and

Permeabilization buffers (ThermoFisher). Intracellular cytokines were revealed with fluorescently conjugated antibodies against

IL-17A (BioLegend), IL-17F (ThermoFisher), IL-21 (BioLegend), IL-22 (ThermoFisher), and IFN-g (BD), or matched isotype controls

and acquired on a Fortessa instrument (BD).

Cytokine quantification

Cytokines were quantified in dendritic cell supernatants using CBA flex set for IL-1a, IL-1b, IL-6, IL-10, TNF-a and IL-12p70 (also

named IL-12) and using Luminex for IL-23 and IL-28a. Cytokines from T cell supernatants were quantified using CBA flex set for,

IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17F, TNF-a, IFN-g and GM-CSF (BD) and Luminex for IL-21, IL-22, IL-31

and TNF-b following the manufacturer’s protocol.

Gene expression quantification

At the end of the 5 days Th polarization and 24 hours restimulation, total RNAwas extracted from 100,000 cells using RNA easymicro

kit (QIAGEN). Total RNA was retrotranscribed using Superscript II Reverse Transcriptase (ThermoFisher Scientific) in combination

with random primers, Oligo(dT) and dNTP (Promega). Transcripts were then quantified by real time PCR on a 480 LightCycler

Instrument (Roche). Reactions were performed using a qPCR Master Mix Plus (Eurogentec) and TaqMan assays listed in the Key

Resources Table. Raw expression data (ct values) were normalized on the mean of two housekeeping genes (B2M and RPL34).

Anti-human ICOS monoclonal blocking antibody

The agonist ICOS antibody was produced for research purposes from the sequence made publicly available by JOUNCE

THERAPEUTICS in the patent US 2016/0304610, INC. The produced antibody corresponded to the following sequences of the

clone 37A10S713 with a human IgG1 isotype.

Heavy chain: EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYWMDWVRQAPGKGLVWVSNIDEDGSITEYSPFVKGRFTISRDNAKN

TLYLQMNSLRAEDTAVYYCTRWGRFGFDSWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS

GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISR

TPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR

EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL

HNHYTQKSLSLSPGK

Light chain: IVMTQSPDSLAVSLGERATINCKSSQSLLSGSFNYLTWYQQKPGQPPKLLIFYASTRHTGVPDRFSGSGSGTDFTLTISS

LQAEDVAVYYCHHHYNAPPTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQ

DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

Classical quality controls were performed to check that the produced anti-ICOS antibody had a correct, Purity (SDS-PAGE

reducing), Homogeneity (SEC-MALS) Mass (LC-MS) and binding to target (FACS).

QUANTIFICATION AND STATISTICAL ANALYSIS

Dataset quality control – batch effect

As quality control of our procedure we asked whether experimental batch effect could play a role in the differences we observed

across our dataset. Selecting the 6 most frequent perturbators within our MoDC dataset we performed principal component analysis

to look for batch effects related to the date of the experiments or the donor variability (Figure S1C).

Dataset quality control – T cell expansion

As a control, we could see that the Exp Fold profiles of CD4 T cells matched the activation profiles of DC observed in Figure 1C.

Indeed, T cells co-cultured with either LPS-MoDC, Zymosan-MoDC or Flu-DC induced significantly more expansion than the

negative Medium-DC control reflecting good quality controls of the experiments (Figure 3B).
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Statistical tests

In the figure legends, n is indicated and corresponds to the number of donors used for each experiment. Paired Wilcoxon or t test

were applied as detailed in figure legends to compare two groups. Significance was retained for *, p < 0.05.

Statistical analysis

Each variable of the dataset was transformed using first the Box-Cox transformation and then a scaling step on both the mean

and the variance (using TBoCo package). For all analyses performed, cytokine values inferior to 20 pg/mL were considered as 0,

as 20 pg/mL corresponds to the general detection limit of the assay. In order to cluster the inputs, outputs and the samples a hier-

archical clustering approach was applied by using different criterions: Ward’s criterion and Pearson correlation metric were used to

cluster the inputs and the outputs, whileWard’s criterion and the Euclideanmetric were used to cluster the samples or DC conditions.

The heatmaps were generated by using the heatmap.2 package. The correlations between the continuous variables were computed

by using the Pearson correlation. All statistical tests are called ‘‘significant’’ if their p value is smaller than 0.05. The p values were

corrected using Benjamini-Hochberg correction.

Boxplots represented are Tukey Boxplot, meaning that the box goes from the first to the third quartile, it is cut by the median and

the whisker goes from the upper (resp. the lower) whisker extends from the third (resp. the first) quartile to the largest (resp. the small-

est) value no further than 1.5 * IQR from the third (resp. The first) quartile (where IQR is the inter-quartile range, or distance between

the first and third quartiles). Data beyond the end of the whiskers points and are plotted individually.

The fold change represented in Figures 5B and S4A represent the value (real or estimated) of an output in the absence of CD80 and

CD86 divided by the value of the output in the same sample when CD80 and CD86 are present.

Model comparison and ROC Curves

In order to test different multivariate statistical modeling strategies, and to compare them in terms of false and true positive rates, we

generated a simulated dataset thatmimics the features of our DC and T cell experimental data, but for whichwe arbitrarily attributed a

link between DC communication signals and Th cytokines, the whole strategy is detailed below.

The Figure S3A aims at assessing the performance of our modeling strategy in terms of variable selection and comparing it with

other variable selectionmethodologies. In order to do this, we performed numerical experiment: we used the real input dataset called

hereafter X, simulated a random error matrix (E) with a block covariance matrix to mimic the Th subset and amatrix of coefficients (B)

to mimic the effect of the inputs on the outputs. Using these three matrices we created a new output matrix Y = XB+E. On this new

matrix Y we applied different modeling strategies. 1) The sPLS, 2) the classical Lasso, applied to each column of Y (namely each

output) independently (Lasso without covariance) 3) Our methodology, called MultivarSel, (described in the Modeling strategy sec-

tion), which consists in estimating the covariance matrix of E and use it to remove the dependence between the outputs before

applying the Lasso methodology (Lasso empirical covariance) 4) Lasso with real covariance matrix, the same methodology than

ours, but with the real covariancematrix of E, corresponding to the internal positive control of this analysis. We also assessed stability

selection by adding this analysis step to the three last methods (Lasso with stability selection and without covariance, Lasso with

stability selection and empirical covariance, Lasso with stability selection and real covariance matrix). For each part of this method-

ology, we varied the threshold to vary the number of variables that were kept and calculated for each threshold the True Positive Rate

(TPR) and the False Positive Rate (FPR). The TPR is the number of variables that have been properly identified as being relevant for

explaining the response divided by the total number of explanatory variables.

We also wanted to assess the sparsity: the percentage of non-zeros in thematrix B. Namely the percentage of pairs of input-output

that actually interact together. To do this, we made different scenarios with high and low sparsity (0.01 and 0.3). For all of these sce-

narios we simulated 1000 different Y, so we performed all this methodology 1000 times each andwe calculated at each time, for each

methodology and for each threshold the TPR and the FPR.We then took themean of this TPR and FPR for eachmethodology and for

each threshold. We also assessed the importance of the stability selection.

We can see that our MultivarSel Strategy (Lasso empirical covariance) provides better results than sPLS and Lasso without covari-

ance. Moreover, we observed that its performance is similar to Lasso with the real covariance matrix (the positive control), which

means that we greatly estimated the dependence among the outputs. We also noted that the larger the sparsity level, the smaller

the differences of performance between MultivarSel (Lasso empirical covariance) and Lasso without covariance, while the differ-

ences between Lasso empirical covariance and sPLS are bigger. We can see that adding the stability selection step improves a

lot the results.

Modeling strategy

In order to select the most relevant inputs for modeling the outputs, we used the linear model methodology recently developed in

Perrot-Dockès et al. (2018b) which has already been successfully applied to metabolomics data in Perrot-Dockès et al. (2018a).

The great advantage of such an approach is to propose a Lasso-based criterion (Tibshirani, 1996) taking into account the depen-

dence that may exist between the outputs. The parameters involved in the criterion are chosen thanks to 10-fold cross-validation

and stability selection with 1000 resampling (Meinshausen and Bühlmann, 2010). The numerical experiments were performed using

the real inputs dataset. Then, in order to mimic the Th groups, a random error matrix having a blockwise constant covariance matrix

was generated.
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The ROC curves display the True positive rate (TPR) as a function of the False positive rate (FPR) where the TPR is the number of

variables that have been properly identified as being relevant for explaining the response divided by the total number of explanatory

variables. The FPR is the number of variables that have been wrongly identified as being relevant for explaining the response divided

by the total number of variables that do not explain the response. To look for a context dependent role of IL-12p70 in the presence of

another input we performed the samemethodology but instead of modeling the outputs by using only the inputs, some new variables

were added: they correspond to a combination of IL-12p70 with the other inputs. More precisely, for instance, the variable ‘‘IL-12p70

with IL-1’’ is equal to the value of IL-12p70 for the samples having a positive concentration in IL-1 and to zero for the samples for

which the concentration in IL-1 is equal to zero.

We propose the following modeling for the outputs:

Y = XB+E; (1)

where Y denotes the n3q output matrix, X denotes the n3p design matrix containing the inputs, B is an unknown p3 q coefficient

matrix and E is the n3q random error matrix. Here, n corresponds to the number of samples, q is the number of outputs and p

denotes the number of inputs. In order to take into account the potential dependence that may exist between the outputs, we shall

assume that each row i of E satisfies:

ðEi;1; .;Ei;qÞ % Nð0;SqÞ; (2)

where Sq denotes the covariance matrix of the ith row of the random error matrix.

In order to select the most relevant inputs for explaining the outputs, the methodology that we propose can be summarized in the

following three steps:

First step

Fitting amultiple regression model to each output to have an estimation of the error matrix: bE and computing its empirical covariance

matrix.

Second step

Using this empirical covariance matrix to remove the dependence in E, namely between the outputs.

Third step

Selecting among the inputs the most relevant for explaining the outputs by applying a Lasso approach to the transformed data as

explained in the second step.

First step

Residuals and covariance matrix. We obtained an ordinary least square (OLS) estimator of B by fitting a multiple regression model

which is not a variable selection method. More precisely, the corresponding estimator bB
OLS

is defined by

bB
OLS

= ArgminB

n
kY !XBk22

o

Using bB
OLS

we got an estimation of E: bE = Y ! X bB
OLS

. Then, we computed the empirical covariance matrix bSq of bE.
Second step

Transformation. Let us recall that the standard Lasso criterion, proposed by Tibshirani (1996) estimates B in the following univariate

linear model:

Y = XB+E; (3)

by

bBðlÞ = ArgminB

n
kY ! XB k 2

2 + lkB k 1

o
; (4)

where Y , B and E are vectors. Usually, the components of E are assumed to be independent.

Thus, we proposed to transform Model (1) to be able to use the Lasso criterion as follows. First, we removed the dependence

among the outputs:

Y bS
!1=2

q = XBbS
!1=2

q +EbS
!1=2

q ; (5)

where bS
!1=2

q denotes the inverse of the square root of Sq.

Then, we applied the vec operator which consists in stacking the columns of a matrix into a single column vector.

Y = vec
!

Y bS
!1=2

q

"

= vec
!

XBbS
!1=2

q

"

+ vec
!

EbS
!1=2

q

"

= vec
!!

bS
!1=2

q

"0

5X
"

vecðBÞ+ vec
!

EbS
!1=2

q

"

=Xb+ ε:

Cell 179, 432–447.e1–e11, October 3, 2019 e10



Third step: Variable selection

Thanks to the previous transformation, the Lasso criterion can be applied to y = vecðY bS
!1=2

q Þ. Since B = vecðBÞ, estimating the

coefficient of B boils down to estimating the coefficients of B. The parameter l in (4) is chosen by 10-fold cross-validation followed

by a stability selection step with 1000 resamplings, as proposed by Meinshausen and Bühlmann (2010).

The squared error of prediction of the different models were assessed using 10-fold cross-validation (Figures 4A, 6B, S3D, S3E,

and S5A).

Systematic literature review

To assess the literature and evaluate the generated multivariate model of Figure 4B, we conducted a systematic literature review to

identify articles indexed on the PubMed database by March 1st 2017, examining the effects of inputs on naive CD4+ cells.

One of three different search strategies was used to export references from the PubMed database into the reference management

software EndNote.

We started by performing the first search strategy which consisted of using free text to search English language articles for the

input (or any of its aliases) and the output (or any of its aliases). If the search yielded 20 or less results, the references were exported

into EndNote.

If not, thenwe performed the second search strategy, which consisted of searching English language articles for the input (or any of

its aliases) and the output (or any of its aliases), both in the title or abstract, and at least one of the following medical subject heading

terms: ‘‘cell differentiation’’ or ‘‘CD4-positive T-lymphocytes’’ or ‘‘lymphocyte activation». If the search returned 50 or less results, the

references were exported into EndNote. If not, then we carried out the third search strategy which returned English language articles

that had both the input (or any of its aliases) and the output (or any of its aliases) in the title or abstract, as well as indexes to both of the

following medical subject heading terms: ‘‘cell differentiation’’ and ‘‘CD4-positive T-lymphocytes.’’ Results were exported into

EndNote.

The electronic searches generated a total of 14,748 references that were managed through EndNote. A manual search of refer-

ences from review articles and other records identified 21 additional publications that were not included in the search results.

Of these 14,769 articles, 9,780 duplicates were removed, leaving 4,989 records to be screened.

Titles and abstracts were screened by 2 independent reviewers. Publications were selected for further in-depth consideration if

they met all of the following inclusion criteria: 1) Journal Article, 2) Examining the effect of one input at a time, 3) Testing on naive

CD4+ T cells, which were defined as CD4+ and CD45RA+ and/or CD45RO- and/or CD25- cells. Studies were excluded from the

analysis if: 1) Full-text article, Title and/or abstract were not available, 2) Methods and/or experiments and/or results were unclear

or inconclusive or of low quality. Reasons for removing articles included not performing proper experimental controls, insufficient

information, lack of replicates and/or statistical analysis.

The reviewers excluded 4,589 articles because they did not meet the inclusion and exclusion criteria, leaving 400 articles of which,

at least, the figures and materials and methods sections were examined. Finally, 178 publications met all the inclusion criteria and

underwent data extraction.

Extracted information included the PubMed identifier, the input, the output, the input’s effect on naive CD4+ T cells in regards to the

output, the experimental context and setup (e.g., details about T cell stimulation context, input’s concentration, duration.) and the

organism. Data were cross-checked by the 2 reviewers, and any ambiguities were discussed and resolved through a consensus.

The Exp Fold was not included in the literature review so it was not included in the following literature validation score.

Calculation of the literature validation score: an association predicted by ourmodel (Figure 4B) between an input and an output was

considered as ‘‘new’’ if none of the 178 publications found that the input induces or inhibits the output. Absence of effect depicted in

some articles was not considered relevant to assess novelty of the prediction. It was ‘‘validated’’ if at least one of the 178 publications

found similar results than our model and ‘‘contradictory’’ if none of the study found the same results than our model but at least one

found an opposite result. Opposite result would be an induction if the model predicted a negative coefficient or an inhibition if our

model predicted a positive coefficient.

DATA AND CODE AVAILABILITY

The dataset generated during this study is available in Table S2.

All references from literature mining are listed in Table S3.

Software used for flow cytometry data analysis was FlowJo software (TreeStar).

Software used for CBA analysis was FCAP Array v3.

Software used for statistical analysis was Prism software v5 (GraphPad).

Software used for statistical analysis and modeling was R version 3.5.2.

The R packages used to perform this study are: packageMultiVarSel 1.0. used formodeling ( available at https://cran.r-project.org/

web/packages/MultiVarSel/index.html) and package TBoCo 0.0.1 for boxcox transformation available at https://github.com/

Marie-PerrotDockes/TBoCo.

This study did not generate code.
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Figure S1. Descriptive Analysis of 36 DC-Derived Communication Molecules, Related to Figures 1 and 2

A) Example of raw FACS staining ofMoDC communicationmolecules after 24 hours stimulation withMedium, LPS, Zymosan or Flu. 29 surfacemarkersmeasured

of one representative donor are shown. B) Statistical analysis comparing a given DC stimulation to the other 3 for each signal annotated. P values are annotated in

the table, red should be considered as significant. Paired Wilcoxon test was used (n = 14). C) PCA performed either on the whole dataset (left and middle panel)

or on the 6 most frequent perturbators (right panel) used across MoDC and bDC stimulations. From left to right colors respectively indicates, the dates of

experiments, the DC subset, the 6 most frequent DC stimulations.
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Figure S2. Mathematical Description and Statistical Analysis of Th Cytokine Profiles, Related to Figure 3

A) Table showing three keymathematical parameters of the Exp Fold and the 17 Th derived cytokines. First column: the range of expression (the number of log on

which the data are expressed). Second column: the percentage of positive observations among the 428 datapoints. Third column: the coefficient of variation.

Communication molecules were ranked based on their range of expression and their coefficient of variation. B) Statistical analysis comparing selected Th

cytokines within the following groups: Medium-MoDC, LPS-MoDC, Zymosan-MoDC and Flu-MoDC. The statistical test used is paired Wilcoxon test on n = 14

donors. C) Expression profiles of the Exp Fold and the 17 Th derived cytokines within the six groups of DC conditions defined by hierarchical clustering.

Expression data were logged transformed and scaled so as m represents the mean and s the SD of the expression of a given communication molecule across the

whole dataset (n = 428).
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Figure S3. Multivariate Modeling Strategies Applied to Our DC-T Cell Datasets, Related to Figure 4

A) Comparative analysis of distinct modeling strategies on simulated data. Using ROC curves, we applied the annotated strategies in terms of true and

false discovery. The simulated dataset mimics the features of our DC and T cell experimental data but for which we artificially attributed a link between DC

signals and Th cytokines. This allowed us to compare four different types of modeling strategies (Raw, OR, MultivarSel and sPLS) and different variable

selection methods (Lasso, Stability Selection and CV) by analyzing their false and true positive rates. B) Frequency of selection of input variables es-

tablished through model stability selection. Stability selection was applied after our MultivarSel strategy to the full DC-T dataset (n = 428). C) Table

(legend continued on next page)



showing for each output (Th signals) the input that minimizes its mean squared error of prediction in an univariate model, with its spearman correlation

coefficient and its adjusted p value. D) Error of prediction (obtained by 10-fold cross-validation) of the model respectively on blood DC dataset (n = 118)

and MoDC dataset (n = 310) E) Example of distribution of the squared error of prediction per DC-type for IL-22, TNF-b and Exp Fold. Allows to see the

number of data points with the highest error of prediction.
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Figure S4. Complementary Th Secretion Profiles of the Tested Conditions for Systematic Model Validation, Related to Figure 5

A) Fold change of the cytokine concentration estimated versus experimentally measured for the four indicated cytokines. n = 6 independent donors B) Mean

cytokine concentration and SD indicated for each condition. n = 6 C) Mean cytokine concentration and SD indicated for each condition. n = 6 D) and E) Mean

cytokine concentration and SD indicated for each condition. n = 6 F) Boxplot of the coefficient and stability selection frequencies in the two conditions: True

(validated predictions) and False (not validated), Wilcoxon test. Performed only for IL-12, IL-1 and ICOSL validations.
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Figure S5. Quantification of Context-Dependent Input-Output Associations, Related to Figure 6

A) Prediction of error comparison betweenMultiVarSel and ‘‘all_with model’’ performed for each Th output. B) Quantification per input of the number of times it is

selected as associated to an output in the 36 context-dependent models (Table S5). The total number of associations (resp. the number associations of the input

alone, resp. the input with another) is represented in the column ‘Number’ (resp. Number alone, resp. Number with) the ratio (Number with / Number) is rep-

resented in the column ‘Percentage’ C) Same as panel B but per output instead of input. D) On 8 distinct donors of cocultureMoDC/naive CD4 T cells experiments

IL-12 was blocked using neutralizing antibody. After the coculture at day 6, Th cells were restimulated 24 hours at 1 million cells/mL and the amount of IFN-gwas

determined using CBA. Paired Student’s t test was applied to compare two conditions. E) Model predictions on IL-12 in silico KO in the condition MoDC-curdlan

(10 mg/mL) for IL-17A and IL-17F values. Real values in the presence of IL-12 are compared to predicted values obtained in the absence of IL-12. F) Concen-

trations of IL-17A, IL-17F and IFN-g produced by Th cells after coculture with MoDC treated with 10 mg/mL curdlan, in the presence of neutralizing antibody

specific for IL-12 or matching isotype. n = 4 donors. Paired t test was performed to compare the means.
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Figure S6. In-Depth Characterization of Th Cells Polarized under the IL-1+IL-12 Condition, Related to Figure 7

A)Multivariate model explaining the differences between IL-17F and IL-17A for a stability selection threshold of 0.8. B) Cytokine profiles of Th cells differentiated in

distinct cytokine condition: Th0 (medium), Th2 (IL-4), IL-12, IL-1 (IL-1b), IL-12+IL-1 and Th17 (IL-6+IL-1b+TGF-b+IL-23), measured by CBA on 6 donors. Paired

Student’s t test was used for statistical analysis. C) IL-17A and IL-17F were measured by CBA in the supernatants of Th cells differentiated in distinct cytokine

condition:Med, IL-12, IL-1b, IL-6, IL-23, TGF-b, IL-12+IL-1b, IL-6+IL-12, IL-23+IL-12, TGF-b+IL-12, IL-6+IL-23+IL-1b+TGF-b. This experiment was performed on

3 donors. D) Comparison in the same naive CD4 DC-free culture system of the effect of IL-1a and IL-1b on the production of six distinct cytokines: IFN-g, IL-17A,

IL-17F, TNF-a, IL-13, IL-10. This experiment was performed on 3 donors. E) DC-free differentiation assay performed using anti CD3/CD28 beads in the indicated

cytokine conditions. n = 6,Wilcoxon test was used for statistics. F) Example of FACSCTV staining for Th proliferation assessment at day 5. G) Quantification of the

% of alive cells in each peak of the CTV staining for each condition. n = 3, paired t test was performed H) qPCR expression profiles for selected genes in the

following conditions Th0, Th2, IL-12, IL-1b, IL-12+IL-1b, Th17 (IL-6+IL-23+IL-1b+TGF-b). n = 6. Wilcoxon test was used.
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Figure S7. Detailed Description of Distinct Experimentally Validated Predictions,

A) PCA using 63 genes measured by qPCR in the 6 indicated Th conditions B) Detailed descriptions of the contribution of each 63 genes to the two first di-

mensions of the PCA represented in A). C) Systematic univariate analysis evaluating the Pearson correlation between IL-17A and IL-12 in the presence of IL-23

and another input (listed in the column ‘Inputs’) the number of samples having both of these inputs is in column ‘Number’. D) Pearson correlation between IL-17A

and IL-12 in the presence or absence of IL-1 and IL-23. E) Dot plot representing the correlation between IL-12 and IL-17A on IL-23 positive data points. F) qPCR

measuring RORc, IL-17A and IL-17F in the indicated conditions. n = 6 independent donors. Wilcoxon test was used for statistical analysis G) Positive control

showing the validation of the anti-CD2 agonist antibody through the measure of Exp Fold in the Th0 condition n = 8 H) Representative intracellular cytokine

staining for IL-17A and IL-17F performed in the Th17 and Th17+anti-CD2 conditions. I) Quantification of the intracellular FACS staining performed in H) for 8

distinct donors. Wilcoxon analysis. J) Representative raw data staining of intracellular FACS for IFN-g, IL-21, IL-22, IL-17A and IL-17F in 6 distinct conditions,

Th0 (medium), Th2 (IL-4), IL-12, IL-1 (IL-1b), IL-12+IL-1 and Th17 (IL-6+IL-1b+TGF-b+IL-23) for naive CD4 culture. K) Representative raw data staining of

intracellular FACS for IFN-g, IL-21, IL-22, IL-17A and IL-17F for memory CD4 purified cells, previously isolated bymagnetic sorting, and restimulated 5 hours with

PMA/ionomycin.



DC Condition Perturbators Frequency 

C1 Flu (1X) + PAM3 (1µg/mL)*MoDC 3 

C2 Alum (200µg/mL) + Flu (1X)*MoDC 3 

C3 Flu (1X) + HKSA (MOI 1)*MoDC 3 

C4 Flu (1X) + HKCA (MOI1)*MoDC 3 

C5 Flu (1X) + HKLM (MOI 1)*MoDC 3 

C6 PolyIC (100µg/mL)*MoDC 2 

C7 HKLM (MOI 10)*MoDC 2 

C8 HKCA (MOI100)*MoDC 2 

C9 GMCSF (100ng/mL)*MoDC 2 

C10 Curdlan (20µg/mL)*MoDC 2 

C11 Alum (200µg/mL)*MoDC 3 

C12 PolyIC (50ng/mL)*MoDC 5 

C13 Flu (0,1X)*MoDC 4 

C14 Flu (1X)*MoDC 17 

C15 Flu (0,5X)*MoDC 4 

C16 PAM3 (0,1µg/mL)*MoDC 4 

C17 HKSA (MOI 1)*MoDC 9 

C18 PAM3 (1µg/mL)*MoDC 9 

C19 Zymosan (0,1µg/mL)*MoDC 4 

C20 LPS (1ng/mL)*MoDC 4 

C21 Zymosan (1µg/mL) + PGE2 (1 µg/mL)*MoDC 2 

C22 Zymosan (0,1µg/mL) + PGE2 (0,1µg/mL)*MoDC 2 

C23 PGE2 (1 µg/mL)*MoDC 4 

C24 PGE2 (0,1 µg/mL)*MoDC 2 

C25 HKSA (MOI 0,1)*MoDC 4 

C26 HKCA (MOI 10)*MoDC 4 

C27 PGE2 (10 µg/mL)*MoDC 4 

C28 R848 (10ng/mL)*MoDC 2 

C29 R848 (100 ng/mL)*MoDC 2 

C30 IFNb (50ng/mL)*MoDC 2 

C31 GMCSF (50ng/mL)*MoDC 3 

C32 HKLM (MOI 1)*MoDC 7 

C33 HKCA (MOI1)*MoDC 9 

C34 Med*MoDC 24 

C35 HKSP (MOI1)*MoDC 3 

C36 HKSA (MOI 20) + HKCA (MOI 10)*MoDC 2 

C37 HKSA (MOI 1) + HKCA (MOI 1)*MoDC 2 

C38 HKSA (MOI 0,1) + HKCA (MOI 0,1)*MoDC 2 

C39 HKCA (MOI0,1)*MoDC 2 

C40 TSLP (50ng/mL)*bDC 12 

C41 PAM3 (1µg/mL)*bDC 2 

C42 Curdlan (10µg/mL)*bDC 7 

C43 Flu (1X)*bDC 13 

C44 Med*bDC 20 

C45 HKCA (MOI1)*bDC 4 

C46 PAM3 (10µg/mL)*bDC 8 

C47 LPS (100ng/mL)*bDC 8 



C48 HKLM (MOI 1)*bDC 8 

C49 GMCSF (50ng/mL)*bDC 6 

C50 PolyIC (50µg/mL)*bDC 4 

C51 Zymosan (10µg/mL)*bDC 8 

C52 HKLM (MOI 100) *bDC 1 

C53 HKSA (MOI 10)*bDC 1 

C54 R848 (1µg/mL)*bDC 10 

C55 HKSA (MOI 1)*bDC 6 

C56 Zymosan (10µg/mL) + PGE2 (10µg/mL)*MoDC 4 

C57 Curdlan (10µg/mL)*MoDC 7 

C58 LPS (10ng/mL) + R848 (10ng/mL) *MoDC 2 

C59 LPS (10ng/mL)*MoDC 4 

C60 Zymosan (1µg/mL)*MoDC 4 

C61 R848 (1µg/mL)*MoDC 10 

C62 PAM3 (10µg/mL)*MoDC 10 

C63 LPS (100ng/mL)*MoDC 21 

C64 PAM3 (1µg/mL) + R848 (1µg/mL)*MoDC 3 

C65 HKSA (MOI 20) + PAM3 (1µg/mL)*MoDC 3 

C66 HKSA (MOI 20)*MoDC 7 

C67 LPS (100ng/mL) + PAM3 (1µg/mL)*MoDC 3 

C68 HKSA (MOI 20) + R848 (1µg/mL)*MoDC 3 

C69 LPS (100ng/mL) + R848 (100 ng/mL)*MoDC 2 

C70 LPS (1000ng/mL)*MoDC 4 

C71 LPS (1000ng/mL) + R848 (1000ng/mL)*MoDC 2 

C72 Flu (1X)+ PAM3 (10µg/mL)*MoDC 2 

C73 Flu (0,5X) + PAM3 (1µg/mL)*MoDC 2 

C74 Flu (0,1X) + PAM3 (0,1µg/mL)*MoDC 2 

C75 Zymosan (20µg/mL)*MoDC 4 

C76 Zymosan (10µg/mL)*MoDC 23 

C77 LPS (100ng/mL) + R848 (1µg/mL)*MoDC 3 

C78 Zymosan (10µg/mL) + PAM3 (1µg/mL)*MoDC 3 

C79 Zymosan (10µg/mL) + HKSA (MOI 20)*MoDC 3 

C80 LPS (100ng/mL) + Zymosan (10µg/mL) *MoDC 3 

C81 LPS (100ng/mL) + HKSA (MOI 20)*MoDC 3 

C82 Zymosan (10µg/mL) + R848 (1µg/mL)*MoDC 3 

 

Table S1 Related to Figure 1: Number of data point generated per stimulation per DC 

subset: This table recapitulates the number of distinct data points corresponding to the 

biological replicates (column Frequency) generated for each DC stimulation on bDC or 

MoDC. 
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Letter to the Editor

TH cell diversity and response to

dupilumab in patients with atopic

dermatitis

To the Editor:

We report here on a systematic assessment of TH cell subsets

and their dynamic changes in the context of dupilumab treatment,

a recently approved biotherapy in atopic dermatitis (AD).

Dupilumab targets the IL-4 receptor a-chain that is common to

the IL-4 and IL-13 receptors. Although the IL-4 pathway is

critical for TH2 differentiation, it may also affect other TH path-

ways directly or through cross-regulation.

In this study, we used multicolor flow cytometry to measure the

evolution of 8 TH and follicular helper (TFH) cell populations in

the peripheral blood of patients with chronic AD before and after

dupilumab, with or without concomitant treatment (as detailed in

Table E1 in this article’s Online Repository at www.jacionline.

org). Samples were obtained from 29 patients with moderate-

to-severe AD at different time points from therapy (month

0 [M0] [ie, baseline], M1, M3, M6, and >_M12) as well as from

25 age- and sex-matched healthy subjects (see Table E2 in this ar-

ticle’s Online Repository at www.jacionline.org). By using a vali-

dated 5-parameter surface staining1 (see Fig E1 in this article’s

Online Repository at www.jacionline.org), we measured the pro-

portions of all 8 major memory TH and TFH cell populations: TH1,

TH2, TH17, TH1/17, TFH1, TFH2, TFH17, and TFH1/17. Patients

with AD at baseline (M0) had percentages of CXCR5– (total

TH) and CXCR51 (total TFH) CD4 T cells similar to those in

healthy donors (HDs), with no significant variations during the

course of dupilumab treatment (see Fig E2, A in this article’s

Online Repository at www.jacionline.org), supporting the

importance of a detailed analysis.

Addressing the TFH cell populations, TFH1, TFH2, and TFH1/17

percentages were not significantly different between patients with

AD atM0 andHDs, but the percentages of TFH17 cells were lower

in patients with AD than in HDs. Additionally, we did not detect

any significant variation in the TFH2, TFH17, and TFH1/17 cell per-

centages during dupilumab treatment. Only the TFH1 cell

FIG 1. Systematic analysis of clinical scores and TH cell populations in patients with AD during dupilumab

treatment. A, Percentages of TH1, TH2, TH17, and TH1/17 cells among CD41CD45RO1 cells in HDs and pa-

tients with AD at each time point during dupilumab treatment. B, Lymphocyte and eosinophil counts in

blood at each time point. C, Values of EASI and SCORing Atopic Dermatitis (SCORAD) score measured

by clinicians at each time point. Medians 6 interquartile ranges are plotted for each graph.

1



FIG 2. EASI score association with TH2, TH17, and TFH cell percentages in patients with AD treated with

dupilumab. A, Correlation of TH2 cell percentage with EASI score at M0, M1, M3, M6, and M12 or longer

of dupilumab treatment. B, Correlation of TH17 cell percentage with EASI score at M0 and M12 or longer

of dupilumab treatment. C, Correlation of relative difference in EASI score between M12 or longer and

M0 and percentage relative difference in TH17 between M12 or longer and M0. D, Comparison of CXCR51,

CXCR5–, TFH1, TFH2, TFH17, and TFH1/17 cell percentages at M12 or longer between low responders and high/

intermediate responders.
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percentages decreased between M0 and M3, but they returned to

baseline levels at M12 (see Fig E2, B).

The biggest baseline differences and dynamic variations were

measured in the TH cell populations. When patients with AD at

M0 and HDs were compared, there was no significant difference

in the percentages of TH1 cells, but higher percentages of TH2 and

TH17 cells and lower percentages of TH1/17 cells were found in

patients with AD (Fig 1, A). Dynamically, we detected a signifi-

cant increase in TH1 and TH1/17 cell percentages between M0

and M12, paralleling a gradual decrease in the percentage of

TH2 cells (Fig 1, A). The changes in TH17 cell percentage were

more subtle, with an initial increase (from M0 to M1 and M3)

and a return to baseline at M12. The evolutions of TH2 and

TH17 cell percentages for individual patients are also provided

(see Fig E3 in this article’s Online Repository at www.

jacionline.org).

Among the routine blood cell count variables, the total

lymphocyte counts increased slightly over the course of dupilu-

mab treatment, whereas eosinophil counts increased from M0 to

M6 and returned to baseline (Fig 1, B). Thesewere minor changes

as compared with the modifications in TH subpopulations.

Other studies have measured TH cell populations in the pe-

ripheral blood of patients with AD,2-5 bringing new insights

on the proportions of TH subsets between skin-homing CLA1

and CLA– CD41 T cells. Complementarily, our study focused

on the total TH and TFH subsets in circulating blood of patients

with AD.

Two interesting studies used transcriptomic analysis in whole

lesional skin biopsy specimens to compare baseline with 4 weeks

of dupilumab treatment; they found that TH2-associated chemo-

kines were downregulated in response to dupilumab.6,7Our study

significantly extends those findings by providing a detailed and

dynamic analysis of TH cell diversity in patients with AD during

12 months of dupilumab treatment.

In parallel with the immunologic variables, we monitored the

baseline value and dynamics of standard clinical scores—the

Eczema Area and Severity Index (EASI) and SCORing Atopic

Dermatitis score—at each time point. As previously reported,8

both scores significantly decreased from M0 to M12 during pa-

tient treatment with dupilumab (Fig 1, C). Administration of

concomitant therapies did not influence EASI score (data not

shown).

We evaluated the association between TH cell and TFH cell pop-

ulations and EASI score.

The TH2 cell percentage significantly correlated with EASI

score at all time points except M6 (Fig 2, A). This was expected

because the decrease in TH2 cell percentage from M0 to M12

(Fig 1, A) paralleled the decrease in EASI score (Fig 1, C). It

also validated blood TH2 cells as a robust pharmacodynamic

biomarker of dupilumab treatment.

Our working hypothesis was that TH cell cross-regulation may

induce more complex dynamic changes in TH cell subsets than

only changes in TH2 cells. Indeed, TH17 cell percentage signifi-

cantly correlated with EASI score at M0 and very strongly at

M12 (Pearson correlation5 0.7867) (Fig 2, B). Also, the correla-

tion between relative difference in EASI score between M12 and

M0 and relative difference in TH17 cell percentage between M12

and M0 showed that the largest decreases in TH17 cell percent-

ages were found in patients with the largest decreases in EASI

score (Fig 2, C). This is in line with a possible role for TH17 cells

in the physiopathology of AD.9

Finally, we grouped the patients according to their response to

treatment: high responders displaying an improvement in their

EASI score at M12 or longer of at least 85%, low responders

showing a decrease in their EASI score of less than 60%, and the

remaining intermediate responders. Low responders displayed

significantly lower levels of CXCR51 total TFH cells at M12 than

did strong and intermediate responders. This difference was also

identified for TFH1 and TFH2 cells. Conversely, low responders

displayed higher levels of CXCR5– cells at M12 than did high

and intermediate responders. TFH17 and TFH1/17 cell percentages

were not significantly different between the 2 groups (Fig 2, D).

Reductions in CCL26 and CCL13 (TH2-associated chemo-

kines) expression were previously correlated with improvement

in EASI score.7Here, wewere able to show that EASI score corre-

lated not only with TH2 cell percentage but also with TH17 cell

percentage, and that total TFH, TFH1, and TFH2 cell percentages

could allow separation of low versus high responders.

Our detailed and systematic study further established a strong

link between TH2 cells and response to dupilumab. However, it

also suggests an important role of other TH and TFH cell popula-

tions in AD physiopathology and treatment response. Although

they were established on a limited number of patients, our results

warrant validation in larger independent cohorts. This should set

the ground for exploitation of fine-grained TH cell subsets as bio-

markers in future clinical observation studies or in the context of

controlled therapeutic trials.

Wewish to thank all collaborators of the Dermatology Department of Saint-

Louis Hospital who contributed to sample collection and transfer to Institut

Curie for analysis.
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Abstract 

Several studies have analyzed antiviral immune pathways in severe COVID-19 

patients. However, the initial steps of antiviral immunity are not known. Here, we 

have studied the interaction of isolated primary SARS-CoV-2 viral strains with human 

plasmacytoid pre-dendritic cells (pDC), a key player in antiviral immunity. We show 

that pDC are not permissive to SARS-CoV-2 infection. However, they efficiently 

diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral 

stimulation. They expressed checkpoint molecules at levels similar to influenza virus-

induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, 

IL-6, IP-10, and IL-8. Importantly, all major aspects of SARS-CoV-2-induced pDC 

activation were inhibited by hydroxychloroquine, including P2- and P3-pDC 

differentiation, the expression of maturation markers, and the production of 

interferon-α and inflammatory cytokines. Our results indicate that pDC may represent 

a major player in the first line of defense against SARS-CoV-2 infection, and call for 

caution in the use of hydroxychloroquine in the early treatment of the disease.  

 

Introduction 

Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) is the third 

zoonotic coronavirus that emerged in the last two decades. SARS-CoV-2 is the 

causative agent of coronavirus disease 2019 (COVID-19) that appeared in late 2019 

in Wuhan, Hubei province in China (Nandakumar, 2020; Sheahan and Frieman, 

2020). SARS-CoV-2 became rapidly pandemic, and infection have now been 

detected in 216 countries and territories, and is responsible for approximatively 10 

million confirmed cases and 500,000 deaths as of 26 of June 2020 (WHO weekly 

update).  



 SARS-CoV-2 infection may lead to a diversity of clinical presentations, ranging from 

asymptomatic or mild “flu-like” syndrome, to severe and life-threatening acute 

respiratory failure. Disease aggravation usually occurs after 8 to 10 days following 

initial symptoms (Tang et al., 2020). At this late stage, three main factors were shown 

to contribute to the progression and severity of the infection (Tang et al., 2020): 1) 

viral persistence was evidenced in the lung and systemic circulation, although it is not 

constant (Tang et al., 2020), 2) an excess production of pro-inflammatory cytokines, 

such as IL-1b and IL-6 (Tay et al., 2020; Arnaldez et al., 2020), 3) a defect in type I 

interferon (IFN) production, especially in critically ill patients (Tay et al., 2020; 

Acharya et al., 2020). Although these abnormalities were confirmed in several 

studies, their origin and underlying mechanisms remain mostly unknown. In 

particular, it is not known whether an imbalance between inflammatory cytokines and 

type I IFN occurs early in the disease, at the stage of the primary infection, and 

whether the virus itself may be responsible. To fill this gap of knowledge, it becomes 

essential to investigate the early innate immune response to SARS-CoV-2. Among 

the immune cells that are involved in innate anti-viral immunity, plasmacytoid pre-

dendritic cells (pDC) play a particularly important role as the major source of type I 

IFN in response to viral infection (Liu, 2005). PDC can sense a large array of viruses 

including the coronaviruses murine hepatis virus (MHV) and the middle east 

respiratory syndrome coronavirus (MERS) (Scheuplein et al., 2015; Cervantes-

Barragan et al., 2007), and respond by producing innate cytokines, including all 

forms of type I IFNs (α and β), type III IFN, and inflammatory cytokines, in particular 

TNF-α and IL-6 (Liu, 2005; Yin et al., 2012; Gilliet et al., 2008). However, different 

viruses may induce different cytokine patterns (Thomas et al., 2014), possibly 

creating an imbalance between IFN versus inflammatory cytokine response. 



Additionally, some viruses were shown to subvert pDC functions through different 

mechanisms not necessarily related to productive infection. This is the case for HIV, 

which may induce pDC apoptosis in vitro (Meyers et al., 2007) and pDC depletion in 

vivo (Soumelis et al., 2001; Meera et al., 2010). Human hepatitis C virus can inhibit 

IFN-α production by pDC through the glycoprotein E2 binding to BDCA-2 (Florentin et 

al., 2012). Human papillomavirus induces very low IFN response in pDC (Bontkes et 

al., 2005), which may be due to impaired TLR-7 and -9 signaling (Hirsch et al., 2010). 

Whether SARS-CoV-2 induces efficient pDC activation, or may interfere with various 

biological pathways in pDC is currently unknown. 

In this study, we have systematically addressed the interactions between clinical 

SARS-CoV-2 isolates and primary human pDC in order to reproduce the early stages 

of the infection. We showed that pDC are resistant to productive infection with SARS-

CoV-2 strains but still mount substantial IFN responses upon viral challenge. 

Interestingly, pDC responded to SARS-CoV-2 by a complete activation program, 

including diversification into effector subsets, production of type I and type III IFN, as 

well as inflammatory cytokines. We also showed that hydroxychloroquine, an 

antimalarial drug proposed for treatment of COVID-19 patients (Das et al., 2020; 

Mahévas et al., 2020), inhibits SARS-CoV-2-induced pDC activation and IFN 

production in a dose-dependent manner. Our results establish pDC as a potential key 

player in innate immunity to SARS-CoV-2, and raise caution regarding 

pharmacological manipulation that could inhibit pDC effector functions. 

 

Results 

SARS-CoV-2 induces activation and diversification of primary human pDC 



In order to efficiently recapitulate SARS-CoV-2-pDC interactions, we used two strains 

of SARS-CoV-2 primary isolates. Their viral genome sequences were nearly identical 

with 99,98% identity. Sequence comparison with reference strain Wuhan-Hu-1 (NCBI 

accession number NC_045512.2) showed that both strains contain a subset of 

mutations (C241T; C30307T; A23403G and G25563T), characteristic of the GH clade 

based on GISAID nomenclature. Human primary pDC were purified from healthy 

donor peripheral blood mononuclear cells (PBMC) by cell sorting. First, we asked 

whether SARS-CoV-2 was able to induce pDC activation, and diversification into IFN-

producing and/or T cell stimulating effectors, as we previously described for influenza 

virus A (Flu) (Alculumbre et al., 2018). After 24 hours of culture, SARS-CoV-2-

activated pDC efficiently diversified into P1 (PD-L1+CD80-), P2 (PD-L1+CD80+), and 

P3 (PD-L1+CD80+) pDC subsets, similar to Flu stimulation (Fig 1A). P1-, P2-, and P3-

pDC were all significantly induced by SARS-CoV-2 and Flu, as compared to medium 

control (Fig 1B). In parallel, we observed a sharp decrease in non-activated P0-pDC 

(PD-L1-CD80-) (Fig 1A and B). SARS-CoV-2-induced pDC activation was 

comparable with magnetically- versus FACS-sorted pDC (Fig S1A and S1B), 

confirming that both methods are suitable for subsequent experiments. All main 

findings were confirmed on at least three independent experiments using FACS-

sorted pDC, with a protocol that excluded AS-DC, a rare dendritic cell (DC) subset 

that shares some markers and functional features with pDC (Villani et al., 2017), 

based on CD2, CD5 and AXL expression (Fig S1A).  

PDC activation and diversification was observed with two independent primary 

SARS-CoV-2 strains (Fig 1C), which both induced similar proportions of P1-P3 

subsets. PDC diversification was also observed by co-culturing of pDC with SARS-

CoV-2-infected Vero E6 cells with a similar efficiency than free SARS-CoV-2 (Fig 



S1C). SARS-CoV-2 improved pDC viability as compared to medium condition (Fig 

1D), which is compatible with subsequent effector functions. 

Human pDC are not productively infected by SARS-CoV-2  

Next, we asked whether SARS-CoV-2 -induced pDC activation was dependent on 

productive infection. We first checked whether pDC express at their cell surface 

ACE2, the major SARS-CoV-2 entry receptor (Hoffmann et al., 2020, 2). No 

significant expression was detected using an anti-ACE2-specific antibody, as 

compared to a low and high expression on Vero E6 and 293T-ACE2 cell lines, 

respectively (Fig 1E). The ability of pDC to replicate SARS-CoV-2 was then 

assessed. Human pDC were challenged with SARS-CoV-2 strain 220_95 at MOI of 

2, and cultured for 2h, 24h or 48 h. Our results showed that pDC were refractory to 

SARS-CoV-2 infection, as evaluated by quantifying 1) the intracellular production of 

the nucleoprotein antigen (N) (Fig 1F), or the accumulation of viral RNA in SARS-

CoV-2-infected cells (Fig S1D), and 2) the release of infectious progeny virus in the 

supernatants of infected cells using plaque assays (Fig 1G). As positive control, the 

permissive Vero E6 cells produced high level of the N antigen, increased viral RNA 

overtime (Fig S1D), and high viral titers following SARS-CoV-2 incubation (Fig 1G). 

Similar results were obtained with pDC isolated from three independent donors (Fig 

S1E). Overall, these results show that pDC are resistant to SARS-CoV-2 infection, 

and are efficiently activated by the virus independently of ACE2 expression. Their 

viability was not affected by SARS-CoV-2 challenge.  

Upregulation of major immune checkpoints on SARS-CoV-2-activated pDC 

Activating immune checkpoints play a key role in T cell stimulation, and serve as 

surrogate markers of DC differentiation (Guermonprez et al., 2002). We first 



assessed the dose-dependent effect of SARS-CoV-2 on CD80 expression and 

subset diversification. CD80 was induced in a dose-dependent manner by SARS-

CoV-2 at MOI 0.04 to 1 (Fig 2A). This was accompanied by an increase in P3-pDC 

subset, and a slight decrease in P1-pDC (Fig 2B). A detailed phenotypic analysis was 

subsequently performed on pDC after 24 and 48 hours of culture with SARS-CoV-2 

(Fig 2C and Fig S2A). Diversification was observed at both time points, with a slight 

increase in P3-pDC at 48 hours (Fig S2A). P2- and P3-pDC significantly upregulated 

CD80, CD86, CCR7, and OX40L, as compared to non-activated P0-pDC, in both 

SARS-CoV-2 and Flu conditions (Fig 2C). PD-L1, and CD62L, an integrin that 

promotes lymph node homing, were both higher on P1- and P2-pDC (Fig 2C). 

Expression of checkpoint molecules persisted at 48h, especially the higher CD80 and 

CD86 expression on P3-pDC (Fig S2B). 

Efficient production of type I and type III interferons by SARS-CoV-2-activated 

pDC 

A key and defining function of pDC is their ability to produce large amounts of type I 

IFN (Gilliet et al., 2008). We measured the production of several cytokines at the 

protein level after 24 hours of culture. Both SARS-CoV-2 and Flu induced high levels 

of IFN-α2 and IFN-λ1, both being critical anti-viral effector cytokines (Fig 3A). IFN-α 

levels following SARS-CoV-2 activation reached up to 80 ng/ml, indicating a very 

efficient activation. The chemokine IP-10 was also significantly induced (Fig 3A), 

possibly due to an autocrine IFN loop (Blackwell and Krieg, 2003). Inflammatory 

cytokines IL-6 and IL-8 were comparably induced by SARS-CoV-2 and Flu (Fig 3A). 

However, TNF-α levels were marginally induced by SARS-CoV-2 as compared to Flu 

activation (Fig 3A). Cytokine production was maintained after 48 hours of viral 

activation (Fig 3B). Secreted protein levels were similar to 24h levels for most 



cytokines. Interestingly, IFN-α levels raised by 3-fold between 24h and 48h for one 

donor (Fig 3A and B), indicating the possibility of increased production. Such strong 

IFN producer suggests a potential virus controller.   

Because the oropharyngeal mucosa is an entry site for SARS-CoV-2, we aimed at 

validating our results using pDC purified from tonsils. SARS-CoV-2 induced a marked 

diversification of tonsillar pDC into all three activated subsets (Fig S2C). Tonsillar 

pDC efficiently produced IFN and inflammatory cytokines in response to SARS-CoV-

2 (Fig S2D). Overall, our results establish SARS-CoV-2 as a very efficient inducer of 

type I and type III IFN responses. Inflammatory cytokines were induced at similar 

level than Flu activation, without any significant imbalance that would be suggestive 

of excessive inflammatory response. 

SARS-CoV-2-induced pDC activation is inhibited by hydroxychloroquine 

Given that SARS-CoV-2 did not infect pDC, and did not interfere with pDC activation, 

we asked whether pharmacological agents could modulate pDC diversification and 

cytokine production. Hydroxychloroquine (HCQ) is known to inhibit endosomal 

acidification which may diminish pDC activation (Kuznik et al., 2011, 9; Sacre et al., 

2012). Additionally, it is being tested in several clinical studies as a potential 

treatment for COVID-19 (Das et al., 2020; Mahévas et al., 2020). Hence, we 

addressed its role in SARS-CoV-2-induced pDC activation. Following 24 hours of 

culture, we found that HCQ inhibited pDC diversification in response to SARS-CoV-2, 

which is similar to the decrease observed with Flu, used as a positive control (Fig 

4A). In particular, P2- and P3-pDC differentiation were almost completely inhibited 

(Fig 4B). Inhibition of SARS-CoV-2-induced pDC diversification by HCQ was dose-

dependent (Fig S3A). The significant decrease in P3-pDC was paralleled by a 

decrease in CD80, CD86, and CCR7 expression (Fig 4C and D). OX40-ligand 



expression was not significantly affected by HCQ (Fig 4C and D). However, HCQ 

inhibited the appearance of an OX40-ligandhigh pDC population (Fig S3B and S3C), 

which may impact subsequent T cell activation. Last, we assessed the effect of HCQ 

on innate pDC functions. We measured cytokine production after 24 hours of SARS-

CoV-2-induced pDC activation in the presence or absence of HCQ. We found that 

IFN-α and λ levels were decreased by HCQ (Fig 4E). This was also the case for IL-6 

and IL-8, with a much lesser impact on IP-10 (Fig 4E). Together, these results show 

that HCQ inhibits SARS-CoV-2-induced pDC diversification and cytokine production. 

 

Discussion 

Type I IFNs are critical cytokines that control viral replication. Several chronic viral 

infections were associated to poor type I IFN responses (Lee et al., 2013; Snell et al., 

2017; Marsili et al., 2012; Dolganiuc et al., 2006). In COVID-19 patients, decreased 

serum levels of type I IFN were associated with severity in late stage infection, and 

increased viral load (Tay et al., 2020; Acharya et al., 2020). This raised the question 

as to whether SARS-CoV-2 was intrinsically capable of inducing a robust IFN 

response, or on the contrary could interfere with IFN production and other antiviral 

immune pathways. In this study, we have used primary SARS-CoV-2 isolates and 

human primary pDC in order to increase the relevance to a naturally occurring 

infection. Our results demonstrate that SARS-CoV-2 is a strong IFN inducer by 

efficiently stimulating primary pDC. Viral sensing was independent of the expression 

of the ACE2 entry receptor or the ability of the virus to replicate in pDC. However, the 

precise molecular mechanisms involved remain to be investigated. Both type I and 

type III IFNs were induced at high levels upon SARS-CoV-2 stimulation. This strongly 



suggests that the defects observed in critically ill COVID-19 patients are acquired 

during disease evolution through secondary events, not necessarily associated to 

direct effect of the virus. Possible mechanisms could be related to inflammatory 

cytokines, such as TNF, and endogenous glucocorticoid response, both being able to 

promote pDC apoptosis ((Abe and Thomson, 2006). However, additional 

mechanisms may be involved and need to be explored in the context of severe 

COVID-19. 

An excessive production of inflammatory cytokines, such as IL-1 β, IL-6 and TNF, 

was associated to COVID-19 severity (Tay et al., 2020; Arnaldez et al., 2020; Vabret 

et al., 2020). Their cellular source and the underlying mechanisms are currently 

unknown. Our results indicate that SARS-CoV-2-induced pDC activation promotes a 

balanced production of innate cytokines, including large amounts of type I and type III 

INFs, without any significant excess in inflammatory cytokines. This suggests that 

pDC activation may not be a causal factor of COVID-19 aggravation. In support to 

that, recent studies indicated that endothelial cells may be a target of SARS-CoV-2 

infection, and could be at the origin of the systemic and multi-organ production of 

inflammatory cytokines (Pons et al., 2020). Bronchial epithelial cells could also be 

involved in the production of high levels of IL-6, which were not detected in the serum 

and in PBMC transcriptomic studies in severe COVID-19 (Wilk et al., 2020). This 

supports the view of pDC as being protective through an early and efficient 

production of antiviral cytokines, with later defects due to currently unknown 

mechanisms, associated with late stage aggravation. On the contrary, non-

professional innate immune cells such as endothelial cells and bronchial epithelial 

cells may be involved in the secondary worsening of COVID-19 through the 

excessive and uncontrolled production of inflammatory cytokines. Several therapeutic 



approaches have been explored and are currently being tested in clinical trials on 

COVID-19 patients (Vabret et al., 2020; Tay et al., 2020). These include antiviral 

agents (Yang et al., 2020), immune-modulatory molecules, such as glucocorticoids 

(Fernández Cruz et al., 2020), and anti-inflammatory molecules, such as HCQ 

(Touret and de Lamballerie, 2020; Lecuit, 2020). This latter drug was additionally 

shown in in vitro studies to interfere with SARS-CoV-2 replication (Wang et al., 2020). 

The difficulty in designing current and future COVID-19 treatment strategies lies in 

part in the complexity of the host-virus interactions. Ideally, an efficient therapy 

should control the excessive and potentially pathogenic inflammatory cytokine 

response, while preserving antiviral effector pathways in order to efficiently control 

viral replication. In our study, we have shown that SARS-CoV-2 effectively induced 

type I IFN production by pDC during initial encounter with the virus. Given the 

importance of IFN responses in the control of viral infections, pharmacological agents 

that decrease IFN production should be avoided. Our results showing that HCQ could 

inhibit all aspects of SARS-CoV-2-induced pDC activation call for a lot of caution in 

the use of that drug in the context of COVID-19. A favorable cost-benefit ratio would 

be expected only if a strong direct antiviral effect was demonstrated, associated with 

an efficient ability to control the production of pathogenic inflammatory cytokines. 

Else, interfering with pDC anti-viral response could contribute to a less efficient 

control of SARS-CoV-2 infection and subsequent worsening of the disease. 

Continued efforts in mapping and dissecting immune effector pathways to SARS-

CoV-2 will be of major importance in order to design efficient treatment strategies 

adapted to each patient and stage of the infection. 

Materials and methods  

 



PDC isolation and cell culture 

Buffy coats from healthy human donors were obtained from Etablissement Français 

du Sang, Paris, Saint-Antoine Crozatier blood bank. Peripheral blood mononuclear 

cells (PBMCs) were isolated through Ficoll density gradient centrifugation (Ficoll-

Paque; GE Healthcare). PDC were isolated through a first step of pDC magnetic 

sorting (Human Plasmacytoid DC Enrichment Kit; StemCell), and subsequent flow 

cytometric sorting on the basis of live, lineage– (CD16, CD14, CD19, CD20, CD56 

and CD3), CD11c– CD4+, and CD2– CD5– cells to a 98% purity. Due to some logistic 

issues, alternatively frozen PBMCs from Etablissement Français du Sang, Paris, 

Saint Louis blood bank, were thawed and placed at 37°C for 2h for cell recovery. 

pDC were then magnetically sorted (Human Plasmacytoid DC Enrichment Kit; 

StemCell). PDC enrichment was assessed based on the cytometric sorting panel, 

and was ranged from 71 to 90%. 

African green monkey kidney epithelial Vero E6 cells (ATCC, CRL-1586) were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM; Thermo Fisher Scientific) 

supplemented with 10% FBS, 1% penicillin-streptomycin, 1% GlutaMAX and 25 mM 

Hepes. 

 

SARS-CoV-2 primary strain isolation and amplification 

SARS-CoV-2 viruses were isolated from nasopharyngeal swab specimens collected 

at Service de Virologie (Hospital Saint Louis, Paris). Samples were centrifugated at 

4,000 x g for 10 min then filtered using a 0.45 μM filter, and diluted 1:1 with DMEM-

4% (DMEM supplemented with 4% FBS, 1% penicillin-streptomycin, 1% GlutaMAX 

and 25 mM Hepes). Vero E6 cells were seeded in 96-well cell culture plate (15,000 

cells/well), and incubated at 37°C with 200μl of inoculum and observed daily for 



cytopathogenic effects (CPE) by light microscopy. Substantial CPE were seen at 72-

96 hours post inoculation. Culture supernatants were then collected, clarified by 

centrifugation, filtered using a 0.45 μM filter and kept at -80°C. We confirmed SARS-

CoV-2 replication by RT-qPCR and whole viral genome sequences were obtained by 

next generation sequencing using Illumina MiSseq sequencers. Strains sequences 

have been deposited in the Global Initiative of Sharing All Influenza Data (GISSAID) 

database with accession ID EPI_ISL_469284 (220_95) and EPI_ISL_469283 

(211_61). All viruses belong to the GH clade. 

SARS-CoV-2 strains were further propagated on Vero E6 in DMEM-2% (DMEM 

supplemented with 2% FBS, 1% penicillin-streptomycin, 1% GlutaMAX and 25 mM 

Hepes). Viruses were passaged three times before being used for experiments. For 

the last passage, viruses were purified through a 20% sucrose cushion by 

ultracentrifugation at 80,000 x g for 2 hours at 4°C. Pellets were resuspended in HNE 

1X pH7.4 (Hepes 5 mM, NaCl 150 mM, EDTA 0.1 mM), aliquoted and stored at -

80°C. 

Viruses titer was ascertained by plaque assays in Vero E6 cells and expressed as 

PFU per ml. Cells were incubated for 1 hour with 10-fold dilution of viral stocks. The 

inoculum was then replaced with Avicel 2.4% mixed at equal volume with DMEM 

supplemented with 4% FBS, 2% Glutamax, 50mM MgCl2, 0.225 % of NaHCO3, and 

incubated 3 days at 37°C before plaque counting.  

 

Infection assays 

Vero cells were plated (50,000 cell per well) in p24-well plates 4 hours before being 

incubated with SARS-CoV-2 diluted in DMEM-2%. Freshly purified pDC were seeded 



in p96-well plates (50,000 cells per well) and incubated with SARS-CoV-2 diluted in 

pDCs culture medium (RPMI 1640 Medium with GlutaMAX, 10% of FBS, 1% of MEM 

NEAA, 1% of Sodium Pyruvate, and 1% of Penicillin/Streptomycin). At 2, 24 and 48 

hour post-inoculation, Vero cells were trypsinized and transferred to p96-well plates. 

Vero and pDC were washed with PBS and fixed with 2% (v/v) paraformaldehyde 

(PFA) diluted in PBS for 15 min at room temperature. Cells were incubated for 1 hour 

at 4°C with 1μg/ml of anti-nucleoprotein mAb (40143-MM05; Sino Biological) diluted 

in permeabilization flow cytometry buffer (PBS supplemented with 5% FBS, 0.5% 

(w/v) saponin, 0.1% Sodium azide). After washing, cells were incubated with 1μg/ml 

of Alexa Fluor 488 (115-545-003; Jackson ImmunoResearch) or 647-conjugated 

(115-606-062; Jackson ImmunoResearch) goat anti-mouse IgG diluted in 

permeabilization flow cytometry buffer for 30 min at 4°C. SARS-CoV-2 infection was 

quantified by flow cytometry.   

To quantify infectious viral particle released in the supernatants of infected cells, pDC 

and Vero cells were inoculated with SARS-CoV-2 as described above and incubated 

at 37°C for 72-hour. At indicated time points, supernatants were collected and kept at 

-80°C. Virus titer were then determined by plaque assay on Vero E6 cells as 

described above. 

 

Kinetic of infection by qPCR assay 

Vero E6 and pDC were inoculated with SARS-CoV-2 as described above. At the 

indicated time points, cells were washed thrice with PBS. Vero E6 were further 

incubated with trypsin 0.25% for 5 min at 37°C to remove cells surface bound 

particles. Total RNA was extracted using the RNeasy plus mini kit (Qiagen) according 

to manufacturer’s instruction. cDNAs were generated from 80 ng total RNA by using 



the Maxima First Strand Synthesis Kit following manufacturer’s instruction (Thermo 

Fisher Scientific). Amplification products were incubated with 1 Unit of RNAse H for 

20 min at 37 °C, followed by 10 min at 72°C for enzyme inactivation, and diluted 10-

fold in DNAse/RNAse free water.  Real time quantitative PCR was performed using a 

Power Syber green PCR master Mix (Fisher Thermo Scientific) on a Light Cycler 480 

(Roche). The primers used for qPCR were: E_Sarbeco_F1 (5’- 

ACAGGTACGTTAATAGTTAATAGCGT-3’), E_Sarbeco_R2 (5’- 

ATATTGCAGCAGTACGCACACA-3’) for viral RNA quantification. The plasmid 

containing the sequence corresponding to the amplified cDNA was purchased from 

GenScript (pUC57-2019-nCoV-PC:E; MC_0101078) and serially diluted (294 to 

2.94x109 genes copies/µl) to generate standard curves. 

 

pDC activation 

Freshly sorted pDC were cultured in p96-well plates at a concentration of 5.105 cells 

per ml in the presence of medium alone (RPMI 1640 Medium with GlutaMAX, 10% of 

FBS, 1% of MEM NEAA, 1% of Sodium Pyruvate, and 1% of Penicillin/Streptomycin), 

influenza virus A (Charles River, A/PR/8/34, 2µg/ml), the SARS-CoV-2 primary strain 

220_95 or 211_61 at a multiplicity of infection (MOI) of 1. After 24 or 48h of culture, 

pDC supernatant was collected and store at -80°C for subsequent cytokine 

quantification. PDC were stain for flow cytometry analysis.  

 

Flow cytometry analysis 

To sort pDC, cells were stained with zombie violet or BUV fixable viability dye 

(Biolegend), FITC anti-CD16 (BD, clone NKP15), FITC anti-CD14 (Miltenyi, clone 



TÜK4), FITC anti-CD19 (Miltenyi, clone LT19), FITC anti-CD20 (BD, clone 2H7), 

FITC anti-CD56 (Biolegend, clone HCD56), FITC anti-CD3 (BD, clone HIT3a), BV650 

or AF700 anti-CD4 (Biolegend, clone OKT4), PE-Cy7 anti-CD11c (Biolegend, clone 

Bu15), APC-Vio770 anti-CD2 (Miltenyi, clone LT2), and APC anti-CD5 (BD, clone 

UCHT2). PDCs were gated as live, lineage– (CD16, CD14, CD19, CD20, CD56 and 

CD3), CD2– CD5–, and CD4+ CD11c– cells.  

For pDC diversification and checkpoint assessment, cells were stain with zombie 

violet fixable viability dye (Biolegend), BV711 anti-CD123 (Biolegend, clone 6H6), PE 

anti-CD80 (BD, clone L307.4), PerCP efluor 710 anti-PD-L1 (eBioscience, clone 

MIH1), BUV737 anti-CD86 (BD, clone 2331), BV421 anti-OX40 Ligand (BD, clone ik-

1), APC anti-CD62L (BD, clone DREG-56), FITC anti-CCR7 (R&D System, clone 

150503). 

For ACE2 cell surface expression, indicated cells were incubated with a goat anti-

human ACE2 polyclonal Ab (5 μg/ml; AF933 Biotechne) in 100 μl of PBS with 0.02% 

NaN3 and 5% FBS for 1 h at 4°C. Cells were then washed and incubated with a 

Alexa 647-conjugated secondary antibody (Jackson ImmunoResearch) for 30 min at 

4°C. Acquisition was performed on an Attune NxT Flow Cytometer (Thermo Fisher 

Scientific) or a LSR Fortessa (BD Biosciences), and analysis was done by using 

FlowJo software (Tree Star). Flow cytometry analysis were performed at flow 

cytometry core facility of IRSL (Paris, France). 

 

Inflammatory cytokines measurement 

PDC cytokine production of IFN-α2, IL-8, IL-6, IP-10 and TNF-α, was measured in 

culture supernatants using BD cytometric bead array (CBA), according to the 



manufacturer’s protocol, with a 20pg/ml detection limit. Acquisitions were performed 

on a LSR Fortessa (BD Biosciences), and cytokine concentrations were determined 

using FCAP Array Software (BD Biosciences). 

The concentration of secreted IFN-λ1 was measured by enzyme-linked 

immunosorbent assay (ELISA) (R&D Systems, DuoSet DY7246), according to the 

manufacturer’s instructions. The manufacturer reported no cross-reactivity nor 

interference with IFN-α, IFN-β 1a, IL-10Rβ, IFN-λ2 and λ3, and IL-28Rα. The optical 

density value (OD) of the supernatants was defined as its absolute OD value, minus 

the OD Absorbance from blank wells. The detection limit was 85pg/ml and all 

samples were run in duplicates. 

 

Statistical analysis  

Statistical analyses were performed with one-way ANOVA, Kruskall Wallis’s test with 

Dunn’s multiple comparison post-test or Mann Whitney’s test, in Prism (GraphPad 

Software). 
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Figure legends 

Figure 1. SARS-CoV-2 induces activation and diversification of primary human 

pDC. Sorted blood pDC from healthy donors were cultured for 24h with either 

Medium, SARS-CoV-2, or Influenza virus A (Flu). (A) Dotplot showing pDC activation 

and diversification through the expression of PD-L1 and CD80 into P1-, P2-, and P3-

subpopulations. (B) Quantification of the three populations. Bars represent medians 

of n=5 healthy donors. *P < 0.05; **P < 0.01; Mann Whitney test. (C) Dotplot showing 

pDC activation from different strains of SARS-CoV-2 isolated from two patients. (D) 

Percentage of live pDC after 24h of culture with either Medium, SARS-CoV-2, or 

Influenza virus A (Flu). (E) Histogram of ACE2-expression on pDC, Vero E6 and 

293T-ACE2 (black) compared to the isotype (light grey). (F) Intracellular production of 

SARS-CoV-2 Ribonucleoprotein in Vero E6 and pDC at 2, 24 or 48h post infection 

(hpi) with SARS-CoV-2. (G) Infectious viral titers in the supernatants of SARS-CoV-2-

infected Vero E6 and pDC at 2, 24, 48 or 72h post infection (hpi). 

 

Figure 2. SARS-CoV-2 induces pDC activation in a dose dependent manner. 

Sorted blood pDC from healthy donors were cultured for 24h with either Medium, 

Influenza virus A (Flu), or SARS-CoV-2 at a MOI of 0.04, 0.2, or 1. (A) Dotplot 

showing pDC activation through the expression of PD-L1 and CD80. (B) 

Quantification of the three populations. Bars represent medians of n=3 healthy 

donors. *P < 0.05; ns: not significant; Mann Whitney test. (C) PDC geometric mean 

(MFI) of activation markers after 24h of culture with either Medium, Influenza virus A, 

or SARS-CoV-2 at a MOI of 1. Histograms represent medians and bars interquartile 



of n=5 healthy donors. *P < 0.05; **P < 0.01; ***P < 0.001; Kruskal-Wallis with Dunn’s 

multiple comparison’s post test.  

 

Figure 3. SARS-CoV-2-activated pDC produce pro-inflammatory cytokines. 

Sorted blood pDC from healthy donors were cultured for 24h or 48h with either 

Medium, Influenza virus A (Flu), or SARS-CoV-2 at a MOI of 1. (A) Quantification of 

pro-inflammatory cytokines at 24h. Bars represent medians of n=5 healthy donors. 

(B) Quantification of pro-inflammatory cytokines at 48h. Bars represent medians of 

n=3 healthy donors. *P < 0.05; **P < 0.01; ns: not significant; Mann Whitney test. 

 

Figure 4. SARS-CoV-2-induced pDC activation is inhibited by 

hydroxychloroquine. Sorted blood pDC from healthy donors were cultured for 24h 

with either Medium, Influenza virus A (Flu), or SARS-CoV-2 at a MOI 1 with or 

without the presence of hydroxychloroquine (HCQ). (A) Dotplot showing pDC 

diversification in P1-, P2-, and P3-subpopulations in the presence of HCQ. (B) 

Quantification of the three populations. (C) Histograms of pDC’s activation markers. 

(D) Geometric mean (MFI) of activation markers. Histograms represent medians and 

bars interquartile of n=3 healthy donors. (E) Quantification of pro-inflammatory 

cytokines production. Bars represent medians of n=3 healthy donors. *P < 0.05; ns: 

not significant; Mann Whitney test. 

 

Figure S1. SARS-CoV-2 induces pDC activation. Sorted blood pDC from healthy 

donors were cultured for 24h with either Medium, SARS-CoV-2, or Influenza virus A 

(Flu). (A) Pourcentage of pure pDC amoung live cells through different sorting 

strategies. (B) P1-, P2- and P3- diversification of fresh, fluorescent sorted pDC 



versus frozen, magnetic sorted pDC with either SARS-CoV-2 or Influenza virus A 

(Flu) for 24h. (C) Dotplot of pDC activation with either free SARS-CoV-2 or pDC co-

culture with SARS-CoV-2 infected cells. (D) Viral RNA copy number in of Vero E6 

and pDC 2, 24 and 48h post infection (hpi). (E) Intracellular production of the 

nucleoprotein antigen (N) on pDC of two healthy donors. 

 

Figure S2. SARS-CoV-2 induces activation and diversification of tonsilar pDCs. 

Sorted blood pDC from healthy donors were cultured for 48h with either Medium, 

SARS-CoV-2, or Influenza virus A (Flu). (A) Dotplot showing pDC activation and 

diversification through the expression of PD-L1 and CD80 at 24h and 48h. (B) 

Geometric mean (MFI) of pDC’s activation markers at 48h. Histograms represent 

medians and bars interquartils of n=3 healthy donors. *P < 0.05; Kruskal-Wallis with 

Dunn’s multiple comparison’s post test. (C) Dotplot of tonsil pDC activation cultured 

for 24h with either Medium, SARS-CoV-2 or Influenza virus A (Flu). (D) Quantification 

of pro-inflammatory cytokines of tonsilar pDC at 24h. Histograms represent medians 

of n=1 healthy donors. 

 

Figure S3. Hydroxichloroquine inhibits SARS-CoV-2-induced pDC activation in 

a dose dependant manner. Sorted blood pDC from healthy donors were cultured for 

24h with either Medium, Influenza virus A (Flu), or SARS-CoV-2 at a MOI 1 with 

hydroxychloroquine (HCQ) or vehicule. (A) Dotplot of pDC diversification with 

increasing concentration of hydroxychloroquine (HCQ) or vehicule. (B) Dotplot 

showing OX40L and CD86 in presence or abscence of HCQ. (C) Pourcentage of 

OX40Lhigh population amoung pDC. Bars represent medians of n=3 healthy donors. 

*P < 0.05; Mann Witney test.   
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Inborn errors of type I IFN immunity in patients
with life-threatening COVID-19
Qian Zhang et al.

INTRODUCTION: Clinical outcomes of human

severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2) infection range from

silent infection to lethal coronavirus disease

2019 (COVID-19). Epidemiological studies have

identified three risk factors for severe disease:

being male, being elderly, and having other

medical conditions. However, interindividual

clinical variability remains huge in each demo-

graphic category. Discovering the root cause

and detailed molecular, cellular, and tissue- and

body-levelmechanismsunderlyinglife-threatening

COVID-19 is of the utmost biological and medical

importance.

RATIONALE:We established the COVIDHuman

Genetic Effort (www.covidhge.com) to test

the general hypothesis that life-threatening

COVID-19 in some or most patients may be

caused by monogenic inborn errors of immu-

nity to SARS-CoV-2 with incomplete or com-

plete penetrance. We sequenced the exome or

genome of 659 patients of various ancestries

with life-threatening COVID-19 pneumonia

and 534 subjectswith asymptomatic or benign

infection.We tested the specific hypothesis that

inborn errors of Toll-like receptor 3 (TLR3)–

and interferon regulatory factor 7 (IRF7)–

dependent type I interferon (IFN) immunity

that underlie life-threatening influenza pneu-

monia also underlie life-threatening COVID-19

pneumonia.We considered three loci identified

as mutated in patients with life-threatening

influenza: TLR3, IRF7, and IRF9. We also con-

sidered 10 loci mutated in patients with other

viral illnesses but directly connected to the three

core genes conferring influenza susceptibility:

TICAM1/TRIF, UNC93B1, TRAF3, TBK1, IRF3,

and NEMO/IKBKG from the TLR3-dependent

type I IFN induction pathway, and IFNAR1,

IFNAR2, STAT1, and STAT2 from the IRF7-

and IRF9-dependent type I IFN amplification

pathway. Finally, we considered variousmodes

of inheritance at these 13 loci.

RESULTS: We found an enrichment in variants

predicted to be loss-of-function (pLOF), with a

minor allele frequency <0.001, at the 13 can-

didate loci in the 659 patients with life-

threatening COVID-19 pneumonia relative to

the 534 subjects with asymptomatic or benign

infection (P = 0.01). Experimental tests for all

118 rare nonsynonymous variants (including

both pLOFand other variants) of these 13 genes

found in patientswith critical disease identified

23 patients (3.5%), aged 17 to 77 years, carrying

24 deleterious variants of eight genes. These

variants underlie autosomal-recessive (AR) defi-

ciencies (IRF7 and IFNAR1) and autosomal-

dominant (AD) deficiencies (TLR3,UNC93B1,

TICAM1,TBK1, IRF3, IRF7, IFNAR1, and IFNAR2)

in four and 19 patients, respectively. These

patients had never been hospitalized for other

life-threatening viral illness. Plasmacytoid den-

dritic cells from IRF7-deficient patients produced

no type I IFN on infectionwith SARS-CoV-2, and

TLR3
−/−

, TLR3
+/−

, IRF7
−/−

, and IFNAR1
−/−

fibro-

blasts were susceptible to SARS-CoV-2 infec-

tion in vitro.

CONCLUSION:At least 3.5%of patientswith life-

threatening COVID-19 pneumonia had known

(AR IRF7 and IFNAR1 deficiencies or AD TLR3,

TICAM1, TBK1, and IRF3 deficiencies) or new

(AD UNC93B1, IRF7, IFNAR1, and IFNAR2

deficiencies) genetic defects at eight of the

13 candidate loci involved in the TLR3- and

IRF7-dependent induction and amplification

of type I IFNs. This discovery reveals essential

roles for both the double-strandedRNA sensor

TLR3 and type I IFN cell-intrinsic immunity in

the control of SARS-CoV-2 infection. Type I IFN

administration may be of therapeutic benefit

in selected patients, at least early in the course

of SARS-CoV-2 infection.▪
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Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment

in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like

receptor 3 (TLR3)– and interferon regulatory factor 7 (IRF7)–dependent type I interferon (IFN) immunity

to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects

with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we

experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies

in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting

this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN

immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.

S
evere acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2) has already

claimed at least 1 million lives, has been

detected in at least 20 million people,

and has probably infected at least anoth-

er 200 million. The clinical manifestations

range from silent infection to lethal disease,

with an infection fatality rate of 0.1 to 0.9%.

Three epidemiological factors increase the

risk of severity: (i) increasing age, decade by

decade, after the age of 50, (ii) being male,

and (iii) having various underlying medical

conditions (1). However, even taking these

factors into account, there is immense inter-

individual clinical variability in each demo-

graphic category considered. Following on

from our human genetic studies of other

severe infectious diseases (2, 3), we established

the COVID Human Genetic Effort (https://

www.covidhge.com) to test the general hy-

pothesis that in somepatients, life-threatening

coronavirus disease 2019 (COVID-19) may be

caused by monogenic inborn errors of immu-

nity to SARS-CoV-2 with incomplete or com-

plete penetrance (4). We enrolled 659 patients

(74.5%men and 25.5%women, 13.9% of whom

died) of various ancestries between 1 month

and 99 years of age (Fig. 1A). These patients

were hospitalized for life-threatening pneumo-

nia caused by SARS-CoV-2 (critical COVID-19).

We sequenced their whole genome (N = 364)

or exome (N = 295), and principal component

analysis (PCA) on these data confirmed their

ancestries (Fig. 1B).

Candidate variants at 13 human loci that

govern immunity to influenza virus

We first tested the specific hypothesis that in-

born errors of Toll-like receptor 3 (TLR3)– and

interferon regulatory factor 7 (IRF7)–dependent

type I interferon (IFN) immunity, which un-

derlie life-threatening influenza pneumonia,

may also underlie life-threatening COVID-19

pneumonia (5) (Fig. 2). We considered three

loci previously shown to bemutated in patients

with critical influenza pneumonia: TLR3 (6),

IRF7 (7), and IRF9 (8). We also considered

10 loci mutated in patients with other viral

illnesses but directly connected to the three

core genes conferring influenza susceptibility:

TICAM1/TRIF (9), UNC93B1 (10), TRAF3 (11),

TBK1 (12), IRF3 (13), andNEMO/IKBKG (14) in

the TLR3-dependent type I IFN induction path-

way, and IFNAR1 (15), IFNAR2 (16), STAT1

(17), and STAT2 (18) in the IRF7- and IRF9-

dependent type I IFN amplification pathway.

We collected both monoallelic and biallelic

nonsynonymous variants with a minor allele

frequency (MAF) <0.001 at all 13 loci. Twelve

of the 13 candidate loci are autosomal, whereas

NEMO is X-linked. For the latter gene, we con-

sidered only a recessive model (19). Autosomal-

dominant (AD) inheritancehas not beenproven

for six of the 12 autosomal loci (UNC93B1, IRF7,

IFNAR1, IFNAR2, STAT2, and IRF9). Never-

theless, we considered heterozygous variants

because none of the patients enrolled had

been hospitalized for critical viral infections

before COVID-19, raising the possibility that

any underlying genetic defects that theymight

have display a lower penetrance for influenza

and other viral illnesses than for COVID-19,

which is triggered by a more virulent virus.

Enrichment of variants predicted to be LOF

at the influenza susceptibility loci

We found four unrelated patients with bial-

lelic variants of IRF7 or IFNAR1 (Table 1 and

table S1). We also found 113 patients carrying

113 monoallelic variants at 12 loci: TLR3 (N = 7

patients/7 variants), UNC93B1 (N = 10/9),

TICAM1 (N = 17/15), TRAF3 (N = 6/6), TBK1

(N = 12/11), IRF3 (N = 5/5), IRF7 (N = 20/13),

IFNAR1 (N = 14/13), IFNAR2 (N = 17/15), STAT1

(N = 4/4), STAT2 (N = 11/11), and IRF9 (N =

4/4). We detected no copy number variation
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Fig. 1. Demographic and genetic data for the COVID-19 cohort. (A) Age and sex distribution of patients with life-threatening COVID-19. (B) PCA of patient (with or
without LOF variants in the 13 candidate genes) and control cohorts (patients with mild or asymptomatic disease and individuals from the 1000 Genomes Project).
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for these 13 genes. Unexpectedly, one of these

variants has been reported in patients with

life-threatening influenza pneumonia (TLR3

p.Pro554Ser) (6, 20) and another was shown

to be both deleterious and dominant-negative

(IFNAR1 p.Pro335del) (21). Nine of the 118

biallelic ormonoallelic variantswere predicted

to be LOF (pLOF), whereas the remaining 109

were missense or in-frame indels (table S1). In

a sample of 534 controls with asymptomatic

ormild SARS-CoV-2 infection, we found only

one heterozygous pLOF variation with aMAF

<0.001 at the 13 loci (IRF7 p.Leu99fs). A PCA-

adjusted burden test on the 12 autosomal

loci revealed significant enrichment in pLOF

variants in patients relative to controls [P =

0.01; odds ratio (OR) = 8.28; 95% confidence

interval (CI) = 1.04 to 65.64] under anADmode

of inheritance. The same analysis performed

on synonymous variants with a MAF <0.001

was not significant (P = 0.19), indicating that

our ethnicity-adjusted burden test was well

calibrated.

Experimentally deleterious alleles at the

influenza susceptibility loci in 3.5%

of patients

We tested these 118 variants experimentally in

ad hoc overexpression systems. We found that

24 variants of eight genes were deleterious

(including all the pLOF variants) because they

were loss-of-expression, LOF, or severely hypo-

morphic: TLR3 (N = 4 variants), UNC93B1

(N = 1), TICAM1 (N = 3), TBK1 (N = 2), IRF3

(N = 2), IRF7 (N = 8), IFNAR1 (N = 3), and

IFNAR2 (N = 1) (table S1, Fig. 3, and figs. S1 to

S8). Consistently, heterozygous LOF variants

of IRF3 and IRF7 were reported in single pa-

tients with life-threatening influenza pneumo-

nia (22, 23). The remaining 94 variants were

biochemically neutral. Twenty-three patients

carried these 24 deleterious variants, resulting

in four autosomal-recessive (AR) deficiencies

(homozygosity or compound heterozygosity
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Molecules in red are encoded by core genes, deleterious variants of which underlie critical influenza
pneumonia with incomplete penetrance; deleterious variants of genes encoding biochemically related molecules in
blue underlie other viral illnesses. Type I IFNs also induce themselves. ISGs, interferon-stimulated genes.

Table 1. Disease-causing variants identified in patients with life-threatening COVID-19.

Gene Inheritance Genetic form Genotype Gender Age [years] Ancestry/residence Outcome

TLR3 AD Known p.Ser339fs/WT M 40 Spain Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TLR3 AD Known p.Pro554Ser/WT M 68 Italy Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TLR3 AD Known p.Trp769*/WT M 77 Italy Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TLR3 AD Known p.Met870Val/WT M 56 Colombia/Spain Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

UNC93B1 AD New p.Glu96*/WT M 48 Venezuela/Spain Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TICAM1 AD Known p.Thr4Ile/WT M 49 Italy Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TICAM1 AD Known p.Ser60Cys/WT F 61 Vietnam/France Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TICAM1 AD Known p.Gln392Lys/WT F 71 Italy Deceased
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TBK1 AD Known p.Phe24Ser/WT F 46 Venezuela/Spain Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TBK1 AD Known p.Arg308*/WT M 17 Turkey Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF3 AD Known p.Glu49del/WT F 23 Bolivia/Spain Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF3 AD Known p.Asn146Lys/WT F 60 Italy Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF7 AR Known p.Pro364fs/p.Pro364fs F 49 Italy/Belgium Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF7 AR Known p.Met371Val/p.Asp117Asn M 50 Turkey Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF7 AD New p.Arg7fs/WT M 60 Italy Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF7 AD New p.Gln185*/WT M 44 France Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF7 AD New p.Pro246fs/WT M 41 Spain Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF7 AD New p.Arg369Gln/WT M 69 Italy Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF7 AD New p.Phe95Ser/WT M 37 Turkey Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IFNAR1 AR Known p.Trp73Cys/Trp73Cys M 38 Turkey Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IFNAR1 AR Known p.Ser422Arg/Ser422Arg M 26 Pakistan/Saudi Arabia Deceased
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IFNAR1 AD New p.Pro335del/WT F 23 China/Italy Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IFNAR2 AD New p.Glu140fs/WT F 54 Belgium Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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Fig. 3. Impact of TLR3, TICAM1, TBK1, IRF3, IRF7, IFNAR1, and IFNAR2

variants on type I IFN signaling. (A) TLR3-deficient P2.1 fibrosarcoma cells
were stably transfected with plasmids expressing WT or mutant forms of TLR3,
and IFNL1 mRNA levels were determined by reverse transcription quantitative
PCR. IFNL1 mRNA levels were expressed relative to the housekeeping gene GUS

and then normalized. IFNL1 was undetectable in unstimulated cells. The differences
between variants andWT were tested using one-way ANOVA (*P < 0.05). (B) TICAM1-
deficient SV40-Fib cells were transiently transfected with WT or mutant forms of
TICAM1, together with an IFN-b luciferase reporter and a constitutively expressed
reporter. Normalized luciferase induction was measured 24 hours after
transfection. The differences between variants and WT were tested using one-way
ANOVA (*P < 0.05). (C) HEK293T cells were transiently transfected with WT
and mutant forms of TBK1, together with an IFN-b luciferase reporter and a
constitutively expressed reporter. Normalized luciferase activity was measured
24 hours after transfection. The differences between variants and WT were tested
using one-way ANOVA (*P < 0.05). (D) IRF3-deficient HEK293T cells were
transiently transfected with WT and mutant forms of IRF3, together with an IFN-b

luciferase reporter and a constitutively expressed reporter. Cells were either
left untreated or infected with Sendai virus for 24 hours before the normalized
measurement of luciferase activity. The differences between variants and WT were
evaluated using two-way ANOVA (*P < 0.05). (E) HEK293T cells were transiently
transfected with WT and mutant forms of IRF7, together with an IFN-b luciferase
reporter and a constitutively expressed reporter. Cells were either left untreated
or infected with Sendai virus for 24 hours before the normalized measurement of
luciferase activity. The differences between variants and WT were tested using
two-way ANOVA (*P < 0.05). (F andG) IFNAR1- or IFNAR2-deficient SV40-Fib cells
were transiently transfected with WT or mutant forms of IFNAR1 for 36 hours,
and either left untreated or stimulated with IFN-a2 or IFN-g. Fluorescence-activated
cell sorting (FACS) staining with anti-p-STAT1 antibody and the z-score of the MFI
were assessed. Asterisks indicate variants with MFI <50% of WT. Variants in red were
identified in COVID-19 patients. Variants in blue are known deleterious variants and
served as negative controls. EV, empty vector; LT, lipofectamine. Three technical
repeats were performed for (A) to (E). Means and SD are shown in the columns and
horizontal bars when appropriate.
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for IRF7; homozygosity for IFNAR1) and 19 AD

deficiencies. These 23 patients did not carry

candidate variants at the other 417 loci known to

underlie inborn errors of immunity (table S2)

(24–26). These findings suggest that at least

23 (3.5%) unrelated patients of the 659 patients

tested suffered from a deficiency at one of eight

loci among the 13 tested: four patients with a

known AR disorder (IRF7 or IFNAR1) (7, 15),

11 with a known AD disorder (TLR3, TICAM1,

TBK1, or IRF3) (6, 9, 12, 13, 20), and eight with

a previously unknown AD genetic disorder

(UNC93B1, IRF7, IFNAR1, or IFNAR2).

Impaired TLR3- and IRF7-dependent type I

immunity in patient cells in vitro

We tested cells from patients with selected

genotypes and showed that PHA-driven T cell

blasts (PHA-T cells) from patients with AR

or AD IRF7 deficiency had low levels of IRF7

expression (Fig. 4A). We then isolated circulat-

ing plasmacytoid dendritic cells (pDCs) from

a patient with AR IRF7 deficiency (fig. S9A)

(7). These cells were present in normal pro-

portions (fig. S9B), but they did not produce

any detectable type I or III IFNs in response to

SARS-CoV-2, as analyzed by cytometric bead

array (CBA), enzyme-linked immunosorbent

assay (ELISA), and RNA sequencing (RNA-

seq) (Fig. 4, B and C). We also showed that

PHA-T cells from a patient with AR IFN-a/b

receptor 1 (IFNAR1) deficiency had impaired

IFNAR1 expression and responses to IFN-a2 or

IFN-b, and that the patient’s SV40-transformed

fibroblast (SV40-Fib) cells did not respond to

IFN-a2 or IFN-b (Fig. 5). We then infected

TLR3
−/−

, TLR3
+/−

, IRF7
−/−

SV40-Fib cells, and

IRF7
−/−

SV40-Fib cells rescued with wild-type

(WT) IRF7; IFNAR1
−/−

SV40-Fib cells, and

IFNAR1
−/−

SV40-Fib cells rescued with WT
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Fig. 4. Type I IFN responses in patient cells defective for IRF7. (A) Levels
of the IRF7 protein in PHA-T cells from two patients with AR IRF7 deficiency
(P1 and P3), one patient with AD IRF7 deficiency (P2), and four healthy donors
(C1 to C4). Cells were either left untreated or stimulated with IFN-a2 for
24 hours, and protein levels were measured by Western blotting. MX1 was used
as a positive control for IFN-a2 treatment. (B) pDCs isolated from an AR IRF7-
deficient patient (P1) and a healthy donor (C1) were either left untreated or

infected with influenza A virus (IAV) or SARS-CoV-2, and RNA-seq was performed.
Genes with expression >2.5-fold higher or lower in C1 after infection are plotted
as the fold change in expression. Red dots are type I IFN genes; blue dots are type III
IFN genes. (C) pDCs isolated from healthy donor C and IRF7-deficient patient
(P1) were either left untreated (Medium) or infected with IAV or SARS-CoV-2,
and the production of IFN-a2 and IFN-l1 was measured by CBA and ELISA,
respectively, on the supernatant. ND, not detected.
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IFNAR1, all of which were previously trans-

duced with angiotensin-converting enzyme 2

(ACE2) and transmembrane protease, serine 2

(TMPRSS2). SARS-CoV-2 infection levels were

higher inmutant cells than in cells fromhealthy

donors, and transduction ofWT IRF7 or IFNAR1

rescued their defects (Fig. 6). Collectively, these

findings showed that AR IRF7 deficiency im-

paired the production of type I IFN by pDCs

stimulated with SARS-CoV-2, whereas AR and

AD deficiencies of TLR3 or AR deficiency of

IFNAR1 impaired fibroblast-intrinsic type I

IFN immunity to SARS-CoV2. They also sug-

gest that heterozygosity for LOF variations at

the other five mutated loci also underlie life-

threatening COVID-19.

Impaired production of type I IFNs in

patients in vivo

We tested whether these genotypes impaired

the production of type I IFN in vivo during the

course of SARS-CoV-2 infection. We measured

the levels of the 13 types of IFN-a in the blood

of patients during the acute phase of COVID-19.

We found that 10 of the 23 patients with

mutations for whom samples were available

(one with AR IRF7 deficiency, four with AD

IRF7 deficiency, one with AD TLR3 deficiency,

two with AD TBK1 deficiency, one with AR

IFNAR1 deficiency, and one with AD TICAM1

deficiency) had serum IFN-a levels <1 pg/ml

(Fig. 7). By contrast, previously published co-

horts of patients hospitalizedwith unexplained,

severe COVID-19 had various serum IFN-a

levels, significantly higher than our 10 patients

[one-way analysis of variance (ANOVA), P =

1.4 × 10
−7
; Fig. 7] (27, 28). Another 29 patients

from our cohort displaying auto-antibodies

(auto-Abs) against type I IFNs, reported in

an accompanying paper, had undetectable

levels of serum IFN-a (29). Moreover, none of

the 23 patients with LOF mutations of the

eight genes had detectable auto-Abs against

type I IFNs (29), strongly suggesting that the

two mechanisms of disease are similar but

independent. Excluding patients with auto-

Abs against type I IFN from the burden test

of pLOF variants at the 12 autosomal loci

strengthened the association signal (P = 0.007;

OR = 8.97; 95% CI = 1.13 to 71.09).

Inborn errors of TLR3- and IRF7-dependent

type I immunity underlie critical COVID-19

Collectively, our data suggest that at least 23 of

the 659 patients with life-threatening COVID-19

pneumonia studied had known (six disorders)

or new (four disorders) genetic defects at eight

loci involved in the TLR3- and IRF7-dependent

induction and amplification of type I IFNs.

This discovery reveals the essential role of

both the double-stranded RNA sensor TLR3

and type I IFN cell-intrinsic immunity in the

control of SARS-CoV-2 infection in the lungs,

consistent with their previously documented

roles in pulmonary immunity to influenza

virus (5–8). These genotypes were silent until

infectionwith SARS-CoV-2. Themost thought-

provoking examples are the AR deficiencies

of IRF7 and IFNAR1. AR IRF7 deficiency was

diagnosed in two individuals aged 49 and

50 years, and AR IFNAR1 deficiency was diag-

nosed in two individuals aged 26 and 38 years,

and none of the four patients had a prior

history of life-threatening infections (Table 1).

One patient with IRF7 deficiency was tested

and was seropositive for several common vi-

ruses, including various influenza A and B vi-

ruses (figs. S10 and S11). These genetic defects

therefore display incomplete penetrance for

influenza respiratory distress and only man-

ifested clinically upon infection with the more

virulent SARS-CoV-2.

Conclusion

The AR form of IFNAR1 deficiency highlights

the importance of type I IFN production rela-

tive to type III IFN production, which is also

impaired by defects of TLR3, IRF7, and IRF9

(5). This conclusion is also supported by our

accompanying report of neutralizing auto-Abs

against type I IFNs, but not type III IFNs, in

other patients with life-threatening COVID-19

pneumonia (29). Inborn errors of TLR3- and
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Fig. 5. Type I IFN responses in patient cells defective for IFNAR1. (A) FACS staining of IFNAR1 on the surface of PHA-T cells from a patient with AR IFNAR1
deficiency (P5) and healthy donors (C1 and C2). (B) PHA-T cells and SV40-Fib from a patient with AR IFNAR1 deficiency (P5) and a healthy donor (C3) were
stimulated with IFN-a2 or IFN-b, and p-STAT1 levels were determined by FACS. Interleukin-27 stimulation served as a positive control on PHA-T cells, whereas IFN-g
stimulation served as a positive control on SV40-Fib cells.
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IRF7-dependent type I IFN immunity at eight

loci were found in asmany as 23 patients (3.5%)

of various ages (17 to 77 years) and ancestries

(various nationalities from Asia, Europe, Latin

America, and the Middle East) and in patients

of both sexes (Table 1). Our findings suggest

that there may be mutations in other type I

IFN–related genes in other patients with life-

threatening COVID-19 pneumonia. They also

suggest that the administration of type I IFN

may be of therapeutic benefit in selected

patients, at least early in the course of SARS-

CoV-2 infection.

Methods

Patients

We included in this study 659 patients with

life-threatening COVID-19 pneumonia, defined

as patients with pneumonia who developed

critical disease, whether pulmonarywithmech-

anical ventilation (CPAP, BIPAP, intubation,

hi-flow oxygen), septic shock, or with any other

organ damage requiring admission to the

intensive care unit. Patients who developed

Kawasaki-like syndrome were excluded. The

age of the patients ranged from 0.1 to 99 years,

with a mean age of 51.8 years (SD 15.9 years),

and 25.5% of the patients were female. As con-

trols, we enrolled 534 individuals infected

with SARS-CoV-2 based on a positive poly-

merase chain reaction (PCR) and/or serologi-

cal test and/or the presence of typical symptoms

such as anosmia or ageusia after exposure to

a confirmed COVID-19 case, who remained

asymptomatic or developed mild, self-healing,

ambulatory disease.

Next-generation sequencing

GenomicDNAwas extracted fromwhole blood.

For the 1193 patients and controls included,

the whole exome (N = 687) or whole genome

(N = 506) was sequenced. We used the Ge-

nome Analysis Software Kit (GATK) (version

3.4-46 or 4) best-practice pipeline to analyze

our whole-exome–sequencing data (30). We

aligned the reads obtained with the human

reference genome (hg19) using the maximum

exact matches algorithm in Burrows–Wheeler

Aligner software (31). PCR duplicates were re-

moved with Picard tools (http://broadinstitute.

github.io/picard/). TheGATKbase quality score

recalibrator was applied to correct sequencing

artifacts.

All of the variants were manually curated

using Integrative Genomics Viewer (IGV) and

confirmed to affect the main functional pro-

tein isoform by checking the protein sequence

before inclusion in further analyzes. The main

functional protein isoforms were TLR3 (NM_

003265), UNC93B1 (NM_030930.4), TICAM1

(NM_182919), TRAF3 (NM_145725.2), TBK1

(NM_013254.4), IRF3 (NM_001571), IRF7 (NM_

001572.5), IFNAR1 (NM_000629.3), IFNAR2

(NM_001289125.3), STAT1 (NM_007315.4), STAT2
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Fig. 6. Cell-intrinsic type I IFN response to SARS-CoV-2. SV40-Fib cells of TLR3−/−, TLR3+/−, IRF7−/−,
and IRF7−/− SV40-Fib cells rescued with WT IRF7; IFNAR1−/− SV40-Fib cells, and IFNAR1−/− SV40-Fib cells
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(NM_005419.4), and IRF9 (NM_006084.5).

The analysis of IKBKG was customized to un-

mask the duplicated region in IKBKG using a

specific pipeline previously described (32). We

searched the next-generation–sequencing data

for deletions in the 13 genes of interest using

both the HMZDelFinder (33) and CANOES

(34) algorithms.

Statistical analysis

We performed an enrichment analysis on our

cohort of 659 patients with life-threatening

COVID-19 pneumonia and 534 SARS-CoV2–

infected controls, focusing on 12 autosomal

IFN-related genes. We considered variants

that were pLOF with a MAF <0.001 (gnomAD

version 2.1.1) after experimentally demonstrat-

ing that all of the pLOF variants seen in the

cases were actually LOF. We compared the

proportion of individuals carrying at least

one pLOF variant of the 12 autosomal genes

in cases and controls by means of logistic re-

gression with the likelihood ratio test. We ac-

counted for the ethnic heterogeneity of the

cohorts by including the first three principal

components of the PCA in the logistic regres-

sion model. PC adjustment is a common and

efficient strategy for accounting for different

ancestries of patients and controls in the study

of rare variants (35–38). We checked that our

adjusted burden test was well calibrated by

also performing an analysis of enrichment in

rare (MAF <0.001) synonymous variants of the

12 genes. PCA was performed with Plink ver-

sion 1.9 software on whole-exome– and whole-

genome–sequencing data and the 1000 Genomes

(1kG) Project phase 3 public database as a

reference, using 27,480 exonic variants with a

MAF >0.01 and a call rate >0.99. The OR was

also estimated by logistic regression and ad-

justed for ethnic heterogeneity.

Reporter assays

Cell lines or SV40-Fib cells with known defects

were transiently or stably transfected with

WT, mutant variants, IFN-b- or ISRE-firefly

luciferase reporter, and pRL-TK-Renilla lucif-

erase reporter. Reporter activity wasmeasured

with the Dual-Luciferase Reporter Assay Sys-

tem (Promega) according to themanufacturer’s

instructions. Firefly luciferase activity was nor-

malized against Renilla luciferase activity and

expressed as a fold change. TRAF3-deficient

human embryonic kidney (HEK) 293T cells

were kindly provided by M. Romanelli (39).

pDC activation by SARS-CoV-2 and

cytokine production

pDCs from an IRF7
−/−

patient and a healthy

donor matched for age and sex were cultured

in the presence of medium alone, influenza

virus (A/PR/8/34, 2 mg/ml; Charles River Lab-

oratories), or the SARS-CoV-2 primary strain

220_95 (GISAID accession ID: EPI_ISL_469284)

at a multiplicity of infection (MOI) of 2. After

12 hours of culture, pDC supernatant was

collected for cytokine quantification. IFN-a2

levels were measured using CBA analyzis (BD

Biosciences) in accordance with the manu-

facturer’s protocol using a 20 pg/ml detection

limit. IFN-l1 secretion was measured in an

ELISA (R&D Systems, DuoSet DY7246), in ac-

cordance with the manufacturer’s instructions.

SARS-CoV-2 infection in patient SV40-Fib

To make patient-derived fibroblasts permis-

sive to SARS-CoV-2 infection, we delivered

human ACE2 and TMPRSS2 cDNA to cells by

lentivirus transductionusing amodifiedSCRPSY

vector (GenBank ID: KT368137.1). SARS-CoV-2

strain USA-WA1/2020 was obtained from BEI

Resources.ACE2/TMPRSS2-transducedcellswere

either left untreated or treated with 500 U/ml

IFN-b (11415-1, PBL Assay Science) 4 hours be-

fore infection. Cells were infected with SARS-

CoV-2 (MOI = 0.5) for 1 hour at 37°C. After

24 hours of infection, cells were fixed and

taken out of the BSL3 for staining.

After fixation, cells were stained with SARS-

CoV-2 and ACE2 primary antibodies (0.5 and

1 mg/ml, respectively). Primary antibodies were

as follows: for SARS-CoV-2, humanmonoclonal

anti-spike-SARS-CoV-2 C121 antibody (40), and

for ACE2,mousemonoclonal Alexa Fluor 488–

conjugated antibody (FAB9332G-100UG,R&DSys-

tems). Imageswere acquiredwith an ImageXpress

Micro XLS microscope (Molecular Devices)

using the 4× objective. MetaXpress software

(Molecular Devices) was used to obtain single-

cell mean fluorescence intensity (MFI) values.

Data analysis on single-cell MFI values was

done in the R environment (version 4.0.2).

ACE2/TMPRSS2-transduced cells were classi-

fied as ACE2 positive when the ACE2 log MFI

was superior to the log mean MFI of mock-

transduced cells plus 2.5 SDs. We excluded

all wells with <150 ACE2-positive cells before

SARS-CoV-2 scoring. ACE2-expressing cells

were classified SARS-CoV-2 positive when the

fluorescence intensity value was superior to
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Fig. 7. In vivo type I

IFN responses to

SARS-CoV-2 infections.

Plasma levels of 13 IFN-a
were measured by
Simoa. Auto-Ab(+) with-
out LOF variants indi-
cates COVID-19 patients
with neutralizing anti-IFN-
a auto-Abs in our
accompanying report
(29). P values indicated
were evaluated using
one-way ANOVA.
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the MFI of mock-infected cells plus 4 SDs.

The median SARS-CoV-2 MFI and percentage

SARS-CoV-2–positive cells were calculated for

each well (independent infection).

Single-molecule array (Simoa) IFN-a

digital ELISA

Serum IFN-a concentrations were deter-

mined using Simoa technology, with reagents

and procedures obtained from Quanterix Cor-

poration (Quanterix SimoaTM IFNa Reagent

Kit, Lexington, MA, USA). According to the

manufacturer’s instructions, the working dilu-

tions were 1:2 for all sera in working volumes

of 170 ml.

REFERENCES AND NOTES

1. D. M. Morens, A. S. Fauci, Emerging pandemic diseases: How
we got to COVID-19. Cell 182, 1077–1092 (2020). doi: 10.1016/
j.cell.2020.08.021; pmid: 32846157

2. J. L. Casanova, L. Abel, Lethal Infectious Diseases as Inborn
Errors of Immunity: Toward a Synthesis of the Germ and
Genetic Theories. Annu. Rev. Pathol. (2020). pmid: 32289233

3. J. L. Casanova, L. Abel, The human genetic determinism of life-
threatening infectious diseases: Genetic heterogeneity and
physiological homogeneity? Hum. Genet. 139, 681–694 (2020).
doi: 10.1007/s00439-020-02184-w; pmid: 32462426

4. J. L. Casanova, H. C. Su; COVID Human Genetic Effort, A global
effort to define the human genetics of protective immunity to
SARS-CoV-2 infection. Cell 181, 1194–1199 (2020).
doi: 10.1016/j.cell.2020.05.016; pmid: 32405102

5. Q. Zhang, Human genetics of life-threatening influenza
pneumonitis. Hum. Genet. 139, 941–948 (2020). doi: 10.1007/
s00439-019-02108-3; pmid: 32025908

6. H. K. Lim et al., Severe influenza pneumonitis in children with
inherited TLR3 deficiency. J. Exp. Med. 216, 2038–2056
(2019). doi: 10.1084/jem.20181621; pmid: 31217193

7. M. J. Ciancanelli et al., Life-threatening influenza and impaired
interferon amplification in human IRF7 deficiency. Science 348,
448–453 (2015). doi: 10.1126/science.aaa1578; pmid: 25814066

8. N. Hernandez et al., Life-threatening influenza pneumonitis
in a child with inherited IRF9 deficiency. J. Exp. Med. 215,
2567–2585 (2018). doi: 10.1084/jem.20180628;
pmid: 30143481

9. V. Sancho-Shimizu et al., Herpes simplex encephalitis in
children with autosomal recessive and dominant TRIF
deficiency. J. Clin. Invest. 121, 4889–4902 (2011).
doi: 10.1172/JCI59259; pmid: 22105173

10. A. Casrouge et al., Herpes simplex virus encephalitis in
human UNC-93B deficiency. Science 314, 308–312 (2006).
doi: 10.1126/science.1128346; pmid: 16973841

11. R. Pérez de Diego et al., Human TRAF3 adaptor molecule
deficiency leads to impaired Toll-like receptor 3 response
and susceptibility to herpes simplex encephalitis. Immunity

33, 400–411 (2010). doi: 10.1016/j.immuni.2010.08.014;
pmid: 20832341

12. M. Herman et al., Heterozygous TBK1 mutations impair TLR3
immunity and underlie herpes simplex encephalitis of
childhood. J. Exp. Med. 209, 1567–1582 (2012). doi: 10.1084/
jem.20111316; pmid: 22851595

13. L. L. Andersen et al., Functional IRF3 deficiency in a patient
with herpes simplex encephalitis. J. Exp. Med. 212, 1371–1379
(2015). doi: 10.1084/jem.20142274; pmid: 26216125

14. M. Audry et al., NEMO is a key component of NF-kB- and
IRF-3-dependent TLR3-mediated immunity to herpes simplex
virus. J. Allergy Clin. Immunol. 128, 610–617.e4 (2011).
doi: 10.1016/j.jaci.2011.04.059; pmid: 21722947

15. N. Hernandez et al., Inherited IFNAR1 deficiency in otherwise
healthy patients with adverse reaction to measles and yellow
fever live vaccines. J. Exp. Med. 216, 2057–2070 (2019).
doi: 10.1084/jem.20182295; pmid: 31270247

16. C. J. Duncan et al., Human IFNAR2 deficiency: Lessons for
antiviral immunity. Sci. Transl. Med. 7, 307ra154 (2015).
doi: 10.1126/scitranslmed.aac4227; pmid: 26424569

17. S. Dupuis et al., Impaired response to interferon-alpha/beta
and lethal viral disease in human STAT1 deficiency. Nat. Genet.
33, 388–391 (2003). doi: 10.1038/ng1097; pmid: 12590259

18. S. Hambleton et al., STAT2 deficiency and susceptibility to
viral illness in humans. Proc. Natl. Acad. Sci. U.S.A. 110,
3053–3058 (2013). doi: 10.1073/pnas.1220098110;
pmid: 23391734

19. R. Döffinger et al., X-linked anhidrotic ectodermal dysplasia
with immunodeficiency is caused by impaired NF-kappaB
signaling. Nat. Genet. 27, 277–285 (2001). doi: 10.1038/85837;
pmid: 11242109

20. S. Y. Zhang et al., TLR3 deficiency in patients with herpes
simplex encephalitis. Science 317, 1522–1527 (2007).
doi: 10.1126/science.1139522; pmid: 17872438

21. G. Zhang et al., A proline deletion in IFNAR1 impairs IFN-
signaling and underlies increased resistance to tuberculosis in
humans. Nat. Commun. 9, 85 (2018). doi: 10.1038/s41467-017-
02611-z; pmid: 29311663

22. M. M. Thomsen et al., Identification of an IRF3 variant and
defective antiviral interferon responses in a patient with severe
influenza. Eur. J. Immunol. 49, 2111–2114 (2019). doi: 10.1002/
eji.201848083; pmid: 31250433

23. M. M. Thomsen et al., Defective interferon priming and
impaired antiviral responses in a patient with an IRF7 variant
and severe influenza. Med. Microbiol. Immunol. (Berl.)
208, 869–876 (2019). doi: 10.1007/s00430-019-00623-8;
pmid: 31172279

24. S. G. Tangye et al., Human inborn errors of immunity: 2019
update on the classification from the International Union of
Immunological Societies Expert Committee. J. Clin. Immunol.

40, 24–64 (2020). doi: 10.1007/s10875-019-00737-x;
pmid: 31953710

25. A. Bousfiha et al., Human Inborn Errors of Immunity: 2019
Update of the IUIS Phenotypical Classification. J. Clin.
Immunol. 40, 66–81 (2020). doi: 10.1007/s10875-020-
00758-x; pmid: 32048120

26. L. D. Notarangelo, R. Bacchetta, J.-L. Casanova, H. C. Su,
Human inborn errors of immunity: An expanding universe.
Sci. Immunol. 5, eabb1662 (2020). doi: 10.1126/sciimmunol.
abb1662; pmid: 32651211

27. J. Hadjadj et al., Impaired type I interferon activity and
inflammatory responses in severe COVID-19 patients.
Science 369, 718–724 (2020). doi: 10.1126/science.abc6027;
pmid: 32661059

28. S. Trouillet-Assant et al., Type I IFN immunoprofiling in
COVID-19 patients. J. Allergy Clin. Immunol. 146, 206–208.e2
(2020). doi: 10.1016/j.jaci.2020.04.029; pmid: 32360285

29. P. Bastard et al., Auto-antibodies against type I IFNs in patients
with life-threatening COVID-19. Science 10.1126/science.
abd4585 (2020).

30. M. A. DePristo et al., A framework for variation discovery
and genotyping using next-generation DNA sequencing
data. Nat. Genet. 43, 491–498 (2011). doi: 10.1038/ng.806;
pmid: 21478889

31. H. Li, R. Durbin, Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics 25,
1754–1760 (2009). doi: 10.1093/bioinformatics/btp324;
pmid: 19451168

32. B. Boisson et al., Rescue of recurrent deep intronic mutation
underlying cell type-dependent quantitative NEMO deficiency.
J. Clin. Invest. 129, 583–597 (2019). doi: 10.1172/JCI124011;
pmid: 30422821

33. T. Gambin et al., Homozygous and hemizygous CNV detection
from exome sequencing data in a Mendelian disease cohort.
Nucleic Acids Res. 45, 1633–1648 (2017). pmid: 27980096

34. D. Backenroth et al., CANOES: Detecting rare copy
number variants from whole exome sequencing data.
Nucleic Acids Res. 42, e97 (2014). doi: 10.1093/nar/gku345;
pmid: 24771342

35. M. Bouaziz, J. Mullaert, B. Bigio, Y. Seeleuthner, J.-L. Casanova,
A. Alcais, L. Abel, A. Cobat, Controlling for human population
stratification in rare variant association studies. bioRxiv
969477 [Preprint]. 28 February 2020. .doi: 10.1101/
2020.02.28.969477

36. E. Persyn, R. Redon, L. Bellanger, C. Dina, The impact of a
fine-scale population stratification on rare variant association
test results. PLOS ONE 13, e0207677 (2018). doi: 10.1371/
journal.pone.0207677; pmid: 30521541

37. Y. Zhang, X. Shen, W. Pan, Adjusting for population
stratification in a fine scale with principal components and
sequencing data. Genet. Epidemiol. 37, 787–801 (2013).
doi: 10.1002/gepi.21764; pmid: 24123217

38. S. Boisson-Dupuis et al., Tuberculosis and impaired
IL-23-dependent IFN-g immunity in humans homozygous for a
common TYK2 missense variant. Sci. Immunol. 3, eaau8714
(2018). doi: 10.1126/sciimmunol.aau8714; pmid: 30578352

39. S. Fochi et al., TRAF3 Is Required for NF-kB Pathway
Activation Mediated by HTLV Tax Proteins. Front. Microbiol. 10,
1302 (2019). doi: 10.3389/fmicb.2019.01302; pmid: 31244811

40. D. F. Robbiani et al., Convergent antibody responses to
SARS-CoV-2 in convalescent individuals. Nature 584,
437–442 (2020). doi: 10.1038/s41586-020-2456-9;
pmid: 32555388

41. Q. Zhang, P. Bastard, Z. Liu, J. Le Pen, M. Moncada-Velez, J. Chen,
M. Ogishi, I. K. D. Sabli, S. Hodeib, C. Korol, J. Rosain, K. Bilguvar,
J. Ye, A. Bolze, B. Bigio, R. Yang, A. Augusto Arias Sierra,
Q. Zhou, Y. Zhang, F. Onodi, S. Korniotis, L. Karpf, Q. Philippot,
M. Chbihi, L. Bonnet-Madin, K. Dorgham, N. Smith,
W. M. Schneider, B. S. Razooky, H.-H. Hoffmann, E. Michailidis,
L. Moens, J. E. Han, L. Lorenzo, L. Bizien, P. Meade, A.-L. Neehus,
A. C. Ugurbil, A. Corneau, G. Kerner, P. Zhang, F. Rapaport,
Y. Seeleuthner, J. Manry, C. Masson, Y. Schmitt, A. Schlüter,
T. Le Voyer, T. Khan, J. Li, J. Fellay, L. Roussel, M. Shahrooei,
M. F. Alosaimi, D. Mansouri, H. Al-Saud, F. Al-Mulla, F. Almourfi,
S. Z. Al-Muhsen, F. Alsohime, S. Al Turki, R. Hasanato,
D. van de Beek, A. Biondi, L. R. Bettini, M. D’Angio, P. Bonfanti,
L. Imberti, A. Sottini, S. Paghera, E. Quiros-Roldan, C. Rossi,
A. J. Oler, M. F. Tompkins, C. Alba, I. Vandernoot, J.-C. Goffard,
G. Smits, I. Migeotte, F. Haerynck, P. Soler-Palacin, A.Martin-Nalda,
R. Colobran, P.-E. Morange, S. Keles, F. Çölkesen, T. Ozcelik,
K. K. Yasar, S. Senoglu, Ş. N. Karabela, C. Rodríguez-Gallego,
G. Novelli, S. Hraiech, Y. Tandjaoui-Lambiotte, X. Duval,
C. Laouenan, COVID-STORM Clinicians, COVID Clinicians, Imagine
COVID Group, French COVID Cohort Study Group, CoV-Contact
Cohort, AmsterdamUMCCovid-19 Biobank, COVID HumanGenetic
Effort, NIAID-USUHS/TAGC COVID Immunity Group, A. L. Snow,
C. L. Dalgard, J. Milner, D. C. Vinh, T. H. Mogensen, N. Marr,
A. N. Spaan, B. Boisson, S. Boisson-Dupuis, J. Bustamante, A. Puel,
M. Ciancanelli, I. Meyts, T. Maniatis, V. Soumelis, A. Amara,
M. Nussenzweig, A. García-Sastre, F. Krammer, A. Pujol, D. Duffy,
R. Lifton, S.-Y. Zhang, G. Gorochov, V. Béziat, E. Jouanguy,
V. Sancho-Shimizu, C. M. Rice, L. Abel, L. D. Notarangelo, A. Cobat,
H. C. Su, J.-L. Casanova, Detailed genotype counts for all coding
variants for: Inborn errors of type I IFN immunity in patients with
life-threatening COVID-19, Dryad (2020). doi: 10.5061/
dryad.8pk0p2nkk

ACKNOWLEDGMENTS

We thank the patients, their families, and healthy donors for
placing their trust in us; Y. Nemirowskaya, D. Papandrea,
M. Woollet, D. Liu, C. Rivalain, and C. Patissier for administrative
assistance; A. Adeleye, D. Bacikova, E. McGrath Martinez,
A. R. Soltis, K. Dobbs, J. Danielson, H. Matthews, and S. Weber
for technical and other assistance; M. M. A. Ata and F. Al Ali for
their contribution to VirScan experiments; S. Elledge (Brigham and
Women’s Hospital and Harvard Medical School, Boston, MA) for
kindly providing the VirScan phage library used in this study;
A. W. Ashbrook, the BSL3 manager of the Rice laboratory assistance;
M. Lazzaro, Director of Immigration and Academic Appointments,
for assistance; W. Chung, K. Kiryluk, S. O'Byrne, D. Pendrick,
J. Williamson, C. Andrews, and M. Disco in the J.M. lab for assistance;
M. Andreoni (Tor Vergata, Italy) for his clinical contribution; and
A. Novelli (Bambino Gesù Hospital, Italy) for his collaboration. We
thank the GEN-COVID Multicenter study (https://sites.google.
com/dbm.unisi.it/gen-covid). This study used the high-performance
computational resources of the National Institutes of Health
(NIH) HPC Biowulf cluster (http://hpc.nih.gov) and the Office of
Cyber Infrastructure and Computational Biology (OCICB) High
Performance Computing (HPC) cluster at the National Institute of
Allergy and Infectious Diseases (NIAID), Bethesda, MD. The
opinions and assertions expressed herein are those of the authors
and are not to be construed as reflecting the views of the
Uniformed Services University of the Health Sciences (USUHS) or
the U.S. Department of Defense (DoD). Funding: This work was
supported by a generous donation from the Fisher Center for
Alzheimer’s Research Foundation. The Laboratory of Human
Genetics of Infectious Diseases is supported by the Howard
Hughes Medical Institute, the Rockefeller University, the St. Giles
Foundation, the NIH (R01AI088364), the National Center for
Advancing Translational Sciences (NCATS), the NIH Clinical and
Translational Science Award (CTSA) program (UL1 TR001866), a
Fast Grant from Emergent Ventures, Mercatus Center at George
Mason University, the Yale Center for Mendelian Genomics and the
GSP Coordinating Center funded by the National Human Genome
Research Institute (NHGRI) (UM1HG006504 and U24HG008956),
the French National Research Agency (ANR) under the
“Investments for the Future” program (ANR-10-IAHU-01), the
Integrative Biology of Emerging Infectious Diseases Laboratory of
Excellence (ANR-10-LABX-62-IBEID), the French Foundation for

Zhang et al., Science 370, eabd4570 (2020) 23 October 2020 9 of 13

RESEARCH | RESEARCH ARTICLE

o
n
 O

c
to

b
e
r 2

9
, 2

0
2
0

 
h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 



Medical Research (FRM) (EQU201903007798), the FRM and ANR
GENCOVID project, ANRS-COV05, the Square Foundation,
Grandir–Fonds de Solidarité pour l’Enfance, the SCOR Corporate
Foundation for Science, Institut National de la Santé et de la
Recherche Médicale (INSERM), the University of Paris. The French
COVID Cohort study group was sponsored by Inserm and
supported by the REACTing consortium and by a grant from the
French Ministry of Health (PHRC 20-0424). Regione Lombardia,
Italy (project “Risposta immune in pazienti con COVID-19 e co-
morbidità”), and the Intramural Research Program of the NIAID,
NIH. The laboratory of Genomes & Cell Biology of Disease is
supported by “Integrative Biology of Emerging Infectious Diseases”
(grant no. ANR-10-LABX-62-IBEID), the “Fondation pour la
Recherche Medicale” (grant FRM–EQU202003010193), the
“Agence Nationale de la Recherche” (ANR FLASH COVID project
IDISCOVR cofounded by the “Fondation pour la Recherche
Médicale”), University of Paris (“Plan de Soutien Covid-19”:
RACPL20FIR01-COVID-SOUL). I.M. is a senior clinical investigator
with the FWO Vlaanderen; I.M. and L.M. are supported by FWO
G0C8517N – GOB5120N. The VS team was supported by “Agence
Nationale de la Recherche” (ANR-17-CE15-0003, ANR-17-CE15-
0003-01) and by Université de Paris “PLAN D’URGENCE COVID19”.
L.K. was supported by a fellowship from the French Ministry of
Research. V.S.-S. is supported by a UKRI Future Leaders
Fellowship (MR/S032304/1). S.Z.A.-M. is supported by the Elite
Journals Program at King Saud University through grant no.
PEJP-16-107. The J.M. laboratory is supported by Columbia
University COVID biobank and grant no. UL1TR001873. Work in the
Laboratory of Virology and Infectious Disease was supported by
NIH grants P01AI138398-S1, 2U19AI111825, and R01AI091707-
10S1; a George Mason University Fast Grant; and the G. Harold and
Leila Y. Mathers Charitable Foundation. J.L.P. is supported by a
European Molecular Biology Organization Long-Term Fellowship
(ALTF 380-2018). Work at the Neurometabolic Diseases
Laboratory received funding from the European Union’s Horizon
2020 research and innovation program under grant no. 824110
(EasiGenomics grant no. COVID-19/PID12342) to A.P., and Roche
and Illumina Covid Match Funds to M.G.. C.R.G. and colleagues are
supported by Instituto de Salud Carlos III (COV20_01333 and
COV20_01334), Spanish Ministry of Science and Innovation, with
the funding of European Regional Development Fund-European
Social Fund -FEDER-FSE; (RTC-2017-6471-1; AEI/FEDER, UE), and
Cabildo Insular de Tenerife (CGIEU0000219140 and “Apuestas
científicas del ITER para colaborar en la lucha contra la
COVID-19”). D.C.V. is supported by the Fonds de la recherche en
santé du Québec clinician-scientist scholar program. H.S. is
adjunct faculty at the University of Pennsylvania. A.-L.N. was
supported by the Foundation Bettencourt Schueller. The
Amsterdam UMC Covid-19 Biobank was funded by the Netherlands
Organization for Health Research and Development (ZonMw,
NWO-vici 91819627), The Corona Research Fund (Amsterdam UMC),
Dr. J. C. Vaillantfonds, and Amsterdam UMC. Work on COVID-19 at
the A.G.-S. laboratory is partly supported by NIH supplements to
grants U19AI135972, U19AI142733, and R35 HL135834, and to
contract HHSN272201800048C, by a DoD supplement to grant
W81XWH-20-1-0270, by DARPA project HR0011-19-2-0020, by CRIP
(Center for Research on Influenza Pathogenesis), a NIAID funded
Center of Excellence for Influenza Research and Surveillance (CEIRS,
contract HHSN272201400008C), by an NIAID funded Collaborative
Influenza Vaccine Innovation Center (SEM-CIVIC, contract
75N93019C00051) and by the generous support of the JPB
Foundation, the Open Philanthropy Project (research grant
2020-215611(5384)) and anonymous donors. The Virscan analysis
presented in fig. S11 was performed with financial support from
Sidra Medicine. J.R.H. is supported by Biomedical Advanced Research
and Development Authority under Contract (HHSO10201600031C).
Author contributions: A.G., A.A., A.A.A., A.L.S., A.-L.N.,
A.C., A.C., A.P., B.B., B.S.R., C.A., C.M., C.K., C.L., C.M.R., C.L.D.,
D.D., E.M., E.J., F.A., F.A-M., F.O., F.A., F.K., G.N., G.S., G.G., H.-H.H.,
H.K.A.S., H.S., I.K.D.S., I.M., J.L.P., J.R., J.E.H., J.C., J.M., J.Y., K.D.,
K.B., L.A., L.L.-D., L.K., L.M., L.B-M., L.B., L.D.N., M.M-V., M.C., M.O.,
M.C., M.N., M.F.T., M.S., M.F.A., N.M., N.S., P.B., P.M., Q.Z., Q.Z., Q.P.,
R.L., R.Y., S.A.T., S.Z.A-M., S.H., S.K., S.H., S.B.-D., T.K., T.M.,
T.H.M., V.S.-S., V.S., V.B., W.S., X.D., Y.S., and Z.L. either performed
or supervised experiments, generated and analyzed data, and
contributed to the manuscript. A.S., A.C.U., A.B., A.O., A.P., B.B., D.V.
D.B., F.R., G.K., J.M., P.Z., S-Y.Z., T.L.-V., Y.S., and Y.Z. performed
computational analysis. A.S., A.N.S., A.M.-N., A.B., C.R., D.M., D.C.V.,
E.Q.-R., F.H., I.M., I.V., J.B., J.-C.G., L.R.B., L.R., L.I., M.D., P.B., P.S.-P.,
P.-E.M., R.H., R.C., S.K., S.P., T.O., Y.T.-L., K.K., S.S., J.F., and S.N.K.
evaluated and recruited patients to COVID and/or control cohorts.
Q.Z. and J.-L.C. wrote the manuscript. All authors edited the
manuscript. J.-L.C. supervised the project. Competing interests:

The authors declare no competing financial interests. J.-L.C. is
listed as an inventor on patent application US63/055,155 filed by
The Rockefeller University that encompasses aspects of this
publication. R.L. is a non-executive director of Roche and its
subsidiary Genentech. Data and materials availability: Plasma,
cells, and genomic DNA are available from J.-L.C. or D.V. under a
material transfer agreement with Rockfeller University/Research
Institute-McGill University Health Centre. pSCRPSY_TMPRSS2-
2A-NeoR_ACE2 and Huh-7.5 cells are available upon request from
C.R. under a material transfer agreement with The Rockefeller
University, or The Rockefeller University and Apath, LLC,
respectively. Clinical data, DNA, and other patient samples are
available from the Amsterdam UMC Covid-19 Biobank (D.v.d.B.)
under a material transfer agreement with Amsterdam UMC.
Material and reagents used are almost exclusively commercially
available and nonproprietary. Requests for materals derived from
human samples may be made available, subject to any underlying
restrictions on such samples. J.-L.C. can make material transfer
agreements available through The Rockefeller University. Detailed
genotype counts for all coding variants in the genes investigated in
this manuscript are available at Dryad (41). The whole-genome
sequencing datasets used for the analyses, including critical
patients and asymptomatic controls described in this manuscript,
were deposited in dbGaP under accession number phs002245.v1.
p1. All other data are available in the manuscript or the
supplementary material. This work is licensed under a Creative
Commons Attribution 4.0 International (CC BY 4.0) license, which
permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited. To view a
copy of this license, visit https://creativecommons.org/licenses/
by/4.0/. This license does not apply to figures/photos/artwork or
other content included in the article that is credited to a third
party; obtain authorization from the rights holder before using
such material.

COVID-STORM Clinicians Giuseppe Foti1, Giacomo Bellani1,
Giuseppe Citerio1, Ernesto Contro1, Alberto Pesci2,
Maria Grazia Valsecchi3, Marina Cazzaniga4

1Department of Emergency, Anesthesia and Intensive Care, School
of Medicine and Surgery, University of Milano-Bicocca, San
Gerardo Hospital, Monza, Italy. 2Department of Pneumology,
School of Medicine and Surgery, University of Milano-Bicocca,
San Gerardo Hospital, Monza, Italy. 3Center of Bioinformatics and
Biostatistics, School of Medicine and Surgery, University of
Milano-Bicocca, San Gerardo Hospital, Monza, Italy. 4Phase I
Research Center, School of Medicine and Surgery, University of
Milano-Bicocca, San Gerardo Hospital, Monza, Italy.

COVID Clinicians Jorge Abad1, Sergio Aguilera-Albesa2,
Ozge Metin Akcan3, Ilad Alavi Darazam4, Juan C. Aldave5,
Miquel Alfonso Ramos6, Seyed Alireza Nadji7, Gulsum Alkan8,
Jerome Allardet-Servent9, Luis M. Allende10, Laia Alsina11,
Marie-Alexandra Alyanakian12, Blanca Amador-Borrero13,
Zahir Amoura14, Arnau Antolí15, Sevket Arslan16, Sophie Assant17,
Terese Auguet18, Axelle Azot19, Fanny Bajolle20, Aurélie Baldolli21,
Maite Ballester22, Hagit Baris Feldman23, Benoit Barrou24,
Alexandra Beurton25, Agurtzane Bilbao26, Geraldine Blanchard-Rohner27,
Ignacio Blanco1, Adeline Blandinières28, Daniel Blazquez-Gamero29,
Marketa Bloomfield30, Mireia Bolivar-Prados31, Raphael Borie32,
Cédric Bosteels33, Ahmed A. Bousfiha34, Claire Bouvattier35,
Oksana Boyarchuk36, Maria Rita P. Bueno37, Jacinta Bustamante20,
Juan José Cáceres Agra38, Semra Calimli39, Ruggero Capra40,
Maria Carrabba41, Carlos Casasnovas42, Marion Caseris43,
Martin Castelle44, Francesco Castelli45, Martín Castillo de Vera46,
Mateus V. Castro37, Emilie Catherinot47, Martin Chalumeau48,
Bruno Charbit49, MatthewP. Cheng50, Père Clavé31, Bonaventura Clotet51,
Anna Codina52, Fatih Colkesen53, Fatma Çölkesen54, Roger Colobran55,
Cloé Comarmond56, David Dalmau57, David Ross Darley58,
Nicolas Dauby59, Stéphane Dauger60, Loic de Pontual61, Amin Dehban62,
Geoffroy Delplancq63, Alexandre Demoule64, Jean-Luc Diehl65,
Stephanie Dobbelaere66, Sophie Durand67, Waleed Eldars68,
Mohamed Elgamal69, Marwa H. Elnagdy70, Melike Emiroglu71,
Emine Hafize Erdeniz72, Selma Erol Aytekin73, Romain Euvrard74,
Recep Evcen75, Giovanna Fabio41, Laurence Faivre76, Antonin Falck43,
Muriel Fartoukh77, Morgane Faure78, Miguel Fernandez Arquero79,
Carlos Flores80, Bruno Francois81, Victoria Fumadó82, Francesca Fusco83,
Blanca Garcia Solis84, Pascale Gaussem85, Juana Gil-Herrera86,
Laurent Gilardin87, Monica Girona Alarcon88, Mònica Girona-Alarcón88,
Jean-Christophe Goffard89, Funda Gok90, Rafaela González-Montelongo91,
Antoine Guerder92, Yahya Gul93, Sukru Nail Guner93, Marta Gut94,
Jérôme Hadjadj95, Filomeen Haerynck96, Rabih Halwani97,
Lennart Hammarström98, Nevin Hatipoglu99, Elisa Hernandez-Brito100,

Cathérine Heijmans101, María Soledad Holanda-Peña102,
Juan Pablo Horcajada103, Levi Hoste104, Eric Hoste105, Sami Hraiech106,
Linda Humbert107, Alejandro D. Iglesias108, Antonio Íñigo-Campos91,
Matthieu Jamme109, María Jesús Arranz110, Iolanda Jordan111,
Philippe Jorens112, Fikret Kanat113, Hasan Kapakli114, Iskender Kara115,
Adem Karbuz116, Kadriye Kart Yasar117, Sevgi Keles118,
Yasemin Kendir Demirkol119, Adam Klocperk120, Zbigniew J. Król121,
Paul Kuentz122, Yat Wah M. Kwan123, Jean-Christophe Lagier124,
Bart N. Lambrecht33, Yu-Lung Lau125, Fleur Le Bourgeois60,
Yee-Sin Leo126, Rafael Leon Lopez127, Daniel Leung125, Michael Levin128,
Michael Levy60, Romain Lévy20, Zhi Li49, Agnes Linglart129,
Bart Loeys130, José M. Lorenzo-Salazar91, Céline Louapre131,
Catherine Lubetzki131, Charles-Edouard Luyt132, David C. Lye133,
Davood Mansouri134, Majid Marjani135, Jesus Marquez Pereira136,
Andrea Martin137, David Martínez Pueyo138, Javier Martinez-Picado139,
Iciar Marzana140, Alexis Mathian14, Larissa R. B. Matos37,
Gail V. Matthews141, Julien Mayaux142, Jean-Louis Mège143,
Isabelle Melki144, Jean-François Meritet145, Ozge Metin146,
Isabelle Meyts147, Mehdi Mezidi148, Isabelle Migeotte149,
Maude Millereux150, Tristan Mirault151, Clotilde Mircher67,
Mehdi Mirsaeidi152, Abián Montesdeoca Melián153,
Antonio Morales Martinez154, Pierre Morange155, Clémence Mordacq107,
Guillaume Morelle156, Stéphane Mouly13, Adrián Muñoz-Barrera91,
Leslie Naesens157, Cyril Nafati158, João Farela Neves159, Lisa FP. Ng160,
Yeray Novoa Medina161, Esmeralda Nuñez Cuadros162,
J. Gonzalo Ocejo-Vinyals163, Zerrin Orbak164, Mehdi Oualha20,
Tayfun Özçelik165, Qiang Pan-Hammarström166, Christophe Parizot142,
Tiffany Pascreau167, Estela Paz-Artal168, Sandra Pellegrini49,
Rebeca Pérez de Diego84, Aurélien Philippe169, Quentin Philippot77,
Laura Planas-Serra170, Dominique Ploin171, Julien Poissy172,
Géraldine Poncelet43, Marie Pouletty173, Paul Quentric142,
Didier Raoult143, Anne-Sophie Rebillat67, Ismail Reisli174, Pilar Ricart175,
Jean-Christophe Richard176, Nadia Rivet28, Jacques G. Rivière177,
GemmaRocamora Blanch15, Carlos Rodrigo1, Carlos Rodriguez-Gallego178,
Agustí Rodríguez-Palmero179, Carolina Soledad Romero180,
Anya Rothenbuhler181, Flore Rozenberg182, Maria Yolanda Ruiz del Prado183,
Joan Sabater Riera15, Oliver Sanchez184, Silvia Sánchez-Ramón185,
Agatha Schluter170, Matthieu Schmidt186, Cyril E. Schweitzer187,
Francesco Scolari188, Anna Sediva189, Luis M. Seijo190, Damien Sene13,
Sevtap Senoglu117, Mikko R. J. Seppänen191, Alex Serra Ilovich192,
Mohammad Shahrooei62, Hans Slabbynck193, David M. Smadja194, Ali
Sobh195, Xavier Solanich Moreno15, Jordi Solé-Violán196, Catherine Soler197,
Pere Soler-Palacín137, Yuri Stepanovskiy198, Annabelle Stoclin199,
Fabio Taccone149, Yacine Tandjaoui-Lambiotte200, Jean-Luc Taupin201,
Simon J. Tavernier202, Benjamin Terrier203, Caroline Thumerelle107,
Gabriele Tomasoni204, Julie Toubiana48, Josep Trenado Alvarez205,
Sophie Trouillet-Assant206, Jesús Troya207, Alessandra Tucci208,
Matilde Valeria Ursini83, Yurdagul Uzunhan209, Pierre Vabres210,
Juan Valencia-Ramos211, Eva Van Braeckel33, Stijn Van de Velde212,
Ana Maria Van Den Rym84, Jens Van Praet213, Isabelle Vandernoot214,
Hulya Vatansev215, Valentina Vélez-Santamaria42, Sébastien Viel171,
Cédric Vilain216, Marie E. Vilaire67, Audrey Vincent35, GuillaumeVoiriot217,
Fanny Vuotto107, Alper Yosunkaya90, Barnaby E. Young126,
Fatih Yucel218, Faiez Zannad219, Mayana Zatz37, Alexandre Belot220*

1University Hospital and Research Institute “Germans Trias i Pujol,”
Badalona, Spain. 2Navarra Health Service Hospital, Pamplona,
Spain. 3Division of Pediatric Infectious Diseases, Necmettin
Erbakan University, Meram Medical Faculty, Konya, Turkey.
4Department of Infectious Diseases, Loghman Hakim Hospital,
Shahid Beheshti University of Medical Sciences, Tehran, Iran.
5Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru. 6Parc
Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain. 7Virology
Research Center, National Institutes of Tuberculosis and Lung
Diseases, Shahid Beheshti University of Medical Sciences, Tehran,
Iran. 8Division of Pediatric Infectious Diseases, Faculty of Medicine,
Selcuk University, Konya, Turkey. 9Intensive Care Unit, Hôpital
Européen, Marseille, France. 10Immunology Department, University
Hospital 12 de Octubre, Research Institute imas12, and Complu-
tense University, Madrid, Spain. 11Clinical Immuology and Primary
Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona,
Spain. 12Department of Biological Immunology, Necker Hospital for
Sick Children, APHP and INEM, Paris, France. 13Internal Medicine
Department, Hôpital Lariboisière, APHP; Université de Paris, Paris,
France. 14Internal Medicine Department, Pitié-Salpétrière Hospital,
Paris, France. 15Hospital Universitari de Bellvitge, Barcelona, Spain.
16Division of Clinical Immunology and Allergy, Necmettin Erbakan
University, Meram Medical Faculty, Konya, Turkey. 17Joint Research
Unit, Hospices Civils de Lyon-bio Mérieux, Hospices Civils de Lyon,
Lyon Sud Hospital, Lyon, France. 18Hospital U. de Tarragona Joan
XXIII, Universitat Rovira i Virgili (URV), IISPV, Tarragona, Spain.
19Private practice, Paris, France. 20Necker Hospital for Sick
Children, AP-HP, Paris, France. 21Department of Infectious

Zhang et al., Science 370, eabd4570 (2020) 23 October 2020 10 of 13

RESEARCH | RESEARCH ARTICLE

o
n
 O

c
to

b
e
r 2

9
, 2

0
2
0

 
h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 



Diseases, CHU de Caen, Caen, France. 22Consorcio Hospital
General Universitario, Valencia, Spain. 23The Genetics Institute,
Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine,
Tel Aviv University, Tel Aviv, Israel. 24Department of Urology,
Nephrology, and Transplantation, APHP-SU, Sorbonne Université,
INSERM U 1082, Paris, France. 25Service de Médecine Intensive–
Réanimation et Pneumologie, APHP Hôpital Pitié–Salpêtrière,
Paris, France. 26Cruces University Hospital, Bizkaia, Spain.
27Paediatric Immunology and Vaccinology Unit, Geneva University
Hospitals and Faculty of Medicine, Geneva, Switzerland.
28Hematology, Georges Pompidou Hospital, APHP, Paris, France.
29Pediatric Infectious Diseases Unit, Instituto de Investigación 12
de Octubre imas12, and Hospital Universitario 12 de Octubre,
Madrid, Spain. 30Department of Immunology, Motol University
Hospital, 2nd Faculty of Medicine, Charles University, Department
of Pediatrics, Thomayer’s Hospital, 1st Faculty of Medicine, Charles
University, Prague, Czech Republic. 31Centro de Investigación
Biomédica en Red de Enfermedades Hepàticas y Digestivas
(Ciberehd), Hospital de Mataró, Consorci Sanitari del Maresme,
Mataró, Spain. 32Service de Pneumologie, Hopital Bichat, APHP,
Paris, France. 33Department of Pulmonology, Ghent University
Hospital, Ghent, Belgium. 34Clinical Immunology Unit, Pediatric
Infectious Disease Department, Faculty of Medicine and Pharmacy,
Averroes University Hospital, LICIA Laboratoire d’Immunologie
Clinique, d’Inflammation et d’Allergie, Hassann Ii University,
Casablanca, Morocco. 35Endocrinology Unit, APHP Hôpitaux
Universitaires Paris-Sud, Le Kremlin-Bicêtre, France. 36Department
of Children’s Diseases and Pediatric Surgery, I. Horbachevsky
Ternopil National Medical University, Ternopil, Ukraine. 37Human
Genome and Stem-Cell Research Center, University of São Paulo,
São Paulo, Brazil. 38Hospital Insular, Las Palmas de Gran Canaria,
Spain. 39Division of Critical Care Medicine, Department of
Anesthesiology and Reanimation, Konya State Hospital, Konya,
Turkey. 40MS Center, Spedali Civili, Brescia, Italy. 41Fondazione
IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy.
42Bellvitge University Hospital, L’Hospitalet de Llobregat,
Barcelona, Spain. 43Hopital Robert Debré, Paris, France. 44Pediatric
Immuno-hematology Unit, Necker Enfants Malades Hospital,
AP-HP, Paris, France. 45Department of Infectious and Tropical
Diseases, University of Brescia, ASST Spedali Civili di Brescia,
Brescia, Italy. 46Doctoral Health Care Center, Canarian Health
System, Las Palmas de Gran Canaria, Spain. 47Hôpital Foch,
Suresnes, France. 48Necker Hospital for Sick Children, Paris
University, AP-HP, Paris, France. 49Pasteur Institute, Paris, France.
50McGill University Health Centre, Montreal, Canada. 51University
Hospital and Research Institute “Germans Trias i Pujol,” IrsiCaixa
AIDS Research Institute, UVic-UCC, Badalona, Spain. 52Clinical
Biochemistry, Pathology, Paediatric Neurology and Molecular
Medicine Departments and Biobank, Institut de Recerca Sant Joan
de Déu and CIBERER-ISCIII, Esplugues, Spain. 53Division of Clinical
Immunology and Allergy, Department of Internal Medicine,
Necmettin Erbakan University, Meram Medical Faculty, Konya,
Turkey. 54Department of Infectious Diseases and Clinical Micro-
biology, Konya Training and Research Hospital, Konya, Turkey.
55Hospital Universitari Vall d’Hebron, Barcelona, Spain. 56Pitié-
Salpêtrière Hospital, Paris, France. 57Fundació Docència i Recerca
Mútua Terrassa, Barcelona, Spain; Hospital Universitari Mutua
Terrassa, Universitat de Barcelona, Terrassa, Catalonia, Spain.
58UNSW Medicine, St. Vincent’s Clinical School, and Department of
Thoracic Medicine, St. Vincent’s Hospital Darlinghurst, Sidney,
Australia. 59CHU Saint-Pierre, Université Libre de Bruxelles,
Brussels, Belgium. 60Pediatric Intensive Care Unit, Robert-Debré
University Hospital, APHP, Paris, France. 61Sorbonne Paris Nord,
Hôpital Jean Verdier, APHP, Bondy, France. 62Specialized Immu-
nology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz,
Iran. 63Centre de Génétique Humaine, CHU Besançon, Besançon,
France. 64Sorbonne Université Médecine and APHP Sorbonne
Université Site Pitié-Salpêtrière, Paris, France. 65Intensive Care
Unit, Georges Pompidou Hospital, APHP, Paris, France. 66Depart-
ment of Pneumology, AZ Delta, Roeselare, Belgium. 67Institut
Jérôme Lejeune, Paris, France. 68Department of Microbiology and
Immunology, Faculty of Medicine, Mansoura University, Mansoura,
Egypt. 69Department of Chest, Faculty of Medicine, Mansoura
University, Mansoura, Egypt. 70Department of Medical Bio-
chemistry and Molecular Biology, Faculty of Medicine, Mansoura
University, Mansoura, Egypt. 71Faculty of Medicine, Division of
Pediatric Infectious Diseases, Selcuk University, Konya, Turkey.
72Division of Pediatric Infectious Diseases, Ondokuz Mayıs Univer-
sity, Samsun, Turkey. 73Necmettin Erbakan University, Meram
Medical Faculty, Division of Pediatric Allergy and Immunology,
Konya, Turkey. 74Centre Hospitalier Fleyriat, Bourg-en-Bresse,
France. 75Division of Clinical Immunology and Allergy, Department
of Internal Medicine, Necmettin Erbakan University, Meram Medical

Faculty, Konya, Turkey. 76Centre de Génétique, CHU Dijon, Dijon,
France. 77APHP Tenon Hospital, Paris, France. 78Sorbonne
Universités, UPMC University of Paris, Paris, France. 79Department
of Clinical Immunology , Hospital Clínico San Carlos, Madrid, Spain.
80Genomics Division, Instituto Tecnológico y de Energías Renov-
ables (ITER), Santa Cruz de Tenerife, Spain; CIBER de Enferme-
dades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain;
Research Unit, Hospital Universitario N.S. de Candelaria, Santa
Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB),
Universidad de La Laguna, San Cristóbal de La Laguna, Spain.
81CHU Limoges and Inserm CIC 1435 and UMR 1092, Limoges,
France. 82Infectious Diseases Unit, Department of Pediatrics,
Hospital Sant Joan de Déu, Barcelona, Spain; Institut de Recerca
Sant Joan de Déu, Spain; Universitat de Barcelona (UB), Barcelona,
Spain. 83Institute of Genetics and Biophysics “Adriano Buzzati-
Traverso,” IGB-CNR, Naples, Italy. 84Laboratory of Immunogenetics
of Human Diseases, IdiPAZ Institute for Health Research, La Paz
Hospital, Madrid, Spain. 85Hematology, APHP, Hopital Européen
Georges Pompidou and Inserm UMR-S1140, Paris, France. 86Hos-
pital General Universitario and Instituto de Investigación Sanitaria
“Gregorio Marañón,” Madrid, Spain. 87Bégin military Hospital,
Bégin, France. 88Pediatric Intensive Care Unit, Hospital Sant Joan
de Déu, Barcelona, Spain. 89Department of Internal Medicine,
Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
90Division of Critical Care Medicine, Department of Anesthesiology
and Reanimation, Necmettin Erbakan University, Meram Medical
Faculty, Konya, Turkey. 91Genomics Division, Instituto Tecnológico
y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain.
92Assistance Publique Hôpitaux de Paris, Paris, France. 93Division
of Allergy and Immunology, Necmettin Erbakan University, Meram
Medical Faculty, Konya, Turkey. 94CNAG-CRG, Centre for Genomic
Regulation (CRG), Barcelona Institute of Science and Technology
(BIST); Universitat Pompeu Fabra (UPF), Barcelona, Spain.
95Department of Internal Medicine, National Reference Center for
Rare Systemic Autoimmune Diseases, AP-HP, APHP-CUP, Hôpital
Cochin, Paris, France. 96Ghent University Hospital, Ghent, Belgium.
97Sharjah Institute of Medical Research, College of Medicine,
University of Sharjah, Sharjah, UAE. 98Department of Laboratory
Medicine, SE14186, Huddinge, Karolinska Institutet, Stockholm,
Sweden. 99Pediatric Infectious Diseases Unit, Bakirkoy Dr. Sadi
Konuk Training and Research Hospital, University of Health
Sciences, Istanbul, Turkey. 100Department of Immunology, Hospital
Universitario de Gran Canaria Dr. Negrín, Canarian Health System,
Las Palmas de Gran Canaria, Spain. 101Department of Pediatric
Hemato-Oncology, Jolimont Hospital; Department of Pediatric
Hemato-Oncology, HUDERF, Brussels, Belgium. 102Intensive Care
Unit, Marqués de Valdecilla Hospital, Santander, Spain. 103Hospital
del Mar, Parc de Salut Mar, Barcelona, Spain. 104Department of
Pediatric Pulmonology and Immunology, Ghent University Hospital,
Ghent, Belgium. 105Department of Intensive Care Unit, Ghent
University Hospital, Ghent, Belgium. 106Intensive Care Unit, APHM,
Marseille, France. 107CHU Lille, Lille, France. 108Department of
Pediatrics, Columbia University, New York, NY, USA. 109Centre
Hospitalier Intercommunal Poissy Saint Germain en Laye, Poissy,
France. 110Fundació Docència i Recerca Mútua Terrassa, Terrassa,
Spain. 111Hospital Sant Joan de Déu, Kids Corona Platfform,
Barcelona, Spain. 112Department of Intensive Care Unit, University
Hospital Antwerp, Antwerp, Belgium. 113Selcuk University, Faculty
of Medicine, Chest Diseases Department, Konya, Turkey. 114Division
of Allergy and Immunology, Balikesir Ataturk City Hospital,
Balikesir, Turkey. 115Division of Critical Care Medicine, Selcuk
University, Faculty of Medicine, Konya, Turkey. 116Division of
Pediatric Infectious Diseases, Prof. Dr. Cemil Tascıoglu City
Hospital, Istanbul, Turkey. 117Departments of Infectious Diseases
and Clinical Microbiology, Bakirkoy Dr. Sadi Konuk Training and
Research Hospital, University of Health Sciences, Istanbul, Turkey.
118Meram Medical Faculty, Necmettin Erbakan University, Meram
Medical Faculty, Konya, Turkey. 119Health Sciences University,
Umraniye Education and Research Hospital, Istanbul, Turkey.
120Department of Immunology, 2nd Faculty of Medicine, Charles
University and University Hospital in Motol, Prague, Czech
Republic. 121Central Clinical Hospital of Ministry of the Interior and
Administration in Warsaw, Warsaw, Poland. 122Oncobiologie
Génétique Bioinformatique, PC Bio, CHU Besançon, Besançon,
France. 123Paediatric Infectious Disease Unit, Hospital Authority
Infectious Disease Center, Princess Margaret Hospital, Hong Kong
(Special Administrative Region), China. 124Aix Marseille University,
IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.
125Department of Paediatrics and Adolescent Medicine, The
University of Hong Kong, Hong Kong, China. 126National Centre for
Infectious Diseases, Singapore. 127Hospital Universitario Reina
Sofía, Cordoba, Spain. 128Imperial College, London, UK. 129Endo-
crinology and Diabetes for Children, AP-HP, Bicêtre Paris-Saclay

Hospital, Le Kremlin-Bicêtre, France. 130Department of Medical
Genetics, University Hospital Antwerp, Antwerp, Belgium. 131Neu-
rology Unit, APHP Pitié-Salpêtrière Hospital, Paris University, Paris,
France. 132Intensive Care Unit, APHP Pitié-Salpêtrière Hospital,
Paris University, Paris, France. 133National Centre for Infectious
Diseases; Tan Tock Seng Hospital; Yong Loo Lin School of
Medicine; Lee Kong Chian School of Medicine, Singapore.
134Department of Clinical Immunology and Infectious Diseases,
National Research Institute of Tuberculosis and Lung Diseases,
Shahid Beheshti University of Medical Sciences, Tehran, Iran.
135Clinical Tuberculosis and Epidemiology Research Center,
National Research Institute of Tuberculosis and Lung Diseases
(NRITLD), Shahid Beheshti University of Medical Sciences, Tehran,
Iran. 136Hospital Sant Joan de Déu and University of Barcelona,
Barcelona, Spain. 137Pediatric Infectious Diseases and Immunode-
ficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron
Research Institute, Vall d’Hebron Barcelona Hospital Campus.
Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
138Hospital Universitari Mutua de Terrassa, Universitat de Barce-
lona, Barcelona, Spain. 139IrsiCaixa AIDS Research Institute, ICREA,
UVic-UCC, Research Institute “Germans Trias i Pujol,” Badalona,
Spain. 140Department of Laboratory, Cruces University Hospital,
Barakaldo, Bizkaia, Spain. 141University of New South Wales, New
South Wales, Australia. 142APHP Pitié-Salpêtrière Hospital, Paris,
France. 143Aix-Marseille University, APHM, Marseille, France.
144Robert Debré Hospital, Paris, France. 145APHP Cohin Hospital,
Paris, France. 146Necmettin Erbakan University Meram Faculty of
Medicine Department of Pediatric Infectious Diseases, Konya,
Turkey. 147University Hospitals Leuven, Leuven, Belgium.
148Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Lyon,
France. 149Hôpital Erasme, Brussels, Belgium. 150CH Gonesse,
Gonesse, France. 151Vascular Medicine, Georges Pompidou Hospi-
tal, APHP, Paris, France. 152Division of Pulmonary and Critical Care,
University of Miami, Miami, FL, USA. 153Guanarteme Health Care
Center, Canarian Health System, Las Palmas de Gran Canaria,
Spain. 154Regional University Hospital of Malaga, Malaga, Spain.
155Aix-Marseille Université, Marseille, France. 156Department of
General Paediatrics, Hôpital Bicêtre, AP-HP, University of Paris
Saclay, Le Kremlin-Bicêtre, France. 157Department of Internal
Medicine, Ghent University Hospital, Ghent, Belgium. 158CHU de La
Timone, Marseille, France. 159Centro Hospitalar Universitário de
Lisboa Central, Lisbon, Portugal. 160Infectious Diseases Horizontal
Technlogy Centre, A*STAR; Singapore Immunology Network,
A*STAR, Singapore. 161Department of Pediatrics, Complejo Hospi-
talario Universitario Insular-Materno Infantil, Canarian Health
System, Las Palmas de Gran Canaria, Spain. 162Regional Universi-
tary Hospital of Málaga, Málaga, Spain. 163Hospital Universitario
Marqués de Valdecilla, Santander, Spain. 164Faculty of Medicine,
Ataturk University, Erzurum, Turkey. 165Department of Molecular
Biology and Genetics, Bilkent University, Ankara, Turkey.
166Department of Biosciences and Nutrition, Karolinska Institutet,
SE14183, Stockholm, Sweden. 167L’Hôpital Foch, Suresnes, France.
168Department of Immunology, Hospital Universitario 12 de
Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre
imas12, Madrid, Spain. 169APHP Hôpitaux Universitaires Paris-Sud,
Le Kremlin-Bicêtre, France. 170Neurometabolic Diseases Labora-
tory, IDIBELL-Hospital Duran i Reynals, Barcelona; CIBERER U759,
ISCiii, Madrid, Spain. 171Hospices Civils de Lyon, Lyon, France.
172Université de Lille, Inserm U1285, CHU Lille, Paris, France.
173Departement of General Pediatrics, University Hospital Robert
Debré, APHP, Paris, France. 174Necmettin Erbakan University,
Konya, Turkey. 175Germans Trias i Pujol Hospital, Badalona, Spain.
176Medical Intensive Care Unit, Hopital de la Croix-Rousse,
Hospices Civils de Lyon, Lyon, France. 177Pediatric Infectious
Diseases and Immunodeficiencies Unit, Hospital Universitari Vall
d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barce-
lona Hospital Campus., Barcelona, Spain. 178Department of
Immunology, Hospital Universitario de Gran Canaria Dr. Negrín,
Canarian Health System, Las Palmas de Gran Canaria, Spain.
University Fernando Pessoa Canarias, Las Palmas de Gran Canaria,
Spain. 179Neurometabolic Diseases Laboratory, IDIBELL-Hospital
Duran i Reynals, Barcelona, Spain. 180Consorcio Hospital General
Universitario, Valencia, Spain. 181APHP Hôpitaux Universitaires
Paris-Sud, Paris, France. 182Virology Unit, Université de Paris,
Cohin Hospital, APHP, Paris, France. 183Hospital San Pedro,
Logroño, Spain. 184Respiratory Medicine, Georges Pompidou
Hospital, APHP, Paris, France. 185Department of Immunology,
Hospital Clínico San Carlos, Madrid, Spain. 186Service de Médecine
Intensive Réanimation, Institut de Cardiologie, Hopital Pitié-
Salpêtrière, Paris, France. 187CHRU de Nancy, Hôpital d’Enfants,
Vandoeuvre, France. 188Chair of Nephrology, University of Brescia,
Brescia, Italy. 189Department of Immunology, 2nd Faculty of
Medicine, Charles University and Motol University Hospital, Prague,

Zhang et al., Science 370, eabd4570 (2020) 23 October 2020 11 of 13

RESEARCH | RESEARCH ARTICLE

o
n
 O

c
to

b
e
r 2

9
, 2

0
2
0

 
h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 



Czech Republic. 190Clínica Universidad de Navarra, Madrid, Spain.
191HUS Helsinki University Hospital, Children and Adolescents, Rare
Disease Center, and Inflammation Center, Adult Immunodeficiency
Unit, Majakka, Helsinki, Finland. 192Fundació Docència i Recerca
Mútua Terrassa, Terrassa, Spain. 193Department of Pulmonology,
ZNA Middelheim, Antwerp, Belgium. 194INSERM UMR-S 1140,
Biosurgical Research Lab (Carpentier Foundation), Paris University
and Hopital Européen Georges Pompidou, Paris, France.
195Department of Pediatrics, Faculty of Medicine, Mansoura
University, Mansoura, Egypt. 196Critical Care Unit, Hospital
Universitario de Gran Canaria Dr. Negrín, Canarian Health System,
Las Palmas de Gran Canaria, Spain. 197CHU de Saint Etienne, Saint-
Priest-en-Jarez, France. 198Shupyk National Medical Academy for
Postgraduate Education, Kiev, Ukraine. 199Gustave Roussy Cancer
Campus, Villejuif, France. 200Intensive Care Unit, Avicenne
Hospital, APHP, Bobigny, France. 201Laboratory of Immunology and
Histocompatibility, Saint-Louis Hospital, Paris University, Paris,
France. 202Department of Internal Diseases and Pediatrics, Primary
Immune Deficiency Research Lab, Centre for Primary Immuno-
deficiency Ghent, Jeffrey Modell Diagnosis and Research Centre,
Ghent University Hospital, Ghent, Belgium. 203Department of
Internal Medicine, Université de Paris, INSERM, U970, PARCC,
F-75015, Paris, France. 204First Division of Anesthesiology and
Critical Care Medicine, University of Brescia, ASST Spedali Civili di
Brescia, Brescia, Italy. 205Intensive Care Department, Hospital
Universitari Mutua Terrassa, Universitat Barcelona, Terrassa,
Spain. 206Hospices Civils de Lyon, Lyon Sud Hospital, Lyon, France.
207Infanta Leonor University Hospital, Madrid, Spain. 208Hematol-
ogy Department, ASST Spedali Civili di Brescia, Brescia, Italy.
209Pneumologie, Hôpital Avicenne, APHP, INSERM U1272, Uni-
versité Sorbonne Paris Nord, Bobigny, France. 210Dermatology
Unit, Laboratoire GAD, INSERM UMR1231 LNC, Université de
Bourgogne, Dijon, France. 211University Hospital of Burgos, Burgos,
Spain. 212Intensive Care Unit, M. Middelares Ghent, Ghent, Belgium.
213Department of Nephrology and Infectiology, AZ Sint-Jan Brugge-
Oostende AV, Bruges, Belgium. 214Center of Human Genetics,
Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
215Department of Chest Diseases, Necmettin Erbakan University,
Meram Medical Faculty, Konya, Turkey. 216CHU de Caen, Caen,
France. 217Sorbonne Université, Service de Médecine Intensive
Réanimation, Hôpital Tenon, Assistance Publique-Hôpitaux de
Paris, Paris, France. 218General Intensive Care Unit, Konya Training
and Research Hospital, Konya, Turkey. 219CHU de Nancy, Nancy,
France. 220University of Lyon, CIRI, INSERM U1111, National Referee
Centre RAISE, Pediatric Rheumatology, HFME, Hospices Civils de
Lyon, Lyon, France.
*Leader of COVID Clinicians.

Imagine COVID Group Christine Bole-Feysot, Stanislas Lyonnet*,
Cécile Masson, Patrick Nitschke, Aurore Pouliet, Yoann Schmitt,
Frederic Tores, Mohammed Zarhrate

Imagine Institute, Université de Paris, INSERM UMR 1163, Paris,
France.
*Leader of the Imagine COVID Group.

French COVID Cohort Study Group Laurent Abel1, Claire Andrejak2,
François Angoulvant3, Delphine Bachelet4, Romain Basmaci5,
Sylvie Behillil6, Marine Beluze7, Dehbia Benkerrou8, Krishna Bhavsar4,
François Bompart9, Lila Bouadma4, Maude Bouscambert10,
Mireille Caralp11, Minerva Cervantes-Gonzalez12, Anissa Chair4,
Alexandra Coelho13, Camille Couffignal4, Sandrine Couffin-Cadiergues14,
Eric D’Ortenzio12, Charlene Da Silveira4, Marie-Pierre Debray4,
Dominique Deplanque15, Diane Descamps16, Mathilde Desvallées17,
Alpha Diallo18, Alphonsine Diouf13, Céline Dorival8, François Dubos19,
Xavier Duval4, Philippine Eloy4, Vincent VE Enouf20,
Hélène Esperou21, Marina Esposito-Farese4, Manuel Etienne22,
Nadia Ettalhaoui4, Nathalie Gault4, Alexandre Gaymard10,
Jade Ghosn4, Tristan Gigante23, Isabelle Gorenne4, Jérémie Guedj24,
Alexandre Hoctin13, Isabelle Hoffmann4, Salma Jaafoura21,
Ouifiya Kafif4, Florentia Kaguelidou25, Sabina Kali4, Antoine Khalil4,
Coralie Khan17, Cédric Laouénan4, Samira Laribi4, Minh Le4,
Quentin Le Hingrat4, Soizic Le Mestre18, Hervé Le Nagard24,
François-Xavier Lescure4, Yves Lévy26, Claire Levy-Marchal27,
Bruno Lina10, Guillaume Lingas24, Jean Christophe Lucet4, Denis Malvy28,
Marina Mambert13, France Mentré4, Noémie Mercier18, Amina Meziane8,
Hugo Mouquet20, Jimmy Mullaert4, Nadège Neant24, Marion Noret29,
Justine Pages30, Aurélie Papadopoulos21, Christelle Paul18,
Nathan Peiffer-Smadja4, Ventzislava Petrov-Sanchez18, Gilles Peytavin4,
Olivier Picone31, Oriane Puéchal12, Manuel Rosa-Calatrava10,
Bénédicte Rossignol23, Patrick Rossignol32, Carine Roy4,
Marion Schneider4, Caroline Semaille12, Nassima Si Mohammed4,
Lysa Tagherset4, Coralie Tardivon4, Marie-Capucine Tellier4,

François Téoulé8, Olivier Terrier10, Jean-François Timsit4,
Théo Trioux4, Christelle Tual33, Sarah Tubiana4, Sylvie van der Werf34,
Noémie Vanel35, Aurélie Veislinger33, Benoit Visseaux16,
Aurélie Wiedemann26, Yazdan Yazdanpanah36

1Inserm UMR 1163, Paris, France. 2CHU Amiens, France. 3Hôpital
Necker, Paris, France. 4Hôpital Bichat, Paris, France. 5Hôpital Louis
Mourrier, Colombes, France. 6Institut Pasteur, Paris, France.
7F-CRIN Partners Platform, AP-HP, Université de Paris, Paris,
France. 8Inserm UMR 1136, Paris, France. 9Drugs for Neglected
Diseases Initiative, Geneva, Switzerland. 10Inserm UMR 1111, Lyon,
France. 11Inserm Transfert, Paris, France. 12REACTing, Paris,
France. 13Inserm UMR 1018, Paris, France. 14Inserm, Pôle
Recherche Clinique, Paris, France. 15CIC 1403 Inserm-CHU Lille,
Paris, France. 16Université de Paris, IAME, INSERM UMR 1137,
AP-HP, University Hospital Bichat Claude Bernard, Virology, Paris,
France. 17Inserm UMR 1219, Bordeaux, France. 18ANRS, Paris,
France. 19CHU Lille, Lille, France. 20Pasteur Institute, Paris, France.
21Inserm sponsor, Paris, France. 22CHU Rouen–SMIT, Rouen,
France. 23FCRIN INI-CRCT, Nancy, France. 24Inserm UMR 1137,
Paris, France. 25Centre d’Investigation Clinique, Inserm CIC1426,
Hôpital Robert Debré, Paris, France. 26Inserm UMR 955, Créteil,
France; Vaccine Research Instiute (VRI), Paris, France. 27F-CRIN
INI-CRCT, Paris, France. 28CHU de Bordeaux–SMIT, Bordeaux,
France. 29RENARCI, Annecy, France. 30Hôpital Robert Debré, Paris,
France. 31Hôpital Louis Mourier–Gynécologie, Colombes, France.
32University of Lorraine, Plurithematic Clinical Investigation Centre
Inserm CIC-P; 1433, Inserm U1116, CHRU Nancy Hopitaux de
Brabois, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical
Trialists), Nancy, France. 33Inserm CIC-1414, Rennes, France.
34Institut Pasteur, UMR 3569 CNRS, Université de Paris, Paris,
France. 35Hôpital la Timone, Marseille, France. 36Bichat–SMIT,
Paris, France.

CoV-Contact Cohort Loubna Alavoine1, Karine K. A. Amat2, Sylvie
Behillil3, Julia Bielicki4, Patricia Bruijning5, Charles Burdet6,
Eric Caumes7, Charlotte Charpentier8, Bruno Coignard9,
Yolande Costa1, Sandrine Couffin-Cadiergues10, Florence Damond8,
Aline Dechanet11, Christelle Delmas10, Diane Descamps8,
Xavier Duval1, Jean-Luc Ecobichon1, Vincent Enouf3, Hélène Espérou10,
Wahiba Frezouls1, Nadhira Houhou11, Emila Ilic-Habensus1,
Ouifiya Kafif11, John Kikoine11, Quentin Le Hingrat8, David Lebeaux12,
Anne Leclercq1, Jonathan Lehacaut1, Sophie Letrou1, Bruno Lina13,
Jean-Christophe Lucet14, Denis Malvy15, Pauline Manchon11,
Milica Mandic1, Mohamed Meghadecha16, Justina Motiejunaite17,
Mariama Nouroudine1, Valentine Piquard11, Andreea Postolache11,
Caroline Quintin1, Jade Rexach1, Layidé Roufai10, Zaven Terzian11,
Michael Thy18, Sarah Tubiana1, Sylvie van der Werf3,
Valérie Vignali1, Benoit Visseaux8, Yazdan Yazdanpanah14

1Centre d’Investigation Clinique, Inserm CIC 1425, Hôpital Bichat
Claude Bernard, APHP, Paris, France. 2IMEA Fondation Léon M’Ba,
Paris, France. 3Institut Pasteur, UMR 3569 CNRS, Université de
Paris, Paris, France. 4University of Basel Children’s Hospital.
5Julius Center for Health Sciences and Primary Care, Utrecht,
Netherlands. 6Université de Paris, IAME, Inserm UMR 1137,
F-75018, Paris, France, Hôpital Bichat Claude Bernard, APHP,
Paris, France. 7Hôpital Pitiè Salpétriere, APHP, Paris. 8Université de
Paris, IAME, INSERM UMR 1137, AP-HP, University Hospital Bichat
Claude Bernard, Virology, Paris, France. 9Santé Publique France,
Saint Maurice, France. 10Pole Recherche Clinique, Inserm, Paris,
France. 11Hôpital Bichat Claude Bernard, APHP, Paris, France.
12APHP, Paris, France. 13Virpath Laboratory, International Center of
Research in Infectiology, Lyon University, INSERM U1111, CNRS
UMR 5308, ENS, UCBL, Lyon, France. 14IAME Inserm UMR 1138,
Hôpital Bichat Claude Bernard, APHP, Paris, France. 15Service des
Maladies Infectieuses et Tropicales; Groupe Pellegrin-Place Amélie-
Raba-Léon, Bordeaux, France. 16Hôpital Hotel Dieu, APHP, Paris,
France. 17Service des Explorations Fonctionnelles, Hôpital Bichat–
Claude Bernard, APHP, Paris, France. 18Center for Clinical
Investigation, Assistance Publique-Hôpitaux de Paris, Bichat-
Claude Bernard University Hospital, Paris, France.

Amsterdam UMC Covid-19 Biobank Michiel van Agtmael1,
Anna Geke Algera2, Frank van Baarle2, Diane Bax3, Martijn Beudel4,
Harm Jan Bogaard5, Marije Bomers1, Lieuwe Bos2, Michela Botta2,
Justin de Brabander6, Godelieve de Bree6, Matthijs C. Brouwer4,
Sanne de Bruin2, Marianna Bugiani7, Esther Bulle2, Osoul Chouchane1,
Alex Cloherty3, Paul Elbers2, Lucas Fleuren2, Suzanne Geerlings1,
Bart Geerts8, Theo Geijtenbeek9, Armand Girbes2, Bram Goorhuis1,
Martin P. Grobusch1, Florianne Hafkamp9, Laura Hagens2,
Jorg Hamann10, Vanessa Harris1, Robert Hemke11, Sabine M. Hermans1,
Leo Heunks2, Markus W. Hollmann8, Janneke Horn2, Joppe W. Hovius1,

Menno D. de Jong12, Rutger Koning4, Niels van Mourik2,
Jeaninne Nellen1, Frederique Paulus2, Edgar Peters1, Tom van der Poll1,
Benedikt Preckel8, Jan M. Prins1, Jorinde Raasveld2, Tom Reijnders1,
Michiel Schinkel1, Marcus J. Schultz2, Alex Schuurman13,
Kim Sigaloff1, Marry Smit2, Cornelis S. Stijnis1, Willemke Stilma2,
Charlotte Teunissen14, Patrick Thoral2, Anissa Tsonas2,
Marc van der Valk1, Denise Veelo8, Alexander P.J. Vlaar15,
Heder de Vries2, Michèle van Vugt1, W. Joost Wiersinga1, Dorien Wouters16,
A. H. (Koos) Zwinderman17, Diederik van de Beek4*

1Department of Infectious Diseases, Amsterdam UMC, Amsterdam,
Netherlands. 2Department of Intensive Care, Amsterdam UMC,
Amsterdam, Netherlands. 3Experimental Immunology, Amsterdam
UMC, Amsterdam, Netherlands. 4Department of Neurology,
Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, Nether-
lands. 5Department of Pulmonology, Amsterdam UMC, Amsterdam,
Netherlands. 6Department of Infectious Diseases, Amsterdam
UMC, Amsterdam, Netherlands. 7Department of Pathology,
Amsterdam UMC, Amsterdam, Netherlands. 8Department of
Anesthesiology, Amsterdam UMC, Amsterdam, Netherlands.
9Department of Experimental Immunology, Amsterdam UMC,
Amsterdam, Netherlands. 10Amsterdam UMC Biobank Core Facility,
Amsterdam UMC, Amsterdam, Netherlands. 11Department of
Radiology, Amsterdam UMC, Amsterdam, Netherlands.
12Department of Medical Microbiology, Amsterdam UMC, Amster-
dam, Netherlands. 13Department of Internal Medicine, Amsterdam
UMC, Amsterdam, Netherlands. 14Neurochemical Laboratory,
Amsterdam UMC, Amsterdam, Netherlands. 15Department of Inten-
sive Care, Amsterdam UMC, Amsterdam, Netherlands. 16Department
of Clinical Chemistry, Amsterdam UMC, Amsterdam, Netherlands.
17Department of Clinical Epidemiology, Biostatistics and Bio-
informatics, Amsterdam UMC, Amsterdam, Netherlands. 18Depart-
ment of Neurology, Amsterdam UMC, Amsterdam, Netherlands.
*Leader of the AMC Consortium.

COVID Human Genetic Effort Laurent Abel1, Alessandro Aiuti2,
Saleh Al Muhsen3, Fahd Al-Mulla4, Mark S. Anderson5,
Andrés Augusto Arias6, Hagit Baris Feldman7, Dusan Bogunovic8,
Alexandre Bolze9, Anastasiia Bondarenko10, Ahmed A. Bousfiha11,
Petter Brodin12, Yenan Bryceson12, Carlos D. Bustamante13,
Manish Butte14, Giorgio Casari15, Samya Chakravorty16,
John Christodoulou17, Elizabeth Cirulli9, Antonio Condino-Neto18,
Megan A. Cooper19, Clifton L. Dalgard20, Alessia David21,
Joseph L. DeRisi22, Murkesh Desai23, Beth A. Drolet24, Sara Espinosa25,
Jacques Fellay26, Carlos Flores27, Jose Luis Franco28,
Peter K. Gregersen29, Filomeen Haerynck30, David Hagin31,
Rabih Halwani32, Jim Heath33, Sarah E. Henrickson34, Elena Hsieh35,
Kohsuke Imai36, Yuval Itan8, Timokratis Karamitros37, Kai Kisand38,
Cheng-Lung Ku39, Yu-Lung Lau40, Yun Ling41, Carrie L. Lucas42,
Tom Maniatis43, Davoud Mansouri44, Laszlo Marodi45, Isabelle
Meyts46, Joshua Milner47, Kristina Mironska48, Trine Mogensen49,
Tomohiro Morio50, Lisa FP. Ng51, Luigi D. Notarangelo52,
Antonio Novelli53, Giuseppe Novelli54, Cliona O’Farrelly55,
Satoshi Okada56, Tayfun Ozcelik57, Rebeca Perez de Diego58,
Anna M. Planas59, Carolina Prando60, Aurora Pujol61,
Lluis Quintana-Murci62, Laurent Renia63, Alessandra Renieri64,
Carlos Rodríguez-Gallego65, Vanessa Sancho-Shimizu66,
Vijay Sankaran67, Kelly Schiabor Barrett9, Mohammed Shahrooei68,
Andrew Snow69, Pere Soler-Palacín70, András N. Spaan71,
Stuart Tangye72, Stuart Turvey73, Furkan Uddin74,
Mohammed J. Uddin75, Diederik van de Beek76, Sara E. Vazquez77,
Donald C. Vinh78, Horst von Bernuth79, Nicole Washington9,
Pawel Zawadzki80, Helen C. Su52, Jean-Laurent Casanova81

1INSERM U1163, University of Paris, Imagine Institute, Paris, France.
2San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale
San Raffaele, Milan, Italy. 3King Saud University, Riyadh, Saudi
Arabia. 4Kuwait University, Kuwait City, Kuwait. 5University of
California, San Francisco, San Francisco, CA, USA. 6Universidad de
Antioquia, Group of Primary Immunodeficiencies, Antioquia, Colom-
bia. 7The Genetics Institute, Tel Aviv Sourasky Medical Center and
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
8Icahn School of Medicine at Mount Sinai, New York, NY, USA. 9Helix,
San Mateo, CA, USA. 10Shupyk National Medical Academy for
Postgraduate Education, Kiev, Ukraine. 11Clinical Immunology Unit,
Pediatric Infectious Disease Departement, Faculty of Medicine and
Pharmacy, Averroes University Hospital; LICIA Laboratoire d’Immu-
nologie Clinique, d’Inflammation et d’Allergie, Hassann Ii University,
Casablanca, Morocco. 12Karolinska Institute, Stockholm, Sweden.
13Stanford University, Stanford, CA, USA. 14University of California,
Los Angeles, CA, USA. 15Medical Genetics, IRCCS Ospedale San
Raffaele, Milan, Italy. 16Emory University Department of Pediatrics
and Children’s Healthcare of Atlanta, Atlanta, GA, USA. 17Murdoch

Zhang et al., Science 370, eabd4570 (2020) 23 October 2020 12 of 13

RESEARCH | RESEARCH ARTICLE

o
n
 O

c
to

b
e
r 2

9
, 2

0
2
0

 
h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 



Children’s Research Institute, Victoria, Australia. 18University of São
Paulo, São Paulo, Brazil. 19Washington University School of Medicine,
St. Louis, MO, USA. 20The American Genome Center; Uniformed
Services University of the Health Sciences, Bethesda, MD, USA.
21Centre for Bioinformatics and System Biology, Department of Life
Sciences, Imperial College London, South Kensington Campus,
London, UK. 22University of California, San Francisco, CA, USA; Chan
Zuckerberg Biohub, San Francisco, CA, USA. 23Bai Jerbai Wadia
Hospital for Children, Mumbai, India. 24School of Medicine and Public
Health, University of Wisconsin, Madison, WI, USA. 25Instituto
Nacional de Pediatria (National Institute of Pediatrics), Mexico City,
Mexico. 26Swiss Federal Institute of Technology Lausanne, Lau-
sanne, Switzerland. 27Research Unit, Hospital Universitario Nuestra
Señora de Candelaria, Canarian Health System, Santa Cruz de
Tenerife, Spain. 28University of Antioquia, Medellín, Colombia.
29Feinstein Institute for Medical Research, Northwell Health USA,
Manhasset, NY, USA. 30Department of Paediatric Immunology and
Pulmonology, Centre for Primary Immunodeficiency Ghent (CPIG),
PID Research Lab, Jeffrey Modell Diagnosis and Research Centre,
Ghent University Hospital, Edegem, Belgium. 31The Genetics
Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. 32Sharjah
Institute of Medical Research, College of Medicine, University of
Sharjah, Sharjah, UAE. 33Institute for Systems Biology, Seattle, WA,
USA. 34Children’s Hospital of Philadelphia, Philadelphia, PA, USA.
35Anschutz Medical Campus, Aurora, CO, USA. 36Riken, Tokyo,
Japan. 37Hellenic Pasteur Institute, Athens, Greece. 38University of
Tartu, Tartu, Estonia. 39Chang Gung University, Taoyuan County,
Taiwan. 40The University of Hong Kong, Hong Kong, China.
41Shanghai Public Health Clinical Center, Fudan University, Shanghai,
China. 42Yale School of Medicine, New Haven, CT, USA. 43New York
Genome Center, New York, NY, USA. 44Shahid Beheshti University of
Medical Sciences, Tehran, Iran. 45Semmelweis University Budapest,
Budapest, Hungary. 46KU Leuven, Department of Immunology,
Microbiology and Transplantation, Leuven, Belgium. 47Columbia
University Medical Center, New York, NY, USA. 48University Clinic for
Children’s Diseases, Skopje, North Macedonia. 49Aarhus University,
Aarhus, Denmark. 50Tokyo Medical & Dental University Hospital,
Tokyo, Japan. 51Singapore Immunology Network, Singapore.
52National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Bethesda, MD, USA. 53Bambino Gesù Children’s

Hospital, Rome, Italy. 54Department of Biomedicine and Prevention,
University of Rome “Tor Vergata,” Rome, Italy. 55Trinity College,
Dublin, Ireland. 56Hiroshima University, Hiroshima, Japan.
57Bilkent University, Ankara, Turkey. 58Laboratory of Immuno-
genetics of Human Diseases, Innate Immunity Group, IdiPAZ
Institute for Health Research, La Paz Hospital, Madrid, Spain.
59IIBB-CSIC, IDIBAPS, Barcelona, Spain. 60Faculdades Pequeno
Príncipe e Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba,
Brazil. 61Neurometabolic Diseases Laboratory, IDIBELL–Hospital
Duran I Reynals; Catalan Institution for Research and Advanced
Studies (ICREA); CIBERER U759, ISCiii Madrid Spain, Barcelona,
Spain. 62Institut Pasteur (CNRS UMR2000) and Collège de France,
Paris, France. 63Infectious Diseases Horizontal Technology Center
and Singapore Immunology Network, Agency for Science Tech-
nology (A*STAR), Singapore. 64Medical Genetics, University of
Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliero-Universitaria
Senese, Italy; GEN-COVID Multicenter Study. 65Hospital Universitario
de Gran Canaria Dr. Negrín, Canarian Health System, Canary
Islands, Spain. 66Imperial College London, London, UK. 67Boston
Children’s Hospital, Harvard Medical School, Boston, MA, USA.
68Saeed Pathobiology and Genetic Lab, Tehran, Iran. 69Uniformed
Services University of the Health Sciences, Bethesda, MD, USA.
70Hospital Universitari Vall d’Hebron, Barcelona, Spain. 71Univer-
sity Medical Center Utrecht, Amsterdam, The Netherlands.
72Garvan Institute of Medical Research, Sydney, Australia.
73The University of British Columbia, Vancouver, Canada. 74Holy
Family Red Crescent Medical College; Centre for Precision
Therapeutics, NeuroGen Children’s Healthcare; Genetics and
Genomic Medicine Centre, NeuroGen Children’s Healthcare,
Dhaka, Bangladesh. 75Mohammed Bin Rashid University of
Medicine and Health Sciences, College of Medicine, Dubai, UAE;
The Centre for Applied Genomics, Department of Genetics and
Genome Biology, The Hospital for Sick Children, Toronto, Ontario,
Canada. 76Amsterdam UMC, University of Amsterdam,
Department of Neurology, Amsterdam Neuroscience, Amsterdam,
The Netherlands. 77University of California, San Francisco, CA,
USA. 78McGill University Health Centre, Montreal, Canada.
79Charité–Berlin University Hospital Center, Berlin, Germany.
80Molecular Biophysics Division, Faculty of Physics, A. Mickiewicz
University, Uniwersytetu Poznanskiego 2, Poznań, Poland.

81Rockefeller University, Howard Hughes Medical Institute, Necker
Hospital, New York, NY, USA.
*Leaders of the COVID Human Genetic Effort.

NIAID-USUHS/TAGC COVID Immunity Group Huie Jing1,2,
Wesley Tung1,2, Christopher R. Luthers3, Bradly M. Bauman3,
Samantha Shafer2,4, Lixin Zheng2,4, Zinan Zhang2,4,
Satoshi Kubo2,4, Samuel D. Chauvin2,4, Kazuyuki Meguro1,2,
Elana Shaw1,2, Michael Lenardo2,4, Justin Lack5, Eric Karlins6,
Daniel M. Hupalo7, John Rosenberger7, Gauthaman Sukumar7,
Matthew D. Wilkerson7, Xijun Zhang7

1Laboratory of Clinical Immunology and Microbiology, Division of
Intramural Research, NIAID, NIH, Bethesda, MD, USA. 2NIAID
Clinical Genomics Program, National Institutes of Health, Bethesda,
MD, USA. 3Department of Pharmacology & Molecular Therapeutics,
Uniformed Services University of the Health Sciences, Bethesda,
MD, USA. 4Laboratory of Immune System Biology, Division of
Intramural Research, NIAID, NIH, Bethesda, MD, USA. 5NIAID
Collaborative Bioinformatics Resource, Frederick National Labora-
tory for Cancer Research, Leidos Biomedical Research, Inc.,
Frederick, MD, USA. 6Bioinformatics and Computational Biosciences
Branch, Office of Cyber Infrastructure and Computational
Biology, NIAID, NIH, Bethesda, MD, USA. 7The American Genome
Center, Uniformed Services University of the Health Sciences,
Bethesda, MD, USA.

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/370/6515/eabd4570/suppl/DC1
Materials and Methods
Figs. S1 to S11
Tables S1 and S2
References (42 and 43)
MDAR Reproducibility Checklist

View/request a protocol for this paper from Bio-protocol.

22 June 2020; accepted 16 September 2020
Published online 24 September 2020
10.1126/science.abd4570

Zhang et al., Science 370, eabd4570 (2020) 23 October 2020 13 of 13

RESEARCH | RESEARCH ARTICLE

o
n
 O

c
to

b
e
r 2

9
, 2

0
2
0

 
h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 



Inborn errors of type I IFN immunity in patients with life-threatening COVID-19

Abel, Luigi D. Notarangelo, Aurélie Cobat, Helen C. Su and Jean-Laurent Casanova
Shen-Ying Zhang, Guy Gorochov, Vivien Béziat, Emmanuelle Jouanguy, Vanessa Sancho-Shimizu, Charles M. Rice, Laurent 
Amara, Michel Nussenzweig, Adolfo García-Sastre, Florian Krammer, Aurora Pujol, Darragh Duffy, Richard P. Lifton,
Boisson-Dupuis, Jacinta Bustamante, Anne Puel, Michael J. Ciancanelli, Isabelle Meyts, Tom Maniatis, Vassili Soumelis, Ali 
Dalgard, Joshua D. Milner, Donald C. Vinh, Trine H. Mogensen, Nico Marr, András N. Spaan, Bertrand Boisson, Stéphanie
Covid-19 Biobank, COVID Human Genetic Effort, NIAID-USUHS/TAGC COVID Immunity Group, Andrew L. Snow, Clifton L. 
COVID Clinicians, Imagine COVID Group, French COVID Cohort Study Group, CoV-Contact Cohort, Amsterdam UMC
Giuseppe Novelli, Sami Hraiech, Yacine Tandjaoui-Lambiotte, Xavier Duval, Cédric Laouénan, COVID-STORM Clinicians, 
Keles, Fatma Çölkesen, Tayfun Ozcelik, Kadriye Kart Yasar, Sevtap Senoglu, Semsi Nur Karabela, Carlos Rodríguez-Gallego,
Migeotte, Filomeen Haerynck, Pere Soler-Palacin, Andrea Martin-Nalda, Roger Colobran, Pierre-Emmanuel Morange, Sevgi 
Andrew J. Oler, Miranda F. Tompkins, Camille Alba, Isabelle Vandernoot, Jean-Christophe Goffard, Guillaume Smits, Isabelle
Mariella D'Angio', Paolo Bonfanti, Luisa Imberti, Alessandra Sottini, Simone Paghera, Eugenia Quiros-Roldan, Camillo Rossi, 
Al-Muhsen, Fahad Alsohime, Saeed Al Turki, Rana Hasanato, Diederik van de Beek, Andrea Biondi, Laura Rachele Bettini,
Mohammad Shahrooei, Mohammed F. Alosaimi, Davood Mansouri, Haya Al-Saud, Fahd Al-Mulla, Feras Almourfi, Saleh Zaid 
Cecile Masson, Yohann Schmitt, Agatha Schlüter, Tom Le Voyer, Taushif Khan, Juan Li, Jacques Fellay, Lucie Roussel,
Camille Ugurbil, Aurélien Corneau, Gaspard Kerner, Peng Zhang, Franck Rapaport, Yoann Seeleuthner, Jeremy Manry, 
Eleftherios Michailidis, Leen Moens, Ji Eun Han, Lazaro Lorenzo, Lucy Bizien, Philip Meade, Anna-Lena Neehus, Aileen
Lucie Bonnet-Madin, Karim Dorgham, Nikaïa Smith, William M. Schneider, Brandon S. Razooky, Hans-Heinrich Hoffmann, 
Andrés Augusto Arias, Qinhua Zhou, Yu Zhang, Fanny Onodi, Sarantis Korniotis, Léa Karpf, Quentin Philippot, Marwa Chbihi,
Stephanie Hodeib, Cecilia Korol, Jérémie Rosain, Kaya Bilguvar, Junqiang Ye, Alexandre Bolze, Benedetta Bigio, Rui Yang, 
Qian Zhang, Paul Bastard, Zhiyong Liu, Jérémie Le Pen, Marcela Moncada-Velez, Jie Chen, Masato Ogishi, Ira K. D. Sabli,

originally published online September 24, 2020DOI: 10.1126/science.abd4570
 (6515), eabd4570.370Science 

, this issue p. eabd4570, p. eabd4585; see also p. 404Science

studies identify a means by which individuals at highest risk of life-threatening COVID-19 can be identified.
either in infected people who were asymptomatic or had milder phenotype or in healthy individuals. Together, these 

 in about 10% of patients with severe COVID-19 pneumonia. These autoantibodies were not foundω2 and IFN-αIFN-
 identified individuals with high titers of neutralizing autoantibodies against type Iet al.course of the infection. Bastard 

immunity. They found enrichment of these genes in patients and conclude that genetics may determine the clinical
identified patients with severe COVID-19 who have mutations in genes involved in the regulation of type I and III IFN 

 used a candidate gene approach andet al.of this system (see the Perspective by Beck and Aksentijevich). Q. Zhang 
componentsexamine the likelihood that genetics affects the risk of severe coronavirus disease 2019 (COVID-19) through 

autoantibody system dampens IFN response to prevent damage from pathogen-induced inflammation. Two studies now
interferons (IFNs). Individuals that lack specific IFNs can be more susceptible to infectious diseases. Furthermore, the 

The immune system is complex and involves many genes, including those that encode cytokines known as
The genetics underlying severe COVID-19

ARTICLE TOOLS http://science.sciencemag.org/content/370/6515/eabd4570

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2020/09/24/science.abd4570.DC1

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title 
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

Science. No claim to original U.S. Government Works
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

o
n
 O

c
to

b
e
r 2

9
, 2

0
2
0

 
h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 



CONTENT
RELATED 

http://science.sciencemag.org/content/sci/370/6515/eabd4585.full
http://science.sciencemag.org/content/sci/370/6515/404.full
http://stm.sciencemag.org/content/scitransmed/12/550/eabc3539.full
http://stm.sciencemag.org/content/scitransmed/12/549/eabb9401.full
http://stm.sciencemag.org/content/scitransmed/12/554/eabc1126.full
http://stm.sciencemag.org/content/scitransmed/12/564/eabd5487.full

REFERENCES

http://science.sciencemag.org/content/370/6515/eabd4570#BIBL
This article cites 41 articles, 16 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title 
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

Science. No claim to original U.S. Government Works
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

o
n
 O

c
to

b
e
r 2

9
, 2

0
2
0

 
h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 



 226 

5. Appendix 5 

 

Synthèse des travaux en français 

Étude systématique de la fonction contexte-dépendante de OX40 Ligand sur la polarisation 

des lymphocytes T CD4 auxiliaires chez l’Homme 

 

Introduction 

1) Les lymphocytes T auxiliaires : un rouage central de l’immunité adaptative 

Les lymphocytes T auxiliaires (Th), également connus sous le nom de lymphocytes T CD4, sont des 

cellules primordiales dans l’immunité. Ce type cellulaire orchestre la réponse immunitaire 

adaptative et la guide en fonction du type de pathogène du non-soi rencontré. Ce manuscrit se 

concentrera principalement sur ces lymphocytes T auxiliaires et sur leur capacité à se polariser. 

Un autre type cellulaire majeur pour le fonctionnement des lymphocytes T auxiliaires sont les 

cellules dendritiques (DC). Ces dernières jouent un rôle de pivot entre les systèmes immunitaires 

inné et adaptatif. À la rencontre d’un pathogène, détecté via de nombreux récepteurs, ces cellules 

professionnelles présentatrices d’antigènes capturent l’antigène, le dégradent sous forme de 

peptides et enfin les présentent à leur surface sur un récepteur particulier appelé complexe 

majeur d’histocompatibilité de classe (CMH) II 1. Les DC migrent ensuite dans les ganglions, où les 

attendent les lymphocytes T CD4 naïfs, et leur présentent ce peptide. Les lymphocytes T vont ainsi 

s’activer et se polariser, spécifiquement au peptide présenté. Ce phénomène est décrit par la 

théorie des trois signaux 6. Le premier signal consiste en l’activation du récepteur des cellules T 

(TCR) par le CMH II. Le deuxième est un signal de co-stimulation médié par la molécule CD28, qui 

accompagne le TCR. Enfin, le dernier signal est caractérisé par la sécrétion de cytokines par les 

cellules dendritiques, qui vont permettre la polarisation des lymphocytes T en une sous-

population Th spécifique. 

Dans les années 80, Mosmann et Coffman ont été les premiers à éclairer la recherche sur le 

concept des lymphocytes Th. Grâce à l’immunisation de souris, ils ont identifié deux clones de 
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lymphocytes CD4 : Th1 et Th2, et les ont caractérisés en fonction de leur sécrétion de cytokines, 

de leur facteurs de transcription et de leur marqueurs de surface 11,13. 

Le principal rôle des lymphocytes Th1 est d’éliminer les pathogènes intracellulaires. La présence 

d’interleukine 12 (IL-12) est un signal clé pour la polarisation des Th1 et ils sont principalement 

caractérisés par l’expression du facteur de transcription T-bet et la production d’interféron 

gamma (IFNg), IL-2, TNF-a et TNF-b 17,18.  

Au contraire, les lymphocytes Th2 ont pour rôle d’aider à la mise en place de la production 

d’anticorps par les lymphocytes B et d’éliminer les pathogènes extracellulaires. Ils sont induits par 

la présence d’IL-4 et l’expression de GATA-3. De plus, ils sécrètent de l’IL-4, IL-5, IL-6, IL-13 and IL-

31 26,27. 

Après les lymphocytes Th1 et Th2, d’autres sous-populations ont été identifiées et caractérisées. 

Les lymphocytes Th17 protègent principalement contre les champignons et les bactéries au niveau 

des muqueuses et des surfaces épithéliales et ont été décrits comme sécrétant de l’IL-17A, IL-17F, 

IL-21 et IL-22, et exprimant le facteur de transcription RORgt. De plus, chez l’homme, ils sont 

polarisés en présence d’une combinaison d’IL-1b, IL-6, IL-23 et TFG-b 38,39.  

Les lymphocytes Th22 ont les mêmes fonctions que les Th17, auxquelles s’ajoute leur participation 

dans la réparation tissulaire. Ils expriment le facteur de transcription AHR et sont caractérisés par 

la production d’IL-22, en absence d’IL-17 51,54.  

De façon similaire aux Th22, les lymphocytes Th9 ont été identifiées par la production d’IL-9, en 

absence de production des autres cytokines Th2. Ils expriment le facteur de transcription PU.1 et 

sont impliqués dans le recrutement et l’activation des mastocytes 56,61. 

Une autre sous-population de lymphocyte T a été découverte. Cette sous-population, appelée 

lymphocytes T folliculaires (Tfh), aident à la différentiation des lymphocytes B en plasmocytes et 

à leur commutation isotypique. Les signaux nécessaires à leur polarisation sont moins bien décrits 

que les autres lymphocytes Th mais ils sont caractérisés par le facteur de transcription Bcl-6 et par 

la sécrétion d’IL-21, IL-4, CXCL13 et CXCR5 ligand 85,90. 

En parallèle de ces lymphocytes Th, une sous-population particulière a également été identifiée : 

les lymphocytes T CD4 régulateurs (Treg). Ceux-ci sont caractérisés par le facteur de transcription 

FoxP3 et induisent une tolérance nécessaire au système immunitaire 73. 
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2) Mécanismes sous-jacents de la polarisation des lymphocytes T auxiliaires 

Les cytokines ne sont pas les seules molécules impliquées dans la polarisation des lymphocytes 

Th. La complexité de ces signaux peut être étudiée à différents niveaux : au niveau cellulaire et au 

niveau moléculaire. 

Influence des cellules dendritiques sur la polarisation Th 

Les DC peuvent être classifiées selon leur capacité migratoire : les DC migratoires patrouillent dans 

les tissus périphériques à la recherche d’antigènes, et les DC résidentes capturent les antigènes 

circulant directement dans les ganglions 94.  

De plus, elles peuvent être séparées en deux groupes distincts : les DC conventionnelles (cDC), 

parmi lesquelles sont trouvées les cDC1 et les cDC2, exprimant respectivement BDCA-3 et BDCA-

1), et les DC plasmacytoïdes (pDC), exprimant BDCA-4 95,96.  

Dans l’épiderme sont également spécifiquement trouvées les cellules de Langerhans.  

Pour finir, on trouve les DC dérivées des monocytes (MoDCs). Elles ont tout d’abord été décrites 

chez la souris comme étant rares à l’état basal et recruter sur le site de l’inflammation 97. Elles ont 

ensuite été retrouvées chez l’Homme dans différents contextes inflammatoires 98,99. Il a été 

montré que ces MoDC pouvaient être différenciées in vitro à partir de monocytes CD14+, en 

présence d’IL-4 et de GM-CSF 100,101. 

Ces différentes populations de DC ont été montrées comme ayant un impact distinct sur la 

polarisation des lymphocytes Th. En effet, cDC1 et cDC2 issues de sang de donneur sain ont été 

décrites comme ayant un impact différent sur les Th1 et les Th2 par plusieurs études 107–109. De 

plus, il a été montré que les DC isolées d’amygdales avaient un impact différent sur la polarisation 

Tfh 110. Enfin, les MoDC ont été montrées comme influençant la polarisation vers Th17 et/ou Th1 

98,111. 

De surcroit, le stimulus activant les DC a aussi un rôle à jouer dans le devenir de la polarisation Th. 

Par exemple, l’activation de plusieurs sous-populations de DC avec du lipopolysaccharide (LPS) de 

Escherichia coli a été montré comme induisant des lymphocytes Th1 116,118. En revanche, la 

stimulation de MoDC avec du Curdlan ou du Zymozan a été montrée comme induisant des 

lymphocytes Th17 119. Des stimuli non-dérivés de microorganismes peuvent activer les DC comme 

la lymphopoiétine thymique stromale (TSLP). Celle-ci a été décrite comme pro-polarisation Th2 

par plusieurs équipes 121,122. 
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Influence de la diversité des motifs moléculaires sur la polarisation Th 

Tout d’abord, le signal induit par le TCR influence la polarisation Th, de manière quantitative mais 

aussi qualitative. En effet, il a été démontré qu’un signal TCR fort avait plus tendance à induire des 

lymphocytes Th1 alors qu’un signal plus faible avait tendance à promouvoir des lymphocytes Th2. 

La force du signal TCR joue également sur la polarisation Th17 et Treg. Un signal TCR fort 

favoriserait plutôt une polarisation Th17 et un signal faible une polarisation Treg 129–131. 

De plus, les molécules de co-signal, comprenant des molécules de co-stimulation et de co-

inhibition, jouent aussi un rôle sur la polarisation Th. Les molécules de co-stimulation, comme leur 

nom l’indique, ont pour but de stimuler la réponse immunitaire, alors que les molécules de co-

inhibition ont la capacité de le réguler négativement.  

D’une part, ICOS est un bon exemple de molécule co-stimulatrices influençant la polarisation Th. 

En fonction des études, ICOS a été montrée comme pro-Th1 141 et anti-Th1 142–144. En revanche, 

ICOS a plus clairement été classée comme pro-Th2 et pro-Tfh, en donc grandement impliquée 

dans l’aide aux lymphocytes B 146,148. Les lymphocytes Th17 et Treg ont également été montrés 

comme impactés par ICOS 149,152. Ainsi, l’impact de ICOS sur la polarisation Th est très complexe et 

sa fonction semble donc grandement dépendante du contexte dans lequel le lymphocyte T évolue. 

D’autre part, TIGIT est un bon exemple de molécule co-inhibitrice influençant la polarisation Th. 

TIGIT a été montré comme inhibant les polarisations Th1 et Th17. En revanche, il n’aurait pas 

d’impact sur la polarisation Th2 160. Un autre article montrerait même que TIGIT promeut les 

lymphocytes Th2 161. Ainsi, peu de papiers rapportent un impact de TIGIT sur la polarisation Th, 

mais cela souligne malgré tout que les molécules co-inhibitrices peuvent avoir un rôle plus large 

qu’une simple inhibition de la réponse immunitaire. 

L’intégration de signaux complexes implique de la contexte-dépendance 

Il a été montré dans les parties précédentes que plusieurs signaux, d’origines et natures 

différentes, peuvent être impliqués dans la polarisation Th. 

Le concept de contexte-dépendance dans la vie réelle peut être défini comme le fait qu’une seule 

et même personne peut avoir un comportement différent en fonction de l’environnement dans 

lequel elle se trouve, des personnes qui l’entourent etc. Ce même concept peut être appliqué à la 

biologie. Une cellule, une molécule peut avoir des fonctions ou des comportements différents en 

fonction du contexte dans lequel elle évolue. 
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Les cytokines exercent souvent des fonctions contexte-dépendantes. Par exemple, c’est le cas de 

TFG-b, qui promeut les Treg en présence d’IL-2 168, qui promeut les Th17 en présence d’IL-1b, IL-6 

et IL-23 38, et qui promeut les Th9 en présence d’IL-4 57. De plus, Schmitt et al. ont montré que 

TFG-b en présence d’IL-12 et d’IL-23 pouvait induire plusieurs marqueurs Tfh comme CXCR5, Bcl-

6 et IL-21, à partir de cellules T CD4 naïves 82. Toujours à propos de cytokines, Touzot et al. ont 

exploré la contexte-dépendance de IFNa dans différents contextes de polarisation cytokinique et 

ont démontré que IFNa induisait des signatures transcriptionelles distinctes dans chaque contexte 

169. 

La fonction des molécules de checkpoints immunitaires peuvent être aussi sujet à de la contexte-

dépendance. Cela peut être illustré par CD28, qui peut induire une sécrétion de cytokines 

quantitativement différente en fonction du stimuli d’activation des MoDC 170. 

 

3) OX40-OX40 Ligand : biologie d’un checkpoint immunitaire co-stimulateur 

La fonction de OX40-OX40 Ligand sur l’activation des lymphocytes T 

OX40 a été découvert dans les années 80, puis a été cloné et séquencé pour la première fois dans 

les années 90. Il a ainsi été classé dans la famille des récepteurs de TNF (TNFRSF) 213,214. OX40 

Ligand (OX40L) a été découvert durant la même période 215. Ensuite, la structure 

cristallographique de ce couple récepteur-ligand a été déterminée en 2006. OX40L est un homo-

trimère, ce qui signifie qu’une molécule de OX40L doit se lier à trois molécules OX40 pour induire 

un signal 218. 

OX40 est principalement exprimé par les lymphocytes T activés, CD4 et CD8, mais aussi sur les 

cellules NK, NKT et neutrophiles 221,224,225. OX40L est également exprimé après activation, et 

principalement sur les cellules présentatrices d’antigènes (DC, lymphocyte B et macrophage) 

227,228, mais également sur les cellules endothéliales vasculaires, NK et mastocytes 230,231,233.  

La ligation de OX40L sur OX40 induit une signalisation dans la cellule T via la voie NFκB non 

canonique, parmi d’autres voies de signalisation 237. Cela permet de réguler positivement des 

gènes, comme ceux codant pour Bcl-XL ou survivin (des molécules anti-apoptotique) et les 

cytokines Th. Au contraire, cela régule aussi négativement certains gènes, comme ceux codant 

pour FoxP3, CTLA-4 et TFG-b.  

De plus, en termes de fonction, l’interaction OX40-OX40L va permettre d’augmenter la 
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prolifération, l’expansion, la polarisation et la survie des lymphocytes T CD4 213,235. Elle joue 

également un rôle dans l’adhésion et la migration des lymphocytes T 221,233,241–243. 

Contrôle de la polarisation Th et de la sécrétion de cytokines par OX40L 

Tout d’abord, concernant les premières sous-populations Th1 et Th2, il a été montré OX40L induit 

préférentiellement les lymphocytes Th2. En revanche, le contexte influe beaucoup sur la fonction 

de OX40L sur la polarisation Th1 108,122,251. 

Pour les lymphocytes Th17, des effets opposés de OX40L ont également été observés. Dans les 

modèles de souris, les avis sont très partagés, suggérant de nouveau que le contexte influe 

probablement sur la fonction de OX40L 256–258,262. 

Concernant l’impact de OX40L sur la polarisation Th9, deux études vont dans le même sens, en 

démontrant que OX40L joue un rôle important dans l’induction des lymphocytes Th9 263,264. 

Pour les lymphocytes Tfh et Treg, des régulations positives et négatives par OX40L sont 

rapportées, démontrant encore une fois l’importance du contexte dans la fonction de la molécule 

86,268,278,282. 

OX40-OX40L en pathologies et essais cliniques 

Différents anticorps ou protéines, visant OX40 ou OX40L, sont en développement en clinique dans 

plusieurs types de pathologies. De plus, en fonction de la pathologie, l’objectif va être de stimuler 

la voie de signalisation de OX40, ou au contraire de l’inhiber.   

Tout d’abord, des anticorps antagonistes anti-OX40 sont en développement dans les cancers. Le 

cancer est une pathologie très complexe. Contrairement à la chimiothérapie, qui a pour but de 

tuer les cellules tumorales en visant les cellules se divisant rapidement, les immunothérapies vont 

stimuler le système immunitaire du patient, pour qu’il puisse les reconnaître et les détruire par 

lui-même. Pour l’instant, seules des immunothérapies visant des molécules de checkpoint 

immunitaires co-inhibitrices ont eu une autorisation de mise sur le marché (anti-PD-1, anti-CTLA-

4) 212. La raison pour cibler OX40 en immunothérapie vient de son aptitude à augmenter la 

prolifération, la migration et la survie des lymphocytes T, et leur production de cytokines. Ainsi, 

plusieurs anticorps monoclonaux antagonistes sont testés en essais cliniques comme MEDI6469 

(NCT02274155) ou GSK3174998 (NCT02528357). En plus des anticorps, des protéines 
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recombinantes OX40L ont été conçues. Par exemple, MEDI6383 est testé dans les tumeurs solides 

avancées, seule ou en combinaison avec un anti-PD-L1 (NCT02221960). 

La voie OX40-OX40L est également visée dans les allergies, mais cette fois-ci, le but est d’inhiber 

la fonction de ces molécules. En effet, les maladies allergiques ont rapidement été associées à la 

cytokine IL-4 et donc aux lymphocytes Th2 et Tfh 289,290. Ainsi, même si la fonction de OX40L sur la 

polarisation Th semblerait être très dépendante du contexte, elle a été montrée comme ayant un 

impact positif sur ces deux sous-populations Th.  

Plusieurs anticorps monoclonaux antagonistes anti-OX40 sont donc en développement dans le 

traitement de la maladie de dermatite atopique, comme GBR830 (NCT02683928) et KHK4083 

(NCT03096223, NCT03703102). Un anti-OX40L est également testé dans le traitement l’asthme 

(NCT00983658). 

Enfin, dans les maladies auto-immunes, il a été montré que la voie OX40-OX40L pourrait jouer un 

rôle dans leur exacerbation. Par exemple, dans la maladie bowel inflammatoire, classée dans les 

maladies gastro-intestinales, OX40 a été négativement corrélé avec l’amélioration de la maladie 

296,298,299.  

Malgré cela, seul un anticorps monoclonal antagoniste anti-OX40 est testé en clinique, le même 

que pour la dermatite atopique, KHK4083 (NCT02647866). 

 

Objectifs 

Dans l’introduction, il a été montré que les lymphocytes CD4, et leurs cytokines secrétées, jouent 

un rôle central dans la mise en place d’une immunité adaptative adaptée contre un pathogène. La 

complexité de la classification actuelle des sous-populations Th, leurs mécanismes de polarisation, 

et comment OX40L, un checkpoint immunitaire co-stimulateur, influe sur cette polarisation a été 

présenté. De plus, un point important a été de sensibilisé au fait que le contexte dans lequel une 

cellule, une molécule évolue, peut influencer sur son comportement ou sa fonction. Concernant 

l’étude des checkpoints immunitaires, beaucoup reste à faire sur la compréhension de leurs 

mécanismes d’action et ils ont majoritairement été étudiés individuellement, dans un contexte 

spécifique. 

Il n’y a actuellement aucune méthode pour analyser la contexte-dépendance de la fonction d’une 
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molécule dans des systèmes biologiques. Ainsi, avec ce travail, plusieurs questions ont été 

adressées : 

- Est-il possible de quantifier la contexte-dépendance de la fonction d’une molécule 

biologique ? Comment ? 

- Quelle serait la meilleure méthode pour quantifier cette contexte-dépendance ? 

- Comment les modèles statistiques peuvent s’appliquer à ce concept et à cette 

quantification ? 

 

D’autres questions se sont posées : 

- Comment évaluer la quantité de données nécessaires pour étudier cette contexte-

dépendance ? 

- Comment représenter une telle quantité de données sans perdre d’information ? 

- Comment choisir les systèmes expérimentaux pour quantifier la contexte-dépendance de 

façon adéquate ? 

- Est-ce que la contexte-dépendance vient du contexte en son ensemble ou d’un paramètre 

spécifique du contexte ? 

- Dans cette même directive, est-il possible de disséquer le contexte pour mieux 

comprendre d’où vient la contexte-dépendance de la fonction de la molécule étudiée ? 

 

Résultats 

Les checkpoints immunitaires font partie d'une large diversité de signaux intégrés par les cellules 

T. Les checkpoints immunitaires sont connus pour jouer un rôle clé lors de l'activation et de la 

régulation des lymphocytes T. Cette famille comprend une trentaine de molécules et est divisée 

en deux catégories fonctionnelles. Les molécules co-stimulatrices, tels que CD28, ont la capacité 

de stimuler l'activation des lymphocytes T tandis que les molécules co-inhibitrices, tels que PD-1, 

jouent un rôle dans la régulation de la réponse des lymphocytes T. 

Dans cette étude, nous utilisons la polarisation T auxiliaire comme modèle, pour illustrer comment 

les paramètres du microenvironnement peuvent avoir un impact sur les paramètres internes, tels 

que la fonction de biomolécule. Nous voulions explorer davantage cet aspect de contexte-
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dépendance, son possible impact sur la polarisation Th et en particulier sur la sécrétion de 

cytokines. De plus, nous avons choisi OX40L comme un checkpoint immunitaire intéressant pour 

étudier ce concept. Comme présenté dans l'introduction, nous avons déjà des indices sur les 

fonctions d’OX40L sur la polarisation Th et la sécrétion de cytokines. Cependant, la manière dont 

le contexte peut influencer sa fonction n'a jamais été décrite. De plus, des outils étaient 

disponibles pour étudier OX40L dans nos deux systèmes expérimentaux : la protéine OX40L 

recombinante humaine (rhOX40L) et l'anticorps bloquant anti-OX40L humain. 

Par conséquent, nous avons d'abord décidé d'utiliser une approche systématique en appliquant 

plusieurs contextes cytokiniques sur les lymphocytes T en présence ou en absence de rhOX40L. 

Pour cela, nous avons utilisé un système de culture de polarisation Th, avec des billes anti-

CD3/anti-CD28 pour la stimulation du TCR et des cytokines polarisantes Th pour induire Th0 (pas 

de cytokine), Th1 (IL-12), Th2 (IL-4) et Th17 (IL1β + IL-6 + IL-23 + TGF-β). Une protéine rhOX40L 

soluble trimérique a été ajoutée à la culture pour stimuler OX40 sur les cellules T. 

Dans un deuxième temps, nous avons voulu intégrer un contexte cellulaire dans nos paramètres 

externes appliqués aux cellules T, pour voir son impact sur la fonction OX40L. Ces contextes 

cellulaires sont composés de deux paramètres, le type DC et les stimuli activant les DC. Nous avons 

utilisé deux types de DC : des cDC2, directement isolé du sang de donneur sain, et des MoDC, 

différenciés par IL-4 et GM-CSF à partir de monocytes CD14+, également isolés du sang de donneur 

sain. Pour étendre le nombre de contextes, chaque population a été activée à l'aide de différents 

stimuli, avec une large pertinence physiopathologique pour les infections bactériennes (LPS, 

HKSA, Curdlan) et fongiques (Zymozan), et pour les allergies (TSLP). Dans ce cas, nous avons ajouté 

un anticorps monoclonal antagoniste contre OX40L pour bloquer la communication DC-T via 

l'interaction OX40-OX40L. 

Dans nos deux systèmes expérimentaux, nous avons analysé les 17 principales cytokines Th 

sécrétées par les lymphocytes T, en présence ou en absence d'OX40L, avec l'hypothèse que la 

contexte-dépendance peut se produire sur différentes cytokines. Ces cytokines sécrétées ont été 

mesurées dans 302 observations pour créer une grande base de données. En combinant les 

systèmes expérimentaux et la modélisation statistique, nous avons quantifié et évalué les 

fonctions contexte-dépendantes de OX40L sur la polarisation Th. 

Notre stratégie de modélisation mathématique nous a permis : 1) d'identifier les cytokines pour 

lesquelles la contexte-dépendance d’OX40L était la plus importante dans chacun de nos systèmes, 
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2) de classer chaque contexte selon la contexte-dépendance d’OX40L, 3) d'identifier le paramètre 

le plus important influençant la contexte dépendance d’OX40L, entre le type DC et les stimuli 

activant les DC. Ainsi, parmi les contextes Th, Th2 apparaît comme celui qui a le plus d'influence 

sur la fonction OX40L, tandis que dans les contextes bDC, TSLP est de loin le plus influent. Enfin, 

parmi les contextes cellulaires, le type DC s'est révélé dominant dans le contrôle de la contexte-

dépendance d'OX40L par rapport au stimulus activant les DC. 

Pour conclure, notre modèle statistique peut être appliqué à n'importe quelle biomolécule, pour 

déchiffrer et quantifier sa contexte-dépendance et évaluer son impact sur sa fonction. 

 

Discussion générale et perspectives 

1) Concept de contexte-dépendance 

Importance multidisciplinaire de la contexte-dépendance 

Le concept de contexte-dépendance a été identifié dans de nombreux domaines scientifiques et 

certains articles ont tenté de mieux comprendre ses conséquences très récemment. Elle a par 

exemple été étudiée en génétique, écologie et même en économie 300,303–305. Mais bien que la 

contexte-dépendance ait été examinée et étudiée dans de nombreux domaines, peu d'études 

nous permettent de la quantifier de manière complète et directe. La contexte-dépendance dans 

son intégralité est un problème difficile car il s'agit en réalité d’une combinaison d'un nombre 

incalculable de paramètres, chacun comprenant de nombreuses combinaisons de variantes. Par 

conséquent, une telle complexité doit être formalisée à l'aide d'une approche de modélisation 

mathématique intégrée.  

Originalité de notre modèle statistique sur la contexte-dépendance 

À propos de la polarisation Th, certaines études ont examiné l'induction de sous-populations Th 

dans différents contextes 82,86,122. Cependant, à notre connaissance, aucune étude n'a évalué 

quantitativement la contexte-dépendance des fonctions d'une molécule, de manière 

systématique et dans de nombreux contextes. De plus, plus spécifiquement, les effets contexte-

dépendants d’OX40L sur la polarisation Th et la sécrétion de cytokines, dans divers contextes 

moléculaires et cellulaires, Th n'avaient jamais été abordés.  
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Pour étudier les fonctions contexte-dépendants d'OX40L sur la polarisation Th, nous avons utilisé 

deux méthodes expérimentales, un système de polarisation Th, sans DC, et un système de co-

culture de cellules T-DC. Ces derniers, ainsi que les outils pour stimuler ou inhiber OX40L, étaient 

très contrôlés car bien établis dans la littérature et dans l'équipe 85,86,122,169,170. Ces systèmes 

expérimentaux étaient à la base de nos deux types de contextes : des contextes moléculaires, 

utilisant des cytokines Th polarisantes, et des contextes cellulaires. Les contextes moléculaires 

sont plus faciles à contrôler car ils induisent un panel très spécifique de cytokines sécrétées par 

les cellules T, les contextes utilisant des DC activées induisant un panel mixte de cytokines. 

Cependant, bien qu'il soit utile comme preuve de concept, ce type de système crée des contextes 

« extrêmes », dans lesquels les cytokines polarisantes sont présentes à des concentrations élevées 

ou pas du tout. Par conséquent, nous avons décidé d'également introduire des contextes 

cellulaires, dans lesquels les cellules T sont activées et polarisées par les DC. Avec les contextes 

cellulaires, nous avons ajouté de la complexité à nos contextes et avons essayé de nous rapprocher 

de la physiologie. 

Pour toute cette diversité de contextes appliqués aux cellules T CD4, nous avons mesuré 

systématiquement une grande quantité de cytokines Th sécrétées, 17 cytokines, là où la plupart 

des études ne sélectionnent que peu de cytokines d'intérêt. Nous avons obtenu une base de 

données contenant 5046 points de données. Concernant le modèle que nous voulions établir et 

la taille du jeu de données généré, nous avons travaillé en étroite relation avec des biostatisticiens. 

Application du modèle de contexte-dépendance 

Dans nos contextes cellulaires, nous avons inclus des stimuli d'activation présentant une 

pertinence physiopathologique pour les bactéries (LPS, HKSA, Curdlan), les champignons 

(Zymozan) et les allergies (TSLP). Il aurait été intéressant d'inclure un contexte tumoral dans notre 

panel puisque nous travaillons sur les fonctions d'une molécule intéressante pour 

l’immunothérapie. Les programmes DC induits par le microenvironnement tumoral sont 

particuliers et peuvent favoriser ou contrôler le développement du cancer. Il existe des ressources 

sur les états des DC dans les tumeurs 311,312. Cependant, ces microenvironnements tissulaires 

complexes, en plus d’être très variables entre les patients, sont difficiles à récapituler dans des 

systèmes contrôlés, et nécessitent des études dédiées. Comme expérience intéressante, les 

cellules T pourraient être cultivées dans des surnageants de tumeurs. Les différents contextes 

peuvent être définis selon plusieurs paramètres. Premièrement, il peut s'agir simplement d'un 
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même type de tumeur provenant de différents patients, qui ont leur propre microenvironnement 

tumoral. Ensuite, il est possible d’aller plus loin, y compris avec différents types de tumeurs, 

différents traitements de tumeurs, etc. Ce type d'analyse pourrait être une première étape pour 

mieux comprendre l'efficacité variable du blocage des checkpoints immunitaires. 

Limitation du modèle de contexte-dépendance 

Nous pouvons également nous concentrer sur les limites de notre modèle et la justification de ces 

limites.  

Une première limitation de l'étude de la contexte-dépendance est bien sûr le nombre de 

contextes. Dans notre cas, nous avons d'abord décidé de prendre en compte le contexte des 

cytokines, car elles sont communément décrites comme étant un signal majeur en polarisation 

Th. Nous utilisons une protéine OX40L recombinante (rhOX40L) dans une expérience simplifiée de 

polarisation, sans aucune intervention de DC, en utilisant des billes anti-CD3 / anti-CD28 pour 

l'activation des lymphocytes T et des cytokines synthétiques pour la polarisation. Notre deuxième 

cadre expérimental utilisant des DC pour activer et polariser les cellules T vise à complexifier nos 

contextes pour se rapprocher de la réalité de la polarisation Th dans les ganglions lymphatiques. 

Néanmoins, l'augmentation de la complexité va de pair avec la diminution de contrôle des 

systèmes. Nous aurions pu faire beaucoup d'autres choix pour les contextes tels que choisir 

d'autres stimuli d'activation DC par exemple. Malheureusement, ajouter plus de stimuli 

d'activation DC aurait été difficile par rapport au nombre de DC que l’on peut obtenir à partir 

d’une même poche de sang.  

De plus, dans les contextes cellulaires, nous n'avons inclus que deux types de DC, cDC2 et MoDC, 

nous aurions pu en choisir d’autres, mais encore une fois le problème du nombre de DC persiste, 

ainsi que celui du choix du milieu de culture par rapport au type de DC. 

 

2) Impact de OX40L sur la sécrétion de cytokines Th et ses effets contexte-dépendants 

Impact de OX40L sur les principales cytokines Th 

La contexte-dépendance peut également être intéressante à considérer dans le cas de résultats 

paradoxaux entre différentes études. Dans le cas d’OX40L, nous avons été intéressés par IL-4 car 

de nombreuses études ont lié OX40L à l'allergie et aux cellules Th2 et Tfh 290. Dans notre contexte 

Th2, nous avons observé une diminution de l'IL-4 en présence de la protéine rhOX40L, ainsi qu’une 



 238 

diminution des cytokines Th2 IL-5 et IL-31. De manière similaire, dans notre contexte TSLP-bDC, 

nous avons observé une augmentation de l'IL-4 en présence de l'anticorps bloquant anti-OX40L, 

ce qui signifie une diminution de l'IL-4 par l'OX40L. Cependant, OX40L a été plutôt classé comme 

induisant les cellules Th2 dans la littérature 122,251. Cependant, dans ces études, d’autres types de 

DC et milieux ont été utilisés.  

Dans notre contexte Th17, nous avons remarqué qu'OX40L entrainait une régulation différente 

d’IL-17A et IL-17F. La concentration d'IL-17A était diminuée alors que la concentration d'IL-17F 

était augmentée en présence d'OX40L. À l'origine, les gènes IL17A et IL17F ont été décits comme 

étant régulés de manière coordonnée 325 et jusqu'à présent, seules quelques études ont rapporté 

une régulation différente de l'IL-17A et de l'IL-17F 131,170,326–328. Dans le cadre de la fonction 

d’OX40L sur les cellules Th17, aucune étude n'avait encore rapporté une régulation différente des 

cytokines IL-17F et IL-17A. Nos données fournissent de nouvelles informations sur le rôle de 

d'OX40L sur ces cytokines. En effet, bien qu'elles aient des actions similaires voire parfois 

synergiques du fait d'une forte homologie, leur rôle peut également différer dans certains 

contextes 329–332, d'où l'intérêt d'une meilleure compréhension de leur mécanisme de sécrétion 

pour pouvoir les cibler individuellement. 

Fonctions contexte-dépendantes d’OX40L sur les cytokines Th 

Dans nos contextes Th, nous avons observé deux types de contexte-dépendance d’OX40L, 

qualitative et quantitative sur l'IL-22, TNF-a, IL-10 et IL-13. Parmi ces cytokines, l'IL-10 avait le 

score de contexte-dépendance le plus élevé, ce qui signifie qu'elle était la plus sensible, de 

manière quantitative, à la dépendance au contexte OX40L dans les contextes. 

Dans nos contextes bDC, la contexte-dépendance d’OX40L sur IL-2, GM-CSF, IFNg et IL-3 dépend 

fortement du contexte TSLP. Cela est évident parce que lorsque nous l'avons retiré de l'analyse, 

nous n'avons pas pu l’observer sur ces cytokines. À première vue, cela semblait cohérent car le 

contexte TSLP-bDC est instinctivement différent des cinq autres. C’est une cytokine inflammatoire 

produite dans un contexte très distinct qu'est l'allergie. Mais il s’est avéré que dans les contextes 

MoDC (qui n’ont pas de contexte TSLP car pas de récepteur), une contexte-dépendance a malgré 

tout pu être observée entre les contextes bactériens et fongiques. 

Nous avons observé les types de deux dépendances contextuelles. OX40L a joué une fonction 

qualitative dépendante du contexte sur IL-2, GM-CSF et IFNg. OX40L induit une diminution de ces 
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cytokines dans le contexte TSLP-bDC, alors qu'il induit une augmentation dans les cinq autres. De 

plus, OX40L a joué une fonction quantitative dépendante du contexte sur IL-3, qui a augmenté 

dans tous les contextes de la BDC, mais à différents niveaux. 

Les cytokines affectées par la contexte-dépendance d’OX40L dans les contextes MoDC étaient 

principalement des cytokines Th2. OX40L a influencé différemment IL-4, IL-5, IL-31 et GM-CSF dans 

les différents contextes fongiques et bactériens. 

Nous aurions pu également définir des comportements « contexte-indépendants » d'OX40L sur 

les cytokines sécrétées. Par exemple, nous n'avons observé aucune contexte-dépendance de la 

fonction OX40L sur la sécrétion d'IL-21. Ceci est conforme à la littérature 85,86. 

 

3) Pertinence de la classification Th 

Profil étroit versus profil mixte de sécrétion de cytokines Th 

Dans notre étude, nous avons observé que les contextes Th induisaient un profil Th étroit, ce qui 

signifie que chaque sous-population Th sécrète principalement leurs cytokines spécifiques 

définissant la sous-population. Cependant, en introduisant les DC, nous avons observé que les 

cellules T sécrètent en fait un profil très mixte de cytokines. Bien qu'il semble qu'il y ait une 

dominance de certaines cytokines par rapport à d'autres dans les différents contextes, un profil 

mixte de cytokines de sous-populations Th distinctes est observé. 

La comparaison de ces résultats de profil étroit versus mixte de cytokines sécrétées par les cellules 

Th avec la littérature est difficile pour plusieurs raisons : 

- Les études se concentrent généralement sur des sous-populations Th spécifiques ou sur 

des cytokines spécifiques et n'effectuent pas d'analyse systématique de toutes les 

principales cytokines Th. 

- Lors de l'analyse d'un large panel de cytokines, la plupart des études se penchent sur 

l’expression des gènes par séquençage d’ARN, alors que nous avons mesuré nos cytokines 

au niveau protéique, et il a été démontré par des études comparatives que les corrélations 

entre les niveaux d'ARNm et de protéines peuvent être relativement incertaines 338,339. 
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Cela peut être illustré par l'étude Cano-Gamez. Ils ont stimulé des cellules T CD4 naïves et 

mémoires dans un contexte de stimulation Th17 et iTreg. Pour les cellules T CD4 naïves, ils ont 

observé 733 gènes différemment exprimés pour seulement 455 protéines différemment 

exprimées entre les deux contextes. Dans la même logique, pour les cellules T CD4 mémoire, ils 

ont observé 42 gènes différemment exprimés et aucune protéine différemment exprimée 307. 

Dans notre travail, nous avons polarisé un ensemble de cellules T CD4 naïves. Cet ensemble est en 

fait un mélange de nombreuses cellules T CD4 naïves spécifiques à un antigène donné, qui peuvent 

donc reconnaître de nombreux antigènes différents. Dans nos résultats, nous n'avons pas pris en 

compte la spécificité de l'antigène car nous n'avons pas ajouté d'antigène dans les contextes Th 

et nous étions en condition allogénique dans les contextes DC. Il pourrait être très intéressant 

d'identifier si les cellules T CD4 naïves spécifiques à l'antigène sécrètent un profil de cytokines plus 

étroit lorsqu'elles sont activées par leur antigène spécifique. En effet, le profil de sécrétion de 

cytokines mixtes pourrait s'expliquer par la multiplicité des clones de cellules T. 

Complexité de la classification Th 

Nos données fournissent des preuves supplémentaires que la majorité des cellules Th ont un 

degré important de plasticité. Il est important de garder à l'esprit que cette plasticité est 

influencée par de nombreux paramètres tels que les expressions des récepteurs des cytokines et 

des facteurs de transcription, la disponibilité des signaux polarisants dans le microenvironnement 

des lymphocytes T, etc… Cela signifie que la plasticité est considérée à un niveau « inter-sous-

population », c’est-à-dire lorsque la cellule T passe d'un phénotype de sous-population Th à une 

autre. Nos travaux et réflexions sur le profil des cytokines mixtes nous amènent à l'idée que la 

plasticité pourrait même être définie à un niveau « intra-sous-population ». 

En considérant tous ces aspects, le concept de plasticité peut devenir contre-intuitif car si une 

cellule Th est supposée être engagée dans une sous-population spécifique, alors elle ne devrait 

pas être plastique, sinon ce ne serait pas une sous-population spécifique. 

La compréhension globale de toutes ces sous-populations Th et de leurs cytokines dérivées 

conduit à réexaminer leur association aux maladies. Au moment où seuls Th1 et Th2 étaient 

identifiés, la classification des maladies liées aux Th était binaire et liée à une sous-populations Th 

pathogène spécifique, c’est-à-dire Th1 ou Th2 associée à leur sécrétion spécifique de cytokines. 

Un exemple clair de ce fait est la sclérose en plaques. Les cellules Th1 productrices d’IFNg ont été 
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décrites comme jouant un rôle majeur dans la sclérose en plaques, qui était clairement classée 

comme une maladie associée à Th1 346–348. De plus, conformément à la dichotomie Th décrite par 

Mossman et Coffman, les améliorations cliniques de l'EAE étaient corrélées à la diminution de 

l'IFNg mais aussi à l'augmentation de l'IL-4, et les cytokines Th2 ont été décrites comme 

protectrices contre les cellules Th1 exacerbées 349,350. Cependant, la découverte de Th17 a changé 

la vision de la sclérose en plaques et a aidé à comprendre les réponses immunitaires qui n'étaient 

pas expliquées par le paradigme Th1 et Th2 351. Après cela, les cellules Th17 ont été considérées 

comme jouant également un rôle central dans la maladie de la sclérose en plaques 352. 

La sclérose en plaques est un exemple parmi d'autres dans lequel une maladie a été associée à 

une sous-population spécifique et a finalement été associée à de nombreuses sous-populations 

par la suite. L'évolution d'une vue bipolaire à une vue multipolaire de plusieurs sous-populations 

Th, impliquées différemment dans une seule pathologie, conduit à une complexité croissante de 

la classification Th et de l'association des cytokines Th aux maladies et aux états pathologiques. 

Cela soulève de nombreuses questions. D’abord liée à la maladie elle-même : une maladie est-elle 

associée à une sous-population Th pathogène spécifique ou à plusieurs ? Dans le second cas, 

comment l'identification de plusieurs sous-populations Th impliquées dans une pathologie peut 

aider à la compréhension et au traitement de cette maladie ? 

De plus, la plasticité Th questionne la meilleure stratégie à appliquer pour traiter le patient lorsque 

la polarisation Th est impliquée et la manière la plus simple lorsque plusieurs sous-populations 

sont impliquées. Cibler les signaux dans le microenvironnement qui induisent des cellules Th 

pathogènes ? Cibler directement ces cellules Th pathogènes ? Cibler l'effecteur Th pathogène ? 

Autant de questions qui restent ouvertes sur la classification des lymphocytes Th. 
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