
HAL Id: tel-03875227
https://theses.hal.science/tel-03875227v1

Submitted on 28 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guaranteed properties of dynamical systems under
perturbations

Jawher Jerray

To cite this version:
Jawher Jerray. Guaranteed properties of dynamical systems under perturbations. Mobile Computing.
Université Paris-Nord - Paris XIII, 2021. English. �NNT : 2021PA131064�. �tel-03875227�

https://theses.hal.science/tel-03875227v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS XIII - SORBONNE PARIS NORD

École Doctorale Sciences, Technologies, Santé Galilée

Guaranteed properties of dynamical systems
under perturbations

THÈSE DE DOCTORAT
présentée par

Jawher JERRAY

pour l’obtention du grade de
DOCTEUR EN INFORMATIQUE

soutenue le 10/12/2021 devant le jury d’examen composé de :

BASSINO Frédérique, professeure, Université Sorbonne Paris Nord . . Présidente du jury
DANG Thao, directrice de recherches CNRS, VERIMAG . Rapportrice
FREHSE Goran, professeur, ENSTA Paris . Rapporteur
JUNGERS Raphaël, professeur, Université catholique de LouvainExaminateur
LIPARI Giuseppe, professeur, Université de Lille . Examinateur
PETRUCCI Laure, professeure, Université Sorbonne Paris NordExaminatrice
ANDRÉ Étienne, professeur, Université de Lorraine Directeur de thèse
FRIBOURG Laurent, directeur de recherches CNRS, ENS Paris-Saclay . Co-directeur de
thèse

Guaranteed properties of dynamical systems under
perturbations

Abstract:
Since dynamical systems has a major impact on human development, especially critical
systems that can put human lives at risk if something goes wrong. Hence, the need of
studying the behavior of these systems in order to guarantee their correct functioning.
Nevertheless, computing such type of system has never been an easy task, as the
complexity of these systems is constantly increasing, in addition to the perturbations
that may arise during their performance, as well as undefined parameters that may
exist. To ensure that a system always produces the expected results and does not fail
in any way, a formal verification of its behavior and properties is necessary.

In this thesis, we study dynamical systems from different aspects and using various
techniques. More specifically, we focus on the formal verification of some of its critical
properties such as schedulability, synchronization, robustness and stability.

In the first part, we start with the formal verification of real-time systems un-
der uncertainty, where we use parametric timed automata sometimes extended by
stopwatches to model systems with preemption. This formalism is very suitable for
real-time systems due to its good expressiveness. It allows to study the schedulability
of the flight control of a space launcher with unknown parameters and under con-
straints. Then, a synthesis of the admissible timing values of the unknown parameters
is provided by a parametric timed model checker. We increase the complexity of the
problem by taking into consideration the switch time between two threads.
We extend this work by developing a tool that translates a given real-time system
design into parametric timed automata in order to infer some timing constraints
ensuring schedulability.

In the second part, we study the stability of dynamical systems and the robustness
of controls. We give a simple technique based on Euler’s integration method which
allows to build an invariant set around a given system. This technique guarantees that
the approximate Euler solutions are attracted by a limit cycle. We apply the method
on different systems, including chaotic systems with strange attractors. Furthermore,
we show that a basic combination of a random sampling with a symbolic computation
method assists to deal with robust control problems for nonlinear systems. Also, we
illustrate a basic condition guaranteeing that a system with perturbation is robust
under a repeated control sequence obtained by solving a horizon optimal control
problem. Finally, we unified the main contributions of the second part in a tool called
ORBITADOR which checks the stability of a given system and notably returns plots
containing the evolution of the system in different views and the shape of the invariant

ii

if it exists.

Keywords: Dynamical systems, real-time systems, model checking, verifica-
tion, parametric timed automata, parameter synthesis, IMITATOR, schedulability,
synchronization, reachability, robustness, stability, hybrid system, Euler method.

Analyses formelles des propriétés des systèmes
dynamiques sous perturbations

Résumé:
Étant donné que les systèmes dynamiques ont un impact majeur sur le développement
humain, en particulier les systèmes critiques qui peuvent mettre des vies humaines
en danger en cas de problème. D’où la nécessité d’étudier le comportement de ces
systèmes afin de garantir leur bon fonctionnement. Néanmoins, le calcul de ce type
de système n’a jamais été une tâche facile, puisque la complexité de ces systèmes est
toujours en augmentation, en plus des perturbations qui peuvent survenir lors de leur
fonctionnement, ainsi que des paramètres indéfinis qui peuvent exister. Pour s’assurer
qu’un système produit toujours les résultats attendus et n’échoue en aucune façon,
une vérification formelle de son comportement et de ses propriétés est nécessaire.

Dans cette thèse, nous étudions les systèmes dynamiques sous différents aspects
et en utilisant diverses techniques. Plus précisément, nous nous concentrons sur la
vérification formelle de certaines de ses propriétés critiques telles que l’ordonnancement,
la synchronisation, la robustesse et la stabilité.

Dans la première partie, nous commençons par la vérification formelle de systèmes
temps réel sous incertitude, où nous utilisons des automates temporisés paramétriés
parfois étendus par des "stopwatches" pour modéliser des systèmes avec préemption. Ce
formalisme est très adapté aux systèmes temps réel en raison de sa bonne expressivité.
Il permet d’étudier l’ordonnancement de la commande de vol d’un lanceur spatial avec
des paramètres inconnus et sous des contraintes. Ensuite, une synthèse des valeurs
temporelles admissibles des paramètres inconnus est fournie par un model checker
paramétré temporisé. Nous augmentons la complexité du problème en prenant en
considération le temps de basculement entre deux threads.
Nous étendons ce travail en développant un outil qui traduit une conception de système
temps réel donnée en automates temporisés paramétrés afin d’inférer des contraintes
temporelles assurant l’ordonnancement.

Dans la deuxième partie, nous étudions la stabilité des systèmes dynamiques et la
robustesse des commandes. Nous donnons une technique simple basée sur la méthode
d’intégration d’Euler qui permet de construire un ensemble invariant autour d’un
système donné. Cette technique garantit que les solutions d’Euler approchées sont
attirées par un cycle limite. Nous appliquons la méthode sur différents systèmes,
y compris des systèmes chaotiques avec des attracteurs "étranges". De plus, nous
montrons qu’une combinaison de basique d’un échantillonnage aléatoire avec une
méthode de calcul symbolique aide à traiter des problèmes de contrôle robuste pour
les systèmes non linéaires. De plus, nous illustrons une condition de base garantissant

iv

qu’un système avec perturbation est robuste sous une séquence de contrôle répétée
obtenue en résolvant un problème de contrôle optimal d’horizon. Enfin, nous avons
unifié les principales contributions de la deuxième partie dans un outil appelé
ORBITADOR qui vérifie la stabilité d’un système donné et retourne notamment des
graphiques contenant l’évolution du système dans différentes vues et la forme de
l’invariant s’il existe.

Mots-clés: Systèmes dynamiques, systèmes temps-réel, model-checking,
vérification, automates temporisés paramétrés, synthèse de paramètres, IMITATOR,
ordonnancement, synchronisation, accessibilité, robustesse, stabilité, système hybride,
méthode d’Euler.

Remerciement

Tout d’abord, je tiens à remercier mes directeurs de thèse Étienne André1

et Laurent Fribourg2 pour leurs conseils avisés, leurs orientations, leurs corrections
et leurs critiques qui ont beaucoup apporté à ce travail. Cette thèse n’aurait pas pu
exister sous sa forme actuelle sans leurs encouragements, leur encadrement et leur
soutien constants.

Je suis très reconnaissant aux membres du jury de ma thèse. Merci à
Frédérique Bassino3 d’avoir accepté d’être président du jury. Je tiens également
à remercier les rapporteurs de ma thèse Thao Dang4 et Goran Frehse5 pour leurs
commentaires constructifs qui ont permis d’améliorer le manuscrit de thèse. Merci à
Raphaël Jungers6, Giusseppe Lipari7 et Laure Petrucci8 d’avoir examiné la thèse et
d’avoir accepté de faire partie de mon jury.

Un grand merci à mes co-auteurs et à toutes les personnes avec qui j’ai
eu l’occasion de travailler durant ces trois années: David Lesens, Olivier Bruneau9,
Emmanuel Coquard, Sahar Mhiri et Abdelwaheb Hafs.

Je tiens également à remercier tous les membres du LIPN et du LSV/LMF. En
particulier, merci à l’axe Vérification de l’équipe LoVe pour leur accueil. Évidemment,
Merci à tous mes collègues et amis au LIPN et au LSV pour les moments conviviaux
et pour leur bonne humeur, dans un ordre aléatoire: Mehdi, Enrico, Ugochukwu, Alex,
Tito, Dina, Florent, Boris, Carole, Juan José, Daniel, Ikram, Guillaume, Gaspard,
François, Yacine et tous les autres que j’ai probablement oublié de citer leurs noms.
Un merci spécial à Davide pour les balades nocturnes en région Parisienne.

Enfin, merci à mes parents pour leur soutien inconditionnel et sans qui je ne
serais pas là.

1https://www.loria.science/andre/
2http://www.lsv.fr/~fribourg/
3https://lipn.univ-paris13.fr/~bassino/
4http://www-verimag.imag.fr/PEOPLE/Thao.Dang/
5https://sites.google.com/site/frehseg/
6https://perso.uclouvain.be/raphael.jungers/
7https://pro.univ-lille.fr/giuseppe-lipari/
8https://lipn.univ-paris13.fr/~petrucci/
9http://lurpa.ens-paris-saclay.fr/version-francaise/organisation-jusqu-a-fin-2019-/

equipe-geo3d/olivier-bruneau-326435.kjsp?RH=1216288647242

https://www.loria.science/andre/
http://www.lsv.fr/~fribourg/
https://lipn.univ-paris13.fr/~bassino/
http://www-verimag.imag.fr/PEOPLE/Thao.Dang/
https://sites.google.com/site/frehseg/
https://perso.uclouvain.be/raphael.jungers/
https://pro.univ-lille.fr/giuseppe-lipari/
https://lipn.univ-paris13.fr/~petrucci/
http://lurpa.ens-paris-saclay.fr/version-francaise/organisation-jusqu-a-fin-2019-/equipe-geo3d/olivier-bruneau-326435.kjsp?RH=1216288647242
http://lurpa.ens-paris-saclay.fr/version-francaise/organisation-jusqu-a-fin-2019-/equipe-geo3d/olivier-bruneau-326435.kjsp?RH=1216288647242

List of publications

1. Étienne André, Emmanuel Coquard, Laurent Fribourg, Jawher Jerray and David
Lesens
Scheduling synthesis for a launcher flight control using parametric stopwatch
automata
Application of Concurrency to System Design (ASCD 2019),
doi: 10.1109/ACSD.2019.00006

2. Étienne André, Jawher Jerray and Sahar Mhiri
Time4sys2imi: A tool to formalize real-time system models under uncertainty In-
ternational Colloquium on Theoretical Aspects of Computing (ICTAC 2019),
doi: 10.1007/978-3-030-32505-3_7

3. Étienne André, Emmanuel Coquard, Laurent Fribourg, Jawher Jerray and David
Lesens
Scheduling synthesis for a launcher flight control using parametric stopwatch automata
Fundamenta Informaticae (FI 2021), doi: 10.3233/FI-2021-2065

4. Jawher Jerray, Laurent Fribourg and Étienne André
Guaranteed phase synchronization of hybrid oscillators using symbolic Euler’s method
(verification challenge)
Applied Verification of Continuous and Hybrid Systems (ARCH 2020),
doi: 10.29007/l3k2

5. Jawher Jerray, Laurent Fribourg and Étienne André
Robust optimal periodic control using guaranteed Euler’s method
American Control Conference (ACC 2021), doi: 10.23919/ACC50511.2021.9482621

6. Jawher Jerray and Laurent Fribourg
Determination of limit cycles using stroboscopic set-valued maps
Analysis and Design of Hybrid Systems (ADHS 2021),
doi: 10.1016/j.ifacol.2021.08.488

7. Jawher Jerray, Laurent Fribourg and Étienne André
An Approximation of Minimax Control using Random Sampling and Symbolic
Computation
Analysis and Design of Hybrid Systems (ADHS 2021),
doi: 10.1016/j.ifacol.2021.08.509

8. Jawher Jerray
ORBITADOR: A tool to analyze the stability of periodical dynamical systems
Applied Verification of Continuous and Hybrid Systems (ARCH 2021),
doi: 10.29007/k6xm

Software published during PhD:

• Time4sys2imi: A tool to formalize real-time system models under uncertainty
(https://lipn.univ-paris13.fr/~jerray/Time4sys2imi/).

• ORBITADOR: A tool to analyze the stability of periodical dynamical systems
(https://lipn.univ-paris13.fr/~jerray/orbitador/).

https://lipn.univ-paris13.fr/~jerray/Time4sys2imi/
https://lipn.univ-paris13.fr/~jerray/orbitador/

Acronyms
AADL Architecture Analysis & Design Language

BCET Best Case Execution Time

BIBO Bounded-Input/Bounded-Output

CPU Central Processing Unit

DOM Document Object Model

DP Dynamic Programming

FPS Fixed Priority Policy

GNC Guidance Navigation and Control

GUI Graphical User Interface

LC Limit Cycle

MAF MAjor Frame

MILP Mixed-integer Linear Programming

MPC Model Predictive Control

MRI Magnetic Resonance Imaging

ODE Ordinary Differential Equation

OPC Optimal Periodic Control

PDE Partial Differential Equation

PSA Parametric Stopwatch Automata

PTA Parametric Timed Automata

RMS Rate-Monotonic Scheduling

SMT Satisfiability Modulo Theories

SQP Sequential Quadratic Programming

TA Timed Automata

TTS Timed Transition System

UML Unified Modeling Language

VdP Van der Pol

WCET Worst Case Execution Time

x

XML eXtensible Markup Language

Contents
General Introduction 1

I Real-time systems analysis 7

1 Introduction 9
1.1 Context . 10

1.1.1 Scheduling . 10
1.1.2 Real-time systems . 10
1.1.3 Formal methods . 11
1.1.4 Model checking . 11
1.1.5 Timed Automata . 11

1.2 Objectives . 12
1.3 Related works . 13

1.3.1 Scheduling . 13
1.3.2 Scheduling with model checking 13
1.3.3 Scheduling with parameters . 14

1.4 Plan of Part I . 15

2 Preliminary definitions 17
2.1 Introduction . 18
2.2 Clocks, parameters, constraints . 18

2.2.1 Clocks . 18
2.2.2 Parameters . 18
2.2.3 Constraints . 18

2.3 Timed automata . 19
2.3.1 Syntax . 19

2.4 Parametric timed automata . 19
2.4.1 Syntax . 20

2.5 Parametric stopwatch automata . 20
2.5.1 Syntax . 20

2.6 Scheduling problem for real-time systems 21

3 Parametric schedulability analysis of the flight control of a space launcher 23
3.1 Introduction . 25

3.1.1 Contribution . 25
3.1.2 Outline . 26

3.2 Description of the system and problem 26
3.2.1 Threads and deterministic communications 27
3.2.2 Reactivities . 28
3.2.3 Processings and assignment into threads 30

xii Contents

3.2.4 A formal framework for real-time systems 31
3.2.5 Formalization of the case study 32
3.2.6 Objectives . 33

3.3 Specifying the system . 34
3.3.1 Architecture of the solution . 35
3.3.2 Modeling periodic processing activations 36
3.3.3 Modeling threads . 37
3.3.4 Modeling the FPS scheduler . 39
3.3.5 Reachability synthesis . 40

3.4 Compositional verification of reactivities 40
3.4.1 Observer construction . 42
3.4.2 Compositional verification and synthesis 43

3.5 Enhancing the analysis with context switches 44
3.5.1 Problem . 44
3.5.2 Modeling the context switch . 45

3.6 Experiments . 46
3.6.1 Experimental environment . 46
3.6.2 Verification and synthesis without reactivities 48
3.6.3 Compositional verification of reactivities 50
3.6.4 Switch time . 51

3.7 Comparison with other tools . 53
3.7.1 Comparison of our results with non-parametric tools 53
3.7.2 “Testing” the parametric analysis 55

3.8 Conclusion . 58

4 Formalize real-time system models under uncertainty 59
4.1 Introduction . 60

4.1.1 Related works . 60
4.1.2 Outline . 61

4.2 Time4sys in a nutshell . 61
4.3 Architecture and principle . 63

4.3.1 Targeted user . 63
4.3.2 User workflow . 64
4.3.3 Global architecture . 65
4.3.4 Detailed architecture . 65

4.4 Proof of concept . 66
4.5 Conclusion and perspectives . 69

5 Conclusion
and perspectives 71
5.1 Conclusion . 72
5.2 Perspectives . 72

Contents xiii

II Limit cycle of oscillators using Euler method 75

6 Introduction 77
6.1 Context . 78

6.1.1 Robust control . 78
6.1.2 Limit cycle . 78
6.1.3 Stability . 78
6.1.4 Euler method . 78

6.2 Objectives . 79
6.3 Contributions . 79

7 Symbolic Euler’s method and its application for controlled systems 81
7.1 Introduction . 82
7.2 Symbolic Euler’s method . 82

7.2.1 Euler’s method and error bounds 82
7.2.2 Systems with bounded uncertainty 84

7.3 Extension of Euler Method with control 86
7.3.1 Optimal control using Euler time integration 86
7.3.2 Correctness of the method . 88
7.3.3 Examples . 89
7.3.4 Extension to systems with perturbation 96

7.4 An Approximation of Minimax Control using Random Sampling and
Symbolic Computation . 100
7.4.1 Introduction . 100
7.4.2 Method . 101
7.4.3 Example . 104
7.4.4 Search a control that maintains the periodicity 106
7.4.5 Conclusion . 113

8 Generation of bounded invariants via stroboscopic set-valued maps 115
8.1 Generation of bounded invariants without control 116

8.1.1 Introduction . 116
8.1.2 Method . 117
8.1.3 Application to Parametric Systems 119
8.1.4 Conclusion . 124

8.2 Robust optimal periodic control using guaranteed Euler’s method . . . 124
8.2.1 Introduction . 124
8.2.2 Application to Guaranteed Robustness 125
8.2.3 Conclusion . 128

9 Enclosures of invariant tori and strange attractors using Euler’s method 131
9.1 Introduction . 132
9.2 Constructing Invariant Stuctures Around Tori 133

9.2.1 Basic method for periodic systems 133

xiv Contents

9.2.2 Extension to chaotic systems . 138
9.3 Conclusion . 141

10 ORBITADOR: A tool to analyze the stability of periodical dynamical
systems 147
10.1 Introduction . 148
10.2 ORBITADOR organization and principle 148

10.2.1 Targeted user . 149
10.2.2 Global architecture . 149

10.3 Example: Passive biped model . 150
10.4 Conclusion . 152

11 Conclusion
and perspectives 153
11.1 Summary of Part II . 154
11.2 Perspectives . 154

General conclusion 157

Bibliography 159

A Appendix: Scheduling for real-time system 181
A.1 Parametric analyses without reactivities 182

A.1.1 Parametric offsets and deadlines 182
A.2 Parametric analyses with reactivities 182

A.2.1 Parametric offsets . 182
A.2.2 Parametric deadlines . 182

A.3 Parametric analyses with reactivities and with switch time 182
A.3.1 Parametric offsets . 182
A.3.2 Parametric deadlines . 184

B Appendix: Formalize for real-time system 187
B.1 Other examples translated by Time4sys2imi 187

C Appendix: Limit cycle of oscillators using Euler method 197
C.1 Reaction-diffusion PDEs . 198
C.2 Centered finite difference scheme . 199
C.3 Source code of Examples 8.1 to 8.3: Parametric Van der Pol system . . 202
C.4 Sensitivity of Bocop to Initial Conditions 215
C.5 Coupled Van der Pol oscillators example 216
C.6 Biochemical example . 219

D Appendix: Convergence and robustness of the Hopf oscillator applied
to an ABLE exoskeleton: reachability analysis and experimentation 227
D.1 Introduction . 228

Contents xv

D.2 Material and methods . 229
D.2.1 Adaptive oscillators . 229
D.2.2 Exoskeleton modeling . 231

D.3 Reachability Analysis . 232
D.4 Experimental results . 234

D.4.1 Participants . 234
D.4.2 Kinematics . 235
D.4.3 Data acquisition . 236
D.4.4 Motor task . 236
D.4.5 Experimental data . 236

D.5 Conclusion . 238

E Appendix: Asymptotic Error in Euler’s Method with a Constant Step Size241
E.1 Introduction . 242
E.2 Preliminaries . 243
E.3 Asymptotic Error in Euler’s Method 246

E.3.1 Error bound in Euler’s method 246
E.3.2 Strong monotonicity . 247
E.3.3 Application to gradient descent 248
E.3.4 Co-coercivity . 251

E.4 Conclusion . 254

General Introduction
Motivations and problematic

Dynamical systems became more and more complex specially in the recent years
and in different domains for example, transports, communications, industrial units
and robotics.

In the past, there were accidents where issues were caused by the lack of behavioral
study and of robust verification, i. e., when the system faced external perturbations
(like weather conditions) or internal perturbations (such as switching between human
and automated systems guidance in aircraft). An example of such accident in the
Fukushima Daiichi nuclear disaster in March 2011 when three nuclear reactors collapsed;
among the causes, there was a problem in the control of the cooling systems. Another
example is the case of the crash of the Air France Flight 447 (from Rio de Janeiro,
Brazil, to Paris, France) in June 2009; one of the causes was an issue in the accuracy of
the speed value shown by the indicators. Therefore, modeling and verification of these
dynamical systems is an important task because it can help to avoid dramatic accidents.
We focus here on some significant properties: schedulability, synchronization, stability,
robustness and control optimization, which guarantee the smooth functioning of the
system and keep it away from chaos.

Among the major challenges that the study of these properties on complex dy-
namical systems can generate, we can cite the complexity of computation due to the
exploration of the behavior of the system and the influencing external factors, also
the lack of information on the values of certain parameters. Moreover, the modeling
of such systems is in itself a challenge because of the complexity of their evolution,
especially for hybrid systems (hybrid systems mix continuous behaviors with discrete
actions, such as jumps).

A lot of research has been done on dynamical systems to study their stability: a
system is considered stable if small perturbations to the solution lead to a new solution
that stays close to the original solution for all time, and to verify the robustness
of controllers that may guide a system. Consequently, many techniques have been
developed to check stability and robustness. However, most of these methods have a
high computational complexity, which makes their implementation to real case studies
often difficult.

Thus, the need for methods that study the stability and the robustness and which
are less greedy in term of memory and computational resource.

Context of the thesis

2 Contents

The goal of this thesis is to analyze and verify some properties, such as schedula-
bility, stability and robustness of dynamical systems under perturbations. We describe,
in the following, the general lexical field related to the thesis.

Dynamical system: is a system that has a strong dependence on time and it can
change the values of its states during its evolution over time. The study of dynamical
systems deals with the future of a system of which we only know certain calculated
states of its past or present state. To model a dynamical system we essentially need to
provide the state space that will evolve over time and the time evolution rule. Thus, a
dynamical system is basically a model depicting the timed evolution of a system.

Formal verification: is the process of verification whether a model satisfies
some specifications. To formally check a design, it should initially be converted into a
discretized format. The design is determined as a set of interacting systems; each has
a finite number of arrangements, called states.

Contributions

The contributions of this thesis are separated into two main aspects.

• The contribution of the first part is essentially to study the schedulability of
real-time systems while synthesizing some unknown timing parameters and
satisfying given timing constraints. Parametric model checking is used here as
formal verification technique in order to verify that the specification is satisfied.
Generally speaking, model checking [BK08] is defined as a formal verification
technique that aims to check if a given formal specification is satisfied by the
model of a system.

More precisely, Chapter 3 describes the analysis of a flight control system using
parametric timed automata, which are an extension of finite state automata with
clocks [AD94] and parameters [AHV93]. In this case study, a modular solution is
proposed, i. e., each element of the system is modeled using an automaton. Then,
all the automata that model the system are imported to the input language of a
parametric model checker (IMITATOR), so that the offsets an deadlines of each
thread can be defined while taking into account given constraints. Chapter 4
proposes an approach that can be helpful to determine timing parameters of
real-time systems guaranteeing schedulability. We have developed a tool named
Time4sys2imi that translates a design of real-time system into parametric timed
automata [AHV93].

• The contribution of the second part can be summarized by the exploration of the
limit cycle of oscillators using Euler’s method. In other terms, we verify for an
oscillator, which is a signal generator that delivers a sinusoidal or non-sinusoidal
signal of some specific frequency, if there is a periodic trajectory that repeats
itself after a determined time frame [SYS14, CLZ15]. To analyze oscillators that

Contents 3

can be modeled by differential equations, we use Euler’s Method which is a
strategy that applies the idea of local linear approximation, where we use little
digression lines over a brief distance to approximate the solution for an initial
value (see [HJK11]).

With more detail, Chapter 8 introduces, first of all, a method that verifies if a
given parametric dynamical system converges towards a limit cycle. In addition,
a compact set is constructed which is invariant for the system with all the
possible values of its parameters. The second contribution of Chapter 8 concerns
the guarantee of the robustness for a given system with perturbation under a
repetitive control. The method assures that the unperturbed system converges
towards a limit cycle, and all the perturbed system under a bounded perturbation
stay inside a bounded tube around the limit cycle.

Chapter 9 describes a new technique dependent on Euler’s integration method
which permits to build an invariant structure made of a finite number of balls
covering the invariant torus of the system.

Chapter 10 highlights a tool named ORBITADOR that I have developed. This
tool allows to verify the existence of limit cycle for a given dynamical system
and provides an invariant set situated around the limit cycle. A simple criterion
of inclusion of one set in another is used in ORBITADOR.

Overview of the thesis manuscript

The structure of this document is organized as follows.
Part I: Real-time systems analysis:

• In Chapter 1, we introduce the first part of the thesis and we give its objectives.

• In Chapter 2, we formally define the notations related to the first part. We first
recall the formalism of clocks, parameters and constraints. Then, we remind the
syntax of timed automata, parametric timed automata and parametric stopwatch
automata. Finally, we describe scheduling problem for real-time systems.

• In Chapter 3, we introduce an approach for the specific case of the scheduling of
the flight control of a space launcher. The approach requires two successive steps:
First, the formalization of the issue to be tackled in a parametric formal model.
Second, the analysis of the model parameters using a tool. We first describe the
problem of the scheduling of a launcher flight control, then we show how this
problem can be formalized with parametric stopwatch automata; we then present
the results computed by the parametric timed model checker IMITATOR. We
enhance our model by taking into consideration the time for switching context.

4 Contents

• In Chapter 4, we present Time4sys2imi, a tool that we developed to translate
Time4sys models [YL17] into parametric timed automata in the input language
of IMITATOR [And21]. Time4sys is a graphical formalism developed by Thales
Group that allows the design of real-time systems and interoperability between
timed verification tools. The importance of the translation by Time4sys2imi
comes from the fact Time4sys does not perform verification. Besides, it not only
allows to check the schedulability of real-time systems, but also to infer some
timing constraints (deadlines, offsets, . . .) guaranteeing schedulability.

• In Chapter 5, we conclude the first part and we give some perspectives.

Part II: Limit cycle of oscillators using Euler method:

• In Chapter 6, we introduce the second part of the thesis by giving its objectives
and contributions.

• In Chapter 7, we first define the symbolic Euler’s method, then we focus at
the synthesis of an approximate minimax control (which is the control that
guarantees the optimal performance under the worst-case scenario of disturbance,
see [BR71]) for a system dynamic given in the form ẋ(t) = f(x(t), u(t), w(t))
where x represents the state, u the control (or input) and w a perturbation.
The disturbance d(t) is prescribed to a compact domain D on which it can
take any value (bounded uncertainty). The method makes use of symbolic
computation (or algebraic computation which is the computation with symbolic
expressions, see [AB89]) to enclose the solutions corresponding to all possible
disturbance d(·) ∈ D, together with a simple algorithm of random sampling
which is a sampling technique where each randomly selected sample has the same
probability of being selected (see [Vid01]) to select the minimum control u∗(·).

• In Chapter 8, we first describe, for a given dynamical system Σp with a parame-
ter p taking its values in a fixed interval Q, a simple criterion of set inclusion
which guarantees that the Euler approximate solutions of Σp0 for some value
p0 ∈ Q converge to a limit cycle L. Moreover, we characterize a compact set
I containing L which is invariant (i. e., an unchanged object after operations
applied to it, see [SHGD12]) for the exact solutions of Σp whatever the value of
p ∈ Q. Then, we consider the application of optimal periodic control sequences
which are open-loop (no feedback) (see [Gil77]) to switched dynamical systems
which are systems with continuous-time evolution punctuated by discrete switch-
ing event (see [SG11]). The control sequence is obtained using a finite-horizon
optimal method which implies that the overall cost over an indicated number
of stages is to be minimized (see [AI99]). This method is based on dynamic
programming that is basically an optimization algorithm (see [Bel57]). We then
consider Euler approximate solutions for the system extended with bounded
perturbations. The main result gives a simple condition on the perturbed system
for guaranteeing the existence of a stable limit cycle of the unperturbed system

Contents 5

which means all adjacent trajectories approach the limit cycle as time approaches
infinity (see [HR07]).

• In Chapter 9, we show how, using Euler’s integration method and an associated
function bounding the error in function of time, one can generate structures
closely surrounding the invariant tori of dynamical systems, where all the orbits
located in the invariant tori stay in this tori at any time (see [ERS00]). Such
structures are constructed from a finite number of balls of Rn and encompass
the deformations of the tori when small perturbations of the flow of the system
occur.

• In Chapter 10, we present ORBITADOR, a tool that I developed to study
the stability analysis of dynamical systems. ORBITADOR uses a method that
generates a bounded invariant set (which is a set that has both an upper bound
and a lower bound and respects the property that if the system state is in the set
at some time, then it will always contain the system in the future, see [BM15])
of a differential system with a given set of initial conditions around a point x0 to
prove the existence of a limit cycle which is a periodic trajectory that repeats
itself after a specified period of time also it is defined, in [RW08], as the stability
boundaries for linear and non-linear systems. This invariant has the form of
a tube centered on the Euler approximate solution starting at x0, which has
for radius an upper bound on the distance between the approximate solution
and the exact ones. The method consists in finding a real T > 0 such that the
“snapshot” of the tube at time t = (i + 1)T is included in the snapshot at t = iT ,
for some integer i with adding a small bounded uncertainty. This uncertainty
allows using an approximate value T of the exact period.

• In Chapter 11, we conclude the second part and we give some perspectives related
to this part.

Part I
Real-time systems analysis

1
Introduction

The first chapter introduces real-time systems and highlights the motivation of the
research conducted in the first part the thesis

Contents

1.1 Context . 10

1.1.1 Scheduling . 10

1.1.2 Real-time systems . 10

1.1.3 Formal methods . 11

1.1.4 Model checking . 11

1.1.5 Timed Automata . 11

1.2 Objectives . 12

1.3 Related works . 13

1.3.1 Scheduling . 13

1.3.2 Scheduling with model checking 13

1.3.3 Scheduling with parameters 14

1.4 Plan of Part I . 15

10 1. Introduction

1.1 Context

Real-time systems are systems the accuracy of which depends not only on the results of
computations, but also on the time at which the results are delivered [Liu00]. Real-time
systems combine concurrent behaviors with hard timing constraints that dictate that
the system computation must be completed before a stringent deadline, failing which
the operation may be considered to have failed (see [XP93]). An out-of-date reply is
often considered as invalid even if its content is correct. For critical real-time systems,
if a time constraint is violated, then the consequences can be disastrous. Thus, a
formal verification phase is essential in order to statically guarantee that all the tasks
will be executed in their allocated time, and that the system will return results within
the deadline guaranteed by the specification.

1.1.1 Scheduling

Scheduling [LL73] is a decision-making process that concerns the allocation of restricted
resources (that may be seen as processors) to concurrent tasks over time in order to
optimize objectives. It is a procedure that regulates the time execution of several
processes in real-time systems. Process schedulers obey a scheduling policy which can
generally be preemptive or non-preemptive. Non-preemptive schedulers run a process
until the execution time is completed. However, preemptive schedulers can temporarily
interrupt the execution of a process if a higher priority process is activated.

1.1.2 Real-time systems

Real-time systems [XP93] are systems where the result is guaranteed to be calculated
within a predefined time interval.

In soft real-time systems, the system continue to perform even if a deadline is
missed. This means that, there is a tolerance on the deadline of the system and it
does not fail during this margin, but the system’s quality of service is considered to be
degraded, for example streaming media systems. However, in hard real-time a failure
to meet a deadline is catastrophic for example aircraft control systems.

1.1. Context 11

1.1.3 Formal methods

Formal methods [Win90] are techniques which allow to specify and model the behavior
of a system and to prove that the design and the implementation of the system
satisfy the functionalities and the various safety properties. Formal methods provide a
framework of mathematical techniques that aim to formally guarantee correctness for
the system.

1.1.4 Model checking

Model checking [CGK+18] is a set of formal methods to check whether a model of a
system satisfies a formal specification. In other words, given a formal model of the
system (given in a formalism such as timed automata, Petri nets, process algebras,
etc.) and a property (expressed in a formalism such as temporal logics, automata, etc.),
model checking gives a formal guarantee whether the system satisfies its property. The
output then is “yes” if the given model satisfies the given specifications, otherwise a
counterexample may be generated. Model checking can encounter the infamous state
space explosion problem, and it is a challenge to develop efficient methods, which will
succeed in verifying actual case studies.

1.1.5 Timed Automata

A timed automaton (TA) [AD94] is a strong formalism that allows to model real-time
systems. It is extended of finite automata with a set of clocks. The values of clocks
can be assigned to a constant during the execution of a transition, besides they can be
compared with (integer) constants to check if a transition from a location to another
is allowed to happen or not. Also, this comparison can take place within a location,
where a system must remain at the current location as long as the condition is true.
For Timed automata, the reachability properties are decidable [AD94], this is why
they are used in several model checkers for example Uppaal [LPY97]. Thanks to
these model checkers, many case studies have been verified.

Fig. 1.1 illustrates an example of timed automata which models the mechanism of
a flashlight. In this TA, there are three locations: init, BrightMode and StrobeMode,
one clock x and an action Press?. Initially, the system stars from the location init
which indicates the off mode, and stays there location until a Press? action occurs.

12 1. Introduction

init BrightMode StrobeMode
Press?
x := 0

Press?
x >= 2

Press?
x < 2

Press?

Figure 1.1: An example of timed automata modeling a flashlight

Then the system moves to the location BrightMode while resetting the clock x to 0.
If a Press? action is triggered when x ≥ 2 then the system goes back to the location
init; otherwise if this action is activated when x < 2 the flashlight goes into strobe
mode. The flashlight remains in strobe mode until a new Press? action occurs, which
brings the system back to its initial mode.

1.2 Objectives

The objective of this part is, first, to propose a methodology of scheduling of a real-time
system, particularly the case of flight control of a space launcher. We initially depict
the problematic of the scheduling of a launcher flight control. Then, we formalize
this case study with parametric stopwatch automata (PSA) [SSL+13], which is an
extension of PTA with stopwatches, where clocks can be stopped in some locations of
the automaton (Definition 2.3). After, we show the results analyzed by the IMITATOR
parametric timed model checker. Finally, we compare our results and the ones acquired
by different tools used traditionally in scheduling.

The second objective of this part is to propose a tool that translates Time4sys
models into parametric timed automata [AHV93] in the input language of IMITATOR
which permits to check the schedulability of real-time systems and to infer some timing
constraints guaranteeing schedulability.

1.3. Related works 13

1.3 Related works

1.3.1 Scheduling

A long line of works in the last four decades has been devoted to the problem of
scheduling analysis of real-time systems with various flavors. Several analytical methods
were proposed to study the schedulability for a particular situation. Such analytical
methods need to be tuned for each precise setting (uniprocessor or multiprocessor,
scheduling policy, absence or presence of offsets, jitters, etc.). Most of them do not cope
well with uncertainty. For example, in [BB97], three methods for the schedulability
analysis with offsets are proposed. the goal of this method is to modify the offsets
of the transaction to satisfy all the requirements. In this model, there is a set of
periodic transactions, which composed by a set of tasks. Each tasks are released at
a fixed time interval. Besides, tasks in different transactions are analyzed assuming
they are released at the worst instant. Using offset, that can made a particular case of
asynchronous periodic tasks. In [BB04], an efficient approach for testing schedulability
for RMS (rate monotonic) in the case of (uniprocessor) analysis is proposed, through
a “parameter” (different from our timing parameters) to balance complexity versus
acceptance ratio.

1.3.2 Scheduling with model checking

Schedulability with model checking is a trend that started as early as the first works
on timed model checking (e. g., [WME92, AHV93, AD94, YMW97, CC99]), and grew
larger since the early 2000s.

A natural model to perform schedulability analysis is (extensions of) timed au-
tomata (TAs) [AD94]. On the negative side, the cost of state space explosion often
prevents to verify very large real-time systems. On the positive side, they allow for
more freedom, and can model almost any system with arbitrarily complex constraints;
in addition, despite the cost of state space explosion, they can be used to verify small
to medium-size systems for which no other method is known to apply.

In [AM01, AM02], (acyclic) TAs are used to solve job-shop problems. The pre-
emption is encoded in [AM02] with stopwatches, while keeping some decidability
results. In [AAM06], scheduling is performed using TAs. Timed automata allow to

14 1. Introduction

model naturally and verify more complex systems, which are not captured so easily in
traditional formalisms for schedulability analysis.

In [NWY99, FKPY07], task automata are proposed as a formalism extending
TAs to ease the modeling (and the verification) of uniprocessor real-time systems:
in some cases, the schedulability problem of real-time systems is transformed into a
reachability problem for standard TAs and it is thus decidable. This allows to apply
model-checking tools for TAs to schedulability analysis with several types of tasks and
most types of scheduler.

In [SLS+14], hierarchical scheduling systems are encoded using linear hybrid
automata, a model that generalizes TAs. This approach outperforms analytical
methods in terms of resource utilization. In [SL14], linear hybrid automata are used to
perform schedulability analysis for multiprocessor systems under a global fixed priority
scheduler: this method is more scalable than existing exact methods, and shows that
analytical methods are too pessimistic.

In [FLSC16], a schedulability analysis method is introduced using the model of
timed regular task automata (using under-approximated WCETs) and then using nested
timed automata; this method is shown to be exact.

The problem solved here shares similarities with analyses done in [FBG+10,
MLR+10]. An important difference between [FBG+10, MLR+10] and our case study
comes from the fact that, here, there are two distinct notions of “thread” and “pro-
cessing”, while in [FBG+10, MLR+10] there was only one notion called “task”. Most
importantly, none of these works consider timing parameters.

1.3.3 Scheduling with parameters

When some of the design parameters are unknown or imprecise, the analysis becomes
much harder. Model checking with parameters can help to address this. In [CPR08],
PTAs are used to encode real-time systems so as to perform parametric schedulability
analysis. A subclass (with bounded offsets, parametric WCETs but constants deadlines
and periods) is exhibited that gives exact results. In contrast, our work allows for
parameterized deadlines; in addition, reactivities are not considered in [CPR08].

In [FLMS12], the robust schedulability analysis are performed on an industrial
case study, using the inverse method for PTAs [ACEF09] implemented in IMITATOR.
While the goal is in essence similar to the one in this manuscript, the system differs:
[FLMS12] considers multiprocessor, and preemption can only be done at fixed instants,
which therefore resembles more Round Robin than real Fixed Priority Policy (FPS).
In [SSL+13], it is shown that PTAs-based methods are significantly more complete

1.4. Plan of Part I 15

than existing analytical methods to handle uncertainty. In [SAL15], an industrial
challenge is solved by Thales using IMITATOR.

In [LPPR13], the analysis is not strictly parametric, but concrete values are iterated
so as to perform a cartography of the schedulability regions. However, the resulting
analysis of the system is incomplete.

In [BHJL16], timed automata are extended with multi-level clocks, of which exactly
one at a time is active. The model enjoys decidability results, even when extended
with polynomials and parameters, but it remains unclear whether concrete classes of
real-time systems can actually be modeled.

The aforementioned task automata were extended in [And17] to parametric task
automata; some schedulability problems remain decidable in this setting, i. e., it is
possible in some cases to decide whether the set of valuations ensuring schedulability
is empty or not. In addition, procedures for exhibiting schedulability regions are
proposed and implemented.

Finally, Roméo [LRST09] also allows for parametric schedulability analysis using
parametric time Petri nets [TLR09].

1.4 Plan of Part I

The overview of Part I is organized as follow.

• In Chapter 2, we remind the formalism of clocks, parameters and constraints.
Then, we recall the syntax of timed automata, parametric timed automata
and parametric stopwatch automata. Finally, we depict scheduling problem for
real-time systems.

• In Chapter 3, we explain an implementation of the scheduling of the flight
control system of a space launcher into parametric timed automata. The pro-
posed solution is modular where each element of the system is presented by
an automaton.Then, we present the results computed by the parametric timed
model checker IMITATOR.

• In Chapter 4, we present a tool called Time4sys2imi, that we developed to
translate graphical models into parametric timed automata. The translation by
Time4sys2imi allows to check the schedulability of real-time systems and to infer
some timing constraints (deadlines, offsets,· · ·) guaranteeing schedulability.

• In Chapter 5, we conclude the part and we present some future research.

2
Preliminary definitions

This chapter introduces the basic knowledge related to the first part of the thesis.

Contents

2.1 Introduction . 18

2.2 Clocks, parameters, constraints 18

2.2.1 Clocks . 18

2.2.2 Parameters . 18

2.2.3 Constraints . 18

2.3 Timed automata . 19

2.3.1 Syntax . 19

2.4 Parametric timed automata 19

2.4.1 Syntax . 20

2.5 Parametric stopwatch automata 20

2.5.1 Syntax . 20

2.6 Scheduling problem for real-time systems 21

18 2. Preliminary definitions

2.1 Introduction

In this chapter, we introduce the formalism used in the first part of this thesis.

2.2 Clocks, parameters, constraints

Let N, Q+ and R+ denote the sets of positive integers, positive rational numbers and
positive real numbers respectively.

2.2.1 Clocks

We assume a set X = {x1, . . . , x|X|} of clocks, i. e., real-valued variables that progress at
the same rate. A clock valuation is a function w : X → R≥0. We write 0⃗ for the clock
valuation assigning 0 to all clocks. Given R ⊆ X, we define the reset of a valuation w,
denoted by [w]R, as follows: [w]R(x) = 0 if x ∈ R, and [w]R(x) = w(x) otherwise.
Given a valuation w, d ∈ R+ and X′ ⊆ X, we define the time-elapsing of w by d except
for clocks in X′, denoted by w↗+d

\X′ , as the clock valuation such that

w↗+d
\X′ (x) =

w(x) if x ∈ X′

w(x) + d otherwise

2.2.2 Parameters

We consider a set P = {p1, . . . , p|P|} of parameters, i. e., unknown constants. A
parameter valuation v is a function v : P → Q+.

2.2.3 Constraints

We denote ▷◁ ∈ {<, ≤, =, ≥, >}. A guard g is a constraint over X ∪ P defined by
a conjunction of inequalities of the form x ▷◁ d or x ▷◁ p, with x ∈ X, d ∈ N and

2.3. Timed automata 19

p ∈ P. Given a guard g, we write w |= v(g) if the expression obtained by replacing
in g each x ∈ X by w(x) and each p ∈ P by v(p) evaluates to true.

2.3 Timed automata

Timed automata is defined in [AD94] as an extension of finite-state automata allowing
the use of clocks, i. e., real-valued variables increasing linearly at the same rate. It
is a strong formalism for real-time systems modeling and verification with timing
constraints.

2.3.1 Syntax

Definition 2.1 (TA[AD94]). A timed automaton (TA) A is a tuple
A = (Σ, L, ℓ0,X, I, E), where:

• Σ is a finite set of actions,

• L is a finite set of locations,

• ℓ0 ∈ L is the initial location,

• X is a finite set of clocks,

• I is the invariant, assigning to every ℓ ∈ L a guard I(ℓ),

• E is a finite set of edges e = (ℓ, g, a, R, ℓ′) where ℓ, ℓ′ ∈ L are the source and
target locations, g is a guard, a ∈ Σ, and R ⊆ X is the set of clocks to be reset.

2.4 Parametric timed automata

Parametric Timed Automata (PTA) are an extension of Timed Automata to the
parametric case. It allows the use of parameters within guards and invariants in place
of integer constants [AHV93].

20 2. Preliminary definitions

2.4.1 Syntax

Definition 2.2 (PTA). A parametric timed automaton (PTA) A is a tuple
A = (Σ, L, ℓ0,X,P, I, E), where:

• Σ is a finite set of actions,

• L is a finite set of locations,

• ℓ0 ∈ L is the initial location,

• X is a finite set of clocks,

• P is a finite set of parameters,

• I is the invariant, assigning to every ℓ ∈ L a guard I(ℓ),

• E is a finite set of edges e = (ℓ, g, a, R, ℓ′) where ℓ, ℓ′ ∈ L are the source and
target locations, g is a guard, a ∈ Σ, and R ⊆ X is the set of clocks to be reset.

2.5 Parametric stopwatch automata

For many real-time systems, especially when they are subject to preemptive scheduling,
parametric timed automata are not sufficiently expressive. So the interest of PTA
with stopwatches [CL00], namely parametric stopwatch automata [SSL+13].

2.5.1 Syntax

Definition 2.3 (PSA). A parametric stopwatch automaton (PSA) A is a tuple
A = (Σ, L, ℓ0,X,P, I, S, E), where:

• Σ is a finite set of actions,

• L is a finite set of locations,

• ℓ0 ∈ L is the initial location,

• X is a finite set of clocks,

• P is a finite set of parameters,

2.6. Scheduling problem for real-time systems 21

• I is the invariant, assigning to every ℓ ∈ L a guard I(ℓ),

• S is the stop function S : ℓ → 2X, assigning to every ℓ ∈ L a set of stopped
clocks,

• E is a finite set of edges e = (ℓ, g, a, R, ℓ′) where ℓ, ℓ′ ∈ L are the source and
target locations, g is a guard, a ∈ Σ, and R ⊆ X is the set of clocks to be reset.

Stopwatch automata can be composed as usual using parallel composition on
synchronized actions. Note that by default, i. e., a same clock (i. e., with the same
name) can be read, stopped or reset in several automata. The same applies to
parameters.

Given a parameter valuation v and PSA A, we denote by v(A) the non-parametric
structure where, for each parameter p ∈ P, all occurrences of p have been replaced
by v(p). Any structure v(A) is also a stopwatch automaton [CL00]. If S(ℓ) = ∅ for
all ℓ ∈ L, then by assuming a rescaling of the constants (multiplying all constants in
v(A) by the least common multiple of their denominators), we obtain an equivalent
(integer-valued) TA, as defined in [AD94].

Let us now recall the concrete semantics of stopwatch automata.

Definition 2.4. Given a PSA A = (Σ, L, ℓ0,X,P, I, S, E), and a parameter valuation v,
the semantics of v(A) is given by the timed transition system (TTS) (S, s0, →), with

• S = {(ℓ, w) ∈ L × R|X|
≥0 | w |= v(I(ℓ))},

• s0 = (ℓ0, 0⃗),

• → consists of the discrete and (continuous) delay transition relations:

1. discrete transitions: (ℓ, w) e7→ (ℓ′, w′), if (ℓ, w), (ℓ′, w′) ∈ S, and there exists
e = (ℓ, g, a, R, ℓ′) ∈ E, such that w′ = [w]R, and w |= v(g).

2. delay transitions: (ℓ, w) d7→ (ℓ, w↗+d
\S(ℓ)), with d ∈ R≥0, if ∀d′ ∈

[0, d], (ℓ, w↗+d′

\S(ℓ)) ∈ S.

2.6 Scheduling problem for real-time systems

Due to the increasing complexity in real-time systems, designing and analyzing such
systems is an important challenge, especially for safety-critical real-time systems, for
which the correctness is crucial. The scheduling problem for real-time systems consists
in deciding which task the processor runs at each moment by taking into consideration

22 2. Preliminary definitions

the needs of urgency, importance and reactivity in the execution of the tasks. Systems
can feature one processor (“uniprocessor”) or several processors (“multiprocessor”).
Each processor features a scheduling policy, according to which it schedules new task
instances. Tasks are usually characterized by a best and worst case execution times
(BCET and WCET), and are assigned a deadline and often a priority. Tasks can
be activated periodically (“periodic task”), sporadically (“sporadic tasks”), or be
activated upon completion of another task—to which we refer to “dependency” or
“task chain”. This latter feature is often harder to encode using traditional scheduling
models. Periodic tasks may be subject to a “jitter”, i. e., a variation in the period;
all tasks can be subject to an “offset”, i. e., a constant time from the system start
to the first activation of the task. The schedulability problem consists in verifying
that all tasks can finish their computation before their relative deadline, for a given
scheduling policy. This problem is a very delicate task: The origin of complexity arises
from a large number of parameters to consider (BCET and WCET, tasks priorities,
deadlines, periodic and sporadic tasks, tasks chains, etc.). The schedulability problem
becomes even more complicated when periods, deadlines or execution times become
uncertain or completely unknown: we refer to this problem as schedulability under
uncertainty.

3
Parametric schedulability

analysis of the flight control of
a space launcher

In this chapter, we address the specific case of the scheduling of the flight control of a
space launcher. Our approach requires two successive steps:

1. the formalization of the problem to be solved in a parametric formal model,

2. the synthesis of the model parameters with a tool.

Contents

24
3. Parametric schedulability analysis of the flight control of a space

launcher

3.1 Introduction . 25

3.1.1 Contribution . 25

3.1.2 Outline . 26

3.2 Description of the system and problem 26

3.2.1 Threads and deterministic communications 27

3.2.2 Reactivities . 28

3.2.3 Processings and assignment into threads 30

3.2.4 A formal framework for real-time systems 31

3.2.5 Formalization of the case study 32

3.2.6 Objectives . 33

3.3 Specifying the system . 34

3.3.1 Architecture of the solution 35

3.3.2 Modeling periodic processing activations 36

3.3.3 Modeling threads . 37

3.3.4 Modeling the FPS scheduler 39

3.3.5 Reachability synthesis . 40

3.4 Compositional verification of reactivities 40

3.4.1 Observer construction . 42

3.4.2 Compositional verification and synthesis 43

3.5 Enhancing the analysis with context switches 44

3.5.1 Problem . 44

3.5.2 Modeling the context switch 45

3.6 Experiments . 46

3.6.1 Experimental environment 46

3.6.2 Verification and synthesis without reactivities 48

3.6.3 Compositional verification of reactivities 50

3.6.4 Switch time . 51

3.7 Comparison with other tools 53

3.7.1 Comparison of our results with non-parametric tools 53

3.7.2 “Testing” the parametric analysis 55

3.8 Conclusion . 58

3.1. Introduction 25

3.1 Introduction

Assessing the absence of timing constraints violations is even more important when
the system can be hardly controlled once launched. This is especially true in the
aerospace area, where a system can only very hardly be modified or even rebooted
after launching.

The next generation of space systems will have to achieve more and more complex
missions. In order to master the development cost and duration of such systems, an
alternative to a manual design is to automatically synthesize the main parameters of
the system. While verifying a real-time system is already a notoriously difficult task,
we tackle here the harder problem of synthesis, i. e., to automatically synthesize a part
of the system so that it meets its specification. We notably focus on the synthesis of
admissible timing values.

3.1.1 Contribution

The goal of this chapter is to propose an approach on the specific case of scheduling of
the flight control of a space launcher.

1. We first describe the problematic of the scheduling of a launcher flight control.

2. Then, we formalize this problematic with parametric stopwatch automata (PSA)
(Definition 2.3).

3. We present the results computed by the IMITATOR tool.

4. We compare our results with the ones obtained by other tools classically used in
scheduling.

A key aspect is the verification and synthesis under some reactivity constraints: the
time from a data generation to its output must always be less to a threshold. The
solution we propose is compositional. The given solution handles two cases, the first
for system with an instant switch from one thread to another, the second case is for
more general systems where the switch between two threads has a CPU cost due to
the copy of data between the contexts of each thread.

We propose here a solution to the problems using an extension of parametric timed
automata (PTAs) (Definition 2.2), which are an extension of finite state automata
with clocks and parameters [AHV93]. The general class of PTAs is notoriously
undecidable, and notably the main problem of deciding whether at least one parameter

26
3. Parametric schedulability analysis of the flight control of a space

launcher

valuation allows the system to reach a global state is undecidable, even over discrete
time [AHV93], with a single integer-valued parameter over dense time [BBLS15],
or with a single clock compared to parameters [Mil00] (see [And19b] for a survey).
Still, some decidable subclasses were proposed (e. g., [HRSV02, BL09, AL17, ALR18]),
notably in the field of scheduling real-time systems [CPR08, FHQW14, And17]. In
spite of these undecidability results, the use of parametric timed automata for solving
various concrete problems was recently considered, in frameworks such as hardware
verification [CEFX09], analysis of music scores [FJ13], monitoring [AHW18] or software
product lines testing [LGS+19]. We show here that this formalism is also handful for
solving concrete scheduling problems—such as the one considered here.

This work was carried out in the setting of a collaboration with ArianeGroup (David
Lesens and Emmanuel Coquard), and was subsquently published in the proceedings of
ACSD 2019 [ACF+19], and an extended version was then published in Fundamenta
Informaticae [ACF+21].

3.1.2 Outline

Section 3.2 presents the problem we aim at solving. Section 3.3 exposes our modeling,
and we extend our solution in Section 3.4 in a compositional manner, and in Section 3.5
to enhance the model with context switch times. Section 3.6 gives the results obtained,
while Section 3.7 makes a comparison with additional tools of the literature (solving
only a part of the problem). Section 3.8 concludes the chapter.

3.2 Description of the system and problem

The flight control of a space launcher is classically composed of three algorithms:

1. The navigation computes the current position of the launcher from the sensor’s
measurement (such as inertial sensors);

2. The guidance computes the most optimized trajectory from the launch pad to
the payload release location;

3. The control orientates the thruster to follow the computed trajectory.

Due to the natural instability of a space launcher, strict real-time requirements have
to be respected by the implementation of the flight control: frequency of each algo-
rithm and reactivity between the sensor’s measurement acquisition and the thruster’s
command’s sending.

3.2. Description of the system and problem 27

1 processing Navigat ion (Meas : in) i s period (5ms) ; end ;
2 processing Guidance i s period (60ms) ; end ;
3 processing Control (Cmd : out) i s period (10ms) ; end ;
4 processing Monitoring (Safeguard : out) i s period (20ms) ; end ;

Figure 3.1: An example of a flight control system

The case study described in this chapter is a simplified version of a flight control
composed of a navigation, a guidance, a control and a monitoring algorithms; these
four parts are called processings1 in the following. Each processing has a name and
a required rational-valued period; in our setting, the processing deadline is equal to
the period. A processing can potentially read data from the avionics bus (“in” data)
and/or write data to the same avionics bus (“out” data). Fig. 3.1 shows an example
of such a system (all the numerical data provided in this chapter are only examples
that do not necessarily correspond to an actual system).

3.2.1 Threads and deterministic communications

The software components of the system are physically deployed on a single proces-
sor [OGL06]. Processings are allocated on threads run by the processor.

Figure 3.2: The communication between threads

Fig. 3.2 exemplifies the way data are exchanged between two threads. The fast
thread (in yellow) has a period of 1 time unit. This period defines the time granularity
of the system (this implies that the offset of the fast thread is 0 and that its deadline
is 1). In this example, the slow thread (in blue) has an offset of 1 (its start is delayed
by 1 cycle compared to the start of the fast thread), a period of 10 and a deadline of 8.
The numbers from 1 to 10 denote the index of the period of the fast thread within the
period of the slow thread. The first communication between the fast thread and the

1Following the vocabulary used within ArianeGroup. Technically, a processing is a node in SCADE,
i. e., a subprogram activated cyclically, with a frequency, an activation condition and inputs/out-
puts.

28
3. Parametric schedulability analysis of the flight control of a space

launcher

slow one is performed at the end of the first period; this explains that, although the
second occurrence of the fast thread finishes before the first occurrence of the slow
thread, this is the first occurrence of the fast thread which is communicated to the
slow thread. Similarly, in order to ensure the determinism and taking into the priority
between the threads, the communication between the slow thread and the fast thread
is performed at the deadline of the slow thread, i. e., at the end of cycle 9 (offset +
deadline). That is, the first occurrence of the fast thread to receive data from the slow
thread is not the one starting at t = 8 nor at t = 9, but the one starting at t = 10.

In our setting, all the thread periods are harmonic, i. e., a thread period is a
multiple of the period of the thread just faster (they pairwise divide each other). In
other terms, for a system that contains a set of threads t1, . . . , tk, all the thread periods
are considered harmonic if for every thread tj (for all j ∈ {1, . . . , k}), the period PT j

of tj is a multiple of the periods of all the threads of smaller period, that is, PT j is
a multiple of the periods of all threads ti ∈ {t1, . . . , tk | PT i < PT j}. In our case,
the harmonic assumption on threads will not affect the modeling of the system in
Section 3.3; however, it may be used to reduce the number of clocks and considerably
decrease the computation time of our approach.

In addition, in order to ensure the determinism of the scheduling (which facilitates
the verification of the system), the threads work in a synchronous manner:

• The inputs of a thread are read at its start; that is, no inputs are read during
the execution of the thread.

• The outputs of a thread are provided at its deadline; that is, not only no
outputs are provided during the execution of the thread, but the output is
also not provided as soon as the thread terminates—if it terminates before its
deadline—but only at its deadline.

Switch time

In our case study, the switch time, i. e., the time needed by the CPU to copy
memory information when changing threads, is 500 µs.

3.2.2 Reactivities

To ensure the controllability of the launcher, a reactivity2 is required between a data
read from the avionics bus (a measurement) and a data written to the avionics bus (a
command). A reactivity imposes a maximum bound on the time required by these

2In the literature, the term “reactivity” is also referred to as “latency” (see, e. g., [FBG+10]).

3.2. Description of the system and problem 29

data to “travel” from the measurement to the command. This concept is quite similar
to that studied in [FBG+10] (without timing parameters).

Definition 3.1 (reactivity). A reactivity constraint imposes an upper bound from
a data read from the avionics bus to a data written to the avionics bus, where the
sequence of the path of the data represents a precedence constraint.

Several paths are potentially possible between a read data and a written data.
Fig. 3.3 shows an example of such reactivities.

1 reactivity Meas −> Navigat ion −> Guidance −> Control −> Cmd i s
150ms ;

2 reactivity Meas −> Navigat ion −> Control −> Cmd i s 15
ms ;

3 reactivity Meas −> Navigat ion −> Monitoring −> Safeguard i s 55
ms ;

Figure 3.3: Some typical reactivities

Reactivities too must follow the deterministic communication model from Sec-
tion 3.2.1. Consider the execution of threads and processings in Fig. 3.4 (the values
of periods and WCETs are given for illustration purpose, and do not correspond to
the ones from our case study). Consider the reactivity imposing that the sequence of
data “Meas → Navigation → Guidance → Control → Cmd” should be equal to or
less than 5. Due to the data being communicated at the end of each thread only, the
Guidance processing (marked with green “G” in Fig. 3.4) does not receive the data
from the third execution of the Navigation processing (marked with “N” in red), as the
data of the third Navigation will be sent at the end of the thread T1 period, but from
the second execution of Navigation. Therefore, in Fig. 3.4, the only path of interest is
the path of the data starting from the second execution of Meas, going to the second
execution of Navigation, then going to the (only) execution of Guidance, and then
finishing in the third execution of Control, before being written to the third occurrence
of Cmd. Also note that the data output by the first execution of Navigation are
successfully sent to T2 at the end of the first period of T1, but will be overwritten by
the second occurrence of Navigation, and are therefore not of interest when checking
the satisfaction of reactivities. Therefore, the time from the production of these data
(at t = 1) to their writing on the avionic bus (at t = 6) is 5, and therefore the reactivity
is satisfied.

We want to solve the scheduling problem of periodic processings under reactivity
constraints.

30
3. Parametric schedulability analysis of the flight control of a space

launcher

Figure 3.4: Determinism and reactivities

3.2.3 Processings and assignment into threads

A WCET (worst case execution time) is measured or computed for each processing.
An example is given in Fig. 3.5.

1 processing wcet Navigat ion (1ms) ;
2 processing wcet Guidance (15ms) ;
3 processing wcet Control (3ms) ;
4 processing wcet Monitoring (5ms) ;

Figure 3.5: Example of Worst Case Execution Times

An important problem is to find a proper assignment of the processings into
threads, with their respective periods, while minimizing the number of threads. A
solution to this problem consists of a set of cyclic threads on which the processings
are deployed. In our setting, these threads are scheduled with a preemptive and fixed
priority policy (FPS). A thread has a name and is defined by the following data:

1. a rational-valued period;

2. a rational-valued offset (with 0 ≤ offset < period), i. e., the time from the system
start until the first periodic activation;

3. a rational-valued (relative) deadline (with 0 < deadline ≤ period), i. e., the time
after each thread activation within which all processings of the current thread
should be completed;

4. a rational-valued major frame (or “MAF”). A MAF defines the duration of a
pattern of processing activation. The MAF in this case study is equal to 10.

3.2. Description of the system and problem 31

5. a set of processings deployed on the thread. Different processings may be executed
in an order which may change at each cycle. However, after a MAF duration,
the same pattern of processings is repeated.

In order to simplify the scheduling problem, we have considered in this chapter a
pre-allocation of processings on threads, as specified in Fig. 3.7: that is, Navigation
and Control are allocated on T1, while Monitoring and Guidance are allocated on T2
and T3, respectively. In addition, Navigation is executed at every period of T1, while
Control is executed (after Navigation) on odd cycles only; this is denoted by the when
1 syntax in Fig. 3.7.

3.2.4 A formal framework for real-time systems

A real-time system S = {P , T , R} is viewed here as a set of processings P =
{p1, p2, · · · , pm}, a set of threads T = {t1, t2, · · · , tn} and a set of reactivities
R = {r1, r2, · · · , rq}. A thread ti computes a usually infinite stream of processings
instances.

In our setting, a thread ti is periodic, i. e., generates instances every fixed amount
of time (the “period”), and is characterized by a 5-tuple (PT i, OT i, DT i, MAF i, P i),
where PT i corresponds to the period, OT i to the offset, DT i to the deadline, MAF i

defines the duration of a pattern of processing activation pik
(where pik

denotes the
kth proccessing computed in thread ti), and P i defines a subset of processings of P
allocated to ti. 3

A processing pi is characterized by two values WCET i (Worst Case Execution
Time) and PP i (Processing Period): When a processing is activated, it is executed for
at most time WCET i time units every PP i time units.

0 t

WCET i WCET i WCET iWCET j WCET j

OT i DT i DT i DT i

PP i PP i PP i

PPj

PT i PT i PT i

MAF i

Figure 3.6: Real-time characteristics of the system

3Note that the MAF is a per-thread property; it is quite similar to the ARINC 653 standard used
in industrial civil airplane [GNC13] designs, except that the ARINC 653 is a per-CPU property.

32
3. Parametric schedulability analysis of the flight control of a space

launcher

Example 3.1. Let us illustrate these definitions using Fig. 3.6. A single thread ti is
considered, with offset OT i, MAF MAF i, period PT i and deadline DT i. This thread
has two processings pi and pj, where pi is characterized by a WCET WCET i and a
period PP i and pj has WCET WCET j and period PPj.

A reactivity is of the form ri = ((pi1 → pi2 → · · · → pik
), DRi) where

pi1 , pi2 , . . . , pik
are k processings of P, (pi1 → pi2 → · · · → pik

) denotes a prece-
dence constraint, and DRi is the maximum time of reactivity for ri: the end of the
thread period containing the last processing pik

of the precedence sequence has to
be completed before the deadline DRi. (If a reactivity is satisfied, its precedence
constraint is obviously satisfied too.)

Definition 3.2. A system S is schedulable if

1. ∀ ti ∈ T , the end of each instance of ti occurs before its relative deadline DT i.

2. ∀ ri ∈ R, the end of each instance of the thread containing the last processing
pik

of ri occurs before DRi.

3.2.5 Formalization of the case study

We formalize in the following the system, with the values given in Figs. 3.1 and 3.5
and the assignments onto threads given in Fig. 3.7.

3.2.5.1 Processings

Let P denote the set of processings. This set can be defined as P =
{pNavi , pCont , pMoni , pGuid}, where:

Control: pCont = (WCET Cont , PPCont) = (3, 10).

Guidance: pGuid = (WCET Guid , PPGuid) = (15, 60).

Monitoring: pMoni = (WCET Moni , PPMoni) = (5, 20).

Navigation: pNavi = (WCET Navi , PPNavi) = (1, 5).

3.2. Description of the system and problem 33

3.2.5.2 Threads

Let T = {t1, t2, t3} denote the set of threads, with:

• t1 = (PT 1, OT 1, DT 1, MAF 1, P1) = (5, OT 1, DT 1, 10, {pNavi , pCont}).

• t2 = (PT 2, OT 2, DT 2, MAF 2, P2) = (20, OT 2, DT 2, 20, {pMoni}).

• t3 = (PT 3, OT 3, DT 3, MAF 3, P3) = (60, OT 3, DT 3, 60, {pGuid}).

3.2.5.3 Reactivities

Let R = {r1, r2, r3} denote the set of reactivities, with:

• r1 =
(
(pNavi → pGuid → pCont), DR1

)
with DR1 = 150.

• r2 =
(
(pNavi → pCont), DR2

)
with DR2 = 15.

• r3 =
(
(pNavi → pMoni), DR3

)
with DR3 = 55.

3.2.6 Objectives

Let us summarize the problems we address in this chapter.

Our problems take as input a real-time system, i.e.:

1. a list of processings with their WCET (for example Fig. 3.5) and period, and
their input or output data (for example Fig. 3.1);

2. a set of reactivities (for example Fig. 3.3);

3. an allocation of processings on threads, with period, offset, deadline and MAF
for each thread (for example Fig. 3.7).

Remark 1. Observe in Fig. 3.7 that the harmonic assumption on threads is respected,
with threads ordered by increasing frequency as follows: T3, T2, T1.

34
3. Parametric schedulability analysis of the flight control of a space

launcher

1 thread T1 i s
2 period (5ms) ;
3 of fset (0ms) ;
4 deadline (5ms) ;
5 maf (10ms) ;
6 processing (when 0 => (

Navigat ion) ;
7 when 1 => (

Navigat ion ; Control)) ; end
;

(a) Thread T1

1 thread T2 i s
2 period (20ms)

;
3 of fset (0ms) ;
4 deadline (20ms)

;
5 maf (20ms)

;
6 processing (

Monitoring) ;
7 end ;

(b) Thread T2

1 thread T3 i s
2 period (60ms)

;
3 of fset (0ms) ;
4 deadline (60ms)

;
5 maf (60ms)

;
6 processing (

Guidance) ;
7 end ;

(c) Thread T3

Figure 3.7: A typical solution of the flight control scheduling problem

The first problem is to formally verify the schedulability of the real-time system:

Scheduling verification problem:
Input: a real-time system
Problem: formally verify that S is schedulable.

Recall that schedulability also ensures that all reactivity constraints are met (from
Definition 3.2).

The second problem assumes that some constants of the real-time system (deadlines,
periods, offsets, WCET. . .) become unknown. The real-time system can then be seen
as a partially specified or abstract system.

In this work, we assume that the offsets and deadlines of each thread are unknown;
that is, some of the values in Fig. 3.7 are not known anymore. The scheduling
synthesis problem for our flight control system consists thus in computing the offsets
and deadlines of each thread in order to fulfill the required reactivities.

Scheduling synthesis problem:
Input: a real-time system, a set of unknown constants
Problem: exhibit valuations for the unknown constants such as S is schedulable.

Recall that our synthesis problem still considers as input the periods; therefore
offsets and deadlines are the main results of interest.

3.3 Specifying the system

Since the seminal work of Liu and Layland in [LL73], an abundant number of methods
and tools have been designed to check the schedulability of real-time systems. However,

3.3. Specifying the system 35

while some aspects are reasonably easy (FPS, no mixed-criticality), the problem we
address here is not typical for several reasons:

1. offsets may be non-null;

2. the executed processings may differ depending on the cycle;

3. the reactivities must always be met, and therefore define new, non-classical
timing constraints; and, perhaps most importantly,

4. the admissible values for deadlines and offsets may not be known. Only the
global end-to-end reactivity is specified.

As a consequence, we choose to follow a model checking based method. Model
checking is known for being more expressive than analytical methods, at the cost of
performance or even decidability. We show here that, although we use an undecidable
formalism, we do get exact results for the instance of the problem we consider. We
indeed rely on a procedure (“reachability synthesis”, formalized in e. g., [JLR15]) which
is not guaranteed to terminate—but is correct whenever it does.

We present in the remainder of this section our modeling of the verification and
the synthesis problem using parametric stopwatch automata (PSA). This formalism
has several advantages:

• It is helpful to model concurrent aspects of the system (different threads and
processings running concurrently).

• Stopwatches can be used to model preemption.

• Parameters can be used to model the unknown constants, and solve the synthesis
problem.

For now, we consider that there are no context switches in the system. We will
discuss in Section 3.5 how to introduce them.

3.3.1 Architecture of the solution

3.3.1.1 A modular solution

To model the system, we use the concurrent structure of parametric stopwatch automata
so as to build a modular solution: that is, each element (thread, processing, scheduling
policy) and each constraint (reactivity) is defined by a dedicated PSA. These automata
are then composed by usual parallel composition on synchronization actions.

36
3. Parametric schedulability analysis of the flight control of a space

launcher

This makes our solution modular in the sense that, in the case of a modification in
the system (e. g., the scheduling policy), we can safely replace one PSA with another
(e. g., the FPS scheduler automaton with another scheduler PSA) without impacting
the rest of the system.

3.3.1.2 Encoding elements and constraints as automata

We will model each processing activation as a PSA. These automata ensure that
processings are activated periodically with their respective period and initial offset.

In addition, we will create one PSA for each thread: the purpose of these automata
is to ensure that the processings associated with each thread are executed at the right
time. In the case of our concrete problem, we assign both the Navigation and Control
processings to thread T1, the monitoring process to T2 and the guidance processing
to T3.

The reactivities also follow the concept of modularity. That is, each reactivity is
tested using a single PSA. By testing (as in [ABBL03]), we mean that a reactivity fails
iff a special location is reached. Therefore, ensuring the validity of the reactivities is
equivalent to the unreachability of these special locations.

Finally, we will specify a scheduler automaton that encodes the scheduling policy
between the different threads (in our problem, recall that the scheduling policy is fixed
priority scheduling (FPS)).

We give more details on each of these automata in the following.

3.3.2 Modeling periodic processing activations

Each processing is defined by a WCET and a period (also equal to a deadline). To model
the periodicity of the processings, we create one PSA for each processing activation.
This PSA simply performs the activations in a periodic manner. Activations are
modeled by a synchronization action that is used to communicate with other automata
(typically the thread automaton). For example, the activation of the Control processing
is denoted by actControl; this action will be used to synchronize between the Control
activation automaton with other automata (e. g., the threads or the scheduler).

In addition, the period processing activation automaton detects whether a pro-
cessing missed its (implicit) deadline (equal to its period); that is, we assume that a
processing that has not finished by its next period is a situation corresponding to a
deadline miss.

3.3. Specifying the system 37

init periodic
xControl ≤ periodControl

xControl = periodControl
actControl

xControl := 0

xControl = periodControl
actControl

xControl := 0

Figure 3.8: Automaton periodicControl

Each automaton features a single clock.

We present in Fig. 3.8 a simplified version of the periodicControl automaton,
modeling the periodic activation of the Control processing.4 This automaton uses
one clock xControl and one parameter periodControl. The clock xControl is used
to measure the time between any two consecutive processing activations; it is never
stopped. Note that the period periodControl is known beforehand, and is therefore
not strictly speaking a parameter, but that makes our solution both more generic and
more readable (in IMITATOR, a parameter can be statically instantiated to a constant
before running the analysis).

The initial location is init: from then, the first occurrence of Control is immediately
activated (action actControl), and the automaton enters the periodic location. Then,
exactly every periodControl time units (guard xControl = periodControl), another
instance of Control is activated.

3.3.3 Modeling threads

We create one PSA for each thread. Each of these automata contains one clock for
the thread (used to measure the thread period and offset), as well as one clock per
processings assigned to the thread. These processings clocks are used to measure the
amount of time spent on executing these processings; these clocks can be stopped
(they are therefore stopwatches, strictly speaking) when the processor was preempted
for a higher priority task. For example in Fig. 3.9, the thread automaton threadT1
contains xT1 (the thread clock), as well as xExecControl and xExecNavigation (the
clocks associated to the processings of T1). Parameters include the offset, period,
and deadline of the thread, but also the WCETs of the processings assigned to this
thread.

The thread automaton is responsible for:

1. encoding the initial thread offset, i. e., starting the periodic thread activation
only after the offset;

2. performing the periodic thread activation;
4Among the simplifications, we do not represent the check for the deadline miss.

38
3. Parametric schedulability analysis of the flight control of a space

launcher

init
stop {xExecC , xExecN}

xT1 ≤ offsetT1
exec_nav_odd

stop {xExecC}

xT1 ≤ deadlineT1
∧ xExecN ≤ WCETN

exec_control_odd
stop {xExecN}

xT1 ≤ deadlineT1
∧ xExecC ≤ WCETC

idle
stop {xExecC , xExecN}

xT1 ≤ periodT1

deadlineMissed

xT1 = offsetT1
actT1

xT1 := 0

xExecN = WCETN
finishNavigation

xExecN := 0xExecC = WCETC
finishControl
xExecC := 0

xT1 = periodT1
actT1

xT1 := 0

xT1 = deadlineT1
∧ (xExecC < WCETC

∨xExecN < WCETN)

xT1 = deadlineT1
∧ xExecC < WCETC

Figure 3.9: Fragment of automaton threadT1

3. executing the processings associated with the thread;

4. detecting the deadline misses.

The clocks associated with the processings are used to measure the execution time
of these processings: they are in fact stopped most of the time, except when the thread
is actively executing the processing. This is in contrast with the clocks associated
with the processing activation automaton, which are never stopped, as they measure a
period. Then, a deadline miss occurs if the clock measuring the thread period reaches
the deadline (recall that the deadline is less than or equal to the period, and therefore
we can use the same clock), while the clock measuring a processing execution time is
strictly less than its WCET.

We give in Fig. 3.9 a fragment of the automaton threadT1. We only give the odd
cycle, as this is the most interesting; that is, we removed the fragment corresponding to
the even cycle (only executing Navigation) between locations init and exec_nav_odd
(and the transition from idle should go to the removed exec_nav_even location). The
automaton uses several synchronization variables, notably the end of the processings
(e. g., finishControl), but also the start and end of the concerned thread (e. g., actT1
and endT1, not depicted in the simplified version in Fig. 3.9). We also abbreviate
some variable names to save space (e. g., xExecC for xExecControl and xExecN for
xExecNavigation or WCETN for WCETNavigation).

First, the automaton waits for the offset: that is, it stays in init exactly offsetT1
time units. Then, it executes the first processing of the odd cycle, i. e., Navigation:
it stays in exec_nav_odd until completion, i. e., for WCETNavigation time units.5
Note that this is the only location where xExecNavigation is elapsing, i. e., is not
stopped, as it measures the execution time. Then, upon completion of the Navigation

5In the full model, we can allow for a best case execution time, in which case the duration is
nondeterministically chosen in the interval [BCETNavigation, WCETNavigation].

3.3. Specifying the system 39

processing, the automaton moves to exec_control_odd, where Control is executed.
Upon completion, it moves to idle, and waits until the clock xT1 reaches its period.
Then, the cycle restarts and so on.

In addition, at any time, possible deadline misses are checked for. A deadline
miss occurs on an odd cycle while execution Navigation whenever xT1 = deadlineT1
and either xExecControl < WCETControl or xExecNavigation < WCETNavigation.6
When executing Control, only the execution time of Control needs to be checked.

Remark 2. Our model is in fact more complicated as, for sake of modularity, we
make no assumption in the thread automaton on how the other automata behave,
notably the processings activation automata. Therefore, we allow for processings to
be activated at any time, which must be taken care of in the thread automaton.

3.3.4 Modeling the FPS scheduler

The FPS scheduler is modeled using an additional PSA. It reuses existing works from
the literature (e. g., [FKPY07, SSL+13]), and does not represent a significant original
contribution. We mainly reuse the scheduler encoding of [SSL+13], which consists of
an automaton synchronizing with the rest of the system on the start and end task
synchronization actions as well as the task activation actions. Whenever a new task is
activated, the scheduler decides what to do depending on its current state and the
respective priorities of the new and the executing tasks (if any).

Nevertheless, we had to modify this encoding due to the fact that existing scheduler
automata simply schedule tasks: in our setting, the scheduler schedules both the threads
and the threads’ processings. Among the various modifications, in case of preemption,
our scheduler does not stop the clocks measuring the execution times of the preempted
threads (because such clocks do not exist), but stop the clocks measuring the execution
times of the processings deployed on the preempted threads.

We give in Fig. 3.10 an example of such a scheduler in a simplified version, with
only two threads T1 and T2; the full scheduler is of course more complete. If any of
the two threads get activated (actT1 or actT2), the scheduler starts executing them.
If a second thread gets activated, the highest priority thread (T1) is executed, while
T2 is put on the waiting list (which is encoded in location execT1waitT2). This is
the location responsible for stopping the clock of the (only) processing of T2, i. e.,

6This encoding is not necessarily optimal. In fact, on odd cycles, as Navigation is executed first,
and followed by Control, a deadline miss can be detected earlier, i. e., if Navigation is still
executed, but there is not enough time to finish the execution of Navigation and that of Control:
that is, an optimized deadline miss condition could be xT1 + WCETControl = deadlineT1 and
xExecNavigation < WCETNavigation. This optimization has not been implemented, so as to
leave the model (relatively) simple and maintainable, but could be tested in the future.

40
3. Parametric schedulability analysis of the flight control of a space

launcher

idle

execT1
execT1waitT2
stop{xexecM}

execT2

actT1

actT2

endT1 actT2

endT1endT2

actT1

Figure 3.10: Encoding the FPS scheduler (simplified version)

Monitoring (clock xexecM). Only after T1 has completed (endT1), T2 can execute.
Our real scheduler is in fact significantly more complex as it has to cope with three
threads, but also with special cases such as the activation of a new thread activation
of ti while executing a previous instance of ti, etc.

3.3.5 Reachability synthesis

Finally, the system is schedulable if none of the “bad” locations (corresponding to
deadline misses, e. g., in the thread automata) is reachable. If all parameters are
valuated, the system is a TA, and schedulability reduces to reachability checking. If
some parameters are free (i. e., the analysis is parametric), the set of valuations for
which the system is schedulable exactly corresponds to the valuations for which these
bad locations are unreachable, i. e., the complement of the valuations set result of
reachability synthesis. This guarantees our method correctness.

3.4 Compositional verification of reactivities

An originality of our work—which among other reasons, notably the timing parameters,
justifies our choice to use model checking—is the encoding of reactivities. Indeed, our
goal is to verify a system, or synthesize valuations, for which all reactivities are met.

How to properly encode reactivities turned out rather subtle. Let us first exemplify
the complexity of the definition of reactivities.

Example 3.2. Consider the third reactivity in Fig. 3.3 (abbreviated by NM in the
following) that requires that any data transmission Meas → Navigation → Monitoring
→ Safeguard must always be less than 55 ms. Recall that data are transmitted upon
the end of a thread period.

3.4. Compositional verification of reactivities 41

We can see this reactivity as the start of a timer at the beginning of the last thread
period of an execution of Navigation that completed before the end of an execution of
task T1, where T1 is such that it is the last execution of T1 the period of which ends
before the start of an execution of Monitoring; then, the timer stops following the end
of the period of an execution of T1 immediately following the end of the period of T3
corresponding to the end of the aforementioned execution of Monitoring. At the end,
the timer must be less than 55 ms.

In other words, this reactivity requires that any following sequence of actions
should take less than 55 ms: actT1, startNavigation followed by endNavigation (with-
out any occurrence of startNavigation in between) followed by endT1, followed by
actT3 (without any occurrence of endT1 in between), startMonitoring followed by
endMonitoring (without any occurrence of startMonitoring in between), followed by
endT3.

Encoding reactivities is arguably the most technical part of our solution, and we
tried multiple methods (either incorrect or that represented a too large overhead)
before converging to this solution. Nevertheless, the solution we chose still represents
a large overhead, as we will see in Section 3.6.

In our solution, each reactivity is encoded as a sort of observer automaton [ABBL03,
And13]; an observer automaton observes the system behavior without interfering with
it. That is, it can read clocks, and synchronize on synchronization actions, but
without impacting the rest of the systems; in particular, it must be non-blocking
(except potentially once the property verified by the observer is violated). In addition,
an observer often reduces to reachability analysis (see,e. g., [DFPP18, Dan19]): the
property encoded by the observer is violated iff a special location of the observer is
reachable.

Each reactivity automaton uses a single (local) clock used to check the reactivity
constraint, and synchronizes with the rest of the system on (some) synchronization
labels encoding the start and end of processings and tasks.

In fact, we deviate from the principle of observer automaton by allowing it to block
in some cases. Indeed, a key point in the definition of reactivities in our problem is
the communication between threads as exemplified in Example 3.2. In order to allow
a generic solution for reactivities, and due to the fact that some timing parameters
are unknown, we cannot make assumptions on the respective ordering of processings
w.r.t. each other. Therefore, when a given processing is faster than another one
(e. g., Navigation is faster than Guidance), it is not possible to know a priori which
instance of the fast processing (e. g., Navigation) will effectively transmit its data to
the following slower processing (e. g., Monitoring). As a consequence, our observer
will nondeterministically “guess” from which instance of the slower processing to start
its timer: this is achieved by a nondeterministic choice in the initial location of the
automaton. If the guess is wrong, the observer “blocks” the system (impossibility

42
3. Parametric schedulability analysis of the flight control of a space

launcher

init exec_T1 exec_N ending_T1 wait_T3 exec_T3

exec_Mending_T3good

bad

actT1
xNM := 0

ΣNM

startN

startN

endN

endN

endT1

endT1

actT3

actT3, endT1

startM

startM

endM endMxNM ≤ reacNM
endT3 endT3

xNM > reacNM
endT3

Figure 3.11: Encoding reactivity Navigation → Monitoring

to fire a transition or let time elapse). Note that, while blocking is usually not an
admissible feature of observer automata, this is harmless in this case as, due to the
nondeterministic guess and the fact that model checking explores all choices, all
possible behaviors of the system are still explored by our solution.

Example 3.3. Consider again reactivity NM from Example 3.2. Consider a given
instance of Navigation. If a second full instance of Navigation (including the end of
thread T1) is observed before the start of T2, our observer made a wrong guess, and
the observer clock is not measuring a proper reactivity, as the instance of Navigation
on which the clock should be started must be the last completed instance before the
start of T2. In that case, the observer simply blocks.

3.4.1 Observer construction

Our solution consists in translating the sequence of starting and ending actions of
threads and processings following the definition of the reactivities, while forbidding
some actions in some locations to ensure the proper encoding of the definition of
thread communication and reactivities. In addition, a clock measuring the reactivity
is started upon the (nondeterministic) activation of the first thread, and is checked
against the reactivity nominal maximum time upon completion of the last thread. If
this maximum time constraint is violated, the observer enters a special “bad” location.
This observer violation location is added to the list of “bad” locations in Section 3.3.5
when performing reachability synthesis.

Example 3.4. We give the observer automaton corresponding to reactivity NM in
Fig. 3.11. We abbreviate in Fig. 3.11 the names of processings (N and M stand
for Navigation and Monitoring respectively). The only clock is xNM while reacNM
denotes the maximum nominal reactivity for NM (55 ms here). ΣNM stands for this
automaton alphabet; given a ∈ ΣNM , a denotes ΣNM \ {a} (we extend this notation to
sets of actions). In addition, whenever xNM > reacNM occurs in any location (except

3.4. Compositional verification of reactivities 43

the initial location), a transition leads to the special “bad” location (these transitions
are not depicted in Fig. 3.11 for sake of clarity).

The nondeterministic choice is encoded in the initial location where, upon ac-
tion actT1, the automaton can either self-loop in init, or go to actT1 to try to measure
the reactivity from this instance of T1. The blocking is encoded by the absence of
transition labeled with endT1 in location wait_T3 (an alternative is to synchronize
on endT1 to a sink location that also blocks time elapsing).

Both remaining reactivities in Fig. 3.3 follow easily from this scheme: the first
reactivity (Navigation → Guidance → Control) follows the same principle for Naviga-
tion and Guidance, and is immediately followed by a third check for Control, while the
second reactivity (Navigation → Control) is simpler as both Navigation and Control
are on the same thread.

3.4.2 Compositional verification and synthesis

Due to the nondeterministic choice, the verification of the reactivities entails a clear
overhead to the verification (see Section 3.6). Verifying all three reactivities can
be naturally done by adding the three observer automata to the same system, and
performing synthesis on the composition of all these automata.

However, we claim that this can be done in a compositional fashion. Indeed,
checking reactivities is checking that a constraint is met for all executions; this can be
seen as a global invariant of the property “all reactivities are satisfied”, and we will
verify it using observers. Observers simply observe the system and do not interact with
it as long as the property they are verifying is not violated ; therefore, independent
properties can be observed by different observers using different executions. Therefore,
checking that these three invariants are valid can be done separately. In the non-
parametric case, we will perform three different verifications of the system, with only
one reactivity automaton at a time. Then, if the “bad” locations are unreachable for
the three different verifications, then the system is schedulable and the reactivities are
met. In the case of synthesis, we will intersect the result of the synthesis applied to
the three parametric models.

This compositional analysis comes in contrast with many works on scheduling,
where compositionality is hard to achieve (see, e. g., [SL03, Ric05, LB05, SEL08,
CPV13]). Note that our compositional verification is not necessarily specific to a
parametric approach, and using our approach in a non-parametric setting (e. g., using
Uppaal, PHAVer[Fre08]) could also benefit from a similar compositionality.

44
3. Parametric schedulability analysis of the flight control of a space

launcher

1 processing wcet Navigat ion (1ms) ;
2 processing wcet Guidance (10 . 5ms) ;
3 processing wcet Control (3ms) ;
4 processing wcet Monitoring (3ms) ;

Figure 3.12: Example of Worst Case Execution Times for a system with switch time

3.5 Enhancing the analysis with context switches

3.5.1 Problem

When switching between two threads, the CPU needs to store the state of a thread, so
that it can be restored later, and consequently the execution can be resumed from the
same point later. Threads usually do not switch instantaneously: a certain amount of
time is required for copying data. For each change in thread execution, the system
must copy data before running the next thread. The time to save this state and restore
another is known as thread context-switch time. This context-switch time between
threads is small, but can be important to consider for schedulability.

Example 3.5. For the threads assignment given in Fig. 3.7 together with the pro-
cessings values in Figs. 3.1 and 3.5, we can show using the Cheddar analyzer (see
Section 3.7.1.1) that the schedule is tight, i. e., the occupancy of the processor is 100 %.
For this reason, any non-zero context-switch time implies that the system becomes
non-schedulable.

Because of the tight schedule mentioned in Example 3.5, in order to study the
system using non-zero context-switch times, we consider the second set of (fictitious)
values, given in Fig. 3.12. This set reduces the WCETs of the processings, and therefore
allows for some non-zero context-switch time.

Following the new data from Fig. 3.12, let us redefine the set of processings as
P ′ = {pNavi , pCont , pMoni , pGuid}, where:

Control: pNavi = (WCET Navi , PPNavi) = (1, 5).

Guidance: pCont = (WCET Cont , PPCont) = (3, 10).

Monitoring: pMoni = (WCET Moni , PPMoni) = (3, 20).

Navigation: pGuid = (WCET Guid , PPGuid) = (10.5, 60).

3.5. Enhancing the analysis with context switches 45

execT2
execT1waitT2
stop{xexecM}

actT1

(a) Without switch

execT2
switching

stop{xexecN , xexecC , xexecM}
execT1waitT2
stop{xexecM}

actT1
xSwitch := 0 xSwitch = pSwitch

(b) With switch

Figure 3.13: Encoding the FPS scheduler without and with switch (fragment)

From now on, we consider that the switch from a thread to another one requires
a (constant) switch time equal to 500 µs 7 . Also note that, during the change of
processing within the same thread (e. g., from Navigation to Control in the odd period
of Thread T1 in Fig. 3.7), the switch remains 0, as these processings are part of the
same thread.

3.5.2 Modeling the context switch

The switch time between threads is modeled as part of the scheduler automaton. For
each change of execution from one thread to another, we go through an intermediate
location: upon activation of a thread implying a thread switch (recall that some thread
activations may not imply an immediate thread change, if the newly activated thread
has lesser priority than the currently activated thread, e. g., activating Thread T2 in
location execT1 in Fig. 3.10), then a clock xSwitch is set to 0, and counts until it
reaches the context switch time. In our case, this timing is parameter pSwitch (this
parameter is in practice assigned to its nominal value 500 µs and is therefore not truly
parametric).

Example 3.6. We give in Fig. 3.13a a fragment of the original FPS scheduler from
Fig. 3.10, corresponding to the execution of thread T2, followed by the activation
of thread T1, which has higher priority and therefore requires a context-switch time.
In the original version in Fig. 3.13a, the processor immediately starts executing T1
in location execT1waitT2. In contrast, in the transformed version in Fig. 3.13b, the
processor first transits through an intermediate location switching, that it can only
leave pSwitch time units later; only from there, T1 starts being executed.

Also note that, in the intermediate location switching, all clocks measuring the
execution times of the processings associated to any of the threads of the processor

7All values are confidential and therefore the given values in this case study are not the genuine
ones.

46
3. Parametric schedulability analysis of the flight control of a space

launcher

(here Navigation and Control for T1 and Monitoring for T2) are stopped, as the
processor is not executing any thread, but is performing the context switch.

We give in Fig. 3.14 the Gantt chart of the case study of interest with switch time
equal to 500 µs. (This Gantt chart was generated by Cheddar [Sin].)

Figure 3.14: Gantt chart of the system GNC with switch time = 500 µs

We give in Fig. 3.15 the full version of the scheduler with three threads and the
switch time between threads.

———————————————————-

3.6 Experiments

3.6.1 Experimental environment

We modeled our network of PSA in the IMITATOR input language [And21]. IMITATOR
is a parametric model checker taking as input networks of PSA extended with useful
features such as synchronization actions and discrete variables. Synthesis can be
performed using various properties. We use here reachability synthesis (formalized
in, e. g., [JLR15]). When IMITATOR terminates (which is not guaranteed in theory),
the result is always sound (but not necessarily complete), but the tool is often able to
infer whether the result is exact (sound and complete). All analyses mentioned in this
manuscript terminate with an exact result.

3.6. Experiments 47

Figure 3.15: Encoding the FPS scheduler with switches (full version)

The translation effort was manual due to the specificity of our solution (with
the exception of the scheduler, for which we started from an automated generator).
However, we tried to keep our translation as systematic as possible to allow for a
future automated generation from the problem input data. We made intensive use of
clock resets and stopwatches for clocks not necessary at some points, in order to let
IMITATOR apply inactive clock reductions.

All experiments were conducted using IMITATOR 2.10.4 “Butter Jellyfish” on an
ASUS X411UN Intel Core™ i7-8550U 1.80 GHz with 8 GiB memory running Linux
Mint 19 64 bits.8

In Sections 3.6.2 and 3.6.3, we first study the system without the extra context
switch time introduced in Section 3.5; then, we study in Section 3.6.4 the overhead
incurred by the context switch time.

8Sources, binaries, models and results are available at imitator.fr/static/FI2021/ and at https:
//www.doi.org/10.5281/zenodo.5042059.

https://www.imitator.fr/static/FI2021/
https://www.doi.org/10.5281/zenodo.5042059
https://www.doi.org/10.5281/zenodo.5042059

48
3. Parametric schedulability analysis of the flight control of a space

launcher

Table 3.1: Computation times without switch time and without reactivities
Analysis Time (s)
No parameter 3.1
Parametric offsets 95.8
Parametric deadlines 17.7

3.6.2 Verification and synthesis without reactivities

In order to evaluate the overhead of the satisfaction of the reactivities, we first run
analyses without reactivities.

3.6.2.1 Non-parametric model

First, a non-parametric analysis shows that the bad locations are unreachable, and
therefore the system is schedulable under the nominal values given in Figs. 3.1 and 3.5.

The computation time of this non-parametric analysis, together with other para-
metric analyses (all without reactivities) are given in Table 3.1.

We give in Fig. 3.16 the Gantt chart (obtained with Cheddar [Sin]) of this entirely
instantiated model.

Figure 3.16: scheduling GNC without reactivities using Cheddar

3.6. Experiments 49

Table 3.2: Possible offset valuations (without reactivities)
Valuation offsetT1 offsetT2 offsetT3 |= K

v1 0 2 1
√

v2 4 0 11
√

v3 2 11 0
√

v4 0 9 0
√

v5 2 12 1 ×
v6 5 9 0 ×

3.6.2.2 Parameterized offsets

We then parameterize offsets, i. e., we seek admissible offsets for which the system is
schedulable. The constraint synthesized by IMITATOR is given in Fig. 3.17.

5 ≥ offsetT2
∧ offsetT3 + 5 > offsetT2
∧ offsetT3 ≥ 0
∧ offsetT2 ≥ 0
∧ 1 ≥ offsetT3
∧ offsetT1 = 0
OR
offsetT1 ≥ 0
∧ 11 ≥ offsetT3
∧ offsetT3 > 1 + offsetT1
∧ 4 ≥ offsetT1
∧ offsetT2 = 0
OR
offsetT3 > 1
∧ 11 ≥ offsetT3
∧ offsetT2 > 0
∧ 1 ≥ offsetT2
∧ offsetT1 = 0

OR
offsetT1 > 0
∧ offsetT2 ≥ 0
∧ 11 ≥ offsetT2
∧ 4 ≥ offsetT1
∧ offsetT3 = 0
OR
11 ≥ offsetT2
∧ offsetT3 ≥ 0
∧ offsetT2 > 9
∧ 1 ≥ offsetT3
∧ offsetT1 = 0
OR
offsetT1 + 1 ≥ offsetT3
∧ offsetT1 > 0
∧ offsetT3 > 0
∧ 4 ≥ offsetT1
∧ offsetT2 = 0

OR
offsetT2 > 5
∧ 9 ≥ offsetT2
∧ offsetT3 > 0
∧ 1 ≥ offsetT3
∧ offsetT1 = 0
OR
offsetT2 ≥ 5
∧ 9 ≥ offsetT2
∧ offsetT1 = 0
∧ offsetT3 = 0

Figure 3.17: Parametric offsets

We can see that, while several conditions for schedulability are given, at least one
offset must be 0 to ensure schedulability.

In order to exemplify admissible values, we exhibit some valuations satisfying this
constraint in Table 3.2; we also give some valuations not satisfying this constraint.
These valuations were derived manually from the constraint, but an automatization
thanks to an SMT solver would be possible.

50
3. Parametric schedulability analysis of the flight control of a space

launcher

Table 3.3: Possible deadline valuations (without reactivities)
Valuation deadlineT1 deadlineT2 deadlineT3 |= K

v1 5 20 60
√

v2 4 11 60
√

v3 5 15 60
√

v4 4 20 60
√

v5 3 11 60 ×
v6 4 9 55 ×

3.6.2.3 Parameterized deadlines

We then parameterize deadlines, i. e., we seek admissible deadlines for which the
system is schedulable. The constraint is: deadlineT2 ∈ [11, 20] ∧ deadlineT1 ∈
[4, 5] ∧ deadlineT3 = 60. That is, the deadline of T3 is strict, while T1 and T2 can
be relaxed while preserving schedulability.

Again, we exhibit some valuations satisfying this constraint in Table 3.3.

3.6.3 Compositional verification of reactivities

We then solve the scheduling verification and scheduling synthesis problems with
reactivities, using two methods:

1. monolithic verification: all three reactivity automata are included in the model;
and

2. compositional verification: we verify sequentially three different models, each of
them including all automata modeling the system, but only one reactivity at a
time.

We give the various computation times, including the overhead incurred by each
reactivity, in Table 3.4.

Table 3.4: Computation times with reactivities (s)
Analysis Monolithic NGC NC NM Compositional
No parameter 109.4 21.4 3.4 15.2 40.1
Parametric offsets 2304.0 1111.9 210.8 955.7 2278.4
Parametric deadlines 637.2 173.0 28.5 129.8 331.3

3.6. Experiments 51

Table 3.5: Computation times with switch time and without reactivities
Analysis Time (s)
No parameter 17.9
Parametric offsets 5,396.3
Parametric deadlines 38.7

Table 3.6: Computation times with reactivities and switch time (s)
Analysis Monolithic NGC NC NM Compositional
No parameter 476.5 47.5 6.5 34.5 88.5
Parametric offsets TO 33,449.6 2915.4 TO TO
Parametric deadlines 1,919.7 342.3 62.7 278.0 683.0

Table 3.4 shows the interest of the compositional verification over monolithic
verification, as the computation time is divided by a factor 2, except in the case of
parametric offsets, where the compositional verification is just a little more efficient.
Also, without surprise, the most complicated reactivity (NGC) takes the longest
computation time.

3.6.4 Switch time

We now give the computation times in the case of switch time of 500 µs in Tables 3.5
and 3.6. In Table 3.6, “TO” denotes non-termination after 12 hours.

The constraints for offsets and deadlines synthesized by IMITATOR are given
respectively in Fig. 3.18 and in Fig. 3.19.

We give in Tables 3.7 and 3.8 some examples of the values of parameters for which
the system with switch time is schedulable (“|= K”) or not.

Let us briefly compare the computation times of the system without switch time
on the one hand, and of the system with the switch time of 500 µs on the other hand.
The execution time of IMITATOR for the system with the switch time is nearly three
times higher than the system without switch time, in the non-parametric case and the

Table 3.7: Some valuations for which the system is schedulable (without reactivities)
Valuation offsetT1 offsetT2 offsetT3 |= K

v1 0 11.5 1.5
√

v2 3 0 10
√

v3 0 5 1
√

v4 12 0 3 ×
v5 3 15 0 ×

52
3. Parametric schedulability analysis of the flight control of a space

launcher

offsetT3 ≥ 10
∧ 7 ≥ 2 ∗ offsetT1
∧ 2 ∗ offsetT1 > 5 + 2 ∗ offsetT2
∧ 23 ≥ 2 ∗ offsetT3
∧ offsetT1 ≥ 3
∧ 2 ∗ offsetT2 + 7 > 2 ∗ offsetT1
∧ offsetT2 ≥ 0
∧ offsetT1 > 2 + offsetT2
OR
offsetT2 + 2 ∗ offsetT3 + 3 > 3 ∗ offsetT1
∧ offsetT2 ≥ 0
∧ 2 ∗ offsetT3 > 1 + 2 ∗ offsetT1
∧ 19 ≥ 2 ∗ offsetT3
∧ 2 ∗ offsetT2 + 7 > 2 ∗ offsetT1
∧ offsetT1 ≥ 3 + offsetT2
∧ 7 ≥ 2 ∗ offsetT1
OR
offsetT3 > 3
∧ offsetT3 ≥ 3 + offsetT2
∧ 2 ∗ offsetT3 > 5 + 2 ∗ offsetT2
∧ offsetT1 + offsetT3 > 6 + 2 ∗ offsetT2
∧ offsetT1 ≥ 3 + offsetT2
∧ offsetT2 ≥ 0
∧ 2 ∗ offsetT1 + 1 ≥ 2 ∗ offsetT3
∧ 7 ≥ 2 ∗ offsetT1

OR
19 ≥ 2 ∗ offsetT3
∧ offsetT1 ≥ 0
∧ offsetT3 > 5
∧ offsetT2 > 1 + offsetT1
∧ 2 > offsetT2
OR
offsetT1 ≥ 0
∧ offsetT2 > 0
∧ offsetT3 > 5 + offsetT2
∧ offsetT2 ≥ offsetT1
∧ offsetT1 + 1 ≥ offsetT2
∧ 1 > 2 ∗ offsetT1
∧ 19 ≥ 2 ∗ offsetT3
OR
offsetT2 ≥ 5
∧ 23 ≥ 2 ∗ offsetT2
∧ offsetT1 ≥ 0
∧ offsetT3 > 1 + offsetT1
∧ 3 ≥ 2 ∗ offsetT3

OR
23 ≥ 2 ∗ offsetT2
∧ offsetT3 ≥ 0
∧ offsetT2 ≥ 5
∧ 1 ≥ offsetT3
∧ offsetT1 = 0
OR
2 ∗ offsetT2 > 7
∧ 3 ∗ offsetT2 > 4
∧ offsetT2 + 8 > 0
∧ 10 > offsetT2
∧ 2 ∗ offsetT1 = 7
∧ offsetT3 = 0

Figure 3.18: Parametric offsets for model with switch time

2 ∗ deadlineT2 ≥ 9
∧ 2 ∗ deadlineT1 ≥ 9
∧ 5 ≥ deadlineT1
∧ 20 ≥ deadlineT2
∧ deadlineT3 = 60

Figure 3.19: Parametric deadlines for model with switch time

3.7. Comparison with other tools 53

Table 3.8: Some valuations for which the system is schedulable (with reactivities)
Valuation deadlineT1 deadlineT2 deadlineT3 |= K

v1 4.5 20 60
√

v2 5 4.5 60
√

v3 4.5 4.5 60
√

v4 4 5 60 ×
v5 4.5 4 65 ×

case of parametric deadlines. For the case of parametric offsets, it is nearly ten times
higher.

3.7 Comparison with other tools

3.7.1 Comparison of our results with non-parametric tools

We perform a comparison with two other well-known tools, one from the real-time
system community, namely Cheddar [Sin], and one from the timed automata community,
namely Uppaal [LPY97]. Both tools cannot handle parameters nor consider partially
specified problems, and therefore can only solve the scheduling verification problem.
Therefore, in this section, we consider the instantiated version of the system according
to the nominal values given in Figs. 3.1 and 3.5. In addition, to the best of our
knowledge, Cheddar cannot test the reactivities.

3.7.1.1 Non-parametric comparison with Cheddar

Cheddar is a real-time scheduling tool distributed under the GPL license. Cheddar is
used to model software architectures of real-time systems and to check if the system is
schedulable.

We checked the system’s schedulability using Cheddar when the system is instan-
tiated (i. e., all offsets are initialized to 0 and the deadline of each thread equal to
the period). We have indicated the period, the execution time and deadline of each
processings.

As result, Cheddar proves that the system in Fig. 3.5 without switch time between
threads is schedulable and there are no deadline missed in the computed scheduling.
We give in Fig. 3.16 the Gantt chart of this system using Cheddar. The computation

54
3. Parametric schedulability analysis of the flight control of a space

launcher

Table 3.9: Possible offset valuations with switch time using Uppaal

Valuation offsetT1 offsetT2 offsetT3 Uppaal
(with reactivities)

v1 0 11.5 1.5
√

v2 3 0 10
√

v3 0 5 1
√

v4 12 0 3 ×
v5 3 15 0 ×

Table 3.10: Possible deadline valuations with switch time using Uppaal

Valuation deadlineT1 deadlineT2 deadlineT3 Uppaal
(with reactivities)

v1 4.5 20 60
√

v2 5 4.5 60
√

v3 4.5 4.5 60
√

v4 4 5 60 ×
v5 4.5 4 65 ×

time of this analysis is given in Table 3.11. In this solution, the number of context
switches per period of T3 is 29 and the number of preemptions is 8.

Cheddar cannot give a solution to the scheduling synthesis problem since it only
works with instantiated systems, so we cannot determine offsets and deadlines, and
also it does not deal with reactivities.

3.7.1.2 Non-parametric comparison with Uppaal

We also compare the obtained results using IMITATOR with Uppaal results (for the
model without switch time). Uppaal is a timed model checker taking as input networks
of timed automata, extended with some useful features such as synchronization, integer-
valued global variables, data structures and C-style functions. We wrote a Uppaal
model identical to the IMITATOR model—with instantiated parameters as Uppaal
does not support parametric analyses.

As result, Uppaal proves that the instantiated system is schedulable, both without
and with reactivities. We give in Table 3.9 obtained results using Uppaal when offsets
are parameterized and in Table 3.10 when deadlines are parameterized.

3.7.1.3 Summary of comparisons

We give the computation times without reactivities in Table 3.11. Clearly, from our
experiments, if the model features no parameters, Cheddar (if no reactivities are

3.7. Comparison with other tools 55

Table 3.11: Computation times without parameters
Analysis Without reactivities (s) With reactivities (s)
Cheddar < 0.1 N/A
IMITATOR 3.086 109.404
Uppaal 0.002 0.003

specified) or Uppaal (if some reactivities are specified) should be used. However
none of these tools cope with uncertain constants. Therefore, despite the complexity
overhead, IMITATOR should be used if some timing constants are unspecified.

3.7.2 “Testing” the parametric analysis

Finally, we tried to obtain additional guarantees on our model’s correctness. Indeed,
while we can reasonably suppose that our methodology is correct and that the tools
are exempt from bugs for the algorithms used here (which remains to be done formally
though), a major issue is that of the manual coding of our model into the input
language of IMITATOR. In order to have further guarantees, we compared several
aspects of the results with other results, or with other tools, whenever applicable.

3.7.2.1 Using non-parametric model checking

In order to increase our confidence in the results obtained with IMITATOR in Sec-
tion 3.6.2, we will first test that sampled valuations from the parametric constraint
synthesized by IMITATOR are indeed proved schedulable (resp. non-schedulable) by
non-parametric tools whenever they belong (resp. do not belong) to the constraint
synthesized by IMITATOR. Once more, we do so using both a popular tool in the
real-time systems community (Cheddar) and a non-parametric timed model checker
(Uppaal).

Model with reactivities

First, we fix the deadlines, and we vary the offsets according to the constraint
synthesized in Section 3.6.3. We sample four valuations of this constraint, and give
them in Table 3.12 (v1 to v4); we also add two valuations (v5 and v6) not belonging to
the constraint synthesized by IMITATOR. For each of these valuations, we test using
Cheddar and Uppaal whether the system is schedulable.

We give in Table 3.12 obtained results using Cheddar and Uppaal when deadlines
are instantiated (and offsets remain parameterized) and in Table 3.13 when offsets are

56
3. Parametric schedulability analysis of the flight control of a space

launcher

Table 3.12: Possible offset valuations (with reactivities) checked using Cheddar and Uppaal
Valuation offsetT1 offsetT2 offsetT3 |= K

Cheddar
(without reactivities)

Uppaal
(with reactivities)

v1 0 2 1
√ √ √

v2 4 0 10
√ √ √

v3 2 10 0
√ √ √

v4 0 9 0
√ √ √

v5 2 12 1 × × ×
v6 5 9 0 × × ×

Table 3.13: Possible deadline valuations (with reactivities) checked using Cheddar and
Uppaal

Valuation deadlineT1 deadlineT2 deadlineT3 |= K
Cheddar

(without reactivities)
Uppaal

(with reactivities)
v1 5 20 60

√ √ √

v2 4 11 60
√ √ √

v3 5 15 60
√ √ √

v4 4 20 60
√ √ √

v5 3 11 60 × × ×
v6 4 9 55 × × ×

instantiated (and deadlines remain parameterized). As one can see from Tables 3.12
and 3.13, all results are consistent. Recall that this does not formally prove the
correctness of our method, but increases our confidence by testing sample points.
Still, if one considers that Uppaal or Cheddar are reliable tools and that our model
is entirely correct, once a given valuation is chosen from the constraint output by
IMITATOR, checking again its correctness using one of the aforementioned tools is a
good way to assess the validity of the whole process.

3.7.2.2 Using constraints comparisons

We now perform additional tests on the results of IMITATOR.

Model without switch time

We consider here the constraints for the full system including reactivities but
excluding the switch time in Section 3.6.3 (the case of the switch time gave similar
results).

Constraints comparisons

First, we verified using PolyOp9 that the constraint obtained by monolithic verifi-
cation is equal to the intersection of the 3 constraints (reactivity NC, reactivity NM

9A simple interface over the Parma Polyhedra Library [BHZ08], available at github.com/
etienneandre/PolyOp, and that allows for polyhedral computations such as intersection or
difference, as well as polyhedral checks such as equality or (strict) inclusion.

https://github.com/etienneandre/PolyOp
https://github.com/etienneandre/PolyOp

3.7. Comparison with other tools 57

Table 3.14: Possible offset valuations in the difference of constraints without and with
reactivities
Valuation offsetT1 offsetT2 offsetT3 Cheddar Uppaal

v1 0 2 0
√

×
v2 0 4 1

√
×

v3 0 3 1
√

×

and reactivity NGC) obtained by separate verifications, on the one hand when offsets
are parameterized, and on the other hand when deadlines are parameterized.

Second, we checked that the results with reactivities are included in the constraint
without reactivities in all three cases (no parameter, parametric offsets, parametric
deadlines). Indeed, the model with reactivities is more constrained, and therefore its
admissible valuations set shall be included in or equal to the valuations set without
reactivity constraints.

Constraints difference

We give below the difference of constraints without reactivities and constraints
with reactivities when offsets are parameterized:

offsetT3 + 5 > offsetT2 ∧ offsetT1 = 0 ∧ offsetT2 ∈ (1, 5] ∧ offsetT3 ∈ [0, 1]

This shows that the two constraints are not equal: some valuations ensure schedu-
lability when reactivities are not considered, but do not ensure schedulability under
reactivity constraints. This is a major outcome of our experiments, as it justifies
for the analysis under reactivity constraints. That is, tools that are not able to test
schedulability under reactivity constraints (such as Cheddar) will give incorrect results
for this case study.

We present in Table 3.14 some examples of values of offsets in the difference of
constraints without and with reactivities: as expected, Cheddar mistakenly guarantees
the system is correct while Uppaal shows it is not, due to some violated reactivities.

Model with switch time

We finally perform additional verifications on the results of Section 3.6.4. We verify
using PolyOp that the constraint with switch time obtained by monolithic verification
is equal to the intersection of the 3 constraints (reactivity NC, reactivity NM and
reactivity NGC) obtained by separate verifications when deadlines are parameterized,
just as we did in Section 3.4. We also checked that the result with reactivity NC is
included in the constraint without reactivities when offsets are parameterized; and
similarly for the result with all 3 reactivities. Not all situations could be considered,
as some analyses reach time out (see Table 3.6).

58
3. Parametric schedulability analysis of the flight control of a space

launcher

We also rechecked the sample results obtained by IMITATOR in Tables 3.7 and 3.8
using Uppaal. We did not use Cheddar in this example because, to the best of our
knowledge, Cheddar cannot apply switch time between threads.

3.8 Conclusion

In this chapter, our implementation of the flight control system into parametric timed
automata using IMITATOR allow to determine offsets and deadlines of each thread
taking into account that all reactivities are satisfied and ensure formally that the
FPS type scheduling can be a solution for our problem. We build a modular solution,
i. e., we specified an automaton for each element of our system (thread, processing,
scheduling policy) and each constraint (reactivity). The interest of using IMITATOR
as the main tool of our approach is that it allows to analyze a system with parameters
in order to determine the possible values of those parameters, unlike other existing
tools (e. g., Cheddar and Uppaal) which treat only initialized systems. In addition,
we showed that the reactivity constraints are important as, without them, wrong
valuations can be derived.

For our longer-term future works, we envisage to:

1. Generalize the flight control scheduling problem by automatically synthesizing
the allocations of processings on threads. This generalization raises first the issue
of modeling such problematic (how to model an allocation with a parameter)
and second the classical combinatorial explosion of states.

2. Apply this approach to the automatic synthesis of the launcher sequential, i. e.,
of the scheduling of all the system events necessary to fulfill a mission: ignition
and shut-down of stages, release of firing, release of payloads, etc.

3. Verify more complex architectures, in a more automated and efficient way.

In the next chapter, we will present Time4sys2imi a tool translating Time4sys
models into parametric timed automata [AHV93].

4
Formalize real-time system

models under uncertainty
This chapter presents Time4sys2imi, a tool translating Time4sys models into parametric
timed automata [AHV93] in the input language of IMITATOR. This translation allows
not only to check the schedulability of real-time systems, but also to infer some timing
constraints (deadlines, offsets. . .) guaranteeing schedulability.

Contents

4.1 Introduction . 60

4.1.1 Related works . 60

4.1.2 Outline . 61

4.2 Time4sys in a nutshell . 61

4.3 Architecture and principle . 63

4.3.1 Targeted user . 63

4.3.2 User workflow . 64

4.3.3 Global architecture . 65

4.3.4 Detailed architecture . 65

4.4 Proof of concept . 66

4.5 Conclusion and perspectives 69

60 4. Formalize real-time system models under uncertainty

4.1 Introduction

Thales Group, a large multinational company specialized in aerospace, defense, trans-
portation and security, developed a graphical formalism Time4sys1 to allow interop-
erability between timed verification tools. Time4sys responds to a need to unify the
approaches within Thales Group: This formalism is being rolled out at TSA (Thales
Airborne Systems) and studies are underway at TAS (Thales Alenia Space). Time4sys
is now an open source framework, offering many features to represent real-time systems.
However, Time4sys lacks for a formalization: it does not perform any verification nor
simulation, nor can it assess the schedulability of the depicted systems.

Since Time4sys does not allow to perform formal analyses for real-time systems,
a translation to a well-grounded formalism is needed to verify and analyze real-time
systems. In this chapter, we present a tool Time4sys2imi which allows to translate
Time4sys into parametric timed automata (PTAs) [AHV93] described in the input
language of IMITATOR. PTAs extend finite-state automata with clocks (i. e., real-valued
variables evolving at the same rate) and parameters (unknown timing constants). PTAs
are a formalism well-suited to verify systems where some timing delays are known with
uncertainty, or completely unknown. IMITATOR [AFKS12] is the de-facto standard
tool to analyze models represented using PTAs. This translation allows not only to
assess the schedulability of systems modeled using Time4sys, but only to synthesize
some timing constants guaranteeing schedulability.

[And19a] present a set of rules translating Time4sys to PTAs. We introduce here
the tool performing this translation, with its practical description, as well as a set of
case studies, absent from [And19a].

This work was published in the proceedings of ICTAC 2019 [AJM19].

4.1.1 Related works

Scheduling using (extensions) of timed automata was proposed in the past (e. g.,
[AAM06]). For uniprocessor real-time systems only, (parametric) task automata offer
a more compact representation than (parametric) timed automata [FKPY07, NWY99,
And17]; however [FKPY07, NWY99] do not offer an automated translation and, while
[And17] comes with a script translating some parametric task automata to parametric
timed automata, the case of multiprocessor is not addressed. Schedulability analysis
under uncertainty was also tackled in the past, e. g., in [CPR08, FLMS12, SSL+13,

1https://github.com/polarsys/time4sys

https://github.com/polarsys/time4sys

4.2. Time4sys in a nutshell 61

ACF+19]. The main difference with our tool is that we allow here a systematic
translation from an industrial formalism.

An export from Time4sys is available to Cheddar [SLNM04]. However, while
Cheddar is able to deduce schedulability of real-time systems, it suffers from two main
limitations:

1. it does not allow task dependencies; and

2. all timing constants must be fixed in order to study the schedulability.

In contrast, our translation in Time4sys2imi allows for both.

A model represented with Time4sys can also be exported to
MAST [GHGGPGDM01] which is an open-source suite of tools to perform
schedulability analysis of real-time distributed systems. However, the effectiveness of
this tool is limited: it does not allow us to have a complete solution to our problem
since it only works with instantiated systems, so we can not perform a real-time
system with unknown parameters.

4.1.2 Outline

Section 4.2 describes Time4sys, and states the problem. Section 4.3 exposes the
architecture of Time4sys2imi. As a proof of concept, Section 4.4 gives the results
obtained on some examples. We conclude the chapter and we discuss future works in
Section 4.5.

4.2 Time4sys in a nutshell

We review here Time4sys, and make a few (minor) assumptions to ease our transla-
tion.

Time4sys is a formalism that provides an environment to prepare the design phase
of a system through the graphical visualization developed. Time4sys contains two
modes: Design and Analysis. In our translation, we use the Time4sys Design mode
which uses a subset of the OMG MARTE standard [OMG08] as a basis for displaying
a synthetic view to the real-time system. This graphical representation encompasses
all the elements and properties that can define a real-time system.

The Time4sys Design tool allows users to define the following elements:

62 4. Formalize real-time system models under uncertainty

• Hardware Resource: a hardware resource in Time4sys is a processor, and it
contains a set of tasks; it is also assigned a scheduling policy.

• Software Resource: a software resource in Time4sys is a task, and it features
a (relative) deadline.

• Execution Step: an execution step can be seen as a subtask. It is characterized
by a BCET, a WCET, and a priority. In our translation, we assume that
each software resource contains exactly one execution step. That is, we do not
encompass for subtasks.

• Event: an event can be seen as an activation policy for tasks. There are two
main types of Events:

– PeriodicEvent: defined by its period, its jitter and its phase (i. e., offset).

– SporadicEvent: defined by its minimum and maximum interarrival times,
its jitter and its phase.

Figure 4.1: Example of a Time4sys design

Example 4.1. Fig. 4.1 shows an example of a real-time system designed with Time4sys.
In this example, we have two hardware resources (HardwareResource0, HardwareRe-
source1) both using fixed priority as a scheduling policy, two software resources
(SoftwareResource1, SoftwareResource2) in each hardware resource, and four execution
tasks, with the following timing constraints:

• Step1: WCET = BCET = 6 ps

4.3. Architecture and principle 63

• Step2: WCET = BCET = 4 ps

• Step3: WCET = BCET = 5 ps

• Step4: WCET = BCET = 5 ps

Finally, this example features two periodic events, both characterized by a 10 ps period,
a 0 ps jitter and a 0 ps phase (“offset”).

In this example, we start executing with Step1 in the CPU HardwareResource0.
After 6 ps, the execution of Step1 ends so Step2 takes its place. At the same time,
Step3 in the CPU HardwareResource1 starts performing. At t = 10 ps, the execution
of Step2 finishes and a new period of Step1 starts, however at that time Step3 is still
executing. So this real-time system is not schedulable i. e., the period of StepT1 is
strictly less than the WCET of Step1 plus the WCET of Step3.

Time4sys Design can be used for different design modeling tool. It can be exported
to different languages such as UML and AADL.

Objective

The main objective of Time4sys2imi is as follows: given a real-time system with
some unknown timing constants (period, jitter, deadlines. . .), synthesize the timing
constants for which the system is schedulable. Note that, when all timing constants
are known precisely, this problem is schedulability analysis.

4.3 Architecture and principle

The main purpose of Time4sys2imi is to perform the translation of Time4sys models
into the input language of IMITATOR. The schedulability analysis itself is done by
IMITATOR, using reachability synthesis.

4.3.1 Targeted user

The application is intended primarily for the designer of real-time systems, aiming to
verify the schedulability of her/his system, or synthesize the timing constants ensuring
schedulability.

64 4. Formalize real-time system models under uncertainty

Time4sys2imi can automatically analyze a graphical representation of a real-time
system realized by Time4sys using IMITATOR. The end-user does not need to have
skills on PTAs nor on model checking.

Time4sys2imi allows the user to:

• Use the GUI of Time4sys2imi (cf. Fig. 4.2) and configure the options of both the
translation and IMITATOR.

• Import an XML file generated by Time4sys. This file contains the data that
describes the real-time system to be analyzed.

• Generate an .imi model analyzable by IMITATOR.

Figure 4.2: GUI of Time4sys2imi

4.3.2 User workflow

The analysis of real-time systems, using the proposed translation, can be summed up
in three main parts:

1. Graphical modeling of a real-time system containing all its components with
Time4sys. This part allows us to have a complete architecture of the system

4.3. Architecture and principle 65

Time4sys
model

Parsing Trans-
lation

PTA
model

IMITA-
TOR

Figure 4.3: Workflow of Time4sys2imi

on the one hand. The architecture is encoded in an XML file automatically
generated by Time4sys. This file contains all the data needed to describe the
system.

2. The second part is the automatic translation of the XML file to the input
language of IMITATOR, and is performed by Time4sys2imi. Time4sys2imi creates
an .imi file that is analyzable with IMITATOR.

3. Finally, the user can run IMITATOR from Time4sys2imi to get the answer to the
schedulability problem.

The translation rules are described in [And19a]. In short, we translate each task,
each task chain and each processor scheduling policy (earliest deadline first, rate
monotonic, shortest job first. . .) into a PTA; most of these PTAs feature a special
location corresponding to a deadline miss (i. e., this location is reachable iff a deadline
miss occurs). Timing constants are encoded either as constants (if they are known)
or as timing parameters (if they are unknown). Then, we build (on-the-fly) the
synchronous product of these PTAs. Finally, the set of valuations for which the system
is schedulable is exactly those for which the special deadline miss locations in the
synchronous product are unreachable. See [And19a] for details.

4.3.3 Global architecture

Time4sys2imi is made of 5,500 lines of Java code, and can therefore run under any
operating system. We explain in Fig. 4.3 the global architecture of the system.

Time4sys2imi takes as input the Time4sys model in XML, then we used the DOM
parser to extract data. These data are translated into an abstract syntax for PTAs. We
then translate these abstract PTAs into the concrete input language of IMITATOR.

Time4sys2imi is developed with the help of Sahar Mhiri and under the supervision
of Étienne André.

4.3.4 Detailed architecture

The global process is in Fig. 4.4.

66 4. Formalize real-time system models under uncertainty

Figure 4.4: Detailed architecture

Level 1 This level is the interface between the translation tool and the user: It allows
the user to import the XML file to be translated, to choose the name of the
IMITATOR model and to confirm the translation request.

Level 2 This level is loaded by the translation of the XML file through the following
steps:

1. Parsing the XML file that Time4sys generates in order to get an abstract
data structure from Time4sys.

2. Translation of the result into an abstract data structure of PTAs.

3. Construct an IMITATOR file from the PTAs abstract data structure.

Level 3 This level shows the XML files generated by Time4sys when designing a
real-time system.

4.4 Proof of concept

As a proof of concept to show the applicability of our translation tool, we modeled
some real-time systems with Time4sys, then we translated those models to PTAs using
with Time4sys2imi and analyzed them using IMITATOR.

4.4. Proof of concept 67

We give in Table 4.1 a list of four case studies with, from top to bottom, the
number of CPU, of tasks and task chains in the original Time4sys model, followed
by the number of automata, locations, clocks, discrete variables2 and parameters in
the translated IMITATOR target model. We also give the name of the constants that
are indeed parameterized (if any), and give the analysis time by IMITATOR. The
translation time using Time4sys2imi is always negligible in our experiments. Finally,
we give whether the system is schedulable (if it is entirely non-parametric), or we give
the condition for which it is schedulable. The parametric results (i. e., the constraints
over the valuations ensuring schedulability) are given in Table 4.2.

We ran experiments on an ASUS X411UN Intel CoreŮ i7-8550U 1.80 GHz with
8 GiB memory running Linux Mint 19 64 bits. All experiments were conducted using
IMITATOR 2.10.4 “Butter Jellyfish”.

Source, binaries, examples and results are available at www.imitator.fr/static/
ICTAC19.

From Table 4.1, we see that the analysis time using IMITATOR remains small, with
the exception of the larger model with 11 concurrent tasks featuring dependencies, for
which the analysis time using IMITATOR for a three-dimensional analysis becomes
above 2 minutes.

Example 4.2. Consider again the real-time system modeled in Fig. 4.1 using Time4sys.
We translate it using Time4sys2imi; the set of PTA obtained for this example are
illustrated in Fig. 4.5.

First, we consider a non-parametric analysis: applying IMITATOR to the PTAs
translated using Time4sys2imi shows that the system is not schedulable, as it was
expected from Example 4.1.

Second, we parameterize the BCET and WCET of Step1. The result of the schedu-
lability synthesis using IMITATOR yields the following constraint: 0 ≤ BCETStep1 ≤
WCETStep1 < 5.

This constraint explains why this real-time system was not schedulable when
WCET = BCET = 6 i. e., the values taken for WCET and BCET are not in the
interval for which the system is schedulable.

2Discrete variables are global rational-valued variables that can be read and modified by the PTAs.

https://www.imitator.fr/static/ICTAC19
https://www.imitator.fr/static/ICTAC19

68
4.

Form
alize

real-tim
e

system
m

odels
under

uncertainty

Figure 4.5: Translation of Fig. 4.1

4.5. Conclusion and perspectives 69

Table 4.1: Summary of experiments
Case study Example 4.1[Fig. 4.1] Example B.1[Fig. B.1] Example B.2[Fig. B.3] Example B.3 [Fig. B.5]

CPU 2 1 1 4
tasks 4 4 3 11

tasks chains 2 0 1 4
number of automata 6 9 3 12

total number of locations 22 26 14 53
clocks 8 8 6 22

discrete 4 4 3 11
parameters 0 2 0 1 0 2 0 3
Parameters - WCETStep1 - DeadlineStep2 - DeadlineStep1 - WCETStep5

BCETStep1 BCETStep5
DealineStep11

Execution time (seconds) 0.040 0.112 0.263 0.289 0.042 0.045 2.276 144.627
Schedulable? × Condition1

√
Condition2

√
Condition3

√
Condition4

We give in Appendix B a set of examples with models and translated PTAs.

Table 4.2: Synthesized constraints
Condition1 Condition2 Condition3 Condition4

5 > WCETStep1 DeadlineStep2 >= 4 DeadlineStep1 >= 5 WCETStep5 >= BCETStep5
& BCETStep1 >= 0 & BCETStep5 >= 0

& WCETStep1 >= BCETStep1 & 15 > WCETStep5
& DeadlineStep11 >= 5

OR
5 > DeadlineStep11
& BCETStep5 > 4

& DeadlineStep11 >= 2
& WCETStep5 >= BCETStep5

& 6 >= WCETStep5
OR

DeadlineStep11 >= 2
& 5 > DeadlineStep11
& 15 > WCETStep5
& BCETStep5 > 14

& WCETStep5 >= BCETStep5

4.5 Conclusion and perspectives

In this chapter, we presented our approach that can give first useful guarantees at
the preliminary stage of system design and verification, notably to help designers to
exhibit suitable ranges of timing parameters guaranteeing schedulability.

Seeing from our experiments, the toolkit made of Time4sys, Time4sys2imi and
IMITATOR can analyze non-trivial case studies and it already allows to provide the
first elements of correction for users.

70 4. Formalize real-time system models under uncertainty

In the next chapter, we will conclude the first part of the thesis and we will give
some perspectives.

5
Conclusion

and perspectives
This chapter concludes and discuss future perspectives of Part I

Contents

5.1 Conclusion . 72

5.2 Perspectives . 72

72
5. Conclusion

and perspectives

5.1 Conclusion

In Chapter 3, we proposed an approach to synthesize timing valuations ensuring
schedulability of the flight control of a space launcher. A key issue is to ensure that
the system reactivities are met—for which we proposed a compositional solution.

In Chapter 4, we studied Time4sys which is a formalism developed by Thales
Group, realizing a graphical specification for real-time systems. However, this formalism
does not allow to perform formal analyses for real-time systems. So a translation of
this tool to a formalism equipped with a formal semantics is needed. We presented
Time4sys2imi, a tool translating Time4sys models into parametric timed automata
in the input language of IMITATOR. This translation allows not only to check the
schedulability of real-time systems, but also to infer some timing constraints (deadlines,
offsets. . .) guaranteeing schedulability. We successfully applied Time4sys2imi to various
examples.

5.2 Perspectives

In Chapter 3, due to the efficiency gap of an order of magnitude, combining some
non-parametric analyses (e. g., with Uppaal or Cheddar) with parametric analyses
(IMITATOR) would be an interesting future work.

The harmonic periods are a strong assumption of the problem. Tuning our solution
to benefit from this assumption is on our agenda. This may indeed allow us to reuse
some clocks, and therefore reduce the number of clocks; it is well-known that the
model-checking problem is exponential in the number of clocks.

In addition, synthesizing the admissible values for the context switch time, i. e.,
making this time a parameter, seems interesting as it derives admissible values of the
processor context switch speed for which the system can be scheduled.

We envisage two tracks for our longer-term future works:

1. Generalizing the flight control scheduling problem by automatically synthesizing
the allocations of processings on threads. This generalization raises first the issue
of modeling such problematic (how to model an allocation with a parameter)
and second the classical combinatorial explosion of states.

5.2. Perspectives 73

2. Applying this approach to the automatic synthesis of the launcher sequential,
i. e., of the scheduling of all the system events necessary to fulfill a mission:
ignition and shut-down of stages, release of firing, release of payloads, etc.

In Chapter 4, future work will be to optimize our translation: while we followed
the rules developed in [And19a], it is likely that varying the rules in order to optimize
the size of the automata or reducing the clocks, may help to make the model more
compact and the analysis more efficient.

Second, when the model is entirely non-parametric, we believe that using the
Uppaal model checker [LPY97] instead of IMITATOR may be more efficient; for that
purpose, we plan to develop a translator to the input language of Uppaal too; this
implies to modify only the last step of our translation (from the abstract (P)TAs into
the concrete input language of the target model checker).

Third, so far the analysis using IMITATOR is exact, i. e., sound and complete;
however, it may sometimes be interesting to get only some ranges of parameter
valuations for which the system is schedulable. Such optimizations (on the IMITATOR
side) should help to make the analysis faster.

Finally, real-time systems with uncertain timing constants were recently proved
useful when Thales Group published an open challenge1 for a system (actually modeled
using Time4sys) with periods known with a limited precision only; while this problem
was not strictly speaking a schedulability problem (but rather a computation of
minimum/maximum execution times), it shed light on the practical need for methods
to formally analyze real-time systems under uncertainty in the industry.

1“Formal Methods for Timing Verification Challenge”, in the WATERS workshop: http://
waters2015.inria.fr/challenge/

http://waters2015.inria.fr/challenge/
http://waters2015.inria.fr/challenge/

Part II
Limit cycle of oscilla-
tors using Euler method

6
Introduction

This chapter introduces limit cycle of oscillators using Euler method and highlights the
motivation of the research conducted in the second part of the thesis

Contents

6.1 Context . 78

6.1.1 Robust control . 78

6.1.2 Limit cycle . 78

6.1.3 Stability . 78

6.1.4 Euler method . 78

6.2 Objectives . 79

6.3 Contributions . 79

78 6. Introduction

6.1 Context

6.1.1 Robust control

Robust control methods are generally applied as long as there are uncertain parameters
or perturbations in the system. They are intended to make the system robust and
stable when uncertainties remain within a given range. In other words, controllers
designed using robust control are able to overcome small errors in the system.

6.1.2 Limit cycle

A limit cycle is an isolated periodic solution of an autonomous system of differential
equations. If the trajectory converges towards a limit cycle and a small perturbation
on the trajectory will cause the system to return to the state of the limit cycle. Then,
the limit cycle is an attractor and is called stable. On the other hand, if neighboring
trajectories move away from the limit cycle. Then, the limit cycle is considered
unstable.

6.1.3 Stability

A system is considered stable if a bounded input produces a bounded ouput (i. e.,
Bounded-Input/ Bounded-Ouput (BIBO) stability).

6.1.4 Euler method

The Euler method can be used to solve ordinary differential equations (ODE) with a
given initial condition. Although Euler’s method is not as precise as the other methods,
it is faster and does not require a lot of computational resources.

6.2. Objectives 79

6.2 Objectives

In order to analyze the stability of differential systems, which highlights the resistance
to changes (i. e., any other solution of the system that begins adequately near it stays
close, see [Pin92]) we give a method that generates a bounded invariant set for a given
differential system with a given set of initial conditions around a point x0, we remind
that a bounded invariant set is a set that respects the property that if the system
state is in the set at some time, it will always contain the system, see [BM15]. This
invariant has the form of a tube centered on the Euler approximate solution starting
at x0, which has for radius an upper bound on the distance between the approximate
solution and the exact ones. The method consists in finding a real T > 0 such that
the “snapshot” of the tube at time t = (i + 1)T is included in the snapshot at t = iT ,
for some integer i.

6.3 Contributions

The first chapter of the 2nd part of the thesis (Chapter 7) recalls the results obtained
by Adrien Le Coënt in [LC17] on which this part of our work is based. In his thesis,
Adrien Le Coënt found an upper bound δ(t) of the error at time t, between the exact
solution of the dynamical system and the approximated solution of this system via the
explicit Euler method. This error bound allows him to express an (over-approximation)
of the reachable set at each time t as a union of balls of the form B(t) whose center is
the solution approximated by Euler’s method, and whose radius is δ(t). This reachable
set that starts from some initial state x0 can be defined as the set of states crossed by
use of all conceivable admissible control sequences from x0 [PN71]. Using this result,
he then shows how to find a (sub)optimal control for switch subsystems, by selecting,
at each time sample 0, τ , 2τ ,..., an element u in a finite set U of constant controls.
These results are recalled in Chapter 7.

The main contribution of our work is to give a simple criterion of inclusion of
the current reachability set in a previous reachability set, in order to construct a
(forward) invariant set I of the system. This invariant set regards the property that if
the system state is in the set at a certain time, then it will consistently contain the
framework later on, see [BM15]. Moreover, under certain conditions, the invariant
set I is guaranteed to contain a (unique and attractive) limit cycle L whose basin of
attraction is I. This limit cycle is a periodic trajectory that repeats itself every period
of time [Ric21]. We also show that this result allows us to define robust (sub)optimal
periodic control strategies. This robust periodic optimal control helps to design basic

80 6. Introduction

time-variant controllers that can be used online in order to to schedule gain [BC09].
These results are presented in Chapter 8.

Then, in Chapter 9, we show how this criterion of inclusion of reachability sets
allows us to construct invariant tori where all the approximate solutions which start
in the invariant tori stay there at any time (see [ERS00])., and how to trace their
evolution according to the modification of a key parameter of the system, and make
appear bifurcation phenomena, period doubling, and chaos (i. e., a period-doubling
bifurcation is produced when a slight change in a system induces a transition to chaos,
in which the period of the system is the double of the original, see [VPL03]).

Finally, in Chapter 10, we describe the main features of the implementation of
the ORBITADOR program, which allowed the application of the method on numerous
examples from the literature.

This second part of the thesis ends with Chapter 11 in which we summarize our
main contributions and give some perspectives for this work.

7
Symbolic Euler’s method and its

application for controlled
systems

This chapter introduces the basic knowledge related to the second part of the thesis.

Contents

7.1 Introduction . 82

7.2 Symbolic Euler’s method . 82

7.2.1 Euler’s method and error bounds 82

7.2.2 Systems with bounded uncertainty 84

7.3 Extension of Euler Method with control 86

7.3.1 Optimal control using Euler time integration 86

7.3.2 Correctness of the method 88

7.3.3 Examples . 89

7.3.4 Extension to systems with perturbation 96

7.4 An Approximation of Minimax Control using Random Sam-
pling and Symbolic Computation 100

7.4.1 Introduction . 100

7.4.2 Method . 101

7.4.3 Example . 104

7.4.4 Search a control that maintains the periodicity 106

7.4.5 Conclusion . 113

82 7. Symbolic Euler’s method and its application for controlled systems

7.1 Introduction

In this chapter, we introduce the formalisms and the results associated with the second
part of the thesis.

7.2 Symbolic Euler’s method

This section comes essentially from [LC17].

7.2.1 Euler’s method and error bounds

Let us consider a time discretization of time-step τ and the differential system:

dx(t)
dt

= f(x(t)).

where x(t) ∈ Rd denotes the state of the system at time t. We use x(t; x0) to denote the
exact continuous solution x of the system at time t ∈ [0, τ], with initial condition x0.
This solution is approximated using the explicit Euler integration method. We use
x̃(t; x0) = x0 + tf(x0) to denote Euler’s approximate value of x(t; x0) for t ∈ [0, τ].

The solution of the system x(t; x0) on t ∈ [0, τ) with initial condition x0 is
extended continuously with the solution of the system on t ∈ [τ, 2τ], and so on
iteratively until t ∈ [(k − 1)τ, kτ) where k ∈ N. Likewise, we use x̃(t) to denote Euler’s
approximate value of x(t) for t ∈ [0, kτ) defined by x̃(t; xi) = x̃(t; xi−1) + tf(x̃(t; xi−1))
for t ∈ [(i − 1)τ, iτ) and 1 ≤ i ≤ k. The approximate solution x̃(t) is here a continuous
piecewise linear function for t ∈ [0, kτ) starting at x0.

We suppose that we know a bounded region S ⊂ Rd containing the solutions of
the system for a set of initial conditions B0 and a certain amount of time. We now
give an upper bound to the error between the exact solution of the ODE and its Euler
approximation on S (see [CF19, LCDVCF17]).

Definition 7.1. Let ε be a given positive constant. Let us define, for t ∈ [0, τ], δε(t)
as follows:

7.2. Symbolic Euler’s method 83

if λ < 0 :

δε(t) =
(

ε2eλt + C2

λ2

(
t2 + 2t

λ
+ 2

λ2

(
1 − eλt

))) 1
2

if λ = 0 :
δε(t) =

(
ε2et + C2(−t2 − 2t + 2(et − 1))

) 1
2

if λ > 0 :

δε(t) =
(

ε2e3λt + C2

3λ2

(
−t2 − 2t

3λ
+ 2

9λ2

(
e3λt − 1

))) 1
2

where C and λ are real constants specific to function f , defined as follows:

C = sup
y∈S

L∥f(y)∥,

where L denotes the Lipschitz constant for f , and λ is the “one-sided Lipschitz constant”
(or “logarithmic Lipschitz constant” [AS14]) associated to f , i. e., the minimal constant
such that, for all y1, y2 ∈ S:

⟨f(y1) − f(y2), y1 − y2⟩ ≤ λ∥y1 − y2∥2, (H0)

where ⟨·, ·⟩ denotes the scalar product of two vectors of S.

The constant λ can be computed using a nonlinear optimization solver (e. g., Se-
quential quadratic programming (SQP) [K+88], CPLEX [Cpl09] and YALMIP [Löf04])
or using the Jacobian matrix of f (see, e. g., [AS14]).

Remark 3. Let us give an algorithm to compute local values of λ. Given an initial ball
B0 with radius d0 := ε, we calculate the local value λ1 of λ and the “successor” ball
B1 of B0 at t = ∆t as follows:

1. Select a candidate T1 for a convex zone including B0 and calculate the contraction
rate −λ1 on T1.

2. Calculate B1 = BW(∆t) and B′
1 = BW(2∆t) using the function δd0,W associated

with λ1.

3. Check that B1 and B′
1 are included in T1. If yes, B1 is indeed the successor ball

(of radius d1 = δd0,W(∆t)) of B0; if not, go to step 1.

We can repeat the process by taking B1 as a new initial ball, select a candidate zone T2

of rate −λ2, calculate a ball B2 of radius d2 = δd1,W(∆t) using λ2, and so on iteratively.

Proposition 7.1. [LCDVCF17] Consider the solution x(t; y0) of dx
dt

= f(x) with initial
condition y0 and the approximate Euler solution x̃(t; x0) with initial condition x0. For
all y0 ∈ B(x0, ε), we have:

∥x(t; y0) − x̃(t; x0)∥ ≤ δε(t).

84 7. Symbolic Euler’s method and its application for controlled systems

Proposition 7.1 underlies the principle of our set-based method where set of points
are represented as balls centered around the Euler approximate values of the solutions.
This illustrated in Fig. 7.1: for any initial condition x0 belonging to the ball B(x̃0, δ(0))
with δ(0) = ε, the exact solution x1 ≡ x(τ ; x0) belongs to the ball B(x̃1, δε(τ)) where
x̃1 denotes the Euler approximation x̃0 + τf(x̃0) at t = τ .

Figure 7.1: Illustration of Proposition 7.1

7.2.2 Systems with bounded uncertainty

Let us now show how the method extends to systems with “perturbation” or “bounded
uncertainty”. A differential system with bounded uncertainty is of the form

dx(t)
dt

= f(x(t), w(t)),

with t ∈ Rd
≥0, states x(t) ∈ Rd, and uncertainty w(t) ∈ W ⊂ Rd, where W is a

compact (i. e., closed and bounded) set. We assume that any possible perturbation
trajectory is bounded at any point in time in the compact set W . We denote this by
w(·) ∈ W, which is a shorthand for w(t) ∈ W , ∀t ≥ 0. The diameter of W (i.e., the
maximal distance between two elements of W) is denoted by |W|. See [SA17b, SA17a]
for details. We now suppose (see [LCADSC+17]) that there exist constants λ ∈ R and
γ ∈ R≥0 such that, for all y1, y2 ∈ S and w1, w2 ∈ W :

7.2. Symbolic Euler’s method 85

⟨f(y1, w1) − f(y2, w2), y1 − y2⟩ ≤ λ∥y1 − y2∥2 + γ∥y1 − y2∥∥w1 − w2∥ (H1).

This formula can be seen as a generalization of (H0) (see Section 7.2.1). Re-
call that λ has to be computed in the absence of uncertainty (|W| = 0). The additional
constant γ is used for taking into account the uncertainty w. Given λ, the constant γ

can be computed itself using a nonlinear optimization solver.Instead of computing
them globally for S, it is advantageous to compute λ and γ locally depending on the
subregion of S occupied by the system state during a considered interval of time. We
now give a version of Proposition 7.1 with bounded uncertainty w(·) ∈ W , originally
proved in [LCADSC+17].

Proposition 7.2. [LCADSC+17] Consider a system Σ with bounded uncertainty of
the form dx(t)

dt
= f(x(t), w(t)) satisfying (H1).

Consider a point x0 ∈ S and a point y0 ∈ B(x0, ε).Let x(t; y0) be the exact solution
of the system dx(t)

dt
= f(x(t), w(t)) with bounded uncertainty W and initial condition

y0, and x̃(t; x0) the Euler approximate solution of the system dx(t)
dt

= f(x(t), 0) without
uncertainty (|W| = 0) with initial condition x0. We have, for all w(·) ∈ W and
t ∈ [0, τ]:

∥x(t; y0) − x̃(t; x0)∥ ≤ δε,W(t).

with

• if λ < 0,

δε,W(t) =
(

C2

−λ4

(
−λ2t2 − 2λt + 2eλt − 2

)
+ 1

λ2

(
Cγ|W|

−λ

(
−λt + eλt − 1

)

+ λ

(
γ2(|W|/2)2

−λ
(eλt − 1) + λε2eλt

)))1/2

(7.1)

• if λ > 0,

δε,W(t) = 1
(3λ)3/2

(
C2

λ

(
−9λ2t2 − 6λt + 2e3λt − 2

)
+ 3λ

(
Cγ|W|

λ

(
−3λt + e3λt − 1

)

+ 3λ

(
γ2(|W|/2)2

λ
(e3λt − 1) + 3λε2e3λt

)))1/2

(7.2)

86 7. Symbolic Euler’s method and its application for controlled systems

• if λ = 0,

δε,W(t) =
(
C2

(
−t2 − 2t + 2et − 2

)
+
(
Cγ|W|

(
−t + et − 1

)
+
(
γ2(|W|/2)2(et − 1) + ε2et

)))1/2
(7.3)

We will sometimes write δW(t) and δ(t) instead of δε,W(t) and δε(t) respectively.

7.3 Extension of Euler Method with control

7.3.1 Optimal control using Euler time integration

We present here the Euler-based method of optimal control synthesis given in [LCF19,
CF19, LCADSC+17, LC17].

7.3.1.1 Explicit Euler time integration with control

We consider here a time discretization of time-step τ , and we suppose that the control
law u(·) is a piecewise-constant function, which takes its values on a finite set U ⊂ Rm,
called “modes” (or “control inputs”). Given u ∈ U , let us consider the differential
system controlled by u:

dy(t)
dt

= fu

(
y(t)

)
.

where fu(y(t)) stands for f(u(t), y(t)) with u(t) = u for t ∈ [0, τ], and y(t) ∈ Rd

denotes the state of the system at time t. The function u is assumed to be Lipschitz
continuous. We use Y u

y0(t) to denote the exact continuous solution y of the system
at time t ∈ [0, τ] under constant control u, with initial condition y0. This solution is
approximated using the explicit Euler integration method. We use Ỹ u

y0(t) ≡ y0 + tfu(y0)
to denote Euler’s approximate value of Y u

y0(t) for t ∈ [0, τ].

Given a sequence of modes (or “pattern”) π := u1 · · · uk ∈ Uk, we denote by
Y π

y0(t) the solution of the system under mode u1 on t ∈ [0, τ) with initial condition y0,
extended continuously with the solution of the system under mode u2 on t ∈ [τ, 2τ],
and so on iteratively until mode uk on t ∈ [(k − 1)τ, kτ). The control function u(·)
is thus piecewise constant with u(t) = ui for t ∈ [(i − 1)τ, iτ), 1 ≤ i ≤ k. Likewise,

7.3. Extension of Euler Method with control 87

we use Ỹ π
y0(t) to denote Euler’s approximate value of Y π

y0(t) for t ∈ [0, kτ) defined
by Ỹ u1···ui

y0 (t) = Ỹ u1···ui−1
y0 (t) + tfui

(Ỹ u1···ui−1
y0 (t)) for t ∈ [0, τ) and 2 ≤ d ≤ k. The

approximate solution Ỹ π
y0(t) is here a continuous piecewise linear function on [0, kτ)

starting at y0. Note that we have supposed here that the step size ∆t used in Euler’s
integration method was equal to the sampling period τ of the switching system.
Actually, in order to have better approximations, it is often convenient to take a
fraction of τ as for ∆t (e. g., ∆t = τ/400). Such a splitting is called “sub-sampling” in
numerical methods (see [LCDVCF17]). Henceforth, we will suppose that k ∈ N is the
length of the pattern π, and T = kτ = K∆t for some K multiple of k, and T > 0.

7.3.1.2 Finite horizon and dynamic programming

The optimization task is to find a control pattern π ∈ Uk which guarantees that all
states in a given set S = [0, 1]d ⊂ Rd 1 are steered at time tend = kτ as closely as
possible to an end state yend ∈ S. Let us explain the principle of the method based
on DP and Euler integration method used in [LCF19, CF19]. We consider the cost
function: Jk : S × Uk → R≥0 defined by:

Jk(y, π) = ∥Y π
y (kτ) − yend∥,

where ∥ · ∥ denotes the Euclidean norm in Rd2

We consider the value function vk : S → R≥0 defined by:

vk(y) := min
π∈Uk

{
Jk(y, π)

}
≡ min

π∈Uk

{
∥Y π

y (kτ) − yend∥
}
.

Given k ∈ N and τ ∈ R>0, we consider the following finite time horizon optimal
control problem: Find for each y ∈ S

• the value vk(y), i. e.,
min
π∈Uk

{
∥Y π

y (kτ) − yend∥
}
,

• and an optimal pattern:

πk(y) := arg min
π∈Uk

{
∥Y π

y (kτ) − yend∥
}
.

We then discretize the space S by means of a grid X such that any point y0 ∈ S has
an “ε-representative” z0 ∈ X with ∥y0 − z0∥ ≤ ε, for a given value ε > 0. As explained

1We take here S = [0, 1]d for the sake of notation simplicity, but S can be any convex subset of Rd.
2We consider here the special case where the cost function is only made of a “terminal” subcost.

The method extends to more general cost functions.

88 7. Symbolic Euler’s method and its application for controlled systems

in [CF19], it is easy to construct via DP a procedure PROC ε
k which, for any y ∈ S,

takes its representative z ∈ X as input, and returns a pattern πε
k ∈ Uk corresponding

to an approximate optimal value of vk(y).

Remark 4. The complexity of PROC ε
k is O(m × k × N) where m is the number of

modes (|U | = m), k the time-horizon length (tend = kτ) and N the number of cells of
X (N = Kd with K =

√
M/2ε). (N = Kd).

7.3.2 Correctness of the method

Given a point y ∈ S of ε-representative z ∈ X , and a pattern πε
k returned by PROC ε

k(z),
we are now going to show that the distance ∥Ỹ

πε
k

z (kτ), −yend∥ converges to vk(y) as ε →
0. We first consider the ODE: dy

dt
= fu(y), and give an upper bound to the error between

the exact solution of the ODE and its Euler approximation (see [CF19, LCDVCF17]).

Definition 7.2. Let µ be a given positive constant. Let us define, for all u ∈ U and
t ∈ [0, τ], δu

µ(t) as follows: if λu < 0 :

δu
µ(t) =

(
µ2eλut + C2

u

λ2
u

(
t2 + 2t

λu

+ 2
λ2

u

(
1 − eλut

))) 1
2

if λu = 0 :

δu
µ(t) =

(
µ2et + C2

u

(
− t2 − 2t + 2(et − 1)

)) 1
2

if λu > 0 :

δu
µ(t) =

(
µ2e3λut + C2

u

3λ2
u

(
−t2 − 2t

3λu

+ 2
9λ2

u

(
e3λut − 1

))) 1
2

where Cu and λu are real constants specific to function fu, defined as follows:

Cu = sup
y∈S

Lu∥fu(y)∥,

where Lu denotes the Lipschitz constant for fu, and λu is the “one-sided Lipschitz
constant” (or “logarithmic Lipschitz constant” [AS14]) associated to fu, i. e., the
minimal constant such that, for all y1, y2 ∈ T :

⟨fu(y1) − fu(y2), y1 − y2⟩ ≤ λu∥y1 − y2∥2, (7.4)

7.3. Extension of Euler Method with control 89

where ⟨·, ·⟩ denotes the scalar product of two vectors of T , and T is a convex and
compact overapproximation of S such that

T ⊇ {Y u
y0(t) | u ∈ U, 0 ≤ t ≤ ∆t, y0 ∈ S}.

The constant λu can be computed using a nonlinear optimization solver.

Proposition 7.3. [LCDVCF17] Consider the solution Y u
y0(t) of dy

dt
= fu(y) with initial

condition y0 of ε-representative z0 (hence such that ∥y0 −z0∥ ≤ ε), and the approximate
solution Ỹ u

z0(t) given by the explicit Euler scheme. For all t ∈ [0, τ], we have:

∥Y u
y0(t) − Ỹ u

z0(t)∥ ≤ δu
ε (t).

Remark 5. The function δu
ε (·) is similar to the “discrepancy function” used in [FM15],

but it gives an upper-bound on the distance between an exact solution and an Euler
approximate solution while the discrepancy function gives an upper-bound on the
distance between any two exact solutions.

Proposition 7.3 underlies the principle of our set-based method where set of
points are represented as balls centered around the Euler approximate values of the
solutions. This illustrated in Fig. 7.1: for any initial condition x0 belonging to the
ball B(x̃0, δ(0)),the exact solution x1 ≡ Y u

x0(τ) belongs to the ball B(x̃1, δ(τ)) where
x̃1 ≡ Ỹ u

x̃0(τ) denotes the Euler approximation of the exact solution at t = τ , and
δu(τ) ≡ δu

δ(0)(τ).

We have:

Theorem 7.1 (convergence [CF19]). Let y ∈ S be a point of ε-representative z ∈ X .
Let πε

k be the pattern returned by PROC ε
k(z), and π♯ := arg minπ∈Uk

∥Y π
y (kτ) − yf∥.

Let vk(y) := ∥Y π♯

y (kτ)−yend∥ be the exact optimal value of y. The approximate optimal
value of y, ∥Ỹ

πε
k

y (kτ) − yend∥, converges to vk(y) as ε → 0.

Theorem 7.1 formally justifies the correctness of our method of optimal control
synthesis by saying that the approximate optimal values computed by our method
converge to the exact optimal values when the mesh size tends to 0.

7.3.3 Examples

In Examples 7.1 to 7.3, we illustrate the application of the procedure PROC ε
k to some

dynamical systems. These experiments are implemented in Python and computed by

90 7. Symbolic Euler’s method and its application for controlled systems

an extension of ORBITADOR (See Chapter 10). They are running on a 2.80 GHz Intel
Core i7-4810MQ CPU with 8 GiB of memory.

Example 7.1. Considering a Magnetic Resonance Imaging (MRI) system q consisting
of two different particles with spins q1, q2 (see [BCCM13, BCCM14]). The magne-
tization vectors q1 = (y1, z1) ∈ R2 and q2 = (y2, z2) ∈ R2 satisfy the differential
system:

q1 :

.

y1 = 2πTmtm(−Γ1y1 − u2z1)
.

z1 = 2πTmtm(γ1(1 − z1) + u2y1)

q2 :

.

y2 = 2πTmtm(−Γ2y2 − u2z2)
.

z2 = 2πTmtm(γ2(1 − z2) + u2y2)

with: Γ1 = 1
T12Ωmax

, γ1 = 1
T11Ωmax

, Γ2 = 1
T22Ωmax

, γ2 = 1
T21Ωmax

, and u2 ∈ [−1, 1] the
magnetic field (control). Let Ωmax = 202.95, T11 = 2, T12 = 0.3, T21 = 2.5, T22 = 2.5,
Tm = 26.17 and tm = 2. The goal is to make q1 reach the origin (0, 0) at a given
time t = tend while maximizing the “contrast” ∥q2(tend) − q1(tend)∥ = ∥q2(tend)∥. In
order to account for the (soft) constraint q1(tend) = (0, 0), we integrate in the cost
function Jk a “penalty term” of the form ∥q1(tend)∥2. Our goal is thus to minimize
the terminal cost: α∥q1(tend)2∥ − β∥q2(tend) − q1(tend)∥2. The domain S of the states
(q1, q2) ≡ ((y1, z1), (y2, z2)) is equal to [−1, 1]2 × [−1, 1]2 ≡ [−1, 1]4. The grid X
corresponds to a discretization of S = [−1, 1]4, where each component interval [−1, 1]
is uniformly discretized into a set of K points. The codomain [−1, 1] of the original
continuous control function u2(·) is itself discretized into a finite set U with our method.
After discretization, u2(·) is a piecewise-constant function that takes its values in the
finite set U made of 30 values uniformly taken between −1 and 1. The function u2(·)
can change its value every τ seconds. In the following experiments, we use the following
parameter values: α = 0.99, β = 0.01, τ = 1/250, k = 215, tend = kτ = 0.86, and
q1(0) = (0, 1). We will consider the cases K = 10 (coarse grid) and K = 20 (finer grid).
One can check that assumption (H) is satisfied in both cases. In order to test the
robustness of the method, we will consider the cases q2(0) = (0, 1) and q2(0) = (0.1, 1).

For K = 10 and q2(0) = (0, 1), we have q2(tend) = (0.6567, −0.2558), and the
optimal value of the contrast is ∥q2(tend)∥ = 0.7048. The CPU computation takes 389
seconds. See Fig. 7.2. For q2(0) = (0.1, 1), the synthesized control and the results are
identical, which demonstrates the robustness of our method.

For K = 20, and q2(0) = (0, 1), we have q2(tend) = (0.6439, −0.2913), and the
contrast is ∥q2(tend)∥ = 0.7067. (see Fig. 7.3). The CPU computation takes 3657
seconds. See Fig. 7.3. For q2(0) = (0.1, 1), the synthesized control and the results are
again identical, thus confirming the robustness of our method.

7.3. Extension of Euler Method with control 91

Figure 7.2: Robust method applied to MRI for K = 10 and initial condition q2(0) = (0.1, 1),
with q1 = (y1, z1) (top left), q2 = (y2, z2) (top right) and control u2 (bottom).
When applied to q2(0) = (0, 1), the method gives the same results.

Figure 7.3: Robust method applied to MRI for K = 20 and initial condition q2(0) = (0.1, 1),
with q1 = (y1, z1) (top left), q2 = (y2, z2) (top right) and control u2 (bottom).
When applied to q2(0) = (0, 1), the method gives the same results.

For comparison, we now perform the same experiments with the version of the
numerical solver Bocop using convex optimization [TC17]. For q2(0) = (0, 1), we have
with Bocop: q2(tend) = (0.0499, −0.7938); the contrast is ∥q2(tend)∥ = 0.6746. The CPU
computation time is 230 seconds. See Fig. C.3 (Appendix C.4). For q2(0) = (0.1, 1),

92 7. Symbolic Euler’s method and its application for controlled systems

we have, with Bocop: q2(tend) = (0.0877, −0.6631); the contrast is ∥q2(tend)∥ = 0.6689.
The CPU computation time is 43 seconds. See Fig. C.4 (Appendix C.4). The optimal
values of the contrast computed by Bocop and our program are comparable. However,
the CPU times of Bocop are smaller than those of our program (especially for K = 20).

Example 7.2. We consider a dual tank reactor: a first one in which microalgae are
cultivated and a second one where the microalgae are converted into biogas. The
aim of this example is to find an optimal feeding strategy in order to maximize the
production of biogas in the second reactor. The dual-tank bioreactor can be modeled
as a 3-dimensional dynamical system. The state variables are the concentration of
micro-algae y, biomass x and substrate s. The control variable is the input flow u
throughout the whole reactor. The system dynamics is given by:

dy
dt

= µ(t)y
1+y

− ry − uy
ds
dt

= µ2(s)x + uβ(γy − s)
dx
dt

= (µ2(s) − uβ)x

where µ is the light model, µ2(s) = µm
2

s
Ks+s

the growth function in reactor 2, and
β the volume ratio between the two tanks.

The optimal control problem is written as:

Max 1
β+c

∫ tf

0 µ2(s(t))x(t)dt
d
dt

(y, s, x) = f(t, y, s, x, u)
u ∈ [0, 1]
(y(0), s(0), x(0)) ∈ Z0

(y(tf), s(tf), x(tf)) = (y(0), s(0), x(0))

Let r = 0.005, β = 1, γ = 1, µm
2 = 0.1, Ks = 0.05 and c = 2

We transform the PDE into a system of ODEs. We thus consider that we have 3
oscillators of state (y(t), s(t), x(t)) with initial conditions (y(0), s(0), x(0)).

We calculate the control u at each time t by spatial discretization of (y(t), s(t), x(t))
using a grid (K · K · K). We assign at each node of the grid the correct mode. The
mode refer to the adequate control u. We apply the mode which is at the nearest node
at each instant. We assume that K = 20 and u can takes 300 values between 0 and 1.
The control u is linked to the maximum cost of: 1

β+c

∫ tf

0 µ2(s(t))x(t)dt.

In Fig. 7.4, we give an example of dual-tank bioreactor with initial conditions
(y(0), s(0), x(0)) = (5.657, 1.569 × 10−6, 6.463) and Tf = 10, for a maximization of cost
function over 1 day.

7.3. Extension of Euler Method with control 93

In Fig. 7.5, we show a simulation for a larger time period (100 days) with the same
conditions as the previous example.

Now in Fig. 7.6, we change the initial conditions to (y(0), s(0), x(0)) =
(5.8, 0.01, 6.44) and Tf = 10. This simulation present a maximization of cost function
over 1 day. Comparing this experience with Fig. 7.4, we note that the two simulations
have the same shape in the end.

In Fig. 7.7, we give a simulation when tf = 1000 (which corresponds to 100 days)
with the same conditions as Fig. 7.6.

The CPU time taken for each experience is 3400 seconds.

We compare now the value of the cost function at t = tf between our method and
Bocop. Using Bocop, the cost function at t = tf equal to 0.615. However, our method
gives 1.4 as a value of cost function which is greater than the value returned by Bocop.

Figure 7.4: Dual-tank bioreactor which maximize the production of biogas in the second
reactor during 1 day with initial conditions (y(0), s(0), x(0)) = (5.657, 1.569 ×
10−6, 6.463) and Tf = 10. In the top-left, we show y(t). In the top-right, we
present s(t). In the bottom-left, we illustrate x(t). In the bottom-right, we
have the control u(t).

Example 7.3. We consider a microgrid problem defined in [mic] « introduced and
solved by Mixed-integer linear programming (MILP) techniques in [PBBL+13]. In the
context of an isolated village in the Chilean mountains, the microgrid is comprised of
a diesel generator, photovoltaic panels and a battery energy storage system (BESS).
The aim is to satisfy the energy demand (power load) from the villagers at all times,

94 7. Symbolic Euler’s method and its application for controlled systems

Figure 7.5: Dual-tank bioreactor which maximize the production of biogas in the second
reactor during 100 days with initial conditions (y(0), s(0), x(0)) = (5.657, 1.569×
10−6, 6.463) and Tf = 1000. In the top-left, we show y(t). In the top-right, we
present s(t). In the bottom-left, we illustrate x(t). In the bottom-right, we
have the control u(t).

while minimizing the overall diesel consumption. One of the difficulties is that the
diesel generator has a turn-on cost, thus we have to keep track of its on/off state over
time. This problem falls in the class of switched systems and can be solved with a
dynamic programming approach.

We consider a fixed horizon tf = 48 hours. For t ∈ [0, tf], we denote by PS(t) the
solar power from the photovoltaic panels, PD(t) the diesel generator power and PL(t)
the electricity load.

The state of charge SOC(t) of the BESS evolves according to

.

SOC(t) = 1
QB

(PI(t)ρI − PO(t)/ρO) = 1
QB

(PI(t)∼
ρ − PO(t))

where QB is the maximum capacity of the battery, PI , PO > 0 are the input and output
power of the BESS, and ρI , ρO are the efficiency ratios for the charge and discharge
processes, assumed constant.

We model the fuel consumption of the diesel generator by

∫ tf

0
KPD(t)0.9dt

7.3. Extension of Euler Method with control 95

Figure 7.6: Dual-tank bioreactor which maximize the production of biogas in the second
reactor during 1 day with initial conditions (y(0), s(0), x(0)) = (5.8, 0.01, 6.44)
and Tf = 10. In the top-left, we show y(t). In the top-right, we present s(t).
In the bottom-left, we illustrate x(t). In the bottom-right, we have the control
u(t).

and the battery loss by
SFIout

costB

AhB

with Iout = 3Pout/UB and SF = (−4SOC2 + 5)/5" »

Let ∼
ρ = 0.85, QB = 123, K = 0.471 , UB = 576, AhB = 124200 and costB = 107

We transform the PDE into a system of ODEs. We thus consider that we have 1
oscillator of state SOC(t) with initial conditions SOC(0).

We calculate the controls PD, PI and PO at each time t by spatial discretization of
SOC(t) using a grid (K). We consider in this case that K = 20. We assign at each
node of the grid the correct modes. The modes refer to the adequate controls PD, PI

and PO. We apply the modes which are at the nearest node at each instant.

We assume that PD can take 51 values between 0 and 120, PI can take 23 values
between 0 and 110 and PO can take 16 values between 0 and 15. The controls PD, PI and
PO are linked to the minimum cost of: α

∫ tf

0 KPD(t)0.9dt+β∥PD +PS +PO −PL −PI∥.

In Fig. 7.8, we give an example of microgrid energy management system with
initial conditions SOC(0) = 0.76 and tf = 48.

96 7. Symbolic Euler’s method and its application for controlled systems

Figure 7.7: Dual-tank bioreactor which maximize the production of biogas in the second re-
actor during 100 days with initial conditions (y(0), s(0), x(0)) = (5.8, 0.01, 6.44)
and Tf = 1000. In the top-left, we show y(t). In the top-right, we present s(t).
In the bottom-left, we illustrate x(t). In the bottom-right, we have the control
u(t).

In Fig. 7.9, we show the corresponding controls where diesel consumption at t = tf

equal to 26580.18

The CPU time taken for each experience is 1200 seconds.

We compare now the value of the cost function at t = tf between our method
and Bocop. Using Bocop, the cost function at t = tf equal to 27765.96. However,
our method gives 26580.18 as a value of cost function which is lower than the value
returned by Bocop.

7.3.4 Extension to systems with perturbation

Let us now show how the method extends to systems with “bounded perturbations”,
and assess its robustness. A differential system with “bounded perturbations” is of
the form

dy(t)
dt

= fu

(
y(t), w(t)

)
,

with u ∈ U , t ∈ [0, τ], states y(t) ∈ Rd, and perturbations w(t) ∈ W ⊂ Rd (W is
compact, i. e., closed and bounded). See, e. g., [SA17a]. Any possible perturbation

7.3. Extension of Euler Method with control 97

Figure 7.8: Microgrid energy management system which minimize the overall diesel con-
sumption with initial conditions SOC(0) = 0.76 and Tf = 48. In the top-left,
we show SOC(t). In the top-right, we present the diesel consumption. In the
bottom, we illustrate the battery consumption

Figure 7.9: The controls of the microgrid energy management system shown in Fig. 7.8. In
the top-left, we show PD(t). In the top-right, we present PI(t). In the bottom,
we give PO(t)

98 7. Symbolic Euler’s method and its application for controlled systems

trajectory is thus bounded in W, and there exists ω ∈ R≥0 such that ∀t ∈ [0, τ],
∥w(t)∥ ≤ ω. Given a perturbation w ∈ W, we use Y u

y0,w(t) to denote the solution of
dy(t)

dt
= fu(y(t), w(t)) for t ∈ [0, τ] with y(0) = y0. We use Y u

y0,0(t) (resp. Ỹ u
y0(t)) to

denote the solution (resp. the approximate Euler solution) without perturbations, i. e.,
when W = 0.

Given a pattern π = uk · · · u1 ∈ Uk, these notations extend naturally to t ∈ [0, kτ]
by considering the solutions obtained by applying successive modes uk, . . . , u1 in a
continuous manner. The optimization task is now to find a control pattern π ∈ Uk

which guarantees that all states in S ⊂ Rd are steered at time t = kτ as closely as
possible to an end state yend , despite the perturbation set W .

We suppose (see [LCADSC+17]) that, for all u ∈ U , there exist constants λu ∈ R
and γu ∈ R≥0 such that, for all y1, y2 ∈ T and w1, w2 ∈ W :

⟨fu(y1, w1) − fu(y2, w2), y1 − y2⟩ ≤ λu∥y1 − y2∥2 + γu∥y1 − y2∥∥w1 − w2∥ (7.5)

This formula can be seen as a generalization of Eq. (E.6) (see Section 7.3.1). Recall
that λu has to be computed in the absence of perturbation (W = 0). The additional
constant γu is used for taking into account the perturbation w. Given λu, the constant
γu can be computed itself using a nonlinear optimization solver. Instead of computing
them globally for T , it is advantageous to compute λu and γu locally depending on
the subregion of T occupied by the system state during a considered interval of time
∆t. Note that the notion of contraction (often used in the literature [MS13, AS14])
corresponds to the case where λu is negative on the whole space set of interest. (Here,
λu can be positive, at least locally, see Remark 3.)

We now give a version of Proposition 7.3 with bounded perturbation w(·) ∈ W,
originally proved in [LCADSC+17].

Proposition 7.4 ([LCADSC+17]). Consider a sampled switched system with bounded
perturbation of the form {dy(t)

dt
= fu(y(t), w(t))}u∈U satisfying Eq. (7.5).

Consider a point y0 ∈ S of ε-representative z0 ∈ X . We have, for all u ∈ U ,
t ∈ [0, τ] and w(t) with ∥w(t)∥ ≤ ω:

∥Y u
y0,w(t) − Ỹ u

z0(t)∥ ≤ δu
ε,W(t)

(or: B(Ỹ u
z0(t), δu

ε,W(t)) ⊇ {y(·) | ∃w(·) ∈ W : ẏ(t) = fu(y(t), w(t)) for all t ∈ [0, kτ] ∧
y(0) = y0}) with:

7.3. Extension of Euler Method with control 99

• if λu < 0,

δu
ε,W(t) =

(
C2

u

−λ4
u

(
−λ2

ut2 − 2λut + 2eλut − 2
)

+ 1
λ2

u

(2Cuγuω

−λu

(
−λut + eλut − 1

)

+ λu

(
γ2

uω2

−λu

(eλut − 1) + λuε2eλut

)))1/2

(7.6)

• if λu > 0,

δu
ε,W(t) = 1

(3λu)3/2

(
C2

u

λu

(
−9λ2

ut2 − 6λut + 2e3λut

−2) + 3λu

(2Cuγuω

λu

(
−3λut + e3λut − 1

)
+ 3λu

(
γ2

uω2

λu

(e3λut − 1) + 3λuε2e3λut

)))1/2

(7.7)

• if λu = 0,

δu
ε,W(t) =

(
C2

u

(
−t2 − 2t + 2et − 2

)
+
(
2Cuγuω

(
−t + et − 1

)
+
(
γ2

uω2(et − 1) + ε2et
)))1/2

(7.8)

Let Bu
W(t) ≡ B(Ỹ u

z0(t), δu
ε,W(t)). Proposition 7.4 expresses that, for t ∈ [0, τ], the

tube Bu
W(t) contains all the solutions Y u

y0,w(t) with ∥y0 − z0∥ ≤ ε and w ∈ W, and
is therefore robustely (positive) invariant. The function δu

W : [0, τ] → Rd extends
continuously to δπ

ε,W : [0, kτ] → Rd for a sequence π of k modes, and the robust
invariance property now holds for t ∈ [0, kτ]. The function extends further continuously
to δπ∗

ε,W(·), when considering the iterated application of sequence π, and robust invariance
property now holds for all t ≥ 0. Under the iterated application of π, we denote by
Y π∗

y0,w(t) the exact solution at time t, of the system with perturbation w ∈ W and initial
condition y0. Likewise, we denote by Ỹ π∗

z0 (t) (or sometimes just Ỹ (t)) the approximate
Euler solution at time t, of the system without perturbation, with initial condition
z0.

In the following we assume that the bound ω of the perturbation W is large enough
so that, for all ε ≥ 0 and all local rate of contraction −λ:

(H) δε,W(∆t) ≥ εeλ∆t.

100 7. Symbolic Euler’s method and its application for controlled systems

7.4 An Approximation of Minimax Control using Random Sampling and Symbolic Computation

This section hails essentially from [JFA21a].

7.4.1 Introduction

A control is said to be robust if it ensures a certain level of performance despite the
presence of perturbation. There are generally two ways to model a perturbation:
either we know a distribution law for the perturbation (probabilistic approach), or
we only know that the perturbation is prescribed to a compact domain (bounded
uncertainty) (see, e. g., [Mes16]). In the first case, the performance of the system is
generally expressed in terms of “expectations of the cost” (see, e. g., [CHZ03, KMLV09,
CDL+14, DMP+15, GJ10, PRG16, WQCD16, RFM+18, AGLP18]). In the second
case, the criterion is rather the “worst-case performance” (see, e. g., [WTW14]).

In this chapter, we adopt the second approach (bounded uncertainty). In such a
framework, a pioneering paper is that of [BR71], which expresses robustness in the
form of a “minimax” (or “min-max”) control, i. e., the control that ensures minimum
(optimal) performance under the worst-case scenario of perturbation. The paper
[BR71] focuses on linear systems and is interested in reachability issues. Since then,
minimax control has handled more general optimization problems for systems with
non-linear dynamics, in the context of Model Predictive Control (MPC) in particular
(see, e. g., [MV93, MPG95, BM98, Löf03b, Löf03a, RLL+09]). These minimax control
methods basically rely on the use of set-based (or “symbolic”) methods to describe
the entire state trajectory under the form of a “tube containing the desired trajectory
under all possible disturbances” [BR71]. However, such methods often present a
major complexity problem, and simplified versions have been created to overcome this
drawback. These methods often make use of “gradient descent” techniques, and rely
on appropriate assumptions of convexity of the optimization domain in order to avoid
to be stuck in local minima (see, e. g., [ZM95, BM98]).

Here, we present such an approximate model of minimax control, which is efficient
without resorting to any gradient descent technique or convexity hypothesis. Basically,
we generalize the “tube-based” method of [BR71] in order to handle non-linear systems
and account for more general objectives than problems related to reachability. In order
to overcome the problem of complexity, we use a random sampling method which
allows us to synthesize a control that satisfies the desired performance specification for
most values of the uncertainties, i. e., with an a priori specified (high) probability (see
[Vid01]). Besides, our method can easily be extended in order to account for specified

7.4. An Approximation of Minimax Control using Random Sampling and
Symbolic Computation 101

constraints on the state of the system. We illustrate the interest of this approximate
minimax control on an example of a biochemical reactor (see [HLID09]).

7.4.2 Method

We consider a dynamic system with input (or control) u(·) and a bounded perturbation
function w(·) over a domain W (bounded uncertainty). The system is a switched
system with a finite set of modes (see, e. g., [GPT10]): The control u(·) is a piecewise
constant function from R≥0 to a finite set U of “modes”, and the function changes
of value only at times t = τ, 2τ, We consider, moreover, the problem of control
with a finite horizon T = Kτ for some positive integer K, so that the set of possible
controls of the system for t ∈ [0, T] is itself finite and can be described by the set
U ≡ UK . We suppose given a cost function C : Rd × UK → R≥0, which, having given
z0 ∈ Rd, ε > 0 and a control law u, allows calculating the value

∫ T
0 C(x(t), u(t))dt for

any solution x(t) with initial condition x0 ∈ B(z0, ε) of ẋ(t) = f(x(t), u(t), w(t)) for
t ∈ [0, T] associated with some bounded perturbation w(t) over W .

In this context, the minimax method aims at finding a control v defined by:

v = arg minu∈UK maxx(·) Jz0,ε(x(·), u(·))

with Jz0,ε(x(·), u(·)) ≡
{ ∫ T

0 C(x(t), u(t))dt | ∃w(·) ∈ W : ẋ(t) =
f(x(t), u(t), w(t)) for t ∈ [0, T] ∧ x(0) ∈ B(z0, ε)

}
.

Since the minimax methods are excessively complex (even in the sampled and finite-
horizon setting), simplified variants of the minimax problem have been developed (see,
e. g., [BM98]). We propose here such a simplified method composed of two steps.

7.4.2.1 First step

In a first step, using an Euler-based symbolic computation method, we will first obtain
an upper-bound Kz0,ε(u(·)) of maxx(·) Jz0,ε(x(·), u(·)) with

Kz0,ε(u(·)) ≡ max
x(·)∈B(x̃u(·)

z0 (·),δu(·)
ε,D (·)){

∫ T
0 C(x(t), u(t))dt},

where

• x̃u
z0(·) denotes Euler’s approximate solution of ẋ(t) = f(x(t), u(t), 0) for t ∈ [0, T]

with null perturbation (i. e., w(·) = 0) and initial condition z0 ∈ Rd,

• δ
u(·)
ε,W(·) denotes the function defined in Proposition 7.4 (see Section 7.3.4), and

102 7. Symbolic Euler’s method and its application for controlled systems

• x(·) ∈ B(x̃u(·)
z0 (·), δ

u(·)
ε,W(·)) means, for all t ∈ [0, T]: x(t) ∈ B(x̃u(·)

z0 (t), δ
u(·)
ε,W(t)). In

particular x(0) ∈ B(z0, ε).3

Proposition 7.5. We have, for all u(·) ∈ UK:

maxx(·) Jz0,ε(x(·), u(·)) ≤ Kz0,ε(u(·)),

Proof. maxx(·) Jz0,ε(x(·), u(·))

= maxx(·){
∫ T

0 C(x(t), u(t)dt | ∃w(·) ∈ W : ẋ(t) = f(x(t), u(t), w(t)) for t ∈
[0, T] ∧ x(0) ∈ B(z0, ε)}

≤ max
x(·)∈B(x̃u

z0 (·),δu(·)
ε,W (·)){

∫ T
0 C(x(t), u(t))}

(since, for x(0) ∈ B(z0, ε), we have: B(x̃u
z0(·), δ

u(·)
ε,W(·)) ⊇ {x(·) | ∃w(·) ∈ W :

ẋ(t) = f(x(t), u(t), w(t)) for t ∈ [0, T] ∧ x(0) ∈ B(z0, ε)}; see Proposition 7.4 in
Section 7.3.4)

= Kz0,ε(u(·)).

7.4.2.2 Second step

In a second step, as the number of controls u(·) ∈ UK is exponential in K, and
therefore explodes combinatorially, we will not consider the absolute minimum, but a
probable near-minimum of Kz0,ε(u(·)) (see [Vid01]).

Definition 7.3. [Vid01] Suppose g : Y → R, that P is a given probability measure
on Y , and that α, β > 0 are given numbers. A number g0 ∈ R is said to be a
probably approximate near-minimum of g(·) to accuracy α and level β, if g0 ≥ g∗ ≡
infy∈Y g(y) − α, and in addition

P [y ∈ Y : g(y) < g0 − α] ≤ β.

The probably approximate near-minimum of Kz0,ε is obtained by drawing
randomly N control u1, · · · , uN of UK , i. e., by generating N independent identically
distributed (i.i.d.) samples u1, · · · , uN of UK , with a uniform probability (i. e., with
probability 1/|U |N) then by taking Kz0,ε(u∗

N) with u∗
N = arg minu1,··· ,uN

Kz0,ε(ui). We
recall from [Vid01]:

3y ∈ B(z, a) with y, z ∈ Rd and a ≥ 0 means ∥y − z∥ ≤ a where ∥ · ∥ denotes the Euclidean norm.

7.4. An Approximation of Minimax Control using Random Sampling and
Symbolic Computation 103

Proposition 7.6. [Vid01] Draw randomly N controls u1, · · · , uN of UK (i. e., generate
N i.i.d. samples u1, · · · , uN of UK with a uniform probability).

Let u∗
N = arg minu1,··· ,uN

Kz0,ε(ui).

Then Kz0,ε(u∗
N) is a probable near-minimum of Kz0,ε(u) for u ∈ UK to level α and

confidence 1−β (i. e., Kz0,ε(u∗
N) ≈α,1−β minu∈UK Kz0,ε(u)) provided that N ≥ ln(1/β)

ln(1/(1−α)) .

Remark 6. Note that even if N < ln(1/β)
ln(1/(1−α)) , we have:

Kz0,ε(u∗
N) ≥ min

u∈UK
Kz0,ε(u) ≥ min

u∈UK
max
x(·)

Jz0,ε(x(·), u(·))

(by Proposition 7.5). Therefore, random sampling on the set of controls always yields
a suboptimal result.

From Propositions 7.5 and 7.6, it follows:

Proposition 7.7. Draw N independent samples u1, . . . , uN distributed uniformly on
UK.

Let u∗
N = arg minu1,··· ,uN

Kz0,ε(ui).

Then, we have:

minu∈UK maxx(·) Jz0,ε(x(·), u(·)) ≤ Kz0,ε(u∗
N)

(≈α,1−β minu∈UK Kz0,ε(u) provided that N ≥ ln(1/β)
ln(1/(1−α))).

Note that u∗
N is an open-loop control. With respect to classical robust methods,

our method allows us to avoid:

• the excessive complexity of minimax methods,

• the use of a feedback ancillary control as used in the MPC-tube methods,

• the use of samples of large size, as is often the case in statistical learning,
when one wants to calculate the (expected) evaluation of the cost function with
precision and confidence.

104 7. Symbolic Euler’s method and its application for controlled systems

Besides, the method is easily extended to take into account constraints on the state
of the system during its evolution. Such a consideration of a set of constraints C on
the state is classic within the framework of a random sampling procedure (see, e. g.,
[BM98, DCJC08, CDT11]). In our context, it suffices in Proposition 7.7 to replace
u∗

N = arg minu1,··· ,uN
Kz0,ε(ui) by u∗

N = arg minu∈U ′ Kz0,ε(ui), where U ′ contains the
only elements of {u1, · · · , uN} under the control of which the state x(t) always satisfies
C. (This requires the inclusion of a satisfaction test of C for each ui with 1 ≤ i ≤ N .)

7.4.3 Example

The implementation has been done in Python and corresponds to a program of
around 500 lines. The source code is available at lipn.univ-paris13.fr/~jerray/
orbitador/MCRS/. In the experiments below, the program runs on a 2.80 GHz Intel
Core i7-4810MQ CPU with 8 GiB of memory.

Example 7.4. We consider a biochemical process model Y of continuous culture
fermentation (See [HLID09] as well as [AKR89, KSC93, Par00, RC08]). Let x(t) =
(X(t), S(t), P (t)) ∈ R3 satisfies the differential system:

.

X(t) = −DX(t) + µ(t)X(t)
.

S(t) = D
(
Sf (t) − S(t)

)
− µ(t)X(t)

Yx/s.

P (t) = −DP +
(
αµ(t) + β

)
X(t)

(7.9)

where X denotes the biomass concentration, S the substrate concentration, and P the
product concentration of a continuous fermentation process. The model is controlled
by Sf ∈ [Smin

f , Smax
f]. While the dilution rate D, the biomass yield Yx/s, and the

product yield parameters α and β are assumed to be constant and thus independent
of the actual operating condition, the specific growth rate µ : R → R of the biomass is
a function of the states:

µ(t) = µm

(
1 − P (t)

Pm

)
S(t)

Km + S(t) + S(t)2

Ki

The parameters values are listed in Table 7.1.

The goal is to maximize the average productivity presented by the cost function:

Jz0,ε(x(·), Sf (·)) = 1
T

∫ T

0
DP (t)dt (7.10)

https://lipn.univ-paris13.fr/~jerray/orbitador/MCRS/
https://lipn.univ-paris13.fr/~jerray/orbitador/MCRS/

7.4. An Approximation of Minimax Control using Random Sampling and
Symbolic Computation 105

Table 7.1: Nominal fermentation process parameters

Name Symbol Value
dilution rate D 0.15h−1

substrate inhibition constant Ki 22 g
L

substrate saturation constant Km 1.2 g
L

product saturation constant Pm 50 g
L

yield of the biomass Yx/s 0.4
first product yield constant α 2.2
second product yield constant β 0.2h−1

specific growth rate scale µm 0.48h−1

minimum feed substrate Smin
f 28.7 g

L

maximum feed substrate Smax
f 40 g

L

with x(0) ∈ B(z0, ε) while satisfying the constraint on the state X:

1
T

∫ T

0
X(t)dt ≤ 5.8 (7.11)

The set S ⊂ Rd that is controlled Euler-invariant for the system with null pertur-
bation (see Section 7.3.1.2) is here equal to [3, 8] × [10, 28] × [15.5, 25.5].

The codomain [28.7, 40] of the original continuous control function Sf(·) is dis-
cretized into a finite set U , for the needs of our method. After discretization, Sf (·) is
a piecewise-constant function that takes its values in the finite set U made of 2 values
uniformly taken in {28.7, 40}. The function Sf (·) changes (possibly) its value every τ

seconds.

We take: z0 = (6.52, 12.5, 22.40), ε = 0, τ = 3, ∆t = τ/1004, T = 48, K = T/τ =
16. We consider an additive perturbation w with w(·) ∈ W = [−0.05, 0.05]. The
values of λ and γ are computed locally and vary from +5.0 to −0.12, and from 0 to 1
respectively. The parameters λ and γ are used to calculate δu∗

ε,W(t).

In total, we have 2k = 216 possible control cases. We then perform 3 experiences:

1. We randomly pick one sample over every 100 possible controls, which gives
216/100 ≈ 655 samples.

2. We randomly pick one sample over every 10 possible controls, which gives
216/10 ≈ 6, 554 samples.

3. We consider all the possible controls, which gives 216 = 65, 536 samples. (The
computation is tractable in this example because the set U contains only 2 modes,
and because the length K of the horizon is moderate.)

4∆t is the “sub-sampling’ parameter of the Euler scheme.

106 7. Symbolic Euler’s method and its application for controlled systems

For each experience, we select the control sequence u∗ that optimizes the cost function
(Eq. (7.10)) while satisfying the constraint on the state X (Eq. (7.11)). These 3
experiences give the following results:

1. The control u∗ is depicted in Fig. 7.10 (top), and the result on P (t) is depicted
in Fig. 7.10 (bottom). The red curve represents the Euler approximation x̃u∗

z0 (t)
of the solution without perturbation (w = 0) as a function of time t in the
plan P using u∗. The green curves correspond, in the P plan, to the borders of
the tube centered around the red curve, that is B(t) ≡ B(x̃u∗

z0 (t), δu∗
ε,W(t)) with

x̃u∗
z0 (0) = z0 and δu∗

ε,W(0) = ε = 0 (see Definition 7.2). We get: Kz0,ε(u∗) = 3.1618
(the constraint on the state X is satisfied since 1

T

∫ T
0 X(t)dt = 5.782 ≤ 5.8). The

CPU computation time of this example is 7 seconds.

2. The control u∗ is depicted in Fig. 7.11 (top), and the result on P (t) is depicted
in Fig. 7.11 (bottom). We get: Kz0,ε(u∗) = 3.1667. (the constraint on the state
X is satisfied since 1

T

∫ T
0 X(t)dt = 5.794 ≤ 5.8) The CPU computation time of

this example is 18.69 seconds.

3. The control u∗ is represented in Fig. 7.12 (top), while Fig. 7.12 (bottom) shows
the result on P (t) of applying u∗. We get: Kz0,ε(u∗) = 3.1677 (the constraint is
satisfied since 1

T

∫ T
0 X(t)dt = 5.7995 ≤ 5.8). The CPU computation time of this

example is 200 seconds.

We can see on these 3 experiments that, despite the multiplication by 10 each
time of the number of samples (which leads to a multiplication of the CPU time by
3 and then by 10), the optimal cost K increases only slightly (here, the optimum K
corresponds to a “maximin”, not a “minimax” as described in Section 7.4.2). The
results are comparable to those obtained by [HLID09], despite the use of a much
simpler method (without gradient descent).5 This experiment thus illustrates the
interest of our method by symbolic computation coupled with random sampling.

In Example C.2 (in Appendix C.6), we give an extension of Example C.2 where the
finite set U is made of 3 values uniformly taken in {28.7, 40}. instead of 2 values.

7.4.4 Search a control that maintains the periodicity

Example 7.5. We consider again the biochemical process example defined in Ex-
ample E.1. We take here z0 = (6.52, 12.5, 22.40), ε = 0.1, τ = 6, ∆t = τ/1200 and
w(·) ∈ W = [−0.01, 0.01]. In this experience, we select, from all the 28 possible control
cases, the control sequence u∗ that optimizes the cost function (Eq. (7.10)) while
satisfying the constraint on the state X (Eq. (7.11)) and the periodicity.

5Computation times are not given in the experiments of [HLID09].

7.4. An Approximation of Minimax Control using Random Sampling and
Symbolic Computation 107

Figure 7.10: Top: control u∗ satisfying the constraint on X, obtained by selection among 655
samples picked randomly; bottom: P (t) under u∗ without perturbation (red
curve) and with an additive perturbation w ∈ [−0.05, 0.05] (green curve) over
1 period (T = 48) for ∆t = 1/400 and initial condition (X(0), S(0), P (0)) =
(6.52, 12.5, 22.4).

We get: the control sequence u∗ = [40.0, 40.0, 28.7, 40.0, 28.7, 28.7, 28.7, 28.7] and
the cost function Kz0,ε(u∗) = 3.05531278637455 (the constraint is satisfied since
1
T

∫ T
0 X(t)dt = 5.762832783059367 ≤ 5.8).

We repeat this control sequence for 4 periods in order to check if there is an
invariant set as defined in Section 8.1.2. We find:

x(0) = (6.52, 12.5, 22.4), δW(0) = 0.1

x(T) = (6.41716821, 12.88269576, 22.12447169), δW(T) = 0.4012066523089154

x(2T) = (6.41333272, 12.89237801, 22.10498929), δW(2T) = 0.43189334897336074

x(3T) = (6.41339481, 12.89222284, 22.10519839), δW(3T) = 0.405053277371014

x(4T) = (6.41339565, 12.89222076, 22.10520337), δW(4T) = 0.4015446938437213.

We have: Bε,W(3T) ⊂ Bε,W(2T), i.e.: Bε,W((i0 + 1)T) ⊂ Bε,W(i0T) for i0 = 2.

108 7. Symbolic Euler’s method and its application for controlled systems

Figure 7.11: Same Figure as Fig. 7.10 but with 6554 samples (instead of 655).

Fig. 7.13 shows the approximate Euler solution of x in red, the control sequence,
the invariant I in green and its radius δW(t). The control sequence search time is 12
seconds and the computation takes 1092 seconds of CPU time.

Example 7.6. We consider again the biochemical process example defined in Ex-
ample E.1. We take here z0 = (6.52, 12.5, 22.40), ε = 0.1, τ = 4, ∆t = τ/800 and
w(·) ∈ W = [−0.01, 0.01]. In this experience, we select, from all the 212 possible
control cases, the control sequence u∗ that optimizes the cost function (Eq. (7.10))
while satisfying the constraint on the state X (Eq. (7.11)) and the periodicity.

We get: the control sequence u∗ = [40.0, 40.0, 40.0, 40.0, 40.0, 28.7, 28.7, 28.7, 28.7, 28.7, 28.7, 28.7]
and the cost function Kz0,ε(u∗) = 2.9819027540810454 (the constraint is satisfied since
1
T

∫ T
0 X(t)dt = 5.622078165864359 ≤ 5.8).

We repeat this control sequence for 4 periods in order to check if there is an
invariant set as defined in Section 8.1.2. We find:

x(0) = (6.52, 12.5, 22.4), δW(0) = 0.1

x(T) = (6.43476685, 12.77392689, 22.10591651), δW(T) = 0.41905446781605554

7.4. An Approximation of Minimax Control using Random Sampling and
Symbolic Computation 109

Figure 7.12: Same Figure as Fig. 7.10 but with 65536 samples (instead of 655).

x(2T) = (6.43252247, 12.77958314, 22.09454207), δW(2T) = 0.44881421592844783

x(3T) = (6.43255426, 12.77950369, 22.0946442), δW(3T) = 0.3945243591434912

x(4T) = (6.432555, 12.77950184, 22.09464799), δW(4T) = 0.4370536635376794.

We have: Bε,W(3T) ⊂ Bε,W(2T), i.e.: Bε,W((i0 + 1)T) ⊂ Bε,W(i0T) for i0 = 2.

Fig. 7.14 shows the approximate Euler solution of x in red, the control sequence,
the invariant I in green and its radius δW(t). The control sequence search time is 195
seconds and the computation takes 1260 seconds of CPU time.

Example 7.7. We consider again the biochemical process example defined in Ex-
ample E.1. We take here z0 = (6.52, 12.5, 22.40), ε = 0.1, τ = 3, ∆t = τ/1200 and
w(·) ∈ W = [−0.01, 0.01]. In this experience, we select, from 6554 control cases
choosing randomly from all the 216 possible control cases, the control sequence u∗ that
optimizes the cost function (Eq. (7.10)) while satisfying the constraint on the state X

(Eq. (7.11)) and the periodicity.

110 7. Symbolic Euler’s method and its application for controlled systems

Figure 7.13: When τ = 6, biochemical process with an additive perturbation ∥w∥ ≤
0.01 over 4 periods (4T = 192) for ∆t = 1/200 and initial condition
(X(0), S(0), P (0)) = (6.52, 12.5, 22.4), from top left to bottom right: X(t),
S(t), P (t), control Sf (t), δW(t) and a 3D view of the invariant I represented
by the green shape.

We get: the control sequence u∗ = [40.0, 40.0, 40.0, 40.0, 40.0, 28.7, 28.7, 40.0, 28.7, 28.7,

28.7, 28.7, 28.7, 28.7, 28.7, 28.7] and the cost function Kz0,ε(u∗) = 3.0470735325260314
(the constraint is satisfied since 1

T

∫ T
0 X(t)dt = 5.751187667683308 ≤ 5.8).

We repeat this control sequence for 4 periods in order to check if there is an
invariant set as defined in Section 8.1.2. We find:

x(0) = (6.52, 12.5, 22.4), δW(0) = 0.1

7.4. An Approximation of Minimax Control using Random Sampling and
Symbolic Computation 111

Figure 7.14: When τ = 4, biochemical process with an additive perturbation ∥w∥ ≤
0.01 over 4 periods (4T = 192) for ∆t = 1/200 and initial condition
(X(0), S(0), P (0)) = (6.52, 12.5, 22.4), from top left to bottom right: X(t),
S(t), P (t), control Sf (t), δW(t) and a 3D view of the invariant I represented
by the green shape.

x(T) = (6.49460463, 12.64681063, 22.3940334), δW(T) = 0.417523353848292

x(2T) = (6.49201155, 12.65335538, 22.38160201), δW(2T) = 0.5027104415729283

x(3T) = (6.49204079, 12.65328231, 22.38168693), δW(3T) = 0.42222636557122256

x(4T) = (6.49204142, 12.65328075, 22.38169034), δW(4T) = 0.4323415458918441.

We have: Bε,W(3T) ⊂ Bε,W(2T), i.e.: Bε,W((i0 + 1)T) ⊂ Bε,W(i0T) for i0 = 2.

112 7. Symbolic Euler’s method and its application for controlled systems

Fig. 7.15 shows the approximate Euler solution of x in red, the control sequence,
the invariant I in green and its radius δW(t). The control sequence search time is 723
seconds and the computation takes 3220 seconds of CPU time.

Figure 7.15: When τ = 3, biochemical process with an additive perturbation ∥w∥ ≤
0.01 over 4 periods (4T = 192) for ∆t = 1/200 and initial condition
(X(0), S(0), P (0)) = (6.52, 12.5, 22.4), from top left to bottom right: X(t),
S(t), P (t), control Sf (t), δW(t) and a 3D view of the invariant I represented
by the green shape.

Example 7.8. We consider again the biochemical process example defined in Ex-
ample E.1. We take here z0 = (6.52, 12.5, 22.40), ε = 0.1, τ = 2, ∆t = τ/1200 and
w(·) ∈ W = [−0.01, 0.01]. In this experience, we select, from 16777 control cases

7.4. An Approximation of Minimax Control using Random Sampling and
Symbolic Computation 113

choosing randomly from all the 224 possible control cases, the control sequence u∗ that
optimizes the cost function (Eq. (7.10)) while satisfying the constraint on the state X

(Eq. (7.11)) and the periodicity.

We get: the control sequence u∗ = [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 28.7, 40.0, 28.7,

40.0, 28.7, 28.7, 28.7, 28.7, 28.7, 28.7, 28.7, 28.7, 28.7, 28.7, 28.7, 28.7, 28.7] and the
cost function Kz0,ε(u∗) = 3.042700158904687 (the constraint is satisfied since
1
T

∫ T
0 X(t)dt = 5.744236785244066 ≤ 5.8).

We repeat this control sequence for 4 periods in order to check if there is an
invariant set as defined in Section 8.1.2. We find:

x(0) = (6.52, 12.5, 22.4), δW(0) = 0.1

x(T) = (6.52882162, 12.53007531, 22.50237533), δW(T) = 0.6792257292088323

x(2T) = (6.52711033, 12.53439235, 22.49465237), δW(2T) = 0.41200867041384653

x(3T) = (6.52712177, 12.53436378, 22.49467265), δW(3T) = 0.5042660098628413

x(4T) = (6.52712224, 12.53436261, 22.49467501), δW(4T) = 0.5715581347559725.

We have: Bε,W(2T) ⊂ Bε,W(T), i.e.: Bε,W((i0 + 1)T) ⊂ Bε,W(i0T) for i0 = 1.

Fig. 7.16 shows the approximate Euler solution of x in red, the control sequence,
the invariant I in green and its radius δW(t). The control sequence search time is 1403
seconds and the computation takes 3472 seconds of CPU time.

7.4.5 Conclusion

As explained in [HV19] (in the context of model predictive control), although exact
minimax control problems are intractable in general, new tools, based on recent
developments in the field of symbolic (or “set-valued”) computation are opening new
perspectives for the robust treatment of optimal problems. We have explored here
such a path by showing that the simple combination of random sampling with a
symbolic computation method (based on Euler’s integration method) allows us to
deal with robust optimization problems for nonlinear systems on non-convex domains,
without resorting to sophisticated theories such as analysis of viscosity solutions of
the Hamilton-Jacobi-Bellman-Isaacs equation or Pontryagin’s maximum principle
(see, e. g., [Lib12]). The method has been illustrated on an example of biochemical
reactor.

114 7. Symbolic Euler’s method and its application for controlled systems

Figure 7.16: When τ = 2, biochemical process with an additive perturbation ∥w∥ ≤
0.01 over 4 periods (4T = 192) for ∆t = 1/200 and initial condition
(X(0), S(0), P (0)) = (6.52, 12.5, 22.4), from top left to bottom right: X(t),
S(t), P (t), control Sf (t), δW(t) and a 3D view of the invariant I represented
by the green shape.

8
Generation of bounded invariants
via stroboscopic set-valued maps

In this chapter, we present a method for generating a bounded invariant of a differential
system with a given set of initial conditions around a point x0.

Contents

8.1 Generation of bounded invariants without control 116

8.1.1 Introduction . 116

8.1.2 Method . 117

8.1.3 Application to Parametric Systems 119

8.1.4 Conclusion . 124

8.2 Robust optimal periodic control using guaranteed Euler’s
method . 124

8.2.1 Introduction . 124

8.2.2 Application to Guaranteed Robustness 125

8.2.3 Conclusion . 128

116 8. Generation of bounded invariants via stroboscopic set-valued maps

8.1 Generation of bounded invariants without control

This section derives from the work that has been published in [JF21]. Compared to
Chapter 7, we add , in this section, a method that generates an invariant set I which
allows to guarantee the existence of a limit cycle L that attracts the approximate
Euler solutions of Σ as defined in Section 8.1.2.

8.1.1 Introduction

Given a differential system Σ : dx/dt = f(x) of dimension d, an initial point x0 ∈ Rd,
a real ε > 0, and a ball B0 = B(x0, ε)1, we present here a simple method allowing
to find a bounded invariant set of Σ containing the trajectories starting at B0. This
invariant set has the form of a tube whose center at time t is the Euler approximate
solution x̃(t) of the system starting at x0, and radius is a function δε(t) bounding the
distance between x̃(t) and an exact solution x(t) starting at B0. The tube can thus be
described as ⋃t≥0 B(t) where B(t) ≡ B(x̃(t), δε(t)).

To find a bounded invariant, we then look for a positive real T such that B((i +
1)T) ⊆ B(iT) for some i ∈ N. In case of success, the ball B(iT) is guaranteed to contain
the “stroboscopic” sequence {B(jT)}j=i,i+1,... of sets B(t) at time t = iT, (i + 1)T,
It follows that the bounded portion ⋃

t∈[iT,(i+1)T] B(t) is equal to ⋃t∈[iT,∞) B(t), and
thus constitutes the sought bounded invariant set.

We apply the finding of such a (forward) invariant set to the analysis of parame-
terized time-periodic differential systems. We illustrate our results on the example of
a parametric Van der Pol system driven by a common periodic input.

Comparison with related work

We explain here some similarities and differences of our method with several kinds
of related work.

• There exists a trend of work on the generation of torus-shaped invariants using
stroboscopic maps of quasi-periodic systems with possible parameters (see, e.g.,
[BS16, GM01, OS12]). A first difference is that these works consider stroboscopic
mappings of points of Rd, while our stroboscopic maps apply to sets of points.
A second difference is that they often use a Fourier analysis in the frequency
domain (using, e.g., the notion of “radii polynomials” [CL13]) while we remain
in the time domain.

1B(x0, ε) is the set {z ∈ Rd | ∥z − x0∥ ≤ ε} where ∥ · ∥ denotes the Euclidean distance.

8.1. Generation of bounded invariants without control 117

• Our method makes use of a rigorous time-integration method in order to enclose
the exact solutions with tubes, which is similar to what is done using high order
of Taylor method in ODE integration as proposed by Lohner or Taylor models
[Loh87, Zgl02]. Such methods are used in [CL13, KS07] to rigorously compute
the eigenvalues of a so-called “monodromy matrix”, which allows to determine
the linear stability of the equilibrium points of the system. Unlike these works,
our stability analysis does not try to compute such eigenvalues of monodromy
matrices.

• Our method shares also some common features with the works of [APS08, AS14,
vdBQ20], which aim at proving a contractivity property of the system (i.e., that
any two solutions converge exponentially to each other). In [AS14], contractivity
amounts to the finding of a negative definitive quadratic form (which is equivalent
to the existence of a Lyapunov function for the system). In [APS08], “Squares-
of-Sum programming is used to find ranges of uncertainty under which a system
with uncertain perturbations is always contracting with the original contraction
metric”. In [vdBQ20], they turn the stability problem into the contractivity of
a fixed point operator that is checked with the assistance of a computer. The
difference here is that we do not try to prove a contractivity property, but only
the existence of two set-valued snapshots, one of which is included in the other
one. This is a much weaker property and easier to prove.

Our method is simple, efficient, and allows us to construct a cyclic approximate solution
L (using Euler’s method) together with a (forward) invariant set I around L. Note
however that, even if the approximate and exact solutions are very close in practice,
our method does not guarantee the formal existence of cyclic exact solutions inside I,
which requires more technical methods such as Poincaré maps.

Outline

In Section 8.1.2, we present our method, then explain how to apply it to the
analysis of parameterized systems in Section 8.1.3. We conclude in Section 8.1.4.

8.1.2 Method

8.1.2.1 Correctness

Consider a differential system Σ : dx/dt = f(x, w) with w ∈ W, an initial point
x0 ∈ Rd, a real ε > 0 and a ball B0 = B(x0, ε). Let BW(t) denote B(x̃(t), δε,W(t))
where x̃(t) is the Euler approximate solution of the system without uncertainty and

118 8. Generation of bounded invariants via stroboscopic set-valued maps

initial condition x0
2. It follows from Proposition 7.2 that ⋃t≥0 BW(t) is an invariant set

containing B0. We can make an a stroboscopic map of this invariant. by considering
periodically the set BW(t) at the moments t = 0, T, 2T , etc., with T = kτ for some k

(τ is the time-step used un Euler’s method).

If moreover, we can find an integer i ≥ 0 such that BW((i + 1)T) ⊆ BW(iT), then
we have BW(iT) = ⋃

j=i,i+1,... BW(jT) and ⋃t∈[iT,(i+1)T] BW(t) =⋃
t∈[iT,∞) BW(t). The set ⋃t∈[iT,(i+1)T] BW(t) is thus a bounded invariant set which

contains all the solutions x(t) starting at B0, for t ∈ [iT, ∞). In the phase space, this
invariant set has a “torus” shape. We have:

Proposition 8.1. Suppose that there exist T = kτ with k ∈ N, and i ∈ N such that:

BW((i + 1)T) ⊆ BW(iT).

Then IW ≡ ⋃
t∈[0,T] BW(iT + t) is a compact (i.e., bounded and closed) invariant set

containing, for t ∈ [iT, ∞), all the solutions x(t) of Σ with initial condition in B0.

Consider a differential system ΣW : dx/dt = f(x, w) with w ∈ W , an initial point
x0 ∈ Rd, a real ε > 0 and a ball B0 = BW(x0, ε). Let BW(t) denote B(x̃(t), δε,W(t))
where x̃(t) is the Euler approximate solution of the system without uncertainty and
initial condition x0. It follows from Proposition 7.2 that ⋃t≥0 BW(t) is an invariant
set containing B0. If moreover, we can find an integer i ≥ 0 and a real T = kτ (for
some k ∈ N) such that BW((i + 1)T) ⊆ BW(iT), then the set IW = ⋃

t∈[iT,(i+1)T] BW(t)
is a bounded invariant which contains all the solutions x(t) of ΣW starting at B0, for
t ∈ [iT, ∞). In the phase space, this bounded invariant has a “torus” shape. We have
(see [JF21]):

Proposition 8.2. Suppose that there exist T > 0 (with T = kτ for some k) and
i ∈ N such that: BW((i+1)T) ⊆ BW(iT). Then IW ≡ ⋃

t∈[iT,(i+1)T] BW(t) is a compact
(i.e., bounded and closed) invariant set containing, for t ∈ [iT, ∞), all the solutions of
ΣW with initial condition in B0. The set IW is also an invariant for the unperturbed
system Σ.

Proof. All solutions x(t) of ΣW starting from B0 are contained for t = (i + 1)T
in BW((i + 1)T) by Proposition 7.2, hence in BW(iT) by inclusion hypothesis. A
solution starting from BW((i + 1)T) ⊆ BW(iT) after an additional time t′ = T finds
itself in in BW((i + 1)T) ⊆ BW(iT). And so on, any solution of IW starting from
BW(iT) returns periodically (with period T) in BW(iT). Similarly, any point of
BW(iT + t′) with t′ ∈ [0, T) returns periodically (with period T) in BW(iT + t′). The
set IW = ⋃

t∈[iT,(i+1)T] BW(t) is thus an invariant of ΣW . It is also an invariant set for
the unperturbed system Σ corresponding to the particular case W = 0.

2Note that BW(0) = B0 because x̃(0) = x0 and δε,W(0) = ε.

8.1. Generation of bounded invariants without control 119

Theorem 8.1. Suppose that there exist T > 0 (with T = kτ for some k) and i ∈ N
such that: BW((i + 1)T) ⊆ BW(iT). Then there exists a closed orbit (limit cycle or
fixed-point) for the unperturbed system Σ which is contained in IW .

Proof. (Sketch) Consider a section V tranverse to the flow of the unperturbed system
Σ, and the “first return map” (or Poincaré map) T from V ∩ IW to V . This mapping
is known to be continuous (and even differentiable). Besides T (V ∩ IW) ⊆ V ∩ IW

because IW is an invariant set of Σ. Therefore, by Brouwer’s fixed-point theorem,
there is a point M ∈ V ∩ IW such that T (M) = M . It follows that the solution of Σ
starting at M returns to M after some time, say T ∗. This defines a closed periodic
orbit of Σ passing by M of period T ∗.

8.1.3 Application to Parametric Systems

Let us now consider a family {Σp}p∈P of differential systems Σp of the form dx/dt =
fp(x) involving a parameter p ∈ P (but no uncertainty). It is useful to find a subset Q
of P and a system Σ′ : dx/dt = f(x, w) with uncertainty such that, for any p ∈ Q, Σp

is a particular form of Σ′ for an appropriate uncertainty function w(·) ∈ W. This is
useful to infer certain common properties of the solutions of {Σp}p∈Q from the analysis
of the system Σ′ with uncertainty (cf. [APS08], Section 5).

The implementation has been done in Python and corresponds to a program of
around 600 lines. The source code is available at lipn.univ-paris13.fr/~jerray/
orbitador/parameter/. In the experiments below, the program runs on a 2.80 GHz
Intel Core i7-4810MQ CPU with 8 GiB of memory. Given x0, τ, ε, |W|, the program
searches heuristically for values of i ∈ N and T = kτ (for some k ∈ N) in order to
verify BW((i + 1)T) ⊆ BW(iT). This is illustrated in the following examples. The
code source of Examples 8.1 to 8.3 is given in Appendix C.3.

Example 8.1. Consider the Van der Pol system Σp of dimension d = 2 with parameter
p ∈ R (see, e.g, [CFM19]) and initial condition in B0 = B(x0, ε) for some given x0 ∈ R2

and ε > 0 (see [vdBQ20]): du1/dt = u2

du2/dt = pu2 − pu2
1u2 − u1

Consider now the system Σ′ with uncertainty w(·) ∈ W :

du1/dt = u2

du2/dt = (p0 + w(t))(1 − u2
1)u2 − u1

https://lipn.univ-paris13.fr/~jerray/orbitador/parameter/
https://lipn.univ-paris13.fr/~jerray/orbitador/parameter/

120 8. Generation of bounded invariants via stroboscopic set-valued maps

with p0 = 0.4. Each solution of Σp with p ∈ [p0 − 0.01, p0 + 0.01] = [0.39, 0.41]
and initial condition x0 is thus a particular solution of the system Σ′ with uncertainty
w ∈ W0 = [−0.01, 0.01] (hence |W0| = 0.02) and set of initial conditions B(x0, ε0).

With: x0 = (u1(0), u2(0)) = (1.35473686, −0.843734), initial radius ε0 = 0.1,
τ = 1/1000 and T0 = 6.347 = 6347τ . We find:

x̃(0) = (1.35473686, −0.843734), δW0(0) = 0.1

x̃(T0) = (1.50761699, −1.04068552), δW0(T0) = 0.0788996465393

x̃(2T0) = (1.52191721, −1.06003795), δW0(2T0) = 0.067913377036902

x̃(3T0) = (1.52340404, −1.06120714), δW0(3T0) = 0.065311894281103

x̃(4T0) = (1.52389638, −1.06095282), δW0(4T0) = 0.064876906743529

x̃(5T0) = (1.52431256, −1.06058959), δW0(5T0) = 0.064487089163028.

We have: BW0((i + 1)T0) ⊂ BW0(iT0) for i = 2. The computation took 603s of
CPU time. This shows that the invariant IW0 has a torus shape for t ∈ [2T0, 3T0], and
contains the solutions of Σp for each p ∈ [p0 − |W0|/2, p0 + |W0|/2]. Fig. 8.1 shows the
cyclic approximate solution L of Σp0 in the plane phase (top), and the radius δ(t) of
the invariant IW0 of Σp (bottom).

The invariant IW0 with |W0| = 0.02 is depicted in green on Fig. 8.1 (top), and it
can be seen that IW0 encloses all the solutions of Σp for p ∈ [p0 −|W0|/2, p0 + |W0|/2] =
[0.39, 0.41], as stated by Proposition 7.2.

Example 8.2. Consider again the system Σp of Example 8.1 and let p1 = 1.1, the
amplitude of uncertainty w ∈ W1 = [−0.02, 0.02], and initial radius ε1 = 0.1. Each
solution of Σp with p ∈ [p1 − 0.02, p1 + 0.02] = [1.08, 1.12] and initial condition x0 is
now a particular solution of Σ′ with uncertainty w ∈ W1 = [−0.02, 0.02] and set of
initial conditions B(x0, ε1).

With: x0 = (u1(0), u2(0)) = (1.35473686, −0.843734), τ = 1/1000 and T1 =
6.746 = 6746τ .

We find:

x̃(0) = (1.35473686, −0.843734), δW1(0) = 0.1

x̃(T1) = (1.35387121, −0.84432851), δW1(T1) = 0.063151349209946

x̃(2T1) = (1.353005, −0.84492382), δW1(2T1) = 0.062882360441883

x̃(3T1) = (1.3521381, −0.84551992), δW1(3T1) = 0.063009935056069

x̃(4T1) = (1.35127062, −0.84611681), δW1(4T1) = 0.063098074488825

x̃(5T1) = (1.35040254, −0.84671449), δW1(5T1) = 0.062964897273475.

8.1. Generation of bounded invariants without control 121

Figure 8.1: In the top figure, the red cycle represents the approximate Euler solution of Σp0

in the phase plan near the limit cycle L with p0 = 0.4 and |W0| = 0.02. The
invariant IW0 is the green torus which is centered around the (red) approximate
Euler solution of Σp0 , and its radius δW0(t) is represented in the bottom figure.

We have: BW1((i + 1)T1) ⊂ BW1(iT1) for i = 0. As shown in Fig. 8.2, the set IW1

is an invariant for the system with uncertainty, and contains the limit cycle (LC). The
computation time is 748 seconds.

Example 8.3. Consider again the system Σp of Example 8.1 and let p2 = 1.9, the
amplitude of uncertainty w ∈ W2 = [−0.025, 0.025], and initial radius ε2 = 0.1. Each
solution of Σp with p ∈ [p2 − 0.025, p2 + 0.025] = [1.875, 1.925] and initial condition x0

is now a particular solution of Σ′ with uncertainty w ∈ W2 = [−0.025, 0.025] and set
of initial conditions B(x0, ε2).

With: x0 = (u1(0), u2(0)) = (1.35473686, −0.843734), τ = 1/1000 and T2 = 7.53 =

122 8. Generation of bounded invariants via stroboscopic set-valued maps

Figure 8.2: In the top figure, the red cycle represents the approximate Euler solution of Σp1

in the phase plan near the limit cycle L with p1 = 1.1 and |W1| = 0.04. The
invariant IW1 is the green torus which is centered around the (red) approximate
Euler solution of Σp1 , and its radius δW1(t) is represented in the bottom figure.

7530τ .

We find:

x̃(0) = (1.35473686, −0.843734), δW2(0) = 0.1

x̃(T2) = (1.28789326, −0.64934662), δW2(T2) = 0.06943220637642

x̃(2T2) = (1.28750976, −0.64962723), δW2(2T2) = 0.06993146851437

x̃(3T2) = (1.2871261, −0.64990814), δW2(3T2) = 0.069519667483199

x̃(4T2) = (1.28674228, −0.65018933), δW2(4T2) = 0.069909061138188

8.1. Generation of bounded invariants without control 123

x̃(5T2) = (1.28635829, −0.65047081), δW2(5T2) = 0.069944710932281.

We have: BW2((i + 1)T2) ⊂ BW2(iT2) for i = 2. The computation took 761s of
CPU time. This shows that the invariant IW2 has a torus shape for t ∈ [2T2, 3T2], and
contains the solutions of Σp for each p ∈ [p2 − |W2|/2, p2 + |W2|/2]. Fig. 8.3 shows the
cyclic approximate solution L of Σp2 in the plane phase (top), and the radius δ(t) of
the invariant IW2 of Σp (bottom).

The invariant IW2 with |W2| = 0.05 encloses all the solutions of Σp for p ∈
[p2 − |W2|/2, p2 + |W2|/2] = [1.875, 1.925].

Figure 8.3: In the top figure, the red cycle represents the approximate Euler solution of Σp2

in the phase plan near the limit cycle L with p2 = 1.9 and |W2| = 0.05. The
invariant IW2 is the green torus which is centered around the (red) approximate
Euler solution of Σp2 , and its radius δW2(t) is represented in the bottom figure.

124 8. Generation of bounded invariants via stroboscopic set-valued maps

8.1.4 Conclusion

Given a parametric differential system parameter Σp (with a parameter p taking its
values in an interval of the form Q = [p0 − |W|/2, p0 + |W|/2]), we have introduced
a simple condition of inclusion of sets (Euclidean balls) which guarantees that the
approximate Euler solutions of Σp0 are attracted by a limit cycle L, which is itself a
cyclic solution of Σp0 . Moreover, we have introduced a toric set I0 around L which is
invariant for Σp0 , and whose radius δ(t) becomes in practice quickly very small. This
shows that the exact solutions of Σp0 exist in the close neighborhood of the cycle L and
have themselves an almost cyclic behavior. Finally, we have constructed a compact set
ΣW centered also on L, whose radius δW(t) is now non negligible, which is invariant
for every system Σp (p ∈ Q). We hope that this method, illustrated on the example of
a parametric Van der Pol system, opens an alternative practical way to the complex
techniques based on contractivity, Lyapunov functions or Poincare maps that are used
presently to show the existence of attractive limit cycles.

8.2 Robust optimal periodic control using guaranteed Euler’s method

This section flows the work carried out in [JFA21b].

8.2.1 Introduction

When considering the optimization of real-time processes, it has been shown that a
periodic time-dependent control often yields better performance than a simple time-
invariant steady-state control. This observation has led to the creation of the field
of Optimal Periodic Control (OPC) theory in the 70’s (see [Gil77] and references
therein). These periodic controls are open-loop (no feedback), so they are not a
priori “robust” or “stable” against possible perturbations or uncertainties, and special
attention must be paid to ensure the robustness of such controls against possible
perturbations (see, e. g., [WHSC19, DT12, TFML18]). Among recent works on new
methods of robust OPC, we focus here on a line of research developed by Houska and
co-workers [HLID09, SHD12, SHGD12]. Their methodology consists in generating a
“central optimal path” for the case of a null perturbation, which is surrounded by
a “tube”, which is invariant in a robust manner (i. e., in the presence of a bounded
perturbation w ∈ W). Here we consider a simplified problem compared to that

8.2. Robust optimal periodic control using guaranteed Euler’s method125

of [HLID09] (cf. [NB03]): we focus on the optimal open-loop control of the system
without perturbation (“nominal control”) and analyze its robustness in the presence of
perturbation while [HLID09] modifies the nominal control in order to satisfy additional
prescribed constraints on the state of the system (“robustified control”).

We keep the idea of “tube” used in [HLID09, SHD12, SHGD12], but we make use of
recent results related to approximate solutions by Euler’s method (see [LCF19, CF19]).
Our method makes a preliminary use of a dynamic programming (DP) method for
generating a finite sequence of control π which solves a finite horizon optimal problem
in the absence of perturbation. We then calculate an approximate Euler solution of the
unperturbed system denoted by Ỹ (t) under π∗, which corresponds to the sequence π

applied repeatedly. We consider the tube defined by BW(t) of the form B(Ỹ (t), δW(t))3

where Ỹ (t) is the central path, and δW(t) an upperbound of the deviation due to
W. The main contribution of this chapter is to give a simple condition on BW(t)
which guarantees that the system is “stable in the presence of perturbation” in the
following sense: the unperturbed system under π∗ is guaranteed to converge towards
an attractive limit cycle (LC) L, and the trajectories of the perturbed system under
π∗ are guaranteed to remain inside BW(t), which is a “torus” surrounding L.

In contrast with many methods of OPC using elements of the theory of LCs, our
method does not use any notion of “Lyapunov function” (as, e. g., in [SHD12, SHGD12])
or “monodromy matrix” (as, e. g., in [HLID09]). We also explain how to compute a
rate of local contraction of the system in order to obtain more accurate results than
those obtained using global contraction (see, e. g., [AS14, MS13]). The simplicity of
our method is illustrated on a classical example of bioreactor (see [HLID09]).

Outline

In Section 7.3.1, we recall the principles of the Euler-based method, described
in [LCF19, CF19, LCADSC+17], for finding a finite control sequence π that solves a
finite-horizon optimal control problem. In Section 8.2.2, we give a simple condition
that ensures the robustness of the control (Theorem 8.2); the method is illustrated on
the bioreactor example of [HLID09]. We conclude in Appendix E.4.

8.2.2 Application to Guaranteed Robustness

We suppose that a control sequence π has been generated by PROC ε
k for solving the

finite-horizon optimal control problem for the unperturbed system (w = 0, T = kτ =
K∆t). We now give a simple condition on the system with perturbation W under π∗

3We write B(x, d) to denote the ball of center x and radius d, i. e., the set of elements y such that
∥y − x∥ ≤ d, where ∥ · ∥ is the Euclidean norm.

126 8. Generation of bounded invariants via stroboscopic set-valued maps

which guarantees the existence of a stable LC L for the unperturbed system, as well
as the boundedness of the solutions of the perturbed system. Let us consider the tube
BW(t) ≡ B(Ỹ π∗

z0 (t), δπ∗
µ,W(t)) for some µ ≥ ε.

Lemma 8.1. Suppose

(∗) BW
(
(i + K)∆t

)
⊂ BW(i∆t), for some i ≥ 0.

Then we have:

1. The set I ≡ {y ∈ BW(t)}t∈[i∆t,(i+K)∆t] is an invariant of the perturbed system,
i.e.: if y0 ∈ I then Y π∗

y0,W(t) ∈ I for all t ≥ 0.

2. λi+1 + · · · + λi+K < 0, where −λj (j = i + 1, . . . , i + K) is the local rate of
contraction4 for the region {y ∈ BW(t)}t∈[(j−1)∆t,j∆t].

This implies that the distance between two solutions of the unperturbed system starting
at I decreases exponentially every T = K∆t time-steps, and each solution of the
unperturbed system starting at I converges to an LC L ⊂ I.

Proof. (sketch). Item 1 follows easily from (∗). Item 2 is proved ad absurdum:
Suppose λi+1 + · · · + λi+K ≥ 0. It follows, using (H): δµ,W((i + K)∆t) ≥
e(λi+1+···+λi+K)∆tδµ,W(i∆t) ≥ δµ,W(i∆t). This implies that the radius of BW((i + K)∆t)
is greater than or equal to the radius of BW(i∆t), which contradicts (∗). So
λi+1 + · · · + λi+K < 0. It follows that I is a “contraction” region for the unper-
turbed system, and every solution starting at y0 ∈ I converges to an LC L ⊂ I (cf.
proof of Theorem 2 in [MS13]).5

From Lemma 8.1, it easily follows:

Theorem 8.2. Let y0 ∈ S be a point of ε-representative z0 ∈ X (so ∥y0 − z0∥ ≤ ε).
Let T = kτ = K∆t. Let π ∈ Uk be the optimal pattern output by PROC ε

k(z0) for
the unperturbed system with finite horizon T . Let us consider the tube BW(t) ≡
B(Ỹ π∗

z0 (t), δπ∗
µ,W(t)) for some µ ≥ ε. Suppose that the following inclusion condition

holds:
(∗) BW

(
(i + K)∆t

)
⊂ BW(i∆t) for some i ≥ 0.

Then:

1. The exact solution Y π∗
y0,0(t) of the unperturbed system under control π∗ converges

to an LC L ⊂ I when t → ∞.
4See Remark 3.
5Actually, the system may also converge to an equilibrium point, but it is convenient to consider an

equilibrium as a trivial form of LC (see [MS13]).

8.2. Robust optimal periodic control using guaranteed Euler’s method127

2. For all w ∈ W, the exact solution Y π∗
y0,w(t) of the perturbed system always remains

inside I for t ≥ i∆t.

This reflects the robustness of the perturbed system under π∗.

Proof (sketch). First of all, it is easy to see that the “tail-biting” condition implies
that, for all ℓ ≥ j: BW((ℓ + 1)T) ⊂ BW(ℓT). Now: Yy0,0(ℓT) ∈ B(Ỹz0,0(ℓT), δε,0(ℓT))
by Proposition 7.3, and it is easy to see: δε,0(t) ≤ δε,W(t) ≤ δµ,W(t) for µ ≥ ε. It
follows: Yy0,0(ℓT)) ∈ B(Ỹz0,0(ℓT), δµ,W (ℓT)) = BW(ℓT) ⊆ BW((j + 1)T) ≡ B(c, ρ) for
all ℓ ≥ j + 1. The exact solution Yy0,0(t) therefore periodically passes through the
ball BW((j + 1)T) (which can be seen as a Poincaré section). By the theory of LCs,
it means that Yy0,0(t) converges towards an LC L (which proves Item 1). It follows
that the closed set BW((j + 1)T) contains a point of L. Besides, BW((j + 1)T) ≡
B(Ỹz0,0((j + 1)T), δW((j + 1)T)) contains Yy0,W((j + 1)T) by Proposition 7.4, so it
contains all the points Yy0,W(ℓT) for ℓ ≥ j + 1 (since BW((j + 1)T) ⊃ BW(ℓT)). Hence
BW((j + 1)T) contains a point of L as well as Yy0,W(ℓT) for ℓ ≥ j + 1. Therefore, for
all ℓ ≥ j + 1, Yy0,W(ℓT) is at a distance of less than 2δW((j + 1)T) from L (which
proves Item 2).

Remark 7. In the OPC literature, it is classical to formulate the optimization problem
with an explicit periodicity constraint of the form Y (T) = Y (0) (see, e. g., [Gil77,
HLID09]). This is not needed here. Actually, at the end of the first period t = T , Y (t)
is in general very different from Y (0) with our method (see Example 8.4).

8.2.2.1 Example

The implementation has been done in Python and corresponds to a program of
around 500 lines. The source code is available at lipn.univ-paris13.fr/~jerray/
orbitador/robust/. In the experiments below, the program runs on a 2.80 GHz Intel
Core i7-4810MQ CPU with 8 GiB of memory.

Example 8.4. Let us consider the system of Example E.1 and the initial point
z0 ≡ (X(0), S(0), P (0)) = (6.52, 12.50, 22.40).

The domain S of the states (X, S, P) is equal to [4.8, 7.5] × [11, 26] × [17.5, 26].
The grid X corresponds to a discretization of S, where each component is uniformly
discretized into a set of κ points. The codomain [28.7, 40] of the original continuous
control function Sf(·) is itself discretized into a finite set U , for the needs of our
method. After discretization, Sf(·) is a piecewise-constant function that takes its
values in the set U made of 300 values uniformly taken in [28.7, 40]. The function Sf (·)
can change its value every τ seconds.

https://lipn.univ-paris13.fr/~jerray/orbitador/robust/
https://lipn.univ-paris13.fr/~jerray/orbitador/robust/

128 8. Generation of bounded invariants via stroboscopic set-valued maps

Let π be the control sequence found by PROC (z0) for the process without per-
turbation for τ = 1, ∆t = 1/400 and T = 48 (i. e., k = 48, K = 19200). Here, λ

is independent of the value of the mode Sf . The values of λ and γ are computed
locally and vary from +4.0 to −0.1, and from 0.06 to 0.12 respectively. Let us apply
the control sequence π repeatedly to the process with perturbation: we suppose here
that the perturbation is additive and ∥w∥ ≤ ω = 0.001. Fig. 8.4 displays the results
of the 4 first applications of π. In these figures, the red curves represent the Euler
approximation Ỹ (t) of the unperturbed solution as a function of time t in the plans
X, S and P . The green curves correspond, in the X, S and P plans, to the borders of
tube BW(t) ≡ B(Ỹ (t), δW(t)) with Ỹ (0) = z0 and δW(0) = µ = 0.06667.6 The 10 blue
curves correspond to as many random simulations of the system with perturbation,
with initial values in B(z0, µ). It can be seen that the blue curves always remain well
inside the green tube BW(t) which overapproximates the set of solutions of the system
with perturbation. The values of the coordinates of the center Ỹ (t) and the radius
δW(t) of the green tube BW(t), at t = 0, T, 2T, 3T, 4T , are:

Ỹ (0) = (6.52, 12.5, 22.4), δW(0) = 0.06667;

Ỹ (T) = (6.78068367, 12.61279314, 23.98459177), δW(T) = 0.02396854;

Ỹ (2T) = (6.77663937, 12.62347387, 23.95516391), δW(2T) = 0.01649916;

Ỹ (3T) = (6.77670354, 12.62331389, 23.95558776), δW(3T) = 0.01635563;

Ỹ (4T) = (6.77670254, 12.62331638, 23.95558164), δW(4T) = 0.01628267.
We have: BW(4T) ⊂ BW(3T) (but BW(3T) ̸⊆ BW(2T) ̸⊆ BW(T) ̸⊆ BW(0)). The
computation takes 480 seconds of CPU time. It follows by Theorem 8.2 that the
solution of the perturbed system, for t ≥ 3T passes periodically by BW(3T) =
B(Ỹ (3T), 0.01635563), and the solution of the unperturbed system converges to an LC
contained in I ≡ {(X, S, P) ∈ BW(t)}t∈[3T,4T] shown in Fig. 8.5 (bottom). This appears
clearly on Fig. 8.4, where simulations of the process with perturbation corresponds to
the blue lines, and the process without perturbation to the red line.

8.2.3 Conclusion

We have supposed here that a control sequence π has been generated for solving a finite-
horizon optimal control problem for the system without perturbation (w = 0). We have
then given a simple condition which guarantees that, under the repeated application
π∗ of π, the system with perturbation (w ∈ W) is robust under π∗: the unperturbed
system is guaranteed to converge towards an LC L, and the system perturbed with W
is guaranteed to stay inside a bounded tube around L. In contrast with many methods

6It is clear that, as required by Theorem 8.2, µ = 0.06667 > ε ≈ 0.004.

8.2. Robust optimal periodic control using guaranteed Euler’s method129

Figure 8.4: Biochemical process with an additive perturbation ∥w∥ ≤ 0.001 over 4 pe-
riods (4T = 192) for ∆t = 1/400 and initial condition (X(0), S(0), P (0)) =
(6.52, 12.5, 22.4), with, from top to bottom, X(t), S(t), P (t) and control Sf (t).

of OPC using elements of the theory of LCs (e. g., [HLID09, SHD12, SHGD12]), the
method does not make use of any notion of monodromy matrix or Lyapunov function.
The method uses a simple algorithm to compute local rates of contraction in the
framework of Euler’s method (see Remark 3), which may be more accurate than the
global rates considered in the literature (see e. g., [AS14, MS13]). The simplicity of
application of our method has been illustrated on the example of a bioreactor given
in [HLID09].

As mentioned in Appendix E.1, we have treated here a simplified problem of
robustness compared to the one dealt with in [HLID09] (cf. [NB03]).

130 8. Generation of bounded invariants via stroboscopic set-valued maps

Figure 8.5: Top: a 3D view of the Euler approximation Ỹ (t) of the unperturbed solution
represented by the red curves in Fig. 8.4. Bottom: a 3D view of the invariant
I represented by green shape.

9
Enclosures of invariant tori and
strange attractors using Euler’s

method
In this chapter, we show how, using Euler’s integration method and an associated
function bounding the error in function of time, one can generate structures closely
surrounding the invariant tori of dynamical systems. Such structures are constructed
from a finite number of balls of Rd and encompass the deformations of the tori when
small perturbations of the flow of the system occur.

Contents

9.1 Introduction . 132

9.2 Constructing Invariant Stuctures Around Tori 133

9.2.1 Basic method for periodic systems 133

9.2.2 Extension to chaotic systems 138

9.3 Conclusion . 141

1329. Enclosures of invariant tori and strange attractors using Euler’s method

9.1 Introduction

Invariant tori are objects which are omnipresent in physics and intervene in a multi-
plicity of different domains: chemical reactions, population dynamics, electrical circuit
theory, electrodynamics, fluid dynamics, . . . (see, e.g., [ERS00, Ras03]). These tori
are (positively) invariant in the sense that all the orbits lying on their surface at t = t0

remain on them at all subsequent time t ≥ t0.

The topology of tori conveys important information. In order to understand it,
one introduces a “continuation” parameter (say µ) in the equations of the dynamical
system, a simple basic case corresponding to µ = 0. One then progressively make
µ vary, and observe the change of topology of the torus. Roughly speaking, a torus
appears when, in a Poincaré section, a stable fixed-point M becomes unstable while an
invariant closed curve (“circle”) L appears around M . In the full space, M corresponds
to a repulsive circle C of the system, and L to an attractive invariant torus T . Further
variations of µ lead to the deformation of T until a “torus bifurcation” occurs. When
µ is still modified, the solutions of the system become “aperiodic” and a phenomenon
of chaos appears.

There are basically three kinds of methods of numerical analysis that exploit this
mechanism of parameter continuation: partial differential equation [DB94, Tru00],
graph transform [BHV02, Rei00, SOV05] and orthogonality methods [ERS00, RD08].
Their respective advantages and disadvantages are analyzed, basically from a compu-
tational efficiency point of view, in, e.g., [ERS00, Ras03]. From a formal point of view,
all the methods are incomplete because they focus on a discretization of the continuous
dynamical system, but do not take the associated errors in consideration, or, at best,
evaluate them modulo unknown constants (see, e.g., [Gar01, HL99, Rei00]).

On the other hand, Capinski and co-authors recently developed a guaranteed com-
puter assisted method of proof for attractive invariant tori (see [CFM19]). They obtain
an outer approximation of the torus via covering by polygons. Their implementation is
based on the validated integrators developed by Wilczak and Zgliczynski [WZ07]. We
follow a similar approach, but rely here on Euler’s integration method associated to
an error function δ(t) that bounds, at time t, the distance between the numerical and
the exact solutions (see [LCDVCF17]). We are thus able to generate a finite number
of d-dimensional balls of radius δ(t) for bounded values of t, which encompass the
torus. The set of balls is itself invariant and continues to contain the torus when
the latter deforms under small variations of µ. This approach extends our previous
work [JF21], which was limited to the determination of invariant circles. The method
applies naturally to periodic systems, but we explain how to extend it in order to
construct an overapproximation of “strange attractors” existing in certain chaotic
systems.

9.2. Constructing Invariant Stuctures Around Tori 133

Comparison with related work

The elements of the following discussion are based on [ERS00] and EWY[Ras03].
Classically, in order to analyze an invariant torus, the torus is parameterized in terms
of a subset of the variables of the original dynamical system, and a “continuation”
principle is applied. The basic methods differ by the conditions they use to justify
the continuation process: the partial differential equation (PDE) condition, the graph
transform condition and the orthogonality condition. In the PDE approach, the
condition that the torus is an invariant set for the original systems leads to the solution
of an equivalent system of first-order PDEs subject to periodic boundary conditions
[DB94, Tru00]. The graph transform method [BHV02, Rei00, SOV05] follows Fenichel’s
proof of the continuation of tori in [Fen71]. The orthogonality method [ERS00, RD08]
relies on purely geometrical reasoning. Under some hypotheses, the three conditions
are equivalent but the implementation of the associated methods is fundamentally
different, and each kind of method has its own difficulties. In particular, the PDE
methods require the formulation and numerical resolution of a PDE, which make them
applicable to a restricted class of problems in practice. The graph transform methods
require the splitting of the “normal bundle” into attracting and repelling spaces. The
orthogonality-based methods encounter numerical instability problems with natural
discretization schemes (see [Ras03] for details).

As mentioned above, from our point of view, the main problem of all these methods
is that the errors inherent to the discretization process are not precisely evaluated.
In order to account for the discretization errors, we extend the approach initiated in
[JF21], which was restricted to the determination of invariant circles (“limit cycles”),
in order to determine higher-dimensional invariant tori.

Outline

In Section 9.2, we explain how to construct an invariant structures around tori for
periodic systems then for chaotic systems. We conclude in Section 9.3.

9.2 Constructing Invariant Stuctures Around Tori

9.2.1 Basic method for periodic systems

Consider a differential system ΣW : ẋ = f(x, w) with w ∈ W , an initial point x0 ∈ Rd,
a real ε > 0 and a ball B0 = B(x0, ε). Let Bε,W(t) denote B(x̃(t), δε,W(t)) where x̃(t) is

1349. Enclosures of invariant tori and strange attractors using Euler’s method

the Euler approximate solution of the system without uncertainty and initial condition
x0

1. It follows from Proposition 7.2 that ⋃t≥0 Bε,W(t) is an invariant set containing
B0. We can make a stroboscopic map of this invariant. by considering periodically
the set Bε,W(t) at the moments t = 0, T, 2T , etc., with T = kτ for some k (τ is the
time-step used in Euler’s method). The value of T is an estimate of the exact period
T ∗ of the system.

If moreover, we can find an integer i ≥ 0 such that Bε,W((i + 1)T) ⊆ Bε,W(iT),
then we have Bε,W(iT) = ⋃

j=i,i+1,... Bε,W(jT) and ⋃
t∈[0,(i+1)T] Bε,W(t) = ⋃

t≥0 Bε,W(t).
The set ⋃t∈[0,(i+1)T] Bε,W(t) is thus a bounded invariant which contains all the solutions
x(t) starting at B0, for t ∈ [0, ∞). We have:

Proposition 9.1. [JF21] Consider a system ΣW : ẋ = f(x, w) with uncertainty
w ∈ W satisfying (H1), and a set of initial conditions B0 ≡ B(x0, ε). Suppose that
there exist T > 0 (with T = kτ for some k ∈ N) and i ∈ N such that

(*): Bε,W((i + 1)T) ⊆ Bε,W(iT).
Then we have:

1. ⋃t∈[0,(i+1)T] Bε,W(t) is a compact (i.e., bounded and closed) invariant set contain-
ing, for t ∈ [0, ∞), all the solutions x(t) of ΣW with initial condition in B0.

2. The subset ⋃t∈[iT,(i+1)T] Bε,W(t) contains an attractive circle (or “stable limit
cycle”) of the system Σ0 without uncertainty (w = 0).

Proposition 9.1 states that the invariant set ⋃t∈[0,(i+1)T] Bε,W(t) is an d-dimensional
tube having the form of a “lasso”composed of a linear part ⋃t∈[0,iT] Bε,W(t) connected to
a looping part ⋃t∈[iT,(i+1)T] Bε,W(t). Besides, the looping part encloses a 1-dimensional
attractive circle. Since Bε,W(t) is a ball of Rd (of radius δε,W(t)), a lasso is constructed
from a finite number (viz., (i + 1) × k) of balls.

Given ε, W , τ , T = kτ , the lasso: ⋃t∈[0,(i+1)T] Bε,W(t) is uniquely determined by
the center x0 ∈ Rd of the initial ball B0 = B(x0, ε) and by i0, the integer such that (*)
holds. We call x0 the source point of the lasso, and B0 = B(x0, ε) the source ball. We
will denote such a lasso by L(x0, i0) or more simply by L(x0), where i0 is left implicit.
Note that the invariance property of a lasso L(x0) is robust: the invariance persists
even in presence of a bounded perturbation w ∈ W of the dynamical system.

The implementation of the construction of lassos has been done in Python and
corresponds to a program of around 500 lines. The source code is available at lipn.
univ-paris13.fr/~jerray/orbitador/. In the experiments below, the program
runs on a 2.80 GHz Intel Core i7-4810MQ CPU with 8 GiB of memory. Given x0, one
searches for values of τ, ε, W , T at hand (by trial and error) so that inclusion (*) can
be successfully verified by the program.

1Note that Bε,W(0) = B0 because x̃(0) = x0 and δε,W(0) = ε.

https://lipn.univ-paris13.fr/~jerray/orbitador/
https://lipn.univ-paris13.fr/~jerray/orbitador/

9.2. Constructing Invariant Stuctures Around Tori 135

Example 9.1. Consider the forced Van der Pol (VdP) system ΣW with initial condition
in B0 = B(x0, ε) for some x0 ∈ R3 and ε > 0 (adapted from [Ras03]).

ẋ1 = x1(
√

x2
1+x2

2−3)√
x2

1+x2
2

(µ − (
√

x2
1 + x2

2 − 3)2 − x2
3) − x2

2+x1x3√
x2

1+x2
2
) + w

ẋ2 = x2(
√

x2
1+x2

2−3)√
x2

1+x2
2

(µ − (
√

x2
1 + x2

2 − 3)2 − x2
3) + x1x2−x2x3√

x2
1+x2

2
) + w

ẋ3 = (
√

x2
1 + x2

2 − 3) + µx3 − x3((
√

x2
1 + x2

2 − 3)2 + x2
3) + w

with a parameter µ that controls the periodic forcing term and a bounded perturbation
w ∈ W. Here µ = 1 and W = [−0.001, 0.001]. Let the time-step be equal to
τ = 10−3 and the radius of the initial ball around the source points be ε = 0.05. Let
X(t) := (x1(t), x2(t), x3(t)) with source point. Our program finds that, for T = 6.283,
we have:

X(0) := (4, −10−3, −4.8985872 · 10−16) and δW(0) = ε = 0.05. We have:

X(T) = (3.96480714, −5.31384851 · 10−1, −1.78122434 · 10−4),

δW(T) = 0.009369013554590614

X(2T) = (−3.99399126, −2.23716163 · 10−1, −1.12718456 · 10−3),

δW(2T) = 0.013528832294010595

X(3T) = (−4.00024909, −4.16869048 · 10−4, −1.31261670 · 10−3),

δW(3T) = 0.008339289838071407

X(4T) = (−4.00024885, −7.76179315 · 10−7, −1.49692259 · 10−3),

δW(4T) = 0.008181686420182348

X(5T) = (−4.00024856, −1.44518842 · 10−9, −1.68122843 · 10−3),

δW(5T) = 0.008088285030977036

X(6T) = (−4.00024823, −2.69083383 · 10−12, −1.86553421 · 10−3),

δW(6T) = 0.008001319005309636

X(7T) = (−4.00024787, −5.01013330 · 10−15, −2.04983993 · 10−3),

δW(7T) = 0.008408806943539475

X(8T) = (−4.00024747, −9.32849705 · 10−18, −2.23414558 · 10−3),

δW(8T) = 0.007976450475139826.

We have: Bε,W(8T) ⊂ Bε,W(7T), i.e.: Bε,W((i0 + 1)T) ⊂ Bε,W(i0T) for i0 = 7.The
computation takes 1038 seconds of CPU time. See Fig. 9.1. An analogous computation
of lassos for 3 other source points takes 4052 seconds. The 4 lassos are depicted
together on Fig. 9.2.

1369. Enclosures of invariant tori and strange attractors using Euler’s method

Figure 9.1: Forced VdP. Top: the function δW(t) giving the evolution of the radius of a
lasso ball. Bottom: the corresponding invariant lasso.

Given a closed orbit (“circle”) C, and a union R of balls of radius ε > 0, we say
that R isolates C if there exists α > 0 such that:

(**) Any continuous curve containing a point of C and a point located at distance
α from C, also contains a point of R.
We say that R is at distance α0 > 0 of C, where α0 is the greatest α satisfying
property (**).

Let T be a torus of repulsive circle C, and M a set of lassos. We say that M

9.2. Constructing Invariant Stuctures Around Tori 137

Figure 9.2: Forced VdP. Top: the function δW(t) giving the evolution of the radius of 4
lasso balls. Bottom: the 4 corresponding invariant lassos.

covers T (besides the α0-neighborhood of C), if all orbit O on T starting at a distance
greater than α0 from C is contained in a lasso of M. We have:

Theorem 9.1. Let T be a torus of repulsive circle C, and R a union of balls of Rd

isolating C at distance α0. The set of lassos M having the balls of R as source balls,
covers T (besides the α0-neighborhood of C). Furthermore, M continues to cover T
for a bounded perturbation w ∈ W of the dynamical system.

The proof is based on the fact that, by Proposition 9.1, each lasso of M connects

1389. Enclosures of invariant tori and strange attractors using Euler’s method

its source ball to an attractive circle. Note that the application of Theorem 9.1 requires
the prior estimate of the location of the torus repulsive circle C. Actually, as seen in
the forthcoming examples, taking a subset R′ of R as source balls, even if R′ does not
isolate C “completely”, suffices to provide useful information on T .

Example 9.2. For the system of Example 9.3, we generate 100 lassos which (partially)
cover the invariant torus of the system, as depicted on Fig. 9.3. The choice of the
100 source points is as follows. One knows (see [Ras03]) that the system has, in the
x2-x3 plane, a repulsive invariant circle C of centre (3, 0, 0) and radius 1. We thus
take 100 source points distributed in the vicinity of the circumference of C.The same
values of ε, τ, T = kτ, W are used for all the lassos (see Example 9.3). For each source
point, the generation of the corresponding lasso stops when the inclusion relation (*)
is verified, which takes around 1000 seconds of CPU time2. Note that, as stated by
Proposition 9.1, the looping part of each lasso contains an attractive invariant circle
(here, the circle of centre (−3, 0, 0) and radius 1, in the x2-x3 plane).

An other example (Example C.1: coupled VdP oscillators) is given in Ap-
pendix C.5.

9.2.2 Extension to chaotic systems

The existence of the cyclic part of a lasso means that there exists an instant t1 = ℓ1τ

(with ℓ1 ∈ N) such that:

(1) Bε,W(t1 + T1) ⊆ Bε,W(t1) for some T1 = k1τ (k1 ∈ N \ {0}).
This implies that the unperturbed system has a periodic closed orbit (“limit cycle”)
passing through B1 (cf. Proposition 9.1). Now we know that there exist “chaotic” or
“quasi-periodic” systems that never pass through the same point again: so (1) never
holds for these systems. Nevertheless, the reachability space of such systems may be
compact, and we can hope to find a finite number of instants, say two instants t1 = ℓ1τ

and t2 = ℓ2τ for some ℓ1, ℓ2 ∈ N for the sake of simplicity, such that:

(1.1) Bε,W(t1 + T1) ⊆ B1 ∪ B2 for some T1 = k1τ (k1 ∈ N \ {0}), and

(1.2) Bε,W(t2 + T2) ⊆ B1 ∪ B2 for some T2 = k2τ (k1 ∈ N \ {0}),
where Bj := Bε,W(tj) for j = 1, 2. The relation (1.1-1.2) guarantees the following
recurrence property:

Whatever the point of B1 ∪ B2 from which it starts, the system returns to B1 ∪ B2

within a time equal to T1 or T2.
2which means a total of nearly 30 hours of CPU time for generating the 100 lassos.

9.2. Constructing Invariant Stuctures Around Tori 139

Figure 9.3: Forced VdP. A set of 50 lassos (top) and 100 lassos (bottom) partially covering
the invariant torus.

This corresponds to the existence of a “strange attractor” of the system. Besides, we
have:

Proposition 9.2. Consider a system ΣW : ẋ = f(x, w) with uncertainty w ∈ W
satisfying (H1), and let, for j = 1, 2, Bj := Bε,W(tj) with tj = ℓjτ for some ℓj ∈ N.
Suppose that, for j = 1, 2, there exists Tj = kjτ (with kj ∈ N \ {0}) such that:

Bε,W(tj + Tj) ⊆ B1 ∪ B2.

Let Ij := ⋃
t∈[0,Tj] Bε,W(tj + t) (j = 1, 2). Then I1 ∪ I2 is a compact invariant set

containing, for t ≥ 0, all the solutions x(t) of ΣW with initial condition in B1 ∪ B2.

1409. Enclosures of invariant tori and strange attractors using Euler’s method

The invariant set I1 ∪ I2 can be seen as an overapproximation of the “strange
attractor” of the system.

Remark 8. Proposition 9.2 treats the case j ∈ {1, 2}, but extends to the case j ∈
{1, 2, · · · , q} with q ≥ 2.

Example 9.3. Consider the system ΣW (see [SOV05]):

ẏ1 = 1
2(−k1y1 − Ay2) + w

ẏ2 = 1
2(Ay1 − k1y2 + 0.22) + w

ẏ3 = 0.03 − 0.005
16 (3r2 + 2y2

3)y3 + w

with A := 1 − 3
32(r2 + 4y2

3), r2 := y2
1 + y2

2, and a bounded perturbation w ∈ W . Here
W = [−0.0001, 0.0001]. Let the time-step be equal to τ = 10−2.

In [SOV05], it is observed that “a family of attracting periodic orbits branches off”
for certain values of k1, e.g., for k1 = 0.09. Using the basic method of Section 9.2.1
with ε = 0.1, one can prove the existence of an attracting periodic orbit for k1 = 0.09
(see Fig. 9.5). Then, decreasing the value of k1, it is observed in [SOV05] that, “at
k1 ≈ 0.0772 the periodic orbits lose stability in a period-doubling bifurcation and a
family of doubled periodic orbits emanates. At k1 ∈ {0.0509, 0.0476, . . . } further period
doublings occur that apparently form a cascade”. The basic method of Section 9.2.1
with ε = 0.2 allows us to prove the existence of orbits of such doubled and quadrupled
families for k1 = 0.06 and k1 = 0.05 respectively (see Fig. 9.6 and Fig. 9.7).

When decreasing further the value of k1, it is then noticed in [SOV05] that, “for
k1 ≈ 0.04 a strange attractor is observed in simulations”. For k1 = 0.038, we prove
indeed, using the extended method, that there exists an invariant set of the system that
gives us an overapproximation of the strange attractor (see Fig. 9.4). The invariant
set is constructed as follows.

Let x0 = (1.25170752, 1.45865452, 1.20794305), ε = 0.2, t1 = 5397.83s, t2 =
5486.28s, and Bj := Bε,W(tj) for j = 1, 2. Our program finds that, for T1 = 1260.42s:

Bε,W(t1 + T1) = B(x̃(t1 + T1; x0), δε,W(t1 + T1)) ⊂ B1 ∪ B2,
with x̃(t1 + T1; x0) = (−0.37685675, −0.64195472, 1.19994271)
and δε,W(t1 + T1) = 0.013229942350183037.
Likewise, our program finds that, for T2 = 272.37s:

Bε,W(t2 + T2) = B(x̃(t2 + T2; x0), δε,W(t2 + T2)) ⊂ B1 ∪ B2,
with x̃(t2 + T2; x0) = (−0.37817562, −0.64254436, 1.20008989)
and δε,W(t2 + T2) = 0.012367919545789486.

The balls B1 and B2 are depicted in orange, and their images Bε,W(t1 + T1)
and Bε,W(t2 + T2) in light green and grey respectively, on Fig. 9.4 (zoom view).
By Proposition 9.2, we know that I1 ∪ I2 is an invariant set of the system, with

9.3. Conclusion 141

Ij := ⋃
t∈[0,Tj] Bε,W(tj + t) (j = 1, 2). Besides, when starting at B1 ∪ B2, the system is

guaranteed to return to B1 ∪ B2 within a time equal to T1 or T2. The computation
takes 35398 seconds of CPU time.

For all the cases k1 = 0.09, 0.06, 0.05, let τ = 0.01 and w ∈ W = [−0.0001, 0.0001].
Let Y (t) denote the Euler approximation of the solution (y1(t), y2(t), y3(t)) at time t.

For k1 = 0.09, let ε = 0.1 and take as initial condition: Y (0) = (−1.1, 1, 1.4). Our
program finds that, for T = 63.02s, Bε,W(2T) ⊂ Bε,W(T) with:

Y (0) = (−1.1, 1, 1.4), δW(0) = 0.1,

Y (T) = (−0.8451889, 1.08708964, 1.36775201), δW(T) = 0.017653110058938166,

Y (2T) = (−0.84049942, 1.09501111, 1.36834661), δW(2T) =
0.005405413251680326.
This corresponds to a simple limit cycle, as depicted on Fig. 9.5.

For k1 = 0.06, let ε = 0.2, and take as initial condition:
Y (0) = (−0.70980849, 0.98196113, 1.43337992). The program finds that, for T = 104s,
Bε,W(2T) ⊂ Bε,W(T) with:

Y (0) = (−0.70980849, 0.98196113, 1.43337992), δW(0) = 0.2,

Y (T) = (−0.78068153, 1.03727912, 1.41704223), δW(T) = 0.017162929835499604.
Y (2T) = (−0.7754963, 1.03256313, 1.41878211], δW(2T) = 0.006770367587314312.
This corresponds to a limit cycle with a doubled period, as depicted on Fig. 9.6.

For k1 = 0.05, let ε = 0.2, and take as initial condition:
Y (0) = (−0.70980849, 0.98196113, 1.43337992). The program finds that, for T =
188.4s, Bε,W(T) ⊂ Bε,W(0) with:

Y (0) = (−0.70980849, 0.98196113, 1.43337992), δW(0) = 0.2,

Y (T) = (−0.67051189, 0.95978894, 1.43388091), δW(T) = 0.009574141119020567.
This corresponds to a limit cycle with a quadrupled period, as depicted on Fig. 9.7.

9.3 Conclusion

We have introduced a simple technique based on Euler’s integration method which
allows us to construct an invariant structure made of a finite number of d-dimensional
balls covering the invariant torus of the system. Although it has not been done here,
the implementation can be fully parallelized in the periodic case, since the construction
of each lasso is independent of each other. We have also shown how to extend the basic
method to treat chaotic systems with strange attractors. Our method, which takes

1429. Enclosures of invariant tori and strange attractors using Euler’s method

into account the discretization errors, can help to complement the results obtained
with standard numerical methods.

9.3. Conclusion 143

Figure 9.4: k1 = 0.38, strange attractor. Top: in the (y1, y2)-plane, the trajectory (red)
ending in the invariant set I1 ∪ I2, where I1 (cyan) starts from a ball B1, and
I2 (purple) starts from a ball B2, with a zoom view of B1 and B2 (orange), and
their images (grey and light green) at t = T1 and t = T2 respectively. Middle:
a 3D view of I1 ∪ I2. Bottom: a 3D view of I1 (cyan) and I2 (purple).

1449. Enclosures of invariant tori and strange attractors using Euler’s method

Figure 9.5: k1 = 0.09, limit cycle with a simple period. Top: the trajectory computed via
Euler’s method (red) and the surrounding tube BW(t) from t = 0 to t = 2T
(green), in the (y1, y2)-plane. Middle: the invariant set in 3D. Bottom: δW(t).

9.3. Conclusion 145

Figure 9.6: k1 = 0.06, limit cycle with a doubled period. Top: the trajectory computed via
Euler’s method (red) and the surrounding tube BW(t) from t = 0 to t = 2T
(green), in the (y1, y2)-plane. Middle: the invariant set in 3D. Bottom: δW(t).

1469. Enclosures of invariant tori and strange attractors using Euler’s method

Figure 9.7: k1 = 0.05, limit cycle with a quadrupled period. Top: the trajectory computed
via Euler’s method (red) and the surrounding tube BW(t) from t = 0 to t = T
(green), in the (y1, y2)-plane. Middle: the invariant set in 3D. Bottom: δW(t).

10
ORBITADOR: A tool to analyze

the stability of periodical
dynamical systems

We present ORBITADOR, a tool for stability analysis of dynamical systems. ORBITA-
DOR uses a method that generates a bounded invariant set of a differential system
with a given set of initial conditions around a point x0 to prove the existence of a
limit cycle. This invariant has the form of a tube centered on the Euler approximate
solution starting at x0, which has for radius an upper bound on the distance between
the approximate solution and the exact ones. The method consists in finding a real
T > 0 such that the “snapshot” of the tube at time t = (i + 1)T is included in the
snapshot at t = iT , for some integer i with adding a small bounded uncertainty. This
uncertainty allows using an approximate value T of the exact period. We successfully
applied ORBITADOR to several classical examples of periodical systems.

Contents

10.1 Introduction . 148

10.2 ORBITADOR organization and principle 148

10.2.1 Targeted user . 149

10.2.2 Global architecture . 149

10.3 Example: Passive biped model 150

10.4 Conclusion . 152

148
10. ORBITADOR: A tool to analyze the stability of periodical dynamical

systems

This chapter comes mainly from [Jer21].

10.1 Introduction

The analysis of stability and convergence of numerical schemes for differential systems
is often based on the property of contraction of the space of solutions [LS98, AS14,
KGD15].

Given a differential system Σ : dx/dt = f(x) of dimension d, an initial point
x0 ∈ Rd, a real ε > 0, and a ball B0 = B(x0, ε)1, we present here a simple approach
allowing to find a bounded invariant set of Σ containing the trajectories starting at B0.
We first add a (small) bounded perturbation w(t) to the system, whose values belong to
a convex set W . We thus obtain a perturbed system of the form ΣW : dx/dt = f(x, w),
and we look for a bounded (forward) invariant set for ΣW . This invariant set has the
form of a tube whose center at time t is the Euler approximate solution x̃(t) of the
system starting at x0, and radius is a function δW(t) bounding the distance between
x̃(t) and any exact solution x(t) of ΣW starting at B0. The tube can thus be described
as ⋃t≥0 BW(t) where BW(t) ≡ B(x̃(t), δW(t)). To find a bounded invariant set, we then
look for a positive real T such that BW((i + 1)T) ⊆ BW(iT) for some i ∈ N. In case of
success, we show that the set IW = ⋃

t∈[iT,(i+1)T] BW(t) constitutes a bounded invariant
set for ΣW (and also for Σ corresponding to the particular case W = 0).

We integrated this approach to ORBITADOR in order to study the stability of
dynamical systems.

Outline:

In Section 10.2, we expose the organization and the features of ORBITADOR.
Section 10.3 gives the results obtained on the biped example. Section 10.4 concludes
this work.

10.2 ORBITADOR organization and principle

ORBITADOR is a tool that implements a formal method to prove formally the stability
of dynamical systems governed by differential equations.

1B(x0, ε) is the set {z ∈ Rd | ∥z − x0∥ ≤ ε} where ∥ · ∥ denotes the Euclidean distance.

10.2. ORBITADOR organization and principle 149

Input
describing

ODE
(input_system.py)

Method
(defined in

Section 8.1.2)
Invariant

set
Stability
analysis

Graphical
and

numerical
results

(figures of
evolution
of states)ORBITADOR

Figure 10.1: Workflow of ORBITADOR

10.2.1 Targeted user

The tool is intended to the user wishing to verify the existence of an attractive limit
cycle, and to construct an invariant set enclosing it.

10.2.2 Global architecture

ORBITADOR is written in Python, it is made of 1,037 lines of code, and can therefore run
under any operating system. We explain in Section 10.2.2 the global architecture of the
system, that starts by the input Python file describing the ODE and all specifications of
the computed system. Using this input, the method defined in Section 8.1.2 generates
an invariant set IW that allows study the stability of the given system. Graphical an
numerical results can be provided as the output of the analysis.

The input file of ORBITADOR is composed of 3 main modules:

1. Problem Definition: In this module, the user defines the names of the states that
constitute the system, also the user specifies the names of the parameters and
their values. After that, the user gives the differential equations of the system.
If the problem contains a guard condition and a reset, it is possible to add them
in the problem definition part.

2. Problem Configuration: In the problem configuration module, the user can set
the options to run ORBITADOR. Among these options, we find the time steps,
the initial conditions of the system or the starting point at initial time t0 the
value of the uncertainty W and the number of the periods.

3. Visualization: In the last module, the user specify the states to display. It can
be a 1D plot where the state is shown as a function of t or a phase portal where

150
10. ORBITADOR: A tool to analyze the stability of periodical dynamical

systems

dx(t)
dt

= f(x(t), w(t))

value of x0

value of τ

value of N

value of W

value of ε

IW (as defined in
Proposition 8.1)

δε,W(t)

λ

γ

CL

ORBITADOR

Figure 10.2: ORBITADOR’s structure

a state is shown as a function of an other state, in this case it can be 2D or 3D
plot (see, e. g., Fig. 10.3 for an example of a 2D-plot).

To launch ORBITADOR the user needs to run, in the terminal, the executable file
orbitador followed by the name of the input file:

./orbitador input_system.py

As shown in Fig. 10.2, to analyze a dynamical system using ORBITADOR, the
user needs to give as inputs its differential equations and initial conditions, also he
needs to provide the time step τ , the number of periods N in order to fix a maximum
duration Tf = NT in which ORBITADOR tries to find the index sought i (as defined
in Proposition 8.2), the bounded uncertainty W and the radius ε of the initial ball B0.
An approximate value T (= kτ for some integer k) of the period of the system can be
computed automatically by ORBITADOR or it can be fixed by the user as an input.
Using those inputs, ORBITADOR computes the local values of λ, L, C and γ as well as
the function δε,W (·) (as defined in Definition E.3 and Section 7.2.2). Then ORBITADOR
outputs the invariant set IW (as defined in Proposition 8.2).

The tool, its source code, several examples and results are available on the website
of ORBITADOR https://lipn.univ-paris13.fr/~jerray/orbitador/.

10.3 Example: Passive biped model

It is possible to use ORBITADOR in order to analyze the stability of hybrid systems,
i. e., continuous systems which, upon the satisfaction of a certain state condition

https://lipn.univ-paris13.fr/~jerray/orbitador/

10.3. Example: Passive biped model 151

(“guard”), may reset instantaneously the state before resuming the application of
ODEs. Many works in the domain of symbolic control have explained how to compute
an overapproximation of the intersection of the current set of reachability with the
guard condition, and perform the reset operation (see, e. g., [GG08, AK12, DFGLG13,
Fre15, KA20]). We describe here the results of such an extension to the passive biped
model [McG90], seen as a hybrid oscillator. The passive biped model exhibits indeed
a stable limit-cycle oscillation for appropriate parameter values that corresponds to
periodic movements of the legs [SKN17]. The model has a continuous state variable

x(t) = (ϕ1(t),
.

ϕ1(t), ϕ2(t),
.

ϕ2(t))⊤. The dynamics is described by dx(t)
dt

= f(x) + w

with w ∈ W ⊂ R4 and

f(x) =

.

ϕ1

sin(ϕ1 − γ)
.

ϕ2

sin(ϕ1 − γ) +
.

ϕ2
1 sin ϕ2 − cos(ϕ1 − γ) sin ϕ2

 , Reset(x) =

−ϕ1

.

ϕ1 sin(2ϕ1)
−2ϕ1

.

ϕ1 cos 2ϕ1(1 − cos 2ϕ1)

Guard(x) ≡ (2ϕ1 − ϕ2 = 0 ∧ ϕ2 < −δ).

The time-step used in Euler’s method is τ = 2 · 10−5, and ORBITADOR then
automatically computes an approximate value of the period equal to T = kτ with
k = 194129. Also, we choose N = 5 as the number of periods. Therefore, the maximum
duration Tf of this experience is Tf = NT = 5T = 19.4129s. For a system with
W = [−0.0001, 0.0001]4 and set of initial conditions B(x0, ε) with ε = 0.01 and x0 =
(0.009, −0.05869, −0.0009629, −0.3432), ORBITADOR finds: BW((i0 +1)T) ⊂ BW(i0T)
for i0 = 4.

On Fig. 10.3, the curve of Euler’s approximation x̃(t) is depicted in red for initial
condition x0 and t ∈ [0, Tf]. The borders of the tube BW(t) ≡ B(x̃(t), δε,W(t)) are
depicted in green. The black vertical lines delimit the portion of the tube between
t = i0T and t = (i0 + 1)T corresponding to the invariant set IW enclosing the limit
cycle.

It follows by Theorem 8.1 that, for any initial condition in B(x0, ε), the system
converges towards an attractive limit cycle contained in IW ≡ ⋃

t∈[4T,5T] BW(t).

The experiment above is performed on an ASUS X411UN Intel CoreŮ i7-8550U
1.80 GHz with 8 GiB memory running Linux Mint 19. The proof takes 327 seconds of
CPU time.

152
10. ORBITADOR: A tool to analyze the stability of periodical dynamical

systems

Figure 10.3: Biped system with uncertainty w ∈ W = [−0.0001, 0.0001]4, initial radius
ε = 0.001, approximate period T = 3.8826s and time-step τ = 2 · 10−5.

10.4 Conclusion

We presented ORBITADOR, a tool coded in Python that guarantees the existence
of limit cycles and constructs invariant sets around them. ORBITADOR uses a very
general criterion of inclusion of one set in another. This is simpler than classical
criteria based on contractivity properties or Lyapunov functions. Also, by adding a
small bounded uncertainty w ∈ W to the system, we can use an approximate value T

of the period and not an exact value.

11
Conclusion

and perspectives
This chapter concludes and discuss future perspectives of Part II

Contents

11.1 Summary of Part II . 154

11.2 Perspectives . 154

154
11. Conclusion

and perspectives

11.1 Summary of Part II

In Chapter 7, we have first introduced symblic Euler’s method and error bounds also
we have presented an extension of Euler method with control and perturbation. Then,
we have shown that the simple combination of random sampling with a symbolic
computation method (based on Euler’s integration method) allows us to deal with
robust optimization problems for nonlinear systems on non-convex domains.

In Chapter 8, we have first introduced a simple condition of inclusion of sets for
parametric differential systems (with a parameter p taking its values in an interval
of the form Q = [p0 − |W|/2, p0 + |W|/2]) which guarantees that its approximate
Euler solutions of are attracted by a limit cycle. Moreover, we have introduced a toric
set around the limit cycle which is invariant for Σp0 , and whose radius becomes in
practice quickly very small. This shows that the exact solutions of Σp0 exist in the
close neighborhood of the cycle and have themselves an almost cyclic behavior. Finally,
we have constructed a compact set with perturbation centered also on the limit cycle,
whose radius is now non negligible, which is invariant for every system Σp (p ∈ Q).

Then, we considered the application of optimal periodic control sequences to
switched dynamical systems. The control sequence is obtained using a finite-horizon
optimal method based on dynamic programming. The main result gives a simple
condition on the perturbed system for guaranteeing the existence of a stable limit
cycle of the unperturbed system.

In Chapter 9, we have given a simple method based on Euler’s integration method
which allows us to construct an invariant structure made of a finite number of d-
dimensional balls covering the invariant torus of the system. We have presented how
to use the basic method to treat chaotic systems with strange attractors. Since the
method takes into account the discretization errors, it can help to complement the
results obtained with standard numerical methods.

In Chapter 10, we presented a tool called ORBITADOR that guarantees the
existence of limit cycles and constructs invariant sets around them. It uses a very
general criterion of inclusion of one set in another.

11.2 Perspectives

In Chapter 8, we plan to improve our method in order to take into account the
specification of state constraints during the evolution of the system.

11.2. Perspectives 155

In Chapter 9, we envisage to implement a fully parallelized analysis in the periodic
case.

In Chapter 10, we plan to upgrade ORBITADOR so that it computes dynamical
systems with control(see [JFA21b]). As short term perspectives, we aim to verify by
ORBITADOR the control that has been implemented on the exoskeleton represented in
[VBV+21a].

General conclusion
Conclusion

Part I:

Part I highlights the formal verification of real-time systems under uncertainty,
notably using parametric timed model checking. We aimed at translating real-time
systems into parametric timed (or stopwatch) automata, a formalism particularly
well-suited for parametric timed model checking. First, we presented a methodology
for the particular case of the scheduling of the flight control of a space launcher.
The methodology required that the formalization of the case study to be handled
in a parametric formal model and the computation of the model parameters using
IMITATOR. We initially represented the problem of the scheduling of a launcher
flight control, then we showed how this problem can be formalized with parametric
stopwatch automata; we then presented the outcomes processed by the parametric
timed model checker IMITATOR. Finally, we improved our model by taking into
consideration the time for switching context, and we compared the results to those
obtained by other tools classically used in scheduling.
Also, we presented Time4sys2imi, a tool making an interpretation of Time4sys
models into parametric timed automata in the input language of IMITATOR. This
interpretation permits to study the schedulability of real-time systems and to infer
some timing constraints ensuring schedulability. Then, we successfully applied
Time4sys2imi to various examples.

Part II:

Part II focuses on the study of stability of dynamical systems and robustness of
controls. We have illustrated that the basic combination of random sampling with a
symbolic computation method permits to manage with robust optimization problems
for nonlinear systems on non-convex domains.
Also, we have shown that for a given a differential system Σ, we can guaranteed that
the approximate Euler solutions of Σ are attracted by a limit cycle L using a simple
condition of inclusion of sets (Euclidean balls). This limit cycle L is itself a cyclic
solution of Σ. Moreover, we have introduced a toric set I0 around L which is invariant
for Σ, and whose radius δ(t) becomes in practice quickly very small. This shows
that the exact solutions of Σ exist in the close neighborhood of the cycle L and have
themselves an almost cyclic behavior. Finally, we have constructed a compact set ΣW

centered also on L, whose radius δW(t) is now non negligible, which is invariant for
every system Σ.
Besides, we have given a basic condition which ensures that, under the repeated
application π∗ of a control sequence π obtained by solving a finite horizon optimal

158
11. Conclusion

and perspectives

control problem for the system without perturbation (w = 0), the system with
perturbation (w ∈ W) is robust under π∗: the unperturbed system is ensured to
converge towards a LC L, and the system perturbed with W is ensured to remain
inside a bounded tube around L.
In addition, we have presented a basic procedure dependent on Euler’s integration
technique which permits us to build an invariant set made of a finite number of
d-dimensional balls covering the invariant torus of the system. We have additionally
shown an extension of the basic technique to treat chaotic systems with strange
attractors.
Finally, we introduced ORBITADOR, a tool that ensures the presence of limit cycles
and builds invariant sets around them. ORBITADOR uses a general basis of inclusion
of one set in another that does not require the exact value of the period of the system.
Only an approximate period value is needed which can be calculated automatically by
ORBITADOR.

Perspectives

Part 1:

We envisage to generate automatically the synthesis of the allocations of processings
on threads. This generalization raises first the issue of modeling such problematic
(how to model an allocation with a parameter) and second the classical combinatorial
explosion of states. We plan to use other formalisms less expressive but more effective
than parametric timed automata.

Part 2:

As long term perspectives, we plan to apply the minimization with gradient descent
instead of Euler’s method to reduce the error between exact and approximate solutions,
also we envisage to upgrade ORBITADOR so that it computes dynamical systems with
control.

Bibliography
[AAM06] Yasmina Adbeddaïm, Eugene Asarin, and Oded Maler. Scheduling

with timed automata. Theoretical Computer Science, 354(2):272–
300, March 2006.

[AB89] O Akhrif and GL Blankenship. Symbolic computations in differential
geometry applied to nonlinear control systems, pages 53–75. SIAM,
1989.

[ABBL03] Luca Aceto, Patricia Bouyer, Augusto Burgueño, and Kim Guld-
strand Larsen. The power of reachability testing for timed automata.
Theoretical Computer Science, 300(1-3):411–475, 2003.

[ACEF09] Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and
Laurent Fribourg. An inverse method for parametric timed au-
tomata. International Journal of Foundations of Computer Science,
20(5):819–836, October 2009.

[ACF+19] Étienne André, Emmanuel Coquard, Laurent Fribourg, Jawher
Jerray, and David Lesens. Scheduling synthesis for a launcher flight
control using parametric stopwatch automata. In Jörg Keller and
Wojciech Penczek, editors, ACSD, pages 13–22. IEEE, 2019.

[ACF+21] Étienne André, Emmanuel Coquard, Laurent Fribourg, Jawher
Jerray, and David Lesens. Scheduling synthesis for a launcher
flight control using parametric stopwatch automata. Fundamenta
Informaticae, 182:31–67, September 2021.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, April 1994.

[AFG21] Matthias Althoff, Goran Frehse, and Antoine Girard. Set Prop-
agation Techniques for Reachability Analysis. Annual Review of
Control, Robotics, and Autonomous Systems , 4(1), May 2021.

[AFKS12] Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain
Soulat. IMITATOR 2.5: A tool for analyzing robustness in schedul-
ing problems. In Dimitra Giannakopoulou and Dominique Méry,
editors, FM, volume 7436 of Lecture Notes in Computer Science,
pages 33–36. Springer, 8 2012.

[AGLP18] Laura S Aragone, Justina Gianatti, Pablo A Lotito, and Lisandro A
Parente. An approximation scheme for uncertain minimax optimal
control problems. Set-Valued and Variational Analysis, 26(4):843–
866, 2018.

160 Bibliography

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Para-
metric real-time reasoning. In S. Rao Kosaraju, David S. Johnson,
and Alok Aggarwal, editors, STOC, pages 592–601, New York, NY,
USA, 1993. ACM.

[AHW18] Étienne André, Ichiro Hasuo, and Masaki Waga. Offline timed
pattern matching under uncertainty. In Anthony Widjaja Lin and
Jun Sun, editors, ICECCS, pages 10–20. IEEE Computer Society,
2018.

[AI99] Eric Allen and Marija Ilić. Survey of the Dynamic Programming
Formulation, pages 17–21. Springer London, London, 1999.

[AJM19] Étienne André, Jawher Jerray, and Sahar Mhiri. Time4sys2imi: A
tool to formalize real-time system models under uncertainty. In
Robert M. Hierons and Mohamed Mosbah, editors, ICTAC, volume
11884, pages 113–123. Springer, 2019.

[AK12] Matthias Althoff and Bruce H. Krogh. Avoiding geometric inter-
section operations in reachability analysis of hybrid systems. In
HSCC, pages 45–54. ACM, 2012.

[AKR89] Pramod Agrawal, George Koshy, and Michael Ramseier. An al-
gorithm for operating a fed-batch fermentor at optimum specific-
growth rate. Biotechnology and Bioengineering, 33(1):115–125,
1989.

[AL17] Étienne André and Didier Lime. Liveness in L/U-parametric timed
automata. In Alex Legay and Klaus Schneider, editors, ACSD,
pages 9–18. IEEE, 2017.

[ALR18] Étienne André, Didier Lime, and Mathias Ramparison. TCTL
model checking lower/upper-bound parametric timed automata
without invariants. In David N. Jansen and Pavithra Prabhakar,
editors, FORMATS, volume 11022 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2018.

[AM01] Yasmina Abdeddaïm and Oded Maler. Job-shop scheduling using
timed automata. In Gérard Berry, Hubert Comon, and Alain Finkel,
editors, CAV, volume 2102 of Lecture Notes in Computer Science,
pages 478–492. Springer, 2001.

[AM02] Yasmina Adbeddaïm and Oded Maler. Preemptive job-shop schedul-
ing using stopwatch automata. In Joost-Pieter Katoen and Perdita
Stevens, editors, TACAS, volume 2280 of Lecture Notes in Com-
puter Science, pages 113–126. Springer-Verlag, April 2002.

Bibliography 161

[And13] Étienne André. Observer patterns for real-time systems. In Yang
Liu and Andrew Martin, editors, ICECCS, pages 125–134. IEEE
Computer Society, 2013.

[And17] Étienne André. A unified formalism for monoprocessor schedulabil-
ity analysis under uncertainty. In Ana Cavalcanti, Laure Petrucci,
and Cristina Seceleanu, editors, FMICS-AVoCS, volume 10471 of
Lecture Notes in Computer Science, pages 100–115. Springer, 2017.

[And19a] Étienne André. Formalizing Time4sys using parametric timed
automata. In Dominique Méry and Shengchao Qin, editors, TASE,
pages 176–183. IEEE, 2019.

[And19b] Étienne André. What’s decidable about parametric timed au-
tomata? International Journal on Software Tools for Technology
Transfer, 21(2):203–219, 4 2019.

[And21] Étienne André. IMITATOR 3: Synthesis of timing parameters
beyond decidability. In Rustan Leino and Alexandra Silva, editors,
CAV, 2021. To appear.

[APS08] Erin M. Aylward, Pablo A. Parrilo, and Jean-Jacques E. Slotine.
Stability and robustness analysis of nonlinear systems via contrac-
tion metrics and SOS programming. Automatica, 44(8):2163–2170,
2008.

[AS12] Zahra Aminzare and Eduardo D. Sontag. Logarithmic Lipschitz
norms and diffusion-induced instability. CoRR, abs/1208.0326,
2012.

[AS14] Zahra Aminzare and Eduardo D. Sontag. Contraction methods for
nonlinear systems: A brief introduction and some open problems.
In CDC, pages 3835–3847, 2014.

[AZI+18] Arash Ajoudani, Andrea Maria Zanchettin, Serena Ivaldi, Alin
Albu-Schäffer, Kazuhiro Kosuge, and Oussama Khatib. Progress
and prospects of the human-robot collaboration. Autonomous
Robots, pages 957–975, October 2018.

[BB97] Iain Bate and Alan Burns. Schedulability analysis of fixed priority
real-time systems with offsets. In RTS, pages 153–160. IEEE, 1997.

[BB04] Enrico Bini and Giorgio C. Buttazzo. Schedulability analysis of
periodic fixed priority systems. IEEE Transactions on Computers,
53(11):1462–1473, 2004.

162 Bibliography

[BBLS15] Nikola Beneš, Peter Bezděk, Kim Gulstrand Larsen, and Jiří Srba.
Language emptiness of continuous-time parametric timed automata.
In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann, editors, ICALP, Part II, volume 9135 of Lec-
ture Notes in Computer Science, pages 69–81. Springer, July 2015.

[BC09] Sergio Bittanti and Patrizio Colaneri. Periodic systems: filtering
and control. Springer Science & Business Media, 2009.

[BCCM13] Bernard Bonnard, Mathieu Claeys, Olivier Cots, and Pierre Mar-
tinon. Comparison of numerical methods in the contrast imaging
problem in NMR. In CDC, pages 4523–4528. IEEE, 12 2013.

[BCCM14] Bernard Bonnard, Mathieu Claeys, Olivier Cots, and Pierre Mar-
tinon. Geometric and numerical methods in the contrast imaging
problem in nuclear magnetic resonance. Acta Applicandae Mathe-
maticae, 135:5–45, 2 2014.

[Bel57] Richard Bellman. Dynamic Programming. Princeton University
Press, Princeton, NJ, USA, 1 edition, 1957.

[BHJL16] Béatrice Bérard, Serge Haddad, Aleksandra Jovanovic, and Di-
dier Lime. Interrupt timed automata with auxiliary clocks and
parameters. Fundamenta Informormatica, 143(3-4):235–259, 2016.

[BHV02] Henk Broer, Aaron Hagen, and Gert Vegter. Numerical approxi-
mation of normally hyperbolic invariant manifolds, 2002.

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma
Polyhedra Library: Toward a complete set of numerical abstractions
for the analysis and verification of hardware and software systems.
Science of Computer Programming, 72(1–2):3–21, 2008.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model check-
ing. MIT press, 2008.

[BL09] Laura Bozzelli and Salvatore La Torre. Decision problems for
lower/upper bound parametric timed automata. Formal Methods
in System Design, 35(2):121–151, 2009.

[Bla99] Franco Blanchini. Set invariance in control. Automatica,
35(11):1747–1767, 1999.

[BM98] Alberto Bemporad and Manfred Morari. Robust model predictive
control: A survey. In Andrea Garulli and Alberto Tesi, editors, RiC,
volume 245 of Lecture Notes in Control and Information Sciences,
pages 207–226. Springer, 1998.

Bibliography 163

[BM15] Franco Blanchini and Stefano Miani. Invariant sets, pages 121–191.
Springer International Publishing, Cham, 2015.

[Bog15] Robert Bogue. Robotic exoskeletons: a review of recent progress.
Industrial Robot: An International Journal, pages 5–10, January
2015.

[BR71] Dimitri P Bertsekas and Ian B Rhodes. On the minimax reachability
of target sets and target tubes. Automatica, 7(2):233–247, 1971.

[BS16] Nicola Baresi and D. Scheeres. Quasi-periodic invariant tori of time-
periodic dynamical systems: Applications to small body exploration.
In IAC, 09 2016.

[BV14] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization.
Cambridge University Press, 2014.

[BVGB18] Simon Bastide, Nicolas Vignais, Franck Geffard, and Bastien Berret.
Interacting with a "transparent" upper-limb exoskeleton: a human
motor control approach. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4661–4666, 2018.

[CC99] Sérgio Vale Aguiar Campos and Edmund M. Clarke. Analysis
and verification of real-time systems using quantitative symbolic
algorithms. International Journal on Software Tools for Technology
Transfer, 2(3):260–269, 1999.

[CC04] R.S. Cantrel and C. Cosner. Spatial ecology via reaction-diffusion
equations. John Wiley and Sons, 2004.

[CDL+14] Chunlin Chen, Daoyi Dong, Ruixing Long, Ian R Petersen, and
Herschel A Rabitz. Sampling-based learning control of inhomoge-
neous quantum ensembles. Physical Review A, 89(2):023402, 02
2014.

[CDT11] Giuseppe C Calafiore, Fabrizio Dabbene, and Roberto Tempo.
Research on probabilistic methods for control system design. Auto-
matica, 47(7):1279–1293, 2011.

[CEFX09] Rémy Chevallier, Emmanuelle Encrenaz-Tiphène, Laurent Fribourg,
and Weiwen Xu. Timed verification of the generic architecture of a
memory circuit using parametric timed automata. Formal Methods
in System Design, 34(1):59–81, February 2009.

[CF19] Adrien Le Coënt and Laurent Fribourg. Guaranteed optimal reach-
ability control of reaction-diffusion equations using one-sided Lip-
schitz constants and model reduction. In Roger D. Chamberlain,
Martin Grimheden, and Walid Taha, editors, WESE, volume 11971

164 Bibliography

of Lecture Notes in Computer Science, pages 181–202. Springer,
2019.

[CFM19] Maciej J. Capinski, Emmanuel Fleurantin, and Jason D. Mireles
James. Computer Assisted Proofs of Attracting Invariant Tori for
ODEs. arXiv e-prints, page arXiv:1905.08116, May 2019.

[CGK+18] E.M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith.
Model Checking, second edition. Cyber Physical Systems Series.
MIT Press, 2018.

[CHZ03] Yanzhao Cao, M. Yousuff Hussaini, and Thomas A. Zang. An
efficient Monte Carlo method for optimal control problems with un-
certainty. Computational Optimization and Applications, 26(3):219–
230, 2003.

[CL00] Franck Cassez and Kim Guldstrand Larsen. The impressive power
of stopwatches. In Catuscia Palamidessi, editor, CONCUR, volume
1877 of Lecture Notes in Computer Science, pages 138–152. Springer,
2000.

[CL13] Roberto Castelli and Jean-Philippe Lessard. Rigorous numerics in
Floquet theory: computing stable and unstable bundles of periodic
orbits. SIAM Journal on Applied Dynamical Systems, 12(1):204–
245, 2013.

[CLZ15] Jifeng Cui, Zhiliang Lin, and Yinlong Zhao. Limit cycles of nonlinear
oscillator equations with absolute value by means of the homotopy
analysis method. Zeitschrift für Naturforschung A, 70(3):193–202,
2015.

[CP93] P. Chartier and B. Philippe. A parallel shooting technique for
solving dissipative ODE’s. Computing, 51(3):209–236, 09 1993.

[Cpl09] IBM ILOG Cplex. V12. 1: User’s manual for cplex. International
Business Machines Corporation, 46(53):157, 2009.

[CPR08] Alessandro Cimatti, Luigi Palopoli, and Yusi Ramadian. Sym-
bolic computation of schedulability regions using parametric timed
automata. In RTSS, pages 80–89. IEEE Computer Society, 2008.

[CPV13] Laura Carnevali, Alessandro Pinzuti, and Enrico Vicario. Compo-
sitional verification for hierarchical scheduling of real-time systems.
IEEE Transactions on Software Engineering, 39(5):638–657, May
2013.

Bibliography 165

[CVB21] Pedro Cisneros-Velarde and Francesco Bullo. A contraction theory
approach to optimization algorithms from acceleration flows. arXiv
preprint arXiv:2105.08832, 2021.

[Dah76] Germund Dahlquist. Error analysis for a class of methods for stiff
non-linear initial value problems. In G. Alistair Watson, editor,
Numerical Analysis, pages 60–72, Berlin, Heidelberg, 1976. Springer
Berlin Heidelberg.

[Dan19] Thao Dang. Reachability analysis and hybrid systems biology - in
memoriam oded maler. In Milan Češka and Nicola Paoletti, editors,
HSB, pages 16–29, Cham, 2019. Springer International Publishing.

[DB94] Luca Dieci and Georg Bader. Solution of the systems associated
with invariant tori approximation. II: multigrid methods. SIAM
Journal on Scientific Computing, 15(6):1375–1400, 1994.

[DCJC08] Damion D Dunlap, Emmanuel G Collins Jr, and Charmane V
Caldwell. Sampling based model predictive control with application
to autonomous vehicle guidance. In FCRAR, 2008.

[DFGLG13] Thao Dang, Goran Frehse, Antoine Girard, and Colas Le Guer-
nic. Tools for the analysis of hybrid models. In Claude Jard
and Olivier H. Roux, editors, Communicating Embedded Systems,
chapter 7, pages 227–251. Wiley, 2013.

[DFPP18] Laurent Doyen, Goran Frehse, George J. Pappas, and André Platzer.
Verification of hybrid systems. In Edmund M. Clarke, Thomas A.
Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook
of Model Checking, pages 1047–1110. Springer, 2018.

[dLBK+16] Michiel P. de Looze, Tim Bosch, Frank Krause, Konrad S. Stadler,
and Leonard W. O’Sullivan. Exoskeletons for industrial application
and their potential effects on physical work load. Ergonomics,
59(5):671–681, May 2016.

[DMP+15] Daoyi Dong, Mohamed A. Mabrok, Ian R. Petersen, Bo Qi, Chunlin
Chen, and Herschel Rabitz. Sampling-based learning control for
quantum systems with uncertainties. IEEE Transactions on Control
Systems Technology, 23(6):2155–2166, 2015.

[DT12] Hongkai Dai and Russ Tedrake. Optimizing robust limit cycles for
legged locomotion on unknown terrain. In CDC, pages 1207–1213.
IEEE, 2012.

[DW19] Ryszard Dindorf and Piotr Wos. Using the bioelectric signals to
control of wearable orthosis of the elbow joint with bi-muscular
pneumatic servo-drive. 38(5):804–818, jul 2019.

166 Bibliography

[EPLP17] Denis Efimov, Andrey Polyakov, Arie Levant, and Wilfrid Per-
ruquetti. Realization and discretization of asymptotically stable
homogeneous systems. IEEE Transactions on Automatic Control,
62(11):5962–5969, 2017.

[ERS00] K. D. Edoh, R. D. Russell, and W. Sun. Computation of invariant
tori by orthogonal collocation. Applied Numerical Mathematics,
32(3):273–289, March 2000.

[FBG+10] Julien Forget, Frédéric Boniol, Emmanuel Grolleau, David Lesens,
and Claire Pagetti. Scheduling dependent periodic tasks without
synchronization mechanisms. In Marco Caccamo, editor, RTAS,
pages 301–310. IEEE Computer Society, 2010.

[FBM+07] Antonio Frisoli, Luigi Borelli, Alberto Montagner, Simone March-
eschi, Caterina Procopio, Fabio Salsedo, Massimo Bergamasco,
Maria C. Carboncini, Martina Tolaini, and Bruno Rossi. Arm reha-
bilitation with a robotic exoskeleleton in Virtual Reality. In IEEE
10th International Conference on Rehabilitation Robotics ICORR,
2007., pages 631–642, 2007.

[Fen71] Neil Fenichel. Persistence and smoothness of invariant manifolds
for flows. Indiana University Mathematics Journal, 21:193–226,
1971.

[FHQW14] Goran Frehse, Arne Hamann, Sophie Quinton, and Matthias
Woehrle. Formal analysis of timing effects on closed-loop properties
of control software. In RTSS, pages 53–62. IEEE Computer Society,
2014.

[FJ13] Léa Fanchon and Florent Jacquemard. Formal timing analysis of
mixed music scores. In ICMC. Michigan Publishing, August 2013.

[FKPY07] Elena Fersman, Pavel Krcál, Paul Pettersson, and Wang Yi. Task
automata: Schedulability, decidability and undecidability. Infor-
mation and Computation, 205(8):1149–1172, 2007.

[FLMS12] Laurent Fribourg, David Lesens, Pierre Moro, and Romain Soulat.
Robustness analysis for scheduling problems using the inverse
method. In Mark Reynolds, Paolo Terenziani, and Ben Moszkowski,
editors, TIME, pages 73–80. IEEE Computer Society Press, 2012.

[FLSC16] Bingbing Fang, Guoqiang Li, Daniel Sun, and Hongming
Cai. Schedulability analysis of timed regular tasks by under-
approximation on WCET. In Martin Fränzle, Deepak Kapur,
and Naijun Zhan, editors, SETTA, volume 9984 of Lecture Notes
in Computer Science, pages 147–162, 2016.

Bibliography 167

[FM15] Chuchu Fan and Sayan Mitra. Bounded verification with on-the-
fly discrepancy computation. In Bernd Finkbeiner, Geguang Pu,
and Lijun Zhang, editors, ATVA, volume 9364 of Lecture Notes in
Computer Science, pages 446–463. Springer, 2015.

[FPC+12] Antonio Frisoli, Caterina Procopio, Carmelo Chisari, Ilaria Cre-
atini, Luca Bonfiglio, Massimo Bergamasco, Bruno Rossi, and
Maria Chiara Carboncini. Positive effects of robotic exoskeleton
training of upper limb reaching movements after stroke. Journal of
neuroengineering and rehabilitation, 9(1):36, 2012.

[Fre08] Goran Frehse. Phaver: algorithmic verification of hybrid systems
past hytech. International Journal on Software Tools for Technology
Transfer, 10(3):263–279, 2008.

[Fre15] Goran Frehse. Reachability of hybrid systems in space-time. In
Alain Girault and Nan Guan, editors, EMSOFT, pages 41–50. IEEE,
2015.

[Fri17] Laurent Fribourg. Euler’s method applied to the control of switched
systems. In FORMATS, volume 10419 of Lecture Notes in Computer
Science, pages 3–21. Springer, September 2017.

[Gar01] B. Garay. Estimates in discretizing normally hyperbolic compact
invariant manifolds of ordinary differential equations. Computers
& Mathematics With Applications, 42(8):1103–1122, 2001.

[Gar10] Phillipe Garrec. Screw and Cable Acutators (SCS) and Their
Applications to Force Feedback Teleoperation, Exoskeleton and
Anthropomorphic Robotics. Robotics 2010 Current and Future
Challenges, pages 167–191, 2010.

[GBKM16] R. A. R. C. Gopura, D. S. V. Bandara, Kazuo Kiguchi, and G. K. I.
Mann. Developments in hardware systems of active upper-limb
exoskeleton robots: A review. Robotics and Autonomous Systems,
75:203–220, jan 2016.

[GFMP08] P. Garrec, J. P. Friconneau, Y. Méasson, and Y. Perrot. ABLE,
an Innovative Transparent Exoskeleton for the Upper-Limb.
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1483–1488, September 2008.

[GG08] Antoine Girard and Colas Le Guernic. Zonotope/hyperplane inter-
section for hybrid systems reachability analysis. In HSCC, volume
4981 of Lecture Notes in Computer Science, pages 215–228. Springer,
2008.

168 Bibliography

[GHGGPGDM01] Michael González Harbour, J. Javier Gutiérrez García, José Carlos
Palencia Gutiérrez, and J. M. Drake Moyano. MAST: Modeling
and analysis suite for real time applications. In ECRTS, pages
125–134. IEEE Computer Society, 2001.

[Gil77] Elmer Gilbert. Optimal periodic control: A general theory of
necessary conditions. SIAM Journal on Control and Optimization,
15(5):717–746, 1977.

[GJ10] Alexandra Grancharova and Tor Arne Johansen. A computational
approach to explicit feedback stochastic nonlinear model predictive
control. In CDC, pages 6083–6088. IEEE, 2010.

[GM01] G. Gómez and J. M. Mondelo. The dynamics around the collinear
equilibrium points of the RTBP. Physica D: Nonlinear Phenomena,
157(4):283–321, 10 2001.

[GNC13] Mainak Ghoshhajra, Sabitha Nair, and Ananda CM Cm. Arinc
653 api and its application – an insight into avionics system case
study. Defence science journal, 63, 04 2013.

[Gow20] Robert M. Gower. Convergence theorems for gradient descent,
2020.

[GPT10] Antoine Girard, Giordano Pola, and Paulo Tabuada. Approximately
bisimilar symbolic models for incrementally stable switched systems.
IEEE Transactions on Automatic Control, 55(1):116–126, 2010.

[HJK11] Martin Hutzenthaler, Arnulf Jentzen, and Peter E Kloeden. Strong
and weak divergence in finite time of euler’s method for stochastic
differential equations with non-globally lipschitz continuous coeffi-
cients. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 467(2130):1563–1576, 2011.

[HL99] Ernst Hairer and Christian Lubich. Invariant tori of dissipatively
perturbed hamiltonian systems under symplectic discretization.
Applied Numerical Mathematics, 29(1):57–71, 1 1999.

[HLID09] Boris Houska, Filip Logist, Jan F. M. Van Impe, and Moritz Diehl.
Approximate robust optimization of time-periodic stationary states
with application to biochemical processes. In CDC, pages 6280–6285.
IEEE, 2009.

[HR07] Ian A Hiskens and Patel Bhageerath Reddy. Switching-induced
stable limit cycles. Nonlinear Dynamics, 50(3):575–585, 2007.

Bibliography 169

[HRSV02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaan-
drager. Linear parametric model checking of timed automata.
Journal of Logic and Algebraic Programming, 52-53:183–220, 2002.

[HV19] B. Houska and M.E. Villanueva. Robust Optimization for MPC,
chapter Robust optimization for MPC, page 415–447. Birkhäuser,
2019.

[HW96] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential
Equations II. Springer-Verlag, 1996.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer
Society, 2016.

[Jer21] Jawher Jerray. Orbitador: A tool to analyze the stability of peri-
odical dynamical systems. In Goran Frehse and Matthias Althoff,
editors, ARCH, volume 80 of EPiC Series in Computing, pages
176–183. EasyChair, 2021.

[JF21] Jawher Jerray and Laurent Fribourg. Determination of limit cycles
using stroboscopic set-valued maps. In Raphaël Jungers, editor,
ADHS, volume 54 of IFAC-PapersOnLine, pages 139–144. Elsevier,
2021.

[JFA21a] Jawher Jerray, Laurent Fribourg, and Étienne André. An approxi-
mation of minimax control using random sampling and symbolic
computation. In Raphaël Jungers, editor, ADHS, volume 54 of
IFAC-PapersOnLine, pages 265–270. Elsevier, 2021.

[JFA21b] Jawher Jerray, Laurent Fribourg, and Étienne André. Robust
optimal periodic control using guaranteed Euler’s method. In ACC,
pages 986–991. IEEE, 2021.

[JLR15] Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer
parameter synthesis for real-time systems. IEEE Transactions on
Software Engineering, 41(5):445–461, 2015.

[JM12] Nathanaël Jarrasse and Guillaume Morel. Connecting a Human
Limb to an Exoskeleton. IEEE Transactions on Robotics, 28(3):697–
709, June 2012.

[JPPM08] Nathanael Jarrasse, Jamie Paik, Viviane Pasqui, and Guillaume
Morel. How can human motion prediction increase transparency?
IEEE International Conference on Robotics and Automation, pages
2134–2139, May 2008.

170 Bibliography

[JzzT+20] Fabian Just, Özhan Özen, Stefano Tortora, Verena Klamroth-
Marganska, Robert Riener, and Georg Rauter. Human arm weight
compensation in rehabilitation robotics: efficacy of three distinct
methods. Journal of NeuroEngineering and Rehabilitation, 17(1),
feb 2020.

[K+88] Dieter Kraft et al. A software package for sequential quadratic
programming. 1988.

[KA20] Niklas Kochdumper and Matthias Althoff. Reachability analysis for
hybrid systems with nonlinear guard sets. In HSCC, pages 1:1–1:10,
2020.

[KBB15] Walid Krichene, Alexandre Bayen, and Peter Bartlett. Accelerated
mirror descent in continuous and discrete time. Advances in neural
information processing systems, 28:2845–2853, 2015.

[KGD15] Mohammad Al Khatib, Antoine Girard, and Thao Dang. Stability
verification of nearly periodic impulsive linear systems using reach-
ability analysis. In Magnus Egerstedt and Yorai Wardi, editors,
ADHS, volume 48 of IFAC-PapersOnLine, pages 358–363. Elsevier,
2015.

[KLB+20] Nili E. Krausz, Denys Lamotte, Iason Batzianoulis, Levi J. Hargrove,
Silvestro Micera, and Aude Billard. Intent prediction based on
biomechanical coordination of EMG and vision-filtered gaze for
end-point control of an arm prosthesis. IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 28(6):1471–1480,
jun 2020.

[KM11] Dr Kumar and Garima Mishra. An introduction to numerical
methods for the solutions of partial differential equations. Applied
Mathematics, 02(11):1327–1338, 01 2011.

[KMLV09] N. Kantas, J. M. Maciejowski, and A. Lecchini-Visintini. Sequential
Monte Carlo for Model Predictive Control, pages 263–273. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[Kot08] Toshiyuki Koto. IMEX Runge-Kutta schemes for reaction-diffusion
equations. Journal of Computational and Applied Mathematics,
215(1):182–195, 2008.

[KS07] Tomasz Kapela and Carles Simo. Computer assisted proofs for
nonsymmetric planar choreographies and for stability of the eight.
Nonlinearity, 20(5):1241–1255, 04 2007.

Bibliography 171

[KSC93] G. Pavan Kumar, I. V. K. Subrahmanya Sastry, and M. Chi-
dambaram. Periodic operation of a bioreactor with input multiplici-
ties. The Canadian Journal of Chemical Engineering, 71(5):766–770,
1993.

[LB05] Giuseppe Lipari and Enrico Bini. A methodology for designing
hierarchical scheduling systems. Journal of Embedded Computing,
1(2):257–269, April 2005.

[LC17] Adrien Le Coënt. Guaranteed control synthesis for switched space-
time dynamical systems. Theses, Université Paris Saclay (COmUE),
October 2017.

[LCADSC+17] Adrien Le Coënt, Julien Alexandre Dit Sandretto, Alexandre
Chapoutot, Laurent Fribourg, Florian De Vuyst, and Ludovic
Chamoin. Distributed control synthesis using Euler’s method. In
RP, volume 247 of Lecture Notes in Computer Science, pages 118–
131. Springer, 04 2017.

[LCDVCF17] Adrien Le Coënt, Florian De Vuyst, Ludovic Chamoin, and Laurent
Fribourg. Control synthesis of nonlinear sampled switched systems
using Euler’s method. In SNR, volume 247 of EPTCS, pages 18–33,
2017.

[LCF19] Adrien Le Coënt and Laurent Fribourg. Guaranteed control of
sampled switched systems using semi-Lagrangian schemes and one-
sided Lipschitz constants, 2019.

[LGS+19] Lars Luthmann, Timo Gerecht, Andreas Stephan, Johannes Bürdek,
and Malte Lochau. Minimum/maximum delay testing of product
lines with unbounded parametric real-time constraints. Journal of
Systems and Software, 149:535–553, 2019.

[Lib12] Daniel Liberzon. Calculus of variations and optimal control theory:
a concise introduction. Princeton University Press, 2012.

[Liu00] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, USA,
1st edition, 2000.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of the
ACM, 20(1):46–61, 1973.

[Löf03a] Johan Löfberg. Approximations of closed-loop minimax MPC. In
CDC, pages 1438–1442. IEEE, 2003.

[Löf03b] Johan Löfberg. Minimax approaches to robust model predictive
control, volume 812. Linköping University Electronic Press, 2003.

172 Bibliography

[Löf04] J. Löfberg. Yalmip : A toolbox for modeling and optimization in
matlab. In CACSD, pages 284–289, 2004.

[Loh87] Rudolf J. Lohner. Enclosing the solutions of ordinary initial and
boundary value problems. Computer Arithmetic, pages 255–286, 01
1987.

[LPPR13] Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone, and Yusi
Ramadian. Timed-automata based schedulability analysis for dis-
tributed firm real-time systems: a case study. International Journal
on Software Tools for Technology Transfer, 15(3):211–228, 2013.

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL
in a nutshell. International Journal on Software Tools for Technol-
ogy Transfer, 1(1-2):134–152, 1997.

[LRST09] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie
Traonouez. Romeo: A parametric model-checker for Petri nets with
stopwatches. In Stefan Kowalewski and Anna Philippou, editors,
TACAS, volume 5505 of Lecture Notes in Computer Science, pages
54–57. Springer, March 2009.

[LS98] Winfried Lohmiller and Jean-Jacques E Slotine. On contraction
analysis for non-linear systems. Automatica, 34(6):683–696, 1998.

[McG90] Tad McGeer. Passive dynamic walking. The International Journal
of Robotics Research, 9(2):62–82, 1990.

[Mes16] Ali Mesbah. Stochastic model predictive control: An overview and
perspectives for future research. IEEE Control Systems, 36:30–44,
12 2016.

[mic] Energy management for an electric micro-
grid example. https://www.bocop.org/
energy-management-for-an-electric-microgrid/.

[Mil00] Joseph S. Miller. Decidability and complexity results for timed
automata and semi-linear hybrid automata. In Nancy A. Lynch
and Bruce H. Krogh, editors, HSCC, volume 1790 of Lecture Notes
in Computer Science, pages 296–309. Springer, 2000.

[MLR+10] Marius Mikucionis, Kim Guldstrand Larsen, Jacob Illum Ras-
mussen, Brian Nielsen, Arne Skou, Steen Ulrik Palm, Jan Storbank
Pedersen, and Poul Hougaard. Schedulability analysis using Uppaal:
Herschel-Planck case study. In Tiziana Margaria and Bernhard
Steffen, editors, ISoLA, Part II, volume 6416 of Lecture Notes in
Computer Science, pages 175–190. Springer, 2010.

https://www.bocop.org/energy-management-for-an-electric-microgrid/
https://www.bocop.org/energy-management-for-an-electric-microgrid/

Bibliography 173

[Moo96] Gerald Moore. Computation and parametrisation of invariant curves
and tori. SIAM Journal on Numerical Analysis, 33(6):2333–2358,
1996.

[MPG95] P.M. Mäkilä, J.R. Partington, and T.K. Gustafsson. Worst-case
control-relevant identification. Automatica, 31(12):1799 – 1819,
1995.

[MRH14] Luke M Mooney, Elliott J Rouse, and Hugh M Herr. Autonomous
exoskeleton reduces metabolic cost of human walking during load
carriage. Journal of NeuroEngineering and Rehabilitation, 11(1):80,
2014.

[MS13] Ian R. Manchester and Jean-Jacques E. Slotine. Transverse con-
traction criteria for existence, stability, and robustness of a limit
cycle. In CDC, pages 5909–5914. IEEE, 2013.

[MSC+13] Marie-Hélène Milot, Steven J Spencer, Vicky Chan, James P Alling-
ton, Julius Klein, Cathy Chou, James E Bobrow, Steven C Cramer,
and David J Reinkensmeyer. A crossover pilot study evaluating
the functional outcomes of two different types of robotic move-
ment training in chronic stroke survivors using the arm exoskeleton
BONES. Journal of Neuroengineering and Rehabilitation, 10(1):112,
December 2013.

[MV93] M. Milanese and A. Vicino. Information-based complexity and non-
parametric worst-case system identification. Journal of Complexity,
9(4):427 – 446, 1993.

[NB03] Zoltan K. Nagy and Richard D. Braatz. Worst-case and distri-
butional robustness analysis of finite-time control trajectories for
nonlinear distributed parameter systems. IEEE Transactions on
Control Systems Technology, 11(5):694–704, 2003.

[Nes14] Yurii Nesterov. Introductory Lectures on Convex Optimization: A
Basic Course. Springer Publishing Company, 2014.

[NWY99] Christer Norström, Anders Wall, and Wang Yi. Timed automata
as task models for event-driven systems. In RTCSA, pages 182–189.
IEEE Computer Society, 1999.

[OGL06] Iulian Ober, Susanne Graf, and David Lesens. Modeling and
validation of a software architecture for the Ariane-5 launcher. In
Roberto Gorrieri and Heike Wehrheim, editors, FMOODS, volume
4037 of Lecture Notes in Computer Science, pages 48–62. Springer,
2006.

174 Bibliography

[OMG08] OMG. Modeling and analysis of real-time and embedded systems
(MARTE), 2008.

[OS12] Zubin P. Olikara and Daniel J. Scheeres. Numerical method
for computing quasi-periodic orbits and their stability in the re-
stricted three-body problem. Advances in the Astronautical Sciences,
145:911–930, 2012.

[Par00] Satish Parulekar. Analysis of forced periodic operations of continu-
ous bioprocesses - single input variations. Chemical Engineering
Science - CHEM ENG SCI, 55:513–533, 02 2000.

[PBBL+13] Rodrigo Palma-Behnke, Carlos Benavides, Fernando Lanas,
Bernardo Severino, Lorenzo Reyes, Jacqueline Llanos, and Doris
Saez. A microgrid energy management system based on the rolling
horizon strategy. IEEE Transactions on Smart Grid, 4:996 – 1006,
01 2013.

[Pin92] Manuel Pinto. Stability of nonlinear differential systems. Applicable
Analysis, 43(1-2):1–20, 1992.

[PN71] Thomas Pecsvaradi and Kumpati S. Narendra. Reachable sets for
linear dynamical systems. Information and Control, 19(4):319–344,
1971.

[Pon10] Jose L Pons. Rehabilitation exoskeletal robotics. IEEE Engineering
in Medicine and Biology Magazine, 29(3):57–63, 2010.

[PRG16] Chris Phelps, Johannes O Royset, and Qi Gong. Optimal control
of uncertain systems using sample average approximations. SIAM
Journal on Control and Optimization, 54(1):1–29, 2016.

[Ras03] Bryan Rasmussen. Numerical methods for the continuation of
invariant tori, 2003.

[RB16] E. K. Ryu and S. Boyd. A primer on monotone operator methods.
Applied Compututational Mathematics, 15(1):3–43, 2016.

[RBI06] Ludovic Righetti, Jonas Buchli, and Auke Jan Ijspeert. Dynamic
hebbian learning in adaptive frequency oscillators. Physica D:
Nonlinear Phenomena, 216(2):269–281, apr 2006.

[RBI09] Ludovic Righetti, Jonas Buchli, and Auke Jan Ijspeert. Adaptive
frequency oscillators and applications. The Open Cybernetics &
Systemics Journal, 3:64–69, oct 2009.

[RC08] Lier Ruan and Xiao Chen. Comparison of several periodic opera-
tions of a continuous fermentation process. Biotechnology Progress,
12:286 – 288, 09 2008.

Bibliography 175

[RD08] Bryan Rasmussen and Luca Dieci. A geometrical method for the
approximation of invariant tori. Journal of Computational and
Applied Mathematics, 216(2):388–412, June 2008.

[Rei00] Volker Reichelt. Computing invariant tori and circles in dynamical
systems. In Eusebius Doedel and Laurette S. Tuckerman, editors,
Numerical Methods for Bifurcation Problems and Large-Scale Dy-
namical Systems, pages 407–437, New York, NY, 2000. Springer
New York.

[RFM+18] Alexandre Rocca, Marcelo Forets, Victor Magron, Eric Fanchon,
and Thao Dang. Occupation measure methods for modelling and
analysis of biological hybrid systems. In Alessandro Abate, Antoine
Girard, and Maurice Heemels, editors, ADHS, volume 51 of IFAC-
PapersOnLine, pages 181–186. Elsevier, 2018.

[RI06] L. Righetti and Auke Jan Ijspeert. Programmable central pattern
generators: an application to biped locomotion control. In Proceed-
ings of the 2006 IEEE International Conference on Robotics and
Automation, ICRA. IEEE, 2006.

[Ric05] Kai Richter. Compositional scheduling analysis using standard
event models: The SymTA/S approach. PhD thesis, University of
Braunschweig - Institute of Technology, 2005.

[Ric21] Henry J. Ricardo. Chapter 7 - systems of nonlinear differential
equations. In A Modern Introduction to Differential Equations
(Third Edition), pages 361–420. Academic Press, 2021.

[RLL+09] D.M. Raimondo, D. Limon, Mircea Lazar, Lalo Magni, and Eduardo
Camacho. Min-max model predictive control of nonlinear systems:
A unifying overview on stability. European Journal of Control,
15:5–21, 12 2009.

[RVL+11] Renaud Ronsse, Nicola Vitiello, Tommaso Lenzi, Jesse van den
Kieboom, Maria Chiara Carrozza, and Auke Jan Ijspeert. Hu-
man–robot synchrony: flexible assistance using adaptive oscillators.
IEEE Transactions on Biomedical Engineering, 58(4):1001–1012,
apr 2011.

[RW08] Rush D Robinett, III and David G Wilson. What is a limit cycle?
International Journal of Control, 81(12):1886–1900, 2008.

[SA17a] Bastian Schürmann and Matthias Althoff. Guaranteeing constraints
of disturbed nonlinear systems using set-based optimal control in
generator space. IFAC-PapersOnLine, 50(1):11515 – 11522, 2017.
20th IFAC World Congress.

176 Bibliography

[SA17b] Bastian Schürmann and Matthias Althoff. Optimal control of sets
of solutions to formally guarantee constraints of disturbed linear
systems. In ACC, pages 2522–2529, 2017.

[SAAS13] S. Yusef Shafi, Zahra Aminzare, Murat Arcak, and Eduardo D.
Sontag. Spatial uniformity in diffusively-coupled systems using
weighted L2 norm contractions. In ACC, pages 5619–5624, 2013.

[SAL15] Youcheng Sun, Étienne André, and Giuseppe Lipari. Verification of
two real-time systems using parametric timed automata. In Sophie
Quinton and Tullio Vardanega, editors, WATERS, July 2015.

[SBC14] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential
equation for modeling nesterov’s accelerated gradient method: The-
ory and insights. Advances in neural information processing systems,
27:2510–2518, 2014.

[SBCF14] Nahema Sylla, Vincent Bonnet, Frédéric Colledani, and Philippe
Fraisse. Ergonomic contribution of ABLE exoskeleton in automotive
industry. International Journal of Industrial Ergonomics, 44(4):475–
481, July 2014.

[SDJS21] Bin Shi, Simon S Du, Michael I Jordan, and Weijie J Su. Under-
standing the acceleration phenomenon via high-resolution differen-
tial equations. Mathematical Programming, pages 1–70, 2021.

[SEL08] Insik Shin, Arvind Easwaran, and Insup Lee. Hierarchical schedul-
ing framework for virtual clustering of multiprocessors. In ECRTS,
pages 181–190. IEEE Computer Society, 2008.

[SG11] Zhendong Sun and Shuzhi Sam Ge. Stability Theory of Switched
Dynamical Systems. Communications and Control Engineering.
Springer London, 2011.

[SHD12] Julia Sternberg, Boris Houska, and Moritz Diehl. A structure
exploiting algorithm for approximate robust optimal control with
application to power generating kites. In ACC, pages 2250–2255.
IEEE, 2012.

[SHGD12] Julia Sternberg, Boris Houska, Sebastien Gros, and Moritz Diehl.
Approximate robust optimal control of periodic systems with invari-
ants and high-index differential algebraic systems. In Jan Dimon
Bendtsen, editor, ROCOND, pages 690–695. International Federa-
tion of Automatic Control, 2012.

[Sin] Frank Singhoff. The Cheddar project: a GPL real-time scheduling
analyzer. http://beru.univ-brest.fr/singhoff/cheddar/.

http://beru.univ-brest.fr/singhoff/cheddar/

Bibliography 177

[SKN17] Sho Shirasaka, Wataru Kurebayashi, and Hiroya Nakao. Phase
reduction theory for hybrid nonlinear oscillators. Physical Review
E, 95:012212, 01 2017.

[SL03] Insik Shin and Insup Lee. Periodic resource model for compositional
real-time guarantees. In RTSS, pages 2–13. IEEE Computer Society,
2003.

[SL14] Youcheng Sun and Giuseppe Lipari. A weak simulation relation for
real-time schedulability analysis of global fixed priority scheduling
using linear hybrid automata. In Mathieu Jan, Belgacem Ben
Hedia, Joël Goossens, and Claire Maiza, editors, RTNS, page 35.
ACM, 2014.

[SLNM04] Frank Singhoff, Jérôme Legrand, Laurent Nana, and Lionel Marcé.
Cheddar: a flexible real time scheduling framework. In SIGAda,
pages 1–8. ACM, 2004.

[SLS+14] Youcheng Sun, Giuseppe Lipari, Romain Soulat, Laurent Fribourg,
and Nicolas Markey. Component-based analysis of hierarchical
scheduling using linear hybrid automata. In ERTCS, pages 1–10.
IEEE Computer Society, 2014.

[SOV05] F Schilder, HM Osinga, and W Vogt. Continuation of quasi-periodic
invariant tori. SIAM Journal on Applied Dynamical Systems, 4
(3):459 – 488, January 2005. Publisher: Society for Industrial and
Applied Mathematics.

[SSL+13] Youcheng Sun, Romain Soulat, Giuseppe Lipari, Étienne André,
and Laurent Fribourg. Parametric schedulability analysis of fixed
priority real-time distributed systems. In Cyrille Artho and Pe-
ter Ölveczky, editors, FSTCS, volume 419 of Communications in
Computer and Information Science, pages 212–228. Springer, Oct
2013.

[SvdH09] André Schiele and Frans C. T. van der Helm. Influence of attach-
ment pressure and kinematic configuration on pHRI with wearable
robots. Applied Bionics and Biomechanics, 6(2):157–173, 2009.

[SYS14] Yongjun Shen, Shaopu Yang, and Chuanyi Sui. Analysis on limit
cycle of fractional-order van der pol oscillator. Chaos, Solitons &
Fractals, 67:94–102, 2014.

[SZ20] Jesús María Sanz-Serna and Konstantinos C. Zygalakis. Contrac-
tivity of runge-kutta methods for convex gradient systems. SIAM
J. Numer. Anal., 58(4):2079–2092, 2020.

178 Bibliography

[TC17] Inria Saclay Team Commands. Bocop: an open source toolbox for
optimal control. http://bocop.org, 2017.

[TFML18] Thomas George Thuruthel, Egidio Falotico, Mariangela Manti, and
Cecilia Laschi. Stable open loop control of soft robotic manipulators.
IEEE Robotics and Automation Letters, 3(2):1292–1298, 2018.

[TGVM20] Benjamin Treussart, Franck Geffard, Nicolas Vignais, and Frederic
Marin. Controlling an upper-limb exoskeleton by EMG signal while
carrying unknown load. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 9107–9113, may 2020.

[TLR09] Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux. Para-
metric model-checking of stopwatch Petri nets. Journal of Universal
Computer Science, 15(17):3273–3304, 2009.

[TNM18] Tatsuya Teramae, Tomoyuki Noda, and Jun Morimoto. EMG-
based model predictive control for physical human–robot interac-
tion: application for assist-as-needed control. IEEE Robotics and
Automation Letters, 3(1):210–217, jan 2018.

[Tru00] Manfred R. Trummer. Spectral methods in computing invariant
tori. Applied Numerical Mathematics, 34(2–3):275–292, July 2000.

[VBV+21a] Dorian Verdel, Simon Bastide, Nicolas Vignais, Olivier Bruneau,
and Bastien Berret. An identification-based method improving
the transparency of a robotic upper limb exoskeleton. Robotica,
39(9):1711–1728, 2021.

[VBV+21b] Dorian Verdel, Simon Bastide, Nicolas Vignais, Olivier Bruneau,
and Bastien Berret. An identification-based method improving
the transparency of a robotic upper limb exoskeleton. Robotica,
39(9):1711–1728, feb 2021.

[vdBQ20] Jan Bouwe van den Berg and Elena Queirolo. A general framework
for validated continuation of periodic orbits in systems of polynomial
ODEs. Journal of Computational Dynamics, 0(2158-2491-2019-0-
10):59–97, 2020.

[Vid01] Mathukumalli Vidyasagar. Randomized algorithms for robust
controller synthesis using statistical learning theory. Automatica,
37(10):1515–1528, 2001.

[VJ09] Ngoc Dung Vuong and Marcelo H. Ang Jr. Dynamic model identi-
fication for industrial robots. Acta Polytechnica Hungarica, 6(5):51–
68, 2009.

http://bocop.org

Bibliography 179

[VPL03] A Venkatesan, S Parthasarathy, and M Lakshmanan. Occurrence of
multiple period-doubling bifurcation route to chaos in periodically
pulsed chaotic dynamical systems. Chaos, Solitons & Fractals,
18(4):891–898, 2003.

[WHSC19] Wenkai Wang, Zhongxi Hou, Shangqiu Shan, and Lili Chen. Op-
timal periodic control of hypersonic cruise vehicle: Trajectory
features. IEEE Access, 7:3406–3421, 2019.

[Win90] J.M. Wing. A specifier’s introduction to formal methods. Computer,
23(9):8–22, 1990.

[WME92] Farn Wang, Aloysius K. Mok, and E. Allen Emerson. Formal
specification of synchronous distributed real-time systems by APTL.
In Tony Montgomery, Lori A. Clarke, and Carlo Ghezzi, editors,
ICSE, pages 188–198. ACM Press, 1992.

[Wor01] World Medical Association. World Medical Association Declaration
of Helsinki. Ethical principles for medical research involving human
subjects. Bulletin of the World Health Organization, 79(4):373–374,
2001.

[WQCD16] Chengzhi Wu, Bo Qi, Chunlin Chen, and Daoyi Dong. Robust
learning control design for quantum unitary transformations. IEEE
transactions on cybernetics, 47(12):4405–4417, 2016.

[WQY+19] Wendong Wang, Lei Qin, Xiaoqing Yuan, Xing Ming, Tongsen
Sun, and Yifan Liu. Bionic control of exoskeleton robot based on
motion intention for rehabilitation training. Advanced Robotics,
33(12):590–601, June 2019.

[WS18] Patrick M. Wensing and Jean-Jacques E. Slotine. Cooperative adap-
tive control for cloud-based robotics. In 2018 IEEE International
Conference on Robotics and Automation, ICRA 2018, Brisbane,
Australia, May 21-25, 2018, pages 6401–6408. IEEE, 2018.

[WTW14] Changzhi Wu, Kok Lay Teo, and Xiangyu Wang. Minimax optimal
control of linear system with input-dependent uncertainty. Journal
of the Franklin Institute, 351(5):2742 – 2754, 2014.

[WvD+05] Ge Wu, Frans C.T. van der Helm, H.E.J. (DirkJan) Veeger, Mohsen
Makhsous, Peter Van Roy, Carolyn Anglin, Jochem Nagels, An-
drew R. Karduna, Kevin McQuade, Xuguang Wang, Frederick W.
Werner, and Bryan Buchholz. Isb recommendation on definitions of
joint coordinate systems of various joints for the reporting of human
joint motion—part ii: shoulder, elbow, wrist and hand. Journal of
Biomechanics, 38(5):981–992, 2005.

180 Bibliography

[WZ07] D. Wilczak and P. Zgliczyński. Cr-Lohner algorithm. arXiv e-prints,
page arXiv:0704.0720, April 2007.

[XP93] J. Xu and D.L. Parnas. On satisfying timing constraints in hard-
real-time systems. IEEE Transactions on Software Engineering,
19(1):70–84, 1993.

[YL17] Ouhammou Yassine and Fejoz Loïc. Time4sys in a nutshell. In
WATERS, page 2, jun 2017.

[YMW97] Jin Yang, Aloysius K. Mok, and Farn Wang. Symbolic model
checking for event-driven real-time systems. ACM Transactions on
Programming Languages and Systems, 19(2):386–412, 1997.

[Zgl02] Piotr Zgliczynski. C1 Lohner algorithm. Foundations of Computa-
tional Mathematics, 2(4):429–465, 2002.

[ZM95] Alex Zheng and Manfred Morari. Stability of model predictive
control with mixed constraints. IEEE Transactions on automatic
control, 40(10):1818–1823, 1995.

[ZM96] D. L. Zhu and P. Marcotte. Co-coercivity and its role in the
convergence of iterative schemes for solving variational inequalities.
SIAM Journal on Optimization, 6(3):714–726, 1996.

[ZMSJ18] Jingzhao Zhang, Aryan Mokhtari, Suvrit Sra, and Ali Jadbabaie. Di-
rect runge-kutta discretization achieves acceleration. arXiv preprint
arXiv:1805.00521, 2018.

[ZWL+18] Yaguang Zhu, Yongsheng Wu, Qiong Liu, Tong Guo, Rui Qin, and
Jizhuang Hui. A backward control based on σ-Hopf oscillator with
decoupled parameters for smooth locomotion of bio-inspired legged
robot. Robotics and Autonomous Systems, 106:165–178, August
2018.

A
Appendix: Scheduling for

real-time system

182 A. Appendix: Scheduling for real-time system

A.1 Parametric analyses without reactivities

A.1.1 Parametric offsets and deadlines

The constraint synthesized by IMITATOR for the model with both parametric offsets
and parametric deadlines is given in Fig. A.1.

A.2 Parametric analyses with reactivities

A.2.1 Parametric offsets

The constraint synthesized by IMITATOR for the model with the 3 reactivities and
parametric offsets is given in Fig. A.2.

A.2.2 Parametric deadlines

The constraint synthesized by IMITATOR for the model with the 3 reactivities and
parametric deadlines in Fig. A.3.

A.3 Parametric analyses with reactivities and with switch time

A.3.1 Parametric offsets

The constraint synthesized by IMITATOR for the model with parametric offsets,
reactivities constraints the context switch time is given in Fig. A.4.

A.3. Parametric analyses with reactivities and with switch time 183

deadlineT2 > 11
∧ 11 ≥ offsetT3
∧ deadlineT1 ≥ 4
∧ offsetT3 > offsetT2
∧ 20 ≥ deadlineT2
∧ offsetT2 > 0
∧ 5 ≥ deadlineT1
∧ 1 ≥ offsetT2
∧ offsetT1 = 0
∧ deadlineT3 = 60
OR
offsetT1 > 0
∧ deadlineT1 ≥ 4
∧ 20 ≥ deadlineT2
∧ offsetT3 > 5
∧ deadlineT2 ≥ 15
∧ 11 ≥ offsetT3
∧ 5 ≥ deadlineT1
∧ deadlineT1 ≥ 1 + offsetT1
∧ offsetT2 = 0
∧ deadlineT3 = 60
OR
offsetT1 > 0
∧ offsetT1 + 1 ≥ offsetT3
∧ deadlineT2 ≥ 15
∧ 20 ≥ deadlineT2
∧ 4 ≥ offsetT1
∧ offsetT3 ≥ 0
∧ deadlineT1 = 5
∧ offsetT2 = 0
∧ deadlineT3 = 60
OR
deadlineT2 > 11
∧ 11 ≥ offsetT3
∧ deadlineT1 ≥ 4
∧ offsetT3 > deadlineT1
∧ 20 ≥ deadlineT2
∧ 5 ≥ deadlineT1
∧ offsetT2 = 0
∧ offsetT1 = 0
∧ deadlineT3 = 60

OR
deadlineT2 > 11
∧ 1 ≥ offsetT3
∧ deadlineT2 ≥ 10 + offsetT2
∧ offsetT2 ≥ 1
∧ 20 ≥ deadlineT2
∧ deadlineT1 ≥ offsetT2
∧ 5 > deadlineT1
∧ offsetT3 ≥ 0
∧ deadlineT1 ≥ 4
∧ offsetT1 = 0
∧ deadlineT3 = 60
OR
20 ≥ deadlineT2
∧ deadlineT1 ≥ 4
∧ offsetT1 > 0
∧ deadlineT1 ≥ 1 + offsetT1
∧ deadlineT2 > 11
∧ offsetT3 > 1 + offsetT1
∧ 5 ≥ deadlineT1
∧ 5 ≥ offsetT3
∧ offsetT2 = 0
∧ deadlineT3 = 60
OR
offsetT1 >= 0
∧ deadlineT2 > 11
∧ offsetT1 + 1 ≥ offsetT3
∧ deadlineT1 ≥ 4
∧ deadlineT2 ≥ 11 + offsetT1
∧ 20 ≥ deadlineT2
∧ offsetT3 ≥ 0
∧ 5 > deadlineT1
∧ deadlineT1 ≥ 1 + offsetT1
∧ offsetT2 = 0
∧ deadlineT3 = 60
OR
offsetT2 > 5
∧ 20 ≥ deadlineT2
∧ offsetT1 ≥ 0
∧ deadlineT1 ≥ 4
∧ deadlineT2 ≥ 10 + offsetT2
∧ 5 ≥ deadlineT1
∧ deadlineT1 ≥ 1 + offsetT1
∧ deadlineT2 ≥ 19
∧ offsetT3 = 0
∧ deadlineT3 = 60

OR
deadlineT2 > 11
∧ offsetT3 > 0
∧ 20 ≥ deadlineT2
∧ 5 ≥ offsetT3
∧ offsetT2 = 0
∧ deadlineT1 = 5
∧ offsetT1 = 0
∧ deadlineT3 = 60
OR
deadlineT2 > 11
∧ 19 > deadlineT2
∧ offsetT2 ≥ 1
∧ 5 > offsetT2
∧ offsetT3 > 0
∧ deadlineT2 ≥ 10 + offsetT2
∧ 1 ≥ offsetT3
∧ offsetT1 = 0
∧ deadlineT1 = 5
∧ deadlineT3 = 60
OR
deadlineT2 > 11
∧ deadlineT1 ≥ 4
∧ 5 ≥ deadlineT1
∧ offsetT3 > 0
∧ 1 > offsetT2
∧ 20 ≥ deadlineT2
∧ offsetT2 ≥ offsetT3
∧ offsetT1 = 0
∧ deadlineT3 = 60
OR
19 > deadlineT2
∧ offsetT3 ≥ 0
∧ offsetT2 > deadlineT1
∧ deadlineT2 ≥ 10 + offsetT2
∧ 5 > offsetT2
∧ 1 ≥ offsetT3
∧ deadlineT1 ≥ 4
∧ offsetT1 = 0
∧ deadlineT3 = 60

Figure A.1: Parametric offsets and deadlines

184 A. Appendix: Scheduling for real-time system

11 >= offsetT2
∧ offsetT3 >= 0
∧ offsetT2 >= offsetT3
∧ 1 >= offsetT3
∧ offsetT1 = 0
OR
offsetT3 > offsetT2
∧ 1 >= offsetT2
∧ offsetT2 >= 0
∧ 11 >= offsetT3
∧ offsetT1 = 0

OR
offsetT2 >= 0
∧ offsetT1 > 0
∧ 11 >= offsetT2
∧ 4 >= offsetT1
∧ offsetT3 = 0
OR
offsetT1 > 0
∧ 11 >= offsetT3
∧ offsetT3 > 0
∧ 4 >= offsetT1
∧ offsetT2 = 0

Figure A.2: Parametric offsets for model with the 3 reactivities

deadlineT2 >= 11
∧ deadlineT1 >= 4
∧ 5 >= deadlineT1
∧ 20 >= deadlineT2
∧ deadlineT3 = 60

Figure A.3: Parametric deadlines for model with the 3 reactivities

A.3.2 Parametric deadlines

The constraint synthesized by IMITATOR for the model with parametric deadlines,
reactivities constraints and the context switch time is given in Fig. A.5.

A.3. Parametric analyses with reactivities and with switch time 185

offsetT3 >= 10
∧ 7 >= 2 ∗ offsetT1
∧ 2 ∗ offsetT1 > 5 + 2 ∗ offsetT2
∧ 23 >= 2 ∗ offsetT3
∧ offsetT1 >= 3
∧ 2 ∗ offsetT2 + 7 > 2 ∗ offsetT1
∧ offsetT2 >= 0
∧ offsetT1 > 2 + offsetT2
OR
offsetT2 + 2 ∗ offsetT3 + 3 > 3 ∗ offsetT1
∧ offsetT2 >= 0
∧ 2 ∗ offsetT3 > 1 + 2 ∗ offsetT1
∧ 19 >= 2 ∗ offsetT3
∧ 2 ∗ offsetT2 + 7 > 2 ∗ offsetT1
∧ offsetT1 >= 3 + offsetT2
∧ 7 >= 2 ∗ offsetT1
OR
offsetT2 >= 5
∧ offsetT3 >= 0
∧ 23 >= 2 ∗ offsetT2
∧ 1 >= offsetT3
∧ offsetT1 = 0
OR
offsetT1 >= 0
∧ offsetT2 > 0
∧ offsetT3 > 5 + offsetT2
∧ offsetT2 >= offsetT1
∧ offsetT1 + 1 >= offsetT2
∧ 1 > 2 ∗ offsetT1
∧ 19 >= 2 ∗ offsetT3
OR
19 >= 2 ∗ offsetT3
∧ offsetT1 >= 0
∧ offsetT3 > 5
∧ offsetT2 > 1 + offsetT1
∧ 2 > offsetT2
OR
23 >= 2 ∗ offsetT2
∧ offsetT2 >= 5
∧ offsetT1 >= 0
∧ offsetT3 > 1 + offsetT1
∧ 3 >= 2 ∗ offsetT3
OR
2 ∗ offsetT3 + 1 > 2 ∗ offsetT1 + 2 ∗ offsetT2
∧ offsetT3 >= 3 + offsetT2
∧ 2 ∗ offsetT3 > 5 + 2 ∗ offsetT2
∧ offsetT1 + offsetT3 > 6 + 2 ∗ offsetT2
∧ offsetT1 >= 3 + offsetT2
∧ 2 ∗ offsetT1 + 1 >= 2 ∗ offsetT3
∧ 7 >= 2 ∗ offsetT1
∧ offsetT2 >= 0
OR
2 ∗ offsetT1 > 7
∧ offsetT2 >= 0
∧ offsetT3 > 5
∧ offsetT1 > 3 + offsetT2
∧ 19 >= 2 ∗ offsetT3
∧ 4 >= offsetT1

OR
offsetT3 > 11
∧ offsetT1 + 1 >= offsetT2
∧ offsetT1 >= 0
∧ 1 > 2 ∗ offsetT1
∧ offsetT2 > 0
∧ offsetT2 >= offsetT1
∧ 23 >= 2 ∗ offsetT3
OR
1 > 2 ∗ offsetT1
∧ offsetT3 > 5
∧ offsetT1 + 1 >= offsetT2
∧ offsetT2 > offsetT1
∧ 2 ∗ offsetT2 > 1 + 2 ∗ offsetT1
∧ offsetT2 + 5 >= offsetT3
∧ offsetT1 >= 0
OR
offsetT1 >= 0
∧ 2 ∗ offsetT2 + 19 >= 2 ∗ offsetT3
∧ 6 ∗ offsetT2 + 35 > 4 ∗ offsetT3
∧ offsetT3 >= 10
∧ 2 ∗ offsetT2 >= 3
∧ 2 > offsetT2
∧ offsetT2 > 1 + offsetT1
OR
5 >= offsetT3
∧ 9 > offsetT1 + offsetT3
∧ 5 > offsetT1
∧ offsetT3 > offsetT1
∧ 2 ∗ offsetT3 > 1 + 2 ∗ offsetT1
∧ 4 >= offsetT1
∧ 2 ∗ offsetT1 >= 7 + 2 ∗ offsetT2
∧ offsetT2 >= 0
OR
3 >= 2 ∗ offsetT2
∧ offsetT3 >= 3 + offsetT2
∧ offsetT2 > 0
∧ 5 > offsetT3
∧ offsetT1 = 0
OR
offsetT2 + 3 >= offsetT3
∧ 2 ∗ offsetT1 + offsetT2 + 3 > offsetT3
∧ offsetT3 >= offsetT2
∧ offsetT1 >= 0
∧ offsetT2 > 1 + offsetT1
∧ 3 >= 2 ∗ offsetT2
OR
4 ∗ offsetT2 + 5 > 2 ∗ offsetT1 + 2 ∗ offsetT3
∧ 2 ∗ offsetT1 + 2 ∗ offsetT2 + 2 > offsetT3
∧ 2 ∗ offsetT2 + 2 > offsetT3
∧ 4 ∗ offsetT1 + 2 ∗ offsetT2 > 3
∧ 2 ∗ offsetT2 >= 3
∧ offsetT1 >= 0
∧ offsetT3 > 3 + offsetT2
∧ offsetT2 > 1 + offsetT1
∧ 5 >= offsetT3

Figure A.4: Parametric offsets for model with reactivities and with switch time

186 A. Appendix: Scheduling for real-time system

2 ∗ deadlineT2 >= 9
∧ 2 ∗ deadlineT1 >= 9
∧ 5 >= deadlineT1
∧ 20 >= deadlineT2
∧ deadlineT3 = 60

Figure A.5: Parametric deadlines for model with reactivities and with switch time

B
Appendix: Formalize for

real-time system
B.1 Other examples translated by Time4sys2imi

Example B.1 (Example without tasks chain). We modeled an example with Time4sys
presented in Fig. B.1. This example contains four periodic tasks without task chains.

Figure B.1: An example without tasks chain

Fig. B.2 illustrates the PTAs obtained from Fig. B.1 after the translation us-
ing Time4sys2imi. This graphics is automatically generated by IMITATOR (as the
subsequent PTA depictions).

188
B

.
A

ppendix:
Form

alize
for

real-tim
e

system

Figure B.2: Translation of Fig. B.1

B.1. Other examples translated by Time4sys2imi 189

Example B.2 (Example with tasks chain). We modeled an example with Time4sys
presented in Fig. B.3. This example contains three tasks, of which one is periodic; it
contains also a tasks chain.

Figure B.3: An example with tasks chain

Fig. B.4 illustrates the PTAs obtained from Fig. B.3 after the translation using
Time4sys2imi.

190
B

.
A

ppendix:
Form

alize
for

real-tim
e

system

Figure B.4: Translation of Fig. B.3

B.1. Other examples translated by Time4sys2imi 191

Example B.3 (Example with 4 CPUs and 11 tasks). We modeled an example with
Time4sys presented in Fig. B.5. This example contains four CPU and eleven tasks; it
also contains four tasks chains.

192
B

.
A

ppendix:
Form

alize
for

real-tim
e

system

Figure B.5: General example

Figs. B.6 to B.8 illustrate the PTAs obtained from Fig. B.5 after the translation using Time4sys2imi

B
.1.

O
ther

exam
ples

translated
by

T
im

e4sys2im
i

193

Figure B.6: First part of translation of Fig. B.5

194
B

.
A

ppendix:
Form

alize
for

real-tim
e

system

Figure B.7: Second part of translation of Fig. B.5

B
.1.

O
ther

exam
ples

translated
by

T
im

e4sys2im
i

195

Figure B.8: Third part of translation of Fig. B.5

C
Appendix: Limit cycle of

oscillators using Euler method

Contents

A.1 Parametric analyses without reactivities 182

A.1.1 Parametric offsets and deadlines 182

A.2 Parametric analyses with reactivities 182

A.2.1 Parametric offsets . 182

A.2.2 Parametric deadlines . 182

A.3 Parametric analyses with reactivities and with switch time 182

A.3.1 Parametric offsets . 182

A.3.2 Parametric deadlines . 184

198 C. Appendix: Limit cycle of oscillators using Euler method

C.1 Reaction-diffusion PDEs

Let us consider the special class of partial differential equations, called “reaction-
diffusion” equations. For the sake of notation simplicity, we focus on 1D reaction-
diffusion equations with Dirichlet boundary conditions (the domain Ω is of the form
[0, ℓ] ⊂ R), but the method applies to 2D or 3D reaction-diffusion equations with
other boundary conditions. A 1D reaction-diffusion system with Dirichlet boundary
conditions is of the form (P):

∂y(x, t)
∂t

= σ
∂2y(x, t)

∂x2 + f(y(x, t)), t ∈ [0, ∞], x ∈ Ω.

y(0, t) = b0(t), y(ℓ, t) = bℓ(t).

Here, y = y(x, t) is an Rd-valued unknown function, Ω is a bounded domain in R with
boundary ∂Ω := {0, ℓ}, f is a function from Ω × [0, ∞] to [0, γ]d, and σ a positive
constant, called “diffusion constant”. Besides, we have:

y(x, 0) = y0(x), x ∈ Ω ≡ [0, ℓ],

where y0(x) is a given function called initial condition.

We assume (see e.g. [SAAS13]):

A1 f(x, t) is twice continuously differentiable with respect tox and continuous with
respect to t.

Under this assumption, there exists a unique solution of (P) with Dirichlet
boundary condition y(x, t) ∈ {b0(t), bℓ(t)} for x ∈ ∂Ω

and initial condition y(x, 0) = y0 ∈ ([0, γ]d)Ω (see, e. g., [CC04, KM11]).

Let S ≡ ([0, γ]d)Ω.

A2 S is invariant for (P), i.e., for each initial condition in y0 ∈ S and each
(x, t) ∈ Ω × [0, ∞), the solution y(x, t) of (P) is in [0, γ]d;

A3 for each t ∈ [0, ∞), the solution y(·, t) is a C4 continuous function on Ω.

C.2. Centered finite difference scheme 199

C.2 Centered finite difference scheme

For the sake of notation simplicity, we let here d = 1. Given system (P), let us apply
the centered difference scheme (see, e. g., [Kot08]) for transforming it into a system of
continuous time ODEs. Let M be a positive integer, h = ℓ/(M + 1), and let Ωh be a
uniform grid with nodes xj = jh, j = 1, . . . , M . By replacing the 2nd order spatial
derivative with the second order centered difference, we obtain an ODE of the form:

(Oh) : dyh(t)
dt

= σLhyh(t) + σφh(b) + f(yh(t)),

with yh(t) = [y1
h(t), . . . , yM

h (t)]⊤, yj
h(t) ≈ y(t, xj), and

Lh = 1
h2

−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0

· · ·
0 0 · · · 1 −2

φh(b) = 1
h2 [b0(t), 0, . . . , 0, bℓ(t)]⊤.

Here, Lh is a M × M -matrix (called Laplacian matrix), and φh(b) a vertical
M -vector. Let us abbreviate the system (Oh) as

dyh

dt
= σφh(b) + Fh(yh)

with Fh(yh) ≡ σLhyh + f(yh).

We denote by Y h
y0(t) the solution of (Oh) at time t ≥ 0 with initial condition y0 =

[y1
0, . . . , yM

0] ∈ [0, γ]M , where yi
0 = y0(ih), i = 1, . . . , M . Finally, let Sh ≡ [0, γ]M .

Definition C.1. The Lipschitz constant for Fh on Sh, denoted by Lh, is defined by

(i) Lh := sup
y1 ̸=y2∈Sh

∥Fh(y1) − Fh(y2)∥
∥y1 − y2∥

.

The one-sided Lipschitz (OSL) constant for Fh on Sh, denoted by λh,

is defined by

(ii) λh := sup
y1 ̸=y2∈Sh

⟨Fh(y1) − Fh(y2), y1 − y2⟩
∥y1 − y2∥2 ,

200 C. Appendix: Limit cycle of oscillators using Euler method

where ⟨·, ·⟩ denotes the scalar product of two vectors of Sh, and ∥ · ∥ the Euclidean
norm1.

The constants Lh and λh can be computed using a (nonlinear) constraint optimi-
sation solver via formula (i) and (ii) (see, e. g., [LCDVCF17]).

The ODE (Oh) is said to be dissipative if we have λh < 0 (see [CP93, AS14]).
Note that it is always possible to make (Oh) dissipative by augmenting sufficiently its
diffusion coefficient σ (see, e. g., [CP93, CF19]). We suppose in the following that (Oh)
is dissipative.

Remark 9. By Proposition 4 of [AS12] for the Euclidean norm ∥ · ∥, λ1 can also be
defined on any convex domain D as:

λ1 := sup
y∈D\{0}

lim
ε→0

∥y + εJ [Fh(y)](y)∥ − ∥y∥
ε∥y∥

,

where J [Fh(y)] is the Jacobian matrix of Fh at y

∂F1(y)
∂u

∂F1(y)
∂v

∂F2(y)
∂u

∂F2(y)
∂v

The ODE (Oh) is said to be contractive on S1 if we have λ1 < 0 (see [CP93,
AS14]).

Error bound for Euler’s method

Let us now approximate the solution xz of ẋ = f(x) with initial condition z ∈
Rd × Rd, by time integration using the forward Euler method. Given a starting point
w ∈ D ⊆ Rd × Rd, we denote by x̃w(t) the Euler-based image of w, using a time-step
τ > 0, at time t ∈ [0, τ], defined by:

x̃w(t) := w + t f(w).

The Euler-based image x̃w(t) is computed for all t ∈ [0, ∞) by iteration on each interval
[tk, tk+1] with tk = kτ (k ≥ 0).

We now give a result that reflects the error of the Euler-based approximate solution
x̃w in relation to the exact solution xz.

Proposition C.1 ([LCDVCF17]). (guaranteed integration) Consider a system ẋ =
f(x) on D ⊆ Rd × Rd of associated OSL constant λ ∈ R, a point w ∈ D and a point

1Other norms can be considered (see, e. g., [SAAS13]), but for simplicity we focus here on Euclidean
norms.

C.2. Centered finite difference scheme 201

z ∈ B(w, ε) ⊂ D2 for some ε > 0. We have for all t ∈ [0, τ]:

xz(t) ∈ B(x̃w(t), δλ
ε (t)),

where xz(t) is the solution of ẋ = f(x) at time t for initial condition z.

We suppose that the state space Rd × Rd is decomposed into I (overlapping)
domains {Di ≡ D1

i × D2
i }1≤i≤I . We suppose besides that each Di ⊆ Rd × Rd is

associated with an OSL constant (upperbounded by) λi ∈ R.

We consider, at initial time, a ball B(0) of the form B(w, ε) with w = (w1, w2) and
ε > 0 (so B(w, ε) ≡ (B(w1, ε), B(w2, ε))). We assume that the initial point z = (z1, z2)
of the solution x(t) of ẋ = f(x) belongs to B(0); the center w of B(0) can thus be
viewed as an approximate value of z.

Let us define recursively a growth function d(k), using Definition E.3, as follows:

• d(0) = ε,

• d(k + 1) = δλ
d(k)(τ),

where λ ∈ R is the maximum of the OSL constants λi of the domains
Di ≡ D1

i × D2
i traversed by the convex hull of B(k) and B(k + 1) with

B(ℓ) ≡ (B(x̃1
w(ℓτ), d(ℓ)), B(x̃2

w(ℓτ), d(ℓ))), ℓ = k, k + 1.3 See Fig. C.1.

Di1

Di2

B(k)

B(k + 1)

Figure C.1: For the step from B(k) to B(k + 1), λ is the maximum of λi1 and λi2 corre-
sponding to the domains Di1 and Di2 traversed by the convex hull of B(k) to
B(k + 1).

2B(w, ε) denotes the ball of center w and radius ε; it contains all the points y such that ∥y − w∥ ≤ ε.
3In practice, the dynamic value λ at time t ∈ [kτ, (k + 1)τ] is computed as follows: the value of

λ(kτ) and λ((k + 1)τ) are computed, using the Jacobian formula, for the center of balls B(k) and
B(k + 1) respectively, and the maximum of the two values is assigned to λ for t ∈ [kτ, (k + 1)τ].

202 C. Appendix: Limit cycle of oscillators using Euler method

Consider balls B(k) ≡ (B1(k), B2(k)) with Bi(k) ≡ B(x̃i
w(kτ), d(k)) (i = 1, 2 and

k ≥ 0).4 We have:

x̃w(kτ)

x̃w((k + 1)τ)

B(k)

B(k + 1)

xz(kτ)

xz((k + 1)τ)

Figure C.2: one-step of guaranteed Euler’s method

Proposition C.2. Consider z, w ∈ D with z ∈ B(w, ε), and B(k) ≡ (B1(k), B2(k))
(k ≥ 0) with Bi(k) ≡ B(x̃i

w(kτ), d(k)) (i = 1, 2). We have:

xz(kτ) ∈ B(k) for all k ≥ 0, (C.1)

i.e.: xi
z(kτ) ∈ Bi(k), for k ≥ 0 and i ∈ {1, 2}.

Proof. By induction on k, using Proposition C.1 and definition of d(·). 2

Balls B(k) ≡ B(x̃w(kτ), d(k)) and B(k+1) ≡ B(x̃w((k+1)τ), d(k+1)) are depicted
on Fig. C.2 together with solutions xz(kτ) and xz((k + 1)τ) that they are ensured to
contain by Proposition C.2.

C.3 Source code of Examples 8.1 to 8.3: Parametric Van der Pol system

1 import time
2 from random import uniform
3 from scipy . optimize import minimize
4 import numpy as np
5 from numpy import zeros , linspace
6 import math
7 import matplotlib . pyplot as plot
8 import matplotlib . pyplot as plot1
9 import matplotlib . pyplot as plot2

4B(k) (resp. Bi(k)) should be formally written Bw,ε(k) (resp. Bi
w,ε(k)), but we drop the indices w, ε

for the sake of simplicity.

C.3. Source code of Examples 8.1 to 8.3: Parametric Van der Pol system203

10 import matplotlib . pyplot as plot3
11 import matplotlib . pyplot as plot4
12 import matplotlib . pyplot as plot5
13 import matplotlib . pyplot as plot6
14 import matplotlib . pyplot as plot7
15 import matplotlib . pyplot as plot8
16 import matplotlib . pyplot as plot9
17 import matplotlib . pyplot as plot10
18 from mpl_toolkits . mplot3d import Axes3D
19 from numpy . linalg import norm
20
21
22 start_time = time.time ()
23
24
25 def euler_d_vanderpol (d_vanderpol , mu_ , w_ , dt_):
26 du1 = d_vanderpol [0] + dt_ * (d_vanderpol [1]) # u1
27 du2 = d_vanderpol [1] + dt_ * (
28 (mu_ + w_) * d_vanderpol [1] - (mu_ + w_) * (d_vanderpol

[0] ** 2) * d_vanderpol [1] - d_vanderpol [0]
29) # u2
30 return [du1 , du2]
31
32
33 def f_vanderpol (d_vanderpol , mu_ , w_):
34 du1 = d_vanderpol [1] # u1
35 du2 = (mu_ + w_) * d_vanderpol [1] - (mu_ + w_) * (d_vanderpol

[0] ** 2) * d_vanderpol [1] - d_vanderpol [0] # u2
36 return [du1 , du2]
37
38
39 def lambda_h (vanderpol_ , mu_):
40 J_p = zeros ((length_vanderpol , length_vanderpol))
41 J_p [0, 0] = 0
42 J_p [0, 1] = 1
43
44 J_p [1, 0] = -2 * mu_ * vanderpol_ [0] * vanderpol_ [1] - 1
45 J_p [1, 1] = mu_ - mu_ * (vanderpol_ [0] ** 2)
46
47 vec = zeros(length_vanderpol)
48 vec [0] = vanderpol_ [0]
49 vec [1] = vanderpol_ [1]
50 norm_q = 1 / norm(vanderpol_) ** 2
51 return norm_q * (vec.dot(J_p)).dot(vec.T)
52
53
54 def objfunc (x_):
55 lc_y1 = x_[: int(len(x_) / 2)]
56 lc_y2 = x_[int(len(x_) / 2):]
57 eu_van_y1 = f_vanderpol (lc_y1 , p, 0)
58 eu_van_y2 = f_vanderpol (lc_y2 , p, 0)
59 diff_d_ = [x - y for x, y in zip(eu_van_y1 , eu_van_y2)]
60 diff_ = [x - y for x, y in zip(lc_y1 , lc_y2)]
61 norm_diff_d = norm(diff_d_)
62 norm_diff_ = norm(diff_)
63 eq_tomax = norm_diff_d / norm_diff_

204 C. Appendix: Limit cycle of oscillators using Euler method

64 f = -eq_tomax
65 return f
66
67
68 def objfunc_C (x_ , l_cons_):
69 lc_y1 = x_
70 eu_van_y1 = f_vanderpol (lc_y1 , p, 0)
71 norm_f = norm(eu_van_y1)
72 eq_tomax = l_cons_ * norm_f
73 f = -eq_tomax
74 return f
75
76
77 def constraint1 (x_):
78 lc_y1 = x_[: int(len(x_) / 2)]
79 lc_y2 = x_[int(len(x_) / 2):]
80 diff_y1_y2 = [y1_ - y2_ for y1_ , y2_ in zip(lc_y1 , lc_y2)]
81 norm_diff_y1_y2 = norm(diff_y1_y2)
82 return norm_diff_y1_y2 - 0.0000001
83
84
85 def lipschitz_constant (eul , eul_next):
86 x0 = np.zeros(len(eul) * 2)
87 for i_r in range (0, len(eul)):
88 x0[i_r] = eul[i_r]
89 x0[len(eul) + i_r] = eul_next [i_r]
90 list_dis = []
91 bnds = []
92 for i_r in range (0, len(eul)):
93 list_dis . append (abs(eul[i_r] - eul_next [i_r]) /2)
94 bnds. append (tuple ([eul[i_r] - list_dis [-1], eul[i_r] +

list_dis [-1]]))
95 bnds = 2 * bnds
96 bnds = tuple(bnds)
97 con1 = {’type ’: ’ineq ’, ’fun ’: constraint1 }
98 cons = ([con1])
99 solution = minimize (objfunc , x0 , method =’SLSQP ’, bounds =bnds ,

constraints =cons)
100 x = solution .x
101 res_ = -objfunc (x)
102 return res_
103
104
105 def list_lipschitz_constant (euler_p):
106 res_ = []
107 for i_e in range (0, len(euler_p) - 1):
108 res_. append (lipschitz_constant (euler_p [i_e], euler_p [i_e +

1]))
109 return res_
110
111
112 def list_C_constant (lu_ , euler_p):
113 res_ = []
114 for i_e in range (0, len(euler_p) - 1):
115 res_. append (C_lipschitz (lu_[i_e], euler_p [i_e], euler_p [i_e

+ 1]))

C.3. Source code of Examples 8.1 to 8.3: Parametric Van der Pol system205

116 return res_
117
118
119 def C_lipschitz (lu_ , eul , eul_next):
120 x0 = eul
121 list_dis = []
122 bnds = []
123 for i_r in range (0, len(eul)):
124 list_dis . append (abs(eul[i_r] - eul_next [i_r]) /2)
125 bnds. append (tuple ([eul[i_r] - list_dis [-1], eul[i_r] +

list_dis [-1]]))
126 bnds = tuple(bnds)
127 solution = minimize (lambda f_i , l_cons_ =lu_: objfunc_C (f_i ,

l_cons_), x0 , method =’SLSQP ’, bounds =bnds)
128 x = solution .x
129 res_ = -objfunc_C (x, lu_)
130 return res_
131
132
133 def constraint1_gamma (x_):
134 lc_y1 = x_[: int ((len(x_) -2) / 2)]
135 lc_y2 = x_[int ((len(x_) -2) / 2):-2]
136 diff_y1_y2 = [y1_ - y2_ for y1_ , y2_ in zip(lc_y1 , lc_y2)]
137 norm_diff_y1_y2 = norm(diff_y1_y2)
138 return norm_diff_y1_y2 - 0.0000001
139
140
141 def constraint2_gamma (x_):
142 w1_ = x_[-2]
143 w2_ = x_[-1]
144 return w1_ - w2_ - 0.0001
145
146
147 def constraint3_gamma (x_):
148 w1_ = x_[-2]
149 w2_ = x_[-1]
150 return w2_ - w1_ - 0.0001
151
152
153 def objfunc_gamma (x_ , lambda_u):
154 lc_y1 = x_[: int ((len(x_) -2) / 2)]
155 lc_y2 = x_[int ((len(x_) -2) / 2):-2]
156 w1 = x_[-2]
157 w2 = x_[-1]
158 eu_van_y1 = f_vanderpol (lc_y1 , p, w1)
159 eu_van_y2 = f_vanderpol (lc_y2 , p, w2)
160 eq_tomax = gamma_u (lc_y1 , lc_y2 , eu_van_y1 , eu_van_y2 , lambda_u

)
161 f = -eq_tomax
162 return f
163
164
165 def gamma_lipschitz (eul , eul_next , lambda_):
166 x0 = np.zeros(len(eul) * 2 + 2)
167 for i_r in range (0, len(eul)):
168 x0[i_r] = eul[i_r]

206 C. Appendix: Limit cycle of oscillators using Euler method

169 x0[len(eul) + i_r] = eul_next [i_r]
170 x0[-2] = -w/2
171 x0[-1] = w/2
172 list_dis = []
173 bnds = []
174 for i_r in range (0, len(eul)):
175 d1_ = abs(eul[i_r] - eul_next [i_r])
176 list_dis . append (d1_)
177 bnds. append (tuple ([eul[i_r] - list_dis [-1], eul[i_r] +

list_dis [-1]]))
178 bnds = 2 * bnds
179 bnds. append (tuple ([-w, w]))
180 bnds. append (tuple ([-w, w]))
181 bnds = tuple(bnds)
182
183 con1_gamma = {’type ’: ’ineq ’, ’fun ’: constraint1_gamma }
184 con2_gamma = {’type ’: ’ineq ’, ’fun ’: constraint2_gamma }
185 con3_gamma = {’type ’: ’ineq ’, ’fun ’: constraint3_gamma }
186 cons_gamma = [con1_gamma , con2_gamma , con3_gamma]
187 solution = minimize (lambda f_i , lam= lambda_ : objfunc_gamma (f_i ,

lam), x0 , method =’SLSQP ’, bounds =bnds ,
188 constraints = cons_gamma)
189 x = solution .x
190 res_ = -objfunc_gamma (x, lambda_)
191 return res_
192
193
194 def gamma_u (vanderpol_1 , vanderpol_2 , d_vanderpol_1 , d_vanderpol_2 ,

lambda_u):
195 diff_d_vanderpol = [x - y for x, y in zip(d_vanderpol_1 ,

d_vanderpol_2)]
196 diff_vanderpol = [x - y for x, y in zip(vanderpol_1 ,

vanderpol_2)]
197 diff_w = 2*w
198 t1 = diff_d_vanderpol
199 t2 = diff_vanderpol
200 a1 = np.dot(t1 , t2)
201 return (a1 - lambda_u * (norm(diff_vanderpol) ** 2)) / (norm(

diff_vanderpol) * norm(diff_w))
202
203
204 def delta_t_with_uncertainty_lambda_neg (Cu_ , lambda_u_ , gamma_u_ ,

epsilon_ , W_ , t_):
205 l1 = (Cu_ ** 2 / (-(lambda_u_ **4))) * (
206 -(lambda_u_ ** 2) * (t_ ** 2) - 2 * lambda_u_ * t_ + 2

* math.exp(lambda_u_ * t_) - 2)
207 l2 = (1 / lambda_u_ ** 2) * (
208 ((Cu_ * gamma_u_ * (norm(W_))) / (- lambda_u_)) * (-

lambda_u_ * t_ + math.exp(lambda_u_ * t_) - 1))
209 l3 = (1 / lambda_u_) * (((gamma_u_ ** 2 * (norm(W_) / 2) ** 2)

/ (- lambda_u_)) * (math.exp(lambda_u_ * t_) - 1) + (
210 lambda_u_ * (epsilon_ ** 2) * math.exp(lambda_u_ * t_))

)
211 return math.sqrt(l1 + l2 + l3)
212
213

C.3. Source code of Examples 8.1 to 8.3: Parametric Van der Pol system207

214 def delta_t_without_uncertainty_lambda_neg (Cu_ , lambda_u_ , epsilon_
, t_):

215 l1 = ((Cu_ ** 2) / (lambda_u_ ** 2)) * (
216 (t_ ** 2) + (2 * t_ / lambda_u_) + (2 / (lambda_u_ **

2)) * (1 - math.exp(lambda_u_ * t_)))
217 l3 = ((epsilon_ ** 2) * math.exp(lambda_u_ * t_))
218 return math.sqrt(l1 + l3)
219
220
221 def delta_t_without_uncertainty_lambda_pos (Cu_ , lambda_u_ , epsilon_

, t_):
222 l1 = (epsilon_ ** 2) * math.exp (3 * lambda_u_ * t_)
223 l2 = ((Cu_ ** 2) / (3 * (lambda_u_ ** 2))) * (
224 -t_ ** 2 - (2 * t_ / (3 * lambda_u_)) + (2 / (9 * (

lambda_u_ ** 2))) * (math.exp (3 * lambda_u_ * t_) -
1))

225 return math.sqrt(l1 + l2)
226
227
228 def delta_t_with_uncertainty_lambda_pos (Cu_ , lambda_u_ , gamma_u_ ,

epsilon_ , W_ , t_):
229 coef_ = 1 / ((3 * lambda_u_) ** (3 / 2))
230 l1 = (Cu_ ** 2 / lambda_u_) * (
231 -9 * (lambda_u_ ** 2) * (t_ ** 2) - 6 * lambda_u_ * t_

+ 2 * math.exp (3 * lambda_u_ * t_) - 2)
232 l2 = 3 * lambda_u_ * (
233 ((Cu_ * gamma_u_ * norm(W_)) / lambda_u_) * (-3 *

lambda_u_ * t_ + math.exp (3 * lambda_u_ * t_) - 1))
234 l3 = (9 * lambda_u_ ** 2) * (
235 (((gamma_u_ ** 2) * ((norm(W_) / 2) ** 2)) / lambda_u_)

* (math.exp (3 * lambda_u_ * t_) - 1) + (
236 3 * lambda_u_ * epsilon_ ** 2 * math.exp (3 * lambda_u_

* t_)))
237 return coef_ * math.sqrt(l1 + l2 + l3)
238
239
240 def delta_t_with_uncertainty_lambda_null (Cu_ , gamma_u_ , epsilon_ ,

W_ , t_):
241 l1_ = (Cu_ ** 2) * (- (t_ ** 2) - 2 * t_ + 2 * math.exp(t_) -

2)
242 l2_ = Cu_ * gamma_u_ * abs(W_) * (-t_ + math.exp(t_) - 1) + (
243 (gamma_u_ ** 2) * ((abs(W_) / 2) ** 2) * (math.exp(t_)

- 1) + epsilon_ ** 2 * math.exp(t_))
244 return math.sqrt(l1_ + l2_)
245
246
247 def delta_t_without_uncertainty_lambda_null (Cu_ , epsilon_ , t_):
248 l1_ = (Cu_ ** 2) * (- (t_ ** 2) - 2 * t_ + 2 * math.exp(t_) -

2)
249 l2_ = (epsilon_ ** 2) * math.exp(t_)
250 return math.sqrt(l1_ + l2_)
251
252
253 p0 = 1.1
254 p1 = 0.4
255 p2 = 1.9

208 C. Appendix: Limit cycle of oscillators using Euler method

256 w0 = 0.04
257 w1 = 0.02
258 w2 = 0.05
259
260 dt = 1 / 1000
261 p = p0
262 w = w0
263 ecart_epsilon = 0.1
264
265 init_vanderpol = [1.3547368605842973 , -0.8437340035716087]
266 i_period = 0
267 d_vanderpol_period = init_vanderpol
268 prev_prev_vanderpol_period = d_vanderpol_period
269 d_vanderpol_period = euler_d_vanderpol (d_vanderpol_period , p, 0, dt

)
270 prev_vanderpol_period = d_vanderpol_period
271 d_vanderpol_period = euler_d_vanderpol (d_vanderpol_period , p, 0, dt

)
272 i_period_1 = []
273
274 while len(i_period_1) <= 3:
275 if (prev_prev_vanderpol_period < prev_vanderpol_period) and

prev_vanderpol_period > d_vanderpol_period :
276 i_period_1 . append (i_period + 1)
277
278 prev_prev_vanderpol_period = prev_vanderpol_period
279 prev_vanderpol_period = d_vanderpol_period
280 d_vanderpol_period = euler_d_vanderpol (d_vanderpol_period , p,

0, dt)
281 i_period += 1
282
283 periods = 5
284 i_one_period = i_period_1 [2] - i_period_1 [1] + 1
285 one_period = i_one_period * dt
286
287 print (" one period = ", one_period)
288 timeEnd = periods * one_period
289
290 NodeT = int(timeEnd / dt) + 2 + periods
291 print ("dt=", dt)
292
293 length_vanderpol = 2
294 T = linspace (0.0 , timeEnd , NodeT)
295
296
297 num_vanderpol_tube = 2
298 limit_vanderpol_top = [x + ecart_epsilon for x in init_vanderpol]
299 limit_vanderpol_bottom = [x - ecart_epsilon for x in init_vanderpol

]
300 init_vanderpols_tube = []
301 list_w_tube = []
302 list_ecart_epsilon = []
303 print ("k= ", i_one_period)
304 print ("p= ", p)
305 print (" epsilon = ", ecart_epsilon)
306 print ("w= ", w)

C.3. Source code of Examples 8.1 to 8.3: Parametric Van der Pol system209

307
308 step_gamma = 30
309 saut = int(step_gamma /3)
310 step_gamma = saut *3
311
312 for i_graph in range (0, num_vanderpol_tube):
313 w_i = []
314 for i in range (0, NodeT + step_gamma):
315 w_i. append (uniform (-w, w))
316 list_w_tube . append (w_i)
317 for i_bios_tube in range (0, num_vanderpol_tube - 2):
318 eca_rand = uniform (- ecart_epsilon , ecart_epsilon)
319 init_vanderpols_tube . append ([x + eca_rand for x in

init_vanderpol])
320 list_ecart_epsilon . append (eca_rand)
321
322 vanderpol_orig = list(zeros ((NodeT , length_vanderpol)))
323 vanderpol_max = list(zeros ((NodeT , length_vanderpol)))
324 vanderpol_min = list(zeros ((NodeT , length_vanderpol)))
325 vanderpol_orig [0] = init_vanderpol
326 vanderpol_max [0] = init_vanderpol
327 vanderpol_min [0] = init_vanderpol
328 w_min = [-w] * (NodeT + step_gamma)
329 w_max = [w] * (NodeT + step_gamma)
330 all_lambda = list(zeros(NodeT))
331 all_delta = list(zeros(NodeT))
332 all_lambda [0] = lambda_h (vanderpol_orig [0], p)
333 for i in range (1, NodeT):
334 vanderpol_orig [i] = euler_d_vanderpol (vanderpol_orig [i - 1], p,

0, dt)
335 vanderpol_max [i] = euler_d_vanderpol (vanderpol_max [i - 1], p +

(w / 2), 0, dt)
336 vanderpol_min [i] = euler_d_vanderpol (vanderpol_min [i - 1], p -

(w / 2), 0, dt)
337 lambda_i = lambda_h (vanderpol_orig [i], p)
338 if abs(lambda_i) <= 1e -2:
339 lambda_i = 0
340 all_lambda [i] = lambda_i
341
342 vanderpol_tube = zeros ((num_vanderpol_tube , NodeT , length_vanderpol

))
343 wall_tube_top = list(zeros ((NodeT , length_vanderpol)))
344 wall_tube_bottom = list(zeros ((NodeT , length_vanderpol)))
345
346 vanderpol_tube [0, 0] = limit_vanderpol_bottom
347 vanderpol_tube [1, 0] = limit_vanderpol_top
348
349 all_delta [0] = ecart_epsilon
350 wall_tube_top [0] = [x + ecart_epsilon for x in vanderpol_orig [0]]
351 wall_tube_bottom [0] = [x - ecart_epsilon for x in vanderpol_orig

[0]]
352
353 for i_init_bios in range (2, num_vanderpol_tube):
354 vanderpol_tube [i_init_bios , 0] = init_vanderpols_tube [

i_init_bios - 2]
355

210 C. Appendix: Limit cycle of oscillators using Euler method

356 for i_vanderpol_tube in range (0, num_vanderpol_tube):
357 for i in range (1, NodeT):
358 vanderpol_tube [i_vanderpol_tube , i] = euler_d_vanderpol (

vanderpol_tube [i_vanderpol_tube , i - 1], p, list_w_tube [
i_vanderpol_tube][i - 1], dt)

359 if i == NodeT - 1:
360 break
361 print (" end tube", i_vanderpol_tube)
362
363 all_gamma = []
364 vanderpol_gamma_orig = list(zeros ((NodeT + step_gamma ,

length_vanderpol)))
365 vanderpol_gamma_orig [: NodeT] = vanderpol_orig [: NodeT]
366
367 for i in range(NodeT - 1, NodeT + step_gamma):
368 vanderpol_gamma_orig [i] = euler_d_vanderpol (

vanderpol_gamma_orig [i - 1], p, 0, dt)
369
370 loging = 0
371 Lu = list_lipschitz_constant (vanderpol_gamma_orig [: NodeT + 1])
372 print (" end Lu")
373 Cu = list_C_constant (Lu , vanderpol_gamma_orig [: NodeT + 1])
374 print (" end Cu")
375 for i in range (1, NodeT):
376 if w > 0:
377 comp = i - 1
378 if i % int(NodeT / 100) == 0:
379 loging += 1
380 if all_lambda [i] != 0:
381 gamma_i = gamma_lipschitz (vanderpol_gamma_orig [comp],

vanderpol_gamma_orig [comp + step_gamma],
382 all_lambda [i -1])
383 if math.isnan(gamma_i) or gamma_i < 0:
384 all_gamma . append (0)
385 else:
386 all_gamma . append (gamma_i)
387 else:
388 all_gamma . append (0)
389 if all_lambda [i] > 0:
390 all_delta [i] = delta_t_with_uncertainty_lambda_pos (Cu[i

], all_lambda [i], all_gamma [i - 1], all_delta [i -
1], w, dt)

391 elif all_lambda [i] < 0:
392 all_delta [i] = delta_t_with_uncertainty_lambda_neg (Cu[i

], all_lambda [i], all_gamma [i - 1], all_delta [i -
1], w, dt)

393 else:
394 all_delta [i] = delta_t_with_uncertainty_lambda_null (Cu[

i], all_gamma [i - 1], all_delta [i - 1], w, dt)
395 else:
396 if all_lambda [i] > 0:
397 all_delta [i] = delta_t_without_uncertainty_lambda_pos (

Cu[i], all_lambda [i], all_delta [i - 1], dt)
398 elif all_lambda [i] < 0:
399 all_delta [i] = delta_t_without_uncertainty_lambda_neg (

Cu[i], all_lambda [i], all_delta [i - 1], dt)

C.3. Source code of Examples 8.1 to 8.3: Parametric Van der Pol system211

400 else:
401 all_delta [i] = delta_t_without_uncertainty_lambda_null (

Cu[i], all_delta [i - 1], dt)
402 wall_tube_bottom [i] = [x - all_delta [i] for x in vanderpol_orig

[i]]
403 wall_tube_top [i] = [x + all_delta [i] for x in vanderpol_orig [i

]]
404 if i >= NodeT - 1:
405 break
406
407
408 for i_periods in range (0, periods + 1):
409 i_one_period_1 = i_one_period
410 print ("x(", i_periods , "T)=", vanderpol_orig [i_periods *

i_one_period_1], " delta_w (", i_periods , "T)=",
411 all_delta [i_periods * i_one_period_1])
412 if i_periods > 0:
413 test_in_x = False
414 test_in_y = False
415 if wall_tube_bottom [(i_periods - 1) * i_one_period_1][0] <=

wall_tube_top [i_periods * i_one_period_1][0] <= \
416 wall_tube_top [(i_periods - 1) * i_one_period_1][0]

and wall_tube_bottom [
417 (i_periods - 1) * i_one_period_1][0] <=

wall_tube_bottom [i_periods * i_one_period_1][0] <=
wall_tube_top [

418 (i_periods - 1) * i_one_period_1][0]:
419 test_in_x = True
420 else:
421 test_in_x = False
422 if wall_tube_bottom [(i_periods - 1) * i_one_period_1][1] <=

wall_tube_top [i_periods * i_one_period_1][1] <= \
423 wall_tube_top [(i_periods - 1) * i_one_period_1][1]

and wall_tube_bottom [
424 (i_periods - 1) * i_one_period_1][1] <=

wall_tube_bottom [i_periods * i_one_period_1][1] <=
wall_tube_top [

425 (i_periods - 1) * i_one_period_1][1]:
426 test_in_y = True
427 else:
428 test_in_y = False
429 if test_in_x == True and test_in_y == True:
430 print ("B(", i_periods , "T) is included in B(",

i_periods - 1, "T)")
431
432 i_min_wall_top_u1 = 0
433 i_max_wall_bottom_u1 = 0
434 min_wall_top_u1 = 10
435 max_wall_bottom_u1 = -10
436 for i in range(i_one_period * 3, i_one_period * 4 + 1):
437 if wall_tube_top [i][0] < min_wall_top_u1 :
438 min_wall_top_u1 = wall_tube_top [i][0]
439 i_min_wall_top_u1 = i
440 if wall_tube_bottom [i][0] > max_wall_bottom_u1 :
441 max_wall_bottom_u1 = wall_tube_bottom [i][0]
442 i_max_wall_bottom_u1 = i

212 C. Appendix: Limit cycle of oscillators using Euler method

443
444 print (" minimum m+", min_wall_top_u1)
445 print (" maximum M-=", max_wall_bottom_u1)
446
447 for i in range (0, periods):
448 print (i + 1, "th period : from", i_one_period * i, "->",

i_one_period * (i + 1), "sum(lambda) = ",
449 sum(all_lambda [i * i_one_period : (i + 1) * i_one_period])

)
450
451 vanderpol_orig = np.array(vanderpol_orig)
452 vanderpol_max = np.array(vanderpol_max)
453 vanderpol_min = np.array(vanderpol_min)
454 wall_tube_bottom = np.array(wall_tube_bottom)
455 wall_tube_top = np.array(wall_tube_top)
456
457 begin_plot = 0
458 end_plot = NodeT
459 begin_zoom_plot = i_one_period
460 end_zoom_plot = NodeT
461
462 tf = timeEnd
463 T = linspace (0, tf , NodeT)
464 step_plot = 1
465 index_plot = 1
466 fig = plot. figure ()
467 ax = plot.gca ()
468 plot. xlabel (’t’)
469 plot. ylabel (’u1 ’)
470 plot.plot(T[: NodeT: step_plot], wall_tube_top [: NodeT:step_plot , 0],

color=’green ’)
471 plot.plot(T[: NodeT: step_plot], wall_tube_bottom [: NodeT:step_plot ,

0], color=’green ’)
472 plot.plot(T[: NodeT: step_plot], vanderpol_min [: NodeT:step_plot , 0],

color=’cyan ’)
473 plot.plot(T[: NodeT: step_plot], vanderpol_max [: NodeT:step_plot , 0],

color=’blue ’)
474 plot.plot(T[: NodeT: step_plot], vanderpol_orig [: NodeT:step_plot , 0],

color=’red ’)
475 plot. savefig (
476 f’vanderpol -u1 -dt=1-on -{1 / dt}-tf={tf}-w={w}- epsilon ={

ecart_epsilon }-p={p}-parametric -{ index_plot }.png ’)
477 plot.show(block=False)
478
479 fig1 = plot1. figure ()
480 ax1 = plot1.gca ()
481 plot1. xlabel (’t’)
482 plot1. ylabel (’u2 ’)
483 plot1.plot(T[: NodeT: step_plot], wall_tube_top [: NodeT:step_plot , 1],

color=’green ’)
484 plot1.plot(T[: NodeT: step_plot], wall_tube_bottom [: NodeT:step_plot ,

1], color=’green ’)
485 plot1.plot(T[: NodeT: step_plot], vanderpol_min [: NodeT:step_plot , 1],

color=’cyan ’)
486 plot1.plot(T[: NodeT: step_plot], vanderpol_max [: NodeT:step_plot , 1],

color=’blue ’)

C.3. Source code of Examples 8.1 to 8.3: Parametric Van der Pol system213

487 plot1.plot(T[: NodeT: step_plot], vanderpol_orig [: NodeT:step_plot ,
1], color=’red ’)

488 plot1. savefig (
489 f’vanderpol -u2 -dt=1-on -{1 / dt}-tf={tf}-w={w}- epsilon ={

ecart_epsilon }-p={p}-parametric -{ index_plot }.png ’)
490 plot1.show(block= False)
491
492 fig8 = plot8. figure ()
493 ax8 = plot8.gca ()
494 plot. xlabel (’t’)
495 plot8. ylabel (’u1 ’)
496 plot8.plot(T[begin_zoom_plot : end_zoom_plot : step_plot],

wall_tube_top [begin_zoom_plot : end_zoom_plot :step_plot , 0], color
=’green ’)

497 plot8.plot(T[begin_zoom_plot : end_zoom_plot : step_plot],
wall_tube_bottom [begin_zoom_plot : end_zoom_plot :step_plot , 0],
color=’green ’)

498 plot8.plot(T[begin_zoom_plot : end_zoom_plot : step_plot],
vanderpol_min [begin_zoom_plot : end_zoom_plot :step_plot , 0], color
=’cyan ’)

499 plot8.plot(T[begin_zoom_plot : end_zoom_plot : step_plot],
vanderpol_max [begin_zoom_plot : end_zoom_plot :step_plot , 0], color
=’blue ’)

500 plot8.plot(T[begin_zoom_plot : end_zoom_plot : step_plot],
vanderpol_orig [begin_zoom_plot : end_zoom_plot :step_plot , 0],
color=’red ’)

501 plot8. savefig (
502 f’vanderpol -u1 -dt=1-on -{1 / dt}-tf={tf}-w={w}- epsilon ={

ecart_epsilon }-p={p}-parametric -{ index_plot }-zoom.png ’)
503 plot8.show(block= False)
504
505 fig9 = plot9. figure ()
506 ax9 = plot9.gca ()
507 plot9. xlabel (’t’)
508 plot9. ylabel (’u2 ’)
509 plot9.plot(T[begin_zoom_plot : end_zoom_plot : step_plot],

wall_tube_top [begin_zoom_plot : end_zoom_plot :step_plot , 1], color
=’green ’)

510 plot9.plot(T[begin_zoom_plot : end_zoom_plot : step_plot],
wall_tube_bottom [begin_zoom_plot : end_zoom_plot :step_plot , 1],
color=’green ’)

511 plot9.plot(T[begin_zoom_plot : end_zoom_plot : step_plot],
vanderpol_min [begin_zoom_plot : end_zoom_plot :step_plot , 1], color
=’cyan ’)

512 plot9.plot(T[begin_zoom_plot : end_zoom_plot : step_plot],
vanderpol_max [begin_zoom_plot : end_zoom_plot :step_plot , 1], color
=’blue ’)

513 plot9.plot(T[begin_zoom_plot : end_zoom_plot : step_plot],
vanderpol_orig [begin_zoom_plot : end_zoom_plot :step_plot , 1],
color=’red ’)

514 plot9. savefig (
515 f’vanderpol -u2 -dt=1-on -{1 / dt}-tf={tf}-w={w}- epsilon ={

ecart_epsilon }-p={p}-parametric -{ index_plot }-zoom.png ’)
516 plot9.show(block= False)
517
518 fig2 = plot2. figure ()

214 C. Appendix: Limit cycle of oscillators using Euler method

519 ax2 = plot2.gca ()
520 plot2. xlabel (’u1 ’)
521 plot2. ylabel (’u2 ’)
522 ind_cls = 0
523 for i_p in range(i_one_period *(periods -1) , i_one_period * periods):
524 circle2 = plot2. Circle ((vanderpol_orig [i_p , 0], vanderpol_orig [

i_p , 1]) , all_delta [i_p], color=’green ’, fill=False)
525 ax2. add_patch (circle2)
526 plot2.plot(vanderpol_orig [begin_zoom_plot : end_zoom_plot :step_plot ,

0], vanderpol_orig [begin_zoom_plot : end_zoom_plot :step_plot , 1],
color=’red ’)

527 plot2.plot(vanderpol_orig [begin_zoom_plot , 0], vanderpol_orig [
begin_zoom_plot , 1], ’o’, color=’orange ’)

528 plot2. savefig (f’vanderpol -u1 -u2 -dt=1-on -{1 / dt}-tf={tf}-w={w}-
epsilon ={ ecart_epsilon }-p={p}-parametric -{ index_plot }.png ’)

529 plot2.show(block= False)
530
531 fig2 = plot2. figure ()
532 ax2 = plot2.gca ()
533 plot2. xlabel (’u1 ’)
534 plot2. ylabel (’u2 ’)
535 ind_cls = 0
536 for i_p in range(begin_plot , end_plot):
537 circle2 = plot2. Circle ((vanderpol_orig [i_p , 0], vanderpol_orig [

i_p , 1]) , all_delta [i_p], color=’green ’, fill=False)
538 ax2. add_patch (circle2)
539 plot2.plot(vanderpol_orig [begin_plot : end_plot :step_plot , 0],

vanderpol_orig [begin_plot : end_plot :step_plot , 1], color=’red ’)
540 plot2.plot(vanderpol_orig [begin_plot , 0], vanderpol_orig [begin_plot

, 1], ’o’, color=’orange ’)
541 plot2. savefig (f’vanderpol -u1 -u2 -dt=1-on -{1 / dt}-tf={tf}-w={w}-

epsilon ={ ecart_epsilon }-p={p}-parametric -{ index_plot }-all.png ’)
542 plot2.show(block= False)
543
544 fig6 = plot6. figure ()
545 ax6 = plot6.gca ()
546 plot6. xlabel (’t’)
547 plot6. ylabel (’ Lipschitz constant ’)
548 plot6.plot(T[begin_plot : end_plot : step_plot], Lu[begin_plot : end_plot

: step_plot], color=’red ’)
549 plot6. savefig (
550 f’vanderpol -lipschitz -constant -dt=1-on -{1 / dt}-tf={tf}-w={w}-

epsilon ={ ecart_epsilon }-p={p}-parametric -{ index_plot }.png ’)
551 plot6.show(block= False)
552
553 fig7 = plot7. figure ()
554 ax7 = plot7.gca ()
555 plot7. xlabel (’t’)
556 plot7. ylabel (’C’)
557 plot7.plot(T[begin_plot : end_plot : step_plot], Cu[begin_plot : end_plot

: step_plot], color=’red ’)
558 plot7. savefig (
559 f’vanderpol -C-constant -dt=1-on -{1 / dt}-tf={tf}-w={w}- epsilon ={

ecart_epsilon }-p={p}-parametric -{ index_plot }.png ’)
560 plot7.show(block= False)
561

C.3. Source code of Examples 8.1 to 8.3: Parametric Van der Pol system215

562 fig3 = plot3. figure ()
563 ax3 = plot3.gca ()
564 plot3. xlabel (’t’)
565 plot3. ylabel (’lambda ’)
566 plot3.plot(T[begin_plot : end_zoom_plot : step_plot], all_lambda [

begin_plot : end_plot : step_plot], color=’red ’)
567 plot3. savefig (
568 f’vanderpol -lambda -dt=1-on -{1 / dt}-tf={tf}-w={w}- epsilon ={

ecart_epsilon }-p={p}-parametric -{ index_plot }.png ’)
569 plot3.show(block= False)
570
571 fig4 = plot4. figure ()
572 ax4 = plot4.gca ()
573 plot4. xlabel (’t’)
574 plot4. ylabel (’delta ’)
575 plot4.plot(T[begin_plot : end_plot : step_plot], all_delta [begin_plot :

end_plot : step_plot], color=’red ’)
576 plot4. savefig (f’vanderpol -delta -dt=1-on -{1 / dt}-tf={tf}-w={w}-

epsilon ={ ecart_epsilon }-p={p}-parametric -{ index_plot }.png ’)
577
578 fig10 = plot10 . figure ()
579 ax10 = plot10 .gca ()
580 plot10 . xlabel (’t’)
581 plot10 . ylabel (’delta ’)
582 plot10 .plot(T[begin_zoom_plot : end_zoom_plot : step_plot], all_delta [

begin_zoom_plot : end_zoom_plot : step_plot], color=’red ’)
583 plot10 . savefig (f’vanderpol -delta -dt=1-on -{1 / dt}-tf={tf}-w={w}-

epsilon ={ ecart_epsilon }-p={p}-parametric -{ index_plot }-zoom.png ’)
584
585 if w != 0:
586 plot4.show(block= False)
587 fig5 = plot5. figure ()
588 ax5 = plot5.gca ()
589 plot5. xlabel (’t’)
590 plot5. ylabel (’gamma ’)
591 plot5.plot(T[begin_zoom_plot : end_zoom_plot - 1: step_plot],

all_gamma [begin_zoom_plot : end_zoom_plot -1: step_plot], color
=’red ’)

592 plot5. savefig (
593 f’vanderpol -gamma -dt=1-on -{1 / dt}-tf={tf}-w={w}- epsilon ={

ecart_epsilon }-p={p}-parametric -{ index_plot }-zoom.png ’)
594 print (" Execution time: %s secondes ---" % (time.time () -

start_time))
595 plot5.show ()
596 else:
597 print (" Execution time: %s secondes ---" % (time.time () -

start_time))
598 plot4.show ()

216 C. Appendix: Limit cycle of oscillators using Euler method

C.4 Sensitivity of Bocop to Initial Conditions

In Figs. C.3 and C.4, we give the solution of MRI using Bocop when q2(0) = (0, 1)
and q2(0) = (0.1, 1) respectively.

Figure C.3: Bocop solution on MRI when initially q2(0) = (0, 1), with q1 = (y1, z1) (top
left), q2 = (y2, z2) (top right) and control u2 (bottom).

C.5 Coupled Van der Pol oscillators example

Example C.1. Consider the system of coupled VdP oscillators described in [ERS00]:

C.5. Coupled Van der Pol oscillators example 217

Figure C.4: Bocop solution on MRI for initial condition q2(0) = (0.1, 1), with q1 = (y1, z1)
(top left), q2 = (y2, z2) (top right) and control u2 (bottom).

θ̇1 = β1 + µ
{

cos 2θ1 − r2

r1
[sin(θ1 − θ2) + cos(θ1 + θ2)]

}
+ w

θ̇2 = β2 + µ
{

cos 2θ2 − r1

r2
[sin(θ2 − θ1) + cos(θ1 + θ2)]

}
+ w

ṙ1 = r1(α1 − r2
1) + µ {r1(1 − sin 2θ1) + Ar2} + w

ṙ2 = r2(α1 − r2
2) + µ {r2(1 − sin 2θ2) + Ar1} + w

(C.2)

where A = sin(θ1 + θ2) − cos(θ1 − θ2).
The parameter µ is the coupling constant and the oscillators decouple for µ = 0.
Each oscillator has then a unique attractive circle, and the uncoupled product system
has a unique attractive invariant torus. The torus persists for a weak coupling and
contains two periodic circles, one is attractive and the other is repulsive when β1 = β2

(see [ERS00] for details). If the manifold M = (θ1, θ2, r1(θ1, θ2), r2(θ1, θ2)) denotes
an invariant torus for the system, then the uncoupled system has an invariant torus
defined by M1 := (θ1, θ2, 1, 1).

Here, we take w ∈ W = [−0.0001, 0.0001] and, as in [ERS00], α1 = α2 = 1.0,
β1 = β2 = β = 0.55, and µ = 0.2601. Let the time-step τ = 10−3, and the radius
of the initial ball around the source points ε = 0.1. Let T = 11.425 be used as an
approximation of the exact period T ∗ = 2π

β
.Each lasso generation now takes around

218 C. Appendix: Limit cycle of oscillators using Euler method

35 minutes of CPU time. We focus visually on the representation of the projections
r1(θ1, θ2) and r2(θ1, θ2). Ten simulations are thus depicted on Figs. C.5 and C.6, and
the corresponding lassos on Figs. C.7 and C.8. The value of µ is close to the value
µ1 ≈ 0.2605 for which a torus bifurcation appears (see [ERS00]; cf [DB94, Moo96]).
This explains the extent of the deformation of the structure, the attractive circle being
shaped like a eight figure on Figs. C.5 and C.6. The source points of the 10 lassos
(which coincide with the initial points of the simulations) have been chosen close to
the repulsive circle (itself estimated by numerical simulation), as follows:

X(0) = (0, 3.14159265, 1.05980274, 1.02028354)

X(0) = (0.62831853, 3.76991118, 0.95715177, 1.08632695)

X(0) = (1.25663706, 4.39822972, 1.03960697, 0.93217529)

X(0) = (1.88495559, 5.02654825, 0.99657, 1.09545089)

X(0) = (2.51327412, 5.65486678, 1.02811851, 1.0178553)

X(0) = (3.14159265, 0, 1.08476381, 0.97121437)

X(0) = (3.76991118, 0.62831853, 0.97369993, 0.93966289)

X(0) = (4.39822972, 1.25663706, 1.05513594, 1.00555761)

X(0) = (5.02654825, 1.88495559, 0.98407245, 1.09722914)

X(0) = (5.65486678, 2.51327412, 0.98484401, 0.93636707).
For each source point, the inclusion relation (*) is checked for i = 3, 4 or 5.

C.6 Biochemical example

Example C.2. We consider the same biochemical process in Example E.1, where
the original continuous control function Sf (·) is discretized into a piecewise-constant
function that takes its values in the finite set U made of 3 values uniformly taken in
{28.7, 34.35, 40}.

The function Sf (·) changes (possibly) its value every τ seconds.

We take: z0 = (6.52, 12.5, 22.40), ε = 0.2, τ = 3, ∆t = τ/1005, T = 48, K =
T/τ = 16.

We consider an additive perturbation w with w(·) ∈ W = [−0.05, 0.05]. The
values of λ and γ are computed locally and vary from +5.0 to −0.12, and from 0 to 1
respectively.

5∆t is the “sub-sampling’ parameter of the Euler scheme.

C.6. Biochemical example 219

Figure C.5: Coupled VdP. The function r1(θ1, θ2) corresponding to 10 simulations, under
two different views.

In total, we have 3k = 316 possible control cases. We then perform 3 experiences:

1. We randomly pick one sample over every 1000 possible controls, which gives
316/1000 ≈ 43, 047 samples.

2. We randomly pick one sample over every 100 possible controls, which gives
316/100 ≈ 430, 467 samples.

3.

4. We randomly pick one sample over every 10 possible controls, which gives
316/10 = 4, 304, 672 samples.

For each experience, we select the control sequence u∗ that optimizes the cost
function (Eq. (7.10)) while satisfying the constraint on the state X (Eq. (7.11)).

These 3 experiences give the following results:

220 C. Appendix: Limit cycle of oscillators using Euler method

Figure C.6: Coupled VdP. The function r2(θ1, θ2) corresponding to 10 simulations, under
two different views.

1. The control u∗ is depicted in Fig. C.9 (top), and the result on P (t) is depicted
in Fig. C.9 (bottom). The red curve represents the Euler approximation x̃u∗

z0 (t)
of the solution without perturbation (w = 0) as a function of time t in the
plan P using u∗. The green curves correspond, in the P plan, to the borders of
the tube centered around the red curve, that is B(t) ≡ B(x̃u∗

z0 (t), δu∗
ε,W(t)) with

x̃u∗
z0 (0) = z0 and δu∗

ε,W(0) = ε = 0.2 (see Definition 7.2). We get: Kz0,ε(u∗) = 3.027
(the constraint on the state X is satisfied since 1

T

∫ T
0 X(t)dt = 5.711 ≤ 5.8). The

CPU computation time of this example is 99 seconds.

2. The control u∗ is depicted in Fig. C.10 (top), and the result on P (t) is depicted
in Fig. C.10 (bottom). We get: Kz0,ε(u∗) = 3.045. (the constraint on the state
X is satisfied since 1

T

∫ T
0 X(t)dt = 5.742 ≤ 5.8) The CPU computation time of

this example is 319 seconds.

C.6. Biochemical example 221

Figure C.7: Coupled VdP. Middle and bottom: The function r1(θ1, θ2) corresponding to
the lassos associated with the 10 simulations of Fig. C.5, under the same views.
Top: the radius δW(t) of these lassos.

3. The control u∗ is represented in Fig. C.11 (top), while Fig. C.11 (bottom) shows
the result on P (t) of applying u∗. We get: Kz0,ε(u∗) = 3.041 (the constraint is
satisfied since 1

T

∫ T
0 X(t)dt = 5.740 ≤ 5.8). The CPU computation time of this

222 C. Appendix: Limit cycle of oscillators using Euler method

Figure C.8: Coupled VdP. Top and bottom: The function r2(θ1, θ2) corresponding to the
lassos associated with the 10 simulations of Fig. C.6, under the same views.

example is 3683 seconds.

We can see on these 3 experiments that, despite the multiplication by 10 each
time of the number of samples (which leads to a multiplication of the CPU time by
3 and then by 10), the optimal cost K increases only slightly (here, the optimum K
corresponds to a “maximin”, not a “minimax” as described in Section 7.4.2). The
results are comparable to those obtained by [HLID09], despite the use of a much
simpler method (without gradient descent).6 This experiment thus illustrates the
interest of our method by symbolic computation coupled with random sampling.

6Computation times are not given in the experiments of [HLID09].

C.6. Biochemical example 223

Figure C.9: Top: control u∗ satisfying the constraint on X, obtained by selection among
43047 samples picked randomly; bottom: P (t) under u∗ without perturba-
tion (red curve) and with an additive perturbation w ∈ [−0.05, 0.05] (green
curve) over 5 periods (5T = 240) for ∆t = 1/400 and initial condition
(X(0), S(0), P (0)) = (6.52, 12.5, 22.4).

224 C. Appendix: Limit cycle of oscillators using Euler method

Figure C.10: Same Figure as Fig. C.9 but with 430467 samples (instead of 43047).

C.6. Biochemical example 225

Figure C.11: Same Figure as Fig. C.9 but with 4304672 samples (instead of 43047).

D
Appendix: Convergence and

robustness of the Hopf
oscillator applied to an ABLE

exoskeleton: reachability
analysis and experimentation

228
D. Appendix: Convergence and robustness of the Hopf oscillator applied

to an ABLE exoskeleton: reachability analysis and experimentation

D.1 Introduction

Active exoskeletons are wearable robotic devices, developed to assist human move-
ment [GBKM16, AZI+18]. Their versatility makes it possible to consider nu-
merous applications, both to improve rehabilitation protocols [FBM+07, FPC+12,
Pon10, MSC+13, JzzT+20] and to prevent musculoskeletal disorders in workers
[MRH14, SBCF14, Bog15, dLBK+16]. The implementation of exoskeletons for these
different applications is nevertheless constrained by the impossibility of completely
predicting human movement intention [AZI+18, JPPM08]. Several approaches have
been proposed in the literature to solve this problem. The first approach relies on
controllers based on bioelectric signals such as electromyography [TNM18, TGVM20]
or electroencephalography [DW19]. Other biological signals such as gaze were also
included in the control strategies to detect human intention [KLB+20]. All these
strategies rely on the appearance of the signals considered before the appearance
of the movement kinematics, which is called electromechanical delay in the case of
myoelectrical signals. Another proposed approach was to learn the human movement
[JPPM08], which led to a significant reduction of unwanted interaction efforts in
reaching movements.

In the case of periodical movements, approaches based on adaptive oscillators
have been proposed and successfully experimented [RBI06, RI06, RBI09, RVL+11].
At the theoretical level, the authors of [RBI06] proved the stability of the model of
one of these oscillators: the Hopf oscillator. The proof uses the classical “perturbation
method” that consists in introducing an infinitesimal perturbation ε in the model,
expressing the solution as a power series in ε, and showing the positiveness of the
radius of convergence of the series. The Hopf oscillator is also considered here, but the
stability is proven by introducing a bounded perturbation w (instead of an infinitesimal
perturbation ε) taking its values non-deterministically in a given set W of the form
[−c; c] with c > 0. In order to show the stability of the system in presence of such
perturbations, we make use of a recent development of the method of “reachability
analysis” (see [AFG21] for a survey). Given an initial set of states S0, this method
constructs iteratively by “set-based integration” the set S1 of the states reached at the
end of one time step, then S2 at the end of a new time step, etc. These sets S1; S2; ...

are over-approximations of the exact sets of solutions of the system, for any initial
state in S0 and for any admissible perturbation taking its values in W. When one
succeeds in generating a finite representation of the set I := ∪∞

i=0Si, one obtains a
description of a superset of all the states that can be reached from S0. The set I is an
invariant set of the system: the trajectory from any point of I remains in I indefinitely
(see [Bla99]). We explain here how to successfully generate such a set I for the Hopf
oscillator.

D.2. Material and methods 229

In the present work, this previously defined oscillator [RVL+11] is applied to an
upper-limb exoskeleton to design a transparent control. Transparency is defined as
the interaction between the human and the exoskeleton with minimum efforts. The
objective here is to formally prove the convergence and stability of the oscillator and
confirm the obtained proof with experimental results. The theoretical development
allows a priori evaluation of whether the system converges to a limit cycle and is robust
to non-deterministic bounded amplitude disturbances. In particular, the experiments
have confirmed the invariance property of the set I: once a first experimental datum
relative to the arm position lies in I, all the subsequent data also lie in I. In the
present study, the transparent control mode is chosen to experimentally evaluate the
stability of the oscillator, independently from model errors that can appear when using
assistance control modes and that can lead to instability [RVL+11]. In this control
mode, the human movement should be impacted as little as possible by the exoskeleton
[AZI+18, JPPM08, BVGB18, VBV+21b]. The experiments are conducted on elbow
flexion/extension with an upper-limb exoskeleton called ABLE [SBCF14, GFMP08]
(see Appendix E.2 for details).

This work is done as part of a collaboration with Abdelwaheb Hafs1,2, Do-
rian Verdel1,2, Olivier Bruneau3, Nicolas Vignais1,2, Bastien Berret1,2,4 and Laurent
Fribourg5.
1CIAMS, Université Paris-Saclay, Bât. 335, Bures-sur-Yvette, Orsay cedex, France
2CIAMS, Université d’Orléans, Orléans, France
3LURPA, ENS Paris-Saclay, 4 Av. des Sciences, Gif-sur-Yvette, France
4Institut Universitaire de France, Paris, France
5Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, Gif-Sur-Yvette, France

D.2 Material and methods

D.2.1 Adaptive oscillators

As mentioned in the introduction, human intention prediction may be achieved by
adaptive oscillators for periodic movements. These oscillators allow to estimate the
fundamental parameters (amplitude and frequency) of arbitrary rhythmic signals in
a supervised learning framework. Among different types of adaptive oscillators, we
focus here on the Hopf oscillator, which is one of the most widely used types in the
field of robotics and assistive technology [RVL+11, RBI06, WQY+19, ZWL+18].

230
D. Appendix: Convergence and robustness of the Hopf oscillator applied

to an ABLE exoskeleton: reachability analysis and experimentation

Figure D.1: Example of oscillator’s adaptation. Top panel: the oscillator’s input. Bottom
panel: evolution of the learned frequency

The Hopf oscillator is defined by a system of two differential equations
(Eq. (D.1)). {

ẋ(t) = γ(µ − r2)x(t) − ω(t)y(t) + νe(t)
ẏ(t) = γ(µ − r2)y(t) + ω(t)x(t) (D.1)

With r =
√

x2 + y2, where x(t) and y(t) are the orthogonal coordinates of the
oscillator, e is the oscillator’s external force, ν the coupling gain, µ and γ are the
amplitude and attractiveness of the oscillator respectively [RBI09]. For this study
γ = 1 (as in [RBI09, RBI06, RVL+11]), and µ = 1 (so that the intrinsic amplitude of
the oscillator is equal to 1).

The input of the oscillator is the real position θ. In this case the external force
of the oscillator e represents the difference between the real position θ of the human
elbow and the estimated position θ̂.

Righetti and Ijspeert [RI06] augmented this oscillator to learn the frequency ω,
amplitude α1 and offset α0 of the input using integrators. The complete estimation
algorithm is presented in Eq. (D.2)

ω̇(t) = −νe(t) sin(ϕ(t))
ϕ̇(t) = ω(t) − νe sin(ϕ(t))
α̇1(t) = ηcos(ϕ(t))e(t)
α̇0(t) = ηe(t)
θ̂(t) = α0(t) + α1(t) cos(ϕ(t))

(D.2)

Where η is the integrator gain and ϕ the output phase. Finally the estimated
position θ̂ is used to compute the torque generated by the exoskeleton to assist the
human movement (see Appendix E.2 for details).

D.2. Material and methods 231

D.2.2 Exoskeleton modeling

ABLE is an upper limb exoskeleton. This exoskeleton is based on a screw and cable
transmission allowing high levels of reversibility and transparency [GFMP08, Gar10].
It has four active degrees of freedom (see Fig. E.10). The first three correspond
to rotations of the human shoulder, the fourth correspond to rotation of the elbow
(flexion/extension). The physical interfaces between the exoskeleton and the user
include passive rotations and translation to minimize undesired efforts due to the
connection hyperstatism [JM12, SvdH09]. Additional settings are available to adapt
the exoskeleton to the user. The robot is mounted on a fixed frame with a winch to
adapt its height.

Figure D.2: Exoskeleton ABLE

The proposed method consists of using the joint position and velocity estimated
by the oscillator instead of the measured position and velocity. As we focus on the last
axis (elbow), the inverse dynamic model of the robots elbow axis is computed upon the
basis of classical robot dynamics [VJ09, VBV+21b]. and represented in Eq. (D.3).

τ̂m = (g(−xm cos(θ̂) − ym sin(θ̂))

+ ˙̂
θµv + sign(˙̂

θ)µc)
1
r

(D.3)

Here g = 9.81m/s2 the gravity acceleration, (xm, ym) the exoskeleton’s forearm
centre of gravity coordinates, µv the friction coefficient, µc the Coulomb dry friction

232
D. Appendix: Convergence and robustness of the Hopf oscillator applied

to an ABLE exoskeleton: reachability analysis and experimentation

coefficient, τ̂m the estimated motor torque, and r the torque reduction ratio.

Finally Fig. D.3 represents the exoskeleton control scheme. The position θ is
measured by exoskeleton internal sensors. As shown, the oscillator’s input depends on
both the control law and the modulation performed by the human, where the human
central pattern is represented by the transfer function on the feedback loop.

Figure D.3: Exoskeleton Control scheme

D.3 Reachability Analysis

We focus here on sinusoidal inputs (corresponding to sinusoidal movements of the
users) with bounded uncertainty.

The stability of the Hopf oscillator was proved in [RBI06] using the “perturbation
method”. The perturbation method was developed in the 19th century by Laplace and
others to show, for example, the orbital stability of the moon around the Earth despite
the influence of the sun. Roughly speaking, the equation of the ideal motion (without
perturbation) is modified by injecting an infinitesimal value ε, and the solution of the
modified equation is expressed as a power series in ε. The stability is demonstrated by
showing that the radius of convergence of the series is non-zero. We prove here the
stability of the Hopf oscillator using the method of “reachability analysis”. Reachability
analysis has been developed since a couple of decades in the community of formal
methods and model checking (see [AFG21] for a recent review). In this method, one
is given a set S0 of initial points and a perturbation w, which is not infinitesimal as in
the perturbation method, but of bounded amplitude (typically w ∈ W = [−c, c] with
c > 0). Reachability analysis then constructs by “set-based integration” first the set
S1 of the states reached at the end of one time step, then S2 at the end of a new time
step, etc. These sets S1, S2, . . . are over-approximations of the exact sets of solutions
of the system, for any initial state in S0 and for any admissible perturbation taking
its values non-deterministically in W . The set ⋃K

k=0 Sk characterises a superset of all
the states on the time interval [0, Kh], where h is the time-step size. This set is often
referred to as the “reachability tube”.

In the case where we can detect that at a time t = Lh for some L ∈ N, the set of
states SL is contained in the tube currently generated (SL ⊂ ⋃L−1

k=0 Sk), we obtain a

D.3. Reachability Analysis 233

finite representation of a superset of all the states that can be reached from S0. The
set I = ⋃L

k=0 Sk is an invariant set of the system: the trajectory from any point of I
remains in I indefinitely (see [Bla99]).

For an oscillatory system, this invariant set is shaped like a tube rounding on itself
(a “doughnut” in 3D). In [Fri17], we represented the set Sk as a ball B(yk, δ(k)) of
centre yk and radius δ(k). The centre yk of the ball B(yk, δ(k)) is the value computed
by Euler’s explicit method at the k-th step. The radius δ(k) is determined by an
analytical formula giving an upper bound on the error introduced by Euler’s method
(see [Fri17]). The detection of the inclusion SL ⊆ ⋃L−1

k=0 Sk, is done by finding a value
K such that

B(yL, δ(L)) ⊆ B(yK , δ(K))

with L = K + ℓh for some integer ℓ. The value T = ℓh is the estimated value of
the system period (see [JFA21b] for details). The invariant set I = ⋃L

k=0 Sk is here a
looping tube, centred on a set of values y0, y1, . . . , yL corresponding to the “limit cycle”
C of the system.

The main advantage of the reachability analysis over the perturbation method is
its ability to take into account perturbations of a given amplitude, and to construct an
invariant set I in which the state of the system is guaranteed to be confined. This allows
us to characterize the “robustness” of the system against bounded perturbations.

Our method of reachability analysis has been implemented in Python in a soft-
ware called ORBITADOR. Here ORBITADOR is applied to the system Eq. (D.2)
for W = [−2π

4000 , 2π
4000], h = 10−3 (which corresponds to the real time sampling

frequency of exoskeleton control), δ0 = 0.084, and the initial condition x0 =
(α1(0), α0(0), ϕ(0), ω(0), θ̂(0)) = (0.059rad, 0.059rad, 0.123rad, 0.062rad/s, 0.117rad).
It automatically finds that, for T = 5.168s,

B(yL, δ(L)) ⊆ B(yK , δ(K)),

with L = 10336 and K = 5168. The associated limit cycle C and controlled invariant
set I are depicted on Fig. D.4 and Fig. D.5 respectively, according to various 2D
projections. In Fig. D.5, the ball B(yK , δ(K)) is represented in orange, and the ball
B(yL, δ(L)) in green (we see B(yL, δ(L)) ⊂ B(yK , δ(K))).

https://lipn.univ-paris13.fr/~jerray/orbitador/

234
D. Appendix: Convergence and robustness of the Hopf oscillator applied

to an ABLE exoskeleton: reachability analysis and experimentation

Figure D.4: 2D projections of the limit cycle C.

D.4 Experimental results

D.4.1 Participants

One healthy right-handed adult took part in the experiments. With the following
anthropometric characteristics : age 23 years old, height 173cm and weight 60kg.
A written consent was signed by the participant, and obtained as required by the
Helsinki declaration [Wor01]. The study was validated by a research ethics committee
of Paris-Saclay (Université Paris-Saclay, 2021-303).

D.4. Experimental results 235

Figure D.5: Evolution of the size δ(t) of the controlled invariant set I (top), followed by
2D projections of I.

D.4.2 Kinematics

The kinematics of the human movement are measured by the opto-electronic motion
capture device called "Qualysis". This system is composed of 10 cameras to capture the

236
D. Appendix: Convergence and robustness of the Hopf oscillator applied

to an ABLE exoskeleton: reachability analysis and experimentation

human movement at 179Hz. There are 7 reflecting markers placed on the participant
forearm, which allow the construction of plans based on the recommendations of Ge
Wu et al [WvD+05]. The identification of the 7 markers is carried out using an AIM
(Automatic Idenfication Markers) model on the Qualysis Track Manager software. In
order to make the participant do oscillatory movements, a sinusoidally moving target
is projected on a screen in front of the subject.

D.4.3 Data acquisition

The code which controls the exoskeleton, also allows us to obtain its position as well
as the parameters of Hopf oscillator. This allows to analyze the convergence of the
oscillator. The data is first cleaned up, keeping only the part where the experiment
starts.

D.4.4 Motor task

The participant is first placed in the robot at a distance from the targets corresponding
to 2 times the size of his arm. The first three axis of the exoskeleton were mechanically
blocked to avoid unwanted movement. Then a moving target is projected in a big
screen in front of the participant. The target moves vertically with a varying sinusoidal
trajectory. The participant is asked to follow the target by performing only the
flexion/extension of the elbow. The pointing position is computed as the intersection
between the line of the index and the plan of the screen, it is then projected in real
time in the screen as a visual feedback for the participant. The subject starts with the
forearm pointed at the fixed target in the middle (starting target) and then starts the
experiment when the target starts to move.

The target follows the following sinusoidal trajectory :

x(t) = A sin(ωt) ,

A = 0.3 rad, ω = 5 rad.s−1 .
(D.4)

D.4.5 Experimental data

This section presents the behaviour of the set of states obtained in the experiment
where we used the control scheme presented in Appendix E.2.

D.4. Experimental results 237

Fig. D.6 represents the real position θ (aslo the oscillator input) and the estimated
position θ̂ computed by the oscillator. We can see that the estimation follows the
desired position θ.

Figure D.6: Evolution of the estimated position

Figure D.7: Evolution of the experimental data (black at t < 4.918s then blue at t ≥ 4.918s)
in the controlled invariant (red)

238
D. Appendix: Convergence and robustness of the Hopf oscillator applied

to an ABLE exoskeleton: reachability analysis and experimentation

Figure D.8: Evolution of the distance between the experimental data and the limit cycle.

We now compare the location of the experimental data with the invariant set I
constructed by reachability analysis in Appendix D.3. Fig. D.7 represents the set I
together with 5000 points chosen randomly within the set of experimental data. At
the beginning of the movement at t < 4.918s, we see on Fig. D.7 that the experimental
points (black) are outside of the invariant set I; then at t ≥ 4.918s the points (blue)
are all located inside I.

More precisely, there are in total 10336 experimental data points: 4918 points for
t < 4.918s and 5418 points for t ≥ 4.918s. All the 5418 points at t ≥ 4.918s are located
inside the invariant set I. For t < 4.918s, the average of the distance between the
experimental data and the limit cycle C is 0.0493 and the standard deviation 0.0255;
for t ≥ 4.918s, the distance average is 0.0028 and the standard deviation 0.0023.

Fig. D.8 shows the evolution of the distance between the experimental data and
the limit cycle.

As a conclusion, the experimental results allowed us to verify the efficiency of the
Hopf oscillator on a complex robot such as ABLE.

D.5 Conclusion

We have described a methodology for

1. controlling the ABLE exoskeleton in a transparent manner by exploiting adaptive
oscillators [RBI09, RBI06],

D.5. Conclusion 239

2. formally guaranteeing the convergence and robustness of the controlled system,
at the model level, using a recent method of reachability analysis of periodic
movements [JFA21b], and

3. verifying all these properties at the experimental level, via a protocol on human
subjects.

We have verified that all the data of the experiments (after a possible transient
phase) are located within the controlled invariant set I found, at the theoretical level,
by reachability analysis (see Appendix D.3).

We are presently enriching the model by taking into account additional axes of
movement, and considering more sophisticated adaptive oscillators than the Hopf
oscillator. We think that the methodology presented here (relying on control with
adaptive oscillators, and formal verification via reachability analysis) is still well-suited
to the validation of such extensions.

E
Appendix: Asymptotic Error in

Euler’s Method with a Constant
Step Size

242
E. Appendix: Asymptotic Error in Euler’s Method with a Constant Step

Size

E.1 Introduction

Different approaches have been proposed in the literature in order to provide a deeper
understanding of different optimization algorithms through the use of continuous-time
differential equations. Indeed, the use of differential equations makes it possible to
exploit the plethora of tools developed within dynamical systems analysis and control
community in order to analyse stability and convergence properties. In this context,
the authors in [SBC14] derived a continuous-time version of the Nesterov accelerated
gradient and used a Lyapunov formulation to estimate the convergence rate. Finally,
they transformed the continuous time Lyapunov function into a discrete-time version
and provided a new proof of the convergence rate of the Nesterov accelerated gradient
method. A similar Lyapunov-based approach has been used to provide proofs of
the convergence rates for the Nesterov accelerated algorithm in [SDJS21] and the
accelerated mirror descent method in [KBB15]. However, all the aforementioned
approaches fail to provide a general discretization procedure that generate a provably
convergent optimization algorithm, except of the work in [ZMSJ18], where the authors
used a Runge-Kutta scheme for a particular case of an accelerated Nesterov algorithm.
Indeed, the main difficulty comes from the fact that designing a Lyapunov function of
a continuous-time ordinary differential equation (ODE) is the “art of the designer”.

In this work, we explore another strategy that does not require an a priori
knowledge of a Lyapunov function, but rather relies on the contractivity properties of
the continuous-time differential equation. More precisely, we give here conditions as
general as possible on the flow of ODEs in order to guarantee the convergence to 0
of the error in Euler’s method, making use of an analytic formula δ(t) bounding this
error at time t [LCDVCF17].

This work is done as part of a collaboration with Adnane Saoud1 and Laurent
Fribourg2.
1 CentraleSupélec
2Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, Gif-Sur-Yvette, France

E.1.0 Comparison with related work

Let us mention that the concept of contractivity has been previously used in the
literature, where the authors in [CVB21] were able to generate a contractive continuous-
time version of the accelerated Nesterov algorithm.

E.2. Preliminaries 243

Let us also note that an important part of the literature studies the convergence of
the discretization error as the step size h → 0. In contrast here, the size h is constant
while the number of steps k → ∞. Such a convergence at constant h was the subject
of pioneering work by [Dah76] who developed the notion of A-stability and studied
the disk around the origin within which the error remains bounded. However, these
studies concern a particular type of linear differential equation of the type ẋ = −αx

with α > 0 (cf. [EPLP17] for extension to “homogeneous systems”), and not arbitrary
differential equations as here.

Regarding the analysis of the gradient descent algorithm, it is well-known that
the error (between the sequence generated by the algorithm and the optimal point)
is non-decreasing when the step size satisfies h < 2/L, where L is the Lipschitz
constant of the gradient [Dah76, SZ20, Nes14]. The same constraint is used here for
the gradient descent (see Corollary 1), but, when coupled with an assumption of strong
monotonicity, it is proved that the error tends to 0. We also make use of the property
of co-coercivity (Theorem E.3) whose role has already been observed by Zhu and
Marcotte [ZM96] in the different context of iterative schemes for solving variational
inequalities.

E.1.0 Outline

Section E.2 recalls some classical results on convexity, strong monotonicity and co-
coercivity. Section E.3 gives some sufficient conditions on the flow of the differential
equation and the discretization time-step to make the error in Euler’s method converge
to 0. We give some final remarks in Section E.4.

E.2 Preliminaries

We start by recalling some definitions that will be used through the work. We first
recall some classical results on convexity, monotonicity and co-coercivity (see, e.g.,
[Nes14, BV14, RB16]). In this work, we focus on the Euclidean norm, denoted by
∥ · ∥.

Definition E.1. Consider a continuously differentiable function f : Rn → R. The
function f is convex if, for all x, y ∈ Rn:

f(y) − f(x) ≥ (∇f(x))⊤(y − x).

244
E. Appendix: Asymptotic Error in Euler’s Method with a Constant Step

Size

It f is convex and bounded from below, then a minimum of f exists in some
x∗ ∈ Rn, and ∇f(x∗) = 0.

Definition E.2. A function g : Rn → Rn is

• L-Lipschitz continuous if for all x, y ∈ Rn:

∥g(x) − g(y)∥ ≤ L∥x − y∥.

• strongly monotone if there exists m > 0 such that, for all x, y ∈ Rn:

(g(x) − g(y))⊤(x − y) ≥ m∥x − y∥2. (E.1)

• co-coercive if there exists a positive constant a such that for all x, y ∈ Rn:

(g(y) − g(x))⊤(y − x) ≥ a∥g(y) − g(x)∥2.

Remark 10. The property (E.1) of strong monotonicity is equivalent to saying that g

has a negative one-sided Lipschitz constant (OSL) λ (see [Dah76, HW96]; cf Definition
E.3 below), equal to −m.

We consider a differential system of the form

ẋ(t) = g(x(t)) (E.2)

with initial condition x0 ∈ Rn, where g : Rn → Rn is a differentiable Lipschitzian
function of constant L > 0. Without loss of understanding, we will denote by x(t; x0),
or more simply by x(t), the solution of this system at time t.

We denote by yk the (explicit) Euler discretization of ẋ(t) = g(x(t)) at time t = kh,
for k ∈ N, where h > 0 is a constant step size. Given an initial point y0 ∈ Rn, yk is
defined, for k ≥ 1, by:

yk = yk−1 + hg(yk−1) (E.3)

Proposition E.1. On a domain where −g is strongly monotone (i.e., g has an OSL
constant λ < 0), any two solutions x(t; x0) and x(t; y0) of (E.2) with initial conditions
x0 and y0 respectively, converge to each other exponentially in time:

∥x(t; x0) − x(t; y0)∥ ≤ ∥x0 − y0∥eλt.

It follows that there is at most one stationary point x∗ (with g(x∗) = 0).

This result states that strong monotonicity leads to a form of contraction (as
studied in [CVB21, WS18]).

E.2. Preliminaries 245

Proposition E.2. Consider a continuously differentiable function f : Rn → R. If f

is convex and ∇f L-Lipschitz, then ∇f is co-coercive of constant 1/L.

Proposition E.3. Consider a function g : Rn → Rn. If the following conditions are
satisfied:

1. −g is co-coercitive,

2. the step size h < 2/L,

3. g(x∗) = 0 for some x∗ ∈ Rn (existence of a stationary point).

Then ∥g(yk)∥ → 0 with rate O(1/k) for the averaged iterates, where {yk}k∈N is defined
as in (E.3).

A proof (adapted) from [Gow20] is given in Appendix in order to be self-
contained.

In the following, we show how the result of Proposition E.3 applies to the case of
the gradient descent algorithm. We first recall the link between the gradient flow and
gradient descent algorithm.

Consider a function f : Rn → R, the gradient descent algorithm generates a
sequence {xk}k∈N described as:

xk+1 = xk − h∇f(xk) (E.4)

where h > 0 is a constant step size. This algorithm is generally used to resolve
optimization problems of the form minx∈Rn f(x) for a function f . The algorithm in
(E.4) can be seen as the (explicit) Euler discretization of the gradient flow differential
equation described by:

ẋ = −∇f(x) (E.5)

for a continuously differentiable function f : Rn → R.

From Proposition E.2 and Proposition E.3, it follows:

Proposition E.4. Consider a continuously differentiable function f : Rn → R. If the
following conditions are satisfied

1. f convex of minimizer x∗,

2. ∇f L-Lipschitzian,

3. the step size satisfies h < 2/L.

Then ∥∇f(xk)∥ → 0 as k → ∞, with rate O(1/k) for the averaged iterates, where
{xk}k∈N is defined as in (E.4).

246
E. Appendix: Asymptotic Error in Euler’s Method with a Constant Step

Size

E.3 Asymptotic Error in Euler’s Method

E.3.1 Error bound in Euler’s method

Our objective is to analyze the error between the solutions of the differential equation
(E.2) and their Euler approximations in (E.3). For this reason, we define a function
δ : R → R in order to upperbound ∥yk − x(t)∥ for t = kh (see [LCDVCF17] and
Theorem E.1 below).

Definition E.3. Given a sequence {µk}k≥0 of nonnegative reals, we define δµk
:

[0, h] → R≥0 as follows: for all t ∈ [0, h],
if λ < 0 :

δµk
(t) =

(
µ2

keλt + C2
k

λ2

(
t2 + 2t

λ
+ 2

λ2

(
1 − eλt

))) 1
2

if λ = 0 :
δµk

(t) =
(

µ2
ket + C2

k

(
− t2 − 2t + 2(et − 1)

)) 1
2

if λ > 0 :

δµk
(t) =

(
µ2

ke3λt + C2
k

3λ2

(
−t2 − 2t

3λ
+ 2

9λ2

(
e3λt − 1

))) 1
2

where

• L denotes the Lipschitz constant for g,

• Ck := L∥g(yk)∥,

• λ is the “one-sided Lipschitz constant (OSL)” (or “logarithmic Lipschitz constant”
[AS14]) associated to g, i. e., the minimal constant such that, for all x1, x2 ∈ Rn:

(g(x1) − g(x2))⊤(x1 − x2) ≤ λ∥x1 − x2∥2, (E.6)

Note that the constant Ck depends on the value of y(t) at time t = kh1. The
constants L and λ can also be calculated “locally” for the zone occupied by x(t) at
time t ∈ [kh, (k + 1)h], using a nonlinear optimization solver (see, e.g., [JFA21b] for
details).

1This slight modification of the definition of C, as originally given in [LCDVCF17], is justified by a
simple inspection of the proof of Theorem E.1 in [LCDVCF17].

E.3. Asymptotic Error in Euler’s Method 247

Let us now consider the sequence {µk}k≥0 where µk is defined recursively, for k ≥ 1
as

µk = δµk−1(h).

We can now define δµ0(2h) as δµ1(h) with µ1 = δµ0(h), and more generally, we can
extend the definition of δµ0(·) on [0, ∞) as follows: for all k ≥ 0 and t ∈ [0, h],

δµ0(kh + t) = δµk
(t).

In particular, it is easy to see that: δµ0(kh) = δµk
(0) = µk and δµ0((k +1)h) = δµk

(h) =
µk+1.

Theorem E.1. [LCDVCF17] Consider the system ẋ(t) = g(x(t)), with g : Rn → Rn.
Let x(t) and (yk) be defined as in (E.2) and (E.3) respectively, and µ0 := ∥y0 − x0∥.
Then, for all t = kh with k ≥ 0:

∥yk − x(t)∥ ≤ δµ0(t).

In the following, we give sufficient conditions on g and h ensuring that δµ0(kh)
(hence ∥yk − x(kh)∥) converge to 0 as k → ∞. In the rest of the work, we will always
assume that g is Lipschitz continuous with constant L > 0.

E.3.2 Strong monotonicity

Lemma E.1. Consider the system ẋ(t) = g(x(t)), with g : Rn → Rn. Let x(t) and
(yk) be defined as in (E.2) and (E.3) respectively, and µ0 := ∥y0 − x0∥. If the following
conditions are satisfied:

1. ∥g(yk)∥ → 0 as k → ∞ with a convergence rate rk,

2. g of OSL constant λ < 0 (i.e., −g strongly monotone).

Then δµ0(kh) → 0 as k → ∞ with a convergence rate rk.

Proof. By Taylor-Lagrange’s theorem, we find:

δ2
µ0((k + 1)h) ≤ δ2

µ0(kh)eλh + C2
kh3/(3|λ|). (E.7)

Since Ck = L∥g(yk)∥ → 0 as k → ∞ with rate rk, and eλh < 1, it follows that there
exists ℓ ∈ N such that: δ2

µ0((k + 1)h) < δ2
µ0(kh) for all k ≥ ℓ. Hence, the sequence

248
E. Appendix: Asymptotic Error in Euler’s Method with a Constant Step

Size

{δµ0(kh)}k≥ℓ is decreasing, and converges to a limit δ∗ ≥ 0 with rate rk. This limit δ∗

must satisfy (E.7), i.e.:

(δ∗)2 ≤ (δ∗)2eλh + C2
kh3/(3|λ|).

Since Ck = L∥g(yk)∥ → 0 as k → ∞ and eλh < 1, one must have δ∗ = 0. Therefore
δµ0(kh) → 0 with rate rk.

From Lemma E.1 and Theorem E.1, it follows:

Theorem E.2. Consider the system ẋ(t) = g(x(t)), with g : Rn → Rn L-Lipschitz
continuous. Let x(t) and (yk) as defined in (E.2) and (E.3) respectively. Suppose:

1. ∥g(yk)∥ → 0 with a convergence rate rk,

2. g of OSL constant < 0 (i.e., −g strongly monotone).

Then δµ0(kh) → 0 and ∥yk − x(kh)∥ → 0 with a convergence rate rk as k → ∞.

Note that Theorem E.2 applies even if ∥yk∥ → ∞, as shown in Example E.1.

Remark 11. For the sake of simplicity of the statement, we assume in Theorem E.2
(as well as Theorem E.3 and Corollary E.3 below), that the property of Lipschitz
continuity and strong monotonicity (as well as, later on, co-coercivity and existence of
stationary point) hold over all Rn. In fact, it is enough that these properties hold on a
subdomain D ⊂ Rn only, provided that D be “invariant” in the following sense: there
exists ℓ ∈ N such that for all k ≥ ℓ,

B(yk, δµ0(kh)) ⊆ D2.

Example E.1. Let g(x) = 1
2
√

x
, y0 = 1, h = 0.5, µ0 = 0.5, and let D = [1, +∞). We

have yk+1 = yk + h 1
2√

yk
> yk, therefore {yk} is an increasing sequence which converges

to +∞, and g(yk) = 1
2√

yk
converges to 0. Using the software ORBITADOR [Jer21],

one calculates that L ≤ 0.5 and λ < 0 on D (see Figures E.1, E.2). Since ∥g(yk)∥ → 0
(Figure E.3), it follows by Theorem E.2: δµ0(kh) → 0 and |yk − x(kh)| → 0 as k → ∞
(see Figures E.4 and E.5).

2B(x, r) denotes the ball of centre x ∈ Rn and radius r ≥ 0 (i.e., the set of points z ∈ Rn such that
∥z − x∥ ≤ r).

E.3. Asymptotic Error in Euler’s Method 249

Figure E.1: Evolution of λ

Figure E.2: Evolution of L

Figure E.3: Evolution of Ck = L∥g(yk))∥

E.3.3 Application to gradient descent

An immediate consequence of Theorem E.2, using Lemma E.1 and Proposition E.4
with g = −∇f , is the following result (which avoids mentioning ∥g(yk)∥ → 0 as an
explicit hypothesis).

Corollary 1. Consider a continuously differentiable function f : Rn → R. Suppose:

250
E. Appendix: Asymptotic Error in Euler’s Method with a Constant Step

Size

Figure E.4: Evolution of δµ0

Figure E.5: Evolution of yk

1. f convex of minimizer x∗,

2. ∇f L-Lipschitzian,

3. −∇f OSL λ < 0 (i.e., ∇f strongly monotone),

4. h < 2/L

Then yk → x∗ and x(kh) → x∗ as k → ∞ with rate O(1/k) for the averaged iterates.

Example E.2. 3 Let us consider the following function f : R2 → R defined for t ≥ 0,
by:

f(w) = 1
2Σ2

i=1(bi − (w1 · ai + w2))2,

with w = (w1, w2), a1 = 1, a2 = 2, b1 = 5 and b2 = 7. Let us compute its minimum
w∗ = (w∗

1, w∗
2) by gradient descent, with initial point w0 = (w0

1, w0
2) = (9, 10). Using

the software ORBITADOR [Jer21], we find: λ ≤ −0.187 and L < 7 (see Figures E.6
and E.7. For h = 0.2 (which satisfies: h < 2/L), it follows by Proposition E.4
that ∥∇f(w(kh))∥ → 0 and C = L∥∇f(w(kh))∥ → 0 respectively, as k → ∞ (see
Figure E.8 and Figure E.9 respectively). Letting µ0 = 0.1, it follows from Corollary 1

3adapted from
https://codingvision.net/gradient-descent-simply-explained-with-example

E.3. Asymptotic Error in Euler’s Method 251

that δµ0(t) → 0 (see Figure E.10 for t = kh ≤ 95 and Figure E.11, with a change of
scale, for 95 ≤ t = kh ≤ 120), yk → w∗ and x(kh) → w∗, with w∗ = (2, 3) (which is
the stationary point of ∇f and the minimizer of f).

Figure E.6: Evolution of λ computed locally (λ(t) ≤ −0.187)

Figure E.7: Evolution of L computed locally (L(t) < 7)

Figure E.8: Evolution of ∥∇f(w(t))∥

252
E. Appendix: Asymptotic Error in Euler’s Method with a Constant Step

Size

Figure E.9: Evolution of C(t) = L∥∇f(t)∥ varying from 918 (for t = 0) to 0.0272 (for
t = 30)

Figure E.10: Evolution of δ(t) for t ∈ [0, 95]

Figure E.11: Evolution of δ(t) for t ∈ [95, 120]

E.3.4 Co-coercivity

The following result is a generalization of Corollary 1.

Theorem E.3. Consider the system ẋ(t) = g(x(t)), with g : Rn → Rn L-Lipschitz
continuous. Let x(t) and (yk) as defined in (E.2) and (E.3) respectively. Suppose

E.3. Asymptotic Error in Euler’s Method 253

Figure E.12: Evolution of w1(t) (which converges to w∗
1 = 2)

Figure E.13: Evolution of w2(t) (which converges to w∗
3 = 3)

1. h < 2/L,

2. −g co-coercive with constant 1/L,

3. g of OSL constant λ < 0 (i.e., −g strongly monotone),

4. g(x∗) = 0 for some x∗ ∈ Rn (existence of a stationary point).

Then we have:

• x∗ is the unique stationary point of Rn,

• yk → x∗ and x(kh) → x∗ as k → ∞ with rate O(1/k) for the averaged iterates.

Proof. By Proposition E.1, Lemma E.1, Proposition E.3 and Theorem E.1.

Example E.3. Consider the differential equation ẋ = g(x) with g(x) = −4x3 + 6x2,
and its Euler discretization with y0 = 0.25 and h = 0.12. Using ORBITADOR, one
calculate L ≤ 12, where L is the Lipschitz constant of g (see Figure E.14). Let
D = [1.25, 1.75]. For µ0 = 0.1 and h = 0.12 < 2/L, one can show, using ORBITADOR:

• λ < 0 on D (see Figure E.15),

• B(yk, δµ0(kh)) ⊆ D for all k ≥ 12, and

254
E. Appendix: Asymptotic Error in Euler’s Method with a Constant Step

Size

• −g co-coercive of constant 1/L on D.

Besides, x∗ = 1.5 ∈ D is a stationary point (g(y∗) = 0). From Theorem E.3, it follows:
δµ0(kh) → 0, (see Figure E.16), x∗ is the unique stationary point of D, yk → x∗ and
x(kh) → x∗ as k → ∞ (see Figure E.17). We can also check C = L∥g(yk)∥ → 0
(see Figure E.18). Note that x∗ is here the minimizer of the non-convex function
f(x) = x4 − 2x3 + 2 (with −∇f(x) = g(x)). See Figure E.19.

Figure E.14: Evolution of L (L ≤ 12)

Figure E.15: Evolution of λ

Figure E.16: Evolution of δµ0 (which converges to 0)

E.4. Conclusion 255

Figure E.17: Evolution of yk (which converges to x∗ = 1.5)

Figure E.18: Evolution of C = L∥g(y))∥

Figure E.19: Graph (yk, f(yk))

E.4 Conclusion

In this work, we have focused on the following problem: given an ODE ẋ = g(x) and
the sequence (yk) generated by its discretization with explicit Euler’s method, what
are the sufficient conditions on g to ensure that the discretization error ∥x(kh) − yk∥
converges to 0 as k → ∞? In particular, under certain properties of g called “strong
monotonicity” and “co-coercivity”, we have shown the convergence of the discretization

256
E. Appendix: Asymptotic Error in Euler’s Method with a Constant Step

Size

error to 0 (Theorem E.3). This can shed new light on the relationship between
the convergence of continuous differential equations (such as the gradient flow) and
their discretization (gradient descent algorithm). In particular, our analysis might
be interesting in the framework of neural residual networks [HZRS16], a continuous
version of the classical neural networks for which the gradient descent algorithm is
used in a basic way.

	General Introduction
	I Real-time systems analysis
	Introduction
	Context
	Scheduling
	Real-time systems
	Formal methods
	Model checking
	Timed Automata

	Objectives
	Related works
	Scheduling
	Scheduling with model checking
	Scheduling with parameters

	Plan of part1

	Preliminary definitions
	Introduction
	Clocks, parameters, constraints
	Clocks
	Parameters
	Constraints

	Timed automata
	Syntax

	Parametric timed automata
	Syntax

	Parametric stopwatch automata
	Syntax

	Scheduling problem for real-time systems

	Parametric schedulability analysis of the flight control of a space launcher
	Introduction
	Contribution
	Outline

	Description of the system and problem
	Threads and deterministic communications
	Reactivities
	Processings and assignment into threads
	A formal framework for real-time systems
	Formalization of the case study
	Objectives

	Specifying the system
	Architecture of the solution
	Modeling periodic processing activations
	Modeling threads
	Modeling the FPS scheduler
	Reachability synthesis

	Compositional verification of reactivities
	Observer construction
	Compositional verification and synthesis

	Enhancing the analysis with context switches
	Problem
	Modeling the context switch

	Experiments
	Experimental environment
	Verification and synthesis without reactivities
	Compositional verification of reactivities
	Switch time

	Comparison with other tools
	Comparison of our results with non-parametric tools
	``Testing'' the parametric analysis

	Conclusion

	Formalize real-time system models under uncertainty
	Introduction
	Related works
	Outline

	Time4sys in a nutshell
	Architecture and principle
	Targeted user
	User workflow
	Global architecture
	Detailed architecture

	Proof of concept
	Conclusion and perspectives

	Conclusion and perspectives
	Conclusion
	Perspectives

	II Limit cycle of oscillators using Euler method
	Introduction
	Context
	Robust control
	Limit cycle
	Stability
	Euler method

	Objectives
	Contributions

	Symbolic Euler's method and its application for controlled systems
	Introduction
	Symbolic Euler's method
	Euler's method and error bounds
	Systems with bounded uncertainty

	Extension of Euler Method with control
	Optimal control using Euler time integration
	Correctness of the method
	Examples
	Extension to systems with perturbation

	An Approximation of Minimax Control using Random Sampling and Symbolic Computation
	Introduction
	Method
	Example
	Search a control that maintains the periodicity
	Conclusion

	Generation of bounded invariants via stroboscopic set-valued maps
	Generation of bounded invariants without control
	Introduction
	Method
	Application to Parametric Systems
	Conclusion

	Robust optimal periodic control using guaranteed Euler's method
	Introduction
	Application to Guaranteed Robustness
	Conclusion

	Enclosures of invariant tori and strange attractors using Euler's method
	Introduction
	Constructing Invariant Stuctures Around Tori
	Basic method for periodic systems
	Extension to chaotic systems

	Conclusion

	ORBITADOR: A tool to analyze the stability of periodical dynamical systems
	Introduction
	ORBITADOR organization and principle
	Targeted user
	Global architecture

	Example: Passive biped model
	Conclusion

	Conclusion and perspectives
	Summary of part2
	Perspectives

	General conclusion
	Bibliography
	Appendix: Scheduling for real-time system
	Parametric analyses without reactivities
	Parametric offsets and deadlines

	Parametric analyses with reactivities
	Parametric offsets
	Parametric deadlines

	Parametric analyses with reactivities and with switch time
	Parametric offsets
	Parametric deadlines

	Appendix: Formalize for real-time system
	Other examples translated by Time4sys2imi

	Appendix: Limit cycle of oscillators using Euler method
	Reaction-diffusion PDEs
	Centered finite difference scheme
	Source code of ex:vdp0,ex:vdp1,ex:vdp2: Parametric Van der Pol system
	Sensitivity of Bocop to Initial Conditions
	Coupled Van der Pol oscillators example
	Biochemical example

	Appendix: Convergence and robustness of the Hopf oscillator applied to an ABLE exoskeleton: reachability analysis and experimentation
	Introduction
	Material and methods
	Adaptive oscillators
	Exoskeleton modeling

	Reachability Analysis
	Experimental results
	Participants
	Kinematics
	Data acquisition
	Motor task
	Experimental data

	Conclusion

	Appendix: Asymptotic Error in Euler's Method with a Constant Step Size
	Introduction
	Preliminaries
	Asymptotic Error in Euler's Method
	Error bound in Euler's method
	Strong monotonicity
	Application to gradient descent
	Co-coercivity

	Conclusion

