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Introduction 

Nanotechnology is playing an increasing role in matter of science and research, as science 

continues to progress in the field of new technologies involving nanomaterials spreading in many 

industrials sectors such as engineering, medical, pharmaceutical, agriculture, environment and 

others. Among some specific applications, the use of titanium oxide in the production of cosmetics, 

surface coatings, some food products and water and air purifications while the research of silver 

nanoparticles has been directed to the field of disinfectants, bandages, and water purification 

systems. The worldwide investment in nanotechnology has been increasing since the 1997 reporting 

up to $US 4100 million in 2005 (Patila S. S. et al., 2016) and up to $US 3 billion in 2017 expecting to 

exceed the $US 125 billion in 2024. (Intelligence, April 2018) 

Environmental contamination has been addressed as one of the most important problems 

that need to be solved before there are serious consequences such as the contaminations of rivers 

and seas. Common pollutants in streams are chlorides and nitrates which are problematic if found in 

high concentrations as reported in indians rivers. (Jadhav S.D. et al., 2013) 

In the actuality, natural resources have reached high levels of pollution. Environmental 

pollution is a day-to-day problem that needs to be faced by developing and developed countries. 

Among all different types of pollution, air and water pollution contribute to the most important key 

in the balance of the ecosystems. Common pollutants are usually toxic organic compounds like dyes, 

detergents and surfactants, agrowastes like insecticides and herbicides, inorganic compounds, 

noxious gases; pathogens just to name a few. Hence the importance to address the problem with 

delicacy; the research community should focus into developing clean and green processes to degrade 

pollutants before they are discharged into the air and water contaminating the natural resources. 

(Vinu R. et al., 2011) 

Photocatalytic materials play a very important role in the elimination of toxic organic 

compounds. Photocatalysis is promotion of a light-activated reaction involving a semiconductor 
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illuminated with light of sufficient energy to excite electrons from the valence band to the 

conduction band. (Fox M. A. and Dulay M. T., 1993) During this process a redox-reaction can occur at 

the surface of the catalyst, this is oxygen reduction and water oxidation. The redox reactions result in 

the production of highly oxidizing reactive species (ROS) which have the ability to oxidize organic 

contaminants. (Min C. et al., 2004) (Takashi T. et al., 2009) (Konstantoinou, et al., 2004) 

Titanium dioxide nanoparticles have been widely used in the photocatalytic research ( 

(Fujishima A. et al., 1999) (Hashimoto K. et al., 2005), since their effectiveness of the large surface 

area that can facilitate a fast rate of light-induced surface reactions. The problem with the use of only 

titanium oxide as a photocatalyst resides on the property that it only absorbs ultraviolet (UV) light. In 

the last decades, many studies have been conducted on the modifications of the material 

composition and structure, in order to improve the process efficiency and selectivity and extend the 

material activation to the visible spectral range ( (Schneider J. et al., 2014) (Zaleska A., 2008) There 

has been a strong investigation towards the strategy to change the optical absorption of TiO2 

towards the visible region by doping it with ionic species (Zhang H. et al., 2009) But, the enhanced 

optical absorption does not always match to the photocatalytic activity in a previously inactive 

spectral range, meaning that the absorption spectrum of a photocatalyst does not match its 

corresponding photocatalytic activity spectrum. An important method in this connection involves Ti 

cations replacement by other cations M, which can be referred as doping (at small level of insertion, 

≤1 %) or mixing (at larger level). Moreover, when M forms oxides with a lower band gap energy (Eg) 

compared to that of TiO2, there appears a potentiality for a desirable decrease of the process 

activation energy: h≤3.0 eV. An insertion of vanadium (V) atoms, which pentoxide compound V2O5 

has band gap energy of 2.2 eV, into the host matrix of TiO2 solid creates such opportunities for the 

photocatalytic process improvement. 

The problematic around the preparation of the photocatalysts with reproducible functional 

properties are the control of its homogenous composition at nanoscale, which is connected to 
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micromixing at the initial stage of the material preparation. Between different routes of the mixed 

metal oxides preparation, the sol-gel method occupies a special place in this connection (Brinker C. J. 

and Scherer G. W., 1990), (Pierre A. C., 1998). As it has been previously shown (Rivallin M. et al., 

2005) (Azouani et al., 2010), this method can be adapted to achieve perfect micromixing at the 

particle nucleation stage, which is a key problem in size and homogeneity control of the dispersed 

solids (Bałdyga J. and Pohorecki R., 1995). In previous works carried out in our teams at LSPM, size-

selected TiO2 (Azouani et al., 2007), N-doped TiO2 (Azouani R. et al., 2010) ZrO2, (Labidi et al., 2015) 

and ZrxTi2-xO2 (Cheng et al., 2017) nanoparticles with homogeneous composition have been prepared 

for an application in photocatalysis and catalysis. 

In this work, we proposed to study synthesis of size-selective TiO2-V2O5 nanoparticles by 

using the sol-gel method in a chemical reactor with ultra-rapid micromixing of the reacting solutions 

within a turbulent flow which will be favorable to obtain a homogenous solution and apply them for 

preparation of photocatalytic nanocoatings, which are active both under UV and visible light 

illuminations. The objective of this work is to synthetize TiO2-V2O5 nanparticles with their respective 

precursors like titanium(IV) (TTIP) isopropoxide and Vanadium(V) oxytriisopropoxide (VOP) in n-

propanol solvent. The reactor operates under the atmosphere and temperature control, which are 

important to achieve reproducibility of the nucleation-growth process kinetics and properties of the 

final material. 

The PhD manuscript is organized in five Chapters, followed by General Conclusions and 

Perspectives. 

Chapter 1 is devoted to the bibliography survey describing structural and physiochemical 

properties of TiO2 and V2O5 solids, as well as of their mixed oxide TiO2-V2O5 compositions. This 

Chapter introduced the nucleation-growth process in sol-gel method of the metal-oxo-alkoxy 

nanoparticles formation, laboratory micromixing reactor based on the turbulent fluids flow and in-

situ monitoring of the preparation process by dynamic and static light scattering methods (DLS/SLS).  
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Chapter 2 describes the principal techniques and methods used throughout this work for the 

prepared V-TiO2 materials characterization. These analysis techniques include X-Ray Diffraction 

(XRD), Thermogravimetric Analysis (TGA) of mass loss and Thermal Differential Analysis (TDA) of heat 

flow, Transmission Emission Microscopy (TEM) and the DLS method.  

Chapter 3 describes experimental studies of the nucleation and growth process of V2O5 and 

V-TiO2 nanoparticles. The mixed oxide nanoparticles were prepared with different elemental 

compositions in the range of 0≤V/(V+Ti)≤1. The in situ DLS/SLS measurements in the reactive solution 

of the micromixing reactor were applied in these studies using original optical fiber probe. 

Chapter 4 presents the TDA-TGA, XRD and Raman characterizations of the prepared V-TiO2 

nanoparticulate materials with different elemental compositions in the range of 0≤V/(V+Ti)≤1, as 

well as a discussion the obtained results. 

Chapter 5 presents experimental results of the photocatalytic process of methylene blue 

(MB) decomposition in aqueous solutions under illumination with UVA and Visible Light lamps. The 

photocatalytic reactor is described. The photocatalysts were prepared in form of nanocoatings on 

glass beads of size-selective V-TiO2 nanoparticles, which formation in the dedicated chemical reactor 

and subsequent heat treatments were studied respectively in Chapters 3 and 4.  

The summary of the main obtained results and perspective of the accomplished studies are 

presented in General Conclusions and Perspectives. The list of publications, presentations at 

conferences issued of this work are given. References of previous scientific publication used in this 

work conclude the manuscript. 
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This chapter will describe the structural properties of TiO2, V2O5 and TiO2-V2O5 as well as the 

technique to prepare the solid solution of the system. This first part is followed by the description of 

kinetics studies on the nucleation and growth processes of titanium and vanadium oxo-alkoxide 

nanoparticles synthesized manually or by using a micromixing sol-reactor. Finally, photocatalytic 

applications of materials are presented in the chapter. 

1.1 Titanium oxide structural properties 

1.1.1 Crystallographic structure 

 

Titanium oxide, also known as titania, is an oxidation state of +4 of titanium, commonly used 

as a pigment in food coloring, sunscreens, and paints. Titanium oxide is an n-type semiconductor 

known for his broad band gap, and his surface, transport, and light absorption qualities. Titanium 

oxide has been lately part of a large focus of many different projects highlighting their photostable, 

photoactive properties,its advantages as the cost-effectiveness, and the stability. (Ramimoghadam D. 

et al., 2014). 

The titanium oxide TiO2 presents three main different crystalline phases: anatase (tetragonal phase), 

rutile (tetragonal structure) and brookite (orthorhombic structure) (Jouanny I. et al., 2010). In the 

Figure 1 (Jinfeng Z. et al., 2014), it is shown the crystallographic structures 
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Figure 1 Crystallographic structures of TiO2 (a) anatase, (b) rutile and c) brookite. 

 

The anatase titanium oxide nanoparticles are the ones that are used more in the industry. 

This is mainly because of the properties of the material, like for example: the contribution of the 

titanium oxide nanoparticles on new functionalities to materials increasing the self-cleanliness 

pollution removal quality better through photocatalytic activation by UV light. (Constantinides, 2013) 

In the Figure 2 it is shown the XRD patterns of prepared TiO2 nanoparticles a) anatase b) 

rutile and c) brookite, the reference line patterns correspond to the JCPDS: No 21-1272 (Reyes-

Coronado D. et al., 2008) 
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Figure 2 XRD patters of TiO2 a) anatase b) rutile c) brookite (Reyes-Coronado D. et al., 2008). 

The band gap is the minimum amount of energy required for an electron to break free of its bound 

state. The band gap is important to keep in mind to study the photocatalytic power of the materials. 

The band gap of the TiO2 can vary from 3.0 eV for the rutile phase and 3.2 eV for the anatase phase. 

1.1.2 Vanadium oxide properties 

Vanadium oxide or commonly named as Vanadia, is an inorganic compound that can be presented in 

various forms, that will depend on the oxidation state of the vanadium metal. Vanadium oxides, in 

special the following ones: 

 Vanadium (III) oxide (vanadium trioxide) V2O3, 

 Vanadium (IV) oxide (vanadium dioxide), VO2, 

Vanadium (V) oxide (vanadium pentoxide), V2O5.Vanadium oxides have gathered some special 

interest because of their application in catalysis such as cathode materials for batteries, 

electrochromic systems (Chernova N. A. et al., 2009), optical switching devices (Boukhalfa S. et 

al., 2012) and memory elements (Son M. et al., 2011). Vanadium is a multivalent transition metal 

that can create different forms of stable oxides. In the following phase diagram (Figure 3), it is 
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emphasized the complexity of the vanadium-oxygen system (Hiraga K. and Hirabayashi M., 1975) 

(Rempel D. A. et al., 2009) (Kosuge K., 1967) (Cao Z. et al., 2015). 

 

Figure 3 A vanadium‐oxygen phase diagram (Shvets P. et al., 2019). 

In the following Figure 4, it is shown the XRD of the vanadium dioxide (VO2) and vanadium trioxide 

(V2O3) at different temperatures as reported by (Pham V.-H. et al., 2019) 
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Figure 4 XRD patterns of VO2 (B) nanoparticles synthesized at different temperatures: (a) 100°C, (b) 150°C, (c) 180°C and 
(d) 200°C. (Pham V.-H. et al., 2019). 

V2O3 has a corundum structure with space group R3c and lattice constants of a = 5.467 Å and α = 

53.74° (rhombohedral notation) or a = 4.942 Å and c = 13.99 Å (hexagonal notation). (Andersson, 

1954). Raman spectra have been reported for high and low temperature phases. (Kuroda N. and Fan 

H. Y., 1977). 
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Figure 5 Raman scattering in corundum‐type V2O3 (Shvets P. et al., 2019). 

 

The simple local spin density approximation (LSDA) is known to be unable to give a band gap for the 

insulating phases of V2O3 (Mattheiss L. F., 1994). But according to (Guo Y. et al., 2014) they report a 

calculated band gap of 0.63 eV which agrees well with the experimental optical gap of 0.50–0.66 eV. 

VO2 (M1). Its space group is P21/c, a = 5.35 Å, b = 4.52 Å, c = 5.38 Å, and β = 115.2° (Andersson, 

1956). A reversible phase transition into a metallic state is observed at temperatures above 68°C. In 

this state, the lattice is tetragonal and rutile resemblance. 

For the rutile structure, there are four Raman‐active modes (A1g + B1g + B2g + Eg). All of them are 

linked with the only  motion of oxygen atoms 
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Figure 6 Raman scattering in VO2 polymorphs: (a) VO2 (M1), (b) VO2 (R), (c) VO2 (B), and VO2 (A) measured at 30°C and 
220°C (Shvets P. et al., 2019). 

 

The optical bandgap obtained in the VO2 is of 0.6 ± 0.05 eV for monoclinic (M1) phase. (Lee S. et al., 

2015) 

 

Figure 7  Schematic band alignment diagram of VO2 with different dielectrics (Zhang Z. et al., 2019). 

 

From all these types of vanadium oxides, V2O5 is the most stable and common form of vanadium (V) 

oxide, also known as vanadic anhydride.  
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V2O5 presents an orthorhombic structure with lattice parameters a = 3.563 Å, b = 11.510 Å, c = 4.369 

Å (Fiermans L. et al., 1980). Orthorhombic α- V2O5 is built-up by layers of corner-sharing and 

alternating edge VO5 square pyramids linked together through Van der Waals interactions. 

(Verrelli R. et al., 2018) 

 

Figure 8 Structure of V2O5 consists of linked VO5 square base (ChemTube3D, 2008-2021). 

 

Vanadium oxide (VOx) has been a relevant subject lately due to a multitude of catalytic reactions 

(Wachs I.E. et al., 2003). It is used widely as a catalyst in many industrial chemical reactions due to its 

many applications which can be used like the following: 

 In manufacturing some ceramics and some kinds of alloys, 

 In optical applications like for example, the manufacture of laser crystals, 

 For applications which involves nanofiber and nanowire (Dispersions, 200-2021). 

In Figure 9, it is shown the XRD pattern which can be indexed to JCPDS no. 60-0767 (Chan Y.-L. et al., 

2014) 
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Figure 9 XRD Patten of V2O5 nanoparticles. 

There are at least six polymorphs of V2O5, including α‐V2O5, β‐V2O5, δ‐V2O5, γ′‐V2O5, ζ‐V2O5, and 

ε′‐V2O5. The most common one is α‐V2O5, which crystallizes into orthorhombic space group (Pmmn) 

with lattice constants of a = 11.51 Å, b = 3.564 Å, and c = 4.368 Å (Enjalbert R. and Galy J., 1986) 

 

Figure 10 Raman scattering in V2O5 polymorphs: (a) α‐V2O5,(b) β‐V2O5, (c) δ‐V2O5, (d) γ′‐ V2O5, and ε′‐V2O5 (Shvets P. et 
al., 2019). 
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The optical absorption coefficients of V2O5 single crystals using incident polarized light with 

wavelengths in the range of 0.47–1.8 μm and unpolarized light with wavelengths from 1.5 to 7.5 μm. 

Fundamental absorption was observed at incident photon energies of 2.15, 2.22 and 2.17 eV for E - 

a, E - b and E - c, respectively. (Kenny N. et al., 1966) 

 

1.1.3 Mixed-oxide Titanium – Vanadium: V-TiO2 

In contrast to a composite material, which is a combination of two or more single constituent 

materials, the mixed-oxides solids are characterized by high composition homogeneity at nanoscale 

due to the fine elemental mixing. An example of such ZrxTi1-xO2 solid prepared via bottom-up 

approach, i.e. from nanoparticle to bulk solid could be given (Cheng et al., 2017). These materials, 

including homogeneously doped solids (avoiding ad-element clustering) and solid solutions, have 

different chemical and/or physical properties and are merged to constitute a new material with 

properties different from the original individual materials. In some particular cases, when dopant 

concentration exceeds the solubility limit, the material segregation can lead to a nanocomposite, 

which constitutes a special class of composite materials, largely used in many industrial applications 

such as transport structures and buildings, some of the properties and characteristics that are 

optimized are the strength and stiffness, the resistance against fatigue, the resistance to corrosion 

and helping into the manufacturing of complex shapes ( see e.g. Mousumi, 2020). In this connection, 

mixing of vanadium and titanium precursots could lead to the novel class of V-TiO2 solids with high 

composition homogeneity. Furthermore, estimates based on the experimental band gap energy of 

2.05 eV obtained in V2O5 semiconductor showed that visible light with wavelength < 605 nm may be 

used to initiate photocatalytic reactions in this material (Jianhua L. et al., 2006). Therefore V-TiO2 

solids could be expected to possess a reduced activation energy in a photocatalytic process 

compared to that of prestine TiO2. 
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Previous studies of the mixed oxide and nanocomposite V-TiO2 solids are numerous but not 

conclusive. In particular, optimum material composition in the photocatalytic process in connection 

with the morphology and elemental composition at nanoscale has not been yet provided, although 

the reasons of high effectiveness and underlying mechanisms were discussed. (Bettinelli M. et al., 

2007) have synthetized V-doped TiO2 photocatalysts via a modified sol–gel process reporting that the 

activity was significantly affected by preparation conditions. They have explained that the surface 

vanadium caused the pollutant (methylene blue, MB) degradation, while the bulk vanadium did not 

influence the activity. At the same time, surface vanadium also caused the deactivation, suggesting 

the presence of poisoning effects. (Chang P-Y. et al., 2009) have reported a red-shift of the 

absorption onset energy of V-TiO2 nanoparticles with V content up to ~2 wt% prepared via sol-gel 

method. They have observed a moderate decrease of the MB decomposition rate under UV light 

illumination (305 nm). At the same time, a significant increase of the decomposition rate was 

observed under the solar simulator illumination with the optimum attained at the V content of 0.5-1 

wt%. Lin and Lin (Lin W-C. and Lin Y-J., 2012) have shown that an optimal vanadium content of 5% 

enhanced the pseudo first order photocatalytic kinetics of MB degradation under the visible light 

irradiation, which was explained by the migration of photogenerated electrons to vanadium, thus 

improving the electron-19 hole separation. Moreover, V-doping of TiO2 increased the crystal grain 

size affecting specific surface areas of powders and extended the material absorption in the spectral 

range of 400-800 nm. (Khan H. and Berk D., 2013) have reported a successful incorporation of V5
+ 

ions into the TiO2 crystalline lattice that resulted in a decrease of the band-gap energy and a 

decrease in photogenerated electrons and holes recombination rate. These and other recent studies 

on V-TiO2 have indicated an optimal material composition for the best photocatalytic performance 

(Al-Mamun M.R. et al., 2019). While optimisation of the photocatalyst composition and morphology 

advances, the relevant problem concerns development of the photocatalysis preparation process 

(Meramo S. I. et al., 2018) (Stoller M. et al., 2019). A chemical reactor with ultrarapid micromixing of 

the reactive fluids has been previously developed in our group for the mass-fabrication of size-
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selected pure, doped and mixed metal oxide nanoparticles, and its performance has been 

demonstrated on the preparation of TiO2, ZrxTi1-xO2 photocatalytic nanoparticles and nanocoatings 

(Azouani R. et al., 2009) (Azouani R. et al., 2010) (Cheng K. et al., 2017) (Cheng K. et al., 2018). In this 

work, we extend studies to the photocatalytic activity of V-TiO2 nanoparticles prepared via sol-gel 

method in the dedicated chemical reactor. 

1.2 Preparation Methods 

1.2.1 Sol-Gel Method 

The application of novel methods for the synthesis of some materials was modified with the coming 

of the Sol-Gel method. (Brinker C. J. and Sherer G.W., 1990) (Kakihana M., 1996) have defined Sol-Gel 

as the obtaining of oxide materials by preparing a sol and removing the solvent. Sol-Gel is defined as 

a dispersion of solid particles in a liquid phase where the particles are small enough to remain 

suspended, having at least one dimension in the range of 1-100 nm, in a liquid medium. A gel is a 

colloidal system, wherein the continuous phase is a liquid and the dispersed phase a solid, wherein 

the solid phase forms a network that entraps and immobilizes the liquid part. A gel is formed when 

the homogeneous dispersion present in the initial sol rigidifies, this process is called gelation, 

preventing the inhomogeneous development of the material.  

Particle growth can take place by diffusion across boundaries to form agglomerates. The surface 

conditions between particles will determine the diffusion process of molecules or atoms. Besides, the 

presence of impurities on the surface can change the mechanism of the processes. Glass for example 

is an amorphous colloid with silica and aluminum, which is formed when silica modifies its surface by 

interaction with aluminate ions, exchanging Si(OH)4 ions for Al(OH)4 ions.  
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Figure 11 Behavior of the particles during the Sol-Gel process. 

The Figure 11 shows in more detail how the particles are arranged in such a way that from a sol, it 

becomes a gel.  

To form a colloid, it is necessary to stabilize it so that the particles do not agglomerate. The 

propensity of colloids to agglomerate is due to attractive van der Waals forces. Colloids can be 

stabilized by charge and entropically (by energy), a stabilization mechanism that involves the 

presence of lyopophilic polymeric molecules, or molecules that have a high affinity for the solvent, 

which adsorb on the surface of the colloidal particles and prevent them from agglomerating.  

 

Figure 12 Colloid Stabilization. 

 

A sol can be transformed into a colloidal gel, which is a rigid network interconnected with pores of 

submicrometer dimensions and polymeric chains whose length is larger than a micrometer, by 

passing through the so-called gel point. This point is where the sol abruptly changes from a viscous 

liquid state to a solid phase called gel. As the gelation consists of stabilizing the bonds between the 
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sol particles to form the three-dimensional solid network, the sol-gel process can be used to obtain 

ceramic powders and films. 

There are three main routes depending on whether the precursor is an inorganic salt in aqueous 

solution, an aggregate solid formed by colloidal subunits, or an array forming agent in organic 

solution. 

Ionic precursor solutions are destabilized by changes in solution, such as pH or temperature, 

initiating the process of hydrolysis followed by condensation. In the second case, it starts with 

aggregates of colloidal particles in a solvent (suspension), to which some electrolyte or other solvent 

is added, with the possibility of subsequent re-aggregation. The fundamental physicochemical effect 

in operation is the change in the surface zeta potential and hence the interaction energy between 

the colloidal particles. Metal alkoxides are the most important precursors for the formation of 

oxides. 

In the sol-gel process the following parameters are of vital importance, since they are responsible for 

the final physicochemical characteristics of the synthesized nanomaterials: 

 The H2O/alkoxide ratio (hydrolysis ratio), 

 The pH of the reaction, 

 The influence of the solvent, 

 The gelation time, 

 Reaction temperature, 

 The different alkyl groups of the type of precursor used. 

In the sol-gel process there are several steps: mixing, gelling, aging, drying and sintering (Kakihana 

M., 1996) (Vennila R. et al., 2014) (Miller H. et al., 2000). 

Mixing: 
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The possibility of designing unique materials is one of the aspects of the sol-gel process that are 

considered most important, especially when done by polymerization of a metal-organic compound to 

form a polymer gel. The key is to design the appropriate monomer that will polymerize to form the 

M-O-M structures. M(OR)n metal alkoxides - where M is the metal and R an alkyl radical - meet this 

requirement. These reactions occur simultaneously and are usually incomplete, but the desired oxide 

is achieved. The result of the reactions is a colloidal dispersion of extremely small particles (1-2 nm) 

that eventually form an entangled three-dimensional network of the corresponding inorganic oxide. 

Hydrolysis and polycondensation can be accelerated or slowed down using the corresponding acid or 

base catalyst. 

H2O + M – O – R → H – O – M + R – OH (Hydrolysis reaction) 

 At low pH the particles aggregate to form polymeric structures, whereas at high pH the particles 

increase in size; this effect is due to the variation of solubility with surface curvature and pH. 

Depending on the amount of water present, the hydrolysis reaction may be completed or stopped 

when the metal is partially hydrolyzed. In the case where various cations are used to form mixed 

oxide networks, an initial step is necessary to form the mixed complex. When the alkoxy precursors 

have different hydrolysis rates, a pre-hydrolysis of the alkoxysilane is preferable.  

The oxolation is when two partly hydrolysis precursors react with each other and they release a 

water molecule in the process, the reaction of the of the oxolation can be written as it follows: 

M – O –H + H –O –M → M –O –M + H2O 

The general form of this equation is the following: 

(RO)n-xM(OH)x + (RO)n-YM(OH)Y ↔ (RO)n-x(OH)x-1M–O–M(OH)y-1(OR)n-y + H2O  

The alkoxolation is when the precursor molecule and the partly hydrolyzed precursor reacts, the 

reaction mechanism of the alcoxolation can be written as follows: 
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M – O – H + M – O – R → M – O – M + R – O – H 

After the complex operation of polymerization, sol formation, and gelation, a microporous gel with 

high specific surface area consisting of very small particles (approx. 2nm) is formed. 

Advantages of the Sol-Gel method: (Vennila R. et al., 2014). 

The sol-gel method is an alternative in the preparation of nanomaterials. Some of the potential 

advantages of this method with respect to traditional synthesis techniques are presented below: 

1.- Very high homogeneity and purity. 

2. Total control of particle size. 

3. High surface areas (Brunauer – Emmett – Teller, (BET) theory) and regulated pore size. 

4. Higher thermal stability. 

5. Ease in the addition of elements in the nanomaterial network. 

6. Control of nanocrystallinity, manipulating the porosity. 

7. Minimization of thermal degradation, due to the low temperatures at which all the stages are 

carried out. 

8. Possibility of controlling the functionalization, by modifying the precursors and the hydrolysis and 

condensation rates. 

9. Control of pore size and mechanical strength by regulating drying and aging conditions. 

 

1.3 Nucleation and Growth Process 
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1.3.1 Nucleation Growth Models 

There have been many studies about using different precursors while (LaMer V. K. and Dinegar R. H., 

1950) proposes that the monomers nucleation takes place when the hydrolysis is completed and at 

the moment when the concentration overcomes a critical value, (LaMer V. K. and Dinegar R. H., 

1950) proposed some conclusions regarding the formation of monodispersed hydrosols. The 

relationship between the concentration of sulfur and the volume of fraction of water at one critical 

point of sulfur-ethanol-water has been studied. Another point of his research was the sols prepared 

by his method has been investigated as to dispersion of wave length in their angular scattering of 

visible light and their transmission as a function of wavelength. Lamer also did research on the rates 

of growth obtained and have been reproduced from previous theoretical considerations which allow 

the estimation of value of the diffusion coefficient in alcohol-water and acetone-water mixtures. 

(LaMer V. K. and Dinegar R. H., 1950) 

Other studies concerning the the TiO2 synthesis via Sol-Gel, one of these precursors has been the 

TTIP (Titanium Tetraisopropoxide), mixed with water, has been studied by (Chappell J. S. et al., 1990), 

(Rivallin M. et al., 2005), (Azouani R. et al., 2010) 

There have been results with zirconium oxo-alkoxide nanoparticles (ZOA) in alcohol in micromixing 

sol-gel reactor by (Tieng S. et al., 2012) and (Labidi S. et al., 2015) (Labidi S., 2015). They both 

investigated the effect of precursors and solvents on the particle growth and proposed a model.It 

was confirmed that particle sizes are monodisperse and equal to 4.7 nm of diameter and in parallel 

the growth is like the titanium oxo-particles growth.  

(Chappell J. S. et al., 1990) proposed the following hierarchical growth in Figure 13:  
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Figure 13 The stages of the particle size achieved from the TTIP hydrolysis in presence of silane triol (Chappell J. S. et al., 
1990). 

Monomehtyl silane triol was used as a condensation inhibitor for the study of growth particle of 

titanium oxide. According to the results, the growth process which takes place after the hydrolysis 

has several steps to be considered. These stages could be placed in the following order: Inorganic 

polymerization by condensation, which drive to the nuclei formation from 2 nm to 10 nm. Then this 

newly formed nuclei give place to primary particles formation stage which size varies from 50 nm up 

to 100 nm and finally an stage where larger spherical particles from 0.3 µm to 0.7 µm could be 

formed.  

(Soloviev A. et al., 2001) studied the nucleation and the growth kinetics of titanium oxo-alkoxide 

particles synthesized by sol-gel method using the Static Light Scattering (SLS) and the Dynamic Light 
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Scattering (DLS) using isopropanol as a solvent. The Figure 14 shows the evolution of the particle’s 

radius and the scattered light intensity.  

 

Figure 14 Evolution of the particle radius and the scattered light intensity at the time of the sol-gel way (Soloviev A. et 
al., 2001). 

According to the results presented by (Soloviev et al. 2001), particles up to 2 nm diameter start to 

appear at the beginning of the sol-gel process followed by a relatively long period of their slow 

growth. It is also noticed that when the nanoparticles size increases the double, the scattered light 

intensity also increases in a sudden way. 

As a conclusion of these results, the almost spontaneous nucleation after the mixing of the reagents 

process has been attributed to the primary hydrolysis-condensation reactions and in the other side is 

the induction period to the nuclei aggregation because of the secondary surface hydrolysis 
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condensation reactions between the nanoparticles. During this time, the solution remains 

transparent. When the nanoparticles start to lose stability and to precipitate, the solution becomes 

white and opaque. (Soloviev A. et al., 2001) proposed the following derived equation based in the 

analysis of induction time (tind) as a function of isopropoxide (ct) and water (ch). 

𝑡𝑖𝑛𝑑 ∝ 𝐶𝑡
−∝ ∙ (𝐶ℎ − 𝐶𝑡ℎ0)−𝛽 

Equation I-0-1 

With parameters as h0=1.45, α = 1.5 and β = 4.7. The value h0 corresponds to the nucleus 

condensation ratio, which matters for its structural composition.  

(Azouani R. et al., 2007) studied the effect of the hydrolysis ratio on the particle size change. It can be 

noticing a particularity regarding in the high initial homogeneity of the local fluid mixture 

composition. The bulk reactions then proceed in low polydispersity of the produced nanoparticles 

and eventually clusters.  

 

Figure 15 Domains of the TiO2 nanoparticles growth during sol-gel method (TTTP=0.146M, T=20°C) (Azouani R. et al., 
2007). 

The four domains observed in the Figure 15 are the following: 
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Domain I: Where H˂1.45. This domain corresponds to the stable size units where small clusters are 

formed. The smallest stable particles size is R=0.95±0.1 nm, and they may be assigned to the Keggin-

type structure for Ti17O24(O
iPr)20 oxo-alcohoxy described by Steunou et al. (Steunou N. et al., 1999).  

Domain II: Where 1.45˂H˂1.75. This domain corresponds again to the stable size units where larger 

clusters sizes are formed and remains stable. These spherical clusters have a radius of R=1.60±0.05 

nm. 

Domain III: Where 1.75˂H˂2.0. This domain is defined by the cluster instability, because they quickly 

agglomerate in short chains, where limit size depends on the H. This domain belongs to a period 

known as “growth limitation”.  

Domain IV: Where H˃2.0. This domain corresponds to the induction period of the accelerated 

nanoparticles growth, after they reach a size of 2.69 nm, nuclei are formed, and they are exposed to 

an irreversible growth until TiO2 solution precipitates at the induction time.  

 

 

1.3.2 Micromixing Sol-Gel Reactor 

The micromixing is a very important factor that impacts when is observed the particle size 

distribution. The effects of mixing can be the stirrer speed, feed time, feed location and viscosity 

(Chen J. et al., 1996) (Bałdyga J. and Pohorecki R., 1995).  There have been several studies regarding 

the understanding of nanosized solids precipitations. (Schwarzer H. C. and Peukert W., 2004) 

(Schwarzer H. C. et al., 2006) (Wang L. and Fox R.O., 2004) (Artelt C. et al., 2006) (Gradl J. et al., 2006) 

(Marchisio D. L. et al., 2006). These studies emphasize the development of a relevant numerical 

model of turbulent mixing in accordance with the particle size distribution. 

In order to reach a homogeneous reaction condition, high reaction order (Soloviev A. et al., 2003) 

and the rate of hydrolysis condensation reactions (Livage J. et al., 1988) have to be considered into 
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account, because they establish some severe constraints, which are very important in order to 

achieve particles monodispersity and reproducibility on the process kinetics.  

To obtain a reproducible synthesis of size selected monodispersed nanoparticles, it needed the 

design of a sol-gel limit reactor with a fast micromixing was needed. This was obtain through a series 

of previous research. 

The design and set-up of the micromixing reactor has been studied and described previously in some 

research studies. (Rivallin M. et al., 2005) (Azouani R. et al., 2010) The Figure 16 shows the diagram 

of the micromixing reactor 

 

Figure 16 General diagram of the micromixing reactor 1) (A) Precursor container (B) Water solution container 2) T-Mixer 
3) Thermostatic reactor. 

The micromixing reactor consists of three main parts: two Thermostatic containers, one T-mixing 

element and one container  for the prepared solution. 
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The thermostatic containers are made of stainless steel (inner and outer covers) each one with a 

capacity of 100 mL. This thermostatic or reservoirs are placed at the upper part of the setup. 

Temperature is regulated via a thermostat. The isopropoxides and the water in n-propanol have be 

previously prepared inside a glove-box under strict conditions (≤0.5 O2 ppm and ≤0.5 H2O ppm). As 

TTIP is very sensitive to the humidity, any contamination from the environment must be avoided. 

Then the prepared reagents solutions are transported in syringes of 50 mL, to their respective 

container. A permanent flow of nitrogen allows the reactor to be under controlled conditions, 

meaning that we avoid any humidity that could enter to the system. A supply of nitrogen with water 

less than 5 ppm is connected to both stocks solutions. The solenoid valves are used to control the 

period of gas applied into the containers. The pressure from the bottle of nitrogen can be controlled 

so we can have the best Reynold number to obtain monodisperse nanosized particles. 

Then we have the T-Mixer, which consists of two inlets, with an internal diameter of 1 mm and a 20 

mm of length, and one outlet part of 2 mm diameter and 200 mm of length as shown in Figure 19. 

The importance of the diameters have been decided upon the importance of controlled conditions 

(Reynolds Number) 𝑅𝑒 =
4𝑄𝜌

𝜇𝜋𝑑
, where Q = fluid flow (m3.s-1), ρ = density (kg.m-3)   µ = dynamic 

viscosity (Pa.s) and d = outlet diameter (m).  

 

Figure 17 Representative scheme of the turbulent fluid flow injection in T-mixer at mixing zone point (Azouani R. et al., 
2010). 
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(Azouani R. et al., 2010) made research concerning the effect of the Reynolds number on the particle 

size when the injection of the isopropoxides, solvent and water get combined in the T-Mixer. 

Experiments were performed with different injection rates.   

0 1 2 3 4 5 6

d

c

b

R, nm

a

 

Figure 18 Distribution of TOA particle sizes according to their mixing number Reynolds a) 2 x10
3
, (b) 3 x10

3
, (c) 6 x10

3
, (d) 

8 x10
3 

(Azouani R. et al., 2010). 

In the Figure 18 it shows that at different injection rates Re=2.103 (a), 3.103 (b), 6.103 (c), 8.103 (d) at 

the following experimental conditions: H=1.9 CTi=0.146 mol/L and T=20°C. According to these results 

the mean particle size and the width of the distribution curve decrease, for a very high Reynolds 

number Re= 8.103 (d). The distribution of size particle is narrow, but the reproducibility is low. The 

best optimal condition found is with Reynolds Number), 6.103 (c). 

There have been studies where it shows that the time of mixture is based on the neutralization of the 

reaction between a strong base and a strong acid with the help of a color indicator and the design of 

the internal volume of the T-Mixer permits the formation of tangential inlet jets. For this reason, 

there is a formation of a vortex that leads to the micromixing. (Pohorecki R. and Baldyga J., 1983) (Li 

K. T. and Toor H. L., 1986) 
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Figure 19 Diagram of the T-Mixer. 

The container that holds the final solution is a double walled cylindrical glass with an inside diameter 

of 5.5 cm and it holds a volume of 250 mL. The temperature for the whole system is regulated via a 

thermostat (Haake, DC10K15), which allows a regular circulation of the coolant water. 

There is a especial space where an optical fiber probe is placed to measure the nanoparticles in-situ. 

1.4 Monitoring of growth process 

There are two spectroscopy analysis that grants the corresponding measurement of the light 

intensity scattered and size particles suspended in a sol from 1 nm up to 500 nm. Moreover, the light 

effect can provide two kinds of information: The intensity of diffused light by particles is given by the 

Static Light Scattering (SLS) and the particle’s hydrodynamic radius is given by the Dynamic Light 

Scattering (DLS), both are non-destructive analysis techniques. Therefore, the result becomes that 

four domains of the nanoparticles/clusters stability and growth kinetics can be appreciated.  
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Figure 20 Dynamic light scattering of large and small particles. 

When is given the condition that the particles radius is smaller than the incident light wavelength, 

the next relation could be written like this: 

2𝜋𝑛𝑅

𝜆
≪ 1 

Equation I-2 

Where n is the particle refractive index. Rayleigh and later Van de Huslt, have developed a theory for 

diffusion. The intensity of the diffused light depends on the observation angle, and it can be 

described as it follows 

𝐼(𝜃) = 𝐼0

9𝜋2𝑛0
4

𝜆4

𝑉2

𝑅2
[
𝑚2 − 1

𝑚2 − 2
]

𝟐
1 +  𝑐𝑜𝑠2(𝜃)

2
 

Equation I-3 

Where 𝜃 is the diffusion angle, I0  is the initial intensity of the incident beam, n0 is the refractive index 

of the medium, V is the real volume of the particle, R is the distance between the particle and the 

observation point, m=n/n0 is the relative reflective index  

There are some observations that should be pointed out: 



Chapter I  Literature Review 

31 
 

1. - Only when the intensity of the incident light is changed, the relation between I and λ is the 

following one 

𝐼 𝛼 
1

𝜆4
 

Equation I-4 

2. - The scattered intensities front (θ=180°) and back (θ=0°) diffused intensities are the same: 

𝐼(𝜃) = 𝐼(𝜋 − 𝜃) 

Equation I-5 

3. – The diffused light intensity is proportional to the square of the particle volume: 

𝐼 𝛼 𝑉2 

Equation I-6 

This relation is correct if it is assumed that the particles consisted of the same number of molecules 

(N) and an electrical component of electromagnetic field (E) diffused by every molecule is a constant 

value. If the particle size is very small compared to the wavelength of the incident light, the scattered 

waves of N molecules are in phase. In this case, the total diffused electric field (ET) is presented by 

the sum of elemental electric fields scattered by each molecule: ET = N*E. 

Because the intensity of q radiation is proportional to the square of the electric field, then the 

scattered intensity equation is the following: 

𝐼 𝛼 𝐸𝑇
2 = 𝑁2𝐸2𝛼𝑁2 

Equation I-7 

In view of homogenous particles, the density is the same at different points, its volume V is 

proportional to N 

𝐼 𝛼 𝑉2 

Equation I-8 
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Up to here, there is no dependence between the form of the particle and the relation of its volume 

with the intensity of the diffused light. The particle form shape does not matter, it could be spherical, 

or it could be open structure (fractal). In case of a dense spherical particle of Radius, we can obtain: 

𝐼 𝛼 𝑅6              𝑉 =  
4

3
𝜋𝑅3 

Equation I-9 

Moreover, (Soloviev A. et al., 2003) and (Rivallin M. et al., 2004) have proved that for a particle with 

fractal dimension Df, the intensity of the scattered light I is proportional to the average radius R of 

particles raised to the power Df. 

𝐼 ∝  𝑅𝐷𝑓 

Equation I-10 

Hydrodynamic radius particles measurements 

The hydrodynamic radius of the nanoparticles can be measured from the intensity of the DLS. In a 

perspective, this method is based on the Doppler Effect. When a particle is in Brownian motion; a 

particle can influence the spectrum of diffused light broadening the spectrum because of the Doppler 

Effect. When the particles gets closer to the observation point, diffuse light with λ ‘ ˂ λ, and in 

contrary case, molecules moving at different direction they will diffuse light with a different 

wavelength λ “ ˃ λ. 

As a result, the heterogeneity of the total light diffused will produce the broadening of its spectrum 

produced by molecules in Brownian motion. The value of the spectrum depends on the velocity of 

the particles: The higher the particle velocity has, the higher the broadening effect will increase and 

observed. 

In case of spherical particle observation, the relation between the particles radius and the diffusion 

coefficient is described by the Stokes-Einstein equation. (Einstein, 1905) 
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𝐷 =
𝑘𝐵𝑇

6𝜋𝜇𝑅
 

Equation I-11 

Where µ (Pa.s) is the dynamic viscosity of the medium, T (K) is the medium temperature and kB ( 

1.3806.10 -23 J*molecule-1K-1) is the Boltzmann constant. This relation demonstrates that the diffusion 

coefficient is proportional to the inverse of the particles radius when the temperature is constant. 

Theoretical approach in dynamic light diffusion 

There are two parameters that induce the fluctuation of the light diffusion spectrum, the particles in 

Brownian motion and the particles number in the observed diffusion volume. Consequently, the 

temporal correlation function will give the information about the spectrum light diffusion intensity 

and the particle size (Berne B. J. and Pecora R., 1977). 

(Pike H. Z. et al., 1974), (Pecora et al., 2000) and (Glauber R. J. et al., 1963) have established the 

relationship between the diffusion coefficient and the form of the spectrum of light diffusion 

intensity using the help of the autocorrelation functions of the intensity and the electric field value of 

diffused light. The following equation presents the function which includes the intensity of the 

diffused light and the electric field value. 

𝐺(1)(𝑡′) = 〈𝐸𝐷
∗ (𝑡) ∙ 𝐸𝐷(𝑡 + 𝑡′)〉 

Equation I-12 

Where 〈〈𝐸𝐷
∗ (𝑡) ∙ 𝐸𝐷(𝑡 + 𝑡′)〉〉 corresponds to the average value of measurements and t’ is the 

correlation time. 

The relation of G(1) with spectral intensity I(w) is: 

𝐼(𝑤) =
1

2
∫ 𝐺(1)(𝑡′) ∙ 𝑒𝑖𝑤𝑡′ ∙ 𝑑𝑡′

∞

0

 

Equation I-13 
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The relation between normalized autocorrelation function g(1) of electric field diffused by particles in 

Brownian motion and coefficient of diffusion D can be described as the following equation (Pecora, 

2000) 

𝑔(𝑡′)1 ∝ 𝑒𝑥𝑝(−𝐷𝑞2𝑡′ − 𝑖𝑤0𝑡′) 

Equation I-14 

 g(1) is a normalized form of G(1) in respect to the initial time and is defined by the following 

equation 

𝑔(1)(𝑡′) =
𝐺(1)(𝑡′)

𝐺(1)(0)
 

Equation I-15 

 ɯ0 is the angular frequency and v is the frequency, represented in the following equation: 

𝜔0 = 2𝜋
𝑣 ∙ 𝑣 − 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦⁄  

Equation I-16 

 The module of the diffusion vector is the following equation: 

𝑞 =
4𝜋𝑛0

𝜆
𝑠𝑖𝑛(𝜃

2⁄ ) 

Equation I-17 

 The observation scale of the system is represented by the inverse of the wave vector module 

q-1, which is fixed by the observation angle θ. 

The spectral intensity has the form Г=Dq2 at its half-width Lorentzian form:  

𝐼(𝜔) ∝
Γ

(𝜔 − 𝜔0)2 + Γ2
 

Equation I-18 

The autocorrelation function of the intensity I could be represented as the following equation: 
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𝐺2(𝑡′) = 〈𝐼𝐷(𝑡) ∙ 𝐼𝐷(𝑡 + 𝑡′)〉 𝑤𝑖𝑡ℎ 𝐼𝐷 = 𝐸2 

Equation I-19 

Its normalized form is the following: 

𝑔(2)(𝑡′) =
𝐺(2)(𝑡′)

𝐺(2)(0)
 

Equation I-20 

Based on the experimental data obtained by DLS, the autocorrelation function of the diffused 

intensity g(2), In the case when the light diffusion presents the Gaussian form (in case of particles 

concentrations in the diffusion volume is high), g(1) and g(2) are described by the Ziggert relation 

(Glauber R. J., 1963)  

𝑔(2)(𝑡′) = |𝑔(1)(𝑡′)|
2

+ 1 

Equation I-21 

And finally it is obtained for g(2) 

𝑔(2)(𝑡′) = 1 + 𝑒−2Γ𝑡′
 

Equation I-22 

Based on the experiments of DLS, the measured function is presented as: 

𝐺̃2(𝑡′) = 𝐴 + 𝐵 ∙ 𝑒−2Γ𝑡′
 

Equation I-23 

For easier purposes Ĝ(2) is replaced by G 

When t’ tends to 0, the value of G is equal 〈𝐼2(0)〉. When t’            0, intensity time t is the same as 

the initial time. After enough time (when t’ tends to infinity), the correlation at the initial time 

becomes 0, it means that it disappeared. This phenomenon is caused because of the particles that 

are in Brownian motion. In this case G(t’) is equal 〈𝐼2(0)〉. The constants A and B depend on the light 

coherence and the accumulation time of the autocorrelation function. 
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𝐴 = 〈𝐼𝐷(∞)〉2 𝑎𝑛𝑑 𝐵 = 〈𝐼𝐷
2(0)〉 − 〈𝐼𝐷(∞)〉2 

Equation I-24 

The constants A, B and D from the autocorrelation function become obtainable and finally with the 

aid of the Stokes-Einstein equation, we can obtain the value of the average radius of the particle.   
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This chapter will explain the different techniques employed during the duration of the project, the 

explanation also includes the principal function, how they work and what results can give. 

2.1 XRD 

X-ray Diffraction (XRD) is a non-destructive analytical technique mainly used for phase identification 

of a crystalline material and it gives information about structures, phases, texture, and structural 

parameters like for example average grain size, crystallinity, strain and crystal defects.  

Crystals are considered an array of atoms, and X-rays can be imagined as waves of electromagnetic 

radiation. So, when the incident X-ray beam reaches a crystal lattice, the electrons or scatterers start 

oscillating and they emit the same frequency electromagnetic wave. If scatterers are ordered in a 

symmetrical way with a separation, these waves will be in synchronization, in that case, part of the 

incoming beam is deflected by an angle 2θ, creating a reflection spot in the diffraction spot. The 

distance the X-ray reflects from successive planes changes by a natural number n of wavelengths, 

which is determined by the Bragg’s law. 

𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃 

Equation II-0-1 

n is the diffraction order 

λ is the wavelength of the incident ray 

d is the spacing between diffracting planes hkl 

θ is the angle 

These specific directions show themselves as spots in the diffraction pattern, the atomic position 

within the lattices determines the peak intensities, In consequence, the XRD pattern is the fingerprint 

of periodic atomic rearrangements of a material.  



Chapter II  Characterization Methods 

39 
 

 

Figure 21 X-Ray Diffraction principle. 

 

The samples were structurally characterized by XRD on INEL XRG 3000 installation using Co-K1 

(=1.789 Å) radiation source 

The diagram depends on the structure (peak intensities and positions) and sample microstructure 

(peak widths), crystallite size and microstrain. The peak width is related to the crystallite size by the 

Scherrer law :  

𝛽(2𝜃) =
𝜆

𝑇ℎ𝑘𝑙𝑐𝑜𝑠𝜃
 

Equation II-0-2 

Which 𝛽 is the full width of the peak, λ is the wavelength of the incident X-ray beam, 𝑇ℎ𝑘𝑙 is the 

average apparent size of the crystallites and θ is the Bragg angle. The peak width is thus inversely 

proportional to the particle size in the power sample. In the case of spherical particles, 𝑇ℎ𝑘𝑙 is 

constant and the particle could be obtained by multiplying it by 4/3. Microstrains also induce a peak 

enlargement according to the following equation:  

𝛽(2𝜃) = 𝜂𝑡𝑎𝑛𝜃 

Equation II-0-3 

With 𝛽 the full width of the peak, η the apparent microdeformation and θ the Bragg angle. The 

samples were structurally characterized by X-ray diffraction (XRD) method with two diffractometers: 

 Phase characterization: INEL XRG 3000 installation using Co-Kα1 (=1.789 Å) radiation source. 
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 Structural analysis and Rietveld refinement: D8 Discover equipped with a Copper source (Kα1 

= 1.54056 Å: Kα2 = 1.54439 Å, I2/I1 = 0.5) and a Lynxeye XE-T detector (1D mode). 

Measurements were done in collaboration with Dr. Capucine Sassoye and Mohamed 

Selmane from the Laboratoire de Chimie de la Matière Condensée de Paris (UMR CNRS 

7574). 

To get the structural (cell parameters, atomic positioc, etc.) and microstructural information (size, 

microstrian, etc.) about the powder samples, data treatment was performed using the Rietveld 

method. (Rietveld H. M, 1969) (Young R. A., 1995) Refinements were performed using the Fullprof 

software (Rodríguez-Carvajal J., 1993). The principle of the method is to fit a diffractogram calculated 

from a structural and microstructural model to the experimental diffractogram using the least 

squares method. The refined parameters are the cell parameters, the atomic positions, the atomic 

displacement factors, the scale factor, the phase percentage, the continuous background, and the 

line profile. To model the line profile, we used the pseudo-Voigt function, which is a linear 

combination of a Gaussian function (G) and a Lorentzian function (L), defined by the following 

equation: 

𝑝𝑉=(2𝜃)+(1−𝜂)𝐺(2𝜃) 

Equation II-0-4 

where G is a Gaussian function and L is a Lorentzian function. In the Thompson-Cox formulation the 

mixing parameter 𝜂 is calculated from the Gaussian (𝛤𝐺) and Lorentzian (𝛤𝐿) widths of an equivalent 

Voigt function with: 

𝛤𝐺=(𝑈𝑡𝑎𝑛2𝜃+𝑉𝑡𝑎𝑛𝜃+𝑊+𝑍𝑐𝑜𝑠2𝜃)1/2 

 

Equation II-0-5 

𝛤𝐿=𝑋 𝑡𝑎𝑛𝜃+𝑌/𝑐𝑜𝑠𝜃  
 

Equation II-0-6 
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The analysis was performed by fixing V and W to zero, and refine U, X, Y and Z which have a meaning 

respectively in terms of strains (U, X) or size (Y, Z). The contribution of the continuous background is 

modelled by a polynomial function of order 12, whose coefficients can be refined. The CIF structure 

file used for the refinement procedure were obtained from for anatase TiO2 and from for α-V2O5. 

(CrystallographyOpenDatabase, 2010) 

2.2 TGA-TDA 

The Thermo Gravimetric Analysis (TGA) is a thermoanalytical technique where an electronic 

microbalance with a furnace and a temperature controller measures the variation of the selected 

sample as a function of time and temperature. This technique is commonly used to determine the 

characteristics of materials, for example their thermal stability, adsorption- desorption and kinetics 

of chemical reactions. Also is used to study the material weight loss due to oxidation or 

decomposition.  

The Thermal Differential Analysis (TDA) is a technique where it measures the temperature difference 

between a sample and a reference as the temperature is increasing over time. Then a thermogram 

(plotting of the temperature difference) is shown where it reveals the exothermic and endothermic 

reactions they could happen in the sample. It can determine the temperature of thermal phenomena 

like for example, crystallization temperatures, melting points and phase transitions. 

In this work, the thermal studies were performed on two equipments due to technical situations. The 

first one is a Thermoanalyzer SETARAM TG92 between temperatures of 100°C and 1000°C with an air 

flow and a rising speed of 10°C min-1. The other equipment carried out with Labsys Evo SETARAM 

with the same conditions (temperatures and air flow) described above. 

2.3 Raman 

The Raman Spectroscopy is a spectroscopic technique that gives detailed information about 

vibrational modes of molecules, in chemistry it is commonly used to provide a structural fingerprint 

where molecules can be identified. 
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The Raman used in the laboratory is a type Jobin-Yvon HR800, it is equipped with a motorized X-Y 

stage that allow to do the imaging and an adjustable aperture confocal slit system. The excitation 

wavelenghts that can be used are 632.8 nm thanks to a laser He/Ne incorporated to the equipment 

and where the wavelengths go from the visible (514 and 448 nm) up to the ultra-visible (363.8 nm) 

using high power ionized Argon laser (30mW). 

2.4 UV-VIS Spectroscopy 

The UV-Vis Spectroscopy is a quantitative technique used in the laboratories to measure how much a 

material or a substance can absorb light. This is possible by measuring the intensity of the light that 

passes through the sample in comparison to the intensity of light through a blank or reference 

sample. This technique can be applied for measuring different kinds of samples, including solids, thin-

films, glass, and liquids. 

 

Figure 22 Scheme of the Spectrometer UV-Visible Avaspec. 

 

In the present work, the UV-VIS specters were measured using an AvaSpec UV-visible spectrometer 

with spectral resolution of 0.5 mm 2048x14 with a CCD sensor (2048X14 pixels) operating in a range 

of 200-1160 nm. With a slit opening of 50 µm, the spectral resolution is 2.4 nm, the signal to noise 

ratio is 500:1. The spectrometer is connected to the source and to the sample holder using optical 

fibers of 400 µm of diameter and 2 m of length. The AvaLight-DHc compact source is of Deuterium 

and Halogen lamp emitting between 2000 to 2500 nm. The acquisition of the data recollected during 

the experiments were done using AvaSoft software version 7.4. 

Sample holder 

Source AvaLight DHc Spectrophotometer 
AvaSpec 

Optical fiber  probe 
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2.5 Data Treatment of the autocorrelation function 

The intensity of light, when is measured in the Rayleigh conditions, is the sum of all intensities 

scattered by every single particle present in the suspension studied. 

The Brownian motion of particles influence on the evolution of the diffused intensity.Its fluctuation is 

shown on Figure 23 a. In consequence the autocorrelation function of intensity can be calculated 

with the correlator, t’ is a fixed constant value and represents delay between two intensities 

measurements. Lastly, the product of intensity values can be found with this method: ID(t) * (t+t’). 

This operation must be repeated for many values of t’, the Figure 23 b shows the autocorrelation 

function of intensity, that has been calculated in function of time. 

 

Figure 23 Diagram of the diffused intensity fluctuation a) Autocorrelation function in function of time b) Time scale of the 
fluctuation depends on the particle’s diffusion coefficient which is in inverse proportional to the particle’s radius. 

 

The G value can be measured in the photocounting regime, when the intensity is measured by a 

photomultiplier, as series of photon impulses. The number of photons Nph(t) between t and (t + dt) is 

in accordance with the intensity value I(t)*dt. Assuming that the process is a Gaussian like, the mean 

integral value can be obtained with the following equation:  

𝐺 = lim
𝑇→∞

(
1

𝑇
∫ 𝑁𝑝ℎ(𝑡)

𝑇

0

∙ 𝑁𝑝ℎ(𝑡 + 𝑡′) ∙ 𝑑𝑡) 

Equation II-7 

T time defines the accumulation time, which is a finite value, and when the G value increases the 

time Ti increases as well. 
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Data acquisition of the experimental set-up 

The schematic diagram representation for the experimental set for the DLS measurements; used 

during the kinetic nucleation-growth studies of the nanoparticles is shown in the Figure 24 

The set consists of three main parts: 

1. A laser light source with the following characteristics: 20 mW, He-Ne laser spectra physics, λ 

= 632.8 nm 

2. An optical system equipped with two optical fibers 

3. Equipment used for the data acquisition such as a photomultiplier, an amplifier, a 

discriminator, a digital correlator, and a computer for data treatment. 

The optical fiber: The incident light from the laser (20mW He-Ne laser Spectra Physics) is focalized on 

the observation zone with the aid of an emission fiber probe. This experimental set-up allows the 

measurements in-situ after the reaction begins. Two fibers are fixed on the sides of the probe, one 

optical fiber is the emission optical fiber and the other one is the reception optical probe. These two 

optical fibers are placed in an order that they form an angle of 90°. The observation volume is 

extremely small (10-6 mL) is enough to avoid any impact because of external contamination like dust. 

The diminished data accumulation period considered equal to 60 seconds.  

From time to time, the fiber probe is calibrated using a water solution of Latex-Polystyrene particles, 

which size is equal to 50 nm. 
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Figure 24 Diagram of the experimental setup for the DLS measurements. 
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The Figure 25 shows an autocorrelation curve obtained with a water solution with Latex-Polystyrene, 

during a DLS experiment.  

0,0 8,0x10
-4

1,6x10
-3

2,4x10
-3

3,2x10
-3

4,0x10
-3

0,0

0,2

0,4

0,6

0,8

1,0

 

 

 ACF measured

A
C

F

Correlation time (s)

ACF calculated

A=0.0001979

B=0.959

D=4,293 10
-12

m
2
s

-1

 

Figure 25 Autocorrelation function of the scattering light taken from a Latex-Polystyrene suspension in water. 

The determination of the coefficients A, B and D are given by using a non-linear less square fit using 

the equation 𝐺 = 𝐴 +  𝐵𝐷𝑞𝑡𝑡′
. 

The experimental parameters are the following: 

 Refraction Index of water n0 = 1.33 at 20°C 

 Diffusion angle θ = 90°C 

 Laser wavelength λ = 632.8 nm 

 Dq2 = k and 𝑞 =
4𝜋𝑛0

𝜆
sin(𝜃

2⁄ ) , the diffusion coefficient is delivered by the ACF function, 

D=4.29X10-12 m2s-1 

The particles average radius is obtained by using the Stokes-Einstein equation and the value of the 

diffusion coefficient D.  
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In this part, we will expose the different steps with the preparation of size selected V-TOA, and 

discuss the results obtained from the measurement in-situ of the V-TOA nanoparticles from the first 

steps of the reaction 

3.1 Experimental Setup 

a) Chemicals 

The chemicals that were used during the duration of the work were the following: 

The titanium tetraisopropoxide (TTIP, 98 % purity, Sigma-Aldrich) and vanadium(V) oxytripropoxide 

(VOP, 98 % purity, Sigma Aldrich) precursors, n-propanol solvent (99.5 % purity, Sigma-Aldrich), and 

distilled twice-filtered water (syringe filter 0.2 lm porosity PALLs Acrodisc) were used in the 

preparation procedure. To avoid any kind of contamination, overall, the contamination from the 

external humidity, all chemical manipulations were done inside a LABstar glove box workstation 

MBRAUN (strictly traces of oxygen and humidity ≤0.5 ppm) 

b) For the preparation of the solution, all the glassware was washed and left to dry in the oven at 

100°C for 1 hour to avoid any humidity, then we introduced the materials inside the glove box 

needed to prepare the solution A which is the oxypropoxides with solvent and B the amount of water 

with solvent which will determine the hydrolysis ratio.After the preparation of the 2 solutions in 2 

syringes of 50 mL each, they were transported to the stocks of the T-mixer and then mixed at 6 bar. 

When obtaining the final solution, we proceeded to put inside the optical probe to measure the 

nanoparticle size. 

c) The solvent we chose for the experiments was n-propanol. At the beginning of the thesis work, we 

experimented with different solvents by mixing manually V-TiO2.The solvents we used were: n-

propanol, isopropanol, butanol, 1,2 butanediol, methanol and ethanol. The results are observed in 

the following Table 1. 
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Solvent used with a solution of V-TiO2 

manually prepared 

Observations 

Isopropanol Clear solution and stable 

n-Propanol Clear solution and stable 

Butanol Clear solution but it deposited material in the 

bottom of the glass. 

1,2 Butanediol Too much viscosity 

Methanol It didn’t mix 

Ethanol Quick degradation 

Table 1 Observations on different solvents. 

 

One important noticed remark is that working with a higher molar ratio concentration of 20% of 

vanadium(V) oxytripropoxide, it left a film very hard to clean, meaning that it could contaminate the 

interior of the T-Mixer if more than 25% of vanadium(V) oxytripropoxide was used. 

3.2 Results and Discussion 

Before addressing the mixed-oxide system, the nucleation-growth process of the single oxides must 

be documented as a reference point. The similar approach has already proven its effectiveness in 

studies of ZrxTi1-xO2 solids in a broad range of compositions 0≤x≤1 (Cheng K. et al., 2017). The 

nucleation-growth of titanium-oxo-alkoxy (TOA) species has been previously reported (Azouani R. et 

al., 2010) (Cheng K. et al., 2017). At the same time, no related information concerning VOA species is 

available in literature. First observation of the nucleation-growth process of VOA species is presented 

below.  

As it has been shown, inhomogeneous reaction conditions of the sol-gel process generally lead to the 

appearance of strongly polydispersed species. In contrast, point-like reaction conditions in chemical 

reactors with ultrarapid (t<10 ms) micromixing permit the process with low Damköhler numbers 
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(Da1) resulting in the formation of size selected nanoparticles, among which a nucleus (basic unit of 

the growing solids) can be firmly identified. For example, DLS and TEM measurements have 

evidenced the basic TOA unit with radius of RTOA=1.6 nm (Cheng K. et al., 2017). Because only general 

information exists about reactivity of metal-oxo-alkoxy species (Livage J. et al., 1988), different 

injection conditions in a T-mixer were tried, leading to the nucleation of VOA species. The size 

evolution of VOA species prepared manually and in the reactor at different Reynolds numbers (Re) of 

the injected fluids is shown respectively in Figure 26 a, and b.  
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Figure 26 Mean radius of VOA particles prepared manually (a) and in micromixing reactor (b) with different Reynolds 
numbers (inset) of the injected reactive fluids (CV=0.30 mol/l, H=1.9, 20 °C). 

As one can see, the radius of VOA particles prepared manually evolves from ~120 nm at the 

beginning to ~1 m at the precipitation point. In contrast, the VOA particles prepared in the reactor 

are significantly smaller and have R0=40 nm after injection; however, their growth kinetics depends 

on Re value. For relatively low Re<3.6103 the particles grow up to ~1 m and precipitate (like with 

manual preparation), while at higher Re the particles remain much finer (R<100 nm) and stable for a 

long time (days) in colloids. This may infer the homogeneous nucleation of VOA species. We 

therefore concluded that Re=6103 correspond to the criteria of Da1 and conduct further 

experiments in these injection conditions.  

The zoom on the very process beginning permits to define a VOA nucleus that begins the growth 

process: the extrapolation of experimental kinetics in Figure 27a to a common starting point provides 
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the particle radius of R0=20 nm. The VOA growth kinetics confirms the mechanism of the sol-gel 

process earlier validated on Ti, Zr and Ti-Zr oxo-alkoxy species (Rivallin M. et al., 2005) (Azouani R. et 

al., 2010) (Labidi S., 2015) (Cheng K. et al., 2017). The induction stage takes place at H above a critical 

value h*, which is apparently smaller than the experimental values 1.80, 2.20 (Figure 27 b). 

 

Figure 27 Growth kinetics of VOA nanoparticles in micromixing reactor: particle size versus time for different H (a) and 
induction rate versus H (b) (CV = 0.30 mol/l, 20 °C, Re=6000). 

Afterwards, the first synthesis of mixed-oxide VTOA nanoparticles in micromixing conditions was 

carried out. The measured auto-correlation curves (ACF) in reactive media containing pure V and V-Ti 

precursors are shown in Figure 28. The ACF in the mixture Ti:V=0.05:0.95 (Figure 28a) fitted with 

two-exponential decay indicates the bimodal population with particle sizes of R1=7.9 nm and 75 nm. 

Comparing the respective amplitudes A1 and A2 and considering that the scattering light intensity 

IR6 in the Rayleigh domain of particle sizes, one can conclude the population ratio p(R1) / p(R2)  

2106, which shows a strong preference of the small nanoparticle’s formation in the reaction 

conditions. In contrast, removal of Ti precursor in similar reaction conditions (Figure 28b) results in a 

very weak (noisy) signal corresponding to rare particles of radius R0=160 nm. We also notice that 

using pure Ti precursor in similar reaction conditions lead to the formation of monodispersed TOA 

particles of radius 1.6 nm (Azouani R., 2007). The observed difference indicates a strong interaction 

between the two V and Ti systems apparently leading to the nucleation of mixed oxide VTOA 
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nanoparticles. Most probably, because of the strong reactivity and rapid formation, Ti species 

nucleate first and serve condensation centers for V species. 
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Figure 28 ACF curves of VTOA (a) and VOA (b) nanoparticles in reactive solutions: CTi=0.285 mol/l, CV=0.015 mol/l (a) and 
CTi=0 mol/l, CV=0.015 mol/l (b) (H=1.6, n-propanol solvent, 20°C). 

 

The pure TOA and VOA systems show strongly different reaction kinetics and particles polydispersity. 

While TOA nanoparticles appear almost instantaneous after the reactive fluid’s injection forming 

nucleus of size 2RTOA = 3.2 nm. The population of VOA species of a large size ≥200 nm steadily grows 

after the injection. At the same time, preliminary experiments have indicated a strong interaction 

between TOA and VOA systems when the respective precursors are introduced in the same n-

propanol solution (Sanchez Mendez M. et al., 2019) 
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Figure 29 ACF curves of TOA, (a) and VTOA nanoparticles with vanadium content 2 mol% (b), 5 mol% (c) and 10 mol% (d). 
Preparation conditions: C0 = 0.146 mol/l, n-propanol solvent, Re = 6000, T = 20◦C and H = 1.6 (a), 2.5 (b), 3.2 (c), 3.7 (d), 

Accumulation time 50 x 1 min. 

Our DLS measurements in Figure 29 showed that the decay time of ACF curves increases with an 

increase of the vanadium content, which according to the Stokes-Einstein relation signifies an 

increase of the particles size (2R) and mass (m). At the same time, in contrast to the expected 

stronger light intensity (I) scattered from larger particles (I∝ m2 in the Rayleigh domain λ>>R), the 

signal-to-noise ratio significantly decreased. This clearly indicates a decrease of the nanoparticle’s 

concentration, once more surprising since the vanadium addition was relatively small (≤10 mol %) 

and the hydrolysis ratio was larger than that critical one h* = 1.5 needed for the homogeneous TOA 

nucleation (Azouani R., 2007). This can be explained by a competitive water consumption of Ti and V 



Chapter III  Preparation of size selected VTOA 

54 
 

precursors. Indeed, at the complete hydrolysis vanadium (V) precursor with d = 2 mol% can consume 

about all excessive water above that required for the TOA nucleation: 5d/100 = 0.1=H-h*; the 

hydrolysis of d = 10 mol% vanadium (V) precursor consequently decreases the free water 

concentration in the solution by 5d/100 = 0.5 mol% down to H’≈1.2 < h* suppressing TOA nucleation 

(Azouani R. et al., 2007). This is supported by a progressive decrease of the signal-to-noise ratio of 

ACF curves in Figure 29 from a (d = 0) to d (d = 10 mol %). We notice that the faster hydrolysis 

kinetics of V species compared to that of Ti species agrees with the elements electronegativity on the 

Pauling scale: respectively 1.63 (V) and 1.54 (Ti). Based on these observations, conclusions can be 

drawn that (i) vanadium species effectively hydrolysed, strongly consuming free water in the 

solution, and preventing homogeneous TOA nucleation and (ii) mixed oxide VTOA particles nucleate 

owing to the condensation reactions between hydrolysed titanium and vanadium molecular bonds. 

Moreover, since only rare large VOA species appeared in the absence of the titanium precursor (iii) at 

d≤10 mol% TOA particles nucleate first, serving an attractor for hydrolysed vanadium molecular 

species; the nucleus size therefore increases with the vanadium content in the reactive solution. In 

contrast, (iv) at high vanadium concentrations above 20 mol% VOA species percolates by imprisoning 

sub-nucleus TOA species, which prohibits observation of the small nanoparticles. 



Chapter III  Preparation of size selected VTOA 

55 
 

 

Figure 30 Scattered light intensity during induction period of VTOA nanoparticles growth (C0 = 0.15 mol/l, 2 mol% V, n-
propanol solvent, Re = 6000, 20◦ C). Hydrolysis ratios are indicated. Accumulation time 1 min. 

Further confirmation of the proposed hypothesis can provide measurements of the induction kinetics 

of the sol-gel process involving VTOA species. The solutions remained highly transparent during this 

common stage of the sol-gel process and became abruptly opaque at the end, indicating powder 

precipitation. The temporal evolution of the scattered light intensity in the solutions with 2 mol% V 

and different H is shown in Figure 30. In agreement with the general picture of the sol-gel process, 

the induction period tind shortened with an increase of H, which can be ascribed to agglomeration of 

metal oxo-alkoxy nanoparticles. In situ DLS measurements of the particles size shown in Figure 31 

confirmed the appearance of nanoparticles and their slow growth during the induction period. The 

induction time tind can be empirically evaluated as a time when the scattered light intensity from the 

solution increases 5 times over that in the process beginning after the nucleation: I (ttind) = 5I(0) 

(Soloviev et al., 2000). 
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Figure 31 Evolution of radius of VTOA nanoparticles (Rnano,▪) and appearance of large agglomerates (Rlarge, ◦) on the 
induction stage of the growth. Preparation conditions: C0 = 0.15 mol/l, 2 mol% V, n-propanol solvent, Re = 6000, 20◦ C, 

and H = 3.0 (a), 3.2 (b), 3.4 (c) and 3.6 (d). Accumulation time 10 x 1 min. 

 

At this moment the bimodal particle size distribution appeared, with the smallest particles being 

weakly aggregated nuclei and large particles of radius above 200 nm grown by feeding from the small 

nanoparticle’s population. We notice that few very large (μm size) dust particles can contaminate the 

solutions at the early process times, which however do not affect the process kinetics. The 

attachment of small to large particles makes appearing the smallest nucleus fraction which is 

generally screened by the aggregates. This can be seen in Fig. 31 as an effective decrease of the small 
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particles size at t > tind. The correlation between the induction rate defined by rind =tin1 and initial 

slope of the particles growth kinetics dR/dt will be discussed below. The mechanism of the 

nanoparticle’s agglomeration in the sol-gel process proposed by (Rivallin M. et al., 2004) (Rivallin M. 

et al., 2005) consists in n condensation between surface hydroxyls of two contacting nanoparticles: 

(…) - OHi + OHi - (…) ↔ / → H2O + (…) - Oi -(…) 

Which is partially reversible: the process is at equilibrium (↔) at i < k and becomes irreversible (→) 

after i ≥ k consecutive condensation steps, where k is the critical step. This sufficiently simple 

assumption has provided a successful explanation of the experimental induction rates empirically 

approximated by 

𝑟𝑖𝑛𝑑 ∝ 𝑘𝐶𝑇𝑖
𝛽 (𝐻 − ℎ∗)𝛼 

Equation III-0-1 

Where h* stands for the critical hydrolysis ratio, which permits nucleation. This h* corresponds to 

the condensation ratio of the smallest particle (nucleus) assembling about thousand atoms, which 

elementary chemical composition in case of TOA (h* = 1.5) can be represented by TiO1.5OR. This 

model has been initially proposed for TOA species ascribing α = 2n-k-1 and β=α+1 with the solution in 

integer values n = 3 and k = 2 (Azouani R. et al., 2007). Later, the validity of the model has been 

confirmed for ZOA and mixed oxide ZTOA (Cheng K. et al., 2017) species. 
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Figure 32 Induction rate (a) and rate of the particle growth (b) versus excessive hydrolysis ratio H-h* over critical one h* = 
1.5, which leads to TOA nucleation (C0 = 0.15 mol/l, 2 mol% V, n-propanol solvent, Re = 6000, 20◦ C). 

 

The induction rate (rind) and nanoparticle growth (dR/dt) rates versus the overcritical hydrolysis ratio 

H-h* are plotted in the logarithmic frame in Figure 32a, and Figure 32b. In both cases, the power law 

was confirmed with h* = 1.5 and power factor α≈5, which are characteristic of the TOA nanoparticles 

aggregation and therefore support the assumption of TOA nucleation. However, absolute values of 

the induction rate were more that an order of magnitude smaller compared to those of TOA 

nanoparticles in similar experimental conditions. In fact, for H = 2.3 (which corresponds to H-h* = 0.8 
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in Figure 32) TOA induction rate of 0.1 min1 has been observed (Cheng K. et al., 2017), while the 

extrapolation of our experimental data predicts the rate of ~10-4 min1, which according results in a 

much smaller induction rate of ~0.006 min1 in the experimental conditions with 2 times higher Ti 

precursor concentration (similar to that of VTOA). One can conclude that VTOA induction kinetics is 

significantly slower than that of TOA. 
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Figure 33 Dependence of induction time on V content (C0 = 0.15 mol/l, H = 4.5, n-propanol solvent, Re = 6000, 20 °C). 

 

In confirmation of this conclusion, Figure 33 shows measured induction times as a function of the 

vanadium concentration in the solution, which was clearly increased with an increase of CV. The least 

squared fit of the experimental data permitted to approximate the induction rates by a power law of 

CV and, consequently, rewrite the following equation as: 
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rind = k Cβi (H - h*)α CVγ / (c + CVγ) 

Equation III-2 

with α = 5, β = 6 and γ = 1.7 obtained from the experiment. While power factors α and β were 

explained in the model, physical meaning of the empirically introduced parameter γ must be 

understood. We also notice that the factor 1/(c + CV
-γ) was introduced in the previous equation to 

avoid singularity at CV = 0. 

2,5 3,0 3,5 4,0 4,5
0

1

2

3

4

5

6

7

8

R
0
, 
n
m

H
 

Figure 34 Initial radius of VTOA particles at the induction stage in n-propanol solvent with C0 = 0.15 mol/l and vanadium 
content of 2 mol% (▪) and 10 mol% (    ) (Re = 6000, 20◦ C).  

 

The particle size underwent a small evolution with the water addition above the critical value h* = 

1.5 enabling the nucleation. Two experimental series with 2 mol% and 10 mol% vanadium are shown 

in Figure 34. After 2 mol% V addition, the initial radius of the produced particles was about R0 = 2.1 

nm for H ≤ 3.0 and seemingly increased by 0.4 nm with the following increase of H to 3.6. In contrast, 

the series with the higher vanadium content of 10 mol% showed significantly increased initial particle 
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radius of R0 = 4.3 nm. We notice rather large error bars in this last series, except for the first point 

accumulated for a long time from an almost stable solution (tind>6 h). According to the model (Rivallin 

M. et al., 2004) (Azouani R., 2007), free water remaining after the nucleation stage promotes the 

particle aggregation; the influence of water content on size and composition of the elementary 

nucleus is almost negligible. Apparently, these smallest VTOA particles fit the nucleus definition, 

remaining stable with the moderate change of H. More confirmation to an assignment of the 

hydrodynamic radius 2.1 nm to VTOA nucleus provide experiments performed at a very low 

hydrolysis ratio close to the critical one, H = 1.6 presented in Figure 35. These series were performed 

with a higher precursor concentration 0.3 mol/l, to increase the nucleus number density, and the 

very long period of the colloid stability (almost infinite in our experimental conditions) permitted a 

long ACF data accumulation with a high signal-to-noise ratio. These results indicated that an addition 

of vanadium above 1 mol% in the sol-gel solution resulted in a stable nucleus of radius Rnuc = 2.1 nm, 

which corresponds to that measured in experiments at high H>>h* in the beginning of the induction 

period. The induction period can thus be assigned to the aggregation of VTOA nuclei, which confirms 

the general picture of the sol-gel process described by the Rivallin’s model (Rivallin M. et al., 2005). 
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Figure 35 Radius of stable VTOA nanoparticles (nuclei) for different V content (C0 = 0.3 mol/l, H = 1.6, n-propanol solvent, 
T = 20 ◦ C, Re = 6000). 

A further inspection of the model predictions was realized in experiments with an increase of the 

total precursor concentration, by keeping fixed all other experimental conditions. The experimental 

SLS data presented in Figure 36 were realized with the vanadium content of 10 mol%, two hydrolysis 

ratios of H = 4.3 and 4.5 and the total precursor concentration increased from C0 = 0.150 to 0.165 

mol/l. The small difference in H in these series is explained by the very high sensitivity of the 

induction time to this parameter. The observed elongation of the induction period with the increase 

of H perfectly fitted the model prediction. On the other hand, the induction time was unexpectedly 

increased with the increase of precursor concentration by 25 ± 5 % in these experiments, which is in 

a seeming contradiction with the model predicted the induction time shortening at higher precursor 

concentration. The Rivallin’s model is however based on the assumption about fixed nucleus size, 

which required verification in case of VTOA species. Our complementary DLS measurements showed 

an increase of radius of the initially formed VTAO nanoparticles with the increase of C0 from R0 = 5.2 
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± 0.7 nm to 7.6 ± 0.7 nm (H = 4.3) and from 6.7 ± 0.9 nm to 8.8 ± 1.1 nm (H = 4.5). Considering the 

increase of a precursor concentration and nucleus volume, the nucleus concentration is expected to 

decrease by a factor of ~2.2. In these conditions, the equation predicts a slowing of the induction 

rates by ~30 %, which corresponds to the experimental observations. The performed experiments 

suggest that an empirically introduced parameter γ in equation (3) is linked to modifications of the 

nucleus size with an increase of the vanadium concentration. At the same time, the understanding of 

chemistry background for these modifications requires further studies. 
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Figure 36 Scattered light intensity during induction period of VTOA nanoparticles growth (Ti:V = 9:1, 20◦ C) in n-propanol 
solvent at H = 4.5 (a) and H = 4.3 (b). 
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We point out that present results may serve first experimental validation of a new paradigm of the 

sol-gel process proposed by Kessler (Kessler V.G., 2009) in the range of relatively large oxo-alkoxy 

nanoparticles (R > 1 nm). They indicate that VTOA nucleus is adapting to the environment conditions: 

its size increases with an increase of water (weakly) and precursor (strongly) concentrations. This 

process, linked to structural modifications, may have consequences on the electronic structure and 

functional properties of the derivative solids. The work is in progress to provide more information 

about functional properties of the obtained mixed metal oxide solids. 

 

Figure 37 Scheme of VTOA species formation. 

 

Based on the obtained results, the picture of the nucleation process is the following. At a small 

vanadium content ≤10 mol%, TOA nucleates accommodating hydrolyzed molecular species of VOA 

forming nucleus of size, which increases with an increase of the V/Ti ratio. In contrast, at a large 

vanadium content >20 mol%, hydrolyzed vanadium species trap sub-nucleus species of TOA, 

prohibiting the appearance of small nanoparticles; in these conditions large TOA-including VOA 

species with a poor defined size are formed. This picture is schematically presented in Figure 37. 

Because a net correlation between ZTOA nucleus composition, size and the crystalline phase of ZrxTi1-

xO2 solid solutions has been previously established (Cheng K. et al., 2017), an absence of a well-



Chapter III  Preparation of size selected VTOA 

65 
 

defined nucleus of VTOA   for   compositions   x = V/Ti>0.25 also correlates with non-observed VxTi1-

xO2 solid solutions at the ambient pressure and temperature (Yang Y. et al., 2017). Further studies in 

this field may emerge a valuable prediction method of stable nanocrystalline solids. 

3.3 Conclusions 

In conclusion, the mixed vanadium-titanium oxo-alkoxy (VTOA) nanoparticles were synthesized via 

sol-gel method in a rapid micromixing reactor, permitting point-like reaction conditions and 

narrowest particle size distribution. The particles nucleation and growth kinetics were monitored in 

situ via home-made monomode optical fibre probe, using static and dynamic light scattering 

methods. The vanadium addition worsened the coherent component of the scattered light 

prohibiting the particle size analysis at high vanadium content. However, at relatively low vanadium 

content ≤10 mol% an analysis of the experimental data permitted to conclude about nucleation of 

the mixed VTOA particles of 2.1 nm radius. We showed that titanium oxo-alkoxy (TOA) species 

appear first and serve to be centres of attraction for hydrolyzed vanadium oxo-alkoxy (VOA) species 

at the nucleation stage. In contrast, at high vanadium content VOA species percolate by imprisoning 

sub-nucleus TOA species prohibiting the nanoparticles appearance. This is connected to stronger 

hydrolysis and weaker condensation abilities of VOA species compared to TOA. The experimental 

VTOA kinetics at the induction stage agreed with the Rivallin’s model and extended it to the case of 

non-conservation of the nucleus number density (under fixed total mass of the nuclei). The analysis 

of the experimental data validated an increase of the VTOA nucleus size with an increase of 

hydrolysis ratio (weak) and vanadium content (strong); this corresponds to a decrease of the nucleus 

number density in the reactive solution resulting in the unusual induction time lengthening. The 

experimental data support the new paradigm of the sol-gel process proposed by Kessler (Kessler 

V.G., 2009), which assumes a profound restructuring of oxometallic species during their association 

at the nucleation stage. This restructuring, quite appreciable in heterocationic species M1M2OA 

(M1=M2=Zr, Ti, V, etc.), can be followed at the particle’s nucleation stage as a function of the 

elemental composition. 
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In this chapter the preparation of the V-TiO2 photocatalysts with different vanadium concentrations 

will be described. Results of its characterization via TGA-TDA, XRD and Raman methods will be 

discussed.  

4.1 Preparation of the powders 

The mixed oxide V-TiO2 nanoparticles with different vanadium content V/(V+Ti) between 0 and 20 

mol% were prepared in a laboratory chemical reactor with ultrarapid micromixing of the titanium 

and vanadium precursors, followed by the reactive colloid deposition on glass beads and heat 

treatment. The vanadium-titanium-oxo-alkoxy (VTOA) nanoparticles were generated using sol-gel 

method. The two stock solutions (each of 50 mL) injected into the reactor contained respectively A) 

mixed vanadium oxytripropoxide (98%, Sigma Aldrich) and titanium tetraisopropoxide (TTIP, 98%, 

Sigma-Aldrich) precursors in n-propanol (99.5%, Sigma Aldrich) and B) twice filtered distilled water 

(syringe filter 0.1 µm porosity PALLs Acrodisc) in n-propanol. The titanium precursor concentration in 

the reaction volume was CTi=0.3 mol/l and water concentration Cw was adjusted in order to maintain 

the hydrolysis ratio H=Cw/(CTi+CV)=1.5, which according to our previous results assures the particles 

nucleation but prohibits their mutual aggregation and growth. The reactor was maintained at the 

temperature of 20.0 °C using a thermo-cryostat Haake DC10K15. The reactor operated at the 

Damköhler number Da≤1, which means that the reaction medium was perfectly homogeneous 

before the chemical reactions leading to nucleation of species occurred, which permits the narrowest 

polydispersity of the produced nanoparticles. To prepare the powders for their analysis, the solution 

obtained from the T-Mixer was left under a hood for 24 hours until all the alcohol dried up, 

remaining only the desired powders, after obtaining the powders, they were put under heat 

treatment at 450° C at 4 hours. The following Table 2 indicates the molar concentration used in the 

present experiments: 
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%Ti %V 

100 0 

99.5 0.5 

99 1 

98 2 

97 3 

95 5 

93 7 

90 10 

85 15 

80 20 

Table 2 V-TiO2 molar concentrations. 

 

4.2 Results and Discussion 

As we have recently shown (Sanchez Mendez M. et al., 2019), at a relatively low V content of ≤0.20 

mol% the VTOA nanoparticles are formed via the condensation of titanium oxo-alkoxy (TOA) species, 

which attract hydrolyzed vanadium species at the surface. In contrast, at the higher V content above 

20 mol% the hydrolyzed vanadium oxo-alkoxy (VOA) species imprison subnucleus condensed TOA 

species prohibiting the nucleation. The obtained species in this range of vanadium loadings are not 

well defined: they appear to be strongly polydispersed with the size exceeding 1 m. Moreover, our 

data indicate the solubility limit of vanadium in TOA ~15-20 mol% V (Sanchez Mendez M. et al., 

2019). To keep the material in the most photocatalytically efficient anatase crystalline phase, the 

vanadium content in these studies was limited to 20 mol%.  

The results of TGA-TDA measurements of the prepared nanopowder probes identical to nanocoating 

samples from Table 2 are shown in Figure 38. In all presented patterns, the broad endothermic peak 

between 50 °C and ~200 °C with the maximum at 150 °C was observed, which is due to desorption of 

solvent release from the particles surface, followed by another broad exothermic band with the 

maximum at ~250 °C due to the residual organics burning. We can notice comparable fractions of the 

desorbed surface species in the mixed oxide and pure titania nanoparticles, which indicates a 

comparable retention of the adsorbed solvent and, by consequence, similar specific surface area of 
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the produced nanomaterials. We would like to attract an attention to significant modifications of the 

strong exothermic peak due to the anatase phase crystallization, which appeared at Tc=414 °C in pure 

titania (Figure 38a). When even a small amount of vanadium of 0.5 mol% was introduced to the 

system, the crystallization peak broadened and shifted to the low temperatures of 382 °C. Further 

on, at 1% mol% V it flattened (almost vanished). At 2 mol% V this peak reappeared, progressively 

intensified, narrowed, and shifted back to higher temperatures, attaining Tc=440 °C at 20 mol% V. 

This modification clearly shows a strong interaction of vanadium atoms with TiO2 host matrix.  
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Figure 38 TGA (left axis) and TDA (right axis) measurements of V-TiO2 samples with 0 (a), 0.5 (b), 1 (c), 2 (d), 5 (e), 7 (f), 10 
(g) and 20 (h) mol% vanadium content. 

 

A very limited number of TGA-TDA measurements of V-TiO2 mixed oxide materials exists in literature. 

The most relevant one to our studies has been published by (Shao G. N. et al., 2015), who 
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synthetized V-TiO2 powder via sol-gel method. They have reported in V-TiO2 powder with 5.8 mol% V 

the principal mass loss due to the solvent/water desorption below 300 °C associated with 

endothermic heat flow followed by a broad exothermic band with the maximum at ~250 °C due to 

the residual organics burning, which agree with our results. A broad exothermic peak associated with 

the material crystallization between 380 and 560 °C has been observed in these studies, which 

merged anatase, brookite and rutile phase transitions. Unfortunately, no detailed analysis of samples 

with different vanadium content has been presented in the earlier studies. The well-resolved 

exothermic crystallization peak observed in our studies, which shifted with an increase of the 

vanadium content (see Figure 38), was attributed by us to the produced size-selected V-TiO2 

nanoparticles in strict micromixing conditions of the laboratory chemical reactor (Azouani R. et al., 

2010).  

According to the above TGA-TDA measurements, the heat treatment temperature of 450 °C is 

sufficient to crystalize all prepared samples from Table 2. Therefore, in the following XRD analysis 

was performed on probes heat treated at 450 °C for 4 hours. Here, we are interested in the 

modification of the structural and microstructural characteristics of the V-TiO2 samples in function of 

the initial V molar percentage. To do this, high quality XRD powder patterns were recorded on a wide 

2theta range (10-110°) with a short 2theta step (0.02°) and a high counting rate (384s per step). 

Measurements were done in collaboration with Dr. Capucine Sassoye and Mohamed Selmane from 

the Laboratoire de Chimie de la Matière Condensée de Paris (UMR CNRS 7574) on D8 Discover 

equipped with a Copper source (Kα1 = 1.54056 Å: Kα2 = 1.54439 Å, I2/I1 = 0.5) and a Lynxeye XE-T 

detector (1D mode). The XRD patterns of V-TiO2 nanopowders samples with various vanadium 

content (in mol%) are shown in Figure 39.  

The pure anatase phase was observed in all prepared samples, except for the one synthesized with 

20 mol% vanadium, which is biphasic with the contribution of both TiO2 anatase phase and α-V2O5 

orthorhombic phase. This feature means that Vanadium is inserted in the anatase up to 10 mol% 

without major structural modification and without demixion. For higher mol%, the excess of 
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vanadium crystallizes into α-V2O5. For the pure TiO2 sample, we can notice a large and low intensity 

bump in the 2theta range from 28° to 35° which could be related to a residual amorphous TiO2 

phase. This contribution could be related to an uncompleted crystallization of the sample. We also 

notice a very weak brookite peak appeared in samples with 2, 3 and 5 mol% V content, which agrees 

with XRD patterns reported by (Shao G. N. et al., 2015) in V-TiO2 sol-gel powders heat treated at 450 

°C; this peak weakened at higher vanadium contents. The Scherrer size of the brookite domain ~5 nm 

(2=1°) corresponds to that of elementary V-TiO2 nucleus (Sanchez Mendez M. et al., 2019), while 

that of anatase domain (2=0.3°) to that of the coating width (15-20 nm); this permits to suppose 

that the smallest (occasionally not sintered) V-TiO2 nanoparticles crystallize into brookite phase. 

Complementary measurements are required to verify this assumption. For all the samples, the peak 

width remains relatively large after the heat treatment at 450 °C confirming the small size of the 

nanoparticles. To confirm the above conclusions, Rietveld refinements were performed which permit 

obtaining more precise structural and microstructural information.  
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Figure 39 XRD patterns of V-TiO2 samples with different vanadium content (in mol%). Vertical bars show positions and 
heights of anatase TiO2 peaks. Brookite phase of TiO2 (B) and orthorhombic phase of V2O5 (▲) are indicated. 

 

 

The structural and microstructural parameters extracted from the Rietveld type refinement 

procedure are summarized in Table 3. These parameters correspond to a negligible number of strains 

in all V-TiO2 samples. The nanoparticle size was the main contribution to the peak enlargement. A 

typical result of the fitting procedure for the sample with 1 mol% V shown in Figure 40 confirms, as 

expected, the anatase structure of V-TiO2 lattice.  
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Figure 40 XRD powder patterns and Rietveld refinement with the anatase model for V-TiO2 sample with 1 mol% of 
Vanadium. 

For all the samples, we observe that the cell parameters (a, c) remain constant, respectively around a 

= 3.78 Å and c = 9.50 Å, which are in good agreement with the one expected for the anatase 

structure. No major structural modifications were thus highlighted when the mol% of vanadium 

increased. For the 20 mol% V sample, the refinement was performed considering the presence of α-

V2O5. The phase percentage was thus estimated around 90 % for anatase TiO2 and 10% for α-V2O5, 

which corresponds to the 10 mol% V still being inserted into TiO2 matrix and the remaining 10 mol% 

V segregated into α-V2O5. This set the solubility limit of V atoms into anatase TiO2 nanopowders to 

~10 mol%, which is in a general agreement with expectations, while remains sensibly lower than the 

previously reported data of 21 mol% (Le Roy D. et al., 2012). This decrease of solubility in 

nanomaterials is not surprising. In fact, considering that in 5-nm particles about 50 % of cationic sites 

belong to the surface, one can conclude that a half of the inserted vanadium atoms in 20 mol% V 

sample appear at the surface and, therefore, tend to form α-V2O5 domains at the heat treatment. 

Further investigations via Transmission Electronic Microscopy, could be interesting to perform to 

2θ ( )

1 mol%
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characterize the V segregation phenomenon when the solubility limit is exceeded, that is between 10 

and 20 mol% V.  

 

An interesting trend can be also observed in the anatase crystalline size evolution with vanadium 

content within the solubility range: the size sharply increased at 2-3 mol% V, where brookite phase 

appeared, and remained twice smaller at the higher and lower vanadium contents. Furthermore, for 

20 mol% V, which corresponds to the TiO2/V2O5 phase segregation phenomenon, the particles 

coarsen to attain the size of ~18 nm. Concerning the α-V2O5 particles size, it appears to be far bigger 

than that of TiO2, which supports our previous conclusions about the precursor VTOA species 

nucleation in the sol-gel process (Sanchez Mendez M. et al., 2019). 

 

Structural and 
microstructural 

parameters 

TiO2 
anatase(1)  

Determined by refinement 

V/(V+Ti) 

0% 0.5% 1% 2% 3% 5% 7% 10% 

Cell parameters a, b 
(Å) 

3.79 3.788 3.784 3.785 3.783 3.784 3.785 3.784 3.784 

Cell parameters c (Å) 9.50  9.504 9.505 9.503 9.493 9.501 9.503 9.498 9.491 

Apparent Size (nm) / 12.0 12.9 13.4 20.4 21.5 11.5 11.4 10.7 

 

Structural and 
microstructural 

parameters 

TiO2 
anatase(1) 

α-V2O5
(2) 

Determined by refinement 

V/(V+Ti) 

20% 

TiO2 Anatase α-V2O5 

Cell parameters a (Å) 3.79 11.51 3.784 11.512 

Cell parameters b (Å) 3.79 3.56 3.784 3.565 

Cell parameter c (Å) 9.50 4.37 9.491 4.382 

Apparent Size (nm) 
/ 

17.8 48.5 

Phase percentage 89% 11% 
Table 3 Rietveld analysis of V-TiO2 nanopowders. Reference data: (Rezaee M. et al, 2011) (1), (Enjalbert R. and Galy J., 
1986) (2). 

In order to follow crystallization of the material with the highest level of vanadium, close to the 

expected solubility limit of 21 mol% (Le Roy D. et al., 2012) we performed XRD measurements on 20 

mol% V probes treated with different temperatures from 300 to 1000 °C during 4 hours. The results 

are shown in Figure 41. The XRD patterns after heat treatment below 400°C showed an amorphous 

state of V-TiO2 material. At 500°C we observed the anatase phase related to TiO2, which transformed 
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to pure rutile at 700 °C and higher temperatures. At the same time, we observed many peaks of a 

smaller intensity at 600 °C (a very weak contamination of XRD patterns by these peaks can be also 

noticed after heat treatment with 500 °C and 700 °C). These peaks more probably belong to the 

orthorhombic α-V2O5 phases, which would indicate the material segregation at intermediate heat 

treatment temperatures; in contrast, the dissolution of vanadium in anatase and rutile titania takes 

place at respectively lower and higher temperatures. The mechanism of this phenomenon is not 

clear now. Alternatively, these peaks may be due to a metastable VxTiyOz solid, which decays after its 

formation at high temperatures. More work is required to understand their origin.  

Our observations of the anatase crystalline cell stability with an addition of vanadium agree with 

those of (Khan M. et al., 2013), who have studied V-doped TiO2 with V/Ti ratio of 1-5 mol% 

synthesized by hydrothermal method: the positions and intensity of XRD peaks in this study was 

found unchanged, which shows that crystallinity is not significantly affected by the V. We notice no 

appreciable weakening of anatase XRD peaks in our samples with an increase of vanadium content, 

which disagrees with that reported by (Ren F. et al., 2015) in V-doped TiO2 prepared via solid state 

sintering method and explained by a poor crystallization of powders. Our result also disagrees those 

of (Zhou W. et al., 2010) reporting that vanadium doping restrains the crystal growth and promotes 

the phase transition from anatase to rutile compared with pure titania. 
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Figure 41 XRD powder patterns of V-TiO2 samples with 20 mol% vanadium content heat treated at different 

temperatures for 4 hours. 

 

 

The Raman spectra of V-TiO2 samples with different vanadium content, calcinated at 450 °C for 4 

hours are shown in Figure 42. The spectra with 0, 0.5, 1, 2, 5 and 7 mol% V showed frequencies of 

the bands maximum at 147 cm-1 (Eg), 198 cm-1 (Eg), 396 cm-1 (B1g), 515 cm-1 (A1g /B1g) and 637 cm-1 

(Eg), which correspond to anatase TiO2, in agreement to literature (Balachandran U. and Eror N.G., 

1982). At the same time, samples with 10 and 20 mol% V showed significant deviations: the band at 

515 cm-1 weakened while the bands at 396 cm-1 and 637 cm-1 shift respectively to high and lower 

frequencies and new bands appeared at 280 cm-1, 300 cm-1 and 690 cm-1. These modifications 

correspond to the short-range structural rearrangements. We notice that according to the XRD 

pattern in Figure 39, TiO2 with 20 mol% V after calcination at 450 °C contained a small amount of 

orthorhombic phase of V2O5, which could explain for these modifications (Shvets P. et al., 2019). 
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Figure 42 Raman spectra of V-TiO2 samples with different vanadium content. The positions of anatase and rutile TiO2 
bands are indicated by vertical dashed lines. 

 

The Raman spectra of V-TiO2 samples with 20 mol% V heat treated at different temperatures are 

shown in Figure 43. These samples were calcinated at temperatures starting from 300 °C to 1000 °C 

every 100 °C making a total of 8 samples of 20 mol% vanadium. The positions of bands in samples 

calcinated at 300 °C, 400 °C and 500 °C correspond to anatase TiO2, while those ibn samples 

calcinated at temperatures above 700 °C to rutile TiO2. In contrast, samples heat treated at 500 °C, 

600 °C and 700 °C showed more complex spectra. Three new unassigned bands appeared at 281 cm-

1, 300 cm-1 and 696 cm-1, which can be connected to the unassigned XRD peaks in Figure 41. We 

notice in this connection, that (Ren F. et al., 2015) have observed in V-TiO2 a weak peak in the 

frequency range ~280 cm-1 attributed to V2O5 with an increased vanadium contents up to 5 and 10 

mol%; however, the applied method does not guarantee perfect V-elemental dispersion in the host 

matrix, which may result in the vanadium oxide clustering at high loadings. In contrast, segregation 
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of titania and vanadia materials seems unlikely in our preparation conditions, which allows us to 

disregard (at least, at this state of studies) this hypothesis. More work is required to understand the 

new phase appearance.  
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Figure 43 Raman spectra of V-TiO2 samples with 20 mol% vanadium content heat treated at different temperatures for 4 
hoirs. Positions of anatase and rutile TiO2 bands are indicated by vertical dashed lines. Stars indicate unassigned bands. 

 

 

4.3 Conclusions 

In this Chapter, the structure of V-TiO2 samples in form of nanopowders with different vanadium 

content from 0 to 20 mol% was studied. The TGA-TDA measurements showed a complex behavior of 

the material resulting in a significant dependence of the anatase phase transition temperature with 

the V content, which evidenced perfect insertion of V into the host TiO2 matrix.  The heat treatment 

at 450 °C of V-TiO2 nanoparticles with the vanadium content below 20 mol% resulted in the 
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formation of anatase crystalline structure, which is identical to that of pure TiO2; the Rietveld analysis 

of XRD patterns evidenced no significant deviation of the anatase structure parameters. 

Furthermore, traces of brookite titania were observed at 2-3 mol% V loading. An interesting trend 

can be also observed in the anatase crystalline size evolution with vanadium content within the 

solubility range: the size sharply increased at 2-3 mol% V, where brookite phase appeared, and 

remained twice smaller at the higher and lower vanadium contents. Furthermore, for 20 mol% V, 

which corresponds to the TiO2/V2O5 phase segregation phenomenon, the particles coarsen to attain 

the size of ~18 nm. Concerning the α-V2O5 particles size, it appears to be far bigger than that of TiO2, 

which supports our previous conclusions about the precursor VTOA species nucleation in the sol-gel 

process (see Chapter 3). 

An increase of the heat treatment temperature showed a progressive transformation of anatase to 

rutile structure, as confirmed by XRD and Raman measurements. In contrast, new unassigned peaks 

(XRD) and bands (Raman) appeared at the intermediate temperatures between those characteristics 

of anatase and rutile phases crystallization: Tc = 600  100 °C. There peaks may belong to a 

metastable phase of VxTiyOz solid decaying after formation at high temperatures. More work is 

required to identify this phase and relate it to the preparation method, which is specific to small size 

(nanoscale) and elemental homogeneity (due to micromixing conditions in chemical reactor). 
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In this Chapter, photocatalytic activity of mixed oxide V-TiO2 nanoparticulate coatings, which 

preparation was described in previous chapters, will be analyzed under UV and Visible light 

illumination. 

 

5.1 Experimental Setup 

The photocatalytic experiments are described in the following sub-chapters, in order to understand 

the different steps of the experiments involving photocatalytic activity. We will start by describing 

the reactor on which the experiments were performed, we will describe the different lamps used 

during the experiments, then the preparation of the methylene blue solution and for last how the 

coated glass beads were prepared. 

5.1.1 Photocatalytic Reactor 

The experimental reactor consisted of an immersion well reactor made of Quartz glass tubes. The 

artificial light was fixed inside the inner tube while 90 grams of 4 mm in diameter glass beads coated 

with the photocatalyste were put in the annular space between the external and internal tube. An 

aqueous solution containing 5 ppm of methylene blue (MB) used as pollutant was prepared for each 

run. In every run a volume of 400 mL was used, A peristaltic pump was used to circulate this solution 

in a close loop by the bottom of reactor to submit it to the photocatalytic action of the coated beads 

under the light shining from the inner tube. Tests were performed to determine that this tube absorb 

negligible part of the photons. An electric DC generator was used to apply the constant electric 

power to the lamp inside the reactor. During each run the liquid passed through a heat exchanger 

inside a temperature-controlled bath to maintain the liquid temperature at constant level. Before 

returning to the photocatalytic reactor the solution passed in a buffer reservoir where 10 mL sample 

solutions for analytical purpose are collected. This reactor setup was made in the frame of a PhD 

work by F. Moosavi (Moosavi F., planned on October 2022) 
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The principal schema of the experimental installation is shown in Figure 44.  

 

 

Figure 44 Scheme of photocatalytic reactor (Moosavi F., planned on October 2022). 

 

The coated glass beads (m=90 g, N1050 pieces) were freely placed in a gap of 6 mm width between 

two-cylinder quartz tubes of lengths 395 mm. The inner tube of 34 mm external diameter contained 

the lamp of 16 mm diameter and 395 mm length, which is equal to that of the surrounding quartz 

tubes. The reactor body had the following geometry: 

 External Diameter of the outside tube: 49.8 mm, 

 Internal Diameter of the outside tube: 46.15 mm, 

 Length of the Tube: 395 mm,  

 External Diameter of the internal tube: 34.10 mm, 

 Internal Diameter of the internal tube: 30.43 mm. 

5.1.2 Lamps as light sources 

The light source lamp is introduced inside the reactor, depending on the photocatalytic test, but 

throughout the project3 different lamps were used:  

sampling

Peristaltic pump

glass beads

Lamp

Fixed bed reactor

Low voltage 

generator

Peristaltic pump

MB solution

Sampling

Glass beads

Lamp
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 UVA lamp Phillips TL BLB of 8 Watts, emitting at 365 nm with full width at half maximum 

1/2=15 nm 

 Visible lamp Phillips O5 of 8 W, having a broad-band spectrum with 380 nm  

 Visible Lamp OSRAM HLX 64610 BRL of 50 W, having a broad-band spectrum with 

spectral maximum at ~700 nm 

The photocatalytic experiments were organized as following: 

1) Solution containing the pollutant was pushed with the peristaltic pump through the main reactor 

tube containing the photocatalyst in dark (lamp “off”) for about 3 hours duration. During this 

time, equilibrium was established between the adsorbed and free pollutant molecules in the 

reactive solution.  

2) After the equilibrium was attained, the lamp was set “on” and the experiment (without 

interruption) was continued for 3 hours longer.   

3) The pollutant concentration was permanently monitored on the 1st and 2nd periods via sampling 

of the reactive solution and absorbance measurements using PC-plugged AvaSpec-Mini 

UV/VIS/NIR Spectrometer.  

Since visible lamps could have a non-negligible UVA component in the emission, capable activating 

anatase TiO2 photocatalyst, we made an additional verification of the emission spectra shown in 

Figure 45. Indeed, we observed a considerable intensity in the UVA spectral range between 300 and 

400 nm. Because of this, a UV filter with cutoff wavelength of 390 nm, in form of a film was 

introduced in the inner tube of the reactor containing the lamp. The resulting emission spectrum 

shown in Figure 45 shows an excellent elimination of the UVA component, with no light of photons 

energy above that of the anatase TiO2 band gap: h < Eg = 3.2 eV. 
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Figure 45 Absorbance of the Light with and without Filter. 

 

 

5.1.3 Methylene blue preparation   

The effectiveness of the prepared materials in photocatalysis was tested on degradation of 

methylene blue (MB) in an aqueous solution. The MB is a blue substance that can be easy to detect 

by a naked eye. In these experiments, lots of 1 liter of MB were prepared by using following 

relations: C=n/V and n=m/M, which conduct to the required mass via the following equation: m = 

C*V*M, where C is the molar concentration of the MB (10-5 mol*l-1), M is the molar mass of MB 

(319.85 g/mol) and the volume calculated, in this case 1 Liter. The mass of MB of 0.0031985 g was 

used to prepare 1 liter solution. The calibration curve (Figure 46) of MB solutions was measured at in 

the maximum of visible absorption at λ=664 nm. An illustrative example of the different MB solutions 

is in Figure 47. 
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Figure 46 Calibration curve for the BM solution measured at 664 nm. 

 

 

Figure 47 Solution of MB. 

 

5.1.4 Preparation of the beads   

The substrate used for the current experiments was Glass Beads (Supelco Merck) of 4 mm diameter  

To have a better quality of beads, they underwent a strict process of cleaning specified below: 

 Cleaning of the beads with concentrated sulfuric acid 

 Rinsing the beads to remove any trace of sulfuric acid for 24 hours. 

 Checking the pH of the beads to be on ± 7 
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 Drying the beads in the oven at 80°C for 12 hours to remove any trace of humidity 

Every photocatalytic experiment was performed with 90 g glass beads coated with V-TiO2 

nanoparticles; the volume of metallic precursor solution is fixed to 100 mL. [Ti4+] is fixed to 0.15 M. 

The volumes of vanadium precursor and isopropanol are adjusted to reach the following Ti/V molar 

ratios. The Hydrolysis rate is fixed to 1.5. The activity of V-TiO2 coating with different vanadium 

content prepared according to the following procedure: 

 The solution of V-TiO2 was deposited on the already prepared beads inside the Glove Box, 

during a contact time not exceeding the solution stability (several hours). 

 The coated beads were separated from the solution and dried. 

 The coated beads were transferred to an oven for heat treatment at 450°C for 4 hours. 

 The beads were kept in a closed glass box for a photocatalytic test. 

5.2 Photocatalytic activity of V-TiO2 photocatalyst under UVA light 

5.2.1 Adsorption of methylene blue 

During the preliminary investigations, we observed that the vessels during MB circulation turn in a 

blue color indicating that the surfaces were covered with MB molecules. This effectively decreased 

the local concentration of free MB in the reactive solution and, in counterpart, enriched 

photocatalyst surface with the pollutant molecules. To separate the role of adsorption from that of 

photocatalytic reactions, the liquid circulated in the reactor for about 3 hours. The adsorption 

measurements of the selected samples are shown in Figure 48. Two groups of the curves can be 

distinguished in these experiments. In fact, the uncoated glass beads at equilibrium adsorbed ~50 

mol% of MB, while between 20 and 30 mol% MB were adsorbed by the coated beads depending on 

the composition of the coated V-TiO2 nanoparticulate material. 
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Figure 48 MB adsorption measurements with UV lamp “off” using uncoated and V-TiO2 coated glass beads (GB). 

Adsorption curve in empty reactor is also shown. Vanadium content is indicated in mol%. Experimental conditions: No 

lamp, Initial concentration of MB 10
-5

 mol*l
-1

, 400 mL. 

  

 

 5.2.2 Photocatalytic activity under UVA light illumination 

 

The adsorption measurements permitted distinguishing free and adsorbed MB exposed to UVA 

illumination in the photocatalytic tests and, consequently, their respective contributions to the MB 

photolysis and photocatalytic decomposition. The kinetics of MB decomposition under UVA 

illumination in the empty reactor and that filled with uncoated and coated glass beads with V-TiO2 

nanoparticles with different vanadium content is presented in Figure 49. One can see from these 

data that the photolysis of solvated MB molecules (empty reactor) is almost negligible in our 

experimental conditions. In contrast, adsorbed MB molecules onto uncoated glass beads underwent 

an appreciable photolytic decomposition. Consequently, we assumed that MB decomposition 
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kinetics due to photolysis is directly proportional to the adsorbed MB quantity at equilibrium 

obtained from Figure 48. As a result, we conclude that the photolytic rate in presence of the 

prepared photocatalysts was about a half of that in presence of uncoated glass beads. We also notice 

that a significant deactivation of TiO2 photocatalyst takes place by the MB decomposition (second 

use).  
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Figure 49 Photocatalytic measurements with UV lamp “on” using V-TiO2 coated glass beads (GB). Vanadium content (in 
mol%) is indicated. Experimental conditions: UV Lamp, Initial concentration of MB 10

-5
 mol*l

-1
, 400 mL 

 

 

The measured kinetic curves followed the first-order process kinetics, which permits evaluation of 

the intrinsic material activity (Cheng et al., 2018). As a result, the data were linearly fitted in semi-

logarithmic frame and the obtained reaction rate constants k (in min-1) are shown in Figure 50 as a 

function of vanadium content in the photocatalyst. The results clearly evidenced that the reactivity 

varied with an increase of V content: the kinetic constant K increased from 0.8 to 4.2 min-1
 when the 
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vanadium content increased from 0.5 mol% to 2 mol% and vanished to almost zero at 20 mol% of 

vanadium. 
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Figure 50. Photocatalytic decomposition rate constant of MB with UV lamp (360 nm) versus vanadium content in V-TiO2 
coated glass beads. 

 

Although the direct comparison with literature data is not possible, (Chang P-Y. et al., 2009) have 

shown that insertion of vanadium ions decreases photocatalytic activity of TiO2 nanoparticles under 

UV light (305 nm) illumination toward MB decomposition. On the other hand, (Zhang Z. et al., 2010) 

have reported that the maximum rate of the MB decomposition of V-doped TiO2 nanofibers is 

attained at 5.0 wt% V under UV light illumination (50 W high-pressure Hg-lamp, 330 nm). 

Furthermore, maximum activity of 1 mol% V-doped TiO2 nanoparticles has been reported by (Liu B. 

et al., 2009) in degradation of methyl orange in aqueous solutions under UVA lamp (365 nm) 

illumination. This spread of data may be explained by material elemental homogeneity. In fact, (Liu S. 

et al., 2009) have proposed that the photocatalytic activity under UV illumination (365 nm) of evenly 

V-doped TiO2 photocatalysts attains the maximum at low dopant level ~0.002 mol% and decreases 
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with further increase of the V content; in contrast, the unevenly doped V-TiO2 photocatalysts possess 

a higher photocatalytic activity, which can be ascribed to an effective electrostatic-field-driven 

electron-hole separation. (Chang S. and Liu W., 2011) have rationalized these results by concluding 

that the bulk doping caused detrimental effects on the UV photocatalytic activity (=305 nm, 

Rhodamine B degradation), since V3+/V4+ ions in titania lattice inhibit charges diffusion to the surface 

through deep trapping; in contrast, the surface impurities facilitate interfacial charge transfer to 

adsorbates. In particular, the activity of bulk V-doped TiO2 decreased upon increasing V/Ti ratio up to 

V/Ti=1.2 %; in contrast, activity of the surface V-doped TiO2 increased upon increasing the 

concentration of V ions up to V/Ti=0.3. These results evidence the key role of the preparation 

method on the V-TiO2 material activity.   

Because of the similar light absorbance of V-TiO2 coatings (Figure 48, see also discussion of TDA-TGA 

measurements of V-TiO2 nanopowders in Chapter 4.2) the specific surface area is not expected to be 

responsible for the observed effect. The anatase crystalline cell was also preserved at the vanadium 

content below 20 mol%. We, therefore, relate it to the material morphology and electronic structure.  

In fact, our particular method of the controlled V-TiO2 nucleation (Sanchez Mendez M. et al., 2021) 

suggests the formation of particles enriched with surface vanadium, which according to (Bettinelli M. 

et al., 2007) promotes the photocatalytic activity because of a modification of the adsorption 

capacity of the material surface; we notice that a complex interaction between Ti3+/Ti4+ and V4+/V5+ in 

mixed metal oxides has been investigated earlier by (Trifiro F., 1998). However, this explanation is 

not supported by our MB adsorption measurements, which showed a small variation of the 

adsorption capacity of anatase TiO2 with vanadium loading, in agreement with earlier results of 

(Khan H. and and Berk D., 2013), who reported the specific surface area (BET) of V-doped TiO2 with 

V/Ti ratio of 1-5 mol% synthesized by hydrothermal method ranged between 140 and 168 m²/g. We 

therefore suggest that the reason of the activity modification could be found in the electronic 

structure of the materials and in the intraband states produced via vanadium insertion into the host 

anatase matrix. Furthermore, we notice an interesting correlation: the maximum activity 
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corresponds to the composition, in which, according to our Rietveld analysis, brookite phase 

appeared and crystalline domains increased. The last may strengthen charge separation efficiency at 

the anatase-brookite interface, improving the activity. 

 

5.3 Photocatalytic activity of V-TiO2 photocatalyst under visible light 

illumination 

The V-TiO2 tested with the UVA light source were also used in complementary photocatalytic 

experiments with the visible illumination. The experimental procedure is described in Chapter 5.1. 

After establishment of equilibrium of the MB adsorption/desorption on the photocatalyst (Figure 48), 

the visible 50-W lamp was switched “on” and sampling was periodically taken on the solution for the 

evaluation of the MB concentration decrease. The film filter described in the previous section was 

used in the experiments to avoid material activation with the UVA component. The kinetics of MB 

decomposition on glass beads coated with V-TiO2 nanoparticles with different vanadium content are 

shown in Figure 51. 
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Figure 51 Kinetics of MB photocatalytic decomposition using V-TiO2 coated glass beads with different vanadium content 
(in mol%). Experimental conditions: Visible Light Lamp, Initial concentration of MB 10

-5
 mol*l

-1
, 400 mL. 

 
 

The experimental data in Figure 51 followed the first-order kinetics and, by analogy with the UVA 

photocatalytic data (see Chapter 5.2), were linearly fitted in semi-logarithmic frame to obtain the 

reaction rate constants k (in min-1). These k values are presented in Figure 50 as a function of 

vanadium content in the photocatalyst.  
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Figure 52 Photocatalytic decomposition rate constant of MB with VIS lamp (>390 nm) versus vanadium content in V-
TiO2 coated glass beads. Rate in empty reactor (due to photolysis) is shown by “filled square” symbol. 

 

According to these data, the activity of the V-TiO2 anatase coatings increased with the increase of 

vanadium content reaching maximum at 10 mol% V and decreasing afterwards. We notice that the 

level of k=1.25 min-1 in empty reactor belongs to the direct photolysis, which remains the main route 

of the MB decomposition with pure anatase TiO2 (0 mol% V) under the visible light illumination. 

Because of somewhat weaker adsorption capacity of the V-doped coatings, the rate of direct 

photolysis slightly decreased (k=1.0 min-1) over 2 mol% V doped material. By consequence, the 

following increase of the activity was purely attributed to photocatalysis. At 20 mol% V doping, the 

MB decomposition rate decreased to the direct photolysis level confirming evanescent 

photocatalytic contribution. We conclude therefore that the photocatalytic activity of the V-doped 

anatase TiO2 has maximum at 10 mol% V content and disappeared in pure TiO2 as well in heavily 

dopped V-TiO2 material with the vanadium content of 20 mol% and higher (not shown here).  
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The last might be connected to a non-complete crystallization of the material. To verify this point, 

the 20 mol% V photocatalysts after heat treatment with higher temperatures of 500 °C and 600 °C 

were additionally prepared and tested. Figure 53 shows series of the MB decomposition kinetics 

under visible light illumination ( > 390 nm) using heat treated V-TiO2 coatings at different 

temperatures. The results show no appreciable difference in the kinetics rate constants 

(correspondent to the slopes of curves): consequently, the MB decomposition was entirely due to 

photolysis and the 20 mol% V coatings remained inert under the visible light illumination.  
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Figure 53 Kinetics of the MB decomposition under visible light illumination () using V-TiO2 nanocoatings with 20 mol% V 
heat treated at different temperatures. 

 

To clear up the nature of material activity, we underwent the measurements of photocatalytic 

kinetics with different intensities of the visible lamp. The resulting dependence of the photocatalytic 

rate constants in empty reactor (photolysis) and in reactor filled with V-TiO2 coated glass beads 



Chapter V                                                        Photocatalytic Experiments with UV-VIS and Visible Light 

95 
 

(photocatalysis) on the visible lamp power is shown in Figure 54 for V-TiO2 coatings with 10 mol% V 

content.  
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Figure 54 MB degradation rate versus visible lamp power (>390 nm). 

 

The analysis of the experimental data showed that photocatalytic rates kph of MB decomposition 

have an evident linear component kphW, which confirms that the process is far from saturation 

phenomena.  

The electronic properties of vanadium-doped rutile TiO2 are investigated theoretically with a 

Hartree–Fock/DFT hybrid approach by (Islam M. M. et al., 2011). The energetic and electronic 

properties are converged with dopant concentrations in the range of 0.9 to 3.2%, which is 

compatible with the experimentally accessible range of the V-TiO2 compositions. The results of this 

study confirmed the creation of occupied and unoccupied V4+ states in the band gap and V5+ 

unoccupied states at the bottom of the conduction band. These conclusions have been confirmed by 
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(Khan H. and Berk D., 2013), who showed that V 3d states are introduced below the conduction band 

minimum suggesting that the combined effect of V5+/V4+ centers is helpful for the reduction of 

recombination rates of photoinduced charge carriers by trapping. Recently, position of the V dopant-

induced intra-gap levels has been estimated as 2.2 eV below the conduction band minimum by (Rossi 

G. et al., 2018), permitted the transfer of electrons into the CB on electronic transitions from intra-

gap levels associated with V4+ cations, by absorbing 530-nm photons. Furthermore, a precision on the 

intraband defect states has been given by (Ren F. et al., 2015) suggesting a synergistic effect of V and 

single-electron-trapped oxygen vacancy (SETOV) Vo
• centers. They showed that this deep donor level 

hybridized by the Ti 3d and O 2p states within the band gap disappeared in V + Vo
2+-TiO2 moving to 

the top of the valence band, while V3d at the bottom of the CB also disappeared and new electronic 

states consisted of Ti3d, V3d, and O2p appeared on the bottom of the CB. All these results confirmed 

the existence of the impurity/defect states capable of receiving a photoinduced electron enabling the 

photocatalytic activity of the material. 

The previously reported studies have attributed the maximum photocatalytic activity under visible 

light illumination to the V-TiO2 materials with the vanadium content about 1-2 mol%  (Gu D. E. et al., 

2007) (Chang P-Y. et al., 2009) (Liu B. et al., 2009) (Khan M. et al., 2013) (Ren F. et al., 2015), although 

a significant activity has been extended up to 5 mol% V and dropped only at 10 mol% V (Ren F. et al., 

2015). A comparison with our results indicated maximum activity of V-TiO2 at 10 mol% V (Figure 52), 

however, is not straightforward. First at all, because a complex interplay between the surface and 

bulk states (Chang S. and Liu W.., 2011) are responsible for the final response of material and 

controls the photocatalytic process. In fact, cations occupy almost 50% of surface sites in the 

elementary V-TiO2 nuclei (Sanchez Mendez M. et al., 2021), which compose our nanocoatings. In 

small V-TiO2 nanoparticles no distinct separation between surface and bulk states could be expected, 

which both can affect the charge diffusion process, by simultaneously improving (surface sites) and 

inhibiting (bulk sites) the interfacial charge transfer to adsorbates. However, the variation of the 

material activity under UVA illumination (Figure 50) could be rationalized by assuming first filling of 
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bulk states (which initially reduced the activity of V-TiO2 compared with pure titania), then filling of 

surface states (which subsequently reproduced an expected activity variation). The visible 

illumination does not result in any appreciable photocatalytic activity of pure titania: therefore, in 

contrast to UVA illumination (Figure 50), no initial reduction of the activity with small addition of 

vanadium can be observed in Figure 51. In the following, the activity increases with an increase of the 

vanadium content, apparently because the bulk states weakly participate in the excitation process. 

The reason of that remains unanswered and requires more studies.  

Anyway, by comparing in Figure 55 the activity curves after UVA and VIS lamp illuminations, one can 

suggest the existence of specific active sites X1 and X2 in the respective 2 mol% V and 10 mol% V 

materials.   
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Figure 55 Comparison of the photocatalytic activities towards MB degradation under UVA (=365 nm) and VIS (>390 
nm) lamps illuminations. Participation of active sites X1 and X2 in respective materials can be suggested. 
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The site X1 can be populated after the photoinduced CB/VB charges relaxation (UVA lamp). In 

contrast, the direct intragap excitation (VIS lamp) cannot reach these states, which makes the activity 

of 2 mol% V material low. On the other hand, the direct intragap excitation (VIS lamp) populates 

active site X2, which population after CB/VB charges relaxation (UVA lamp) is not effective. Since the 

CB electrons appear in V-TiO2 materials under both ultraviolet and visible light illuminations (Rossi et 

al., 2018) the hypothetical states X1 and X2 can be attributed to the hole (h+) localization at the 

nanoparticles surface. Their natures remain still unclear. 

 

5.4 Photocatalysis with combined excitation by UVA and visible 

light sources 

The following experiments were undertaken to check if combination of UVA and visible photons 

could improve the photocatalytic activity of the V-TiO2 material. In this series, the visible 50-W lamp 

was placed inside the reactor main tubing (covered or not with the cut-off filter:   390 nm) and 

external 8-W UVA lamp, as shown in Figure 56. 

 

 

Figure 56 Experimental Setup with LV and UV lamps. 
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The glass beads coated with V-TiO2 nanoparticles containing 10 mol% vanadium, which are most 

efficient under visible light illumination, were used as photocatalyst in these experiments. The 

kinetics of the MB decomposition in the reactor is shown in Figure 57. The results reveal an 

unexpected result: presence of UV photons seems to lower the activity of the photocatalysts 

activated by visible light.   

160 180 200 220 240 260 280 300 320 340 360 380

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

 UVA lamp

 visible lamp without filter

 visible lamp with filter

 UVA + visible lamp with filter

C
 /

 C
0

Time, min

 
Figure 57 Kinetics of MB decomposition under UVA lamp (365 nm), visible lamp (without filter), visible lamp (with 390-
nm filter) and both UVA and visible lamp (with 390-nm filter) illuminations, using V-TiO2 (10 mol% V) coated glass beads. 

  
The results showed no synergy of the combined illumination and confirmed that (i) UVA light 

illumination provide the lowest decomposition rate of the 10 mol% V material, which according to 

Figures 49-50 is mostly related to the MB photolysis, while (ii) visible light illumination provide the 

highest MB decomposition rate. Unusually, the combined UV and visible lamps illumination resulted 

in intermediate MB decomposition rates, which may signify partial inhibition of the photocatalytic 

activity by UV photons in the range of 300 ≤  ≤ 390 nm. This destructive contribution of UV photons 

requires further understanding.  
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5.5 Conclusions 

In Chapter 5, photocatalytic activities of nanocoatings made of size-selective V-TiO2 with different 

vanadium content and heat-treated at 450 °C (for 4 hours) were investigated. The photocatalytic 

experiments were conducted under illuminations with UVA (=365 nm) and visible (>390 nm) 

lamps. The MB kinetics were continuously monitored (i) in dark for 3 hours until attaining the 

equilibrium of the adsorption-desorption process on the catalyst surface and (ii) under lamp 

illumination during 3 hours for an observation of the photolytic and photocatalytic processes. The 

photolytic and photocatalytic processes were distinguished. We showed that the activity of 20 mol% 

V coatings vanished and could not be improved via heat treatment at higher temperatures of heat 

treatment up to 600 °C, which improved material crystallinity.  

The best performance under UVA and Visible light illuminations showed V-TiO2 photocatalysts with 

respectively 2 mol% and 10 mol% vanadium. In contrast, combined illumination of the 10 mol% V 

photocatalyst with the visible and UV photons (300 ≤  ≤ 390 nm) resulted in the activity inhibition, 

which reason requires an understanding. We tentatively assigned this finding to the population of 

specific active sites X1 and X2 in the respective 2 mol% V and 10 mol% V materials.  The site X1 can 

be populated after the photoinduced CB/VB charges relaxation (UVA lamp) and cannot be reached 

via the direct intragap excitation (VIS lamp). On the other hand, the state X2 can be accessed via 

direct intragap excitation (VIS lamp), while its population via the CB/VB charges relaxation (UVA 

lamp) not effective.  
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General Conclusions 

In this work, the mixed vanadium-titanium oxo-alkoxy (VTOA) nanoparticles were synthesized via sol-

gel method in a rapid laboratory-scale micromixing reactor, permitting point-like reaction conditions 

and narrowest particle size distribution. The particles nucleation and growth kinetics were monitored 

in situ via home-made monomode optical fibre probe, using static and dynamic light scattering 

methods. The vanadium addition worsened the coherent component of the scattered light 

prohibiting the particle size analysis at high vanadium content >20 mol%. However, at relatively low 

vanadium content of ≤10 mol% the analysis of experimental data permitted to conclude about 

nucleation of the mixed VTOA particles of 2.1 nm radius. We showed that titanium oxo-alkoxy (TOA) 

species appear first and serve to be centers of attraction for hydrolyzed vanadium oxo-alkoxy (VOA) 

species at the nucleation stage. In contrast, at high vanadium content VOA species percolate by 

imprisoning sub-nucleus TOA species prohibiting the nanoparticles appearance. This is connected to 

stronger hydrolysis and weaker condensation abilities of VOA species compared to TOA. The 

experimental VTOA kinetics at the induction stage agreed with the Rivallin’s model (Rivallin M. et al., 

2004) (Rivallin M. et al., 2005) and extended it to the case of non-conservation of the nucleus 

number density (at fixed total mass of the nuclei). The analysis of the experimental data validated an 

increase of the VTOA nucleus size with an increase of hydrolysis ratio (weak) and vanadium content 

(strong); this corresponds to a decrease of the nucleus number density in the reactive solution 

resulting in the unusual induction time lengthening. The experimental data support the new 

paradigm of the sol-gel process proposed by (Kessler V.G. et al., 2009), which assumes a profound 

restructuring of oxometallic species during their association at the nucleation stage. This 

restructuring, quite appreciable in heterocationic species M1M2OA (M1≠M2=Zr, Ti, V, etc.), can be 

followed at the particle’s nucleation stage as a function of the elemental composition. 

Based on the results of the VTOA nanoparticles stability, the structure of V-TiO2 nanopowders with 

different vanadium content varied from 0 to 20 mol% was studied after heat treatment in the range 

of temperatures 300-1000 °C for 4 hours. The TGA-TDA measurements showed a complex behavior 
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of the material resulting in a significant dependence of the anatase phase transition temperature 

with the vanadium content, which support perfect insertion of V atoms into host TiO2 matrix. We 

showed that the heat treatment at 450 °C of VTOA nanoparticles with the vanadium content below 

20 mol% resulted in the formation of anatase crystalline structure, which is identical to that of pure 

TiO2; the Rietveld analysis of XRD patterns evidenced no significant deviation of the anatase structure 

parameters.  

An interesting trend can be also observed in the anatase crystalline size evolution with vanadium 

content within the solubility range: the size sharply increased at 2-3 mol% V, where brookite phase 

appeared, and remained twice smaller at the higher and lower vanadium contents. Furthermore, for 

20 mol% V, which corresponds to the TiO2/V2O5 phase segregation phenomenon, the particles 

coarsen to attain the size of ~18 nm. Concerning the α-V2O5 particles size, it appears to be far bigger 

than that of TiO2, which supports our previous conclusions about the precursor VTOA species 

nucleation in the sol-gel process (see Chapter 3). 

An increase of the heat treatment temperature showed a progressive transformation of anatase to 

rutile structure, as confirmed by XRD and Raman measurements. In contrast, new peaks (XRD) and 

bands (Raman) appeared at the intermediate temperatures between those characteristic of anatase 

and rutile phases crystallization: Tc = 600  100 °C (20 mol% V). These peaks/band may belong to the 

orthorhombic α-V2O5 phase, which would indicate the material segregation at intermediate heat 

treatment temperatures; in contrast, vanadium dissolution in anatase and rutile titania takes place at 

respectively lower and higher temperatures. Alternatively, these peaks may be due to a metastable 

VxTiyOz solid, which decays after its formation at high temperatures [If true, the preparation method 

specific to the nanoscale and elemental homogeneity (due to the micromixing conditions) could be of 

key importance for the novel materials realization.] 

Following the first stage of the size selected VTOA nanoparticles mass fabrication and structural 

characterization after the heat treatment, we have prepared photocatalytic nanocoatings with the 

vanadium content 0 ≤ V / (V+Ti) ≤ 0.2 by the VTOA chemical colloid deposition on glass beads with 
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the subsequent heat treatment at 450 °C for 4 hours. The photocatalytic activity of the prepared 

coatings was investigated under illuminations with UVA (=365 nm, 8 W) and visible (>390 nm, 50 

W) lamps. The MB kinetics was continuously monitored (i) in dark for 3 hours until attaining the 

equilibrium of the MB adsorption-desorption process on the catalyst surface and (ii) under lamp 

illumination during 3 hours for quantification of the photolytic and photocatalytic reaction kinetics. 

The photolytic and photocatalytic processes were distinguished. We showed that the activity of 20 

mol% V coatings vanished and could not be enhanced via heat treatment at higher temperatures up 

to 600 °C, which might improve material crystallinity. The best performance under UVA and Visible 

light illuminations showed V-TiO2 photocatalysts with respectively 2 mol% and 10 mol% vanadium. In 

contrast, the combined illumination of the 10 mol% V photocatalyst with the visible and UV photons 

(300 ≤  ≤ 390 nm) resulted in the activity inhibition. We tentatively assigned this finding to the 

population of specific active sites X1 and X2 in the respective 2 mol% V and 10 mol% V materials.  The 

site X1 can be populated after the photoinduced CB/VB charges relaxation (UVA lamp) and cannot be 

reached via the direct intragap excitation (VIS lamp). On the other hand, the state X2 can be accessed 

via direct intragap excitation (VIS lamp), while its population via the CB/VB charges relaxation (UVA 

lamp) not effective.  

 

Perspectives 

The applied method of the material preparation can be extended to other mixed oxide 

nanostructured solids. The actual maturity of the mass-fabrication method of size-selected 

nanoparticles with the controlled composition in the developed laboratory chemical reactor can 

permit considering its scale-up and technology transfer for large-scale applications. 

The principal issue of the V-Ti-O phase stability at ambient Pressure-Temperature conditions (Yang Y. 

et al., 2017) could be concerned by the proposed method of the material preparation. In fact, perfect 

homogeneity of the material composition at nanoscale (related to the nucleus size of R~2 nm) and 

size-specific material properties may lead to the unusual phase’s stabilization. The unassigned XRD 
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peaks and Raman bands, observed in this study at the intermediate heat-treatment temperatures 

between those characteristics of anatase and rutile phases crystallization: Tc = 600  100 °C, may 

belong to a metastable phase of VxTiyOz solid decaying after its formation at high temperatures. More 

work is required to identify this phase and relate it to a specific size of nanoscale solids and 

elemental composition during the nucleation process. 

The photocatalytic decomposition of MB in aqueous solutions can involve specific surface states, 

noticed in this work as X1 and X2, which can be populated respectively via CB/VB charges relaxation 

(UVA lamp) and via intraband photon absorption (VIS lamp). Both these states (and population 

channels) are connected to the vanadium insertion into anatase TiO2 lattice. Their nature and 

population mechanism could be of considerable interest in the environmental photocatalysis. The 

related studies could be pursued in a future, both experimentally and theoretically, to understand 

and, eventually, make it selective.  

The observed photocatalytic activity inhibition under the combined illumination of the 10 mol% V 

photocatalyst with the visible and UV photons (300 ≤  ≤ 390 nm) also requires more verifications 

and understanding. 
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Title:  

Elaboration of mixed metal oxide nanoparticles for applications in photocatalysis. 

Abstract: 

The PhD study is focused on synthesis of mixed vanadium-titanium oxo-alkoxy (VTOA) nanoparticles 

with size and composition control, preparation of photocatalytic coatings of these nanoparticles and 

study of their photocatalytic properties. The synthesis was carried out via sol-gel method in a 

laboratory chemical reactor with ultra-rapid micromixing. The particles size was monitored in-situ 

using dynamic/static light scattering methods. At relatively low vanadium content ≤10 mol% the 

analysis showed the nucleation of mixed VTOA particles of 2.1 nm radius. We showed that titanium 

oxo-alkoxy (TOA) species appear first and serve to be centers of attraction for hydrolyzed vanadium 

oxo-alkoxy (VOA) species at the nucleation stage. In contrast, at high vanadium content >20 mol%, 

VOA species percolate by imprisoning sub-nucleus TOA species prohibiting the nanoparticles 

appearance: this is connected to stronger hydrolysis and weaker condensation abilities of VOA 

species compared to TOA. The heat treatment of VTOA powders was studied in the range of 

temperatures 300-1000 °C. The TGA-TDA analysis showed a significant dependence of the anatase 

phase onset temperature on vanadium content, which supports perfect insertion of V atoms into 

host TiO2 matrix. The XRD and Raman analyses evidenced the appearance of orthorhombic α-V2O5, 

which could indicate the V-TiO2 material segregation phenomenon. The Rietveld analysis of XRD 

patterns evidenced no significant deviation of the anatase structure parameters. The photocatalytic 

nanocoating on glass beads were prepared by liquid colloid deposition of VTOA nanoparticles 

followed by their appropriate heat treatment (450 °C, 4 h). The photocatalytic activity was studied 

under illuminations with UVA (=365 nm, 8 W) and visible (>390 nm, 50 W) lamps: the methylene 

blue decomposition kinetics was monitored. The photolytic and photocatalytic processes were 

distinguished. The best performance under UVA and Visible light illuminations showed V-TiO2 

photocatalysts with respectively 2 mol% and 10 mol% vanadium. 

 

Keywords: 

Vanadium-titanium oxo-alkoxy nanoparticles, rapid micromixing reactor, nucleation-growth process, 

in situ size measurements, anatase V-TiO2 nanocoatings, photocatalysis, UVA / visible lamp 

illumination  
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Titre :  

Elaboration de nanoparticules d’oxydes métalliques mixtes pour des applications en photocatalyse 

Résumé 

Ce travail de thèse porte sur la synthèse de nanoparticules d’oxo-alcoxy mixtes de vanadium et de 

titane (VTOA) de taille et de composition chimique contrôlées, la préparation de dépôts (film mince) 

photocatalytiques à partir de ces nanoparticules et l'étude de leurs propriétés photocatalytiques. La 

synthèse a été réalisée par la méthode sol-gel dans un réacteur chimique de laboratoire à 

micromélange ultra-rapide. La taille des particules a été contrôlée in situ par des méthodes de 

diffusion dynamique/statique de la lumière. À une teneur relativement faible en vanadium ≤10 % 

molaire, l'analyse a montré la nucléation de particules mixtes VTOA de 2,1 nm de rayon. Nous avons 

montré que les espèces oxo-alcoxy de titane (TOA) apparaissent en premier et servent de centres 

d'attraction pour les espèces oxo-alcoxy de vanadium (VOA) hydrolysées au stade de la nucléation. 

En revanche, à une teneur élevée en vanadium >20 mol%, les espèces VOA percolent en 

emprisonnant les subnuclei de TOA, empêchant ainsi l'apparition de nanoparticules : ceci est lié aux 

capacités d'hydrolyse plus fortes et de condensation plus faibles des espèces VOA par rapport aux 

TOA. Le traitement thermique des poudres de VTOA a été étudié dans la gamme de températures 

300-1000 °C. L'analyse ATG-ATD a montré une dépendance significative de la température 

d’apparition de la phase anatase par rapport à la teneur en vanadium, ce qui soutient l'insertion 

parfaite des atomes de Vanadium dans la matrice hôte TiO2. Les analyses DRX et Raman ont mis en 

évidence l'apparition de la phase α-V2O5 orthorhombique, ce qui pourrait indiquer un phénomène de 

ségrégation du matériau V-TiO2. L'analyse Rietveld des diffractogrammes n'a mis en évidence aucune 

déviation significative des paramètres structuraux de l’anatase. Les nano-films photocatalytiques sur 

les billes de verre ont été préparés par une méthode de déposition en phase liquide à partir des 

suspensions colloïdales de nanoparticules VTOA, suivi par un traitement thermique approprié (450 

°C, 4 h). L’activité photocatalytique des dépôts a été étudiée dans l’UV et dans le visible sous 

illumination par une lampe UVA (=365 nm, 8 W) et visible (>390 nm, 50 W) : la cinétique de 

décomposition du bleu de méthylène a été suivie. Les processus photolytiques et photocatalytiques 

ont été distingués. Les meilleures performances sous les éclairages UVA et Visible ont été montrées 

pour des photocatalyseurs V-TiO2 avec respectivement 2 mol% et 10 mol% de vanadium. 

Mots Clés 

Nanoparticules d'oxo-alcoxy de vanadium-titane, réacteur à micromélange rapide, processus de 

nucléation-croissance, mesures de taille in situ, nano-films de V-TiO2 anatase, photocatalyse, 

illumination par lampe UVA / visible 

 


