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Résumé: La formulation de Plebanski de la relativité générale montre que la gravité en quatre
dimensions peut être étudiée comme un modèle topologique contraint. Cela a conduit une partie de la
communauté de la gravité quantique à étudier les théories (quantiques) des champs topologiques. Dans
ce contexte, des modèles de somme d’états sont utilisés pour décrire des invariants topologiques. Les
états de la théorie quantique sont des décompositions cellulaires d’une variété et la fonction de partition
est une somme sur de telles géométries discrètes. Dans cette thèse, je considère différentes approches
de la gravité quantique, toutes basées sur la description de géométries discrètes.

Dans la première partie de ma thèse, je résume brièvement les modèles matriciels, les modèles ten-
soriels et le modèle SYK. L’une des théories les plus réussies qui traite la gravité comme un modèle de
géométries discrètes est le modèle matriciel. Il s’agit d’une formulation d’intégrale de chemin dont les
champs fondamentaux sont des matrices. Les diagrammes de Feynman sont des cartes planaires inter-
prétées comme des graphes duaux aux géométries discrètes bidimensionelles. La fonction de partition
des modèles matriciels a donc été exprimée comme une somme sur les topologies bidimensionelles dont
l’expansion est dominée par les triangulations de la sphère. Le grand succès des modèles matriciels a
suggéré la description de la gravité quantique dans des dimensions supérieures en utilisant des tenseurs.
Cependant, contrairement aux modèles matriciels, la fonction de partition des tenseurs aléatoires s’est
avérée être dominée par des graphes assez simples qui ne codent pas les géométries appropriées.
Néanmoins, les modèles tensoriels ont jeté les bases des théories tensorielles des champs de groupe (GFT)
et ont joué un rôle de premier plan dans l’étude du modèle Sachdev-Ye-Kitaev. Il s’agit d’une théorie
quantique des champs unidimensionnelle qui décrit l’interaction d’un nombre arbitraire de fermions cou-
plés par un tenseur aléatoire. En ce sens, le modèle SYK est un exemple de système quantique à plusieurs
corps, avec une interaction chaotique non locale. Le modèle SYK attire encore plus l’attention en tant
que modèle de jouet unidimensionnel pour la dualité AdS/CFT. Je discuterai de la généralisation d’un
modèle SYK où les couplages obéissent à une distribution non-gaussienne. Je prouverai l’universalité
gaussienne et donnerai l’action effective du modèle, montrant les effets de la non-gaussianité comme une
modification de la covariance.

La deuxième partie de ma these est consacrée aux modèles de GFT. Le premier exemple de modèle de
somme d’états pour les variétés euclidiennes 3d est historiquement le modèle de Ponzano-Regge. Dans
ce cas, les représentations du groupe SU(2) sont utilisées comme décorations des cotés dans la variété
triangulée. Boulatov a proposé une théorie qui vise à redériver les mousses de spins comme diagrammes
de Feynman d’une théorie des champs. Le modèle a été appelé théorie des champs de groupe (GFT)
et a ensuite été généralisé en quatre dimensions. Les GFT peuvent être interprété comme la deuxième
description quantifiée d’un système quantique à plusieurs corps où les états sont les éléments constitutifs
d’une géométrie discrète; la fonction de partition est donnée en tant que somme sur les amplitudes de
tels états (spin foams) qui sont associés au représentations d’un groupe G donné. Je passerai d’abord
brièveent en revue les ingrédients essentiels du modèle, puis je proposerai deux nouvelles généralisations.
La première est basée sur les algèbres de Hopf et vise à décrire une 3d GFT où l’espace des configurations
et les espaces des moments sont courbes et non commutatifs. La deuxième généralisation est basée sur
les 2-groupes. Dans cette partie, je donnerai d’abord quelques arguments selon lesquels 2-groupes sont
nécessaires pour décrire des variétés discrètes à quatre dimensions; je discuterai de la construction d’un
espace des phases décoré par des éléments de 2-groupe, et puis j’appliquerai ce résultat pour construire
la GFT associée, exprimant la fonction de partition sous la forme d’une somme d’états.

Mots-clés: Géométries Discrètes, Gravité Quantique, GFT, Modèle SYK

Abstract: The Plebanski formulation of general relativity suggests the analysis of four dimensional
gravity as a constrained topological model. This led the focus of part of the quantum gravity community
towards topological (quantum) field theories. In this context, state sum models are used to describe
manifold invariants. The states of the quantum theory are parameterized by the cellular decompositions
of a manifold and the partition function is a sum over such discrete geometries. In this thesis I discuss
different approaches based on the field theoretical formulation of discrete geometries.

In the first part of my thesis I briefly summarize matrix models, tensor models and the SYK model.
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One of the most successful theories that treats gravity as a model of discrete geometries is the matrix
model. This is a path integral formulation whose fundamental fields are matrices. The Feynman
diagrams are planar maps interpreted as the graphs dual to 2d geometries. The partition function of
matrix models can be expressed as a sum over the 2d topologies, whose expansion is dominated by
triangulations of the sphere. The great success of matrix models suggested the description of quantum
gravity in higher dimensions using tensors. However, differently from matrix models, the triangulations
obtained using random tensors turned out to be dominated by rather simple graphs which do not encode
the proper geometries. Nevertheless, tensor models laid the foundations of tensorial group field theories
and played a prominent role in the study of the Sachdev-Ye-Kitaev (SYK) model. The latter is a 1d
quantum field theory that describes the interaction of an arbitrary number of fermions coupled by a
random tensor. The SYK model gathered a large attention as a one dimensional toy model for the
AdS/CFT duality. I discuss the generalization of a particular case of the Gross-Rosenhaus version of a
complex SYK model, where the couplings obey to a non-Gaussian distribution. I prove the Gaussian
universality and provide the effective action of the model, showing the effects of the non-Gaussianity as
a modification of the covariance.

The second part is dedicated to group field theories. The first example of a state sum model for 3d
Euclidean manifolds, was the Ponzano-Regge model. In this case, representations of the SU(2) group
are used as decorations of the edges in the triangulated manifold. In a similar spirit, Penrose constructed
what is called now spin networks, by associating representations of SU(2) and intertwiners to respectively
links and nodes of a graph. Boulatov proposed a theory that aims to recover the Ponzano-Regge state
sum as the Feynman diagrams of a field theory. The model was called group field theory and was
later generalized in four dimensions. Group field theories can be interpreted as the second quantized
description of a many body quantum system where the states are the building blocks of a discrete
geometry; the partition function is expanded as a sum over the amplitudes of such states (spin foams)
which are associated to the representations of the given gauge group. I first provide a short review of
the essential ingredients of the model, and then I propose two new generalizations of it. The first is
based on Hopf algebras and aims to describe any possible group field theory associated to a phase space
where both the configuration and momentum spaces are curved and non-commutative. The second
generalization is instead based on 2-groups. In this part, I present first a few arguments according
to which 2-groups are the tool needed to describe topological features of four dimensional manifolds;
then I discuss the construction of a phase space decorated by 2-group elements and finally I apply this
construction to formulate a 2-group field theory, expressing the partition function as a state sum.

Keywords: Discrete Geometries, Quantum Gravity, Group Field Theories, SYK model

Unité de recherche
LaBRI, UMR CNRS 5800
351, cours de la Libération,

33405 Talence, France
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Introduction

The problem of quantum gravity

The description of quantum gravitational phenomena as well as the definition of a quantum
space-time and ultimately the unification of the standard model with gravity, are some of the
main challenges addressed in theoretical physics for many decades. The main issue for the
formulation of a proper quantum gravity model is the lack of experimental evidence. Differently
from the formulation of past theories, such as thermodynamics, electromagnetism and even
quantum mechanics, we can not compare the predictions of any model of quantum gravity with
the experimental data. Nowadays, a common approach to formulate models of quantum gravity
is to make assumptions based on our intuition; here I want to focus on one particular intuition:
the connection between gravity and topological models.

According to Einstein’s formulation, what we call gravity is the dynamics of the space-time’s
geometry. Space-time is not fixed, it changes its shape, stretches and contracts according to the
distribution of energy and matter in it. In turn, its curved shape dictates the trajectories of
moving particles and macroscopic bodies. The approach used to accomplish this description, in
Einstein’s general relativity, is that of a field theory. The field is the ingredient that encodes the
fundamental degrees of freedom of the model. In the case of gravity, such field is the metric of
the space-time, that contains the information about distances and shape of the geometry.

On the other hand, quantum mechanics deals with the description of microscopic phenom-
ena, and one of the initial milestone on which it is funded is the duality between waves and
particles. As a consequence, the dynamics of particles ceases to be deterministic, and becomes
probabilistic; the evolution of microscopic bodies can not be described as a single path, but
rather as multiple trajectories that connect the initial to the final state, weighted by different
probabilities. This feature is realized by describing particles through some objects known as
wave functions. Remarkably, also quantum mechanics can be formulated as a field theory, where
such wave functions cover the role of fields. The modern formulation of quantum mechanics is
due to Feynman, in terms of the so called path integral. Here, all the features of the system in
consideration are encoded in a single object, called partition function, interpreted as the sum
over all the possible paths pursued by the evolution of such system. From the partition function
is possible to derive all the predictions of the model, which are thus the probabilities that a
given system evolves from an initial to a final setting, following one of the possible paths. This
reflects the probabilistic nature of quantum mechanics. Feynman also introduced a graphical
tool – the Feynman diagrams – that allows to compute these predictions in a rather simple way,
according to a set of rules.

Although the modern formulation of gravity and quantum mechanics share the same lan-
guage of fields, their unification in a common theory remains a very complicated task; the true
natures of the two models seem to be incompatible. One of the warnings relies in their funda-
mental formulation: quantum mechanics describes particles moving on a fixed space-time, while
gravity describes the dynamics of such background. This is known for instance the background
independence problem. Even the mere description of the quantum behaviour of gravity turned
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out to be highly non-trivial, and determining what are the fundamental ingredients of a quan-
tum theory of gravity is not an obvious job. Since there are no observations of any quantum
gravitational phenomena, and since their theoretical formulation seems to be very complex, it
is reasonable to wonder whether a theory of quantum gravity is actually necessary. There are
some cases, such as the interior region of a black hole or the first moments of life of our universe,
where it is expected that quantum gravitational phenomena were dominating. Neither quantum
mechanics or general relativity could be able to properly describe such regimes.
So, where do we start from to construct a model of quantum gravity? Over the years different
ideas originating from different motivations converged to some common schemes. One possibility
is thus to make some assumptions based on these schemes, which will drive us towards the for-
mulation of the model. For example, Penrose proposed to reconstruct space(time) by colliding
objects with a rotational symmetry, with a conservation of angular momentum [1]. This can be
represented as a graph decorated by representations of some group, such as SU(2), with nodes
decorated by interwiners. These graphs were called spin networks. At the same time, gauge
theory was developed and in particular lattice gauge theories were used to describe topological
models. In this context, the invariants of a manifold can be encoded as the global (gauge) degrees
of freedom of the lattice, and the symmetries of the manifold can be reconstructed by concate-
nating some fundamental geometric building blocks. Also the model proposed by Penrose can
be expressed in this language, as the spin networks are interpreted to encode the fundamental
quantum states of a discrete geometry. Later on, the spin foams were constructed as the tran-
sition amplitude between such quantum states [2]. From a geometric perspective, spin foams
characterize how the building blocks of a given geometry can be glued together to reconstruct
the space-time manifold, whereas from a field theoretic point of view, they are the transition
amplitudes between quantum states.
The idea of reconstructing the symmetries of a manifold by merging the fundamental pieces of
a discrete geometry will be the main direction that I will follow in this thesis. It will be the
common thread between different approaches that I am going to discuss. However, gravity is
a topological model only in two or three dimensions. The way to reconstruct the gravitational
degrees freedom in higher dimensions is to make use of the constrained systems approach, in-
troduced by Dirac [3]. Indeed, the Plebanski formulation of general relativity [4] suggests that
gravity in four dimensions can be studied as a constrained topological model (constrained BF
model [2]). From this perspective, inspired by topological (quantum) field theories [5, 6], one
can construct models of quantum discrete geometries as topological state sum models, where the
states are amplitudes associated to discrete geometries or cellular decompositions of a manifold
(eventually spin foams). Ultimately, the proper dynamics or the proper degrees of freedom can
be implemented by imposing the required constraints.

Matrix and tensor models

As discussed above, a fundamental assumption that I will adopt in this thesis, is that we can
use (quantum) discrete geometries to characterize the quantum gravity regime. Under this
perspective, gravity is thus understood as a lattice (gauge) theory [7]. One of the most successful
theory in this direction is the matrix model [8–11]. This is a path integral formulation whose
fundamental fields are matrices. The Feynman diagrams are the so called ribbon graphs : these
are maps drawn on a surface that can be interpreted as the graphs dual to a two dimensional
cellular decomposition. The model gathered large notoriety when ’t Hooft provided the large
N expansion [12] for the related partition function. The idea is to associate to each graph, a
weight governed by its genus. This expansion allowed to control the series of ribbon graphs and
to express the matrix model partition function as a (state) sum for a model of two dimensional
discrete geometries. Here the sum goes over the 2d topologies and the expansion is dominated
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by triangulations of the sphere. Later on, matrix models have been fully solved with the use of
topological recursion [13] and related to two dimensional quantum gravity [14].

The great success of matrix models suggested the description of quantum gravity or discrete
geometries in dimension higher than two, using tensors. This new formulation was first intro-
duced in [15] as the natural generalization of matrix models. It still consists in the path integral
formulation of a field theory, whose Feynman diagrams are graphs dual to triangulations of a d
dimensional manifold. However, differently from matrix models, the large N expansion for the
partition function was much harder to derive, it came after more than twenty years for a specific
class of these models based on colored tensors [16–18]. Unfortunately, as the large N expansion
of matrix models properly describes two dimensional discrete geometries, the expansion of ten-
sors is dominated by rather simple graphs which do not encode the proper degrees of freedom
to describe gravity.

Despite the failure of tensor models to describe higher dimensional discrete geometries, they
turned out to be precious in the study of renormalization of quantum gravity models [19], they
laid the foundations of tensorial group field theories (that I will discuss later and consist in
the major part of this manuscript) and played a prominent role in the study of the Sachdev-Ye-
Kitaev (SYK) model [20,21]. The latter is a one dimensional quantum field theory that describes
the interaction of an arbitrary number of fermions. The connection with tensor models relies
in the fact that the coupling between such fermions is assumed to be a random tensor. In this
sense the SYK model is an example of a many body quantum system, with a non-local chaotic
interaction [22]: in terms of Feynman diagrams, the fermions do not interact at a point, but
rather in an extended area represented as the graph associated to the tensor coupling. Despite
such inspiring interpretation, the SYK model gathered even more attention as a one dimensional
toy model for the AdS/CFT duality [23].

Tensorial group field theories

One of the first examples of state sum model for three dimensional Euclidean manifolds, where
gravity is naturally a topological theory, was the Ponzano-Regge model [24]. In this case,
the states are based on representations of the SU(2) group, which are used as decorations of
geometric objects in the triangulated manifold, see also [25]. The approach of using group
representations to describe discrete geometries, is at the root of spin foam models [26, 27]. In
this context, graphs dual to the cellular decomposition of a three dimensional manifold (dual
complexes) are associated to the states of the quantum theory. A similar construction was first
introduced by Penrose in [1], where these graphs where called spin networks [28], and later on
it was extensively used in Loop Quantum Gravity [29–31]. The dynamical evolution (transition
amplitude) from one spin network to another is encoded in the graphs called spin foams, which
are thus interpreted as the graphs dual to triangulations of four dimensional manifolds [2]. In
this sense, spin networks are understood as the boundary (states) of spin foams.

In [32], Boulatov proposed a new theory that aims to recover the graphs generated by the
Ponzano-Regge model as the Feynman diagrams of a field theory. This model, called group field
theory (GFT), was based on the gauge symmetry group SU(2), and constructed in such a way its
Feynman diagrams are complexes dual to three dimensional triangulations. The four dimensional
generalization of group field theory was proposed by Ooguri, in [33]. It was then shown that any
spin foam amplitude could be recovered as the Feynman diagram of a specific group field theory
[34]. Remarkably, group field theories can be interpreted as the second quantized description
of a many body quantum system [35], where the states are the building blocks of the cellular
decomposition of a manifold (in arbitrary dimension). The partition function of the model can
be expanded as sum of the amplitudes associated to such states, which are thus spin foams.

9



A possible application of group field theories is to recover continuum physics as an effective
behaviour of group field theory [36–38]. It should be clear that group field theories are a specific
class of tensor models with an enriched set of (algebraic) degrees of freedom associated to the
Feynman diagrams. The amplitudes of GFT’s are indeed associated to the representations of a
given group G, rather than to the degree of the graph as in the theory of random tensors. Hence,
GFT’s turned out to provide a more suitable description of discrete geometries in dimension
higher than two, than ordinary tensor models. Lastly, I would like to mention two of the most
celebrated examples of models that can be recast as group field theories: the Barrett-Crane
model [39] and the EPRL model [40], which is the most advanced version of spin foam models.
In both cases a group field theory based on the Lorentz group is considered. Despite group field
theory is initially introduced as a topological model, neither the Barrett-Crane or the EPRL
models are topological; they can indeed be formulated as constrained version of specific group
field theories. The implementation of gravity that breaks the topological invariance is due to the
simplicity constraint [4]. This condition appears first in the Plebanski formulation of gravity,
expressed as a constrained BF model, and relates the metric degrees of freedom to the bi-vector
field [30,41].
Although the gravitational model is clearly the most interesting case, when discussing some
tensorial group field theory models in this thesis, I will focus on the topological (unconstrained)
formulation of discrete geometries, leaving the implementation of the simplicity constraint for
later investigations.

Let me now present the plan of my thesis. In the second chapter I will discuss the basic
features of matrix and tensor models and their fundamental ingredients. In this part, I would like
to stress their interpretation as field theories generating discrete geometries and their formulation
as state sum models. This point is particularly important for my discussion, since it can be
seen as the common thread between the different approaches to discrete geometries that I am
presenting here. The connection between random matrices and two dimensional quantum gravity
will also be emphasized.

Ch. 2 is then focused on the Sachdev-Ye-Kitaev model. I will introduce first its main aspects,
pointing out the reasons why it became so popular; I will mention the several versions in which it
can be studied and the features in common with tensor models. Then, I will discuss a work done
in collaboration with T. Krajewski, R. Pascalie and A. Tanasa [42]. In this project we considered
a complex version of a specific Gross-Rosenhaus generalization [43] of the SYK model, where the
tensor couplings obey to a general non-Gaussian potential. We prove the Gaussian universality
which, for colored tensor models, was shown in [44]; then we provide the effective action of the
model and highlight the effects of the the non-Gaussian distribution as a modification of the
covariance.

Later, I will move to the discussion of tensorial group field theories. I provide an introductory
summary of the three dimensional model in Ch. 3. The purpose of this chapter is twofold: I
want to give an overview to the reader who is not familiar with the topic, and mostly, I would
like to emphasize the main aspects of a group field theory that I will often recall in the rest of
the thesis.

In chapter 4 indeed I want to discuss a generalization of three dimensional group field theory,
based on Hopf algebras. Called Hopf algebra field theory, this is a project in collaboration with
F. Girelli [45]. First, I will introduce the concepts of Hopf algebras and quantum groups. These
can be seen, for now, as a generalization of groups, used for instance as the tool that encodes the
proper symmetries of (discrete) three dimensional gravity. I will first introduce the Hopf algebra
ingredients extensively used in the formulation of the new model, and then I will provide its main
aspects in analogy with ordinary group field theories. In the final part of the chapter I explain
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that Hopf algebra field theory can be regarded as the path integral formulation generating the
Turaev-Viro amplitude [46].

Ch. 5 is dedicated to another generalization of group field theory, based on 2-groups. The
latter is a mathematical tool used to generalize some concepts of differential geometry, such as
the parallel transport on a manifold. It was also suggested that 2-groups are the right tool to
properly encode the topological features of a four dimensional manifold. This is why, together
with F. Girelli and P. Tsimiklis, we provided the construction of the phase space of a three
dimensional cellular decomposition, decorated with 2-group elements [47]. This construction,
presented in the first part of Ch. 5, aims to provide a basis for the description of the discrete
geometries that, upon quantization, will be interpreted as the quantum states of an eventual
state sum model. The step further is addressed in a project in collaboration together with F.
Girelli, A. Tanasa and P. Tsimiklis in [48]. I will discuss this work in the second part of Ch. 5;
here we formulate a group field theory based on 2-groups, where indeed we use the construction
provided in [47] to define the kinematical states of the model. Finally, we show that the new
model provides a topologically invariant state sum.
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Chapter 1

Random matrix and tensor models

In this chapter I briefly review the theory of random matrices and random tensors, and their
application to discrete geometries or quantum gravity. This is an overview with a specific focus
on the aspects that will be useful for the rest of my thesis. One can find more details on matrix
models in [8, 11, 13, 49]; I refer to [14] for a discussion on the relation between random matrices
and two dimensional quantum gravity, and [50] for more hints on the combinatorial aspects.
Moreover, the books [9, 10] contain a complete overview on the model. General reviews on
tensor models instead are [51–55].

1.1 Random matrices

In the past decades, matrix models have been largely studied for their various application in
combinatorics, probability and mathematical physics [11]. They have been first introduced
by Wigner [56] to study the diffusion of neutrons with heavy atoms. The initial Wigner’s
intuition was similar to the arguments that led Boltzmann to the formulation of statistical
mechanics. The classical deterministic approach was too complicated for systems with large
number of particles, or large number of degrees of freedom. Therefore, Boltzmann formulated a
probabilistic description of the macroscopic system, in which the probability distribution depends
on the symmetries of the system (related to the type of microscopic interactions between the
components). Similarly, when the mass of an atom or the energy of a neutron are too high, the
diffusion between the two depends on too many degrees of freedom and its description in terms
of ordinary quantum mechanics becomes too complicated. Wigner thus proposed to encode the
degrees of freedom (the symmetries) of such system in a random matrix. The job then reduces to
study the distribution of the eigenvalues of such matrices. Assuming that these matrices follow
a Gaussian distribution, the partition function of the system is

Z =

∫
MN×N

dM e−
N
2
Tr(M2) , (1.1)

where M is the spaces of the N ×N Hermitian matrices with probability measure

dM =
1

2N
(
N/π

)N2

2

N∏
i=1

dMii

∏
i<j

dℜMijdℑMij . (1.2)

In this context, the eigenvalues λn are distributed according to the function ρ(x) = 1
N

∑
n ⟨δ(x−

λn)⟩. Using the resolvent technique (see [9, 10]) one finds the celebrated semi-circle law [56] for
the distribution of the resonant energies of the diffused neutron

ρ(x) =
1

π

√
x2 − 2 . (1.3)
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A more general model of random matrices is based on a non-Gaussian distribution of the type

Z[tn] =

∫
dM e−

N
2
Tr(M2)+N

∑
n>2 tnTr(M

n) , (1.4)

where each coefficient tn is the coupling related to the product of n matrices. This partition
function can be expanded with respect to the couplings as

Z[tn] =
∑

{in}n∈N

∫
dM

∏
n

(Ntn)
in

in!
Tr(Mn)in e−

N
2
Tr(M2)

=
∑

{in}n∈N

∏
n

(Ntn)
in

in!

〈
Tr(Mn)in

〉
. (1.5)

Using the Wick Theorem it is possible to split the average
〈
Tr(Mn)in

〉
as a sum of products of

simpler terms of the type ⟨Tr(Mm)⟩. Each of these terms can be interpreted as the momentum
of a Gaussian distribution (the terms with an odd power indeed vanish). In order to compute
the average ⟨Tr(Mm)⟩, one can use a graphical interpretation of such random matrices in terms
of ribbon graphs. The latter are constructed as follow. Each matrix Mij is represented as an half
edge given by a pair of oriented lines:

Mij :
i

j (1.6)

The trace of the square of matrices is the sum over the indices, represented as a full edge given
by the conjunction of two of such oriented lines:

⟨MijMji⟩ :
i

j (1.7)

The product of m matrices Mm is represented by a central vertex attached to m outgoing half
edges

Mm :

(1.8)

Hence, the general term ⟨Tr(Mm)⟩, called petal diagram, is a sum over the graphs given by all
the possible contraction of such half edges with each other. The Wick’s theorem hence allows to
compute each diagram ⟨Tr(Mn)in⟩ as a resulting power of N : each graph takes a contribution of
N for each vertex, a contribution of 1/N for each edge and again a power of N for each closed
path of edges, called face. Denoting V (Γ), E(Γ) and F (Γ) resp. the number of vertices, edges
and faces of the graph Γ, the resulting contribution in N is thus

NF (Γ)−E(Γ)+V (Γ) = N2−2g(Γ) = Nχ(Γ) , (1.9)

where g(Γ) and χ(Γ) are the genus and the Euler’s characteristic of Γ. The partition function
(1.4) thus reduces to a sum over all the possible ribbon graphs expanded in a formal power series
in 1/N (a state sum):

Z[tn] =
∑
Γ

N2−2g(Γ)

|Sym(Γ)|
∏
n

tvn(Γ)n . (1.10)
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Here Sym(Γ) is the order of the symmetry group of the graph Γ and vn(Γ) is the number of
n-valent vertices of Γ. Taking the logarithm of eq. (1.10) reduces to the partition function to
only connected graphs

F [tn] = logZ[tn] =
∑

Γ connected

N2−2g(Γ)

|Sym(Γ)|
∏
n

tvn(Γ)n . (1.11)

Since the genus of a graph is always positive or null, it is clear that the above expansion in 1/N
is bounded by N2. This allows the study of matrix models for large values of N . In this case,
the dominant ribbon graphs are those with vanishing genus, called planar graphs. One observes
that the graph expansion of such planar graphs becomes critical when the coupling constant tn
reaches a critical value tc. Such regime is called double scaling limit [54]. It amounts to take the
large N limit (N → ∞) and, at the same time, the limit of the coupling tn to the singularity tc,
such that the product x = N(t − tc)

α remains constant. In this limit, the partition function of
connected graphs (1.11) assumes the shape of

F [tn] =
∑
g

x2g−2Kg , (1.12)

with Kg being some constant that depends on the genus. Since the terms Kg’s are all positive,
the sum converges only if one reduces the model to convergent matrix integrals, see [9,10]. The
main reason why the double scaling limit is interesting for our purpose, is that in this regime,
the average number of vertices of a graph diverges, which can be interpreted as the recover of a
continuum geometry. The double scaling limit can thus be considered as a continuous limit for
the two dimensional quantum gravity interpretation of random matrices.

Random matrices and 2d quantum gravity

The partition function (1.11) characterizes the field theory based on a single type of Hermitian
matrix M randomly distributed. It is possible to further generalize the model, for instance to
the multi-matrix case. This lies outside the purpose of this thesis, since we are interested in
matrix models for their application to two dimensional quantum gravity [14].
The ribbon graphs introduced above are the Feynman diagrams of a matrix model with partition
function (1.4). They can be interpreted as the graphs dual to the cellular decomposition of a
two dimensional manifold. The latter is constructed by associating an n-valent polygon to each
n-valent vertex of the ribbon graph, with the edges of the polygon being orthogonal to the
(double) edges of the ribbon graph. The choice of Hermitian matrices ensures that the cellular
decomposition is orientable. An open ribbon graph and the construction of its dual 2d cellular
decomposition are represented in Fig. 1.1a and 1.1b. The fact that the Feynman diagrams of a
matrix model encode any two dimensional cellular decomposition, should already give an idea
of why these models are related to discrete geometries and eventually to quantum gravity. A
more precise argument is the following. The Einstein-Hilbert action for d = 2 can be computed
exactly, and it turns out to be proportional to the Euler characteristic

SEH [g] =
c4

16πG

∫
Σ

dx2
√
gR(g) =

2π

G
χ(Σ) . (1.13)

Here Σ is a two dimensional manifold and g is the metric on it. One could also insert the
contribution of the cosmological constant as

SEH [g,Λ] =
c4

16πG

∫
Σ

dx2
√
g(R(g)− Λ) =

2π

G
χ(M)− ΛA(Σ) . (1.14)
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(a) Open ribbon graph made of a single 3-valent
vertex, two 4-valent vertices, one 5-valent and one
6-valent vertices.

(b) Open ribbon graph together with its dual 2d
cellular decomposition: each n-valent vertex is as-
sociated to an n-polygon.

The only dynamical variables are the Euler characteristic, coupled to the Newton constant, and
eventually the area A(Σ) coupled to the cosmological constant. The partition function associated
to 2d quantum gravity, formulated as a (quantum) field theory, is

ZEH =

∫
dg e−SEH , (1.15)

where for simplicity I considered the Euclidean case. At the discrete level, the integral in the
partition function of 2d quantum gravity (1.15) can be interpreted as a sum over sufficiently
refined 2d triangulations, and thus over the ribbon graphs. Expressing the two dimensional
Einstein-Hilbert action can be expressed in terms of the Euler characteristic and the area as in
(1.14), one obtains the relation between matrix models and two dimensional gravity with the
proper map that relates the cosmological constant Λ and the size of a matrix N , resp. to the
couplings of the model tn and to the Newton constant N = e

2π
G and tn = eΛ (see also [50]). In

this way, the discrete version of the partition function (1.15) is expressed through a sum over
ribbon graphs, similar to the one of matrix models (1.11):

ZEH =

∫
dg e−

c4

16πG

∫
Σ dx2

√
g(R(g)−Λ) =

∫
dM e−

N
2
Tr(M2)+N

∑
n>2 tnTr(M

n) . (1.16)

1.2 Random tensor models

Motivated by the great success of random matrices, random tensors were first proposed in [15]
as the natural generalization of matrix models to describe higher dimensional quantum gravity.
In this section I will briefly review the main aspects of tensor models, mentioning the various
formulations proposed during the years and I will discuss their application to describe discrete
geometries in dimension higher than two.
There exist several random tensor models. They usually differ by two aspects: whether the model
is real or complex, and whether it is colored or not (see [53] for more details). The Feynman
diagrams of the real model are graphs where all the vertices carry the same weight (the coupling
constant); whereas in the complex model there are two different couplings associate to black
and white vertices of the graph. Normally, such type of graphs are bipartite, which means that
each black vertex is connected only to white vertices, and vice-versa. The choice of the colored
tensors instead leads to the so called edge colored graphs, where the edges are labelled by different
colors, associated to an extra label of the tensor. There exist several other generalizations of
tensor models in the mathematical phsycs literature, for instance the model based on O(N) [57]
invariant tensors, the uncolored version [58] or the multi-orientable model [55,59] attracted much
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attention; however, in this manuscript I only provide a brief introduction to the basics features
of the QFT model and its combinatorics, to set the ground for discussing the SYK model and
group field theories. Therefore, I will restrict this section to the case of complex, colored random
tensors, which are naturally associated to orientable discrete cellular decompositions.
Following a similar pattern to matrix models, let us this consider the complex colored tensor
model whose fields are given by rank d tensors Ta1,...,ad and T a1,...,ad , that transform under the
action of a given symmetry group, say (d copies of) the unitary group U(N)×d, in the sense that
each index of the tensor transforms under the action of one of the copies of the symmetry group.
The model is assumed to be invariant under the action of such group. The coloring of the model
relies in the fact that the tensor indices are distinguished. The Feynman diagrams of the model
are d colored, bipartite graphs, where each tensor Ta1,...,ad is assigned to a black vertex attached
to d half edges, and its conjugate tensor T a1,...,ad is assigned to a white vertex attached to d half
edges,

1
2

d− 1

d

Ta1,...,ad :

1
2

d− 1

d

T a1,...,ad :
(1.17)

The quadratic (or Gaussian) term of the action that governs the model is of the type

SK = N
d
2 Tr(T ai Tai) , (1.18)

where the trace, that ensures the invariance under U(N)×d, stands for a sum over all the indices,
respecting the coloring. The graph associated to the Gaussian term is called diopole and it is
represented in Fig. 1.2a. Because of the invariance request, all the Feynman diagrams are given
as combination of a pair of tensors T and T (not necessarily with all the indices contracted); this
reflects the bipartiteness of the graphs. Given a graph Γ constructed by the combination of a
number of tensors T, T , the coloring allows to identify the so called p-bubbles, with 0 ≤ p ≤ d−1.
These are sub-graphs of Γ with only p-valent vertices. For instance, a 0-bubble is a vertex, a
1-bubble is a single edge, a 2-bubble is a face made of a combination of two alternated coloring of
edges. Without going further in the details, I would like to mention that the concept of bubble
turns out to be very useful in the definition of boundary graphs, which is a key aspects in the
study of discrete geometries. Moreover, to each d colored graph one can associate d!/2 ribbon
graphs constructed as the graph whose faces are are given by cycles of the colors, modulo their
orientation and permutation. These are called jackets J (Γ) of the graph Γ [16,17]. The jackets
of a graph are then used to introduce the degree:

ω(Γ) =
∑
J (Γ)

gJ , (1.19)

where gJ is the genus of the jacket J . The partition function of random tensor models admits
an expansion over the graphs as a power series in 1/N , governed by the degree ω. Therefore,
the general partition function for a complex, colored tensor model turns out to be

Z[tΓ] =

∫
dTdT exp

(
Nd−1

∑
Γ

N− 2
(d−2)!

ω(Γ)

|Sym(Γ)|
tΓ ⟨T, T ⟩Γ

)
. (1.20)

Here tΓ is the coupling associated to the graph Γ, and ⟨T , T ⟩Γ is the respective invariant in
terms of the tensors T and T . Similar to the case of random matrices, taking the logarithm
restricts the above partition function to only connected graphs.
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2

d− 1

d

(a) Dipole graph: it is constructed
as a pair of black and white vertices
connected by d edges.

1 1

2

d

1 1

2

d

2

d

(b) Example of dipole insertion: first cut an edge (color
1), then add a pair of black and white vertices and finally
connect them by d− 1 edges, respecting the coloring.

Figure 1.3: Example of bipartite melonic graphs. On the left the quartic (two pairs of black and
white vertices) graph, called pillow. On the right a graph with four pairs of black and white
vertices.

Large N behaviour and double scaling limit

The expansion in 1/N of colored tensor models [16–18, 60, 61] (eq. (1.20)) was an important
step towards the study of tensor models since it allows a classification of its Feynman graphs.
However, while the graph expansion (1.11) of the random matrices, being governed by the genus,
is a topological expansion, in the case of random tensors the degree is not a topological invariant.
This aspect does not preclude the study of the leading order of tensor models for large values
of N . The dominant graphs here are called melonic graphs, which are constructed as follows.
One can start by the simplest graph, the dipole, made of two vertices connected by d+1 edges,
see Fig 1.2a. Then, apply a dipole insertion to one of its edges. The latter consists in cutting
one of the edges of the graph, inserting a pair of black and white vertices attached to the half
edges (respecting the bipartiteness) and subsequently connecting the two new vertices through
the remaining d edges, respecting the coloring. The dipole insertion is represented in Fig. 1.2b.
The family of melonic graphs is isomorphic to the class of trees, indeed all the graphs generated
by iterations of such dipole insertion are melonic graphs and have zero degree. Some example
of such graphs are given in Fig. 1.3. All the melonic graphs are dual to triangulations of the
sphere, even if not all the triangulations of the sphere are dual to melonic graphs (this shows
that the expansion (1.20) is not topological).
Similar to matrix models, the expansion (1.20) can be re-written as a power series in x =
N(t− tc)

α, for some α that depends on the model, where tc is the critical point of the coupling
t (if there are more coupling constants tΓ, the limit becomes more complicated). Therefore,
one can again perform the double scaling limit [62], taking N → ∞ and t → tc such that the
parameter x remains constant. The case of random tensors is slightly more complicated than
random matrix models and one has to use the intermediate field technique to recover the proper
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result, see [61] for more details.

1.3 Remarks

Matrix and tensor models played a central role in the past decades in the understanding of
quantum gravity as a model of discrete geometries. In particular, these models suggested the
possibility of formulating a field theory with Feynman diagrams interpreted as the graphs dual to
cellular decompositions of d dimensional manifolds. In this perspective, the U(N)×d+1 invariance
of random matrices or random tensors played the role of the discrete version of invariance under
the change of coordinate in general relativity. While the single and double scaling limits were
interpreted as some sort of continuous limits for the theory. However, if matrix models have a
rather sufficiently complicated large N limit, governed by planar graphs, tensor models present
a much simplified behaviour dominated by continuous trees (melonic diagrams). This suggested
that, despite their suggestive intereptation, random tensor models are not rich enough to describe
the quantum version of gravity in dimension higher than two.
One of the most prominent attempts to generalize random tensor models is tensorial group field
theory, which I will discuss in more detail in Ch. 3. Before going through GFT’s, I would like
to discuss another topic that I have been working on during the first period of my Ph.D, still
related to tensor models: the Sachdev-Ye-Kitaev model.
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Chapter 2

The Sachdev-Ye-Kitaev model with a
non-Gaussian disorder average

This chapter is dedicated to the Sachdev-Ye-Kitaev (SYK) model, which reached large audience
mostly for its relation to holographic models of gravity such as AdS/CFT. I will also mention
the relation between SYK and tensor models, which is a fundamental aspect for the present
thesis. After a short summary of the fundamental aspects of the SYK model, I will discuss some
results obtained in collaboration with T. Krajewski, A. Tanasa and R. Pascalie in [42].
The Sachdev-Ye-Kitaev model was first introduced by Sachdev and Ye in [20] and later presented
by Kitaev during a session of two talks at KITP [21]. The model is a one dimensional quantum
field theory, based on N Majorana fermions ψia(t) with ia = 1, . . . , N , coupled by a q-valent
random tensor (quenched disorder) Ji1,...,iq with entries independently chosen from a Gaussian
distribution. The model, governed by the Hamiltonian

H = i
q
2

∑
i1,...,iq

Ji1,...,iq ψi1 . . . ψiq , (2.1)

can thus be interpreted as a many body system, where each particle interacts with each other.
The Feynman graphs of the model are made of fermionic legs following the ordinary Feynman
rules, that meet at points weighed by the coupling J . Since the coupling is not a constant but
rather a random tensor, such points can be represented in turn by sub-graphs exhibiting the
disorder. In this sense the interaction between fermions is non-local. Several versions of the
SYK model were proposed in the past, such as the higher dimensional generalization [63], its
complex version [64], a generalization of the model with several flavours was proposed by Gross
and Rosenhaus in [43] and the supersymmetric version was also constructed in [65,66].
The SYK model gathered a large attention in several areas of physics mostly for its versatility
and for the many interesting features that it presents. In particular, one has to mention the
main three attractive properties of the model [22,67,68].

• Maximally chaotic: the study of quantum chaos is a branch of quantum mechanics that
quantifies how a given system depends on its initial state. A quantum system is said to be
chaotic when it is highly sensitive to the initial conditions. This aspect is measure by the
out-of-time order (four point) correlation function, which gives the Lyapunov exponents.
If these parameters saturate at a maximum value for large times, the model is said to be
maximally chaotic.

• Integrable at large N : the SYK model classicalizes in a certain regime (for large values of
N). This implies that in this limit the model reduces to a system of classical equations
which are exactly solvable (integrable), even for strong couplings.
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G = Σ + Σ Σ + · · ·

Σ =

G

G

G

+ · · ·

Figure 2.1: Solution of the Schwinger-Dyson equation for the two point function of the SYK
model in the large N limit. The two point function G is given as a combination of free energies
Σ, which contains all the iterated melonic diagrams.

• Conformally symmetric in the infrared : for low energies the two point function of the model
presents a one dimensional conformal symmetry, which is spontaneously and explicitly
broken by the vacuum.

The first property provides an interesting opportunity to relate many-body systems and black
holes, since the out-of-time order correlation function [69], and thus its exponential behavour
governed by the Lyapunov exponents, encodes some properties of the nearly black hole horizon
physics [70]. The simultaneous presence of the first two properties is a rather rare aspect and
thus gathered some excitation in the community. Usually, quantum chaotic systems are too
complicated to be integrable, and vice-versa exactly solvable systems are usually too simple to
present a maximally chaotic behaviour.
The second property reflects that the graphs of the couplings J are dominated by the melonic
graphs in the large N limit [71]: as Witten showed in [72], the graph expansion of the couplings
in the SYK model is exactly the same of tensor models (whereas the other orders are different).
The two point function G(t) can be expressed as a re-summation over all the melonic graphs. I
give its graphical representation in Fig. 2.1, where the term Σ(t) is the self energy of the model,
which contains an arbitrary combination of the melonic graphs made by a number of iterations
of dipole insertions (shown in Fig. 1.2b). The two point function and the self energy can be
seen as the classical solutions of the effective action. This is obtained by integrating over the
disorder (random tensors J). Upon integration (averaging), the effective action turns out to be
a bi-local action for the fermionic fields [22]. Therefore, using a Lagrange multiplier Σ̃ one can
introduce the bi-local field G̃(t1, t2), so that the effective action writes

Seff [G̃, Σ̃]
N

= − N

2
log
(
det
(
δ(t1 − t2) ∂t1 − Σ̃

))
+

1

2

∫
dt1dt2

(
Σ̃ G̃(t1, t2)−

J2

q
⟨G̃(t1, t2)

q⟩Γ
)
. (2.2)

Where ⟨G̃(t1, t2)⟩Γ is the graph Γ expressed as a combination of the bi-local fields G̃.
Finally, the SYK model and its infrared regime are the features that gathered more popularity
in the quantum gravity community thanks to their interpretation as a toy model for holog-
raphy [23, 73]. In particular, in the IR limit, reached for ω << J (where ω is the variable
canonically conjugated to the time t), the Schwinger-Dyson equation becomes invariant under
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the the reparametrization t→ f(T ). The bi-local fields G̃ and Σ̃ transform accordingly

G(t, t′) →
(
f ′(t) f ′(t′)

)∆
G(f(t), f(t′)) ,

Σ(t, t′) →
(
f ′(t) f ′(t′)

)∆(q−1)

Σ(f(t), f(t′)) ,

(2.3)

where ∆ = 1/q is the conformal order. And the effective action (2.2) can be thus expressed as
the combination of two contributions

Seff = SCFT + SSch . (2.4)

The first, SCFT , is an explicitly conformally symmetric term (in one dimension), in the sense
that it is invariant under the reparametrization t→ f(t). The second term instead, SSch, breaks
the conformal symmetry and is governed by the Schwarzian derivative

Sch(f(t), t) =
f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

. (2.5)

The latter is the lowest order of derivatives invariant under the action of the group SL(2,C).
Without going through complicated details, this implies that the IR limit of the SYK model
is associated to the description of the nearly horizon behaviour of an anti-de Sitter (AdS2)
black hole in terms of dilaton gravity [22, 73], with almost constant dilaton solutions. The non
constant contribution of the dilaton is instead related to Jackiw-Teitelboim (JT) gravity [74,75].
The latter is a special case of Liouville theory [67,76], which in turn was related to SYK model
in [77]. These features of the SYK model lead the community to consider it a toy model for the
AdS/CFT duality in 1 + 1 dimensions.
For a complete review on the SYK model, the interested reader can refer to [22].

2.1 Non-Gaussian disorder average

This section is based on [42], written in collaboration with T. Krajewski, R. Pascalie and A.
Tanasa, where we investigate a particular case of the Gross-Rosenhaus model (see also [78]). The
generalization of the SYK model proposed by Gross and Rosenhaus was first presented in [43]
and is based on f flavours of fermions, with Na fermions of flavour a appearing qa times in the
interaction. Here we consider the complex version of a specific case of this model, where each
fermion of flavor a appears only once. Therefore, we deal with q complex fermions ψaia(t), where
the label a = 1, .., q is the flavor and each fermion carries an index ia = 1, ..., N . The model is
governed by the action

SJ [ψ, ψ̄] =

∫
dt

(∑
a,ia

ψ̄aia∂tψ
a
ia + i

q
2

∑
i1,...,iq

J̄i1,...,iq ψ
1
i1
· · ·ψqiq + i

q
2

∑
i1,...,iq

Ji1,...,iq ψ̄
1
i1
· · · ψ̄qiq

)
. (2.6)

Here Ji1,...,iq is the rank q tensor that plays the role of a coupling constant. Similarly to the
ordinary SYK model, we average the free energy (or connected correlation functions) over the
couplings J (this is called average over the quenched disorder). In order to perform the average it
is convenient to use the replica trick. This consists in adding an extra replica index r = 1, . . . , n
to the fermions and taking the average over the replica copies. The averaged logarithm of the
partition function is

⟨logZ(J)⟩J = lim
n→0

⟨Zn(J)⟩J − 1

n
, (2.7)
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with
Zn(J) =

∫ ∏
1≤r≤n

[dψr][dψ̄r] exp
∑
r

SJ(ψr, ψ̄r) . (2.8)

In this chapter, I will consider a generalized SYK model in which the averaging over the coupling
constant J is performed with a non-Gaussian weight:

⟨Zn(J)⟩J =

∫
dJdJ̄ Zn(J) exp

(
−
(
Nq−1

σ2 JJ̄ + VN(J, J̄)
))

∫
dJdJ̄ exp

(
−
(
Nq−1

σ2 JJ̄ + VN(J, J̄)
)) . (2.9)

Moreover, we demand the potential VN to be invariant under the unitary transformations

Ji1,...,iq →
∑
j1,...,jq

U1
i1j1

· · ·U q
iqjq

Jj1,...,jq , J̄i1,...,iq →
∑
j1,...,jq

U
1

i1j1
· · ·U q

iqjq J̄j1,...,jq . (2.10)

The above invariance condition implies that the potential VN that governs the distribution of
the couplings J and J̄ can be expanded as a polynomial in JJ̄ . These polynomials are then
associated to q-valent bipartite, edge colored graphs Γ constructed as follows. The tensors J and
J̄ are associated to black and white vertices. Expanding the potential in a power series of JJ̄
implies that black vertices are connected to white vertices, and vice-versa, making the graph Γ
bipartite. Each vertex is attached to q legs (q-valent), labelled by the fermion flavors associated
to an edge coloring of the graph1. The most general form of the potential expanded over these
graphs is

VN(J, J̄) =
∑
Γ

λΓ
N q−k(Γ)

|Sym(Γ)|
⟨J, J̄⟩Γ . (2.11)

In this expression, the parameter λN is a real number and represents the weight of the graph Γ
in the expansion, k(Γ) is the number of connected components of Γ and Sym(Γ) is its symmetry
factor. I have used the shorthand for the contraction of tensors for a given graph Γ

⟨J, J̄⟩Γ =
∑

1≤iv,a,...,iv̄,a≤N

∏
white

vertices v

Jiv,1,...,iv,q
∏
black

vertices v̄

J̄īv̄,1,...,̄iv̄,q
∏
edges
e=(v,v̄)

δiv,c(e) ,̄iv̄,c(e) . (2.12)

The contraction of indices through the delta function means that each white vertex v associated
to the tensor J is connected to a black vertex v̄ associated to a tensor J̄ through the edge with
coloring c(e). The Gaussian term (the melonic diagram, represented in Fig. 1.2a for a tensor
model) corresponds to a dipole graph with a single pair of white and black vertices connected
by q edges. This writes

N q−1

σ2
JJ̄ =

N q−1

σ2

∑
1≤i1,...,iq≤N

Ji1,...,iq J̄i1,...,iq . (2.13)

In the following I will compute the effective potential and derive its large N behaviour, showing
that the Gaussian term, the dipole, is the dominant graph of the expansion. To do so, we first
introduce the pair of complex conjugate tensors K and K defined by

Ki1,...,iq = i
q
2

∑
r

∫
dt ψ1

i1,r
· · ·ψqiq ;r , Ki1,...,iq = i

q
2

∑
r

∫
dt ψ̄1

i1,r
· · · ψ̄qiq ;r . (2.14)

1These graphs are called bubbles in the tensor model literature (see the book [52].)
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The averaged partition function (2.8) expressed in the tensors K,K is

⟨Zn(J)⟩J =

∫
[dψ][dψ̄] e

(
−
∫
dt

∑
a,ia

ψ̄a
ia
∂tψa

ia

) ∫
dJdJ̄ exp

(
−
(

Nq−1

σ2 JJ̄+VN (J,J̄)+JK+J̄K
))

∫
dJdJ̄ exp

(
−
(
Nq−1

σ2 JJ̄ + VN(J, J̄)
)) . (2.15)

In order to study the large N limit of the above averaged partition function, I first introduce
the background fields L = − σ2

Nq−1K and L̄ = − σ2

Nq−1K, and then shift the couplings as

J → J + L , J̄ → J̄ + L̄ . (2.16)

The effective potential thus becomes

VN(s, L, L̄) = − log

∫
dJdJ̄ exp

(
− N q−1

s
JJ̄ − VN(J + L, J̄ + L̄)

)
+N q log

( πs

N q−1

)
. (2.17)

Here s is a flowing parameter that interpolates between the values of the integral, from s = 0
(where the integration is trivial and J = J̄ = 0), up to s = σ2 (up to a trivial multiplicative con-
stant) which gives the integral that we have to compute. The flowing parameter is fundamental
for the study of the large N limit, that I will perform in the next part. The inclusion of the
constant term ensures that the effective potential remains zero when we start with a vanishing
potential.

Gaussian universality

Here I will derive the large N behavior of the effective potential using a Polchinski-like flow
equation, following the approach proposed in [79–82]. Using standard QFT manipulations (see
for instance [83]), one can show that the effective potential (2.17) obeys the differential equation

∂VN
∂s

=
1

N q−1

∑
1≤i1,...,iq≤N

(
∂2VN

∂Li1,...,iq∂L̄i1,...,iq
− ∂VN
∂Li1,...,iq

∂VN
∂L̄i1,...,iq

)
. (2.18)

This equation is formally a Polchinski-like equation [84], in the sense that there are no short
distance degrees of freedom over which one could integrate. I will explain the interpretation of
such equation later on, for now it is sufficient to know that I will use it to analyse the large
N limit of the effective potential. Since the effective potential is invariant under the unitary
transformations defined in eq. (2.10), it may also be expanded over graphs as in (2.11)

VN(s, L, L̄) =
∑
Γ

λΓ(s)
N q−k(q)

|Sym(Γ)|
⟨L, L̄⟩Γ , (2.19)

with s dependent weights λΓ(s). Inserting this expansion in the differential equation (2.18) one
obtains a system of differential equations for the couplings λΓ(s):

dλΓ
ds

=
∑

Γ′/(v̄v)=Γ

Nk(Γ)−k(Γ′)+e(v,v̄)−q+1 λΓ′ −
∑

(Γ′∪Γ′′)/(v̄v)=Γ

λΓ′ λΓ′′ . (2.20)

The Polchinski-like equation (2.18) can be represented as in Fig. 2.2. Graphically, a derivation
of the potential V with respect to the background fields L and L̄ resp. removes a white or a
black vertex. Then, the summation over the indices reconnects the edges respecting the coloring.
Equation (2.18) gives all the possible ways in which each graph Γ (on the LHS) can be obtained
through the operation of removing a pair of black and white vertices (derivation with respect to
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∂
∂s

Γ = Γ′

q

+ Γ′ Γ′′

q

Figure 2.2: Graphical representation of the Polchinski-like equation (2.18). The derivatives with
respect to the background fields L and L̄ correspond to the operation of removing a pair of white
and black vertices and reconnecting the q edges, from the graph Γ′ or from the graphs Γ′ and
Γ′′ on the RHS, such that the resulting graph is equal to Γ on the LHS.

1

2

q − 1
q

Γ1

1

2

q − 1
q

Γ2

1

2

q − 1

q

Γ1 Γ2

Figure 2.3: Removal of a pair of white and black vertices and reconnection of the edges according
to the coloring.

L, L̄) and reconnecting the edges (on the RHS); the two terms on the RHS of the equation take
in consideration that the two vertices can be removed either from a single graph Γ′ or from two
different graphs Γ′ and Γ′′. Let me explain in more detail the graphical interpretation of such
two terms in the Polchinski-like equation (2.20).

• In the first term on the RHS we remove a pair of white and black vertices v, v̄ from a single
graph Γ′, then we recombine the edges according to the coloring, such that the resulting
graph is equal to Γ. This operation is represented in Fig. 2.3 and Fig. 2.4. The term
e(v, v̄) in (2.20) is the number of edges connecting v and v̄ in Γ′. After summation over the
indices, each of these lines yields a power of N in (2.20). Since the operation of removing
two vertices and reconnecting the edges can at most increase the number of connected
components by q− 1, we always have that k(Γ)− k(Γ′) + e(v, v)− q+ 1 ≤ 0. One obtains
the equality if and only if Γ′ is a melonic graph. Therefore, in the large N limit, only
melonic graphs survive in the first term on the RHS of (2.20).

• In the second term of (2.20) we remove a pair of white and black vertices from the graphs
Γ′ and Γ′′, with the condition that the graph obtained after removing the vertices and

1

2

q − 2

q − 1

Γ1 q

1

2

q − 2

q − 1

Γ2

1

2

q − 2

q − 1

Γ1 Γ2

q = N

Figure 2.4: Removal of white and black vertices and reconnection of the edges creating a loop.
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reconnecting the edges is equal to Γ. In that case, the number of connected components
necessarily diminishes by 1, so that all powers of N cancel.

The crucial point in the system (2.20) is that only negative (or null) powers of N appear. This
implies that, if λΓ(s = 0) is bounded in N , then λΓ(s) is also bounded for all values of s. Once
we have checked that the couplings λΓ(s) are bounded for any value of the flowing parameter s,
we derive the leading order of the large N expansion of the effective potential (2.19) by setting
s = σ2 and substituting the values L = − σ2

Nq−1K and L̄ = − σ2

Nq−1K of the background fields:

VN
(
s = σ2, L = − σ2

N q−1
K, L̄ = − σ2

N q−1
K
)
=
∑
Γ

λΓ(σ
2)

(−σ2)v(Γ)N q−k(q)−(q−1)v(Γ)

|Sym(Γ)|
⟨K,K⟩Γ .

(2.21)
Here v(Γ) is the number of vertices of the graph Γ. The exponent of N can be rewritten as
(q−1)(1−v(Γ))+1−k(Γ); it has it maximal value for v(Γ) = 2 and k(Γ) = 1, which corresponds
to the dipole graph. This proves that the dipole graph (the Gaussian term) is dominant in the
large N expansion of the potential VN of an SYK model based on a non-Gaussian average. This
result is a re-expression of the Gaussian universality property of random tensors [44].

Effective action

Let us now derive the effective action of this new model. To this end, we integrate over the
random couplings J and J̄ using the non-Gaussian probability distribution as in (2.15). The
result can be expressed in terms of the graphs Γ, as in the effective potential (2.21). Then, we
replace the tensors K and K with their expressions (2.14) in terms of the fermionic fields, so
that each graph Γ is given by

⟨K,K⟩Γ =
∑

1≤iv,a,...,iv̄,a≤N

∏
white

vertices v

∑
rv

∫
dtv ψ

1
iv,1,rv

(tv) · · ·ψqiv,q ,rv(tv)

∏
black

vertices v̄

∑
rv̄

∫
dtv̄ ψ̄

1
iv̄,1,rv̄

· · · ψ̄q
iv̄,q ,v̄

(tv̄)
∏
edges
e=(v,v̄)

δiv,c(e),iv̄,c(e) . (2.22)

We note that, as in the standard SYK model [22], the result is a bi-local effective action that
depends on pairs of fermionic fields evaluated in different time t and t′. This allows to use a
Lagrangian multiplier Σ̃ to introduce the bi-local field below, that carry a single flavour label a
and two replica indices r, r′:

G̃a
r,r′(t, t

′) =
1

N

∑
i

ψai,r(t1)ψ̄
a
i,r′(t

′) . (2.23)

Assuming for simplicity a replica symmetric saddle-point we get rid of the replica copies. The
resulting effective action in terms of the bi-local fields is thus

Seff [G̃, Σ̃]
N

=−
q∑

f=1

log
(
det
(
δ(t1 − t2) ∂t − Σ̃f (t1, t2)

))
+

∫
dt

4∑
f=1

Σ̃f (t)G̃f (t)

−
∑
Γ

N−(v(Γ)−2)(q/2−1)+1−k(Γ)µΓ(σ
2, {λΓ′}) ⟨G̃⟩Γ . (2.24)

The term µΓ is the resulting coupling associated to the term ⟨G̃⟩Γ, which is the graph Γ expressed
in terms of the bi-local invariant (2.23). The resulting fermionic Feynman diagrams computed
from the effective action are constructed as follows:
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∏
f ̸=c Gf (t1, t2)

∏
f ̸=c Gf (t3, t4)

Gc(t1, t4) Gc(t2, t3)

t1 t2

t4 t3

Figure 2.5: Graphical representation of the term ⟨G̃⟩Γ of a bipartite q-valent quartic (four
vertices) melonic graph Γ in terms of the bi-local fields G̃(t, t′).

• associate a real variable tv to each vertex;

• associate a bi-local field G̃c(tv, tv′) to an edge of colour c joining the vertices v and v′;

• multiply the edge contributions of the graph Γ and integrate over the vertex variables tv;

• add up a weight λΓ and a power of N equal to the contribution in the effective potential
(2.21), plus an extra power of N given by the number of edges e(Γ) = 1

2
qv(Γ) of Γ.

In Fig. 2.5 I represent an example of a graph in terms the bi-local invariant constructed as
explained above. The resulting N contribution of a given graph Γ is

N q−k(Γ) × (N−(q−1))v(Γ) ×N e(Γ) = N ×N−(v(Γ)−2)(q/2−1)+1−k(Γ) . (2.25)

At the leading order, only the Gaussian term survives, namely the graphs Γ with (v(Γ) = 2
and k(Γ) = 1)). The matrix model case given by q = 2 is an exception. In this case, all the
terms corresponding to connected graphs survive. Let me emphasize that, similarrly to the other
couplings µΓ, also the covariance associated to the propagator term is modified, as an explicit
consequence of the non-Gaussian averaging of our model. Remarkably, for q > 2, this is the only
modification at leading order in N . It is convenient to use a Schwinger-Dyson equation [60] to
compute the actual value of the covariance – denoted σ′ – induced by the non-Gaussian disorder.
In our case, the Schwinger-Dyson equation arises from the constraint∑

i1...iq

∫
dJdJ̄

∂

∂J̄i1...iq

(
Ji1...iq exp

(
− N q−1

σ2
JJ − VN(J, J̄)

))
= 0 , (2.26)

which, for large values of N , leads to the algebraic equation

1 =
σ′2

σ2
+

∑
Γmelonic

λΓ
|Sym(Γ)|

(σ′)v(Γ) . (2.27)

Finally, it is interesting to note that despite the non-locality of the effective action (2.24), the
latter is invariant under re-parametrization below (in the IR) at all orders in 1/N

G̃(t, t′) →
(
dϕ

dt
(t)

)∆(
dϕ

dt′
(t′)

)∆

G̃(ϕ(t), ϕ(t′)) . (2.28)

Indeed, changing the vertex variables as tv → ϕ(tv), the Jacobian cancels with the re-scaling of
the bi-locl field G̃, since Γ is a q-valent graph and ∆ = 1/q.
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2.2 Concluding remarks

In this chapter I have investigated the effects of non-Gaussian average over the random tensorial
couplings J in a particular case of the complex version of the SYK generalization proposed by
Gross and Rosenhaus. To our knowledge, this is the first analysis of the effects of the relaxation
of the Gaussianity condition in SYK models.
To summarize the results, we first used a Polchinski-like equation to prove the finiteness of the
couplings λΓ of the non-Gaussian terms of the potential. This allowed to expand the potential
as a sum over the graphs (2.11), whose expression was then used to derive the effective action of
the model (2.2). At this stage, the main effect of the non-Gaussian potential is reflected in the
modification of the couplings λΓ into µΓ, and in particular in the modification of the covariance,
the weight of the Gaussian term.

Effect of the non-Gaussian average in other SYK models. An interesting perspective for
future works would be the investigation of the effects of such a perturbation from the Gaussian
distribution in other versions of SYK model, such as

• real Gross-Rosenhaus generalization of the SYK model;

• super-symmetric SYK model;

• SYK model based on a real and anti-symmetric random tensor J .

Note that in [42] we have already made the first steps towards this direction, where the real
Gross-Rosenhaus SYK model was considered with a quartic potential. In this context we proved
explicitly the Gaussian universality, we computed the effective action and the first order correc-
tion in N of the covariance, due to the quartic contribution in the potential. The main technical
complication for generalizing the real version to any arbitrary non-Gaussian potential, comes
from the fact that the graphs will not be bipartite. Consequently, the operation of removing the
vertices and reconnecting the edges, which played a central role in our proof, would be much
more involved.
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Chapter 3

Group field theories

The suggestive idea of using group representations as decorations of geometric objects to describe
discrete geometries dates back to the Ponzano-Regge formulation [24]. Here the edge vectors of
a triangulation of a three dimensional manifold are decorated by SU(2) elements. The partition
function of the model is expanded as a state sum, where such 3d discrete geometries are encoded
in the transition amplitudes between any pair of two dimensional triangulations. Later on,
Penrose provided a model of three dimensional gravity in the dual picture in [1], where the
graphs dual to three dimensional triangulations (dual complexes) were decorated by holonomies
of SU(2) and called spin networks. These spin networks appear also in the discretization of
three dimensional Euclidean gravity, formulated as a BF model and cover the role of quantum
(boundary) states in the spin foam quantization, where the transition amplitudes between any
pair of spin networks, called spin foams, are interpreted as the complexes dual to the cellular
decompositions of a manifold. Boulatov proposed a path integral prescription that generates
triangulations of a three dimensional manifold (as in the Ponzano-Regge model) as Feynman
diagrams of a field theory [32]. This model, baptized group field theory, is a sub-class of tensor
models where the (quantum) states are enriched with algebraic data. Its four dimensional
generalization [33] is due to Ooguri. For an introductory overview of group field theory, the
interested reader can refer to [85,86].
Group field theory has also been related to the classical action of gravity, when the model
proposed by Barrett and Crane in [39], which is linked to the state sum of a specific group field
theory based on a Lorentzian manifold, was connected to the discretization of a constrained
BF model [41]. In [35], it was suggested the formulation of tensorial group field theories as a
quantum gravitational system made of many interacting bodies – the building blocks of a discrete
geometry. Under this perspective, the analysis of the hydrodynamical approximation of GFT’s
aims to retrieve classical physics, specially cosmology, as an emergent behaviour of group field
theory models, [36]. This also suggested a link between GFT’s and quantum cosmology [37]. The
renormalization group flow of a GFT model was also analysed in [87–90]. As I will emphasize
later on in this chapter, the quantization procedure used in GFT is the geometric quantization,
also used in the spin foam approach. The classical phase space underlying such quantization,
is the cotangent bundle T ∗G, which is given by the group G and its tangent space. At the
semi-classical level, the tangent space can be understood as a non-abelian algebra (or non-
commutative abelian group). Such formulation sheds light on the relation between group field
theories and non-commutative space-times [91].
I recall that models of quantum mechanics can be expressed either in the configuration or in the
momentum space pictures. The same principle holds for group field theories. For what concerns
us, in the triangulation picture the (quantum) states are simplicial triangulations of a two
dimensional manifold, whereas in the dual complex they are two dimensional spin networks. In
both cases, the Feynman diagrams are transition amplitudes between any pair of such (quantum)
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states, interpreted as three dimensional discrete geometries, and the partition function of the
model is expanded as a (state) sum over such geometries. The two formulations are mapped
into each other by (the generalization of) a Fourier transform [92–94].
In this chapter I will introduce the main ingredients of a three dimensional group field theory
based on a general Lie group G. In the first and second parts of the chapter I will discuss the
model in the triangulation and in the dual complex pictures, providing the Fourier transform
between them. In the final part of the chapter I will also mention how to generalize the model
to the higher dimensional case, how to introduce the simplicity constraint and the application
of the Peter-Weyl theorem in group field theory.
Since we are dealing with a simplicial triangulation and its dual complex, it is worth to fix the
convention here to avoid any ambiguity along the discussion. I will call vertices and edges the
points and the one dimensional objects of the triangulation, respectively. The zero and one
dimensional objects of the dual complex will instead be called resp. nodes and links.

3.1 Three dimensional Group Field Theory

In this section I briefly review group field theory in 2+1 dimensions [91]. I will introduce the
main ingredients, such as the field, the action that governs the model and the Feynman diagram
amplitudes, emphasizing the geometric interpretation of each element. I deal with the dual
complex picture in the first part, while in the second part I will introduce the Fourier transform
and recast the model in the triangulation formulation.

3.1.1 Spin foams as Feynman diagrams of GFT

Invariant field

The fundamental field of 2+1 dimensional group field theory is a function on three copies of a
Lie group G, ϕ ∈ F (G×3). The field is invariant under a gauge transformation of the group G
itself. Such symmetry is enforced through the projector P : F (G×3) → F (G×3) defined as

(P ϕ)(g1, g2, g3) =

∫
dhϕ(hg1, hg2, hg3) , (3.1)

where gi, h ∈ G and thus dh is the left Haar measure1 on G. The above equation is called gauge
averaging and the invariance of the field under the gauge transformation can be understood as
the functional identity

(P ϕ) = ϕ . (3.3)

Action

Similarly to matrix and tensor models, the action of a GFT model is given by a quadratic term
plus an interaction term, which will be used to construct transition amplitudes of the model
(spin foams [30]). The action is thus

S = SK + SV . (3.4)
1The left Haar measure dg on G is defined by the invariance property

d(ḡ g) = dg , ∀ḡ ∈ G . (3.2)

Similarly for the right Haar measure.
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The quadratic part of the GFT action, called kinetic term, is defined as a product of fields

SK =

∫
dg3 (ϕ τϕ)(g1, g2, g3) =

∫
dg6K({g})ϕ(g1, g2, g3)ϕ(g4, g5, g6) , (3.5)

where
K({g}) = δ(g1g

−1
6 ) δ(g2g

−1
5 ) δ(g3g

−1
4 ) , (3.6)

is the kernel of the propagator amplitude and can be interpreted as the conservation of the three
momenta gi. The operator τ : F (G3) → F (G3) defined as (τ ϕ)(g1, g2, g3) = ϕ(g3, g2, g1) is the
permutation map and it is used to encode the proper combinatorics of the model2. For a 2+1
dimensional GFT, the interaction term is as a non-local3 product of four projected fields (3.1)

SV =

∫
dg6 (P ϕ)(g1, g2, g3) (P ϕ)(g3, g4, g5) (P ϕ)(g5, g6, g1) (P ϕ)(g6, g4, g2)

=

∫
dg12dh4 V({h; g})ϕ(g1, g2, g3)ϕ(g4, g5, g6)ϕ(g7, g8, g9)ϕ(g10, g11, g12) , (3.7)

where

V({h; g}) = δ(h1g1g
−1
9 h−1

3 ) δ(h1g2g
−1
12 h

−1
4 ) δ(h1g3g

−1
4 h−1

2 )

δ(h2g5g
−1
11 h

−1
4 ) δ(h2g6g

−1
7 h−1

3 ) δ(h3g8g
−1
10 h

−1
4 ) , (3.8)

is the kernel of the tetrahedron amplitude. Despite the terms K and V are the kernels of the
amplitudes, I will sometimes call them just amplitudes by abuse of language.

Feynman amplitudes

Similarly to other topological models of discrete geometries, the partition function of a group
field theory Z =

∫
dϕ eiS can be expanded as a state sum. Such state sum runs over the three

dimensional discrete geometries (with no boundary) represented as dual complexes Γ∗, built by
merging an arbitrary number of tetrahedron amplitudes (3.8) through the propagator amplitudes
(3.6). Consider a path made of an arbitrary number, say N , of what I will call bulk links, and
denote it as LN . The amplitude of a given complex Γ∗ is expressed as a combination of delta
functions enforcing the closure of such paths LN

Z = N
∑
Γ∗

∏
LN∈Γ∗

∫ ∏
dh δ(h1 h2 . . . hN) , (3.9)

with N a normalization factor. In the next part I will clarify the notion of bulk and boundary
variables, and the geometric interpretation of the partition function above.

Geometric interpretation

The field ϕ encodes the fundamental degrees of freedom of the model; upon quantization indeed,
the space of fields (the algebra of functions F (G×3)) would be interpreted as the Hilbert space
of the model. As a function on three copies of the Lie group G, the field is represented as the
graph dual to a triangle, composed by a central node attached to three links, see Fig. 3.1a.
The gauge transformation, is enforced as a group multiplication on each of the three elements gi

2Normally one should sum over all the permutations of the kinetic term [85, 86], in order to encode all the
possible Feynman amplitudes. I will avoid to discuss this subtle issue, which is particularly relevant in dimension
higher than three.

3The nomenclature non-local here is used for a product of fields that share only some of their sub-components
g, such as ϕ(g, gi, gj)ϕ(g, gn, gm).
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x1

x2
ϕ̂

x3

ϕ

g1

g2 g3

(a) The dual field ϕ̂ is represented in black as a
triangle, with the three elements xi ∈ G∗ dec-
orating the three edges. The field ϕ is its dual
graph represented in blue, made of a central
node and three links decorated by the group
elements gi ∈ G.

ϕ

h

(b) The gauge symmetry is interpreted as a trans-
lation in the dual complex. The field ϕ, represented
as three links (in blue) dual to a triangle, is shifted
by an extra link (the dashed red line) decorated by
h ∈ G that represents the (gauge) translation.

Figure 3.2: The propagator amplitude enforces the identification of a pair of triangles in black
(dual fields ϕ̂) or their dual graphs in blue (fields ϕ). I used arrows to emphasize that edges are
identified with opposite orientations while links with the same orientation.

with respect to a single group element h. The transformed field is thus a function of the three
elements hgi, and can be represented as the graph dual to a triangle translated by a single link
h, as in Fig. 3.1b. Under this perspective, the gauge transformation thus encodes the notion of
parallel transport in the dual complex.
The propagator amplitude (3.6), being given as the product of two fields evaluated at the same
point (same triplet of group elements), is represented as an identification of two graphs 3.1a dual
to triangles, as in Fig. 3.2. Similarly, the tetrahedron amplitude (3.8) is the combination of four
fields, where each of them shares only one variable gi with each of the other three, respecting
the combinatorics of a tetrahedron. The four fields are thus associated to the graph dual to
the boundary of a tetrahedron. While the four variables hi are the decorations of the four links
internal to the tetrahedron and dual to its four faces, see Fig. 3.3a. The same construction arises
if one represents each of the six delta function in (3.8) as a closed loop of four links (two bulk
plus two boundary links), of the type hagig−1

j h−1
b = 1, see Fig. 3.3b. The proper combination

of such six delta functions together gives again the graph in Fig. 3.3a.
Note that, despite the elements h and g belong to the same group G, they play a completely
different role. The links g, initially used to define a single field, are part of the boundary graph of
a tetrahedron and thus lie in two dimensional cellular decomposition. The links h instead are an
extra labels for the states, introduced through the gauge projector (3.1). They form the graph
dual to the bulk of the tetrahedron, hence they lie in a three dimensional cellular decomposition.
Therefore, one can interpret the links g and h resp. as the boundary and bulk degrees of freedom
of the graph dual to the simplicial triangulation of a three dimensional manifold.
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(a) The tetrahedron amplitude. In black the four
triangles that compose the tetrahedron boundary.
The bulk graph dual to the tetrahedron is in red
and the graph dual to its boundary are the dotted
blue links.

g3 g4

h1 h2

h1 g3 g
−1
4 h−1

2 = 1

(b) Each of the six delta functions of the tetra-
hedron amplitude (3.8) enforces a the closure
of the combination of two bulk links (in red)
and two boundary links (in blue).

Given a complex Γ∗ dual to a simplicial triangulation Γ of a three dimensional manifold, its
Feynman amplitude is given as a combination of loops made of a number, say N , of bulk links.
Each of such loops is the closed path spanning a face dual to an edge (shared by N tetrahedra) of
the triangulation. In line with the usual interpretation of discrete geometries, each of these loops
encode the local curvature round its dual edge. The dual complexes Γ∗ are naturally interpreted
as three dimensional spin foams. The partition function (3.9) is thus expanded as the sum over
all the amplitudes associated to such dual complexes Γ∗.

3.1.2 Dual picture: discrete geometry

Fourier transform

Given the GFT model introduced in the previous section, characterized by the gauge symmetry
group G, one can define a (non-commutative) Fourier transform that maps the functions on such
group to the functions on its dual Lie group G∗. The notion of dual Lie group is clarified in
App. A, where I discuss the Poisson Lie group construction. To the purpose of this chapter,
one can think at the group G∗ as the dual Lie algebra g∗, which can be regarded as the abelian
group Rn

⋆ , where n is the dimension of G and the functions on G∗ obey to a non-commutative
product rule denoted by the symbol ⋆.
The above mentioned Fourier transform is the map F : F (G) → F (G∗) defined as

F [ f ](x) =

∫
dg e(g, x) f(g) , (3.10)

with x ∈ G∗, g ∈ G and f ∈ F (G). I will call plane wave the element4 e(g, x) ∈ F (G)⊗F (G∗), in
analogy with quantum mechanics, where the kernel of the Fourier transform is indeed an ordinary
plane wave. In the Lie group context, the plane wave is defined in terms of its properties(

e(g1, ) ⋆ e(g2, )
)
(x) = e(g1g2, x) ,∫

dg e(g, x) = δ̂(g) , e(g, 1) = 1 ,

(
e( , x2) e( , x1)

)
(g) = e(g, x1 + x2) ,∫

dx e(g, x) = δ(g) , e(1, x) = 1 .
(3.11)

4The element e(g, x) often carries a subscript ⋆ in literature [93]. This is used to recall that the plane wave is
partially defined as a function on F (G∗), and thus it respect non-commutative multiplication.
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Here δ and δ̂ are resp. the delta functions on G and G∗. The plane wave has also an inverse
element

e−1(g, x) := e(g−1, x) = e(g,−x) , (3.12)
which is used to define the inverse map F−1 : F (G∗) → F (G):

F−1[ f̂ ](g) =

∫
dx
(
e−1(g, ) ⋆ f̂

)
(x) , (3.13)

for f̂ ∈ F (G∗). It is not complicated, using the properties (3.11) and (3.12), to show that
F [F−1[ f̂ ]] = f̂ and F−1[F [ f ]] = f . The minus sign in the inverse element (3.12) as well as the
addition at the place of the product in (3.11) reflect the abelianess of the group G∗.

Dual field and closure constraint

As in the dual complex picture of GFT, where the fundamental degrees of freedom are encoded
in the field ϕ, in the transformed formulation these are encoded in its Fourier transform ϕ̂ =
F [ϕ] ∈ F (G∗×3), which I will call dual field.
The Fourier transform of the gauge averaging (3.1) gives

F [(P ϕ)](x1, x2, x3) =

∫
dg3

3∏
i=1

e(gi, xi) (P ϕ)(g1, g2, g3) =

∫
dhdg3

3∏
i=1

e(gi, xi)ϕ(hg1, hg2, hg3)

=

∫
dhdg3

3∏
i=1

e(h−1gi, xi)ϕ(g1, g2, g3)

=

∫
dh

3∏
i=1

e(h−1, xi)

∫
dg3

3∏
i=1

e(gi, xi)ϕ(g1, g2, g3)

=

∫
dh

3∏
i=1

e(h−1, x1 + x2 + x3) ϕ̂(x1, x2, x3) = (Ĉ ϕ̂)(x1, x2, x3) . (3.14)

Above I used the definition of dual field as the Fourier transform of the field ϕ and the properties
(3.11) and (3.12) of the plane wave. The function

Ĉ(x1, x2, x3) = δ̂(x1 + x2 + x3) , (3.15)

is called closure constraint, since it is enforcing that the three elements xi sum up to zero [95].
The invariance of the field under the gauge transformation (3.3) yields to the functional identity

ϕ̂ = (Ĉ ⋆ ϕ̂) . (3.16)

Action

Also the action (3.4), and thus the kinetic (3.5) and interaction (3.7) terms, can be expressed in
the G∗ picture, upon Fourier transform. Let me show in details the steps for the kinetic term,
which are rather simple:

SK =

∫
dg3 ϕ(g1, g2, g3)ϕ(g3, g2, g1) =

∫
dg3F−1[ϕ̂](g1, g2, g3)F−1[ϕ̂](g3, g2, g1)

=

∫
dg3dx6

( 3∏
i=1

e(gi, ) ⋆ ϕ̂
)
(x1, x2, x3)

( 3∏
i=1

e(g4−i, ) ⋆ ϕ̂

)
(x4, x5, x6)

=

∫
dg3dx6

(
e(g1, x6 + x1) e(g2, x5 + x2) e(g3, x4 + x3)

)
⋆ (ϕ̂(x1, x2, x3) ϕ̂(x4, x5, x6))

=

∫
dx6

(
K̂ ⋆ (ϕ̂ τ ϕ̂)

)
({x}) =

∫
dx3 (ϕ̂ ⋆ τ ϕ̂−1)(x1, x2, x3) , (3.17)
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where in the last step the inverse field stands for ϕ̂−1({x}) = ϕ̂({x−1}). To perform the compu-
tation, I used the properties (3.11) of the plane wave and the definition of the inverse Fourier
transform (3.13). In the third line I wrote the star product between functions (ϕ̂ ⋆ ϕ̂)(xi) has a
product of functions already evaluated in the elements, ϕ̂(xi)⋆ϕ̂(xi). This is an abuse of notation
used to simplify the expression. The term

K̂({x}) = δ̂(x1 + x6) δ̂(x2 + x5) δ̂(x3 + x4) , (3.18)

is the kernel of the propagator amplitude in the triangulation picture. Note that the amplitude
(3.18) can be directly derived by the propagator amplitude (3.6) upon Fourier transform. I
will not show all the details of the computation for the interaction term (3.7). Its derivation is
slightly longer than the propagator amplitude but follows the same steps. Using again an abuse
of notation, the interaction term can be re-expressed as

SV =

∫
dx6 (Ĉ ϕ̂)(x1, x2, x3) ⋆ (Ĉ ϕ̂)(−x3, x4, x5) ⋆ (Ĉ ϕ̂)(−x5, x6,−x1) ⋆ (Ĉ ϕ̂)(−x6,−x4,−x2)

=

∫
dx12 V̂({x}) ⋆ ϕ̂(x1, x2, x3) ⋆ ϕ̂(x4, x5, x6) ⋆ ϕ̂(x7, x8, x9) ⋆ ϕ̂(x10, x11, x12) , (3.19)

where the kernel of the tetrahedron amplitude in the triangulation picture is

V̂({x}) =
(
Ĉ(x1, x2, x3) Ĉ(x4, x5, x6) Ĉ(x7, x8, x9) Ĉ(x10, x11, x12)

)
⋆
(
δ(x1 + x9) δ(x2 + x12) δ(x3 + x4) δ(x5 + x11) δ(x6 + x7) δ(x8 + x10)

)
. (3.20)

Again, the above amplitude (3.19) can be directly derived as the Fourier transform of (3.8).

Feynman amplitudes

Analogous to the GFT model expressed in the dual complex, the building blocks for the Feyn-
man diagrams also in this case are tetrahedron amplitudes (3.20). Once again, the partition
function can be expanded as a sum over all the possible Feynman amplitudes associated to the
triangulations Γ of three dimensional manifolds. The partition function of a group field theory
in the triangulation picture is thus

Z = N̂
∑
Γ

∫ ∏
dx
∏
τ

V̂({x}) , (3.21)

where N̂ is a normalization factor and the product goes over the tetrahedra τ ⊂ Γ.

Geometric interpretation

The fundamental degrees of freedom of the GFT model in the triangulation picture are encoded
in the dual field ϕ̂; again, upon quantization, the space of fields F (G∗×3) would be the Hilbert
space of the model. As the field ϕ was interpreted as a graph dual to a triangle, the representation
of the dual field is now that of a triangle, as in Fig. 3.1a. This interpretation is enforced by the
closure constraint (3.15), which suggests that the three group elements xi can be interpreted as
the (three edge vectors of the) boundary of a triangle.
The propagator amplitude (3.18) is again represented as the identification of two triangles, as
in Fig. 3.2. Last, the tetrahedron amplitude (3.20) is still a product of four dual fields, which
are now the four triangles that compose the boundary of a tetrahedron, see Fig. 3.3a. This
is more clear if one looks at the expression in (3.20): the first four functions are the closure
constraints of four triangles, and the remaining six deltas merge the triangles by identifying the
six edges pairwise. The amplitudes of the model are constructed as combinations of tetrahedra
glued together by identifying their faces (triangles) through the propagator (3.18). The Feynman
graphs are thus simplicial triangulations of three dimensional manifolds; as a consequence, the
partition function (3.18) is just the sum over all such triangulations (discrete geometries).
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3.1.3 Peter-Weyl theorem

It is worth to dedicate a few words on the use of the Peter-Weyl theorem in GFT [91].

Theorem 1 (Peter-Weyl). Let G be a compact group.

• The set of matrix elements of the irreducible representations of G are dense in the space
F (G).

• Unitary representations of G are completely reducible.

• Regular representations of G can be decomposed as a direct sum of irreducible unitary
representations, for which the matrix coefficients form an orthonormal basis.

One can use the Peter-Weyl theorem – in GFT as well as other similar spin foam-like approaches
– to expand the amplitudes of the model as a Fourier decomposition in terms of irreducible rep-
resentations of the group G. Upon quantization, this map, which can be seen as another Fourier
transform, turns the Hilbert space of the model into the space of irreducible representations
and allows the numerical evaluation of the amplitudes. In the particularly interesting case of
G = SU(2), the partition function (3.9) reduces to the one of Ponzano-Regge model, expressed
in terms of the 6j symbols:

Z =
∑
{ji}

∏
t

{6j}t(ji) . (3.22)

For non-compact groups the theorem does not hold and the story is slightly more complicated;
however, in most of the cases of interest, one can still decompose representations of non-compact
groups as direct sum of irreducible ones. I refer to [96–98] for some explicit realizations, when the
gauge groups are taken to be G = SU(2) or the double cover the the Lorentz group, G = SL(2,C).

3.2 Higher dimensional GFT and geometric condition

In the previous sections I presented a 2+1 dimensional GFT model. The same construction
holds for general d+ 1 dimensions, with a slightly different geometric interpretation:

∗ the dual field and the field are functions on d+ 1 copies of the groups G∗ and G, and are
resp. represented as a d–simplex or its dual graph;

∗ the gauge transformation does not change, and the closure constraint turns into the closure
of the boundary of a d–simplex;

∗ the propagator remains the identification of two d–simplices or their dual graphs;

∗ the building blocks of the Feynman amplitudes (given by the interaction term) are d+ 1–
simplices or their dual graphs;

∗ the partition function is a sum over the d+1 dimensional discrete geometries or over their
dual graphs (d+ 1 dimensional spin foams).

In the previous sections I presented the d = 2 case for two reasons:

• the geometric interpretation is easier to visualize;
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• in the next chapter I will provide the generalization of a group field theory based on quan-
tum groups. According to the arguments that I will explain in Ch. 5, this generalization
is better motivated in 2+1 dimensions, whereas it would require further adjustments in
higher dimensions.

One fundamental feature of the general d+ 1 GFT model is that it is a topological model: as I
will show in the following chapters, GFT models with no further constraints, are invariant under
the so called Pachner moves. Hence, the Feynman amplitudes (and thus the partition function)
are topologically invariant. Since the initial aim of GFT is to describe quantum gravity, not just
discrete geometries, the topological invariance makes GFT a model of quantum gravity only in
three dimensions.
In four dimensions group field theory does not encode any gravitational degree of freedom. Here,
quantum gravity can be formulated as a constrained topological model. GFT is not an exception:
one can constrain the model implementing the simplicity constraint [99–101]. The latter, in BF
theories imposes the B field to be (the two form dual to) a simple bi-vector 5 rather then just
a two form. Two celebrated examples of gravitational models re-phrased as constrained four
dimensional GFT’s are he EPRL [40] and the Barrett-Crane models [39,102,103]. A pedagogical
discussion of these concepts is presented in [96,103], where the Barrett-Crane model is recovered
from the amplitude of a group field theory, using the double cover of the Lorentz group G =
SL(2,C) as the gauge group. In this case, the restriction from the topological to the gravitational
case is performed by the introduction of the projector

(PS ϕ)(g1, g2, g3, g4) =
∫

dγ4 ϕ(g1γ1, g2γ2, g3γ3, g4γ4) . (3.23)

Here gi ∈ SL(2,C) and γi ∈ SU(2). Therefore, the projector reduces the space of fields to the
functions invariant under the right translations by any SU(2) element; namely, the restricted
space is the set of functions on the hyperboloid H = SL(2,C)//SU(2). This can be seen even bet-
ter using the Plancharel theorem6: imposing the constraint (3.23) on the field, it is decomposed
as a direct sum of time-like irreducible (balanced) representations, that are properly associated
to simple (dual) bi-vectors, see [40, 102,104].

3.3 Remarks

Since I have intensively celebrated some of the most interesting aspects of group field theories,
to conclude this chapter I would like to mention two aspects that are particularly important for
the current discussion and open the windows for possible improvements.

Quantum groups. Despite the model clearly provides the basis for a quantum theory of
gravity, the classical phase space, on which the spin foam quantization would be implemented,
is the cotangent bundle T ∗G. Since the dual Lie algebra g∗ is an abelian group, these model can
only describe the simplicial triangulations of flat manifolds. The generalization to curved three
dimensional manifolds requires the use of Poisson Lie groups as a gauge symmetry group. These
allow to have curvature on both the configuration and momentum spaces and are discussed in
more detail in App. A.

5A simple bi-vector can be written as a wedge (skew symmetric tensor) product of vectors: b = e ∧ e.
6The Plancharel theorem plays the role of the Peter-Weyl theorem for the Lorentz group. It provides the

decomposition of the functions on the group in terms of irreducible (balanced) representations, see [39].
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Higher categories. As we will see in Ch. 5, in four dimensions even the use of quantum
groups is not enough to describe curved geometries. In this case one needs to generalize even
further the concept of group, using what is called a 2-group.
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Chapter 4

Quantum groups in group field theory

Group field theories were first introduced with the aim of retrieving the amplitudes of three di-
mensional Euclidean quantum gravity as the Feynman diagrams of a field theory. Nevertheless,
I already emphasized that GFT’s can be naturally generalized to the higher dimensional case
and even in the Lorentzian setting; another interesting extension is also the inclusion of the
cosmological constant [41], which is normally interpreted as the insertion of an homogeneous
curvature of the discretized manifold. As I discussed in the previous chapter, the (spin foam)
quantization used in group field theories is based on the cotangent bundle of the gauge group,
as the classical phase space. This implies that the triangulation associated to the discretized
manifold has to be flat (without homogeneous curvature). In [105] the underlying symmetries of
three dimensional gravity with non-zero cosmological constant were derived, and it was pointed
that these symmetries are realized in terms of quantum groups [106], which was well-known since
Witten’s seminal work [107].
In this line, the proper state sum for three dimensional discrete gravity with non-zero cosmo-
logical constant is provided by the Turaev-Viro model [46]. This is a generalization of the
Ponzano-Regge amplitude, where the representations of SU(2) are replaced by representations
of the quantum group SUq(2). In the original model, the quantum group is also used a regulator
for the model, as the parameter q is taken as root of unity1. The Turaev-Viro vertex term is
thus a topological invariant associated to 3d gravity [6] and it is related to discrete version of
Chern-Simons action [108, 109]. The generalization of Turaev-Viro model to the 4d case is the
Yetter-Crane model [110]. This is a state sum model whose quantum (boundary) states are the
Turaev-Viro invariants, and the partition function is interpreted as four dimensional discrete
curved geometry.
Quantum groups, or more generally monoidal (spherical) categories, are also the natural tool
to describe topological quantum field theories (TQFT) [111], widely known in mathematics and
condensed matter. The use of quantum groups to describe the symmetries of quantum gravity are
also at the basis of doubly (deformed) special relativity (DSR) [112–114] and non-commutative
space-time approaches [115,116].
I refer to the books [106,117] as complete introductions to quantum groups. Assuming that not
all the readers are familiar with the notion of quantum groups and Hopf algebras, I provide a
short overview in the next section. After this, I will introduce the core of this chapter: the Hopf
algebra field theory, based on an project in collaboration with F. Girelli [45]. This is a new
model constructed in a framework inspired by the group field theory approach in Ch. 3, that,

1The parameter q is called deformation parameter in quantum group theory and allows to recover the ordinary
definition of groups in the limit q → 1. Taking q to be root of unity consists in assuming that qn = 1 for some
n ∈ N. This assumption is analogous to the choice of a finite group in place of a Lie group in ordinary gauge
theories, used to regularize the model.
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using co-associative Hopf algebras, aims to provide the description of homogeneously curved
discrete geometries. To better understand the goal of Hopf algebra field theory, I recall that the
Ponzano-Regge model can be retrieved as the discretization of a three dimensional BF model
with vanishing cosmological constant, and its partition function can essentially be seen as a
plane-wave or as a Dirac delta function implementing the vanishing of the curvature (with the
B field playing the role of a Lagrange multiplier),

ZΛ=0
BF =

∫
[dB][dA] ei

∫
M BI∧FI ∼

∫
[dA] δ(F )

→ ZΛ=0
d =

∫
[dX][dg]

∏
e

ei⟨Xe , ge⟩ =

∫
[dg]

∏
e

δ(ge) ≈ ZPR , (4.1)

where Xe ∈ R3 is a variable associated to the edge e of a triangulation and ge is the closed
holonomy on the loop of links spanning the surface dual to the edge e. No analogue of such
discretization really exists when the cosmological constant is not zero, even if the asymptotic
analysis of the TV amplitude shows that it is related to the Regge action with a non vanishing
cosmological constant [118]. One can nevertheless wonder whether a similar derivation could
exist for the TV model and in particular whether there exists a generalized notion of plane-wave
which would be used to encode a discretized BF action.
Using the notion of generalized Drinfeld double [119] that naturally encodes the duality between
Hopf algebras, I will provide the formulation of Hopf algebra field theory both in the configuration
and in the momentum space. The two formulations are associated to the simplicial triangulation
of an homogeneously curved three dimensional manifold and to its dual complex, and are related
by a (generalized notion of) Fourier transform. The canonical element of the generalized Drinfeld
double plays the role of generalized plane wave; it is used as the kernel for the Fourier transform
between dual Hopf algebras, and most importantly it will be the core to construct the amplitudes
of the new model. Indeed, I will also show that such plane wave provides the discretization or
regularization of a BF amplitude with or without cosmological constant.

4.1 Quantum groups

In this part I will briefly introduce the concept of Hopf algebra and quantum groups. This
section is mostly inspired by [106,117], to which I refer for a more detailed overview. The reader
who is familiar with the notion of Hopf algebra can skip this part.

Algebra

Let us start from the definition of an algebra. We call algebra the set (A,+,K) over the field K,
where A is a vector space equipped with a linear2 multiplication (or product) m : A ⊗ A → A
and + denotes the vector addition. Without risk of confusion, I will sometimes use the simpler
notation a1 · a2 or even a1a2 at the place of m(a1 ⊗ a2) for the multiplication, with a1, a2 ∈ A. I
consider algebras whose product is associative and has a unit element, (usually denoted 1 or η).
Given any two algebras A,B, one can also define their tensor product A ⊗ B, which is still an
algebra with product (a1 ⊗ b1) · (a1 ⊗ b2) = a1a2 ⊗ b1b2.

Co-algebra
2In the sense that the product is compatible with the sum and the action of K.
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This definition of algebra suggests a dual picture, given by a vector space over K equipped with
a co-product ∆ : A→ A⊗ A, for which there exists a linear co-unit ε : A→ K defined by

(ε⊗ id) ◦∆ = (id ⊗ ε) ◦∆ = id . (4.2)

Here id denotes the identity map and ◦ the composition of maps. I will consider co-associative
co-algebras, for which the identity (id ⊗∆)∆ = (∆⊗ id)∆ holds. Later on I will often use the
Sweedler notation for the co-product

∆a =
∑

a(1) ⊗ a(2) . (4.3)

Again, given any two co-algebras A,B, their tensor product A ⊗ B is still a co-algebra with
co-product ∆(a⊗ b) =

∑
a(1)b(1) ⊗ a(2)b(2).

Bi-algebra

A bi-algebra is a vector space equipped with all the maps mentioned above: product, co-product,
unit and co-unit. Said otherwise, a bi-algebra A is both an algebra and a co-algebra, where the
above mentioned maps are all compatible, in the sense that

∆(a1 · a2) = ∆(a1) ·∆(a2) , ∆(1) = 1⊗ 1 , ε(a1 · a2) = ε(a1) ε(a2) , ε(1) = 1 . (4.4)

The above identities state that the co-product and co-unit are algebra homomorphisms, while
the product and the unit are co-algebra homomorphisms.

Hopf algebra

An Hopf algebra over K is a bi-algebra over K equipped with an antipode map S : A → A,
compatible with product and co-product, as such

m ◦ (id ⊗ S) ◦∆ = m ◦ (S ⊗ id) ◦∆ = η ε . (4.5)

Even if the role of the antipode can be interpreted as that of an inverse map, the identity S2 = id
does not always hold; for some Hopf algebra (such as the finite dimensional ones) there also exists
an inverse antipode S−1 for which S ◦ S−1 = S−1 ◦ S = id.

Quantum group

A quantum group or quasitriangular Hopf algebra is an Hopf algebra A equipped with an element
R ∈ A⊗ A called quantum R-matrix. This obeys the axioms

(∆⊗ id)R = R13R23 , (id ⊗∆)R = R13R12 ,

R∆a = (τ ◦∆a)R , ∀a ∈ A ,
(4.6)

here I used the tensor product notation Rij =
∑

1 ⊗ · · · ⊗ R(1) ⊗ · · · ⊗ R(2) ⊗ · · · ⊗ 1, where
R =

∑
R(1) ⊗ R(2). The quantum R-matrix has an inverse R−1 and satisfies the further

identities

(ε⊗ id)R = (id ⊗ ε)R = 1 , (S ⊗ id)R = R−1 , (id ⊗ S)R−1 = R . (4.7)

Given the properties (4.6), one can check that the quantum R-matrix satisfies the Quantum
Yang-Baxter equation (QYBE):

R12R13R23 = R23R13R12 . (4.8)
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Action and co-action

There exists a notion of action and co-action between Hopf algebras. A left action of A on H is
a map ▷ : A⊗H → H, denoted a ▷ h ∈ H and defined by the axioms

(ab) ▷ h = a ▷ (b ▷ h) , 1 ▷ h = h , (4.9)

similar for the right action. If the (left) action is an algebra homomorphism

a ▷ (hg) =
∑

(a(1) ▷ h) (a(2) ▷ g) , a ▷ 1 = ε(a) 1 , (4.10)

or a co-algebra homomorphism

∆(a ▷ h) =
∑

(a(1) ▷ h(1))⊗ (a(2) ▷ h(2)) , ε(a ▷ h) = ε(a) ε(h) , (4.11)

one resp. says that H is a left A module algebra or co-algebra, and similar for the right action.
A left co-action of H on A is a map β : A→ H ⊗A, denoted β(a) =

∑
a

¯(1) ⊗ a
¯(2) ∈ H ⊗A and

defined by the axioms

(id ⊗ β) ◦ β = (∆⊗ id) ◦ β , (ε⊗ id) ◦ β = id , (4.12)

similar for the right co-action. If the (left) co-action is an algebra homomorphism

β(ab) = β(a) β(b) , β(1) = 1⊗ 1 , (4.13)

or a co-algebra homomorphism

(id ⊗∆) ◦ β(a) =
∑

a(1)
¯(1) a(2)

¯(1) ⊗ a(1)
¯(2) ⊗ a(2)

¯(2) , (ε⊗ id) ◦ β(a) = 1 ε(a) , (4.14)

one resp. says that A is a left H co-module algebra or co-algebra, and similar for the right
co-action. If H and A are both bi-algebras, then one can build a number of bi-algebras on their
tensor product A⊗H. Given the left or right actions between A and H, one has the spaces

Left cross product: A⋊H

Right cross product: A⋉H

Double cross product: A ▷◁ H

The left or right cross products are bi-algebras with a trivial co-product (that of a tensor product
of co-algebras), and a left or right action that induce the respective multiplications

(a⊗ h) · (b⊗ g) = a(h ▷ b)⊗ hg ,

(a⊗ h) · (b⊗ g) = ab⊗ (h ◁ b)g .
(4.15)

The double cross product is a bi-algebra with both a left and right actions that induce the
multiplication

(a⊗ h) · (b⊗ g) = a(h ▷ b)⊗ (h ◁ b)g , (4.16)

while the co-product is again trivial. Given the left or right co-actions between A and H, one
has the spaces

Left cross co-product: A >◀ H

Right cross co-product: A ▶< H

Double cross co-product: A ▶◀ H
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The left or right cross co-products are bi-algebras with a trivial multiplication (that of a tensor
product of algebras), and left or right co-actions (resp. β and α) that induce the respective
co-products

∆(a⊗ h) = (a(1) ⊗ β(a(2))⊗ id) · (id ⊗ h(1) ⊗ id ⊗ h(2)) ,

∆(a⊗ h) = (a(1) ⊗ id ⊗ a(2) ⊗ id) · (id ⊗ α(h(1))⊗ h(2)) .
(4.17)

The double cross co-product is a bi-algebra with both a left and right co-actions that induce the
co-product

∆(a⊗ h) = (a(1) ⊗ β(a(2))⊗ id) · (id ⊗ α(h(1))⊗ h(2)) , (4.18)

while the multiplication is again trivial. Given the left or right actions and co-actions between
A and H, one has the mixed spaces

Left bicrossproduct: A ▶◁ H

Right bicrossproduct: A ▷◀ H

The left bicrossproduct is a bi-algebra with multiplication of a left cross product and co-product
of a right cross co-product. The right bicrossproduct is a bi-algebra with multiplication of a
right cross product and co-product of a left cross co-product.

Duality

Given two Hopf algebras H,A, they are dual each other if there exist a bi-linear map ⟨ , ⟩ :
H ⊗ A → K which implements the notion of duality between the two Hopf algebra structures,
as

⟨h · g , a⟩ = ⟨h⊗ g , ∆a⟩ , ⟨h , a · b⟩ = ⟨∆h , a⊗ b⟩ ,
⟨h , 1⟩ = ε(h) , ⟨1 , a⟩ = ε(a) , ⟨Sh , a⟩ = ⟨h , Sa⟩ ,

(4.19)

for all h, g ∈ H and a, b ∈ A. The same duality can be defined between a left or right actions
and a right or left co-actions (resp. α, α′ and β, β′):

⟨h , g ▷ a⟩ = ⟨α(h) , g ⊗ a⟩ , ⟨h ◁ a , b⟩ = ⟨h⊗ a , α′(b)⟩ ,
⟨h , a ◁ g⟩ = ⟨β(h) , a⊗ g⟩ , ⟨a ▷ h , b⟩ = ⟨a⊗ h , β′(b)⟩ .

(4.20)

Doubles

As the notion of duality (4.19) yields to dual Hopf algebras, the duality between action and
co-action (4.20) extends this concept to the Hopf algebras built on the tensor product A ⊗H.
The Hopf algebra dual to a left or right cross product is resp. a right or left cross co-product,
the Hopf algebra dual to a double cross product is a double cross co-product, while the left and
right bicrossproduct Hopf algebras are dual other.
This leads to the generalization to the Hopf algebras context, of the double of a group, which
is used to construct the space of symmetries (Drinfeld double) or its phase space (Heisenberg
double). The quantum double of an Hopf algebra H, denoted D(H,H∗, ⟨ ⟩), is the double cross
product Hopf algebra defined on the tensor product3 H∗ op ▷◁ H, where the angle brackets are
the bi-linear map that encode the duality between H and H∗.
For the purpose of the Hopf algebra field theory construction, in the next section I will further
generalize the concept of quantum double and its dual Hopf algebra, introducing the notion of
skew-pairing and co-pairing, see [106,119].

3The Hopf algebras Aop and Acop are the Hopf algebras obtained by taking A with resp. an inverse product
or an inverse co-product.
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4.2 Hopf algebra field theory

In this part, based on a project in collaboration with F. Girelli [45], I discuss the new model
called Hopf algebra field theory (HAFT).
After introducing the main notations and conventions that will be used in the rest of the chap-
ter, I provide some relevant definitions such as the notion of generalized Fourier transform for
Hopf algebras and hence the notion of plane-wave that plays a central role in Hopf algebra field
theory. Then I introduce the main ingredients of HAFT, as the action that governs the model
and the Feynman diagram amplitudes associated to homogeneously curved discrete geometries.
I also show the topological invariance of the new model. In the last part, I consider the main
example of Hopf algebra field theory, which consists in the specific choice of the quantum group
SUq(2), with q real. In this case, Hopf algebra field theory will be interpreted as the path inte-
gral formulation related to TV model. Finally, I discuss how the generalized plane-wave can be
related to the discretization of the BF amplitude with a negative cosmological constant.
For the sake of simplicity, I will not go through the details of the the long and tedious compu-
tations. I refer to the original work [45] for the interested reader. In [45] we also show how to
recover ordinary group field theories based either on finite groups or on the SU(2) Lie group,
as sub-cases of Hopf algebra field theory. Since this point is particularly crucial, in App. B.1 I
propose a new prescription to construct dual Hopf algebras and the associated quantum double
Hopf algebras, which is an highly non-trivial job.

Hopf algebra ingredients

Let me first summarize the most relevant Hopf algebra ingredients that will be needed for the
construction of the new model. The expert reader can skip this part, even though I still suggest
to check the conventions and the notations, as well as the definition of Fourier transform.
Given the Hopf algebra A, denote An =

⊗n
i Ai with n ≥ 2 its associated tensor product and

consider the following maps.

Co-product: ∆n : A→ An with ∆n ≡ (id ⊗ . . .⊗ id ⊗∆) ◦ · · · ◦∆ (4.21)
Product: mn : An → A with mn ≡ m ◦ · · · ◦ (id ⊗ . . .⊗ id ⊗m) (4.22)

Permutation: τn : An → An with τn(a1 ⊗ . . .⊗ an) = an ⊗ . . .⊗ a1 (4.23)
Co-unit: εn : An → K (4.24)

Unit: ηn : K → An (4.25)

The tensor product An is in turn an Hopf algebra with associated maps

∆(n) : An → An ⊗ An

with ∆(n)(a1 ⊗ . . .⊗ an) = (a1(1) ⊗ . . . an(1))⊗ (a1(2) ⊗ . . .⊗ an(2)) (4.26)

m(n) : An ⊗ An → An

with m(n)
(
(a1 ⊗ . . .⊗ an)⊗ (b1 ⊗ . . .⊗ bn)

)
= m(a1 ⊗ b1)⊗ . . .⊗m(an ⊗ bn) (4.27)

τ (n) : An ⊗ An → An ⊗ An

with τ (n)
(
(a1 ⊗ . . .⊗ an)⊗ (b1 ⊗ . . .⊗ bn)

)
= (b1 ⊗ . . .⊗ bn)⊗ (a1 ⊗ . . .⊗ an) (4.28)

S(n) : An → An

with S(n)(a1 ⊗ . . .⊗ an) = (Sa1 ⊗ . . .⊗ San) (4.29)
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Given a tensor product of Hopf-algebras, I will later use the notation

mij(1⊗ . . .⊗ a1 ⊗ . . .⊗ a2 ⊗ . . .⊗ 1) = 1⊗ . . .⊗m(a1 ⊗ a2)⊗ . . .⊗ 1 , (4.30)
∆ija = 1⊗ . . .⊗ a(1) ⊗ . . .⊗ a(2) ⊗ . . .⊗ 1 , (4.31)

for a ∈ A. The map mij stands for a product of two elements resp. living in the ith and jth

positions of the tensor product, and the result, m(ai⊗ a2) = a1 · a2, is in the ith space, for i < j.
The map ∆ij stands for usual co-product embedded in a tensor product of Hopf algebras, with
the two components resp. placed in the ith and jth positions. I use a minus sign as notation for
the antipode, for instance

∆−i ja = 1⊗ . . .⊗ Sa(1) ⊗ . . .⊗ a(2) ⊗ . . .⊗ 1 . (4.32)

These notations can be generalized for the n-dimensional product (4.22) and co-product (4.21),
which I denote mn

i1...in
and ∆n

i1...in
. Similarly, they can be generalized to the product (4.27) and

co-product (4.26) of the tensor space Hopf algebra, denoted m(n)
i1...in j1...jn

and ∆
(n)
i1...in j1...jn

.

Definition 1 (Simplex maps). Consider the maps

m : A12 → A6 , ∆ : A6 → A12 , ∆V : A6 → A16 , (4.33)

that stand for a combination of products or co-products that have the same pattern of a tetrahe-
dron. The maps are defined as

m(a1 ⊗ · · · ⊗ a12) = (a1 · a9)⊗ (a2 · a12)⊗ (a3 · a4)⊗ (a5 · a11)⊗ (a6 · a7)⊗ (a8 · a10) , (4.34)
∆(a1 ⊗ · · · ⊗ a6) = ∆1 9a1 ⊗∆2 12a2 ⊗∆3 4a3 ⊗∆5 11a4 ⊗∆6 7a5 ⊗∆8 10a6 , (4.35)

∆V(a1 ⊗ · · · ⊗ a6) = ∆4
−16 4−1 6 a1 ·∆4

−15 4 2 9 a2 ·∆4
−14 4−3 12 a3 ·∆4

−11 3 2 10 a4

·∆4
−13 3−1 5 a5 ·∆4

−8−2−1 7 a6 , (4.36)

where ∆ij, and similarly its generalization ∆4
i1 i2 i3 i4

, are given in (4.31).

Quantum double

Definition 2 (Matched pair bi-algebras). [106,119] Two bi-algebras H and A form a matched
pair if there exist a pair of actions

▷ : A⊗H → H , ◁ : A⊗H → A (4.37)

that satisfy the compatibility relations

(ab) ◁ h = (a ◁ (b(1) ▷ h(1))) (b(2) ◁ h(2)) , 1 ◁ h = ε(h) ,

a ▷ (hg) = (a(1) ▷ h(1)) ((a(2) ◁ h(2)) ▷ g) , a ▷ 1 = ε(a) ,

a(1) ◁ h(1) ⊗ a(2) ▷ h(2) = a(2) ◁ h(2) ⊗ a(1) ▷ h(1) .

(4.38)

Definition 3 (Skew paired bi-algebras.). [119] Two bi-algebras H and A are skew paired if
there exists a map called skew pairing σ : A⊗H → K, such that

σ(a · b⊗ h) = σ(a⊗ h(1))σ(b⊗ h(2)) ,

σ(a⊗ h · g) = σ(a(1) ⊗ g)σ(a(2) ⊗ h) ,
(4.39)

and
σ(1⊗ h) = ε(h) , σ(a⊗ 1) = ε(a) , (4.40)

for all a, b ∈ A and h, g ∈ H. I used the symbol 1 as a shorthand to address to the unit in both
the bi-algebras H and A. If either A admits an antipode or H admits an inverse-antipode, then
there exist a convolution inverse σ−1 that obeys

σ−1(a⊗ h) ≡ σ(Sa⊗ h) = σ(a⊗ S−1h) . (4.41)
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Definition 4 (Generalized quantum double). [119] Let H and A be skew paired bi-algebras with
skew pairing σ which is convolution-invertible. They form a matched pair with mutual actions

a ◁ h = a(2) σ
−1(a(1) ⊗ h(1))σ(a(3) ⊗ h(2)) ,

a ▷ h = h(2) σ
−1(a(1) ⊗ h(1))σ(a(2) ⊗ h(3)) .

(4.42)

The generalized quantum double is the double cross product bi-algebra D(H,A, σ) ≡ H ▷◁ A built
on H ⊗ A, with product

(h⊗ a) · (g ⊗ b) = h(a(1) ▷ g(1))⊗ (a(2) ◁ g(2))b =

hg(2) ⊗ a(2)b σ
−1(a(1) ⊗ g(1))σ(a(3) ⊗ g(3)) , (4.43)

trivial co-product, ∆ = (∆H ⊗∆A), tensor product, unit and co-unit.

Definition 5 (Matched co-pair bi-algebras). [106,119] Two bi-algebras H and A form a matched
co-pair if there exist a pair of co-actions

α : H → H ⊗ A , β : A→ H ⊗ A (4.44)

that satisfy the compatibility relations

(∆⊗ id) ◦ α(h) =
(
(id ⊗ β) ◦ α(h(1))

)
(1⊗ α(h(2))) ,

(id ⊗∆) ◦ β(a) = (β(a(1))⊗ 1)
(
(α⊗ id) ◦ β(a(2))

)
,

α(h) β(a) = β(a)α(h) .

(4.45)

Definition 6 (Skew co-paired bi-algebras.). [119] Two bi-algebras H and A are skew co-paired
if there exists an element called skew co-pairing σ ∈ H ⊗ A, such that4

(id ⊗∆A)σ = σ13σ12 , (4.46)
(∆H ⊗ id)σ = σ13σ23 . (4.47)

If either A admits an antipode or H admits an inverse-antipode, then the skew co-pairing is
invertible, with inverse

σ−1 ≡ (id ⊗ S)σ = (S−1 ⊗ id)σ , (4.48)

that satisfies the axioms

(id ⊗∆A)σ
−1 = σ−1

12 σ
−1
13 , (4.49)

(∆H ⊗ id)σ−1 = σ−1
23 σ

−1
13 . (4.50)

Using the co-unit axiom and the co-pairing properties (4.46) and (4.47), one derives the identities

(ε⊗ id)σ = (id ⊗ ε)σ = 1 , (4.51)

that I will call co-unit properties of the skew co-pairing element.

Definition 7 (Dual of the generalized quantum double). [119] Let H and A be skew co-paired
bi-algebras with invertible skew co-pairing. They form a matched co-pair with mutual co-actions
α : H → H ⊗ A and β : A→ H ⊗ A given by

α(h) = σ−1 (h⊗ 1)σ ,

β(a) = σ−1 (1⊗ a)σ .
(4.52)

4In eq. (4.46), (4.47) and (4.49), (4.50), for clarity, I used the notation ∆H and ∆A to address to the
co-products on H and A. In the following, for simplicity, we will drop the indices H and A.
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The dual of the generalized quantum double is the double cross co-product bi-algebra D∗(A,H, σ) =
A ▶◀ H built on A⊗H, with co-product

∆(a⊗ h) =
(
(id ⊗ α⊗ id) ◦ (∆Hh⊗ 1)

)
·
(
(id ⊗ β ⊗ id) ◦ (1⊗∆Aa)

)
= σ−1

23 (∆Aa⊗∆Hh)σ23 , (4.53)

trivial product, (a⊗ h) · (b⊗ g) = ab⊗ hg, tensor product, unit and co-unit.

I will later need to extend this construction in the context of tensor product of bi-algebras.
Consider two tensor product bi-algebras Hn =

⊗n
i Hi and An =

⊗n
i Ai such that each pair of

sub bi-algebras Hi and Ai are skew paired (resp. skew co-paired); that is, for each pair Hi, Ai
there exists a map σi : Ai ⊗Hi → K (resp. an element σi ∈ Hi ⊗ Ai). Then the tensor product
bi-algebras Hn, An are skew paired by the map

Σn : An ⊗Hn → K (4.54)

or skew co-paired by the element
Σn ∈ Hn ⊗ An . (4.55)

In particular, since the bi-algebras Hn and An are tensor products of independent bi-algebras,
the n dimensional skew co-pairing can be written in the tensor notation as

Σn = σ1n+1 σ2n+2 · · · σn 2n . (4.56)

Integral and Fourier transform

Definition 8 (Integral and co-integral). [106, 117] A left (resp. right) integral in A is an
element ℓL, (resp. ℓR) in A such that

a · ℓL = ε(a) ℓL , ℓR · a = ε(a) ℓR , ∀a ∈ A . (4.57)

The integral ℓ is normalized if ε(ℓ) = 1. A left (resp. right) co-integral on A is a map
∫ L
A
: A→ K

(resp.
∫ R
A

: A→ K) that satisfies the left (resp. right) invariance condition(
id ⊗

∫ L

A

)
∆a = 1⊗

∫ L

A

a ,

(∫ R

A

⊗id
)

∆a =

∫ R

A

a⊗ 1 , ∀a ∈ A . (4.58)

The co-integral
∫
A

is normalized if
∫
A
1 = 1.

In order to keep track of divergencies, in the following I will consider non-normalized co-integrals
on H and A obeying the relations ∫

H

1 = VH ,

∫
A

1 = VA . (4.59)

Definition 9 (Fourier transform). Let H and A be skew co-paired bi-algebras. The Fourier
transform from H to A is a map F : H → A defined as5

F [h] ≡ 1
√
µ

(∫ L

H

⊗ id
) (

σ · (h⊗ 1)
)
, (4.60)

5I used left co-integrals for both the Fourier transform (4.60) and its inverse (4.61). One could alternatively
use right co-integrals. In this case the inverse skew co-pairing element σ−1 would appear in the definition (4.60)
and the skew co-pairing element σ in (4.61).
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with inverse map F−1 : A→ H

F−1[a] ≡ 1
√
µ

(
id ⊗

∫ L

A

) (
σ−1 · (1⊗ a)

)
, (4.61)

with h ∈ H, a ∈ A, and normalization factor

µ ≡
(∫ L

H

⊗
∫ L

A

)
σ =

(∫ L

H

⊗
∫ L

A

)
σ−1 . (4.62)

Proposition 1. The Fourier transform (4.60) and the inverse Fourier transform (4.61) are
inverse maps, in the sense that

(F ◦ F−1) = (F−1 ◦ F) = id . (4.63)

Definition 10 (Delta function). Let H and A be skew co-paired bi-algebras. The delta functions
of H (denoted δH) and that of A (denoted δ̂A), are respectively defined as the Fourier transform
and the inverse Fourier transform of the unit:

δ̂A ≡ F [1] =
1
√
µ

(∫ L

H

⊗ id
)
σ , δH ≡ F−1[1] =

1
√
µ

(
id ⊗

∫ L

A

)
σ−1 . (4.64)

Similarly, I call opposite delta functions the elements

δ̂−1
A =

1
√
µ

(∫ L

H

⊗ id
)
σ−1 , δ−1

H =
1
√
µ

(
id ⊗

∫ L

A

)
σ . (4.65)

Proposition 2 (Properties of the delta function). Let H and A be skew co-paired Hopf algebras.
The delta functions on them satisfy the identities below.

(a⊗ 1) ·∆δ̂A = (1⊗ Sa) ·∆δ̂A ,
(h⊗ 1) ·∆δH = (1⊗ S−1h) ·∆δH ,

∆δ̂−1
A · (a⊗ 1) = ∆δ̂−1

A · (1⊗ Sa) ,

∆δ−1
H · (h⊗ 1) = ∆δ−1

H · (1⊗ S−1h) .
(4.66)

Moreover, the delta functions are normalized in the sense that

1
√
µ

∫ L

A

δ̂A =
1
√
µ

∫ L

A

δ̂−1
A = 1 ,

1
√
µ

∫ L

H

δH =
1
√
µ

∫ L

H

δ−1
H = 1 . (4.67)

Proposition 3 (Delta function as integral in the Hopf algebra). Consider the skew co-paired
Hopf algebras H,A. The delta functions (4.64) of the Hopf algebras H and A are resp. left
integrals in A and H:

a · δ̂A = δ̂A ε(a) , h · δH = δH ε(h) . (4.68)
The opposite delta functions (4.65) are resp. right integrals in A and H:

δ̂−1
A · a = δ̂−1

A ε(a) , δ−1
H · h = δ−1

H ε(h) . (4.69)

The proofs of the above propositions can be found in [45], where I also provide some further
propositions useful to construct the new model. For the sake of clarity, here I have always
specified whether the co-integrals are left or right by using the indices L,R. In the following I
will omit such index, implying that all the co-integrals are always left invariant ones.
As announced at the beginning of this chapter, the canonical element σ of the dual of the
generalized Drinfeld double (in Def. 7) is used in (4.60) to construct the general notion of
Fourier transform (4.60) between dual Hopf algebras. Therefore, it will often be called plane
wave and will be the central element to construct the Feynman amplitudes of HAFT, related to
the discretization of a BF model with cosmological constant.
We are now ready to provide the main ingredients of Hopf algebra field theory. I will focus on
the three dimensional model, where the Feynman diagrams are interpreted as three dimensional
(homogeneously curved) geometries. I use the same nomenclature adopted in Ch. 3, where
nodes and links are 0d and 1d objects living in the dual complex, while vertices and edges are
0d and 1d objects in the triangulation.
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Invariant field and closure constraint

Let the fundamental degrees of freedom of three dimensional Hopf algebra field theory be the
elements of the tensor product bi-algebras, Φ ∈ H3 and Φ̂ ∈ A3. The fields6 Φ and Φ̂ are related
by the Fourier transform (4.60) and its inverse (4.61), with kernel7 Σ3.
Geometrically, the dual field Φ̂ ∈ A3 is associated to a triangle, where each of its sub-components
(elements of A, which cover the role of the variables xi ∈ G∗ in ordinary GFT) decorates one of
the edges that compose its boundary. Dually, the field Φ ∈ H3 is associated to the graph dual
to such triangle and its sub-components (elements of H, which cover the role of the variables
gi ∈ G in ordinary GFT) are the links outgoing from a single common node, and are orthogonal
to the three edges.
The fields Φ and Φ̂ have the same graphical interpretation of those of ordinary GFT, and are
represented in Fig. 3.1a. In this context, the skew co-pairing σ encodes the information on both
the triangulation and the dual complex: in three dimensions, each element σ can be seen as the
decoration of an edge and a dual link.
Let the field Φ be invariant under a gauge symmetry, which is enforced through a projector.

Definition 11 (Gauge projector). Consider the (left) projector PL : H3 → H3 whose action on
the field, called gauge averaging, is

(PLΦ) =
1

VH

(∫
H

⊗id⊗3

) (
(m3 ⊗ id⊗3) ◦∆(3)Φ

)
. (4.70)

I recall that
∫
H

is the left co-integral on H, while m3 and ∆(3) are the maps resp. defined in
(4.22) and (4.26).

I demand the field Φ to be invariant under the gauge averaging

(PLΦ) = Φ . (4.71)

The element (m3⊗id⊗3)◦∆(3)Φ in (4.70) belongs to the Hopf algebra H4: this can be understood
as the graph dual to the triangle (represented by the field) plus an extra link. Such extra link
is interpreted as a parallel transport in the dual complex, and (4.71) enforces the invariance
of the field under any possible translation of this type. Such transformation inherit the name
gauge symmetry by the direct analogy with ordinary group field theory, and has a graphical
representation analogous to the one in Fig. 3.1b. Dually (upon Fourier transform), the gauge
symmetry translates into the closure constraint.

Proposition 4 (Closure constraint). The Fourier transform of the gauged projected field (4.70)
gives

F [(PLΦ)] = Ĉ · Φ̂ , (4.72)
where the element Ĉ ∈ A3 is called closure constraint and it is given by

Ĉ =

√
µ

VH
∆3δ̂−1

A . (4.73)

The Fourier transformation of the gauge invariance condition (4.71) gives the identity

(Ĉ · Φ̂) = Φ̂ . (4.74)

As an element of the tensor product algebra A3, the closure constraint is interpreted as the
combination of three edges in the triangulation. Being given as the co-product of the delta
function, these edges are naturally interpreted as part of a discrete closed path. Therefore,
(4.72) implements the closure of the boundary of the (triangle) dual field Φ̂.

6For clarity, I call Φ the field and Φ̂ the dual field.
7When there is no risk of confusion I will use the symbol Σ at the place of Σ3
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Action

In analogy with ordinary group field theories, the action of Hopf algebra field theory is composed
by a kinetic plus an interaction term (with coupling constant set to 1 for simplicity)

S = SK + SV . (4.75)

The interaction term is defined as the proper product of fields respecting the combinatorics of
the tetrahedron.

Definition 12 (Interaction term). The interaction term of three dimensional Hopf algebra field
theory is

SV =

∫
H6

(
m (PLΦ⊗ PLΦ⊗ PLΦ⊗ PLΦ)

)
. (4.76)

The map m is given in 4.34.

Proposition 5 (Tetrahedron). The interaction term (4.76) can be expressed as an integral
operator in the two forms below

SV =

∫
H12

(
V · (Φ⊗ Φ⊗ Φ⊗ Φ)

)
=

∫
A12

(
V̂ · (Φ̂⊗ Φ̂⊗ Φ̂⊗ Φ̂)

)
, (4.77)

where
V =

1

µ6 V 4
H

(∫
H4

⊗id⊗12

)
∆Vδ

−1
H ,

V̂ =
1

µ6
∆δ̂−1

A · (Ĉ ⊗ Ĉ ⊗ Ĉ ⊗ Ĉ) ,
(4.78)

are the kernels of the tetrahedron amplitudes, resp. in the H and A representations. The co-
product ∆V was introduced in Def. 1, moreover the opposite delta functions δ−1

H and δ̂−1
A in both

the amplitudes (4.78) are six dimensional delta functions.

Since each dual field is associated to a triangle, by construction, the interaction term represents
the composition of four triangles, with the combinatorics of a tetrahedron specified by the
product (4.34). The associated amplitude is thus interpreted as the boundary of a tetrahedron
in the triangulation picture, or as the bulk and boundary of its dual graph in the dual complex
picture, as in ordinary GFT. It is illustrated in Fig. 3.3a, and each of the delta functions in
(4.36) enforces one of the six loops of links, similar to Fig. 3.3b.
The kinetic term of Hopf algebra field theory is defined as the product of fields Φ.

Definition 13 (Kinetic term). The kinetic term of three dimensional Hopf algebra field theory
is

SK =

∫
H3

Φ · (τΦ) . (4.79)

Proposition 6 (Propagator). The kinetic term (4.79) can be expressed as an integral operator
in two different ways,

SK =

(∫
H3

⊗
∫
H3

) (
K · (Φ⊗ Φ)

)
=

(∫
A3

⊗
∫
A3

) (
K̂ · (Φ̂⊗ Φ̂)

)
, (4.80)

where
K =

1√
µ3

(S(3) ⊗ τ 3) ◦∆(3)δH , K̂ =
1√
µ3

(id⊗3 ⊗ τ 3) ◦∆(3)δ̂−1
A , (4.81)

are the kernels of the propagator amplitudes, resp. in the H and A representations.
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As a product of two fields or dual fields, the propagator represents the identification of two
triangles or the identification or their dual graphs, and it has the same graphical representation
of the propagator amplitude of ordinary GFT, illustrated in Fig. 3.2.
In analogy with group field theory, the tetrahedron amplitude (4.78) encodes the smallest in-
formation (let me call it building block) of any Feynman diagram of Hopf algebra field theory
and the propagator amplitude (4.81) is used to merge several tetrahedra to construct arbitrary
Feynman diagrams.
The proof of propositions 5 and 6 can be found in [45].

Feynman amplitudes and partition function

Similar to standard topological quantum field theories, also Hopf algebra field theory can be
formulated as a state sum model, with partition that can be expanded as the sum over all the
possible discrete geometries weighted by the associated Feynman amplitude. The amplitude of
a given discrete geometry can be expressed either as a triangulation Γ or as its dual complex Γ∗.

In particular, the Feynman amplitude of a triangulation Γ in the A representation is simply
expressed as a combination of tetrahedron amplitudes (4.78) glued by the proper propagator
amplitudes (4.81).

Proposition 7 (Amplitude of a triangulation). Let Γ be the triangulation of a manifold (with no
boundary) built as the combination of M tetrahedra τ . The Feynman amplitude of Hopf algebra
field theory associated to Γ is

AΓ =
1

µ6M

∫
A12M

∏
τ

(
∆(3)δ̂−1

A · (Ĉ ⊗ Ĉ ⊗ Ĉ ⊗ Ĉ)
)
. (4.82)

On the other hand, the Feynman amplitude associated to a general dual complex Γ∗, can be
expressed as a combination of loops made of an arbitrary number of bulk links (part of the bulk
graph of a tetrahedron). Each of such loops is the closed path spanning the face dual to an
edge (shared by a number, say N , of tetrahedra) in the triangulation. In line with the usual
interpretation of models of discrete geometries, each of these loops can be interpreted as probing
the local curvature around the respective edge, and hence, the Feynman amplitude associated
to a general dual complex is expressed as the sum over all such local curvatures.

Proposition 8 (Amplitude of a dual complex). Consider N tetrahedra of a triangulation Γ
sharing a single edge and let LN be the closed loop, made of 2N half bulk links, that spans the
face dual to the edge. Let Γ∗ be the complex dual to the three dimensional triangulation Γ, built
as the combination of such loops LN , with some given N for each loop. The Feynman amplitude
of Hopf algebra field theory associated to Γ∗ is

AΓ∗ =
∏
{LN}

1

µN V N
H

∫
H2N

∆2N
1−2 3−4 ... (2N−1)−2N δ

−1
H . (4.83)

A similar expansion of the Feynman amplitude can be realized in terms of the plane wave σ, the
canonical element of the dual of the generalized quantum double D∗(A,H, σ). This explicitly
encodes the degrees of freedom of a given edge and the loop of links around it. As I will show
in Sec. 4.3.1, this expression is associated to the discretization of a BF theory.
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Proposition 9 (Amplitude of a dual complex in terms of the plane-wave). Given the same set-
ting of the previous proposition, the Feynman amplitude of the dual complex Γ∗ can be represented
in terms of the plane wave σ, as

AΓ∗ =
∏
{LN}

1√
µ2N+1 V N

H

(∫
H2N

⊗
∫
A

) (
∆2N

1−2 3−4 ... (2N−1)−2N ⊗ id
)
σ . (4.84)

Therefore, the Hopf algebra partition function can be expressed as

Z =
∑
Γ

AΓ =
∑
Γ∗

AΓ∗ . (4.85)

The proof of propositions 7, 8, 9 can be found in [45].

4.2.1 Topological invariance

Given two simplicial decompositions of a manifold M, there exists a finite set of transformations,
called Pachner moves, that map one simplicial decomposition into the other [120, 121]. If the
Feynman amplitudes of a model of discrete geometries are invariant under the action of these
transformations, then the model does not depend on the specific simplicial decomposition chosen
and we say that it is topological invariant.

Proposition 10. The Feynman amplitudes of three dimensional Hopf algebra field theory is
topological invariant.

For a three dimensional simplicial triangulation, there exist two Pachner moves, denoted P(1,4)

and P(2,3). I provide below the resulting relation between the relevant amplitudes, and I refer
to [45] for more details about the proofs.

Pachner move P(1,4). The Pachner move P(1,4) takes the amplitude of one tetrahedron (de-
noted AV) into the amplitude of four tetrahedra (denoted AV4). The (reduced) amplitudes of
one and four tetrahedra are

AV =
1

µ3

∫
A6

(
Ĉ−6−4−2 · Ĉ−5 6−1 · Ĉ−3 4 5 · Ĉ1 2 3

)
,

AV4 =
1

µ12

∫
A6

(
Ĉ−1−3−2 · Ĉ−5 1−4 · Ĉ−6 4 2 · Ĉ3 5 6

)
.

(4.86)

The relation between the two amplitudes, encoded by the Pachner move P(1,4), is

(P(1,4)AV) := AV4 =
1

µ9
AV . (4.87)

Pachner move P(2,3). The Pachner move P(2,3) takes the amplitude of two tetrahedra (denoted
AV2) into the one of three (denoted AV3). The (reduced) amplitudes of two and three tetrahedra
are

AV2 =
1

µ6

∫
A9

(
Ĉ−6−4−2 · Ĉ−5 6−1 · Ĉ−3 4 5 · Ĉ−9 2−7 · Ĉ−8 1 9 · Ĉ3 8 7

)
,

AV3 =
1

µ9

∫
A9

(
Ĉ−5−3−2 · Ĉ−4 5−1 · Ĉ−8 2−6 · Ĉ−7 1 8 · Ĉ−9 6 3 · Ĉ4 7 9

)
.

(4.88)
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P(1,4)

Figure 4.1: The Pachner move P(1,4) takes one tetrahedron in the combination of four. In the
triangulation it is realized by connecting the center of the tetrahedron with its four vertices.
The surfaces ranging between the center of the tetrahedron and any pair of vertices are internal
triangles. The four external faces of the initial tetrahedron thus become the external faces of
the four different tetrahedra that share the six internal triangles. In the dual complex, the move
is realized by taking four nodes (the colored ones on the right) at the place of the central node
(in blue on the left). Each node is connected to one of the four external links and to each of the
other nodes.

The relation between the two amplitudes, encoded by the Pachner move P(2,3), is

(P(2,3)AV2) := AV3 =
1

µ3
AV2 . (4.89)

In Fig. 4.1 and 4.2 I represent the Pachner moves P(1,4) and P(2,3) in the triangulation picture
together with the transformations of the respective bulk graphs. The amplitudes associated to
the building blocks of any Feynman diagram of Hopf algebra field theory are invariant (up to
some constant factors) under the action of the Pachner moves. Hence, the HAFT proposed in
this chapter is a topological invariant model.

Note that, in the standard analysis of the three dimensional Pachner moves, the proportionality
constant for the move P(1,4) amounts to the cube of the volume of the group (or Hopf algebra in
our case) that decorates the dual complex. Whereas, the proportionality constant for the Pachner
move P(2,3) is a single volume term. Geometrically, these terms amount to the difference between
the number of (independent) internal edges from the initial and to the final amplitudes of a given
move. In (4.87) and (4.89) we do not encounter the (usually) expected proportionality constants.
One can retrieve them by setting the normalization factor (4.62) to the identity, µ = 1 (as in
the standard case), and by removing the volume term VH in the definition of gauge projector
(4.70). This would prevent the operator PL in (4.70) to be a projector, as it would satisfy the
identity P2

L = VH PL at the place of P2
L = PL; but this choice would also lead to the standard

proportionality constants in the moves (4.87) and (4.89),

(P(1,4)AV) := AV4 = V 3
H AV , (P(2,3)AV2) := AV3 = VH AV2 . (4.90)

4.3 q-Deformed group field theory

In this part I consider a specific example of Hopf algebra field theory to construct the standard q-
deformation of a group field theory based on the SUq(2) group, with a real deformation parameter
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P(2,3)

Figure 4.2: The Pachner move P(2,3) takes two tetrahedra in the combination of three. In the
triangulation it is realized by connecting the vertices above and below through an internal edge.
The surfaces ranging between the internal edge and one of the three vertices shared by the two
initial tetrahedra become internal triangles. The three faces above, that initially belonged to a
single tetrahedron, now belong to three different tetrahedra. The same for the faces below. In
the dual complex, the move is realized by taking three nodes (the colored ones on the right) at
the place of the two initial ones (in blue on the left). Each node is thus connected to each other
by two of its links, plus to one external link above and one below.

q. After a quick overview of the underlying Hopf algebra ingredients, I show that this example
is equivalent to the original Boulatov construction [32], and it thus provides the Turaev-Viro
amplitude [46]. Moreover, I show how the plane-wave σ allows to recover the discretization of
(Euclidian) BF theory in the presence of a (negative) cosmological constant.

Let the Hopf algebrasH and A be the q-deformation of F (SU(2)) and U(su(2)) respectively. Such
standard deformations [106] are the non commutative and non co-commutative Hopf algebras
denoted Uq(an(2)) ∼= F (SUq(2)) and Uq(su(2)) ∼= F (AN(2)). I consider the a real deformation
parameter q = eℓλ, where ℓ has the dimension of a length and is the characteristic scale of SU(2),
while λ has the dimension of an inverse length and is the characteristic scale of AN(2).
Let H,X± be the generators of Uq(su(2)) with the dimension of a length and obeying Hopf
algebra structure

Product: [H,X±] = ±2ℓX± → eλHX± = q±2X±e
λH ,

[X+, X−] = ℓ2q−1 sinh(λH)

sinh(ℓλ)
,

Co-product: ∆H = H ⊗ 1 + 1⊗H

∆X+ = X+ ⊗ 1 + e−λH ⊗X+

∆X− = X− ⊗ eλH + 1⊗X− ,

Co-unit: ε(H) = ε(X±) = 0 ,

Antipode: S(H) = −H ,

S(X+) = −eλHX+ ,

S(X−) = −X−e
−λH .

(4.91)
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Let ϕ, φ± be the generators of F (SUq(2)) with the dimension of an inverse length and with Hopf
algebra structure specified by

Product: [ϕ, φ±] = −iλφ± → eiℓϕφ± = q φ±e
iℓϕ ,

[φ+, φ−] = 0 ,

Co-product: ∆ϕ =
i

ℓ
log

(
1

∆φ0

(
φ0e

−iℓϕ ⊗ φ0e
−iℓϕ − ℓ2φ− ⊗ φ+

))
,

∆φ+ = φ+ ⊗ φ0e
−iℓϕ + eiℓϕφ0 ⊗ φ+ ,

∆φ− = φ− ⊗ eiℓϕφ0 + φ0e
−iℓϕ ⊗ φ− ,

Co-unit: ε(ϕ) = ε(φ±) = 0 ,

Antipode: S(ϕ) = −ϕ ,
S(φ±) = −q∓φ± .

(4.92)

with φ0 =
√

1− q−1ℓ2φ−φ+. I use the PBW basis [117] for the two Hopf algebras, where the
elements are expressed as a linear combination of monomials in the generators:

{Xb
+H

aXc
−}∞abc=0 ∈ Uq(su(2)) , {φb−ϕaφc+}∞abc=0 ∈ Uq(an(2)) . (4.93)

Note that the Uq(su(2)) basis above is obtained by the standard symmetric deformation (with
generators {J±, J3}) presented in [106], with the re-scaling

J± → e∓
1
2
λH X± , J3 → H . (4.94)

The F (SUq(2)) basis given above is instead obtained by the following change of coordinates on
the standard SUq(2) matrix element [106]

g =

(
a b

−qb∗ a∗

)
→ g =

(
φ0e

−iℓϕ iℓφ−

iℓφ+ eiℓϕφ0

)
⇒

{
a = φ0e

−iℓϕ ,

b = iℓφ− .
(4.95)

The Haar measures on F (SUq(2)) and F (ANq(2)) are resp. given by the standard q-deformation
of the Haar measure on SU(2) [106] and by the q-deformation of the Haar measure on AN(2),
in the coordinate basis used above.
Let me give here the relevant ingredients to construct the generalized quantum double and its
dual, and therefore the plane wave. The standard q-deformation of group field theory is given
by the choices H = Fq(SU(2)) ∼= Uq(an(2)) and A = Uq(su(2)) ∼= Fq(AN(2)).

Proposition 11 (q-Deformed group field theory: generalized quantum double). The generalized
quantum double (Def. 4) associated to the q-deformation of group field theory is the Drinfeld
double of Uq(su(2)):

D(Uq(su(2)),Uq(an(2)), σ) = D(Uq(su(2)) ∼= Uq(su(2)) ▷◁σ Uq(an(2)) , (4.96)

with (or canonical) skew pairing

σ
(
Xj

+H
iXk

− , φ
b
−ϕ

aφc+
)
= ia+b+c δaiδbjδck a![b]q2 ![c]q−2 ! , (4.97)

were

[n]f =
n∑
i=

f i =
1− fn+1

1− f
, [n]f ! =

n∏
i=1

[i]f , (4.98)

are the q-number and the q-factorial. In [45] also the mutual actions (4.42) are given.
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Proposition 12 (q-Deformed group field theory: dual of the generalized quantum double). The
dual of generalized quantum double (Def. 7) associated to the q-deformation of group field theory
is

D(Uq(an(2)),Uq(su(2)), σ) = Uq(an(2)) ▶◀σ Uq(su(2)) , (4.99)

with skew co-pairing element given by the q-star exponential

σ = e
iφ+⊗X−
⋆ q2 eiϕ⊗H⋆ e

iφ−⊗X+

⋆ q−2 , (4.100)

where the q-exponential is defined as

exq =
∞∑
n=0

xn

[n]q!
= exp

( ∞∑
n=1

xn

n

(1− q)n

1− qn

)
. (4.101)

In [45] also the mutual co-actions (4.52) are given.

Note that the plane wave (4.97) is similar to the exponential map obtained in [122].

Closure constraint and Feynman amplitude

As a concrete example, I derive here the closure constraint (4.73) and the Feynman amplitude
associated to a dual complex Γ∗ (4.84) of Hopf algebra field theory, using the generalized quantum
double of Uq(su(2)) above.
The closure constraint (4.73) is given by the delta function on Uq(su(2)), which enforces the
following co-products to vanish

H ⊗ 1⊗ 1 + 1⊗H ⊗ 1 + 1⊗ 1⊗H = 0 ,

X+ ⊗ 1⊗ 1 + e−λH ⊗X+ ⊗ 1 + e−λH ⊗ e−λH ⊗X+ = 0 ,

X− ⊗ eλH ⊗ eλH + 1⊗X− ⊗ eλH + 1⊗ 1⊗X− = 0 .

(4.102)

Such closure condition can be re-packaged as a product of three ANq(2) group elements [105].
The Feynman amplitude (4.84) is

AΓ∗ =
∏
{LN}

1

V N
SUq(2)

∫
[dϕdφ±]

N [dHdX±] e
i∆2Nφ+⊗X−
⋆ q2 ei∆

Nϕ⊗H
⋆ e

i∆Nφ−⊗X+

⋆ q−2 , (4.103)

where I noted VSUq(2) the volume of F (SUq(2)), and for simplicity, I assumed µ = 1.

Relation with Turaev-Viro model (with q real)

In this part I will show how one can relate the amplitude (4.103) to the Turaev-Viro invariant [46].
To this scope, it is enough to explain how to recover the original Boulatov model [32]. In his
work, Boulatov defines a field theory based on the representations of a given group G, where the
fundamental field is expanded in the Fourier decomposition

Φ(x, y, z) =
∑
i1,j2,j3

∑
{m,n,k}

Φm1m2m3;k1 k2 k3
j1 j2 j3

Dj1
m1,n1

(x)Dj2
m2,n2

(y)Dj3
m3,n3

(z)∫
dωDj1

n1,k1
(ω)Dj2

n2,k2
(ω)Dj3

n3,k3
(ω) ,

(4.104)

where x, y, z, ω ∈ G and Dj
m,n(x) are matrix elements obeying the orthogonality condition∫
dxDj1

m1,n1
(x)Dj2

m2,n2
(x) =

1

dj
δj1,j2δm1,m2δn1,n2 , (4.105)

55



with dj being the dimension of the irreducible representation associated to j. Taking G =
SU(2), the matrix elements Dj

m,n(x) are the standard Wigner D-matrices, whereas – as Boulatov
explains – for G = SUq(2) the matrix elements Dj

m,n(x) become the q-deformed Wigner matrices
[106]. In Hopf algebra field theory, the fundamental field ϕ is an element of the tensor product
Hopf algebra H3. I defined the q-deformed group field theory as the Hopf algebra field theory
with the specific choice H = F (SUq(2)), for which we used the parametrization in terms of
the coordinates {φ+, ϕ, φ−} of the SUq(2) group element (4.95). Each field Φ in Hopf algebra
field theory is thus given by the tensor product of three copies of the linear combination of
monomials φj+ ϕi φk−. Therefore, to make contact between Hopf algebra field theory and the
original Boulatov model, I define the Fourier expansion for the fields Φ ∈ F (SUq(2)

×3)

Φ =
∑
i1,j2,j3

∑
{m,n,k}

Φm1m2m3;k1 k2 k3
j1 j2 j3

Dj1
m1,n1

({φ±, ϕ}1)Dj2
m2,n2

({φ±, ϕ}2)Dj3
m3,n3

({φ±, ϕ}3)∫
dφ′

+dϕ
′dφ′

−D
j1
n1,k1

({φ′
±, ϕ

′})Dj2
n2,k2

({φ′
±, ϕ

′})Dj3
n3,k3

({φ′
±, ϕ

′}) ,
(4.106)

where I used the symbol {φ±, ϕ}i for the monomial in the coordinates {φ+, ϕ, φ−} in the ith tensor
space. Once again the Dj

m,n are matrix elements obeying the same orthogonality condition. Note
that the above Fourier expansion holds for any Hopf algebra of functions on a Lie group G or
its deformation F (Gq). However, for what concern us, it is enough to focus on the case of
H = F (SUq(2)). In this case, the partition function of the Boulatov model, and thus the one
of Hopf algebra field theory (4.82) as well, is given in terms of the q-deformed 6-j symbols and
allows to recover the Turaev-Viro invariant [46] with q real.

4.3.1 Plane-wave and discretization of the BF action

The amplitudes of Hopf algebra field theory, expressed in terms of the plane-wave. Since Hopf
algebra field theory is a topological model, one would expect that it should be related to the
BF -action. More concretely, I am going to show that the Feynman amplitude (4.103) provides
a regularization or discretization of the BF amplitude eiSΛ

BF where SΛ
BF is the BF action with

cosmological constant.

BF action

Let us focus on the Euclidian case with a negative or null cosmological constant Λ ≤ 0, which
corresponds to the the deformation with a real q deformation parameter [123]. The fundamental
fields are the frame field e and the connection A, which are respectively 1-forms with values in
the boosts K and in the Lie algebra su(2). Noting ⟨ , ⟩ the Killing form of sl(2, C), the BF
model is governed by the action

SΛ
BF [A, e] =

∫
M

⟨e ,
(
F +

Λ

6
(e× e)

)
⟩ . (4.107)

The frame field variables are difficult to quantize since they are valued in the boosts. It was
shown in [105] that it is convenient to do a canonical transformation

ωI = AI + ϵIJKn
JeK , nI = (0, 0, λ) , n2 = λ2 = −Λ , (4.108)

which makes the frame field discretizable with values in the Lie algebra an(2). With this new
connection the action becomes, up to a boundary term,

SλBF [ω, e] =
∫
M

(
eI ∧ FI + λ e3 ∧ (ω+ ∧ e− + ω− ∧ e+)

)
. (4.109)
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Let me emphasize that this action depends on two constants: the Newton’s constant G (relate to
the length ℓ) and the cosmological constant (related to λ). As mentioned earlier, the constant ℓ
typically encodes curvature of SU(2), while λ encodes the curvature of the group AN(2). Hence,
when looking at the action (4.109), one can take two limits, the first is λ→ 0 which leads to the
ordinary BF theory with zero cosmological constant, and second one, less common, is ℓ → 0,
which can be related to a model with zero gravity but a non-commutative space-time [116,124].
In [105] it was pointed that the underlying symmetry structure of the action (4.109) is the
classical Drinfeld double sl(2, C) ∼= su(2) ▷◁ an(2), which in the two limits above become

su(2) ▷◁ an(2) →

{
su(2)⋉R3 for λ = 0 ,

R3 ⋊ an(2) for ℓ = 0 .
(4.110)

In order to highlight the different symmetries, one can re-write the action (4.109) to

SλBF [ω, e] =
∫
M

(
⟨e , dω⟩+ 1

2
⟨e , [ω , ω]su(2)⟩+

1

2
⟨[e , e]an(2) , ω⟩

)
, (4.111)

which thus reduces as

SλBF [ω, e] →


Ssu(2)
BF =

∫
M

⟨e , dω +
1

2
[ω , ω]su(2)⟩ , for λ = 0 ,

San(2)
BF =

∫
M

⟨de+ 1

2
[e , e]an(2) , ω⟩ , for ℓ = 0 ,

(4.112)

where a boundary term was omitted in the second expression.

Deiscretization of the BF amplitude

Let me recall the main aspects of the standard discretization procedure of a BF theory with no
cosmological constant based on a general symmetry group G, with action SBF =

∫
M ⟨B∧F [A]⟩.

The field B is a g∗ valued one form and A is a g-valued connection. The 3d manifold M is
discretized on a cellular decomposition Γ, noting Γ∗ its dual complex. According to the Poincaré
duality, the fields B and F are discretized on the dual structures. The standard choice is to
discretize B on the triangulation Γ, and the curvature F [A] along an holonomy ge ∈ G forming
a closed loop in Γ∗. In this construction, one can typically attribute to each link li an holonomy
gi ∈ G, such that ge =

∏n
i gi. Upon quantization, such product is actually characterized by the

co-product

ge =
n∏
i

gi → ∆ng , (4.113)

where the discrete variables of each tensor space of the co-product ∆n are associated to one of
the links of the loop ge that defines the boundary of a surface dual to an edge. The B field is
discretized on such edge as a d dimensional vector xe ∈ Rd

⋆, where d is the dimension of G. The
natural discretization of the three dimensional BF action is thus

eiSBF [A,B] ≈ e⟨ge x⟩ → e∆
ng⊗xe = (∆n ⊗ id) eg⊗xe , (4.114)

where ∆ng⊗xe is the quantization of ⟨ge , x⟩. The same discretization procedure can be realized
using the coordinates on the groups G and Rd

⋆, pa(ge) ∈ F (G) and xa(xe) ∈ F (Rd
⋆):

eiSBF [A,B] ≈ e⟨ge x⟩ = eip
a ·xa → ei∆

npa⊗xa = (∆n ⊗ id) eip
a⊗xa . (4.115)
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This time ∆npa ⊗ xa is the quantization of pa · xa. As alluded earlier, I would like to identify
the plane wave σ as a generalized notion of the exponential eipa⊗xa , associated to a single link
of Γ∗ and to a single edge of Γ. Taking the plane wave (4.100) as an example, the main
difference is that this is expressed as a product of three (⋆-q) exponentials, while eipa⊗xa is a
single exponential. However, one can always use the BCH formula and a change of coordinates
to re-package any plane wave, expressed in an arbitrary parametrization, as a single exponential.
We do not expect that the discretization of a BF amplitude is affected by such choice. Note
that a similar argument for the parametrization of the Lorentz group was already raised in [94].
Therefore, since the Hopf algebras associated to SU(2) and AN(2) can be derived as the limiting
cases λ = 0 or ℓ = 0 from the q deformed case (as it is shown in [45]), and since the BF actions
(4.112) can be obtained from the BF action (4.109) in the same limiting cases, their associated
amplitudes are discretized on the q-deformed plane wave (4.100) in such limits:

eiS
su(2)
BF → eiS

su(2)
d = (∆n ⊗ id)

(
e
iφ+⊗X−
⋆ q2 eiϕ⊗H⋆ e

iφ−⊗X+

⋆ q−2

)∣∣
λ=0

,

eiS
an(2)
BF → eiS

an(2)
d = (∆n ⊗ id)

(
e
iφ+⊗X−
⋆ q2 eiϕ⊗H⋆ e

iφ−⊗X+

⋆ q−2

)∣∣
ℓ=0

.
(4.116)

I recall that for ℓ ̸= 0 and λ ̸= 0, the underlying symmetry structure of the BF model governed
by the action (4.109) is the double su(2) ▷◁ an(2). Hence, the plane wave (4.100), which is
the canonical element of the generalized quantum double D∗(Uq(su(2)),Uq(an(2)), σ), provides
a discretization for the amplitude of a BF model with negative cosmological constant governed
by the action (4.109):

eiS
λ
BF [ω,e] → eiS

λ
d = (∆n ⊗ id)

(
e
iφ+⊗X−
⋆ q2 eiϕ⊗H⋆ e

iφ−⊗X+

⋆ q−2

)
. (4.117)

Discretization of the BF action

The formula above provides the discretization of a BF amplitude. In order to make contact
between the classical fields and the discrete variables, one would need the explicit discretization
of the BF action as well. To this scope, one would need to use the BCH formula for the q-
deformed plane wave (4.100) and then a (simultaneous) change of coordinate that involves the
generators of both the Hopf algebras Uq(su(2)) and Uq(an(2)). As the complexity of the BCH
formula prevents us to derive the full expression, we truncate the formula at the first order in ℓ,
λ and ℓλ

σ = e
iφ+⊗X−
⋆ q2 eiϕ⊗H⋆ e

iφ−⊗X+

⋆ q−2 ≈ eiφ+⊗X−
⋆ eiϕ⊗H⋆ eiφ−⊗X+

⋆

≈ e
iφ+⊗X−+iϕ⊗H+iφ−⊗X++ 1

2
[ϕ⊗H ,φ+⊗X−]− 1

2
[ϕ⊗H ,φ−⊗X+]+ 1

2
[φ−⊗X+ , φ+⊗X−]

⋆

≈ e
iφ+(1+iℓϕ)⊗X−+i(1+iℓϕ)φ−⊗X++i(ϕ− i

2
ℓφ+φ−)⊗H+ iλ

2
(φ−⊗HX+−φ+⊗X−H)

⋆ . (4.118)

The discretization of the BF action SλBF [ω, e] → Sλd is then realized by taking nth the co-
product of such expression. According to the discussion above, for ℓ = 0 or λ = 0, one obtains
the discretization of the actions (4.112) associated to a BF model based on the Lie groups AN(2)
or SU(2) respectively

Ssu(2)
BF [ω, e] → Sλ=0

d = (∆n ⊗ id)
(
φ+(1 + iℓϕ)⊗X− + (1 + iℓϕ)φ− ⊗X+ + (ϕ− i

2
ℓφ+φ−)⊗H

)
+O(ℓ2) .

San(2)
BF [ω, e] → Sℓ=0

d = (∆n ⊗ id)
(
φ+ ⊗X−(1−

λ

2
H) + φ− ⊗ (1 +

λ

2
H)X+ + ϕ⊗H

)
+O(λ2) .

(4.119)
In the general case, for ℓ ̸= 0 and λ ̸= 0, since we discarded all the terms of the order ℓλ, the
deformation parameter q is automatically set to 1 and thus, according to (4.92), the F (SUq(2))
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co-product reduces to the F (SU(2)) co-product. Therefore, noting that the first three terms of
(4.118) coincide with the discrete action Sλ=0

d , the BF action (4.109) with negative cosmological
constant is discretized, with the precision fixed at the first order in ℓ and λ, as

SλBF [ω, e] = Sλ=0
BF [ω, e] + λ

(
ω− ∧ e3 ∧ e+ − ω+ ∧ e− ∧ e3

)
→ Sλd = Sλ=0

d +
1

2
λ (∆n ⊗ id) (φ− ⊗HX+ − φ+ ⊗X−H) . (4.120)

4.4 Remarks and perspectives

In this chapter I discussed a model based on Hopf algebras that provides the description of
three dimensional discrete geometries. The formulation of the model is inspired by the notion
group field theories in Ch. 3, where the fundamental degrees of freedom are encoded in a gauge
invariant field and the partition function is expressed as a sum over the amplitudes associated
to cellular decomposition of a three dimensional manifold.
The field theory is discussed both in the configuration and momentum spaces, and a map (gen-
eralized Fourier transform) between the two is provided. The object used as the kernel of such
transformation is a generalized notion of plane-wave, used as the central object to construct the
amplitudes of the model.
The main scope of this work was to provide a field theory generating curved discrete geometries
as Feynman diagrams, in such a way that the amplitudes would provide a discretization of the
BF amplitude with non-vanishing cosmological constant, which is interpreted as the insertion
of an homogeneous curvature of the three dimensional manifold.
Let me now mention several directions that I would find interesting to explore.

Relation with integrable systems. The canonical element associated to the dual Hopf
algebras also appeared in the context of integrable systems under the shape of the transfer/-
transport matrix, or T-matrix [122,125,126]. In this context, one considers a lattice whose sites
are associated with a T-matrix σ. It can be written as

σ = ex·k , (4.121)

where L = x · k originates from a Lax pair and the xi are the dynamical variables, which can be
seen as generating a Lie algebra gx, while the ki are the generators of the Lie algebra gk. One
can multiply the T-matrices sitting at different sites, with dynamical variables x and x′ to obtain
a new one x′′ = x⊕ x′. This is precisely the structure that one would expect from a plane-wave.
The dynamical variables are equipped with a Poisson bracket which induces a Poisson structure
for the T-matrix. Such Poisson brackets are expected to be compatible with the product of the
T-matrices. The main features of the T-matrix are thus captured by the expected plane-wave
properties

σx,k1σx,k2 = eix·k1eix·k2 = eix·(k1⊕k2) ≡ σx,(k1⊕k2) ,

σx1,kσx2,k = eix1·keix2·k = ei(x1⊕x2)·k ≡ σ(x1⊕x2)·k .
(4.122)

Note that, at the quantum level, by performing some projection in terms of representations,
we can recover from the T-matrix the notion of R-matrix [106] which also play a fundamental
role in the study of integrable systems. It would be interesting to explore whether the fact that
this common structure appears both for integrable systems and 3d gravity could clarify some
interesting questions, such as holography for example.
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Generalization to quasi Hopf algebras. Hopf algebra field theory relies on associative and
co-associative Hopf algebras. The original TV model is defined for quasi Hopf algebras – in which
the associativity condition is released – obtained by a deformation of SU(2) with q being the
root of unity. These class of Hopf algebras are particularly relevant in physics as they provide a
natural regularization in the UV. It would be interesting to explore how the framework proposed
in this chapter extends to this case.

Introducing matter. To include matter degrees of freedom (as topological defects) in a 3d
group field theory, Krasnov pointed that one can use the Drinfeld double of a group G, D ∼= G⋉g∗

as the gauge symmetry group of the model [127]. Hopf algebra field theory encodes this case as
an example, and sets the ground to describe its q-deformation:

• H = F (SU(2)) and A = U(su(2)): standard group field theory, with no matter degrees of
freedom and λ = 0;

• H = F (SUq(2)) and A = Uq(su(2)): q-deformed group field theory, with no matter degrees
of freedom and λ ̸= 0;

• H = D∗(U(su(2))) and A = D(U(su(2))): Krasnov group field theory, with matter degrees
of freedom and λ = 0;

• H = D∗(Uq(su(2))) and A = D(Uq(su(2))): q-deformed Krasnov group field theory, with
matter degrees of freedom and λ ̸= 0.

Moreover, as I will discuss in details in the next chapter, in some cases, the Drinfeld double is
a semi direct product of groups and thus can be re-phrased in an higher categorical language.
I refer to the next chapter for more details, and for now I would like to emphasize that, under
this perspective, Krasnov’s model [127] is likely to be an example of a three dimensional group
field theory based on 2-groups.

Kitaev model. In [128] it was shown that the Kitaev models are equivalent to the combina-
torial quantization of a Chern-Simons theory [108, 109, 129]. The latter is a topological theory
of three dimensional lattices whose underlying symmetry is given by quantum groups. The Ki-
taev model [130] is a topological model that describes two dimensional quadrangulations of a
manifold with topological defects [131]. The quadrangulation is normally decorated by elements
of a finite group, and was later extended to the case of finite dimensional semi-simple Hopf
algebras [132]. The model was then rephrased in a language very similar to Hopf algebra field
theory in [128, 133], as a gauge theory based on finite dimensional semi-simple Hopf algebras.
In [128] it is also pointed that the Turaev-Viro amplitude [46] is associated to the protected
space of the Kitaev model, in the sense that the ground state of the Kitaev model can be seen
as the Hamiltonian analogue of the TV model. The fact that also Hopf algebra field theory was
shown to be related to the TV model (with q real) suggests a relation between Hopf algebra field
theory and the Kitaev model, and I would find interesting to explore this analogy in detail.

Four dimensional model: quantum 2-groups. Despite the HAFT can be easily general-
ized to the d dimensional case, I discussed the three dimensional version of the model for two
reasons. First, in 3d it is easier to visualize the underlying geometric objects. Second, in the
four dimensional case, instead of using Hopf algebras one should have used a categorified version
of Hopf algebras. I will extensively discuss this point in the next chapter, to which I refer for
this outlook.
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Chapter 5

2-Groups in quantum gravity

Despite the success of (quantum) groups as a tool for three dimensional quantum gravity, it has
been argued that they do not encode the correct amount of degrees of freedom to describe the
quantum states of four dimensional geometries. I would like to mention two arguments in this
regard:

i. the need of edge degrees of freedom

∗ state sum models of four dimensional discrete geometries with no edge decorations
contain degenerate discrete geometries [110];

∗ according to the Eckmann-Hilton argument [134], edge degrees of freedom are needed
to describe curved discrete geometries characterized by non-abelian face decorations;

ii. the use of 1-holonomies and 2-holonomies [135] is necessary to encode all the topological
degrees of freedom of a four dimensional geometry.

Let me explain in more details these arguments.

Edges degrees of freedom. In most of the approaches to four dimensional quantum gravity
– especially the quantization procedures associated to LQG, spin foam models or group field
theories – there is no edge degrees of freedom. From a discrete geometry perspective indeed, the
standard approach is to use group elements as the holonomies attached to the links (1d) of the
graph dual to a simplicial decomposition. These are needed as they encode the information about
the parallel transport on the manifold. Due to the Poincaré duality, the conjugate momentum
of such holonomies is encoded in the dual face (2d) of the triangulation. The one dimensional
information of the triangulation in this picture is clearly lacking.
More explicitly, when formulating gravity as a constrained four dimensional BF model, the
fundamental variables are the connection A, a one-form, and the B-field, a two-form. The latter
is related to the frame field e through the simplicity constraint, which re-writes the B-field as
a (dual) bi-vector B = ∗ e ∧ e. Nevertheless, from the Hamiltonian analysis, the frame field
does not appear as a phase space variable, and the bi-vector remains the fundamental degree of
freedom both in the classical and in the quantum theory. Despite some attempts to formulate
a quantum gravity model based on the quantization of the frame field [136, 137], the lack of
edge degrees of freedom was never considered as a real issue, and most of the times it has been
disregarded. Hence, one can reasonably wonder why the lack of edge degrees of freedom should
be a major issue and why it is a fundamental argument to believe that (quantum) groups do
not encode the necessary information to describe quantum gravity in four dimensions.
According to [110], a state sum model based on just face or bi-vectors decorations contains
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h3 h4

h1h3 h2h4

h1h2

h3h4

h1h3h2h4

h1h2h3h4

h2h3 = h3h2

Figure 5.1: The four squares are decorated by the elements hi ∈ H, for i = 1, 2, 3, 4. We merge
them in two different ways and demand that the decoration of the resulting surface is the same
in the two cases. This implies h2h3 = h3h2, and thus the group H has to be abelian.

degenerate geometries. One can construct the Hilbert space of a four dimensional geometry
using the algebraic data of an abelian group (or a commutative quantum group) to label the
surfaces of such discrete geometry. In this way, there is no information about the boundaries of
these surfaces. It turns out that the quantum states associated to such discrete geometries are
degenerated: different geometries will be associated to the same quantum state. In [110] it is
argued that, in order to fix this issue, and thus to properly distinguish different geometries, one
needs to be able to differentiate their boundaries. Therefore, having access to edge degrees of
freedom would lead to a non-degenerate state sum model.
Moreover, it is now widely accepted that in three dimensions the proper symmetries of a quantum
gravity model are governed by quantum groups (see [105] for a recent derivation). As I explained
in the previous chapter, the main reason for the appearance of quantum groups is that they allow
to describe quantum states of curved configuration spaces and curved momentum spaces at the
same time. In four dimensions, even using quantum groups this would not be possible due to
the Eckmann-Hilton argument.

Proposition 13 (Eckmann-Hilton argument). [134] Consider a cellular decomposition with
two dimensional surfaces decorated by the elements of a group H. If there is no decoration on
the one-cells, then the group H must be abelian.

A simple representation to explain the Eckmann-Hilton argument is given in Fig. 5.1. By
decorating the faces of a cellular decomposition and the links of the dual complex with elements
of a (quantum) group, due to the Eckmann-Hilton argument, the face decorations are elements
of an abelian group (or commutative quantum group). Therefore the four dimensional geometry
under consideration can not be curved.

There is a further detail: using (quantum) groups to describe these geometries, we can only
decorate either the one dimensional or the two dimensional objects of a given decomposition.
Since we have no control (no decoration) on both the one and two dimensional pieces, it is not
clear whether the geometry can actually be curved. This issue has been taken in consideration
only a few times in quantum gravity, in particular in the models of twisted geometries [138–141].
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(a) The one dimensional
holonomy encodes the
curvature around a
point-like defect in 2+1
dimensions.

(b) The one dimensional
holonomy encodes the curva-
ture around a string-like de-
fect (1d object) in 3+1 di-
mensions.

v

(c) The two dimensional holonomy
(closed polyhedron decorated by the
2-connection) encodes the curvature
around a point-like defect in 3+1 di-
mensions.

Topological degrees of freedom. As I emphasized a few times now, one way to construct a
model of four dimensional quantum gravity is to describe first a four dimensional geometry, and
then implementing the gravitational degrees of freedom by constraining the topological model.
With this in mind, one would expect to be able to encode all the topological degrees of freedom,
such as the topological defects of a cellular decomposition (I suggest to read [142] for a more
detailed explanation). These defects can assume different interpretations in different approaches,
see for instance [131,143]. It is reasonable to assume that their description is necessary to provide
a proper model of quantum gravity. In a 2+1 dimensional model, one example is the point-like
topological defect, used to introduce matter degrees of freedom. Here the quantum states are
parameterized by the two dimensional triangulations or their dual graphs. In order to capture
such defect, one has to be able to compute the curvature around it. Usually, one would use the
elements of a (quantum) group to define the holonomy associated to the loop of links around the
point-like defect (as I did for GFT in Ch. 3, or in in Hopf algebra field theory in Ch. 4). This
holonomy encodes the local curvature around this point, as in Fig. 5.2a. In four dimensions
the analogous example is slightly more complicated. Here one expects to encode, not only the
zero dimensional defects, but also the one dimensional ones, as represented in Fig. 5.2b and
5.2c. In this case, the connection associated to one dimensional links are used to encode the
curvature around a one dimensional defect, Fig. 5.2b; to encode the curvature around a single
vertex (point-like defect) of the discrete geometry, one needs the information on the surfaces of
the dual complex, Fig. 5.2c. By analogy, this suggests the need of one and two dimensional
connections, which resp. leads to the notion of 1- and 2-holonomies, see [135].

In particular, 2-groups have been identified as a natural tool to describe topological features
of four dimensional manifolds. They can be seen as the natural generalization of groups: they
would automatically provide a notion of 1- and 2-holonomies, as well as decoration on both the
one and two dimensional objects of a discrete geometry. However, due to their high complexity,
a complete theory of (quantum) 2-groups and their representation is still lacking. Indeed so far,
the application of 2-categories in quantum gravity has been restricted to a few simplified cases.
Nevertheless, the Euclidian and Poincaré 2-groups [144] and their representations [145–147]
have successfully been used to construct a state sum in the KBF model [148–151]. A more
general state sum model based on 2-groups was proposed by Yetter [152] in three dimensions
and generalized by Mackaay in four dimensions [153,154]; however, due to the lack of a Fourier
expansion, the analogue of the Peter-Weyl theorem for 2-categories, it is not possible to express
the Yetter amplitude in terms of representations for a general 2-group. As the Yetter model
is constructed in the triangulation picture, its dual model has been recently proposed in [140],
where the graphs dual to the triangulations are called G-networks and decorated by elements of

63



the Poincaré 2-group. It was shown that such model is related to the KBF amplitude and to
the work [155], where the BFCG theory was shown to provide the proper classical action that
gives the Yetter model upon discretization.
In this chapter, I will first provide a brief summary of the main aspects of 2-group theory. Then,
I will discuss how to construct the phase space of a triangulation of a three dimensional manifold
using (a specific class of) 2-groups. The importance of this preliminary step is twofold:

• to provide a more refined description of the phase space of three dimensional triangulations,
that can be used to define the states (Hilbert space) of an eventual 3+1 dimensional model
of discrete geometry;

• to derive some insights on the combinatorics and on the proper construction of cellular
decompositions with decorations on 1- and 2-holonomies1.

This part is based on [47], a work in collaboration with F. Girelli and P. Tsimiklis. In the
last part of the chapter, I will then move on to the definition of a group field theory based on
2-groups. This part is taken from [48], which is a project in collaboration with F. Girelli, A.
Tanasa and P. Tsimiklis. We provide the partition function of the new model as a state sum,
proving its topological invariance. These new results agree with the other works, such as the
construction of G-netowrks in [140] and thus the KBF model.
For the sake of clarity, it is worth to fix some conventions here. I will call 2-graph the graph
with decorations on both one and two dimensional objects. Similarly, the nomenclature 2-
triangulation and dual 2-complex are used to recall that both 1- and 2-holonomies are decorated.
Moreover, I call vertex, edge and face respectively the 0d, 1d and 2d dimensional objects of a
2-triangulation. While the 0d, 1d and 2d dimensional objects of a dual 2-complex are called
node, link and wedge.

5.1 2-Groups

In this section I will give a short overview of the 2-group theory. For the interested reader, I
strongly suggest [135] for a deeper review of the main aspects of the theory, specially the proper
formulation of 1- and 2-holonomies. See also [156–158] for more details on 2-group theory.

Definition 14 (Strict 2-group). A strict 2-group, also known as crossed module, is given as the
set of

• a pair of groups G and H of 1-morphisms and 2-morphisms;

• a group homomorphism t : H → G that sends each surface decoration h;

• a left action ▷ : G× H → H,

such that
t is G-equivariant: t(g ▷ h) = gt(h)g−1 ,

the Peiffer identity holds: t(h) ▷ h′ = hh′h−1 .
(5.1)

Let the element of the 2-group G = (G.H, t, ▷) be the pair (h, g), with h ∈ H and g ∈ G. The
1-morphism g is the source of the 2-morphism h, while its target is t(h)g. Group elements can
be interpreted as holonomies that carry the parallel transport between two points (states) of a

1These insights will be fundamental for the construction of the 2-group field theory in Sec. 5.3
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(a) The holonomy g carries the
parallel transport between points
(states) ψ,ψ′ of a manifold.

ψ ψ′

g
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(b) The 1-holonomies g, g′ carry the parallel transport
between points (states) ψ,ψ′ of a manifold. The 2-
Holonomy h carries the parallel transport between the
1-holonomies.

=

g1

h1

g2

h2

g1g2

h1(g1 ▷ h2)

Figure 5.4: Horizontal composition of the 2-group elements (h1, g1) and (h2, g2).

manifold, Fig. 5.3a; similarly, 2-group elements, represented as digons in Fig. 5.3b, are naturally
interpreted as the pair of 1-holonomies encoding the parallel transport between points (states)
of a manifold, and the 2-holonomies that carry the parallel transport between 1-holonomies. A
pair of 2-group elements (h1, g1) and (h2, g2) can be composed horizontally or vertically. They
are vertically composable only if the target of the first 2-holonomy coincides with the source of
the second 2-holonomy: t(h1)g1 = g2. The compositions for the 2-group elements, illustrated in
Fig. 5.4 and 5.5, are

horizontal composition: (h1, g1) ◦ (h2, g2) = (h1(g1 ▷ h2), g1g2) , (5.2)
vertical composition: (h1, g1) · (h2, g2) = (h1h2, g1) , t(h1)g1 = g2 . (5.3)

The horizontal and vertical compositions are compatible, in the sense that they obey to the
interchange law

(α′
1 · α1) ◦ (α′

2 · α2) = (α′
1 ◦ α′

2) · (α1 ◦ α2) . (5.4)

A 2-group is a group under the horizontal composition, namely there are a unit and an inverse
elements:

Horizontal identity: (1, 1) ,

Horizontal inverse: (h, g)−1H = ((g−1 ▷ h)−1, g−1) = (g−1 ▷ h−1, g−1) .
(5.5)

The 2-group is instead a groupoid under the vertical composition, which implies that the unit
and the inverse are not unique elements. One can indeed identify a pair of left and right vertical

=

g1

t(h1)g1 = g2

h1

h2

g1

h2h1

Figure 5.5: Vertical composition of the 2-group elements (h1, g1) and (h2, g2), with g2 = t(h1)g1.
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identities with a single inverse element:

Left vertical identity: (1, g) ,

Right vertical identity: (1, t(h)g) ,

Vertical inverse: (h, g)−1V = (h−1, t(h)g) .

(5.6)

The left and right unit elements of (h, g) satisfy the identities (1, g) · (h, g) = (h, g) and (h, g) ·
(1, t(h)g) = (h, g), for all (h, g) ∈ G. Similarly, the vertical inverse satisfies the left or right
identities (h, g)−1V · (h, g) = (1, t(h)g) and (h, g) · (h, g)−1V = (1, g).
Strict 2-groups are thus specified by a pair of groups, an action and the t-map, together with
the compatibility relations (5.1). In the definition above, I used a left action of G on H, but one
could use equivalently a right action. In this case the G-equivariance and Peiffer identity are

G-equivariance: t(h ◁ g) = g−1t(h)g ,

Peiffer identity: h′ ◁ t(h) = h−1h′h ,
(5.7)

while the horizontal and vertical compositions for a pair of 2-group elements are

horizontal composition: (g1, h1) ◦ (g2, h2) = (g1g2, (h1 ◁ g2)h2) , (5.8)
vertical composition: (g1, h1) · (g2, h2) = (g2, h2h1) , g1 = g2t(h2) . (5.9)

Note that also the expression of the target of the 2-holonomy h is different: in the convention
with the left action the target of h is the 1-holonomy t(h)g, while in the convention with the
right action the target is instead gt(h). This is related with the main difference between the
two conventions: the root of the 2-holonomy. The root can be seen as the point in the digon
where the 2-holonomy is attached. In the first convention the 2-holonomy h is rooted at the
source of the 1-holonomy g, while in the second convention it is rooted at its target. I refer to
the reference frame part of the next section for a deeper understanding of the rooting and its
relation with left or right action.

5.2 Phase space of a three dimensional triangulation

This section is based on [47], a project in collaboration with F. Girelli and P. Tsimiklis. I will
introduce the concept of phase space for a simplicial three dimensional 2-triangulation, even if
the construction that I will introduce holds for a general cellular decomposition. The symplectic
reduction is the mathematical tool used for this construction, and it will be discussed in the
first part of the section. As I already mentioned, the use 2-groups in place of ordinary groups
allows to describe curved geometries. However, we did not consider the most general problem
of a fully curved geometry. Instead, we focused on a specific class of strict 2-groups, called
skeletal 2-group [135]. As I will show in a moment, skeletal 2-groups are naturally interpreted
as decorations of cellular decompositions with (possibly) non-abelian (curved) 1-holonomies and
abelian (flat) 2-holonomies. Despite this choice precludes the description of a completely curved
geometry, which is the main argument to use 2-groups at the place of groups, skeletal 2-groups
encompass the Poincaré 2-group [144] as a key example, and its natural generalization, known
as κ-Poincaré 2-group, see [159].
Moreover, this construction will still bring several interesting intuitions on how to deal with the
combinatorics of a 2-triangulation and a phase space with decorations on links, edges, wedges
and faces. These insights will be used in the next section to build a 3+1 dimensional field theory
based on more general 2-groups. The states (three dimensional geometries) of such field theory
will be the 2-triangulations or the dual 2-complexes.
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Skeletal 2-groups and semi-dualized Lie (bi-)algebras

As I already mentioned, this work provides the construction of the phase space of a 2-triangulation
decorated by a skeletal 2-group.

Definition 15 (Skeletal 2-group). [135] A skeletal 2-group G = (G,H, t = id, ▷) is a special
class of crossed modules with a trivial t map, namely t(h) = 1, for all h ∈ H.

The triviality of the t map for skeletal 2-groups has three main implications:

∗ due to the Peiffer identity (5.1), the group H is abelian;

∗ the holonomy around a single 2-group element (boundary of a digon) is flat, g′g−1 = 1,
where g and g′ are resp. the source and target of a given 2-holonomy h;

∗ the vertical composition reduces to the (opposite) multiplication of the group H.

According to the above points, the notion of skeletal 2-group does not stray too far from the
concept of group. Indeed, besides the second point, according to which the parallel transport
along the closed holonomy g′g−1 around any surface is flat, the algebraic structure of a skeletal
2-group G = (G,H, t = id, ▷) is similar to that of a semi-direct product of groups G = H ⋊ G,
with H abelian. In the following, I will extensively make use of this similarity to deal with
skeletal 2-groups.

According to this perspective, we will discuss the construction of phase spaces of skeletal 2-
groups bearing in mind they behave as semi-direct product of groups. There exists a natural
notion of phase space when dealing with groups, which is the associated cotangent bundle. As
already mentioned in Ch. 3 and 4, the cotangent bundle of a group does not allows to include
curvature on both the configuration and momentum spaces. To have curvature everywhere,
one has to use quantum groups (as we did in the previous chapter) or eventually Poisson Lie
groups, which I review in App. A. The natural generalization of cotangent bundle in the case of
Poisson Lie groups is known as Heisenberg double [160, 161]. It is closely related to the notion
of symmetries on the phase space, provided by the Drinfeld double. I discuss their definitions in
App. A as well. For the reader who is not familiar with these concepts, I suggest to go through
this appendix to have a complete understanding of this section.
The core idea behind the notion of Heisenberg and Drinfeld double is that, given a Lie group G
and its Lie algebra g, there exists a natural notion of dual Lie algebra g∗; this notion is associated
to the concept of Lie bi-algebra. The integration (exponentiation) of the dual Lie algebra leads
to the dual Lie group G∗. The external (Cartesian) product of a Lie group G and its dual group
G∗ in general is equipped with a pair of mutual actions; moreover, it can be further endowed
with a bi-linear map, known as Poisson bracket. There are two standard choices for such Poisson
structures [162]:

➣ symplectic Poisson structure: the group H = G ▷◁ G∗ ∼= G∗ ▷◁ G is called Heisenberg
double and has a natural interpretation as the (curved) phase space of G. It is equipped
with a ribbon equation

d = ℓh = h̃ℓ̃ with d ∈ H, h, h̃ ∈ G, ℓ, ℓ̃ ∈ G∗ . (5.10)

The ribbon relation, allows to define the mutual left and right actions between G and G∗

ℓ ▷ h = h̃ , ℓ ◁ h = ℓ̃ , h̃ ▷ ℓ̃ = ℓ , h̃ ◁ ℓ̃ = h . (5.11)
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➣ Poisson structure compatible with the group product: the group D = G ▷◁ G∗ ∼= G∗ ▷◁ G
turns into a Poisson Lie group, it is called Drinfeld double and has a natural interpretation
as the group of symmetries on the phase space.

One can read [161, 163] for more details. In the case of 2-groups, these concepts should be
extended to include the compatibility relations with both the horizontal and vertical products.
For what concern us, by viewing skeletal 2-groups as semi-direct product of groups, the notions
of Heisenberg and Drinfeld doubles are trivially generalized. In order to fix the notation, let me
summarize how to construct the tangent space associated to a semi-direct product of groups and
its dual Lie algebra. The full details of this construction are given in [47], and the main steps
are summarized in App. A.
Consider a pair of Lie bi-algebras g1 and g2 with generators ei ∈ g1 and f i ∈ g2. Let both
these Lie bi-algebras have non-trivial Lie brackets with resp. structure constant cijk and dijk
and trivial Lie co-algebra structures. As a consequence, their dual Lie bi-algebras g∗1 and g∗2 have
trivial algebra sector (trivial Lie brackets) and non-trivial Lie co-cycles. One can further define
a pair of mutual actions between the Lie bi-algebras g1 and g2 defined in terms of the structure
constants αijk and βijk, such that they form a matched pair of Lie bi-algebras. Dually, the Lie
bi-algebras g∗1 and g∗2 are equipped with a pair of mutual co-actions that make them a matched
co-pair of Lie bi-algebras. By construction, the double cross sum g1 ▷◁ g2 and its dual double
cross co-sum g∗1 ▶◀ g∗2 are Lie bi-algebras. Putting the two Lie bi-algebras together one gets the
classical double

d = (g1 ▷◁ g2)
cop ⋉ (g∗1 ▶◀ g∗2) , (5.12)

where cop stands for an opposite Lie co-cycle. However, this is not yet the structure of interest.
We consider the semi-dualization that takes the double cross sum g1 ▷◁ g2 into the bicross sum
g2 ▷◀ g∗1. The semi-dualization amounts to exchange some of the configuration variables with
the associated momentum variables. Denote b the resulting classical double

b = (g2 ▷◀ g∗1)
cop ▷◁ (g∗2 ▶◁ g1) . (5.13)

The Lie brackets and co-cycles of the Lie bi-algebras (g2 ▷◀ g∗1)
cop and (g∗2 ▶◁ g1) are

[f i , f j] = dijkf
k , [e∗i , e

∗
j ] = 0 ,

[e∗i , f
j] = βjkie

∗
k ,

[ei , ej] = cijke
k , [f ∗

i , f
∗
j ] = 0 ,

[ei , f ∗
j ] = αkijf

∗
k ,

(5.14)

δg2▷◀g∗1(f
i) = −αijke∗j ∧ fk ,

δg2▷◀g∗1(e
∗
i ) = −1

2
cjkie

∗
j ∧ e∗k ,

δg∗2▶◁g1(e
i) = βkije

j ∧ f ∗
k ,

δg∗2▶◁g1(f
∗
i ) =

1

2
djkif

∗
j ∧ f ∗

k .
(5.15)

Since the Lie bi-algebras g2 ▷◀ g∗1 and g∗2 ▶◁ g1 are dual each other, their natural mutual actions
are encoded in the respective co-adjoint actions, that induce the cross Lie brackets

[f ∗
i , f

j] = djkif
∗
k + αjkie

∗
k , [ei , e∗j ] = ckije

∗
k + βkijf

∗
k ,

[ei , f j] = −αjikfk − βjike
k , [e∗i , f

∗
j ] = 0 .

(5.16)

An explicit realization of this construction are the Poincaré and κ-Poincaré bi-algebras, presented
in App. A. Note that there exist a notion of Lie 2-bi-algebra [164, 165] (and skeletal Lie 2-bi-
algebra), and in [47] we show that it coincides with the above construction. The classical double
b is thus equivalent to the one defined in [166] for skeletal Lie 2-bi-algebras. Upon exponentiation
of such Lie bi-algebras, one recovers a pair of skeletal crossed modules

g∗2 ⋊ g1 → G = G∗
2 ⋊G1 , g2 ⋉ g∗1 → G∗ = G2 ⋉G∗

1 . (5.17)

Accordingly, the classical double b becomes the double cross product B = (G1⋉G∗
2) ▷◁ (G2⋉G∗

1),
which can be equipped with a symplectic Poisson bracket (that turns it into an Heisenberg

68



double) or with a Poisson bracket compatible with the group multiplication (that turns B into
a Drinfeld double). Since both G∗

2 and G∗
1 are abelian groups, both (G∗

2 ⋊ G1) and (G2 ⋉ G∗
1)

can be viewed as skeletal 2-groups (more precisely, as skeletal Poisson crossed modules [165]).
Therefore, the double cross product B, equipped with a symplectic Poisson structure, becomes
the natural notion of phase space for the skeletal 2-group G. This will be the fundamental object
(the building block) to construct the phase space for our three dimensional 2-triangulation.

5.2.1 Symplectic reduction

In this section I shortly review the main concepts of momentum maps and symplectic reduction,
see [167] for the general set up. The symplectic reduction is the essential tool to build phase
spaces by fusing together smaller ones. In this section, the Heisenberg double will thus be
considered the smallest phase space possible, the brick, and the symplectic reduction can be
interpreted as the cement that glues the bricks.

Momentum maps

Momentum maps can be seen as functions on phase space that generate the infinitesimal symme-
try transformations. The Heisenberg double H is taken to be the phase space, and the Drinfeld
double is the group that acts on it2, generating such infinitesimal symmetry transformations.
The simplest example is the phase space T ∗R = R× R with coordinates (x, p); the momentum
p generates the infinitesimal translations in x, while x generates the infinitesimal translations in
p. Hence these coordinates themselves can be seen as momentum maps. More explicitly, let the
infinitesimal transformations be of the type

δϵx = ϵ , δϵp = 0 , δηx = 0 , δηp = η , (5.18)

where δϵ,η is the vector field generating the transformation, with ϵ ∈ R and η ∈ R∗. The
symplectic form associated to T ∗R is Ω = δx ∧ δp. Plugging the infinitesimal symmetries in it,
one gets

δϵ⌟Ω = ϵδp = ⟨ϵ , δp⟩ , δη⌟Ω = −ηδx = −⟨η , δx⟩ , (5.19)

where the angle brackets stands for the canonical pairing between R and R∗ ∼= R. Here the
coordinates p and x are those momentum maps just given by the projection of the phase space
coordinates either on configuration or momentum spaces. Let us expend this concept to the
more general Heisenberg double. Let σ be the left action of the Poisson Lie group G on a phase
space P , XL be the left invariant 1-form on G∗ which takes the value α at the identity, and δX
be the associated vector field generating the infinitesimal version of σ.

Definition 16 (Momentum map). [167] The momentum map of the action σ is the C∞ map
J : P → G∗ with

δX⌟Ω = J ∗(XL) . (5.20)

The momentum map is said equivariant if it commutes with the symmetry action.

Proposition 14. Consider the Heisenberg double H of the group G, with associated ribbon
equation d = ℓh = h̃ℓ̃ ∈ H. The G∗ (resp. G) group element ℓ (resp. h̃) generates the
infinitesimal left G transformation (A.24) (resp. the infinitesimal left G∗ transformation (A.26))

δLα⌟Ω = ⟨α , ∆ℓ⟩ , δLϕ⌟Ω = −⟨ϕ , ∆h̃⟩ , (5.21)

2I will restrict the action to the left or right multiplication by the groups G or G∗, and of their sub-groups.
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with α ∈ g and ϕ ∈ g∗. The associated momentum maps are therefore ℓ := J L
G∗(d) and h̃ :=

J L
G (d). Similarly, h and ℓ̃ are resp. the momentum maps for the right transformations of G∗

and G.

The proof of this proposition is given in [105]. The momentum maps associated to the right
of left multiplication of the Drinfeld double on the Heisenberg double are thus given by the
projections

J R
G : H = G∗ ▷◁ G → G , J R

G∗ : H = G ▷◁ G∗ → G∗ ,

J L
G : H = G ▷◁ G∗ → G , J L

G∗ : H = G∗ ▷◁ G → G∗ .
(5.22)

One can check that these momentum maps are equivariant. For example, consider the map J L
G∗

and use its definition given in Prop. 14:

J L
G∗(h′d) = J L

G∗(h′ℓh) = J L
G∗

(
(h′ ▷ ℓ) ((h′ ◁ ℓ)h)

)
= h′ ▷ ℓ = h′ ▷ J L

G∗(d) , (5.23)

for d ∈ H, h′, h ∈ G and ℓ ∈ G∗. Let me summarize here some properties of momentum maps
that will be relevant for the construction (all these properties are discussed in [167]).

• If the (Poisson Lie) group G (resp. its dual G∗) can be decomposed into subgroups G =
G1 ▷◁ G2

∼= G2 ▷◁ G1 (resp. G∗ = G∗
1 ▷◁ G∗

2
∼= G∗

2 ▷◁ G∗
1), then the projection of H into

the subgroups Gi also defines a momentum map and generates the infinitesimal right G∗
i

transformations.

• If the momentum map given by the coordinate ℓ ∈ G∗ generates the infinitesimal right
G translations through the symplectic form Ω (as above), then ℓ−1 is a momentum map
for the infinitesimal left G translations through the symplectic form −Ω. Similarly for the
other momentum maps ℓ̃, h, h̃.

• Consider the phase space H(n) made of n (independent) copies of H, H(n) = H× · · · × H
with symplectic form Ω(n) =

∑
i Ωi. Then the global right infinitesimal G translation is

generated by the momentum map ℓ1...ℓn. Similarly for the other coordinates ℓ̃, h, h̃.

Symplectic reduction

Consider a symplectic space with a set of symmetries; the symplectic reduction is the process
of reducing the space by implementing the symmetries, such that the resulting space is still
symplectic. For reducing the symmetries, I mean to restrict the set of functions of the initial
symplectic space, to those that are invariant under the symmetries. The invariant functions are
those that commute with the momentum map associated to the symmetry in consideration3.

Theorem 2 (Symplectic reduction). [163, 167] Let σ : G × H → H be a Poisson action of a
Poisson Lie group G on its phase space H. The equivariant momentum map associated to σ is
JG∗. Consider an element ℓ0 ∈ G∗ and Gℓ0 its isotropy subgroup under the action4 of G on G∗.
If G acts freely and properly on J −1(ℓ0), then the symplectic form Ω of H is pulled back to the
quotient space J −1(d)/Gℓ0 for d ∈ H, which is denoted5 H//Gℓ0.

The general proof of this theorem can be found in [163]. In our case, the use of symplectic
reduction to fuse phase spaces is justified by the fact that the actions in consideration – left and
right translations – are free and proper and thus the associated momentum maps are equivariant.

3This is just a different language to discuss Dirac’s approach to constrained systems [3].
4Gℓ0 is the set of elements of G whose action leaves ℓ0 ∈ G∗ invariant.
5If ℓ0 is the unit, then I will simply write H//G.
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5.2.2 Polygon phase space

Before going through the construction of a three dimensional simplicial 2-triangulation, let me
summarize the simplest case of a two dimensional flat or curved simplicial triangulation with
groups as decorations. In both cases the construction extends naturally to a general cellular
decomposition. Let me start with the seminal work by Kapovich and Millson [168], dealing with
the Euclidian case. Discussion of a Lorentzian picture can be found in [169]. Note that the
discussion below is probably well known by most of the readers, but it is still very instructive to
fully understand the more complicated case.
Consider three vector (edges) all lying on the same plane decorated by R3 variables in the su(2)

basis: ℓ ≡ ℓ⃗ · σ⃗, where σI , I = 1, 2, 3 are the Pauli matrices. The three vectors are the edges of
a triangle if they obey to the closure relation

C = ℓ1 + ℓ2 + ℓ3 = 0 . (5.24)

The idea is to describe the phase space of such triangle using a Poisson structure invariant under
the constraint above, so that C would be considered as the momentum map that generates the
symmetry of the triangle. At a first level, Kapovich and Millson proposed the Poisson structure

{ℓIi , ℓJj } = δij ϵ
IJ
Kℓ

K
i . (5.25)

This refers to a triangle whose edges all have fixed lengths, so that each vector ℓi is an element
of the sphere S2. The above choice of Poisson bracket is symplectic on such sphere, hence, the
total phase space PKM for a triangle with fixed edge lengths would be given by the symplectic
reduction

PKM = (S2 × S2 × S2)//SO(3) . (5.26)

A possible generalization of the Kapovich and Millson construction is accomplished by adding
some extra variables. The interest of doing so is twofold:

• an further geometric information would allow to extend the phase space to a full 2d cellular
decomposition;

• the constraint C only encodes the rotational symmetry of a triangle, and an extra variable
would allow the realization of the translational symmetry as well.

In order to generalize the phase space, one can thus add some holonomy information, and extend
R3 for each edge to the cotangent bundle T ∗(SO(3)) ∼= SO(3) ⋉ so∗(3) ∼= SO(3) ⋉ R3. The
holonomy is thus an element of SO(3) and (its action on an edge) provides a way to transport
vectors along a path dual to the edge itself. In this sense, the holonomy contains some non-local
information, which allows to discuss about adjacent triangles sharing the edge dual to it6

Flat triangle

As before, we associate a vector ℓi ∈ R3 to the three edges of the triangle, with center denoted
by c. Then, consider holonomies hci ∈ SO(3) joining the center to a point on the edge i. Such
path is called half link. For each pair of half link and edge, we associate the phase space given
by the cotangent bundle T ∗(SO(3)) given by

{ℓIi , ℓJj } = δij ϵ
IJ
K ℓ

K
i , {hci , hcj} = 0 , {ℓIi , hcj} = δij hiσ

I . (5.27)

6Alternatively to the introduction of the holonomy, one could have extended the phase space by taking R3

to R4 ∼ C2, with elements (z−, z+) called spinor variables. This is a more local picture at the root of the
spinor approach [170, 171] and it is very convenient to describe the algebra of observables for a given polygon
[123,172,173].
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The rotational symmetry of the triangle is still given by the closure constraint (5.24). The
total angular momentum is thus given by three copies of the phase space constrained by the
momentum map7 (5.24):

Pt =
(
T ∗(SO(3)

)×3
//SOt(3) . (5.28)

This approach can naturally be extended to the case of curved triangles.

Curved triangle

Let me focus here on the triangle with negative curvature, as discussed in [141, 162]. I refer
to [174] for the case of positive curvature. The edges of a triangle are given in terms of geodesics
in the hyperboloid, described as the quotient space SL(2,C)//SU(2) ∼= AN(2). Such geodesics
can thus be characterized by elements (holonomies) ℓ of the (Poisson) Lie group AN(2). By
deforming R3 into AN(2), the cotangent bundle T ∗(SO(3)) is also deformed into the Heisenberg
double that includes curvature both in momentum and configuration spaces:

T ∗(SO(3)) ∼= SO(3)⋉R3 → H = SL(2,C) ∼= SU(2) ▷◁ AN(2) . (5.29)

The momentum map (5.24) generating the global (left) rotations (SUt(2) transformations) that
describes the closure of the three edges of the triangle, is now modified in terms of non-abelian
group elements

ℓ1ℓ2ℓ3 = 1 . (5.30)

The total phase space for the curved triangle is thus

P = SL(2,C)×3//SUt(2) ∼= H(3)//SUt(2) . (5.31)

One could further extend the construction to the case where the holonomies are elements of a
general Poisson Lie group G and the edges are decorated by elements of its dual G∗; the phase
space for every pair of edge/link is thus the general Heisenberg double H = G ▷◁ G∗ ∼= G∗ ▷◁ G,
endowed with the ribbon factorization (5.10) that reflects the symplectic structure. Extending
the construction to a polygon with n edges, the phase space would be given by the symplectic
reduction

P = H(n)//G , (5.32)

where the constraint G∗ ∋ ℓ1..ℓn = 1 is the momentum map generating the global left G
transformations.

Reference frame for 2d geometries

A fundamental point of the symplectic reduction that has been veiled on purpose so far, is how
to choose the correct momentum maps. Indeed, to properly glue triangles or polygons together,
one has to make sure that the quantities associated to different triangles are identified in a
consistent way. To this scope, it is useful to introduce the concept of reference frame.
As mentioned earlier, elements of the (Poisson) Lie groups G and G∗ are resp. used to decorate
links and edges, so that the fundamental building block of the phase space, the Heisenberg
double H = G ▷◁ G∗ ∼= G∗ ▷◁ G, is represented by the pair edge/link. Both of them are one
dimensional objects, depicted as arrows, in the sense that they both carry an orientation, with
an origin called source, and a final point called target. Consider here an edge e with source and
target resp. at the vertices v1 and v2, and a link l with source and target resp. at the nodes
c1 and c2. One can use the Heisenberg double H and the associated ribbon equation (5.10) to
induce representations of the groups G and G∗.

7Denote SOt(3) the group which encodes the momentum map that generates rigid rotations of the triangle t.
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• On the source c1 of the link, consider a vector space Vc1 which carries a representation ρc1
of the group G∗, coming from the right decomposition H = G∗ ▷◁ G.

e → ρc1(ℓ) ≡ ℓc1 . (5.33)

• On the target c2 of the link, consider a vector space Vc2 which carries a representation ρc2
of the group G∗, coming from the left decomposition H = G ▷◁ G∗.

e → ρc2(ℓ̃) ≡ ℓ̃c2 . (5.34)

• On the source v1 of the edge, consider a vector space Wv1 which carries a representation
φv1 of the group G, coming from the right decomposition H = G ▷◁ G∗.

l → φv1(h̃) ≡ h̃v1 . (5.35)

• On the target v2 of the edge, consider a vector space Wv2 which carries a representation
φv2 of the group G, coming from the left decomposition H = G∗ ▷◁ G.

l → φv2(h) ≡ hv2 . (5.36)

Hence, the idea is to associate the elements ℓ, ℓ̃, h, h̃ to different representations of the edge e
and link l, placed at different vertices or nodes. According to the ribbon decomposition (5.10),
such group elements are related each other by the left and right mutual actions (5.11) between
G and G∗. These actions, that relate different representations at different points, can thus be
interpreted as parallel transport between such points. For example, the relation

ℓ = h̃ ▷ ℓ̃ = h̃ℓ̃h−1 ⇔ ρc1(ℓ) = φv1(h̃) ▷ ρc2(ℓ̃) (5.37)

encodes how the edge variable is transported from the representation at c2 to the representation
at c1, through the representation h of the link placed at v1. According to this interpretation, we
deduces the following rules:

∗ the left action of G on G∗ transports the representation of the edge from the target c2 to
the source c1 of the link;

∗ the left action of G∗ on G transports the representation of the link from the target v2 to
the source v1 of the edge;

∗ the right action of G on G∗ transports the representation of the edge from the source c1
to the target c2 of the link;

∗ the right action of G∗ on G transports the representation of the link from the source v1 to
the target v2 of the edge.

Since this point is particularly important, let me summarize the role of left and right actions
also in Table 5.1. Moreover, note that the left action of h̃ (resp. ℓ) is the inverse of the right
action of h (resp. ℓ̃):

ℓ = h̃ ▷ ℓ̃ = h̃ ▷ (ℓ ◁ h) ,

ℓ̃ = ℓ ◁ h = (h̃ ▷ ℓ̃) ◁ h ,

h = h̃ ◁ ℓ̃ = (ℓ ▷ h) ◁ ℓ̃ ,

h̃ = ℓ ▷ h = ℓ ▷ (h̃ ◁ ℓ̃) .
(5.38)

This interpretation of reference frame as representations and parallel transport is important to
understand how to implement the correct geometric identification to properly fuse the phase
spaces. Indeed one needs to identify objects living in the same representation.
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G on G∗ G∗ on G

Left action ▷ c2 → c1 v2 → v1

Right action ◁ c1 → c2 v1 → v2

Table 5.1: Geometric interpretation of the left and right mutual actions between G and G∗.
Geometrically, the left action of a link (resp. edge) on the edge (resp. link) transports the
representation of the edge (resp. link) from the node c2 to c1 (resp. from the vertex v2 to v1);
the right action of a link (resp. edge) on the edge (resp. link) transports the representation from
c1 to c2 (resp. from v1 to v2).

Phase space of a 2d triangulation

As a final part for the two dimensional case, I will explain how to recover the phase space for
a general triangulation T , by fusing together what I will call atomic phase spaces, namely the
Heisenberg doubles of a general (Poisson) Lie group G. The setting is the following: consider
two triangles ti with centers ci, for i = 1, 2. In particular, focus on one edges ei of each triangle
with resp. sources and targets at the vertices vi;1 and vi;2. The idea is to glue the two triangles
by identifying these two edges. The result is the fusion of the associated phase spaces Hi,
represented as the pairs of edge/half link (ei, li), where for simplicity, I denoted li the half link
that has ci as source and a point on the edge ei as target. The ribbon equations of the two phase
space are

Hi ∋ ℓihi = h̃iℓ̃i . (5.39)

Now it is fundamental to have in mind where each of the eight variables that appear in the two
ribbon equations are represented. Since the two triangles have the same orientation convention,
the two edges ei are identified with opposite orientation, e1 = −e2. In particular, this implies the
vertices are identified as v1;1 = v2;2 and v1;2 = v2;1. Most importantly, one has to demand that
the targets of the two half links li coincide. This requirement is essential since the identification
of the edge decorations has to be enforced at this common point. According to the reference
frame interpretation, the proper identification is

ℓ̃1 = ℓ̃−1
2 , (5.40)

where the inverse was taken for the opposite orientation8. This constraint is the momentum
map that generates left global rotations with respect to G. Putting the two ribbon equations
together with such constraint, one obtains

ℓ̃1 = h̃−1
1 ℓ1h1

ℓ̃−1
2 = h−1

2 ℓ−1
2 h̃2

}
⇒ h̃−1

1 ℓ1h1 = h−1
2 ℓ−1

2 h̃2

ℓ1h12 = h̃12ℓ
−1
2 . (5.41)

The fusion of phase spaces is represented in Fig. 5.6. In the last step of eq. (5.41), I introduced
the variables h12 = h1h̃

−1
2 and h̃12 = h̃1h

−1
2 . As one can see from Fig. 5.6, these are decorations

of the link with source at the center of triangle t1, node c1, and target at the center of triangle
t2, node c2. Call this path a full link. The phase space obtained after the fusion is isomorphic to
an Heisenberg double with G decorations on the (full) link and G∗ decorations on the common

8One can use a more self-explaining notation for the variables ℓ̃i, such as ℓ̃c
′
i

vi;1vi;2 ; this emphasizes that each
variable decorates the edge with source and target resp. at the vertices vi;1 and vi;2, represented at the node c′i,
which is the common node on the two edges and the target of the half links li. Using this notation, the inverse
stands for the variable ℓ̃−1

i ≡ (ℓ̃
c′i
vi;1vi;2)

−1 = ℓ̃
c′i
vi;2vi;1 .
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vi;2

vi;1

ei
ci

li

v1;2 = v2;1

v1;1 = v2;2

c1

c2

l1

l2
e1 = −e2

Figure 5.6: Fusion of two triangle phase spaces by identifying the edges with opposite orientation
e1 = −e2. As a consequence, the dual half links li are composed in a full link connecting the
centers ci of the two triangles.

edge9. By repeating such triangle gluing we can recover the full phase space PT for any given
two dimensional simplicial triangulation T ; the general symplectic reduction is

PT =

(
×
(e,l)

H
)//(×

t

Gt
)
. (5.42)

Where the external product of Heisenberg doubles (atomic phase spaces) runs over all the pairs
of edge/link (e, l), while the product of groups Gt runs over the triangles and it stands for the
the global G transformation (momentum map) induced by the closure constraint of each triangle
t of the triangulation T .

5.2.3 Polyhedra phase space

The natural way to generalize the phase space construction explained in the previous section to
the three dimensional case, would be to use elements h ∈ G as decorations of (one dimensional)
holonomies (links) and elements ℓ ∈ G∗ as (two dimensional) face decorations of a cellular
decomposition. The closure of an n polyhedron would be given by the constraint

n∑
i

ℓi = 0 . (5.43)

Note that such constraint is completely analogous to the closure of a polygon in 2d. Indeed, at
this level, the difference between the two cases is a mere geometric interpretation. This ambiguity
still holds for intertwiners and thus for spin networks, where the geometric interpretation is
necessary to precise whether the network is dual to a two or three dimensional geometry. On
the top of such ambiguity, I recall the arguments presented at the beginning of this chapter,
according to which, it is not possible to describe curved three dimensional geometries using
ordinary (Poisson Lie) groups. This is why in the three dimensional case we deal instead with
2-groups. In this section, I will generalize the phase space construction explained previously
for a two dimensional triangulation. The atomic phase space is now the Heisenberg double
constructed at the beginning of the section,

B = G ▷◁ G∗ ∼= G∗ ▷◁ G , (5.44)

where G∗ and G are dual skeletal 2-groups resp. decorating the 2-triangulation and its dual
2-complex. As both G and G∗ are seen as skeletal crossed modules, I will treat them as semi
direct product of groups with left or right decompositions

G = G1 ⋉G∗
2
∼= G∗

2 ⋊G1 , G∗ = G∗
1 ⋊G2

∼= G2 ⋉G∗
1 . (5.45)

9Note that a similar construction was done at the quantum level using fusion products in [175]. Moreover,
this construction agrees with the one obtained after discretization of 3d gravity with a non-zero cosmological
constant [105].
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wl
fe

e

l

Figure 5.7: Graphical representation of the atomic phase space B used to reconstruct a full 3d
simplicial 2-triangulation. The link and wedge in red are decorated by G elements (resp. G1 and
G∗

2), while the edge and face in blue are decorated by elements in G∗ (resp. G2 and G∗
1).

Reference frame for 3d geometries

The symplectic reduction will be used again as a tool to properly fuse the Heisenberg doubles
B; however, as I stressed in the previous section, a non-trivial step is to understand which is
the correct momentum map to implement. To this scope, the notion of reference frame was
introduced in the two dimensional case. Let me show how to generalize the same idea for the
phase space of a three dimensional cellular decomposition using skeletal 2-groups.

Reference frame: 2-representation and rooting

Consider an edge e with source and target resp. at the vertices v1 and v2, and a face f which
contains the vertices v1 and v2 in its boundary. Dually, the link l is orthogonal to the face and
has the nodes c1 and c2 resp. as source and target. Let w be the wedge orthogonal to the
edge e that contains the nodes c1, c2 in its boundary. Let the link l and the wedge w be resp.
decorated by the elements of the groups G1 and G∗

2, so that the pair wedge/link is an element
of the 2-group G; on the other hand, the edge e and the face f are resp. decorated by elements
of the groups G2 and G∗

1, so that the pair edge/face is an element of the 2-group G∗. The set
up is shown in Fig. 5.7. I recall that both the 2-groups are skeletal crossed modules, which
implies that the groups G∗

2 and G∗
1 are abelian. In the 2d case, sources and targets of holonomies

carry a representation of the dual group. Let us see how this idea can be generalized for skeletal
2-groups10 G and G∗.

• The source c1 of the link carries a 2-representation ρc1(ℓ) = ℓc1 of the skeletal crossed
module G∗, coming from the right decomposition B = G∗ ▷◁ G.

• The target c2 of the link carries a 2-representation ρct(ℓ̃) = ℓ̃ct of the skeletal crossed
module G∗, coming from the left decomposition B = G ▷◁ G∗.

• The source v1 of the edge carries a 2-representation φv1(h̃) = h̃v1 of the skeletal crossed
module G, coming from the left decomposition B = G ▷◁ G∗.

• The target v2 of the edge carries a 2-representation φv2(h) = hv2 of the skeletal crossed
module G, coming from the right decomposition B = G∗ ▷◁ G.

10As in the group case we used vector spaces and representations, in the 2-group case one should use 2-vector
spaces and 2-representations [145, 146, 156, 157]. For the purpose of this work, it is not necessary to go through
the details of a 2-representation. We mostly use it as a device to keep track of where each object is. It is thus
enough to say that nodes and vertices carry 2-representations of the dual skeletal crossed module.
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Source of l: c1 Target of l: ct

Source of e: v1 ℓc1 = βc1v1 λ
c1 , h̃v1 = ˜̄yv1c1 ũ

v1 ℓ̃ct = β̃ctv1 λ̃
ct , h̃v1 = ũv1 ỹv1ct

Target of e: v2 ℓc1 = λc1 β̄c1v2 , h
v2 = ȳv2c1 u

v2 ℓ̃ct = λ̃ct ˜̄βctv2 , h
v2 = uv2 yv2ct

Table 5.2: List of the decorations of edges, links, faces and wedges. Decorations of links and edges
are labelled by a single index, related to vertex or node where they are represented. Decorations
of wedges and faces are labelled by an index that specifies where they are represented (resp.
vertex or node) and a subscript that specifies the root (resp. node or vertex).

The skeletal crossed modules G and G∗, in turn, can be split in the left or right decompositions.
According to the 2-group theory interpretation, different decompositions of a 2-group stand for
alternative conventions of a 2-group in which the 2-holonomy is rooted either at the source or
at the target of the 1-holonomy. Given the left and right decompositions of the full phase space
B, one has the following sub-decompositions:

B = G∗ ▷◁ G = G ▷◁ G∗ → ℓh = h̃ℓ̃

G ∋ h =

{
uy ∈ G1 ⋉G∗

2

ȳu ∈ G∗
2 ⋊G1

G ∋ h̃ =

{
ũỹ ∈ G1 ⋉G∗

2

˜̄yũ ∈ G∗
2 ⋊G1

G∗ ∋ ℓ =

{
βλ ∈ G∗

1 ⋊G2

λβ̄ ∈ G2 ⋉G∗
1

G∗ ∋ ℓ̃ =

{
β̃λ̃ ∈ G∗

1 ⋊G2

λ̃ ˜̄β ∈ G2 ⋉G∗
1

I recall below the geometric interpretation of the sub-decompositions.

• The skeletal crossed module G decorates a pair link/wedge:

– The right decomposition G = G∗
2 ⋊G1 implies that the wedge (G∗

2 element) is rooted
at the source of the link, node c1,.

– The left decomposition G = G1 ⋉ G∗
2 implies that the wedge (G∗

2 element) is rooted
at the target of the link, node c2.

• The skeletal crossed module G∗ decorates a pair edge/face.

– The right decomposition G = G∗
1⋉G2 implies that the face (G∗

1 element) is rooted at
the source of the edge, vertex v1.

– The left decomposition G = G2 ⋉G∗
1 implies that the face (G∗

1 element) is rooted at
the target of the edge, vertex v2.

Therefore, as the choice of decorations of edges or links are resp. specified by a single node or
vertex (as in the 2d case), decorations of faces and wedges are instead specified by a pair of node
and vertex. In Table 5.2 I list the decorations of the pairs edge/face and wedge/link, according
to the choice of representation and root.

Action and parallel transport

In analogy with the geometric interpretation given in the two dimensional case, here the mu-
tual actions between G and G∗ transport the 2-representations and the roots. Since both 2-
representations and roots are specified by vertices or nodes (sources and targets of edges and
links), the action responsible for the parallel transport between nodes is that of the group
G1 ⊂ G and the action responsible for the parallel transport between vertices is that of the
group G2 ⊂ G∗. I list below the geometric interpretations of the actions
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G1 on

{
G∗

2

G∗ G2 on

{
G∗

1

G
Left action ▷ c2 → c1 v2 → v1

Right action ◁ c1 → c2 v1 → v2

Table 5.3: Geometrically, the left action of G1 (resp. G2) on the other groups, transports the
decorations from the node c2 to c1 (resp. from the vertex v2 to v1); the right action of G1 (resp.
G2) on the other groups, transports the decorations from c1 to c2 (resp. from v1 to v2).

∗ the left action of G1 on G∗ transports the 2-representation of the pair edge/face from the
target c2 to the source c1;

∗ the right action of G1 on G∗ transports the 2-representation of the pair edge/face from the
source c1 to the target c2;

∗ the left action of G2 on G transports the 2-representation of the pair link/wedge from the
target v2 to the source v1;

∗ the right action of G2 on G transports the 2-representation of the pair link/wedge from
the source v1 to the target v2.

Moreover,

− the left action of G1 on G∗
2 transports the root of the wedge from c2 to c1;

− the right action of G1 on G∗
2 transports the root of the wedge from c1 to c2;

− the left action of G2 on G∗
1 transports the root of the face from v2 to v1;

− the right action of G2 on G∗
1 transports the root of the face from v1 to v2.

For clarity, I summarize the geometric role of left and right actions in Table 5.3. Note that the
geometric interpretation given in Table 5.3 agrees with the convention in Table 5.2.

Symplectic reduction rules

According to the discussion on symplectic reduction and reference frames, the momentum maps
used to properly fuse phase spaces are imposed on geometric objects that lie in the same reference
frame. Namely, momentum maps are imposed on decorations represented and rooted at the
same point, whose indices therefore have to match. This is the fundamental rule to derive the
appropriate momentum map for fusing atomic phase spaces B. The fusion is then performed by
merging the related ribbon equations though the momentum map chosen. Note that from the
ribbon equation for the Heisenberg double B and from its sub-decompositions, one can derive a
number (sixteen) of different ribbon equations for the sub-components. Each time, one has to
choose the proper ribbon equation to use, depending on the momentum map to impose.

Phase space construction

Having now all the necessary ingredients, let me explain the details of the construction of a
general simplicial 2-triangulation. As I said a few times now, the idea it to take several atomic
phase spaces and perform the proper symplectic reductions, so that the result is a new phase
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space with resulting symplectic structure being expressed through the fused ribbon equation. It
is important to emphasize that the ribbon equation is mostly useful to express the variables in the
correct reference frame and, after the fusion, to derive the glued variables. However, by keeping
on repeating several fusions, the expression of the ribbon equation will become very complicated.
Fortunately, the symplectic reduction is associative, commutative [167] and most importantly,
local. In the sense that it is possible to apply several reductions to build up arbitrary complicated
spaces, and the order in which we implement the momentum maps does not matter. For local,
I mean that the fusion of two arbitrary complicated phase spaces, does not depend on all the
variables: one can forget about those that are not involved in the identification (momentum
map). This implies that it is enough to learn how to fuse atomic phase spaces together, and the
same gluings will holds also for more complicated cases. In App. C I listed the four fundamental
phase space fusions that one can perform by merging two atomic phase spaces. Now I will use
them to list the essential fusions that are needed to build up any arbitrary three dimensional
simplicial 2-triangulation. In particular, one needs three symplectic reductions:

➢ the triangle construction: symplectic reduction with respect to the group

Ht = (G∗
1 ×G∗

1)×G∗
2 ; (5.46)

➢ the tetrahedron construction, symplectic reduction with respect to the group

Hτ = G∗
2 ×G1 ; (5.47)

➢ the gluing of two tetrahedra, symplectic reduction with respect to the group

H∂ = G1 ×G∗
2 . (5.48)

Definition 17. The phase space P of a simplicial 2-triangulation T is given by the symplectic
reduction

P =

(
×

{wl,l;e,fe}
B
)//(×

t∈T
Ht×

τ∈T
Hτ×

t∈T
H∂

)
. (5.49)

Let me give below the details of these essential three fusions.

Triangle

To determine the phase space of a triangle, take three Heisenberg doubles Bi, with i = 1, 2, 3:
three atomic phase spaces associated to the (half) links li (with sources at the nodes ci and
targets at ci;f ), wedges wi, edges ei (with sources and targets resp. at the vertices vi;1 and vi;2)
and faces fi. The idea is to fuse first the three atomic phase spaces into a single surface and
then require the closure of its boundary. See Fig. 5.8.
Fuse the first two phase spaces by identifying the links l1 and l2, represented at the resp. vertices
v1;2 and v2;1, by demanding the vertices to match. I refer to the face gluing in App. C for more
details. The geometric identification induces the momentum constraint

u1 = ũ2 . (5.50)

Add the third phase space, by identifying the links l2 and l3, resp. represented at the vertices
v2;2 and v3;1, and again, let the vertices match. This is another face gluing with geometric
identification that induces the momentum constraint

u2 = ũ3 . (5.51)
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l1

w1
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w2

l3
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e1
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l
w1 w2

w3

Figure 5.8: The phase space of a triangle is constructed by fusing three atomic phase spaces, by
identifying the three links and by closing the triangle boundary. The link identification dually
leads to a fused face variable.

Putting everything together, one gets the full ribbon equation

ũ1(ỹ1ỹ
′ỹ′′)
(
β̃1(λ1 ▷ β̃2)β̃

′((λ1λ2) ▷ β̃3)β̃
′′)(λ̃1λ̃2λ̃3)

= (λ1λ2λ3)
(
(β̄1 ◁ (λ2λ3))((β̄2β

′) ◁ λ3)β̄3β
′′)(y′′ȳ3)u3 , (5.52)

with λ̃1 ỹ2 λ̃−1
1 = ỹ′β̃′, λ−1

2 ȳ1 λ2 = y′β′, (λ̃1λ̃2) ỹ3 (λ̃1λ̃2)−1 = ỹ′′β̃′′ and λ−1
3 (y′ȳ2)λ3 = y′′β′′. Last,

in order to close the triangle, identify the vertices v3;2 and v1;1. This identification is implemented
through the momentum map (closure constraint)

G2 ∋ λ1λ2λ3 = 1 . (5.53)

The symplectic reduction for a triangle is thus

Pt = (B1 × B2 × B3)//
(
(G∗

1 ×G∗
1)×G∗

2

)
, (5.54)

with momentum maps {u1ũ−1
2 , u2ũ

−1
3 , λ1λ2λ3} and fused face variable

β̄t = β̄1 ◁ (λ2λ3) + β̄2 ◁ λ3 + β̄3 +
(
λ−1
3 ȳ2λ3

)∣∣
G∗

1
+
(
(λ2λ3)

−1 ȳ1 (λ2λ3)
)∣∣

G∗
1
, (5.55)

deduced from the fused ribbon equation.

Tetrahedron

In order to derive the phase space of a tetrahedron, one needs twelve copies of the Heisenberg
double, Ba;i for a = 1, 2, 3, 4 labelling the four triangles and i = 1, 2, 3 labelling the three edges.
Each of these atomic phase spaces is associated to the (half) link la;i (with source at the node
ca;i and target at ca;i;f ), the wedge wa;i, the edge ea;i (with source and target at the nodes va;i;1
and va;i;2) and the face fa;i.
The first step is to re-construct the four triangles. According to the triangle phase space con-
struction explained in the previous paragraph, one needs to identify the links la;1 = la;2 = la;3,
and identify the vertices va;1;2 = va;2;1, va;2;2 = va;3;1 and va;3;2 = va;1;1, for each of the four
triangles a = 1, 2, 3, 4. These geometric identifications are given by the twelve momentum maps

ua;1 = ũa;2 , ua;2 = ũa;3 , λa;1λa;2λa;3 = 1 , for a = 1, 2, 3, 4 . (5.56)
These four phase space fusions lead to four (triangle) ribbon equations of the type (5.52), from
which one can deduce the respective four fused face decorations

β̄t1 = β1;1 + β̄1;2 ◁ λ1;3 + β̄1;3 +
(
λ−1
1;3ȳ1;2λ1;3

)∣∣
G∗

1
+
(
(λ1;2λ1;3)

−1 ȳ1;1 (λ1;2λ1;3)
)∣∣
G∗

1
,

β̄t2 = β2;1 + β̄2;2 ◁ λ2;3 + β̄2;3 +
(
λ−1
2;3ȳ2;2λ2;3

)∣∣
G∗

1
+
(
(λ2;2λ2;3)

−1 ȳ2;1 (λ2;2λ2;3)
)∣∣
G∗

1
,

β̄t3 = β3;1 + β̄3;2 ◁ λ3;3 + β̄3;3 +
(
λ−1
3;3ȳ3;2λ3;3

)∣∣
G∗

1
+
(
(λ3;2λ3;3)

−1 ȳ3;1 (λ3;2λ3;3)
)∣∣
G∗

1
,

β̄t4 = β4;1 + β̄4;2 ◁ λ4;3 + β̄4;3 +
(
λ−1
4;3ȳ4;2λ4;3

)∣∣
G∗

1
+
(
(λ4;2λ4;3)

−1 ȳ4;1 (λ4;2λ4;3)
)∣∣
G∗

1
.

(5.57)
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Each of them is rooted at the vertex va;1;1 = va;3;2 and represented at the source of the resp.
link, node ca;1. To construct the tetrahedron phase space, one has to merge the triangles, by
identifying each edge of each triangle with one of the edges of each of the other three triangles.
Identify the sources of the four links, and denote this common node c ≡ c1;1 = c2;1 = c3;1 = c4;1,
that will be the center of the tetrahedron. See Fig. 5.9 for the proper combinatorics. I refer to
the wedge gluing in App. C for more details about this phase space fusions. According to Fig.
5.9, the proper six momentum maps are

λ1;1 = λ−1
3;3 , λ1;2 = λ−1

4;3 , λ1;3 = λ−1
2;1 , λ2;2 = λ−1

4;2 , λ2;3 = λ−1
3;1 , λ3;2 = λ−1

4;1 . (5.58)

The edge identifications dually leads to the six fused wedge variables

ȳ12 = −ȳ2;1 + (λ1;3 ȳ1;3 λ
−1
1;3)|G∗

2
,

ȳ13 = ȳ1;1 − (λ3;3 ȳ3;3 λ
−1
3;3)|G∗

2
,

ȳ14 = ȳ1;2 − (λ4;3 ȳ4;3 λ
−1
4;3)|G∗

2
,

ȳ23 = −ȳ3;1 + (λ2;3 ȳ2;3 λ
−1
2;3)|G∗

2
,

ȳ24 = ȳ2;2 − (λ4;2 ȳ4;2 λ
−1
4;2)|G∗

2
,

ȳ34 = ȳ3;2 − (λ4;1 ȳ4;1 λ
−1
4;1)|G∗

2
.

(5.59)

where I denoted ȳab the fused wedge decoration shared by triangles a and b.
The construction of the tetrahedron phase space is completed with the last momentum map,
known as 1-Gauss constraint, that enforces the closure of the four faces. According to Fig. 5.9,
only three of the four triangles can share the same vertex (call it v, in red in the figure). To
correctly impose the 1-Gauss constraint, the associated momentum map has to be enforced on
variables that all lie in the same reference frame. Let the common reference frame be placed at
the center of the tetrahedron c and at the vertex v. The variables that decorate the fourth triangle
thus have to be transported from the vertex v4;1 (in blue) to v, through the edge decorated by
λ1;1. According to the reference frame and parallel transport interpretation, we need to move
the reference frame of the fourth triangle from the target to the source of the edge e1;1. Such
parallel transport is thus implemented as the left translation with respect to the group G2 (as a
sub-group of the Drinfeld double). Once we have the expressions of the four face decorations all
in the same reference frame, one can correctly impose the closure of the tetrahedron boundary

β̄t1 + β̄t2 + β̄t3 + λ1;1 ▷ β̄t4 + (λ1;1 ȳt4 λ
−1
1;1)|G∗

1
= 0 , (5.60)

where the face decorations β̄ti are given in (5.57) and the wedge variable ȳt4 is

ȳt4 = ȳ4:3 + (λ−1
4;3 ȳ4;2 λ4;3)|G∗

2
+
(
(λ4;2λ4;3)

−1 ȳ4;1 (λ4;2λ4;3)
)∣∣
G∗

2
. (5.61)

The symplectic reduction for a tetrahedron phase space is thus

Pτ = (Pt1 × Pt2 × Pt3 × Pt4)//
(
(G∗

2)
×6 ×G1

)
= B(12)

a;i //
(
((G∗

1 ×G∗
1)×G∗

2)
×4 × ((G∗

2)
×6 ×G1)

)
,

(5.62)

with momentum maps (5.56), (5.58) and (5.60). For the next part, it will be relevant to express
the 1-Gauss constraint (5.60) in terms of the fused wedge variables (5.59). To this scope, denote
λab the edge shared by triangles a and b, as we did for the fused wedges

λ12 ≡ λ2;1 , λ13 ≡ λ1;1 , λ14 ≡ λ1;2 , λ23 ≡ λ3;1 , λ24 ≡ λ2;2 , λ34 ≡ λ3;2 , (5.63)

so that the constraint (5.60) can be written as

b1 + b2 + b3 + λ13 ▷ b4 + (λ12 ȳ12 λ
−1
12 )|G∗

1
+ (λ13 ȳ13 λ

−1
13 )|G∗

1
+ λ13 ▷ (λ14 ȳ14 λ

−1
14 )|G∗

1

+ (λ23 ȳ23 λ
−1
23 )|G∗

1
+ λ12 ▷ (λ24 ȳ24 λ

−1
24 )|G∗

1
+ λ23 ▷ (λ34 ȳ34 λ

−1
34 )|G∗

1
= 0 ,

(5.64)
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Figure 5.9: Combinatorics of a tetrahedron. The phase space of a tetrahedron is constructed by
fusing four triangle phase spaces, by identifying the edges pairwise and by closing the tetrahedron
boundary. To properly fuse the edges, they have to lie in the same reference frame: use the
tetrahedron center c as common node, and the vertex common to the first three triangles v, in
red. Let the fourth triangle be rooted at the vertex in blue; its reference frame thus needs to be
transported along the edge e1;1.

with the face decorations

b1 = β1;1 + λ13 ▷ β1;2 + β̄1;3 + λ12 ▷ (λ
−1
21 ȳ1;3 λ21)|G∗

1
+
(
λ13 (λ14 ȳ1;2 λ

−1
14 )|G∗

2
λ−1
13

)∣∣
G∗

1
,

b2 = −β2;1 + λ12 ▷ β2;2 + β̄2;3 + λ−1
34 ▷ (λ

−1
32 ȳ2;3 λ32)|G∗

1
+
(
λ12 (λ24 ȳ2;2 λ

−1
24 )|G∗

2
λ−1
12

)∣∣
G∗

1
,

b3 = −β3;1 + λ32 ▷ β3;2 − β̄3;3 − λ13 ▷ (λ
−1
13 ȳ3;3 λ13)|G∗

1
+
(
λ23 (λ34 ȳ3;2 λ

−1
34 )|G∗

2
λ−1
23

)∣∣
G∗

1
,

b4 = −β4;1 − λ−1
34 ▷ β4;2 − β̄4;3 − λ−1

13 ▷
(
(λ13 ȳ4;3 λ

−1
13 )|G∗

2
+ λ−1

12 ▷ (λ
−1
14 ȳ4;3 λ14)|G∗

1

+ (λ12 ȳ4;2 λ
−1
12 )|G∗

2
+ λ23 ▷ (λ

−1
24 ȳ4;2 λ24)|G∗

1
+ (λ23 ȳ4;1 λ

−1
23 )|G∗

2
+ λ13 ▷ (λ

−1
34 ȳ4;1 λ34)|G∗

1

)
.

(5.65)
Note that, each fused wedge decoration ȳab in eq. (5.64) is subject to a conjugation of the
respective dual edge decoration λab.

Tetrahedron gluing

In the previous parts I explained how to construct first the phase space of a triangle and then that
of a tetrahedron, which is the building block for a three dimensional simplicial 2-triangulation.
The last symplectic reduction left needed to fully construct any arbitrary 2-triangulation is the
one that allows to merge these building blocks. In order to glue two tetrahedra, one has to
identify two of their faces together and the respective boundaries. Consider then two triangle
phase spaces Pa (or equivalently six atomic phase spaces with two sets of momentum maps
(5.56)) for a = 1, 2. Each phase space is associated to the (half) link la (with source at the node
ca and target at ca;f ), a triplet of wedges wa, a triplet of boundary edges ea;1, ea;2, ea;3 (with resp.
sources and targets at the vertices va;i;1 and va;i;2) and a single total face fa. In this phase space
fusion, both the two faces and the pairs of three boundary edges are identified with opposite
orientations.
Identify the two faces f1 = −f2 and the boundary edges as e1;1 = −e2;3, e1;2 = −e2;2 and
e1;3 = −e2;1. As reference frame, I will use the targets of the two links (points on the resp. faces)
ca;f and the vertices v1;1;1 = v1;3;2 and v2;1;1 = v2;3;2. Then, let the two nodes and the two vertices
match. I refer to the link gluing and wedge gluing in App. C for more details. The geometric
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identification induces the momentum constraints

˜̄β1 =
˜̄β−1
2 , λ1;1 = λ−1

2;3 , λ1;2 = λ−1
2;2 , λ1;3 = λ−1

2;1 . (5.66)

Here the face decorations ˜̄βa are the fused face variables (5.55) expressed in the reference frame
at the target of the link rather than at its source. The total symplectic reduction is thus

P∂ = (Pt1 × Pt2)//(G1 × (G∗
2)

×3)

= B(6)
a;i //

(
((G∗

1 ×G∗
1)×G∗

2)
×2 × (G1 × (G∗

2)
×3)
)
,

(5.67)

with momentum maps (5.66) and fused wedge variables

ȳi = −ȳ1;i + (λ1;i ȳ2;i λ
−1
1;i )|G∗

2
, (5.68)

for i = 1, 2, 3. Note that both the in symplectic reduction just presented and in the one related
to the tetrahedron phase space construction, I used the Wedge Gluing of App. C. Even though
the above wedge decorations and those in eq. (5.64) have a similar expression, their geometric
interpretation is different. The latter are decorations of the wedges fused internally to the
tetrahedron, dual to each of its six edges. While the variables derived in this part are decorations
of wedges fused externally between two different tetrahedra. Note also that, given a pair of
atomic phase spaces B, applying the symplectic reduction with respect to the groups G1 and G∗

2,
leads to a fused phase space isomprphic to the Heisenberg double B. This is indeed somehow
equivalent to take the symplectic reduction with respect to the whole 2-group G. The geometric
interpretation is that each of the initial atomic phase spaces were associated to an half link, a
wedge, an edge and a face, while the resulting phase space is associated to a full link, a fused
wedge a single (identified) edge and a single (identified) face. In a similar way, the symplectic
reduction just explained that provides the gluing of two tetrahedra, takes two triangle phase
spaces into a fused face space which is isomorphic to a single triangle phase space. Again, the
final phase space will be associated to a full link, a fused (external) wedge, a single triplet of
boundary edges and a single face (triangle) decoration.

Applications and examples

1-flatness and edge simplicity

Suppose to have constructed the phase space of n tetrahedra and to glue them in such a way
they all share a single edge denoted e. All the fused wedges internal to each of the n tetrahedra
are thus fused together into a single closed wedge, dual to the edge e, with fused decoration

ȳ = ȳ1+u1▷ȳ2+· · ·+(u1 · · ·un−1)▷ȳn+(u1 β̄2 u
−1
1 )|G∗

2
+
(
(u1 · · ·un1) β̄n (u1 · · ·un1)

−1
)∣∣

G∗
2
. (5.69)

One can compute the ribbon equation associated to this symplectic reduction. I will not do
it because its expression would be long and complicated, but given the fundamental gluings
presented above, one has all the necessary tools to derive the decoration of the composition of
links around such a fused wedge. Dealing with skeletal 2-groups, the total holonomy turns out
to be flat:

u1 . . . un = 1 . (5.70)

Such condition is called 1-flatness constraint [140]. The edge simplicity constraint discussed
in [140,176,177] is instead a weaker condition: it enforces the triviality of the parallel transport
of the edge data around a closed loop of links. If the 1-flatness condition already holds as in our
case, then the edge simplicity is automatically implemented.
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4-simplex boundary

Having defined the phase space for an arbitrary three dimensional phase space, it is worth to give
the explicit construction of one of the most interesting examples (also considered in [140]): the
triangulation of a sphere, or equivalently the boundary of a 4-simplex, given as the combination
of five tetrahedra.
The starting point are then sixty copies of the Heisenberg double BA;a;i, with A = 1, 2, 3, 4, 5
labelling the five tetrahedra, a = 1, 2, 3, 4 labelling the four triangles of each tetrahedron and
i = 1, 2, 3 labelling the three edges of each triangle. The idea is to use the symplectic reduction
with respect Ht to construct the twenty triangles, then the symplectic reduction with respect
to Hτ to construct the five tetrahedra; and finally, ten times the symplectic reduction H∂ to
identify the faces of each tetrahedron and their boundary edges, with a face and its corresponding
boundary edges of each of the other four tetrahedra. I refer to Fig. 5.10 for the combinatorics
of the 4-simplex boundary. Denote cA the center of the tetrahedron τA. Let tA;a be the triangle
a of tetrahedron A and wA;ab the fused wedge shared by triangles a and b of tetrahedron A. By
convenience, I will use either the variable β̄tA;a

of eq. (5.57) or bA;a of eq. (5.65) as decorations
of the triangle tA;a; while as decoration of the wedge wA;ab I will use the variable ȳA;ab.
Let me now illustrate the main steps of the symplectic reduction in consideration. The starting
point are thus five tetrahedron phase spaces on which we now implement the tetrahedron gluings.
Therefore, first identify the faces according to the Fig. 5.10, and denote tAB the face shared by
tetrahedra A and B:

t12 ≡ t1;1 = −t2;4 , t13 ≡ t1;2 = −t3;3 , t14 ≡ t1;3 = −t4;2 , t15 ≡ t1;4 = −t5;1 ,
t23 ≡ t2;1 = −t3;4 , t24 ≡ t2;2 = −t4;3 , t25 ≡ t2;3 = −t5;2 , t34 ≡ t3;1 = −t4;4 ,
t35 ≡ t3;2 = −t5;3 , t45 ≡ t4;1 = −t5;4 .

(5.71)

These geometric conditions are enforced on the variables β̄tA;a
through the ten momentum maps

β̄12 ≡ β̄t1;1 = −(u12 β̄t2;4 u
−1
12 )|G∗

1
, β̄31 ≡ β̄t3;3 = −(u−1

13 β̄t1;2 u13)|G∗
1
,

β̄14 ≡ β̄t1;3 = −(u14 β̄t4;2 u
−1
14 )|G∗

1
, β̄51 ≡ β̄t5;1 = −(u−1

15 β̄t1;4 u15)|G∗
1
,

β̄23 ≡ β̄t2;1 = −(u23 β̄t3;4 u
−1
23 )|G∗

1
, β̄42 ≡ β̄t4;3 = −(u−1

24 β̄t2;2 u24)|G∗
1
,

β̄25 ≡ β̄t2;3 = −(u25 β̄t5;2 u
−1
25 )|G∗

1
, β̄34 ≡ β̄t3;1 = −(u34 β̄t4;4 u

−1
34 )|G∗

1
,

β̄53 ≡ β̄t5;3 = −(u−1
35 β̄t3;2 u35)|G∗

1
, β̄45 ≡ β̄t4;1 = −(u45 β̄t5;4 u

−1
45 )|G∗

1
,

(5.72)

where I re-named β̄AB the decoration of the fused face shared by tetrahedra A and B, rooted at
the center of tetrahedron A. Using a similar notation, let me introduce the variable bAB:

b12 ≡ b1;1 = −(u12 b2;4 u
−1
12 )|G∗

1
, b31 ≡ b3;3 = −(u−1

13 b1;2 u13)|G∗
1
,

b14 ≡ b1;3 = −(u14 b4;2 u
−1
14 )|G∗

1
, b51 ≡ b5;1 = −(u−1

15 b1;4 u15)|G∗
1
,

b23 ≡ b2;1 = −(u23 b3;4 u
−1
23 )|G∗

1
, b42 ≡ b4;3 = −(u−1

24 b2;2 u24)|G∗
1
,

b25 ≡ b2;3 = −(u25 b5;2 u
−1
25 )|G∗

1
, b34 ≡ b3;1 = −(u34 b4;4 u

−1
34 )|G∗

1
,

b53 ≡ b5;3 = −(u−1
35 b3;2 u35)|G∗

1
, b45 ≡ b4;1 = −(u45 b5;4 u

−1
45 )|G∗

1
.

(5.73)

Dually, each of these G∗
1 momentum maps gives rise to a fused link decoration

u12 = u1;1u
−1
2;4 , u13 = u1;2u

−1
3;3 , u14 = u1;3u

−1
4;2 , u15 = u1;4u

−1
5;1 , u23 = u2;1u

−1
3;4 ,

u24 = u2;2u
−1
4;3 , u25 = u2;3u

−1
5;2 , u34 = u3;1u

−1
4;4 , u35 = u3;2u

−1
5;3 , u45 = u4;1u

−1
5;4 ,

(5.74)

where uAB decorates the fused (full) link with source at the center of tetrahedron A and target at
the center of tetrahedron B, with inverse u−1

AB = uBA. According to the tetrahedron gluing, also
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τ1

t1;4

t1;2

t1;3 t1;1

τ2

t2;3

t2;1

t2;2

t2;4

τ3

t3;2
t3;4

t3;3

t3;1

τ4

t4;1

t4;2

t4;3

t4;4

τ5

t5;3

t5;1

t5;4 t5;2

: v

: v′

: v′′

: v′′′

: v′′′′

Figure 5.10: 4-simplex boundary construction. Five tetrahedra share five vertices: v (in black) is
shared by tetrahedra 1,2,3,5, v′ (in white) is shared by tetrahedra 1,3,4,5, v′′ (in gray) is shared
by tetrahedra 1,2,4,5, v′′′ (in yellow) is shared by tetrahedra 2,3,4,5 and v′′′′ (in green) is shared
by tetrahedra 1,2,3,4. Each of the four faces of each tetrahedron is identified with one of the
faces of the other four tetrahedra. I use the same color and a double dotted line for the identified
faces.
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the triangle boundaries have to be identified. Use again Fig. 5.10 for the proper combinatorics of
the identifications. Denote λA;ab the edge shared by faces a and b of tetrahedron A, represented
at the center of it. Let eABC be the edge shared by tetrahedra A,B,C and λDABC be the respective
edge decoration represented at the node cD defined through the following momentum maps

λ1123 ≡ λ1;12 = u12 ▷ λ2;14 = u13 ▷ λ3;34 , λ1124 ≡ λ1;13 = u12 ▷ λ2;24 = u14 ▷ λ4;23 ,

λ1125 ≡ λ1;14 = u12 ▷ λ2;34 = u15 ▷ λ5;12 , λ1134 ≡ λ1;23 = u13 ▷ λ3;13 = u14 ▷ λ4;24 ,

λ1135 ≡ λ1;24 = u13 ▷ λ3;23 = u15 ▷ λ5;13 , λ1145 ≡ λ1;34 = u14 ▷ λ4;12 = u15 ▷ λ5;14 ,

λ2234 ≡ λ2;12 = u23 ▷ λ3;14 = u24 ▷ λ4;34 , λ2235 ≡ λ2;13 = u23 ▷ λ3;24 = u25 ▷ λ5;23 ,

λ2245 ≡ λ2;23 = u24 ▷ λ4;13 = u25 ▷ λ5;24 , λ3345 ≡ λ3;12 = u34 ▷ λ4;14 = u35 ▷ λ5;34 .

(5.75)

Dually, one gets a fused wedge decoration for each of the ten identified edges

ȳ1123 = ȳ1;12 + u12 ▷ ȳ2;14 + u13 ▷ ȳ3;34 + (u12 β̄23 u
−1
12 )|G∗

2
+ (u13 β̄31 u

−1
13 )|G∗

2
,

ȳ1124 = ȳ1;13 + u12 ▷ ȳ2;24 + u14 ▷ ȳ4;23 + (u14 β̄42 u
−1
14 )|G∗

2
,

ȳ1125 = ȳ1;14 + u12 ▷ ȳ2;34 + u15 ▷ ȳ5;12 + (u12 β̄25 u
−1
12 )|G∗

2
+ (u15 β̄51 u

−1
15 )|G∗

2
,

ȳ1134 = ȳ1;23 + u13 ▷ ȳ3;14 + u14 ▷ ȳ4;24 + (u13 β̄34 u
−1
13 )|G∗

2
+ (u13 β̄31 u

−1
13 )|G∗

2
,

ȳ3135 = ȳ1;24 + u13 ▷ ȳ3;23 + u15 ▷ ȳ5;13 + (u35 β̄51 u
−1
35 )|G∗

2
+ (u35 β̄53 u

−1
35 )|G∗

2
,

ȳ1145 = ȳ1;34 + u14 ▷ ȳ4;12 + u15 ▷ ȳ5;14 + (u14 β̄45 u
−1
14 )|G∗

2
+ (u15 β̄51 u

−1
15 )|G∗

2
,

ȳ2235 = ȳ2;13 + u23 ▷ ȳ3;24 + u25 ▷ ȳ5;23 + (u25 β̄53 u
−1
25 )|G∗

2
,

ȳ2245 = ȳ2;23 + u24 ▷ ȳ4;13 + u25 ▷ ȳ5;24 + (u24 β̄45 u
−1
24 )|G∗

2
+ (u24 β̄42 u

−1
24 )|G∗

2
,

ȳ2234 = ȳ2;12 + u23 ▷ ȳ3;14 + u24 ▷ ȳ4;34 + (u23 β̄34 u
−1
23 )|G∗

2
+ (u24 β̄42 u

−1
24 )|G∗

2
,

ȳ3345 = ȳ3;12 + u34 ▷ ȳ4;14 + u35 ▷ ȳ5;34 + (u34 β̄45 u
−1
34 )|G∗

2
+ (u35 β̄53 u

−1
35 )|G∗

2
,

(5.76)

where the variable ȳDABC decorates the fused wedge dual to the edge eABC , rooted at the center
of tetrahedron D. The symplectic reduction for the phase space of a 4-simplex boundary is thus

Pτ4 = B(60)
//((

((G∗
1 ×G∗

1)×G∗
2)

×4 × ((G∗
2)

×6 ×G1)
)×5 × (G×10

1 × (G∗
2)

×10)
)

= P(5)
τ //

(
G×10

1 × (G∗
2)

×10
)
, (5.77)

with momentum maps (5.72) and (5.75). Last, let us express the 1-Gauss constraints of the five
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tetrahedra, in terms of the variables (5.73) as in (5.64)

τ1 : b12 − (u13 b31 u
−1
13 )|G∗

1
+ λ1135 ▷ b14 − (u15 b51 u

−1
15 )|G∗

1

+ (λ1123 ȳ1;12 (λ
1
123)

−1)|G∗
1
+ λ1125 ▷ (λ

1
124 ȳ1;13 (λ

1
124)

−1)|G∗
1
+ (λ1125 ȳ1;14 (λ

1
125)

−1)|G∗
1

+ λ1135 ▷ (λ
1
134 ȳ1;23 (λ

1
234)

−1)|G∗
1
+ (λ1135 ȳ1;24 (λ

1
135)

−1)|G∗
1
+ λ1135 ▷ (λ

1
145 ȳ1;34 (λ

1
145)

−1)|G∗
1
= 0,

(5.78)
τ2 : b23 − λ2125 ▷ (u24 b42 u

−1
24 )|G∗

1
+ b25 − (u−1

12 b12 u12)|G∗
1

+ λ2235 ▷ (λ
2
234 ȳ2;12 (λ

2
234)

−1)|G∗
1
+ (λ2235 ȳ2;13 (λ

2
235)

−1)|G∗
1
+ (λ2123 ȳ2;14 (λ

2
123)

−1)|G∗
1

+ λ2125 ▷ (λ
2
245 ȳ2;23 (λ

2
245)

−1)|G∗
1
+ λ2125 ▷ (λ

2
124 ȳ2;24 (λ

2
124)

−1)|G∗
1
+ (λ2125 ȳ2;34 (λ

2
125)

−1)|G∗
1
= 0,

(5.79)
τ3 : λ3135 ▷ b34 − (u35 b53 u

−1
35 )|G∗

1
+ b31 − (u−1

23 b23 u23)|G∗
1

+ λ3135 ▷ (λ
3
345 ȳ3;12 (λ

3
345)

−1)|G∗
1
+ λ3135 ▷ (λ

3
134 ȳ3;13 (λ

3
134)

−1)|G∗
1
+ λ3235 ▷ (λ

3
234 ȳ3;14 (λ

3
234)

−1)|G∗
1

+ (λ3135 ȳ3;23 (λ
3
135)

−1)|G∗
1
+ (λ3235 ȳ3;24 (λ

3
235)

−1)|G∗
1
+ (λ3123 ȳ3;34 (λ

3
123)

−1)|G∗
1
= 0, (5.80)

τ4 : λ4135 ▷
(
b45 − (u−1

14 b14 u14)|G∗
1
+ λ4145 ▷ b42 − (u−1

34 b34 u34)|G∗
1

)
+ λ4135 ▷ (λ

4
145 ȳ4;12 (λ

4
145)

−1)|G∗
1
+ λ4125 ▷ (λ

4
245 ȳ4;13 (λ

4
245)

−1)|G∗
1
+ λ4135 ▷ (λ

4
345 ȳ4;14 (λ

4
345)

−1)|G∗
1

+ λ4125 ▷ (λ
4
124 ȳ4;23 (λ

4
124)

−1)|G∗
1
+ λ4135 ▷ (λ

4
134 ȳ4;24 (λ

4
134)

−1)|G∗
1
+ λ4235 ▷ (λ

4
234 ȳ4;34 (λ

4
234)

−1)|G∗
1
= 0,

(5.81)
τ5 : b51 − (u−1

25 b25 u25)|G∗
1
+ b53 − λ5135 ▷ (u

−1
45 b45 u45)|G∗

1

+ (λ5125 ȳ5;12 (λ
5
125)

−1)|G∗
1
+ (λ5135 ȳ5;13 (λ

5
135)

−1)|G∗
1
+ λ5135 ▷ (λ

5
145 ȳ5;14 (λ

5
145)

−1)|G∗
1

+ (λ5235 ȳ5;23 (λ
5
235)

−1)|G∗
1
+ λ5125 ▷ (λ

5
245 ȳ5;24 (λ

5
245)

−1)|G∗
1
+ λ5135 ▷ (λ

5
345 ȳ5;34 (λ

5
345)

−1)|G∗
1
= 0 .

(5.82)

Examples

As announced, this construction encodes the particularly interesting case of the Euclidean
Poincaré 2-group (with a trivial Poisson structure). I am going to show that, with such choice,
one recovers the phase space that was introduced in [140] and again in [178].
Let G = ISO(4) ∼= SO(4)⋉ R4 ∼= R4 ⋊ SO(4) and G∗ = ISO(4)∗ ∼= SO∗(4)× R4 ∼= R4 × SO∗(4),
where SO∗(4) ∼= R6 as Lie groups. The simplicial 2-triangulation has edges and faces decorated
by elements of R4 and SO∗(4) respectively; its dual 2-complex has links and wedges decorated
by holonomies of SO(4) and R∗ 4 ∼= R4 respectively:

G1 = SO(4) ∋ u , G∗
2 = R4 ∋ y, ȳ , G2 = R4 ∋ λ, λ̃ , G∗

1 = SO∗(4) ∋ β, β̃. (5.83)

Note that there is no action of R4 on SO(4) nor on SO∗(4) and thus the conjugations of SO(4)
on SO∗(4) and of R4 on R4, take the simpler shape

uβu−1 = β′y′ ⇔

{
β′ = (uβu−1)|SO∗(4) ,

y′ = (uβu−1)|R4 = 1 ,

λyλ−1 = y′′β′′ ⇔

{
β′ = (λyλ−1)|SO∗(4) ≡ [λ, y] ,

y′ = (λyλ−1)|R4 = y .

(5.84)

The triangle phase space is recovered by imposing the momentum maps u1 = ũ2 and u2 = ũ3,
plus the closure constraint λ1 + λ2 + λ3 = 0, and leads to the fused face decoration (5.55)

βt = β1 + β2 + β3 + β4 − [λ2 , ȳ1]− [λ3 , ȳ1]− [λ3 , ȳ2] . (5.85)
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Similarly, the tetrahedron phase space is given by four triangle phase spaces fused together by
the six momentum maps (5.58), from which one derives the six fused wedge decorations (5.59)

ȳ12 = −ȳ2;1 + ȳ1;3 , ȳ13 = ȳ1;1 − ȳ3;3 , ȳ14 = ȳ1;2 − ȳ4;3 ,

ȳ23 = −ȳ3;1 + ȳ2;3 , ȳ24 = ȳ2;2 − ȳ4;2 , ȳ34 = ȳ3;2 − ȳ4;1 .
(5.86)

The last momentum map needed to construct the tetrahedron phase space is the 1-Gauss con-
straint (5.64), that now reduces to

b1+b2+b3+b4+[λ12 , ȳ12]+[λ13 , ȳ13]+[λ14 , ȳ14]+[λ23 , ȳ23]+[λ24 , ȳ24]+[λ34 , ȳ34] = 0 , (5.87)

where

b1 = β1;1 + β1;2 + β1;3 − [λ21 , ȳ1;3] + [λ13 , ȳ1;2] ,

b2 = −β2;1 + β2;2 + β2;3 − [λ32 , ȳ2;3] + [λ12 , ȳ2;2] ,

b3 = −β3;1 + β3;2 − β3;3 − [λ13 , ȳ3;3] + [λ23 , ȳ3;2] ,

b4 = −β4;1 − β4;2 − β4;3 − [(λ13 − λ14) , ȳ4;3]− [(λ12 − λ24) , ȳ4;2]− [(λ23 − λ34) , ȳ4;1] .

(5.88)

It is now interesting to derive again the phase space of the 4-simplex boundary (the five 1-Gauss
constraints (5.82)) to compare the result with the G-network construction of [140]. Follow the
steps explained in the previous part, and then consider the change of variables for the face
decorations below

b′12 = b12 − u12 [λ
2
123 , ȳ2;14]u

−1
12 − u12 [λ

2
124 , ȳ2;24]u

−1
12 − u12 [λ

2
125 , ȳ2;34]u

−1
12 ,

b′31 = b31 + [λ3134 , ȳ3;13] + [λ3123 , ȳ3;34]− u−1
13 [λ1135 , ȳ1;24]u13 ,

b′14 = b14 − u14 [λ
4
145 , ȳ4;12]u

−1
14 − u14 [λ

4
124 , ȳ4;23]u

−1
14 − u14 [λ

4
134 , ȳ4;24]u

−1
14 ,

b′51 = b51 + [λ5125 , ȳ5;12] + [λ5145 , ȳ5;14] ,

b′23 = b23 − u23 [λ
3
234 , ȳ3;14]u

−1
23 − u23 [λ

3
235 , ȳ3;24]u

−1
23 ,

b′42 = b42 + [λ4245 , ȳ4;13] + [λ4234 , ȳ4;34] ,

b′25 = b25 − u25 [λ
5
235 , ȳ5;23]u

−1
25 − u25 [λ

5
245 , ȳ5;24 u

−1
25 ,

b′34 = b34 − u34 [λ
4
345 , ȳ4;14]u

−1
34 ,

b′53 = b53 + [λ5135 , ȳ5;13] + [λ5345 , ȳ5;34] .

(5.89)

The five 1-Gauss constraints (5.82) expressed through new variables and in terms of the fused
wedge variables (5.76) write

τ1 : b′12 − (u13 b
′
31 u

−1
13 ) + b′14 − (u15 b

′
51 u

−1
15 ) + [λ1123 , ȳ

1
123] + [λ1124 , ȳ

1
124] + [λ1125 , ȳ

1
125]

+ [λ1134 , ȳ
1
134] + [λ1145 , ȳ

1
145] = 0 , (5.90)

τ2 : b′23 − (u24 b
′
42 u

−1
24 ) + b′25 − (u−1

12 b
′
12 u12) + [λ2235 , ȳ

2
235] + [λ2245 , ȳ

2
245] + [λ2234 , ȳ

2
234] = 0 ,

(5.91)
τ3 : b′34 − (u35 b

′
53 u

−1
35 ) + b′31 − (u−1

23 b
′
23 u23) + [λ3135 , ȳ

3
135] + [λ3345 , ȳ

3
345] = 0 , (5.92)

τ4 : b45 − (u−1
14 b

′
14 u14) + b′42 − (u−1

34 b
′
34 u34) = 0 , (5.93)

τ5 : b′51 − (u−1
25 b

′
25 u25) + b′53 − (u−1

45 b45 u45) = 0 . (5.94)

Comparing this result with that of [178], one derives the dictionary between the variables here
and those in [178], summarized in Table 5.4. This shows that the construction just presented
allows to recover exactly the phase space of [140, 178] in the case of the Euclidean Poisson Lie
2-group with a trivial Poisson structure.

The above choice of Euclidean Poincaré 2-group with trivial Poisson structure describes a flat
2-triangulation, with curved the 1-holonomies of its dual 2-complex. Going further, one can
input curvature on the edges of the 2-triangulation. Let me mention two interesting realizations
of 2-triangulations with curved edges:
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Our notation Notation in [178]

Face (triangle) b′ij b(ij)∗

Link uij hij

Edge e λie∗ ℓei

Wedge/dual face Y i
e∗ V e∗

i

Table 5.4: Dictionary between the variables used in this construction and the ones in [178].

• κ-Poincaré deformation: consider the choice of Poisson Lie groups

G1 = SO , G2 = AN , G∗
1 = SO∗ , G∗

2 = AN∗ . (5.95)

The underlying Lie bi-algebra is the one described in App. A. This type of deformation
would work for any sign of the cosmological constant in the Lorentzian case, and for a
negative cosmological constant in the Euclidian case.

• Self dual case: consider the choice of Poisson Lie groups

G1 = SU , G2 = SU , G∗
1 = R3 , G∗

2 = R∗ 3 . (5.96)

This deformation can be seen as the double of the Drinfeld double of SU(2) (as a Poisson
Lie group) and can be recovered by semi-dualizing the co-tangent bundle T ∗Spin(4).

5.3 2-Group field theory

In this section I will provide a model of four dimensional group field theory based on 2-groups,
based on [48]. I present the main ingredients of the model in the 2-complex picture following the
pattern used in Ch. 3 for ordinary GFT and in Ch. 4 for HAFT. In particular, I will show that
this new model, which can be called 2-group field theory, is a topological invariant; moreover,
the 2-complexes generated by the 2-group field theory are the same 2-graphs introduced in [47]
and presented in the previous section. This allows to relate the 2-group field theory to the
G-networks of [140] and thus to the KBF model.

Notation. Consider the 2-complex dual to a three dimensional simplicial 2-triangulation and
decorate it with the crossed module G = (G1,G2, t, ▷), where the groups Gi can be finite groups
or Lie groups. In the latter case, consider only the class of crossed modules where the groups
G2 is unimodular11. Moreover, the Haar measure on the 2-group G is taken to be the one of
the semi-direct product G2 ⋊G1, where the measure on G2 is invariant under the left action of
G1. Assume further that both the groups Gi have a trivial Poisson structure, so that the dual
2-group G∗ = (G∗

1,G
∗
2, t, ◁) is characterized by a pair of abelian groups. As a consequence, the

model will only describe flat simplicial 2-triangulations, with non-trivial 1- and 2-holonomies.
It is worth to fix notations here once for all, this also provides a better geometric understanding.
In the following, 4-simplices will be labelled by greek letters α, tetrahedra τA by capital latin
letters A = 1, .., 5, triangles ti by i = 1, ..4 and edges ea by a = 1, 2, 3. The wedges of a
tetrahedron – decorated by y ∈ G2 – will thus be labelled by quadruplets {α;A; i; a}; while the

11While the construction can be probably extended to a more general Lie groups, it would complicate the
presentation and it would not bring any worth additional value, since the main goal here is just the introduction
of a GFT based on 2-groups, with no over complicated requirements.
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h u′

u

u′ = hu

(a) Gauge transformation of
g ∈ G with respect to h ∈ G,
represented as a closed loop in
the gauge fiber.

x

y

y′

hu′

u

(y′, u′) = (x, h)−1 V ◦
(
y, u
)

{
u′ = t(x)hu

y′ = (h ▷ y)x−1

(b) 2-Gauge transformation of (y, u) ∈ G with respect (x, h) ∈
G, again represented as a loop in the gauge fiber, which in this
case is a closed surface.

links – resp. decorated by u ∈ G1 – will be labelled by triplets {α;A; i}. A similar notation will
be used for the gauge variables that will be introduced later on, and for the nodes: center of
4-simplices are labelled by cα, centers of tetrahedra are cα;A and centers of triangles are cα;A;i.
In all these cases, when it will not generate ambiguities, the 4-simplex index α will be omitted.

Remarks on lattice 2-gauge theories. similarly to ordinary GFT’s, 2-group field theory is
a 2-gauge theory, hence before going into its details, let me give an overview of (lattice) 2-gauge
theories. Suppose to have a cellular decomposition (such as the complex dual to a simplicial
triangulation), and decorate the links with holonomies of a group G, say elements g. Gauge
theories are thus based on the internal symmetry of the model under the action of a gauge
group. Taking the gauge group to be G itself, such action is simply given by the left and/or
right multiplication; take for instance the left one. In this case, The gauge transformation

g → g′ = hg , (5.97)

can be represented as a closed loop generated by the gauge fiber, see Fig. 5.11a. The picture for
2-groups is analogous. In this case, one would talk about 2-gauge theories. These can be seen
as the straight generalization of gauge theories. Consider a 2-group G with element (y, u). The
2-gauge transformation parameterized by a 2-group with element (x, h). If the gauge 2-group is
G itself, its action is given by the composition of 2-group elements in the gauge fiber, which is
now a closed surface. can be realized as the horizontal composition

(y, u) → (y′, u′) = (x, h)−1 V ◦ (y, u) , (5.98)

and is represented in Fig. 5.11b.

5.3.1 Basic ingredients of the model

Field and 2-gauge transformation

In analogy with others GFT models, the fundamental degrees of freedom are encoded in the field.
The latter, for a 3+1 dimensional 2-group field theory, is the 2-graph dual to a tetrahedron. While
for ordinary GFT’s the graph dual to a d–simplex would be simply given by d+1 independent
links sharing a common node, in this case, the 2-graph dual to a d–simplex is given by the d+1
links, plus the 1

2
d(d + 1) wedges shared by each pair of links. In the d = 3 case, the 2-graph
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dual to a tetrahedron is indeed given by four links (dual to the faces) and six wedges (dual to
the edges). This is the fundamental information that has to be encoded in the field of 2-GFT.
We immediately face the first difference between GFT and 2-GFT. Note that 2-group elements
are given as pairs (y, u) ∈ G decorating a single wedge and a single link. While in the ordinary
group case there are no ambiguities in defining the field as a function on four copies of a group
(four links), in this case the number of links (four) and that of the wedges (six) do not match,
and this prevents to define the field as a function on a number of copies of G.
To solve this issue, the phase space construction presented in the previous section comes to help.
In 2-group field theory, instead of dealing with phase spaces, one has to take the polarization of
that construction in the dual 2-complex, but the idea does not change. According to the phase
space construction, the graph dual to a tetrahedron is given by twelve fundamental (atomic) pairs
of wedge/link, say elements (yi;a, ui;a) ∈ G, fused together to construct first the four triangles
and then by merging them to properly build the tetrahedron boundary. I will thus introduce the
field of 2-group field theory in two steps. Let the fundamental field be a function ϕ ∈ F (G×12)
on twelve copies of the 2-group G. Then, the geometric field Φ is constructed as the fundamental
field plus the proper geometric constraints that turn it into the correct decoration of the 2-graph
dual to a tetrahedron.

Definition 18 (Geometric field). The geometric field is a function of four copies of the group
G1 and six copies of the group G2, defined as

Φ({Yi,j;ui}) =
∫

du12dy12
4∏
i=1

(
δG1(u

−1
i ui;1) δG1(u

−1
i ui;2) δG1(u

−1
i ui;3)

)
δ{Y}(Yi,j; yi;a) ϕ({(yi;a, ui;a)}) ,

(5.99)

where ϕ is the fundamental field and the symbol δ{Y} stands for the combination of six delta
functions on the group G2 that enforce the definition of six fused internal wedges Yi,j (see also
(5.59) in the construction of the tetrahedron phase space) in terms of the twelve wedges yi;a,

Y1,2 = y−1
1;3 y2;1 ,

Y2,3 = y−1
2;3 y3;1 ,

Y1,3 = y−1
1;1 y3;3 ,

Y2,4 = y−1
2;2 y4;2 ,

Y1,4 = y−1
1;2 y4;3 ,

Y3,4 = y−1
3;2 y4;1 .

(5.100)

As emphasized before, the geometric field is not a function on a 2-group, but rather a function
on the groups G1 and G2 separately. Nevertheless, thanks to the its definition in terms of the
constraints on links and wedges, it is possible to keep track of the initial 2-group elements.
The geometric field is invariant under the 2-gauge transformation (5.98). Let the projected
geometric field be

(P Φ)({Yi,j;ui}) =
∫

dx4dhdy12du12
4∏
i=1

(
δG1

(
u−1
i t(xi)hui;1

)
δG1

(
u−1
i t(xi)hui;2

)
δG1

(
u−1
i t(xi)hui;3

))
δ{Y}(Yi,j;x

−1
i yi;a) ϕ({(x−1

i h ▷ yi;a, t(xi)hui;a)}) .
(5.101)

The 2-gauge transformation for a single 2-group element (yi;a, ui;a) is illustrated in Fig. 5.11b.
The above equation is called gauge averaging, and the invariance of the field under the 2-gauge
transformation is

Φ = (P Φ) . (5.102)

The geometric interpretation is the same given in Ch. 3 for ordinary 3d GFT and Ch. 4 for
HAFT; hence, without repeating the same concepts too many times, her I would just like to
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emphasize that the elements Y and u will be part of the 2-graph dual to the boundary of the
four dimensional Feynman diagrams of 2-GFT, while the wedges x and the link h will decorate
the bulk 2-graph. I will thus call them respectively boundary and bulk (or eventually gauge)
variables. According to the combinatorics of a tetrahedron, here there is a single bulk wedge
decoration xi for all the three wedges yi;a dual to the three edges of a triangle, and a single bulk
link decoration h for all the elements.
Note that, in order to construct the 2-graphs with the proper combinatorics, one needs to demand
the field to be invariant under permutations σ ∈ S4, up to the parity of the permutation. In
the following, I will typically assume this symmetry without making it explicit in order to not
burden the notations.

Action and partition function

The action of 2-GFT is given by the contribution of a kinematic and an interaction term

S = SK + SV . (5.103)

The kinetic term is given by the product of a pair of fields

SK =

∫
dy12du12 ϕ({(yi;a, ui;a)})ϕ({(yi;a, ui;a)}) . (5.104)

It can be written as an integral operator

SK =

∫
dy24du24K ϕ({(yi;a, ui;a)})ϕ({(y′i;a, u′i;a)}) , (5.105)

where

K =
4∏
i=1

3∏
a=1

δG2

(
y−1
i;a y

′
i;a) δG1(u

−1
i;a u

′
i;a) (5.106)

is the kernel of the propagator amplitude. The interaction term is given by the proper non-local
product of five projected geometric fields P Φ, such that they respect the combinatorics of a
4-simplex. Once again, such product can be written as an integral operator

SV =

∫
dY 30du20dX10dh5 V ϕ×5 , (5.107)

where the term V is the kernel of the 4-simplex amplitude in the dual 2-complex. In analogy
with ordinary GFT’s, one expects the interaction term to encode two types of holonomies:

∗ a generalization of the flat 1-holonomies given as combination of bulk variables h’s and
boundary data u’s, plus eventual contributions from the t-map of the bulk wedges x;

∗ a flat 2-holonomy generated by the bulk and boundary data x and y.

These terms can viewed as the generalization of the closure of Fig. 3.3b, and are represented in
Fig. 5.12. The kernel V amounts to
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c

c1

c2 c3

h1

h2
h3

Figure 5.12: A portion of the interaction term. The dotted lines are the combination of three
faces shared by three tetrahedra and sharing a common edge (the black solid line). The three
solid lines hi are three of the five bulk links of the 4-simplex, with source at the node c (center of
the 4-simplex), and targets resp. at cA (centers of the three tetrahedra). In different colors the
three fused internal boundary wedges Y and their respective boundary links. The three fused
boundary wedges (six half wedges ua;i) combine into the total wedge dual the the central edge.

V = δG1

(
t(X2,1)h1u1;1 u

−1
2;4h

−1
2

)
δG1

(
t(X3,1)h1u1;2 u

−1
3;3h

−1
3

)
δG1

(
t(X4,1)h1u1;3 u

−1
4;2h

−1
4

)
δG1

(
t(X5,1)h1u1;4 u

−1
5;1h

−1
5

)
δG1

(
t(X3,2)h2u2;1 u

−1
3;4h

−1
3

)
δG1

(
t(X4,2)h2u2;2 u

−1
4;3h

−1
4

)
δG1

(
t(X5,2)h2u2;3 u

−1
5;2h

−1
5

)
δG1

(
t(X4,3)h3u3;1 u

−1
4;4h

−1
4

)
δG1

(
t(X5,3)h3u3;2 u

−1
5;3h

−1
5

)
δG1

(
t(X5,4)h4u4;1 u

−1
5;4h

−1
5

)
δG2

(
(h1 ▷ Y1;2,1)X1,2 (h2 ▷ Y2;4,1)X2,3 (h3 ▷ Y3;4,3)X3,1

)
δG2

(
(h1 ▷ Y1;3,1)X1,2 (h2 ▷ Y2;4,2)X2,4 (h4 ▷ Y4;3,2)X4,1

)
δG2

(
(h1 ▷ Y1;4,1)X1,2 (h2 ▷ Y2;4,3)X2,5 (h5 ▷ Y5;2,1)X5,1

)
δG2

(
(h1 ▷ Y1;3,2)X1,3 (h3 ▷ Y3;3,1)X3,4 (h4 ▷ Y4;4,2)X4,1

)
δG2

(
(h1 ▷ Y1;4,2)X1,3 (h3 ▷ Y3;3,2)X3,5 (h5 ▷ Y5;3,1)X5,1

)
δG2

(
(h1 ▷ Y1;3,4)X1,4 (h4 ▷ Y4;2,1)X4,5 (h5 ▷ Y5;4,1)X5,1

)
δG2

(
(h2 ▷ Y2;2,1)X2,3 (h3 ▷ Y3;4,1)X3,4 (h4 ▷ Y4;4,3)X4,2

)
δG2

(
(h2 ▷ Y2;3,1)X2,3 (h3 ▷ Y3;4,2)X3,5 (h5 ▷ Y5;3,2)X5,2

)
δG2

(
(h2 ▷ Y2;3,2)X2,4 (h4 ▷ Y4;3,1)X4,5 (h5 ▷ Y5;4,2)X5,2

)
δG2

(
(h3 ▷ Y3;2,1)X3,4 (h4 ▷ Y4;4,1)X4,5 (h5 ▷ Y5;4,3)X5,3

)
. (5.108)

The first ten deltas (on the group G1) enforce the closure of the links dual to the ten identified
faces of a 4-simplex while the other ten delta functions (on the group G2) enforce the closure of
the combination of bulk and boundary wedges around the ten edges of the 4-simplex. In order to
express such closures in a compact way, I introduced the decorations of the fused gauge wedges
XA,B between tetrahedra A,B:

X1,2 = x−1
1;1 x2;4 , X1,3 = x−1

1;2 x3;3 , X1,4 = x−1
1;3 x4;2 , X1,5 = x−1

1;4 x5;1 ,

X2,3 = x−1
2;1 x3;4 , X2,4 = x−1

2;2 x4;3 , X2,5 = x−1
2;3 x5;2 , X3,4 = x−1

3;1 x4;4 ,

X3,5 = x−1
3;2 x5;3 , X4,5 = x−1

4;1 x5;4 ,

(5.109)
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with inverses X−1
A,B = XB,A. I refer again to Fig. 5.10 for the 4-simplex combinatorics.

2-Group field theory can be formulated as a state sum model, with partition function given by
the sum over all the 2-complexes Γ∗ dual to simplicial four dimensional 2-triangulations Γ:

Z =
∑
Γ∗

∫
dXdh

∏
t

δG1(htt(Xt))
∏
e

δG2(Xe) , (5.110)

where Xt ∈ G2 is the bulk wedge dual to the triangle t ⊂ Γ and ht ∈ G1 decorates the boundary
of this face; while Xe stands for the combination of closed bulk wedges dual to a single edge
e ⊂ Γ. Note that this is a natural generalization of the amplitude that would be obtained in
an ordinary four dimensional GFT, with the extra information coming from the 2-holonomies
Xe ∈ G2 that encode the curvature around a single edge. As stated at the beginning of this
chapter, a (topological) model based on 2-groups encodes both the curvature around an edge
and that around a vertex of a cellular decomposition.

5.3.2 Topological invariance

2-Group field theory is a topological model. As stated for for HAFT of Ch. 4, the topological
invariance emerges from the invariance of the partition function (5.110) under the Pachner
moves. The latter are transformations that map (the amplitude associated to) a given cellular
decomposition to (the amplitude of) another topologically equivalent cellular decomposition. In
four dimensions there exist three Pachner moves.

∗ P1,5 : relates the amplitude of one 4-simplex V to the amplitude of the combination of five
4-simplices V5;

∗ P2,4 : relates the amplitude of the combination of two 4-simplices V2 to the amplitude of
the combination of four 4-simplices V4;

∗ P3,3 : relates the amplitude of the combination of three 4-simplices V3 to the amplitude of
the combination of three 4-simplices V3.

The key Feynman diagrams for the four dimensional Pachner moves are thus the 2-graphs dual
to a single 4-simplex, and the ones dual to a combination of two, three, four or five 4-simplices.
I listed the explicit expression of the associated five amplitudes in App. D.1, denoted AVN

for
N = 1, 2, 3, 4, 5. Given these five amplitudes, one can check the invariance of the model by
computing the Pachner moves. I give a few details of the computation in App. D.2. Let me
summarize here the results. Let VGi

be the volume of the group Gi.

∗ Pachner move P1,5 is illustrated in Fig. 5.13. The amplitude of five 4-simplices AV5 , upon
integration of the bulk variables, is proportional to the amplitude of a single 4-simplex AV :

AV5 = (V 4
G1
V 37
G2
)AV . (5.111)

∗ Pachner move P2,4 is illustrated in Fig. 5.14. The amplitude of four 4-simplices AV4 ,
upon integration of the bulk variables, is proportional to the amplitude of two 4-simplices
AV2 :

AV4 = (V 2
G1
V 19
G2
)AV2 . (5.112)
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Figure 5.13: Pachner move P(1,5). On the left the graph dual to five 4-simplices: in blue the bulk
links shared by pairs of tetrahedra and in red the bulk links dual to the five tetrahedra of the
boundary. Upon integration over the internal (blue) links, only the external (red) links remain
and the graph reduces to the one dual to a single 4-simplex, on the right.
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Figure 5.14: Pachner move P(2,4). On the left the graph dual to four 4-simplces: in blue the bulk
links shared by pairs of tetrahedra and in red the bulk links dual to the eight tetrahedra of the
boundary. Upon integration over the internal (blue) links, only the external (red) links remain
and the graph reduces to the one dual to a pair of 4-simplices with a single bulk link (in blue)
connecting their centers, on the right.
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Figure 5.15: Pachner move P(3,3). On the left the graph dual to three 4-simplices: in blue the
bulk links dual to the nine boundary tetrahedra. Upon a change of variables, the three boundary
tetrahedra of each of the three 4-simplices become the boundary tetrahedra of three different
(new) 4-simplices, on the right.

∗ Pachner move P3,3 is illustrated in Fig. 5.14. The amplitude of three 4-simplices AV3 is
equivalent to the amplitude of three 4-simplices AV3 with a different combinatorics:

AV3 = AV3 . (5.113)

5.4 Remarks and perspectives

In this final chapter I discussed 2-group theory and an eventual applications of its concepts in
a theory of four dimensional discrete geometries. The first step was the construction of the
phase space of a cellular decomposition of a three dimensional manifold with decorations on
1- and 2-holonomies; these cellular decompositions are interpreted as the states that would be
used to construct the eventual Hilbert space at the quantum level. I discussed how to construct
such phase space where the decorations of 1- and 2-holonomies are associated to the elements
of a skeletal 2-group, regarded as the semi direct product of groups; the symplectic reduction
was used as basic tool to merge several phase spaces, where three particular reductions are
identified as the essential ones to build up any arbitrary phase space. In the second part of the
chapter I defined a field theory, based on 2-groups, where the states of the new model are defined
accordingly to the previous construction. The Feynman diagrams of 2-group field theory are the
2-complexes dual to the cellular decompositions of a four dimensional manifold. The model was
proven to be topologically invariant.
I want to mention a few possible related future works.

Phase space for a general 2-group. The initial phase space construction was restricted to
the case of skeletal 2-groups. Here it would be interesting to repeat the same construction for a
general pair of dual 2-groups; this would require a more appropriate definition of 2-Heisenberg
double and 2-Drinfeld double [166].

Quantum 2-groups. The 2-group field theory instead is focused on a 2-group with trivial
Poisson structure. This is in direct analogy with ordinary GFT’s and implies that we can only
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describe flat discrete geometries. As in Ch. 4 I provided a generalization of group field theory
based on quantum groups, one should also generalize the 2-group field theory to the quantum 2-
group case. However, only a few proposal for quantum 2-groups have been made so far [179,180],
and it is not clear whether and how they are compatible each other. In App. E I also provide
a new proposal for a 2-Hopf algebra of functions on a 2-group, that might be compatible with
2-group field theory. Unfortunately, the lack of a complete and widely accepted theory of 2-
Hopf algebras prevents the rigorous formulation of a 2-group field theory that describes curved
geometries.

Fourier transform for 2-groups. The 2-group field theory is only presented in the dual
2-complex picture. Similarly to ordinary GFT’s or to HAFT, one would like to define a Fourier
transform between (quantum) 2-groups, which allows to map the 2-group field theory just pre-
sented, to a 2-group field theory expressed in the 2-triangulation picture. The latter is then
expected to coincide with the Mackaay-Yetter model. [154]. The phase space construction pre-
sented in the first part of this chapter should also provide an intuition of the properties that
such Fourier transform is expected to satisfy. Indeed, it has to reflects the proper combinatorics
of a 2-triangulation and its dual 2-complex, and it has to provide a map between the momentum
maps (identification of geometric objects) and the dual gluing of variables. This type of duality
is exactly the one that I emphasized in the phase space construction.

Introducing matter. One of the motivations to use higher categories to describe discrete
geometries is that they allow to encode the proper topological degrees of freedom in higher
dimensions. As hinted in the introduction of this chapter, such topological defects can some-
times be interpreted as matter degrees of freedom. As 2-groups are used to encode the proper
topological features in four dimensions, in 3d they can be used to implement matter degrees of
freedom; similarly, in four dimensions one should use 3-groups [181] for the same scope. It would
be interesting to construct field theories based on 2- or 3-groups in three and four dimensions,
with the same spirit of the 2-group field theory proposed in this chapter, to introduce matter
degrees of freedom in a theory of discrete geometry. As I emphasized in the concluding part
of Ch. 4, there already exists a group field theory where matter is introduces in a way that
can be attributed to 2-groups. Krasnov indeed proposed a model of group field theory based
on the Drinfeld double of SU(2), [127]. According to the assumption made in Sec. 5.2, where
skeletal 2-groups were regarded as semi direct product of groups, also the Drinfeld double of a
Lie group can be analysed in a similar way. Under this perspective, Krasnov model can be seen
as a three dimensional 2-group field theory based on the Euclidean 2-group G = SU(2) ⋉ R3

⋆,
where matter degrees of freedom are introduced as zero dimensional topological defects, encoded
by the 2-curvature.

Gravitational degrees of freedom: simplicity constraint. Finally, I recall that the model
presented does not include any gravitational degrees of freedom. To this scope one should
implement the simplicity constraint, which in a 2-group theory seems to be a subtle issue [178].
The simplicity constraint, in a model of discrete geometries, enforces all the flux decorations of
the faces of a triangulation, to be given as a wedge product of the elements of the translation
group and its dual, so∗(p, q) ∼= Rp+q∧R(p+q) ∗. This suggests that, in a model of four dimensional
geometries, it might be necessary to use group decorations on both the edges and the wedges to
properly impose the simplicity constraint. This would require the use of a phase space based on
a 2-group structure. I leave this interesting and important question for later investigations.
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Conclusion and discussions

Driven by the aim of analysing quantum gravity as a constrained topological model of quantum
geometries, in this thesis I discusses some field theoretic approaches to discrete geometries.
In the first part I focused on some models closely related to the combinatorial aspects of a
quantum geometry, such as matrix or tensor models, with an emphasis on the SYK model. In
particular, I analysed the consequences of a non-Gaussian disorder average in a complex version
of the SYK model [42].
The second part of the thesis was instead devoted to the group field theory approach to quantum
gravity, which allows a closer contact between discrete or quantum geometries and a discrete
version of gravity. In this part I focused on some possible extensions of these models that probe
the properties of homogeneously curved discrete geometries. Following the usual pattern of the
group field theory approach, I discussed first its generalization to the case of Hopf algebras
[45], which allows to include the cosmological constant and thus to discuss three dimensional
curved geometries (seen as triangulations of homogeneously curved manifolds). Similarly, the
construction of curved geometries in four dimension requires the use of a different mathematical
tool, identified as a 2-group. Therefore, after a short introduction on the main aspects of 2-group
theory, I discussed the construction of a phase space based on 2-group decorations, which is the
preparatory step to construct a quantum geometry [47]. Using this construction, I discussed, in
the last part, the formulation of a four dimensional group field theory based on 2-groups [48].

SYK model with non-Gaussian disorder average. The first original work that to which
contributed during my research, aims to explore the consequences of a non-Gaussian distribution
in the SYK model.
For the analysis of an SYK model with a non-Gaussian potential, I used some standard tech-
niques, well known in the study of these type of field theories, such as the replica trick or the
use of intermediate fields. Similarly to the standard SYK model, the aim is to average the par-
tition function over the disorder to obtain the one dimensional effective theory in terms of the
fermionic fields. The complication due to the non-Gaussianity was that the graph expansion of
the potential may not have been finite (the couplings could have been unbounded) in the large
N limit. Moreover, it is important to check whether the usual properties of the SYK model,
such as the melonic dominance for the bubbles and in particular the Gaussian universality still
hold in presence of the non-Gaussian disorder. In order to address these questions I used a
Polchinski-like equation for the potential, obtaining the following results:

− finiteness of the graph expansion;

− melonic dominance for the bubbles;

− Gaussian universality (dominance of the dipole term).

Given these results, it was then possible to compute the effective theory, using the same tech-
niques of the standard SYK model. From the analysis of the effective action one can observe
two results:
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➣ modification of the covariance;

➣ conformal invariance of the effective action in the infrared.

The first in particular is the main consequence of the non-Gaussianity condition and thus it is
the main result of this work.
Inspired to this work, it would be interesting to explore the effects of a non-Gaussian distribution
in other SYK models:

∗ the real Gross-Rosenhaus SYK model;

∗ based on a real anti-symmetric random tensor J ;

∗ super-symmetric SYK model.

Hopf algebra field theory. The first extension of a group field theory that aims to describe
the properties of a three dimensional homogeneously curved discrete geometry is a topological
field theory based on Hopf algebras.
All the mathematical ingredients necessary to construct such Hopf algebra field theory are en-
coded in the dual of the generalized quantum double D∗(A,H, σ). Here, elements of the (dual)
Hopf algebras A and H are used to decorate geometric objects of a triangulation and its dual
complex. The notion of duality is encoded in the canonical element σ, which was called plane
wave as it has been used to construct the Fourier transform that relates the two dual Hopf
algebras. From a mathematical point of view, the main technical difficulties rely in the non-
commutativity and non-cocommutativity of the two Hopf algebras. However, the main aspects
of the model can be derived using the standard Hopf algebra structures and the properties of
the generalized notion of plane wave. Among these mathematical results, we have

− definition of a Fourier transform (4.60) between dual Hopf algebras, in terms of the plane
wave σ;

− proposition 7 and 8 that provide the amplitudes of a triangulation and a dual complex
respectively;

− proof of the topological invariance of the model, manifested as the invariance under the
action of the Pachner moves (4.87) and (4.89).

In the second point, it is particularly important to emphasize that the plane wave (or a com-
bination of plane waves) is sufficient to provide the amplitude of any Feynman diagram of the
model. This makes such canonical element the core object of the Hopf algebra field theory. From
a physical point of view, the main relevance of the model is its relation with the discretization
of three dimensional gravity:

➣ when the standard q-deformation of SU(2) is considered, the Hopf algebra Hopf algebra
field theory reduces to the original Boulatov model, and thus it can be seen a path integral
formulation for the Turaev-Viro model;

➣ the plane wave provides the discretization (or quantization) for the amplitude of a topo-
logical model. In the case of SUq(2) it thus provides the discretization of a 3d Euclidean
BF theory with negative cosmological constant.

The Hopf algebra language used in the model and its relation with the Turaev-Viro amplitude
suggest some interesting perspectives:
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∗ the relation with integrable systems, as the plane wave can be recast as the transfer matrix
generated from a Lax pair;

∗ a generalization to quasi Hopf algebras would allow to include Hopf algebras based on the
q root of unity deformation. These Hopf algebras are particularly important in physical
models as they provide a natural regularization in the UV;

∗ matter degrees of freedom can be included as topological defects in a 3d spin foam or
group field theory model by using the Drinfeld double of a Lie group at the place of the
group itself. Hopf algebra field theory allows to discuss the inclusion of such topological
defects in homogeneously curved geometries (matter degrees of freedom in presence of a
cosmological constant).

Phase space based on 2-groups and 2-group field theory. The analysis of four dimen-
sional homogeneously curved geometries requires the use of 2-groups. In this line of research
I worked on the construction of the phase space of a general triangulation based on 2-group
decorations and to the definition of a field theory based on 2-groups that properly encodes the
topological features of four dimensional geometries.
In order to build a general phase space of a three dimensional triangulation with decorations on
one and two dimensional geometric objects, I used 2-group elements as decorations. The main
obstacle was the lack of several concepts of 2-group theory, such as the notion of an Heisenberg
double or the lack of a general representation theory. To avoid these issues, I focused on a re-
stricted class of 2-groups, called skeletal, and I used the similarity between such skeletal 2-groups
and semi-direct product of groups. This allowed to treat them as ordinary groups and thus to
use the Heisenberg double as a natural notion of phase space. An fundamental step in this part
was the derivation of Poisson Lie groups and their doubles as the exponentiation of the classical
double of the semi-direct sum of Lie bi-algebras. Then the symplectic reduction technique was
used to merge such phase spaces with decorations on 1- and 2-holonomies. A crucial point here
was how to use the symplectic reduction in a geometrically meaningful way. To address this
question I introduced a notion of reference frame for a cellular decomposition. Hence, in this
first part I obtained the following results:

− definition 17 provides the fundamental ingredients for the construction of the phase space
of a three dimensional triangulation with elements of a skeletal 2-group as decorations;

− the recover of the G-networks and of the KBF model when the Poincaré 2-group is con-
sidered and their extension to the κ deformed case.

Some of the results obtained in this part were subsequently used to construct a group field
theory based on (general) 2-groups. Once again, the lack of a general representation theory
and thus of a Fourier expansion enforced several restrictions on the model. Since there is not a
widely accepted notion of quantum 2-groups, not even the notion of dual 2-groups is not known.
These issues prevented the definition of the 2-group field theory in the triangulation or in the
representation pictures. Nevertheless

➣ the 2-group field theory model was consistently constructed, where (5.110) provides the
amplitude of a general dual complex. This encodes the correct topological features of a
four dimensional geometry, as it is given by the combination of 1- and 2-curvatures;

➣ the model was proven to be topologically invariant, manifested as the invariance under the
three Pachner moves.
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It would be particularly useful to have a clear formulation of quantum 2-groups. This would
suggest the notion of dual 2-groups and thus the construction of a Fourier transform between
them. Indeed, following the discussion of the Hopf algebra field theory, one can use the canonical
element of the quantum double between 2-groups as the generalized notion of plane wave to
construct the Fourier transform. According to the results obtained, such plane wave would also
provide a natural discretization of the amplitude of a BFCG theory. Having such a Fourier
transform, one could naturally extend the 2-group field theory to the triangulation picture, and
check whether the model is equivalent to the Yetter and Mackaay model. However, even without
the notion of quantum 2-groups there are some interesting possible works related to the model
of 2-group field theory:

∗ the formulation of a 2-group field theory in three dimensions should amount to a model of
three dimensional geometries with (0d) topological defects interpreted as matter degrees
of freedom;

∗ generalization to 3-groups that allows to discuss zero dimensional topological defects in
four dimensions;

∗ introduction of the simplicity constraint, inspired to the Crane-Yetter generalization of
relativistic spin networks.
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Appendix A

Lie bi-algebras and Poisson Lie groups

One of the mathematical tools that I largely used in this thesis are Lie (bi-)algebras and their
exponentiation: the (Poisson) Lie groups. I give here a short summary of the basic definitions
related to the notion of a Lie bi-algebra, Poisson Lie groups, what is called classical double of a
Lie group and I will give some inputs on the generalization of these structures to Hopf algebras.
What follows is just a short review of the main concepts that I will need, I refer to [106] for
more details on Lie bi-algebras and their relation with Hopf algebras.

Lie bi-algebra. Let g be a vector space with generators ei ∈ g. The left and right adjoint
actions adL/R : g⊗ g → g of g on itself are

adLei(e
j) =

1

2
cijke

k , adRei(e
j) =

1

2
cjike

k , with cijk = −cjik . (A.1)

Similarly, the left and right adjoint co-action adL/R : g → g⊗ g of g on itself are

adL(ei) = ej ⊗ ek⟨ei, adLe∗j (e
∗
k)⟩ =

1

2
djk

iej ⊗ ek ,

adR(ei) = ej ⊗ ek⟨ei, adRe∗k(e
∗
j)⟩ =

1

2
djk

iej ⊗ ek .
(A.2)

The vector space g equipped with the Lie bracket [ , ] : g ∧ g → g, defined by the left and right
adjoint actions as [ei , ij] = adLei(e

j) + adRej(e
i) = cijke

k, is a Lie algebra.
The vector space g equipped with the Lie co-cycle δg : g → g ∧ g, defined by the left and right
adjoint co-actions as δg(ei) = adL(ei) + adR(ej) = 1

2
djk

iej ∧ ek, is a Lie co-algebra.
The vector space g equipped with both the Lie bracket and the Lie co-cycle in a compatible way

δg([e
i , ej]) = [δg(e

i) , δg(e
j)] , (A.3)

is a Lie bi-algebra.

Dual Lie bi-algebra. Let g and g∗ be a pair of Lie bi-algebras with generators ei ∈ g and
e∗i ∈ g∗. They are said to be dual each other if there exists a bi-linear map ⟨ , ⟩ : g ⊗ g∗ → K
such that

⟨ei , e∗j⟩ = δij . (A.4)

The above bi-linear map further enforces the duality between the left and right adjoint actions
of g resp. with the left and right adjoint co-action of g∗, and vice-versa:

⟨adLei(ej) , e∗k⟩ = ⟨ei ⊗ ej , adL(e∗k)⟩ , ⟨adRei(ej) , e∗k⟩ = ⟨ej ⊗ ei , adR(e∗k)⟩ ,
⟨ei , adLe∗j (e

∗
k)⟩ = ⟨adL(ei) , e∗j ⊗ e∗k⟩ , ⟨ei , adRe∗j (e

∗
k)⟩ = ⟨adR(ei) , e∗k ⊗ e∗j⟩ .

(A.5)
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This implies that the Lie brackets of g are dual to the co-cycle of g∗ and vice-versa:

⟨[ei , ej] , e∗k⟩ = ⟨ei ⊗ ej , δg∗(e
∗
k)⟩ = cijk ,

⟨ei , [e∗j , e∗k]⟩ = ⟨δg(ei) , e∗j ⊗ e∗k⟩ = djki.
(A.6)

A pair of dual Lie bi-algebras g and g∗ are thus defined by the respective structures

g :

∣∣∣∣∣∣
[ei , ej] = cijke

k ,

δg(e
i) =

1

2
djk

iej ∧ ek ,
g∗ :

∣∣∣∣∣∣
[e∗i , e

∗
j ] = dij

ke∗k ,

δg∗(e
∗
i ) =

1

2
cjkie

∗
j ∧ e∗k .

(A.7)

Classical double. Let g and g∗ be a pair of dual Lie bi-algebras as above. The left and right
co-adjoint actions ad∗L : g⊗ g∗ → g∗ and ad∗R : g∗ ⊗ g → g∗ of g on g∗ are

ad∗Lei (e
∗
j) = ⟨adLei(ek) , e∗j⟩e∗k = cikje

∗
k ,

ad∗Rei (e∗j) = ⟨adRei(ek) , e∗j⟩e∗k = ckije
∗
k .

(A.8)

Similarly, the left and right co-adjoint co-actions ad∗L : g → g∗ ⊗ g and ad∗R : g → g⊗ g∗ of g∗
on g are

ad∗L(ei) = e∗j ⊗ ek⟨ei , ad∗Lej (e∗k)⟩ = cijke
∗
j ⊗ ek ,

ad∗R(ei) = ej ⊗ e∗k⟨ei , ad∗Rek (e∗j)⟩ = ckije
j ⊗ e∗k .

(A.9)

Let the Lie bi-algebra gcop be given by the Lie algebra of g (with Lie brackets [ , ]gcop = [ , ]g)
and opposite g co-algebra, with δgcop = −δg; similarly, let the Lie bi-algebra gop be given by the
Lie co-algebra of g (with Lie co-cycles δgop = δg) and opposite g algebra, with [ , ]gop = −[ , ]g.
The left classical double dL = gcop ▷◁ g∗ is the Lie bi-algebra given by the Lie bi-algebras gcop

and g∗, equipped with the cross Lie brackets

[e∗i , e
j] = ad∗Le∗i (e

j) + ad∗Rej (e∗i ) = dki
jek + cjkie

∗
k. (A.10)

Similarly, the right classical double dR = g∗ ▷◁ gcop is the Lie bi-algebra given by the Lie bi-
algebras gcop and g∗, equipped with the cross Lie brackets

[ei , e∗j ] = ad∗Lei (e
∗
j) + ad∗Re∗j (ei) = ckije

∗
k + djk

iek. (A.11)

The left and right classical doubles are isomorphic, let me denote them as d ≡ dL ∼= dR. The
classical double is also equipped with the element r = e∗i ⊗ei called classical r-matrix. The latter
can be split into its symmetric and antisymmetric parts

r− =
1

2
(r − rt) =

1

2

∑
i

e∗i ∧ ei , r+ =
1

2
(r + rt). (A.12)

The co-cycles of the Lie bi-algebras g and g∗ can equivalently be expressed through the co-
boundary condition,

δd(x) = [x⊗ 1 + 1⊗ x, r−] , ∀x = ei, e∗i ∈ d , (A.13)

making d a co-boundary Lie bi-algebra. The classical r-matrix also satisfies the so called classical
Yang-Baxter equation (CYBE),

[[r , r]] = [r12 , r13] + [r12 , r23] + [r13 , r23] = 0 , (A.14)

where I used the tensor notation r12 = e∗i ⊗ ei ⊗ 1, r13 = e∗i ⊗ 1⊗ ei, r23 = 1⊗ e∗i ⊗ ei.
There exists a notion of generalized classical double. Consider a pair of any two Lie bi-algebras
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g1 and g2 with resp. generators ei ∈ g1 and f i ∈ g2 and mutual actions ▷ : g2 ⊗ g1 → g2 and
◁ : g2 ⊗ g1 → g1. If the actions satisfy the identities

[f i , f j] ▷ ek = f i ▷ (f j ▷ ek)− f j ▷ (f i ▷ ek) ,

f i ◁ [ej , ek] = (f i ◁ ej) ◁ ek − (f i ◁ ek) ◁ ej ,

f i ▷ [ej , ek] = [f i ▷ ej , ek] + [ej, f i ▷ ek] + (f i ◁ ej) ▷ ek − (f i ◁ ek) ▷ ej ,

[f i , f j] ◁ ek = [f i ◁ ek , f j] + [f i, f j ◁ ek] + f i ◁ (f j ▷ ek)− f j ◁ (f i ▷ ek) ,

(A.15)

the Lie bi-algebras g1 and g2 form a matched pair. Dually, the Lie bi-algebras g∗1 and g∗2 with
generators e∗i ∈ g∗1 and f ∗

i ∈ g∗2 are equipped with a pair of mutual co-actions1 α : g∗2 → g∗2 ⊗ g∗1
and β : g∗1 → g∗2 ⊗ g∗1 derived, by dualization of the actions as

⟨f i ◁ ej, f ∗
k ⟩ = ⟨f i ⊗ ej, α(f ∗

k )⟩ , ⟨f i ▷ ej, e∗k⟩ = ⟨f i ⊗ ej, β(e∗k)⟩ . (A.16)

If the Lie bi-algebras g1 and g2 form a matched pair, then their dual Lie bi-algebras g∗1 and g∗2
form a matched co-pair. The (double cross sum) Lie bi-algebra (gcop1 ▷◁ g2) built on the matched
pair and the (double cross co-sum) Lie bi-algebra (g∗ cop1 ▶◀ g∗2) built on the matched co-pair are
resp. the generalized notions of classical double and its dual Lie bi-algebra. The choice g1 = g
and g2 = g∗ is a special case of matched pair, with actions given by mutual co-adjoint actions.

Poisson Lie groups. A Lie group G is obtained through the exponential map (integration)
of its Lie algebra (its tangent space) g. One can equip a Lie group with a further bi-linear map
{ , } : G∧G → G, called Poisson bracket. A Poisson Lie group is a Lie group equipped with such
map, where the group multiplication is a Poisson map, and one says that the Poisson brackets
are compatible with the group multiplication. Such compatibility reads

{f1 , f2}(g1 · g2) = {f1 ◦Rg2 , f2 ◦Rg2}(g1) + {f1 ◦ Lg1 , f2 ◦ Lg1}(g2) , (A.17)

where Rg and Lg resp. denote the right and left translation by g, with g1, g2 ∈ G and f1, f2 ∈
F (G) are functions on G. As the tangent space associated to a Lie group is a Lie algebra, the
tangent space associated to a Poisson Lie group is a Lie bi-algebra. The infinitesimal limit of the
group multiplication gives the Lie brackets, and the infinitesimal limit of the Poisson brackets
gives the Lie co-cycles. Just as Lie brackets and Lie co-cycles of a Lie bi-algebra are compatible,
so the group multiplication and the Poisson brackets of a Poisson Lie group are compatible as
well. Note that the notion of dual Lie bi-algebras g and g∗ naturally leads – upon exponentiation
– to the notion of dual Poisson Lie groups G and G∗.

Classical doubles of a Lie group. The Poisson structure of a given Lie group (that is not
necessarily a Poisson Lie group) can be given in terms of a Poisson bi-vector π, as {f1 , f2}(g) =
π(df1 ∧ df2). Given a Lie bi-algebra g and the associated classical double, one can define two
relevant Poisson bi-vectors in terms of the classical r-matrix.

Heisenberg double. The exponentiation of the classical double d equipped with the Poisson
brackets given by the bi-vector

π+(d) = −[d⊗ d , r−]+ , (A.18)

is called Heisenberg double of G and denoted H, with d ∈ H, [161, 162]. Here the brackets
[ , ]+ are the anticommutators. As a Lie group, the Heisenberg double is built on the Cartesian

1As the symbols for the left and right actions are usually triangles ▷, ◁, the symbols used for the left or right
co-actions are black triangles ◀,▶. I will also alternatively use α and β.
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h̃

h

ℓ ℓ̃ℓ h = h̃ ℓ̃

Figure A.1: Ribbon equation associated to the decomposition of the Heisenberg double.

product of Lie groups G and its dual G∗. The splitting H ≡ G ▷◁ G∗ ∼= G∗ ▷◁ G, in terms of
group elements, leads to the so called ribbon equation

d = ℓh = h̃ℓ̃ . (A.19)

The ribbon relation, illustrated in Fig. A.1, allows to define the mutual left and right actions
between G and G∗

ℓ ▷ h = h̃ , ℓ ◁ h = ℓ̃ , h̃ ▷ ℓ̃ = ℓ , h̃ ◁ ℓ̃ = h . (A.20)

The Poisson brackets given in terms of the Poisson bi-vector (A.18) are symplectic and thus are
not compatible with the group multiplication. Therefore the Heisenberg double is not a Poisson
Lie group, but it has a natural interpretation as the phase space associated to the group G, with
symplectic form

Ω =
1

2

(
⟨∆ℓ ∧∆h̃⟩+ ⟨∆ℓ̃ ∧∆h⟩

)
, (A.21)

induced by its symplectic Poisson structure, where ∆g = δgg−1 and ∆g = g−1δg are resp. the
right and left Maurer Cartan forms.

Drinfeld double. The exponentiation of the classical double d equipped with the Poisson
brackets given by the bi-vector

π−(d) = [d⊗ d , r−]− , (A.22)

is called Drinfeld double of G and denoted D, with d ∈ D, [162, 182]. Here the brackets [ , ]−
stand for the usual commutators. The Poisson brackets given in terms of the Poisson bi-vector
(A.22) are compatible with the group product, hence the Drinfeld double is a Poisson Lie group.
As a Lie group, the Drinfeld double is built on the Cartesian product of the Lie groups G with its
dual G∗, similarly to the Heisenberg double; therefore, there is a natural action of the Drinfeld
double on the Heisenberg double, given by the left or right group multiplication. Such action is
a Poisson map, which means that the symplectic Poisson brackets of the Heisenberg double are
invariant under the action of the Drinfeld double [161]. Let me give the explicit example of left
translation on the Heisenberg double with respect to the sub-groups (of the Drinfeld double) G
and G∗. This type of action is the one used in Sec. 5.2 for the symplectic reduction.

• Left G transformations. Let α ∈ g. The infinitesimal (left) action δLα of G ∋ h′ ∼ 1 + α
on H ∋ d, induced by the left group multiplication is

h′d ∼ (1 + α)d with d = ℓh = h̃ℓ̃ . (A.23)

From which one deduces the transformations for the sub-components [105]

δLαg = αg →

∣∣∣∣∣ δLα h̃ = αh̃ , δLα ℓ̃ = 0 ,

δLαℓ = αℓ− ℓ(α ◁ ℓ) , δLαh = (α ◁ ℓ)h .
(A.24)
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• Left G∗ transformations. A similar calculation can be performed for the infinitesimal
(left) transformations δLϕ of G∗ ∋ ℓ′ ∼ 1 + ϕ, with ϕ ∈ g∗,

ℓ′d ∼ (1 + ϕ)d with d = ℓh = h̃ℓ̃ , (A.25)

from which, the transformations for the sub-components are [105]

δLϕd = ϕd →

∣∣∣∣∣ δ
L
ϕ ℓ = ϕℓ , δLϕh = 0 ,

δLϕ h̃ = ϕh̃− h̃(h̃−1 ▷ ϕ) = ϕh̃− h̃(ϕ ◁ h̃) , δLϕ ℓ̃ = (ϕ ◁ h̃)ℓ̃ .
(A.26)

From (Poisson) Lie groups to Hopf algebras. Quantum groups or Hopf algebras can be
recovered as the quantization of Poisson Lie groups. Without going into details, I would like to
give here an intuition of this concept. As I mentioned in the first part of Ch. 4, I recall that
an Hopf algebra is equipped with two maps: the product and the co-product. Given a Poisson
Lie group G and its tangent space, the Lie bi-algebra g, one can define two associative Hopf
algebras: the Hopf algebra of functions on the group and the universal enveloping Hopf algebra
of g.

Universal enveloping Hopf algebra. The co-product of the universal enveloping Hopf algebra
U(g) can be regarded as the quantization or deformation of the co-cycle of g. While the product
of U(g) is the deformation of the product of the universal enveloping algebra of g, such that it
is compatible with the co-product. If g is an ordinary Lie algebra (with trivial co-cycle), then
the co-product called primitive (it is always of the shape ∆x = x ⊗ 1 + 1 ⊗ x, for x ∈ U(g))
and the Hopf algebra U(g) automatically reduces to the usual enveloping algebra equipped
with such trivial co-product. In this case it is said to be co-commutative. I refer to [183] for
the quantization of the universal enveloping algebra U(su(2)) into its standard q deformation
Uq(su(2)).
Hopf algebra of functions on a Lie group. Similarly, the product of the algebra of functions
on G is the deformation of its Poisson brackets, in the sense that the product (or its quadratic
anti-symmetric part, called commutator) is regarded as an expansion in terms of a deformation
parameter, the brackets are the zero term in such expansion. The co-product of the Hop algebra
of functions F (G) is instead derived from the group product. The simplest way to derive the co-
product of the Hopf algebra of functions on a Lie group, is to choose a coordinate parametrization
for its group element g, which always satisfies the group-like co-product ∆g = g⊗ g, from which
one can deduce the co-product for the coordinates. If G is an ordinary Lie group (with trivial
Poisson structure), then the product of the functions on it is commutative. I refer to [106] for a
general discussion, and to [159] for an explicit realization of the standard κ deformation of the
Hopf algebra of functions on the Poincaré group.

In these cases a deformation parameter is often used to deform or quantize the ordinary structures
into Hopf algebra ones. The most celebrated examples of Hopf algebra are the deformations
Uq(sl2) and F (SLq), see [106,184] for more details. I discuss and use their Hopf algebra structures
in Ch. 4.

A.1 Poincaré and κ-Poincaré Lie bi-algebras

In this part I provide an explicit example of Lie bi-algebra, whose general setting was introduced
in the previous section. I will discuss the Lie bi-algebra underlying the n dimensional Poioncaré
(Poisson) Lie group and its κ deformation [159]. This example will be one of the main applica-
tions of the phase space construction provided in Sec. 5.2.
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Let ηµν be the Minkowski metric; consider the generalization of the classical double introduced
in the previous section, based on the matched pair of Lie bi-algebras g1 and g2. Take the Lie
bi-algebra g2 to be the n dimensional Lie bi-algebra an with generators P µ having the same
dimension as the scale κ−1, satisfying2

[P µ , P ν ] = κ−1(ηµ0P ν − ην0P µ) , δan(P
µ) = 0 . (A.27)

Let g1 be the Lorentz Lie bi-algebra so of dimension n(n−1)
2

, generated by Jµν , obeying

[Jµν , Jρσ] = ηµρJνσ + ηνσJµρ − ηµσJνρ − ηνρJµσ , δso(J
µν) = 0 . (A.28)

The Lie bi-algebras an and so, when equipped with the mutual actions

◁ : so⊗ an → so ▷ : so⊗ an → an

Jµν ◁ P ρ = κ−1(ην0Jµρ − ηµ0Jνρ) , Jµν ▷ P ρ = ηµρP ν − ηνρP µ , (A.29)

form a matched pair. Consider the dual Lie bi-algebras g∗1 ≡ an∗ and g∗2 ≡ so∗ generated by P ∗
µ

and J∗
µν respectively, with the bi-linear pairing defined as

⟨P µ , P ∗
ν ⟩ = ηµν , ⟨Jµν , J∗

ρσ⟩ = ηµρη
ν
σ − ηνρη

µ
σ . (A.30)

By dualization, the Lie bi-algebra structures of an∗ and so∗ are

[P ∗
µ , P

∗
ν ] = 0 , δan∗(P

∗
µ) = κ−1P ∗

µ ∧ P ∗
0 , (A.31)

[J∗
µν , J

∗
ρσ] = 0 , δso∗(J

∗
µν) = J∗

µρ ∧ J∗
ν
ρ , (A.32)

with mutual co-actions

α : so∗ → so∗ ⊗ an∗ β : an∗ → so∗ ⊗ an∗

α(J∗
µν) = κ−1(J∗

0µ ⊗ P ∗
ν − J∗

0ν ⊗ P ∗
µ) , β(P ∗

µ) = −J∗
µ
ρ ⊗ P ∗

ρ . (A.33)

Classical double an ▷◁ so and semi-dualization

From the matched pair (an, so) one can construct the cotangent bundle of the double cross sum
an ▷◁ so as a classical double

d = (an ▷◁ so)cop ⋉ (an∗ ▶◀ so∗) , (A.34)

equipped with the classical r-matrix

r = P ∗
µ ⊗ P µ +

1

2
J∗
µν ⊗ Jµν . (A.35)

Another classical double, which is used in Sec. 5.2, is obtained from the one constructed above
d through a process known as semi-dualization, realized by exchanging the coordinates P µ ∈ an
with their dual ones P ∗

µ ∈ an∗. The resulting classical double is

b = (an∗ ▶◁ so)cop ▷◁ (an ▷◀ so∗) , (A.36)

with associated classical r-matrix

r = P µ ⊗ P ∗
µ +

1

2
J∗
µν ⊗ Jµν . (A.37)

2I am using the time-like Lorentzian deformation here; but other deformations, such as space or light-like are
also possible [185,186]. The Euclidean signature can also be considered in a similar manner.
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Their Lie bi-algebra structure is given by

(an∗ ▶◁ so) Lie algebra:

[P ∗
µ , P

∗
ν ] = 0,

[Jµν , Jρσ] = ηµρJνσ + ηνσJµρ − ηµσJνρ − ηνρJµσ ,

[P ∗
ρ , J

µν ] = ηνρP
∗µ − ηµρP

∗ν ,

(A.38)

(an ▷◀ so∗) Lie algebra:

[P µ , P ν ] = κ−1(ηµ0P ν − ην0P µ) ,

[J∗
µν , J

∗
ρσ] = 0 ,

[P ρ , J∗
µν ] = κ−1(ηρνJ

∗
0µ − ηρµJ

∗
0ν) ,

(A.39)

(an∗ ▶◁ so) Lie co-algebra:

δan∗▷◀so(P
∗
µ) = κ−1P ∗

µ ∧ P ∗
0 ,

δan∗▷◀so(J
µν) = κ−1P ∗

ρ ∧ (ην0Jµρ − ηµ0Jνρ) ,

(an ▷◀ so∗) Lie co-algebra:

δan▶◁so∗(P
µ) = P ρ ∧ J∗µ

ρ ,

δan▶◁so∗(J
∗
µν) = J∗

µρ ∧ J∗
ν
ρ .

(A.40)

with cross Lie brackets, induced by the actions of the matched pair and by the co-adjoint actions

Cross Lie brackets:

[P ρ , Jµν ] = κ−1(ηµ0Jνρ − ην0Jµρ) + (ηνρP µ − ηµρP ν) ,

[J∗
µν , P

∗
ρ ] = 0 ,

[J∗
ρσ , J

µν ] =
(
ηνρJ

∗µ
σ + ηµσJ

∗ν
ρ − ηνσJ

∗µ
ρ − ηµρJ

∗ν
σ

)
+ κ−1

(
ην0(ηµρP

∗
σ − ηµσP

∗
ρ )− ηµ0(ηνρP

∗
σ − ηνσP

∗
ρ )
)
,

[P µ , P ∗
ν ] = −κ−1

(
ηµ0P ∗

ν + ηµνP
∗
0

)
+ J∗µ

ν .

As a Lie algebra, so ▷◀ an∗ ∼= so ⋉ Rn is the Poincaré (or Euclidean) Lie algebra. So upon
exponentiation it would give the Poincaré (or Euclidean) Lie group. Since its co-cycle is non
trivial for κ−1 ̸= 0, we would get the Poincaré group equipped with a non-trivial Poisson bracket.
This is the classical version of the so-called κ-Poincaré group [106, 159]. Similarly, the Lie bi-
algebra so∗ ▷◀ an upon exponentiation gives rise to the group AN ⋉ SO∗ ∼= AN ⋉ R(n2−n)/2

equipped with a non-trivial Poisson structure. This is the group dual to the κ-Poincaré group,
also called, by abuse of nomenclature, κ-Poincaré algebra.
According to the analogy between Lie bi-algebras or Poisson Lie groups with skeletal Lie 2-bi-
algebras or skeletal Poisson 2-groups (see Ch. 5), the above construction, upon exponentiation,
gives rise to the κ-Poincaré (skeletal) 2-group and its dual (skeletal) 2-group that I will call κ-
Poincaré 2-algebra. Upon quantization, these would eventually lead to a pair of quantum strict
2-groups [179].
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Appendix B

Hopf algebra field theory

B.1 Deriving dual bi-algebras

Here I propose a procedure to derive skew symmetric bi-algebras, as in Def. 3.

Identification of the problem. Given any pair of bi-algebras H and A, we would like to
derive the skew pairing map σ that satisfies the properties (4.39) to construct the generalized
quantum double, or dually the skew co-pairing element σ that satisfies the properties (4.46),
(4.47) to construct the dual of the quantum double. However, this derivation is highly non
trivial, since the explicit expressions of both the map and the element σ strongly depend on the
choice of coordinates and on the normal order of the basis of each bi-algebra.

Solution: reverse problem. Here I will propose a possible solution to this problem; the idea
is to consider first a pair of co-algebras, choose the two sets of coordinates and the normal order
for both of them. Then we define the skew pairing map and the skew co-pairing element, and
derive the product of the two co-algebras in such way the map and element σ satisfy the required
properties.
More specifically, consider a pair of co-algebras CA and CH , and denote a ∈ CA and h ∈ CH
their respective basis. Consider further the map σ : CH ⊗ CA → C, such that

σ(ai , hj) = δij . (B.1)

Let us use such map σ to define the firther maps

Lh : CH → C , Lh ≡ σ( , h) ,

La : CA → C , La ≡ σ(a , ) .
(B.2)

Consider further an element σ ∈ CH ⊗ CA
1 such that

σ(τ ◦ σ−1) = 1 . (B.3)

Last, let us consider two more maps, called star products

⋆ : CA ⊗ CA → CA , ∗ : CH ⊗ CH → CH , (B.4)

defined as
a ⋆ b =

(
La ⊗ Lb ⊗ id) (τ ◦∆H ⊗ id)σ ,

h ∗ g =
(
id ⊗ Lh ⊗ Lg) (id ⊗∆A)σ ,

(B.5)

1By abuse of notation, I use the same symbol σ for the map.
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for all h, g ∈ CH and a, b ∈ CA. The two star products are associative by co-associativity of the
co-products.

Proposition 15 (Bi-algebra compatibility). Consider two co-algebras CH and CA equipped with
the star products (B.5) as above. Denote the two resulting structures resp. H and A, they are
bi-algebras.

Proof. Let me give a short proof of this proposition. In order for H and A to be bi-algebras, the
two star products have to be compatible with the respective co-product

∆A(a ⋆ b) = ∆Aa ⋆∆Ab , ∆H(h ∗ g) = ∆Hh ∗∆Hg . (B.6)

Let me prove the first identity, the second is completely analogous. Let us suppose that the
canonical element σ ∈ CH ⊗ CA can be decomposed as σ =

∑
σH ⊗ σA. Then, using the

Sweedler notation, the property (4.46) can be expressed as

(id ⊗∆A)σ :=
∑

σH ⊗ σA(1)
⊗ σA(2)

=
∑

σH1σH2 ⊗ σA2 ⊗ σA1 := σ13σ12 . (B.7)

Using this identity and the star product of H, the compatibility condition for the Hopf algebra
A follows as a direct computation.

∆Aa ⋆∆Ab : = (L∆Aa ⊗ L∆Ab ⊗ id⊗2) (τ ◦∆H 13 ⊗ τ ◦∆H 24 ⊗ id⊗2) (σ ⊗ σ)

= (La(1) ⊗ La(2) ⊗ Lb(1) ⊗ Lb(2) ⊗ id⊗2)
(
(∆H 31 ⊗ id)σ) (∆H 42 ⊗ id)σ)

)
=
∑

σ(a(1) , σH1 (2)
)σ(a(2) , σH2 (2)

)σ(b(1) , σH1 (1)
)σ(b(2) , σH2 (1)

)σA1 ⊗ σA2

=
∑

σ(a , σH2 (2)
∗ σH1 (2)

)σ(b , σH2 (1)
∗ σH1 (1)

)σA(1)
⊗ σA(2)

= (La ⊗ Lb ⊗∆A) (τ ◦∆H ⊗ id)σ := ∆A(a ⋆ b) . (B.8)

The two bi-algebras H and A are automatically skew paired by the map σ, which by construction
of the star products, satisfies the axioms (4.39), and they are also skew co-paired by the element
σ, which by construction of the star products, satisfies the axioms (4.46), (4.47).
Note that, taking CA to be a trivial co-algebra (with a primitive co-product) the star product
∗ becomes a commutative pointwise product. As a particular example, the bi-algebras H and
A can be taken respectively the bi-algebras F (G) and U(g), with G being a Lie group and g its
Lie algebra. In this case the map La can be seen as the ordinary Lie derivative on G.

Proposition 16 (Generalized quantum double of Uq(su(2)) and its dual). Consider the Uq(su(2)) ∼=
F (ANq(2)) and Uq(an(2)) ∼= F (SUq(2)) co-algebras given in (4.91)) and (4.92)). The full bi-
algebra structures as well as the generalized quantum double of Uq(su(2)) in Prop. 11 and its
dual in Prop. 11 can be deduced by the skew pairing map (4.97)

σ
(
Xj

−H
iXk

+ , φ
b
+ϕ

aφc−
)
= ia+b+c δaiδbjδck a![b]q2 ![c]q−2 ! , (B.9)

and the skew co-pairing element (4.100)

σ = e
iφ+⊗X−
⋆ q2 eiϕ⊗H⋆ e

iφ−⊗X+

⋆ q−2 . (B.10)

Proof. In the propositions 11 and 12 I have already proved that the multiplication on F (SUq(2))
(in (4.92))) can be derived as a ∗-product, from the co-algebra sector of Uq(su(2)) in (4.91)). It
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remains to show that the multiplication of Uq(su(2)) (in (4.91))) can be derived as a ⋆-product
from the co-algebra sector of F (SUq(2)) in (4.92)). We show how to derive the most complicated
commutator

[X+, X−] = ℓ2q−1 sinh(λH)

sinh(ℓλ)
. (B.11)

The computation of the commutators [H,X±] follows a similar and much simpler pattern. Ac-
cording to the definition (B.5), we consider

[X+
⋆, X−] :=(LX+ ∧ LX− ⊗ id) (∆op ⊗ id)σ

=
(
σ(X+ ∧X− , )⊗ id

)
(∆op ⊗ id)σ .

(B.12)

Note that, as we evaluate the co-product of the skew co-pairing element in σ(X+ , ) and
σ(X− , ), only the terms with a single power of φ− ⊗ φ+ or φ+ ⊗ φ− survive. Hence, in the
following computation I will use the symbol ≈ to discard all such non-relevant contributions.
The co-product of the skew co-pairing element is

(∆op ⊗ id)σ = e
i∆opφ+⊗X−
⋆ q2 ei∆

opϕ⊗H
⋆ e

i∆opφ−⊗X+

⋆ q−2

=
∞∑

u,v,w=0

iu+v+w

u![v]q2 ![w]q−2 !

(
(∆opφ+)

v (∆opϕ)u (∆opφ−)
w
)
⊗Xv

−H
uXw

+ .
(B.13)

The co-products of φ± can be easily computed using the generalized binomial theorem [106]:

(∆opφ+)
v =

v∑
i=0

[
v

i

]
q−2

(φ0e
−iℓϕ ⊗ φ+)

i(φ+ ⊗ eiℓϕφ0)
v−i ≈ δv,01⊗ 1 + δv,1(φ+ ⊗ 1 + 1⊗ φ+) ,

(B.14)

(∆opφ+)
w =

w∑
j=0

[
w

j

]
q2

(eiℓϕφ0 ⊗ φ−)
j(φ− ⊗ φ0e

−iℓϕ)w−j ≈ δw,01⊗ 1 + δw,1(φ− ⊗ 1 + 1⊗ φ−) .

(B.15)

The computation for the co-product of ϕ is more involved. Let us first simplify it by discarding
all the unnecessary contributions.

∆opϕ =
i

ℓ
log

(
1

∆op
√
1− q−1ℓ2φ−φ+

(
φ0e

−iℓϕ ⊗ φ0e
−iℓϕ − ℓ2φ+ ⊗ φ−

))
≈ i

ℓ
log

(
1√

1⊗ 1− q−1ℓ2(φ− ⊗ e−iℓϕ + eiℓϕ ⊗ φ−)(φ+ ⊗ eiℓϕ + e−iℓϕ ⊗ φ+)(
e−iℓϕ ⊗ e−iℓϕ − ℓ2φ+ ⊗ φ−

))
≈ i

ℓ
log

((
1⊗ 1 + 1

2
q−1ℓ2(e−iℓϕφ− ⊗ φ+e

−iℓϕ + φ+e
−iℓϕ ⊗ e−iℓϕφ−)

)(
e−iℓϕ ⊗ e−iℓϕ − ℓ2φ+ ⊗ φ−

))
≈ i

ℓ
log

(
e−iℓϕ ⊗ e−iℓϕ +

1

2
ℓ2
(
e−2iℓϕφ− ⊗ φ+e

−2iℓϕ − φ+ ⊗ φ−)
))

≈ i

ℓ
log
(
e−iℓϕ ⊗ e−iℓϕ +

1

2
ℓ2φ− ∧ φ+

)
. (B.16)

For simplicity, call Φ = ϕ⊗ 1 + 1⊗ ϕ and ψ = 1
2
ℓ2(φ− ∧ φ+), and notice that

Φnψm = ψm(Φ− 2iλm)n , eiℓΦψ = q2 ψeiℓΦ . (B.17)
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The co-product of ϕ then reduces to

∆opϕ =
i

ℓ
log
(
1⊗ 1 + (e−iℓΦ − 1⊗ 1 + ψ)

)
=
i

ℓ

∞∑
n=1

(−1)n+1

n
(e−iℓΦ − 1⊗ 1 + ψ)n

=
i

ℓ

∞∑
n=1

(−1)n+1

n

n∑
a=0

(
n

a

)
(−1)n−a(e−iℓΦ + ψ)a

=
i

ℓ

∞∑
n=1

(−1)n+1

n

n∑
a=0

(
n

a

)
(−1)n−a

a∑
k=0

[
a

k

]
q−2

e−i(a−k)ℓΦψk

≈ i

ℓ

∞∑
n=1

(−1)n+1

n

n∑
a=0

(
n

a

)
(−1)n−a

(
e−iaℓΦ + [a]q−2e−i(a−1)ℓΦψ

)
=
i

ℓ

∞∑
n=1

(−1)n+1

n

n∑
a=0

(
n

a

)
(−1)n−a e−iaℓΦ

(
1 +

1− q−2a−2

1− q−2
eiℓΦψ

)
= Φ

(
1 + eiℓΦψ

)
+

2iλ

q2 − 1
eiℓΦψ ≈ Φ +

2iλ

q2 − 1
eiℓΦψ . (B.18)

According to the product rule between Φ and ψ, one finally obtains

(∆opϕ)u =
(
Φ +

2iλ

q2 − 1
eiℓΦψ

)u
= Φu +

(
Φu−1 2iλψ

q2−1
+ Φu−2 2iλψ

q2−1
Φ + · · ·

)
+
(
Φu−2

(
2iλψ
q2−1

)2
+ Φu−3

(
2iλψ
q2−1

)2
Φ + · · ·

)
+ · · ·

≈ Φu +
2iλ

q2 − 1

u−1∑
a=0

Φu−1−aψΦa

= Φu +
2iλ

q2 − 1

u−1∑
a=0

u−1−a∑
α=0

a∑
β=0

(
u− 1− a

α

)(
a

β

)
(−iλ)u−1−a−α(iλ)a−β : Φα+βψ :

≈ Φu +
2iλ

q2 − 1

u−1∑
a=0

(−iλ)u−1(−1)a ψ = Φu − 2
(−iλ)u

q2 − 1

1− (−1)u

2
ψ . (B.19)

Above I used the symbol : : to address at the normal order of the basis. Plugging the results in
the [X+

⋆, X−] commutator, we obtain the result

[X+
⋆, X−] = δv,1δw,1δu,0 σ

(
X+ ∧X− , (φ+ ⊗ φ− + φ− ⊗ φ+)

)
Xv

−H
uXw

+

− δv,0δw,0

∞∑
u=0

iu

u!

(−iλ)uℓ2

q2 − 1

1− (−1)u

2
σ
(
X+ ∧X− , φ− ∧ φ+

)
Xv

−H
uXw

+

= ℓ2q−1 sinh(λH)

sinh(ℓλ)
. (B.20)
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Appendix C

Triangulation phase space

C.1 Fundamental fusions

In this part I will present the possible ways that one has to fuse together a pair atomic phase
spaces B constructed in Sec. 5.2. I recall that the fusion of phase spaces comes from the
identification (momentum map) of some variables, and as a consequence, the dual variables will
be glued. Having decorations on four objects – links, edges, wedges and faces – it is natural to
fuse the phase spaces by identifying one of these four elements.

• Link gluing. Links are decorated by G1 elements, so this gluing is performed by identifying
elements in G∗

1: a symplectic reduction with respect to the G1 symmetry.

• Face gluing. Faces are decorated by G∗
1 elements, so this gluing is performed by identifying

elements in G1: a symplectic reduction with respect to the G∗
1 symmetry.

• Wedge gluing. Wedges are decorated by G∗
2 elements, so this gluing is performed by iden-

tifying elements in G2: a symplectic reduction with respect to the G∗
2 symmetry.

• Edge gluing. Edges are decorated by G2 elements, so this gluing is performed by identifying
elements in G∗

2: a symplectic reduction with respect to the G2 symmetry.

Let me now illustrate explicitly these fundamental gluings. Consider the atomic phase space Bi
associated to the edge ei (with vi;1 and vi;2 as source and target), face fi, (half) link li (with
ci and ci;f as source and target, where ci;f is a point on the face fi) and wedge wi. Note that,
unlike represented in Fig. 5.7, here I considered an half link. I will comment more on this aspect
at the end of this part.
For the sake of clarity, it is useful to introduce the following notation. According to the Lie alge-
bra structures associated to the Lie groups equivalent to the skeletal 2-groups in consideration,
the Lie bracket between elements of g1, g∗1 and between g2, g∗2 are not stable in g∗1 or g∗2. At the
group level, the exponentiation of such Lie brackets leads to the group conjugations

uβu−1 = β′y′ ⇔

{
β′ = (uβu−1)|G∗

1
,

y′ = (uβu−1)|G∗
2
,

λyλ−1 = y′′β′′ ⇔

{
β′′ = (λyλ−1)|G∗

1
,

y′′ = (λyλ−1)|G∗
2
.

(C.1)

Therefore, in order to express the conjugations uβu−1 and λyλ−1, I will use their projections
into the groups G∗

1 and G∗
2.
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Link gluing. The gluing of two links, as illustrated in Fig. C.1, is done by identifying the face
data dual to each link.
The geometric identification consists in setting1

f1 = −f2 . (C.2)

Enforce this geometric constraint as a condition on G∗
1 elements: represent the decorations of

the faces fi at the nodes ci,f . Let them be resp. rooted at the vertices v1;2 and v2;2.

B1 :

[
G∗ = G2 ⋉G∗

1 ∋ ℓ̃c1;f ≡ ℓ̃1 = λ̃1
˜̄β1 ≡ λ̃c1;f ˜̄β

c1;f
v1;2 ,

G = G1 ⋉G∗
2 ∋ hv1;2 ≡ h1 = u1 y1 ≡ uv1;2 yv1;2c1;f

,

B2 :

[
G∗ = G2 ⋉G∗

1 ∋ ℓ̃c2;f ≡ ℓ̃2 = λ̃2
˜̄β2 ≡ λ̃c2;f ˜̄β

c2;f
v2;2 ,

G = G1 ⋉G∗
2 ∋ hv2;2 ≡ h2 = u2 y2 ≡ uv2;2 yv2;2c2;f

.

(C.3)

In order to express the face decorations in the same reference frame, their indices have to match,
hence further demand that

c1;f = c2;f , v1;2 = v2;2 . (C.4)

The condition c1;f = c2;f provides the gluing the half links. The proper geometric condition for
the face decorations is encoded in the identification

˜̄β
c1;f
v2;2 =

( ˜̄βcc2;fv2;2

)−1 ⇔ ˜̄β1 =
˜̄β−1
2 . (C.5)

Using the above constraint and the Heisenberg ribbon equations, one obtains the extended ribbon
equation:

ℓihi = h̃iℓ̃i = h̃i(λ̃i
˜̄βi) ⇔ ˜̄βi = h̃−1

i λ̃−1
i ℓihi

˜̄β1=
˜̄β−1
2=⇒ h̃−1

1 λ̃−1
1 ℓ1h1 = h−1

2 ℓ−1
2 λ̃2h̃2

⇒ λ̃−1
1 (ũ1ỹ1)

−1(λ1β̄1)(ȳ1u1) = (ȳ2u2)
−1(λ2β̄2)

−1(ũ2ỹ2)λ̃2

(λ1β̄1)(ȳ1u1)λ̃
−1
2 (ũ2ỹ2)

−1 = (ũ1ỹ1)λ̃1(ȳ2u2)
−1(λ2β̄2)

−1

λ1 β̄1 ỹ1(u1 ▷ λ̃
−1
2 )(u1 ◁ λ̃

−1
2 )ỹ−1

2 ũ−1
2 = ũ1 ȳ1(λ̃1 ▷ u

−1
2 )(λ̃1 ◁ u

−1
2 )ȳ−1

2 β̄−1
2 λ−1

2

λ1 β̄1(u1 ▷ λ̃
−1
2 )y′ β′((u1 ◁ λ̃

−1
2 ) ▷ ỹ−1

2 )(u1 ◁ λ̃
−1
2 )ũ−1

2 = ũ1(λ̃1 ▷ u
−1
2 )(ỹ1 ◁ (λ̃1 ▷ u

−1
2 ))y′′ β′′(λ̃1 ◁ u

−1
2 )β̄−1

2 λ−1
2

(
λ1(u1 ▷ λ̃

−1
2 )
)(
β̄1 ◁ (u1 ▷ λ̃

−1
2 )β′)(y′((u1 ◁ λ̃−1

2 ) ▷ ỹ−1
2 )
)(
(u1 ◁ λ̃

−1
2 )ũ−1

2

)
=
(
ũ1(λ̃1 ▷ u

−1
2 )
)(
(ỹ1 ◁ (λ̃1 ▷ u

−1
2 ))y′′

)(
β′′(λ̃1 ◁ u

−1
2 ) ▷ β̄−1

2

)(
(λ̃1 ◁ u

−1
2 )λ−1

2

)
,

(C.6)

with (u1 ▷ λ̃
−1
2 )−1 ȳ1 (u1 ▷ λ̃

−1
2 ) = y′β′ and (λ̃1 ◁ u

−1
2 ) ȳ2 (λ̃1 ◁ u

−1
2 )−1 = y′′β′′. The link gluing is

therefore obtained through the symplectic reduction

Pl = (B1 × B2)//G1 , (C.7)

with momentum map ˜̄β1
˜̄β2 ∼ ˜̄β1 +

˜̄β2 ∈ G∗
1 and fused link variable ũ = ũ1(λ̃1 ▷ u

−1
2 ) ∈ G1.

Wedge gluing. The gluing of two wedges, as illustrated in Fig. C.2, is done by identifying
the edge data dual to each wedge.
The geometric identification consists in setting2

e1 = −e2 ⇔ v1;1 = v2;2 , v1;2 = v2;1 . (C.8)
1Faces can be identified with same or opposite direction. In this example I consider the gluing with opposite

orientation, since it is the one relevant for the phase space construction.
2Edges can be identified with same or opposite orientation. In this example I consider the identification with

opposite orientation , since it is more relevant for the phase space construction.
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w1

f1

e1

l1

w2

f2

e2

l2

f1 = −f2

v1;2 = v2;2

w1

w2

e1

e2
l1

l2

Figure C.1: Gluing of two links by identifying the dual faces f1 and f2. Impose the points c1;f
and c2;f in the two faces to match. Root the faces resp. at the vertices v1;2 and v2;2 and let them
match v1;2 = v2;2, so that the faces share the same root.

Enforce this geometric constraint as a condition on G2 elements: represent the decorations of
the edges ei resp. at the nodes ci.

B1 :

[
G∗ = G2 ⋉G∗

1 ∋ ℓc1 ≡ ℓ1 = λ1 β̄1 ≡ λc1 β̄c1v1;2 ,

G = G∗
2 ⋊G1 ∋ hv1;2 ≡ h1 = ȳ1 u1 ≡ ȳv1;2c1

uv1;2 ,

B2 :

[
G∗ = G∗

1 ⋊G2 ∋ ℓc2 ≡ ℓ2 = β2 λ2 ≡ βc2v2;1 λ
c2 ,

G = G∗
2 ⋊G1 ∋ h̃v2;1 ≡ h̃2 = ˜̄y2 ũ2 ≡ ˜̄yv2;1c2

ũv2;1 .

(C.9)

In order to express the edge decorations in the same reference frame, their indices have to match,
hence further demand that

c1 = c2 . (C.10)

The proper geometric condition for the edge decorations is encoded in the identification

λc1 = (λc2)−1 ⇔ λ1 = λ−1
2 . (C.11)

Using the above constraint and the Heisenberg ribbon equations, one obtains the extended ribbon
equation:{

h̃1ℓ̃1 = ℓ1h1 = (λ1β̄1)h1 ⇔ λ1 = h̃1ℓ̃1h
−1
1 β̄−1

1

h̃2ℓ̃2 = ℓ2h2 = (β2λ2)h2 ⇔ λ2 = β−1
2 h̃2ℓ̃2h

−1
2

λ1=λ
−1
2=⇒ h̃1ℓ̃1h

−1
1 β̄−1

1 = h−1
2 ℓ̃−1

2 h̃−1
2 β2

⇒ (ũ1ỹ1)(β̃1λ̃1)(ȳ1u1)
−1β̄−1

1 = β̄2(ȳ2u2)(β̃2λ̃2)
−1(ũ2ỹ2)

−1

(ȳ1u1)
−1β̄−1

1 (ũ2ỹ2)(β̃2λ̃2) = (β̃1λ̃1)
−1(ũ1ỹ1)

−1β̄2(ȳ2u2)

u−1
1 ȳ−1

1 ũ2 y
′ β′ ỹ2 β̃2 λ̃2 = λ̃−1

1 β̃−1
1 ỹ−1

1 y′′ β′′ ũ−1
1 ȳ2 u2

(u−1
1 ũ2)

(
(ȳ−1

1 ◁ ũ2)y
′ỹ2
)
(β′β̃2)λ̃2 = λ̃−1

1 (β̃−1
1 β′′)

(
ỹ−1
1 y′′(ũ−1

1 ▷ ȳ2)
)
(ũ−1

1 u2),

(C.12)

with ũ−1
2 β̄1 ũ2 = (y′β′)−1 and ũ−1

1 β̄2ũ1 = y′′β′′. The wedge gluing is therefore obtained through
the symplectic reduction

Pw = (B1 × B2)//G
∗
2 , (C.13)

with momentum map λ1λ2 ∈ G2 and fused wedge variable ỹ = −ȳ1◁ũ2+ỹ2−
(
ũ−1
1 β̄1 ũ2

)∣∣
G∗

2
∈ G∗

2.
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w1

f1

e1

l1 w2

f2

e2

l2
e1 = −e2

c1;1 = c2;1

w1 ∗ w2

f1 f2

l1
l2

Figure C.2: Gluing of two wedges by identifying the dual edges e1 and e2 with opposite orien-
tation. Impose the identification of the nodes c1;1 and c2;1, so that the wedges share the same
root.

Face gluing. The gluing of two faces, as illustrated in Fig. C.3, is done by identifying the link
data dual to each face.
The geometric identification consists in setting3

l1 = l2 ↔ c1 = c2 , c1;f = c2;f . (C.14)

Enforce this geometric constraint as a condition on G1 elements: represent the decorations of
the links li resp. at the vertices v1;2 and v2;1.

B1 :

[
G∗ = G2 ⋉G∗

1 ∋ ℓ̃c1;f ≡ ℓ̃1 = λ̃1
˜̄β1 ≡ λ̃c1;f ˜̄β

c1;f
v1;2 ,

G = G1 ⋉G∗
2 ∋ hv1;2 ≡ h1 = u1 y1 ≡ uv1;2 yv1;2c1;f

,

B2 :

[
G∗ = G∗

1 ⋊G2 ∋ ℓ̃c2;f ≡ ℓ̃2 = β̃2 λ̃2 ≡ β̃
c2;f
v2;1 λ̃

c2;f ,

G = G1 ⋉G∗
2 ∋ h̃v2;1 ≡ h̃2 = ũ2 ỹ2 ≡ ũv2;1 ỹv2;1c2;f

.

(C.15)

In order to express the link decorations in the same reference frame, their indices have to match,
hence further demand that

v1;2 = v2;1 . (C.16)

The proper geometric condition is encoded in the identification

uv1;2 = ũv2;1 ⇔ u1 = ũ2 . (C.17)

Using the above constraint and the Heisenberg ribbon equations, we obtain the extended ribbon
equation:{

h̃1ℓ̃1 = ℓ1h1 = ℓ1(u1y1) ⇔ u1 = ℓ−1
1 h̃1ℓ̃1y

−1
1

ℓ2h2 = h̃2ℓ̃2 = (ũ2ỹ2)ℓ̃2 ⇔ ũ2 = ℓ2h2ℓ̃
−1
2 ỹ−1

2

u1=ũ2=⇒ ℓ−1
1 h̃1ℓ̃1y

−1
1 = ℓ2h2ℓ̃

−1
2 ỹ−1

2

⇒ ȳ−1
1 (λ1β̄1)

−1(ũ1ỹ1)(β̃1λ̃1) = (λ2β̄2)(ȳ2u2)(β̃2λ̃2)
−1ỹ−1

2

(ũ1ỹ1)(β̃1λ̃1)ỹ2(β̃2λ̃2) = (λ1β̄1)ȳ1(λ2β̄2)(ȳ2u2)

ũ1 ỹ1 β̃1 ỹ
′ β̃′ λ̃1 β̃2 λ̃2 = λ1 β̄1 λ2 β

′ y′ β̄2 ȳ2 u2

ũ1(ỹ1ỹ
′)
(
β̃1β̃

′(λ̃1 ▷ β̃2)
)
(λ̃1λ̃2) = (λ1λ2)

(
(β̄1 ◁ λ2)β

′β̄2
)
(y′ȳ2)u2 ,

(C.18)

3Links can be identified with same or opposite orientation. In this example I consider the identification with
same orientation, since it is the one relevant for the phase space contruction.
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w1

f1

e1

l1 w2

f2

e2

l2

l1 = l2
v1;2 = v2;1w1

w2

f1 ∗ f2

e1

e2

Figure C.3: Gluing of two faces by identifying the dual links l1 and l2 with same orientation.
Impose the identification of the vertices v1;2 = v2;1, so that the two faces share the same root.

with λ̃1 ỹ2λ̃
−1
1 = ỹ′β̃′ and λ−1

2 ȳ1 λ2 = β′y′. The face gluing is therefore obtained through the
symplectic reduction

Pf = (B1 × B2)//G
∗
1 , (C.19)

with momentum map u1ũ−1
2 ∈ G1 and fused face variable β̃ = β̃1+λ1 ▷ β̃2+

(
λ̃1 ỹ2 λ̃

−1
1

)∣∣
G∗

1
∈ G∗

1.

Edge gluing. As the link gluing fused a pair of phase spaces associated to half links into a
since phase space associated to a full link, the edge gluing is expected to do the same with edges.
In this case, I will thus start by a pair of phase spaces associated to half links li, wedges wi,
faces fi and half edges ei, with sources and targets resp. at the vertices vi;1 and vi;w, where the
second is a point on the wedge w.
The gluing of two edges, as illustrated in Fig. C.4, is done by identifying the wedge data, dual
to each edge.
The geometric identification consists in setting4

w1 = −w2 . (C.20)

Enforce this geometric constraint as a condition on G∗
2 elements: represent the decorations of

the wedges wi at the vertices vi;w. Let them be resp. rooted at the nodes ci.

B1 :

[
G∗ = G2 ⋉G∗

1 ∋ ℓc1 ≡ ℓ1 = λ1 β̄1 ≡ λc1 β̄c1v1;w ,

G = G∗
2 ⋊G1 ∋ hv1;w ≡ h1 = ȳ1 u1 ≡ ȳv1;wc1

uv1;w ,

Bl′,e′ :

[
G∗ = G2 ⋉G∗

1 ∋ ℓc2 ≡ ℓ2 = λ2 β̄2 ≡ λc2 β̄c2v2;w ,

G = G∗
2 ⋊G1 ∋ hv2;w ≡ h2 = ȳ2 u2 ≡ ȳv2;wc2

uv2;w .

(C.21)

In order to express the wedge decorations in the same reference frame, their indices have to
match, hence further demand that

c1 = c2 , v1;w = v2;w . (C.22)

The condition v1;w = v2;w provides the gluing of the edges. The proper geometric condition is
encoded in the identification

ȳv1;wc1
= (ȳv2;wc2

)−1 ⇔ ȳ1 = ȳ−1
2 . (C.23)

4Wedges can be identified with same or opposite direction. In this example I consider the gluing with opposite
orientation, simply because it is easier to represent and understand graphically.
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w1

f1

e1

l1 w2

f2
e2l2

w1 = −w2

c1 = c2

f1

f2

e1

e2

l1
l2

Figure C.4: Gluing of two edges by identifying the dual wedges w1 and w2. Impose the vertices
v1;w and v2;w in the two wedges to match. Root the wedges resp. at the nodes c1 and c2 and let
them match c1 = c2, so that the wedges share the same root.

Using the above constraint and the Heisenberg ribbon equations, one obtains the extended ribbon
equation:

h̃iℓ̃i = ℓihi = ℓi(ȳiui) ⇔ ȳi = ℓ−1
i h̃iℓ̃iu

−1
i

ȳ1=ȳ
−1
2=⇒ ℓ−1

1 h̃1ℓ̃1u
−1
1 = u2ℓ̃

−1
2 h̃−1

2 ℓ2

⇒ (β1λ1)
−1(˜̄y1ũ1)(λ̃1

˜̄β1)u
−1
1 = u2(λ̃2β̃2)

−1(˜̄y2ũ2)
−1(β2λ2)

(λ̃1
˜̄β1)u

−1
1 (β2λ2)

−1(˜̄y2ũ2) = (˜̄y1ũ1)
−1(β1λ1)u2(λ̃2β̃2)

−1

λ̃1
˜̄β1(u

−1
1 ▷ λ−1

2 )(u−1
1 ◁ λ−1

2 )β−1
2

˜̄y2 ũ2 = ũ−1
1

˜̄y−1
1 β1(λ1 ▷ u2)(λ1 ◁ u2)β̃

−1
2 λ̃−1

2

(
λ̃1(u

−1
1 ▷ λ−1

2 )
)(
( ˜̄β1 ◁ (u

−1
1 ▷ λ−1

2 ))β′)(y′((u−1
1 ◁ λ−1

2 ) ▷ ˜̄y2)
)(
(u−1

1 ◁ λ−1
2 )ũ2

)
=
(
ũ−1
1 (λ1 ▷ u2)

)(
(˜̄y1 ◁ (λ1 ▷ u2))y

′′)(β′′((λ1 ◁ u2) ▷ β̃
−1
2 )
)(
(λ1 ◁ u2)λ̃

−1
2

)
,

(C.24)

with (u−1
1 ◁ λ−1

2 ) β−1
2 (u−1

1 ◁ λ−1
2 )−1 = β′y′ and (λ1 ▷ u2)

−1 β1 (λ1 ▷ u2) = β′′y′′. The edge gluing is
therefore obtained through the symplectic reduction

Pe = (B1 × B2)//G2 , (C.25)

with momentum map ȳ1ȳ2 ∼ ȳ1 + ȳ2 ∈ G∗
2 and fused edge variable λ = (λ1 ◁ u2)λ̃

−1
2 ∈ G2.

Note that one can start by Heisenberg doubles associated to half links and half edges as in the
last example. Then, by using the edge and face gluings one recovers the phase space associated
to a full edge and an half link, or using the link and wedge gluings one recovers the phase space
associated to a full link and an half edge. Therefore, Heisenberg doubles used for the first three
gluings can be thought to be constructed according to the first option. In the full construction,
we will need to use all the four fundamental gluings to retrieve the Heisenberg double associated
to a full link and to a full edge.
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Appendix D

2-Group field theory

D.1 Key Feynman diagrams

Here I will list the generating functions associated to the 2-graphs dual to a combination of N
4-simplices, with N = 1, 2, 3, 4, 5. These are the key Feynman diagrams involved in the four
dimensional Pachner moves. Denote δ{VN}

G1
δ
{VN}
G2

the sets of constraints on links (group G1) and
wedges (group G2) in the amplitude of N independent 4-simplices.

i. Feynman diagram associated to the graph dual to a 4-simplex, illustrated in Fig.
D.1a, is given by the amplitude (see also eq. (5.108))

AV =

∫
dX10dh5dY 30du20 V =

∫
dX10dh5dY 30du20 δ

{V}
G1

, δ
{V}
G2

. (D.1)

I denoted

δ
{V}
G1

= δG1

(
t(X2,1)h1u1;1 u

−1
2;4h

−1
2

)
δG!

(
t(X3,1)h1u1;2 u

−1
3;3h

−1
3

)
δG1

(
t(X4,1)h1u1;3 u

−1
4;2h

−1
4

)
δG1

(
t(X5,1)h1u1;4 u

−1
5;1h

−1
5

)
δG1

(
t(X3,2)h2u2;1 u

−1
3;4h

−1
3

)
δG1

(
t(X4,2)h2u2;2 u

−1
4;3h

−1
4

)
δG1

(
t(X5,2)h2u2;3 u

−1
5;2h

−1
5

)
δG1

(
t(X4,3)h3u3;1 u

−1
4;4h

−1
4

)
δG1

(
t(X5,3)h3u3;2 u

−1
5;3h

−1
5

)
δG1

(
t(X5,4)h4u4;1 u

−1
5;4h

−1
5

)
, (D.2)

the set of delta functions on the group G1 (on the links) and

δ
{V}
G2

= δH
(
(h1 ▷ Y1;2,1)X1,2 (h2 ▷ Y2;4,1)X2,3 (h3 ▷ Y3;4,3)X3,1

)
δG2

(
(h1 ▷ Y1;3,1)X1,2 (h2 ▷ Y2;4,2)X2,4 (h4 ▷ Y4;3,2)X4,1

)
δG2

(
(h1 ▷ Y1;4,1)X1,2 (h2 ▷ Y2;4,3)X2,5 (h5 ▷ Y5;2,1)X5,1

)
δG2

(
(h1 ▷ Y1;3,2)X1,3 (h3 ▷ Y3;3,1)X3,4 (h4 ▷ Y4;4,2)X4,1

)
δG2

(
(h1 ▷ Y1;4,2)X1,3 (h3 ▷ Y3;3,2)X3,5 (h5 ▷ Y5;3,1)X5,1

)
δG2

(
(h1 ▷ Y1;3,4)X1,4 (h4 ▷ Y4;2,1)X4,5 (h5 ▷ Y5;4,1)X5,1

)
δG2

(
(h2 ▷ Y2;2,1)X2,3 (h3 ▷ Y3;4,1)X3,4 (h4 ▷ Y4;4,3)X4,2

)
δG2

(
(h2 ▷ Y2;3,1)X2,3 (h3 ▷ Y3;4,2)X3,5 (h5 ▷ Y5;3,2)X5,2

)
δG2

(
(h2 ▷ Y2;3,2)X2,4 (h4 ▷ Y4;3,1)X4,5 (h5 ▷ Y5;4,2)X5,2

)
δG2

(
(h3 ▷ Y3;2,1)X3,4 (h4 ▷ Y4;4,1)X4,5 (h5 ▷ Y5;4,3)X5,3

)
. (D.3)

the set of delta functions on the group G2 (on the edges).
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1

2

34

5

(a) Simplest graph dual to a 4-
simplex.

1 2

1

34

5

1

2

34

(2, 5)
1, 2

(b) Graph dual to two 4-simplices sharing the tetra-
hedron labelled 2 in the 4-simplex 1 and labelled 5
in the 4-simplex 2.

ii. Feynman diagram associated to the graph dual to two 4-simplicesx, illustrated in
Fig. D.1b, is given by the amplitude

AV2 =

∫
dX20dh10dY 60du40 K1,2

(
V1 V2

)
=

∫
dX20dh9dY 48du32 δ

{V2}
G1

δ
{V2}
G2

. (D.4)

I denoted

δ
{V2}
G1

=
(
δG1

(
t(X1;3,2)h1,2t(X2;5,2)h2;2u2;2;3u

−1
1;3;4h

−1
1;3

)
δG1

(
t(X1;4,2)h1,2t(X2;5,3)h2;3u2;3;2u

−1
1;4;3h

−1
1;4

)
δG1

(
t(X1;5,2)h1,2t(X2;5,4)h2;4u2;4;1u

−1
1;5;2h

−1
1;5

)
δG1

(
t(X1;2,1)h1;1u1;1;1u

−1
2;1;4h

−1
2;1t(X2;1,5)h2,1

))(
δG1

(
t(X1;3,1)h1;1u1;1;2 u

−1
1;3;3h

−1
1;3

)
δG1

(
t(X1;4,1)h1;1u1;1;3 u

−1
1;4;2h

−1
1;4

)
δG1

(
t(X1;5,1)h1;1u1;1;4 u

−1
1;5;1h

−1
1;5

)
δG1

(
t(X1;4,3)h1;3u1;3;1 u

−1
1;4;4h

−1
1;4

)
δG1

(
t(X1;5,3)h1;3u1;3;2 u

−1
1;5;3h

−1
1;5

)
δG1

(
t(X1;5,4)h1;4u1;4;1 u

−1
1;5;4h

−1
1;5

)
δG1

(
t(X2;2,1)h2;1u2;1;1 u

−1
2;2;4h

−1
2;2

)
δG1

(
t(X2;3,1)h2;1u2;1;2 u

−1
2;3;3h

−1
2;3

)
δG1

(
t(X2;4,1)h2;1u2;1;3 u

−1
2;4;2h

−1
2;4

)
δG1

(
t(X2;3,2)h2;2u2;2;1 u

−1
2;3;4h

−1
2;3

)
δG1

(
t(X2;4,2)h2;2u2;2;2 u

−1
2;4;3h

−1
2;4

)
δG1

(
t(X2;4,3)h2;3u2;3;1 u

−1
2;4;4h

−1
2;4

))
, (D.5)

the set of delta functions on the group G1 (on the links) and

δ
{V2}
G2

= δG2

(
h1,2 ▷

(
X2;5,3 (h2;3 ▷ Y2;3;2,4)X2;3,2 (h2;2 ▷ Y2;2;1,3)X2;2,5

)
X1;2,3 (h1;3 ▷ Y1;3;4,1)X1;3,4 (h1;4 ▷ Y1;4;4,3)X1;4,2

)
δG2

(
h1,2 ▷

(
X2;5,4 (h2;4 ▷ Y2;4;1,3)X2;4,2 (h2;2 ▷ Y2;2;2,3)X2;2,5

)
X1;2,3 (h1;3 ▷ Y1;3;4,2)X1;3,5 (h1;5 ▷ Y1;5;3,2)X1;5,2

)
δG2

(
h1,2 ▷

(
X2;5,1 (h2;1 ▷ Y2;1;4,1)X2;1,2 (h2;2 ▷ Y2;2;4,3)X2;2,5

)
X1;2,3 (h1;3 ▷ Y1;3;4,3)X1;3,1 (h1;1 ▷ Y1;1;2,1)X1;1,2

)
δG2

(
h1,2 ▷

(
X2;5,4 (h2;4 ▷ Y2;4;1,4)X2;4,3 (h2;3 ▷ Y2;3;1,2)X2;3,5

)
X1;2,4 (h1;4 ▷ Y1;4;3,1)X1;4,5 (h1;5 ▷ Y1;5;4,2)X1;5,2

)
δG2

(
h1,2 ▷

(
X2;5,1 (h2;1 ▷ Y2;1;4,2)X2;1,3 (h2;3 ▷ Y2;3;3,2)X2;3,5

)
X1;2,4 (h1;4 ▷ Y1;4;3,2)X1;4,1 (h1;1 ▷ Y1;1;3,1)X1;1,2

)
δG2

(
h1,2 ▷

(
X2;5,1 (h2;1 ▷ Y2;1;3,4)X2;1,4 (h2;4 ▷ Y2;4;2,1)X2;4,5

)
X1;2,5 (h1;5 ▷ Y1;5;2,1)X1;5,1 (h1;1 ▷ Y1;1;4,1)X1;1,2

)
δG2

(
(h1;1 ▷ Y1;1;3,2)X1;1,3 (h1;3 ▷ Y1;3;3,1)X1;3,4 (h1;4 ▷ Y1;4;4,2)X1;4,1

)
δG2

(
(h1;1 ▷ Y1;1;4,2)X1;1,3 (h1;3 ▷ Y1;3;3,2)X1;3,5 (h1;5 ▷ Y1;5;3,1)X1;5,1

)
δG2

(
(h1;1 ▷ Y1;1;3,4)X1;1,4 (h1;4 ▷ Y1;4;2,1)X1;4,5 (h1;5 ▷ Y1;5;4,1)X1;5,1

)
δG2

(
(h1;3 ▷ Y1;3;2,1)X1;3,4 (h1;4 ▷ Y1;4;4,1)X1;4,5 (h1;5 ▷ Y1;5;4,3)X1;5,3

)
δG2

(
(h2;1 ▷ Y2;1;2,1)X2;1,2 (h2;2 ▷ Y2;2;4,1)X2;2,3 (h2;3 ▷ Y2;3;4,3)X2;3,1

)
δG2

(
(h2;1 ▷ Y2;1;3,1)X2;1,2 (h2;2 ▷ Y2;2;4,2)X2;2,4 (h2;4 ▷ Y2;4;3,2)X2;4,1

)
δG2

(
(h2;1 ▷ Y2;1;3,2)X2;1,3 (h2;3 ▷ Y2;3;3,1)X2;3,4 (h2;4 ▷ Y2;4;4,2)X2;4,1

)
δG2

(
(h2;2 ▷ Y2;2;2,1)X2;2,3 (h2;3 ▷ Y2;3;4,1)X2;3,4 (h2;4 ▷ Y2;4;4,3)X2;4,2

)
, (D.6)
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the set of delta functions on the group G2 (on the wedges). I defined the composed link h1,2 ≡
h1;2h

−1
2;5 with inverse h−1

1,2 = h2,1.
The first four delta functions in (D.5) involve a combination of bulk and boundary links of both
the two 4-simplices, while the remaining twelve deltas involve bulk and boundary links of the
first or second 4-simplices separately. Similarly, the first six deltas in (D.6) involve a combination
of bulk and boundary wedges of both the 4-simplices, while the remaining eight deltas involve
bulk and boundary wedges of the first or the second 4-simplices separately.

iii. Feynman diagram associated to the graph dual to three 4-simplicesx, illustrated
in Fig. D.2a, is given by the amplitude

AV3 =

∫
dX30dh15dY 90du60 (K1,2K1,3K2,3)

(
V1 V2 V3

)
=

∫
dX30dh12dY 54du36 δ

{V3}
G1

δ
{V3}
G2

.

(D.7)
I denoted

δ
{V3}
G1

= δG1

(
t(X1;3,2)h1,2t(X2;5,2)h2,3t(X3;5,4)h3,1

)(
δG1

(
t(X1;4,2)h1,2t(X2;5,3)h2;3u2;3;2u

−1
1;4;3h

−1
1;4

)
δG1

(
t(X1;5,2)h1,2t(X2;5,4)h2;4u2;4;1u

−1
1;5;2h

−1
1;5

)
δG1

(
t(X1;2,1)h1;1u1;1;1u

−1
2;1;4h

−1
2;1t(X2;1,5)h2,1

)
δG1

(
t(X1;3,1)h1;1u1;1;2u

−1
3;1;3h

−1
3;1t(X3;1,4)h3,1

)
δG1

(
t(X1;4,3)h1,3t(X3;4,2)h3;2u3;2;2u

−1
1;4;4h

−1
1;4

)
δG1

(
t(X1;5,3)h1,3t(X3;4,3)h3;3u3;3;1u

−1
1;5;3h

−1
1;5

)
δG1

(
t(X2;2,1)h2;1u2;1;1u

−1
3;1;4h

−1
3;1t(X3;1,5)h3,2

)
δG1

(
t(X2;3,2)h2,3t(X3;5,2)h3;2u3;2;3u

−1
2;3;4h

−1
2;3

)
δG1

(
t(X2;4,2)h2,3t(X3;5,3)h3;3u3;3;2u

−1
2;4;3h

−1
2;4

))(
δG1

(
t(X1;5,4)h1;1u1;1;3 u

−1
1;4;2h

−1
1;4

)
δG1

(
t(X1;5,1)h1;1u1;1;4 u

−1
1;5;1h

−1
1;5

)
δG1

(
t(X1;4;1)h1;4u1;4;1 u

−1
1;5;4h

−1
1;5

)
δG1

(
t(X2;3,1)h2;1u2;1;2 u

−1
2;3;3h

−1
2;3

)
δG1

(
t(X2;4,1)h2;1u2;1;3 u

−1
2;4;2h

−1
2;4

)
δG1

(
t(X2;4,3)h2;3u2;3;1 u

−1
2;4;4h

−1
2;4

)
δG1

(
t(X3;2,1)h3;1u3;1;1 u

−1
3;2;4h

−1
3;2

)
δG1

(
t(X3;3,1)h3;1u3;1;2 u

−1
3;3;3h

−1
3;3

)
δG1

(
t(X3;3,2)h3;2u3;2;1 u

−1
3;3;4h

−1
3;3

))
,

(D.8)
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the set of delta functions on the group G1 (on the links) and

δ
{V3}
G2

= δG2

(
h1,2 ▷

(
X2;5,3 (h2;3 ▷ Y2;3;2,4)X2;3,2X2;2,5

)
X1;2,3 h1,3 ▷

(
X3;4,5X3;5,2 (h3;2 ▷ Y3;2;3,2)X3;2,4

)
X1;3,4 (h1;4 ▷ Y1;4;4,3)X1;4,2

)
δG2

(
h1,2 ▷

(
X2;5,4 (h2;4 ▷ Y2;4;1,3)X2;4,2X2;2,5

)
X1;2,3 h1,3 ▷

(
X3;4,5X3;5,3 (h3;3 ▷ Y3;3;2,1)X3;3,4

)
X1;3,5 (h1;5 ▷ Y1;5;3,2)X1;5,2

)
δG2

(
h1,2 ▷

(
X2;5,1 (h2;1 ▷ Y2;1;4,1)X2;1,2X2;2,5

)
X1;2,3 h1,3 ▷

(
X3;4,5X3;5,1 (h3;1 ▷ Y3;1;3,4)X3;1,4

)
X1;3,1 (h1;1 ▷ Y1;1;2,1)X1;1,2

)
δG2

(
h1,2 ▷

(
X2;5,4 (h2;4 ▷ Y2;4;1,4)X2;4,3 (h2;3 ▷ Y2;3;1,2)X2;3,5

)
X1;2,4 (h1;4 ▷ Y1;4;3,1)X1;4,5 (h1;5 ▷ Y1;5;4,2)X1;5,2

)
δG2

(
(h1;1 ▷ Y1;1;3,1)X1;1,2 h1,2 ▷

(
X2;5,1 (h2;1 ▷ Y2;1;4,2)X2;1,3 (h2;3 ▷ Y2;3;3,2)X2;3,5

)
X1;2,4 (h1;4 ▷ Y1;4;3,2)X1;4,1

)
δG2

(
(h1;1 ▷ Y1;1;4,1)X1;1,2 h1,2 ▷

(
X2;5,1 (h2;1 ▷ Y2;1;3,4)X2;1,4 (h2;4 ▷ Y2;4;2,1)X2;4,5

)
X1;2,5 (h1;5 ▷ Y1;5;2,1)X1;5,1

)
δG2

(
h1,3 ▷

(
X3;4,3 (h3;3 ▷ Y3;3;1,4)X3;3,2 (h3;2 ▷ Y3;2;1,2)X3;2,4

)
X1;3,4 (h1;4 ▷ Y1;4;4,1)X1;4,5 (h1;5 ▷ Y1;5;4,3)X1;5,3

)
δG2

(
(h1;1 ▷ Y1;1;3,2)X1;1,3 h1,3 ▷

(
X3;4,1 (h3;1 ▷ Y3;1;3,1)X3;1,2 (h3;2 ▷ Y3;2;4,2)X3;2,4

)
X1;3,4 (h1;4 ▷ Y1;4;4,2)X1;4,1

)
δG2

(
(h1;1 ▷ Y1;1;4,2)X1;1,3 h1,3 ▷

(
X3;4,1 (h3;1 ▷ Y3;1;3,2)X3;1,3 (h3;3 ▷ Y3;3;3,1)X3;3,4

)
X1;3,5 (h1;5 ▷ Y1;5;3,1)X1;5,1

)
δG2

(
(h2;1 ▷ Y2;1;2,1)X2;1,2 h2,3 ▷

(
X3;5,1 (h3;1 ▷ Y3;1;4,1)X3;1,2 (h3;2 ▷ Y3;2;4,3)X3;2,5

)
X2;2,3 (h2;3 ▷ Y2;3;4,3)X2;3,1

)
δG2

(
(h2;1 ▷ Y2;1;3,1)X2;1,2 h2,3 ▷

(
X3;5,1 (h3;1 ▷ Y3;1;4,2)X3;1,3 (h3;3 ▷ Y3;3;3,2)X3;3,5

)
X2;2,4 (h2;4 ▷ Y2;4;3,2)X2;4,1

)
δG2

(
h2,3 ▷

(
X3;5,3 (h3;3 ▷ Y3;3;2,4)X3;3,2 (h3;2 ▷ Y3;2;1,3)X3;2,5

)
X2;2,3 (h2;3 ▷ Y2;3;4,1)X2;3,4 (h2;4 ▷ Y2;4;4,3)X2;4,2

)
δG2

(
(h1;1 ▷ Y1;1;3,4)X1;1,4 (h1;4 ▷ Y1;4;2,1)X1;4,5 (h1;5 ▷ Y1;5;4,1)X1;5,1

)
δG2

(
(h2;1 ▷ Y2;1;3,2)X2;1,3 (h2;3 ▷ Y2;3;3,1)X2;3,4 (h2;4 ▷ Y2;4;4,2)X2;4,1

)
δG2

(
(h3;1 ▷ Y3;1;2,1)X3;1,2 (h3;2 ▷ Y3;2;4,1)X3;2,3 (h3;3 ▷ Y3;3;4,3)X3;3,1

)
, (D.9)

the set of delta functions on the group G2 (on the wedges). I defined the composed links
h1,3 ≡ h1;3h

−1
3;4 and h2,3 ≡ h2;2h

−1
3;5 with inverses h−1

1,3 = h3,1 and h−1
2,3 = h3,2.

The first delta in (D.8) enforces a closed path of only bulk links of the three 4-simplices; this
is the loop of links dual to the single face shared by the three 4-simplices. The following nine
delta functions involve a combination of bulk and boundary links of the 4-simplices {1, 2}, {1, 3}
and {2, 3}, while the remaining nine deltas involve bulk and boundary links of the first, the
second or the third 4-simplices separately. Similarly, the first three deltas in (D.9) involve a
combination of bulk and boundary wedges of the three 4-simplices. The following nine deltas
involve a combination of bulk and boundary wedges of the three 4-simplices pairwise, {1, 2},
{1, 3} and {2, 3}. The remaining three deltas involve bulk and boundary wedges of the first,
second or third 4-simplices separately.

iv. Feynman diagram associated to the graph dual to four 4-simplicesx, illustrated in
Fig. D.2b, is given by the amplitude

AV4 =

∫
dX40dh20dY 120du80 (K1,2K1,3K1,4K2,3K2,4K3,4)

(
V1 V2 V3 V4

)
=

∫
dX40dh14dY 48du32 δ

{V4}
G1

δ
{V4}
G2

.

(D.10)
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(a) Graph dual to three 4-simplices.
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1,4
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2
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)

4,
2

(4
, 3
)

4, 3
(5, 2)

(b) Graph dual to four 4-simplices.

I denoted

δ
{V4}
G1

= δG1

(
t(X1;3,2)h1,2t(X2;5,2)h2,3t(X3;5,4)h3,1

)
δG1

(
t(X1;4,2)h1,2t(X2;5,3)h2,4t(X4;4,3)h4,1

)
δG1

(
t(X1;4,3)h1,3t(X3;4,2)h3,4t(X4;5,3)h4,1

)
δG1

(
t(X2;3,2)h2,3t(X3;5,2)h3,4t(X4;5,4)h4,2

))(
δG1

(
t(X1;5,2)h1,2t(X2;5,4)h2;4u2;4;1u

−1
1;5;2h

−1
1;5

)
δG1

(
t(X1;2,1)h1;1u1;1;1u

−1
2;1;4h

−1
2;1t(X2;1,5)h2,1

)
δG1

(
t(X1;3,1)h1;1u1;1;2u

−1
3;1;3h

−1
3;1t(X3;1,4)h3,1

)
δG1

(
t(X1;5,3)h1,3t(X3;4,3)h3;3u3;3;1u

−1
1;5;3h

−1
1;5

)
δG1

(
t(X2;2,1)h2;1u2;1;1u

−1
3;1;4h

−1
3;1t(X3;1,5)h3,2

)
δG1

(
t(X2;4,2)h2,3t(X3;5,3)h3;3u3;3;2u

−1
2;4;3h

−1
2;4

)
δG1

(
t(X1;5,4)h1;1u1;1;3 u

−1
4;1;2h

−1
4;1t(X4;1,3)h4,1

)
δG1

(
t(X1;4;1)h1,4t(X4;3,2)h4;2u4;2;1 u

−1
1;5;4h

−1
1;5

)
δG1

(
t(X2;3,1)h2;1u2;1;2 u

−1
4;1;3h

−1
4;1t(X4;1,4)h4,2

)
δG1

(
t(X2;4,3)h2,4t(X4;4,2)h4;2u4;2;2 u

−1
2;4;4h

−1
2;4

)
δG1

(
t(X3;2,1)h3;1u3;1;1 u

−1
4;1;4h

−1
4;1t(X4;1,5)h4,3

)
δG1

(
t(X3;3,2)h3,4t(X4;5,2)h4;2u4;2;3 u

−1
3;3;4h

−1
3;3

))(
δG1

(
t(X1;5,1)h1;1u1;1;4 u

−1
1;5;1h

−1
1;5

)
δG1

(
t(X2;4,1)h2;1u2;1;3 u

−1
2;4;2h

−1
2;4

)
δG1

(
t(X3;3,1)h3;1u3;1;2 u

−1
3;3;3h

−1
3;3

)
δG1

(
t(X4;2,1)h4;1u4;1;1 u

−1
4;2;4h

−1
4;2

))
, (D.11)
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the set of delta functions on the group G1 (on the links) and

δ
{V4}
G2

= δG2

(
X1;4,2 h1,2 ▷

(
X2;5,3X2;3,2X2;2,5

)
X1;2,3 h1,3 ▷

(
X3;4,5X3;5,2X3;2,4

)
X1;3,4 h1,4 ▷

(
X4;3,5X4;5,4X4;4,3

))
δG2

(
h1,2 ▷

(
X2;5,4 (h2;4 ▷ Y2;4;1,3)X2;4,2X2;2,5

)
X1;2,3 h1,3 ▷

(
X3;4,5X3;5,3 (h3;3 ▷ Y3;3;2,1)X3;3,4

)
X1;3,5 (h1;5 ▷ Y1;5;3,2)X1;5,2

)
δG2

(
h1,2 ▷

(
X2;5,1 (h2;1 ▷ Y2;1;4,1)X2;1,2X2;2,5

)
X1;2,3 h1,3 ▷

(
X3;4,5X3;5,1 (h3;1 ▷ Y3;1;3,4)X3;1,4

)
X1;3,1 (h1;1 ▷ Y1;1;2,1)X1;1,2

)
δG2

(
h1,2 ▷

(
X2;5,4 (h2;4 ▷ Y2;4;1,4)X2;4,3X2;3,5

)
X1;2,4 h1,4 ▷

(
X4;3,4X4;4,2 (h4;2 ▷ Y4;2;2,1)X4;2,3

)
X1;4,5 (h1;5 ▷ Y1;5;4,2)X1;5,2

)
δG2

(
h1,2 ▷

(
X2;5,1 (h2;1 ▷ Y2;1;4,2)X2;1,3X2;3,5

)
X1;2,4 h1,4 ▷

(
X3;3,4X4;4,1 (h4;1 ▷ Y4;1;3,2)X4;1,3

)
X1;4,1 (h1;1 ▷ Y1;1;3,1)X1;1,2

)
δG2

(
h1,3 ▷

(
X3;4,3 (h3;3 ▷ Y3;3;1,4)X3;3,2X3;2,4

)
X1;3,4 h1,4 ▷

(
X4;3,5X4;5,2 (h4;2 ▷ Y4;2;3,1)X4;2,3

)
X1;4,5 (h1;5 ▷ Y1;5;4,3)X1;5,3

)
δG2

(
h1,3 ▷

(
X3;4,1 (h3;1 ▷ Y3;1;3,1)X3;1,2X3,2,4

)
X1;3,4 h1,4 ▷

(
X4;3,5X4;5,1(h4;1 ▷ Y4;1;4,2)X4;1,3

)
X1;4,1 (h1;1 ▷ Y1;1;3,2)X1;1,3

)
δG2

(
h2,3 ▷

(
X3;5,1 (h3;1 ▷ Y3;1;4,1)X3;1,2X3;2,5

)
X2;2,3 h2,4 ▷

(
X4;4,5X4;5,1 (h4;1 ▷ Y4;1;3,4)X4;1,4

)
X2;3,1 (h2;1 ▷ Y2;1;2,1)X2;1,2

)
δG2

(
h2,3 ▷

(
X3;5,3 (h3;3 ▷ Y3;3;2,4)X3;3,2X3;2,5

)
X2;2,3 h2,4 ▷

(
X4;4,5X4;5,2 (h4;2 ▷ Y4;2;3,2)X4;2,4

)
X2;3,4 (h2;4 ▷ Y2;4;4,3)X2;4,2

)
δG2

(
h1,2 ▷

(
X2;5,1 (h2;1 ▷ Y2;1;3,4)X2;1,4 (h2;4 ▷ Y2;4;2,1)X2;4,5

)
X1;2,5 (h1;5 ▷ Y1;5;2,1)X1;5,1 (h1;1 ▷ Y1;1;4,1)X1;1,2

)
δG2

(
h1,3 ▷

(
X3;4,1 (h3;1 ▷ Y3;1;3,2)X3;1,3 (h3;3 ▷ Y3;3;3,1)X3;3,4

)
X1;3,5 (h1;5 ▷ Y1;5;3,1)X1;5,1 (h1;1 ▷ Y1;1;4,2)X1;1,3

)
δG2

(
h2,3 ▷

(
X3;5,1 (h3;1 ▷ Y3;1;4,2)X3;1,3 (h3;3 ▷ Y3;3;3,2)X3;3,5

)
X2;2,4 (h2;4 ▷ Y2;4;3,2)X2;4,1 (h2;1 ▷ Y2;1;3,1)X2;1,2

)
δG2

(
h1,4 ▷

(
X4;3,1 (h4;1 ▷ Y4;1;2,1)X4;1,2 (h4;2 ▷ Y4;2;4,1)X4;2,3

)
X1;4,5 (h1;5 ▷ Y1;5;4,1)X1;5,1 (h1;1 ▷ Y1;1;3,4)X1;1,4

)
δG2

(
h2,4 ▷

(
X4;4,1 (h4;1 ▷ Y4;1;3,1)X4;1,2 (h4;2 ▷ Y4;2;4,2)X4;2,4

)
X2;3,4 (h2;4 ▷ Y2;4;4,2)X2;4,1 (h2;1 ▷ Y2;1;3,2)X2;1,3

)
δG2

(
h3,4 ▷

(
X4;5,1 (h4;1 ▷ Y4;1;4,1)X4;1,2 (h4;2; ▷ Y4;2;4,3)X4;2,5

)
X3;2,3 (h3;3 ▷ Y3;3;4,3)X3;3,1 (h3;1 ▷ Y3;1;2,1)X3;1,2

)
,

(D.12)

the set of delta functions on the group G2 (on the wedges). I defined the composed links
h1,4 ≡ h1;4h

−1
4;3, h2,4 ≡ h2;3h

−1
4;4 and h3,4 ≡ h3;2h

−1
4;5, with inverses h−1

1,4 = h4,1, h−1
2,4 = h4,2 and

h−1
3,4 = h4,3.

The first four delta functions in (D.11) enforces a closed path of only bulk links of the three
4-simplices pairwise. These are the loops of links dual to the four faces shared by triplets of the
four 4-simplices, {1, 2, 3}, {1, 2, 4}, {1, 3, 4} and {2, 3, 4}. The following twelve delta functions
involve a combination of bulk and boundary links of the 4-simplices pairwise, {A,B}, with
A,B = 1, 2, 3, 4 and B > A; while the remaining four deltas involve bulk and boundary links of
the four 4-simplices separately. Similarly, the first delta functions in (D.12) is a closed 2-path of
only bulk wedges shared by the four 4-simplices; this is the closed surface in the dual complex
dual to the single edge shared by the four 4-simplices. The following eight delta functions
involve a combination of bulk and boundary wedges of triplets of 4-simplices, {A,B,C} for
A,B,C = 1, 2, 3, 4 and C > B > A; the last six delta functions involve a combination of bulk
and boundary wedges of the 4-simplices pairwise.

v. Feynman diagram associated to the graph dual to five 4-simplicesx, illustrated in
Fig. D.3, is given by the amplitude

ZV5 =

∫
dX50dh25dY 150du100 (K1,2K1,3K1,4K1,5K2,3K2,4K2,5K3,4K3,5K4,5)

(
V1 V2 V3 V4 V5

)
=

∫
dX50dh15dY 30du20 δ

{V5}
G1

δ
{V5}
G2

.

(D.13)
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I denoted

δ
{V5}
G1

=
(
δG1

(
t(X1;3,2)h1,2t(X2;5,2)h2,3t(X3;5,4)h3,1

)
δG1

(
t(X1;4,2)h1,2t(X2;5,3)h2,4t(X4;4,3)h4,1

)
δG1

(
t(X1;4,3)h1,3t(X3;4,2)h3,4t(X4;5,3)h4,1

)
δG1

(
t(X2;3,2)h2,3t(X3;5,2)h3,4t(X4;5,4)h4,2

)
δG1

(
t(X1;5,2)h1,2t(X2;5,4)h2,5t(X5;3,2)h5,1

)
δG1

(
t(X1;5,3)h1,3t(X3;4,3)h3,5t(X5;4,2)h5,1

)
δG1

(
t(X2;4,2)h2,3t(X3;5,3)h3,5t(X5;4,3)h5,2

)
δG1

(
t(X1;5,4)h1,4t(X4;3,2)h4,5t(X5;5,2)h5,1

)
δG1

(
t(X2;4,3)h2,4t(X4;4,2)h4,5t(X5;5,3)h5,2

)
δG1

(
t(X3;3,2)h3,4t(X4;5,2)h4,5t(X5;5,4)h5,3

))(
δG1

(
t(X1;2,1)h1;1u1;1;1u

−1
2;1;4h

−1
2;1t(X2;1,5)h2,1

)
δG1

(
t(X1;3,1)h1;1u1;1;2u

−1
3;1;3h

−1
3;1t(X3;1,4)h3,1

)
δG1

(
t(X1;4,1)h1;1u1;1;3u

−1
4;1;2h

−1
4;1t(X4;1,3)h4,1

)
δG1

(
t(X2;2,1)h2;1u2;1;1u

−1
3;1;4h

−1
3;1t(X3;1,5)h3,2

)
δG1

(
t(X2;3,1)h2;1u2;1;2u

−1
4;1;3h

−1
4;1t(X4;1,4)h4,2

)
δG1

(
t(X3;2,1)h3;1u3;1;1u

−1
4;1;4h

−1
4;1t(X4;1,5)h4,3

)
δG1

(
t(X1;5,1)h1;1u1;1;4u

−1
5;1;1h

−1
5;1t(X5;1,2)h5,1

)
δG1

(
t(X2;4,1)h2;1u2;1;3u

−1
5;1;2h

−1
5;1t(X5;1,3)h5,2

)
δG1

(
t(X3;3,1)h3;1u3;1;2u

−1
5;1;3h

−1
5;1t(X5;1,4)h5,3

)
δG1

(
t(X4;2,1)h4;1u4;1;1u

−1
5;1;4h

−1
5;1t(X5;1,5)h5,4

))
,

(D.14)

the set of delta functions on the group G1 (on the links) and

δ
{V5}
G2

= δG2

(
X1;4,2 h1,2 ▷

(
X2;5,3X2;3,2X2;2,5

)
X1;2,3 h1,3 ▷

(
X3;4,5X3;5,2X3;2,4

)
X1;3,4 h1,4 ▷

(
X4;3,5X4;5,4X4;4,3

))
δG2

(
X1;5,2 h1,2 ▷

(
X2;5,4X2;4,2X2;2,5

)
X1;2,3 h1,3 ▷

(
X3;4,5X3;5,3X3;3,4

)
X1;3,5 h1,5 ▷

(
X5;2,4X5;4,3X5;3,2

))
δG2

(
X1;5,2 h1,2 ▷

(
X2;5,4X2;4,3X2;3,5

)
X1;2,4 h1,4 ▷

(
X4;4,3X4;3,2X4;2,4

)
X1;4,5 h1,5 ▷

(
X5;2,5X5;5,3X5;3,2

))
δG2

(
X1;5,3 h1,3 ▷

(
X3;4,3X3;3,2X3;2,4

)
X1;3,4 h1,4 ▷

(
X4;3,5X4;5,2X4;2,3

)
X1;4,5 h1,5 ▷

(
X5;2,5X5;5,4X5;4,2

))
δG2

(
X2;4,2 h2,3 ▷

(
X3;5,3X3;3,2X3;2,5

)
X2;2,3 h2,4 ▷

(
X4;4,5X4;5,2X4;2,4

)
X2;3,4 h2,5 ▷

(
X5;3,5X5;5,4X5;4,3

))
δG2

(
h1,2 ▷

(
X2;5,1 (h2;1 ▷ Y2;1;4,1)X2;1,2X2;2,5

)
X1;2,3 h1,3 ▷

(
X3;4,5X3;5,1 (h3;1 ▷ Y3;1;3,4)X3;1,4

)
X1;3,1 (h1;1 ▷ Y1;1;2,1)X1;1,2

)
δG2

(
h1,2 ▷

(
X2;5,1 (h2;1 ▷ Y2;1;4,2)X2;1,3X2;3,5

)
X1;2,4 h1,4 ▷

(
X3;3,4X4;4,1 (h4;1 ▷ Y4;1;3,2)X4;1,3

)
X1;4,1 (h1;1 ▷ Y1;1;3,1)X1;1,2

)
δG2

(
h1,3 ▷

(
X3;4,1 (h3;1 ▷ Y3;1;3,1)X3;1,2X3,2,4

)
X1;3,4 h1,4 ▷

(
X4;3,5X4;5,1(h4;1 ▷ Y4;1;4,2)X4;1,3

)
X1;4,1 (h1;1 ▷ Y1;1;3,2)X1;1,3

)
δG2

(
h2,3 ▷

(
X3;5,1 (h3;1 ▷ Y3;1;4,1)X3;1,2X3;2,5

)
X2;2,3 h2,4 ▷

(
X4;4,5X4;5,1 (h4;1 ▷ Y4;1;3,4)X4;1,4

)
X2;3,1 (h2;1 ▷ Y2;1;2,1)X2;1,2

)
δG2

(
h1,2 ▷

(
X2;5,1 (h2;1 ▷ Y2;1;3,4)X2;1,4X2;4,5

)
X1;2,5 h1,5 ▷

(
X5;2,3X5;3,1 (h5;1 ▷ Y5;1;2,1)X5;1,2

)
X1;5,1 (h1;1 ▷ Y1;1;4,1)X1;1,2

)
δG2

(
h1,3 ▷

(
X3;4,1 (h3;1 ▷ Y3;1;3,2)X3;1,3X3;3,4

)
X1;3,5 h1,5 ▷

(
X5;4,3X5;3,1 (h5;1 ▷ Y5;1;2,3)X5;1,4

)
X1;5,1 (h1;1 ▷ Y1;1;4,2)X1;1,3

)
δG2

(
h2,3 ▷

(
X3;5,1 (h3;1 ▷ Y3;1;4,2)X3;1,3X3;3,5

)
X2;2,4 h2,5 ▷

(
X5;5,3X5;3,1 (h5;1 ▷ Y5;1;2,4)X5;1,5

)
X2;4,1 (h2;1 ▷ Y2;1;3,1)X2;1,2

)
δG2

(
h1,4 ▷

(
X4;3,1 (h4;1 ▷ Y4;1;2,1)X4;1,2X4;2,3

)
X1;4,5 h1,5 ▷

(
X5;2;5X5;5,1 (h5;1 ▷ Y5;1;4,1)X5;1,2

)
X1;5,1 (h1;1 ▷ Y1;1;3,4)X1;1,4

)
δG2

(
h2,4 ▷

(
X4;4,1 (h4;1 ▷ Y4;1;3,1)X4;1,2X4;2,4

)
X2;3,4 h2,5 ▷

(
X5;3;5 x5;5,1 (h5;1 ▷ Y5;1;4,2)X5;1,3

)
X2;4,1 (h2;1 ▷ Y2;1;3,2)X2;1,3

)
δG2

(
h3,4 ▷

(
X4;5,1 (h4;1 ▷ Y4;1;4,1)X4;1,2X4;2,5

)
X3;2,3 h3,5 ▷

(
X5;4;5X5;5,1 (h5;1 ▷ Y5;1;3,4)X5;1,4

)
X3;3,1 (h3;1 ▷ Y3;1;2,1)X3;1,2

)
,

(D.15)

the set of delta functions on the group G2 (on the wedges). We defined the composed links
h1,5 ≡ h1;5h

−1
5;2, h2,5 ≡ h2;4h

−1
5;3, h3,5 ≡ h2;3h

−1
5;4 and h4,5 ≡ h3;2h

−1
5;5, with inverses h−1

1,5 = h5,1,
h−1
2,5 = h5,2, h−1

3,5 = h5,3 and h−1
4,5 = h5,4.

The first six delta functions in (D.14) enforces a closed path of only bulk links of the 4-simplices
pairwise; these are the loops of links dual to the six faces shared by triplets of four 4-simplices.
The remaining ten delta functions involve a combination of bulk and boundary links of the 4-
simplices pairwise. Similarly, the first five delta functions in (D.15) enforce the closure of five
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Figure D.3: Graphs dual to five 4-simplices.

2-path of only bulk wedges shared by the 4-simplices four by four; these are closed surfaces in
the dual complex dual to the edges shared by the four 4-simplices. The remaining ten delta
functions involve a combination of bulk and boundary wedges of triplets of 4-simplices.

D.2 Pachner moves

Let me give here a few details of the computation of the four dimensional Pachner moves for a
2-group field theory.

Pachner move P1,5. Consider the amplitude of five 4-simplices (D.13) and integrate over six
bulk links (h1,2, h1,3, h1,4, h2,3, h2,4, h3,4) and over three bulk wedges (X4;3,4,X4;3,5,X4;4,5). Note
that, upon integration, four delta functions on the group G1 and one on the group G2 are
automatically satisfied. This lead to the type of divergence that is encountered very often in
group field theories. Such divergencies have to be regularized by hand, by dividing for the proper
volume term. The remaining integrals give instead several volume terms of the groups G1 and

126



G2. Upon integration, consider the map below for the remaining terms of the amplitude.

Boundary links

uA;1;i → uA;i for
A = 1, 2, 3, 4, 5

i = 1, 2, 3, 4

Boundary wedges

YA;1;i,j → YA;i,j for
A = 1, 2, 3, 4, 5

i, j = 1, 2, 3, 4

Bulk links
h5,AhA;1 → hA for A = 1, 2, 3, 4

h5;1 → h5

Bulk wedges
h5,2 ▷ (X2;1,5X2;5,4)X5;3,2h5,1 ▷ (X1;5,2X1;2,1) → X2,1

h5,3 ▷ (X3;1,4X3;4,3)X5;4,2h5,1 ▷ (X1;5,3X1;3,1) → X3,1

h5,4 ▷ (X4;1,3X4;3,2)X5;5,2h5,1 ▷ (X1;5,4X1;4,1) → X4,1

h5,3 ▷ (X3;1,5X3;5,3)X5;4,3h5,2 ▷ (X2;4,2X2;2,1) → X3,2

h5,4 ▷ (X4;1,4X4;4,2)X5;5,3h5,2 ▷ (X2;4,3X2;3,1) → X4,2

h5,4 ▷ (X4;1,5X4;5,2)X5;5,4h5,3 ▷ (X3;3,2X3;2,1) → X4,3

X5;1,2h5,1 ▷ (X1;5,1) → X5,1

X5;1,3h5,2 ▷ (X2;4,1) → X5,2

X5;1,4h5,3 ▷ (X3;3,1) → X5,3

X5;1,5h5,4 ▷ (X4;2,1) → X5,4

Under such change of variables, the amplitude of five 4-simplices (D.13) turns out to be propor-
tional to that of a single one (D.1):

AV5 = (V 4
G1
V 37
G2
)AV1 . (D.16)

This transformation is represented in Fig. 5.13.

Pachner move P2,4. Consider the amplitude of four 4-simplices (D.10) and integrate over three
bulk links (h1,2, h1,3, h2,3). Again, upon integration, there will be one divergence (a constraint
in the group G1) that has to be regularized. The other integration lead again to some volume
terms, and for the remaining terms consider the map below.

Boundary links
u1;1;1 → u1;1;2

u1;1;2 → u1;1;3

u1;1;3 → u1;1;4

u1;1;4 → u1;1;1

u1;5;1 → u2;1;4

u1;5;2 → u2;1;1

u1;5;3 → u2;1;2

u1;5;4 → u2;1;3

u2;1;1 → u1;3;1

u2;1;2 → u1;3;2

u2;1;3 → u1;3;4

u2;1;4 → u1;3;3

u2;4;1 → u2;2;4

u2;4;2 → u2;2;3

u2;4;3 → u2;2;1

u2;4;4 → u2;2;2

u3;1;1 → u1;4;1

u3;1;2 → u1;4;3

u3;1;3 → u1;4;2

u3;1;4 → u1;4;4

u3;3;1 → u2;3;3

u3;3;2 → u2;3;4

u3;3;3 → u2;3;2

u3;3;4 → u2;3;1

u4;1;1 → u1;5;2

u4;1;2 → u1;5;1

u4;1;3 → u1;5;3

u4;1;4 → u1;5;4

u4;2;1 → u2;4;2

u4;2;2 → u2;4;3

u4;2;3 → u2;4;4

u4;2;4 → u2;4;1

Bulk links
h4,1h1;1 → h1;1

h4,2h2;1 → h1;3

h4,3h3;1 → h1;4

h4;1 → h1;5

h4,1h1;5 → h1,2h2;1

h4,2h2;4 → h1,2h2;2

h4,3h3;3 → h1,2h2;3

h4;2 → h1,2h2;4

Bulk wedges
h4,1 ▷ X1;1,5 → X1;1,2h1,2 ▷ X2;5,1

h4,3 ▷ X3;1,3 → X1;4,2h1,2 ▷ X2;5,3

h4,1 ▷ (X1;5,2X1;2,4)X4;3,4h4,2 ▷ (X2;3,5X2;5,4) → h1,2 ▷ X2;1,2

h4,1 ▷ (X1;1,2X1;2,4)X4;3,4h4,2 ▷ (X2;3,5X2;5,1) → X1;1,3

h4,1 ▷ (X1;1,3X1;3,4)X4;3,5h4,3 ▷ (X3;2,4X3;4,1) → X1;1,4

h4,1 ▷ (X1;5,3X1;3,4)X4;3,5h4,3 ▷ (X3;2,4X3;4,3) → h1,2 ▷ X2;1,3

h4,2 ▷ (X2;4,2X2;2,3)X4;4,5h4,3 ▷ (X3;2,5X3;5,3) → h1,2 ▷ X2;2,3

h4,2 ▷ (X2;1,2X2;2,3)X4;4,5h4,3 ▷ (X3;2,5X3;5,1) → X1;3,4

h4,2 ▷ X2;1,4 → X1;3,2h1,2 ▷ X2;5,2

X4;1,2 → X1;5,2h1,2 ▷ X2;5,4

X4;1,3h4,1 ▷ X1;4,1 → X1;5,1

X4;2,3h4,1 ▷ X1;4,5 → h1,2 ▷ X2;4,1

X4;1,4h4,2 ▷ X2;3,1 → X1;5,3

X4;2,4h4,2 ▷ X2;3,4 → h1,2 ▷ X2;4,2

X4;1,5h4,3 ▷ X3;2,1 → X1;5,4

X4;2,5h4,3 ▷ X3;2,3 → h1,2 ▷ X2;4,3
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Boundary wedges
h4,1 ▷ (h1;1 ▷ Y1;1;2,1) → h1;1 ▷ Y1;1;3,2

h4,1 ▷ (h1;1 ▷ Y1;1;3,1) → h1;1 ▷ Y1;1;4,2

h4,1 ▷ (h1;1 ▷ Y1;1;3,2) → h1;1 ▷ Y1;1;3,4

h4,1 ▷ (h1;5 ▷ Y1;5;3,2) → (h1,2h2;1) ▷ Y2;1;2,1

h4,1 ▷ (h5;1 ▷ Y5;1;4,2) → (h1,2h2;1) ▷ Y2;1;3,1

h4,1 ▷ (h1;5 ▷ Y1;5;4,3) → (h1,2h2;1) ▷ Y2;1;3,2

h4,1 ▷ (h1;1 ▷ Y1;1;4,1) → h1;1 ▷ Y1;1;1,2

h4,1 ▷ (h1;5 ▷ Y1;5;2,1) → (h1,2h2;1) ▷ Y2;1;1,4

h4,1 ▷ (h1;5 ▷ Y1;5;3,1) → (h1,2h2;1) ▷ Y2;1;2,4

h4,1 ▷ (h1;1 ▷ Y1;1;4,2) → h1;1 ▷ Y1;1;1,3

h4,1 ▷ (h1;1 ▷ Y1;1;3,4) → h1;1 ▷ Y1;1;1,4

h4,1 ▷ (h1;5 ▷ Y1;5;4,1) → (h1,2h2;1) ▷ Y2;1;4,3

h4,3 ▷ (h3;1 ▷ Y3;1;3,4) → h1;4 ▷ Y1;4;4,2

h4,3 ▷ (h3;1 ▷ Y3;1;3,1) → h1;4 ▷ Y1;4;2,1

h4,3 ▷ (h3;1 ▷ Y3;1;4,1) → h1;4 ▷ Y1;4;4,1

h4,3 ▷ (h3;3 ▷ Y3;3;2,1) → (h1,2h2;3) ▷ Y2;3;4,3

h4,3 ▷ (h3;3 ▷ Y3;3;1,4) → (h1,2h2;3) ▷ Y2;3;3,1

h4,3 ▷ (h3;3 ▷ Y3;3;2,4) → (h1,2h2;3) ▷ Y2;3;4,1

h4,3 ▷ (h3;1 ▷ Y3;1;3,2) → h1;4 ▷ Y1;4;2,3

h4,3 ▷ (h3;3 ▷ Y3;3;3,1) → (h1,2h2;3) ▷ Y2;3;2,3

h4,3 ▷ (h3;1 ▷ Y3;1;4,2) → h1;4 ▷ Y1;4;4,3

h4,3 ▷ (h3;3 ▷ Y3;3;3,2) → (h1,2h2;3) ▷ Y2;3;2,4

h4,3 ▷ (h3;1 ▷ Y3;1;2,1) → h1;4 ▷ Y1;4;3,1

h4,3 ▷ (h3;3 ▷ Y3;3;4,3) → (h1,2h2;3) ▷ Y2;3;1,2

h4,2 ▷ (h2;1 ▷ Y2;1;4,1) → h1;3 ▷ Y1;3;3,1

h4,2 ▷ (h2;1 ▷ Y2;1;4,2) → h1;3 ▷ Y1;3;3,2

h4,2 ▷ (h2;1 ▷ Y2;1;2,1) → h1;3 ▷ Y1;3;2,1

h4,2 ▷ (h2;4 ▷ Y2;4;1,3) → (h1,2h2;2) ▷ Y2;2;4,1

h4,2 ▷ (h2;4 ▷ Y2;4;1,4) → (h1,2h2;2) ▷ Y2;2;4,2

h4,2 ▷ (h2;4 ▷ Y2;4;4,3) → (h1,2h2;2) ▷ Y2;2;2,1

h4,2 ▷ (h2;1 ▷ Y2;1;3,4) → h1;3 ▷ Y1;3;3,4

h4,2 ▷ (h2;4 ▷ Y2;4;4,2) → (h1,2h2;2) ▷ Y2;2;3,4

h4,2 ▷ (h2;1 ▷ Y2;1;3,1) → h1;3 ▷ Y1;3;4,1

h4,2 ▷ (h2;4 ▷ Y2;4;3,2) → (h1,2h2;2) ▷ Y2;2;1,3

h4;2 ▷ Y4;2;4,1 → (h1,2h2;4) ▷ Y2;4;1,2

h4,2 ▷ (h2;1 ▷ Y2;1;3,2) → h1;3 ▷ Y1;3;4,2

h4,2 ▷ (h2;4 ▷ Y2;4;4,2) → (h1,2h2;2) ▷ Y2;2;2,3

h4;1 ▷ Y4;1;4,2 → h1;5 ▷ Y1;5;4,1

h4;1 ▷ Y4;1;3,4 → h1;5 ▷ Y1;5;4,3

h4;1 ▷ Y4;1;3,2 → h1;5 ▷ Y1;5;3,1

h4;2 ▷ Y4;2;2,1 → (h1,2h2;4) ▷ Y2;4;3,2

h4;2 ▷ Y4;2;3,1 → (h1,2h2;4) ▷ Y2;4;4,2

h4;2 ▷ Y4;2;3,2) → (h1,2h2;4) ▷ Y2;4;4,3

h4;1 ▷ Y4;1;2,1 → h1;5 ▷ Y1;5;1,2

h4;1 ▷ Y4;1;3,1 → h1;5 ▷ Y1;5;3,2

h4;2 ▷ Y4;2;4,2 → (h1,2h2;4) ▷ Y2;4;1,3

h4;1 ▷ Y4;1;4,1 → h1;5 ▷ Y1;5;4,2

h4;2 ▷ Y4;2;4,3 → (h1,2h2;4) ▷ Y2;4;1,4

Under such change of variables, the amplitude of four 4-simplices (D.13) turns out to be pro-
portional to that of two (D.4):

AV4 = (V 2
G1
V 19
G2
)AV2 . (D.17)

This Pachner move is illustrated in Fig. 5.14.
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Pachner move P3,3. Consider the amplitude of three 4-simplices (D.7). The last transforma-
tion can be simply checked by applying the following change of variables.

Boundary links
u1;1;1 → u1;5;4

u1;1;2 → u1;5;1

u1;1;3 → u1;5;2

u1;1;4 → u1;5;3

u1;4;1 → u2;4;3

u1;4;2 → u2;4;1

u1;4;3 → u2;4;4

u1;4;4 → u2;4;2

u1;5;1 → u3;3;1

u1;5;2 → u3;3;4

u1;5;3 → u3;3;3

u1;5;4 → u3;3;2

u2;1;1 → u1;4;2

u2;1;2 → u1;4;3

u2;1;3 → u1;4;4

u2;1;4 → u1;4;1

u2;3;1 → u2;3;4

u2;3;2 → u2;3;1

u2;3;3 → u2;3;2

u2;3;4 → u2;3;3

u2;4;1 → u3;2;1

u2;4;2 → u3;2;2

u2;4;3 → u3;2;4

u2;4;4 → u3;2;3

u3;1;1 → u1;1;1

u3;1;2 → u1;1;2

u3;1;3 → u1;1;4

u3;1;4 → u1;1;3

u3;2;1 → u2;1;1

u3;2;2 → u2;1;3

u3;2;3 → u2;1;2

u3;2;4 → u2;1;4

u3;3;1 → u3;1;2

u3;3;2 → u3;1;1

u3;3;3 → u3;1;3

u3;3;4 → u3;1;4

Bulk links
h1;1 → h1;5

h1;4 → h1,2h2;4

h1;5 → h1,3h3;3

h1,2h2;1 → h1;4

h1,2h2;3 → h1,2h2;3

h1,2h2;4 → h1,3h3;2

h1,3h3;1 → h1;1

h1,3h3;2 → h1,2h2;1

h1,3h3;3 → h1,3h3,1

Bulk wedges
X1;1,2h1,2 ▷ X2;5,1 → X1;5,4

X1;1,3h1,3 ▷ X3;4,1 → X1;5,1

X1;1,4 → X1;5,2h1,2 ▷ X2;5,4

X1;1,5 → X1;5,3h1,3 ▷ X3;4,3

X1;4,2h1,2 ▷ X2;5,3 → h1,2 ▷ X2;4,3

X1;4,3h1,3 ▷ X3;4,2 → h1,2 ▷ X2;4,1

X1;4,5 → h1,2 ▷ (X2;4,2X2;2,5)X1;2,3h1,3 ▷ (X3;4,5X3;5,3)

X1;5,2h1,2 ▷ X2;5,4 → h1,3 ▷ X3;3,2

X1;5,3h1,3 ▷ X3;4,3 → h1,2 ▷ X3;3,1

h1,2 ▷ X2;1,3 → X1;4,2h1,2 ▷ X2;5,3

h1,2 ▷ X2;1,4 → X1;4,3h1,3 ▷ X3;4,2

h1,2 ▷ X2;3,4 → h1,2 ▷ (X2;3,2X2;2,5)X1;2,3h1,3 ▷ (X3;4,5X3;5,2)

h1,3 ▷ X3;1,2 → X1;1,2h1,2 ▷ X2;5,1

h1,3 ▷ X3;1,3 → X1;1,3h1,3 ▷ X3;4,1

h1,3 ▷ X3;2,3 → h1,2 ▷ (X2;1,2X2;2,5)X1;2,3h1,3 ▷ (X3;4,5X3;5,1)

h1,2 ▷ (X2;1,2X2;2,5)X1;2,3h1,3 ▷ (X3;4,5X3;5,1) → X1;4,1

h1,2 ▷ (X2;3,2X2;2,5)X1;2,3h1,3 ▷ (X3;4,5X3;5,2) → h1,2 ▷ X2;3,1

h1,2 ▷ (X2;4,2X2;2,5)X1;2,3h1,3 ▷ (X3;4,5X3;5,3) → h1,3 ▷ X3;2,1
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Boundary wedges
(h1;1 ▷ Y1;1;1,2) → (h1;5 ▷ Y1;5;4,1)

(h1;1 ▷ Y1;1;1,3) → (h1;5 ▷ Y1;5;4,2)

(h1;1 ▷ Y1;1;1,4) → (h1;5 ▷ Y1;5;4,3)

(h1;1 ▷ Y1;1;2,3) → (h1;5 ▷ Y1;5;1,2)

(h1;1 ▷ Y1;1;2,4) → (h1;5 ▷ Y1;5;1,3)

(h1;1 ▷ Y1;1;4,3) → (h1;5 ▷ Y1;5;2,3)

(h1;4 ▷ Y1;4;1,2) → h1,2 ▷ (h2;4 ▷ Y2;4;3,1)

(h1;4 ▷ Y1;4;1,3) → h1,2 ▷ (h2;4 ▷ Y2;4;3,4)

(h1;4 ▷ Y1;4;1,4) → h1,2 ▷ (h2;4 ▷ Y2;4;3,2)

(h1;4 ▷ Y1;4;2,3) → h1,2 ▷ (h2;4 ▷ Y2;4;1,4)

(h1;4 ▷ Y1;4;2,4) → h1,2 ▷ (h2;4 ▷ Y2;4;1,2)

(h1;4 ▷ Y1;4;3,4) → h1,2 ▷ (h2;4 ▷ Y2;4;4,2)

(h1;5 ▷ Y1;5;1,2) → h1,3 ▷ (h3;3 ▷ Y3;3;1,4)

(h1;5 ▷ Y1;5;1,3) → h1,3 ▷ (h3;3 ▷ Y3;3;1,3)

(h1;5 ▷ Y1;5;1,4) → h1,3 ▷ (h3;3 ▷ Y3;3;1,2)

(h1;5 ▷ Y1;5;2,3) → h1,3 ▷ (h3;3 ▷ Y3;3;4,3)

(h1;5 ▷ Y1;5;2,4) → h1,3 ▷ (h3;3 ▷ Y3;3;4,2)

(h1;5 ▷ Y1;5;3,4) → h1,3 ▷ (h3;3 ▷ Y3;3;3,2)

h1,2 ▷ (h2;1 ▷ Y2;1;1,2) → (h1;4 ▷ Y1;4;2,3)

h1,2 ▷ (h2;1 ▷ Y2;1;1,3) → (h1;4 ▷ Y1;4;2,4)

h1,2 ▷ (h2;1 ▷ Y2;1;1,4) → (h1;4 ▷ Y1;4;2,1)

h1,2 ▷ (h2;1 ▷ Y2;1;2,4) → (h1;4 ▷ Y1;4;3,1)

h1,2 ▷ (h2;1 ▷ Y2;1;2,3) → (h1;4 ▷ Y1;4;3,4)

h1,2 ▷ (h2;1 ▷ Y2;1;4,3) → (h1;4 ▷ Y1;4;4,1)

h1,2 ▷ (h2;3 ▷ Y2;3;2,1) → h1,2 ▷ (h2;3 ▷ Y2;3;1,4)

h1,2 ▷ (h2;3 ▷ Y2;3;1,3) → h1,2 ▷ (h2;3 ▷ Y2;3;4,2)

h1,2 ▷ (h2;3 ▷ Y2;3;1,4) → h1,2 ▷ (h2;3 ▷ Y2;3;4,3)

h1,2 ▷ (h2;3 ▷ Y2;3;2,3) → h1,2 ▷ (h2;3 ▷ Y2;3;1,2)

h1,2 ▷ (h2;3 ▷ Y2;3;3,4) → h1,2 ▷ (h2;3 ▷ Y2;3;2,3)

h1,2 ▷ (h2;3 ▷ Y2;3;4,2) → h1,2 ▷ (h2;3 ▷ Y2;3;3,1)

h1,2 ▷ (h2;4 ▷ Y2;4;1,2) → h1,3 ▷ (h3;2 ▷ Y3;2;1,2)

h1,2 ▷ (h2;4 ▷ Y2;4;3,1) → h1,3 ▷ (h3;2 ▷ Y3;2;4,1)

h1,2 ▷ (h2;4 ▷ Y2;4;2,3) → h1,3 ▷ (h3;2 ▷ Y3;2;2,4)

h1,2 ▷ (h2;4 ▷ Y2;4;2,4) → h1,3 ▷ (h3;2 ▷ Y3;2;2,3)

h1,2 ▷ (h2;4 ▷ Y2;4;4,1) → h1,3 ▷ (h3;2 ▷ Y3;2;3,1)

h1,2 ▷ (h2;4 ▷ Y2;4;3,4) → h1,3 ▷ (h3;2 ▷ Y3;2;4,3)

h1,3 ▷ (h3;1 ▷ Y3;1;1,2) → (h1;1 ▷ Y1;1;1,2)

h1,3 ▷ (h3;1 ▷ Y3;1;1,3) → (h1;1 ▷ Y1;1;1,4)

h1,3 ▷ (h3;1 ▷ Y3;1;1,4) → (h1;1 ▷ Y1;1;1,3)

h1,3 ▷ (h3;1 ▷ Y3;1;2,3) → (h1;1 ▷ Y1;1;2,4)

h1,3 ▷ (h3;1 ▷ Y3;1;2,4) → (h1;1 ▷ Y1;1;2,3)

h1,3 ▷ (h3;1 ▷ Y3;1;4,3) → (h1;1 ▷ Y1;1;3,4)

h1,3 ▷ (h3;2 ▷ Y3;2;1,2) → h1,2 ▷ (h2;1 ▷ Y2;1;1,3)

h1,3 ▷ (h3;2 ▷ Y3;2;1,4) → h1,2 ▷ (h2;1 ▷ Y2;1;1,4)

h1,3 ▷ (h3;2 ▷ Y3;2;2,3) → h1,2 ▷ (h2;1 ▷ Y2;1;3,2)

h1,3 ▷ (h3;2 ▷ Y3;2;2,4) → h1,2 ▷ (h2;1 ▷ Y2;1;4,3)

h1,3 ▷ (h3;2 ▷ Y3;2;3,1) → h1,2 ▷ (h2;1 ▷ Y2;1;2,1)

h1,3 ▷ (h3;2 ▷ Y3;2;3,4) → h1,2 ▷ (h2;1 ▷ Y2;1;2,4)

h1,3 ▷ (h3;3 ▷ Y3;3;1,2) → h1,3 ▷ (h3;1 ▷ Y3;1;2,1)

h1,3 ▷ (h3;3 ▷ Y3;3;1,3) → h1,3 ▷ (h3;1 ▷ Y3;1;2,3)

h1,3 ▷ (h3;3 ▷ Y3;3;4,1) → h1,3 ▷ (h3;1 ▷ Y3;1;4,2)

h1,3 ▷ (h3;3 ▷ Y3;3;2,3) → h1,3 ▷ (h3;1 ▷ Y3;1;1,3)

h1,3 ▷ (h3;3 ▷ Y3;3;4,2) → h1,3 ▷ (h3;1 ▷ Y3;1;4,1)

h1,3 ▷ (h3;3 ▷ Y3;3;3,4) → h1,3 ▷ (h3;1 ▷ Y3;1;4,3)

Under such change of variables the amplitude of the three 4-simplices (D.7) goes in itself. Both
the amplitude describe three 4-simplices glued each other in such a way that each of them shares
one tetrahedron with each of the other. Therefore, each 4-simplex has 2 tetrahedra shared with
the other two 4-simplices and three boundary tetrahedra. The change of variable, and thus the
Pachner move, takes this combination, into an equivalent one, where each of the three boundary
tetrahedra of each of the three initial 4-simplices, becomes the boundary tetrahedron of each of
the new three 4-simplices. Even though the combinatorics is different, the two amplitudes are
clearly equivalent

AV3 = A′
V3
. (D.18)

This move is represented in Fig. 5.15.
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Appendix E

New proposal for a 2-Hopf algebra

Here I present a new proposal for a 2-Hopf algebra. I will first introduce the fundamental
ingredients and definitions. Then I provide the concrete examples of a 2-Hopf algebra of functions
on a 2-group.

E.1 2-Bi-algebra

2-Hopf algebra

Definition 19 (Constrained tensor product). Consider the bi-algebra A. Let A⊗A be the usual
tensor product on it. Consider the constraint C ∈ A⊗A, and use it to define the restricted tensor
product □ C given as the usual tensor product ⊗ defined on the subspace A⊗ A that satisfy the
constraint C:

A□ CA =
{
a1 ⊗ a2 ∈ A⊗ A

∣∣ C = 0
}
. (E.1)

Definition 20 (2-Bi-algebra). A 2-bi-algebra is given by the set of

• a bi-algebra G;

• the semi-direct co-product of bi-algebras H >◀ G. The bi-algebra maps (product ◦, co-
product ∆H and co-unit εH) on H >◀ G are called horizontal;

• a pair of constraints C1, C2 ∈ (H >◀ G) ⊗ (H >◀ G), used to define the pair of restricted
tensor products □ C1 and □ C2;

• the set of bi-algebra maps on H >◀ G, called vertical:

Product: · : (H >◀ G)□ C1(H >◀ G) → (H >◀ G) ,

Co-product: ∆V : (H >◀ G) → (H >◀ G)□ C2(H >◀ G) ,

Co-unit: εV : (H >◀ G) → C .
(E.2)

The horizontal and vertical maps have to satisfy the compatibility relations

◦ (· ⊗ ·) = · (◦ ⊗ ◦) (id ⊗ τ ⊗ id) ,
(∆V ⊗∆V )∆H = (id ⊗ τ ⊗ id) (∆H ⊗∆H)∆V ,

(E.3)

where τ denotes the permutation map on H ⋊G.
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Definition 21 (2-Hopf algebra). Consider a 2-bi-algebra and suppose that there exist a pair of
antipodes SG : G→ G and S : (H >◀ G) → (H >◀ G) so that G and H >◀ G are Hopf algebras.
The 2-bi-algebra turns into a 2-Hopf algebra if the map S : (H >◀ G) → (H >◀ G) is an antipode
also for the vertical maps.

Pairing 2-bi-algebras

Definition 22 (Skew paired 2-bi-algebras). Given two 2-bi-algebras G ∋ ϕ and G∗ ∋ ϕ̂, they are
skew paired if there exists a map σ : G∗ ⊗ G → C such that

σ(ϕ̂ , (ϕ1 · ϕ2)) = σ(∆op
V ϕ̂ , (ϕ1 ⊗ ϕ2)) ,

σ(ϕ̂ , (ϕ1 ◦ ϕ2)) = σ(∆op
H ϕ̂ , (ϕ1 ⊗ ϕ2)) ,

σ((ϕ̂1 · ϕ̂2) , ϕ) = σ((ϕ̂1 ⊗ ϕ̂2) , ∆V ϕ) ,

σ((ϕ̂1 ◦ ϕ̂2) , ϕ) = σ((ϕ̂1 ⊗ ϕ̂2) , ∆Hϕ) .
(E.4)

The skew pairing has to satisfy the unit relations

σ(η̂H , ϕ) = εHϕ , σ(η̂V , ϕ) = εV ϕ ,

σ(ϕ̂ , ηH) = εH ϕ̂ , σ(ϕ̂ , ηV ) = εV ϕ̂ .
(E.5)

Definition 23 (2-Plane wave). Given two 2-bi-algebras G and G∗, the 2-plane-wave is an element
of their tensor product E ∈ G ⊗ G∗, which satisfies the following set of properties.

Product/co-product relations:

(∆H ⊗ id)E = (id⊗2 ⊗ ◦) (E ⊗ E) ,

(∆V ⊗ id)E = (id⊗2 ⊗ ·) (E ⊗ E) ,

(id ⊗∆H)E = (◦op ⊗ id⊗2) (E ⊗ E) ,

(id ⊗∆V )E = (·op ⊗ id⊗2) (E ⊗ E) .
(E.6)

Unit/co-unit relations:

(εH ⊗ id)E = η̂H , (id ⊗ εH)E = ηH ,

(εV ⊗ id)E = η̂V , (id ⊗ εV )E = ηV .
(E.7)

There also exist a pair of inverse plane waves, called horizontal and vertical inverses and resp.
denoted E−1H and E−1 V .

E.2 Examples

Finite 2-groups

Example 1 (2-Bi-algebra of functions on a finite 2-group). Consider the finite 2-group G given
by the finite group of morphisms G and the finite group of 2-morphosms H ⋊ G. Consider the
bi-algebra of functions on them: F (G) with elements f : G → C and F (H ⋊ G) with elements
ϕ : H ⋊G→ C.
F (G) is the usual bi-algebra of functions on a finite group (with pointwise product), while the
bi-algebra F (H ⋊G) is given below.
First, I introduce the source and target maps

s : F (H ⋉G) → F (G)

(sϕ)(h, g) = ϕ0(g)

t : F (H ⋊G) → F (G)

(tϕ)(h, g) = ϕ0(t(h)g) ,
(E.8)
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where ϕ0 ∈ F (G) is the projection of the function ϕ ∈ F (H ⋊G) into F (G). Consider then the
constraint

F (H1 ⋊G1)⊗ F (H2 ⋊G2) ∋ C : (tϕ)(h1, g1) = (sϕ)(h2, g2) . (E.9)

Use the constraint C to define the restricted tensor product □ C. Moreover, I use the subscript
V to denote (

(H1 ⋊G1)× (H2 ⋊G2)
)
V
≡ ·
(
(H1 ⋊G1)□ C(H2 ⋊G2)

)
, (E.10)

the 2-group with elements given by the vertical composition of elements in the constrained tensor
product □ C. This construction ensures that the elements in H1 ⋊G1 and H2 ⋊G2 are vertically
composable.
The 2-bi-algebra of functions F (H ⋊G), is specified by the horizontal structure

Horizontal product: (ϕ ◦ φ)(h, g) = 1√
|H|

∑
h′, g′

ϕ(h′, g′)φ
(
(h′, g′)−1 V · (h, g)

)
=

1√
|H|

∑
h′, g′

ϕ(h′, g′)φ(hh′
−1
, g′) δG

(
t(h′)g′g−1

)
,

Horizontal co-product: ∆Hϕ
(
(h1, g1) , (h2, g2)

)
=

1√
|H|

ϕ
(
(h1, g1) ◦ (h2, g2)

)
=

1√
|H|

ϕ
(
h1(g1 ▷ h2), g1g2

)
,

Horizontal unit: ηH =
√
|H|α ,

Horizontal co-unit: εHϕ =
√

|H|ϕ(1, 1) ,

Here |G| =
∑

g and |H| =
∑

h denote resp. the number of elements in the finite groups G and
H, and the unit is defined as the function

F (G) ∋ α(h, g) =

{
1 if h = 1

0 otherwise .
(E.11)

The pair of bi-algebras F (G) and F (H ⋊ G) form a 2-bi-algebra when it is equipped with the
vertical structure

Vertical product: (ϕ · φ)(h, g) = 1√
|H|

∑
h′, g′

ϕ(h′, g′)φ
(
(h′, g′)−1H ◦ (h, g)

)
=

1√
|H|

∑
h′, g′

ϕ(h′, g′)φ
(
g′

−1
▷ (h′

−1
h), g′

−1
g
)
,

Vertical co-product: ∆V ϕ
(
(h1, g1) , (h2, g2)

)
=

1√
|H|

ϕ
(
(h1, g1) · (h2, g2)

)
,

=
1√
|H|

ϕ
(
h2h1, g1

)
δG
(
t(h1)g1g

−1
2

)
,

Vertical unit: ηV =
√
|H| δ ,

Vertical co-unit: εV ϕ =
√

|H|
∑
h, g

ϕ(h, g)α(h, g)

Here I denoted resp. δG and δ the deltas in the bi-algebras F (G) and F (H ⋊G), and I used the
delta in F (G) to define a function on the vertical composition of 2-group elements. Moreover,
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the function α in the vertical unit was defined in (E.11). Note that the horizontal and vertical
structures, as maps, are

◦ : F (H1 ⋊G1)⊗ F
(
(H1 ⋊G1)× (H2 ⋊G2)

)
V
→ F (H ⋊G) ,

∆H : F (H ⋊G) → F
(
(H ⋊G)⊗ (H ⋊G)

)
,

εH : (H ⋊G) → C ,
(E.12)

· : F (H ⋊G)⊗ F (H ⋊G) → F (H ⋊G) ,

∆V : F
(
(H1 ⋊G1)× (H2 ⋊G2)

)
V
→ F

(
(H ⋊G)⊗ (H ⋊G)

)
,

εV : F (H ⋊G) → C .
(E.13)

One can check that the vertical structure form a bi-algebra and that is is compatible with the
horizontal one, according to (E.3).

Continuous group

Definition 24 (Haar measure). Given a 2-group, we denote

• dgL/R resp. the left or right Haar measure on G. They resp. satisfy the left or right
invariance properties

dgL = d[g′g]L , dgR = d[gg′]R , (E.14)

for all g′ ∈ G;

• d[(h, g)]L/R resp. the left or right Haar measure on the semi-direct product of groups H⋊G.
They resp. satisfy the left or right invariance properties

d[(h, g)]L = d[(h′, g′) ◦ (h, g)]L , d[(h, g)]R = d[(h, g) ◦ (h′, g′)]R , (E.15)

for all (h′, g′) ∈ H ⋊G.

Note that, since the convention H⋊G for the semi-direct product of groups implies a left action,
the left and right Haar measures on it can be written as1

d[(h, g)]L ≡ dhdg , d[(h, g)]R ≡ dhdg
1

D(ag)
. (E.17)

Proposition 17 (Vertical measure). Consider the 2-group G and the left Haar measure on it
d[(h, g)] (drop the index L). Let me refer to it as the left horizontal measure. Call

d[(h, g)] δG((t(h
′)g′)−1g) , (E.18)

the left vertical measure, since it satisfies the left invariance property

d[(h, g)] δG((t(h
′)g′)−1g) = d[(h′, g′) · (h, g)] . (E.19)

1Using instead the convention G⋉H for the semi-direct product of groups, since here there is a right action,
the left and right Haar measure on it can be written as

d[(h, g)]L ≡ dhdg
1

D′(ag)
, d[(h, g)]R ≡ dhdg . (E.16)
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Proof. To prove the proposition I simply use the expression of the function on the vertical
composition and the left horizontal invariance of the measure d[(h, g)].

d[(h′, g′) · (h, g)] = d[(hh′, g′)] δG((t(h
′)g′)−1g) = d[(hh′, t(h

′ −1)g)] δG((t(h
′)g′)−1g)

= d[(h′, t(h
′ −1)) ◦ (h, g)] δG((t(h′)g′)−1g)

= d[(h, g)] δG((t(h
′)g′)−1g) . (E.20)

Example 2 (2-Bi-algebra of functions on a continuous 2-group). Consider the 2-group G given
by the group of morphisms G and the group of 2-morphosms H ⋊G. Consider the bi-algebra of
functions on them: F (G) with elements f : G→ C and F (H⋊G) with elements ϕ : H⋊G→ C.
F (G) is the usual bi-algebra of functions on a continuous group (with pointwise product), while
the bi-algebra F (H ⋊G) is given below.
First, I introduce the source and target maps

s : F (H ⋉G) → F (G)

(sϕ)(h, g) = ϕ0(g)

t : F (H ⋊G) → F (G)

(tϕ)(h, g) = ϕ0(t(h)g) ,
(E.21)

where ϕ0 ∈ F (G) is the projection of the function ϕ ∈ F (H ⋊G) into F (G). Consider then the
constraint

F (H1 ⋊G1)⊗ F (H2 ⋊G2) ∋ C : (tϕ)(h1, g1) = (sϕ)(h2, g2) . (E.22)

Use the constraint C to define the restricted tensor product □ C. Moreover, we denote(
(H1 ⋊G1)× (H2 ⋊G2)

)
V
≡ ·
(
(H1 ⋊G1)□ C(H2 ⋊G2)

)
, (E.23)

the 2-group with elements given by the vertical composition of elements in the constrained tensor
product □ C. This construction ensures that the elements in H1 ⋊G1 and H2 ⋊G2 are vertically
composable.
The 2-bi-algebra of functions F (H ⋊G), is specified by the horizontal structure

Horizontal product: (ϕ ◦ φ)(h, g) = 1√
VH

∫
d[(h′, g′)]ϕ(h′, g′)φ

(
(h′, g′)−1 V · (h, g)

)
=

1√
VH

∫
d[(h′, g′)]ϕ(h′, g′)φ(hh′

−1
, g′) δG

(
t(h′)g′g−1

)
,

Horizontal co-product: ∆Hϕ
(
(h1, g1) , (h2, g2)

)
=

1√
VH

ϕ
(
(h1, g1) ◦ (h2, g2)

)
=

1√
VH

ϕ
(
h1(g1 ▷ h2), g1g2

)
,

Horizontal unit: ηH =
√
VH α ,

Horizontal co-unit: εHϕ =
√
VH ϕ(1, 1) ,

Here VG =
∫
dg and VH =

∫
dh denote resp. the volumes of the groups G and H, and the unit

is defined similarly to the function (E.11) for the finite group case, where the Kronecker delta is
replaced by a Dirac delta. The pair of bi-algebras F (G) and F (H ⋉G) form a 2-bi-algebra when
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it is equipped with the vertical structure

Vertical product: (ϕ · φ)(h, g) = 1√
VH

∫
d[(h′, g′)]ϕ(h′, g′)φ

(
(h′, g′)−1H ◦ (h, g)

)
=

1√
VH

∫
d[(h′, g′)]ϕ(h′, g′)φ

(
g′

−1
▷ (h′

−1
h), g′

−1
g
)
,

Vertical co-product: ∆V ϕ
(
(h1, g1) , (h2, g2)

)
=

1√
VH

ϕ
(
(h1, g1) · (h2, g2)

)
,

=
1√
VH

ϕ
(
h2h1, g1

)
δG
(
t(h1)g1g

−1
2

)
,

Vertical unit: ηV =
√
VH δ ,

Vertical co-unit: εV ϕ =
√
VH

∫
d[(h, g)]ϕ(h, g)α(h, g)

Here I denoted resp. δG and δ the Dirac deltas in the bi-algebras F (G) and F (H ⋊ G), and I
used the delta in F (G) to define a function on the vertical composition of 2-group elements.
One can check that the vertical structure form a bi-algebra and that is is compatible with the
horizontal one, according to (E.3).

Dual 2-bi-algebra and 2-plane wave

Proposition 18. Consider the 2-bi-algebra F (G) with elements ϕ(y, u) with structure given in
example 2 and the 2-bi-algebra F (G∗) specified by the horizontal and vertical structures below.

F (G∗) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Horizontal product: (ϕ̂1 ◦ ϕ̂2)(λ, β) =
1√
VG∗

∫
d[(λ′, β′)] ϕ̂1(λ

′, β′) ϕ̂2

(
(λ, β) · (λ′, β′)−1 V

)
,

Vertical product: (ϕ̂1 · ϕ̂2)(λ, β) =
1√
VG∗

∫
d[(λ′, β′)] ϕ̂1(λ

′, β′)ϕ̂2

(
(λ, β) ◦ (λ′, β′)−1H

)
,

Horizontal co-product: ∆H ϕ̂
(
(λ1, β1) , (λ2, β2)

)
=

1√
VG∗

ϕ̂
(
(λ1, β1) ◦ (λ2, β2)

)
,

Vertical co-product:
1√
VG∗

ϕ̂
(
(λ1, β1) , (λ2, β2)

)
=

1

VG∗
ϕ̂
(
(λ1, β1) · (λ2, β2)

)
,

Horizontal unit: η̂H =
√
VG∗ α̂ ,

Vertical unit: η̂V =
√
VG∗ δ̂ ,

Horizontal co-unit: εH ϕ̂ =
√
VG∗ ϕ̂(1, 1) ,

Vertical co-units: εV ϕ̂ =
√
VG∗

∫
d[(λ, β)] ϕ̂(λ, β) α̂(λ, β) .

(E.24)
Where the function α̂ is similar to the function α used in Ex. 2 and the term VG∗ =

∫
dβ is the

volume of the group G∗.
The plane wave E ∈ F (G)⊗F (G∗) satisfies the properties below ∀(y, u) ∈ G2⋊G1 and ∀(λ, β) ∈
G∗

2 ⋉G∗
1.
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Product/co-product relations:

E
(
(y1, u1) ◦ (y2, u2) , (λ, β)

)
=

∫
d[(λ′, β′)]E

(
(y1, u1) , (λ

′, β′)
)
E
(
(y2, u2) , (λ, β) · (λ′, β′)−1 V

)
,

E
(
(y1, u1) · (y2, u2) , (λ, β)

)
=

∫
d[(λ′, β′)]E

(
(y1, u1) , (λ

′, β′)
)
E
(
(y2, u2) , (λ, β) ◦ (λ′, β′)−1H

)
,

E
(
(y, u) , (λ1, β1) ◦ (λ2, β2)

)
=

∫
d[(y′, u′)]E

(
(u′, y′) , (λ2, β2)

)
E
(
(y′, u′)−1 V · (y, u) , (λ1, β1)

)
,

E
(
(y, u) , (λ1, β1) · (λ2, β2)

)
=

∫
d[(y′, u′)]E

(
(u′, y′) , (λ2, β2)

)
E
(
(y′, u′)−1H ◦ (y, u) , (λ1, β1)

)
.

(E.25)
Unit/co-unit relations:

E
(
(1, 1) , (λ, β)

)
= α̂(λ, β) ,∫

d[(y, u)]E
(
(y, u) , (λ, β)

)
α(y, u) = δ̂(λ, β) ,

E
(
(y, u) , (1, 1)

)
= α(y, u) ,∫

d[(λ, β)]E
(
(y, u) , (λ, β)

)
α̂(λ, β) = δ(y, u) .

(E.26)
Horizontal and vertical inverses:

E−1H
(
(y, u) , (λ, β)

)
= E

(
(y, u)−1H , (λ, β)

)
= E

(
(y, u) , (λ, β)−1H

)
,

E−1 V
(
(y, u) , (λ, β)

)
= E

(
(y, u)−1 V , (λ, β)

)
= E

(
(y, u) , (λ, β)−1 V

)
.

(E.27)

Such 2-bi-algebras F (G) and F (G∗) are dual to each other, with the map σ given in terms of the
plane wave:

σ(ϕ̂ , ϕ) =

∫
d[(y, u)]d[(λ, β)]E

(
(y, u) , (λ, β)

)
ϕ̂(λ, β)ϕ(y, u) . (E.28)

(y−1
1 , t(y1)u) · (y2, u2) = (y2y

−1
1 , t(y1)u1) u1 = u2 (E.29)

Lemma 1. Given the dual 2-bi-algebras in Prop. 18, the following identities hold.∫
d[(y, u)]E

(
(y, u) , (λ1, β1)

)
E−1

(
(y, u) , (λ2, β2)

)
= δ̂
(
(λ1, β1) ◦ (λ2, β2)−1H

)
,∫

d[(λ, β)]E
(
(y1, u1) , (λ, β)

)
E−1

(
(y2, u2) , (λ, β)

)
= δ
(
(y1, u1) ◦ (y2, u2)−1H

)
.

(E.30)

Fourier transform

Definition 25 (Fourier transform). Given the dual 2-bi-algebras F (G) and F (G∗), the Fourier
transform F : F (G) → F (G∗) is defined as

F [ϕ](λ, β) =

∫
d[(y, u)]E−1

(
(y, u) , (λ, β)

)
ϕ(y, u) . (E.31)

Proposition 19 (Inverse Fourier transform). The inverse Fourier transform is the map F−1 :
F (G∗) → F (G) defined by

F−1[ϕ̂](y, u) =

∫
d[(λ, β)]E

(
(y, u) , (λ, β)

)
ϕ̂(λ, β) . (E.32)

and satisfies
F [F−1] = id , F−1[F ] = id . (E.33)
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Theorem 3 (Generalized convolution theorem). Given the dual 2-bi-algebras F (G) and F (G∗),
the following identities hold

F [(ϕ1 ◦ ϕ2)] = F [ϕ1] · F [ϕ2] ,

F [(ϕ1 · ϕ2)] = F [ϕ1] ◦ F [ϕ2] ,

F−1[(ϕ̂1 ◦ ϕ̂2)] = F [ϕ̂1] · F [ϕ̂2] ,

F−1[(ϕ̂1 · ϕ̂2)] = F−1[ϕ̂1] ◦ F−1[ϕ̂2] .
(E.34)

Theorem 4 (Co-convolution theorem). Given the dual 2-bi-algebras F (G) and F (G∗), the fol-
lowing identities hold

F [∆Hϕ] = ∆op
V F [ϕ] ,

F [∆V ϕ] = ∆op
HF [ϕ] ,

F−1[∆op
H ϕ̂] = ∆op

V F [ϕ̂] ,

F−1[∆op
V ϕ̂] = ∆op

HF
−1[ϕ̂] .

(E.35)

Pills of 2-group field theory

In this part I show how to apply the abstract non-sense concepts of dual 2-bi-algebras to formalize
the notion of field and dual field for a 2-group field theory given in Sec. 5.3.

Definition 26 (Field). Consider the external product of four copies of the 2-group G and let
ϕ ∈ F (G×4) be a function on them. The field in 2-GFT is the function

Φ
(
(y1,2, u1,2), . . . , (y3,4, u3,4)

)
=
(
·1 9 ·2 12 ·3 4 ·5 11 ·6 7 ·8 10

)
(∆3

V ⊗∆3
V ⊗∆3

V ⊗∆3
V )ϕ , (E.36)

where ·i j is a vertical product between the tensor spaces i and j. Explicitly it writes

Φ =

∫
d[(y, u)]12 ϕ

(
(y1, u1) · (y2, u2) · (y3, u3) , (y4, u4) · (y5, u5) · (y6, u6) ,

(y7, u7) · (y8, u8) · (y9, u9) , (y10, u10) · (y11, u11) · (y12, u12)
)

δ
(
(y1, u1) ◦ (y9, u9) ◦ (y1,9, u1,9)−1H

)
δ
(
(y2, u2) ◦ (y12, u12) ◦ (y2,12, u2,12)−1H

)
δ
(
(y3, u3) ◦ (y4, u4) ◦ (y3,4, u3,4)−1H

)
δ
(
(y5, u5) ◦ (y11, u11) ◦ (y5,11, u5,11)−1H

)
δ
(
(y6, u6) ◦ (y7, u7) ◦ (y6,7, u6,7)−1H

)
δ
(
(y8, u8) ◦ (y10, u10) ◦ (y8,10, u8,10)−1H

)
.

(E.37)

Definition 27 (Dual field). Consider the external product of four copies of the 2-group G∗ and
let ϕ̂ ∈ F (G∗×4) be a function on them. The dual field in 2-GFT is the function

Φ̂
(
(λ1,2, β1,2), . . . , (λ3,4, β3,4)

)
=
(
◦1 9 ◦2 12 ◦3 4 ◦5 11 ◦6 7 ◦8 10

)
(∆3

H ⊗∆3
H ⊗∆3

H ⊗∆3
H)ϕ , (E.38)

where ◦i j is an horizontal product between the tensor spaces i and j. Explicitly it writes

Φ̂ =

∫
d[(λ, β)]12 ϕ̂

(
(λ1, β1) ◦ (λ2, β2) ◦ (λ3, β3) , (λ4, β4) ◦ (λ5, β5) ◦ (λ6, β6) ,

(λ7, β7) ◦ (λ8, β8) ◦ (λ9, β9) , (λ10, β10) ◦ (λ11, β11) ◦ (λ12, β12)
)

δ
(
((λ1, β1) · (λ9, β9)) ◦ (λ1,9, β1,9)−1 V

)
δ
(
((λ2, β2) · (λ12, β12)) ◦ (λ2,12, β2,12)−1 V

)
δ
(
((λ3, β3) · (λ4, β4)) ◦ (λ3,4, β3,4)−1 V

)
δ
(
((λ5, β5) · (λ11, β11)) ◦ (λ5,11, β5,11)−1 V

)
δ
(
((λ6, β6) · (λ7, β7)) ◦ (λ6,7, β6,7)−1 V

)
δ
(
((λ8, β8) · (λ10, β10)) ◦ (λ8,10, β8,10)−1 V

)
.

(E.39)

Note that, the definition of dual field Φ̂ can be derived by that of the field Φ using the Generalized
Convolution and Co-convolution Theorems 3 and 4.
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