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Abstract

The development of new therapeutic pathways for the treatment of diabetes requires highly
interdisciplinary research. For the last fifty years, the need for interdisciplinarity in
translational research projects has been further strengthened by the digital revolution. The
Artificial Pancreas (AP) is a prime example of medical device developed thanks to the
contribution of scientists, engineers, and mathematicians. APs, as “all-in-one” diabetes
management systems now appear as a standard of care to restore the glucose homeostasis of
type 1 diabetic patients. These semi-automated closed-loop devices successfully replace the
defective endogenous insulin secretion by the continuous infusion of finely-tuned exogenous
insulin boluses.

Our research consortium developed a biosensor enabling the real-time characterisation of
pancreatic islet algorithms via non-invasive electrophysiological measurements. We hypothesize
that, in contact with T1D patient interstitial fluids, healthy islets embedded in this wearable
biosensor could provide an indication on the patient’s need in insulin and thus constitute a
valuable physiological input for the AP. This thesis work investigates the contribution of
numerical simulation to the development of an AP system involving this innovative sensor.

The introductory chapter of the manuscript provides the scientific context of this work,
which lies at the intersection of biology, electrophysiology, electronics, control theory and
diabetology. The second chapter then presents the necessary material and the methods
developed to achieve the results described and discussed thereafter.

Our research approach was divided into two separate simulation pathways. A first pathway,
described in Chapter 3, intended to validate the biosensor’s working principle by exploiting the
advantages of numerical simulation. This approach is however not realistic from a clinical
standpoint as it uses intravenous routes. In particular, we achieved excellent glucose control
using a regulation scheme based on electrically-characterised endogenous islets algorithms.
Integrating the islet models in an AP architecture, we then developed a second simulation
pathway to assess the potential contribution of our biosensor to type 1 diabetes treatment.
This pathway, described in Chapter 4, uses a more clinically realistic configuration of the
virtual patient simulator which enables a comparison between our biosensor-based AP and
standard treatment approaches. These preliminary results are promising: the biosensor-based
AP permitted a satisfactory glucose control, even in challenging conditions (meals containing
high glycaemic loads). The identification of the benefits and limitations of our simulation
campaign gives rise to a discussion on the contribution of numerical simulation to the
development of new solutions for the treatment of diabetes. As a conclusion, we define general
guidelines in an attempt to lay the groundwork for a future real-world implementation of a
biosensor-based AP system.
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Résumé

Le développement de nouvelles voies thérapeutiques pour le traitement du diabete
nécessite une approche pluridisciplinaire de la recherche médicale. Au cours des derniéres
décennies, le besoin de pluridisciplinarité dans les projets de recherche translationnelle s’est
considérablement accru du fait de l'utilisation croissante des technologies numériques. Le
pancréas artificiel (Artificial Pancreas en anglais) est un exemple type de dispositif médical
développé griace a la collaboration de médecins, de scientifiques, d’ingénieurs et de
mathématiciens. Les pancréas artificiels sont des dispositifs tout-en-un facilitant la gestion des
différents aspects du traitement du diabete. Ils font désormais partie intégrante de ’offre
thérapeutique permettant aux patients diabétiques de type 1 de rétablir une homéostasie du
glucose normale. Ces dispositifs de controle en boucle fermée remplacent de maniere efficace la
sécrétion endogene d’insuline, défaillante dans le cas du diabete de type 1, par une
administration continue et semi-automatique d’insuline exogene.

Notre consortium de recherche a développé un biocapteur permettant la caractérisation en
temps réel des algorithmes endogenes des flots pancréatiques par le biais de mesures
électrophysiologiques non invasives. Nous formulons I’hypothése que, mis en contact avec le
liquide interstitiel de patients diabétiques de type 1, des ilots pancréatiques sains intégrés dans
une version portable du biocapteur, permettraient l'estimation en temps réel du besoin en
insuline des patients. Ils fourniraient ainsi une information précieuse au pancréas artificiel.
Cette these a pour objectif d’évaluer le rdle que peut jouer la simulation numérique dans le
développement d'un pancréas artificiel développé autour de ce nouveau biocapteur.

Le chapitre d’introduction de ce manuscrit permet au lecteur de découvrir le contexte
scientifique de ce travail qui se trouve & l'intersection de la biologie, de I’électrophysiologie, de
I’électronique embarquée, de 'automatique et de la diabétologie. Le second chapitre présente
quant a lui le matériel et les différentes méthodes ayant permis l'obtention des résultats
présentés et discutés dans la suite du manuscrit.

Au cours de notre travail en simulation, nous avons développé deux axes de recherche
distincts. Un premier axe, décrit dans le chapitre 3, profite des possibilités offertes par la
simulation numérique pour valider le principe de mesure du biocapteur. Cette approche est peu
réaliste d’un point de vue clinique notamment par son recours aux voies de mesures
intraveineuses. Il a permis de montrer que la régulation de la glycémie a partir de la
caractérisation électrique des algorithmes endogenes des flots pancréatiques est non seulement
possible, mais permet en outre d’obtenir d’excellentes performances. L’intégration des modéles
d’ilots pancréatiques, via notre biocapteur, au sein d’une architecture de pancréas artificiel a
ensuite permis d’évaluer le potentiel de cette solution innovante pour le traitement du diabete
de type 1. Ce second axe de recherche, décrit dans le chapitre 4, repose sur une configuration
plus réaliste du simulateur de patient virtuel et permet donc une comparaison plus juste avec
les options thérapeutiques de référence. Les résultats préliminaires obtenus sont encourageants :
le pancréas artificiel intégrant notre biocapteur permet un controle glycémique satisfaisant, et
ce méme dans des conditions difficiles (repas riches en glucides). La discussion des qualités et
défauts de notre approche in silico a notamment permis de décrire de maniere objective le
potentiel de la simulation numérique pour faciliter le développement de nouveaux traitements
pour le diabeéte. A partir des enseignements de ce travail en simulation, la conclusion de ce
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manuscrit formule un ensemble de directives ayant pour objectif de poser des fondations solides

en vue de ’intégration future de notre biocapteur dans un pancréas artificiel réel.

Mots clés

Diabete, Bioélectronique, Pancréas artificiel, Capteurs, Controle en boucle fermée,

Modélisation.
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Chapter 1

Scientific context

Trying to find a cure or a treatment for diabetes requires highly interdisciplinary research,
particularly in translational research project investigating innovative solutions for patient
treatment. For the last fifty years, the need for interdisciplinarity has been further strengthened
by the digital revolution. The increasing use of computer science and high-technology devices
in medicine led to the involvement of computer scientists, engineers or mathematicians in
medical research. The development of the Artificial Pancreas (AP) to treat diabetes mellitus
is a prime example. The regulation of blood glucose (BG) with automated closed-loop systems
requires expertise in control theory; methods to measure blood glucose with higher time
resolution were also developed and data scientists, with expertise in mathematics and statistics,
are now necessary to analyse these data and develop powerful algorithms (e.g., adaptive
algorithms, learning algorithms). In addition, a variety of engineers (e.g., electronics, computer,
science, and mechanical science to name a few) is necessary to design wearable medical devices

for glucose monitoring and insulin infusion.

This work is at the intersection of biology, electronics, control theory and diabetology. The
development of our biosensor, integrating more inputs than traditional glucose sensors, raises
the hope of a much finer tuning of diabetic patient's treatment. This biosensor is the result of
ten years of research implying an interdisciplinary consortium of French research teams. In an
attempt to provide the reader with the basic knowledges to understand the contribution of this
work, this first chapter will define the most important concepts and key-elements from each
discipline, as well as the state of the art of diabetes therapy. This thesis work is included in a

broader research project, which objectives will be described.

The first chapter is organised as followed: the first subsection provides some basics about
the chemistry and physiology of glucose homeostasis', then the diabetes disease is described
with a focus on its pathophysiology. In the third subsection, the different therapeutic options
are presented together with the most promising research approaches. The fourth subsection
shows how the digital revolution impacted diabetes treatment by giving rise to new hopes with
the development of a fully automated biomechanical pancreas. To conclude, the current
technological limitations will be highlighted to define the problem that this work aims to
address, thus emphasizing its relevance.

! Glucose homeostasis: glucose, as many other molecules (such as ions), have to be kept within a narrow range in

the bloodstream and interstitial fluid to ascertain physiological function. Maintenance of this narrow range is named

homeostasis.
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1.1. Understand the physiology, biology and chemistry of

glucose homeostasis

Even though this work is focused on computer-aided simulation and medical devices for
the treatment of diabetes, some concepts of physiology and biochemistry are necessary to better
understand the context of diabetes mellitus and its impact on patients. The British
Physiological and Biochemical Chemistry societies define physiology and biochemistry as

follows:

“Physiology is the science of life. It is the branch of biology that aims to understand the
mechanisms of living things, from the basis of cell function at the ionic and molecular level to
the integrated behaviour of the whole body and the influence of the external environment.
Research in physiology helps us to understand how the body works in health and how il responds
and adapts to the challenges of everyday life; it also helps us to determine what goes wrong in
disease, facilitating the development of new treatments and guidelines for maintaining human
and animal health. The emphasis on integrating molecular, cellular, systems and whole-body
function is what distinguishes physiology from the other life sciences.”

(Physiological Society — United Kingdom)

“Biochemistry is the branch of science that explores the chemical processes within and
related to living organisms. It is a laboratory-based science that brings together biology and
chemistry. By using chemical knowledge and techniques, biochemists can understand and solve

biological problems.”
(Biochemical Chemistry Society - United Kingdom)

The study of diabetes mellitus is at the crossroad of these disciplines due to the
characteristics of the disease which mainly affects insulin secretion at cellular and organ levels,
while having major consequences on nutrient homeostasis — i.e., at whole-body level. To better
understand diabetes, the known symptoms and the currently available treatments, we will at
first describe the glucose metabolism?, its role in the energy supply of human body cells, and
the endocrine regulation achieved by the pancreas to maintain glucose homeostasis. Then the
characteristics of the disease and the available therapeutic interventions will be detailed. To
conclude, the anatomy, the cellular composition and the function of the human pancreas will
be described together with the other regulatory circuits involved in glucose homeostasis.

1.1.1. Glucose metabolism and body cells energy supply

In the physical world, every motion is a matter of energy. This rule also applies to living
beings. Most of their movements require them to burn energy, released when chemical bounds
in stable natural compounds are broken. The role of nutrition is therefore to supply the
natural compounds and energy which enable them to move, grow, and reproduce. With few
exceptions, animals are heterotrophic which means that they cannot produce their own food

2 Metabolism: the sum of the chemical reactions that take place within each cell of a living organism and that

provide energy for vital processes and for synthesizing new organic material. (Encyclopzedia Britannica)
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and therefore need to eat other living beings to fill their elementary needs. In so doing, and
after digestion, they get the nutrients their cells need to grow and replicate.

Human beings mainly get their energy from the catabolism® of macronutrients such as
proteins, lipids and carbohydrates. These macronutrients are digested in the gastrointestinal
tract and appear in the blood as smaller molecules which are easier to use by body cells:
respectively amino acids, fatty acids and glucose. Absorbed by the cells, these molecules
then converge into the TriCarboxylic Acid cycle (TCA or Krebs cycle), a series of chemical
reactions leading to the formation of Adenosine TriPhosphate (ATP) (see Figure 1). ATP is
a high potential energy molecule used to store energy directly in the cell for future use or to
enable various processes (e.g., expression of genetic information, protein synthesis, hormone
synthesis and secretion, nervous communication, muscle contraction). Amino acids, fatty acids
and glucose are also involved in other metabolic processes as precursors for the biosynthesis of

various essential molecules.

LIPIDS CARBOHYDRATES PROTEINS

Glucose

Fatty acids Amino acids

Acetyl-CoA

TCA CYCLE
(Krebs cycle)

Figure 1: Simplified schematic of the mitochondrial metabolism

All body cells are capable of absorbing glucose. However, depending on the physiological
state of the body (e.g., physical activity, nutritional status) and on the cell type, the repartition
of energy supplied through the three above-cited pathways varies. For example, during rest
and mild-intensity exercise, cardiac cells mainly get their energy from fatty acids but energy
supply based on glucose oxidization increases with exercise intensity. Similarly, skeletal muscle
and adipose cells mainly get their energy from fatty acids or endogenous stores; however, right
after a meal, these cells increase their consumption of glucose in order to reduce the high blood
glucose concentration resulting from food intake. In contrast, some specific cells rely exclusively
on glucose to get their energy. The most common of them are the red blood cells. As they lack
mitochondria, these cells cannot oxidize fatty acids and therefore ensure a continuous
consumption of glucose in the body. Glucose is also the preferred energy source of brain cells,
although this can change in specific physiological situations.

3 Catabolism: a metabolic process in which complex molecules are broken down into simple ones with the release of
energy. (Collins dictionary)
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As diabetes mellitus mainly affects the metabolism of glucose, we will now focus on this
molecule and its blood level also referred to as glycaemia.

Glucose is a simple sugar — or monosaccharide — existing under two isomer forms, the L-
glucose and D-glucose, the latter one being the molecule that can be found in nature also
named dextrose. Monosaccharides are the simplest sugars and cannot be hydrolysed! into
smaller molecules. They are the basic unit of more complex molecules such as disaccharides,
also referred to as complex sugars. The most common disaccharides are lactose (composed of
glucose and galactose) that can be found in dairy products, sucrose (composed of glucose and
fructose) which is more known under the name “table sugar” and maltose (a combination of
two molecules of glucose). Polysaccharides are a combination of more than ten monosaccharides
(Figure 2). As glucose is polar, it requires a solvent, such as water, for storage. Living beings
thus favour long chain of monosaccharides, i.e., polysaccharides, to store energy on the long
term in a condensed form requiring less solvent molecules. The main energy-storing
polysaccharides are starch in plants and glycogen in animals. They are both polymers® of
glucose but glycogen is easier to metabolize and therefore better suits the lifestyle of animals
which need quicker access to the energy they have stored than plants. From a dietary point of

Carbohydrates

l

l

l

l

Monosaccharides
(one sugar molecule)

Disaccharides
(two sugar molecules)

Oligosaccharides
(two to ten sugar

Polysaccharides
(ten or more sugar

molecules) molecules)
»{ Glucose 9  Sucrose Raffinose La Starch
¥ Fructose > Lactose Stachyose | Glycogen
| Galactose > Maltose 9 Cellulose
T -“‘ng .’ IV
HO 0 ¥ M
HO ‘ - >
OH 3 J d 1
OH i ‘.’ jf'
Glucose Table sugar Crosne or Chinese Potato

(Sucrose)

artichoke (Stachyose)

(Starch)

Figure 2: Carbohydrates classification

! Hydrolysis: a chemical reaction in which a compound reacts with water to produce other compounds. (Collins
dictionary) During the digestion process, covalent bonds of carbohydrates are notably cleaved by hydrolysis to form
simple soluble sugars.

® Polymer: any of a class of natural or synthetic substances composed of very large molecules, called macromolecules,
which are multiples of simpler chemical units called monomers. (Encyclopaedia Britannica)
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view, all these molecules belong to the carbohydrates group and represent between 40 and 60%
of the daily energy intake of healthy people in western countries.

In regard to nutrition, the overall objective of human beings is to supply their body with
all the natural compounds it needs to maintain vital metabolic processes. In nature, glucose is
found in the form of rather complex molecules grouped together under the term carbohydrates.
To use it as a fuel, the human body therefore developed over time the ability to convert
complex carbohydrates molecules into smaller glucose molecules that can be used by its cells.
Due to their hydrophilicity, the hydrolysis of carbohydrates naturally occurs in water. However,
in the gastro-intestinal tract, this long process is catalysed by enzymes. Each molecule
hydrolysis is processed with the help of specific enzymes — e.g., lactase eases the digestion of
lactose (milk sugar). The duration of the digestion of di- or polysaccharide molecules
increases with the complexity of the molecule. Due to their rather low complexity,
disaccharides are quickly processed and the glucose resulting from their hydrolysis rapidly
“crosses” the intestinal barrier to reach the bloodstream. The fact that they contain sucrose (a
disaccharide) therefore explains why high-sugar products are more likely to induce quick rises
of the blood glucose level. On the other hand, the digestion process of polysaccharides — which
can be composed of up to 10 000 molecules of glucose —could be rather long. Starchy foods like
pasta or rice are slowly digested and therefore induce a steady glucose intake even few hours
after the meal. The latter property explains why people practicing endurance sports do privilege
this kind of food before a physical effort.

Carbohydrates type and food structure, greatly influence the duration of the digestion
process, and thus the glucose rate of appearance in the bloodstream. To measure the influence
of carbohydrates on blood glucose variations, the widespread dichotomy between slow and fast
carbohydrates has been refined by two key concepts: the glycaemic index and the glycaemic
load. The Glycaemic Index (GI) was introduced in 1981 by Jenkins et al. [1] to compare
the glycaemia response to the intake of different types of food. A 50-g portion of food is given
to the subject and the area under curve of the resulting glucose level response is computed and
compared to the glycaemic response obtained with a reference food (either glucose or white
bread — see Figure 3A). The areas are computed on a 2-hour window after the food ingestion.
GI is then formulated as the ratio between these two areas expressed as a percentage. As a
consequence, the GI of glucose is 100 when the reference food is glucose. The GI of many
different food has been estimated and is regularly published online [2]. Examples for some
staple food products, taken from Atkinson et al. [2], are presented in Table 1.

The Glycaemic Load (GL) is computed by multiplying the carbohydrate content of a
food serving by the GI of this food divided by 100:
GL = GI x Carbohydrate content per serving (g) + 100

Ex: The glycaemic index of a banana cake made with sugar is about 47. The carbohydrates
content of a 60-gram serving of this cake is about 29 grams. The glycaemic load of a 60-gram
serving of banana cake is then 14.
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Table 1: Average GI of common food products compiled in atkinson et al. (2008)

High-carbohydrates foods Breakfast cereals
- White wheat bread 75 £ 2 - Cornflakes 81+6
- Specialty grain bread 53 + 2 - Muesli 57 + 2
- Corn tortilla 46 £ 4 | Dairy products
- Spaghetti, white 49 £ 2 - Milk, full fat 39+3
Snacks - Yogurt fruit 41 £ 2
- Chocolate 40 + 3 | Fruits
- Rice crackers 87T £ 2 - Apple, raw 36 + 2
- Popcorn 65 + 5 - Pineapple, raw 59+ 8
Sugars - Watermelon, raw 76 +£4
- Fructose 15 +4 | Vegetables
- Glucose 103 + 5 - Potato, boiled 78+ 4
- Sucrose 65 + 4 - Potato, French fries 63+ 5
- Honey 61 +£3 - Carrots, boiled 39 +4

Data are means + SEM

This indicator provides a tool to compare food servings of different nature and size.
Calculating the GL of each food serving which compose a meal allows an estimation of the
carbohydrates content of the meal and predicts the associated postprandial® excursion of the
blood glucose level as if this meal was only containing glucose (see Figure 3B).

The GI is the subject of a debate in the scientific community [2]-[4]. This index has
been thought as an intrinsic characteristic of food. However, numerous factors do influence the
glycaemic response to food products, i.e. the computed GI value of these products [5]. The
most significant are the time of day when the test is realised, the tested subject own
physiological characteristics, and the way food has been processed and cooked. As a
consequence, there is no consensus for the recommendation of low-GI diets as part of diabetic

A A, B

GI =
spaghetti Al
CL}J) % 50g of glucose CLTIJ) % High-GL
8 ; (reference) 8 ; meal
= A S =
— —
o= cZ
8 % 50g of spaghetti 8 (m) Low-GL
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Z 2 Z
S8 3¢
m O m O
1 2 1 2
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Figure 3: Two metrics to characterise carbohydrate content of meals A) GI calculation method (in
the case of spaghetti) B) Illustration of the normal blood glucose response to meals containing a high
Glucose Load (GL) in red and a low GL in blue.

¢ Postprandial: happening after lunch or dinner. (Cambridge dictionary)
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patients’ treatment. The American Diabetes Association (ADA) rather recommends
individualized diets focusing on the reduction of the total amount of carbohydrates per meal
[5]. Nevertheless, GI highlights the influence of food processing and cooking on glucose level
response. For example, depending on the variety and the processing and cooking method, the
GI of potato can range from 23 to 144 [6]. GI is then a valuable tool to characterise food
products and, when combined with GL, provides diabetic patients with a method to assess the

influence of meal composition on their postprandial glycaemia variations.

1.1.2. Glucose homeostasis

We have seen that all body cells can process glucose to obtain energy, with some of them
exclusively relying on this molecule to maintain their vital metabolic processes. To ensure a
continuous energy supply to their cells, human beings therefore need to keep their blood glucose
concentration above a certain level. This threshold varies from one individual to the other, but
an average value has been estimated at 70 mg/dl (3.9 mmol/l). A prolonged time below this
limit elicits the symptoms of hypoglycaemia. These symptoms worsen as the glycaemia
continues to fall or if hypoglycaemia lasts longer. Common symptoms are trembling,
palpitations, sweating, anxiety, hunger, nausea, tingling, difficulty concentrating, confusion[7].
They can be self-treated most of the time; however, if hypoglycaemia is not treated in time it
can eventually lead to unconsciousness, coma and death when the glycaemia persists below 55
mg/dl.

In contrast, high concentrations of glucose are toxic for many body cells and can have
severe consequences on the long-term. In the case of diabetes, long-term complications elicited
by repeated and prolonged high blood glucose levels concern mainly blood vessels and their
cells, leading to a wide range of pathologies from retinopathy, nephropathy and neuropathy to
increased risk of stroke and cardiovascular disease (further described in section 1.2.2) [8]. The
hyperglycaemia limit is traditionally set to 180 mg/dl (10 mmol/l) for diabetic patients
and to 140 mg/dl for healthy individuals.

By nature, the nutrition process results in an intermittent glucose rate of appearance in
the bloodstream. To avoid harmful concentrations of glucose in blood (e.g., due to meals with
a high glycaemic load ingested in a short period) and to ensure a steady energy supply to cells,
evolution equipped higher organisms with the ability to extract glucose from the bloodstream
to store it. Indeed, glucose can be stored under the form of glycogen in the liver and the
muscles. It can also be stored in adipose tissues disseminated throughout the body and
therefore constitute energy reserves under the form of fat.

To ensure a continuous energy supply to the body and prevent hypoglycaemic events, the
glucose storing mechanism requires a counterpart: the ability for the body to release the
stored glucose into the bloodstream. The mobilisation of this energy reserve is particularly
necessary considering the long digestion process induced by some types of food and when the
glucose consumption suddenly increases (stress, physical effort..). The glucose release
mechanism mainly takes place in the liver.

As previously mentioned, body cells can be supplied with energy through three main
pathways using amino acids, fatty acids and glucose. To keep supplying the glucose-dependent
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cells with energy when the glucose reserves are lessening, the body is also able to synthesize
glucose with non-carbohydrate precursors such as amino acids in a metabolic process called
gluconeogenesis. This set of metabolic processes help the body to survive to periods of
starvation lasting few days to few weeks.

The combination of the glucose storage/release mechanisms enables glucose homeostasis
and allows human beings to maintain their glycaemia in a safe range named normoglycaemia
or euglycaemia. In this work, we used the most common definition of euglycaemia limits:
70 to 180 mg/dl. The extraction and release of glucose from and into the bloodstream is
finely regulated through complex physiological processes but the main regulatory circuit uses

endocrine pathways and is orchestrated by the islets of Langerhans in the pancreas.

1.1.3. Endocrine regulation via insulin and glucagon secretion

Glucose homeostasis is maintained in healthy individuals through the coordinated action
of two hormones secreted by the endocrine pancreas: insulin and glucagon. The first one
triggers several physiological responses that help diminishing the blood glucose level and the
second one stimulates physiological processes leading to the opposite effect. In this section, we
will describe the characteristics of each one of these hormones, the cells they target, and their
mode of operation, starting by insulin.

Insulin is an endocrine peptide hormone — as 1| _ preproinsulin
opposed to steroid hormones — which significates C-peptide
that it is composed of a chain of amino acids.

This 51-amino acid hormone is synthesized from a s s Scséﬁrclsic
single-chain proinsulin precursor in the B cells of
the islets of Langerhans. Proinsulin undergoes

enzymatic cleavage resulting in the production of

an insulin molecule (an A chain connected to a B C-peptide
chain by two disulphide bonds — see Figure 4)
and a C-peptide [9]. Parenthetically, as insulin and
C-peptide are secreted in equimolar amounts by

cells, C-peptide dosing is a common technique to

assess the remaining pancreatic insulin secretion in
diabetic patients treated with exogenous insulin

3 - Insulin + C-peptide

infusion. C-peptide

Insulin is closely regulated by glucose
concentration in blood, i.e., high and low blood

. . . e . S—S
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target cells of insulin, the classical triad, are
Figure 4: Insulin synthesis process in the B

located in the liver, skeletal muscles and adipose 1
cells
tissues. During the recent years it has become

apparent that insulin also regulates other tissues such as brain, heart and even the islets
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themselves. To decrease blood glucose level, insulin stimulates or inhibits several metabolic
processes [10]. It activates the synthesis of energy storage molecules (glycogen in liver and
muscles, fat in adipocytes), it increases glucose transport across insulin target cells’ membrane,
and modulates the expression of numerous genes involved in glucose homeostasis. Finally, as
the main anabolic’” hormone, insulin does not only play a role in the metabolism of glucose but
also in the metabolism of other nutrients (e.g., proteins and lipids) [11], which further explains
the severity of diabetes.

Glucagon is a peptide hormone, like insulin, secreted by acells in the endocrine pancreas.
As glucagon is a main counter-regulatory hormone of insulin, its secretion is also predominately
regulated by glucose concentration in blood. Glucagon transmembrane receptors are mainly
expressed in liver, kidney, and B cells [12]. Concerning glucose homeostasis, the most important
physiological responses induced by glucagon are the promotion of glycogenolysis (hydrolysis of
glycogen), inhibition of glycogen synthesis and potentiation of gluconeogenesis in the liver, and
the inhibition of glycolysis (hydrolysis of glucose occurring in ATP synthesis — see Figure 1)
[11], [13]. Glucagon also plays a key role in other major metabolic processes: protein
metabolism, lipid metabolism, bile acid metabolism, energy expenditure regulation and food
intake regulation. Their understanding being less important here, they will not be further
described.

1.1.4. Anatomy and physiology of the human pancreas

The human pancreas can be divided into three parts (head, body and tail — see Figure
5A) with varying cell populations in term of both cell type and cell spatial distribution. In
addition to its physical partition, the pancreas can be divided in two functional parts: the
exocrine pancreas and the endocrine pancreas.

The exocrine pancreas participates to the digestion process by secreting digestive fluids
in the duodenum. It is mainly composed of acinar and ductal cells. Acinar cells are in charge
of the secretion of various digestive enzymes such as proteases which convert proteins and
peptides into amino acids, amylase which process starch and maltose or pancreatic lipase which
converts lipids into glycerol and free fatty acids. For their part, ductal cells secrete a fluid rich
in bicarbonate which, thanks to its amphoteric properties, increases the pH of the gastric
chyme® in order to provide a suitable operating environment to the pancreatic digestive

enzymes.

Yet, in the context of diabetes, the relevant part of the pancreas is its endocrine part. The
endocrine pancreas regulates several metabolic processes through the secretion of various
hormones in the bloodstream. It is composed of isolated cells or clustered cells gathered in
small structures named islets of Langerhans (see Figure 5B). The endocrine pancreas
rarely exceeds 5% of the whole pancreas in mass [14]. It is composed of five main cell types:

- a cells secrete the above-mentioned hormone glucagon.

- B cells secrete the above-mentioned hormone insulin.

7 Anabolism: a metabolic process in which complex molecules are synthesized from simpler ones with the storage of
energy. (Collins dictionary)
® Gastric chyme: the thick fluid mass of partially digested food that leaves the stomach. (Collins dictionary)
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Endocrine tissue

Exocrine tissue

Duodenum

Figure 5: Anatomy of the pancreas A) Schematic of the human pancreas structure B) Cytoarchitecture
of the human islet and comparison with other species. The pictures shows representative immunostained
pancreatic sections containing islets of Langerhans from human, monkey, mouse and pig. Interestingly,
insulin-immunoreactive (red), glucagon-immunoreactive (green), somatostatin-immunoreactive (blue)
cells were all found randomly distributed in human and monkey islet. (adapted from Cabrera et al.)

- &6 cells secrete the hormone somatostatin which presents a paracrine’ action by
inhibiting secretion of both insulin and glucagon, and by inhibiting exocrine pancreas
secretion.

- PP cells secrete pancreatic polypeptide which is also involved in the regulation of
pancreatic secretion (both exocrine and endocrine).

- € cells secrete ghrelin and compose up to 10% of the endocrine cells in the embryonic

pancreas but their proportion falls to less than 1% in the adult pancreas.

The proportion of endocrine cells largely varies from one individual to the other. This
composition variation is partly age-dependent [15] but pancreas also presents regional
variations as described in Wang et al. [14]. In general, in human adults, the islets of Langerhans
are assumed to be composed of 60-70% of Beells, 5-30% acells and the remainder being divided
between the other above-mentioned cell types, for a total exceeding the thousands of endocrine
cells [11], [16].

The total number of islets in the human endocrine pancreas has been estimated to range
from 3.2 to 14.8 million islets [16], [17]. Using advanced imaging techniques and two estimation
methods, Ionescu-Tirgoviste et al. estimated the average islet diameter to be of 108.92 yum (£
6.27) [16], and that islets occupy only 4.487% of the total pancreas volume of their donor. It is
also worth noting that mouse islets present a characteristic structure where a Bcell core is
surrounded by a mantle of aand &cells, when human islets do not show anatomical subdivisions.
Indeed, Cabrera et al. [18] found insulin-immunoreactive beta cells, glucagon-immunoreactive
alpha cells, and somatostatin-containing delta cells scattered throughout the human islet, and

compared it to other mammalian species (see Figure 5B). Larger human islets seem to be

9 Paracrine: of, relating to, promoted by, or being a substance secreted by a cell and acting on adjacent cells.

(Merriam-Webster dictionary)
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more vascularised than smaller ones. Either way, the endocrine pancreas is a highly vascularised
and innervated organ which receive an abundant flow of blood from splenic and
pancreaticoduodenal arteries [11].

1.1.5. Other regulatory circuits of insulin secretion

Insulin secretion is mainly regulated by the prevailing glucose level. However, insulin
playing a role in other nutrients metabolism, and to cope with a variety of physiological states
and perturbations, insulin secretion is also finely regulated by lipids and amino acids plasma

levels, other hormones and neurotransmitters.

Fatty acids and few amino acids present a stimulatory action on B cells which further
increases the insulin secretion consecutive to a meal. Note that fatty acids taken by a meal
increase only after 60 to 90 min in the circulation. The ingestion of food and the associated
absorption of nutrients also result in the stimulation of intestinal endocrine cells and the
secretion of several insulin secretagogues. Among them, the glucagon-like peptide-1
(GLP-1), the gastric inhibitory polypeptide (GIP) and cholecystokinin (CCK) act as potent
glucose-dependent stimulator of insulin secretion [11]. In contrast, an increase in adrenaline
concentration results in an inhibition of insulin release to satisfy the associated increase in
glucose consumption by muscles.

To anticipate oncoming situations of need or excessive absorption of glucose, pancreatic
secretions are also regulated by the nervous system. Feeding activates the parasympathetic
innervation which stimulates all endocrine islet cells and especially insulin secretion by releasing
acetylcholine from nerve terminals close to B cells. In situation of need, such as starvation,
fright or physical activity, the sympathetic innervation is activated to lower insulin secretion.

Finally, the pancreas endocrine secretions are also finely auto-regulated by a paracrine
action of each hormone on the others with a hierarchy established by the position of the
secreting cells in the intra-islet portal system. For example, glucagon stimulates insulin and
somatostatin secretion while insulin is a general inhibitor of pancreatic hormones secretion.
Pancreatic polypeptide is an inhibitor of pancreatic endocrine and exocrine secretions.

This first section outlined the central role of glucose metabolism in the human body.
The glucose metabolism supplies the body with the energy it needs to function and also
provides precursors for many physiological relevant molecules. Although numerous safeguards
do exist to withstand extreme situations, glucose remains the preferred energy source of some
essential cell types (e.g., red blood cells, brain cells). The nutrient metabolism is an intricate
machinery involving various anatomical structures disseminated throughout the body and
precisely directed by its conductor - the endocrine pancreas. Among the numerous molecules
involved in the different regulatory circuits, insulin occupies a prominent position as the main
anabolic hormone. This explains why type 1 diabetes is such a serious disease which, untreated,
can lead to death within months, and whose long-term consequences remain severe in the
absence of perfectly satisfactory treatment.

10 Secretagogue: a substance that stimulates secretion. (Collins dictionary)



38

1.2. Diabetes mellitus

Diabetes mellitus is referring to a group of chronic metabolic disorders characterized
by prolonged hyperglycaemia and altered lipid profiles. The term gathers various diseases with
specific clinical pictures but a common origin: an impairment in insulin secretion, insulin action
or both. Three main types were described: Type 1 Diabetes (T1D), Type 2 Diabetes (T2D)
and gestational diabetes. Other forms of diabetes do exist, with specific clinical pictures, but
their incidence is too low for them to constitute a separate subgroup. Each type of diabetes
pairs with adequate and preferred therapeutic approaches depending on the main symptoms
and on the pathogenesis of the disease (see Table 2). T1D being characterized by a loss in
Bcell mass resulting in impaired insulin secretion, the main treatment still consists in the
injection of exogenous insulin to cope with postprandial hyperglycaemia. Note that T1D can
be further divided in two subtypes: type 1A (autoimmune) and type 1B (idiopathic''). Though
the pathogenesis of these two types is different, they share the same diagnostic methods, long-
term complications and treatment approaches. In this work, we use the term T1D to refer to
the most prevalent autoimmune type but most of the following subsections remains valid
for both types. T2D, in contrast, is characterized by an insulin resistance resulting in an
impaired insulin action. Though genetic factors do play a role in disease development, T2D is
a lifestyle disease associated with obesity and sedentariness. As a consequence, the prime
treatment is the introduction of lifestyle modifications (e.g., low-carb diet, increased physical
activity).

Table 2: Comparison of clinical features of type 1 and type 2 diabetes (adapted from Atlas of diabetes,
Springer US, 2012, P.66)

Characteristics Type 1 Diabetes Type 2 Diabetes
Onset Abrunt Progressive
Endogenous insulin Low to absent Normal, elevated, or depressed
Age at onset Any age Vast majority of adults

Body mass
Treatment

Family history

Usually nonobese
Insulin

10-15%

Obese or nonobese
Diet, oral hypoglycemics, insulin
30%

The survival of T1D patients relies on an adapted insulin therapy, while such a therapy is
only part of the treatment of a limited number of T2D patients. The fine tuning of the
exogenous insulin infusion importantly conditions the long-term outcome of T1D. Our work,
by providing a better picture of the patient physiological state resulting in a finer management
of insulin infusion, firstly applies to the treatment of T1D. The next subsections therefore
focus on the description of this disease.

1.2.1. Pathogenesis of type 1 diabetes

The causes of T'1D are not fully understood yet although they received increased attention
during the last two decades. The disease appears to result from an interplay between genetic

I Idiopathic: refers to a disease or medical condition which origin is unknown.
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Figure 6: Eisenbarth model of type 1 diabetes pathogenesis (derived from Eisenbarth et al.)

predisposition, environmental factors and microbiome, and individual characteristics [19]. T1D
patients present genetic risk factors which means that the disease results from a complex
polygenic inheritance but is not hereditary and needs environmental triggers to develop. As a
consequence, children who have a parent with diabetes present a risk to develop the disease
which does not exceed 9%. In 1984, George S. Eisenbarth proposed a conceptual model of the
pathogenesis of T1D in the form of a chart (see Figure 6) presenting the evolution of Bcell
mass during the development of the disease [20]. From genetic predisposition and before
overt diabetes, patients firstly present immunological abnormalities with the presence of
pancreatic islet autoantibodies in blood inducing an immune response specifically targeting
pancreatic Bcells. The true trigger of this abnormal immune response is not known yet, but it
has been hypothesized that environmental causes such as changes in microbiome composition
or viral infections could play a precursory role. As a consequence of the autoimmune response,
B cell mass starts diminishing and insulin secretion is progressively impaired. First, blood
glucose level is not affected, but after a period lasting few months to years insulin secretion
becomes insufficient and diabetes appears. As knowledge of the disease increased, the model
was completed to highlight the interventions that may be considered to curtail the diminution
of Bcell mass at different stages of the disease.

Contrary to T2D which mostly appears in adults, and due to its specific pathogenesis, type
1 diabetes can appear at any age. The incidence variation of genetically defined T1D across
age categories is limited (28 to 89 cases for 100000 population) when compared to T2D (0 to
3500 cases for 100000 population)[21]. As the only diabetes type frequently diagnosed in
children, T1D was formerly known as juvenile-onset diabetes. However, up to 50% of T1D
cases are diagnosed in adults but a significant part of these cases is mistakenly diagnosed with
T2D in the first place. Although, diagnostic techniques, such as C-peptide dosing, do exist to
characterize severe impairment of insulin secretion, no clinical feature can undoubtedly

distinguish type 1 from non-type 1 diabetes at diagnosis [19].

1.2.2. Diagnosis and pathophysiology

As a metabolic disorder causing a severe impairment in insulin secretion, T1D induces
a wide range of symptoms depending on the advancement of the disease at diagnosis and the
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age of the patient. Although the pathophysiology'? of T1D is well described, the diagnosis of
T1D remains challenging since the clinical picture greatly vary with patient age. In children,
the clinical picture suggesting diabetes often includes polyuria (frequent urination), polydipsia
(excessive thirst), and weight loss. These symptoms are less frequent in adults, who present a
more diversified clinical picture at disease onset. Despite these differences, the diagnostic is
always confirmed by blood glucose level measurements. Diabetes is typically diagnosed when
a fasting blood glucose level above 126 mg/dl is measured, when casual blood glucose levels
above 200 mg/dl and other diabetes symptoms are detected, or when a non-physiological
response to a glucose tolerance test is observed [22]. Additionally, a measurement of the
glycated haemoglobin concentration (HbAlc)"™ can confirm the diagnosis or help in detecting
the disease when the measured concentration exceeds 6.5%.

As stated above, the main symptom caused by T1D is impaired blood glucose
homeostasis in the form of prolonged high blood glucose levels. Hyperglycaemia being
harmful for the patient on the long-term (see section 1.1), the infusion of exogenous insulin
transforms the disease from a possibly lethal one into a treatable one. However, it does not
annihilate the risk of complications due to difficulties to perfectly restore the endogenous insulin
action. An increased risk of hyperglycaemia persists and, despite the treatment, complications
can gradually develop throughout the years. The risk of diabetes complications substantially
depends on the duration of the disease, the adopted treatment, the insulin dosing adequacy
and the patient acceptance of his treatment.

The long-term complications of T1D are linked to pathological alterations of blood
vessels that can lead to renal insufficiency, the necessity of limb amputations, blindness and
heart attacks. They are coarsely classified in two categories: microvascular and macrovascular
complications.

Microvascular diabetes complications are due to a higher vulnerability of specific body
cells to elevated extracellular glucose concentration [23]. This damaging mechanism mainly
affects the capillary endothelium' of the retina, the mesangial cell in the kidney and the
Schwann cell of peripheral nerves, and explains the specific retinopathy, nephropathy and
neuropathy associated with diabetes. Other organs, such as the brain and the heart, can be
affected by both microvascular and macrovascular complications (atherosclerosis, thrombosis)
leading to an increased risk of heart attack or stroke. These macrovascular complications also
affect extremities resulting in a vulnerability to skin infections which can lead to amputation
in severe and untreated cases.

Risk factors for complications include juvenile-onset of the disease, chronic hyperglycaemia,

and repeated hypoglycaemic events. Puberty seems to play a role in complications development

12 Pathophysiology: refers to the study of abnormal changes in body functions that are the causes, consequences, or
concomitants of disease processes. (Encyclopedia of Behavioral Medicine, 2013 Edition)
13 Glycated haemoglobin is the product of a slow and spontaneous reaction occurring in blood and consisting in the

bonding of a glucose molecule to the haemoglobin protein of a red blood cell. This reaction is therefore catalysed by
prolonged hyperglycaemia. Red blood cells life span is about three months, it is therefore possible to estimate the
mean blood glucose level over the last three months via HbAlc dosing in blood.

" Endothelium: the thin layer of cells that cover the inside walls of the blood vessels, heart and some other body

parts. (Cambridge Dictionary)
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[24] as well as patient sex, with girls presenting increased rates of all-cause premature mortality
and vascular events than men. Concerning non-glycaemic risk factors, education and income
levels were associated with inversely proportional risk of both micro- and macrovascular
complications. As a good predictor of poor glycaemic control, poor quality of life also influences
long-term outcome of the disease.

Other complications associated with T1D do not directly result from the disease, but from
its treatment. In 1993, the Diabetes Control and Complications trial (DCCT) assessed the
benefits of intensive insulin therapy — implemented with external insulin pumps — compared
with multiple daily injections of insulin (3 to 4 a day) on a large cohort of 1441 T1D
patients [25]. The study was unprecedented due to the long follow-up duration achieved (6.5
years in average) and the size of the patient cohort. This major clinical trial demonstrated that
intensive blood glucose control significantly reduces the incidence of most common
complications of T1D and impedes their progression. However, the study also highlighted an
increased incidence of hypoglycaemic events (up to two- to three-fold). This latter
statement emphasized the need to pair the reduction of mean blood glucose level, induced by
intensive insulin therapy, with a mitigation of the hypoglycaemic risk. Indeed, the repetition
of acute hypoglycaemic events is associated with increased hypoglycaemia unawareness and
the occurrence of more severe subsequent hypoglycaemic events. However, it is worth noting
that, despite the difficulties to optimize insulin delivery in real-life conditions, the risk of
microvascular and macrovascular complications have substantially decreased over the last 25
years [26].

1.2.3. Epidemiology

Epidemiology is defined in the Encyclopsedia Britannica as follows:

“The branch of medical science that studies the distribution of disease in human
populations and the factors determining that distribution, chiefly by the use of statistics. Unlike
other medical disciplines, epidemiology concerns itself with groups of people rather than
individual patients and is frequently retrospective, or historical, in nature. It developed out of
the search for causes of human disease in the 19th century, and one of its chief functions
remains the identification of populations at high risk for a given disease so that the cause may
be identified and preventive measures implemented”.

In the case of T1D, epidemiological studies aim at identifying environmental and
genetical causal factors of the disease in order to improve its understanding and imagine
innovative approaches for both treatment and prevention. Risk factors for development of T1D
are manifold [27]. We have already discussed the increased risk for complications associated
with age, sex and the influence of genotype in disease development. In this section, we focus
on risks associated with geographic location and race, and we finally discuss the worldwide
temporal trends of diabetes incidence.

Few epidemiological data about the worldwide incidence of T1D in adults is available, as
a vast majority of studies focused on children. Among them, the large-scale worldwide
DIAMOND study is worth mentioning: it was initiated by the World Health Organization
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(WHO) to evaluate the incidence' rate variation of T1D in 50 countries. The incidence of T1D
in children 94 years of age, from a population of 75.1 million children and between 1990 and
1994 was reported in 2000 [28]. A 350-fold difference in age-adjusted T1D incidence rates was
reported with a minimum of 0.1/100000 per year (China, Venezuela) and a maximum of 36.5-
36.8/100000 per year (respectively Finland and Sardinia).

Worldwide differences in T1D incidence by race/ethnicity is rarely discussed in
epidemiological studies due to the relative homogeneity of studied populations or to lacking
data for political or study design reasons. These differences can be confounded with
geographical differences in countries presenting a large race/ethnicity homogeneity. However,
the mobility of populations around the world, accelerated by globalisation, revealed a link
between T1D and race/ethnicity. For example, people of European descent present an
increased risk of developing T1D. It is particularly noticeable in countries such as New-Zealand
where significant differences can be observed between people of European descent and people
of Maori descent [29]. In the United States, the SEARCH for Diabetes in Youth study gave
some valuable insight on the relationship between race/ethnicity, age and sex, and T1D
incidence [30]. Conducted on more than 10 million American children/years, SEARCH
highlighted significant particularities: T1D incidence and prevalence rates were higher in non-
Hispanic white youth as compared to four other race/ethnicities (African American, Hispanic,
Asian and Pacific Islander and Navajo) [27].

In 2006, The DIAMOND Group Project published an updated report describing the
worldwide evolution of childhood T1D incidence rate between 1990 and 1999. The report
concluded that the average annual increase in incidence was about 2.8% (95% CI'* 2.4-
3.2%). The annual increase was slightly higher in the period 1995-1999 (3.4% - 95% CI 2.7-
4.3%), than in the period 1990-1994 (2.4% - 95% CI 1.3-3.4%) [31]. This trend was observed
almost all over the world and has been confirmed by several recent studies [29]. In France, a
similar trend was observed over the 2010-2015 period with an increase by 4% of childhood T1D
incidence rate [32].

The International Diabetes Federation publishes, on a regular basis, estimations and
forecasts on global and regional diabetes-related health expenditure (see Appendices 1
and 2). These data, which gather estimations of all expenditure relative to both T1D and T2D,
are particularly useful to assess the worldwide evolution of the disease and the associated
economic burden for patient families, health systems and national economies. It is worth
noting that both diagnosed and undiagnosed prevalence!” estimates are considered. The last
report underlined a steady upward trend in the estimated global health expenditure among
adults with diabetes since 2006. The total diabetes-related health expenditure was estimated
to be USD 230 billion in 2006 and USD 760 billion in 2019. The health expenditure is projected
to grow to USD 825 billion per year by 2030 and USD 845 billion by 2045 : the world is facing

1 Incidence: in epidemiology, the occurrence of new cases of disease, injury or other medical conditions over a
specified time period, typically calculated as a rate or proportion. (Encyclopaedia Britannica)

16 CI: Confidence Interval

I” Prevalence: in epidemiology, the proportion of a population with a disease or a particular condition at a specific
point in time (point prevalence) or over a specified period of time (period prevalence). Prevalence is often confused
with incidence, which is concerned only with the measure of new cases in a population over a given interval of time.

(Encyclopaedia Britannica)



43

a worldwide epidemic of diabetes [33] (see Appendix 1). This epidemic results in diabetes
market forecasts highlighting the necessity and viability of research projects aiming at
developing cutting-edge technologies to improve diabetes management and reduce the
psychological, economic and social burdens associated with the disease.

1.3. Current and future therapies for type 1 diabetes

This section details the therapeutic interventions currently available to prevent, treat
or cure diabetes, and the most promising research in the domain: interventions aiming at
preventing diabetes for people at risk, and interventions aiming at treating or curing for
people with overt diabetes. After a brief history of the mainstay treatment, the insulin therapy,
we will focus on the tremendous progress achieved throughout the last century, transforming
a disease leading to a certain death within months into a treatable or even curable one. Finally,
we will show how the development of mobile technologies aims at revolutionising diabetes
treatment to improve quality of patient’s life.

1.3.1. Preventive treatments

Early interventions to prevent diabetes aim at hampering autoimmunity development
and consecutive Bcell mass decline (see Pathogenesis of type 1 diabetes). In first-degree relatives
of T1D patients which present high risk of developing the disease (tested positive for at least
two pancreatic autoantibodies), such intervention often raises an ethical and clinical conflict -
also referred to as treatment dilemma. A wide body of evidences supports early interventions
to modulate the autoimmune response as the most effective means to prevent diabetes.
However, the reliability of disease prediction methods increases as T1D onset approaches. The
most effective interventions should therefore imply the treatment of individuals that might
never develop symptoms. That dilemma raised the need for benign form of pre-onset therapy
that has not been met yet [34]. As a result, immunomodulatory therapies are often implemented
at disease onset to preserve the remaining insulin secretion and therefore struggle to cure
diabetes in the strict sense. The Epidemiology of Diabetes Interventions and Complications
(EDIC) Study enrolled the DCCT patient cohort (see section 1.2.2) to assess the influence of
an average of 6.5 years of intensive diabetes therapy (achieved during the DCCT trial) on long-
term disease-related complications. The patients were followed for an average of 17 years after
DCCT ending. EDIC study demonstrated the importance of early diabetes treatment by
highlighting a 57% decrease in the risk of major cardiovascular events in the population treated
with intensive insulin therapy more than a decade before the beginning of the EDIC trial.
Consistent results were still observable after adjustment for EDIC HbAlc level differences
between compared populations. The DCCT/EDIC Research Group therefore concluded that
the reduction in cardiovascular disease risk in treatment population could be attributed to the
6.5 years of intensive insulin therapy, and associated low HbAlc levels, achieved during the
DCCT trial [26]. The underlying physiological mechanism leading to this decreased
cardiovascular risk was named “metabolic memory”. This mechanism is not completely
understood yet. Still, a growing body of experimental evidences supports the early adoption of
an aggressive treatment to reduce hyperglycaemia in T1D as soon as possible [35].
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1.3.2. Cures for type 1 diabetes

No efficient and widely accessible cure is available yet. Due to the above mentioned
“treatment dilemma”, immunomodulatory therapies cannot be considered as a universal
intervention. The use of allogeneic™ transplantation techniques successfully led few patients
to a sustained insulin independence [36], [37]. Simultaneous transplantation of pancreas and
kidney from cadaveric donors has greatly evolved and is now considered as a standard-of-care
treatment for T1D patients presenting an end-stage renal failure [19]. Performed in experienced
centres, such intervention can offer to the patient up to 80% chance of insulin independence
over b years. This therapeutic option however suffers from major limitations: a substantial
surgical risk remains, donors are lacking and an immunosuppressive treatment is required to
avoid both graft rejection and recurrent autoimmune islet destruction [34].

For the last two decades, islet transplantation has developed as an alternative to
pancreas-kidney transplantations. The landmark TRIMECO study [38], demonstrated, in a
multicentre randomised controlled clinical trial, the superiority of islet transplantation over
intensive insulin therapy in reducing the hypoglycaemic risk of patients presenting severe
hypoglycaemia, hypoglycaemia unawareness, or kidney grafts with poor glycaemic control.
However, notwithstanding the reduced surgical risk, the need for continuous
immunosuppressive treatment and the lack of organ donors still constitute major limitations
to the wide spreading of such therapy. Recently, a promising approach, residing in the
differentiation of stem cells (either embryonic or pluripotent induced stem cells) into
insulin-producing Bcells, has been investigated to address the donor shortage. Mass-produced,
these cells could make transplantation therapies accessible to a larger population of T1D
patients but mass production and potential clinical application is still in its infancy.

1.3.3. Insulin therapy as the mainstay of treatment

Immunomodulatory and cell transplantation therapies appear as the most promising
research approaches to prevent and cure diabetes. However, at this time, they still suffer from
the major limitations depicted in last subsections. On the other hand, the DCCT and the
subsequent EDIC study demonstrated that intensive delivery of exogenous insulin enables
satisfactory improvements in T1D patients’ HbAlc level leading to a beneficial effect on long-
term health outcome. Benefiting from an easier implementation, insulin therapy therefore
remains the mainstay of T1D treatment.

A brief history of insulin therapy

The successful and repeatable extraction of insulin is attributed to Frederick Banting and
his assistant Charles Best in 1921. They developed a new method to isolate insulin from a dog’s
pancreas. Insulin discovery and its use as a treatment for diabetes was developed under the
supervision of John Macleod and in collaboration with James Collip who developed a process
to purify insulin extracts, making them suitable for clinical use. The first patient treated with
insulin is Leonard Thompson a 14-year-old boy dying from diabetes. In January 1922, in the
Toronto hospital, Thompson received an injection of insulin which resulted in a rapid reduction

18 Allogeneic: relating to or denoting tissues or cells which are genetically dissimilar and hence immunologically

incompatible, although from individuals of the same species. (Oxford Languages)
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of its blood glucose level. The treatment was
confirmed on six more patients and published other
the next months. For this major advancement in
diabetes treatment and the associated discovery of
insulin, Banting and Macleod received the Nobel
Prize in Physiology or Medicine in 1923 and
decided to share it with Best and Collip.

During the next decades, large-scale production

developed using bovine and porcine extracts [39].
These animal-sourced preparations, containing

Figure 7: Frederick Banting (right) and
insulin molecularly very similar to human insulin, Charles Best (left) in 1924

conserved their full biological properties once

administered to diabetic patients. Side effects, such as allergic reactions, were still associated
with these insulin preparations but a solution emerged in 1978 with the production of the first
human insulin in modified E. Coli bacteria. With the refinement of insulin production processes
and the use of modern technologies such as genetic recombination, the purity of insulin
solutions dramatically increased and material supply is not a problem anymore. Manufacturers
also developed slow-acting insulins which, combined with regular insulin, enable a more
accurate insulin therapy. Lately, research has focused on the development of a variety of
insulin analogues presenting characteristics which allow healthcare providers to finely adapt
insulin treatment to patient individual needs.

Insulin analogues development

Progress in biotechnological processes for generating insulin, and a better understanding of
insulin chemical and physical properties, enabled the development of molecules similar to
insulin but presenting genetic alterations resulting in different pharmacokinetics and
pharmacodynamics [9]. The latter differences are used to classify these analogues of insulin.
In particular, the following properties are used to differentiate the soluble formulations
available on the market:

- Onset: time before injected insulin starts to act,

- Peak action time: time to maximum effect,

- Duration of action,

- Concentration: the concentration of insulin in soluble formulations can vary from one
country to another,

- Route of delivery: mostly subcutaneous and intravenous routes but aerosolized

formulations such as insulin Afrezza do exist.

The insulin analogues available on the market provide a variety of tools that diabetic
patients can use to finely tune their insulin therapy. Rapid acting insulin analogues are
particularly useful to reduce postprandial hyperglycaemia while the injection of long
acting insulin analogues is a precious therapeutic tool to limit the number of daily injections

and to control glycaemia overnight.
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Rapid-acting insulin is the only insulin analogue used in modern insulin pump, it is
therefore the only insulin modelled in the insulin pump models used in this work. As a
consequence, the possibilities offered by all the insulin analogues available on the market are
not fully exploited in the T1DM Simulator. However, insulin onset, peak and duration of
action are discussed in this manuscript as they are pivotal concepts to understand glycaemia
variations in response to meal perturbations in insulin-treated patients. They depend on
numerous factors such as dose, injection site, injection route, presence of insulin autoantibodies,
and physical activity [9]. These concepts and other patient characteristics (e.g. insulin
sensitivity, insulin clearance by liver, insulin clearance by kidney) are also fundamental
elements that explain the inter- and intra-subject differences in insulin therapy outcomes
described in Chapters 3 (intravenous injection route) and 4 (subcutaneous injection route).

Restoring a healthy endogenous insulin secretion profile

In the healthy individual, normal insulin secretion profile is constituted by the alternation
of stimulated secretion phases consecutive to meals and secretion plateaux at a basal
secretion rate. Stimulated secretion typically results in plasmatic insulin peaks reaching 50-80
nU/mL, whereas basal plasmatic insulin is comprised between 5 and 15 pU/mL[40]. In the
T1D patient treated with insulin therapy, the objective is to restore this healthy insulin
secretion profile via multiple injections of exogenous insulin. This technique — referred to as
Multiple Daily Injection (MDI) — requires the patients to assess the carbohydrates content
of their meals and inject an insulin dose in consequence. Measurement of the prevailing blood
glucose level are also used to fine-tune insulin dosing with an individualised correction factor.
Relying on repeated capillary glucose testing, optimal blood glucose control with MDI is
complicated to achieve and can be very challenging or impossible for patients. The development
of rapid-acting insulin reduced insulin onset and enabled bolus injection at the start or right
after a meal. To achieve optimal blood glucose control, healthcare providers work with each
patient to individualise the basal insulin level and an insulin-to-carbohydrates ratio (also
referred to as Carbohydrates Ratio or CR) used to compute meal boluses from carbohydrates
counting'.

Traditionally, Self-Monitoring of Blood Glucose (SMBG) was achieved by deposing
a finger-prick drop of blood on glucose oxidase test strips and insulin was injected with syringes.
Over time, many medical devices were developed to alleviate the psychosocial burden
associated with regular blood glucose testing and insulin injection. Test strips are now used in
conjunction with electronic blood glucose meters to improve both accuracy and readability
of SMBG. These devices have data storing and data sharing functions to help both patients
and clinicians in analysing trends in time to improve blood glucose control. Insulin syringes
were replaced by insulin pens which reduce pain and waste (for the models equipped with
replaceable cartridges). Insulin pens are often favoured to syringes as they are less time
consuming, easy to use and discrete which is particularly important for visually impaired
patients and children respectively.

In the 1970s, the discovery that interstitial glucose could be used as a proxy for estimating
blood glucose variations with a sufficiently short time lag to comply with diabetes clinical

1% Insulin bolus (in insulin units) = insulin-to-carbohydrates ratio x amount of carbohydrates (in grams)
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constraints raised the hope to achieve a more physiologic insulin delivery [41]. During the next
two decades, the growth of mobile health® has continuously provided new tools to achieve
this goal. By revolutionising diabetes management, mobile health aims at improving both
clinical outcome of the disease and quality of patient’s life [42]. The first device that could be
associated with mobile health, the insulin pump, was invented in the late 1970s. Since then,
the pumps were refined to take the form of compact wearable devices which are remotely
programmable with a smartphone. With insulin pumps, the development of a bio-mechanical
pancreas appeared as a potential cure for T1D. This approach truly became realistic in the
mid-2000s with the advent of real-time Continuous Glucose Monitoring (CGM) systems
to provide inputs to a feedback control loop for insulin pumps [43]. The joint use of a CGM
sensor and an insulin pump to improve glycaemic control of T1D patients is now referred to
as Sensor-Augmented Pump (SAP) therapy.

Other aspects of diabetes treatment

At times, other diabetes medications are prescribed to patients as a complement to the main
treatment with insulin. Pramlintide, an amylin®* analogue, is the only one to be approved for
improved blood glucose control with T1D. Several T2D medications such as metformin are
reportedly used off-label but, contrary to T2D, the use of other medications than insulin
remains marginal and only concerns 5.4% of patients affected by T1D [44]. T1D being a chronic
metabolic disease, several lifestyle modifications, such as personalized diet plan, can also be
implemented to improve both blood glucose control and long-term outcomes of the disease.
Regular practice of physical exercise is also recommended with the major benefits being a
reduction of the long-term cardiovascular disease risk and an increase in insulin sensitivity (in
addition to the usual benefits of physical exercise).

The successful management of all T1D treatment compartments (diet, exercise, medications,
and insulin doses) can be very challenging and requires the patient to have high levels of health
literacy* and numeracy®. As a consequence, another essential aspect of diabetes treatment for
healthcare providers is educating patients to help them self-manage their diabetes.
Education can range from better understanding the numerous factors influencing blood glucose
response to meal stimulations, to an introduction to the numerous personalisation possibilities
offered by modern medical devices and applications.

The development of mobile health also permitted the advent of some valuable decision
support tools. Indeed, many applications (either third-party applications running on a
smartphone or applications provided by medical device manufacturers) were developed to

2 Mobile health: delivery of health services and improvement of health outcomes via mobile and wireless devices.
Mobile health interventions often employ modalities such as short message service (SMS) text messaging,
smartphone applications and wearahle technology.

2 Amylin: a peptide hormone co-secreted with insulin by pancreatic B cells which inhibits glucagon secretion, delays
gastric emptying and promotes satiety.

22 Health literacy: the degree to which an individual has the capacity to obtain, communicate, process, and
understand basic health information and services to make appropriate health decisions. (US Patient Protection and
Affordable Care Act definition).

% Health numeracy: the degree to which individuals have the capacity to access, process, interpret, communicate,
and act on numerical, quantitative, graphical, biostatistical, and probabilistic health information needed to make
effective health decisions. [137]



48

reduce the burden associated with the multiple aspects of disease management.
Individualisation of insulin boluses to reduce postprandial hyperglycaemia amplitude is now
facilitated by bolus calculators and frequent remote exchanges with physician. Improved
CGM dataset visualisation helps the patient in better understanding his or her own
glycaemic response to meals and prevent harmful glycaemic events. Keeping a digital daily
diary allows patients to keep track of physical exercise sessions or meal contents, and facilitate
diet follow-up and personalisation. Daily diaries and CGM datasets are also powerful tools for

the subsequent analysis of adverse glycaemic events genesis.

Finally, the benefits of SAP therapy over MDI therapy on various health outcomes
were outlined in several large studies. In particular, Bergenstal et al. published, in 2010, the
results of a multicentre, randomized clinical trial comparing SAP therapy to MDI therapy in
485 patients (329 adults and 156 children) with suboptimal glucose control. After 1 year,
patients in the pump-therapy group presented a significantly higher decrease of HbAlc level (-
0.2% vs -0.8%) with a greater proportion of patients reaching the target (<7%) [45]. Since
then, SAP therapy became the standard of care in developed countries and is often used as
the control therapy in studies aiming at assessing the clinical benefits of the Artificial Pancreas.
The latter, by introducing decision-making algorithms between the sensor and the pump to
reduce the number of necessary patient interventions, aims at improving both health outcomes
and quality of life of patients under SAP therapy.

1.4. The Artificial Pancreas

This section provides an overview on the different ways of implementing an Artificial
Pancreas (AP) so that the reader can better perceive the building blocks necessary to validate
AP systems in silico. Questions that can be addressed using simulation will be highlighted,
and the benefits and limitations of the AP use to treat T1D will be discussed. The section will
also provide an overview of the AP systems available on the market or at a research stage, in
order to compare our device and identify its added-value.

In 2006, the Juvenile Diabetes Research Foundation (JDRF) launched a project to develop
a commercially-viable bio-mechanical pancreas via the sponsoring of several research centres
in the USA and Europe. This project is named the Artificial Pancreas Project. A strategic
funding plan was defined with priorities for research associated with each product development
stage. This 6-step plan (see Figure 10) describes incremental advances to develop increasingly
automated devices. Numerous approaches have been investigated to develop an AP with
notably different degree of automation, different degree of integration and various additional
features to facilitate T1D patients’ life. Yet, an AP can always be formally described by three
blocks: a sensor to estimate the patient metabolic status, an insulin pump to infuse
exogenous insulin, and a control algorithm (i.e., a controller) for the necessary decision-
making in between.

1.4.1. Sensor
To this day, the vast majority of sensors used in AP systems are glucose-only sensors.

Different measurement principles have been investigated but only few of them were developed

in commercially-viable products [46]. Among them, the catalysis of glucose reduction to
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produce a glucose concentration-dependent electrical signal is the most commonly used glucose
measurement principle. Taking advantage of the fact that capillary glucose equilibrates in the
interstitial fluid [47], the sensors’ core element is a flexible electrode plated with glucose oxydase
and inserted just beneath the skin. The subcutaneous glucose concentration is converted into
an electrical signal measured by a small external electronic device connected to the electrode
and attached to the skin. In latest sensors, subcutaneous glucose is measured with a sampling

time ranging from 3 to 5 minutes.

In 2014, Abbott launched the Freestyle Libre sensor which embeds a memory to store up
to 8 hours of glucose readings. To access the data, the patient simply has to “flash” the sensor
with a proprietary reader or with an NFC-enabled device (smartphone or tablet). As a
lightweight, factory-calibrated and fairly accurate glucose sensing device guaranteeing a 2-week
life span, it was found to be very useful to MDI users by replacing the regular finger-stick
testing. However, due to the lack of continuous data stream, Flash Glucose Monitoring
(FGM) - also referred to as intermittent CGM — is not suitable for SAP therapy and AP
systems. It was also demonstrated that FGM is inferior to CGM when it comes to improve
diabetic patients blood glucose control [48]. As a consequence, we will now focus on “true”
CGM sensors.

Contrary to the Freestyle Libre, the other CGM
sensors rely on external devices to store glucose
data. Using a wireless connection, CGM readings are
transmitted to a reader provided by the sensor
manufacturer or a smartphone (see Figure 8). A
special purpose application then allows enhanced
data visualisation and the triggering of alarms when
glycaemia reaches user-configured limits. CGM
readings can also be transferred to a compatible

insulin  pump to implement SAP (Sensor-

Figure 8: The Guardian Connect CGM
system (Medtronic): a wireless transmitter

Augmented Pump) therapy. CGM sensors have
provided a major advance in assessing glucose
variability at resolutions unattainable through paired with a dedicated mobile application.
traditionnal Self Monitoring of Blood Glucose (SMBG) or HbAlc measurement, thus enabling
intensive glycaemic control [49]. CGM is now recommended to improve glucose control for
patients using both MDI and Continuous Insulin Infusion (CSII) as its use demonstrated a
positive impact on HbAlc and mean glucose [50]. While latest sensors do not require regular
calibration anymore, improvements still have to be achieved to improve sensors’ life expectancy

and accuracy while reducing sensor lag and susceptibility to pharmacologic interferences.

1.4.2. Insulin Pump

Over the last forty years, insulin pumps greatly evolved, becoming more accurate and
reliable. The use of lighter material, together with increasingly integrated electronics and
miniaturized mechanical pumping systems, allowed for the development of very compact
devices. Easy to wear and dissimulate, these small insulin pumps have encountered a better
acceptance by patients. The availability of recombinant insulin analogues with improved
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pharmacokinetics (reduced onset and peak action time) also contributed to a greater use of
insulin pumps. As a matter of fact, a study analysing the large T1D Exchange clinic registry
denoted a foreseeable increase in insulin pumps use from 2010-2012 to 2016-2018 (increase
from 57% to 63%, respectively) [51].

Nowadays, insulin pumps are small programmable
electronic devices (see Figure 9) that provide the patient with
a Continuous Subcutaneous Insulin Infusion (CSII).
The insulin pump is powered by a rechargeable battery and
insulin is stored in a refillable cartridge. Traditionally, insulin
was infused via a catheter connected to a cannula but now
tubeless pumps using soft cannula placed just beneath the
pump case are available, making the device even more compact

and discreet. In practice, continuous infusion is achieved by ‘ :
the delivery of tiny boluses of rapid-acting insulin with a Figure 9: Tandem t:slim X2
steady time interval ranging from 1 to 5 minutes between insulin pump

boluses (this time interval varies from one manufacturer to the other). In so doing, insulin
pumps provide the patients with a user-friendly and very convenient means to adapt their
basal insulin infusion level throughout the day and in every situation (e.g., physical exercise,
inactivity, and sick days). They also allow the patient to administer premeal or correction
boluses to cover meal-related carbohydrates intake or correct above-target glycaemia levels.
Pumps sometimes propose advanced features such as a built-in bolus calculator or automated
bolus correction based on previously injected insulin. Patient have to adequately set a CR
(Carbohydrates Ratio)*, a Correction Factor (CF)*, and provide an estimation of the amount
of carbohydrates ingested during the meal. The bolus calculator then computes a recommended
bolus which is sometimes corrected by taking into account previously administered boluses and
prevailing glucose level in order to minimize the risk of iatrogenic®® hypoglycaemia. Rules of
thumb do exist to initialize CR and CF parameters in pump settings; however, optimal blood
glucose control often requires the patient to fine-tune these parameters and configure a
daily variation profile for each of them (e.g., to account for the circadian variation of patient

sensitivity to insulin).

Currently available commercial devices only automate insulin delivery. However, many
multi-hormone infusion pumps have been investigated. Infusion of exogenous glucagon appears
as the best candidate to help the patients to avoid and recover from severe hypoglycaemic
events. Pramlintide, an analogue of amylin (the hormone co-secreted with insulin in the healthy
pancreas), is for example also studied as a potential candidate for dual-hormone systems since
early results demonstrated a positive impact on postprandial glucose excursion. To this day,
these alternative approaches still face practical and physiologic challenges such as solubilisation
and stabilisation of glucagon at ambient temperature, and their benefit. still needs to be
confirmed by extensive studies [43].

2 CR.: the insulin to carbohydrate ratio is defined as the amount of carbohydrate (in grams) covered by each unit
of (100 IU strength) insulin.
% CF: the insulin sensitivity factor is defined as the drop-in blood glucose level caused by each unit of insulin taken.

% Tatrogenic: relating to illness caused by medical examination or treatment.
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Many studies and meta-analyses demonstrated the benefits of CSII over MDI [52], [53].
However, CSII still suffers some limitations. In particular, the delay resulting from the insulin
diffusion in the subcutaneous space greatly alters CSII performance, and many research projects
aim at addressing this issue by developing implantable systems that deliver insulin directly
in the intraperitoneal space. Although more invasive, such systems could also improve patient
acceptance by removing external signs of T1D treatment. Nonetheless, major challenges still
need to be overcome to power these devices and supply them with insulin. In any case, insulin
pumps remain expensive and require from the patient a high level of health numeracy and
literacy. Education is part of the solution but represents an additional cost for healthcare
systems which, associated with insulin pump cost, explain why CSII spreading is confined to
the more developed countries. Although the pain associated with MDI is removed by using
insulin pumps, many patient interventions are still necessary (fine-tuning of pump settings,
carbohydrates counting). Still, the AP represents a promising approach to close the loop
between glucose sensors and insulin pumps while strongly limiting the need for patient
interventions thanks to increasingly automated systems.

1.4.3. Closing the loop

Traditional diabetes treatment approaches such as MDI or their modern counterparts based
on CGM or CSII are referred to as open-loop therapies. That term significates that a
patient intervention is required to close the loop between blood glucose measurement (or
estimation with a CGM sensor) and the subsequent delivery of exogenous insulin. Fear of
hypoglycaemia is a known phenomenon which leads the patient to underestimate the amount
of insulin that should be administered for optimal blood glucose control. Misestimation of meal
carbohydrates content is another source of errors that greatly affect insulin therapy
performance. To reduce the risk of iatrogenic hypoglycaemia resulting from patient’s errors
and improve their quality of life, several partly automated systems were developed in line with
the Artificial Pancreas Project (APP) development pathway (Figure 10). These systems are

referred to as hybrid closed-loop systems.

According to the APP 6-step development plan (see Figure 10), the first hybrid closed-
loop systems that have been developed were able to suspend basal insulin delivery based on
CGM information (Step 1). This functionality is referred to as Low Glucose Suspend
(LGS). In some systems, this feature is enhanced by mathematical models of glucose dynamics,
which allow for insulin infusion adaptation based on prediction, and named Predictive LGS
(PLGS). Features that take into account previously injected insulin and prevailing glucose
level to automatically correct insulin boluses were then implemented to reduce hypoglycaemic
risk (Step 2). When the blood glucose level measured between two meals is above target, some
systems trigger an alarm to recommend the injection of a correction bolus in order to reduce
hyperglycaemic risk (Step 3). Finally, hybrid closed-loop systems that continuously
adapt basal rate, without any patient intervention, have recently been approved by the US
Food and Drug Administration (FDA): the Medtronic MiniMed 670G and the Tandem t:slim
X2 with Control 1Q (Step 4). The ultimate goal is to develop fully automated systems
which do not rely on patient input to handle meal-related carbohydrates intake. Although
there is currently no such system on the market, many AP are under development. The main
challenge is the development of a sophisticated control algorithm which closes the loop by
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Figure 10: 6-step development plan of the Artificial Pancreas Project

computing a command signal, for an insulin pump (Step 5) or for a multi-hormone pump (Step
6), based on blood glucose estimation provided by a CGM sensor.

1.4.4. Control algorithms

With the intensification of research on this topic over the last decade, many control
algorithms were proposed for the AP. Among them, the most popular are the Proportional-
Integral-Derivative (PID) algorithm and the Model-Predictive-Control (MPC) algorithm.
Other strategies involving robust H. methods or fuzzy logic are also investigated but remain
less frequent. PID appears as a straightforward strategy and was used in the first generation
of AP systems. MPC are more complex algorithms that require the definition of a dynamic
model of glucose-insulin interactions. MPC has long been seen as more powerful than PID [54].
However, it is worth noting that both PID and MPC are generic labels that cover a variety of
practical implementations. In [55], B. Wayne Bequette details how MPC controllers can achieve
the same level of robustness as PID controllers, while PID can achieve top of the art
performance when appropriately tuned and in association with advanced features (anti-reset
windup, derivative filter, and insulin feedback to name a few). Indeed, Medtronic is using a
PID controller with model-based insulin-feedback (PID-IFB) in its hybrid closed-loop system
MiniMed 670G. The latter system aims at improving controller performance by considering the
already administered insulin. In so doing, the delayed action of exogenous insulin is taken into
account, which mitigates the risk of reactive hypoglycaemia (postprandial hypoglycaemia due
to overly aggressive insulin infusion). For their part, MPC algorithms are often favoured for
their great versatility and their ability to conveniently manage multivariable systems [55].
Recently, various adaptive MPC strategy have also been proposed [56]. These strategies
interestingly take into account intra- and inter-day variability of patient characteristics (e.g.,
insulin sensitivity) as in Toffanin et al. [57].

1.4.5. Benefits and limitations

During the last decade, numerous inpatient and controlled outpatient studies have been
published demonstrating the safety and efficacy of AP systems [58]. In 2018 a meta-
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analysis highlighted that the benefits are particularly visible in term of time spent in the
different glycaemic ranges [59]. This analysis of 40 studies (1027 participants) aimed at
comparing insulin-only AP systems (35) and dual-hormone AP systems (9) to the current
standard of care (SAP therapy). It reported an average hyperglycaemia reduction of almost
10% with AP systems, hypoglycaemia being meanwhile reduced by 1.5%. HbAlc level was not
significantly reduced (-0.26%) due to consistent reduction of hypoglycaemia. Of course,
reduction of the hypoglycaemic risk is beneficial to T1D patients but current technology does
not allow for a concomitant normalisation of HbAlc level [60]. It is also worth noting that this
meta-analysis highlights the greater benefits of overnight AP use compared with daytime.

Apart from biomedical outcomes, the growing use of technology in diabetes management
also raises questions concerning the psychosocial impact of AP systems on T1D patients.
Assess and understand these aspects of disease management is of prime importance to promote
a sustained and effective technology use. In 2018, a review focusing on this topic outlined that
“reported benefits extended beyond improved glycaemic control and reduced fear of
hypoglycaemia to include reassurance for users and family members (e.g. partners and parents),
reduced anxiety, improved sleep, confidence, ‘time off’ from diabetes demands, greater freedom
to engage in activity, excitement and empowerment” [61]. It also noted that using AP systems
for longer periods is associated with increased satisfaction.

Frequently reported psychosocial burdens are also described in Farrington et al. [61], with
the most cited burdens being “technical difficulties, alarm intrusiveness and interrupted
sleep, increased time spent thinking about diabetes, size and appearance of the equipment,
limitations on exercise, and perceptions of deskilling and data obsession”. Together with high
cost, these burdens constitute major barriers to the wide adoption of AP systems by patients
and to the reimbursement by healthcare systems. They are notably responsible for the large
drop-out rate reported after 12 month of Medtronic Minimed 670G use [62]. In addition,
although the AP removes some limitations associated with the use of CGM and CSII
technologies such as the need for numerous patient interventions (CGM trend analysis,
configuration of insulin infusion), it still suffers from the remaining limitations of each of its
constituents. Indeed, control algorithms are particularly convenient to adapt insulin treatment
to individual specificities but are still constrained by the imperfections of closed-loop system
components (e.g., glucose sensing inaccuracies, pump delivery errors) [63].

Full automation cannot yet be achieved in unsupervised home settings yet due to
remaining barriers such as the slow pharmacokinetics of subcutaneous insulin and sensor lag.
Daily variations of blood glucose mostly result from an increased glucose intake (meals), a
decrease in glucose consumption (sleep) and an increase in glucose consumption (stress,
physical activity). Sleep and stress are well managed by current hybrid closed-loop systems by
continuously adapting basal insulin infusion. However, the management of meals and
physical activity remains highly challenging for these systems and requires the patient
to provide information to the control algorithm. The incorporation of inputs beyond glucose
concentration to provide information about nutrition, physical activity, and stress level of
the patient, and the concomitant development of multi-hormone pumps could therefore
provide the missing piece of the puzzle and enable the restoration of physiological glucose
homeostasis with a fully automated biomechanical AP.
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1.5. An islet-based biosensor for the Artificial Pancreas

In section 1.4, we outlined the prime importance of the sensor and the control
algorithms to achieve optimal glucose control with an AP. Particularly, we argued that, in
the absence of information other than patient’s subcutaneous glucose level, dealing with large
disturbances remains an unattainable objective. To lighten the burden of the numerous patient
interventions still necessary to achieve optimal glucose control with current AP systems, new
sensors should be developed that provide the control algorithm with additional information
about the patient’s physiological state. Sensors monitoring the heart rate and integrating
accelerometers are notably being considered to control glucose level during physical exercise.
However, their cointegration with traditional enzymatic glucose sensors in a compact wearable

device remains a challenge.

This thesis work is part of a broader project whose objective is to develop an innovative
sensor - a cell-based biosensor — able to provide the AP algorithm with all the information
necessary to regulate exogenous insulin infusion in a physiological manner. In the healthy
individual, the sensor, control algorithm and actuator involved in the closed-loop regulation of
insulin secretion are gathered in the same anatomical structure: the pancreatic islet of
Langerhans. The secretion is qualitatively adapted to the prevailing metabolic status of
the patient by the coordinated action of B cells in the islets, while the quantitative
adaptation to patient needs is achieved through the replication of this islet structure in the
pancreas. The core idea of our biosensor is to use the sensing ability of the B cell, via
extracellular monitoring of islets’ electrical activity, and use it to compute the control signal
of an insulin pump. The Bcell being sensitive to all the modulators of insulin secretion,
this sensing paradigm could provide the information missing to AP control algorithms to deal
with large disturbances (e.g., meals, physical activity). This consideration has already led other
research teams to develop healthy islets transplantation techniques or, more creatively, to
develop highly engineered membranes to encapsulate healthy cells, thus, providing them with
all the necessary nutrients while protecting them from the destructive immune response [60],
[64]. However, these approaches are limited by their biological actuator (the component which
secretes insulin) and its constrained sourcing (human donors, see section 1.3). Our strategy is
to take the best of the two traditional approaches: automated insulin delivery devices and cell
therapy [60]. Indeed, we designed a biosensor which takes advantage of the sensing ability of
the islets of Langerhans and could, in an AP system, benefits from the virtually unlimited
insulin infusion capabilities of artificial insulin pumps and the advanced features of modern
control algorithms. By providing a means to access the pancreatic islets’ endogenous algorithm
and exploit them in a closed-loop system, we propose here a new biosensing paradigm in the
context of AP.

In this section, we will first describe the electrophysiology of the B cell and the islets of
Langerhans and relate it to our islet-based biosensor principle and design. Thereafter, we will
explain how such a sensor can pursue the medical devices validation process in the context of
the AP and we will show how the simulation of AP systems supports that process. In the end,
this section will lead us to formulate the scientific question that this thesis work addresses.
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1.5.1. Electrophysiology of the endocrine pancreas

Electrophysiology is the branch of physiology concerned with the electrical activity of
bodily processes. Its extended scope spans from the electrical monitoring of unicellular activity
to the characterization of larger anatomical structures like the heart or neural networks. It
involves the measurement of voltages and currents but, contrary to electronics where electrical
charges are carried by freely moving electrons, electrophysiology is dealing with ionic. In body
cells, a lipid bilayer - the cell membrane - isolates the intra- and extracellular medium which
thus present different ionic composition and distribution. The cell membrane is scattered with
many transmembrane proteins which allow specific molecules and ions to cross the membrane
or act as receptors which, when bound to the adequate extracellular molecule, induce changes
in cell activity. Both actions aim at stimulating or inhibiting cell processes (e.g., secretion,
energy supply). The ion channels are transmembrane proteins which enable the passive
diffusion of ions through the membrane, thus creating ionic currents. The two main functions
of these currents are to change the membrane potential®™ (e.g., neural communication) and
to transiently increase the intracellular concentration of a particular ion to trigger ion
concentration-dependent cell events (e.g., secretion, contraction) [65]. While some ion
channels are opened or closed in response to cell events, others are permanently open and
therefore act as ion pump. The unbalanced exchange of electrical charges through these ion
pumps explains the baseline difference in electric potential across the plasma membrane.
Ranging between -60 and -80 mV, this difference is named the resting membrane potential.

Similarly to neurons, pancreatic B cells are excitable cells. In particular, they have a
measurable electrical activity in response to variations of glucose concentration in their vicinity.
Glucose is transported through the membrane by the GLUcose Transporters (GLUT 1-4 — a
group of transmembrane proteins) and metabolized by mitochondria which results in a neat
increase of high-energy Adenosine TriPhosphate (ATP). The resulting rise of the ATP/ADP
ratio causes the closing of ATP-dependent potassium (K*) channels and the subsequent
increase in intracellular K* ion concentration. It results in a depolarization of the membrane
leading to the opening of voltage-dependent calcium (Ca*") channels which generates a positive
ion influx thus hyperpolarizing the membrane. Meanwhile, Ca*" ion concentration increases
and triggers a Ca’" ion concentration-dependent cell event named exocytosis. Exoxytosis
consists in the fusion of Insulin Secretory Granules (ISGs are vesicles containing insulin) with
the cell membrane enabling the release of insulin outside the cell, i.e., the secretion of insulin
(Figure 11) [66]. As with neurons, the depolarization/hyperpolarization of the pancreatic B
cell membrane occurring during insulin secretion is called an action potential. Exocytosis
and action potential generation are extremely fast processes that happen in few tens of
milliseconds (about 90 ms for B-cell action potentials) and up to 12 times per second in secretory
conditions [67]. The noteworthy element here is the central role played by these ionic and

electrical events in the stimulus-secretion coupling of the Bcells.

As described in section 1.1, insulin secretion is also modulated by other regulatory

mechanisms to ensure nutrient homeostasis in a variety of physiological states. A number of

2T The word potential refers here to the electric potential difference (as usually defined in electronics) between the

intra- and extracellular medium (the extracellular potential being taken as the reference).
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Figure 11: Electrophysiology of the B cell

molecules whose associated receptors are expressed on Bcell membranes affects ion fluxes via
different signaling pathways. As a consequence, their action on insulin secretion is also
electrically measurable. In particular, GLP-1, GIP, CCK, peptide YY (PYY), and
oxyntomodulin are potentiators of insulin secretion released from the gut in response to food
intake, when adrenaline and somatostatin present an inhibitory action. Other potentiators of
secretion include vasoactive intestinal peptide (VIP), fatty acids, and acetyl choline.

In addition to the above-mentioned unicellular mechanism, intercellular communication
between juxtaposed B cells is responsible for a synchronized secretory activity [68]. This
coordinated secretion is the result of Ca’" ion exchanges between Bcells via specific gap-junction
proteins - named Connexin 36 (Cxy) - and is lost in dissociated cells. It was demonstrated that
this synchronicity also improves islet response towards a glucose stimulation (e.g., a meal) by
suppressing insulin release at low glucose levels and by increasing it at high glucose levels.

To characterize membrane potential variations of a unique cell, invasive techniques, such
as patch-clamp, are available and present an excellent signal-on-noise ratio. They however do
not allow for long-term recording of islet activity as cells cannot survive long in these
conditions. Recording the electrical activity of multiple cells over weeks therefore requires other
techniques: by placing a conductive electrode beneath an islet (constituted of multiple
interconnected B cells), it is possible to record the extracellular potential variations resulting
from the complex summation of ionic fluxes generated by islet’s cells in contact with the
electrode at the cost of a reduced signal-on-noise ratio (compared to patch clamp). The
coordinated insulin secretion is correlated with a coordinated electrical activity which takes
the form of a slow oscillation (<1 Hz) of the extracellular potential. This phenomenon
was first described in [69] and characterized by our partners from the CBMN laboratory [70].
It presents a shape and properties which are reportedly unique to pancreatic islets and will be,
in the following, referred to as Slow Potentials (SP).
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1.5.2. The islet-based biosensor

A biosensor is commonly defined as an analytical device that converts a change in the
immediate environment of the sensor into an electrical signal [71]. This conversion is usually
obtained through the association of two elements: a sensitive biological element (biological
material responsive to the analyte) and a transducer whose function is to transform the
resulting signal into an electrical signal conducive for subsequent processing. At times,
processing electronics is integrated to the device in order to condition the electrical signal
and improve the sensor overall performance. Ideally, the estimation of the physical variable of
interest, provided by the sensor, should also be independent from other environmental physical
parameters (e.g. pH, temperature). At this point, it is worth noting that CGM sensors also
satisfy this broad definition of a biosensor. Our sensor belongs to the subgroup of cell-based
biosensors as its biological sensing element is a whole pancreatic islet. Even though cell-based
biosensors have existed for years [72], and have found many applications in biomedicine [73],
this one is the first of its kind as pancreatic islets have never been utilized to sense insulin

demand in the past.

The hybrid bio-electronic sensor (see Figure 12) studied in this thesis work is the
result of a decade of research by our research group and its partners. This patented technology
[74] benefits from the natural sensing features of islets: it uses a Micro-Electrode Array (MEA)
as a transducer to measure, on multiple recording sites, the extracellular electrical activity of
a few murine or human islets. This transducer is linked to an electronic acquisition board
achieving the real-time processing of the measured signals [75], [76]. The electrical signals are
conditioned by a first analogue stage for their subsequent analysis by a dedicated digital
architecture. The biosensor is able to measure, with a high signal-on-noise ratio, the unicellular
activity (i.e., action potentials or spikes) and the synchronised multicellular activity (SPs) of
islet cells (Figure 12B). It also computes on line AP or SP characteristics of interest such as

frequency or amplitude (Figure 12C). Thanks to the on
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-chip islets, the biosensor integrates the action of all the mediators of insulin secretion. As B
cells, glucagon-secreting acells generate APs. Drawing a distinction between APs originating
from Bcells and APs originating from acells can therefore be very complicated when glucose
concentration is moderate (i.e., both types of cell are stimulated). For this reason, and because
they showed a good correlation with glucose concentration [70], SPs are the preferred
biosensor output signals in the context of its inclusion in an Artificial Pancreas. This
decision is reinforced by the fact that, as already mentioned, SPs appear as an image of the
true physiological insulin secretion.

1.5.3. Towards a wearable medical device

A laboratory prototype of our biosensor is already in use and provides our partners a unique
means to study the electrophysiology of pancreatic islets submitted to different stimulations
(e.g., glucose, hormones) [70], [77]. Note that this prototype still relies on commercial solutions
for some elements of the acquisition chain. Besides, this sensor module is currently used in a
clinical study for in wvitro quality control of human donor islets prior to transplantation [78].
Embedded in a wearable device, this technology would also constitute a valuable alternative
to CGM sensors which currently limit the efficacy of commercially-available AP systems. This
ongoing work necessitates the integration and packaging of the electronic acquisition chain
together with a microfluidic setup containing the islets and an insulin pump in a compact
housing. The device needs to be reliable enough to efficiently control the blood glucose of
diabetic patients while ensuring their safety.

In the prospect of becoming a medical device, it needs to pass several validation stages to
be endorsed by national regulatory authorities. The development and validation process, can
be roughly described with four stages [79]. The first stage concerns the discovery and basic
research work leading to the first proof of concept. During the second stage, the preclinical
development, design specifications for fabrication, packaging and labelling are established. If
applicable, efficacy is assessed with a preclinical trial using animals. The design of protocols
for future research and clinical trials also takes place during this stage. The third stage aims
at assessing the safety and efficacy of the proposed solution in a controlled environment, i.e. a
clinical trial. This latter stage, when validated, leads to the market approval process (fourth
stage). The current status of our research positions us in the second stage in that development

path, i.e., the preclinical validation.

1.5.4. In silico preclinical validation

The ability of our biosensor to access the endogenous algorithms of pancreatic islets was
demonstrated and published [70]. Preclinical validation of the technology is now necessary and
requires the design of a new version of the acquisition board to incrementally converge to a
compact wearable sensor. While the specifications of the final device are under study, the
protocol for in vivo experiments has been submitted and accepted. This trial aims at assessing
the ability of our sensor to regulate the blood glucose level of 10 T1D patients in a controlled
clinical environment. A hybrid closed-loop will be studied with the healthcare staff controlling
the command signal transmitted to the insulin pump by the controller algorithm. Due the
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complexity of such trials for a very limited number of patients, we simultaneously investigate
the in silico validation of our sensor.

Simulation of metabolic processes has a recognised clinical relevance in developing
solutions for the treatment of diabetes [80]. Simulations offer the possibility to perform
extensive tests with significant time- and cost- savings. Preclinical trials on animals are
frequently replaced by or assisted with in silico trials to reduce the time and cost of the
traditional medical device validation process (see Figure 13). In the context of diabetes,
models have been developed, both for T1D and T2D, to study patient’s response to
treatment (e.g., drugs, insulin delivery systems) or long-term therapeutic outcomes and costs
[80]. A variety of models have also been developed to be used in AP controllers [54]. A
milestone in the development of this research area is the approval by the US FDA of the
first in silico model, the UVA /Padova T1DM Simulator (T1DMS), that can substitute
for animal studies in the preclinical testing of diabetes treatment by means of artificial pancreas
(AP) systems [81]. To this day, the TIDMS is the most complete solution to model the glucose-
insulin dynamics in insulin-treated diabetic patients. It provides a high-fidelity metabolic model
together with an AP testing environment with built-in CGM sensor and insulin pump models.
Its cohort of virtual T1D patients comprises 11 adults, 11 adolescents and 11 children
which can be submitted to a variety of glucose intake scenarios and metabolic tests. It was
therefore chosen to develop a model of our islet-based biosensor and validate its closed-loop

performance in an AP.
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Figure 13 : Alternative medical device validation process using computer-aided simulation: the
example of the validation of a new drug or implantable drug infusion pump in the US

1.5.5. Contribution of this thesis work

This thesis work is part of a broader set of research projects named DIABLO (grant
agreement DIABLO DIABLO N°ANR-18-CE17-0005-01) and DIAGLYC (grant agreement
DIAGLYC N°3538519), supported respectively by the ANR and by the FEDER/Région
Nouvelle-Aquitaine. The research consortium is highly interdisciplinary:
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e The group of Prof. Sylvie RENAUD (ELIBIO team - IMS Laboratory, UMR
CNRS 5218) has an expertise in electronics engineering and is in charge of the biosensor
device design, including the algorithms implementation on hardware.

e The group of Prof. Jochen LANG (CBMN Laboratory, UMR CNRS 5248) has
expertise and set-ups for islets preparation, molecular cell biology, electrophysiology &
microfluidics.

e The group of Prof. David HENRY (ARIA team — IMS Laboratory, UMR CNRS
5218) is specialized in control theory, fault diagnosis and fault tolerant theories to
guarantee an operational autonomy of complex safety-critical systems. It is in charge
of the control law design based on matured techniques in a complex environment.

e Prof. B. CATARGI is head of a Diabetes Unit in CHU-Bordeaux, and an
internationally renowned specialist in diabetes treatment by insulin pumps and CGM.
He is involved in fundamental research in the closed-loop field in diabetes.

With the DIABLO project, this consortium aims at developing an in silico AP model
integrating our biosensor model and a novel ad hoc regulation controller robust to patients’
variability: while current controllers only consider glucose for their input, our consortium
designs a controller which benefits from the biosensor properties to also consider hormonal
levels to regulate glycaemia. To validate the approach on humans, the controller predictions
will be compared to standard CGM’s first in the T1IDMS testing environment. Second, as
mentioned in 1.5.4, our entire setup will be tested directly in T1D patients equipped with an
extracorporeal version of our biosensor (and a current commercial CGM and pump). Our

objectives are:

e Objective 1: Assess the human in silico biosensor model in physiological conditions
(glucose and hormones), using advanced multiparametric identification techniques,

e Objective 2: Enhance the reference whole human body single-input T1IDMS by
integrating the biosensor model from Obj. 1, and an innovative multi-parametric
controller,

e Objective 3: Design and perform experiments to validate the biosensor and the
controller via (i) an in silico clinical trial on the T1DMS and (ii) the previously
mentioned in vivo and extra corpore clinical trial with diverse daily scenarios; compare
to classical CGM and demonstrate the benefits of a novel 1) hybrid bio-electronic sensor

paired with 2) an ad hoc robust controller.

The scientific question of this thesis work is to determine if simulation constitutes a valid
support to validate the concept of using pancreatic islets algorithms via electrophysiological
measurements in a biosensor. In a second time, the objective is to design an in silico clinical
trial to assess the performance of a biosensor-based AP that regulates the blood glucose of
virtual T1D patients, and compare it to standard treatment approaches.
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Conclusion

In this first chapter, we have seen that the glucose metabolism, as part of the nutrient
metabolism, is a vital physiological process which provides human beings with the necessary
energy and natural compounds to enable growth and reproduction. The complex interplay of
numerous physiological processes is required to cope with the molecular diversity and the
intermittence of food intake, while withstanding demanding situations (e.g., intense physical
exercise, starvation).

Type 1 diabetes is a severe autoimmune disease leading to death within months in the
absence of treatment. The immune system targets the pancreatic B cells, causing a severe
impairment of insulin regulation which culminates in the complete suppression of its secretion.
The disease severity resides in the unique and predominant role insulin plays in the metabolism
of nutrients. The main anabolic hormone being suppressed, the primary symptom of diabetes
takes the form of chronic hyperglycaemia and needs to be treated to avoid the development of

serious complications.

In 1921, the discovery and isolation of insulin by Banting and colleagues opened the door
to the development of a treatment for type 1 diabetes. During the last century, insulin
production processes were refined and the development of insulin analogues provided the
patient with a means to restore physiological insulin profiles. Pivotal studies such as the
DCCT/EDIC demonstrated the benefits of intensive insulin delivery to achieve a tight
glycaemic control and improve long-term health outcome of type 1 diabetic patients.
Towards the day-to-day burden associated with the challenging implementation of tight
glycaemic control, mobile health aims at developing solutions to improve patients’ quality of
life. The development of continuous glucose sensors and insulin pumps have achieved a
first step in that direction. One step further is the Artificial Pancreas, which combines these
wearable devices with sophisticated algorithms in a closed-loop configuration and removes the
need for patient interventions. Although promising, automated closed-loop systems still suffer
from major limitations and struggle to manage meals and physical activity due to limited
information on patient physiological status.

As outlined by Frederick Banting in its Nobel lecture: “insulin is not a cure for diabetes; it
is a treatment”, i.e., patients are not cured with insulin and need to bear a life-long dependency
to exogenous insulin infusion. An alternative approach, based on cell therapy, therefore aims
at curing diabetes with transplantation techniques. This approach greatly suffers from the lack
of donors and the lifelong immunosuppressive treatment required to avoid graft rejection. In
this context, closed-loop technologies still appear as viable alternatives to replace the endocrine

pancreas and have a continuing innovation potential.

In the last decade, computer-aided simulation has emerged as a time- and cost-effective
support to develop medical devices for the treatment of diabetes. As highlighted by concepts
such as the glucose index and the glucose load, the molecular diversity of food intake and the
complexity of the digestion process can be simplified and modelled as the rate of appearance
of smaller molecules (e.g., glucose, fructose, fatty acids, and amino acids) in blood. In the
context of diabetes, where glucose metabolism is primarily affected, carbohydrates intake can
thus be reduced to the resulting glucose rate of appearance in blood, i.e. meals can be
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Figure 14: The Biomimetic Artificial Pancreas. This islet-based AP takes advantage of the exquisite
sensing and blood glucose regulation capabilities of healthy pancreatic islets to ensure the closed-loop
control an insulin pump in a physiological manner.
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modelled as glucose intake. Nonetheless, modelling the complex endocrine regulation of
glucose homeostasis and the interplay between all the involved organs, is mandatory to
accurately represent the glucose-insulin dynamics in T1D patients.

By associating the natural sensing abilities of the islets of Langerhans, the advanced features
of modern closed-loop algorithms and the virtually unlimited supply of insulin pumps, our
project proposes a new paradigm for the Artificial Pancreas (see Figure 14). Using the
high-fidelity UVA/Padova T1DMS testing environment and its virtual cohort, we aim at
establish an in silico proof of concept for the use of our innovative biosensor in an AP system.
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Chapter 2

Material and methods

To a certain extent, this manuscript is organised as a scientific paper. After an introductory
chapter depicting the scientific context of this PhD work, the second chapter then presents the
necessary material and the methods developed to achieve the results described and discussed
in Chapters 3 and 4. Although the main material and methods are provided in the chapter,
supplementary content is also available in the appendices and additional information is
provided as the results are described. This structure was favoured to improve the readability

of the manuscript.

The subject of this thesis covers numerous research areas. A first section further details the
actual implementation of the biosensor. It describes the components of the current
electrophysiological measurement setup as well as the next version (currently under
development) designed to perform experiments using microfluidics. A second section describes
the modelling approach that has been adopted to design the biosensor models. The in vitro
experiments which provided the datasets necessary to identify these data-based models are
then presented together with the identification methodology. A fourth section describes the
UVA/Padova T1DM Simulator whose testing environment was used to assess the closed-loop
performance of a biosensor-based AP system. Finally, a last section details the methodology

we implemented to assess the performance of our BG regulation closed-loop systems.

The vocabulary and representations used in this chapter comes from the engineering
community. Although the description of the islets as a “device”, i.e., the description of islet
inputs processed by endogenous algorithms to provide outputs, might unsettle the reader with
a background in biology, it has been voluntarily chosen to encourage the reader to consider the
pancreatic islet as a sensor component. The objective is to underline that, unlike traditional
CGM sensors, the biosensor is a multi-input sensor (sensitive to numerous molecules) even if

its models are single-input (glucose-only models).
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2.1 A biosensor based on pancreatic islet’s activity recording

As stated in section 1.5.2, the association of a sensitive biological element and a transducer
constitutes a biosensor. In our case, the natural sensing capabilities of pancreatic islets are
exploited via electrical recordings using planar electrodes (the transducer). Electrical signatures
are detected in the recorded electrical activity of pancreatic islets to assess the composition of
the medium to which the islets are submitted. In response to nutrients and modulators of
insulin, the electrical activity of islets exhibits specific signatures. Recording of such biosignals
is delicate, as their amplitude is limited to a few hundreds of microvolts, with some electrical
signatures rarely exceeding tens of microvolts. Proper acquisition therefore relies on appropriate
electronics that will amplify signals with minimal added noise, while maintaining cells in a
noise-free, temperature-controlled environment. The electrodes of choice for our biosensor are
arranged on commercial Multielectrode Arrays (MEAs) that maximize cell coverage, permit
multisite recording, and provide reasonable cell adhesion, good reusability, and easily
controllable culture conditions. For conditioning and subsequent processing of the electrical
signals recorded with MEAs, an electronic acquisition system was designed. In the
following sections, the main elements of the current version of this setup are described (see
Figure 15) and the main tracks towards a fully integrated implementation of our biosensor
are highlighted.

10
10

@

mg © 1

1: Multimed Board N
2: MCS MEA1060-Inv preamplifier O
3: MCS TCO01 thermal controller

4: Computer
5: MCS USB-MEG64 acquisition board

Figure 15: Complete measurement setup scheme. This setup is used for recording of the islet electrical
activity with our custom acquisition system and the MCS acquisition system simultaneously.

2.1.1 Extracellular recording using a MicroElectrode Array

The core element of our biosensor consists in an electrophysiology setup which, paired with
processing electronics, enables the detection of specific electrical signatures in pancreatic islets’
electrical activity. Many techniques have been developed to record the activity of living cells.
To monitor the pancreatic islets, the biosensor implements a technique initially developed for
neural networks characterisation: the extracellular recording with a MEA (MultiElectrode
Array) [82]. This minimally invasive technique enables long-term continuous monitoring of
multiple islets with a good spatial resolution but at the cost of a reduced signal-to-noise ratio
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(when compared to other techniques such as patch-clamp). It notably enables the recording of
both unicellular and multicellular signals.

In vitro MEAs are usually composed of a substrate covered with multiple electrodes
connected to contact pads via conducting metal lines. Electrodes and conducting lines are
insulated in non-conductive material to limit crosstalk. As cells are directly cultured in a well
on the MEA, all materials are carefully chosen to ensure biocompatibility. The materials
typically used are transparent glass for the substrate (to allow microscope observation), silicon
nitride (SiN) for the insulator and titanium (Ti) or indium tin oxide (ITO) for the conductor.
Electrodes use diverse conductive materials depending on the application, including gold (Au),
titanium nitride (TiN), platinum (Pt), stainless steel, aluminium (Al), and iridium oxide (IrOx)
[83].

The biosensor models presented in this work were derived from experimental data acquired
with commercial in vitro MEAs from Multichannel Systems (MCS, Reutlingen, Germany).
Static experiments (see section 2.3) were performed with these MEAs. Commercial MEAs
provide reliability, comfort of use and satisfactory signal-to-noise ratio. However, they are not
specifically designed for the recording of islets (making it difficult to position the islets on the
electrodes for example) and their size would not suit a wearable implementation of the
biosensor (gold standard MEAs are a squared glass wafer with sides 45mm in length and topped
with a 6-mm high glass cylinder).

Furthermore, additional microfluidic appeared to
be necessary in order to study the dynamics of the
endocrine pancreas response with more accuracy using
time-varying stimulation patterns. Microfluidic MEAs*
ease the characterisation of the pancreatic islets for the
purpose of designing a dynamical model of these islets.
Commercial microfluidic MEAs (Qwane Biosciences,
Lausanne, Switzerland) were used in the past but did
not fulfil our needs. The decision to develop application-

specific microfluidic MEAs was finally taken and e . :

resulted in the development of a first prototype (see : ’
Figure 16: Application-specific micro-

fluidic MEA developed in collaboration
with IES Laboratory (UMR 5214,
Montpellier).

Figure 16). The advantages of this solution are that
the islets can be trapped in a specifically-designed
PDMS chip, electrodes can be engineered to improve
signal-to-noise ratio, and an increased integration level
can be reached for the sensing part of the biosensor. This solution however requires an
important and time-consuming work to achieve the sensitivity and reliability of their
commercial counterparts, and the models described in this chapter were thus calibrated with
the most reliable experimental data we obtained using traditional MEAs.

2 By « microfluidic MEA » we mean the assembly of a MEA with dedicated microfluidic channels fabricated in a

biocompatible material and used to control fluid circulation over the MEA electrodes.
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2.1.2 Signal conditioning front-end

The recorded electrical biosignals of pancreatic islets go through a first stage of
amplification achieved by a commercial discrete preamplifier (MCS MEA1060-Inv). This
60-channel preamplifier is compatible with MCS in vitro MEAs. It provides a first stage of
amplification close to the recording site in order to limit the degradation of the signal-to-noise
ratio of recorded signals. A first stage of filtering is also applied with a customized bandwidth
ranging from 0.1 to 3000Hz. In addition to electrical signal conditioning, the preamplifier
maintains the MEA culture medium at a temperature close to 37 degrees Celcius, thus
guaranteeing true-to-life response of islets. Temperature is regulated thanks to a programmable
heating plate driven by a proprietary MCS temperature controller (MCS TCO1).

2.1.3 Biosignal processing with the Multimed system

The ELIBIO team designed a versatile processing system, called Multimed [84], to
cover a wide range of applications with a single electronic acquisition board. To design such a
versatile system, a modular strategy was adopted to ensure flexibility (see Figure 17). The
Multimed acquisition system is composed of three interconnected electronic boards:

- an acquisition board, named “Tethys”, that provides a second stage of amplification of
the recorded biosignals and multichannel analogue-to-digital conversion,

- a digital processing board, named “ Titan”, embedding a FPGA? that runs a dedicated
digital signal processing architecture,

- an interface board, named “Dock”, containing numerous features to connect Multimed
to other devices, enable configuration by the user, save datafiles, and distribute power
to other boards. It notably embeds switches, buttons, USB (Universal Serial Bus) port,
Video Graphics Array (VGA) port, digital 1/Os, SD (Secure Digital) card slots, and a
JTAG (Joint Test Action Group) connector.

Multimed is thus a generic hardware platform with acquisition and processing
capabilities centred on an FPGA. Taking advantage of the reconfigurable logic of FPGAs, it
can be reprogrammed, upgraded, and shared between research projects with different cellular
material (e.g., in vitro pancreatic cells, in vitro neurons, or ex-vivo spinal cord), all the while
proposing dedicated hardware processing architectures with very low (sub-millisecond) latency.
While the global VHDL (VHSIC Hardware Description Language) architecture (handling both
processing and interfacing) is identical between projects, the processing functions and their

arrangement are application-specific.

On its FPGA, Multimed embeds a digital architecture dedicated to the real-time processing
of electrical biosignals. The real-time processing modules are designed to have a short, well-

2 FPGA (Field Programmable Gate Array): are semiconductor devices that are based around a matrix of

configurable logic blocks (CLBs) connected via programmable interconnects. FPGAs can be reprogrammed to
desired application or functionality requirements after manufacturing. This feature distinguishes FPGAs from
Application Specific Integrated Circuits (ASICs), which are custom manufactured for specific design tasks (definition

by Xilinx, top FPGA design company).
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Figure 17: Multimed biosignal acquisition and processing system
characterized latency. To do so, they are fully described in VHDL, which permits a total control
over computation procedures. The team design strategy was to build a library of processing
modules that can interoperate while keeping the processing flow fluent, predictable, and
latency-efficient. Hosting the processing architecture in an FPGA also makes it adaptable,
while keeping the exact same hardware from one application to the other. Once digitalised, the
recorded electrical biosignals are processed using various techniques (e.g., wavelet filters, min-
max detection, and threshold-based detection to name a few) to extract the electrical signatures
of interest (e.g., action potentials, Slow Potentials, and plateau fraction). The numerous signal
processing capabilities of the Multimed system, an in-depth description of its hardware, and
computation cost and latency estimations for all the modules of its digital architecture were
published in [84]. In the context of the DIABLO project, this dedicated processing electronics
with multichannel capabilities serves to extract electrical signatures such as action
potentials and SPs (Slow Potentials) from the electrical signals recorded on the islets embedded

in the biosensor.

2.1.4 System for Acquisition with Microfluidics (SYAM)

To eliminate the dependence on proprietary technologies, a custom electronic system was
developed under the name System for Acquisition with Microfluidics. It integrates the
functions of the MCS equipment (i.e., MEA support, low-noise amplification, bandpass
filtering, and temperature control). This system also provides grounds for further integration
and represents, as does the use of microfluidic MEAs, one more step towards the incorporation
of the biosensor in a closed loop regulating the BG of diabetic patients. Indeed, at this stage
of the project, we anticipate that a wearable implementation of the biosensor would require a
fully integrated system containing a microfluidic system to supply islets with patient’s fluids,
a microfluidic chip to trap the islets and ensure a satisfactory recording when the patient is

moving, and all the electronics necessary to power the system, control the environment
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(temperature), process the islets biosignals and establish a wireless communication with a
programming device.

SYAM was designed to fit acquisition and thermal control in a single device, in contrast
with MCS equipment that achieves the same function with three separate pieces of equipment
(see Figure 18). It is composed of two main sub-systems: the main body, which includes
electronics for thermal control, backlighting, user controls, and electromagnetic shielding, and
an acquisition stage. SYAM is thus a complete electrophysiology acquisition system allowing
for the stimulation of the islets with a microfluidic setup and the recording of their activity via
electrical or optical measurements. To conclude, SYAM was designed according to the following
specifications and constraints:

e 60-channel, 16-bit, 10 kHz data acquisition®
e Temperature control at 37°C
e FKasy access to the MEA for insertion and manipulation of microfluidic tubing

e Must include a Faraday cage

The system is powered by a 12 V, 5.42 A power supply. This system was developed during my
PhD thesis, I participated to the setting of its specifications but I have never been directly
involved in its development. Besides, no data acquired with this system were used to develop
the models presented in this work as they were only available recently.

©® @

1: SYAM: _()

- Intan preamplifiers

- Thermal control

- Backlighting
2: Fluigent microfluidic setup
3: FPGA acquisition board
4: Computer

Figure 18: Scheme of the microfluidic measurement setup integrating SYAM.

3 Legacy from the MCS equipment, which has identical specifications
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2.2 Biosensor modelling approach

« Models describe our beliefs about how the world functions.”
Glenn Marion in [85]

With mathematical models, beliefs about how the world functions are translated in the
language of mathematics, i.e., a combination of equations with numeric parameters.
Mathematics enable the formulation of ideas with precision and concision, and the clear
identification of underlying assumptions. In addition, mathematical modelling offers the
possibility to benefit from all the results that mathematicians have proved over hundreds of
years. Nowadays, it also opens the access to the tremendous power of computer-aided
simulation. In its “Introduction to Mathematical Modelling” [85], Glenn Marion highlights
that: “There is a large element of compromise in mathematical modelling. The majority of
interacting systems in the real world are far too complicated to model in their entirety. Hence
the first level of compromise is to identify the most important parts of the system. These will
be included in the model, the rest will be excluded.” This statement is particularly true for the
modelling of biological systems which can present a marvellous complexity as we have
seen in Chapter 1. Indeed, modelling the physiological processes occurring in the islets of

Langerhans requires major simplifications and behavioural assumptions.

In this section, we will describe the design of a mathematical model of our biosensor for the
purpose of assessing, in silico, the ability of this sensor to provide valuable information to an
AP. It is important to note that the biosensor models used in this work were developed by a
former PhD student of the team and are presented here to ease the understanding of the reader.
They were updated in the course of my PhD thesis but the modelling work, strictly speaking,
was already done. This section provides a description of the revised modelling approach and
the underlying simplifications and assumptions.

As previously described, our biosensor monitors the electrical activity of healthy pancreatic
islets and processes it to continuously assess their insulin secretion. When it comes to
modelling the biosensor, its most important part, i.e., the part which mostly contributes to
the dynamics of the biosensor output, is then the pancreatic islet. In the context of diabetes,
the most interesting “output” of islets is insulin (represented by an insulin secretion rate). The
dynamics of the insulin secretion result from the complex interplay between a large number of
molecules and the pancreatic B cells. As a consequence, a mathematical model aiming at
modelling the islets in their entirety would take all the mediators of insulin as inputs. These
mediators can be classified in three categories: nutrients, hormones, and neurotransmitters®.
Nutrients act as initiators of insulin secretion when the two other categories only regulate
(either upward or downward) an insulin secretion initiated by a previous intake of nutrients.
In the context of this work, a simplified model of the pancreatic islet could therefore be

represented as shown in Figure 19.

31 Note that, a fourth category of mediators could be taken into account, namely the pharmacological drugs, but
their effect will not be discussed in this work as they are not the research focus of our partners at CBMN laboratory

and the focus here will be set on the natural mediators of insulin secretion.
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Figure 19: Simplified model of the pancreatic islet:

A second level of complexity appears with the synchronised activity of the B cells. We
described in section 1.5.2, how the biosensor is able to account for this coordinated response to
nutrients intake. Indeed, the overall objective of our project is to use the islets’ electrical
activity, and particularly the frequency of the Slow Potentials, as a proxy to assess the secretory
activity of these same islets, i.e., the dynamics of the insulin secretion. The islet model could
therefore be completed by considering the measurable electrical activity as the main readout

of the pancreatic islet model (see Figure 20).

Measurable
Hormones —» —»  electrical
Neurotransmitters —» activity

Figure 20: Simplified model of the pancreatic islet adapted for the biosensor context

As previously described, the islet is the sensitive element of our biosensor, but we have seen
that the biosensor also integrates data acquisition to process the information (see sections 1.5.2
and 2.1). Building a complete model of the biosensor therefore requires the modelling of the
electronic acquisition/computation system (Multimed - see 2.1.3). As does the real acquisition
board, its model takes the islet electrical activity as an input. Nonetheless, the model output
differs from the outputs of the real biosensor (see Pirog et al. [84] for an extensive list of the
measured signals) as we limited it to the sole measured SP frequency signal. Figure 21 shows

the resulting schematic of the complete biosensor model.
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Figure 21: Simplified model of the whole biosensor

Prior to this work, several biosensor models were developed using this formalism by a former
PhD student, Dr Antoine Pirog, who is now working in the ELIBIO team as a postdoctoral
researcher. These models were developed using the Python programming language and first
closed-loop simulation results were obtained using a Python implementation of the glucose-
insulin system model published by Dalla Man et al. [86].

Simulation is part of electronic products development in order to detect design errors
or unexpected behaviours due to the parasitic elements of real electronic components, and to
account for complex physical phenomena. It enables the correction of errors at an early stage
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of product development, i.e., at a stage where corrective actions remain less expensive. In the
context of this project, the variability of the biosensor output is (and must be) largely
attributable to the physiology of the islets embedded in this sensor. Simulations highlighting
an excessive contribution of the acquisition electronics should therefore lead us to rethink the
design of the acquisition system. At this stage of the project, a proof of concept validating the
biosensor as a valuable input to an AP control algorithm is still required. As a consequence,
the accurate modelling of the real implementation of the SP measurement algorithms embedded
in the acquisition board is not yet a priority. The models developed by A. Pirog in Python
were thus simplified to the islet model and implemented in the MATLAB Simulink
environment to be used with a commercial meal simulator developed in the same environment.
These biosensor models, whose associated simulation results are presented in this work, can

be represented as shown in Figure 22.
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Figure 22: Reduced model of the biosensor used in this work

It is important to underline the assumptions hidden behind this formalism. The first
assumption is taken from our experience with the biosensor over time. It is assumed that the
main electrical signature in the electrical activity of islets, i.e., the most interesting signal, are
the SPs. In particular, their frequency is the most interesting feature as it is directly correlated
to glucose concentration and modulated by GLP-1 and adrenaline as does the insulin secretion
response. [70] SPs amplitude variations seem to be less consistent throughout the different in
vitro experiments. However, they are still under study as they could provide quantitative
information to assess the size of an islet or the quantity of insulin it secretes compared to the
other islets of the MEA. The second assumption is that it is possible to measure the SPs
frequency with little biasing influence of the acquisition electronics. In other words, it is
relevant, in a first approach, to neglect the influence of the acquisition system when modelling
the biosensor. This hypothesis is mainly justified by the fact that SPs are a slow (period ranging
between 1 and 10 seconds) signal with good repeatability.

To conclude, this work is part of a scientific approach which considers an idealized
version of the biosensor to validate its working principle. In particular, our objective is to
validate its ability to provide valuable information about a T1D patient metabolic status to
the controller of an Artificial Pancreas. To do so, the extensive characterisation of islets
response to the initiators and modulators of insulin secretion is required for the purpose of
designing a dynamical model of the islets and of our biosensor at the same time. In a coherent
manner, this approach supposes that the thorough modelling of the biosensor hardware and its
processing algorithms should be postponed to a second stage of the modelling project. Indeed,
it appears more profitable to model these aspects of the biosensor during the development of a
commercial product with definitive design choices.
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2.3 Data-based modelling

The endogenous algorithms of murine pancreatic islets have extensively been characterised
via electrical measurement with our biosensor [77], [84]. Using these experimental data, it is
then possible to model the islet electrical activity response to insulin secretion mediators and
thus model the biosensor response to these same mediators, as we have seen in the previous
section. Many approaches do exist to develop a model based on experimental data. “Black
box” approaches are a set of techniques that do not use a priori knowledge about the system
under consideration to identify a model of this system and the model parameters. In practice,
a priori knowledge is often necessary, and “grey-box” approaches are preferred: some a priori
knowledge is injected at different stages of the modelling process but the equations and the
parameters of the model do not necessarily have any physical meaning. Lastly, “white-box”
identification techniques rely on a parameterized model which aims at representing the system
under consideration. The identification then becomes an optimization problem where an
algorithm is used to find estimate of model parameters which minimizes the estimation error
following a predefined criterion. The models used in this work were developed using a technique
which can be classified in the “white-box approaches” category. Yet, the ARIA team at
IMS, which officially joined the project in 2019 and is now in charge of the biosensor modelling
work, is currently using “grey-box” approaches to design alternative versions of the biosensor
model.

In the last section we have also seen that designing a relevant mathematical model requires
to define the most important parts of the system to model. The ideal islet model for us, i.e.,
the model which best matches the context of this project, is outlined in the first subsection to
come. Then, general principles of extracellular electrophysiology and the methodology utilized
during the in vitro experiments are briefly described. An overview of the retrieved experimental
data is provided in the third subsection, followed by the description of the actual parameterized
models that have been used in our study. Finally, the identification techniques which provided
the best fit to experimental data are detailed.

2.3.1 Contextualised model of the pancreatic islet

In Chapter 1, we emphasized the tremendous complexity of the human body. In particular,
the glucose homeostasis results from the complex interplay of multiple organs, precisely
orchestrated by the endocrine pancreas. To cope with a variety of physiological states and
perturbations, the pancreatic islets integrate numerous signalling pathways and molecules.
Modelling their complexity in its entirety is utopian. Yet, it is possible to design a simplified -
but not simplistic — islet model, describing its response to numerous molecules, based on in
vitro characterisation. In view of the difficulty to monitor the islet output in real time (the
insulin secretion rate), the biosensor, and its ability to monitor extracellularly the electrical
activity of the islets, appears as a valid information source to develop a mathematical model
of the islets. The ideal functional islet model takes all the initiators and modulators of
insulin secretion as inputs and outputs the insulin secretion rate (see Figure 23). In our
context, we consider an islet model with a second output, the measurable electrical

activity. Our ideal model can therefore be represented as shown in Figure 23.
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GLP-1 —» Insulin
GIP —» secretion rate
VIP —»
CCK —»
PYY —>
Oxyntomodulin —» MEHSUI:HHE
Acetylcholine —» —»  electrical
Glucagon —» activity

Adrenaline —»
Somatostatine —»

Figure 23: Contextualised model of the islet of Langerhans. The main initiators, potentiators, and
inhibitors of insulin secretion are considered as inputs of the model: nutrients (dark yellow),

neurotransmitters (blue), gut hormones (green), and other hormones (purple).

2.3.2 In vitro characterisation of islet endogenous algorithms

The in vitro characterization of the islets endogenous algorithms with the biosensor
took place at CBMN laboratory in Prof. J. Lang’s team®. Murine pancreatic islets were
obtained by enzymatic digestion and handpicking, and were cultured directly on MEAs by
CBMN. Human islets, provided by the GRAGIL*, were also used but their transportation
makes their culture complicated and thus deteriorates the reproducibility of the experiments.
Due to a limited availability of human data, the biosensor models were fitted on data
obtained with murine islets. As a consequence, we will focus on the results obtained with these

murine islets.

Islets are usually cultured on MEAs for 2 to 7 days prior to the electrophysiology
experiments. Experiments then consist in perfusing the culture chamber with various solutions
depending on the desired objective. Islets electrical activity is recorded as detailed in 2.1 and
the static behaviour of islets is usually characterised by averaging the frequency and
amplitude of SPs (Slow Potentials) on a short time window (few minutes) and on several
electrodes once the steady state for a given condition is reached. The dynamical
characterization of islets behaviour requires to continuously record these signals while
applying a step of glucose. In so doing, the transient response to the condition under study
is captured and characteristic time-dependent behaviour of the islets can be brought to light.

The solutions utilized to stimulate the islets contain the necessary ions to ensure a
physiological response or to induce a specific response (e.g., inhibition of SPs with a
supraphysiological concentration of calcium). To assess islets response to nutrients, the
solutions are also carefully dosed to attain the desired glucose concentration. More
conveniently, a given glucose concentration is referred to as GX, where G stands for glucose

32 Prof. J. Lang, Dr M. Raoux, Dr F. Lebreton, Dr M. Jaffredo, E. Puginier.
% The GRAGIL (Geneva-Rhine-Rhone-Alps Group for the transplantation of Islets of Langerhans) consortium is a
network of several transplantation centres from France (Grenoble, Lyon) and Switzerland (Geneva University

Hospital) that act as a central islet production structure.
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and X for the concentration in glucose in mmol/1 (e.g., G5.5 refers to a solution with a glucose
concentration of 5.5 mmol/l). Moreover, both physiological and supraphysiological
concentrations in nutrients and insulin modulators are used during the experiments to better
understand pancreatic islets physiology.

2.3.3 Experimental protocols

We have seen that, ideally, modelling the endogenous algorithms of the islet of Langerhans
would require the characterisation of their response to many molecules (Figure 23). Indeed,
a mathematical model accounting for all the initiators and modulators of insulin secretion is a
Holy Grail. Yet, multiplying the experiments to extensively study the islets is time and
resource-consuming. Together with our partners at CBMN, we therefore decided to focus
resources on the most interesting and accessible molecules. At the time of writing, the
pancreatic islets’ response to glucose has been well studied but data with other initiators of
insulin secretion, such as lipids or amino acids, is still lacking. Concerning the modulators of
insulin secretion, the response to GLP-1 has been studied together with the response to
adrenaline. Figure 24 summarizes the experiments that have been performed (the
molecules, the stimulation patterns, and the islet response to these stimulations are detailed)
and the main “features” (i.e., the characteristic response to these different stimulants) of the
endogenous algorithms that have been reported.

These very characteristic responses of the islets have been identified applying the
methodology depicted in section 2.3.2.

In a series of static experiments consisting in applying increasing followed by decreasing
ramps of glucose to cultured murine islets, we observed a characteristic hysteretic response.
Mouse islets were cultured for 3 to 13 days on MEAs. During the experiments, the electrical
activity of these islets was recorded while the glucose concentration was raised, step by step
(variable amplitude but 0.5 mmol/l most of the time), from 3 mmol/l to 15 mmol/l (G3 to
G15) and decreased back to 3mmol/l. A deeper analysis of this glucose-induced electrical
activity revealed that the frequency of the SPs was correlated with glucose concentration,
showing a sensitivity to both the concentration and its direction of change. During the rising
phase, SP frequency increased with a median effective concentration (EC50) of 7.5 mmol/l
(maximal effect at 10 mmol/l glucose), while the EC50 shifted to 8.7 mmol/l during the
decreasing phase. From a functional perspective, this characteristic response of the islet
endogenous algorithms ensures a quick reaction to hyperglycaemia while preventing reactive
hypoglycaemia (by lowering rapidly the secretion of insulin when the glucose level is
decreasing).

Concerning the modulators of insulin secretion, the effect of GLP-1 concentration on
glucose-induced electrical activity was studied. A potentiation of the electrical activity induced
by steady concentrations of glucose was observed. Using steady concentrations of glucose (G8.2
and G15) associated with picomolar concentrations of GLP-1, we notably observed an increase
of SP frequency correlated with the increase of GLP-1 concentration (from 0.5 pmol/l to 50
pmol/1) [70]. The stress hormone adrenaline was also tested as it is a known inhibitor of beta
cell electrical activity. Glucose-induced SPs were reversibly inhibited by relatively high



7

concentrations of adrenaline. The design and results of these experiments are further detailed
and discussed in Lebreton et al. [70].

The transient response of the murine pancreatic islets was also studied using steps of
glucose concentration. Cultured islets were maintained at a glucose concentration of 3 mmol/l.
Glucose steps at 5.5 mmol/l (G5.5, at the activation threshold), 6 mmol/l (G6, immediately
above the activation threshold), and 8.2 mmol/] (G8.2, close to post-prandial BG levels) were
then applied. The instantaneous SP frequency presented a characteristic biphasic response over
time in all three cases with the amplitude of this biphasic response correlated with the glucose
step concentration. The first phase lasted on average 8.4041.18 min, was followed by a drop
of global activity, and by a second phase presenting a plateau of lower activity than the first
phase. During the second phase, SPs become pulsatile (both in amplitude and frequency)

Stimulant Stimulation pattern Islet response
Hysteretic response
Glucose © G:
Time G
Biphasic response
Glucose © &
Time
Time
Potentiation
GLP-1 £ _I_I_'_
(4 steady © &
glucose) Time
at G8.2 or G15 GLP-1
El Inhibition
Adrenaline g I_l_li
(+ steady 2 &
g]ucose) Time
at G15 Adrenaline

Figure 24: Summary of the main islet endogenous algorithms that have been characterised in witro
with the biosensor.
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presenting a general pattern which reminds the biphasic insulin secretion patterns [87]. These
results related to the islet biphasic response to glucose steps are published in [77].

2.3.4 A mathematical model of islet electrical activity

The endogenous algorithms of murine pancreatic islets have been statically and
dynamically characterised in wvitro (see sections 2.3.3 and 2.3.2). Sensitivity to glucose
concentration and direction of change, the potentiating effect of GLP-1, the inhibiting effect of
adrenaline, as well as biphasic response profiles were described with sufficient resolution and
repeatability to be exploited in a modelling approach. During his PhD, Dr A. Pirog developed
models of SP frequency variation in response to glucose ramps and steps in Python. He
then modelled the effect of GLP-1 and adrenaline as SP frequency modulation parameters.

This work deals with the use of simulation to validate the biosensor as a valuable input to
the control algorithm of an AP. My first task was then to develop a MATLAB implementation
of A. Pirog’s biosensor models, to make them compatible with the UVA /Padova T1DMS. The
implementation of the models in the MATLAB Simulink environment did not pose major
technical difficulties, but we had to limit the models’ inputs to glucose only since the simulator
only reproduces the dynamics of glucose, insulin, and glucagon. Indeed, the dynamics of the
other mediators of insulin secretion (such as GLP-1 and adrenaline) are not modelled in the
simulator, we therefore implemented in MATLAB mathematical models which express the SP

frequency as a function of glucose concentration only.

The previously described hysteretic response to ascending and descending ramps of
glucose, was first modelled using a Hill equation [88] widely utilized to model biological
processes. This model does not account for the asymmetry observed depending on the direction
of change of glucose concentration but, in a first approach, it provides a simple mathematical
model which correctly fits the experimental data. Following the method described by Stamper

and Wang [89] an activation function was defined (see Equation 1).

[G — Go]™
A(G) =1[Gso — Gol™ + [G — GoI"
0 otherwise (1)

if G =G,

With Gsoa half-activity constant, Goan activation threshold and n the Hill coefficient. A scaling
factor fu representing the maximum SP frequency was then added to de-normalize the model
and fit the experimental data. The SP frequency is then computed with Equation 2.

fsp = fu X A(G) (2)

To account for the sensitivity of islets to glucose direction of change, a second mathematical
model was developed using a custom implementation of the Preisach model of hysteresis
[90]. This model is widely accepted to model hysteretic phenomena. It decomposes a hysteresis
envelope into a summation of N discrete hysteretic elements, the relay hysterons (see Figure
25A). An hysteron of amplitude 1 can be described as a two-valued operator denoted Rqgwith
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a and B the “switch-off” and “switch-on” thresholds respectively (see Figure 25B).
Mathematically, the output of Rgp is expressed by Equation 3.

1 if x> B
y(x) =<0 ifx<a (3)
k ifa<x<pf

Where k = 0 if the last time x was outside of the boundaries « < x < f8, it was in the region
of x < a; and k = 1 if the last time x was outside of the boundaries @ < x < f, it was in the
region ofx > . Although more complex, this model has been extensively used in this work as
it better accounts for the hysteretic response of the islets.

A u B

ROH,BJ \ IR
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Uy /
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Figure 25: Working principle of the Preisach model. A) Summation of N discrete hysteretic elements

of amplitude W B) Transfer function of a unitary hysteron Re,p .

A dynamical model aiming at reproducing the biphasic response to a glucose step was
also developed in Python. Preliminary data obtained in Python did not show any significant
improvement of the closed-loop results when using this much more complex model (data not
shown in this manuscript). Therefore the implementation of this model in the MATLAB
Simulink environment was not a priority and was not completed during this thesis.
Furthermore, the ARIA team joined the project consortium in 2019 to develop a dynamical
model of our biosensor and a control algorithm specifically designed to integrate the biosensor
in an AP, using a grey-box approach which is quite different than the approach we used (white-
box approach).

2.3.5 Model parameters identification

The experimental data recorded as described in Lebreton et al. [70] were used for the
parameters extraction of the two models presented in the previous section. Recorded
signals were filtered using a Butterworth 0.2-2.0 Hz filter, and SP events were detected using
the algorithm presented in Pirog et al. [91] with a 6 nV threshold. The average frequency of
those events was calculated, and normalized, at steady state during the last 3—7 min of each
glucose condition (see Chapter 3 — Figure 38).

The static model (based on the Hill equation) was identified using the method of least
squares solved by the Trusted Region Reflective algorithm. Concerning the hysteretic model,
experimental data were split between increasing and decreasing glucose conditions, and fitted
to two separate static models using the same method in order to avoid propagation of



80

measurement errors within the model. The region between the two resulting curves was then
utilized to generate a hysteresis envelope and converted in the Preisach matrix to establish the
final model.

Identification of the static model was initially done in Python 2.7 using scipy.optimize’s
curve_fit function during Antoine Pirog’s thesis. I then translated the resulting model in
Matlab to satisfy compatibility with the T1DMS. Likewise, and for the same reasons, the
Preisach model was initially identified in Python 2.7 with an algorithm adapted from Janic¢i¢
et al. which takes the hysteresis envelope as an input [92]. The hysteretic model was then
translated in Matlab. During this thesis, the models were refined, as the experimental data
were analysed with detection parameters that had been improved in between. Both the static
and the hysteretic models were identified on the newly-processed data to obtain updated
versions of these models. During this new identification phase, homogeneity between models
was promoted by constraining the maximal frequency parameter (fi). As a consequence, and
contrary to the previous versions, the new versions of the models now have the same bounds
(see section 3.2).

2.4 Simulation environment

With the growing interest of simulation to assess therapeutic approaches in the diabetes
field, many models aiming at describing the glucose-insulin system were developed. The
most popular ones are the Bergman Minimal Model [93], the Hovorka’s Model [94], the
Sorensen’s Model [95], and the Dalla Man’s Model [86] to name a few. As previously mentioned,
they have notably been used to develop MPC (Model Predictive Control) algorithms or other
features relying on prediction such as PLGS (Predictive Low Glucose Suspend). Among them,
the Dalla Man’s Model has proven to be the most successful. This model is included in the
UVA/Padova Type 1 Diabetes Mellitus Simulator (T1DMS), which has a recognized
physiological accuracy, and obtained the approval of the US FDA as a substitute for preclinical
animal trials. The UVA /Padova T1DMS is now a renowned and commercially-available testing
environment for glucose sensors, control algorithms, and pumps involved in modern T1D

therapy. Indeed, it was specifically designed to facilitate the development of AP systems.

2.4.1 UVA/Padova T1DM Simulator testing environment

The core element of the UVA/Padova T1DMS is a comprehensive mathematical model of
the glucose-insulin dynamics. In 2007, the team of Pr. Cobelli (University of Padova, IT)
published this metabolic model which accurately describes the physiological events that occur
consecutively to the ingestion of a mixed meal. A compartmental model was built benefiting
from several separate models of the literature. Model parameters were set to fit the mean of a
large clinical dataset generated using an innovative triple-tracer meal protocol [96]. The
cohort submitted to this protocol was constituted of 203 individuals with different age and sex,
and a normal tolerance to glucose. As a consequence, the UVA /Padova metabolic model
originally described an healthy individual. The same strategy was then applied to a smaller
dataset to extend the model to T2D. The modelling strategy, the model equations, and
parameters for a normal individual and a T2D patient were published in Dalla Man et al. [86].
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In 2008, the metabolic model was extended to T1D. The insulin secretion module was
replaced by a subcutaneous insulin infusion module to model a T1D patient treated with
insulin therapy. Adjustments were made on few model parameters to match the differences
between healthy individuals and T1D patients reported in the literature (e.g., basal glucose
level, endogenous glucose production, insulin clearance rate). A MATLAB/Simulink
implementation of the model was then published to provide diabetes researchers with a
simulation platform enabling the testing of insulin infusion algorithms, decision support
systems and the assessment of CGM sensors [97]. In 2008, the S2008 version of the simulator
was approved by the US FDA as a substitute for pre-clinical animal trials [81]. The
simulator included a T1D patient cohort consisting in 100 adults, 100 adolescents, and 100
children. As it did not model the circadian variation of insulin sensitivity, the simulator was
only approved for single meal scenarios.

A second version of the simulator was published in 2014 and obtain the FDA-approval the
same year. This latter version (S2013) incorporated new modules to take into account the
couterregulatory action of glucagon, an exogenous glucagon infusion route, alternative insulin
administration routes, and a glucose-insulin system which models insulin secretion dynamics
with more accuracy, especially during hypoglycaemia. Furthermore, the virtual T1D patients
of the S2013 version were generated with an enhanced statistical method to better match the
variability of metabolic parameters observed in real T1D patients [98]. Both version were
regularly compared to real clinical data showing satisfactory results. The T1D cohort of the
S2013 version notably demonstrated to be representative of the T1D population of a clinical
trial [99].

The UVA/Padova T1DMS is commercialized by The Epsilon Group. A licence of the
version 3.2 (S2013) of the simulator was bought in 2017 to meet the needs of our project. The
T1IDMS testing environment provides a complete solution including all the components
necessary to assess AP systems (see section 1.4), i.e., a cohort of 33 T1D patients (11 adults,
11 adolescents and 11 children — see Appendix 4), built-in models of numerous commercial
CGM sensors and insulin infusion pumps, as well as a metabolic model of T1D patients. The
latter simulates the glucose-insulin interactions in virtual T1D patients subjected to glucose
intake scenarios with physiological accuracy. It takes the meal (glucose intake) scenario and
the insulin infusion rate as inputs, and outputs the patient’s glucose concentrations (e.g.,
) following the equations described in Dalla Man et al. [98] (model equations are provided in
Appendix 3). For the AP controller, the variables of interest are glucose (either intravenous or
subcutaneous concentration) and insulin (also intravenous or subcutaneous - see Figure 26).
Meal scenarios are user-defined (see section 2.4.3) and set the timing and levels of glucose
intakes. The simulator also provides a built-in meal anouncement feature to simulate the
interactions between the patient and the control algorithm. In addition the simulator includes
a customizable controller module which allows for the implementation of a variety of control
algorithms. To adapt this testing environment to our investigations, we inserted in the TIDMS
the model of our biosensor - developped as described in the last section - in place of built-in
CGM sensor models.
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2.4.2 Closing the loop in silico

Traditional insulin therapy is tedious as it involves self-monitoring of blood glucose and
consequent multiple injections of insulin throughout the day. Nowadays, technological
advances help therapy evolve towards more automated and unburdening solutions: CGM
sensors measure subcutaneous glucose, insulin pumps inject the necessary insulin, and a
controller closes the loop helping with the necessary decision-making in between.

Control algorithms are a key component in an artificial pancreas. However, the diversity
of control algorithms will not be investigated in this work, not focused on control theory. To
close the artificial pancreas loop, we used simple Proportional-Integral-Derivative (PID)
controllers for the sake of demonstration. We assessed variants of this architecture to match
the specificities of each simulation configuration, i.e., the input-output configuration of the
T1DMS. Two distinct configurations have been used. In the first one, the biosensor is fed with
intravenous (IV) glucose and the insulin is infused intravenously. This configuration will be
referred to as the IV /IV configuration and the associated results are presented in Chapter 3.
The second configuration uses subcutaneous (SQ) glucose measurement and subcutaneous
insulin infusion. It will be referred to as SQ/SQ configuration and the associated results are
presented in Chapter 4.

It is important to emphasize the unconventional nature of the biosensor in this work. The
image of the patient's physiological state (see Figure 26) is the output of the biosensor which
is therefore an insulin demand signal, resulting from the processing of glucose levels by the
islet endogenous algorithms, rather than a glucose level signal. As a consequence, the output
of the sensor is not compared to any desired setpoint, like traditional PID control, and is
directly used as an error signal. The setpoint is in fact encoded in the endogenous
algorithms of the pancreatic islets.

With the IV/IV configuration, our objective is to validate the SP frequency signal as a
relevant indicator of insulin need. The insulin infusion signal is generated using a model of SP
frequency variations in series with a gain K which ensures the adaptation necessary to match
the daily insulin need of each patient. When the model is connected to the simulator using IV
measurement and IV insulin infusion routes (no insulin pump in the loop — see Figure 26),
the insulin regulation is performed without diffusion delays (as would be the case with the
healthy endocrine pancreas). This configuration is used to evaluate the electrically-
characterised endogenous islet algorithms alone, i.e., without any error compensation
from a controller. It emphasizes the inborn regulation capabilities of pancreatic islets.

The SQ/SQ configuration uses the subcutaneous (SQ) insulin delivery route as it is
systematically used to ensure patient safety in actual T1D therapy. Islets are now considered
as embedded in an extracorporeal implementation of the biosensor and fed with
patient’s subcutaneous fluid. TIDMS configured in SQ/SQ simulates an AP with a sensor and
a pump (both extracorporeal) which is the reference therapy for T1D patients (see Chapter 1).
The main difference with IV /IV configuration is the presence of delays resulting from glucose
diffusion in the SQ space and from SQ insulin absorption which delays insulin onset of action.
We use the TIDMS in SQ/SQ configuration to simulate, as best as the software currently
allows, the everyday life of patients by pairing it to realistic glucose intake scenarios when
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assessing an AP system integrating the biosensor. It is also used to compare this system
to more conventional AP systems (i.e., AP systems integrating a CGM sensor) or to open-loop

therapies such as MDI.

GASTRO-INTESTINAL
Meal — TRACT
Rate of
appearance Renal
[ ) excretion
MUSCLE AND
roauction Hisation TISSUE
A A R A A
........ lecceafleccccccccccccccaccaaaaal leeceesecsccsccsccaccanans :
. bemmdenee- I
INSULIN i INSULIN
DELIVERY Rateof 1 SYSTEM i Degradation
APPEArance cccyemm——ee d

ALPHA-CELL

GLUCAGON
DELIVERY

GLUCAGON
SYSTEM

Secretion

Degradation

Rate of
appearance

. R
N -
AN Meal scenario -
1] ~ 7 Glucose measurement route:
T1DM Intravenous (IV) or subcutaneous (SQ) Sensor
patient
(UVA/Padova
metabolic Image of patient
model) Insulin physiological state
- Infusion
i route insulin | €ontrol signal 3
: - Controller
! : IV or SQ Pump Insulin
""" infusion rate

UVA/Padova T1DM Simulator testing environment

Figure 26: UVA/Padova T1DM Simulator testing environment



84

Controller tuning methodologies. N = population size
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treatment, the controller needs to be tuned
to match patient’s insulin needs. @ = a vector of controller parameters
Indeed, the large inter-patient variability
in terms of sensitivity to insulin, body Figure 27: Genetic algorithm working principle

weight, and T1D duration (see Appendix 4) is a serious issue in designing easily adjustable
devices. The amount of insulin required to bring BG level back to the normal range after a
meal greatly varies from one patient to the other. To handle this variability, and to ensure
reliability and stability of the closed-loop system, a fine tuning of the AP controller’s

parameters is necessary.

To achieve that tuning, several methods were implemented. When only one parameter had
to be set, optimal tuning was achieved with the joint use of parametric analyses and a
performance criterion (see subsections 2.5.1 and 3.3.2). To tune several controller
parameters at once, we developed an in silico tuning method based on a Genetic Algorithm
(GA, see Figure 27). In [100], K. F. Man describes GA as a technique “inspired by the
mechanism of natural selection, a biological process in which stronger individuals are likely be

the winners in a competing environment”. The numerical GA technique implements the same

method to find the most suitable solution Simulated BG
. N —
to a complex problem [101], [102]. A first GA K BGl f——
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proven that this process guarantees assessing glucose control with BGL
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convergence to the global optimal solution, in a statistical sense [101], [102]. The fmincon
function is then used in a hybrid optimization scheme to continue the optimization after ga
terminates and ensure that a minimum has been reached.

GA requires careful joint design of the initial population and of the cost function to converge
to an optimal solution. In this work, GA is paired with a cost function that computes the
mean Blood Glucose Index (BGI - further described in 2.5.2) of BG profiles resulting from
the simulation of 5 single meals (see Figure 28). Thanks to the clinical risk assessment
capabilities of BGI, this algorithm optimizes controllers that minimize the clinical risk
associated to patient’s glycaemia. This tuning method is further detailed in Olgomendy et al.
[103]. Thereafter, another method with a minor difference have been developed to improve the
tuning results with CGM: the fmincon function is no longer used to select the optimal
parameters of the controller. Instead, average parameters are derived from the 10 best
controllers provided by the GA, i.e., the ten best controllers of the last generation. This
eliminates an unfair disadvantage induced by fmincon when it comes to tuning controllers
paired with noisy CGM sensors.

2.4.3 Glucose intake scenarios

To produce the results presented in Chapters 3 and 4, countless simulations have been
performed with a variety of glucose intake scenarios. Rather than listing all these scenarios, we
will describe in this section the methodology we used to define these scenarios.

For development purpose (either biosensor model development or controller parameters
tuning), single meal scenarios were mostly used. Both unrealistic and realistic T1D patient’s
meals were simulated and the meal duration was always set to 15 minutes. Realistic glucose
intakes were defined in accordance with the total daily carbohydrates intake observed in
American T1D adults [104]. Meal times were set in function of the objective of each simulation.

For validation purpose (either biosensor models comparison or AP system performance
assessment), multi-meal scenarios were used. These scenarios mostly involved realistic daily
glucose intakes and the predefined meal pattern of the TIDMS (3 meals, 2 snacks a day) was
used. Meal duration was also set to 15 minutes. The meal scenarios being investigated for
validation purpose were realistic 48-hour scenarios but the performance assessment was always
performed on the second day in order to remove any initial transient dynamics from the
analysis. Performance analysis was performed on 24 hours so that the metrics expressed as a
percentage were computed on a whole day and could be compared from one scenario to the
other. The scenarios used for development purpose were shorter scenarios (typically 10-hour
long scenarios).

Finally, the number of times a scenario was repeated to compute performance metrics
was set to 25 as soon as random phenomena were modelled in the simulation (e.g., CGM noise,
carbohydrates counting errors).

2.4.4 A framework to improve research work robustness
A versatile framework was developed to simulate various architectures of AP systems

with a unique Simulink file. The framework relies on a modified version of the TIDMS testing
platform. This testing platform implements a highly configurable AP architecture. It
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relies on custom configuration functions, structures, and databases (see Figure 29). Two
separate databases were built: a database containing all the versions of the biosensor models
and another one containing the controllers that have been designed.

This framework has been designed to be easily upgraded. Indeed, two selection modules are
implemented in the Simulink testing platform file to build any AP system from a set of sensors
and controllers. In addition, the sensor and controller models were standardized and are highly
configurable via a set of parameters (stored in the dedicated database). For example, an enable
parameter is implemented to activate or to deactivate the integral action of the PID controller
so that the same PID Simulink module could serve for the simulation of a PD or a PID
controller. This design notably anticipates the need to compare our controllers with the
controllers developed by the ARIA team. The framework accelerates the simulation work as it
allows the user to write MATLAB scripts automating the comparison of several AP
architectures. Indeed, the user can now launch several repetitions of several scenarios (built-in
features of the TIDMS) with various AP systems at the same time (added feature). An
appropriate data logging system was also designed. It completes the native T1DMS results
structure with information describing the AP system (i.e., which sensor—controller pair is being
simulated). Finally, a systematic performance analysis of the results is performed and added
to the results structure. All the information and simulation results are automatically stored in
a dedicated directory to ease the subsequent interpretation work. In so doing, this framework

substantially increases the robustness of the in silico investigations.
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Figure 29: Illustrative scheme of the custom simulation framework mode of operation
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2.5 Glucose control assessment

One of the most important questions I had to answer with this doctoral thesis could be
formulated as:

What is a normal (healthy) response to glucose intake?

This question may appear simple, but it actually requires a thorough answer. Indeed, it
exists as much healthy glycaemic response to a meal as individuals presenting a normal glucose
tolerance. This reportedly high inter-subject variability [105] is completed by both daily and
day-to-day intrasubject variabilities which further complicate the definition of a reference
healthy glucose profile.

In this section, I will present the methods and metrics used both as criteria during the
development phase (e.g., biosensor model development, controller calibration) and as
performance indicators during the validation phase (e.g., models comparison, closed-loop
performance assessment). I will not only focus on the techniques I finally selected but also on
the techniques that I have used earlier on, as the pathway I followed appropriately outlines: 1)
the subtle discrepancies between countries when it comes to define a healthy glucose response
to meals, 2) the difficulties that answering this question could cause (e.g., lack of international
consensus, differences between recommendations by health authorities), and 3) the prime
importance of considering these choices when interpreting the obtained results-

To address my initial question, and to define the characteristics of a healthy glycaemic
response to carbohydrates intake, three sources of information were used on a regular basis.
Prof. Bogdan Catargi, diabetologist, provided us with insights on the common practices at
Bordeaux University Hospitals while sharing with us his expertise on diabetes treatment.
Recommendations published by health authorities in the US and Europe were studied. Finally,
a careful bibliographic research has been sustained to update our set of performance
assessment metrics. To further emphasize this latter aspect, I will present these criteria in
their chronological order of use.

2.5.1 A criteria to assess glycaemic profiles

Mean glucose - For decades, the only means to assess glycaemic control on extended
periods of time was HbA1lc level measurement. HbAlc is commonly expressed as a percentage
representing the fraction of glycated haemoglobin relative to total haemoglobin. It was first
proposed in 1976 by Koenig et al. to assess diabetes management [106]. As mentioned in
Chapter 1, the DCCT/EDIC studies established that lowering HbAlc level of T1D patients
has a positive impact on the risk for severe complications observed in these patients on the
long-term. HbAlc therefore became both the ‘gold-standard’ metric to optimize insulin
therapy and the prime outcome of many clinical trials. The World Health Organization (WHO)
notably recommends an HbAlc of 6.5% as a cut-point for diagnosing diabetes. According to
an online conversion calculator provided by the American Diabetes Association, this HbAlc
level is equivalent to a mean blood glucose of 140 mg/dl. Nowadays, CGM enables the
computation of the mean blood glucose level of patients with an increased flexibility (e.g.,
daily, weekly, and monthly averages), compared to HbAlc which can only be used as a proxy
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to estimate a three-month average of blood glucose level. CGM thus tends to replace HbAlc
level measurement to assess glycaemic control of T1D patients [49]. In this work, the mean
blood glucose of virtual patients was routinely computed to assess blood glucose profiles.

Time spent in euglycaemia - Although well correlated with long-term outcomes, HbAlc
is intrinsically poorly reflecting acute hyper- and hypoglycaemic events. Thus, tight glycaemic
control long required the patients to multiply finger-prick blood testing throughout the day.
Nowadays, CGM sensors enable the estimation of blood glucose concentration with an exquisite
resolution. The growing adoption of CGM technology notably permitted the development of a
variety of new glucose control metrics. Among them, the CGM-derived times in the glucose
ranges have been acclaimed. In particular, the time in the euglycaemic range (70-180
mg/dl) is becoming a gold-standard. It appropriately completes the computation of the
average blood glucose level by taking into account the occurrence of extreme glycaemic events.
Furthermore, it is generally preferred to other metrics thanks to its straightforward meaning
for real-life diabetology. It will be further referred to as the Time In Range (TIR).

Time spent in a predefined target area - While demonstrating the importance of
lowering the mean blood glucose level of patients suffering from diabetes, the DCCT also
emphasized the increased risk for hypoglycaemia induced by intensive insulin treatment.
Mitigating both the risk for long-term complications, i.e., reducing HbAlc level, and the
occurrence of hypoglycaemic events therefore requires diminishing glucose variability. As
a consequence, this latter parameter is increasingly considered as a primary marker of glycaemic
control and several related metrics were developed [49]. HbAlc and TIR fail to thoroughly
represent glucose variability and mean glucose level: as illustrated in Figure 30, identical
HbA1C or TIR values (here respectively 6.5% and 100%) represent many glycemia profiles.

= 250 250
< TIR A1C | Mean
& 180 = - = —= — - % %
E 154 /\/\/ (%) (%) | (md/dl)
o 111 43 6.5 140
=
= 70 [EES—— 100 | 65 | 140
O

0 12 24 0 12 24 100 > 154

Time of day (h) Time of day (h)

Figure 30: Many faces of 6.5% A1C and 100% TIR.

To account for the between-meal variability of glycaemia, we then developed a method
consisting in the definition of a target area (see Figure 31).
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Figure 31: Definition of a target area (in green) based on meal scenario
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Between meals, the target area is narrowed to an 80-120% range centred on the target blood
glucose level (115 mg/dl in this example). For each meal, the upper limit is removed for a 2-
hour period beginning with the start of the meal, and set to 140 mg/dl during the third hour
after the meal. This target definition matches the ADA definition of a normal glucose tolerance
[107]. The definition of this target area enables the computation of a metric, further referred
to as the time in target area, which determines how “physiological” the considered glucose
profile is.

The Blood Glucose Index - Although 60

providing satisfactory results, the performance

1 High glycaemic risk
1 Moderate glycaemic risk

40 |

assessment using the time in a predefined target

BGlI

area as no recognized clinical relevance and 20t

requires choices (e.g., target width, duration of

mealtime window) which were difficult to relate * :
5070 180 250

to official recommendations for patients. In BG level (mg/dL)

contrast, Kovatchev et al. introduced, in 2005, . .
the Blood Glucose Index (BGI), a metric Figure 32: Blood Glucose Index risk function
designed to analyse the BG dynamics from a risk perspective [108][109]. The BGI associated

with a glucose concentration G is defined by Equation 4.

BGI(G) = 10 X (1.509 x (In(G)*%8* — 5.381))2 (4)

The BGI provides a symmetrical index to handle the asymmetric risk distribution around
the patient target BG level: elevated glucose levels can be tolerated by a patient for some time,
while hypoglycaemia quickly becomes life-threatening (see Figure 32). This index relevantly
penalises the major adverse glycaemic events, i.e., acute hypo- and hyperglycaemia, excessive
variability, high mean BG level. As a very complete metric to assess glycaemic profiles, it was
then regularly used in this work to algorithmically assess large sets of glucose profiles or in the

cost function of optimization algorithms.

2.5.2 Systematic performance assessment with reference metrics

The considerable progress and increased popularity of CGM [110] resulted in a need for
standardization of performance metrics in both closed- and open-loop insulin therapies. To this
end, recommendations regarding CGM metrics were formulated in 2017 [111]-[113]. At
the 2019 Advanced Technologies & Treatments for Diabetes (ATTD) annual congress, a panel
of international CGM technologies experts agreed on these metrics and defined their clinical
targets for different diabetes populations. The consensus was published and endorsed by several
diabetes professional associations such as the American Diabetes Association (ADA) and the
European Association for the Study of Diabetes (EASD) [114]. We selected and integrated in
a function for systematic performance eight of these recommended metrics and their associated
targets, all detailed below. These metrics have been preferentially used on validation results
but also during the development stages.

e Mean Glucose: mean glucose is a common performance indicator of insulin delivery
therapies. In an in silico environment, estimating the blood glucose concentration does
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not require the use of HbAlc as a proxy or of CGM datasets. The mean glucose is
directly computed with the blood glucose concentration values provided by the
simulator.

e Time In Range (TIR): time spent in a given range by the glycaemia of a patient is
a widely used indicator to assess performance of AP systems. TIR refers to the time
spent in normoglycaemia (70-180 mg/dl).

e Time Below Range (TBR 1 and TBR 2): the time spent below a given BG level.
The first considered level is 70 mg/dl (TBR 1) and the second one is 54 mg/dl (TBR
2).

e Time Above Range (TAR 1 and TAR 2): the time spent above a given BG level.
The first considered level is 180 mg/dl (TAR 1) and the second one is 250 mg/dl (TAR
2).

As T1IDMS does not label “high risk patients” (according to the nomenclature used in
Battelino et al. [114]) in its cohort, we therefore considered that the whole cohort was
constituted of “normal” T1D patients. The simulation results were therefore compared to the
targets below, recommended for this diabetes population [114]: TBR 2 < 1%, TBR 1 < 4%,
TIR > 70%, TAR 1 < 25%, and TAR 2 < 5%.

In 2005, together with the previously-mentioned BGI, Kovatchev et al. [108] introduced two
additional metrics derived from BGI:

¢ Low BGI (LBGI): This metric is a measure of the frequency and extent of low BG
readings and has been validated as an excellent predicator of severe hypoglycaemic
events.” The T1IDMS User Guide indicates that LBGI can be considered minimal
(LBGI<1.1), low (1.1 < LBGI < 2.5), moderate (2.5 < LBGI < 5), and high
(LBGI>5.0).

e High BGI (HBGI): This metric is a measure of the frequency and extent of high BG
readings and showed reliable performances in predicting risk for hyperglycaemia.?
HBGI can be considered minimal (HBGI<5.0), low (5.0 £ HBGI < 10.0), moderate
(10.0 < HBGI < 15), and high (HBGI>15.0).

In addition, the Total Daily Insulin (TDI) is systematically computed for performance
analysis during both development and validation phases. There are neither official
recommendations nor targets concerning the TDI infusion for T1D patients because insulin
needs vary greatly across the patient population according to their diet, physical activity or
their own physiological characteristics. However, TDI still is an interesting indicator to
objectively compare different regulation strategies for a given patient. It is also useful to detect
deficient or excessive aggressiveness in the tuning of the controllers.

Normality of the performance metrics data was also tested, when necessary, using the Shapiro-
Wilk test to subsequently assess statistical significance using either the two-sided paired sample
t-test or the two-sided Wilcoxon signed rank test. P-values lower than 0.01 were considered

significant.
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Chapter 3

In silico validation of the biosensor’s working
principle

The first chapter provided key knowledge about the physiological mechanisms ensuring
nutrient homeostasis, about its impairment induced by diabetes, and the currently available
therapeutic options. It also provided a description of our biosensor, its working principle, and
the research project which permitted its development. The second chapter detailed the material
and methods which yielded the results presented and discussed in Chapters 3 and 4, from the
in vitro experimental data obtained with murine islets to the mathematical modelling of the
biosensor in order to implement an n silico biosensor-based AP and test it in the UVA /Padova
T1DM Simulator.

In this third chapter, a first series of simulation results are presented. The chapter is
structured in chronological order to emphasize the progression of my scientific reasoning
throughout these three years. The answers I gave to the questions that arose are presented
together with the issues I encountered, the solutions I envisaged and the ones I explored.

This chapter focuses on the use of simulation for fundamental research purposes.
The actual biosensor models implemented in the UVA /Padova T1DMS testing environment
are described. They are then compared by using a well-suited configuration of the T1IDMS. It
uses intravenous glucose measurement and insulin infusion routes to limit the number of
external elements which skew the comparison between models and to reproduce the natural
environment of the healthy endocrine pancreas. The pancreas model is “removed” from the
virtual diabetic patient model and replaced by a behavioural model of the pancreatic
islets electrical activity, calibrated using in vitro experimental data acquired with our

biosensor.

The blood glucose regulation capabilities of the electrically-characterised islet algorithms
are investigated in silico using their mathematical models. As the islets are the main
constituent of the biosensor, this work aims at assessing the performance of the islet
algorithm models in a blood glucose control loop. In so doing, it would provide an in silico
proof-of-concept validating electrical measurement as a means to characterise and study the
secretory activity of islets of Langerhans (either murine or human islets) with our sensor.

The first subsection reviews the results obtained with biosensor models and a T1DM
simulator implemented using the Python programming language by Dr Antoine Pirog*, who
formerly worked in the ELIBIO team as a PhD student [115]. This section also presents
preliminary results obtained with a very similar closed loop implemented in the
MATLAB/Simulink environment. Although the structure of the islet algorithm models

3 In the following chapters, any result not obtained directly by the author is explicitly attributed to its owner.
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remained unchanged, a new calibration was performed using new experimental data to promote
homogeneity across models. These updated models are presented in a second subsection. The
following subsection describes the development of a methodology enabling the computation of
insulin need in virtual patients thanks to the output of the islet algorithm models whose input
is the patient’s blood glucose level. For the sake of concision, this third subsection is illustrated
with the results of a single patient and using only one islet algorithm model. Contrariwise, the
fourth subsection presents extended results obtained with the whole virtual T1DM cohort of
the UVA/Padova T1DMS and a comparison between two different islet algorithm models.
Finally, the closing subsection discusses the different results presented in this chapter.
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3.1. Preliminary results

This subsection presents the very first simulation results obtained during my PhD thesis.
First, I tried to reproduce the results obtained by Dr Pirog with a Python-based BG regulation
closed loop [115]. Even though my final objective was to implement this closed-loop in the
MATLAB-based UVA /Padova testing environment, it allowed me to better understand how
the different constituents of the closed-loop had been developed (e.g., the biosensor models, the
UVA/Padova T1DM metabolic model) and were interacting together to yield the results
obtained by Dr Pirog during his PhD thesis. This work has proved to be essential to outline
some limitations of the S2008 version of the simulator and to conceive my own research
approach using the S2013 version. It also allowed me to identify some errors and
weaknesses in the design of our biosensor-based closed loop. The second part of this subsection
presents preliminary results obtained with a MATLAB/Simulink implementation of the
biosensor models. These results permitted to highlight the differences between the S2008
and S2013 versions of the UVA/Padova T1DM Simulator and to learn how to use the
simulator (S2013). This preliminary stage also allowed me to refine my research
approach by defining both the objectives that could realistically be achieved using simulation

and a working plan for the three years of this PhD thesis.

3.1.1. A custom implementation of the S2008 T1DM Simulator
3.1.1.1. Dalla Man’s meal simulator of glucose-insulin system

The preliminary results presented in subsection 3.1.1 were obtained using a custom
implementation (Python language) by Dr Pirog of the meal simulator of glucose-insulin
system published by Dalla Man et al. in 2007 [86]. As described in Chapter 2, this simulator
models the glucose-insulin interactions consecutive to a glucose intake at both organ/tissue
and whole-body levels. The first version of this metabolic model accurately simulates the
response of a healthy individual to a meal. As our research is focused on T1D, the model’s
parameters were modified to account for the physiological differences induced by T1D following
the method published by Dalla Man et al. [97]. The insulin secretion module was substituted
with a subcutaneous insulin infusion module to enable the simulation of insulin therapy. To
account for the higher basal glucose level observed in T1D patients, the basal endogenous
glucose production is higher (as a result, plasma glucose clearance is lower than normal). The
simulated subject is assumed to achieve good glycaemic control, all the other parameters are

then kept at values of the normal subject.

3.1.1.2. Closing the loop with a model of the biosensor

To regulate the blood glucose level of the virtual T1D patient described in the last section,
an in silico closed loop involving our biosensor and an “insulin pump” was then
implemented. The biosensor model was rather complex. It was constituted of a Cell SP model
generating a SP signal connected to a Python implementation of the processing algorithms
embedded in the Multimed acquisition system (see 2.1.3) which outputs the measured SP
frequency (see Figure 33). The Cell SP model was built from two separate blocks: a SP
frequency generation block (see 2.3.4) and a SP waveform generation block able to synthesize



94

Whole-body Biosensor
model (T1D) model

IV glucose
> Cell SP

model
Sugar

intake SP signa|¢

Processing
electronics
model

IV insulin Synthetic ¢ K ‘_Q
islets SP frequency

Figure 33: In silico blood glucose regulation closed loop implemented using a Python implementation
of Dalla Man's meal simulation model

frequency-modulable SP waveforms using an average SP shape converted into a periodic
function using Fourier series. The SP frequency signal generated by the biosensor model was
then scaled by a factor K (which could be seen as a proportionate controller). No insulin pump
model was available at this time, Dr Pirog then decided to use a synthetic islet model instead
[89]. The unitary output of this islet model was then scaled up to simulate a population of
80 000 secreting islets. The simulations using this closed-loop aimed at verifying that SP
frequency could indeed control insulin infusion and mimic physiological insulin secretion using
the most direct measurement and injection routes (IV glucose, IV insulin). While unrealistic
from a clinical point of view, these methods of measurement and infusion seemed fair in the

absence of a dedicated regulation controller.

3.1.1.3. Closed-loop results

Using the Python implementation of Dalla Man’s meal simulator of glucose-insulin system,
we simulated a realistic 3-meal 2-snack glucose intake scenario to assess the performance
of the closed-loop regulation scheme presented in the previous section. In these simulations (see
an illustration in Figure 34) we compared a virtual healthy subject (its model parameters are
available in [86]) to a virtual T1D subject (its model parameters are derived from the healthy
subject as in [97]) treated with a biosensor-based closed-loop insulin therapy. Two versions of
the latter regulation scheme are presented. The first one involves the Static model of islet
response to glucose concentration variation when the second one involves the Hysteretic model
(see 2.3.4). The simulations yielded plasma insulin profiles which clearly depict the differences
between the two models with the hysteretic model responsible for shorter but higher insulin
peaks in response to meals. On a broader level, the biosensor-based regulation schemes ensured
very satisfactory performance with near normal glucose profiles: the TIR were 97.2% and
100%,* and the mean glucose level were 119 mg/dl and 117 mg/dl (for Static and Hysteretic
models respectively).

% TIR: Time In Range (see section 2.5.1)
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Figure 34: Blood glucose profiles of a healthy individual and a virtual T1D patient submitted to a
realistic 24-h glucose intake scenario composed of 3 meals and 2 snacks. Insulin infusion of the T1D
patient is regulated using the output of the biosensor model (two different models are simulated).

3.1.1.4. Limits of these preliminary results

Using the Python programming language, Dr Pirog demonstrated the feasibility of
modelling a BG regulation closed-loop including a model of our hybrid bio-electronic
sensor. He notably achieved satisfactory results with a virtual T1D patient as highlighted by
the time spent in the normoglycaemic range and the quasi-normal shape of the glycaemic

response (see Figure 34).

Although the analysis of the insulin profiles clearly emphasizes the contribution of the Cell
SP model, this in silico closed loop suffers from major limitations which prevent us to draw
any stronger conclusions. Indeed, the use of a synthetic islet model as an insulin pump model
interferes in the result interpretation and makes it difficult to understand whether the good
results should be attributed to the Cell SP model or to the synthetic islet. As in some sense,
the biosensor’s output acts as an image of the patient BG concentration, the synthetic islet
model fed with the output of the biosensor could be seen as a gross model of the pancreas, thus

explaining the satisfactory results obtained with this closed loop.

Another limitation concerns the definition of the virtual T1D patient. As previously
mentioned, the virtual T1D patient used here is a healthy individual which was rendered
diabetic by modifying few parameters. Although this method is satisfactory in a first approach,
it does not allow to fully capture the modifications induced by the disease in the patient’s
body. Another issue comes with the use of a single patient which prevents to model the inter-

patient variability observed in a real T1D cohort.

In my opinion, this last point also emphasizes a limit of this preliminary work: the
adaptation gain K used to calibrate the closed loop was set manually and without any objective
criterion. Although this method is satisfactory and efficient when working with a single virtual
patient and proved to yield good results, the study of more than one patient requires the
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definition of a standardized method to set this parameter both for efficiency and reliability
purpose. It would also strengthen the comparison between patients by removing the random
level of optimisation induced by the manual tuning of K value.

The preliminary results presented in section 3.1.1.3 are a comparison between the response
to meals of an insulin-treated virtual T1D patient and a healthy individual. They thus raise
another question: how to define a healthy individual or a physiological glycaemic
response to a meal? This question is one of the key scientific questions I have attempted to
answer throughout this PhD thesis. It is a complex question since the response to a meal is
highly variable in the population with normal glucose tolerance. The direct comparison of
glucose profiles therefore seems limited and a better method is required.

Some of the limitations described above (e.g., T1D patient definition, insulin pump model)
result from constraints imposed by our custom implementation of Dalla Man’s simulator [86].
The purchase, at the beginning of my thesis, of a licensed version of the UVA /Padova T1DM
Simulator (S2013) provided a solution to these problems. Indeed, the S2013 simulator includes
built-in insulin pump models and a cohort of “true” virtual T1D patients. Indeed, virtual
patients generation have been refined and model parameters were obtained using the data of
real T1D patients who underwent a triple tracer protocol to study the glucose-insulin dynamics
with a great precision [96], [98]. The virtual T1D cohort contains 11 adults, 11 adolescents and
11 children, and matches the real-life variability of T1D patients (see Appendix 4).

Although the 52013 simulator did solve some issues raised by these preliminary Python
results, essential questions remained unaddressed. Thereupon, my objective was to develop a
research approach that addresses these questions which can be succinctly formulated as follows:

Q1: How to define a normal response to glucose intake?
Q2: How to assess a glycaemic profile using an objective criterion?
Q3: Which is the best criterion to assess glycaemic profiles?
Q4: Is there a unique gain K value that ensures optimal performance?
Q5: How to meaningfully compare the different biosensor models?

Q6: How to quantify the contribution of our biosensor in the overall
closed-loop performance of the control system?

3.1.2. Implementation of the biosensor models in the
MATLAB/Simulink environment

This subsection presents early results obtained with the S2013 commercial version of
the UVA /Padova T1DMS. These preliminary simulations (which were conducted during
several months) allowed me to better master the simulator while refining my research approach.
They also helped consolidate a research plan for my PhD thesis.
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The T1DMS is a set of MATLAB scripts which provides a highly configurable testing
environment for AP systems. A GUI*® allows the user to define the simulation scenario, i.e.,
the simulation duration, the initial conditions, the meals and the open loop treatment
parameters. It also provides a convenient interface to select the patients and the hardware
(e.g., CGM sensor, noise-free insulin pump) to simulate, and the outcome measures to compute
(see 2.4.1 for further details about the T1DMS). Thanks to its easy-to-use GUI the simulator
does not require any programming skills. The T1DMS however lacks features enabling
automated simulations. It is possible to repeat a given scenario several times but the user
manual does not mention any command-line mode of operation or any feature enabling the
launch of simulations from a custom MATLAB script. Thereupon, I decided to develop my
own set of scripts to automate simulation, results saving in a well-organised repository,
logging, and systematic performance analysis (using the metrics described in section 2.5.2).
This task seemed achievable thanks to the design of the TIDMS which relies on text files and
MAT-files to store data (e.g., model parameters, scenarios, simulation results) and could thus
be read from any custom script.

The T1DMS also embeds a testing platform, in the form of a configurable Simulink file,
where the user can implement a custom system (either a controller or an algorithm) to drive
the insulin pump which ensures continuous insulin infusion to the virtual T1D patients. My
first task with the TIDMS, was thus to implement the closed loop described in section 3.1.1.2
with a difference residing in the absence of the synthetic islet model, which was replaced by
the built-in insulin pump model. Only few technical difficulties had to be overcome since
Python and MATLAB programming languages are similar.

Another difference with 3.1.1 lies in the virtual patient definition: the unique T1D adult
patient was replaced by a cohort of 33 patients. As a consequence, the K value had to be
adapted to this new configuration and a strategy had to be chosen to handle the inter-patient
variability. In a first approach, K value was tuned individually with a single meal scenario
(70g) and using a methodology aiming at minimizing the TIR.

Early results, obtained with this coarsely calibrated closed loop, highlighted two sensitive
points:

- Initial conditions setting

The T1DMS offers the possibility to either set the initial glucose level to a value configured
by the user (the same for all patient) or set it to the fasting glucose level of the patient (an
individualized parameter provided by the simulator). This setting has a limited influence on
the whole simulation (see Figure 35) and, after discussion with our clinical partner (Prof. B.
Catargi), I decided to set the initial glucose level to the Subject Specific Fasting BG.
This choice appeared to be the more realistic from a clinical point of view and eases inter-day

comparisons (in the case of scenarios lasting more than 24 hours).

3 GUI = Graphical User Interface
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Figure 35: Initial 100 minutes of a T1DMS simulation: modification
of the initial blood glucose level setting. Left: unique initial glucose
level. Right: initial value is set to the patient fasting glucose level.

- Influence of the Multimed processing algorithms model

The first simulations also revealed the critical impact of some parameters of the processing
algorithm models on the closed-loop performance (results obtained with the Static model are
displayed in Figure 36). In the Multimed system (see 2.1.3), the average frequency of the SPs
(Slow Potentials) is computed over a configurable time window using a low-pass filter whose
cut-off frequency F. is set via a parameter named n (see Equation 5 - the higher the parameter
n is set, the lower the cut-off frequency is).

1 1
7= 2n (1 - z_n) 21T, n € [0;17] (5)

This filter computes the average frequency and thus smooths the signal to limit oscillations
of the biosensor’s output. A trade-off therefore appears between the responsiveness of the
system and the smoothness of the output. The parameter n influences the overall responsiveness
of the system and impacts the closed-loop performance: the higher is the time-window used to
compute the SP frequency, the lower are the responsiveness of the system and the performance.
Figure 36 displays the best results obtained with a basic tuning algorithm of the K value. It
consists in a parametric analysis from which the K value which ensures the highest time spent
in normoglycaemia is selected. The comparison between panel A (n=7, F. = 21,66 Hz) and
panel B (n=9, F. = 5,40 Hz) emphasizes the impact of the cut-off frequency of the Multimed
averaging filter. The tuning algorithm selected K values which were much higher (leading to
a more aggressive regulation) when F. was higher thanks to the resulting better responsiveness
of the closed-loop system. The loss in performance between three configurations (n = 7, n = 9,
and a reference condition without any filter) was then quantified using three performance
indicators: the Time In Range, the mean BG level, and the mean Blood Glucose Index (BGI)
(see Figure 36C).

This responsiveness/smoothness trade-off is the consequence of technical choices in the
design of Multimed, motivated by FPGA resources savings, but other solutions do exist to
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Figure 36: Impact of the low-pass filter cut-off frequency. A) Blood glucose level and subcutaneous
insulin infusion profiles for 10 adults subjected to a 70-g meal (n = 7, F.~ 21,66 Hz) B) Blood glucose
level and subcutaneous insulin infusion profiles for 10 adults subjected to a 70-g meal (n = 9, F. =~ 540
Hz) C) Impact of Multimed averaging filter on the closed-loop performance assessed with Time in Range,
Mean Blood Glucose (BG) level, and Mean Blood Glucose Index (BGI).

compute a frequency value in real-time. Making the assumption that measuring the SP
frequency in real-time with minimal delay does not constitute a technological barrier, I removed
the model of Multimed from the biosensor model implemented in the TIDMS. In so doing, we
assess the potential of our technology as if the acquisition system performs an ideal recording
of the embedded islets’ activity, i.e., without any significant bias. This choice is also
justified by the fact that the acquisition system is likely to be modified in the future and that
the purpose of this in silico work is to evaluate its working principle rather than the
performance of its actual physical implementation. As a consequence, the biosensor model has

been reduced to the islet algorithm model.
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3.1.3. A consistent research strategy

The first year of my PhD thesis yielded preliminary results which highlighted some
limitations of our approach and raised scientific questions as stated in 3.1.1.4. They thus
permitted to settle a working plan for the following two years which addresses my thesis
objectives. These results highlighted the need to develop algorithms to automate tasks
included in the simulation work (e.g., glucose profile evaluation, parameter tuning, data
saving, systematic performance assessment). I thus spent a significant amount of time
developing automation scripts and set it as a priority during the second year. My objective
was then to intensively use the automation scripts to ease and hasten the research work during
the third year. The results yielded by this strategy are presented later in this chapter and in
Chapter 4.

A Meal scenario
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Figure 37: Two separate in silico research axes A) IV/IV configuration of
the TIDMS used in Chapter 3 B) SQ/SQ configuration of the TIDMS used
in Chapter 4

The adopted strategy consisted in splitting the simulation work into two separate
research axes. These approaches rely on two configurations of the T1DMS: the first one
uses intravenous (IV) glucose measurement and insulin infusion routes (it will be referred to
as IV/IV configuration — Figure 37A), whereas the second one uses subcutaneous (SQ)
routes (SQ/SQ configuration — Figure 37B). These two configurations serve distinct
objectives: the IV/IV configuration aims at validating the SP frequency - measured by the
biosensor - as a relevant indicator of insulin need, while the SQ/SQ configuration aims at
simulating the traditionnal operating environment of an AP (Artificial Pancreas) system to

assess the ability of our biosensor to provide relevant information to such a system. As the



101

biosensor model was reduced to its primary component, the islet algorithm model, both
approaches use the same models (described in subsection 2.3.4).

In the IV/IV configuration, a minimal regulation scheme is implemented. The defective
pancreas is “replaced” by a model of the endogenous islet algorithms (see 2.2 and 2.3)
in series with an adaptation gain K enabling the islet model to match the insulin need of
the patient. The K value is then individually tuned to handle inter-patient variability. By using
the IV routes, this configuration was designed to virtually place the islet algorithms in
their usual environment of operation (the pancreas is a highly vascularized organ — see
1.1.4) without any delay induced by subcutaneous routes. Our objective here is to assess the
potential of the SP signal to provide information on the secretory activity of the islets. By
limiting the number of elements affecting the closed-loop performance, this configuration is
also convenient to compare islet algorithm models presenting a varying level of accuracy
to experimental data, in order to assess which characteristic of the islet response to glucose
(see 2.3.3) has a physiological relevance for glucose homeostasis.

The SQ/SQ configuration aims at simulating an AP with a sensor and a pump (both
extracorporeal) which is the state-of-the-art therapy for T1D patients. The main
difference with IV /IV configuration is the presence of delays resulting from glucose diffusion
in the SQ space and from SQ insulin absorption which delays insulin onset of action (see
subsection 1.3.3). To notably handle these delays, a controller needs to be designed to close
the loop between the sensor and the pump. The SQ/SQ configuration is used to compare
different T1D therapies: Multiple Daily Injection, a CGM-based AP, and a biosensor-based
AP. This approach falls within one objective of our research consortium, which is to design an
in silico clinical trial to assess the performance of the association of our hybrid bio-electronic
sensor paired with the ad hoc robust controller developed by the ARIA team at IMS (see
section 1.5).

3.2. Islet algorithm models

As explained in subsection 2.3.5, the experimental data recorded during stimulation of the
islets with ascending followed by descending glucose ramps (see Figure 38 and subsection
2.3.3) were re-analysed with refined detection parameters. As models did not fit
anymore the analysed data (see left panel of Figure 38), they needed to be updated. This
update was also the occasion to promote homogeneity between models. In particular, the
maximal frequency is now set close to the same value for all models (see Figure 38 and Table
3). To that end, the parameters of a Hill equation were fit to the experimental data obtained
during the ascending glucose ramp and the resulting maximal frequency was subsequently used
to constrain the maximal frequency of all the models during their respective identification
processes. Two Hill equations were also used to generate the envelope used to generate the
Preisach matrix (see subsection 2.3.5) when the former models were using sigmoid functions
for that purpose. Figure 38 presents the differences between former and updated versions of
the models.
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Figure 38: Comparison of former and updated versions of the Static and Hysteretic models. The Static
models (blue) and Hysteretic models (purple) are superimposed on the experimental data recorded during
the ascending glucose ramp (black upward-pointing triangles) and descending glucose ramp (black
downward-pointing triangles).

Table 3 presents the parameters of the Static model and of the Hill equations used to
generate the envelope of the Hysteretic model. It has to be noted that the Static model is fitted
to the whole experimental dataset whereas this dataset is split in two halves to generate the
hysteretic envelope. Table 3 also presents the goodness of fit achieved with each model
(assessed with the coefficient of determination R-squared). It notably highlights the better
modelling of the experimental data yielded by the hysteretic model as compared to the
static model (0.82 vs 0.98).

Table 3: Model parameters for Static and Hysteretic models, and corresponding coefficient of
determination R?. Results are value (standard error)

Hysteretic model

Parameter Static model Unit
Upper Lower
envelope envelope
Gy 2.0164 (21.5693) 5.3595 (0.5640) 5.6991 (2.2138) mM
Gso 8.9334 (1.7512) 7.9733 (0.1036) 9.6062 (0.0964) mM
n 5.8934 (23.5199) 2.1880 (0.5418) 4.2883 (2.6972)
fu 0.4867 (0.3388) 0.4921 (0.1001) Hz

R? 0.8317 0.9859 0.9790
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3.3. Adaptation to patient needs

Our hybrid bio-electronic sensor records the electrical activity of the islets it embeds. We
demonstrated that SP frequency is sensitive to various regulators of insulin secretion (see
subsection 2.3.3). The biosensor thus appears to be a potential proxy to estimate islet
secretion. In contact with the fluids of a patient, we hypothesize that the biosensor output
can help determine their insulin need. The real biosensor embeds several islets, but its
mathematical model simulates the electrical activity of a single islet (in the form of a SP
frequency signal). As a consequence, the model virtually accounts for the secretion of a unique
islet and its output signal has to be “scaled” to represent the secretion of the whole pancreas,
i.e., the prevailing insulin need of the patient. This section presents different methods to
perform this scaling operation. For the sake of concision, results are limited to one patient
(adolescent#001) and one endogenous islet model (the hysteretic one) in this subsection.

Results for the whole cohort are presented in the following one.

3.3.1. Description of the problematic

To scale the output of the biosensor so that it represents the patient insulin need, the K
value needs to be tuned. This tuning process requires some form of assessment of the closed-
loop regulation to ensure optimal performance and a quasi-normal response to glucose intake.

In other words, a preliminary work is to answer the Question 1 (mentioned in section 3.1):

Q1: How to define a normal response to glucose intake?

Discussions with our partners Dr M. Raoux (from CBMN laboratory) and Prof. B. Catargi
(from CHU-Bordeaux) yielded a first answer to this question. In their daily practice, clinicians
assess patient glucose control with indicators such as the TIR or the mean BG level (assessed
either on CGM datasets or via HbAlc dosing). However, assessing the response to glucose
intake also requires to take into account numerous variables (such as the patient’s age, other
pathologies, or T1D duration to name a few) and thus requires the eye of an experienced

clinician.

In the context of this simulation work, the information concerning the virtual patients is
limited and the physiological variables which are simulated only relate to the action of glucose,
insulin, and glucagon. In a will to develop a standardized and automated approach to assess
glucose profiles I therefore selected the TIR and the mean BG level as two potential metrics.

Q2: How to assess a glycaemic profile using an objective

criterion?

The objective here is to answer the Question 2:

A literature search permitted to identify other potential metrics (see section 2.5). A
systematic performance assessment algorithm including all these metrics was developed
and is run for every single simulation. Finally, a last metric was designed based on the
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American Diabetes Association (ADA) definition of a normal response to an OGTT*. ADA
considers that individuals whose glycaemia is below 140mg/dl two hours after the ingestion of
a special sweet drink, present a normal glucose tolerance [107]. We therefore developed a metric

consisting in the time spent in a target area whose bounds are set using the meal scenario
and the ADA definition (see subsection 2.5.1 for details).

In order to develop a tuning algorithm for the parameters of BG regulation systems, we
needed to choose a unique objective criterion or a limited set of criteria with clinical relevance.
For that purpose, we developed a methodology to compare the different metrics. This approach
aims at answering Questions 3, 4 and 4bis:

Q3: Which criterion is best to assess glycaemic profiles?

Q4: For each patient, is there a unique K value that ensures optimal

performance?

Q4bis: How to choose this K value with a standardized and
automated method?

3.3.2. Parametric analyses

To choose the best objective criterion to include in a tuning algorithm, we conducted
parametric analyses. This type of analysis is not realistic from a clinical point of view. Yet,
it constitutes one of the main advantages of simulation and allowed me to gain experience with
the simulator, improve my understanding of glycaemia dynamics, and better assess inter-
patient variability. Three metrics were investigated: the mean Blood Glucose (BG) level, the
Time In Range (TIR), and the Time In the Target Area (TITA). At first, these analyses
permitted to determine if these metrics present a unique global maximum when K varies (with
the same glucose intake scenario). Then, a second series of analyses permitted to investigate
the influence of the amount of glucose being ingested on the conclusions yielded by the first

series of parametric analyses.

3.3.2.1. A mathematical criterion to assess glucose control from blood

glucose profiles

The analyses presented in this subsection were performed with a 10-hour single meal
scenario consisting in the ingestion of 70 grams of glucose 4 hours after the beginning of the
simulation. The scenario was simulated for all the T1D patients (11 adults, 11 adolescents, and
11 children) with K values varying from 100 to 10 000 (by increments of 100).

An algorithm was written to select the K value that optimizes the regulation
performance according to each one of the three metrics of interest. The algorithm output
thus consists in three ranks of the simulated K values (one rank per criterion). A first version
of this ranking algorithm highlighted some issues: a rule had to be added, for mean BG and
TIR, in order to avoid hypoglycaemia (which is much more life-threatening than

hyperglycaemia). In case of a tie between two K values, another rule had to be implemented

3 OQTT: Oral Glucose Tolerance Test.
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to rank the results. The first issue was simply handled by downgrading the K values yielding
hypoglycaemic events. In the case of a tie, the results were ranked based on the total insulin
injected throughout the simulation (the fewer insulin is injected, the better). Later on,
discussions with Prof. B Catargi led us to change this rule to favour the K value whose
associated mean BG level is the closest to the “target” BG level, i.e. 105 mg/dl, used here as
the target for the TITA criterion. The reason is that, in real-life, the prime objective is to
lower the HbAlc level of the patient rather than minimize the amount of insulin delivered by
the pump. One can note here that this BG level is not the target of the regulation process (as
there is no setpoint in our regulation scheme) but this BG level is frequently set as a target in
the literature. Table 4 shows the best K values selected by our ranking algorithm together
with the level of performance achieved for each criterion: Mean BG, TIR and TITA. Mean BG

levels and total injected insulin are also provided to ease the comparison.

Figure 39 shows the BG profile associated with the best K value selected for each criterion.
For criteria 1 and 2, the algorithm logically selected profiles that brush with the
hypoglycaemia threshold without exceeding it as they both maximize the time spent in
the normoglycaemic range and minimize the mean BG level. Criterion 3 induced the
selection of a profile which appears more physiological and safer (in the sense that the
regulation is less aggressive, i.e., less insulin is injected) than those selected with the other

criteria.

The ranking algorithm provided a first method to set the optimal value for K based on the
performance assessment provided by the three studied metrics. However, with the data
representation we used until now (Table 4 and Figure 39), the selectivity of each criterion
is difficult to assess. To address this issue, we observed the evolution of the studied
performance assessment metrics as a function of K. In addition, we also computed the
range of K values that ensures 98% of the best performance for each criterion in order to
characterise the selectivity of each criterion (see Figure 40). The first observation is that the

300 q16.7
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250 TITA - K=3000 4 13.9
Mean BG - K = 8400

180

Blood glucose level (mg/dl)
Blood glucose level (mmol/1)
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50
0 L 0
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Figure 39: BG profiles selected by the ranking algorithm. The response of adolescent#001 to a single
meal consisting in 70 grams of glucose ingested 4h after the beginning of the simulation is displayed for
the three values of K selected by the algorithm.
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Table 4: Comparison of three criteria to select the optimal value of K: mean Blood Glucose (BG)
level, Time In Range (TIR), and Time In Target Area (TITA)

Criterion 1: Mean BG level
(the lower the better)

TIR TITA Mean BG level Injected insulin
Rank K
(%) (%) (mg/dl) ()
1 8400 97.8 61.2 95.0 21.2
2 8300 97.8 61.4 95.2 21.0
3 8200 97.8 61.9 95.4 20.9
4 8100 97.8 62.4 95.6 20.7
Criterion 2: Time In Range
(the higher the better)
Rank K TIR TITA Mean BG level Injected insulin
(%) (%) (mg/dl) ()
1 8100 97.8 62.4 95.6 20.7
2 8200 97.8 61.9 95.4 20.9
3 8300 97.8 61.4 95.2 21.0
4 8400 97.8 61.2 95.0 21.2
Criterion 3: Time In Target Area
(the higher the better)
Rank K TIR TITA Mean BG level Injected insulin
(%) (%) (mg/dl) )
1 3000 94.8 100 110.5 12.4
2 2900 94.8 100 111.1 12.2
3 2800 94.7 100 111.7 12.1
4 2700 94.5 100 112.3 11.9

best TIR (97.8%) was obtained for K values ranging from 8100 to 8400 while the best TITA
(100%) was obtained for a broader range spanning from 1600 to 3000. The second observation
was that 98% of the best performance was obtained for K values ranging from 4400 to 8400 for
the TIR while a narrower range spanning from 1300 to 3000 was obtained for the TITA. As
the mean BG level is conversely proportional to the amount of insulin delivered to the patient,
it is also conversely proportional to the value of K and a unique maximum is only ensured, for
the criterion 1, by the condition we added to prevent hypoglycaemia. A first conclusion is that
regardless of the selected criterion, a continuous range of K values can be considered
optimal. Of note, the results presented here concern patient adolescent#001 but a similar
behaviour was observed for all the virtual patients of the TIDMS cohort.

As criteria 1 and 2 tended to select higher K values resulting in an excessively aggressive
regulation of the BG level, we decided to favour the criterion 3. Indeed, the TITA offered
the advantage to select K values leading to a BG response presenting both a safety margin to
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Figure 40: Evolution of the closed-loop regulation performance assessed with Time In Range (TIR),
Time In Target Area (TITA) and mean Blood glucose (BG) level, as a function of K. Coloured areas

highlight the range of K values that ensure 98% of the best performance for each criterion.

guard against the risk of hypoglycaemia and a satisfactory time spent in the normoglycemic
range (94.8%).

3.3.2.2. Virtual patient’s response to glucose intake

We outlined the existence of a continuous range of K values which maximizes the closed-
loop regulation performance. The fact that, depending on the selected criterion, this range can
importantly shift highlights the importance of the choice of the criterion used to tune the
parameters of the regulation closed loop. Prior to making a definitive choice, we decided to
study how a variation of the amount of glucose ingested during the simulated meal affects the

trends we observed in the last subsection.

This section presents a second batch of parametric analyses. The analyses presented in
3.3.2.1 were reproduced with 16 single meal scenarios. The scenario characteristics are the
same as those of the 70-g single meal scenario previously used except that the glucose intake
is varied from 10 to 160 g (10 g steps). These analyses generated large amounts of data which
allowed me to better understand how glucose intake influences the variations of T1D patient’s
glycaemia. To facilitate the analysis of these large datasets, we generated surface plots
presenting the evolution of the TIR as a function of K and of the glucose intake. These maps
capture the high inter-patient variability of the response to single meals and the differences

induced by the different biosensor models (see Figure 41).

For each scenario, the criterion 3 (TITA) was used to select the optimal value of K which
was then represented on the surface plot (red dots). Figure 41C displays the evolution of this
optimal K value through the 16 scenarios for adolescent#001. Interestingly, we noted that the
values selected for the Static model were highly variable while those selected for the
Hysteretic model were steadier throughout the 16 scenarios. Figure 41D also displays
the TIR associated with the optimal K values selected by the ranking algorithm, but no
significant differences between models were observed. A consistent behaviour was observed for

almost all the patients of the cohort.



108

\
Y
\\\\

W \\\\\\\\\‘i\\\&\\\\\i\‘i\\\
T inlaintt 100
= A R T Tv S NhinHnk
50 AR \ X o0 SlHINMi
: \Ws = > RN
K NS 2 RN
= (N E 60 NN
(] o
E B
= = 40
6000
2000
Meal (g) 160 K Meal (g) 160 K

8000 1 ~ 100
2 Static 2017 s
s 6000 Hysteretic 2017 = 90 |
> 4000 54%
g S 80t
22000 g Static 2017
o = Hysteretic 2017

0 . . . ! 70 : * " )
40 80 120 160 40 80 120 160
Meal (g) Meal (g)

Figure 41: Parametric analysis characterising the response of adolescent#001 to different glucose
intakes (10g to 160g single meal scenarios). A-B) Evolution of the Time In Range (TIR - expressed as
a percentage) as a function of K and of the glucose intake for two different models of the islet
endogenous algorithms: the Static model (version 2017 — panel A) and the Hysteretic model (version
2017 — panel B). C) Evolution of the optimal K value selected by the ranking algorithm using the Time
In Target Area criterion (see previous subsection). D) TIR corresponding to the optimal K values.

This second batch of parametric analyses was performed using the former versions of the
biosensor models (see section 3.2). As these analyses are time- and resource-consuming they
were not reproduced with the updated models. They however confirmed the existence of a
continuous range of K values ensuring the maximal performance as assessed with the criterion
3 (Time In Target Area) and for the 16 simulated scenarios. We also observed that this range
was narrowed by increasing glucose intakes. Another important conclusion (data not shown
here) was that it was possible to select a K value ensuring 100% of TITA for glucose
intakes varying between 10 and 120g for the hysteretic model and for almost all patients. This
optimal K value was always close to the K value selected for the 70g scenario and we therefore

selected this method as the standardized method to tune K.
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3.4. In stlico results under realistic scenario

As we have seen above, in the IV/IV configuration, the defective pancreas of the virtual
T1D patient is replaced by the islet algorithm model in series with a scaling factor K to restore
the glucose homeostasis. In the last section we described our standardised methodology to tune
K in order to handle the large inter-patient variability which characterises the response to
glucose stimulation of the T1DMS virtual T1D cohort. The methodology chosen consisted in
setting K to the value which maximizes the TITA for a 70g single meal scenario. Once this
tuning process was achieved for the whole T1D cohort of the TIDMS, we used a realistic multi-
meal scenario to assess the performance of this islet algorithm-based regulation closed loop.
This scenario consisted of a 3-meal/2-snack daily pattern in which a total of 235 g of
glucose is ingested each day. The meals are distributed as follows: a breakfast of 45 g of glucose
ingested at 6 a.m., a lunch of 70 g at noon and a dinner of 80 g at 6 p.m. Two 20 g snacks are
added at 4 p.m. and 11 p.m. The scenarios were simulated for all the TIDMS virtual patients
(i.e., 11 adolescents, 11 adults, and 11 children) and using the two updated versions of our
biosensor model presented in section 3.2 (Static 2020 and Hysteretic 2020). Figure 42 displays
the mean BG profiles for each regulation scheme; profiles are averaged over the 11 patients of

each population.

The closed-loop performance was assessed by calculating internationally recommended metrics
(see subsection 2.5.2) for each patient category (Adults, Adolescents, Children) and each
regulation scheme (Static and Hysteretic). Results are presented in Table 5 as mean (standard

deviation). Detailed results for each patient are provided in Appendices 5 to 7.

The regulation schemes based on islet endogenous algorithms (Static and Hysteretic
models) ensured excellent performance of the BG regulation closed-loop. The mean TIR was
above 90% for all patient categories and very close to 100% for adults. The biosensor algorithms
maintained the BG level in the normoglycaemic range during the major part of the

simulation with a very low risk of extreme glycaemic events (mean BGI < 2 in all
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Figure 42: Simulation results for a 48-hour, 5-meal scenario (last 24 hours are displayed) in adults,
adolescents, and children, for two regulation schemes (Static model 2020, Hysteretic model 2020) using
IV glucose measurement and insulin infusion routes. Mean glucose profile (curve) and standard deviation
(coloured patch) are displayed. Regions with no glycaemic risk, moderate glycaemic risk and high
glycaemic risk are color-coded, respectively in white, pink and red.
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Table 5: Performance metrics for two regulation schemes in all three patient categories.

Adults

TBR 2 TBR1 TIR TAR1 TAR 2 LBGI HBGI Mean BG TDI

CateBOY (o) (%) (%) (%) (%) () () (mg/dl) (V)
Static 0.0 0.0 99.3 0.7 0.0 0.2 0.5 115.9 53.1
(0.0)  (0.0) (1.1) (1.1)  (0.0) (0.1)  (0.2) (3.8) (13.1)

Hysteretic 0.0 0.0 99.8 0.2 0.0 0.2 0.3 113.4 54.3
0.0)  (0.0) (0.4) (0.4)  (0.0) (0.1)  (0.1) (3.5) (14.5)

Adolescents

Category TBR 2 TBR1 TIR TAR 1 TAR 2 LBGI HBGI Mean BG TDI
(%) (%) (%) (%) (%) () () (mg/d) (U

Static 0.0 0.0 94.5 5.5 1.0 0.2 1.3 120.9 42.1
(0.0)  (0.0) (6.6) (6.6) (2.2)  (0.1)  (1.4) (11.9) (11.7)

Hysteretic 0.0 04 95.8 3.8 0.5 0.3 0.9 115.5 44.0
(0.0) (15) (G4t (@7 (1.5 (0.3)  (0.9) (7.8) (13.3)

Children

Category TBR 2 TBR1 TIR TAR 1 TAR 2 LBGI HBGI Mean BG TDI
(%) (%) (%) (%) (%) () () (mg/dl)  (U)

Static 0.0 0.0 92.7 7.3 14 0.2 1.8 127.2 26.1
0.0)  (0.0) (35 (35 (1.8) (0.2)  (0.9) (7.6) (7.4)

Hysteretic 0.0 0.6 92.6 6.8 0.6 0.2 1.6 126.4 25.4
0.0) (15 (27 (24  (09)  (0.3)  (0.5) (7.7) (7.6)

Nine metrics are computed: the Time Below Range (TBR level 1: 70 mg/dl, level 2: 54 mg/dl), the Time In Range
(TIR), the Time Above Range (TAR level 1: 180 mg/dl, level 2: 250 mg/dl), the Low Blood Glucose Index (LBGI)
and its counterpart the High Blood Glucose Index (HBGI), the Mean Blood Glucose level (Mean BG), and the
Total Daily Insulin (TDI) administered to the patient. All metrics are mean (SD). Symbol t indicates statistical
significance (p<0.01) with respect to the Static model.

patient categories), thus successfully restoring the glucose homeostasis of the patient.
Concerning the mean TIR, IV/IV results showed a consistent trend in favour of the
Hysteretic model. This trend is statistically significant for adolescents (p=0.010) but not for
adults and children (respectively p=0.098 and p=0.492). Overall, this led us to choose the
Hysteretic model for the test of the in silico AP in an SQ/SQ configuration presented in
Chapter 4).

3.5. Discussion

The overall objectives of the IV/IV simulation campaign were: 1) to answer the scientific
questions which emerged during the preliminary phase; 2) to validate electrical measurement
as a means to both characterize the islet endogenous algorithms and use them to regulate the
BG level of virtual T1D patients. To that aim, a simulation environment and a methodology
facilitating the comparison of different versions of the biosensor model were developed. By
limiting the number of elements constituting the regulation closed-loop, we were able to
highlight the contribution of the biosensor to the closed-loop performance.
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We have seen that the answer to Question 1 cannot be obvious. Indeed, a “normal
response” to glucose stimulation is often determined by the clinicians based on various metrics
and the characteristics of the patients, completed by years of experience. Still, a consensus has
emerged around the definition of the normoglycaemic range (70-180 mg/dl) and the normal
fasting BG level (<100mg/dl). To answer Question 2, the TIR and the mean BG level can
thus be considered as objective criteria to asses BG profiles. We have seen that another
objective criterion can be built based on ADA’s definition of a normal glucose tolerance (we
named this criterion TITA). Objectivity is key in our work; indeed, by developing a
standardized methodology based on an objective criterion to tune our closed-loop
parameters, we can hypothesize that the same level of optimization is achieved for all

patients and biosensor models which enables a valid comparison of these models.

The parametric analyses presented in subsection 3.3.2 demonstrated the superiority of
the TITA as a criterion that accounts for all the clinical risks associated with glycaemia:
hypoglycaemia, hyperglycaemia, and glucose variability®. Indeed, an additional condition to
avoid hypoglycaemia was necessary to tune K with our ranking algorithm when the TIR and
mean BG level were used as objective criteria. Despite the addition of this condition, these
criteria still induced an excessively aggressive tuning of K highlighted by important values of
total injected insulin and BG profiles brushing with the hypoglycaemia threshold. In contrast,
the use of TITA resulted in BG profiles which seem physiological and present both satisfactory
TIR and mean BG level, while ensuring a sufficient safety margin towards hypoglycaemia. The
parametric analyses also highlighted the existence of a single K value (or a continuous range
of K values) which ensures optimal performance of the islet algorithm-based regulation scheme
(as assessed with TITA). This latter point is particularly interesting to develop an
optimization algorithm® to get rid of the resource and time-consuming parametric analyses.
Such an algorithm was designed and used to tune the parameters of the controllers necessary
to handle the delays induced by subcutaneous routes (see Chapter 4 for associated results).
While developing this optimization algorithm, we replaced the TITA-based cost function by a
BGI-based* cost function as BGI is a well-established metric. That decision was justified
by a comparison of the ranking of K values when based on TITA and BGI (see Figure 43 and
Table 6).

The first observation is that BGI is more selective than TITA and permits a better
discrimination of K values contrary to TITA (16 values of K present a TITA of 100% - see
Figure 43). In view of this, and considering that mean BGI is strictly decreasing up to its
minimum and is strictly increasing afterwards, this metric is perfectly suited to be used

in the cost function of an optimization algorithm. Concerning the tuning of K, i.e., the

% Glucose variability: refers to blood glucose oscillations that occur throughout the day, including

hypoglycaemic periods and postprandial increases, as well as blood glucose fluctuations that occur at
the same time on different days (Suh et al. [138]).

3 Optimization algorithm: a procedure which is executed iteratively by comparing various solutions till

an optimum or a satisfactory solution is found. With the advent of computers, optimization has become
a part of computer-aided design activities.
4 BGI = Blood Glucose Index
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Figure 43: Evolution of the closed-loop regulation performance assessed with Time In Range (TIR),
Time In Target Area (TITA), mean Blood glucose (BG) level, and mean Blood Glucose Index (BGI) as
a function K. Coloured areas highlight the range of K values that ensure 98% of the best performance.

For TIR and TITA, the best performance is the highest value reached during the parametric analysis.

In contrast, it is the lowest value for Mean BG and Mean BGI.

selection of a unique optimal K value for each virtual T1D patient, both criteria yield very

similar results (see Figure 44).

To answer Question 3, 4 and 4bis, TITA was chosen as the best objective criterion to

assess blood glucose profiles in a first time and was replaced by the mean BGI afterwards. In

addition to the advantages mentioned above, this metric was favoured for its well-established

Table 6: Comparison of TITA and BGI as two objective criteria to assess blood glucose profiles.

Criterion 1: Time In Target Area

(the higher the better)

Rank K TIR TITA Mean BGI Mean BG Injected insulin
(%) (%) (mg/dl)  level (mg/dl) (U)
1 3000 94.8 100 1.25 110.5 12.4
2 2900 94.8 100 1.24 111.1 12.2
3 2800 94.7 100 1.24 111.7 12.1
4 2700 94.5 100 1.23 112.3 11.9
Criterion 2: Mean BGI
(the lower the better)
TIR TITA Mean BGI Mean BG Injected insulin
Rank K
(%) (%) (mg/dl)  level (mg/dl) (U)
1 2500 94.3 100 1.22 113,6 11,5
2 2600 94.5 100 1.23 112,9 11,7
3 2400 94.2 100 1.23 114,4 11,3
4 2700 94.5 100 1.23 112,3 11,9
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Figure 44: Results of the K tuning process for all the patients of the TIDMS’s virtual T1D cohort for
two criteria: TITA (green triangles) and Mean BGI (red circles).
clinical relevance and because its definition does not involve arbitrary choices (such as the

lower and upper limits in TITA).

As previously mentioned, the IV/IV configuration together with the use of an objective
criterion in an automated process (using either parametric analyses or an optimization
algorithm) enables a fair comparison between the different biosensor models. Indeed,
with K values optimally tuned for each patient, this methodology is an answer to Questions
5 and 6: any difference in performance highlights the differences between the biosensor models
presenting different degrees of accuracy. The Hysteretic model, providing a better fit to
experimental data presented slightly better IV/IV results than the Static model at the cost of
an increased computation time (2% to 4% increase). At the current stage of our research,
computational cost is not an issue (as opposed to computation cost in medical devices), the
biosensor-based AP was thus developed using the more accurate hysteretic model (see
Chapter 4).

As healthy pancreatic islets constitute the core element of our biosensor, the presented
IV/IV results provide a successful proof of concept of its working principle. The excellent
results in IV/IV simulations validate the use of electrical measurements of islet activity
as a means to characterize and exploit the inborn algorithms of pancreatic islets in a BG
regulation closed-loop. Indeed, the simulator's T1D cohort was maintained in the
normoglycaemic range (70 to 180 mg/dl) for a minimum of 97%, 82%, and 86% of the
simulation length (for adults, adolescents, and children respectively) with reduced glycaemia-
related risk (assessed with BGI).
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Chapter 4

Integration of the biosensor in an in stlico

Artificial Pancreas

After the description of the scientific context and the material and methods, we presented
a first series of simulation results which permitted to answer some of our scientific questions
concerning glucose control assessment (see Chapter 3). In particular, we investigated various
methods to assess the performance of a BG regulation closed-loop. In so doing, we highlighted
the existence of an optimum of performance of the regulation closed loop in all
patients. It thus allowed us to envision the development of an automated algorithm to
optimally calibrate the regulation closed loop by minimising the glycaemia-related clinical risk.
In addition, we highlighted the slight increase of closed-loop performance permitted by the
Hysteretic model (as compared to the Static one). We therefore chose this model to assess

the biosensor ability to perform in an AP system.

To a certain extent, the simulations in Chapter 3 rely on a diverted use of the UVA /Padova
T1DM Simulator which was originally designed to simulate AP systems. In Chapter 4, the
T1DMS is now used in a more conventional manner to simulate our biosensor-based AP
system (Bios-AP) and compare it to other reference therapies for T1D: a CGM-based AP
(CGM-AP) and MDI therapy. In actual T1D therapies, subcutaneous routes are both
used for continuous glucose monitoring and insulin infusion in order to ensure patient safety.
The subcutaneous routes mitigate the occurrence of complications frequently associated with
the use of intravenous routes (infections being the main complication). However, subcutaneous
measurement of glucose is associated with a delay due to the slow kinetics of glucose diffusion
from the vascular to the interstitial space. Similarly, subcutaneous infusion of insulin delays
its onset of action as explained in Chapter 1. These sensor and pump delays, induced by the
subcutaneous diffusion kinetics, are further referred to as subcutaneous delays. To simulate
a realistic AP system, the simulations presented in this chapter therefore use the SQ/SQ
configuration of the TIDMS (see subsection 2.4.2). To illustrate the impact of subcutaneous
delays, we present in Figure 45 a comparison of the BG regulation with the Hysteretic islet
algorithm model using IV and SQ insulin delivery routes. Postprandial excursion highlights the
delayed onset of insulin action which results in a hyperglycaemic event followed by a life-
threatening hypoglycaemic event for almost all patients. This postprandial hypoglycaemia, due
to an excessive delivery of insulin while the BG level continues to rise, requires a controller

to be anticipated and mitigated.

The first section of this chapter describes the methodology we developed to individually
tune the parameters of a controller for each patient of the TIDMS cohort. The obtained
controllers were paired with the default built-in CGM sensor at first and with the biosensor
model afterwards. The second subsection provides a comparison of the closed-loop performance
of the resulting Bios-AP, to reference therapies with the most realistic scenarios that can be
simulated with our version of the simulator. The third subsection discusses the contribution of
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Figure 45: Comparison of BG level figures with intravenous (IV) and subcutaneous (SQ) insulin
delivery routes when regulation is achieved by the Hysteretic islet algorithm model. All patients are
submitted to a 70-g single meal scenario. Mean BG profiles (curves) and standard deviation (coloured
patches) are displayed.

mathematical modelling and simulation to the development of a biosensor-based AP. The
concluding subsection finally attempts to lay the groundwork for future development of a real-
world implementation of such an AP system.
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4.1. Design of an individualised controller to handle the

subcutaneous delays

In the overnight fasted state, the delay induced by the subcutaneous measurement of BG
level has been estimated by Basu et al. [47] to fall within a 4.8 to 9.8 minutes range for T1D
patients. Similarly, the delayed onset of action of subcutaneously-infused insulin ranges from
20 to 60 minutes depending on the type of insulin administered. By diminishing their overall
reactivity, subcutaneous delays negatively affect closed-loop performance of BG regulation
systems. As a consequence, AP systems require a controller to ensure optimal and
reliable performance. The controller takes into account present and past glucose readings,
but also anticipates the future states determined by glucose-insulin interactions and the
infusion delays of subcutaneous interfaces. This dynamic control can be achieved through a
variety of algorithms, among which the most common are the Model Predictive Control (MPC)
and the Proportionate Integral Derivate (PID) control [116]. As this work is not focused on
control theory and for the sake of demonstration, we used simple Proportional-Integral-
Derivative (PID) controllers to handle the subcutaneous delays induced by the SQ/SQ
configuration. This control algorithm was favoured for its simple handling, the many variants
that can be easily implemented, and because PID control has already demonstrated its
effectiveness to regulate the BG level of T1D patients [55].

It is important to remind the unconventional nature of our biosensor. Its output is an image
of electrical islet activity and thus integrates the action of all the regulators of insulin secretion
as well as physiologically important intra-islet regulations [117]. It provides an image of the
patient's physiological state and represents an insulin demand signal rather than a glucose level
signal. In the healthy individual, islets act as the natural sensor, control algorithm and actuator
that enable glucose homeostasis. Monitoring their electrical activity therefore amounts to
monitoring the natural control algorithm output. To account for this uniqueness, the setpoint
of the controllers paired with the biosensor in this work is set to 0 (no insulin need) while the
setpoint of the controllers paired with a CGM sensor is set to the desired BG level target (110
mg/dl). In this way, the biosensor signal acts as an error signal, rather than a sensor
signal, as soon as the BG level exceeds a target intrinsically defined by the islet endogenous
algorithms.

4.1.1. Controller tuning

In this subsection, we describe a methodology to individually tune the controller of
an AP system to match the insulin need of a virtual patient. Individualisation of the controller
parameters seems necessary to reach the optimum of closed-loop performance highlighted in
Chapter 3. It also permits to cope with the reportedly high interpatient variability observed in
real T1D patients and modelled in the T1IDMS. In addition, the in silico approach facilitates
individualisation thanks to the possibility of repeated and fast simulations with identical
scenarios and patients.

Control performance of closed-loop systems is greatly dependent on the adequate tuning of
controller parameters. For the most part, classical tuning techniques for control algorithms rely
on the modelling of the controlled device dynamics. Model-based techniques turn out to be
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very effective and convenient but are limited when the model-system mismatch is too great.
This is particularly true for biological systems. In an effort to overcome this issue, “model-free”
techniques have been developed. Among them, iterative optimisation algorithms have
shown promising results. They attempt to compute a vector of parameters best suited to solve
a given problem through repeated attempts and corrections. In [118], Soylu et al. compare
three of these algorithms to tune the parameters of a PID controller involved in the closed-
loop BG control of virtual T1D patients. Whether the optimisation method be iterative or
heuristic, these algorithms rely on the definition of an objective cost function to assess
performance. Traditional optimisation criteria, such as integral of absolute error (IAE)
minimisation, are not well suited for performance assessment in the case of glycaemia
regulation. As explained in subsection 1.1.2, deviations from the target BG cannot be treated
symmetrically: while elevated glucose levels can be tolerated for a limited period of time, an
equivalent deviation in the hypoglycaemic direction may already constitute a life-threatening

event.

For their tuning algorithms, Soylu et al. opted for a cost function which compares the T1D
patient’s simulated BG profile to a healthy BG profile in an attempt to minimise the absolute
error between the two. As explained in Chapter 2 and illustrated in Chapter 3, the assessment
of clinical risk based on glucose profiles is a complex question. In particular, it is not possible
to define a unique healthy response to glucose intake. We therefore improved the method
published by Soylu et al., by using the same meta-heuristic approach, which involves a genetic
algorithm (GA)-based optimisation technique, with a cost function directly assessing the
quality of closed-loop control from the simulated glucose profiles. As explained in subsection
2.4.2, the numerical GA technique reproduces the mechanisms of natural selection to find the
most suitable controller parameters, i.e., the controller parameters which minimises the cost
function.

The controller tuning method was first developed with a classical PID controller. Three
parameters were therefore needed tuning to match the patient’s insulin need: the proportional
gain K,, the integration time T; and the derivative time Tq. The MATLAB ga function was
used with a custom cost function. As mentioned in section 3.5, the ga function was at first
associated with a cost function computing the TITA (Time In Target Area — see subsection
2.5.1) of the glucose profile resulting from the simulation of a 70-g single meal scenario. This
cost function was straightforwardly defined by Equation 6.

Cost = 100 — TITA(%) (6)

Where Cost is the output of the cost function which has to be minimised by ga and
TITA the percentage of time spent by the glycaemia in the predefined target area throughout
the simulated scenario.

Lacking experience with numerical optimisation, we adopted a “trial and error”
methodology to optimally set the MATLAB ga function parameters. A satisfactory convergence
speed was obtained with a population size of 200 and a number of generations varying between
5 and 10 (see Figure 46). Indeed, the mean performance of the 10 best controllers is almost
constant on the last 4 generations with a narrow standard deviation.
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Figure 46: GA-based tuning of a PID controller parameters. The top panel displays the evolution of
the performance of the ten elites (ten best controllers as assessed with the TITA-based cost function)

over the eleven generations. The ten elite controllers’ parameters are plotted on the three bottom panels.

Afterwards, the TITA metric was replaced in the cost function by the BGI, a well-
recognised indicator of the asymmetric glycaemia-related clinical risk of T1D patients. Instead
of maximising the percentage of time spent in a given glycaemic range or target area, the
objective therefore became to minimise the glycaemia-related clinical risk. Satisfactory
convergence speed was also obtained with this clinically-relevant cost function. The subsequent
validation of the resulting controllers with realistic multi-meal scenarios highlighted some
weaknesses of our tuning process: the tuning with 70-g scenarios resulted in an excessively
aggressive regulation leading to hypoglycaemia with scenarios involving snacks (20-g glucose
intake). To address this issue, we modified the cost function to base the performance assessment
with BGI on the mean performance over 5 scenarios with various glucose intakes. A loss in
performance was observed on the 70-g single meal scenario used during the tuning process but

better glucose control was obtained with realistic validation scenarios.

The GA-based controller tuning method was first developed with a single patient.
Thereafter, the ga function settings (e.g., number of generations, parameter bounds) were
refined with two patients of each category to save time and the definitive method was validated
with the whole TIDMS cohort. The final method consists in the ga-based tuning of an AP
controller using a cost function computing the mean BGI over five 10-hour single meal scenarios
(with glucose intakes varying between 20 and 100 grams). To achieve this result, the ga

function is set as follows:
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PopulationSize : 50

CrossoverFraction : 0.8000

Generations )

SelectionFen : @selectionroulette
CrossoverFcen : @crossoverheuristic
MutationFen : {[@mutationuniform] [0.2000]}
HybridFen : @fmincon

All other parameters are set at their default value.

Satisfactory glucose control was obtained for the 11 virtual T1D adults equipped with
an AP system involving a CGM sensor and PDgasar controllers. The tuning method and the
associated closed-loop results were thus presented at the 2020 IEEE EMBC virtual conference
and published in the conference proceedings [103].

4.1.2. PID controller architectures

As previously mentioned, numerous variants of the PID controller architecture co-exist. To
gain experience, we tested different configurations of controllers whose parameters were tuned
with the method described in the last section. At first, we tested variants which do not
implement a continuous basal infusion of insulin, unlike MDI and modern hybrid closed-loop
systems (see Chapter 1). However, our experience and the literature suggest that basal insulin
delivery is necessary to limit the BG level variability, induced by the closed-loop control with
important sensor delay and insulin onset of action. The PID control architectures presented in

this work all include a steady basal insulin delivery.

Many configurations have been tested with features such as anti-windup, saturation block
on the PID output, and deactivation of the integral action to implement a PDgasar controller.
The four most performing configurations are described in this section:

Controller 1: a PDgasar controller whose basal insulin infusion rate was set to
the Subject Specific Basal (SSB) parameter provided by the T1DMS for each
virtual patient.

Controller 2: a PDgasar controller whose basal infusion rate was tuned by GA.
Controller 3: a PIDgasar controller whose basal infusion rate was tuned by GA.
Controller 4: a PIDgasar controller including a saturation block on the PID

output.

A comparison of these four architectures is presented in Figure 47 and Table 7. The
variations of the BG level, the Insulin Infusion Rate (IIR) and the plasmatic insulin level
resulting from the simulation of a 70-g single meal scenario are shown. The comparison between
controllers 3 and 4 highlights the influence of a saturation block placed on the PID output
(see Figure 47A and 2F-I). This saturation block limits the PID output to 0 so that the
minimal ITR is the basal infusion rate. It induces a less aggressive tuning of the controller by
the GA: the postprandial maximal IIR is significantly lower as compared to other controllers
(600 pmol/min with saturation block versus 950, 1020 and 1150 pmol/min without saturation).

It also results in a better stability of the BG level at the cost of decreased rapidity of the
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regulation (see Figure 47A) and lower performance (as assessed with TIR and mean BGI
— see Table 7).

Interestingly, the comparison between PIDgasar and PDsgasar controllers whose parameters
are all tuned by GA (controller 2 versus controller 3) showed only little difference. Both the
BG level profiles and the associated performance metrics are quite similar, with a slight
advantage for the PDgasar. controller. The TIR were 90.7% and 89.7% and the mean BGI were
1.91 and 2.37 for the controller 2 and 3 respectively. The more pronounced difference observed
with BGI should be attributed to the lower stability of the PIDgasar controller which
induces more variability of the BG level.

To discuss the design of an AP controller, another key parameter is the sampling period.
As a starting point, all our controllers were using a 15-min sampling period. Afterwards, we
implemented versions our controllers with a sampling period of 1 and 5 minutes.
Unsurprisingly, the regulation performance increased with lower sampling period due
to a better reactivity of the closed-loop system and a more aggressive tuning of the controllers
by the GA. However, we decided thereafter to set the sampling period to 5 minutes as
currently available commercial devices rarely use lower values.

4.1.3.1Is there a “best architecture”?

A first conclusion after comparing controllers was that a steady basal insulin infusion
was necessary to achieve good performance. However, the controller including a saturation
block on the PID output (see Figure 47) yielded lower performance than the controllers able
to reduce the IIR to zero. This result is not surprising and can be explained by the derivative
action of the PID controller which acts as a very simple prediction model. When the insulin
delivered by the controller in response to a meal starts to act, the BG level starts decreasing.
As the BG level rate of variation decreases, the contribution of the derivative action increases
(this contribution is negative as the error is decreasing) and the derivative action suspends the
basal insulin delivery. It therefore limits postprandial reactive hypoglycaemia exactly like the
PLGS (Predictive Low Glucose Suspend) feature implemented in modern hybrid closed-
loop systems does (see Chapter 1). This mechanism explains why our GA-based method tends
to be overly aggressive in the tuning of the derivative time T4, which results in excellent
performance of the closed-loop regulation at the cost of an increased BG level
variability between meals. This issue could be addressed with a meal detection feature
activating or deactivating a saturation block on the output of the PID based on the BG level

Table 7: Comparison of closed-loop regulation performance of four PID architectures. The same
patient (adolescent#001) was submitted to a 70-g single meal scenario each time.

TBR 2 TBR1 TIR TAR 1 TAR 2 LBGI HBGI Mean BG TDI

CaLeBOY ) (%) (%) (%) (%) () () (mg/d) (V)
Controller 1 0.0 0.0 89.9 10.1 0.0 0.14 1.78 124.0 26.0
Controller 2 0.0 0.0 90.7 9.3 0.0 0.31 1.60 118.8 26.9
Controller 3 0.0 0.0 89.7 10.3 0.0 0.45 1.92 119.3 27.0

Controller 4 0.0 0.0 86.6 13.4 0.0 0.44 2.25 121.4 24.9
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Figure 47: Four variants of the PID control architecture. Panel A: Blood Glucose (BG) variations
resulting from the simulation of a 70-g single meal scenario with these four controller architectures;
panels B to H: architecture schematic of four controllers (left), related Insulin Infusion Rate (IIR) and
plasma insulin variations (right); Panels B-C: PDgagar, controller whose basal infusion rate was set to
the Subject Specific Basal (SSB) parameter provided by the T1DMS for each patient (Controller 1);
panels D-E: PDgysar. controller whose basal infusion rate was tuned by GA (Controller 2); panels F-G:
PIDgasar controller whose basal infusion rate was tuned by GA (Controller 3); panels H-I: PIDgagar
controller including a saturation block on PID output (Controller 4).
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rate of variation. This solution was not investigated further as the control algorithm is not the
main focus of this work.

Our work was presented at the 2020 IEEE EMBC conference as a ready-to-use method
to tune the parameters of a controller involved in closed-loop BG regulation. This method
could be adapted to every type of controller or for the tuning of specific parameters in a closed-
loop BG regulation system. It is however more suited for controllers with few parameters such
as the PDgasar controller. The latter demonstrated satisfactory performance, even compared to
other PID architectures. However, one should keep in mind that this version of the metabolic
model does not implement the patient-specific circadian variations of insulin sensitivity.
Moreover, the CGM sensors models used in this study do not account for any static error which
would impose a correction from the controller. On a real patient, these elements would certainly
require an integral correction, which suggests a proper PID would present better results
than PDsgasac controller (as suggested in [119]).

For this in silico work, we decided to use PDgasar controllers to limit the number of
parameters which needed to be tuned by the ga function to 3 and thus increase the convergence
speed. We also used the Subject Specific Basal (SSB) parameter, provided by the T1IDMS for
each patient to implement the MDI therapy, to set the basal insulin delivery of our PDgasar
controllers. This modification permitted to reduce the number of parameters to optimise to 2
with a negligible impact on the closed-loop performance of the system (see Figure 47 and
Table 7).

4.1.4. Correcting an unfair disadvantage for the CGM-AP

The controller tuning method was validated with multi-meal scenarios (as opposed to the
single meal scenarios used during the development phase). We observed a surprisingly high

Method 1: The optimal parameters are the average parameters of the ten best
controllers of the last generation computed by the GA (10 elites). This method is
referred to as ‘mean’.

Method 2: The optimal parameters are the parameters of the best controller of
the last generation computed by the GA. This method is referred to as ‘best’.

Method 3: The optimal parameters are computed with the hybrid optimisation
scheme presented in subsection 4.1.1 (GA + fmincon). This method is referred to
as ‘fmincon’.

frequency of postprandial reactive hypoglycaemic events with the CGM-AP controllers,
which did not match the level of regulation performance that could be expected looking at the
tuning process results. We therefore investigated further the selection method used to compute
the optimal PID parameters from the last generation of controllers yielded by the ga function.
We investigated three methods to select the optimal PID parameters:

We then compared the values of the K, and Ty parameters selected with these methods together
with the regulation performance of the associated controllers (assessed with the BGI-based cost

function). Figure 48 presents the result of this comparison for the 33 virtual patients of the
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Figure 48: Comparison of 3 methods to select the optimal PID parameters for the CGM-AP controllers.
From the last generation of controllers, the first method consists in computing the average parameters
of the 10 best controllers (mean), the second selects the parameters of the best controller (best), and the
third selects the parameters computed with fmincon by taking the best controller as a starting point
(fmincon). Normalized parameters (K, and T,) and performance (fitness function) are presented for the

three selection methods taking ‘best’ as a reference.

T1DMS. Results are normalized with ‘best’ method taken as the reference. Surprisingly, this
comparison revealed a large difference of performance (Figure 48, right panel) between the
controllers selected by best and fmincon methods while the associated controller parameters
were very similar (Figure 48, left and center panels). In average, a 30% drop of the normalized
performance was observed with the fmincon selection method. In comparison, the mean
selection method yielded a 10% drop in performance. With a closed-loop system including a
CGM sensor, two consecutive T1DMS simulations of the same glucose intake scenario do not
yield the same results due to the modelling of random sensor noise. It therefore appears
that the best controller is the result of advantageous sensor noise conditions (e.g., an
overestimation the BG level right before a meal results in an increase of the IIR and acts as a
small meal bolus). We thus attributed this difference in performance between best and fmincon
methods to the sensor noise model included in the CGM sensor model. To improve the tuning
process for the CGM-AP controllers we decided to use the mean selection method which
ensures a good level of performance and a more reproducible behaviour than the other
investigated methods. By providing a statistical mean for each controller parameter, this
method is less sensitive to the CGM sensor noise.

We then tested the three selection methods mentioned above for the Bios-AP controllers
to assess the potential impact of a modification of our GA-based tuning method (see Figure

49). No difference was observed between the performances of the controllers selected with the
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Figure 49: Assessment of the 3 selection methods in the case of the Bios-AP controllers. “mean”, “best”
and “fmincon” are defined as in Figure 48. Normalized parameters (K, and T,) and performance (fitness
function) are presented for the three selection methods taking ‘best’ as a reference.
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best and fmincon methods. The mean method yielded a slight decrease of performance (average
fitness function result increases by 1% - see Figure 49 right panel). This result confirmed our
conclusion: the initial hybrid optimisation scheme using fmincon cannot handle the CGM
sensor noise which generate an unfair disadvantage for the CGM-AP. Our overall objective
was to develop a standardised tuning method to perform a reliable comparison between the
CGM-AP and the Bios-AP. We thus modified the tuning method to consider the average
parameters of the ten elites of the last generation as the optimal PID parameters. In so
doing, we greatly improved the performance of the CGM-AP with a very limited impact on

those of the Bios-AP and allows a more unbiased comparison between these two AP systems.

4.2. Comparison of the Bios-AP with two reference

treatments

After the proof of concept of our biosensor’s working principle (Chapter 3), we assess in this
section the SQ/SQ performance of the Bios-AP and compare it to standard treatments: a
CGM-based AP and MDI therapy. To better handle the subcutaneous delays, the two
compared AP systems use controllers whose parameters were tuned using the method described
in the previous section. Note that the controllers of the CGM-AP and the Bios-AP do not
benefit from any meal anouncement from the patient (contrary to MDI therapy). Three
realistic case studies were designed to validate the controller tuning method and to compare
the three regulation schemes. The glucose intake scenarios were then individualised in a
body weight-dependent manner to account for the natural variability of energy
requirements. This second series of simulation provides an assessment of the Bios-AP
performance where the stimulation of the BG regulation system (i.e., the glucose load of the

meal) is more homogenous from one patient to the other.

4.2.1. Controllers’ validation with multi-meal scenarios

With SQ glucose measurement and insulin infusion routes (see Figure 50), the T1IDMS is
exploited in a more realistic configuration from a clinical standpoint. The Bios-AP system is
compared to two standard insulin therapy paradigms: MDI and a CGM-AP. A comparison
based on three case studies is performed to assess the performance and robustness of these
therapies. SQ/SQ configuration is paired with realistic multi-meal scenarios to simulate, as

Meal scenario

SQ Glucose | Biosensor
T1DM "1 model
patient Sp
1(32:1/32 SQ frequencyl
T1DMS) Insulin Insulin Control signal
< = —— PDgasar
ump Delivery rate

Figure 50: Closed-loop regulation scheme of the Bios-AP connected to the virtual patient through
subcutaneous (SQ) glucose measurement and insulin infusion routes (as defined in Chapter 2, Figure
12).
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Figure 51: Simulation results for the three case studies for the 11 adults of the TIDMS (last 24 hours
are displayed), for three regulation schemes (Multiple Daily Injections (MDI), CGM-AP, Bios-AP) using
SC glucose measurement and insulin delivery routes. Mean glucose profile (curve) and standard deviation
(coloured patches) are displayed. Regions with no glycaemic risk, moderate glycaemic risk and high
glycaemic risk are color-coded, respectively in white, pink and red.

best as the software currently allows, the everyday life of T1D patients. For each case study,
the mean BG profile of the 11 adults is presented in Figure 51.

The first case study uses a 48-h multi-meal scenario consisting in a 3-meal/2-snack daily
pattern in which a total of 235 g of glucose is ingested each day (the same scenario was used
for the IV/IV validation presented in Chapter 3). The meals are distributed as follows: a
breakfast of 45 g of glucose ingested at 6 a.m., a lunch of 70 g at noon and a dinner of 80 g at
6 p.m. Two 20 g snacks are added at 4 p.m. and 11 p.m. (see subsection 2.4.3 for further details
on the methodology). In case study 1, both the CGM-AP and the Bios-AP allowed 9 adults to
reach the recommended targets (see subsection 2.5.2 for details on the international consensus
on performance metrics and their targets). With the Bios-AP, the mean TIR presents a
significant increase of 4.4% in the adult population (compared to CGM-AP) with a mean BGI*
reduction of 0.9 (2.7 vs 3.6). Mean LBGI and HBGI of the 11 adults are minimal for both
CGM- and Bios-APs and the mean glucose level is respectively equivalent to a mean HbA1C
level of 6.6% and 6.4%*. MDI therapy showed excellent results with all the adults (11) reaching
the targets with a mean BGI of 1.7. Performance metrics are presented in Table 8 as mean
(standard deviation). Detailed results for each patient are provided in Appendices 8 to 10.

The second case study uses the same meal scenario, but implements the method published
by Herrero et al. [18] in simulations involving MDI to account for the reported errors in
carbohydrates counting by patients (ranging from -30% to +40%). That scenario is used
to quantify the impact of meal announcement accuracy, a leading cause in the top-of-the-art
performance of the MDI therapy observed with scenario 1. A drop in the performance achieved
by the MDI therapy was observed with only 5 adults reaching the targets (11 in case study 1)
and a mean LBGI increasing from 0.2 to 0.8. That result highlights the crucial dependency
of MDI on accurate meal announcement. As there are no meal announcements in the

' BGI = LBGI + HBGI (defined in Kovatchev et al.[108])
2 The conversion was computed using the online eAG/A1C Conversion Calculator provided by the American
Diabetes Association.
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Table 8: Performance metrics for three blood glucose level regulation schemes in the three case studies,
for all adults.

Case study 1

Categor TBR 2 TBR1 TIR TAR 1 TAR 2 LBGI HBGI Mean BG TDI
y ) ) B B R ) () (mg/d) (U)
0.0 0.0 95.3 4.7 0.0 0.2 1.5 127.7 91.1
MDI ) (0.0) (4.1) (4.1) (0.0) (0.2) (0.7) (9.2) (20.7)
=S 0.1 0.4 83.7 15.9 1.4 0.2 3.4 140.5 86.8
SCGM oo g @3 @r (3 (04)  (L6)*  (1L6)*  (19.1)
Bi 0.0 1.6 88.1 10.3 0.2 0.7 2.0 124.4 92.8
105- 0.0) (32) (G4 B (07) 0.6) (0.7 (4.3)t L7
Case study 2
Categor TBR 2 TBR1 TIR TAR 1 TAR 2 LBGI HBGI Mean BG TDI
y ) ) ) ) R ¢ () (mg/dh) (U)
0.7 2.9 93.0 4.2 0.0 0.8 1.5 123.5 92.6
MDI (2.4) (5.6) (7.1) (4.9) (0.0) (1.1) (0.9) (11.5) (20.3)
S 0.0 0.1 83.7 16.1 1.5 0.1 3.4 141.1 86.7
3 cGM (0.3) 0.8)* (7.3 (7.3)* (3.3) 0.2)%  (L7)* (1200 (19.0)*
Bi 0.0 1.6 88.1 10.3 0.2 0.7 2.0 124.4 92.8
105 0.0) (32) G4 @AM 07 (0.6 07 (43) @17
Case study 3
Categor TBR 2 TBR1 TIR TAR 1 TAR 2 LBGI HBGI Mean BG TDI
y ) ) ) ) R ¢ () (mg/dh) (U)
2.8 6.8 81.8 11.5 0.3 1.8 2.1 122.0 93.7
MDI (5.4) (8.9) (8.4) (5.1) (1.2) (2.3) (0.9) (13.1) (20.6)
= 0.8 2.9 81.4 15.7 6.0 1.1 3.7 129.6 91.2
3 cGM (2.1) (4.3) (5.1) @2.7)%  (3.9)% (1.1) (1.2)* (6.9) (20.5)
Bi 0.0 0.0 83.4 16.6 5.9 0.1 3.8 137.3 87.4
105 0.0 00y 36T B6)*  (49)*  (0.U%F  (L.6)*  (95)%  (19.2)%f

Simulation results were analysed for adults (Adu.) after closed-loop simulations of three regulation schemes: Multiple Daily
Injections (MDI), a CGM-based AP (CGM), and a biosensor-based AP (Bios.). Case studies 1 and 2 consider a realistic daily
glucose intake pattern consisting in three meals (45, 70 and, 80g) and two snacks (20g). Case study 3 considers a challenging
daily glucose intake pattern consisting in two meals (100 and 120g) and one snack (20g). No meal announcement is
implemented for CGM and Bios. closed-loop schemes. Random errors in carbohydrates counting provided to MDI algorithm
are implemented in case studies 2 and 3. The metrics extracted for this comparison are the Time Below Range (TBR) percentage
(level 1 and 2), Time In Range (TIR) percentage, Time Above Range (TAR) percentage (level 1 and 2), Low- and High- Blood
Glucose Index (LBGI and HBGI) (unitless), mean Blood Glucose (Mean BG) concentration in mg/dl, and Total Daily Insulin
(TDI) in units of insulin. All metrics are mean (SD). Symbol * indicates statistical significance (p<0.01) with respect to MDI
and eumhnl + indiratec ctatictical cinnificanre (n<N N1) with recnect tn C.(GM

CGM- and Bios-APs, their performance indicators are identical to the ones from case study 1.
The third case study uses a more challenging 2 meal/1 snack pattern in which a total of
240 g of glucose is ingested each day. The meals are distributed as follows: a large brunch of
100 g of glucose ingested at 10 a.m. and a large dinner of 120 g at 8 p.m. A 20 g snack is added
at 5 p.m. The MDI therapy (with random errors) and CGM-AP failed to maintain the patients
in the targets; however, the Bios-AP allowed 4 adults to reach the targets, and kept
both LBGI and HBGI minimal for all adults except adult#007 (see Table 8).
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4.2.2. Discussion on this first comparison

In the first case study, the MDI therapy outperformed closed-loop therapies. This result may
come as a surprise considering the well-known superiority of sensor-augmented insulin-pump
therapy over MDI, as demonstrated in clinical trials [120]. The absence of meal anouncement
places the closed-loop regulation schemes at a disadvantage, therefore benefitting the non-
causal MDI therapy. MDI also benefits from the absence of errors in the patient-provided
carbohydrates counting which is unrealistic according to the literature [121]. This point was
addressed in case study 2 with a more realistic implementation of the meal anouncement (see
Herrero et al. [122]) which led to a decrease in MDI performance. For its part, the Bios-AP
was less efficient than the MDI therapy but still outperformed the CGM-AP with a 4.4%
difference in the mean TIR and a lower cumulated glycaemia-related risk (lower LBGI and
HBGI, see Table 8). The third case study (challenging glucose intake scenario with two large
meals and one snack) further emphasized the impact of carbohydrates counting errors
on MDI performance. The hypoglyceamic risk increased even more and the mean TIR for
MDI therapy decreased below that of the closed-loop schemes.

The Total Daily Insulin (TDI) indicator particularly highlights the ability of the
biosensor to modulate insulin delivery. Using the same controller settings for all case
studies, we observed that the Bios-AP injected more insulin than the CGM-AP in the first two
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Figure 52: Comparison of the Bios-AP with two reference therapies for the 11 adolescents and 11
children of the T1IDMS virtual cohort. The same color-coding as in the previous figure is used for

standard deviation and glycaemic risk areas.
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case studies, whereas in the third one, it injected significantly less insulin than the CGM-AP.
Although the same controller tuning methodology was used in both cases, this modulation,
induced by the biosensor, enabled the Bios-AP to lower the mean BGI of the adult T1D
cohort in all case studies.

This first series of SQ/SQ results was submitted for publication in IEEE Transactions on
BioMedical Engineering (TBME, revised manuscript submitted after a first round of peer-
reviewing). The SQ/SQ results of adolescents and children were not presented in the TBME
article, as we considered them to be inconsistent and required further investigations. They are
presented and discussed in this manuscript (see Figure 52). Our Bios-AP could not mitigate
the hypoglycemic risk of these patients, which therefore presented elevated mean LBGI values
(2.5 and 3.3 for adolescents and children respectively - see Table 9) when compared with the
CGM-AP (0.2 and 0.3). The mean TIR of adolescents the Bios-AP outperformed the CGM-
AP (75.1% vs 67.3%) while the opposite happened in children (67.3% vs 71.9%) for no obvious
reason. Analysing the insulin infusion rate patterns and the TDI, we also found that our
methodology tends to be overly aggressive in the tuning of the derivative action of the
PDgasar, controllers, in particular with the Bios-AP controllers. We explain that difference by
the noise of the CGM sensor which induces a more conservative tuning by GA. Although this
downside seems well tolerated by adults, it certainly participates in the poor results observed
in children. More importantly, the meal scenarios represent excessive (and unrealistic)
daily glucose intake for young adolescents and children, which makes the controller’s task
even harder. We therefore decided to investigate weight-dependant meal scenarios, a
feature not available in the current version 3.2 of the TIDMS (see next subsection).

Table 9: Performance metrics for three blood glucose level regulation schemes in case study 2, for all
adolescents and children.

M
TBR2 TBR1 TIR TAR 1 TAR 2 LBGI HBGI Begn TDI

Category
(%) () (%) () (%) (-) (-) (me/dI) (U)
MDI 4.1 6.6 72.9 20.6 4.4 2.2 4.6 143.0 71.7
(8.1) (10.0) (14.9) (17.6) (7.7) (3.9) (3.8) (28.9) (17.6)
%3 CoM 0.2 0.6 72.4 26.9 7.6 0.2 6.3 158.0 67.2
< (0.6) (1.8) (9.4) (9.1) (7.0) (0.4) (2.8) (16.4)  (15.6)
Bios 3.1 5.8 75.1 19.0 3.4 2.5 3.9 135.1 74.2
T (6.4) (10.2) (11.4) (7.8)F (5.0)} (4.9) (2.0t (17.1)7 (17.8)F
MDI 1.2 2.6 71.0 26.4 5.1 0.7 5.6 153.1 38.6
(3.5) (5.6) (11.9)  (12.7) (5.9) (1.4) (2.6) (17.8) (7.4)
= CCM 0.2 0.8 71.9 27.4 13.0 0.3 7.6 162.7 37.2
@ (0.8) (1.6) (4.3) (3.9) (2.8)*  (0.5) (1.3)*  (6.4) (8.1)
Bios 6.3 10.0 67.3 22.7 7.9 3.3 5.5 143.4 40.6

(5.6)f (6.4)*F (6.8t (1.)T (3.5)7 (2.9* (0.8)f (7.2)f (9.3)}

Simulation results were analysed for the 11 adolescents (Ado.) and 11 children (Chi.) after closed-loop simulations of three
regulation schemes: Multiple Daily Injections (MDI), a CGM-based AP (CGM), and a biosensor-based AP (Bios.). Nine
metrics were computed on case study 2 simulation results. Symbol * indicates statistical significance (p<0.01) with respect to
MDI and symbol 1 indicates statistical significance (p<0.01) with respect to CGM.
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Finally, one can also note that a proper validation of the biosensor with multi-meal scenarios
would also require to model the circadian insulin sensitivity variability observed in real
patients. Although it has been studied and published [123]-[125], this feature is not yet
implemented in the commercial version of the TIDMS and was not investigated in this work.

4.2.3. Controller tuning with individualised meal scenarios

The definition of meal scenarios is a limitation in our #n silico approach. For the sake of
demonstration, the same scenarios were used with all the patients of the simulator in the
previous studies. The T1DMS’s design encourages the user to do so, as personalising each
glucose intake scenario in a time-efficient manner is fastidious: it requires creating one scenario
for each patient and running a 33-scenario simulation. This is cumbersome and prevents the
use of parallelisation to reduce computation time. As a consequence, most of the published
studies using the UVA /Padova T1DMS are based on unique scenarios for all patients. These
meal scenarios are unrealistic from a clinical standpoint: adults and children do not have the
same energy requirements, and energy requirements of patients belonging to a same category
also differ. Common practice in clinical trials is therefore to define scenarios in a body weight-

dependent manner.

We developed our own method to define individualised scenarios that stimulate all the
patients in a consistent manner. This method, described in Figure 53, uses a body weight-
dependent definition of the glucose intake scenarios to match at best what would be the energy
needs of the virtual patients in real life. An additional step was added to the T1DMS execution
flow: before the scenario is loaded by the software, a custom function is called. It reads the

meal scenario and generates 33 individualised scenarios ensuring that the average daily glucose
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Figure 53: Body weight-dependent definition of the glucose intake scenarios. Example for child#007,
adolescent#003, and adult#006.
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intake of the 11 adult scenarios is the daily glucose intake of the initial scenario. Validation
scenarios in previous sections were designed to match the daily glucose intake reported in the
literature for American T1D adults (235 grams of glucose in average). Our method maintains
this realism while generating individualised scenarios that best fit the daily intake of energy
for adolescents and children. In order to achieve this result, each meal intake is divided by the
average body weight of the 11 adults to obtain a meal scenario whose glucose intakes are
defined in grams of glucose per kilogram (of body weight). The individualised scenarios
are then generated by a simple multiplication with patient’s body weight (see Appendix 4 for
the body weight list). This upgrade of the T1DMS is transparent for the user as
individualisation is activated by the addition of a “BWdep” key word at the end of the scenario

name. Finally, all the scenarios are saved in the output structure for logging purposes.

To validate the proper functioning of this new feature, we tuned a second set of controllers
with the GA-based method presented in section 4.1 using individualised scenarios. With these
two sets of controllers, we first compared the mean BG profiles obtained for each virtual patient
category with (1) the unique and (2) the individualised versions of the realistic 3-meal/2-snack
scenario used in subsection 4.2.1. (see Figure 54). What is of primary importance here is that,
for the first time in this work, it is relevant to compare each patient category. Indeed, the
comparison of glucose control performance is less relevant as the perturbation induced by
glucose intake is comparable between the two scenarios in adults but is far reduced in
adolescents and children with individualised scenarios. We observe very similar mean BG
profiles for all categories with the body weight-dependent scenarios, which confirms the
efficiency of our individualisation method. Minimal and maximal glucose excursion are also
comparable. Figure 55 compares the closed-loop performance with the four most instructive
metrics: the TIR, the Mean BGI, the Mean BG level, and the TDI. Unsurprisingly, the metrics
confirm what was observed with BG profiles: performance was greatly improved for
adolescents and children with an increase of the TIR, a decrease of both the mean BG level

and the mean BGI. One can also note that mean closed-loop performance is very similar from
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Figure 54: Comparison of mean BG profiles for the three virtual patient categories equipped with the
Bios-AP and following different scenario definition strategies: a unique meal scenario is defined for all
patients (blue. plot) or an individualised (Indiv.) scenario is defined for each patient (purple plot). These
scenario definition strategies were used during both the controller tuning and validation phases. The
same color-coding as in the previous figures is used for standard deviation and glycaemic risk areas.
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Figure 55: Influence of meal scenario individualisation on closed-loop performance assessed with
boxplots of four metrics: the Time In Range (TIR), the mean Blood Glucose Index (Mean BGI), the
mean Blood Glucose level (Mean BG level), and the Total Daily Insulin (TDI) are plotted for the unique
scenario (blue) and for the individualised scenarios (purple).

one patient category to the other. The standard deviation is also reduced by individualisation
which suggests that the inter-patient variability was partly due to an inconsistent level of
stimulation by glucose: a meal consisting in 70 grams of glucose is not as challenging for a 30-
year-old adult as it is for a 12-year-old adolescent. Still, the fact that the standard deviation is
inversely proportional to patient category age suggests that our individualisation method could
still be improved. Indeed, there is no obvious reason that explain this increased interpatient

variability in children.

We performed a deeper analysis by focusing on the TDI. One conclusion that could be
drawn from Figure 55 is that the TDI logically decreases with individualisation due to a lower
daily glucose intake (for a majority of patients), when compared to the unique scenario used
before. We therefore analysed the evolution of the total daily glucose intake and insulin infusion
for each patient in order to highlight the impact of individualisation of meal scenarios (see
Figure 56). The upper panel, representing the daily glucose intake evolution, illustrates the
principle of our individualisation method: for adults, the daily glucose intakes are equally
spread on both sides of the average glucose intake represented by the 235 grams intake of the
unique scenario (blue triangles), while younger (and lighter) patients receive smaller glucose
intakes. In the lower panel, TDI values are normalised to TDI reference values provided by the
T1DMS and corresponding to the TDI achieved by a MDI therapy as described in Dalla Man
et al. [98]. Results highlight the limited influence of individualisation on TDI except

for children. Indeed, children TDI values in the case of individualised scenarios are closer to



133

= .
\3350 B Adolescents Adults Children
jab]
¥
,g 300 o
=250 | 29 0
© AAAAAAAAAAARIOALGAL QA NAAAAAALALALALL
& o} O
S 200 F 6 ©
=
w0k © o 900 oo o
oL O o _©O o
== 100 090 940 e}
Q 50 | | | | 1 1 1 1 | | | | 1 1 1 | | | 1 | 1 1 1 1 | | 1 | | | 1 |
25
QO  Individualized scenario
= oL 4 Unique scenario A
a + TI1DMS-provided reference A A A N A
=15k A O a4 4.
S A g 0%506 © o0 0O,
g1—$$¢*$égataﬁﬂﬂﬁgagé Q¢g++++++¢+9+¢
= O
-
o
=z 0.5 F
O | | | | 1 1 1 | | | 1 | 1 1 1 | 1 | | | 1 1 1 1 | | | | | | 1 1 1
NODODIOL PO LD DDIOLL PO LN D DODHDLL PO o
AR TER T TP AR T ITI IS TS AR RO RPN o
S N R R R R R
@5‘5&@‘“@@ gy *"'@@oa":‘zgdzéa?e@#i%&\\% q:o‘PS%&%&,@&@&“&W&O@%&»\&( FFFFPFEEE c\?:b%
N S S S R s T AR >
O A A A AT A AT AT AN ¢ > o
BECECESCERY X e
O
¥

Figure 56: Comparison of the daily glucose intake and Total Daily Insulin (TDI) of each patient for
the two scenario definition methods: unique scenario (in blue) and individualised scenarios (in purple).
TDI values were normalized to a reference TDI value provided by the T1IDMS for each patient and
corresponding to the TDI achieved by a MDI therapy.

the reference and therefore appear to be more physiological. They are however still larger than
those references which suggests an excessive aggressiveness of our controllers.

To conclude the analysis of this second series of SQ/SQ simulation results, we computed
the daily energy intakes associated with the daily glucose intakes resulting from
individualisation. We considered three hypotheses regarding the proportion of daily energy
intake provided by carbohydrates: 45%, 55% and 65%. These hypotheses are in line with the
American Diabetes Association recommendation for T1D adults: 45-60% of energy
requirements covered by carbohydrates [126]. The corresponding daily energy intakes are
plotted in Figure 57 for each patient category. Unsurprisingly, the total energy intake
increases when the proportion of carbohydrates decreases. The total energy intake of adults
falls between 1300 to 2800 kcal/day depending on the carb proportion hypothesis. This result
is consistent with the range of daily energy intakes reported in the literature for T1D adults
[104], [127]. In contrast, the daily energy intakes corresponding to the individualised scenarios
of adolescents are lower than those reported in the literature. The energy needs of adolescents
and adults are reportedly equivalent [128], [129]. In particular, active adolescents and
adolescent sportsmen can present higher energy intakes than adults. According to the average
daily energy intake of Australian T1D children reported in [130] (1340 and 2340 kcal /day for
2-3 year-old and 4-8 year-old children respectively), our individualised glucose intake scenarios
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also underestimate the energy intake of children. From these observations, we can conclude
that the individualisation method is functional for adult patients but possibly yields
underestimated daily glucose intakes for adolescents and children. A solution to address this
issue could consist in introducing nonlinearities or patient category-based rules in the
body weight-dependent definition of the scenarios.
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Figure 57: Boxplots of daily energy intakes corresponding to the individualised
scenarios of each patient category. Three hypotheses are considered for the
following proportion of energy intake covered by carbohydrates: 45%, 55%, and
65%.

4.3. The role of simulation in the Bios-AP design flow

In the last subsections, we outlined three elements restricting the extent of simulation results
obtained with the version 3.2 of the UVA/Padova T1DM Simulator: circadian insulin
sensitivity variation and non-glucose regulators of insulin secretion are not modelled, and the
glucose intake scenarios definition is limited. Although the modelling of these sensitive points
could be improved in a custom version of the simulator, one should keep in mind that in silico
clinical trials will never perfectly reflect reality. As explained in Chapter 2, these simplifications
form an integral part of the mathematical modelling process and are necessary to handle the
tremendous complexity of the biological interacting systems involved in blood glucose
regulation. In this section, we discuss the contribution of simulation to the design of AP
systems taking the development of our biosensor-based AP as a case-study.

4.3.1. How to enhance the UVA /Padova T1DM Simulator?

Insulin elicits a reduction of blood glucose levels by increasing the glucose uptake of
insulin-sensitive cells in muscles and adipose tissue (about two-thirds of body cells). These
cells’ sensitivity to insulin presents diurnal variations in both healthy and T1D people [131],
[132]. This physiological process is not modelled in the S2013 version of the T1IDMS (v3.2)
which led the FDA to limit the extent of its approval to the simulation of single-meal



135

scenarios although the software allows for multi-meal scenarios. To get rid of this limitation
and increase the realism of multi-meal simulations, numerous methods have been proposed to
model the intraday variation of insulin sensitivity. A basic method, which does not require
the modification of the metabolic model equations, consists in applying a variable gain on the
controller output to simulate insulin sensitivity variations. This approach is convenient but
provides a limited control on the diurnal variation pattern due to subcutaneous diffusion
kinetics. A better solution is thus to modify the metabolic model parameters to
implement time-dependent variations of their values. This could be achieved with a unique
profile for each patient as proposed by Toffanin et al. [133], or by modelling the interpatient
variability of this diurnal pattern observed in real patients, as proposed by Visentin et al. [123].
Circadian variations of insulin sensitivity was also added to the UVA /Padova metabolic model
[125] but the model parameters are not published yet. As previously mentioned, a better
definition of the glucose intake scenarios paired with the inclusion of intraday variations of the
insulin sensitivity in a custom version of the T1DMS would significantly improve the

clinical relevance of our multi-meal simulations.

As described in Chapter 1, pancreatic beta cell activity is regulated through different
pathways involving nutrients (e.g., glucose, free fatty acids, amino acids) and hormones (e.g.,
GLP-1, GIP, and adrenaline), and can be modulated with various drugs [134]. We explained
in Chapter 2 that these molecules are the inputs of integrative endogenous algorithms
which provide electrical activity and insulin secretion rate as outputs. The added value
of our biosensor partly lies in the real-time access it offers to these endogenous algorithms. As
opposed to glucose-only CGM technologies, this multi-input islet-based biosensor gives new
insights on the appropriate way to deliver insulin to T1D patients. As information about
nutrients and hormones is integrated into a single electrical signal, we hypothesize that the
biosensor would provide more reliable information than glucose-only sensors for controlling
insulin delivery. To properly assess the ability of a biosensor-based AP to control the insulin
delivery of T1D patients in a more physiological manner, the modelling of these other

regulators of insulin secretion seems therefore necessary.

We demonstrated in vitro that our biosensor properly captures the modulation of islet
responses induced by GLP-1 and adrenaline (Lebreton et al. [70]). Based on our experimental
data, a modelling of the plasmatic GLP-1 concentration varying between two states (a
basal level and a stimulating one) can be envisaged as GLP-1 influence on SPs response was
found to follow an “all-or-none” mechanism rather than a dose-dependence mechanism. An
alternative solution is to use the work on GLP-1-induced insulin secretion potentiation in
healthy subjects and T2D patients published by Dalla Man et al. [135].

Regarding the plasmatic adrenaline concentration, no model of the influence of physical
activity or stressful episodes in T1D patients is yet available. The work published by Schiavon
et al. [136] is an interesting basis to start simulating scenarios with physical activity: it models
the impact of physical activity as a variation of insulin sensitivity leading to variations of
glucose utilization in muscles and adipose tissue.

Although sound and pragmatic, these solutions to upgrade the simulator are not completely
satisfactory as they do not achieve the level of accuracy achieved by the TIDMS in modelling
the glucose-insulin dynamics of T1D patients. Such a high-level of fidelity requires time and
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resource-consuming clinical trials implementing complex triple-tracer methods to monitor the
dynamical variations of insulin and glucose during meals, and generate reliable data for the
mathematical modelling process. The development of a multi-hormonal counterpart of the
T1DMS accounting for the intake of nutrients other than glucose thus appears as an
unachievable goal on a short to medium term basis. Obviously, contribution of in vitro
experiments on cultured islets, in vivo experiments on animal models and clinical trials on T1D
patients is still necessary to fully assess the sensing capabilities of our biosensor.

4.3.2. Contribution of simulation to the design of AP systems

Due to the aforementioned limitations, in silico campaigns performed in a glucose-only
testing environment should be dedicated to the inclusion of the biosensor in an AP system and
the design of the associated control algorithm. They provide an estimation of minimal
closed-loop performance during case studies focusing on:

e The control algorithm: We already mentioned the various controller architectures
that have been proposed and can be tested using the UVA /Padova T1DMS. Thanks to
the 33-built-in virtual T1D patients it provides®, the simulator can also be used to

investigate different strategies to handle interpatient variability. We investigated in this
work a methodology based on the individualisation of the controller benefitting from the
possibility to repeat simulations with the same patient and scenario. Strategies presenting
a better compatibility regarding clinical constraints could also be tested. For example,
our partners* investigate the application of the H-infinity theory to calibrate controllers
which are robust to the interpatient variability modelled within the whole T1DMS
cohort, or within a given patient category.

e Clinically-relevant additional features: Modern hybrid closed-loop systems all

implement similar features (further detailed in 4.4) to mitigate the hypoglycaemic risk.
Simulation could be used to incorporate some of them in the Bios-AP and assess their
impact on closed-loop performance.

e The impact of true-to-life challenges: Increasing levels of realism about the

evaluated therapies can also be implemented through simulations to assess the relative
impact of the elements which negatively affect the closed-loop performance. The MDI
therapy and the CGM-AP are rendered more realistic in this work by the introduction
of errors in the carbohydrates counting and by the presence of measurement noise in the
CGM sensor model (see subsection 4.2.1). In our models, the biosensor is considered as

ideal since no parasitic component is implemented. This assumption is relevant considering that
measurement noise does not significantly affect performance due to low SP frequency (0-2 Hz).

B A larger cohort comprising 300 patients (100 adults, 100 adolescents, and 100 children) is available upon request
and payment to the Epsilon Group, the company which commercialises the UVA /Padova T1DM Simulator.
" The ARIA team (IMS laboratory, UMR 5218).
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Figure 58: Evolution of the simulated blood glucose profile of adult#005 submitted to a 3-meals/2-

sna

cks scenario for 10 values of the additional delay induced by the microfluidic setup.

The development of a wearable device: A wearable implementation of our biosensor

would however require an osmotic pump coupled with a microfluidic chip to feed the
biosensor islets with patient’s interstitial fluids. Due to tubing and perfusion safety
constraints, the microfluidic setup will certainly induce additional delay in the
measurement chain thus probably degrading closed-loop performance of the AP system.
Simulation certainly helps assess the impact of this delay on glucose control and define
the specification of a wearable implementation of our sensor. Figure 58 presents an
example of parametric analysis that could be simulated for that purpose. The patient
adult#005 is submitted to the realistic 3-meals/2-snacks scenario used in section 4.2. An
additional delay is inserted between the patient and the biosensor to simulate the delay
induced by a microfluidic chip in the biosensor. Unsurprisingly, the magnitude of
extreme glycaemic events increases with the additional delay, thus degrading the
closed-loop performance of the Bios-AP. We quantified this degradation observing the
evolution of the TIR and the mean BGI as a function of the delay value (see Table 10).
Below 5 minutes of additional delay, a performance drop of 0.4% of TIR and 0.1 of mean
BGI per minute was observed while the mean drop in performance per minute regularly
increases above 5 minutes. Based on these observations, one can anticipate that an
additional microfluidic delay lower than 5 minutes is acceptable while an
additional delay higher than 5 minutes significantly reduces the closed-loop performance
of the Bios-AP system. These results are preliminary but they illustrate a contribution

Table 10: Evolution of the TIR and mean BGI as a function of the microfluidic delay

Units Values
Delay min 1 2 3 4 5 6 7 8 9 10
88.5 8.1 7.7 87.2 86.2 85.4 84.6 83.8 82.7 82.3
TIR %
(7.1) (7.3 (7.3)  (7.5) (7.6) (7.3) (7.6) (7.9 (8.0) (7.9)
Mean 2.62 2.73 2.82 2.93 3.10 3.21 3.33 3.48 3.64 3.75
BGI (1.13) (1.19) (1.20) (1.25) (1.30) (1.34) (1.37) (1.41) (1.45) (1.51)

Simulation results were analysed for the 11 T1D adults equipped with the Bios-AP and submitted to a 24-hour 3-meals/2-
snacks scenario. All metrics are mean (SD).
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of the T1IDMS simulations to the development of a real-world implementation of the
Bios-AP.

A practical biosensor device model: For reliability purpose, a wearable biosensor

device would embed several islets to provide a statistical mean and cope with biological
variability. We currently foresee an extracorporeal device embedding up to ten
islets fed with patient interstitial fluids. The continuous monitoring of islets’
electrical activity would therefore yield multiple signals subsequently combined to
compute the sensor output, i.e., an estimation of the patient insulin need. Our consortium
(ARIA team) is currently developing a family of biosensor models to account for
biological variability during the controller synthesis process. Using the UVA /Padova
testing environment, a similar approach could be used to develop a realistic model of the
biosensor incorporating several islet models, signal processing blocks and an insulin need
estimation block (see an illustration with five islets in Figure 59). Such a model would
permit to investigate various methods to compute the patient insulin need from multiple
SP frequency signals.
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Figure 59: Model of a practical biosensor incorporating five islets whose electrical activity is monitored

and processed to compute an estimation of the insulin need of a T1D patient.
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4.4. Real world implementation of the Bios-AP

We found it relevant to conclude this thesis manuscript by discussing a real-world
implementation of a biosensor-based Artificial Pancreas. We intend to depict how the
aforementioned diabetes treatment problematics are managed in state-of-the-art closed-
loop systems and underline the blind spots of simulation in modelling everyday
clinical practice. In doing so, we will pay particular attention to the management of
variability in diabetes, which is the main impediment to the development of fully automated
BG regulation devices. Finally, this section proposes a set of guidelines for the future
development of the Bios-AP.

4.4.1. Management of variability in Type 1 Diabetes

Variability in diabetes takes many forms. One may speak of interpatient, intrapatient,
interday, and intraday variabilities, each of which necessitating appropriate measures to limit
their impact on treatment efficacy. The biosensor introduces an additional source of variability,
lying in the biological variability of the embedded islets, which also need to be managed
to allow the Bios-AP to meet the regulatory requirements of medical devices.

Interpatient variability, as the variation of body characteristics from one patient to the
other, primarily originate from genetic differences but also from environmental factors as past
and present lifestyles shape the body and its response to glucose intake. In the case of diabetes,
interpatient variability can result in widely variable responses to a given treatment and needs
to be taken into account during the development of AP systems. Disease duration also play a
role in interpatient variability since patient’s general condition worsens as disease develop,
especially for patients with poor glucose control. Nowadays, interpatient wvariability is
managed through individualisation of the insulin therapy, either independently by the
patient or during regular meetings with the healthcare staff. Modern hybrid closed-loop systems
propose a set of configurable parameters to the clinician in order to finely adapt the insulin
therapy to patient needs. The same strategy should be adopted for the Bios-AP to maximise
closed-loop performance and favour acceptance by both clinicians and patients. As interpatient
variability is modelled in the UVA /Padova TIDMS, this testing environment is perfectly suited
for the development of control algorithms robust to errors in patient-provided therapy
parameters. Optimal controller parameters could for example be computed with in silico
optimisation methods, such as our GA-based method, and subsequently related to virtual
patient characteristics, thus providing a clinically-compatible method to set the Bios-
AP parameters.

T1D patients, like healthy individuals, also present circadian variations of some of their
characteristics. We have already mentioned the circadian variation of insulin sensitivity as it
is the most impacting characteristic which varies throughout the day, but other characteristics
such as endogenous glucose production or glucose utilization may vary depending on the
patient’s psychological state, nutritional status, and physical activity level. In modern closed-
loop systems, intraday variability is handled with daily patterns for the main therapy
parameters (e.g., basal insulin delivery, insulin-to-carbohydrates ratio, correction factor) and
with meal and physical activity announcement features. Although the Bios-AP should
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benefit from the exquisite sensing capabilities of the embedded healthy islets, and thus have a
better picture of the patient’s physiological state, the addition of facultative meal and
physical activity announcement features would certainly be valuable to further improve
regulation performance. The contribution of these different features could be investigated with
simulation but some upgrades, mentioned in section 4.3.1, need to be made to the T1DMS
first.

In addition to intraday variability, T1D patients also present an interday variability of their
characteristics which need to be handled by any automated BG regulation device. This
interday variability can be described at different time scales. A variability can be
observed over several days for the reasons mentioned above (for intraday variability) and due
to patient’s weekly routine. Until recently, interday variability required the patient to adapt
their therapy parameters themselves but with the development of CGM technologies, which
monitor subcutaneous glucose concentration with an excellent resolution, and the advent of
machine learning, adaptive control algorithms are being developed to reduce patient
burden. At a longer time scale, interday variability mainly consists in body weight variation
or in disease-induced modification of its body characteristics. This variability is already well
managed through regular meetings with the health staff and the definition of a diet plan to
improve body weight control.

To conclude this subsection, it is important to note that the Bios-AP introduces an
additional source of variability: the biological variability of pancreatic islets. This
variability may appear as an issue which need to be addressed via factory calibration of
biosensors and perfect characterisation of the embedded islets. However, islets whose sizes
are well characterised could also be used to virtually reconstitute the biological diversity
observed in a healthy pancreas and refine patient’s insulin need estimation. Although such use
of the biological variability is certainly hard to achieve, we found it important to note that
biological variability may not be something to reject when our overall objective is to regulate

T1D patients’ BG in a more physiological manner.

4.4.2. Integration of a CGM sensor in the Bios-AP

The DCCT/EDIC study demonstrated that intensive glycaemic control greatly
improves long-term outcomes of T1D treatment but also induces an increased risk of
adverse hypoglycaemic events. AP systems therefore have to both ensure a satisfactory
glucose control and mitigate the hypoglycaemic risk. We have seen in Chapter 1 that modern
hybrid closed-loop systems achieve this thanks to hypoglycaemic alarm and automated
suspension of basal insulin delivery based on CGM readings analysis. Due to its working
principle, the biosensor output is null when no insulin is needed. As a consequence, the
information provided by the biosensor could not be used to detect hypoglycaemia and the co-
integration of a CGM sensor and the biosensor in the Bios-AP would certainly be
necessary. This choice would not only be a technical choice to improve the device performance
but it would also be necessary to match the regulatory framework of medical devices. Indeed,
reactive hypoglycaemia is a life-threatening complication of diabetes treatment and a CGM
able to trigger an alarm is required to ensure patient safety.
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4.4.3. Realistic real-world implementation of our biosensor

Although many differences do exist between the AP systems currently available on the
market (e.g., form factor, user interface, configurability), some core elements are common to
all of them. All hybrid closed-loop systems implement some form of active insulin modelling
to try to estimate the amount of previously injected insulin which is still active in patient body.
With hypoglycaemic alarms, this feature plays a key role in the reduction of the hypoglycaemic
risk. All control algorithms are also configurable to cope with interpatient variability and
benefit from patient-provided information to better handle meals and physical exercise. These
core elements seem necessary to achieve top-of-the-art performance and respect the regulatory
framework imposed by Health Authorities. Figure 60 therefore presents an illustrative
schematic of a realistic real-world implementation of the Bios-AP including all these
elements.
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Figure 60: Practical real-world implementation of the Biomimetic Artificial Pancreas

This thesis work laid the foundations of the in silico design of an unconventional AP (Bios-
AP) based on a new sensor paradigm. We settled simulation and analysis methodologies to
explore the Bios-AP performances and prepare a future in silico clinical trial. A sensor
benefitting from the physiological response of healthy islets is certainly valuable, but many
questions remain unaddressed regarding the Bios-AP relevance for T1D patients. We truly
believe that solving these issues can only be achieved through the bold combination of in wvivo,
in vitro and in silico research, requiring a symbiotic collaboration between clinicians, biologists,
physicists and engineers.
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Appendices

Appendix 1 - Worldwide prevalence of diabetes and forecasts (IDF Atlas 2019)
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Appendix 2 - European prevalence of diabetes and forecasts (IDF Atlas 2019)
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Appendix 3 — UVA/Padova T1DMS metabolic model equations

Model Equations Glucose utilization:
Glucose subsystem:
, U,y =F,, (A9)
G (1)= EGP(1) + Ra(t)~U, (1) = E(t)— k, -G (1) + k, - G, (1)
(-?p(O )=G, U0 = [Vio + Voo - X (1) - (1 + 17 - risk) ] G, (1) A10)
G(t)=-U, () +k -G 1)k, -G (1) Koo+ G(1)
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Vi
Renal excretion:
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Q_"“(O) =0 Subcutaneous insulin kinetics:
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Glucagon kinetics and secretion:
Endogenous glucose production:
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SRy (=6 -max(— "‘;(“) ,0} (A21)

Subcutaneous glucagon kinetics:

H.crl([) = _(khl + kkz) “H (1)

H,(0)=H,,

H(t) = ki Ho0) = iy - H, (1) (A22)
H,(0)=H

Ra, )=k, H () (A23)
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Appendix 4 —UVA/Padova T1DMS virtual patients’ characteristics and therapy

parameters
Body T1DM
Names Age . . CR CF TDI
weight duration

Units year kg year 9/U  mg/dl/U U
adolescent#001 16 36 12 26 79 24
adolescent#002 18 51 9 20 77 26
adolescent#003 19 54 11 26 61 31
adolescent#004 17 41 16 10 48 43
adolescent#005 19 59 11 10 56 36
adolescent#006 17 53 3 24 73 26
adolescent#007 19 49 15 26 47 41
adolescent#008 16 5% 2 9 37 51
adolescent#009 16 67 11 42 46
adolescent#010 19 49 11 15 53 36
adolescent#average 16 49 8 16 56 30
adult#001 32 80 21 19 44 42
adult#002 22 80 12 22 42 43
adult#003 42 71 38 15 35 52
adult#004 24 67 19 20 53 35
adult#005 47 67 35 13 48 40
adult#006 23 73 12 9 26 72
adult#007 47 46 3 18 43 43
adult#008 56 99 3 9 37 59
adult#009 24 68 14 20 53 34
adult#010 31 81 19 14 40 47
adult#average 32 70 11 16 43 40
child#001 3 28 2 20 108 12
child#002 12 33 1 32 120 12
child#003 5 35 2 31 96 15
child#004 5 28 5 32 176 7
child#005 3 37 3 27 120 11
child#006 2 32 1 20 80 17
child#007 2 25 1 19 102 13
child#008 8 29 6 26 137 10
child#009 4 23 2 30 151 9
child#010 7 36 4 32 96 15
child#average 6 30 4 24 110 17
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Appendix 5 — Performance metrics corresponding to IV/IV results of adolescents

Adolescents

Patient TBR 2 TBR1 TIR TAR 1 TAR 2 LBGI HBGI Mean BG TDI
1D ) ) B ) (B () () (mg/d) (U)

Stat. 0 0 93.1 6.9 0 0.3 1.3 118.6 35.1
! Hyst. 0 0 94.4 5.6 0 0.3 1.2 117.5 34.8
Stat. 0 0 82.9 17.1 6.3 0.1 4.2 146.3 28.4
? Hyst. 0 0 85.8 14.2 ) 0.2 3.1 133.7 30.7
Stat. 0 0 100 0 0 0.1 0.4 116.9 34.9
J Hyst. 0 0 100 0 0 0 0.4 120.2 33.9
Stat. 0 0 94.2 5.8 0 0.1 1.3 124.1 53.7
! Hyst. 0 0 95.7 4.3 0 0.3 0.9 117.1 56.4
Stat. 0 0 99.3 0.7 0 0.2 0.5 114 38.3
i Hyst. 0 0 99.7 0.3 0 0.3 0.3 110.6 39.7
Stat. 0 0 100 0 0 0.1 0.2 111.5 28.7
¢ Stat. 0 0 100 0 0 0.1 0.2 112.8 28.3
Stat. 0 0 82.9 17.1 4.6 0.5 3.5 135.9 46.9
! Hyst. 0 4.9 85.8 9.4 0 1.2 1.7 116.1 51.7
Stat. 0 0 100 0 0 0.3 0.2 107.3 65.3
® Hyst. 0 0 100 0 0 0.5 0.1 104.4 71.1
Stat. 0 0 99.7 0.3 0 0.2 0.3 111.3 54.8
? Hyst. 0 0 100 0 0 0.2 0.2 109.1 56.1
Stat. 0 0 90.8 9.2 0 0.1 1.8 128.7 36.3
10 Hyst. 0 0 94.4 5.6 0 0.2 1.1 119.5 38.4
Stat. 0 0 96.6 34 0 0.3 0.7 115.5 40.7
H Hyst. 0 0 97.6 24 0 0.5 0.5 109.3 43

Performance metrics computed on the last 24 hours of a 48-hour, 3-meal/2-snack scenario in adolescents for two regulation
schemes: Static model 2020 (Stat.) and Hysteretic model 2020 (Hyst.). Nine metrics are computed: the Time Below Range
(TBR level 1: 70 mg/dl, level 2: 54mg/dl), the Time In Range (TIR), the Time Above Range (TAR level 1: 180 mg/dl, level 2:
250 mg/dl), the Low Blood Glucose Index (LBGI) and its counterpart the High Blood Glucose Index (HBGI), the Mean Blood
Glucose level (Mean BG), and the Total Daily Insulin (TDI) administered to the patient.
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Appendix 6 — Performance metrics corresponding to IV /IV results of adults

Adults

Patient TBR 2 TBR1 TIR TAR 1 TAR 2 LBGI HBGI Mean BG TDI
1D ) () (B) () (o) () () (mg/d) (U)

Stat. 0 0 99.2 0.8 0 0.1 0.5 118 48.4
! Hyst. 0 0 98.8 1.2 0 0.1 0.6 119.2 46.9
Stat. 0 0 97.2 2.8 0 0.2 0.9 122.5 46.7
? Hyst. 0 0 100 0 0 0.2 0.5 115.9 48.8
Stat. 0 0 100 0 0 0.1 0.5 118.7 60
? Hyst. 0 0 100 0 0 0.1 0.4 116.4 60.7
Stat. 0 0 100 0 0 0.3 0.3 112.8 40.5
! Hyst. 0 0 100 0 0 0.2 0.4 113.4 39.8
Stat. 0 0 100 0 0 0.3 0.3 110.5 46
i Hyst. 0 0 100 0 0 0.1 0.2 112.2 45.5
Stat. 0 0 97.3 2.7 0 0.2 0.7 119.5 82.9
0 Stat. 0 0 99.2 0.8 0 0.3 0.4 111.7 89.8
Stat. 0 0 100 0 0 0.1 0.4 118.5 49.6
! Hyst. 0 0 100 0 0 0.3 0.3 114.4 50.4
Stat. 0 0 100 0 0 0.1 0.4 114.3 69.1
® Hyst. 0 0 100 0 0 0.1 0.4 115.8 69.6
Stat. 0 0 99 1 0 0.2 0.5 116.5 37.9
? Hyst. 0 0 100 0 0 0.5 0.2 107.3 41.2
Stat. 0 0 100 0 0 0.3 0.3 111.2 50.4
10 Hyst. 0 0 100 0 0 0.4 0.2 108.3 52.3
Stat. 0 0 99.2 0.8 0 0.3 0.4 112.8 53.1
H Hyst. 0 0 100 0 0 0.2 0.3 112.6 52.9

Performance metrics computed on the last 24 hours of a 48-hour, 3-meal/2-snack scenario in adults for two regulation schemes:
Static model 2020 (Stat.) and Hysteretic model 2020 (Hyst.). Nine metrics are computed: the Time Below Range (TBR level
1: 70 mg/dl, level 2: 54mg/dl), the Time In Range (TIR), the Time Above Range (TAR level 1: 180 mg/dl, level 2: 250 mg/dl),
the Low Blood Glucose Index (LBGI) and its counterpart the High Blood Glucose Index (HBGI), the Mean Blood Glucose
level (Mean BG), and the Total Daily Insulin (TDI) administered to the patient.
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Appendix 7 — Performance metrics corresponding to IV /IV results of children

Children

Patient TBR 2 TBR 1 TIR TAR 1 TAR 2 LBGI HBGI Mean BG TDI
ID ) ) B ) (B () () (mg/d) (U)

Stat. 0 0 96.6 3.4 0 0.1 1 121.8 33.2
! Hyst. 0 0 95.7 4.3 0 0 1.3 127.9 29.5
Stat. 0 0 89.8 10.2 2.8 0.3 2.2 127.1 23.3
g Hyst. 0 0 89.9 10.1 1.7 0.2 2.2 127 22.9
Stat. 0 0 95.4 4.6 0 0.2 1.1 120.3 28.2
? Hyst. 0 0 96.3 3.8 0 0.5 0.7 113.7 294
Stat. 0 0 94.9 5.1 0 0 1.2 126.8 15.1
! Hyst. 0 0 95.7 4.3 0 0 1.2 128 14.6
Stat. 0 0 93.8 6.2 0 0.5 1.2 115.7 36.2
> Hyst. 0 0 93.2 6.8 0 0.1 1.3 122.1 30.9
Stat. 0 0 86.4 13.6 4.4 0.1 3.6 144.4 31.2
¥ Stat. 0 3 91.3 5.7 0 0.7 1.3 119.7 40.9
Stat. 0 0 90.7 9.3 0.9 0.1 2.1 131.2 35.5
! Hyst. 0 0 89.1 10.9 1.5 0.1 2.5 135.3 29.3
Stat. 0 0 89 11 3.8 0.3 2.6 130.4 18.9
® Hyst. 0 4.1 88.7 7.2 1.3 0.9 1.5 116.5 20.8
Stat. 0 0 96 4 0 0.1 1 121.9 17
0 Hyst. 0 0 94 6 0 0 1.6 129.2 15.5
Stat. 0 0 96 4 0 0 1.1 128.3 25.2
10 Hyst. 0 0 93.6 6.4 0 0 1.9 136.6 23.5
Stat. 0 0 91.3 8.8 2.8 0.2 2.3 131.6 23.7
H Hyst. 0 0 91.3 8.8 2.2 0 2.3 134.8 22.3

Performance metrics computed on the last 24 hours of a 48-hour, 3-meal/2-snack scenario in children for two regulation
schemes: Static model 2020 (Stat.) and Hysteretic model 2020 (Hyst.). Nine metrics are computed: the Time Below Range
(TBR level 1: 70 mg/dl, level 2: 54mg/dl), the Time In Range (TIR), the Time Above Range (TAR level 1: 180 mg/dl, level 2:
250 mg/dl), the Low Blood Glucose Index (LBGI) and its counterpart the High Blood Glucose Index (HBGI), the Mean Blood
Glucose level (Mean BG), and the Total Daily Insulin (TDI) administered to the patient.
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Appendix 8 — Performance metrics corresponding to SQ/SQ results of adolescents

Adolescents

Patient TBR 2 TBR1 TIR TAR 1 TAR 2 LBGI HBGI Mean BG TDI
1D ) (B) (B) ) (o) () () (mg/d) (U)

CGM 0 0 93.1 6.9 0 0.3 1.3 118.6 35.1
! Bios. 0 0 94.4 5.6 0 0.3 1.2 117.5 34.8
CGM 0 0 82.9 17.1 6.3 0.1 4.2 146.3 28.4
2 Bios. 0 0 85.8 14.2 5 0.2 3.1 133.7 30.7
CGM 0 0 100 0 0 0.1 0.4 116.9 34.9
? Bios. 0 0 100 0 0 0 0.4 120.2 33.9
CGM 0 0 94.2 5.8 0 0.1 1.3 124.1 53.7
! Bios. 0 0 95.7 4.3 0 0.3 0.9 117.1 56.4
CGM 0 0 99.3 0.7 0 0.2 0.5 114 38.3
> Bios. 0 0 99.7 0.3 0 0.3 0.3 110.6 39.7
CGM 0 0 100 0 0 0.1 0.2 111.5 28.7
¥ Bios. 0 0 100 0 0 0.1 0.2 112.8 28.3
CGM 0 0 82.9 17.1 4.6 0.5 3.5 135.9 46.9
! Bios. 0 4.9 85.8 9.4 0 1.2 1.7 116.1 51.7
CGM 0 0 100 0 0 0.3 0.2 107.3 65.3
® Bios. 0 0 100 0 0 0.5 0.1 104.4 71.1
CGM 0 0 99.7 0.3 0 0.2 0.3 111.3 54.8
0 Bios. 0 0 100 0 0 0.2 0.2 109.1 56.1
CGM 0 0 90.8 9.2 0 0.1 1.8 128.7 36.3
10 Bios. 0 0 94.4 5.6 0 0.2 1.1 119.5 38.4
CGM 0 0 96.6 3.4 0 0.3 0.7 115.5 40.7
H Bios. 0 0 97.6 2.4 0 0.5 0.5 109.3 43

Performance metrics computed on the last 24 hours of a 48-hour, 3-meal/2-snack scenario in adolescents for two regulation
schemes: the CGM-AP (CGM) and the Bios-AP (Bios.). Nine metrics are computed: the Time Below Range (TBR level 1: 70
mag/dl, level 2: 54mg/dl), the Time In Range (TIR), the Time Above Range (TAR level 1: 180 mg/dl, level 2: 250 mg/dl), the
Low Blood Glucose Index (LBGI) and its counterpart the High Blood Glucose Index (HBGI), the Mean Blood Glucose level
(Mean BG), and the Total Daily Insulin (TDI) administered to the patient. CGM-AP data are averaged over 25 repetitions of
the scenario.
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Appendix 9 — Performance metrics corresponding to SQ/SQ results of adults

Adults

Patient TBR 2 TBR 1 TIR TAR 1 TAR 2 LBGI HBGI Mean BG TDI
1D ) ) B ) (B () () (mg/d) (U)

CcGM 0 0 99.2 0.8 0 0.1 0.5 118 48.4
! Bios. 0 0 98.8 1.2 0 0.1 0.6 119.2 46.9
CGM 0 0 97.2 2.8 0 0.2 0.9 122.5 46.7
? Bios. 0 0 100 0 0 0.2 0.5 115.9 48.8
CGM 0 0 100 0 0 0.1 0.5 118.7 60
? Bios. 0 0 100 0 0 0.1 0.4 116.4 60.7
CGM 0 0 100 0 0 0.3 0.3 112.8 40.5
4 Bios. 0 0 100 0 0 0.2 0.4 113.4 39.8
CGM 0 0 100 0 0 0.3 0.3 110.5 46
i Bios. 0 0 100 0 0 0.1 0.2 112.2 45.5
CGM 0 0 97.3 2.7 0 0.2 0.7 119.5 82.9
¥ Bios. 0 0 99.2 0.8 0 0.3 0.4 111.7 89.8
CGM 0 0 100 0 0 0.1 0.4 118.5 49.6
! Bios. 0 0 100 0 0 0.3 0.3 114.4 50.4
CGM 0 0 100 0 0 0.1 0.4 114.3 69.1
® Bios. 0 0 100 0 0 0.1 0.4 115.8 69.6
CGM 0 0 99 1 0 0.2 0.5 116.5 37.9
? Bios. 0 0 100 0 0 0.5 0.2 107.3 41.2
CGM 0 0 100 0 0 0.3 0.3 111.2 50.4
10 Bios. 0 0 100 0 0 0.4 0.2 108.3 52.3
CGM 0 0 99.2 0.8 0 0.3 0.4 112.8 53.1
H Bios. 0 0 100 0 0 0.2 0.3 112.6 52.9

Performance metrics computed on the last 24 hours of a 48-hour, 3-meal/2-snack scenario in adults for two regulation schemes:
the CGM-AP (CGM) and the Bios-AP (Bios.). Nine metrics are computed: the Time Below Range (TBR level 1: 70 mg/dl,
level 2: 54mg/dl), the Time In Range (TIR), the Time Above Range (TAR level 1: 180 mg/dl, level 2: 250 mg/dl), the Low
Blood Glucose Index (LBGI) and its counterpart the High Blood Glucose Index (HBGI), the Mean Blood Glucose level (Mean
BG), and the Total Daily Insulin (TDI) administered to the patient. CGM-AP data are averaged over 25 repetitions of the

qrenarin
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Appendix 10 — Performance metrics corresponding to SQ/SQ results of children

Children
Patient TBR 2 TBR1 TIR TAR 1 TAR 2 LBGI HBGI Mean BG TDI
ID ) B ) ) ) () () (mg/dl) (U)
CGM 0 0 96.6 3.4 0 0.1 1 121.8 33.2
! Bios. 0 0 95.7 4.3 0 0 1.3 127.9 29.5
CcCGM 0 0 89.8 10.2 2.8 0.3 2.2 127.1 23.3
2 Bios. 0 0 89.9 10.1 1.7 0.2 2.2 127 22.9
CGM 0 0 95.4 4.6 0 0.2 1.1 120.3 28.2
? Bios. 0 0 96.3 3.8 0 0.5 0.7 113.7 29.4
CGM 0 0 94.9 5.1 0 0 1.2 126.8 15.1
! Bios. 0 0 95.7 4.3 0 0 1.2 128 14.6
CGM 0 0 93.8 6.2 0 0.5 1.2 115.7 36.2
> Bios. 0 0 93.2 6.8 0 0.1 1.3 122.1 30.9
CcGM 0 0 86.4 13.6 4.4 0.1 3.6 144.4 31.2
¥ Bios. 0 3 91.3 5.7 0 0.7 1.3 119.7 40.9
CGM 0 0 90.7 9.3 0.9 0.1 2.1 131.2 35.5
! Bios. 0 0 89.1 10.9 1.5 0.1 2.5 135.3 29.3
CGM 0 0 89 11 3.8 0.3 2.6 130.4 18.9
® Bios. 0 4.1 88.7 7.2 1.3 0.9 1.5 116.5 20.8
CGM 0 0 96 4 0 0.1 1 121.9 17
0 Bios. 0 0 94 6 0 0 1.6 129.2 15.5
CcGM 0 0 96 4 0 0 1.1 128.3 25.2
10 Bios. 0 0 93.6 6.4 0 0 1.9 136.6 23.5
CGM 0 0 91.3 3.8 2.8 0.2 2.3 131.6 23.7
H Bios. 0 0 91.3 8.8 2.2 0 2.3 134.8 22.3

Performance metrics computed on the last 24 hours of a 48-hour, 3-meal/2-snack scenario in children for two regulation
schemes: the CGM-AP (CGM) and the Bios-AP (Bios.). Nine metrics are computed: the Time Below Range (TBR level 1: 70
mg/dl, level 2: 54mg/dl), the Time In Range (TIR), the Time Above Range (TAR level 1: 180 mg/dl, level 2: 250 mg/dl), the
Low Blood Glucose Index (LBGI) and its counterpart the High Blood Glucose Index (HBGI), the Mean Blood Glucose level
(Mean BG), and the Total Daily Insulin (TDI) administered to the patient. CGM-AP data are averaged over 25 repetitions of

the scenario.
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