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Abstract
With the development of information technology, computing devices become more available
and more connected, and are increasingly used in contexts where mobility plays an important
role. Video games enable huge amounts of players to interact in some virtual world, and net-
works of connected vehicles are envisioned to improve road safety. In such distributed contexts,
one cannot assume that each entity can share its position with all the participants. This thesis
presents different methods to allow moving entities, that we call nodes, and that move in some
metric space, to answer to queries related to their distances, with guarantees on the accuracy of
the approximations.

First, we propose a synchronous distributed algorithm, that allows two nodes to estimate the
distance between them, with a guarantee on the relative error. It is proven that when applied to
nodes that follow random movements, the algorithm is optimal in terms of number of exchanged
messages.

Then, queries returning, for a given node, the set of nodes that are at a distance smaller than
a given distance r are studied. We describe a synchronous distributed algorithm for positions
on a line, that ensures each node knows at all time all the nodes that are at a distance r, where
r is a fixed value given as input to the algorithm; the answer to the query thus takes O(1)
communication rounds. The algorithm needs O(1) communication rounds per node movement,
and the local memory cost is of the same order as the worst case largest size of nodes returned
by a query.

After that, two algorithms are given for positions in any metric space of constant doubling
dimension, where r may vary and is now a parameter of the query. First, a centralized algorithm
is given, with a computational cost of O(log Φ) operations per movement of a node (where Φ is
the ratio between maximal and minimal distance between two nodes), with O(n) memory usage
(where n is the number of nodes), and with an answer to the query in O(log r + k) computations
(where k is the size of the set returned by the query). Then it is shown how to adapt that
algorithm to the distributed setting, resulting in an algorithm that needs O(1) communication
rounds per movement of the nodes, that usesO(n) memory for a node at worst, butO(n) memory
in total, and that answers to the query in O(log r) communication rounds.

Keywords Distributed computing, proximity queries, kinetic data structures, mobile entities,
movement models, complexity analysis.
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Résumé
Avec le développement des technologies de l’information, les ordinateurs deviennent plus ac-
cessibles et mieux connectés, et sont de plus en plus utilisés dans des contextes où la mobilité
joue un rôle important. Des jeux vidéo permettent à un grand nombre de joueurs d’interagir
dans un même monde virtuel, et des réseaux de véhicules connectés sont envisagés pour amé-
liorer la sécurité routière. Dans de tels contextes distribués, on ne peut partir du principe que les
entités peuvent partager leur position avec tous les participants. Cette thèse présente différentes
méthodes pour permettre à des entités, que nous appelons nœuds, et qui se déplacent dans cer-
tains espaces métriques, de répondre à des requêtes liées à leurs distances, avec des garanties
sur la qualité des approximations.

Premièrement, nous proposons un algorithme distribué synchrone, permettant à deux nœuds
d’estimer la distance qui les sépare, avec une garantie sur l’erreur relative. Il est démontré
qu’appliqué à des nœuds qui suivent des déplacements aléatoires, l’algorithme est optimal en
nombre de messages échangés.

Ensuite, des requêtes sont étudiées permettant de retourner, pour un nœud donné, l’ensemble
des nœuds situés à une distance inférieure ou égale à une certaine valeur r. Nous décrivons un
algorithme distribué synchrone pour des positions sur une ligne, pour une valeur de r fixée et
donnée en entrée de l’algorithme. Pour assurer ce résultat, nous proposons de faire en sorte que
tout nœud connaisse à tout moment les nœuds qui font partie de la réponse de la requête, ce
qui fait qu’un nœud peut y répondre avec O(1) rondes de communication. L’algorithme utilise
également O(1) rondes de communication par mouvement des nœuds, et le coût en mémoire
locale est du même ordre que la plus grande taille de l’ensemble retourné par une requête.

Ensuite, deux algorithmes sont donnés pour des positions dans n’importe quel espace mé-
trique à dimension doublante constante, et où la valeur r est maintenant un paramètre de la
requête qui peut varier à chaque appel. D’abord, un algorithme centralisé est donné, dont le
coût en temps est de O(log Φ) opérations par mouvement d’un nœud (où Φ est le ratio entre dis-
tance maximale et minimale entre deux nœuds), dont le coût en mémoire est de O(n) (où n est
le nombre de nœuds), et avec lequel la réponse à la requête s’obtient en O(log r + k) opérations
(où k est la taille de l’ensemble retourné par la requête). Ensuite, il est montré comment adapter
cet algorithme dans le contexte distribué, résultant en un algorithme qui nécessite un nombre
constant de rondes communications par mouvement des nœuds, avec un coût en mémoire de
O(n) pour un nœud, et de O(n) au total, et qui permet de répondre à la requête en O(log r)
rondes de communication.

Mots clés Algorithmique distribuée, requêtes de proximité, structures de données cinétiques,
entités mobiles, modèles de mouvement, analyse de complexité.
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Résumé substantiel (Introduction in
French)

Avec le développement des technologies modernes de communication, les ordinateurs deviennent
de plus en plus accessibles et de bon marché, et de plus en plus connectés. De nouvelles formes
de divertissement et de nouveaux outils pour permettre à divers objets de la vie courante de se
connecter ont émergé.

Avec l’aide de cette évolution des technologies, les jeux vidéos, qui à l’origine ne se jouaient
qu’en local sur une seule machine, ont intégré des possibilités de jouer à plusieurs via des
réseaux. Les jeux multijoueurs représentent maintenant une part importante de l’industrie du
jeu vidéo, avec par exemple plus de 250 millions de joueurs inscrits sur le jeu Fortnite. Même
des jeux solos comme Assassin’s Creed ou Bloodborne intègrent maintenant des fonctionnalités
qui permettent aux joueurs de communiquer ou voir les personnages d’autres joueurs du même
jeu.

Dans les jeux en ligne, les joueurs contrôlent des personnages qui se déplacent et inter-
agissent avec l’environnement virtuel. Les ordinateurs des joueurs doivent être en mesure d’es-
timer précisément où les autres personnages se situent, afin d’afficher à l’écran un état correct
du monde virtuel. De plus, la distance et la proximité des éléments du jeu jouent un rôle im-
portant, puisque les joueurs sont en général intéressés surtout par l’état de ce qui se trouve à
proximité de leur personnage.

Un autre domaine d’application où le mouvement et la proximité jouent un rôle important
sont les réseaux ad-hoc de véhicules (VANET). Il s’agit ici d’étudier les véhicules routiers
connectés, qui sont capables de communiquer les uns avec les autres pour obtenir les posi-
tions d’autres véhicules afin d’améliorer la sécurité et le confort des trajets. Les véhicules d’un
VANET sont souvent capables d’utiliser des capteurs afin d’estimer la distance qui les sépare
d’autres véhicules à proximité équipés de capteurs similaires. Il est cependant intéressant de
proposer en complément des solutions logicielles capables de répondre à des requêtes liées à
la proximité. En effet, ces puces ont souvent des portées limitées. De plus, les véhicules d’un
VANET sont en général peu contraints en termes de dépenses énergétiques, contrairement à
d’autre appareils connectés comme par exemple les drones, ce qui leur permet de se connecter à
des éléments d’infrastructure fixes comme le réseau cellulaire pour les aider à transmettre leurs
messages.

Ceci nous mène à étudier des applications où le mouvement joue un rôle central.

Dans des réseaux distribués comme mentionnés ci-dessus, même avec la meilleure infra-
structure, les puissances de calcul et les capacités de communication sont limitées. Il est impos-
sible de partir du principe que chaque nœud du réseau est capable de partager sa position avec
tous les autres nœuds, et l’ajout d’un serveur central pour récupérer et diffuser l’ensemble de
ces positions est au mieux coûteux, au pire impossible. Il y a donc un besoin fort d’algorithmes
capables de maintenir, sur un ensemble de points, des propriétés en lien avec les distances rela-
tives entre ces points, tout en minimisant les ressources nécessaires en termes de mémoire, de
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temps de calcul, et de messages échangés dans le réseau.
Dans cette thèse, nous étudions des méthodes pour être capable de répondre à des requêtes

en lien avec les distances entre des points mobiles.

Modèle de base
SoitV un ensemble de n nœuds, chacun associé à une position dans un espace euclidien. Nous
étudions ici deux cadres distincts.

Dans le modèle centralisé, les nœuds sont des entités locales à une seule machine. Un algo-
rithme centralisé a pour but de maintenir une structure de données, tout en limitant le temps de
calcul nécessaire pour sa maintenance, et en réduisant son impact en mémoire.

Dans le modèle distribué, les nœuds sont des ordinateurs distribués sur un réseau. Il s’agit
alors pour les algorithmes distribués de maintenir, localement à chaque nœud, une partie seule-
ment de la structure de données ; la structure de données distribuée est alors l’union de toutes
les connaissances des nœuds. Comme les nœuds ne peuvent envoyer des messages qu’à des
nœuds pour lesquels ils retiennent les informations nécessaires pour l’envoi des messages (ty-
piquement, l’adresse), les algorithmes distribués doivent aussi maintenir le graphe de commu-
nication, qui définit à qui chaque nœud est capable d’envoyer des messages. On dit qu’un nœud
qui peut envoyer des messages à un autre nœud est connecté à ce dernier. Les performances des
algorithmes distribués sont mesurées principalement en termes de quantité de mémoire locale
utilisée, et de coût en communications. Dans le modèle distribué, nous nous focalisons princi-
palement sur des algorithmes synchrones : nous supposons que le temps est divisé en rondes
de communications (éventuellement virtuelles), de telle sorte que lorsqu’un nœud envoie un
message pendant une ronde de synchronisation, il est garanti que le destinataire reçoit le mes-
sage en question avant le début de la prochaine ronde de synchronisation. L’impact du coût
de communication d’un algorithme synchrone peut être mesuré par le nombre de rondes de
communications nécessaires ou par le nombre total de messages envoyés par les nœuds.

Les positions des nœuds peuvent correspondre soit à leurs positions physiques, réelles (par
exemple pour des véhicules d’un VANET qui se déplacent et communiquent), soit aux positions
d’entités virtuelles (par exemple les personnages d’un jeu vidéo en ligne). Dans ce deuxième
cas, nous supposons sans perte de généralité que chaque nœud est associé à une seule de ces
entités.

Dans beaucoup d’applications concrètes, chaque nœud de V est intéressé par certaines va-
leurs donnant des informations sur l’état des autres nœuds (par exemple l’énergie restante dans
la batterie d’un drone ou le nombre de points de vie restant d’un personnage de jeu vidéo), mais
cet intérêt est souvent lié à la distance qui les sépare. Soit cet intérêt décroît de façon continue,
c’est-à-dire que la précision requise sur les valeurs maintenues dépend de manière inversement
proportionnelle à la distance qui sépare les nœuds, soit cet intérêt dépend d’un paramètre fixé
r, de telle sorte que les nœuds ont besoin de connaître les informations concernant les autres
nœuds dans un rayon de r d’eux, mais qu’aucune information n’est requise sur les nœuds qui
se situent plus loin. Une autre approche similaire à cette seconde vision constitue à considérer
que ce paramètre r n’est pas connu à l’avance, et que les nœuds peuvent être temporairement
intéressés par l’état des nœuds à une distance r d’eux, où r serait une valeur définie en fonction
du contexte, et qui n’est pas prévisible. La valeur de r peut représenter une distance de visibi-
lité, ou tout autre distance au-delà de laquelle on peut juger qu’il est superflu de maintenir des
informations.

Nous modélisons l’intérêt des nœuds sous la forme unifiée de requêtes. Chaque nœud peut,
à tout moment, demander une réponse à une requête en lien avec la distance ou la proximité
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des nœuds. Le coût associé à la récupération de la réponse à la requête doit être minimisé,
bien que plusieurs de nos algorithmes maintiennent ces réponses en tout temps, de telle sorte
que la réponse est parfois immédiate : dans le Chapitre 2, avec notre algorithme, les nœuds
maintiennent une estimation de la distance qui les sépare d’autres nœuds, renvoyer cette distance
ne demande donc pas de calculs supplémentaires. Il en va de même dans le Chapitre 3, où les
nœuds maintiennent dans leurs structures de données locales les réponses aux requêtes. Dans le
Chapitre 4 en revanche, une requête nécessite de faire des calculs pour récupérer la réponse à
renvoyer.

Un premier intérêt est celui de trouver des algorithmes qui permettent d’estimer efficace-
ment les distances qui séparent les nœuds. Outre l’intérêt intrinsèque que certaines applications
pourraient avoir pour ces estimations de distance, celles-ci pourraient également être utiles pour
d’autres méthodes de gestion d’intérêt comme ci-dessus.

La principale difficulté liée à ces problèmes de distance et de proximité est la mobilité des
nœuds. La plupart des résultats de la littérature qui traitent de problématiques de proximité,
considèrent des structures statiques, c’est à dire que l’ensemble de nœuds V et la position de
chaque nœud est fixe. Certains résultats s’intéressent au cas plus difficile de structures dyna-
miques : bien que les positions des nœuds restent statiques, ces structures doivent permettre
d’ajouter et d’enlever des nœuds. Nous traitons ici un cas encore plus difficile, celui des struc-
tures de données cinétiques (KDS), dans lesquelles l’ensemble V des nœuds reste fixe, mais
avec des positions qui changent avec le temps. Le cas cinétique peut être résolu avec des struc-
tures dynamiques, dans lesquelles les nœuds sont enlevés puis rajoutés à chaque déplacement,
mais cette solution mène en général à des mauvaises performances.

Pour les KDS, il existe plusieurs modèles de mouvements. Nous considérons pour l’en-
semble de la thèse le modèle Black-Box : nous supposons que des instants à intervalles réguliers
peuvent être identifiés, que nous appelons pas de temps, de telle sorte que les nœuds ne peuvent
que se déplacer à chaque pas de temps, et qu’ils restent immobiles entre deux pas de temps. Une
autre distinction peut être faite concernant le nombre de nœuds qui peuvent bouger à chaque
pas de temps : dans le modèle de mobilité réduite, un seul nœud peut se déplacer, tandis que
dans le modèle de pleine mobilité, il n’y a pas de restrictions quand au nombre de nœuds qui
peuvent changer de position à chaque pas de temps.

Dans le modèle distribué, et en particulier quand le nombre de nœuds est très grand, il faut
éviter une sur-utilisation des ressources à disposition, et en particulier, l’utilisation de bande
passante doit être limitée. Nous identifions deux approches complémentaires pour cela. Rappe-
lons qu’un nœud qui peut envoyer des messages à un autre nœud est dit connecté à ce dernier.

• Premièrement, on peut essayer de faire en sorte qu’un nœud qui est connecté à un autre
nœud envoie le moins de messages possibles.

• On peut également essayer de faire en sorte que chaque nœud soit connecté à aussi peu
d’autres nœuds que possible. En effet, deux nœuds connectés risquent échanger des mes-
sages pour maintenir les estimations de leur état. Réduire le nombre de connexions permet
donc de réduire le nombre de messages échangés, en plus de réduire le coût en mémoire
locale.

Dans cette thèse, nous présentons trois algorithmes, ciblant deux objectifs différents.

Estimation de distance
Un premier algorithme est proposé qui utilise la première approche : dans le modèle distribué,
on considère deux nœuds connectés et l’algorithme cherche à minimiser les nombre d’échanges
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de messages. Nous cherchons à faire en sorte qu’un nœud maintienne une estimation dest de la
distance qui le sépare de l’autre nœud. L’aspect continuellement décroissant de l’intérêt mutuel
que se portent les nœuds est modélisé par une erreur relative. En notant dact la distance réelle
qui sépare deux nœuds, et ε l’erreur relative maximale autorisée, nous voulons garantir qu’à
tout instant :

(1 − ε)dest < dact < (1 + ε)dest.

Une méthode couramment utilisée dans les jeux vidéos en ligne pour garantir une erreur
absolue maximale sur les estimations des positions, est appelée Dead-reckoning. Soit pu la
position réelle d’un nœud u, et p̃u cette position telle qu’estimée par un autre nœud v. On
suppose qu’il existe un algorithme d’estimation déterministe, qui permet à v d’obtenir p̃u à
partir du dernier message reçu de u (typiquement, il s’agit d’extrapoler en utilisant le vitesse de
u). u peut alors appliquer le même algorithme, et connaître également la valeur de p̃u. Il calcule
ensuite d(pu, p̃u), la distance entre pu et p̃u, et envoie un nouveau message à v dès que l’erreur
absolue de l’estimation de v dépasse un maximum fixé, et seulement à ce moment là. Le Dead-
reckoning permet de réduire le nombre de messages, mais aussi de minimiser les effets négatifs
des latences.

Nous nous inspirons du Dead-reckoning pour proposer un algorithme distribué synchrone,
appelé Local Change, qui lui permet d’estimer les distances entre les nœuds. Dans Local
Change, u envoie un message à v dès que la distance entre pu et p̃u devient trop grande, plus
précisément dès que d(pu, p̃u) ≥ dest × ε/2 ; v répond alors avec une message réciproque. Nous
avons montré que cet algorithme satisfait la garantie sur l’erreur relative, et que le nombre de
messages échangés est le même, à une constante multiplicative près, que pour un algorithme
idéal (c’est-à-dire qui échange des messages uniquement quand la condition sur l’erreur rela-
tive n’est plus satisfaite), sur plusieurs modèles de déplacements aléatoires.

Requêtes de proximité
Deux autres algorithmes sont ensuite proposés, ciblant la seconde approche : des structures
de données sont étudiées en centralisé et en distribué, telles que chaque nœud n’a besoin de
maintenir des informations que sur un nombre réduit d’autres nœuds. Les nœuds sont supposés
ne pas se déplacer de plus de dmv unités de distance par pas de temps.

La requête à laquelle les nœuds doivent répondre est la suivante :

Definition (CloseNodesu(r)). Étant donné un nœud u ∈ V et une distance r ∈ R, retourner tous
les nœuds v ∈ V tels que d(u, v) ≤ r.

Un premier algorithme est proposé pour des réseaux distribués synchrones, et avec des po-
sitions sur une ligne (en 1D), pour des valeurs de r fixées à l’avance, c’est-à-dire données en
entrée de l’algorithme. Le réponse à la requête CloseNodes est maintenue en tout instant par
chaque nœud, de telle sorte que la réponse s’obtient en temps constant. Les déplacements des
nœuds sont dans le modèle de Black-Box en pleine mobilité, et l’algorithme a besoin d’un
nombre constant de rondes de communication par pas de temps. Le coût en mémoire locale
est de O(bmax(r)) par nœud, où bmax(r) représente le nombre maximal de nœuds qui peuvent se
trouver à distance r d’un nœud, ce qui est asymptotiquement optimal.

Enfin, des algorithmes sont présentés se basant sur la notion de navigating net. Un navi-
gating net est une structure hiérarchique définie de telle sorte que tous les nœuds se trouvent
dans le niveau le plus bas de la hiérarchie, et telle qu’à chaque niveau, les nœuds sont filtrés en
fonction de la distance qui les sépare, jusqu’à ce qu’il n’en reste qu’un seul au niveau O(log Φ),
où Φ = dmax

dmin
, avec dmax et dmin respectivement la distance maximale et la distance minimale
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autorisée entre deux nœuds. Une généralisation de la notion de navigating net est donnée, avec
les conditions sur les paramètres de la structure nécessaires pour obtenir certaines des proprié-
tés utilisées dans d’autres travaux, avant de définir une version plus stricte que nous appelons
constrained navigating nets, qui s’inspire d’un autre travail afin d’obtenir des propriétés inté-
ressantes.

Un algorithme centralisé, Acnnptr, basé sur les constrained navigating nets est donné pour
la requête, pour des positions dans n’importe quel espace métrique à dimension doublante
constante. Cette fois-ci, la valeur de r n’est pas fixée, et est donnée comme entrée de la re-
quête. Chaque nœud n’a besoin de maintenir d’informations que sur O(log Φ) autres nœuds,
et le coût en mémoire total est en O(n), tout comme pour le DefSpanner, structure proposée
dans d’autres travaux. Dans le modèle de mobilité réduite en Black-Box, le coût en temps de
l’algorithme est de O(log Φ) opérations par pas de temps, tout comme les DefSpanners. Cet
algorithme présente cependant des propriétés intéressantes, qui nous permettent d’en proposer
une version distribuée, notée Acnndist, qui permet de maintenir des constrained navigating nets
dans des réseaux distribués synchrones, dans le modèle de mobilité réduite en Black-Box, en
utilisant un nombre constant de rondes de communication par pas de temps. Le coût en mémoire
pour un nœud peut aller jusqu’à O(n), mais le coût total sur l’ensemble des nœuds reste O(n).
Cet algorithme est le premier à maintenir des navigating nets dans des réseaux synchrones en
Black-Box.
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Chapter 1

Introduction

1.1 Context

With the modern development of information technology, computing devices become more
powerful, more available, and more connected. New forms of entertainment and new ways to
interconnect people or objects have arisen.

With the help of this technological evolution, video games, which were at first played only
on single local devices, have been increasingly opened up to online gameplay. Niche at first,
online games now represent a huge part of the entertainment industry. Since the mid-two-
thousands and the launch of World of Warcraft, online games with huge amounts of simulta-
neous players have gained increasing popularity. Nowadays, with over 250 million registered
players, the game Fortnite has become such a phenomenon that its social impact on the younger
generation is the subject of research [34]. Even solo games like Assassin’s Creed or Bloodborne
now feature online elements to enhance the game experience.

In online games, players control avatars that move and interact with the virtual environment.
The computers of the players must be able to estimate where other players are located, in order
to correctly display the virtual world; distance and proximity play an important role, as players
are generally more interested in the state of other players when they are nearby.

Another application domain where movement and proximity play an important role is Vehic-
ular Ad-hoc Networks (VANETs). VANETs study connected vehicles, that may communicate
with each other in order to know the locations of other vehicles, so as to improve safety and
comfort. While VANET nodes can typically use hardware devices to compute distances to other
nodes or to look for close-by vehicles [9, 113], having software solutions for these problems can
be useful, since VANET vehicles have less power consumption requirements than other mov-
ing devices like drones [121, 133], and can thus connect to infrastructure elements and cellular
networks to help them route their messages [148].

This leads us to study applications where movement plays an important, or even central role.

In such distributed contexts, even with the best Internet infrastructure, computing power and
communication capabilities will always remain limited. One cannot assume that each node can
share its position with all the participants, and having a central server that gathers information
about all participants is expensive if not outright impossible. There is therefore a strong need for
algorithms that enable to maintain a number of valid properties on the knowledge of (estimated)
distances, while leading to a minimum number of message exchanges and computations, and
where all nodes play a symmetric role. In this thesis, we investigate methods to be able to
respond to positional queries on sets of moving points.
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1.1.1 Base Model and Studied Problems

The goal of this thesis is to maintain data structures on moving entities, so as to be able to
efficiently answer to queries about their positions. We will call these entities nodes.

LetV be a set of n nodes, each associated with a position in an Euclidean space. Depending
on the studied problem, the nodes may be local entities on a single computer, or distributed
computing units in a network (see Section 1.2). The positions may correspond to the physical
positions of the nodes (like drones or cars that move and communicate) or to a position in a
virtual world (like players in online games).

A lot of previous results handle static entities [69, 93], that is, both the set of nodes V and
the positions of these nodes are given once and do not change. Some results deal with the more
difficult dynamic setting [115], where the positions of the nodes also do not change, but nodes
may be added to or removed from V. In the even more challenging kinetic setting, studied
in this thesis, V remains the same, but the positions of the nodes may change, according to
some specified constraints called movement model (each algorithm is tailored for a different
movement model). This thesis targets the kinetic setting.

We focus on two additional settings.

• In the centralized setting, an algorithm maintains a data structure (that is maintained and
entirely known by the same computer that runs the algorithm), and aims at bounding the
update time needed to handle the movement of the nodes, as well as the amount of used
memory. While not as dense as results in the static and dynamic setting, quite a few
articles have been published on centralized kinetic data structures [14, 61, 75]. These
will be discussed in Section 1.7.

• In the distributed setting, the network is assumed to be synchronous (see Section1.2). The
nodes are computing units, and the data structure is distributed among all the nodes; we
call local data structure the part that is known by one node. The main difficulty of the
distributed setting is that each node knows only its own true position, and communications
are needed to know the position of another node. Thus, we cannot assume that a node
knows, in real time, the exact positions of all the nodes in the network. At each movement
of one or several nodes (depending on the movement model), a distributed algorithm
should make sure that the local data structures and potentially the connection graph itself
(see Definition 1.3) are updated, by having nodes exchange messages with other nodes
they are aware of. The aim is to have as small a number of communication rounds as
possible, while minimizing the size of the local data structures. While a lot of results
have been published on centralized kinetic data structures, only very few are available on
distributed kinetic data structures (see Section 1.7.7).

In this work, we follow the widely used random-access machine (RAM) model, describing
how a computer operates its local computations, so as to compare the performance of different
algorithms. In the RAM model, each memory entry is stored in a register, and each register has
an address encoded in log N bits where N is the number of registers. We suppose that accesses to
memory take exactly one unit of time computation; simple operations (additions, subtractions,
multiplications, divisions, and comparisons) take also one time unit, while loops are comprised
of several simple operations, and thus take longer time [5, 136]. We also suppose that the
positions have a limited accuracy a, so that each position is in {0; a; 2a; · · · ; Ua}d, with U an
integer representing the range of possible positions for one coordinate, and with d the number
of dimensions. It is thus possible to store one coordinate using log U bits. In the distributed
setting, we make an additional supposition: nodes have identifiers that can be stored with log n
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bits. Finally, we assume that registers have a size in bits higher than max(log N, log U, log n), so
that one register is enough to store either a coordinate, an address, or a node identifier.

The number of registers needed to store a data structure and/or to run an algorithm gives
the memory cost of that data structure and/or algorithm. Memory and time complexity usually
depends on n and on characteristics of the positions (such as the minimal or maximal distance
between the nodes), but also on d (as a position takes d registers to be stored). In all our results,
however, we consider that d is constant, so that it is usually omitted1.

We assume that each node is interested in some values about the state of the other nodes,
but that this interest is related in some way to their distance. Either this interest is continually
decreasing, like in Chapter 2 where precision is inversely proportional to the distance between
nodes, or this interest is related to a fixed parameter r, so that a node is interested only in nodes
that are at a distance smaller than r from it, like in Chapter 3. Another approach is to consider
that this parameter r is not known in advance, and that nodes may be temporary interested in
all nodes at some distance r from them (for any value of r), like in Chapter 4.

Before trying to determine which nodes are close and which nodes are far away, it is needed
in the distributed setting to find ways for nodes to compute the distance between them, since, as
mentioned earlier, nodes know only their own true position. To the best of our knowledge, no
algorithm has been proposed previously for this specific problem.

Distance estimation In Chapter 2, an algorithm, based on a widely used technique called
dead-reckoning (see Section 1.3.2), is proposed for two distributed nodes to estimate the dis-
tance that separates them, while minimizing the number of exchanged messages. The continu-
ally decreasing aspect of their mutual interest is represented by a relative error, that is relative
to the distance between the nodes. We denote by d(u, v) the distance between two nodes u and
v. This distance estimation with relative error is modeled by a query (see also Section 1.5.1):

Definition 1.1 (ε-Distanceu(v) query). A node u that calls this query returns dest such that
(1 − ε)dest < d(u, v) < (1 + ε)dest.

A node u that knows its own true position and runs our algorithm, is able to answer to the
ε-Distanceu(v) query for any node v that runs the same algorithm, and with a fixed value of ε (ε
is an entry of the algorithm). The algorithm is shown, for several random movement models, to
be optimal in terms of exchanged messages, up to a constant factor.

Kinetic Data Structures for Proximity Queries Chapter 3 and Chapter 4 target the following
query:

Definition 1.2 (CloseNodesu(r)). Given a node u ∈ V and a distance r ∈ R, return all nodes
v ∈ V such that d(u, v) ≤ r.

In Chapter 3, a distributed algorithm is proposed for one-dimensional positions, with fixed
r. The algorithm ensures that each node is connected to all nodes that are at distance r from it
and only few other nodes, so that each node u ∈ V has at all time access to the output of the
CloseNodesu(r) query. In Chapter 4, both a centralized structure and a distributed structure are
maintained, that allow each node u to answer to CloseNodesu(r), where r may be different for
each query; the positions are from any metric space that has a constant doubling dimension.

1As we give the memory cost in terms of registers and not bits, as d is supposed to be constant, and as registers
have a size in bits higher than max(log N, log U, log n), the bit cost of our algorithms may be higher by a factor
d max(log N, log U, log n) than the memory costs we give for our algorithms.
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The main difficulty related to these problems is the mobility of the nodes. Most of the results
about proximity deal with static structures: the set of nodes and their positions remain the same.
Some results propose dynamic structures: while the nodes are still static, it is allowed to add and
remove nodes to the structure. However it is much more difficult to efficiently handle mobility,
and to design a kinetic structure, that copes with movement. These structures are usually called
Kinetic Data Structures (KDS).

In the next sections, we will present different concepts and fields of research that will grad-
ually bring us towards our contribution, while giving context for the studied problems, and
presenting related work. First, we will talk about the general concept of Distributed Systems
(Section 1.2), and the special case of Distributed Virtual Environments (Section 1.3). This will
lead us to some problems related to Peer to Peer networks, in particular Distributed Hash Ta-
bles (Section 1.4). Before moving on, we will present proximity queries related to our problem
(Section 1.5). In our context, Distributed Hash Tables have some drawbacks, which will lead us
to another concept, Kinetic Data Structures (Section 1.7).

1.2 Distributed Systems

Our main focus in this work is the design of algorithms for distributed systems. Distributed
systems are widely studied both in theory [35] and in practice [141], and represent their own
field of study in Computer Science. Most of what will be said in this section can thus be found
in introductory books [100, 116, 128, 142].

A distributed system is a system where several distinct computing units cooperate towards
a shared goal. We will call those computers the nodes of the distributed system. A node can
be several things, for example the desktop computer or mobile phone of an internet user, or a
computing unit embedded in a plane or a car.

Nodes have their own processing power, memory, and communication capacity. We will
suppose, as it is often done in distributed systems research, that the processing power of the
nodes is unlimited; in other words, local computations are considered instantaneous with respect
to the communications. However, the views the nodes have of the system may be different and
incomplete, and to be able to cooperate, they will need to communicate. These communications
can be abstracted into messages: when a node wants to communicate with another node, it will
send a message. These messages may not match exactly the reality, as they may take different
forms. On the Internet, for example, they may be divided in several smaller sized packets, and
some applications may have access only to so-called beeps [58] to communicate. Constraints
on message sizes may thus be different depending on the context.

However, even when knowing another node, it may not be straightforward to send a mes-
sage to it, when there is no direct link. Usually, nodes can send messages only to a limited
subset of other nodes, creating the need of transferring information from node to node, by ap-
propriately routing the messages. For instance in Wireless Sensor Networks (WSN), the range
of communication of devices may be very short, so that each node is limited as to which nodes
it can relay messages, and the battery power of the nodes is usually so small that optimality of
routing mechanisms is important [134]. Thus, routing in WSN is still a field of active research
[11].

However, some infrastructures like the Internet have become sufficiently powerful so that
routing can be considered a separate problem. Some models (like ours later in this document)
suppose that all nodes are connected, and that it is sufficient for a node to know an address, or
identifier (shortened to ID) of another node in order to be able to send messages to it, implicitly
supposing that the routing mechanisms are already implemented in the underlying network. We
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Figure 1.1 – Asynchronous message passing

suppose that the identifiers of the nodes can be encoded in Θ(log n) bits.
Also, consistency has to be maintained [86, 87, 110]. Several nodes may keep track of

the state of a common variable. Those nodes may have a different view of this variable, that
is, the local values of the variable may be different. As this variable is supposed to have only
one value, we have to ensure that those views are not too widely different, or not different at
all from one node to another. Several models of consistency may be defined, depending on
how strict a consistency is required. It will be seen later that consistency is not central to this
work, in particular since Dead-reckoning (see Section 1.3.2) is a tool that can easily reduce
inconsistencies when the considered variables are positions of moving points.

Another aspect of distributed systems is synchronization. Synchronization may refer to
several aspects related to assumptions about time, like clock synchronization, and message
passing synchronization. While physical clock synchronization may be important in settings
where there is a need of a global reference for nodes to rely on in terms of time, like in WSN
[90], our algorithms don’t rely on a global clock, but need the messages to be synchronized..

In an arbitrary asynchronous network, because of differences in message transition delays,
two events may then be seen by two nodes in a different order, causing consistency problems.
On Figure 1.1, an example of message passing in an asynchronous network is given with three
nodes; the horizontal lines represent the passage of time, the plain colored lines represent mes-
sage transitions, and the dashed vertical lines represent the time of arrival of the messages. We
can see that u sends two messages at different instants, and that v and w do not receive them
in the same order. This can cause problems. For example, let us say that all nodes maintain
the value of an integer a that should be the same for everyone, and that at the beginning, v and
w agree that a = 2. If the first message sent by u says to put a to 0 (a ← 0), and the second
message says that a has to be incremented by 1 (a← a + 1), then v will think that a = 1 while w
will think that a = 0. This shows that in an asynchronous network, specific care has to be taken
in order to maintain consistency.

In synchronous networks, additional assumptions are made. The time is divided in com-
munication rounds2, and it is assumed that if a message is sent during a communication round,
then the receiver gets the message before the next round starts. Even if no order can be guar-
anteed for messages sent in the same round, we can see on Figure 1.2 that the general order of
the messages is more predictable. While the communication rounds are usually presented (and
thought of) as taking place simultaneously on each node like a globally synchronous clock, this
does not have to be the case. We only assume that clock deviation and message transmission
delays are small enough so that communication rounds can be logically defined.

While this is not ideal when targeting real applications (because real networks are usually

2called pulses in [142]
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Figure 1.2 – Synchronous message passing

asynchronous), supposing that a system is synchronous makes it much simpler to design an
algorithm and analyse its performances. Moreover, there exist synchronizer algorithms, that
allow nodes to execute synchronous algorithms even on asynchronous systems [12, 73], so that
the interest in synchronous algorithms is high.

The distributed algorithms that we will present in the next chapters target synchronous net-
works.

Even when ignoring routing and synchronization problems, distributed systems add several
difficulties in contrast with centralized systems, because sending messages comes at a cost.
Among other problems, bandwidth may limit the number of incoming or outgoing messages
for a node, latency may lead a message to arrive to its recipient with a delay, or packet loss may
force nodes to cope with the fact that some messages may never arrive to their destination. In
our work we focus mainly on problems related to bandwidth.

In the absence of optimization of bandwidth usage, some limitations may occur, usually
when increasing the size of the system, depending on the application. For an online game with
few players, centralizing information on a single server or letting all players be connected to all
others and send all their updates to everyone may work; however, the cost of a powerful server
or the bandwidth usage of the same strategies for games with large amounts of players, like
Massively Multiplayer Online Games (MMOG), may be prohibitive. Similarly, a small number
of moving embedded systems with no battery limit may not need to optimize their amount
of communications, but drones usually have limited battery lifetime, and even more powerful
autonomous vehicles could be overwhelmed if they have too many messages to handle. This
is why improving bandwidth usage is one of the main aspects when searching to improve the
scalability of distributed systems.

Overlay Network Also, in a Distributed System, all nodes may not be connected to each
other. We will call connection graph the graph representing the current state of the connections.

Definition 1.3. The connection graph G = (V, E) is a directed graph, withV the set of nodes,
and with E ⊆ V2 the set of arcs. Arcs are couples fromV, and represent the connection status
of two nodes: (u, v) ∈ E means that u is able to send a message to v

Note that a couple is ordered: if (u, v) ∈ E, the contrary may be false.

Definition 1.4. If (u, v) ∈ E, we say that v is adjacent to u in the connection graph.

Some models may take G as an entry of the problem, in which case G represents the lim-
itations of the network, and the outgoing arcs of a node u represent the set of nodes to which
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u is physically able to communicate. This is the case for example in Mobile Ad hoc Networks
(MANETs), where nodes can only communicate wirelessly and with a limited range.

However, in this work, G usually represents an output, that is, an algorithm may reshape G:
in this model, nodes may voluntarily drop unneeded connections, and tell other nodes to connect
to some specific node by sending its identifier. Each node is physically able to communicate
with any other node (for example through the Internet), but may be limited because of a lack of
knowledge: a node may send a message to another node only if it knows the ID of the target
node.

Let us now get closer to our problematic with a special case of distributed systems.

1.3 Distributed Virtual Environments
The term Distributed Virtual Environment (DVE) refers to a specific type of distributed systems
where geographically distant users, or players, participate in a common real-time simulation of
a virtual world.

Originally, DVEs were studied for military training simulations; however, the main exam-
ples of DVEs are now online games. Players control characters3 that interact with each other,
and may modify the shared environment.

One of the differences between a DVE and a classical distributed system like a database, is
that the states of the objects in the virtual environment evolve even without changes issued by
the players [102] since objects must respect the physics of the game, and non-player characters
go about their programmed activities (non-player characters are similar to player characters but
follow predetermined behaviors, and are not controlled by human players [143]). In addition,
the amount of updates per time unit is generally high, as players are expected to interact a lot
with the environment. Those two facts lead to one of the main characteristics of DVEs: changes
in the state of the objects are expected to happen all the time, relentlessly.

To keep a vocabulary that is consistent with the other sections, we will use the term node
instead of player or user. Also, while in some games, players may have control of several char-
acters, our assumptions from Section 1.1.1 mean that we suppose, without loss of generality,
that each node is responsible for only one character, and we may use node to refer to both.

Also, we will call update a message containing information that will change the state of the
virtual world. An update is either a request issued by a node4, for example when the player
pushes a button to use an object or to hit an enemy, or a message sent to indicate the change of
a continuous value, for example, to indicate the new position of a constantly moving character.

In a DVE, as communications are supposed to go through the Internet, the geographical
position of a node in the network is generally irrelevant. Thus, for simplicity, we may refer to
the position of a character in the virtual world as the position of the node.

As explained previously, in our work, our main interest relies on the position of nodes, and
less on the other values that may make up the state of the various objects, such as remaining life
points or amount of carried money.

1.3.1 Challenges

DVE nodes need to communicate in order for everyone to have a sufficient knowledge of the
state of the virtual world to be able to display it, and to allow the users to satisfyingly interact

3some authors prefer to call them avatars
4these requests are often called inputs, especially in the game-developer communities
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with it while making sure the rules of the game are enforced. Two central aspects that need to
be optimized in a DVE are consistency and responsiveness.

Consistency As we have seen in Section 1.2, consistency refers to the degree at which each
node may have a different view of the system. Inconsistencies arise when two users see different
versions of the virtual world. Some small inconsistencies may not be problematic as long as
they are not perceptible. However, nowadays, players often communicate with each others
using voice communication programs, making inconsistencies more noticeable.

In [102] a definition of consistency is proposed for DVEs: an application respects consis-
tency at an instant t, if any two nodes that received all updates supposed to take effect before
t have exactly the same view of the virtual environment. While this definition is satisfactory
for the long term, it does not take into account the inconsistencies that may happen temporarily
when two nodes receive some updates at different instants. This is why [102] adds the definition
of short-term inconsistencies, that happen when a node receives an update and applies it before
another node receives the same update.

Because of the continuous and evolving aspect of DVEs, inconsistencies may appear dif-
ferently than in traditional Distributed Systems. We have seen in Section 1.2 an example of
inconsistency with a variable a that is seen with a different value by two nodes. In a discrete
system, the severity of this situation depends on the number of reads the variable will be sub-
ject to, but in a continuous system like a DVE, this may be problematic for the whole time
the inconsistency is not corrected (for example, if a represents the position of an object in the
virtual world, then the longer two players see the object in a different position, the more this
inconsistency will have a bad impact on the game experience). Even worse, the inconsistency
may become more and more problematic as time passes: for example, if a represents some-
thing like the acceleration of a vehicle, then the difference in perceived position will grow with
time. This is one of the reasons that could motivate the use of a consistency measurement called
Time-Space Inconsistency [147], that takes into account the duration of an inconsistency. This
measurement may be averaged like in [91], which could be used to compare different DVEs in
terms of consistency.

Responsiveness Responsiveness is related to the real time nature of DVEs. The term refers
to the interval between when a user executes an action (for example, pushing the button to shift
gears) and when the effects of this action is perceived by the player (the car actually shifting
gears). Responsiveness is unsatisfactory when this time delay is noticeable [103].

While responsiveness is much more straightforward to define than consistency, it is quite
difficult to determine which level of responsiveness is acceptable. Some games, like turn-based
strategy games can handle very low responsiveness without impacting player satisfaction, but
others may suffer greatly from it [45].

These two parameters of consistency and responsiveness are usually contradictory: imple-
menting methods to get better consistency usually comes at the cost of responsiveness [52,
129]. Typically, in [102], a method called local-lag is proposed in order to reduce the number
of short-term inconsistencies: a delay is added to every request issued by users (for example if
a player pushes the button to shift gears, then there will systematically be a slight delay of for
example 50ms before it takes effect). In other words, every node will consider locally a state
that is slightly from the past, and delay local player inputs accordingly. This augments the prob-
ability that every node has received the request when it has to be applied, reducing short-term
inconsistencies, but obviously worsening the responsiveness5.

5In fighting games, that are particularly sensible to responsiveness, this type of solution is often frowned upon
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When designing a DVE, one has to consider consistency and responsiveness with regards to
the targeted network, and thus take into consideration latency and bandwidth limitations.

Latency One difficulty is related to latency, representing the fact that networks are not ideal,
and that message transmission is not instantaneous. Latency measures the time between when a
message is sent and when the message is received by its recipient. This time has to be taken in
consideration in most DVEs. For example, even in recent games, that usually implement some
techniques to cope with the problem, users seem to accept to play on networks with latencies
up to around 100ms, after which their satisfaction decreases [47, 70, 89].

While differences in latency between nodes are at the root of consistency problems in dis-
crete systems (as it may result in events that are seen in a different order by each node), contin-
uous applications like DVEs are also more sensible to high values of latency. As it takes longer
for other nodes to receive updates, this means that nodes will have obsolete views of the state
of some objects. This is why latency is at the heart of the trade-off between consistency and
responsiveness.

While academic research has been conducted on this trade-off (for example in [13]), most
of the ideas to cope with latencies in DVEs come from game developers and are often very
application specific [31, 46]. However, a technique called Dead-reckoning, described in Sec-
tion 1.3.2, is an excellent tool that can address latency issues both in terms of consistency and
responsiveness.

Because of this application-specific aspect of latency, in the theoretical context studied in
this thesis, we prefer to consider latency as a tangent problem, and our focus is mainly on
bandwidth optimization.

Bandwidth Usage Some networks have limited bandwidth capabilities, and may limit the
quantity of information that can be transmitted per time unit. In practice, if the network is reach-
ing its maximal bandwidth and is saturated, it results for the end program in a higher latency, as
messages need to be queued before being sent. Reducing bandwidth usage of algorithms thus
has a positive effect on the latency.

There are mainly two factors that have an impact on bandwidth usage: the number of ex-
changed messages, and the size of the messages. As in this work, messages are of constant
size, our focus relies on the number of exchanged messages. In general, increasing the number
of communications between nodes contributes both to responsiveness (changes are transmitted
earlier) and consistency (more messages allow a more accurate knowledge of the game’s state).
On the other hand, bandwidth is costly and limited, and it has even been shown in [101] that too
many messages degrade network performance, leading in turn to inconsistencies.

In practice, some games rely on a simple fixed frequency strategy, ensuring that each node
sends updates at a regular rate to the other nodes [137]. The main flaw of this technique is
that the update rate has to be fixed when implementing the application, which often results in
either oversampling or undersampling of updates [14]. If the update rate is fixed depending
on the strongest consistency need, then in situations where this need is lower, the bandwidth
usage will be higher than needed (oversampling), and if on the contrary, the update rate is fixed
to reduce bandwidth usage, then it is very likely that situations will appear where consistency
is lacking (undersampling). Also, if all nodes send their updates to all other nodes, then this
kind of strategy will have a poor scalability, as the number of messages increases quadratically
with the number of nodes. Scalability is a concern for DVEs, as some games are intended to be

[118].
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played by a very large number of participants at the same time (e.g. MMOGs such as World Of
Warcraft).

Reducing bandwidth usage by limiting the number of exchanged messages could be achieved
with several techniques.

1. Data compression like Delta encoding [105, 123] is an implementation trick where only
differences between states are sent. This is particularly useful if the state of the game
is large, but very dependent on the application. This technique also aims at reducing
bandwidth usage by reducing the sizes of the messages, which is of low interest in this
work.

2. Dead-reckoning (described in more details in Section 1.3.2) is a widely used tool that
consists in adding to updates information about how the state of an object is evolving
with time. Typically, when maintaining an estimation about the position of an object,
updates include not only the position of the object, but also its speed and maybe even
its acceleration. This technique improves bandwidth usage by lessening the need for two
connected nodes to often send messages to each other.

3. Interest Management consists in filtering updates in order to send them only to nodes who
might be interested.

While all of the previously presented constraints seem to make DVEs a lot more compli-
cated to design, other characteristics can be leveraged to ease these restrictions. Because
DVE applications are used by humans, with a limited attention capacity, in some cases it
may be unnecessary to achieve strict consistency, and better instead to lower the precision
required for some elements [20], as certain elements are less important than others. For
example, if two nodes see a decorative element in two different states (like seeing a tree
in a withered or lush state), it is less of a problem than if the inconsistency is about an
objective or an enemy. Also, interactions between characters and/or objects of the envi-
ronment are usually enabled when they are sufficiently close in the virtual world, so that
far away objects are less important. We can see through these remarks that the interest
and thus the consistency requirements nodes have for other elements may vary depending
on the circumstances. Hence the idea of Interest Management.

Different types of interest management can be identified [27, 94]. It can be zoned (a node
receiving information from nodes on the same region as them in the map), based on aura
(a node receiving updates from close nodes), based on visibility (a node not receiving
updates from nodes outside their line of sight), based on type (a node receiving updates
only from nodes of intrinsic interest), or based on a combination of these criteria. Some
application-specific approaches may also use the fact that human attention is limited, as
in [20], where a set of five interesting nodes is defined at any given time, based on a
hybrid interest set management based on distances to other nodes, the time of their last
interaction and the angle targeted by the local node. Frequent updates are received from
those five nodes, but much less from other nodes. This fairly reduces bandwidth usage,
and makes the DVE more scalable to an increased number of nodes.

Of course, combinations of all these techniques can be used. In [30], in combination with
Dead-reckoning, an area of interest, similar to aura interest management, is used to modify the
threshold of the Dead-reckoning calculations.

Let us now describe Dead-reckoning in more details, a powerful technique that will be used
in Chapter 2.
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1.3.2 Dead-Reckoning

Dead-Reckoning is a widely used tool, standardized in the Appendix E of [68]. While it can be
used for other quantities that evolve with time, Dead-reckoning primarily targets position esti-
mation. Let us consider a node A that estimates the position of another node B. Dead-reckoning
consists in adding to the updates that B sends to A, besides information on B’s position, addi-
tional data about the evolution of this position, for example B’s speed and acceleration. Node A
uses this information to predict the state of B, extrapolating its movement after each update. By
making so that the nodes share the same estimation algorithm, B is able to compute the same
estimation as A, so as to know where A estimates B’s position. Node B can thus detect if the
error on its own position as seen by A is above a given threshold. When this happens, B sends
a message to A in order to correct the outdated estimated position (as well as the speed and the
acceleration). Thus nodes know their own actual position at any time, and for the other nodes,
they only know estimated positions.

Dead-reckoning has several advantages. It can be used to reduce bandwidth usage by send-
ing messages only when needed, but it can also be used to guarantee a bounded error on the
positions evaluated by the nodes, and thus improving consistency. It has also further beneficial
effects with regards to consistency. As nodes continue to predict the positions of other nodes
between updates, their trajectory is smoother, and thus corresponds more accurately to the ac-
tual trajectory of the nodes (in conjunction with other techniques for smoothing the trajectory
at each update like in [92]). Also, the fact that the nodes use the same prediction algorithms
and thus can share information about estimated positions can help for consistency: for example
in Chapter 2, the nodes A and B compute their estimated distance as the distance between the
two estimated positions, instead of each node computing the distance between its own actual
position and the estimated position of the other node, which is more precise but less consistent.

Dead-reckoning can be used to cope with latency, as in [91], where it is shown that reducing
the Dead-reckoning threshold (or equivalently increasing the number of exchanged messages)
can compensate for the latency with regards to the average number of errors per time unit.
Also, Dead-reckoning is flexible with respect to trade-offs between required consistency, and
available bandwidth [53], because lowering the Dead-reckoning threshold generates more com-
munications, but improves the accuracy of information (and vice versa).

The main disadvantage of this technique is a higher computational cost than simplistic meth-
ods, like the fixed frequency strategy mentioned previously, where nodes send message at a
regular rate. However, this cost depends a lot on the prediction scheme, which is generally very
simple and, as we supposed in Section 1.2 that local computations are fast with respect to com-
munications, this disadvantage is mitigated in our model. Also, Dead-reckoning is ineffective
if nodes are subject to frequent and unpredictable changes in speed, or random movements.

Research on Dead-reckoning can improve bandwidth usage mainly in two ways: get the
best prediction possible (for example, in [80], a prediction is proposed that adapts to the shape
of the movement of the nodes, and in [41, 51] trajectories that are often used by the nodes
are computed beforehand to help the predictions), or improve the update policies (a survey on
different update policies is given in [106]). This last aspect often relies on Interest Management
(see Section 1.3.1).

If the future movements of the nodes are unpredictable, Dead-reckoning is optimal in terms
of number of messages for estimating positions. Indeed, when using Dead-reckoning, a node
sending updates to another node knows precisely the estimation of the position of this other
node, and thus may send updates if and only if the tolerated error between the actual position
and the estimated position is exceeded, making it send no more messages than required.

However, if two nodes target at estimating the distance between them instead of their po-
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sitions, as in Chapter 2, then none of the two nodes knows the actual distance between them.
None of the nodes may thus detect when exactly it is necessary to send a message, making it a
harder problem.

1.3.3 Fully distributed DVEs

Even though DVEs are fundamentally distributed, a distinction can be made between centralized
and fully distributed DVEs, depending on the presence or not of a central server.

In practice, many online games are based on a client-server architecture. While having a
server makes it much easier to achieve consistency [129], this has many disadvantages, because
maintaining a server is often expensive, and exposes a single point of failure [123]: server based
solutions are thus less scalable. This leads to the incentive to study peer-to-peer solutions, where
nodes share the role of the server among themselves, but in this context, bandwidth becomes
crucial, as the network capacities of peers are generally low. This is why the solutions explored
in this document target bandwidth economy in fully distributed DVEs.

Let us note that in a fully distributed DVE, because of the absence of a server, the nodes will
need to communicate directly to each other. The system may then be modelled by a connection
graph (see p.20), and each node may keep connections only to a limited set of other nodes.

If the connection graph consists in the complete graph (that is, each nodes is connected to
every node), then each node has to maintain O(n) connections, where n is the number of nodes
in the DVE. The bandwidth consumption could thus be very high, because in most DVEs,
nodes send updates to all other known nodes at regular time intervals, and generally because
in most networks, nodes have to periodically send “keep-alive” messages [117] to maintain a
connection: the total number of exchanged messages per time step would thus be O(n2). Also,
if each node has to maintain that many connections, it could fill up unnecessary local memory
space. It could also be bad for responsiveness: it could take a lot of time for each node to
retrieve the state of everyone and handle incoming messages, so that short intervals of time
between updates would be difficult to ensure. Also, in this case, at each update the differences
between new and out-of-date positions would be higher, which in turn means it would be harder
to ensure consistency.

Thus, in the context of fully distributed DVEs, it is of a high importance to have methods to
allow nodes to be connected only to relevant nodes.

This problem of constructing sparse connection graphs in a fully distributed context is
strongly related to peer-to-peer overlay networks. It is thus useful to look into the classical
results of this field.

1.4 Peer-to-peer Overlays
An overlay network is a virtual network built on top of another underlying network. In other
words, an overlay is a connection graph built in a system where routing is supposed to work
transparently: as explained in Section 1.2, a node u must be physically able to send a message
to any other node, but is limited to send message only to the nodes that are adjacent to u in the
connection graph, that is, to nodes of which u knows the ID.

This topic has been subject to extensive research in the early 2000’s; surveys can be found
in [10, 96, 124]. Note however that most of these results are targeted at file sharing: it aims
at a system where some nodes posses or own files, while others would like to download them.
Let us look at some of the main results while keeping in mind that in our case, nodes have a
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high mobility, that is, the states of the objects have to be retrieved regularly, and that nodes need
information only about nodes that are close to them in the DVE.

1.4.1 Unstructured Overlays
Historically the first overlays, unstructured overlays do not monitor the connection graph itself,
which is thus a somewhat random graph. Because of this, it is needed to implement some sort
of graph exploration in order to locate resource. Several ways can be identified.

In the earlier versions of Gnutella [39], a simple flooding technique was used to locate a
data: the node looking for a data sends a query message to all its adjacent nodes, who in turn
transfer the query to their own adjacent nodes. This goes on until a node that possesses the data
is found, in which case the identifier of this node is backpropagated to the querying node, which
can then directly connect to it in order to download the data. Even if some limiting factors are
implemented (a time-to-live is added to each message, so that it stops being propagated after
a certain number of hops, and a unique identifier is given to a query so that nodes may stop
propagating it if they already got it) this method is clearly not scalable when there are a lot of
nodes.

With the popularity of Gnutella, a lot of proposals have been made to improve the scalability
of the queries. In [99], it is shown that to locate a file, k simultaneous random walks (k queries
are sent, and a node receiving a query transfers it to a random node), induce less messages than
flooding. Unfortunately, the delay before the file is found is an order of magnitude higher than
with flooding; however, this delay may be reduced by increasing k: according to [99], the delay
is inversely proportional to k. In [85], a better routing is proposed.

In Freenet [43], queries are not flooded, but routed in a way reminiscent to a depth-first
search. Each node receiving a query checks if it has stored the queried data, and if it does,
the query is backtracked to the original sender with the data; if not, the query is forwarded to
the adjacent node that is the most likely to have the data. Similarly to Gnutella, queries are
accompanied with a unique identifier and a time-to-live number, so as to avoid loops, and to
limit the number of hops. Because each node and each data is associated with a key, because
queries are routed first to nodes with the key that is the closest to the key of the queried data,
and because the data is cached by the intermediate nodes when backtracking a query back to the
original node, query routing becomes more and more efficient as time passes for popular data.

While unstructured overlays have been subject to a lot work to make location of data more
scalable [81], and while they are often used in practice for file-sharing applications, they are not
satisfactory for our problem. Most of the solutions are best effort in nature, and fail to give a
guarantee that a query is answered successfully even for a data that is available in the network.
Similarly, the search of a data may take a long time, requiring to traverse a lot of nodes before
finding a node that possesses the data, which in turn is costly in terms of bandwidth usage,
especially if data has to be recovered often, like for positions that change regularly.

1.4.2 Structured Overlays
A good example of structured overlays are Distributed Hash Tables (DHT), because they allow
to hash keys to some data items: a node that knows the key of a data item it needs to retrieve
can start a query in the DHT, to which the DHT will answer with the location of the data item.

Structured overlays, contrary to unstructured overlays, impose stronger properties on the
connection graph so as to enforce desirable properties. Typically, the number of connections a
node has to maintain is bounded, as is the number of hops needed to find a data starting from
any node.
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Figure 1.3 – A range query can be used to get all nodes in a certain zone

While it has been considered that structured overlays are an improvement to unstructured
overlays, both approaches can actually be complementary; for example propositions have been
made to add structured aspects to Gnutella [36, 95]. The main advantage of unstructured over-
lays, is that it is usually quicker to find a popular, highly replicated data. However, as said
previously, unstructured overlays fail to give guarantees and bounds on the time it takes to find
a data.

Several DHTs, like Chord [138], Pastry [125] and Tapestry [146], work with circular key-
spaces, with each node and each data associated with a key from the space. Information about
an object is maintained on the node that has the closest key to the key of the object. A node u
is connected to O(log n) other nodes (with n the total number of nodes in the overlay), in such
a way as to be connected to increasingly less nodes, the farther away their keys are away of u’s
key. This allows to greedily route a query from any node to any other node in a maximum of
O(log n) hops.

For its key-space, CAN [122] uses a (d-dimensional) torus. Each node is responsible for a
(d-dimensional) rectangle: each time a node connects to the overlay, it is directed to a random
node already in the overlay (using a centralized DNS-like service), which will divide its rectan-
gle in two, giving the new node the responsibility of one of the halves. A node keeps a copy of
(or a pointer to) every object that has a key that is situated in its rectangle. Each node connects
to the nodes that are responsible for a rectangle that is adjacent to its own rectangle, resulting in
O(d) adjacent nodes; a query can be routed greedily in O(d · n

1
d ) hops.

The main problem of this type of solutions is that the keys are usually assigned uniformly
to the nodes and stored data items, that is, the values of the items are completely independent of
the values of the keys. This is a desired effect for some applications, because it makes sure that
the keys in use are spread out uniformly in the key-space, so that nodes end up responsible for
approximately the same number of keys, but it makes these solutions unpractical in our context.
Classical DHTs map keys to individual objects, so that queries answer questions of the type
“what is the value of this object”, which in our context translates to “what is the position of this
character”. As explained previously, one of our difficulties is that nodes need to detect when the
character of another node it is not aware of, gets closer to its own character. This means that we
need to answer to queries of the form “what characters are situated in this area”, that is, queries
that are not looking for one specific data item, but for a set of data items satisfying some given
criteria.

Fortunately, research has been conducted on range-queriable DHTs. In range-queriable
DHTs, the data items are associated with a certain number of attributes, and queries can be
made to filter data items according to these attributes. In our case, these attributes would be
the positions of the characters; we could then use range queries to get all characters in a certain
zone, like on Figure 1.3 (see also Section 1.5.1).

Some solutions for range-queriable DHTs may adapt the key-space to be inherently range-
queriable. In [16], Voronoi diagrams are used to build an overlay that maps objects with similar
attributes to close-by keys, allowing naturally to do range queries. However, due to a bad scaling
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of Voronoi diagrams in higher than two dimensions, this solution is adapted only to objects that
have two attributes. In [108], this limitation is overcome by partitioning the attributes in pairs,
and by constructing a Voronoi diagram on one of the pairs; when several data items have the
same attributes, thus forming a “cluster”, another Voronoi diagram on two other attributes is
constructed on only the data items of this cluster. This procedure is repeated until a hierarchy
of Voronoi diagrams is obtained. Queries are performed top-down, the search space being
restricted at each level.

Hashing functions can also be modified so as to allow range queries. In [62], a Locality-
Sensitive Hashing is used with Chord to allow single attribute range queries to be executed, but
answers are approximate.

Other techniques may construct additional data structures to allow range queries, on top
of another DHT. In [140], a quadtree is built on the space of the object attributes: the space
is divided into squares, that are divided in successively smaller squares. Each square of the
quadtree is associated with a node, and data items are hashed though Chord to the node that is
responsible for the square they are located in.

Contrary to uniformly hashed DHTs, range-queriable DHTs may be prone to load balancing
problems, that is, they may result in situations where some nodes are responsible for signifi-
cantly more data items than others [22].

However, load-balancing is not the main issue with these overlays. The main weak-point
of structured overlays in general, is that insertions and deletions of nodes into the overlays are
costly. In file-sharing applications, this means that transient nodes are not handled effectively,
that is, nodes that connect to the system and then disconnect shortly after.

Structured overlays are designed with the assumption that the values of the data items remain
constant. While they are dynamic in nature, that is, these insertions and deletions of nodes are
allowed, they are not kinetic, that is, they do not allow for nodes to change their values once
they are inserted in the overlay. Therefore, in the context of moving nodes, each time a position
changes, a node would have to be removed from the overlay and then reinserted, which may
cost unnecessary computations. Structured overlays need thus to be treated with care when
dealing with moving objects, either by adapting and improving them, or by using them as a tool
alongside other options.

1.4.3 DVE Overlays

Some overlays have already been proposed for mobile points in DVEs [29, 144], which are thus
highly related to our problem.

Even if shortcomings of DHTs have been identified in the previous section, it has been
proposed to use range-queriable DHTs in several ways to deal with mobile nodes.

Colyseus [21] uses Mercury [22], and separates the DHT in several key-spaces, one for each
coordinate. This DHT is used to store some items representing the interests and positions of
the node, so that the system may detect if a node needs to track another one. In other words,
the DHT is used only as a rendezvous point to notify nodes that are not aware of each other,
but that are interested in each other, and to allow them to directly connect and then track each
other’s position. This lowers the bandwidth usage as nodes do not need to go through the DHT
each time they send updates, but a high overhead is still incurred, because changes in positions
lead to changes in interests, which imply insertions and deletions of items in the DHT.

Other propositions divide the virtual environment in several regions. In [49, 82] the virtual
world is divided statically, that is, regions are defined beforehand, independently of the nodes’
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positions; each region is assigned to a superpeer6, a node that becomes in charge to transfer
all updates to the nodes in and around the region. The superpeers are connected through a
DHT, that is used when a node changes region. While these approaches are interesting, they
divide the virtual environment beforehand, which, similarily to the problem of the choice of an
update rate in fixed frequency strategies (see p.23), raises the question of the optimal size of the
regions, which is application dependent. Also, the superpeers may be located in any region (not
necessary the region they are responsible of), which makes their connections not local, and adds
an additional burden on them, because they need to connect to the nodes in the same region as
them in addition to the nodes in the region they are responsible of.

These problem are mitigated in solutions like [109], where the regions change according to
the current positions of the nodes. The drawback of this kind of solution is a higher overhead,
as recomputing the regions and assigning superpeers to them may be costly.

Other solutions like [76] and [130] rely on regular exchanges of information between nodes.
While promising on certain practical settings, they come with few theoretical proofs. In order
to use these solutions to provide guarantees on the performances, additional work would be
needed on each of them individually.

In [130], a concept close to Yao-graphs is used: the space around a node is divided in
equally-sized angular sectors, and each node is connected to the closest node to it in each of the
sectors. Solutions of this kind will be discussed in Section 3.7.1.

Other geometrical structures can be helpful. In Solipsis [78, 79], convex hulls are used:
each node keeps connections with other nodes in such a way as to be situated in the convex hull
of its adjacent nodes. It is explained that this allows for a global connectivity of the connection
graph. Communications are initiated each time a node notices that it is no longer in the convex
hull of its adjacent nodes, so as to restore the property. However, it is shown that Solipsis may
still lead to situations where a node gets close to another node without being detected.

The use of Voronoi diagrams seems promising. VON [66] constructs a Voronoi diagram,
and on top of all nodes that are at a distance smaller than r7 (called neighbors), each node is
connected to the nodes whose Voronoi regions have a common edge with its own Voronoi re-
gion (called enclosing nodes). When a node moves, the outermost neighbors will be in charge
to notify the moving node of eventual new neighbors. The problem of this solution is that the
Voronoi diagram has to be recomputed at each movement, even if the neighbors and enclosing
nodes do not change. Also, in some degenerate cases, the number of enclosing nodes can be
arbitrarily higher than the number of neighbors [67], as can be seen on Figure 1.4. Unfortu-
nately, the article that describes VON ([66]) is not proven theoretically, so it is difficult to know
the exact bounds; also, it seems that in the simulations, it can happen that a node is not aware
of a neighbor for a short amount of time. This last aspect is dealt with in [71], but alas, without
theoretical proof either.

Some practical improvements of VON have been proposed, like [37], that takes into account
visibility blocking environment elements. Also, the bandwidth consumption can be lowered by
using forwarding in conjunction with packing and compression [72].

In [57], the nodes are randomly separated in two sets, and two Voronoi diagrams are main-
tained on each set. This allows to move all the nodes of one of the sets in parallel, using the
nodes of the other set as stationary points to help reconstruct the Voronoi diagram. However,
this may lead to problems if nodes of the same set get crowded far away from nodes of the other
set.

6Called coordinator in [82] and region master in [49].
7r is called AOI for Area Of Interest in the article
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Figure 1.4 – Example of a case in VON where a node has an arbitrary number of enclosing
nodes (this figure was taken from [67])

As we can see, a lot of these solutions are based on some geometric structure. Let us now
look on some geometrical queries, and the structures that can be built to answer those queries.

1.5 Data Structures for Proximity and Distance Queries
In this section, we present some classical queries that are related to those described in Sec-
tion 1.1.1, and then, more importantly, we present classical geometrical data structures that are
often proposed to serve those queries. As of now, we will consider the centralized setting, with
a set of static nodes, that is, their positions do not change with time.

1.5.1 Proximity Queries
Let us denote by pu the position of node u, and by d(u, v), the distance between nodes u and v
(with u, v ∈ V).

There are several distinct queries that depend on the proximity of the nodes:

• Range queries, mainly orthogonal range queries [98] return all nodes in a given range.
In orthogonal range queries, the range is an axis-parallel box. In other words, given
(a1, a2, . . . , ad) and (b1, . . . , bd), with ∀i, ai ≤ bi, the orthogonal range query returns all
nodes v with pv = (x1, . . . , xd) such that x1 ∈ [a1; b1] ∧ x2 ∈ [a2; b2] ∧ · · · ∧ xd ∈ [ad, bd].
Other shapes may be allowed for other types of range queries, like convex shapes or
polygones [135].

• Nearest-neighbor [3] returns, for a given node, the node that is closest to it with regards
to the distance function d. In other words, given a query node u, it should return a node
v , u such that ∀w ∈ V, d(u,w) ≥ d(u, v).

Approximate nearest neighbor (ANN) [48, 55] is similar, but accepts an error ε: given a
query node u, it should return a node v such that ∀w ∈ V, d(u,w) ≥ (1 − ε)d(u, v).

Other variants are the k-nearest neighbor, i.e return the k closest nodes to a query node,
[119], and the all near neighbors, i.e return for each node in V (instead of just for one
given node), the node that is closest to it [55].

• Collision detection [50] happens on a set of objects (for example polygons): nodes are
thus no longer reduced to just one position, and take up some (small) portion of the virtual
environment. Collision detection as a query should return the set of pairs {u, v} such that
u∩ v , ∅. In most practical settings however, collision detection is rarely used as a query,
because the movement of the nodes may be dependent on the advent of collisions: for
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Figure 1.5 – Answering CloseNodesu(r) with an orthogonal range query. The nodes which are
situated in the red hatched zone have to be filtered out.

example if nodes represent balls, they should bounce off each other, or if they represent
cars, they should crash and maybe stop their movement.

Recall the CloseNodes query we have introduced on page 17:

Definition 1.2 (CloseNodesu(r)). Given a node u ∈ V and a distance r ∈ R, return all nodes
v ∈ V such that d(u, v) ≤ r.

As mentioned in Section 1.1.1, in Chapter 3, r is a fixed parameter of the query, while in
Chapter 4, r is an input to the query, and is thus not known in advance.

A naive approach to answer to the CloseNodesu(r) query consists in checking all nodes
in V, and keep only those at distance r from u, resulting in O(n) computations. We are thus
looking for solutions that answer to the query time sublinear with the number of nodes.

A CloseNodesu(r) query can be answered with a range query: the query range just has to
be a superset of the ball of radius r centered on the query node u. For example, let us consider
nodes that are in a two-dimensional space, and let us use the euclidean distance (the nodes
to return with CloseNodesu(r) are thus the nodes situated in a circle of radius r centered on
u). An orthogonal range query can be used, that returns all nodes within a square with a side of
length 2r centered on the query node, as shown on Figure 1.5. However, the range query returns
additional nodes on top of those needed for CloseNodesu(r): on Figure 1.5, the nodes situated
in the red hatched zones should be removed from the returned set. A filter has thus to be applied
before returning the result of the query. In the worst case, there may be arbitrarily many more
nodes in the red hatched zone than in the circle, but as the area of the square is 4

π
times greater

than the area of the circle, on average only 4
π

times more nodes are returned before filtering.
On the other hand, the nearest-neighbor and related queries cannot be used directly to answer

to CloseNodes. However, as we will see in Section 1.8, some structures used for nearest-
neighbor searches are of interest to help find efficient structures for the CloseNodes query [48,
55].

Let us now review some classical structures of the literature that can be used to answer to
the CloseNodes query.

1.5.2 Geometrical Data Structures

To help answer to proximity queries, several data structures can be used. Most of the structures
studied here can be divided into two broad categories: tree structures, and geometric spanners.
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Tree Structures

Trees are inherently well-suited for searching, thanks to the hierarchy they create. Thus there are
many structures tailored for proximity queries that take the form of a tree. A tree is an acyclic
connected graph in which each element of the tree, which we will call metanode (because it
may or may not correspond to a node of V) is linked to one or more other metanodes, with
one of them being its parent. There is only one metanode that does not have a parent, which is
called the root of the tree.

A range tree, as its name suggests, allows to perform range queries. A d-dimensional range
tree is defined recursively: a Binary Search Tree is constructed for the values of the positions
of the nodes in one of the dimensions, with each of the metanodes in the tree being a (d − 1)-
dimensional range tree. The structure takesO(n logd−1 n) space8, and range queries are answered
in O(logd n + k), where k is the number of nodes to return [17].

Multidimensional binary search trees, or kd-trees [18], recursively divide the space in two
parts, but with the same number of nodes situated in it (except for the parity of the number of
nodes). The structure takes O(n) space, and range queries can be answered in O(d · n1− 1

d + k)
[88].

Quadtrees, as kd-trees, recursively divide the space. Here, however, the space is divided in
2d equal sized hypercubes. The metanodes in the tree do not correspond to nodes from V, but
represent the hypercubes, and they are recursively divided until the hypercubes of the leaves
contain at most one node of V. As this may lead, depending on the positions of the nodes, in
a lot of unnecessary metanodes (see Figure 1.6), quadtrees may be compressed, resulting in a
linear size [44]. Quadtrees are not usually associated with range queries, but we will prove in
Section 4.1.3 that they can be used to answer to two-dimensional CloseNodes queries in time
O

(
bu

(
r + r

√
2
)

log Φ
)
, with bu (x) the number of nodes at distance at most x from u (see below,

Definition 1.6 p.36 for the definition of Φ, the aspect ratio).
Algorithms with this kind of computation cost that depends on the number of nodes in a ball

slightly bigger than the target ball (bu

(
r + r

√
2
)

instead of bu (r)), may visit arbitrarily many
nodes in the worst case, but visit on average about as many nodes as there are in the target ball.
This is disadvantageous in situations where the density of nodes is highly variable: if u is an
isolated node, at distance slightly more than r from a huge cluster of nodes, than the number
of visited nodes by the CloseNodesu(r) query may be high in comparison to the size of the
returned set.

However, it is arguable that these kinds of situations are corner cases (for example, in Fort-
nite, the players are usually homogeneously spread on the map [107]). We usually make as-
sumptions on the number of nodes that are allowed in a small area, by stating that only a
constant number of ρ nodes can be situated in a ball of a given small radius. If this is the case,
we can assume that for a constant c, O(bu (cr)) = O(k), where k = bu (r) is the size of the set
returned by the query, so that the above query cost for quadtrees in two dimensions may be
simplified to O(k log Φ).

The structures we presented are the most common, and some improvements have been done
to reduce memory usage or query time [38, 40].

Geometric Spanners

A geometric spanner of a set of nodes, is a graph G = (V, E) constructed on those nodes, where
the edges are weighted with the distance of their extremities (that is if (u, v) ∈ E, then the weight

8Recall that the space usage of a data structure counts the number of registers needed to store it in memory.
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Figure 1.6 – Example of an uncompressed quadtree with a lot of unnecessary metanodes.
Metanodes are empty red circle (©) and nodes are black dots (•). The blue arrows represent the
edges in the quadtree.

of (u, v) is d(u, v)). The length of a path in G is the sum of the weights of the edges composing
it. A spanner has to comply to the following property.

Definition 1.5 (s-spanner). A graph G is a spanner with stretch factor s, or a s-spanner in short,
if the length of a shortest path from any node u to any node v in G is smaller than or equal to
s · d(u, v).

The most obvious spanner for a set of nodes is the complete graph (E = V2), which has a
stretch factor s = 1. However the complete graph has a lot of edges (O(n2) in total), which uses
a lot of memory. Thus spanners that have few edges are generally preferred.

Geometric spanners are of high interest for this work, because they can efficiently answer
to the CloseNodesu(r) query: for any node v such that d(u, v) ≤ r, it is guaranteed that there is
a path of length at most s · r from u to v. Thus, a simple breadth first search that stops on nodes
that are at distance more than s · r from u in the spanner, is guaranteed to find all nodes needed
for CloseNodes9. This query ends up checking only nodes that are at distance at most s · r
from u, and all the outgoing edges from these nodes. The time complexity of CloseNodesu(r)
on a spanner is thus O (bu (sr) · δ), where bu (sr) is the number of nodes in the ball of radius sr
centered on u, and δ is the maximum degree of a node in G10.

As described previously, if the density of the nodes is limited, bu (sr) is of the same order as
bu (r), which makes it so that spanners can be used to answer to CloseNodes queries in O (k · δ)
time (with, again, k the number of nodes returned by the query).

Let us present some known spanners:

9Note that we are here not interested to know which of the paths from u to the nodes returned by the query are
the shortest.

10It is worth noting that if the spanner maintained the outgoing edges of each node in order of increasing weights,
then we could answer the query in O (bu (sr)): during the BFS, when checking the outgoing nodes of the current
node v, only those of weight higher than sr − d would need to be checked, with d the distance from v to u in the
spanner. This is, however, impractical to maintain in the kinetic setting, as a kinetic sorted list would have to be
maintained on the outgoing arcs of each node.
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Figure 1.7 – Example of the construction of a Yao graph and a Theta graph in two dimensions
on the same set of nodes. Left: connections of a node in the Yao graph; Right: connections of
a node in the Theta graph (this figure was taken from [26])

• We have already presented Voronoi diagrams. A Delaunay triangulation is a dual of a
Voronoi diagram: it is a graph in which any two nodes that have adjacent Voronoi regions
have an edge in the graph. It has been shown that in two dimensions, with euclidean
distances, Delaunay Triangulations are spanners of stretch factor 2.5 [77]. We have seen
with Figure 1.4, that the maximum degree of a node in a Delaunay Triangulation may be
n − 1; however, the average degree of a node is constant in two dimensions, making it
interesting for efficient CloseNodes queries. However, this is no longer the case at higher
dimensions, explaining why Delaunay triangulations are rarely studied in this case.

• A Yao graph in two dimensions (resp. in d dimensions) partitions the space around each
node in k sectors (resp. cones) of the same angle (resp. solid angle). The nodes are then
connected, for each sector, to the node that is closest to it among the nodes that rely in this
sector (see Figure 1.7 for a two dimensional example). It is known that with the euclidean
distance, this construction leads to a spanner if k is sufficiently large : in two dimensions,
for k > 6, the stretch factor is at most 1/(1−2 sin(π/k)) [145]. For k = 6, we have a stretch
factor of 20.4 [114]. With k = 4, the graph is also a spanner, but with a very high stretch
factor (about 696) [25]. Similarly as with Delaunay triangulations, while the degree of
nodes in a Yao graph is constant on average (depending on the number of sectors), the
worst degree may go up to n − 1. However, contrary to Delaunay triangulations, the
degree of nodes in Yao graphs remains constant on average at any dimension (although the
constant gets bigger in higher dimensions, as more sectors are needed to keep a spanner).

• A Theta graph is a variant of the Yao graph. Instead of connecting the nodes to the closest
one in each sector, each sector is associated with a fixed ray (usually the bisector), and the
nodes are connected to the node in each sector, whose projection on the ray is the closest
one (see Figure 1.7). As for Yao graphs, Theta graphs are spanners when the number of
sectors is sufficient. In two dimensions, and again with the euclidean distance, for k > 6,
we also have a stretch factor of 1/(1 − 2 sin(π/k)) [126]. For k = 6, we have a stretch
factor of 2 [24], and for k = 5, the stretch factor is of 10 [26]. It has been proven that
Theta graphs are still spanners in higher dimensions [112]. The degree of nodes in a Theta
graph is also similar to Yao graphs: constant on average, but n − 1 at worst.

Thus, to the best of our knowledge, in two dimensions the best proven stretch factors are for
Delaunay triangulations and Theta graphs. In higher dimensions, Delaunay triangulations are
impractical, and Yao and Theta graphs should be considered.

In this work, our interest relies mainly in a specific type of construction that can also lead to
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Figure 1.8 – An example of an ε-net. The nodes in red are those that belong to the ε-net.

spanners:

Navigating Nets

One of our focuses relies on hierarchies of ε-nets11. This kind of construction has been used in
several papers for proximity queries [48, 55, 63, 83].

An ε-net (with a parameter ε > 0) on the set of nodes V is a subset of V so that any
two nodes from the subset are at distance at least ε from each other (sometimes called the
packing property), and so that any node inV is at most at distance ε from a node from the ε-net
(sometimes called the covering property). See Figure 1.8 for an example of an ε-net.

We call navigating net12 (with a parameter b > 1) a succession of bi-nets. The level 0
contains all the nodes from V. The level 1 contains a b-net of the level 0, the level 2 contains
a b2-net of level 1, and so on, until a level is reached where only one node remains, which we
will call the root. See Figure 1.9 for an example of a navigating net.

Definition 1.6 (aspect ratio). We denote by

Φ =
dmax

dmin

the aspect ratio of V, with dmax the maximal inter-distance between the nodes, and dmin the
minimal inter-distance, that is, two value such that ∀u, v ∈ V, dmin ≤ d(u, v) ≤ dmax.

We can see that the navigating net cannot have more than O(log Φ) levels. Each node u has
thus a maximal level Lu.

The navigating net is then a graph in which each node has an edge with its parent. The
parent of a node u is a node v so that Lv > Lu, and that covers u at level Lu, that is, so that
d(u, v) ≤ bLu+1.

The navigating net may be enriched with a set of neighbors for each node at each level[55].
The neighbors of u at level i are the nodes that are close to u at this level: {v ∈ V : Lv ≥

i ∧ d(u, v) < c · bi}, with c a constant.
It is shown in [55], with b = 2 and c > 4 that the navigating net is a spanner of stretch factor

16
c−4 . One of our navigating nets (in Section 4.3) has b ≥ 6 and c = 2, and we prove that the
stretch factor is 60 when b = 6.

11ε-nets are called r-nets in [42, 63], Yr-nets in [48], and discrete centers in [55]
12Navigating nets are called net trees in [42] and [63], and the structure from [55] is called DefSpanner.
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Figure 1.9 – An example of a navigating net, constructed on the same nodes as Figure 1.8. The
green node is the only one in level 3. Blue and green nodes are in level two, as well as in level
1 in which there are also red nodes. All nodes are in level 0.

This structure can be used to answer to CloseNodes queries using the properties of the
underlying tree. We will see in Chapter 4 that when starting from a node u, the query can be
answered by going up and down the hierarchy, resulting in a query time of O

(
log r + bu (O(r))

)
,

where bu (x) is the number of nodes in the ball of center u and of radius x. We may notice that in
the worst case, bu (O(r)) may be arbitrarily higher than bu (r). However, on average, the number
of nodes is multiplied only by a constant, and if the metric space is doubling (see Section 1.5.3),
as we supposed that there is a minimal inter-distance between the nodes dmin, then the worst case
time complexity of the query is O(log r + k), with k = bu (r), the number of nodes to return.

Navigating nets can also be adapted to the dynamic setting, as shown in [55]. Node insertion
and deletion are dealt by traversing the hierarchy top down and/or bottom up, which takes
O(log Φ) computations.

Unit Disk Graphs

A unit disk graph13 of unit r on a set of nodes in the plane, is the graph where each node has an
edge with every node that is at distance r from it.

Unit disk graphs are used extensively in research about ad-hoc networks, as they model
wireless devices that can communicate only with other devices that are close enough [54, 84].
In such settings, the unit disk graphs are usually taken as entries to other problems: for example,
in [54], connected dominating sets are constructed, leveraging the fact that the nodes are in a
unit disk graph.

We are however mainly interested in unit disk graphs as structures that can be used to answer
to CloseNodesu(r) queries when the radius r of the query is fixed and known in advance, as in
Chapter 3. As in the unit disk graph, each node u has an edge with all nodes at distance r, the
query is easily answered by returning all nodes that have an edge with u. We are thus interested

13Also called euclidian graphs, or geometrical graphs, in other settings.
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in taking a sets of nodes and their positions as an entry, and constructing unit disk graphs on
those sets of nodes.

In [74], disk graphs, a generalization of unit disk graphs are studied. Taking a dynamic set of
nodes and their positions, a structure is built that enables to answer in O(log n) time if two given
nodes are in the same connected component. This is not what we need for our query however,
as we want to know if two nodes are directly connected, so that other techniques should be
devised.

1.5.3 Doubling Dimension
Many geometrical structures of the literature consider metric spaces that are doubling. A metric
space is doubling if there is a doubling dimension M > 0 such that any ball of radius r in that
metric space can be covered with M balls of radius r

2 .
All euclidean spaces, and subsets of euclidean spaces are doubling, with a doubling constant

depending only on the dimension of the euclidean space [64].
While some research tries to get rid of the so-called “curse of dimensionality” [48], which

refers to algorithms that have a cost that grows exponentially with the doubling constant, we
target here applications that operate mainly on low-dimensional spaces. Thus, specifically in
Chapter 4, we consider spaces with a constant doubling dimension, and the value of M does not
appear in our performance measurements.

1.6 Kinetic setting and Related Definitions
In the previous section, we have considered a set of static nodes. From now on we will consider
the kinetic setting, in which the nodes ofV follow some kind of movement. To be more precise
about these movements, some additional definitions are needed.

1.6.1 Mobility Models
Movement may manifest in different ways, that is, have different limitations. This is why several
mobility models have been defined. We identify two main classes of movement models.

Flight Plan model The first movement model, and probably the most used in research on
Kinetic Data Structures (KDS in short, see Section 1.7) is the Flight Plan model. In this model,
nodes follow continuous trajectories described by functions that are known in advance. These
functions are often supposed to be polynomial or algebraic. While the resulting trajectory has to
remain continuous, the function describing the movement of a node may change at some points
in time, resulting in a piecewise defined function. The functions are called flight plans, hence
the name of the model.

Black-Box Model While supposing that the trajectories of the nodes follow some known
function is good for certain settings where this is the case, because it results in closer to optimal
performances, this may not correspond to all practical settings. Sometimes the positions cannot
be known in advance, and only regular samples of the positions are observed.

In the Black-Box model (the term was introduced in [55] for KDSs), we consider that the
positions of the nodes change at some instants we will call time steps (as if there is a “black
box” applying the change). We can suppose, without loss of generality, that the time steps are
evenly spaced.
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The Black-Box model usually comes with additional constraints. Typically, the positions of
the nodes are not allowed to change too much at each time step, imposing nodes to remain at a
distance dmv from their previous position.

Number of moving nodes In the Black-Box model, the movement model is also character-
ized by the number of nodes that are allowed to move at the same time. This distinction is
useful, as some algorithms may perform better if it is known in advance that only few nodes
move. We consider two extreme situations.

• Low mobility: only one node is allowed to move at each time step. In other words, at each
time step, it is known that only one node has changed its position since the last time step.

• High mobility: all the nodes can change their position at each time step.

Also, both in the Flight Plan and Black-Box model, the time it takes to do computations is
supposed to be negligible with regards to the movement speeds. In the Flight Plan model, this
means that when the trajectories meet certain conditions (for example, two points crossing, or
coming within a certain distance of each other), the algorithm may perform some computations
while the nodes are supposed to remain stationary until the computations are finished. In the
Black-Box model, this means that between two time steps, as many computations can be done
as needed, even if the aim is usually to keep them as low as possible.

1.6.2 Parameters

When the nodes are static, dmin, dmax, and Φ only depend on the positions of the nodes (see
Definition 1.6, page 36). In the kinetic setting, however, there are two ways to extend their
definitions: either dmin and dmax depend on the time (and thus represent the observed maximal
and minimal distance at each instant), or they do not (and thus represent constraints on the
movements that prevent nodes from getting too close or too far apart from each other). We
chose the second, more restrictive definition. Let us denote by d(u, v, t) the distance between
the positions of nodes u and v at instant t. We may redefine dmin, dmax, and Φ in the kinetic
setting.

Definition 1.7 (aspect ratio Φ). dmin and dmax are two given values such that ∀t,∀u, v ∈ V, dmin ≤

d(u, v, t) ≤ dmax.
The aspect ratio is given by Φ = dmax

dmin
.

The value of dmin may represent either the size of the nodes, so that two nodes may not get
too close to each other, or the precision on the positions, in which case two nodes that are at
distance less than dmin from each other are considered to have the same position (which is how
we will treat this kind of nodes in Section 4.3). The value of dmax may represent the size of the
world in which the nodes are allowed to move.

In the Black-Box model, it is often imposed that dmv is smaller than dmin [19] or than a value
close to dmin [55].

Let us now look at concepts that are useful when maintaining the data structures presented
in Section 1.5 under motion of the nodes.
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1.7 Kinetic Data Structures
As we have seen in Section 1.5, a lot of classical geometrical problems can be resolved by
constructing discrete structures on sets of nodes in an Euclidean space. For example, finding
the Nearest Neighbor, getting an Euclidean Minimum Spanning Tree, or constructing a Yao
Graph. Kinetic Data Structures (KDS) aim at maintaining this kind of structures in settings
where the nodes move.

1.7.1 Flight Plan Model
As mentioned previously, when nodes move, geometrical structures could be maintained by
regularly checking the new positions of the nodes, and at each check, removing the nodes that
moved and adding them again to the structure. In contexts where the nodes follow continuous
movements, this may lead to problems of oversampling and undersampling, as it is usually
inefficient to fix a sampling rate in advance (as mentioned in Section 1.3.1). This strategy may
also lead to a lot of useless computations, when the structure is still valid with regards to the
desired properties even if some node changed slightly its position.

Originally introduced in [14], the main category of KDS uses the Flight Plan model, pro-
viding solutions to these problems by detecting when changes should be made to the target
structure, and avoiding as much as possible to do any computation in the meanwhile. As ex-
plained in Section 1.6.1, it is supposed that each node has a flight plan, a continuous function
describing the future movement of the node. While these flight plans can change at some points
in time, this is allowed to happen only in such a way that the resulting movement remains
continuous.

The basic principle to detect when changes should be made, is to use so-called certificates.
Certificates are predicates involving a constant number of nodes, that all together validate the
target structure: when the nodes move, as long as all certificates are true, the structure is guaran-
teed to still be correct. Let us take for example a set of nodes with positions in one dimension.
We can get a structure that maintains the order of the nodes, with a certificate between any
two consecutive nodes that ascertains that the first has a coordinate strictly smaller than the
second. This complies to the requirement of certificates, because as soon as one of the nodes
crosses another one so as to change the order of the nodes, one of the certificates becomes false,
which enables the structure to detect when a change should be made (see below for a more
comprehensive example).

Certificates can be designed in two similar but different ways [61]:

• We could call absolute the most straightforward way of defining certificate: given any
set of nodes, the set of certificates validates that the structure is correct. In other words,
absolute certificates validate the structure independently of anything else.

• Most KDS papers however use what we could call incremental certificates: given a valid
structure, the certificates certify that the structure remains valid, as long as the certificates
remain true (and of course, as long as the nodes comply to the movement model given by
the structure). In other words, incremental certificates validate the structure at the condi-
tion that the structure was valid before movement. The KDSs we describe in chapters 3
and 4 use incremental certificates.

In the Flight Plan model, as the future movements of the nodes are known, it is possible
to compute, for each certificate when it will become invalid. Certificates can thus be put in a
priority queue, where the element with the highest priority is the certificates that is invalidated
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first. When a certificate becomes invalid, which is called an event, the structure is updated
following rules that depend on the certificate; if new certificates are to be created, they are
added to the priority queue, and if some certificates are no longer needed, they are removed
from the queue.

When there is a change in the flight plan of a node u, then the priority queue is updated with
the new invalidation times of the certificates concerning u.

In order to measure the quality of a KDS, four factors may be analyzed:

• responsiveness: measures the time it takes to update the structure when a certificate be-
comes invalid. A KDS is responsive if the update needs O(polylog(n)) operations.

• compactness: measures the total number of certificates in the KDS. A KDS is compact if
O(n polylog(n)) certificates are needed.

• locality: measures the impact of a change in the flight plan of a node, by counting the
number of certificates associated with each node. A KDS is local if each node is involved
in O(polylog(n)) certificates. Note that locality implies compactness.

• efficiency: measures the overhead of computation induced by the KDS with regards to
the target structure. We call external event an event that has an effect on the output of the
KDS. On the other hand, we call internal event an event that leads to changes in the KDS,
but without effect on the output of the KDS. See below for an example of internal and
external events. The efficiency of a KDS is the ratio of the number of internal events over
the number of external events. A KDS is said to be efficient if that ratio is O(polylog(n)).

These performance measures have to be put in perspective with the performance of the
priority queue of events. In the best known implementation of priority queues, insertions are
performed in constant time, but removals require logarithmic time in the size of the queue [28].
This means that when a new certificate is created, no additional cost is caused by adding it to
the priority queue. However, when a certificate that fails is treated, it becomes obsolete so that
it has to be removed from the priority queue. The cost of removing that certificate from the
priority queue is not taken into account when measuring the cost of updating the structure, that
is, the responsiveness. This additional cost is logarithmic in the size of the priority queue, which
is the total number of certificates, measured by the compactness of the structure. It follows that
even for a compact KDS, unless a complexity better than O(n) can be found for the number of
certificates in the priority queue, it is useless in the Flight Plan model to have an upper bound on
the responsiveness below O(log n) (some KDSs, like Kinetic Diamond Delaunay Triangulation
[2], may have a constant responsiveness).

The responsiveness of a KDS has also to be put into perspective with the cost of building
the structure from scratch. Indeed, if the structure has a bad responsiveness but a short building
time, it may be more efficient to systematically rebuild the structure at each event.

Example: 1D, Highest Coordinate An example to make the challenges of KDSs clearer, and
introduced in [14], consists in a set of moving nodes in one dimension, on which a KDS has to
be built that keeps track of the node that has the highest coordinate (in case of a tie, any node
with the highest coordinate can be returned by the KDS). On Figure 1.10, a situation with eight
nodes a, b, . . . , h is given, where pu denotes the position of node u; in this situation, for any
instant t ∈ [t0; t3[, the KDS needs to identify that d is the node with the highest coordinate, and
for any instant in t > t3, the KDS should know that it is the node e.
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Figure 1.10 – Example of a one dimensional situation with eight nodes a, b, . . . , h, where only
e moves. Five noteworthy instants t0 < t1 < t2 < t3 < t4 are represented.

A naive approach consists in using one certificate for each pair of consecutive nodes, that
fails when the nodes cross each other. If we call Order(u, v) such a certificate for nodes u and
v, Table 1.1 shows the set of certificates used by the KDS for instant t0 of the example from
Figure 1.10.

Table 1.1 – List of naive certificates for the example of Figure 1.10 at instant t0.

Certificate Predicate
Order(b, a) pb < pa

Order(a, g) pa < pg

Order(g, h) pg < ph

Order(h, e) ph < pe

Order(e, f ) pe < p f

Order( f , c) p f < pc

Order(c, d) pc < pd

An event happens each time a nodes overtakes another one. On Figure 1.10, where only
e moves, this happens on instants t1, t2, and t3. As these instants are known in advance in the
Flight Plan model, no operation is needed on the KDS in between them. At each event, in order
to reestablish the right set of certificates, at most two certificates have to be deleted, and at most
two new ones have to be created. For example, at instant t1, the certificates Order(e, f ) and Or-
der( f , c) have to be removed from the structure, and replaced by Order( f , e) and Order(e, c).
As each of these changes involves an operation on the priority queue of the certificates, which
takes O(log n), and because there is a constant number of them, an event is handled in O(log n)
time, which makes the KDS responsive.

Concerning memory usage, each node is involved in at most two certificates, which makes
the KDS local and compact.
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Figure 1.11 – Example of a kinetic tournament; the dashed lines represent the certificates, that
compare the positions of two nodes in the same level. On the right is the resulting tournament
if node e moves so as to overtake f . The certificates that change accordingly are in blue.

However, the KDS is not efficient. As the output of the KDS is only the node that has the
highest coordinate, an external event is an event involving this node; all other events are internal.
Thus, among the events shown on Figure 1.10 at instants t1, t2, and t3, only the last one is an
external event, as it is the only one that changes the node that has the highest coordinate. In the
worst case, e could have started at the left of b, and overtaken all nodes one after the other. This
situation would have resulted in n − 2 internal events, but only one external event, showing that
the KDS is not efficient.

There are however KDSs that validate all quality criteria for this problem, among which the
kinetic tournament. A kinetic tournament is a tree of metanodes, each associated with three
values:

• an associated node,

• the “left” child, another metanode,

• the “right” child, also a metanode.

The tree is such that each metanode is associated with the node that has the highest coordi-
nate among the nodes of its children, until only the node with the highest coordinate remains as
the root, at level log2 n. An example of a kinetic tournament, constructed on the nodes of Fig-
ure 1.10 at instant t0, is given on the left side of Figure 1.11, where metanodes are represented
by circles, with the associated node written inside, and the children represented as edges of the
tree.

Certificates, similar to the certificates of the naive approach, are added between all pairs of
sibling nodes, that is, the nodes that are associated with metanodes that are children of the same
metanode. The certificates of the kinetic tournament on the left of Figure 1.11 (that are also
represented by dashed red lines on the figure), are given on Table 1.2
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Table 1.2 – List of certificates for the kinetic tournament from Figure 1.11, with the nodes of
Figure 1.10 at instant t0.

Certificate Predicate
Order(b, a) pb < pa

Order(c, d) pc < pd

Order(e, f ) pe < p f

Order(g, h) pg < ph

Order(a, d) pa < pd

Order(h, f ) ph < p f

Order( f , d) p f < pd

An event arises when a node overtakes one of its siblings. On our example, this is what
happens at instant t1, when the node e overtakes f because of the failure of Order(e, f ); on
the tournament of the left of Figure 1.11, e has to go up one level, and replace f in the next
metanode. However, f is also being compared with another sibling h with the certificate Or-
der(h, f ), with ph < pe. Thus e needs to go further up the tournament, until it becomes a sibling
of d, which has a higher coordinate. The resulting kinetic tournament is given on the right of
the figure, with changes highlighted in blue. In the worst case, a node would have to go up all
the log n levels of the tournament. For each of these changes in the structure, a constant number
of certificates are deleted and created, each one incurring O(log n) computations for updating
the priority queue, resulting in a total of O(log2 n) computations per event. Thus, the KDS is
responsive14.

Each node is involved in at most O(log n) certificates, thus the KDS is local and compact.
When a node overtakes another one, it does not necessarily trigger an event, as this happens

only with siblings. On our example, after e overtook f , with the kinetic tournament on the right
of Figure 1.11, no event arises on instant t2 when e overtakes c, as those two nodes are not
siblings. On instant t3 however, there is an external event. The proof is trickier than that, but
this leads to show that the KDS is efficient.

This example shows that one usually has to be “clever” when designing a KDS that meets
all the quality criteria. If a KDS is found that fails on some quality factors, there is usually no a
priori and easy way to know if another one can be designed that validates all criteria. This is an
additional reason that makes KDSs challenging.

1.7.2 Black-Box Model
Some research papers [42, 55] consider that it is more realistic to use the Black-Box model (see
Section 1.6.1) than the Flight Plan model, as the nodes’s trajectories are usually described as
consecutive measures of their positions, and not as continuous functions of time. In that case,
at each time step where the positions of the nodes may change, the structure has to be updated,
resulting in some computations.

Most KDSs for the Flight Plan model can be easily adapted to the Black-Box model, pro-
vided that linear flight plans are allowed (that is, KDSs where the nodes can move on a line).
However, this generally leads to poor performances. Let us consider a valid structure at time
ti, and let ti+1 be the next time step. In order to get a valid structure for the new positions at
time ti+1, we can give to each node u the linear flight plan that goes from u’s position at time ti

14Note also that this is better than the naive approach consisting in rebuilding the tournament from scratch,
which takes O(n) time
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to its next position at time ti+1. The total cost to update the structure at each time step is then
the sum of the costs it takes to compute the trajectories, to reschedule the certificates accord-
ingly to the new failure times, and the cost of updating one certificate multiplied by the total
number of failing certificate. Most articles that present KDSs in the Flight Plan model give
an upper bound on the total number of events the KDS may have to process, which is usually
quadratic. With O(n2) events on a compact and responsive KDS, we get an upper bound of
O(n polylog n + n2 polylog n) on the update time per time step (when supposing that it takes a
constant time to compute the failure time of a certificate), which is usually worse than rebuild-
ing the structure from scratch. This kind of upper bound is not tight at all, mostly because the
number of events are given for whole executions of the flight plans. Sadly, bounds on the num-
ber of events for small increments of movement like in the Black-Box model are rarely given
in the literature on the Flight Plan model. Efficiently converting a KDS from the Flight Plan
model to the Black-Box model is thus usually not immediate.

With this in mind, some results in the Black-Box model drop the certificates altogether,
and systematically do some computations at each time step. While it is proven in [19, 50]15

that those computations are bounded, this may still lead to superfluous computations, when the
nodes move in such a way that the structure is checked an rebuilt identically.

Other results use the Black-Box model in conjunction with certificates [42, 55]. While
certificates need still to be checked regularly to see if they failed, this allows to separate the
cost of verifying the structure and updating it, which could reduce the cost of the computations
when the structure does not need to be updated.

Having certificates thus opens up the possibility to use prediction schemes like in [111].
However, maintaining a priority queue as in the Flight Plan model has an additional cost for
each time step, caused by removing each certificate that failed. As discussed on page 41 (Sec-
tion 1.7.1), removing an element from the priority queue has a cost that is logarithmic in the
number of elements in the queue. As it is difficult to guarantee that only a limited number of
certificates fail at each time step, this adds a cost of O(n log n) at each time step for compact
KDSs.

Nonetheless, we believe that KDSs that use certificates have an advantage over structures
that do not use them. While future motions are not known in the Black-Box model, in most
practical settings, the movements of the nodes are somewhat predictable when knowing their
previous movements. In a way very similar to Dead-reckoning (see Section 1.3.2), an estimate
of a node’s velocity can be computed, which can be used to predict the failure time of its cer-
tificates, as in the Flight Plan model. Thus, the cost of verifying the validity of the certificates
at each time step is replaced by the cost of verifying if the prediction is still within some pre-
defined bound, like Dead-reckoning’s threshold. In most cases, this should be cheaper, as we
expect this to be slightly less computer intensive in practice than the verification of the validity
of a certificate (which involves recomputing the predicate associated to that certificate according
to the new positions of the nodes), and because the total number of certificates may be an order
of magnitude higher than the number of (moving) nodes. Simulations should be conducted to
verify this hypothesis, and this is thus a topic for future research.

In Chapter 3 and Chapter 4, we thus focus on the Black-Box model, and provide structures
that use certificates.

In the following sections, some results showing how to maintain the structures presented in
Section 1.5.2 for moving nodes will be presented. The performances of these solutions can be
found in Table 1.4 and Table 1.5 for easier reference and comparison.

15Actually, in [19], two solutions are proposed, one of which builds a “sub-KDS” in the Flight Plan model
similarly as described in the previous paragraph, and that thus uses certificates. This solution, however, performs
worse than the second solution, that doesn’t use certificates.
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1.7.3 Tree Structures
Several results exist to maintain classical tree structures for moving nodes. Recall that when
measuring the performance of a query, k denotes the size of the returned set.

In [15], a kinetic structure is maintained, that allows to construct range trees when move-
ments follow constant degree algebraic flight-plans. It takes O(n logd−1 n) space and has a depth
of O(log n). Range queries can be answered in O(logd n + k) (with k the number of nodes re-
turned by the query), and a certificate takes O(logd n) to be fixed, for a total of O(n2) events. In
[4], a solution in two dimensions improves upon this for linear flight plans, reducing the space
complexity to O( n log n

log log n ), and with an amortized query time of O(log2 n).
Standard kd-trees are not efficient when the nodes move [3], thus some variants have been

proposed to have equivalent structures in the kinetic setting. In [7], two variants called pseudo
kd-tree and overlapping kd-tree are proposed for two-dimensional pseudo-algebraic flight-plans.
Both structures can be used to answer to range queries in O(n1/2+c + k) for a small constant
c > 0, with certificates that take at most O(n) to be handled, but only O(log n) on average. In
[3], two additional variants are proposed for constant degree algebraic flight-plans. First, rank-
based kd-trees use O(n) memory (with O(1) certificate per node) and processes range queries in
O(n1− 1

d +k) time, events being handled inO(log n). Rank-based longest-side kd-trees are tailored
for two-dimensional ε-approximate range queries, where additional nodes outside the range can
be returned16. Its size is also linear, answers to the queries in O( log2 n

ε
) time, and handles events

in O(log2 n).
Quadtrees are proposed in [50], in the Black-Box model, where positions are updated at

regular time steps. It is here supposed that nodes move no more than dmv distance units at
each position update, and that no more than ρ nodes can be situated in a ball of radius dmv.
The structure does not use certificates, and is updated in time O(n log ρ) per time step. The
quadtree is compressed, and has a linear size. As mentioned in Section 1.5.2, we will prove
in Section 4.1.3 that a quadtree can be used to answer to CloseNodesu(r) queries in a time
complexity of O

(
bu

(
r + r

√
2
)

log Φ
)
, where bu (x) is the number of nodes at distance at most

x from u (and with Φ the aspect ratio defined in Definition 1.7, p.39). If we suppose that
bu (r · O(1)) = O(k), then we have a query time of O

(
k log Φ

)
. One of the drawbacks of this

structure, is that it is completely rebuilt at each time step, even if very few nodes moved, so
that the update complexity does not improve in the low mobility setting compared to the high
mobility setting.

A summary of the different kinetic tree structures is given at the top of Table 1.4 and in
Table 1.5, where the query time designates the time needed to answer a CloseNodesu(r) query.
We can see that generally, range trees have better query times but higher memory costs than
kd-trees. The correction of certificates is usually logarithmic for all the tree structures.

1.7.4 Spanners
As we have seen in Section 1.5.2, the time complexity of CloseNodesu(r) on a spanner of stretch
factor s is O (bu (sr) · δ), with bu (sr) the number of nodes in the ball of radius sr centered on
node u, and δ the maximum degree of the spanner. For ease of notation, we will use s′ = s − 1
(some fractions with a denominator depending on s will tend to infinity when s′ tends to zero,
that is, when the stretch factor tends to the ideal s = 1).

As mentioned previously, Delaunay triangulations lead to good performances in the plane,
but to quite poor performances in higher dimensions. This could explain why all the previous

16For a query region Q with diameter diam(Q), the query should return a superset of Q∩V so that any returned
node u satisfies d(u,Q) ≤ ε · diam(Q).
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work on KDSs for Delaunay triangulations we found in the literature focus only on positions in
two dimensions.

As explained in [14], Delaunay triangulations are easy to kinetize, requiring only one cer-
tificate per edge. As the number of edges is O(n) in two dimensions, the memory cost is O (n).
The degree being O(n) at worst but O(1) on average, the cost of a CloseNodesu(r) query is
O (bu (sr) · n) at worst, and O (bu (sr)) on average. An event can be handled in O(log n) time
[60]. The total number of events is nearly cubic: O(n2λ(n)), with λ(n) a function that is nearly
linear in n in the Flight Plan model [131].

A variant with better performances is presented in [2]. A Delaunay triangulation is con-
structed, but using a diamond-shaped convex distance function instead of the euclidean dis-
tance. The resulting graph is proven to also be a spanner in the plane, with a stretch factor that
is a parameter of the KDS. The structure has a size that depends on the given stretch factor
s, but can be considered linear (O(n/s′2)) like the euclidean Delaunay triangulation. However,
with constant degree polynomial flight plans, the number of events is nearly quadratic, and an
event incurs only O(1) computation time to update the spanner, which is better than Delaunay
triangulations. Recall however that in the flight-plan model, events are put in a priority queue
that has to be updated at each event, and each time a new certificate is created. Thus, the total
computation time at each event is O(log(n/s′2)).

In [19], the Black-Box model is analyzed. When dealing with Delaunay triangulation, it has
been noticed that rebuilding the graph (which takes O(n log n)) after each movement is actually
hard to outperform [127]. However, in [19], a method is proposed that takes O(Φ2) (Φ has been
defined in Definition 1.7, page 39) to update the triangulation at each time step, under similar
assumptions as in [50]: nodes move no more than dmv distance unit at each position update, and
no more than ρ nodes can be situated in a ball of radius dmv. Depending on the value of Φ with
respect to n, this can be better. Note also that the structure is updated by treating the nodes one
after the other; this means that if it is known in advance that only one node may move at each
time step (as explained in Section 1.6.1), the structure may be updated faster: in the paper, it
is said that the update of one node is linear in its degree, meaning that the cost of updating the
structure in this mobility model of only one moving node is in O(n).

Attempts have been made to distribute Delaunay Triangulations [139]. We may also mention
stable Delaunay graphs, subgraphs of Delaunay graphs, that are studied in [6], however it is not
mentioned whether they are spanners.

In [120], kinetic versions of the Yao and Theta graphs are given for constant degree poly-
nomial flight plans in two dimensions. Both use O(n) space, and handle events in O(log n)
amortized time. As the degree of those graphs is O(n) at most, but O(1) on average, we get a
query time for CloseNodesu(r) of O (bu (sr) · n) at worst, but O (bu (sr)) on average. The main-
tenance of the Theta graphs leads to a nearly quadratic number of events: O(n ·λ(n)), with again
λ(n), a function that is nearly linear in n. Yao graphs are a little bit worse with a nearly cubic
number of events.

In [119], Theta graphs are kinetized in higher dimensions for constant degree polynomial
flight-plans. The structure takes O(n logd n) space, and O(n2) events are handled each in time
O(λ(n) logd+1 n) on average.

In [1], a variant of Theta graph is proposed, also for constant degree polynomial flight-
plans, that is based on what the authors call a Cone-Separated Pairs Decomposition. As in
[2], the stretch factor s is a parameter of the structure. The resulting spanner has O(n/s′d−1)
edges, which can be considered linear like the Theta graph, but a maximum degree of O(logd n),
resulting in a better worst-case complexity for the CloseNodesu(r) query of O(bu (sr) · logd n).
The kinetic structure takes O((n/s′d−1) logd n) memory, and events are handled in O(logd+1 n)
time.
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A summary of the different kinetic spanners is given on the bottom of Table 1.4, and in
Table 1.5. Note that s is used as the stretch factor of the given structure, that may be different
in each solution. As explained previously, for easier notation of the performances of some
spanners, we use s′ = s − 1. Again, the query time designates the time needed to answer a
CloseNodesu(r) query. We can see on the table that spanners have low memory costs, like kd-
trees. In terms of query time, let us note that O(bu (sr)) is close to O(k) on average, but higher
in the worst case; it then becomes apparent that queries on spanners are not as effective as on
trees in the worst case, but close to optimal on average. For better readability, we suppose in
Table 1.4 and Table 1.5 that bu (r · O(1) + O(1)) = O(k), so that this ball size is not shown in the
results of query time. The correction of certificates, like for trees, is often logarithmic, albeit
often only once amortized. In general, it seems spanners are better than trees on average, but
not as good in the worst case.

1.7.5 Navigating Nets

We have presented navigating nets in Section 1.5.2. These tree-like structures have been main-
tained under motion in previous works.

In [42], a model similar to Black-Box is used. A relaxed version of the navigating net is
analyzed in terms of number of combinatorial changes made to the structure and number of
created and deleted certificates, with regards to the strict version of the navigating net.

In [55], a full KDS analysis is done on a navigating net, both in the flight-plan model and
in the Black-Box model. The navigating net (enriched with neighbors as described in Sec-
tion 1.5.2) is a spanner of maximum degree O(log Φ/s′d) (recall Definition 1.7, stating that
Φ = dmax

dmin
). Thus, the CloseNodesu(r) query can be answered in O(bu (sr) · log Φ/s′d). The struc-

ture has a linear size ofO(n/s′d), with each node involved in at mostO(log Φ/s′d) certificates. In
the Flight Plan model (with pseudo-algebraic flight plans), an event incursO(log Φ/s′d) changes
to the navigating net, resulting in events handled in O(log Φ/s′d + log(n/sd)) time when includ-
ing updates to the event queue, with a total number of events of O(n2 log Φ). In the Black-Box
model, assuming that n nodes can change their level in the navigating net hierarchy, each time
step involves O(n log Φ) computations. We will see in Section 4.3.1 that if there is only a single
node that may move at each time step, then O(log Φ/s′d) computations per time step are suffi-
cient to update the structure. Note that in [55], the same definition of aspect ratio is used as in
Definition 1.7 (p.39), with dmin being the minimal distance between any two nodes throughout
the execution normalized to 1.

1.7.6 Conclusion on Centralized KDSs

This thesis focuses on the Black-Box model. A summary of the different KDSs for the Flight
Plan model can be found in Table 1.417 (with, at the upper half, the tree-based solutions, and at
the lower half, the spanner-based solutions). We have seen in Section 1.7.2, that these solutions
can be converted to the Black-Box model, with an upper bound on the time complexity for each
time step equal to the correction cost for one certificate multiplied by the total number of events.
As can be seen on Table 1.4 no solution yields better results than O(n2 log n) computations per
time step. While the query times for those structures (usually O(log n + k) for trees and O(kn)
for spanners) are acceptable, which is not a surprise as queries are independent of movement
models, the update times leave room for improvement, so that solutions specifically tailored for
the Black-Box model are preferred.

17Note, as explained previously, that we suppose in Table 1.4 that bu (r · O(1) + O(1)) = O(k).
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Table 1.3 – Summary of the notations used in performance measurements

n Total number of nodes.
r Parameter of the CloseNodesu(r) query.
k Number of nodes returned by the query.
Φ Aspect ratio (see Definition 1.6 p.36).
s′ With s the stretch factor of a spanner (see Definition 1.5), s′ = s − 1.
λ(n) Maximum length of a Davenport-Schinzel sequence: this function

is nearly linear in n in the Flight Plan model.
ρ Maximal number of nodes that can be situated in a ball of radius dmv

(with dmv the maximal distance a node can move at each time step of
the Black-Box model.)

Results that are written specifically for the Black-Box model are shown on Table 1.518 (note
that the last line shows the result of one of our contribution, which will be presented in Sec-
tion 1.8). The correction cost refers to the complexity of the updates to the structure at each
time step (recall, from page 39, that in the low mobility setting only one node may move at each
time step, and all nodes may move in the high mobility setting).

While memory usage is the same for all KDSs, DefSpanner performs the best in query time
and in update time for the low mobility setting. For the high mobility setting, the best is not as
clear, as the Kinetic Compressed Quadtree can be better if ρ < Φ. While the DefSpanner seems
to perform quite well, a more in depth analysis shows that, in some situations, some nodes may
need to drastically change their level in the Navigating Net hierarchy, which is responsible for
the log Φ factor in the update complexity. We try to address this issue in Chapter 4.

1.7.7 The Case of Distributed KDSs

While KDSs are mainly studied as centralized structures, the fact that certificates are local con-
ditions that globally validate the structure, makes them an interesting opportunity for distributed
systems. Local predicates aimed at maintaining global properties are nothing new in the field
of distributed systems, but the various tools and measurement techniques introduced in the field
of KDS can be beneficial to analyze distributed algorithms.

In the distributed setting, we suppose that the changes in position emanate from the nodes
themselves. In the Flight Plan model, this means that the change of flight plan of a node u is an
information local to u; any other node would need to receive a message from u in order to know
about this change of flight plan. In the Black-Box model, at each time step, each node becomes
aware of its new position but not of that of the other nodes. It follows that in the Black-Box
model, a node that needs to know if a certificate becomes false needs to receive a message from
each of the nodes whose position is involved in that certificate. We suppose that one message is
enough for a node to sent its position to another node, which is realistic, as we have supposed
previously that a position takes a constant amount of registers in memory.

Sadly, adapting centralized KDSs in the distributed setting, by simply making so that each
node maintains the certificates it is involved in, adds complications. Firstly, as the memory
is distributed among the nodes, some information required to handle an event might not be
directly accessible: if a node needs to retrieve the position of another node without knowing
its identifier, a research of that node is needed, the performance of which depends largely on
the connection graph. Also, while the number of events does not change (so that the efficiency

18Again, with bu (r · O(1) + O(1)) = O(k).
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Table 1.4 – Comparison of several structures in the Flight Plan model (see Table 1.3 for a
summary of the notations)

Space Total memory
cost

Query time Correction
cost for one
certificate

Total number
of events

Kinetic exter-
nal range-tree
[4]

2D O( n log n
log log n ) O(log n + k) O(log2 n)

amortized
O(n2)

Pseudo and
overlapping
kd-tree [7]

2D O(n1/2+c + k)
(c > 0 a small
constant)

O(n) worst
case O(log n)
amortized

O(n2)

Rank-based
longest-side
kd-tree [3]

2D O(n), O(log n)
certificate per
node

O

(
log2 n
ε

+ k
)

(with an ap-
proximation
factor of ε)

O(log2 n) O(n3 log n)

Range tree
[15]

dD O(n logd−1 n) O(logd n + k) O(logd n) O(n2)

Rank-based
kd-tree [3]

dD O(n), O(1)
certificate per
node

O(n1−1/d + k) O(log n) O(n2)

Kinetic Delau-
nay Triangula-
tion [60]

2D O (n) O (k · n) at
worst, O (k)
on average

O(log n) nearly cubic:
O(n2λ(n))

Kinetic
Diamond
Delaunay
Triangulation
[2]

2D O(n/s′2) O(k/s′2) on
average

O(log(n/s′2))
(O(1) without
the priority
queue)

nearly
quadratic:
O((n/s′2) ·

λ(n))

Theta graph
[120]

2D O(n) O (k · n) at
worst, O (k)
on average

O(log n)
amortized

nearly
quadratic:
O(nλ(n))

1-Theta-Yao
graph [119]

dD O(n logd n),
O(1) certifi-
cate per node
on average

O (k · n) at
worst, O (k)
on average

amortized
nearly log-
arithmic:
O((λ(n)/n) ·

logd+1 n)

O(n2)

CSPD-based
spanner [1]

dD O((n/s′d−1) ·

logd n),
O(1/s′d−1)
certificate per
node

O(k · logd n)
at worst,
O(k/s′d−1) on
average

O(logd+1 n) O(n2/s′d−1))

DefSpanner
[55]

dD O(n/s′d),
O(log Φ/s′d)
certificate per
node

O(k log Φ/s′d) O(log Φ/s′d +

log(n/s′d))
(O(log Φ/s′d)
without
the priority
queue)

O(n2 log Φ)
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measurement is the same), and while the local and global memory costs can be of interest in the
distributed setting (so that compactness and locality are still relevant), the computation time,
that is, the responsiveness as measured in the centralized setting, is usually no longer relevant
when considering distributed KDSs. As some computations require messages to be sent, which
usually takes an order of magnitude longer than to do local computations, the time performances
of distributed algorithms are, in most cases, measured in terms of number of messages and/or
number of communication rounds (see Section 1.2), and not in terms of local computations.

One naive solution to convert a centralized KDS to the distributed setting, could be to desig-
nate one specific node as a coordinator, that would centralize all computations. The coordinator
is tasked to maintain all the certificates of the KDS, and thus needs to know the exact location
of all the nodes. In the Flight Plan model, this means that the coordinator needs to be informed
of any change in flight plan, and in the Black-Box model, this means that every node needs
to send the coordinator its new position at each time step. This technique can actually lead
to a surprisingly low number of total exchanged messages: regardless of the total number of
certificate, this solution leads to a total of O(n) messages per time step in the Black-Box model
(as we supposed that a position can be sent using one message). In comparison, if a KDS is
distributed without a coordinator, each node u would need to send its position to each node v
such that u and v are involved in a common certificate. Even if the KDS is local, this would
lead to O(n log n) messages, as each node is involved in O(log n) certificates. However, the so-
lution using a coordinator is not satisfactory, because it overloads one node: the local memory
usage for a node and the number of incoming message for one node are Ω(n), while they can be
expected to be O(log n) in good distributed solutions.

To the best of our knowledge, only one attempt has been made specifically to adapt a kinetic
data structure to a distributed setting. In [56], the results of [55] are reused in an asynchronous
distributed setting; the same set of certificates is used, each node maintaining a local copy of the
certificates that it is involved in. The correction of a certificate failure induces communications
between the nodes in order to repair the structure. Two levels of proximity between children and
parents of the tree are given, giving the structure extra flexibility, so that some computations can
be made in the background when nodes move. The algorithm results, for each node, in a number
of connections and a local memory cost of O(log Φ). Updates require O(log Φ) messages per
units of distance a node moves. If we suppose in the Black-Box model, that nodes move only
of one distance unit per time step, this results in O(n log Φ) messages per time step. The nodes
are implicitly treated one after the other, and it is unclear whether this has an effect on the
performances, leaving room for investigation.

1.8 Contribution
In this thesis, we have worked on different methods to allow participants of networks of moving
points to answer to queries related to their distance, with guarantees on the results, and while
minimizing their bandwidth consumption.

1.8.1 Distance Estimation

When two nodes are connected, as we have seen in Section 1.3.2, Dead-reckoning allows them
to keep each other informed about their respective state while sending few messages. While the
error induced by Dead-reckoning can be measured by different means [8, 147], Dead-reckoning
usually aims at bounding the absolute error on the nodes’ positions. Some research has al-
ready been conducted on using Dead-reckoning with some sort of relative threshold [30, 132],
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but to the best of our knowledge, no extensive attempt has been made to analyse its effect on
the number of exchanged message, and none has been made when targeting only the distance
estimation.

In Chapter 2, a synchronous deterministic algorithm is proposed that allows two connected
nodes u and v to answer to the ε-Distance query (see Definition 1.1, p.17).

While the proposed algorithm to estimate distances is valid for any movement on a syn-
chronous network, we conduct an extensive theoretical analysis on random movements. Those
movements are of two types: either discrete (a random walk on a grid) or continuous (at each
communication round, the new position of a moving node may take any value in a circle cen-
tered on its previous position). We prove that on these movements, the number of exchanged
messages is optimal up to a constant factor (see Section 2.1.3).

These theoretical proofs are complemented with experimental analyses on traces of a real
online game, showing that the algorithm behaves better in practice than a strategy that is often
used by game developers, consisting in sending updates at regular time intervals.

1.8.2 Kinetic Data Structures for Proximity Queries

We have seen, throughout the previous sections, that the distributed setting adds complications
with regards to the centralized setting. We have also seen, when a geometrical data structure has
to be maintained on a set of nodes, that making the structure dynamic adds some difficulties,
and we have then seen that making the structure kinetic instead is even more difficult.

The work presented in Chapter 3 and Chapter 4 are attempts to go one step further still, by
studying kinetic data structures in a distributed setting, as well as some related structures in
other less stringent settings. Consistency of distance estimation between nodes is considered a
separate problem that can be ensured with the algorithm of Chapter 2 or other Dead-reckoning
approaches; we thus suppose in Chapter 3 and Chapter 4 that two connected nodes have means
to know exactly the distance between each other.

In Chapter 3, we consider a set of distributed nodes that move in a one-dimensional space,
and where each node needs to be able to answer to the CloseNodesu(r) query for a fixed radius
r. The nodes move at a constant speed smaller than one half of r distance units per time step.
We give a synchronous algorithm, denoted by A f 1d, that ensures that each node is connected
with all nodes that are at distance r from it, where r is given as entry to the algorithm, and is
known and identical for all nodes. Thus, an answer to the CloseNodesu(r) does not require any
message nor computation. The structure is maintained in the high mobility setting and Black-
Box model using a constant amount of communication rounds per time step. The number of
connections and the local memory cost for a node is O(bmax(r)) = O(k) (with k the number of
nodes returned by the query, and bmax(r) the maximum number of nodes that can be at distance
r from a node). In comparison, [56] uses O(log Φ) memory space for each node, and as the
structure relies on a navigating net, it can answer to CloseNodesu(r) queries by using O(log r)
communication rounds (which will be proven in Section 4.2.3).

In Chapter 4, we also aim at the CloseNodesu(r) query, but this time with a variable r. Each
time a node starts a query, it may give a different value for r.

In Section 4.3, we present results in the centralized case, developing the results of [55].
In addition to the CloseNodesu(r) query that utilizes the spanner property of our navigating

net, resulting in O(bu (sr) · log Φ) time to answer to the query, we propose another search algo-
rithm that utilizes the tree structure and results in O

(
log r + bu (r(2b − 1) + 1)

)
= O(log r + k)

computations (with r the query range, k the size of the set returned by the query, and bu (x) the
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number of nodes at a distance smaller than x from u). This search algorithm can also be used
on the structure from [55].

When the nodes move, the DefSpanners from [55] can lead to situations where a node of low
level needs to go up all the hierarchy of the navigating net, resulting in up toO(log Φ) changes in
the level of the node. We draw upon [48] to avoid this situation, and give a structure that we call
constrained navigating nets on which we prove that a node may change its level only a constant
number of times per time step for small movements. The structure usesO(n) memory space. We
give an algorithm,Acnnptr, for the low mobility setting in the Black-Box model (where only one
node moves at each time step), that updates the structure inO(log Φ) computations per time step.
This performance is similar to DefSpanners, as we prove in Section 4.3.1. See Table 1.5, for a
comparison of the different centralized Black-Box solutions (presented throughout Section 1.7)
for the CloseNodesu(r) query. This table shows that our solution is competitive with the other
solutions, except for the high mobility setting, where additional work is required to get a better
result than the literature.

We also present a distributed algorithm, Acnndist, to maintain constrained navigating nets in
synchronous networks, in the low mobility setting and in the Black-Box model. This is the first
distributed algorithm in this setting. It uses a constant amount of communication rounds per
time step, and while it uses O(n) memory for one node at worst, each node needs to track only
the positions of O(log Φ) other nodes, and the total memory usage of all nodes combined is
O(n).

Another advantage of our constrained navigating nets, is that while the performance is the
same as [55] in the centralized low mobility setting, we believe that it is possible in the future, to
achieve a linear update time of O(n) computations per time step. This would be done by taking
into account the movements of nodes move one after the other, and executing the low mobility
algorithm on each node, in a specific order.

Table 1.5 – Comparison of cenralized solutions for the CloseNodes query in the Black-Box
model

Total memory
cost

Query time Low mobility
correction cost

High mobility
correction cost

2D Black-Box
Delaunay [19]

O (n) O (k · n) at
worst, O (k) on
average

O(n) O(Φ2) or
O(n log n)

Kinetic
Compressed
Quadtrees [50]

O(n) 2D: O
(
k · log Φ

)
O(n log ρ) O(n log ρ)

DefSpanner
[55]

O(n) O(k · log Φ) or
O(log r + k)

O(log Φ) O(n log Φ)

Chapter 4:
Acnnptr

O(n) O(k · log Φ) or
O(log r + k)

O(log Φ) Conjecture:
O(n)
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Chapter 2

Distance Estimation

Estimating distances between nodes can be very useful. In many contexts, a node is not in-
terested in knowing the exact state of far away objects; thus, having inexpensive methods for
estimating the distances between nodes can help to reduce message exchanges. For example, in
DVEs (see Section 1.3), nodes usually interact only with other nodes that are close to them in
the virtual world. In addition, in some application-specific cases, distances may be important,
for example when an autonomous vehicle needs to get some information on close-by vehicles,
or when implementing a spell in a game that heals all allies within a certain range. To the best
of our knowledge, no distributed algorithm has been proposed to solve the problem of estimat-
ing the distance between users of a DVE, and in the context of mobile objects, most distance
estimation methods consider that the objects do not know their own position, and use other
means to estimate distance (for example, in [23], external pieces of hardware are used to esti-
mate distance to similarly equipped close-by nodes, and in [104], the number of intermediate
nodes needed for message routing is used in a wireless setting to estimate the physical distance
between nodes).

The objective of this chapter is to provide a solution allowing two interconnected nodes
aware of their own exact position, but not of the other, to estimate the distance between them,
with a condition on the relative error, while guaranteeing that the use of bandwidth is as small
as possible. In particular, it has to be bounded against an ideal algorithm that would send a
minimum number of messages, based on a perfect knowledge of the states of all nodes.

Thus, this chapter looks into a problem that is tangent and complementary to the following
chapters. Here, we find means for any pair of nodes that are connected to each other (that is,
that are able to send messages to each other) to estimate the distance separating them. In the
other chapters, we suppose nodes can already access distances, and we find means for them
to connect in meaningful ways according to their distance (that is, we aim at minimizing the
number of connections, while making it possible for each node to get the set of close-by nodes,
see chapters 3 and 4). Thus, the solutions presented in this chapter could be used alongside the
algorithms from the other chapters, as a means of estimating distances between two connected
nodes.

2.1 Introduction

2.1.1 Related Work
We have seen in Section 1.3, and in particular, in Section 1.3.2, ways for nodes of a DVE to
estimate the state of other nodes. Among these works, we identify two main articles related to
our objective.
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In [102], two techniques are proposed. First, local-lag reduces short-term inconsistencies,
at the cost of less responsiveness: a delay between the time an operation is issued and the time
when the operation becomes effective is added. Secondly, timewarp is proposed, an algorithm
to ensure consistency. In this algorithm, each node remembers all previous operations and the
time at which they were issued. If an operation is received by a node too late, the node rewinds
the state of the world, immediately recomputing the current state, using all needed operations.
These operations are user initiated, thus, the number of messages is proportional to the number
of nodes, and to the length of time. While these solutions garantee high consistency, they are
based on heavy communication to ensure it, and thus are not ideal when looking for bandwidth
efficient solutions.

In [91], Dead-Reckoning is used to compensate for latencies and message losses on the net-
work. TATSI, the average spatial error on nodes’ positions over a time interval, is estimated
with no latency or loss of message. Then, under the assumption of a constant acceleration, la-
tencies and message losses are added to the model, and it is shown that the same TATSI can be
obtained by lowering the dead-reckoning threshold (thus making DVE nodes send more mes-
sages than without latency and message losses). While this article analyses the consistency of
the estimations with regards to the number of message exchanges, the basic idea is to compen-
sate for network issues with additional messages. Again, this solution is thus not what we are
looking for in terms of bandwidth usage.

To summarize, solutions from the literature are very consuming in term of messages and/or
target an additive bound on the error. By contrast, this chapter focuses on bounding the relative
error on distances and keeping the number of message exchanges low.

2.1.2 Limitations and Hypotheses

We use the Black-Box model: the movement of the nodes is synchronous, and we consider that
nodes may move (or more generally, that their movement is taken into account) only at specific
instants, that we call time steps. We also suppose that the nodes are in a synchronous network
(see Section 1.2), in such a way that each time step can be in turn divided in subrounds that
we will call communication rounds. We suppose that latency and clock deviations are small
enough so that if a message is sent during a communication round, the recipient of the message
is guaranteed to have received it at the start of the next communication round.

We assume that computation time is not an issue inside a communication round: in each
communication round, a node may do as many computations, and send as many messages as
needed.

Each node is associated with a position, and has access to its exact value (but the node does
not have access to other nodes’ positions). The message size is enough for nodes to send their
current position with one message. Also, we assume that initially, each node knows the exact
positions of the other nodes.

2.1.3 Contribution

As seen in Section 1.3.2, when two nodes use Dead-reckoning, each of them knows the position
where the other nodes estimate it to be. Thus, a node can send updates only when the tolerated
error between its actual position and its estimated position is exceeded, making it an optimal
bandwidth strategy. On the other hand, since none of the two nodes knows the actual distance
between them, none of them can determine the exact error over the estimated distance, making
distance estimation a much harder problem.
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We consider deterministic algorithms that allow each node to estimate, at any time, the
distances between it and the other node, while having a guarantee on the error. The metric we
use is the relative error given in Equation 2.1, where, at each instant t, dact(t) denotes the actual
distance between two nodes, and dest(t) denotes their estimated distance,

relative error =
|dact(t) − dest(t)|

dest(t)
. (2.1)

We provide consistency by making sure this error measurement never exceeds ε, the maxi-
mum tolerated relative error for any pair of nodes, while minimizing the number of exchanged
messages.

That is, Equation 2.2 must always hold, for every pair of nodes,

(1 − ε)dest(t) < dact(t) < (1 + ε)dest(t). (2.2)

We propose an algorithm, called local change and denoted by Alc. It relies on the same
underlying principle as Dead-reckoning, where position estimations are deterministic and each
node computes its own position as seen by other nodes, using the same deterministic algorithm.
In Alc, a node Bob sends his actual position pB to another node Alice as soon as the estimate
p̃B of the position of Bob as seen by Alice deviates too much from his actual position, more
precisely as soon as Equation 2.3 is violated, where d(p, q) denotes the distance between two
nodes p and q. In addition, Alice will immediately respond to Bob by also sending her actual
position.

d
(
pB(t), p̃B(t)

)
< dest(t) ×

ε

2
. (2.3)

To quantify the performance of our algorithm, we compare the number of messages against
an oracle with a full knowledge of the current state of the game, called ideal algorithm and
denoted byAid. InAid, an exchange of messages happens only when, and as soon as Equation
2.2 is violated.

Our results are threefold. First, without any assumption on how nodes move, we prove that
with Alc the maximal error is never overcome: Equation 2.2 is always satisfied (Theorem 2.1,
Section 2.2).

Secondly, in the case where movement is limited to the random part based on nodes’ actions,
which cannot be anticipated by the deterministic prediction algorithm, we prove that, given ε,
Alc is optimal in terms of number of message exchanges up to a constant factor. In sections 2.3
and 2.4, we use two different movement patterns, both of which consisting, at each time step
t ∈ N (in the Black-Box model), to chose a new position at a distance at most 1 from the last
position.

Finally, this theoretical analysis is complemented by experiments in Section 2.5. We first
perform experiments on synthetic traces. Then, we use actual traces from Heroes of Newerth
[65], to compare Alc with a fixed frequency algorithm, denoted by A f f . A f f is commonly
used in practice in online games. Nodes send messages periodically: after sending a message
containing its most recent position to another node, a node waits w time units before sending the
next message to the same node. We show that overall,Alc behaves better while never exceeding
the maximal tolerated error.

In summary, the performance (without latency) of Aid, Alc, A f f and timewarp [102] in
a setting with n interconnected nodes are shown in Table 2.1. Here, the connection graph is
supposed to be complete (each node is connected to all n − 1 other nodes). T denotes the
duration of the experiment. We consider as a reference mid, the (perfect knowledge based) total
number of messages sent by Aid. In the worst case, Aid would make nodes send one message
each time step (when movement is large compared to the distance), thus mid ≤ Tn(n − 1).
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Note that timewarp functions slightly differently than the others: it is intended to ensure strict
consistency. The number of violations counts, over T time units, the number of distance pairs
for which the error is above ε.

Table 2.1 – Performance of the algorithms

number of messages maximal error number of violations
Aid mid ≤ Tn(n − 1) ≤ ε 0
Alc O(mid) ≤ ε 0

A f f
T
wn(n − 1)

0 if w = 1
Θ(Tn2)

unbounded otherwise
timewarp O(Tn2) 0 0

2.2 Algorithm and Movement Models

2.2.1 Model

Let us first assume that ε ∈]0; 1[. Indeed, ε = 0 means that no error is tolerated, while ε = 1
would accept any estimate on the distance, provided it is larger than half the actual distance,
which is not very informative.

We focus on two nodes Alice and Bob. As told in Section 2.1.2, we assume that the network
is synchronous, and that local computations do not take time.

We use the Black-Box model, and at any time step t ∈ N, we denote the positions of both
nodes as pA(t) and pB(t). A position is a vector whose dimension depends on the virtual world
(for example, for a 3D world, a position is described by a vector in Z3, or R3 in the case of
continuous movement). Each node knows its own actual position, but may not know exactly
where the other node is. These positions can change unpredictably, through the actions of users,
but only at the time steps (not in-between).

In Section 2.3, we conduct analyses on Random Walks (see definition below), up to 3D. In
Section 2.4, we use the Continuous Movement (the definition is also below). As these move-
ments are random, the best possible estimation of the position of other nodes is to assume they
remain still, so that a node will estimate that the other nodes are at their last known position.

Random Walk is a discrete movement taking place on a d-dimensional grid. Thus, positions
can be represented as values from Zd. If at time step t ∈ N, a node following such movement is at
position p = (p1, p2, . . . , pd) it has 2d neighbors: (p1−1, p2, . . . , pd), (p1+1, p2, . . . , pd), (p1, p2−

1, . . . , pd), etc. The movement consists, at each time step, to choose one of the neighbors, each
one with probability 1

2d .
Continuous Movement consists at each time step, to select a value smaller than one, and to

add a vector of norm equal to this value, and with a direction randomly chosen. In 1D, a moving
node adds at each time step, a random number following a uniform distribution on [−1, 1] to
their position. In 2D, at each time step t, a moving node X chooses ρt and θt following uniform
distributions respectively on [0, 1] and [0, 2π], so that pX(t + 1) = pX(t) + (ρt, θt), where (ρt, θt)
is the vector with polar coordinates ρt and θt. In 3D, at each time step t, a moving node chooses
ρt, θt, and ϕt following uniform distributions respectively on [0, 1], [0, 2π] and [0, π], to add as
spherical coordinates.
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•pA

•p̃A

• pB

• p̃B

Figure 2.1 – Knowledge of Alice (dashed blue lines) and Bob (continuous red lines)

2.2.2 Algorithm
As explained in Section 2.1, nodes will estimate their distance to each other. To do this, each
node will compute a deterministic estimation of the other node’s position, in order to get dest(t),
i.e. Bob computes p̃A(t), the estimate of the position of Alice, and Alice computes p̃B(t). As they
use the same deterministic algorithm, these computations can be replicated, and p̃A(t) and p̃B(t)
become a shared knowledge, as shown on Figure 2.1 (even without communication). Thus, we
will use the distance between those two (estimated but shared) positions as distance estimate,
dest(t). In practice, p̃A(t) is generally based on an extrapolation of Alice’s position, speed and
acceleration, from the time of the last message exchanged between Alice and Bob.

As pointed out in Section 2.1.3, Alc makes the nodes send each other updates of the actual
position as soon as Equation 2.3 is not satisfied. For this, we use three communication rounds.
First, a node detects a message exchange is needed, and sends an update to another node. In
the second round, that other node receives the message and answers by sending its own update
to the first node, and the third round is used for the first node to receive that update1. The
procedure is described more precisely in Algorithm 1. The other algorithm,Aid, used as a basis
for comparison, sends updates as soon as the target inequality (Equation 2.2) becomes false, as
depicted in Algorithm 2. As explained previously,Aid is not usable in practice, as it is based on
a perfect knowledge of the state of both nodes, which none of them has.

In Theorem 2.1, we prove thatAlc satisfies Equation 2.2, thus its correctness is established.
As mentioned in the theorem, this correctness is independent of the movement model, and thus
in particular of speed limits.

Theorem 2.1. UsingAlc, Equation 2.2 holds true at any instant (regardless of movement).

Proof. The following inequalities hold true:
dact(t) − dest(t) ≤ d

(
pA(t), p̃A(t)

)
+ d

(
pB(t), p̃B(t)

)
(triangle inequality)

dest(t) − dact(t) ≤ d
(
pA(t), p̃A(t)

)
+ d

(
pB(t), p̃B(t)

)
(triangle inequality)

d
(
pB(t), p̃B(t)

)
< ε

2dest(t) (by construction)
d
(
pA(t), p̃A(t)

)
< ε

2dest(t) (by construction)

so that |dact(t) − dest(t)| < εdest(t), which is equivalent to Equation 2.2. �

2.3 Random Walk Movement
In this section, we focus on the 1D case, where nodes move along the integer line. The per-
formance of Alc is measured by the random variable M, counting the number of message ex-
changes (a message and its response are counted as one) between two nodes using Alc, before

1For clarity, we use three rounds of communication, but two rounds could be enough, by merging the third
round of a time step with the first round of the next time step.
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Algorithm 1 Local change (Alc), from the point of view of Alice
1: Initialization:
2: pA ← Alice’s initial position (*Actual position of Alice. This is a read-only input to the

algorithm*)
3: p̃A ← Alice’s initial position (*Position of Alice, as estimated by Bob, the other node*)
4: p̃B ← Bob’s initial position (*Estimated position of Bob*)
5: dest ← d

(
p̃A, p̃B

)
(*Estimated distance. Will always be equal to d

(
p̃A, p̃B

)
*)

6: procedure Time_step (*To be executed at each time step*)
7: update pA
8: ===== communication round 1 =====

9: if d
(
pA, p̃A

)
≥ ε

2dest then
10: p̃A ← pA
11: dest ← d

(
p̃A, p̃B

)
12: send message (pA) to Bob
13: ===== communication round 2 =====

14: if a message (pB) has been received from Bob then
15: Receive_Message(pB)
16: send message (pA) to Bob
17: ===== communication round 3 =====

18: if a message (pB) has been received from Bob then
19: Receive_Message(pB)

20: procedure Receive_Message(pB)
21: p̃B ← pB

22: dest ← d
(
p̃A, p̃B

)
the first message sent withAid. In this setting, our result thatAlc is optimal is formally stated in
Theorem 2.6 and Theorem 2.9, by an upper bound on the expectation of M. Note that this upper
bound does not hold for a worst-case analysis: M can be infinitely large if nodes come and go,
far enough forAlc to send messages regularly, but not far enough forAid to send messages.

Let us denote by dest and p̃ the estimates for Alc. We will consider instants ti (with i ≥ 1),
defined as the instants at which the i-th round trip of the messages is sent withAlc. Both ti and
M are discrete random variables.

Let d0 = dact(0). Algorithm Aid generates a message as soon as dact leaves Iid, where Iid is
defined by Iid = ]d0 (1 − ε) ; d0 (1 + ε)[. Let topt = min{t : dact(t) < Iid} denote the time of the
first message sent byAid, then

M = max{i, ti ≤ topt}.

Let us now define the auxiliary random variable M′ : min{i, dest(ti) < Iid}. M′ represents the
index of the first message of Alc that is sent when dest is outside of Iid.2 At this instant, by
construction,Aid already sent a message. The following proposition states that an upper bound
for M′ also holds for M.

Proposition 2.2. M′ ≥ M

Proof. By definition of Alc, for every i, dest(ti) = dact(ti). Thus, tM′ ∈ {t, dact(t) < Iid}, so that
tM′ ≥ topt. Since topt ≥ tM, tM′ ≥ tM and M′ ≥ M. �

2We will first see a setting where only Bob moves, and Alice remains at position 0. In that case, M′ represents
the index of the first message ofAlc that is sent as Bob’s position is outside of Iid.
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Algorithm 2 The ideal algorithm,Aid, from the point of view of Alice
1: Initialization:
2: pA ← Alice’s initial position (*Actual position of Alice. This is a read-only input to the

algorithm*)
3: pB ← Bob’s initial position (*Actual position of Bob. This is a read-only input to the

algorithm*)
4: p̃A ← Alice’s initial position (for both nodes) (*Estimated position of Alice*)
5: p̃B ← Bob’s initial position (for both nodes) (*Estimated position of Bob*)
6: dest ← d

(
p̃A, p̃B

)
(for both nodes) (*Estimated distance*)

7: procedure Time_step (*To be executed at each time step*)
8: update pA
9: ===== communication round 1 =====

10: if |dact, dest| ≥ εdest then
11: p̃A ← pA
12: send message (pA) to Bob
13: ===== communication round 2 =====

14: if a message (pB) has been received from Bob then (*Note that if Alice sent a mes-
sage during communication round 1, then Bob also sent a message.*)

15: p̃B ← pB
16: dest ← d

(
p̃A, p̃B

)
In the following sections, we will look for upper bounds on the expected value of M′, and

thus get the same bounds for the expected value of M thanks to Proposition 2.2. For some
executions of the Random Walk, M′ may be arbitrarily larger than M, but this is mitigated by
the fact that we analyze the expected values. However, this opens up the possibility to find
better bounds in future works.

2.3.1 1D Case, Only One of the Nodes Moves
Let us start with the case when only one of the two nodes follows a 1D Random Walk3, as
described in Section 2.2. Then, pA(t) = 0 at any instant t and Bob moves on N, starting at
distance d0 > 0 from Alice so that pB(0) = d0 and

pB(t + 1) =

pB(t) + 1 with probability 1
2

pB(t) − 1 with probability 1
2 .

In this section, we will present two bounds based on the same observation: at each message
sent byAlc, the new position of Bob can take only two values: one closer, and one farther away
from Alice than the previous position; we will call those changes left and right jumps (exact
definitions will be given later). To get the first bound, we analyze the probability for having
a high enough number of successive same-direction jumps to ensure that Aid also has to send
a message, which will give us an upper bound for M. For the second bound, we use a finer

3Note that this movement model is not equivalent to the low mobility setting (see Section 1.6.1): here we
impose that one of the nodes does never move, while in the low mobility setting both nodes may move, but not at
the same time steps. In a setting where several nodes want to estimate their distance with each other, the movement
model of this section imposes that no node moves except for one node (as for each couple of node, only one is
allowed to move). This makes the general case, studied later, where both nodes may move, much more interesting
in practice.
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analysis: noting that, because of the multiplicative nature of the jumps, two opposite jumps end
up reducing the distance between Alice and Bob, we will evaluate the probability of having an
excess of left jumps high enough to ensure that Aid has to send a message, giving us another
bound for M.

Let us first look at the update condition of Alc. Since the movements are 1D, it can be
represented by intervals: Alc generates a message exchange as soon as pB leaves IlcB.

Definition 2.3. With t ∈ ~ti; ti+1~, IlcB(t) =
]
p̃B(ti) − dest(ti) ε2 ; p̃B(ti) + dest(ti) ε2

[
.

As explained in Section 2.2.1, we assume that dest remains constant between two message
exchanges in Alc, i.e. ∀t ∈ ~ti, ti+1~, dest(t) = dest(ti). As a result, we have the following
proposition.

Proposition 2.4. With only Bob following 1D movements, ∀t ∈ ~ti, ti+1~,Alc triggers the i+1-th
round trip of messages as soon as pB(t) gets out of IlcB(t) =

]
dest(ti)

(
1 − ε

2

)
; dest(ti)

(
1 + ε

2

)[
.

Proof. Since Alice does not move and remains at the origin, all messages are generated by Bob
and ∀t ∈ ~ti; ti+1~, p̃B(t) = dest(t). Moreover, since dest(t) = dest(ti), then for Bob, Equation 2.3
is equivalent to |pB(t) − dest(ti)| < dest(ti) × ε

2 , which in turn is equivalent to pB(t) ∈ IlcB(t). �

We have a similar result for the ideal algorithm:

Proposition 2.5. Aid sends the first message as soon as pB(t) gets out of Iid.

Proof. As pB(t) = dact(t), this follows immediately from Equation 2.2. �

First upper bound on M

We provide a first upper bound on the expected value of M, that does not depend on the initial
distance between the nodes.

Theorem 2.6. Let ∆l =

⌈
log(1−ε)−log(1+ε)

log(1− ε2 )

⌉
and ε ∈ ]0; 1[ . With two nodes, one of them following

a Random Walk, on Z, E[M] ≤ ∆l × 2∆l .

To prove Theorem 2.6, let us first look at the estimated distance. When a message is sent in
Alc, dest(ti+1) can take only two values, as stated in Proposition 2.7.

Proposition 2.7. dest(ti+1) =

dest(ti) −
⌈
ε
2dest(ti)

⌉
=

⌊
dest(ti)

(
1 − ε

2

)⌋
(with probability 1

2 )

dest(ti) +
⌈
ε
2dest(ti)

⌉
=

⌈
dest(ti)

(
1 + ε

2

)⌉
(with probability 1

2 )

Proof. By definition of Alc, and since positions of Bob are integers, a message is sent when
the position of Bob gets to the first integer position outside of IlcB. The rightmost equalities
directly follow the properties of floor and ceiling function. Thus, the two possible positions at
time ti+1 are at a same distance from dest(ti) and have therefore the same probability. �

As a result, dest(ti+1) can only take two different values depending on dest(ti), both having the
same probability: either dest(ti+1) =

⌊
dest(ti)

(
1 − ε

2

)⌋
or

⌈
dest(ti)

(
1 + ε

2

)⌉
(see Figure 2.2). We will

call jump, this transformation between dest(ti) and dest(ti+1). We will notate this as two functions:

l : x 7→
⌊
x
(
1 −

ε

2

)⌋
(2.4)

and
r : x 7→

⌈
x
(
1 +

ε

2

)⌉
. (2.5)
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•̃
pA

•̃
pB] [

dest(ti)

ε
2dest(ti) ε

2dest(ti)

Ilc

| | | | | | | | | | | | | | | | | | | |

⌊
dest(ti)

(
1 − ε

2

)⌋ ⌈
dest(ti)

(
1 + ε

2

)⌉
Figure 2.2 – Representation of l-jump and r-jump

To notate which type of jump is applied at instant ti, we will use

mi =

l if dest(ti+1) = l(dest(ti))
r if dest(ti+1) = r(dest(ti)).

(2.6)

We may also define ∆l
4:

∆l =

⌈
log(1 − ε) − log(1 + ε)

log(1 − ε
2 )

⌉
. (2.7)

As stated in Lemma 2.8, ∆l is a number such that ∆l successive l-jumps5 ensure Bob gets
out of Iid, whatever his initial position in the interval Iid.

Lemma 2.8. For all x ∈ Iid, l∆l(x) ≤ d0(1 − ε).

Proof. x ∈ Iid ⇒ x ≤ d0(1 + ε) ⇒ l∆l(x) ≤ l∆l(d0(1 + ε)) since l is increasing, implying that
l∆l(x) ≤ d0(1 + ε)

(
1 − ε

2

)∆l
since ∀x, l(x) ≤ x

(
1 − ε

2

)
. Moreover, since, ∆l ≥

log(1−ε)−log(1+ε)
log(1− ε2 ) and

log
(
1 − ε

2

)
< 0, then (1 + ε)

(
1 − ε

2

)∆l
≤ (1 − ε) and x ∈ Iid ⇒ l∆l(x) ≤ d0(1 − ε) �

Proof of Theorem 2.6. Let us split the sequence of movements of Bob into phases of length ∆l

and let us denote by j the index of the phase containing jumps from m( j−1)∆l to m( j∆l)−1. Let us
consider the following possible events (i) S j: there is at least one i ∈ ~( j − 1)∆l; j∆l� such that
dest(ti) < Iid and (ii) S′j: phase j is composed of l-jumps only. In turn, these events can be used
to define useful random variables: (i) X j = 1 if S j is true, 0 otherwise (ii) X′j = 1 if S′j is true, 0
otherwise, (iii) Y = j if X j = 1 and Xk = 0 for every k < j and (iv) Y ′ = j if X′j = 1 and X′k = 0
for every k < j. Thus, Y denotes the index of the first phase during which Bob gets out of Iid,
and Y ′ denotes the index of the first phase containing only of l-jumps.

If S′j is true, then dest(t j∆l) = l∆l(dest(t( j−1)∆l)). Thus, by Lemma 2.8, S′j ⇒ S j, so that
X′j = 1⇒ X j = 1.

Therefore Y ′ = j⇒ X′j = 1⇒ X j = 1⇒ Y ≤ j and finally E[Y] ≤ E[Y ′]. (2.8)

Moreover, we know that Y ′ follows a geometric distribution with parameter P(X′j = 1) = 1
2∆l

(because each jump has a 1
2 probability of being l or r), so that E[Y ′] ≤ 2∆l . Thus, by Equation

2.8, we have E[Y] ≤ 2∆l . Since Y denotes the index of the first phase during which Bob gets
out of Iid, M′ ∈ ~(Y − 1)∆l; Y∆l�. In particular, M′ ≤ Y∆l and E[M′] ≤ ∆l × 2∆l . Finally,
Proposition 2.2 proves that E[M] ≤ ∆l × 2∆l . �

4For example, for ε = 0.1, we have ∆l = 4.
5We could have used r-jumps, but values are better with l-jumps (the results are not symmetric : the error being

relative, jumps get bigger the farther apart from each other the nodes are). We will later use ∆r, the number of
r-jumps needed to ensure Bob gets out of Iid.
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Second upper bound on M

Theorem 2.9. Let ∆l be defined as previously. If ε ∈ ]0; 1[ , with two nodes, one of them
following a Random Walk, on Z, then E[M] ≤

⌈
4
π
∆l

2
⌉
× 8

We provide a tighter analysis for M, which is formally stated in Theorem 2.9. To establish
this result, we no longer consider phases consisting only of l-jumps, but also phases with a
sufficient excess of l-jumps. This is because a sequence of an l-jump and a r-jump (in any
order) tends to reduce the distance, as proved in Proposition 2.13.

To analyse successive jumps and the difference in numbers of l-jumps and r-jumps, let us
define two additional notations6.

Definition 2.10. Let mi, j = m j−1 ◦ m j−2 ◦ · · · ◦ mi.
This is a function. Given the estimated distance before the i-th jump, the output of mi, j is the

estimated distance before the j-th jump, so that dest(t j) = mi, j(dest(ti))

Definition 2.11. Let σi, j = card({k : mk = l, k ∈ ~i, j − 1�}) − card({k : mk = r, k ∈ ~i, j − 1�}).
This is a number : σi, j denotes the excess in l from mi to m j−1.

We will need the following result in order to prove Theorem 2.9:

Theorem 2.12. If σi, j ≥ ∆l, and x ∈ Iid, then mi, j(x) < Iid.

Let us first prove the following properties:

Proposition 2.13. ∀p ∈ N, l ◦ r(p) ≤ p, and r ◦ l(p) ≤ p.

Proof. l(p) = p −
⌈

pε
2

⌉
, and r(p) = p +

⌈
pε
2

⌉
, so that

l ◦ r(p) = p +

⌈ pε
2

⌉
−

⌈ pε
2

+

⌈ pε
2

⌉
ε

2

⌉
≤ p since

⌈ pε
2

⌉
≤

⌈ pε
2

+

⌈ pε
2

⌉
ε

2

⌉
and r ◦ l(p) = p −

⌈ pε
2

⌉
+

⌈ pε
2
−

⌈ pε
2

⌉
ε

2

⌉
≤ p since

⌈ pε
2
−

⌈ pε
2

⌉
ε

2

⌉
≤

⌈ pε
2

⌉
.

�

Proposition 2.14. ∀(p, q) ∈ N2,∀s ∈ N and ∀ f = f1 ◦ f2 ◦ · · · ◦ fs, where fk = l or r for all
1 ≤ k ≤ s, if p ≤ q, then f (p) ≤ f (q).

Proof. The proof is obtained by noting that the ceiling, floor, l and r functions and their com-
positions are increasing functions. �

Lemma 2.15. Let j > i and let us assume that σi, j ≥ 0. ∀p ∈ N, mi, j(p) ≤ lσi, j(p).

Proof. Let f = f1 ◦ f2 ◦ · · · ◦ fs where fk = l or r for all 1 ≤ k ≤ s. Let T : f 7→ f ′ with
f ′ = f1 ◦ · · ·◦ fk ◦ fk+3 ◦ · · ·◦ fs so that fk+1 ◦ fk+2 = r◦ l or l◦r, i.e. T simply consists of removing
the first occurrence of r ◦ l or l ◦ r. Then, fk+1 ◦ fk+2 ◦ fk+3 ◦ · · · ◦ fs(x) ≤ fk+3 ◦ · · · ◦ fs(x) thanks
to Proposition 2.13, and f1 ◦ · · · ◦ fs(x) ≤ f1 ◦ · · · ◦ fk ◦ fk+3 ◦ · · · ◦ fs(x) thanks to Proposition
2.14, so that

f (x) ≤ T ( f )(x). (2.9)

Let T ∗ : f 7→ f ∗ with f ∗ being the result of the recursive application of T on f until only ls
remain (remember that σi, j ≥ 0). By Equation 2.9, f (p) ≤ T ∗( f )(p). As T ∗(mi, j) = lσi, j , finally
mi, j(p) ≤ lσi, j(p). �

6We use here the standard mathematical notation of ◦ for the function composition g ◦ f (x) = g( f (x)).
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Proof of Theorem 2.12. Let σi, j ≥ ∆l and p ∈ Iid. Since ∆l > 0, σi, j > 0. Thus, thanks to
Lemma 2.15, fi, j(x) ≤ lσi, j(x) ≤ l∆l(x) (because l(x) ≤ x and σi, j ≥ ∆l). Thus, fi, j(x) ≤ d0(1 − ε)
thanks to Lemma 2.8, and by definition of Iid, we have fi, j(p) < Iid �

The following lemma provides a lower bound on the probability of the event σi, j ≥ ∆l, that
will be later used to get an upper bound on the expectation of M.

Lemma 2.16. If j − i = 2
⌈

4
π
∆l

2
⌉
, then P(σi, j ≥ ∆l) ≥ 1

4 .

Proof. Let Φ = j − i = 2
⌈

4
π
∆l

2
⌉

be the number of jumps between mi and m j−1, and let Λ =

card({k : mk = l, k ∈ ~i, j − 1�}) be the number of l-jumps between mi and m j−1. Then, σi, j ≥

∆l ⇔ 2Λ − Φ ≥ ∆l ⇔ Λ ≥ ∆l+Φ

2 so that

P(σi, j ≥ ∆l) = P

(
Λ ≥

∆l + Φ

2

)
=

Φ∑
k=

⌈
∆l+Φ

2

⌉
(
Φ

k

)
×

1
2Φ

because P(Λ = k) =

(
Φ

k

)
×

1
2Φ

=
1

2Φ


Φ∑

k= Φ
2 +1

(
Φ

k

)
−

⌈
∆l+Φ

2

⌉
−1∑

k= Φ
2 +1

(
Φ

k

) because
⌈
∆l + Φ

2

⌉
>

Φ

2
+ 1.

Moreover, as Φ is even,
∑Φ

k=0

(
Φ

k

)
= 2Φ = 2 ×

∑Φ

k= Φ
2 +1

(
Φ

k

)
+

(
Φ
Φ
2

)
so that

P(σi, j ≥ ∆l) =
1

2Φ


2Φ −

(
Φ
Φ
2

)
2

−

⌈
∆l+Φ

2

⌉
−1∑

k= Φ
2 +1

(
Φ

k

)
=

1
2
−

(
Φ
Φ
2

)
2Φ+1 −

1
2Φ

⌈
∆l+Φ

2

⌉
−1∑

k= Φ
2

(
Φ

k

)
+

(
Φ
Φ
2

)
2Φ
≥

1
2
−

1
2Φ

⌈
∆l+Φ

2

⌉
−1∑

k= Φ
2

(
Φ

k

)
.

There are
⌈

∆l+Φ

2

⌉
− Φ

2 elements in the remaining sum. Note that
⌈

∆l+Φ

2

⌉
≤

∆l+Φ

2 +1⇒
⌈

∆l+Φ

2

⌉
− Φ

2 ≤

∆l
2 +1 and that each element of the sum is smaller than the first one since

(
Φ
Φ
2

)
≥

(
Φ

Φ
2 +n

)
. Therefore,

P(σi, j ≥ ∆l) ≥
1
2
−

1
2Φ
×

(
∆l

2
+ 1

)
×

(
Φ
Φ
2

)

≥
1
2
−

1
2Φ
×

(
∆l

2
+ 1

)  2Φ√
Φ
2 × π


≥

1
2

1 − ∆l
√

2
√

Φπ

 +

 √2
√

Φπ


≥

1
2

1 − √
π

8
×

√
2
π

 +

 √2
√

Φπ

 because Φ ≥
8
π

∆l
2
⇒

√
π

8
≥

∆l
√

Φ

≥
1
4

+

 √2
√

Φπ

 ≥ 1
4

because Φ > 0.

�
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Proof of Theorem 2.9. As for the proof of Theorem 2.6, let us split the sequence of Bob move-
ments in phases of length Φ and let us denote by j the index of the phase containing jumps
m( j−1)Φ through m( jΦ)−1. Let us consider the following events (i) S j: there is at least one
i ∈ ~( j − 1)Φ; jΦ� such that dest(ti) < Iid and (ii) S′′j : either dest(t( j−1)Φ) < Iid, or dest(t jΦ) < Iid.
These events can in turn be used to define the following random variables (i) X j = 1 if S j is
true, 0 otherwise (ii) X′′j = 1 if S′′j is true, 0 otherwise (iii) Y = j if X j = 1 and Xk = 0 for every
k < j and (iv) Y ′′ = j if X′′j = 1 and X′′k = 0 for every k < j. Thus Y denotes the index of the
first phase during which Bob gets out of Iid.

If S′′j is true, then S j also holds true. Thus, in a similar way as for Theorem 2.6, Y ′′ =

j ⇒ X′′j = 1 ⇒ X j = 1 ⇒ Y ≤ j and thus E[Y] ≤ E[Y ′′]. Moreover, by Theorem 2.12 and
Lemma 2.16, if Φ =

⌈
4
π
∆l

2
⌉
× 2, then P(S′′j ) ≥ 1

4 . Note that Y ′′ follows a geometric distribution
with parameter P(X′′j = 1), so that E[Y] ≤ E[Y ′′] ≤ 4. Since Y denotes the index of the first
phase during which Bob gets out of Iid, then M′ ∈ ~(Y−1)Φ; YΦ�. In particular, since M′ ≤ YΦ,
E[M′] ≤ Φ × 4. By Proposition 2.2, we get E[M] ≤

⌈
4
π
∆l

2
⌉
× 8. �

Conclusion

In the 1D case, we prove that E[M] is smaller than both ∆l × 2∆l and
⌈

4
π
∆l

2
⌉
× 8, where ∆l =⌈

log(1−ε)−log(1+ε)
log(1− ε2 )

⌉
. Actually, the choice of the best upper bound depends on values of ε. We can

also observe that limε→1 ∆l = ∞, meaning that there is no upper bound on M when ε is close
to 1. This is not surprising, since a value of 1 for ε would make the left bound of Iid become
0 and Alc could perform an infinite number of l-jumps before the first message of Aid if d0 is
large enough. Experiments depicted in Section 2.5 indeed show that M can become large when
ε gets close to one.

2.3.2 1D Case, Both Nodes Move
In this section, we consider that both nodes move (under the same stochastic movement model)
on the integer line Z. Again, we concentrate on a single pair of nodes Alice and Bob but the
results apply to any pair of nodes and therefore can be extended to any number of nodes.

At each time step, both Alice and Bob move. Thus, we have, for any t ≥ 1, for Alice:

pA(t) =

pA(t − 1) + 1 with probability 1
2

pA(t − 1) − 1 with probability 1
2

(2.10)

and for Bob:

pB(t) =

pB(t − 1) + 1 with probability 1
2

pB(t − 1) − 1 with probability 1
2 .

(2.11)

The equality between position and distance (p̃B(t) = dest(t)) is no longer valid so that Propo-
sition 2.4 does not hold. However, we will keep IlcB(t) =

]
p̃B(ti) − dest(ti) ε2 ; p̃B(ti) + dest(ti) ε2

[
,

and we will add IlcA(t) =
]
p̃A(ti) − dest(ti) ε2 ; p̃A(ti) + dest(ti) ε2

[
. The definition of interval Iid

remains unchanged, and messages are exchanged at t such that dact(t) < Iid (and not pB). Theo-
rem 2.17 is an extension of Theorem 2.6 in the case where both nodes move.

Theorem 2.17. Let ∆l be defined as previously. If ε ∈ ]0; 1[ , then with two nodes following a
Random Walk on Z, E[M] ≤ ∆l × 4∆l

Proof. Assume, without loss of generality that Bob remains to the right of Alice, that is, pB >
pA. After the (i+1)-th round trip of messages inAlc, i.e. at instant ti+1, one of the four following
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events takes place (i) Bl: at instant ti+1, node Bob gets out of IlcB by getting closer to Alice;
(ii) Br: at instant ti+1, node Bob gets out of IlcB by getting farther away from Alice; (iii)Al: at
instant ti+1, node Alice gets out of IlcA by getting farther away from Bob ; (iv) Ar: at instant
ti+1, node Alice gets out of IlcA by getting closer to Bob.

At least one of these events has to hold true: P(Bl ∪ Br ∪ Al ∪ Ar) = 1. Additionally, all
four events have the same probability, as both nodes start at the center of their interval at instant
ti. Thus, P(Bl) = P(Br) = P(Al) = P(Ar) ≥ 1

4 .
Let us consider for instance the situation whereBl is true, i.e. p̃B(ti+1) = p̃B(ti)−

⌈
dest(ti) × ε

2

⌉
.

When Bob gets out of IlcB(ti), as movement is symmetric, Alice has one half probability to be
on one side of p̃A(ti), thus P(p̃A(ti+1) ≥ p̃A(ti)|Bl) ≥ 1

2 .

Moreover, p̃A(ti+1) ≥ p̃A(ti) ⇒ p̃B(ti+1) − p̃A(ti+1) ≤ p̃B(ti) − p̃A(ti) −
⌈
dest(ti) ε2

⌉
by definition

of Bl. Therefore, we have that dest(ti+1) ≤ dest(ti)−
⌈
dest(ti) ε2

⌉
because Bob is on the right side of

Alice. Finally, we get dest(ti+1) ≤ dest(ti)
(
1 − ε

2

)
. Thus, P

(
dest(ti+1) ≤ dest(ti)

(
1 − ε

2

)
|Bl

)
≥ 1

2 and

by a comparable reasoning on node Alice, we get P
(
dest(ti+1) ≤ dest(ti)

(
1 − ε

2

)
|Ar

)
≥ 1

2 . Thus,

using the law of total probability, we get P
(
dest(ti+1) ≤ dest(ti)

(
1 − ε

2

))
≥ 1

2×P(Bl)+ 1
2×P(Ar)+0×

P(Br)+0×P(Al) ≥ 1
4 Repeating this operation ∆l times, we get P

(
dest(ti+∆l) ≤ dest(ti)

(
1 − ε

2

)∆l
)
≥

1
4∆l
. and similarly to Lemma 2.8, we get dest(ti) ∈ Iid ⇒ dest(ti) ≤ d0(1 + ε)⇒ dest(ti)

(
1 − ε

2

)∆l
≤

d0(1 + ε)
(
1 − ε

2

)∆l
and since ∆l ≥

log(1−ε)−log(1+ε)
log(1− ε2 ) then dest(ti) ∈ Iid ⇒ dest(ti)

(
1 − ε

2

)∆l
≤ d0(1 −

ε)⇒ dest(ti)
(
1 − ε

2

)∆l
< Iid.

Hence, ∀i, dest(ti) ∈ Iid ⇒ P
(
dest(ti+∆l) < Iid

)
≥

1
4∆l

. (2.12)

To prove Theorem 2.17, we rely on the same techniques as for Theorem 2.6 and Theorem 2.9,
by splitting the sequence of jumps into phases of length ∆l, and by denoting as j the index of
the phase containing jumps m( j−1)Φ through m jΦ−1. Let us consider the event S j: there is at least
one i ∈ ~( j− 1)∆l; j∆l� such that dest(ti) < Iid and the random variables (i) X j = 1 if S j is true, 0
otherwise, (ii) Y = j if X j = 1 and Xk = 0 for all k < j. By Equation 2.12, if dest(t( j−1)∆l) ∈ Iid,
then P

(
dest(t j∆l) < Iid

)
≥ 1

4∆l
so that P(S j) ≥ 1

4∆l
and E[Y] ≤ 4∆l . Since Y denotes the index of

the first phase during which Bob gets out of Iid, then M′ ∈ ~(Y − 1)∆l; Y∆l� and in particular,
M′ ≤ Y∆l, so E[M′] ≤ ∆l × 4∆l . By Proposition 2.2, we finally obtain E[M] ≤ ∆l × 4∆l , what
achieves the proof of Theorem 2.17. �

2.3.3 2D and 3D Case

As seen in Section 2.2, in a d-D space space, the movement of a node consists in following a
Random Walk on a d-D grid. If at an instant t, a node is at position p = (p1, p2, . . . , pd), then
there are 2d adjacent positions: (p1−1, p2, . . . , pd), (p1 + 1, p2, . . . , pd), (p1, p2−1, . . . , pd), . . . ,
(p1, p2, . . . , pd − 1), (p1, p2, . . . , pd + 1). The movement consists, at each time step t ∈ N, to
chose one of those adjacent positions, each with probability 1

2d .
In 2D, for example, this means that, at each time step, a moving node adds one of the

following to his/her position: (−1, 0), (1, 0), (0,−1), or (0, 1).
For our analysis, we will use the L1 distance (Manhattan distance), that is, for two positions

p = (p1, p2) and p′ = (p′1, p′2), the distance is d(p, p′) = |p1 − p′1| + |p2 − p′2|. We consider here
the general case where both nodes may move.
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The bound we find in this section is a generalization of the bound found in 1D, as it relies on
the same principle. We will first evaluate the probability that the node that triggers a message
exchanges does it by getting farther away from the other node. For this, we observe that a
message exchange happens when one of the nodes lands on the borders of an L1-Ball, and that
one of its faces has all its points far away from the other node.

We then evaluate the probability that the two nodes are significantly farther away when they
communicate, and use a similar method as previously to get an upper bound for M.

Let us call d the number of dimensions, supposed less than or equal to three. Let us prove
that in a d-D space, we have a similar bound than in the 1D case.

Theorem 2.18. In a d-D Euclidian space, with d ≤ 3, and ∆r =

⌈
log(1+ε)−log(1−ε)

log(1+ ε
2 )

⌉
, and with two

nodes moving, we have E[M] ≤ ∆r ×
(
2d+1

)∆r

As can be seen in Theorem 2.18, this time, we use ∆r, the number of r-jumps needed to
ensure a message withAid, instead of ∆l as in the previous section. This is for simplicity of the
proofs: we will later use R, the set of positions that lead to a r-jump; the equivalent for l-jumps
would be more complicated to define and use.

Let us assume, without loss of generality, that Bob is the node that triggers the (i + 1)-th
message, at instant ti+1.

Let us call BA(t) (resp. BB(t)) the L1-ball of radius
⌈
dest(t) ε2

⌉
, and of center p̃A(t) (resp.

p̃B(t)). Thus, BA(t) is the set of positions that are at a distance from p̃A(t) less than or equal to⌈
dest(t) ε2

⌉
(this is the lower square on Figure 2.3a).

Remark 2.19. WithAlc, the (i + 1)-th message is sent when Bob is on the border of BB(ti).

Proof. WithAlc, the (i + 1)-th message is sent when Bob gets at a position that is at a distance
at least ε

2dest(ti) from p̃B(ti). As movement is on integer positions, the first positions satisfying
this are all on the border of BB(ti). �

This ball BB has 2d faces of dimension (d − 1). We may draw cones, each taking one of
these faces as base, and with p̃B(ti) as the apex: all points of the space will be in only one of the
cones, except for points on the borders (see Figure 2.3b for a two-dimensional example, where
the borders of the cones are the dashed lines).

Let us call R the face that is included in the cone opposing the one containing p̃A(ti). In the
case where p̃A(ti) is contained in two cones (that is, if p̃A(ti) and p̃B(ti) have one coordinate in
common), than any of the two opposing faces can be taken for R. R is represented in red on
Figure 2.3b, and as we will see in Lemma 2.20, it is a set of positions p such that d

(
p, p̃A(ti)

)
=⌈

dest(ti)
(
1 + ε

2

)⌉
.

Before being able to identify the effect a message has on the estimated distance (which we
will do in Lemma 2.23), we analyse how far Bob’s estimated position can get from Alice (below
in Lemma 2.20).

Lemma 2.20. If p̃B(ti) , p̃A(ti), P
(
d
(
p̃A(ti), p̃B(ti+1)

)
≥

⌈
dest(ti)

(
1 + ε

2

)⌉)
≥ 1

2d

Proof. All points of R are at distance
⌈
dest(ti)

(
1 + ε

2

)⌉
of p̃A(ti) (for this, consider one of the

endpoints of the face, like α on Figure 2.3b, for which all coordinates are the same as for p̃B(ti),
except one, where the absolute value is larger by

⌈
ε
2dest(ti)

⌉
). It thus remains to be proven that

P
(
p̃B(ti+1) ∈ R

)
≥ 1

2d .
By Remark 2.19, p̃B(ti+1) is on the border ofBB(ti), which is, by definition of the L1 distance,

a hypercube with 2d faces. As the Random Walk is symmetric, we have a probability of at least
1
2d that Bob sends the (i + 1)-th message by going on face R. �

68



BA(ti)

BB(ti)

R

Π

•

p̃A(ti)

•
p̃B(ti)

•

p̃B(ti+1)

γ

δ

(a) When Bob gets on R, half of the possible positions
of Alice are farther away.

R

p̃A(ti)

p̃B(ti)

β

α

⌈
ε
2dest(ti)

⌉cone con-
taining
p̃A(ti)

cone
opposing
the one

con-
taining
p̃A(ti)

(b) One of the face ofBB is always sufficiently
far away from p̃A(ti).

Figure 2.3 – Random walk, two-dimensional case

In Lemma 2.20, the movement of Alice is not taken into account. Let us call Π the hyper-
plane parallel to R and containing p̃A(ti) (see Figure 2.3a for a two-dimensional example).

Remark 2.21. As Π contains p̃A(ti), the center of BA, Π divides BA into two halves of the same
size.

Lemma 2.22. At least half of the points p of BA satisfy :

d
(
p, p̃B(ti+1)

)
≥ d

(
p̃A(ti), p̃B(ti+1)

)
.

Proof. By definition of the L1 distance, and because Π is parallel to R, if we draw, on Π, a
polygon connecting d points that are the projections of p̃B(ti+1) parallel to the d axes (γ and δ on
Figure 2.3a), then all points of Π inside this polygon (including the borders) are all at the same
distance to p̃B(ti+1).

Also, by definition of R, p̃A(ti) is inside the polygon. Thus, all points of the polygon are at
a distance to p̃B(ti+1) equal to d

(
p̃A(ti), p̃B(ti+1)

)
.

If we draw the L1-ball of center p̃B(ti+1) and of radius d
(
p̃A(ti), p̃B(ti+1)

)
, then the polygon is

one of the faces of the ball. By Remark 2.21, we have that at least half of the points from BA

are outside this ball, with a distance to p̃B(ti+1) higher than the radius of the ball. �

We can now look at the estimated distance.

Lemma 2.23. As long as p̃B(ti) , p̃A(ti), P
(
dest(ti+1) ≥

⌈
dest(ti)

(
1 + ε

2

)⌉)
≥ 1

2d+1

Proof. As Alice does not get out of BA, we know that p̃A(ti+1) ∈ BA. By Lemma 2.22, and by
symmetry of the random movement, d

(
p̃A(ti+1), p̃B(ti+1)

)
≥ d

(
p̃A(ti), p̃B(ti+1)

)
with probability 1

2 .
Thus, the result is the same as for Lemma 2.20, but with half as much probability. �

As we consider r-jumps, we have to adapt Lemma 2.8 as follows.

Lemma 2.24. For all x ∈ Iid, r∆r (x) ≥ d0(1 + ε).
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Proof. x ∈ Iid ⇒ x ≥ d0(1 − ε) ⇒ r∆r (x) ≥ r∆r (d0(1 − ε)) since r is increasing, implying that
r∆r (x) ≥ d0(1 − ε)

(
1 + ε

2

)∆r
since ∀x, r(x) ≥ x

(
1 + ε

2

)
. Moreover, since, ∆r ≥

log(1+ε)−log(1−ε)
log(1+ ε

2 ) ,

then (1 − ε)
(
1 + ε

2

)∆l
≥ (1 + ε) and x ∈ Iid ⇒ r∆r (x) ≥ d0(1 + ε) �

We are now ready to prove the main result of this section:

Proof of Theorem 2.18. This proof is very similar to Theorem 2.6. By Lemma 2.23, we know
that the probability of having a r-jump (as defined in Equation 2.6) at an instant ti, is at least

1
2d+1 .

With phases of length ∆r and j the index of the phase containing jumps from m( j−1)∆r to
m j∆r−1, we have (i) S j: there is at least one i ∈ ~( j− 1)∆r; j∆r� such that dest(ti) < Iid (ii) S′j: the
phase j is composed only of r-jumps. (iii) X j = 1 if S j is true, 0 otherwise (iv) X′j = 1 if S′j is
true, 0 otherwise (v) Y = j if X j = 1 and Xk = 0 for every k < j and (vi) Y ′ = j if X′j = 1 and
X′k = 0 for every k < j. Thus, Y denotes the index of the first phase during which Bob gets out
of Iid.

If S′j is true, then dest(t j∆r ) = r∆r (dest(t( j−1)∆r )). Thus, by Lemma 2.24, S′j ⇒ S j, so that
X′j = 1⇒ X j = 1.

Therefore Y ′ = j⇒ X′j = 1⇒ X j = 1⇒ Y ≤ j and finally E[Y] ≤ E[Y ′]. (2.13)

Moreover, we know that Y ′ follows a geometric distribution with parameter P(X′j = 1) ≥
1

(2d+1)∆r (because each jump has at least probability 1
2d+1 of being r), and E[Y ′] ≤

(
2d+1

)∆r
. Thus,

by Equation 2.13, we have E[Y] ≤
(
2d+1

)∆r
. Since Y denotes the index of the first phase during

which Bob gets out of Iid, M′ ∈ ~(Y − 1)∆r; Y∆r�. In particular, M′ ≤ Y∆r and E[M′] ≤
∆r ×

(
2d+1

)∆r
. Finally, Proposition 2.2 proves that E[M] ≤ ∆r ×

(
2d+1

)∆r
. �

Remark 2.25. If only one node moves, then E[M] ≤ ∆r ×
(
2d

)∆r

Proof. The proof is the same as for Theorem 2.18, noticing that d
(
p̃A(ti), p̃B(ti+1)

)
= dest(ti+1).

�

2.4 Continuous Movement, Discrete Time
In this section, we present bounds on M for the Continuous Movement. We consider here only
the general case where both nodes may move.

2.4.1 1D Case
As we have seen in Section 2.2, in one dimension, the movement simply consists in adding to
the position a random number following a uniform distribution on [−1, 1].

The problem is that when node X gets out of BX(ti), then the next position may take several
values: for example, if X got out by the left, then p̃X(ti) may take any value smaller than the left
bound of BX(ti) and higher to this bound minus one (the biggest movement he may have done
at the last time step before getting out).

Nevertheless, the equivalent of Theorem 2.17 still holds true in this setting:

Theorem 2.26. If ε ∈ ]0; 1[ , then with two nodes following a continuous random movement on
R, E[M] ≤ ∆l × 4∆l .
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To see this, let us again call mi the transformation between dest(ti) and dest(ti+1). This time
we will get:

mi ∈

L if dest(ti+1) ≤ dest(ti)
(
1 − ε

2

)
R if dest(ti+1) ≥ dest(ti)

(
1 + ε

2

) (2.14)

By definition of Alc, mi has to be in either L or R, and the probability is actually 1
2 for both

cases.
Using this, we have a result comparable to Lemma 2.8:

Lemma 2.27. For all x ∈ Iid, if j − i ≥ ∆l, and all mk ∈ L for k ∈ ~i, j − 1� then m j−1 ◦ m j−2 ◦

· · · ◦ mi(x) ≤ d0(1 − ε).

Proof. Let us call m∆l
i = m j−1 ◦ m j−2 ◦ · · · ◦ mi.

Let us assume that mk ∈ L . All the mk are increasing, as mk is necessary of the form x 7→
x
(
1 − ε

2

)
−ak, with ak ∈ [0, 1]. Thus, we have x ∈ Iid ⇒ x ≤ d0(1+ε)⇒ m∆l

i (x) ≤ m∆l
i (d0(1+ε)),

what implies that m∆l
i (x) ≤ d0(1 + ε)

(
1 − ε

2

)∆l
, since ∀k ∈ ~i, j − 1� and ∀x, mk(x) ≤ x

(
1 − ε

2

)
.

Moreover, since, ∆l ≥
log(1−ε)−log(1+ε)

log(1− ε2 ) and log
(
1 − ε

2

)
< 0, then (1 + ε)

(
1 − ε

2

)∆l
≤ (1 − ε) so that

x ∈ Iid ⇒ m∆l
i (x) ≤ d0(1 − ε) �

The proof of Theorem 2.26 is then a direct translation of the proof of Theorem 2.17.

2.4.2 2D Case
As we have seen in Section 2.2, in two dimensions, the movement consists in choosing an angle
θ between 0 and 2π, and moving a distance ρ between 0 and 1 in that direction. Thus, at each
time step t, a moving node X chooses θt and ρt following continuous distributions respectively
on [0, 2π] and [0, 1], so that pX(t + 1) = pX(t) + (ρt, θt), where (ρt, θt) is the vector with polar
coordinates ρt and θt.

Our result is as follows:

Theorem 2.28. With Γ = 2 log(1+ε)−log(1−ε)

log
(
1+ ε√

2
+ ε2

4

) , with two nodes following a random Continuous

Movement in two dimensions as defined previously, and implementing Alc we have: E[M] ≤
Γ × 8Γ.

This time again, we will call Bob the node who gets out the first of his set of authorized
positions withAlc, meaning that Bob is the node to initiate communication at instant ti+1.

In this setting, we will use the euclidian distance: BB(ti) takes the form of a disk of center
p̃B(ti) and of radius ε

2dest, as represented on Figure 2.4. We will use the same general principle

as before, considering only jumps of a single type. Let us call rcm : x 7→ x
√(

1 + ε2

4 + ε
√

2

)
.

In order to identify rcm-jumps, let us consider the annulus of inner circle BB(ti), and with
an outer circle of radius ε

2dest + 1 (see Figure 2.4). As no message is sent by Alc as long as
Bob remains in BB(ti), and as he doesn’t move more than one distance unit each moment, this
annulus represents the set of positions Bob can take if he triggers a message exchange.

We will call R the portion of this annulus on the opposite side of p̃A(ti), (represented as a red
hatched zone on Figure 2.4), that deviates not more than π

4 from the straight line between p̃A(ti)
and p̃B(ti). More formally, with t the intersection between BB and the line (p̃A(ti) p̃B(ti)), on the
opposite side of p̃A(ti), thenR =

{
s, ∠sp̃B(ti)t ∈

[
−π4 ,

π
4

]
and d

(
s, p̃B(ti)

)
∈

[
ε
2dest(ti), ε2dest(ti) + 1

]}
,

where ∠sp̃B(ti)t denotes the measure of the angle formed by the three points s, p̃B(ti), and t.
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•

p̃A(ti)

•
p̃B(ti)

dest(ti)

π
4

BB(ti)

R

•
α

•
β •

t

ε
2dest(ti)

1

Figure 2.4 – Representation of BB(ti), of R (the set of points corresponding to an rcm-jump), and
other associated values.

We will see in Lemma 2.30 that R is a set of points corresponding to an rcm-jump, that is, if
p̃B(ti+1) ∈ R, than dest(ti+1) ≥ rcm

(
dest(ti)

)
.

We first identify the probability for Bob to send his position when getting inR in Lemma 2.29.

Lemma 2.29. In two dimensions, P( p̃B(ti+1) ∈ R) = 1
4 .

Proof. As a node does not move more than one distance unit per time unit, the first time step
when Bob gets outside of BB(ti), he will be in the annulus. Thus p̃B(ti+1) is inside the annulus.

Without loss of generality, let us consider only the movement between Bob’s initial position
(pB(0), actually equal to p̃B(0)) and the position at time of the first message (pB(t1), actually
equal to p̃B(t1)). Let us call T = (p0, p1, . . . , pt1) the trajectory taken by Bob to get on p̃B(t1),
with pt the position Bob had at time step t, where t ∈ ~0, t1�. We have p0 = pB(0), p1 = pB(1),
etc., and pt1 = p̃B(t1).

See Figure 2.5 for a representation of the values.
Let us consider following random variables:

• R, taking the value of d
(
p0, pti

)
.

• Θ, taking the value of the angle between the dashed lines of Figure 2.5, that is, the angle
formed by t, p0, and pti , with t the intersection between BB and the line ( p̃A(0)p0), on the
opposite side of p̃A(0) (similarly to t on Figure 2.4).

As the Random Walk consists in randomly picking an angle θt and a distance ρt at every
time step t, we have that pt1 = p0 + (ρ0, θ0) + (ρ1, θ1) + · · · + (ρt1−1, θt1−1), where (ρt, θt) is the
vector of radius ρt and angle θt in polar coordinates.

Let us suppose that t1 = k for some k > 0, or in other words, that the trajectory T consists
of k hops. Because the θt all follow a uniform distribution, for any angle γ, the probability that
pt1 = p0 + (ρ0, θ0) + (ρ1, θ1) + · · ·+ (ρt1−1, θt1−1) is equal to the probability that pt1 = p0 + (ρ0, θ0 +
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Θ

R

p0
p1

p2

p3

pt1

Rmin

Rmin + 1

Figure 2.5 – Representation of the values used to compute the probability of a rcm-jump (Lemma
2.29)

γ)+(ρ1, θ1 +γ)+· · ·+(ρt1−1, θt1−1 +γ). More exactly, P(a ≤ Θ ≤ b) = P(a+γ ≤ Θ ≤ b+γ) for any
γ, regardless of the value of R. As additionally7,

∫ 2π

0
fΘ(x)dx = 1, we get that

∫ π
4

− π4
fΘ(x)dx = 1

4 .
Let us note Rmin the radius ofBB(ti) (that is, Rmin = ε

2dest). As Bob cannot move of more than

one distance unit per time step, we have
∫ Rmin+1

Rmin
fR(x)dx = 1. Thus,

∫ Rmin+1

Rmin

∫ π
4

− π4
fΘ,R(x, y)dxdy =

1
4 .

Moreover, we have
∫ Rmin+1

Rmin

∫ π
4

− π4
fΘ,R(x, y)dxdy = P(p̃B(t1) ∈ R). As we supposed that t1 = k is

true, we have that P( p̃B(t1) ∈ R | t1 = k) = 1
4

By the law of total probability, we have that
∑+∞

0

(
P
(
p̃B(t1) ∈ R | t1 = k

)
× P(ti = k)

)
=

P( p̃B(t1)) ∈ R) = 1
4 .

This remains true if we replace instants 0, 1, 2, . . . , t1 by ti, ti + 1, ti + 2, . . . , ti+1, proving this
lemma. �

We may then identify, in Lemma 2.30 and Lemma 2.31, situations where rcm appears.

Lemma 2.30. With two nodes moving in two dimensions,

P
(
dest(ti+1) ≥ rcm

(
dest(ti)

)
| p̃B(ti+1) ∈ R

)
≥

1
2

.

Proof. Let us assume p̃B(ti+1) ∈ R.
The two points of R that are closest to p̃A(ti) are α and β, the two points of the border

of BB(ti) so that ∠αp̃B(ti)t = ∠t p̃B(ti)β = π
4 (with again t the intersection between BB and

the line (p̃A(ti) p̃B(ti)), on the opposite side of p̃A(ti)), see Figure 2.4. Thus, if we call d′ the
distance between p̃A(ti) and α (which is also the distance between p̃A(ti) and β), we have
d
(
p̃A(ti), p̃B(ti+1)

)
≥ d′.

As can be seen on Figure 2.6, the value of d′ can be given by the law of cosines, relatively
to the value of dest(ti):

d′ =

√
dest(ti)2 +

ε2

4
dest(ti)2 − dest(ti)2ε cos

(
3π
4

)
= dest(ti)

√(
1 +

ε2

4
+

ε
√

2

)
7We use here the classical notation of probability density function : for any continuous random variable X, we

denote by fX its density.
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2dest(ti)
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Figure 2.6 – Representation of the different values used to measure an rcm-jump

This corresponds to rcm.
Thus, P(d

(
p̃A(ti), p̃B(ti+1)

)
≥ rcm(dest(ti))| p̃B(ti+1) ∈ R) = 1.

We may then notice that, as Alice remains insideBA(ti), the probability that p̃A(ti+1) is farther
away from p̃B(ti+1) than p̃A(ti) is at least one half. This gives us the final result. �

Lemma 2.31. With two nodes moving, P
(
dest(ti+1) ≥ rcm

(
dest(ti)

))
≥ 1

8

Proof. The proof of Lemma 2.31 is now immediate with Lemma 2.29, Lemma 2.30, and the
law of total probability. �

The last needed property is that successions of rcm will makeAid send a message
(
recall that

Aid sends a message as soon as dact leaves Iid = ]d0 (1 − ε) ; d0 (1 + ε)[
)
:

Lemma 2.32. With Γ =
log(1+ε)−log(1−ε)

log
(√

1+ ε2
4 + ε√

2

) , for all x ∈ Iid, rcm
Γ(x) ≥ d0(1 + ε).

Proof. x ∈ Iid ⇒ x ≥ d0(1 − ε) ⇒ rcm
Γ(x) ≥ rcm

Γ(d0(1 − ε)) since rcm is increasing, so that

rcm
Γ(x) ≥ d0(1−ε)

(√(
1 + ε2

4 + ε
√

2

))Γ

. Moreover, by definition of Γ, (1−ε)
(√(

1 + ε2

4 + ε
√

2

))Γ

≥

(1 + ε), so that finally x ∈ Iid ⇒ rcm
Γ(x) ≥ d0(1 + ε). �

Proof of Theorem 2.28. We may now prove the theorem with the same reasoning as Theorems
2.6, 2.9 and 2.18.

By Lemma 2.31, we know that the probability of having a jump that increases distance more
than rcm at an instant ti, is at least 1

8 .
With phases of length Γ, and

1. S j: there is at least one i ∈ ~( j − 1)Γ; jΓ� such that dest(ti) < Iid ;

2. S′j: the phase j is composed only of jumps so that the distance increases more than with
rcm. That is, for all i ∈ ~( j − 1)Γ; jΓ − 1�, dest(ti+1) ≥ rcm(dest(ti)) ;

3. X j = 1 if S j is true, 0 otherwise ;
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4. X′j = 1 if S′j is true, 0 otherwise ;

5. Y = j if X j = 1 and Xk = 0 for every k < j ;

6. Y ′ = j if X′j = 1 and X′k = 0 for every k < j. Thus, Y denotes the index of the first phase
during which Bob gets out of Iid.

We know that Y ′ follows a geometric distribution with parameter P(X′j = 1) ≥ 1
8Γ (because

each jump has at least probability 1
8 of complying to S′j), and E[Y ′] ≤ 8Γ. Thus, by Lemma 2.32,

we have E[Y] ≤ 8Γ. Since Y denotes the index of the first phase during which Bob gets out of
Iid, M′ ∈ ~(Y − 1)Γ; YΓ�. In particular, M′ ≤ YΓ and E[M′] ≤ Γ × 8Γ. Finally, Proposition 2.2
proves that E[M] ≤ Γ × 28Γ. �

2.4.3 3D Case
Theorem 2.33. With Γ = 2 log(1+ε)−log(1−ε)

log
(
1+ ε√

2
+ ε2

4

) , with two nodes following a random Continuous

Movement in 3D and implementingAlc, we have E[M] ≤ Γ × 14Γ.

The reasoning is very similar to the two dimensional case, the main difference being that
BB is now a sphere. Thus, R is now a portion of a spherical shell (instead of an annulus).
The same definition of R as in the 2D case is still valid: with t the intersection between BB

and the line (p̃A(ti) p̃B(ti)), on the opposite side of p̃A(ti), then we have the definition R ={
s, ∠sp̃B(ti)t ∈

[
−π4 ,

π
4

]
and d

(
s, p̃B(ti)

)
∈

[
ε
2dest(ti), ε2dest(ti) + 1

]}
. It can also be seen as the pre-

vious R from Figure 2.4, but rotated with respect to the line (p̃A(ti)p̃B(ti)).

Lemma 2.34. In the 3D case, P
(
p̃B(ti+1) ∈ R

)
= 2−

√
2

4 .

Proof. The first time step when Bob gets outside of BB(ti), he will be in the spherical shell of
inner sphere BB(ti), and with the outer sphere of same center, but with a radius longer of one
distance unit ( ε2dest(ti) + 1).

Let us use the spherical coordinates, centered on p̃B(ti), and with the z axis pointing towards
t. The solid angle covered by R is the surface, on the unit sphere, of the zone where the
colatitude is smaller than π

4 :
∫ π

4

0

∫ 2π

0
sin(φ)dθdφ = 2π

(
1 −

√
2

2

)
.

As the whole space is represented by 4π, this means that R takes
(

1
2 −

√
2

4

)
≈ 15% of the

spherical shell.
As movement is symmetric with respect to the center of the spherical shell, we can apply the

same reasoning as in Lemma 2.29, so that we have probability
(

1
2 −

√
2

4

)
that p̃B(ti+1) ∈ R. �

Lemma 2.35. With two nodes moving in 3D, P
(
dest(ti+1) ≥ rcm

(
dest(ti)

)
| p̃B(ti+1) ∈ R

)
≥ 1

2 .

Proof. On all planes containing the line ( p̃A(ti)p̃B(ti)), the points of R closest to p̃A(ti) follow the
construction of α and β on Figure 2.6. Thus, as in the proof of Lemma 2.30, P

(
d
(
p̃A(ti), p̃B(ti+1)

)
≥

rcm
(
dest(ti)

)
| p̃B(ti+1) ∈ R

)
= 1.

For any point x outside BA(ti), more than half of the points y inside BA(ti) satisfy d(x, y) ≥
d
(
x, p̃A(ti)

)
. Thus, as p̃A(ti+1) remains inside BA(ti), and p̃B(ti+1) ∈ R ⇒ p̃B(ti+1) < BA(ti), we get

our result. �

Proof of Theorem 2.33. To prove this theorem, we first use Lemma 2.34 and Lemma 2.35:
P
(
dest(ti+1) ≥ rcm

(
dest(ti)

))
≥ 2−

√
2

8 . Thus, with phases of length Γ, the probability for a phase

to contain only jumps that make distance higher than with rcm-jumps is
(

8
2−
√

2

)Γ
≈ 14Γ. Finally,

E[M] ≤ Γ × 14Γ. �
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(a) ε = 0.1 (b) ε = 0.5

Figure 2.7 – One node moving, Random Walk, 1D: M depending on initial distance

2.5 Experiments
In order to analyze in practice the performance of Alc, we propose simulation results. More
precisely, we execute both Alc and Aid with the same set of random movements (of one or
two nodes) and we display M, the number of message exchanges induced by Alc at the time
the first message is induced by Aid. We perform simulations for different values of the initial
distance (d0) and maximum error (ε) and for each set of parameters. Everywhere, we repeat the
experiments 500 times to account for the stochastic nature of the movements. In all the plots,
the blue lines indicate the average value and the boxes indicate Q1, the first quartile and Q3,
the third quartile. The lower whisker takes the values of the lowest reference point that is in
the range [Q1 − 1.5 × IQR; Q1], where IQR = Q3 − Q1. Similarly, the upper whisker shows
the highest reference point in the [Q3; Q3 + 1.5 × IQR] range. The results corresponding to
the theoretical framework of Random Walk movement considered in Section 2.3 are presented
in Section 2.5.1, while we present in Section 2.5.2 simulation results based on actual traces of
games of Heroes of Newerth [65]. In particular, we use these traces to compare the behavior of
Alc with the behavior of solutions that are currently implemented in online games and that are
based on fixed frequency messages.

2.5.1 Synthetic Traces
The first set of simulations correspond to the setting of Section 2.3.1. In the 1D case, when only
one node moves, the evolution of M with the initial distance is depicted in Figure 2.7a (ε = 0.1)
and Figure 2.7b (ε = 0.5). As expected, we can observe that M remains bounded and does
not depend much on the initial distance (except when the distance is very small with respect to
movement amplitudes). Even though constants are smaller than those proved in Theorem 2.6
and Theorem 2.9, the results are in line with the theoretical analysis. Figure 2.8a and Figure
2.8b depict the actual number of messages sent per time step when using Alc, as a function
of the initial distance for ε = 0.1 and ε = 0.5. We can observe that the number of messages
generated by Alc quadratically decreases with the distance between the nodes (slope -2 in log-
log scale), which is a desirable property, since maintaining an approximate distance should be
less expensive when node characters are distant. We also plot the evolution of M with the given
maximal tolerated error, ε in Figure 2.9. We can observe that M increases when ε gets close to
1, what suggests that the dependance on ε in our theoretical bounds is unavoidable.
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(a) ε = 0.1 (b) ε = 0.5

Figure 2.8 – One node moving, Random Walk, 1D: messages per time unit

Figure 2.9 – One node moving, Random Walk, 1D: value of M depending on ε, for d0 = 400

When both nodes move, as can be seen on figures 2.10, 2.11, and 2.12, plots show similar
behavior as when only one node moves.

Figures 2.13, 2.14, and 2.15 show results for two nodes moving in a 2D-space. In this case
too, M remains bounded when the initial distance changes (from approximately 4 times more
messages in 1D to approximately 6 times more messages in 2D). We also observe that the actual
number of messages quadratically decreases with the initial distance, as in the 1D case.

In the 3D case, E[M] still does not depend on the initial distance, as can be seen on Figure
2.16a and Figure 2.16b. Surprisingly, on Figure 2.18, its value appears to remain around the
same value, regardless of ε (it seems to no longer grow when ε is close to 1). There are two
possibilities explaining this result. Either E[M] still grows when ε is close to 1, but the steps we
took for ε are too large to see it (on Figure 2.18, ε increases by steps of 0.25). In other words,
it is possible that the precision of our simulation is not enough to see the dependency E[M] has
on ε. Another possibility is that in the 3D case, E[M] no longer depends on ε. If this is the
case, then it could be possible to get upper bounds on M that do not depend on ε, improving on
the results of this chapter. However, as ε is already a constant, the theoretical benefit would be
small.

This qualitative analysis is exactly the same when considering Continuous Movement in-
stead of a Random Walk, as can be seen on figures C.1 through C.3 (Appendix C): M has an
upper bound, and depends on ε, except maybe for the 3D case, and the number of messages

77



(a) ε = 0.1 (b) ε = 0.5

Figure 2.10 – Two nodes moving, Random Walk, 1D: M depending on initial distance

(a) ε = 0.1 (b) ε = 0.5

Figure 2.11 – Two nodes moving, Random Walk, 1D: messages per time unit withAlc

generated byAlc decreases quadratically with the distance.

2.5.2 Actual Traces

Comparison of Alc with fixed frequency strategies. In order to assess the performance of
Alc, we finally compare it to our implementation of the fixed frequency strategy, strategy that is
often used in practice in actual games [137], and denoted byA f f . This algorithm does not take
a maximal error as parameter, but a fixed wait time w, and nodes send update messages to all
other nodes every w time steps.

The traces provided in [33] contain time-stamped information on 98 games of Heroes of
Newerth [65] and were used in [32] with the purpose of building mobility models. The files
contain the evolution of the positions of 10 players in each game trace: at each time step, we
have, for each player, the value of the x coordinate of the position of their character, as well as
the y coordinate. As we consider in this experiment a complete connection graph (each node is
connected to all the other nodes, see Section 1.2), and because there is a total of 10 characters,
a wait time of w induces, on average, 9×10

w messages at each time step.
Even if a smaller w makes information more accurate, A f f comes without guarantee on

maximal error violations, contrarily to Alc. To evaluate the performance of A f f in terms of
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Figure 2.12 – Two nodes moving, Random Walk, 1D: M depending on ε, for d0 = 400

(a) ε = 0.1 (b) ε = 0.5

Figure 2.13 – Two nodes moving, Random Walk, 2D: M depending on initial distance

accuracy, we simulated its behavior for several values of ε and w. We counted the number of
violations per time unit, that is, the number of distance estimates among the nodes that violate
Equation 2.2. As there are ten nodes, and each one has an estimate for all nine others, the
number of violations has a maximum of 90 for one time unit. Figure 2.19 depicts the number
of violations for different values of ε and w. We observe that the number of violations increases
very quickly with w.

In order to perform a fair comparison betweenAlc andA f f , we used the following protocol.
First, we ran Alc for several values of ε, and we measured the resulting average number of
messages per time unit. Then, knowing that A f f induces 9×10

w messages at each time step, we
computed the value for w that would result in A f f sending as much messages on average as
Alc. This way, we can compare both algorithms in terms of accuracy (to estimate approximated
distance) while they use a similar average message frequency. As w is by definition an integer
value, the number of messages sent by both algorithms per time step is not exactly the same,
but it is close enough to allow comparison.

The average proportion of violations is shown in bold font in Table 2.2, along with the
optimal number of messages, that is, Aid, for different values of ε. We can observe that Alc is
far better than A f f for satisfying Equation 2.2. For instance, it sends only 10.44 messages per
time unit for ε = 0.1. With A f f , the only way to ensure Equation 2.2 is by having w = 1. This
would lead to 90 messages per time unit with w = 1, that is, about ten times more thanAlc.

Influence of better prediction strategies. As mentioned in Section 1.3.2, Dead-reckoning
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(a) ε = 0.1 (b) ε = 0.5

Figure 2.14 – Two nodes moving, Random Walk, 2D: messages per time unit withAlc

Figure 2.15 – Two nodes moving, Random Walk, 2D: M depending on ε, for d0 = 400

is a popular method for reducing the error on positions of elements of an online game. This
is why we wanted to see the benefits induced by Dead-reckoning-like predictions on our al-
gorithm. To do this, as the traces from [33] are in the black-box model, and do not include
information on the speed of the nodes, we estimate the speed based on the last two known posi-
tions. As in classical dead-reckoning schemes (see Section 1.3.2), this speed is than used to get
position estimates by extrapolating the previous known positions. The description of Alc with
dead-reckoning is given in Algorithm 3 (every line that differs from Algorithm 1 is colored in
red).

The results of the same experiment as above, but with this prediction algorithm, are shown
on Table 2.2, within parentheses.

Table 2.2 – Comparison ofAlc andA f f , without Dead-reckoning (with Dead-reckoning)

Aid Alc A f f

ε msg/time unit messages per time unit violations w msg/time unit violations
0.1 3.26 (2.23) 10.44 (4.71) 0.0 9 (19) 10.00 (4.73) 2.9% (5.13%)
0.2 1.49 (1.24) 5.41 (3.02) 0.0 17 (30) 5.30 (3.00) 2.74% (4.66%)
0.3 0.91 (0.84) 3.60 (2.26) 0.0 25 (40) 3.60 (2.25) 2.6% (4.26%)
0.4 0.63 (0.62) 2.65 (1.81) 0.0 34 (50) 2.65 (1.80) 2.53% (3.88%)
0.5 0.46 (0.46) 2.07 (1.50) 0.0 43 (60) 2.09 (1.50) 2.42% (3.51%)
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(a) ε = 0.1 (b) ε = 0.5

Figure 2.16 – Two nodes moving, Random Walk, 3D: M depending on initial distance

(a) for ε = 0.1 (b) ε = 0.5

Figure 2.17 – Two nodes moving, Random Walk, 3D: messages per time unit withAlc

We can observe that the number of message exchanged in Alc decreases more significantly
than Aid. Moreover, Dead-reckoning seems to be more beneficial to Alc than to A f f , as the
decrease in message number is not compensated for in terms of violations by the improved
prediction precision.

2.6 Conclusion and Future Work

In this chapter, we presented a distributed algorithmAlc, for each node to estimate the distance
separating them from each other node, with a relative condition on the error. This type of
property is desirable in settings where the proximity between nodes is important, such as online
games or networks of moving objects. We proved that (in a restricted setting), this algorithm
is optimal in terms of number of message exchanges up a to a constant factor. A summary of
our bounds can be found in Table 2.3 (where SM, for Single Move, refers to movement models
where only one of the two nodes may move, and BM, for Both Move, the general case where
both nodes may move).

We also showed through simulations, based on actual traces of online games, that Alc per-
forms significantly less communications than the fixed frequency algorithm which is commonly
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Figure 2.18 – Two nodes moving, Random Walk, 3D: M depending on ε, for d0 = 400
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Figure 2.19 – Number of violations withA f f , depending on time to wait between two messages,
with ε = 0.1 (red), ε = 0.5 (black), and ε = 0.9 (blue), on log-log scale

used in online games, while bounding the error.
This work opens several perspectives. The first one is to extend the theoretical results proved

in this chapter, either by improving the constants or by increasing the scope of the results and
to consider more sophisticated prediction algorithms. Another perspective is to extend the set
of properties that can be maintained with a (constant) increase in exchanged messages. It was
known in the literature that maintaining the positions was possible with no increase in the num-
ber of messages and the present chapter showed that a constant increase is enough to maintain
relative distances. Extending the class of such properties is highly desirable, both in theory and
practice.

In a distributed system with several nodes, each pair of connected nodes may use bandwidth
by communicating about their state. In this chapter, we tried to reduce bandwidth consumption
by reducing the number of needed messages exchanges between each of these pairs. Another

Table 2.3 – Upper bounds on M

Random Walk, SM Random Walk, BM Continuous Movement, BM
1D case min

(
∆l × 2∆l ;

⌈
4
π
∆l

2
⌉
× 8

)
∆l × 4∆l ∆l × 4∆l

2D case ∆r × 4∆r ∆r × 8∆r Γ × 8Γ

3D case ∆r × 8∆r ∆r × 16∆r Γ × 14Γ
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approach could be to reduce the actual number of connections, that is, try to reduce the number
of nodes that are connected while still guaranteeing properties. Chapter 3 and Chapter 4 target
this second approach. Also, in these chapters, position and distance estimation are supposed
to be separate problems, so that Alc could be used in conjunction with the other results of this
thesis.
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Algorithm 3 Local change (Alc) with dead-reckoning-like predictions, from the point of view
of Alice

1: Initialization:
2: pA ← Alice’s initial position (*Actual position of Alice. This is a read-only input to the

algorithm*)
3: p̃A ← Alice’s initial position (*Position of Alice, as estimated by Bob, the other node*)
4: p−1

A ← Alice’s initial position; t−1
A ← 0 (*Position, timestamp of previous sent update*)

5: p−2
A ← Alice’s initial position; t−2

A ← 0 (*Position, timestamp of update sent before the
previous one*)

6: p̃B ← Bob’s initial position (*Estimated position of Bob*)
7: p−1

B ← Bob’s initial position; t−1
B ← 0 (*Position, timestamp of previous received up-

date*)
8: p−2

B ← Bob’s initial position; t−2
B ← 0 (*Position, timestamp of update received before

the previous one*)
9: dest ← d

(
p̃A, p̃B

)
(*Estimated distance.*)

10: procedure Time_step(i) (*To be executed at each time step i*)
11: update pA
12: p̃A ← Extrapolate_Position(i, (p−1

A , t
−1
A ), (p−2

A , t
−2
A ))

13: p̃B ← Extrapolate_Position(i, (p−1
B , t

−1
B ), (p−2

B , t
−2
B ))

14: dest ← d
(
p̃A, p̃B

)
15: ===== communication round 1 =====

16: if d
(
pA, p̃A

)
≥ ε

2dest then
17: p−2

A ← p−1
A ; p−1

A ← pA; t−2
A ← t−1

A ; t−1
A ← i

18: p̃A ← Extrapolate_Position(i, (p−1
A , t

−1
A ), (p−2

A , t
−2
A ))

19: send message (pA) to Bob
20: ===== communication round 2 =====

21: if a message (pB) has been received from Bob then
22: p−2

A ← p−1
A ; p−1

A ← pA; t−2
A ← t−1

A ; t−1
A ← i

23: p̃A ← Extrapolate_Position(i, (p−1
A , t

−1
A ), (p−2

A , t
−2
A ))

24: Receive_Message(pB, i)
25: send message (pA) to Bob
26: ===== communication round 3 =====

27: if a message (pB) has been received from Bob then
28: Receive_Message(pB, i)

29: procedure Extrapolate_Position(i, (p−1, t−1), (p−2, t−2))
30: speed ← p−1−p−2

t−1−t−2 (*Estimate speed based on previous positions*)
31: return p−1 + speed × (i − t−1) (*Extrapolate position using that speed*)

32: procedure Receive_Message(pB, i)
33: p−2

B ← p−1
B ; p−1

B ← pB; t−2
B ← t−1

B ; t−1
B ← i

34: p̃B ← Extrapolate_Position(i, (p−1
B , t

−1
B ), (p−2

B , t
−2
B ))

35: dest ← d
(
p̃A, p̃B

)
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Chapter 3

Distributed Kinetic Data Structure for
Proximity Queries in One Dimension: Unit
Disc Graphs

3.1 Introduction

Many modern applications can be modeled by sets of distributed nodes that move in a real or
virtual environment. In many of those settings, nodes need to retrieve information on other
nodes that are close by. For example, players of online video games need to know information
about other characters that lie in their character’s line of sight, and vehicles may improve secu-
rity by connecting to other vehicles that are close by. In these use cases, proximity queries (see
Section 1.5.1) are often considered.

There is a large literature on static and dynamic data structures for node sets (see Chapter 1).
In static models, the set of nodes V is given and neither the set itself nor the positions of the
nodes can change. Dynamic models add a challenge: the structures have to be maintained
efficiently when there can be additions of nodes or deletions of nodes to/from V. Updating a
dynamic data structure when a single node is added to or removed from the structure should
be more efficient than rebuilding an equivalent static data structure from scratch, otherwise the
dynamic data structure is pointless.

Designing such a data structure is even more challenging when the nodes are moving, in
particular when the movements are not known in advance. The black-box model is considered
here (see Section 1.6.1). In this setting, updating the structure when a node moves should be
more efficient than simply removing the node from the structure and adding it again with its new
position (in the case the structure is also dynamic), and rebuilding the structure from scratch.

Another aspect to consider is that the target proximity query should be treated rapidly: the
data structure should support the query in a time complexity smaller than the total number of
nodes: otherwise, it is not competitive with a naive strategy that consists in checking all nodes
ofV, and decide for each whether it should be added to the query result.

Since in this chapter, we consider distributed nodes in a synchronous network, we measure
the performance of updates and of query costs in terms of number of needed communication
rounds, but also in terms of number of sent messages. The memory cost of the structure will
be measured in terms of local memory cost (which corresponds here to the maximal number of
connections a node may have with other nodes) and in terms of global cost, that is, the sum, for
all nodes inV, of the local memory costs.
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3.1.1 Model
LetV be a set of distributed nodes. Each node u ∈ V has a one-dimensional position pu(t) ∈ R
at any instant t ∈ R+.

We use the Black-box model (see Section 1.7.2): the movements are not known in advance,
and nodes may move only at specific, synchronous instants that are called time steps. Let us
denote by ti the instant of the i-th time step1. Thus, while time is supposed to be continuous,
and t ∈ R+, we have that for any time step ti, and any time t ∈ [ti; ti+1[, pu(t) = pu(ti), so that the
movement has a discrete behavior with respect to time.

The time starts at 0. As the first movement happens at the first time step t1, we note t0 = 0.
At time 0, it is supposed that initialization is already completed2.

At each ti, the position of a node may move only to a position at most at a distance dmv away
from its previous position:

Definition 3.1 (dmv). ∀i ≥ 1,∀u ∈ V, pu(ti) ∈ [pu(ti−1) − dmv; pu(ti−1) + dmv]

For simplicity, without loss of generality, we assume that positions are normalized such that
dmv = 1. The distance between two nodes u and v at instant t is denoted by d(u, v, t).

We do not make any assumption on the number of nodes that move at each time step. We
are thus in the high mobility setting (see Section 1.6.1).

Each node has a unique identifier. A node v can send a message to a node u only if v knows
u’s identifier. Each node u ∈ V maintains an address book, a subset of the other nodes3 in V.
The node u may change its address book, either by simply “forgetting” one of the nodes, that is,
by removing it from its address book, or by “remembering” a new node, that is, adding a new
one to the address book. We suppose a node v ∈ V may tell u about a node w ∈ V, so that u
adds w to its address book. We suppose that the sizes of the messages and of the identifiers are
so that one message is sufficient for this kind of messages (a node telling to another one that it
should add or remove a node from its address book).

Under this definition, it is possible that the contents of the address books are not symmetric:
it is possible that u has v in its address book, while v does not know about u, so that u may send
messages to v, without v being able to initiate a communication with u.

The union of all address books at instant t defines a connection graph G(t) = (V, E(t)) on
the set of nodes (see Definition 1.3, p.20), with E(t) the (directed) edges of the graphs where
(u, v) ∈ E(t) if and only if v is in u’s address book at instant t. Because of the changes of address
books, E may change with time, hence the notation E(t); however, we are focusing here on the
kinetic and non-dynamic setting, and thus we suppose thatV cannot change.

We assume in this chapter that position and distance estimation is perfect: each node has
access to the actual position of any node from its address book. This is to allow us to design an
algorithm and measure its performance independently of the chosen position and distance es-
timation techniques. However, this means that in most practical distributed settings, additional
messages would have to be exchanged, as nodes need to send positional updates to the nodes
that are connected to them. We can however suppose that this number of messages for posi-
tional updates is proportional to the number of connections of each node, hence the importance,

1Note that the notation differs from how it was used in Chapter 2, where ti was the time of the i-th exchange of
messages. Here ti is just used as a convenient way to specify a time step, and to be able to refer to the previous and
next time step (with ti−1 and ti+1).

2Note that it would be sufficient to suppose that nodes have a complete and exact knowledge of the positions
at initialization, that is, that at t = 0, ∀u, v ∈ V, u knows the value of pv. Each node would then be able to locally
compute a valid initialization, using their identifiers (see later).

3In practice, the address book would be a set of identifiers, but for ease of notation, we assume the address
book is a set of nodes.
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in our performances analysis (Section 3.6), of bounds on the maximal number of connections
any node can have.

As mentioned previously, the system is synchronous. It will be supposed that between two
position changes, that is, for any i ≥ 0, between ti and ti+1, as many communication rounds as
needed can be executed, even if we aim at having as few as possible. During any such commu-
nication round, a node may execute as many instructions as necessary, and send messages. As
explained in Section 1.2, it is guaranteed that the recipient of a message receives it before the
beginning of the next communication round.

When time is unambiguous (specifically when some properties should be maintained at any
instant t), we may simplify notations by avoiding specifying the instants; for example, we may
denote the position of u by pu, or the connection graph by G.

3.1.2 Objectives
Ideal Objectives

In this chapter, we aim at providing an algorithm maintaining a distributed data structure on
moving nodes, such that each node u ∈ V can answer to the CloseNodesu(r) query, previously
defined in Chapter 1: given a node u, return the set of nodes being at most at a distance r from
u at the time of the query:

Definition 1.2 (CloseNodesu(r)). Given a node u ∈ V and a distance r ∈ R, return all nodes
v ∈ V such that d(u, v) ≤ r.

We consider that r is a fixed parameter of the data structure, and we want any node u ∈ V
to have at any time direct access to the result of CloseNodesu(r), without any communication
round. In other words, each node u should locally maintain the set of nodes that are at less than
r distance units away from u. The structure is thus equivalent to a unit disc graph, with r the
“unit” of the disc graph. To the best of our knowledge, no previous work has been published
studying the distributed maintenance of unit disc graphs for sets of moving nodes.

The parameter r is fixed, but we suppose the following:

r ≥ 2dmv. (3.1)

The structure to be maintained is the following connection graph:

Definition 3.2 (proximity graph). The target is the proximity graph H(t) = (V,NE(t)), where
NE(t) = {(u, v) : d(u, v, t) ≤ r}.

This chapter focuses on obtaining a proximity graph for nodes in a synchronous distributed
system, where each node is associated to a position in one dimension, moving according to the
black-box model.

Approximated Objectives

However, even if communication rounds and local computations can be considered fast with
regard to the interval between each movement, we do not suppose that they are instantaneous,
hence a small delay can appear between the moment a node moves and the moment when the
structure has been corrected accordingly (see Figure 3.3 where the ideal objectives are met only
at times that are not hashed in blue). Thus, the structure may have some approximations with
regard to the ideal objective.
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Because of this delay, the structure provided in this chapter may answer to the CloseNodes
query with regard to positions of the nodes slightly from the past: if a node u computes a
CloseNodesu(r) query after4 ti and before the updates associated with the new positions of the
nodes at time ti are finished, then the result may correspond to the positions of the node at
time ti−1. However, as the nodes move not more than dmv per time step, the returned set is an
approximate version of the CloseNodes query: every node in the returned set is at distance
r + dmv from the query node, and any node at distance r − dmv must be in the returned set, as in
Definition 3.3.

Definition 3.3 (dmv-CloseNodesu(r)). Given a node u ∈ V and a distance r ∈ R, return C a set
of nodes such that: ∀v ∈ C, d(u, v) ≤ r + dmv

∀v ∈ V, d(u, v) ≤ r − dmv =⇒ v ∈ C
(3.2)

The proximity graph can be approximated similarly, but we do not need to define the ap-
proximation, as the delay can be accounted for by specifying the timestamp of the considered
proximity graph.

3.2 The Connection Graph
In this section, we consider any instant t of the execution, and we will thus omit to specify the
time in our notations.

In order to achieve our goal, and to get the proximity graph of Definition 3.2, we will ensure
that the actual connection graph G is a supergraph of H, the proximity graph.

For G to be a supergraph of H, G needs to have among its arcs the set of Neighboring edges,
already used in Definition 3.2:

NE = {(u, v) : d(u, v) ≤ r}. (3.3)

When maintaining this set of arcs, it is easy to handle the disconnection of a node: as soon
as a node u sees that another node v gets at a distance higher than r from u, u may simply
remove v from its address book. However, the problem of knowing when a node previously far
away gets closer than r is more complicated, so that additional edges are needed on G.

We will associate each node u with two specific nodes called its lookouts, one for each
directions. The role of these lookouts is to inform u of any node that gets at distance less than r
from u. The lookouts are denoted by `+

u (for the direction of higher coordinates) and `−u (for the
direction of lower coordinates). In some specific cases however, u may have no lookout for one
or even both directions; in this case, we may note `+

u = ⊥ (resp. `−u = ⊥) if there is no `+
u (resp.

`−u ) lookout.
We will say that `+

u is valid if it satisfies:
(∃v s.t. pu + r < pv) =⇒ `+

u , ⊥

If `+
u , ⊥, pu + r < p`+

u

If `+
u , ⊥, @v s.t. pu + r < pv < p`+

u − r
(3.4)

The same goes for `−u , but the other way round:
(∃v s.t. pv < pu − r) =⇒ `−u , ⊥

Si `−u , ⊥, p`−u < pu − r
Si `−u , ⊥, @v s.t. p`−u + r < pv < pu − r

(3.5)

4Recall that, as defined in Section 3.1.1, ti is the instant of the i-th movement of the nodes.
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u
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Figure 3.1 – Example of a situation where we must have `+
u = ⊥. The interval ]pu + r; +∞[,

hatched in red, does not contain any node.

•

u
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`+
u
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u
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`+
u

• •[ ][ ]

r r

Figure 3.2 – Example of a situation where a node u may have one of two nodes as lookout. In
both cases, there is no node in ]pu + r; p`+

u − r[, interval represented as red hatched zones.

These definitions of lookouts are such that, when there is no node with a position that is
contained in ]pu + r; +∞[, then we must have `+

u = ⊥ (and similarly for `−u ). This situation is
represented on Figure 3.1, and is due to the second condition of Equation 3.4. It corresponds to
nodes with extreme positions, that is, nodes that are among the furthest on the right or on the
left, and thus do not have (and do not need) available lookouts in one of the directions (or in
some rare cases, both).

Another important property is that the lookouts are not uniquely defined: at a given moment,
there may exist several choices as to which node to take as a lookout for u. For example, on
Figure 3.2, the same set of nodes is represented twice, with two possible assignments for `+

u .
This adds some “leniency” to the structure, which is a desirable property to avoid constantly
executing updates when the nodes move, as explained in [55], where some elements of the
structure are also not uniquely defined.

As told previously, the role of the lookouts is to inform u of any node that gets at distance r
from u. Even with this leniency, lookouts are defined in such a way, that if a node v, previously
too far away, moves at a distance smaller than r from u, then v was necessarily at distance less
than r from one of the lookouts of u. Lookouts are thus able to detect this situation, thanks to
their own neighboring edges, and can send messages to u in order for u to add v to its address
book. This will be proven later in Lemma 3.10.

Let us suppose that any node u ∈ V is assigned valid lookouts, that is, `+
u and `−u are valid.

We add these to the connections of u. In other words, the arcs of G must include the following
two sets:

LE+ =
⋃
u∈V,
`+

u,⊥

{
(u, `+

u )
}

et LE− =
⋃
u∈V,
`−u,⊥

{
(u, `−u )

}
. (3.6)

However, as the lookouts need to send messages to the nodes of whom they are the lookout,
the reverse arcs have also to be added to G, with SE+ the reverse of LE+, and SE− the reverse of
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LE− :
SE+ =

⋃
u∈V

{
(u, v) : u = `+

v
}

et SE− =
⋃
u∈V

{
(u, v) : u = `−v

}
. (3.7)

The data structure we defined until now (NE, `+
u , `−u , SE+, and SE−) would be sufficient to

maintain the structure: each time a lookout u sees that one of its neighbors v (that is, (u, v) ∈ NE)
gets too close to one of the nodes w of whom it is the lookout (that is, either (u,w) ∈ SE+,
or (u,w) ∈ SE−), then u can send messages to w so that w adds v to its address book (the
symmetric would be handled by v’s lookout). However, this requires the lookouts to verify a lot
of conditions in the case where u is the lookout for many other nodes. Another possibility that
better spreads the local computation costs, would be for u to send its neighbors to w at each time
step, which takes only one communication round, so that w may compute itself which nodes to
add to its address book. Instead of this, to get an algorithm that is easier to read, we made the
choice to add to the connections of every node u, the nodes that are neighbors of u’s lookouts.
The arcs of G thus include the following two sets:

LNE+ =
⋃
u∈V,
`+

u,⊥

{
(u, v) : d

(
v, `+

u
)
≤ r

}
et LNE− =

⋃
u∈V,
`−u,⊥

{
(u, v) : d

(
v, `−u

)
≤ r

}
. (3.8)

The aim is to maintain a connection graph G that includes all of these sets of arcs. Let us
define G, the set of connection graphs that fulfill this condition:

Definition 3.4. G = {(V, E) such that ∀u ∈ V, `+
u and `−u are valid and NE∪LE+∪LE−∪SE+∪

SE− ∪ LNE+ ∪ LNE− ⊆ E}.

3.3 Data Structure

3.3.1 Local Variables
In order to get a connection graph G ∈ G, each node u ∈ V will maintain the following set of
local variables, the union of which will be its address book:

• Nu(t), a set of nodes we call the neighbors5 of u. This set is initialized to Nu(0) = {v :
d(u, v, 0) ≤ r}. We will say that Nu(t) is valid with respect to the positions of the nodes at
instant t′ if Nu(t) = {v : d(u, v, t′) ≤ r}. Note that if the set of neighbors is valid, we have
u ∈ Nu(t).

• `+
u (t), the positive lookout of u, which takes at instant 0 the value of a node that satisfies

Equation 3.4.

• `−u (t), the negative lookout of u, which takes at instant 0 the value of a node that satisfies
Equation 3.5.

• S +
u (t), the set of positive supervised nodes, that is, the set of nodes of whom u is the

positive lookout. This set is initialized to S +
u (0) = {v : `+

v (0) = u}, and S +
u (t) is said to be

valid if S +
u (t) = {v : `+

v (t) = u}.

• S −u (t), the set of negative supervised nodes, whose initialization and definition of validity
is symmetric to the positive supervised nodes.

5Note that this definition differs from the “neighbors” of u in the graph theory sense (where the neighbors are
the nodes that are one hop away from u in a graph).
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• L+
u (t), the set of neighbors of `+

u (t), initialized to L+
u (0) = {v : d

(
v, `+

u (0), 0
)
≤ r} (that

equals to ∅ if `+
u (0) = ⊥). Again, we say that L+

u (t) is valid with regard to the positions of
the nodes at instant t′ if L+

u (t) = {v : d
(
v, `+

u (t), t′
)
≤ r}. Note that when L+

u (t) is valid, we
have `+

u (t) ∈ L+
u (t), and L+

u (t) = ∅ if `+
u (t) = ⊥.

• L−u (t), the neighbors of `−u (t), whose initialisation and definition of validity is symmetric
to L+

u (t).

These notations represent the current values of the variable: Nu(t) is the content of the
variable at time t. We may thus omit the time, when we refer to the variable itself, or if the time
is unambiguous.

Note also that these notations represent nodes and sets of nodes, independently of their
validity. It is thus possible to have for example that `+

u (t) is valid with regard to the positions of
the nodes at instant t′, with t , t′. This distinction is important to take into account the delay of
updates as described in Section 3.1.2.

The connection graph G(t) is then the directed graph6 constructed from the local variables of
each node at instant t. As these variables correspond to the set of edges used in Definition 3.4,
we have the following.

Remark 3.5. If, for all u ∈ V, the local variables Nu(t), `+
u (t), `−u (t), S +

u (t), S −u (t), L+
u (t), and

L−u (t) are valid with regard to the positions of the nodes at instant t′, then G(t) ∈ G(t′).

3.3.2 Certificates
In order to maintain the structure when nodes move, we will use certificates7, as it is usually
done with Kinetic Data Structures (see Section 1.7). Certificates are predicates involving a
constant number of nodes, that together validate the structure: in this case, it means that if at
instant t, G(t) ∈ G(t), and the nodes move according to the model described in Section 3.1.1, and
all certificates remain true until t′ > t, then we have necessarily G(t′) ∈ G(t′). More formally,
with Certu(t) the set of certificates at time t that involve u:

Definition 3.6 (Certificate Validity).

∀u ∈ V,∀t < t′ ∈ R,
(
G(t) ∈ G(t) ∧ ∀t′′ ∈ [t, t′],∀c ∈ Certu(t′′), c true

)
=⇒ G(t′) ∈ G(t′)

(3.9)

As the movement of the nodes is not known in advance, the certificates have to be reassessed
at each instant ti. As soon as it is detected that one (or several) of them becomes false, the
associated nodes execute updates, described in Section 3.4, so as to be again in a state in which
the structure and the certificates are valid.

Each node u maintains a set of four different types of certificates:

• Close Neighbor: certifies that a neighbors remains at a distance smaller than r. For each
v ∈ Nu, u maintains the certificate CloseNeighbor(u, v) = d(u, v) ≤ r.

• Potential Neighbor: detects when a node has gotten close enough to become a neigh-
bor. For each v ∈

(
L+

u ∪ L−u
)
\ Nu, u maintains the certificate PotentialNeighbor(u, v) =

d(u, v) > r.

6Even though the graph is directed, all arcs except those from L+ and L− are actually present in both directions.
7Incremental certificates to be precise (see Section 1.7.1).
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• Distant Lookout: certifies that the lookout remains distant enough. For each v ∈ {`+
u , `

−
u } \

{⊥}, u maintains the certificate DistantLookout(u, v) = d(u, v) > r.

• Legitimate Lookout: detects when a node gets in between a node and its lookout in such
a way that the lookout becomes invalid. For each v ∈ Nu ∪ L+

u , u maintains the certificate
LegitimateLookout+(u, v) =pv <

]
pu + r ; p`+

u − r
[

if `+
u , ⊥

pv ≤ pu + r if `+
u = ⊥

and for each v ∈ Nu ∪ L−u , u maintains the certificate LegitimateLookout−(u, v) =pv <
]
p`−u + r ; pu − r

[
if `+

u , ⊥

pu − r ≤ pv if `+
u = ⊥.

A summary of these certificates can be found on Table 3.1. The column “Certificate” shows
the name of the certificate, the column “Predicate” gives the logical definition of the certificate,
and the column “Condition” indicates under which conditions the certificate has to be created.

Table 3.1 – List of certificates associated with node u.

Certificate Predicate Condition
CloseNeighbor(u, v) d(u, v) ≤ r v ∈ Nu

PotentialNeighbor(u, v) d(u, v) > r v ∈
(
L+

u ∪ L−u
)
\ Nu

DistantLookout(u, v) d(u, v) > r v ∈ {`+
u , `

−
u } \ {⊥}

LegitimateLookout+(u, v) pv <
]
pu + r ; p`+

u − r
[

if `+
u , ⊥

pv ≤ pu + r if `+
u = ⊥

v ∈ Nu ∪ L+
u

LegitimateLookout−(u, v) pv <
]
p`−u + r ; pu − r

[
if `+

u , ⊥

pu − r ≤ pv if `+
u = ⊥

v ∈ Nu ∪ L−u

Note that these definitions of certificates come with redundancies. Firstly, some of the
certificates are replicated symmetrically on the nodes: for example, as every time v ∈ Nu, we
are supposed to have u ∈ Nv (which will be proven with Lemma 3.10) the certificate Close-
Neighbor(u, v) and CloseNeighbor(v, u) will correspond to the same predicate, and will thus
differ only by the node on which they are executed.

More generally, some certificates have exactly the same predicate definition, but differ only
by the nodes on which they apply: for example, both with v ∈ Nu, and v = `+

u , Potential-
Neighbor(u, v) and DistantLookout(u, v) track the same predicate. This distinction is useful
for the algorithm, because the update rules are different depending on the kind of certificate that
fails: a failure of PotentialNeighbor(u, v) indicates that the neighbors have to be updated, and
a failure of DistantLookout(u, v) indicates that the lookout has to be changed. In some cases,
those certificates may actually apply on the same nodes: as `+

u ∈ L+
u (except when `+

u = ⊥, we
have PotentialNeighbor(u, `+

u ) = DistantLookout(u, `+
u )). The same goes for example with

LegitimateLookout+(u, v), the predicate of which is redundant with CloseNeighbor(u, v) when
`+

u = ⊥.
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3.4 Updating the Structure
In this section, we present A f 1d, the Fixed-1d algorithm, that we will use to update the data
structure presented above.

The certificates from the previous section are all associated with some update rules. As
described in Algorithm 4, at each instant ti, A f 1d makes so that the nodes check each of their
certificates, and execute the operations associated with those that fail. For any i ≥ 0, the number
of communication rounds executed between instant ti and ti+1 is constant.

The updates to execute are described in algorithms 5, 6, and 7. As some of the variables are
symmetric (like `+ and `− or L+ and L−), and with similar associated updates, in order to avoid
lengthy redundancies, some of these updates are skipped, like on line 31 of Algorithm 5.

Note that as the positions change only at instants ti, we have that for any i ≥ 0, any u ∈ V,
and any t ∈ [ti; ti+1[, pu(t) = pu(ti).

In Algorithm 4, the conditions to detect events are written explicitly, without invoking the
certificates described previously. However, these conditions (lines 4 through 18) are equivalent
to the definitions of the certificates from Table 3.1. This is for better readability, and for easier
readability of the proofs. As discussed on page 45, in Section 1.7.2 it can be beneficial in some
situations, even in the Black-Box model, to directly use certificates, associated with an event-
queue. It is straightforward to convert Algorithm 4 for use with an event queue: instead of
checking, at each time step, each node that might be involved in a failing certificate, like on
lines 4 through 18, a node just has to take all certificates at the top of the priority queue that are
failing, and add them to Fail, the set of failing certificates.

Algorithm 4A f 1d, the algorithm with continuous time based on lookouts, point of view of u

1: At each instant ti, start the following:
2: Fail← ∅
3: (*On lines 4 through 18, it is checked, for all nodes in u’s local data structure, if the

associated certificates are valid. The certificates that are not valid are added to Fail.*)
4: for all v ∈ Nu so that d(u, v) > r do
5: Fail← Fail ∪ {(CloseNeighbor, u, v)}
6: end for
7: for all v ∈ L+

u ∪ L−u \ Nu so that d(u, v) ≤ r do
8: Fail← Fail ∪ {(PotentialNeighbor, u, v)}
9: end for

10: for all v ∈ {`+
u } ∪ {`

−
u } \ {⊥} so that d(u, v) ≤ r do

11: Fail← Fail ∪ {(DistantLookout, u, v)}
12: end for
13: for all v ∈ Nu ∪ L+

u so that pu + r < pv and, if `+
u , ⊥, so that pv < p`+

u − r do
14: Fail← Fail ∪ {(LegitimateLookout+, u, v)}
15: end for
16: for all v ∈ Nu ∪ L−u so that pv < pu − r and, if `−u , ⊥, so that p`+

u + r < pv do
17: Fail← Fail ∪ {(LegitimateLookout−, u, v)}
18: end for
19: Correct_Legitimate_and_Distant_Lookout(Fail) (*Get a new valid lookout if current

one is invalid*)
20: Correct_Close_Neighbor(Fail) (*Drop neighbors that are now too far away*)
21: Correct_Potential_Neighbor(Fail) (*Get all new neighbors*)
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Algorithm 5 Correct_Legitimate_and_Distant_Lookout: update lookouts (point of view of u)
22: procedure Correct_Legitimate_and_Distant_Lookout(Fail)
23: ===== round 1: see if lookout has to be changed =====

24: C ← {v : (LegitimateLookout+, u, v) ∈ Fail}
25: if C , ∅ then
26: Let newLookout ← arg minx∈C(px)
27: else if (DistantLookout, u, `+

u ) ∈ Fail then
28: Send req(+) to `+

u (*Ask the previous lookout to give a new valid lookout*)
29: else
30: newLookout ← `+

u (*newLookout defaults to no change*)
31: [...] (*symmetrical for handling LegitimateLookout−(u, v) and DistantLook-
out(u, `−u )*)

32: ===== round 2: handle the reception of a req =====

33: if req(+) has been received from w then
34: Let C ← {x ∈ Nu ∪ L+

u : d(w, x) > r}
35: Let c← arg minx∈C(px) (*c← ⊥ if C = ∅*)
36: Send reply(c, +) to w (*Send new lookout to the asking node*)
37: [...] (*symmetrical for handling req(−)*)

38: ===== round 3: update lookout after receiving the response =====

39: if reply(v, +) has been received then
40: newLookout ← v
41: if newLookout , `+

u then
42: Send remove(S +, u) to `+

u (*inform previous lookout*)
43: `+

u ← newLookout
44: if newLookout = ⊥ then
45: L+

u ← ∅

46: else
47: Send add(S +, u) to newLookout (*inform new lookout*)
48: [...] (*symmetrical for handling reply(v, −) messages, and `−u *)

49: ===== round 4: wait one round, and maybe handle messages =====

50: if remove(S +, v) has been received then
51: S +

u ← S +
u \ {v}

52: if add(S +, v) has been received then
53: S +

u ← S +
u ∪ {v}

54: Send myNeighbors(w, +) to v for each w ∈ Nu. (*u sends its neighbors to the
node that new has u as lookout*)

55: [...] (*symmetrical for handling add(S −, v), and sending myNeighbors(Nu, −)*)

56: ===== round 5: receive neighbors of new lookout =====

57:

L+
u ←

L+
u if no myNeighbors(w, +) has been received⋃
w where a message myNeighbors(w, +) has been received otherwise

58: [...] (*symmetrical for handling myNeighbors(N, −)*)
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Algorithm 6 Correct_Close_Neighbor: drop points that are no longer neighbors (point of view
of u)
59: procedure Correct_Close_Neighbor(Fail)
60: for all (CloseNeighbor, u, v) ∈ Fail do (*v ∈ Nu ∧ d(u, v, ti) > r*)
61: Nu ← Nu \ {v}
62: Send remove(L+, v) to each w in S +

u
63: Send remove(L−, v) to each w in S −u
64: end for

65: ===== round 6: receive remove messages =====

66: if remove(L+, v) has been received then
67: L+

u ← L+
u \ {v}

68: if remove(L−, v) has been received then
69: L−u ← L−u \ {v}

Algorithm 7 Correct_Potential_Neighbor: add new neighbors (point of view of u)
70: procedure Correct_Potential_Neighbor(Fail)
71: for all (PotentialNeighbor, u, v) ∈ Fail do (*v ∈

(
L+

u ∪ L−u
)
\ Nu ∧ d(u, v, ti) ≤ r*)

72: Nu ← Nu ∪ v
73: Send add(L+, v) to each w ∈ S +

u
74: Send add(L−, v) to each w ∈ S −u
75: end for

76: ===== round 7: receive add messages =====

77: if add(L+, v) has been received then
78: L+

u ← L+
u ∪ {v}

79: [...] (*symmetrical for handling add(L−, v)*)
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3.5 Validity
In this section, we prove that we get the proximity graph as defined in Section 3.1.2, albeit with
a slight delay:

Theorem 3.7. With nodes in one dimension that follow the model described in Section 3.1.1,
and such that the connection graph is initialized so that G(0) ∈ G(0),A f 1d maintains a connec-
tion graph G so that for any i ≥ 0, G(ti+1) ∈ G(ti).

In other words, the connection graph resulting from the updates initiated at time ti (and that
is obtained at the latest at ti+1) belongs to the set of graphs that are correct with regard to the
positions the nodes had at instant ti. This situation is represented on Figure 3.3. As the nodes do
not move between ti and ti+1, we have, for any t ∈ [ti; ti+1[,G(t) = G(ti). As the computations that
are initiated at time ti finish at a time t′ ∈ [ti; ti+1[, and the connection graph does not change
until the next movement, we have ∀t ∈ [t′; ti+1[, G = G(ti+1). Thus, the connection graph is
correct only between instant t′ and ti+1, which can be summarized in G(ti+1) ∈ G(ti), explaining
the delay of Theorem 3.7.

|
t′

|
ti−1

|
ti

|
ti+1

G(ti−1) G(ti)
G(ti) G(ti+1)

∈ ∈

G = G(ti) G = G(ti+1)

G = G(ti−1) G = G(ti)

Figure 3.3 – Visualization of the instants of movement and the associated graphs and updates.
The blue hashed zones represent the execution of the updates byA f 1d.

To prove Theorem 3.7, we proceed in several steps, showing that after the execution of
each of the procedures of A f 1d, additional properties are verified, until it is proven that the
whole connection graph complies to Theorem 3.7. First, we prove in Lemma 3.8 that after
the execution of procedure Correct_Legitimate_and_Distant_Lookout from Algorithm 5, it
is guaranteed that the lookouts (`) and the sets of supervised nodes (S ) are valid. Then, in
Lemma 3.9, we prove that after the execution of Correct_Close_Neighbor from Algorithm 6,
all nodes that are no longer neighbors have been filtered out of the sets of neighbors (N) and of
the sets of neighbors of the lookouts (L). Finally, we prove in Lemma 3.10 that after execution
of Correct_Potential_Neighbor from Algorithm 7, the neighbors and neighbors of lookouts
are valid.

As some variables are symmetric, we write only the proofs for the “+” variables. Thus, we
prove for example that `+

u is valid, but we do not explicitly prove that `−u is valid too. The proofs
for the symmetric variables are very similar to the proofs below.

Lemma 3.8. Let ti be so that G(ti) ∈ G(ti−1).
After the execution of the updates associated with the failure of certificates DistantLook-

out, LegitimateLookout+ and LegitimateLookout− of instant ti, that is, after the execution of
procedure Correct_Legitimate_and_Distant_Lookout, line 19 of Algorithm 4), ∀u ∈ V, `+

u
and S +

u are valid with regard to the positions of the nodes at time ti.

96



•

u
•

v
]

r

Figure 3.4 – Case 1: We may prove that v was a neighbor of u before the movement.

This remains true until ti+1: `+
u (ti+1) and S +

u (ti+1) are valid with regard to the positions of the
nodes at time ti.

Proof. Let us denote by t̃ the instant whereA f 1d finishes executing the procedure Correct_Le-
gitimate_and_Distant_Lookout. Let u be a node fromV. To prove the first part of the lemma,
we have to show that `+

u
(
t̃
)

and S +
u
(
t̃
)

are valid with regard to the positions of the nodes at time
ti.

First, let us prove that the lookout does not change when it does not need to be changed: if
`+

u (ti) is still valid with regard to the positions of the nodes at instant ti, then `+
u
(
t̃
)

= `+
u (ti).

Notice that inA f 1d, `+
u can change only on line 43 of Algorithm 5. The value affected to the

lookout on this line depends on the value of the variable newLookout, that can come only from
three places.

• Line 30: by default, newLookout takes the value of `+
u (ti), that is, the previous value of the

lookout. In other words, if none of the situations below happens, than the lookout does
not change.

• Line 26, only if there is at least one v ∈ Nu(ti) ∪ L+
u (ti) so that LegitimateLookout+(u, v)

was false at ti. Thus this change of lookout occurs only if `+
u (ti) is no longer valid with

regard to the positions of the nodes at instant ti.

• Line 40, when a reply message has been received. In turn, this message has necessarily
been sent by `+

u (line 36) as a response to a req message from u (line 28). As the req
message is sent only if DistantLookout(u, `+

u (ti)) was false at ti, this change of lookout
also may only happen when the previous lookout is no longer valid.

A first conclusion that can be made from these remarks is that the lookout may change only if
it is not valid at time ti.

Let us now show that if `+
u (ti) is not valid with regard to the positions of the nodes at instant

ti, then the updates make sure that `+
u
(
t̃
)

is. For this, we rely on the assumption stating that
G(ti) ∈ G(ti−1).

There are only three situations in which `+
u (ti) is not valid with regard to the positions at ti,

and all three situations are disjoint.

• Case 1 : `+
u (ti) = ⊥, and ∃v : pu(ti) + r < pv(ti) (see Figure 3.4).

At line 24 of Algorithm 5, the set C of candidates for `+
u
(
t̃
)

is the set of nodes v such
that LegitimateLookout+(u, v) failed at ti. As it is supposed in this case that `+

u (ti) = ⊥,
we have C = {v ∈ Nu(ti) : pu(ti) + r < pv(ti)} (see line 13, Algorithm 4; note that
`+

u (ti) = ⊥ ∧G(ti) ∈ G(ti−1) =⇒ L+
u (ti) = ∅).

However, we have G(ti) ∈ G(ti−1), and thus in particular `+
u (ti) = ⊥ is valid with regard to

the positions of the nodes at time ti−1. Therefore, for any node v ∈ V, pv(ti−1) ≤ pu(ti−1)+r.
Let us take a node v such that pu(ti) + r < pv(ti). By Definition 3.1, pu(ti−1) − dmv + r <
pv(ti−1) + dmv, and thus, as we have supposed that r ≥ 2dmv (Equation 3.1), we have

97



•

u
•

v
•

`+
u (ti)

] ][

r

Figure 3.5 – Case 2: We may prove that v was a neighbor either of u or of `+
u (ti) before the

movement.

•

u
•

`+
u (ti)

]

r

Figure 3.6 – Case 3: We may prove that a new lookout can be found for u in the local variables
of `+

u (ti).

pu(ti−1) ≤ pv(ti−1) ≤ pu(ti−1) + r, so that v ∈ Nu(ti). We thus have C = {v ∈ V : pu(ti) + r <
pv(ti)}.

Thus C is not empty, by supposition of Case 1, and newLookout , ⊥, whereas `+
u (ti) = ⊥.

It follows that DistantLookout(u, `+
u (ti)) < Fail, so that neither line 28 nor line 40 are

executed by u, while lines 42 through 47 will be executed. Thus, `+
u
(
t̃
)

becomes the node
w with the smallest coordinate so that pu(ti) + r < pw(ti) (as it is the value taken by
newLookout at line 26). Thus, there cannot exist a node x so that pu(ti) + r < px(ti) <
pw(ti) − r, and thus `+

u
(
t̃
)

is a valid lookout for u with regard to the positions of the nodes
at time ti.

• Case 2 : `+
u (ti) , ⊥, and ∃v : pu(ti) + r < pv(ti) < p`+

u (ti)(ti) − r (see Figure 3.5).

Let V = {v ∈ V : pu(ti) + r < pv(ti) < p`+
u (ti)(ti)− r}. Similarly to Case 1, as G(ti) ∈ G(ti−1),

and as all nodes did not move more than dmv ≤ r/2 distance units in ]ti−1; ti], for any
v ∈ V , we have either v ∈ Nu(ti) or v ∈ L+

u (ti). Thus, LegitimateLookout+(u, v) ∈ Fail,
and with C the set computed by u at line 24, we have C = V .

Thus, again, C is not empty. As ∃v : pu(ti) + r < pv(ti) < p`+
u (ti)(ti)− r, we necessarily have

d
(
u, `+

u (ti), ti
)
> r, so that (DistantLookout, u, `+

u (ti)) < Fail (line 11), and neither line 28
nor line 40 are executed by u, while lines 42 through 47 will be executed, so that `+

u
(
t̃
)

takes the value of the node in C that is closest to u. This ensures that there is no node w so
that pu(ti) + r < pw(ti) < p`+

u (t̃)(ti) − r, and thus `+
u
(
t̃
)

is valid with regard to the positions
of the nodes at time ti.

• Case 3 : `+
u (ti) , ⊥, and p`+

u (ti)(ti) ≤ pu(ti) + r (see Figure 3.6).

Let us denote by x the lookout of u at time ti, that is x = `+
u (ti). We thus suppose that

px(ti) ≤ pu(ti) + r.

In this case, we have
]
pu(ti) + r ; px(ti) − r

[
= ∅, so that no node v may violate a certificate

LegitimateLookout+(u, v), thus C is empty. Furthermore, as G(ti) ∈ G(ti−1), we have
pu(ti−1) + r < px(ti−1) (as x, the lookout u had at time ti, is valid with regard to the
positions of the nodes at time ti−1). As movements are limited in speed, we thus have
d(u, x, ti) ≤ r, so that (DistantLookout, u, x) ∈ Fail. Thus u sends a message req(+) to x
line 28.
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The new lookout of u is the node chosen by x on lines 34 and 35, among the nodes of
Nx(ti) ∪ L+

x (ti) (that is, among the neighbors of u’s lookout, and among the neighbors of
the lookout of u’s lookout) that are at least at distance r from u. Among those nodes, the
closest one to u is chosen. To show that this node is a valid lookout for u, let us make a
case analysis:

If `+
x (ti) , ⊥, we can prove two facts:

– Let us show that pu(ti) + r < p`+
x (ti)(ti). For this, let us first note that at time ti,

x is a valid lookout for u and `+
x (ti) is a valid lookout for x, both with regard to

the positions of the nodes at time ti−1; we thus have pu(ti−1) + r < px(ti−1) and
px(ti−1) + r < p`+

x (ti)(ti−1), so that, as r ≥ 2dmv, we get pu(ti−1) + r + 2dmv < p`+
x (ti)(ti−1).

As movements are limited in speed, pu(ti) + r < p`+
x (ti)(ti).

– Let v be a node such that pu(ti) + r < pv(ti) < p`+
x (ti)(ti) − r. Let us show that

v ∈ Nx(ti) ∪ L+
x (ti). As G(ti) ∈ G(ti−1), there does not exist a node w such that

pu(ti−1) + r < pw(ti−1) < px(ti−1) − r (because x is a valid lookout for u) nor such
that px(ti−1) + r < pw(ti−1) < p`+

x (ti)(ti−1) − r (because `+
x (ti) is a valid lookout for x).

Thus, as nodes do not move more than r/2 distance units per time step, we have
v ∈ Nu(ti) ∪ Nx(ti) ∪ N`+

x (ti)(ti). In the case where v ∈ Nu(ti) (and thus pv(ti−1) ≤
pu(ti−1) + r), as pu(ti) + r < pv(ti), and with pu(ti−1) + r < px(ti−1) (x being a valid
lookout for u) and px(ti) ≤ pu(ti) + r (by supposition of case 3), then v and x have
exchanged their positions: pv(ti−1) ≤ px(ti−1), but px(ti) ≤ pv(ti). Again, as v and x
did not move more than r/2 distance units, we necessarily had d(x, v, ti−1) ≤ r, and
thus v ∈ Nx(ti), by validity of Nx(ti) with respect to the positions at time ti−1. Thus,
we have v ∈ Nx(ti) ∪ L+

x (ti).

Thus, either `+
x (ti) is a valid lookout for u with respect to the positions at time ti, or there

is a non-empty set V of nodes that are situated in-between u and `+
x (ti) that make so that

`+
x (ti) is not a valid lookout for u. However, in this case, all nodes of V are in Nx(ti)∪L+

x (ti),
and thus x chooses one of them as new lookout for u on lines 34 and 35. As the chosen
node is the node from V with the smallest coordinate, it is a valid lookout for u. Thus, we
can conclude that in case 3, `+

u
(
t̃
)

is also valid with regard to the positions of the nodes at
time ti.

Concerning the updates of S +, note that any change of lookout of u comes with a message
that is sent to the new lookout v (line 42), that will remove u from S +

v and a message to the
previous lookout v′ (line 47), that will add u to S +

v′ . Thus, we end up, for any node u ∈ V, with
S +

u
(
t̃
)

=
{
v : u = `+

u
(
t̃
)}

.
Finally, we can see that the value of `+

u cannot change after the execution of the procedure
Correct_Legitimate_and_Distant_Lookout; thus all what has been proved for time t̃ remains
valid until ti+1, that is, `+

u (ti+1) = `+
u
(
t̃
)
, and S +

u (ti+1) = S +
u
(
t̃
)
. Thus, `+

u (ti+1) and S +
u (ti+1) are both

valid with regard to the positions at time ti. �

Lemma 3.9. Let ti be so that G(ti) ∈ G(ti−1).
After the execution of the updates associated with the failure of certificates CloseNeigh-

bor of instant ti, that is, after the execution of procedure Correct_Close_Neighbor, line 20 of
Algorithm 4), ∀u ∈ V, we have ∀v ∈ Nu, d(u, v, ti) ≤ r, and ∀v ∈ L+

u , d
(
v, `+

u , ti
)
≤ r.

This remains true until ti+1, that is, ∀u ∈ V, ∀v ∈ Nu(ti+1), d(u, v, ti) ≤ r, and ∀v ∈ L+
u (ti+1),

d
(
v, `+

u (ti+1), ti
)
≤ r.
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Proof. Let us denote by t̃ the instant where the algorithmA f 1d finishes executing the procedure
Correct_Close_Neighbor. Let u be a node fromV.

Line 5, for any node v ∈ Nu(ti) such that d(u, v, ti) > r, (CloseNeighbor, u, v) is added to
Fail. Thus, line 61 is executed by u, and v is removed from Nu. We thus have ∀v ∈ Nu

(
t̃
)
,

d(u, v, ti) ≤ r.
Any removal from Nu is complemented, on line 62, with a message sent to the nodes from

S +
u . By Lemma 3.8, we have that, at line 62, S +

u = {v : `+
v = u}, so that u is also removed from

L+
v (when v executes line 67). Thus, we also have ∀v ∈ L+

u
(
t̃
)
, d

(
v, `+

u
(
t̃
)
, ti

)
≤ r.

Finally, we can note that on line 8, only nodes v such that d(u, v) ≤ r are added to the list
of failing PotentialNeighbor certificates. Thus, any node v added to Nu on line 72 satisfies
d(u, v) ≤ r, and similarly, any node added to L+

u satisfies d
(
v, `+

u
)
≤ r. Hence, the execution

of procedure Correct_Potential_Neighbor does not disrupt the property proven for moment t̃,
and we have, ∀u ∈ V, ∀v ∈ Nu(ti+1), d(u, v, ti) ≤ r, and ∀v ∈ L+

u (ti+1), d
(
v, `+

u (ti+1), ti
)
≤ r. �

Lemma 3.10. Let ti be so that G(ti) ∈ G(ti−1).
After the execution of the updates associated with the failure of certificates PotentialNeigh-

bor of instant ti, that is, after the execution of procedure Correct_Potential_Neighbor, line 21
of Algorithm 4, ∀u ∈ V, Nu and L+

u are valid with regard to the positions of the nodes at time ti.
This remains true until ti+1, that is, Nu(ti+1) and L+

u (ti+1) are valid with regard to the positions
of the nodes at time ti.

Proof. Let us denote by t̃′ the instant where A f 1d starts executing the procedure Correct_Po-
tential_Neighbor, and by t̃ the instant whereA f 1d finishes executing the procedure Correct_Po-
tential_Neighbor. Let u be a node fromV.

When the execution of Correct_Potential_Neighbor starts, we have Nu

(
t̃′
)

= {v ∈ Nu(ti) :
d(u, v, ti) ≤ r} (by Lemma 3.9, and because no node is added to Nu before the execution of
Correct_Close_Neighbor, so that any node in Nu

(
t̃′
)

was in Nu(ti)). Thus, to prove the validity
of Nu at time t̃, i.e. Nu

(
t̃
)

= {v : d(u, v, ti) ≤ r}, we need to prove that any node v such that
d(u, v, ti) ≤ r and v < Nu(ti) is added to Nu before t̃.

Let us now show that for any node v such that d(u, v, ti) ≤ r and v < Nu(ti), we have
v ∈ L+

u (ti) ∪ L−u (ti). In this case, we have that (PotentialNeighbor, u, v) is added to Fail line 8,
and line 72 is executed so that v is added to Nu.

As G(ti) ∈ G(ti−1), v < Nu(ti) if and only if d(u, v, ti−1) > r. By Definition 3.1 and
Equation 3.1, ∀v ∈ V, d(u, v, ti) ≤ r =⇒ d(u, v, ti−1) ≤ r + 2dmv ≤ 2r. Thus, we have
d(u, v, ti) ≤ r ∧ v < Nu(ti) =⇒ d(u, v, ti−1) ∈ ]r; 2r]:

d(u, v, ti) ≤ r ∧ v < Nu(ti) =⇒

pv(ti−1) ∈
[
pu(ti−1) − 2r ; pu(ti−1) − r

[
or pv(ti−1) ∈

]
pu(ti−1) + r ; pu(ti−1) + 2r

] (3.10)

Let us first look at the second case from Equation 3.10, and let us note by I+ the associated
interval, that is, I+ =

]
pu(ti−1) + r ; pu(ti−1) + 2r

]
. Again, let us denote by x the lookout of u at

time ti, that is x = `+
u (ti). Because G(ti) ∈ G(ti−1), we have that if x = ⊥, it is impossible that

there exists a v such that pv(ti−1) ∈
]
pu(ti−1) + r ; pu(ti−1) + 2r

]
. We can thus suppose that x , ⊥.

For any node v ∈ V such that pv(ti) ∈ I+, we have:

• either v ∈ L+
u (ti), and in this case we have obviously v ∈ L+

u (ti) ∪ L−u (ti);

• or v < L+
u (ti). However, the existence of such a node v is in contradiction with G(ti) ∈

G(ti−1), as, by validity of x, we cannot have pu(ti−1) + r < pv(ti−1) + r < px(ti−1).
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The first case from Equation 3.10 is similar, so that we get what we were looking for: for
any node v ∈ V such that d(u, v, ti) ≤ r and v < Nu(ti), we have v ∈ L+

u (ti)∪L−u (ti). As mentioned
previously, any such node will be added to Nu on line 72, so that Nu

(
t̃
)

is valid with regard to
the position at ti.

As with Lemma 3.9, each addition of a node into Nu is complemented with a message sent
to the nodes in L+ (which is valid by Lemma 3.8), so that we get the validity of L+

u
(
t̃
)
.

Finally, as Correct_Potential_Neighbor is the last procedure to be executed, no changes
are made to the structure between t̃ and ti+1, and thus we have Nu(ti+1) = {v : d(u, v, ti) ≤ r}, et
L+

u (ti+1) = {v : d
(
v, `+

u (ti+1), ti
)
≤ r}. �

Lemma 3.11. Let ti be so that G(ti) ∈ G(ti−1).
We have that ∀u ∈ V, `−u (ti+1), S −u (ti+1), and L−u (ti+1) are all valid with regard to the positions

of the nodes at time ti.

Proof. The proof of this lemma is symmetric to the proofs of lemmas 3.8, 3.9 and 3.10. �

Proof of Theorem 3.7. For any i ∈ N such that G(ti) ∈ G(ti−1), we have after execution of the
operations described in Algorithms 4, 5, 6, and 7, that G(ti+1) ∈ G(ti), by Lemmas 3.8, 3.10 and
3.11. As we suppose that G(0) ∈ G(0), and because the movements of the nodes start at instant
t1, we have, by induction, that for any i ≥ 0, G(ti+1) ∈ G(ti). �

Now that we have proven thatA f 1d maintains a valid connection graph, we need to analyze
the performances of the algorithm.

3.6 Performance Analysis
We will measure the performance ofA f 1d by computing several upper bounds on memory usage
and message complexity.

As in A f 1d, nodes are often connected with other nodes that are situated in a ball of radius
r, we will use the following value as a base value for our performance measurements:

bmax = max
u∈V

(card({v : d(u, v) ≤ r})) (3.11)

We make a supposition similar to the displacement assumption proposed in [50] : we sup-
pose that the density of nodes that can rely close one to another is limited by a value ρ (recall
that dmv = 1 is the maximal number of distance units a node may move at each time step).

Definition 3.12. At any instant t, any ball of radius dmv contains at most ρ nodes fromV (with
ρ ≤ n).

Here, dmv is used as a reference for scale in terms of distance units. It is reasonable to
impose such a limit, as in most real settings, it should not be expected that nodes get arbitrarily
“packed” in a small area: for example, nodes could have a non-negligible volume, so that two
nodes cannot get too close to each other without inducing a collision. Note however that in the
case where such a limit cannot be guaranteed, it is possible to use ρ = n.

The value of bmax is closely related to ρ: in 1D, we have bmax = ρ× r
dmv

. We use both values,
so that the origin of the costs is more apparent: ρ shows costs related to the movement of the
nodes, while bmax shows costs related to the CloseNodesu(r) query.

Table 3.2 compares the performance of A f 1d with several algorithms. We measure the
following values:
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• The number of messages counts the maximal number of messages that can be sent at each
time step by the nodes of V. Here, only messages for the changes of connections and
maintenance of the address books are sent: as explained in Section 3.1.1, it is supposed
that no messages are needed for the nodes to know the positions of other nodes in their
address book.

• The number of communication rounds per time step simply indicates, for the algorithms
that use the synchronous model, how many communication rounds are needed to update
the structure each time the nodes move.

• The memory usage is the maximal size of the local variables, that is, the sum of the
sizes of the sets maintained by each node. Recall, as explained in Section 3.1.1, and as
mentioned above, that the number of messages does not include the messages that may
be required in practice to be exchanged for position estimation; however, it is supposed
that those messages are proportional to the number of other nodes each node is connected
to. It so happens that on each of the solutions of Table 3.2, the memory usage of a node
is of the same order as the size of its address book (or equivalently, to the number of
outgoing arcs of the node in the connection graph). Thus, the memory usage also gives a
measurement for the number of messages sent for positional updates.

• The total number of connections counts, as its name suggests, the total size of all address
books of the nodes, or equivalently, the number of arcs in the connection graph.

The proofs for the performance values for A f 1d are given below. The other algorithms are
the following:

• An ideal algorithm that we denote by Aid. In Aid, each node u maintains only the target
set of the algorithm, that is, Nu. Thus, the memory usage is limited to bmax memory entries
per node, and the number of connections to n × bmax. We suppose that this algorithm
needs to send only one message to add or remove one node from Nu (which we believe
is impossible in practice). Thus, as nodes do note move more than dmv distance units
per time step, no more than 4ρ messages can be needed per node, so that the number of
messages per time step is limited to n × (4ρ) withAid.

• A first naive algorithm, that we denote by Ana1. In this algorithm, the nodes are all
connected to each others; in other words, the connection graph is the complete directed
graph on the set of nodes. As each node has the exact knowledge of the positions of the
set of nodes, Nu can be computed locally by u, so that no message needs to be sent to
update the sets of neighbors. However, the memory usage is of n entries per node.

• A second naive algorithm, that we denote byAna2. In this algorithm, a node is designated
as the coordinator, and all the other nodes are connected to this coordinator, similarly to
a client/server model. The coordinator has a complete knowledge of the positions of the
nodes, and is in charge of telling to any node u ∈ V when it should make a change to
Nu. It thus follows that updates are handled in one communication round, and the same
amount of messages is needed as forAid. The memory usage is of n + bmax entries for the
coordinator, and of bmax entries for any other node (the size of Nu). The total number of
connections is as forAid, plus n arcs for the connections to the coordinator.

• D-Spanner, the distributed KDS presented in [56] is also given as comparison. Recall that
Φ is the ratio between the highest and lowest possible distance between two nodes (Defi-
nition 1.6 p.36). Note however that D-Spanner is not tailored at the CloseNodesu(r) query
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for a fixed r, so that additional computations are needed to get the answer to the query.
We will see in Section 4.2 that answering to this query needs O(log r) communication
rounds and O(log r + k) messages.

Table 3.2 – Upper bounds on the performances of the algorithms

A f 1d Aid Ana1 Ana2 D-Spanner
[56]

Number of
messages

O(nbmaxρ) =

O(nbmax)
(Lemma 3.13)

n × (4ρ) 0 n × (4ρ) O(n log Φ)

Number of
communica-
tion rounds
per time step

O(1)
(Lemma 3.14)

1 0 1

Memory us-
age / address
book size

O(bmax)
(Lemma 3.15)

bmax n

n for the
coordinator,
bmax for the
others

O(log Φ)

Total num-
ber of
connections

O(nbmax)
(Lemma 3.16)

n × bmax n2 n(bmax + 1) O(n)

Let us now prove the upper bounds for the performance ofA f 1d that are given on Table 3.2.

Lemma 3.13. The number of messages sent by a node per time step withA f 1d does not exceed
bmax(8ρ + 2) + 8.

Proof. Each change in the local variables of u is associated with the exchange of some mes-
sages:

• The removal of a neighbor from Nu can lead to up to 2bmax messages, line 62 and line 63
of Algorithm 6, one for each node in S +

u and in S −u .8

• The same goes for the addition of a new neighbor into Nu, which can lead to up to 2bmax

messages.

• A change of lookout can lead to up to 4 + bmax messages : one req message, (line 28 of
Algorithm 5), one replymessage (line 36 of Algorithm 5), one removemessage (line 42 of
Algorithm 5), and one addmessage (line 47 of Algorithm 5), plus up to bmax myNeighbors
messages, one to each node in S +

u (line 54 of Algorithm 5).

• For the other local variables, that is, S +
u , S −u , L+

u , and L−u , changes are deduced only from
messages received because of one of the above cases. Thus, the messages that are sent
because of changes in these other local variables are already counted.

In addition, the number of changes to the local variables of u is limited because of the
hypotheses we made:

8Note that these messages are not strictly necessary, as the nodes in S +
u (resp. S −u ) could detect when a node

from L+
u (resp. L−u ) gets too far away from their lookout. This would however require to add one type of certificate

to the list of certificates without drastically changing the performances.
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• Because nodes move not more than dmv distance units at each time step, and because this
applies both to u and to any node from Nu, by definition of ρ, there cannot be more than
2ρ neighbors to remove from Nu at each time step.

• Similarly, there cannot be more than 2ρ new neighbors to add to Nu at each time step.

• The node u has only two lookouts, and each can change only once per time step.

Thus, the number of messages per time step induced by addition or deletion of nodes to/from
Nu is smaller than 4ρ × 2bmax, while the number of messages induced by changes of lookout is
smaller than 2(4+bmax). When summing all these upper bound, we get a total of bmax(8ρ+2)+8
messages per node at each time step withA f 1d. �

The other performance measurements are quite simple to get:

Lemma 3.14. A f 1d needs 7 communication rounds per time step to finish its updates

Proof. This is trivial, as the last round, in Algorithm 7, is round number 7. �

Lemma 3.15. The memory cost for a node is smaller than 5bmax when usingA f 1d.

Proof. The size of the local memory of u ∈ V is equal to the sum of the sizes of its local
variable, that is card(Nu) + card

(
{`+

u }
)
+ card

(
{`−u }

)
+ card

(
S +

u
)
+ card

(
S −u

)
+ card

(
L+

u
)
+ card

(
L−u

)
.

By Definition 3.11, there cannot be more than bmax neighboring nodes in Nu. As the same
goes for u’s lookout, L+

u and L−u too cannot contain more than bmax elements. At worst, all the
nodes from L+

u and L−u have u as lookout, so that they all are also in S +
u and S −u . The maximal

memory size for u is thus less than 5bmax. �

Lemma 3.16. The total number of connections when usingA f 1d is less than 3nbmax.

Proof. By Equation 3.4 and Equation 3.5, and by definition of the sets in Section 3.3.1, we
have that, for any node u, S +

u ⊆ L−u and S −u ⊆ L+
u . It thus follows, that, as u is connected to a

maximum of bmax neighbors in Nu, and as much neighbors of `+
u and of `−u , u doesn’t have more

than 3nbmax connections in total. �

3.7 Conclusion and Future Work
In this chapter, we have presentedA f 1d, a synchronous distributed algorithm that allows nodes
to maintain, in the Black-Box model on a line, a structure that depends on the positions of
the nodes. This structure enables each node u to have access, at all time, to the answer of the
CloseNodesu(r) query, where r is a fixed parameter of the algorithm. Our algorithmA f 1d needs
only a constant number of communication rounds to update the structure at each time step, and
the worst case memory usage for one node is of the same order as the worst case number of
nodes returned by the CloseNodesu(r) query, which is optimal.

3.7.1 Possible Extensions
Some elements of this chapter leave room for future research. In this section, we briefly discuss
two possible extensions for A f 1d, that would allow it to overcome some of the assumptions
made in Section 3.1.1.
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Algorithm 8 Adaptation ofA f 1d so that at each time step, one node may exceed the speed limit
dmv.

1: Let u be the node that exceeds the speed limit on time step ti.
2: Execute the updates as described with A f 1d, but with u remaining at its previous position:

for any node v , u, use pv(ti), and for u, use pu(ti−1). We thus get a connection graph that is
valid with regard to the new positions of all nodes except for u.

3: Keep in memory the previous local variables of u (Nu(ti−1), `+
u (ti−1), etc.).

4: Insertion of u to its new position:
5: if pu(ti−1) < pu(ti) then
6: v ← `+

u , v
′ ← u (*After loop, v is the first lookout that is on u’s right, and v′ a node

that has v as lookout*)
7: while pv(ti) < pu(ti) do
8: v′ ← v, v← `+

v

9: By definition of the lookout, and because v = `+
v′ , the neighbors of u and its lookouts

are a subset of Nv ∪ Nv′ ∪ {`
+
v , `

−
v′}. The other local variables can then be deduced from this.

Compute them.
10: else
11: [...] (*symmetrical if u moved to the left*)

12: Deletion of u from its previous position:
13: For any v ∈ Nu(ti−1), remove u from Nv(ti) and from L+

w(ti) and L−w(ti) for any w that has v as
lookout.

14: For any node v ∈ S +
u (ti−1), find `+

v (ti) in Nu(ti−1)∪{`+
u (ti−1)}. Symmetrical for node in S −u (ti−1).

Drop limitations on r and dmv

First, it was supposed that there is a minimal value for r that depends on the movement speed,
as stated in Equation 3.1, page 87.

It is possible to tweak A f 1d to still work with lower values for r. Having an algorithm to
answer to CloseNodesu(r) queries, for values of r that are very small compared to the speed of
the nodes, may not make much sense at first glance. It means that the answer to the query does
not give much information, as the returned set could be very quickly completely out of date.

However, in some settings, the speed of the nodes may be low most of the time, but with the
possibility for nodes to temporarily move very quickly. For example, in Heroes of Newerth [65],
some objects allow players to teleport short distance of time, or to teleport back to their starting
position. It would be interesting, in those settings, to avoid to limit r with a value depending on
a very high but rarely happening movement speed.

In the case where only one node can exceed the speed limit at each time step, we may look
for an approach similar to dynamic insertion/deletion. This approach is described in Algo-
rithm 8, and consists in three phases. Let us denote by u the node that exceeds the speed limit.
First, A f 1d is executed on the new positions of the nodes except for u. Then, in the insertion
phase, the new local variables for u are looked for. Finally, in the deletion phase, u is removed
properly from its previous location.

However, Algorithm 8 may lead to very poor performances in the worst case. If all nodes
are at distance more than r from each other, the high speed movement of u may lead to the need
for up to n communication rounds for the insertion lines 4 trough 11. The memory usage and
number of connections is comparable toA f 1d, however.

In the case where several nodes may exceed the speed limit at once, conflicts may arise
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Figure 3.7 – Example of a situation where a node v gets closer to u without becoming neighbor
of `u, the lookout of u in the same sector as v. The red arrow represents v’s movement, and the
dashed blue line represents the distance between u and `u.

if the insertion and deletion are not synchronous properly. Nodes would have to execute the
associated instruction one after the other, deciding in which order to proceed.

Extending the Method in Higher Dimensions

The results presented in this chapter consider that the nodes have one-dimensional positions.
As in most practical applications positions are two or three-dimensional, it is interesting to see
if the results can be extended to higher dimensions.

First Approach: Generalize the Algorithm When generalizing A f 1d, the set of neighbors
remains similar: each node is connected to all nodes at distance r from it, which is no longer a
line segment, but a hyperball (on 2D, the neighbors are in a disc like on Figure 3.7). Concerning
the lookouts, we may notice that the one-dimensional structure maintained by A f 1d is similar
to a Yao graph (see Section 1.5.2). The most immediate generalization would be to divide the
space around each node u in k sectors, as for Yao graphs, with a lookout in each sector that is in
charge of informing u of any other node that gets close enough to u to become a neighbor.

However, in higher dimensions, some properties change. Firstly, when positions are in one
dimension, it is guaranteed that a node v first has to become a neighbor of u’s lookout before
getting close enough to u so that v should become u’s new lookout. With our straightforward
generalization ofA f 1d, where there is only one lookout in each sector, this seems not to be true
in two or higher dimensions, as shown on Figure 3.7, where the node v can get close enough
to u to become its new lookout, or even its neighbor, without first becoming a neighbor of `u,
the lookout of u that is in the same sector as v. It thus seems difficult to maintain the sets of
neighbors using only one lookouts in each sector.

Even maintaining the lookouts themselves seems difficult. As each node would need one
lookout per sector, a difficulty arises when `u, the lookout of u, goes into another sector of u. As
can be seen on Figure 3.8, if, among the neighbors and lookouts of `u none can become the new
lookout of u, then the local knowledge of the two nodes is not enough to repair the structure.
It thus seems required, in the case of Figure 3.8, for the nodes to explore the connection graph
until a new lookout is found. However, there does not seem to be straightforward methods to
accomplish this exploration in less than O(n) communication rounds, as the new lookout in the
sector left by `u could be extremely far away.

106



•
u

• `u

•
v

•
v′

•
w

r
r

Figure 3.8 – Example of a situation where `u goes into another sector of u, and where w becomes
the only node that can replace `u as lookout in the sector that it left. Here, neither u nor `u have
w as lookout, as v and v′ are `u’s lookouts (as v is closer to `u than w).

It thus seems that more advanced techniques should be used in higher dimension. Other
solutions of the literature that propose kinetic Yao graphs [119, 120] could be considered to
help maintaining the lookouts, but as those structures do not involve sets of neighbors, this
problem is a perspective for future research.

Second Approach: Run Several Instances of A f 1d Another, simpler approach, consists in
running several instances of A f 1d, one for each dimension. The set of neighbors of a node
u in one of these instances is thus the set of nodes of V whose projection on the associated
dimension is at distance r from u’s own projection. In order to answer to the CloseNodesu(r)
query, u would thus have to compute the set of nodes that are actually at distance r from it, out
of the union of all its neighbors.

The memory usage is quite high, however. If we call dmax the maximal distance there can
be between two nodes, it is easy to see that the memory usage of one node is bounded by
d × 2r × dd−1

max × ρ
′, with ρ′ the maximum number of nodes that can have their position in a unit

of volume. See Figure 3.9 for an example of one projection in 2D. As a comparison, the size of
the answer to the CloseNodesu(r) query is bounded by πr2ρ′ in 2D, and by 4

3πr3ρ′ in 3D, which
is lower, as r should be much smaller than dmax in most practical settings.

This lack of straightforward solution for the problem of answering to the CloseNodesu(r)
query in higher dimensions, brings us to study other types of structures, and in particular navi-
gating nets. These tree-based structures can be used to answer to CloseNodesu(r) queries with
non-fixed parameters r. This is the main subject of the next chapter.
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Figure 3.9 – Instance of A f 1d running on one of the projections in 1D. The red hashed zone
represents all nodes that are u’s neighbors in that instance. The big square represents the whole
space.
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Chapter 4

Kinetic Data Structures for Proximity
Queries in Higher Dimension: Navigating
Nets

As in the previous chapter, in this chapter, we aim at providing algorithms and data structures
dedicated to moving objects to answer to the CloseNodesu(r) query: at time t, given a node u
and a distance r, return the set of nodes that are at most at r distance units away from u at the
current time t.

The main difference with previous chapter, is that here r is no longer a predefined constant,
but a parameter of the query that may change when a node asks for the query. It is thus no
longer possible to maintain at each time the answer to the query as in the previous chapter. We
thus focus on a another type of data structure that is naturally adapted to this query: navigating
nets.

First, in Section 4.1, we will describe the model that will be used in this chapter, and present
some results that could achieve the same goal using other structures than navigating nets. In
Section 4.2, we define navigating nets and extensions of navigating nets so as to encompass
most uses of similar structures from previous works. In Section 4.3, we present, in the central-
ized setting, constrained navigating nets, that by adding additional constraints to the classical
navigating nets, add some useful properties to the structure (described in Section 4.3.2); we
then give an algorithm,Acnn, prove that it is able to maintain constrained navigating nets in the
low mobility setting, and give some performance measures. Finally, in Section 4.5, we devise
future improvements for the results of this chapter, in particular considering the high mobility
setting, and the distributed setting.

4.1 Introduction

4.1.1 Model
The suppositions that are made in this chapter are the same as those from the previous chapter.
Again,V is a set of n nodes, and each node u ∈ V is associated at each instant t ∈ R+ with a po-
sition pu(t). We suppose that the positions are in a metric space with a constant doubling dimen-
sion (we may thus have pu(t) ∈ Rd, see Section 1.5.3, or more exactly, pu(t) ∈ {0; a; 2a; · · · ; Ua}d

to take into account the limited size of the memory registers, recall Section 1.1.1). We denote
by d(u, v, t) the distance between pu(t) and pv(t).

Recall also the following definitions and properties about the nodes’ positions:
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Definition 1.7 (aspect ratio Φ). dmin and dmax are two given values such that ∀t,∀u, v ∈ V, dmin ≤

d(u, v, t) ≤ dmax.
The aspect ratio is given by Φ = dmax

dmin
.

The value of dmax typically represents the size of the space in which the nodes may move,
while dmin may represent the size of the nodes or the distance at which they collide.

We use in this chapter the Black-Box model; the movements are not known in advance, and
nodes may move only at specific, synchronous instants that we call time steps. We will denote
by ti the instant of the i-th time step1, that is, the moment of the i-th time the nodes may move.

There is a maximum normalized displacement per time unit such that for each point u ∈
V and any time step ti we have d(pu(ti), pu(ti+1)) ≤ dmv, where d(pu(ti), pu(ti+1)) denotes the
distance between pu(ti) and pu(ti+1). For simplicity, we may suppose that dmv is normalized to
1.

The results of this chapter are valid under a relaxed constraint on the minimal distance,
already used in the previous chapter (see Definition 3.12, p.101). Instead of strictly limiting
that minimal distance, we define a constant ρ, such that a node may have up to ρ nodes at
distance dmv from it. Additionally, we suppose that dmin < dmv.

Definition 4.1. At any instant t, any ball of radius dmv contains at most ρ nodes from V (with
ρ ≤ n).

It is thus possible for two nodes to share the same coordinates. The value of ρ is a measure
of density. It can correspond either to a constraint or to an observation. For example, if the
nodes represent real objects with a physical volume, then the nodes cannot get too close to each
other, naturally limiting the amount of nodes per unit ball. This requirement is similar to the
displacement assumption proposed in [50].

The query is done on a directed graph G(t) = (V, E(t)), the so-called connection graph. The
challenging task is to define a connection graph allowing fast answers to the CloseNodesu(r)
query and fast updates when the nodes move at each time step of the Black-Box model. The
query is defined as such:

Definition 4.2 (CloseNodesu(r)). Given a node u ∈ V at current time t, and a distance r ∈ R,
return all nodes v ∈ V such that d(u, v, t) ≤ r.

For convenience, we add the following definition:

Definition 4.3. We denote by Bu(r) the ball centered in u and of radius r, and by bu (r) =

card(Bu(r)) the number of nodes in that ball.

In other words, CloseNodesu(r) should return the set {v ∈ V : pv ∈ Bu(r)}.

We first focus on the centralized setting, where G is a data structure on a single computer,
and where we aim at bounding the amount of memory it uses, as well as the update time to
handle the movements of the nodes. We then adapt our results to the distributed setting, where
G is, as in the previous chapter, a distributed data structure, where we aim at bounding the local
memory usage of each node, and the amount of communication rounds needed to update G
when the nodes move.

As seen in Section 1.6.1, we also distinguish two mobility settings.

• In the low mobility setting, a single node is allowed to change its position at each time
step.

• In the high mobility setting, all the nodes can change their position at each time step.
1Again, ti is just used as a convenient way to specify a time step, and to be able to refer to the previous and next

time step (with ti−1 and ti+1).
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4.1.2 Contribution
The contributions of this chapter are twofold.

First, we give a general definition of navigating nets, so as to encompass previous results.
We give properties of navigating nets, some of which already discussed in other articles [48, 55],
but here we give broader conditions on the parameters of the navigating nets for these properties
to be true. In particular, we give in Theorem 4.20 broader conditions than in [55] for navigating
nets to be spanners. Navigating nets can thus be used to answer to the CloseNodesu(r) query
in O(k · log Φ) time (with k = card(Bu(r)) the size of the set returned by the query), as we have
seen in Section 1.5.2 that a spanner may be used to answer to the CloseNodesu(r) query in
O(k · δ), with δ the maximal degree of the spanner, which is O(log Φ) for navigating nets. We
also present another search algorithm on navigating nets to answer to the query in O(log r + k)
time (Lemma 4.15).

We then introduce constrained navigating nets, a subclass of navigating nets that shows
interesting properties. These properties are used to give a centralized algorithm in the low
mobility setting,Acnnptr, that updates constrained navigating nets in O(log Φ) computations per
time step (Theorem 4.52), using O(n) space (Theorem 4.53). This is similar to the DefSpanners
from [55], as we prove that they can be adapted to the low mobility setting with O(log Φ)
computations per time step (Theorem 4.17). With our data structure however, while the cost to
compute the changes to make to the data structure at each time step is similar to DefSpanners,
the number of actual changes to the data structure is kept small (Theorem 4.37). The centralized
results are summarized in Table 4.1.

Table 4.1 – Results for kinetic centralized navigating nets: computations per time step in the
Black-Box model.

Low mobility High mobility
DefSpanner O(log Φ) (Theorem 4.17) O(n log Φ) [55]
Constrained Navigating Nets
(Acnnptr)

O(log Φ) (Theorem 4.52) Conjecture: O(n) (see Sec-
tion 4.5.1)

We also give a synchronous algorithm, Acnndist to maintain distributed constrained navigat-
ing nets using a constant number of communication rounds per time step in the low mobility
setting (Theorem 4.62). The memory usage for one node may be O(n) at worst (Theorem 4.64),
but a node needs to track the position of only O(log Φ) other nodes (Theorem 4.65), and the
total memory cost for all the nodes is O(n) (Theorem 4.63). We thus give the first distributed
Kinetic Data Structure in the Black-Box model, as it is unclear whether [56], written for the
Flight Plan model (a movement model that differs from the Black-Box model, see page 38) can
be adapted to the Black-Box model.

Our algorithms are all based on certificates, and as long as all of these certificates are valid,
no changes to the structure have to be made.

This chapter is organized as follows.
In Section 4.2, we give the definition of navigating nets, along with some of their properties.

Then, in Section 4.3, we present the main results of this chapter. First, in Section 4.3.1, we
show that DefSpanners can be easily adapted to the low mobility setting, so as to be updated
using only O(log Φ) computations per time step. We then give the definition of constrained
navigating nets in Section 4.3.2, and show some properties that are the main appeal of these
structures. Then, in Section 4.3.3 we explain how to maintain constrained navigating nets under
movements of the nodes in the low mobility setting and Black-Box model. We present a first
algorithm Acnn that uses O(n) space, but needs O(log2 Φ) computations per time step, which is
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worse than DefSpanners: Section 4.3.4 proves the validity of Acnn, and Section 4.3.5 proves
its performance. We then present in Section 4.3.6 some modification to Acnn to get Acnnptr,
the algorithm that needs only O(log Φ) computations per time step to maintain constrained
navigating nets.

We then move to Section 4.4.3, where we look at the distributed setting, and show that D-
Spanners from [56] are ill-adapted to the Black-Box model, and present Acnndist, an algorithm
that maintains constrained navigating nets using a constant number of communication rounds
per time step. Finally, we conclude in Section 4.5, and give some ideas on how to extend Acnn

to the high mobility setting.

4.1.3 Other Related Structures
We have seen in Section 1.5.2 several data structures that can be used to answer to the CloseNodes
query in the centralized setting, and we have seen throughout Section 1.7 a few results about
maintaining these structures in the Black-Box model:

• Delaunay triangulations can be used in two dimensions to answer to the CloseNodes
query in O (k · n) time (with k the number of nodes returned by the query). Maintaining
Delaunay triangulations can be done in the high mobility setting either withO(Φ2) or with
O(n log n) computations per time step [19], and with O(n) computations per time step in
the low mobility setting.

• Navigating net can be used to answer to the CloseNodes query in O(k · log Φ) time. Up-
dating navigating nets takes O(n log Φ) computations per time step in the high mobility
setting [55], and we will show in Section 4.3.1, once having properly introduced navigat-
ing nets, that it takes O(log Φ) computations per time step in the low mobility setting.

• Quadtrees can be maintained with O(n log ρ) computations per time step in the high mo-
bility setting [50] (and as explained in Section 1.7.3, p.46, this cost is not improved in
the low mobility setting). We will show in this section how to use quadtrees to answer to
CloseNodes queries in two dimensions.

In the distributed setting, to the best of our knowledge, only navigating nets have been
studied, in [56]. We will give more details in Section 4.4.1.

Recall that a two-dimensional quadtree is a tree of square-shaped cells. Each cell has four
children, that is, equal sized, square-shaped cells, that form a partition of the parent cell. Some
cells however, the leaves, do not have children, but maintain links to the nodes whose positions
are situated in them. The root of the tree must be a cell that is a superset of the possible positions
of the nodes. Each cell is subdivided until the leaves contain at most one node. Note that the
borders of the cells should be defined in such a way that a node is contained in only one leaf.

Algorithm 9 describes how to answer to the CloseNodesu(r) query using a quadtree: we
simply descend the hierarchy, keeping only the cells of the quadtree that intersect with the
query range Bu(r), until all nodes are found in the leaves.

Let us prove the following (recall that bu (x) is the number of nodes in the ball of radius x
centered in node u):

Theorem 4.4. In the centralized setting, quadtrees can be used to answer to two-dimensional
CloseNodesu(r) queries in O

(
bu

(
r + r

√
2
)

log Φ
)

time.

As we suppose, by Definition 4.1, that the density of the nodes is limited, we have that
O

(
bu

(
r + r

√
2
))

= O(bu (r)), and thus, with k = bu (r) the number of nodes returned by the
query, we can simplify the cost from Theorem 4.4, to O(k · log Φ).
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Algorithm 9 Answer to CloseNodesu(r) query using a quadtree
1: function CloseNodes(u,r)
2: S ← {the root of the quadtree} ; R← ∅
3: while S , ∅ do
4: Let s ∈ S
5: if s is a leaf then
6: Add to R every node v such that pv ∈ s ∩ Bu(r)
7: else
8: Add to S every children s′ of s such that s′ ∩ Bu(r) , ∅.
9: Remove s from S

10: return R

•
u

r

r

C

Figure 4.1 – The four sectors used in the proof of Lemma 4.5

To prove Theorem 4.4, we will first define a big cell as a leaf of the quadtree whose sides
are longer than r, and prove the following lemma:

Lemma 4.5. In a two-dimensional quadtree, for any u ∈ V, there is a constant number of big
cells which have a non-empty intersection with Bu(r).

Proof. Let us divide the space around u in four sectors of angle π
2 , as shown on Figure 4.1. Let

us call C one of these sectors (hashed in gray on the figure), and let us consider the square in C
with sides of length r that has u as a vertex, and in particular, let us consider the two sides of
that square opposite of u (those sides are represented with thick dashed lines on Figure 4.1).

By construction, any big cell of the quadtree that is a subset of C, and that has a non-empty
intersection with Bu(r) should intersect at least with one of those two sides. However, each side
can intersect with at most two big cells, and thus C can intersect with at most four big cells that
have a non-empty intersection with Bu(r).

Similarly, the number of big cells that intersect both with Bu(r) and the borders of the sectors
is constant. Thus, the total number of big cells that intersect with Bu(r) regardless of sectors is
constant. �

Proof of Theorem 4.4. On line 6, Algorithm 9 needs to check if the nodes from the leaves are
in Bu(r). Let us denote by L the set of the leaf cells from the quadtree that intersect with Bu(r).
All nodes that are checked by Algorithm 9 belong to a cell from L, as each cell of S is either
the root or has been added to S on line 8.
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The leaves that are not big cells, and thus have a side of length smaller than r are all subsets
of Bu

(
r + r

√
2
)
. Thus, by Lemma 4.5, the total number of nodes checked by Algorithm 9 is

O
(
bu

(
r + r

√
2
))

.
As the depth of a quadtree is O(log Φ), and as the algorithm starts at the root and descends

the hierarchy, we get a total computation time of O
(
bu

(
r + r

√
2
)
· log Φ

)
. �

Table 4.2 – Results for kinetic centralized navigating nets: computations per time step in the
Black-Box model.

Dimension Query cost Low mobility High mobility
Delaunay trian-
gulations

2D O (k · n) [19] O(n) [19] O(Φ2) or
O(n log n) [19]

Quadtrees 2D O(k · log Φ)
(Theorem 4.4)

O(n log ρ) [50] O(n log ρ) [50]

Navigating nets any metric
space of dou-
bling dimension

O(k · log Φ)
(Lemma 4.15)

O(log Φ) (The-
orem 4.17 and
Theorem 4.52)

O(n log Φ) [55]

The performance of the structures seen in this section are summarized in Table 4.2. All
structures have a total memory cost of O(n), which is not represented on the table. We can see
that while Quadtrees have the best update time in two dimensions, in the high mobility setting,
when ρ is small with regards to Φ, navigating nets are the best for the low mobility setting,
while also not being limited to two dimensional positions.

Let us now look at navigating nets, and prove these performances.

4.2 Navigating Nets
Navigating nets have already been introduced in Section 1.5.2. These hierarchical structures
are interesting for our problem, as we will see that they can be used to answer efficiently to
the CloseNodesu(r) query. Also, as the definition of the structure depends only on the distance
between the nodes, a navigating net can be defined on any metric space, and in particular,
regardless of the dimension.

We have seen in Section 1.5.2 that, as with ε-nets (the structures which they are based on),
navigating nets have been used on several occasions, but not necessarily under the same name,
and sometimes with different parameters. There doesn’t seem to be a consensus yet regarding
which parts of the definitions of navigating nets should be considered possible to parameterize.
In this section, we try to address this problem by giving a definition that encompasses as much
as possible other similar structures, that is, with as much parameters as possible.

In Section 1.5.2, navigating nets have been simply described as hierarchies of bi-nets. Let us
redefine navigating nets step by step. In Section 4.2.1, we give a definition of the basic structure
of navigating nets. Then, in Section 4.2.2, we will enrich this structure with arcs representing
neighbors as in [55]. We will then see in Section 4.2.3 how to use these elements to answer to
the CloseNodesu(r) query.

4.2.1 A Tree of Nodes
The basic structure of a navigating net is that of a tree constructed on the set of nodes. Each
node u is the center of several balls of radius bk, for k ranging from 0 to some integer denoted
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Lu, and with b a (fixed) parameter of the navigating net.
The value of k is the level of the ball. Recall, as stated in Definition 4.3, that Bu

(
bk

)
denotes

the ball centered on u and of radius bk. For each level k ≥ 1, two balls Bu

(
bk

)
and Bv

(
bk

)
are

allowed to co-exist only if their center-to-center distance is large enough, that is, if d(u, v) ≥
γ · bk, with γ a fixed parameter of the navigating net2. It thus follows :

Lemma 4.6. For all u, v ∈ V,min(Lu, Lv) ≤
⌊
logb

d(u,v)
γ

⌋
Finally, each node u (except one, the root) has a parent fu ∈ V. A node v is a valid parent

for node u if and only if Lu < Lv and d(u, v) < αbLu+1, with α another fixed parameter of the
navigating net.

Note that we need to have γ < α (or else it is impossible to construct a navigating net). To
summarize, we have three properties as stated in the following definition.

Definition 4.7. Each node u is assigned an integer Lu and a node fu such that:

• γ-separation : ∀u, v ∈ V,∀k ∈ N∗ : k ≤ min(Lu, Lv) =⇒ d(u, v) ≥ γ · bk

• α-coverage : ∀u ∈ V : fu = v , u =⇒ Lu < Lv ∧ d(u, v) < αbLu+1

• unique root : ∃!v ∈ V : fv = v

Together, the properties of unique root and of α-coverage imply that at the highest level of
the hierarchy, only one ball may exist, and that it is centered on the root.

On Figure 4.2, an example of three levels of a navigating net is given. We have Lw = k + 2,
Lv = k + 1, and Lu = Lx = k. As both w and v are in level k + 1, the γ-separation requires that
d(w, v) ≥ γ · bk+1, and as all the nodes are in level k, all distance between any two points of
{u, v,w, x} must be greater than or equal to γ · bk. We also have fu = v, fv = w and fx = v (w is
either the root or its parent is not represented). Thus, α-coverage requires that d(u, v) < α · bk+1,
d(v,w) < α · bk+2, and d(x, v) < α · bk+1.

Given a set of nodes, a valid assignment of parents can be obtained with Algorithm 10. With
this initialization, all nodes start at level 0, and are kept in the levels above as long as the nodes
are not too close to each other.

Algorithm 10 Level and parent initialization
1: for all u ∈ V do fu ← u, Lu ← 0
2: end for
3: S ←V
4: for k = 1, . . . , 1 +

⌊
logb

(
dmax
γ

)⌋
do

5: for all u ∈ S do
6: for all v ∈ S : v , u, d(u, v) < γbk do
7: S ← S \ {v}; fv ← u
8: end for
9: Lu ← k

10: end for
11: end for

2While more general than most definitions of navigating nets, this definition does not encompass the so-called
slack net trees from [42], where the property of γ-separation is replaced by the following property : ∀u ∈ V,∀k ≤
Lu, card({v ∈ V : Lv ≥ k ∧ d(u, v) ≤ b}) ≤ γ (note that here, γ is not a distance multiplier, but a maximal number
of nodes).
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Figure 4.2 – An example of three levels of a navigating net: the balls are drawn as if they were
2D circles seen at an angle, and at each level, only balls at that level are drawn.

This gives a valid assignment of levels and parents. We can see at line 7 that nodes are given
parents at distance smaller than γbk away; as γ < α, we have that the α-coverage is respected.
Concerning γ-separation, note that for each node u that is kept at level k (at line 9), all nodes at
distance smaller than γbk from u remain at level k − 1 (as they are removed from the set S on
line 7), guaranteeing that at each level, the inter-node distance is at least γbk distance units; it
is thus assured that the γ-separation is respected. Finally, the unicity of the root is guaranteed
by the fact that the loop stops at level 1 +

⌊
logb

(
dmax
γ

)⌋
, which is the first level such that the

inter-node distance must be strictly greater than dmax. As we suppose in our model that dmax

is the maximal distance, the level in question cannot contain more than one node (and it must
contain one, as S is never completely empty).

There is another slightly different way of initializing the levels and parents. In Algorithm 11,
we remove nodes from S as soon as a valid parent is found, changing lines 4 and 6.

Algorithm 11 Level and parent initialization, prioritizing low levels
1: for all u ∈ V do fu ← u, Lu ← 0
2: end for
3: S ←V
4: for k = 1, . . . , 1 +

⌊
logb

(
dmax
α

)⌋
do

5: for all u ∈ S do
6: for all v ∈ S : v , u, d(u, v) < αbk do
7: S ← S \ {v}; fv ← u
8: end for
9: Lu ← k

10: end for
11: end for

This slightly prioritizes lower levels for the nodes, but does not have an impact asymptot-
ically, as the maximum level for a node is still O(log Φ). Additionally, we will see that the
initialization of Algorithm 10 will be required in Section 4.3 (as it ensures a stronger property
than α-coverage). Thus, we will suppose thereafter that our navigating nets are initialized using
Algorithm 10.
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4.2.2 Enriching the Structure by Adding Neighbors
For better search algorithms, and to enable maintenance of the navigating net under motion of
the nodes, additional connections are needed in the navigating net. For each of its levels, a node
will be connected to other close-by nodes that we will call its neighbors.

While the results on navigating nets closely related to our work mostly use neighbors in
their navigating nets, some articles use navigating nets without neighbors, that is, the structure
is as defined in Section 4.2.1 [42].

To define these neighbors, we use another constant value c, the neighboring coefficient. For
each level k, balls Bu

(
bk

)
and Bv

(
bk

)
are neighbors if their center-to-center distance is bounded

by c · bk, that is, if d(u, v) < c · bk. We will say that u and v are neighbors at level k if k ≤
min(Lu, Lv), and if Bu

(
bk

)
and Bv

(
bk

)
are neighbors.

For node u, the set Nu is a compact representation of the balls that are neighbors of a ball
centered in u. Each element of Nu has the form (v, k) where v ∈ V and k ∈ N is the level at
which balls centered in u and v are neighbors. More precisely:

Definition 4.8 (Set of neighbors). Nu = {(v, k) ∈ V×N : 1 ≤ k ≤ min(Lu, Lv)∧ d(u, v) < c · bk}.

Each node is neighbor of itself; in other words, for each level k ≤ Lu, (u, k) ∈ Nu. Note also
that by γ-separation (Definition 4.7), there is a minimum distance between every node at each
level; thus, by doubling dimension, the number of neighbors of a node at a given level is always
constant.

We may now properly define navigating nets, simply as the graph where the edges represent
the parent/child and neighboring relations of the nodes.

Definition 4.9. Let each node u ofV be associated with an integer Lu, a node fu, and a set Nu,
all satisfying Definition 4.7 and Definition 4.8.

A navigating net of parameters b, α, γ and c, onV is the directed graph (V, E) with the set
of edges E = {(u, v) : u ∈ V ∧ (v = fu ∨ (v, ∗) ∈ Nu)} (where ∗ may be any value).

While navigating nets are here defined as directed graphs, we can see that the definition of
neighbors is symmetric: if (u, k) ∈ Nv, then we must have (v, k) ∈ Nu. We will later introduce
the sets of children, which are the symmetric of parents, and that will be added to our data
structure. In practice, the graphs we maintain will thus always have all edges in both sides
(that is, if (u, v) ∈ E, then (v, u) ∈ E), so that our structures could be considered as undirected.
However, we prefer to explicitly maintain the edges in both ways, so that our definition of G
remains consistent in the centralized and distributed setting, as well as with Chapter 3.

As nodes move, new nodes may become neighbors of node u; in order to be able to detect
this situation, we will define a set of potential neighbors that we will denote by PNu. In order
to define this set, we will need an additional property.

If the constants b, c, and α are chosen carefully, we can prove that any pair of nodes that are
neighbors at a level k are necessarily “cousins”, that is, either they are neighbors at level k + 1,
or their parents are neighbors at level k + 1. This property is already given in [55] (in Lemma
4.1) for the values of the constants used in the paper. Here, we generalize it to a wider range of
values for b, c, and α:

Lemma 4.10. Let u , v ∈ V and k ∈ N such that k ≤ Lu ≤ Lv. Assume that (v, k) ∈ Nu. If
b > 1, 0 < α, and c > 2αb

b−1 , we have:

1. If k < Lu, u and v are neighbors at level k + 1.
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2. If k = Lu < Lv, fu and v are neighbors at level k + 1.

3. If k = Lu = Lv, fu and fv are neighbors at level k + 1.

Proof. As we suppose that u and v are neighbors at level k, we have d(u, v) < c · bk.
Let us analyze each case distinctively:

1. If k < Lu, then both nodes u and v are present at level k + 1. As d(u, v) < c · bk < c · bk+1,
u and v are neighbors also at level k + 1.

2. We have d( fu, v) ≤ d( fu, u) + d(u, v) ≤ αbk+1 + cbk = c · bk+1(αc + 1
b ). Thus, if c > αb

b−1 , we
have α

c + 1
b < 1, and fu and v are neighbors at level k + 1.

3. d( fu, fv) ≤ d( fu, u) + d(u, v) + d(v, fv) ≤ c · bk+1( 2α
c + 1

b ). Thus, similarly to the previous
case, if c > 2αb

b−1 , then fu and fv are neighbors at level k + 1.

With b > 1, for the lemma to be true, we thus need c > 2αb
b−1 >

αb
b−1 . �

Note in particular, that if b = 2, c > 4, and α = 1 like in [55], then the conditions of
Lemma 4.10 are satisfied. Similarly, we will later use the values c = 2, b ≥ 6, and α = b−2

b ,
which also satifies the conditions of the lemma.

We may then define PNu, the set of potential neighbors, as the set of “cousin” nodes that
are not neighbors of u. v is a potential neighbor of u at level k if the parent of u (or u itself if
Lu ≥ k + 1) and the parent of v (or v itself if Lv ≥ k + 1) are neighbors at level k + 1.

Definition 4.11 (potential neighbors).

PNu = {(v, k ≥ 1) : (v, k + 1) ∈ Nu ∨ ( fv, k + 1) ∈ Nu}

∪ {(v, Lu) : (v, Lu + 1) ∈ N fu ∨ ( fv, Lu + 1) ∈ N fu}

\ Nu

By Lemma 4.10, it is assured that if two nodes should become neighbors as a consequence
of the movements, then they first have to become potential neighbors. This property can then
be leveraged in order to update the navigating net under movement of the nodes [55].

Given a set of nodes, if parents and max levels ( fu and Lu) are already assigned (for example
with Algorithm 10), a valid assignment of neighbors can be obtained with Algorithm 12. This
algorithm goes through all levels of the hierarchy, from top to bottom, and for each node at each
level, uses Lemma 4.10 to get the list of the neighbors of that node and of its children one level
lower.

To recapitulate, we have seen thus far that a navigating net takes four parameters: b for the
level multiplier, γ for the minimum distance among nodes at a given level, α for the maximum
parent/child distance, and c for the distance to the neighbors.

4.2.3 Ancestors
In this section, we will see how navigating nets can be used to answer to the CloseNodesu(r)
query. For this, we will extensively use the parent-child relation of the balls. Let us define the
ancestors of a node u, denoted ancestors(u), as the nodes u1, . . . , uk such that:

• u1 = fu

• uk is the root, that is, the unique node v such that fv = v
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Algorithm 12 Neighbors initialization
1: for all u ∈ V do
2: Nu ← {(u, i) : i ≤ Lu}

3: end for
4: for k = 1 +

⌊
logb

(
dmax
γ

)⌋
, . . . 2 do (*Go through all levels, starting at top, except level 1.*)

5: for all u : Lu ≥ k do (*Compute neighbors of u and of its children, at level k − 1*)
6: PN ← ∅
7: for all v : (v, k) ∈ Nu do (*Compute potential neighbors of u and of its children*)
8: for all w : (w, k − 1) ∈ Cv ∨ w = v do
9: PN ← PN ∪ {w}

10: end for
11: end for
12: for all w′ : (w′, k−1) ∈ Cu∨w′ = u do (*Get nodes whose neighbors are in PN.*)
13: for all w ∈ PN do
14: if d(w,w′) < 2 · bk−1 then
15: Nw′ ← Nw′ ∪ (w, k − 1)
16: end for
17: end for
18: end for
19: end for

• For each i, 1 ≤ i < k, ui+1 = fui

We also define the ancestor of u at level ` to be u itself if Lu ≥ `, or the3 node v with
smallest level among the nodes in ancestors(u) whose level is greater than or equal to `. That is,
v ∈ ancestors(u), Lv ≥ ` and for any v′ , v such that v′ ∈ ancestors(u), Lv′ ≥ ` =⇒ Lv′ > Lv.

One useful property is that the distance of a node to any of its ancestors is bounded. The
property given in Lemma 4.12 is somewhat similar to the so-called “close-containment prop-
erty” in [48].

Lemma 4.12. Let v be the ancestor of u at level `. If b > 1, α ≤ b−1
b , and if the navigating net

respects the α-coverage, we have :

d(u, v) <
(
α +

1
b

)
b` − 1.

Proof. In the worst case, u1, u2, . . . , u`, the ancestors at level 1, . . . , ` are distinct nodes. Hence,
ui+1 = fui and thus d(ui, ui+1) < αbi+1. Therefore

d(u, v) ≤ d(u, u1) + d(u1, u2) + . . . + d(u`−1, u`)

< α
∑̀
i=1

bi

< α · b` + α

(
b

1 − b`−1

1 − b

)
< α · b` +

b − 1
b

b
(
b`−1 − 1

b − 1

)
when supposing that α ≤

b − 1
b

< α · b` + b`−1 − 1

3As each node u has only one parent, and such that the level of that parent is strictly greater than the level of u
(see Definition 4.7), the ancestor of u at level ` is always unique.

119



�

To find the nodes in the vicinity of a node u, we will look for u′, the ancestor of u at a
specific level, and then look for all nodes that have u′ as ancestor. To look for the ancestor of
u, that is, when going up in the hierarchy, one can simply recursively look at the parent of the
node until the desired level is reached. However, to be able to go down the hierarchy and look
for the set of nodes that have u′ as ancestor, nodes have to maintain an additional set of nodes:

Definition 4.13 (children).

Cu = {(v, k) : v ∈ V \ {u} ∧ fv = u ∧ Lv = k}

Using in concert the ancestors, children and neighbors of the nodes, we can quickly find the
nodes that are at distance at most r of any node u. Algorithm 13 describes how to answer to the
CloseNodesu(r) query.

Algorithm 13 Given a distance r and a node u, get the answer to the CloseNodesu(r) query
1: function CloseNodes(u,r)
2: L← 1 +

⌈
logb

(
r
c

)⌉
3: u′ ← the ancestor of u at level L (*might be u itself*)
4: D← {v s.t. ∃v′ : v′ is an ancestor of v ∧ (v′, L) ∈ Nu′} ∪ {u}
5: return {v ∈ D : d(u, v) ≤ r}

Lemma 4.14 shows that indeed Algorithm 13 returns the set of nodes at distance at most r
of u, as expected.

Lemma 4.14. If b > 1, 0 < α ≤ b−1
b , and c ≥ 2αb+2

b−1 , the function CloseNodes(u, r) from
Algorithm 13 returns the set {v ∈ V : d(u, v) ≤ r}.

Proof. It is easy to see, on line 5, that every node returned by a call to CloseNodes(u, r) is at
distance at most r away from u.

Let v be a node such that d(u, v) ≤ r. It remains to be proven that v belongs to the set
returned by CloseNodes(u, r). Let u′, v′ be the ancestors at level L = 1 +

⌈
logb

(
r
c

)⌉
of u and v

respectively (note that Lu′ ≥ L and Lv′ ≥ L). We have d(u′, u) < (α+ 1
b )bL, and d(v′, v) < (α+ 1

b )bL

by Lemma 4.12.
As L = 1 +

⌈
logb

(
r
c

)⌉
, we have r ≤ c · bL−1, and thus:

d
(
u′, v′

)
≤ d

(
u′, u

)
+ r + d

(
v, v′

)
< 2

(
α +

1
b

)
bL + cbL−1

< cbL

(
2αb + 2 + c

cb

)
< cbL because c ≥

2αb + 2
b − 1

.

Therefore, u′ and v′ are neighbors at level L, so that v is added to the set D on line 4, and as
d(u, v) ≤ r, v belongs to the set returned by ClosedNodes(u, r). �

Thus, the correctness of the algorithm has been proven. Note that with c = 2, α = b−2
b , and

with any b ≥ 6, as it will later be the case, the conditions of Lemma 4.14 are verified.
We will now analyze its performance. Recall that bu (x) is the number of nodes in the ball

of center u and of radius x. We can measure the performance of the algorithm by bounding the
number of nodes that are checked by Algorithm 13.
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Lemma 4.15. In a centralized setting, Algorithm 13 answers to the CloseNodes query in
O
(

log r + bu (O(r))
)

time.

Proof. As we can see on line 3, Algortihm 13 first looks for u′, the ancestor of u at level L,
which takes O(log r) time.

Then, the algorithms builds D by looking for all nodes v whose ancestor at level L is a
neighbor of u′. As each node has only one parent, we have that the building of D on line 4 takes
O(card(D)) time. Additionally, with v′ the ancestor of v at level L, we have d(u′, v′) < c · bL =

O(r). By Lemma 4.12, we also have that d(v, v′) ≤ (α + 1
b )b` = O(r), and d(u, u′) = O(r). Thus,

by triangular inequality, all nodes of D are at distance O(r) away from u.
We thus get that Algorithm 13 takes O

(
log r + bu (O(r))

)
time to complete. �

Let k denote the size of the set returned by the query, that is k = bu (r). As explained in
Chapter 1, if we suppose that bu (r · O(1) + O(1)) = O(k), then we can write the complexity of
Algorithm 13 as O(log r + k).

Lemma 4.16. In a synchronous distributed setting, Algorithm 13 answers to the CloseNodes
query using O(log r) communication rounds and O(log r + k) messages.

Proof. It takes one communication round to either find the parent of a node or find all children
of a node. It thus takes up to 2L = O(log r) communication rounds to execute Algorithm 13.
The number of needed messages is similar to the computation complexity in the centralized
case (see Lemma 4.15). �

We have thus seen that navigating nets, thanks to their sets of neighbors, enable the structure
to be used to efficiently answer to CloseNodesu(r) queries. In the next section, we will go a
little further still, by adding constraints to the structure, so as to enable efficient maintenance of
navigating nets under movements of the nodes.

4.3 Centralized Navigating Nets
In this section, we will study the use of navigating nets in the centralized setting.

4.3.1 Related Work
The main article dealing with navigating nets in the kinetic setting happens to also be the article
that introduced the Black-Box model [55]. Their structure, called DefSpanner, is a navigating
net4 with b = 2, α = γ = 1 and c > 4. It is shown that the DefSpanner is a spanner, property
that is used to answer several geometric queries. The DefSpanner can be maintained both in the
dynamic and the kinetic setting when it is supposed that dmin = 1 (and thus dmax = Φ).

The maintenance of the structure under motion of the nodes relies on Lemma 4.10, and uses
a list of four types of certificates:

• parent-child certificates, that certify that any node u is at distance strictly smaller than
α · bLu+1 from fu;

• separation certificates, that certify that all neighbors of u at level k are at distance at least
γ · bk from u;

4Note that in [55] the inequalities are non-strict: for example, d(u, fu) ≤ α · bLu+1, which is slightly different to
the strict inequality of Definition 4.7.
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• edge certificates, that certify that all neighbors of u at level k are at distance strictly smaller
than c · bk;

• and potential neighbor certificates, ensuring that any potential neighbor of u at level k that
is not a neighbor of u at that level is at distance at least c · bk away from u.

Together, the certificates verify the validity of the navigating net: parent-child certificates
verify the α-coverage property, separation certificates verify the γ-separation property, given
that the sets of neighbors are valid, which is verified by edge certificates (that ensure that the
maintained sets of neighbors are subsets of the actual sets of neighbors), and potential neighbor
certificates (that ensure, by Lemma 4.10, that the neighbors are supersets of the actual sets of
neighbors).

When certificates fail, the structure is updated as follows. In the Black-Box model, it is
supposed that dmv ≤

c
4−1 · b, which is true with dmv = 1.

• When a parent-child certificate fails, it means that there is a node u getting too far away
from its parent; we call u an orphan. First, an alternative parent is searched for u among
the neighbors of its current parent, and if none is found (that is, if ∀v ∈ N fu , d(u, v) ≥
α · bLu+1), u is promoted, that is, its level is increased by one, and it takes as temporary
parent its ancestor at the next level. If u is too far away from that temporary parent, the
process is repeated until a valid parent is found. These promotions may never break the
γ-separation property, as with the parameters of the DefSpanners, if no alternative parent
is found among the neighbors of u’s previous or temporary parent, then u’s level may be
increased without violating the γ-separation.

When a valid parent is found, the neighbors and potential neighbors of u may be found top
down, starting at the new level of u, and using Lemma 4.10: the children of the neighbors
of u’s ancestor5 at level ` give u’s neighbors and potential neighbors at level ` − 1. New
certificates are created accordingly.

• When a separation certificate fails between two nodes u and v, the node with lowest level,
say u with Lu = k is “demoted”, that is, it decreases its level to k − 1, and takes v as
new parent (which is a valid parent, as γ = α). Nodes at level k − 1 that had u as parent
become orphans. These nodes are treated in the same way as nodes created by a failure
of parent-child certificate. All certificates involving u at level k are removed from the
certificate list, and a new parent-child certificate is added for u and v.

• When an edge certificate (resp. a potential neighbor certificate) fails, the involved nodes
are removed (resp. added) to each other’s set of neighbors. The edge certificate (resp.
potential neighbor certificate) is removed from the certificates list, and a new potential
neighbors certificate (resp. edge certificate) is created.

In the Black-Box model, which is the movement model studied in this chapter, updates to
the DefSpanner take O(n log Φ) computations per time step in the high mobility setting (all
nodes are allowed to move at each time step, see p.39), as treating orphans takes O(log Φ) time
because it is needed to travel all the hierarchy up and down, and because there are O(log Φ)
levels in the navigating net.

In the article, no result is given for the low mobility setting (when only one node may move
at each time step, see p.39). However, as the computation time to repair the structure when a
certificate fails is O(log Φ), and because each node is involved in O(log Φ) certificates, we can

5Recall that u’s ancestor at level ` ≤ Lu is u itself.
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say that the computation time per time step in the low mobility setting is O(log2 Φ). We may
however extend the analyses of [55] in the low mobility setting6, and get a new result improving
that update time.

Theorem 4.17. In the low mobility setting, with dmin = 1, DefSpanners may be updated with
O(log Φ) computations per time step.

Proof. In a navigating net, by γ-separation and doubling dimension, each node has a constant
number of neighbors and children per level, and thus also a constant number of potential neigh-
bors. As the nodes have certificates only with their parents, neighbors, and potential neighbors,
each node is associated with a constant number of certificates per level, with a maximum total
of O(log Φ) certificates (per node). We need to prove that the union of all certificates of same
type that may get invalidated at one time step do not incur more than O(log Φ) computations.

• The cost to repair an edge certificate or a potential neighbor certificate is O(1), as it
involves just to delete or add a single node to the two sets of neighbors, and to delete and
create one certificate. The newly created certificate is always true by definition. Thus the
total cost for those types of certificates is O(log Φ).

• Let u be the node that moved. By α-coverage (Definition 4.7), there may be only one
parent-child certificate where u is the child, which takes O(log Φ) time to be repaired, as
it is explained in [55] that any single certificate may be repaired in O(log Φ).

It thus remains to be proven that the time to repair all parent-child certificates where u
is the parent is O(log Φ). For this, we observe that each time one of the children of u
increases its level too much, other children at lower levels cannot increase their level
more than a constant number of times. Indeed, let v be a child of u at level k. Before
the movement, at time ti, we have d(u, v, ti) < α · bk+1. After movement, at time ti+1,
we have d(u, v, ti+1) < α · bk+1 + dmv. Let w be a child of u at level k + 1. We have
d(v,w, ti+1) < α ·bk+2 +α ·bk+1 + dmv < γ ·bk+3 (as dmv = 1, so that dmv < bk+1). Thus, if v’s
level is increased to k + 3, w cannot go up in the hierarchy higher than level k + 2 without
violating the γ-separation property. As u has a constant number of children at each level,
we thus have that the cost of maintaining parent-child certificates is O(log Φ).

• As we have explained, to repair a failing separation certificates, one of the two involved
nodes decreases its level. By simply putting a higher priority for the node u that moved
to decrease its level, only log Φ level decreases are needed at maximum, as u cannot
decrease its level below 0 (since dmin = 1). The orphans that appear because of those level
changes, that is, the nodes v such that fv = u, and so that Lv is greater or equal to the new
level of u, so that u is no longer a valid parent for v (see Definition 4.7, page 115), induce
the same computation cost as parent-child certificates. �

The main ideas for our constrained navigating nets in the following section come from [48].
In that article, the authors study navigating nets in the dynamic setting (that is, the nodes do
not move, but they may be added to or deleted from the structure), with approximate nearest
neighbor queries as the main target (see Section 1.5.1). Insertions and deletions take O(log n)
time7. The main achievement of the article is that the bounds do not depend on the aspect ratio
Φ.

This time complexity for node insertion is attained thanks to several tricks. First, α is fixed
at a sufficiently small value so as to get a property equivalent to Lemma 4.12, that is, so that

6and in particular the theorem that is numbered 4.2 in that article
7Finding a (1 + ε)-approximate nearest neighbor takes O(log n) + (1/ε)O(1).
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any node is close enough to any of its ancestors. Secondly, and more importantly, a notion of
“ball safety” is introduced, with three levels of safety, so that a ball is safer the closer it is to its
parent. This safety is defined in such a way that a ball gets better safety when it is promoted
(that is, when the level of the associated node is increased), and so that the safest of balls never
need to be promoted. Associated with insertion rules, this ensures that no more than a constant
number of promotions of existing balls are needed when inserting a new node in the structure,
which is crucial when looking for insertion times that are independent from the aspect ratio.
See Section 4.3.2 for a description of our similar property. The article also relies on so-called
modified biased skip lists to compute the level and parent of a new node that is to be inserted,
but these are not needed in our kinetic setting.

Also, the article introduces the notion of jumps, removing the need for nodes u to maintain
balls Bu

(
bk

)
at each level k ≤ Lu. The main reason for the use of jumps is to achieve linear

space: as all nodes are in level 0, it may seem necessary to avoid storing all balls for each level.
We will however see that we can achieve a linear size with a much simpler technique8.

In [48], nodes do not have a unique parent: instead, for any level k ≤ Lu, a node u maintains
the set of nodes v with Lv ≥ k + 1 such that d(u, v) < α · bk+1 (let us call this set the candidate
parents). However, their definition of navigating nets is asymptotically equivalent to ours, as
the set of candidate parents can be reconstructed in O(1) time using our definition of navigating
net, thanks to Lemma 4.10, as in [48], the constants used are b = 5, α = 3/5, and c = 2.
Memory is also equivalent, because in metric spaces with bounded doubling dimension, the set
of candidate parents of a given level is constant in size.

In [59], the authors reuse the structure from [48] in order to build a spanner.

Limitations of DefSpanners In DefSpanners, the dependency on log Φ of the costs has two
origins.

First, each node may be involved in up to O(log Φ) certificates (one for each level the node
appears in), and in some specific situations, even for small movements, all of them may fail at
once. It follows that the cost for repairing all these failing certificates cannot be reduced below
O(log Φ). As by definition of navigating nets, a node may be involved in that many levels, if it
has for example a neighbor at each of its levels, this problem seems difficult to avoid.

The second reason for this cost, is that even if taken together, all failing certificates take
O(log Φ) operations to be treated, as proven in Theorem 4.17, in some cases single failing
certificates may need O(log Φ) operations to repair the structure. This situation is represented
on Figure 4.3, where a node u gets outside of the range of its parent, invalidating a parent-edge
certificate. As each ancestor of u is just barely in range of its own parent, the only ancestor that
is a valid parent for u is the root, so that u needs to go up all the hierarchy, resulting in O(log Φ)
computations.

We will see in the next section how to avoid this second problem.

4.3.2 Constrained Navigating Nets

In this section, we reuse concepts from [48], that make it so that when a certificate fails, the
associated nodes may change their level only a constant number of times. The main idea is to
observe that the scenario from previous section leading a single node to go up all the hierarchy
is rare, and that it is possible to detect in advance situations that may lead to that scenario, and
to immediately take action, using only a constant number of computations. In other words,

8Note however, that our solution is not “truly linear” as defined in the article, that is, our solution hides a
dependency on the doubling dimension.
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•x
•w •v •u

•
root

Figure 4.3 – Example of a case where DefSpanner incurs a node to go up all the hierarchy for
only a small movement. Thin black arrows represent parent/child relations, the thick red arrow
represents a movement of u that could incur O(log Φ) computations.

this improvement of navigating nets enable to spread out over time the cost induced by the
scenario from Figure 4.3. To achieve this, a property is added to the structure (hence the name
constrained navigating net) that we call ancestor invariant.

In addition to this new property, we add a small improvements over DefSpanners for sim-
plicity. We may thus identify two main differences between our structure and the one from
[55]:

• The structure has to comply to an additional property that we call ancestor invariant.

• The parameters are chosen such that two nodes may be neighbors only at one specific
level.

Our structure uses the following parameters:

• b ∈ N, b ≥ 6

• c = 2

• α = b−2
b > β = b−3

b > γ = b−4
b (the use of β will be described later).

See Figure 4.4 for an example of the application of α, β, and γ as distance multipliers. We
can see that around each node, three “degrees of proximity” for the children may be defined:
either v, child of u is such that d(v, u) < γ · bLv+1, or γ · bLv+1 ≤ d(v, u) < β · bLv+1, or β · bLv+1 ≤

d(v, u) < α · bLv+1. We can also see that with b ≥ 6, the radii grow very fast.
As movements are small (dmv = 1 ≤ bk for k ≥ 0), a node may only change its “degree

of proximity” by one “degree” per time step : if d(v, u, ti) < γ · bLv+1, then we may not have
d(v, u, ti+1) ≥ β · bLv+1 for example. The idea of constrained navigating nets is to reduce the
number of nodes v such that β · bLv+1 ≤ d(v, fv) < α · bLv+1, so that only few nodes may break
the α-coverage property at once.

Before looking at the specific properties of constrained navigating net, let us first make a
quick remark concerning potential neighbors.
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Figure 4.4 – Representation of the values of α, β, and γ.

Usage of Potential Neighbors We have seen in Section 4.2.2, the set PNu of “cousins” of
u, so that each node that becomes a neighbor of u must first become one of those potential
neighbors. However, the set PNu can be used in a slightly stronger way in our model, thanks
to Lemma 4.18, which improves on Lemma 4.10. Lemma 4.18 shows that at each time step,
this set of potential neighbors includes all nodes that may become neighbors at the next time
step. As nodes move of maximum dmv distance units per time step, we thus want PNu to include
at each level k, all nodes at a distance smaller than c · bk + 2dmv from u. Lemma 4.18 proves
that any node at distance

(
c + 2

b

)
bk away from u9 necessarily satisfies one of the conditions of

Definition 4.11, so that v ∈ PNu.

Lemma 4.18. Let u , v ∈ V and k ∈ N such that k ≤ Lu ≤ Lv. Assume that d(u, v) ≤ (c + 2
b )bk.

If b > 1, 0 < α, and c > 2αb2+2
b2−b , we have:

1. If k < Lu, u and v are neighbors at level k + 1.

2. If k = Lu < Lv, fu and v are neighbors at level k + 1.

3. If k = Lu = Lv, fu and fv are neighbors at level k + 1.

Proof. Let us analyze each case distinctively:

1. We have c > 2αb2+2
b2−b > 2

b2−b , so that (c + 2
b )bk < c · bk+1. It follows that d(u, v) < c · bk+1, so

that u and v are neighbors at level k + 1.

9Note that that with dmv = 1, b ≥ 1 and k ≥ 1, we have c · bk + 2dmv ≤
(
c + 2

b

)
bk. Also, note that as most of

our next results in this chapter focus on the low mobility setting (in which, as only one node moves at a time, the
distance between two nodes may not change of more than 1 · dmv distance units per time step), it would be enough
to prove that d(u, v) ≤ (c + 1

b )bk. The stronger property of Lemma 4.18 opens up several possibilities for future
analyses in the high mobility setting (in which the distance between two nodes may change of up to 2 ·dmv distance
units per time step).

126



2. d( fu, v) ≤ d( fu, u) + d(u, v) ≤ αbk+1 + (c + 2
b )bk. One can check that when c > αb2+2

b2−b , we
get d( fu, v) < c · bk+1, so that fu and v are neighbors at level k + 1.

3. d( fu, fv) ≤ d( fu, u)+d(u, v)+d(v, fv) ≤ 2αbk+1 +(c+ 2
b )bk. Again, one can check that when

c > 2αb2+2
b2−b , we get d( fu, fv) < c · bk+1, so that fu and fv are neighbors at level k + 1. �

Note that with α = b−2
b and b > 1, we have 2αb2+2

b2−b < 2, so that our choice of parameters
satisfies the conditions of Lemma 4.18.

Limiting Levels of Neighbors One very useful property, is that when using specific parame-
ters, two nodes may be neighbors only at one level.

Lemma 4.19. With c ≤ γ · b, two nodes u , v, can only be neighbors at level k = min(Lu, Lv).

Proof. If two nodes u , v are neighbors at level k, then d(u, v) < c · bk. With c ≤ γ · b, we thus
have d(u, v) < γ · bk+1. Thus, by definition of the navigating net, balls Bu

(
bk+1

)
and Bv

(
bk+1

)
are

not allowed to both exist. It thus follows that k = min(Lu, Lv). �

Note that with γ = b−4
b , b ≥ 6 and c = 2, our choice of parameters satisfies the conditions of

Lemma 4.19, so that the result is valid on our constrained navigating net.
The main advantage of this property is that it makes maintenance algorithms simpler, as it

removes special cases to be treated. In particular, we will see with Theorem 4.47 (Section 4.3.5)
that this property allows to easily prove that the size of the navigating net is linear, which is
much simpler than the introduction of jumps and the associated need for an invariant to be
maintained as in [48]10.

Another side effects of this property, is that when a navigating net has parameters complying
to Lemma 4.19, the sets of neighbors for a node u can be reconstructed simply by looking at the
set of children of fu, which takes a constant amount of computations (as in a doubling space,
the set of children of a specific level is of constant size). It follows that Algorithm 13 can be
adapted to be executed with similar performances on navigating nets that do not maintain the
sets of neighbors, provided that the parameters comply to the conditions of Lemma 4.19.

Note also that thanks to Lemma 4.19, we have that a node can be a potential neighbor
of another node only at one specific level. In other words, we cannot have (v, k) ∈ PNu and
(v, k′) ∈ PNu with k , k′.

Spanner In this section, we prove that navigating nets are spanners.

Theorem 4.20. If b ≥ 1, α ≤ b−1
b , and c > 2α+ 2

b , navigating nets are spanners of stretch factor(
1 + 4bα+4

c−2α− 2
b

)
.

Proof. Let u, v ∈ V, and let i be the smallest level where the ancestors of u and v at level i are
neighbors. Let ui and ui+1 denote the ancestors of u at level i and i + 1 respectively, and let vi

and vi+1 be the ancestors of v.
By Lemma 4.12, we have:

d(u, ui) ≤
(
α +

1
b

)
· bi

d(v, vi) ≤
(
α +

1
b

)
· bi

10Note however that in [48], the size if the structure is so-called truly linear, that is that it does not hide a constant
depending on the doubling dimension of the considered space, whereas our constrained navigating net has a size
that depends on the doubling dimension.
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By definition of i, we have:

d(ui, vi) ≤ c · bi

d(ui−1, vi−1) > c · bi−1

Thus we have, by triangular inequality:

d(ui, vi) ≤ d(ui, u) + d(u, v) + d(v, vi)

≤ d(u, v) + 2
(
α +

1
b

)
bi (4.1)

We also have:

d(ui−1, vi−1) ≤ d(ui−1, u) + d(u, v) + d(v, vi−1)

=⇒ c · bi−1 − 2
(
α +

1
b

)
bi−1 ≤ d(u, v)

=⇒ bi−1
(
c − 2

(
α +

1
b

))
≤ d(u, v)

=⇒ 4
(
α +

1
b

)
bi ≤ d(u, v)

4
(
α + 1

b

)
bi

bi−1
(
c − 2

(
α + 1

b

)) because c > 2α +
2
b

=⇒ 4
(
α +

1
b

)
bi ≤ d(u, v)

4b
(
α + 1

b

)
c − 2

(
α + 1

b

)
Let Λ(u, v) be the length of the shortest path from u to v in our structure. We may see that

the proof of Lemma 4.12 uses the sum of the intermediate edges. The same reasoning can thus
also give:

Λ(u, ui) ≤
(
α +

1
b

)
bi

Λ(v, vi) ≤
(
α +

1
b

)
bi

We thus have:

Λ(u, v) ≤ Λ(u, ui) + d(ui, vi) + Λ(vi, v)

≤ d(u, v) + 4
(
α +

1
b

)
bi (by Equation 4.1)

≤ d(u, v) + d(u, v)
4b

(
α + 1

b

)
c − 2

(
α + 1

b

)
≤ d(u, v)

1 +
4b

(
α + 1

b

)
c − 2

(
α + 1

b

)
�

Note that with α = b−2
b , b ≥ 6, and c = 2, the conditions of Theorem 4.20 are met. While

these conditions are not met for DefSpanners (where α = 1), it is proven in [55] that these
structures have a stretch factor of 1 + 16

c−4 (with c > 4). This means that for high values of c,
stretch factors close to 1 can be obtained for DefSpanners. For α = 2/3, b = 6, and c = 2,
the stretch factor given by Theorem 4.20 becomes 61, which is thus higher than what can be
achieved with DefSpanners.
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(a) Case where Li−1 + 1 < Li.
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< γ · bLi+1

(b) Case where Li−1 + 1 = Li.

Figure 4.5 – Representation of the two cases of Definition 4.21

Ancestor Invariant Let u1, . . . , uk be the ancestors of node u (ordered by increasing level),
with k the level of the last ancestor of u, that is, the level of the root. To simplify the definitions,
let u0 = u, and L0 < L1 < . . . < Lk the levels Lu0 , Lu1 , . . . , Luk .

Let us define γa(u), the γ-ancestor of u.

Definition 4.21 (γ-ancestor). γa(u) = ui iff 1 ≤ i ≤ k is the smallest i such that either :

• Li−1 + 1 < Li or

• Li−1 + 1 = Li and d
(
ui, fui

)
< γ · bLi+1.

In the case where no ancestor of u satisfies one of these properties, we say that u does not have
a γ-ancestor, and we note γa(u) = ⊥.

This definition is equivalent to saying that the γ-ancestor ui is the first ancestor of u such
that the distance between ui and the ancestor at level Li + 1 is smaller than γ · bLi+1. Indeed, if
Li−1 + 1 < Li, it means that the ancestor at level Li + 1 is ui, in which case this distance is 0. See
Figure 4.5 for an example.

The only node that doesn’t have a γ-ancestor is the root, as by definition of the ancestors
page 118, the root v has only one ancestor v1 = v that does not satisfy either of the two conditions
of Definition 4.21.

Definition 4.22 (α-ancestor). αa(u) = ui iff 1 ≤ i < k is the smallest i such that :

• Li−1 + 1 = Li and β · bLi+1 ≤ d
(
ui, fui

)
< α · bLi+1

In the case where no ancestor of u satisfies this property, we say that u does not have a α-
ancestor, and we note αa(u) = ⊥.

Let us set that Lαa(u) = +∞ when αa(u) = ⊥. The main addition in constrained navigating
nets is the following property:

Definition 4.23 (Ancestor invariant). ∀u ∈ V, β ·bLu+1 ≤ d(u, fu) < α ·bLu+1 =⇒ Lγa(u) < Lαa(u)

In the definition above, as L⊥ = +∞, if a non-root node does not have an α-ancestor, then
it respects the ancestor invariant. Note also that even if the root does not have a γ-ancestor, it
satisfies the ancestor invariant, as when u is the root, d(u, fu) = 0 and β · bLu+1 > 0.
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Figure 4.6 – Graphic representation of the ancestor invariant.

A graphical representation of the ancestor invariant can be found on Figure 4.6. Arrows
with a solid line represent a parent/child relation, and have labels representing their role in the
ancestor invariant. ui and ui+1 have an arrow with a γ, meaning that d(ui, ui+1) < γ · bLui +1, or
that Lui+1 > Lui + 1 (so that ui can be a γ ancestor for its descendants). u0 and u1 have an α
arrow, meaning that β · bLu0 +1 ≤ d(u0, u1) < α · bLu0 +1, and that Lu1 = Lu0 + 1 (so that u0 can be
an α ancestor for its descendants). A β means that neither of the others is verified: if there is a
β arrow from v to w, it means that fv = w, with γ · bLv+1 ≤ d(v,w) < β · bLv+1 and Lw = Lv + 1.
Arrows with dashed lines represent an arbitrary number of successive parent/child relations.

We can see on Figure 4.6 that arrows with a β label are neutral with regards to the ancestor
invariant, as there can be arbitrarily many without impacting the invariant. We can also see that
between each α in the hierarchy, there must be a γ reflecting Definition 4.23.

Note that by assigning levels and parent as in Algorithm 10, the invariant is satisfied, simply
because all nodes u satisfy d(u, fu) < γ · bLu+1. The invariant has no use when one is interested
in proximity queries. However, maintaining the invariant allows to repair the structure with a
constant number of changes per node after a (small) movement.

4.3.3 Maintain Constrained Navigating Nets When Nodes Move
Data Structure

The data structure contains, for each node u ofV, the following variables:

• Lu the highest level of u,

• fu the parent of u,

• Cu the set of children of u,

• Nu the set of neighbors of u.

Let us make some remarks regarding these variables.
As in the previous chapter, these notations refer to the current values of the variables. If time

is ambiguous, we may refer to the values of these variables at specific instants; for example,
Nu(t) refers to the content of the set Nu at instant t.
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With only levels, parents, and children, thanks to Lemma 4.10, the sets of neighbors at a
level k of a node u could be recomputed in constant time (as a node has only a constant number
of neighbors and children at a given level). One may notice that in our algorithms, the sets of
neighbors are always used only at specific levels at a time (Nu is never used as a whole, only
for example {(v, L) ∈ Nu : L = k}, the subset of neighbors at level k of u). This means that Nu is
actually optional in the data structure, as it could be recomputed each time it is needed.

The same goes for PNu, which we however did not include in the data structure. In our
algorithm, we never explicitly use PNu (except at initialization), and instead directly recompute
it using the other variables of the data structure. However, we may use PNu in our proofs as
mathematical notation.

Certificates

The correctness of the data structure is ascertained with certificates, each one involving two
nodes and satisfied whenever the distance between these two nodes is above or below a certain
threshold. We denote by Cert(t) the set of certificates of the structure at time t (or just Cert if
time is unambiguous). These certificates are then associated with updates to execute when they
fail, resulting in the kinetic algorithm for constrained navigating nets. For ease of notation, we
will call that algorithmAcnn. Algorithms 14, 15, and 16 give the instructions ofAcnn.

The set Cert contains five kinds of certificates.

• Separationγ,k(u, v): d(u, v) ≥ γbk, for neighbors at level k.

• ShortEdgec,k(u, v): d(u, v) < cbk, for neighbors at level k.

• LongEdgec,k(u, v): d(u, v) ≥ cbk, for potential neighbors at level k.

• Coverτ,k(u, v) : d(u, v) < τbk+1, for a non-root node u and its parent fu. τ will be either α,
β or γ. Note that b is raised to the power of k + 1; k is intended to be the level of u and v
is expected to be equal to fu.

• SCoverτ,k(u, v): d(u, v) ≥ τbk+1, for a non-root node u and its parent fu. τ will be either γ
or β. Again, k is intended to be the level of u and v is expected to be equal to fu.

A summary of these certificates can be found on Table 4.3. The column “Certificate” shows
the name of the certificate, the column “Predicate” gives the logical definition of the certificate,
and the column “Condition” indicates under which conditions the certificate exists.

Certificate Predicate Condition
Separationγ,k(u, v) d(u, v) ≥ γbk (v, k) ∈ Nu

ShortEdgec,k(u, v) d(u, v) < cbk (v, k) ∈ Nu

LongEdgec,k(u, v) d(u, v) ≥ cbk (v, k) ∈ PNu

Coverτ,k(u, v) d(u, v) < τbk+1 v = fu , u,
k = Lu,
τ = RoundDistance(u, v, k) (see Algorithm 14)

SCoverτ,k(u, v) d(u, v) ≥ τbk+1 v = fu , u,
k = Lu,
τ = γ if RoundDistance(u, v, k) = β,
β if RoundDistance(u, v, k) = α

Table 4.3 – List of certificates associated with node u.
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For the certificates ShortEdge, LongEdge, and Separation, we define the symmetric
certificates as being the same certificates, but inverting the nodes. For example, the symmetric
of Separationγ,k(u, v) is Separationγ,k(v, u). Note that if a certificate is in Cert than its
symmetric is in Cert too.

Algorithm to Maintain Centralized Navigating Nets in the Black-Box Model: Acnn

The centralized algorithm that updates a constrained navigating nets in the Black-Box model,
Acnn, is described in Algorithms 14, 15, and 16.

For better readability, we make the following abuses of notation:

• As γ < β < α, and because these parameters represent successive “ranks” of closeness
between parents and children, we sometimes write τ − 1 or τ + 1 when τ ∈ {γ, β, α} to
refer to the “next” or “previous” rank. For example, when τ = β, τ + 1 refers to α, and
τ − 1 refers to γ.

• As a result, we sometimes add, replace, or remove certificates of the form SCoverτ−1,k(u, v)
where τ = γ. These certificates do not exist, and these instructions should be ignored.
This allows to avoid writing cumbersome conditions on the value of τ.

The main loop ofAcnn is described on lines 16 through 19. Failing certificates are treated in
three steps: the Separation certificates first, then the ShortEdge and LongEdge certificates,
and finally the SCover and Cover certificates. Each of these steps are done in order of decreas-
ing level, that is, certificates with a high level parameter k are always treated before certificates
of same type but with lower k. When two certificates are of same type and same level, the
order of execution may be arbitrary. However, in the case of Separation certificates (as can
be seen on line 35, where the execution depends on whether u ≺ v) some priorities are applied
depending on an order on the nodes.

This order (with the symbol ≺) may actually be chosen as arbitrary: in Section 4.3.4, we
prove that the algorithm is valid regardless of how the order of the nodes is computed. However,
some performance results depend on a nicely chosen order: in Section 4.3.5, we prove that
when only one node moves at each time step (the low mobility setting, see p.39), choosing a
simple order in which the node that moved is of higher order than other nodes, leads to nodes
that cannot change their level more than a constant number of times per time step. Also, we
will explain in Section 4.5.1 why we believe that choosing an order that depends on previous
operations on the nodes can lead to a linear computation time when all nodes may move at each
time step (the high mobility setting, see p.39).

The updates associated with each failure of certificate are then described in Algorithms 15,
and 16:

• When a Separation certificate fails between two nodes u and v at level L (see Figure 4.7
and line 35 of Algorithm 16), one of the two nodes is demoted, that is, its level gets
decreased. The node that gets demoted is the one with the lowest level, or any of both
if they have the same level (the choice is arbitrary). Let us suppose that u is the one
to get demoted; u is removed from level L, and it takes v as new parent. Because of
this demotion, every child of u at level L − 1 becomes an “orphan”, as u is no longer
a valid parent for them as it breaks the α-coverage property (see Definition 4.7). Each
orphan is either given a new parent through the Redirect function (line 38) if a node at
level L is found that is at distance γbL from that orphan, like w and u′ on Figure 4.7, or
its level is increased though the Promote function if none is found (line 39), like w′ on
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Figure 4.7 – An example of a failure of a Separation certificate: at the top, the situation of
the nodes before the updates, and at the bottom the result of the updates fromAcnn. The circles
represent here the balls of radius γ · bk where k is the level (either L − 1, L, or L + 1).

Figure 4.7. Note that if w is redirected to a new parent, then we have d(w, fw) < γ · bLw+1,
which corresponds to the second condition of Definition 4.21, and thus does not break
the ancestor invariant property for w’s descendants. Similarly, if w′ is promoted to level
L, as w′ doesn’t have any children at level L − 1 yet, for any child x of w′, we have that
Lx + 1 < Lw′ , which corresponds to the first condition of Definition 4.21. Orphans are
thus treated in such a way that the ancestor invariant property is never broken for any
descendent of w.

• When a ShortEdge or LongEdge certificate fails (line 47 and line 50), then the sets of
neighbors and the list of certificates are updated accordingly: when a ShortEdge certifi-
cates fails between two nodes, both are removed from their respective sets of neighbors,
and when a LongEdge certificate fails, the two nodes are added to each other’s sets of
neighbors.

• When a SCover certificate fails (line 53), nothing else then changing the values of the
certificates has to be done. When a parent v and its child u fail a SCoverτ,L(u, v) certificate,
then their Coverτ+1/b,L(u, v) certificate is replaced by a Coverτ,L(u, v) in Cert certificate.
Similarly, the SCoverτ,L(u, v) certificate is replaced by a SCoverτ−1,L(u, v) certificate, but
this may happen only if τ = β, as there are no SCoverα,L certificates, and as there are no
values for τ below γ.

• When a Cover certificate fails between u at level L and its parent v, the action that is
taken is different depending on the distance threshold that has been overtaken between u
and v. If the distance between u and v has become greater than α · bL+1 (as represented
on the top of Figure 4.8, and described on line 68 of Algorithm 16), it means that v is
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Figure 4.8 – An example of a failure of a Coverα,L(u, v) certificate: at the top, the situation of
the nodes before the updates, and at the bottom, two possible results for the updates fromAcnn.
The circles represent here the balls of radius α · bk where k is the level (either L, L + 1, or L + 2).

no longer a valid parent for u with regards to the α-coverage (Definition 4.7); there are
two ways u may be treated, like an orphan described above, and as represented on the
bottom of Figure 4.8: either a new parent u′, at distance γ · bL+1 of u is found (bottom
right of Figure 4.8), or u is promoted so as to not break the ancestor invariant for all its
descendants (bottom left of Figure 4.8). If the threshold of distance between u and v is
either β · bL+1 or γ · bL+1 (line 57), then there is a risk that the ancestor invariant is broken.
In both cases, the algorithm thus looks for the α-ancestor of u, and if its level is lower
than the level of u’s γ-ancestor, then that α-ancestor is treated as an orphan: either it is
redirected to a new parent, or promoted to a new level, similarly to what happens to u on
Figure 4.8. Finally, if the threshold is β · bL+1, u also gets treated as an orphan (lines 61
through 61 of Algorithm 16), again, as on Figure 4.8.

These main actions are complemented with instructions to keep all sets up to date, and to
add and remove certificates accordingly. For example, lines 21 though 33 describe additional
instructions that should be executed each time changes are performed on the sets of neighbors
and of children.

One interesting property, is that each time a node u that was the α-ancestor of another node v
is either redirected to a new parent with the Redirect function or promoted through the Promote
function, then u no longer is the α-ancestor of v, and may even become its γ-ancestor. This is
represented in Figure 4.9 and Figure 4.10.

We will see in Section 4.3.4 that Acnn maintains a valid structure. We will then show in
Section 4.3.5 that updates are done in O(log2 Φ) time, and that the structure takes O(n) memory.
We will then show in Section 4.3.6 how to improve the update time to O(log Φ) with a simple
trick, and in Section 4.4.3 adaptAcnn to the distributed setting.
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Figure 4.9 – Example of usage of the Redirect function.
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Figure 4.10 – Example of usage of the Promote function.
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Algorithm 14Acnn: certificates initialization and maintenance of the data structure
1: function RoundDistance(u, v, k) (*Computes the value associated with the distance to

the parent.*)

2: return τ where τ =


γ if d(u, v) < γbk+1

β if γbk+1 ≤ d(u, v) < βbk+1

α if βbk+1 ≤ d(u, v)

3: Initialization:
4: for all node u ∈ V do
5: Lu ∈ N (*largest k s.t. u is the center of a ball of radius bk, see Algorithm 10*)
6: fu ∈ V (*parent of u, a node v , u except for the root, see Algorithm 10*)
7: Nu = {(v, k) : d(u, v) < cbk ∧ 0 < k ≤ min(Lu, Lv)} (*(v, k) ∈ Nu if u and v are

neighbors at level k*)
8: Cu = {(v, k) : fv = u ∧ Lv = k} (*(v, k) ∈ Cu if the level of v is k and u is the parent of

v*)
9: let PNu = {(v, k) : k > 0∧∃(w, k+1) ∈ Nu∪N fu , ((v, k) ∈ Cw∨ (v, k) = (w, k))∧d(u, v) ≥

cbk} (*Set of cousins. Note that this set is used only at initialization.*)
10: Certu ← {Separationγ,k(u, v), ShortEdgec,k(u, v) : (v, k) ∈ Nu \ {(u, ∗)}} ∪ {Long-
Edgec,k(u, v) : (v, k) ∈ PNu}

11: τ← RoundDistance(u, fu, Lu); Certu ← Certu ∪ {Coverτ,Lu , SCoverτ−1/b,Lu}

12: end for
13: Cert ←

⋃
u∈V Certu

14: Main loop:
15: for each time ti where a node moves do
16: Resolve all false certificates of Cert one by one, according to the instructions of algo-

rithms 15 and 16:
17: first Separation, in order of decreasing level,
18: then ShortEdge and LongEdge, in order of decreasing level,
19: and finally Cover and SCover certificates, in order of decreasing level.
20: end for
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Algorithm 15 Acnn: management of certificates of type Separation, LongEdge, and Short-
Edge

21: (*Each time neighbors and children are updated, the following should be executed:*)
22: when (v, k) is added to/removed from Nu do
23: if v , u then add/remove Separationγ,k(u, v), ShortEdgec,k(u, v) to/from Cert end if
24: if v , u then remove/add LongEdgec,k(u, v) from/to Cert end if
25: for each {u′, v′} : (u′, k − 1) ∈ Cu ∪ {u, k − 1}, (v′, k − 1) ∈ Cv ∪ {v, k − 1} : u′ , v′ do
26: add/remove LongEdgec,k−1(u′, v′) to/from Cert (*add if (v′, k − 1) < Nu′ \ {(u′, ∗)},

remove if certificate exists*)
27: end for
28: end when
29: when (v, k) is added to/removed from Cu do
30: for each v′ : ∃(w, k + 1) ∈ Nu, (v′, k) ∈ Cw ∪ {w, k} : v , v′ do
31: add/remove LongEdgec,k(v, v′) to/from Cert (*add if (v′, k) < Nv \ {(v, ∗)}, remove

if exists*)
32: end for
33: end when

34: (*For simplicity, in the following, the certificate that fails is implicitly removed, as well
as its symmetric. Also, each time a certificate is said to be created at level 0, except Cov-
erγ,0, it should not be created.*)

35: when Separationγ,L(u, v) fails with Lu ≤ Lv and u ≺ v do (*L = Lu. Note that the node
with lowest order will be the one to reduce its level.*)

36: PF ← {w , u : (w, L) ∈ Nu} (*Potential parent for level L − 1 children of u*)
37: for each w : (w, L − 1) ∈ Cu do (*Lw = L − 1 and fw = u*)
38: if ∃w′ ∈ PF : d(w,w′) < γbL then Redirect(w, u,w′)
39: else Promote(w, u); PF ← PF ∪ {w}
40: end for
41: remove Cover∗,∗(u, fu), SCover∗,∗(u, fu) from Cert; C fu ← C fu \ {(u, L)}
42: for each w : (w, L) ∈ Nu do Nw ← Nw \ {(u, L)} end for
43: Nu ← Nu \ {(w, L) ∈ Nu}

44: Lu ← Lu − 1; fu ← v; Cv ← Cv ∪ (u, Lu) add Coverγ,Lu(u, v) to Cert
45: remove Separationγ,L(u, ∗), Separationγ,L(∗, u), LongEdgec,L(u, ∗), Long-
Edgec,L(∗, u)

46: end when
47: when ShortEdgec,L(u, v) fails with Lu ≤ Lv do (*L = Lu*)
48: Nu ← Nu \ (v, L); Nv ← Nv \ (u, L);
49: end when
50: when LongEdgec,L(u, v) fails with Lu ≤ Lv do (*L = Lu*)
51: Nu ← Nu ∪ (v, L); Nv ← Nv ∪ (u, L)
52: end when
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Algorithm 16Acnn: management of certificates of type Cover and SCover
53: when SCoverτ,L(u, v) fails with τ ∈ {γ, β} do (*L = Lu and v = fu*)
54: if τ = β then replace SCoverβ,L(u, v) by SCoverγ,L(u, v) in Cert end if
55: replace Coverτ+1/b,L(u, v) by Coverτ,L(u, v) in Cert
56: end when
57: when Coverτ,L(u, v) fails with τ ∈ {γ, β} and L ≥ 1 do (*L = Lu and v = fu*)
58: if Lαa(u) < Lγa(u) then
59: if ∃( f ′, Lαa(u) + 1) ∈ N fαa(u) : d(αa(u), f ′) ≤ γbLαa(u)+1 then
60: Redirect(αa(u), fαa(u), f ′) else Promote(αa(u), fαa(u)) end if
61: if τ = β then
62: if ∃v′ : (v′, L + 1) ∈ Nv ∧ d(u, v′) ≤ γbL+1 then
63: Redirect(u, v, v′) else Promote(u, v) end if
64: else
65: replace Coverτ,L(u, v) by Coverτ+1/b,L(u, v) in Cert
66: replace SCoverτ−1/b,L(u, v) by SCoverτ,L(u, v) in Cert (*replace if it exists, add

otherwise*)
67: end when
68: when Coverα,L(u, v) fails or Coverγ,L=0(u, v) fails do
69: if ∃v′ : (v′, L + 1) ∈ Nv ∧ d(u, v′) ≤ γbL+1 then
70: Redirect(u, v, v′) else Promote(u, v) end if
71: end when

72: procedure Redirect(v, old f , new f ) (*Change v’s parent to new f *)
73: Cold f ← Cold f \ {(v, Lv)}; remove Cover∗,∗(v, old f ), SCover∗,∗(v, old f ) from Cert;
74: fv ← new f ; Cnew f ← Cnew f ∪ (v, Lv); add Coverγ,Lv(v, new f ) to Cert

75: procedure Promote(v, old f ) (*Increase Lv once*)
76: if Lold f ≥ Lv + 2 then new f ← old f else new f ← fold f ; end if
77: if Lv , 0 then
78: if Lαa(old f ) < Lγa(old f ) then τ′ ← β else τ′ ← RoundDistance(v, new f , Lv + 1)
79: else
80: τ′ ← RoundDistance(old f , new f , Lold f ) (*May lead to avoidable updates*)
81: Cold f ← Cold f \ {(v, Lv)}; remove Cover∗,Lv(v, old f ); add Coverτ′,Lv+1(v, new f ) in Cert
82: remove SCover∗,Lv(v, old f ); add SCoverτ′−1/b,Lv+1(v, new f ) in Cert (*The new cer-

tificate may fail immediately*)
83: Lv ← Lv + 1; fv ← new f
84: W ← {(w, Lv) ∈ Cw′ ∪ {( fv, Lv)} : (w′, Lv + 1) ∈ N fv ∧ d(v,w) < cbLv} (*( fv, Lv) < W if

d(v, fv) ≥ cbLv*)
85: Nv ← Nv ∪W ∪ {(v, Lv)}
86: for each (w, Lv) ∈ W do Nw ← Nw ∪ {(v, Lv)} end for
87: Cnew f ← Cnew f ∪ (v, Lv)
88: if new f is the root and Lnew f = Lv then increment Lnew f end if
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4.3.4 Validity of the Algorithm in the Low Mobility Setting
In this section, we will prove that Acnn maintains a valid structure when nodes respect the
movement constraints in the low mobility setting. In other words, we suppose in this section,
that discrete instants ti may be identified, so that at ti, only one node may move (of maximum
dmv = 1 distance units) and invalidate the structure. No other node may move until instant ti+1.

Let us denote by G = {(u, fu, Lu,Nu,Cu) : u ∈ V} the structure resulting from Acnn. We
define its validity as follows.

Definition 4.24 (Valid Structure). The structure G is valid if it has the following properties:

• unique root: ∃!v ∈ V : fv = v (Definition 4.7),

• γ-separation: ∀u, v ∈ V,∀k ∈ N∗ : k ≤ min(Lu, Lv) =⇒ d(u, v) ≥ γ · bk (Definition 4.7),

• correctness of neighbors: for each node u, Nu = {(v, k) ∈ V × N : 1 ≤ k ≤ min(Lu, Lv) ∧
d(u, v) < c · bk} (Definition 4.8),

• α-coverage: ∀u ∈ V : fu = v , u =⇒ Lu < Lv ∧ d(u, v) < αbLu+1 (Definition 4.7),

• ancestor invariant: ∀u ∈ V, β · bLu+1 ≤ d(u, fu) < α · bLu+1 =⇒ Lγa(u) < Lαa(u)

(Definition 4.23),

• correctness of children, that is, for each node u, Cu = {(v, k) : v ∈ V\{u}∧ fv = u∧Lv = k}
(Definition 4.13).

Similarly to the previous chapter, we denote by G(t) the set of possible values for G that
are valid with regards to the positions the nodes have at time t. Our theorem is formulated in a
similar way as Theorem 3.7 from the previous chapter.

Theorem 4.25. In the low mobility setting, assuming that the structure is correctly initialized,
that is, G(0) ∈ G(0), and that all certificates of Table 4.3 are in Cert at time 0, then when using
Acnn, ∀i ≥ 0,G(ti+1) ∈ G(ti).

Proof. The proof of this theorem uses the lemmas below, we give here the general outline of
the proof.

The proof is by induction on i. We prove that, given G(ti) ∈ G(ti−1) and a corresponding set
Cert(ti) of certificates as described on Table 4.3, the result of the instructions of Acnn applied
after the movement of time ti result in a structure, G(ti+1), that is valid with regards to these new
positions, in other words, G(ti+1) ∈ G(ti).

To prove that between ti and ti+1 the structure is corrected, we prove that the three phases of
Acnn (lines 17, 18 and 19 of Algorithm 14) each add properties from Definition 4.24, needed
for the validity of G, without invalidating the properties from the previous phases. This is done
in lemmas 4.30, 4.32, and 4.35. We then note that the certificates are correctly added to and
removed from Cert, proving in Lemma 4.36 that the list of certificates is also correctly updated
at time ti+1. �

In order to prove this step by step, we will use an additional definition, that of structure
coherency, a weaker version of structure validity (note that it just as validity minus all properties
depending on distances). This property should be true at the start of any update, as it ensures
that the variables of the structure are always coherent with one another.

Definition 4.26 (Coherent Structure). The structure G is coherent if it has the following prop-
erties:
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• unique root,

• ∀u ∈ V, fu , u =⇒ L fu > Lu,

• ∀u ∈ V,∀(v, k) ∈ Nu, k ≤ min(Lu, Lv).

• correctness of children.

We will suppose for the rest of this section, that G(ti) ∈ G(ti−1), and that the set of certificates
in Certti corresponds to the list of certificates given on Table 4.3, according to the positions of
the nodes at time ti−1.

Throughout our proof, we will use the following, that shows that even after a movement, if
a node u gets its level increased to a level ` and takes its ancestor of level ` + 1 as a new parent,
then this ancestor can be used to reconstruct u’s new neighbors using Lemma 4.10.

Lemma 4.27. At any instant t ∈ [ti; ti+1[, let u ∈ V and ` = Lu(t) ≥ 1. Let v be a node such that
d(u, v, t) < c · b`, and let v′ be the node that is, at time t, the ancestor of v at level ` + 1 (which
may be v itself if Lv ≥ `). We have:

d
(
fu(t), v′, t

)
< c · b`+1

d
(
fu(t), v′, ti−1

)
< c · b`+1

Proof. Note that a node w can decrease its level only on line 44, when a Separationγ,L(w,w′)
certificate fails, in which case the new parent for w is w′, so that d(w,w′, ti−1) < γ · bL + dmv <
α · bL. Also, a node w can increase its level only on line 83, in which case the new parent for w
was, at time ti, the ancestor at level ` + 1 in G(ti).

Thus, as G(ti) ∈ G(ti−1), the structure respects the α-coverage with respect to the distances
between the nodes at time ti−1, and we may apply Lemma 4.12 (knowing that fu(t) is the ancestor
of u at level ` + 1):

d(u, fu(t), ti−1) <
(
α +

1
b

)
b`+1 − 1

d
(
v, v′, ti−1

)
<

(
α +

1
b

)
b`+1 − 1

By triangular inequality, we have d( fu(t), v′, t) ≤ c · b` + d(u, fu(t), t) + d(v, v′, t), and as only
one node may have moved at time ti, we have:

d
(
fu(t), v′, t

)
< c · b` + 2

(
α +

1
b

)
b`+1 − 2 + dmv (4.2)

Note that:

2
b − 1
b − 1

≤ c as c = 2

=⇒
2αb + 2

b − 1
≤ c as α =

b − 2
b

=⇒ c · b` + 2αb`+1 + 2b` ≤ c · b`+1

=⇒ c · b` + 2
(
α +

1
b

)
b`+1 − 2 + dmv ≤ c · b`+1 − dmv as dmv ≤ 1

Combining this inequality with that from Equation 4.2, and recalling that only one node
may have moved at time ti, we get our result. �
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Before analyzing the three steps of the algorithm and of our proof, let us note the following:

Remark 4.28. At instant ti, before any update is executed, G(ti) is coherent.

Proof. This is trivial: as long as no change is made to the structure, any property that does
not depend on the distance between the nodes, such as the uniqueness of the root and the level
relations between nodes, remains true. �

First phase: Separation certificates

As can be seen line 17 of Algorithm 14, all certificates of type Separation are resolved first.
We define the first phase as the execution of line 17, that is, the correction of all Separation
certificates until no invalid certificate of that type is left in Cert.

We will first make the following remark:

Remark 4.29. When a node v is promoted during the first phase with function Promote, this
promotion never breaks the γ-separation property, that is, with Lv = k before the call of Pro-
mote, ∀w ∈ V : Lw ≥ k, d(v,w) ≥ γ · bk+1.

Proof. In the first phase, Promote can be called only on line 39. By the conditions from lines 36
to 40 (noting that w ∈ Cu ⇐⇒ u = fw by Remark 4.28), we need to prove that any node u
such that Lu ≥ Lv + 1 and d(u, v, ti) < γbLv+1 satisfies (u, Lv + 1) ∈ N fv , except for previously
promoted nodes. We have that such a node u sees d(u, v, ti−1) < γbLv+1 + dmv < c · bLv+1, thus
(u, Lv + 1) ∈ N fv as it is supposed that G(ti) ∈ G(ti−1). �

We will now prove that the first phase restores the γ-separation:

Lemma 4.30. After the first phase, that is, once all certificates of type Separation are resolved
between ti and ti+1, the structure validates following properties:

• unique root,

• γ-separation.

In addition, G is coherent.

Proof. First, note that the only nodes that may decrease their level, on line 44, are nodes u that
fail a Separation certificate with another node v on level Lu (by the conditions of line 35, and
by Lemma 4.19). In addition, the only nodes that may increase their level, through the function
Promote on line 39, are u’s children.

By Remark 4.28, there is a unique root before the correction of Separation certificates,
without any other node at its maximal level, thus its level is not decreased. It follows that the
uniqueness of the root is maintained after correction of Separation certificates.

Let u and v be two nodes that violate the γ-separation at ti, that is, such that there is a level
0 < k ≤ min(Lu(ti), Lv(ti)) with d(u, v, ti) < γ ·bk. As only one node may move at ti, but not more
than dmv distance units, we have d(u, v, ti−1) < γ · bk + dmv < c · bk (as dmv = 1). Thus, because
G(ti) ∈ G(ti−1), we have that u and v are neighbors at ti, so that both Separationγ,k(u, v) and
Separationγ,k(v, u) are in Cert(ti) and are failing.

Let k = min(Lu(ti), Lv(ti)). As d(u, v, ti−1) ≥ γ · bk (because G(ti) ∈ G(ti−1)), and because
of the limited movement, we also have d(u, v, ti) ≥ γ · bk − dmv ≥ γ · bk − 1. Thus, if k ≥ 1,
we have d(u, v, ti) ≥ γ · bk−1. In other words, u and v may violate the γ-separation only at level
min(Lu(ti), Lv(ti)).
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When executing line 44 of Algorithm 15, for the first certificate that is treated among Sepa-
rationγ,k(u, v) and Separationγ,k(v, u), either u or v decreases its maximum level by 1, restor-
ing the γ-separation property. As explained on line 34, as the two certificates are symmetric the
one that is not treated first is removed from Cert.

Note that as we proved that having G(ti) ∈ G(ti−1) and that the γ-separation fails implies
that Separationγ,k(u, v) and Separationγ,k(v, u) fail, by contraposition, we have that if none
of the certificates fails, then the γ-separation property is still verified.

Also, by Remark 4.29, no promotion induces a failure of the γ-separation property, so that
no error is introduced in the structure either, finally proving that the γ-separation property is
verified at the end of the first phase.

Finally, one can check that neighbors, children, and levels are updated properly on lines 41
through 45, and in the functions Redirect and Promote so that the structure is coherent after
finishing treating the Separation certificates. �

Second phase: Long- and ShortEdge certificates

As can be seen on line 18 of Algorithm 14, after correcting certificates of type Separation,
the certificates of type LongEdge and ShortEdge are treated. Similarly to the previous phase,
we define the second phase as the execution of line 18, that is, the correction of all ShortEdge
and LongEdge certificates until no invalid certificate of those types is left in Cert.

Let us first make the following remark:

Remark 4.31. Let us call t′ the instant where the first phase finishes.
If Promote(v, u) is called on time t ∈ [ti; t′[ with Lv(t) = k, then, with new f the node that

becomes v’s new parent on line 83, the ball Bnew f

(
bk+2

)
already existed at time ti; in other words,

we have Lnew f (ti) ≥ k + 2.

Proof. To prove this result, we will prove that new f cannot have decreased its level below level
k + 2 between ti and t.

During the first phase, Promote(v, u) is called only on children of a node u = fv(t) that fails a
Separationγ,k+1(u, u′) certificate with another node u′ on level k + 1, with Lu(t) ≤ Lu′(t). Thus,
by Lemma 4.19 Lu(t) = k + 1, so that by line 76, new f = fu(t). As only one node may move at
each time step, either u or u′ moved at time ti.

• If u moved, either fu(t) = fu(ti), with L fu(ti)(ti) ≥ k + 2, or u changed its parent on line 44
because of a failure of Separationγ,k+2(u,w) certificate on level k + 2 with a node w with
Lw(ti) ≥ k+2, so that fu(t) = w (because w can fail a Separation certificate only with u).
The node u can only have changed its parent on line 44, as the only other places where u
could have changes its parent are in functions Redirect and Promote, which would imply
that the parent of u failed a Separation certificate with another node than u, which is
impossible as only u moved. Thus, if u moved, Lnew f (ti) ≥ k + 2.

• If u′ moved, we have that fu(t) = fu(ti) because all failing certificates must involve u′, so
that u may not have changed its parent yet at time t. As L fu(ti)(ti) ≥ k + 2 by Definition 4.7
and because G(ti) ∈ G(ti−1), we get Lnew f (ti) ≥ k + 2.

�

Lemma 4.32. Let us denote by t′′ the instant when the second phase ends, that is, the instant
when all certificates of type LongEdge and ShortEdge are resolved between ti and ti+1. At time
t′′, the structure validates following properties:
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• unique root,

• γ-separation,

• correctness of neighbors.

In addition, G(t′′) is coherent, and Cert(t′′) does not contain any invalid Separation cer-
tificate.

Proof. As failures of LongEdge and ShortEdge do not involve changes in maximal levels, by
Lemma 4.30, the root remains unique, the γ-separation remains true, and the structure remains
coherent. Similarly, no Separation certificate is violated or created.

Let us denote by t′ the instant where Acnn starts executing the instructions for correcting
LongEdge and ShortEdge certificates (we thus have ti < t′ < t′′). Let u and v be two nodes
with k = min(Lu(t′′), Lv(t′′)), such that d(u, v, ti) < c ·bk. Let us prove that (v, k) ∈ Nu(t′′) (which,
by Lemma 4.19 proves the neighbors correctness).

If we have (v, k) ∈ Nu(ti), then no LongEdge or ShortEdge certificate involving v and u is
violated, so that (v, k) ∈ Nu(t′′).

Let us then look at the other case, that is, (v, k) < Nu(ti). As G(ti) ∈ G(ti−1), and because
only one node may move of dmv distance units, we have d(u, v, ti−1) < c · bk + dmv ≤ (c + 2

b )bk for
k ≥ 1.

• If k ≤ min(Lu(ti), Lv(ti)), by Lemma 4.18, we have v ∈ PNu(ti), so both LongEdgec,k(u, v)
and LongEdgec,k(v, u) are in Cert(ti). We need to prove that they are still in Cert(t′).
During the first phase, these certificates may have been removed from Cert only on four
places.

– Line 24, if u and v were added to each other’s set of neighbors, which, during
the first phase, may have happened only when a node was promoted, on level
min(Lu(ti), Lv(ti)) + 1 > k.

– Line 26, if u and v’s parents were removed from each other’s neighborhood, which
may have happened only if u and v failed a Separation certificate at level k, which
is impossible because of the speed limit, and because (v, k) < Nu(ti).

– Line 31, if u and v were no longer potential neighbors because one of them changed
its parent. During the first phase, this may have happened only on line 41, if one
of them failed a separation certificate, which we just showed is not possible, or on
line 73 or 81 if one of their parents failed a separation certificate. In these last two
cases, as the lists of children and of neighbors are recreated on level k + 1 on lines
74 and 85, the lines 26 and 31 are executed, which adds the LongEdgec,k(u, v) and
LongEdgec,k(v, u) certificates back to Cert.

– Line 45, if u and v failed a Separation certificate at level k, which we already
proved is impossible.

Thus, if k ≤ min(Lu(ti), Lv(ti)), lines 50 through 52 are executed and v is added to Nu, so
that (v, k) ∈ Nu(t′′).

• Finally, in the case where k > min(Lu(ti), Lv(ti)), it means u or v (or both) have increased
their level since time ti (which may have happened only on line 83, in a call of Pro-
mote following a failure of Separation certificate). Thus, we have LongEdgec,k(u, v) <
Cert(ti), so that we need to prove that a LongEdgec,k(u, v) certificate has been added to
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the structure during the first phase. As the level change of u and/or v necessarily implies
that u and/or v are added to their new parent’s children, lines 30 through 32 are executed.
By Lemma 4.27, at that moment, fu and fv are neighbors, thus line 31 is executed for u
and v, adding a LongEdgec,k(u, v) certificate to the certificate list.

It is simpler to prove that if u and v satisfy d(u, v, ti) ≥ c · bk implies v < Nu(t′′). If v < Nu(ti),
then, again, no LongEdge or ShortEdge certificate is violated, so that we get the result. If
v ∈ Nu(ti), we have that ShortEdgec,k(u, v) and ShortEdgec,k(v, u) are inCert(ti) and are failing.
They are still in Cert(t′), because they can be removed only on line 23, when they are removed
from each other’s neighborhood, which would mean that v < Nu(t′′) anyway. Thus, lines 47
though 49 are executed for one of the two certificates, and v is removed from u’s neighbors, so
that v < Nu(t′′). �

Third phase: Cover and SCover certificates

Again, we define the third phase as the execution of line 19, that is, the correction of all Cover
and SCover certificates until no certificate of those types is left in Cert.

Remark 4.33. Every time a node at level ` changes parent with the Redirect function, the new
parent is always at distance smaller than γ · b`+1 from it.

Proof. Every time the function Redirect is called (on line 60, 63, or 70) for a node u with
Lu = `, it is under the condition that a node v was found such that d(u, v) < γ · b`+1. �

Remark 4.34. If the ancestor invariant is valid, then the ancestor invariant remains valid after
promoting a node u of level k such that β · bk+1 ≤ d(u, fu) < α · bk+1.

Proof. Let us call old f the parent of u before promotion, and new f = fold f the parent after
promotion. As the ancestor invariant is valid, there are two possibilities for the distance between
old f and new f :

• d(old f , new f ) < γ · bk+2. We have d(u, new f ) < γ · bk+2 + α · bk+1 < β · bk+2, and thus the
ancestor invariant remains true.

• γ · bk+2 ≥ d(old f , new f ) < β · bk+2. Thus old f was neither a α-ancestor nor a γ-ancestor
for u before promotion. As the ancestor invariant was supposed to be true before the
promotion, the two ancestors are above new f ’s level, so that the invariant remains true
after promotion. �

Lemma 4.35. After the third phase, that is, at time ti+1 once all certificates of type Cover and
SCover are resolved between ti and ti+1, we have G(ti+1) ∈ G(ti).

Proof. Let us look at the properties for G(ti+1)’s validity one by one. We will denote by t′ the
instant whereAcnn finishes the second phase, that is, the moment just before the instructions for
correcting Cover and SCover are executed (with ti+1 being the end of the third phase).

Unique root. We need to prove that when a node u that is not the root is assigned a new
parent during the third phase, this new parent is never u itself. When treating Cover and SCov-
er certificates, the only changes in parents can happen on line 74, in the function Redirect and
on line 83, in the function Promote.

In the first case (assignment of a new parent in function Redirect), fu is given the value of
new f , which can come from two places: either line 60, where u is the α-ancestor of another
node, or line 70, where u just failed a Coverα,L certificate. In both cases, new f is a neighbor of
fu. As the structure is coherent, u < N fu(ti), so that fu(ti+1) , u.
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In the second case (assignment of a new parent in function Promote), the new value for fu

is either fu itself if L fu ≥ Lu + 2, or f fu (line 76). Thus, as the structure is coherent, fu(ti+1) , u.
Correctness of neighbors. Any increase in level of a node v (on line 83) is associated

with the addition of neighbors at v’s new level on line 85. Those neighbors are, by line 84,
the children of the neighbors of v’s new parent, which by Lemma 4.27 include all required
neighbors. Thus the correctness of neighbors is kept true during the third phase.

γ-separation. During the third phase, changes of level can happen only on line 83, during
a call of function Promote. Each call of Promote (lines 60, 63, and 70) is preceded by a
verification ascertaining that no neighbor of the parent of the node to be promoted is too close
from it.

Let t be an instant where a call to function Promote is made. It remains to be proven that
a node v that would be too close to promote u without violating the γ-separation, that is, such
that d(u, v, t) < γ ·bLu(t)+1, is necessarily a neighbor of fu(t) at time t. As fu(t) was an ancestor of
u at time ti, we have, by Lemma 4.12, that d(u, fu(t), t) < (α + 1

b )bLu+1 − 1 + dmv. By triangular
inequality, with our values of γ, α, b and c (see p. 125), we get that d(v, fu(t), t) < c · bLu(t)+1,
meaning that v and fu(t) are indeed neighbors at time t, by correctness of neighbors.

Thus, the γ-separation is kept true during the third phase, and no Separation certificate is
created that is immediately false.

α-coverage. Knowing that certificates are treated in order of decreasing levels, we will
prove by induction on each level k that this property is corrected during the third phase.

First, for the induction basis, let us prove that at time t′, at the level of the root, the α-
coverage property is true. Any increase in the level of a node that may have been operated
previously goes through the Promote function, which ends at line 88, ensuring that the root is
the only node at the highest level. Thus, at the highest level of the constrained navigating net,
the α-coverage property is trivially satisfied, as by definition, with u the root, fu = u.

Let us now look at a level k , 0 that is not the highest level, and such that for any node
of level k′ > k the α-coverage property is true, and prove that after executing the operations
associated with the failure of certificates at level k, the α-coverage is true at level k. Let us call
t the moment where the algorithm starts treating the certificates of level k. By definition of the
α-coverage (Definition 4.7), any node u of level Lu(t) = k that does not satisfy the α-coverage
either is such that L fu(t)(t) ≤ Lu(t), or is too far away from fu(t).

• Let us prove that the first case is impossible. As G(t′) is coherent, we have, for any
non-root node v ∈ V, that L fv(t′)(t′) > Lv(t′), and that, for any (w, k + 1) ∈ N fv(t′)(t′),
Lw(t′) > Lv(t′). Thus, when a node v changes its parent either in function Redirect,
the new parent always satisfies L fv > Lv. If k + 1 is not the level of the root, we have,
by coherency of the structure, that L f fv

(t′) > Lv(t′) + 1, and thus, the Promote function
preserves that Lnew f > Lv, with new f the new parent for u. If k + 1 is the level of the root,
in which case fv(t) is the root, as we proved that the highest level contains only the root,
then line 88 is executed, that also guarantees that Lnew f > Lv.

• Let us now prove that if there is a node u with Lu(t) = k such that d(u, fu(t), t) ≥ α · bk+1,
then a failing Coverα,k(u, fu(t)) certificate will be treated during this third phase. By
Remark 4.33, and as a parent can change only in functions Redirect and Promote, if
d(u, fu(t), t) ≥ α · bk+1, then either fu(t) = fu(ti) and u got farther away from its parent,
or u got promoted previously with the Promote function. For the first case, we have
d(u, fu(t), ti) ≥ α · bk+1 − dmv ≥ β · bk+1, and thus Coverα,k(u, fu(t)) ∈ Cert(ti). In the
second case, when u got promoted, lines 78 and 81 of function Promote ensure that a
Coverτ′,Lu(t)(u, fu(t)) certificate was created with τ′ = α or β, which fails because of the
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distance between u and fu(t). In the case where τ′ = β, the failing certificate is treated on
line 57, adding a Coverα,k(u, fu(t)) certificate on line 65.

For any level `, when a failing Coverα,`(u, fu(t)) certificate is treated, u either gets through
Redirect a new parent so as to satisfy, by Remark 4.33, the α-coverage, or u gets pro-
moted. In that last case, if new f , the new parent of u is such that d(u, new f , t) ≥ α · bLnew f ,
then on line 78 a Coverα,`+1(u, new f ) is created with the help of function RoundDistance;
the certificate is immediately false, and as ` + 1 > k, it will be treated immediately. This
process is repeated until a level ` is found such that d(u, new f , t) < α ·b`, possibly increas-
ing the level of the root in the process11. Thus u will eventually satisfy the α-coverage.

Finally, we can see that this process does not invalidate the α-coverage for any node of
level higher than k. Indeed, any promotion of a node v that would result in invalidating the
α-coverage for v, incurs the creation of a failing Coverα,L fv

(v, fv) property, which would,
similarly as above, eventually correct the property.

The procedure is similar at level 0, except for the fact that any node u of that level satisfies
d(u, fu) < γ · b1, and if it is not the case, then u is immediately redirected to another parent or
promoted on lines 68 through 71. In the case of a promotion, a Coverτ′,1 certificate is created,
depending on the value of τ′ at line 80. If τ′ = γ, then it is replaced by a Coverβ,1 certificate on
line 55, which, as described above will eventually restore the α-coverage as described above.

Thus, by induction, after all Cover certificates have been treated, the structure satisfies the
α-coverage property.

Ancestor invariant. As for the α-coverage, we will prove this by induction. Let us call
by toptree at and above k the subgraph of our navigating net induced by all nodes u such that
Lu ≥ k.

First, for the induction basis, it is easy to see that the toptree at and above the maximal level
complies to the ancestor invariant, as it contains only one node, the root.

Let us now consider at a time t during the third phase, a level k that is not the highest level,
such that the toptree at and above k + 1 complies to the ancestor invariant, and such that Cert(t)
contains no failing certificate with a level higher than k. We will prove that after executing the
updates associated with failing certificates of level k, that is, once no failing certificates remain
at levels k and above, the toptree at and above k complies to the ancestor invariant.

By supposition, at time t, the toptree at and above k can invalidate the ancestor invariant
only because some node u of level k is such that β · bk+1 ≤ d(u, fu(t), t) < α · bk+1 and Lαa(u)(t) <
Lγa(u)(t). When comparing G(ti) and G(t), there are three possible reasons for that distance
between u and fu(t).

• We can have fu(t) = fu(ti) and β · bk+1 ≤ d(u, fu, ti) < α · bk+1, in other words, the parent
of u did not change since ti, but the distance between u and fu remains within the same
bounds. We will show below that in this case it is impossible to have Lαa(u)(t) < Lγa(u)(t).

• We can also have fu(t) = fu(ti) but with γ · bk+1 ≤ d(u, fu, ti) < β · bk+1, in other words, u’s
parent did not change, but the distance between u and fu increased sufficiently to break the
previous upper bound. We will prove below that if this is the case, then a Coverβ,k(u, fu)
fails, and the operations associated with that failure restore the ancestor invariant.

• Finally, it is possible that fu(t) , fu(ti). In other words, u changed its parent since ti, and
got attached to a parent at distance more than β · bk+1 away from it. We will prove, as for
the previous case, that a failing Coverβ,k(u, fu) certificate restores the ancestor invariant.

11Note that we will see in the next section that a constant number of level increases per node is enough, thanks
to the ancestor invariant.
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First case: let us suppose that fu(t) = fu(ti), that at time ti we had β · bk+1 ≤ d(u, fu, ti) <
α · bk+1, and at time t we have β · bk+1 ≤ d(u, fu, t) < α · bk+1, and let us suppose that Lαa(u)(t) <
Lγa(u)(t). As G(ti) ∈ G(ti−1), we had Lαa(u)(ti) > Lγa(u)(ti), which means that either the α-ancestor,
or the γ-ancestor of u changed. By Definition 4.21 and Definition 4.22, a change of one of those
ancestors is caused either by the change of level of an ancestor of u, which can happen only in
functions Redirect and Promote, or by a change of distance between one of the ancestors and
its parent.

First, let us see that the inequality Lαa(u)(t) < Lγa(u)(t) cannot be caused by a call to the
Redirect function, as by Remark 4.33, a redirection can only increase the level of u’s α-ancestor
(if Redirect is applied to the α-ancestor, the new α-ancestor is higher up in the hierarchy), and
can only decrease the level of u’s γ-ancestor (if Redirect is applied to a node below the γ-
ancestor, that node becomes the nex γ-ancestor). Concerning the function Promote, a node v
that gets promoted from level ` to level ` + 1 does not get any new children in the function,
so that all its children are at a level below `: after promotion, ∀(v′, `′) ∈ Cv, Lv′ ≤ ` − 1.
It follows that if v, the promoted node, is both an ancestor of u and a descendent of u’s γ-
ancestor, than v becomes u’s new γ-ancestor after promotion (as v satisfies the first condition of
Definition 4.21). As any other ancestor of u at a level below i did not change with the call to
Promote, this function cannot cause the α-ancestor of u to become below the γ-ancestor. Thus,
neither function Redirect nor function Promote applied on any node v can cause a u to have
Lαa(u)(t) < Lγa(u)(t).

Let us now prove that the inequality Lαa(u)(t) < Lγa(u)(t) cannot be caused by the change of
distance between an ancestor v of u and its parent fv, thanks to Acnn. For this, we can see that
only two situations can lead to the inequality, both represented graphically in Figure 4.11, using
the same representation as on Figure 4.612.

• First, the situation represented on Figure 4.11a, if u’s γ-ancestors, let us call it v, gets at
a distance higher than γ · bLv+1 from fv, then v may no longer satisfy the conditions of
Definition 4.21 (if we also have L fv = Lv + 1), so that the new γ-ancestor of u becomes
an ancestor of v, potentially breaking the ancestor invariant. This change of distance,
however, goes with the failure of a Coverγ,L(v, fv) certificate, which on line 60 calls either
Redirect or Promote on v’s α-ancestor, which in this case is also u’s α-ancestor. Let us
call w that α-ancestor. If Redirect is called, by Remark 4.33, w becomes u and v’s
new γ-ancestor, restoring the ancestor invariant. In the case Promote is called, as w’s
level is increased but not the level of its children, w becomes u and v’s new γ-ancestor,
restoring the ancestor invariant for u. In addition, as it is supposed that the toptree at
and above level k satisfies the ancestor invariant, and because by definition of w, we have
β · bLw+1 ≤ d(w, fw, t) < α · bLw+1, we have by Remark 4.34 that the toptree at and above
level k + 1 keeps the validity of the ancestor invariant.

• Second, the situation represented on Figure 4.11b, an ancestor v of u below u’s γ-ancestor
(that is, such that Lv < Lγa(u)) that is not u’s α-ancestor (that is, such that γ · bLv+1 ≤

d(v, fv) < β · bLv+1 and L fv = Lv + 1) might get at a distance higher than β · bLv+1 from fv,
which breaks the ancestor invariant. However, if that is the case, then a Coverβ,L(v, fv)
certificate fails, which on line 63 calls either the function Redirect or Promote on v. As
above, by Remark 4.33 and Remark 4.34, v thus becomes u’s new γ-ancestor, restoring
the ancestor invariant for u while keeping the property for the toptree at and above level
k + 1.

12Arrows with a solid line represent a parent/child relation, and have labels representing their role with regards
to the ancestor invariant: γ if the child can be a γ-ancestor for its descendants, α if it can be a α-ancestor, and β if
it can be neither. Arrows with dashed lines represent successive parent/child relations. See p.130 for more details.
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Figure 4.11 – Graphical representation of the movements of a node that could invalidate the
ancestor invariant.

This finishes the proof of the first case, as we cannot have Lαa(u)(t) < Lγa(u)(t).

Second case: let us suppose that u’s parent did not change since ti, but that the distance
between u and fu increased: fu(t) = fu(ti), with γ · bk+1 ≤ d(u, fu, ti) < β · bk+1, and β · bk+1 ≤

d(u, fu(t), t) < α · bk+1. There is a risk that the ancestor invariant fails as represented graphically
on Figure 4.12. We have that Cert contains a failing Coverβ,Lu(u, fu) certificate, which on line 63
calls either the function Redirect or Promote on u’s α-ancestor. Again, by Remark 4.33 and
Remark 4.34, the ancestor invariant is restored for u, while keeping the property for the toptree
at and above level k + 1.

By the rules of the failing Coverβ,Lu(u, fu) certificate, u is also redirected or promoted on
line 63. If k = Lu(t) > 0, the condition on line 78 of the Promote function ensures that the
ancestor invariant is kept: indeed, if u does not comply to the ancestor invariant from Defini-

u
AAβ→ α

β∗

α

Figure 4.12 – Graphical representation of a problem of ancestor invariant in the second case.
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tion 4.23, then a Coverβ,`(u, new f ) is created, with ` the new level of u and new f its new parent,
which fails immediately, and redirecting or promoting again u until the ancestor invariant is true
again (we will however later see that a constant number of promotions is enough).

If k = Lu(t) = 0 on the other hand line 78 is not executed, and the new Cover certificate
depends on the distance between old f = fu(t) and its new parent new f = f fu(t)(t). As u does not
get any children from the promotion, if d(u, new f , t) < β · b1, then the promotion does not have
any impact on the ancestor invariant. Remains to be proven that if d(u, new f , t) ≥ β · b2, then
any problem of ancestor invariant will be corrected. We will distinguish the cases according to
the distance between old f and new f .

• If d(old f , new f , t) < β · b2, then line 80 initializes τ′ either to β, or to γ. In this second
case, the failing Coverγ,1(u, new f ) certificate will be replaced by a β on line 65; thus in
both cases, a failing Coverβ,1(u, new f ) certificate will eventually be added to Cert, which
as its level is higher than 0, will restore the ancestor invariant as proven previously.

• If d(old f , new f , t) ≥ β · b2, then, as u and old f end up with the same parent, the ancestor
invariant is true for u if and only if it is true for old f . As we supposed that the toptree at
and above level k + 1 = 1 complies to the ancestor invariant, the property is true for u.

Third case: let us suppose that fu(t) , fu(ti), which means that either function Redirect or
Promote has been called on u between time ti and t, that is, before the third phase. Let us also
suppose that β · bk+1 ≤ d(u, fu, t). By Remark 4.33, the last call to one of the two functions must
have been a call to Promote. As seen in the previous case, line 78 ensures that a call of Promote
always adds certificates to Cert that end up restoring the ancestor invariant.

We thus have proven that after all certificates of level k have been treated in the third phase,
the toptree at and above level k complies to the ancestor invariant. By induction, we get that at
the end of the third phase, the whole structure complies to the property.

Correctness of children. It is easy to see that each change of parent is associated with the
corresponding updates to the sets of children, ensuring the correctness of children.

�

Certificate list

Lemma 4.36. Once all failing certificates are resolved between ti and ti+1, all certificates of
Table 4.3 are in Cert.

Proof. Knowing thanks to Lemma 4.35 that the structure is valid after all failing certificates
have been resolved, it remains to see that all needed non-failing certificates are added to Cert.

• All certificates of type Separation and ShortEdge, that depend only on the sets of
neighbors, are added to Cert on lines 22 through 28, at each change of neighbor. The
LongEdge certificates, that depend on the potential neighbors, and thus both on the neigh-
bor and parent/child relations of the nodes, are added to Cert at each change either of
neighbors or of children on lines 21 through 33.

• The Cover and SCover certificates depend on the parent/child relations of the nodes, but
must have the right distance parameter. Changes of distances for parent/child pairs that
remain parent/child are treated in the associated failing certificates, lines 55, 65, and 66.
Changes of parents happen only in the Redirect and Promote functions. In the Redirect,
only a Cover certificate with a distance threshold of γ is created, which by Remark 4.33
is the needed threshold. In function Promote, certificates are added lines 81 and 82,
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with a parameter τ′ that depends on previous conditions. If this parameter is not the
right parameter for the actual distance between the nodes, then the created certificates are
failing, and treated like a change of distance between a preexisting pair of parent/child,
which we just showed is eventually corrected. �

Put all together, by induction on the time steps, these lemmas prove Theorem 4.25. Note
that none of these proofs involve dmin or dmax. Indeed, Acnn is still valid even if there are no
limits on the distances between the nodes; we will however see in the next section that those
constraints are needed for the performance analysis.

Now that the validity of our algorithm has been settled, we will look at its performance.

4.3.5 Performance Analysis in the Low Mobility Setting
In this section, we prove three results about Acnn’s performance, again in the low mobility
setting. First, we prove in Theorem 4.37 that the levels of the nodes do not change drastically:
at each time step, a node cannot change its level more than a constant number of times. This
property represents the main difference with the DefSpanner from [55], as in that structure,
nodes may need to go up all the hierarchy in one time step in order to repair the structure. This
paves the way for future results improving the update time in the high mobility setting, where
all nodes may move at each time step. We then show in Lemma 4.42 that in the low mobility
setting, Acnn repairs the structure in O(log2 Φ) computations per time step, which, sadly, is
worse than for a DefSpanner (see Theorem 4.17). Finally, we will show in Theorem 4.3.5 that
the total memory space of a constrained navigating net is linear, as for a DefSpanner.

Level changes

First, we prove that if the order of the nodes is so that the node that moved has a higher order
than the nodes of lower levels that didn’t move, then at each moment, each node changes its
level only a constant number of times, which is stated formally in Theorem 4.37.

Theorem 4.37. If u is the only node that moved at ti, and the order on the nodes guarantees
that for all v ∈ V such that Lv(ti) < Lu(ti), we have v ≺ u, then Acnn ensures that each node
does not change its level more than O(1) times between ti and ti+1.

Proof. As for the validity proof, we proceed by analysing each phase separately: we show in
lemmas 4.38, 4.39 and 4.41 that in each phase, the number of times a node may change its level
is constant. �

For the rest of this section, we suppose that, with u the (only) node that moved at ti, for all
v ∈ V such that Lv(ti) < Lu(ti), we have v ≺ u.

Let us first look at the first phase.

Lemma 4.38. During the first phase, that is, during the handling of Separation certificates,
a node may increase its level only once.

During the first phase, a node may decrease its level only once.

Proof. Let us first look at u, the node that moved at ti. For u to increase its level in the first
phase, a Separation certificate involving fu(ti) must fail. As G(ti) ∈ G(ti−1), we have that
fu(ti) , u, except if u is the root in which case there is no other node than u at level Lu(ti). Thus
(and because u is the only node that moved) no Separation certificate involving fu(ti) can fail,
and u cannot increase its level if that level was not decreased beforehand.

Let us now suppose that u decreases its level once, and let us show that u cannot increase or
decrease its level again afterwards, during the first phase.
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• First, when u decreases its level for the first time, line 44, by the failure of a Sepa-
rationγ,Lu(ti)(u, v) certificate with another node v, then two important things happen: v
becomes u’s new parent, line 44, and the symmetric Separationγ,Lu(ti)(v, u) certificate is
removed from Cert line 45 also, so that so that the new parent of u cannot fail a Separa-
tion certificate afterwards (as any other node than u did not move), and u cannot increase
its level.

• We may then see that if u fails any other Separationγ,k(u, v) certificate at a level k <
Lu(ti), then by supposition, v ≺ u, so that v will decrease its level instead of u, and thus u
cannot decrease its level again.

Let us now look at a node v that did not move, that is, v , u. Let us first suppose that v
decreased its level once.

• Similarly to the previous case, when v decreases its level, than u becomes v new parent.
Thus, if Lv(ti) < Lu(ti), so that by supposition, any node w at level Lv(ti) that may fail a
Separation certificate with u has w ≺ u, so that v may not increase its level.

If Lv(ti) = Lu(ti), however, its level can increase once, but as this implies that a failing
Separationγ,Lu(ti)(u,w) with another node w has been treated, which on line 45 removes
all Separation certificates involving u, the only node that moved, v can neither increase
nor decrease its level for the rest of the first phase.

• As u is the only node that moved, v may fail a Separation certificate only with u. In
addition, by Lemma 4.19, u and v may fail that kind of certificate only on one level. Thus,
once v decreased its level, it cannot decrease its level again.

Let us now suppose that v increased its level once.

• As Separation certificates are treated in order of decreasing levels during the first phase,
once v increased its level, no failing Separation certificates can remain at the level of
its new parent, and thus v cannot increase its level a again.

• The node v can increase its level only through the Promote function, which by Re-
mark 4.29 does not break the γ-separation property. No Separation certificate involving
v can thus fail at its new level, and v cannot decrease its level again for the rest of the first
phase.

Thus putting all together, we have proven that during the first phase, a node can increase
and decrease its level only once (both at worst). �

The second phase is trivial.

Lemma 4.39. During the second phase, that is, during the handling of ShortEdge and Long-
Edge certificates, no node may change its level.

Proof. As failures of LongEdge and ShortEdge do not involve changes in maximal levels, no
node may change its level during the second phase. �

Let us now look at the third and last phase. We will first make a generalization of Lemma 4.12,
showing that because of the limited movement speed, the distance between a node and one of
its ancestors does not change drastically.
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Remark 4.40. Let t ∈ [ti; ti+1[. Let v be any node, and let us suppose that at time t, w is the
ancestor of v at level `, and w′ is the ancestor of v at level ` − 1. Let us also suppose that
d(w′,w, t) < τ · b` (with τ ∈ {α, β, γ}).

We have d(v,w, t) <
(
τ + 1

b

)
b`.

Proof. Let v1, v2, . . . v` = w be the successive ancestors of v at time t. For any vi, we have one
of the following.

• vi and vi+1 were v’s ancestors at time ti, in which case d(vi, vi+1, ti−1) < α · bLvi (t)+1 (as
G(ti) ∈ G(ti−1)).

• An ancestor vi of v got redirected at an instant between ti and t, in which case, by Re-
mark 4.33, d

(
vi, fvi(t), t

)
< γ · bLvi (t)+1, and thus we have d

(
vi, fvi(t), ti−1

)
= d(vi, vi+1, ti−1) <

γ · bLvi (t)+1 + dmv < α · bLvi (t)+1.

• An ancestor vi of v saw its level decreased by the failure of a Separation certificate, in
which case the new parent of vi is at distance γ ·bLvi (t)+1 away from it (see line 44 ofAcnn),
so that we also get d(vi, vi+1, ti−1) < α · bLvi (t)+1.

Note that if one of the ancestors of v has been promoted between ti and t, then that ancestor was
assigned, on line 83 of the algorithm, a new parent that already was its ancestor.

In any case, we have, for any ancestor vi of v, that d(vi, vi+1, ti−1) < α · bLvi (t)+1. We can thus
apply the same sum as in the proof of Lemma 4.12, and we get that d(v,w, ti−1) < τ ·b`+b`−1−1.
As one of the nodes may have moved, we have:

d(v,w, t) < τ · b` + b`−1 − 1 + dmv

< τ · b` + b`−1 as dmv ≤ 1

<

(
τ +

1
b

)
b`.

�

In particular, we may apply Remark 4.40 to get the following:

• if d(w′,w, t) < γ · b`, then d(v,w, t) < β · b`, and

• if d(w′,w, t) < β · b`, then d(v,w, t) < α · b`.

Lemma 4.41. During the third phase, that is, during the handling of Cover and SCover cer-
tificates, a node may increase its level only three times (two for a node v such that Lv(ti) > 0).
No node may decrease its level.

Proof. No Cover or SCover failure involves the reduction of the level of a node. It thus remains
only to prove that that the level increases of nodes are limited during the third phase.

During the third phase, a node v may be promoted only on three places: on line 60, if v is
the α-ancestor of another node, or on line 63 or 70 if v fails a Cover certificate. Note that if v is
promoted, as no new children are assigned to v after the promotion, v cannot be the α-ancestor
of another node. Line 60 is thus never executed twice on the same node, and it is enough to
look only at Cover certificates involving v.

We have seen by induction, during the proof of Lemma 4.35, that when a failing Cover
certificate is treated at level k, then the toptree at and above level k + 1 (the subgraph of the
constrained navigating net induced by all nodes u such that Lu ≥ k) validates the α-coverage
and the ancestor invariant. Let us thus suppose that v got promoted once to level k + 1, by a
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Figure 4.13 – Graphical representation of the different parents of v at time t (on the left), at time
t′ (in the middle), and after the third promotion (on the right). Dotted lines are there to help
recognizing the levels of the nodes.

call to Promote at instant t, and prove that if v gets promoted a second time at instant t′, then
that second promotion never creates Cover certificates that are false. Let us call prev f = fv(t)
the parent v had before that first promotion13, temp f = fv(t′) the parent v got after that first
promotion and before that possible second promotion, and let us call f inal f the parent v would
get after that second promotion. See Figure 4.13 for a graphical representation of these parents.
Note that we may have prev f = temp f = f inal f , in which case the distance between them is
0.

Let us suppose that k > 0. By the conditions of line 78, when v got promoted to level k + 1,
there are only two conditions under which the Coverτ,k+1(v, temp f ) certificate that was created
as part of that promotion may fail. EitherLαa(prev f )(t) < Lγa(prev f )(t), and

d(v, temp f , ti) ≥ β · bk+2,
(4.3)

in which case a failing Coverβ,k+1(v, temp f ) was created; orLαa(prev f )(t) > Lγa(prev f )(t), and
d(v, temp f , ti) ≥ α · bk+2,

(4.4)

in which case a failing Coverα,k+1(v, temp f ) was created.
Let us now prove that in both cases, the Cover∗,k+2(v, f inal f ) certificate that is created by

the second promotion cannot fail. Again, we have that this certificate can fail only if either
Equation 4.5 or Equation 4.6 is true.Lαa(temp f )(t′) < Lγa(temp f )(t′), and

d(v, f inal f , ti) ≥ β · bk+3.
(4.5)

Lαa(temp f )(t′) > Lγa(temp f )(t′), and
d(v, f inal f , ti) ≥ α · bk+3.

(4.6)

First case: let us suppose that Equation 4.3 is true, and that a failing Coverβ,k+1(v, temp f )
certificate is to be handled. First, we can see that as Lαa(prev f )(t) < Lγa(prev f )(t), we cannot have
d(temp f , f inal f , ti) < γ · bk+3, thus, as the toptree at and above level k + 1 complies to the
α-coverage, there are two sub-cases.

13Note that that first promotion may have happened during the first phase, in which case it is possible that prev f
decreased its level after the promotion.
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• If γ · bk+3 ≤ d(temp f , f inal f , ti) < β · bk+3, then when the failing Coverβ,k+1(v, temp f ) is
treated, the α-ancestor of temp f gets promoted or redirected (line 60), before the second
promotion of v (line 63), and thus, at time t′, we have that Lαa(temp f )(t′) > Lγa(temp f )(t′).
Additionally, as temp f and f inal f are ancestors of v at time t′, we have, by Remark 4.40
that d(v, f inal f , ti) < β · bk+3. Thus, neither Equation 4.5 nor Equation 4.6 can be true,
and no further promotion of v can happen.

• If β · bk+3 ≤ d(temp f , f inal f , ti) < α · bk+3, then temp f is the α-ancestor of v at the time
of the handling of the Coverβ,k+1(v, temp f ). Thus, similarly to the previous sub-case, just
before the second promotion of v, temp f gets promoted, so that when function Promote
is called for v, temp f is v’s ancestor both at level k + 2 and k + 3, so that by Remark 4.40,
d(v, f inal f , ti) < 1

b · b
k+3. Thus, neither Equation 4.5 nor Equation 4.6 can be true, and no

further promotion of v can happen.

Note that in this case, temp f cannot have been promoted beforehand (or else, prev f =

temp f , in which case we cannot have β · bk+2 ≤ d(v, temp f , ti)), so that we don’t need to
count temp f ’s promotion towards the maximal number of promotions per nodes.

Second case: let us suppose that Equation 4.4 is true, and that there is a failing Cov-
erα,k+1(v, temp f ) certificate to be handled. We have that d(v, temp f , ti) ≥ α ·bk+2 ≤ (β+ 1

b ) ·bk+2.
Thus, as at time t, prev f and temp f are the ancestors of v at level k + 1 and k + 2 respectively,
by contraposition of Remark 4.40, we get that d(prev f , temp f , ti) ≥ β · bk+2. As the toptree at
and above level k + 1 complies to the α-coverage, we have that β · bk+2 ≤ d(prev f , temp f , ti) <
α · bk+2. Thus, ad the toptree satisfies also the ancestor invariant, we cannot have β · bk+3 ≤

d(temp f , f inal f , ti). We have again two sub-cases.

• If d(temp f , f inal f , ti) < γ ·bk+3, then by Remark 4.40, as temp f and f inal f are v’s ances-
tors, we have that d(v, f inal f , ti) < β ·bk+3, and thus neither Equation 4.5 nor Equation 4.6
can be true, and no further promotion of v can happen.

• If γ · bk+3 ≤ d(temp f , f inal f , ti) < β · bk+3, then by Remark 4.40, d(v, f inal f , ti) < α · bk+3,
and by ancestor invariant, Lαa(temp f )(t′) > Lγa(temp f )(t′). Again, neither Equation 4.5 nor
Equation 4.6 can be true.

We have thus proven that a node v at level k > 0 cannot be promoted more than twice during
the third phase.

For level k = 0, if v gets promoted once, then the next promotion of v happens at level 1.
Thus, the same proof as above can be used to show that v cannot be promoted more than three
times during the third phase. �

Update time

Knowing, from previous section that changes of levels happen only a constant number of times,
we prove that the update time is polylogarithmic in Theorem 4.42.

Recall that Φ, the aspect ratio, is so that Φ = dmax
dmin

, with dmax (resp. dmin), the maximum (resp.
minimum) distance possible between two points. As explained in Section 4.1.1, our algorithms
work under the relaxed assumption on minimal distance that only a constant ρ of nodes can be
situated in a ball of radius dmv = 1 > dmin. Similarly to this14, we could remove the dependency
on dmin of our performance results, and replace Φ by dmax

dmv
= dmax in the following, however, in

order to be able to compare our algorithms with related results, we prefer to use Φ.
14In both cases, this is a result of treating the level 0 as a special case, where it is guaranteed that thanks to

Definition 4.1, only a constant number of nodes can be children of a given node at level 0.
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Theorem 4.42. In the low mobility setting, when ρ is a constant, and the metric space has a
constant doubling dimension, the computations induced byAcnn every ti take O(log2 Φ) time.

Proof. Computations inAcnn are limited to corrections of certificates. We will see in Lemma 4.44
that there is a logarithmic number of certificates that fail at ti. Combined with Lemma 4.45, this
means that only a logarithmic number of certificates have to be treated in total between instants
ti and ti+1.

As by Lemma 4.46 each of these certificates takes O(log Φ) time to be treated, we get our
result. �

First, we see that only a logarithmic number of certificates may fail because of the move-
ment, in Lemma 4.44. But for this, we need to prove that the size of all the needed sets associ-
ated with one node u is logarithmic in the aspect ratio, in Lemma 4.43

Lemma 4.43. When ρ is a constant, and the metric space has a constant doubling dimension,
for any u ∈ V, card({Lu} ∪ { fu} ∪ Nu ∪Cu ∪ PNu) = O(log Φ).

Proof. For each level k ≥ 1, there is a minimum distance between nodes, by γ-separation:
∀v1, v2 so that Lv1 ≥ k and Lv2 ≥ k, d(v1, v2) ≥ γ · bk. As ∀(v, k) ∈ Nu, d(u, v) < c · bk, each
neighbor of u at a given level k is in a ball of radius c · bk. As, by doubling dimension, this ball
can be covered by a constant number of balls of radius γ · bk, there is only a constant number15

of neighbors for u at each level k. Similarly, there is only a constant number of children for u
at level k (as ∀(v, k) ∈ Cu, d(u, v) < α · bk+1) and there is only a constant number of potential
neighbors at level k (as ∀(v, k) ∈ PNu, d(u, v) < (2α + c)bk+1).

For level k = 0, by Definition 4.8, Definition 4.11, and Definition 4.13, the sets of neighbors,
potential neighbors and children are empty at level 0. As ρ is a constant, any node u may also
have only a constant number of children at level 0.

As the number of levels a node can be present in is O(log Φ), we get our result. �

Lemma 4.44. In the low mobility setting, when ρ is a constant, and the metric space has a
constant doubling dimension, only O(log Φ) certificates may fail at time ti.

Proof. This lemma is a direct consequence of Lemma 4.43, as with u the point that moved, any
certificate that fails after the movement must involve u. �

Lemma 4.45. In the low mobility setting, when ρ is a constant, and the metric space has a
constant doubling dimension, the total number of certificates that are created false between ti

and ti+1 is O(log Φ).

Proof. Let us look at the different types of certificates separately.

• Separation(u, v) and ShortEdge(u, v) certificates are created only on line 23, when u
and v become neighbors. In turn, u and v may be added to each other’s neighbors set only
on line 51, through the failure of a LongEdge certificate (which by definition happens
only when u and v are close enough), or on line 86 or line 85, under the condition, line 84
that u and v are close enough.

Thus, no Separation or ShortEdge certificate is created false between ti and ti+1.

• LongEdge(u, v) certificates are created on line 26 and 31, under the condition that u and v
are not already neighbors. Thus no LongEdge certificate is created false, except if one of
these two lines is executed at a time where u and v are close enough to be neighbors, but

15Note that this number depends on the doubling constant
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have not been added yet to each other’s set of neighbors (which will eventually happen
by Lemma 4.32). We have however seen in the proof of Lemma 4.32, that for any two
nodes that are in that situation, a LongEdge(u, v) certificate already exists.

Thus, no new LongEdge certificate is created false between ti and ti+1.

• Concerning Cover certificate, we can see that the failure of any certificate may create
only a constant number of Cover certificates. If a Separation certificate fails, then a
Cover certificate is created for the node that decreases its level, and for all of its children,
that are, as we have seen in the proof of Lemma 4.43, constant in number. If a Cover
certificate fails, only one other Cover certificate is created. Thus, theO(log Φ) certificates
that may fail at time ti by Lemma 4.44 each induces only a constant number of created
failing certificates.

The failure of a Cover(v, fv) certificate either ends with Redirect being called on v, which
creates only valid Cover certificates (by Remark 4.33), or with a call to Promote on v,
which increases the level of v node. Thus, as by Theorem 4.37, v can change its level only
a constant number of time, each of the potentiallyO(log Φ) failing Cover certificates, only
lead in total to a constant number of failing Cover certificates.

Thus, only O(log Φ) Cover certificates are created false between ti and ti+1.

• Each time an S Cov certificate is created, a Cover certificate is also created.

Thus, only O(log Φ) SCover certificates are created false between ti and ti+1.

�

We then finally look at the cost to repair each certificate, which finishes the proof of Theo-
rem 4.42.

Lemma 4.46. When the metric space has a constant doubling dimension, the computations
made byAcnn for any failing certificate are in O(log Φ) time.

Proof. Almost all operations executed when treating a failing certificate are constant in time.
We have seen in the proof of Lemma 4.43, that the neighbors, children, and potential neighbors
of a node are constant in number at a given level. If all sets involving different levels are stored
in a structure that indexes each level to the list of nodes in the set at that level, then all nodes of
a given level can be retrieved in constant time.

The only operations for handling failing certificates in Acnn that do not involve these sets,
and that are not trivially constant in time, are the search for α-ancestors and γ-ancestors on
lines 58 and 78, which take O(log Φ) time. As these searches are always done once or twice per
failing certificate, we get our result. �

Structure size

We suppose in this section that nodes respect the constraint of minimal distance, as stated in
Definition 4.1, and show that the total memory space of a constrained navigating net is linear.

Note that the total memory size is the sum of the sizes of all variables plus the total number
of certificates. As the presence of Separation, ShortEdge, Cover and SCover certificates de-
pends on the presence of neighbors, parents, and children, these certificates are already included
when counting the sizes of the variables. However, LongEdge certificates are conditioned by
the fact that two nodes are potential neighbors; thus, to count the total memory size, we have to
take into consideration the sizes of the PNu sets.

Let us then prove that the total memory space is linear with the total number of nodes:
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Theorem 4.47. When ρ is a constant, and the metric space has a constant doubling dimension,
the total memory usage ofAcnn is O(n).

Proof. For any node u, there are five variables associated with u: Lu, fu, Nu, Cu, PNu. Both fu

and Lu have a constant memory cost, so their total cost is linear.
First, let us prove that the total size of neighbors is linear in size, in other words, let us prove

that
∑

u∈V card(Nu) = O(n). Let Nu(+) = {(v, k) ∈ Nu : Lv ≥ Lu}.
Note, as stated in the proof of Lemma 4.43, that there is only a constant number of neighbors

per level. By Lemma 4.19, all nodes from Nu(+) are neighbors of u at level Lu, and thus
card(Nu(+)) = O(1). Thus, we have

∑
u∈V card(Nu(+)) = O(n).

Note that for any nodes u and v that are neighbors at some level k, that is, such that (u, k) ∈ Nv

and (v, k) ∈ Nu, either (v, k) ∈ Nu(+) or (u, k) ∈ Nv(+) (or eventually both). Thus, we have∑
u∈V card(Nu) ≤ 2 ·

∑
u∈V card(Nu(+)). Finally, this leads to

∑
u∈V card(Nu) = O(n).

As each node has only one parent, the total cost of children is linear too.
Only the size of potential neighbors remains to be analyzed. Note that by Definition 4.11,

each pair (u, v) of potential neighbors at a level k is associated with a pair (u′, v′) of neighbors
at level k + 1, so that either u′ and v′ are parents of u and v, or they are the same nodes. We
have seen in the proof of Lemma 4.43 that the children of a node at a given level are constant
in number. It follows that the number of possible pairs of potential neighbors associated with a
given pair of neighbors is also constant in size (even if this constant is raised to the square). As
we have already proven that the total size of neighbors is linear, we thus get that the total size
of potential neighbors is linear too. �

Similarly, thanks the the doubling dimension, we may see that the size of the variables
associated with a node u (that is, card({Lu} ∪ { fu} ∪ Nu ∪Cu ∪ PNu)) is O(log Φ). Sadly, in the
distributed setting, the local memory usage of the nodes will be higher, as some additional sets
will be added to the data structure (see Theorem 4.63, Section 4.4.3).

4.3.6 ImprovingAcnn for a better update time
We have seen in Theorem 4.42 that the update time for Acnn takes O(log2 Φ) computations
per time step. As stated in Theorem 4.17, the DefSpanner, another navigating net, can be
maintained with O(log Φ) computations per time step. We will see in this section that it is
possible to improve Acnn so as to also get O(log Φ) on constrained navigating nets, by adding
pointers in the data structure. We will callAcnnptr the resulting improved algorithm.

First, let us see whyAcnn may need Θ(log2 Φ) computations per time step.
The principle of the proof of Theorem 4.42 is to see that there are O(log Φ) certificates to

handle at each time step, and that each of these certificates takes O(log Φ) computations to be
treated. Let us see a situation in which Acnn would create Θ(log Φ) failing certificates in one
time step ti that all need Θ(log Φ) computations to be updated. See Figure 4.14 for a graphical
representation. Let u be the node that moved at ti. If u fails a Separationγ,k(u, vk) certificate at
each level k < Lu with a node vk, then each vk will decrease its level as vk ≺ u. If additionally,
each vk has a child v′k at level k − 1, then these children will need to be promoted, and will be
assigned as new parent fvk , the parent of vk.

If β · bk+1 ≤ d
(
v′k, fvk

)
< α · bk+1, then Acnn needs to check whether Lαa(vk) < Lγa(vk), which

may take Θ(log Φ) computations if both u’s γ-ancestor and α-ancestor are situated high up in
the hierarchy.

As this may happen at each of u’s levels, we may get the need to do up to Θ(log Φ) of those
searches for α-ancestors or γ-ancestors, leading to a total cost of Θ(log2 Φ).
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Figure 4.14 – Graphical representation of a part of a situation that leads to O(log2 Φ) computa-
tions with Acnn. The red line marked with “Sep” represents a failing Separation certificate.
Arrows represent parent/child relations, and they are gray if they are removed because of the
failing Separation certificate.

As it seems impossible to find a better bound on the number of failing certificates (if the
root moves, it may invalidate a certificate in each of its Θ(log Φ) levels), we reduce, in order
to improve that update time per time step, the cost of treating the certificates. In particular, we
lower the cost of searching the ancestors of the nodes in a modified version ofAcnn, that we call
Acnnptr. In Acnnptr, each node u maintains a couple pointeru that is reset at each time step, and
recomputed when a node looks for its γ- or α-ancestor. This ensures that each time we have
found the γ- or α-ancestor of a node, there is no need to look for it a second time. The value of
pointeru is computed in function findLower, described in Algorithm 17.

At the start of each time step, pointeru has an “empty” value (NULL,−1). With a call to
findLower, we may get pointeru = (v, k), where v is either the γ- or α-ancestor u had last time
a change was made to pointeru, whichever was lowest in the hierarchy, and k is the level of the
node that was both a child of v and an ancestor of u. This level k allows to compute in constant
time if v can be the γ-ancestor or the α-ancestor of u, as Definition 4.21 and Definition 4.22
depend on that level k: v is the γ-ancestor of u iff Lv ≥ k + 2 or d(v, fv) < γbLv+1; v is the
α-ancestor of u iff Lv = k + 1 and βbLv+1 ≤ d(v, fv). Recall that if a call is made to Promote on
v, then v becomes the γ-ancestor of u, as Lv gets increased so that Lv ≥ k + 2: thus a node stored
in pointeru that was previously u’s α-ancestor may have become u’s γ-ancestor by promotion
of v, explaining the necessity to be able to rapidly compute if the previously stored node is γ-
or α-ancestor. At the end of each time step (and at time 0), pointeru is reset to (NULL,−1).

The function findLower does not necessarily return exact results: because of changes in the
hierarchy, a node u may see its γ- or α-ancestor change, so that pointeru no longer points to the
right node. We will see however, in Lemma 4.48, that the function returns results that can be
used for maintaining correct constrained navigating nets.

In order to take into account function findLower, two additional changes have to be made,
as explained in Algortihm 18. The whole algorithmAcnnptr can be found in Appendix D.

As has been done for Acnn in Theorem 4.25, we first need to prove that Acnnptr yields
valid constrained navigating nets, which we will do in Theorem 4.49. Let us first show in
Lemma 4.48, that a call to findLower on node fu can be used to know for a node u whether
Lαa(u) < Lγa(u).
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Algorithm 17 Function findLower, used to search the first ancestor w of a node v, such that w
is either the γ-ancestor or the α-ancestor of v. The input node u should be such that u = fv.

1: function findLower(u, k) (*Recursive function: to get the ancestor of a node v, a call to
findLower( fv, Lv) should be made.*)

2: if Lu ≥ k + 2, or if RoundDistance(u, fu, k + 1) = γ or α then (*Check whether u is
the γ- or α-ancestor of its descendants. RoundDistance, is given in Algorithm 14, line 1.*)

3: return (u, k)
4: else if pointeru , (NULL,−1) then
5: return pointeru

6: else
7: pointeru ← findLower( fu, Lu)
8: return pointeru

Algorithm 18Acnnptr: changes to use function findLower.

1: replace lines 58 through 60 of Algorithm 16 with the following:
2: (anc, k)← findLower( fu, Lu)
3: if Lanc = k + 1 and RoundDistance(anc, fanc, Lanc) = α then
4: if ∃( f ′, Lanc + 1) ∈ N fanc : d(anc, f ′) ≤ γbLanc+1 then
5: Redirect(anc, fanc, f ′) else Promote(anc, fanc) end if

6: replace line 78 of Algorithm 16 with the following:
7: if RoundDistance(v, new f , Lv + 1) = γ (resp. β) then
8: τ′ ← γ (resp. β)
9: else (*RoundDistance(v, new f , Lv + 1) = α*)

10: (anc, k)← findLower( fv, Lv)
11: if Lanc = k + 1 and RoundDistance(anc, fanc, Lanc) = α then τ′ ← β else τ′ ← α end if
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Lemma 4.48. If Lαa(u) < Lγa(u) when there is a call to function findLower on fu and Lu in
algorithm Acnnptr, then the function returns (v, k) with v = αa(u), and with k the level of the
child of v that is also an ancestor of u.

Proof. Let us call u the node that is given as entry to findLower, and v either the γ- or α-ancestor
of u, whichever is lowest in the hierarchy.

First, we can notice that as with Acnn, the structure remains coherent throughout the exe-
cution of Acnnptr (see Definition 4.26). Thus, by Definition 4.21 and Definition 4.22, if for any
ancestor w of u, pointerw = (NULL,−1) findLower trivially returns v.

As can be seen in Algorithm 17, changes to pointeru happen only if pointeru = (NULL,−1).
As also any other value for pointeru immediately stops the search for ancestor and returns the
content of pointeru, it remains to be proven that when its value is set, then that value complies
to the lemma for any future call of findLower until all the updates of the current time step have
been done.

As long as no ancestors of u changes, pointeru remains valid. Ancestors may change only
in two ways.

• A call to the Redirect function on a node w that is both ancestor of u and descendant
of v may make it so that v is no longer ancestor of u. However, by Remark 4.33, w
becomes the γ-ancestor of u, thus any subsequent call to Redirect on u cannot happen
with Lαa(u) < Lγa(u).

• A call to Promote on a node w that is both ancestor of u and descendant of v makes so that
w becomes u’s new γ-ancestor, and again, any subsequent call to Redirect on u cannot
happen with Lαa(u) < Lγa(u).

�

Theorem 4.49. In the low mobility setting, assuming that the structure is correctly initialized,
that is, G(0) ∈ G(0), and that all certificates of Table 4.3 are in Cert at time 0, then when using
Acnnptr, ∀i ≥ 0,G(ti+1) ∈ G(ti).

Proof. The only difference betweenAcnn andAcnnptr relies in the changes pointed out in Algo-
rithm 18.

We can see that when Lαa(u) < Lγa(u), the instructions of Algorithm 18 are equivalent to those
ofAcnn if findLower returns the α-ancestor, which is the case by Lemma 4.48.

When Lαa(u) > Lγa(u),Acnn either does nothing or creates valid certificates. Acnnptr however,
if findLower does not return the correct ancestor, may call Redirect or Promote on a node v
that is not u’s α-ancestor (line 5 of Algorithm 18), or create a false Coverβ,Lu(u, fu) certificate
(line 11 of Algorithm 18, and line 81 of Algorithm 16), which in turn also calls Redirect or
Promote on nodes u and v (line 57 of Algorithm 16). All these calls happen by failure of Cover
certificates, and thus happen during the third phase of the algorithm, so that, by Lemma 4.35,
they keep the validity of the hierarchy.

We have thus proven that in any case, the changes mentioned in Algorithm 18 maintain the
validity of the constrained navigating net. �

Concerning the performance, we can see that the only additional memory cost are the values
of pointeru, which take a constant size per node. The memory usage of Acnnptr is thus O(n) as
forAcnn. The computation cost, however, is better thanAcnn, as stated in Theorem 4.52.

To prove Theorem 4.52, let us first make a computational remark in Remark 4.50, that will
be used in Lemma 4.51 to show that the total number of edges from nodes close to the node u
that moved to the root is O(log Φ).
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Remark 4.50. Let t ∈ [ti, ti+1[, so that G(ti) ∈ G(ti−1). Let u and v be two nodes such that
Lu(t) ≥ k, Lv(t) ≥ k and d(u, v, t) < (γ + α) · bk.

For node w that is the ancestor of v at level k′ > k at time t, we have d(u,w, t) < (γ+α) · bk′ .

Proof. As G(ti) ∈ G(ti−1), we have d(v, fv, ti−1) < α · bk+1, so that d(v, fv, ti) < α · bk+1 + 1 (as
dmv = 1), and thus:

d(u, fv, t) < α · bk+1 + 1 + (γ + α)bk

<
(
α +

γ

b
+
α

b

)
bk+1 + 1.

As b ≥ 6, α = b−2
b , and γ = b−4

b , we get d(u, fv, t) < (γ + α) · bk+1. By induction on the ancestors
of v, we get the result. �

Lemma 4.51. Let G(ti) ∈ G(ti−1). Let u ∈ V, and let U = {v ∈ V : Lv(ti) ≤ Lu(ti) ∧ d(u, v, ti) <
(γ + α) · bLv(ti)}. When the metric space has a constant doubling dimension, the total number of
parent/children edges that occur in the paths from the nodes of U to the root is O(log Φ).

Proof. By doubling dimension, the subset of U of nodes at a level k ≤ Lu(ti) contains a constant
number of nodes. By Remark 4.50, all ancestors at level k of nodes from U belong to U. We
thus have that the number of parent/children edges of the paths from all nodes of U to their
ancestor at level Lu(ti) is O(log Φ).

In addition, as there is a constant number of nodes in U at level Lu(ti), the total number of
parent/children edges from them to the root is also O(log Φ). �

Theorem 4.52. If u is the only node that moved at ti, and the order on the nodes guarantees
that for all v ∈ V such that Lv(ti) < Lu(ti), we have v ≺ u, then the computations induced by
Acnnptr every ti take O(log Φ) time.

Proof. As we have seen in the proof of Lemma 4.46, all operations of Acnn take a constant
number of time except the search for α-ancestors and γ-ancestors. The same goes for Acnnptr,
where only a call to function findLower may take more than a constant time to execute.

Here, when findLower is called on a node v, any further call of findLower on v takes a
constant time, as we then have pointerv , (NULL,−1). Let us call u the node that moved at
time ti.

The function findLower can be called on a node v only in three circumstances.

• Node v is promoted because a Separation( fv,w) certificate fails with another node w
(when Separation fails, all children of the node that decreases its level are either redi-
rected or promoted). As only one node may have moved, we have either u = fv or u = w.
In both cases, we have by triangular inequality d(v, u, ti) < (γ + α) · bLv(ti). Thus, by
Lemma 4.51, the total cost of findLower in this situation is O(log Φ).

• If a Cover(v, fv) certificate fails, than either it was because of u’s movement, so that
u = v or u = fv, or it was because of a previous promotion of v, which happened in the
same conditions as the previous case. Again, we have d(v, u, ti) < (γ + α) · bLv(ti), and by
Lemma 4.51, the total cost of findLower in this situation is O(log Φ).

• Node v may be promoted because it is returned by another call to findLower on a node w
that fails a Cover(w, fw) certificate. We have Lw(ti) ≤ Lu(ti), and thus v is the ancestor of
w with d(w, u, ti) < (γ + α) · bLw(ti). Again, the total cost of findLower in this situation is
O(log Φ).
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Finally, Acnnptr does some computations in addition to Acnn, as at each time step, for each
node u, pointeru should be reset to (NULL,−1). This can be done in O(log Φ) time: by the
above, the number of nodes u that change pointeru is O(log Φ) and thus by storing in an array
each node u, the additional cost of this step is O(log Φ) (and O(log Φ) memory, which is lower
than O(n)). �

Now that the update time has been analyzed forAcnnptr, let us show that the memory cost is
the same as forAcnn.

Theorem 4.53. For a given size of the space, when ρ is a constant, the total memory usage of
Acnnptr is O(n).

Proof. For any node u, the size of pointeru is constant, and thus the total size of the pointers is
O(n). As all other elements of the data structure ofAcnnptr are also in the data structure ofAcnn,
we have by Theorem 4.47 that the total memory needed forAcnnptr is O(n). �

4.4 Distributed Navigating Nets
In this section, we look at the distributed setting. We make similar assumptions as in Chapter 3.

The network is supposed to be synchronous, and at each time step, as many synchronization
rounds can be executed as needed before the next time step. The aim of synchronous algorithms,
however, is to need as few communication rounds per time step as possible. Any sent messages
is supposed to be received before the next synchronization round. Computational power is not
of concern, as we suppose that each node can make as many computations as needed during
each synchronization round.

Each node has a unique identifier, and maintains a set of nodes that we call address book.
A node may send messages only to nodes from its address book. Identifiers may be sent, so
that a node u may send a message to tell another node v to add any node w to v’s address book,
provided w is in u’s address book at the time the message is sent.

In the distributed setting, the connection graph G represents the ability for nodes to send
messages, and G(t) = (V, E(t)) is defined by the union of the address books: (u, v) ∈ E(t) if and
only if v is in u’s address book at time t. We assume that distance estimation is perfect, so that
each node knows at all time the exact distance to all other nodes in their address book.

4.4.1 Related Work
To the best of our knowledge, only one article has been published to maintain navigating nets
in a distributed setting. In [56], a structure similar to the DefSpanner from [55] is presented,
denoted as D-Spanner.

A D-Spanner is a navigating net with b = 2 and γ = 1, as in a DefSpanner. True parents
are defined such that if a node at level k is at distance at most bk+1 away from its parent, then
that parent is a true parent. A D-Spanner may accept relaxed parents, that is, parents that are
slightly farther away, effectively making it so that α is a constant such that α > 2. The value of
c is fixed to a constant such that c > 4 + α. While relaxed parents are allowed in the structure,
the aim is to make it so that all parents are true parents: as soon as a node gets a relaxed parent,
the update algorithm tries to find a true parent for that node.

It is shown that a D-Spanner can be maintained in a distributed setting. The same set of
certificates as in the DefSpanner are used (see Section 4.3.1), and each node maintains a local
copy of all certificates it is involved in. When certificates fail, the structure is updated as in [55],
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with the difference that instead of immediately looking for a true parents for a node that gets
too far away from its true parent, its parent instead becomes a relaxed parent.

• When a parent-child certificate fails, the former parent becomes a relaxed parent.

• When a separation certificate fails between two nodes u and v, the node with lowest level,
say u with Lu = k decreases its level, and all children of u at level k − 1 take v as relaxed
parent.

• When an edge certificate or potential neighbor certificate fails, as with the DefSpanner,
the neighbors are respectively added or removed as in [55].

Nodes with relaxed parents are treated as orphans from DefSpanners: a node u of level k
looks for an alternative parent among the neighbors at level k + 1 of its relaxed parent fu, and
if none is found and fu itself has a true parent, then u is promoted to level k + 1, taking that
grandparent (of level k + 2) as relaxed parent; if none of this is the case, u has to wait until
fu gets a true parent to be promoted (no deadlock is possible as this dependency goes only in
one direction). This is repeated until a true parent is found, but is done in parallel: once failing
certificates are corrected, the nodes may continue to move, and relaxed parents are treated in the
background. In the flight plan model, this means that if the computation and communication
speed is low in comparison to the movement speed and to α, then a node with a relaxed parent
gets a true parent before getting too far away from its relaxed parent.

In terms of number of messages, D-Spanners incur an amortized cost of O(log Φ) messages
per distance unit a node moves in the flight plan model. However, the number of needed com-
munication rounds, which may be different than the number of messages, is not discussed. Also
the “parallel” updates of relaxed parents leave room for interpretation in the Black-Box model,
as it is unclear how the associated computations should be allotted to the time steps. This is the
topic of the discussions in the next section.

4.4.2 Adapting D-Spanners to the Black-Box Model
We identify two difficulties when adapting D-Spanners to synchronous networks with the Black-
Box model. First, there is a trade-off between allowed movement speed and computational
efficiency, as allowing too few communication rounds per time step for correcting the relaxed
parents may lead to strong requirements on the maximal movement speed (or else nodes may
get too far away from their relaxed parent before the algorithm finds a true parent for them).
Second, it may happen that coordination is needed when several nodes have relaxed parents,
which may cost additional communication rounds to correct relaxed parents.

Trade-off Between Computational Efficiency and Allowed Movement Speed

We can observe, for a node u that has a relaxed parent, that looking for an alternative parent and
promoting u one level takes O(1) communication rounds, as the list of neighbors of the relaxed
parent need to be retrieved. As a node may have to go up all the hierarchy when a parent-child
certificate fails (as seen on Figure 4.3, p.125), the total cost to repair a relaxed parent isO(log Φ)
communication rounds. Correcting relaxed parents thus has a non-negligible cost. As our goal
is to have as few communication rounds per time step as possible, it is tempting to reduce the
number of times each node can be promoted per time step, and repair the relaxed parents in
parallel on several time steps. However, the less communication rounds are allotted for relaxed
parents per time step, the more time steps it will take for a node to get a true parent. In turn,
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Figure 4.15 – Example of a case where a node in a D-Spanner needs to wait log Φ time steps
before getting promoted. The red arrow represent movements of the nodes that happen at the
same time step.

to avoid nodes to get too far away from their relaxed parents in the meantime, this means that
lower movement speeds can be accepted by the structure.

To see this trade-off between less communication rounds and higher allowed movement
speed, let us suppose, in the high mobility setting, that at each time step, a node with a relaxed
parent may be promoted only once. We can see in Theorem 4.54 that the associated speed limit
is quite restrictive, as it is inversely proportional to Φ.

Theorem 4.54. In the high mobility setting, if a node may be promoted only once per time step,
it is necessary to have dmv ≤

(α−1)b
2(log Φ−1) in order to maintain a D-Spanner.

Proof. If a node u at level 0 has a relaxed parent v, and all its ancestors at each level also have
relaxed parents, then u has to wait for each of its ancestors to get true parents before being able
to get promoted. This situation may happen if all of u’s ancestors fail parent-child certificates at
the same time, as represented on Figure 4.15 (which is similar to Figure 4.3): all of u’s ancestors
move away from their respective parent at the same time step.

The node u may thus have to wait log Φ − 1 time steps before being able to be promoted.
During that wait time, u should not get at a distance more than α · b1 from its parent v. As
v becomes a relaxed parent when d(u, v) > b1, the distance should not increase of more than
(α−1)b
log Φ−1 distance units per time step. As both u and v may move of dmv distance units per time
step in the high mobility setting, we need dmv ≤

(α−1)b
2(log Φ−1) �

While other update schedules for relaxed parents may be devised for D-Spanners, we pro-
pose in the next section an adaptation ofAcnn to distributed networks in the low mobility setting
that gets rid altogether of the trade-off between movement speed and number of needed com-
munication rounds per time step.
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Figure 4.16 – Example where coordination is needed among the nodes in order to promote them
in parallel. The dashed blue circle represents the ball centered on w1 in case it gets promoted to
level k + 1. After the movement represented by the short red arrows, u is the relaxed parent of
w1, w2, and w3, and v is the relaxed parent of w4, w5, and w6.

Coordination Among Nodes

Another problem that arises with D-Spanners is when two nodes u and v at the same level k have
a relaxed parent but no alternative true parent (so that both u and v are looking to be promoted
according to the rules of the update algorithm to D-Spanners), but are close to each other in
such a way that d(u, v) < γ · bk+1 (so that both nodes cannot get promoted, as this would break
the γ-separation). In this case, only one promotion is enough: if u gets promoted for example,
then u is close enough to v to become its true parent. However, if the promotions of the nodes
is treated in parallel, coordination is required for the nodes to decide which one should get
promoted.

This problem of coordination might happen at a bigger scale. Let us give an example on
Figure 4.16. Let us take a set of m nodes w1,w2, . . . ,wm, all at the same level k (such that
for any 1 ≤ i ≤ m, Lwi = k), all with relaxed parents, and such that for any 1 ≤ i ≤ m − 1,
d(wi,wi+1) < γ · bk+1. In the high mobility setting, this may happen if all nodes go away from
their true parents at the same time step as represented by the red arrows on Figure 4.16. In the
low mobility setting, this may happen too if the nodes are promoted only a constant number of
times per time step (with w1 starting at level k, w2 starting at level k − 1, and so on, even if the
nodes move one after the other, the situation of Figure 4.16 can appear).

On Figure 4.16, deciding which nodes among w1, . . . ,w6 to promote is equivalent to com-
puting a maximal independent set (MIS)16: let us call P the set of nodes with relaxed parents
at level k; if we create an undirected graph on P with edges between each node in P that are
at distance γ · bk+1 from each other, then we may promote all nodes that are in an MIS in that
graph.

Computing MISs in distributed networks is a classical problem. Without a node to centralize
the computation, no algorithm seems to exist to compute MISs in O(1) communication rounds.
For example, Luby’s algorithm needs O(log n) rounds with high probability [97].

In the next section, we will see that our algorithmAcnn for constrained navigating nets can be

16An MIS is a subset of the nodes in a graph such that no two nodes in the MIS are adjacent in the graph, and
such that any node of the graph is adjacent to at least on node in the MIS.
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adapted to synchronous networks in the low mobility setting, such that only a constant number
of communication rounds are needed per time step. The speed limit for the nodes is the same
as previously, that is, dmv = 1, which does not depend on the aspect ratio Φ, and thus avoids
the trade-off between movement speed and needed number of communication rounds per time
step as explained previously. Also, no MIS needs to be computed, as the set of nodes that may
change their local data structure at a time step ti are all adjacent in the connection graph G(ti) to
the node u that moved at ti, so that all computations can be centralized on u.

4.4.3 AdaptingAcnn to the Distributed Setting: Acnndist

In this section, we show thatAcnn can be adapted to synchronous distributed networks in the low
mobility setting, so as to use only a constant number of communication rounds per time step
(Theorem 4.62), while using O(n) local memory space for a node at worst, but O(n) memory in
total for all nodes. We denote byAcnndist the distributed algorithm.

As seen in Section 4.3.6, the cost for a node u to check whether Lαa(u) < Lγa(u) can be high
if it is necessary to search for αa(u) and γa(u). If this has to be done in a synchronous network,
it may take O(log Φ) communication rounds. To avoid this cost, we will do in a similar way as
with Acnnptr: each node u will add to its local data structure a pointer pointeru to the node that
may take a long time to retrieve. This time however, pointeru is not reset at each time step, and
a consistent definition can be given.

Definition 4.55. pointeru = (v, k), where v is either the γ- or α-ancestor of u, whichever is
lowest in the hierarchy, and k is the level of the node that is both a child of v and an ancestor of
u.

As explained in Section 4.3.6, the value of k is useful to compute whether v is the γ-ancestor
or the α-ancestor of u: v is the γ-ancestor of u iff Lv ≥ k + 2 or d(v, fv) < γbLv+1; v is the α-
ancestor of u iff Lv = k + 1 and βbLv+1 ≤ d(v, fv). Similarly to the modifications to Acnn

explained in Algorithm 18, p. 159, to take into account the values maintained in pointeru, the
changes outlined in Algorithm 19 should be applied inAcnndist.

Algorithm 19Acnndist: changes to use pointeru.
1: replace lines 58 through 60 of Algorithm 16 with the following:
2: (anc, k)← pointeru

3: if Lanc = k + 1 and RoundDistance(anc, fanc, Lanc) = α then
4: if ∃( f ′, Lanc + 1) ∈ N fanc : d(anc, f ′) ≤ γbLanc+1 then
5: Redirect(anc, fanc, f ′) else Promote(anc, fanc) end if

6: replace line 78 of Algorithm 16 with the following:
7: if RoundDistance(v, new f , Lv + 1) = γ (resp. β) then
8: τ′ ← γ (resp. β)
9: else (*RoundDistance(v, new f , Lv + 1) = α*)

10: (anc, k)← pointerv

11: if Lanc = k + 1 and RoundDistance(anc, fanc, Lanc) = α then τ′ ← β else τ′ ← α end if

A node thus has access at all time to the lowest node among its α-ancestor and γ-ancestor
without needing additional communication rounds.

Always maintaining the values of those pointers adds a difficulty however: a change of
distance between a node v and its parent may change pointerw for each node w that is a de-
scendant of v. An example can be seen on Figure 4.17: if pointerw = u for several nodes w,
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Figure 4.17 – Graphical representation of the movements of a node that could change the α-
ancestor for many nodes.

and d(v, fv, ti−1) < β · bLv+1 and d(v, fv, ti) ≥ β · bLv+1 for a node v that is both ancestor of the
nodes w and descendant of u, then all the nodes w must change their α-ancestor, which at time ti

becomes v. Maintaining the pointer of each node may thus cost up to O(log Φ) communication
rounds per time step, as it may be needed to go down all the hierarchy to get all descendants
that changed their ancestors.

To avoid this problem, each node u maintains in addition the (sometimes empty) list of all
nodes w such that pointerw = u. We will denote that list by STu (because it is a subtree of the
navigating net). Thus, if for example v becomes the α-ancestor of some of its descendants, the
nodes that need to change their α-ancestor are all in STαa(v) ∪ STγa(v), and may thus be retrieved
in a constant number of communication rounds.

Definition 4.56. STu = {v ∈ V : pointerv = u}

The local data structure of a node u thus contains:

• Lu the highest level of u,

• fu the parent of u,

• Cu the set of children of u,

• Nu the set of neighbors of u,

• pointeru, the pointer given by Definition 4.55,

• STu the set of nodes v such that pointerv = u.

The main idea ofAcnndist is to centralize at each time step ti all computations on u, the node
that moved at time ti. The node u is thus in charge of retrieving all information on the nodes
that will have to change their local data structure, and then telling them those changes.
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The description ofAcnndist is similar to the centralizedAcnn (see Algorithms 14, 15, and 16),
except for the main loop that needs to change in order to explicitly centralize the operations
on u, and handle the maintenance of pointerv and STv for any node v. This is described in
Algorithm 20. We call neighboring graph the graph on the nodes inV, with the edges defined
by the parent, children, neighbors, and pointers of the nodes (but not the subtrees ST ). We say
that u and v are at distance x in the neighbouring graph, if the number of edges needed to go
from u to v in the neighboring graph is smaller or equal to x.

Algorithm 20Acnndist, from the point of view of a node u.
1: Main loop:
2: for each time ti where u moves do
3: Get the positions and data structure of all nodes at distance 10 from u in the neighboring

graph.
4: Resolve locally all false certificates of Cert, according to the instructions of algorithms

15 and 16, using the retrieved positions:
5: first Separation, in order of decreasing level,
6: then ShortEdge and LongEdge, in order of decreasing level,
7: and finally Cover and SCover certificates, in order of decreasing level.
8: Each time a Coverβ,L(u′, v′) fails, for each node w ∈ STαa(u′) ∪ STγa(u′) that is a de-

scendant of u′ or u′ itself, pointerw ← (u′, L − 1), STαa(u′) ← STαa(u′) \ w, and STγa(u′) ←

STγa(u′) \ w.
9: Each time a SCoverγ,L(u′, v′) fails, or a node u′ gets promoted from level L to level

L + 1, for each node w ∈ STαa(u′) ∪ STγa(u′) that is a descendant of u′ or u′ itself, pointerw ←

(u′, L − 1), STαa(u′) ← STαa(u′) \ w, and STγa(u′) ← STγa(u′) \ w.
10: Send to each node the changes to its local data structure, and to its certificate list.

(*This takes one communication round.*)
11: end for

As usual, we have to prove that Acnndist is valid. For this, we need to prove that u retrieves
all information needed for the updates of all certificates that fail at time ti. With u the node that
moved, we thus need to prove that all nodes affected by Acnn are at distance 10 from u in the
neighboring graph, which we will do in Lemma 4.60.

First, let us prove an upper bound on the distance from u of the nodes that are affected by a
correction of Separation certificates.

Remark 4.57. When u moves at time ti, and a Separation certificate at level L fails, the nodes
that change their local data structure or their certificates list inAcnn are at distance 3 from u in
the neighboring graph.

Proof. As u is the only node that moves, all failing Separation certificates involve u. Let us
call v another node that fails that certificate (that is a Separationγ,k(u, v) fails).

The only nodes that may change their local data structure or their certificates list are:

• u and v;

• neighbors of u and v at level L (on Algorithm 15 p.137, line 43);

• children of u and v at level L−1 (on Algorithm 15, because of line 43, we execute line 26);

• nodes that are children at level L−1 of neighbors at level L of u or v (as u or v may change
their children on line 44, which gets line 31 executed).
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As the distance between u and v in the neighboring graph is 1, all those nodes are at distance at
most 3 from u. �

A similar result can be proven for ShortEdge and LongEdge certificates.

Remark 4.58. When u moves at time ti, and a ShortEdge or LongEdge certificate at level L
fails, the nodes that change their local data structure or their certificates list in Acnn are at
distance 2 from u in the neighboring graph.

Proof. Let v be a node that fails a ShortEdge(u, v) or LongEdge(u, v) certificate with u.
The only nodes that may change their local data structure or their certificates list are u and

v, and children of u and v at level L − 1 (as on Algorithm 15, because of line 48 and 51, we
execute line 26). Among those, the farthest from u are the children of v, which are at distance 2
from u. �

For Cover certificates, we may see that the only changes to the data structure and to the
certificates list happen through promotions of the nodes. Let us see that a single promotion
affects nodes that are close in the neighboring graph to the node that gets promoted.

Remark 4.59. When a node v is promoted, the nodes that change their local data structure or
their certificates list in Acnn were at distance 5 from v in the neighboring graph just before the
promotion.

Proof. When v gets promoted, similarly to what was described in the proof of Remark 4.57,
changes are made to the data structure between lines 81 and 87 of Algorithm 16. In particular,
on line 85, nodes are added to v’s neighborhood, which triggers line 26 of Algorithm 15. Line 26
may affect a child of a child of a neighbor of new f , and as new f was the parent of the parent of
v before the promotion, that node is at distance 5 from v. �

Finally, we can prove Lemma 4.60.

Lemma 4.60. When u moves at time ti, the nodes that change their local data structure or their
certificates list inAcnn are at distance 10 from u in the neighboring graph at time ti.

Proof. By Remark 4.57 and Remark 4.58, all nodes affected by Separation, ShortEdge and
LongEdge certificates are at distance less than 3 from u.

Thanks to Lemma 4.38 (p.150), Lemma 4.39, and Lemma 4.41, we have that a node v may
not be promoted more than 4 times between ti and ti+1. As at each promotion, v gets as new
parent the node that was previously the parent of its parent (which was at distance 1 from v),
each promotion affects nodes that were one step further away from v at time ti. By Remark 4.59,
the node affected by these promotions are thus at distance 8 from v at time ti. As the first of these
promotions may occur on line 39 of Algorithm 15 (p.137), on a node w that is a child of a node
that fails a Separation certificate with u, the nodes affected by promotions between ti and ti+1

are at distance 10 from u at time ti. This is represented on Figure 4.18: w is at distance 2 from
u. In the worst case, w may get promoted 4 times, and we know thanks to Remark 4.59 that the
affected nodes, like x on Figure 4.18, are at most at distance 5 away from w just before its last
promotion (represented in blue on the figure). We may thus see that x is at most at distance 10
away from u.

As we may see on Algorithm 16 that the only changes that happen when treating failing
Cover and SCover certificates are through promotions, we get that all updates that happen in
Acnn affect nodes at distance less than 10 from u. �

We can then easily deduce from Lemma 4.60 thatAcnndist is valid in Theorem 4.61.

169



w

f1

f2

f3

f4

f5

x

w

w

w

w

u

2

3

4
5

1

Figure 4.18 – Graphical representation of a node x that could be at distance 10 from u.

Theorem 4.61. With synchronous distributed networks in the low mobility setting, assuming
that the structure is correctly initialized, that is, G(0) ∈ G(0), and that all certificates of Ta-
ble 4.3 are in Cert at time 0, then when usingAcnndist, ∀i ≥ 0,G(ti+1) ∈ G(ti).

Proof. As all computations are centralized on u, the node that moved at time ti, as those com-
putations are identical to the centralizedAcnn, and as by Lemma 4.60, u retrieves all needed in-
formation about the nodes that are affected by the changes at time ti (on line 3 of Algorithm 20),
we get the result by Theorem 4.25 (p.139). �

In terms of performance, as said previously, the algorithm needs a constant number of com-
munication rounds per time step.

Theorem 4.62. Acnndist uses a constant amount of communication rounds per time step.

Proof. This is trivial: as 10 communication rounds are needed on line 3 of Algorithm 20, and
one additional round is needed on line 10, the total usage of communication rounds is 11 per
time step. �

Let us now look at the memory usage. We show in Theorem 4.63 that the data structure
(presented on page 167) takes O(n) memory space per node, but that the amortized memory
cost of the data structure is constant.

Theorem 4.63. When ρ is constant, the distributed data structure ofAcnndist uses O(n) memory
space for each node, but the total cost for all nodes is O(n).

Proof. We have proven in Lemma 4.43 (p.155) that the centralized data structure takesO(log Φ)
per node. However, a node may be neighbor of another node at only one level by Lemma 4.19
(p.127), and similarly, a node may child only at one level. Thus, we have that for a node u, the
memory cost of {Lu} ∪ { fu} ∪Cu ∪ Nu is O(n).

InAcnndist, a node u adds pointeru to its local data structure, which takes a constant amount
of memory space, and STu, which may, at the worst case, take up to O(n) space, in the case
where all nodes point to u. Thus, the data structure takes O(n) memory space for each node.

As each node points only to one node with pointeru, the total memory space of
⋃

u∈V STu is
O(n). As we have seen in Theorem 4.47 (p.157) that the total size of the centralized structure is
O(n), we get that all the elements of the distributed structure other than STu, also take O(n). �
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Now that we showed the memory cost of the structure itself, it remains to be proven that
Acnndist doesn’t need too much additional memory when updating that structure. We thus want
to measure the memory used by the node u in Algorithm 20.

Theorem 4.64. When ρ is constant, the memory usage ofAcnndist is O(n).

Proof. We have shown in Theorem 4.63 that the total cost of the data structure is O(n). We have
also seen through Remark 4.57, Remark 4.58, and Remark 4.59 that when a certificate fails, the
affected nodes are close to u, and the sets of neighbors and children are affected only at specific
levels: when u retrieves the local data structure of a node v because there is a certificate between
u and v at level L, then u needs to store v’s neighbors and children only at levels L′ such that
|L − L′| is constant. Thus the usage of memory for u in Algorithm 20 is O(n). �

To finish our analysis, let us recall that in most practical settings, it is costly to track in real
time the positions of other nodes. While the data structure of Acnndist uses up to O(n) memory
space per node, the number of positions a node needs to track is actually lower. Indeed, we may
notice that Acnndist can be executed when a node u knows only the parent/child relations of the
nodes in STu, so that u does not need to track the positions of the nodes in STu.

Theorem 4.65. When ρ is constant, the number of positions a node needs to track may be
reduced to O(log Φ).

Proof. In Algorithm 20, the values of the subtrees ST are used only on lines 8 and 9, to find
the descendants of a node u′ that are in STαa(u′) ∪ STγa(u′). As u′ ∈ STαa(u′) ∪ STγa(u′), the node u
that centralizes the information may compute those descendants knowing only the parent/child
relations of the nodes in STαa(u′) ∪ STγa(u′). As the memory cost of the local data structure of a
node w without STw is O(log Φ), we get our result. �

4.5 Conclusion and Possible Extensions
We have given in this Chapter a general definition of navigating nets, and an extension with
interesting properties that we call constrained navigating nets.

We have given an algorithm, Acnnptr, to maintain constrained navigating nets under move-
ments in the Black-Box model and in the low mobility setting, and have proven that this algo-
rithm takes O(n) memory space, and that during updates, a node may not change its level more
than a constant number of times at each time step. The update time is O(log Φ) computations
per time step, as with a DefSpanner, a structure presented in [55].

We have also given a distributed algorithm for synchronous networks that maintains con-
strained navigating net in the low mobility setting. The algorithms needs a constant number of
communication rounds per time step, and it uses O(n) memory space for nodes at worst, but
O(n) in total (which is constant on average).

Our work opens several perspectives. First, the most immediate question is how our tech-
niques would perform in the high mobility setting. We believe that it is possible to adapt Acnn

to the high mobility setting, achieving interesting update costs per time step. This is the subject
of the discussions in Section 4.5.1. For the distributed setting, the main drawback of Acnndist

is its worst-case memory cost per node. It could be interesting to see if one could reduce that
memory cost without affecting too much the needed number of communication rounds per time
step.

More generally, it seems that it is still needed to look for different techniques. After the
foundations of [55] to maintain navigating nets, the main addition of [56] was to allow some
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nodes to have relaxed parents, that can be repaired later in parallel. Here, the two main exten-
sions, are the ability to avoid nodes to be neighbors at more than one level, and the property of
ancestor invariant. One of the main drawbacks of our method is the intricacy of the algorithms,
which makes them difficult to understand. In practice, simpler algorithms, even if slightly less
cost efficient are often preferred. Thus it would be still interesting to find different techniques
using other concepts to maintain navigating nets, or other structures to answer efficiently to the
CloseNodesu(r) query.

4.5.1 AdaptingAcnn to the High Mobility Setting
An immediate way to adapt Acnn to the (centralized) high mobility setting is to take in consid-
eration the movements of the nodes one after the other, in an arbitrary order, and runAcnnptr on
these single movements as in the low mobility setting. As there are n nodes, and as we have
seen (Theorem 4.52) thatAcnnptr takes O(log Φ) time to update the structure in the low mobility
setting, this leads to a total update cost of O(n log Φ).

We believe however that it is possible to adapt Acnn to the high mobility setting, so as to
obtain an update time ofO(n) per time step, and thus improving the performance of DefSpanners
[55] (that need O(n log Φ) computations per time step). This result would be optimal: as all
nodes may move at each time step, maintaining the structure is necessarily Ω(n).

As for Acnnptr and Acnndist, to enable the nodes to find their α- and γ-ancestors in O(1)
computations, we store for each node u a pointer pointeru to the lowest of these ancestors, as
given in Definition 4.55 (p.166). Here however (see Algorithm 21), the values of the pointers
are updated lazily in each time step; while we conjecture that at the end of the updates of each
time step, all pointeru comply to Definition 4.55, there may be some instant t ∈ [ti; ti+1[ where
some pointeru is not exactly true (see Conjecture 4.69).

In the data structure, we thus have for each node u:

• Lu the highest level of u,

• fu the parent of u,

• Cu the set of children of u,

• Nu the set of neighbors of u,

• pointeru = (v, k), the pointer to an ancestor v, and k the level of the node that is both a
child of v and an ancestor of u.

The list of certificates is the same as forAcnn (see Section 4.3.3, p.131), but we add the two
following certificate:

• PointerEdgek(u, v):
pointeru = (v, k) if Lv ≥ k + 2 ∨ d(v, fv) < γ · bk+2

or Lv = k + 1 ∧ β · bk+2 ≤ d(v, fv) < α · bk+2

γa(u) = γa(v) otherwise

for v = fu and k = Lu, and

When a failing PointerEdge∗(u, v) certificate is treated, u needs either to take v as new
ancestor (if v is either the γ- or α-ancestor of u), or to copy v’s ancestor. Also, each time a node
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Figure 4.19 – Graphical representation of HasBeenTreated. u, the node currently being treated,
may have neighbors (in red on the figure) that are in HasBeenTreated (as v) and others that are
not yet in HasBeenTreated (as v′). However, none of its children (w, and w′, in blue on the
figure) are in HasBeenTreated.

is promoted, it would obtain its new pointers in a similar way, by copying the pointer of its new
parent if that new parent is not the γ- or α-ancestor.

To take into account the values of those pointers, as in Acnndist, the changes outlined in
Algorithm 19 (p. 166) should also be used in the high mobility setting.

In the high mobility setting, the algorithm moves the nodes one after the other, and corrects
all failing certificates after each movement, except for PointerEdge certificates, that are treated
lazily (see line 8 of Algorithm 21). The instructions to treat other failing certificates are the same
as forAcnn.

In order to know which nodes have already been moved at each time step, we maintain two
sets of nodes.

Definition 4.66. The set HasBeenTreated contains all nodes that have already been moved
during the current time step.

When there is a failure of Separation certificates, some nodes that did not move yet may
decrease their level, the second set covers that case.

Definition 4.67. The set HasBeenDemoted contains all nodes that have decreased their level,
but that have not moved yet during the current time step.

A graphical representation of the order of execution and of the set HasBeenTreatedis given
in Figure 4.19. These two sets are then used to define the order ≺ of the nodes for the correction
of Separation certificates.

Definition 4.68. We define priority as such (with ∞− a value strictly higher than any other
value except∞) :

priority(u) =


∞ if u ∈ HasBeenTreated
∞− if u ∈ HasBeenDemoted
Lu otherwise

(4.7)
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We define u ≺ v if and only if priority(u) ≤ priority(v).

This definition of ≺ prevents a node from decreasing its level several times without moving
itself. Also, as nodes are moved in order of decreasing levels, it ensures that the conditions of
Theorem 4.37 (p.150) are respected.

The procedure to execute at each time step is described in Algorithm 21.

Algorithm 21 Adaptation ofAcnn to the high mobility setting
1: At each time step ti, do the following:
2: for each u ∈ V do pu ← pu(ti−1) end for
3: HasBeenTreated ← ∅; HasBeenDemoted ← ∅
4: while HasBeenTreated , V do
5: Take a node u < HasBeenTreated that maximises priority(u)
6: pu ← pu(ti)
7: Correct false certificates (following instructions from algorithms 15 and 16) in the fol-

lowing order:
8: All PointerEdgek certificates such that k ≥ Lu, and all PointerEdgek(∗, u) certifi-

cates. (*We ensure all ancestor pointers are correct at levels above current level, and for
all children of u. All other pointers will be updated later.*)

9: All Separation certificates
10: All ShortEdge and LongEdge certificates
11: All Cover and SCover certificates

12: for each v ∈ V that decreased its level do add v to HasBeenDemoted end for
13: add u to HasBeenTreated and remove u from HasBeenDemoted

14: when PointerEdgek(u, v) fails do (*Contrary to other certificates, PointerEdge cer-
tificates are not removed when failing.*)

15: if Lv ≥ k + 2 ∨ d(v, fv) < γ · bk+2 ∨ (Lv = k + 1 ∧ β · bk+2 ≤ d(v, fv) < α · bk+2) then
16: pointeru ← (v, Lu)
17: else
18: pointeru ← pointerv

19: end when

20: Each time a node u gets a new parent new f , remove any PointerEdge∗(u, ∗) certificate,
and create a PointerEdgeLu

(u, new f ) certificate. (*That certificate will fail immediately,
and by the instructions above, pointeru will be set in O(1) computations.*)

To get our result in the high mobility setting, it remains to prove that Algorithm 21 maintains
a valid constrained navigating net, and that it does not need more than O(n) computations per
time step.

To prove the validity of the algorithm, as the validity of Acnn has been proven in the low
mobility setting, and as Algorithm 21 makes it so that each node moves one after the other, it
remains only to be proven that the lazy update of the pointers to the α-ancestors and γ-ancestors
is enough for the validity of the structure. This result is given in Conjecture 4.69, along with
some arguments that could be used in the future to prove the conjecture.

Let us call treated tree the subgraph of the connection graph G induced by the nodes in
HasBeenTreated. We say that the treated tree is valid if it complies to the properties of valid
navigating nets (see Definition 4.24, p. 139), and so that for any u ∈ HasBeenTreated, pointeru

complies to the definition of the pointers (see Definition 4.55, p.166).
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Conjecture 4.69. When using Algorithm 21 in the high mobility setting, each time a node u is
treated and moved, when u is added to HasBeenTreated, the treated tree is valid, even if there
were some invalid pointerv for nodes v such that Lv < Lu during the computations.

ideas for the proof. To prove this conjecture, it is needed to show that in all situations where an
invalid pointerv is used, nothing “bad” happens to the structure.

Let pointerv = (anc, k). There are only three situations in which the value of anc is incorrect:

• (First case) Lγa(v) < Lanc (but Lanc < Lαa(v)).

• (Second case) Lαa(v) < Lanc (but Lanc < Lγa(v)).

• (Third case) Both of the above cases: Lγa(v) < Lanc and Lαa(v) < Lanc.

First case: the correct value for anc should be γa(v), but pointerv actually points to another
node higher in the hierarchy. In Algorithm 19, p.166, the value of pointerv is used only in two
situations.

• Line 1 through 5. Here, the intent is to redirect or promote αa(v) if Lαa(v) < Lγa(v). As we
have Lγa(v) < Lαa(v) by supposition, if RoundDistance(anc, fanc, Lanc) is either γ or β, then
the outcome is the same as if pointerv was valid. If RoundDistance(anc, fanc, Lanc) is α,
then anc gets redirected or promoted. This, however, may happen only in situation where
Lanc > Lu (recall that u is the node that moved), as line 1 through 5 are executed during a
failure of Cover certificate, so that fv = u. Thus anc ∈ HasBeenTreated, which means
anc can be promoted, as the ancestor invariant is true for anc and its ancestors.

• The value of pointerv is also used lines 6 through 11. Again, if RoundDistance(anc, fanc,
Lanc) is either γ or β, then the outcome is the same as if pointerv was valid. If RoundDis-
tance(anc, fanc, Lanc) is α however, line 11 may lead to an erroneous creation, for a node
w child of v, of a failing Coverβ,∗(w, ∗) certificate (as the value of τ′ is used line 81 of Al-
gorithm 16, p.138). In turn, when treating that failing Coverβ,∗(w, ∗) certificate, the node
pointed by pointerw will get redirected or promoted. We need to prove that in this case,
pointerw = anc, which means subsequent calls to RoundDistance(anc, fanc, Lanc) result
in γ. However w also may get promoted, and it remains to be proven that this additional
promotion does not cause other problems.

Second case: here, we have a node w such that w = αa(v), and Lw < Lanc. However, as the
connection graph was valid at the end of the last time step, it means that previously, w was not
the α-ancestor of v. Two ways come to mind as to how w may have become v’s α-ancestor.

• The node w got farther away from its parent, breaking a Coverβ,Lw(w, fw) certificate. This
resulted in the redirection or the promotion of w (line 63 of Algorithm 16), which contra-
dicts the supposition that w = αa(v) (as by Remark 4.33 p. 144, and because a promotion
increases w’s level, w should have become v’s γ-ancestor).

• The node w was promoted previously, getting as new parent a node new f such that
βbLw(+)1 ≤ d(w, new f ). However, as at that time pointerw was valid, this means that
by line 11 of Algorithm 18 (p.159), a failing Coverβ,Lw(w, fw) was created, which again,
would have caused w to be redirected or promoted, and contradicts the supposition that
w = αa(v).

Third case: this case is similar to the two previous cases, depending on whether Lαa(v) <
Lγa(v) or Lγa(v) < Lαa(v).

�
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Concerning the performance of Algorithm 21, as we maintain pointeru for all node u, all
corrections of certificates need only a constant time to finish. It remains to be proven that only
a linear number of certificates may fail in total over all the n moving nodes.

For this, we may see that in Lemma 4.44 (p.155), the value of O(log Φ) stems from an upper
bound on O(Lu). We can thus improve the result.

Lemma 4.70. When node u moves, only O(Lu) certificates may fail.

Proof. The proof is an immediate consequence of Lemma 4.43 (p.155), when noticing that
O(log Φ) can be replaced by O(Lu). �

With Lemma 4.70, and as Algorithm 21 relies on moving the nodes one after the other,
which is equivalent to several successive movements equivalent to the low mobility setting, we
may get in Lemma 4.71 a result similar to Lemma 4.45 (p. 155).

Lemma 4.71. When node u moves and the failing certificates are treated, only O(Lu) failing
certificates need to be treated in total.

As by Theorem 4.47, we have for each instant t,
∑

u∈V Lu(t) = O(n), we then would like
to use Lemma 4.71 to show that, over all O(n) movements at a time step ti, only O(n) failing
certificates are treated. As each certificate needs constant time to be corrected, we would get
the result of a total update time of O(n) computations per time step in the high mobility setting.

However, one final hurdle stands in the way: while Theorem 4.47 is true at each moment
in time, Lemma 4.71 is about the level the node that moves has when it is moving, and as the
nodes move one after the other, a slightly stronger result is needed.

Conjecture 4.72. Let uh ∈ V, and let mh ∈ [ti; ti+1[ be the moment at which uh is moved in
Algorithm 21. We need to prove that

∑
uh∈V

Luh(mh) = O(n).

ideas for the proof. We propose to prove that between ti and ti+1, a node can decrease or increase
its level only a constant number of times. We would thus have that for any time t ∈ [ti, ti+1[, and
for any node uh, the difference between Luh(t) and Luh(ti) is constant, so that by Theorem 4.47,
we would get

∑
uh∈V

Lu(mh) =
∑

uh∈V

(
Luh(ti) + O(1)

)
= O(n).

First, it is easy to show that once a node is in HasBeenDemoted, it cannot fail a Separa-
tion certificate with another node from HasBeenDemoted (as HasBeenDemoted contains all
nodes that decreased their level once, and as the movement speed is too low for two nodes to fail
Separation certificates on two levels during the same time step). Thus a node can decrease its
level only once between ti and ti+1.

Concerning the increase of levels, we can see that a node u can increase its level only because
of three reasons.

The first reason is that u or its current parent moves. As u moves only once, that movement
may cause only a constant number of promotions of u by Theorem 4.37 (p.150). We may then
prove that u can fail a Cov certificate because of the movement of is current parent fu only
once: if that movement imposes the promotion of u, than either Lu ≤ L fu , so that u keeps the
same parent (which cannot move a second time), or it gets as new parent a node new f with
Lnew f ≥ L fu + 1, and thus new f ∈ HasBeenTreated, as nodes are added to HasBeenTreated in
order of decreasing level.

Another reason is the promotion of u because u is the α-ancestor of another node. Let us
note with k the level of u before promotion. After promotion, we have that Lu = k + 1, but that
u does not have any children at level k. Thus, for u to become the α-ancestor of a node again,
it would require u to get a new child v at level k through promotion, such that d(u, v) ≥ β · bk+1.
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Thus, v must have been a descendant of u at time ti. However, by Lemma 4.12, we have
d(u, v) <

(
α + 1

b

)
bk < β · bk+1.

Finally, u with Lu = k can increase its level because its parent fu fails a Separation cer-
tificate and decreases its level. If L fu > k + 1, then by Lemma 4.19 (p.127) and by the rules of
priority, fu does not decrease its level. For u to increase its level more than a m times through
failures of Separation certificates, it would require for each of its m first ancestors to fail a
Separation certificate with a different node. All of those nodes would need to move before u
moves, and thus, these nodes must be at a level higher than k + m, which, if m is high enough,
implies that all these nodes do not respect the γ-separation.

As we have seen with different arguments that a node may change its level through the same
cause only a constant number of times, the main element that remains to be proven is that those
causes may not be combined to changes a node’s level more often. �

While some technical details need to be correctly proven, we explained in this section the
broad ideas that could be used to prove that constrained navigating nets could be maintained
with O(n) computations per time step in the high mobility setting.
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Chapter 5

Conclusion

In this thesis we presented algorithms to allow moving nodes to answer to queries related to
their distances.

In Chapter 2, we presented Alc, a synchronized distributed algorithm allowing two con-
nected nodes to estimate the distance between them while having a guarantee on the error. We
then showed thatAlc is optimal in terms of number of message exchanges up to a constant fac-
tor, when the nodes follow some random movement patterns. These results are complemented
with experiments, showing that Alc sends less messages in practice than a simple strategy that
is often used in online video games, consisting in sending message at regular time intervals.

We then focused our attention on the CloseNodes in the Black-Box model, where time steps
can be identified, so that nodes move only at each time step, and not more than dmv distance units
away from their previous position.

Definition 1.2 (CloseNodesu(r)). Given a node u ∈ V and a distance r ∈ R, return all nodes
v ∈ V such that d(u, v) ≤ r.

In Chapter 3, we presented A f 1d, a synchronized distributed algorithm that allows nodes
with positions in one dimension, to answer to the CloseNodes(r) query when the value r is
fixed and known by the algorithm, and such that r ≥ dmv. Nodes locally maintain the result
of the query so that it can be answered on O(1) time. A f 1d needs only a constant number of
communication rounds per time step, and the local memory usage for each nodes is O(bmax),
where bmax is the maximum number of nodes that can be at distance r from a node, which is
optimal for solutions that maintain the result of the query.

Finally, in Chapter 4, we presented constrained navigating nets, a special case of navigating
nets that have interesting properties. We showed that navigating nets can be used to answer
to the CloseNodesu(r) query in O(log r + k) computations, where k is the number of nodes re-
turned by the query. We gaveAcnnptr, a centralized algorithm to maintain constrained navigating
nets for movements in the low mobility setting. Our algorithm uses O(n) space. Updates need
O(log Φ) computations per time step, which is competitive with the DefSpanners from [55]. We
also presented Acnndist, a synchronized algorithm that maintains distributed constrained navi-
gating nets in the low mobility setting, using only a constant amount of communication rounds
per time step. The memory cost of Acnndist is O(n) per node at worst, but each nodes needs to
track the position of only O(log Φ) other nodes, and the memory cost for all the nodes is O(n)
in total.

We have seen that our work opens up several perspectives.
With additional work, we could perhaps improve the constants of Chapter 2, and show that

the number of messages compares even better to the optimal. We could also perhaps devise a
more sophisticated algorithm, in which nodes reduce their messages by exchanging information

179



with more than one node. Also, it could be interesting to see if our algorithm can be used to
maintain other values than the distance, like number of hit points in a video games, or remaining
battery power in ad-hoc networks.

Concerning the results of Chapter 3, we could try to drop the limitation imposing that r ≥
2dmv, as this could help in settings where the maximal speed of a node is very high, but where
the nodes usually move at a much lower speed (for example when characters of a video game
may teleport). UsingA f 1d as a basis for settings where the positions of the nodes are in higher
dimensions seems difficult however, and we believe that the results of Chapter 4 are better suited
for that.

Finally, the results of Chapter 4 prove particularly interesting for future work. We believe
that little work remains to adapt our algorithm to the high mobility setting, so as to get an update
time of O(n) computations per time step, which is better than the O(n log Φ) computations per
time step from [55]. Another direction for future work could also be to implement Acnnptr and
Acnndist and run simulations to measure the performance of our solution in practice. We already
implemented a previous version of Acnn

1, but some parts need to be adapted to the current
version presented in Chapter 4.

Another interesting perspective would be to see how our different results may be combined.
On one side, the results of Chapter 2 aim at reducing the number of exchanged message for two
nodes that are connected, and on the other side, the algorithms from Chapter 3 and Chapter 4 aim
at reducing the number of other nodes each node is connected to. These are two complementary
approaches to reduce the global bandwidth usage in distributed settings.

In Chapter 4, the certificates are all based on distances: it could be interesting to study how
much our distance estimation technique from Chapter 2 is usable for maintaining a constrained
navigating net. As updates in Alc may cause the estimated distances to change abruptly, we
would have to study how using that algorithm relates to the speed limits required for the use of
Acnn.

1Available at https://github.com/KDS-NET.
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Appendix A

Glossary

In this appendix, we regroup some of the terms that are defined and used in the document.

• Adjacent (p.20): if a node u is able to send messages to a node v (in other words, if
(u, v) ∈ E), then v is said to be adjacent to u in the connection graph.

• Black-Box model (p.38, and Section 1.7.2): movement model in which evenly spaced
time steps may be identified, in such a way that the nodes move only at those time steps,
and can be considered motionless between two consecutive time steps.

• Certificate (p.40): certificates are predicates used in Kinetic Data Structures (KDSs).
These predicates involve a constant number of nodes, and ascertain that the KDS is valid:
each time a certificate fails because of the movements of the nodes, operations have to be
made to update the structure with regards to the new positions of the nodes.

• Connection Graph (p.20): the graph representing the current status of the connections of
the nodes.

• Doubling Dimension (p.38): a metric space is doubling if there is a doubling dimension
M such that any ball of radius r in that metric space can be covered with M balls of radius
r
2 . We call M the doubling dimension of that metric space.

• Dynamic (p.29): used to describe a system that allows to insert and delete elements of the
system. Typically, if a distributed system is dynamic, it allows nodes to enter and leave
the system. Note that assumptions can still be made as to how many elements may be
inserted/deleted at once.

• Event (p.41): the failure of a certificate in a KDS.

• Flight plan model (p.38, and Section 1.7.1): movement model in which nodes follow
continuous trajectories that are known in advance. The trajectories may however change
at some points in time. It is assumed that movement speeds are small with respect to
computation speed; in other words, when the trajectories meet certain conditions (for
example, two points crossing, or coming within a certain distance of each other), the
algorithm may perform some computations, while the nodes remain stationary until the
computations are finished.

• High mobility setting (p.39): the default setting in the Black-Box model: at each time
step, all nodes may move.
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• Kinetic (p.29): used to describe a system that allows elements to continuously change
their values throughout the execution. Kinetic Data Structures (see Section 1.7) are the
best examples of kinetic systems.

• Low mobility setting (p.39): a setting in the Black-Box model in which at each time step,
only one node may move.

• Metric space: a set of possible positions such that a distance can be computed between
any two positions of the set.

• Node (p.18): a computer in the distributed setting, or a point in the centralized setting.
We assume that each node is associated with an unique position that may evolve with the
time (see p.21).

• Update (p.21): a message containing information about the new state of an object.
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Appendix B

Notations

Let us complement previous appendix with the main notations used throughout the document:

• card(A): cardinality of the set A, that is, the number of elements in the set A.

• V: the set of nodes in the distributed system.

• pu(t): the position of node u at instant t.

• U: number of possible values for one coordinate of the position of a node.

• a: the accuracy with which positions can be stored in memory. We have for any u ∈ V,
and any moment t, pu(t) ∈ [0; a; 2a; · · · ; Ua]d.

• d: the number of dimensions for the positions of the nodes in V. Note that it is usually
considered that d = O(1).

• d(u, v, t): the distance separating the positions of u and v at instant t.

• dmin: minimal distance. ∀t,∀u, v ∈ V, dmin ≤ d(u, v, t).

• dmax: maximal distance. ∀t,∀u, v ∈ V, d(u, v, t) ≤ dmax.

• dmv: maximal distance a node may move at a given instant in the Black-box model (see
Section 1.6.1).

• Φ: the aspect ratio. Φ = dmax
dmin

(see Definition 1.7, p.39)

• CloseNodesu(r): query that should return all nodes within a radius of r of u (see Defini-
tion 1.2, p.17).

• r: the parameter of the CloseNodes query. Note that some algorithms may be tailored at
one specific value for r, while others accept any value for r.

• Bu(r, t): the ball of radius r centered on pu(t).

• bu (r, t): the number of nodes whose positions are in Bu(r, t).

• bmax(r): the maximum number of nodes that can be at distance r from a node. bmax(r) =

maxu∈V,t∈R bu (r, t)

• ρ: maximum number of nodes that can be situated in a ball of radius dmv.
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• G(t): the connection graph at instant t.

• E(t): the set of arcs in G(t).

• δ(t): maximal degree of a node in G(t), that is, the maximal number of outgoing arcs for
any node u ∈ V.

• k: size of the returned set when performing a query. For example, if an algorithm can
answer to a query in time O(log n + k), it means that the algorithm needs to check at most
a logarithmic number of nodes in addition to the nodes that are to be returned.

• s: the stretch factor of a spanner with respect to the complete euclidean graph (see Defi-
nition 1.5, p.34).

• Certu(t): the set of certificates at time t that involve u.

• ti : in the Black-Box model (see Section 1.6.1), ti is the i-th time step, that is, the i-th
change of the positions of the nodes fromV.
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Appendix C

Figures for Continuous Movement

This appendix contains some additional figures analyzing results of our distance estimation
algorithmAlc on synthetic traces (see Section 2.5.1). See figures C.1, C.2, and C.3.
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(a) M depending on initial distance, for ε = 0.1 (b) M depending on initial distance, for ε = 0.5

(c) Messages per time unit withAlc, for ε = 0.1 (d) Messages per time unit withAlc, for ε = 0.5

(e) M depending on ε, for d0 = 400

Figure C.1 – Values in the 1D case when both nodes follow a continuous movement
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(a) M depending on initial distance, for ε = 0.1 (b) M depending on initial distance, for ε = 0.5

(c) Messages per time unit withAlc, for ε = 0.1 (d) Messages per time unit withAlc, for ε = 0.5

(e) M depending on ε, for d0 = 400

Figure C.2 – Values in the 2D case when both nodes follow a continuous movement
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(a) M depending on initial distance, for ε = 0.1 (b) M depending on initial distance, for ε = 0.5

(c) Messages per time unit withAlc, for ε = 0.1 (d) Messages per time unit withAlc, for ε = 0.5

(e) M depending on ε, for d0 = 400

Figure C.3 – Values in the 3D case when both nodes follow a continuous movement
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Appendix D

Full description ofAcnnptr

The full description ofAcnnptr can be found in Algorithms 22, 23, and 24. Every line that differs
from Acnn is colored in red (line 12, line 21, lines 23 through 30, lines 68 through 71, and
lines 89 through 93).
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Algorithm 22Acnnptr: certificates initialization and maintenance of the data structure

1: function RoundDistance(u, v, k) (*Computes the value associated with the distance to
the parent.*)

2: return τ where τ =


γ if d(u, v) < γbk+1

β if γbk+1 ≤ d(u, v) < βbk+1

α if βbk+1 ≤ d(u, v)

3: Initialization:
4: for all node u ∈ V do
5: Lu ∈ N (*largest k s.t. u is the center of a ball of radius bk, see Algorithm 10*)
6: fu ∈ V (*parent of u, a node v , u except for the root, see Algorithm 10*)
7: Nu = {(v, k) : d(u, v) < cbk ∧ 0 < k ≤ min(Lu, Lv)} (*(v, k) ∈ Nu if u and v are

neighbors at level k*)
8: Cu = {(v, k) : fv = u ∧ Lv = k} (*(v, k) ∈ Cu if the level of v is k and u is the parent of

v*)
9: let PNu = {(v, k) : k > 0∧∃(w, k+1) ∈ Nu∪N fu , ((v, k) ∈ Cw∨ (v, k) = (w, k))∧d(u, v) ≥

cbk} (*Set of cousins. Note that this set is used only at initialization.*)
10: Certu ← {Separationγ,k(u, v), ShortEdgec,k(u, v) : (v, k) ∈ Nu \ {(u, ∗)}} ∪ {Long-
Edgec,k(u, v) : (v, k) ∈ PNu}

11: τ← RoundDistance(u, fu, Lu); Certu ← Certu ∪ {Coverτ,Lu , SCoverτ−1/b,Lu}

12: pointeru ← (NULL,−1) (*pointeru contains (v, k), where v is an ancestor of u, and k
the level of one of its children (see p.158)*)

13: end for
14: Cert ←

⋃
u∈V Certu

15: Main loop:
16: for each time ti where a node moves do
17: Resolve all false certificates of Cert, according to the instructions of algorithms 15 and

16:
18: first Separation, in order of decreasing level,
19: then ShortEdge and LongEdge, in order of decreasing level,
20: then Cover and SCover certificates, in order of decreasing level.
21: ∀u, reset pointeru to (NULL,−1).
22: end for

23: function findLower(u, k) (*recursive function, with u the next node, and k the level of
the previous node*)

24: if Lu ≥ k + 2, or if RoundDistance(u, fu, k + 1) = γ or α then (*The definition of
RoundDistance is the same as forAcnn, see Algorithm 14, line 1.*)

25: return (u, k)
26: else if pointeru , (NULL,−1) then
27: return pointeru

28: else
29: pointeru ← findLower( fu, Lu)
30: return pointeru
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Algorithm 23Acnnptr: management of certificates of type Separation, LongEdge, and Short-
Edge

31: (*Each time neighbors and children are updated, the following should be executed:*)
32: when (v, k) is added to/removed from Nu do
33: if v , u then add/remove Separationγ,k(u, v), ShortEdgec,k(u, v) to/from Cert end if
34: if v , u then remove/add LongEdgec,k(u, v) from/to Cert end if
35: for each {u′, v′} : (u′, k − 1) ∈ Cu ∪ {u, k − 1}, (v′, k − 1) ∈ Cv ∪ {v, k − 1} : u′ , v′ do
36: add/remove LongEdgec,k−1(u′, v′) to/from Cert (*add if (v′, k − 1) < Nu′ \ {(u′, ∗)},

remove if certificate exists*)
37: end for
38: end when
39: when (v, k) is added to/removed from Cu do
40: for each v′ : ∃(w, k + 1) ∈ Nu, (v′, k) ∈ Cw ∪ {w, k} : v , v′ do
41: add/remove LongEdgec,k(v, v′) to/from Cert (*add if (v′, k) < Nv \ {(v, ∗)}, remove

if exists*)
42: end for
43: end when

44: (*For simplicity, in the following, the certificate that fails is implicitly removed, as well
as its symmetric. Also, each time a certificate is said to be created at level 0, except Cov-
erγ,0, it should not be created.*)

45: when Separationγ,L(u, v) fails with Lu ≤ Lv and u ≺ v do (*L = Lu. Note that the node
with lowest order will be the one to reduce its level.*)

46: PF ← {w , u : (w, L) ∈ Nu} (*Potential parent for level L − 1 children of u*)
47: for each w : (w, L − 1) ∈ Cu do (*Lw = L − 1 and fw = u*)
48: if ∃w′ ∈ PF : d(w,w′) < γbL then Redirect(w, u,w′)
49: else Promote(w, u); PF ← PF ∪ {w}
50: end for
51: remove Cover∗,∗(u, fu), SCover∗,∗(u, fu) from Cert; C fu ← C fu \ {(u, L)}
52: for each w : (w, L) ∈ Nu do Nw ← Nw \ {(u, L)} end for
53: Nu ← Nu \ {(w, L) ∈ Nu}

54: Lu ← Lu − 1; fu ← v; Cv ← Cv ∪ (u, Lu) add Coverγ,Lu(u, v) to Cert
55: remove Separationγ,L(u, ∗), Separationγ,L(∗, u), LongEdgec,L(u, ∗), Long-
Edgec,L(∗, u)

56: end when
57: when ShortEdgec,L(u, v) fails with Lu ≤ Lv do (*L = Lu*)
58: Nu ← Nu \ (v, L); Nv ← Nv \ (u, L);
59: end when
60: when LongEdgec,L(u, v) fails with Lu ≤ Lv do (*L = Lu*)
61: Nu ← Nu ∪ (v, L); Nv ← Nv ∪ (u, L)
62: end when
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Algorithm 24Acnnptr: management of certificates of type Cover and SCover

63: when SCoverτ,L(u, v) fails with τ ∈ {γ, β} do (*L = Lu and v = fu*)
64: if τ = β then replace SCoverβ,L(u, v) by SCoverγ,L(u, v) in Cert end if
65: replace Coverτ+1/b,L(u, v) by Coverτ,L(u, v) in Cert
66: end when
67: when Coverτ,L(u, v) fails with τ ∈ {γ, β} and L ≥ 1 do (*L = Lu and v = fu*)
68: (anc, k)← findLower( fu, Lu)
69: if Lanc = k + 1 and RoundDistance(anc, fanc, Lanc) = α then
70: if ∃( f ′, Lanc + 1) ∈ N fanc : d(anc, f ′) ≤ γbLanc+1 then
71: Redirect(anc, fanc, f ′) else Promote(anc, fanc) end if
72: if τ = β then
73: if ∃v′ : (v′, L + 1) ∈ Nv ∧ d(u, v′) ≤ γbL+1 then
74: Redirect(u, v, v′) else Promote(u, v) end if
75: else
76: replace Coverτ,L(u, v) by Coverτ+1/b,L(u, v) in Cert
77: replace SCoverτ−1/b,L(u, v) by SCoverτ,L(u, v) in Cert (*replace if it exists, add

otherwise*)
78: end when
79: when Coverα,L(u, v) fails or Coverγ,L=0(u, v) fails do
80: if ∃v′ : (v′, L + 1) ∈ Nv ∧ d(u, v′) ≤ γbL+1 then
81: Redirect(u, v, v′) else Promote(u, v) end if
82: end when
83: procedure Redirect(v, old f , new f )
84: Cold f ← Cold f \ {(v, Lv)}; remove Cover∗,∗(v, old f ), SCover∗,∗(v, old f ) from Cert;
85: fv ← new f ; Cnew f ← Cnew f ∪ (v, Lv); add Coverγ,Lv(v, new f ) to Cert

86: procedure Promote(v, old f )
87: if Lold f ≥ Lv + 2 then new f ← old f else new f ← fold f ; end if
88: if Lv , 0 then
89: if RoundDistance(v, new f , Lv + 1) = γ (resp. β) then
90: τ′ ← γ (resp. β)
91: else (*RoundDistance(v, new f , Lv + 1) = α*)
92: (anc, k)← findLower( fv, Lv)
93: if Lanc = k + 1 and RoundDistance(anc, fanc, Lanc) = α then τ′ ← β else τ′ ← α

end if
94: else
95: τ′ ← RoundDistance(old f , new f , Lold f ) (*May lead to avoidable updates*)
96: Cold f ← Cold f \ {(v, Lv)}; remove Cover∗,Lv(v, old f ); add Coverτ′,Lv+1(v, new f ) in Cert
97: remove SCover∗,Lv(v, old f ); add SCoverτ′−1/b,Lv+1(v, new f ) in Cert (*The new cer-

tificate may fail immediately*)
98: Lv ← Lv + 1; fv ← new f
99: W ← {(w, Lv) ∈ Cw′ ∪ {( fv, Lv)} : (w′, Lv + 1) ∈ N fv ∧ d(v,w) < cbLv} (*( fv, Lv) < W if

d(v, fv) ≥ cbLv*)
100: Nv ← Nv ∪W ∪ {(v, Lv)}
101: for each (w, Lv) ∈ W do Nw ← Nw ∪ {(v, Lv)} end for
102: Cnew f ← Cnew f ∪ (v, Lv)
103: if new f is the root and Lnew f = Lv then increment Lnew f end if
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