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Amélioration de la mémoire et du temps des solveurs directs creux linéaires
de rang faible

Résumé :

Grace aux récentes améliorations apportées par les nouveaux supercalculateurs
exaflopiques, des simulations de grande envergure peuvent étre effectuées dans des délais
raisonnables en utilisant des opérations massivement parallélisées. Malheureusement,
I’augmentation du nombre d’unités de calcul dans ces systémes n’est pas accompagnée
d’une augmentation de la mémoire disponible par coeur. Par conséquent, cette limitation
de la mémoire oblige les scientifiques et les ingénieurs a non seulement paralléliser
efficacement les opérations, mais aussi a minimiser la mémoire utilisée.

De nombreuses applications scientifiques et d’ingénierie doivent résoudre de grands
systémes linéaires creux du type Ax = b. Bien que les méthodes directes soient les
solutions les plus robustes numériquement, elles sont cotiteuses en termes d’utilisation de
la mémoire et de temps de résolution. A cet égard, les techniques de compression de rang
faible ont été récemment introduites dans ces solveurs afin de réduire leur complexité et
leur empreinte mémoire.

Dans ce travail, notre objectif est d’améliorer les représentations de rang faible par
bloc dans le solveur direct supernodal creux PASTIX. Pour cela, nous comparons quelques
méthodes de compression pour déterminer le noyau le plus rapide, qui conserve les données
représentatives avec le plus petit rang possible. Nous nous concentrons sur 'amélioration
du solveur supernodal en réduisant le nombre de recompressions lors des opérations de
mise a jour. Tout d’abord, nous étudions les stratégies de renumérotation des séparateurs
pour identifier les blocs peu compressibles impliqués dans ces mises & jour et réduire
leurs occurrences. FEnsuite, nous proposons une solution orthogonale pour prédire la
compressibilité des blocs avant la factorisation numérique. Cette derniére approche
s’appuie sur 'utilisation de la notion de niveau de remplissage pour une factorisation
incompléte symbolique par blocs.

Grace a ces optimisations, l'utilisation de la mémoire a été fortement réduite, par
rapport aux solveurs & I’état de 'art, tout en améliorant le temps de résolution. Cette
thése est un premier pas nécessaire vers un solveur direct creux performant utilisant des
schémas de compression hiérarchiques.

Mots-clés : solveur linéaire creux direct, compression a rang faible, numérotation
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Improving the memory and time overhead of low-rank parallel linear sparse
direct solvers

Abstract:

Through the recent improvements toward exascale supercomputer systems, huge
computations can be performed in reasonable times by using massively parallelized
operations. Unfortunately, the increase of the computational units in these systems does
not lead to a rise in the memory available per core. Therefore, this memory limitation
forces the scientists/engineers to not only efficiently parallelize the operations but also
minimize the memory used.

Many scientific and engineering applications have to solve large sparse linear systems
of the type Az = b. Although the direct methods are the most robust solutions for these
systems, they are costly in terms of their memory usage and time-to-solution. In this
respect, the low-rank representations have been recently introduced into these solvers to
reduce the time and memory footprint.

In this work, our goal is to improve the low-rank feature of the block low-rank (BLR)
sparse supernodal direct solver PASTIX. For this purpose, we compare some compression
methods to determine the fastest kernel, which keeps the representative data with the
smallest rank possible. Then, we focus on improving supernodal solver by reducing
the number of re-compression during the updates. Firstly, we study the separator
reordering strategies to identify the poorly compressible blocks involved in these updates
and reduce their occurrences. Secondly, we propose an orthogonal solution to predict the
compressibility of the blocks before the numerical factorization. This last approach relies
on the use of the level of fill of a symbolic block incomplete factorization.

Thanks to these optimizations, the memory usage has been reduced more effectively
compared to the state of the art solvers while also improving the time to solution. This
thesis is a requested first step toward a advanced sparse direct solver using hierarchical
compression schemes.

Keywords: linear sparse direct solver, block low-rank compression, ordering
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Résumé long

Grace aux avancées récentes en calcul scientifique, nous pouvons désormais remplacer
les expériences couteuses et /ou dangereuses de la vie réelle par des simulations numeériques.
Les domaines dans lesquels la simulation est utilisée sont vastes et incluent, par exemple,
la météorologie, la biologie, la fusion nucléaire ou ’aérodynamique. Bien qu’il soit encore
possible d’optimiser ces codes de calcul, les simulations les plus récentes sont déja capables
de fournir des solutions étonnamment précises et rapides.

La simulation de problémes physiques dans le domaine de la science computationnelle
exige que l'espace réel soit discrétisé. Les équations mathématiques continues sont
également discrétisées sur ces points d’échantillonnage du domaine entier. L’ensemble des
équations qui en résulte peut étre représenté comme une matrice. Dans de nombreuses
applications, seules les interactions entre les points proches de la discrétisation sont prises
en compte. En effet, les interactions entre les points éloignés sont souvent faibles, et
les valeurs correspondantes dans la matrice sont donc négligeables. Par conséquent, la
matrice résultante comprend de nombreux termes nuls et est appelée une matrice creuse.
Plus le nombre de points discrétisés et la précision attendue sont importants, plus le
cott de calcul de la solution du systéme sera élevé. Ainsi, les améliorations dans ce
domaine visent & résoudre des systémes de plus grande taille, tout en réduisant le temps
de restitution, pour une précision fixée.

Grace aux récentes améliorations apportées par les nouveaux supercalculateurs
exaflopiques, des simulations de grande envergure peuvent étre effectuées dans des délais
raisonnables en utilisant des opérations massivement parallélisées. Malheureusement,
I’augmentation du nombre d’unités de calcul dans ces systémes n’est pas suivie par une
augmentation de la mémoire disponible par coeur. Par conséquent, cette limitation de la
mémoire oblige les scientifiques et les ingénieurs a non seulement paralléliser efficacement
les opérations, mais aussi & minimiser la mémoire utilisée.

Lors de la résolution de grands systémes linéaires creux, la structure de la matrice peut
étre exploitée pour réduire la consommation de mémoire et la complexité des calculs.
Parmi toutes les approches permettant de résoudre des systémes linéaires creux, les
méthodes directes représentent les approches les plus robustes au détriment d’exigences
élevées en matiére de mémoire et de complexité calculatoire. Ces solveurs factorisent
la matrice initiale en un produit de matrices triangulaires. Ces systémes triangulaires
résultants peuvent ensuite étre résolus pour obtenir la solution du probléme.

Selon le type d’applications, il existe plusieurs variantes de ces méthodes directes.
Selon les caractéristiques de la matrice, ces méthodes peuvent étre basées sur différents
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types de factorisation comme LLT, LDLT ou LU. Ici, L, U et D représentent
respectivement une matrice triangulaire inférieure, une matrice triangulaire supérieure
et une matrice diagonale. De plus, selon la maniére dont les contributions (mises a jour)
sont appliquées pendant la factorisation, on peut considérer une approche supernodale
ou multifrontale. La premiére stratégie permet d’appliquer directement toutes les mises a
jour et d’éviter les surcotits mémoires pour leur stockage. La seconde utilise un stockage
temporaire pour les contributions afin de pouvoir les appliquer plus tard pendant la
factorisation.

Il existe de nombreuses études sur la réduction du cotit des solveurs directs
en considérant divers types d’approximation. Par exemple, on peut considérer des
factorisations incomplétes. L’approche consiste alors a abandonner certaines contributions
dans la matrice, soit en utilisant des critéres numériques, soit en considérant la structure
uniquement (avec la notion de niveaux de remplissage). Alternativement, I'utilisation de
techniques de compression de rangs faibles permet généralement d’obtenir de meilleures
approximations que la factorisation incompléte. Bien qu’ils aient été introduits plus
récemment dans le cadre des solveurs creux, de nombreuses études ont déja prouvé leur
efficacité en termes de réduction du temps et de la mémoire pour une précision donnée.

Les techniques de compression de rang faible visent a regrouper les inconnues de
la matrice et & approximer les blocs résultants en fonction d’un critére d’admissibilité.
Certaines approches regroupent les inconnues de la matrice de maniére hiérarchique
comme les schémas H, HODLR, H? ou HSS, tandis que d’autres adoptent un
regroupement non hiérarchique comme ’approche "block low-rank" (BLR). Bien que les
schémas hiérarchiques offrent de meilleures complexités asymptotiques, un regroupement
non hiérarchique est plus simple a mettre en ceuvre et plus flexible dans les environnements
paralléles.

Dans cette thése, nous avons réalisé toutes nos expériences dans le cadre paralléle
du solveur PASTIX qui implémente ’approche non hiérarchique BLR. Comme dans la
plupart des solveurs directs, la renumeérotation des inconnues de la matrice est obtenue
en utilisant la méthode de dissection emboitée. Cette méthode permet de préserver une
grande partie de la structure creuse lors de sa factorisation et permet d’appliquer les
opérations en paralléle.

Dans le cadre des solveurs utilisant une méthode supernodale, le temps de résolution
et l'utilisation de la mémoire sont dépendants du moment ou les blocs sont compressés.
Lors de travaux antérieurs, deux variantes du solveur PASTIX ont été implémentées :
Minimal Memory et Just-In-Time. Dans la premiére variante, tous les blocs admissibles
sont compressés avant de commencer la factorisation. Ainsi, I'utilisation de la mémoire
du solveur est réduite de maniére optimale. Cependant, I'application des contributions
de rangs faibles est cotiteuse et peut conduire le solveur & étre plus lent que la version
sans compression. Dans la seconde variante, les blocs sont compressés seulement aprés
avoir recu toutes leurs contributions. De cette fagon, le temps de résolution est amélioré
sensiblement, mais sans réduire de maniére significative la contrainte mémoire. 1l est
alors nécessaire de trouver une solution intermédiaire entre les deux stratégies Minimal
Memory et Just-In-Time.



Les contributions de cette thése consistent a déterminer le noyau de compression
le plus rapide pour obtenir 'approximation la plus efficace des blocs et & fournir une
solution hybride entre les stratégies Minimal Memory et Just-In-Time existantes. Grace
a ces améliorations, nous visons & optimiser les besoins en temps et en mémoire des
solveurs directs utilisant des approximations de rangs faibles.

Dans le chapitre 1, nous discutons du contexte et des notions nécessaires pour
introduire les contributions de cette thése. Nous commencons le chapitre en expliquant
en détail le fonctionnement des solveurs directs creux. FEnsuite, nous présentons
la condition d’admissibilité des blocs et discutons des représentations hiérarchiques et
non-hiérarchiques. Nous mettons 'accent sur utilisation du format BLR dans les solveurs
creux. Ensuite, nous expliquons le probléme de ’application des mises & jour pendant la
factorisation dans le contexte d’une méthode supernodale, et plus spécifiquement dans le
solveur PASTIX, avec les approches Minimal Memory et Just-In-Time. Nous concluons
ce chapitre en discutant des approches développées dans d’autres solveurs et de notre
positionnement.

Dans le chapitre 2, nous étudions tout d’abord quelques noyaux d’approximation
(compression) de blocs afin de déterminer le plus efficace en termes de stockage et de
temps de compression. Ainsi, la décomposition en valeurs singuliéres (SVD) permet
d’atteindre le stockage optimal & une précision donnée. Cependant, elle est trés cotiteuse
a utiliser en pratique. Nous nous concentrons donc sur des méthodes plus rapides qui
fournissent des résultats proches de la SVD. Bien qu’il existe de nombreuses alternatives
pour cet objectif, nous ne considérerons que ceux qui répondent & nos besoins et qui
sont basés sur la factorisation QR. Ici, nous implémentons toutes ces méthodes de
maniére homogéne pour une meilleure comparaison. En particulier, nous appliquons un
critére d’arrét pour déterminer numériquement la qualité de la compression, ce qui est
appliqué de maniére originale pour deux des méthodes étudiées dans la littérature. Cette
compression basée sur un seuil numérique garantit ainsi une précision prédéfinie. Dans ce
chapitre, nous nous intéressons a la compression de matrices dont la taille cible correspond
aux tailles des blocs apparaissant dans notre solveur BLR. De plus, comme PASTIX
utilise des noyaux séquentiels pour la compression, nous considérons un environnement
également séquentiel. Les résultats numériques montrent que les noyaux de compression
utilisant des techniques de projections aléatoires peuvent étre compétitifs par rapport a
la méthode SVD. En moyenne, toutes les méthodes ont fourni des résultats assez proches
de la SVD. Comme la stabilité et la précision sont assurées par la factorisation QR et
notre critére d’arrét, nous déterminons les noyaux les plus appropriés en comparant les
temps de compression. Nous avons observé qu’il est nécessaire d’adapter les noyaux de
compression en fonction de la taille de la matrice. Ainsi, nous avons proposé d’utiliser
la méthode QRCP pour les matrices de petite taille, tandis que la méthode TQRCP est
plus appropriée pour les matrices plus grandes.

Dans le chapitre 3, nous avons amélioré une heuristique préexistante, qui réordonne
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les inconnues de la matrice aprés le processus de dissection emboitée afin d’améliorer
la compressibilité et permet de réduire le nombre total de mises a jour dans lors
de la factorisation. Grace a ce réordonnancement, une identification des blocs peu
compressibles est également effectuée. Dans ce chapitre, nous avons optimisé cette
heuristique en utilisant une configuration déterminée empiriquement. Plus précisément,
nous vérifions le besoin de compresser les blocs peu compressibles juste aprés I'application
de toutes les mises & jour (comme avec la stratégie Just-In-Time). Ainsi, cette heuristique
conduit a une solution intermédiaire entre les stratégies Just-In-Time et Minimal Memory
puisque les blocs hautement compressibles restent compressés avant de commencer la
factorisation (comme avec la stratégie Minimal Memory). La compressibilité par rapport
a I'heuristique originale est donc augmentée sensiblement. Dans les expériences, nous
avons pu mettre en évidence des gains en termes de flops et de temps par rapport a
I’heuristique originale.

Dans le chapitre 4, nous avons étudié une autre heuristique pour identifier les blocs
peu compressibles afin de tirer profit des stratégies Just-In-Time et Minimal Memory
simultanément. Ici, nous utilisons la notion de niveaux de remplissage utilisée pour les
factorisations incomplétes. Dans cette heuristique, nous attribuons une valeur de niveau a
chaque bloc. On suppose alors que les blocs présentant des niveaux élevés sont fortement
compressibles, tandis que les autres représentent des blocs a forte interaction et sont peu
compressibles. Les expériences que nous avons menées sur un large ensemble de matrices
issues d’applications réelles ont démontré que notre heuristique parvient a identifier
efficacement les blocs les plus compressibles. La solution proposée s’exécute jusqu’a 5, 2
fois plus rapidement que Minimal Memory avec seulement une augmentation d’un facteur
1,38 sur l'utilisation de la mémoire, en considérant la plus haute précision dans les
environnements séquentiels et multithreads. Dans 'environnement multithread, elle est
méme jusqu’a 1, 84 fois plus rapide et surpasse la version originale dans la plupart des cas.
Nous avons donc montré que, si le critére sur le niveau de remplissage est correctement
réglé, notre heuristique améliore systématiquement les stratégies existantes. Elle
améliore la factorisation numérique en termes de mémoire et de temps, et elle améliore la
scalabilité pour les environnements paralléles. Nous avons observé qu’un critére utilisant
les premiers niveaux de remplissage est suffisant pour obtenir un gain significatif, et
qu’une tendance claire apparait pour régler ce critére en fonction de la précision souhaitée.

Dans cette thése, nous avons ainsi amélioré 'utilisation de la mémoire et réduit le
temps de résolution pour 'implémentation "Bloc Low Rank" dans le contexte d’un solveur
direct creux supernodal, et c’est une premiére étape nécessaire avant d’implémenter un
schéma hiérarchique. Grace a toutes ces améliorations, le solveur PASTIX peut ainsi étre
utilisé soit comme un solveur direct ou soit comme un préconditionneur, pour lequel il est
possible de réduire la complexité de ’algorithme en jouant le critére de compression de la
matrice.



Introduction

Thanks to the rapid advances in computational science, we can now avoid costly and /or
dangerous real-life experiments by simulating them. The fields where simulation is used
include but are not limited to meteorology, biology, nuclear fusion and aerodynamics.
Despite the need of further improvements in computational science, the up-to-date
simulations are already able to provide amazingly accurate and fast solutions.

Simulating real life problems in computational science requires the continuous domain
to be discretized into points. Then the continuous mathematical equations are discretized
at these sample points of the whole domain. The resulting set of equations can be
represented into a matrix form, where the coefficients stand for the entries of the matrix.
In many applications, like when discretizing a heat equation, only the interactions between
close points of the discretization are taken into account. Indeed far point interactions are
frequently weak, thus the corresponding values in the matrix are negligible. Therefore,
the resulting matrix includes many zero terms and is called a sparse matrix. Then, the
larger the number of discretized points and the accuracy expectations, the more expensive
the cost of computing the solution of the system. Thus, the improvements in this field
aim at solving larger systems in shorter times at a given accuracy.

Through the recent improvements toward exascale supercomputer systems, huge
computations can be performed in reasonable times by using massively parallelized
operations. Unfortunately, the increase of the computational units in these systems does
not lead to a rise in the memory available per core. Therefore, this memory limitation
forces the scientists/engineers to not only efficiently parallelize the operations but also
minimize the memory footprint.

When solving large sparse systems, the existing zero blocks of the sparse matrix can be
exploited to reduce the memory and computational complexities. Among all the solutions
to solve sparse linear systems, direct solvers serve as the most robust approaches despite
their expensive memory and computational requirements. These solvers factorize the
matrix into a multiplication of triangular matrices. Then, the resulting triangular systems
can be solved to obtain the solution.

Depending on the application requirements, direct methods can be performed
differently. According to the matrix features, these methods can be based on different
factorization types like LL”, LDL™ and LU, for example. Here, L, U, and D represent a
lower triangular, an upper triangular, and a diagonal matrix, respectively. Additionally,
depending on how the contributions (updates) are applied during the factorization, they
can adopt a supernodal or a multifrontal approach. The former strategy allows to directly
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apply all the updates and avoid using extra memory to store those updates. On the other
hand, the latter one uses temporary storage for the contributions to be able to apply
them later during the factorization. Thus, this approach leads to a larger memory usage
compared to the supernodal version.

There are many studies on reducing the cost of direct solvers by approximating them.
For instance, incomplete factorization is proposed for this purpose. The approach consists
of dropping some data in the matrix, either by using the geometry of the structure (using
the fill-in levels concept) or in a numerical way (using a threshold). Alternatively, low-rank
compression schemes are offered as better approximation approaches than incomplete
factorization. Although they were recently introduced, there are already many studies
that have proven their efficiency in reducing time and memory at a given precision.

Low-rank schemes aim to cluster the matrix and approximate the resulting admissible
blocks according to an admissibility criterion. Some approaches cluster the matrix
unknowns in a hierarchical way like H, HODLR, H? or HSS schemes, while some of them
adopt a non-hierarchical clustering like block low-rank (BLR). Although the hierarchical
ones provide better asymptotical complexities, a non-hierarchical clustering is simpler to
implement and more flexible in parallel environments.

In this thesis, we conduct all our experiments through the parallel framework of the
sparse supernodal BLR solver PASTIX. In this solver, the unknowns numbering (ordering)
of the matrix is obtained by using the nested dissection method. This method ensures a
good sparsity in the factorized matrix and allows parallel operations. We use the existing
block low-rank (BLR) features of the solver to compress suitable dense blocks for an
approximated solution.

In the context of supernodal solvers, the time to solution and memory usage is affected
by the decision on when the blocks are compressed. In this respect, the sparse supernodal
direct solver PASTIX offers two solutions: Minimal Memory and Just-In-Time. In the
former one, all the admissible blocks are compressed before starting the factorization.
Thus, the memory usage of the solver is highly reduced. However, the costly low-rank
contributions can lead the solver to be even slower than the classical one. In the latter
one, the blocks are compressed just after they have received all their contributions. In
this way, time-to-solution is improved, but it does not reduce memory usage.

We aim to compare the hierarchical schemes to an efficient implementation of the BLR
version in the context of a supernodal solver. Thus, in this thesis, we focus on improving
the BLR scheme in terms of memory usage and/or time-to-solution. This improvement
can be seen as a first step before the hierarchical implementation.

In Chapter 1, we discuss all the necessary background for the remainder of the thesis.
Here, we first explain the sparse direct solvers in detail. Then, we present the low-rank
representations with a special emphasis on the use of the BLR format within sparse solvers.
Afterward, we explain the problem of applying the updates during the factorization. Here,
we specifically focus on the solutions within the supernodal PASTIX solver. We conclude
the chapter by discussing other solvers and our positioning.

In Chapter 2, we firstly study some block approximation (compression) kernels to
determine the most efficient one in terms of storage and compression time. Although



there are a lot of different candidates for this aim, we compare only a few that meet our
needs, which are based on stable QR factorization. Here, we implement all these existing
methods similarly for a better comparison. In addition, we apply a stopping criterion to
numerically determine the compression amount, which is the first time applied for two
of the studied methods in the literature. This threshold-based compression guarantees
a predefined precision. In this chapter, we are interested in compressing matrices with
a similar size of those arising in our BLR solver. Moreover, as PASTIX uses sequential
kernels for the compression purpose, we work in a sequential environment.

In Chapter 3, we improve an existing heuristic, which reorders the matrix entries
after the nested dissection process to improve the compressibility and reduce the total
number of updates in the solver. Through this reordering, an identification of the poorly
compressible blocks is also performed. In this chapter, we first optimize the original
heuristic through an empirically determined configuration. More specifically, we verify
the necessity of compressing the poorly compressible blocks just after all updates are
applied to them (like in Just-In-Time). Thus, this heuristic leads to an intermediate
solution between Just-In-Time and Minimal Memory strategies as the highly compressible
blocks are compressed before starting the factorization (like in Minimal Memory). For
this reason, we propose to further improve the compressibility compared to the original
heuristic because we compress both the highly and the poorly compressible blocks. Then,
we observe our improvements in terms of flops and time.

In Chapter 4, we focus on another heuristic to identify the poorly compressible blocks
to take advantage of Just-In-Time and Minimal Memory strategies at the same time.
Here, we use the fill-in levels concept of incomplete factorization. In this heuristic, the
blocks with high levels are well compressible, while others represent strong interaction
blocks and are poorly compressible. We prove the correctness of our heuristic through the
compressibility results of different fill-in level blocks. Then, in both parallel and sequential
environments, we empirically validate the efficiency of our heuristic in terms of memory,
flops, and time.

Finally, we conclude our work and discuss our perspectives.

This work is supported by the Agence Nationale de la Recherche, under grant
ANR-18-CE46-0006 (SaSHiMi). Experiments presented in this thesis were carried out
using the PlaFRIM experimental testbed, supported by Inria, CNRS (LABRI and
IMB), Université de Bordeaux, Bordeaux INP and Conseil Régional d’Aquitaine (https:
//www.plafrim.fr/).
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Chapter 1

State of the Art

Many scientific applications need to solve large sparse linear systems of the form

Az =, (1.1)

where the matrix A is of size n x n. Similarly, the unknown vector (z) and the
right-hand-side vector (b) are of size n. Here, we can informally define a sparse matrix to
be "any matrix with enough zeros that it pays to take advantage of them" [Wil71].

Sparse linear systems can be solved through many different approaches, which are
divided into two main categories [GvL13]: direct and iterative solvers. Additionally,
there are some hybrid methods [GH08, AGG™13,YL10,RBH12|, which benefit from both
approaches at the same time.

Iterative methods [Saa03] are usually used for very large systems thanks to their lower
memory usage and computational cost compared to the direct methods. However, they
frequently need a convenient preconditioner to converge to the solution. Therefore, finding
an iterative method suitable for arbitrary systems is very challenging. Alternatively, direct
methods [DERS6, GL81, GHLNS88| provide the most robust and reliable solutions. Yet,
they are very costly in terms of memory usage and computational complexity. From now
on, we only focus on improving the high cost of direct solvers.

All the applications have their own precision requirements and computations at the
machine precision is not necessary. As we frequently need to deal with matrices that
can be approximated into much lower dimensional blocks, some cheaper (approximated)
direct solver alternatives are proposed. For example, incomplete factorization is proposed
to neglect some values of the matrix to reduce the solver cost. In this approach, the
dropped values can be chosen according to a numerical criterion (threshold) [KK97a]
or based on the geometrical structure (fill-in levels) [DD97]. These solvers are mostly
suitable as a preconditioner for the iterative solvers. Recently, low-rank approaches were
introduced with better approximation criteria compared to the incomplete factorization.
As low-rank approaches are convenient for high precision approximations, they can be
used as a cheaper direct solver alternative than the classical version (with some accuracy
trade-off). In this thesis, we focus on a sparse low-rank solver, which can be used either
as a cheap direct solver, or as a good preconditioner for the iterative methods.
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In Section 1.1, we explain the sparse direct solvers. In Section 1.2, we discuss the
background on the low-rank schemes. In Section 1.3, we explain the problem of applying
the contributions within the low-rank sparse solvers. Then, we provide the solutions of the
PASTIX solver [Pic18, PDEF 18] for this problem in Section 1.4. Finally, in Section 1.5, we
discuss other solvers to show our positioning compared to them and state our objectives
in this thesis.

1.1 Sparse Direct Solvers

A straightforward way of finding the x vector in Equation 1.1 is to compute it as
r = A7'b. However, not only does this approach requires A to be invertible, but also
inverting the sparse matrix A does not guarantee to conserve its sparsity. In this respect,
direct methods can be used to solve these systems in high accuracy.

In this work we focus on Gaussian elimination based direct solvers. These solvers
firstly factorize the matrix into a product of triangular matrices depending on the matrix
features. For example, symmetric positive definite (SPD) matrices can be factorized
through LLT (Cholesky), while symmetric matrices can use LDL” factorization. For the
general cases the LU factorization is adopted. Here, L, U and D represent respectively
a lower triangular, an upper triangular and a diagonal matrix. Then, following the
factorization of the matrix, the resulting triangular systems can be solved to obtain the
original solution.

Sparse direct solvers follow four main steps:

1. Find the ordering

e This step aims to increase the number of zeros in the factorized matrix structure
(L and U matrices for the general case) and improve the parallelism.
2. Perform symbolic factorization
e This step allows to allocate the factorized matrix structures before starting the
numerical operations.

3. Factorize

e This step factorizes the matrix in-place as the factorized matrix structure is
known.

4. Solve

e This step solves the triangular systems.
Let us explain each step in more detail in the following sections.

1.1.1 Ordering

After the factorization of a sparse matrix, A, some structural zero values become
non-zero in the factorized matrix. These non-zero values that are zeroes in the original
matrix are called fill-in. It is trivial to see that reducing the fill-in amount in the
sparse matrices improves the storage and computational complexity. For this purpose, an
ordering step is performed before the factorization in sparse direct solvers.
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Let us introduce some necessary background through Figure 1.1 to understand the
ordering step better. In the left side of the figure, we can see the original matrix, A, of
order 5 on the left. This matrix can be represented with an adjacency graph, which can
be expressed as G(A) = (V, E). Here, V and E represent the graph vertices and edges,
respectively. Each variable ¢ in the matrix illustrates the vertex ¢ of the graph. Note that
for the unsymmetric matrices, we use the symmetric pattern A + A” for more efficient
operations. Then, for each a;; # 0 or aj # 0 for ¢ > j, there is an edge in E, which is
represented as a pair (i, 7).

On the right side of Figure 1.1, we can see the information about the factorized matrix.
Here, the filled elements on the factorized matrix, L, are represented in red. Similarly,
the filled graph G* illustrates both the original and fill-in edges after the factorization,
where red color stands for the fill-in edges. The right-most structure, 7', illustrates the
dependencies when eliminating the unknowns during the factorization. This structure is
called elimination tree [Sch82|. In this tree, the elimination of the unknowns is performed
from bottom to top. Here, the siblings are eliminated in parallel since the fill-in occurs
only from a node to the ancestors.

Now let us explain the importance of the unknown numbering (ordering) through
Figure 1.1. As seen at the top row of the figure, the numbering leads to a dense matrix
after factorization due to the introduced fill-in. In addition, we can see that each node
is eliminated in sequential from bottom to top in the corresponding elimination tree, 7.
In the bottom row of the figure, the fill-in is avoided through the new numbering of the
unknowns. This clever numbering also allows parallelism when eliminating the unknowns,
as seen in its elimination tree. That is, the nodes from 1 to 4 can be eliminated in parallel,
since there is no dependency between them. On the other hand, the node 5 is eliminated
after the other unknowns since it depends on them.

Through Figure 1.1, we can observe the importance of the ordering since the fill-in
introduced for large systems can be very crucial and an efficient usage of parallel
architectures is necessary. Therefore, we need to order the matrix conveniently, before the
factorization. In this respect, the ordering can be represented by a permutation matrix
P. Then, instead of solving Equation 1.1, we can equivalently solve (PAPT)Px = Pb.

We can order a sparse matrix through some methods like approximate minimum degree
(AMD) [ADDY96], minimum local fill (MF) [LN14, TW67] or nested dissection [Geo73] to
successfully reduce the fill-in. The nested dissection method is a classical method in
sparse solvers as it is also convenient for providing parallelism. It can be performed
through well-known partitioning libraries like METIS [KK97b] or ScoTcH [Pel08]. We
adopt this method from now on.

In Figure 1.2, the nested dissection partitioning is illustrated on an adjacency graph.
This method recursively divides the graph (and sub-graphs) into two balanced sub-parts
through a separator of minimal size. At each recursion, this method separates the
sub-parts well to avoid direct interaction between them, so that they are only connected
through the separator. As a result, the sub-part interaction blocks become zero and these
sub-parts do not depend on each other.
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Figure 1.1: The impact of ordering on a sparse matrix with five unknowns. On the left,
we see the matrices to be factorized (A) with the corresponding graphs (G). On the right,
we see the factorized matrix structures (L) with the corresponding filled graph (G*) and
elimination tree (7). The red color represent the fill-in. The ordering at the top generates
no fill-in, while the bottom ordering causes the matrix to be fully filled.

1.1.2 Block symbolic factorization

After the nested dissection partitioning, the symbolic factorization is performed to
know the data structure of the factorized matrix before starting any numerical operations.
For example, in the right part of Figure 1.2, we can see the data structure of the factorized
matrix after the nested dissection ordering. Here, the fill-in which is caused by the
separator interactions with the other sub-parts are shown in red and green. The upper red
fill-in represents the interaction of the first and second sub-parts with the third sub-part
(separator), while the bottom red fill-in illustrates the interaction of the forth and fifth
sub-parts with the sixth sub-part (separator). Similarly, the green fill-in represents the
interaction of all the sub-parts with the seventh sub-part (largest separator). In practice,
this information is obtained through the matrix graph. When a node of the graph is
eliminated during the factorization, its neighbors are connected to each other (clique).
These new connections are represented as new edges in the filled graph. Then, this
information about the factorized matrix allows to allocate the data structures before
factorization and collect the data in the blocks for efficient BLAS Level 3 [DDCHD90|
operations.

Each sub-graph, including the separators, obtained after the nested dissection is called
supernode. We know that each supernode resulting from the nested dissection process
is designed in a way that the unknowns which have similar non-zero structures in the
factorized matrix are gathered together.

In Figure 1.2, we can see each supernode and corresponding intra-supernode
interactions in each diagonal matrix (in gray). Here, there are seven supernodes resulting
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Figure 1.2: Nested dissection applied on the adjacency graph. The factorized matrix
structure is represented on the right. The corresponding quotient graph and elimination
trees are shown on the left bottom.

from the nested dissection partition. The red and green dense blocks represent the
inter-supernode interactions. Here, each vertical panel consisting of one supernode’s
diagonal block and its interactions is called column block (or simply panel). Then,
both the quotient graph and the supernode elimination tree can be obtained through
the symbolic structure of L in Figure 1.2. Here, the quotient graph illustrates the
supernode interactions, while the latter one shows the dependencies. Note that the
top-most separators of large matrices can cause huge computations. Thus, in practice,
they are clustered into smaller sub-graphs (so column blocks) before each panel is assigned
to the processors [HRR02|. In this way the parallelism is increased.

1.1.3 Numerical factorization

The numerical factorization is performed after the preprocessing steps that are
explained previously. In order to take advantage of the efficient BLAS Level 3 operations,
this factorization works on the blocks of each column block of the sparse matrix. That
is, the factorization basically iterates on each panel, where three main steps are applied
at each iteration: factorize, solve and update. In the first step, the diagonal block of the
current panel (green in Figure 1.3) is factorized. In the second step, other blocks of the
current panel (off-diagonal blocks) are solved. The affected blocks of this step is colored



14 CHAPTER 1. STATE OF THE ART

in blue in Figure 1.3. Lastly, the contributions of the current panel to other column blocks
are performed. The updated blocks of other panels are colored in red in the figure.

Numerical factorization can be performed in two different ways: following the
multifrontal [DR83] or the supernodal method. These approaches differ in terms of data
locality and parallelism.

In the multifrontal method, the children update only their direct parents in the
elimination tree. Therefore, they use some temporary storage (called fronts) for
accumulating the contributions to be applied to the red blocks of Figure 1.3.

Opposite to the multifrontal method, supernodal approaches apply the update
operations to any level of ancestors in the elimination tree. The supernodal method can be
applied in two different ways depending on when the updates are performed: left-looking
and right-looking approaches. The former approach updates the current supernode blocks
just before eliminating it through the contributions from any level of descendants. On
the other hand, the right-looking strategy allows to directly apply all the updates to
any level of ancestors in the elimination tree, as soon as the contributions are computed.
Supernodal methods avoid the extra storage used in the multi-frontal approach for storing
the fronts, thus reduce the memory peak compared to it.

In this work, we focus on the right-looking supernodal approach. The right-looking
panel-wise Cholesky algorithm can be seen in Algorithm 1. Note that we compute the
numerical factorization in-place since memory is a problem for large matrices.

1

Figure 1.3: The three steps that are performed during the factorization of an arbitrary
column block.

1.1.4 Triangular solves

After the factorization of the matrix into two triangular matrices, we have two steps
to solve the resulting system. That is, considering a LU factorization on the matrix A,
we end up with LUx = b. Therefore, we first solve Ly = b (forward substitution) and
then we solve Uz = y (backward substitution). Note that in this thesis we do not focus
on the triangular solve steps.
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Algorithm 1 Sequential Cholesky factorization

1: for all column block A, in A do > Numerical factorization
2 Factorize(Ag)

3 for all block A;;, in A, do

4: SOlVG( A, Aik )

5: for all block A, in A, (with j <=1) do

6 Update( A, Aji, Aij )

1.2 Low-rank representations

As mentioned before, sparse direct solvers are very costly in terms of memory and time
consumption. Nowadays, the introduction of low-rank representations has enabled the use
of these solvers for larger systems. These representations basically aim to approximate the
matrix. They represent matrices as multiplication of two matrices as A,xn & Upx, V.2,
where 7 (called rank) is much smaller than min(m,n). As a result, the memory and
computational complexity of the solver can be reduced. The rank can be determined

through a predefined criterion based on either a fixed-rank or a fixed-precision to satisfy

la-ovT)
lar =

where € is the precision. At a given precision, the optimal approximation can be computed
through the singular value decomposition (SVD). However, this method is too costly to
be applied in practice. Therefore, some QR factorization based approaches are offered
to reduce this cost, while providing close approximations to SVD. Especially, through
the randomized methods, computations on large matrices are avoided by using small
representative data [HMT11]. As a more detailed explanation on the approximation
(compression) kernels is provided in Chapter 2, we skip further information here.

Many recent studies have tackled the problem of reducing the memory consumption
of linear solvers with low-rank compression. For the sparse solvers, low-rank techniques
are more challenging than for dense solvers [CPAT20, ALST18, ALMK17] as the low-rank
representations on the full matrix do not exploit the existing sparse structure. That is,
after the nested dissection procedure, large zero blocks are introduced. Then, these zero
blocks should be ignored to reduce memory and computational complexity. Therefore, in
this thesis we focus on a low-rank solver that takes advantage of the existing sparsity of the
matrix after the nested dissection and compresses the dense matrix parts independently.

In order to obtain the low-rank representation of a matrix, some hierarchical or
non-hierarchical (flat) block clustering formats can be used on the dense parts of the
matrix. Then, according to a block admissibility criterion, the compressible off-diagonal
blocks can be approximated, while the non-admissible ones are kept uncompressed. Let us
first explain the block admissibility condition in 1.2.1. Afterward, we provide the necessary
background on the low-rank compression formats in Section 1.2.2; and continue with a
more specific case (a flat representation, which is called block low-rank) in Section 1.2.3.

(1.2)
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1.2.1 Block compression admissibility

In the applications (like the ones with PDE discretization), when the matrix is
represented in blocks, some of the blocks can be represented in low-rank form |[CDGS10).
For this purpose, some block admissibility criteria can be used to determine the
compressibility of the blocks.

To decide which blocks to compress, Hackbusch [Hacl5] defined some admissibility
conditions. More specifically, he proposed both a weak and a strong admissibility
condition.

In order to explain the admissibility criteria, let us first define a block with the
unknown set o as row indices and 7 as column indices. Then, this block stands for
the interaction of the sets ¢ and 7. Therefore, if ¢ = 7, this block is a dense diagonal
block, which represents the interactions within the same set. If o # 7 then the block can
be represented in low-rank form if the admissibility criterion is respected.

According to the weak admissibility criterion, all the off-diagonal blocks are
approximated:

o X 7 is admissible iff o # T. (1.3)

The strong admissibility condition relies on the problem geometry and the definition
of the diameter of a set of unknowns (diam(c)), as well as the distance between two sets
(dist(o,7)). The interaction between two sets of unknowns is then considered admissible
if the distance between the sets is sufficiently larger than both of the diameters of the sets

o X 7 is admissible if f max(diam(c),diam(T)) < ndist(o,T), (1.4)

where 7 represents a fixed value. As we can see, as the distance between the clusters
increases, the rank gets smaller since their interaction gets weaker. The least restrictive
strong admissibility criterion considers that blocks are admissible only if their distance is
larger than 0 (i.e. all blocks except the close neighbors).

In order to exploit the low-rank features, it is necessary to correctly determine
the blocks that are worth to be approximated. Thus, in a fully-algebraic context,
we need to adopt an algebraic alternative to the admissiblity criteria defined by
Hackbusch [Hacl5]. In this respect, we will use the adjacency graph information (for
diameter and distance) [GKL.BO08| to determine the block admissibility, instead of using
the underlying geometry of the problems. Now let us discuss the clustering approaches
to obtain the blocks on which we check the admissibility conditions.

1.2.2 Low-rank compression formats

As mentioned before, in order to approximate the matrices, the matrix unknowns
are clustered, so that only the admissible blocks can be compressed. In Figure 1.4, we
illustrate an example of the matrix unknown clustering on the left, while we see the
corresponding cluster tree on the right. Here, Z stands for all matrix unknowns to be
clustered.
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Figure 1.4: Clusters obtained (on the left) and the corresponding cluster tree (on the
right).

A matrix clustering can be performed by using different formats. For example,
Hierarchical (H) matrices [Hac99| are introduced to cluster the unknowns in a hierarchical
way. Since this format adopts a strong admissibility, another hierarchical format called
HODLR [AD16,CB15] is proposed as a weak admissibility criterion based alternative to it.
In addition, other hierarchical formats like #? [HB02| and Hierarchically Semi-Separable
(HSS) [GLR 16, Xial3a] are offered to take advantage of the nested bases. That is, let us
consider a low-rank representation of a block in the form UBVT, where U and V are the
orthogonal bases of this block. Then, in these solvers, the bases of a block are based on
the bases of the descendants in the corresponding cluster tree. In this way, the storage
cost of the solvers is improved. However, as H?, which uses a strong admissibility, and
HSS, which adopts a weak admissibility, depend on the existence of the nested bases, they
are more restrictive compared to H and HODLR formats.

Ty I, Is Iy
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Figure 1.5: Four clusters obtained by a flat clustering (on the left) and the corresponding
cluster tree (on the right).
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As an alternative to the hierarchical formats, some non-hierarchical (flat) formats are
also proposed. These formats can be seen as a special case of the hierarchical formats
(illustrated in Figure 1.4), where all the unknown clusters are the direct children of Z
as seen in Figure 1.5. Here, we see the cluster tree (on the right) of a simple flat block
clustering example (on the left).

Flat representations have larger asymptotical complexities in terms of flops and
memory compared to the hierarchical schemes. However, they are simpler to implement
and more convenient to parallelize. For example, arranging the block sizes small enough
for a shared memory implementation or having good load balance in a distributed
environment is easier with these formats compared to the hierarchical ones. Therefore,
in this thesis we focus on these flat representations, more specifically the block low-rank
(BLR) format, and explain it in the following section.

1.2.3 Block Low-Rank (BLR) format

M Full Rank
B Low Rank

Figure 1.6: Block Low-Rank (BLR) compression on a dense matrix. Brown color
represents the dense blocks, blue color represents the compressed matrices and white
color stands for the sparsity generated thanks to the compression.

The BLR representation [AAB™15] of a dense matrix is illustrated in Figure 1.6. Here,
we adopt a weak admissibility criterion for the sake of simplicity. In the figure, the dense
diagonal blocks are kept in full-rank (in brown) as they represent strong interactions.
However, the off-diagonal blocks are compressed into two lower dimensional blocks (in
blue) to generate sparsity of the matrix. If strong admissibility criterion was adopted,
some of the off-diagonal blocks could be in full-rank. As seen in the figure, BLR format
provides similar size blocks.

As mentioned before, to take advantage of the existing zero blocks of the sparse
matrices, the BLR representation can be applied only on the dense parts of the matrix,
instead of the full matrix. In this way, unnecessary memory usage and computational
complexity of the zero blocks are avoided.

We already explained that we obtain the column blocks of the factorized matrix
through the nested dissection process, where each column block represents a supernode.
Then, the largest separators are also clustered to reduce their sizes as explained in
Chapter 3. This procedure results in the BLR representation of the dense parts of
the matrix, where the blocks are of similar sizes. In addition, the large supernode
interaction blocks are also suitable to be represented in low-rank. In practice, small
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Figure 1.7: Block Low-Rank (BLR) compression on the dense blocks of a sparse matrix.
Brown color represents the dense blocks, blue color represents the compressed matrices
and white color stands for the zero parts.
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blocks and high rank blocks, according to predefined criteria, are kept dense to avoid
unnecessary compression. We illustrated this kind of BLR representation of a sparse
matrix in Figure 1.7. As we see in the figure, the large zero blocks (in white) do not
need storage and operations. Now let us specifically give the necessary background on
the PASTIX solver, which is our focus in this thesis and adopts the BLR scheme.

1.3 Low-rank update problem of supernodal solvers

= | }M = }M
L N L N
(a) Non-fully structured update (LR2FR) (b) Fully structured update (LR2LR)

Figure 1.8: Representation of two different low-rank update options (C' —= AB). Here,
the contributing blocks A and B appear respectively in red and in blue. The updated
block C'is colored in orange and the impact of the contribution (AB) is in purple.

Block compression in the dense solvers and the sparse multifrontal solvers provides
lower update flops and improves the memory footprint. However, sparse supernodal
solvers use different block sizes in the update operation, where the low-rank cost depends
on the largest block. This may result in even more expensive updates than the full-rank
one. Nonetheless, supernodal approaches provide more parallelism and have less memory
overhead compared to the multifrontal ones.

Figure 1.8 describes two different low-rank update (C' —= AB) options in a supernodal
solver, which will be our focus in this thesis. Here, the updated block (C) is large and
the contribution (AB) is small. The A, B and C blocks are respectively in red, blue and
orange. The contribution, AB is shown in purple. M and N represent the dimensions of
the updated matrix, while m and n stand for the dimensions of the contribution.

The contributing blocks for both strategies in Figure 1.8 are represented in low-rank.
Although these blocks can also appear in full-rank within the solver, this is out of our
scope. The updated block, C, is represented in full-rank on the left, whereas it is in
low-rank on the right.

The non-fully structured strategy (LR2FR) in Figure 1.8a, computes the contribution,
AB, cheaply by taking advantage of the low-rank representation of A and B. Additionally,
as (' is stored in full-rank, a simple addition of the contribution at a cost of order mnr
(r being the rank of the contribution) is performed, further improving the computational
complexity of the update operation. However, this approach does not reduce the memory
usage as all the blocks are firstly allocated in full-rank to take advantage of the cheap
addition of order mnr.
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Figure 1.9: Accumulation of the U and V bases during the accumulation of two different
size low-rank blocks. Here, the large C' (brown) matrix gets the AB (purple) contribution
of smaller size. Therefore, there is zero padding.

The fully structured updates (LR2LR) [Xial3b] are illustrated in Figure 1.8b. Here,
all the blocks are compressed before starting the operations. As a result, the memory
usage is reduced. In addition, the contribution (AB) is computed at a low cost similarly
to the non-structured version. However, the addition step into C' requires a complex
low-rank to low-rank update with padding (zeroes are added to match the dimension of
(). Let us illustrate the padding through Figure 1.9.

In Figure 1.9, the accumulation on the U and V bases in the structured approach
is shown. Here, we observe that after the accumulation, some zero padding is used to
align the contribution block (small) and updated block (large) vectors. Then, after the
accumulation of several updates, the rank and size of C' can highly increase. Thus, an
additional re-compression is necessary to maintain a small storage and rank [Pic18|. This
LR2LR operation with re-compression in the context of the supernodal method generates
a flops overhead. As a consequence, the factorization time may be highly impacted, and
can be even more costly than the full-rank solver, unless the matrix is highly compressible.
Now let us introduce the solutions of the sparse supernodal solver PASTIX to the low-rank
update problems we discussed.

1.4 PASTIX sparse supernodal direct solver

In our work, we conduct all of our experiments through the BLR supernodal sparse
direct solver PASTIX [Picl8 PDEFT18]. This solver targets both the real and complex
matrices through the LU, LLY, LDLY, LL" and LDL" factorizations. PASTIX allows
both static and dynamic shared memory usages, as well as external PARSEC [BBD 13|
and STARPU [ATNW11] run-time supports to exploit accelerators. As this is not our
main focus in this thesis, we will not detail it here. Interested readers can find further
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information in [Fav09, LEFB*14]. Now let us explain the necessary background for the
following chapters.

In PASTIX, two different compression strategies that differ depending on the update
kernels are implemented to lower either the memory footprint or time-to-solution:
Just-In-Time and Minimal Memory.

Algorithm 2 Cholesky BLR factorization through Just-In-Time strategy

1: for all column block A, in A do > Numerical factorization
2 Factorize(Agy)

3: for all block A;;, in A, do

4 if A, is admissible then > Compress all admissible blocks

ot

Compress(A;1)

Solve( Agk, Aix)

for all block Ay, in A, (with j <= 1) do
Update( A, Aji, Aij )

The Just-In-Time strategy in Figure 1.8a aims to reduce time-to-solution through late
compression of C'. In this strategy, the blocks are compressed only after receiving all the
contributions on them, on the fly, during the factorization. This operation is represented
in blue in Algorithm 2. Then, through the resulting non-structured updates (LR2FR), a
simple addition of the contribution is performed, reducing the computational complexity
of the updates. However, as all the blocks are allocated in full-rank in the beginning of the
factorization, this scenario does not improve the memory peak compared to the full-rank
solver.

Algorithm 3 Cholesky BLR factorization through Minimal Memory strategy

1: for all block A;; in A do > Compress all admissible blocks
2: if A;; is admissible then

3: Compress(4;;)

4: for all column block A,; in A do > Numerical factorization
5: Factorize(Agy)

6: for all block A;; in A, do

T Solve( Akk; Azk )

8: for all block A, in A, (with j <=1i) do

9: Update( Az‘k; Ajk; Aij )

The Minimal Memory strategy in Figure 1.8b aims to reduce the memory footprint of
the solver by early compression of C'. This operation is illustrated in red in Algorithm 3.
Indeed, as all admissible blocks are compressed before starting any numerical operation,
it greatly improves the memory peak since the factorized matrix structure is never fully
allocated. However, the fully structured updates (LR2LR) in the Minimal Memory
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strategy are complex to perform as explained before. A detailed complexity analysis
of the Just-In-Time and Minimal Memory strategies is provided in [PDF"18|.

As we can see, neither Just-In-Time nor Minimal Memory is optimal. In order to
take advantage of both the strategies in PASTIX, it is important to come up with a good
preselection criterion to distinguish the poorly and highly compressible blocks. In this
way, the former ones can be compressed on the fly (like in Just-In-Time), while the latter
ones are compressed before starting any numerical operation (like in Minimal Memory).
As a result, we can improve both the flops and memory overhead of the solver in an
optimal way. Now let us observe our positioning in more detail compared to the other
works.

1.5 Other solvers

Hierarchical matrices have been first introduced by Hackbusch [Hac99| for dense
matrices. Since this initial work, there has been a lot of interest on this topic from
variety of scientific and engineering domains. In this work, the author expressed the full
matrix in the H format to approximate it and then proposed fully structured low-rank
operations. In the context of sparse solvers, expressing the full matrix in a low-rank
format does not take advantage of the existing sparsity. Thus, we approximate only the
dense blocks of the sparse matrix.

In [GKLB09], an extension of the H matrices to the sparse case is proposed. Here, the
geometry of the problem is used to obtain the clustering tree. In this work, the authors
adopted the nested dissection partitioning to have large zero blocks in the matrix, so
that only the remaining dense parts are approximated. In this way, they reduced the
factorization cost of the sparse structured H — LU solver. The drawback of their approach
is that they do not efficiently exploit the structural zeros: they ignore the zeros of the
sub-part to separator interaction. That is, let us consider the first level separator (green)
in the graph of Figure 1.2 and the well-separated sub-graphs generated by this separator.
Then, in this figure, the zero blocks in the last five rows of the corresponding L matrix
is not taken into account in [GKLBO09|. Therefore, they skip some memory and flops
reduction. In our work, we perform symbolic factorization after the nested dissection
process to determine and exploit all the structural zeros efficiently.

A black-box algebraic version of [GIKLB09| is proposed in [GKLBO08|, where the graph
information is used for the clustering without the knowledge of the geometry in the H —
LU factorization. Here, they presented the numerical results of both the geometrical
and the algebraic H — LU (and H — Cholesky for the SPD case) solver in terms of
time and memory. Although the geometrical solver shows better results, the ratio of the
algebraic and geometric solvers does not exceed small constants. In addition, the authors
also provided the implementation in a parallel context. In the parallel experiments, the
geometrical and algebraic solvers demonstrate almost identical speedup results.

In [Hac15], the adaptation of some hierarchical matrix strategies from dense to sparse
matrices are studied. In this work, an approach similar to the Minimal Memory strategy of
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PASTIX is used, meaning that low-rank updates are performed. Here, all the contributions
from the descendants in the tree are considered dense when generating the low-rank
representation: structural zeroes are ignored. The assembly is then applied without
zero-padding, which allows to reach good performance. In this work, the overhead of
low-rank updates does not exist, opposite to our work, as the operations are always
performed between blocks of similar sizes. However, it misses an opportunity for memory
savings compared to our work since some zeroes are explicitly stored.

In [CB15], the authors proposed low-rank format similar to HODLR through the
sparse supernodal solver CHOLMOD [CDHRO8| for the SPD matrices. They used fixed
rank based (depending on the block size) randomized compression kernels both for the
off-diagonal blocks of the supernode interactions and the intra-supernode off-diagonal
blocks. In practice, determining such a fixed rank to keep data with a desired precision
is not trivial. In this work, they demonstrated good memory savings compared to the
standard direct methods, which makes the low-rank solver suitable for large problems with
high memory requirements. Nonetheless, their factorization is slower than the full-rank
version and they do not fully take the sparsity of off-diagonal blocks into account. In our
work, we allow to determine the rank numerically (with a precision based criterion) and
exploit the structural zeroes efficiently.

In [Xial3a], HSS approximation is performed on the large fronts of a sparse multifrontal
solver through a randomized technique for SPD matrices. The hierarchical low-rank
algorithm in this work is extended efficiently for general cases in [GLR"16] through the
sparse multifrontal solver STRUMPACK. Here, the authors proposed a shared memory
implementation. In this work they focused on finding an efficient and robust sparse solver,
especially for the discretized PDE systems. They avoided saving the dense matrices
explicitly thanks to the adaptive randomized sampling, which in return reduced the
memory usage. They showed time improvements compared to the classical multifrontal
solver. In [GLGR17], the authors improved the same work for distributed memory usage.
Here, they focused on using this low-rank solver as a preconditioner.  The algebraic
STRUMPACK multifrontal solver provides a fully structured approach, where all the
blocks are compressed before the numerical operations. The HSS format in this solver
provides better complexity than the BLR format that we adopt. However, opposite to us,
the HSS based solver requires the existence of the nested bases.

The block separable (BS) representation in [Gill1] adopts a flat block clustering with
a weak admissibility. Similarly, the block low-rank (BLR) representation, introduced
in [AAB*15] through the multifrontal sparse direct solver MuMPSs [Marl7|, also uses a
non-hierarchical clustering. Here, BLR can be seen as an extended version of BS since it
is not restricted to use weak admissibility condition.

In the MuwmPs solver, the CUFS (Compress, Update, Factor, Solve) technique is a
similar approach to the Minimal Memory scenario from PASTIX. Using this technique,
low-rank updates are performed within each front, but not between fronts. Thus, as fronts
are allocated in full-rank before being compressed, memory savings are less important than
the ones of the Minimal Memory strategy. Alternatively, the FCSU (Factor, Compress,
Solve, Update) method applied to the fronts is similar to our Just-In-Time scenario.
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Here, the updates are applied on the full-rank blocks and the panel compression is done
during the factorization. Our Minimal Memory strategy within the supernodal approach
enables a larger memory saving by preventing the allocation of the fronts inherent to the
multifrontal method.

In [Mar17], the complexity and performance comparison of the multifrontal BLR solver
Muwmps and the HSS solver STRUMPACK is provided. Here, by using the experimental
results, the author offers to use BLR when high accuracy solution is required, while HSS
is more convenient for low precisions.

In [MMPV22], the authors conducted a very similar work to us. Here, a solution to
the problem of preselecting the poorly compressible blocks is proposed through the sparse
supernodal solver PASTIX. The authors exploit performance models of the update kernel
to decide whether or not to delay the compression of some of the blocks. In this work, this
decision is taken at run-time during the numerical factorization and requires to generate
correct models of the problem. In this initial work, they conducted the work in sequential
context, while their final aim is the parallel environment in the future. In Chapter 3
and in Chapter 4, we focus on finding such a preselection criterion with different angles,
where we identify the poorly compressible blocks before starting any numerical operations.

In this thesis, we focus on finding algebraic solutions to provide a low accuracy sparse
direct solver or high accuracy preconditioner for the widest spectrum of applications. The
precision of the solver can be determined by the user. Our aim is to study solutions to
reduce the time-to-solution and/or the memory footprint of the BLR solver PASTIX by
correctly preselecting the blocks and efficiently compressing them.
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Chapter 2

Compression Kernels

Many fields like data mining, signal processing and computer vision need to handle
large matrices. As the storage and matrix operations are too expensive for these matrices,
some approximation (compression) techniques are proposed to reduce the cost. These
techniques aim to represent the original matrix, A, in the form

Apsn & Unpsr V.5, (2.1)
such that
| Amxn = U Viseal | < €l A]] (2.2)

Here, the objective is to exhibit an approximation at a required precision (€), where r is
much smaller than min(m, n). Unfortunately, determining the most suitable compression
technique for arbitrary problems is difficult. Therefore, each application needs to come
up with a convenient method according to the requirements like memory, time, stability
and accuracy.

As mentioned in Chapter 1, we exploit the existing sparse structure in our sparse solver
and split the dense parts of the matrix into blocks (in BLR format). Then, these blocks
are approximated by the product of two lower dimensional blocks if they are admissible.
In this chapter, our purpose is to compare some interesting compression kernels that can
be used on these blocks to improve the solver. More precisely, we want to determine a
fast and stable kernel that compresses admissible dense matrix blocks in the form (2.1),
with r as small as possible. Here, compressing the data with smaller r values targets to
improve both the memory footprint and the flop count during the factorization and solve
steps.

In Section 2.1, we provide all the necessary background on the compression kernels. In
this section, the motivation of different kernels, especially the ones on which we will focus,
is also explained. The literature review specific to the four compression kernels that we
concentrate on is provided in Section 2.2. In Section 2.3, we define some notations to be
used in the algorithms of this chapter. Then, in Section 2.4, four different compression
methods are studied in detail. In Section 2.5, their complexities are shortly summarized

27
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to show the big picture. In Section 2.6, the numerical results of some generated matrices
are observed in terms of stability, performance, compression ranks and accuracy, whereas
in Section 2.7, the real-life case matrix results are discussed. Finally, in Section 2.8, the
conclusion of this chapter is provided.

2.1 Background

In order to understand the compression kernels, we first need to provide the meaning
of r in the approximation (2.1). Mathematically, the rank of a matrix (r) stands for
the number of linearly independent columns/rows of the matrix. Then, if we represent a
matrix as multiplication of two matrices as

Amxn - UerVT

rXn?

(2.3)

r can be determined through the singular value decomposition (SVD), which has the
form

Amxn = Umxmzmxnvnxn- (24)

Here, U and V are orthogonal matrices, while X is a diagonal matrix with the singular
values, o;, on the diagonal with 0y > 09 > ... > 0, >0 and 0,1, = 042 = ... = 0, = 0.
Here, the rank is equal to the number of non-zero singular values in ..

When we work in finite precision, we are usually interested in only the large values
and we omit the small values depending on our precision requirement. In this case, as
mentioned in Section 1.2, an approximated rank is determined by using either a fixed-rank
or a fixed-precision based criterion to satisfy the condition (2.2), where r is the rank of
the approximation and e stands for the precision. Observe that this rank is numerically
computed and it can have different values for different precisions. From now on, r will
only represent approximation ranks in this chapter. Determining a convenient fixed-rank
to ensure a targeted accuracy is not trivial in practice. Thus, the fixed-precision based
criterion provides better solutions for abstract problems. We will adopt a fixed-precision
based criterion in our work.

If the equation (2.4) is written in the block form

o [Zn 0] [
A= (U, U] { 0 222] {vj :
the approximation (2.1) can be written as

A~UVT =02V, (2.5)

where U = Uy, VT = %, V5 and 3y, is of size r x 7.
In this chapter, we will use either
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||Z22H2 Or41
= < € 2.6
Al Al (2.6)
or
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to find the numerical rank r through SVD.

The SVD method is not the only way to compress the matrices in the form (2.1).
Depending on the application requirements, different compression methods can be
adopted. For example, for large sparse matrices, some methods that maintain the sparse
structure can be used [BPS05]. These methods are out of our scope. In our work we
specifically focus on compressing the dense blocks resulting from the BLR representation
of sparse matrices as explained in Section 1.2.3. Additionally, we are interested in
compressing in a sequential environment since these blocks are not large enough to take
advantage of parallel environments. As the precision based numerical stopping criterion
(presented in Section 2.1.1) in our work ensures the precision of the compression, our main
aim is to choose a stable and fast kernel for our solver, which can keep the representative
data with a rank as small as possible.

At a given fixed numerical rank, the Singular Value Decomposition (SVD) reaches
to the optimal error, through both the spectral and Frobenius norms [EY36]. However,
the cost of SVD is too high for large matrices, as it requires all the decomposition to
complete to determine the rank. Therefore, some alternative methods are proposed to
obtain a rank as close as possible to the one obtained using SVD, while being much faster
at a given precision. These methods include but are not limited to the adaptive cross
approximation (ACA) [BR03], column pivoted QR (QRCP) [DG15], rank revealing QR
(RRQR) [Cha87], interpolative decomposition [LWM™T07, MT11], UTV [MQOHL17], and
randomized SVD [HMT11].

The ACA method is proposed as a very efficient method for smooth kernel matrix
approximations. However, since the correct construction of the low-rank basis is not
ensured, it might fail to converge [BGO05]. Therefore, despite its low cost, we prefer more
stable methods.

Some methods like interpolative decomposition and UTV are powerful in terms of the
approximation quality. Nonetheless, the QR factorization with column pivoting (QRCP)
methods can produce ranks close to the one of SVD, while being much faster. For
example, in [MQOH17], the authors show that the randomized UTV method they propose
is competitive to QRCP, as they have the same asymptotical complexity. However, it can
run faster than QRCP only in a parallel environment with matrices larger than the ones we
are interested in. In a sequential environment with matrix sizes of our interest (dimensions
smaller than 2000), QRCP can run more than 2x faster than UTV. Therefore, QRCP
methods are commonly adopted in our context.

The disadvantage of the QRCP methods is that some ill-conditioned matrices, like
Kahan matrix, can reach larger ranks than expected [GvL13|. However, it is worth noting



30 CHAPTER 2. COMPRESSION KERNELS

that this problem occurs very rarely in real life. Nevertheless, some rank revealing QR
(RRQR) methods are proposed, with an additional cost, to avoid this issue. From now
on, we focus on some promising QR methods in our context.

2.1.1 QR based compression kernels as an alternative to SVD

In this section, we briefly present the QR based compression methods before providing
more specific details on the ones that we will study in this chapter. A QR decomposition
has the form

A=QR,

where @) is orthonormal and R is an upper trapezoidal matrix (non-square matrix,
where all elements under the diagonals are zero). Opposite to SVD, this decomposition,
by its nature, does not provide a rank revealing feature. For this purpose, an orthogonal
matrix Qg (i.e. QeQL = QLQg = I, where I is the identity matrix) is applied to the
original matrix A. In this way, we gather the representative data on the left side to omit
the remaining unnecessary ones on the right. Then, considering the block form of the QR
compression method as

AQe = [Ql QQ} |:R011 g;z] ~ [Rll ng] ) (28)

where Ry; is of dimension r x r, we obtain the low-rank form (2.1) with U = @), and

VT = [Ry1 R15) QL.

Remember that the SVD method is the optimal compression kernel. Therefore, as
the QR based compression kernels aim to produce an approximation as close as possible
to SVD, the desired approximation criterion of the QR methods can be based on the
Frobenius norm of the trailing matrix as

Q2 Raa|| = [|Raa|| = || 2]l (2.9)

where [|Q2R|| is the trailing matrix norm of the block QR representation in the
equation (2.8). Then, similar to the criterion (2.7), the compression rank of the QR
methods can be determined numerically through the criterion

1 Raall _
[1A]]

Note that, opposite to SVD, whenever the stopping criterion is satisfied (if we can
evaluate it), the QR process terminates and Qs and Ry are not computed as they are not
needed. That is why, QR compression kernels are cheap alternatives to SVD when they
are used to satisfy 2.9.

There are different ways to compute the QR decomposition: Gram-Schmidt process,
Householder transformation or Givens rotations method [GvL13, TB97|.  As the
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Householder transformations are more stable than the Gram-Schmidt and cheaper than
the Givens rotations, we adopt the Householder based QR approaches in our work.

Note that in this chapter we focus on panel-wise QR factorizations (instead of
factorizing the matrix index by index) for exploiting the level-3 BLAS [DDCHDY0]
operations to be more efficient on top of modern architectures. The panel-wise QR is
illustrated in Figure 2.1 on the left, where b stands for block size. Here, the current panels
of b columns and rows, respectively, are in yellow and the trailing matrix is in green. Then,
during the factorization, the trailing matrix is updated at the end of each panel iteration
through the panel contributions at once, instead of at each column contribution separately.
Although this panel-wise update operation improves the performance, the column pivoted
version of the QR factorization requires an additional storage to be able to update the
column norms, which is necessary to determine the next column pivot [QOSB98]. Now
let us focus on more specific background on the compression kernels that we will compare
in this chapter.

2.1.2 Different features of QR based compression kernels

In this section, we briefly discuss the differences of the QR based compression kernels
that we will study in the remainder of the chapter. The first difference is the way of
gathering the representative data to the left part of the matrix. The second one is whether
the randomized sampling is used or not, while the third one is based on when the trailing
matrix updates are performed. Let us respectively explain these three differences in three
sub-sections.

Gathering the data to the left of the matrix

The first difference of the compression kernels in the following sections is the choice
of the Q¢ matrix in the approximation (2.8). This choice affects how good we can
approximate the SVD method. It can simply be chosen as a column permutation matrix
to gather the representative data only to the left part of the matrix. For example, the
column with maximum 2-norm can be chosen as the pivot at each iteration. Alternatively,
the ()¢ matrix can be selected as a convenient rotation matrix to have more control over
the quality of the approximation.

No matter whether a permutation or a general rotation matrix is chosen, the
computation of the ()¢ matrix is inefficient and it is a bottleneck for large matrices.
Therefore, in the next section we explain a technique to reduce this cost.

Randomization technique

The second difference of our kernels, randomized sampling, aims to reduce the cost of
generating the ()¢ matrix. This technique projects the original large matrix A,,«, on a
lower dimensional representative matrix Byx,, where d < m. Through this projection,
the cost of memory-bound operations can be reduced.
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As an example, we can observe an original matrix and its representative (sample)
matrix in a column pivoted QR factorization in Figure 2.1. Here, j stands for an
arbitrary index during the factorization and b is the block size. Green color represents
the sub-matrices which will be used in the next panel iterations, while the yellow color
stands for the panels which are completed in the current iteration. Observe that the row
dimension of the sample matrix is chosen as b + p. Here, the oversampling size, p, stands
for a small fixed number, which is used to improve the quality of the projection. Then,
thanks to this projection, we can cheaply compute the panel pivots through the matrix
B instead of computing the column pivots through the original matrix. As a result, we
can improve the performance for large matrices since column pivoting is a bottleneck in

the QR method.

Ro1 =0 Ry
St S12

b

S91 =0 S:
21 22 d=b+p

j—b j—b

Figure 2.1: Panel-wise QR with column pivoting on the original matrix A,,x, (on the left)
and on the sample matrix B(,4p)xn (on the right). Here, b + p < m, where b stands for
the block size and p is the oversampling size, which is used to obtain more representative
data on the sample matrix. The yellow panels represent the parts which are completed
after the current panel iteration. The green parts illustrate the trailing matrices which
will be used in the next panel iterations. The upper triangular yellow matrices stand for
the factorized partial R matrices.

Left-looking and right-looking approaches

The last difference of our methods is whether the decomposition is right-looking or
left-looking like the LU factorization as mentioned in Section 1.1.3. This feature is based
on when the trailing matrix is updated. Let us explain it through Figure 2.2.

On the left of Figure 2.2, the left-looking approach is presented. Here, ;5 stands for
the current index. In this method, the already computed yellow panel contributions
are used to update the current green panel. Here, the current panel is updated just
before being factorized. In this way, the unnecessary full trailing matrix updates at
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each panel iteration are avoided. However, in the left-looking approach an additional
storage is required compared to the right-looking version. That is, in the classical QRCP
algorithm, the column norms should be downdated at each column iteration to be able
to determine the next pivot column. When the trailing matrix update is postponed
during the QRCP factorization, this downdate operation causes a problem. As explained
in [QOSBI8|, although the block-wise update operation requires the earlier row values of
A before the block-wise column reductions, these rows should have been already updated
for downdating the column norms. Therefore, this problem can be solved at the expense
of an extra storage for the previous reflector accumulations.

On the right of Figure 2.2, the right-looking approach is illustrated. Here, at the
end of each panel iteration, all the trailing matrix (green part) is updated through
the contributions from the current panel (yellow parts) in the figure. This feature is
costly, especially for large matrices with small ranks, as the trailing matrix after the
approximation rank is unused. However, since the panels are small and the updated parts
are large for these matrices, this feature is promising for parallel environments.

iT

Jj+b

joJ+b J—=b J

Figure 2.2: Inter-panel left-looking and inter-panel right-looking approaches. The former
is illustrated on the left, while the latter is on the right. The contributions of the yellow
color parts are used for updating the green parts. Right-looking approach updates all
the trailing matrix at the end of each panel iteration, whereas the left-looking one only
updates the current panel at the beginning of each panel iteration.

2.1.3 Specifications

In this section, we provide the necessary specifications to understand the following
sections better. For the sake of simplicity, we only study the matrices with real values,
where the superscript T' represents their transpose. However, all formulas can be easily
adapted to complex matrices. In the following sections, the computational complexities
of the methods stand for the square matrices of dimension n x n.
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In the algorithms, we use indices starting from 0. At the end of the algorithms, R
is stored in-place at the upper triangular part of A. Therefore, by applying the inverse
permutation or rotation, depending on the method used, we obtain the VT matrix. The
U = @ matrix can be obtained by using both the reflectors, stored in-place in the lower
part of the matrix, and their scalar factors vector. This can be performed easily through
the xzUNGQR routine of LAPACK [ABB*07] for example.

The stopping criterion (2.6) allows to reach smaller ranks with SVD compared to
the criterion (2.7). However, we use the Frobenius norm of the trailing matrix when
applying our stopping criterion within the QR methods. Therefore, for being consistent
with the QR methods of this chapter, we will mostly focus on the latter criterion (2.7)
with Frobenius norm.

2.2 Related work

In this section, we explain the related work on the four QR methods that we study in
this chapter, which differ from each other through the features discussed in Section 2.1.2.

In [DG15], the authors propose a panel-wise randomized QR with column pivoting
(RQRCP) method with a new sample matrix update formula, where they adopt a
fixed-rank based stopping criterion. The update formula in this work improves the
randomization method cost by eliminating the resampling at each panel iteration.
Moreover, they also offer a truncated randomized QR with the column pivoting (TQRCP)
method to avoid unnecessary trailing matrix updates. Through these methods, they also
come up with an efficient truncated SVD algorithm. In this chapter, we will study the
RQRCP and TQRCP methods in [DG15] respectively in Sections 2.4.2 and 2.4.3.

In [MQOHvdG17], the authors independently conduct a similar work to [DG15] on
the RQRCP method that is based on Householder reflections, with a fixed rank criterion.
Here, they also contribute to the RQRCP method with a sample matrix update, instead
of resampling, which is mathematically equivalent to [DG15].

In [XGL17], both [DG15] and [MQOHvdG17] RQRCP methods are investigated with
a fixed rank based criterion. The authors analyze the efficiency of the sample matrix
updates from these two papers, as well as analyzing the reliability of the randomized QR
with column pivoting. In addition, they propose a spectrum revealing QR method for the
rank revealing problem of the ill-conditioned matrices, thanks to some extra interchanges.

In [Mar15], the author proposes both column pivoted and rotational rank revealing QR
algorithms, as well as a power method for a better range convergence, with a fixed rank
criterion. Depending on the convergence to the singular values, the randomized rotational
QR (RQRRT) method can give closer results to SVD by collecting most of the data mass
on the diagonals. Although the RQRRT method is more expensive than the QR with
column pivoting methods, we will include this method in our study, in Section 2.4.4, to
see if a good trade-off between performance and approximation quality can be reached.

In [MV16], the authors propose numerically determined rank procedures. Here, the
algorithms are more general randomized methods and can be adopted as partial SVD,
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CUR, interpolative decomposition or RRQR. The offered rank revealing QR can be seen as
a modified version of column pivoted Gram-Schmidt. This method is using the numerical
stopping criterion similar to us. In this work, they also propose a power method to
improve the accuracy when handling slowly decreasing singular values.

In [HMT11], the authors conduct a detailed study of different randomized methods.
Here, also a randomized numerical rank decision criterion is proposed.

Note that all the methods we explain in this chapter are existing methods. However,
we aim to implement them in a similar fashion for a better experimental comparison.
As mentioned before, we determine the compression ranks numerically through our
stopping criterion to exploit low-rank features, without any underlying problem knowledge
requirement. This criterion is applied to the TQRCP and RQRRT methods for the first
time in the literature. Now let us provide some necessary notations that will be used in
the following sections.

2.3 Notations

For the sake of simplicity, we use some notations to avoid detailed index specifications
inside the algorithms of this chapter:

- Al represents the sub-matrix part that we use in the i*" panel iteration. For example,
considering we already factorized 2b columns of A, AP represents the matrix Aspem:obn-
The notation can be trivially converted to the vectors.

- At the " panel iteration, A is represented in the block form

Al Al

Al — : :
A5 A

Y

where A[;% stands for the trailing matrix and it is used as A+, We illustrate the
matrix and vector (N) representations at the i'* panel iteration in Figure 2.3.

- AU represents the sub-matrix part that we use in the j** column iteration. For
example, considering we already factorized 2b + 3 columns of A, A®*+3) represents the
matrix A(p43):m;(26+3)m- The notation can be trivially converted to the vectors.

- At the j** column iteration, AY) is represented in the block form

A

AW — : A
Ay A5

I

where A%) stands for the trailing matrix and it is used as AUV, We illustrate the
matrix and vector (N) representations at the j* column iteration in Figure 2.4.

- Ay represents the [ column of the matrix A. In case of a vector, it stands for the
['" index of the vector.

Observe that both A% and A©® represent the original matrix A in our notations. Now
let us focus on the compression kernels that we will compare in this chapter.
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Figure 2.3: Our notations and the sub-parts they stand for during the factorization. On
the left we present the panel-wise matrix (A) notations, while on the right we show the
vector notations on an arbitrary vector N.
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! A i+l ny
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Figure 2.4: Our notations and the sub-parts they stand for during the factorization. On
the left we present the column-wise matrix (A) notations, while on the right we show the
vector notations on an arbitrary vector N.
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2.4 QR based compression kernels

In this section, we study four different QR based compression methods in detail. We
explain our most basic method, QR with column pivoting (QRCP), in Section 2.4.1. In
Section 2.4.2; the randomized QR with column pivoting (RQRCP) is studied. Then, the
left-looking version of the RQRCP method is provided in Section 2.4.3. Finally, a rank
revealing QR based compression kernel which adopts a rotational matrix is explained in
Section 2.4.4.

2.4.1 QR with column pivoting (QRCP)

QR with column pivoting (QRCP) can be seen as the most basic method in this
chapter. The QRCP we adopt is based on the LAPACK 2GEQP3/xLAQPS methods,
similar to [DB08]. We start with a version of xGEQP3 which was modified by Alfredo
Buttari for the MumpPs BLR solver [Marl7|. This method uses a panel-wise approach to
take advantage of the level-3 BLAS operations and thus reduces the slow memory-cache
passes of large matrices.

QRCP has an intra-panel left-looking feature. That is, each column of the panel
is updated just before being factorized. On the other hand, it uses a right-looking
approach for the inter-panel operations. Therefore, at the end of each panel iteration, the
whole trailing matrix is updated with the current panel contributions. In Figure 2.5, we
illustrate the intra-panel left-looking feature, while in Figure 2.6 we show the inter-panel
right-looking feature of QRCP. In the figures, j stands for the current index and r is the
last index of the previous panel. The yellow parts are used for updating the green ones
similarly to Figure 2.2.

Algorithm 4 illustrates the QRCP method. Here, C stands for the column norms
array (of size n), while P represents the permutation matrix. In practice, P is an array,
which keeps all the corresponding pivot indices, p'), to swap the columns cheaply. In our
code, the column norms are either updated or explicitly computed (only when required)
as in [DB08|. Then, as we have the 2-norm values of the columns thanks to the column
norms array C', whenever our pivot column norm is smaller than the required precision,
we compute the trailing matrix norm. More precisely, we compute the Frobenius norm of
the trailing matrix by computing the 2-norm of array C. Here, if the trailing matrix norm
is also smaller than the required precision (our stopping criterion), we set the numerical
rank to the current index value and terminate the function.

As seen in the algorithm, we start each column iteration by checking our stopping
criterion. If it is not satisfied, the column which has the maximum norm-2 value is chosen
as the pivot. As the algorithm is left-looking intra-panels, at each column iteration j,
we update the current column by using the computed panel reflector matrix, Y@, and
the corresponding part of the panel accumulation matrix, i.e. Wl(j)T. In Figure 2.5,
the yellow parts illustrate these contributing parts to the current green column. After
generating the elementary Householder reflection for the current column, we compute the
accumulations caused by the current row, wW” . As we mentioned before, this storage for
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Figure 2.5: Left-looking intra-panel update of QRCP. The updated column is in green,
whereas the contributing parts are in yellow.

Figure 2.6: Right-looking inter-panel update of QRCP. The updated parts are in green,
whereas the contributing ones are in yellow.
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Algorithm 4 Block QR with Column Pivoting
1: function QRCP(A, ¢, b)
2: forl=1,2,...,ndo

3: Coy = l1Awll2 > Initialize column norms array
4: for i =0, b, 2b, ..., min(m,n) do > Panel iteration
5: for j =1, i+1, ..., min(i+b-1, min(m,n)) do > Column iteration
6: if ||CY)|| < €||A|| then return r — j > Check the stopping criterion
7: UpdateNorms(CU)) > Update the column norms
8: pU) = argmax Cu
l€[4,...,n]
) D" )" - :
9: swap(Ajy, A(p(j>)), swap(W(g) ,W(;(j>_j)) > Swap pivot column to current index
©)) ©)
a a , ,
10: L I e Y(J)W(S)T > Update the current column
49 49) (0)
2 2
11: H@ =T — y(j)T(j)y(j)T > Compute the Householder reflection
| | AY) o
12: wT = 70 (y@)" 3]2) — (y DTy @ )yweT > Compute the accumulation
Agzy
13: R%) = A%) — Yl(j )Wg(j )" > Update current row
14: Al = Ali+1] YQ[i]WQ[i]T > Update the trailing matrix

Output : |Q, R, P, |

the accumulations is needed in the panel-wise column pivoted QR since the trailing matrix
is not updated at each iteration, while the column norms should be updated. Note that,
the reflector and accumulation matrices are the concatenation of each column reflection
vector, Y = [y ¢yM ] and accumulation vector, W7 = [w©® w®, . |7 respectively.
Finally, each column iteration terminates by updating the current row of the matrix.

Let us represent the panel reflectors at the end of the i*" panel iteration as Y1 =

and the accumulation matrix as W" = [Wl[i]T WQMT]. Then, Yzm stands for the A[ﬂ

part of Figure 2.3, while WQMT represents the contributions from A[lg In other words, the
left-most and the upper yellow parts of Figure 2.6 illustrate YQM and WQMT, respectively.
In Algorithm 4, every time the inner loop ends, the computation of R[ﬁ, R[f;, Yl and
W is completed. Then, at each panel iteration, the whole trailing matrix is updated
by using the contributions from these yellow parts as it has an inter-panels right-looking
approach.

Note that all the methods in this chapter use intra-panel left-looking approach.
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Therefore, from now on, the algorithms will be called left-looking or right-looking
according to their inter-panel update features.
Observe that Line 12 in the panel-wise column pivoted QR algorithm (Algorithm 4)

(4)

requires large level-2 BLAS operations, i.e. y@" ﬁ%f)] and y" YU, These level-2
22

BLAS operations are inefficient because of the memory passes for large matrices at each

column iteration. Therefore, we will explain a technique to avoid these inefficient memory
passes in the next section.

The QRCP method reduces the complexity compared to SVD (with the complexity
O(n?)) to O(n*r). Here, the pivot selection operation costs O(n?r), while applying the
pivot is as cheap as simple column swaps. As QRCP is right-looking inter-panels, the
whole trailing matrix updates are performed at a cost of O(n?r).

2.4.2 Randomized QR with column pivoting (RQRCP)

As mentioned in the previous section, the need of pivoting leads to many inefficient
level-2 BLLAS operations in the panel-wise QRCP factorization, which reduces the
performance for large matrices. In this respect, some randomization methods are proposed
to use a lower dimensional representative matrix, instead of the original one, to determine
the pivot columns of the panels. For this purpose, a GGaussian matrix with independent
and identically distributed random variables (Gaussian i.i.d.), €, can be used to project
the original matrix onto the sample matrix, B, as

den = demAana

where d < m. Here, we need to get the representative data with small uncertainity
to be able to determine the correct pivoting for the current panel. That is, let us
consider the j* column of A, a(j), and the corresponding sample matrix column b;.

Then, % —1 < 7, with 0 < 7 < 0.5 being the threshold and 0 < 7,5 < n,
should be satisfied with high probability |[DG15]. This is why we do not choose the row
dimension of B as block size b. Instead, we use a pre-defined oversampling size, p. Then,
the row dimension is d = b+ p. In [XGL17], it is shown that the failure probability of
RQRCP is exponentially decreasing for larger oversampling sizes. Although we need this
parameter for the quality of the sampling, we should be careful to choose it as small as
possible, while respecting the error bounds, to efficiently improve the performance of the
randomized kernel.

Note that we have to resample the matrix at each panel iteration in the classical
approach to be able to determine the panel pivots. However, it is too expensive in
practice. Instead, we can update the sample matrix in a cheaper way and use it at each
iteration as proposed in [DG15, MQOHvAG17]. In these works, the authors prove that
the performance results of these randomized techniques become close to the unpivoted
QR methods, while the accuracy is very close to the one of unrandomized methods.
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Therefore, in this section and in Section 2.4.3, we adopt the randomized methods through
the updated sample versions as in these works.
As explained in [DG15], considering the block factorization of the matrix B

BP = QAP = gl Siosh
B 7] ]

the update of the sample matrix can be computed as

B!

, Stz — Wi Rl
B

— Qlil gl —
S

i i pli] =t pli
_ [S&%—SHRH R

Algorithm 5 Randomized QR with Column Pivoting
1: function RQRCP(A, ¢, b)

2: QL] > Generate the Gaussian i.i.d. matrix
3: B0l = Qo1 410 > Compute the sample matrix
& fori:(),l,...,rw—'—l do

5: [Qg, sl P][;], r] = QRCP(B, \/(b+ p)e, b) > Compute permutation
6: A= AP[Bi] > Apply the permutation
7: QU R[f“ = QR(Al) > Apply QR on the permuted matrix A
8: R[lg = Q" A[lg > Update rightmost matrix

aven) =9 L
9: BFH] = Sg - SF{RHAR[IQ and Bgﬂ} = Sg% > Update the sample matrix

Output : [Q, R, P, ]

Now, let us observe the randomized QRCP method, with the sample matrix update
formula, in Algorithm 5. Here, the stopping criterion is applied implicitly through the
QRCP function, which is used for computing the permutation matrix P through the
sample matrix. As the permutation is computed through the sample matrix, the threshold
should also be arranged according to B. As explained in [DG15], the column norms of B

and A have a constant relative ratio through the Chi-squared distribution [Dev12]|. As a

1
btp’
dimension of the sample matrix. Therefore, assuming e is the threshold for the matrix A,
the threshold for the sample matrix B is computed as

eg =/ (b+p)e.
As seen in the algorithm, RQRCP is similar to QRCP (Algorithm 4), except for
the computation of the permutation matrix and the sample matrix generation/update

consequence, their residual error ratio is approximately with b + p being the row
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operations. Then, in this algorithm, the additional cost to QRCP is the cost of generating
the sample matrix Bip)x, in the beginning, O(n?b), as well as its update at all
iterations, O(nrb). However, the pivot finding operation using the input matrix A,
O(n®r), is avoided. The pivoting operation through the sample matrix reduces this
cost to O(nrb). Through these computational complexities, we can observe that the
randomization method does not aim to reduce the theoretical complexity compared to
QRCP. Instead, it targets to reduce the time consuming data movements that occur
when computing the column norms through large matrices.

2.4.3 Truncated randomized QR with column pivoting (TQRCP)

As explained in Section 2.1.2, the left-looking feature aims to reduce the complexity
by avoiding the whole trailing matrix updates. In [DG15], the authors propose the
left-looking version of the RQRCP method for this purpose. In this section, we study this
left-looking randomized method, which is called truncated randomized QRCP (TQRCP).

Algorithm 6 Truncated Randomized Block QR with Column Pivoting
1: function TQRCP(A, ¢, b)

2: QL] > Generate the Gaussian i.i.d. matrix
3: Bl = Qo1 410 > Compute the sample matrix
" forizo,l,...,’_w—'—l do
5: [Q%}, St Pg], r] = QRCP (B, \/(b+ p)e, b) > Compute permutation
6: A= APE] and Wg}T = WE]TPE > Apply the permutation
A0 401 [ye]
T [1; = [1; — ([’5 g}f > Update current panel
Az Az Yo
o Al
8: QY R[ﬁ, Y] = QR( A[lj ) > Apply QR on the current panel
21
9: whlt = " (ylil" 4 — (Y[i]TYG[i])Wg]T) > Compute the accumulations
10: R[f% = A[lg - YgﬂWgZT > Update the row panel
11: B{”” = Sﬂ - S{?R[ﬂ_lRﬂ and Bgﬂ] = Sg% > Update the sample matrix

Output : [Q, R, P, 7]

As explained before, in the right-looking approach, we use panel-wise reflectors
and panel-wise accumulations to update the whole trailing matrix. In the left-looking
approach, we use global reflectors, Yg, and global accumulations, W2, to update only the
current panel. In Figure 2.7, we illustrate the Yo and WJ matrices of the left-looking
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Figure 2.7: Global reflectors, Yg, and global accumulations, W2, at the beginning of the
i'" panel iteration. Here, the yellow parts are used to update the current green panel.

approach at the beginning of the i"* panel iteration. Here, the yellow global reflectors and
yellow global accumulations are used to update the current green panel.

In Algorithm 6, we provide the code for the left-looking TQRCP method. As explained
in [DG15], TQRCP follows the same logic as converting the column-wise QRCP to the
panel-wise QRCP, but at a panel-wise level. That is, let us consider the composition of
all the global reflectors, Y([;H], as

i+l i ;
Y+ = [ycgl y[]] ,
the block reflectors are updated as
(1 = YRTEy (1 — ylplly "y = -yl gy’
where Tgﬂ] is

T 7yl y T

i+1
Té I = 0 i)

Then, the global accumulation matrix, which results in extra storage, for this
panel-wise left-looking code is

WMT
G
"

W([;‘—H]T _ T([;‘H]TYC[;'H]TA _

Ty 07 4
¢ ta
T A = Y EWED) |
As seen in the algorithm, TQRCP is indeed the panel-wise left-looking version of
[i]
RQRCP. That is, after each panel iteration, RQRCP updates ljﬁ] , while TQRCP stores

22
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the contribution accumulations and only updates A[lg Observe that TQRCP also applies
the stopping criterion implicitly, similarly to RQRCP.

Compared to RQRCP, there is an extra storage cost for the matrix W2, of size r x n,
in the TQRCP method. However, at each panel iteration of the TQRCP method, the
update of A[QZ]Q, with size (n—r—b) X (n —r —1b), is avoided. This reduces the total trailing
matrix update cost to O(nr?) in TQRCP compared to O(n?r) in RQRCP. The complexity
of computing W2 in TQRCP is O(n?b). As the sample matrix generation, of complexity
O(n?b), is performed only once at the beginning of the algorithm, it is not necessarily
dominant since actually it has a constant 1. Then, thanks to the low cost trailing matrix
updates, TQRCP has the lowest computational complexity among the four methods that
we study. For large matrices with low ranks, this method highly reduces the update cost
of the trailing matrix.

2.4.4 Randomized QR with rotation (RQRRT)

In this section, the rotational QR method in [Marl5] is studied. This method is
proposed to fix the rank revealing issue of the column pivoted QR method on some
matrices.

Remember that the rank revealing QR factorization aims to produce an approximation
as close as possible to the optimal approximation (SVD) (see the approximation
criterion 2.9). Then as explained in [Marl5], we can apply a convenient orthonormal
matrix to A to produce a rank closer to SVD to satisfy this criterion, instead of only
permuting the columns.

In the randomized QR factorization with rotation (RQRRT) method, the sample
matrix is used similarly to the randomized QRCP. However, this time the original matrix,
A, is not permuted through the permutation that is obtained by using QRCP of the
sample matrix, B. Instead, an orthonormal matrix is generated through the unpivoted
QR factorization of BT. This is indeed an effective method to get the mass to the left
of the matrix, since the sample matrix is generated in a way that it really represents the
linear dependencies of the original matrix. Therefore, this orthonormal matrix represents
the rotation of the input matrix when the QR factorization is applied. When this rotation
matrix is applied to matrix A, its representative data moves to the diagonals to have closer
results to SVD.

Algorithm 7 stands for the RQRRT compression kernel. Here, the output rotational

oy
matrix is equivalent to Q. = E;” %} [;}...QBb . Let us compare this RQRRT
algorithm to the randomized QRCP (Algorithm 5). Their first difference is the way
of gathering the representative data. In the randomized QRCP algorithm, we find

APB = QARAa
where Pp is obtained through the QRCP algorithm as

BPp = QpRp.
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Algorithm 7 Randomized Block QR with Rotation
1: function RQRRT(A, ¢, b)

2: QL > Generate the Gaussian i.i.d. matrix
3: fori:0,1,2,...,'—w—'—l do

4: Bl = Qli Al > Resample B
5: [QEQ, St = QR(BMT, b) > Compute the rotation matrix
6: All = A[i]Q%} > Apply the rotation
T [, R[fh = QR(AM) > Apply QR on A
8: R% = Q" A[lg > Update the trailing matrix

aven] =4 g
9: r= StoppingCriterion(R[lﬂl, R[Qg, A, €, b) > Check stopping criterion

Output : [Q, R, Qrot, 7]

However, in the RQRRT method, the AQ/B matrix is used as

AQp = Q4 R,

where the orthogonal matrix is obtained from the partial QR of the sample matrix as

BT = Q4R}.
This shows the column orthonormalization of BT. Therefore, the leftmost b column
spanning the matrix A will have almost the same spanning as the leading b singular vectors
of A. Therefore, it gets a closer result to SVD in terms of rank revealing quality [Marl5].

The second difference of the rotational method is the resampling operation. In the
column pivoted method, the sample matrix is cheaply updated at each panel iteration.
However, in the rotational method, as its transpose is used, there is no update formula
(up to our knowledge).

The third difference of the rotational method is the explicitly implemented stopping
criterion (at Line 9), since we do not call QRCP function anywhere in this code. Here,
the input matrix RY) stands for Al+1,

The detailed stopping criterion in RQRRT code is given in Algorithm 8. Everytime
this function is called, the trailing matrix norm on Line 2 is explicitly computed. Here,
it is important to observe that at the end of the panel iteration, if the criterion (on
Line 2) is satisfied, we check the previous trailing matrix norms by adding each column
contribution starting from the last column of the panel (on Line 4). Bear in mind that
the value H(R[ﬁ)(l)Hg does not have to be computed explicitly since it is equal to the
magnitude of the first element of this column. If we check the trailing matrix norms
with the accumulations of the left-most columns first, we can lose stability because of the
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round-off errors. Note that in the QRCP method, the stability issue is already taken care
of and it is out of scope in this thesis.

In Figure 2.8, the stability issue is observed. Here, the result is obtained by using
the S-shape matrix (see Section 2.6.1) of size 500 x 500, where the generation rank is 25.
In the figure, RQRRT (right) represents our algorithm and RQRRT (left) stands for the
unstable accumulation version. As a reference, the trailing matrix norms at each panel
index at generation, \/> i , 07, is also shown (called Reference). The y-axis stands for
||A — Uk V||, while x-axis shows the indices, K, of the first panel iteration. Here, Uk is
of dimension m x K and represents the K columns of the matrix U. Similarly, V£ stands
for the first K rows of V7.

Figure 2.8 shows that indeed the right-most accumulation gets closer results to
Reference. As opposed to our approach, the left-most accumulation diverges after the
index 23 supporting our statement.

Algorithm 8 Stopping criterion in RQRRT

1: function StoppmgC’mtemon(Rgl, R22, |AL)|| 5, €, b)

2. if [|RY|r <e[|A[O]||F then

3: forl=b—-1,0— .,1 do > Accumulations starting from right-most column
" HRMHF—\/||R“’““HF + IR wl3

5: if [|RS™||r > €| A|; then return r = ib+ 1 + 1

Output : [r]

For RQRRT, finding the rotation matrix has a complexity of O(nrb), while applying
it to the matrix A is of cost O(n?r). However, for RQRCP, the pivot finding cost is
O(nrb) and the APp operation is only as cheap as swapping b columns of A. Another
cost difference of RQRRT is the resampling at all iterations, O(n?r), compared to the
sample matrix update cost in RQRCP, O(nrb). As seen here, the complexity differences
between these two methods can be significant for large matrix sizes, which makes RQRRT
the most costly QR method that we study.

2.5 Summary of the complexities

In this section, we aim to summary and comment on the complexities of the
compression kernels studied in the previous sections. Table 2.1 illustrates the computation
complexities of the compression methods for a generic matrix of size n x n, with a block
size b and a compression rank r. Here, only the operations leading to a difference between
the methods are shown for the sake of simplicity. The third column of the table stands
for the total cost of each operation, while the last column shows the overall cost of each
method. When determining the values in the last column, we assume r > b.
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—— ROQRRT (left) ---- RQRRT (right) Reference

Figure 2.8: The round-off error impact when the trailing matrix norm columns are
accumulated starting from right or left. The y-axis stands for ||A—Ux Vi ||r in logarithmic
scale, while x-axis stands for each index in the first panel iteration. The result represents
the S-shape matrix (see Section 2.6.1) of size 500 x 500, where the generation rank is 25.
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Method Operation Total cost Overall cost
SVD O(n?)
Pivot finding O(n?r
QRCP Trailing matrix update OETL%”; On’r)
Sample matrix generation (beginning) O(n?b)
Pivot finding O(nrb 9
RQRCP Update of sample matrix B (’)Enrb; On™r)
Trailing matrix update O(n’r)
Sample matrix generation (beginning)  O(n?D)
Pivot finding O(nrb) O(n2b)
TQRCP Update of current panel O(nr?)
Generating accumulation matrix (W7T)  O(n?b)
Update of sample matrix B O(nrd)
Resampling (all iterations) O(nr)
Rotation computing O(nrb 9
RQRRT Rotation of A (’)EnQr; On™r)
Trailing matrix update O(n’r)

Table 2.1: Important complexity changes between the compression methods. Here, n, r
and b stand for the matrix size, the compression rank and the block size, respectively.

As seen in the table, the truncated method has a total of O(n?b) complexity, while all
other QR variants have a O(n?r) complexity. As in general b < r and TQRCP reduces
the trailing matrix update cost, this truncated method is the cheapest procedure for large
matrices with low ranks, in a sequential environment. Since SVD has a O(n?) complexity,
it is the most costly method, as expected.

For the QRCP, RQRCP and RQRRT methods, the overall complexity is asymptotically
the same. However, when each operation complexity is observed, one can see that the
usage of the rotational feature in RQRRT introduces large additional costs compared
to the other two methods. That is why, it is the most costly QR variant. In RQRCP,
the pivoting cost is reduced compared to QRCP. However, there are additional costs
for sample matrix generation (in the beginning) and for updating it at each iteration.
Thus, this method is advantageous for large matrices, where mostly the communication
of the column norms computations are costly. To conclude this table, we expect in our
experiments to observe the performance order as (from worst to best, in a sequential
environment): SVD < RQRRT < RQRCP < QRCP < TQRCP.

2.6 Experiments on generated matrices

In this section, we compare the compression methods on different generated matrices,
including challenging cases. For the sake of simplicity, the row and column dimensions
are chosen to be equal. From now on, the letter r4 will represent the generation rank of
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the matrices, whereas r represents the approximation rank of them.

As a matter of interest, the compression kernels are in sequential within the PASTIX
framework. Therefore, the results in this section demonstrates the sequential results, since
parallelism is not worth for the matrix sizes we are interested in. For the RQRCP and
TQRCP methods, the block size is set as d = b + p, where b = 27 and the oversampling
parameter is set to p = 5. For the other methods, the block size is d = b = 32. Let us
emphasize that we implement all the compression methods in a similar fashion and we
determine the compression ranks numerically. Here, let us also note that setting b = 32
and p = 5 would be a better choice when comparing RQRCP and TQRCP to the other
methods, where d = b = 32. However, it will not affect our results observably.

In Section 2.6.1, we first provide the information about how we generate the
experimental matrices. Then, in Sections 2.6.2, 2.6.3, 2.6.4 and 2.6.5, we discuss
the stability, performance, numerical ranks and accuracy results on these matrices,
respectively.

2.6.1 Generation of the experimental matrices

In this section, five different type of generated matrices are used. These matrices are
similar to the ones in [Marl15], and are shown in Figure 2.9, Figure 2.10 and Figure 2.11.
In these figures, the x-axis stands for the matrix index, K. The figures on the left illustrate
the singular value distribution of a matrix of size 500 x 500, where the generation rank is
100 at the generation precision ¢ = 107, The figures on the right stand for the relative

V2Eiko}

Frobenius norm of the trailing matrix, T, of the same matrices. The solid black
lines in the figures represent the generation precision.

The first matrix type is called k-rank and it is observed in Figure 2.9. In order to
generate this matrix, a normalized Gaussian i.i.d. matrix is used, where the singular values
decrease slowly and suddenly drop to ignorable values at the generation rank. Because of
the sudden drop to ignorable values at r¢, this matrix type is trivial for the compression
methods.

The second and third matrix types are called Z-shape and Z-shape-short, which are
shown in Figure 2.10. Both of these matrices are computed as A = UDV7T, where U and
V' are random orthonormal matrices. The singular values (diagonal values of the matrix
D) are the same for both cases and decrease rapidly up to the generation rank. However,
the Z-shape drops faster to ignorable values at the index grg = 150, while Z-shape-short
stagnates at 107°. Here, we expect the methods to find close approximation ranks to
rqg = 100 for the Z-shape because of the fast drop after the generation rank. Opposite to
Z-shape, as seen in the right-most figure, the trailing matrix of the Z-shape-short matrix
contains important data at r¢ with respect to the compression precision 1078, Thus, this
case is challenging for our stopping criterion to determine the compression rank close to
the generation one.

The last matrix types are called S-shape and S-shape-short, which are shown in
Figure 2.11. These matrices are computed as A = UDV7T, with random orthonormal
matrices U and V. For these matrices, the singular values stagnate at 1 up to the index
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Figure 2.9: The k-rank matrix of size 500 x 500, where the generation rank is rg = ?073 =

100 at the generation precision ¢ = 1078, The Frobenius norms of the trailing matrices

V Pk 01'2

at each index (HA—F) are on the right, while the singular values at each index (o)
are on the left. The x-axis stands for the matrix indices, K. The singular values firstly
decay slowly, then suddenly drop to very low values.
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Figure 2.10: The Z-shape and Z-shape-short matrices of size 500 x 500, where the
generation rank is rg = 222 = 100 at the generation precision ¢ = 1078, The Frobenius
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values at each index (o) are on the left. The x-axis stands for the matrix indices. Both

matrices have the same singular values up to the index rs = 100. However, after this
point, Z-shape case singular values decrease faster and reach to almost machine precision
at the index %Tg, whereas the Z-shape-short case singular values reach to {5 = 1072 at
this index.

norms of the trailing matrices at each index ( ) are on the right, while the singular
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Figure 2.11: The S-shape and S-shape-short matrices of size 500 x 500, where the
generation rank is rg = % = 100 at the generation precision € = 107%. The Frobenius

n 2
norms of the trailing matrices at each index (—V%ATF‘J‘) are on the right, while the singular

values at each index (ok) are on the left. The x-axis stands for the matrix indices. The
singular values of the S-shape and S-shape-short matrices firstly stagnate at the value 1,
then they decrease fast and in the end they stagnate again after a heavy tail. Both of
the singular values reach the value ¢ = 107% at the index rg = 100. However, the last

stagnation point is €2 = 107'° for the S-shape matrix, whereas it is ;5 = 107 for the
S-shape-short matrix.
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%, and then they drop rapidly to reach e = 108 at index rg. After that point, the S-shape
case stagnates at the value €2 = 1079, while S-shape-short stagnates at 5 = 107, which
is close to the generation precision. These matrices are challenging experiments for the
randomization methods as they have a heavy tail.

In the following sections, we use the compression precision ¢ = 10~%, which is equal
to the generation precision. We observe the SVD method with two different stopping
criteria. One of them uses the Frobenius norm of the trailing matrix to determine the
compression rank as in 2.7, while the other uses the spectral norm for this purpose as
in 2.6. The former, SVDF, provides better comparison to the QR methods, whereas the
latter, SVD2, leads to closer ranks to the generation ones.

2.6.2 Stability

In this section, we observe the stability of the compression kernels. In Figure 2.12, the
relative residual with respect to the initial matrix, %, is observed at each index
K. As these values show the approximated values of the relative Frobenius norms that
were presented on the right side of Figures 2.9, 2.10 and 2.11, we want to obtain close
results to them.

As seen in Figure 2.12; all the methods have good stability. As RQRCP and TQRCP
use a relative stopping criterion, which uses an approximation ratio between the original
and sample matrix columns, there are more magnitude changes between the panel
iterations. However, it will be shown in Section 2.6.5 that these methods still ensure
a good accuracy, so this does not indicate a problem. As we can see in the figures, the
RQRRT method indeed obtains very close results to SVD.

Another interesting point in these figures is the black horizontal line, which stands
for the compression precision ¢ = 1078. That is, observe that our stopping criterion
(see Section 2.1) compares the y-axis values in Figure 2.12 to the € value to determine
the approximation rank. Therefore, whenever a residual value reaches this black line in
the figures, we know that the compression rank is the corresponding index. Therefore,
through these stability figures, we observe that for the Z-shape-short case, all the methods
get much larger compression ranks than r4 = 100. Thus, this case is challenging for our
numerical stopping criterion. However, for all the other cases, all the methods reach close
approximation ranks to the generation one.

In Figure 2.13, the same information as in Figure 2.12 is shown. However, here the
relative residual with respect to the SVDF is presented to better observe the stability
compared to the SVD method.

The main observation in Figure 2.13 is that QRCP, RQRCP and TQRCP can have a
relative error around 2.5x larger than the one of the SVD around the index rg. However,
this relative error is very close to SVDF for the rotational QR variant, which confirms
that indeed RQRRT provides closer quality approximations to SVD.

Note that for the k-rank, Z-shape and S-shape test cases, the last values are around
the machine precision. Therefore, the extreme relative ratios at large indices are not
representative, so we dropped them in the figure.
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2.6.3 Performance
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Figure 2.14: In the performance figures, GFlops = w is observed for different

matrix sizes and rg values. In this figure, each row illustrates a different test case, whereas
each column represents a different generation rank. Here, we applied the stopping criterion
within the compression methods.

In this section, we observe the performance results of the generated matrices that are
explained in Section 2.6.1. In Figure 2.14, each test case is observed with different matrix
sizes and different generation ranks.

In the figure, every grid row shows a different test case, while the columns stand for
different generation ranks. The y-axis of the figures stands for G Flops = w. Here,
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t (in seconds) represents the time to compress the matrix with the compression rank r for
each method, whereas MinG F'lop stands for the minimum number of GFlop to compress
the matrix of size n x n and rank r. We compute it as

MinGFlop = GFlopgeqrr(n,r) + GFlopuynmor(n,n —r,r) + GFlopunaor(n,7,7).

Here, the GEQRF, UNMQ@R and UNGQR names are adopted from LAPACK. The
GFlopgegrr(n,r) represents the number of flops to perform a QR factorization on a
n x r matrix. GFlopynmgr(n,n —r,r) stands for the flops to apply the @ to the V part
of size r x n of the approximation. Finally, GFlopyncor(n,r,r) represents the number of
flops required to generate the final n x r matrix U from the () matrix in the Householder
form.

As seen in Figure 2.14, TQRCP has closer flops to the minimal flops and has always the
best performance (up to 20 GFlops) for large matrix sizes, which proves the effectiveness
of the left-looking approach in sequential environments.

On average, QRCP reaches the second best performance in the figures, as expected,
while it has even the best performance for small matrix sizes. This is an interesting
result since the randomization technique in RQRCP was introduced to increase the
performance of QRCP by reducing the slow memory passes. However, since the tests
run in sequential with matrix dimensions lower than 3500 and RQRCP introduces more
computational complexity compared to QRCP, it is not an unexpected result. If the
experiments were performed in a parallel environment for larger matrices, RQRCP would
have better performance than QRCP.

As expected, RQRRT has the worst performance compared to other QR variants
because of its high complexity. However, SVD has the worst performance overall since no
matter which stopping criterion is used, this method should apply the full decomposition
to be able to determine the compression rank.

The important point in the figures is that the QRCP method has a better performance
than TQRCP for small matrix sizes, as mentioned before. However, for the larger sizes
TQRCP is the best. Therefore, tuning the methods according to the matrix size is also
important since there is not an absolute best method.

Another important point is that in the stability section, we have seen that for the
test cases, all the compression ranks are close to the generation rank, except for the
Z-shape-short case. This causes a significant performance reduction for all the methods
through this test case. Especially, for the small ranks, the performance loss is very critical
for the Z-shape-short case. However, we can also observe that even if the performance is
reduced significantly, the performance order of the methods is still the same as the other
test cases, which shows a consistency among all the figures.

2.6.4 Compression ranks

In this section, we observe the compression rank comparison of the methods for the
five generated matrices we introduced. In Figure 2.15 and Figure 2.16, the relative rank
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stopping criterion is applied in the compression methods.
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with respect to SVDF, TSVTDF, is observed for different matrix sizes.

As expected, all the methods reach to the generation rank for the k-rank case. On
the other hand, for the Z-shape-short and S-shape-short cases, the rank differences are
higher since these cases have large trailing matrix norms after the generation rank as
observed in Figures 2.10 and 2.11, respectively. That is, they are more challenging for our
numerical stopping criterion, which uses the Frobenius norm of the trailing matrix. As
these test cases result in more rank differences than other cases, we show them separately
in Figure 2.16.

In the figures, the lowest possible ranks are reached by SVD2 since it uses a more strict
stopping criterion than the ones that adopt the Frobenius norm of the trailing matrix.

As the rank differences are higher for the tricky case Z-shape-short, we can easily
observe that RQRCP and TQRCP reach closer results to SVD2 compared to all other
methods (including SVDF). This is caused by the higher residual norm differences within
the panels for RQRCP and TQRCP as seen in Figure 2.12. The high residual norm
differences can be related with the stopping criterion used in RQRCP and TQRCP, which
is based on a sample matrix, whereas other methods use the original matrix norms to
terminate. In addition, this difference can be related to the accumulated round-off effects
of small numbers. It is also interesting to observe that the round-off effects of small
numbers lead RQRRT to not always reach to the closest results to SVDF. However, as we
will observe in Figure 2.17, all the methods provide a good accuracy since we work with
fixed precision.

2.6.5 Accuracy

In this section, we observe the accuracy of the compression methods through our
AUV, ||F

A for different matrix

numerical stopping criterion. In Figure 2.17, the error,
sizes and rq values is observed.

As seen in the figure, since for the k-rank case it is very trivial to reach to the generation
rank, there is no observable error difference between the compression methods.

In the previous section, we observed that RQRCP and TQRCP tend to have smaller
ranks than QRCP. Therefore, in Figure 2.17, they tend to have more data in the trailing
matrix after the compression. Similarly, since SVD2 finds the smallest ranks in general,
the data in the trailing matrix (error) tends to be more than the other methods.

When tackling very small numbers through the stopping criterion within the RQRRT
method, the resulting round-off errors can slightly affect the approximation rank and error.
As observed in the figure, this does not even cause one digit accuracy changes for this
method, since our numerical stopping criterion guarantees a good accuracy. Therefore,
we do not observe a noteworthy accuracy difference between the compression methods.
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methods.
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2.7 Experiments on real-life case matrices

In this section, we compare the compression methods through 810 real-life case
matrices. These matrices are downloaded from https://sparse.tamu.edu/ with the
criteria that their row and column dimensions are less than 2000. Among them, there are
802 matrices with real data and 8 matrices with complex data. There are both square
and rectangular matrices. That is why, in this section, the matrix dimensions are noted
as m x n instead of n x n.

Since our stopping criterion ensures a good accuracy, as we observed on the generated
matrices, we only present the performance and obtained rank results in this section. In
addition, we only provide the SVDF method results (not SVD2) as a reference, since our
main point is to compare the QR variants, which use the Frobenius norm of the residuals
in the stopping criterion. Note that, in this section, we use the same experimental settings
as in Section 2.6.
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Figure 2.18: Time profiles of the real-life case test matrices. The x-axis ratios are
computed as tc“’“””t for each method, while the y-axis stands for each matrix as a number
from 1 to 810. Here the x-axis is in logarithmic scale for the sake of clarity of the figure.

In Figure 2.18, we observe the time ratio, tcgrfe”t, of each method for all matrices. In

min

this time profile, a method is better on average, if its curve is closer to the line y = 1.
As expected, SVDF is the slowest method for all the cases, where RQRRT is the slowest
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QR variant for most of the matrices. For some very small cases, we cannot observe the
expected method performances, since advantages of the methods cannot be exploited at
these levels. Tt is interesting to observe that QRCP is the fastest method for the majority
of matrices, while TQRCP is the second fastest method. The reason for this is that the
real-life case matrices we used are mostly small matrices. In Section 2.6.3, we observed
that TQRCP is advantageous for large matrices, so this is an expected result. RQRCP
never runs as the fastest method in these experiments. As we do not use large enough
matrices to benefit from this method, as well as we work in a sequential environment, this
method is not promising in our context.
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Figure 2.19: Zoomed obtained rank profiles of the real-life case test matrices. The x-axis
ratios are computed as ”;;—Ti"t for each method, while y-axis represents each matrix as a
number from 650 to 810. The y-axis values (from 0 to 649) are omitted to zoom the figure
since the methods get very close results at this interval.

In Figure 2.19, we observe the compression rank ratio, *zt of each method for
some of the 810 matrices. This figure is a zoomed version of the g}niginal one in a way that
it only stands for 160 matrices, which have observable difference in the figure. That is,
it shows the top-most part (y-axis from 650 to 810) of the original figure. The previous
y-axis values (from 0 to 649) are omitted in the figure as the methods obtain similar
results at this interval.

In Figure 2.19, the values of RQRCP and TQRCP intersect, so RQRCP does not show
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up. Both of these methods find the lowest compression ranks for 734 cases. Supporting the
results in Section 2.6.4, even SVD finds larger ranks compared to RQRCP and TQRCP
for 140 matrices because of the sample matrix based stopping criterion. Thus, RQRCP
and TQRCP seem to be the most promising compression methods to find the lowest
ranks possible. Considering also the performance profiles results, TQRCP seems to be
better than RQRCP in sequential environments (for the matrices with dimensions less
than 2000). That is, TQRCP does not only obtain the lowest ranks possible, but this
left-looking method also compresses all the matrices faster than RQRCP (see Figure 2.18).

We can compare the quality of using a rotation matrix or a permutation matrix through
QRCP and RQRRT. As both use a stopping criterion through the original matrix, the
figure proves that RQRRT slightly improves the obtained ranks by getting closer to SVD.
However, taking the performance results into account, we do not get good enough trade-off
between rank and performance, in our context, through RQRRT. QRCP seems to be the
least promising method to find the minimal rank. However, it is worth noting that the
rank differences between the methods are not important for most of the matrices. Thus,
QRCP is still promising for the small matrices, thanks to its performance.

To conclude, as good accuracy is ensured by our stopping criterion, we need to mostly
focus on the obtained rank and performance results. Then, QRCP and TQRCP seem to be
the most promising compression methods for us. Tuning between these methods according
to the matrix size and the compressibility of the matrix (if known) can contribute to
minimize the total time of the compression process, as well as the compression rank.

2.8 Discussions

In this chapter, we study and compare four different stable QR decomposition
techniques, which aim to be fast alternatives to SVD when compressing dense matrices.

The most basic QR version is a panel-wise right-looking QRCP method. The second
one is the randomized version of the QRCP method, so it is called randomized QRCP
(RQRCP). It aims to avoid the costly data movements for large matrices when computing
the column norms during the pivoting. Here, we adopt a version, where the resampling
is avoided thanks to a cheaper sample matrix update formula. The third method is the
left-looking version of the RQRCP method, which is called truncated randomized QRCP
(TQRCP). This method reduce the computational complexity by eliminating expensive
full trailing matrix updates at each iteration. Therefore, in a sequential environment, this
method is the cheapest one especially for large matrices with low ranks. The last method
we study is a rotational version of RQRCP. Here, we use a rotation matrix instead of
column pivoting, so that we can better approximate SVD.

All the studied methods in this chapter are existing methods. However, we implement
them in a similar fashion for a better comparison. In addition, we determine the
compression ranks through our numerical stopping criterion at a given precision. This
stopping criterion was never used for two of the studied methods, namely TQRCP and
RQRRT. We conduct all the experiments in the framework of the PASTIX sparse direct
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solver, and as a matter of interest, we observe the methods in a sequential environment.

In our experiments, we show that all the methods are accurate thanks to the nature of
our numerical stopping criterion. Thus, we mostly focus on the performance and obtained
rank results.

We observe that the obtained ranks for the RQRCP and TQRCP methods might
be even better than SVDF thanks to the sample matrix based stopping criterion, while
still satisfying the accuracy requirement. As TQRCP method also outperforms other
methods for larger matrices, it is the best method for these matrix sizes in a sequential
environment. We should keep in mind that all the compression methods obtain close
ranks for the majority of the matrices. Therefore, performance results determine the best
method for small matrices, which is QRCP. Then, tuning between QRCP and TQRCP is
necessary according to the block sizes we use in our solver.

The QRCP method has more performance than RQRCP even for the largest matrices
we used. Therefore, RQRCP is not an advantageous method for us. Nonetheless, it is still
a promising method in other contexts. Here, we could not benefit from this compression
method as all the experiments are in sequential and our matrix sizes might not be large
enough to exploit it.
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Chapter 3

Block Low-Rank Clustering

As explained in Section 1.2, direct solvers became more promising for large systems
after the introduction of the low-rank representations. Thanks to these representations,
the time-to-solution and memory footprint of these robust solvers can be highly reduced.
Among the low-rank representations, some consider the full problem and extract the
sparsity of the whole matrix from the low-rank representation, while others, like the block
low-rank (BLR) representation, compress the dense blocks of the solver independently.
In this work, we focus on improving the latter. More specifically, this chapter focuses on
improving low-rank supernodal direct solvers for sparse systems in two different aspects.

Firstly, determining which blocks to compress and when to do it is an important
problem for these solvers to be time efficient while benefiting from the lower memory
consumption offered by the low-rank techniques. Therefore, we want to find a suitable
admissibility criterion to offer an intermediate solution between the existing strategies
that we explained in Section 1.4. For this purpose, we gather the poorly compressible
blocks together by using the graph information. That is, we do not identify the existing
uncompressible blocks. Instead, the identification is done through the reordering of
the separator unknowns in a specific way to collect the uncompressible data together.
Then, our target is to compress the highly compressible blocks at initialization (like
Minimal Memory scenario) to improve the memory footprint, while compressing the
poorly compressible ones on the fly (like Just-In-Time scenario) to reduce the flops
overhead of the solver with a controlled memory overhead compared to Minimal Memory.

Secondly, as explained in 1.1.1, sparse direct solvers need to adopt an ordering
strategy which ensures a good sparse structure. However, introduction of the low-rank
representations into these solvers made the ordering problem more challenging. In the
low-rank solvers, reordering the unknowns to improve the compressiblity can degrade the
sparse structure. Therefore, in this chapter we offer an ordering (and clustering) method
of the unknowns to improve both the sparse structure and compressibility of the matrix.

Before starting to explain our solutions, we provide the necessary notations and
background of this chapter in Section 3.1. In Section 3.2, we mention the related work
on the matrix ordering problem. In Section 3.3, we introduce and detail the Projection
heuristic [Pic18], which is our starting point to solve the two problems in this chapter. In
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Section 3.4, we explain our improvements on this heuristic. In Section 3.5, we discuss on
the experimental results and we conclude the chapter in Section 3.6.

3.1 Background

In this section, we recall the necessary background information on the matrix ordering
problem. Ordering heuristics impact many aspects of the sparse low-rank direct solvers
such as the fill-in amount, the sparse structure, the compressibility or the parallelism. In
order to improve all these features at the same time, we need to take advantage of several
techniques. As mentioned in Section 1.1.1, we adopt the nested dissection method as the
coarse level ordering, since this method reduces the fill-in and provides a good parallelism
by its nature. Let us explain this recursive method in more detail.

The nested dissection is illustrated on a very simple example in Figure 3.1. Here, two
levels of nested dissection procedure are applied on a regular cube (on the left). This
method first splits the cube into two balanced parts through the first level separator (in
grey). Note that the size of the separator should be as small as possible to minimize the
fill-in. When this separator is ordered with the largest number in the elimination tree, it
ensures that there is no fill-in between both sub-parts. Afterward, the resulting separated
parts are also divided into two sub-parts through the second level separators (in green and
red), in the same fashion. On the right part of Figure 3.1, we see the first level separator
graph (in grey), where the nodes that interact with the second level separators (called
traces) are colored in red and green, similarly to the left-most figure. Let us remind that
both the sub-parts and the separators, which are obtained through the nested dissection
algorithm, are called supernodes.

In practice, the nested dissection algorithm is applied recursively until the sub-parts
are small enough to perform a local ordering heuristic on each of them. This local ordering
can be applied for improving both the compressibility and the sparse structure at the same
time. However, finding such an ordering is difficult.

In [PFRR17], it has been shown that permutation within each separator can be applied
without impacting the fill-in ratio produced by the nested dissection. Indeed, all sparse
direct solvers consider the separator blocks originated from this heuristic as dense. We
rely on this property to study ordering heuristics within each separator. Before providing
more details about the reordering (and clustering) techniques for the separators, let us
introduce some important notations for the remainder of the chapter.

As we mentioned in Section 1.1.3, the numerical factorization is performed, in a
panel-wise fashion, in three steps: factorize, solve, update. In this respect, let us represent
a symmetric matrix to be factorized, A, in a block form as

A A
A= : 3.1
(A21 Az (3.1
where Ajs illustrates the first level separator, while A;; stands for all the other
unknowns. A and Ay are the coupling parts, which represent the interactions between



3.1. BACKGROUND 69

Figure 3.1: Two level nested dissection on a regular cube. On the left figure, the first
level grey separator and the second level red and green separators are represented. On
the right figure, the graph of the first level grey separator is shown. The red and green
nodes in the right figure represent the second level red and green separator traces on the
grey separator.

A1 and Agy. Using this representation, we can define the factorization steps as
1. POTRF(Ay)
e This step factorizes the matrix Aqq
. TRSM(AH, Agl)
e This step solves the blocks in A5 and Ay
. HERK(AQ:L, AQQ)
e This step updates Ay
. POTRF(As)
e This step factorizes the matrix Ay
In the following sections, we will focus on reducing both the HERK (A, Asy) and the
POTRF(Ay) operation costs through sparse structure and compressibility improvements.
For the sake of simplicity, we will explain the reordering methods only on the first
level separator, although it can be applied recursively at each level of the nested
dissection. Now let us explain the necessary information on two promising ordering and
clustering techniques: K-Way clustering in Section 3.1.1 and Traveling Salesman Problem
(TSP) [ABCCO6] based clustering in Section 3.1.2. Note that the corresponding related
work on these two methods are detailed in Section 3.2.

[\]

w

e~

3.1.1 K-Way clustering

As mentioned before, in the sparse supernodal solvers, the clustering techniques can be
performed on the separators without changing the fill-in. Performing the K-Way clustering
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on a separator aims to improve its compressibility, so that the POTRF (Ag,) cost can be
reduced.

(b) The regular clustering of the first
(a) Symbolic factorization separator

Figure 3.2: 8 x 8 x 8 Laplacian partitioned using SCOTCH and K-Way clustering on the
first separator. The figure on the left stands for the symbolic factorization structure. In
the zoomed figure, the total update count on each block of the first separator (Ag) is
represented. The graph on the right shows the clustering of the unknowns inside the first
separator.

Let us explain the K-Way clustering through Figure 3.2. In the figure, we see the
symbolic factorization (on the left) and the corresponding first separator graph (on the
right) of an 8 x 8 x 8 Laplacian, which is partitioned by ScoTcH [Pel08]. Here, the
K-Way clustering is performed on the first separator, resulting in four clusters that are
represented in four different colors. The zoomed part in Figure 3.2a shows the number of
external updates on each corresponding block.

As we can see in Figure 3.2b, the clusters consist of close nodes of the graph and
the number of neighbor clusters is minimized. From now on, we will call this kind of
clustering as reqular. Having a regular clustering reduces the interaction of clusters, so it
improves the compressibility of the interaction blocks. However, as the sparse structure
of the sparse matrix is not considered in this method, the total number of updates on
each block (seen in the zoomed part of Figure 3.2a) is high, increasing the HERK( Ay,
Ags) cost.

3.1.2 TSP based clustering

For improving the sparse structure in the solver, a separator clustering method which
gathers similar contributions together should be used. In this respect, we adopt the TSP
based reordering strategy to cluster the unknowns as in [PFRR17]. From now on, for
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the sake of simplicity, we abbreviate this clustering as the TSP method. The aim of this
method is to reduce the total number of off-diagonal blocks of the coupling matrix by
gathering them together, which in return reduces the total number of updates. Note that
this refers to the improvement of the HERK( Ay, Asy) step.

(b) The irregular clustering of the first
(a) Symbolic factorization separator

Figure 3.3: 8 x 8 x 8 Laplacian partitioned using SCOTCH and reordering with smart
splitting on the first separator. The figure on the left stands for the symbolic factorization
structure. On the zoomed figure, the total update count on each block of the first separator
(Asp) is represented. The graph on the right shows the clustering of the unknowns inside
the first separator.

In Figure 3.3, we see the same information as Figure 3.2. However, in this figure,
the separator clusters are generated by the TSP method. In Figure 3.3a, Ay has a
better sparse structure (dense parts stay continuously, not spread into smaller ones),
so that the total number of updates on each separator block in the zoomed figure is
reduced compared to the K-Way clustering. Therefore, the efficiency of the HERK( Ay,
Agy) step is improved. Moreover, since fewer and larger blocks in the coupling part
might increase the compressibility of As;, this method can further improve the memory
footprint and computational complexity of the low-rank operations. However, as we can
see in Figure 3.3b, compared to K-Way, the separator clustering is more irregular in a way
that each color (cluster) is spread over the graph. Thus, clusters have more neighbors and
larger diameters. This results in stronger cluster interactions, which reduces the separator
compressibility and increases the POTRF(Agy) cost.

As we can see, neither the K-Way nor the TSP method provides an optimal solution.
Therefore, benefiting both of these methods can lower the POTRF(As;) and HERK(Ay;,
Ag) costs at the same time.
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3.2 Related work

The related work on the low-rank solvers can be found in Chapter 1. In this section,
we only discuss the literature on the clustering techniques.

In the dense low-rank solvers, the clustering aims to improve the compressibility.
However, in the sparse case, in addition to the compressibility, having large enough data
for the block operations is also crucial. It allows to exploit the modern architectures for
a better performance. Therefore, finding an optimal clustering for the sparse low-rank
solvers is a harder problem compared to the dense case.

In [RCL*18], the authors explore some ordering techniques for hierarchical solver
efficiency through the STRUMPACK solver. Here, they use the geometry of the problems
to obtain the cluster trees. Although, they show a huge improvement in the compressibility
rate compared to the dense solver, this work is not easily extendable to our context as we
work algebraically without depending on the geometry of the problems.

In [Beb08], spectral bisection based sparse matrix clustering is proposed, as well as
offering the nested dissection for the low-rank clustering. The author also demonstrates
the block admissibility in his work. In our context, using graph partitioning techniques on
separator graphs is a similar idea to this work since we focus on the separator clustering.

In [YLRBI17], an algebraic dense matrix clustering is proposed. For this purpose, the
authors use a result from reproducing kernel Hilbert space theory in [HSS08]|. According
to this result, any SPD matrix corresponds to a Gram matrix of vectors in an unknown
Gram space. As a result, they define their distances by using the matrix entries as inner
products. By using these distances they generate a balanced cluster tree, where they
avoid computing all the distances through sampling since it is costly for dense matrices.

The K-Way clustering is a classical low-rank clustering method to cluster the fronts
or separators in sparse solvers. It is an extension from dense low-rank solvers, where it
successfully improves the compressibility. The main idea of this clustering is to choose
the diameter of the clusters as small as possible, and minimize the total number of
cluster neighbors. In this way, the nodes with strong interactions are gathered together
and the cluster interactions are minimized through a regular clustering. As a result,
the cluster interaction blocks are more compressible, which in return improves the
time-to-solution and memory footprint of the solver. In MumMPs [AABT15, ABLM19b]
and STRUMPACK [GLR"16, GLGR17], this clustering is adopted on the fronts. In our
context, we perform it on the separators. Note that the K-Way clustering requires a
connected graph, but fronts or separators are not always connected. Therefore, it is
applied in two steps. Firstly, the vertices of the fronts or separators are reconnected with
a halo distance 1 or 2 for obtaining a connected graph. Then, the K-Way clustering can be
applied through partitioning libraries like METIS [KK97b| or ScoTcH [Pel08]. Although,
this method provides compressible separators, it fails to provide a good sparse structure.
In addition, large number of small off-diagonal blocks in this method may degrade the
compressibility of the coupling part.

Let us emphasize that having large enough data sizes within the sparse solvers is very
important. Methods like Reverse Cuthill-McKee (RCM) [GL81] are widely used to reduce
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the number of off-diagonal blocks in the column blocks. However, this approach only
considers the intra-supernode interactions, without taking the contributing supernodes
into account. Therefore, we adopt the reordering method in [PFRR17|, where the
authors convert the optimization problem of minimizing off-diagonal blocks number into
the traveling salesman problem (TSP). This method provides a good sparse structure
in the coupling part by gathering the similar contributions together. In this method,
the clustering, following the TSP based unknown reordering, is obtained by using the
smart splitting as in [Lac15]. This smart splitting does not use strictly fixed size clusters
in order to decrease the total number of off-diagonal blocks. Note that although the
TSP method in [PFRR17] is more suitable to be parallelized, in [JNP21] this method
is improved to highly reduce its cost. The authors improve it by reducing the size of
TSP and providing a more efficient way of computing the TSP distances. However, even
though the TSP reordering provides a good sparse structure, it does not take into account
the compressibility of the separator As,.

To conclude, the K-Way and TSP methods are promising for the sparse solver
separator clustering in different perspectives. In order to obtain an optimal solution
in terms of both compressibility and sparse structure, we can take advantage of these two
methods at the same time. In our work, we propose to improve the Projection heuristic
(see Section 3.3), which profits from both of these methods and gathers the uncompressible
blocks together.

3.3 Projection heuristic

In Sections 3.1.1 and 3.1.2, the existing K-Way and TSP clustering methods and their
aims are explained. In this section, we study the Projection heuristic introduced in [Pic18],
which is the main focus in our work. This heuristic targets to improve both compressibility
and sparse structure at the same time to outperform the existing clustering methods. In
addition, it aims to determine the strong interaction blocks through the adjacency graph,
which are poorly compressible. Let us start explaining this heuristic step by step.

3.3.1 Determining the traces

In this step, the vertices of the separator are ordered according to the set of
contributions on them, which comes from the closest children in the elimination tree.

In Figure 3.4, we see a generic separator as an example. The figure illustrates the
interactions of two levels of the closest children on this separator. These interactions
represent the traces on the separator, which are resulted from the nested dissection (see
Section 3.1). These traces are colored in red for the first level children, while they are in
green for the second level children. There are two red traces from the first level children,
and four traces from the second level ones. Each pair results in a chromosome shape, as
seen in the figure.

In this step, firstly, the trace vertices (preselected vertices that represent the nodes
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Figure 3.4: A generic separator with two levels of traces represented on it. First level
separators are in red, while the second level separators are in green. There are two red
traces from the first level children, and four traces from the second level ones. Each pair
separator leads to a chromosome shape. Small node groups (in grey) appear between the
separators.

belonging to the traces in the separator graph) are determined and ordered together.
The remaining vertices are in several well-separated groups, called connected components
(grey and yellow color in the figure). Each isolated connected component gets the same
set of contributions from the two levels of children considered in the elimination tree, so
that they have identical sparsity pattern.

Note that the connected components which have a smaller size than a given threshold
(grey color in Figure 3.4) are gathered together to be large enough with respect to the
minimal compressibility size. This component made out of the small ones is called as the
remainder component.

Gathering the preselected vertices together and isolating the connected components
provides two main benefits. Firstly, it leads to a suitable clustering for the connected
components, since it increases the distance between them. Thus, the compressibility of
their interactions is improved. Secondly, the preselected vertices have strong interactions.
Therefore, the blocks that represent their interactions are poorly compressible, and are
identified as uncompressible within the Projection heuristic. Let us emphasize that the
uncompressible blocks in our context do not represent only the uncompressible blocks but
also the poorly compressible blocks for the sake of simplicity.
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At the end of this step, representing our separator as

Apr Ags

A22 B (Ask Ass) (32)
the preselected vertices are ordered in A,, and others are ordered in A,,. Here, the
only compressible part is Ay, while others are defined as uncompressible. In addition,
the sub-diagonal blocks represent the connection of two consecutive column blocks.
Therefore, they are also considered as uncompressible since they have a high probability
of having strong interactions. Note that the blocks with small sizes are considered to be
non-admissible for low-rank compression, due to their low impact. From now on, all the
small blocks and the dense diagonal blocks are automatically defined as non-admissible

and never compressed to avoid unnecessary compression.

3.3.2 K-Way and TSP methods within the Projection heuristic

Initially at this step of the heuristic, there are a few large connected components, the
traces and the remainder component. In order to reduce the size of the diagonal blocks,
a clustering method is applied on each of them.

Each large connected component is clustered through the K-Way method to increase
compressibility of the cluster interaction blocks. However, as the traces are considered to
have strong interactions, K-Way is not performed on them. They are clustered through
the TSP method to improve the sparse structure. The remainder component is also
clustered through the irreqular TSP method since it consists of small components that
are already split in the graph.

Note that each connected component cluster (obtained through the K-Way
partitioning) is further reordered through the TSP method. Here, the TSP method only
serves as a reordering method to improve the sparse structure at the cluster level, without
splitting the unknowns into different clusters. Now let us continue with some important
implementation details of this heuristic.

3.3.3 Implementation details

As seen in Algorithm 9, at the beginning, the separator graph is isolated from the
original one with the function ObtainSubgraph( C' ). This routine generates direct
connections at a distance 2 from the original graph to obtain the connected separator
graph.

In the function ComputeTraces( C, [, d, w ), the traces are determined by checking
each vertex of the separator. It is applied in two steps. Firstly, for each separator vertex,
it checks the direct connections with the children for each depth level (less than or equal
to [). If there is a distance less than or equal to d between them, this vertex is preselected.
After preselecting these vertices, the vertices inside the separator, which have distance
less than or equal to w to a preselected vertex, are also set as preselected.
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Algorithm 9 Clustering and ordering the unknowns within the separator C' in the original
heuristic.

1: function ORIGINALPROJECTION(C, [, d, w)

2: ObtainSubgraph( C')

3: ComputeTraces( C, [, d, w )

4: IsolateConnectedComponents( C' )

5: for each connected component C; do
6: if |C;| < threshold then

7: Merge C; into the remainder component
8: else

9: K-Way ( blocksize, C; )

10: for each K-Way cluster K; do
11: TSP( K;)

12: TSP( traces )

13: TSP( remainder component )

In the function IsolateConnectedComponents( C' ), the connected components of the
separator are isolated. It applies Breadth-First Search (BFS) algorithm before visiting
each vertex one time. Every time this algorithm stops before all the vertices are visited,
it means that another connected component is generated.

In the connected components loop, the small connected components are all merged
together. Therefore, at the end of the loop, the large remainder component can be
clustered through the TSP method. On the other hand, each large connected component
is firstly clustered through the K-Way procedure, which is followed by a TSP based
reordering at the cluster level. Finally, the TSP method is applied on the traces to
improve the sparse structure.

In practice three main parameters are used to choose the preselected vertices:
Projection depth, Projection distance, Projection width.

Projection depth, [, specifies how many levels of children should be considered to
determine the traces on the separator. If this parameter is set to [, 2* children in the
elimination tree are used to determine the contributions on the vertices. Therefore, this
parameter affects the number of traces. If [ is too large, there will be a lot of small
connected components and it will reduce the compressibility. Thus, it should be chosen
small.

Projection distance, d, specifies the distance of the vertices, from a child to a separator,
to be considered as part of the projection. Therefore, it affects the width of the traces.
As d is getting larger, the number of preselected vertices will grow because more vertices
are accepted as part of the projection.

Projection width, w, is used for widening the traces after their computation. The aim
of this parameter is to get a better compressibility of the clusters on each side of the
traces by better isolating them.

These parameters should be chosen carefully. That is, the blocks should be compressed
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as much as possible and there should be large enough connected components for further
clustering. Therefore, small parameters should be adopted to reduce the number of
preselected vertices and have large connected components. On the other hand, if the
traces are not sufficiently large or if there are not enough number of traces, there will not
be large number of well-separated connected components. In this case, the Projection
heuristic cannot be exploited sufficiently.

In this heuristic, the preselected vertices are accumulated from the children, level
by level (from the closest children to the farthest), based on the Projection depth (I)
parameter. For a separator of size n, if the preselected vertices are more than ©(y/n),
the preselection terminates. Thanks to this stopping criterion, the risk of preselecting
too many vertices is eliminated. In addition, let us represent the blocking size by b.
The Projection heuristic is only applied on separators larger than size 166 to sufficiently
benefit from it.

It is important to emphasize that the separators, which are obtained with the
partitioning tools, are not always connected. That is why, in practice the separator
graph is reconnected, using a distance 1 or 2, to allow the K-Way clustering on it. We
adopt a distance of 2 for being safe, although in [AABT15] it is shown that a distance of
1 is enough for most of the graphs.

3.3.4 Discussions on the Projection heuristic

In the original work [Pic18], the author shows that the Projection heuristic can reach
a 10% time improvement with only a 5% memory overhead compared to the existing
K-Way method for the Minimal Memory strategy. However, the original heuristic is not
optimal and can be improved. In this respect, we want to both validate the admissibility
criterion and increase the performance.

In this chapter, one of our main focus is to empirically validate the admissibility
criterion in the Projection heuristic. In Figure 3.5, we have three scenarios to identify
the poorly compressible blocks. Here, pink color represents the preselected blocks. These
blocks show the interaction with the preselected nodes. Therefore, they should be poorly
compressible. Black color stands for the sub-diagonal blocks. As the sub-diagonal blocks
represent two consecutive blocks in the matrix, they are possibly poorly compressible
because these blocks represent close distances in the graph. Pink and black blocks are our
interest in terms of compressibility. Brown color illustrates the preselected node cluster
blocks. As seen in the figure, according to the number of preselected nodes and the
blocking size, the preselected nodes can be split into different clusters. Blue color shows
the diagonal blocks of the non-preselected node clusters, while the yellow color stands for
all the remaining blocks.

In the left-most scenario, all off-diagonal blocks are considered compressible. In
the middle figure, the sub-diagonals are considered as poorly compressible, while in
the right-most one, both the sub-diagonals and the preselected blocks are identified as
poorly compressible. By comparing these three scenario results, we want to validate
the hypothesis on determining the poorly compressible blocks. In addition, we want



78 CHAPTER 3. BLOCK LOW-RANK CLUSTERING

Figure 3.5: Three different scenarios to identify the poorly compressible blocks. Pink
color represents the preselected blocks, which are the interaction with the preselected
nodes. Brown color illustrates the preselected node cluster blocks. Black color stands for
the sub-diagonal blocks. Blue color shows the diagonal blocks of the non-preselected node
clusters, while the yellow color is for all the remaining blocks. In the left-most scenario all
the off-diagonal blocks are compressed, while in the middle figure the sub-diagonal blocks
are kept in full-rank. In the right-most scenario both the sub-diagonal and preselected
blocks are represented in full rank.

to experimentally prove that compressing the uncompressible blocks on the fly highly
improves the computational complexity. After this empirical validation step, we are
interested in improving the heuristic in two ways.

Firstly, improving the compressibility of the uncompressible blocks is important when
they are compressed on the fly. It reduces the computational complexity of the update
operations where they contribute in a low-rank form. In addition, in PASTIX, the
blocks which are less compressible than a threshold are not compressed, because of
their low impact. If we improve the compressibility of the uncompressible blocks, larger
number of blocks are compressed as more blocks are eligible according to this threshold.
Therefore, the resulting low-rank contributions improve the computational complexity of
the operations. Thus, we propose to apply K-Way clustering on the traces for a better flops
overhead of the solver. However, note that this improvement does not improve the memory
peak since the uncompressible blocks are still allocated in full-rank at initialization.

Secondly, as the small components are not necessarily close in the graph, merging
them together degrades the separator compressibility, and therefore the computational
complexity. Therefore, we propose to eliminate the remainder component and merge
them with their neighbors in the graph.

To conclude, our aim is to introduce more reqular clusters in the Projection heuristic.
In this way, we primarily expect to improve the computational complexity of factorization.

3.4 Improving the Projection heuristic

In the previous section, we discussed our motivation to change the original Projection
heuristic in a way to have more regular separator clusters. In this section, we give the
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(a) TSP method applied on (b) K-Way method applied
the separator on the separator

(c) Traces in the Projection (d) Final separator (e) Final separator
heuristic before clustering clustering in the original clustering in our improved
of the traces Projection heuristic Projection heuristic

Figure 3.6: The first separator graphs of a 120 x 120 x 120 Laplacian matrix. For the
Projection heuristic, the distance and width parameters are set to 2 and 1, respectively.
We can see two traces from the two children of the first depth level.

details of our changes on this heuristic. However, let us start by a quick comparison of all
the clustering techniques that we study in this chapter. In Figure 3.6, we observe clusters
on the first separator graphs of a 120 x 120 x 120 Laplacian matrix with the proposed
solutions.

In Figure 3.6a, we observe the TSP method on the whole separator. As we explained
before, this method fails to cluster nicely the vertices. All clusters are spread and
interleaved in the graph. Although, the outside contributions are gathered together to
reduce the total number of updates, the internal clustering of the separator is not suitable
to increase its compressibility.

In Figure 3.6b, we see the K-Way clustering on the whole separator, where the
separator is clustered regularly to improve its compressibility. Note that in this clustering,
each cluster is reordered through TSP at the cluster level to improve the sparse structure
of the external contribution. Although the separator compressibility is better compared
to Figure 3.6a, the cluster-wise TSP based reordering cannot reach a sparse structure as
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good as the separator-wise reordering. However, this strategy greatly reduces the cost of
the TSP based reordering by applying it to smaller clusters.

Last three figures stand for the Projection heuristic. In Figure 3.6¢, we see the heuristic
before applying clustering on the traces. Here, the Projection distance and width are set
to 2 and 1, respectively. We can see the two first level traces on the separator (in red). The
well-separated connected components are regularly clustered through the K-Way method.
In Figure 3.6d, we see the same graph after TSP method is applied on each cluster and
trace in the original heuristic. As the connected components are clustered before the
reordering method, their regular clustering is not affected. On the other hand, as the
trace clusters are obtained through the TSP method, their interaction compressibility is
degraded.

Finally, in Figure 3.6e, we see our improved clustering. After Figure 3.6¢ is obtained
similarly to the original heuristic, we merge the small connected components with their
neighbors, as well as applying K-Way clustering on the traces. Following this step,
the TSP based reordering is still applied on all the regular clusters to refine the sparse
structure. Observe that our improved clustering is almost as regular as K-Way method,
with an advantage of gathering (identifying) the high interaction nodes together.

Algorithm 10 Clustering and ordering the unknowns within the separator C' in the
improved heuristic.

1. function PROJECTION(C, [, d, w)

2: ObtainSubgraph( C')

ComputeTraces( C, I, d, w )

K-Way( blocksize, Traces )

IsolateConnectedComponents( C' )

for each connected component C; do
if |C;| < threshold then

Merge C; with one neighbor

else

10 K-Way ( blocksize, C; )

11: for each cluster K; do

12: TSP(K;)

Algorithm 10 stands for our version of the Projection heuristic. Our improvements
compared to the version [Picl8| is written in blue. Let us explain this algorithm,
comparing to the original heuristic.

We start by determining the preselected vertices and isolating the connected
components in the same way as in the original heuristic. At this point, we apply the
K-Way clustering on the traces to improve the compressibility of the trace interaction
blocks. Afterward, we isolate the connected components like in the original version.

In the connected components loop, we merge the small connected components with
their neighbor clusters, while they are all merged together through the remainder
component in the original heuristic. Therefore, we obtain more regular clusters on the
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separator, which improves the compressibility of the separator. We do it by checking all
the separator vertices. Whenever we find a neighbor vertex, we connect it to the large
component of the determined neighbor vertex. On the other hand, the large connected
components are clustered through the K-Way procedure like in the original heuristic.

At this point we apply the TSP based reordering on each cluster to improve the sparse
structure at the cluster level similarly to the original version.

3.5 Experiments

In this section, we aim to demonstrate the impact of our improvements on the
Projection heuristic. All the experiments are performed through the BLR supernodal
direct solver PASTIX [PDF 18], using the miriel nodes of the Plafrim' supercomputer.
Each miriel node is equipped with two INTEL Xeon E5-2680v3 12-cores running at 2.50
GHz and 128 GB of memory. For the time results, we use 24 threads, one per core, with
the default scheduler of the PASTIX library. The INTEL MKL 2020 is used for the BLAS
kernels. The minimum block width and height criteria to allow compression are set to
128 and 20, respectively. In the experiments, we use only LDL? and LU factorizations
according to the input matrix features. For the SPD matrices, we avoid LLT factorization
as the positive definite property can be affected by the compression.

In the experiments, we adopt the real-life matrices, which arise from a real mesh and
are given in Table 3.1. They are taken from the SuiteSparse Matrix Collection [DH11].
In addition to these matrices, we also use a Laplacian matrix of size 1203.

Let us emphasize that for the sake of simplicity, the TSP name represents the
method, where the separator clusters are obtained through the TSP based reordering
with smart splitting as in [PFRR17] to gather similar contributions together. Similarly,
the K-Way name stands for the K-Way low-rank clustering method followed by a TSP
based reordering on each resulting cluster to improve the sparse structure.

We start our experiments by proving the effectiveness of our admissibility criterion
and necessity of the late compression of the uncompressible blocks in Section 3.5.1. We
then discuss the results of our improvements on the Projection heuristic, through the
latest PASTIX version, in Section 3.5.2. Here, we observe the flops and time results on a
large set of 31 real-life case matrices. Finally, in Section 3.5.3, we compare our improved
heuristic to the existing methods.

3.5.1 Determining the block compression

As a starting point to our experiments, our first interest is to numerically validate
our admissibility criterion, as well as determining whether the poorly compressible blocks
should be compressed on the fly or not.

In Figure 3.7, the three grid columns stand for the three scenarios in Figure 3.5,
respectively. We observe the flops ratio with respect to the full-rank solver for the
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Kind Matrix Arith. Fact. N NNZy
92d/3d PFlow_ 742 d LLT 742793 18940627
! Bump_ 2911 d LLT 2911419 65320659
StocF-1465 d LLT 1465137 11235263

atmosmodl d LU 1489752 10319760

Computational fluid dynamics atmosmodd d LU 1270432 8814880
atmosmodj d LU 1270432 8814880

RMO7R d LU 381689 37464962

dielFilterV3clx z LU 420408 16653308

Electromagnetics fem_ hifreq_ circuit z LU 491100 20239237
dielFilterV2clx z LU 607232 12958252

Magnetohydrodynamics matrd d LU 485597 24233141
Materials 3Dspectralwave2 z LDLH 292008 7307376
boneS10 d LLT 914898 28191660

Model reduction CurlCurl 3 d LDLT 1219574 7382096
bone010 d LLT 986703 36326514

CurlCur] 4 d LDLT 2380515 14448191

ldoor d LL” 952203 23737339

inline_1 d LL” 503712 18660027

Flan_ 1565 d LL” 1564794 59485419

ML _ Geer d LU 1504002 110879972

audikw _ 1 d LL” 943695 39297771

Fault_ 639 d LL" 638802 14626683

Structural Hook 1498 d LL” 1498023 31207734
Transport d LU 1602111 23500731

Emilia_ 923 d LL” 923136 20964171

Geo_ 1438 d LLT 1437960 32297325

Serena d LL” 1391349 32961525

Long Coup_dt0 d LDLT 1470152 44279572

Cube_Coup_dt0 d LDLT 2164760 64685452

Queen 4147 d LL” 4147110 166823197

Table 3.1: The real-life matrices in our experiments, which are taken from the SuiteSparse
Matrix Collection.
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Cumulative flops on the last supernode for Geo_1438 w/ preselected compression for eps = 1e-8
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(a) Uncompressible blocks are compressed on the fly

Cumulative flops on the last supernode for Geo_1438 w/o preselected compression for eps = 1e-8
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(b) Uncompressible blocks are never compressed

Figure 3.7: Flops overhead with respect to the full-rank. Each grid column represents the
scenarios in Figure 3.5, respectively. Each color shows the total cost of different operations
on the first separator.

Geo 1438 matrix at 1le™® tolerance. Data reported on the graphs are only related to the
first separator. Each color represents different operation cost, while each bar stands for a
different clustering technique. The right-most configuration only changes the Projection
heuristic results as the preselected blocks, which represent the trace node interactions,
only exist in this method. For the Projection heuristic, the depth, distance and width
parameters are set to 3, 1 and 1, respectively.

Figure 3.7a stands for the scenario where the poorly compressible blocks are
compressed on the fly. Here, the left-most scenario, where all off-diagonal blocks are
compressed before any operation, is the most costly one for all the clustering techniques.
This is because of the costly LR2LR update kernels that explained in Section 1.3.
However, in the middle figure, when the poorly compressible sub-diagonal blocks are
compressed on the fly, the flops overhead of the low-rank operations is reduced. In
the right-most figure, proving the hypothesis that both the sub-diagonal blocks and the
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preselected blocks are poorly compressible, the Projection heuristic, where these blocks
are compressed on the fly, has the best computational complexity.

In Figure 3.7b, we observe the same configuration experiments, with a scenario where
the poorly compressible blocks are not compressed at all. As no block is defined as
poorly compressible in the left-most figure, the result is the same as Figure 3.7a through
this configuration. However, observing Figure 3.7a and Figure 3.7b, we can clearly see
that compressing the poorly compressible blocks on the fly reduces the computational
complexity compared to the scenario where they are not compressed at all. This
improvement comes from the cheaper low-rank contributions of the uncompressible blocks
compared to their full-rank versions.

To conclude, the Projection heuristic, where both the sub-diagonal and preselected
blocks are compressed on the fly, reduces the flops overhead on the first separator
computations compared to other clustering methods and configurations. Therefore, from
now on, we will adopt this configuration in our experiments and call this optimized version
as the OptProj heuristic.

3.5.2 Experiments on the OptProj heuristic

In this section, we compare the OptProj heuristic to the OptProj versions with our
improvements. We do so by using a large set of real-life matrices through the last version
of PASTIX. We set the Projection depth, distance and width parameters to 3, 1 and 1,
respectively.

In Figure 3.8, the left-most figures are the factorization flops profiles, whereas the
right-most figures stand for the factorization time profiles. The x-axis shows the flops and
time overhead with respect to the minimum for each matrix, respectively. A method is
better on average if its curve is closer to x = 1.

In the figure, the yellow curve stands for our OptProj heuristic, where we merged the
small connected components with their neighbors. This OptProj version with Eliminated
Remainder Component is abbreviated as OptProj++ERC. As we can see in the figures, the
flops overhead of our contribution is very close to the basic adapted heuristic (in blue).
However, in the time profiles, we can clearly see the improvement of our new heuristic
version. The reason of more time improvement compared to the flops difference is because
of the operation efficiency differences of Just-In-Time and Minimal Memory. That is, the
small components are merged with their high interaction neighbor trace clusters, so that
the uncompressible data is increased. As more data is compressed on the fly and the
Just-In-Time operations are more efficient than the Minimal Memory operations [Pic18|,
the factorization time of our heuristic is improved.

In the figure, the black curve stands for our OptProj heuristic, where we performed
K-Way on the Traces (abbreviated as OptProj+KWT). As we can see in the figures, since
our new heuristic degrades the sparse structure, it can even have worse computational
complexities compared to the basic adapted heuristic, especially at lower precisions. This
is caused by the larger number of smaller coupling matrix blocks, which are not eligible
for compression. On the other hand, this method separates the trace nodes well. Thus,
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Figure 3.8: The flops and time profiles for real-life case matrices. The y-axis represents
the number of matrices. At the left-most figures, the x-axis stands for the ratio %%W
for each matrix. Similarly, right-most figures show the relative time ratios with respecwt”%o
the minimum. OptProj+ERC stands for the OptProj method with Eliminated Remainder
Cluster. Similarly, OptProj++KWT represents the OptProj version, where K-Way is

applied on the Traces.

it avoids the interaction between these trace clusters. Then, the resulting null blocks
of the separator through the OptProj+KWT strategy allows a time improvement in the
figures, despite its computational complexities in total. In the time profiles, we can see
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that OptProj+KWT is the fastest method for one third of the matrices.

3.5.3 Comparing OptProj+ERC heuristic to the existing
solutions
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Figure 3.9: The flops/time profiles for real-life case matrices. The y-axis represents the
number of matrices. The x-axis stands for the results with respect to the optimal for each
matrix. The yellow curve stands for our OptProj heuristic with Eliminated Remainder
Component, where the small components are merged with their neighbors.
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In this section, we want to observe our contribution improvements compared to the
existing methods. We have chosen the OptProj+ERC version as the most promising
method through the Figure 3.8. Therefore, we will compare this version to the existing
methods.

Observing the flops profiles of the Figure 3.9, our OptProj+ERC method has a better
computational complexity than the existing methods on average, as we expected. As
TSP method does not provide separator compressibility, there are more operations in this
method. On the other hand, although K-Way has a good separator compressibility, our
heuristic gathers the strong interaction blocks together and does not compress them before
the factorization. In this way, our heuristic provides more compressibility ratio in the
compressible blocks, while avoiding the costly low-rank updates of the strong interaction
blocks. As a result, the OptProj-++ERC method has the best flops profile on average.

On the other hand, when we observe the time profiles, we can see the effect of the sparse
structure. The TSP method becomes more competitive in terms of factorization time,
while it still cannot be the best average method because of its high flops overhead. Tt is
interesting to observe that the OptProj+ERC heuristic is worse than the K-Way method
on average, although it has a better flops profile. The reason is that determining the trace
nodes is not trivial in practice. Choosing large enough traces to isolate the connected
components and gather all the strong interaction unknowns together is crucial. However,
when we gather the preselected vertices together, we can split the similar contribution
blocks even more compared to K-Way. As a result, the OptProj+ERC heuristic cannot
improve the average time overhead compared to the K-Way method at lower precisions.

3.6 Discussions

In this chapter, we improved the Projection heuristic [Pic18] to outperform the existing
K-Way and TSP methods. The K-Way strategy provides regular clusters, where the
close nodes of the graph are gathered together. This kind of clustering improves the
compressibility of the separator cluster interaction blocks, which reduces the POTRF (Ays)
cost. However, it does not provide large enough data sizes to take advantage of the
underlying architectures. On the other hand, the TSP method can obtain fewer and larger
off-diagonal blocks by gathering similar contributions together. As a result, it reduces the
HERK(Ag;, Ag) cost. Although this method provides a good sparse structure, it does
not improve the separator compressibility.

The Projection heuristic is proposed to get advantage of these two methods in an
optimal way and provide an efficient admissibility criterion for the solver. In this heuristic
firstly the strong interaction nodes are gathered (preselected) together to be able to
determine the poorly compressible blocks. As they are uncompressible, the corresponding
nodes are clustered through the TSP method to only improve the sparse structure. On the
other hand, the non-preselected node groups are clustered through K-Way to increase the
compressibility of the cluster interaction blocks. However, as this method is not optimal
yet, we proposed some improvements for this heuristic in our work.
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The experiments on the Geo 1438 matrix in Section 3.5.1 validated the effectiveness
of the admissibility criterion of this heuristic. Moreover, these experiments showed the
necessity of the late compression on the poorly compressible blocks. As a result, knowing
that the uncompressible blocks should be compressed on the fly, we proposed to improve
the compressibility of these blocks. As the poorly compressible blocks are the interaction
blocks of the trace nodes, we proposed to perform a regular clustering (K-Way) on them.
In addition, we proposed a new heuristic for the small connected components that were
originally merged together. Indeed, as they are spread over the graph, their clustering is
wrreqular. Therefore, we proposed to merge them with their closest neighbor for improving
the regularity of the clusters, and thus their compressibility.

We provided our optimized Projection heuristic (OptProj) performance results
through the last version of the PASTIX solver. In the experiments of our contributions
with regular clusters, we could observe an improvement compared to the original version
of the heuristic. However, it has a lower impact than expected compared to the existing
methods through the OptProj heuristic versions. It is because choosing the preselected
vertices is a difficult problem in practice. Choosing a lot of vertices can reduce the
compressibility, while not choosing enough vertices can lead the connected components
to not be well-separated.

As another compressibility criterion, we can also change our perspective to use the
fill-in levels concept of the incomplete factorization. In the next chapter, we explain this
fill-in levels based heuristic and prove the effectiveness of this method.



Chapter 4

ILU Levels Based Preselection Heuristic

Direct solvers are widely used for their robustness, despite their high cost in terms
of memory and time. As mentioned in Section 1.2, low-rank representations are
introduced into direct solvers to tackle these problems. Through the block low-rank (BLR)
representation within sparse solvers, dense blocks of the sparse matrix are approximated
into lower dimensional matrices. This approximation successfully reduces the memory
and/or computational complexity problems with a controlled precision loss. A detailed
study on low-rank approximations of dense matrices using various methods can be found
in Chapter 2.

As explained in Section 1.3, in sparse supernodal solvers, reducing both the time
and the memory footprint through the low-rank representations is challenging. In these
solvers, various block sizes are involved in the block updates. The cost of the low-rank
update depends on the largest block involved, contrary to the cost of full-rank update
that only depends on the contribution size. That is why, the update operation might be
even more expensive than the full-rank one.

The sparse supernodal direct solver PASTIX offers two opposite strategies:
favor memory peak reduction over time-to-solution (Minimal Memory), or prefer
time-to-solution by delaying the data compression (Just-In-Time). As explained in
Section 1.4, the former suffers from the costly update operations, while the latter reduces
it without improving the memory usage compared to the full-rank solver. Therefore,
finding a compromise between time and memory footprint reduction becomes crucial.

Identifying the potential compressibility of each block is a key problem to benefit
from both strategies in PASTIX. By compressing the most compressible blocks as soon
as possible, we can significantly reduce the memory footprint of the solver. On the other
hand, by delaying the compression of the poorly compressible blocks, we can get advantage
of cheap update operations on them, without degrading the memory footprint much.

In Chapter 3, we study a heuristic to tackle this problem, where the unknowns
are further ordered after the nested dissection algorithm. This heuristic aims at three
improvements: 1) the uncompressible blocks are gathered together, 2) the remaining
blocks have a better compressibility and 3) the sparse structure of the matrix is improved.
The heuristic has two steps. Firstly, the data that represents strong interaction is gathered

89
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together. The resulting strong interaction blocks represent the poorly compressible
blocks (named preselected blocks), for which Just-In-Time is more adapted, avoiding
the overhead of Minimal Memory with expensive low-rank updates. In addition, the
remaining blocks represent weak interactions, so that they are more compressible. At the
second step of the heuristic, the data is further ordered to improve the compressibility
and sparse structure of the matrix. For large matrices, the sparse structure improvement
is necessary to reduce the number of memory accesses, and thus the time-to-solution.
Unfortunately, this heuristic does not improve the solver as much as we expected and
needs to be further improved.

In this chapter, we propose a new heuristic based on incomplete factorization to define
levels of admissibility (compressibility) for the blocks (see Section 1.2.1). Through this
heuristic, we can successfully identify the compressible blocks and exploit the low-rank
features of the solver. We prove the effectiveness of our heuristic with numerical
experiments in both sequential and parallel environments. Note that the related work
of this chapter can be found in Chapter 1.

In Section 4.1, we start by providing background details on the general idea behind
incomplete LU factorization. In Section 4.2, we detail the new heuristic, which defines
the non-compressible blocks to exploit the existing compression strategies in PASTIX. We
present our numerical results in Section 4.3. Here, we first prove the applicability of our
heuristic as an admissibility criterion in Section 4.3.1. In Section 4.3.2, we analyse the
experiments on a large set of matrices in sequential, while in the remainder of Section 4.3,
the multi-threaded experiments are discussed. In Section 4.4, we conclude on the results
of this work and its perspectives.

4.1 Background

The incomplete LU (ILU) factorization is a well-known method to get a general
preconditioner for the iterative solvers [HRR08|. It is an approximated version of the
LU factorization, where part of the information is dropped [Saa03] and has the form
A~ LU = LU + R. Here, the matrix R carries the negative values of the dropped
elements.

Multiple dropping heuristics have been studied through the years targeting either
parallelism and efficiency of the implementation or a good numerical accuracy of the
preconditioner. Among the dropping heuristics, there exist non-numerical solutions:
using the position, or the fill-in levels [DD97], ILU(k), and numerical solutions: using
a threshold [KK97a| value, ILU(7). Through the years, their block-based variants have
been studied to improve their efficiency [Gupl7,BSV21,ARFT19]. While we may consider
low-rank solvers as a solution similar to ILU(7), we exploit in this study the block ILU(k)
approach to enrich the block low-rank solver. The ILU method with the fill-in levels
definition, as we use, is first suggested in 1981 [Wat81] and improved by a graph-based
definition through fill-path theorem [RT78] in [HP01|. Figure 4.1 illustrates the idea of
the fill-in levels that is strongly related to the ordering of the unknowns. On the left, the



4.2. THE NEW FILL-IN LEVEL BASED COMPRESSIBILITY HEURISTIC 91

12348
% % % ev level 1

X X X £ o
XXX0® 1 3 2 Ja
XOXH
5[ @ mX level 3

Figure 4.1: An adjacency matrix (on the left) and its associated graph (on the right).
Fill-in entries that may occur during the numerical factorization are represented in red
(level 1) and black (level 3).
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matrix non-zeroes pattern is represented, where the blue crosses are the original entries.
On the right, the graph associated with this matrix is shown. During the numerical
factorization, some entries may become non-zeroes (fill-in). On Figure 4.1, these entries
are represented in red and black, both on the matrix and as new edges on the graph. We
can define the fill-in level as the length of the path connecting the two unknowns in the
original graph. The path connecting 3 and 5 (and 3 and 4) in red goes only through 1 (resp.
2). Thus, the level of the fill-in between these two unknowns is 1. We can also see that 4
and 5 are connected at a level 3 (the path goes through 1, 3 and 2). As the fill-in level
gets higher, the value of the new entry becomes smaller as it represents far interactions
in the graph. That is, the fill-in levels can represent the generalized algebraic distance
in the low-rank strong admissibility condition (see Section 1.2.1), without any knowledge
of the geometry. Therefore, the ILU factorization can be implemented by dropping the
values which have higher fill-in levels than a predefined maximum level. Similarly, this
procedure can be applied in a block-wise fashion. Thus, considering the block fill-in
levels as an admissibility criterion for low-rank compression, we can algebraically decide
on which blocks the compression should be delayed to reduce the overhead of the fully
structured updates.

4.2 The new fill-in level based compressibility heuristic

As mentioned in Section 1.4, the Minimal Memory strategy suffers from the complexity
overhead of the LR2LR update kernel. We propose to exploit ILU fill-in levels to identify,
at low cost, the blocks with large ranks. These blocks will increase the cost of the update
step while providing only a small memory reduction. Once identified, it is possible to
postpone the compression of these blocks as late as possible to replace the LR2LR kernels
by LR2FR. This comes at the cost of a controlled memory overhead if the identification
is correct. In Section 4.1, we mentioned that as the ILU fill-in levels get larger, the
magnitude of the entries gets smaller. Thus, blocks with large level values should have
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smaller ranks and can be kept compressed to save memory, while blocks with small level
values may have high ranks and are better candidates for delayed compression.

Algorithm 11 Cholesky-based ILU fill-in levels initialization

1: for all block L;; in L do > Initialize the block fill-in levels in L
ll(L;;) = (A;; #0) 7 0: 00
: for all column block L, in L do > Set the block fill-in levels

for all block L;; in L, do
for all block Ljj, in L, (with j > i) do

WI(L;;) = min(lvl(L;j), Wi(Liyk) + Wwl(Lj,) + 1)

Algorithm 11 presents the main steps to compute the fill-in levels of the blocks. This
algorithm performs the same loops as the numerical factorization focusing only on the
fill-in level information and the symbolic structure of the factorized matrix L. Initially,
all blocks are considered with level 0, if they are part of the original matrix A, or oo if
they are created by fill-in (lines 1-2). Then, the main loop updates the levels according to
the formula given in [Saa03], which is adapted to the block-wise algorithm (Line 6). Note
that as PASTIX uses the symmetric pattern structure of A+ AT even for LU factorization,
Cholesky-based algorithms are presented. For strongly non-symmetric matrices, the fill-in
levels of the blocks in L and U are computed separately for better identification. This
very cheap algorithm is in fact fully integrated within the parallel matrix initialization to
avoid an extra loop over the structure, and such that its cost is completely hidden to the
user.

Algorithm 12 Cholesky BLR factorization with maxlevel admissibility

1: for all block L;; in L do > Initialize L in compressed version
3 Compress(L;;)

4: for all column block A,; in A do > Numerical factorization
5 Factorize(Agy)

6 for all block L;; in L, do > Off-diagonal blocks of the column block
8: Compress(L;)

9: SOlVG( ka, Azk )

10 for all block Lj in L, (with j <=1) do

11: Update( Lilm ij, Aij )

Now that the fill-in levels are computed, the numerical factorization can be adapted
to exploit this information. Algorithm 12 presents the proposed algorithm with a generic
parameter maxzlevel, which allows to set the new admissibility criterion (in orange color).
First, lines 1 — 3 compress the admissible blocks, which have a fill-in level larger than
maxlevel. These blocks have the smallest ranks and are compressed before starting the
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numerical factorization loop (like Minimal Memory in red). Thus, they will be involved
in LR2LR updates and are the most important ones to compress to reduce the memory
footprint. On the other hand, the non-admissible blocks will be involved in LR2FR
updates to reduce the flops count overhead while inducing a small memory overhead.
These blocks are still compressed (lines 6 — 8), just after the factorization of the diagonal
block (like Just-In-Time in blue), to reduce the cost of the following operations: solve and
updates. In the remainder of the chapter, we will refer to this BLR sparse factorization
as ILU(k), with k the maximum level of the admissibility criterion. Note that choosing
the right £ value for a given problem is important. As a matter of fact, the larger the
number of non-admissible blocks, the higher the memory overhead.

It is important to observe that ILU(—1) is the Minimal Memory scenario as all the
admissible blocks are compressed during the initialization. On the opposite, ILU(c0)
corresponds to the Just-In-Time scenario as all blocks are compressed only after all the
cumulative updates are performed.

As a consequence, in this chapter, we propose to improve supernodal methods by
trading a small memory overhead for lower flops count and a better time-to-solution.
For that purpose, we implement our solution in the sparse direct solver PASTIX [Picl8,
PDFE 18], which supports the BLR compression scheme.

4.3 Experiments

In the following sections, the experiments are run for a set of 31 real case matrices
taken in the SuiteSparse Matrix Collection [DH11]. The experimental setup is similar to
Section 3.5. The times shown are the average of 3 runs on each matrix. Data reported
in the graphs are only related to the numerical factorization. The solve step is never
considered as it is not impacted by this new algorithm. Interested readers can find an
experimental backward error study on the Minimal Memory and Just-In-Time strategies
in [Pic18] that shows the numerical stability of the methods. Here, the author shows
that both methods fulfill the accuracy requirement given by users, despite the fact that
Just-In-Time is more accurate thanks to the late compression scheme in the factorization.
Note that as our new heuristic is an intermediate solution between Minimal Memory and
Just-In-Time, it is also stable.

4.3.1 Compressibility statistics

We first want to validate the hypothesis that using the fill-in levels is a good heuristic
to classify the blocks based on their compressibility ratios. Figure 4.2 reports the
cumulative memory consumption for all the 31 studied matrices in our experiments with
three different tolerance criteria and by fill-in levels. The purple bars show the memory
consumption of the structurally non-admissible blocks (too small to be compressed) and
is identical for all precisions. The red part corresponds to the admissible blocks. The
dark red is the memory footprint when they are compressed. It naturally increases with
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Figure 4.2: Potential memory saving based on the tolerance criterion and fill-in levels.
The bars report the cumulative memory of the 31 matrices. Purple represents the memory
consumed by blocks below the size criteria, and red the memory of the admissible blocks
for compression. Light red is the portion that can be saved when compressed.

a higher precision. The light red shows the amount of memory that can be saved by
compressing the blocks. One can observe that the lower the precision requirement, the
higher the gain.

These results show that the compression ratio of the admissible blocks increases
with the levels. It confirms the original hypothesis that fill-in levels can help to better
tune the admissibility criterion in order to save flops for a controlled memory overhead.
Furthermore, this parameter needs tuning to adapt to the tolerance. One can see that
for a tolerance of 1e~'2, only levels greater than 2 offer more than 40% memory savings,
while all levels at le~* provide more than 40% memory reduction. As a consequence, the
fill-in level used to define the admissibility criterion will need to be adapted to both the
tolerance and the maximum memory overhead defined by the user.

4.3.2 Impact of the fill-in level heuristic on the sequential version

This section discusses the sequential experiments. Figure 4.3 shows the memory peak,
factorization flops and factorization time profiles obtained for different precisions. We
study the impact of the first fill-in levels (0 to 4) with respect to Minimal Memory (—1)
and Just-In-Time (00). Each curve represents the number of matrices within a percentage
overhead of the best solution for each metric and matrix.

First, as expected, the lower the fill-in level chosen for admissibility, the lower the
memory peak of the solver. One can observe that the impact of the fill-in level increases as
the precision decreases. This confirms the trend already observed on Figure 4.2. ILU (o)
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Figure 4.3: Memory peak, factorization flops and factorization time profiles with different
precisions for sequential runs. Each color stands for a different /LU (k) level. The x-axis
shows percentages with respect to the best method for each metric and matrix, while
y-axis represents the matrix count in cumulative way.

consumes up to 6.6 times more memory at le~*, while it drops to 3.4 times at le™'2.
Additionally, at this high precision, high levels of fill-in are able to reach the best memory
peak. This means that potential flops reduction is possible without negatively impacting
the memory.

Second, when observing the flops count evolution, the results are naturally reversed.
The higher levels of fill-in are better to generate less flops. One can observe that for low
precision (1e™*), a level of 0 is enough to reach the same flops count as the Just-In-Time
scenario (ILU(c0)). When increasing the precision, more levels need to be considered
non-admissible to lower the flops count to its minimal value. Except some corner cases,
levels 1 or 2 are enough for 1e78, and respectively 3 or 4 for le 2.

Finally, the time profiles follow the same trend as the flops profiles, with larger
differences between the ILU(k) methods. This can be explained by the disparity of
the LR2LR and LR2FR efficiency, as well as their variation in number that may increase
the phenomenon already observed on flops. Thus, one can observe that ILU(0) is the
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Figure 4.4: Memory peak ratio of the LU (k) heuristic with respect to full-rank on the
31 test matrices. On the left, the detailed information is presented for each matrix and
precision. On the right, the information is summarized with boxplots showing minimum,
maximum, median, first quartile and third quartile for each fill-in level.

best average solution at le=*. It even outperforms the Just-In-Time strategy by a factor
up to 1.4x. To explain this performance, we recall that in the Just-In-Time strategy,
many null-rank blocks are allocated and later compressed, while in the new ILU(k)
heuristic they may never be allocated. Indeed, they are originally null blocks and at
low precision they may receive only null contributions. Thanks to these savings, I LU(0)
at this tolerance almost doubles the memory footprint in the worst case with respect to
the Minimal Memory strategy, but it remains 0.23x the memory consumption of the
ILU(00) and the full-rank versions.

The observations in higher precisions are similar to the lower precision, but with higher
fill-in levels. At 1e™®, only the levels above 1 compete with the Just-In-Time strategy in
terms of time, as well as providing a controlled memory overhead with respect to the best
solution.

At 1e7!2, the levels higher than 3 are required to get the best factorization time, which
reduces the gain one can obtain on the memory footprint. However, solutions with level
1 is a good compromise at this precision. It is up to 8.5x faster than ILU(—1), with only
up to 1.49x more memory usage.

Figure 4.4 presents the detailed ratios of the memory peak of the different levels of
admissibility with respect to the full-rank solution. On the left figure, the matrices are



4.3. EXPERIMENTS 97

ordered by families and by increasing the memory ratio of ILU(—1) at a tolerance of 1e~!2.
As we can observe, the compression ratio of all matrices varies a lot with the matrices and
the tolerances. It also reflects the fact that increasing the fill-in level does not necessarily
mean an extra memory usage in high precision problems as the dots are merged together.
On the right figure, this trend is summarized with boxplots representing the average gain.
One can observe that the Just-In-Time (ILU(00)) strategy has the same memory peak
as the full-rank version, and that the lower the level, the lower the memory peak. One
can also observe that increasing the level of admissibility at low precision seems to greatly
increase the memory footprint with respect to the best one. However, the impact remains
moderate for high precision and it can be afforded to highly reduce the time-to-solution,
as observed in Figure 4.3.

The summary on the right of Figure 4.4 confirms the fact that the memory
consumption increases with the higher fill-in levels and with the higher precision. The
results at le™!? for the new heuristic at levels 1 and 2 show interesting results. As
a matter of fact, they provide in average 25% memory improvement compared to the
full-rank version. Note that at this precision, even I LU (c0) does not manage to efficiently
accelerate the full-rank version on the five right-most cases, which are poorly compressible.
On the other matrices, in addition to this memory saving, levels 1 and 2 are also faster
than the full-rank version.

To conclude, it is difficult to give a single level as the optimal solution. However,
depending on the problem, as well as the precision and memory restrictions, the level can
be tuned to provide a solution that outperforms the Minimal Memory strategy in terms
of time, for a small controlled memory overhead. Moreover, it can even have a speedup
compared to the Just-In-Time strategy, while reducing the memory footprint.

4.3.3 Impact of the fill-in level heuristic on the multi-threaded
version

This section presents the results of the previous experiments in a multi-threaded
environment with 24 threads. Figure 4.5 shows the time profiles of the multi-threaded
numerical factorization on the set of 31 matrices. Memory peak and flops are not reported
as they are identical to the sequential ones.

We can observe that the impact of the new heuristic is even greater in the
multi-threaded environment. The shift in the memory usage induced by the heuristic
improves the memory bandwidth in the multi-threaded context and allows getting better
performance. The ILU(k) heuristic performs better respectively with a level of 0, 2
and 4, for tolerances of le™*, 1e78, and 1le~'2. The proposed solution outperforms the
Just-In-Time strategy as it can be especially seen at le~*. In this parallel context, the
large memory reduction improves the memory contention of the threads, while it merely
degrades the flops count with respect to the ILU(oc0). ILU(0), which initially stores
only the blocks of the original matrix A, clearly outperforms the other versions at low
precisions. When increasing the precision (1e™® or 1e71?), the extra flops count for small
values of k degrades the performance. However, one can observe that /LU (2) and ILU (4)
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(at 1e7® and le'?] respectively) are good competitors with ILU(o0) in terms of time,
while they still induce memory savings as opposed to I LU (c0).
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Figure 4.5: Time profiles of the multi-threaded runs for different precisions. Each color
shows a different /LU (k) level result.
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Figure 4.6: Best results achievable for time and memory with /LU (k) heuristic, tuning
the fill-in level between 0 and 4, at 1e~® and using 24 threads.

To better highlight the high gain obtained with our new heuristic, we compare it to
the full-rank solver and to the previous low-rank strategies existing in the PASTIX solver.
Figure 4.6 presents the time profiles of the multi-threaded numerical factorization with
24 threads on the left, as well as the memory peak at le® precision on the right. On
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Figure 4.6a, ILU (best time) refers to the best factorization time obtained with the new
heuristic, where the fill-in level is taken in the range I LU (0) to I LU (4) included. Similarly,
in Figure 4.6b the I LU (best memory) stands for the best memory consumption reachable
with a fill-in level in the same range. Note that on Figure 4.6b, the memory consumption
of the full-rank solver and the /LU (c0) are mingled, as they are identical. The left figure
shows that the new heuristics is up to 45 times faster than the full-rank solver, and is up
to almost 2 times faster than the previous fastest implementation LU (c0) except for the
two CurlCurl matrices which would require higher fill-in levels to get better performance
due to the high ranks of their contributions.

Overall, the proposed heuristic, if correctly tuned, is the fastest method for all matrices
and outperforms the ILU(oc0) solution while providing an effective memory footprint
reduction. Furthermore, the memory footprint reduction is similar to the one obtained
with the /LU (—1) strategy in two thirds of the cases (using a fill-in level of 0 in most
cases), and reaches at most a 39% overhead in the last set of matrices. One can notice that
in two cases (the two CurlCurl matrices), the new heuristic outperforms the ILU(—1)
strategy thanks to a slight change in the order of allocation of the blocks. In these specific
cases, the best memory peak is even obtained with a fill-in level of 1 that better delayed
the workspace allocation to compress the blocks of the matrix.

4.3.4 Study of the Serena matrix in multi-threaded environment

Serena
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Figure 4.7: Serena matrix time results of different precisions with 24 threads. The
ILU (tuned) corresponds to the smallest level, which runs faster than ILU(o0).

In this section we focus the study on one of the large matrices from the collection: the
Serena matrix. The size of the matrix is N = 1391 349 for 32961 525 of non zeroes and
it requires 28.6 TFlops to be factorized in full-rank, which makes it a good average test
case of the collection. Figure 4.7 presents a performance study of different compression
tolerances with 24 threads. The ILU(tuned) corresponds to the use of levels chosen for
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Tolerance ILU (tuned)

le~™ ILU(0)
le6 ILU(2)
le8 ILU(2)
le~10 ILU(4)
le~12 ILU(4)

Table 4.1: Corresponding levels for I LU (tuned) at each precision.

NbThreads le™ le™® le™?? Full-Rank
ILU(=1) ILU(0) ILU(co) ILU(-1)  ILU(2)  ILU(co) ILU(-1)  ILU@4)  ILU(co)
1 2.2 211 2.5 330.7 109.7 1115 1154.9 468.1 446.4 1025.9
4 74 (35) 66 (3.2) 97 (27) 91.8 (3.6) 32.8 (3.3) 357 (3.1) 318.2 (3.6) 1202 (3.6) 1247 (3.6) 279.3 (3.7)
6 5.5 (4.8) 48 (44) 68 (3.9) 645 (5.1) 24.2 (45) 276 (4.0) 230.6 (5.0)  92.8 (5.0) 917 (4.9) 203.2 (5.0)
12 35 (7.5) 25 (84) 47 (5.6) 351 (9.4) 138 (7.9) 167 (6.7) 1317 (8.8)  52.8 (8.9)  55.4 (8.1) 137.1 (7.5)
24 44(6.0) 22(97) 64 (41) 35.1 (9.4) 112 (9.8) 144 (7.8) 104.9 (1L0)  37.7 (12.4)  40.3 (1L1) 08.4 (10.4)

Table 4.2: Factorization times for the Serena matrix. Speedup with respect to the
sequential runs are written inside parentheses.

each tolerance as reported in Table 4.1. The full-rank result is shown in the figure as a
reference for the speedup observation. In conclusion, the new heuristic outperforms the
former two solutions on all precisions with a small fill-in level of 0 to 4, relatively to the
precision. As shown previously, at these levels, this solution even provides an important
memory gain as opposed to the fastest existing solution I LU (00).

Table 4.2 reports the detailed factorization times of the Serena matrix with different
numbers of threads and tolerances. The values inside parentheses present the speedup
compared to the sequential run of each method at the corresponding precision. The
ILU (k) heuristic levels are chosen as in Table 4.1. The level selection has been limited to
the range 0 to 4 to ensure a useful memory saving compared to ILU(c0). That is why,
with a small number of threads at le™'?, our method cannot run faster than ILU(oc0).
However, the I LU (k) heuristic benefits from a higher scalability, which allows it to quickly
outperform other solutions as the number of threads increases. These results, while not
reported in this chapter, are similar to the ones observed on the set of matrices used for
the experiments. To conclude, the ILU (k) heuristic, through the correct tuning of the
levels, solves the original issue of the flops overhead of /LU (—1). Furthermore, thanks to
its better memory footprint, it provides a better scalability in parallel environments and
outperforms the fastest original solutions.

4.4 Discussions

The behavior of sparse supernodal direct solvers using low-rank compression highly
depends on when the compression is performed. On one hand, all admissible blocks can be
compressed before the factorization (as it happens with the Minimal Memory / ILU(—1)
strategy). It allows high memory savings, but in the specific case of supernodal methods,
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it induces an expensive flops overhead during the low-rank updates. On the other hand,
admissible blocks can be compressed after they have received all their updates (as for the
Just-In-Time | ILU(oc0) strategy). It reduces significantly the flops count as in dense
solvers, and thus the execution time. However, the memory peak of allocating all the
L matrix blocks in full-rank, before the numerical factorization, still exists. In order to
reduce this memory peak, the allocation of the blocks should be carefully delayed to their
first access.

In this chapter, we proposed a new heuristic to estimate the compressibility of each
block and constructed an algorithm that is a compromise between the two strategies
mentioned previously. The new heuristic, named ILU (k), identifies poorly compressible
blocks similarly to the I LU method, which identifies the most important data. It relies
on the block ILU fill-in levels to define an algebraic distance to compute low-rank
admissibility of the blocks. The purpose of defining the admissibility is to propose an
intermediate solution that accelerates the Minimal Memory solution, while it slightly
increases the memory consumption. Moreover, it gives the chance to tune the levels
according to the precision, the matrix properties, and the characteristics of the machine
to better exploit the advantages of both the Minimal Memory and the Just-In-Time
strategies.

The experiments that we conducted on a large set of 31 real matrices demonstrated
that the ILU(k) heuristic manages to identify efficiently the most compressible blocks.
The solution proposed runs up to 5.2 times faster than Minimal Memory with only
a 1.38 times increase of memory usage for high precision in both sequential and
multi-threaded environments. Moreover, due to the elimination of the null blocks before
the numerical factorization, the I LU (k) heuristic is also able to run 1.4 times faster than
the Just-In-Time strategy in sequential, with a much lower memory consumption (0.23
times less). In the multi-threaded environment, it even goes up to 1.84 times faster and
outperforms it for most of the cases. We showed that through correctly tuned fill-in levels,
the ILU (k) heuristic can be used as an improved version of the existing strategies. It
improves the numerical factorization in terms of both memory and time, and it improves
the scalability for parallel environments.

Despite the high gain of the ILU (k) heuristic, it remains difficult to know beforehand
which level will provide the best improvement. Section 4.3 has shown that only the first
levels are worth consideration, and that a clear trend appears on the level to use depending
on the tolerance.
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Conclusion and Future Work

Recently, the introduction of low-rank representations into sparse direct solvers allowed
to successfully reduce their memory and/or time complexities. Block low-rank (BLR)
format, compared to other alternatives, provides more flexibility in parallel environments
and it is simpler to implement. We believe BLR format is more advantageous in
supernodal solvers in terms of memory since the fronts inherent to the multifrontal solvers
are not allocated in these solvers.

In this work, we focused on improving the sparse supernodal BLR solver PASTIX. This
solver adopts the nested dissection method to obtain the coarse level matrix ordering to
generate more sparsity in the factorized matrix and provide better parallelism. Following
the nested dissection procedure, it uses the BLR approximation scheme on the resulting
large dense blocks of the factorized matrix structure, exploiting the existing sparsity. We
contributed PASTIX in three ways, each of which is explained in a devoted chapter. Now
let us provide the conclusions and perspectives of each chapter (so each improvement).
Then, we explain the long-term future work.

Compression kernels In Chapter 2, we studied and compared four different QR based
compression methods as an alternative to the costly SVD kernel. We implemented
all the methods in a similar fashion with similar numerical stopping criteria. Let us
emphasize that determining the rank through a numerical criterion is new for the TQRCP
and RQRRT methods that we studied. As the blocks of BLR representation are not
large enough to take advantage of parallelism when compressing them, PASTIX adopts
sequential compression kernels. Therefore, we only observed the useful matrix sizes in our
context and in a sequential environment.

We tested the QR based compression kernels by using some generated matrices. Here,
we saw that each method ensures a good stability and accuracy. Thus, we mainly
concentrated on the obtained ranks and performance results through both the generated
and the real-life case matrices. These results showed that the QRCP method is the most
promising QR alternative for the BLR format blocks.

In the current PASTIX solver, compression is performed on the blocks of size less
than 300. In the future, the blocks could be much larger after the hierarchical scheme
implementation. Thus, although QRCP seems to be the best kernel within the up-to-date
PASTIX version, the TQRCP can outperform it within the future solver. Therefore,
comparing these two kernels should be our perspective after the hierarchical scheme
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implementation.

In Chapter 2, we proved the efficiency of the QRCP methods on obtaining small
enough ranks. Thus, we do not need to adopt more expensive approaches (like RQRRT)
to reach closer results to SVD. For this reason, our further studies should mainly target to
improve the performance, rather than the obtained ranks, compared to the QR methods
we observed.

Block low-rank clustering In Chapter 3, we studied the Projection heuristic [Pic18].
This heuristic reorders the separator nodes to increase the separator compressibility and
reduce the total number of updates within the solver. The former is applied through
regular clusters, while the latter is done by gathering similar contributions together.
It additionally aims to identify the poorly compressible (uncompressible) blocks, which
represent the interaction blocks of the trace nodes.

In this work, we improved the Projection heuristic by configuring it correctly and
clustering the separators in a regular way. We proposed two changes to obtain these
regular clusters to increase the separator compressibility. Firstly, we merged the small
node groups to a large neighbor cluster in the graph. In this way, the remainder component
that includes the small node groups, which are spread along the graph, is eliminated.
Secondly, we performed the K-Way (regular) clustering on the traces. Indeed, as we
decided to compress the trace interaction blocks on-the-fly, improving their compressibility
is also crucial. In our experiments, we showed an improvement compared to the original
heuristic. However, we could not obtain the results we expected.

In this chapter, we implemented the Projection heuristic, where only the small
components are merged to their neighbors (OptProj+ERC). Additionally, we tested
the heuristic, where only the traces are clustered through the K-Way partitioning
(OptProj+KWT). However, we did not conduct experiments on the version, which
implements both improvements at the same time. This should be our perspective at
this point.

This chapter is devoted to improve the clustering after the coarse level nested dissection
partitioning. Alternatively, we can focus on improving the nested dissection method itself.
For example, in order to have similar contributions from children to the separators, the
nested dissection procedure can be changed in a way to align the traces on the separators
better [Pic18]. As a result, we can increase the compressibility through well-separated
large connected components, by getting advantage of the symmetric structure.

ILU levels based preselection heuristic In Chapter 4, our purpose is to identify
the poorly compressible blocks with a different angle than Chapter 3. In this respect,
we used the fill-in levels concept of the incomplete factorization in a block-wise manner.
Then, according to our heuristic, a block is highly compressible if it has a high fill-in level.
Otherwise, it is uncompressible. In both sequential and multi-threaded environments, we
proved the efficiency of our heuristic.

In the experiments, we adopted predefined values (k) to determine how many levels
are considered poorly compressible. Through the experiments with different £ values,
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we concluded that this value should be tuned according to memory and time restrictions
of the applications. That is, smaller values provide reduced memory usage, while larger
ones lead to a faster solver. However, determining the most advantageous level value is
difficult. Therefore, as a perspective, we would like to introduce tuning techniques to
automatically infer the best value of k depending on the given tolerance, as well as the
properties of the machine and the matrix used.

In the future, we can use our ILU fill-in levels based compressibility information within
the performance model of [MMPV22] as a parameter. In this way, we can take advantage
of both heuristics at the same time.

As another future work, we can also identify the uncompressible blocks with another
admissibility criterion. For example, we can set our criterion based on the k-way cluster
distances. Then, the smaller the distance, the stronger the interaction (so uncompressible).

What is next? As mentioned before, thanks to the non-hierarchical clustering with
similar size blocks, the BLR representation is simpler to implement and more convenient
in parallel environments. For example, it is easier to arrange suitable block sizes to fit
into the memory of a shared-memory implementation. Similarly, we can reach a good
load balance in a distributed environment through the blocks of similar size in the BLR
representation. However, hierarchical schemes provide better asymptotical complexities
compared to flat ones. Therefore, some intermediate solutions between these techniques,
like BLR-H [Idal8] and Multilevel-BLR [ABLM19a], are proposed to take advantage of
both formats at the same time.

In BLR-H, the BLR scheme is used at the coarse level to obtain the blocks to be
distributed. In this way, an efficient load-balanced distribution of the matrix is targeted.
Then, the distributed parts are represented in a hierarchical way to improve the memory
and computational complexity of the solver. In Multilevel-BLR, the BLR scheme is
applied recursively to the full-rank diagonal blocks of the previous BLR representation.
As a result, both BLR-H and Multilevel-BLR can provide complexities close enough to
the hierarchical solvers (although not as good as them) and they are more promising to
be efficient in the parallel context.

We already mentioned that our next step is to implement hierarchical schemes
within the PASTIX solver to improve the time and the memory complexities. After
this step, our long-term perspective should be to apply a hybrid scheme, like BLR-H
and Multilevel-BLR. In this way, we can exploit both hierarchical and flat formats at
the same time. Here, we aim to offer a sparse direct solver which provides the best
intermediate solution between the most efficient in terms of time/memory usage and the
most flexible one in parallel environments, compared to the other alternatives. Through
these improvements, we target larger linear systems arising from different applications
that need fast, accurate and memory efficient solutions in parallel environments.

As a short term perspective, we should conduct a detailed study of our solver in mixed
precision. We know that it is possible to control the accuracy, time and memory of direct
solvers through different floating-point arithmetic. For example, adopting low precision
arithmetics (like single or half precision) can highly speed up the solver and reduce the
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storage. However, low precision does not lead to high accuracy solutions. Alternatively,
using higher precisions (like double precision) provides high accuracy despite the expensive
time and storage requirements. We can use a mixed-precision solver to both ensure
the required accuracy and reduce the solver cost. In this respect, we need a detailed
comparison of our low-rank solver to the mixed-precision solver. Additionally, we need
a clever implementation of the mixed-precision strategy within our low-rank solver to
further improve it in terms of time and storage, while ensuring a given accuracy.

As another perspective, we can improve the low-rank feature of our solver to
better adapt to the domain decomposition application needs. Domain decomposition
methods [QV99,DW94, Mat08] can be used to reduce the time-to-solution of sparse linear
systems. They are applied by using the underlying geometry and the partial differential
equation before the discretization step. Here, the main idea is to split the domain into
subdomains, each of which has a new boundary condition on the interface. Then, the
subdomains are solved separately in a way that the solution continuity is ensured through
the interface. The solution of each discretized subdomain is performed through some
algebraic solvers like direct methods, iterative methods or hybrid methods. When we
reorder a subdomain matrix into interior and interface subparts, the former subpart is
sparse and the latter is dense. Then, in the interior part, it is more convenient to adopt
a robust solver with high accuracy. Thus, a low-rank solver with high accuracy threshold
can be used for these parts. On the dense interface parts, we prefer an iterative solver to
improve the time-to-solution, where a preconditioner is needed for the fast convergence.
For the preconditioning aim, a low-rank direct solver with low accuracy threshold can
be applied. As we can observe, we can use a low-rank direct solver in both the interior
and interface parts within a domain decomposition application. However, the parameters
of the solver should be adapted depending on the matrix parts that it is used on. In
this respect, we should automatically tune the low-rank parameters of the PASTIX solver
within the domain decomposition applications.
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