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Une approche cinématique de la flexibilité des boucles protéiques, avec
application à l’exploration conformationnelle

Cette thèse introduit le premier modèle paramétrique global d’une boucle de protéine, qui soit passible de
stratégies d’échantillonnage de type Hit-and-Run. Quatre contributions sont présentées.

Partant du problème classique de fermeture cinématique d’une boucle tripeptidique par Coutsias et al
(Tripeptide Loop Closure ou TLC), la première présente une analyse géométrique de TLC utilisant un espace
angulaire de dimension 12. Des conditions nécessaires assez strictes sont développées, afin que TLC admette
des solutions.

En utilisant une base de données exhaustive de tripeptides extraite de la Protein Data Bank (PDB),
la seconde contribution étudie les reconstructions produites par TLC. En utilisant des statistiques de Ra-
machandran, il est montré que ces solutions sont géométriquement diverses, et ont par ailleurs des énergies
potentielles favorables.

Afin d’échantillonner des conformations d’une boucle contenant plus de trois acides aminés, la troisième
contribution développe une stratégie d’échantillonnage basée sur les solutions individuelles associées aux
tripeptides formant la boucle, tripeptides dont la géométrie est conditionnée par les positions des corps
rigides les connectant. Les conditions nécessaires évoquées ci-dessus sont utilisées pour échantillonner des
conformations, en utilisant un algorithme randomisé de type Hit-and-Run.

Enfin, pour aller au delà de la seule géométrie du backbone, la dernière contribution présente le premier
algorithme robuste du calcul de la moyenne de Fréchet/du centre de masse sur le cercle S1, une statistique
clef pour l’étude des conformations de châınes latérales.

Mots-clés: flexibilité des protéines, exploration conformationnelle, boucles flexibles, coordonnées internes,

cinématique.



A kinematic view of protein loop flexibility, with applications to conformational
exploration

This thesis introduces the first global parametric model of protein loops amenable to effective sampling
strategies a-la Hit-and-Run, making four contributions.

Starting with the classical kinematic view of loop closure developed by Coutsias et al, the first one resides
in a geometric analysis of the Tripeptide Loop Closure (TLC) problem in terms of 12 angular coordinates
describing the tripeptide geometry. Tight necessary conditions in this angular space are derived for TLC to
admit solutions.

Using an exhaustive database of tripeptides from the Protein Data Bank, the second contribution studies
TLC reconstructions. Using Ramachandran statistics, we show that TLC solutions are geometrically more
diverse than tripeptide structures, and also exhibit favorable potential energies.

To sample protein loop conformations beyond tripeptides, the third contribution develops a loop sampling
strategy based on solutions of individual tripeptide reconstructions, conditioned to motions of the peptide
bodies connecting them. The aforementioned necessary conditions are used to sample conformations using
a randomized algorithm reminiscent from Hit-and-Run.

Finally, to go beyond the sole backbone geometry, the last contribution proposes the first robust calcula-
tion of the Fréchet mean/center of mass on the flat torus, a key requirement to compute statistics on protein
side chains.

Keywords: protein flexibility, conformational exploration, flexible loops, internal coordinates, kinematics.
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Chapter 1

Introduction

1.1 Loops in computational structural biology

1.1.1 Computational Structural Biology at a glance

Computational structural biology involves two related main endeavors, namely analyzing structures solved ex-
perimentally, and making predictions of observables, be they structural, thermodynamic, or kinetic [BKP88,
Fer99, KKW12]. Both tasks rely on a geometric representations of molecules, and in fact, the previous two
activities are only meant to understand to what extent biophysics biases geometry. In other words, the
main goal is to understand how the physical rules bias the geometric representations observed in nature. To
understand this perspective, one may consider the classical and most natural representation of an n-atom
molecule, based on its 3n Cartesian coordinates. As we shall see, this representation is not the best one
to understand the specific interactions of atoms which are (or not) covalently bonded, and a more efficient
representation to do so consists of using so-called internal coordinates [Fie99, BMRW01].

A shear difficulty inherent to the study of molecular representations is the high dimensionality of molec-
ular systems–the aforementioned 3n Cartesian coordinates, and the multi-scale of biomolecular processes.
Molecular motions are indeed known to span ∼ 15 and ∼ 4 orders of magnitude in time and amplitude
respectively [AM06]. Despite intensive efforts over the past fifty years or so, developing methods able to
exploit this multi-scale structure has remained elusive.

The structure - dynamics - function paradigm stipulates that it is the structure and dynamics of
biomolecules which account for their function.

Three broad classes of methods have been developed. The first one relies on Newton’s equations, whose
numerical solution uses time steps of the order of femto-seconds [FS02]. Alas, unless massive simulations are
used [SMLL+10] such tiny time steps are prohibitive for simulations with large systems , or systems under-
going large amplitude conformational changes. The second one, encompassing Monte Carlo based methods
and basin-hopping like methods [FS02, Wal03], require movesets to propose novel conformations, which are
accepted or not to further the simulation. The last one is the framework of energy landscapes [Wal03], which
decouples structure (identifying meta-stable states), thermodynamics (computing statistical weights of such
states), and dynamics/kinetics (modeling transitions using say Markov state models). The latter two classes
of methods are appealing since arbitrarily large spatial steps may be used, a shear difficulty is to avoid steric
clashes and retain low (potential) energy conformations. This latter constraint is a strong incentive to work
in internal coordinates, favoring dihedral angles which are softer coordinates than bond lengths and valence
angles.

In developing molecular representations, a central goal is therefore to find sparse representations giving
access to those degrees of freedom accounting for important properties, i.e. observables.

Finally, the study of molecular representations encompasses two aspects, generic and specific: the former
deals with representations which are valid throughout chemistry, while the latter deals with models which
are specific to biomolecules and/or to proteins. The very nature of polypeptide chains, namely a polymer of
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amino acids, indeed calls for representations dedicated to the protein backbone and to the side chains.

1.1.2 Protein loops

Proteins are in general built from well structure 3D domains connected by linkers called loops [BT12]. Loops
are structural components playing various roles in protein function. Enzymes typically involve conforma-
tional changes of loops for the substrate (resp. product) to enter (resp. leave) the active site [MAR10a].
Membrane transporters implement complex efflux mechanisms resorting to loops changing the relative po-
sition of (essentially) rigid domains [SBMVC21]. In the humoral immune response, the binding affinity of
antibodies for antigens is modulated by the dynamics of loops called complementarity determining regions
(CDRs) [SXK+13]. In G-Protein-Coupled Receptors, extracellular loops binding to ligands trigger signal
transduction inside the cell [HMK18].

From the experimental standpoint, these complex phenomena are studied using structure determination
methods. However, the structural diversity of loops often results in a low signal to noise ratio, yielding
difficulties to report complete polypeptide chains. As a matter of fact, a recent study on structures from the
PDB showed that about 83% of structures solved at a resolution of 2.0Å or worse feature missing regions,
which for 90% of them are located on loops or unstructured regions [DCC15].

1.1.3 Flexibility and dynamics of loops

While flexibility covers very different scenarios, two prototypical ones are of special interest for globular
proteins involving loops. In the first scenario, which may be ascribed to structural changes, flexibility drives
large amplitude conformation changes between meta-stable states involving rigid domains connected by
linkers [LRH03], a process which is key for enzymatic function [QH09] or the efflux by complex membrane
proteins [SBMVC21], to take two examples. In the second one, which may be ascribed to thermodynamics,
more local fluctuations of loops contribute to statistical weights whence free energies, a classical implica-
tion being an enhanced binding affinity due to a lesser entropic penalty upon binding for pre-structured
loops [SXK+13]. A different realm is that of intrinsically disordered proteins (IDPs), whose structural plas-
ticity is often linked to biological functions and diseases [DSUS08]. IDPs exist as an ensemble of rapidly
inter-converting structures defining plateaus on the free energy landscape as opposed to the wells associated
with stable structures [Uve13]. While differences with globular proteins in terms of Ramachandran distri-
butions have been characterized [OSY+12], predicting IDPs properties remains a challenge, and there has
been recent awareness of the need for force field modifications (e.g. [Lem20]).

Predicting conformational changes for loops is in fact a hard problem, be it restricted to structure [MSD18]
or thermodynamics [SXK+13]. A core difficulty for such prediction methods is the inherent bias imposed by
the datasets, extracted from the Protein Data Bank, used to calibrate general methods. By construction,
experimentally resolved structures incur a bias towards stable structures, so that transient conformations
are not accessible. We note in passing that in the aforementioned framework of energy landscapes, transient
conformations are generally associated with saddle point regions on the potential energy surface, namely
points whose identification requires numerical procedures [STH08].

1.1.4 Loop modeling strategies

While all atom simulations can naturally be used to explore the conformational variability of loops, their
prohibitive cost prompted the development of simplified strategies, which we may ascribed to four tiers.

First, continuous geometric transformations can be used to deform loops, e.g. based on rotations of rigid
backbone segments sandwiched between two Cα carbons. Such methods, which include Crankshaft [Bet05]
and Backrub [DAIRR06, SK08], proved effective to reproduce motions observed in crystal structures. How-
ever, they are essentially limited to hinge like motions.

Second, a loop may be deformed using loop closure techniques solving an inverse problem which consists
of finding the geometric parameters of the loop so that its endpoints obey geometric constraints. Remarkably,
various such methods have been developed at the interface of structural biology and robotics [GS70, EM99,
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CSRST04, NOS05, PRT+07]. Using loop closure techniques, the seminal concept of concerned rotations was
introduced long ago to sample loop conformations [DBT93]: first, the prerotation stage changes selected
internal degrees of freedom (dof) and brakes loop connectivity; second, the postrotation step restores loop
closure using a second set of dof. While early such strategies used solely dihedral angles only [DBT93], more
recent ones use a combination of valence and dihedral angles [UJ03, BBEJ+12]. The latter angles indeed
provide a finer control on the the amplitude of angular changes in the postrotation stage, and therefore of
atomic displacements. A specific type of loop closure playing an essential role is Tripeptide Loop Closure
(TLC), where the gap consists of three amino, and loop closure is obtained using the six (φ, ψ) angles of the
three Cα carbons [CSJD04, CS04, NOS05, MCK09].

Third, considering a loop as a sequence of protein fragments stitched together, high resolution structures
from the protein data bank (PDB) can be used to sample its conformations [JT86, KGLK05]. These methods
are greedy/incremental in nature, and the exponential growth of solutions results in a poorer sampling of
residues in the middle of the loop. Also, they suffer from the bias inherent to the PDB structures, which
favors meta-stable conformations. As a matter of fact, it has been shown recently using Ramachandran
statistics that conformations found in the PDB are less diverse than those yielded by reconstructions in the
rigid geometry model [ORC22].

Finally, several classes of methods may be combined. For example, exploiting structural data to bias the
choices of angles used to perform loop closure yields a marked improvement in prediction accuracy [SK13].
More recently, a method growing the two sides of a loop by greedily concatenating (perturbed) tripeptides,
before closing the loop using TLC has been proposed [BMV+19].

Despite intensive research efforts, predicting large amplitude conformational changes, and/or predict
thermodynamic quantities for long loops, say beyond 12 amino acids, remains a challenge [MSD18, BCC21].
These difficulties owe to the high dimensionality of loop conformational space, and also to the subtle bio-
physical constraints that must be obeyed.

Improving on such methods is precisely the goal of this thesis. These strategies are discussed in chapter 2
and we propose our own novel solution in chapter 5.

1.2 Contributions

This thesis presents five contributions.

1.2.1 Modeling proteins using internal coordinates: a survey

Context

Although molecular systems can be represented using Cartesian coordinates there are disadvantages. Su-
perimposable sets of Cartesian coordinates will be considered different to one another for instance, causing
issues in data analysis and efficiency loss in exploration using this type of coordinates. Seeking to impact
mostly the softer softer diherdral angles is more in line with the nature of force fields used to model protein
energies.

To do this the focus turns to so called Internal coordinates (IC) i.e. bond lengths, valence angles
and dihedral angles defined by the molecular covalent graph. These enable more efficient exploration of
conformational diversity.

As such internal coordinates are ubiquitous in the manipulation of molecular structures, be it in the
context of the analysis of structures from the Protein Data Bank, or in simulation packages. This diversity
of methods and models developed on the subject calls for a thorough survey of this field of research.

Contribution

In Chapter 2, we propose a survey of the state of the art concerning the modeling of proteins using internal
coordinates.
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This survey covers the representation of the protein backbone and side chains, (Sec. 2.3), statistical
and geometric analysis in angular spaces (Sec. 2.4), rotamer libraries (Sec. 2.5), side chain conformational
sampling (Sec. 2.6) and backbone conformation sampling and its important connexions to inverse problems
in robotics (Sec. 2.7).

1.2.2 Tripeptide Loop Closure and steric constraints

Context

As noted above, a key building block in this context is the celebrated Tripeptide Loop Closure (TLC)
algorithm [PRT+07, CSJD04, NOS05]. In TLC, one consider three consecutive amino acids, with two
types of constraints. The first one stipulates that the segments (also called anchors or legs NiCα;i and
Cα;i+2Ci+2 are fixed in a given reference frame. The second one imposes that all internal coordinates are
fixed, except the six rotatable bonds / dihedral angles {(φi, ψi)}i=1,2,3 found before / after the three Cα
carbons. Remarkably, TLC admits at most 16 solutions. This property sorts of discretizes the search space
when running a simulation, in a manner akin to rotameric degrees of freedom for side chains.

Using TLC in the context of backbone simulations raises a difficulty, though. To see which, consider
m(> 1) consecutive tripeptides. To use TLC on each tripeptide and mix their solutions if any, one needs
to fix the position of all anchors. For a given tripeptide, this raises a novel question which is to study the
existence of solutions to TLC when the second anchors moves relatively to the first one.

Contribution

In Chapter 3, we study the TLC problem when the legs of the tripeptide are free to move.

More specifically, consider a tripeptide in which all internal coordinates (but the 6 dihedral angles) hold
canonical values. Assuming that the two segments N1Cα;1 and Cα;3C3 are free to move with respect to
one another, we aim at finding necessary conditions on these two segments for TLC to admit solutions. A
tripeptide yielding solutions is termed embeddable. As we can assume without loss of generality that the first
segment is fixed in a reference frame, this problem is posed in a five dimensional configuration space: the
position of Cα;3 enjoys 3 Cartesian coordinates, and that of C3 two spherical coordinates w.r.t. Cα;3. The
question becomes to find out which positions of Cα;3 and C3 yielding embeddable tripeptides.

In chapter 3, our contribution is made in an attempt to answer which constraints yield embeddings
when using TLC. To answer this, we exploit the limit values for angle σi−1 and τi defined in [CSJD04]
and combine them with a constraint associated with each Cα;iCα;i+1 edge. This allows us to derive an
Inter-angular constraint, a necessary condition for the existence of solutions.

1.2.3 Tripeptide Loop Closure and associated solutions

Context

The TLC problem is also closely related to the study of Ramachandran distributions, which characterize
the coupling between φ and ψ angles along the protein backbone [Fer99]. There are four main types of
Ramachandran plots: glycine – an amino acid without side chain, proline – whose cycle induces specific
constraints, pre-proline – residues preceding a proline, and the remaining amino acids, whose Cβ carbon
induces specific constraints. In our work, we illustrate this latter class with ASP. Four main regions are
occupied in the Ramachandran diagram: β-sheets (βS), polyproline II (βP ; left-handed helical structure
whose angles are characteristic of β-strands); α-helical (αR); and left handed helix (αL). These regions
were characterized using a combination of five steric constraints between four atoms defining the so-called
Ramachandran tetrahedron [STM+77].

More recently the diagonal shape of level set curves in the occupied regions was explained using dipole-
dipole interactions, distinguishing the generic case and proline [HTB03], and glycine and pre-proline [HB05].
The characterization of neighbor dependent Ramachandran distributions has also been studied [TWS+10].
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From a statistical standpoint, the Ramachandran distributions of two specific residues can be compared
using say f -divergences such as Kullback-Leibler, Hellinger, etc.

Contribution

In chapter 4, we perform a careful assessment of reconstructions to TLC problems, with a particular emphasis
on the comparison between distributions in angular spaces, between data from the PDB on the one hand, and
TLC reconstructions on the other hand. We present a detailed analysis of reconstruction, from the geometric,
statistical, and biophysical standpoints. We also present a robust implementation of TLC, showing the role
of multiprecision in ensuring the existence and the accuracy of reconstructions. We also discuss some
possibilities to exploit such reconstructions.

1.2.4 Enhanced conformational exploration of protein loops

Context

Generating diverse conformations of loops requires sampling the conformational space. Because dihedral
angles are in general softer than bond lengths and valence angles, methods of choice are those restricting
the sampling to the former. Narrowing down the focus further, the tripeptide loop closure problem (TLC)
consider the six dihedral angles φ, ψ found in the context of three consecutive Cα carbons. The TLC problem
has a long history in robotics and molecular modeling, see e.g. [GS70, PC94, CS04, PRT+07, CSWD06,
CLW+16]. Mathematically, consider a tripeptide whose internal coordinates (bond lengths {di}, valence
angles {θi}, and dihedral angles {φi, ψi, ωi}) have been extracted. The TLC problem consists of finding all
geometries of the tripeptide backbone compatible with the internal coordinate values {di, θi}. Solving the
problem requires finding the real roots of a degree 16 polynomial, which also means that up to 16 solutions
may be found [PRT+07, CSJD04, NOS05].

Over time, TLC has proven to be a key building block to reconstruct and sample loop conformations,
as shown by the following two examples. In Rosetta, a so-called KIC move consists of closing a backbone
segment using TLC upon sampling six dihedral angles associated with three Cα carbons, using residue
specific distributions [MCK09]. This method was subsequently evolved to the next-generation KIC based
on three sampling strategies meant to optimize internal coordinates, while still using TLC to close the
loop [SK13]. More recently, TLC has been used to generate conformations based on a backbone segment
decomposition into tripeptides [BMV+19]. In a nutshell, the method grows the two sides of a loop by
greedily concatenating (perturbed) tripeptide geometries to the chains being elongated, and closes the loop
by solving a TLC problem. Two key steps of the method are the perturbation and sampling from a database
of tripeptides used (derived from SCOP), and the final TLC step.

Contribution

In chapter 5 we put forward a new paradigm to explore the conformational space of flexible protein loops,
able to deal with loop length that were out of reach. The framework is reminiscent from the Hit-and-Run
(HAR) Markov chain Monte Carlo technique.

While it also relies on the tripeptide loop closure, it is, to the best of our knowledge, the first one exploiting
a global continuous parameterization of the conformational space on the loop studied. The algorithm uses
a decomposition of the loop into tripeptides, and exploits the rigidity of peptide bodies (the four atoms
Cα − C − N − Cα). Denoting m the number of tripeptides, the algorithm works in an angular space of
dimension 12m. In this space, the hyper-surfaces associated with the necessary conditions developed in
chapter 3 are used to run a HAR-like sampling technique.
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1.2.5 Fréchet mean for angular values and generalizations

Context

The celebrated center of mass of a point set P in a Euclidean space is the (a) point minimizing the sum
of squared Euclidean distances to points in P . The center of mass plays a key role in data analysis at
large, and in particular in principal components analysis since the data are centered prior to computing the
covariance matrix and the principal directions. Generalizing these notions to non Euclidean spaces is an
active area of research. Motivated by applications in structural biology (molecular conformations), robotics
(robot conformations), and medicine (shape and relative positions of organs), early work focused on direct
generalizations of Euclidean notions. Analysis tailored to the unit circle and sphere were developed under
the umbrella of directional statistics [AJ91, MT93, MJ09]. In a more abstract setting, generalizations of the
center of mass in general metric spaces were first worked out – the so-called Fréchet mean [Fré48], followed
by a generalization to distributions on such spaces – the so-called Karcher mean [GK73, AM14, Pen18].

In fact, previous works span two complementary directions. On the one hand, efforts have focused
on mathematical properties of spaces generalizing affine spaces, so as to provide statistical summaries of
ensembles in terms of geometric objects of small dimension. On the other hand, algorithmic developments
have been performed proposed to compute such objects. The case of the unit circle S1 provides the simplest
compact non Euclidean manifold to be analyzed. Despite its simplicity, this case turns out to be of high
interest since S1 encodes angles, a particularly important case e.g. to describe molecular conformations.

Finally, the last thing to consider in the context of co;puting the center of mass on S1 are numerical
issues, more specifically the necessity of using the Exact Geometric Computation (EGC) paradigm. The
EGC relies on so-called exact predicates and constructions. A predicate is a function whose output belongs
to a finite set, used to compare numbers together for instance while a construction computes a continuous
value. Using exact predicates guaranties an exact result when comparing two numbers together, enabling
the development of more robust algorithms.

Contribution

Three contributions can be found in chapter 6 regarding p-means the point minimizing the sum of distances
exponent p of a finite point set. First, we show that the function Fp is determined by a very simple
combinatorial structure, namely a partition of S1 into circle arcs. Second, we give an explicit expression for
Fp, deduce that the problem is decidable, and present an algorithm computing p-means. Third, we present
an effective and robust implementation using EGC, based on multi-precision interval arithmetic.
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Chapter 2

A survey on models using internal
coordinates

2.1 Introduction

As mentionned in the introduction (Sec. 1.1.1) the high dimensionality of molecular systems, and the multi-
scale of biomolecular processes makes molecular representations a central issue. Knwoing so, we compiled a
survey of the state of the art with a particular focus on geometry and algorithms.

The structure of this chapter is as follows:

• Internal coordinates and conversions with Cartesian coordinates are introduced in section 2.2

• An introduction to the representation of the protein backbone and side chains is provided in section
2.3

• Statistical and geometric analysis in angular spaces are accounted for in section 2.4

• Rotamer libraries are surveyed in section 2.5

• Side chain conformational sampling is deal with in section 2.6

• Backbone conformation sampling and its important connexions to inverse problems in robotics is
surveyed in section 2.7

2.2 Molecular geometry in internal coordinates

2.2.1 Overview

A system of n atoms can naturally be represented by 3n Cartesian coordinates {xi, yi, zi}i=1,...,n. Two
observations, though, pledge for using the so-called internal coordinates (IC), which are distances and angles.

The first one is the fact a rigid motion (translation and/or rotation in 3D) modifies CC. This demands
a representation intrinsically independent from rigid motions, based on 3n− 6 degrees of freedom–since the
group of rigid motions SE(3) has dimension six. The second one is the nature of force fields used to model
protein energies (Sec. 2.3), since distances and angles defined by atoms come with very different energies
and forces.

This elementary section introduces molecular coordinates, as well as conversions between them.
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2.2.2 The three components of internal coordinates

Bond lengths, valence angles, dihedral angles

Bonds are defined by two points connected in the molecular covalent graph (Fig. 2.1(A)).

Valence angles are defined by around a particle participating in two such bonds, thereby defining an angle
(Fig. 2.1(B)).

The last type of internal coordinate corresponds to the angle between the two planes defined by the first
and last three particles in a path of four (Fig. 2.2(A)). These angles are called dihedral or torsion angles they
are the main degrees of freedom. What is used in internal coordinates are so called proper dihedral angles
(Fig. 2.2(B)), improper angles being used in potential energy computations but not as a part of classical
internal coordinate systems. We will get back on these coordinates in the context of potential energy models
– Sec. 2.3.1.

Figure 2.1 Internal coordinates: bond length and valence angle. (A) Bond length (B) Valence
angle, The black lines represent covalent bonds in a given molecular graph.
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Figure 2.2 Internal coordinates: dihedral angles. The black lines represent covalent bonds in a given
molecular graph. (A) Proper dihedral angle: defined by a path of four successive particles. (B) Improper
dihedral angle defined by three particles connected to a common one: this out-of-plane measurement is meant
to keep a planar structure planar.
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2.2.3 Representations using internal coordinates

The set of all internal coordinates is in general redundant, due to the presence of cycles. To remedy this fact
and serve in particular algorithms used for energy minimization, several representations using bond lengths,
valence and dihedral angles have been designed.
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Primitive internal coordinates

Although fictive edges are sometimes used in the absence of a connected graph internal coordinates are
generally defined using the covalent graph of the molecule. These coordinates however suffer from redundancy
if all are taken, with 3n− 6 coordinates being sufficient to uniquely define an embedding. We refer to such
redundant internal coordinates as primitive internal coordinates.

Their advantage over a non redundant set of coordinates is that they are unambiguously defined. Deciding
a non redundant set of coordinates does not admit a unique solution. To answer this different criteria were
put forward for non-redundant representations.

Natural internal coordinates

While searching for the best representation for molecular force fields using internal coordinates in small
chemical compounds, natural internal coordinates where defined [PFPB79]. They seek to reduce the coupling,
both harmonic and anharmonic, between internal coordinates. The algorithms to compute them from a
covalent graph remain complex, especially on larger molecules they were not designed for. Local coordinates
systems exploiting the symmetry of small rings are used in parallel when necessary to include corresponding
constraints. These systems are called ring deformation coordinates or deformational symmetry coordinates
and vary according to ring size.

Delocalized internal coordinates

In order to define a complete, non-redundant set of coordinates which can be generated in a simple and
straightforward manner for essentially any molecular topology Delocalized internal coordinates were intro-
duced [BKD96].

Wilson B matrix. Considering the vector q of n primitive internal coordinates and the vector X of the
ncc cartesian coordinates for a given topology. Using d the differential used in multivariate calculus, the
n× ncc Wilson B matrix is defined as follows:

dq = BdX (2.1)

The delocalized internal coordinates are the eigenvectors associated to strictly positive eigenvalues obtained
from G = BBTB [BKD96]. Typically the number of eigenvectors selected in this manner equals the number
of degrees of freedom 3nparticles − 6 in the absence of cycles.

2.2.4 Conversion from IC and CC

Conversion from IC to CC requires first choosing an arbitrary reference frame. The second step involves
embedding particles as the graph is traversed. This can be done efficiently by the SN-NeRF algorithm (for
Self-Normalizing Natural Extension Reference Frame) [PHR+05], which generalizes the NeRF method.

The operation which consists of computing the Cartesian coordinates of one atom is called the embedding
step. This operation requires a context, that is 3 atoms already embedded, with respect to which the new
atom is positioned.

Given the embedding operator, the algorithm SN-NeRF consists of an initialization to define the first
context, followed-up by the iterative embedding of the remaining atoms.

Embedding one atom given a context. Given a set of points Ai with i ∈ {1, 2, 3, 4} with known
embeddings for the first three and the relative position of the fourth(d3, θ2, τ1 Fig. 2.3), the aim is to embed
A4. The first operation consists of placing A4 as follows:

A∗4 = (d3 cos θ2, d3 cos τ1 sin θ2, d3 sin τ1 sin θ2) (2.2)
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Then A4 is obtained trough the following transformation:

A4 = RA∗4 +A3 (2.3)

Considering Â2−3 = A2A3

|A2A3| and n̂ = A1A2×Â2−3

|A1A2×Â2−3|
we obtain R:

R = [Â2−3, n̂× Â2−3, n̂] (2.4)

Figure 2.3 Cartesian embedding of a point given three other. Adapted from [PHR+05].

Z

Y

X

A3

A4

A1

A2

τ1

A4;x = d3 cos θ

A4;y = d3 cos τ1 sin θ2

A4;z = d3 sin τ1 sin θ2

d1

d2

d3

θ1

θ2

Initialization. The initialization consists of embedding three particles connected in a path, using two
distances and an angle in an arbitrary Cartesian reference frame. In our case (Fig. 2.4):

• A1(0, 0, 0)

• A2(0, 0, d1)

• A3(0, d2 sin θ1, d1 − d2 cos θ1)

Iterative embedding of the remaining particles. The embedding of the remaining particles in the
coordinate system defined by the first three is computed while performing a traversal of the molecular
covalent graph.

The traversal is performed using two stacks: one corresponding to the points to be embedded next; the
second one refers to the contexts (one for each atom to be embedded).

Note that the initialization makes it possible to stack all the neighbors of the first three atoms – their
context is defined by these three atoms.

Then, the algorithm proceeds iteratively as follows:

• The particle on the top of the stack is popped, and is embedded using its context. The particles linked
to it by an edge in the covalent graph and not already visited are stacked, together with their context.

• Each time an embedded particle is stacked it is tagged to avoid processing twice.
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Figure 2.4 Conversion from internal to cartesian coordinates. Adapted from [PHR+05]. In this
illustration the graph is traversed from left to right and each colored particle is embedded using the previous
three as context and the three internal coordinates with the same color.
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A5
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A7
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Traversal order

The process terminates when the stacks are empty.

Remark 2.1. For graphs with multiple connected components (c.c.), the process is iterated for each c.c.

Remark 2.2. The difference between NeRF and SN-NeRF is that when computing n̂× Â2−3 no normalization
is used as it equals 1 by construction. Also the norm |A2A3| used when embedding a point is stored as the
points of the covalent graph are embedded such that it is not recomputed.

Remark 2.3. The p-NeRF method [AlQ19] is a parallelized version of SN-NeRF.

2.3 Modeling conformations of backbones and side chains

Conformations of protein backbones and side-chains are fundamental concepts to study protein structures.
Having recalled the fundamental role of the potential energy, internal coordinates are used to introduce
Ramachandran diagrams and rotamer libraries.

2.3.1 Potential energy models

In the realm of molecular mechanics, one decouples the nuclei of atoms and their electron clouds, so that
the potential energy of the system obeys the general equation [Fie99, DB10, Zuc10]:

V = Vbond + Vangle + (Vproper + Vimproper) + Vvdw + Velectro, (2.5)

with contributions Vbond for covalent bonds (requires two atoms), Vangle for valence angles (requires three
atoms), Vproper for proper dihedral angles (requires four atoms), Vimproper for improper dihedral angles
(requires four atoms), Vvdw for van der Walls interactions (typically a Lennard-Jones potential; requires
two atoms), and Velectro for electrostatic interactions (requires two atoms). Note that the first four terms
correspond to bonded terms, while the latter two correspond to non covalent interactions.

It is instructive to summarize a force field by all its parameters, resulting in the following count of unique
parameters Su = (B,A, PD, ID,LJ,E). Such parameters are usually fitted to reproduce chemical / physical
properties of organic molecules [WMP14].

Out of the many force fields available, one may cite:

11



• AMBER, http://ambermd.org/: Su = (73, 133, 112, 3, 14, 758) i.e. 1093 unique parameters.

• CHARMM, http://www.charmm.org: Su = (85, 152, 209, 13, 33, 1) i.e. 493 unique parameters.

• MARTINI, http://cgmartini.nl: Su = (16, 4, 0, 2, 21, 3) i.e. 46 unique parameters.

The different terms found in a force field have different sensitivity to variations of the corresponding
internal coordinates. Taking the example of the CHARMM 36 force field [BZS+12], it can be see that the
torsion angles are associated to a more tame variation of the potential energy (Fig. 2.5).

Figure 2.5 CHARMM force field: variation of potential energies as a function of the internal
coordinate type. The various plots were obtained as follows, using the CHARMM 36 force field: bond lengths
and valence angles: quadratic potential plot using the median spring constant for the whole force field;
torsion angles: parameters associated with the angles depicted.

2.3.2 Backbone and Ramachandran diagrams

Ramachandran diagrams. The TLC problem is also closely related to the study of Ramachandran
distributions, which characterize the coupling between φ and ψ angles along the protein backbone [Ram63,
Fer99]. There are four main types of Ramachandran plots: glycine – an amino acid without side chain, proline
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– whose cycle induces specific constraints, pre-proline – residues preceding a proline, and the remaining amino
acids, whose Cβ carbon induces specific constraints. In this work, we illustrate this latter class with ASP.

Four main regions are occupied in the Ramachandran diagram: β-sheets (βS), polyproline II (βP ; left-
handed helical structure whose angles are characteristic of β-strands); α-helical (αR); and left handed helix
(αL).

Shape of occupied regions. These regions were characterized using a combination of five steric con-
straints between four atoms defining the Ramachandran tetrahedron ([STM+77], Fig. 2.7). (We note in
passing that the 6th edge of this tetrahedron, between Oi and Nii+ 1, was not used in defining the steric
constraints, likely due to the fact that this edge corresponds to a valence angle – a constraint stronger than
that associated with the other edges.) In this work, the curves delimiting the occupied regions are termed
the Ramachandran template. More recently the diagonal shape of level set curves in the occupied regions
was explained using dipole-dipole interactions, distinguishing the generic case and proline [HTB03], and
glycine and pre-proline [HB05]. The characterization of neighbor dependent Ramachandran distributions
has also been studied [TWS+10]. From a statistical standpoint, the Ramachandran distributions of two
specific residues can be compared using say f -divergences such as Kullback-Leibler, Hellinger, etc.

In the case of move sets in large proteins and excepting sequence structure prediction, generating con-
formations for the backbone is often formulated as a loop closure on a subset of the whole structure. This
is done as either steric conflict or unrealistic internal coordinates arise when manipulating many atomic
coordinates simultaneously. In general either a part of an experimental protein structure is missing or a
”hole” is created to sample conformation space. This turns backbone conformation sampling into a loop
closure problem. The specificity of loop closure is that the freedom of movement will be concentrated on
phi and psi backbone dihedral angles. This makes the backbone loop closure a geometric problem first and
foremost with proposal conformations being scored by a sum of potential energy terms down the line.

Figure 2.6 Conformations of a protein backbone

i-th a.a.

Ci

Cαi

Ni
Φ

Ψ

ω

Cβi

Oi

Ni+1

Oi−1

Cαi−1

Cαi+1

H

H

Ci−1

φ, ψ angular representation

As already mentioned, the backbone is often thought as having two main degrees of freedom. When manip-
ulating the embedded molecular covalent graph of the backbone, the bond lengths and bond angles do not
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Figure 2.7 Ramachandran diagrams: distance constraints and occupied regions. (A) The Ra-
machandran tetrahedron and its five distance constraints – adapted from [HTB03, HB05]. Note that the four
atoms define a tetrahedron: five of its edges are constrained; the last one (ONi+1) corresponds to a valence
angle, and is not constrained. (B) Main regions occupied in the Ramachandran space, with associated steric
constraints, materialized by dashed lines/curves, involving vertices of the Ramachandran tetrahedron. The
background distribution was obtained using all amino acids in the structure files used in this study (loops and
SSE). The partition of the Ramachandran space illustrates the location of the classical SSE: β-sheets (βS),
polyproline II (βP ; a left-handed helical structure whose angles are characteristic of β-strands), α-helical
(αR), and left handed helix αL.
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vary as a first approximation. Among the dihedral angles the torsion ω around the peptide bond can also be
considered to be fixed at +π or −π. Most of the variations in the backbone are contained in dihedral angles
φ and ψ ∈ [−π,+π) around the cα carbon.

We also note that φ, ψ dependencies on both the type of a residue and those of its neighbor have been
studied [TWS+10], Technically, these analysis use a non parametric Bayesian model based on hierarchical
Dirichlet processes (HDP) to produce mixture models. Such analysis are of special interest when defining
rotamers (Sec. 2.5), and also for backbone sampling algorithms (Sec. 2.7).
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Figure 2.8 φ ψ representation. In red the continuous dihedral degrees of freedom φ and ψ ∈ [−π,+π).
in green the discrete dihedral ω ∈ {π,+π}
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Cα representation.

A simplified representation, which is of special interest for structures of medium resolution, consists of
retaining Cα atoms only (Fig. 2.9). assuming the distances between Cα atoms are constant, such a model
enjoys two types of internal coordinates: the pseudo-bond angle θ ∈ [0, π) defined by the two pseudo-bonds
connected to a given Cα and the pseudo-torsion τ ∈ [−π, π) around each pseudo-bond. Equivalently, the
model is encoded by the sequence of unit vectors connecting the consecutive Cα atoms. It is therefore
represented n− 1 points on the unit sphere S2 – assuming n Cα atoms. A parametric model suitable in this
case is the 5-parameter Fisher-Bingham function (FB5), which generalizes the Gaussian distribution on the
sphere – see Section 2.4 and [Bin74].

Figure 2.9 Backbone: simplified Cα representation. The vertices in black do not represent covalent
bonds but fictive pseudo-bonds between Cα carbons. The degrees of freedom are (i) the pseudo-band angles
θ ∈ [0,+π), and (ii) the torsion angles around such bonds τ ∈ [0, 2π).
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τi

τi+1
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2.3.3 Rotameric and non rotameric dihedral angles χ, rotamer libraries

Rotameric and non rotameric degrees of freedom. Except for the case disulfide bonds and proline
residues, side chains are connected to the backbone only through the alpha carbon present in the same
residue. Omitting the particular cases of GLY and ALA, this makes it practical to model their conformational
diversity for a given backbone. As early recognized [JWLM78, MT93], such analysis hinge on dihedral angles
of side chains, denoted χi. (Nb: in the sequel, an angle χ is called a degree of freedom or dof.) (Fig. 2.10).
The analysis of experimental data yielded so-called rotamers or rotational isomers. In the simplest case,
such an angle has a distribution which sharp peaks/local maxima (Fig. 2.11(A)). Such peaks correspond to
high energy barriers. In that case, one defines one rotamer for each peak, which is characterized by three
numbers namely the mean µi, stdev σi, and propensity – the sum of all propensities equals one. In the
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simplest case, one represents a rotamer by its model or mean value – and the associated weight. As a more
elaborate representation, one can use a a mixture of 1D von Mises distributions.

However, selected χ angles do not match the aforementioned mixture model (Fig. 2.11(B)). Such cases
typically correspond to degrees of freedom at the end of the side chain with little constraints so that they
may take any value. Physically, polar side chains make electrostatic interactions, while aromatic side chains
can face steric clashes.

Summarizing, there are two main difficulties to deal with: modeling non rotameric dof; taking into
account the coupling between rotamers and backbone conformations. We shall get back to these issues in
Sec. 2.5.

Figure 2.10 Conformations of protein side chains: dihedral degrees of freedom in a Lysine
residue. The four dihedral angles χi are rotameric degrees of freedom containing most of the diversity for
Lysine side chain conformations.
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χ3
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2.3.4 Notes

As we will see in section 2.5 and 2.6, rotamers play a pivotal role in several applications, including (i) quality
check of protein structures and outlier detection, (ii) generative models (for energy landscape exploration
and docking), and (iii) computational protein design.

2.4 Statistical and geometric analysis: methods

This section presents (geometric, statistical) methods in the realm of directional statistics [MJ09]. These
methods will be of special interest in the design of rotamer libraries (Sec. 2.5), and for side chain sampling
(Sec. 2.6).

2.4.1 Circular means and centers of masses

In Euclidean geometry, the center of mass of a set of data points is the point minimizing the sum of
squared distances to these data points. This centering operation is central to statistical analysis, e.g. PCA.
Performing an equivalent centering appeared as an early need while analyzing angular values [MT93].
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Figure 2.11 Dihedral angles of side chains: rotameric versus non-rotameric angles χ. (A) A
rotameric dof exhibits a multimodal, sharply peaked distribution on the unit circle. (B) A rotameric dof
has a distribution which cannot be modeled as a simple mixture.
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Circular mean. A classical way to define the circular mean of a set of angles is the resultant or circular
mean, defined as follows [MJ09]:

θ = atan2(
∑
i

sin θi/n,
∑
i

cos θi/n). (2.6)

The circular mean does not minimize the sum of squared distances along the unit circle, but minimizes
instead [JS01, Section 1.3]:

θ = arg min
∑

i=1,...,n

d(θi, θ), with d(α, β) = 1− cos(α− β). (2.7)

Fréchet mean. Generalizing the center of mass in a general metric spaces (the so-called Fréchet mean,
[Fré48]), and for distributions (the so-called Karcher man, [GK73]) has a long history. Surprisingly, the
calculation of the Fréchet mean for circular data was only finalized recently [CDO21] (Fig. 2.12). The
solution involves two ingredients. First, the decomposition of the sum of squares into a simple polynomial
expression, so that one needs to Second, delicate numerical analysis calculations, as transcendental numbers
are dealt with. Interestingly, using the Fréchet mean instead of the circular can yield a significant variance
reduction [CDO21].

2.4.2 Parametric models

In the following, we introduce several parametric models / functions, suitable to represent (angular, vector)
data for proteins. In spirit, these functions are meant to generalize Gaussian distribution for compact / non
Euclidean spaces. The reader is referred to [HMFB12, Chapters 6 and 7] and references therein for more
details.

On the unit circle: univariate von Mises distribution. The classical 1D von Mises distributions is
the analogous of the Gaussian distribution on the unit circle S1. As such, it is parameterized by a mean
value θ and a concentration parameter κ:

f(θ) =
1

2πI0(κ)
exp(κ cos(θ − θ)). (2.8)
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Figure 2.12 Fréchet mean of four points on S1 (Functions) blue: function F2; green: derivative F
′

2;
orange: second derivative F

′′

2 (Points) red bullets: data points; black bullets: antipodal points; blue bullets:
local minima of the function; large blue bullet: Fréchet mean θ∗; green bullet: circular mean Eq. 6.14.

In this equation, I0(·) stand for the modified Bessel function of the first kind and order 0 [ASR88].

On the torus T2: bivariate von Mises distribution. This is used as the equivalent of a Gaussian
model in a space with two angles ranging the full unit circle S1:

f(φ, ψ) ∝ exp(k1 cos(φ− φ) + k2 cos(ψ − ψ)+ (2.9)

(cos(φ− φ), sin(φ− φ))A(cos(ψ − ψ), sin(ψ − ψ))T ) (2.10)

The normalization constant reads as an infinite series, see [Mar10b]. This model has eight parameters: φ, ψ
which be described as the mean values, the concentrations k1, k2, and the 2×2 matrix A encoding a coupling
between the two angles. the parameters are known to be redundant for high concentrations, which leads
to difficulties in fully interpreting the meaning of the parameters. Restricting matrix A by fixing the off
diagonal elements to zero (the remaining values being denoted α and β) yields four simpler models [HMFB12,
Chapter 6]: the sine model with α = 0, β = λ; the cosine model with positive interaction α = β = −k3; the
cosine model with negative interaction α = −k′3 = −β; and the hybrid model.

On the sphere S2: Fisher-Bingham. A coarse protein representation based solely on Cα atoms yields
a model parameterized by two angles, namely θ ∈ [0, π) and τ ∈ [−π, π) (Fig. 2.9). This parameterization
is akin to spherical coordinates on the unit sphere S2. Consider the usual parameters of a d-dimensional
multivariate Gaussian distribution µ and Σ. To model a set of points on Sd, one can use the Fisher-Bingham
distribution [Bin74]:

f(X) ∝ exp(− (X − µ)
T

Σ−1(X − µ)

2
), XTX = 1. (2.11)

For the particular case d = 2, the model has five parameters [HMFB12, Chapter 7]: the means values
(µθ, µτ )T , the three terms σ11, σ22, σ12 = σ21 of the covariance matrix.

Further details can be found in [KGJH14] for the computation of the normalization constant, and in
[KS18] for the maximum likelihood estimation of the parameters.
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2.4.3 Notes

A variety of statistical data analysis techniques have been used to deal with the models just mentioned.

Parametric models. Classical approaches from Bayesian statistics are typically used [Mur12]. In a
nutshell, consider a model whose parameters are stored in a vector Θ. These parameters typically define a
parameterized family of probability distributions, say fΘ. Also assume that a dataset X is available. The
goal is to estimate the parameters Θ to explain the evidence X.

P [Θ | X] =
P [X | Θ]P [Θ]

P [X]
, (2.12)

which reads as follows

posterior =
likelihood× prior

evidence
. (2.13)

To obtain pointwise estimates of the parameters, on resorts to Maximum likelihood yields (Θ̂MAP) or Max-
imum a Posteriori (MAP) yields (Θ̂ML) estimates–both methods neglect the denominator of Eq. (2.12).
Dealing with full posterior models is possible using conjugate priors, i.e. P [Θ] and P [Θ | X] have the same
distribution. Otherwise, criteria such as the Bayesian Information Criterion (BIC), which assess the model
based on its fit to the data and its complexity, can be used. Yet another criterion is the Akaike Information
Criterion.

Non parametric models. Dealing with non parametric models, say for density estimation, uses differ-
ent techniques [BD15, DGL96]. Of particular interest are kernel density estimates and kernel regression
techniques. The mathematical expression used to model a response variable, say Y , is by means of a the
conditional expectation E [Y | X] = m(X). The estimate m(x) is obtained by averaging the response values
yi – denoting h the bandwidth and Kh(·) the kernel used

m̂(x) =

∑
iKh(x− xi)yi∑
iKh(x− xi)

. (2.14)

Another non parametric techniques often used to analyse structural data is clustering. A reference
method is k-means++, a variant of k-means with smart seeding coming with a guarantee of the expectation
of the k-means functions [AV07]. Another important clustering technique is density based clustering, where
one assigns a cluster for each local maximum of the estimated density. This techniques is especially effective
once coupled to topological persistence so as to identify the significant clusters [CGOS13]. Finally, we may
also cite useful techniques to compare clustering, see e.g. [CMTW19] and references therein.

2.5 Rotamer libraries

2.5.1 Overview

As noticed in Section 2.3.3, rotamers play a key role to discretize and simplify the study of side chain
conformations. In this section, we review recent rotamer libraries, which is especially informative since these
libraries differ in three main respects:

• Goal pursued: quality check - outlier detection, generative models for landscape exploration or docking,
computational protein design.

• Biophysical specification: generic rotamers, rotamers backbone dependent, rotamers sequence depen-
dent.

• Methodology: mathematical model used for rotamers, and the associated model selection procedure.

In describing the libraries, we focus in each case on (i) Rationale and goals, (ii) Model, and (iii) Assessment.
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2.5.2 Smoothed Backbone-Dependent Rotamer Library – 2011

Rationale - goals. We have mentioned in Section 2.3.3 the difficulties to design rotamer libraries, due
in particular to the duality rotameric - non-rotameric dihedral angles χ. In [SDJ11] – see also https:

//dunbrack.fccc.edu/retro/bbdep2010/Tutorial.php), the dichotomy used is as follows:

• 10 a.a. with rotameric dof only: ARG, ILE, LEU, LYS, MET, SER, THR, VAL CYS (combines
statistics for CYH:cysteine reduced free sulfhydryl + CYD: cysteine oxidized disulfide-bonded) PRO
(combines statistics for TPR: trans-proline + CPR: cis-proline)

• 8 a.a. with non rotameric dof: terminal dof for ASN, ASP, GLU, and GLN; aromatic residues, PHE,
TYR, HIS, and TRP whose c2 angles are more broadly distributed than rotameric dof.

(Nb: this yields a total of 22 a.a.: 18 + 2 for CYS + 2 for PRO.) A possibility to handle non rotameric dof
is to use bins, with one rotamer per bin. However, this ad hoc options involves the arbitrary choice of the
number of bins, and does not provide a compact representation.

Model for rotameric dof. The goal is to compute P [r | φ, ψ], with the constraint that∑
r

P [r | φ, ψ] = 1. (2.15)

The solution from [SDJ11] uses two main ingredients:

• ρ(φ, ψ | r): the Ramachandran distribution for rotamer r;

• P [r]: backbone independent observed frequency of rotamer r.

Using these and Bayes’s formula, one obtains the following conditional probability for a given rotamer,
conditioned on the backbone geometry:

P [r | φ, ψ] =
ρ(φ, ψ | r)P [r]∑
r′ ρ(φ, ψ | r′)P [r′]

(2.16)

•Ingredient 1: adaptive kernel density estimate for ρ(φ, ψ | r). The Ramachandran distribution for rotamer
r is defined as the sum over the Nr data points of rotamer of type r, of the product of two 1D von Misses
kernels (Eq. 2.8):

Kh(φ− φi, ψ − ψi) =
∑

i=1,...,Nr

1

4π2I0(κ)2
exp(κ(cos(φ− φi) + cos(ψ − ψi))) (2.17)

The previous uses a bandwidth parameter h. To reduce the role of outliers and cope with the local density
of data, this parameter is adapted locally, yielding Adaptive kernel density estimation (AKDE). This
parameter is tuned for each each residue type, chosen using cross validation.

The result is then used to obtain the backbone-dependent rotamer probabilities – Eq. (2.16).
•Ingredient 2: adaptive kernel regression for rotameric angles and variances. The second main ingredient
consists, for each of the 22 residue types and each χ angle of: the population mean (µi) and the stdev (σi).
That is, angle χi is modeled as follows:

χi = m(φi, ψi | r) + ν1/2(φi, ψi)εi, (2.18)

with m the regression function, ν the variance, and εi an error term normally distributed (mean zero, unit
variance). The variance of the observation is expected to depend on the particular values of φ, ψ – the model
is called heteroscedastic (different dispersion).
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m(x, y | r) = µ(χ | φ = x, ψ = y, r) = E [χ | φ = x, ψ = y, r] (2.19)

ν(x, y | r) = σ2(χ | φ = x, ψ = y, r) = E [χ | φ = x, ψ = y, r] (2.20)

(2.21)

These two terms are estimated using kernel regression. In this case, a kernel which is adaptive based on the
query point rather than the data point is used.

Model for non rotameric dof. We now consider the case on non rotameric dof, which typically exhibit
broad distributions, also depending on the geometry of the backbone. For such cases, denoting r−n the set
of χi angles preceding that of interest, the goal is to estimate the probability density

ρ(χn | r−n, φ, ψ). (2.22)

Using a kernel based on the 2D von Mises distribution (Eq. 2.9), define the following weight:

wi(φ, ψ) =
Kh(φ,ψ)(φ− φi, ψ − ψi)∑

i=1,...,Nr
Kh(φ,ψ)(φ− φi, ψ − ψi)

(2.23)

The density is estimated as follows based on the 1D von Mises kernel Kh(·) (Eq. 2.8):

ρ(χn | φ, ψ), r−n) =
∑

i=1,...,Nr

wi(φ, ψ)Kh(χi)(χn − χi). (2.24)

Nb: a query point dependent kernel is used.

Results and assessment. Two assessments are presented. The first one is the side chain prediction
problem, where a χ angle is correctly predicted if the angular difference wrt the experimental value is
less than 40 degrees. Using the program SCWRL4 [KSDJ09] with the novel rotamer library yields a better
prediction rate. The second one is the ability of Rosetta’s energy minimization scheme to exploit the rotamer
library. These protocols (ClassicRelax, FastRelax) are Monte Carlo explorations of the energy landscape,
using a move set which uses a small deformation of the backbone and a consistent choice of rotamers. For
this second task too, an improvement is observed.

2.5.3 The Dynamic Rotamer library – 2016

Rationale - goals. Using data from the PDB is the classical route to obtain rotamer libraries. Yet, using
static structures from the PDB faces several limitations.

First, such libraries tend to overlook flexibility and motion since flexible regions are seldom reported in
crystal structures, and atoms with large B factors are filtered out. Second, despite remediation projects,
errors may remain in PDB structures (e..g chirality and cis peptide bond errors), setting aside ambiguities
in electron density maps. Second, using PDB structures induces a bias on Ramachandran regions populated
[TRVD16, Fig. 4]. Third, the paucity of sampling in selected regions requires a more advanced statistical
processing to obtain meaningful statistics and models of commensurable complexity [SDJ11].

Model. To circumvent these limitations, the approach promoted in [TRVD16] uses MD simulation data,
obtained from 807 proteins covering 97% of known autonomous protein folds. The definitions of rotamers use
classical angular ranges [TRVD16, Fig. 7A]. For example, for tetrameric carbons, one defines three rotamers:
g+ : 0−120, t : 120−240, g− : 240−360. The amount of data collected made it possible to obtain individual
probabilities from raw counts. For the backbone dependent library developed, rotamer probabilities were
obtained using bins of 10 × 10 degrees in (φ, ψ) space. The approach pursued has two main merits. First,
there is less bias on the structures and a better coverage of the Ramachandran space [TRVD16, Fig. 4],
which is especially useful to design backbone dependent libraries. Second, the rotameric states covered are
much more comprehensive: using 10 degrees bin for φ, ψ, 97% of the Ramachandran domain is covered, as
opposed to 53% using the dataset from [SDJ11]. easier statistical processing due to the size of datasets.

21



Results and assessment. As expected, the rotamers obtained differ from those associated with static
analysis, in particular for more mobile chains on the surface of proteins.

2.5.4 Checking the integrity of conformations: Molprobity, 2016

Rationale - goals. [HLRR16]. design of a rotamer library primarily focusing on the validation of side
chain conformations in protein models. based on a careful selection of 8,000 high resolution structures.

Model. The main ingredients are as follows:
•KDE estimates in multi-dim space. uses adaptive KDE to estimate the density in the multi-dimensional
χ angles space. uses a cosine kernel with varying width depending on the location queried (width is larger
is less populated regions). KDE estimates are stored at grid points – the spacing varies depending on the
number of χ angles.

The score of a grid point provides the assessment using the classical thresholds for Ramachandran dis-
tributions: < 0.03%: outlier; 0.3%, 2%: allowed; > 2%: favored. These values correspond to iso-surfaces in
the χ angle space.
•Definition or rotamers. Consider now the data within a level set surface associated with a threshold.
Each connected components defines one rotamer. For each rotamer, the following pieces of information are
reported: mean for the valence angles, weighted center of mass for the χ angles – requires circular statistics.
•Rotamer assignment. The score of a side chain is a mix (average) from its χ angles. The value of a given
χ angle is obtained by interpolating over the nearest grid vertices.

Results and assessment. Assessment:

• plus: multi dim space, adaptive KDE, kernel with compact support

• minus: formula com false; no dependency to backbone and sequence

2.5.5 Sequence dependent rotamer libraries – 2021

Rationale - goals. Rotamers clearly depend on the a.a. flanking a given residue. However, statistical
studies on side chain conformations for 203 tripeptides face paucity of structural data available. To fudge
around this difficulty, molecular simulation has been used to define Sequence Dependent Rotamer Libraries
(SDRL) [DW].

Model. Each a.a. is studied in the context of all possible flanking a.a. yielding peptides of the form
ACE-XXX-YYY-ZZZ-NME. (Nb: ACE and NME are the usual caps corresponding to an acetyl group and
a methyl group.) The rationale is to allow for spatial effects without interferences with a whole protein fold.

Using the 18 naturally occurring a.a. (excluding alanine and glycine), the tripeptides are simulated using
Basin-Hopping [LS87], using the AMBER force field and an implicit solvent model. For a given tripeptide, the
low free energy minima are retained – using a harmonic model for the free energy. These minima represent
various combinations of the φ, ψ angles, so that the rotamer library generated is backbone independent.

To obtain the rotamers of the central amino acid, a hierarchical clustering procedure is applied to local
minima, using the Euclidean distance in dihedral angle space – that is the periodic distance on the flat torus.
A cutoff of 40◦ is then used to obtain the clusters from the dendogram. One rotamer per cluster is then
defined. This rotamer is obtained by computing the weighted center of mass of each dihedral angle – the
weight of a conformation being given by Boltzmann’s factor of the free energy. Note that the computation
of the center of mass was recently solved in [CDO21]. The importance of the local sequence is evidenced by
the probability of a given rotamer.

Results and assessment. The library is also used to assess coverage of rotamers found in experimental
structures, with performances comparable to non sequence depending libraries. (Nb: a side chain conforma-
tion is covered/represented by a rotamer provided that each of its χ angles is within 40 degrees.)

22



2.5.6 Notes

Various other methods have been developed to predict rotamers and side-chain conformations. A notable
one is that based on neural networks (using back propagation and a sigmoid activation function) [HL95].

2.6 Side chain conformational sampling

2.6.1 Overview

This section focuses on sampling methods for side chains, using rotamers. Two main classes of methods
are presented: combinatorial methods mainly used for computational protein design, and generative models
based on dynamic Bayesian networks.

2.6.2 Group rotations

Side chain conformational sampling can be done by choosing values for the χ angles at random, , and
applying Rodrigues’ formula to rotate the portion of the side-chain found downstream the bond. This
strategy, used very early to pack side chains [LS91], has recently been termed group rotations [MWS+14].
The strategy can be refined using the information associated with rotamers. represented as a mixture of
1D von Mises distributions. For non rotameric dof specified using a smooth distribution, this strategy only
requires sampling this distribution.

2.6.3 Computational Protein Design with continuous rotamers – 2012 and 2017

Computational Protein Design and classical approaches. Computational Protein Design (CPD)
consists of finding a sequence of a.a. that fold into a specific structure. The classical approach uses two
main ingredients: an energy model which in general is pairwise decomposable; and a library of rotamers.
In other words, the algorithm searches over a discrete set of conformations obtained by combining specific
conformations (rotamers) of the a.a used/selected. Recently, the classical notion of rigid rotamer has been
evolved into a notion of continuous rotamer, amenable to energy minimization.

The dead-end elimination (DEE) algorithm [DDMHL92] reduces the search space of the problem itera-
tively by removing rotamers that can be provably shown to be not part of the global lowest energy confor-
mation (GMEC). DEE is typically coupled to the A* branch-and-bound algorithm [HNR68] to maintain a
lower bound on the partial trees to explore and extent the most promising one [LL98].

The simplest kind of rotamer lib consists of using rigid rotamers – in which case the associated GMEC
is termed the rigidGMEC. Unfortunately, χ angles in protein structures may significantly differ from the
modal values [JWLM78], so that steric clashes arising using rigid models cannot be fixed. On the other
hand, given a continuous energy model, it is possible to minimize the energy of conflicting rotamers. The
use of continuous rotamers in protein design is explored in [GRD12]. In this context, the GMEC obtained
is called minGMEC.

Using continuous rotamers. In the continuous rotamer model, the χ space of a side chain is decomposed
into voxels called Residue Conformation (RC) – that is a voxel corresponds to a continuum of side chain
conformations. A conformation of the whole protein is therefore a vector of RCs [GRD12, HKD13, Fig.
1]. More precisely, to describe the conformational space of a single dihedral angle χ, let Decomp(S1) be a
decomposition of the unit circle S1 into intervals. If the i-th a.a. has ni dihedral angles, its conformation
space is the product

∏
i=j,...,ni

Decomp(S1). An element in this product is a voxel or RC.
Minimizing a side chain in a voxel creates a domino effect on neighboring side chains. The MinDEE

algorithm handles this coupling by combining MinDEE and A* [GRD12]: rotamers which are not part of
MinGMEC are pruned by MinDEE; A* is used to sort rotamers by increasing lower bound – yielding the
processing order. Note that A* requires minimizing each rotamer vector – the minimization of a rotamer
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takes place in the cartesian product of the single-residue voxels. (It is stated that RC are small enough so
that minimization yields an optimum within the voxel [GRD12, HKD13].)

LUTE. The bottleneck in [GRD12] is the minimization process. While this step can be accelerated using a
compact/polynomial representation of the (potential) energy surface [HGD15], the solution lags behind CPD
based on rigid rotamers. The goal of LUTE [HJD17] is to handle the domino effect by processing tuples of side
chains directly, using a representation suitable for DEE/A*. This representation uses two main ingredients:
first, a global quadratic model for the energy; second, tuples (pairs, triples) of side chains in close vicinity
to make a significant contribution to the total energy.

Consider a chain with n residues, denoting ni the number of dihedral angles of the i-th residue. Using
bins of 18 degrees, the configuration space of this side chain is decomposed into (360/18)ni = 20ni side-chain
voxels. The rationale of this bin width is to obtain one local minimum per voxel – even though this cannot
be guaranteed. Taking the Cartesian product of side-chain voxels yields a decomposition of the configuration
space of all side chains into global voxels.

The LUTE methods is based on two steps: training and learning. Training consists of minimizing the
energy model used within a global voxel. When this optimization problem is well poised, one obtains one
minimum, encoding one conformation for each side chain, and the associated energy. Applying least-squares
(LS) to the training data–the list of (minima, energy) associated to the global voxels minimized, learning
consists of fitting a (unique) quadratic model for all global voxels.

This model can then be used to compute the energy of a tuple (pair, triple) of locally interacting side
chains. To do so, one restricts the global LS model to those dihedral angles present in the tuple. Note that
in doing so, one obtains an energy for this tuple without effectively minimizing the energy model for this
tuple. Also, since the energy is computed for the tuple in the absence of other side chains in the direct
environment, one typically obtains a lower bound – steric constraints with neighbors being omitted.

2.6.4 TorusDBN– 2008

The TorusDBN model is not concerned with side chains, but instead the local structure of the backbone.
Still, we present it briefly to make the presentation of BASILISK self contained.

Rationale - goals. To model local protein structure in a spirit analogous to HMM for sequences, a method
using a Dynamic Bayesian Network (DBN) is proposed in [HBP+10]. Recall that a Bayesian network (BN)
is meant to represent a joint distribution of a set of random variables (RV) using a directed acyclic graph
(DAG) [Gha97]. The adjective dynamics refers to the indexing provided by the sequence – analogous in
spirit to a time series.

Model. The particular DBN used is a path hidden nodes (Fig. 2.13). A given hidden node represents a
residue at a specific chain position, and can adopt 55 different states (see below). Each state emits a four
tuple of values denoted (d, a, s, c), the distributions of the individual RV being state dependent. The four
values are:

• (i) d = (φ, ψ) dihedral angles : modeled by a bivariate von Mises distribution,

• a: amino acid type,

• s: secondary structure,

• c: cis (ω = 0) /trans (ω = π) conformation for the peptide bond.

Note that due to the linear structure of the DBN, each four tuple (d, a, s, c) can be used as input or output.
Sampling from this model is a two step process:

• Step 1: sampling a hidden node sequence (using observed nodes if any) – assigning a state to each
of them. This is done using the so-called forward-backtrack algorithm. (Nb: Some input information
may also be used, e.g. amino acids at specific positions.)
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• Step 2: sampling the remaining pieces of information, using the conditional probability distributions
of the nodes.

The number of states for a hidden note (55) is a hyperparameter optimized using the BIC criterion
[HBP+10, SI], peaking at a value ∼ 55.) The probability distributions associated with hidden nodes are
learned using Monte Carlo Markov Chain (Gibbs sampling) [PH10]. DB used consists of 1647 protein
structures.

Results and assessment. Several assessment of the model are provided, including the analysis of (i)
angular preferences, (ii) length 4 amino acid generated (as such motifs have been studied in detail in the
structural bioinformatics literature) (iii) structures compared against the native states.

Figure 2.13 The Dynamic Bayesian Network generative model for protein structure: a path of
hidden nodes. Adapted from [HBP+10]. A length n sequence is represented by a sequence of n hidden
nodes, each emitting backbone angles, an amino acid type, a SSE type, and a cis/trans conformation for the
peptide bond.
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2.6.5 BASILISK– 2010

Rationale - goals. The goal of BASILISK is to offer a a compact/continuous/generative model for backbone
dependent conformations of side chains. The adjective compact refers to the fact that all a.a. are processed
at once, and that for a given a.a., the dihedral angles of the backbone and those from the side chains are
inherently coupled. The adjective continuous indicates that the conformational space modeled is continuous
– with possibly sharply peaked distributions. The adjective generative refers to the fact that the model is a
generator of conformations.

Model. The name BASILISK stands for Bayesian network model of side chain conformations estimated by
maximum likelihood. BASILISK is also based on a DBN (Dynamic Bayesian Network). The DBN has two
slices for the (φ, ψ) angles of the backbone, and four more slices to accommodate the maximum number of χ
angles (Fig. 2.14). Each slice has an index to specify the angle, a hidden node, and a von Mises distribution
for that specific angle – its parameter depend on the value in the hidden node. The hidden nodes introduce
the required coupling between all angles.

Consider the following three vectors: χ: sequence of χ angles, A: vector of angle info (a.a. type), H:
vector of hidden node values.

Also recall the following decomposition of the joint probability, say for four random variables:

P [WXY Z] = P [W ]
P [WX]

P [W ]

P [WXY ]

P [WX]

P [ZWXY ]

P [WXY ]
(2.25)

= P [W ]P [X |W ]P [Y |WX]P [Z |WXY ] . (2.26)
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The joint probability encoded by the network reads as follows

P
[
A,H, χ, φ, ψ

]
= P

[
A
]
P
[
H | A

]
P
[
χ, φ, ψ | A,H

]
. (2.27)

Using Eq. (2.25), one obtains the following expression for the conditional distribution of interest:

P
[
χ | φ, ψ,A

]
=

P
[
χ, φ, ψ,A

]
P
[
φ, ψ,A

] =

∑
H P

[
χ, φ, ψ,A,H

]∑
H P

[
φ, ψ,A,H

] =

∑
H P

[
χ, φ, ψ | H

]
P
[
H | A

]∑
H P

[
φ, ψ | H

]
P
[
H | A

] . (2.28)

Note that P [χ | H] is modeled using a 1D von Mises distribution.

Figure 2.14 The Dynamic Bayesian Network used in BASILISK for a single amino acid. Adapted
from [HBP+10]. The input nodes specify the a.a. type and the angles; the output nodes specify the dihedral
angles. The number of slices is equal to 2 (backbone angles) + 4 (maximum number of dihedral angles.).
The parameters of the von Mises distribution used in a slice depend on the value stored in the hidden node.
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Results and assessment. A twofold assessment is presented. The first one is a direct comparison to
backbone independent rotamer libraries. First consider the frequencies Pdata of rotamers observed in a ref-
erence dataset. For a reference (backbone independent) library Q of rotamers, assume one has computed
P [χ | RA], the probability of the vector of angles χ given the rotamer RA. The quality of this partic-
ular library is given by DKL (Pdata‖PQ). Similarly, the quality of the rotamers provide by BASILISK is
given by DKL (Pdata‖PBASILISK). The comparison between q and BASILISK is provided by the difference
DKL (Pdata‖PQ)−DKL (Pdata‖PBASILISK). In general, BASILISK captures the conformational preferences of
a.a. more accurately than other libraries. The same KL based analysis can be used to compare BASILISK

with and without backbone dependency. As expected, the former is better at capturing conformational
preferences.

The second assessment is concerned with the generation of high quality side chain conformations – side
chain placement for a fixed backbone. The energy model, a plain 6-12 Lennard-Jones model, is used via
Boltzmann’s factor to assign a probability to each structure. This energy (multiplied by the probability
assigned by BASILISK to the side chain conformation in a second experiment) is used in the Metropolis-
Hastings criterion. At each iteration, three new side chain conformations at random sequence positions are
proposed. After 500,000 MCMC iterations, the lowest energy (highest probability) structure is retained. A
χ angle is termed correct if the difference with the value in the crystal structure is less than 20 degrees. In
using the BASILISK likelihood as a pseudo-energy component, results on par with specialized programs such
as SCWRL4 are obtained.

As a conclusion, using a single model for all a.a. reduces the number of parameters to be estimated, and
makes it possible to transfer information, which is relevant for a.a. with similar properties. But it also faces
the risk of mitigating properties for a.a. from different groups.

2.6.6 Notes

The problem of packing side chains was originally studied using simulated annealing [LS91]. Using mean field
theory, libraries of rotamers have be used to predict side chain conformations in a protein, as well as their
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conformational entropy [KD94]. For docking, a hybrid strategy combining rigid body docking optimization
of the partners and (via quenching/gradient descent in the space of rigid motions ) and side chain packing
(using Monte Carlo search) has been developed [GMW+03]. Evolutionary approaches mixing discrete and
continuous global optimization have also been considered [YTH+02].

2.7 Backbone conformation sampling

2.7.1 Overview

Loops and their importance. Flexible loops (segments along the backbone) in proteins are common-
place, and play a key role in various processes. One may for example consider the role of complementarity
determining regions (CDR) in antibodies, the role of enzyme loops moving functional domain around, linkers
connecting two essentially) rigid bodies, flexible regions in intrinsically disordered proteins, etc. Modeling
loop has long been identified as a key problem [FD+00], with a particular interest for homology models since
templates for flexible loops are in general not available. After two decades of intense research, modeling
flexible loops remains a challenge, especially for highly diverse loops [SK12, MSD18]. As a matter of fact,
as of today, it is considered that modeling loops beyond 12 amino acids is hard or beyond reach [BCC21].

Beyond isolated loops, molecular modeling also needs to cope with multi loop systems. Closed loops
associated to the covalent graph are found due to disulfide bonds in proteins, and naturally due to multiple
cycles in poly-cyclic molecules–such as steroids for example. Closed loops are also found beyond covalent
bonds, due in particular to hydrogen bonding. The complexity of such situations is described, from the
purely topological standpoint, by the so-called cyclomatic number (in graph theory), or equivalently the first
Betti number β1 in algebraic topology [EH10].

Goals: structure versus thermodynamics versus kinetics. When working with loops, it is impor-
tant the keep final goal in mind, given the trichotomy structure - thermodynamics - kinetics mentioned in
Introduction. For example, selected works solely target the reconstruction of loops observed in crystal struc-
tures. Such works belong to the realm of structure. On the other hand, other works addressed the problem
of sampling sense loop conformations in the thermodynamics realm, for example an NVT ensemble. Such
ensembles of conformation are usually meant to compute observables, e.g. a heat capacity of binding affinity.
Finally, loops sampling methods can also be designed in the context of kinetics, to compute transition rates
and the stability of meta-stable states.

In the sequel, we focus is deliberately on structural / geometric questions.

Modeling loops: methods. From the methods standpoint, the methods developed to study loops are
remarkably diverse, and we may ascribe them to three tiers.

First, the loop can be deformed by some continuous strategy. In this vein, various methods were designed
by rotating rigid bodies about rotation axis defined by Cα carbons delimiting a backbone segment. Such
methods include Crankshaft [Bet05], as well as Backrub [DAIRR06, SK08]. These methods proved successful
to reproduce motions observed in crystal structures, but hey are essentially limited to hinge like motions.
Second, the other hand a piece of the loop may be deformed in such a way that the connectivity is disrupted,
which requires performing a loop closure step. As we shall see, these methods, which lie in the lineage of
[GS70], give rise to a remarkably rich body of work. Finally, one may also consider a loop as a sequence of
protein fragments stitched together. Give the high resolution structures from the PDB, it is therefore natural
to reconstruct loops using existing structures [JT86]. As we shall see, such approaches can be combined with
the previous two.

Section overview. The goal of this section is to present the fundamental aspects of loop reconstruction
and sampling, especially for loop closure and database approaches. In doing so, the ambition is to shed light
on the trade-off between the complexity of methods, and the diversity of solutions generated. That is to say,
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our focus is deliberately on structural rather than thermodynamic aspects–which is why detailed balanced,
Metropolis-Hastings criteria and the like are omitted. The section is organized as follows:

• Section 2.7.2 introduces background concepts.

• Section 2.7.3 deals with ab initio methods based in particular on inverse kinematics, a class of methods to
reconstruct backbones based solely on geometric constraints, in the absence of any external knowledge.

• Section 2.7.4 present hybrid methods, i.e. methods combining calculation of the inverse kinematics (IK)
type, and also exploiting data from the PDB. A natural strategy to handle (long) loops indeed consists
of splitting the reconstruction problem into easier sub-problems. Such strategies typically combine ab
initio approaches based on IK, and database approaches exploiting existing fragments available in the
Protein Data Bank.

• Section 2.7.5 discusses partially rigid geometry methods, exploiting a relaxation of the constraint on
fixed bond lengths and valence angles.

2.7.2 Loop closure and inverse kinematics: background

Molecular modeling and mathematical problems

Given a molecule represented in internal coordinates, a simplification consists of considering that only dihe-
dral angles can vary [EH91]. This hypothesis is supported by the fact that in force fields, spring constants
for these angles are much softer than for the other IC.

Using the idealized rigid geometry model, the backbone of the molecule can be viewed as a kinematic
chain, a classical representation in robotics [Cra89, PC94]. Consider a robot consisting of an articulated arm
connected by joints. The robot has a base and an end effector. The inverse kinematics problem seeks the
possible geometries (angular values of the joints) compatible with a given position/orientation of the end
effector. This model triggered a large body of work at the interface between chemistry, robotics, applied
mathematics, and computer science, see e.g. [GS70, RR90, PC94, MC94, EM99, CSRST04, CS04, NOS05,
PRT+07, CSWD06, MLL08, CLW+16] and references therein. In robotics, joints that allow two links to
rotate w.r.t. one another at a fixed angle are called Rotator pairs or R-pairs. A molecule with 6 rotatable
bonds is analogous to a 6R linkage, a case also referred to as the 6 rotors - 6 bars (6R-6B) system.

In the sequel, we present the classical methods.

Figure 2.15 A general 6 rotors - 6 bars (6R-6B) system. Adapted from [PRT+07]. (A) Six rigid
bodies linked by six linkers/bars, each endowed with a rotational degree of freedom. (B) The relative position
of the two segments sandwiching a rigid body does not change, which is modeled by a rigid tetrahedron.
(C) The distance geometry model associated to the 6R-6B system.
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General loop closure using Denavit-Hartenberg local frames

Denavit-Hartenberg frames are classical to model kinematic chains in robotics [DH55, Cra89].

Denavit-Hartenberg local frames. We wish to define the DH frame associated with the i-th rotatable
bond of a loop L. Let Zi be a unit vector along the i-th rotatable bond bi The DH local frame Fi is s defined
as follows (Fig. 2.16): 

Zi = unit vector along the i-th bond

Xi = Zi−1 × Zi
Yi = Zi ×Xi

(2.29)

In addition, one defines the following parameters:

• ui: the point on the line through bi nearest to the line through bi−1. Note that point ui is supported
by the line bi-orthogonal to line(bi−1) and line(bi).

• distance di: distance along bi from ui to the closest point to ui+1 – the projection of ui+1 onto the line
through bi.

• offset ai: distance from the line line(bi) to ui+1.

• angle αi: from Zi−1 to Zi.

• torsion / dihedral angle θi: ∠Xi−1, Xi about Zi−1.

Remark 2.4. When the bonds are consecutive – equivalently all backbone atoms are used: the ui are the
atomic positions, di are the bond lengths, αi are the valence angles, and the θi dihedral angles.

Two consecutive frames Fi and Fi+1 and related by forward rigid motions Ai�i+1. (Nb: one can also use
the backward mapping defined by matrices Ai�i+1.) To see how, denote Tl(d) the translation of distance d
along the vector l, and Rl(α) the rotation of angle α along the axis l. (Nb: these transformations are written
in homogeneous coordinates.) The DH frames Fi and Fi+1 satisfy:

Fi+1 = Ai�i+1Fi, with Ai�i+1 = TZi(di) ·RZi(θi+1) ·RXi+1(αi+1) · TXi+1(ai). (2.30)

Indeed:

• TXi+1
(ai): translation along Xi+1 to compensate the offset ai,

• TZi+1(di): translation along Zi+1 to compensate the distancedi

• RXi+1
(αi+1): rotation along Xi+1 to bring Zi onto Zi+1,

• RZi(θi+1): rotation along Zi to bring Xi onto Xi+1,

Consider now two fixed atoms u0 and un, separated by n rotatable bonds. Using Eq. 2.30 iteratively, we
obtain

Fn = A1�nF1, with An−1�nFn−1 = An−1�n . . . A1�2. (2.31)

The product of Eq. 2.31 readily makes it possible to deform the loop L (Fig. 2.18). Consider two internal
geometries of the loop L, defined by the parameters I = {(ai, di, αi, θi)} and I ′ = {(a′i, d

′

i, α
′

i, θ
′

i)}. Consider
the two transformations A1�n(I) and A1�n(I ′). The loop closure reads as

A1�n(I) = A1�n(I ′). (2.32)

The previous equation can be reduced to six equations describing the translation and rotation bringing F1

onto Fn.
Applications to moveset will be treated in section 2.7.5.
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Figure 2.16 Denavit-Hartenberg local frames Fi for possibly non consecutive rotatable bonds
of a loop L. (A) Kinematic chain with n rotatable bonds b1, . . . , bn. Three consecutive bonds bi are
represented. (B) The DH frames Fi defined for all rotatable bonds, in red/green/blue for Fi−1/Fi/Fi+1

respectively. Note that when the rotatable bonds are consecutive, the ui are the atomic positions, di are the
bond lengths, αi are the valence angles.

bi−1

bi

ui

Zi−1

bi+1

Zi

Yi = Zi ×Xi

bond bi−1

bond bi

bond bi+1

(A) (B)

di

αi

ai−1

ui−1

Xi = Zi−1 × Zi

Zi−1

ui+1

Fi

ai

Xi
Yi

Zi

Zi+1

Xi+1

Yi+1

Nb: ⊥ plane(bi−1, bi)

αi+1

Zi+1

Xi+1Zi

Xi

θi+1

Fi+1

Geometric solutions to IK problems and molecular conformations

For large enough systems i.e. sufficiently many degrees of freedom, one expects IK problems to admit a
continuous solution set [Cra89, Lat12, LaV06]. However, ending up with an exhaustive description of such
sets is in general difficult, setting aside the problem of sampling curved manifolds representing solutions.
Therefore, particular cases of IK problems admitting finite solution sets are a route of choice. From the
algebraic standpoint, such problems generally reduce to finding the real roots of a univariate polynomial.
In molecular science, a root generally corresponds to one conformation, so that enumerating all solutions (a
finite set by hypothesis) makes it possible to consider ensembles of conformations. This strategy is a route
of choice when reconstructing flexible loops[], or when exploring conformations in the process of molecular
simulations [].

Physical properties: rigid versus partially rigid models

Coming up with IK problems admitting finite solution sets requires imposing constraints on the geometric
models. Mirroring these in molecular modeling requires considering the three classes of variables/internal
coordinates which can be used for the loop/ring closure: bond length, bond angles, dihedral angles. Stiffness
constants associated with the deformation of torsion angles are one or two orders of magnitude smaller than
those associated with deforming bond lengths and bond angles []. The model in which bond lengths and
valence angles are fixed, while torsion angles vary is termed the rigid geometry model. As we shall see,
this model, in which one can only modify dihedral angles, is especially suited to define IK problems with
finite solution sets. We note however that the rigidity of using only dihedral angles will typically force the
appearance of unfavorable local structure in the chain. In the scope of Monte Carlo simulations, this is
clearly detrimental since such conformations result in a high considering rates. This motivates less strict
models, including the Partially rigid geometry model.
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Figure 2.17 Denavit-Hartenberg local frames for a protein backbone: construction of the angle
θi.
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Figure 2.18 Loop closure using Denavit-Hartenberg local frames. The blue bonds are kept fixed.
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2.7.3 Loop closure in the rigid geometry model

Single loop and the cyclic coordinate descent (CCD) algorithm

Consider a chain whose residues are numbered from 0 (left, N-ter) to n (right, C-ter). The goal is to find a
conformation of this chain, whose left and right a.a. match two anchors (fixed amino acids). The algorithm
takes as input a random initial configuration of all dihedral angles (φ, ψ) of the chain. These values may
be picked from uniform distributions, or better, from Ramachandran distributions of the individual amino
acids. The cyclic coordinate descent algorithm (CCD) [CDJ03] consists of iteratively changing the values
of the backbone (φ, ψ) angles, to as to move last amino acid as close as possible of the target (the right
anchor, C-ter). The elementary operation to do so deals with one angular value θ (θ = φ or θ = ψ) at a
time. To see how, let us use the following notations: (i) Fi, i = 1, 2, 3 represent the N,Cα, C of the fixed
amino-acid on the C-ter of the loop; (ii) Ai, i = 1, 2, 3 represent the same atoms on the last amino acid
of the loop being reconstructed; (iii) Ai;θ, i = 1, 2, 3 represent those atoms rotated by an angle θ about
an axis corresponding to an φ or ψ angle (Fig. 2.19). Angle θ is chosen to minimize the sum of squared
distances d1(θ)2 + d2(θ)2 + d3(θ)2, with di(θ) = ‖FiAi;θ‖. The optimal angular value is obtained from a
simple analytical calculation.

For a given proposed change in θ, a change in ψ is proposed. This pair is accepted or rejected using a
Metropolis criterion – based on the likelihood of the pair (φ, ψ) rather than some energy term. The process
is iterated along the chain, until closure – or failure.

The 6 rotator-6 (6R-6B) bar problem

The local deformation and ring closure problems are formally introduced in [GS70]. While the ring closure
name is self-supporting, the local deformation problem can be stated as follows. Consider a chain of n + 1
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Figure 2.19 Single dihedral angle optimization in the cyclic coordinate descent (CCD) algo-
rithm. Adapted from [CDJ03]. Angle θ is chosen to minimize the sum of squared distances between the
fixed atoms of the anchor, and the atoms of the loop being deformed. See text for details. The CCD
algorithm is based on the iterating of this process for all angles of the backbone.
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atoms a0, . . . , an connected by n bonds (Fig. 2.20(Left)). Keeping the bond lengths di and valence angles θi
fixed, one wishes to find values for the dihedral angles ω1, . . . , ωn compatible with the position and orientation
of the end atom an. The former problem is a particular case of the latter when one identifies endpoints.
In this seminal paper, the authors show that there are n − 6 independent angles. Intuitively, this number
is best understood as follows. Consider the forward map assigning the position and orientation of an given
the n angular values ωi. Each constraint on the position and orientation of an can be written as an implicit
equation on the n variables. Under genericity assumption, this yields a solution space which is a n − 1
manifold. If the six solution spaces corresponding to the six constraints intersect transversely, one gets a
solution space of dimension n − 6. Observe in particular that when n = 6, one obtains a zero dimensional
set i.e. a finite number of solutions.

The problem can be generalized to the case where the portion of the molecule of interest has a rigid body
(Fig. 2.20(Right)).

Deriving loop closure equations using line geometry. Loops closure for the 6R-6B mechanism can
also be obtained using the geometry of lines [CLW+16]. Consider as usual a kinematic with rotor links bi.
Bonds lengths and valence angles are fixed, and only the rotor angles (t1, . . . , tn) associated with the n rotor
links can vary (Fig. 2.21). Considering the i-th bond/bar, let Ri be its position in some reference frame,
and Γi the unit vector along this bond/bar.

Consider a point R outside the region of interest, and therefore fixed when the vector t changes. An
infinitesimal change dti for th i-th angle ti yields the following change for point R

dR = Γi × (R−Ri)dti

But since R is fixed, aggregating the contributions of the n angles yields

dR = 0 =
∑
i

(Γidti)× (R−Ri) (2.33)
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Figure 2.20 Ring closure in a molecule with rigid portions. Adapted from [GS70].
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or equivalently

(
∑
i

Γidti)×R− (
∑
i

dtiΓi ×Ri) = 0 (2.34)

Since this hold for all points R, the two sums vanish independently. For the i-th bond, consider the 6 × 1
vector obtained by pooling Γi and Γi ×Ri. The previous equation yields

P

dt1. . .
dtn

 = 0 with P
Def
=
(
. . . P i . . .

)
=

(
. . . Γi . . .
. . . Γi ×Ri . . .

)
(2.35)

When the 6 × n matrix P has full rank, the implicit function Thm guarantees that 6 variables can be
expressed as differentiable function of the remaining 6 ones. Call the free variables drivers and the dependent
ones pivots. Upon re-indexing, consider the following notations {qk := tik}k=1,...,n−6 for the drivers, and
{pk := tik}k=1,...,6 for the pivots. One obtains the differential of the pivot variables as a function of the
differential of the drivers

dp = −J−1Qdq, with J :=
(
. . . P i . . .

)
(2.36)

The columns of the Jacobian J are the so-called Plücker coordinates of the pivot axes [HHH78]. If the
determinant of the Jacobian in non null, the IK problem is termed well posed, and faces a singularity
otherwise. Equation 2.36 can be used to derive the closure equations, which are polynomials in the sines
and cosines of the pivot values pik .

Tripeptide/Triaxial loop closure

The original loop closure problem can be specialized by considering 6 dihedral angles corresponding to
three peptide bonds (consecutive or not), a case study first considered for cyclic peptides [GS78]. This
is a particular case of that studied in the previous section, since bars come into pairs which share an
endpoint. This particular case is termed the Tripeptide/Triaxial loop closure (TLC). In the sequel, we follow
[CSJD04, CSWD06] and outline the elegant and powerful solution to TLC, based on a degree 16 polynomial.
The reader may also consult [ORC22], where the method is explained in detail.

In considering three consecutive a.a., the six rotatable bonds / dihedral angles {(φi, ψi)}i=1,2,3 are found
before / after the Cα carbons (Fig. 2.22(A)). In using these six dihedral angles, the atomsNi, Cα;i, Cα;i+2, Ci+2

are fixed in the global coordinate system (frame). This observation is important, since the calculation will
be carried out in a different frame, in which these four atoms are not fixed even though they relative position
remains so.
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Figure 2.21 Derivation of loop closure equations: construction from [CLW+16]. The segment of
interest consists of n rotatable bonds between points R1 and Rn+1. Γi is a unit vector along the i-th bond.
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More precisely, the method consists of modeling the geometry of the system by three rigid bodies rotating
around the three axis Cα;iCα;i+1, Cα;i+1Cα;i+2 and Cα;i+2Cα;i. In doing so, the six angles {(φi, ψi)}i=1,2,3

get replaced by three rotation angles τi, i = 1, 2, 3 (Fig. 2.22(B)). The conservation of the valence angles
θi at the Cα carbons imposes three constraints–recall that valence angles and bond lengths are fixed in the
rigid geometry model. To accommodate these, one defined thee local frames (one for each Cα) whose z axis
are colinear and perpendicular to the place of the Cα triangle. In these frames, writing the conservation
of the θi angles yields three biquadratic (quadratic in two variables) polynomials in the three variables
ui = tan τi/2. The elimination of two of these variables yields the degree 16 polynomial. Every real root of
this polynomial defined an embedding for the three rigid bodies. Moving back that associated to the four
atoms Ni, Cα;i, Cα;i+2, Ci+2 into its original positions defines a valid reconstruction.

Remark 2.5. Interestingly, the idea of using rigid bodies for a tripeptide already appears in [DAIRR06].
Crankshaft indeed performs a rotation around Cα;iCα;i+2, and proceeds with rotations around Cα;iCα;i+1

and Cα;i+1Cα;i+2. However, valence angles are not preserved, which is the main difficult in TLC.

Remark 2.6. A generalization making it possible to change other dihedral angles is also proposed [CSJD04],
yielding a continuous problem. The reader is also referred to [PRT+07] for the historical notes on the quest
for the 16 real solutions in general and for the six-atoms ring. The same paper also survey such problems,
also providing a general method in the realm of real algebraic geometry.

Application: concerted rotations – Conrot and Conrot-CRA

One of the earlier example implementing loop closure using only dihedral angles is the concerted rotation al-
gorithm called Conrot [DBT93]. Consider the problem of changing the conformation of a backbone fragment
away from the chain endpoints – that is one must respect closure constraints. In the first step, a dihedral
angle is perturbed at random. In the second step, six dihedral angles are used to obtain loop closure. In
case multiple solutions exist, one is chosen at random. Overall, this moveset therefore alters seven dihedral
angles in the chain.

The concerted rotations strategy gave rise to a fruitful lineage. The algorithms Conrot-CRA [UJ03] and
Conrot-CRISP [BBEJ+12] obtain loop closure using three valence angles and three dihedral angles. A more
direct application of the initial Conrot is the method from [DABV+18], where the six (φ, ψ) angles of a
tripeptide are used to restore loop closure upon perturbing a particular dihedral angle. These algorithms
will be detailed in the sequel.
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Figure 2.22 The Triaxial (or Tripeptide) Loop Closure Problem. Adapted from [CSJD04]. The
three colors correspond to the three rigid bodies involved in the loop closure. (A) The original problem
involves six rotations corresponding to the angles {(φi, ψi)}i=1,2,3 found before/after the Cα carbons. (B)
The solution to TLC uses (i) three rotation angles τi corresponding to three rigid bodies around the three
axis Cα;iCα;i+1, Cα;i+1Cα;i+2 and Cα;i+2Cα;i; and (ii) three constraints stating that the valences angles θi
must be conserved.
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2.7.4 Loop closure: database driven and combinatorial approaches

Incremental construction using fixed length fragments

For long protein backbone loops, a classical approach to reconstruct and/or sample conformations consists
of mixing ab initio and database approaches, an approach initiated in [JT86]. . In the sequel, we outline
two methods from [KGLK05], to reconstruct a loop involving n amino acids.

The first method consists of seeking whole candidate loops in the Protein Data Bank. Consider a loop
L to be reconstructed, as well as the six amino acids flanking it – three to the left and three to the right.
Focusing on the Cαs of these flanking residues yields a total of 15 distances. Consider now all contiguous
backbone fragments of length n + 6 found in structures from the PDB. For such a fragment, one can also
compute the aforementioned 15 distances. The method consists of retaining those fragments with a Root
Mean Square RMS(L, S) < 1Å. These candidate reconstructions for L may also be filtered out using
additional criteria, based on chemical considerations, but also to filter out the geometric redundancy.

This method appears to be well suited for small loops, as long loops are not so frequent in structures
from the PDB.

The second method is a greedy/incremental reconstruction, which comes in two guises: unidirectional
(bidirectional) incremental construction. Both are similar and we only describe the former. The strategy
consists of iteratively concatenating fragments of length l (l = 5 in [KGLK05]) at the end of the loop under
construction. To do so, the first three Cα of the fragment are superimposed onto the last three Cα of the
loop under construction – the optimal rigid motion to do so must be computed. Because a new fragment
yields f − 3 new amino acids, a total of dl/(f − 3)e+ 1 fragments are required – the last one being the staple
ensuring compatibility. Assuming there are L fragments in the DB, the total number of reconstruction is
thus

N = Ldl/(f−3)e+1 (2.37)

This approach appears to be well suited to loops of moderate length, but faces a combinatorial explosion
when the size of the database increases.
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Figure 2.23 Incremental construction of a loop, by adding superimposed fragments of a fixed
length. Adapted from [KGLK05]. The left and right fragments (F0 and Fn) are fixed. The incremental
elongation consists of choosing from a database a fragment Fi whose first three Cα carbons define a geometry
compatible with the last three Cα from Fi−1. In the unidirectional construction, F must be compatible with
the right anchor Fn. In the bidirectional constructions, the chains elongated independently from the left and
right must meet in the middle.
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Kinematic loop closure (KIC) combined to Ramachandran sampling

The TLC (for possibly non contiguous Cα carbons) can be used in the context of information provided by
Ramanchandran distributions [MCK09], to model whole loops (backbone and side chains) with sub-angstrom
accuracy.

Consider an n residue chain, in which three Cα carbons are identified as pivots. Dihedral angles can be
randomly sampled from residue specific distributions, resulting in the opening of the loop. TLC can then be
applied to check whether the whole chain can be closed. Up to 16 solutions may be obtained, the result being
called a KIC move. To model an atomic model of a loop, KIC moves have been combined to two Monte
Carlo based minimization protocols, respectively optimizing a coarse grain model (side chain represented by
one pseudo-atom), and the full atomic model. The lowest energy model is finally reported [MCK09].

This method was subsequently evolved to the next-generation KIC [SK13] based on three sampling
strategies, in the scope of Rosetta1. The first uses taboo search to improve the diversity of low resolution
models obtained. The second resort to ω angle sampling as well enhanced (φ, ψ) sampling based on neighbor
dependent Ramachandran distributions [TWS+10], Finally, the third uses a ramping strategy to gradually
change the terms in the Rosetta energy function, so as to overcome high energy barriers. (Nb: a classical
ramping strategy consists of changing the terms in the VdW energy, which is sensitive to small inter atomic
distances.)

Hybrid methods using energy functionals

The Ramachandran sampling just used is one step towards using biophysical properties. The following two
methods take one step beyond, combining local loop closure heuristics, and energy based functions.

Algorithm LEAP is hybrid method, based on three steps [LZZ14]. First, conformations of the backbone
are generated with the CCD algorithm [CDJ03]. Second, side chains are built using an energy based potential
(OSCAR). Last, the top selected models are further optimized using the OSCAR potential for flexible side
chain rotamers, and the CHARMM bond potential energies.

The method Sphinx is similar in spirit, but combines four different ingredients [MNK+17]. Assume one
wishes to build a loop from N-ter to C-ter. The first step consists of assembling a database of fragments,
using several criteria (i) fragment length (ii) matching of the geometry of the left two flanking residues (iii)
sequence similarity. The second one is the elongation step, which consists of incrementally adding fragments.
The third one is the loop closure, performed with the CCD algorithm [CDJ03]. Finally, the last step performs
a decoy selection, and the addition of side chains–using an energy minimization based on Rosetta.

1See also https://www.rosettacommons.org/docs/latest/application_documentation/structure_prediction/loop_

modeling/loopmodel-kinematic

36

https://www.rosettacommons.org/docs/latest/application_documentation/structure_prediction/loop_modeling/loopmodel-kinematic
https://www.rosettacommons.org/docs/latest/application_documentation/structure_prediction/loop_modeling/loopmodel-kinematic


Incremental construction using tripeptides and reinforcement learning

An elegant reconstruction method combining two key ingredients s presented so far was recently proposed in
[BMV+19]: the first ingredient is the decomposition of the loop processed into small fragments, tripeptides
here (the loop length is assumed to be a multiple of three); the second one is the ability to reconstructed solu-
tions using the TLC algorithm. The method comes into two guises, namely without and with reinforcement
learning (RL).

To present these methods, we assume that a database of tripeptides. The DB is assembled by sliding a
window of size 3 along polypeptide chains from the PDB, keeping only tripeptides void of intersection with
an alpha-helix and a beta strand. Also, tripeptides collected are put into buckets labeled with their type
(the three amino acids). A tripeptide is represented by its state that is the three angles φ, ψ, ω.

Consider first the method without RL. The method grows segments of length p − 1(≥ 1) (left hand
side of the loop) and n − p(≥ 1) (right hand side of the loop), and attempts to bridge the gap using the
TLC algorithm. Along the way, an important ingredient is a random perturbation of the geometry of the
tripeptides used, both during the elongation steps, and the closure with TLC.

While the method is effective for loops of moderate length (≤ 10), it also faces the combinatorial explosion
already mentioned for [KGLK05]. This difficulty motivates the RL step, meant to prune infeasible regions of
the search space. In a nutshell, define the signature of a tripeptides as the vector joining the N and C atoms.
An octree is built to decompose the space of signatures and store tripeptides into homogeneous groups,
as a function of their involvement in successfully reconstructed loops. More precisely, when incrementally
building the loop, an octree is used for each tripeptide slot in the reconstruction. To sample a state for a
candidate tripeptide, all leaves of the current tree are scored (using a score based on a learning rate), and
the leaf providing effectively the tripeptide used is chosen with a probability proportional to this normalized
score [BMV+19]. The learning rate influences the speed for reconstruction vs the diversity of reconstructions.
Each time a loop is reconstructed, statistics in all trees must be updated.

Overall, it is found that the RL based strategy yields a faster conformational sampling in most cases,
the learning strategy being effective to unlock regions of the conformational space which are not accessible
by the basic method.

2.7.5 Loop closure in the partially rigid geometry model

The efficiency molecular simulations heavily relies on the moveset used to generate novel conformations.
While the rigid geometry assumption tames down the mathematical difficulties, it also drastically reduces
the number of degrees of freedom. In turn, this may cause the appearance of unfavorable local structure in
the chain, leading to an elevated potential energy and a high rejection rate using Boltzmann factor in the
acceptance rule. In fact, allowing for small variations significantly increases the range of solutions [BK85].

Loop closure with 3 bond angles and 3 dihedral angles

Conrot-CRA. A difficulty inherent with Conrot [DBT93] is that the prerotation angles may induce a too
large variation of the last atom moved–call it a, making impossible for the postrotation step to close the loop.
To increase the probability of obtaining loop closure after the prerotation stage, and also to ease calculations,
the Conrot-CRA algorithm [UJ03] utilizes three consecutive angles, three dihedral and three valence angles
(Fig. 2.24). The prerotation angles are then biased to monitor the displacement of the aforementioned atom
a. In the context of Monte Carlo sampling, the necessary correction factors for the Metropolis-Hastings
criterion are also computed.

Conrot-CRISP. While Conrot-CRA [UJ03] minimizes the displacement of the last atom moved. But this
strategy creates an imbalance in the magnitude of the prerotation versus postrotation angles, and the large
changes of the latter atoms often yield steric clashes [BBEJ+12]. To remedy this problem, the Conrot-CRISP
algorithm, which also uses the same set of 3+3 angles [BBEJ+12], couples the pre and postrotation steps
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Figure 2.24 The six angles used to restore loop closure in Conrot-CRA. Adapted from [UJ03].
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by pulling back the incidence of prerotation angles onto the postrotations ones into a unique probability
distribution.

More precisely, assume that an arbitrary number of valence+dihedral angles are perturbed, braking the

chain connectivity (Fig. 2.25(A)). These angles are denoted χ
(i)
pre, i = 1, . . . , n. In the second step, exactly six

angles (three valence angles, three dihedral angles) are used to restore the connectivity (Fig. 2.25(B)). These

angles are denoted χ
(i)
post, i = 1, . . . , 6. Overall, the method therefore alters the following set of n angles:

χ = {χ1, . . . , χn} = (χpre,χpost), We note in passing that these angles are inhomogeneous, since some are
balance angles, and others dihedral angles. It is therefore useful to consider a diagonal scaling matrix Cn,
to properly scale all angles as a function of their nature. (Nb: a diagonal term Cii in matrix Cn is equal to
a constant k for a bond or ω dihedral angle, and equal to one for a φ or ψ angle.)

The key advantage of Conrot-CRISP is that solving for the six angles χ
(i)
post yields calculations which

are mush simpler than those related to the classical loop closure based on dihedral angles solely. These
calculations make it possible to derive the analytical expression of the probability distribution with which
the prerotation angles are chosen.

Figure 2.25 Moveset of the Conrot-CRISP method. Adapted from [BBEJ+12]. (A) The prerotation
phase alters a number of valence and dihedral angles – in red, braking the integrity of the polypeptide
chain. The postrotation phase modifies six angles (three valence, three dihedral) to rescue the integrity. One
further computes the partial derivative of a postrotation angle as a function of a prerotation angle. (B) The

analytical derivation of the values of the post-rotation angles χ
(i)
post is made via the placement of the C atom

(blue atom).
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Derivation of the probability density for prerotation angles. In the sequel, we assume the existence
of analytical formulae for χpost as a function of χpre, see [BBEJ+12]. These formulae make it possible to

compute the partial derivatives ∂χ
(i)
post/∂χ

(j)
pre can also be computed. Therefore, assembling the 6 × n − 6

dimensional Jacobian J of transformation gives the first order variation of the postrotation angles as a
function of those of the prerotation angles:

δχpost = Jδχpre. (2.38)

The previous calculation provides significant pieces of information. To see which, consider two confor-
mations χ and χ′. Also consider the (infinitesimal) variation of all angles between these two conformations,
denoted δχ = (δχpre, δχpost).

Assuming δχ follows a multivariate Gaussian distribution, using the aforementioned Cn matrix and a
parameter λ to code the desired level of locality, the probability of the move satisfies

P [δχ] ∝ exp(−1

2
δχTλCnδχ). (2.39)

However, Eq. (2.38) provides the first order coupling between the pre and post angles. Using it, it can be
shown that the previous formula can be written as a function of the prerotational angles only, namely:

P [δχ] ∝ exp(−1

2
δχpreλ(Cn−6 + JTC6J)δχpre), (2.40)

where the diagonal matrix Cn−6 controls the variations of the prerotational angles, and the (non diagonal)
matrix JTC6J combines the Jacobian and the constraint matrix C applied to the postrotational angles (Fig.
2.26).

Equation (2.40) is the final probability distribution with which prerotation angles are sampled [BBEJ+12].
The Conrot-CRISP algorithm is available within the PHAISTOS software [BFH+13], a framework for Markov
chain Monte Carlo sampling for simulation, prediction, and inference of protein structures. This framework
has a number of ready move modules implemented as well as force field computations and probabilistic
generative models.

Figure 2.26 Conrot-CRISP: linear transformations applied to the prerotational and postrota-
tional angles. Adapted from [BBEJ+12]. Matrix J is the Jacobian of the transformation mapping angles
χpre onto angles χpost. Transformations are applied as follows: (i) prerotations angles are scaled by matrix
Cn−6; (ii) the Jacobian J is applied; (iii) postrotation angles are scaled by matrix C6; (iv) the transformation
given by JT is applied.

J

JT

Rn−6 R6Cn−6 C6

Inverse kinematics using Denavit-Hartenberg frames

The formalism of Denavit-Hartenberg frames (Sec. 2.7.2) defines the loop closure based on all internal
coordinates of the molecular system. This ability has been used as follows.

39



Probik. The general loop closure Eq. 2.32 can be used in several guises [NOS05].
First, in the case where the anchors are fixed and all internal coordinates of the loop are fixed except six

rotation angles θi, this equation yields the usual degree 16 polynomial [RR90], for which stable numerical
solutions can be obtained via a generalized eigenvalue problem [MC94].

Second, the same equation can be used to explore the benefits of changing other internal coordinates.
Consider perturbing a specific parameter in a loop, called the fuzz parameter (bond length, valence angle,
ω dihedral angle) [NOS05]. Varying this parameter amounts to changing the coefficients of the degree
16 polynomial into functions of this parameter. The real roots of this parameterized polynomial evolve,
coalescing and/or disappearing. Mathematically, this behavior is studied by continuation methods.

Practically, one first generates an array of values T = [. . . ci, ci+1, . . . ] centered say on its default/average
value of the fuzz parameter. Consider now all possible reconstructions obtained for two consecutive values
ci and ci+1. Setting aside the vanishing and the appearance of solutions, one can link reconstructions, since
those associated to ci+1 correspond to those for ci up to deformations [SW+05]. Linking solutions makes it
possible to define branches of solutions. Furthermore, the trajectory of a given atom along such a branch can
be modeled using a polynomial curve, so as to estimate the velocity of this atom when the fuzz parameter
evolves.

Higher dimensional configuration spaces. The general loop closure Eq. 2.32 involving Denavit-
Hartenberg frames can also be used to explore solution spaces beyond 0 dimensional ones. As opposed
to the sampling based method Probik just discussed, the handling is made explicit in [ZRST15].

To see how, consider consider a set of DH frames parameterized by a set I = {(ai, di, αi, θi)} of n
parameters. Because Eq. 2.32 imposes six constraints, the solution space is (under suitable genericity
assumptions) a n − 6 dimensional manifold M. The tangent space to this manifold can be exploited to
define locally perturb a loop defined by the parameters I0 as follows:

• Compute the tangent space TIoM to M at I0

• Pick a random vector V in TIoM and define the configuration ITS = I0 + ηV , with η a user defined
parameter.

• Project ITS onto M to obtain a new configuration. (Nb: the projection should exist, and be unique –
which means that ITS should not lie on the medial axis of M.)

In [ZRST15], this strategy is shown to be effective when the solution space is one-dimensional. For example,
one may use seven dihedral angles, in which case the solution space is a curve defined in the seven dimensional
flat torus T7.

2.7.6 Multiple loops

Loop closure and multiple loops: global solutions using distance geometry

The IK problems just discussed can actually be cast in a very general algebraic model, based on distance
geometry. As summarized in [PRT+07], there are several cases involving 6 torsion angles, each of them
corresponding to a particular robot: the general 6-torsion molecular loop, equivalent to the general 6R
serial manipulator; the tripeptide loop closure, equivalent to the 6R serial manipulator with intersecting
axes; the disulfide bond loop (where the S-S bond yields a fixed torsion), equivalent to the 4-4 parallel
manipulator; the 7-atom loop, equivalent to the 4-3 parallel manipulator; and the 6-atom ring, equivalent to
the 3-3 (octahedral) manipulator. Importantly, the framework of distance geometry is also used to propose
a method covering all such cases and beyond, also able to handle multiple loops [PRT+07].

To bridge the gap between molecular models and distance geometry, one consider the constraints as-
sociated to valence and dihedral angles Indeed, constant valence angles and dihedral angles translate into
distance restraints (Fig. 2.27). The loop closure problem in the rigid geometry model thus amounts to
finding embeddings compatible with distance restraints, which is a NP-hard problem in general [Sax79].
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To translate the problem into algebraic terms, consider n atoms A1, . . . , An, and the associated Caylay-
Menger determinant D(1, n), based upon the

(
n
2

)
squared pairwise distances. With ri,j = ‖Ai −Aj‖2, the

Caylay-Menger determinant of k points is the following (k + 1)× (k + 1) determinant:

D(1, k) =

∣∣∣∣∣∣∣∣∣∣
0 r1,2 r1,3 . . . r1,k 1
r2,1 0 r2,3 . . . r2,k 1
. . . . . . . . . . . . . . .
rk,1 rk,2 rk,3 . . . 0 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
(2.41)

Is it well known [] that the Caylay-Menger determinant and the squared volume V 2
k−1 of the k − 1 simplex

defined by the k points A1, . . . , Ak satisfy

V 2
k−1 =

(−1)k

((k − 1)!)22k−1
D(1, k). (2.42)

For example: with V2 the surface area of the triangle A1, A2, A3, one has −16V 2
2 = D(1, 3); with V3 is the

volume of the tetrahedron A1, A2, A3, A4, one has 288V 2
3 = D(1, 4).

When trying to embed a molecular model, one deals with two types of (squared) distances: those which
are known, since they are associated to constraints on the internal coordinates (fixed bond length, valence
angles, dihedral angle); and those which are unknown. The latter are the variables of the problem, which
must be determined. The outline of the strategy to find an embedding is as follows [Sax79].

LetR be a set of 4 atoms which can be embedded. Using CM determinants CM(R, i), CM(R, j), CM(R, i, j),
one can write constraints which guarantee the compatibility of the distance between points in R and other
pairs (A,Aj). These conditions are necessary a and sufficient. One obtains algebraic equations whose un-
knowns are the unknown squared distances rij = d2

ij . Efficient solvers can be developed in particular for
zero dimensional systems. The solutions to these equations directly yield an embedding for the atoms.

¡

Loop closure and multiple loops: a general approach for local solutions

Algebraic methods based on the loop closure are of special interest particular for the solution set is zero
dimensional [PRT+07]. When this is not the case, it is beneficial to consider the solution space locally in some
analytical form. The motivation for such cases comes from the need to model to non covalent interactions,
as for example hydrogen bonds in proteins or nucleic acids [BLvdB15].

In the sequel, q refers to internal coordinates, and the embedding map returning a conformation for q ∈ Rn
is denoted f(q). The mathematical treatment of say p constraints can be envisioned in two ways. The first
one consists of considering implicit equations for each of the p constraints, say Ci(q) = 0, i = 1, . . . , p. If
the implicit function theorem applies, the solution set C−1

i (0) is locally a n − 1 manifold. Assuming the
transverse intersection of the p solution sets, the intersection of the p constraints yields a n − p manifold.
For the second treatment, consider the gradient vector ∇Ci, which, under suitable conditions, is orthogonal
to the solution set at point q. Form the corresponding n× p Jacobian matrix J , and denote r its rank. The
complement of the span of the r vectors defines at position q the tangent space to the set respecting all
the constraints, which has dimension n − r. When the p constraints are independent, one recovers a n − p
dimensional set.

This strategy is used to define deformations respecting H bonds in RNA structures [HBFdB17]. Consider
the cycle associated to a H bond. Five constraints Ci = 0 are introduced: the first three–one for each
cartesian coordinate x, y, z–stipulate that the midpoint donor-acceptor remains fixed; the remaining two
stipulate that the angles defined by the donor-acceptor and the two covalent bonds flanking the H bond
remain constant. Thus, m covalent bonds yield a total p = 5m constraints, so that J has dimension 5m×n.

As an application, assume that one wishes to use these constraints to drive the interpolate between
two RNA conformations, while respecting the m H bonds. Consider k atoms (or drivers) whose positions
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Figure 2.27 Distance geometry models: from angular constraints to distance constraints.
Adapted from [PRT+07]. (A) The angular constraint θ imposes the length of the opposite edge in the
triangle. (B) Consider the dihedral angle φ defined by four consecutive atoms, also exhibiting valence angles
constraints for aj and ak. The constraint on φ fixes the length of the edge aial, so that the tetrahedron
is rigid. (C) Distance geometry model associated with the Tripeptide Loop Closure. The model involves
three tetrahedra (light blue; two for the two peptide bonds, one for the rigid body involving the atoms
N1Cα;1Cα;3C3, and three triangles (light green) associated with the conservation of the valence angles at the
Cαs.
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AGj (∈ R3) are known. The algorithm is an iterative walk in the tangent space to the aforementioned solution

set. At each step, a step δq is made to approach the vectors AGj − f(q)|Aj coding the discrepancy between

the coordinates of the j-th anchor point and its target AGj . To avoid steric clashes between atoms getting
too close, the authors also add temporary constraints to force the atoms the slide with one another.

Multiple loops: a greedy approach

To handle more general molecular systems, consider now a molecule involving several coupled cycles. Example
such systems are steroids, which involved multiple cycles, and also proteins, where cycles arise do to disulfide
bonds.

While the general algebraic method outlined in Sec. 2.7.6 for multiple loops can always be used, it may
prove ineffective due to the complexity of the algebraic manipulations involved. In such cases, one may find
solutions to the global problem, thanks to solutions to several 6R-6B sub-problems. To see how, assume
that one has a toolbox with two algorithms: an algorithm solving the general 6R-6B problem; and another
one tailored to the TLC (triaxial) loop closure. In any case, recall that the goal in solving such problems is
to obtain an optimal degree 16 polynomial. Also recall the following terminology, from [CLW+16]: the n− 6
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free variables are called the drivers, and the 6 dependent variables the pivots.

The approach used in [CLW+16] to generate conformations of the multicycle system is a greedy one. To
describe it, we distinguish the pre-processing step, and the geometry generation step.

At the pre-processing step, a continuous chain, the backbone is defined, so that it has at least one bond in
common with each cycle. Then, a spanning tree is computed to order the cycles; in doing so, the challenge is
to ensure that each cycle has at least six tortional DoF which have not been set by any previous ring closure.
(This is not always possible, which may require sampling valence angles and/or bond lengths.) This data
structure is then used to generate conformations by processing the cycles incrementally. Consider processing
the i-th cycle. One may sample torsion angles which are not part of any of the cycles of index 1, . . . , i − 1,
and solve for the corresponding pivots. We note in passing that this requires taking into account improper
dihedral angles at branching points between cycles. All the values obtained are then frozen for subsequent
calculations.

A strength of this approach is to enumerate conformations in a greedy / hierarchical way. The rela-
tionship between these solutions is complex though, as different solutions may belong to different connected
components of the admissible space. Also, the ordering matters, since setting dihedral angles of cycles with
low rank determines the fibers explored above the corresponding solutions.

2.8 Conclusion

A remarkable amount of work has been carried out to model proteins and biomolecules using internal
coordinates. These works encompass three main components, namely the geometric models, the statistical
techniques, and the biophysical component. In terms of analysis of existing structures from the Protein Data
Bank, various techniques and models have emerged to shed light on those populated regions of Ramachandran
diagrams and side chain torsion angle spaces. These findings are essential for generative models, be they
based on discrete libraries of rotamers, or hidden Markov models. In terms of conformational generation,
a noteworthy body of work in the lineage of inverse kinematics and related techniques has been proposed.
Coupled with machine learned properties of individual amino acids and/or tripeptides, these algorithms now
make it possible to sample thoroughly backbone conformations.

Despite these achievements, we foresee important developments in two directions. The first one relates
to a tight integration of models developed independently for the backbone and side-chains, as conformations
generated for the former must currently be post-processed to remove nonphysical conformations featuring
steric clashes in particular. The second one pertains to thermodynamics and dynamics. The integration of
recent generative models with remarkable geometric properties into sampling techniques based on importance
sampling might indeed make it possible to obtain reliable approximations for various thermodynamic/kinetic
quantities. A first step in this direction would be to obtain guaranteed approximations of partition functions
on a per (significant) basin basis, as this kind of information would make it possible to go beyond harmonic
models when treating thermodynamics using Markov models.

Without a doubt, these developments will help unveil subtle properties of the dynamics of biomolecules,
complementing the also astonishing body of work in protein science based on deep learning and related
techniques.
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Chapter 3

Geometric constraints within
tripeptides

3.1 Introduction

We consider a tripeptide in which all internal coordinates (but the 6 dihedral angles) hold canonical values.
Assuming that the two segments N1Cα;1 and Cα;3C3 are free to move with respect to one another, we aim
at finding necessary conditions on these two segments for TLC to admit solutions. A tripeptide yielding
solutions is termed embeddable. As we can assume without loss of generality that the first segment is fixed
in a reference frame, this problem is posed in a five dimensional configuration space: the position of Cα;3

enjoys 3 Cartesian coordinates, and that of C3 two spherical coordinates w.r.t. Cα;3 (Fig. 3.1). The question
becomes to find out which positions of Cα;3 and C3 yielding embeddable tripeptides. To answer this question,
our contributions are organized as follows:

• In Section 3.2, we present background material from [CSJD04].

• In Section 3.3, we derive Cα valence constraints at each Cα;i carbon to guarantee that the valence
angle θi at this Cα is preserved. These constraints involve two angles denoted σi−1 and τi.

• In Sec. 3.4, we exploit a constraint associated with each Cα;iCα;i+1 edge, to derive an Inter-angular
constraint on all σi−1 and τi angles. This constraint is thus a necessary condition for the whole
tripeptide.

• Section 6.4 provides illustrations of our constructions, showing the sharpness of our constraints in the
aforementioned five dimensional space.

These contributions hinge on several interval types for the various angles involved in TLC (Fig. 3.2): IVI for
Initial Validity Intervals, RVI for Rotated Validity Intervals, DVI for Depth-n/Deep Validity Intervals, RDVI
for Restricted Deep Validity Intervals. In a sense, this work aims to understand the geometry of solutions
of TLC in terms of necessary conditions on the six dihedral angles involved, expressed using these interval
types.

3.2 Background on the Tripeptide Loop Closure

In this section, we review in detail the solution to TLC from [CSJD04].

3.2.1 Rotations and constraints

We consider the tripeptide (N1Cα;1C1)(N2Cα;2C2)(N3Cα;3C3).
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Geometry of the Cα triangle of the tripeptide. Consider first the following four consecutive atoms
Cα;1C1N2Cα;2 along the backbone, with C1N2 the peptide bond. Since the ω1 angle of the peptide bond is
fixed, the distance ‖Cα;1Cα;2‖ is constant (Fig. 3.3(A)). This observation holds for the other edge Cα;2Cα;3.
Consequently, the atom Cα;2 is restrained to the circle defined by the intersection of two spheres:
S1(Cα;1, ‖Cα;1Cα;2‖) and S2(Cα;3, ‖Cα;2Cα;3‖).

Finally, consider the base of this triangle. By hypothesis, atoms N1, Cα;1, Cα;3, C3 are fixed, so that the
length of the base is fixed.

The geometry of the triangle Cα;1Cα;2Cα;3 is therefore fixed. However, one has one rotating rigid body
attached to each of its edges (Fig. 3.3(B)):

• The movement of the atom C1 (resp. N2) can be modeled by a rotation of angle τ1 (resp. σ1) about
the axis Cα;1Cα;2;

• The movement of the atom C2 (resp. N3) can be modeled by a rotation of angle τ2 (resp. σ2) about
the axis Cα;2Cα;3;

• The movement of atoms N1Cα;1Cα;3C3 can be modeled by a rotation of angle τ3 about the axis
Cα;1Cα;3.

Remark 3.1. Using the dihedral angle δi defined by the four atoms Cα;i, Ci, Ni+1, Cα;i+1 (Fig. 3.3(B)) one
has the relationship:

σi = τi + δi. (3.1)

Local Cα frames. The TLC from [CSJD04] defines one local frame to handle the rotation angles τi and
σi. Using these frames and Eq. 3.1, TLC reduces the problem to three variables and three constraints:

• The three variables: the angles τi∀i ∈ {1, 2, 3} which can be rotated.

• The three constraints: the valence angles θi∀i ∈ {1, 2, 3} each at the corresponding Cα;i, which which
must be kept constant.

It is the coupling introduced by the θi angles onto the rotation angles τi that yields a degree 16 polynomial
[CSJD04, NOS05].

We have recalled above that in TLC, the atoms N1, Cα;1, Cα;3, C3 are fixed. But in using the rotation
angles {(τi, σi)}, the segments N1Cα;1 and Cα;3C3 are moving. Therefore, once the atomic positions have
been obtained using the local frames, all atoms are rotated such that these four are back into their original
positions in the main frame.

Remark 3.2. The valence angles around Ci and Ni atoms do not play a role, since they are fixed and
internal to the two segments being rotated.

3.2.2 Local coordinate system at Cα;i

Three unit vectors Ẑi, Ŷi, X̂i are defined to form an orthonormal coordinate system (Fig. 3.3(C)). These
vectors are:

• (Unit vector aligned with one side of the triangle) Ẑi is the unit vector anchored at Cα;i aligned with
the edge of the Cα triangle. Note that Cα;3 points to Cα;1.

• (Unit vector perpendicular to the plane of the triangle) Ŷi = Ẑi+2× Ẑi/
∥∥∥Ẑi+2 × Ẑi

∥∥∥. Intuitively, note

that Ŷi is obtained by taking the cross product between two of the unit vectors just mentioned: that
entering the Cα carbon and that exiting it. (Nb: the vector Ŷi does not depend on the index i, which
can be dropped.)
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• (Reference unit vector to define the rotation angles) X̂i = Ŷi × Ẑi = (Ẑi · Ẑi+2)Ẑi − Ẑi+2. (For the
latter, we use the double cross product formula u× (v × w) = (u.w)v − (u.v)w.)

Using the local frames, one also defines the angles αi, ηi and ξi as follows (Fig. 3.3(D)):
αi = ∠ẐiẐi−1

ξi = ∠− Ẑir̂
σ
i

ηi = ∠Ẑir̂
τ
i

(3.2)

These variables will be used to handle the conservation of the valence angle at Cα;i, which requires considering
three atoms: Ni−1, Cα;i, and Ci.

Remark 3.3. Indices i ∈ {1, 2, 3} are counted modulo 3; that is, i−1 is equivalent to i+2: e.g., Ẑi+2 = Ẑi−1.

Remark 3.4. The following equalities are used throughout all calculations 1:

〈Ẑi, Ẑi−1〉 = cosαi

〈X̂i−1, X̂i〉 = 〈Ŷ × Ẑi−1, Ŷ × Ẑi〉 = cosαi

〈Ẑi, Ŷ〉 = 0

〈Ẑi, X̂i−1〉 = 〈Ẑi, Ŷ × Ẑi−1〉 − 〈Ẑi,×Ŷ〉 = −〈Ẑi × Ẑi−1, Ŷ〉 = −〈− sinαiŶ, Ŷ〉 = sinαi

〈Ẑi−1, X̂i〉 = 〈Ẑi−1, Ŷ × Ẑi〉 = −〈Ẑi−1, Ẑi × Ŷ〉 = −〈Ẑi−1 × Ẑi, Ŷ〉 = − sinαi.

(3.3)

3.2.3 Rotations of Ni and Ci

Consider r̂σi−1 the Cα;iNi unit vector and Ẑi the Cα;iCi unit vector. The rotations of Ci and Ni are described
as follows (Fig. 3.3(C,D)):

• atom Ni, angle σi−1: rotation of r̂σi−1 about Ẑi−1

• atom Ci, angle τi: rotation of r̂τi about Ẑi

The vectors r̂σi−1 and r̂τi are easily obtained using the local frames (Fig. 3.3(E)):

Frame(X̂i−1, Ŷ, Ẑi−1) : r̂σi−1 = − cos ξi−1Ẑi−1 + sin ξi−1(cosσi−1X̂i−1 + sinσi−1Ŷ) (3.4)

Frame(X̂i, Ŷ, Ẑi) : r̂τi = cos ηiẐi + sin ηi(cos τiX̂i + sin τiŶ) (3.5)

Using the previous two equations and the equalities from Eq. (3.3), one obtains the dot product between
r̂σi−1 and r̂τi :

〈r̂σi−1, r̂τi 〉 =− cos ξi−1 cos ηi cosαi (3.6)

+ cos ξi−1 sin ηi cos τi sinαi

+ cos ηi sin ξi−1 cosσi−1 sinαi

+ sin ξi−1 sin ηi(cosσi−1 cos τi cosαi + sinσi−1 sin τi)

The conservation of the valence angle θi imposes the following valence angle constraint:

〈r̂σi−1, r̂τi 〉 = cos θi. (3.7)

In TLC only the τi and σi−1 terms vary, the value of this dot product can thus be represented depending
on those two angles.

1Recall the triple product formula 〈a, b× c〉 = 〈(a× b), c〉.
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3.3 Cα valence angle constraints

In this section, we study constraints on σi−1 and τi so as to guarantee that the valence angle θi is preserved.
We first present derivation of intervals for σi−1 and τi (Sec. 3.3.1), and proceed with the no-solution case,
introducing a necessary condition for solutions to exist (Sec. 3.3.2).

3.3.1 Initial validity intervals for σi−1 and τi

We first derive initial validity intervals, using boundary conditions at each Cα carbon.

Angle σi−1

We wish to define a validity interval for σi−1, namely Iσi−1
= [σi−1;−, σi−1;+] ⊆ [0, π].

Basic equation. We first wish to restrict the values of σi−1 for which θi can be preserved, and use to this
end the reference vector Ẑi. Using the expression of r̂σi−1 in the local frame of Cα;i−1 (Eq. (3.4)), we get:

〈r̂σi−1, Ẑi〉 = cosσi−1 sin ξi−1 sinαi − cos ξi−1 cosαi. (3.8)

Because the vector r̂τi which makes an angle ηi with Ẑi can only add or subtract the value ηi to the constraint
θi, one must have:

〈r̂σi−1, Ẑi〉 = cos(θi ± ηi) (3.9)

This equation yields up to two solutions, namely σi−1;− and σi−1;+.

Angle σi−1;−. The first limit case reads as:

〈r̂σi−1;−, Ẑi〉 = cos(θi − ηi) (3.10)

from which we obtain {
S− = + cos (θi−ηi)+cos ξi−1 cosαi

sin ξi−1 sinαi

σi−1;− = arccosS−
(3.11)

When S− → 1− by properties of arccos, we have σi−1;− → 0+ (Fig. S3.9). Therefore, when

S− ≥ 1, (3.12)

we set σi−1;− = 0, so that any value σi−1 ≤ σi−1;+ is valid.

Angle σi−1;+. The second limit case reads as:

〈r̂σi−1;+, Ẑi〉 = cos(θi + ηi) (3.13)

from which we obtain {
S+ = + cos (θi+ηi)+cos ξi−1 cosαi

sin ξi−1 sinαi

σi−1;+ = arccosS+
(3.14)

When S+ → −1+, by properties of arccos, we have σi−1;+ → π−. Therefore, when

S+ ≤ −1, (3.15)

we set σi−1;+ = π, so that any value σi−1 ≥ σi−1;− is valid.

Illustration. When considering the dot product 〈r̂σi−1, r̂τi 〉 as a function of the two variables τi and σi−1,
the angles σi−1;− and σi−1;+ correspond to planes orthogonal to the σi−1 axis (Fig. 3.4(B,C)).

48



Angle τi

We also wish to set a validity interval for τi, that is Iτi = [τi;−, τi;+] ⊆ [0, π].

Basic equation. We proceed mutatis mutandis for the vector r̂τi , using vector Ẑi−1 as landmark. Using
the expression of r̂τi in the local frame of Cα;i (Eq. (3.5)), one obtains:

〈r̂τi , Ẑi−1〉 = − cos τi sin ηi sinαi + cos ηi cosαi (3.16)

The vector r̂σi−1 can only add or subtract ξi−1, whence the following:

〈r̂τi , Ẑi−1〉 = − cos(θi ± ξi−1). (3.17)

This equation yields up to two solutions, namely τi;− and τi;+.

Angle τi;−. The first limit case reads as:

〈r̂τi;−, Ẑi−1〉 = − cos(θi − ξi−1) (3.18)

from which we obtain {
T− = + cos (θi−ξi−1)+cos ηi cosαi

sin ηi sinαi

τi;− = arccosT−
(3.19)

When T− → 1−, by properties of arccos, we have τi;− → 0+. Therefore, when

T− ≥ 1, (3.20)

we set τi;− = 0, so that any value τi ≤ τi;+ is valid.

Angle τi;+. The second limit case reads as:

〈r̂τi;−, Ẑi−1〉 = − cos(θi + ξi−1) (3.21)

from which we obtain {
T+ = + cos (θi+ξi−1)+cos ηi cosαi

sin ηi sinαi

τi;+ = arccosT+
(3.22)

When T+ → 1+, by properties of arccos, we have τi;− → π−. Therefore, when

T+ ≤ −1, (3.23)

we set τi;+ = π, so that any value of τi ≥ τi;− is valid.

Illustration. When considering the dot product 〈r̂σi−1, r̂τi 〉 as a function of the two variables τi and σi−1,
the angles τi−1;− and τi−1;+ correspond to planes orthogonal to the τi axis (Fig. 3.4,(B),(C)).

3.3.2 Necessary conditions for σi−1 and τi

In deriving the lower and upper bounds of the initial validity intervals for σ and τ , we already processed four
limit cases for the dot products (Eqs. (3.12), (3.15), (3.20), (3.23)). The remaining four yield the following:

Definition. 3.1. (Cα valence constraints) The Cα valence constraints are the necessary validity conditions
defined by :

• Angle σi−1;−: the condition σi−1;− < σi−1;+ requires

S− ≥ −1. (3.24)
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• Angle σi−1;+: the condition σi−1;− < σi−1;+ requires

S+ ≤ 1. (3.25)

• Angle τi;−: the condition τi;− < τi;+ requires

T− ≥ −1. (3.26)

• Angle τi;+: the condition τi;− < τi;+ requires

T+ ≤ 1. (3.27)

For the constraint to be verified all these conditions must be valid for all three {(σi−1, τi)} pairs.

Summarizing, when the previous equations are not verified, no validity interval can be defined for σi−1

and/or τi (Fig. 3.5(E)).

3.3.3 Symmetry around the Cα triangular plane, and Cα valence constraints

The previous angles are defined in [0, π]. Due to the symmetry of the tripeptide with respect to the Cα
plane, these angles have counterparts in [π, 2π]. We therefore define the following symmetric intervals:

• The symmetric validity interval for σi−1 is defined by

I
′

σi−1
= [σ

′

i−1;−, σ
′

i−1;+]
Def
= [2π − σi−1;+, 2π − σi−1;−]. (3.28)

• The symmetric validity interval for τi is defined by

I
′

τi = [τ
′

i;−, τ
′

i;+]
Def
= [2π − τi;+, 2π − τi;−]. (3.29)

Using these, we can finally specify the valid intervals for the angles σi−1 and τi must belong to:

Definition. 3.2. (Initial validity intervals) The initial validity intervals for σi−1 are defined by:

Iσi−1
= Iσi−1

∪ I
′

σi−1
(3.30)

Likewise, the initial validity interval for τi are defined by:

Iτi = Iτi−1 ∪ I
′

τi . (3.31)

For σi−1, as long as the conditions of Eqs. (3.24) and (3.25) are satisfied, we have:

σi−1 ∈ Iσi−1
. (3.32)

For τi, as long as the conditions of Eqs. (3.26) and (3.27) are satisfied, we have:

τi ∈ Iτi . (3.33)

Combining the previous conditions yields the complete case analysis (Fig. 3.5).
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3.4 Inter-angular constraints associated with the Cα triangle

3.4.1 Exploiting the coherence along a Cα;iCα;i+1 edge

The constraints presented in the previous section focus on the three Cα carbons independently. On the
other hand, for a given tripeptide, the angles τi and σi and the dihedral angle δi defined by the four atoms
Cα;iCiNi+1Cα;i+1 satisfy σi = τi + δi (Eq. (3.1)).

Given an interval of values for τi, the previous formula can be used to infer a projected interval for σi,
and vice-versa (Fig. 3.2(B)). Whence the following definitions which exploit the previous formula along the
two edges of the Cα triangle incident on Cα;i:

Definition. 3.3. (Rotated validity intervals) The rotated validity intervals for the angles σi−1 and τi are
defined by:

• for σi−1: Iσi−1|δ = Iσi−1|δ ∪ I
′

σi−1|δ with:

– Iσi−1|δ: interval for σi−1 obtained by applying Eq. (3.1) to Iτi−1
. (Nb: uses the edge Cα;iCα;i−1

of the Cα triangle.)

– I
′

σi−1|δ: interval for σi−1 obtained by applying Eq. (3.1) to I
′

τi−1
. (Nb: uses the edge Cα;iCα;i−1

of the Cα triangle.)

• for τi: Iτi|δ = Iτi|δ ∪ I
′

τi|δ with:

– Iτi|δ: interval for τi obtained by applying Eq. (3.1) to Iσi . (Nb: uses the edge Cα;iCα;i+1 of the
Cα triangle.)

– I
′

τi|δ: interval for τi obtained by applying Eq. (3.1) to I
′

σi . (Nb: uses the edge Cα;iCα;i+1 of the

Cα triangle.)

Summarizing, for each of the σi−1 and τi angles, we have obtained 4+4 intervals using the θi angle
constraint at Cα;i (Eq. 3.6):

• Four for the σi−1 angle: Iσi−1
, I
′

σi−1
, Iσi−1|δ, I

′

σi−1|δ

• Four for the τi angle: Iτi , I
′

τi , Iτi|δ, I
′

τi|δ

3.4.2 Deep Validity Intervals: depth 1

We are now in position to combine two pieces of information:

• The conditions on σi−1 and τi inherent to the conservation of the valence angles (Eq. (3.7)).

• The conditions exploiting rotated validity intervals, stemming from Eq. (3.1)

Since the previous intervals define necessary conditions, intersections between intervals for a given angle
must be non empty. We therefore combine them as follows (I·i−1

, I
′

·i−1
)× (I·i−1|δ, I

′

·i−1|δ), which yields depth
1 validity intervals:

Definition. 3.4. (Depth 1 validity intervals) The depth 1 inter-angular interval set J (1)
σi−1 for σi−1 is:

J (1)
σi−1

= (Iσi−1
∩ Iσi−1|δ) ∪ (Iσi−1

∩ I
′

σi−1|δ) ∪ (I
′

σi−1
∩ Iσi−1|δ) ∪ (I

′

σi−1
∩ I

′

σi−1|δ) (3.34)

Similarly, the depth 1 inter-angular interval set J (1)
τi for τi:

J (1)
τi = (Iτi ∩ Iτi|δ) ∪ (Iτi ∩ I

′

τi|δ) ∪ (I
′

τi ∩ Iτi|δ) ∪ (I
′

τi ∩ I
′

τi|δ) (3.35)
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Note that each depth 1 validity interval has up to four connected components.

Definition. 3.5. (Depth 1 inter-angular constraint) The depth 1 inter-angular constraint for σi−1 is:

J (1)
σi−1
6= {∅} (3.36)

The depth 1 inter-angular constraint for τi is:

J (1)
τi 6= {∅} (3.37)

For the constraint to be verified all these conditions must be valid for all three {(τi, σi−1)} pairs.

As we shall see, this constraint is significantly more restrictive than the corresponding Cα valence con-
straint (Def. 3.1, Fig. 3.7)

The derivation of these inter-angular constraints can be seen as a bootstrap process (Fig. 3.2). The
initialization consists of computing the initial validity intervals, using the boundary conditions imposed by
Equations (3.11) (3.14) (3.19) (3.22). The second step consists of exploiting the coherence along each Cα
edges, as imposed by Eq. (3.1).

It should also be noticed that transposing the initial validity intervals from τi to σi using Eq. 3.1
is equivalent to transposing from σi to τi using the same equation. Therefore the depth 1 inter-angular
constraint for σi and the one for τi are redundant.

Remark 3.5. The previous intersections naturally depend on the two anchor positions and the fixed internal
coordinates.

3.4.3 Deep Validity Intervals: arbitrary depth

The qualifier depth 1 used in the previous section indicates that the dual process specify validity intervals
at each Cα and project along a Cα edge can be repeated, moving from necessary conditions at depth j to
necessary conditions at depth depth j + 1.

To see how, we first note that an interval for σi−1 or τi implies two intervals for the second angle –
obtained by computing σi−1 from τi, or vice versa. To see how, note that the dot product equation (3.6)
can be written as:

K(1)
σi−1

cosσi−1 +K(2)
σi−1

sinσi−1 +K(3)
σi−1

= 0, (3.38)

with 
K

(1)
σi−1 = cos τi sin ξi−1 sin ηi cosαi + sinαi cos ηi sin ξi−1

K
(2)
σi−1 = sin ξi−1 sin ηi sin τi

K
(3)
σi−1 = − cos ξi−1 cos ηi cosαi + cos ξi−1 sin ηi cos τi sinαi − cos θi

(3.39)

This latter equation makes it possible to obtain σi−1 given τi. Dividing by

√
K

(1)
σi−1

2 +K
(2)
σi−1

2 and using the

trigonometric identity cos (a− b) = cos a cos b+ sin a+ sin b, the two values for σi−1 (σ∗i−1, σ
∗∗
i−1) given τi are

obtained as follows:
cos
(
σ∗i−1(τi)

)
= cos

(
arccos

K(1)
σi−1√

K
(1)
σi−1

2+K
(2)
σi−1

2
+ arccos

−K(3)
σi−1√

K
(1)
σi−1

2+K
(2)
σi−1

2

)

cos
(
σ∗∗i−1(τi)

)
= cos

(
2π + arccos

K(1)
σi−1√

K
(1)
σi−1

2+K
(2)
σi−1

2
− arccos

−K(3)
σi−1√

K
(1)
σi−1

2+K
(2)
σi−1

2

) (3.40)

Remark 3.6. Eq. (3.40) defines the cosine of σ∗i−1(τi) and σ∗∗i−1(τi). For each of them, two values are possible
namely arccos(σi−1) and arccos(2π − σi−1). Each time only one of those values validates the valence angle
constraint of Eq. (3.7).
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With these, we define:

Definition. 3.6. (Restricted validity intervals) For each interval I
Def
= [τi

min, τi
max] ∈ J (j)

τi , consider the
two intervals {

I∗σ(I) = [minτi∈I(σ
∗
i−1(τi)),maxτi∈I(σ

∗
i−1(τi))],

I∗∗σ (I) = [minτi∈I(σ
∗∗
i−1(τi)),maxτi∈I(σ

∗∗
i−1(τi))].

(3.41)

The restricted validity interval set is defined by:

K(j)
σi−1

=
⋃

I∈J (j)
τi

{I∗σ(I) ∪ I∗∗σ (I)}. (3.42)

One proceeds mutatis mutandis to obtain the values and intervals for τi (τ∗i , τ
∗∗
i ) given σi−1, as well as

K(j)
τi .

Given the depth 1 validity intervals for σi−1, a set of intervals can be defined for τi. A temporary set
of intersections between this set and the depth 1 validity intervals for τi can then be defined. Finaly using
intersections between temporary sets and rotated temporary sets (Eq. 3.1) we can obtain depth 2 validity
intervals (Fig. 3.2(C)). This iterative process is summarized in Algo. 1.

Algorithm 1 Computing depth-n validity intervals

1: Input: J (j)
σi−1 and J (j)

τi , i = 1, 2, 3

2: Output: J (j+1)
σi−1 and J (j+1)

τi , i = 1, 2, 3
3:

4: for i ∈ {1, 2, 3} do
5: Step 1a Compute σi−1 given τi and vice versa(Eq. (3.40))

6: Step 1b Using J (j)
σi−1 and J (j)

τi , define K(j)
σi−1 and K(j)

τi (Def. 3.6)

7: Step 2a Define J (tmp)
σi−1 , the intersections between J (j)

σi−1 and K(j)
σi−1 .

8: Step 2b Do the same for J (tmp)
τi

9: if J (tmp)
σi−1 = {∅} or J (tmp)

τi = {∅} then
10: There will be no solutions for TLC
11: Step 3: Project the J (tmp)

σi−1 and J (tmp)
τi along the edges of the Cα triangle using Eq. (3.1)

12: Define J (j+1)
σi−1 as the intersections between J (tmp)

σi−1 and the projected J (tmp)
τi−1 .

13: Do the same for J (j+1)
τi using J (tmp)

τi and the projected J (tmp)
σi

14: if J (j+1)
σi−1 = {∅} or J (j+1)

τi = {∅} then
15: There will be no solutions for TLC

Maximum number of deep validity intervals (DVI).

Lemma. 3.1. Let nj be the maximum number of intervals at depth j in J (j)
σi−1 or J (j)

τi . This number satisfies

n1 = 4, nj+1 = 6nj . (3.43)

Proof. We first raise an observation for two sets of intervals I1 (of size n1) and I2 (of size n2) such that
I1 ∩ I2 = ∅,∀I1 ∈ I1,∀I2 ∈ I1\I1. Assuming, without loss of generality, that n2 ≥ n1, the maximum number
of intervals determined by the intersections between intervals in these sets is 2× n1 + n2 − n1. To build this
worst-case, we stab two intervals in I1 with an interval in I2, and squeeze the remaining n2 − n1 intervals
from I2 inside intervals of I1.

To establish the lemma, we follow the steps of Alg0. 1, starting with the set J (j)
σi−1 . If needed, we redefine

the intervals in this set so that they are disjoint – to meet the hypothesis on the two sets I1 and I2 used in
the observation above.

Considering the nj intervals making up J (j)
σi−1 (or J (j)

τi ), we now inspect the following steps of Algo. 1:
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• Step 1b) takes the intersection between J (j)
σi−1 and K(j)

σi−1 (Def. 3.6). By the observation above, this
yields 2nj × 2 restricted validity intervals.

• Step 2a) takes the intersection between J (j)
σi−1 ∩ K

(j)
σi−1 , which the observation above, yields 2nj +

(2nj − nj) = 3nj intervals.

• Step 3) takes the intersection between the 3nj intervals of the last step and the 3nj from the δ
projected intervals. This yields a maximum of 6nj intervals.

�

3.5 Cα valence constraint and Inter-angular constraints: illustra-
tions

3.5.1 Material: dataset of random instances

Our experiments use standard internal coordinates for bond lengths and valence angles [CSJD04]. The canon-
ical values are available in our TLC implementation user manual (https://sbl.inria.fr/doc/Tripeptide loop closure-
user-manual.html)

General dataset. We place our tripeptide in the reference frame using the first segment (Fig. 3.1). In
this frame, we randomly generate Cα;3 between two spheres around the origin. The inner radius r1 = 2Å is
smaller than the smallest value ‖Cα;3 − Cα;1‖ found in our exhaustive database of ∼ 2.5 million tripeptides
extracted from the PDB [ORC22]. The outer radius r2 = 2 ‖Cα;2 − Cα;1‖ respects the triangle inequality
based on the distances between Cα carbons, and the canonical internal coordinates values. The position of
Cα;2 is generated uniformly in this volume. Atom C3 is generated on sphere centered at Cα;3, with a radius
defined by the canonical bond length. The positions of N1Cα;1 and Cα;3C3 together with the canonical
internal coordinate yield a TLC problem, which is fertile if embeddings/solutions are obtained. To each of
those inputs correspond values for the input angles αi, ξi, ηi for each Cα;i.

Over 100, 000 instances, 24, 076 fertile ones were observed.

Planar dataset. A second similar dataset of the same size with Cα;i+2 being positioned uniformly between
two circles using the same radii. Ci+2 is then also generated on a sphere around Cα;i+2.

3.5.2 Validity intervals

Signatures. To assess the diversity of situations faced at Cα carbons, we introduce a signature based on
the σ and τ interval types:

Definition. 3.7. (Signature at Cα) Consider the endpoints of the validity intervals, in this order σi−1;−, σi−1;+, τi;−, τi;+.
The signature of a TLC problem is a string in {N,P,Z}4 – one letter for each each extreme angle, with the
following convention:

• letter N for cos(endpoint) < −1,

• letter P for cos(endpoint) > 1,

• letter Z for −1 < cos(endpoint) < 1.

Among the sample of embeddable anchor positions for TLC, only seven different signatures are found
(Fig. 3.6). Not all combinations are possible as the the first and third letter cannot be N (Eq. (3.26)).
Similarly the second and fourth cannot be P (Eq. (3.27)). If the first and second are ZZ (resp. third and
fourth) then their counterpart will be PN. This illustrates that if the two endpoints are defined in ]0, π[ for
σi−1 then it means that the whole circle is possible for τi (and vice versa).
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3.5.3 Necessary conditions and Inter-angular constraints

General dataset. Using the general dataset, plotting the positions of Cα;3 associated with solutions yields
a bell shaped distribution with a hole on top (Fig. 3.7(A)).

Planar dataset. Due to the symmetry around the N1Cα;1, we consider the aforementioned planar data
set (Fig. 3.7(B)). Consider a set of conformation, some fertile (TLC admits solutions), and some sterile.
Fertile conformations naturally satisfy the necessary conditions defined by both the Cα valence constraints
(Def. 3.1) and the Inter-angular constraints (Def. 3.5) for all σ and τ angles. However, we would like these
constraints to be as tight as possible, retaining as few sterile configurations as possible. To assess this, for
each constraint, we color code sterile configurations (Fig. 3.7(B), red points) using two colors: orange for
sterile but failing the necessary test, and yellow for sterile passing the necessary test. Ideally, we would like
as few yellow points as possible. It clearly appears that the depth 1 inter-angular constraints (Fig. 3.7(D))
are much tighter than the Cα valence constraints (Fig. 3.7(C)).

In terms of proportions, 24.08% of the points are instances where TLC yields solutions. In total 41.35%
fulfill the Cα valence constraints. Finally 28.12% fulfill the depth one inter-angular constraints. They are
included in the 41.35% and include the 24.08% just mentioned. The cases validating the Inter-angular
constraint therefore represent ∼ 2/3 of the cases fulfilling the θi linked equations. For the sake of clarity,
it should be stressed that the gap between the 24.08% of instances with solutions, and the 28.12% fulfilling
the depth one inter-angular constraints is not clearly visible using our projections in 3D and 2D (Fig. 3.7)
since the whole configuration space is 5D.

Nevertheless, the of 2/3 gained can be used to scale the savings when it comes to explore the conforma-
tional space associated with m tripeptides defining a flexible region along a protein backbone. For various
plausible values of m, one obtains: m = 5 :∼ (3/2)5 = 7.6 m = 10 :∼ (3/2)10 = 57.7 m = 15 :∼ (3/2)15 = 438
m = 20 :∼ (3/2)20 = 3325. Therefore, when m increases, an exponential reduction is the size of the search
space to be explored is gained. This strategy is used in the companion paper [OC22b]. Using depth n inter
angular valence constraint with n > 1 can further reduce the search space as illustrated with the diminishing
number of false positives (Fig. 3.8). Starting at depth 2 we have 18.12% fulfilling the constraint, then 16.57%
for depth 3. There is no false positive in the planar dataset for depth 4 and onwards.

3.6 Outlook

The compact nature of folded proteins makes the exploration of their conformational space especially chal-
lenging. One must indeed avoid steric clashes and optimizes interactions, while dealing with complex coupled
sub-problems involving the backbone and side-chains. A critical need in this context are so-called movesets
able to propose plausible (low energy) configurations given a starting pause. Such movesets are indeed a
corner stone in Monte Carlo based simulations at large.

The design of backbone movesets is a problem in itself, due to the necessity to handle loop closure con-
straints. The tripeptide loop closure provides an optimal solution to this problem, and therefore plays a
crucial role to develop move sets. However, for loops involving several tripeptides, the question of com-
bining solutions yielded by the individual tripeptides remains a challenging problem. Greedy approaches
incrementally concatenating tripeptides have been developed, but these break the symmetry between the
individual peptides, as the degree of freedom of those near the endpoints enjoy a finer sampling. On the way
to processing all tripeptides in a sequence on an equal footing, this work studies (tight) necessary conditions
on the first and last segment (bond) of a tripeptide, for TLC to yield solutions. As illustrated by our ex-
periments, our conditions are rather tight, and yield an exponential saving in terms of the conformational
space to be explored, when pooling several tripeptides. We leave the problem of improving the tightness of
our constraints (notably using their iterated versions) as an open problem. Application-wise, the direct use
of our constraints for the design of backbone movesets is presented in chapter ??.
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3.7 Artwork

Figure 3.1 Reference frame for tripeptide embeddings. We consider a tripeptide whose internal
coordinates are fixed, except the six {(φ, ψ)} dihedral angles associated with the three Cα carbons. We
assume that the segment N1Cα;1 (first red line line segment) is fixed i.e. Cα;1 is placed at the origin, and
N1 is placed at (−‖N1 − Cα;1‖ , 0, 0). We then aim at characterizing necessary conditions on the position of
the last segment i.e. Cα;3C3 for the Tripeptide Loop Closure (TLC) algorithm to hold solutions.

Cα;1

Cα;3

N1

C3

r1 = 2

r2 = 2||Cα;2 − Cα;1||

Coordinates:

• Cα;1(0, 0, 0)

• N1(−||Cα;1 −N1||, 0, 0)

C1

N2

C2

Cα;2

x

y

z

Cα;3

N1

C3

C1

N2

C2

Cα;2

Cα;1

3.8 Supporting information
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Figure 3.2 Validity interval types and their relationships. (A) (IVI) Initial Validity Intervals.
See Def. 3.2. (B) (TVI) Rotated validity intervals. See Def. 3.3. Obtained from the initial validity
intervals ((A)). (C) Depth-n/Deep Validity Intervals and their restrictions. From Iτ (i) and Iσ(i)

we obtain Iτ |δ(i) and Iσ|δ(i). From all of those we obtain intersections constituting J (1)
τi and J (1)

σi . This
depth one validity interval set can be refined to depth n iteratively (Def. 3.4, Algo 1).

{Iτi , Iσi
} {Iτi|δ, Iσi|δ}

{J (j)
σi ,J

(j)
τi }

j = j + 1

j = 1

(C)

(IVI) Initial Validity Intervals (RVI) Rotated Validity Intervals
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′

τi}

Iσi|δ = {Iσi|δ, I
′

σi|δ}

(A) (B)

57



Figure 3.3 Tripeptide Loop Closure: main steps of the construction. Adapted from [CSJD04].
(A) Peptide bond linking two consecutive amino acids, and distance constraint induced on the line segment
Cα;iCα;i+1. The dihedral angle δi is defined by the three vectors CiCα;i, Cα;iCα;i+1, Cα;i+1Ni+1. (B) The
three rotations associated with the segments Cα;1Cα;2, Cα;2Cα;3 and Cα;3Cα;1. The rotation angles τi (resp.
σi) concern atoms Ci (resp. Ni). But τi and σi satisfy σi = τi+δi. (C) Construction of the local orthonormal
frame associated with Cα;i i.e. the Cα frame. (D) Introducing the variables αi, ηi, ξi. (E) Modeling the
constraint on valence angles at Cα;i carbons.
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(A) Distance constraint || Cα;iCα;i+1 || and dihedral angle δi

(B) The three rotations

(D) Variables αi, ηi, ξi

X̂1

X̂1

(C) Cα frame

Cα;i

Cα;i+1

Ci

Ni+1

ω

θ
′

i

θ
′′

i

Cα;i

Cα;i+1

Ci Ni+1

δi

Cα;i+1Ni+1CiCα;i

Cα;iCα;i+1

δi = ∠Plane(Cα;iCα;i+1Ci),Plane(Cα;iCα;i+1Ni+1)

αi = ∠ẐiẐi−1
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Figure 3.4 Example dot product surface and extreme angles σi−1;−, σi−1;+, τi−1;−, τi−1;+. TLC
problem for the values αi = 100, χi−1 = 50, ηi = 50 (A) Whole surface (B) With horizontal plane cos θi =
cos 9◦. Note the four vertical planes corresponding to the extreme angles. In this case, the intersection
between the surface and the plane consists of a plane curve with two connected components. One component
is enclosed by the four vertical planes. (C) With horizontal plane cos θi = cos 35◦. In this case, the
intersection between the surface and the plane consists of a plane curve with one connected component.

(A) (B) (C)

Figure 3.5 The four possible types of initial/rotated validity interval types for angle σ. The
quantities of interest are defined in Eqs. (3.12) (3.15), (3.24), (3.25). Cases (A) to (D) stand for situations
where σi;− and/or σi;+ can be defined. In case (E), no validity interval can be defined.

0π 0π 0π 0π

σi;−

σi;+

σ
′

i;−

A) B) D)C)

0π

E)

σi;+

σ
′

i;−

σi;−

σ
′

i;+

σi;−

σ
′

i;− σ
′

i;−
σ

′

i;+

σ
′

i;+

σ
′

i;+

σi;+
σi;−σi;+

{
S− ≥ 1

S+ > −1

{
S− < 1

S+ > −1

{
S− ≥ 1

S+ ≤ −1

No validity interval:
S− < −1
or
S+ > 1

{
S− < 1

S+ ≤ −1

Iσi

Iσi

Iσi

Iσi

I
′

σi
I

′

σi
I

′

σi

I
′

σi

59



PNZZ

PZZN

ZNZN

PZPZ

60



Figure 3.6 Dot surfaces and validity intervals for the dataset of random TLC instances. Color
codes fir circle arcs: blue for valid intervals, black otherwise. Color code for circle arc endpoints: the colored
bullets which indicate the angles. (A) The 7 signatures (Def. 3.7) in terms of extreme angles for the data
set of random TLC instances. In all cases, the green plane corresponds to cos θi = cos 111.6◦. A signature
reads as follows: N:negative ie dot product < −1; Z: zero ie dot product ∈ [−1, 1]; P: positive ie dot product
> 1. (B) Validity intervals.

ZNPZ

ZZPN
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Figure 3.7 Embeddable tripeptides and necessary conditions: stringency of Cα valence con-
straints (Def. 3.1) versus depth 1 inter-angular constraints (Def. 3.5), illustrated on random
instances projected into the reference frame of Fig. 3.1. (Nb: figures in 3D and 2D, while the
configuration space is 5D.) (A) Blue (resp. red) points represent positions of Cα;3 in instances when TLC
yields at least one solution (resp. yields no solution). (B) A similar dataset generated uniformly on the of
the sphere–gray equator in (A), color code as in (A). (C) Cα valence constraints. The Cα;3 positions are
depicted using three colors: blue points as in (A,B); orange points: points failing the Cα valence constraints;
yellow points: points satisfying the Cα valence constraints, but for which TLC admits no solution. (D)
Depth 1 inter-angular constraints. Color code as in (C), using the depth 1 inter-angular constraints
instead of the Cα valence constraints. Note the reduction of the yellow region.

(A) (B)

(C) (D)
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Figure 3.8 Proportion of false positives for Cα valence and depth n inter-angular constraints
with n ∈ {1,2,3} The proportion is defined as the number of false positives divided by the number instances
when TLC yields no solution in the planar dataset (Sec. 3.5.1). The specific percentages are, Cα valence
constraint: 18.24%, depth 1 inter-angular constraint: 4.01%, depth 2 inter-angular constraint: 1.89%, depth
3 inter-angular constraint: 0.02%.

Ca d1 d2 d3
0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

Pe
rc

en
ta

ge
 o

f f
al

se
 p

os
iti

ve
s

Figure 3.9 Conditions to define the four extreme angles: the case of σi−1.
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Chapter 4

Analysis of tripeptide Loop Closure
reconstructions

4.1 Introduction

The Tripeptide Loop Closure problem. The TLC problem has a long history in robotics and molecular
modeling, see e.g. [GS70, PC94, CS04, PRT+07, CSWD06, CLW+16].

Consider, in a peptide chain, a tripeptide for wich we have all the bond length {di}, valence angle {θi}
and ωi dihedral angle values. As mentioned in chapter 3, TLC considers which combination of values for
six consecutive φ and ψ dihedral angles close the gap given the positions first two backbone atoms in the
tripeptide and the last two.

Mathematically, solving the problem requires finding the real roots of a degree 16 polynomial, which also
means that up to 16 solutions may be found [PRT+07, CSJD04, NOS05].

We note in passing that the sensitivity of atomic positions to fluctuations of a specific internal coordinate
in a loop (a fuzz parameter) have been studied in [NOS05].

Over time, TLC has proven to be a key building block to reconstruct and sample loop conformations, as
shown by the following two examples.

Ramachandran distributions. The TLC problem is also closely related to the study of Ramachandran
distributions, which characterize the coupling between φ and ψ angles along the protein backbone [Fer99].
There are four main types of Ramachandran plots: glycine – an amino acid without side chain, proline
– whose cycle induces specific constraints, pre-proline – residues preceding a proline, and the remaining
amino acids, whose Cβ carbon induces specific constraints. In our work, we illustrate this latter class with
ASP. Four main regions are occupied in the Ramachandran diagram: β-sheets (βS), polyproline II (βP ;
left-handed helical structure whose angles are characteristic of β-strands); α-helical (αR); and left handed
helix (αL). These regions were characterized using a combination of five steric constraints between four
atoms defining the Ramachandran tetrahedron ([STM+77], Fig. 2.7). (We note in passing that the 6th edge
of this tetrahedron, between Oi and Ni+1, was not used in defining the steric constraints, likely due to the
fact that this edge corresponds to a valence angle – a constraint stronger than that associated with the other
edges.) In this work, the curves delimiting the occupied regions are termed the Ramachandran template.
More recently the diagonal shape of level set curves in the occupied regions was explained using dipole-dipole
interactions, distinguishing the generic case and proline [HTB03], and glycine and pre-proline [HB05]. The
characterization of neighbor dependent Ramachandran distributions has also been studied [TWS+10]. From
a statistical standpoint, the Ramachandran distributions of two specific residues can be compared using say
f -divergences such as Kullback-Leibler, Hellinger, etc.
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Contributions. In this work, we perform a careful assessment of reconstructions to TLC problems, with
a particular emphasis on the comparison between distributions in angular spaces, between data from the
PDB on the one hand, and TLC reconstructions on the other hand.

First, we present a robust implementation of TLC, showing the role of multiprecision in ensuring the
existence and the accuracy of reconstructions. Second, using tripeptides from the PDB as a reference, we
present a detailed analysis of reconstruction, from the geometric, statistical, and biophysical standpoints.
We also discuss some possibilities to exploit such reconstructions.

4.2 Material and Methods

4.2.1 Material: tripeptides from the PDB

We extract a database D of tripeptides found in high resolution structures (resolution better than 3Å) from
the PDB (23rd of September 2020), having mutual sequence identity lower than 95%. A contiguous, gap-less
region of a protein backbone qualifies as a tripeptide if the following two conditions hold: (C1) The highest
Bfactor in backbone atoms of the tripeptide is less than 80 Å2. (C2) The center of the tripeptide is separated
by at least 3 amino acids from a stable secondary structure(SSE) on both ends, a condition meant to remove
the constraint of SSE anchoring loops to the rest or the structure [TWS+10]. Stable secondary structure
(SSE, β folds and right handed α helices) are extracted from mmtf files. These files are annotated using the
BioJava implementation [PYB+12] of the DSSP program (Define Secondary Structure of Proteins [KS83]).

In order to compute the original values of the first φ and last ψ dihedral angles, the tripeptide at the end
or beginning of a chain is excluded from our computation as the positions of the last atom of the previous
residue and the first of the next one are necessary. Taken together these conditions result in the database
D containing 2,495,095 tripeptides. We denote AD the corresponding encoding in the 6D space of dihedral
angles, that is

AD = {Angles(t), t ∈ D}, with Angles(t) = (φ1(t), ψ1(t), φ2(t), ψ2(t), φ3(t), ψ3(t)). (4.1)

We note in passing that the three pairs of angles are coupled–meaning for example that picking values
independently for the three pairs would jeopardize loop closure. We qualify a tripeptide with its span
(Euclidean distance between its endpoints the N1 and C3 atoms (Fig. S4.1). In computing the percentage
of tripeptides containing a given amino acid at least once, Glycine is followed by Proline and Aspartic
acid (29.6%, 24.7%, 21.6% of tripeptides respectively) (Table S4.1(A)). For the percentage of tripeptides
containing a particular amino acid at least twice, this ordering remains the same, the relative gap between
glycine and the following amino acids being wider (Table S4.1(B)).

4.2.2 The classical TLC problem

Data versus reconstructions. We consider the tripeptide loop closure with fixed bond lengths and
angles, as well as ω dihedral angles. As mentioned previously both sides of this tripeptide are fixed (i.e.
CO, N1, Cα1 and Cα3, C3, N4), meaning that the collective change in dihedral angles only affect the Cartesian
embeddings of C1, N2, CA2, C2 and N3 (Fig. 4.1(A)). For a TLC problem defined by a tripeptide t, the
set of solutions and the ancestor of a solution (that is, the tripeptide yielding that solution) are denoted as
follows (Fig. S4.6 for one example):{

Sol(t) = {r1, . . . , rk}, with k ≤ 16.

DataTripeptide(ri) = t, ∀i = 1, . . . , k.
(4.2)

A TLC problem is expected to return the tripeptide it is defined from. (As we will see, this depends on the
number type used.) In the solution set Sol(t), we will therefore assume that r1 is the reconstruction most
similar to the data tripeptide t, in the RMSD in 3D space sense. (Setting aside numerical precision issues,
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the data tripeptide should be exactly reconstructed, i.e. the RMSD should be zero.) We define accordingly
the solution set minus the data tripeptide, that is

Sol(t) = Sol(t)\{r1}. (4.3)

Phrased differently, the set Sol(t) consists of reconstructed only geometries.

Angular spaces. Denote dS1
(·, ·) the shortest angular distance between two points on the unit circle

S1, expressed in Radians. To compare tripeptides whose 6D dihedral coordinates are denoted Angles(t) =
(τ1, . . . , τ6) and Angles(t′) = (τ

′

1, . . . , τ
′

6) respectively, we use as distance the Lp-norm – in practice with
p = 1:

dp(t, t
′) =

( 6∑
i=1

dS1(τi, τ
′

i )
p
)1/p

. (4.4)

We also consider the following angular data associated with all reconstructions:

ATLC = {Angles(l), l ∈ Sol(t), t ∈ D} (4.5)

With the specific goal of analyzing reconstructions which differ from the original data, we consider the set
of angles for all reconstructions except data:

AD = ATLC\AD. (4.6)

For data in AD (resp. reconstructions in AD), the pairs of dihedral angles of the i-th tripeptide are denoted
(φi, ψi) (resp. (φi, ψi)) and the corresponding Ramachandran domain is denoted RD,i (resp. RD,i).

TLC and internal coordinates. Solving a particular TLC problem puts the focus on dihedral angles, so
that that there are two options to handle the other internal coordinates (bond length and valence angles):
data internals using those found in the tripeptide processed, and canonical internals using standard values
for fixed internals, as done in the original version[CSJD04]. As we shall see, the former is beneficial in several
respects.

4.2.3 TLC with gaps

A generalization of the classical TLC consists of considering three amino acid which are not contiguous along
the backbone. This is of interest in the case of three linkers enclosing two rigid SSE. Mathematically, this
is akin to the original problem, with the rigid blocks modeled as fictitious bonds separating the amino acid
(Fig. 4.1(B)). Once the coordinates of all atoms not in these rigid blocks are embedded, the rigid blocks are
then translated and rotated into their final positions (Fig. S4.7 for one example).

4.3 Results

4.3.1 Software

TLCG algorithm. This work is accompanied by our implementation of the tripeptide loop closure algo-
rithm, in the Structural Bioinformatics Library ([CD17], http://sbl.inria.fr, https://sbl.inria.fr/
doc/Tripeptide_loop_closure-user-manual.html ). From the application standpoint, given a chain in
a PDB file, together with the identification of the three a.a. defining the tripeptide (not necessarily con-
tiguous), the application sbl-tripeptide-loop-closure.exe produces modified PDB-format files for each
solution found, if any. The constraints for internal coordinates can be specified from the data (default),
using standard values, or supplied in the form of a file.
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Numerics. The numerical stability of an algorithm is key to its robustness [BC13]. For TLC, the precision
used to represent the floating point numbers is expected to play a role.
The application sbl-tripeptide-loop-closure.exe makes it possible to specify the precision used for
calculations. Internally, the number type used is CGAL::Gmpfr, a representation based on the Mpfr library
[FHL+07] supplying a fixed precision floating point number type. Practically, this fixed precision is a multiple
(> 1) of the default double precision: TLCdouble[-x1], called TLCdouble for short in this work, refers to
the executable sbl-tripeptide-loop-closure.exe using the plain double precision; TLCdouble[-x2] (resp.
TLCdouble[-x4]) refers to sbl-tripeptide-loop-closure.exe using a double double (resp. quadrice double)
precision.

To assess the importance of using data-extracted (as opposed to standard) internal coordinates, we also
evaluate TLCCoutsias [CSJD04], the original TLC algorithm using standard bond length and valence angles,
with double precision for numerics.

4.3.2 Numerical analysis of the stability of the reconstruction

Rationale. Solving a TLC problem for a tripeptide l raises two questions.
The first question refers to the existence of a solution matching the data l itself. The response can be

negative since numerical rounding errors during the calculation of the polynomial may yield, in particular for
an ill-conditioned TLC polynomial, a situation with zero real solution [BC13]. In that case, we will say that
the solution evaporates. If solutions are found, we define the reconstruction as the geometry most similar to
l, using as distance the RMSD of the atoms in the tripeptide. Note that RMSD and not least-RMSD is used
for this comparison as the orientations are fixed.

The second question is then the geometric distance between the data and the reconstruction. This
distance, also measured by the RMSD, is expected to depend on the floating point number type used.

Results. We process all cases in the database D. The fraction of TLC problems with no solution depends
heavily on the option used for number types and internal coordinates other than dihedrals: TLCCoutsias:
8.1%; TLCdouble: 5 10−4%; TLCdouble[-x2]: 2 10−5%; TLCdouble[-x4]: 0.0. A similar conclusion holds for
the RMSD between the data and the (best) reconstruction (Fig. 4.2(A, B)): TLCCoutsias: up to ∼ 3Å
RMSD; TLCdouble: up to ∼ 1.2Å RMSD; TLCdouble[-x2]: very small values with one outlier at ∼ 0.65Å
RMSD; TLCdouble[-x4]: all RMSDs smaller than ∼ 0.009Å RMSD.

Altogether, these observations stress the importance of using data-extracted internal coordinates, and
to a lesser extent the role of numerical precision to avoid evaporation. While TLCdouble is sufficient to
characterize distributions, TLCdouble[-x2] is preferable to process satisfactorily all individual cases. In the
sequel, all results presented were obtained with TLCdouble[-x2].

4.3.3 Geometric analysis of solutions in 3D

Rationale. To assess solutions, we consider the reconstruction from Sol(t) most dissimilar to t, in the
RMSD sense.

Results. For data extracted internals, the number of solutions of TLC problems is as high as 12 (Fig.
S4.8). The analysis of the geometric diversity in terms of max RMSD as a function of the geometric span
of the tripeptide (Euclidean distance between its endpoints) yields two interesting insights (Fig. 4.3). First,
with only 5 displaced atoms, a significant RMSD is observed, up to 3.8Å. Second, the distribution is bimodal,
but the two modes get closer (and even coalesce) when the span increases. This can be explained by the fact
that the larger the gap, the straighter the solutions.

As a complementary analysis, consider the displacement of the 5 moving atoms in the tripeptide (Fig.
4.1). For each atom, we compare the generated position against the initial position. As expected, the
displacement increases with the centrality of the atom, with displacements which can be very significant,
namely up to 6 Å(Fig. S4.9).
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4.3.4 Geometric analysis of solutions in 6D

Rationale. We wish to perform a geometric comparison of the two 6D point clouds AD and AD coding
all tripeptides in the data D and in all TLC solutions (minus the data tripeptides themselves) respectively
(Section 4.2.2).

To see how, consider two set of points in 6D, say X and Y . For a point x ∈ X, using the distance from
Eq. 4.4, we define the nearest neighbor in Y and the associated distance by

∀x ∈ X :

{
nnY (x)

Def
= arg miny∈Y dp(x, y);

d
(Y )
p (x)

Def
= dp(x, nnY (x))

(4.7)

Phrased differently, nnY (x) is the point in the database Y minimizing the distance dp(·, ·) to x, and d
(Y )
p (x)

is the corresponding distance.

Remark 4.1. We may need to restrict the search of the nearest neighbor of a tripeptide x to a certain class
of tripeptides sharing a specific property with x – e.g. featuring a Cβ. The corresponding operator is denoted
nnClassY (x).

Results. The distribution of d
(AD)
p (x),∀x ∈ AD has a sharp mode at zero, showing that ∼ 20% of solutions

(data tripeptides excluded) are highly similar to a tripeptide existing in D (Fig. S4.10(A)). Taking the reverse

point of view, the distribution of d
(AD)
p (x), x ∈ AD shows that the number of data tripeptides similar to a

solution is ∼ 50% (Fig. S4.10(B)). Interestingly, the span of values in these two histograms are circa 130
and 40 degrees respectively, showing that loop closure tripeptides are far more diverse than PDB peptides.

4.3.5 Analysis of Ramachandran distributions

Rationale. We complement the previous geometric analysis by studying the distributions in Ramachan-
dran spaces. The focus in doing so is twofold: first, comparing the distributions in RD,i versus RD,i, and
second, analyzing the patterns observed with respect to those known for classical Ramachandran plots (Fig.
2.7).

Results. We inspect individual Ramachandran distributions over the domains RD,i versus RD,i, consid-
ering three prototypical amino acids, namely ASP (Fig. S4.11), GLY (Fig. S4.12), and PRO (Fig. S4.13).
Ramachandran distributions in the domains RD,i(left columns) are indistinguishable (also confirmed by the
calculation of the Hellinger and Jensen-Shannon divergences, data not shown), a fact which is expected
since tripeptides from the database D are obtained by sliding a window of size three along loops found in
structures from the PDB.

On the other hand, the three Ramachandran distributions associated with the TLC domains RD,i, i =
1, 2, 3 are rather different. Distributions in the domains RD,1 and RD,3 still exhibit isolated regions corre-
sponding to classical regions, except that the distributions are much more uniform in the entire Ramachan-
dran space. The middle distribution (space RD,2) departs from these. The coverage of the entire space is
more uniform, setting aside a central void surrounded by an annulus connecting the clusters corresponding
to the classical structures (left and right handed α helices, β folds). The central void/eye corresponds to
the steric constraint Oi−1Ni+1 in the reconstruction target(Fig. 2.7). It should be noticed, though, that the
clear cut nature of this void results from the fact that data have been removed from the solutions set (Eq.
4.6). In plotting all pairs of angles (φ, ψ) from our database D, one indeed obtains atypical conformations in
this central region (background of Fig. 2.7). In any case, the superposition of the Ramachandran template
onto the map shows that solutions partly fill the void (Fig. 4.4). Interestingly, the center of the void is
preserved even though the distance constraints encoded in the Ramachandran tetrahedron are not used in
the specification of the TLC problem – since Ni+1 only is involved in the TLC problem (Fig. 2.7). The maps
RD,i and RD,i is can be compared in two ways. The first one consists of computing a density difference
map, pixel-wise, for a discretization of the 2D Ramachandran space. Normalization for the difference map
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is obtained by dividing the value of each bin by the sum of absolute differences of the compared maps.
To indicate the map with larger values, density difference maps are visualized using two color maps. The
second one consists of considering the difference correlation map, that is the density map for the differences
(φ(t)− φ(ri), ψ(t)− ψ(ri), for all ri ∈ Sol(t).

The first comparison (Figs. S4.14, S4.15, and S4.16, left columns) shows areas in purple with relative
higher data concentration as small clusters whereas higher reconstruction concentration is much more dis-
persed. This dispersion however is not uniform as the reconstruction method only retains angles compatible
with the loop closure.

The second comparison yields two complementary insights (Figs. S4.14, S4.15, and S4.16, right columns).
The first one relates to steric constraints found before and after the tripeptide. The first (resp. third)
difference plot indeed exhibits a vertical (resp. horizontal) stripe, showing that φ1 is more constrained than
ψ1 (resp. ψ3 more constrained than φ3). In fact, picking arbitrary values for φ in the first amino acids or ψ
in the third one would make loop closure impossible. The second one owes to the concentration exhibited
by the X-like shape in the middle of the difference plot. This strong correlation (logarithmic scale used)
indicates a strong coupling between the φ and ψ angles.

4.3.6 Biophysical analysis based on the potential energy of solutions

Rationale. As a separate assessment of the quality of reconstructions returned by TLCdouble, we compute
the potential energy (denoted V ) of the tripeptide backbone including heavy atoms (i.e. the carbonyl oxygens
and Cβ) involved in the specification of the regions occupied in Ramachandran diagrams (Fig. 2.7). This
analysis imposes two constraints. First, we discard tripeptides containing PRO. Second, we assign a type to
each tripeptide, out of 23 possibilities corresponding to the presence or absence of a GLY at each position.
This type is used in particular to find the nearest neighbor of a reconstruction amongst all tripeptides of the
same type in AD, which we denote nnClassY (x). (See Rmk 4.1. In Eq. (4.7), the set Y is filtered to retain
those tripeptides whose type matches that of x.) Practically, we present plots for the most abundant class,
corresponding to tripeptides with a Cβ at each position.

Using the AMBER ff14sb force field, three potential energy terms are taken into account :

• The first corresponds to the contribution of dihedral angles. Each such angle contributes
∑
n(k(1 +

cos(nφ − φ0))) with n the periodicity of the term, k the energy constant, φ0 a phase shift angle, and
φ is the torsion angle formed by the four bonded particles.

• The second term is the electrostatic interaction between non bonded particles. Each non bonded pair
contributes

qiqj
4πεd , where ε is the dielectric constant, qi, qj are the charges of the two particles, and d is

their distance.

• The last term is the van der Waals interaction term. Each non bonded pair contributes ε( θ
−

d12 + θ+

d6 )
where ε is a constant, θ−, θ+ are the repulsive and attractive Lennard-Jones terms, and d is the distance
between particles.

In any case, only contributions impacted by the changes made by the TLC algorithm are taken into account.
For the dihedral angles, this implies that proper dihedrals around the peptide bonds are not taken into
account. For the non bonded interactions only pairs whose relative distance changes contribute.

To assess the potential energy of a reconstruction in AD, we compare this potential energy to a reference
point. This can either be the nearest neighbor of each point (nnAD (x), Eq. 4.7) or the data DataTripeptide(x)
used to generate it (Eq. 4.2). This yields the following two relative changes for the potential energy V∗(·)
with ∗ ∈ {dihedral, elec., vdW}:

∆rV∗(x) =
V∗(x)− V∗(nnClassAD (x))

V∗(nnClassAD (x))
,∀x ∈ AD. (4.8)

or

∆rV∗(x) =
V∗(x)− V∗(DataTripeptide(x))

V∗(DataTripeptide(x))
,∀x ∈ AD. (4.9)
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Using the whole database, we perform a scatter plot in the plane (d
(AD)
p (·),∆rV∗(·)), and represent the

resulting 3D histogram using a heatmap.

Results. The potential energy is a measure of the strain of reconstructions. The analysis of the three
potential energies and the two comparison setups yields several interesting facts (Fig. 4.5):

• Magnitude of angular changes. We note that using the nearest neighbor of a reconstruction
significantly reduces the L1 distance (Fig. 4.5: from [100, 750] to [0, 250] degrees), an indication on
how a reconstruction from AD differs from its data tripeptide in terms of dihedral angles.

• Magnitude of potential energy changes ∆V∗ in kcal/mol – Table S4.2. The absolute difference
∆V∗ has a different scale for the three potential energy terms used: Vdihedral yields the smallest changes,
then Velec. and finally VvdW . The low energetic impact of changes to dihedral angles is what makes it a
priority target to modify structures in protein molecules and why TLC is such an interesting approach.
The changes in Velec. in the backbone of proteins are more sensitive to modifications done by TLC as
the energy linearly depends on the inverse of the distance d between non bonded atoms. In the same
spirit, with a larger exponent (d12), the changes in VvdW are the largest ones. It should be noted that
VvdW (DataTripeptide(x)) has a larger value than the difference ∆VvdW (x).

• Magnitude of relative changes – Table S4.3). Out of the three potential energies, VvdW displays
a significant difference in terms of relative changes for the two reference tripeptide definitions: from
[−0.1, 0.5] (Fig. 4.5(C)) to [0.05, 0.25] (Fig. 4.5(F)). Even though a reconstruction resembles less its
ancestor than its nearest neighbor in terms of angular coordinates, the spread of relative changes is
smaller for ancestors.

• Centering and symmetry of relative changes. Relative changes for Vdihedral exhibit a relative
symmetry about ∆rVdihedral = 0 (Fig. 4.5(A,D)), which is expected due to the periodic form of
this potential energy. A relative symmetry is also observed for VvdW , about ∆rVvdW ∼ 0.17 and
∆rVvdW ∼ 0.16 respectively (Figs. 4.5(C,F)). This negative value shows that data tend to have a
smaller VvdW , yet reconstructions occasionally yield more favorable interactions. Finally, Velec. only
displays negative values for relative changes (Figs. 4.5(B,E)), stressing the rather tight optimization
of this potential energy in native structures.

• Distance d1 = 0 does not imply ∆Vdihedral = 0. It also appears that dp → 0 implies ∆rVdihedral → 0
(Fig. 4.5(A)). This can be explained by considering that if there is no difference in free dihedral angles
then the energy term obtained corresponds to that of its reference. This is not true however for ∆rVvdW
and ∆rVelec.. When using nnClassAD (x) as reference these are impacted by the differences in the other
internal coordinates, differences that impact interatomic backbone distances.

4.4 Discussion and outlook

Tripeptide loop closure (TLC) is a classical strategy to generate conformations of tripeptides, e.g. to recon-
struct missing segments in structural data, or to implement move sets in simulation methods. Specifically,
a TLC problem solves for six dihedral angles, keeping the remaining internal coordinates (bond lengths,
valence angles) constant. Solutions are determined by the real roots of a degree 16 polynomial, which makes
it very convenient to generate discrete conformations, but which raises questions regarding the biophysical
relevance of solutions. The focus of this work is precisely to provide a detailed assessment of reconstructions,
using tripeptides from the protein data bank as a reference.

From the computational standpoint, we show that multiprecision is required for the existence and the
accuracy of reconstructions. From the geometric standpoint, it appears that the number of solutions depends
on the endpoint to endpoint distance of the gap to be filled. Also, despite the fact that a mere five atoms are
moving, RMSD up to ∼ 6Å are observed, showing that TLC yields a significant conformational diversity.
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From the statistical standpoint, we present a detailed comparison of angular distribution in the Ramachan-
dran spaces of data and reconstructions, for each of the three positions in the tripeptide. The specific
distribution for the second tripeptide in reconstructions is remarkable. This distribution features a cen-
tral empty region –the void pattern, and is more uniform than classical Ramachandran distributions. Such
differences actually owe to the different nature of these two distributions. On the one hand, classical Ra-
machandran distributions encode propensities observed in protein structures, typically extracted from the
protein data bank. Such structures are biased toward (meta-)stables states, and one expects transient re-
gions to be under-represented. On the other hand, Ramachandran distributions associated to reconstructions
inherently encode the propensities of angles in the TLC reconstructions, which, as we have seen, endow the
central atoms of the tripeptide with enhanced move capabilities.
The results thus show that, while reconstructions are themselves conditioned to the input PDB data, their
bias towards (meta-)stable structures is less pronounced. Application-wise, the void pattern provides strong
hints on how to interpolate between two tripeptides geometries. Given two conformations encoded by two
points in the 6D space, one may indeed attempt to connect them while staying away from the void region
in a manner akin to path planning in robotics. This strategy, which remains to be explored, poses two
difficulties. First, the Ramachandran diagrams of the three a.a. in a tripeptide are coupled, so that coming
up with a statistical model to sample tripeptides requires a 6D analysis. Second, whole backbone segments
are more complex than mere tripeptides, so that the connexion must be made between these two classes of
structural objects. Nevertheless, such a strategy may be particularly applicable to conformational sampling
in less-structured systems such as intrinsically disordered proteins (IDPs), which would accompany recent
awareness of the need for force field modifications. Finally, from the biophysical standpoint, we show that the
potential energies associated with dihedral angles, electrostatic and van der Waals interactions incur changes
of increasing magnitude, in this order. Non bonded distances are not considered in TLC and get impacted
more significantly, the importance of changes depending on the weighting of the interatomic distance (via
the distance exponent). Fully assessing the relevance of these solutions requires further work however. While
local steric clashes may arise from the tripeptide geometry provided by solutions of TLC, such clashes may
be palliated by performing a local repacking, or by minimizing the overall potential energy, as classically
done in methods such as basin-hopping.

Overall, our work furthers the understanding of tripeptide geometries and their link to reconstructions
yielded by the tripeptide loop closure. From the software standpoint, we anticipate that our robust open
source implementation, available in the Structural Bioinformatics Library, will ease the use of TLC in various
structural modeling projects in general, and the generation of conformation of flexible loops in particular.

4.5 Artwork

4.6 SI: Methods

4.6.1 Material: loops and tripeptides from the PDB

• Table S4.1
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Figure 4.1 Tripeptide: atoms and degrees of freedom used for loop closure. (A) Classical
tripeptide loop closure(TLC): the six dihedral angles represented correspond to the degrees of freedom used
to solve the problem. N1, Cα;1, Cα;3 and C3 are constraints and do not move during loop closure. In between
Cα;1 and Cα;3 6 bond length, 7 bond angles and two ω dihedral angles are fixed. The algorithm has these 15
parameters and the anchor positions as constraints. (B) In tripeptide loop closure with gaps(TLCG), the
dihedral degrees of freedom τi may be separated from each other by gaps.
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Table 4.1 Amino acid composition of tripeptides. (A) Percentage of tripeptides containing the
indicated amino acid at least once. (B) Percentage of tripeptides containing an amino acid at least twice.

Amino Acid Percentage of Tripeptides
CYS 3.77
ASP 21.62
SER 19.34
GLN 10.12
LYS 16.99
ILE 10.29
PRO 24.76
THR 16.42
PHE 9.53
ASN 15.22
GLY 29.53
HIS 7.70
LEU 18.87
ARG 13.69
TRP 3.785
ALA 17.73
VAL 12.53
GLU 17.03
TYR 9.00
MET 4.27

Amino Acid Percentage of Tripeptides
CYS 0.06
ASP 1.55
SER 1.55
GLN 0.36
LYS 1.05
ILE 0.20
PRO 1.59
THR 1.01
PHE 0.29
ASN 0.85
GLY 3.07
HIS 0.25
LEU 1.11
ARG 0.60
TRP 0.04
ALA 1.30
VAL 0.40
GLU 1.17
TYR 0.30
MET 0.06

(A) (B)
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Figure 4.2 Minimum RMSD between the reconstruction geometrically most similar (RMSD
in Å) to the associated data tripeptide. (A) TLCCoutsias (B) TLCdouble (C) TLCdouble[-x2] – twice
precision in mantissa (D) TLCdouble[-x4] – quadrice precision in mantissa. The logarithmic scale is defined
between the smallest bin with a value greater than zero, and the maximum. The minimum of this scale is
placed slightly above the intersection of the two axes, and empty bins are not represented.
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Figure 4.3 Solutions yielded by TLCdouble[-x2]: maximum RMSD between each set of recon-
structions and the original data. Upon solving TLC(l) for a tripeptide l, the solution most dissimilar
to l in the RMSD sense is sought in the solutions set Sol(l) = {r1, . . . , rk}. (Left) Cumulative histogram of
this maximum RMSD. (Right) Regular histogram of the same.
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4.6.2 The TLC geometric model

• Fig. S4.6

• Fig. S4.7

• Fig. S4.8

• Fig. S4.9

• Fig. S4.10

4.6.3 Statistical analysis

Ramachandran distributions and their difference. For a given a.a. found at position i = 1, 2, 3 in a
tripeptide, we consider the Ramachandran distribution in spaces RaaD,i and RaaD,i respectively. Furthermore,

we define the difference between these distributions in the two dimensional space defined by the signed
differences ∆φi and ∆ψi, as follows:

φi, φi , ψi, ψi all ∈ (−180, 180)

∆φi = φi − φi adding -360 or +360 to keep ∆φi ∈ (−180, 180)

∆ψi = ψi − ψi adding -360 or +360 to keep ∆φi ∈ (−180, 180)

(4.10)

4.6.4 Biophysical analysis

Pairs of atoms contributing to the non bonded terms in eq. 4.8 and 4.9: All atoms pairs containing at least
one impacted embedding of a heavy atom.

• All pairs containing C1
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• All pairs containing O1

• All pairs containing N2

• All pairs containing CA2

• All pairs containing CB2

• All pairs containing C2

• All pairs containing O2

• All pairs containing N3

Any dihedral containing at least one of the atoms above is considered as contributing to the potential energy
term relative to the impacted dihedral angles.

Table 4.2 Table of ∆V∗ in kcal/mol.

Reference Energy term Figure 1rst quantile median third quantile
Vdihedral Fig. 4.5(A) -0.206 0.068 0.575
Velec. Fig. 4.5(B) 76.55 89.9847 102.24

nnClassAD (x) VvdW Fig. 4.5(C) 17661 25683 34116
Vdihedral Fig. 4.5(D) -0.24 0.14 0.71
Velec. Fig. 4.5(E) 81.07 92.89 104.88

x−1 VvdW Fig. 4.5(F) 22615 24704 26874

Table 4.3 Table of ∆rV∗ ratios.

Reference Energy term Figure 1rst quantile median third quantile
Vdihedral Fig. 4.5(A) -0.054 0.018 0.161
Velec. Fig. 4.5(B) 2.739 4.016 5.953

nnClassAD (x) VvdW Fig. 4.5(C) 0.111 0.166 0.228
Vdihedral Fig. 4.5(D) -0.065 0.041 0.202
Velec. Fig. 4.5(E) 3.576 4.945 7.293

x−1 VvdW Fig. 4.5(F) 0.145 0.159 0.174
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Figure 4.4 Ramachandran distributions for ASP, GLY, and PRO. (Left column) Distributions
for domains RD,2 (Right column) Distributions for domains RD,2, with the superimposed Ramachandran
template.
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Figure 4.5 Relative changes of the potential energy: reconstructions in AD versus a refer-
ence tripeptide, for all tripeptides of class ASP (i.e., without GLY and featuring a Cβ at
each position). Calculations involve all backbone heavy atoms, including the carbonyl oxygen and the
Cβ. The y-coordinate is the sum of angular distances to the match used (L1 norm, Eq. 4.4). The color
depends logarithmically on the percentage of all solutions in a bin. (Top row) Reference tripeptide for
a reconstruction x ∈ AD is the nearest neighbor of the same class nnClassAD (x). (Bottom row) Reference
tripeptide DataTripeptide(x) for a reconstruction x ∈ AD (First column) Potential energy of dihedral
angles. (Second column)Electrostatic term, involving all pairs of atoms whose relative distance changes.
(Third column) van der Waals term, involving all pairs of atoms whose relative distance changes.
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Figure 4.6 TLC: example reconstructions.

Cα1
Cα2
Cα3

Figure 4.7 TLCG: example reconstructions sandwiching a beta sheet. PDBID 1vfb, chain C. The
three amino acid defining the tripeptide are: Cα;1 (resid: 41 GLN), green Cα;2 (resid: 42 ALA), yellow Cα;3

(resid: 54 GLY). A total of six reconstructions were obtained with TLCdouble[-x2]. Four are displayed for
the sake of clarity. The blue one represents the original geometry.

Cα,1

Cα,2

Cα,3
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Figure 4.8 Number of solutions for all TLC problems in our database D. (Left) Fixed internals
(bond lengths, valence angles) from the data (Right) Canonical values for these internal coordinates, from
[CSJD04].
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Figure 4.9 Distribution of displacement for the five moving atoms. Solving a TLC results in
five moving atoms (Fig. 4.1). For all displaced atoms in the loop closure generated solutions this is the
distribution of the displacement in Angstroms when compared to the original data used to formulate the
loop closure.
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Figure 4.10 Distances to nearest neighbors, see Eq. 4.7, in degrees.
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Figure 4.11 Amino acid: ASP. (Left column) Distributions in Ramachandran domains RD,i, i = 1, 2, 3
(Middle column) Distributions in Ramachandran domains RD,i, i = 1, 2, 3
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Figure 4.12 Amino acid: GLY. (Left column) Distributions in Ramachandran domains RD,i, i = 1, 2, 3
(Middle column) Distributions in Ramachandran domains RD,i, i = 1, 2, 3

G
L
Y

re
s1

150 100 50 0 50 100 150
1

150

100

50

0

50

100

150

1

1.9e-04%

1.9e-03%

1.9e-02%

1.9e-01%

150 100 50 0 50 100 150
1

150

100

50

0

50

100

150

1

1.9e-04%

1.9e-03%

1.9e-02%

G
L
Y

re
s2

150 100 50 0 50 100 150
2

150

100

50

0

50

100

150

2

2.0e-04%

2.0e-03%

2.0e-02%

2.0e-01%

150 100 50 0 50 100 150
2

150

100

50

0

50

100

150

2

2.0e-04%

2.0e-03%

2.0e-02%

G
L
Y

re
s3

150 100 50 0 50 100 150
3

150

100

50

0

50

100

150

3

2.0e-04%

2.0e-03%

2.0e-02%

2.0e-01%

150 100 50 0 50 100 150
3

150

100

50

0

50

100

150

3

2.0e-03%

2.0e-02%

Data Reconstructions

83



Figure 4.13 Amino acid: PRO. (Left column) Distributions in Ramachandran domains RD,i, i = 1, 2, 3
(Middle column) Distributions in Ramachandran domains RD,i, i = 1, 2, 3
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Figure 4.14 Data versus reconstructions: amino acid ASP. (Left column: density difference
map) Difference in bin population between the two figures on the same line in (Fig. S4.11). Two color
maps are used for the sake of clarity: the (blue to purple) (resp. (yellow to black)) map is used when
data (resp. reconstructions) have a higher relative population. (Right column: difference correlation
map) Oriented angular distance between RD,i, i = 1, 2, 3 and each of their corresponding reconstructions
RD,i, i = 1, 2, 3 (Fig. S4.11).
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Figure 4.15 Data versus reconstructions: amino acid GLY. (Left column: density difference
map) Difference in bin population between the two figures on the same line in (Fig. S4.12). Two color
maps are used for the sake of clarity: the (blue to purple) (resp. (yellow to black)) map is used when
data (resp. reconstructions) have a higher relative population. (Right column: difference correlation
map) Oriented angular distance between RD,i, i = 1, 2, 3 and each of their corresponding reconstructions
RD,i, i = 1, 2, 3 (Fig. S4.12).
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Figure 4.16 Data versus reconstructions: amino acid PRO. (Left column: density difference
map) Difference in bin population between the two figures on the same line in (Fig. S4.13). Two color
maps are used for the sake of clarity: the (blue to purple) (resp. (yellow to black)) map is used when
data (resp. reconstructions) have a higher relative population. (Right column: difference correlation
map) Oriented angular distance between RD,i, i = 1, 2, 3 and each of their corresponding reconstructions
RD,i, i = 1, 2, 3 (Fig. S4.13).
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Chapter 5

Enhanced conformational exploration
of protein loops using a global
parameterization of the backbone
geometry

5.1 Introduction

In this chapter we put forward a global continuous parameterization of the conformational space of a given
loop. This parameterization is based on considering the loop as a series of tripeptides seperated by peptide
bodies (the four atoms Cα − C −N − Cα). This chapter is organized as follows:

• Sec. 5.2 provides a high-level description of the method

• Sec. 5.3 introduces (mandatory) background material

• Sec. 5.4 details the algorithms

• Sec. 5.5 present experiments

• Finally, Sec. 5.6 discusses future work

Nb: Section S5.7.1 contains a compendium of the main notations used throughout the paper.

5.2 Algorithm overview

5.2.1 Geometric model and ingredients

We consider a loop L consisting of M = 3 × m amino acids, including one or two a.a. on the boundary
of the loop if necessary to obtain a multiple of three. We work in the rigid geometry model [EH91], in
which bond lengths, valence angles, and peptide bond dihedral angle are fixed. In this model, the internal
geometry of each tripeptide is defined by 12 angles [CSJD04], whence an overall angular configuration space
A of dimension 12m for the m tripeptides. (As we shall see later, this model can be relaxed, see Rmk. 5.6.)

Our algorithm uses a strategy similar to Hit-and-Run (HAR) [BBR+87] to sample a region V ⊂ A
(Fig. 5.1). The region V defines necessary conditions for the m TLC problems to admit solutions, and
intersections with the hyper-surfaces bounding it are used to generate configurations of the whole loop.
Individual solutions to the m TLC problems are then obtained in a region S ⊂ V. The Cartesian product of
solutions for the m tripeptides defines the new conformations of the loop L.
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We now introduce the ingredients in turn.

Geometric model. The four atoms making up the peptide bond (Cα;1, C1, N2, Cα;2) form a rigid body
termed the peptide body (Fig. S5.9). For the sake of exposure, we call the two segments Cα;1 − C1 and
N2−Cα;2 the legs of the tripeptide, and the tripeptide minus its legs the tripeptide core. We model the loop

as a sequence of peptide bodies Pk connecting tripeptides cores T
′

k (Fig. 5.2):

L = P0 T
′

1 P1 . . . Pk−1 T
′

k Pk . . . Pm−1T
′

mPm. (5.1)

(Nb: strictly speaking, P0 and Pm contain each two atoms of the loop L.) The main idea to generate
conformations of L is to sample the positions of peptide bodies independently using rigid motions, and then,
to solve individual TLC problems. To describe this strategy more precisely, the following ingredients are
needed.

Tripeptide loop closure. Tripeptide Loop Closure is a method computing all possible valid geometries
of a tripeptide, under two types of constraints. First, the first and last two atoms of the tripeptide, i.e. its
legs, are fixed. Second, all internal coordinates are fixed, except the six (φ, ψ) dihedral angles of the three
Cα carbons.

TLC admits at most 16 solutions corresponding to the real roots of a degree 16 polynomial. These
solutions have been shown to be geometrically diverse (atoms are moving up to 5Å), and low potential
energy [ORC22]. Solving TLC can be done using three rigid bodies associated with the three edges of
the triangle involving the three Cα carbons. The rotations of these rigid bodies are described by three
angles τ1, τ2, τ3, two of which can be eliminated to yield the degree 16 polynomial. The coefficients of this
polynomial depends on 3× 4 = 12 angles describing the internal geometry of the tripeptide [CSJD04]. This
12 dimensional space is denoted Ak for the tripeptide Tk. Taking the Cartesian product of the individual
angular spaces of the m tripeptides yields a 12m dimensional space denoted A.

Necessary conditions for TLC to admit solutions. In the angular spaceAk, we have recently exhibited
a region Vk defining necessary conditions for TLC to admit solutions [OC22a]. For a given tripeptide, this
region is defined from 24 implicit equations involving the 12 variables parameterizing TLC. The corresponding
space for all tripeptides is denoted V. This space contains the solution space S ⊂ V, such that each tripeptide
admits solutions.

Identifying active constraints with Hit-and-Run. To sample S, we use techniques and ideas coming
from geometric optimization. To introduce them, recall that a linear program consists in finding the minimum
of a linear functional under linear constraints defining a (high dimensional) polytope. The hyperplanes
contributing to the definition of the polytope are termed active, and the remaining ones redundant. To
identify the latter, the Hit-and-Run (HAR) algorithm was invented long ago [BBR+87]. In a nutshell, given
a starting point inside the polytope, HAR iteratively proceeds as follows: shoot a random ray inside the
polytope and identify the nearest hyperplane intersected; generate a point onto the segment defined by the
starting and the intersection point; then iterate. Since then, this algorithm has been modified to generate
points following a Gaussian distribution, a key step in the computation of the volume of polytopes [CV16].
Other random walks serving similar purposes are billiard walk and Hamiltonian Monte Carlo [LV18, CPC22],
as well as walks based on piecewise deterministic processes [CCF22]. Such methods play a key role in our
algorithm too.

5.2.2 Algorithm: wrapping up

Similarly to HAR, our algorithm consists of consecutive steps. Each step generates a conformation L′ of the
loop L by moving the peptide bodies. Given the internal coordinates of L′, we solve TLC for each individual
tripeptide, and take the Cartesian product of these solutions–if any.
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To see how the conformation L′ is generated, let SE(3) be the special Euclidean group representing rigid
motions (translation+rotation) in 3D. The m − 1 peptide bodies being rigid bodies, we move them in 3D
space using rigid motions parameterized over the motion space M = (SE(3))m−1. We consider a (random)
ray inM, whose parameter t is called the time. Every point on this ray defines a rigid motion applied to each
peptide body. Since the tripeptide legs are moving due to this motion, the 12 angular coordinates of each
tripeptide become time dependent. We use the image of the ray in the angle space A to find intersections
with the hyper-surfaces defining the aforementioned necessary conditions (Fig. 5.1). In a manner similar
to HAR, these intersections are used to generate a point in the solution space S. Each such point encodes
an internal geometry for each tripeptide, so that TLC can be solved for each individual tripeptide. As said
above, the solutions to the individual TLC problems are then combined. The ability to generate efficiently
points in S depends on the stringency of necessary conditions defining V, that is to say on the volume of the
region S\V.

We now detail these ingredients.

5.3 Background and notations for peptides and TLC

5.3.1 Peptides and tripeptides

Peptides, peptide bonds, tripeptides, and protein loops. Atoms within a tripeptide are denoted as
Cα;3k−2, Cα;3k−1, Cα;3k, and likewise for the C and N atoms (Fig. 5.2). Note that with these notations, one
has A4k−3 = N3k−2, A4k−2 = Cα;3k−2, A4k−1 = Cα;3k and A4k = C3k.

As noticed above, the two segments N3k−2Cα;3k−2 and Cα;3kC3k form legs of the tripeptide, while the

tripeptide minus its legs form the tripeptide core T
′

k. Note that for two consecutive tripeptides, the second
leg of Tk and the first one of Tk+1 form the peptide bond. Note also that in the decomposition of Eq. 5.1,
P0 = A1A2 and Pm = A4m−1A4m play a special role: these two fixed segments are called anchors.

5.3.2 Tripeptide loop closure (TLC) with fixed legs

TLC uses constraints on the tripeptide legs and internal coordinates (See Sec. 5.2). We may also recall that
TLC induces a partition of the nine atoms in the tripeptide Tk into two classes. On the one hand, the first
two and the last two atoms, i.e. the legs, are fixed. On the other hand, the remaining five middle atoms are
moving. When considering all solutions of TLC on an exhaustive database of tripeptides extracted from the
PDB, these atoms move up to 5Å[ORC22].

Solutions of TLC [CSJD04] rely on the following observations (Fig. 5.3(A,B) 1 ):

• TLC involves three rigid bodies: the first two involve the five atoms in-between the first and third Cα
carbons; the third one consists of the four atoms defining the legs of the tripeptide.

• The solution space of TLC can be modeled using rotation angles denoted {σk,i, τk,i} associated to the
three rigid bodies. (Nb: the two angles associated with the Cα;k,i carbon are σk,i−1 and τk,i.) Positions
of the rigid bodies must respect the valence angles θi at the three Cα carbons. The rotation of a rigid
body about its Cα − Cα axis only impacts the valence angle constraints at its endpoints.

• Searching for solutions to the loop closure is akin to searching for rotation combinations of the angles
{σk,i, τk,i} respectful of θ angles. σk,i−1 is the rotation angle of Ni atoms around their corresponding
axis. τk,i is the rotation angle for Ci around its axis (Fig. 5.3(A,B)).

The geometry of the backbone can be used to define local frames at each Cα carbon ([CSJD04] and Fig.
5.3(B)), based on three vectors: Ẑk,i – unit vector along two consecutive Cα carbons, r̂τk,i – to define the

1When talking of individual tripeptides i is used as an index with i ∈ {1, 2, 3}. These indices are counted mod 3, that is
i− 1 = i+ 2.
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rotation of angle τk,i, r̂σk,i – to define the rotation of angle σk,i. Using these local frames, one defines the
angles αk,i, ξk,i, ηk,i, with indices i = 1, 2, 3 – counted modulo three, for the tripeptide Tk (Fig. S5.10):

αk,i = ∠Ẑk,iẐk,i+2; αk,i ∈ [0, π)

ξk,i = ∠− Ẑk,ir̂
σ
k,i; ξk,i ∈ [0, π)

ηk,i = ∠Ẑk,ir̂
τ
k,i; ηk,i ∈ [0, π)

δk,i = ∠Ck,iCα;k,i, Cα;k,iCα;k,i+1, Cα;k,i+1Nk,i+1 δk,i ∈ [0, 2π)

(5.2)

Definition. 5.1. Let Ak,i = {αk,i, ηk,i, ξk,i−1, δk,i−1} be the set of angles associated with Cα;i of the k-th
tripeptide Tk. The angular representation of the tripeptide Tk is the 12-tuple Ak = {Ak,1,Ak,2,Ak,3}.

The corresponding 12-dimensional space is denoted Ak.

5.3.3 Tripeptide and necessary constraints for TLC

From now on, we assume that the peptide of interest is the k-th tripeptide in our loop, see Eq. (5.1).
In recent work [OC22a], we have introduced necessary conditions for TLC to admit solutions. For each

of the three angles τk,i, these so-called depth 1 inter-angular constraints are based on intervals to which τk,i
must belong. These intervals, which are parameterized by the angular representation of the peptide, are
denoted as follows: {

Iτk,i = {Iτk,i} with Iτk,i = [Imin
τ (Ak,i), I

max
τ (Ak,i)]

Iτk,i|δ = {Iτk,i|δ} with Iτk,i|δ = [Imin
τ |δ (Ak,i+1), Imax

τ |δ (Ak,i+1)]
(5.3)

There are two intervals of each type, and their pairwise intersection results in four so-called depth one validity
intervals or DOVI. As established in [OC22a], the bounds of these angles depend on the values

arccos
+ cos (θi ± ξi−1) + cos ηi cosαi

sin ηi sinαi
. (5.4)

For a given tripeptide, we may consider the mapping from its angular representation in the angle space Ak
to the validity intervals:

DOVIτk,i(·) : Ak 7→ (Iτk,i ∩ Iτk,i|δ)
4. (5.5)

That is, upon fixing the angular representation of the tripeptide (Def. 5.1), we obtain up to four validity
intervals, or the empty set if the four intersections are empty. As reported in the companion paper [OC22a],
our necessary conditions are rather tight.

Remark 5.1. The function DOVIτk,i is obtained using the interval Iτk,i whose definition requires the angles
αk,i, ηk,i, ξk,i−1 for Iτk,i , and the interval Iτk,i|δ whose definition requires the angles αk,i+1, ηk,i+1, ξk,i, δk,i.
The number of parameters is thus seven. For the sake of conciseness, we use the supersets Ak,i and Ak,i+1.
See [OC22a] for details.

5.4 Algorithm: details

5.4.1 Tripeptides with moving legs

Moving peptides bodies. When considering the decomposition of Eq. (5.1), the m − 1 peptide bodies
move independently. The motion of one peptide body is parameterized by the special Euclidean group SE(3),
which combines one translation and one rotation. To be more specific, let S2 be the sphere of directions in
R3, and A a positive real number. The motion space R for one peptide body is defined via the motion space

R : (S2 × [0, A))× (S2 × [0, 2π)) ⊂ SE(3). (5.6)
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The term S2 × [0, A) codes the translation defined by a unit vector and a real number in [0, A), while the
term S2 × [0, 2π) codes the rotation defined by an angle about a direction given by a unit vector on S2.
Therefore, specifying a random rigid motion for each peptide body requires 2(m− 1) unit vectors. We pool
these vectors into a 6(m− 1)-dimensional vector denoted V in the sequel. The value of A defines a trade-off
between the relative magnitude of the translation and rotation. We use the default value A = 2π, as we
hardly noticed any incidence for this parameter (data not shown). Summarizing, the overall motion space
for peptide bodies is the 6(m− 1) dimensional space:

M = Rm−1. (5.7)

Using a 1-parameter family in the motion space. We restrict motions in M to a a 1-parameter
family, performing the following linear interpolation defined by vector V :

Ray(V ) = {γ(t) = Id+ tV, with γ(0) = Id}. (5.8)

The restriction of this one parameter family to each peptide body defines a rigid transformation

γk : [0, 1] 7→ SE(3), γk(0) = Id, (5.9)

such that the position of the k-th peptide body Pk(t) at time t satisfies

Pk(t) = γk(t)Pk(0). (5.10)

The full equations for this motion are provided in the supplementary section 5.7.4.

5.4.2 Validity domain and overall configuration space A
We now wish to use the depth one validity constraints for the m peptides, whose legs are moving as just
explained. To this end, we concatenate the angular representations of the m tripeptides (Def. 5.1), and
define:

Definition. 5.2. (Angular conformational space A) The angular conformational space of the loop L is the
12m dimensional space defined by the product of the m angular space of the individual tripeptides:

A Def
=

m∏
k=1

Ak. (5.11)

Fixing the positions of the peptide bodies in Eq. (5.1) yields the angular representations of the m
tripeptides. We therefore define a mapping from the motion space into the global angular space:

fM→A :M 7→ A (5.12)

Having discussed the depth one validity interval for one tripeptide– see Eq. (5.5), we can finally aggregate
such conditions:

Definition. 5.3. (Angular validity domain V.) The angular validity domain Vk of the angle τk,i of the k-th
tripeptide is the subset of Ak such that DOVIτk,i(·) 6= ∅.

The angular validity domain of the loop L is the subset V ⊂ A such that

∀k = 1, . . . ,m, ∀i = 1, . . . , 3,∀a ∈ V : DOVIτk,i(a) 6= ∅.

Note that there are 3m individual angular validity domains since each tripeptide has 3 angles τ .
Points in V satisfy necessary conditions. However, for a point p ∈ V, one or several tripeptide may not

admit any valid geometry. We therefore define:

93



Definition. 5.4. (Solution space S) The solution space S ⊂ V of the loop L is the subspace of A such
that TLC admits at least one solution for each tripeptide. A point in S (resp. V\S) is termed fertile (resp.
sterile).

Let sk the number of solutions yielded by TLC for a point p ∈ S. The Cartesian product of these sets
yields a total number of embeddings, i.e. conformations, equal to Πk=1,...,msk.

Remark 5.2. Note that the degrees of freedom are defined for rigid bodies in-between tripeptides while the
constraints are defined within the tripeptides (Fig. 5.2).

5.4.3 Kinetic validity intervals

We now wish to use our 1-parameter family of motions to explore the solutions space S via an exploration
of the valid space V.

The tripeptide legs move according to the motion imposed to the peptide bodies (Eq. 5.10). It is therefore
possible to define a time dependent (aka kinetic) version of the angles Ak,i:

Ak,i(t) = (f
(α)
(k,i)(t), f

(ξ)
(k,i)(t), f

(η)
(k,i)(t), f

(δ)
(k,i)(t)), (5.13)

with 
f

(α)
(k,i)(t) : function computing the angle αk,i at time t

f
(ξ)
(k,i)(t) : function computing the angle ξk,i at time t

f
(η)
(k,i)(t) : function computing the angle ηk,i at time t

f
(δ)
(k,i)(t) : function computing the angle δk,i at time t

(5.14)

Once plugged into the intervals of Eq. (5.3), these functions make it possible to define a kinetic version of
the four static validity intervals:

Definition. 5.5. (Kinetic validity intervals) The kinetic validity intervals for a given angle τk,i of a tripep-
tide Tk are the validity intervals obtained for the time varying angles Ak,i(t):{

Iτk,i(t) = [Imin
τ (Ak,i(t)), I

max
τ (Ak,i(t))]

Iτk,i|δ(t) = [Imin
τ |δ (Ak,i+1(t)), Imax

τ |δ (Ak,i+1(t))]
(5.15)

Remark 5.3. The time dependent angles are computed as follows (Fig. S5.10):

• The fixed internal coordinates within each tripeptide are sufficient to determine the value of ηk,1, ξk,1, ηk,2
and ξk,2. (Note that these are defined in the rigid bodies associated with Cα;3k−2Cα;3k−1 or Cα;3k−1Cα;3k.)

• The position of the legs are sufficient to define ηk,3 and ξk,3.

• The leg positions together with the fixed internal coordinates are sufficient to compute all three αk,i, i ∈
{1, 2, 3} angles as these angles are defined by the Cα triangle.

Remark 5.4. The motions of consecutive rigid bodies is constrained by the triangle inequality between the
three consecutive Cα atoms (Fig. 5.3). Indeed, these atoms must satisfy the following triangle inequality:

‖Cα;3k−2Cα;3k‖ ≤ ‖Cα;3k−2Cα;3k−1‖+ ‖Cα;3k−1Cα;3k‖ . (5.16)

Note that following the rigidity of peptide bodies, the two right hand side distances are fixed.
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5.4.4 Sampling: one step

Sampling V with Hit-and-Run. We sample the validity domain V using the Hit-and-Run algorithm
(Fig. 5.1 and [BBR+87]). For a ray Ray(V ) in the motion space (Eq. 5.8), consider the restriction of this
ray to the valid space V, that is

RayV(V ) = {γ(t) ∈ Ray(V ) | fM→A(γ(t)) ∈ V}. (5.17)

The Hit-and-Run algorithm consists of iteratively sampling a new point on RayV(V ), so that the restriction
of the ray to the valid space V must be computed.

To see how, consider two kinetic intervals Iτk,i(t) ∈ Iτk,i and Iτk,i|δ(t) ∈ Iτk,i|δ as specified in Eq. (5.15).
For these intervals, consider the limit conditions (Fig. 5.4):{

Imax
τ (Ak,i(t)) = Imin

τ |δ (Ak,i+1(t)),

or Imin
τ (Ak,i(t)) = Imax

τ |δ (Ak,i+1(t))
(5.18)

For a given τk,i angle, there are 8 such conditions, namely two (Eqs. (5.18)) for each of the depth one validity
interval. And since there are three τk,i angles per tripeptide, we obtain 24 conditions.

With these ingredients, our algorithm operates as follows:

• Generate a random ray Ray(V ) in the motion space M.

• (get tau tmax, Algorithm 2 and Sec. S5.7.4) For a given τk,i angle, find out the largest interval [0, tmax]
such that the DOVIτk,i is different from the ∅ on this interval (Nb: an upper bound on tmax is obtained
from the triangle inequality applied to the Cα carbons, see remark 5.4.)

• (LS one step, Algorithm 3) Take the intersection of all such intervals for the 3m angles, generate a t
value on the resulting interval, and apply the corresponding motions to the tripeptide legs. This yields
a candidate conformation Lcand. ∈ V of the loop L.

• (Loop sampler, Algorithm 4). Perform LS one step until Lcand. ∈ S. Once obtained, start again from
Lcand. and iterate.

Remark 5.5. In the real random access memory model (real RAM), which assumes exact calculations with
real numbers, Algorithm LS one step is exact. In practice, our implementation uses multiprecision numbers
and root finding routines provided by Maple [MGH+03]. Due to the cost of such operations, algorithm 3 can
be further optimized, see algorithm S6.

Leaving the realm of multiprecision, an approximate version has also been developed to strike a compromise
between exactness and performances, see LS one step approx (Algorithm 5). This variant performs a regular
sampling of the ray, from which tmax is estimated. LS one step approx is the version used in the experiments
thereafter.

5.4.5 Sampling: combining several steps

We use the building block Loop sampler to define two algorithms. In our Experiments, the loops assessed
are those generated by these two algorithms, without any relaxation/energy minimization or post-processing.

Unmixed loop sampler. Combining steps of Loop sampler yields algorithms ULSNV ;NOR
One|All;NES [p0], whose

parameters are as follows:

1. p0: the starting point/conformation in space S.

2. One—All: a point in the solution space S generates a total of Nm = Πk=1,...,msk loop conformations,
with sk the number of TLC solutions for the tripeptide Tk. The flag One—All states whether we
choose one embedding at random, or keep them all.
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3. NES : for a given HAR trajectory, the number of embedding steps performed.

4. NV : number of HAR trajectories started at p0, each defined by a random vector defining a ray in the
motion space M.

5. NOR: the output rate in the form 1/n, with n the number of HAR steps performed along a HAR
trajectory, before an embedding step is performed–as dictated by the flag One—All. An output rate of
one means that all embeddings steps are exploited.

For example, ULS
5;1/4
One;1000 uses five HAR trajectories with an output rate of 1/4, and 1000 embedding

steps, each retaining a single embedding. Thus, the number of loop conformations returned is exactly 1250.
On the other hand, ULS1;1

All;1000 uses a single HAR trajectory of 1000 steps with an output rate of one,
retaining all solutions at each step. The number of loop conformations generated is at least 2000, and at
most 1000× 16m.

Mixed loop sampler. In the previous version of the algorithm, peptide bodies remain rigid during the
whole simulation. To alleviate this constraint, we also provide the following two-step variant of the algorithm,
denoted MLSNV ;NOR

One|All;NES [p0]. In short, every other HAR step, the loop is shorted by three residues (two a.a.

on one end, one on the other), and a HAR step is performed for this reduced model. One solution is then
picked at random, and the updated positions of the peptide bodies used for the next HAR step.

Remark 5.6. We have recalled above the two types of constraints used by TLC: the legs’ positions and
internal coordinates. Practically, we use standard values for internal coordinates [CSJD04, ORC22]. These
internal coordinates can be changed and sampled in the course of the algorithm, an option not used in our
experiments.

In using these standard coordinates, we assume that all tripeptides of the loop have angular parameters
Ak ∈ S.

5.5 Experiments

5.5.1 Material and methods

Implementation. Our implementation is sketched in Sec. S5.7.3. Consider a loop together with a valid
starting point p0 – see below. First, the 12(m−1) Cartesian coordinates of the peptide bodies are extracted,
together with the 12 Cartesian coordinates of the two loop anchors (4 points in total). Then, the steps are
iteratively performed as described above for the unmixed and mixed versions of the loop sampler.

We compare our samplers against the state-of-the-art method MoMA-LS [BMV+19] discussed in Introduc-
tion. We note however that the comparison is not perfectly fair since MoMA-LS also samples three ω angles
in the loop before using tripeptide loop closure. Importantly, we noted that the ω angle preceding the first
tripeptide of the loop is also sampled (Fig. S5.15). This degree of freedom induces a rotation of all atoms
in the loop, including Cα;1 which is fixed in our algorithm.

Loops tested. Several loop datasets have been assembled, see e.g. [JPR+04, ZZLF11, MSD18, BMV+19].
Note that a loop refers to a set of structures with the same sequence and anchor positions which can be
superimposed via a rigid motion. Most of these loops comprise between 12 and 15 amino acids. In the
sequel, we focus on three such loops.

• PTPN9-MEG2. The first one is a 12 a.a. long loop found in the in human protein tyrosine phosphatase
PTPN9-MEG2 [QZC+02, ZLT+12], between residue 466 and 477. For this case, four conformations (aka
landmarks) have been crystallized: L0 : 4GE2.pdb/chain A, L1:2PA5.pdb/chain A, L2: 4GE6.pdb/chain B,
L3:4ICZ.pdb/chain A. Interestingly, three of these loops form a cluster (lRMSD < 0.1, Table S5.2), while
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L3 is significantly different (lRMSD > 1.5). We choose L0 as a starting point, since it is furthest away from
L3.

• CCP-W191G. The second loop is a 15 a.a. long loop found in cytochrome C peroxidase (CCP), a water-
soluble heme-containing enzyme reducing hydrogen peroxide (H2O2) to water. CCP contains three cav-
ities which are hydrophobic (cavity: L99A), slightly polar (cavity: L99A/M102Q), and anionic (cavity:
W191G), the latter binding almost exclusively small monocations. Out of the several crystal structures
reported [GSB+08], one of them features N-methyl-1-phenylmethanamine – N-Methylbenzylamine for short
in the W191G cavity. This binding is of interest, as the aforementioned 15 a.a. long loop flips out by nearly
12Å, opening the cavity to the bulk solvent for the entry/exit of the ligand [GSB+08].

• CDR-H3-HIV. To illustrate the ability of our method to handle long loops as a whole, we process a 30
a.a. long complementarity-determining region (CDR H3) loop, one of the longest CDR observed in human
antibodies [PMW+10]. Broadly neutralizing antibodies against the human immunodeficiency virus type of
1 (HIV-1) exhibit two typical features, namely an extensive affinity maturation (accomplished over long
periods of time), and an exceptionally long heavy chain CDR.

5.5.2 Conformational diversity

To assess the conformational diversity of a set of conformations generated, we plot the root mean square
fluctuations (RMSF) of the 3m heavy atoms {N,Cα, C} of the loop backbone, in the form of boxplots.
(Recall that the RMSF of a given atom is the stdev of distances between its positions and their center of
mass.)

Loop PTPN9-MEG2. We first analyze the RMSF values observed for the loop PTPN9-MEG2 (Fig.
5.6). A general observation is the bell shape traced by the RMSF median marks, which is expected since the
middle of the loop incurs less steric constraints than its endpoints. To compare the methods, the RMSF plots
for MoMA-LS converge rapidly. A median of ∼ 2 − 3Å in the middle of the loop is obtained, with numerous
extreme/outlier configurations. Our algorithm needs more steps to stabilize, reaching a stable distribution
for 500 conformations. Overall, our methods generate RMSF fluctuations larger than those from MoMA-LS,
with ULS1;1

One;· and MLS1;1
One;· yielding median RMSF values ∼ 5−6Å and ∼ 8Å respectively near the center

of the loop.
Our plots also shed light on the various ingredients of our method. A marked difference is observed

between ULSNV ;NOR
One—All;NES

and MLSNV ;NOR
One—All;NES

. The RMSF plots of the former contain plateaus of length
4 corresponding to the atoms found in rigid peptide bodies. Those of the latter do not, a consequence of the
shift shift along the backbone inherent to the removal of three amino acids.

Otherwise, an important point is the stability of our method with respect to the parameter One—All
and to the number of vectors NV . Beyond 500 conformations, little variation is actually observed (Fig. 5.6
versus Fig. S5.11 and Fig. S5.12).

CCP-W191G. The patterns for this slightly longer loop are similar to those observed for the previous
one, so that we focus solely on the most striking point. Interestingly, despite the lack of sampling of the ω
angle, our algorithms reach a max RMSF circa 7.5Å, while MoMA-LS culminates at about 3.7Å(Fig. 5.7 and
Fig. S5.13.

The ability to generate such diverse ensembles is clearly an advantage over more classical methods such as
Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) which fail from sampling conformations
as diverse as 12Å[GSB+08].

CDR-H3-HIV. Loops beyond 15 a.a. are usually considered to be beyond reach [MSD18, BCC21]. To
illustrate the capabilities of our method, we process a 30 a.a. long loop CDR-H3-HIV (Fig. 5.8), one of the
longest CDR observed in human antibodies [PMW+10]. The CDR3 resembles an axe, with a handle and a
head (Fig. 5.8(A)). This CDR represents alone 42% of the surface area exposed by the CDRs [PMW+10].
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Remarkably, compared to the two loops just discussed, MoMA-LS exhibits a much larger diversity (Fig.
S5.14). Naturally, the longer the loop, the larger the benefits of also sampling the ω angle preceding the loop.

The RMSF plots for our algorithm show a flattened bell shape curve MLS10;1/2
One;500, MLS10;1/2

One;5000,MLS10;1
One;500

and MLS10;1
One;5000, with a maximum RMSF near 12Å.

It has been speculated that the head of this CDR3 can substantially deform, possibly to maneuver into a
recessed epitope [PMW+10]. Our simulations mitigates this intuition (Fig. 5.8(B,C,D)). On the one hand,
while the middle of the head does deform substantially, in particular in the vertical direction, the front and
the back appear quite rigid. On the other hand, the stem of the axe exhibits a substantial lateral flexibility.
Naturally, these preliminary observations call for further structural analysis in the presence of the antigens.

5.5.3 Exploration of the conformational landscape

To assess the ability of the algorithm to explore a complex conformational landscape, we focus on loops
for which several conformations have been obtained experimentally. Consider a set {Lj}, j = 1, . . . , J of J
loop conformations, called landmarks. To assess the amount of conformational space explored, we generate
conformations, and check the min and max lRMSD distances of these conformations to all landmarks.

Loop PTPN9-MEG2. These distances are of special interest in the context of the 2-cluster structure of
the four conformations of PTPN9-MEG2 (Table S5.2).

Starting from L0, we first study the ability to move away from the cluster L0/L1/L2 (maxlRMSD values
for columns L1 and L2, Table 5.1). For a fixed number of conformations (50/500/5000), the lRMSD observed
for our algorithms are significantly larger than those obtained with the loops from MoMA-LS. Consistent with
the analysis of RMSF, the variant ULSNV ;NOR

One—All;NES
outperforms all contenders.

Also starting from L0, we next investigate the speed at which we approach the significantly different
conformation L3 (minlRMSD values for column L3, Table 5.1). The values reported by our methods are

slightly worse than those from MoMA-LS (Table 5.1): best MoMA-LS: 0.99Å; best ULSNV ;NOR
One—All;NES

: 1.46Å;

best MLSNV ;NOR
One—All;NES

1.40Å. However, as noticed above, MoMA-LS also samples the ω angle preceding the
loop. Inspecting ω values, one obtains: ω(L0) : −177◦; ω(L3) : −165◦; ω(best from MoMA-LS): −167◦. It is
therefore the sampling of this dihedral angle which favors MoMA-LS.

5.5.4 Failure rate and running time

Algorithm 3 fails as soon as one TLC does not admit any solution. This failure probability depends on the
number of tripeptides, and naturally depends on the discrepancy between the two spaces Sk and Vk, that
is on the volume of the region Vk\Sk. In turn, this failure naturally impacts the running time of algorithm
Loop sampler.

Calculations were run on a desktop DELL Precision 7920 Tower (Intel Xeon Silver 4214 CPU at 2.20GHz,
64 Go of RAM), under Linux Fedora core 32. Each HAR is processed on a single CPU core. For PTPN9-
MEG2, there there is on average 0.69 failure per success when tested on ULS1;1

One;1000[L0] and 2.92 with

MLS1;1
One;1000[L0].

The average time taken for one step by ULS1;1
One;1000[L0] is 0.04 seconds, and 0.17 for MLS1;1

One;1000[L0].
The latter algorithm involves more operations than the former, and as just noticed, also incurs a higher
failure rate. Whence the increased running time.

For the long loop CDR-H3-HIV, the average failure per success becomes 1.18 for ULS1;1
One;1000 and 6.09 for

MLS1;1
One;1000. The average time per step in ULS1;1

One;1000 becomes 0.21 seconds, and 0.98 for MLS1;1
One;1000[L0].

Remark 5.7. Parameter One—All has no impact on failure rate since all solutions are computed in any
case.
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5.6 Outlook

Method. Loops sampling methods raise difficult mathematical problems due to the high dimensionality
of the parameter space, and the non linear interaction between the degrees of freedom (dof). Current state-
of-the art methods belong to two main classes. The first one consists of methods relying on kinematic loop
closure; such methods first perturb selected dof (the prerotation step), and proceed with loop closure (the
postrotation step). However, a first difficulty is to balance the amplitude of changes incurred by pre and
post dof, to avoid steric clashes during the loop closure step. Another difficulty lies in the non linear nature
of the solution space. For systems involving n dof, such methods typically results in a solution space which
is a n − 6 dimensional manifold. Sampling this manifold is usually done via back-projection upon walking
the tangent space, which is numerically challenging and imposes rather local changes. A second class of
methods of utmost importance exploit structures from the Protein Data Bank, and possibly resort to loop
closure too. However, such methods face a combinatorial explosion when the loop length increases. As a
matter of fact, modeling as a whole loops beyond 15 amino acids is still considered out of reach.

Our work introduces a new paradigm for this problem, based on a global geometric parameterization of
the loop relying on a decomposition into tripeptides. The method lies in the lineage of the Hit-and-Run
algorithm, invented long ago to identify redundant constraints in a linear program. Since then, HAR and
related techniques have proven essential to sample high dimensional distributions in bounded and unbounded
domains, yielding effective polynomial time algorithms of low complexity to compute the volume of polytopes
in hundreds of dimensions [LV18, CV16, CPC22, CCF22]. The connexion between these algorithms and loop
sampling is non trivial, as using HAR to generate loop conformations involves two new ingredients. The
first one is a description of the loop sampling problem in a fully dimensional conformational space, as it is
the absence of codimension which removes the constraint to follow a curved manifold. We achieve such a
description using the intrinsic description of tripeptides. The second one is the design of necessary conditions
for the individual tripeptide problems to admit solutions. These conditions can then be used in a manner
akin to the hyperplanes of the polytope, to explore the region of interest and generate novel conformations.

Our results improve on those produced by a recent state-of-the-art method. On classical loop examples
(12 to 15 a.a.), we show that our solutions enjoy wider RMSF fluctuations. We also show that our method
copes easily with a 30 a.a. long loop as a whole, a loop length usually considered beyond reach. Last but
not least, it should be stressed that our method is parameter free, as the generation process does not depend
on any statistical or biophysical model.

Future work. Computational Structural Biology recently underwent a very significant progress with the
advent of deep learning methods for structure prediction [JEP+21, BDA+21]. However, such methods
generally face difficulties for unstructured and/or highly flexible regions [RP21]. Also, they do not yield
insights on the intrinsic complexity of the problem. In this context, our work opens new perspectives in
structural modeling. In terms of structure, we anticipate several straightforward applications. The ability of
our sampler to generate very diverse ensembles of conformations should prove key to investigate systems with
highly flexible regions, including enzymes, membrane transporters, CDRs, and also intrinsically disordered
proteins. The realm of thermodynamics appears more challenging. As discussed in Introduction, methods
in the lineage of Conrot come with correction factors which, once incorporated into Metropolis-Hastings
and Monte Carlo sampling, ensure that the correct distribution (typically canonical) is sampled. Our work
primarily focuses on the geometric rather than thermodynamic setting. In fact, current sampling methods of
choice are multiphase / adaptive sampling methods, including meta-dynamics, Wang-Landau, etc [LSR10,
BMS15]. A question of critical importance in future work will be to ensure that our exploration methods
are suitable to sample NVE and/or NVT ensembles. The connexion with polytope volume calculations is a
strong hint that this may indeed be the case, and that sampling micro-canonical ensembles may be possible.
If so, our paradigm may eventually yield a definitive step for structural and thermodynamic predictions.
Meanwhile, our method can still be used in the context of global optimization and energy landscapes, which
decouples structure, thermodynamics, and dynamics Upon discovering (deep) local minima, one can sample
their basins [Wal03] using classical MC methods.
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Algorithm 2 get tau tmax. For a given angle τk,i, find the largest value of tmax of t such that
DOVIτk,i(p(t)) 6= ∅ on the segment [0, t∆max].

1: for Iτk,i(t) ∈ Iτk,i(t) do
2: for Iτk,i|δ(t) ∈ Iτk,i|δ(t) do

3: S = S∪ numerical solutions for Eqs. 5.18 t ∈ [0, t∆max]
4: Sort S by ascending order
5: Let tl be the l-th element of S
6: l = 1
7: ul :=

tl+tl+1

2

8: // Stop when no validity interval can be defined for τk,i
9: while DOVIτk,i(fM→Aγ(ul)) 6= ∅ do

10: tmax = tk
11: l = l + 1
12: return {tmax}

Algorithm 3 LS one step. Given a starting point p0 ∈ S and a random direction V in the motion spaceM,
the algorithm finds the nearest intersection pnear of the image of the ray Ray(V ) (by the map fM→A) with a
surface constraint, and generates a random value on the segment [0, tmax]. Then, applies the corresponding
motion to peptide bodies of the loop L.

1: Input: p0 ∈ S: starting point in the fertile space
2: Input: V : direction in motion space
3: Output: a point pout ∈ V
4: Var t∆max: initialized using the smallest value of t > 0 breaking triangular inequality in a given tripeptide
5: V : Random direction (Eq. 5.8)
6: S = {t∆max}
7: for k ∈ {1, ...,m} do
8: for i ∈ {1, 2, 3} do
9: S = S ∪ get tau tmax(τk,i)

10: // Get the smallest value – most stringent condition
11: tmax = minS
12: // Output the next sample
13: ts ← Uniform(0, tmax)
14: Apply the rigid transforms defined by ts to the m− 1 peptide bodies
15: return Loop L with moved peptide bodies

Algorithm 4 Loop sampler. Given a starting point p0 ∈ S, algorithm Loop sampler iterates LS one step

until Lcand. yields solution(s) for all tripeptides in the loop. This process is then repeated iteratively from
Lcand..
1: Input: p0 ∈ V
2: ptmp = p0

3: Sample = ∅
4: while not done do
5: is in S = false
6: while not is in S do
7: Generate random direction V
8: Lcand. ← LS one step(ptmp, V )
9: Solve individual TLC for the m peptide bodies

10: if all m tripeptide have at least one solution then
11: is in S = true
12: Combine the individual solutions obtained for the individual tripeptides
13:
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Algorithm 5 LS one step approx. Given a starting point p0 ∈ S, a random direction V in the motion
space M, and a number of iteration X, the algorithm uniformly samples between 0 and tmax, and finds the
largest value ul such that DOVIτk,i(fM→A(γ(ul))) 6= ∅. It then iterates between the step were it stopped
and the one before it until DOVIτk,i(fM→Aγ(ul)) 6= ∅. If X → ∞ the tmax obtained using this algorithm
corresponds to the one obtained using LS one step.

1: Input: p0 ∈ S: starting point in the fertile space
2: Input: V : direction in motion space
3: Input: X: max number of iteration to obtain approximate solution
4: Output: a point pout ∈ V
5: Var t∆max: initialized using the smallest value of t > 0 breaking triangular inequality in a given tripeptide
6: V : Random direction (Eq. 5.8)
7: ul := 0
8: x = 1
9: // Identify the first iteration failing the condition

10: while DOVIτk,i(fM→Aγ(ul)) 6= ∅ do
11: ul = (x/X)tmax

12: x = x+ 1
13: // Slice the failing interval into X bits and iterate
14: tmin = (x− 1)/Xtmax

15: x = 1
16: while DOVIτk,i(fM→Aγ(ul)) 6= ∅ do
17: ul = tmin + tmax(x)

X2

18: x = x+ 1
19: tmax = tmin + tmax(x−1)

X2

20: // Output the next sample
21: ts ← Uniform(0, tmax)
22: Apply the rigid transforms defined by ts to the m− 1 peptide bodies
23: return Loop L with moved peptide bodies
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5.7 Artwork

Figure 5.1 Sampling a loop involving m tripeptides: algorithm overview. Spaces used: A: a 12m
dimensional angular space coding the internal geometry of all tripeptides; V ⊂ A: a region characterized by
necessary conditions for the m individual TLC problems to admit solutions; S ⊂ V corresponds to individual
geometries of the tripeptides such that TLC admits solutions for each tripeptide. The Hit-and-Run algorithm
is used to find intersection (empty bullets) between 1D trajectories (blue curves) in the angular space of the
tripeptides, and hyper-surfaces bounding the regions defining necessary conditions for the m individual TLC
problems to admit solutions. One point is then generated on the curve segment joining the staring point
and the intersection point. This point is fertile if all TLC problems admit solutions, and sterile otherwise.
The number of conformations obtained is the product of the individual numbers for the m tripeptides.

A

S
V

A: 12m dimensional angular
space for the m tripeptides

V: necessary conditions based
on validity intervals

S: solutions i.e. loop can be
embedded

M: 6(m − 1) dimensional
space for the motions of the
m− 1 peptide bodies

Fertile/valid

Sterile/Invalid

The supporting information is organized as follows:

• Section S5.7.1: notations,

• Section S5.7.2: algorithm,

• Section S5.7.3: implementation,

• Section S5.7.4: sampling,

• Section S5.7.5: material,

• Section S5.7.6: results.
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Figure 5.2 Loop decomposition into tripeptides and peptide bodies, and associated geometric
model. (A) Each ellipsis and its two legs correspond to one tripeptides. In red, the peptide bond between
the consecutive tripeptides Tk and Tk+1. The peptide body encompasses the peptide bond, as well as one
atom to the left and the right. (B) Indexing of atoms within the k-th tripeptide. (C) Geometry of the
peptide bond linking tripeptides Tk and Tk+1 with constrained bond lengths, valence angles, and torsion
angle – in red. These four atoms form the rigid body Pk.

T1

Pk: peptide body
between Tk and Tk+1

C3k−2

N3k−1

Cα;3k−1 C3k−1

N3k−2

A4k+2 : Cα;3k+1

A4k+1 : N3k+1

A4k−2

A4k−1

A4m−3

A4m−2
A4m−1

A4

A3

A2

A1

A4k−3

A4k+2

A4k+3

A4k+4

A4k A4mA4k+1

A4k : C3k

A4k−1 : Cα;3k
A4k : C3k

A4k−1 : Cα;3k

A4k−2 : Cα;3k−2

A4k−3 : N3k−2

Peptide body Pk

Fixed
Anchors

Fixed
Anchors

Two atoms from Tk

Tripeptide

Tk

Tripeptide

Tk+1

Tripeptide

Tm

Tripeptide

Two atoms from Tk+1

(B)

(A)

(C)

103



Figure 5.3 Geometric model used for an individual tripeptide. (A) Tripeptide with moving legs.
Given internal coordinates and two rigid bodies around a tripeptide the Cα triangle can be defined together

with {αi, ηi, ξi} angles. (B) J (1)
σi and J (1)

τi . (C) Illustration of the relationship between rigid body positions,
{αi, ηi, ξi} angles and the depth one inter-angular constraint.
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Figure 5.4 Kinetic validity intervals. We focus on a given interval pair Iτk,i ∈ Iτk,i and Iτk,i|δ ∈ Iτk,i|δ
for the angle τk,i from tripeptide Tk. The legs of Tk are moving with Pk−1 and Pk. These movements
impact the positions of the interval endpoints via the angles Ak,i(t) and Ak,i+1(t). (A) The interiors of the
two intervals intersect. (B) The intervals intersect on their boundary–a limit case. The arrow indicate the
derivative of the endpoints of intervals with respect to time.
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Figure 5.5 Interpolation in the space of rigid motions R and associated transformations
applied to rigid bodies. The figure features two peptide bodies Pk and Pk+1 in the loop segment
T
′

k PkT
′

k+1 Pk+1T
′

k+2. The initial positions of the bodies are denoted Pk(0) and Pk+1(0) respectively;
these bodies must satisfy a distance constraint materialized by the green line segment – length < S. Each

rigid body undergoes a translation (unit vectors T
(t)
k and T

(t)
k+1 respectively) composed with a rotation (unit

vectors V
(r)
k and V

(r)
k+1 respectively). The positions corresponding to time t are denoted Pk(t) and Pk+1(t)

respectively. The distance between the last Cα of Pk(t) and the first Cα of Pk+1(t) is constrained by the
triangular inequality (SI Sec. 5.7.4). This constraint is represented by the maximum length S on the figure.
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Figure 5.6 Loop PTPN9-MEG2: Backbone RMSF for the 12 amino acid long loop PTPN9-
MEG2. Simulations started from the conformation/landmark Lo – see text. Each tick on the x-axis
corresponds to a heavy atom of the loop – 36 in this case. For MoMA-LS, note that only one atom is fixed on
the left hand side of the loop, since the ω angle preceding the loop is also sampled.
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Table 5.1 Loop PTPN9-MEG2: exploration to reach landmark conformations. Four conforma-
tions of loop PTPN9-MEG2 form two clusters: L0, L1, L2 and L3. For MoMA-LS, we compute min and max
lRMSD distances to these landmarks. For ULSNV ;NOR

One—All;NES
and MLSNV ;NOR

One—All;NES
, starting from L0, we

investigate the ability to get away from the cluster (maxlRMSD values) and to approach conformation L3

(minlRMSD values).

L1 L2 L3

min/maxlRMSD min/maxlRMSD min/maxlRMSD
MoMA-LS, 50 1.00/3.81 1.03/3.80 1.38/4.11
MoMA-LS, 500 0.78/4.29 0.77/4.30 1.11/4.70
MoMA-LS, 5000 0.74/4.92 0.73/4.94 0.99/4.97

ULS1;1
One;50[L0] 0.41/2.21 0.42/2.23 1.43/2.60

ULS10;1
One;50[L0] 0.39/3.09 0.38/3.09 1.39/3.50

ULS
1;1/4
One;50[L0] 0.59/3.04 0.59/3.05 1.34/3.45

ULS
10;1/4
One;50[L0] 0.46/3.53 0.47/3.56 1.34/3.73

MLS1;1
One;50[L0] 0.46/3.99 0.47/4.01 1.59/4.56

MLS10;1
One;50[L0] 0.43/4.02 0.43/4.03 1.53/4.75

MLS1;1/4
One;50[L0] 1.80/5.05 1.81/5.07 2.20/5.38

MLS10;1/4
One;50[L0] 1.35/5.45 1.36/5.47 1.81/5.61

ULS1;1
One;500[L0] 0.46/3.77 0.46/3.79 1.36/4.19

ULS10;1
One;500[L0] 0.38/4.88 0.37/4.89 1.36/4.97

ULS
1;1/4
One;500[L0] 0.63/5.25 0.64/5.28 1.45/5.54

ULS
10;1/4
One;500[L0] 0.59/5.17 0.59/5.21 1.45/5.55

MLS1;1
One;500[L0] 0.61/5.47 0.61/5.48 1.60/6.12

MLS10;1
One;500[L0] 0.52/5.86 0.53/5.87 1.52/6.46

MLS1;1/4
One;500[L0] 1.69/5.66 1.71/5.69 1.93/6.05

MLS10;1/4
One;500[L0] 1.45/5.75 1.43/5.77 1.68/6.30

ULS1;1
One;5000[L0] 0.48/5.26 0.49/5.29 1.42/5.51

ULS10;1
One;5000[L0] 0.43/5.36 0.43/5.40 1.40/5.74

ULS
1;1/4
One;5000[L0] 0.56/5.19 0.56/5.22 1.45/5.58

ULS
10;1/4
One;5000[L0] 0.46/5.42 0.47/5.46 1.46/5.80

MLS1;1
One;5000[L0] 0.71/5.83 0.72/5.86 1.56/6.22

MLS10;1
One;5000[L0] 0.57/5.96 0.57/5.99 1.52/6.48

MLS1;1/4
One;5000[L0] 1.82/5.88 1.83/5.89 1.66/6.32

MLS10;1/4
One;5000[L0] 1.45/6.06 1.44/6.10 1.46/6.59
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Figure 5.7 CCP-W191G. Loop studied specification: pdbid: 2rbt, chain X, residues 186-200. Confor-
mations generated by algorithm MLS1;1

One;250. (A) Overview of the protein: cartoon mode: protein; CPK
mode: loop; VDW representation: ligand N-Methylbenzylamine. (B,C,D) Top, side, front view of the loop
conformations. Protein omitted for the sake of clarity.

(A) (B)

(C) (D)

109



Figure 5.8 Complementarity-determining region (CDR-H3) raised against HIV-1: sampling a
30 amino acid long loop. PG16 is an antibody with neutralization effect on HIV-1 [PMW+10]. Loop
specification: pdbid: 3mme; chain A; residues: 93-100, 100A-100T, 101, 102. Conformations generated by
algorithm MLS1;1

One;250. (A) Variable domain (red) and the 30 a.a. long CDR3. (B,C,D) Side/front/top
view of 250 conformations .

(A) (B)

(C) (D)
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5.7.1 Notations: cheatsheet

Tripeptides and the whole loop L.

• Legs of a tripeptide Tk: the first two and last two atoms, i.e. left leg (N1, Cα;1), right leg (Cα;3, C3).

The tripeptide core T
′

k is the tripeptide minus the legs.
• Peptide body Pk: the rigid body defined by the right leg and the left leg of two consecutive tripeptides.
• Loop anchors are the first two and last two atoms in the loop.
• Loop: a sequence of m tripeptide:

L = P0 T
′

1 P1 . . . Pk−1 T
′

k Pk . . . Pm−1T
′

mPm.

Decomposes into left anchor + sequence of (tripeptide core+peptide body) + right anchor.

Angular representations.

• Tripeptide Tk, four tuple of angles around the Cα;i: Ak,i = {αk,i, ηk,i, ξk,i−1, δk,i−1} with i ∈ {1, 2, 3}
– counted modulo three.

• Tripeptide angular representation aggregating three four tuples: Ak = {Ak,1,Ak,2,Ak,3}.
• Angular conformational space of a tripeptide: 12-dimensional space Ak
• Angular conformational space of the loop L: 12m-dimensional space A =

∏m
k=1Ak.

• Functions returning the 4 angles α, ξ, η and δ as a function of the legs of a tripeptide: f
(α)
(k,i), f

(ξ)
(k,i), f

(η)
(k,i), f

(δ)
(k,i)

• Validity intervals for the angle τk,i:{
Initial validity interval:Iτk,i = [Imin

τ (Ak,i), I
max
τ (Ak,i)] Sets: Iτk,i = ∪Iτk,i

Rotated validity interval:Iτk,i|δ = [Imin
τ |δ (Ak,i+1), Imax

τ |δ (Ak,i+1)] Sets: Iτk,i|δ = ∪Iτk,i|δ

• Mapping from the 12 angles Ak,i into the set of validity intervals:

DOVIτk,i(·) : Ak 7→ (Iτk,i ∩ Iτk,i|δ)
4.

• Angular validity domain of angle τk,i for the tripeptide Tk: the subset of Ak such that DOVIτk,i(·) 6= ∅.
• Depth j validity intervals for τk,i: J (j)

τk,i .

Motions.

• The 6(m− 1) dimensional space of rigid motions for the m− 1 peptide bodies: M
• Kinetic (dept one) validity intervals:{

Iτk,i(t) = [Imin
τ (Ak,i(t)), I

max
τ (Ak,i(t))]

Iτk,i|δ(t) = [Imin
τ |δ (Ak,i+1(t)), Imax

τ |δ (Ak,i+1(t))]

Spaces and validity domains.

• Angular conformational space A

A Def
=

m∏
k=1

Ak.

• The angular validity domain V of L:

V ⊂ A such that ∀k, ∀i,∀a ∈ V : DOVIτk,i(a) 6= ∅.

• The Hit-and-Run algorithm consists of iteratively sampling a new point on RayV(p0)V .

• Solution space S

S ⊂ V such that TLC admits at least one solution for each tripeptide Tk.
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5.7.2 Algorithm

Figure 5.9 The peptide body: a rigid body associated with a peptide bond. Internal coordinates
marked in red are fixed. The fixed values of the coordinates ω, νi+1, di+2 are such that the position of Cα;2

is uniquely determined given positions for the previous three. Note in particular that the distance between
Cα;1 and Cα;2 is fixed.
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Figure 5.10 Local frames and associated varibales. Adapted from [CSJD04].
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Ŷi ≡ Ẑi−1 × Ẑi

X̂i = Ŷi × Ẑi = (Ẑi · Ẑi+2)Ẑi − Ẑi+2

Nb: Ŷi = Ŷ

Nb: Ẑi = Unit vector along Cα;iCα;i+1

• Orthonormal local frames:

• Vectors to model the rota-
tions of a toms at Cα;i:

• r̂σi−1: rotation of Ci

• r̂τi : rotation of Ni

X̂2

Ŷ

Ŷ

X̂0

Indices i ∈ {1, 2, 3} are counted modulo three
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Algorithm 6 LS one step: optimized version. In this optimized version of Algorithm 3, the upper
bound tmax is updated incrementally for all τk,i angles, which makes it possible to seek individual roots (for
a given τk,i angle) on a shorter interval.

1: Input: pin ∈ S: starting point in the fertile space
2: Input: V : direction in motion space
3: Output: a point pout = V
4:

5: Var tmax: initialized using the smallest value of t > 0 breaking triangular inequality in a given tripeptide
6:

7: V : Random direction (Eq. 5.8)
8: for k ∈ {1, ...,m} do
9: for i ∈ {1, 2, 3} do

10: // Angle τk,i: process the (at most) 24 equations
11: S = {tmax}
12: // Process all interval pairs
13: for Iτk,i(t) ∈ Iτk,i(t) do
14: for Iτk,i|δ(t) ∈ Iτk,i|δ(t) do
15: Stmp ← numerical solutions for Eqs. 5.18 t ∈ [0, tmax]
16: S = S ∪ Stmp
17: Sort S by ascending order
18: Let tl be the l-th element of S
19: ul :=

tl+tl+1

2

20: l = 1
21: // Stop when no validity interval can be defined for τk,i
22: while DOVIτk,i(τk,i(ul)) 6= ∅ do
23: tmax = tk
24: l = l + 1
25: // Output the next sample
26: ts ← Uniform(0, tmax)
27: Apply the rigid transforms defined by ts to the m− 1 peptide bodies

5.7.3 Implementation

• Loop sampler. The sampler generates the necessary random directions and applies the rigid transfor-
mation to each Pk at each step.

• LS tripep validity domain. The individual tripeptide validity domain class contain methods mapping
Pk−1 and Pk to A as well as computing tmax (Algo. 2)

• LS bb embeder. The backbone embedder: performs TLC on all tripeptides using standard internal
coordinates and double precision.

5.7.4 Sampling rigid body positions along interpolation paths

In this section, we provide the details about Eq. 5.10, which we repeat for the sake of exposure:

Pk(t) = γk(t)Pk.

Rigid body representation

We have noticed that the two anchor points on each side of a peptide bond (four atoms in total), form a
rigid body (Fig. 5.2(C)). This rigid body enjoys three translational and three rotational degrees of freedom
(dof).
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Note that using homogeneous coordinates, the matrix 4 × 4 matrix giving the coordinates of this rigid
body reads as

Pk =

(
A4i−1 A4i A4i+1 A4i+2

1 1 1 1

)
(5.19)

In the sequel, we will consider a parameterized such matrix, denoted Pk(t), with t a real number.

Translation

• U
(t)
i , i = 1, . . . ,m−1: unit vectors drawn uniformly at random on the sphere of directions on S2. Used

to define the directions of translations.

• C
(t)
i , i = 1, . . . ,m− 1: m− 1 uniformly random variables in (0, 2π), to define the norm of translation

vectors.

• Translation vector: T
(t)
i = C

(t)
i ∗U

(t)
i , i = 1, . . . ,m− 1

Using homogeneous coordinates, the corresponding transformation reads as follows:

T̃i(t) =


1 0 0 tT

(t)
i;x

0 1 0 tT
(t)
i;y

0 0 1 tT
(t)
i;z

0 0 0 1

 =

(
I tT

(t)
i

0 1

)
(5.20)

Rotation

• U
(r)
i , i = 1, . . . ,m − 1: units vectors drawn uniformly at random on the sphere of directions on S2.

Used to define the rotation axis.

• C
(r)
i , i = 1, . . . ,m− 1: m− 1 uniformly random variables in (0, 2π), to define the rotation angles.

• Rotation: of angles C
(r)
i around the direction U

(r)
i .

In homogeneous coordinates:

For R̃i(t) consider θ = tC
(r)
i and R(θ,U

(r)
i ) the rotation matrix corresponding to a rotation of θ around

axis U
(r)
i :

R̃i(t) =
cosθ + U

(r)
i;x

2(1− cosθ) U
(r)
i;xU

(r)
i;y (1− cosθ)−U

(r)
i;z sin(θ) U

(r)
i;xU

(r)
i;z (1− cosθ)−U

(r)
i;y sin(θ) 0

U
(r)
i;yU

(r)
i;x(1− cosθ) + U

(r)
i;z sin(θ) cosθ + U

(r)
i;y

2(1− cosθ) U
(r)
i;yU

(r)
i;z (1− cosθ)−U

(r)
i;xsin(θ) 0

U
(r)
i;zU

(r)
i;x(1− cosθ) + U

(r)
i;y sin(θ) U

(r)
i;zU

(r)
i;y (1− cosθ)−U

(r)
i;xsinθ cosθ + U

(r)
i;z

2(1− cosθ) 0

0 0 0 1


R̃i(t) =

(
(R(θ,U

(r)
i )) 0

0 1

)
(5.21)

The three types of constraints are equivalent as they are applied on the distance between two points. In
all cases the two points are each part of a rigid body and in each cases each point will be subjected to
a different translation and rotation. The kinematic function can then be expressed using the rigid body
transformations.
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Complete transformation

• Pk(0) is the homogeneous 3 dimension coordinates of a rigid body without translation and rotation.

• Pk(t) is the homogeneous 3 dimension coordinates of a rigid body with translated and rotated using
T̃i(t) and R̃i(t).

• T 0
i is the translation of the center of mass of Pk(0) to the origin and T−1

i the opposite.

Still using homogeneous coordinates we obtain:

γk(t) = T̃i(t)T
−1
i R̃i(t)T

0
i (5.22)

The complete transformation applied to Pk becomes:

Pk(t) = γk(t)Pk (5.23)

γk(t) can be applied to any individual atom in Pk.

Numerical root finding and tmax

When numerically searching for a solution to Eq5.18 an initial search interval is needed:

Given leg positions for a given tripeptide the three Cα carbons within satisfy a triangle inequality (S5.9).
Using the proper indices, this constraint reads as

‖Cα;3i − Cα;3i−2‖ < LCα;3i−2Cα;3i−1
+ LCα;3i−1Cα;3i

(5.24)

As noticed above, the distances With LCα;3i−2Cα;3i−1
and LCα;3i−1Cα;3i

are fixed. If this is not satisfied we
have a forbidden sample as it belongs to A\V.

• The triangular inequality is used to find an upper bound for numerical root finding.

•

Remark 5.8. So long as the translation vectors are not the same there will always be a points where
the distance is greater than a given value (Fig. 5.5).

• Let ci and ci+1 be the centers of the rotation circles for both atoms on which the constraint applies.
These correspond to the orthogonal projections on their respective rotational axes.

• With S = LCα;3i−2Cα;3i−1
+ LCα;3i−1Cα;3i

.

• With ri and ri+1 the respective radii of said circles, the triangular inequality will necessarilly be invalid:∥∥∥T̃i+1(t)ci+1(t)− T̃i(t)ci(t)
∥∥∥ = S + r1 + r2 (5.25)

• This corresponds to a univariate second degree polynomial with one positive and one negative root.
The upper limit of our initial constraint with both rotation and translation is the positive root.

In the loop the smallest of such values among all tripeptides is selected as an initial upper bound for tmax.
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Table 5.2 Least RMSD matrix between landmark pairs for the loop PTPN9-MEG2. The first
three conformations form a cluster.

L0 L1 L2 L3

L0 0.099 0.072 1.574
L1 0.087 1.550
L2 1.559

5.7.5 Material

loops used

MoMA-LS parameters

Here we summarize the parameters used in MoMA-LS for our experiments:

• The ratio of van der Waals radii used for collision detection is 0.5. The minimum value is used as we
do not implement collision detection;

• Residue-dependent pseudo-atoms at the Cβ positions are not used for collision detection for the same
reason;

• Side chains are omitted as they are not considered in our algorithms as of now;

• One solution is kept for inverse kinematics as we mostly compare to the version using one solution for
inverse kinematics in our algorithm;

• The number of sampled states is 50 500, or 5000.

Remark 5.9. A general post-processing strategy in loop generation consists of checking the absence of steric
clash between the N,Cα, C,O,Cβ atoms. Denoting Ri and Rj the van der Waals radii of two atoms i and
j, the usual criterion consists of checking that dij > (Ri +Rj) ≥ dmin, usually taken in the range 0.5− 0.7,
see [MCK09, BMV+19]. The conformations may also energy minimized, a step which is mandatory when
dealing with all atom models.

5.7.6 Results
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Figure 5.11 Loop PTPN9-MEG2: tests with algorithm ULSNV ;NOR
All;NES

[L0]. Compare against Fig. 5.6
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Figure 5.12 Loop PTPN9-MEG2: tests with algorithm MLSNV ;NOR
All;NES

[L0]. Compare against Fig. 5.6
to see the incidence of option All.
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Figure 5.13 Loop CCP-W191G: tests with algorithm MLSNV ;NOR
one;NES

and MoMA-LS.
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Figure 5.14 Loop CDR-H3-HIV: tests with algorithm MLSNV ;NOR
one;NES

and MoMA-LS.
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Figure 5.15 ω0 angle values impacting Cα;1 position in MoMA-LS. This histogram is made from the
sample of 5000 conformations obtained using MoMA-LS and L0 of loop PTPN9-MEG2. The ω0 angle is the
torsion angle around the peptide bond preceding the loop.
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Chapter 6

Fréchet mean and p-mean on the unit
circle

6.1 Introduction

Fréchet mean and generalizations.
Transferring the notion of the center of mass, the point minimizing the sum of square distances in a point

set, to the unit circle S1 is of particular interest since this space encodes angles, where the motion observed
in molecular systems is concentrated in terms of internal coordinates. Generalizations of the center of mass
in general metric spaces are referred to as Fréchet mean [Fré48].

In the following, we focus on p-means defined on the unit circle S1, for p > 1. As the point set is critical
(The case p = 1 requires trivial adaptations.)

Consider n angles Θ0 = {θi}i=1,...,n. Practically, since real data are known with finite precision, we
treat angles as rational numbers. Consider the embedding of an angle onto the unit circle, that is X(θ) =

(cos θ, sin θ)
T

. The geodesic distance between two points X(θ) and X(θi) on S1, denoted d(·, ·), satisfies

d(X(θ), X(θi)) = min(| θ − θi |, 2π− | θ − θi |) = 2 arcsin
‖X(θ)−X(θi)‖

2
. (6.1)

Consider a set of positive weights {wi}i=1,...,n. For an integer p ≥ 1, consider the function involving the
weighted distances to all points, i.e.

Fp(θ) =
∑

i=1,...,n

wifi(θ), with fi(θ) = dp(X(θ), X(θi)). (6.2)

We denote its minimum

θ∗ = arg min
θ∈[0,2π)

Fp(θ). (6.3)

For units weights and p = 2, the value obtained is the Fréchet mean. In that case, the candidate minimizers
(local minima of Eq. 6.2) form the vertices of a regular polygon [HsH15]. The previous expression can also
be seen as a distance to a point mass probability distribution on S1. For a general probability distribution
on S1, necessary and sufficient conditions for the existence of a Fréchet mean have been worked out [Cha13].
In the same paper, the authors propose a quadratic algorithm–regardless of numerical issues–to compute the
Fréchet mean for the particular case of a point mass probability distribution. In a more general setting, a
stochastic algorithm finding p-means wrt a general measure on the circle has also been proposed [AM16].

Remark 6.1. In the subsequent sections, the weights in Eq. 6.2 are omitted – rational weights do not change
our analysis. Our implementation, however, does use them.
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Robustness and numerical issues. From a mathematical standpoint, computing the p-mean is a non-
convex optimization problem, and one may assume that calculations are carried out in the standard real
RAM computer model, which assumes that exact operations on real numbers are available at constant
time per operation [PS85]. From a practical standpoint though, numbers in real computers are represented
with finite precision [MBdD+18]. The ensuing rounding errors are such that algorithms written in the real
RAM model may loop, crash, or terminate with an erroneous answer, even for the simplest 2D geometric
calculations [KMP+08].

Robust geometric algorithms, which deliver what they are designed for, can be developed using the
Exact Geometric Computation (EGC) paradigm [YD95], which is central in the Computational Geometry
Algorithms Library (CGAL) [cga]. The EGC relies on so-called exact predicates and constructions. A
predicate is a function whose output belongs to a finite set, while a construction exhibits a new geometric
object from the input data. For example, the predicate Sign(x) returns the sign {negative, null, positive}
of the arithmetic expression x. As we shall see, designing robust predicates for p-means on S1 is connected
to transcendental number theory since expressions involving π are dealt with. In particular, one needs to
evaluate the sign of such expressions, which raises decidability issues [CCK+06].

Combinatorial complexity issues. The computation of the p-means also raises a combinatorial complex-
ity issue. Function Fp being a sum over n terms, k function evaluations yield a complexity O(kn), which is
quadratic if there is a linear number of local minima. Therefore, the fact that using candidate minimizers
form a regular polygon [HsH15] does not directly yield a linear time algorithm even if the angles are sorted.
As we shall see, the piecewise maintenance of the expression of the function does so, though. For the sake
of conciseness, combinatorial complexity is plainly referred to as complexity in the sequel.

Figure 6.1 Fréchet mean of four points on S1 (Functions) blue: function F2; green: derivative F
′

2;
orange: second derivative F

′′

2 (Points) red bullets: data points; black bullets: antipodal points; blue bullets:
local minima of the function; large blue bullet: Fréchet mean θ∗; green bullet: circular mean Eq. 6.14.

6.1.1 Contributions

This paper makes three contributions regarding p-means of a finite point set. First, we show that the function
Fp is determined by a very simple combinatorial structure, namely a partition of S1 into circle arcs. Second,
we give an explicit expression for Fp, deduce that the problem is decidable, and present an algorithm
computing p-means. Third, we present an effective and robust implementation, based on multi-precision
interval arithmetic.
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6.2 p-mean of a finite point set on S1: characterization

6.2.1 Notations

In the following, angles are in [0, 2π). We first define:

Definition. 6.1. For each angle θi ∈ [0, π), we define θ+
i = θi + π. The set of all such angles is denoted

Θ+ = {θ+
i }. For each angle θi ∈ [π, 2π), we define θ−i = θi − π. The set of all such angles is denoted

Θ− = {θ−i }. The antipodal set of Θ0 is the set of angles Θ± = Θ+ ∪Θ−.

Altogether, these angles yield the larger set

Θ = Θ0 ∪Θ±. (6.4)

The 2n angles in Θ are generically denoted αi or αj . Note however that when referring to an angle in the
continuous interval [0, 2π), θ is used.

To each angle θi, we associate three so-called elementary intervals (Fig. 6.2):

• θi ∈ [0, π) : Ii,1 = (0, θi), Ii,2 = (θi, θ
+
i ), Ii,3 = (θ+

i , 2π).

• θi ∈ [π, 2π) : Ii,1 = (0, θ−i ), Ii,2 = (θ−i , θi), Ii,3 = (θi, 2π).

Figure 6.2 The partition of S1 into circle arcs, and the piecewise functions defining Fp. The
three elementary intervals defined by angles in [0, π) and [π, 2π) respectively. Bold circle arcs indicate that
fi has a transcendental expression i.e. involves π.

θi

θ+i = θi + π

θi

θ−i = θi − πIi,1
Ii,2

Ii,3

Ii,1

Ii,2

Ii,3

0 0ππ

θi ∈ [0, π) θi ∈ [π, 2π)

fi(θ) = (θi − θ)p

fi(θ) = (θ − θi)p
fi(θ) = (2π + θi − θ)p

fi(θ) = (θi − θ)p

fi(θ) = (θ − θi)p

fi(θ) =

(2π + θ − θi)p

6.2.2 Partition of S1

We also consider the partition of [0, 2π) induced by the intersection of the 3n intervals {Ii,1, Ii,2, Ii,3} (Fig.
6.2). More specifically, we choose one interval (out of three) for each function fi, and intersect them all:

Definition. 6.2. The elementary intervals Ii,j define a partition of S1 based on the following intervals:

I = {
⋂

i=1,...,n

(Ii,1 ∨ Ii,2 ∨ Ii,3) with
⋂

i=1,...,n

Ii,· 6= ∅}. (6.5)

In the following, open intervals from I are denoted (αj , αj+1).

Remark 6.2. From the previous definition, it appears that the intervals in I may be ascribed to nine types
since the left endpoint is an angle θi or an antipodal angle θ+

i or θ−i , and likewise for the right endpoint.
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6.2.3 Piecewise expression for Fp

We use the previous intervals to describe the piecewise structure of Fp. We define the following piecewise
functions (Fig 6.2):

θi ∈ [0, π) : fi(θ) =


(θi − θ)p, for θ ∈ Ii,1,
(θ − θi)p, for θ ∈ Ii,2,
(2π + θi − θ)p, for θ ∈ Ii,3.

(6.6)

θi ∈ [π, 2π) : fi(θ) =


(2π + θ − θi)p, for θ ∈ Ii,1,
(θi − θ)p, for θ ∈ Ii,2,
(θ − θi)p, for θ ∈ Ii,3.

(6.7)

The previous equations give the piecewise expression of Fp(θ) (Eq. 6.2), from which one derives the
following, which characterizes the derivative at points in αj ∈ Θ:

∆f ′i|θ = lim
θ↘αj

f ′i(θ)− lim
θ↗αj

f ′i(θ) (6.8)

Remark 6.3. Let θmax be the antipodal value of the largest θi ∈ Θ0 larger than π, and θmin the antipode
of the smallest θi ∈ Θ0 smaller than π. The function Fp is transcendental in [0, θmax) and (θmin, 2π] – its
expression involves π. Also, the function Fp is algebraic on (θmax, θmin). See Fig. 6.2.

Using Eq. 6.8, the following is immediate:

Lemma. 6.1. For p > 1, the function fi and its derivatives satisfy:

• The function fi is continuous on S1.

• The derivative f ′i is continuous on S1 except at the antipodal value of θi, where ∆f ′i|antipode(θi)
=

−2p πp−1.

• The second order derivative f ′′i is non negative on S1.

The previous lemma tells us that F
′

p incurs drops at antipodal points, and then keeps increasing again
on the interval starting at that point. Finding local minima of Fp therefore requires finding those intervals

from I where F
′

p vanishes, which happens at most once:

Lemma. 6.2. For p > 1, the function Fp has at most one local min. on each interval in I.

6.3 Algorithm

The observations above are not sufficient to obtain an efficient algorithm: since there are 2n intervals and
since the function has linear complexity on each of them, a linear number of function evaluations has quadratic
complexity. We get around this difficulty by maintaining the expression of the function at angles in Θ.

6.3.1 Analytical expressions and nullity of F
′
p

The function Fp and its derivative. We first derive a compact, analytical expression of Fp and F
′

p.
Following Eqs. 6.6 and 6.7, the expressions of fi(θ) and f ′i(θ) can be written as

f ′i(θ) = ki × (ai + εiθ)
p−1, with ki ∈ {−p, p}, ai ∈ {−θi, 2π − θi, θi, 2π + θi}, εi ∈ {−1,+1}. (6.9)

On open intervals (αj , αj+1), the function reads as the following polynomial

Fp(θ) =

n∑
i=1

(ai + εiθ)
p =

p∑
j=0

bjθ
j , with bj =

n∑
i=1

(
p

j

)
ap−ji εji . (6.10)
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Similarly, the derivative F
′

p(θ) reads as a degree p− 1 polynomial:

F
′

p(θ) =

n∑
i=1

ki(ai + εiθ)
p−1 =

p−1∑
j=0

cjθ
j , with cj =

n∑
i=1

ki

(
p− 1

j

)
ap−1−j
i εji . (6.11)

In the following, we assume that the coefficients of Fp and F
′

p are stored in two vectors B and C of size
p+ 1 and p respectively, so that evaluating the function or its derivative at a given θ has cost O(p).

Nullity of F
′

p: algebraic versus transcendental expressions. The previous equations call for two
important comments. First, from the combinatorial complexity standpoint, if the coefficients of the poly-
nomials are known, evaluating Fp and F

′

p has cost O(p). Second, from the numerical standpoint, locating

local minima of Fp requires finding intervals from I on which F
′

p vanishes. Identifying such intervals is key
to the robustness of our algorithm. Practically, since an interval is defined by two consecutive values in the
set Θ, we need to check that the sign of F

′

p differs at these endpoints. The cornerstone is therefore to decide

the sign of F
′

p at angles in Θ (input angles or their antipodes), and the following is a simple consequence of
Lindemann’s theorem on the transcendence of π:

Lemma. 6.3. If the angular values θi ∈ Θ0 are rational numbers, checking whether F
′

p(αi) 6= 0 for any

αi ∈ Θ is decidable. Moreover, when F
′

p has a transcendental expression and αi is rational, F
′

p 6= 0.

Proof. We first consider the case αi ∈ Θ0, and distinguish the two types of intervals – see Remark 6.3.
First, consider an interval where Fp has an algebraic expression. We face a purely algebraic problem, and

deciding whether F
′

p(αi) 6= 0 can be done using classical bounds, e.g. Mahler bounds [LPY05, YYD+10].

Second, consider an interval where Fp has a transcendental expression. Then, F
′

p(αi) can be rewritten as a

polynomial of degree p− 1 in π. Lindemann’s theorem on the transcendence of π implies that F
′

p(αi) 6= 0.
Consider now the case where αi ∈ Θ±, that is αi = αj ± π. Each individual term fi

′(αi) also has the
form (ciπ + qi)

p−1, with ci ∈ N and qi ∈ Q, so that the latter case also applies.

6.3.2 Algorithm

Upon creating and sorting the set Θ, which has complexity O(n log n), the algorithm involves four steps for
each interval in I.

Identify the intervals where F
′

p vanishes. By lemmas 6.1 and 6.2, there is at most one local minimum

per interval, which requires checking the signs of F
′

p to the right and left bounds of an interval (αj , αj+1).
Using the functional forms encoded in vector C, computing these derivatives has the same complexity as the
previous step. However, this step calls for two important comments:

• For αi ∈ Θ, checking whether F
′

p(αi) 6= 0 is decidable – Lemma 6.3. However, the arithmetic nature
of the number αi must be taken into account, as rational numbers (input angles) and transcendental
numbers (antipodal points) must be dealt with using different arithmetic techniques. See below.

• Not all intervals (αj , αj+1) can provide a root. Indeed, once F
′

p(αi) > 0, since the individual second

order derivatives are positive, F
′

p cannot vanish until one crosses one αj ∈ Θ±. As we shall see, this
observation is easily accommodated in Algorithm 7.

In the following, we denote SD(p − 1) the cost of deciding the sign (negative, zero, positive) of F
′

p(θ), for
θ ∈ Θ.

Compute the unique root of F
′

p. Since F
′

p is piecewise polynomial, finding its real root has constant time
complexity for p ≤ 5. Otherwise, a numerical method can be used [KRS16]. In the following, we denote
RF(p− 1) the cost of isolating the real root of a degree p− 1 polynomial.

Evaluate Fp at a local minimum. Once the angle θm corresponding to a local minimum has been
computed, we evaluate Fp(θm) using Eq. 6.10. This evaluation has O(p) complexity since the coefficients of
the polynomial are known.
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Maintain the polynomials Fp and F
′

p. Following Eqs. 6.10 and 6.11, the function and its derivative only
change when crossing an angle from Θ. At such an angle, updating the vectors B and C has complexity
O(p). Overall, this step therefore has complexity O(np).

We summarize with the following output-sensitive complexity:

Theorem. 6.1. Algorithm 7 computes the p-mean with O(n log n + np + nSD(p − 1) + kRF(p − 1) + kp)
complexity, with k the number of local minima of Fp.

6.3.3 Generic implementation

In the following, we present an implementation of our algorithm based on predicates, i.e. functions deciding
branching points.

Pseudo-code, predicates and constructions Our algorithm (Algo. 7) takes as input a list of angular
values (in degrees or radians) and the value of p. Following Remark 6.1, an optional file containing the
weights may be passed. If p > 5, we take for granted an algorithm computing the root of F

′

p on an interval.
As a default, we resort to a bisection method which divides the interval into two, checks which side contains
the unique root of F

′

p, and iterates until the width of the interval is less than some user specified value
τ (supporting information (SI) Algo. 9). The interval returned is called the root isolation interval. Our
algorithm was implemented in generic C++ in the Structural Bioinformatics Library [CD17], as a template
class whose main parameter is a geometric kernel providing the required predicates and constructions. We
now discuss these–see Sec. 6.3.4 for their robust implementation.

Predicates. The algorithm involves two predicates:

• Sign(F
′

p(θ)). Predicate used to determine the sign of the F
′

p(θ) with θ ∈ [0, 2π) (SI Algo. 9).

• Interval too wide(θl, θr). Predicate used to determine whether the root isolation interval has width
less than τ (SI Algo. 9). It is true if θr − θl > τ , and false otherwise.

Constructions.

• Updating representations.. Updating the coefficients in B and C is necessary at each αi ∈ Θ: for
Fp(θ) (resp. F

′

p(θ)), we subtract the contribution of fi(θ) (resp. f
′

i (θ)) before αi, and add that of fi(θ)

(resp. f
′

i (θ)) after αi.

• Find root. To computing the root of F
′

p on an interval (αj , αj+1), we resort to a bisection method
p > 3 (SI Algo. 9), with radical based formulae otherwise.

Remark 6.4. A kernel based on floating point number types, the double type in our case, is easily assembled,
see SBL::GT::Inexact predicates kernel for frechet mean in SI Sec. 6.3.5. As noticed earlier, it comes
with no guarantee. In particular, the algorithm may terminate with an erroneous result if selected predicates
are falsely evaluated.

6.3.4 Robust implementation based on exact predicates

Number types for lazy evaluations. Following the Exact Geometric Computation exact predicates are
gathered in a kernel. We circumvent rounding errors using interval number types which are certified to
contain the exact value of interest. That is, an expression x is represented by the interval [x, x] 3 x. The
bounds of these intervals may have a fixed precision, which corresponds to the CGAL::Interval nt number
type [cga]. Or the bounds may be multiprecision, e.g. Gmpfr from Mpfr [FHL+07], which corresponds to the
CGAL::Gmpfi type [cga]. We now explain how these types are used to code exact predicates.

The Sign predicate. We distinguish the algebraic and transcendental cases, performing multiprecision
calculations only if needed (Fig. 6.3).
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Algorithm 7 p-mean calculation: generic algorithm for p > 1 in the real RAM model

1: Θ: vector[1, 2n] containing all the angles
2: B: vector[1, p+ 1] to store the coefficients of the polynomial Fp(θ) Eq. 6.10

3: C: vector[1, p] to store the coefficients of the polynomial F
′
p(θ) Eq. 6.11

4: θ∗ // Angle corresponding to the global minimum of Fp
5: Root remains = true // flag indicating whether a root must be sought on (αj , αj+1)
6:

7: // Initialization
8: Compute Θ± and form sorted Θ
9: α0: first angle in Θ

10: Store the coefficients of Fp into the vector B for the interval (0, α0)

11: Store the coefficients of F
′
p into vector C for the interval (0, α0)

12: Compute l← F
′
p(θ) for θ → 0+ using Eq. 6.11 and vector C

13: Update root(Sign(l))//Updates Root remains see SI Algo. 8
14: if Sign(l) is null then
15: Compute Fp(0) using vector B and Eq. 6.10, and possibly update θ∗.
16:

17: // For each angle, handle {interval ending, coefficients in B and C, interval starting}
18: for all αi in Θ do
19: if Root remains then
20: Compute r ← F

′
p(θ) for θ → α−i using Eq. 6.11 and vector C

21: Update root(Sign(r))//Updates Root remains see Algo. SI 8
22: if Sign(r) is positive then
23: θc ← Find root(αi−1, αi)
24: Compute Fp(θc) using vector B and Eq. 6.10, and possibly update θ∗.
25: else if Sign(r) is null then
26: Compute Fp(αi) using vector B and Eq. 6.10, and possibly update θ∗.
27: Update the coefficients of Fp stored in vector B upon crossing αi

28: Update the coefficients of F
′
p stored in vector C upon crossing αi

29: if αi ∈ Θ± then
30: Compute l← F

′
p(θ) for θ → α+

i using Eq. 6.11 and vector C
31: Update root(Sign(l))//Updates Root remains see SI Algo. 8
32: if Sign(l) is null then
33: Compute Fp(αi) using vector B and Eq. 6.10, and possibly update θ∗.
34:

35: // Process the interval ending at 2π

36: Compute r ← F
′
p(θ) for θ → 2π− using Eq. 6.11 and vector C

37: if Root remains then
38: if Sign(r) is positive then
39: θc ← Find root(θ2n, 2π)
40: Compute Fp(θc) using vector B and Eq. 6.10, and possibly update θ∗

41: else if Sign(r) is null then
42: Compute Fp(2π) using vector B and Eq. 6.10, and possibly update θ∗.
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Figure 6.3 Number types used in the Sign predicate. Note that CGAL::Interval nt is used in the
algebraic and transcendental cases, while the remaining number types are only used if required.

Algebraic Transcendental

F ′
p(θ) involves π

Initial evaluation
using

CGAL::Interval nt

Initial evaluation
using

CGAL::Interval nt

[l, l] does not
contain 0:

sign known

[l, l] does not
contain 0:

sign known

CORE::ExprT and
(Mahler) bounds are

used to decide if
F ′
p = 0 and determine

its sign.

CGAL::Gmpfi is used
and [l, l] is refined un-
til it does not con-
tain 0

F ′
p(θ) does not involve π

casecase

•Transcendental case: multiprecision interval arithmetic. When Fp is transcendental and αi rational,

F
′

p(αi) is positive or negative (lemma 6.3). Another case where F
′

p(αi) 6= 0 is when αi ∈ Θ±. In our
implementation this situation is faced in two cases. First, in the main algorithm (Algo. 7), Sign(l) or Sign(r):
l and r are transcendental if αi ∈ Θ±. Second, in the root finding algorithm(SI Algo. 9), Sign(F

′

p(c)): c
is transcendental if αi−1 or αi ∈ Θ±. In both cases, we proceed in a lazy way: first, we try to conclude
using CGAL::Interval nt; if this interval contains zero, we switch to CGAL::Gmpfi (Fig. 6.3), refine the
interval bounds, and conclude. Refining the interval consists of iteratively doubling the number of bits used
to describe all numbers–including π, until a conclusion can be reached.

•Algebraic case: zero separation bounds. When Fp has a rational expression and αi is rational,

Sign(F
′

p(αi)) may be zero (SI Fig. 6.7). In this case, an input angle may also correspond to a local

minimum of Fp. To decide whether F
′

p(αi) = 0, we resort to zero separation bounds and multiprecision
interval arithmetic.

Let us consider F
′

p(αi) as an arithmetic expression E, using a number of authorized operations(±,×, /
in our case). A separation bound is a function sep such that the value ξ of expression E is lower bounded
by sep(E) in the following manner:

If ξ 6= 0 then sep(E) ≤ |ξ| (6.12)

Considering ξ̃ an approximation of ξ and ∆ an upper bounded error |ξ̃ − ξ|.

If |ξ̃|+ ∆ < sep(E) then ξ = 0. (6.13)

Practically, we proceed in a lazy way, in two steps (Fig. 6.3). First, using CGAL::Interval nt with
double precision, we check whether we can conclude on F

′

p(αi) 6= 0. If not–the interval contains zero, we use

CORE::ExprT[KLPY99] to determine the zero separation bound and decide if F
′

p(αi) = 0. If not, we finally
determine the sign.

Predicate Interval too wide(θl, θr). Returns true when θr − θl > τ , false if θr − θl ≤ τ . Similarly to
the sign predicate, we distinguish the transcendental and algebraic cases to check whether θl − θr − τ = 0.
Supposing τ and Θ0 are rational θl−θr−τ is transcendental if the initial αi−1 or αi ∈ Θ±. If transcendental
the interval is refined in the same way as the transcendental case of the Sign predicate. Otherwise the
expression is algebraic and the precision is raised until an exact computation can be performed.
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6.3.5 Software availability

The source code is available in the package Frechet mean for S1 of the Structural Bioinformatics Library
(SBL), a library proposing state-of-the art methods in computational structural biology [CD17], see https:

//sbl.inria.fr/doc/Frechet_mean_S1-user-manual.html and https://sbl.inria.fr/.

For end-users, the package provides executables corresponding to the robust and non-robust implemen-
tations. Given a list of angles and the value of p, the program returns sorted list of pairs (angular value
of local minimum, function value) by increasing value of Fp. A Jupyter notebook Frechet mean S1.ipynb

using SAGE (https://www.sagemath.org/) is also provided.

For developers, The C++ code of our algorithm is provided in the class
SBL::GT::Frechet mean S1, which is templated by the kernel. Two kernels are provided, namely (i) Non-
robust kernel: SBL::GT::Inexact predicates kernel for frechet mean. A plain floating point(double)
number type is used, and (ii) Robust kernel:
SBL::GT::Lazy exact predicates kernel for frechet mean. See Sec. 6.3.4.

6.4 Experiments

6.4.1 Overview

Our experiments target three aspects, namely (i) robustness, (ii), comparison of the Fréchet mean against
the classical circular mean, and (iii) computational complexity. Practically, three sets of angles are used.
(Dataset 1) Randomly generated angles. (Dataset 2) So-called dihedral angles χi in proteins, defined by 4
consecutive atoms on the side chains of amino acids. (Recall that a protein is a polymer of amino acids,
and that the 20 natural a.a. differ by their so-called side chains. See Fig. 6.6 for an example.) These
angles are known to be dependent, and correlations between them are key to reduce the dimensionality
of the conformation space of proteins [TWS+10]. Using the Protein Data Bank, we retained 27093 PDB
files with a resolution of 3 angstroms or better. For all polypeptide chains in these files, we computed all
dihedral angles of all standard (20) amino-acids. This results in 240 classes of dihedral angles, containing
from 50,227 to 439,793 observations. (Dataset 3) Also protein dihedral angles, but from a so-called rotamer
library [SDJ11]. Rotamers (rotational isomers) are preferred conformations adopted by side chains, used to
characterize protein conformations.

Note that in all cases, angles being given with finite precision (they are derived from experimentally
determined atomic coordinates), they are treated as rational numbers.

6.4.2 Robustness

Using our robust interval-based implementation, we count the fraction of cases for which at least one predicate
triggers refinement during an execution. We use sets of n ∈ [10, 1000] angles generated uniformly at random
in [0, 2π), and perform 1000 repeats for each value of n (SI Fig. 6.4). For large values of p, whenever
n > 1000, all executions require interval refinement. Even for p = 2 and n = 105, refinement is triggered in
1.3% of the cases. In all the cases where refinement was triggered, doubling the precision was sufficient to
solve the predicate.

6.4.3 Fréchet mean

Fréchet mean versus circular mean. A classical way to estimate the circular mean of a set of angles is
the resultant or circular mean, defined as follows [MJ09]:

θ = atan2(
∑
i

sin θi/n,
∑
i

cos θi/n). (6.14)
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Figure 6.4 Fraction of program runs for which at least one predicate execution triggers refine-
ment, as a function of n and p. The number of repeats for each value of n is 1000.

The circular mean does not minimize Fp, but minimizes instead [JS01, Section 1.3]:

θ = arg min
∑

i=1,...,n

d(θi, θ), with d(α, β) = 1− cos(α− β). (6.15)

Given a set of angles, we compare the variance of these angles with respect to the Fréchet mean θ∗ and the
circular mean θ, respectively. Two datasets were used for such experiments: first, randomly generated sets
of n = 30 angles uniformly at random in [0, 2π), with 1000 repeats; second, the aforementioned dihedral
angles in protein structures.

For both types of data, the variance obtained for θ is significantly larger than that obtained for θ∗,
typically up to 25% (Fig. 6.5). This shows the interest of using θ∗ in data analysis in general, and to center
angles prior to principal components analysis in particular.

6.4.4 Computation time and complexity

The complexity of Algorithm 7 (Theorem. 6.1) has three main components: the sorting step, the updates
of vectors B and C, and the numerics. We wish in particular to determine whether the n log n sorting term
dominates.

For p ∈ {2, 5, 10, 15}, we use sets of n ∈ [103, 105] angles generated uniformly at random in [0, 2π), and
perform 5 repeats for each value of n. For p = 2, the number of angles is pushed up to n = 107, with the
same number of repeats. In any case, a linear complexity is practically observed (SI Fig. 6.8) showing that
for the values of n used, the constants associated with the linear time update of the data structures and the
numerics take over the n log n term of the sorting step.

6.4.5 Application to clustering on the flat torus

Rotamers characterize the geometry of protein side chains (Sec. 6.4.1). State of the art rotameric libraries
treat the dihedral angles independently [SDJ11]. For the a.a. lysine (LYS), (Fig. 6.6(Inset)), four angles
and 3 canonical values for each yield 34 = 81 rotamers.

We undertake the problem of clustering side chains conformations using k-means++ [AV07]. While k-
means is a classical clustering method, the problem solved is non convex and inferring the right number of
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Figure 6.5 Variance of angles with respect to the Fréchet mean θ∗ and the circular average
θ. (Left) Comparison using a simulated set with n = 30 angles at random in [0, 2π), with 1000 repeats.
(Right) Comparison for the 243 classes dihedral angles in protein structures–see text. (Both panels) In
red y = x and y = 5/4x.

Simulated data Torsion angles from protein structural data

clusters is always problematic [CMTW19]. One way to mitigate this difficulty consists of tracking an elbow
in the plot of the k-means functional [Ng12]. Using the lysine (LYS) a.a. as example, we work directly on
the 4D flat torus (S1)4, and center the data within a cluster using our Fréchet algorithm. Varying the value
of k shows a sharp decline of the k-means++ criterion circa k = 40, and then a gradual straightening of the
average squared distance (Fig. 6.6). Working directly on the flat torus therefore makes it possible to capture
correlations between individual dihedral angles. The application to a significant reduction (factor of two or
so) of rotamers will be reported elsewhere.

6.5 Outlook

The Fréchet mean and the p-mean are of central importance as zero dimensional statistical summaries of
data which do not live in Euclidean spaces. For the particular case of S1, this paper develops the first
robust algorithm computing the p-mean. Our algorithm is effective for large number of angular values and
large values of p as well, yet, robustness requires predicates and constructions using interval multiprecision
arithmetic. For the particular case of the Fréchet mean (p = 2), we show that the circular mean should not
be used for a substitute to the circular center of mass, as it results in a significantly larger variance.

We foresee two main developments. Application-wise, our results on protein side chain conformations
hint at a significant reduction (factor of two or so) of rotamers, which should prove instrumental to foster
the diversity of conformational explorations. Also, our centering procedure will help generalizing principal
components analysis (PCA) on the flat torus. In theoretical realm, our strategy may be used both to study
the intrinsic difficulty of computing p-means (in terms of lower bounds), and to design effective algorithms.
Indeed, as evidenced by the S1 case, the combinatorial structure defined by the cut-loci of the points
determines all key properties. A first case would be that of p-means on the unit sphere, for which there exist
efficient algorithms to maintain arrangements of circles.
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Figure 6.6 k-means++ using Fréchet mean as center performed on 4-dimensional flat torus
coding the conformational space of the side chain of the Lysine amino acid. x-axis: number of
clusters k. y-axis: average squared distance to the closest cluster center.

χ1

χ2

χ3

χ4

LY S

Side chain and the four
dihedral angles χi

6.6 Supporting information

6.6.1 Algorithm

Figure 6.7 An interval where Fp has an algebraic expression and F
′

p(θ) = 0. Illustration of Fp, F
′

p, F
′′

p

for p = 2 and three angles Θ0 = {θ1 = 1, θ2 = 2, θ3 = 3}. Color conventions as in Fig. 6.1. In this case,
F ′2(θ2) = 0, which must be numerically ascertained to ensure the correctness of the algorithm.

n = 3, p = 2 n = 3, p = 2
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Algorithm 8 Update root(Sign): Updates the Root remains buffer in main algorithm(Algo. 7)

1: Sign ∈{positive,negative,null} // Sign of the derivative used to update the presence of roots on (αj , αj+1)
2: Root remains ← true // flag indicating whether a root must be sought on (αj , αj+1)
3: if Sign is negative then
4: Root remains ← true
5: else if Sign is positive then
6: Root remains ← false
7: else if Sign is null then
8: Root remains ← false

Algorithm 9 Find root(αi−1, αi): generic algorithm for p > 5

1: αi−1, αi: the left and right endpoints of the initial interval
2: τ : Threshold to stop binary search if interval is small enough
3: c: Center of interval g
4: θl ← αi−1, θr ← αi // Interval being bisected
5: while Interval too wide(θl, θr) do
6: c← θl + (θr − θl)/2
7: S ← Sign(F

′
p(c))

8: if S is positive then
9: θr ← c

10: else if S is negative then
11: θl ← c
12: else if S is null then
13: θr ← c
14: θl ← c
15: θc ← θl + (θr − θl)/2

6.6.2 Results

Figure 6.8 Fréchet mean: computation time depending as a function of n and p. The samples
of size n are generated at random angles at random in [0, 2π). (Left) The red line joins 0, 0 to the average
time of the largest point sets(nmax = 10e7). (Right) Each color corresponds to a value of p ∈ {2, 5, 10, 15}.

p = 2, nmax = 10e7 p ∈ {2, 5, 10, 15}, nmax = 10e5

135



136



Chapter 7

Outlook

Current contributions. Despite the advent of deep learning methods [JEP+21, BDA+21], the sampling
of unstructured or highly flexible regions is still an open problem as the data based nature of such methods
biases them toward available structural data, made mainly of structured regions.

This work aims to answer this problem through a method avoiding data based solutions.

With this purpose the goal was to design a local move set that would take a conformation and return a
modified one in order to iteratively explore conformation space in a Monte Carlo like algorithm.

Considering the sensitivity to variations of internal coordinates in force fields used in computational
structural biology, it is necessary when designing such a move set to aim at impacting primarily the softer
dihedral angles. As surveyed in chapter 2, many models and algorithms have been developed on the subject.

Considering the bias towards (meta-)stables states found in Protein data bank structures, and the po-
tential under representation of transient regions, the importance of using (Tripeptide Loop Closure) TLC
like methods to decrease the said bias becomes apparent.

This motivated for us the use of TLC as a building block to sample loop conformations. In chapter 3 we
produced improved necessary conditions for TLC to yield solutions depending on the legs’ positions and the
internal coordinate constraints.

Having analyzed the output of TLC, in chapter 4, and showing its potential to yield a significant con-
formational diversity, the next step was to implement it in a more general protein loop conformational
exploration method.

In order to do so the necessity for the use of multiprecision during the analysis of TLC output was
considered, and a robust open source implementation was developed. It is available in the Structural Bioin-
formatics Library, and, together with the necessary conditions for TLC to have solutions, it is used in the
generation of conformation of protein loops in chapter 5.

This yielded an efficient method generating diverse conformations tested on loops of up to 30 amino
acids.

Our sampler can already be applied to generate very diverse ensembles of conformations to investigate
systems with highly flexible regions.

These conformations thus generated however do not yet consider the side chains of each residue in the
loops. This motivated the final contribution presented in this thesis, the first building block to produce
a clustering of side chain angular configuration space was produced in the form of an efficient and robust
algorithm to compute the Fréchet mean.

Future work and potential impact Despite the tightness of the necessary conditions presented in
chapter 3, we have left the problem of improving the tightness of our constraints (notably using their
iterated versions) as a partially open problem.

The convergence of this iterative algorithm and the design of an efficient algorithm could constitute a
future contribution.
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If so it would be immediately translated into more efficient versions of our chapter 5 loop-sampling
algorithms as it would bring the constraint validity space V closer to the solution space S.

A second improvement could be applied to the two step version of our algorithm MLSNV ;NOR
One—All;NES

, it
could be easily improved to be compatible with any loop size and not only loops dividable in tripeptides.

On top of this improvement, variations in internal coordinates could be considered and sampled simul-
taneously as the current degrees of freedom, starting with ω angle variations.

If this improved version is combined with a side chain sampling method this would yield a potentially
and efficient application generating complete conformation and benefiting from the already diverse backbone
conformation output.

Once this method is produced it could potentially be used to obtain reliable approximations for various
thermodynamic/kinetic quantities.

To accomplish this it would be necessary to ensure that exploration methods produced this way are
suitable to sample NVE and/or NVT ensembles.

The connexion with polytope volume calculations is a strong hint that this may indeed be the case, and
that sampling micro-canonical ensembles may be possible.

This could lead further down the line to a response to one of the main endeavors of computational
structural biology, making predictions of observables either structural, thermodynamic, or kinetic.

In any case such a method should at least be a useful tool to further the understanding of the dynamics
of biomolecules.
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[CS04] Juan Cortés and Thierry Siméon. Sampling-based motion planning under kinematic loop-
closure constraints. In Algorithmic Foundations of Robotics VI, pages 75–90. Springer, 2004.

[CSJD04] Evangelos A Coutsias, Chaok Seok, Matthew P Jacobson, and Ken A Dill. A kinematic view
of loop closure. Journal of computational chemistry, 25(4):510–528, 2004.
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[PYB+12] Andreas Prlić, Andrew Yates, Spencer E Bliven, Peter W Rose, Julius Jacobsen, Peter V
Troshin, Mark Chapman, Jianjiong Gao, Chuan Hock Koh, Sylvain Foisy, et al. Biojava: an
open-source framework for bioinformatics in 2012. Bioinformatics, 28(20):2693–2695, 2012.

[QH09] Guoying Qi and Steven Hayward. Database of ligand-induced domain movements in enzymes.
BMC structural biology, 9(1):1–9, 2009.

[QZC+02] Ying Qi, Runxiang Zhao, Hongxi Cao, Xingwei Sui, Sanford B Krantz, and Z Joe Zhao. Pu-
rification and characterization of protein tyrosine phosphatase ptp-meg2. Journal of cellular
biochemistry, 86(1):79–89, 2002.

[Ram63] Gopalasamudram Narayana Ramachandran. Stereochemistry of polypeptide chain configura-
tions. J. Mol. Biol., 7:95–99, 1963.

[RP21] Kiersten M Ruff and Rohit V Pappu. Alphafold and implications for intrinsically disordered
proteins. Journal of Molecular Biology, 433(20):167208, 2021.

[RR90] Madhusudan Raghavan and Bernard Roth. Kinematic analysis of the 6r manipulator of general
geometry. In International symposium on robotics research, pages 314–320. Citeseer, 1990.

[Sax79] James B Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard. In Proc. of
17th Allerton Conference in Communications, Control and Computing, Monticello, IL, pages
480–489, 1979.

[SBMVC21] M. Simsir, I. Broutin, I. Mus-Veteau, and F. Cazals. Studying dynamics without explicit
dynamics: a structure-based study of the export mechanism by AcrB. Proteins: structure,
function, and bioinformatics, 89:259–275, 2021.

[SDJ11] Maxim V Shapovalov and Roland L Dunbrack Jr. A smoothed backbone-dependent rotamer
library for proteins derived from adaptive kernel density estimates and regressions. Structure,
19(6):844–858, 2011.

[SK08] Colin A Smith and Tanja Kortemme. Backrub-like backbone simulation recapitulates natu-
ral protein conformational variability and improves mutant side-chain prediction. Journal of
molecular biology, 380(4):742–756, 2008.

[SK12] Amarda Shehu and Lydia E Kavraki. Modeling structures and motions of loops in protein
molecules. Entropy, 14(2):252–290, 2012.

[SK13] Amelie Stein and Tanja Kortemme. Improvements to robotics-inspired conformational sampling
in rosetta. PloS one, 8(5):e63090, 2013.

[SMLL+10] D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P. Eastwood, J. A.
Bank, J. M. Jumper, J. K. Salmon, Y. Shan, and W. Wriggers. Atomic-level characterization
of the structural dynamics of proteins. Science, 330(6002):341–346, 2010.

[STH08] D. Sheppard, R. Terrell, and G. Henkelman. Optimization methods for finding minimum energy
paths. The Journal of chemical physics, 128(13):134106, 2008.

[STM+77] ROSEMARIE Swanson, BENES L Trus, NEIL Mandel, GRETCHEN Mandel, OLGA B Kallai,
and RICHARD E Dickerson. Tuna cytochrome c at 2.0 a resolution. i. ferricytochrome structure
analysis. Journal of Biological Chemistry, 252(2):759–775, 1977.

[SW+05] Andrew J Sommese, Charles W Wampler, et al. The Numerical solution of systems of polyno-
mials arising in engineering and science. World Scientific, 2005.

147



[SXK+13] A. Schmidt, H. Xu, A. Khan, T. O’Donnell, S. Khurana, L. King, J. Manischewitz, H. Golding,
P. Suphaphiphat, A. Carfi, E. Settembre, P. Dormitzer, T. Kepler, R. Zhang, A. Moody,
B. Haynes, H-X. Liao, D. Shaw, and S. Harrison. Preconfiguration of the antigen-binding
site during affinity maturation of a broadly neutralizing influenza virus antibody. PNAS,
110(1):264–269, 2013.

[TRVD16] Clare-Louise Towse, Steven J Rysavy, Ivan M Vulovic, and Valerie Daggett. New dynamic
rotamer libraries: data-driven analysis of side-chain conformational propensities. Structure,
24(1):187–199, 2016.

[TWS+10] D. Ting, G. Wang, M. Shapovalov, R. Mitra, M.I. Jordan, and R. Dunbrack. Neighbor-
dependent ramachandran probability distributions of amino acids developed from a hierarchical
dirichlet process model. PLoS Comput Biol, 6(4):e1000763, 2010.

[UJ03] Jakob P Ulmschneider and William L Jorgensen. Monte Carlo backbone sampling for polypep-
tides with variable bond angles and dihedral angles using concerted rotations and a gaussian
bias. The Journal of chemical physics, 118(9):4261–4271, 2003.

[Uve13] Vladimir N Uversky. Unusual biophysics of intrinsically disordered proteins. Biochimica et
Biophysica Acta (BBA)-Proteins and Proteomics, 1834(5):932–951, 2013.

[Wal03] D. J. Wales. Energy Landscapes. Cambridge University Press, 2003.

[WMP14] Lee-Ping Wang, Todd J Martinez, and Vijay S Pande. Building force fields: an automatic,
systematic, and reproducible approach. The journal of physical chemistry letters, 5(11):1885–
1891, 2014.
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