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RÉSUMÉ

Contexte et enjeux industriels

Les fournisseurs d’énergie comme EDF font face à de nombreux nouveaux défis du fait
des nombreuses transformations qu’a connu le marché de l’électricité français ces dernières
années.

D’une part, en accord avec les régulations européennes concernant le marché de l’énergie,
le marché de l’électricité français est ouvert à la concurrence depuis 2007. Cette ouverture
concerne à la fois les clients résidentiels et non résidentiels. Cela a conduit à l’apparition
de fournisseurs d’énergie alternatifs qui se sont positionnés sur ce marché et ont lancé de
nombreuses offres de fourniture et des services concurrentiels. Cette concurrence amène
de nouveaux défis pour les fournisseurs historiques en Europe tels qu’EDF.

D’autre part, EDF se doit d’innover au vu des transformations sociétales récentes liées
au déploiement des compteurs communicants Linky, à l’essort des véhicules électriques,
au besoin croissant de décarboner les consommations énergétiques ainsi qu’aux transfor-
mations digitales notamment liées à la relation client.

Avec plus de 35 millions de clients, à la fois particuliers et non résidentiels (industries,
collectivités, etc.), EDF est le premier fournisseur d’électricité en France. Pour toutes ces
catégories de clients, EDF souhaite fournir et développer de nouvelles offres de marché
innovantes et des services en lien avec la fourniture d’énergie. Pour ce faire, EDF développe
des services individualisés pour les besoins de ses clients à l’aide de leurs données et de
méthodes d’apprentissage statistique.

Cependant, dans un contexte concurrentiel accru, où EDF souhaite conserver ses
clients historiques et gagner de nouvelles part de marché (par exemple pour des offres
d’autoconsommation ou des offres de fourniture pour les véhicules électriques), le besoin
de développer des modèles statistiques performants est croissant.

Ces dernières années, il y a eu un essort de l’usage des méthodes d’apprentissage
profond et d’apprentissage statistique. Le principal écueil de ces modèles statistiques
repose sur le besoin de large volumes de données en vue de leur apprentissage. Cela pose
problème pour de nombreuses raisons, parmi lesquelles :
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Résumé

— Pour de nouveaux clients, l’historique de données disponibles est souvent très court,
voire inexistant. Cela peut poser problème lors de l’apprentissage de modèles statis-
tiques du fait du manque d’information disponible.

— Les entreprises ayant recourt à la collecte de données à caractère personnel doivent
être en conformité avec le Réglement Général sur la Protection des Données (RGPD,
pour plus d’informations, se référer à European Commission (2016)). Cela a un
impact sur la collecte et la durée de conservation de données à caractère personnel à
plusieurs égards. Par exemple, un client peut consentir à la collecte de ses données
de courbes de charge soit au pas demi-horaire soit au pas journalier. Cela influe sur
la volumétrie des données collectées. Il est aussi important de noter que les données
de consommation collectées ont une durée de conservation limitée. Un non respect
du RGPD est passible de poursuites judiciaires.

— Du fait de sa position en tant qu’opérateur historique sur les marché de l’électricité,
EDF n’a pas le droit d’utiliser les données de ses clients au Tarif Réglementé de
Vente (offre historique de fourniture) pour construire des offres de marché. Cela
constituerait un abus de position dominante et est aussi passible de poursuites
judiciaires.

— Certains comportements de consommation d’électricité restent sous-représentés parmi
les clients français: par exemple, la possession d’un climatiseur reste mineure.

— Il existe d’autres situations dans lesquelles un manque de données ’client’ peut
apparaître: c’est le cas notamment lors de l’emménagement d’un client. En effet,
la collecte des données n’est pas immédiate et est effective plusieurs jours après
l’emménagemen, ce qui complique l’usage éventuel de l’historique de données.

Pour toutes ces raisons, l’approche bayésienne semble être une alternative intéres-
sante pour pallier le manque de données. Le paradigme bayésien établit que lors de
l’apprentissage d’un modèle statistique, toute l’information ne provient pas des données à
dispostion. La connaissance a priori, obtenue indépendamment des observations, est inté-
grée au modèle au travers de l’usage de lois de probabilités sur les paramètres du modèle.
L’information a priori résume l’information à disposition avant apprentissage du modèle
sur les observations. L’estimation repose sur la loi a posteriori i.e. la loi des paramètres
sachant les observations. Au travers de cette loi a posteriori, il est possible de récupérer
des estimations ponctuelles, des intervalles de crédibilité et les lois prédictives a posteriori
de nouvelles observations.
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Résumé

Dans cette thèse, nous nous concentrons sur les méthodes d’apprentissage statistique
combinant approche bayésienne et apprentissage profond dans le but d’estimer et de
prédire les consommations individuelles de clients ayant une petite volumétrie de données
disponible. L’idée essentielle est d’utiliser la connaissance issue de clients avec un plus large
volume de données et de la transférer à de nouveaux clients en situation d’historique court.

Données de consommation individuelle
Dans ce manuscrit, nous utilisons principalement des données comme décrites ci-

dessous :

— Les courbes de charges individuelles : les séries temporelles de consommation, col-
lectées au pas demi-horaire ou journalier.

— Les informations de facturation : par exemple, les ratios de consommations heures
pleines heures creuses pour les clients non résidentiels

— Les caractéristiques du foyer des clients résidentiels (e.g. la possession d’un système
de chauffage électrique)

— La température collectée à la station météolorogique la plus proche des clients con-
sidérés, aux même dates et pas de temps que les courbes de charge.

Modélisation
On note X la courbe de charge individuelle pour un client donné et V les variables

explicatives disponibles. La plupart des services liés à la consommation fournis par EDF
reposent sur l’estimation de la courbe de charge individuelle X à l’aide des variables V
et d’une modèle de régression de ce type :

X = f(V )

Dans cette thèse, nous présentons des méthodologies fondées sur l’utilisation de méth-
odes bayésienne combinées à du deep learning pour estimer la fonction de régression f .

Les méthodologies développées sont appliquées à des données réelles afin de répondre
à des probématiques industrielles spécifiques pour EDF.

Dans ce manuscrit, nous mélons l’approche bayésienne et le deep learning de deux
façons:
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Résumé

— Au travers de l’usage de réseaux de neurones bayésiens, qui sont des réseaux de
neurones pour lesquels des lois a priori sont placées sur les poids des réseaux.

— Dans une modélisation en deux parties, où le deep learning est utilisé d’abord pour la
réduction de dimension avant clustering. Puis la modélisation bayésienne est utilisée
sur les clusters construits (cette fois-ci avec des modèles qui ne sont pas des réseaux
de neurones).

Organisation du manuscrit
Nous présentons ci-dessous brièvement les différents chapitres constituant ce manuscrit.

Le dernier chapitre de cette thèse est dédié à la conclusion générale de ces travaux et aux
perspectives pouvant en résulter.

Chapitre 2 : Méthodologie d’estimation d’un modèle de régres-
sion à plusieurs sorties en grande dimension

Dans le Chapitre 2, nous présentons une méthodologie pour l’estimation d’un modèle
de régression à plusieurs sorties dit "multi-target" en grande dimension. Cette méthodolo-
gie est appliquée au Chapitre 3 à la problématique d’estimation et de prédiction de courbes
de charges électriques annuelles au pas demi-horaire de clients non résidentiels.

Trois stratégies de modélisation sont décrites, dont deux reposent sur la réduction de
dimension par un modèle de deep learning. La première stratégie repose sur l’estimation
directe du modèle de régression "multi-target" en grande dimension. Pour la deuxième
stratégie, après réduction de la dimension, le modèle est estimé dans l’espace en dimension
réduite (aussi appelé espace latent). La troisième stratégie, quant à elle, diffère de la
deuxième parce qu’elle a recourt à de la reconstruction. Si la méthode de réduction de la
dimension le permet, après estimation du modèle dans l’espace latent, la reconstruction
permet d’obtenir une estimation dans l’espace en grande dimension initial.

Selon la stratégie considérée, le modèle de régression "multi-target" est estimé soit
avec des réseaux de neurones profonds, des réseaux de neurones bayésiens ou des "deep
Gaussian processes".

Nous décrivons deux façons de prédire la courbe d’un nouveau client, après estimation
du modèle de régression. Les modèles bayésiens, que sont que les réseaux de neurones
bayésiens et les "deep Gaussian processes", permettent de construire des intervalles de
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prédictions à partir de la loi a posteriori. Les intervalles de prédiction sont construits
suivant les deux méthodes de prédiction décrites.

Chapitre 3 : Application de la méthodologie pour l’estimation
d’un modèle de régression multi-target regression : cas de la pré-
diction de courbes de charge individuelles de clients non residen-
tiels

Le Chapitre 3 est dédié à l’application de la méthodologie présentée au Chapitre 2.
Le cas d’usage industriel est lié à la prédiction de courbes de charge individuelles

de clients non résidentiels. Pour ce faire, nous souhaitons n’utiliser que les informations
de facturation des clients à disposition pour estimer et prédire les séries temporelles de
consommations de nouveaux clients.

Les trois stratégies de modélisation présentées dans le Chapitre 2 sont adaptées ici à
des données réelles.

Le jeu de données considéré contient deux sous catégories de clients non résidentiels.
Elles consistent en des PME et de grands sites industriels. Les PME sont sous-représentées
dans le jeu de données. Les deux sous-populations partagent à la fois des similarités en
termes de forme de courbe de charge, mais des différences subsistent notamment sur leurs
plages d’heures creuses. Pour tenir compte à la fois des similarités et des différences, nous
utilisons du "fine-tuning" pour l’apprentissage des modèles et évaluons son effet sur leurs
performances.

Deux contraintes industrielles sont intégrées à cette étude :

— La courbe de charge prédite doit appartenir à un catalogue de courbes de charge de
clients existants.

— Les consommations pendant les heures d’ensolleilemment sont mises en exergue,
car cette application industrielle est liée à la problématique du dimensionnement
d’installation photo-voltaïque de clients non résidentiels.

Les performances prédictives obtenues avec les trois stratégies sont comparées et nous
regardons également les intervalles de prédiction issus des lois a posteriori des modèles
bayésiens.
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Chapitre 4 : Apprentissage par transfert bayésien pour des don-
nées de panel

Dans le Chapitre 4, nous introduisons une méthodologie d’apprentissage par transfert
bayésien adaptée des travaux de Launay et al. (2015), pour le cas des données de panel.

Nous souhaitons transférer l’information à un nouvel individu en situation d’historique
court, à partir de ce qui a été appris sur un panel comprenant plusieurs individus avec un
historique de données long.

La méthodologie se décline en deux étapes. D’abord, un modèle hiérarchique bayésien
est appris, avec des lois a priori faiblement informatives, sur des données de panel avec
un historique long. Les hyperparamètres du modèle représentent le comportement global
du panel. Ce sont les lois a posteriori de ces hyperparamètres qui nous intéressent, car
nous souhaitons transférer l’information contenue dans leurs lois a posteriori à un modèle
adapté pour un nouvel individu. Plus précisément, nous récupérons les moyennes et ma-
trices de variance-covariance a posterori et les intégrons dans les lois a priori du modèle
bayésien du nouvel individu.

Cette approche informative constitue la seconde étape de la méthodologie. Des lois
normales sont utilisées comme loi a priori pour les paramètres du nouveau modèle, et
l’information est transférée via les moyennes et covariance de ces lois a priori. Des hy-
perparamètres modélisant la similarité entre le nouvel individu et le panel initial sont
intégrées aux lois a priori. Ces hyperparamètres permettent de tenir compte de la simi-
larité ou des différences éventuelles entre le nouvel individu et le panel.

La méthodologie est évaluée sur des données simulées, issues de Launay et al. (2015).
Nous appliquons la méthodologie à trois situations : la régression polynomiale, le modèle
autorégressif et le modèle de Poisson hiérarchique.

Chapitre 5 : Application de l’apprentissage par transfert bayésien
à la prévision de consommation à la fin du mois pour des clients
residentiels

Le Chapitre 5 est dédié à l’application de l’apprentissage par transfert bayésien, décrite
au Chapitre 4, à des données réelles.

Nous traitons un cas d’usage industriel sur la prévision de la consommation à la fin du
mois pour des clients résidentiels. Dans ce chapitre, la méthodologie et les modèles sont
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testés sur un sous ensemble du jeux de données issu de la CER Commission for Energy
Regulation (2012). La construction de ce sous ensemble fait l’objet du Chapitre 6.

Le but est de transférer l’information apprise sur des clients avec un long historique
de consommation à des clients avec un historique court.

Pour l’approche faiblement informative, nous estimons deux modèles sur un panel de
clients, dont on dispose pour chacun d’une courbe de charge de longueur 365 jours. Les
variables explicatives intégrées aux deux modèles sont : la température extérieure enreg-
istrée au jour t, t = 1, . . . , T , une variable binaire indiquant la présence d’un chauffage
électrique pour l’individu i du panel, une variable binaire indiquant la présence d’un
système d’eau chaude sanitaire électrique pour le foyer i, i = 1, . . . , n. Le second mod-
èle contient une variable supplémentaire : la consommation individuelle du jour précédent
X

(i)
t−1. Les deux modèles ont des hyperparamètres suivant des lois a priori faiblement infor-

matives. Après inférence des modèles, on extrait les moyennes et covariances a posteriori.
Pour l’approche informative, on considère des modèles individuels, contenant les mêmes

variables explicatives, et on transfère l’information des moyennes et covariances a poste-
riori dans les loi a priori normales comme dans le Chapitre 4.

Les modèles sont appris pour l’approche informative en faisant varier la longueur de
l’historique des données des nouveaux clients. Nous obtenons des prévisions pour chaque
consommation à chaque pas de temps de l’horizon considéré. Les prévisions journalières
sont alors sommées pour obtenir une prévision pour la consommation à la fin du mois.

Nous évaluons les performances des modèles en comparant l’approche informative et
son equivalent non informatif (modèle sans transfert). Plusieurs indicateurs sont évalués :
l’erreur entre l’estimation ponctuelle et la vraie valeur de consommation à la fin du mois,
la longueur des intervalles de prédiction et la probabilité que la vraie valeur soit contenue
dans l’intervalle.

Chapitre 6 : Classification de nouveaux clients dans des groupes
homogènes avec du deep learning

Dans le Chapitre 5, nous décrivons une application du transfer learning bayésien à
la prévision de consommation à la fin du mois de clients résidentiels. Nous appliquons
la méthodologie à un sous ensemble du jeu de donnée issu de Commission for Energy
Regulation (2012). Dans le Chapitre 6, nous décrivons la méthodologie développée pour
construire le sous groupe de clients utilisé au Chapitre 5.
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Plusieurs étapes constituent cette méthodologie.
D’abord, des autoencoder profonds sont utilisés pour réduire la dimension de courbes

de charge annuelles. Deux types de couches sont considérées : les couches Dense et les
couches 1D-convolutives. Nous comparons les performances de ces deux types de couches
pour les données considérées en termes d’erreur de reconstruction.

Ensuite, des méthodes de clustering sont appliquées à l’espace latent issu du meilleur
autoencoder. Trois méthodes sont comparées : K-means, la classification ascendante hiérar-
chique et l’algorithme des K-médoïdes. Le nombre de clusters optimal est choisi à l’aide
de différents critères de sélection. La méthode de choix semble être les K-médoïdes de par
sa robustesse aux individus atypiques.

Puis, après construction des classes, nous présentons un modèle de réseau de neurones
à double entrée permettant d’affecter un nouvel individu à une de ces classes. La qualité
d’affectation est évaluée selon plusieurs métriques

Enfin, nous adaptons la méthodologie de prévision de consommation à la fin du mois
du Chapitre 5 pour pallier le problème des individus mal classés dans les clusters. Nous
utilisons les scores de la fonction softmax en sortie du réseau d’affectation pour construire
des probabilités d’appartenance aux différentes classes. Ces probabilités servent à pondérer
les prédictions obtenues pour chaque cluster. On obtient alors un mélange de prédicteurs
et les résultats pour la prévision à la fin du mois associés. Ces résultats sont comparés à
ceux obtenus dans le Chapitre 5, lorsque la prévision est réalisée à cluster fixé.
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Chapter 1

INTRODUCTION

1.1 Context and industrial stakes

In the recent years, the French utility market has undergone several transformations,
that bring new challenges for utility companies such as EDF.

On the one hand, in compliance with EU regulations on energy, the French electricity
market is opened to competition. Both residential and non residential customers are con-
cerned by this opening. This has lead alternative utility companies to emerge and offer
new and competitive services and energy-supply offers. As competition grows, this brings
out new challenges for historical utility companies like EDF.

On the other hand, societal transformations linked with the deployment of smart
meters, electrical vehicles, a need to de-carbonize energy consumptions and digital trans-
formations compel EDF to innovate.

With over 35 million customers, both residential and non residential (e.g. businesses or
regional authorities), EDF is the lead energy provider in France. EDF wishes to provide
innovative and competitive services to its various range of customers. To do so, EDF
develops individual data-driven services tailored to the customer’s needs.

However, in a context of increased competition, where the leader wishes to retain
historical customers and gain new customers (for instance, with solar panel sizing offers,
or electric vehicle supply offers), the need to develop efficient statistical models is growing.

In recent years, there has been an expanding interest in machine learning and deep
learning-based methods. The issue being the large volumetry of data required for the
training of such statistical models. This is a challenging problem for the following reasons:

— For new customers, the volumetry of data is rather small, lacking sometimes de-
pending on the type of data needed. This complicates the use of statistical learning
models.

— Companies collecting personal data need to comply with the General Data Pro-
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tection Regulation (GDPR, see European Commission (2016)). This impacts the
collection and conservation of personal data in several ways. For instance The cus-
tomer can either consent to have its consumption data collected at half-hourly period
or at daily period. This has an impact on the amount of data collected. It is also
worthy to note that the consumption data collected has a duration limitation of
conservation. Failing to comply is liable to prosecution.

— Because of its historical position as a leader in energy supply, EDF must not use the
data of its historical customers to build new supply offers. This would constitute an
abuse of a dominant position and is liable to prosecution.

— Some electrical consumption behaviors remain underrepresented among French cus-
tomers: for instance, the possession of an air conditioning is still minor.

— Other situations may involve a lack of customer data: when a customer moves in a
new location, it takes several days to collect data, making it challenging to exploit
its historical data.

Because of these reasons, the Bayesian approach appears to be an interesting alterna-
tive to cope with the lack of data. The Bayesian paradigm postulates that the information
for training a statistical model does not come solely from the observations available. Prior
information independent from the observations is integrated to the model through the
use of probability distribution set on the parameters. The prior information summarizes
the information available prior to training the model using the data at hand. The estima-
tion relies on the posterior distribution i.e. the distribution of the parameters given the
observations. Through the posterior distribution, we can get point estimates, as well as
credibility intervals and the posterior predictive distribution of new data points.

In this thesis, we focus on mixing Bayesian methods and deep learning to estimate
and forecast the individual consumption of customers with a small volumetry of data.
The main idea is to use information available on customers with longer historical data
and transferring it to new customers with shorter historical data.

1.1.1 Individual consumption data

In this manuscript, we use mostly the following types of individual customer data:

— Individual load curves: the consumption time series at half-hourly period or daily
period, depending on the data collected.
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— Billing information: for instance peak and off peaks hours consumption ratios for
non residential customers.

— Information relative to the customers’ household and behavior for residential cus-
tomers (e.g. the possession of electrical heating systems).

— The temperature collected, near the customers considered, at the same timestep as
the load curves.

1.2 Modeling approaches

Let X denote the individual load curve of any customer and V the available explana-
tory variable. Most consumption based services provided by EDF rely on estimating the
individual load curve from the variable, using a regression model as such:

X = f(V ) (1.1)

In this thesis, we present methodologies based on Bayesian methods combined with deep
learning to estimate the regression function f .

The methodologies developed are applied to real world data for specific industrial
applications for EDF.

The Bayesian approach is mixed with deep learning in the following ways:

— Through the use of Bayesian neural networks, which are neural networks with prior
distribution set on their weights.

— Being a two step approach, deep learning is used for dimensionality reduction prior
to clustering and Bayesian models (not neural networks) are used on the ensuing
clusters.

1.3 Deep learning methods and neural networks

1.3.1 History on deep learning and neural networks

Neural networks, in their earliest form, have been introduced by McCulloch and Pitts
(1943). They are constituted of artificial neurons that are mathematical representations
of a biological neurons. They paved the way for the perceptron of Rosenblatt (1958), a
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linear acyclic neural network, with only one output and fully connected inputs, designed
for pattern recognition.

The perceptron, however, presents a severe limitation: it is only applicable to linear
problems, as highlighted by Minsky and Papert (1969).

The Hopfield network, introduced by Hopfield (1982), allowed for a renewal of interest
for neural networks. Rumelhart et al. (1986) bring out the use of the gradient backpropa-
gation algorithm for training of multilayer perceptrons, first introduced by Werbos (1974).
This algorithm allows to learn nonlinear problems with neural networks.

At the same time, LeCun (1985) independently focuses on the backpropagation algo-
rithm. The algorithm is applied to the case of image recognition by LeCun et al. (1989).
Those are the premises of convolutional neural networks for computer vision, further
developed for handwritten digit recognition in LeCun et al. (1998).

Hornik et al. (1989) demonstrate the capacities of multilayer neural networks as uni-
versal approximators of any continuous function.

Despite those advances, it remained difficult to train multilayered neural networks. In
Hinton et al. (2006), the authors propose an algorithm to alleviate this issue. This is the
beginning of deep learning methods.

With the advent of big data and the increase of computational power with GPUs,
training deep learning models has been facilitated. They have notably been gaining trac-
tion since the paper of Krizhevsky et al. (2012), where convolutional neural networks have
been applied succesfully for the ImageNet competition for image recognition.

Nowadays, deep neural networks are widely used in many domains of application, as
we will see in the following sections.

1.3.2 Deep learning for supervised learning

Supervised learning relates to modeling approaches that map an input into its related
output. Tasks such as regression, binary and multi-class classification are supervised learn-
ing tasks. Nowadays, deep neural networks are widely used to solve supervised learning
tasks. Because of the flexibility of their architectures as well as their scalability to large
datasets, they are well suited for numerous industrial applications.

Deep Neural networks are mostly applied to solve multiclass-classification problems.
In image recognition for instance, Simonyan and Zisserman (2015) use a very deep con-
volutional approach to the classification of images. He et al. (2016) have developed the
ResNet architecture for the purpose of image recognition. Graves et al. (2013) develop a
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deep recurrent method for phoneme recognition. Richard et al. (2019) propose a convolu-
tional DenseNet for the classification of time series. Fawaz et al. (2019) propose a survey
of deep learning approaches for time series classification, among which fully convolutional
neural networks and residual neural networks. Ziat (2017) propose a convolutional and a
reccurent-convolutional approach to the task of classification of time series.

Merkel et al. (2018) apply a deep neural network regression framework to short term
load forecasting of natural gas.

1.3.3 Unsupervised deep learning

Deep neural networks can also be considered for unsupervised learning tasks such as
dimensionality reduction and clustering.

Dimensionality reduction methods based on deep learning can be conducted using
autoencoders. Originally used as a denoising method for noisy data (see for instance
LeCun (1987), Gallinari et al. (1987)), autoencoders are nowadays seen as the Principal
Component Analysis deep learning counterpart. They are able, through the stacking of
hidden layers, to learn and encode nonlinearities of the input data. They are constituted
of two blocks: encoding and decoding. Encoding reduces the dimension of the inputs
into a lower dimensional space, whereas decoding reconstructs from the encoded space
the input into its original dimension. Encoding and decoding are built using multiple
layers, that can be of different kinds such as Fully connected (Dense) layers, convolutional
layers, recurrents layers etc. Goodfellow et al. (2016) give some examples of the variety
of autoencoders architectures. They are effective and flexible tools for dimensionality
reduction and feature representation of high dimensional data. Richard et al. (2020) apply
a 1D convolutional autoencoder-based approach to dimensionality reduction of electrical
load curves. In Kong et al. (2020b), a stacked autoencoder is used to reduce the dimension
of electrical load curve. The Seq2Seq model, developed by Sutskever et al. (2014), applies
a Recurrent encoder-decoder architecture to translation tasks.

Another type of neural network designed for unsupervised learning is Self-Organizing
Maps (SOM), introduced by Kohonen (1995). When feeding input data to SOM, the
algorithm assesses which of the randomly positioned neurons are closest to each data point.
This is done iteratively until the position of the neurons of the network has stabilized.
Because of this structure, SOM are able to learn nonlinear patterns in high dimension.
They may be applied to reduce the dimension of highly dimensional input. This is the
case for instance in Yu et al. (2015), where the authors adapt a SOM-based method for
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dimensionality reduction in the case of risk-based fault detection. The main drawback of
SOM is that they are computationally expensive.

Dimensionality reduction by means of deep models can also be achieved using Deep
Belief Networks (DBN) (see Hinton (2009)). DBN are compositions of multiple hidden
layers made of Restricted Boltzmann Machines (RBM). RBM, introduced by Smolensky
(1986), are generative neural networks for unsupervised learning, that are able to learn
the probability distribution of the input data. The stacking of RBM layers allows to build
DBN. Arsa et al. (2016) propose a DBN model for reducing the dimension of hyperspectral
image in the context of image classification.

Clustering from deep learning methods has also been subject to recent developments.
In image recognition for instance, the FaceNet algorithm developed by Schroff et al. (2015),
is a deep convolutional neural network for facial recognition and clustering. Aljalbout et al.
(2018) introduced a convolutionnal autoencoder-based method for clustering. Min et al.
(2018) provides a survey concerning deep learning approaches for clustering. Notably,
many clustering approaches rely on autoencoders, variational autoencoders or generative
adversarial networks. Suo et al. (2018) proposed a deep belief network and C-means
clustering method for the analysis of brain genes. Wang et al. (2004) propose a SOM
based approach for clustering time series. Fortuin et al. (2019) use a deep learning model
combining a SOM and a Variational autoencoder for the purpose of clustering time series.

Some deep learning approaches combine dimensionality reduction models and clus-
tering. For instance, Madiraju et al. (2018) propose an encoder-decoder based model for
dimensionality reduction for temporal clustering, where the encoder contains 1D convolu-
tions as well as LSTM layers. Similarly, Ma et al. (2019) use a Recurrent encoder-decoder
architecture combined with K-Means clustering for time series data.

1.3.4 Deep learning for time series analysis

Time series analysis is a core topic of this manuscript as data applications in the energy
sector make use of time series such as electrical and natural gas load curves, temperature
recordings, electrical production etc. Time series data are also encountered in many areas
outside of the energy sector. Examples include: in finance for the analysis and forecasting
of stock market indexes, in economics for the analysis of real gross domestic products of
countries, in logistics for the forecasting of road traffic, in ecology for the analysis of the
quantity of chemicals in the atmosphere etc.

Since time series data are ubiquitous in various domains, many approaches have been
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considered. For deep learning methods, classical architectures of neural networks such as
the multilayer perceptron (see Hippert et al. (2001)), are not the most appropriate as they
do not take the temporal dependence into account. Hence, specific architectures have been
developed, in particular for forecasting tasks. Those neural networks are generally referred
to as recurrent neural networks. Among those, the Hopfield neural networks, introduced by
Hopfield (1982) are somehow a precursor of recent recurrent neural networks. In Hopfield
networks, all the neurons are connected to each other and are characterized by their state.
The state of a given neuron at time t depends of its state at the previous instant. Ideally,
they converge towards a state similar to the initial state. Application of Hopfield network
include time series prediction. For instance, Guang (2013) applies a Hopfield network
coupled with wavelet decomposition to predict network traffic.

Recently, Long-Short Term Memory (LSTM) neural networks, introduced by Hochre-
iter and Schmidhuber (1997), have been successfully applied in the domain of speech
recognition (see Graves et al. (2013)). This success is due to the structure of the units
that constitute LSTM neural networks. Those units are names memory cell and allow to
retain the previous information throughout the neural network. They also allow to forget
this information, when it becomes necessary by means of "forget gates" in the memory
cells. LSTM neural networks have also been applied to short term individual residential
load forecasting (see Kong et al. (2017) and Kong et al. (2019)).

Other recent advances on time series analysis using recurrent neural networks include
Gated Recurrent Units (GRU) neural networks introduced by Cho et al. (2014). GRU
neural networks can be seen as an alternative to LSTM neural networks, as they are
designed in a similar manner. In fact, they are constituted of cells, similar to the memory
cells of the LSTM, allowing to keep past information. The cells contain "reset gates" and
"update gates", which enables the networks to store relevant information and filter the
rest. Notably, GRU neural networks have been applied to the forecasting of short term
photovoltaic production by Wang et al. (2018). Tao et al. (2019) apply a GRU-based
convolutional neural network to the forecasting of air pollution.

Another architecture of recurrent neural network is the Echo State Network (ESN),
introduced by Jaeger and Haas (2004). The ESN’s singularity lies in their main hid-
den layer named the reservoir. The reservoir is a dynamic system where the neuron are
sparsely connected to each other. This input of the ESN is connected to the reservoir
in an aleatoric and unalterable way, whereas the output and the reservoir are connected
to each other and the weights of those connections are learned and updated during the
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training of the network. Because of this specific structure, the ESN is able to learn specific
temporal patterns. ESN have been applied by Deihimi and Showkati (2012) to short term
load forecasting of a country. Hu et al. (2020) apply a deep ESN to forecasting annual
energy consumption and wind power generation.

Time series can also be modeled with non recurrent neural networks. Some methods
couple classical approaches such as ARIMA with deep neural networks. Qin et al. (2017)
propose a combined approach between ARIMA and deep belief networks to forecasting the
occurrence of red tides. Triebe et al. (2019) introduce the AR-Net, a neural network that
mimics an autoregressive process, for time series forecasting. Other approaches include the
combination of the wavelet transform and convolutional neural networks to the forecasting
of wind power generation. Lang et al. (2020) develop a 1D convolutional neural network
to short term electricity load forecasting. Merkel et al. (2018) apply non recurrent deep
neural networks to short term load forecasting of natural gas. In recent years, forecasting
high-multidimensional time series has been the subject of numerous competitions such as
the M4 and M5 competitions (see Makridakis et al. (2020) and Makridakis et al. (2022)).
These events allowed for machine learning based methods and hybrid models to be applied
to real world data.

1.4 Bayesian methods

1.4.1 Bayesian statistics

Let X = (X1, . . . , Xn) denote a sample andM = {Pθ, θ ∈ Θ} a parametric model.
Bayesian inference relies on the Bayesian paradigm: not all the information of a statis-

tical model comes from the observations. Specifically, the parameter θ is seen as a random
variable, that follows a certain probability distribution. This differs from the traditional
frequentist statistical point of view where θ is deterministic.

The prior distribution of θ, denoted π(·), reflects the prior information available on
the parameter before inference of the model with the data X.

The data Xi, i = 1, . . . , n are independent conditionally to the parameter θ.
Bayesian inference consists in finding the probability distribution of θ given the obser-

vationsX. This distribution is named the posterior distribution. The posterior is expressed
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using Bayes rule:

π(θ|X) = π(θ)fX(X|θ)∫
Θ π(θ)fX(X|θ)dθ , (1.2)

where fX(X|θ) is the likelihood of the model.
In practice, the denominator of Equation (1.2), does not have an analytical form.

The marginal is estimated using Markov Chain Monte Carlo (MCMC) methods (see for
instance Robert and Casella (2005).

For an extensive presentation on Bayesian methods, refer to Robert et al. (2007)

1.4.2 Bayesian neural networks

Bayesian deep learning is an area of deep learning that focuses on incorporating
Bayesian modeling and inference to deep neural networks.

Since neural networks are parametric models, adopting a Bayesian approach involves
putting prior distribution on the parameters and inference relies on finding the posterior
distribution.

The combination of Bayesian methods and neural networks can be found in literature
as early as the 1990’s Neal (1996) and MacKay et al. (1994). Those methods have gained
renewed interest in the mid 2010’s, some focusing on dropout (Gal and Ghahramani
(2016), Gal et al. (2017), Kendall et al. (2017), Nalisnick et al. (2018)), others on learning
methods for posterior inference (Blundell et al. (2015), Hernàndez-Lobato and Adams
(2015), Kingma and Welling (2014), Kingma et al. (2015), Wen et al. (2018)). Other
aspects of Bayesian neural nets (BNN) are explored such as prior distributions (Nalisnick
((2018), Vladimirova et al. (2019)), and applications of BNN (Kendall and Gal (2017),
Polson et al. (2017)).

Dropout, a regularization technique, has been used to provide uncertainty estimates
with neural networks’ predictions by Gal and Ghahramani (2016). They provide theo-
retical results, showing that the use of dropout in a neural network provides a Bayesian
approximation equivalent to a Gaussian process.

For more details on Bayesian deep learning and inference, see Gal (2016).
Bayesian analysis applied to neural networks has been developed at first for "shallow"

neural networks (with one hidden layer). This is notably the case in MacKay (1992)
and Neal (1995). In a Bayesian setup, the neural networks parameters follow some prior
distribution and the goal is to infer the posterior distribution of those parameters.
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In Neal (1995), the author proposes the Hamiltonian Monte Carlo method to perform
inference of the posterior distribution of the parameters.

Bayesian neural networks, compared to their non Bayesian counterparts, offer several
advantages. Specifically, some drawbacks of regular neural networks include:

— The need of a large sample size for training limits their application to big databases.
On small dataset, neural networks tend to overfit.

— Biases inherently present in databases are not taken into account during training of
neural networks. This has an impact on predictive performances.

— The lack of interpretability of neural network is also a major drawback for many
industrial applications.

— Neural networks do not naturally model uncertainty. This complicates the evaluation
of the level of confidence given to the predictions.

Bayesian neural networks naturally provide uncertainty estimates associated with their
predictions, making them an interesting alternative to regular neural networks.

1.4.3 Posterior approximation

As in non deep learning Bayesian methods, inference relies on finding the posterior
distribution of the parameters given the data. This is a challenging task, as the marginal is
usually intractable. Yet, the posterior distribution is necessary to obtain credible intervals
and predicting new data points.

Methods to find the posterior distribution in Bayesian neural networks are an active
subject of research. Due to the computational cost of Bayesian inference, methods based
on variational inference are often favored over MCMC based methods such as Hamiltonian
Monte Carlo.

Variational based methods are notably used in Blundell et al. (2015), where the pro-
posed learning algorithm (Bayes by Backprop) of Bayesian neural network relies on min-
imization of the evidence lower bound.

Variational inference has the advantage of being scalable to large datasets and high
dimensional parameter spaces.

A further description of the method is given in 2.3.2. For more details on variational
inference, see Blei et al. (2017).
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1.4.4 Issues in Bayesian deep learning

In practice, several limitations remain when sampling from the posterior distribution:

— Bayesian methods are known to be computationally costly and take more tim to
train than their non Bayesian counterparts.

— Traditional MCMC methods are very efficient since they are asymptotically exact.
However, they lack scalability in high dimensional parameter spaces and when the
sample size is large. This complicates their usage in deep learning settings.

— For the posterior approximation in Bayesian neural networks, methods of choice
are usually based on variational inference. They are known to be less precise than
MCMC methods.

— The Bayesian paradigm allows to integrate prior knowledge on the parameters before
inference, through the prior distribution. This is a difficult task due to the nature
of neural networks parameters.

1.5 Thesis organization

This Section is dedicated to the description of the main aspects covered during the
thesis. We provide in the following sections a brief summary for each chapter of this
manuscript. Section 1.5.1 introduces the deep learning-based methodology, presented in
Chapter 2 to tackle multi-target regression problems. An application of the methodology
to the estimation of annual load curves of non residential customers is developed in Chap-
ter 3, this is summarized in Section 1.5.2. Section 1.5.3 describes the methodology further
developed in Chapter 4, where a Bayesian approach for transfer learning of panel data is
shown. In Section 1.5.4, we briefly discuss the subject of Chapter 5, where an application
of this methodology to the case of end-of-month consumption forecasting of a subgroup
of residential customers is developed. Section 1.5.5 summarizes the content of Chapter 6,
containing a deep-learning approach for the construction of the subgroup of residential
customers used in Chapter 5.

The last Chapter of this manuscript is dedicated to the general conclusion and per-
spectives of the work developed herein.
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1.5.1 Methodology of estimation of a multi-target regression
model in high dimension

In Chapter 2, we present a methodology of estimating a multi-target regression model
in high dimension. The methodology is applied in Chapter 3 to the estimation and pre-
diction of annual electrical load curves of non residential customers. Three strategies are
detailed, two of which rely on dimensionality reduction by means of deep learning. The
first strategy relies on the direct estimation of the model in high dimension. For the
second strategy, after dimensionality reduction, the model is estimated in the lower di-
mensional space. The third strategy differs from the second because after the estimation
in low dimension, if the method allows for reconstruction, we can get an estimation in
the original dimensional space. Depending on the strategy considered, the multi-target
regression model is estimated using deep neural networks, Bayesian neural networks or
deep Gaussian processes.

Two possibilities are described to carry out the prediction of a new customer’s curve,
after the estimation of the regression model. The Bayesian methods allow the construction
of prediction intervals ensuing from the posterior distribution. Again, there are two pos-
sibilities for the determination of those prediction intervals, related to the two described
prediction methods.

1.5.2 Application of the methodology of estimation of a multi-
target regression problem: the case of predicting individ-
ual load curves of non residential customers

Chapter 3 is dedicated to the application of the methodology presented in Chapter 2.
The industrial use-case relates to the prediction of individual annual load curves of

non residential customers. The goal is to use only billing information of customers to
estimate and predict the consumption time series of new customers.

The three strategies of estimation presented in Chapter 2 are adapted here to real
world data.

The considered dataset comprises two subgroups of non residential customers. They
consist in small and medium businesses (SMB) and large industrial sites. The SMB cus-
tomers are under represented in the dataset. The two sub-populations share similarities
in terms of shape of load curves but differences such as their peak hour range remain.
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To account for both similarities and differences, we use fine tuning for the training of the
models and assess whether this has an effect on their performances.

Two industrial constraints are integrated to the application:

— The prediction of the load curve of a new customer is taken from a catalog of existing
customers

— An emphasis is put on the consumption during hours of sunlight, because this in-
dustrial application is related to solar-panel sizing of industrial customers.

The three modeling frameworks’ predictive performances are compared. We also in-
vestigate the prediction intervals obtained from the Bayesian posterior distribution.

1.5.3 Bayesian transfer learning for panel data

In Chapter 4, we introduce a methodology of Bayesian transfer learning for panel data,
adapted from the work of Launay et al. (2015).

We aim to transfer information to a new individual with short historical data, from
what has been learned from a panel of several individuals with long historical data.

The methodology consists in a two step approach. Firstly, a Bayesian hierarchical
model is trained, with weakly informative priors, on the panel data with long historical
data. Hyperparameters are set to take into account the general behavior of the panel.
We are interested in the posterior distributions of those hyperparameters, as they contain
the information to be transferred to the new individual. Specifically, we get the posterior
mean and posterior covariances and integrate them to the prior distribution of the pa-
rameters of the model for a new individual. This informative approach is the second step
of the methodology. Gaussian priors are taken for the parameters, and the information is
transferred on the mean and covariances of those priors. Hyperparameters of similarities
are integrated to the Gaussian prior to take into account the potential similarities and
differences between the new individual and the original panel data.

The methodology is evaluated on simulated data, taken from Launay et al. (2015).
Three situations are considered: a polynomial regression, an auto regression and a hier-
achical Poisson model.
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1.5.4 Application of Bayesian transfer for panel data: end of
month electrical consumption forecasting for residential
customers

Chapter 5 is dedicated to the application of Bayesian transfer learning for panel data,
as described in Chapter 4, to real world data.

We focus on the industrial use-case of end-of-month consumption forecasting for new
customers. In this Chapter, the methodology and models are evaluated and assessed on
a specific subset of the CER dataset Commission for Energy Regulation (2012). The
construction of this subset is the object of Chapter 6.

The goal is to transfer information gained on customers with longer historical con-
sumption to customers with a short historical.

For the weakly informative approach, we estimate two models on a panel, where the
historical consumption available for each individual is of 365 days. The explanatory vari-
ables integrated to both models are: the outside temperature recorded for the day t,
t = 1, . . . , T , the binary variable indicating the presence of electric heating for the indi-
vidual i and the binary variable indicating the presence of an electric sanitary hot water
system in the household i, i = 1, . . . , n. The second model has an additional variable,
which is the individual lagged consumption of the previous day X(i)

t−1. Both models have
hyperparameters, where weakly informative priors are taken. after the inference of the
models we extract the posterior mean and covariances.

For the informative approach, we consider individual models, with the same variables
as before, and we transfer the information of the the posterior mean and covariances to
the Gaussian priors as is done in Chapter 4.

We train the models for the informative approach on different length of historical data
and we forecast the values of consumptions at each timestep of the horizon. We then sum
the forecasts to obtain the end-of-month consumption forecasting value.

We evaluate the performances of the models, considering the informative approach
and the uninformative counterpart. Several indicators are examined: the error between
the point estimate and the real value of the end-of-month consumption, the length of
prediction intervals and the coverage probabilities.
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1.5.5 Classifying new customers into homogeneous groups with
deep learning

In Chapter 5, we describe an application of Bayesian transfer learning to forecasting
the end-of-month consumption of residential customers. We apply the methodology to
a subset of the CER data Commission for Energy Regulation (2012). In Chapter 6, we
describe the methodology designed to build the subgroup used in Chapter 5.

The methodology consists in several steps.
Firstly, dimensionality reduction is done on annual load curves at a daily period using

deep autoencoders. We consider two types of layers: Dense and 1D-convolutional layers
and we compare the performances of both types, in terms of error of reconstruction.

Secondly, clustering methods are applied to the latent space from the best autoencoder.
Three methods are compared: K-Means, HAC and K-medoids. The optimal number of
clusters for the three methods is chosen using various criteria. The best method of clus-
tering appears to be K-medoids, as it is more robust to atypical individuals.

Once the clusters have been set up, we describe how to assign a new individual to a
class, using a double input neural network. We evaluate the quality of the model using
different metrics.

Finally, we adapt the methodology of forecasting the end-of-month consumption as
in Chapter 5, to alleviate the issue of missclassified new individuals. We use the softmax
scores of the assignment neural network to build probabilities that an individual belongs
to each of the classes. The probabilities are used to weigh the prediction we obtain for each
class. Therefore, we have a mixture prediction and associated results that we compare to
the results obtained in Chapter 5, for the fixed cluster setting.
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Chapter 2

METHODOLOGY OF ESTIMATION OF A

MULTI-TARGET REGRESSION MODEL IN

HIGH DIMENSION

2.1 Introduction

This chapter and the following are combined into an article under review in Applied
Energy.

Modeling directly a customer’s individual load curve using explanatory variables (e.g.
billing information or household characteristics) amounts to estimating a multi-target
regression model, where the response variable is multi-dimensional:

E((X1, . . . , Xt)|V ) = f(V ).

The outcomes X1, . . . , Xt are dependent from each other, as we are dealing with time
series. The forecast is obtained with the features V , without historical data. This differs
from the classical approach to time series forecasting where:

E(Xt+1, . . . , Xt+s|X1, . . . , Xt) = f(V,X1, . . . , Xt),

the forecasts are obtained using past data.
In this Chapter, we describe a general methodology for multi-target regression and

estimation based on three strategies. We wish to predict X from V , and ideally we would
do so by directly estimating the multi-target regression model. However, due to the high
dimension of X, we propose two different strategies based on dimensionality reduction.
In those strategies, what is modeled is the reduced space of the curves. Afterwards, we
consider several strategies to predict X.
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Multi-target or multi-output regression problems are encountered in many real-world
applications. They have been the subject of tremendous interest in statistical learning,
before the rise of deep learning methods. For instance, Segal and Xiao (2011) propose
multivariate random forests to tackle multiple outcome settings. In chemometrics for in-
stance, Burnham et al. (1999) consider a multivariate latent variable regression framework
in the context of chemical compounds measures. A multi-target regression framework is
proposed by Li et al. (2017) for the prediction of drug efficacy. Aras and Aras (2004)
propose a multi-target framework for forecasting the demand of natural gas. Multi-target
regression can be estimated from statistical models such as Support Vector Regression
(Zhang et al. (2012), Vazquez and Walter (2003)), Gaussian Process (GP) Regression
(Liu et al. (2018), Cai et al. (2020)), Partial Least Square (PLS) Regression (Golmo-
hammadi (2009), Barbon Junior et al. (2020)) etc. Additional examples of multi-output
regression approaches can be found in Borchani et al. (2015). Multi-output regression is
a subfield of multi-task learning, for more information on the subject, refer to Xu et al.
(2019).

Deep learning methods are particularly suited to tackle multi-target regression prob-
lems. Helmiriawan and Al-Ars (2019) propose a deep learning-based approach to tackle
the multi-target regression problem of predictive maintenance in oil refineries. An LSTM-
RNN approach is developed by Sun et al. (2017) for multi-target regression in the context
of speech enhancement. Kong et al. (2020a) propose a deep learning model to tackle zero-
inflated multitarget regression problems, applied to the case of estimating the distribution
of animal species. Narayanan et al. (2021) propose a deep learning model based on the
VGG-16 model (Simonyan and Zisserman (2015)) to tackle the multi-target regression
problem of predicting pasture biomass percentage.

Data in high dimension complicate multi-target learning tasks. To remedy this, it
might be necessary to integrate a dimensionality reduction method prior to the regression
task. In Barbon Junior et al. (2020), a PLS based approach is used for dimensionality
reduction. Deep learning methods can also be considered for dimensionality reduction
prior to regression. A framework proposed by Renganathan et al. (2021) is based on an
encoder-decoder architecture combined with GP-regression, for wind turbines modeling.

Being able to predict and forecast without the availability of historical data is crucial
in some domains. For instance, Driver and Alemi (1995) apply a Bayesian method to
obtain forecasts without historical data, based on expert opinions, to the case of medical
malpractice litigation. In this context, no historical data is available on the patients having
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experienced medical mishap that causes them to take legal action. van Steenbergen and
Mes (2020) focus on forecasting the demand of new products (lacking historical sales data)
and develop a method combining K-Means, Random Forests and Quantile Regression
Forest to do so. Thomassey and Happiette (2007) propose a neural network based approach
hybriding Self-Organizing Maps and Probabilistic neural networks (based on the Naive
Bayes classifier) to estimate the sale profiles of new apparel, for which no historical sales
are available.

The chapter is organized as follows. Section 2.2 specifies the notations used for the
methodology. In Section 2.3, two possibilities are considered to estimate the multi-target
regression model between the load curves and the features: the model is either directly
estimated using neural networks or via an additional step based on dimensionality re-
duction and reconstruction. The model is estimated in the lower dimensional space using
either deep neural networks, Bayesian neural networks and deep Gaussian processes. Fur-
thermore, we show how prediction of a new load curve with known features ensues from
the two strategies. Section 2.4 describes an alternative to predict a new customer’s load
curve by using a catalog of existing customers, as well as the loss function designed to
put an emphasis on certain time periods. In Section 2.5, we describe the construction of
probabilistic prediction intervals using the Bayesian posterior predictive distribution en-
suing from Bayesian neural networks. Section 2.6 is dedicated to conclusion and follow-up
work.

2.2 Notations
Hereinafter, we use the following notations :

• X, V and I denote to the random variables corresponding to the time series (for
instance a load curve as in Chapter 3), the features (predictors) and the reduced
representation of the time series respectively.

• m is the number of individual electrical load curves of length n.

• n is the dimension of X and we have dim(X)� dim(V ).

• The samples X = (Xk)1≤k≤m, V = (Vk)1≤k≤m and I = (Ik)1≤k≤m represent respec-
tively the database of individual load curves, features and reduced load curves.

• Xnew, Vnew refer to the unobserved individual load curve and features of a new
customer to predict.
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2.3 Methodology for estimating a multi-target re-
gression model

In a multitarget regression setting, estimating a model in high dimension is often
challenging due to the high dimensionality of the target (in fact, here the dimension of
the target is much larger than that of the features). Two possibilities are considered to
conduct the estimation. The first relies on the direct estimation of the model whereas the
other depends on a dimensionality reduction intermediate step. The model is estimated
in the reduced space and the estimation in the reduced space is reconstructed, provided
that the dimensionality reduction method allows it. In both cases, neural networks are
suitable candidates for the estimation.

2.3.1 Multitarget nonlinear regression in high dimension (MNR)

Assume dim(X)� dim(V ), the goal is to model the time series X in high dimension
using the features V .

In a multitarget nonlinear regression problem, the best theoretical predictor, in terms
of quadratic error in L2, is the conditional expectation:

E(X|V ) = g(V ), (2.1)

where the function g is unknown. In practice, a modeling step is required to estimate g,
in a parametric or non parametric framework.

Let ĝ be an estimator of g. If a set of features Vnew is known, we predict the load
curve Xnew with:

X̂new = ĝ(Vnew).

The diagram in Figure 2.1 summarizes the different steps of this approach.

Due do the dimension of the problem, neural networks are good candidates to ap-
proximate g (see Goodfellow et al. (2016) for a review on the variety of deep learning
methods). We use neural networks built with dense layers only, which means that each
unit of a given layer is fully connected to each unit of the next layer.
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X and V Nonlinear regression E(X|V ) = g(V )

Estimation ĝ

Predict Xnew with
X̂new = ĝ(Vnew)Vnew

Figure 2.1 – Outline of the MNR framework (Section 2.3.1), blue boxes specify the inputs
(variables) of the models, pink boxes the processes/models, yellow boxes the estimations
and green boxes the predictions.

We approximate g by a neural network with i hidden layers of the following form:

h1 = σ(WT
1 · V + b1), (2.2)

...

hi = σ(WT
i · hi−1 + bi), (2.3)

X = σ(WT
i+1 · hi + bi+1), (2.4)

where hp, 1 ≤ p ≤ i are the outputs of the pth hidden layer of the neural network, Wp

and bp, 1 ≤ p ≤ i + 1 the weights and biaises of the pth layer respectively. The function
σ is the Rectified Linear Unit (ReLU) activation function:

σ(x) = max(0, x), for all x ∈ R (2.5)

Theorem 1 (Universal approximation theorem Pinkus (1999)) Let σ ∈ C(R), a
continuous function, thenM(σ) = {∑r

i=1 ciσ(wiẋ−bi), wi ∈ Rd, ci, bi ∈ R}, for some fixed
r, is dense in C(Rn) for the uniform convergence on a compact, if and only if σ is not a
polynomial.

Remark 1 The ReLU activation function has many advantages compared to other func-
tions such as the Hyperbolic tangent TanH, such as better convergence and computational
efficiency, hence most neural networks used in this study are build with the ReLU function.

The usual loss functions used for training are the root mean squared error or the

37



Chapter 2 – Methodology of estimation of a multi-target regression model in high dimension

MAE, a special case of the error specified in (2.17). We adapt the loss function to give
more emphasis to specific periods of time of the curve. This aspect is further explored in
Chapter 3.

Remark 2 To use neural networks as presented here, all the times series X have to be
on the same time window, without any missing values.

2.3.2 Encoding, nonlinear regression and reconstruction(ENR-
R)

In our regression problem, the dimension of the curves X is much larger than the
dimension of the features V . Estimating a model in such high dimension, even using
neural networks is challenging because of complexity issues, optimization stability and
the necessity of large volumes of data.

It can be beneficial to consider reducing the dimension of the target X prior to esti-
mating them in a reduced space using the features V .

We present here another possibility of estimation of the curves, based on dimensionality
reduction and reconstruction. They are referred to respectively as encoding and decoding.

Firstly, dimensionality reduction is applied to the load curves X.
The next step, after dimensionality reduction, is to model the resulting reduced rep-

resentation I with the nonlinear multi-target regression model:

E(I|V ) = f(V ). (2.6)

Let f̂ be an estimator of f , and for a new customer Vnew, we can predict the load
curve of the new customer in the reduced space :

Înew = f̂(Vnew). (2.7)

Encoding

Several methods exist for dimensionality reduction. Among these models the discrete
wavelet transform is well suited for time series (see for instance Guan et al. (2012), Cugliari
et al. (2016) and Auder et al. (2018)). Neural networks also provide statistical tools
for dimensionality reduction, notably with autoencoders. They can be seen as the deep
learning counterpart of Principal Component Analysis (PCA), because of their ability to
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perform dimensionality reduction (see Hinton and Salakhutdinov (2006)), though unlike
PCA, they can capture nonlinearities in the data.

Autoencoders

Autoencoders have a "diabolo" shape (see Figure 2.2) that takes an input and
aims to reconstruct it through various nonlinear transformations.

X X̂

latent space I

encoding e decoding d

Figure 2.2 – The autoencoder takeX as input and reconstruct it through various nonlinear
operations, notably by reducing the dimension of the input through the encoding phase
and using the reduced space I to obtain the reconstruction X through the decoding phase.
Thus it has the same number of input units as output units.

The autoencoder takes X as input and reconstructs it through various nonlinear
operations, notably by reducing the dimension of the input through the encoding
phase and using the reduced space I to obtain the reconstruction X through the
decoding phase. To summarize, we have:

I = e(X) (2.8)

X = d(I), (2.9)

where e and d are respectively the encoding and decoding functions, that can be
composed of several layers. I is also referred to as the latent or encoded space.

As for the neural networks described in Section 2.3.1, the autoencoder is also
trained using a specific loss function.

Discrete Wavelet Transform

Wavelets have interesting properties, one of which being able to reconstruct the
original signal through the inverse discrete wavelet transform. Hence this allows for
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direct comparison between the autoencoder and the wavelet transform where the
encoding can be seen as a similar process to the discrete wavelet transform and is
used to reduce the dimension of the input data, whereas the decoding and the inverse
discrete wavelet transform use the reduced dimension to reconstruct the original
data. The discrete wavelet transform consists in a hierarchical representation of the
initial signal, for instance time series, all generated through dilation and translation
operations. Considering the time series X(t), it can be expressed as:

X(t) =
∑
j

∑
k∈Z

DWT (j, k)ψjk(t), (2.10)

where DWT (j, k) is the discrete wavelet transform. ψjk(t) is a function dependent
on the mother wavelet Ψ()̇ as such:

ψjk(t) = Ψ(t− k
j

).

The mother wavelet Ψ()̇ is an oscillating L2 function of zero mean.

Example 1 A classical example of the mother wavelet Ψ()̇ is the Haar wavelet:

Ψ(t) =


1 if 0 ≤ t < 1

2

−1 if 1
2 ≤ t < 1

0 otherwise

Thus, the Haar function is defined as:

ψjk(t) = 2j/2Ψ(2j − k), t ∈ R

for j, k ∈ Z.

The developed expression in (2.10) is truncated to estimate a finite number of co-
efficients. The truncated discrete wavelet transform allows to represent the signal
X(t) in a lower dimensional space.

Both methods of dimensionality reduction allow to the reconstruct the time series
using its estimated reduced representation. Reconstruction gives a way of predicting the
load curve.
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Estimation of f

The function f is estimated from the (Ik,Vk)1≤k≤m observations using models such as
neural networks, Bayesian neural networks and deep Gaussian processes.

Residual neural networks

Aside from the neural networks described in Section 2.3.1, some of the models
to estimate f employ more complex architecture, by using skip connections (also
called residual connections) introduced by He et al. (2016).

Skip connections are designed to alleviate the vanishing gradient issue arising
during training of deep neural networks. They allow information to flow through
successive layers by skipping intermediate ones.

Recalling the notations introduced earlier when defining the neural network
model, if we wish to introduce a skip connection between the first layer in (2.2)
and all the i − 2 intermediate layers before the ieth hidden layer, we add the out-
puts h1 and hi−1, and feed them as inputs to the Dense layer in (2.3). This example
of residual connection is depicted in Figure 2.3.

V h1 h2 . . . hi−1 h1 + hi−1 hi X

Figure 2.3 – Diagram of a neural network with a residual connection between the outputs
of the first layer and of the i− 1eth hidden layer, using the notations in (2.2) to (2.3).

Bayesian neural networks

In Bayesian neural networks, the parameters, namely weights and biases, as in
(2.2) and (2.4), follow a prior distribution. Bayesian neural networks, specifically
Bayesian LSTM have been used in the context of load forecasting (see Sun et al.
(2020) and Yang et al. (2020)). However those neural networks are designed to deal
with time series and require historical data to be efficiently trained. As we focus on
estimating a regression model without historical data, LSTM layers are not suitable.
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We apply Bayesian neural networks to estimate the function f defined in (2.6)
using the features V . the Bayesian neural networks used here are built with Dense
layers as we do not apply them directly to the time series but their reduced repre-
sentation.

In a Bayesian neural network, the networks parameters, namely weights and
biases, as introduced in (2.2) and (2.4) follow some probability distribution called
the prior distribution.

Recalling the notations introduced in (2.2) and (2.4), in our Bayesian framework,
the parameters W are stochastic and follow the prior distribution p(W). Generally,
the prior distribution expresses the prior belief one has over the distribution of the
parameters of the model. In a deep neural network setting, it remains complicated
to incorporate prior knowledge to the prior distribution of the network parameters,
hence, the chosen prior for the neural networks weights in our study is the standard
multivariate normal distribution W ∼ N (0, Id), where Id is the identity matrix.
Here the biaises are set to 0.

In Bayesian analysis, the inference relies on finding the posterior distribution,
which is the conditional distribution of the parameters given the observed data.
The posterior distribution we want to approximate is defined using Bayes theorem:

p(W|I, V ) = p(W)p(I|V,W)
p(I|V ) (2.11)

the goal is to find the posterior distribution of the parameters given the observable
data.

The main issue in Bayesian neural networks resides in the approximation of the
posterior due to the large number of parameters and non linearity of deep neural
networks. Another issue is the fact that the likelihood does not have an analytical
form. The normalization constant p(I|V ) is intractable and is approximated using
various methods.

Bayesian neural networks have some benefits over regular neural networks as they
provide uncertainty estimates. Another perk of using Bayesian neural networks is
that they naturally encompass regularization and model selection. We are also able
to build probabilistic prediction intervals using them, this is developed further in
the chapter (see Section 2.5).

deep Gaussian processes
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Gaussian processes (GP) are stochastic processes widely used in machine learning
specifically as prior distributions in the context of regression, in a Bayesian setting.
For an extended review of the use of Gaussian processes in machine learning refer
to Rasmussen and Williams (2006).

Definition 1 A real valued random process (f(V1), . . . , f(Vm)) is a Gaussian pro-
cess if all its finite dimensional distributions (fidi) are Gaussian. The Gaussian
process can be solely defined by its mean µ and its covariance k.

Recalling our problem of nonlinear regression in (2.6), applying the Gaussian
process regression, which is a Bayesian nonparametric method, in that case means
to place a GP prior over the space of regression functions f :

(f(V1), . . . , f(Vm)) ∼ N (0,Σ), where Σi,j = k(Vi,Vj). (2.12)

This Gaussian process is solely defined by its covariance function and we have
k(Vi,Vj) = E((Vi − E(Vi))(Vj − E(Vj))).

We wish to estimate the posterior distribution. However, when using a GP prior,
this requires the inversion of the covariance matrix, the complexity of the problem is
then O(N3), hence making it difficult to use Gaussian processes when the dimension
N is large. To counter this complexity issue, methods have been developped such
as the sparse GP (Titsias (2009), Hensman et al. (2013)), the approximation of the
posterior is found using variational inference.

Remark 3 Many links between Bayesian neural networks and Gaussian processes
have been studied throughout literature (see Neal (1996), and more recently Matthews
et al. (2018) and Novak et al. (2019)).

Deep Gaussian processes, introduced by Damianou and Lawrence (2013), are a
class of deep models, built similarly to a deep neural network, as layers of Gaussian
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process regressions are stacked. An i hidden layers DGP model can be defined as:

h1 = f1(V ) + ε1, (2.13)

h2 = f2(h1) + ε2,

...

hi = fi(hi−1) + εi, (2.14)

X = fi+1(hi) + εi+1, , (2.15)

where f1 ∼ GP (0, k1(V, V )), f2 ∼ GP (0, k2(h1,h1)), fi ∼ GP (0,Σ(ki,hi−1) and
Σ(ki,hi−1) = E((ki − E(ki))(hi−1 − E(hi−1))).

Posterior distribution in DGP can be approximated using sparse methods with
variational inference.

Reconstruction and prediction

Once the regression function f is estimated with either of the methods aforementioned,
we focus on reconstructing a predicted curve using its prediction in the reduced space Înew.

In some cases, the dimensionality reduction method allows for the reconstruction of
the original load curve, back into its initial space, by estimating a function denoted r (d in
the case of the autoencoder). Using an estimation of r and Înew, we are able to reconstruct
a prediction of the load curve of a new customer.

The predicted load curve X̂new of a new customer, is then obtained as:

X̂new = r̂(Înew). (2.16)

This modeling strategy, named ENR-R for Encoding Nonlinear Regression and Re-
construction, differs from the previous approach because of its dependency on a dimen-
sionality reduction method.

Remark 4 If we had used PCA to reduce the dimension of the curves, as it is a linear
transformation, we would have:

E(g(I)|V ) = g(E(i|V ))

. This relation is not true in the case of autoencoders. This is due to error terms in
encoding and decoding.
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X

Dimensionality reduction Reduced load curves
I = (Ik)1≤k≤m

Nonlinear regression
E(I|V ) = f(V )V

Estimation f̂

Predict
Înew = f̂(Vnew)Vnew

Reconstruction

Predict Xnew with
X̂new = r̂(Înew)

Figure 2.4 – Outline of the ENR-R strategy (Section 2.3.2), blue boxes specify the inputs
(variables) of the models, pink boxes the processes/models, yellow boxes the estimations
and green boxes the predictions.

When reducing the dimension of the curve, we loose the initial target and instead have
a new model: where we estimate I (the latent space) using the features V .

Ideally, we would predict the curve X from V directly, and because of the high dimen-
sion of X, we have to consider an alternative.

Our approach has two steps: - first reducing the dimension of X - estimating the model
of I using V

Because, we use autoencoder, as they are nonlinear, at the second step, we have already
lost the optimality, and we focus on estimating the new target I. Afterwards, we focus on
how to get back to the initial space to predict X.
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The diagram in Figure 2.4 details the ENR-R modeling framework.

2.4 Prediction under constraint
An alternative to predicting directly using the estimated models described in Section

2.3 is to conduct the prediction is a limited space.

2.4.1 Prediction in a catalog

For some applications, it can be necessary to seek the prediction of a new individual in
a finite restricted space. This is usual for instance in text generation, where the prediction
is taken from a dictionary of existing words. In Chapter 3, we present an application where
the load curve of a new customer is carried out in a catalog of existing customers. This is
done to integrate an industrial constraint into the application.

Let I denote such a catalog, library or dictionary in a reduced space, obtained from the
catalog in the initial space. For a new individual for which a prediction Înew is available,
to integrate the constraint, we seek its nearest neighbor in the catalog I. I contains m
individuals of dimension q.

We define E a distance on X as such:

E(Y, Ŷ ) =
q∑
i=1

wi|Yi − Ŷi|, (2.17)

where Y and Ŷ are respectively the target and its prediction, both of size q. Here, wi are
weights, allowing to give more or less importance to specific indexes 1 ≤ i ≤ q.

Remark 5 When predicting a time series, it can be interesting to give more or less weight
to certain time periods. This is further developed in Chapter 3.

It is worth noting that, giving the same importance to each time period (i.e. wi = 1
q
,

1 ≤ i ≤ q) amounts to consider the mean absolute error as the error of choice.

Proposition 1 The best prediction of the new individual load curve given the constraint
is Xk̂I

where

k̂I = argmin
1≤k≤m

E(Ik, Înew). (2.18)

Proof:
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• Existence
If we wish to conduct the prediction of the new individual given the constraint, for
each element of the catalog, we calculate:

E(Z, Înew), with Z ∈ I (2.19)

The catalog is finite, thus justifying the existence of a minimal value of E(Z, Înew)
for a certain Z.

• Unicity
If the minimum is not reached in a unique point, we arbitrarily choose the smallest
value of k. �

Remark 6 If a prediction of the complete load curve X̂new is available as in both strategies
in Section 2.3, it is also possible to seek the nearest neighbor in the original catalog of
curves in high dimension X . This is further developed in Chapter 3.

2.4.2 Encoding and nonlinear regression (ENR)

Using Înew, we can find the nearest neighbor’s in the catalog of reduced load curves
and then we predict the load curve with Xk̂I

, where k̂I is defined in (2.18). This approach
is named ENR for Encoding and Nonlinear Regression and represented in Figure 2.5.

The ENR modeling strategy is represented in Figure 2.5.
Specifically, the dimensionality reduction (encoding) step and the nonlinear regression

on the encoded load curve space in (2.6) are the same in both ENR-R and ENR. The
ENR-R framework only differs from the ENR one because instead of directly searching
for the prediction in the catalog of reduced load curves, we first reconstruct the signal
from the predicted load curve in the reduced space and then, we seek the prediction in
the catalog of load curves in the original space as detailed in Section 3.2.2.

2.5 Probabilistic prediction intervals using the Bayesian
posterior predictive distribution

In this section, we construct credible intervals on predicted curves. Assume that
Bayesian neural networks are used for the estimation of the nonlinear regression model
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X

Dimensionality reduction Reduced load curves
I = (Ik)1≤k≤m

Nonlinear regression
E(I|V ) = f(V )V

Estimation f̂

Predict
Înew = f̂(Vnew)Vnew

Predict Xnew with Xk̂I

Eqn. (3.4)

Figure 2.5 – Outline of the ENR research framework (Section 2.4.2), blue boxes specify
the inputs (variables) of the models, pink boxes the processes/models, yellow boxes the
estimations and green boxes the predictions.

in (2.6). In a neural network, the parameters W lack interpretability, the benefit of the
Bayesian approach does not appear through building informative prior. However, this ap-
proach allows to build a predictive distribution and credible intervals. From the posterior
distribution of the parameters, given by:

p(W|I,V) =
exp(−1

2WTW)p(I|W,V)
p(I|V) , (2.20)

Where V = (Vk)1≤k≤m and I = (Ik)1≤k≤m represent respectively the database of
features and reduced load curves. For a new customer defined by its billing information
Vnew, we can make predictions using the posterior predictive distribution.

Proposition 2 The predictive distribution of the reduced load curve Inew can be written
as:

p(Inew|I,V ,Vnew) =
∫
W
p(Inew|W,Vnew)p(W |I,V) dW, (2.21)

where p(Inew|W,Vnew) is the likelihood of the regression model in the latent space.
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Proof: The predictive distribution is the conditional distribution of Inew given I. We have:

p(Inew|I,V ,Vnew) =
∫
W
p(Inew,W |I,Vnew,V) dW,

=
∫
W
p(Inew|W, I,Vnew,V)p(W |I,Vnew,V) dW.

As the features are supposed independent,

p(Inew|W, I,Vnew,V) = p(Inew|W,Vnew)

p(W |I,Vnew,V) is the posterior distribution, it does not depend on Vnew, thus:

p(W |I,Vnew,V) = p(W |I,V).�

We build two typee of probabilistic prediction for the load curve:

1. Prediction by decoding.

The predicted curve is:

Xnew = d̂(Inew), (2.22)

where d̂ is an estimator of the decoding function d of the autoencoder defined in
(2.9).

The predictive distribution of Xnew is obtained through a variable change:

E(h(Xnew)|I,V ,Vnew) =
∫
R
h(d̂(i))p(i|I,V ,Vnew) di, (2.23)

where h is an arbitrary measurable positive function, i ∈ R, and p(i|I,V ,Vnew) is
defined in (2.21).

For fixed time t = 1, . . . , n, we can calculate prediction intervals for Xnew(t) from
the quantiles of the predictive distribution defined in (2.23).

2. Prediction in the catalog.

As described in (3.4), the predicted curve is of the form

Xnew = XkInew
,
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where kInew is a random variable taking value in {1, . . . ,m}. The predictive distri-
bution of kInew is given by

P(kInew = j|I,V ,Vnew) (2.24)

= P(argmin
1≤k≤m

EMAE(Ik, Inew) = j|I,V ,Vnew) (2.25)

=
∫
{i : argmin1≤k≤m EMAE(Ik,i)=j}

p(i|I,V ,Vnew) di.

=: pj

where p(i|I,V ,Vnew) is defined in (2.21). For fixed time t = 1, . . . , n, we can calcu-
late prediction intervals for Xnew(t) from the predictive distribution of kInew .

Let qnewβ be the β-quantiles of the discrete distribution of support {Xj(t), j ∈
{1, . . . ,m}} and probability {pj, j ∈ {1, . . . ,m}}, defined in 2.26.

All intervals of the form [qnewβ (t), qnew1−α+β(t)], with β ∈ [0, α] are intervals of level
1− α.

P(Xnew(t) ∈ [qnewβ (t), qnew1−α+β(t)]|I,V ,Vnew) = 1− α.

We select the shortest interval by taking

βopt = argmin
β∈[0;α]

|qnew1−α+β(t)− qnewβ (t)|

Simulation from the predictive distribution

We apply variational inference to approximate the posterior distribution. One interest-
ing aspect of this method is that is does not necessitate to approximate the normalization
constant p(I, V ) which is intractable in (2.20).

Considering a family of distribution Q, e.g. Gaussian distributions or a product of
Gaussian distributions. Variational methods rely on the minimization of the Kullback-
Leibler divergence between the real posterior distribution in (2.20) and a distribution
q(W) ∈ Q which has an analytical expression. Hence, we seek the optimal q?:

q?(W) = argmin
q(W)∈Q

K(q(W), p(W|I, V )). (2.26)
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The Kullback-Leibler divergence between q(W) and p(W|I, V ) can be expressed as:

K(q(W), p(W|I, V )) = E(log( q(W)
p(W|I, V )))

= E(log(q(W)))− E(log(p(W|I, V )))

= E(log(q(W)))− E(log(p(W, I|V ))) + E(log(p(I|V ))).

Minimizing the Kullback-Leibler divergence, in (2.26), is equivalent to maximizing the
Evidence Lower Bound (ELBO) which is:

L(W) = E(log(p(W, I, V )))− E(log(q(W))). (2.27)

L(W) =
∫
q(W) log(p(I|V,W)) dW−

∫
q(W) log(q(W)

p(W)) dW. (2.28)

The ELBO, defined in (2.28), serves as the loss function for the training of our Bayesian
neural networks. For an exhaustive review on variational inference, see Blei et al. (2017).

The Flipout estimator, introduced by Wen et al. (2018), is then used for the mini-
mization of the negative ELBO.
The algorithm in ?? details the process to obtain the probabilistic prediction intervals.
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Algorithm: Calculate probabilistic prediction intervals
Inputs: sample size J ;
Instructions:
• Sample weights (Wj)1≤j≤J from p(W|I,V)
• Generate (Iposnewj

)1≤j≤I , Iposnewj
∼ p(Inew|(Wj)1≤j≤J , I,V ,Vnew)

if Prediction by decoding then
• decode the realizations Iposnewj

using the autoencoder:

X̂pos
newj

= d̂(Iposnewj
), ∀ j{1, . . . , J}

• For each value of t, t = 1, . . . , n, compute the empirical quantiles of
the sample (X̂pos

newj
(t))j∈{1,...,J}. ;

if Prediction in the catalog then
• calculate the index of the nearest neighbor of Iposnewj

:

kposIj
= argmin

1≤k≤m
E(Ik, Iposnewj

), ∀ j ∈ {1, . . . , J}

• approximate the posterior distribution of pk by taking the empirical distribution
p̂k of sample kposI supported by K ⊂ {1, . . . ,m}, the set of values taken by the
sample (kIj

)j∈{1,...,J} (i.e. the sample of indexes without repetitions);
• For t = 1, . . . , n compute the quantiles of the discrete distribution with support
{Xk(t), k ∈ K} and the probabilities (p̂k)k∈K;

2.6 Conclusion

We show how to estimate a load curve in high dimension from available features. Our
approaches are based on neural networks either for direct estimation, or for dimensionality
reduction and estimation in the reduced space. More generally, we propose three possible
strategies based on deep learning to estimate multi-target regression problems, when the
dependent variable dimension is very large.

The prediction of a new individual, when features are known, is either direct or taken
from a catalog of existing individuals.

Bayesian neural networks, used to estimate the curve in the reduced space, allow to
build probabilistic prediction intervals.

An application of the methodology developed here is described in Chapter 3 for pre-
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dicting non residential customers load curves. We adapt the three modeling frameworks
to integrate industrial constraints. We apply and compare diverse methods in each strat-
egy, and evaluate them on real data from EDF. We also describe how to extend the
methodology of predicting in a catalog of existing curves to all the strategies.

The MNR modeling strategy is estimated with neural networks with dense layers. A
potential drawback is that the time dimension is not taken into account with dense layers.
An alternative, which has not been tested in this methodology, could be to substitute the
dense layers with layers more suitable to deal with that, such as 1D-convolution layers
(see Zhao et al. (2017) for an application to time series classification). In Chapter 6, we
show an application of dimensionality reduction using a 1D-convolutional autoencoder
applied to residential customers’ load curves.
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Chapter 3

APPLICATION OF THE METHODOLOGY OF

ESTIMATION OF A MULTI-TARGET

REGRESSION PROBLEM: THE CASE OF

PREDICTING INDIVIDUAL LOAD CURVES

OF NON RESIDENTIAL CUSTOMERS

3.1 Introduction

This chapter provides an application of the methodology presented in the previous chap-
ter.

The opening of the French electricity market and the wide expansion of smart meters
lead energy companies like Électricité de France (EDF) to innovate and provide new
customer services. They rely mostly on individual load curve analysis, made possible by
the deployment of smart meters, and are developed using statistical methods applied to
customer data. Individual load curve analysis pertains to various statistical methods from
time series analysis for load forecasting, to dimensionality reduction for clustering and
feature extraction. A detailed survey on smart meter data analysis and its application
can be found in Wang et al. (2019).

In this Chapter, we show an application of the methodology presented in Chapter 2,
to load curve modeling of non residential customers (typically, businesses such as retail
stores, farming and insurance companies etc). Load modeling for non residential customers
is challenging due to their diversity. In fact some have seasonal activity while others are
active throughout the whole year. Yet, being able to model the consumption of non
residential customers is crucial. Some industrial application rely directly on this aspect:
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• load profiling of non-metered customers to correctly estimate the sourcing costs on
wholesale energy markets.

• sizing of potential photo-voltaic installations which relies on the estimation of the
customer’s consumption during daytime.

Most studies on load analysis and modeling focus on residential customers. For in-
stance, Teeraratkul et al. (2018) apply dynamic time warping to build clusters of residen-
tial load curves with similar shapes, and use those clusters to encode portions of the load
curves. They also propose a Markov model to predict the cluster of the load curve for the
next 24 hours. Fitzpatrick et al. (2020) propose a clustering method on residential load
curves in order to perform supervised classification of consumers from survey data.

Additionally, the majority of available studies deal with short term load forecast-
ing. Kong et al. (2019) develop a Long Short-Term Memory (LSTM) neural network to
that end. Auder et al. (2018) present a bottom-up short term load forecasting approach,
meaning that, from a set of individual load curves, forecasting is done by aggregating the
consumption of the given set. Amarasinghe et al. (2017) use convolutional neural networks
to perform load forecasting of a single residential household.

Load modeling on non residential customers and industrial buildings is also a topic of
interest. Recent studies on the subject include bottom-up heat and electric forecasting.
For instance, this approach is developed by Lindberg et al. (2019) for non residential
buildings in Norway. A survey of methods applied for load forecasting for commercial
buildings can be found in Yildiz et al. (2017). Vaghefi et al. (2015) propose a clustering
method to identify industrial load patterns. New load profiles are subsequently classified
into the obtained clusters.

Deep learning methods have been gaining traction in many fields of application in-
cluding computer vision (Krizhevsky et al. (2012)) and speech recognition (Graves et al.
(2013)). Application also include load curve analysis, as shown in Shi et al. (2018), where
a recurrent neural network is used for residential load curve forecasting. Recently, in He
(2017), a deep neural network is used to forecast the aggregated load curve of a Chinese
city. In Yang et al. (2020) and in Sun et al. (2020), a Bayesian LSTM is used for forecast-
ing. Varga et al. (2015) apply stacked sparse autoencoders to encode load curves and to
classify load profiles using a locality hashing sensitive method.

Probabilistic load forecasting, which relates to providing uncertainty estimates with
the forecasts, has also been the subject of recent studies. A detailed survey is presented
in Hong and Fan (2016). Shepero et al. (2018) develop Gaussian process and lognor-
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mal process-based methods for probabilistic load forecasting. Chen et al. (2019) uses MC
dropout, introduced by Gal and Ghahramani (2016), on a deep residual network to per-
form probabilistic load forecasting. In Yang et al. (2020) a Bayesian neural network with
LSTM layers is applied to forecast individual load curves. A Bayesian LSTM is also used
in Sun et al. (2020), in the case of day-ahead forecasting of the aggregated load of residen-
tial household using photo-voltaic generation as input of the network. Raza et al. (2018)
apply neural network ensemble and Bayesian model averaging to predict solar output of
photo-voltaic sites. A review of probabilistic forecasting for photo-voltaic production and
consumption is given in van der Meer et al. (2018).

The high dimension of load curve data complicates many tasks for analysis. To remedy
this, it might be necessary to reduce the dimension of the curves prior to other tasks such
as regression or clustering. For instance, Motlagh et al. (2019) reduce the dimension of load
curves with a Principal Component Analysis-based method before clustering residential
customers. In Cho et al. (2015), Singular Value Decomposition is used to reduce dimension
prior to electrical short-term load forecasting. Auder et al. (2018) adopt a wavelet-based
approach to reduce the dimension of the curves in order to cluster them.

One of the underlying objective is to correctly estimate and predict for non residential
customer their consumption during hours of sunlight, so as to size their potential photo-
voltaic installations. Solar power generation has been the subject of numerous studies due
to its recent growth, as it is low-carbon and cost of production are decreasing.

In this paper, we focus on non residential customers, typically, businesses such as retail
stores, farming and insurance companies etc . Load modeling for non residential customers
is challenging due to the large variety of consumers, some having seasonal activity while
others are active throughout the whole year. Recent studies on non residential customers’
load modeling include a bottom-up heat and electric forecasting. For instance, this ap-
proach is developed by Lindberg et al. (2019) for non residential buildings in Norway. A
survey of methods applied for load forecasting for commercial buildings can be found in
Yildiz et al. (2017).

Often, the need to predict a subgroup’s behavior arises. This subgroup can be under-
represented in the dataset at hand and similar to the prevailing subgroup but differing in
some aspects. For instance, if we consider a dataset containing small and medium busi-
nesses (SMB) and large industrial sites, where the SMB are underrepresented compared
to the large customers. If the sub-population of interest is the SMB, we can still use both
sub-populations (SMB and larger businesses) to predict the behavior of the SMB. We
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detail subsequently an approach of transfer learning dealing with a similar scenario, in
the context of electrical load curve prediction.

Subsequently, the following aspects are considered:

• Estimating a multi-target regression model to explain the individual load curves
using only billing information. Three modeling frameworks are developed to that
end. One is based on directly estimating the model in high dimension with neural
networks.
The two others are based on reducing the dimension of the load curve space, and the
reduced load curve is modeled from the billing information using deep models such
as residual neural networks, Bayesian neural networks and deep Gaussian processes.
For dimensionality reduction, we compare an autoencoder and the Discrete Wavelet
Transform. Both methods allow for reconstruction of the load curve into the original
space. The two frameworks involving dimensionality reduction differ on this aspect:
one requires reconstructing the curve to conduct prediction while the other does
not.

• Predicting the load curve of a new individual in a catalog of existing load curves
only using the available billing information.
We do so to integrate an industrial constraint to this study

• Evaluating the quality of the modeling strategies by giving more emphasis on certain
time periods. We introduce a loss function for evaluation or optimization of the
models, that penalizes hours out of hours of sunlight.
We use this loss function to integrate an industrial constraint to our study. However
we could imagine other scenarios where penalizing certain periods of time can be
relevant for prediction.

• Transferring information when the subgroup of interest is under-represented in the
whole population.

• Building prediction intervals on individual load curves. From the Bayesian neural
networks, we obtain prediction intervals. Two methods for building the intervals are
described. One of them is based on the reconstruction properties of autoencoder.

Section 3.2 describes how prediction of a new customer’s load curve is carried out in
the catalog of existing customers, as well as the loss function designed to put an emphasis
on certain time periods. Section 3.2.4 outlines the three modeling frameworks applied
to first estimate the relationship between the load curves and the billing variables and
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then predict the curve for a new individual for which billing information are known.
The frameworks are adapted from those described in Chapter 2, two of which include an
additional prediction step in the catalog of existing customers. Results, technical details
and a brief description of the dataset are specified in Section 3.3. Section 2.5 describes
the probabilistic prediction intervals using the Bayesian posterior predictive distribution
ensuing from the Bayesian neural networks obtained for this application. Section 3.5 is
dedicated to the conclusion and perspectives.

Hereinafter, we use the same notations as in Chapter 2.

3.2 Prediction of a load curve with industrial stakes
The main purpose is to predict a new customer’s load curve Xnew using only its billing

information, also referred to as features, Vnew.
For the purpose of this study, two strong industrial constraints are imposed:

• An emphasis is put on correctly predicting high consumption phases during hours
of sunlight,

• the prediction of Xnew must belong to the catalog of existing clients X .

Remark 7 Those stakes are taken into account in the context of a specific industrial
application. However, they can easily be generalized to other setups.

For instance, predicting in a catalog can be relevant in other domains (e.g. text gen-
eration).

As for giving more emphasis to specific period of times when working with time series,
it can be adapted for example to the prediction of occupancy rate of public transports.

3.2.1 Solar loss function

An industrial stake is to correctly predict high consumption phases during the day.
Specifically, we want to predict electrical consumption during hours of sunlight. This
industrial constraint can be interesting to consider, for example, for sizing the potential
photovoltaic installations of a new customer. In Figure 3.1, areas of interest are illustrated
for one non residential customer’s load curve. Consumption peaks also occur during the
night, yet we are interested in consumption peaks during the day as they match solar
power production peaks.
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Considering Y and Ŷ are respectively a load curve and its prediction, both of size n.
The mean absolute error (MAE):

EMAE(Y, Ŷ ) = 1
n

n∑
i=1
|Yi − Ŷi|, (3.1)

gives the same weight to the errors independently of the instant.

Figure 3.1 – Load curve of one customer for ten days (brown), areas highlighted (blue)
show the hours of sunlight, typically between 6 a.m. and 20 p.m. .

We build a weighted loss function where the weights are adapted to take into account
hours of sunshine. Our approach consists in using solar power generation data collected
from several solar power plants at half hourly period over a year. The weights are then
obtained by aggregating and normalizing these curves, so that their sum equals 1. These
weights (wsoli )1≤i≤n, named solar weights, are such that wsoli ∈ [0, 1] and ∑n

i=1w
sol
i = 1.

We define the weighted loss function named solar MAE by:

Esol(Y, Ŷ ) =
n∑
i=1

wsoli |Yi − Ŷi|, (3.2)

As illustrated in Figure 3.2, the weights thus obtained are equal to zero at night and
strictly greater than zero during certain periods of the day, generally between 9 a.m. and 6
p.m. in the winter and between 6 a.m. and 10 p.m. in the summer. They reach a maximum
during the summer, as sunlight is at its highest.

The solar MAE, introduced in (3.2), is used subsequently as the loss function to
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Figure 3.2 – Solar weights for January 1 [Red] versus July 1 [Yellow]

optimize during training of some of our models such as neural networks (see Section 2.3.1)
and autoencoders (see Section 2.4.2). It is also used as our evaluation method to compare
all the modeling schemes.

3.2.2 Prediction under industrial constraint

Recall that we want the predicted load curves to belong to the catalog of load curves
X . To solve this constraint, we consider the following scenarios:

• the forecasting method provides a predicted load curve that does not belong to X ,

• the prediction is calculated after reducing the dimension of the load curves.

Such forecasting methods are described in Section 2.3, in Chapter 2.

Direct prediction of the load curve X

Assuming that a forecasting method provides X̂new, a predicted load curve of Xnew,(see
Sections 2.3.1 and 2.3.2), we search for a nearest neighbor in the library of existing load
curves X = (Xk)1≤k≤m using the predicted load curve.

We minimize the solar MAE, defined in (3.2):

Esol(Z, X̂new), with Z ∈ X
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Since X is finite (|X | = m), the minimum always exists, but not necessarily unique.
However, for all considered forecasting method, X̂new is random vector with continuous
distribution. And so, the minimum is unique almost surely. Therefore, the argmin is well
defined almost surely.

We denote:

k̂X := argmin
1≤k≤m

Esol(Xk, X̂new). (3.3)

Finally, the predicted load curve obtained from X̂new is Xk̂X
.

Prediction of the load curve in a reduced space

Due to the large dimension of the curves, it is often challenging to directly estimate
and predict the load curves. A classical approach consists in reducing their dimension.
Then, we use statistical methods to predict the reduced representation of Xnew denoted
Înew (see Section 2.4.2).

We denote I = (Ik)1≤k≤m the reduced representation of the catalog of existing curves
X = (Xk)1≤k≤m. We search for the nearest neighbor’s load curve in the catalog of reduced
load curves I. We minimize the MAE, defined in (3.1):

EMAE(Z, Înew), with Z ∈ I

Since I is also finite (|I| = m), the same argument ensures that the argmin is well defined
almost surely.

Remark 8 For the choice of the distance in the latent space, we take EMAE. We could
have considered taking a weighted distance, using the an encoding of the solar weights
wsoli , however, in practice this method does not outperform the one with the MAE.

We denote

k̂I = argmin
1≤k≤m

EMAE(Ik, Înew) (3.4)

Then, the load curve of the new customer Xnew is predicted by Xk̂I
.
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Remark 9 This second approach does not take into account the constraint coming from
the solar MAE. If we can reconstruct X̂new from Înew, then we have

Esol(X̂new,Xk̂X
) ≤ Esol(X̂new,Xk̂I

)

3.2.3 Diversity of the catalog

When seeking the nearest neighbor, whether using (3.3) or (3.4), the quality of pre-
diction is strongly dependent on the quality and the diversity of customers available in
the catalog.

One way to evaluate the quality of the prediction is to calculate the distance between
Xnew and the catalog i.e.:

min
1≤k≤m

Esol(Xk,Xnew). (3.5)

This is its optimal theoretical prediction error under the industrial constraint. The quality
of the prediction can be calculated on the testing data subset.

On the analyzed dataset in Section 3.3.1, the optimal solar MAE obtained has a
median of 0.296 and a mean of 0.339. This error is irreducible considering that it depends
on the database available. It can be seen as an indicator of the diversity of the database
and how much individuals are represented among it.

3.2.4 Adaptation of the modeling frameworks to the industrial
constraint

Recalling the modeling framework introduced in Chapter 2, we adapt each of them to
the industrial constraint described here.

The MNR and ENR-R modeling strategies both provide X̂new, a predicted load curve
of Xnew. The final prediction is taken from the catalog of existing load curves as seen in
(3.3). Both modeling strategies are outlined in Figure 3.3 and Figure 3.4 respectively.

The ENR modeling strategy remains the same as described in Chapter 2, as the
prediction is conducted in the latent space and a direct prediction X̂new is therefore
unavailable.
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X and V Nonlinear regression E(X|V ) = g(V )

Estimation ĝ

Predict Xnew with
X̂new = ĝ(Vnew)Vnew

Predict Xnew with Xk̂X

Eqn. (3.3)

Figure 3.3 – Outline of the MNR framework (Section 2.3.1), adapted for the industrial
constraint on prediction (Section 3.2.2). Blue boxes specify the inputs (variables) of the
models, pink boxes the processes/models, yellow boxes the estimations and green boxes
the predictions.

3.3 Application to industrial data

All of our experiments are conducted with the R software (R Core Team (2019)).
Specifically, we use the wavelets package (Aldrich (2020)) to apply the Discrete Wavelet
Transform for dimensionality reduction. For the autoencoders and the non Bayesian neural
networks we use Tensorflow (Abadi et al. (2015)) and Tensorflow Probability (Dillon
et al. (2017) and Tran et al. (2019)) for the Bayesian neural networks and deep Gaussian
processes.

3.3.1 Dataset

As said in Section 3.1, the dataset contains individual load curves of non residential
customers and the related customers’ billing information.

The load curves are measured over a year, at half hourly period, meaning that for each
customer in the database, their load curve contains n = 17472 datapoints. The billing
information contain a mix of categorical and continuous variables, such as peak and off
peak hours ratio for each month of the year and the French Classification of Economic
Activities which specifies the business activity of the customers.

The database contains approximately 200 features after one hot encoding of the cate-
gorical variables. Billing information are normalized using min-max scaling, so that theirs
values lie between 0 and 1. Scaling the data is essential before using neural networks as
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X

Dimensionality reduction Reduced load curves
I = (Ik)1≤k≤m

Nonlinear regression
E(I|V ) = f(V )V

Estimation f̂

Predict
Înew = f̂(Vnew)Vnew

Reconstruction

Predict Xnew with
X̂new = r̂(Înew)

Eqn. (3.3)

Predict Xnew with Xk̂X

Figure 3.4 – Outline of the ENR-R strategy (Section 2.3.2), adapted for the industrial
constraint on prediction (Section 3.2.2). Blue boxes specify the inputs (variables) of the
models, pink boxes the processes/models, yellow boxes the estimations and green boxes
the predictions.

it allows faster convergence of the algorithm.
We want to predict full load curves, at half hourly period over a year, for a specific

group of non residential customers. Those customers are segmented according to their
contract power in two categories:

• C4 customers correspond to power between 37 and 250kVA,

• C2 customers correspond to power over 250kVA.

For all the customers, the database contains billing information (e.g. business sector) and
historical consumption data.

The subgroup of interest is the C4 customers and we want to predict those cus-
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tomers’ load curves, using only their billing information. A major difficulty is their under-
representation in the data-base. In fact, the C4 customers represent 7% of the total of
the dataset, while the remaining 93% are C2 customers.

To remedy this lack of observation, we take advantage of their resemblance with the
C2 customers.

While C2 and C4 customers share many similarities, some differences subsist, such as
off-peak hours span for the two segments. Since C4 are underrepresented, if the training
data is constituted of both categories, disparities will not be taken into account. We
propose a strategy based on transfer learning to solve this problem. The C2 customers
are used to learn the models initially and C4 customers in the training dataset are used
for transfer learning on those pretrained models.

We have a strong industrial stake, which is to predict the load curves of the C4
customers by real load curves taken from a catalog of existing C2 as well as C4 customers.
The load curves constituting the catalog are all scaled since we are not interested in the
consumption volume here rather than the load curve profile.

Both categories of customers, C2 and C4, have very heterogeneous consumption curves
as can be seen in Figure 3.5. Our study is based on the assumption that both categories
have similar consumer behaviors, however seeing Figure 3.5, the original load curves (in
brown) have very different shapes. Weighting those load curves by the solar weighted
described in Section 3.2 allows the load curves to show less disparities as seen on the
weighted load curves displayed in yellow in Figure 3.5.

Except for Figure 3.5, where we show both the original load curves and the weighted
load curves using the solar weights described in Section 3.2, hereinafter, we display only
the weighted load curves, in accordance with the industrial stake.

3.3.2 Transfer Learning - fine-tuning

Transfer learning pertains to a variety of methods aiming at improving performances
when learning a certain task, the target, using knowledge gained from learning a related
task the source. Surveys on transfer learning can be found in Torrey and Shavlik (2010)
and Pan and Yang (2009).

The use of transfer learning in this study is motivated by the fact that C2 and C4
share some similarities, such as the shape of some of the load curves, their main difference
being the off peak hours period.
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Figure 3.5 – The original load curves of one C2 customer [Top] and C4 customer [Bottom]
are displayed in brown. In yellow, the customer’s load curve weighted by the solar weights
for the C2 customer [Top] and the C4 customer [Bottom].

In our setting the source domain consists of C2 customers while the target domain
contains only C4 customers.
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• Learning the models on only the C2 customers and testing them on the C4 customers
does not work well because, despite the many similarities between the two categories,
some differences remain.

• Learning the models on a mix of C2 and C4 customers does not work either, because
the size of the C4 subset is too small to have an impact on training.

• Learning the models only on the C4 customers is also inadequate due to the size of
the dataset. In fact, training on too little data results in unstable optimization and
thus leads to poor results. Another drawback of learning models on a small dataset
is overfitting, because the number of parameters to estimate is much larger than the
number of observations available for this estimation.

To solve this problem, we propose the use of a transfer learning method. Specifically,
we focus on fine-tuning, a special case of transfer learning. It consists in using pretrained
weights of a neural network, trained on the source domain, as weight initializers when
learning the aforementioned network on the target domain. The initialization of the weight
is very informative in this approach because it allows the model to benefit from the
similarities of the two domains. An application of fine-tuning to an autoencoder is given
in Hinton and Salakhutdinov (2006).

The methodology we adapt is the following:

1. Train : training is done in two steps.
we first train the models on the subgroup of C2 consumers. The C4 subgroup (7%
of the complete dataset) is split so that a subset of those C4 customers is used as a
training subset to continue training the pre-trained models.

2. Test : the remaining C4 customers constitute the testing subset, distinct from the
C4 training subset. All the strategies are tested on those remaining C4 customer.

3.3.3 Dimensionality reduction

We implement two methods of dimensionality reduction. The first method uses an
autoencoder build with eight Dense layers, where layers 1 to 4 constitute the encoding
part, while the decoding part is made of layers 5 to 8. The detailed architecture of the
autoencoder is displayed in Table 3.1.

The second method uses the discrete wavelet transform. It consists in a hierarchical
representation of the initial signal, for instance time series, all generated through dilation

68



3.3. Application to industrial data

and translation operations. Considering the time series X(t), it can be expressed as in
(2.10).

All the models tested take the original load curves as inputs.

Table 3.1 – Architecture of the chosen autoencoder, used in both the ENR-R and ENR
methodology schemes described in Section 2.3

Architecture of the neural network
Layers Type Number of hidden

units
Activation function

Hidden 1 Dense 1000 ReLU
Hidden 2 Dense 500 ReLU
Hidden 3 Dense 100 ReLU
Hidden 4 Dense 30 ReLU
Hidden 5 Dense 100 ReLU
Hidden 6 Dense 500 ReLU
Hidden 7 Dense 1000 ReLU
Output 8 Dense 17472 Linear

Optimisation / Training
Loss Optimizer Number of epochs Batchsize
Solar MAE Adam 100 64

Remark 10 Due to the ReLU activation function, the latent space I obtained the encoding
step of the autoencoder contains several zero inflated variables. In the first and second
framework, those columns are removed before the modeling of the reduced load curve space.
Hence, the activation function has a thresholding role, it is also relevant to note that, when
using the hyperbolic tangent instead, a similar behaviour is observed, as some columns are
not zero valued but constant close to zero.

Remark 11 The Dense layers, used for the autoencoder, do not take into account the
temporal dependency of the load curves. However, the use of the solar weights allows to
integrate some temporal structure into solar MAE, as they put an emphasis on certain
periods of the day, over the entire curve.

The four following dimensionality reduction methods are trained on the C2 load curves
and tested on the C4 testing subset:

• The autoencoder trained with Esol, as described in Table 3.1, without transfer learn-
ing using the C4 training subset of load curves.
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• The autoencoder trained with Esol, as described in Table 3.1, with transfer learning
using the C4 training subset of load curves.

• An autoencoder with the same architecture as in Table 3.1, but trained with EMAE

on the C2 original load curves.

• The Daubechies 4 Wavelet Transform, with 10 levels of decomposition trained on
the C2 original load curves.

Remark 12 The discrete wavelet transform can also be applied on the load curves weighted
by the solar weights, however, we obtain higher errors in this case, thus we do not present
the results associated here.

Remark 13 In this setup, we decompose the load curves 210 times with the discrete
wavelet transform, thus obtaining reduced load curves of length 32. Reconstructing the
time series is done using ( (2.10)) and setting coefficients at lower decomposition levels to
0.

Table 3.2 – Esol(X̂new,Xnew) obtained through the reconstruction of the load curve by the
various autoencoders and the discrete wavelet transform on the C4 testing subset and
on the C2 training subset. The minimum median and mean errors for each subset are
signaled with an asterisk.

C4 testing subset
Median Mean

Autoencoder trained with Esol, without fine
tuning

0.239 0.258

Autoencoder trained with Esol, with fine tun-
ing

0.223∗ 0.248∗

Autoencoder trained with EMAE 0.282 0.304
Wavelets 0.496 0.538

C2 subset
Median Mean

Autoencoder trained with Esol, without fine
tuning

0.153∗ 0.184∗

Autoencoder trained with Esol, with fine tun-
ing

0.178 0.217

Autoencoder trained with EMAE 0.193 0.231
Wavelets 0.382 0.480
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Results of the dimensionality reduction are given in Table 3.2. On both the C2 train-
ing and C4 testing subset, the autoencoders’ performances are better than the Discrete
Wavelet transform ones. Performing transfer learning on the autoencoder trained with
the solar MAE seems to improve results on the C4 subset but deteriorates them on the
C2 subset.

On the left of Figure 3.6, we display an example of C4 customer’s weighted load curve
(in yellow) against its reconstruction using the autoencoder trained with the solar MAE
and fine-tuning and using the Discrete Wavelet transform. The shape of the weighted
reconstruction from the autoencoder resembles heavily the customer’s weighted load curve,
while the shape of the weighted DWT reconstruction is quite different from the curve.

Figure 3.6 – Load curve weighted by the solar weights [Yellow] of one C4 customer and
its weighted reconstruction [Red] using the solar autoencoder with transfer learning. The
load curve and both reconstruction are displayed for the whole year [Left] and zoomed
for ten days in July [Right].

Zooming on the load curve for the ten first days of July (on the right of Figure 3.6),
we can see that the reconstruction provided by the Discrete Wavelet Transform has a
larger amplitude than both the weighted load curves (in yellow) and the reconstruction
obtained from the autoencoder.

We choose to model the latent space obtained with autoencoder trained with Esol with
transfer learning for both the ENR-R and ENR frameworks, and the results presented
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Figure 3.7 – Load curve weighted by the solar weights [Yellow] of one C4 customer and its
weighted reconstruction [Red] using the Discrete Wavelet Transform [Bottom]. The load
curve and both reconstruction are displayed for the whole year [Left] and zoomed for ten
days in July [Right].

further in the paper are obtained using the latent space from this autoencoder.

Remark 14 The solar MAE is not taken into account when applying the DWT, thus
performances obtained from this method are overall less satisfactory.

3.3.4 MNR framework

The models used for this modeling strategy, described in Section 2.3.1, are the four
feed-forward neural networks named NNiMNR, where i ∈ {1, 2, 4, 6} is the number of
hidden layers.

Results obtained with the MNR modeling scheme are presented in Table 3.3. Those
results highlight the utility of transfer learning as, for each of the four neural networks
tested, the median and average solar MAE are undoubtedly improved by the addition of
fine-tuning.

The level of improvement differs for the four models tested as the best model without
fine-tuning, NN4MNR, yields the worst results after fine-tuning.
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Table 3.3 – Esol(Xnew,Xk̂X
) obtained with the models tested for the MNR scheme on the

C4 testing subset. Here as well, the minimum median and mean errors for each case are
signaled with an asterisk.

Without fine-tuning
Median Mean

NN1MNR 1.642 1.644
NN2MNR 1.700 1.654
NN4MNR 1.532∗ 1.465∗
NN6MNR 1.542 1.476

With fine-tuning
Median Mean

NN1MNR 0.553 0.722
NN2MNR 0.609 0.702
NN4MNR 0.668 1.101
NN6MNR 0.547∗ 0.648∗

After using fine-tuning, the NN6MNR, is the model yielding the best results, with
an improvement of 99.5% of the median solar MAE.

3.3.5 Comparison of the two methods of prediction in the ENR-
R and ENR frameworks

For both the ENR-R and ENR frameworks, the estimation of the reduced load curves
is made using the same models. The difference between the two strategies lies in the
prediction method. We use the prediction method described in Section 3.2.2 for the ENR-
R scheme, where we rely on the reconstruction of the load curve to find the nearest
neighbor whereas the ENR scheme’s prediction method relies on the reduced load curve
to find the nearest neighbor, as shown in Section 3.2.2.

The estimation of the reduced load curve using the billing variables, which both of the
ENR-R and ENR frameworks have in common, can be done two ways: frequentist and
Bayesian.

For the frequentist modeling, we use the following neural networks, with deterministic
parameters.

• NN1: a one hidden layer neural network similar to the one defined in (2.2) and
(2.4), where the inputs are V the clients features, and the outputs are I the reduced
load curve space.
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• RN1: a nine hidden layers neural network, built with residual connections as shown
in Figure 2.3.

As for the Bayesian modeling, we use the subsequent Bayesian models:

• BayesNN1: a one hidden layer Bayesian neural network, the Bayesian counterpart
of NN1 .

• BayesRN1: the Bayesian counterpart of RN1, here all the layers and residual con-
nections are Bayesian.

• DGP2: a two layers deep Gaussian process.

Remark 15 In a deep neural network setting, it remains complicated to incorporate prior
knowledge to the prior distribution of the network parameters, hence, the chosen prior for
the bayesian neural networks’ weights in our study is the standard multivariate Gaussian
distribution Wp ∼ N (0, Id), where Id is the identity matrix. Here the biaises bp are set
to 0.

In Table 3.4, we display the errors Esol(Xnew,Xk̂X
) obtained with the five models listed

above, tested for both the autoencoder, trained with the solar MAE Esol and fine-tuning
on the C4 training subset, and wavelets for reference.

All the results presented here have to be put in perspective with Section 3.2.3, because
all of them are dependent on the diversity of load curves available in the catalog.

For the ENR-R prediction method, fine-tuning improves the performances of all the
models, except the DGP2 applied on the latent space obtained from the autoencoder.
Overall, using this prediction method gives out high errors, considering that all of them
are above 0.50.

Conversely, fine-tuning degrades results for all of the models with the prediction
method applied to the ENR modeling strategy. The Bayesian neural network BayesRN1

without fine-tuning in the ENR sheme gives out the lowest solar MAE.
Table 3.5 displays the solar MAE obtained with the reconstructed load curves Esol(Xnew, X̂new)

in the ENR-R scheme for the C4 testing subset. They are much lower than in Table 3.4 for
this framework. Here as well, the Bayesian neural network BayesRN1, this time with fine-
tuning applied to the latent space obtained from the autoencoder with transfer learning,
provides the lowest reconstruction error.

We can use the estimations provided by the Bayesian neural network BayesRN1 to
build prediction intervals from the approximated posterior predictive distribution. Results
obtained are the focus of Section 3.4.
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Table 3.4 – Esol(Xnew,Xk̂X
) obtained with the models tested for the ENR-R scheme [Left]

and Esol(Xnew,Xk̂I
) obtained with the models tested for the ENR scheme [Right]. All the

results displayed relate to the C4 testing subset. Here as well, the minimum median and
mean errors for each case are signaled with an asterisk.

Dimensionality reduction method: Autoencoder
ENR-R Esol(Xnew,Xk̂X

) ENR Esol(Xnew,Xk̂I
)

Without fine-tuning With fine-tuning Without fine-tuning With fine-tuning
Median Mean Median Mean Median Mean Median Mean

NN1 0.755 0.847 0.570∗ 0.623∗ 0.422 0.456 0.491 0.539
RN1 0.792 0.896 0.575 0.754 0.427 0.465 0.502 0.560
BayesNN1 1.997 1.656 0.633 0.682 0.431 0.462 0.466∗ 0.499∗
BayesRN1 0.751 0.943 0.611 0.652 0.409∗ 0.451∗ 0.503 0.559
DGP2 0.685∗ 0.842∗ 0.894 0.915 0.451 0.490 0.984 1.004

Dimensionality reduction method: Wavelets
ENR-R Esol(Xnew,Xk̂X

) ENR Esol(Xnew,Xk̂I
)

Without fine-tuning With fine-tuning Without fine-tuning With fine-tuning
Median Mean Median Mean Median Mean Median Mean

NN1 0.535 0.576 0.524 0.566 0.632 0.890 0.560 0.632
RN1 0.530 0.590 0.524 0.572 0.750 0.815 0.653 0.688
BayesNN1 0.535 0.576 0.535 0.576 0.748 0.839 0.791 0.980
BayesRN1 0.535 0.576 0.524 0.565∗ 0.592 0.649 0.612∗ 0.679∗
DGP2 0.524∗ 0.565∗ 0.523∗ 0.566 0.489∗ 0.540∗ 0.792 0.790

3.4 Probabilistic prediction intervals using the Bayesian
posterior predictive distribution : numerical re-
sults

As seen in Table 3.4 and Table 3.5, the Bayesian neural network BayesRN1 gives
out both the lowest errors Esol(Xnew,Xk̂I

) for the ENR scheme, and Esol(Xnew, X̂new) for
the ENR-R scheme. Hence, in this Section, we present the prediction intervals obtained
from the sample generated by the approximated predictive posterior distribution of the
BayesRN1 model. We have n = 17472 the length of each load curve and J = 1000 the
size of the sample.

In Figure 3.8, we display the boxplots relating to the proportion of 80% prediction
intervals containing the true value of the load curve, for each customer’s load curve,
obtained for both strategies. Boxplots on the left relate to the intervals obtained from the
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Table 3.5 – Solar MAE Esol(Xnew, X̂new) obtained with the models tested for the ENR-R
scheme on the C4 testing subset. Here as well, the minimum median and mean errors for
each case are signaled with an asterisk.

Dimensionality reduction method: Autoencoder
Without fine-tuning With fine-tuning
Median Mean Median Mean

NN1 0.624 0.687 0.504 0.547
RN1 0.670 0.723 0.467 0.527
BayesNN1 0.519∗ 0.583∗ 0.493 0.552
BayesRN1 0.572 0.639 0.464∗ 0.526∗
DGP2 0.540 0.590 0.760 0.812

Dimensionality reduction method: Wavelets
Without fine-tuning With fine-tuning
Median Mean Median Mean

NN1 0.559 0.613 0.560 0.617
RN1 0.530 0.590 0.523 0.572
BayesNN1 0.533 0.591 0.532 0.589
BayesRN1 0.514∗ 0.568 0.533 0.577
DGP2 0.521 0.565∗ 0.522∗ 0.565∗

realizations of the sample from the BayesRN1 model, with and without fine-tuning, by
applying the first strategy. Overall, For most clients, the majority of the real load curve is
in the prediction intervals obtained with this first strategy, as the median is between 0.85
and 0.90 with and without fine-tuning the BayesRN1 model. The results shows a slight
deterioration when using sample from the BayesRN1 model with fine-tuning (in pink),
this is consistent with the observations made from Table 3.4. As for the second strategy
to obtain prediction intervals, which relies on decoding the sample from the BayesRN1
model, with and without fine-tuning, when reconstructing X̂pos

newj
, j ∈ 1, . . . , J from Îposnewj

obtained from the estimation of the BayesRN1 model, which is the model with the
lowest error Esol(Xnew, X̂new) (see Table 3.5), we calculate for each customer, at each time
step 1 ≤ t ≤ n, the 80% prediction intervals. Boxplots of the proportion of prediction
intervals containing the true value of the load curve, for each customer’s load curve are
shown on the right on Figure 3.8. Here the median lies between 0.55 and 0.60 with and
without fine-tuning the BayesRN1 model, and the results shows a small improvement
when using the realizations of the samplefrom the BayesRN1 model with fine-tuning (in
pink), which is consistent with the observations made from Table 3.5. Looking solely at
the proportion of data points of the real curve contained within the intervals, the first
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strategy seems to be more efficient than the second one.

Figure 3.8 – Boxplot of the proportions of the 80% prediction intervals containing the true
observation on the C4 test subset, obtained with the two strategies. From the sample of
the posterior predictive distribution of the BayesRN1 model (with fine-tuning [Pink]
and without fine-tuning [Blue]), [Left] Intervals obtained from the discrete distribution
on k̂I and [Right] from decoding the sample.

However, when we look at the average width of intervals obtained with both methods,
which is displayed in Figure 3.9, we can see that intervals obtained with the first strategy
are wider, as the median width is between 0.25 and 0.30 whereas it is between 0.17 and
0.20 for the intervals obtained with decoding the sample. Overall, the first method, while
having a proportion of intervals containing the true value of the curves larger than the
second, also provides intervals that are wider and may be imprecise.

As for the intervals obtained from the first method, they are plotted in Figures 3.10
for the first ten days of January. The intervals obtained for both cases (with and without
fine-tuning) are quite wide, seem to follow the shape of the curve better, but may be
imprecise. This illustrates what is seen on the average width of intervals displayed on the
left of Figure 3.9. The strategy of seeking nearest neighbor to build prediction interval
might not be adapted, and is unnecessary in this context as we can free ourselves from
this industrial constraint.

Figures 3.11 show the load curve of one customer respectively for the first ten days
of January. The prediction intervals obtained by decoding the sample of BayesRN1 are
respectively in blue for the model without fine-tuning and in purple for the model with
fine-tuning. The intervals obtained from BayesRN1 with fine-tuning are slightly smaller
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Figure 3.9 – Boxplot of the average interval width of the 80% prediction intervals on
the C4 test subset, obtained with the two strategies. From the sample of the posterior
predictive distribution of the BayesRN1model (with fine-tuning [Pink] and without fine-
tuning [Blue]), [Left] intervals obtained from the discrete distribution on k̂I and [Right]
from decoding the sample.

Figure 3.10 – Weighted load curve (black) for the first ten days of January and the
prediction intervals associated. In blue the intervals obtained with the discrete distribution
on k̂I from the BayesRN1 model without fine-tuning, in purple, the intervals obtained
from the BayesRN1 model with fine-tuning.

78



3.5. Conclusion and future research

than without it. Despite not capturing the consumption peaks as well as the previous
method, intervals obtained with this method are much smaller. This gives interesting
perspectives for future research and application to load modeling.

Figure 3.11 – Weighted load curve (black) for the first ten days of January and the
prediction intervals associated. In blue the intervals obtained with the decoded sample
from the BayesRN1 model without fine-tuning, in purple, the intervals obtained with
the decoded sample from the BayesRN1 model with fine-tuning.

3.5 Conclusion and future research
We have introduced three different modeling strategies designed to predict the electri-

cal load curves of non residential customers. All of our approaches use fine-tuning, because
of the assumption that the two groups of customers share some similarities but are not
exactly the same type of consumers.

On the autoencoder, fine-tuning does improve the performances of the model on the
C4 test subset. For the MNR framework as well, all of the feedforward neural networks’
performances benefit from this approach. For the ENR-R and ENR frameworks however,
fine-tuning has a positive effect when reconstructing the curve, for all models except
DGP2, but deteriorates slightly the performances of all the models tested when we work
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on the reduced load curves. Yet, the ENR framework, out of the three tested is the
one that gives out the best results. Specifically, the Bayesian neural network BayesRN1

trained without fine-tuning on the latent space obtained from the autoencoder trained
with fine-tuning is the model that performs the best.

The autoencoders considered are built with Dense layers, thus not taking the time
dependency of each load curves into account. Future research may include adapting 1D-
convolutional autoencoders to that end. It would be interesting to add the transfer learning
step described here to the convolutional autoencoders.

The Bayesian neural network BayesRN1 model also allows us to build prediction
intervals using its approximated predictive posterior distribution. Two types of intervals
are thus obtained following either the ENR-R or the ENR scheme. Overall, the intervals
obtained from the discrete distribution on k̂I give large prediction intervals which may be
too imprecise, thus for future work, we may prefer the second approach that decodes the
sample from the posterior predictive distribution as they are smaller.

The overall quality of the performances obtained is to be put in perspective with
the database available whether in diversity of the individuals or the billing information at
hand. Since the models only rely on billing information, in the considered features, we lack
information on some characteristics of the customers and the buildings. For instance, we
do not have information concerning the customers’ range of consumption during hours of
sunlight. Adding variables relating to that may be a way to improve overall performances
of the three frameworks. It might be interesting to include variables such as the dimensions
of the building, the geographical localization or meteorological information, if they are
available. The additional features may be beneficial for potential industrial application
such as sizing of photovoltaic installations.

Future research may include adapting the MNR scheme with Bayesian neural networks,
to see whether those methods could improve performances, as well as obtaining prediction
intervals on the load curves.

In the MNR modeling framework as well, it would be interesting to see why fine-tuning
improves each of the models differently. As for the ENR-R and ENR modeling strategies,
one could be interested in understanding why transfer learning deteriorates results when
estimating the reduced load curves using the customers’ features.
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Chapter 4

BAYESIAN TRANSFER LEARNING FOR

PANEL DATA

4.1 Introduction
Panel data analysis and modeling are frequently encountered in socio-economic and

marketing applications. The specificity of panel data rests on its structure: observations
(quantitative or qualitative) are collected over a period of time for several individuals.
Thus, panel data analysis pertains to analyzing the attributes of individuals over a period
of time. Panel data arise frequently in economics, for examples on the subject refer to
Baltagi et al. (2008).

A common issue, arising in industrial applications such as forecasting of individual
residential consumption, is the lack of historical data to forecast the behavior of new
customers. One way to overcome this issue is to use information and knowledge on existing
customers and apply it to new customers. This can be seen as a transfer learning situation
where the existing customers constitute the source domain and the new customers of
interest the target domain. Transfer learning can be an efficient way to predict behavior
of new customers. It has the advantage of reducing training time of models for new
observations, and requires a smaller amount of training data when transferring on the
source domain to learn the source task.

We propose an approach based on a Bayesian hierarchical model for panel data applied
to forecasting of individual residential consumption. Firstly, the hierarchical model is
trained with weakly informative prior distribution, on customers with long-term historical
data. Secondly, we recover the posterior distribution, and use it to build an informative
prior for the Bayesian model trained on a new customer, with short-term historical data.
Finally we focus on forecasting the consumption of the new customer, using the posterior
distribution recovered after the second step.

Transfer learning generally refers to the context of learning one task and use the
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knowledge gained to learn another task. For a review on transfer learning methods in
machine learning see Torrey and Shavlik (2010). Transfer learning can also be considered
in a Bayesian setting. For instance, Raina et al. (2006) use a Bayesian approach of transfer
learning to construct informative priors in the context of binary text classification. In Yu
et al. (2005), the authors approach is a Gaussian processes-based hierarchical Bayesian
framework for transfer learning. Marx et al. (2005) propose a Bayesian logistic regression
for transfer learning. A hierarchical Bayesian transfer approach is developed by Wilson
et al. (2012) for reinforcement learning. Recent approaches for transfer learning based on
Bayesian modeling include Finn et al. (2018) where a Bayesian hierarchical model is used
for few-shot learning.

Our approach is related to the one developed by Launay et al. (2015), based on building
an informative hierarchical prior using a long dataset and using it for the estimation of a
model on a shorter dataset of interest. We extend the methodology proposed by Launay
et al. (2015) to the case of the individual load forecasting of a new customer and panel
data. This is a specific case of Bayesian transfer learning applied to panel data modeling.

Galharret and Philippe (2019) also adapt the methodology developed by Launay et al.
(2015) to the construction of informative priors in the case of mediation analysis.

Bayesian hierarchical models induce flexibility to modeling because of their multi-
leveled structure. Bayesian hierarchical approaches are particularly useful when we lack
prior knowledge on the parameter of interest. Bayesian hierarchical models are partic-
ularly useful when dealing with complex data. The upper levels of the hierarchy (the
hyperparameters) can express the knowledge available, if any, on the global behavior of
the population studied.

Because of those advantages, Bayesian hierarchical modeling is encountered in many
domains. This is the case in Dyrrdal et al. (2015), where the hierarchical-based approach is
applied to the modeling of heavy rainfall. Lionetti et al. (2019) usse hierarchical models for
Sensory Processing Sensitivity. In Zhao et al. (2019), a Bayesian hierarchical framework
is developed for human activity recognition. Fu et al. (2020) propose such an approach
to traffic crash estimation using video data as well as crash data. A hierarchical Bayesian
model is presented in Meager (2019) for the impact of microcredit expansions. Papoutsis
et al. (2020) adapt a multi-level Bayesian approach to the context of predicting the driver
flow for carpooling services.

In the context of panel data, Bayesian hierarchical models are quite appropriate, as
they allow to model the relation between all the individuals considered by means of
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shared parameters. In Feller and Gelman (2015), the authors discuss the use of Bayesian
hierarchical models for causal inference. Congdon (2010) provides details on Bayesian
hierarchical models and applications, notably for panel data. Recently, Lee and Bateman
(2021) applied a Bayesian hierarchical approach for modeling the demand of organic coffee,
using consumer panel data.

Remark 16 A common issue in a Bayesian setting is the approximation of the poste-
rior distribution due its intractability. This can be achieved numerically using MCMC
algorithms.

The following aspects are subsequently addressed:

— A weakly informative hierarchical Bayesian regression model is adapted for panel
data.

— An informative Bayesian regression model is developed for a new panelist with
shorter historical data.

— Forecasting of new data points of the individual is conducted using the posterior
predictive distribution, extracted after inference of the informative model.

In Section 4.2, we propose a methodology of transfer learning using a Bayesian ap-
proach, in the case of panel data analysis. Section 4.3 shows an application of the method-
ology to three simulated datasets based on the following models: the polynomial regression
model, an auto§regressive model and the hierarchical Poisson model. Additional results
of the simulation are detailed in the appendix. Section 4.4 is dedicated to the conclusion
and discussion of this Chapter.

4.2 Methodology
In this section we describe our methodology based on a Bayesian approach for transfer

learning for panel data analysis.

4.2.1 Weakly informative approach

Let n denote the number of individuals considered for which we collect T observations
denoted X

(i)
t and V

(i)
t , i = 1, . . . , n and t = 1, . . . , T , where X(i)

t are the variables of
interest and V (i)

t the explanatory variables.
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Time series can be viewed as a special case of panel data, for example, X(i)
t can be the

electrical consumption of the i-eth customer at time t and V (i)
t customer’s features (e.g.

the type of heating system, a binary variable equal to 1, if the customer has an electrical
heating system and 0 otherwise). Here n is the size of a subset of customers and T the
length of historical data available for the subset considered.

We consider the following parametric model of panel data to estimate the relationship
between X(i)

t , the dependent variable and V (i)
t the predictors:

X
(i)
t = f 1(θi, V (i)

t ) + ε
(i)
t , i = 1, . . . , n

where ε(i)t is the individual noise (i) at time t and where θi are the individual parameters
and f 1 is a parametric function. The goal is to estimate each individual parameters θi, i =
1, . . . , n, of the model. For convenience, we denote D1 = (X(i)

t , V
(i)
t )i=1,...,n

t=1,...,T
the observations

used to estimate θi, i = 1, . . . , n.
We assume that θ1, . . . , θn are i.i.d. with a common distribution depending on some

parameter θ ∈ {Theta}. In a Bayesian approach, θ is assumed to be random.
We denote the prior of each θi given θ as such:

θi|θ ∼ π(θi|θ) (4.1)

The parameter θ is common to all the individuals i = 1, . . . , n and follows a weakly
informative prior distribution π1(θ) also know as the hyperprior.

θ ∼ π1(θ) (4.2)

Example 2 A classical example is to assume that:

θi = θ + λi,

where (λ1, . . . , λn) are i.i.d. with zero mean. In this case, θ can be viewed as a central
value of (θ1, . . . , θn) since E(θi|θ) = θ.

Remark 17 π1 is taken weakly informative here on θ for regularization. The goal is to
keep the parameters within reasonable range when inferring the model. Usually, the prior
distribution considered is a Gaussian probability distribution with large variance.
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θ

θ1

X
(1)
t , V

(1)
t

θn

X
(n)
t , V

(n)
t

. . .

. . .

Panel data D1

Figure 4.1 – Directed acyclic graph of the hierarchical model for the panel data D1

Bayesian inference relies on finding the posterior distribution of the parameters given
the observations.

Using Bayes’s theorem, the joint posterior distribution of the parameters of the model
is expressed as follows:

π1(θ1, . . . , θn, θ|D1) ∝ π1(θ)π(θ1|θ) . . . π(θn|θ)p(D1
X |θ1, . . . , θn,D1

V ), (4.3)

with D1
X = (X i

t)i=1,...,n,t=1,...,T , and D1
V = (V i

t )i=1,...,n,t=1,...,T . p(D1
X |θ1, . . . , θn,D1

V ) is the
likelihood of the model:

p(D1
X |θ1, . . . , θn,D1

V ) =
n∏
i=1

p((X i
t)t=1,...,T |θi, (V i

t )t=1,...,T )

In Figure 4.1, we show the Directed acyclic graph (DAG) of the hierarchical model.
This represents graphically the conditional independence of each θi given θ. This property
is important as it allows to express the joint posterior distribution as presented in (4.3).

We make the hypothesis that a new individual will have a similar behavior to the
other individuals. Thus we want to transfer the information learned on the panelists to
the new individual using θ.

For transfer learning, we are interested in the θ parameter, and specifically the mo-
ments of its marginal posterior distribution. θ is the parameter common to all individuals,
thus for a new individual, our goal is to use θ and its posterior distribution’s moments,
as a way to incorporate knowledge into the prior for the parameters of the model of the
individual.
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The marginal posterior distribution of θ, given the observations, is obtained by inte-
grating the joint posterior over each of the parameters θi ∈ Θ:

π1(θ|D1) =
∫

Θ
π1(λ1, . . . , λn, θ|D1) dλ1 . . . dλn, (4.4)

where π1(·|D1) is defined in 4.3.

The Directly acyclic graph (DAG), shown in Figure 4.1, summarizes the hierarchy
of the model. The upper level of the hierarchical model is constituted of the parameter
θ, common to all individuals. This parameter symbolizes the global similarity of all the
individuals. Therefore, θ is connected on the graph to all the individuals parameters θi,
i = 1, . . . , n. The lower level of the hierarchy consists in the observed panel data: X(i)

t

and V
(i)
t , i = 1, . . . , n and t = 1, . . . , T . The DAG shows the conditional independence

between individuals given the hyperparameter θ.

4.2.2 Informative approach

After inferring the marginal posterior distribution, specified in Equation (4.4), we have
access to its moments. Let µD1

p the p-eth moment of π1(θ|D1) (e.g. the mean or variance
if p = 1 or p = 2 respectively).

LetX∗t the dependent variable and V ∗t the predictors of a new individual, t ∈ {t1, . . . , t2},
where t2− t1 < T . The length of historical data available for the new individual is shorter
than the one of the panelists.

We want to estimate the relationship between X∗t and V ∗t . We consider the following
regression model:

X∗t = f 1(θ̃, V ∗t ) + ε∗t , (4.5)

We adopt a Bayesian approach to estimate the parameter θ̃ using the historical data of
the new individual.

We want to transfer the information gathered from the previous step into the estima-
tion of the model. Thus we use an informative prior for the parameter θ̃ using the posterior
mean µD1

1 and posterior variance ΣD1 . Specifically, we want the prior distribution on θ̃ to
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have the following properties:

E(θ̃) = E(θ|D1) = µD
1

1 (4.6)

and

Cov(θ̃) = V ar(θ|D1) (4.7)

We assume that θ̃ is very close to θ as it would be the case for an average individual
in the panel. To loosen up the strong assumption of closeness between the new individual
and the panel, we introduce hyperparameters to the model. As in Launay et al. (2015), we
assume that there exists parameters of similarity denoted here k and l. They symbolize
the similarity between the data of the new individual and the historical data D1. Let π2(·)
denote the prior distribution of θ̃:

θ̃|k, l ∼ π2(θ̃|k, l),

Remark 18 For convenience, the operator K is diagonal and defined by:

K = diag(k).

The parameters k follow a prior distribution, denoted p(k), centered around 1. This prior
distribution allows for flexibility in the model depending on how similar the new individual
is to the panelists.

Following the Gaussian strategy introduced by Launay et al. (2015), the hierarchical
prior is as follows:

θ̃|k, l ∼ N (KµD1

1 , l−1ΣD1), (4.8)

and

k|q, r ∼ N (q(1, . . . , 1, )′, r−1Id). (4.9)
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The priors of q, r and l are denoted respectively p(q), p(r) and p(l), and are taken as:

q ∼ N (1, σ2
q ),

r ∼ G(ar, br),

l ∼ G(al, bl).

The informative prior thus has the following form:

π2(θ̃, k, q, r, l) ∼ π2(θ̃|k, l)p(k|q, r)p(q)p(r)p(l). (4.10)

the prior π2(θ̃, k, q, r, l) has the following properties, as defined in Launay et al. (2015):

Property 1 π2(θ̃) =
∫
π2(θ̃, k, q, r, l) dk dq dr dl admits a moment of order 1 equal to µD1

1 .

Property 2 Assume that ar > 1 and al > 1. Under suitable conditions of regularity:

1. the correlation of the prior π2(θ̃) is equivalent to the correlation of the posterior
π1(·|D1) as T goes to infinity.

2. For a fixed T , the correlation of the prior π2(θ̃) is equivalent to the correlation of
the posterior π1(·|D1) as σ2

q and E(r−1) go to 0.

The posterior distribution of the parameter θ̃, given the observations X∗t and V ∗t is
obtained with Bayes’ theorem:

π2(θ̃, k, q, r, l|X∗, V ∗) ∝ π2(θ̃, k, q, r, l)p(X∗|V ∗, θ̃) (4.11)

∝ π2(θ̃|k, l)p(k|q, r)p(q)p(r)p(l)p(X∗, V ∗|θ̃). (4.12)

where p(X∗|V ∗, θ̃) is the likelihood of the model.
The marginal posterior of θ̃ is obtained by integrating the joint posterior in Equation

(4.12) over the parameters (k, q, r, l).
The DAG of the hierarchical model for the informative approach applied to the new

individual with short historical data is displayed in Figure 4.2. The upper levels of the
hierarchy are constituted of the hyperparameters q and r of k. The middle of the hierarchy
contains the parameters k and l above of the parameter of interest θ̃. The observations of
the new individual X(∗)

t , V
(∗)
t constitute the lower level of the hierarchy.
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q, r

k l

θ̃

X
(∗)
t , V

(∗)
t

individual with short historical data D∗

Figure 4.2 – Directed acyclic graph of the hierarchical model for the new individual D∗

4.2.3 Bayesian forecasting

The Bayesian approach for forecasting retains some advantages over its frequentist
counterpart. It allows us to get probabilistic forecasts using the predictive distribution
and thus obtain credible intervals.

We wish to forecast the values of X∗t for t = t2 +1, . . . , t2 +h, where h is the forecasting
horizon. We consider that the predictors V ∗t for t2 + 1 ≤ t ≤ t2 + h are known.

The posterior distribution of θ̃ is essential when we want to predict a new data point.
Let D∗past = (X∗t , V ∗t )t1≤t≤t2 denote the historical data of the individual (i.e. the training
data used for the estimation of the model in Equation (4.5))

The distribution of a new data point X∗t , given the past, is:

p(X∗t |D∗past, V ∗t ) =
∫
p(X∗t , θ̃, k, q, r, l|D∗past, V ∗t ) dθ̃ dk dq dr dl

=
∫
p(X∗t |θ̃, k, q, r, l,D∗past, V ∗t )π2(θ̃, k, q, r, l|V ∗,D∗past) dθ̃ dk dq dr dl

=
∫
p(X∗t |θ̃, V ∗t )π2(θ̃, k, q, r, l|D∗past) dθ̃ dk dq dr dl

=
∫

Θ̃
p(X∗t |θ̃, V ∗t )π2(θ̃|D∗past) dθ̃. (4.13)

The distribution of a new data point X∗t , in Equation (4.13), can provide point esti-
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mates as well as intervals.
A common point estimate is the Maximum A Posteriori (MAP) which is the value

X̂∗MAP t that maximizes the distribution:

X̂∗MAP t = argmaxX∗
t
(p(X∗t |D∗past, V ∗t )).

4.2.4 Summary of the methodology

Panel D1

Weakly informative hyperprior: π1(θ) posterior distribution: π1(θ|D1)

Moments of the posterior distribution µD1
p , ΣD1Flexibility parameters K = diag(k) and l

New individual D∗past informative prior: π2(θ̃, k, q, r, l) posterior distribution: π2(θ̃, k, q, r, l|D∗
past)

V ∗t known for t = t2 + 1, . . . , t2 + h

Predictive distribution
of X∗t : p(X∗t |D∗past, V ∗t )

Predict X∗t for t =
t2 + 1, . . . , t2 + h

Figure 4.3 – Outline of the methodology of transfer learning for panel data. Informa-
tion is extracted from estimation on the panel data to build informative prior for a new
individual. The prediction of a new data point of the individual relies on the posterior
distribution π2(θ̃, k|D∗past).
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The complete methodology of transfer learning for panel data, based on a Bayesian
approach, is summarized in Figure 4.3.

4.3 Application of the methodology to simulated data
We show an application to simulated datasets of the methodology presented in Section

4.2. The method is implemented using the R software(R Core Team (2019)) and the Stan
software (Stan Development Team (2020), Stan Development Team (2018)).

Hereinafter, we adapt the examples developed in Launay et al. (2015) to the case of
panel data analysis.

4.3.1 Polynomial regression

As in Launay et al. (2015), we consider a polynomial regression of order p ≥ 0, which
is adapted to the case of panel data:

y
(i)
t =

p∑
k=0

β
(i)
k (x(i)

t )k + ε
(i)
t , (4.14)

where ε(i)t ∼ N (0, σ(i)2) are the individual errors of individual i = 1, . . . , n at time t =
1, . . . , T . Here, σ(i) = σ = 1. Each x

(i)
t are simulated from the uniform distribution

U [−1, 1].
We first simulate panel data according to the model in (4.14) to learn a model as

described in Section 4.2. For this purpose, we denote β(i) = (β(i)
0 , . . . , β(i)

p ) the parameters
of individual i and βh = (βh0 , · · · , βhp ), the set of parameters common to all the individuals
of the panel.

We take p = 4 the order of the polynomial and βh = (2,−1, 3, 1, 2). We consider the
two following situations for the simulation of the panel.

— First situation: we simulate y(i)
t with β(i) = βh for i = 1, . . . , n. In this case, we

simulate n = 50 series of length T = 200 according to the model in (4.14) and the
parameters β(i). This means that the individual parameters β(i) are the same.

— Second situation: we simulate y(i)
t with β(i) = βh + η(i) for i = 1, . . . , n, where

η(i) ∼ N (0, σ′). Here, a small noise is added to each parameter β(i).

For both situations, we learn a Bayesian hierarchical regression model on the simulated
panels. We set the priors of each parameters as such:
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β(i)|µβh , σβh ∼ N (βh,Σ) (4.15)

where Σ = diag(Σ0, . . . ,Σ4) and

βhk ∼ N (0, 5),

Σk ∼ HC(0, 2.5), for k = 0, . . . , 4.

where HC(0, 2.5) is the Half-Cauchy distribution such that its density is as such:

fy(0; 2.5) =


2

2.5π
1

1+ y2
(2.5)2

if y ≥ 0

0 otherwise

Once the model has been trained on the panel data for both situation, we extract the
posterior mean µ̂βh and posterior covariance matrix σ̂βh . To evaluate the transfer strategy,
we consider several scenarios of simulation of a new individual we denote y∗t .

Considering the model in (4.14), we simulate an individual series of length T = 10 for
each of the following scenarios:

• Scenario n°1 - ideal case: we simulate y∗t with β∗ = βh and σ∗ = 1.

• Scenario n°2 - some or all of the parameters vary and σ∗ = 1:

(a) We simulate y∗t with β∗ = ρβh and σ∗ = 1, where ρ = 0.5.

(b) We simulate y∗t with β∗ = (ρβh0 , ρβh1 , βh2 , βh3 , βh4 ) and σ∗ = 1, where ρ = 0.5.

• Scenario n°3 - some or all of the parameters vary and σ∗ = 4:

(a) We simulate y∗t with β∗ = βh and σ∗ = 4.

(b) We simulate y∗t with β∗ = ρβh and σ∗ = 4, where ρ = 0.5.

(c) We simulate y∗t with β∗ = (ρβh0 , ρβh1 , βh2 , βh3 , βh4 ) and σ∗ = 4, where ρ = 0.5.

For all the scenarios described above we train on the shorter series the following models:

— Model without transfer (MWT): the Bayesian regression model with weakly
informative priors on β∗. Specifically, we take β∗k ∼ N (0, 5), and k = 0, . . . , 4.

— Model with exact transfer (MTE): the Bayesian regression model with infor-
mative priors where β∗ ∼ N (µ̂βh , σ̂βh).
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— Model with flexible transfer (MTF): the Bayesian regression model with in-
formative priors and flexibility parameters. We have β∗ ∼ N (K · µ̂βh , l−1σ̂βh), where
K = diag(k).

The informative prior is constructed following the Gaussian strategy developed in
Launay et al. (2015). Specifically the hyperparameters k and l are taken as in Launay
et al. (2015):

k|q, r ∼ N (q(1, . . . , 1)′, r−1Id), (4.16)

q ∼ N (1, σq), (4.17)

r ∼ G(al, bl), (4.18)

l ∼ G(ar, br), (4.19)

where al = bl = 10−3 and ar = br = 10−6.

Each simulation scenario is repeated a 100 times and we evaluate the performances of the
models using several metrics. Specifically, we look at the following information:

— the error E between the MAP estimates of the parameters denoted β̂h and the real
value of the parameters βh defined by:

E(βh, β̂h) = |βh − β̂h|
|βh|

. (4.20)

— The posterior variance of π(βh|y∗t ).

— The Highest Posterior Density (HPD) regions of level 1− α:

Rα
HPD = {λ, π(λ|D) ≥ hα}, (4.21)

for hα > 0 such that P(λ ∈ Rα
HPD) = 1− α

— The coverage probability that the real value of the parameters βh belong to the
HPD regions over each repetition.

Scenario n°1: ideal case

We first focus on the case where the data y∗t , on which the information is transferred,
has the same parameters as the initial panel data. Recall that when simulating the panel
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data we consider two situations : either the parameters β(i) are identical, or a small noise
is added.

The boxplots of errors E(βh, β̂h), for all the replications are displayed at the top of
Figure 4.4 and Figure 4.5, for the first and second situation respectively. Both models
with transfer (MTE and MTF) show lower error than the model without transfer (MTF)
on the top left of Figure 4.4 and Figure 4.5. This shows the interest of this approach.
There is clear gain to transferring information previously learned.

Furthermore, when looking at the posterior variance of each βh (bottom of Figure 4.4
and Figure 4.5), we see that both MTE and MTF have lower posterior variance for each
parameters over all the replications. For both situations, the posterior variance for the
model with flexible parameters MTF is slightly more dispersed than the model with exact
transfer MTE. Looking both at the errors and the posterior variance, we see that the two
models with transfer outperform the model without transfer.

The boxplots of errors and variances obtained with MTE and MTF for the first sit-
uation (see Figure 4.4) are quite small when compared to the results obtained with the
second situation, this is due to the fact that the posterior distribution transferred have
very low variances. The first situation is not realistic in the sense that all there is no noise
in the panel data, and this lack of noise is transferred to the model for the new individual.
In this scenario, the individual considered has the same parameters as the panel. Thus
the informative models, especially the model without flexible parameters, display very
satisfying results (in terms of error). Hereinafter, we do not consider the first situation,
and focus solely on the second situation, where the information transferred comes from
the noisy data.

Figure 4.6 shows the length of HPD regions for each parameters (top) and the probabil-
ity that over the 100 replications (bottom), the real value of the parameters are contained
within the HPD regions. The model MWT shows lower coverage probability for all the
parameters compared to the other two models as well as larger HPD regions. The infor-
mative approaches, in this ideal case, are both more efficient. The MTE approach differs
only slightly from the MTF approach when looking at those indicators.

Scenario n°2: some or all of the parameters vary, σ = 1

In this scenario, two cases are considered:
(a) β∗ = 0.5βh and σ∗ = 1.
(b) β∗ = (0.5βh0 , 0.5βh1 , βh2 , βh3 , βh4 ) and σ∗ = 1.
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Figure 4.4 – Polynomial regression - First scenario - E(βh, β̂h) is obtained for all the
parameters [top]. The posterior variance boxplots for all the parameters [bottom]. The
results are displayed for the three models MWT [left], MTE [center] and MTF [right], for
the first situation: all the β(i) are identical.

For both cases, the errors are displayed in Figure 4.7. The boxplots of errors obtained
with MWT are larger than thoses obtained with MTF for both cases. For case (a), where
all the parameters differs, the exact transfer approach (MTE) performs badly, results
are comparable with the weakly informative approach. This shows the interest in using
similarity parameters, as the MTF approach outperforms the others. For case (b), only
the first two parameters are different, this has an impact on the error results, where the
first two boxplots for both informative approaches are larger than the three others. Both
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Figure 4.5 – Polynomial regression - First scenario - E(βh, β̂h) is obtained for all the
parameters [top]. The posterior variance boxplots for all the parameters [bottom]. The
results are displayed for the three models MWT [left], MTE [center] and MTF [right], for
the second situation: an individual noise is added to the β(i).

MTE and MTF outperform MWT in this case.
The posterior variance are shown at the bottom of Figure 4.7. For case (a), MTF has

lower errors, with lower variance, making it the best model out of the three, when looking
at both indicators. For case (b), the posterior variance obtained with MWT is much larger
than both informative approaches.

In Figure 4.8, we show the length of HPD regions and the coverage probability for
both cases. For case (a), the length of HPD regions from MTE and MTF is smaller
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Figure 4.6 – Polynomial regression - First scenario - [top] Length of HPD regions
for each parameters. [bottom] Coverage probability over the 100 replications is shown in
blue. The results are displayed for the three models MWT [left], MTE [center] and MTF
[right]. The second situation is considered here.

than with MWT. However, the coverage probability obtained with MTF in this case,
is higher than the other approaches. For case (b), the coverage probabilities for all the
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(a) (b)

Figure 4.7 – Polynomial regression - Second scenario - E(βh, β̂h) is obtained for all
the parameters [top]. The posterior variance boxplots for all the parameters [bottom]. For
each panel, the results are displayed for the three models MWT [left], MTE [center] and
MTF [right], for the second situation: an individual noise is added to the β(i).

parameters obtained with all MWT is higher than the informative approaches, but the
length of HPD regions is also much higher. Thus the regions are more imprecise. For the
informative approaches, the coverage probabilities are globally high for all parameters
except the first, this is consistent with the error results seen in Figure 4.7. For the first
two parameters, MTF has slighlty higher coverage probability with similar length of HPD
regions. Overall, the MTF approach seems to be more efficient than the MTE approach,
when the parameters differ.
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(a) (b)

Figure 4.8 – Polynomial regression - Second scenario - [top] Length of HPD regions
for each parameters. [bottom] Coverage probability over the 100 replications is shown in
blue. The results are displayed for the three models MWT [left], MTE [center] and MTF
[right], for each panel. The second situation is considered here.

Scenario n°3: some or all of the parameters vary, σ = 4

In this scenario, the three following cases are considered:

(a) β∗ = βh and σ∗ = 4.

(b) β∗ = 0.5βh and σ∗ = 4.

(c) β∗ = (0.5βh0 , 0.5βh1 , βh2 , βh3 , βh4 ) and σ∗ = 4.

We display the length of HPD regions and coverage probability in Figure 4.9 for the
three cases. For case (a), the coverage probabilities obtained with MWT are much lower
than MTE and MTF. The length of HPD regions is also quite high, though not as high
as with MTF. Here, the best model is MTE. For case (b), MTE performs badly compared
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(a) (b)

(c)

Figure 4.9 – Polynomial regression - Third scenario - For each panel, [top] length of
HPD regions for each parameters, [bottom] coverage probability over the 100 replications
is shown in blue. The results are displayed for the three models MWT [left], MTE [center]
and MTF [right], for each panel. 100



4.3. Application of the methodology to simulated data

to the other approaches. Here, the weakly informative approach performs the best, when
looking at both the coverage probabilities and the length of HPD regions. For case (c),
looking only at coverage probabilities, MWT seems to perform better than the informative
approaches. However, the length of HPD regions is much higher than with the informative
approaches. MTE performs baldly for the first parameter in terms of coverage probability.
Overall, the best results are obtained with MTF.

MTF seems to outperform MWT most of the times, and is robust to noisy data and
change in parameters. This shows the interest of Bayesian transfer learning, in the context
of short historical data. Even when the shorter series is not too similar to the initial panel
data, a gain in observed, with the addition of flexibility parameters.

MTE, the model with exact transfer, performs well when the parameters of the new
individual are very close to the parameters of the panel data (see Figure 4.5 and Figure
4.15a). When the some or all of the parameters are different, the results obtained with
MTE are deteriorated (see Figure 4.7a and Figure 4.15b). Hereinafter, we do not consider
this model.

The error between the Maximum a posteriori estimates and the true value of the
parameters obtained for the third scenario can be found in Appendix 4.A.

4.3.2 Auto-regressive model

We consider the following AR(p) model for panel data:

y
(i)
t =

p∑
k=1

β
(i)
k y

(i)
t−k + ε

(i)
t , (4.22)

where ε(i)t ∼ N (0, σ) is the individual noise of each individual series i = 1, . . . , n of length
t = 1, . . . , T and σ = 1.

As in Section 4.3.1, we learn the AR(p) model on the simulated panel data, with a
weakly informative prior on the hyperparameters as described in Section 4.2.

For the simulation of the panel, we denote β(i) = (β(i)
1 , . . . , β(i)

p ) the parameters of
individual i and βh = (βh1 , · · · , βhp ), the set of parameters common to all the individuals
of the panel.

We simulate the panel data according to the model in (4.22) taking the same set of
parameters as in Launay et al. (2015). Specifically, each individual series is simulated with
β(i) = βh+η(i) for i = 1, . . . , n, where η(i) ∼ N (0, σ′) and βh = (1.7,−0.23,−0.833, 0.3528),
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i = 1, . . . , n and p = 4. The length of each individual series of the panel is T = 400. Sim-
ilarly to the Bayesian hierarchical regression in Section 4.3.1, we are interested in the
posterior estimates of the upper levels of the hierarchical model denoted µ̂βh and σ̂βh .

For the transfer strategy, we simulate an individual series denoted y∗t according to the
model in (4.22). For the choice of parameters, we consider the following scenarios:

1. we simulate y∗t =: y∗1t with β∗ = βh and σ∗ = 1.

2. We simulate y∗t = y∗1t + η1 with η1 ∼ N (0, σ∗) and σ∗ = 4.

3. We simulate y∗t =: y∗2t with β∗ = ρβh and σ∗ = 1, where ρ = 0.5.

4. We simulate y∗t = y∗2t + η2with η2 ∼ N (0, σ∗) and σ∗ = 4.

We simulate series of length T = 10, 30, 100 for each of the scenarios described. Each
scenario of simulation is replicated a 100 times and results are aggregated over all the
replications. The results presented in this section focus on forecasting, when length of
historical data available is T = 10 and the forecasting horizon is hf = 10 points.

The modelling strategy of transfer on y∗t is the same as in Section 4.3.1. To evaluate
the forecasting, we compute the Mean Absolute Percentage Error (MAPE) defined by:

MAPE(y∗t , ŷt∗) = 1
hf

hf∑
t=1
|y
∗
t − ŷt∗

y∗t
|.

The MAPE of the forecast for the two first scenarios are displayed in Figure 4.10. We
see that, when the noise is small, there is a clear benefit to applying transfer whereas
performances are degraded when the data is noisy.

The MAPE of the forecast for the two last scenarios are displayed in Figure 4.11. In
this case, the set of parameters differs a lot from the initial parameters of the panel data.
THe series simulated are quite different due to that. We see that, when the noise is small,
applying transfer to the autoregressive model displays lower errors whereas performances
are degraded when the data is noisy (σ∗ = 4).

Now looking at the length of prediction intervals and coverage probabilities for the
first two scenarios in Figure 4.12, we see that, the coverage probabilities is lower for the
transfer case. The prediction intervals are also quite smaller.

Finally, in Figure 4.13, we show the length of prediction intervals and related coverage
probabilities for the last two scenarios. Again, the coverage probabilities are lower with
the transfer case, as well as the length of prediction intervals. For the third scenario, when
the noise is small, we see that though coverage probability is slightly small in the transfer
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(a) β∗ = βh and σ∗ = 1 (b) β∗ = βh and σ∗ = 4

Figure 4.10 – Autoregressive model - For both panels, Average MAPE between the
Maximum a posteriori and real value of the forecast for T = 10 points of historical data,
The results are displayed for the two models MWT [left] and MTF [right], for each panel.

(a) β∗ = ρβh and σ∗ = 1 (b) β∗ = ρβh and σ∗ = 4

Figure 4.11 – Autoregressive model - For both panels, Average MAPE between the
Maximum a posteriori and real value of the forecast for T = 10 points of historical data,
The results are displayed for the two models MWT [left] and MTF [right], for each panel.

case, the difference between the two models is small, in terms of coverage probability.
However, the length of prediction intervals is much lower in the transfer situation. The
transferring strategy seems to provide interesting results, even when the new individual
is not as close as the initial panel. However, when the data is too noisy, the benefit of
transfer is a little mitigated.

Additional results obtained for varying length of historical data T = 30 and T = 100
are available in Appendix 4.B.
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(a) β∗ = βh and σ∗ = 1 (b) β∗ = βh and σ∗ = 4

Figure 4.12 –Autoregressive model - For both panels, [top] Average length of prediction
intervals for T = 10 points of historical data, [bottom] Percentage of values contained
within the prediction intervals over the 100 replications (in blue). The results are displayed
for the two models MWT [left] and MTF [right], for each panel.

4.3.3 Hierarchical Poisson model

We simulate n individuals series length T for the panel data according to the following
hierarchical Poisson model:

y
(i)
t ∼ P(λi), (4.23)

λi ∼ Γ(ai, bi), (4.24)

ai ∼ E(1/a), (4.25)

bi ∼ E(1/b), (4.26)

a ∼ Γ(1, 1), (4.27)

b ∼ Γ(1, 1), (4.28)
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(a) β∗ = ρβh and σ∗ = 1 (b) β∗ = ρβh and σ∗ = 4

Figure 4.13 –Autoregressive model - For both panels, [top] Average length of prediction
intervals for T = 10 points of historical data, [bottom] Percentage of values contained
within the prediction intervals over the 100 replications (in blue). The results are displayed
for the two models MWT [left] and MTF [right], for each panel.

where i = 1, . . . , n and t = 1, . . . , T . Each individual series i has a set of individual
parameters ai and bi. The parameters common to all the individuals are a and b and we
wish to transfer the information of the posterior distribution of those parameters to new
individuals with shorter historical data. The length of each individual series in the panel
is T = 5000 and the number of individuals in the panel is n = 50.

We are in a univariate setting here and the information transferred is the posterior
mean and posterior variance of parameters a and b. We denote µ̂a and µ̂b the posterior
means of hyperparameters a and b respectively. The posterior variances of a and b are σ̂a
and σ̂b respectively.

For the simulation of the new individual with short historical data D∗, we consider
the following cases:

(a) ideal case: a = b = 1,

(b) a = 9
4 and b = 3

2 ,

(c) a = 4 and b = 2.

The length of the simulation for the short data is T = 25 points. Each scenario of simu-
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lation is replicated a 100 times.
For the informative approach, we choose the following priors on a and b:

a ∼ G(αa, βa),

b ∼ G(αb, βb),

where

αa
βa

= K · µ̂a,
αb
βb

= K · µ̂b,
αa
β2
a

= l−1 · σ̂a,
αb
β2
b

= l−1 · σ̂b,

Remark 19 We set gamma priors on the parameters here because we have positive con-
straints on a > 0 and b > 0. Using truncated normal distributions here is not recom-
mended. With the Gaussian strategy of Launay et al. (2015), transfer of information
(mean and covariance) is done on a complete distribution, and truncation has an effect
on the moments of this new distribution.

We display the length of HPD regions and coverage probabilities obtained with the three
scenarios of simulation for the shorter dataset in Figure 4.14. The ideal case (a) shows
that MTF performs well compared to MWT (see Figure 4.14a). Coverage probabilities
are very high with and without transfer, but the length of HPD regions with transfer is
much lower. When the new individual is very similar to th original panel, the transferring
srategy is quite efficient.

For scenario (b), we see in Figure 4.14b, that coverage probabilities are high without
transfer, but the length of HPD regions are very large. Transfer degrades the coverage
probability for parameter a, but improves is for parameter b, while the length of the HPD
region is much smaller.

For scenario (c), we see similar results in Figure 4.14c. The coverage probability with
transfer for parameter (b) is very high and very low for parameter (a), while the length
of HPD regions are quite small.
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Overall, in this univariate situation, when the new individual differs from the original
panel, the transferring strategy’s performances are mitigated.

The MAPE between the Maximum a posteriori estimates and the true value of the
parameters obtained for all the scenarios can be found in Appendix 4.C.

4.4 Conclusion and discussion
We have proposed a methodology for transfer learning on panel data using a Bayesian

approach. The methodology is adapted from the proposed methodology of Bayesian trans-
fer Launay et al. (2015) where the longer historical data consists in only one time series.

We extend the methodology to the case of panel data. The first part of the method
consists in training a weakly informative Bayesian hierarchical model on panel data with
longer historical data. Posterior mean and covariances of the hyperparameters (the global
behavior of the panel) are used in the second part of the method to transfer information
to a new individual with shorter historical data.

We show applications of the methodology to three simulation situations. For polyno-
mial regression, we see that there is a clear gain in using the transfer learning strategy.
For the autoregressive model, we see that when the new individual is not too noisy, the
transfer learning strategy remains relevant. For the hierarchical Poisson model, the per-
formances of transfer are mitigated when the new individual differs too much from the
panel. As for this last situation, we transfer the variance and not the correlation between
the parameters, this may explain why the results obtained are less satisfying.

In Chapter 5, we apply this methodology to real world data and the case of forecast-
ing the end-of-month consumption of a new customer, with short historical, using the
information extracted from a panel of customers with longer historical data.

4.A Polynomial regression

4.A.1 Scenario n°3: some or all of the parameters vary, σ = 4

4.B Auto-regressive model

4.C Hierarchical Poisson model
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(a) (b)

(c)

Figure 4.14 –Hierarchical Poisson model - For each panel, [top] length of HPD regions
for each parameters, [bottom] coverage probability (in blue) over the 100 replications. The
results are displayed for the three models MWT [left] and MTF [right], for each panel.
For each model, the results are shown for parameters a and b side by side.
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(a) (b)

(c)

Figure 4.15 – Polynomial regression - Third scenario - E(βh, β̂h) is obtained for all
the parameters [top]. The posterior variance boxplots for all the parameters [bottom]. The
results are displayed for the three models MWT [left], MTE [center] and MTF [right], for
all three panels. 109
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(a) β∗ = βh and σ∗ = 1 (b) β∗ = βh and σ∗ = 4

Figure 4.16 – Autoregressive model - Length of historical: T = 10. [top] E(βh, β̂h)
is obtained for all the parameters. [bottom] The posterior variance boxplots for all the
parameters. The results are displayed for the two models MWT [left] and MTF [right],
for all panels. For all models, the results are shown for all the parameters.

(a) β∗ = ρβh and σ∗ = 1 (b) β∗ = ρβh and σ∗ = 4

Figure 4.17 – Autoregressive model - Length of historical: T = 10. [top] E(βh, β̂h)
is obtained for all the parameters. [bottom] The posterior variance boxplots for all the
parameters. The results are displayed for the two models MWT [left] and MTF [right],
for all panels. For all models, the results are shown for all the parameters.
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(a) β∗ = βh and σ∗ = 1 (b) β∗ = βh and σ∗ = 4

Figure 4.18 –Autoregressive model - For both panels, [top] Average length of prediction
intervals for T = 30 points of historical data, [bottom] Percentage of values contained
within the prediction intervals over the 100 replications. The results are displayed for the
two models MWT [left] and MTF [right], for each panel.

(a) β∗ = ρβh and σ∗ = 1 (b) β∗ = ρβh and σ∗ = 4

Figure 4.19 –Autoregressive model - For both panels, [top] Average length of prediction
intervals for T = 30 points of historical data, [bottom] Percentage of values contained
within the prediction intervals over the 100 replications. The results are displayed for the
two models MWT [left] and MTF [right], for each panel.
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(a) β∗ = βh and σ∗ = 1 (b) β∗ = βh and σ∗ = 4

Figure 4.20 –Autoregressive model - For both panels, [top] Average length of prediction
intervals for T = 100 points of historical data, [bottom] Percentage of values contained
within the prediction intervals over the 100 replications. The results are displayed for the
two models MWT [left] and MTF [right], for each panel.

(a) β∗ = ρβh and σ∗ = 1 (b) β∗ = ρβh and σ∗ = 4

Figure 4.21 –Autoregressive model - For both panels, [top] Average length of prediction
intervals for T = 100 points of historical data, [bottom] Percentage of values contained
within the prediction intervals over the 100 replications. The results are displayed for the
two models MWT [left] and MTF [right], for each panel.

112



4.C. Hierarchical Poisson model

(a) (b)

(c)

Figure 4.22 – Hierarchical Poisson model - [top] E(βh, β̂h) is obtained for all the
parameters. [bottom] The posterior variance boxplots for all the parameters. The results
are displayed for the two models MWT [left] and MTF [right], for all three panels. For
each model, the results are shown for parameters a and b side by side.
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Chapter 5

APPLICATION OF BAYESIAN TRANSFER

FOR PANEL DATA: END OF MONTH

ELECTRICAL CONSUMPTION

FORECASTING FOR RESIDENTIAL

CUSTOMERS

5.1 Introduction

For companies such as Électricité de France (EDF), panel data modeling and its ap-
plication are a topic of interest, closely related to consumer behavior and consumption
forecasting. This is the case, for instance, for forecasting of individual residential con-
sumption, based on household features and consumers’ behavior.

Recent approaches have been developed for the issue of residential load forecasting.
Iyengar et al. (2018) propose a Bayesian-based approach to model and detect energy

inefficient residential buildings. In Sun et al. (2020), a Bayesian deep learning framework
is developed for forecasting of the aggregated residential load. Brusaferri et al. (2019) also
use a Bayesian deep learning approach for short-term residential load forecasting. Bessani
et al. (2020) apply a Bayesian network for short-term residential load forecasting at half
hourly period.

A common issue, arising in industrial applications such as forecasting of individual
residential consumption, is the lack of historical data to forecast the behavior of new cus-
tomers. This lack of historical data prevents us from using deep learning-based approaches,
as they rely on large volumes of data to be trained properly.

One way to overcome this issue is to use information and knowledge on existing cus-
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tomers and apply it to new customers. This can be seen as a transfer learning situation
where the existing customers constitute the source domain and the new customers of in-
terest the target domain. Transfer learning can be an efficient way to predict behavior of
new customers. It has the advantage of reducing training time of models for new obser-
vations, and requires a smaller amount of training data when transferring on the source
domain to learn the source task.

In this Chapter, we propose an application of the general methodology presented in
Chapter 4 to the forecasting of individual residential customers. Specifically, we focus on
end-of month forecasting.

In Section 5.2, we present the dataset we use for this industrial use-case. In Section 5.3
we introduce the notations used throughout the Chapter. Section 5.4 is dedicated to the
presentation of the models as well as the results obtained on real world data. A discussion
and conclusion of this chapter is provided in 5.5.

5.2 Description of the dataset
The dataset considered is the dataset from the CER Smart Metering Project (see

Commission for Energy Regulation (2012)). We focus on a subgroup of the dataset. The
construction of this subgroup, by means of clustering methods and deep learning, is pre-
sented in Chapter 6.6.

For each individual household in the dataset, we have load curves, initially at half-
hourly period, that are aggregated to a daily period. Similarly, the temperature curves are
available and aggregated at a daily period. The dataset provides questionnaires indicating
various information relating to each of the households. For the purpose of this study we
consider only a few of those information. The details on the selected variables are provided
in Section 5.3.

The models are trained on a training subset of 725 individual households. For our
experiments, we evaluate the transfer learning method on 93 individuals from the same
subgroup as the training subset.

5.3 Notations
Recalling the notations introduced in Chapter 4, we denote:
— D1 = (X(i)

t , V
(i)
t )i=1,...,n

t=1,...,T
, the panel of residential customers with long historical data.
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— X
(i)
t represents the consumption of the household i at time t

— The number of individuals in the panel is n = 725, and the length of each time
series is T = 365.

— the variables V (i)
t of a given customer i are:

— the outside temperature T (i)
t recorded for the day t, t = 1, . . . , T .

— 1
(i)
h the binary variable indicating the presence of electric heating in the house-

hold i.

— 1
(i)
wh the binary variable indicating the presence of an electric sanitary hot water

system in the household i.
— D∗ = (X∗t , V ∗t ), the data of a household with shorter historical data.

— where t ∈ {t1, . . . , t2}, and t2 − t1 < T .

— the variables V ∗t of the customer i are:
— the outside temperature T ∗t recorded for the day t, t ∈ {t1, . . . , t2}.

— 1∗h the binary variable indicating the presence of electric heating in the house-
hold i.

— 1∗wh the binary variable indicating the presence of an electric sanitary hot water
system in the household i.

5.4 Application to end-of-month electrical consump-
tion forecasting

We wish to forecast the individual end-of-month electrical consumption of residential
customers. The issue being that when the historical data available for an individual is
short, forecasting methods provide unreliable forecasts.

We adapt the methodology presented in Chapter 4 of Bayesian transfer learning for
panel data analysis. The goal is to use information from customers with longer historical
consumption, after training Bayesian hierarchical models on them and applying the in-
formation to the prior of the parameters of an individual model of a new customer, with
shorter historical data. The model on the new customer is then trained with the short
historical available and the informative prior. After the training, we focus on forecasting,
using the posterior predictive distribution. The forecast of the end-of-month consumption
is done in two steps:
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— We forecast, each point of the horizon left of the month for the new customer, given
the length of its historical data at the beginning of the month.

— The forecasts obtained at each timestep considered are summed to have a forecast
of the end-of-month consumption of the new customer.

5.4.1 Weakly informative approach

We apply and compare two models described in the following section, for estimating
the individual consumption of a panel of i customers, with historical time series of length
T . We denote the models as follows:

— (M1D1): the consumption is modeled with a Bayesian hierarchical regression using
the temperature available at time t, the possession of an electrical heating system,
and the possession of an electrical water heating system.

— (M2D1): this model is an adaptation of (M1D1) where an additional term is added,
the lagged consumption of the previous day.

Remark 20 • The lagged consumption of the previous day is considered because we
want to see whether using historical data available is relevant to the task at hand. We
restrict ourselves to the previous day only because the ultimate goal is to forecast the
consumption using short historical data. In real world applications, the consumption
of previous days may not always be available, thus we restrict ourselves in this study.
Future applications may involve going further in the past, and comparing whether
there is an interest in doing so.

• We choose to use few variables here, because those are the most frequently avail-
able for residential customers. It could be relevant for future applications to add
more variables to the models, for instance, the possession of an air conditioning, a
heated pool or an electric vehicle as they may have a great influence on individual
consumption.

For each individual household, we have the following model named (M1D1):

X
(i)
t ∼ N (β(i)

intpt + β
(i)
h (T it − uh)1T (i)

t <uh
1h + β

(i)
wh1wh, σ

2
X),

for t ∈ 1, . . . , T
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The parameters uh indicates the minimum temperature level for which the household

start their heating system. The parameters β(i) =


β

(i)
intpt

β
(i)
h

β
(i)
wh

 follow a multivariate prior

normal distribution as such:

β(i)|βM1,ΣM1 ∼ N (βM1,ΣM1), for i = 1, . . . , n

The mean vector of the normal distribution is:

βM1 =


βintpt

βh

βwh



Each hyperparameter β. follows a weakly informative hyperprior (a normal distribution
with large variance). The covariance matrix ΣM1 is:

ΣM1 =


σ2
βintpt

0 0
0 σ2

βh
0

0 0 σ2
βwh


The diagonal elements of ΣM1 each follow a Half-Cauchy prior distribution (see Gelman
(2006)).

For the purpose of comparison, we consider another model named (M2D1). We consider
a supplementary variable to our model which is the lag of consumption of the previous
day:

X
(i)
t ∼ N (β(i)

intpt + β
(i)
h (T it − uh)1T (i)

t <uh
1h + β

(i)
wh1wh + β

(i)
lagX

(i)
t−1, σ

2
X), for t = 1, . . . , T

The parameters β(i) =


β

(i)
intpt

β
(i)
h

β
(i)
wh

β
(i)
lag

 follow a multivariate prior normal distribution as such:

β(i)|βM2,ΣM2 ∼ N (βM2,ΣM2), for i = 1, . . . , n
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The mean vector of the normal distribution is:

βM2 =


βintpt

βh

βwh

βlag


Each hyperparameter β. follows a weakly informative hyperprior as in (M1). The

covariance matrix ΣM2 is:

ΣM2 =


σ2
βintpt

0 0 0
0 σ2

βh
0 0

0 0 σ2
βwh

0
0 0 0 σ2

βlag


The training subset is used to learn (M1D1) and (M2D1). Once training is done,

we sample in the posterior distribution. The samples are used to obtain the mean and
covariance of the posterior distribution of βM1 and βM2 denoted µ̂M1

β , µ̂M2
β , Σ̂M1

β and Σ̂M2
β .

The mean and covariance are the information that we are going to transfer to the model
of the new individual with shorter historical data.

5.4.2 Informative approach

From the estimation of the model (M1D1), we get the mean and covariance of the
posterior distribution of the parameters µ̂M1

β and Σ̂M1
β . We consider the hierarchical model

(M1) for the dataset D∗ with shorter historical data:

X∗t ∼ N (β̃∗intpt + β̃∗h(T it − ũh)1T ∗
t <ũh

1h + β̃∗wh1wh, σ
2
X∗)

The parameters β̃∗ =


β̃∗intpt

β̃∗h

β̃∗wh

 follow a multivariate normal distribution.

We have:

β̃∗ ∼ N (KM1 · µ̂M1
β , l−1

M1 · Σ̂M1
β ),

where KM1 = diag(kM1). µ̂βM1 and σ̂βM1 are the mean and covariance of the posterior re-
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sulting from model (M1). As in 4.2.2, the parameters kM1 and lM1 to model the similarity
between the new individual and the dataset D1.

Similarly, we can adapt a model (M2) for the individual, using the posterior mean and
covariance denoted µ̂M2

β and Σ̂M2
β of model (M2D1). The model (M2) is the following:

X∗t ∼ N (β̃∗intpt + β̃∗h(T it − ũh)1T ∗
t <ũh

1h + β̃∗wh1wh + β̃∗lagX
(i)
t−1, σ

2
X∗)

The parameters β̃∗ =


β̃∗intpt

β̃∗h

β̃∗wh

β̃lag

 follow a multivariate normal distribution:

β̃∗ ∼ N (KM2 · µ̂M2
β , l−1

M2 · Σ̂M2
β ),

where KM2 = diag(kM2). As for the model (M1), the parameters kM2 and lM2 are intro-
duced to model the similarity between the new individual and the dataset D1.

The models (M1) and (M2) are trained on the testing subset, with short historical
data.

5.4.3 Forecasting the end-of-month electrical consumption of in-
dividual customers

After inference of the models (M1) and (M2), we can sample from the posterior
predictive distribution (see Equation (4.13)) for a forecasting horizon h.

For a given individual, we denote tfirst and tlast the first and last days of the month
considered. The value of an individual end-of-month consumption is:

C∗ =
tlast∑

t=tfirst

X∗t (5.1)

When some historical data is available at the beginning of the month (e.g. the first week
of data), we adapt the calculation above. Let tfirst ≤ tp ≤ tlast the last day of historical
data available for the individual, for the month considered. We forecast the values of X∗t
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for tp < t ≤ tlast. We denote X̂∗t the forecast. The end-of-month consumption is:

Ĉ∗ =
tp∑

t=tfirst

X∗t +
tlast∑

t=tp+1
X̂∗t (5.2)

In a Bayesian setting, we rely on the posterior predictive distribution to obtained the
point estimates of the forecast as well as prediction intervals.

From (4.13), we sample J = 1000 realizations to forecast j = 1, . . . , J values of X∗t for
tp < t ≤ tlast. Let X̂∗(j)t denote the j-eth forecast of X∗t , for tp < t ≤ tlast. We then have a
collection of end-of-month consumption realizations denoted Ĉ∗ = Ĉ∗(j), from which we
can deduce point estimates (here, we consider the maximum a posteriori) and intervals.

Error evaluation for point estimates

To evaluate the error between the real value of individual end-of-month and a point
estimate, we define:

E(C∗, Ĉ∗) =
∣∣∣∣∣C∗ − Ĉ∗C∗

∣∣∣∣∣ (5.3)

5.4.4 Results

In this Section, we show the results obtained from the approach. We wish to forecast
the consumption at the end of a given month, for customers with shorter historical data,
for different forecasting horizons.

The numerical applications are conducted with R (R Core Team (2019)), the Bayesian
models and estimation are carried out with the Stan software (see Carpenter et al. (2017)
and Stan Development Team (2018)) and used in the R interface to Stan (Stan Develop-
ment Team (2020)).

We focus on forecasting the consumption at the end of february. Specifically, we con-
sider the following length of historical data:

— t2 = 37 days, we predict the next 22 days

— t2 = 45 days, we predict the next 14 days

— t2 = 53 days, we predict the next 7 days

We predict each day, using a sample from the posterior predictive distribution and we
sum the values of each realization of the sample to obtain the predictions. Point estimates
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are given using the Maximum a Posteriori, and we compute the MAPE between the point
estimates and the real value.

Hereinafter, we display the performances of the models on the forecasting of the end-
of-month consumption, for varying horizons of forecasting. Results are summarized for
the 93 individuals of the testing subset on which the methodology has been applied.

We compare the performances of (M1) and (M2) with the informative approach and
without transferring information, as is done in 4.3.

The forecasting errors obtained when the historical data available is the shortest (t2 =
37 days) are shown on Figure 5.1. We can see that the best model here in terms of
performances is the (M2) model with transfer of information learned from the panel
with longer historical data. The (M1) model display comparable median errors with and
without transfer (left and right of Figure 5.1 respectively). The error of (M1) with transfer
is more dispersed.

Figure 5.1 – Boxplots of E(C∗, Ĉ∗) obtained with the point estimates for each individual
in the training set, given a horizon of 22 days of data. [Left] The error is displayed for the
M1 [Pink] and M2 models [Blue]

When we wish to forecast the consumption of the new individuals using t2 = 45
days of data, the results obtained with both models are displayed in Figure 5.2. The
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errors have decreased compared to Figure 5.1, which is to be expected, as more training
data is available. The performances are similar as previously, as the (M2) model with
transfer seems to give out the lowest errors. Again, the (M1) model with transfer has
more dispersed errors.

Figure 5.2 – Boxplots of E(C∗, Ĉ∗) obtained with the point estimates for each individual
in the training set, given a horizon of 14 days of data. [Left] The error is displayed for the
M1 [Pink] and M2 models [Blue]

Finally, the errors obtained with the longest historical data of the testing set considered
here are displayed in Figure 5.3. The errors have decreased compared to the two other
cases, as is to be expected. The best model, out of the four considered, is again the (M2)
model with transfer. All the boxplots of errors are smaller, because the larger the historical
data is available, the closer the performance between informative and noninformative
approaches will get. The (M1) model with transfer gives out the second best performances
here, and the errors are less dispersed than in the previous cases.

We also look are the length of 80% prediction intervals for the end-of-month consump-
tion of each of the individuals and the real value of their consumption at the different
horizons considered. The results are displayed in 5.4 for the varying horizons considered.
When the horizon is the shortest (i.e. t2 = 37 days), the coverage probability of the
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Figure 5.3 – Boxplots of E(C∗, Ĉ∗) obtained with the point estimates for each individual
in the training set, given a horizon of 7 days of data. [Left] The error is displayed for the
M1 [Pink] and M2 models [Blue]

prediction intervals for all the models is very small. The largest coverage probability is
obtained with the (M2) model without transfer, however, this is also the model with the
largest intervals (see Figure 5.4a). When the horizon grows (t2 = 45 days), the coverage
probabilities for all models increases (see Figure 5.4b). The largest coverage probability
is again obtained with the (M2) model without transfer, but the length of the prediction
intervals is much larger than with the others models. The (M2) model with transfer has
the second largest coverage probability in this case. The length of prediction intervals is
also much smaller than the (M2) model without transfer. For the last case (t2 = 53 days),
the observations are similar to the two other cases. The coverage probability of the (M1)
model without transfer improves slightly, but the length of intervals is the smallest of the
four. This model fails to capture correctly the true value of the end-of-month consump-
tion. Overall, the (M2) model with transfer seems to have reasonable sized prediction
intervals. The coverage probability is around 70% of the testing subset in this case.

Given all the observations, the (M2) model with transfer is the best one out of the
four for the different horizons considered.
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Overall, considering the results obtained on real world data, we see a benefit to using
the Bayesian transfer learning methodology as described in Chapter 4. Even as the horizon
of forecasting grows, the transferring approach remains relevant with both models.
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5.5 Conclusion

Individual load forecasting is a challenging task due to the great variety of residen-
tial customers. We have showed here an application of the Bayesian approach proposed
in Chapter 4 to real world data. The forecasting is improved with the use of Bayesian
transfer learning. This is promising for potential industrial applications. The main draw-
back of Bayesian approaches, is the duration of training of the models. Once the weakly
informative approach is done, however, the transfer learning on individual customers is
quite fast. In real-world applications, some information on household are complicated to
obtain. For this reason, and to simplify the individual models considered here, we focus
on integrating only certain information available to our models.

However, it may be interesting to add variables to both models M1 and M2 such as
the housing surface, calendar information like holidays, and week-ends, possession of an
electric vehicle, the possession of an electric air conditioning system etc. One can easily
imagine adding a similar threshold parameter for the case of air conditioning. Future
applications may consider adapting the models with other variables and evaluate their
relevancy.

Bessani et al. (2020) use only certain lagged consumption to their model, based on
the mutual information between the consumption at time t and the consumption at time
t− k. The lagged consumption integrated to the model are those that present the highest
mutual information index. This may be an interesting approach for future applications,
to integrate temporal dependency to the Bayesian models.

The results shown on the testing subset of the CER dataset shows the benefit of
the transfer learning through the prior for the individual model of new customers. The
(M2) model with transfer gives out the best results in terms of error out of the four
models considered. The observations are consistent with what was seen in Chapter 4.
The performances of the transfer, for forecasting, seems to be degraded when looking at
the coverage probabilities. This matches the observations made in 4.3.2, where the model
without transfer seems to outperform the model with transfer. However, usually, the
prediction intervals obtained with the models without transfer are much larger, making
them more imprecise as well.

In this Chapter, the dataset used for D1 the panel with long historical data and D∗ the
individuals with shorter historical data is a subset of the CER dataset (see Commission
for Energy Regulation (2012)). The construction of this subset is detailed in Chapter
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6. The goal is to have D1 as close as possible to the new customer D∗. We detail the
methodology for the building the subset, using deep learning methods and clustering as
well as affecting the individuals to the clusters. The results presented in this Chapter
focus on a fixed cluster.

We discuss the affectation of the new individuals to the clusters using the majority
rule. The issue being that miss-classified individuals will have a subsequent forecast based
on the model of the wrong class. To alleviate this issue, we show in Chapter 6 a method
to obtain mixture predictions for the new individual instead of affecting them to a unique
class.
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(a) Horizon: 22 days (b) Horizon: 14 days

(c) Horizon: 7 days

Figure 5.4 – For each panel: [top] length of prediction intervals, [bottom] coverage proba-
bility. The results are displayed forM1 [Pink] andM2 models [Blue]. For each case, [Left]
boxplots are the models with transfer and [Right] are the models without transfer.
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Chapter 6

CLASSIFYING NEW CUSTOMERS INTO

HOMOGENEOUS GROUPS WITH DEEP

LEARNING

6.1 Introduction
In Chapter 5, we describe an application of Bayesian transfer learning to forecasting

the end-of-month consumption of residential customers. The methodology is applied to
a subgroup of the database from the CER Commission for Energy Regulation (2012).
In this Chapter, we describe the methodology designed to build the subgroup used in
Chapter 5.

When modeling the individual electrical consumption, many factors may intervene
such as: the outside temperature, the possession of an electric heating system, an electric
sanitary water heating, the surface of the household, the number of appliances, the num-
ber of individuals in the household etc. Considering the diversity of customers whether
in terms of behavior, household characteristics or appliances, it appears relevant to re-
group them into homogeneous subgroups before adopting a Bayesian approach. In real
world applications, household characteristics may not always be available directly when
the customer subscribes to a utility contract. This poses an issue when we rely only on
those characteristics to regroup the individuals. The widespread deployment of smart me-
ters allows utility companies to have precise information on the household consumption,
using the load curve (at different time periods). For those reasons, we focus on building
homogeneous groups of customers based on their individual load curve rather than only
the household characteristics.

The availability of smart meter data, while beneficial for load analysis and demand
response, poses new challenges due to the high dimensional nature of the data. Many
statistical analysis task fail in high dimension, thus requiring a prior dimensionality re-
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duction step. Individual load curves are nonlinear time series, thus necessitating appro-
priate dimensionality reduction approaches. Wavelet-based approaches are a classical tool
for time series representation and dimensionality reduction. Vlachos et al. (2003) adopt
a wavelet-based approach for time series clustering.Antoniadis et al. (2013) present clus-
tering strategy based on the wavelet transform to reduce dimension of time series. Auder
et al. (2018) adopt the strategies proposed by Antoniadis et al. (2013) to the cluster-
ing of electrical load curves, including the wavelet-based dimensionality reduction step.
Other statistical methods for dimensionality reduction techniques applied to time series
include Piecewise Aggregate approximation, The Discrete Fourier Transform model-based
approaches such as Generalized Additive Models (see Laurinec and Lucká (2018) for an
application) etc. For more information on those approaches for dimensionality reduction
on time series, refer to Laurinec and Lucká (2016).

Deep learning methods have also been considered for the dimensionality reduction of
time series. Madiraju et al. (2018) propose a deep learning based approach for dimen-
sionality reduction for temporal clustering. The architecture of the encoder relies on 1D
convolutional layers as well as Bidirectionnal Long Short Term Memory blocks. Ma et al.
(2019) use a Recurrent neural network encoder-decoder architecture combined with clus-
tering for time series. Richard et al. (2020) propose a 1D convolutionnal autoencoder
based approach to dimensionality reduction for clustering electrical load curves. Kong
et al. (2020b) use a stacked autoencoder architecture for dimensionality reduction and
feature extraction of electrical load curve.

A review of time series clustering has been proposed by Aghabozorgi et al. (2015).
Neural networks are massively used nowadays for multiclass-classification. Several ap-

plications exist in image and speech recognition (see for instance He et al. (2016), Si-
monyan and Zisserman (2015) and Graves et al. (2013)). A review of deep learning meth-
ods applied to time series classification is provided in Fawaz et al. (2019).

In this Chapter, we focus on building homogeneous groups of customers based on
their individual electrical load curves, using the CER database (Commission for Energy
Regulation (2012)). Hereinafter, the following aspects are tackled:

• Dimensionality reduction based on deep neural networks. We focus on two architec-
tures of autoencoders designed to reduce the dimension of individual load curves.

• Clustering the individual into groups. We use clustering methods, on the load curves
in reduced dimension, in order to build homogeneous groups of individuals.

• Multi-class classification of new individuals, with short historical data, into the
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groups. We design a deep neural network to classify the individuals to the labels
obtained from the previous clustering step.

We adopt a similar approach to Richard et al. (2020), as we adapt a 1D convolutional
autoencoder to first reduce the dimension of the individual load curves and perform
clustering on the latent space.

Section 6.2 briefly describes the notations used throughout the Chapter. In Section
6.3, we specify the two architectures of neural networks used to perform dimensionality
reduction on the time series. In Section 6.4, we present the clustering methods applied to
the reduced load curves and the methods used to select the optimal number of clusters.
Section 6.4 details the method and structure of the neural network used to classify new
individuals into the clusters. In Section 6.6, we describe the dataset used and the results
obtained for the dimensionality reduction methods, the clustering and the classification.
In Section 6.7, we present an adaptation of the end-of-month forecasting developed in
Chapter 5, where we make use of softmax scores to obtain mixture predictions. Section
6.8 is dedicated to concluding this Chapter and perspectives for future work.

6.2 Notations
The notations used in this Chapter are the following: Hereinafter we refer to n = 365

as the length of individual load curves, m = 3159 the number of individuals. We denote
X = (X(i)

t )1≤i≤m,
1≤t≤n

, the matrix of dimension (m,n), containing the consumption time series

of m individual customers, and of length n, where X(i)
t indicates the consumption at time

t ∈ {1 . . . n} of each individual customer i ∈ {1, . . . ,m}.
• n = 365 denotes the length of each individual load curve for the training set
• m = 3159 denotes the number of individual customers
• X = (X(i)

t )1≤i≤m,
1≤t≤n

, is the matrix of dimension (m,n) containing the consumption
time series of m individual customers, and of length n.
• I = (I(i)

p )1≤i≤m,
1≤p≤d

, is the matrix of dimension (m,n) containing the load curve of m
individual customers in an encoded space of dimension d. I is the reduced represen-
tation of X, obtained with a dimensionality reduction technique. We refer to I as
the latent space or encoded space. d is the dimension of encoding.
• C denotes the number of desired clusters built using I, given any clustering method.
Ck denotes the k-eth cluster of size nk, for 1 ≤ k ≤ C.
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6.3 Dimensionality reduction

Each of the individual load curves are in dimension 365 (over a year, at a daily period).
Since we wish to cluster individuals using their load curves, clustering techniques may fail
in high dimension. Thus, before clustering the customers, we wish to reduce the dimension
of their load curves.

Deep neural networks have been gaining traction in various domains (Krizhevsky et al.
(2012), He et al. (2016)). A specific architecture of neural networks has been applied to
perform dimensionality reduction: autoencoders Hinton and Salakhutdinov (2006). They
take the load curves X as input and output as such:

I = e(X),

X = d(I),

where e and d are respectively the encoding and decoding function, constituted of several
nonlinear transformations, also referred to as layers of the neural network. I denotes the
load curves in reduced dimension, we refer to I as the latent or encoded space.
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Figure 6.1 – Outline of an autoencoder (Section 6.3). Encoding and Decoding contain
several layers designed to first reduce the dimension of the inputs X and then reconstruct
them. Clustering is operated on the latent space I

Here we consider two types of layers for the encoding and decoding functions: Fully
Connected layers (or Dense layers) and one-dimensional convolutional layers (1D-convolutions).
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6.3.1 Dense layers

An autoencoder constituted of i+ 1 Dense layers is defined by:

h1 = σ(WT
1 ·X + b1), (6.1)

...

I = σ(WT
d · hd−1 + bd),

hd+1 = σ(WT
d+1 · I + bd+1),

...

hi = σ(WT
i · hi−1 + bi),

X = σ(WT
i+1 · hi + bi+1), (6.2)

Here, X are both the inputs and output of the neural network, hj, 1 ≤ j ≤ i are the
outputs of the hidden layers, Wp and bp are the weights and biaises of the networks,
1 ≤ p ≤ i. I is the latent space, a reduced representation of the inputs X obtained
through several successive linear and nonlinear transformations.

The function σ is the activation function, it can be a linear of non linear transformation,
depending on the task the neural network performs. A common choice for σ is the Rectified
Linear Unit (ReLU):

σ(x) = max(0, x), for all x ∈ R (6.3)

6.3.2 1D convolutions layers

Usually convolutional neural networks are applied to image data and refer to 2D
convolutions. We focus on a specific case of convolutions, namely 1D convolutions designed
specifically for signals. For an extended review on 1D convolutions refer to Kiranyaz et al.
(2021). An example of neuron of a 1D-convolutional layer is as such:

hli,j = σ(bj +
P∑
p=1

wlp,jx
l−1
i+p−1,j) (6.4)

where hli,j is the i-eth output of the layer l, 1 ≤ l ≤ L. bj are the biases and wp,j the
kernels (also referred to as weights) for the j-eth feature map and xl−1 is the signal (or
output of the previous layer).
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An autoencoder designed with 1D-convolutional layer is built similarly to an autoen-
coder with Dense layers (as described in (6.1)-(6.2)), by stacking convolutional layers
(varying in dimension to encode the input data) as defined in (6.4).

6.4 Clustering

We wish to build homogeneous subgroups of individuals, using clustering methods.
However clustering is often a complicated task to perform in high dimension. Considering
that we wish to use build customers’ individual load curves to build the clusters, we
are going to use a representation of the load curves in a reduced dimension to run the
clustering algorithms.

Similarly to using Principal component analysis as a pre-processing step prior to clus-
tering, we use the encoded space of the autoencoder and proceed to clustering on this
data representation.

6.4.1 Hierarchical agglomerative clustering (HAC)

Hierarchical agglomerative clustering is a method designed to group similar observa-
tions into clusters.

Let us consider a set of m individual to cluster. Initially, each individual constitutes
its own class. The HAC algorithm seeks to construct C groups, where C < m, based on
the similarity of each individual.

Iteratively, the clusters are built by merging previous clusters, based on their similarity.
Specifically, the algorithm computes a dissimilarity matrix between each of the clusters
and seeks the minimum as a criteria of merging. The process is repeated until C = 1.

The main advantage of HAC is the fact that the number of clusters is not specified by
the user beforehand. The relevant number of groups to identify the partition afterwards
remains a challenge as for the other clustering algorithms. It is also computationally
expensive, compared to other methods and does not scale to large datasets. The main
method to select an appropriate number of clusters is through the use of a dendrogram
which shows the hierarchy between all the individuals. This method of selection, like most
methods is highly subjective and is usually efficient when the size of the dataset is small.

More details on Hierarchical agglomerative clustering and choices of dissimilarity are
provided in Ward (1963), Candillier (2006) and Murtagh and Legendre (2014).
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6.4.2 K-Means and K-Medoids clustering

In this section, we describe two partition based-methods of clustering applied to the
data in reduced dimension.

K-Means

K-Means, first introduced by is a classical clustering method. Given a set of m ob-
servations, the algorithm aims at regrouping each of them into C groups. Several imple-
mentations of the algorithm exist (see Lloyd (1982),MacQueen et al. (1967) and Forgy
(1965)).

Here, we describe the implementation of Hartigan and Wong (1979). The K-Means
algorithm is applied to the latent space I = (Ii,j)1≤i≤m,

1≤j≤d
, obtained from the autoencoder.

d refers to the dimension of the latent space after encoding. In K-Means, the number of
desired clusters C is defined by the user.

The algorithm is the following:

• Initialize C centroids randomly from the m data points

• Assign each data point to the cluster of which they are closest to the centroid.

• For each cluster k, 1 ≤ k ≤ C, update its centroid (mean of the points of the cluster
k)

• For each cluster k, 1 ≤ k ≤ C, if the centroid of k was updated:
. Assign each data point Ii, 1 ≤ i ≤ m to the cluster, where the updated centroid
is the closest

. Update the cluster centroid by calculating the mean of data points.
• Repeat until no data point changes its assignment.

K-Means relies on iteratively assigning data points to clusters. Given a data point Ii and a
centroid denotedMk, assignment is done by minimizing the cluster Within-sum-of-square:

SSEk =
∑
Ii∈k

(Ii −Mk)2 (6.5)

K-Medoids

The K-Medoids clustering algorithm (see Kaufman and Rousseeuw (1990)) is a parti-
tioning methods similar to k-means. As with k-means, the number of clusters is specified
before running the algorithm.
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As for the K-Means algorithm, we apply the K-Medoids algorithm on the latent space
obtained from the autoencoder denoted I = (Ii,j)1≤i≤m,

1≤j≤d
, where d is the dimension of the

encoding.
Let C be the number of clusters specified. The K-Medoids algorithm applied to the

latent space I is:

• Initialize Mk, 1 ≤ k ≤ C medoids from the m data points

• Assign each data point to the cluster of which they are closest to the medoid.

• For each cluster k, 1 ≤ k ≤ C:

. For each non medoid data point Ii where 1 ≤ i ≤ mk, mk the number of points
of the cluster k.

. Swap the roles of Ii and Mk:

. Ii becomes the medoid of the cluster k, compute the dissimilarity of the cluster:

Dk =
mk∑
j=1

d(Ii, Ij) (6.6)

. Replace the medoid Mk with the point Ii such that Dk is minimal

. Reallocate each non medoid data point to the closest medoid

• Repeat until a dissimilarity decreases and swaps occur.

Remark 21 The K-Medoids algorithm is more robust to outliers and atypical observa-
tions than the K-Means. This is due to the use of medoids as centers of the clusters as
well as the use of distances less sensitive to outliers.

As for scalability is high dimension, both methods suffer from it. Thus we apply them
on a reduced representation of the curve rather than the initial data.

6.4.3 Selection of the number of cluster

A challenging aspect of clustering is selecting a number of cluster that seems suitable
to the data at hand. Many methods exists and can be separated into two categories :
internal and external evaluation methods.

External methods of evaluation consists in evaluating the clustering based on a testing
dataset containing known class labels. In our case, known labels are unavailable for the
considered data, thus we focus on internal evaluation methods.
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Internal evaluation methods focus on measuring the within class and between class
inertia. The Silhouette coefficient Rousseeuw (1987), the Davies-Bouldin index Davies and
Bouldin (1979) and Dunn’s index Dunn (1974) are among the usual methods of internal
evaluation.

Using the notations from Hassani and Seidl (2017), we define Dunn’s index as follows.
Let Ci denote the i-eth cluster and d(x, y) the distance between two data points x and y,
Dunns’s index is:

D =
mini minj(minx∈Ci,y∈Cj

d(x, y))
maxk(maxx,y∈Ck

d(x, y)) . (6.7)

The numerator of Equation (6.7) minimizes the intercluster distance between clusters
while the denominator maximizes the intracluster distance The optimal number of cluster
is obtained when D is maximal.

Let C denote the number of clusters, The Davies-Bouldin index is defined by:

DB = 1
C

C∑
i=1

max
i 6=j

1
ni

∑
x∈Ci

d(x, ci)) + 1
nj

∑
x∈Cj

d(x, cj)
d(ci, cj)

, (6.8)

where ni, 1 ≤ i ≤ C is the size of the cluster Ci. The optimal number of cluster, based
on the Davies-Bouldin index, is obtained when DB is minimal.

The Silhouette score, is also a popular choice of method for selecting a suitable number
of cluster. For x ∈ Ci, we define:

a(x) = 1
ni − 1

∑
y∈Ci,y 6=x

d(x, y), (6.9)

and

b(x) = min
j 6=i

1
nj

∑
y∈Cj

d(x, y). (6.10)

The Silhouette coefficient is:

S = 1
C

C∑
i=1

( 1
ni

∑
x∈Ci

b(x)− a(x)
max(a(x), b(x))). (6.11)

The optimal number of clusters, given a clustering method, is the one that maximizes the
Silhouette coefficient.
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In section 6.6, we compare the three evaluation methods presented here, to select an
appropriate number of clusters, obtained with the three methods of clustering considered.

Selection of the optimal number of clusters, despite the use of existing methods remains
a highly subjective task.

6.5 Affecting a new customer to the clusters

Once the clustering labels have been set, we wish to assign those labels to new cus-
tomers. We build a neural network to assign customers’ load curves to the given labels.
Considering that customers’ load curves in reality can be of varying length, as they may
subscribe during any time of the year to electrical contracts. We set the minimal length
of load curve for a new customer is 28 days of any given month. We build the training
data set as such:

• X are the original load curves of length n of m individuals.

We transform the data, by transposing the matrix so that the dimension is (m×n, 2).
Thus the data contains m × n rows, and 2 columns (the load value at time t for
individual i, and the individual labels of the customers’.

We select the first p days of each month and create a column labeling the month of
the year for data point.

Finally, we re-transpose the data by months’ and customers’ labels. We obtain two
matrices:

1. X̃load of dimension (12×m, p), contains, for each row p points of the load curve
of a given customer for a given month.

2. X̃month ∈ R(12×m)×12 contains the label of each month of the year, corresponding
to each row of X̃load.

For a given customer i ∈ {1, . . . ,m}, initially, its load curve is a row of the matrix
X:

X(i) = (X(i)
1 , . . . , X(i)

n ) (6.12)

Let tl1 be the first day of the l-eth month, 1 ≤ l ≤ 12. Following the transformation
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described above, for the customer i, we have:

X̃
(i)
load =


X

(i)
t11

. . . X
(i)
t11+p

... . . . ...
X

(i)
t12
1

. . . X
(i)
t12
1 +p

 , (6.13)

and

X̃
(i)
month =



1 0 . . . 0
0 1 ... 0
... . . . ...
0 0 . . . 1

 . (6.14)

Thus, we have:

X̃load =


X̃

(1)
load
...

X̃
(m)
load

 , (6.15)

and

X̃month =


X̃

(1)
month
...

X̃
(m)
month

 . (6.16)

• We denote Y ∈ R(12×m)×C , the label matrix corresponding to each row of X̃load and
X̃month, C being the number of clusters (C > 2).

Let (yj,i), 1 ≤ j ≤ (12×m), 1 ≤ i ≤ C be the elements of Y , we have:

yj,i =

1, if the j-eth individual belongs to label i,

0, otherwise.
(6.17)

The task to solve is a multiclass classification. Neural networks are interesting tools in this
context. Considering the nature of the data at hand, we develop a neural network approach
that takes as input both the monthly time series and the months’ labels associated, and
aims at classifying them into the provided labels.
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A neural network adapted to a multiclass classification task is trained using the cate-
gorical cross-entropy loss function:

L(y, ŷ) = −
12×m∑
j=1

C∑
i=1

yj,i logP(yj,i = 1) (6.18)

Specifically, the neural network is made of two separate blocks (see Figure 6.2):

• The convolutional block takes the time series as inputs of 1D-convolutional layers.
The output of a convolutional block, made of LConv layers, can be written as such:

Ĩload = fLConv
(fLConv−1(. . . f1(X̃load))), (6.19)

where each function fLConv
, 1 ≤ l ≤ LConv, is as described in Equation (6.4).

— The Dense block takes the months’ labels as inputs. Similarily, the output of a dense
block, made of LDense layers, can be written as:

Ĩmonth = fLDense
(fLDense−1(. . . f1(X̃month))), (6.20)

where each function fLDense
, 1 ≤ l ≤ LDense, is as described in Equation (6.2).

• Both blocks output’s are flattened and concatenated before passing through a classi-
fying layer with a softmax activation function. Flattening the output tensors consists
in converting them into one dimensional tensors.

X̃load

X̃month

1D-convolution layers

Dense layers

Flatten layer

Flatten layer
Concatenation Dense layer

with softmax activation

Convolutional block

Dense block

Figure 6.2 – Outline of the neural network (Section 6.5) used for classification of the
customer’s to the label obtained from clustering
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Remark 22 The activation function used for multiclass classification is the softmax func-
tion defined by:

softmax(x)i = exp(xi)∑
j=1,...,C exp(xj)

, (6.21)

where x = (xi)i=1,...,C, C the number of classes.

The softmax used as the activation function of the last layer of the neural network
assign a score to each possible label. The predicted label is found by finding the label
associated to the maximal score. We denote ŷ the predicted label, defined by:

ŷ = argmax
i=1,...,C

(softmax(x)i) (6.22)

6.6 Application to real data

For the implementation of the neural networks aforementioned, we use Abadi et al.
(2015) and the keras package in R (see Chollet et al. (2015) and Chollet and Allaire
(2018)). The K-Medoids algorithm is implemented with the pam function from the clus-
ter package in R Maechler et al. (2021). We use the hclust and kmeans functions to
apply respectively Hierarchical clustering and the K-Means algorithms to our data. The
functions are directly available in R (see R Core Team (2019)).

Richard et al. (2020)

6.6.1 Description of the dataset

As in Chapter 5, our approach is applied to the dataset from the CER Smart Metering
Project (see Commission for Energy Regulation (2012)). This customer behavior trial has
been conducted between 2009 and 2010 and contains over 5000 residential and small
businesses’ data collected from smart meters.

We focus on the data containing individual electrical load curves of residential Irish
customers and their corresponding survey data. The load curves are initially at half hourly
period, we aggregate them by day and use the first 365 days of data.

Recalling our earlier notations, the length of each individual curve is n = 365 and the
number of individuals considered here is m = 3159.
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Figure 6.3 – Example of 5 individual load curves randomly selected from the CER dataset
(Commission for Energy Regulation (2012)).

In Figure 6.3, we show a sample of 5 customer’s individual load curves taken randomly
from the CER dataset. The curves are each highly noisy and show very diverse patterns.
The yellow curve for instance shows a few consumption gaps, where the value drops
drastically (probably due to a period of vacation or absence). Consumption behavior are
very heterogeneous amongst the customers, thus complicating any clustering effort in high
dimension.

The example of curves given in Figure 6.3, while illustrating the heterogeneity of the
customers based on their consumption, also show some similarities. Here, we can see that
the yellow and blue curve seem closer on terms of level of consumption than the others.
This gives us an idea that some customers are similar to others and justifies the use of
clustering methods to create homogeneous groups.

To train and evaluate the models, the database is split accordingly:

• training subset: 80% of the database
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• validation subset : 10% of the database

• testing subset : 10% of the database

The number of individuals in the testing subset is: mtest = 308.

6.6.2 Evaluation error for dimensionality reduction

Considering the load curve of any given customer i, X(i) = (X(i)
t )1≤t≤n and its esti-

mation X̂(i) = (X̂(i)
t )1≤t≤n, we evaluate the error between X(i) and X̂(i) using the Mean

Absolute Error (MAE).

We define the MAE, named EMAE as such:

EMAE(X(i), X̂(i)) = 1
n

n∑
t=1
|X(i)

t − X̂
(i)
t |, 1 ≤ i ≤ m. (6.23)

Subsequently, we use EMAE to evaluate the error obtained between X(i) and X̂(i) its esti-
mation obtained with the autoencoders.

We compare errors obtained on autoencoders made either of Dense layers (in brown
on Figure 6.4) or 1D-convolutional layers (in red on Figure 6.4). Boxplots displayed side
by side of both methods on Figure 6.4 for different dimension of the bottleneck of the
autoencoder. The number of hidden units in the bottleneck (encoding dimension d) has
an important influence on the quality of the reconstruction of the autoencoder.

We show results obtained with both types of layers when d = 20, 2, 32, 8. When
d = 8, 20, 32, 1D-convolutional autoencoders outperform their Dense counterpart. How-
ever, when the encoding dimension is small (d = 2), both autoencoder show similar
performances, and the highest median reconstruction errors are obtained in this case.
Overall, the best results are obtained with the 1D-convolutional autoencoder, when the
encoding dimension is d = 32.

Hereinafter, we use the latent space extracted from that autoencoder for the clustering
of the customers.
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Figure 6.4 – Boxplots of EMAE(X(i), X̂(i)) obtained with autoencoders with 1D-
convolutional layers [Red] and autoencoders with Dense layers when the encoding di-
mension is d = 20, 2, 32, 8

6.6.3 Selection of the number of clusters and vizualisation

Selection of the number of clusters

Looking at the maximal Dunn index, for the three clustering methods, in Figure 6.5,
we can see that the optimal number of cluster for HAC and K-means is 3, whereas it is 5
for the K-medoids methods.

As for the Davies-Bouldin index, the minimal value for the three methods are attained
with 3 clusters, pointing towards 3 as the optimal number of clusters.

The Silhouette is maximal for all three methods, when the number of clusters is equal
to 3.

Overall, the analysis of the three indexes points towards 3 as the preferable number
of clusters. Hereinafter, we consider the three methods of clusterinf HAC, K-means and
K-medoids, when 3 is the number of clusters.
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(a) HAC (b) K-Means (c) K-Medoids

Figure 6.5 – The Dunn index is displayed for the three clustering methods, when the
number of cluster varies from 3 to 7

Visualization of the clusters when C = 3

Originally, we perform the clustering algorithms on the latent space of the autoencoder
of dimension 32. Visualizing data in high dimension is challenging, thus we do not display
the 32 dimensions of the latent space simultaneously.

We apply the t-SNE algorithm (see Van der Maaten and Hinton (2008)) to reduce
the dimension of the latent space for visualization purposes. The t-SNE algorithm is a
nonlinear dimensionality reduction method that maps high dimensional data into a lower
dimensional space.

Recalling that, we have, for each observation 1 ≤ i ≤ m the latent space denoted Ii.
The t-SNE method is the following:

1. First the algorithm calculates the similarity between two observations Ii and Ij,
i 6= j in high dimension. Following the notations from Van der Maaten and Hinton
(2008), let pj|i:

pj|i = exp(||Ii − Ij||2/2σ2
i )∑

k 6=i exp(||Ii − Ik||2/2σ2
i )
,

be the similarity between Ii and Ij. Let pij:

pij = pi|j + pj|i
2m ,
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(a) HAC (b) K-Means (c) K-Medoids

Figure 6.6 – The Davies-Bouldin index is displayed for the three clustering methods, when
the number of cluster varies from 3 to 7

where pij = pij, pij = 0 and ∑i,j pij = 1.

2. Likewise, we calculate the similarity between a map of the two counterparts of Ii
and Ij, denoted yi and yj in the lower dimensional space.

qij = (1 + ||yi − yj||2)−1∑
k

∑
k 6=l(1 + ||yk − yl||2)−1 ,

3. The correct mapping of yi, 1 ≤ i ≤ m in the lower dimensional space is obtained
by minimizing the Kullback-Leibler divergence between the similarities in high and
low dimension. It is given by:

KL(P ||Q) =
∑
i

∑
j

pij log pij
qij
.

Here, we use t-SNE to map the latent space of dimension 32 into a reduced space of
dimension 2 for visualization purposes.

In Figure 6.10, we display the three clusters obtained from the K-Medoids algorithm
applied to the initial latent space, on the t-SNE axis.

In Figure 6.9, we display graphical results of the clustering obtained with the K-Means
algorithm, when the number of clusters is C = 3. On top of Figure 6.9, we can see that
the clusters’ size are highly unbalanced. The third cluster (in Blue) is much larger in
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(a) HAC (b) K-Means (c) K-Medoids

Figure 6.7 – The silhouette index is displayed for the three clustering methods, when the
number of cluster varies from 3 to 7

size than the two others. The daily mean curves (bottom of Figure 6.11) are obtained by
aggregating the individual curves of each customer in the clusters. The mean curves of
the first and third cluster (in blue and red) are rather close, showing the difficulty of the
algorithm to distinguish the individuals.

For the Bayesian weakly informative approach described in Chapter 3, we wish to use
the posterior information of the hyperparameters (the global effects of the subpopulation)
to transpose it to new individuals. When using weakly informative priors, the model need
enough data to estimate correctly the posterior distribution of the parameters, so that it
can be usable afterwards. Thus, if the cluster or subgroup size is too small, the model fails
to estimate the posterior distribution of the hyperparameters. For instance, if we wish to
estimate the electrical consumption from a regression model containing a heating part,
and the subgroup lacks observation with electric heating, this complicates the estimation
of the posterior.

K-Medoids seems more robust to atypical individuals compared to HAC and K-Means,
and gives more balanced classes. HAC does not scale well for larger dataset, making it
difficult to adapt to real customers database. The mean load curve by clusters obtained
for the HAC and K-Means are difficult to separate, whereas with the K-Medoids methods,
each curve is distinct.
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Figure 6.8 – [Top] The individuals, colored by clusters obtained with HAC, are displayed
on the two axis from the t-SNE method.

6.6.4 Quality of the affectation to the clusters

Global affectation to the label

To evaluate the quality of a multiclass classification on a testing subset, one may
consider looking at scores such as the accuracy, the precision and recall or the kappa
coefficient (Cohen (1960),Landis and Koch (1977)).

Given a binary confusion matrix with two classes:

class 1 class 2
class 1 True positive (TP) False Negative (FN)
class 2 False positive (FP) True Negative (TN)

In the case of binary classification, the precision is defined by:

Precision = TP

TP + FP
,

and the recall is as follows:

Precision = TP

TP + FN
.

In the context of multiclass classification, the precision and recall are calculated for each
class.
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Figure 6.9 – [Top] The individuals, colored by clusters obtained with K-Means, are dis-
played on the two axis from the t-SNE method.

The accuracy score is defined as such:

Accuracy = TP + TN

TP + TN + FP + FN

Given a confusion matrix, the accuracy is retrieved by summing the diagonal elements
and dividing it over the number of individuals to classify. It gives an overall measure of
the prediction performance of the model on new observations. The accuracy score does
not however indicate if the model correctly predicts each class individually. To have more
information on this aspect, it can be interesting to consider for each class the precision
and recall scores.

A review of metrics in the case of multiclass classification is given in Grandini et al.
(2020).

For the purpose of this application, we set the length of historical data of a given
customer as p = 28. We split the load curves of each individual by month, thus having
a matrix of dimension (L×mtest)× p. The number of customers in our testing subset is
mtest = 308, the matrix is of dimension 3696× 28. Each individual is spread over L = 12
rows of the matrix and for each row, a label is predicted by the model as in Equation (6.22).
Thus, each individual customer has 12 possible labels. First, We evaluate the quality of the
prediction on each row, as if each row was a potential customer. The prediction rendered
by the neural network is summarized in the confusion matrix in Table 6.1. The accuracy
of the model in this case is 84.71% which is quite high. Yet considering the accuracy score
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Figure 6.10 – The individuals, colored by clusters obtained with the K-Medoids algorithm,
are displayed on the two axis from the t-SNE method. Cluster number 1, 2 and 3 are
displayed in [Red], [Green] and [Blue] respectively.

alone is not enough to evaluate the quality of the model on the testing data.

Table 6.1 – Confusion matrix and obtained for the individuals split across L×mtest rows
(3696 observations)

Predicted label
1 2 3

Actual label
1 1140 83 1
2 202 1193 93
3 7 179 798

Accuracy (%) 84.71

Table 6.2 – Precision and recall scores obtained for the individuals split across L×mtest

rows (3696 observations)

Class Overall score
1 2 3

Precision 93.14 80.17 81.60 84.97
Recall 84.51 81.99 89.46 85.32
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Figure 6.11 – [Top] This graphic shows the daily mean curve, colored by cluster. Cluster
number 1, 2 and 3 are displayed in respectively. For visualization and comparison purposes,
the mean curves are scaled here.

The precision and recall results for each class are displayed in Table 6.2. The precision
of class 1 is the highest, as the model is correct 93.14% of the time when predicting that
an observation belongs to this class. The overall precision and recall are both above 80%
which is quite satisfactory.

One way to predict for the individual its label is to take the label that is the most
frequent over the 12. Then, we have:

Ŷ = argmax
i=1,...,C

(P(ŷl = i)), 1 ≤ l ≤ 12 (6.24)

The confusion matrix and accuracy are displayed in Table 6.3. We see that accuracy
reaches 89.94%. Looking at the precision and recall summarized in Table 6.4, we see that
the scores have increased for all the clusters.

Another possibility involves averaging the softmax scores obtained for each individual,
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Figure 6.12 – This graphic shows the daily mean curve, colored by the clusters obtained
with the K-Medoids algorithm. Cluster number 1, 2 and 3 are displayed in [Red], [Green]
and [Blue] respectively.

Table 6.3 – Confusion matrix and obtained for the individuals when predicting the most
frequent label over each L

Predicted label
1 2 3

Actual label
1 100 2 0
2 15 106 3
3 0 11 71

Accuracy (%) 89.94

Table 6.4 – Precision and recall scores obtained for the individuals split across L×mtest

rows (ntrain observations)

Class Overall score
1 2 3

Precision 98.04 85.48 86.59 90.04
Recall 86.96 89.08 95.95 90.66

by class, over the number of months available. Precisely, this is done as such:

Ŷ = argmax
i=1,...,C

(
∑12
k=1(softmax(x)i)k

12 ), (6.25)
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where softmax(x)i)k is the value obtained at the end of the neural network, for the label
i and corresponding to the month k of the data of the customer.

We can generalize this method, given the historical data available for the customers.
Let K be the number of month for which we have 28 values. Then, the predicted class of
the customer is:

Ŷ = argmax
i=1,...,C

(
∑K
k=1(softmax(x)i)k

K
) (6.26)

The confusion matrix and accuracy are displayed in Table 6.5. We see that accuracy
reaches 89.94%, the same as in Table 6.3. There is a gain of one individual for cluster 1
and two for cluster 2. Looking at the precision and recall summarized in Table 6.6, we
see that the scores have increased for all the clusters. The precision of cluster 1 reaches
99.02%. The lowest precision and highest recall are obtained for cluster 3.

Table 6.5 – Confusion matrix and obtained for the individuals when averaging the score,
and predicting the label associated to the highest averaged score

Predicted label
1 2 3

Actual label
1 101 1 0
2 14 108 2
3 0 11 71

Accuracy (%) 89.94

Table 6.6 – Precision and recall scores obtained for the individuals split across L×mtest

rows (ntrain observations)

Class Overall score
1 2 3

Precision 99.02 87.10 86.59 90.90
Recall 87.83 90 97.26 91.45

The results obtained are overall quite high. However, when the historical data avail-
able is lower, there is a risk of misclassifiying individuals. This poses problems as after
classification, a Bayesian forecasting model is applied to the individuals. If the individual
is affected to the wrong class, the information transferred to the individual model corre-
sponds to the one obtained from training on the wrong class. In the next section, we show
an alternative to alleviate this issue for forecasting.
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6.7 Weighting predictions using the softmax scores

In Chapter 5, we show an application of Bayesian transfer learning to the case of end-
of-month forecasting. The results are shown for a fixed cluster. In this section, we present
a method to obtain forecasts using the softmax scores of the clusters. Instead of affecting
an individual to a specific cluster with the method in Section 6.6.4, we focus on using
the scores to obtain a mixture of predictions. This approach allows to avoid the issue of
missclassified individuals.

Recalling our previous notations, D∗ denotes the observation a new individual with a
short dataset. Let pi, i = 1, . . . , C denote the probability that an individual belongs to
class i. Let νi(θ) denote the prior distribution of the parameter θ, of a Bayesian model,
for cluster i. Let π(θ) denote the mixture prior:

π(θ) =
C∑
i=1

νi(θ)pi (6.27)

The posterior distribution is then:

π(θ|D∗) ∝
C∑
i=1

piνi(θ)Lθ(D∗) (6.28)

π(θ|D∗) ∝
C∑
i=1

pimiπi(θ|D∗), (6.29)

Lθ(D∗) denotes the likelihood of the model. πi(θ|D∗) are the posterior distributions ob-
tained from training the model on the D∗ with the information transferred from the longer
dataset in cluster i.

mi(D∗) are the marginal likelihoods relating to cluster i: mi(D∗) =
∫

Θ Lθ(D∗)πi(θ)dθ.
Therefore the posterior π(θ|D∗) is a mixture of the posterior distributions πi(θ|D∗),

with weights p̃i:

p̃i = pimi(D∗)∑C
j=1 pjmj(D∗)

, i = 1, . . . , C. (6.30)

Remark 23 The weights (p̃i)i=1,...,C can be interpreted as the updated probabilities that
the individual belongs to cluster i, i = 1, . . . , C.
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The prediction of a new data point X∗, for a fixed class i, is obtained using the
posterior predictive distribution:

pi(X∗|D∗) =
∫

Θ
f(X∗|θ,D∗)πi(θ|D∗) dθdk. (6.31)

The mixture prediction of the new data point X∗ is:

p(X∗|D∗) =
∫

Θ
f(X∗|θ,D∗)π(θ|D∗) dθ

=
∫

Θ
f(X∗|θ,D∗)

C∑
i=1

p̃iπi(θ|D∗) dθ

=
C∑
i=1

p̃ipi(X∗|D∗). (6.32)

We apply this methodology to the case of end-of-month forecasting.
The short historical data available for an individual is:

D∗ = {X∗t , V ∗t , t1 ≤ t ≤ tp−1}

. X∗t denotes the daily consumption of the individual at time t, and V ∗t the variables
included to the models (M1) and (M2) as detailed in 5.3. t1 is the day at which the first
data point is available (we may have t1 > tfirst, when tfirst is the first day of the month
considered).

We sample J = 1000 realizations from p(X∗|D∗) in (6.32) to forecast j = 1, . . . , J
values of X∗t for tp < t ≤ tlast.

Let X̂∗(j)t denote the j-eth forecast of X∗t , for tp < t ≤ tlast. From the Equation (5.2),
we deduce the J realizations of the mixture end-of-month forecast denoted Ĉ∗ = Ĉ∗(j).
We have:

Ĉ∗(j) =
tp∑

t=tfirst

X∗t +
tlast∑

t=tp+1
X̂
∗(j)
t (6.33)

As in Section 5.4.4, we evaluate the errors obtained, for the testing subset used in
Chapter 5, with the following length of historical data:

(a) first week of the month: we have 37 days of historical available, the horizon of
forecasting is 22 days.

(b) second week of the month: we have 45 days the horizon of forecasting is 14 days.
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(c) third week of the month: we have 52 days, the horizon of forecasting is 7 days.

We look at the same indicators as in Section 5.4.4:

— MAPE between the real value of the end-of-month consumption and the MAP
estimate of C∗.

— Length of prediction intervals.

— Coverage probability of the intervals i.e. the probability that the real value of C∗

falls into the prediction intervals.

Figure 6.13 displays the boxplots of errors for the three cases. Overall the best perfor-
mances, for all the cases, are obtained with the mixture of predictions from theM2 model
with transfer (the model with the auto-regressive part). The mixture predictions from the
M1 model with transfer has the second best performances, except when the length of
historical data is larger (see Figure 6.13c). In case (c), the mixture predictions from the
M2 model with and without transfer give out the lowest error. However, the error with
the M2 model without transfer is more dispersed.

When we compare the results of the mixture predictions with the ones obtained for
a fixed cluster in Chapter 5, we see an improvement of all the performances of the four
models. Looking at Figure 5.1, the median error of (M2) with transfer is around 0.12,
for the fixed cluster situation, whereas, the median error with the mixture prediction is
around 0.8 (on Figure 6.13a). When the forecasting horizon is smaller, we see that the
median error for (M2) with transfer is slightly above 0.03 for the fixed cluster and slightly
below 0.02 for the mixture prediction. We see that, for the boxplots of error, when the
forecasting horizon is larger, the better the performances are for the mixture predictions.
When the forecasting horizon is smaller, there is still an improvement, but the gap between
the two situations is smaller.

The length of prediction intervals and coverage probabilities for all the models, and all
the situations are displayed in Figure 6.14, for the mixture predictions. When compared
with the fixed cluster situation in Figure 5.4, we see that for all the forecasting horizons,
the coverage probabilities are higher in the mixture situation. The observations are sim-
ilar, because the highest coverage probabilites are given by the mixture of predictions
from the model (M2) without transfer. This is to be put in perspective with the length of
prediction intervals, which are also much higher compared to the other models. The cov-
erage probabilities for the model (M2) with transfer are much higher when the forecasting
horizon is large (see Figure 6.14a, with the mixture prediction case). The median length
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of intervals in this case is around 0.24, and is comparable to the one for the fixed situation
in Figure 5.4a. When the forecasting horizon is smaller (see Figure 6.14c), the coverage
probabilities of (M2) with and without transfer are close, but the length of prediction
intervals is smaller with transfer. Compared with the fixed cluster situation (see Figure
5.4c), the coverage probabilities of (M2) with transfer are slightly higher for the mixture
situation. The length of intervals are also a little higher, the median is slightly above 0.06
(compared to 0.07 for the fixed cluster situation) but the values are more dispersed.

Overall, the (M2) model with transfer gives out the best results for the mixture
predictions, when looking at all the indicators above. We see an improvement of the results
compared to the fixed cluster situation presented in Chapter 5. Using mixture predictions
seems to be a good idea, especially when there is not a large amount of historical data
available. The more data we have, the closer the results will be for both situations.

6.8 Conclusion and perspectives

Our approach of clustering is a two step approach : first we perform dimensionality
reduction on the curves with a deep autoencoder, second we use a clustering method on
the latent space resulting from the autoencoder. Future research may include applying
directly a neural network combining dimensionality reduction and clustering directly as
proposed notably by Madiraju et al. (2018) and Guo et al. (2017).

The clustering approach retained is the K-medoids, as it is robust to outliers and
atypical individuals comapred to the HAC and K-means.

We also develop a neural network, designed to affect a new individual, with short
historical data, to the classes obtained from the clustering. In Chapter 5, we have presented
an application of the Bayesian transfer learning methodology of Chapter 5, to the case of
end-of-month consumption forecasting. The results were shown for a fixed cluster, where
the individuals are affected to one cluster alone with the majority rule of Section 6.6.4.
In Section 6.7, we present a method to obtain mixture predictions from the softmax
scores outputs of the affectation neural network. We compare the results obtained with
the fixed cluster situation in Chapter 5. Overall, the mixture predictions of the model
(M2) with transfer give out the lowest error. We see an improvement with the mixture
predictions, for all the forecasting horizons considered compared to the fixed cluster case.
The improvement of performances is larger especially when the forecasting horizon is
short. Using mixture predictions, instead of hard affectation to the classes, is relevant in
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situations where the amount of data available for a new customer is small.
As discussed in Section 5.5, the models considered could be improved by the addition

of variables (air conditioning, possession of an electrical vehicle etc.). For future research,
it can be relevant to see whether the possible addition of variables, improves the forecasts
for both situations: fixed cluster and mixture.
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(a) Horizon: 22 days (b) Horizon: 14 days

(c) Horizon: 7 days

Figure 6.13 – Boxplots of the MAPE obtained with the point estimates for each individual
in the testing set. The error is displayed for the M1 [Pink] and M2 models [Blue]. For
each case, [Left] boxplots are the models with transfer and [Right] are the models without
transfer.
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(a) Horizon: 22 days (b) Horizon: 14 days

(c) Horizon: 7 days

Figure 6.14 – For each case: [top] length of HPD prediction intervals, [bottom] coverage
probability. The results are displayed forM1 [Pink] andM2 models [Blue]. For each case,
[Left] boxplots are the models with transfer and [Right] are the models without transfer.
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CONCLUSION

In this thesis, we proposed methods based on the combination of Bayesian modelling
and deep learning to the estimation and prediction of time series. We dedicate this Chapter
to sum up the various methodologies and results tackled in the manuscript as well as the
possible perspective that may emerge from them.

The methodologies developed are closely related to transfer learning, from several as-
pects: through the use of fine tuning for neural networks or the Bayesian approach to
transfer learning. Our methodologies focus mainly on regression, as the industrial appli-
cations on which they are developed are regression based.

The work presented here is largely motivated by the necessity for EDF to develop new
supply offers and consumption services tailored to the needs of new customers, when the
historical data available is short.

The methodologies developed rely on deep learning and Bayesian methods in two ways:

• Through the use of Bayesian neural networks.

• Using first deep learning models to build homogeneous subsets in the data and
applying Bayesian (non deep) models to the subgroups built.

Both types of methodologies are applied to real world datasets provided by EDF for
industrial applications relating the individual consumption of either non residential or
residential customers.

Methodology of estimation of a multi-target regression
model in high dimension

We have developed a methodology of estimating a multi-target regression model in
high dimension in Chapter 2. The results obtained on real world data are presented in
Chapter 3. The three strategies of modeling rely on deep learning methods and are adapted
to account for two industrial constraints.

Fine tuning is used on all the models, and shows improvement on the autoencoder
and when the curve is reconstructed from the latent space. However, the best results are
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obtained with the Bayesian neural network BayesRN1 without fine tuning, for the ENR
strategy. Future research may involve understating the effects of fine tuning on the various
strategies.

The autoencoders considered and the neural networks for the direct estimation with
MNR are built with Dense layers. Thus the time dependency of the inputs is not taken
into account by those neural networks. It would be interesting to see whether using layers
adapted to deal with time series such as 1D-convolutional layers or LSTM layers outper-
form the Dense layers.

The industrial application is related to the issue of solar panel sizing for non residential
customers. Thus, we focus on emphasizing the prediction of consumption during hours
of sunlight, using a set of weights built from solar power production data from EDF.
However, the explanatory variables used for modeling do not contain any information
relating to this application. Specifically, we lack information on the industrial sites, their
dimension, their geographical location, the type of electrical usage etc. Those information
could enrich the models, as for instance, knowing the geographical location, we could
collect data relating to radiance. If available, it would be relevant to add such variables
to the models and see whether there is an improvement.

The direct estimation of the curves through the MNR strategy is conducted using
regular neural networks. Adaptating the strategy to Bayesian neural networks could be
relevant as we would directly be able to build prediction intervals from their posterior
distribution. For instance, adapting a Bayesian convolutional neural network may be in-
teresting, the main drawback being the potential training time that is longer with Bayesian
neural networks.

Bayesian neural networks’ potential are promising as the samples drawn from the
posterior predictive distribution could be used for other industrial applications relating
to load profiling.

We have not explored the possibility of constructing informative priors for Bayesian
neural networks, from expert knowledge. Cui et al. (2021) provide a methodology to
incorporate domain knowledge to the priors of Bayesian neural networks. Future research
may involve adapting a Bayesian transfer learning approach as presented in Chapter 4 to
the case of neural networks and comparing it with the approach from Cui et al. (2021).
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Bayesian transfer learning for panel data
In Chapter 4, we present a general methodology of Bayesian transfer learning for panel

data.
The methodology, adapted from Launay et al. (2015), consists in two steps:

• The weakly informative approach: a Bayesian hierarchical model is trained on panel
data with long historical data.

• The informative approach: the posterior mean and covariance from the first step
are transferred to the prior of the parameters of the model of a new individual with
shorter historical data.

We evaluate the Bayesian transfer on three simulated situations: the polynomial re-
gression, the autoregressive model and the hierarchical Poisson model. Globally, we see
a benefit to using this transfer strategy. The performances of the transfer strategy are
mitigated for the hierarchical Poisson model when the new individual differs from the
original panel. While the point estimates of the parameters (see Figure 4.22) obtained for
the model with transfer are better than without transfer for all scenarios, the coverage
probabilities are smaller for the scenarios where the new individual differs. This is possibly
due to the fact that, contrary to the other simulation situations, we cannot transfer the
covariance matrix, the correlation between parameters is not accounted for in the priors
of the informative approach. Future research may involve extending the Bayesian transfer
learning for the univariate case.

The Bayesian transfer learning methodology is applied to real world data in Chapter
5. The industrial application is the forecasting of the individual consumption at the end
of the month of residential customers. The results are presented for a fixed subset of
the data. Future applications may involve enriching the models with more information
on the customers behavior. We restrict ourselves to adding the lagged consumption of
the previous day in the model (M2), however, if available it would be relevant to go
further in the past. For instance, adding information relating to calendar days (week-
end versus weekdays), the average consumption of similar day types, or retaining the
lagged consumption based on the mutual information index as in Bessani et al. (2020),
are interesting leads to explore.

In Chapter 6, we present the methodology to construct the subset used in Chapter 5.
We use deep learning based methods for dimensionality reduction on daily individual

load curves and perform clustering on the latent space to build homogeneous groups of
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customers. We also develop a double input deep neural network for multi class classifica-
tion of new individuals to the clusters we built.

From the affectation neural networks, we are able to construct probabilities that the
individual belongs to either of the classes. We then obtain mixture predictions, using the
models described in Chapter 6, by weighing the forecasts with the probabilities scores. The
results are presented on the same testing subset as in Chapter 6, for the same forecasting
horizon. There is a clear benefit to mixing the forecast instead of the fixed cluster situation
as there are improvements for forecasting errors as well as coverage probabilities. Again,
the addition of variables to the models and the mixture prediction resulting would be
interesting to consider.

For the clustering of load curves, future research could involve estimating the regu-
larity of the individual time series, following a methodology proposed by Echelard et al.
(2015). The individuals would be clustered not on their curves, but on those estimators
of regularity.

Finally, it would be interesting to extend the methodology developed for Bayesian
transfer learning to multiclass classification problems, for instance for targeting adapter
supply offers and innovative services to new customers with shorter historical data.
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temporelles, consommation électrique individuelle

Résumé : Nous proposons des méthodes sta-
tistiques mêlant approche bayésienne et deep
learning pour la prévision de consommation
électrique individuelle. Les travaux sont réali-
sés en partenariat avec EDF. Deux types de
méthodologies sont developpées : l’une fai-
sant usage de réseaux de neurones bayé-
siens et l’autre utilisant du deep learning pour
de la réduction de dimension avant cluste-
ring en vue d’appliquer des modèles bayé-
siens plus classiques sur les clusters. Dans
un premier temps, nous présentons une mé-
thodologie d’estimation d’un modèle de ré-

gression à plusieurs sorties en grande dimen-
sion avec des réseaux de neurones. Celle-
ci est appliquée à la prédiction de courbes
de charges individuelles de clients non rési-
dentiels. Dans un second temps, nous pré-
sentons une méthodologie de transfer lear-
ning bayésien adaptée à des données de pa-
nel. Nous l’appliquons à la problématique de
prévision de consommation à la fin du mois
de clients résidentiels en situation d’historique
court, pour des clusters de clients. Ces clus-
ters de clients sont obtenus avec des réseaux
de neurones.

Title: Statistical learning methods combining the Bayesian approach and deep learning

Keywords: Bayesian methods, deep learning, individual electrical consumption, time series,

transfer learning

Abstract: We propose statistical methods
combining the Bayesian approach and deep
learning for forecasting individual electrical
consumption. This work is done in partner-
ship with EDF. Two types of methodologies
are developed: one relying on Bayesian neu-
ral networks, the other using deep learning
for dimensionality reduction prior to clustering.
Bayesian (non deep) models are then applied
to the clusters. Firstly, we present a method-
ology to estimate a multi target regression

model in high dimension with neural networks.
It is applied to the prediction of individual load
curves of non residential customers. Secondly,
we present a Bayesian transfer learning ap-
proach adapted to panel data. The method-
ology is applied to forecasting the individual
end-of-month consumption of residential cus-
tomers, with short historical data, for specific
clusters of customers. Those clusters are built
using neural networks.
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