
HAL Id: tel-03877029
https://theses.hal.science/tel-03877029

Submitted on 29 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic derivation of I/O complexity bounds for
affine programs

Auguste Olivry

To cite this version:
Auguste Olivry. Automatic derivation of I/O complexity bounds for affine programs. Computational
Complexity [cs.CC]. Université Grenoble Alpes [2020-..], 2022. English. �NNT : 2022GRALM022�.
�tel-03877029�

https://theses.hal.science/tel-03877029
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Auguste OLIVRY
Thèse dirigée par Fabrice RASTELLO

préparée au sein du Laboratoire d'Informatique de Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Calcul automatique de bornes sur la complexité
I/O de programmes affines

Automatic derivation of I/O complexity bounds
for affine programs

Thèse soutenue publiquement le 8 juin 2022,
devant le jury composé de :

Monsieur FABRICE RASTELLO
Directeur de recherche, Inria Centre Grenoble Rhône-Alpes,
Directeur de thèse
Monsieur SEBASTIAN HACK
Professeur, Universität des Saarlandes, Rapporteur
Madame LAURA GRIGORI
Directrice de recherche, Inira Centre de Paris, Rapportrice
Monsieur UDAY BONDHUGULA
Professeur associé, Indian Institute of Science, Bangalore, Examinateur
Monsieur SVEN VERDOOLAEGE
Docteur en sciences, Cerebras Systems, Examinateur
Madame LAURE GONNORD
Professeure des Universités, Grenoble INP, Examinatrice,
Présidente du jury

Résumé

L’évaluation de la complexité d’un algorithme est une étape importante lors du développe-
ment d’une application, de par son impact sur son temps d’exécution et sa consommation
énergétique. La complexité arithmétique, qui est le nombre d’opérations effectuées par un
programme, est en général facile à caractériser pour un programme affine, composé de boucles
simples avec des bornes statiques. La complexité de mouvement de données (ou complexité
I/O) est plus complexe à évaluer. En effet, elle se réfère à la quantité minimale de données
à transférer entre une mémoire lente de grande capacité, et une mémoire rapide de capacité
limitée, et ce en considérant tous les ordonnancements valides des opérations.

Dans cette thèse, nous présentons IOOpt, un outil automatisé capable de calculer des
bornes symboliques sur la complexité I/O de programmes affines. Étant donné une descrip-
tion d’un programme affine, il génère : 1. une borne inférieure sur la complexité I/O sous la
forme d’une expression symbolique dépendant de la taille de la mémoire rapide et des para-
mètres du programme ; 2. une borne supérieure qui permet d’évaluer la précision de la borne
inférieure 3. une recommandation de tuilage (taille des tuiles et permutation des boucles)
qui permet d’atteindre la borne supérieure. Cet outil est disponible en open-source, et peut
être testé sur la page https://iocomplexity.corse.inria.fr/. Le développement de cet
outil a été possible grâce à la combinaison de résultats mathématiques avancés avec des ou-
tils puissants d’analyse de programmes, tels la réprésentation polyédrique. Notre modèle de
mouvement de données est notamment basé sur celui proposé par Hong&Kung (« Red-blue
pebble game »), adapté pour pouvoir décomposer et recomposer des programmes complexes.

L’applicabilité de cette approche est démontrée en combinant des bornes symboliques sur
un large panel de programmes affines. Dans de nombreux cas, les bornes trouvées par IOOpt

sont optimales, ou proches de la borne optimale par un facteur constant.

Complexité I/O La complexité I/O est définie sur la base d’un modèle de mémoire à deux
niveaux : une mémoire d’accès rapide mais de taille limitée, et une mémoire d’accès plus
lent mais de capacité illimitée. Lors de l’exécution d’un programme, les données d’entrée se
trouvent initialement dans la mémoire lente. Les données peuvent être déplacées entre les
deux niveaux de mémoire, et doivent être dans la mémoire rapide pour être utilisées dans
un calcul. Le coût I/O d’un programme, pour un ordre donné des opérations de calcul et
de mémoire, est le nombre de transferts depuis la mémoire lente vers la mémoire rapide. La
complexité I/O d’un programme est le coût I/O minimum qui peut être obtenu en réordonnant
les opérations.

Il est en général impossible de calculer la complexité I/O exacte d’un programme car le
nombre d’ordonnancements possible est combinatoire. Ceci motive la recherche de bornes
inférieures et supérieures sur cette complexité.

https://iocomplexity.corse.inria.fr/

Représentation des programmes Afin de pouvoir représenter les différents ordonnance-
ments possibles, un programme est décrit par ses opérations, et par les dépendances de don-
nées entre celles-ci. Cela est naturellement représenté par une structure de graphe orienté,
abrégé CDAG en anglais.

Un exemple de tel graphe pour un programme exécutant la multiplication de deux ma-
trices carrées de taille N est présenté sur la figure 2.2b (page 6).

Bornes inférieures Nous utilisons deux approches distinctes pour trouver des bornes infé-
rieures sur la complexité I/O. L’une est basée sur la technique dite du « S-partitionnement »,
et l’autre sur le front d’onde (wavefront) de graphes. La combinaison de ces deux approches
permet de traiter des programmes avec différents motifs de dépendances de données, et de
les combiner au sein d’un même programme.

Nous détaillons ici l’idée générale de l’approche par partitionnement, qui est de raisonner
sur l’intensité opérationnelle maximale d’une région du CDAG, c’est-à-dire la quantité maxi-
male d’opérations de calcul qui peuvent être effectuées avec un nombre limité et déterminé
d’opérations d’I/O. Plus précisément, étant donné un paramètre T (dont la valeur sera fixé
ultérieurement), on cherche à borner la taille du plus grand sous-graphe qui puisse être exé-
cuté avec au plus T loads (transferts de la mémoire lente à la mémoire rapide), en supposant
que la mémoire rapide contient déjà S données. Par un simple argument de comptage, une
telle borne se traduit en une borne inférieure sur le nombre de sous-séquences d’au moins T
loads nécessaires pour exécuter le programme complet, ce qui ce traduit enfin en une borne
sur le coût I/O du programme.

Pour borner la taille du sous-graphe, il faut remarquer que sa « frontière », composée des
prédécesseurs des nœuds du sous-graphe qui n’en font pas partie, est de taille bornée par
S + T . Il reste à borner la taille d’un sous-graphe en fonction de la taille de sa frontière, et
pour cela on utilise le fait que les graphes de programmes affines sont très réguliers et géo-
métriques. Ainsi, les opérations d’un programme constitué de trois boucles parfaitement im-
briquées comme la multiplication de matrices peuvent être naturellement représentées par
des points au sein d’un cube. La dernière pièce du raisonnement est fournie par une famille
d’inégalités mathématiques (l’inégalité de Loomis-Whitney et sa généralisation, l’inégalité de
Brascamp-Lieb), qui permet de borner la taille d’un ensemble en fonction de la taille de ses
projections en dimension inférieure (voir figure 2.4, page 8).

Pour la multiplication de matrices, la borne obtenue par cette méthode est 2N 3
√
S

. Cette
borne est optimale : il est possible de trouver un ordonnancement des opérations qui atteint
cette borne (en ignorant les termes négligeables).

Bornes supérieures La question qui se pose, une fois une borne inférieure établie, est de sa-
voir si celle-ci est atteignable. Il s’agit pour cela d’exhiber un ordonnancement des opérations
du programme le plus efficace possible en terme d’I/O. Autrement dit, une borne supérieure
sur la complexité I/O d’un programme est simplement donnée par un ordonnancement va-
lide. Ce qui rend ce problème difficile est qu’on cherche a obtenir des bornes paramétriques,
valables pour toutes les valeurs des paramètres (dimensions des tableaux, capacité de la mé-
moire rapide), et qu’il est nécessaire de trouver un « bon » ordonnancement des opérations
pour que la borne soit la plus proche possible de l’optimum.

La principale opération de réordonnancement qui permet d’optimiser les transferts de
données est le tuilage. Il s’agit de partitionner le domaine d’itération d’un nid de boucles

2

en sous-domaines appelés tuiles, qui sont ensuite exécutées les unes après les autres. Des
exemples de codes tuilés pour la multiplication de matrices se trouvent page 10, figure 2.5.

Notre approche pour trouver des bornes inférieures peut se résumer comme suit. En pre-
mier lieu, le programme est analysé pour isoler les parties où la transformation de tuilage
peut être appliquée. Une première étape sélectionne ensuite un ensemble réduit de permuta-
tions des boucles de tuilage. Ceci procure pour chaque permutation un programme tuilé avec
des tailles de tuiles paramétriques. Ensuite, un algorithme calcule une expression symbolique
du coût I/O pour chaque permutation, ainsi que des contraintes sur la taille des tuiles. Enfin,
ces expressions peuvent être utilisées pour optimiser numériquement la taille des tuiles pour
des valeurs données des paramètres, ou pour en déduire une borne symbolique qui ne dépend
plus des tailles de tuile mais uniquement de S et des paramètres du programme, et peut donc
être directement comparée aux bornes inférieures calculées précédemment.

Sur la multiplication de matrices, notre algorithme génère un tuilage de taille Ti × Tj × 1,
pour un coût I/O deN3/Ti+N3/Tj+N2. La minimisation symbolique de cette expression sous
la condition que toutes les données d’une tuile tiennent dans la mémoire rapide de taille S
donnent une borne supérieure sur la complexité I/O de 2N 3

√
S+1−1

+N3. Cela correspond bien à
la borne inférieure, à des termes asymptotiquement négligeables près.

Programmes affines et automatisation L’automatisation des techniques présentées ci-dessus
est une contribution clé de cette thèse. Pour que cela soit possible, il a fallu choisir une classe
de programme sur laquelle travailler, à savoir la classe des programmes affines. Cette classe
constitue un bon compromis entre expressivité et applicabilité des techniques de calcul d’I/O,
et dispose d’un riche écosystème d’outils d’analyse. Les programmes affines comprennent un
large éventail d’algorithmes, notamment l’algèbre linéaire dense, les stencils, les convolutions,
et de nombreux programmes utilisant la programmation dynamique.

Un programme affine se compose de boucles for (possiblement imbriquées) et d’expres-
sions, qui opèrent sur des variables et des tableaux multidimensionnels. Les bornes des boucles
sont des expressions affines des paramètres du programme et des indices de boucles qui les
entourent. De même les accès aux tableaux sont des fonctions affines des indices de boucles et
des paramètres. Ainsi, le flot de contrôle d’un programme affine est analysable statiquement.

Les programmes affines peuvent être analysés par les outils de compilation polyédrique,
comme ISL et barvinok. Ces outils représentent les programmes par des points dans un espace
multi-dimensionel, et peuvent effectuer des opérations sur des ensembles de points, analy-
ser les dépendances de données entre instructions, compter le nombre de points dans un
ensemble défini paramétriquement, entre autres. Cela est particulièrement utile pour notre
calcul de bornes inférieures, pour mettre en évidence des dépendances régulières qui corres-
pondent à des projections.

Expériences et résultats Ces algorithmes ont été implémentés dans des outils disponibles
librement, et évalués sur un certain nombre de programmes, comprenant les 30 programmes
de PolyBench, une suite d’évaluation de référence de programmes affines. Notamment, sur
les contractions de tenseur et les convolutions, ainsi que sur plusieurs algorithmes d’algèbre
linéaire, les bornes inférieures et supérieures sont égales asymptotiquement, ce qui permet de
clore la question de l’évaluation de leur complexité I/O.

3

Abstract

Evaluating the complexity of an algorithm is an important step when developing applications,
as it impacts both its time and energy performance. Computational complexity, which is the
number of arithmetic operations of a program, is easy to characterize for affine programs,
that are composed of simple loops with static bounds. Data movement (or, I/O) complexity
is more complex to evaluate as it refers, when considering all possible valid schedules, to the
minimum required number of I/O between a slow memory with large capacity, and a fast
storage location with limited capacity.

This thesis presents IOOpt, a fully automated tool that automatically computes symbolic
bounds on the I/O complexity of an affine program. Given a description of an affine program,
it automatically computes: 1. a lower bound of the I/O complexity as a symbolic expression
of the cache size and program parameters; 2. an upper bound that allows one to assess the
tightness of the lower bound; 3. a tiling recommendation (loop permutation and tile sizes)
that matches the upper bound. This tool is implemented as an open-source program, and
a demonstration is available at https://iocomplexity.corse.inria.fr/. This was made
possible by combining advanced mathematical results with powerful program analysis tools
such as polyhedral representation. Our data movement model is notably based on the one
designed by Hong&Kung (red-blue pebble game), adapted to be able de decompose and re-
compose complex programs.

We demonstrate the effectiveness of our approach by deriving symbolic bounds for a wide
range of affine programs. In many cases, the bounds found by IOOpt can be proven optimal,
or close to optimal by a constant factor.

https://iocomplexity.corse.inria.fr/

Remerciements

Je tiens en premier lieu à remercier mon directeur de thèse, Fabrice Rastello, qui m’a suivi
et soutenu depuis mon stage de L3 en 2015, jusqu’à l’aboutissement de ce doctorat, et m’a
donné l’opportunité de faire mon stage de M2 aux États-Unis, stage où ont été posées les bases
de ce qui est devenu ma thèse. Au delà du cadre scientifique, c’est également une relation
humaine de grande qualité qui s’est tissée au cours de ces années, devant le tableau comme
en montagne.

Je remercie les rapporteurs, Laura Grigori et Sebastian Hack, d’avoir pris le temps de se
plonger dans mon manuscrit de thèse, et pour leurs retours très positifs. Un grand merci
également aux autres membres du jury, en particulier Sven Verdoolaege pour ses retours sur
le manuscrit, ainsi que Laure Gonnord et Uday Bondhugula.

Merci aux collègues de l’equipe CORSE, passés et présents : Fabian, les deux Nicolas, Théo,
Chukri, Manu, Florent, Hugo et tous les autres. Mention spéciale à Guillaume pour avoir pris
le temps de se plonger dans mon travail, sa collaboration a été très précieuse et ses relectures
toujours pertinentes.

Merci à Imma Presseguer pour son aide administrative d’une efficacité inégalable.
Je remercie également les chercheurs avec qui j’ai eu l’occasion de collaborer, notamment

P. Sadayappan avec qui les échanges ont été particulièrement fructueux et qui nous a accueilli
à Columbus, Louis-Noël Pouchet qui m’a permis de venir en stage à Fort Collins, ainsi que
Julien Langou et Atanas Rountev.

Merci à toutes les personnes, famille et ami·e·s, qui ont été présents toutes ces années :
camarades de l’ENS, partenaires de grimpe du club de l’ENS et de Pic & Col, choristes du
CUG, colocataires de confinements... Je ne les énumérerai pas de peur d’en oublier mais ils se
reconnaîtront.

Un grand merci à mes parents, qui m’ont toujours soutenu avec bienveillance et ont su me
transmettre un certain goût pour la science, ainsi qu’à toute ma famille.

Enfin, un merci tout spécial à Solène, qui a été à mes côtés pendant toute cette dernière
année de thèse pas toujours facile, et sans qui la vie aurait bien moins de saveur.

Contents

1 Introduction 3

2 Overview and Background 5
2.1 I/O Complexity . 5
2.2 Program representation . 6
2.3 Lower bound derivation . 7
2.4 Upper bound derivation . 9
2.5 Affine programs and automation . 11

3 Lower Bounds 13
3.1 Foundations . 13

3.1.1 CDAG . 13
3.1.2 A compact representation of the CDAG: the data-flow graph 15
3.1.3 Partitioning . 16
3.1.4 Using projection to bound the cardinality of K-bounded sets 18
3.1.5 DFG Paths . 19

3.2 CDAG decomposition . 20
3.2.1 Non-disjoint Decomposition Lemma . 20
3.2.2 Bounded combination . 22
3.2.3 Loop parametrization . 23

3.3 K-partition bound derivation . 24
3.3.1 Geometric embedding, DFG-paths and projections 25
3.3.2 Finding paths . 27
3.3.3 Computing the lower bound . 28
3.3.4 Extensions: Small Dimensions and Reduction Detection 30

3.4 Wavefront bound derivation . 34
3.4.1 Theoretical results . 34
3.4.2 Implementation . 35

3.5 Complete framework . 36
3.5.1 DFG construction . 36
3.5.2 Instances of parameter values . 37
3.5.3 Main algorithm . 37

3.6 Experimental evaluation . 41
3.6.1 Implementation . 41
3.6.2 Evaluation on PolyBench . 41
3.6.3 Parametric bounds for OI . 43

1

3.6.4 Complete lower bound formulae . 43
3.7 Related work . 45

4 Upper Bounds 51
4.1 Background . 52

4.1.1 Class of programs . 52
4.1.2 Program representation . 53

4.2 Loop permutation and tiling . 53
4.2.1 Tiling transformation . 53
4.2.2 Sub-domains and reuse . 54

4.3 Cost model . 56
4.3.1 Single array . 56
4.3.2 Multiple arrays . 57
4.3.3 Extension to multiple memory levels . 58
4.3.4 Optimization problem . 58

4.4 Loop permutation selection . 58
4.4.1 Reuse for an array along a dimension . 59
4.4.2 Algorithm for permutation selection . 59

4.5 Putting it all together . 59
4.6 Experiments . 61

4.6.1 Benchmarks . 62
4.6.2 Symbolic upper bound expressions . 62
4.6.3 Comparison of upper and lower bounds for different cache sizes 65
4.6.4 Implementation . 67

4.7 Related work . 67

5 Conclusion 70
5.1 Summary of Results . 70
5.2 Limitations . 70
5.3 Future work . 71

2

Chapter 1

Introduction

Several factors can impact the execution time of an application on a computer: the most
obvious one is the number of arithmetic operations, but the cost of moving data between CPU
registers and memory can also be critical. For several decades now, CPUs have seen their
computational power (FLOPS) improve at a higher rate than memory latencies and band-
width. This means that, in order to use a processor to its full capacity, the minimization of
data transfers between registers, CPU caches and RAM is getting increasingly important.

While latency costs can usually be hidden by hardware mechanisms like prefetching, the
mismatch between computational power and memory bandwidth poses a fundamental limit.
The balance between computation and data transfers can be expressed through a program’s
operational intensity, which is the ratio between the number of arithmetic operations and the
volume of data transfers. This quantity can be compared with the machine balance of a CPU,
which is the ratio between peak arithmetic performance and memory bandwidth. Only if a
given program has an operational intensity that exceeds the machine balance can it exploit
the full potential of the CPU; otherwise its execution speed will be limited by data transfers.

This motivates the need to study the data movement complexity of programs, also called I/O
complexity. Similarly to computational complexity, which characterizes the number of opera-
tions made by a program, I/O complexity quantifies the volume of data movement operations
to and from memory that are needed to perform a computation, for any valid schedule of oper-
ations. This quantity can be very challenging to compute precisely, and has been the subject of
a long line of work, starting with the seminal paper of Hong & Kung [29] that first presented a
method for deriving lower bounds on the I/O of programs. Concurrently, advanced methods
in program analysis such as polyhedral compilation have been developed, enabling the analy-
sis and representation of data dependencies of complex programs (precisely affine programs,
that are composed of a combination of loop nests accessing multidimensional arrays, where
loop bounds and array accesses are affine function of loop counters and program parameters).
Elango et al. [21] first demonstrated how these two lines of work could be combined to au-
tomate the data movement analysis of affine programs, including stencils and linear algebra
kernels.

In this thesis, we present a fully automated method for computing both lower and upper
bounds on the I/O complexity of affine programs. It has been implemented as two open-
source tools called IOLB and IOUB.

IOLB (for I/O Lower Bounds) takes as input an affine program and outputs a parametric
lower bound with scaling constant on its I/O. This means that the bound is a symbolic expres-

3

sion, depending on program parameters (matrix dimensions for example) and on the size of
the fast memory S, and that it does not rely on asymptotic notation. For instance, for the basic
multiplication of square matrices of dimensionsN ×N , the bound output by IOLB is 2N 3

√
S
−3S.

As such, this bound can be evaluated for any value of N and S, and compared for example to
a cache miss count for a specific execution. Our algorithm for lower bounds is able to decom-
pose a program into sub-regions and to combine different methods on each sub-program to
derive a bound as tight as possible. IOLB was extensively evaluated on 30 algorithms spec-
ified in PolyBench [39], with several first-time I/O lower bounds demonstrations on these
programs.

Similarly, IOUB (for I/O Upper Bounds) automatically computes a symbolic expression of
an upper bound on the data movement cost of a program, from an abstract representation of
its iteration space and array accesses. To do so, it generates a set of candidate tiling transfor-
mations, using some pruning techniques to avoid combinatorial explosion, and associates to
each of them a symbolic expression of the I/O cost (which is an upper bound in the general
case but is actually exact in many cases). It then compares these expressions using numerical
evaluation to single out the best ones. For concrete values of fast memory size and program
parameters, the tool can also suggest a loop permutation and numerical tile sizes that min-
imize I/O. Finally, it is able to use computer algebra to determine tile sizes as a function of
the fast memory size S, and to get an upper bound that is directly comparable to the lower
bound expression from IOLB. For instance, on square matrix-matrix multiplication, the up-
per bound from IOUB is 2N 3

√
S+1−1

+ 1, which matches the lower bound up to lower order terms,

and effectively proves that the I/O complexity for this problem is 2N
3
√
S

(1 + o(1)). IOUB was
evaluated on several tensor contraction and convolution programs, giving optimal bounds in
many cases.

The rest of this manuscript is organized as follows. Chapter 2 gives a high-level view
of the concepts and methods used to derive lower and upper bounds on I/O complexity,
using examples to provide intuition to the reader. Chapter 3 delves into the details of au-
tomated I/O lower bound derivation, starting with the formal framework needed to reason
about them, then presenting the two main methods (K-partitioning and wavefront), as well
as how to combine them. We provide detailed algorithms for the automation of I/O lower
bound analysis, and an evaluation of our implementation on a large selection of affine pro-
grams. Chapter 4 similarly presents the I/O upper bound analysis method, first describing
the model and theoretical framework, then explaining how to build an automated program
analysis, and showing its application on tensor contraction and convolution kernels. Finally,
conclusions and suggestions for future work are provided in Chapter 5.

4

Chapter 2

Overview and Background

In this chapter, we give a high-level view of the concept of I/O complexity, and illustrate
the techniques for deriving lower and upper bounds on an example. The goal is to provide in-
tuitions on the representations and reasoning methods that will be more thoroughly detailed
in Chapters 3 and 4.

2.1 I/O Complexity

Our framework is a simple memory model with two levels: a small and fast memory (of
fixed size S) and a slow but infinite memory. Initially, all program data resides in the slow
memory. Data can be transferred back and forth between the two memory levels, and a piece
of data has to be in the fast memory in order to be used in a computation. The I/O cost
of a program, for a given schedule of arithmetic and I/O operations, is the number of data
transfers from slow to fast memory (or loads) 1. Now, for a given program, we are interested
in the lowest I/O cost that can be achieved by reordering operations: this quantity is called
the I/O complexity of a program.

Computing the I/O complexity exactly is usually intractable, as one would have to sim-
ulate every possible valid schedule of operations. Hence the need to find lower and upper
bounds on this complexity. To get an precise estimation of the I/O complexity of a program,

1. We choose in this work to count only loads (transfers from slow to fast memory) and not stores (transfers
from fast to slow memory). This simplifies the reasoning while still providing meaningful values.

CPU
Fast memory

capacity S

Slow memory

unbounded
capacity

I/O cost

Figure 2.1 – Memory model

5

for (i = 0 ; i < N ; i ++)
for (j = 0 ; j < N ; j ++)

for (k = 0 ; k < N ; k++)
S : C [i] [j] += A [i] [k] ∗ B [k] [j] ;

(a) C code.

S000

S001

S010

S011

S100

S101

S110

S111

(b) Graph representation (CDAG) for N = 2.

Figure 2.2 – Matrix-matrix multiplication.

the lower and upper bounds should be as close as possible. In some cases (such as matrix mul-
tiplication that will be used in this section), it is possible to find matching lower and upper
bounds (up to lower order additive terms), but even for simple programs this requires com-
plex reasoning. It is important to note that the bounds that we derive are valid for a particular
implementation of an algorithm, and not for any program computing a given problem.

2.2 Program representation

Since we need to represent whether a given schedule of operations is valid or not, a pro-
gram is represented by its operations, and data dependencies between them. This is natu-
rally abstracted as a directed graph, called a CDAG (computational directed acyclic graph,
see Def. 1). For programs that are composed of nested loops, vertices of this graph can be
represented as points in a multi-dimensional space.

Example: Matrix Multiplication Let us take the example of matrix-matrix multiplication.
The corresponding C code and the graph representation are shown on Fig. 2.2. On Fig. 2.2b,
vertices in green, red and light gray respectively represent input data from arrays A, B and
C. Vertices in dark gray are instances of statement S (i.e., each vertex corresponds to a mul-
tiplication and an addition). Edges represent data dependencies: all direct predecessors of a
vertex must be in fast memory to perform the computation.

The arithmetic complexity of this program (counting the multiplication and accumulation
as a single operation) is C =N3.

Considering the original schedule given by Fig. 2.2a, and an optimal memory manage-
ment (evicting the piece of data that will be needed latest from the small memory when it
is full), and supposing the fast memory size S to be much smaller than N2, the I/O cost for
this schedule is on the order of N3 — intuitively, the condition S << N2 means that all data
(matrices A, B and C) does not fit in the fast memory. Indeed, to compute a single row of C, the
totality of matrix B needs to be loaded in memory, so at most S − 1 words of matrix B can stay
in fast memory between two consecutive iterations of the outer loop on i, and each iteration
demands at least N2 − S + 1 load operations. The outer loop iterates N times, so the total

6

number of operations when S << N2 is indeed of the order of N3. The question is to know
whether this can be improved, and up to which point.

2.3 Lower bound derivation

We employ two distinct approaches to find lower bounds on data movement: one based
on the S-Partitioning approach [29], and one based on graph wavefronts [22]. Combining
these two approaches is essential for handling of a large class of programs, as they are com-
plementary and work on different data dependence patterns. A lower bound for a program
exhibiting a combination of both kinds of patterns can combine results from both approaches.
In this introductory section, we only present a high-level overview of the S-Partitioning ap-
proach, and apply it to matrix multiplication, to familiarize the reader with the reasoning and
terminology used.

The general idea of the S-partitioning approach for proving lower bounds is to reason on
the maximal operational intensity of a sub-CDAG, i.e. the maximum number of computations
that can be done with a fixed number of memory operations (loads). More precisely, for a
given parameter T (whose value will be chosen later), we are looking for an upper bound on
the size of the largest subgraph that can be executed doing only T loads, and supposing the
fast memory is full, i.e. S pieces of data are already loaded. Supposing we know such a bound
U (T), this implies that any valid schedule must contain at least ⌊|V |/U (T)⌋ sub-sequences
with T loads, where V is the set of computational vertices in the CDAG. This leads to a lower
bound on the number of loads of

Qlow = T ·
⌊
|V |
U (T)

⌋
. (2.1)

Let us now explain how the upper bound U (T) can be computed. The idea is to use infor-
mation on the “boundary” of a set of vertices P that can be executed with T load instructions,
to derive a bound on the cardinality of P . Intuitively, the “boundary” corresponds to values
that need to be in fast memory to execute vertices in P , so its size is bounded. When the de-
pendence pattern in the CDAG is regular, geometric inequalities that relate the cardinality of
a set of points in a multi-dimensional space to cardinalities of lower-dimensional projections
of those points can be used to derive a bound on |P |.

More formally, the In-set In(P) of P is the set of all predecessors of the vertices in P that
do not belong to P (see Fig. 2.3a). In(P) represents values that are dependencies of operations
in P , but are not computed within P . Since all values in In(P) must be in fast memory in order
to execute the operations in P , they must either already be in fast memory at the beginning of
the execution, or be explicitly loaded. At most S values from In(P) can be initially present in
the fast memory, and by definition T values can be loaded to execute P . Thus the size of In(P)
must be less than (S + T).

In many programs, CDAGs have a natural embedding in a multi-dimensional space, where
each dimension corresponds to a loop counter, and dependences between statements are reg-
ular and orthogonal. When this is the case, the size of the In-set In(P) can be bounded by
the size of its projections on hyperplanes. Fig. 2.3b illustrates this relation in a 2-dimensional
setting. This relation is one of the key insights to the automation of lower bound computation.

Let us go back to matrix multiplication. In this example, vertices corresponding to state-
ment S are naturally represented as points in a three-dimensional lattice, each dimension

7

P

In(P)

(a)

p
ro
j x
(P

)

projy (P)

|In(P)| ≥
∣∣∣projx (P)

∣∣∣+
∣∣∣projy (P)

∣∣∣
(b)

Figure 2.3 – In-set and projections. When data dependencies are regular and orthogonal,
In(P) is bounded by the size of projections of P .

|P | ≤
(∣∣∣projx (P)

∣∣∣ · ∣∣∣projy (P)
∣∣∣ · ∣∣∣projz (P)

∣∣∣) 3
2

Figure 2.4 – Loomis-Whitney inequality in three dimensions

8

representing a loop index (see Fig. 2.2b). With that representation, we observe that the size of
the In-set of a vertex set of this particular graph must be greater than or equal to the cardi-
nality of the orthogonal projections of P onto the three elementary planes:

|In(P)| ≥
∣∣∣projx (P)

∣∣∣+
∣∣∣projy (P)

∣∣∣+
∣∣∣projz (P)

∣∣∣ . (2.2)

Conveniently, a mathematical result known as the Loomis-Whitney inequality [34] relates the
size of a vertex set in a three-dimensional space to the sizes of its three 2D projections (see
Fig. 2.4):

|P | ≤
(∣∣∣projx (P)

∣∣∣ · ∣∣∣projy (P)
∣∣∣ · ∣∣∣projz (P)

∣∣∣) 3
2 . (2.3)

This result can be generalized to arbitrary dimensions and any set of (not necessarily orthog-
onal) projections, and is called the Brascamp-Lieb inequality.

Optimizing the conjunction of inequalities (2.2) and (2.3) leads to the following bound on
|P |: (mathematical details can be found in Sec. 3.3.1)

U (T) =
(

(S + T)
3

) 3
2

. (2.4)

Finally, setting T = 2S and plugging the expression into equation (2.1) gives the optimal
bound

IOmm ≥Qlow = 2S ·
⌊
N3

S
3
2

⌋
≈ 2N3
√
S
. (2.5)

A key contribution of this work is the automation of this process.

2.4 Upper bound derivation

Once we found a lower bound, the question is whether it can be attained. An upper bound
on I/O complexity is simply the cost of a valid program schedule.

Thus, for a program with fixed parameter values, it is possible to generate a full execution
trace, and count the number of data transfers, using an optimal cache policy (always evicting
the piece of data that will be used the latest). However, this is costly and only valid for fixed
parameter values, while we would like to derive parametric expressions. Moreover, the goal
is to find an upper bound as low as possible, so we need to use a “good” schedule.

The main rescheduling transformation to optimize data transfers is tiling. It consists in
partitioning the complete iteration domain of a loop nest into smaller parts, usually (hyper-
)rectangles, called tiles, and executing each tile atomically. Fig. 2.5 shows examples of tiled
codes for matrix multiplication.

Our approach to finding upper bounds on I/O complexity can be summarized as follows.
Beforehand, the program is analyzed to find the part on which the tiling transformation can
be applied. A first step selects a subset of tiling loop permutations, using analytical reasoning
to reduce the search space. For each permutation, this provides a parametrically tiled pro-
gram. Then, an algorithm based on polyhedral calculus computes a symbolic expression of
the I/O cost for each tiling permutation, as well as constraints on tile sizes. Finally, these ex-
pressions can be used to provide actual tile sizes for numerical parameter values, or to provide
a symbolic bound depending only on S but not on tile sizes, that can be directly compared
with the lower bound.

9

for (i 1 = 0 ; i 1 < N ; i 1 += T i)
for (j 1 = 0 ; j 1 < N ; j 1 += Tj)

for (k1 = 0 ; k1 < N ; k += Tk)
for (i = i 1 ; i < i 1 + T i ; i ++)

for (j = 0 ; j < j 1 + T j ; j ++)
for (k = 0 ; k < k1 + Tk ; k++)

C [i] [j] += A [i] [k] ∗ B [k] [j] ;

(a)

for (j 1 = 0 ; j 1 < N ; j 1 += Tj)
for (i 1 = 0 ; i 1 < N ; i 1 += T i)

for (k1 = 0 ; k1 < N ; k += Tk)
for (k = 0 ; k < k1 + T i ; k++)

for (i = i 1 ; i < i 1 + Tj ; i ++)
for (j = 0 ; j < j 1 + Tk ; j ++)

C [i] [j] += A [i] [k] ∗ B [k] [j] ;

(b)

Figure 2.5 – Two valid tiled schedules for Matrix-matrix multiplication.

for (i 1 = 0 ; i 1 < N ; i 1 += T i)
for (j 1 = 0 ; j 1 < N ; j 1 += Tj)

for (k1 = 0 ; k1 < N ; k += Tk)
for (i = i 1 ; i < i 1 + T i ; i ++)

for (j = 0 ; j < j 1 + T j ; j ++)
for (k = 0 ; k < k1 + Tk ; k++)

C[i] [j] += A [i] [k] ∗ B [k] [j] ;

A B C

N
2

N
2

N
2

Ti · N N
2

Ti · N
Ti · N Tj · N Ti · Tj
Ti · Tk Tj · Tk Ti · Tj
Tk Tk · Tj Tj

Tk Tk 1
1 1 1

Figure 2.6 – Array footprints

Let us illustrate it on the matrix multiplication example. A tiled schedule for matrix mul-
tiplication consists of six loops, and the permutation of the three outer loops and the three
inner loops is free. Figure 2.5 shows two valid tiled schedules (supposing for clarity that Ti,
Tj and Tk are divisors of N). We use a heuristic to select a subset of relevant permutations,
which is detailed in Sec. 4.3. For now, let us focus on code (a) in Fig. 2.5.

Figure 2.6 shows the symbolic expression of the memory footprint of each array for each
subloopnest. For each array, the last level for which the footprint is supposed to fit in the fast
memory is highlighted. This means that, for some fixed values of i1 and j1, at the beginning
of the third loop iterating of k1, all Ti·Tj values C[i][j] for i = i1...i1 + Ti, j = j1...j1 + Tj

are loaded and kept in fast memory for the whole iteration. The same goes at the beginning
of the fourth loop (iterating on i), for values A[i][k] and B[k][j], i = i1...i1 + Ti, j =
j1...j1 + Tj, k = k1...k1 + Tk.

This implies that all these pieces of data fit in the fast memory, i.e.

Ti · Tk+ Tj · Tk+ Ti · Tj ≤ S (2.6)

The outer loops iterating on i1,j1 and k1 iterate respectively N/Ti, N/Tj and N/Tk times. In

10

for (i 1 = 0 ; i 1 < N ; i 1 += T)
for (j 1 = 0 ; j 1 < N ; j 1 += T)

for (k = 0 ; k < N ; k++)
for (i = i 1 ; i < i 1 + T ; i ++)

for (j = 0 ; j < j 1 + T ; j ++)
C [i] [j] += A [i] [k] ∗ B [k] [j] ;

Figure 2.7 – Best tiled schedule for matrix multiplication.

total, (N/Ti) · (N/Tj) · (N/Tk) · (Ti ·Tk) = N
3/Tj values of A, (N/Ti) · (N/Tj) · (N/Tk) · (Tj ·Tk) = N

3/Ti
values of B, (N/Ti) · (N/Tj) · (Ti · Tj) = N

2 values of C are loaded. The total I/O of this program
under this schedule is thus

IO =
N

3

Ti
+
N

3

Tj
+ N

2 (2.7)

Finally, to be able to compare this expression with the lower bound, Ti and Tj need to be
expressed as functions of S and N. As the goal is to minimize I/O, this amounts to finding
values of Ti, Tj and Tk that minimize expression (2.7) under condition (2.6). This can be
solved manually or using computer algebra, and the optimal value is Ti = Tj =

√
S + 1−1, and

Tk = 1, leading to

IO =
2N3

√
S + 1− 1

+N2. (2.8)

This expression matches the lower bound up to lower order terms.
Since the optimal value of Tk is 1, one loop of the tiled code can be removed, and the final

code attaining this bound is shown on Fig. 2.7.
Our tool, IOOpt, is also able to find a numerical solution for fixed values of N and S. For

instance, for N = 1500 and S = 1024, IO is minimized for Ti = Tj = 31, and gives a total
number of loads IO = 65516129.

On an actual machine, several levels of memory are present, so multiple levels of tiling are
needed to produce efficient code. IOOpt is able to model such multi-level memory hierarchies
and optimize the I/O for all levels at once. The result can then be used in conjunction with
additional optimization techniques (vectorization, efficient register use...) to produce highly
efficient code for modern CPUs.

2.5 Affine programs and automation

This chapter gave a high-level view of the models and methods to produce I/O bounds,
but did not detail so far the automation process, which is a key part of this thesis.

To do so, we have to choose a class of programs to work with: the class of affine programs
stands in a nice spot combining expressiveness and applicability of our techniques, and comes
with a convenient analysis tool ecosystem. Affine programs cover a wide set of key algorithms,
as exemplified with the 30 algorithms in PolyBench/C [39] that span popular dense linear
algebra, stencils/convolutions, and dynamic programming techniques.

An affine program is composed of (potentially nested) for loops and statements, operating
on variables and multi-dimensional arrays. Loop bounds are affine expressions of surround-
ing loop indices and program parameters (a program parameter is a symbolic constant during

11

the compilation, like array dimensions). Similarly, access functions made by statements to ar-
rays are affine expressions of surrounding loop indices and program parameters. As such, the
control flow of such programs is statically analyzable.

This class corresponds to the class of programs that can be analyzed by polyhedral compi-
lation techniques [25]. Powerful analysis tools such as ISL [53] and barvinok [57] can repre-
sent these programs abstractly as points in a multidimensional space, and do some operations
on these points such as analyzing data flow dependences, counting the number of points sat-
isfying some property as a symbolic expression... This is particularly interesting for our I/O
analysis, as it allows us for instance to uncover regular data dependencies that correspond to
projections in our lower bound derivation.

For example, in the matrix multiplication code of figure 2.2a, all iterations of statement S
are represented as follows in ISL notation:

[N]→ {S[i, j,k] : 0 ≤ i < N ∧ 0 ≤ j < N ∧ 0 ≤ k < N } (2.9)

Here the matrix dimension N is a program parameter (a symbolic constant), and every
instance of statement S is represented as an integer point in a 3-dimensional space.

In the same way, data dependencies can be represented parametrically. The following ISL
formula represents all dependencies from data in array A:

[N]→ {A[i,k]→ S[i, j,k] : 0 ≤ i < N ∧ 0 ≤ j < N ∧ 0 ≤ k < N } (2.10)

The corresponding vertices and edges are highlighted on the CDAG from Fig. 2.2b on
Fig. 2.8.

S000

S001

S010

S011

S100

S101

S110

S111

S000

S001

S010

S011

S100

S101

S110

S111

Figure 2.8 – Ilustration of equations (2.9) and (2.10) on the CDAG for N = 2.

12

Chapter 3

Lower Bounds

In this chapter, we present our results and tools for the derivation of I/O lower bounds.
Formal definitions and theoretical background needed for the main analysis are introduced in
Section 3.1. Then, Section 3.2 provides insights on how complex programs can be decomposed
to derive tighter bounds. Two proof techniques, namely the K-partition and the wavefront
based proofs are respectively described in Section 3.3 and Section 3.4. An overview of the
complete framework is provided in Sec. 3.5. We demonstrate the power of our approach by
running it on a full benchmark suite of affine programs: Sec. 3.6 reports the data movement
complexities for the 30 algorithms benchmarked in PolyBench, as well as tensor contraction
and convolution programs. Finally, related work is discussed in Sec. 3.7.

3.1 Foundations

Before delving into the main matter, we present some background and discuss prior re-
sults needed for the developments in this chapter.

3.1.1 CDAG

The formalism and methodology we use is strongly inspired by the foundational work of
Hong & Kung [29]. It was introduced in the context of data movement lower bounds and
models the execution of an algorithm on a processor with a two-level memory hierarchy.

In this formalism, an algorithm is abstracted by a graph — called a CDAG —, where ver-
tices model execution instances of arithmetic operations and edges model data dependencies
among the operations. The data movement (or I/O) complexity of a CDAG is formalized via
the red-white pebble game (a variation of Hong & Kung’s red-blue pebble game). In this
game, a vertex of a CDAG can hold red and white pebbles. Red pebbles represent values in
the fast memory (typically a cache or scratchpad), and their total number is limited. White
pebbles represent computed values, that can be loaded into the fast memory. A value can be
computed only when all its operands reside in the fast memory: a red pebble can be placed
on a vertex in the CDAG if all its predecessors hold a red pebble, a white pebble is placed
alongside the red one. Values that have been computed can be loaded in and discarded from
the fast memory at any time: a red pebble can be placed or removed from a vertex holding
a white pebble. However a value can only be computed once: once a vertex holds a white

13

Parameters: N, M;

Input: A[N], C[M]; Output: A[N];

for(t=0;t<M;t++)
for (i=0; i<N; i++)

A[i] = A[i] * C[t];

(a)

Parameters: N, M;

Input: A[N], C[M]; Output: SM−1[N];
for (0 ≤ t < M and 0 ≤ i < N)

i f (t==0): S0,i = A[i] * C[0];

e l s e: St,i = St−1,i * C[t];

(b)

t

i

(c)

Figure 3.1 – Example 1. (a) C-like code. (b) Corresponding single assignment form.
(c) Corresponding CDAG. Input nodes A[N] (resp. C[N]) are in grey (resp. white), compute

nodes are in black.

pebble, it cannot be removed. The I/O cost of an execution of the game is the number of loads
into the fast memory: the number of times a red pebble is placed alongside a white one.

Contrary to Hong & Kung’s original model, this formalism does not allow recomputation
of the value at a vertex. This follows many previous efforts [4, 3, 10, 11, 19, 22, 21, 30,
46]. This assumption is necessary to be able to derive lower bounds for complex CDAGs by
decomposing them into subregions. Another slight difference with prior work is that it only
models loads and not stores — this means the generated bounds are clearly also valid lower
bounds for a model that counts both loads and stores. Since the number of loads dominates
stores for most computations, the tightness of the lower bounds is not significantly affected.

Let us define formally the notion of CDAG, and our pebbling game.

Definition 1 (Computational Directed Acyclic Graph (CDAG)). A Computational Directed
Acyclic Graph (CDAG) is a tuple G = (V ,E,I) of finite sets such that (V ,E) is a directed acyclic
graph, I ⊆ V is called the input set and every v ∈ I has no incoming edges.

Definition 2 (Red-White Pebble Game). Given a CDAG G = (V ,E,I), we define a complete S-
red-white pebble game (S-RW game for short) as follows: In the initial state, there is a white pebble
on every input vertex v ∈ I , S red pebbles and an unlimited number of white pebbles. Starting from
this state, a complete game is a sequence of steps using the following rules, resulting in a final state
with white pebbles on every vertex.

(R1) A red pebble may be placed on any vertex that has a white pebble.

(R2) If a vertex v does not have a white pebble and all its immediate predecessors have red
pebbles on them, a red pebble may be placed on v. A white pebble is placed alongside the red
pebble.

(R3) A red pebble may be removed from any vertex.

The cost of a S-RW game is the number of applications of rule (R1), corresponding to the number
of transfers from slow to fast memory.

14

Definition 3 (I/O complexity). The I/O (or data movement) complexity of a CDAG G for a fast
memory capacity S, denoted Q(G), is the minimum cost of a complete S-RW game on G.

3.1.2 A compact representation of the CDAG: the data-flow graph

for (0 ≤ t < M and 0 ≤ i < N)

i f (t==0): S[0,i]=A[i]*C[0];

e l s e: S[t,i]=S[t-1,i]*C[t];

(a) Single assignment form

A

C

S

e1

e2

e3

(b) DFG

DA = [N]→ {A[i] : 0 ≤ i < N }
DC = [N]→ {C[t] : 0 ≤ t < M}
DS = [M,N]→ {S[t, i] : 0 ≤ t < M ∧ 0 ≤ i < N }
|DS | =MN

(c) Node domains

Re1 = [N]→ {A[i]→ S[0, i] : 1 ≤ i < N }
Re2 = [M,N]→ {C[t]→ S[t, i] : 0 ≤ t < M ∧ 0 ≤ i < N }
Re3 = [M,N]→ {S[t, i]→ S[t + 1, i] : 0 ≤ t < M − 1 ∧ 0 ≤ i < N }

(d) Edge relations

Figure 3.2 – DFG for Example 1

A CDAG (see Fig. 3.1c) represents a single dynamic execution of a program, and can be
very large. To be able to analyze programs of realistic size with reasonable resources, we
use a compressed representation called Data-flow graph (DFG). Another advantage of such
a representation is that it is parametric, i.e. a single DFG can represent CDAGs of different
sizes, depending on program parameters. A DFG represents an affine computation, which is
the class of programs that can be handled by the polyhedral model [25]. We use terminology
and syntax inspired on the ISL library [53], and illustrate them with the example of Fig. 3.1.
Formal definitions can be found in the tutorial [54].

Vertex domains As one can see on Fig. 3.1c, to each loop is associated a “geometric” space
dimension (t and i here) so that each vertex of the CDAG lives in a multidimensional iteration
space, its domain, that can be algebraically represented as a union of parametric Z-polyhedra
bounded by affine inequalities.

Definition 4. A domain is a Z-polyhedron, i.e. a set of points in the lattice Zd for some integer d,
bounded by affine inequalities. In ISL notation, it is called a set and is written:

S = [p1, . . . ,pm]→ {X[i1, . . . , id] : P}

where:
— p1, . . . ,pm are (integer) parameter variables,
— X is an identifier for the space to which points in S belong (two points with the same coor-

dinates but different identifiers are treated as distinct points),
— i1, . . . , id are coordinate variables,
— P is a Presburger formula on parameter and coordinate variables (in most cases a conjunc-

tion of affine inequalities I1 ∧ . . . ∧It).

It is also often useful to manipulate unions of such domains, and ISL provides appropriate
objects for this. Standard operations (union, intersection, difference,. . .) are available, as well

15

as a cardinality operation (denoted |D |), which computes the cardinality of a given domain
as a (quasi-)polynomial function of the parameter variables (this is provided by the barvinok
library[7, 57]). As an example (see Fig. 3.2c), the domain DS of statement S is a Z-polyhedron
with parametersM andN made up of all integer points (t, i) such that 0 ≤ t < M and 0 ≤ i < N .
The number of points in this set (cardinality) is |DS | =MN . Note that the space within which
all the points of a statement (S here) live is identified with the name of the statement, using
the notation S[t, i].

Edge relations A set of edges of the CDAG is represented using a relation (ISL map), which
is a set of pairs between two spaces, from the domain space to the image space.

Definition 5. A relation is a binary relation between points in two domains, subject to affine
constraints. It is called a map in ISL, and written as follows:

R = [p1, . . . ,pm]→ {X[i1, . . . , id]→ Y [j1, . . . , j
′
d] : I1 ∧ · · · ∧ It}

The domain Dom(R) of R is the set of points X[i1, . . . , id] having an image through R. The image
Im(R) of R is the set of points Y [j1, . . . , j ′d] that have a predecessor through R.

As an example (see Fig. 3.2d), the data flow from statement S[t, i] (definition ofA[i] in S) to
statement S[t+ 1, i] (use of A[i] in S) is represented using the relation Re3

. In addition to stan-
dard set operations, ISL can compute (an over-approximation of) the transitive closure of a re-
lation, denoted R∗. The following operations are also supported: image of a domainD through
a relation R (denoted R(D)), and composition of two relations R1 and R2, denoted R1◦R2 (this
is left composition, going the opposite way from usual functional notation). Composition
restricts the image space of the resulting relation to points where the composition relation
makes sense: Dom(R1 ◦R2) = R−1

1 (Im(R1)∩Dom(R2)), Im(R1 ◦R2) = R2 (Im(R1)∩Dom(R2)).
As with domains, we will sometimes manipulate unions of such relations.

A Data-flow graph (DFG) A DFG is a graph G = (S ,D). Each vertex S ∈ S of the graph rep-
resents a (static) statement or an input array of the program. Each vertex S is associated with
a parametric iteration domain DS and a list of enclosing loops (empty for input arrays). Each
edge d = (Sa,Sb) ∈ D represents a flow dependency between statements or input arrays. Each
edge is associated with an affine relation Rd between the coordinates of the source and sink
vertices. The DFG is a compact (exact) representation of the dynamic CDAG where a single
vertex/edge of the DFG represents several vertices/edges of the dynamic CDAG. While all the
reasoning and proofs can be done by visualizing a CDAG, the actual heuristic described in this
chapter manipulates its compact representation, allowing us to translate graph methods [21]
into geometric reasoning. Fig. 3.2b shows the DFG for our simple stencil code.

3.1.3 Partitioning

One key idea from Hong & Kung was the design of a mapping between any valid sequence
of moves in the red-blue pebble game and a convex partitioning of the vertices of a CDAG and
thereby the assertion of an I/O lower bound for any valid schedule in terms of the minimum
possible count of the disjoint vertex-sets in any valid 2S-partition (see below) of the CDAG.

The argument is the following: any execution can be decomposed into consecutive seg-
ments doing exactly (but for the last one) S loads. There are at most S vertices in fast memory

16

before the start of each segment. Considering the set of computed vertices in one of these
segments, we can bound the size of its “frontier” by 2S: there can be at most S vertices in fast
memory before the execution of the segment, and by construction there are exactly S loads.

Smith et al. [48] introduced a generalization of this argument, leading to tighter bounds in
many cases. The idea is to decompose the execution into segments with T loads. This leads to
a (S + T)-partitioning lemma instead of the original 2S. We provide formal definitions below.

Definition 6 (In-set). Let G = (V ,E) be a DAG, P ⊆ V be a vertex set in G. The In-set of P is the
set of vertices outside P with a successor inside P . Formally,

In (P) = {v ∈ V ∖ P , ∃(v,w) ∈ E ∧w ∈ P }

Definition 7 (K-bounded set). Let G = (V ,E) be a DAG. A vertex set P ⊆ V is called K-bounded
if In (P) ≤ K .

Definition 8 (K-partition of a CDAG). Let G = (V ,E,I) be a CDAG. A K-partition of G is a
collection of subsets V1,V2, . . . ,Vm of V \ I such that:

(1) {V1,V2, . . . ,Vm} is a partition of V \ I , i.e. ∀i , j Vi ∩Vj = ∅ and
⋃m
i=1Vi = V \ I .

(2) There is no cyclic dependence between Vi ’s.

(3) Every Vi is K-bounded, i.e. ∀i In (Vi) ≤ K .

Lemma 1 ((S + T)-Partitioning [29]). Let T > 0. Any complete calculation R of the red-white
pebble game on a CDAG G using at most S red pebbles is associated with a (S + T)-partition of the
CDAG such that

QR ≥ T · (h− 1),

where QR is the number of applications of rule (R1) in the game and h is the number of subsets in
the partition.

In particular, an upper bound U on the size of a (S + T)-bounded set directly translates
into a data movement lower bound: Q(G) ≥ T ·

(⌈ |V \I |
U

⌉
− 1

)
. This bound can actually be im-

proved to:

Q(G) ≥ T ·
⌊
|V \ I |
U

⌋
. (3.1)

Indeed, the proof of Lemma 1 establishes a correspondence between the number of sets in
a (S + T)-partition of G and a partition of an execution of the game in segments containing
exactly S loads, except maybe the last one. The subtraction by one is due to this last segment.
When |V \ I | /U is an integer, the segment contains exactly S loads and thus the subtraction is
not necessary.

We actually want to be able to compute lower bounds for CDAGs in which no vertices
are tagged as input (this is particularly useful when doing decomposition, see Sec. 3.2) The
following lemma (Lemma 2) establishes such a result. The main idea is as follows: we tag
some vertices as input, getting a new CDAG on which Lemma 1 applies and gives some bound.
The additional I/O cost is at most the number of input vertices that were added, so we get a
lower bound for the original CDAG by subtracting this number from the bound. See [22] for
a complete proof.

17

Definition 9 (Sources). Let G = (V ,E) be a DAG, P ⊆ V be a vertex set in G. The sources of P are
the vertices of P with no predecessors in P . Formally,

Sources(P) = {v ∈ P , ∄u ∈ P , (u,v) ∈ E}

Lemma 2 ((S + T)-Partitioning I/O lower bound, no input case [22]). Let S be the capacity of
the fast memory, let G = (V ,E,∅) be a CDAG, and let h be the minimum number of subsets in a
(S + T)-partition of GI = (V ,E,I = Sources(V)) for some T > 0. Then, the minimum I/O for G
satisfies:

Q(G) ≥ T · (h− 1)− |Sources(V)| .

3.1.4 Using projection to bound the cardinality of K-bounded sets

The key idea behind the automation of data movement lower bound computation is the
use of geometric inequalities through an appropriate program representation. Vertices of a
CDAG are mapped to points in a multidimensional geometric space E ≃ Zd through some
mapping ρ (where dimensions are typically loop indices), and regular data dependencies in
the CDAG are represented as projections on a lower-dimensional space.

The condition “set of vertices P ⊂ V is K-bounded” in the CDAG corresponds to a condi-
tion of the form “the size of the projections of ρ(P) in E is bounded by K”. Finding a bound on
the size of a K-bounded set in a CDAG can thus be reduced to: finding a bound on the size of
a set E in a geometric space, given cardinality bounds on some of its projections. This corre-
spondence is developed in Sec. 3.3. In this section, we take it for granted and only introduce
the mathematical notations and results.

There exist inequalities for doing exactly what we need, namely the discrete Brascamp-
Lieb inequality, introduced by Christ et al. [16] as a discrete analogue to the one established
by Brascamp and Lieb for metric spaces [13].

Theorem 1 (Brascamp-Lieb inequality, discrete case [16]). Let d and dj be nonnegative integers
and φj : Zd 7→ Zdj be group homomorphisms for 1 ≤ j ≤m. Let 0 ≤ s1, s2, . . . , sm ≤ 1. Suppose that:

rank(H) ≤
m∑
j=1

sj · rank
(
φj(H)

)
for all subgroups H of Zd (3.2)

Then:

|E| ≤
m∏
j=1

∣∣∣φj(E)
∣∣∣sj for all nonempty finite sets E ⊆ Zd . (3.3)

A special case is when the φj are the canonical projections on Zd−1 along basis vectors,

and s1 = · · · = sm = 1
d−1 , giving a bound of the form |E| ≤

∏d
i=1

∣∣∣φj(E)
∣∣∣1/(d−1)

. Fig. 2.4 illustrates
this special case in three dimensions.

The issue, when trying to apply Theorem 1, is that (3.2) has to be true for all subgroups,
which can obviously be quite difficult to establish. However, as all the coefficients are integers
and bounded by d, the number of distinct inequalities in (3.2) is bounded. The set of admissi-
ble sj is thus a (convex) polyhedron and it has been shown [17] that the polyhedron defined by
these inequalities is computable. The algorithm is actually combinatorial and quite complex,
so we do not use it in our present work. Instead, we use the following result, which restricts
the set of subgroup for which (3.2) has to be verified.

18

Definition 10 (Lattice of subgroups). The lattice of subgroups generated by subgroups H1,H2,
. . . ,Hm of a group G is the closure of {H1,H2, . . . ,Hm} under group sum and intersection.

Lemma 3 (Lattice of subgroups in Brascamp-Lieb[52]). Theorem 1 holds with the weaker condi-
tion:

rank(H) ≤
m∑
j=1

sj · rank
(
φj(H)

)
for all subgroups H ∈ Lφ1,φ2,...,φm (3.2b)

where Lφ1,φ2,...,φm is the lattice of subgroups generated by Ker(φ1),Ker(φ2), . . . ,Ker(φm).

The subgroup lattice is not necessarily finite, so this does not give a tractable algorithm,
but this will be sufficient in most cases, as loop nests are usually of quite small dimensions,
and data dependencies are not too complex. In our practical implementation, we use a time-
out. We add projections: the more projections the tighter the bound. Each time we add a
projection we update the lattice of subgroups and check for Conditions 3.2b to be satisfied.
The process (adding projections) stops if we reach the time-out. This does not mean that the
algorithm fails, rather that the bound will potentially be less tight (cf. Sec. 3.5).

A situation that often occurs is when the subgroups Ker(φj) are linearly independent: in
this case there is no need to compute the generated lattice of subgroups, simply testing on
each kernel individually for Conditions 3.2 is sufficient (see proof in [16], Sec. 6.3).

Choosing sj ’s The goal is to solve the following problem: “Given a set of projections (group
homomorphisms in Zd) φ1, . . . ,φm and a constant K , find an upper bound (as tight as possible) on
the cardinality of a set E ⊂ Zd satisfying

∣∣∣φj(E)
∣∣∣ ≤ K .”

For any coefficients s1, . . . , sj satisfying (3.2), Theorem 1 gives the following bound on |E|:

|E| ≤
m∏
j=1

∣∣∣φj(E)
∣∣∣sj ≤ m∏

j=1

Ksj = K
∑
j sj .

To get a bound as tight as possible on |E|, we want to minimize the right-hand side of this
inequality. This amounts to minimizing

∑
j sj while satisfying the constraints in (3.2). Since

these constraints are linear inequalities, the optimal choice for sj ’s can be obtained by a linear
solver.

In the special case where the φj ’s are orthogonal projections along basis vectors (and m =
d), kernels are linearly independent and the linear program is:

Minimize
∑
j

sj s.t. ∀1 ≤ i ≤ d, 1 ≤
∑
j,i

sj

and its solution is, as expected, s1 = · · · = sd = 1
d−1 .

3.1.5 DFG Paths

A fundamental object in our lower bound analysis is a DFG-path, which is simply a di-
rected path in a DFG. The relation Rp of a DFG-path p = (e1, . . . , ek) is the composition of
the relations of its edges: Rp = Re1

◦ · · · ◦Rek . We are only interested in two specific types of
DFG-paths, depending on their relation:

19

— chain circuits, which are cycles from one DFG-vertex S to itself, such that the path
relation Rp is a translation S[x⃗]→ S[x⃗+ b⃗].

— broadcast Sa,Sb-paths, which are elementary paths (from a Sa to Sb – Sb possibly equal
to Sa) in which all DFG-edges but the first one are injective edges, such that the inverse
of the corresponding relation Rp is an affine function Sb[x⃗]→ Sa[A · x⃗ + b⃗], where A is
not full-rank.

Intuitively, a chain circuit corresponds in the CDAG to “iterative” dependencies, for in-
stance every statement Si,j in a 2-dimensional loop depending on the result of statement Si−1,j .
Broadcast paths correspond to some data being reused multiple times, for instance a variable
x being used by every statement Si in a one-dimensional loop. The dimension of the kernel of
A in the definition above corresponds to the dimension of the set of statements that use a sin-
gle piece of data: it is of dimension d if it is used in every iteration of a d-dimensional loop.
In both cases, these are regular data reuse patterns that can be exploited by our geometric
approach.

In Fig. 3.2, path p = (e3) is a chain circuit, going from S to itself with translation vector
b⃗ = (1,0). Path p′ = (e2) is a broadcast path, with relation Rp′ = Re2

= {C[t]→ S[t, i] : 0 ≤ t <
M ∧ 0 ≤ i < N }. The inverse relation is the linear function I⃗ 7→ A · I⃗+ b⃗, with A = (1 0), b⃗ = (0).
The kernel of A is {(0, i), i ∈ R}.

3.2 CDAG decomposition

To derive data movement lower bounds for a complex program, it is essential to be able
to decompose it into subregions for which we can compute lower bounds, and then sum the
complexity for each subregion. The no recomputation condition is necessary for such a de-
composition. Under this hypothesis, it is quite straightforward to see that a decomposition
into disjoint subregions is sufficient. In this section, we provide a more general decomposi-
tion lemma, using the fact that vertices of a subregion that will not be counted as loads can
also be part of another subregion. We then explain how it is applied on the DFG representa-
tion, distinguishing two cases: combining a fixed number of program regions (see example in
Fig. 3.4); and summing over all iterations of a loop (see example in Fig. 3.3), which amounts to
combining an unbounded (parametric) number of program regions. We stress that the CDAG
partitioning method (Sections 3.1.3 and 3.1.4) and the CDAG decomposition method (this
section) are two distinct things, used at different stages in the global algorithm.

3.2.1 Non-disjoint Decomposition Lemma

Definition 11 (sub-CDAG, no-spill set). Let G = (V ,E,I) be a CDAG, and Vi ⊂ V . The sub-
CDAG G|Vi of G is the CDAG with vertices Vi , edges Ei = E∩ (Vi ×Vi) and input vertices Ii = I∩Vi .

The no-spill set of G|Vi is the subset of vertices of Vi \ Ii with either:

1. no outgoing edges in Ei , or

2. no incoming edges in Ei and at most one outgoing edge in Ei
The may-spill set of G|Vi is the complement of its no-spill set in Vi .

Lemma 4 (CDAG decomposition). Let G = (V ,E,I) be a CDAG. Let V1,V2, . . . ,Vk be subsets of V
such that for any i , j, the may-spill sets of G|Vi and G|Vj are disjoint. Then, the I/O complexity of

20

G is bounded by the I/O complexities of the sub-CDAGs G|Vi :

Q(G) ≥
k∑
i=1

Q(G|Vi).

Proof. Let R be an optimal S-RW-game on G, with cost Q = Q(G). For all i, we denote Qi
the cost of R restricted to Vi , that is the number of applications of rule (R1) on vertices in the
may-spill set of Vi . Since the may-spill sets are pairwise disjoint, clearly Q ≥

∑k
i=1Qi . For all i,

we will build from R a valid game Ri for G|Vi with cost Qi . This will show that Q(G|Vi) ≤ Qi ,
from which follows

∑k
i=1Q(G|Vi) ≤

∑k
i=1Qi ≤Q =Q(G), establishing the result.

To build the game Ri from R, we proceed as follows:

1. Remove every move involving vertices outside Vi .

2. For no-spill vertices in Vi without successors, remove every application of rule (R1)
and (R3).

3. For no-spill vertices v in Vi with no predecessors and one successor w, move the single
application of rule (R2) on v just before the application of (R2) on w, add a (R3) move
for v just after this point and remove all subsequent (R1) and (R3) moves on v.

It is clear that after step 1, we have a valid game for G|Vi . Indeed conditions for (R1) and (R3)
are trivially preserved, and since we kept all (R2) moves on vertices in Vi , there will always be
the necessary red pebbles to apply (R2). Step 2 also gives a valid game, since no (R2) moves
can depend on such a vertex having a red pebble. Step 3 is also a valid transformation because
since v does not have any predecessor in Vi (and is not an input vertex), it can be activated
via (R2) and any given point. Therefore activating it just when it is needed, and applying (R3)
just after is valid.

This preserves all (R1) moves on the may-spill set of G|Vi and removes all (R1) moves on
its no-spill set, thus the cost of Ri is indeed Qi .

IOLB implements two different mechanisms that make use of the non-disjoint decomposi-
tion lemma. The basic one (bounded combination – Sec. 3.2.2) simply decomposes the CDAG
into a bounded number of sub-CDAGs (e.g.,corresponding to different sub-regions of the
code), computes the corresponding I/O complexities, and combines them. The more complex
one (loop parametrization – Sec. 3.2.3), decomposes the CDAG into an unbounded number
of sub-CDAGs by “slicing” the iteration space of a loop nest. IOLB combines the two mecha-
nisms. The following example illustrates the decomposition lemma for loop parametrization.

Illustrating example Consider Example 2 on Fig. 3.3. The CDAG can be decomposed into
M − 1 identical subgraphs, as shown on Fig. 3.3c (each subgraph G|Vt , t = 1, . . . ,M − 1 corre-
sponds to iteration t of the loop enclosing S1, and iterations t − 1 and t of the loop enclosing
S2). On each of these subgraphs, the may-spill set contains the two “bottom” rows (because
vertices in the “top” row have no successor in the sub-CDAG). Thus the may-spill sets of these
subgraphs are pairwise disjoint and the I/O for the whole CDAG is greater than the sum of
the individual I/O for each subgraph by Lemma 4.

On each subgraph G|Vt , the wavefront method (Sec. 3.4) can be applied, giving a lower
bound on I/O of Q(G|Vt) ≥ N − S. As the may-spill set of the different subgraphs do not

21

for(t=0; t<M; t++) {

s = 0;

for(i=0; i<N; i++)

S1: s += A[i];

for(i=0; i<N; i++)

S2: A[i] += s;

}

(a) Code
(b) CDAG for M=4, N=4.

White vertices correspond to
S1, gray vertices to S2.

may-spill set

(c) Decomposition of the CDAG

Figure 3.3 – Example 2

intersect, the individual complexities can be summed over t = 1, . . . ,M − 1, providing a lower
bound for the whole CDAG:

Q(G) ≥ (M − 1)(N − S).

3.2.2 Bounded combination

The main procedure of IOLB (Sec. 3.5.3) selects a bounded set of (possibly overlapping)
sub-CDAGs and computes their individual complexities. The objective of Alg. 1 is to combine
(sum) as many non-interfering (disjoint may-spill sets) complexities as possible. It does so
using a greedy approach: Assume there are two sub-CDAGs both with a “high” complexity
but with non-disjoint may-spill sets. Alg. 1 will select the one with the highest complex-
ity, recompute the complexity of the second after removing the intersecting part, and then
sum them up. The overall set of sub-CDAGs is iteratively processed this way (and the com-
plexities summed-up) until empty or negligible complexities remain. The comparison (what
is “higher”) is done using instances of parameter values, simply evaluating the corresponding
symbolic expressions. It should be emphasized that the final bound is a valid lower bound for
any parameter values, the instances of parameter values are only used for heuristics.

Let us have a look at the example on Fig. 3.4. In the original code (3.4a), notice that k is
the outer loop index, meaning that A[k] will have been modified either in the current loop
iteration or the previous one depending on the order between i and k (Floyd-Warshall exhibits
the same pattern, with three loops instead of two). This is made clear in the single-assignment
form (3.4b), and can be visualized in the CDAG representation (3.4c). The dependences on
input values are grayed out in (3.4b) and omitted in (3.4c), and we will ignore them in the
discussion to keep the explanations simple.

22

1 function combine_subQ
input : A DFG G, an instance I, a set of complexities Q
output: A combined complexity QI

2 QI = 0;
3 Let G′ be a copy of G;
4 while Q , ∅ do
5 let Q such that Q(I) = maxQQ(I);
6 Q =Q− {Q};
7 if Q(I) = 0 then return QI;
8 if G′ ∩Q.may-spill , ∅ then
9 Recompute Q assuming CDAG G′;

10 Q =Q∪ {Q};
11 else
12 QI :=QI +Q;
13 G′ = G′ −Q.may-spill

14 return QI

Algorithm 1: Summing lower bound expressions by removing interferences

Considering only the statement vertex S in the DFG, the dependency analysis gives the
following relations:

R1 = {S[k − 1, i] → S[k, i] : 1 ≤ k < N ∧ 0 ≤ i < N }
R2 = {S[k − 1, k]→ S[k, i] : 1 ≤ k < N ∧ 0 ≤ i < k}
R3 = {S[k,k] → S[k, i] : 0 ≤ k < N ∧ k < i < N }

The image spaces of R2 and R3 provide a natural decomposition of the CDAG into two
non-interfering sub-CDAGs, as shown in (3.4d). On each part, the pattern is similar to that
of Example 1 on page 14, and the geometric approach gives a lower bound (omitting lower
order terms) Q(Gi) ≥ N 2

2S . Since they do not interfere, Alg. 1 will return their sum Q(G) ≥ N 2

S ,
independently of the parameter instance.

3.2.3 Loop parametrization

As done on the example above, IOLB can compute the I/O complexity of some inner loop
nests of a bigger enclosing loop nest and sum them. To this end, our scheme performs what
we call loop parameterization. Loop parameterization considers each individual sub-CDAG
where the outermost indices are fixed (our algebraic formulation allows us to consider such
indices as parameters without the need to explicitly enumerate them) enriched by their input
vertices. Taking the notations

Vi = Vi ∪ In(Vi)

parametrizing the outer “t” loop with t = Ω (with Ω a parameter) allows us to compute QΩ,
a (parametric) lower bound for each individual value of Ω = 1, . . . ,M − 1 (The sub-CDAG for

23

Parameters: N;

Input: A[N]; Output: A[N];

for(k=0;k<N;k++)
for (i=0; i<N; i++)

A[i] = f(A[i],A[k]);

(a) C-like code

Parameters: N;

Input: A[N]; Output: SN−1[N];
for (0 ≤ k < N and 0 ≤ i < N)

i f (k==i==0): S0,i = f(A[0],A[0]);

e l s e i f (k==0): S0,i = f(A[i],S0,0);
e l s e i f (i<=k): Sk,i = f(Sk−1,i, Sk−1,k);
e l s e i f (i>k): Sk,i = f(Sk−1,i, Sk,k);

(b) Corresponding single assignment form

k

i

R1 R2 R3

(c) Corresponding CDAG for N=5. Input
nodes A[N] are omited.

(d) Decomposition into two non-interfering sub-CDAGs. Sources are in
gray. May-spill sets are encircled.

Figure 3.4 – Example 3

Ω = 0 does not have the same pattern so it is ignored), and combine them

Q =
∑

1≤Ω<M
QΩ =

∑
1≤Ω<M

Q|{v∈V , t=Ω} =
∑

1≤Ω<M
N − S = (M − 1) · (N − S).

In more complex cases, the parametric bound can depend on the outer loop parameter Ω, and
we use formulas for sum of polynomials.

In ISL terms, this is done by making the outer loop index a parameter. Here the original
domain

DS1
= [M,N]→ {S1[t, i] : 0 < t < M ∧ 0 < i < N }

becomes
DΩ
S1

= [M,N,Ω]→ {S1[t, i] : t = Ω ∧ 0 < t < M ∧ 0 < i < N }.
The corresponding parts of the algorithms are highlighted in Algorithm 6 on page 38.

3.3 K-partition bound derivation

In this section, we explain how to apply the geometrical reasoning of Sec. 3.1.4 on a CDAG
G = (V ,E), using its compact representation as a DFG. We also present, in 3.3.1, a generaliza-

24

tion of one of the techniques introduced in [20, 35, 48] that these authors used to derive a
tighter lower bound for matrix multiplication.

To apply Lemma 2 on G, we need to find a lower bound on the minimum number of
subsets h in any K-partition of G. The general reasoning is as follows:

1. Embed V in a geometric space through a map ρ : P ⊆ V 7→ E ⊆ Zd , such that two
disjoint subsets of V are mapped to disjoint subsets of Zd . We have∣∣∣ρ(P)

∣∣∣ ≤ |P | .
2. Use the DFG representation to find a subset V ′ ⊆ V and a set of projections (group

homomorphisms) φ1, . . . ,φm with the property that:

Any K-bounded set P ⊆ V ′ \ Sources(V ′) satisfies
∣∣∣φj(ρ(P))

∣∣∣ ≤ K. (3.4)

3. Using Theorem 1, derive an upper bound U on
∣∣∣ρ(P)

∣∣∣ for any K-bounded P . This

provides a lower bound
⌈ |V ′\Sources(V)|

U

⌉
on the number h of disjoint K-bounded sets in

V ′ \ Sources(V ′).

3.3.1 Geometric embedding, DFG-paths and projections

Let Sk be some fixed DFG-vertex (corresponding to one program statement). LetQ1, . . . ,Qm
be DFG-paths all ending in Sk , with a common image space Dk = {Sk[i1, . . . , id] : . . . }.

The embedding ρ is defined as:

ρ(P) = {(i1, . . . , id) | Sk[i1, . . . , id] ∈ P }.

Vertices corresponding to statement Sk are mapped to their corresponding d-dimensional
point, and other vertices are ignored.

Definition 12 (embedded projections). For a given path Q with relation RQ, the geometric pro-
jection φQ is defined as follows:

— If the path is a broadcast path with RQ = {Sj [j1, . . . , jd′]→ Sk[i1, . . . , id] : . . . } for some state-
ment Sj (not necessarily , Sk), then the projection is directly given by the path relation
φQ(i1, . . . , id) = (j1, . . . , jd′).

— If the path is a chain circuit with RQ = {Sk[i1, . . . , id]→ Sk[i1 + δ1, . . . , id + δd] : . . . }, then the
projection is the orthogonal projection on the hyperplane in Zd defined by orthogonal vector
δ = (δ1, . . . ,δd). Its explicit formulation can be computed but is not needed here.

In the case of a broadcast, it is straightforward that φQ satisfies (3.4), because R−1
Q (P) is

included in In(P) for any P ⊆ V , so
∣∣∣φQ(ρ(P))

∣∣∣ ≤ |In(P)| ≤ K for any K-bounded P .
In the case of a chain circuit, let us call IQ(P) = R−1

Q (P) \ P . This is basically the In-set
of P restricted to edges corresponding to DFG-path Q, so IQ(P) ⊂ In(P). The projection φQ
associates one point to each straight line directed by δ. Since P ⊆ V \ Sources(V), there is at
least one point in φQ(ρ(P)) for every nonempty chain in P , and

∣∣∣φQ(ρ(P))
∣∣∣ ≤ |In(P)| ≤ K .

Example Consider paths p1 = (e2) and p2 = (e3) in Fig. 3.2. p1 is a broadcast path with
relation {C[t]→ S[t, i]}, so the corresponding projection is φ1(t, i) = (t). p2 is a chain path with
relation {S[t, i]→ S[t + 1, i]}, so the corresponding projection is φ2(t, i) = proj(1,0) (t, i) = (0, i)
(see Fig. 2.3b).

25

Summing projections

In some cases, the parts of the In-set of a vertex set associated with two given path relations
are actually disjoint. Let Q1 and Q2 be two such paths, such that R−1

Q1
(P) ∩ R−1

Q2
(P) = ∅ for

any P ⊆ V \ Sources(V). If these are two broadcast paths, then since R−1
Qi

(P) ⊂ In(P), any
K-bounded set P satisfies the stronger inequality:∣∣∣φQ1

(ρ(P))
∣∣∣+

∣∣∣φQ2
(ρ(P))

∣∣∣ ≤ K
The same holds if Q1 is a chain circuit and R−1

Q1
(P)∩R−1

Q2
(P) = ∅, by a similar argument.

We say two paths Q1 and Q2 are independent for domain DS if R−1
Q1

(DS)∩R−1
Q2

(DS) = ∅. We
can build the DFG-path interference graph: vertices are paths Q1, . . . ,Qm and there is an edge
between any independent pair of paths. In this graph, if vertices Qi1 , . . . ,Qit form a clique,
then

Any K-bounded set P ⊆Dk satisfies
∑
s

∣∣∣φis(P)
∣∣∣ ≤ K.

Example Looking again at Example 1, it is straightforward to check that paths p1 and p2 are
independent, so a K-bounded set P actually satisfies

∣∣∣φ1(P)
∣∣∣+

∣∣∣φ2(P)
∣∣∣ ≤ K .

Combining several such inequalities, such that every projection occurs at least once, leads
to a general constraint of the form:

m∑
j=1

βj
∣∣∣φj(E)

∣∣∣ ≤ K,
for some positive coefficients βj . This is achieved by finding a set of maximal cliques covering
all vertices in the interference graph, and summing the corresponding inequalities. Comput-
ing these βj ’s is the role of function coeffInterf in Algorithm 4.

In this case, a tighter bound can be derived:

|E| ≤
m∏
j=1

∣∣∣φj(E)
∣∣∣sj ≤ (

K∑
j sj

)∑
j sj m∏

j=1

(
sj
βj

)sj
.

The following lemma establishes this result.

Lemma 5. Let 0 ≤ s1, s2, . . . , sm ≤ 1 and C > 0. Let xj be nonnegative integers and βj > 0 for
1 ≤ j ≤m such that

∑m
j=1βjxj ≤ C. Then

m∏
j=1

x
sj
j ≤

(
C∑
j sj

)∑
j sj m∏

j=1

(
sj
βj

)sj
. (3.5)

Proof. We use Lagrange multipliers to find the constrained maximum of the function ψ : x ∈
Rm 7→

∏m
j=1 x

sj
j .

L(x,λ) =
m∏
j=1

x
sj
j −λ

 m∑
j=1

βjxj −C

26

Partial derivatives are:

∂L
∂xj

= sjx
sj−1
j

∏
k,j

x
sk
k −λβj ,1 ≤ j ≤m

∂L
∂λ

= C −
m∑
j=1

βjxj

Setting them to be 0, we get:

λβjxj = sj
m∏
k=1

x
sk
k ,1 ≤ j ≤m

Summing for 1 ≤ j ≤m gives:

λ
m∑
j=1

βjxj = λC =

 m∏
k=1

x
sk
k

 · m∑
j=1

sj

From which we derive:

xj =
Csj

βj
∑
j sj
,1 ≤ j ≤m

And finally:

ψ(x) ≤
m∏
j=1

x
sj
j =

m∏
j=1

(
Csj

βj
∑
i si

)sj
=

(
C∑
j sj

)∑
j sj m∏

j=1

(
sj
βj

)sj
.

With this more general formulation, the choice of the sj coefficients is more involved than
the linear optimization problem of Sec.3.1.4, and is developed in Sec. 3.3.3.

Kernel subgroup lattice

As already mentioned, the subgroup lattice (Def. 10 used in Lemma 3) is not necessarily
finite, so it is better to build it step-by-step, updating it each time we add a new path. We set
a time limit for the computation to converge, and do not add the path if this limit is reached.
Function subspace_closure in Algorithm 2 tentatively updates the current subgroup lattice
with a new one, returning the original lattice in case of a timeout.

3.3.2 Finding paths

The function that generates the set of paths P = {Q1, . . . ,Qm} for a DFG-vertex S is named
genpaths (Alg. 3). Starting from S, it uses a simple backward traversal (backward DFS)
that favors walking through predecessors with largest domain. As the number of paths can
be combinatorial, IOLB sets a timeout to avoid a computational blow-up. For a path P =
(S1, . . . ,St = S), we store sub-path relations RSi→S for every intermediate statement Si . This is
necessary to “remember” exactly which CDAG vertices are included in the computation.

27

1 function subspace_closure
input : Lattice of subgroups L, subgroup to add K
output: updated set of subspaces L′

2 L′ = L;
3 while not timeout do
4 if ∃H ∈ L′ , H ∩K < L′ then L′ = L′ ∪ {H ∩K};
5 else if ∃H ∈ L′ , H +K < L′ then L′ = L′ ∪ {H +K};
6 else return L′;
7 return L if timeout

Algorithm 2: Update the subgroup lattice with a new kernel

1 function genpaths
input : a Data-flow graph G = (S ,D), a statement S ∈ D
output: set of paths P

2 start from S and backward traverse to build any possible path that reaches S;
3 drop paths for which RS ′→S(DS ′) has lower dimensionality than DS ;
4 drop paths if ¬(isBroadcast(P)∨ isChain(P));

Algorithm 3: Generate paths

3.3.3 Computing the lower bound

Once we have found a path combination, it is quite straightforward to apply the theoretical
results introduced above.

This is detailed in function sub_paramQ_bypartition in Alg. 4. Here, the role of the func-
tion call to coeffInterf is to compute the coefficients βj . It does so by finding a clique cover
of the DFG-path independence graph and summing the constraints formed by each clique as
explained in Sec. 3.3.1. The values for coefficients sj that satisfy inequalities 3.2b are then
determined using convex optimization (IPOPT [58] in our case) so as to minimize as much as
possible the quantity

U =
(

(S + T)∑
j sj

)∑
j sj m∏

j=1

(
sj
βj

)sj
. (3.6)

Indeed this expression being an upper bound on
∣∣∣ρ(P)

∣∣∣ (see Lemma 5), minimizing it has the
effect of tightening 1 the computed I/O complexity.

The constraints in (3.2b) describe a convex polyhedron, but the objective function (3.6) is
not convex. In the basic case when all projections are simply bounded by (S + T), the objective
is

U := (S + T)
∑
j sj ,

so a natural objective is to minimize
∑
j sj in this generalized case. It can be easily checked

that (3.6) is indeed equal to this when βj = 1
m for all j and s1 = · · · = sj .

Notice that the first factor in the expression of U depends only on the value of the sum.

So once
∑
sj is fixed, it is natural to minimize the second factor

∏m
j=1

(
sj
βj

)sj
, which is convex as

1. Observe that any values of sjs lead to a correct bound

28

1 function sub_paramQ_bypartition
input : paths P = {P1, . . . , Pm} with domain D and lattice L
output: complexity Q

2 I :=
⋃
Pi∈P R

−1
Pi

(D);
3 d := dim(D);
4 (β1, . . . ,βm) := coeffInterf(P ,D);
5 (s1, . . . , sm) := convex-opt {
6 variables: {s1, . . . , sm ∈Q+}

7 objective: minimize
∑
j sj and then

∏
j

(
sj
βj

)sj
8 constraints: ∀H ∈ L,

∑
j sjrank

(
φj(H)

)
≥ rank(H) where φj = proj⊥Ker(Pj)

} ;

9 T := 1∑
j sj−1S ;

10 U :=
∏m
j=1

(
(S+T)sj
βj

∑
i si

)sj
;

11 Q := max
(⌊ |D |
U

⌋
× T − |I |,0

)
;

12 Q.may-spill := may-spill(P ,D);

13 function coeffInterf
input : paths P = {P1, . . . , Pm}, domain D
output: coefficients (β1, . . . ,βm) such that

∑
βjφj(E) ≤ K for any K-bounded set E

14 G := graph with V := P1, . . . , Pm and E := (Pi , Pj), R
−1
Pi

(D)∩R−1
Pi

(D) , ∅;
15 I := set of maximal independent sets of G such that every node belongs to at least

one set (greedy construction);
16 βj := #{I ∈ I , Pj ∈ I}/ |I |;
17 function may-spill

input : paths P = {P1, . . . , Pm}, domain D
output: may-spill set Dms

18 Dms := ∅;
19 foreach broadcast path Pi = (S0,S1, . . . ,St = S) ∈ P do

Dms :=Dms ∪
(⋃t

j=0R
−1
Sj→S(D)

)
;

20 foreach chain circuit Pi = (S0,S1, . . . ,St = S) ∈ P do

Dms :=Dms ∪
(⋃t

j=1R
−1
Sj→S(D)

)
∪

(
R−1
S0→S(D)∩

(⋃
k,j R

−1
Pk

(D)
))

;

21 function Ker
input : path Pj
output: linear space K such that the orthogonal projection φj = proj⊥Ker(P)

22 if isBroadcast(Pj) then return Ker(j1 . . . jd′) where
RPj = {T [j1, . . . , jd′]→ [i1, . . . , id] : . . . } ;

23 if isChain(Pj) then return (δ1, . . . ,δd) where
RPj = {S[i1, . . . , id]→ S[i1 + δ1, . . . , id + δd] : . . . } ;

Algorithm 4: Derivation of a lower bound from a path combination with the partition
method

29

for (b = 0 ; b < B ; b++)
for (c = 0 ; c < C ; c++)

for (f = 0 ; f < F ; f ++)
for (x = 0 ; x < X ; x ++)

for (y = 0 ; y < Y ; y++)
for (h = 0 ; h < H ; h++)

for (w = 0 ; w < W; w++) {
Out [f , x , y , b] += Image [x+h , y+w, c , b] ∗ F i l t e r [f , h , w , c] ;

}

Figure 3.5 – Convolution kernel.

a function of (s1, . . . , sm). This convex optimization problem can be solved with an appropri-
ate tool, such as IPOPT [58]. The last step amounts to setting an appropriate value for T that
provides a lower bound of

⌊ |DS |
U

⌋
×T −|I | (see Lemma 2) as big/tight as possible. Here, DS corre-

sponds to V \Sources(V) in the CDAG view, and I is the frontier of the domain, corresponding
to Sources(V). T is chosen as 1∑

j sj−1S, because it maximizes the first term asymptotically.

Finally, we store the may-spill set corresponding to the CDAG for which this lower bound
is valid.

Taking the example given in Figure 3.1, it is sufficient to check condition (3.2b) on H1 =
{(0, i)},H2 = {(t,0)}, and the optimization problem is:

Minimize s1 + s2 and then ss11 s
s2
2

s.t. s1 ≥ 1, s2 ≥ 1

The solution is s1 = s2 = 1, and U = ((S + T) /2)2 = S2 (because T = 1
s1+s2−1S = 1 · S). |DS | =MN

and |I | =N +M, so

Q ≥
⌊MN
S2

⌋
× S −N −M.

3.3.4 Extensions: Small Dimensions and Reduction Detection

We introduced two extensions to the method described above, that allow IOLB to derive
much tighter bounds for some programs. For example, on a convolution (Fig. 3.5), the lower
bound derived by the initial algorithm is several asymptotic orders below the upper bound.
This lower bound can be improved by taking into account (i) the reductions across multiple di-
mensions, which refines the dependence analysis performed in the first steps of the algorithm,
and (ii) small dimensions. Small dimensions are dimensions with a much smaller number of
iterations than the size of the fast memory S. This property can be used to improve the power
factor of the asymptotic bound. Figure 3.6 shows the successive improvements of the initial
lower bound expression for convolution, eventually leading to matching the upper bound.
Both extensions have been implemented in IOLB, and allow us to obtain asymptotically tight
bounds for tensor contraction and convolution computations. These bounds are shown in
table 3.2 on page 49.

30

Initial lower bound:

BFXY +CBXY

With reduction detection:

BCXYWH
S

With reduction detection and small
dimension handling:

2BCXY
√
WH

√
S

Upper bound when W,H << S [18]:

2BXYCF
√
WH

√
S

Figure 3.6 – Lower bounds for convolution, without and with IOLB extensions (only
dominant terms are shown).

Using Reductions

A reduction is the successive application of an associative and commutative binary op-
erator over a set of values. For example, in the convolution kernel described in Figure 3.5,
there is a reduction over 3 dimensions (c, h and w) with the addition operation. We only con-
sider reductions that sum all the values along some dimensions, called reduced dimensions.
This property can be used to sum the values of a set in any order, instead of having a fixed
sequence of summation.

Because the program is expressed as a loop nest, its reduction is sequential. Thus, when
the DFG is extracted from a code, there is a chain of dependencies linking nodes along re-
duced dimensions. When there are more than 2 reduced dimensions, this negatively impacts
our study of DFG-paths, thus the quality of the extracted projections φj and the upper bound
found on the size of the K-bounded set E.

We detect a simple class of reductions by performing a pattern-matching on affine de-
pendencies in the DFG. In this class, the reduced dimensions are defined over a rectangular
domain and that the summation is performed in a lexicographic order over a permutation of
these reduced dimensions. Once a reduction is detected, we replace the sequential chain of
dependencies (between the nodes of the reduction) by two sets of broadcast dependencies:
(i) starting from the computations using the final result of the reduction to all the nodes of
the reduction, and (ii) starting from the initialization of the reduction to the nodes of the
reduction.

On the convolution example of Figure 3.5, if we do not detect the reduction, the de-
pendence on Out is along dimension s, and the corresponding projection found by IOLB is
φ1(b,c, f ,x,y,h,w) = (b,c, f ,x,y,h,0). But if we detect it, the projection of the new path be-
comes φ1(b,c, f ,x,y,h,w) = (b,0, f ,x,y,0,0), which leads to a bigger kernel and better con-
straints on sj .

31

Adapting the Method to Small Dimensions

The geometrical argument of the K-partition method consists, at a high level, in bounding
the size of the largest sub-CDAG P with a given operational intensity, by bounding its extent
along each dimension. The bound obtained in the end is some power of the cache size S, which
makes sense when loop limits along all dimensions are large (i.e., of the same magnitude and
with their product >> S). However, in some programs, a subset of dimensions has small sizes
in most real life implementations: in convolutions, H and W are almost always less than
10. When this is the case, the extent of P along small dimensions is more constrained by the
total extent of the CDAG along this dimensions, than by the geometrically derived bound
depending on S.

Formally, we assume that some of the dimensions of the iteration domain are small, i.e.,
their size is orders of magnitude smaller than S. For notation simplicity, let us assume that
they correspond to the first q dimensions in statement domain Dk = {Sk[i1, . . . , id] : . . . }. We
adapt the partitioning method by considering an additional group homomorphism φsd to the
application of Theorem 1. This group homomorphism is a projection of the space on the small
dimensions:

φsd = (i1, . . . , iq).

Let Nsd =
∣∣∣φsd(ρ(Dk))

∣∣∣ be the size of the image of Dk through φsd (in most cases, this will be
equal to the product of small dimension sizes, e.g., Nsd =H ·W for convolution).

Introducing a coefficient ssd associated with φsd , we can rewrite Theorem 1 as follows.
Assuming:

rank(H) ≤
m∑
j=1

sj · rank
(
φj(H)

)
+ ssd · rank(φsd(H)) for all subgroups H ∈ Lφ1,φ2,...,φm (3.2s)

Then:

|E| ≤
m∏
j=1

∣∣∣φj(E)
∣∣∣sj ·N ssd

sd for all nonempty finite sets E ⊆ Zd . (3.3s)

The upper bound on
∣∣∣ρ(P)

∣∣∣ becomes:

U =
(

(S + T)∑
j sj

)∑
j sj m∏

j=1

(
sj
βj

)sj
N ssd
sd . (3.6s)

Note that the constraints on the sj are relaxed due to the contribution of ssd , giving us an
opportunity to find smaller values of sj , compared to the usual method. Moreover, in order to

get a bound as tight as possible, we should minimize
∑
sj first, ssd next, and finally

∏(
sj
βj

)sj
.

Let us illustrate this method on the convolution example described in Figure 3.5.
Let us start with the “standard” derivation, i.e. without taking small dimensions into ac-

count. By examining the affine dependencies of the program, we find three projections φ1, φ2
and φ3, described in Figure 3.7a.

As stated by Theorem 1, we consider the subgroupsH generated from the combination of
kernel vectors of the φj . This yields constraints shown in Figure 3.7b, ignoring the rightmost
column. Their corresponding subgroups are shown in the leftmost column.

32

φ1(b,c, f ,x,y,h,w) = (b,0, f ,x,y,0,0) (from reduction)
φ2(b,c, f ,x,y,h,w) = (x+ h,y +w,c,b) (from Image)
φ3(b,c, f ,x,y,h,w) = (f ,h,w,c) (from Filter)
φsd(b,c, f ,x,y,h,w) = (h,w) (small dimensions)

(a) Projections (group homomorphisms) used in Brascamp-Lieb
inequality.

(f⃗) 1 ≤ s1 + s3
(⃗b) 1 ≤ s1 + s2
(c⃗) 1 ≤ s2 + s3
(x⃗) 1 ≤ s1 + s2
(w⃗) 1 ≤ s2 + s3 +ssd
(w⃗ − x⃗) 1 ≤ s1 + s3 +ssd
(w⃗, x⃗) 2 ≤ s1 + s2 + s3 +ssd
(y⃗) 1 ≤ s1 + s2
(⃗h) 1 ≤ s2 + s3 +ssd
(⃗h− y⃗) 1 ≤ s1 + s3 +ssd
(⃗h, y⃗) 2 ≤ s1 + s2 + s3 +ssd

(b) Constraints on sj from
Brascamp-Lieb inequality.

Figure 3.7 – Partitioning method - Brascamp-Lieb inequality applied to a convolution,
without and with small dimensions (H and W).

The three projections are independent so β1 = β2 = β3. The optimization problem can be
written as:

Minimize s1 + s2 + s3 under constraints:

s1 + s2 ≥ 1
s1 + s3 ≥ 1
s2 + s3 ≥ 1

s1 + s2 + s3 ≥ 2

The solution is s1 = s2 = s3 = 2
3 and gives the following upper bound on

∣∣∣ρ(P)
∣∣∣:

U =
(S + T

3

)2
.

Finally we set T = 1
s1+s2+s3−1S = S, and get the final bound (ignoring lower-order terms

corresponding to the input):

Q =
BCXYWH

U
· T =

9
4
BCXYWH

S
.

Now, we will see that taking small dimensions into account leads to a tighter bound. Here
small dimensions are h and w, and Nsd = W ·H . Compared to the first derivation, we add a
projection φsd , shown in Figure 3.7a. The presence of this new projection adds a new coeffi-
cient ssd to the constraints on sjs, as shown in Figure 3.7b.

The optimization problem becomes:

Minimize s1 + s2 + s3, then ssd under constraints:

s1 + s2 ≥ 1
s1 + s3 ≥ 1
s2 + s3 ≥ 1

s1 + s2 + s3 + ssd ≥ 2

33

The solution is now s1 = s2 = s3 = ssd = 1
2 , and we get

U =
(S + T

3

) 3
2

· (WH)
3
2 .

Finally we set T = 1
s1+s2+s3−1S = 2S, and get the final lower bound on I/O (ignoring again

lower-order terms):

Q =
BCXYWH

U
· T =

2BCXY
√
WH

√
S

.

This is a tighter lower bound for most real-life configurations.

3.4 Wavefront bound derivation

3.4.1 Theoretical results

An alternative way to derive data movement lower bounds in the no-recomputation model
is the wavefront abstraction. At any point in an execution of a RW-game, the wavefront is the
set of vertices that have been computed but whose result is still needed by some successor
(sometimes called the set of live vertices). If the size of the wavefront at some point in the
execution is greater than the size of the fast memory, then necessarily some vertices have to
be spilled to the slow memory and thus loaded using rule (R1). This is formalized in the
definition and lemma below:

Definition 13 (Wavefront). Let R be an execution of the RW-game on a CDAG G, and v a vertex
of G. Consider the time t in the execution just before v has been computed (i.e., just after a white
pebble has been placed on v using rule (R2)). The wavefront WR(v) in execution R is the set of
vertices that, a time t, have been computed (i.e., have a white pebble) but have some successor that
does not.

Lemma 6 (Min-wavefront [22]). Let S be the capacity of the fast memory, and G = (V ,E) be a
CDAG. Let wmin

G = minR (maxv∈V |WR(v)|), so that any valid RW-game on G has a wavefront of
size at least wmin

G . Then,
Q ≥ wmin

G − S.

This lemma is quite general and cannot be applied directly, as wmin
G is not usually com-

putable. We thus provide the following result, which uses a condition on the structure of the
CDAG to get a lower bound on the size of a wavefront in any execution.

Corollary 1. Let G = (V ,E) be a CDAG, and V1,V2 be disjoint subsets of V such that every vertex
in V2 is reachable from every vertex in V1 through some path in G. Let L1, . . . ,Lm be disjoint paths
in G, starting in V1 and ending in V2. More formally: ∀Lj = (vj1, . . . , v

j
lj

), v
j
1 ∈ V1 and vjlj ∈ V2

V1 ×V2 ⊂ E∗

Then,
wmin
G ≥m.

34

V1

V2

Figure 3.8 – Application of Cor. 1 on a sub-CDAG. Paths Lj (single edge) are shown in bold.

By Lemma 6, this implies:
Q ≥m− S.

Proof. Let v be the first vertex to be computed among vertices of V2 in some fixed RW-game
on G. By the second condition, every vertex in V1 must have been computed since v depends
on all of them. Just before a red pebble is placed on v, no vertex in V2 has a red pebble.
Therefore there is a live vertex (that has a red pebble and a successor without one) in every
path Lj . Thus wmin

G ≥m.

The common case to use this technique to get a strong data movement lower bound is to
combine it with the parametric CDAG decomposition (Sec. 3.2.3).

Example In the example of Fig. 3.3, Corollary 1 can be applied on each subgraph, with V1
and V2 chosen as shown on Fig. 3.8. It can be easily checked that every vertex in V1 can reach
every vertex in V2, and there are N disjoint paths Lj , so this gives a lower bound

Q(G|Vt) ≥N − S.

3.4.2 Implementation

To apply this technique, our algorithm tries to uncover a set of disjoint paths satisfying
the hypotheses of Corollary 1. To reduce the search space, Algorithm 5 looks for a much more
constrained pattern, in which all disjoint paths Lj begin and end in different instances of some
statement S, with an increment in the innermost parametrized loop index (see Sec. 3.2.3). This
amounts to finding an injective circuit in the DFG with a relation of the form

{S[I1 . . . Id , id+1 . . . iD]→ S[I1 . . . Id + 1, id+1 . . . iD]}.

Intuitively, we look at two “slices” of the CDAG, each of them of dimensionD−d, representing
two successive iterations of the body of the loop iterating over dimension d (with index Id and
Id + 1, respectively). We try to find subsets of these two slices (corresponding to V1 and V2)
such that every vertex in the first one can reach every vertex in the second one.

In Algorithm 5, the first loop computes the following relations:
— RS→S is the union of all path relation of elementary circuits from S to itself,
— RLS→S is the union of all affine path relations (where every subpath relation is affine)

of elementary circuits S→ S,
— RS→∗ is the union of all path relations of elementary paths from S to any other DFG-

vertex.

35

This is then used to compute the relation RId . Here Id is the index of the innermost
parametrized loop, and RId is the restriction of RLS→S to paths that do exactly one step along
dimension d, not changing any other index. This represents a set of disjoint paths going from
instances of statement S in “slice” Id to instances of S in “slice” Id + 1.

To apply Corollary 1, we need to restrict RId to a domain W where every starting vertex
reaches every ending vertex. To do so, we first compute X =

(
Rcomplete − (RS→S)∗

)(
Dom

(
RId

))
,

that is, all vertices in “slice” Id + 1 that are not reachable from “slice” Id . We then take W =
Dom

(
RId

)
− R−1

Id
(X), that is, we only keep vertices in “slice” Id that can reach every vertex

in slice Id + 1. Application of Corollary 1 with V1 = W , V2 = RId (W) and {Lj}j = RId gives
Q ≥ |W | − S.

1 function sub_paramQ_bywavefront
input : DFG G = (S ,D), vertex S ∈ S , parametrized dimensions Ωd

output: lower bound Q

2 D := dim(S);
3 RS→S := ∅; RLS→S := ∅; RS→∗ := ∅;
4 foreach Sj ∈ S in topological order, from S (excluded) to S (included) do
5 A := {(Si ,Sj) ∈ E, RSi→Sj is affine and R−1

Si→Sj injective};
6 RLS→Sj :=

⋃
(Si ,Sj)∈ARLS→Si ◦RSi→Sj ;

7 RS→Sj :=
⋃

(Si ,Sj)∈ERS→Si ◦RSi→Sj ;
8 RS→∗ := RS→∗ ∪RS→Sj ;

9 RId := RLS→S ∩ {S[I1 . . . Id , id+1 . . . iD]→ S[I1 . . . Id + 1, id+1 . . . iD]};
10 Rcomplete := {S[I1 . . . Id , id+1 . . . iD]→ S[I1 . . . Id + 1, i′d+1 . . . i

′
D]};

11 W := Dom
(
RId

)
−R−1

Id

((
Rcomplete − (RS→S)∗

)
(Dom

(
RId

)
)
)
;

12 Q := max(|W | − S,0);

13 Q.may-spill :=W ∪
(
RS→∗(W)∩R−1

S→∗

(
RId (W)

))
Algorithm 5: Derivation of a lower bound with the wavefront method

3.5 Complete framework

3.5.1 DFG construction

Our front end (PET [56]) takes as input a program in C where the to-be analyzed regions
(SCoPs – Static Control Parts) are delimited by #pragma scop and #pragma endscop annota-
tions. For PET, all array accesses are supposed not to alias with one another. Any scalar data
is assumed to be atomic and all of the same size: our CDAG is not weighted (which is a limi-
tation of our implementation and not a conceptual limitation of the approach). As illustrated
by the example of Fig. 3.1 and 3.2 (multidimensional-)array accesses are affine expressions of
static parameters and loop indices. A static parameter can be the result of any complex calcu-
lation but has to be a fixed value for the entire execution of the region. Loop bounds and more
generally control tests follow the same rules (affine expressions). As a consequence, the iter-
ation space is a union of (parametric) polyhedra, and memory accesses (read and writes) are

36

piecewise affine functions. This representation of the region execution that fits into the poly-
hedral framework [25] allows IOLB to compute data dependencies using standard data-flow
analyses.

PET outputs a polyhedral representation of the input C program, from which we extract
a Data-flow graph (DFG) G = (S ,D) (see Sec. 3.1.2).

3.5.2 Instances of parameter values

As briefly explained in Sec. 3.2, to generate bounds that are as tight as possible, our heuris-
tic needs to take decisions. Such decisions are based on our ability to compare the size of
two different domains sizes or even the complexity of two different sub-CDAGs. The overall
framework being parametric (it provides complexities that are functions of parameter val-
ues and cache size), a total order is obtained by considering a specific instance of parameter
values, taken as an additional input alongside the C program. One needs to outline that a
specific instance of parameter values is not considered by the algorithm as a precondition:
For a given instance, the computed lower bound expression is universal, i.e., is correct for any
parameter values. For completeness, several instances are considered, and to each instance I
is associated a complexity QI. As we have Q ≥ QI for any instance, denoting I the set of all
considered instances, they are simply combined as:

Q = max
I∈I

(
QI

)
.

3.5.3 Main algorithm

Alg. 6 contains the skeleton of the main part of IOLB, with links to corresponding subsec-
tions.

To make it concrete, we show a step-by-step execution of the algorithm on the cholesky

kernel. The pseudo-code and associated DFG for cholesky are reported in Fig. 3.9.
In this example, the K-partition method is the method that yields the strongest bound.

To keep things tractable, we will detail only the parts of the algorithm that contribute to this
bound: the iteration of the outer loops (lines 4 and 5) for which d = 0 and S = S3, and only the
K-partition part (lines 8 to 18, corresponding to Sec. 3.3).

The DFG contains three statement vertices {S1,S2,S3} (the vertex corresponding to input
array A and the corresponding dependences are omitted as they do not play a role in the lower
bound derivation). The main loop of Alg. 6 iterates on those statements and computes some
lower bound complexities for each of them.

Procedure genpaths (called at line 11 in Alg. 6) traverses the DFG, searching for chain
or broadcast paths ending in S (cf. Sec. 3.1.2). Here, it finds three “interesting paths” for
statement S3. These are the three paths pointing to S3, namely: P1 = (e1) (chain path), P2 = (e2)
and P3 = (e3) (broadcast paths). Their relations are: RP1

= Re1
, RP2

= Re2
, RP3

= Re3
(cf. Fig.

3.9c).
The corresponding projections and kernels are:

φ1(k, i, j) = proj(1,0,0) (k, i, j) = (0, i, j) K1 = Ker(φ1) = ⟨(1,0,0)⟩

φ2(k, i, j) = (k, j) K2 = Ker(φ2) = ⟨(0,1,0)⟩
φ3(k, i, j) = (k, i) K3 = Ker(φ3) = ⟨(0,0,1)⟩

37

1 function program_Q
input : Data-flow graph G = (S ,D), an instance I
output: lower bound Qlow

2 Q = ∅;
3 Let D be the max loop depth;
4 foreach loop level 0 ≤ d < D do
5 foreach S ∈ S surrounded by at least d + 1 loops do
6 Ωd := [I1, . . . , Id]→ {S[i1, . . . , iD] : i1 = I1 ∧ . . . id = Id};
7 Let G′ be a copy of G;
8 while elapsedTime < timeout do
9 Let DS be the parametrized domain of S in G′;

10 P := ∅,L := ∅;
11 foreach Pi ∈ genpaths(G′ ,S,Ωd) do
12 if |DS ∩ Im(Pi)| ≥ γ · |DS | then
13 Ki := Ker(Pi);
14 if L := subspace_closure(B,Ki) changed then
15 DS :=DS ∩ Im(Pi);
16 P := P ∪ Pi ;

17 if P = ∅ then exit while loop;
18 (Q,G′) = combine_paramQ(Q,G′ ,

sub_paramQ_bypartition(P ,DS ,L,Ωd));

19 (Q,G′) = combine_paramQ(Q,G′ , sub_paramQ_bywavefront(S,Ωd));

20 Qlow = input_size(G) + max(0,combine_subQ(Q));

21 function combine_paramQ
input : set of global bounds Q, DFG G′, parametrized bound Q(Ω)
output: updated Q, G′

22 if [Ω ,Ω′⇒Q.interf(Ω)∩Q.interf(Ω′) = ∅] then
23 Q :=

∑
ΩQ(Ω);

24 Q.may-spill :=
⋃

ΩQ.may-spill(Ω);
25 Q =Q∪ {Q};
26 G′ := G′ \Q.may-spill;

27

Sec. 3.2.3

Sec. 3.3

Sec. 3.4

Sec. 3.2.2

Algorithm 6: Main procedure that computes Qlow for the program by combining lower
bound of sub-CDAGs obtained through K-partition or wavefront reasoning

38

for (k = 0 ; k < n ; k++)
A [k] [k] = s q r t (A [k] [k]) ; //S1
for (i = k +1; i < n ; i ++)

A [i] [k] /= A [k] [k] ; //S2
for (i = k +1; i < n ; i ++)

for (j = k +1; j <= i ; j ++)
A [i] [j] −= A [i] [k] ∗ A [j] [k] ; //S3

(a) Source code

S1 S2 S3 e1

e2

e3

e4

e5

e6

(b) DFG (input nodes are omitted)

Re1
= {S3[k − 1, i, j]→ S3[k, i, j] : 1 ≤ k < N ∧ k + 1 ≤ i < N ∧ k + 1 ≤ j ≤ i}

Re2
= {S2[k, j]→ S3[k, i, j] : 0 ≤ k < N ∧ k + 1 ≤ i < N ∧ k + 1 ≤ j ≤ i}

Re3
= {S2[k, i]→ S3[k, i, j] : 0 ≤ k < N ∧ k + 1 ≤ i < N ∧ k + 1 ≤ j ≤ i}

Re4
= {S3[k − 1, i, k]→ S2[k, i] : 1 ≤ k < N ∧ k + 1 ≤ i < N }

Re5
= {S1[k]→ S2[k, i] : 0 ≤ k < N ∧ k + 1 ≤ i < N }

Re6
= {S1[k − 1, k,k]→ S1[k] : 1 ≤ k < N ∧ k + 1 ≤ i < N }

(c) Edge relations

Figure 3.9 – Cholesky decomposition

The domain DS is initialized at line 9 to

DS :=DS3
= {S3[k, i, j] : 0 ≤ k < N ∧ k + 1 ≤ i < N ∧ k + 1 ≤ j ≤ i} .

The foreach loop then iterates over {P1, P2, P3}. Here the three paths have domains that almost
span the entire domain of S3, so the condition at line 12 is always true (γ is a constant between
0 and 1). They also have pairwise orthogonal kernels, so the condition at line 14 is also true
at each iteration, and at the end of the foreach loop:

DS = ((DS3
∩ Im(P1))∩ Im(P2))∩ Im(P3)

= {S3[k, i, j] : 1 ≤ k < N ∧ k + 1 ≤ i < N ∧ k + 1 ≤ j ≤ i}
P = {P1, P2, P3}

At line 18, function sub_paramQ_bypartition derives a lower bound from the set of paths
P , which is then added to the set of lower bounds Q by function combine_paramQ.

39

We can check that P1 is independent from P2 and P3, but P2 and P3 are not (that is R−1
P1

(D)∩
R−1
P2

(D) = ∅, R−1
P1

(D)∩R−1
P3

(D) = ∅ and R−1
P2

(D)∩R−1
P3

(D) , ∅).
Thus the following inequality holds for any K-bounded set E in the CDAG:∣∣∣φ1(E)

∣∣∣+
1
2

∣∣∣φ2(E)
∣∣∣+

1
2

∣∣∣φ3(E)
∣∣∣ ≤ K. (3.7)

Let s1, s2, s3 be the solutions to the following optimization problem:

Minimize σ :=
∑
j

sj s.t.

0 ≤ s1, s2, s3 ≤ 1
1 ≤ s2 + s3
1 ≤ s1 + s3
1 ≤ s1 + s2

(3.8)

The discrete Brascamp-Lieb theorem [16], combined with Lemma 5 applied on projections
φi , guarantee that, for any K-bounded set E:

|E| ≤ Kσ
(2s1
σ

)s1 (2s2
σ

)s2 (s3
σ

)s3
. (3.9)

The solution to (3.8) is s1 = s2 = s3 = 1
2 , so

|E| ≤ 2 · (K/3)3/2.

Lemma 2 tells us that, if U is an upper bound on the size of a (S + T)-bounded-set in G,
then:

Q(G) ≥ T ·
⌊
|V \ Sources(V)|

U

⌋
− |Sources(V)| .

Here V =D ∪R−1
P1

(D)∪R−1
P2

(D)∪R−1
P3

(D), giving:

V \ Sources(V) = {S3[k, i, j] : 1 ≤ k < N
∧ k + 1 ≤ i < N ∧ k + 1 ≤ j ≤ i}

Sources(V) = {S3[0, i, j] : 1 ≤ i < N ∧ 1 ≤ j ≤ i;
S2[k, i] : 1 ≤ k < N ∧ k + 1 ≤ i < N }

So |V \ Sources(V)| = N 3

6 and |Sources(V)| = N2. 2 Taking for U our upper bound on |E|
provides the following inequality for which the objective is to set a value for T that maximizes
its right hand side:

Q ≥ T ×
⌊

N3/6
2 · (K/3)3/2

⌋
−N2 ≈ T

(S + T)3/2
× N3/6

2 · (1/3)3/2
.

Setting T = 2S (so K = S + T = 3S) leads to the following lower bound on Q:

Q∞low = (2S)× N
3/6

2S3/2
=
N3

6
√
S
.

2. From here on, we omit lower-order additive terms to keep things readable. The full formula output by IOLB

can be found in Sec 3.6.4.

40

Concerning the parts of the algorithm that were not detailed here: the outermost loop
(Line 4) corresponds to the loop parametrization detailed in Sec. 3.2.3: for each loop depth d,
outermost indices are fixed (as parameter Ωd – Line 6), and parametrically computed lower
bounds are summed (when not interfering – Line 22) over all iterations (Line 23 in com-
bine_paramQ). The loop on statements S (Line 5) decomposes the full CDAG into as many
“S-centric” sub-CDAGs. The so-obtained bounded set of lower bounds Q are combined using
procedure combine_subQ (Line 20) as described in Sec. 3.2.2. To take compulsory misses into
account, the size of the input data of the program is added to the expression.

For each statement S, both techniques (K-partition and wavefront, resp. Line 18 and
Line 19) generate lower bounds. As opposed to the implicitly considered “S-centric” sub-
CDAGs for the wavefront reasoning, an “S-centric” sub-CDAG for the K-partition reasoning
(which is built by finding a set P of DFG-paths that terminate at S – Lines 10-17 through
function genpaths) does not necessarily span all the S-vertices (DS) of the CDAG. So sev-
eral (non-intersecting) sub-CDAGs can be built until no more interesting lower bound can be
derived (Line 17).

3.6 Experimental evaluation

3.6.1 Implementation

IOLB was implemented in C, using ISL-0.13 [53], barvinok-0.37 [57] and PET-0.05 [56].
We also used GiNaC-1.7.4 [9] for the manipulation of symbolic expressions, and PIP-1.4.0 [24]
for linear programs. IOLB takes as input an affine C program and outputs a symbolic expres-
sion for a lower bound on I/O complexity as a function of the problem size parameters of the
program and capacity of fast memory. Figure 3.10 shows an example of annotated C code
(jacobi-1d from PolyBench), with the output from IOLB.

3.6.2 Evaluation on PolyBench

IOLB was applied to all programs in the PolyBench/C-4.2.1 benchmark suite [39]. For
each kernel, our tool outputs an I/O lower bound expression Qlow, from which we derive an
upper bound on operational intensity OIup by forming the ratio of the number of operations
and Qlow. To evaluate the quality of the results produced by IOLB, we manually generate
tiled versions of each kernel, then manually compute parametric data-movement costs as a
function of tile sizes and cache size, then manually find the optimal tile sizes and thereby,
finally, derive a manually optimized data-movement cost for this kernel. By forming the ratio
of the total number of operations and the data-movement cost, we then generate OImanual.
In this derivation, we assume that we have explicit control of the cache. Then OImanual is
compared with an operational intensity upper-bound obtained by forming the ratio of the
number of operations and the data movement lower bound generated by IOLB: OIup.

IOLB runs in less than one second on each of these kernels on a standard computer.
Let us use jacobi-1d as an example to illustrate this. IOLB computes a lower bound

expression Qlow on the number of loads needed for any schedule of the jacobi-1d kernel:

Qlow = 2 +N + max
(
0,
T N
4S
−N − T − 1

4
N
S
− 3

4
T
S
− S + 5

)
.

41

void kernel_ jacob i_1d (int tsteps , int n , double A [n] , double B [n]) {
int t , i ;

#pragma scop
for (t = 0 ; t < ts te p s ; t ++) {

for (i = 1 ; i < n − 1 ; i ++)
B [i] = 0.33333 ∗ (A [i −1] + A [i] + A [i + 1]) ;

for (i = 1 ; i < n − 1 ; i ++)
A [i] = 0.33333 ∗ (B [i −1] + B [i] + B [i + 1]) ;

}
#pragma endscop
}

 A[i] = 0.33333 * (B[i-1] +
B[i] + B[i + 1]);
 }
#pragma endscop
}

small

Input of the IOLB tool - small dimensions

Inputs:
 n

Full expression:
 ⎛ n⋅tsteps n 3⋅tsteps 3 ⎞
 n + max⎜0, -S - n - tsteps + 5 + ──────── - ─── - ──────── + ───⎟ + 2
 ⎝ 4⋅S 4⋅S 4⋅S 4⋅S⎠

Asymptotic expression:
 n⋅tsteps
 ────────
 4⋅S

Simplified expression:
 2

 n

 ───
 4⋅S

Figure 3.10 – Input file and output from IOLB

42

The first term is the input data size, and the second term is obtained by the partitioning
technique. Since the expression of Qlow can be quite large, we automatically simplify to Q∞low
by only retaining the asymptotically dominant terms, assuming all parameters N,M . . . and
cache size S tend to infinity, and S = o(N,M, . . .). Finally, from Q∞low and the fact that the
jacobi-1d kernel performs 6TN operations, we compute an upper bound for the OI of any
schedule of the jacobi-1d kernel:

Q∞low =
TN
4S

OIup =
6TN
Q∞low

= 24S

3.6.3 Parametric bounds for OI

Table 3.1 reports, for each kernel in PolyBench:
— the size of the input data and the number of operations;
— the simplified I/O lower bound Q∞low from IOLB;
— the parametric lower and upper bounds on operational intensity OImanual and OIup =

ops
Q∞low

, and their ratio;
— the best known published OIup, when it exists.
The 30 reported benchmarks can be divided into four categories, corresponding to table

divisions:

1. (19 kernels) The ratio # ops
input data is high, and we manually find that high OI is achiev-

able through tiling. IOLB gives a non-trivial OI upper bound that is within a constant
of the manually obtained OI lower bound OImanual. The bound is asymptotically tight
for 9 of them, and within a factor of 2 for an additional 5. Except for matrix multipli-
cation (gemm), where it matches the best published bound, these are all improvements
over previously published results.

2. (7 kernels) The ratio # ops
input data is a constant: clearly, these cases do not provide enough

operations to enable data reuse. The reported lower bound by IOLB is # input data,
which is asymptotically tight for 5 of them, and within a factor of 2 for 1 more.

3. (2 kernels) The ratio # ops
input data is high which could indicate potential for tiling and

high OI. However our best manual schedule leads to a constant OI which is arbitrarily
far from this optimistic ratio. IOLB proves that the code is not tileable, so the best
achievable OI is a constant. IOLB finds this upper bound on OI thanks to the wave-
front technique. This is better by at least a factor of

√
S than any bound that could be

obtained by geometric reasoning.

4. (2 kernels) There is an arbitrarily large discrepancy between OIup and OImanual. Vi-
sual examination shows that, for these cases, IOLB is too optimistic. These codes are
actually not tileable in all dimensions, and we believe that it is possible, using more
advanced techniques that are currently out of the scope of IOLB, to prove a matching
OI upper bound.

3.6.4 Complete lower bound formulae

Table 3.2 shows the complete formulae produced by IOLB. Next to the complete formulae
are asymptotic formulae as presented in Table 3.1.

43

kernel # input data # ops Q∞low OImanual≤OI ≤OIup ratio Published OIup

2mm NiNk +NkNj 2(NiNjNk 2(NiNjNk
√
S≤OI ≤

√
S 1 –

+NjNl +NiNl +NiNjNl) +NiNjNl)/
√
S

3mm NiNk +NkNj 2(NiNjNk +NjNlNm 2(NiNjNk +NiNjNl
√
S≤OI ≤

√
S 1 –

+NjNm +NmNl +NiNjNl) +NjNlNm)/
√
S

cholesky 1
2N

2 1
3N

3 1
6N

3/
√
S

√
S≤OI ≤2

√
S 2 8

√
S [2]

correlation MN M2N 1
2M

2N/
√
S

√
S≤OI ≤2

√
S 2 –

covariance MN M2N 1
2M

2N/
√
S

√
S≤OI ≤2

√
S 2 –

doitgen NpNqNr +N2
p 2N2

pNqNr 2N2
pNqNr /

√
S

√
S≤OI ≤

√
S 1 –

fdtd-2d 3NxNy + T 11NxNyT
2

3
√

3
NxNyT /

√
S 11

24

√
3
√
S≤OI ≤ 33

2
√

3
√
S 36 –

floyd-warshall N2 2N3 2N3/
√
S

√
S≤OI ≤

√
S 1 8

√
S [2]

gemm NiNj +NjNk +NiNk 2NiNjNk 2NiNjNk /
√
S

√
S≤OI ≤

√
S 1

√
S [48]

heat-3d N3 30N3T 3
8

3√2N3T / 3√S 5
2

3√S≤OI ≤40 · 22/3 3√S 16 · 22/3 –

jacobi-1d N 6NT 1
4NT /S

3
2S≤OI ≤24S 16 48S [22]

jacobi-2d N2 10N2T 2
3
√

3
N2T /

√
S 5

4

√
S≤OI ≤15

√
3
√
S 12

√
3 40

√
2
√
S [22]

lu N2 2
3N

3 2
3N

3/
√
S

√
S≤OI ≤

√
S 1 8

√
S [2]

ludcmp N2 2
3N

3 2
3N

3/
√
S

√
S≤OI ≤

√
S 1 8

√
S [2]

seidel-2d N2 9N2T 2
3
√

3
N2T /

√
S 9

4

√
S≤OI ≤ 27

√
3

2

√
S 6

√
3 –

symm 1
2M

2 + 2MN 2M2N 2M2N/
√
S

√
S≤OI ≤

√
S 1 8

√
S [2]

syr2k 1
2N

2 + 2MN 2MN2 MN2/
√
S

√
S≤OI ≤2

√
S 2 8

√
S [2]

syrk 1
2N

2 +MN MN2 1
2MN

2/
√
S

√
S≤OI ≤2

√
S 2 8

√
S [2]

trmm 1
2M

2 +MN M2N M2N/
√
S

√
S≤OI ≤

√
S 1 8

√
S [2]

atax MN 4MN MN 4≤OI ≤4 1 –

bicg MN 4MN MN 4≤OI ≤4 1 –

deriche HW 32HW HW 16
3 ≤OI ≤32 6 –

gemver N2 10N2 N2 5≤OI ≤10 2 –

gesummv 2N2 4N2 2N2 2≤OI ≤2 1 –

mvt N2 4N2 N2 4≤OI ≤4 1 –

trisolv 1
2N

2 N2 1
2N

2 2≤OI ≤2 1 –

adi N2 30N2T N2T 5≤OI ≤30 6 –

durbin N 2N2 1
2N

2 2
3≤OI ≤4 6 –

gramschmidt MN 2MN2 MN2/
√
S 1≤OI ≤2

√
S 2

√
S –

nussinov 1
2N

2 1
3N

3 1
6N

3/
√
S 1≤OI ≤2

√
S 2

√
S –

Table 3.1 – Results on PolyBench benchmarks

44

We present the complete formulae produced by IOLB for a few reasons. While the lower
bounds on I/O obtained by IOLB are lower bounds for any values of the parameters (M, N ,
S, etc), the asymptotic formulae have to be used with care. Indeed, the asymptotic reason-
ing, while providing simpler and easier to understand formulae, unfortunately removes the
lower bound property. (Negligible negative terms are removed during the asymptotic reason-
ing.) Furthermore, if the asymptotic assumptions are violated, then the asymptotic formula
becomes really off. For example if S is not negligible with respect to M and N , or if one di-
mension in gemm is small. Also, the asymptotic reasoning entails some assumptions. We chose
to assume all parameters N,M . . . and cache size S tend to infinity, and S = o(N,M, . . .)). We
can imagine other reasonable asymptotic reasoning. With the complete formula, it is possible
to derive them at will. Finally, it can be instructive to understand the form of the complete
formulae returned by IOLB, and showing the complete next to the asymptotic expansion ex-
plains our asymptotic assumption.

Tensor contractions and convolutions This table also shows parametric lower bounds for
tensor contraction and 2D convolution kernels, as an application of the extensions presented
in 3.3.4.

Because the lower bound derived is still sound, even if the small dimension hypothesis is
not satisfied, we have to combine various lower bounds for different small dimension scenar-
ios together.

For convolution kernels, we considered 5 small dimension scenarios, based on array sizes:
(i) no small parameters, (ii) H and W small parameters, (iii) H , W and B small parameters,
(iv) H , W , X, Y and B small parameters, and (v) C, H , W and B small parameters. Among
those bounds, only the first three scenarios lead to interesting bounds. They correspond to the
last three rows in the expression. The previous version of the algorithm (without reduction
management or small dimensions) fails to find an interesting bound, and returns the sum of
array sizes (first row in the expression).

3.7 Related work

The seminal work of Hong & Kung [29] was the first to present an approach to derive
lower bounds on data movement for any valid execution schedule of operations in a com-
putational DAG. Their work modeled data movement in a two-level memory hierarchy and
presented manually derived decomposability factors (asymptotic order complexity, without
scaling constants) for a few algorithms like matrix multiplication and FFT. Several efforts
have sought to build on the fundamental lower bounding approach devised by Hong & Kung,
usually targeting one of two objectives: i) generalizing the cost model to more realistic archi-
tecture hierarchies [46, 10, 11], or ii) providing an I/O complexity with (tight) constant for
some specific class of algorithms (sorting/FFT [1, 42], relaxation [43], or linear algebra [30, 4,
3, 19]).

In the context of linear algebra, Irony et al. [30] were the first to use the Loomis-Whitney
inequality [34] to find a lower bound on data movement. This was in the context of gemm (one
of the kernels of PolyBench). The asymptotic upper bound on OI from this paper is 4

√
2
√
S.

IOLB returns
√
S. This result was then extended in [2] to 7 more kernels of PolyBench:

cholesky, floyd-warshall, lu, symm, syr2k, syrk, and trmm, where their upper bound on OI
is 8
√
S for all of them. IOLB returns

√
S for 4 of these kernels, and 2

√
S for the other 3. The

45

kernel Complete lower bound Asymptotic simplified

formula

2mm max
(
NiNj +NjNk +NiNk +NjNl + 2,(

2√
S
NiNj (Nk − 1) + 2Ni + 2Nj +Nk − 4

√
2S

)
2√
S
NiNjNk

+
(

2√
S
NiNl(Nj − 1) + 2Ni + 2Nl +Nj − 4

√
2S

)
+ 2√

S
NiNlNj

−2NiNj − 2
)

3mm max
(
NiNk +NjNk +NjNm +NlNm,(

2√
S
NiNj (Nk − 1) + 2Ni + 2Nj +Nk − 4

√
2S

)
2√
S
NiNjNk

+
(

2√
S
NiNl(Nj − 1) + 2Ni + 2Nl +Nj − 4

√
2S

)
+ 2√

S
NiNlNj

+
(

2√
S
NjNl(Nm − 1) + 2Nj + 2Nl +Nm − 4

√
2S

)
+ 2√

S
NjNlNm

−2NjNi − 2NjNl −NiNl − 6
)

adi 4N2 + max
(
0, (N2 − 4N − S + 5)(T − 2)

)
N2T

atax MN +N + max
(
0, 1

8
1
S ((2M − 1− 8S)(2N − 1− 8S)− 1)− 10S + 2

)
MN

bicg MN +M +N + max
(
0, 1

8
1
S ((2M − 1− 8S)(2N − 1− 8S)− 1)− 10S + 2

)
MN

cholesky max
(

1
2N (N + 1), 1

6
1√
S

(N − 1)(N − 2)(N − 3) + 1
2
√

2
1
S (N − 1)(N − 2) 1

6
1√
S
N3

−(N − 2)(N − 7)− 4
√

2S
)

correlation max
(
MN + 2, 1

2
1√
S
M(M − 1)(N − 1 +

√
2

2
1√
S

)− 1
2 (M − 3)(M + 2N − 2) + 2− 4S

√
2
)

1
2

1√
S
M2N

46

covariance max
(
MN + 2, 1

2
1√
S
M(M − 1)(N − 1 +

√
2

2
1√
S

)− 1
2 (M − 3)(M + 2N − 2) + 1− 4S

√
2
)

1
2

1√
S
M2N

deriche HW + 1 HW

doitgen max
(
N2
p +NpNqNr ,

2√
S
NqNrNp(Np − 1 + 1√

2
1√
S

)−NqNr (Np − 1) + 2Np − 8
√

2S − 1
)

2 1√
S
NqNrN

2
p

durbin 2N + max
(
0, 1

2 (N − 3)(N − 2− 2S)
)

1
2N

2

fdtd-2d max
(
3NxNy −Ny + T − 1, 1

2
√

2
1√
S

(Nx − 2)(Ny − 2)(T − 1) + 2(Nx + 2)(Ny + 2) 1
2
√

2
1√
S
NxNyT

−T (Nx +Ny − 6)−Ny − S − 23
)

floyd-warshall max
(
N2, 1√

S
(N − 1)3 − (6N − 19)(N − 2)− 8

√
2S

)
1√
S
N3

gemm max
(
NiNj +NjNk +NiNk + 2, 2√

S
NiNj (Nk − 1) + 2Ni + 2Nj +Nk − 4

√
2S

)
2 1√

S
NiNjNk

gemver N2 + 8N + 2 + max
(
0, 1

4
1
S (3N − 2)(N − 8S)− 3S + 1

)
N2

gesummv 2N2 +N + 2 + max
(
0, 1

2
1
S (N − 1)(N − 8S)− 2S

)
2N2

gramschmidt max
(
MN, 1√

S
MN (N − 3)−M(N − 5− 2√

S
)− 1

2 (N − 1)(N − 6)− 4
√

2S − 3
)

1√
S
MN2

heat-3d max
(
(N − 10)(N + 2)2, 9 3√3

16
1

3√S
(T − 1)(N − 3)3 − 3(T − 7)(N − 3)(N − 4) 9 3√3

16
1

3√S
N3T

+42N − T − 9 3√3
4 3√4

S − 111
)

jacobi-1d max
(
2 +N, 1

4
1
S (T − 1)(N − 3)− T − S + 7

)
1
4

1
SNT

jacobi-2d max
(
(N − 2)(N + 6), 2

3
√

3
1√
S

(N − 3)2(T − 1)− 4
√

2
3
√

3
S − (T − 7)(2N − 7) + 14

)
2

3
√

3
1√
S
N2T

lu max
(
N2, 2

3
1√
S

(N − 2)(N2 − 4N + 6)− 2(N2 − 10N + 18)− 8
√

2S
)

2
3

1√
S
N3

ludcmp max
(
N2 +N, 1

3
1√
S

(2N − 3)(N − 1)(N − 2)
√

2 1
S (N − 1)(N − 2)− (2N2 − 15N + 19)− 16

√
2S

)
2
3

1√
S
N3

47

mvt N2 + 4N + max
(
0, 1

6
1
SN (N − 1)− 2S − 4N + 4

)
N2

nussinov 1
2N

2 + 5
2N − 1 + max

(
0, 1

6
1√
S

(N − 3)(N − 4)(N − 5) + 1
4

1
S

√
2(3N2 − 19N + 6) 1

6
1√
S
N3

−(N2 − 13N + 22)− 8
√

2S
)

seidel-2d max
(
N2, 2

3
√

3
1√
S

(N − 3)2(T − 1)− (2N − 7)(T − 5)− 4
√

2
3
√

3
S + 12

)
2

3
√

3
1√
S
N2T

symm max
(

1
2M(M + 1) + 2MN + 2,2 1√

S
(M − 1)(M − 2)N − 1

2 ((4N +M)(M − 5)) 2 1√
S
M2N

+5(M − 2)− 8
√

2S
)

syr2k max
(
2 + 2MN + 1

2N (N + 1), 1√
S

(M − 1)(N + 1)N +M + 4N − 4
√

2S
)

1√
S
MN2

syrk max
(
MN + 1

2 (N + 1)N + 2, 1
2

1√
S

(M − 1)(N + 1)N − (M − 4)(N − 1)− 2
√

2S + 4
)

1
2

1√
S
MN2

trisolv 1
2N (N + 1) +N + max

(
0, 1

8
1
S (N − 1)(N − 2)− 2N − S + 5

)
1
2N

2

trmm max
(

1
2M(M − 1) +MN + 1, 1√

S
(M − 2 +

√
2√
S

)(M − 1)N − (M − 4)(N − 2)− 8
√

2S + 5
)

1√
S
M2N

TC abcde-efbad-cf max
(
ABCDE +EFBAD +CF,−2 +F − S + 2C + 2ABDE + 2ABCDE(F−1)√

S

)
2√
S
ABCDEF

TC abcd-dbea-ec max
(
ABCD +DBEA+EC,−2 +E − S + 2C + 2ABD + 2ABCD(E−1)√

S

)
2√
S
ABCDE

TC abc-bda-dc max
(
ABC +BDA+DC,−2 +D − S + 2C + 2AB+ 2ABC(D−1)√

S

)
2√
S
ABCD

TC abcdef-dega-gfbc max
(
ABCDEF +DEGA+GFBC,−2 +G − S + 2ADE + 2BCF + 2ABCDEF(G−1)√

S

)
2√
S
ABCDEFG

TC abc-adec-ebd max
(
ABC +ADEC +EBD,−3 +DE − S + 3AC + 3B−ABC + 2ABC(DE−1)√

S

)
2√
S
ABCDE

TC ab-cad-dcb max
(
AB+CAD +DCB,−3 +CD − S + 3A+ 3B−AB+ 2AB(CD−1)√

S

)
2√
S
ABCD

TC ab-ac-cb max
(
AB+AC +CB,−2 +C − S + 2A+ 2B+ 2AB(C−1)√

S

)
2√
S
ABC

48

TC abcd-aebf-fdec max
(
ABCD +AEBF +FDEC,−3 +EF − S + 3AB+ 3CD −ABCD + 2ABCD(EF−1)√

S

)
2√
S
ABCDEF

conv-2d-s1

max
(
BC(Y +H − 1)(X +W − 1) +BFXY +FCHW,

−2− S +C + 4F +BY +BX + 2BXY − 2BXYF + BFXY (WHC−1)
S ,

−2− S +C + 4F +BY +BX + 2BXY − 2BXFY + 2BXYCF
√
HW√

S
− 2BXYF√

HWS
,

−2− S +C + 4F +BY +BX + 2BXY − 2BXFY + 2XYCF
√
BHW√

S
− 2XYF

√
B√

HWS

)
2√
S
BXYCF

√
HW

Table 3.2 – Complete Lower Bound Formulae for PolyBench, TCCG and convolutions obtained with IOLB

49

method presented in [2] is limited to a few algorithms. Kwasniewski et al. [31] implemented
an algorithm for parallel matrix-matrix multiplication that matches the communication lower
bound for any combinations of matrix dimensions, processors counts and memory sizes. See
discussion on [16] for more details on these limitations.

The studies that are the most related to this chapter are those from Christ et al. [16], and
Elango et al. [22, 21].

The idea of using a variant of the Brascamp-Lieb inequality to derive bounds for arbitrary
affine programs comes from Christ et al. [16]. However, the approach they propose suffers
from several limitations: 1. The model is based on association of operations with data el-
ements and does not capture data dependencies in a computational DAG. Consequently, it
can lead to very weak lower bounds on data movement for computations such as Jacobi sten-
cils. 2. There is no way to (de-)compose the CDAG, and they view all the statements of the
loop body (that has to be perfectly nested) as an atomic statement. As a consequence, it is
incorrect to use this approach for loop computations where loop fission is possible. 3. The
lower bounds modeling is restricted to S-partitioning, leading to very weak lower bounds for
algorithms such as adi or durbin. 4. Obtaining scaling constants, in particular with non-
orthogonal reuse directions, is difficult, and only asymptotic order complexity bounds can be
derived. 5. No automation of the lower bounding process was proposed, but manually worked
out examples of asymptotic complexity as a function of fast memory capacity (without scaling
constants) were presented.

Elango et al. [22] used a variant of the red-blue pebble game without recomputation, en-
abling the composition of several sub-CDAGs, and the use of a lower-bounding approach
based on wavefronts in the DAG. Manual application of the approach for parallel execution
was done on specific examples, but no approach to automation was proposed.

The later work of Elango et al. [21] was the first to make the connection between paths
in the data-flow graph and regular data reuse patterns and to propose an automated com-
piler algorithm for affine programs. However, their proposed approach suffers from several
limitations: 1. Only asymptotic Ω(. . .) data movement bounds were obtainable, without any
scaling constants. In contrast, IOLB generates meaningful non-asymptotic parametric I/O
lower bound expressions. From these expressions, we can derive asymptotic lower bounds
with scaling constants, critical for use in deducing upper limits on OI for a roofline model.
2. Since they were only trying to provide asymptotic bounds without constants, they did not
address (de-)composition (asymptotic bounds can be safely summed up even if they interfere).
Also, they only considered enumerative decomposition, and not dimension decomposition
through loop parameterization that is necessary to obtain a tight bound for their Matmult-
Seidel illustrative example. They also only considered the simple non-overlapping notion of
interference, and did not allow decomposition of the same statement, required in order to
obtain a tight bound for computations like floyd-warshall. 3. Finally, their approach only
used the S-partitioning paradigm for lower bounds but not the wavefront-based paradigm,
thus leading to very weak bounds for benchmarks such as adi or durbin.

50

Chapter 4

Upper Bounds

We have presented a method for automatically computing data movement lower bounds
for affine programs. This can be very useful to assess the optimization potential of a program,
but a first step is to evaluate its actual data movement cost. This raises two questions: 1. how
can we estimate the I/O cost of a program under a given schedule, as a parametric expression
of parameters and cache size? 2. how do we find an I/O-efficient schedule for a program?
Answering these questions can help us assess the tightness of a data movement lower bound,
with the best scenario being matching lower and upper bounds: when this is the case, we have
found an I/O-optimal schedule. This chapter tries to tackle this challenge for a large class of
programs, and presents a method for automating the process, that was implemented in a tool
called IOUB.

It includes the first algorithm for computing a symbolic over-approximation of the data
movement for a parametric (multi-dimensional) tiled version of an affine code, as well as the
first fully automated scheme for expressing as an operations research problem the minimiza-
tion of this data movement expression.

The chapter is organized as follows. Sec. 4.1 provides some useful formalism along with
the required background. Sec. 4.2 defines the tiling transformation, and the associated do-
mains and quantities that are used in the analysis. Sec. 4.3 describes the I/O cost model,
and the algorithm that we designed to compute a symbolic expression of the I/O cost of a
tiled program. Sec. 4.4 explains how we reduce the search space for tiling loop permuta-
tions. Sec. 4.5 connects the previous sections into a complete framework. Sec. 4.6 reports how
it was implemented into a tool called IOUB, and reports the results of our experiments on
tensor contractions and convolutions. Finally, Sec. 4.7 discusses related work.

for (i = 0 ; i < Ni ; i ++)
for (j = 0 ; j < Nj ; j ++)

for (k = 0 ; k < Nk ; k++)
C[i] [j] += A [i] [k] ∗ B [k] [j] ;

(a)

for (i 1 = 0 ; i 1 < Ni ; i 1+=T i)
for (j 1 = 0 ; j 1 < Nj ; j 1+=T j)

for (k = 0 ; k < Nk ; k++)
for (i = i 1 ; i < i 1 +T i ; i ++)

for (j = j 1 ; j < j 1+T j ; j ++)
C [i] [j] += A [i] [k] ∗ B [k] [j] ;

(b)

Figure 4.1 – Matrix-matrix multiplication: (a) untiled version (b) tiled version.

51

for (c = 0 ; c < Nc ; c++)
for (f = 0 ; f < Nf ; f ++)

for (x = 0 ; x < Nx ; x ++)
for (w = 0 ; w < Nw; w++)

Out [f] [x] += Image [x+w] [c] ∗ F i l t e r [f] [w] [c] ;

Figure 4.2 – Running example - 1D Convolution

4.1 Background

In this section, we present the class of programs, its representations, and the memory
model we consider in our analysis.

4.1.1 Class of programs

Imperfectly nested affine loop programs We consider imperfectly nested loop programs,
which can be recursively defined as a sequence of statements and for loops, each being it-
self composed of imperfectly nested loops. A program parameter is a symbolic constant during
the compilation, whose value will be known during the execution of the program (for exam-
ple, array sizes). The access functions made by statements to arrays are affine expressions of
surrounding loop indices and program parameters. We also assume that conditions on loop
indices are affine expressions of surrounding loop indices and program parameters [8].

For example, the 1D-convolution described in Figure 4.2 matches these criteria. This pro-
gram is even perfectly nested: all loops are nested with a single statement inside. Constants Nc,
Nf, Nx and Nw are the program parameters. All loop indices are bounded by affine constraints
(e.g. 0 ≤ c < Nc), and all array subscripts are affine expressions (e.g. (x+w,c) for array Image).

Fully-tilable program The tiling transformation [59] is a key loop transformation to improve
the data locality of a program. Given a list of consecutive dimensions (called loop band), this
transformation groups their iterations into tiles, which are executed atomically. Figure 4.1
shows an example of tiling transformation for the matrix multiplication example: the tiled
dimensions are i and j and the iterations are grouped into rectangles of size Ti × Tj (tile
shape). Note that when the tiling shape is rectangular, each tiled dimension (e.g. i) is strip-
mined, giving rise to the tile dimension that will iterate over the tiles (e.g. i1), and the local
dimension that iterates inside a tile (e.g. i in the transformed program).

A tiling is legal when there is no cycle of dependencies between the computation of differ-
ent tiles, that is, when the atomicity condition between tiles can be respected by the schedule
of the program. The algorithms presented in this chapter are described on the assumption
that the input program is fully tilable using rectangular tiles, which means that all its dimen-
sions can be legally tiled by using rectangular tiles.

In theory, any affine program could be pre-processed using a polyhedral compiler to pro-
vide a fully permutable (that is, tilable using rectangular tiles) loop band, but the reality is
more complex, as analyzing a non-regular iteration domain involves being able to cope with
the simplification and solving of a complex system of symbolic expressions. Nevertheless,
several important classes of computation fit our simplified hypothesis, such as a convolution,
all kinds of tensor contractions and many linear algebraic kernels, including matrix mul-

52

tiplication. Figure 4.2 shows another example of such computation, which is a simplified
convolution. It will be used as a running example for this chapter.

4.1.2 Program representation

For theoretical reasoning, we still use the CDAG abstraction for programs. However rep-
resenting a full graph is not a practical way of handling programs, so our algorithms manip-
ulate a more convenient intermediate representation. The formalism we use in this chapter
is slightly different from the DFG we use for lower bounds, as the focus is more on arrays
than on statements, but the underlying framework is the same. Let us formally define this
representation.

The iteration domain IS of a statement S is the set of integral values that the surrounding
loop indices take during execution. Each point of this space is associated with an execution
instance of the statement. Due to the hypotheses made on the loop bounds, the iteration
domain of a statement is a Z-polyhedron, that is, a set of integral points whose coordinates
satisfy a set of affine constraints. The computation of the cardinality of a set E (denoted |E| –
symbolic expression as a function of the program parameters), can be efficiently done using
the Barvinok algorithm 1 [7].

Each array A is associated with a memory domainMA, which is the multidimensional set of
valid array indices for the array A. Given a statement S containing a read or a write to an array
A, this occurrence is associated with a memory access function fA :DS 7→MA, which is an affine
function. For any given sub-domain DS ⊂ IS defined as a Z-polyhedron, the associated data
footprint fA(DS) is also a Z-polyhedron that can be easily computed by polyhedral compilation
tools.

For the matrix-matrix multiplication example (Figure 4.1, untiled version), the dimen-
sions are D = {i, j,k} and the iteration domain is I = {(i, j,k) | 0 ≤ i < Ni ∧ 0 ≤ j < Nj ∧ 0 ≤
k < Nk}. A 3-dimensional rectangular subset of this domain will be defined as [li ,ui]× [lj ,uj]×
[lk ,uk], where, for each dimension d ∈ D, 0 ≤ ld ≤ ud < Nd . The example code also contains
three array accesses:

— for array A, with domain MA = {x,y | 0 ≤ x < Ni ∧ 0 ≤ y < Nk} and access function
fA(i, j,k) = (i,k);

— for array B, with domain MB = {x,y | 0 ≤ x < Nk ∧ 0 ≤ y < Nj} and access function
fB(i, j,k) = (k, j);

— and for array C, with domainMC = {x,y | 0 ≤ x < Ni ∧ 0 ≤ y < Nj} and access function
fC(i, j,k) = (i, j).

4.2 Loop permutation and tiling

4.2.1 Tiling transformation

Let us consider the example of Figure 4.1 that reports a tiled and non-tiled code for matrix-
matrix multiplication. The original code contains three dimensions i, j, and k. The tiled code

1. In theory, Barvinok’s algorithm has an exponential complexity in the number of dimensions of the set. In
practice, its execution time is usually less than a few seconds, when applied to the polyhedral sets commonly
encountered during program analysis.

53

for (c1 = 0 ; c1 < Nc ; c+=Tc)
for (f1 = 0 ; f1 < Nf ; f+=Tf)

for (x = 0 ; x < Nx ; x ++)
for (c = c1 ; c < c1+Tc ; c++)

for (w = 0 ; w < Nw; w++)
for (f = f1 ; f < f1+Tf ; f ++)

Out [f] [x] += Image [x+w] [c] ∗ F i l t e r [f] [w] [c] ;

Figure 4.3 – Tiled code for 1D-convolution for tiling schedule(
(w,c,f ,x) ,

{
Tc = Tc,Tf = Tf,Tx = 1,Tw = Nw

})

Tile limit

contains five loops on dimensions i, j, k, i, j, from outer to inner. The three outermost loops
span the entire iteration domain of size Ni × Nj × Nk, while the two innermost ones span a
polyhedron of size Ti × Tj. We refer to the innermost (resp. outermost) part as the intra-tile
(resp. inter-tile) dimensions. As we will see later, unlike the permutation of the inter-tile
dimensions, that of the intra-tile dimensions is not relevant in our model. In other words,
while a different schedule with loops ordered as (from outer to inner) (i1,k,j1,i,j) could
lead to a different I/O estimation than for the schedule with loops ordered as (i1,j1,k,i,j)
(as in Figure 4.1), our cost model will not be affected if we permute i and j as in loop or-
der (i1,j1,k,j,i). This motivates the following notation to represent the tiling schedule of
Figure 4.1: ((i, j,k),

{
Ti = Ti,Tj = Tj,Tk = 1

})
where the ordered list P = (i, j,k) describes the

permutation of the inter-tile loop dimensions, and T = {Ti = Ti,Tj = Tj,Tk = 1} describes the
tile sizes. Similarly, for the example in Figure 4.2, the tiling shown in Figure 4.3 is represented
as ((w,c,f ,x),

{
Tc = Tc,Tf = Tf , Tx = 1,Tw = Nw}). Note that the loop onw in the inter-tile loops

(outermost loops), and the loop on x in the intra-tile loops are both omitted in the code as they
would have only one iteration. The permutation of intra-tile loops in the code is arbitrary.

Let us provide a more formal definition.

Definition 14. A tiling schedule is defined as a tuple (P ,T) where P =
(
dj

)
|D|≥j≥1

is a permu-

tation of dimensions D representing the inter-tile loop order, and T = {Td}d∈D represent the tile
dimensions. In P , d|D| represents the outermost loop dimension, while d1 represents the innermost
loop dimension that encloses the tile: the permutation order is outer (leftmost) to inner (rightmost).
The tile size for dimension d is Td .

4.2.2 Sub-domains and reuse

To model the I/O cost of a given tiling schedule, we first need some formal definitions.
For an inter-tile loop dimension dj , we define its sub-domain as the set of points in the

iteration domain such that the indices of the enclosing loops dk (|D| ≥ k ≥ j) have fixed values.

Definition 15. Let dj be some inter-tile loop dimension. We denote by ik the fixed index value at
level k. The sub-domain SDdj at level j is defined as:

SDdj (iD, . . . ,ij) = {i|D|, . . . , i1 ∈ I | ∀k ≥ j, ik ≤ ik < ik+ Tdk }

54

Definition 16. The sub-domain data footprint for an array A at level j is defined as:

SDFA,j(iD, . . . ,ij) =
∣∣∣∣fA (

SDdj (iD, . . . ,ij)
)∣∣∣∣

Taking the example of the 1D-convolution of Figure 4.3, the sub-domain SDd2
(c1,f1) for

loop dimension dj = d2 = f (recall that d4 = w, d3 = c, d2 = f , d1 = x) is {(w,c,f ,x) | 0 ≤ x < Nx∧
c1 ≤ c < c1+Tc∧ 0 ≤ w < Nw ∧ f1 ≤ f < f1+Tf}.

The sub-domain data footprint at level 2 for array Image for this program is:

SDFImage,2(c1,f1) = (Nx+Nw-1)× Tc

Whenever there is a non-empty overlap between the data used by two consecutive sub-
domains, estimating it allows us to refine our cost model. This leads us to define the inter-
sub-domain reuse as follows:

Definition 17. The inter-sub-domain reuse for an array A at level j is:

SDRA,j(iD, . . . ,ij) =
∣∣∣∣fA (

SDdj (iD, . . . ,ij)
)
∩ fA

(
SDdj (iD, . . . ,ij− Tdj)

)∣∣∣∣
A sharp eye would have observed that the notion of reuse from a “previous” sub-domain

is meaningful for all sub-domains but the first one in the loop. To handle this subtlety, for a
given loop dimension dj (assuming its loop index starts at 0), we split the iteration space into
two sub-domains: the front domain

Ifront = {(i|D|, . . . , i1) ∈ I | ij = 0}

and the back domain
Iback = {(i|D|, . . . , i1) ∈ I | ij , 0}

This allows us to define, for a given sub-domain and an array A, its inverse density as the
ratio:

IDA,j(iD, . . . ,ij , 0) =
SDFA,j(iD, . . . ,ij)− SDRA,j(iD, . . . ,ij)∣∣∣∣SDdj (iD, . . . ,ij)

∣∣∣∣
IDA,j(iD,...,0) =

SDFA,j(iD, . . . ,ij)∣∣∣∣SDdj (iD, . . . ,ij)
∣∣∣∣

As we will see later, the inverse density is an over-approximation of the best attainable
inverse operational intensity (data movement per computation unit). As an example, for 1D-
convolution:

SDx(c1,f1,x) = {c, f ,w,x | 0 ≤ w < Nw ∧ x = x ∧
c1 ≤ c < c1+Tc ∧ f1 ≤ f < f1+Tf}

|SDx(c1,f1,x)| = Nw× Tc× Tf
SDFImage,1(c1,f1,x) = Nw× Tc
SDRImage,1(c1,f1,x) = Tc× (Nw− 1)

IDImage,1(c1,f1,x , 0) = 1/ (Nw× Tf)

IDImage,1(c1,f1,0) = 1/Tf

55

To avoid complicated expressions for non-rectangular domains, we consider the maximum
value for the inverse density that we specialize for the front and the back:

IDfront
A,j = max

iD,...,ij/ij=0
IDA,j(iD, . . . ,ij)

IDback
A,j = max

iD,...,ij/ij,0
IDA,j(iD, . . . ,ij)

In many cases, the sub-domain sizes and intersections do not depend on loop indices, and
there is no need to take the maximum.

4.3 Cost model

Now, we want to evaluate the I/O cost of a given tiling schedule. A tiling schedule defines
the order of “computation operations” (rule (R2) in red-white pebble game terminology), but
the order of memory operations still needs to be defined.

4.3.1 Single array

Let us start with the case when there is a single array A. We consider a tiling schedule
(P = (d|D|, . . . ,d1),T = {Td}d∈D).

The basic idea for scheduling I/O operations is simple: for each tile, first bring all input
data in fast memory, then execute all computations inside the tile.

For this to be possible, the data footprint of a single tile has to be smaller than the cache
capacity S:

SDFA,1 ≤ S.

For simplicity, we restrict our I/O cost model to situations where this condition holds. It
would be possible to compute it when is it not the case, but the I/O cost would be high. Since
our goal is to derive an upper bound as close as possible to the optimal, this is not necessary.

The basic idea described above can be improved: sometimes, consecutive tiles actually
use the same data. To be more accurate, we want to find the largest loop nest such that the
input data for all tiles in the loop nest still fits in fast memory. The data then only needs to be
brought in fast memory once for each such “macro-tile”. Finally, if there is some overlap in
the input data for two consecutive tiles, only the additional data needs to be fetched.

Formally, we define the outermost reuse dimension for array A, as the “first” (smallest pos-
sible l) dimension dl in P such that the sub-domain data footprint of A is less than the cache
capacity S.

Definition 18. The outermost reuse dimension l for array A is the leftmost index in P such that

SDFA,l ≤ S.

The total I/O cost for array A derived from the inverse density as follows constitutes an
upper bound on the cost of an optimal red-white pebble game:

IOA = IDfront
A,l × |Ifront|+ IDback

A,l × |Iback|

Indeed, by construction, each sub-domain can be executed by bringing only once (before
starting execution) all the required data. Every sub-domain in the back can reuse the data

56

used in the previous sub-domain and the corresponding I/O can thus be saved. This means
that the optimal inverse operational intensity for any sub-domain in the front (resp. in the
back) is no more than IDfront

A,l (resp. IDback
A,l).

4.3.2 Multiple arrays

Now when there are multiple arrays A1, . . . ,As, we “cut” the cache into array-specific re-
gions of sizes S1, . . . ,Ss, such that S1 + · · · + Ss = S. The idea is then simply to do the same as
before, with each region holding only data from its array. This is slightly restrictive, as one
could imagine the optimal I/O schedule using some memory space alternatively for different
arrays. But it is necessary to make the problem tractable, and does not prevent IOUB from
giving optimal or close to optimal bounds in many cases.

The outermost reuse dimension for array Ai is defined is the same way as in the one array
case:

Definition 19. The outermost reuse dimension li for array Ai is the leftmost index in P such that

SDFA,li ≤ Si .

The result is straightforwardly derived from the one array case, and is summed up in the
following lemma:

Lemma 7. Let us consider a program with s arrays A1, . . . ,As, and a tiling (P = (d|D|, . . . ,d1),T =
{Td}d∈D) for this program. Let S1, . . . ,Ss be integers such that S1 + · · ·+Ss = S, and for all i = 1, . . . , s:

SDFAi ,1 ≤ Si . (4.1)

Then the following expression is an upper bound on the cost of a red-white pebble game for this
program:

IO = IOA1
+ · · ·+ IOAs

where
IOAi = IDfront

Ai ,li
×
∣∣∣Ifront

∣∣∣+ IDback
Ai ,li
× |Iback| (4.2)

Conditions (4.1) can be replaced by their sum, avoiding the need to explicitly define Sis:∑
i

SDFA,li ≤ S.

However this notation makes the assumptions more explicit, and makes it possible the cache
partition when solving the equations numerically.

Example On our running example, for array Image, supposing the outermost reuse dimen-
sion is x:

IOImage = IDfront
Image,1 × |Ifront|+ IDback

Image,1 × |Iback|

=
1
Tf
× Nw.Nc.Nf+

1
Nw.Tf

× Nw.Nc.Nf.(Nx− 1)

=
Nc.Nf.(Nx+ Nw− 1)

Tf

57

The same computation for arrays Out and Filter yields (assuming the outermost reuse
dimensions are respectively x and f):

IOOut = Nc.Nf.Nx/Tc

IOFilter = Nc.Nf.Nw

Conditions on outermost reuse dimensions are:

SDFImage,1(c1,f1,x) = Nw× Tc ≤ SImage
SDFOut,1(c1,f1,x) = Tf ≤ SOut
SDFFilter,2(c1,f1) = Tf× Nw× Tc ≤ SFilter

This leads to the following bound:

IO =
Nc.Nf.(Nx+ Nw− 1)

Tf
+
Nc.Nf.Nx

Tc
+ Nc.Nf.Nw

Assuming Nw× Tc+ Tf+ Tf× Nw× Tc ≤ S.

4.3.3 Extension to multiple memory levels

The red-white pebble game and the corresponding lower bound reasoning frameworks
can be extended to multi-level memory hierarchies [46]. The above computation of I/O can
also be extended by simply considering one tiling band per cache level and independently
applying the previous reasoning to each level. One only needs to add constraints on tile sizes
so that tiles get bigger at each level.

The question that arises is: what is the I/O cost of a multi-level tiling? Our model can
provide a cost for each memory level, but how to aggregate these costs is not straightforward.
In a real-life CPU with multiple levels of cache, it is likely that the I/O cost is dominated
by the level where the cost is the closest to the bandwidth. In this work, we chose to use a
weighted sum, where the cost at each level is multiplied by the inverse bandwidth.

4.3.4 Optimization problem

Having a symbolic expression as a function of the tile sizes makes it possible to express
the problem of choosing tile sizes as a non-linear optimization problem (NLP). Thus, for fixed
values of S and program parameters, an NLP solver such as IPOPT [58] can be used to find
optimizing tile sizes for this particular permutation. One still needs to be cautious, as the tile
sizes found by such tools are not guaranteed to be integers, and rounding can have an impact
on the I/O cost.

This is only valid for a fixed permutation of tiling loops, as well as fixed outermost reuse
dimensions for each array. Indeed, since tile sizes are variables, conditions (4.1) come as
constraints that are verified afterwards. The next section explains how to choose these pa-
rameters.

4.4 Loop permutation selection

We have so far only focused on computing the required I/O cost for a given permutation
of the inter-tile loops. Unfortunately, the search space of all possible permutations grows
exponentially with the number of dimensions and with the memory depth.

58

However, it is straightforward to see that many permutations are equivalent in terms of
I/O cost: for example, switching the two outer loops c1 and f1 in the conv-1D example in
Figure 4.3 would not change the I/O costs. Moreover, some permutations are better than
others: for example, it is not worth exploring the permutation whose innermost dimensions
do not allow any data reuse between two successive tiles. In this section, we provide some
insights into how to select a subset of relevant permutations for a given code.

4.4.1 Reuse for an array along a dimension

First, we define a notion of reuse: for a given dimension d and an array A, there is reuse for
array A on dimension d if, when putting dimension d innermost (that is, setting d1 = d), the
sub-domain data footprint at level 2 for A does not increase much compared to level 1:

SDFA,2 − SDFA,1≪ SDFA,1

This allows us to decide which dimensions are worth putting at the innermost levels.
In simple cases, this notion is not ambiguous: for array Out in the conv-1D example, c is a

reuse dimension as setting it innermost would lead to SDFOut2
= SDFOut1

= Tf× Tx, while f is
not a reuse dimension as setting it innermost would lead to SDFOut2

−SDFOut1
= (Nf−Tf)×Tx

(unless Nf = Tf but in that case it means that f iterates only once). For more complex subscript
expressions, such as for array Image, the criterion is less clear: setting w as innermost and
assuming it is not part of the tile would lead to comparing Tw − 1 with Tx (as SDFImage2

=
(Tx+ Tw − 1) × Tc, SDFImage1

= Tx × Tc). In other words, a reuse criterion requires an “oracle”
(such as the user) to provide information about small and large dimensions.

This also provides information on how to choose outermost reuse dimensions, defined in
the previous section. For an array A, this dimension will be the highest one such that all lower
dimensions are reuse dimensions for array A.

4.4.2 Algorithm for permutation selection

Assuming such an oracle and a reuse criterion, Algorithm 7 selects a set of representative
permutations. This algorithm builds a permutation from the innermost to the outermost di-
mensions while keeping track of the set of remaining dimensions (variable D′), and of the set
S of arrays having a potential reuse along each dimension d (variable R). When a dimension
is chosen, the set of potential reuse is updated. When there is no more potential reuse, an
arbitrary permutation of the remaining dimensions is chosen.

Figure 4.4 illustrates the steps of the algorithm on the 1D convolution (Figure 4.2), and
how it narrows the loop permutation space to three permutations (one of them is the one
used for the running example in Figure 4.3). Note that some permutations are pruned during
the selection process (red cross in Figure 4.4), because they have strictly less reuse potential
than others. For example, selecting dimension c as the innermost dimension allows us to
have reuse on array Out, but dimension w allows us to have reuse on one more array (Out and
Image).

4.5 Putting it all together

The IOUB tool combines the permutation selection and I/O cost computation as follows: it
first selects a list of permutations and generates the corresponding set of tiled versions (with

59

input : dimensions D, arrays A, reuse oracle
output: list of permutations P

1 function genPerm(D′, R)
2 if D′ = ∅ then
3 return {()};
4 if S = ∅ for all (d,S) ∈ R then
5 return {P } where P is an arbitrary permutation of D′;
6 P := ∅;
7 forall (d,S) ∈ R such that ∄(d′ ,S ′) ∈ R, S ⊊ S ′ do
8 D′d :=D′ \ {d};
9 Rd := {(d′ ,S ′ ∩ S), (d′ ,S ′) ∈ R \ {(d,S)}};

10 Pd := genPerm(D′d , Rd);
11 P := P ∪ {(P ,d), P ∈ Pd};
12 return P ;

13 R := {(d, {A ∈ A,reuse(A, d)}),d ∈ D};
14 return genPerm (D, R);

Algorithm 7: Generation of the list of loop permutations that maximize reuse

x : {Filter},w : {Out, Image},
f : {Image}, c : {Output}

w : ∅, f : ∅, c : ∅

(w,c,f ,x)

x c

x : ∅, f : {Image}, c : {Out}

x

x : ∅, c : ∅

(x,c, f ,w)

f

x : ∅, f : ∅

(x,f , c,w)

c

w f

Figure 4.4 – Application of Algorithm 7 to the 1D convolution kernel

60

Input program

Tiling loop permutations

Parametrically tiled program

Symbolic I/O cost expressions

Tile sizes Bound as a function of S

Pruning algorithm

For each permutation

Polyhedral calculus

Parameter values
Operations research

Computer algebra

for (i = 0 ; i < Ni ; i ++)
for (j = 0 ; j < Nj ; j ++)

for (k = 0 ; k < Nk ; k++)
C[i] [j] += A[i] [k] ∗ B [k] [j] ;

{(i, j,k), (i,k, j), (k, j, i)}

for (i1 = 0 ; i1 < Ni ; i1+=T i)
for (j1 = 0 ; j1 < Nj ; j1+=Tj)

for (k = 0 ; k < Nk ; k++)
for (i = i1 ; i < i1+T i ; i ++)

for (j = j1 ; j < j1+Tj ; j ++)
C[i] [j] += A[i] [k] ∗ B [k] [j] ;

IO =NiNjNk
(

1
Ti

+ 1
Tj

+ 1
Nk

)
TiTj + Ti + Tj ≤ S

UB =NiNj
(

2Nk√
S+1−1

+ 1
)

Figure 4.5 – Summary of the full framework of IOUB, illustrated on matrix-matrix
multiplication

tile sizes as parameters) using Algorithm 7. For each permutation, it computes a symbolic
expression (as a function of program parameters, tile sizes, and cache size) that represents the
required I/O, using the method described in Sec. 4.2 and 4.3, as well as constraints on tile
sizes. Then, this can be fed to an NLP solver to find the best tile sizes for each permutation.
The final I/O cost is the minimum over all versions, and IOUB also provides a basic tiled code
that implements the corresponding tiling scheme. It can also be useful to have a symbolic
bound that does not depend on tile sizes, but only on program parameters and cache size. A
discussion on how to derive such an expression for the examples we used in experiments can
be found in Sec. 4.6.2. This is summarized in Fig. 4.5.

4.6 Experiments

Using our new I/O cost computation method, and our improvements to the lower bound
algorithm for computing I/O complexity, IOUB is able to provide tight bounds for both tensor
contractions (even with small dimensions) and convolutions. The general code for convolu-
tion is shown on Fig. 4.7. An example of tensor contraction is given on Fig. 4.6.

61

for (a = 0 ; a < A ; a++)
for (b = 0 ; b < B ; b++)

for (c = 0 ; c < C ; c++)
for (d = 0 ; d < D ; d++)

for (e = 0 ; e < E ; e++)
Out [a , b , c] += In1 [a , d , e , c] ∗ In2 [e , b , d] ;

Figure 4.6 – Tensor contraction kernel (abc-adec-ebd)

for (b = 0 ; b < B ; b++)
for (c = 0 ; c < C ; c++)

for (f = 0 ; f < F ; f ++)
for (x = 0 ; x < X ; x ++)

for (y = 0 ; y < Y ; y++)
for (h = 0 ; h < H ; h++)

for (w = 0 ; w < W; w++)
Out [f , x , y , b] += Image [x+h , y+w, c , b] ∗ F i l t e r [f , h , w , c] ;

Figure 4.7 – Convolution kernel

4.6.1 Benchmarks

We illustrate this by running it on representative benchmarks: For convolutions, we con-
sidered 11 different layers of Yolo9000 [44]. The parameter values for each layer are shown in
Fig. 4.8. For tensor contractions, we considered the ones from TCCG [50].

The benchmark Python script from TCCG source code gathers 73 tensor contraction ker-
nels (originating from various sources), that can be reduced to 49 different kernels, once du-
plicates are identified. For each kernel, TCCG selects the sizes of every dimension so that they
are multiple of 8, roughly equal, and so that the product of all sizes is around 200× 220.

We can further reduce the number of relevant kernels that need to be considered in our
analysis, by grouping them according to the number of dimensions of each array, and the
number of dimensions shared between them. Indeed, the array layouts (dimension order) do
not impact our analysis. This yields eight classes of tensor contraction kernels, described in
Figure 4.9.

4.6.2 Symbolic upper bound expressions

The method presented in this chapter provides a symbolic expression for the I/O of a
program, as a function of program parameters and tile sizes. To compare them with the para-
metric lower bound expressions, we would like to remove tile sizes from the expression, and
express them as functions of the cache size instead. In general, this is too complicated to solve.
However, for the benchmarks we consider, this is possible by using only a few assumptions.

Let us start with the matrix multiplication example from Figure 4.1, with tiling(
(i, j,k),

{
Ti = Ti,Tj = Tj,Tk = 1

})
.

62

Layer F C X Y W H
Yolo9000-0 32 3 544 544 3 3
Yolo9000-2 64 32 272 272 3 3
Yolo9000-4 128 64 136 136 3 3
Yolo9000-5 64 128 136 136 1 1
Yolo9000-8 256 128 68 68 3 3
Yolo9000-9 128 256 68 68 1 1

Yolo9000-12 512 256 34 34 3 3
Yolo9000-13 256 512 34 34 1 1
Yolo9000-18 1024 512 17 17 3 3
Yolo9000-19 512 1024 17 17 1 1
Yolo9000-23 28272 1024 17 17 1 1

Figure 4.8 – Parameter values for convolutional layers of Yolo9000

Kernel dim. s. d. Problem sizes
abcde-efbad-cf 5 5 2 4 1 1 48/32/24/32/48/32
abcd-dbea-ec 4 4 2 3 1 1 72/72/24/72/72
abc-bda-dc 3 3 2 2 1 1 312/312/296/312

abcdef-dega-gfbc 6 4 4 3 3 1 24/16/16/24/16/16/24
abc-adec-ebd 3 4 3 2 1 2 72/72/72/72/72
ab-cad-dcb 2 3 3 1 1 2 312/296/312/312

ab-ac-cb 2 2 2 1 1 1 5136/5136/5120
abcd-aebf-fdec 4 4 4 2 2 2 72/72/72/72/72/72

Figure 4.9 – Classes of Tensor Contraction kernels from the TCCG benchmarks. The classes
are determined from the number of dimensions of the arrays (Out / In1 / In2), and the

number of shared dimensions (s. d.) between arrays (Out+In1 / Out+In2 / In1+In2)

63

Kernel I/O upper bound

TC abcde-efbad-cf UB = 2ABCDEF√
S+1−1

+CF

TC abcd-dbea-ec UB = 2ABCDE√
S+1−1

+CE

TC abc-bda-dc UB = 2ABCD√
S+1−1

+CD

TC abcdef-dega-gfbc UB = 2ABCDEFG√
S+1−1

+BCFG

TC abc-adec-ebd UB = 2ABCDE√
S+1−1

+BDE

TC ab-cad-dcb UB = 2ABCD√
S+1−1

+AB

TC ab-ac-cb UB = 2ABC√
S+1−1

+BC

TC abcd-aebf-fdec UB = 2ABCDEF√
S+1−1

+CDEF

2D Convolution
UB = CFHWXY

(
1
XY + 1

H∆W + (H+∆−1)(W+X−1)
H∆2WX

)
where ∆ = −HW+W+

√
H2W 2+4HSW−2HW 2+4SW+4S+W 2

2(HW+W+1)

Figure 4.10 – Combined parametric I/O bounds of tensor contraction (TC) and 2D
convolution kernels. S is the small memory size and other uppercase letters are problem

sizes (for TC kernels A. . . F are tensor dimensions, for convolution see Fig. 4.7).

64

The IO cost expression and the constraints on tile sizes are:

IO = IOA + IOB + IOC = Ni · Nj · Nk ·
(1
Ti

+
1
Tj

+
1
Nk

)
(4.3)

SDFA,1 + SDFB,1 + SDFC,1 = Ti+ Tj+ Ti · Tj ≤ S (4.4)

Then, we consider square tiles, by assuming that Ti and Tj are equal to the same value
T . We also assume that the tile completely fills the cache, which means that we consider
that inequality (4.4) is actually an equality. While this may not be the best solution, these
hypotheses will still provide a valid bound. We obtain the following equality:

2T + T 2 = S.

It has a unique positive solution:
T =
√
S + 1− 1.

We can then plug this value back into expression (4.3) to get our symbolic bound:

IO = Ni · Nj ·
(

2Nk
√
S + 1− 1

+ 1
)

Note that the dominant term matches the dominant term of the I/O lower bound for matrix
multiplication.

Here, we chose the tiling scheme manually, but this can be automated using the NLP
solver with some relevant numerical values of parameters. It will return a permutation and
numerical tile sizes, and we can use the information on which dimensions have Td = 1 or
Td = Nd to guide our symbolic solving. If the problem sizes are significantly bigger than

√
S,

the best tiling found by the solver will precisely be this one.
To generalize this reasoning to tensor contraction kernels, we only need to add some extra

information on the expected order of magnitude of tile sizes.
Dimensions in a tensor contraction computation can be divided into three groups such

that after “merging” the dimensions in each group, the computation is equivalent to a matrix
multiplication. This corresponds to the “shared dimensions” in Fig. 4.9. The condition we
impose is that the products of tile sizes inside each group are equal. For example abc-adec-

ebd, the three groups are {a,c}, {b} and {d,e}, and the condition is TaTc = Tb = TdTe.
The expressions are shown in Figure 4.10. They correspond to the “general case” where

the input size is not the bottleneck, i.e., when parameters are sufficiently large compared to
S.

The expression for convolution is quite complex, but an asymptotic analysis shows that

the highest order term is 2CFXY
√
HW√

S
when C,F,X and Y are sufficiently large, which matches

the third term in the lower bound (the B factor does not appear since it is equal to 1 in all our
benchmarks).

4.6.3 Comparison of upper and lower bounds for different cache sizes

Figure 4.11 shows a comparison between lower and upper bounds for the considered
benchmarks. For several cache sizes (from 16 kB to 4MB), the lower bound is computed
by plugging the actual values in the symbolic expressions shown above, and the upper bound
is obtained by running the NLP solver on the optimization problems generated by IOUB.

65

14 16 18 20 22
log2(S)

0

1

I/O
1e8 abcde-efbad-cf

14 16 18 20 22
log2(S)

0

2

4

I/O

1e7 abcd-dbea-ec

14 16 18 20 22
log2(S)

0

2

4

I/O

1e8 abc-bda-dc

14 16 18 20 22
log2(S)

0.0

2.5

5.0

I/O

1e7 abcdef-dega-gfbc

14 16 18 20 22
log2(S)

0.0

0.5

1.0

I/O

1e8 abc-adec-ebd

14 16 18 20 22
log2(S)

0

2

4

I/O

1e8 ab-cad-dcb

14 16 18 20 22
log2(S)

0

5

I/O

1e9 ab-ac-cb

14 16 18 20 22
log2(S)

0

5I/O

1e9 abcd-aebf-fdec

14 16 18 20 22
log2(S)

0.0

0.5

1.0

I/O

1e7 Yolo9000-0

14 16 18 20 22
log2(S)

0

2

I/O

1e7 Yolo9000-2

14 16 18 20 22
log2(S)

0

1

2

I/O
1e7 Yolo9000-4

14 16 18 20 22
log2(S)

0

5

I/O

1e6 Yolo9000-5

14 16 18 20 22
log2(S)

0

1

2

I/O

1e7 Yolo9000-8

14 16 18 20 22
log2(S)

0

5

I/O

1e6 Yolo9000-9

14 16 18 20 22
log2(S)

0

1

2

I/O

1e7 Yolo9000-12

14 16 18 20 22
log2(S)

0

5

I/O

1e6 Yolo9000-13

14 16 18 20 22
log2(S)

0

1

2

I/O

1e7 Yolo9000-18

14 16 18 20 22
log2(S)

0

5I/O

1e6 Yolo9000-19

14 16 18 20 22
log2(S)

0

2

4

I/O

1e8 Yolo9000-23

Figure 4.11 – I/O bounds (lower is blue and upper is orange) of tensor contractions (TCCG)
and convolutions (Yolo) for different cache sizes

66

As a sanity check, we confirm that the upper bound found is always above the lower
bound, which was not trivial for the convolution bounds, and that both curves are decreasing
or are constant along S. Both bounds are close to each other, ranging from at most a factor of
3 between them for Yolo9000-2 on the smallest value of S, to almost the same values for the
ab-ac-cb TC kernel, which is also known as matrix multiplication. Moreover, the upper bound
and the lower bound come closer for the largest values of S, which shows a match between
the asymptotic dominant term of both bounds. When the cache size becomes very large, the
dominant cost becomes the initial loading of the input data, hence the matching bounds and
the horizontal line for some benchmarks.

4.6.4 Implementation

IOUB is implemented as a command-line tool, written mostly in Python and using the
ISL [53] and Sympy [37] libraries, as well as the IPOPT [58] NLP solver. Figure 4.12 show an
example of input file and output from IOUB for a convolution kernel and a 3-level memory
hierarchy. In its current version, the input format is a yaml file describing loops and arrays
manually, but IOUB could be combined with polyhedral tools like PET [56] and PluTo [12] to
generate this intermediate representation directly from C code.

4.7 Related work

Computing an I/O complexity upper bound for an algorithm is the most reasonable way
to assess the tightness of a lower bound. While this computation is usually done by hand
using ad hoc techniques specific to each studied algorithm [38, 18, 1, 48, 31, 43], Fauzia et
al. [23] proposed a heuristic that directly reasons on the CDAG, which unfortunately does not
scale to real programs. Finding an upper bound for a fixed architecture can also be viewed
as finding an optimized program transformation that minimizes data movement costs, which
also implies being able to evaluate this cost. Thus, restricting the analysis to affine programs
and using the polyhedral framework appears to be appropriate for this problem. However,
while the seminal scheduling algorithm from PluTo [12] is able to expose tilable loops and
generate tiled code, it can only handle fixed tile sizes. This is because parametric tiling is not
an affine transformation: a tiled affine code with parametric tile sizes is no longer affine. A
consequence is that existing polyhedral tools cannot be used to evaluate the I/O cost of such
a code. These tools include PolyFeat [5], which computes an approximation of the number
of capacity misses for arbitrary affine programs, as well as other algorithms [6, 14, 27] which
focus on precisely modeling conflict misses. Some of these algorithms are restricted to a small
class of programs, and most of them can only model a one-level cache. They all need to con-
sider fixed parameters and fixed tile sizes. Other works [60, 47, 32] implemented ad hoc
computation of this cost function for very restricted sub-classes of programs, but our algo-
rithm is the first to be able to automatically generate a symbolic expression of it for arbitrary
parametric tiled affine programs, in a multi-level cache setting.

We showed how we use this cost function to find the best loop permutations and tile sizes
for a given architecture, using operations research. Once again, this is out of the scope of poly-
hedral analysis, as cost functions are not affine. So the usual optimization strategies used by
polyhedral compilers [28, 12, 55], mostly based on parametric integer programming [24], can-
not be used. Some literature exists on tile size selection, but it mostly deals with performance

67

dims : [b, f, c, x, y, w, h]

arrays:

O : [[b, f, x, y], 2]

I : [[b, c, x+w, y+h], 1]

K : [[f, c, w, h], 1]

reuse :

O: [c, w, h]

I: [f, w, h]

K: [b, x, y]

values:

n_levels: 2

cache: [8192, 262144]

dims: [1, 32, 128, 96, 96, 3, 3]

Cache sizes (in words): [8192, 262144]
Best solution:

Permutation: L1:[y,f,c,w,h] L2:[x,y] MEM:[w,h,c,b,f,x,y]
Footprint: {L1: Tb₀⋅Tc₀⋅(Th₀ + Ty₀ - 1)⋅(Tw₀ + Tx₀ - 1) + Tb₀⋅Tf₀⋅Tx₀⋅Ty₀ + Tc₀⋅Tf₀⋅Th₀⋅T

w₀, L2: Tb₁⋅Tc₁⋅(Th₁ + Ty₁ - 1)⋅(Tw₁ + Tx₁ - 1) + Tb₁⋅Tf₁⋅Tx₁⋅Ty₁ + Tc₁⋅Tf₁⋅Th
₁⋅Tw₁}

Analytical cost expression:
 ⎧ ⎛(Th₀ + Ty₀ - 1)⋅(Tw₀ + Tx₁ - 1) 1
 ⎨L1: Nb⋅Nc⋅Nf⋅Nh⋅Nw⋅Nx⋅Ny⋅⎜─────────────────────────────── + ─────────── + ───
 ⎩ ⎝ Tf₀⋅Th₀⋅Tw₀⋅Tx₁⋅Ty₀ Tc₀⋅Th₀⋅Tw₀ Tb₁

 1 ⎞ ⎛ 1 (Nh + Ty₁ - 1)⋅(Nw + Tx₁ -
 ────────⎟, L2: Nb⋅Nc⋅Nf⋅Nh⋅Nw⋅Nx⋅Ny⋅⎜─────────── + ───────────────────────────
 ⋅Tx₁⋅Ty₁⎠ ⎝Tb₁⋅Tx₁⋅Ty₁ Nh⋅Nw⋅Tf₁⋅Tx₁⋅Ty₁

 1) 1 ⎞⎫
 ── + ────────⎟⎬
 Nc⋅Nh⋅Nw⎠⎭
 ⎛ 1 (Nh + Ty₁ - 1)⋅(Nw + Tx₁ - 1) 1 ⎞
 Nb⋅Nc⋅Nf⋅Nh⋅Nw⋅Nx⋅Ny⋅⎜─────────── + ───────────────────────────── + ────────⎟
 ⎝Tb₁⋅Tx₁⋅Ty₁ Nh⋅Nw⋅Tf₁⋅Tx₁⋅Ty₁ Nc⋅Nh⋅Nw⎠

 ⎛(Th₀ + Ty₀ - 1)⋅(Tw₀ + Tx₁ - 1) 1 1
 + Nb⋅Nc⋅Nf⋅Nh⋅Nw⋅Nx⋅Ny⋅⎜─────────────────────────────── + ─────────── + ──────
 ⎝ Tf₀⋅Th₀⋅Tw₀⋅Tx₁⋅Ty₀ Tc₀⋅Th₀⋅Tw₀ Tb₁⋅Tx

 ⎞
 ─────⎟
 ₁⋅Ty₁⎠

Optimal sizes: Tx₀=1 Tb₀=1 Ty₀=11 Tf₀=32 Tc₀=23 Tw₀=3 Th₀=3 Tx₁=96 Tb₁=1 Ty₁=46 Tf₁=32 Tc₁=23 Tw₁=3 Th₁=3
Parameters: C₁=8192 C₂=262144 Nb=1 Nf=32 Nc=128 Nx=96 Ny=96 Nw=3 Nh=3
Total Cost: 4769783
Data volume: L1: 3141356 L2: 1628427
Data footprint: L1: 7873 L2: 256128
Schedule:

for (y2=0; y2<96; y2+=46)
for (c2=0; c2<128; c2+=23) {

 Sy2=min(46,96-y2) // in {4, 46}
for (y1=y2; y1<y2+Sy2; y1+=11)

for (x1=0; x1<96; x1+=1)
for (h=0; h<3; h+=1)

for (w=0; w<3; w+=1) {
 Sc2=min(23,128-c2) // in {13, 23}

for (c=c2; c<c2+Sc2; c+=1)
for (f=0; f<32; f+=1) {

 Sy1=min(11,y2+Sy2-y1) // in {2, 11, 4}
for (y=y1; y<y1+Sy1; y+=1)

 <bb>;
 }}}

Figure 4.12 – Input file and output from IOUB

68

model design and is either handcrafted for specific kernels and access function patterns [33,
40] or uses machine learning [60] and even cache simulators [36]. Polyhedral analysis is only
used for the tiling transformation. Renganarayana and Rajopadhye [45] showed that most
performance models for tile size selection used in the literature are polynomials that are op-
erations research-friendly. Our automatically generated cost function, which matches the
distinct-access model promoted by Ferrante et al. [26], fits into this category.

69

Chapter 5

Conclusion

5.1 Summary of Results

This thesis presents a set of methods and a theoretical framework to automatically analyze
the data movement complexity of affine programs. More precisely, for a two-level memory
hierarchy with a fast memory of limited size S, our algorithms are able to find:

— a symbolic, non-asymptotic lower bound on the number of loads (transfers from slow
to fast memory) that are necessary to execute this program under any valid schedule,
as a function of S and program parameters;

— a symbolic upper bound on the number of loads, obtained by comparing several pos-
sible tiling transformations;

— a concrete tiled code with numerical tile sizes for fixed values of program parameters
and fast memory size.

These two algorithms have been implemented as open-source tools, and evaluated on mul-
tiple examples. On tensor contractions and convolution kernels, the expressions output by
both tools match up to lower-order terms, effectively closing the theoretical problem of their
I/O complexity. The lower bound algorithm was also applied on all programs in PolyBench,
and is able to match or even improve over the state-of-the-art in many cases.

5.2 Limitations

Despite these promising results, IOLB and IOUB still suffer from limitations, due to the
inherent complexity of these problems.

Lower bounds One category of programs for which the bounds we get are not tight are sten-
cils (e.g. jacobi and seidel in PolyBench). This type of computation exhibits complex data
dependencies (array subscripts like A[i+1][j-1]) that are not found in linear algebra kernels for
instance. While some careful manual analysis can be used to slightly improve the constant
factor of the expression compared to the automatic analysis, bridging the gap between lower
and upper bounds is still an open problem. Moreover, the techniques presented here (pro-
jection and wavefront-based) do not cover all possible data dependency patterns, even inside
the class of affine programs, and some other methods would have to be developed in order to
prove tight lower bounds on gramschmidt for instance.

70

Upper bounds Here the limitations come more from the rapidly increasing complexity of
expressions when trying to tackle more involved programs. When iteration domains get com-
plex, for instance when loop counters depend on one another, or loop bounds are more in-
volved functions of parameters, cardinalities computed by Barvinok’s algorithm also get more
complex, with several possible expressions depending on relations between parameters. This
can greatly increase the size of the optimization problem, making it currently intractable.
Another limit is the method to generate symbolic upper bounds: currently we rely on solving
a polynomial equation, which is not generally doable when the degree exceeds four.

Finally, such automatic analyses can only be applied on a specific class of programs. It
seems realistic to extend this work to get tight bounds on a large part of practical polyhedral
programs, and even on some non-polyhedral ones, but many programs will certainly stay out
of the scope of this type of automated analysis anyway.

5.3 Future work

The work presented here could be continued in many directions. Some of the limitations
we pointed out could be overcome: for instance the affine requirement could be relaxed by us-
ing under- or over-approximations, and more complex wavefront patterns could be included
in IOLB. The technique for generating upper bounds that do not depend on tile sizes in IOUB

could also be generalized to cases when the polynomial equation is not solvable exactly, by
relaxing the problem of finding the precise expression of a tile size that completely fills the
cache to only finding a size that does not exceed the cache capacity.

Applications As we explained earlier IOUB is able to provide numerical tile sizes sugges-
tions that minimize I/O in our model. The next step is to integrate these suggestions into a
code generation framework, and get running programs that effectively use a CPU as close
to its peak performance as possible. As of today, producing high-performance code is a
difficult problem, for which a lot of manual tuning and machine-specific expertise is often
needed. More and more solutions for automatic code generation are developed (TVM [15],
Halide [41]), with various compromises between expressiveness and code performance. Multi-
level tiling is a key transformation to achieve this goal, but it must be combined with fine-
tuned basic blocks that are able to exploit modern CPU mechanisms such as vectorization,
memory prefetching, instruction-level parallelism, and adapt to machine-specific details.
Choosing tiling loop sizes and permutations is a crucial step, and an analytical model such as
the one we developed can be very useful to guide the search in a highly combinatorial space.
It should be coupled with some autotuning, in order to take into account various aspects that
we do not model, such as data layout, cache line sizes, partial tiles handling, control-flow
overhead, etc.

One notable project is BLIS [61], which aims at proving a portable high-performance im-
plementation of BLAS-like linear algebra. They use a static tiling scheme, manually derived
from an analytical model, for all configurations. This scheme is the one automatically derived
for matrix-matrix multiplication by IOUB in a 4-level memory setting with ordinary matrix
dimensions. In the context of tensor computations and convolutions, great efforts have been
done by Nicolas Tollenaere et al. [51] They achieve performance very close to native libraries
like oneDNN, with higher flexibility and automation.

71

More general extensions Let us suggest two interesting directions. The first one concerns
parallelism: the work presented here mostly deals with sequential programs, however most
applications in today’s computing exhibit some level of parallelism. While some data-movement
lower bounds techniques can be transposed in a parallel setting to prove bounds on the vol-
ume of communication, this is not always generalizable, and the challenge of generating and
analyzing highly communication-efficient parallel programs remains vastly unsolved. A first
major step would be to extend the analytical model from IOUB to distributed memory com-
munication volume, and be able to provide data distribution and communication scheme
suggestions. Manual exploration shows that it should be possible to derive communication-
efficient algorithms like 2.5D matrix multiplication [49] with a similar approach.

Another direction of research would be to extend our analytical I/O cost model to include
more complex aspects, such as data layout: on an actual machine data is grouped in cache
lines, and conflicts can appear, so evaluating the costs and benefits of reorganizing the way
data is stored (packing) could be valuable.

72

Bibliography

[1] Alok Aggarwal and Jeffrey S. Vitter. « The Input/Output Complexity of Sorting and
Related Problems ». In: Communications of the ACM 31 (9 1988), pp. 1116–1127. url:
https://doi.org/10.1145/48529.48535.

[2] Grey Ballard, Erin Carson, James Demmel, Mark Hoemmen, Nick Knight, and Oded
Schwartz. « Communication lower bounds and optimal algorithms for numerical linear
algebra ». In: Acta Numerica 23 (2014), pp. 1–155.

[3] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. « Graph Expansion and
Communication Costs of Fast Matrix Multiplication ». In: Journal of the ACM 59.6 (Jan.
2013). doi: 10.1145/2395116.2395121.

[4] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. « Minimizing Commu-
nication in Numerical Linear Algebra ». In: SIAM J. Matrix Analysis Applications 32.3
(2011), pp. 866–901. doi: 10.1137/090769156.

[5] Wenlei Bao, Changwan Hong, Sudheer Chunduri, Sriram Krishnamoorthy, Louis-Noël
Pouchet, Fabrice Rastello, and P. Sadayappan. « Static and Dynamic Frequency Scaling
on Multicore CPUs ». In: ACM Transactions on Architecture and Code Optimization 13.4
(2016). doi: 10.1145/3011017.

[6] Wenlei Bao, Sriram Krishnamoorthy, Louis-Noël Pouchet, and P. Sadayappan. « Ana-
lytical modeling of cache behavior for affine programs ». In: Proceeding of the ACM on
Programming Languages 2.POPL (2018). url: https://doi.org/10.1145/3158120.

[7] Alexander I. Barvinok. « A Polynomial Time Algorithm for Counting Integral Points in
Polyhedra when the Dimension is Fixed ». In: Mathematics of Operations Research 19.4
(1994), pp. 769–779. doi: 10.1287/moor.19.4.769.

[8] Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, and Olivier Temam.
« Putting Polyhedral Loop Transformations to Work ». In: Languages and Compilers for
Parallel Computing, 16th International Workshop (LCPC). Vol. 2958. Lecture Notes in
Computer Science. Springer, 2003, pp. 209–225. doi: 10.1007/978-3-540-24644-
2_14.

[9] Christian Bauer, Alexander Frink, and Richard Kreckel. « Introduction to the GiNaC
Framework for Symbolic Computation within the C++ Programming Language ». In: J.
Symbolic Computation 33 (2002), pp. 1–12.

[10] Gianfranco Bilardi and Enoch Peserico. « A characterization of temporal locality and
its portability across memory hierarchies ». In: Automata, Languages and Programming
(2001), pp. 128–139.

73

https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/2395116.2395121
https://doi.org/10.1137/090769156
https://doi.org/10.1145/3011017
https://doi.org/10.1145/3158120
https://doi.org/10.1287/moor.19.4.769
https://doi.org/10.1007/978-3-540-24644-2_14
https://doi.org/10.1007/978-3-540-24644-2_14

[11] Gianfranco Bilardi, Michele Scquizzato, and Francesco Silvestri. « A Lower Bound Tech-
nique for Communication on BSP with Application to the FFT ». In: Euro-Par 2012 Par-
allel Processing - Proceedings. Ed. by Christos Kaklamanis, Theodore S. Papatheodorou,
and Paul G. Spirakis. Vol. 7484. Lecture Notes in Computer Science. Springer, 2012,
pp. 676–687. doi: 10.1007/978-3-642-32820-6_67.

[12] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. « A Practical
Automatic Polyhedral Program Optimization System ». In: ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). June 2008. doi: 10.1145/
1375581.1375595.

[13] Herm Jan Brascamp and Elliott H Lieb. « Best constants in Young’s inequality, its con-
verse, and its generalization to more than three functions ». In: Advances in Mathematics
20.2 (1976), pp. 151–173.

[14] Siddhartha Chatterjee, Erin Parker, Philip J. Hanlon, and Alvin R. Lebeck. « Exact Anal-
ysis of the Cache Behavior of Nested Loops ». In: Proceedings of the 2001 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). ACM, 2001,
pp. 286–297. doi: 10.1145/378795.378859.

[15] Tianqi Chen et al. « TVM: An Automated End-to-End Optimizing Compiler for Deep
Learning ». In: 13th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018. Ed. by Andrea C. Arpaci-
Dusseau and Geoff Voelker. USENIX Association, 2018, pp. 578–594.

[16] Michael Christ, James Demmel, Nicholas Knight, Thomas Scanlon, and Katherine Yelick.
Communication Lower Bounds and Optimal Algorithms for Programs that Reference Arrays
– Part 1. 2013. arXiv: 1308.0068v1 [math.CA].

[17] Michael Christ, James Demmel, Nicholas Knight, Thomas Scanlon, and Katherine Yelick.
« On Holder-Brascamp-Lieb inequalities for torsion-free discrete Abelian groups ». In:
arXiv preprint arXiv:1510.04190 (2015).

[18] James Demmel and Grace Dinh. Communication-Optimal Convolutional Neural Nets. 2018.
arXiv: 1802.06905v2 [cs.DS].

[19] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou. « Communication-
optimal Parallel and Sequential QR and LU Factorizations ». In: SIAM Journal on Scien-
tific Computing 34.1 (2012), A206–A239. doi: 10.1137/080731992.

[20] Jack Dongarra, Jean-François Pineau, Yves Robert, Zhiao Shi, and Frédéric Vivien. « Re-
visiting matrix product on master-worker platforms ». In: International Journal of Foun-
dations of Computer Science 19.6 (2008), pp. 1317–1336.

[21] Venmugil Elango, Fabrice Rastello, Louis-Noël Pouchet, J. Ramanujam, and P. Sadayap-
pan. « On Characterizing the Data Access Complexity of Programs ». In: Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL). 2015, pp. 567–580. doi: 10.1145/2676726.2677010.

[22] Venmugil Elango, Fabrice Rastello, Louis-Noël Pouchet, J. Ramanujam, and P. Sadayap-
pan. « On characterizing the data movement complexity of computational DAGs for
parallel execution ». In: Proceedings of the 26th ACM Symposium on Parallelism in Algo-
rithms and Architectures, (SPAA). 2014, pp. 296–306.

74

https://doi.org/10.1007/978-3-642-32820-6_67
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/378795.378859
https://arxiv.org/abs/1308.0068v1
https://arxiv.org/abs/1802.06905v2
https://doi.org/10.1137/080731992
https://doi.org/10.1145/2676726.2677010

[23] Naznin Fauzia, Venmugil Elango, Mahesh Ravishankar, J. Ramanujam, Fabrice Rastello,
Atanas Rountev, Louis-Noël Pouchet, and P. Sadayappan. « Beyond Reuse Distance Anal-
ysis: Dynamic Analysis for Characterization of Data Locality Potential ». In: ACM Trans-
action on Architecture and Code Optimization 10.4 (Dec. 2013). doi: 10.1145/2541228.
2555309.

[24] Paul Feautrier. « Parametric Integer Programming ». In: RAIRO Recherche Opérationnelle
22.3 (1988), pp. 243–268.

[25] Paul Feautrier and Christian Lengauer. « Polyhedron model ». In: Encyclopedia of Parallel
Computing. 2011, pp. 1581–1592.

[26] Jeanne Ferrante, Vivek Sarkar, and W. Thrash. « On Estimating and Enhancing Cache
Effectiveness ». In: Proceedings of the Languages and Compilers for Parallel Computing
(LCPC), Fourth International Workshop. Vol. 589. Lecture Notes in Computer Science.
Springer, 1991, pp. 328–343. doi: 10.1007/BFb0038674.

[27] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. « Cache Miss Equations: a
Compiler Framework for Analyzing and Tuning Memory Behavior ». In: ACM Trans-
action on Programming Languages and Systems 21.4 (1999), pp. 703–746. doi: 10.1145/
325478.325479.

[28] Tobias Grosser, Armin Größlinger, and Christian Lengauer. « Polly - Performing Poly-
hedral Optimizations on a Low-Level Intermediate Representation ». In: Parallel Pro-
cessing Letter 22.4 (2012). doi: 10.1142/S0129626412500107.

[29] Jia-Wei Hong and H. T. Kung. « I/O complexity: The Red-Blue Pebble Game ». In: Pro-
ceedings of the 13th Annual ACM Symposium on Theory of Computing (STOC). Milwaukee,
Wisconsin, United States: ACM, 1981, pp. 326–333. doi: 10.1145/800076.802486.

[30] Dror Irony, Sivan Toledo, and Alexandre Tiskin. « Communication Lower Bounds for
Distributed-Memory Matrix Multiplication ». In: Journal of Parallel and Distributed Com-
puting 64.9 (2004), pp. 1017–1026. doi: 10.1016/j.jpdc.2004.03.021.

[31] Grzegorz Kwasniewski, Marko Kabic, Maciej Besta, Joost VandeVondele, Raffaele Solcà,
and Torsten Hoefler. « Red-blue Pebbling Revisited: Near Optimal Parallel Matrix-Matrix
Multiplication ». In: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC). 2019. doi: 10.1145/3295500.3356181.

[32] Rui Li, Aravind Sukumaran-Rajam, Richard Veras, Tze Meng Low, Fabrice Rastello,
Atanas Rountev, and P. Sadayappan. « Analytical Cache Modeling and Tilesize Opti-
mization for Tensor Contractions ». In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC). Ed. by Michela
Taufer, Pavan Balaji, and Antonio J. Peña. ACM, 2019. doi: 10.1145/3295500.3356218.

[33] Junyi Liu, John Wickerson, and George A. Constantinides. « Tile Size Selection for Opti-
mized Memory Reuse in High-level Synthesis ». In: 27th International Conference on Field
Programmable Logic and Applications, FPL 2017, Ghent, Belgium, September 4-8, 2017. Ed.
by Marco D. Santambrogio, Diana Göhringer, Dirk Stroobandt, Nele Mentens, and Jari
Nurmi. IEEE, 2017, pp. 1–8. doi: 10.23919/FPL.2017.8056810.

[34] Lynn H. Loomis and Hassler Whitney. « An inequality related to the isoperimetric in-
equality ». In: Bulletin of the American Mathematical Society 55 (1949), pp. 961–962.

75

https://doi.org/10.1145/2541228.2555309
https://doi.org/10.1145/2541228.2555309
https://doi.org/10.1007/BFb0038674
https://doi.org/10.1145/325478.325479
https://doi.org/10.1145/325478.325479
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1145/800076.802486
https://doi.org/10.1016/j.jpdc.2004.03.021
https://doi.org/10.1145/3295500.3356181
https://doi.org/10.1145/3295500.3356218
https://doi.org/10.23919/FPL.2017.8056810

[35] Bradley Lowery and Julien Langou. Improving the Communication Lower Bounds for
Matrix-Matrix Multiplication. 9th Scheduling for Large Scale Systems Workshop, July
1-4, Lyon, France. 2014.

[36] Sanyam Mehta, Gautham Beeraka, and Pen-Chung Yew. « Tile Size Selection Revis-
ited ». In: ACM Trans. Archit. Code Optim. 10.4 (2013), 35:1–35:27. doi: 10 . 1145 /
2541228.2555292.

[37] Aaron Meurer et al. « SymPy: Symbolic Computing in Python ». In: PeerJ Computer Sci-
ence 3 (Jan. 2017), e103. issn: 2376-5992. doi: 10.7717/peerj-cs.103.

[38] Auguste Olivry, Julien Langou, Louis-Noël Pouchet, P. Sadayappan, and Fabrice Rastello.
« Automated Derivation of Parametric Data Movement Lower Bounds for Affine Pro-
grams ». In: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). ACM, 2020, pp. 808–822. doi: 10.1145/3385412.
3385989.

[39] Louis-Noël Pouchet and Tomofumi Yuki. PolyBench/C 4.2. https://sourceforge.net/
projects/polybench/. 2015.

[40] Nirmal Prajapati, Waruna Ranasinghe, Sanjay V. Rajopadhye, Rumen Andonov, Hristo
Djidjev, and Tobias Grosser. « Simple, Accurate, Analytical Time Modeling and Optimal
Tile Size Selection for GPGPU Stencils ». In: Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Austin, TX, USA, February
4-8, 2017. Ed. by Vivek Sarkar and Lawrence Rauchwerger. ACM, 2017, pp. 163–177.
doi: 10.1145/3018743.3018744.

[41] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman P. Amarasinghe. « Halide: a language and compiler for optimizing paral-
lelism, locality, and recomputation in image processing pipelines ». In: ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA,
USA, June 16-19, 2013. Ed. by Hans-Juergen Boehm and Cormac Flanagan. ACM, 2013,
pp. 519–530. doi: 10.1145/2491956.2462176.

[42] Desh Ranjan, John E. Savage, and Mohammad Zubair. « Strong I/O Lower Bounds for
Binomial and FFT Computation Graphs ». In: Computing and Combinatorics - 17th An-
nual International Conference, COCOON 2011, Dallas, TX, USA, August 14-16, 2011.
Proceedings. Ed. by Bin Fu and Ding-Zhu Du. Vol. 6842. Lecture Notes in Computer
Science. Springer, 2011, pp. 134–145. doi: 10.1007/978-3-642-22685-4_12.

[43] Desh Ranjan, John E. Savage, and Mohammad Zubair. « Upper and Lower I/O Bounds
for Pebbling r-Pyramids ». In: J. Discrete Algorithms 14 (2012), pp. 2–12. doi: 10.1016/
j.jda.2011.12.005.

[44] Joseph Redmon and Ali Farhadi. « YOLO9000: Better, Faster, Stronger ». In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017. IEEE Computer Society, 2017, pp. 6517–6525. doi: 10.1109/CVPR.
2017.690.

[45] Lakshminarayanan Renganarayanan and Sanjay V. Rajopadhye. « Positivity, Posynomi-
als and Tile Size Selection ». In: Proceedings of the ACM/IEEE Conference on High Perfor-
mance Computing (SC). IEEE/ACM, 2008, p. 55. doi: 10.1109/SC.2008.5213293.

76

https://doi.org/10.1145/2541228.2555292
https://doi.org/10.1145/2541228.2555292
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1145/3385412.3385989
https://doi.org/10.1145/3385412.3385989
https://sourceforge.net/projects/polybench/
https://sourceforge.net/projects/polybench/
https://doi.org/10.1145/3018743.3018744
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1007/978-3-642-22685-4_12
https://doi.org/10.1016/j.jda.2011.12.005
https://doi.org/10.1016/j.jda.2011.12.005
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/SC.2008.5213293

[46] John E. Savage. « Extending the Hong-Kung Model to Memory Hierarchies ». In: Pro-
ceedings of the First Annual International Conference on Computing and Combinatorics.
COCOON ’95. Berlin, Heidelberg: Springer-Verlag, 1995, pp. 270–281. doi: 10.1007/
BFb0030842.

[47] Jun Shirako, Kamal Sharma, Naznin Fauzia, Louis-Noël Pouchet, J. Ramanujam, P. Sa-
dayappan, and Vivek Sarkar. « Analytical Bounds for Optimal Tile Size Selection ». In:
Proceedings of Compiler Construction - 21st International Conference (CC). Vol. 7210. Lec-
ture Notes in Computer Science. Springer, 2012, pp. 101–121. doi: 10.1007/978-3-
642-28652-0_6.

[48] Tyler Michael Smith, Bradley Lowery, Julien Langou, and Robert A. van de Geijn. « A
Tight I/O Lower Bound for Matrix Multiplication ». In: (2019). arXiv: 1702.02017v2.

[49] Edgar Solomonik and James Demmel. « Communication-Optimal Parallel 2.5D Matrix
Multiplication and LU Factorization Algorithms ». In: Euro-Par 2011 Parallel Processing
- 17th International Conference, Euro-Par 2011, Bordeaux, France, August 29 - September
2, 2011, Proceedings, Part II. Vol. 6853. Lecture Notes in Computer Science. Springer,
2011, pp. 90–109. doi: 10.1007/978-3-642-23397-5_10.

[50] Paul Springer and Paolo Bientinesi. Design of a High-Performance GEMM-like Tensor-
Tensor Multiplication. 2016. arXiv: 1607.00145.

[51] Nicolas Tollenaere, Auguste Olivry, Guillaume Iooss, Hugo Brunie, Albert Cohen, P
Sadayappan, and Fabrice Rastello. « Efficient convolution optimisation by composing
micro-kernels ». working paper or preprint. Oct. 2021. url: https://hal.archives-
ouvertes.fr/hal-03149553.

[52] S. I. Valdimarsson. « The Brascamp-Lieb polyhedron. » In: Canadian Journal of Mathe-
matics 62.4 (2010), pp. 870–888.

[53] Sven Verdoolaege. « ISL: An Integer Set Library for the Polyhedral Model ». In: Mathe-
matical Software–ICMS 2010. 2010, pp. 299–302.

[54] Sven Verdoolaege. Presburger Formulas and Polyhedral Compilation. https://libisl.
sourceforge.io/tutorial.pdf. 2021.

[55] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Ten-
llado, and Francky Catthoor. « Polyhedral Parallel Code Generation for CUDA ». In:
ACM Transactions on Architecture and Code Optimization 9.4 (Jan. 2013). doi: 10.1145/
2400682.2400713.

[56] Sven Verdoolaege and Tobias Grosser. « Polyhedral Extraction Tool ». In: Second Inter-
national Workshop on Polyhedral Compilation Techniques (IMPACT’12). 2012.

[57] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice Bruynooghe.
« Counting Integer Points in Parametric Polytopes Using Barvinok’s Rational Func-
tions ». In: Algorithmica 48.1 (2007), pp. 37–66. doi: 10.1007/s00453-006-1231-0.

[58] Andreas Wächter and Lorenz T. Biegler. « On the Implementation of an Interior-Point
Filter Line-Search Algorithm for large-scale nonlinear programming ». In: Math. Pro-
gram. 106.1 (2006), pp. 25–57. doi: 10.1007/s10107-004-0559-y.

[59] Jingling Xue. Loop Tiling for Parallelism. Vol. 575. Kluwer International Series in Engi-
neering and Computer Science. Kluwer, 2000. doi: 10.1007/978-1-4615-4337-4.

77

https://doi.org/10.1007/BFb0030842
https://doi.org/10.1007/BFb0030842
https://doi.org/10.1007/978-3-642-28652-0_6
https://doi.org/10.1007/978-3-642-28652-0_6
https://arxiv.org/abs/1702.02017v2
https://doi.org/10.1007/978-3-642-23397-5_10
https://arxiv.org/abs/1607.00145
https://hal.archives-ouvertes.fr/hal-03149553
https://hal.archives-ouvertes.fr/hal-03149553
https://libisl.sourceforge.io/tutorial.pdf
https://libisl.sourceforge.io/tutorial.pdf
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1007/s00453-006-1231-0
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/978-1-4615-4337-4

[60] Tomofumi Yuki, Lakshminarayanan Renganarayanan, Sanjay Rajopadhye, Charles An-
derson, Alexandre E. Eichenberger, and Kevin O’Brien. « Automatic Creation of Tile
Size Selection Models ». In: Proceedings of the 8th Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO). ACM, 2010, pp. 190–199. doi: 10.
1145/1772954.1772982.

[61] Field G. Van Zee and Robert A. van de Geijn. « BLIS: A Framework for Rapidly Instan-
tiating BLAS Functionality ». In: ACM Trans. Math. Softw. 41.3 (2015), 14:1–14:33. doi:
10.1145/2764454.

78

https://doi.org/10.1145/1772954.1772982
https://doi.org/10.1145/1772954.1772982
https://doi.org/10.1145/2764454

	Introduction
	Overview and Background
	I/O Complexity
	Program representation
	Lower bound derivation
	Upper bound derivation
	Affine programs and automation

	Lower Bounds
	Foundations
	CDAG
	A compact representation of the CDAG: the data-flow graph
	Partitioning
	Using projection to bound the cardinality of K-bounded sets
	DFG Paths

	CDAG decomposition
	Non-disjoint Decomposition Lemma
	Bounded combination
	Loop parametrization

	K-partition bound derivation
	Geometric embedding, DFG-paths and projections
	Finding paths
	Computing the lower bound
	Extensions: Small Dimensions and Reduction Detection

	Wavefront bound derivation
	Theoretical results
	Implementation

	Complete framework
	DFG construction
	Instances of parameter values
	Main algorithm

	Experimental evaluation
	Implementation
	Evaluation on PolyBench
	Parametric bounds for OI
	Complete lower bound formulae

	Related work

	Upper Bounds
	Background
	Class of programs
	Program representation

	Loop permutation and tiling
	Tiling transformation
	Sub-domains and reuse

	Cost model
	Single array
	Multiple arrays
	Extension to multiple memory levels
	Optimization problem

	Loop permutation selection
	Reuse for an array along a dimension
	Algorithm for permutation selection

	Putting it all together
	Experiments
	Benchmarks
	Symbolic upper bound expressions
	Comparison of upper and lower bounds for different cache sizes
	Implementation

	Related work

	Conclusion
	Summary of Results
	Limitations
	Future work

