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Résumé: Dans cette thése, nous considérons
principalement la simulation numérique des
écoulements géophysiques & 'aide de modéles
hydrodynamiques. Nous sommes particuliére-
ment intéressés par les applications au trans-
port de sédiments, aux processus d’érosion-
dépot des sédiments et aux écoulements strati-
fiés. Des modeéles avancés basés sur les équations
de Saint-Venant (& une ou deux couches) ont été
utilisés pour prendre en compte ces phénomeénes.
Cependant, comme point de départ de cette
thése, nous avons également realisé des schémas
numériques pour les équations du flux sanguin.
En effet, afin de pouvoir simuler de tels mod-

éles, nous cherchons a concevoir et analyser une
stratégie numeérique efficace d’ordre supérieur et
équilibre, en se basant sur un formalisme de type
Lagrange-Projection. En quelques mots, de tels
algorithmes se décomposent en deux étapes :
I’étape lagrangienne prend en compte les effets
de compressibilité tandis que 1'étape de pro-
jection est dédiée aux phénomeénes de trans-
port. Une telle décomposition présente un in-
térét particulier dans de nombreux écoulements
géophysiques car elle fournit une décomposition
naturelle des échelles de temps et conduit & des
schémas implicites-explicites trés efficaces.

Title:
grange-Projection methods

Keywords:

Numerical simulation of geophysical flows using high-order and well-balanced La-

Hyperbolic systems, finite volume methods, geophysical flows, blood flow equations,

Lagrange-projection splitting, well-balanced property

Abstract: In this PhD thesis, we mainly con-
sider the numerical simulation of geophysical
flows by means of hydrodynamics models. We
are especially interested in applications to sed-
iment transport, sediment erosion-deposition
processes and stratified flows. Advanced models
based on (one or two-layer) shallow-water equa-
tions have been used to take these phenomena
into account. However, as a starting point of
this thesis, we also built numerical schemes for
the blood flow equations.

In order to be able to simulate such flows,

we aim to design, analyze and implement
high-order and well-balanced efficient numer-
ical methods that are based on a Lagrange-
Projection formalism. In a few words, such al-
gorithms are composed of two steps: the La-
grangian step takes into account the compress-
ibility effects of the flow, while the Projec-
tion step is dedicated to the transport phenom-
ena. Such a splitting is of particular interest
in many geophysical flows as it provides a nat-
ural time scale decomposition leading to very
efficient implicit-explicit schemes.
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Chapter

Introduction

1.1 Contexte et positionnement

Cette these de doctorat porte sur la conception, I’analyse et I'implémentation de méthodes
de type Lagrange-Projection (LP) pour des systemes d’équations aux dérivées partielles hy-
perboliques. Plus précisément, nous considérons plusieurs modéles mathématiques et nous
adaptons la stratégie LP de maniére a satisfaire certaines propriétés ou caractéristiques essen-
tielles. Parmi ces propriétés, nous nous intéressons notamment a des propriétés équilibre ou
"well-balanced", d’ordre d’approximation élevé ou encore de stabilité a grands pas de temps.

En ce qui concerne les modéles mathématiques, nous considérons principalement les écoule-
ments géophysiques a ’aide de modeles hydrodynamiques. Nous sommes particulierement in-
téressés par les applications au transport de sédiments, aux processus d’érosion-dépot des sédi-
ments et aux écoulements stratifiés. Des modeles avancés basés sur les équations en eaux peu
profondes (a une ou deux couches) ont été utilisés pour prendre en compte ces phénomenes.
En outre, comme point de départ de cette these, nous avons également construit des schémas
numériques pour la simulation numérique du flux sanguin dans les arteres humaines.

Cette these a été réalisée au Laboratoire de Mathématiques de Versailles de I'Université
de Versailles Saint-Quentin-en-Yvelines et a été soutenu par I’attribution d’une allocation de
recherche Région Ile-de-France (subvention DIM MathInnov).

Les chapitres 3 et 5 ont été réalisés en collaboration avec M. J. Castro Diaz et T. Morales de
Luna, membres du groupe de recherche EDANYA de I'Université de Malaga. Ces chapitres ont
été partiellement soutenus par le Programme Visibilité Scientifique Junior du FMJH (Fondation
Mathématique Jacques Hadamard), le Spanish Government et FEDER a travers les projets de
recherche RTI2018-096064-B-C1 et RTI2018-096064-B-C2, le projet de recherche P18-RT-3163
de la Junta de Andalucia, le projet de recherche UMA18-FEDERJA-16 de la Junta de Andalucia-
FEDER-University of Malaga et I'Université de Malaga.

1.1.1 Modéles mathématiques

Dans cette these, nous considérons des équations aux dérivées partielles non linéaires de
la forme suivante,

0,Q + 0,F(Q) + B(Q)0.Q = S(Q) (1.1.1)

ou Q(x,t) € Q est le vecteur des inconnues dépendant du temps ¢ > 0 et de 'espace = € R,
avec {2 C R"™ un ensemble ouvert et convexe. Apres, F : 2 — R" est le flux physique,
B(Q)0.Q est le terme non conservatif du modele avec B(Q) : 2 — M,,(R) une matrice et,
enfin, S : 2 — R" est le terme source. En particulier, si B(Q) est la matrice nulle, les équations

13



Chapter 1. Introduction

(1.1.1) se réduisent a un systeme de lois de conservation avec terme source. Si, en plus, il n’y
a pas de terme source S, on obtient un systéme de lois de conservation [17]. Le systéme (1.1.1)
peut aussi étre reformulé comme suit,

0:Q + A(Q)9.Q = S(Q) (1.1.2)
ou nous avons introduit la matrice non-conservative

9F(Q)

AQ) = 5 +B(Q)
On dit que le systeme (1.1.2) est hyperbolique si A est R-diagonalisable et strictement hyper-
bolique si, en plus, les valeurs propres sont toutes distinctes [63]. Les équations aux dérivées
partielles hyperboliques font 'objet d’études et d’analyses intenses car de nombreuses appli-
cations existent en biologie, aérodynamique, dynamique des fluides et optique, pour n’en citer
que quelques-unes. A titre d’exemple, un systéme hyperbolique trés connu est donné par les
équations d’Euler, qui modélisent un matériau compressible (comme un gaz ou un liquide)
[63].

Comme des opérateurs différentiels sont présents dans les systémes de forme (1.1.1), nous
sommes implicitement en train de supposer que la solution est suffisamment réguliére pour
qu’il soit possible d’appliquer de tels opérateurs. Cependant, il est bien connu que les so-
lutions du systeme (1.1.1) peuvent développer des discontinuités en un temps fini, méme si
des conditions initiales réguliéres sont envisagées [46]. Par conséquent, la notion de solutions
classiques (c’est-a-dire des fonctions différentiables avec des dérivées partielles continues) doit
étre généralisée au cas ou des discontinuités pourraient étre présentes dans la solution. A cette
fin, nous introduisons briévement le concept de solution faible [38].

En commencant par un systeme de lois de conservation (1.1.1), notamment avec S(Q) = 0
et B(Q) matrice nulle, nous intégrons le systéme (1.1.1) dans le volume de contréle [z, z5] X
[to, 1], ce qui donne la forme intégrale des lois de conservation,

/ Qa, t)de = / Q(z,to)dr — (/tt F(Q(xz,t))dt—/tl F(Q(xht))dt). (1.13)

0 to

Cette relation exprime que la différence de la quantité U dans l'intervalle [z, 5] au temps ¢; et
celle au temps ¢ est égale a une différence des intégrales temporelles du flux aux points x, et
x1. Dans ce cadre, nous définissons une solution faible comme une fonction de Q qui satisfait
(1.1.3) et donc, qui n’a plus besoin d’étre continue [63]. En particulier, une discontinuité d’une
solution faible satisfait aux conditions de saut de Rankine-Hugoniot, qui donnent la vitesse de
la discontinuité [63].

Cependant, étant donnée une condition initiale, une solution faible n’est généralement
pas unique. Par conséquent, un critére devrait étre envisagé pour sélectionner une solution
qui soit cohérente avec la physique du probléme, notamment en recherchant une condition
d’entropie. Dans cette thése, nous ne nous concentrons pas sur un tel probleme et nous nous
référons simplement a [46, 47] et aux références qui s’y trouvent pour plus de détails.

Méme si la notion de solution faible a été définie pour les systémes de lois de conserva-
tion, une telle définition ne peut plus étre utilisée dans le cas du systeme non conservatif
complet (1.1.1). En effet, puisque des masses de Dirac peuvent apparaitre en présence de dis-
continuités, le produit non conservatif B(Q)0d,Q n’aurait plus de sens dans le cadre distribu-
tionnel. En outre, ce probleme peut également apparaitre si le terme source est de la forme
S(Q) = §(Q)d,0 avec $(Q) # 0 et o : R — R une fonction discontinue connue. Afin de con-
tourner ce probléeme, Dal Maso, LeFloch et Murat [28] ont développé une théorie : elle permet
de définir une solution faible en supposant que Q est une fonction a variation bornée, de sorte

14



1.1. Contexte et positionnement

que le produit B(Q)d,Q (ou $(Q)d,0) aurait un sens en tant que mesure localement bornée.
Récapitulons les lignes directrices d’une telle théorie. A cette fin, nous considérons directe-
ment les équations de forme (1.1.2) sans terme source. En effet, si un terme source de la forme
S(Q)0,0 est présent, il peut étre facilement inclus en considérant I’équation supplémentaire
0;0 = 0 et en ajoutant o au vecteur des inconnues. Ainsi, nous cherchons a définir I'intégrale

/w2 A(Q(x,t))0,Q(x, t)dxdt (1.1.4)

lorsque Q est discontinue. Tout d’abord, nous devons définir une famille de chemins continus
de Lipschitz ® : [0, 1] x © x Q — ) satisfaisant les propriétés suivantes :

D(0;Q,,Qr) =Q;, ©(1;0Q.,Qz) =Qx, et P(s;Q,Q)=0Q.

A titre d’exemple, le chemin le plus facile est celui des lignes droites,

(5Q,,Qr) =Q, +5(Qz —Q,).

Ensuite, nous définissons I'intégrale (1.1.4) par
x9 ) 1 a(I)
o AQu).Qur ~ [ AQu)QMI+ 3 [ AW Q01T (510
1 x1 l

o Q; et Q; sont respectivement la limite de Q & gauche et a droite de la /iéme discontinuité.
Ainsi, nous disons qu’une solution faible du systéme (1.1.2) est une fonction qui satisfait a

/ Qe fa)dr = / Ql, to)dz - /t :1 ][ A(Q(x,1))2,Q(x, t)ddt.

Cependant, un probléme crucial est maintenant donné par le choix du chemin. En effet, la
solution pourrait changer en fonction du chemin choisi. En outre, méme si le "bon" chemin
est choisi, la solution numérique pourrait converger vers la mauvaise solution et non vers
la solution physique, en raison de la viscosité numérique de la méthode. Selon [48, 60], la
définition du chemin correct pourrait résider dans la régularisation convective-diffusive du
systéme. En bref, et en se référant également a [17], sile systeme (1.1.2) est la limite de diffusion
a zéro du systéme suivant,

avec D(Q) una matrice de diffusion, le choix du chemin correct est lié au profil visqueux du
systéme (1.1.5). Encore une fois, ici, nous ne donnons pas plus de détails mais nous nous
référons simplement a [17, 43, 48, 60].

Nous soulignons que, dans cette these, nous étudions d’une part des systémes de lois de
conservation avec termes sources, a savoir le systéme d’écoulement sanguin dans le chapitre 2
et les équations en eaux peu profondes dans le chapitre 6. Ensuite, du chapitre 3 au chapitre 5,
on ne considere que des modéles non conservatifs, bien que toujours liés au systéme en eaux
peu profondes. Par conséquent, comme presque tous les modeles examinés dans cette thése
sont basés sur le systéme en eaux peu profondes, on le présente ici brievement. Ce modeéle a fait
I'objet d’études et d’analyses approfondies car, malgré sa simplicité, il est efficace pour la sim-
ulation numérique des écoulements de fluides dans le cadre de la dynamique atmosphérique
et océanique [66, 65]. En outre, il est utilisé comme base pour simuler des phénoménes com-
plexes tels que le transport de sédiments [33], les courants de turbidité [55], les écoulements

15



Chapter 1. Introduction

multicouches [1, 3], les tsunamis [26], les ruptures de barrage [64], les glissements de terrain
[45], les inondations [31] et outre encore.

Le systeme en eaux peu profondes a une dimension d’espace est également appelé systeme
de Saint-Venant car il a été décrit pour la premiére fois par Adhémar Jean Claude Barré de
Saint-Venant en 1843. Ce systéme a été dérivé des équations de Navier-Stokes [62] sous les
hypotheéses suivantes : ’échelle verticale est beaucoup plus petite que I’échelle horizontale,
le fluide est homogéne et incompressible, la pression est hydrostatique, il n’y a pas de forces
visqueuses et la vitesse du fluide ne doit dépendre que de I’espace x et du temps ¢ et non de la
profondeur [66, 36]. En tenant compte de toutes ces hypotheses et en intégrant les équations
de Navier-Stokes sur la profondeur, nous obtenons le systeme en eaux peu profondes a une
dimension d’espace :

2 1.1.6
9y (hu) + 0, (hu® + %) = —gh0,z. (116)

En particulier, la premiére et deuxiéme équation sont respectivement I’équation de conserva-
tion de la masse et de la quantité de mouvement, ou hi(x,t) est la hauteur totale de la colonne

d’eau, u(z,t) est la vitesse moyenne et z(x) est I’élévation du lit. Ensuite, la pression est
2
gh

donnée par p = =—— ou g représente 'accélération gravitationnelle. Le systeme (1.1.6) est

clairement un systeme de lois de conservation avec terme source de forme (1.1.1), ou

h i 0
Q= () Q- i 22 5@ = (.-

et B matrice nulle. De plus, il est simple de prouver qu’il s’agit d’un systéme strictement hy-
perbolique avec les valeurs propres réelles u =+ ¢, oit ¢ = /Opp = v/gh est la vitesse du son.
Ainsi, la condition de Courant-Friedrichs-Lewy (CFL) sur le pas de temps pour un schéma ex-
plicite de type Godunov appliqué au systéme de Saint-Venant (1.1.6) est généralement donnée
par

Az 1

At —————
2 max{|u| + ¢}

Pour plus de détails sur les équations en eaux peu profondes et leur approximation numérique,
voir par exemple [66, 2, 8, 36, 35, 23].

Enfin, dans le but de concevoir des schémas numériques stables et comme mentionné
précédemment, nous nous concentrons également sur les solutions stationnaires du modele
(1.1.1), qui satisfont la relation suivante

0,F(Q) +B(Q)9,Q = S(Q). (1.1.7)

Par conséquent, nous recherchons des méthodes numériques capables de préserver ces états
stationnaires, sinon il est bien connu que des instabilités peuvent apparaitre dans les résul-
tats numériques lorsque la solution est proche d’une état stationnaire. Un tel probleme a été
présenté pour la premiere fois dans le travail [5] de Bermudez et Vazquez pour le systéme en
eaux peu profondes. Ils y ont nommé C-property la capacité d’'un schéma a préserver les so-
lutions stationnaires a vitesse nulle. Cette propriété a été renommée équilibre (well-balanced
en anglais) par Greenberg et LeRoux dans leur article [41]. Plus tard, Gosse [39] a étendu la
notion de cette propriété en considérant un schéma capable de préserver également les solu-
tions stationnaires mobiles, a savoir celles dont la vitesse est non nulle. Dans ce cas, on parle
de méthode numérique complétement équilibre (fully well-balanced en anglais).
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Pour fixer les idées, considérons le systéme de Saint-Venant (1.3.6). Ses états stationnaires
sont donnés par

2
hu = constant = ¢q; et o\ g(h + z) = constant.

2h?
Si nous prenons ceux dont la vitesse est nulle, on retrouve la solution stationnaire "lac au
repos” ("lake at rest" en anglais), qui se lit comme suit

u=0 et h-+ z= constant.

Il existe de nombreux travaux sur les méthodes équilibre et complétement équilibre pour le
systéeme de Saint-Venant. Par exemple, dans [2], les auteurs ont introduit la stratégie de recon-
struction hydrostatique afin d’avoir une méthode numérique capable de préserver la solution
stationnaire "lac au repos" du systéme en eaux peu profondes. D’autres références intéres-
santes pour les schémas équilibres du premier ordre appliqués aux systémes de lois de con-
servation avec terme source sont [6, 30]. Alors que pour les schémas équilibre de second
ordre (ou plus), nous nous référons a [8, 7, 13, 18, 57, 51, 56, 59]. Des méthodes capables de
préserver un état stationnaire donné (pas nécessairement avec une vélocité nulle) ont égale-
ment été congues. Voir par exemple [44], ou les auteurs ont considéré les équations d’Euler
avec la gravité. A cet égard, nous renvoyons également a [4], ol une méthode équilibre d’ordre
supérieur pour les lois de conservation avec terme source multidimensionnelles a été présen-
tée. Les auteurs y expliquent comment préserver exactement une solution générale qui est
connue a priori et qui n’est pas nécessairement un état stationnaire du modéle. Quant a la
propriété équilibre pour les systemes non-conservatifs, on peut mentionner le papier [17].
Ensuite, lorsqu’il s’agit de la propriété completement équilibre pour le systéme en eaux peu
profondes, nous pourrions nous référer a [52]. Dans ce papier, les auteurs ont décrit un schéma
basé sur une définition particuliére d’un solveur de Riemann approché. En effet, il a été con-
struit de maniére a ce que le schéma associé de type Godunov satisfasse la propriété d’équilibre.
D’autres schémas complétement équilibre ont été décrits par exemple dans [53, 10, 16, 9, 37].

Dans cette thése, nous ne nous intéressons qu’a la propriété équilibre (et non complete-
ment équilibre) car elle se révele généralement plus facile a préserver tout en améliorant con-
sidérablement les résultats numériques. En particulier, tous nos schémas sont basés sur la dé-
composition acoustique-transport (ou de type Lagrange-projection). Nous verrons que dans la
plupart des cas, nous construirons un solveur de Riemann approché équilibre pour les équa-
tions acoustiques afin que la méthode numérique compléte soit bien équilibrée. En effet, en
général, nous n’avons pas a modifier la discrétisation numérique de la partie de transport du
systeme.

1.1.2 Décomposition de Lagrange-projection ou acoustique-transport

Comme déja mentionné, la décomposition de type Lagrange-projection et le splitting
acoustique-transport sont des concepts clés de cette these de doctorat. En particulier, ils nous
permettent de découpler les effets de compressibilité des phénomeénes de transport du modele
mathématique considéré. Par conséquent, nous obtenons deux systéemes d’équations différents
que nous devons résoudre numériquement [21, 14, 19]. En pratique, nous pouvons résumer
cette stratégie numérique comme suit:

1. Résoudre (explicitement ou implicitement) le systéme acoustique ;

2. Utiliser la solution acoustique comme condition initiale pour résoudre le systeme de
transport.
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Par souci de clarté, on présente une telle stratégie pour le systéeme de Saint-Venant (1.1.6).
Apres avoir appliqué la dérivée d’une fonction composée aux dérivées spatiales comme suit

Oih + ho,u + ud,h = 0
O (hu) + hud,u + ud hu + 0,p = —ghd, 2,

nous découplons les différents phénomenes du modéle, obtenant ainsi les systemes acoustiques
et de transport :

Oth + ho,u =0 s
Op(hu) + hudyu + Opp = —ghd, 2, 1.
et
O (hu) + ud,(hu) = 0.

En résumé, une fois qu'on a obtenu la solution du systéme acoustique (1.1.8), nous l'utilisons
comme condition initiale pour pouvoir résoudre le systéme (1.1.9) et trouver la solution fi-
nale. Cependant, il est clair que les équations acoustiques (1.1.8) sont sous une forme non
conservative, contrairement au systéme de Saint-Venant (1.1.6). Par conséquent, plutot que de
considérer un tel systeme, nous préférons faire une reformulation, en introduisant le volume

spécifique 7 = 7 et la variable de masse m donnée par 0,, = 70,. Ainsi, nous obtenons le

systeme de lois de conservation avec terme source suivant

(9t7' — amu =0
1.1.10
O+ 0p = 20,2 (1110
T
Nous pouvons facilement prouver que ce systeme est strictement hyperbolique avec des valeurs
propres données par +hc. De plus, pour le systéme de transport (1.1.9), la vitesse u est la seule
valeur propre. Il est donc clair que le splitting des phénomenes acoustiques et de transport a
conduit a la décomposition des ondes acoustiques et matérielles du systeme de Saint-Venant
(1.1.6). Ces ondes jouent évidemment un role important dans la définition de la condition CFL
pour le pas de temps At. En effet, ayant maintenant deux systémes différents, (1.1.10) et (1.1.9),
nous devons imposer deux conditions CFL différentes sur le pas de temps, respectivement
Am

At < —— 1.1.11
~ 2max{hc} ( )

et

< Az

~ 2max{|ul}
Il faut alors prendre la valeur minimale de At donnée par les conditions (1.1.11) et (1.1.12).
L’intérét de disposer de deux conditions CFL différentes est lié au fait qu’il existe des situations
dans lesquelles les ondes acoustiques sont beaucoup plus rapides que les ondes de transport.
Cela se produit dans les régimes subsoniques ou a proximité d’écoulements a faible nombre

At (1.1.12)

u
de Froude, lorsque la valeur absolue du nombre de Froude F' = — est inférieure a un. Dans

de telles situations, la condition CFL habituelle pour le pas de temf)s des schémas de type Go-
dunov est entrainée par les ondes acoustiques rapides et peut, donc, étre trés restrictive. Ainsi,
en exploitant une approximation implicite du systéme acoustique, nous pourrions obtenir un
schéma IMplicit-EXplicit (IMEX) trés naturel et a grand pas de temps avec une restriction CFL
basée uniquement sur les ondes de transport lentes [27].
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Présentons maintenant une interprétation différente du splitting acoustique-transport, a
savoir 'approche de type Lagrange-projection. L’idée est la suivante. En commencant par le
modéle mathématique choisi, nous le reformulons en coordonnées lagrangiennes. Une fois
que la solution lagrangienne a été trouvée, nous devons la projeter en coordonnées euléri-
ennes [54]. Ainsi, nous avons a nouveau une stratégie numérique composée de deux étapes:
celle lagrangienne et celle de projection. Ces deux étapes correspondraient respectivement
aux étapes acoustique et de transport que nous avons décrites précédemment. En pratique,
nous verrons que ces deux stratégies peuvent étre considérées comme les deux faces d’une
méme piece, méme si elles ne sont pas toujours strictement équivalentes. Pour illustrer ce
lien, considérons a nouveau le systeme de Saint-Venant (1.1.6) a une dimension d’espace. Dans
un premier temps, il faut donc le reformuler en coordonnées lagrangiennes. Pour pouvoir le
faire, nous suivons la particule de fluide dans la position & et nous définissons les courbes
caractéristiques

Ox
E(& t) = U([L‘(g, t)? t)

2(£,0) =&,

qui définissent la trajectoire : t — x(&, t) de £ au fil du temps. Ainsi, toute fonction : (z,t) —
©(z,t) en coordonnées eulériennes peut étre écrite en coordonnées lagrangiennes,

(1.1.13)

P&, 1) = p(x(&,1),1).
Ensuite, nous introduisons le rapport de volume L (¢, t), qui est défini par

Ox

L&D = 5

(&1) (1.1.14)

et qui satisfait

S = dula(e 1),
L(£,0) = 1.

(1.1.15)

Par conséquent, les dérivées temporelles et spatiales d’une fonction ¢ en coordonnées lagrang-
iennes sont données par

0ip(&,t) = Ohp(w,t) + ulz, )Oup(x,t) et Ip(E,1) = L(E, 1) Dup(2, 1).

En laissant les calculs au lecteur, nous présentons directement les équations de Saint-Venant
en coordonnées lagrangiennes,

{&(Lﬂ_ 0 ) o (1.1.16)
Oy(Lhu) + Ogp = —ghOeZ.

Une fois trouvée la solution lagrangienne du systéme (1.1.16), il suffit donc de la projeter en
coordonnées eulériennes. Pour plus de détails sur les coordonnées lagrangiennes a 2 ou 3
dimensions d’espace, nous nous référons a [29, 49, 50].

A ce stade, nous pouvons remarquer que, dans la deuxiéme équation du systéme (1.1.16),
le flux physique est uniquement donné par le terme de pression. Néanmoins, la relation entre
le systéme (1.1.16) et le systéme acoustique (1.1.10) pourrait ne pas étre tout a fait claire. Afin
de l'illustrer, nous commencons par remarquer que Lh ne dépend pas du temps, & savoir

(LR)(E.1) = (LR)(E.0) = hE.0) =Dy et L(E.1) = 720
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grace auquel on trouve

Otho =0
L —0:u=0
Os(hott) + Ocp = —gh0ez.
Enfin, il suffit de réintroduire les variables 7 = % et m telle que 0,, = h—oag, pour que nous
obtenions
KT — Ot =10

1.1.17

ata + amﬁ = _gamzu ( )
T
qui rappelle le systeme acoustique (1.1.10) manifestement. Ainsi, méme s’il est clair que les
deux systémes (1.1.17) et (1.1.10) ne sont pas strictement les mémes car ils ont été obtenus selon
des procédures différentes, lorsqu’il s’agit de I'approximation numérique, nous utiliserons les
ingrédients de chacune d’entre elles dans le but de construire des schémas numériques perfor-
mants.

Nous avons déja clarifié pourquoi les méthodes de type Lagrange-projection sont partic-
uliérement utiles lorsqu’on considere les régimes subsoniques. Soulignons toutefois que cette
classe de méthodes ouvre généralement la voie a de nombreuses nouvelles possibilités d’un
point de vue numérique. En effet, le fait d’avoir deux ensembles d’équations diftérents (dans le
splitting acoustique-transport) ou de travailler en coordonnées lagrangiennes (dans ’approche
LP) signifie que les propriétés des méthodes numériques pourraient étre préservées différem-
ment (et plus facilement).

Donnons donc quelques exemples de méthodes de type Lagrange-projection (ou acoustique-
transport). Dans [19, 20], les auteurs ont décrit un schéma de type Lagrange-projection tout-
régime, respectivement en 1D et 2D. Par tout-régime, ils désignent un schéma numérique ca-
pable de calculer des solutions approchées précises avec un maillage et un pas de temps beau-
coup plus grands que le nombre de Mach (analogue du nombre de Froude dans le cadre des
eaux peu profondes). Par conséquent, la méthode résultante est également implicite-explicite
et peut conduire a des simulations rapides. Un autre schéma semi-implicite a été développé
dans [21], ou la propriété équilibre du schéma a également été analysée, ce qui signifie que
les solutions stationnaires a vitesse nulle du modéle mathématique sont préservées. Ce prob-
léeme a été approfondi dans [14], ou les auteurs ont décrit une méthode LP complétement
équilibre. Ensuite, ce schéma a également été étendu a un ordre de précision arbitraire dans
[54], en utilisant des reconstructions polynomiales et la stratégie Runge-Kutta. Les méthodes
de type Lagrange-projection d’ordre élevé ont également été traitées dans le papier [32], ou
I'ordre élevé de précision a été atteint en utilisant des techniques différentes, notamment les
développements de Taylor et la procédure de Cauchy-Kovalevskaya. Une autre référence in-
téressante est [58], ou un schéma de type Lagrange-projection implicite-explicite et d’ordre
élévé a été développé. En particulier, les auteurs ont obtenu un ordre de précision élevé en
espace en utilisant un schéma de type Galerkin-discontinu, tandis que pour ’approximation
dans le temps, ils ont considéré la méthode d’Euler "backward". Enfin, des méthodes de type
Lagrange-projection préservant ’asymptotique ont également été congues, ce qui signifie que
le schéma est capable de reproduire au niveau discret le comportement asymptotique satis-
fait par les équations continues, voir [22, 12]. De plus, les méthodes numériques satisfont
également une inégalité d’entropie entierement discréte.

Dans cette these, nous sommes particulierement attentifs a concevoir de méthodes numé-
riques de type Lagrange-projection dotées de la propriété équilibre, donc seules les solutions
stationnaires a vitesse nulle sont préservées. Une autre propriété fondamentale des méthodes
numériques est qu’elles doivent étre capables de préserver la positivité stricte de la solution
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[34] : par exemple, de la hauteur d’eau dans les modeles en eaux peu profondes [8], de la
section transversale du vaisseau dans les équations de flux sanguin [37], de la densité dans les
équations de dynamique des gaz [34], et ainsi de suite.

Apres, il est clair que la solution numérique doit étre une bonne approximation de la solu-
tion physique et ne pas étre trop diffusive. Cependant, en fonction du modeéle mathématique
et de la méthode numérique, cette requéte n’est pas du tout triviale. En effet, les schémas du
premier ordre sont généralement tres diffusifs et peuvent nécessiter I'utilisation d’un maillage
trés fin pour obtenir une approximation acceptable de la solution, ce qui entraine un cott de
calcul excessif. Cela se produit par exemple lors de I'utilisation de schémas numériques basés
sur des approches qui négligent les ondes intermédiaires d'un modéle, ne considérant que la
vitesse de propagation des ondes externes, comme dans le solveur HLL (Harten-Lax-van Leer)
[42]. 1l est clair qu’un tel probléme ne se pose pas pour les modeéles avec une structure a deux
ondes. Néanmoins, ici, nous essayons de concevoir des schémas numériques qui prennent en
compte la structure compléte de la solution. Nous verrons que cette requéte est particuliere-
ment simplifiée par 'exploitation d’'une version relaxée [61, 11] du systéme acoustique. Enfin,
avec tout cela a I'esprit et dans un deuxieme temps, nous concevons également une exten-
sion d’ordre supérieur des méthodes numériques, visant a une convergence plus rapide de la
solution numérique vers la solution physique [63].

1.2 Présentation des travaux de theése
Cette theése est structurée comme suit.

Dans le chapitre 2, nous appliquons la stratégie de type Lagrange-projection aux équa-
tions du flux sanguin avec rigidité artérielle et surface de la section transversale a 1’équilibre
non constantes en espace, obtenant un systeme de lois de conservation avec terme source. En
raison de ces derniers parametres, il n’est pas simple de préserver la propriété équilibre, et nous
nous concentrons sur la préservation de la solution stationnaire "'’homme au repos éternel".
Nous montrons deux facons de la préserver, 'une basée sur une modification du solveur de
Riemann approché pour le systéeme acoustique et la seconde sur une stratégie de reconstruc-
tion hydrostatique [2]. Des efforts pour étendre la stratégie numérique au second ordre de
précision sont également faits en utilisant des techniques classiques comme la reconstruction
polynomiale [63] et le schéma de Runge-Kutta [40]. Une fois de plus, d’autres modifications
sont appliquées aux schémas numériques afin de préserver la propriété équilibre, a cette fin,
nous utiliserons la notion de fluctuations [54].

Puis, a partir du chapitre 3, seulement les équations de Saint-Venant et les modeles associés
sont étudiés. En particulier, le chapitre 3 est consacré a I'approximation numérique du mod-
éle non conservatif de Saint-Venant a deux couches [1]. Autrement dit, on considére que le
fluide est composé de deux couches superposées de liquides non miscibles. La difficulté liée a
ce modele est de deux natures. D’une part, la présence de deux vitesses différentes rend moins
évidente |'utilisation d’une stratégie de type Lagrange-projection. D’autre part, non seule-
ment le modele n’est pas conservatif mais il n’est aussi que conditionnellement hyperbolique,
ce qui rend la simulation numérique de ce systeme généralement plus difficile. Néanmoins,
nous avons développé une méthode de type Lagrange-projection implicite-explicite équilibre
pour ce systéme et obtenu des résultats encourageants. En particulier, nous proposons un
solveur de Riemann approché pour le systeme acoustique et I'utilisons pour le schéma associé
de type Godunov. Une telle méthode peut également étre comprise comme une approximation
du systeme lagrangien. Enfin, la version implicite-explicite du schéma est facilement obtenue
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en résolvant un systéme linéaire dans I’étape acoustique.

Dans le chapitre 4, nous étudions le couplage du systéme de Saint-Venant avec I’équation
d’Exner, ou cette derniere est utilisée pour simuler le transport de sédiments du lit [33]. Le sys-
téme non-conservatif qui en résulte se révele particulierement difficile a approcher. En effet, si
une approche découplée est utilisée, des instabilités pourraient étre facilement trouvées dans
les simulations numériques en raison de la structure propre du modele complet. Nous étu-
dions un tel probléme et nous concevons trois différents schémas de type Lagrange-projection
équilibres pour ce systéme. En particulier, I’équation d’Exner pourrait étre complétement prise
en compte soit dans une seule des deux étapes soit dans les deux. Dans tous les cas, nous pro-
posons une solution de Riemann approchée pour les équations acoustiques. De plus, ces trois
stratégies sont également étendues au second ordre de précision. Enfin, a la fin de ce chapitre,
nous présentons également la version bidimensionnelle du modele et de 'une des stratégies
numériques.

Le chapitre 5 est une extension naturelle du travail présenté dans le chapitre 4. En effet,
nous considérons maintenant le transport de sédiments en général, ce qui signifie que les par-
ticules de sédiments pourraient non seulement se déplacer le long du fond mais aussi étre en
suspension dans ’eau si une fraction suffisamment fine est présente. De plus, puisque nous
savons que le temps caractéristique associé aux sédiments est beaucoup plus grand que celui
correspondant au fluide, nous construisons une méthode implicite-explicite afin d’obtenir des
simulations rapides.

Enfin, dans cette thése et a ce stade, nous avons considéré soit des schémas implicites-
explicites du premier ordre, soit des méthodes explicites du second ordre. Ce n’est que dans
le chapitre 6 que nous développons une approche trés générale permettant de proposer un
schéma implicite-explicite du second ordre pour le systeme de Saint-Venant. En particulier,
le second ordre de précision est atteint en utilisant des techniques différentes par rapport
aux schémas numériques du second ordre présentés dans les chapitres précédents, a savoir
en utilisant des developpements de Taylor et la procédure de Cauchy-Kovalevskaya. Nous
soulignons que nous n’avons besoin que de résoudre des systémes linéaires afin de trouver
la solution, de sorte que le cout de calcul n’est pas élevé. Cependant, il est bien connu que
des oscillations parasites peuvent apparaitre en présence de discontinuités lors de 'utilisation
de schémas d’ordre élevé. Afin de supprimer ces oscillations, nous utilisons une approche
de limitation a posteriori, ressemblant a la stratégie MOOD (Multi-dimensional Optimal Order
Detection) [24, 25]. Nous soulignons que I'utilisation d’une approche a posteriori nous permet
de ne pas modifier la stratégie pour le second ordre de précision et donc les systémes linéaires.
De cette facon, le cout de calcul ne devrait pas augmenter excessivement.

Publications

Les travaux présentés dans ce manuscrit ont été soit publiés, soit soumis.

+ A. Del Grosso and C. Chalons. Second-order well balanced Lagrange-Projection schemes
for Blood Flow Equations. Calcolo 58, 43, 2021. 10.1007/5s10092-021-00434-5

+ C. Chalons and A. Del Grosso, A second-order well-balanced Lagrange-projection numer-
ical scheme for Shallow Water Exner equations in 1D and 2D. 2022. Communications in
Mathematical Sciences. 20(7): 1839-1873, 2022. 10.4310/CMS.2022.v20.n7.a3

+ C.Chalons and A. Del Grosso, Exploring different possibilities for second-order well-balanced

22



1.2. Présentation des travaux de thése

Lagrange-projection numerical schemes applied to shallow water Exner equations. Inter-
national Journal for Numerical Methods in Fluids. 1- 31, 2022. 10.1002/fld.5064

« A. Del Grosso, M. J. Castro Diaz, C. Chalons and T. Morales de Luna. On well-balanced
implicit-explicit Lagrange-projection schemes for two-layer shallow water equations. Soumis
dans le Journal "Applied Mathematics and Computation" en Mai 2022.

« A.Del Grosso, M. J. Castro Diaz, C. Chalons and T. Morales de Luna. Lagrange-projection
methods for shallow water equations with movable bottom and erosion-deposition processes.
Soumis dans le Journal Journal "Communications in Mathematics and Applications" en
Mars 2022.

« C. Chalons and A. Del Grosso. Second-order Well-Balanced Implicit-Explicit Scheme for
Systems of Balance Laws. Soumis dans le Journal "Numerische Mathematik" en Janvier
2022.

Conférences et séminaires

« HYP 2022 - XVIII International Conference on Hyperbolic Problems - Juin 20-24, 2022.
« CANUM - 45eme Congres National d’Analyse Numérique - Juin 13-17, 2022.

« SHARK-FV 2022 (Sharing Higher-order Advanced Know-how on Finite Volume) work-
shop - Mai 23-27, 2022.

« Séminaire a I'Institut de Mathématiques de Bordeaux - Mars 25, 2022.

+ Séminaire doctorant au Laboratoire Amiénois de Mathématique Fondamentale et Ap-
pliquée - Décembre 1, 2021.

+ NumHyp 2021 - Numerical Methods for Hyperbolic Problems - Juillet 26-30, 2021.

« SMAI 2021 - 10 iéme Biennale Francaise des Mathématiques Appliquées et Industrielles
- Juin 21-25, 2021.

« CEDYA 2020 - XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones XVI Congreso
de Matematica Aplicada - Juin 14-18, 2021.

« CAN-J 2020 - congres d’analyse numérique pour les jeunes 2020 - Décembre 3-4 2020.

SEME

En février 2022, j’ai participé a la Semaine Maths-Entreprises a 'Institut Polytechnique
de Paris. En particulier, j’ai travaillé dans le projet "Piloter le traitement de gros volumes de
signaux sismiques pour améliorer I'imagerie des sous-sols".

Activités d’enseignement

Au cours de la deuxieme (2020-2021) et de la troisiéme (2021-2022) année du doctorat, j'ai
enseigné 64 heures de travaux dirigés en L1 pour le module Mathématiques Générales 2.

23






Introduction

1.3 Context and positioning

This PhD thesis deals with the design, analysis and implementation of Lagrange-Projection
(LP) methods for hyperbolic partial differential equations. More precisely, we consider several
mathematical models and we adapt the LP strategy to them in such a way to satisfy essential
properties. Among them, we are especially interested in the well-balanced one, in the high
order of accuracy and also in the stability of the schemes at large time steps.

Concerning the mathematical models, we mainly consider geophysical flows by means of
hydrodynamics models. We are especially interested in applications to sediment transport,
sediment erosion-deposition processes and stratified flows. Advanced models based on (one
or two-layer) shallow-water equations have been used to take into account these phenomena.
Furthermore, as a starting point of this thesis, we have also built numerical schemes for the
numerical simulation of blood flow in human arteries.

This PhD thesis has been realized at the Université de Versailles Saint-Quentin-en-Yvelines’
Laboratoire de Mathématiques de Versailles and it has been supported by a grant from Région
Ile-de-France (DIM MathInnov’s grant).

Chapters 3 and 5 have been done in collaboration with M. J. Castro Diaz and T. Morales de
Luna, members of the EDANYA research group of the University of Malaga. These chapters
have been partially supported by the Junior Scientific Visibility Program offered by the FMJH
(Fondation Mathématique Jacques Hadamard), the Spanish Government and FEDER through
the coordinated Research projects RT12018-096064-B-C1 and RTI12018-096064-B-C2, the Junta
de Andalucia research project P18-RT-3163, the Junta de Andalucia-FEDER-University of Malaga
research project UMA18-FEDERJA-16 and the University of Malaga.

1.3.1 Mathematical models

In this PhD thesis, we consider hyperbolic non-linear partial differential equations of the
following form,
atQ + &EF(Q) + B(Q)aarQ = S(Q) (1-3-1)
where Q(x,t) € ) is the vector of unknowns depending on the time ¢ > 0 and space = € R,
with Q@ C R™ open convex set. Then, F : 2 — R" is the physical flux, B(Q)0,Q is the
non-conservative term of the model with matrix B : @ — M,,(R) and, finally, S : Q2 — R"
is the source term. In particular, if B is the null matrix, equations (1.3.1) reduce themselves
to a system of balance laws. In addition, if there is no source term S, we obtain a system of
conservation laws [17]. System (1.3.1) can also be reformulated as

0,Q+ A(Q)0.Q = S(Q) (1.3.2)
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Chapter 1. Introduction

where we have introduced the non-conservative matrix

A - 52 8.

System (1.3.2) is hyperbolic if A is R-diagonalizable and strictly hyperbolic if, in addition,
the eigenvalues are all distinct [63]. Hyperbolic partial differential equations are the subject
of intense study and analysis, as plenty of applications exist in biology, aerodynamics, fluid
dynamics and optics, to name but a few. As an example, a very well-known hyperbolic system
is given by the Euler equations, which models a compressible material (as a gas or a liquid)
[63].

With differential operators being present in systems of form (1.3.1), we are implicitly as-
suming that the solution is regular enough that it is possible to apply such operators. However,
it is well known that solutions of system (1.3.1) may develop discontinuities in a finite time,
even if regular initial conditions are envisaged [46]. Hence, the notion of classical solutions
(i.e. differentiable functions with continuous partial derivatives) should be generalized to the
case in which discontinuities could be present in the solution. For this purpose, we need to
briefly introduce the concept of weak solution [38].

Starting by a system of conservation laws (1.3.1), namely with S(Q) = 0 and B(Q) the
null matrix, we integrate system (1.3.1) in the control volume [z, 23] X [to, 1], obtaining the
integral form of conservation laws,

/ Q(z,t1)dz = / Q(x, to)dx — (/t F(Q(xg,t))dt—/tl F(Q(a:l,t))dt). (1.3.3)

to to

This relation expresses that the difference of the amount of Q in the interval [z, 2] at time
t; and at time t; is equal to a difference of time integrals of the flux at the points x5 and x;.
In this framework, we define a weak solution as a function of Q which satisfies (1.3.3) and
thus, which does not have to be continuous anymore [63]. In particular, a discontinuity of
a weak solution satisfies the Rankine-Hugoniot jump conditions, which provide the speed of
the discontinuity [63].

However, given an initial data, a weak solution is generally not unique. Hence, a criterion
should be exploited to select a solution which is consistent with the physics of the problem,
namely we could look for an entropy condition. In this PhD thesis, we do not focus on such a
problem and we simply refer to [46, 47] and the references therein for more details.

Even if the notion of weak solution has been defined for systems of conservation laws,
such a definition cannot longer be used when it comes to the complete non-conservative sys-
tem (1.3.1). Indeed, since Dirac’s delta functions could appear in presence of discontinuities,
the non-conservative product B(Q)d,Q would no longer make sense in the distributional
framework. Furthermore, this problem may also appear if the source term is of the form
S(Q) = S(Q)d,0 with §(Q) # 0 and 0 : R — R is a known discontinuous function. In
order to overcome this problem, Dal Maso, LeFloch and Murat [28] have developed a theory:
it allows to define a weak solution by assuming Q to be a function with bounded variation, so
that the product B(Q)9,Q (or $(Q)d,0) has sense as a locally bounded measure. Let us look at
the guidelines of such a theory in a nutshell. For this purpose, we directly consider equations
of form (1.3.2) with no source term. Indeed, if a source term of the form $(Q)d,¢ is present,
it can be easily included by considering the additional equation ;0 = 0 and adding o to the
vector of unknowns. Therefore, we look for a way to define the integral

/1’2 A(Q(x,t))0,Q(x, t)dxdt (1.3.4)
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1.3. Context and positioning

when Q is discontinuous. Firstly, we need to define a family of Lipschitz continuous paths
®: [0,1] x Q x Q — Q satisfying the following properties:

D(0;Q,,Qr) =Q;, ©(1,0Q,,Qz) =Qx, et P(s;Q,Q)=Q.

As an example, the easiest path is the one of straight lines,

D(s:Q..Qp) =Q; +5(Qr — Qy).
Then, we define integral (1.3.4) by

F Qo — [ AQE)AQ e+ 3 / (5107 Q1) 2 (5507, Q1 )ds

where Q; and Q;" are, respectively, the limit of Q to the left and to the right of the /th discon-
tinuity. As such, we say that a weak solution of system (1.3.2) is a function that satisfies

/:2 Q(z,t)dx = /:2 Q(x,to)dx — /t:l ]52 A(Q(z,1))0,Q(x, t)dxdt.

However, a crucial problem is now given by the choice of the path. Namely, the solution could
change depending on the chosen path. On top of that, even if the "correct" path is chosen,
the numerical output could converge to the wrong solution and not the physical one, due to
the numerical viscosity of the method. According to [48, 60], the definition of the correct
path could lie in the convective-diffusion regularization of the system. In a nutshell and also
referring to [17], if system (1.3.2) is the vanishing diffusion limit of the following system,

9Q + A(Q)9,Q = A9,(D(Q)9.Q) (1.3.5)

with D(Q) a diffusion matrix, the choice of the correct path is related to the viscous profile
of system (1.3.5). Once again, here we do not provide further details but we simply refer to
[17, 43, 48, 60].

We highlight that, in this PhD thesis, on one hand we study systems of balance laws,
namely the blood flow system in chapter 2 and the shallow water equations in chapter 6. On
the other hand, from chapter 3 to 5, only non-conservative models related to the shallow water
system are analyzed. Hence, with almost all the models considered in this PhD thesis being
based on the shallow water system, we briefly introduce it here. Such a model has been ex-
tensively studied and analyzed as, despite being simple, it is yet effective when it comes to the
numerical simulation of fluid flows in atmospheric and oceanic dynamics [66, 65]. Further-
more, it is used as a basis to simulate complex phenomena as sediment transport [33], turbidity
currents [55], multilayer flows [1, 3], tsunamis [26], dam breaks [64], landslides [45], floods
[31] and more.

The one-dimensional shallow water system is also called the Saint-Venant system as it
has been described for the first time by Adhémar Jean Claude Barré de Saint-Venant in 1843.
Such a system has been derived from the Navier-Stokes equations [62] under the following
hypothesis: the vertical scale is much smaller than the horizontal one, the fluid is homogeneous
and incompressible, the pressure is hydrostatic, there are no viscous forces and the velocity of
the fluid should only depend on the space x and time ¢ and not on the depth [66, 36]. Taking
into account all these hypothesis and integrating the Navier-Stokes equations over the depth,
we shall obtain the one-dimensional shallow water system:

2 1.3.6
Oy (hu) + 0, (hu* + %) = —gh0,z. (136)
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Chapter 1. Introduction

In particular, the first and second equations are the continuity and momentum equations re-
spectively, where h(x,t) is the total depth of water column, u(z,t) is the averaged velocity

and z(x) is the bed elevation. Then, the pressure is given by p = gT where ¢ stays for the

gravitational acceleration. System (1.3.6) is clearly a system of balance laws with form (1.3.1),
where

h hu 0
Q= (hu) . FQ) = hu? + ng12 - SlQ)= (-ghamz)

and zero B matrix. Moreover, it is simple to prove that it is a strictly hyperbolic system
with real eigenvalues u & ¢, where ¢ = /J,p = \/gh is the sound speed. Therefore, the
Courant-Friedrichs-Lewy (CFL) condition on the time step for an explicit Godunov-type
scheme applied to the Saint-Venant system (1.3.6) is generally given by

Az 1
At —————
2 max{|u| + ¢}

For more details about shallow water equations and their numerical approximation, see for
instance [66, 36, 2, 8, 35, 23].

Lastly, for the purpose of designing stable numerical schemes and as previously mentioned,
we also focus on the stationary solutions of the model (1.3.1), which satisfy the following
relation

0.F(Q) + B(Q)9.Q = S(Q). (1.3.7)

Hence, we look for numerical methods able to preserve these steady states, otherwise it is
well-known that instabilities could appear in the numerical results when the solution is close
to a stationary one. Such an issue has been presented for the first time in the work [5] of
Bermudez and Vazquez for the shallow water system. There, they named C-property the ca-
pability of a scheme of preserving stationary solutions with zero-velocity. This property has
been renamed well-balanced by Greenberg and LeRoux in their work [41]. Later, Gosse [39]
has extended the notion of this property by considering a scheme able to also preserve the
moving stationary solutions, namely the ones with non-zero velocity. In this case, we talk
about fully well-balanced numerical method.

To fix ideas, let us consider the shallow water system (1.3.6). Its stationary solutions are
given by
Kl
2h?
If we take the ones with zero velocity, we find the so-called "lake at rest" stationary solution,
which reads

hu = constant = ¢; and + g(h + z) = constant.

=0 and A+ z = constant.

There exist plenty of works about well-balanced and fully well-balanced methods for the Saint-
Venant system. For instance, in [2], the authors have introduced the well-known hydrostatic
reconstruction in order to have a numerical method able to preserve the "lake at rest" station-
ary solution of the shallow water system. Other interesting references for first-order well-
balanced schemes applied to systems of balance laws are [6, 30]. While for second (or higher)
order well-balanced schemes, we refer to [8, 7, 13, 18, 57, 51, 56, 59]. Methods that are able
to preserve a given steady state (not necessarily with zero velocity) have also been designed.
See for instance [44], where the authors considered the Euler equations with gravity. In this
regard, we also refer to [4], where a high-order well-balanced method for multi-dimensional
balance laws has been presented. There, the authors explain how to exactly preserve a general
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solution which is known a priori and it is not necessarily a steady state of the model. As for
the well-balanced property for non-conservative systems, we can mention paper [17]. Then,
when it comes to the fully well-balanced property for the shallow water system, we could
refer to [52]. In this work, the authors described a scheme based on a particular definition of
an approximate Riemann solver. Indeed, it has been built so that the associated Godunov-type
scheme satisfies the well-balanced property. Other fully well-balanced schemes are described
for instance in [53, 10, 16, 9, 37].

In this PhD thesis, we are only interested in the well-balanced property (and not fully
well-balanced) as it generally reveals itself easier to preserve but still improves significantly
the numerical results. In particular, all our schemes are based on the acoustic-transport (or
Lagrange-projection) decomposition. We will see that, in most of the cases, we shall build
a well-balanced approximate Riemann solver for the acoustic equations so that the complete
numerical method is well-balanced. Indeed, in general we do not have to modify the numerical
discretization of the transport part of the system.

1.3.2 Acoustic-transport or Lagrange-projection splitting

As already mentioned, key concepts of this PhD thesis are the Lagrange-projection decom-
position and the acoustic-transport splitting. They allow the decoupling of the compressibility
effects of the flow from the transport phenomena of the considered mathematical model. In
this way, we obtain two different systems of equations that we need to solve numerically
[21, 14, 19]. In practice, we sum up the numerical strategy as follows:

1. Solve the acoustic system, either explicitly or implicitly;
2. Exploit the acoustic solution as initial condition to solve the transport system.

For the sake of clarity, let us explain such a strategy for the shallow water system (1.3.6). After
having applied the chain rule to the space derivatives as follows

Oh + ho,u + udh = 0
O(hu) + hud,u + ud,hu + Opp = —ghd, z,

we decouple the acoustic phenomena from the transport ones, obtaining the acoustic and
transport systems:

(1.3.8)
O(hu) + hud,u + 0,p = —gho, 2z,
and
Oy (hu) + udy(hu) =0

respectively. To sum up, once the solution of the acoustic system (1.3.8) has been found, we
use it as initial condition to solve system (1.3.9) and find the transport (and final) solution.
However, it is clear that the acoustic equations (1.3.8) are in non-conservative form, contrarily
to the shallow water system (1.3.6). Hence, rather than considering such a system, we prefer

doing a reformulation introducing the specific volume 7 = — and the mass variable m given

by 0,, = 70,. Consequently, we obtain the following system of balance laws

T — O =0
(1.3.10)

Ot + Opp = —g@mz.
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We can easily prove that this system is strictly hyperbolic with eigenvalues given by £hc. On
the other hand, for the transport system (1.3.9), the velocity u is the only eigenvalue. Therefore,
it is clear that the splitting of the acoustic and transport phenomena led to the decomposition
of the acoustic and material waves of the shallow water system (1.3.6). Such waves obviously
play an important role in determining the CFL condition on the time step At. Indeed, having
now two different systems, (1.3.10) and (1.3.9), we need to impose two different CFL conditions
on the time step,

Am
At < ——— 1.3.11
~ 2max{hc} ( )
and A
x
ANt< —— 1.3.12
~ 2max{|u|} ( )

respectively. Then, the At minimum value between conditions (1.3.11) and (1.3.12) should be
taken. The interest in having two different CFL conditions is related to the fact that there exist
situations in which the acoustic waves are much faster than the transport ones. This happens
in subsonic regimes or near low-Froude number flows, when the absolute value of the Froude

i
number /' = — is smaller than one. Under this condition, the usual CFL time step limitation of

Godunov—typec schemes is driven by the fast acoustic waves and can be very restrictive. Hence,
exploiting an implicit approximation of the acoustic system, we could obtain a very natural
IMplicit-EXplicit (IMEX) and large time step scheme with a CFL restriction only based on the
slow transport waves [27].

Let us now present a different interpretation of the acoustic-transport splitting, namely the
Lagrange-projection approach. The idea is as follows. Starting from the chosen mathemati-
cal model, we formulate it in Lagrangian coordinates. Once the Lagrangian solution is found,
we should project it into Eulerian coordinates [54]. Therefore, we have once again a numer-
ical strategy composed of two steps: the Lagrangian and projection ones. These two stages
would correspond to the acoustic and transport steps respectively. In practice, we will see that
these two strategies can be seen as two sides of the same coin, even though they are not al-
ways strictly equivalent. To illustrate this link, let us consider once again the one-dimensional
shallow water system (1.3.6). Hence, as a first step, we need to reformulate it in Lagrangian
coordinates. In order to be able to do this, we follow the fluid particle in the position £ and we
define the characteristic curves

ox
GHED = ulal.0).0)

(1.3.13)
z(§,0) =&,
which define the trajectory : t — x(&,t) of £ as time goes on. Therefore, any function
: (x,t) — ¢(x,t) in Eulerian coordinates can be written in Lagrangian coordinates,
@(&:t) = w(x(8,1),1).
Then, we introduce the volume ratio L (¢, t), which is defined by
Ox
L(&t) = — (&t 1.3.14
(€1) = G &) (13,19
and which satisfies
2260 = Bl (e, 1), 1)
gt (& 1) = deulz (e, 1), (1.3.15)

L(£,0) = 1.
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Hence, the time and space derivatives of a function ¢ in Lagrangian coordinates are given by

9hp(&,t) = Orp(x, 1) +ulw, t)0pp(w,t)  and  Iep(&,t) = L€, 1) Dnp(x, 1),

Leaving the few computations to the reader, we directly present the shallow water equations
in Lagrangian coordinates, which read

{@uﬁ)zo

- ) _ (1.3.16)
Oi(Lhu) 4 0¢p = —ghoOeZ.

Therefore, once the Lagrangian solution of system (1.3.16) has been found, we only need to
project it into Eulerian coordinates. For details about Lagrangian coordinates in 2 or 3 dimen-
sions, we refer to [29, 49, 50].

At this stage, we could remark that, in the second equation of system (1.3.16), the physical
flux is only given by the pressure term. Nonetheless, it may not yet be entirely clear the
relation between system (1.3.16) and the acoustic one (1.3.10). In order to illustrate it, we start
by remarking that Lh does not depend on time, namely

- - h
(Lh)(&,t) = (LR)(£,0) = h(€,0) = ho and  L(&t) = =,
h(€, 1)
thanks to which we obtain
8th0 = 0
Oy (hot) + Ogp = —ghogz.
) ) _ 1 ) 1
Then, we only need to re-introduce the variables 7 = 7 and the variable m such that 0,,, = h—@g,
so that we finally get "
3.1
@a+m@:—§@@ (13.17)

which clearly evokes the acoustic system (1.3.10). It is clear that the two systems (1.3.17) and
(1.3.10) are not strictly the same as they have been obtained following different procedures.
However, when it comes to the numerical approximation, we will exploit ingredients of both
interpretations for the purpose of designing efficient numerical schemes.

We have already clarified why Lagrange-projection methods are particularly useful when
considering subsonic regimes. However, let us point out that this kind of method generally
opens up a lot of new possibilities from a numerical point of view. Indeed, either having
two different sets of equations (in the acoustic-transport splitting) or working in Lagrangian
coordinates (in the LP approach) means that properties of the numerical methods could be
differently (and more easily) preserved.

Let us give a few examples of Lagrange-projection (or acoustic-transport) schemes. In
[19, 20], the authors described an all-regime Lagrange-projection scheme in 1D and 2D re-
spectively. By all-regime they denote a numerical scheme able to compute accurate approxi-
mate solutions with a mesh size and time step much bigger than the Mach number (analogous
of the Froude number in the shallow water framework). Hence, the resulting method is also
implicit-explicit and able to lead to fast simulations. Another semi-implicit scheme was devel-
oped in [21], where the well-balanced property of the scheme was also analyzed, meaning that
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the zero-velocity stationary solutions of the mathematical model are preserved. Such a prop-
erty has been further developed in [14], where the authors described a fully well-balanced
LP method. Then, this scheme has also been extended to an arbitrary order of accuracy in
[54], by using polynomial reconstruction and Runge-Kutta strategy. The issue of high-order
Lagrange-projection methods has been treated in [32] as well, where the high order of accu-
racy is reached by means of different techniques, namely by using Taylor expansions and the
Cauchy-Kovalevskaya procedure. Another interesting reference is [58], where a high-order
implicit-explicit Lagrange-projection scheme was developed. In particular, the authors ob-
tained the high order of accuracy in space using the discontinuous Galerkin scheme while, for
the approximation in time, they considered the backward Euler method. Finally, asymptotic-
preserving Lagrange-projection methods have also been designed, meaning that the scheme is
able to reproduce the asymptotic behavior satisfied by the continuous equations at the discrete
level, see [22, 12]. There, the numerical methods also satisfy a fully discrete entropy inequality.

In this PhD thesis, we are particularly careful about building Lagrange-projection numer-
ical methods endowed with the well-balanced property. Hence, only the zero-velocity sta-
tionary solutions are preserved. Another essential property of the numerical methods is the
positivity-preserving one, meaning that the schemes should be able to preserve the strict pos-
itivity of the solution [34]: for instance, of the water height in shallow water models [8], of
the cross-sectional area of the vessel in blood flow equations [37], of the density in the gas
dynamic equations [34] and so on.

Subsequently, it is clear that the numerical solution should be a good approximation of the
physical solution and not overly diffusive. However, depending on the mathematical model
and the numerical method, this is not a trivial request at all. Indeed, many first-order schemes
are generally very diffusive and may need the use of a very fine mesh to obtain an acceptable
approximation of the solution, leading to an excessive computational cost. This happens for
instance when using numerical schemes based on approaches which neglect the intermediate
waves of a model, considering only the propagation speeds of the external ones, as in the HLL
(Harten-Lax-van Leer) solver [42]. Clearly, such a problem is not present for models with a
two-waves structure. Nevertheless, here we generally try to design numerical schemes which
take into account the complete structure of the solution. We will see that this request is made
particularly easier by exploiting a relaxation version [61, 11] of the acoustic system. Finally,
with all this in mind and as a second step, we also design a higher order extension of the
numerical methods, aiming for a faster convergence of the numerical solution to the physical
one [63].

1.4 Thesis synopsis
This thesis is structured as follows.

In chapter 2, we apply the Lagrange-projection strategy to the blood flow equations with
non-constant in space arterial stiffness and cross-sectional area at equilibrium, obtaining a
system of balance laws. Due to these parameters, it is not straightforward to preserve the
well-balanced property, hence we focus on the preservation of the so-called "man at eternal
rest solution". Two ways of preserving it are shown, one based on a modification of the ap-
proximate Riemann solver for the acoustic system and the second one on the well-known
hydrostatic reconstruction’s strategy [2]. Efforts to extend the numerical strategy to second-
order of accuracy are also made by using classical techniques as polynomial reconstruction
[63] and Runge-Kutta scheme [40]. Once again, further modifications are applied to the nu-
merical schemes in order to preserve the well-balanced property, for this purpose we will use
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the notion of fluctuations [54].

Then from chapter 3, only shallow water equations and related models are studied. In
particular, chapter 3 is devoted to the numerical approximation of the non-conservative two-
layer shallow water model [1]. That is to say, we consider the fluid to be composed of two
superposed layers of immiscible liquids. The difficulty related to this model is twofold. On
one hand, the presence of two different velocities makes less clear how to apply the Lagrange-
projection strategy to this system. Secondly, not only the model is non-conservative, but it
is also only conditionally hyperbolic, due to which the numerical simulation of this system is
generally more difficult. Nevertheless, we propose a well-balanced implicit-explicit Lagrange-
projection method for this system, obtaining promising results. In particular, we define an ap-
proximate Riemann solver for the acoustic system and use the associate Godunov-type scheme.
Such a method can also be understood as an approximation of the Lagrangian system. Finally,
the implicit-explicit version of the Lagrange-projection scheme is easily obtained, by solving
a linear system in the acoustic step.

In chapter 4, we study the coupling of the shallow water system with the Exner equation,
where the latter is used to simulate the bedload sediment transport [33]. The resulting non-
conservative system appears to be particularly difficult to approximate. Indeed, if a decoupled
approach is used, instabilities could be easily found in the numerical simulations due to the
eigenstructure of the complete model. We investigate such a problem and we design three
different well-balanced Lagrange-projection schemes for this system. In particular the Exner
equation could be completely taken into account in only one of the two steps or in both of
them. In any case, we provide an approximate Riemann solution for the acoustic equations.
These three strategies are extended to second-order of accuracy as well. Finally, at the end of
this chapter, we also present the two-dimensional version of the model and of one numerical
strategy.

Chapter 5 is the natural extension of the work presented in chapter 4. Indeed, we now
consider sediment transport in general, meaning that the sediment particles could not only
move along the bottom but also go into suspension in the water if a fine enough fraction is
present. Furthermore, since we know that the characteristic time associated with sediments is
much larger than the one corresponding to fluid, we build an implicit-explicit method in order
to obtain fast simulations.

Finally, in this thesis and at this stage, we considered either first-order implicit-explicit
schemes or second-order explicit methods. Only in chapter 6 we develop a general approach
which allows us to design a second-order implicit explicit scheme for the shallow water sys-
tem. Here, the second-order of accuracy is attained using different techniques with respect to
the second-order numerical schemes presented in the previous chapters, namely by means of
Taylor expansions and the Cauchy-Kovalevskaya procedure. We highlight that we only need
to solve linear systems in order to find the solution, so that the computational cost is not ele-
vated. However, it is well-known that there could appear spurious oscillations in presence of
discontinuities when using high-order schemes. In order to remove such oscillations, we em-
ploy a posteriori limiting approach, resembling the MOOD (Multi-dimensional Optimal Order
Detection) strategy [24, 25]. We emphasize that, using a posteriori approach, allows us not to
modify the strategy for the second-order of accuracy and thus the linear systems. In this way,
the computational cost should not increase excessively.
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Publications

The work presented in this manuscript has been either published or submitted.

+ A. Del Grosso and C. Chalons. Second-order well balanced Lagrange-Projection schemes
for Blood Flow Equations. Calcolo 58, 43, 2021. 10.1007/s10092-021-00434-5

+ C. Chalons and A. Del Grosso, A second-order well-balanced Lagrange-projection numer-
ical scheme for Shallow Water Exner equations in 1D and 2D. 2022. Communications in
Mathematical Sciences. 20(7): 1839-1873, 2022. 10.4310/CMS.2022.v20.n7.a3

« C.Chalons and A. Del Grosso, Exploring different possibilities for second-order well-balanced
Lagrange-projection numerical schemes applied to shallow water Exner equations. Inter-
national Journal for Numerical Methods in Fluids. 1- 31, 2022. 10.1002/1d.5064

« A. Del Grosso, M. J. Castro Diaz, C. Chalons and T. Morales de Luna. On well-balanced
implicit-explicit Lagrange-projection schemes for two-layer shallow water equations. Sub-
mitted to the Journal "Applied Mathematics and Computation" in May 2022.

+ A.Del Grosso, M. J. Castro Diaz, C. Chalons and T. Morales de Luna. Lagrange-projection
methods for shallow water equations with movable bottom and erosion-deposition processes.
Submitted to the Journal "Communications in Mathematics and Applications” in March
2022.

+ C. Chalons and A. Del Grosso. Second-order Well-Balanced Implicit-Explicit Scheme for
Systems of Balance Laws. Submitted to the Journal "Numerische Mathematik" in January
2022.

Conferences and seminars
« HYP 2022 - XVIII International Conference on Hyperbolic Problems - June 20-24, 2022.
« CANUM - 45eme Congres National d’Analyse Numérique - June 13-17, 2022.

« SHARK-FV 2022 (Sharing Higher-order Advanced Know-how on Finite Volume) work-
shop - May 23-27, 2022.

« Seminar at the Institut de Mathématiques de Bordeaux - March 25, 2022.

« PhD seminar at the Laboratoire Amiénois de Mathématique Fondamentale et Appliquée
- December 1, 2021.

« NumHyp 2021 - Numerical Methods for Hyperbolic Problems - Fuly 26-30, 2021.

« SMAI 2021 - 10 ieme Biennale Francaise des Mathématiques Appliquées et Industrielles
- June 21-25, 2021.

« CEDYA 2020 - XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones XVI Congreso
de Matematica Aplicada - June 14-18, 2021.

« CAN-J 2020 - congres d’analyse numérique pour les jeunes 2020 - December 3-4 2020.

SEME

In February 2022, I have participated to the Semaine Maths-Entreprises (Week Maths-
Enterprises) at the Polytechnic Institute of Paris. In particular, in the group project "Piloting
the treatment of large volumes of seismic signals to improve subsurface imaging".
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Chapter

Schémas de type Lagrange-projection
équilibres et de second ordre pour les
équations du flux sanguin

Ce chapitre a fait 'objet d’'une publication dont la référence est: A. Del Grosso and C.
Chalons. Second-order well balanced Lagrange-Projection schemes for Blood Flow Equations.
Calcolo 58, 43, 2021. https://doi.org/10.1007/s10092-021-00434-5

Dans ce chapitre, nous nous concentrons sur le développement de schémas de type Lagrange-
projection équilibres pour les équations du flux sanguin. Ici, nous négligeons les forces de
friction alors que le terme source est di a la présence de parameétres variables en espace tels
que la rigidité artérielle et la surface de la section transversale a I’équilibre. Par schéma équili-
bre, nous entendons une méthode capable de préserver la solution "homme au repos éternel".
A cette fin, nous présentons deux stratégies différentes : la premiére nécessite une définition
cohérente du terme source basée sur un solveur de Riemann approché, tandis que la seconde
utilise une stratégie de reconstruction hydrostatique. Nous expliquons ensuite comment at-
teindre le second ordre de précision pour les deux procédures. Des simulations numériques
sont effectuées afin de montrer le bon ordre de précision et le bon comportement des schémas.

Enfin, nous soulignons que, si dans les chapitres suivants tous les modéles considerés sont
basés sur le systéme de Sant-Venant, ce n’est pas le cas dans ce premier chapitre. Le choix
de commencer cette these par I’étude du modele du flux sanguin doit en fait étre recherché
dans le parcours de formation de la thésarde. En effet, pour le mémoire du master, un stage
a été effectué sous la direction du professeur C. Chalons et du professeur E. F. Toro, portant
sur I’étude de 'analyse de sensibilité pour les équations du flux sanguin. Il a donc été estimé
qu’une manieére progressive de rentrer dans le sujet de la thése était de commencer a appliquer
une méthode de type Lagrange-projection a un modele mathématique déja traité. Cette idée
a été renforcée par le fait qu'on sait que le nombre de Shapiro (ou de maniere équivalente le
nombre de Froude pour les équations de Saint-Venant) dans les artéres humaines est en général
de I'ordre de 10~2. Pour cette raison, il pouvait étre intéressant d’envisager une méthode de
type Lagrange-projection appliquée a ce modele.

Nous citons ici I'article qui a été rédigé pendant le stage susmentionné : C. Chalons, A.
Del Grosso and E. F. Toro. Numerical approximation and uncertainty quantification for arterial
blood flow models with viscoelasticity. Journal of Computational Physics, Volume 457, 2022,
111071, ISSN 0021-9991, https://doi.org/10.1016/j.jcp.2022.111071
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Second-order well-balanced
Lagrange-projection schemes for blood
flow equations

Abstract

We focus on the development of well-balanced Lagrange-projection schemes applied to
the one-dimensional blood flow system of balance laws. Here we neglect the friction forces
and the source term comes from the presence of variable parameters in space, like the cross-
sectional area at the equilibrium and the arterial stiffness. By well-balanced we mean that the
method preserves the "man at eternal rest" solution. For this purpose we present two different
strategies: the first requires a consistent definition of the source term based on an approximate
Riemann solver, while the second one exploits the well-established hydrostatic reconstruction.
We then explain how to reach the second-order of accuracy for both procedures. Numerical
simulations are carried out in order to show the right order of accuracy and the good behaviour
of the schemes.

2.1 Introduction

This work focuses on the construction of second-order well-balanced Lagrange-projection
schemes applied to the 1D Blood Flow Equations (BFE). This model turns out to be extremely
useful when dealing with the study of the cardiovascular system and related diseases. Indeed,
it proved to be effective in the computation of averaged quantities as the cross-sectional area
A of the vessel, the blood flow ¢ and internal pressure p. There is therefore a huge amount of
works about this system, for which we refer the reader to [17, 32] and the references therein.
Here we study the model as applied to arteries, in the particular case in which the cross-
sectional area at equilibrium and the wall stiffness could be non-constant in space, see for
instance [15, 20, 36, 34, 35]. Indeed, there exist physiological and pathological situations in
which geometrical and mechanical parameters can vary locally, as in presence of stenoses
or aneurysms and tapering of blood vessels. However, considering non-constant parameters
leads to the presence of a non-zero source term and, therefore, we aim to develop numerical
schemes for hyperbolic systems of balance laws.

We are also interested in preserving the so-called "man at eternal rest" stationary solution,
namely in the well-balancedness of the numerical method. As a matter of fact, this property
is of critical relevance as a non well-balanced scheme could produce non-physical spurious
oscillations in certain cases, namely when the solution is close to a steady state. In particular,
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the "man at eternal rest” condition is characterized by zero-velocity; if the numerical scheme
also preserves the moving stationary solutions, it is called fully well-balanced. Many studies
have been done about well-balanced methods in general, as in [4, 6, 7, 8]. For application to
shallow water models, see [1, 3, 23, 24]. As far as the blood flow equations are concerned, we
refer for instance to the work of Delestre and collaborators [15], in which they considered the
cross-sectional area at equilibrium to be non-constant in space. In particular, they developed
a first-order well-balanced scheme basing themselves on the well-known hydrostatic recon-
struction procedure, introduced for the first time by Audusse et al. in [1] in the context of
the shallow water equations. In [20], Delestre et al. expanded their work considering variable
values in space for the arterial wall rigidity as well. In [26], Miiller et al. followed the general-
ized hydrostatic reconstruction to build a high-order well-balanced path-conservative numer-
ical method for blood flow equations with mechanical properties which could vary in space.
Then, in [27], Miiller and Toro presented another high-order well-balanced path-conservative
scheme for BFE. There, discontinuous values for the cross-sectional area at rest and external
pressure were also taken into account, in addition to the wall stiffness.

Last but not least, we design numerical schemes based on the Lagrange-projection for-
malism, which allows us to split up the system into two different ones, and in particular to
separately take into account the acoustic (Lagrangian step) and the transport (projection step)
parts of the system. This also implies the decoupling of fast and slow waves, which plays an
important role in determining the CFL time step. Indeed, a fast wave leads to a very restrictive
time step, contrarily to a slow wave. However, as far as human arteries are concerned, the
ratio between the velocity and the wave speed, i.e. the Shapiro number (or equivalently the
Froude number for the shallow water equations), is in general of order 1072, As such, it could
be interesting to develop a numerical method in which the Lagrangian step is solved implicitly.
While in this work we start by describing explicit schemes, we also aim to develop implicit-
explicit schemes in future works. For Lagrange-projection schemes, we refer the reader to
[12, 10, 9] and the references therein, while for well-balanced Lagrange-projection methods
see [5, 11, 25].

In conclusion, we present two second-order well-balanced Lagrange-projection schemes
for the 1D BFE. We start by introducing the numerical method in the case of constant pa-
rameters, and thus for a system of conservation laws. Then, when variable properties are
considered, two different ways of preserving the "man at eternal rest" stationary solution are
described. On one hand, referring to the work of Suliciu [29], we relax the Lagrangian sys-
tem introducing a new variable, which stands for a linearization of the pressure term. Then,
following the theory of Gallice [18, 19], we easily solve the associated Riemann problem. Al-
ternatively and as a second strategy, we exploit the hydrostatic reconstruction.

Chapter outline. In the next section we present the 1D mathematical model for the blood
flow equations. We also introduce the Lagrange-projection decomposition which leads to
two different systems, the acoustic and transport ones. We describe an approximate Riemann
solver for the acoustic system as well. In sections 2.3 and 2.4, we present the first and second-
order well-balanced schemes respectively. In both sections, we explain two different strategies
for preserving the "man at eternal rest" solution. In section 2.5, numerical simulations are car-
ried out. Finally conclusions and perspectives are drawn in section 2.6.

2.2 The mathematical model

Given the axial coordinate = along the longitudinal axis of the vessel and the time ¢ > 0, the
general one-dimensional blood flow model consists of two equations: the mass conservation
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2.2. The mathematical model

and momentum balance equation. Hence, the system reads

2

Okq + Oy (aqz> + %&Dp =7,

(2.2.1)

where A(x,t) > 0 is the cross-sectional area of the vessel, ¢ = Au is the blood flow, with
u(z,t) being the averaged velocity of blood at cross section, and finally p(x, t) is the averaged
internal pressure at cross section. Furthermore, p represents the constant blood density, while
& is determined by the velocity profile, which is assumed to be flat in this work, thus we take
& = 1. Lastly, f accounts for the friction forces, although we will neglect them in the rest of
the work. Note that we assume the initial area A(z,¢ = 0) and initial velocity u(z,t = 0) to
be given at initial time ¢ = 0. For more details about the derivation of system (2.2.1), we refer
to [17] and [32].

Since in system (2.2.1) there are three unknowns but only two equations, we need a closure
condition, namely a tube law or more specifically a relation between the internal pressure and
the cross-sectional area. In this work we refer to [20] and we consider the blood vessels to be
purely elastic arteries. As such, the tube law reads

P(@,t) = peat + K (2)(v/ Az, t) — v/ Ao(2)), (2.2.2)

where p.,; is the constant external pressure, Ay(z) is the cross-sectional area at equilibrium
and K (x) is a parameter related to arterial stiffness. In particular, K is a positive function
depending on the vessel thickness ho(z) and the Young modulus E(z) (see again [20]). Note
also that condition (2.2.2) is only valid for blood flow in arteries and not in veins. For a more
general tube law, we refer for instance to [17, 32]. Equipped with this closure condition (2.2.2),
we are now able to show the system of balance laws that we will investigate in the rest of this
work, namely

OA+0.,q=0
2 (2.2.3)
q 5\ _
atQ"i_ax(Z +7A > =S,
with v = 5 and
3p
A 24
s =5(A; Ay, K) = =0,(K+\/Ag) — 3—\/ZazK. (2.2.4)
p p
In compact form this system reads
9Q + 0,F(Q) = $(Q: Ao, K) (2.25)
where
o= (1), F@= (¢, ) e s ()
q ) q_ —I—’}/A% ) 10, s/

A

Note that, if both K (z) and Ay(x) are constant, then s = 0 and equations (2.2.5) reduce
themselves to a system of conservation laws. We can easily see that the two eigenvalues of
system (2.2.5) are \* = u = ¢, where c is the wave speed defined by

e\ [2VA.

Consequently, the convective part of (2.2.5) is strictly hyperbolic as long as A* are real and
distinct, namely if the vector of unknowns Q belongs to the phase space Q = {(A, Au)' €
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Chapter 2. LP schemes for blood flow equations

R?|A > 0}. Finally, both characteristic fields are genuinely non-linear and the Riemann in-
variants associated with A* are given by /= = u +4cand I = u — 4c respectively. For more
details refer to [31].

In this work we are specially interested in developing second-order well-balanced Lagrange-
projection methods. As such, we hereafter introduce both the well-balanced property and the
Lagrange-projection decomposition.

The well-balanced property. A numerical scheme is (fully) well-balanced if it is able to
preserve the smooth stationary solutions of the system, that is to say the steady states which
satisfy the ordinary differential equations

and hence )
K
¢ = qo = constant, % + —(\/Z — v/ Ap) = constant, (2.2.6)
p
: ¢ K :
where the quantity £/ = BYE + —(\/Z — v/ Ap) can be referred as the energy discharge. As
p

we already said, a scheme able to preserve the steady states (2.2.6) is called fully well-balanced,
while a method which only conserves the stationary solutions with zero velocity (u = 0) is
defined as well-balanced. We are interested in a scheme endowed with the latter property, and
thus in the "man at eternal rest" solution,

q=0, K(\/Z — v/ Ap) = constant. (2.2.7)

For more details about well-balanced schemes for blood flow equations, see again [15, 20, 27,
36].

The Lagrangian coordinates. Observing that system (2.2.3) is given in Eulerian coordinates,
we now want to express it using the Lagrangian coordinates, which describe the flow following
the fluid motion. While with Eulerian coordinates the viewer has a fixed position and watches
the flow from the exterior, with Lagrangian coordinates he focuses on a single "fluid particle”
in the position £. Hence, we introduce the characteristic curves

ox
E(&t) = U(.T(é,t),t)
2(§,0) = ¢&.

(2.2.8)

Then, given the trajectory : ¢t — (&, t), any function: (x,t) — Q(x, t) in Eulerian coordinates
can be written in Lagrangian coordinates,

Q(&, 1) = Q(x(&, 1), 1).
Moreover, defining the volume ratio

Ox

L.t = 5

(&1) (2.2.9)

which satisfies oL
SHED = eulal€. 1)1
L(£,0) =1

(2.2.10)
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2.2. The mathematical model

and
OL(E, ) = Deulw(,1),1) = Dei(€, 1),

we easily find time and space derivatives in Lagrangian coordinates,
9eQ(&,1) = L(€,1)9,Q(x,t) and 0,Q(&,t) = 9,Q(x,t) + u(x,1)9,Q(x, ).

Hence, using the chain rule and defining p = p(A; K) = ’yA%, from system (2.2.3) we write

{atA + Adyu +ud,A =0 21

O (Au) + w0, (Au) + Aud,u + 0.p = s,
and multiplying by L(&, t), we obtain

LOy(Au) + AudiL + Ocp = 5,

A, 77— 24 —

where 5 = —0:(K+\/Ap) — 3—\/285[( . We finally find that, in Lagrangian coordinates, sys-
p p

tem (2.2.3) reads,

i _ (2.2.12)

Hence, the Lagrange-projection algorithm consists of two steps:
1. Solve system (2.2.12) written in Lagrangian coordinates;
2. Project the solution of system (2.2.12) in Eulerian coordinates.

For more details about the Lagrange-projection decomposition, once again we refer the reader
to [5, 10, 9, 11, 16, 25] and the references therein.

2.2.1 Lagrange-projection splitting and relaxation formulation

At this stage, we present the Lagrange-projection decomposition in a different way, which
will prove to be extremely useful for the numerical method we are going to describe in sections
2.3.2.1 and 2.4.2.1. In particular, we split system (2.2.3) into two different ones, the acoustic
(Lagrangian) system and the transport system (projection step). We take into account the
acoustic effects and parameters variations in the former and transport phenomena in the latter,
see also [5, 11]. In particular, starting from formulation (2.2.11), we find that the acoustic
equations read

) (2.2.13)
Oy (Au) + Aud,u + 0,p = s,
while the transport system is given by
A A=
O A+udpA =0 (2.2.14)
0rq + ud,q = 0.

The latter can also simply be seen as a system of two equations of the form 0, X + 10, X = 0,
with either X = Aor X = q.
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Chapter 2. LP schemes for blood flow equations

Then, let us show a useful reformulation of the acoustic system (2.2.13). We rewrite it as

(O + AD) = 0

Adwu + udt A + Aud,u + 0,p = s

1 1
and defining the specific volume 7 = 1 and the mass variable m such that Zﬁx = Op, the

acoustic system also reads

(2.2.15)

T — Oy =0
(3tu + &nﬁ = =§,

A 2A
with § = —0,,(K+/ Ap) — 3—\/28,”}{ . Observe that, from a numerical point of view, (2.2.15)
P P
will be equivalent to (2.2.12). System (2.2.15) has two eigenvalues \; = +Ac, and it is strictly
hyperbolic in the same phase space of system (2.2.3), namely when A > 0, with the two char-
acteristic fields being genuinely non-linear.

Relaxation formulation. At this stage, we are interested in finding an approximate solution
of a Riemann Problem (RP) for system (2.2.15). For this purpose we exploit the Suliciu relax-
ation approach, which allows us to enlarge equations (2.2.15) to a strictly hyperbolic system
with only linearly degenerate characteristic fields, which is well-known to be easier to solve.
For the Suliciu relaxation approach and related applications refer to [29, 4, 2, 12, 13, 14] and
the references therein.

Thus, we introduce the relaxation parameter A\ and the new variable II such that at least
formally

Jim 1=
where II can be interpreted as a linearization of the pressure p. We observe that 0,p(7)
= —A%0,p(A) and 9,p = 0,p(7)0,7 so that, multiplying the first equation of system (2.2.15)
by 9,p(7), we find that 9,p + A*c*d,,u = 0. The latter motivates the relaxation system

T — Opu =0

Ou + 0,1l = 5 (2.2.16)

O + a?0p,u = A(p(7) — 1)
where a? is a constant which linearizes A?c® and it should be taken as a®> > A?c? according
to the sub-characteristic condition. Indeed, this condition entails that the information in the
relaxation model (2.2.16) propagates faster than in the original one (2.2.15), see also [29, 11, 12].

Considering that the initial data for I is well-prepared in the sense that II = p, it is natural

to introduce a more compact notation for system (2.2.16), which reads

0,U + 0,,G(U) = §

\]
|
<
m O

U=(u], GU=[1 and §=

=
IS
o
I
o

where we also note that the relaxation source term in the evolution equation for II is not
present anymore. Rewriting this system in quasi-linear form, it gives

OU +A(U)9,,U =S
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2.2. The mathematical model

where A(U) is the Jacobian matrix of the flux vector G(U), that is
-1 0
0 1

0

(l2

oG

A(U) = 5 =

o O O

Then, the eigenvalues of the matrix A(U) are given by
A=—a, M=0 and A\, =a,

where +a can be seen as constant approximations of the eigenvalues of system (2.2.15). There-
fore system (2.2.16) is strictly hyperbolic as long as a is real and a # 0. The corresponding
right eigenvectors read

1 1 1
R_= a |, Ry=10 and R, =| —a
—a? 0 —a?

Since all the three associated characteristic fields are linearly degenerate, the three waves are
contact discontinuities and, as such, the Riemann problem can be solved using the Riemann
invariants. In order to find them, we observe that the equations in phase space associated with
A4 are given by

dr  du dll

1 Fa —a?
and they lead to the Riemann invariants R/, ; = a7 £ v and RI; 5 = II F au. Finally, the
corresponding equations to )\, in phase space are

du=0 and dII=0

and the associated Riemann invariants are RIy; = u and Ry, = 1L

At this stage, we can look for an approximate solution of system (2.2.16) for a Riemann
problem. We will use the theory of Gallice [18, 19], which consists in an extension of the
well-known Harten, Lax and van Leer formalism [22] for systems of conservation laws.

2.2.2 Approximate Riemann solver for the acoustic system

Let us start by giving some general notions about the approximate Riemann solver and
consistency with the integral form as described by Gallice [18, 19]. We will then focus on our
specific case, namely system (2.2.16).

We briefly consider a general system of form

U+ 0,,G(U) = § (2.2.17)

where U is the vector of h unknowns, G(U) is the physical flux and § is the source term. We
want to solve the Riemann Problem (RP) with the following initial condition,

U, if
U(m,t:()):{ p itom<0 (2.2.18)

Ugp if m> 0,

for any given Uy, Uy, in the phase space. Assuming we have h discontinuities with velocities
Mes B =1,...,h, the solution of the Riemann problem consists of i + 1 states separated by
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Chapter 2. LP schemes for blood flow equations

the discontinuities, hence

(U1:UL if %<)\1

U(—,U,Ug) =< Uy, if A <% < A (2.2.19)

\Uh-i-l =Ug if % > /\h

Given the space and time steps Am and At, the approximate solution (2.2.19) of the RP (2.2.17)-
(2.2.18) is defined as being consistent with the integral form of (2.2.17) if in the interval [0, Am)]
we have

h
G(Ug) — G(Uy) — AmS(Am, At; Uy, Ug) = Y Mi(Uppr — Uy), (2.2.20)
k=1

where the source term S(Am, At; Uy, Ug) also has to satisfy a consistency property, namely

lim S(Am, At; UL, Ug) = S(U). (2.2.21)

U, Ur—U;Am,At—0

2.2.2.1 Riemann solver for the system of conservation laws

Next, we focus on system (2.2.16). We start by neglecting the source term, hence we want
to solve the following Riemann problem,

8,U + 0,,G(U) = 0
U, if m<0 (2.2.22)
Ugp if m>0

where, in particular,

7L TR
UL = ur, and UR = UR
I, IIg

In this specific case, the solution can be exactly computed and takes the following form

U, if <A =-a
U, if A <2 <0
v u,up) =4 ot ! t (2.2.23)
13 Ur if 0<B <A =a
Ug if % > )\+
with
Tx,L T+,R
U= | ur and U,p= | usr |- (2.2.24)
H*,L H*,R

In order to find the star values U, ; and U, r, we exploit the consistency conditions (2.2.20)
together with the Rankine-Hugoniot conditions associated with the velocities +a, namely

(I(U*7L—UL)+G(U*7L)—G(UL) = 0 and —(I(UR—U*7R)+G(U*,R)—G(UR) = 0, (2.2.25)
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2.2. The mathematical model

and with the discontinuity of null velocity, i.e. u, ;, = u. r = uy, I, 1, = II, g = II,. As such,
we can easily find the following algebraic system of 6 relations,

(GT*,L = Uy, = ATL — UL
ay g, + 1, = aug, + 11,
Ux,, = Ux, R = Usx
H*,L - H*,R - H*

ATy R + Usr = ATR + UR

\ AUsx, R — H*,R = aug — g,

whose resolution leads us to the following values in the star regions,

( 1 1
Ter =T+ = (U —ug) =71 + 2_%(UR —ur) — ﬁ(HR —1I)
ToR = TR a(u ur) =Tr + 7 (ugp —ur) + 2a2( R L) (2.2.26)

1 1
Uy = —(UL + UR) — %(HR — HL)

a
H* = §(HL + HR) - §(uR - UL).

\

2.2.2.2 Riemann solver for the system of balance laws

Let us now consider the source term due to the spatial variations of the cross-sectional
area at equilibrium A, and arterial stiffness K as well. Therefore, we look for an approximate
solution of the following Riemann Problem,

9,U + A(U)3,,U = $(Q; Ay, K)

U(m, 1 = 0) U, if m<0 (2.2.27)
m,t=0) =
Ur if m>0.

Once again we assume that the m —1 plane is divided in four different zones by the three waves
and the solution has the form given by (2.2.23) and (2.2.24). In order to find such a solution
made of 6 unknowns, we need to impose different conditions. Starting from the consistency
relations (2.2.20), we have

—ugr +uy = —a(tey — 71) + a(Tp — Tw.R)
I — I, — AmS = —a(u.r —ur) + a(ur — U ) (2.2.28)
a*(ugp —up) = —a(ll,p — ;) + a(llg — IL ).

Then, the Rankine-Hugoniot conditions associated with the mass equation read

—(UR - U*,R) = G(TR - T*,R)
Up — Usx L = —G(T*yL — TL) (2.2.29)

Us [ = Usx R = Ux

which only give us two additional conditions, as the first relation of (2.2.28) is a linear com-
bination of (2.2.29). Consequently, we have only found five conditions for six unknowns and
as such they are not sufficient to define the approximate Riemann solution. Also note that
§ = §(Am,At; Uy, Ug) in (2.2.28) has to be specified such that (2.2.21) holds true. In par-
ticular, § should be determined in such a way that it is equal to zero if Ay and K are both
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Chapter 2. LP schemes for blood flow equations

constant. With this requirement, the solution of (2.2.27) would degenerate to the solution of
the homogeneous Riemann problem (2.2.22). Finally, two relations are still missing to define
our solution.

Assume we have two other equations, namely 0;Ag = 0 and 0,/ = 0. For these two
equations, the solutions are Ay 1 if m < 0, Aggif m > 0and K if m < 0, Kp if m > 0.
Hence, we ask for the jump condition across the middle discontinuity associated with the
momentum equation, that is to say

ILg—IL,+ M =0, (2.2.30)

where the function
Am L + Am R~

M = (Am At; UL,UR)

has to be defined such that it satisfies M = 0if Ay, = Agr and K, = Kpg. Thus, after few
algebraic computations, we obtain the following solution for the Riemann problem (2.2.27),

p
Te,L = TL + _(U* - uL)

T«,R = TR — E(U* - UR)
1 1 M
U*=§(UL+UR)——(HR )__a
1 a %\/l (2.2.31)

I, = (I, + ) — =(ug — —

L %( L+ 1g) 2(UR ULH‘/%A
a

H*Rzé(HL"i_HR)_g(uR_uL)__

2
1 1 a
\H* = §(H*L + H*R) = —(HL + HR) - §(uR - uL).

2

We have yet to define M in a consistent way, and it is clear that
2A
M: { }KR\/AOR \/AOL {3p\/Z}(KR—KL)

A 2A A 2A
is relevant, provided that {—} and { 3 VA } are consistent approximations of — and 3, VA
p P

respectively. Let us discuss this issue. Firstly, we point out that since Uy, and Uy, are taken to be

K; 3 Kr 2 . . . .
well prepared, we have II;, = B—Ai and Il = 3—A12%. Since we are interested in preserving

the "man at eternal rest" solution, we also ask for the well-balanced condition: U, ;, = Uy, and
U, r = Ug if Uy, and Uy, verify the "man at eternal rest" solution, namely

up =up =0, K (/AL —\/Aor) = Kp(/Ar — /Ao r). (2.2.32)

If we have (2.2.32), then

2

M=~ { Yt Ao ~ Ko/ o) + {5 VA (K~ Ko
—{*}(KR\/@—KL\/J‘TL)JF{Lm}(KR—KL)

_ {?}KR"FKL (VAR — /A7) — { }F;\/JTL( KL)“F{QS?\/Z}(KR_KL)

and thanks to (2.2.30), using formula [X Y] = } "4 ? X1R, where [X]|} = Xp — X,
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X = aXy + (1 —oz)XR,§ =aXr+ (1—a)X,and a = 3, we get
M=—(z—10;) = —%(KRAR\/A_R — KL ALV AL
=~ B+ KA/ A = A/A2) = A/ Ap + A/ ) (K~ K)
= BlpKR+KL (AL + VArVAL + AR) (VAR — VAL +
- 6—p(AL\/A_L + A/ AR)(Kg — K1),
Therefore, it is clearly sufficient to set

{é}: AL+ Ap + VALV AR

p 3p
and
24 VAL+ VAR (A 1
{37\/2} _ #{;} _ @(AL\/A_L‘F ArV/Ap)
_ VALVARWVAL + VAR)
3p '

Finally, we get
M = M((Ar, Ao, K1); (AR, Ao,r, KR))

_ Ap + AR gpﬁﬂ <KR\/m_ KL\/H,L_ fﬁ(%g) (Kr — KL))
(2.2.33)

Lastly, let us note that the definition of M is consistent:
A

lim M= ——<KR\/m— KL\/E)

AL AR—)A

2AVA

(Kr— Kp).

2.3 First-order well-balanced scheme

The next step is to present the first-order well-balanced scheme. We start by giving a first-
order approximation of the homogeneous version of system (2.2.3) and then we modify it in
order to satisfy the well-balanced property and include the source term at the same time. In
particular, for the latter step, we show two different ways of preserving the stationary state
(2.2.7), one of them exploiting the approximate solution of the Riemann problem (2.2.27) and
the other exploiting the well-known hydrostatic reconstruction procedure, for which we refer
to [11] and [25] respectively.

Let us now introduce some notations. First of all, we define the constant space step Ax
and constant time step At. The mesh interfaces are given by 2,1/, = jAx for j € Z and the
intermediate times by t" = nAt for n € N. As usual in the finite volume framework, we seek
for an approximation Q7 of the solution in the interval [z 1/, ¥j11/2), J € Z, at each time ¢".
Therefore, a piecewise constant approximate solution * — Qa; a,(x,t") of the solution Q is
given by

Qatnz(z, t") = Q7 forall z € () = [€j_1/2;%j412), J € Z, n€N.
As far as the variable ¢ is concerned, we use the same space discretization of x, hence Az =

Aﬁ,xﬁé = &4t and x; =&, V.
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Chapter 2. LP schemes for blood flow equations

2.3.1 First-order approximation with constant parameters

We start by describing the first-order scheme by assuming Ay and K constant parameters,
therefore the source term s disappears. As we already pointed out, the Lagrange-projection
scheme is composed of two steps:

1. Solve system (2.2.12) written in Lagrangian coordinates, or equivalently update Q" to
Q"™ approximating the solution of system (2.2.13);

n+1—

2. Project the solution of system (2.2.12) in Eulerian coordinates, namely update Q to

Q" by solving system (2.2.14).

For more details about this procedure in the shallow water context, refer to [5, 11, 25].

Lagrangian step. Given a system of form 0,U + 0,,G(U) = 0 as in (2.2.22), the first-order
Godunov-type scheme associated with the Riemann solver of section 2.2.2.1 reads

At
n+l— _ g n _n

Uj - Uj Am]( j+3 G %) (2.3.1)

with
G;.‘+2 G(U;,U7,,), (2.3.2)

and

1

G(Ur,Ur) = 5 (G(UL) + G(Ug) — Z Al (Uk1 — Uk)) (2.3.3)

where )\j; the speeds of the discontinuities and Uy, the 1ntermed1ate states. In more details, we
get that the natural discretization of the homogeneous version of the first two equations of
system (2.2.16) is given by

At
n+1— n * *
7] =T; +Am.(uj+§_“j—%)
- . Atj . . (2.3.4)
L b — II —1I
i “ Amj( i+3 J—%)’

A
with Am; = 28 and a” = max((Ac)}, (Ac)?, ;). The numerical fluxes are given by u*_ ,
TTL .7+§ J ]+§

J
and IT” , at time " and, in particular, exploiting formulae (2.2.26),
2

Uil = Ui (U7, U74,) = 2(“j+1 +uj) - 2an 5o (1, — 107),
n*’ (2.3.5)
H]+2 H (U U]+1> = §(H]+1 + Hj) - T(ujJrl - Uj)-
Note that the first equation of system (2.3.4) is equivalent to
At
n __ n+1— * *
AP = A (1 + A_x( b1 uj_%)). (2.3.6)

For more details we refer again to [5, 10, 9, 11, 18, 19, 25].
It is useful to show a numerical discretization for the Lagrangian step starting from system
(2.2.12) with no source term, namely

n+l— An+1— __ n AN
Ly Al = L1 A]

nt1— et 1— n At . (2.3.7)
LI (Au)i ™ = L7 (Au) — Ax(HJ+2 1)
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:E:—I/Z(T) x;‘k+1/2(T)
I

s /G2t

éi—1/|2<T) £z+l/|‘2(T)

Figure 2.1: Connection between Lagrangian and Eulerian coordinates, see [25].

with H;f .1 given by (2.3.5); let us remark that this approximation (2.3.7) is equivalent to (2.3.4).
2

Moreover, we note that we have neglected the bars over the unknowns for the sake of simplic-
ity. Lastly, observe from system (2.2.10) that a natural discretization for L (&, t) is the following,

n+1— n At * * . n
Lj+1 =Lj+ E(uﬂ% —wu; 1) with L} =1, (2.3.8)

uj .1 given by (2.3.5) and, from its definition (2.2.9),
2

1 [%+} Oz Ti T
L;(t) = A_x/z a—g(fyt)df =——2=

with 2%, = x(§,11,t) ~ .1 + tu*,, according to (2.2.8). See also figure 2.1 for a better
]i§ J 2 J 2 jii

understanding.

Projection step. As already explained, the subsequent step is to project the solution of sys-
tem (2.2.12) (here with no source term) in Eulerian coordinates. With this in mind, let us first
note that, by definition of L,

2(6rt) & B
/ Qi t)da = / L€ Q. 1)de.

(&,t) &

This relation allows to make a simple link between Q in Eulerian and Lagrangian coordinates.
In order to use it at the discrete level, it just remains to define 13 i+ (t) such that for all j (see
again figure 2.1)

x(éjJr%(T),T) =1, with T'>0,

and the corresponding trajectories

o, 3
ot Eey (D), 1) = ulal€yy (1), 1))

2(643(1).0) = &,

>

N|=

leading to
1 [%i+} 1 o€yt 1[5+ o)
() = — t)der = — t)der = — L&t t)dE.
0= 5 [ ot = 5o [ 7 o= 1o [ v ate e
’ ’ ’ (2.3.9)
Note that we can approximate x; 11 at first-order:
Tip1 = 0(§ (1), T) = x(8,1(T),0) + T (&, 1(T),0) ~ 5,1 + Tu;;%, (2.3.10)
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Chapter 2. LP schemes for blood flow equations

for a fixed time T" > 0 and observe that Tjp1 — $;+%2 Aj+% — §j+%. In order to define Q;H—l

using (LQ)?H_, we suggest to split the integral (2.3.9) to obtain

ni1 1 gj*% ntl-\Ey ¢ gntl—
Q= [ L QL ot

_1

l §1d —
+— / 2 t”“)@(&t"“)dﬁﬁ / CLE QU de
-3 Si+d

l\J

l\)

(2.3.11)
Then, the middle integral can be clearly replaced by — N / L(&,1)Q(&, t)dx = (LQ)[',
while the others two integrals can be approximated as in th?following. Let us state
1[5 - &1 =&
Ax/ B L(&,1)Q(&, t)dx = %(LQ)”? , where we set
n+1— ~
(LQ)"H~ = {(LQ)jjl if &1 >80
-1 n+1— F
T (LQ)] if éjfé < j—1
or equivalently
— (LQ)™H = if 2" >z
LQI" =4 T2 e 23.12
( Q)]_% (LQ);L—H[_ lf xﬂi,nl‘rl— S .Tjil ( )
-1 1
with
*n+l— * 2 %
il —mj+%+Atuj+% and ;1= j+%—|—Atuj+%7

and analogously for the third integral appearing in (2.3.11). Consequently, the projection step
reads

é w1 =&
gyt + (1o + LSt gt

n+1— At * n+1— * n+1—

0
-3
t
N
>
&
l\’)\»—‘

(2.3.13)

with u;‘ .1 defined as in the Lagrangian step and where we have neglected the bars over Q. Let

2
us also remark that (2.3.13) can be seen as a discretization of system (2.2.14).

Overall discretization. It can be easily proved that the whole scheme is conservative using
formulae (2.3.7) and (2.3.13). Indeed, one can recover the following final form:

At

A7 = A= T AT A 2314
7 =~ S T 0t ),
with
g = { O
: (LX)Fn i 2 <y,

and X either A or q.
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2.3. First-order well-balanced scheme

2.3.2 First-order approximation with variable parameters

As far as the source term is concerned, it is different from zero only when considering
non-constant parameters, due to the presence of the spatial derivatives of Ay and K. Since
the source term is taken into consideration at the level of the Lagrangian step, its inclusion
in the numerical scheme only requires to modify the first step and not the remap one. Note,
however, that the projection step generally has to be modified in order to obtain a fully well-
balanced numerical method, see [5, 25]. We show that this is not required in our particular
case as we want to only preserve the "man at eternal rest" solution. In the rest of this section,
we present two different ways to obtain a well-balanced Lagrangian step in which the source
term is included.

2.3.2.1 Based on the approximate Riemann solver

The first approach we present requires the use of the approximate Riemann solver de-
scribed in section 2.2.2.2. In particular the well-balanced property is achieved approximating
the source term in a special way, namely exploiting formula (2.2.33).

The first-order Godunov-type method associated with the Riemann solver proposed in
section 2.2.2.2 now reads

At &
U;'LJrlf — U - Am(G?JF% -G} ) + AtS; (2.3.15)
j

NI

with the numerical flux G;? 1 as in (2.3.2)-(2.3.3) and the source term defined as the average
2
of the source at the interfaces,

~n 1 Aijr% on Amjf% on on a n 1
with Am;y /2 = %. For more details we refer again to Gallice [18, 19]. Hence, we

approximate system (2.2.15) by

At
n+1— n * *
7 =7t Am-<uj+% _uj*%)
A (2.3.17)
n+l— _ . n * * ~n
uj _UJ_Amj< j+%—Hj7%)+Atsj
or equivalently the Lagrangian system (2.2.12) by
L= Antl= — [ngn
J J 3%
At (2.3.18)
n+1— n+l— __ 1n n * * n

with L?H* defined as in (2.3.8). Similarly, we observe that the numerical fluxes are now given

[a—y
>
S
T
=
~
(Y]
R
3

n n 1 n n

itz 2N 2a” 2a; i+1/2
1 a;j%l i+1/2 (2.3.19)
* j+7
Tyn = 5y +107) — == (ufy — o).
As far as the source term (2.2.4) is concerned, we state
1 Amy, 1 Am;_1 MG
5 — _<—2§’? + T2 ) with  §7,,,, = —— 22 2.3.20
J 2 Amj j+1/2 Amj j—1/2 j+1/2 Amj+1/2 ( )

57



Chapter 2. LP schemes for blood flow equations

and M7, | o = M((A}; Ao, K;); (A7 115 Aoj1, Kj41)) givenby (2.2.33). Note that, in (2.3.18),

n n ngn ng Am
sy = L7 A}s) = A7sT = AL s] or equivalently
n 1 n n . n MnJrl 2 .

Theorem 1. The Lagrangian step (2.3.18)-(2.3.21) (or equivalently (2.3.17)-(2.3.20)) here described
is well-balanced under the "man at eternal rest" condition (2.2.7).

Proof. Let us assume that Q' satisfies the "man at eternal rest" condition (2.2.7). Thus, uj =
0 Vj and, thanks to condition (2.2.30), we also have that H?H H + ./\/l]+1/2 =0 and

consequently, — (117, ; —1II7) +Am;1/287, 5 = 0. Hence, u;*.+% =0 Vj and I, (H]Jrl +
I17). Similarly, s% compensates —ﬁ(ﬂ; I —H;fié) and we find that A;.“rl = An and q”“
qj-

[

2.3.2.2 Based on the hydrostatic reconstruction

Let us consider once again a discretization of the form (2.3.18) for the Lagrangian system
(2.2.12). We now want to exploit the well-known hydrostatic reconstruction approach [1, 5].
Thus, we are going to modify the numerical flux and source term to be employed in either
system (2.3.17) or (2.3.18). Hence, we perform a reconstruction of the variables values Q at the
cells interfaces. Considering relations (2.2.7) locally, we first write (for all 7)

a(x) =0,
{< K(VA = V&) (2) = K5 (/A = /Aoy).

which can be understood as a reconstruction procedure of a space-dependent stationary so-
lution inside the j—th cell. Then, following [20], we define cross-sectional areas at the cell
interfaces (r = :L'ji%) by

(KVA),, = max (K \/ﬁ VAo;) + Hl,o)

n (2.3.22)
(K\/Z)j+2R—maX( j+1 «\/ \/A0]+1 j+ ,O)
where the maximum has been added in order to preserve the non-negativity, and
/A;L+ L max( J(WJAY =\ Aoj) + K\/AO)jJF%),O)
A;?Jr%’R:maX( " N ]+1 Q/ ’\/AO]+1 K\/Ao)j+%),o>
3
where we have imposed
K\/ 1 —mm(K \/AQJ,K]+1\/AOJ+1)
and
KJZ% = max (Kj, Kji1). (2.3.23)
Hence, the reconstructed values at cell interfaces are defined by
A? A”
Q" , RAS Ln and Q" , .= [, t¥f ) (2.3.24)
J+iL T AJ+ LU it A]+§7R 1
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2.4. Second-order well-balanced scheme

At this stage, we can define the star values for the velocity u and linearized pressure II as in
(2.3.5), exploiting the values at interfaces (2.3.24):

* % * *
Wipr =0 (Q 1, Qyp) and I, =T0(QG, 1, Q7 1)

with . .
u;k+% - §( ji1 +ug) - 20", (H?Jrz,R H?+2,L)
AR (2.3.25)
H;“.Jr% S(I07, R+Hj+ )= %(U?H u;)
and
a;; 1 = max (An+2,L 1 L’A?+2,R ?+ R)

In particular, (2.3.25) has to be used in (2.3.17)-(2.3.18) instead of (2.3.19). Finally, since we
want to preserve the steady states with zero velocity, namely the ones satisfying v = 0 and
J:p = s, for the source term s} we suggest the following,

L1 e . ~
-2 -3

pj+§,L —Dj-Lnr
Az '

(2.3.26)
Note that the first equality comes from space-dependent reconstruction of a solution inside
the cell, while the second equality holds as we are exploiting the reconstructed values (2.3.24)
to define the pressures p at the interfaces. More precisely, let us remark that to define

Bipip = ﬁ(A;.‘Jr%’L, K),ﬁ;;%ﬂ = ﬁ(A?+%,R7 K) in (2.3.26), and IT" i H?Jré,R at equilibrium
in (2.3.25), namely H;l%’L = ﬁ(A;.‘Jr%’L, K), H;.‘+%’R = ﬁ(Aﬁ%’R, K), we can use either the val-

ues K = K(xﬂ%) or K = K? , asin (2.3.23) with the only requirement to define the source
2
term (2.3.26) accordingly.

Theorem 2. The Lagrangian step (2.3.18), (2.3.25)-(2.3.26) is well-balanced under the "man at
eternal rest" condition (2.2.7).

Proof. Let us assume that Q' satisfies the "man at eternal rest" condition (2.2.7). Thus, u} =

0 vy, A‘;L+27L = An+ B and consequently, Q?%L = Q?Jr%,R' Hence, u*+2 = 0Vy and
_E<H* - H;*§> + {5} = 0. Therefore, we obtain A?*'~ = A% and ¢/*'~ = ¢

O]
Remark 1. As it has been shown in the proofs of theorems 1 and 2, u. 41 = = 0 under the "man at

eternal rest" condition. Hence, the projection step (2.3.13) preserves the statzonary solution (2.2.7)
and the whole numerical scheme (Lagrangian plus projection step) does not have to be further

modified.
2.4 Second-order well-balanced scheme

At this stage, we are interested in second (or higher) order extension of the Lagrange-
projection schemes. We proceed as for the first-order scheme: we first explain how to reach

the second-order of accuracy in the case of constant parameters, which is already non-trivial
due to the presence of two steps in the Lagrange-Projection procedure. Then, we extend the
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Chapter 2. LP schemes for blood flow equations

strategy to the case of variable parameters, Ay and K. Once again, in the latter case we pay
attention to the well-balanced property.

Here we focus on a second-order simplified version of the scheme applied to (2.2.3) which
can also be easily extended to higher order of accuracy following [25, 6]. In particular, we
make use of polynomial reconstruction and Runge-Kutta TVD scheme [21] in order to reach
second-order of accuracy in space and time respectively.

2.4.1 Second-order approximation with constant parameters

First of all, we explain how to reach the second-order of accuracy in space in both the
Lagrangian and projection steps. Then, we comment on the Runge-Kutta TVD scheme for the
second-order approximation in time. The time is hereafter assumed to be left continuous for
the sake of clarity.

Space discretization of the Lagrangian step. Given a time ¢, a j-th cell and the cell value
Q,(t), this step aims at defining evolved values Q. , 1, r(t) at the cell interface z; ;1 by means
of polynomial data reconstructions. More precisely, using a reconstructed polynomial vector
P! (z) for each cell I}, such as

P(z) = Q;(t) + Aj(x — z;), (2.4.1)

where A’ = A%(Q, ,(t),Q;(t),Q;,,(t)) is the slope, either ENO [30] or MINMOD [33] one,
we define
Qj—i—%L(t) = PE‘(%‘+%) and Qj-{-%R(t) = P;‘-&-l(xj-i—%)' (24.2)

Therefore, once again we use formulae (2.3.5), computed in (QH%L(t), Qj+%R(t)), namely

UL%“) = u;+%(Qj+%L(t)>Qj+%R(t)) and H;r%(t) = H;_;_%(Qj—&-%L(t)?Qj-i-%R(t))v

with
n n
AE NACES N A

P n n
ajJr;—max(A Aj+%7ch+%7R).

2
Note that the polynomial P; (x) should satisfy the conservation property, which reads

1 Tivy
el IR ORI 0}

(ST

Space discretization of the remap step. In order to obtain the second-order of accuracy in
space, we exploit relations (2.3.11)-(2.3.13) seen in section 2.3.1. Once again the middle integral
in (2.3.11) can be substituted with (LQ), () thanks to the conservation property. Then, for the
other two integrals, instead of considering the values (LQ);(t), we reconstruct them using the
polynomial P%(x). Thus, we introduce

(LPYL(E) = (LQ) (1) + Al(E - ). (243)
with AL = AL((LQ);1(1), (LQ);(1), (LQ);41(1)) and

(LP)! (€)= {

in place of (LQ); 1(t), where we remark that v, 1 = §; 41+ Atul e Finally, since (LP)*(&)

_1
2

€1
is not constant, in order to be able to evaluate its integral s / ? (LP);_; (€)dx, one can
T J¢ 2
3

i-3

60



2.4. Second-order well-balanced scheme

exploit either the mid-point rule (only for second-order of accuracy) or a Gauss quadrature

formula with nodes & Lk and weights wy, for k = 1,..., m. In the former case we find
§i-1 — Aj—% o (St Aj—% éj+% — &2 oSt +§j+g
Q,(t) = (LQ)(0) + =g = (LR (=gt ) P )y ()
At " £+l+£+l . f,l‘Ff,l
:(LQ)](t)—A—x('LL]+%(LP)§+%< J+3 5 J 2>_uj_%(L )t %<J 2 ; ))’
(2.4.4)
while in the latter we find
1—& 1 A+1—f-+1 m
Q)(1) = (LQ) (1) + L5 S (LY, (6 y,) + LT S (IR, (64)
k=1 k=1

A m m
= (LQ);(t) - A—fj(u;; D wr(LP) 4 (€ipn ) =1 D wr(LP)) 1 (65 14)),

k=1 k=1

N

€1
where the other integral =~ [ £]+2 (LP); . 1(§)dx has been evaluated in a similar way.
i+ 2

Second-order approximation in time. With the last step of the second-order method, we
aim to obtain the right accuracy in time. In order to do this, we simply use the Runge-Kutta
TVD scheme at second order [21]. However, we have to specify that it has to be applied to the
overall scheme (Lagrangian and remap steps together) in order to avoid diffusion due to the
splitting.

2.4.2 Second-order approximation with variable parameters

As we have done before for the well-balanced first-order scheme, here we present two
different well-balanced second-order methods, the first exploiting the approximate Riemann
solver of section 2.2.2 and the second one exploiting the hydrostatic reconstruction approach.

Again, it is sufficient to focus on the Lagrangian step and no changes are needed for the
second-order projection step, as described above, and the Runge-Kutta TVD procedure. In-
deed, it will easily be seen that they preserve the "man at eternal rest" solution. However, we
specify that the projection step would need to be modified if we were interested in preserving
a different stationary solution. For more details refer to [11].

2.4.2.1 Based on the approximate Riemann solver

Here we describe the second-order extension of the Lagrangian step explained in section
2.3.2.1, which makes use of the approximate Riemann solver of section 2.2.2.2 in order to main-
tain the well-balancedness of the method.

Thus, in order to obtain a second-order approximation in space, the idea is to exploit the
reconstructed values at cell interfaces and then apply the usual updating formulae. However,
we cannot simply use the reconstructed polynomial (2.4.1), as it would prevent the scheme
from preserving the stationary solutions. Thus, the idea is to compute the slopes in such a
way that they become equal to zero when the "man at eternal rest" condition (2.2.7) is satisfied.
With this in mind, we suggest to make use of the so-called fluctuations D, refer to [25, 6]. Let us
get into the details. Given a time ¢ and the j-th cell, we need the values Q, ,(?),Q;(?),Q;,(?)
to determine the slopes at second-order of accuracy; thus for k = j — 1, 7, j + 1, we define the
so-called fluctuations

1 xk-’_% t,e
D) = Q) ~ 5 [ Q) (wd, 245

il?k7

[T
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Chapter 2. LP schemes for blood flow equations

where Qg’e(m) denotes a reconstructed stationary solution we want to preserve and which
satisfies
1 Tivd

A Q;’e(x)dx = Qj(t). (2.4.6)

.1

I=3
Note that, since we are interested in a second-order accurate scheme, we solve the integral in
(2.4.5) using the mid-point rule in space. Usually, it is not straightforward to compute Q?e(:z:)
with the constraint (2.4.6), however, since we only want to preserve the "man at eternal rest"

solution, we can automatically define it such that

(K\/AY ) (@) K;(\/A; — \/Aoj) + (K\/Ap)(z) and uie(a:) = ul. (2.4.7)

Consequently, we denote the reconstruction operator as

P;(JZ) ( ’Q ( ) J=1J (t)7 D;; (t)v Dj—i-l,j(t)) = Qj (t) + A;(I - xj) (2.4.8)

where, for the sake of clarity, we specify that A’ = AL(D;_;(t), Dj;(t),Dj41,4(t)), for the
definition of which we will use either the ENO or the MINMOD slopes. Let us observe that
in our specific case we always have D; ;() = 0, while D;4, ;(t) = 0 when Q,() satisfies a
stationary solution. Therefore it is clear that the slopes equal zero when the "man at eternal
rest” condition is satisfied.

Equipped with the definition for the slopes and the same definition (2.4.2) for the left and
right traces, we can now compute uj ! and H;f ;a8 in (2.3.19), namely

Wy (1) =0 (Q 1 1 (0.Qp p1) and T () = T°(Qys 1 (6).Q 1 plt)  (249)

with
Qj+%L(t) = P;‘(xj-i-%) and Qj+%R(t) = P§+1($j+%)-

More specifically, we state

x Lo t 1 t t Amjiiyz
“j+§(t) = §(uj+%R + “j+%L) 2t . (Hg+ LR H]+;L) + Da s it
il j+1/2
* | t a§+% t ¢
H]+2( )= 2(H3+ rT Hj+§L) - T(uj+%R - uj+%L)'
Lastly, one needs to specify the value of K used in the definition IT JHARL It turns out that

using the natural value of K in z; 41 leads to the loss of the well-balanced property. Therefore
we propose to reconstruct K& explmtmg the usual reconstruction polynomial and correspond-
ing slope A%. However, since the equilibrium part of K reads Kj “(z) = K(x) as K is known
and does not depend on time, its fluctuations are null and, thus, we can simply state that
which is very convenient as with this choice of K we do not have to do further modifications
to preserve the well-balancedness of the scheme.

Finally, for the source term at second-order of accuracy, we simply consider (2.3.20)-(2.3.21)
with M, = M((AjJr%’L(t);AO,j, K;); (Aj+%’R(t);A0,j+1,Kj+1)) defined as in (2.2.33),
and the updating formulae (2.3.18).

Theorem 3. The Lagrangian step (2.4.5)-(2.4.9) with updating formulae (2.3.18) described here
is well-balanced under the "man at eternal rest" condition (2.2.7).
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2.4. Second-order well-balanced scheme

Proof. Once again, let us assume that Q' satisfies the "man at eternal rest" condition (2.2.7) and,
as such, uj = 0Vj. Due to definitions (2.4.5)-(2.4.7) for the fluctuations, we have that the slope
satisfies At = 0 and thus, as for the first-order scheme, we have u* = = 0 and A”Jr1 = A7
As for the proof of the corresponding first-order scheme, simple algebralc computations show
that ¢/~ = ¢

O

Lastly, a summary of this second order scheme is provided below for the reader’s sake.

Step  Second order scheme based on the approximate Riemann solver.

Lagrangian step: look for the reconstructed stationary solution Q;p(x) that satisfies (2.4.6).
Exploit it to compute the fluctuations Dy, ;(t) as in (2.4.5).
Define the reconstruction operator P; (x) as in (2.4.8).
Find the reconstructed values Qj+%L(t) =P} (j41), Qi 1p(t) = P§-+1(xj+%).
Compute u* i+l H;+l as in (2.3.19)-(2.4.9) and the source term as in (2.3.20)-(2.3.21).
2
Solve system (2 3.18) written in Lagrangian coordinates obtaining (LQ) ().
Continue with the remap step; define the polynomial P; () asin (2.4.3).
Update Q(t) using formula (2.4.4).
Apply the Runge-Kutta scheme in order to reach the second order of accuracy in time.

© 00 O U = Wi+~

2.4.2.2 Based on the hydrostatic reconstruction

Let us now see how to modify the second-order accurate scheme exploiting the hydrostatic
reconstruction, already introduced in section 2.3.2.2. Once again, in order to have a well-
balanced scheme, we only have to modify the Lagrangian step.

Hence, in this case, we would like to combine two different kinds of reconstruction, one for
the well-balancedness and one for the high-order of accuracy. Thus, at the end we will have
a unique reconstruction function for Q; () which will consist of two parts: the fluctuation

1. . t7e
P! (z) and the equilibrium Q;*(z) ones,

Ql(x) = Q;“(z) + Pi(x), (2.4.10)

as suggested in [25]. Subsequently, we will use the values Q;JrlL = Q; (mj+%) and Q§+1R =
2 2
Q§+1(xj+%) to compute u;r% and H;Jr% in (2.3.5) and to find (LQ);(¢) according to (2.3.18).
At this stage, we have to define P)(z) and Q;e(a:) For the latter, since we are only in-

terested in preserving the "man at eternal rest solution”, we simply use the well-balanced
reconstructed values (2.3.24), in particular

At,e At,e
Q?e('rj‘f'%) _Q;i27L <At‘é+2,Lt> and Qj-‘rl( ) Q;jzyR (Ate]—i_Q’R ) )

+1% +1 r%it1

with Ati . Ati  computed as in (2.3.22)-(2.3.23). See either section 2.3.2.2 or [20] for more
27 27

details. As far as the reconstruction polynomial P; (x) is concerned, we use a similar but not
equal strategy to the one explained in the previous section. Indeed, here we write P;- (x) only
depending on the fluctuations D; ;(¢), namely

P(z) = Pj(;D;_15(t),D;;(t),Djp1,(t) = Dy (t) + Al — ), (2.4.11)
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Chapter 2. LP schemes for blood flow equations

with A; = A;(Dj_lﬂ(t), D]J(t), Dj+17j(t)) and D]{;J(t), with k = ] — 1,j,j + 1, defined as in
(2.4.5). Let us remark that we always have D; ;(t) = 0 and thus, Q(x) reads

Q'(z) = Q¥ (x) + Al(z — z) = Q¥ (z) + Q} (x), (2.4.12)

where we have renamed Q;’f (z) = A%(x — x;) for the fluctuations part. Then, let us compare
(2.4.8) and (2.4.12). Indeed the term Q; (t) that appears in the right hand side of (2.4.8) can be

understood as Qﬁe(a:) in (2.4.12) but replaced by Q;(#) using (2.4.6) and the mid-point rule.
Finally, we only need to specify the definition of the source term, which in general is

defined by
1[5+
5 = E/ s(&,t)d§

&

Nl

with s(A; Ay, K) given by (2.2.4). Since we aim to reach the second order of accuracy, in
this case the mid-point rule in space suffices. Thus, using the equilibrium and fluctuation
decomposition (2.4.12) for the cross-sectional area A, we can write

t_L/5f+% . _L/g”% e Al
S=ar) 5(A; Ao, F) (€ 1) = . (A + AT; Ao, K)(€, t)d€

[N
Nl

1 Si+4 1 i1
= [ e A% A K D) - s A KY€ )+ 5 [ (% Ao K6 11
T Je | Ax € 4
1—3 =5
1 §

.
= A% Ay, K
A.CL’ e S( s 10, )(gat)dfa

Nl

where the last quality holds as, when applying the mid-point rule, the fluctuations part A/
+3

¢ €1
disappears, leaving only JA—JEJZ(S(Ae + A Ay, K)(24,t) — s(A% Ay, K)(24,1)) =

(s(A°+0; Ag, K)(xj,t) — s(A% Ag, K)(z;,t)) = 0. Hence, similarly to the first-
order scheme, the source term finally reads

S+t — &2

1 fj+% . ﬁ(:,%,[/(t) _ﬁe',%ig(t)
st = E/s s(A% Ay, K)(€,1)dE = =2 ~ ’ . (2.4.13)

ol

Theorem 4. The Lagrangian step (2.4.10)-(2.4.13) is well-balanced under the "man at eternal
rest" condition (2.2.7).

Proof. 1t is straightforward to see that, under the "man at eternal rest" condition (2.2.7), the
fluctuations part in (2.4.12) satisfies Q;ff (x) = 0. Consequently, the Lagrangian step is reduced
to the first-order one, which we already proved to be well-balanced.

O

As in the previous section, an algorithm is provided to to summarize this second order
method. Let us note that the projection and Runge-Kutta steps are the same of the previous
scheme.

2.5 Numerical simulations

In this section, we carry out different numerical simulations that aim to show the good be-
haviour of the proposed numerical schemes. First of all, we numerically prove that, in the case
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2.5. Numerical simulations

Step Second order scheme based on the hydrostatic reconstruction.

Start with the Lagrangian step; compute the well-balanced reconstructed values Qg’e(x) as in (2.3.24).
Find the fluctuations Dy ;(t) by (2.4.5).

Define the reconstruction polynomial P; (z) only depending on the fluctuations as in (2.4.11).

Use Q;’e(x) and P;- (z) to determine the reconstruction function Q; (z) by (2.4.10).

Find the reconstructed values QE.JF%L =Qj (z41) and Q§.+%R = Q§+1(xj+%).
Compute u; +1 and H;T 4188 in (2.3.5) exploiting the reconstructed values.

Define the source term 5§» according to (2.4.13).

Solve system (2.3.18) written in Lagrangian coordinates obtaining (LQ)(t).
Continue with the remap step; define the polynomial Pz» (x) as in (2.4.3).
Update Q(¢) using formula (2.4.4).

Apply the Runge-Kutta scheme in order to reach the second order of accuracy in time.

== O 00~ O Gl W N

i)

of both systems of conservation and balance laws, the numerical schemes reach the required
order of convergence. A Riemann problem is also presented in the case of constant parame-
ters. Then, different test cases are introduced in order to assess the well-balancedness and the
wave-capturing properties of the numerical methods when applied to the non-conservative
system.

Time step and CFL condition. Since the Lagrange-projection approach leads to a splitting of
the original system (2.2.3) into the acoustic (2.2.13) and the transport (2.2.14) ones, the time step
is computed as the minimum between the two time steps obtained from (2.2.13) and (2.2.14).
As far as the Lagrangian system is concerned, the Courant-Friedrichs-Lewy (CFL) condition
reads

Az
At < CFL, — : (2.5.1)
mjax{maX(Tj i) 1}
while, for the transport system
A
At < CFL; S (25.2)
max{u , —u_ .}
j J=2 it3

where CFL; and CFL; are, respectively, the CFL number for the Lagrangian and the transport
systems, and finally

+

Uy = max(u’_1,0) and Uiy = min(u’, 1,0).

1
2 Jty’

[NIES

*
jf

When considering a first-order scheme, we can take CFL; < 0.5 and CFL; < 1. For more
details refer to [9, 11, 12].

Remark 2. It is not difficult to prove that the first-order approximation (2.3.14) we presented
preserves the strict positivity of the cross-sectional area A under the CFL condition (2.5.2) with
CFL; < %, see also [5]. This statement remains true even if the parameters K and A, are not
constant in space.

2.5.1 System of conservation laws

Convergence study. In this section we start by assessing that the second-order scheme of
section 2.4.1 reaches the right order of accuracy. For this purpose, we need to compare the
numerical solution with the exact one, specifying that, in order to obtain the correct order of
accuracy, the smoothness of the exact solution is required. Since in general such solution is
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Chapter 2. LP schemes for blood flow equations

not known for system (2.2.5), we have to exploit the method of the manufactured solution,
for which we refer to [28]. In a nutshell, given an acceptable smooth function Q, we have to
modify the sought system in such a way that Q is actually one of its solutions. This is achieved
by adding a source term to the starting system, namely passing from the homogeneous version
of system (2.2.5), 3,Q + 9,F(Q) = 0, to

~

0:Q + 9.F(Q) = $(Q).

S(Q) is usually found through an algebraic manipulator, and thus we will not report the mod-
ified source term here. Referring to [27], we have considered the following solution,

N A A—I—asm( ) cos(Q—”t)
Q= (@) B (q - aTAO Cos(fx) Sin{%—gt)) (2.5.3)

with the cross-sectional area at equlhbrlum and the Wall stiffness given by do = Aand K = K
respectively, where A =4.0x 10"*m?2 ,a=4.0x107°m?, § = Om3s~!, UK = 2500kPa, Ty =
1.0s, the length of the vessel being L = 1.0m and p = 1050.0kg m—3. We also take CFL = 0.25
and exploit the MINMOD slope. With (2.5.3) being a periodic solution, the boundary conditions
we use are periodic. As initial condition, we take Q at initial time ¢ = 0.

At this stage, let us give the definition of the p-norm of the global error £™,

3 =

1B, Az)|l, = (Az Z [0 = v(z, ")),

i=—00

where v is the numerical solution and v(z;, ") is the exact solution computed in (z;,t").
Note that we will use p = 1, p = 2 and p = +o0. In our case we take either v = A or v = Au.
Given an increasing sequence of mesh M, with k = 1,..., N, and respective dimension Axy,
we can now define the empirical order of accuracy py; as:

Epi1(Tout,Axpy1)
pk _ ln ( Ek(TOUt7AIk) )
+1 — ATpq )

with ending time ¢ = T};. px should tend to the theoretical order of accuracy p, for sufficiently
large k.

Lastly, in table 2.1, we show the errors and order of convergence of the variables A and
q = Au at ending time 7,,; = 0.08s. Indeed, we observe that the non-well-balanced numerical
scheme described in section 2.4.1 reaches the second order of accuracy.

Riemann problem: the ideal tourniquet. Since Riemann problems are simple and idealized
test cases but still useful for a better understanding of the numerical schemes, here we present
the following problem, the ideal tourniquet, for which we refer to [15, 36]. In it, a tourniquet
is placed and then immediately removed. As such, we consider the following initial data

]9, if x<L)2
Q(f‘:’t_O)—{Qg it ©>1/2

with initial velocity u; = ur = Om/s, initial radius R;, = 5 x 107°m, Rp = 4 x 10~>m and
initial area computed as A = wR?. As for the other parameters we take K = \/LE x 10"Pa/m,
the length of the vessel being L = 0.08m and p = 1060.0kg m~3. For the first and second-
order schemes we use CFL; = 0.45 and CFL; = 0.25 respectively. Finally, the ending time
is given by T,y = 0.005s and once again we exploit the MINMODE slope. In figure 2.2, we
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2.5. Numerical simulations

Variable Mesh M err L! err L2 err L*° O(LY) O(? OL>)

Area A 16 0.1435 x 10~%  0.1592 x 10~° 0.2075 x 10~° — — —
32 0.0362 x 10~°  0.0428 x 10~° 0.0703 x 10~° 1.9873 1.8944 1.5626
64 0.0087 x 10~% 0.0114 x 10~ 0.0206 x 10~° 2.0626 1.9078 1.7697
128 0.0022 x 10~° 0.0030 x 10~° 0.0053 x 10~° 1.9732 1.9275 1.9572
256 0.0006 x 107 0.0008 x 10~°> 0.0013 x 10~°> 1.9598 1.9724 2.0123

Flow ¢ 16 0.6610 x 10~°  0.6622 x 10~° 0.7288 x 10~° — — —
32 0.1487 x 1075 0.1514 x 1075 0.1832 x 105 2.1519 2.1292 1.9924
64 0.0313 x 107°  0.0320 x 107> 0.0394 x 1075 2.2501 2.2412 2.2152
128 0.0071 x 107® 0.0075 x 10~ 0.0105 x 10~°> 2.1372 2.1012 1.9032
256 0.0017 x 10~ 0.0018 x 10~® 0.0028 x 10~° 2.1058 2.0761  1.9092

Table 2.1: Errors and empirical convergence rates for norms L!, L? and L*. Mesh of size M =

(16, 32,64, 128, 256). Second-order scheme of section 2.4.1.

compare the result for the first and second-order schemes against the exact solution. We used
M = 100 and M = 500 cells on the left and the right respectively, where Ax = % Both
schemes approximate the exact solution well; obviously the second-order scheme results to
be less diffusive than the first-order one. On the right, we can see that the numerical solution
converges to the exact one.

2.5.2 System of balance laws

For the numerical simulations in this section we refer to [20, 36]. We distinguish the well-
balanced schemes based on the approximate Riemann solver and the hydrostatic reconstruc-
tion as WB-ARS and WB-HR respectively. If second-order accurate, we call them WB-ARS2
and WB-HR2. Given below are numerical details we will use for the subsequent test problems,
unless it is specified otherwise. In general, as initial condition we take

Az, t =0) = Ag(z)
q(z,t =0)=0.

As far as the cross-sectional radius at equilibrium R, and wall rigidity K are concerned, we
use the following relations

Ro(x) = R;, if z<xy or x>uxy
o= Rin(1 — 88(1 + cos(m + 2 Z=2))) if xy < < xy,
Tp—Ts
(2.5.4)
K; if z<xy or x>uxy
K(SC) = AG T—Ts :
Kin(1 4 S7(1 4 cos(m + Zfofxs))) if z, <z <uwy,
where Ay = TR}, vy = 3%, 2 = T and AG € {1%, 10%, 30%,60%}. The other parameters’

values can be found in table 2.2. Regarding the boundary conditions, we impose the following
flow at the inlet of the domain,
Gin = ShapAinci,

where a value for A;, consistent with the Shapiro number (Shap) has been estimated in [20]
to be
Ain = Ao(z = 0)(1 4 Shap)?.
The Shapiro number is the analogous to the Mach number for the compressible Euler equations
and it is defined as Shap = Y I particular, we take Shap = 0,1072,1073. Let us note that
c
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Figure 2.2: Ideal tourniquet problem, radius (left) and flow (right). First-order (-o symbol), second-order (-* sym-

bol) and exact (red line) solution.

Parameter Value
L 10 [cm]
Rin 0.5 [cm]
Kin 1 x 10° [gem2s72]
p 1 [gcm_3]

Table 2.2: Parameters values for test cases in section 2.5.2.
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2.5. Numerical simulations

Numerical method ~Variable Mesh M err L' errL?  errL™®  O(L') O(L?) O(L®)

WB-ARS2 Energy 16 45.9648 20.2167 15.2702 — — —
32 12.1161  5.3498  4.5128 1.9236  1.9180 1.7586
64 29137  1.3085 1.1747  2.0560 2.0315 1.9418
128 0.7133 03244  0.2970  2.0302 2.0121 1.9835

Flow 16 0.0978  0.0525  0.0403 — — —
32 0.0280  0.0147  0.0112  1.8034 1.8334 1.8475
64 0.0070  0.0037  0.0029  2.0016  1.9787 1.9542
128 0.0018  0.0010  0.0007  1.9621 1.9439 1.9875

WB-HR2 Energy 16 44.4265 18.8607 13.4593 - - -
32 11.4229  5.0448  4.3839 1.9595 1.9025 1.6183
64 2.7538 1.2443 1.1764  2.05254 2.0194 1.8978

128 0.7072  0.3185  0.3001  1.9613 1.9660 1.9711

Flow 16 0.0973  0.0523  0.0377 - — —
32 0.0281  0.0148  0.0111 1.7910 1.8237 1.7686
64 0.0070  0.0037  0.0029  2.0057 1.9883 1.9403

128 0.0018  0.0010  0.0007  1.9634 1.9448 1.9854

Table 2.3: Errors and empirical convergence rates for norms L', L? and L* for the energy discharge E and flow
q. Mesh of size M = (16, 32,64, 128). WB-ARS2 (top) and WB-HR2 (bottom) methods.

with Shap = 1072 we are already in the subsonic regime, thus it could be interesting to use
an implicit scheme in this case. In arteries, the average value for the Shapiro number is indeed
usually of order Shap = 1072, We refer again to [20] for more details. Then, we can find the
boundary values for the A;, cross-sectional area exploiting the right Riemann invariant, i.e.
It = u — 4¢, and imposing I1(Q,) = I7(Q,,, ), where the subscript 1 indicates the values in
the first cell of the computational domain. Whereas, regarding the right boundary condition,
we impose

Apur = Aoz = L)(1 + Shap)Q,

and then the flow value ¢, is found exploiting the left Riemann invariant, namely I~ (Q,, ;) =
I7(Q,,;), where with Q_,, we mean the value in the last cell. For more details about this test
cases we refer again to [20].

Stationary solution. First of all, to assess the well-balanced property, we take Shap = 0,
and check that the numerical schemes preserve the stationary solution A = Ay, ¢ = 0. Indeed,
we observe that they maintain it up to an error of order 1072,

Convergence study. Then, in order to check that the well-balanced schemes also reach the
right order of accuracy, we take Shap = 1072, AG = 10% and final time ¢t End = 100.0s.
Note that here the exact solution is a steady state with non-zero velocity, namely it is given

by
{Qea: = (qin (255)

qzn
E., = 3A2 out V AO end

out

with F being the energy and ¢., # 0. Indeed, our schemes are able to only preserve stationary
solutions with zero-velocity, thus the numerical solutions should converge to (2.5.5) when
refining the mesh.

In table 2.3 the numerical errors and orders of convergence are shown in norms L', L% and
L> for both WB-ARS2 and WB-HR2; the results seem to be satisfying.
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Chapter 2. LP schemes for blood flow equations

Wave propagation test case. In this test we assess the wave-capturing properties of the well-
balanced schemes. We assume that a single wave propagates in the vessel, with parameters
defined by (2.5.4) and table 2.2. Namely, we impose the following unsteady inlet flow

. t . t ulse

0 otherwise

where once again we define gyuise s Gpuise = Shap A, ciy,. For the right boundary condition we
simply use the transmissive one. Finally ¢,y = 0.04s and we take o, = 0.045s as ending
time. We compute a reference solution with the WB-HR2 and M = 2048 cells. In figure 2.3,
we insert the results only for WB-ARS and WB-ARS2 as the ones obtained with WB-HR/2 are
similar. Of course solutions obtained with first-order schemes are more diffusive than the ones
found exploiting higher order methods, but both outputs tend to the reference one. We also
observe that there are no spurious oscillations in the results.

Propagation of a pulse to/from an expansion. Here we want to consider two different cases,
a pulse propagating to and from an expansion. In the former case the initial radius is

Ro(z)(1 + 88111(%71’(1‘ — %))) if % <z< % (2.5.6)

R(z,t=0) = .
Ry if else,

while in the second one

Ro(z)(1 + 6sin(2loig7r(x — %))) if % <z< % (2.5.7)

R(z,t=0) = .
Ry if else

where ¢ = 5.0 x 1072, In this last numerical problem we assume the K wall rigidity to be
constant, while the radius at equilibrium is given by

R, + AR if =<,
Ro(z) = { Rin + 28 (1 + cos(wxi:‘”;s)) if zy<z<uay
R;, if else
where Ay = 7R2, x, = % and ry = % Note that A; > A.,4. The other parameters’ values

can be found in table 2.4. We use transmissive boundary conditions.

In figure 2.4, we present the outputs for this two problems: for the results on the left and
right we use initial conditions (2.5.6) and (2.5.7) respectively. We compare the outputs of WB-
HR2 for M = 200 cells against a reference solution attained with WB-HR2 and M = 2048
cells. Once again, we show the results of only one of the numerical schemes as their outputs
are very similar. Indeed, the numerical solutions are satisfying and comparable with the ones
of [15, 36].

2.6 Concluding remarks

In this work, we have presented two different second-order well-balanced numerical schemes
for the 1D blood flow equations, where the source term comes from variable mechanical and
geometrical properties. By well-balanced we mean that the numerical method is able to pre-
serve the zero-velocity "man at eternal rest" stationary solution. The first scheme is based on
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Figure 2.3: Wave propagation problem. We used AG = 10% (top), AG = 30% (middle), AG = 60% (bottom)
and Shap = 102 (left), Shap = 10~3(right). Comparison among WB-ARS (-o blue symbol), WB-ARS2 (-* green

symbol) and reference (red line) solution. M = 100 cells.
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Parameter Value

L 0.16 [m]
Rin 4.0 x 1073 [m]
AR 1.0 x 1073 [m]

1 8
K NG 10° [Pam]
p 1060 [Kgm*3]

Table 2.4: Parameters values for test cases in section 2.5.2.
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Figure 2.4: Propagation of a pulse to (left) and from (right) an expansion. Radius minus radius at equilibrium
at time ¢t = 0.0s (green), t = 0.002s (blue), t = 0.006s(red). Comparison between WB-HR2 (-* symbol) and
reference (line) solution. M = 200 cells.
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an approximate Riemann solver and the numerical source is defined in such a way that it is
consistent in the integral sense with the source term, whereas the second method exploits the
hydrostatic reconstruction approach. Only the Lagrangian step has to be modified in order to
satisfy the well-balanced property. Both numerical schemes proved to be satisfying and their
results are almost identical. On one hand, future works are expected to deal with an implicit
formulation of the Lagrangian step as it would speed up the numerical methods. Indeed, the
arteries are known to have an average Shapiro number of order 102 and this could imply a
restriction on the time step value. On the other hand, efforts could be made to obtain fully
well-balanced schemes able to also preserve stationary solutions with non-zero velocity. In
this regard, we refer to [5, 25] for fully well-balanced Lagrange-projection schemes applied to
the shallow water system at first and high order of accuracy respectively. Another interesting
reference in this framework is [20], in which the authors considered the low-Shapiro num-
ber steady states, which could be more easily preserved than the classical steady states with
non-zero velocity.
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Chapter

Sur les schémas implicites-explicites
équilibres de Lagrange-projection pour
les équations de Saint-Venant a deux
couches

Ce chapitre a été soumis pour publication dans le Journal "Applied Mathematics and Com-
putation” sous la référence: A. Del Grosso, M. J. Castro Diaz, C. Chalons and T. Morales de
Luna. On well-balanced implicit-explicit Lagrange-projection schemes for two-layer shallow wa-
ter equations.

Le manuscrit est disponible sous la forme d’un preprint sur I’archive ouverte HAL avec ID:
hal-03655011 .

Ce chapitre concerne I’étude des schémas de type Lagrange-projection équilibres appliqués
au systeme de Saint-Venant a deux couches. Ce modele est connu pour étre difficile a approcher
en raison de sa forme non-conservative et du fait qu’il n’est que conditionnellement hyper-
bolique. En particulier, on propose une formulation du modele mathématique en coordonnées
lagrangiennes. La méthode HLL est ensuite appliquée a une version simplifiée du systéme la-
grangien résultant. De plus, nous interprétons la décomposition de type Lagrange-projection
comme un splitting acoustique-transport. En utilisant cette nouvelle interprétation, un autre
solveur de Riemann approché pour I’étape acoustique-lagrangienne est décrit. Une méthode
explicite et une méthode implicite-explicite sont proposées, cette derniére pouvant permettre
des simulations trés rapides dans des régimes sous-critiques. Enfin, nous présentons des sim-
ulations numériques dans lesquelles les résultats des méthodes de type Lagrange-projection
sont comparés a ceux de la méthode IFCP.

Deux annexes sont ensuite insérées afin de clarifier certains aspects de ce chapitre. Dans
I’annexe 3.A nous montrons comment écrire le systéme linéaire associé a 'approximation
implicite du systeme acoustique. Ensuite, puisque 'approche HLL a également été appliquée
au systeme lagrangien, des détails a ce sujet sont donnés dans I’annexe 3.B. En particulier, un
apercu rapide des schémas numeriques préservants les chemins ("path-preserving") est donné.
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On well-balanced implicit-explicit
Lagrange-projection schemes for
two-layer shallow water equations

Abstract

This works concerns the study of well-balanced Lagrange-projection schemes applied to
the two-layer shallow water system. In particular, a formulation of the mathematical model in
Lagrangian coordinates is proposed. The HLL method is then applied to a simplified version of
the resulting Lagrangian system. Furthermore, based on the acoustic-transport splitting inter-
pretation, another approximate Riemann solver for the acoustic-Lagrangian step is described.
Both an explicit and an implicit-explicit method are proposed, where the latter can allow very
fast simulations in sub-critical regimes. Finally, we show some numerical simulations in which
the outputs are compared with the [FCP method’s results.

3.1 Introduction and mathematical model

In this work we are interested in the numerical approximation of the 1D two-layer shallow
water system, which models a fluid composed of two superposed layers of immiscible liquids
where the upper one has a smaller density p;. Thus, using the subscript 7 = 1, 2 to indicate
the jth layer, we state p; < po. This kind of situations can occur when there are two liquids
of different densities or even with a single fluid present at two different temperatures, as in
oceanic flows. Referring for instance to [1, 3, 7, 9, 10, 11, 23, 24] and also to figure 3.1 for the
notations, the two-layer shallow water system is given by

———

hy

e

hy

[ R

VA

Figure 3.1: Sketch of the two-layer shallow water: i, ho water heights, z topography and H free surface.

79



Chapter 3. IMEX LP scheme for two-layer shallow water equations

8th1 + 3 hlul)
&g h1u1 "—8 hl ) +gh 0, hg —ghlaxz
@hg -+ ax(hQUQ)
2, 9l P B
Oy(houg) + Oy | houz + == | + gp_hQazhl = —ghy0,2
2

(3.1.1)

2

\

where ¢t > 0 represents the time and x the axial coordinate. Then, h;(z,t) > 0 is the water
depth of the corresponding layer, u;(x,t) the averaged horizontal velocity and finally z(z)
the bed elevation. Regarding the parameters, we define the gravitational acceleration g and

we denote r = el the ratio of densities. These equations (3.1.1) can also be reformulated in a
P2
more compact way, namely

atQ + azF(Q) + B(Q)amQ = S(Q)

where Q = (hy, hyuy, ho, houo)T is the vector of unknowns,

i 2 o 0 0 0 0
2 ghi
F(Q) = hlu;;;QT , B(Q) = 8 8 g(i)zl 8 and S(Q) = —gh01 O
2
hoi? + % rghs 0 0 O —qho0, 2z
Then, few computations show that the characteristic equation of the non-conservative matrix
A(Q) —81(;(5) + B(Q) is given by

(N +uf —cf — 22u)) (N +uj — &5 — 20ug) = rg°hihy

where ¢; = /gh; would correspond to the sound speed of the jth layer in absence of the
other layer. In particular, it is easy to see that we have null eigenvalue when

G*=F+F —(1—-n)FF? =1

2

where F); such that Fj2 = ﬁ are the internal Froude numbers and G is the composite
Froude number, see also [23]. It is worth to specify that if G* < 1, we say to be in a sub-
critical regime while G > 1 indicates a supercritical flow. Depending on the value of 7 we
may be able to explicitly define the eigenvalues of system (3.1.1) or not. Indeed, if » = 0, it is
clear that the eigenvalues correspond to the shallow water system’s eigenvalues for each layer
separately. Thus, if = 0, the two layers of fluids behave almost independently. However, we
are interested in situations in which 7 ~ 1, which often happen in geophysical flows. In this
case, thanks to [27], the following first-order approximation of the eigenvalues are available

)\:l: _ h1u1 + hQUQ
Ext ~ " hy + by

h1UQ + h2u1 hlhg (Ul — ’LLQ)Q
Mg = ety [ (1
Int = " p, 4 by \/91 hy + hy gi(h1 + hy)

+ v/ g(h1 + hs)

where g1 = g(1 — r) is the reduced gravity. It is a well-known fact that the two-layer system
may lose its hyperbolic character and complex eigenvalues may arise. Indeed, in view of the
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3.1. Introduction and mathematical model

first-order approximation of the eigenvalues, it is clear that the fulfillment of the following
condition
(ur — ug)?

g1(h1 + ho)

would lead to complex internal eigenvalues and thus we would lose the hyperbolicity of system
(3.1.1). Physically speaking, this corresponds to situations where the mixing of the two layers
would occur, leading to the appearance of shear instabilities. In practice, this mixture would
partially dissipates the energy. To simulate such an effect, we could include friction in the
mathematical model, otherwise, in the numerical simulations, the interface disturbances may
grow and lead to a wrong solution [9]. Hence, it is clear that model (3.1.1) is not well-adapted
to those situations and a more complex one would be needed. When we consider numerical
tests, the loss of hyperbolicity could be accepted only in occasional situations to make sure we
do not depart from the correct solution. For further informations about the two-layer shallow
water model and its loss of hyperbolicity, see for instance [9, 7, 11, 10].

> 1

Concerning the numerical strategy, here we aim to design and implement well-balanced
implicit-explicit Lagrange-projection schemes. So far Lagrange-Projection (LP) methods have
been studied for different mathematical models as the shallow water system [18] and related
models [14, 15], the gas dynamic equations [16, 17] and the blood flow system [22]. However,
up to our knowledge, they have never been employed to numerically approximate the two-
layer shallow water equations. Indeed, due the presence of two velocities u;, us, it is not
straightforward to understand how to apply the Lagrange-projection strategy to this system.
Indeed, a first idea could be to implement the LP approach for each layer and then to couple
them. However, it is known that a method that applies an arbitrary scheme to each layer
usually leads to the presence of oscillations in the numerical results [11]. In [13], the authors
described a first attempt to apply the Lagrange-projection strategy to a two-phase system, in
particular to the two-fluid two-pressure (or seven-equation) model. There, the coupling terms
of the system have not been considered directly inside the Lagrange-projection decomposition
but in a third step. In this work, we propose a different approach from the ones mentioned
above.

Moreover, we also consider a different interpretation of the Lagrange-projection approach,
namely the acoustic-transport splitting, refer again to the previous references. Indeed, by de-
composing the different phenomena of the mathematical model, we obtain two different sys-
tems, the acoustic and transport ones. For the former, we design an approximate Riemann
solver based on a relaxation approach and then the associated Godunov-type scheme is used.
We also explain how the resulting approximation can be exploited for the Lagrangian system.
Furthermore, let us recall that the acoustic-transport splitting (or equivalently the Lagrange-
projection decomposition) can be particularly interesting in subsonic regimes, where the acous-
tic waves are much faster than the transport ones. This means that an implicit approximation
applied to the acoustic system could lead to the construction of very fast numerical schemes as
we would neglect the acoustic time step condition. For this reason, we propose both an explicit
and an implicit strategy for the acoustic equations, while keeping an explicit approximation
for the transport step. For implicit-explicit Lagrange-projection methods refer for instance to
[19, 18].

Last but not least, we are interested in the well-balanced property of the numerical schemes,
meaning that the numerical methods are able to preserve the stationary solutions of the mathe-
matical model, at least for the so-called lake-at-rest solutions. Indeed, it is well-known that we
could otherwise observe spurious oscillations in the numerical results when close to a steady
state, refer for instance to [8, 14, 15, 18, 22, 26] and to [2, 25, 20, 5, 6, 4] for well-balanced
schemes with and without the Lagrange-projection decomposition respectively. Therefore,
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let us see which are the stationary solutions of the model. They are generally given by the
following relations

(hju; = q? = constant, with j=1,2
0
I + g(h1 4+ ha + 2) = constant
2h3 P (3.1.2)
¢
_22 + g(rhy + he + z) = constant.
\ 2h5

Here we are particularly interested in preserving only the steady states with zero velocity,
usually known as lake-at-rest stationary solutions, namely

uj =0, with j7=1,2
hy = constant (3.1.3)

ho + z = constant.

For fully well-balanced Lagrange-projection methods, refer to [8, 26].

Chapter outline. To conclude this section, we give a brief outline of the manuscript. In
section 3.2, we formulate the mathematical model (3.1.1) in Lagrangian coordinates and we
analyze a simplified version of it. In section 3.3, the acoustic-transport decomposition is pre-
sented, leading to the description of an approximate Riemann solver for the acoustic system.
Section 3.4 is devoted to the presentation of both the explicit and implicit-explicit numerical
strategies. In particular, the well-balanced property is proved in both cases. Finally, we show
numerical simulations and draw conclusions in sections 3.5 and 3.6 respectively.

3.2 Lagrangian coordinates

This section is devoted to the description of the mathematical model (3.1.1) in Lagrangian
coordinates. After the introduction of an arbitrary fluid particle located at £, the usual proce-
dure is to describe the corresponding characteristic curves. Hence, due to the presence of two
different velocities, one for each layer, it is convenient to define two different trajectories z;,
jJ = 1,2, such that

ax]’
z;(£,0) = ¢&.
As a consequence, we define the volume ratio L; (¢, t) for each layer as follows
oL;
Li(&t) = %(g, D) suchthat { gr &f = %600 (3.2.2)
o L;j(&0) =1

Then, any function : (z;,t) — ¢(x;,t) (associated to the jth trajectory) in Eulerian coordi-
nates can be expressed in Lagrangian coordinates,

PV 1) = p(x;(&, 1), 1)

This means that we have to introduce new additional variables. Indeed, we generally need to
distinguish between M (€, 1) = ¢(x1(£,1),t) and PP (€,1) = @(x5(€,1),t). Then, defining
the space and time derivatives

aﬁa(]) (57 t) - Lj (57 t)afgp(xﬁ t) and 8t¢(j) (57 t) - 81590(‘%]'7 t) + uj<$j7 t)amgO(mﬁ t)a
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3.2. Lagrangian coordinates

we are able to reformulate system (3.1.1) in Lagrangian coordinates as follows,

O (Ly )
&s(L (1)) + 05 + ghy L0k, = —ghy oz (3.2.3)
L) = B
9,(Lohs qu>) + 02 + grhs Lo,k = —ghy 0z,
) (h(J) 2

with pressures pg»j ) = g~2__ Observe that here we wrote the evolution equations for the

variables Ei”, Ei”aﬁ”, E;z) nd E % HQ but four additional equations would be needed for the

unknowns Ef), Ef)ﬂ?), Eél) nd h ). However, in the following we do an approximation
in order to be able to neglect such varlables. Indeed, after few manipulations and neglecting
the superscript when it is equal to the subscript, we obtain

(@(Llﬁl) — O
(L hlul) + 85])1 + gh1< 18552 + Llai(ﬁ(;) - Eg)) == —gﬁlag(l)
2
Or(Lahs) =
Ly, + 7@ 7T\ T 422
8t( h ) + 8§p2 + g?“hg I 8§h1 + L28m<h1 — hl) = —ghga§2}
1

At this stage, we do an approximation and assume the terms 0, (E;l) — hs) and 0, (E?) — hy)

to be null as at initial time we have h, ‘t:O = E?) |t:0 = hy(xz,t =0) and Ez}tzo = ES) |t:0 =
ho(z,t = 0). From a numerical point of view, this implies that we are approximating these
terms explicitly and at first-order of accuracy. Furthermore, we generally expect these two
terms to be rather small when the velocities ©; and us are close. Hence, from now on, we

consider the following Lagrangian system

(0,(Ly1hy) = 0
8t(Llﬁlﬂ1) + 8§p1 + ghl—aghg = —ghlafz( )
— 3.2.4
(L) = 529
@(L E Usg ) + 8§p2 + grhg—aghl —952852(2)
\
It is clear that further studies are required in order to include the unknowns E?), E?)E?),

Eél) and ES)@S) in system (3.2.3). More details about the Lagrange-projection decomposition

applied to the shallow water system can be found for instance in [26, 8].
Neglecting the bars over the unknowns, we reformulate equations (3.2.4) together with
system (3.2.2) in a more compact way,

OLQ + A(LQ)ILQ = S(LQ. =)

where
U 1
L, 0 Ll}“ — i 0 0 0
I 0 0 0 0 0 0
1h1 hi h1 Lihihg Lihy
Lo — Lihyuy A(LQ) — —9%, 9T, 0 —g=5= 9777 0
Lz 7 0 0 0 0 LZ?LQ _ﬁ
Lohgy 0 0 0 0 0 0
h2
Fahat Sorigt gt 0 e g O
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and
0

0

_ (1)
S(LQ.2) = | MO

0
_ghQagg@)

Moreover, observing that L;h; does not depend on time, we find

<o

D‘Il S

Lihj(€,t) = Lih;(€,0) = hj(£,0) = h] and consequently L; =

Y

<.

and as such B
Ly hY hy
Ly h5hy

1
Thus, defining the variables 7; = = we propose another formulation for system (3.2.4),

J

(@tho = 0
8t( 17'1) 0@1 = 0
hl 9 )
O (hiwr) + Ocp, + hoagpz — =0z
T1
9:hy =0
Oy (h9T9) — Ocu
h 9 4 -2
Oy (h9Us2) + OcPy + 12 o 20:p) = —=0¢=z
\ T2

or equivalently,
(

1
&ﬁl - magﬂl — O
1 1 g
Oty + —0cPy + 0Py = — 07V
tU1 + }i(l) fpl + hg §p2 h??l 52
at?g - m@gﬂz - O
2
1 T g
Oy + — 0Py + —0:Py = — 072
\ U2 + hg 5p2 =+ h(l) £p1 hg? 52
The matrix of the latter system reads
0 —3% 0 0
1
hi?aﬁpl 0 67—2]92 0
0 0 0 —% ’
2
hﬁgaﬁpl 0 87-2]?2 0

whose characteristic polynomial is given by

()\2 + aTlpl)(AQ 87-2}?2) . 8‘1‘1p1 87'2p2 o

(3.2.5)

n 2, mE,
Onpr . On Oy 1Oy
= A ( 2p1+ 2p2)A2 +(1- )#:/\4+(a1+a2)A2+(1—r)a1a2
hO,l hO 2 hO,lhO,Q
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3.3. Acoustic transport splitting

aTlpl hi’ o 87—2292 o hg

= —(——. Qo = — _g_
2 975 » Q2 2 2
hg 1 hg 1 hg o hg o

the eigenvalués are then given by

with o = and thus a7, ay < 0. It is easy to see that

A\ — i\/_@él + ag) + \/(041 + az)? —4(1 — r)ayan

ext 2 3

\E j:\/—(061 + ag) — \/(a1 +ag)? —4(1 —r)ajay

int 2

which can be proved to be always real. Indeed, we first observe that

(a1 4+ a)® —4(1 — r)agay = (g — ap)? + dragay > 0,

+

from which it follows that A=, are real. Regarding A}, it is enough to note that

—(ay + ag) — /(a1 + 22)? — 4(1 — r)ajay > 0

which holds true as ajay > 0. Thus it is interesting to remark that this simplified version of
the Lagrangian system has always real eigenvalues.

Finally, let us remark that, in systems (3.2.4) and (3.2.5), we still have z(*) and z(?), which
are generally different. However, since in section 3.4 we treat these topography source terms
explicitly, once again we do an approximation and simply assume 9;z(!) = 9:z(?) = 9;2.

3.3 Acoustic transport splitting

As it is already known, the Lagrange-projection splitting and the acoustic-transport one
can be interpreted as two different ways of describing the same kind of decomposition. Indeed,
it has already been illustrated the relation between the acoustic and Lagrangian numerical
approximation, see for instance the following papers applied to the shallow water system
[18], the gas dynamics equations [16] and the blood flow system [22]. Therefore, following
the lines of these works, we present the acoustic-transport splitting for the two-layer shallow
water model, as it will be useful for the development of the numerical strategy. Hence, we
decouple the different terms of the model, obtaining the acoustic and transport systems given
by
(0,1 + MOy = 0

h2
0t(h1u1) + hlulaxul -+ 833% + gh10xh2 = —ghlﬁxz

(3.3.1)
@hg + hgaxUQ =0
h2
K(%(hgﬂz) + thgaxUQ + Gx% + grhgﬁwhl = —ghgﬁmz
and
chl + ulaxhl =0
8t(h1u1) + ulﬁxhlul =0 (3‘3‘2)

8th2 + Ugaxhg =0
8t(h2u2) + UgathUQ =0

respectively. We also observe that the latter simply reads as 9,.X; + u;0,X; = 0 with X =
h, hu and j = 1, 2. On the other hand, after few computations, system (3.3.1) can be reformu-
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lated as
(8th1 + hla Uy = 0

(]h2
U7 hl

8th2 + hg&qu =0

1 h2
Opuny + —(919—2 + grohy = —g0,z
\ h2 2

and again
'&m — 7‘18 Uy = 0
Oy + 110, 292 + 7'28 = —g0,z
TS
8t7'2 Tga UQ =0

Oy + 7‘718 —|— 7'28 = —g0,z.
\ 73

(3.3.3)

1
where we have introduced the variables 7; = 7 J = 1,2. It is then evident the similarity

j
between the Lagrangian system (3.2.5) and the acoustic equations (3.3.3).

Next, a first difficulty is related to the fact that usually the mass variable m is introduced
for the acoustic system at this stage, see for instance the previous references [18, 16, 22]. For

example, in the shallow water system, this new variable m is defined such that 9,, = —0, with

h the water height. Subsequently, it allows to obtain a conservation form of the equations (at
least when there is no source term), making easier the definition of the numerical strategy.
However, having in this case two different water heights h; and hs, it is not clear how to
include such a device and thus, we do not consider it here.

Since we do not know the general exact solution of a Riemann Problem (RP) associated
with the acoustic system (3.3.3), we look for an approximate Riemann solver. In order to be
able to define it, it is convenient to start by applying a linearization of the non-linear terms
present in the equations. Therefore, considering the following form for the acoustic system

(@ﬁ 7'18 Uy = 0
Opuy + 8 + a = —g0,%
n 2 (3.3.4)
8tr2 — 7'28 UQ = 0
8tu2 + 7”8 + 8 = —g0,2,
71 T2

we introduce the relaxation parameter A and two new variables C;, C, such that they satisfy
1 1
limC, = g— =ghy and 1limCy=g— = ghs (3.3.5)

e—0 e—0 To

at least formally. Hence, we are able to define the following relaxation system

(8,57'1 — Tlﬁmul =0
ﬁtul + (91(/’1 -+ &ECQ = —g@mz

8157'2 — 7'2(9 U = 0

Opug + 10,Cy + 0,Co = —g0, 2. (3.3.6)
1 1
atC1 + a%@xul =—\g— — Cl
g T1
) 1/ 1
&Cz + CLQGxUQ =—\9— — CQ
g T2

where a1, as are constant parameters.
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3.3. Acoustic transport splitting

Proposition 1. The relaxation system (3.3.6) is stable under the sub-characteristic condition
ajz >t =ghj,j=1,2.

Proof. To prove it, we start by writing the following first-order correction for C;,

1
Ci=yg—+ e+ 0(e?), (3.3.7)
j

which we insert into the evolution equations for C;, obtaining

) 1 1 1
V1 0(e) = 99+ @50t = =90, + @500t = (—gT—j +a5)0:u;. (338)
J

Afterwards, neglecting the source term, we consider relations (3.3.8) together with equations
(3.3.6), which lead to the following system

OHW + E(W)9,W = €9, (D(W)9, W) + O(£?)

with W = (Tl,ul,TQ,UQ)T and

0 0 0 0

0 _ql 2 0 —qgt 2
D(W) = |, ng0+ T g720+ N

0 r(-=g=+a}) 0 —g= +a3

Finally, we need to impose that D(W) is a diffusion matrix, namely that its eigenvalues are

non-negative. From this condition, we obtain the following sub-characteristic conditions a> >

ghj. [

Moreover, since we assume C; to be well-prepared in the sense that C;(z,t = 0) =

ghj(z,t = 0), we neglect the source terms X(g— — C;) in the evolution equations for C,.
7—,

J
Then, we rewrite system (3.3.6) in a more compact form as

9,U + A(U)9,U = §(U, z)

T
where U = (71, u1, T2, ug,C1,Ca)",

0O —77m 0 0 0 O 0
00 0 0 11 — g0,z
o 0 0 - 00 - o
A(U) = 00 0 0 r 1 and S(U,z) = g0,
0 a2 0 0 00 0
0 0 0 a2 00 0

and then we find its characteristic polynomial
N = (a] + a3)\* + (1 —r)aia3).

Its roots are given by Ay = 0,

. i\/a% + a3+ /@l T )P = A0 - i}

exrt 9 (339)
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and

\/a% + a3 —\/(a? + a?)? — 4(1 — r)a2a?
5 )
where once again it can be easily proved that the eigenvalues are always real since we assume
the water heights to be positive. Moreover, it is also clear that the eigenvalues are ordered a
priori, namely
Aewt < iy

ext int

<X=0< X\, <\

int ext:

Subsequently, we look for the right eigenvectors of form
R — (Tla T2,T3,T4,T5, r6)t'

Then, associated with the zero eigenvalue )y, we easily obtain

1 0
0 0
0 1
o= (0] me= (0]
0 0
0 0
otherwise we have
1
B A
T
A
R =| -~
7'26
a
T1
a3
T2
2 )\2
for A\ = A%,, A%, and where 3 = Ea—; (—2 — 1>. Finally, few computations give us the

Riemann invariants. Across the zero-discontinuity we get
Ao — o, Ao o
R[S = u;, RI)=C;

while for the other waves with speed A # 0,

a )\2
Uj, RI%J:C]'—FCL?IHTJ', RI%ZCQ—F <1__2>Cl

2
Ao
Rll’j_cj A aj

3.3.1 Approximate Riemann solver for the acoustic system

Here, we look for the approximate solution of the Riemann problem associated with system
(3.3.6) and the following initial conditions

U(z,t =0) = Uy if z <0 (3.3.10)
Ug if >0
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3.3. Acoustic transport splitting

Figure 3.2: Sketch of the approximate solution for the Riemann problem.

where

Ug

T1,L
U1,
T2,L
U2, L,
Ciz
Cor

and Upr =

T1,R

T2,R

Since we have five discontinuities, the solution of the Riemann problem consists of six sepa-

rated states, namely

where, in particular,

*
TL,L
*
Uy g,
*
-
* 2,L
UL - *
Uo 1,
*
1,L
*
2,L

¥

U, if
U; if
U, if
U, if
Ui if
| Up if
U, =

% < )‘e_mt

I

ext

AT

wnt

A

wnt

t

*
TLR
*
Uy R
*
To.R
*
Us R
*
1,R

*
2.R

<
/\0<%<>\{r
<§<)\
TS \F

+18 |8

< o

wnt

ext

U, =

< A\

int

+

ext

(3.3.11)

(3.3.12)

refer also to figure 3.2. Due to the fact that a; are constant, it is clear that characteristic fields
associated with the eigenvalues are linearly degenerate and, thus, that all the waves are contact
discontinuities. Therefore, in order to find the Riemann solution, we can exploit the Riemann
invariants or equivalently the Rankine-Hugoniot jump conditions.

We highlight that the star values for u; and C; can be found without exploiting the ones
for 7;. Therefore, for the sake of conciseness and since in the numerical strategies we only
need the star states for u; and C;, here we do not include the definitions for the star values for
7; but they can be found in an analogous way.
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Starting with the jump conditions across the zero-discontinuity and including the topog-
raphy in the solver, we impose

Cl,_R_Cl,_L—i_CQ,]i_CQ,[;—i_M :0
r(Cir—Cip) +Cop—Cop + M =0

where M = Az{g0,z} is a function that has to be defined but it should be zero when z;, = zp.
Thus, we simply ask for

M =g(zr — 21).

As far as the other waves are concerned, from the Riemann invariants presented in the previous
section, we get the following conditions associated with \_,

2 a2
Cip — ——ujr =Clp— —u, with j=1,2
7 )‘gxt 7 ’ /\;xt
) Acat)”\ o Az
2,L+(1_( )’ )Cip=Cor + (1 - ( t) —5=)C11,
af aj
associated with A\, ,
a? — a? ,
C;,L - Tju;L = Cj,L - Tjﬂ; Wlth ] - ]_, 2
)\'mt )\int

or +(1— agt )i =Cor +(1— azt )C1,
1 1

associated with \;" .

2 2

* a] * % CL . .
ij—)\TujR:CjR /\+u with j=1,2
hya b
;R+(1 ( znt) )C*R_62R+(1_ ( mt) )Cl>
7 ag a

and finally associated with \,

a? a2
Cir /\TujR:Cj,R )\+ ——ujp with j=1,2
ext
) Adot)® | e Agrt)”
op+ (1— ( azt) )Cir=Cor+(1— ( azt) )C1,R-
1 1

Since we had 16 unknowns and we found 16 relations, we are able to solve the resulting system.
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3.4. Numerical approximation

Thus, after some computations, we can explicitly write the star states as follows,

( a2 — ()\f )2 a2
C* _ C - 1 nt C - C o 1 C - C
= Cunm g e = oy (Con ~ €)= S = gy (G — Co M U)
P b U1 1) (c _c )+ % (c _c +M—u)
OGS OGN T T A0 = R TT
C + C 9 nt 9 u nt
=+ Lirtlin 4 _ ay
IR Teap S Ay
_ a% - ()‘:xt)Q 2 + 32 2
Cor=Cortogr— AT <(@1 — (ANi) ) (Cir — Cir) +ai(Cop — Cop + M+ U))
2&1(()£ezt)(/\: ()éznt) )
* ai — ext 2 2 2
G = Cou=sani s o (@ — (M) Cun = Cua) + 6 (Con = Con + M=)
-+ Cor+Cyp a3 1 (af — (\L)2U
Cr= =5 AT (o = uz) 200 A+ A
—% —=% M
CQ,R = Cz - 7
—% —=% M
CQ,L == CQ + 7
. B - Sy VIR U T
’ T2((ME)? - (A2 af
Art (M)’
* — . ex IC— 1 _ nt ]Cf
e (A TAE L R
. wpturn AL P+ M
Uy = — == 5 (Cr—CiL) — s~
2 2 2(\ Al
CL){+ a2 _ ()\(+ 63% + mt) ()\+ )2
Uy = Usp + e (K A M+ (1 - K
7 2((Aet)? — (Nine)?) as aj
U* U + A:mt CL% - ()\:xt)Q (}Cf + M + (1 (A;;Lt)Q)’Cf)
= ,L _—
R s B AU
_« U rptusp int ay ext +
p— ? 2 _— _— h— 1 —
S 7 B ETO AR

(3.3.13)
where the following quantities were introduced to lighten the formulas
a? a? — (\F.)? AT )2
U= )\TQ(UZ,R_UQ,L)‘F%(ul,R_ul,L)y P = CQ,R_CZ,L"'(l_%)(Cl,R_CLL)a

ext ext 1

and
2

+r_o B OV
ICj = LR CJ,L:':)\+ (uj,r — ujL)-

ext

3.4 Numerical approximation

Before describing the numerical scheme, it is necessary to give some details about the space
and time discretizations. We start by defining the constant space step Ax and the time step
At. Then, the mesh interfaces are given by z;,,/» = iAx for i € Z and the intermediate
times by ¢ = nAt for n € IN. As far as the variable ¢ is concerned, we use the same space
discretization of &, hence A{ = Aw, §i11/2 = i1/ and & = x; Vi.

Concerning the numerical strategy, since we have two different steps (Lagrangian and
projection) or systems (acoustic and transport), the numerical method is composed of two
stages as well:

1. Update Q" to Q"*'~ by solving the acoustic or Lagrangian system;
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Chapter 3. IMEX LP scheme for two-layer shallow water equations

2. Exploit Q"' to solve either the transport system or the projection step and find Q" .
Finally, we highlight that we will present both an explicit and implicit approximation of the
first step. Clearly, depending on which formulation we use, also the Courant-Friedrichs-Lewy
(CFL) condition [28] on the time step changes. Indeed, in general for the acoustic step we ask

for A )
x
At < == (3.4.1)
2 m?X{)‘:xt,iH/z}
with A}, given by (3.3.9), while in the case of the transport stage we impose
A 1
At< 22 — for j=1,2 (3.4.2)
2 m?X{(Uj,i—l/Q) - (uj,i+1/2) }
with (@}, )" = max(uj, ,,,0) and (@, )" = min(uj,,, ,0). Then, the final time

step should be taken as the minimum between the two. However, if we use an implicit ap-
proximation for the Lagrangian step, we could neglect condition (3.4.1) and exploit only the
transport one (3.4.2).

3.4.1 Explicit approximation of the acoustic-Lagrangian system

Considering the Godunov method associated with the approximate Riemann solver of the
previous section 3.3.1, the updating formula is given by

U?Hi :U? - E A;Zi—l/z(U? - *R,i71/2> + A:;Zz‘—yz(Uj%,i—l/z - Uz,iflﬂ)*’

+ )‘;ZiH/Q(U? - *L,i+1/2) + A$Z¢+1/2<Uz,i+1/2 - U*L,z'+1/2)>

At
( (3.4.3)

which is simply given by a juxtaposition of the approximate solutions of the Riemann problems
locally defined at each interface, refer for instance to [28].

As far as the acoustic system is concerned, to update the variables h;, hu;, we could use
the Godunov method, namely (3.4.3). In practice, since we would like to use the Lagrangian
variables, we do the following. Indeed, we find u?“f using formula (3.4.3), then for the water
heights we simply exploit

Lh?jl = Lh}, =R},
and finally we state

Lh?;rl_u;fjl_ = Lh;iqul_ = h?lu;‘j'l_

Thus, we do not actually use the Godunov updating formula for the evolution equations for
T;H_l_, namely 0,7; — 7;0,u; = 0, but only for the equations for the velocities, which are
written in conservative form. Indeed, we could also observe that their updating formula can
be reformulated using the numerical fluxes. Hence, together with the evolution equations for

C;, we state

.
W = R~ T Tl Tl ya) + A 2T
Y : N - . |
A (R A R A A B e
A
C{L,;rl_ = ﬁi_%_;(a%,wrlﬂﬂ?;‘:_lﬂ - a%,i71/2ﬂ??—1/2) + u?,i%(‘liiﬂ/z - aiifl/Q)
\Cg;rli - ;i_A_;(GZ,i+1/2E;:?+1/2 - a2,i71/2ﬂ;:?—1/2) + ug,iA_;<ag,i+1/2 - ag,i71/2>

(3.4.4)
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3.4. Numerical approximation

Ziv1 — Zi
1™ Then, it is straightforward to write the Lagrangian system ap-

where Si+1/2 = _gA—x

proximation,

'(Lh)’fjl— = h?,i
nal— n n At —*,n —*,n —*,n —*,M
(LhU)J1 = (hu)y,; — hl,z’ﬂ<cl,i+1/2 —Cllic12 +Coliprya = Coliiyo)t
Siv12 + Si—1/2

+hi At
’ 3.4.5
(LR = B, 049
n _ n n At —=*,n =*,n =*n =*,n
(Lhu)zjl = (hu>2,i - hQ,iA_x(T(Cl,z’—i—l/Q - Cl,z’—l/Z) + CQ,H—I/Q - CQ,i—1/2)+
4B A Siv1/2 + Si—1/2
2.

\

2

Let us observe that this discretization (3.4.5) is indeed consistent with system (3.2.4) as

Cj:i+1/2 - Cj:z'fl/Q
Ag

that a natural explicit discretization for L; (&, t) is as follows,

approximates 0:C; and therefore O¢(gh;). From system (3.2.2), we remark

At

n+l— _ r1n —%,n —*n . n __
Ly =L+ @, —wny) with L =1. (3.4.6)
n .
Thus, it is clear that we can do the following approximation: L,
Ly,

Lastly, we can conclude observing that this numerical approximation of the acoustic (La-
grangian) system can be interpreted as a path-conservative numerical method. Indeed, the
choice of the path is naturally driven by the presence of the linearly degenerate characteristic
fields associated with the eigenvalues of the relaxation system (3.3.6). While, for the topogra-
phy z, the segment path is considered in order to ensure the well-balanced property.

3.4.2 Implicit approximation of the acoustic-Lagrangian system

In order to have an implicit discretization for the Lagrangian step, the idea is to simply
exploit the star values of the approximate Riemann solver computed at time "1~ instead
of t". As a consequence, we would get a linear system which could be numerically solved,
allowing us to obtain u} ™'~ C}"*'~. We highlight that at this stage we do not need the values
T;-Hl_, whose approximation could increase the complexity of the numerical method, giving
a non-linear system and increasing the computational cost. Thus, the implicit approximation

of the acoustic system reads

)
A = - L@ - O - Ty A S
% - B . . . .
W =y — S rC s — )+ O — ) + A 3 o
At
Cri = fz‘_A_t(aiHl/ﬂ??:ll/g - aii—l/ﬂ:fjll/;) * uﬁrl_%(ai“m " i)
; t
Cyltm =05, - E(ag,wlﬂﬂ;:?:ll/; - ag,ifl/ﬂ;:?jll/;) * uS’J’rl_Emg’iHﬂ )
(3.4.7)

System (3.4.7) can be reformulated as a linear system of form
%
AY=T+7F (3.4.8)
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where, in our case,

Y=

n+l— , n+l— ~on+l— ~n+l-— n+l—  n+l— ~n+l— ~n+l-— ntl—  ntl— pntl— snt+l—\T
( 7C11 7C21 ’ 7C1i 7C2,i ¢ C2M ) ’

Uyl »U2y ceen Uy s Uy R YARICON VAL S W VA
- T
_ n n n n n n n n n n n n
b = (Ul,h Ug1sC115 0215 -5 Wy g U, Uy s Loy o ooy Uy ppy U gy b1 s 2,M) )
At5i+1/2 + Si1/2
2
At52'+1/2 +Sic1/2
2
2 2 A
7 _ At a1,1+1/25i+1/2 al,i71/252—1/2
2 +,n +,n +n +,n
)\ext,i+1/2 + )\int,i+l/2 )\ext,i—l/2 + Aint,i—l/?
2 +,1\2 2 +.1m42
g ay — (Aemt) S N (Aea:t) S - (()\4‘7”5') _ ()\4‘7"5’) )
9 At bn Atn g En int P )i+1/2 int 2 /)i—1/2
ext int i+1/2 ext nt i—1/2

and the matrix A defined consequently, see also appendix 3.A for more details. Thus, in each
line of our matrix A, we only have 12 entries which could be different from zero. Therefore,
even if the matrix dimension is large (4M x 4M, M number of cells), since the matrix is sparse,
the computational cost is not too high to solve the linear system.

Then, the variables Lh; and Lhu; would be updated as explained in the previous section
3.4.1, getting the following implicit approximation

( n — n
(Lh)Lerl =Ny I
ntl— n n At —x,n+l— Sxnt+l— n ﬁjr[L,z‘ At —*n+1— Sxntl-—
(Lhu)Jl = (hu)l,i - 1,iA_w(Cl,i+1/2 - Cl,i—l/?)_ 1,iL_nA_x(CQ,i+1/2 - Cz,z‘—1/2)+
2,
Sit1/2 + Sic1/2
2

YA
(Lh)s;'™ = hy,

At n+l—  Zkntl— Lg JAN ARSI - n+1—
Lhw)i+ = = (hu)?,—h2,—(C, ., — Co _ppn 22 20 e G
( U)Q,z ( u)2,7, 2”A$( 2,i+1/2 2,1—1/2) r 271L7f,i Aa:( 1,i+1/2 1,1—1/2)

L AtSiJrl/Z + Si—1/2
2,
\ ’ 2

(3.4.9)

L
Let us observe that the approximation of the ratio — in the evolution equations for (Lhu);, (Lhu)s

2
n

is kept explicit in order to have a simpler discretization, namely L—:Ll =1
2,i

3.4.3 Transport-projection step

Let us finally see how to discretize the transport system or projection step. The two ap-
proximations will be very similar, still different.

Regarding the former, since we have two sets of two equations of form 9, X; +;0,X; = 0
with X = h;, hju; and j = 1,2, we observe that

O X+ 10, X5 = 0 X5 = X005 + 0, (Xu); = 0,
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x;i—1/2<T) 5’7;1#1/2@)

xj(éj,i—l/g(T),t) z;(&i1/25t)

t=20
2 | 2 |
§im1/2(T) &i—12 $ir1/2(T) &it1)2

Figure 3.3: Sketch of the connection between Lagrangian and Eulerian coordinates.

thus we simply exploit the following explicit approximation

At At
n+1 n+1— —% —% T 1— 1—
Xj,z'+ = Xj,j (1+ A_x(uj,z‘H/Q - Uj7¢—1/2)) - A_.x( ]z+1/2X +% jz 1/2X m )

In particular, the latter discretization is equivalent to

. . At el n
X = (LX) E(uwﬂﬂx.*1 Ui X01) (3.4.10)

1
Jyitg Z—§

where we used an explicit upwind discretization for X7 :rl /o> namely

— ] i+1/2 =
Jii+1/2 7 n+l— .
it df

el X b w >0
MH/Q < 0.

Next, let us move on to the projection step discretization. In order to be able to explain it, it
is convenient to give few details about the link between Eulerian and Lagrangian coordinates,
for which we also refer to figure 3.3. Pointing out that we use the index j for the layer and ¢
for the cell of the mesh, we define £ Gt (t) such that Vi

~

(€2 (T),T) =201, with T >0,
where the corresponding trajectories are given by

aa? (€01 (T)5) = wy(w; (& 1(T), 1), 1)

Lj (gj,i—s—% (T)7 0) - éj,i—}-% (T)

~

Therefore, it is easy to obtain the following approximation x; 1= §jivst Atu e Similarly,

41
+3

*n+1 * * ¢ — i
we also find i Tip1+ Atujﬂ,% and thus Tipd ~ T 1= §jitt EH%. Movmg to the

integrals of the Var1ables, we can change coordinates as follows,

z;j(&5,rst) i
[ Xtwnde = [ L6 0% e

5 (€5,15t) &

leading to

1 [Td 1 (ot 1[Gl —
Xl = 57 [ = g [ I ae = g [P e 06 e
X, Tj i % N B
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Therefore, splitting the integrals in three parts

1 € 1 - 1
X = / L€ TR (6 e

1

Az
1 EiJr% n+1—\y n+1— 1 éj’“L% n+l—\v ntl—
t Li(& ) X6 ) dE + Ly(&,1"717) X5 (€, 171 de.
X gli% T §L+%
(3.4.12)
and approximating them, we obtain
n+1 n+l- At —k n+1—
X7 = (LX)} E( Jz+1/2(LX)]H_1 - uj,i—l/Z(LX)j’i_%) (3.4.13)

where

n+1—
(LX), = {(LX) i, Tenn 20
J (LX) i @, <0

Jyi+1 j,i+1/

Vi. For a similar procedure applied to the shallow water system or the blood flow equations,
see [26] and [22] respectively. Hence, the only difference between formulation (3.4.10) and
(3.4.13) is related to the use of the variable X or LX in the definition of the numerical fluxes.
Observe that, in the numerical simulations, we always use formulation (3.4.13).

3.4.4 Properties of the numerical scheme

Considering the explicit and implicit Lagrangian approximations, (3.4.5) and (3.4.9), and
the projection formulation (3.4.13), we can find an overall approximation for the two-layer
shallow water system (3.1.1),

( n n At —*7# n+1l-— —*, 7 n
hlJirl =hi; — E( 11+1/2<Lh) e — Ui 1/2(Lh) J:E)
n 0 Al — o+ # o #
(hu)t it = (hu)},—hY, Ay (Cl,i+1/2 —Ciilapt Cz ir1y2 — Coyi1p2)+
At 4 a1 _*,# n n oA Sik1j2 T Sic1y2
A T Ar (@, z+1/2(Lh)1ji 1/2(Lh) i ) + hy At 5
n n t —*,# n+l— —%, 7 n
hyt' = 24 E( 21+1/2<Lh) e T Uy 1/2(Lh)2j_17)
n n At ) *# Veidiia
(hu)stt = (hu)s, hzzA (r (Cl,i+1/2 - Cl,i71/2) + Cz ir12 — Coil1ya)-
At 4 il n w12 T Siciy
\ _A (UZ 2+1/2(Lh)2;—i1 u27, 1/2(Lh) +1 ) + h2 zAt .

(3.4.14)
with either # = n or # = n + 1— depending on the explicit and implicit approximation.

Remark 3. The numerical approximation (3.4.14) preserves the positivity of the water heights
hi, hy. Indeed, it is enough to exploit the CFL condition (3.4.2) to prove it.

Theorem 1. The numerical approximation (3.4.14) with star values (3.3.13) is well-balanced in
the sense that it preserves the stationary solution (3.1.3).

Proof. We assume that the stationary solution (3.1.3) is satisfied at time ¢", namely u], = 0,

hi; = hi;and hy,;+2; = hy ;1 + 241 Vi. We want to prove that h"+1 = h},and (hu)"+1
(hu)j, for j =1,2 and V.

Then, first of all we consider the explicit approximation. Since Cy;11 — Co; + M =
g(hgiy1 — ha; + zip1 — %) = 0 and uj; = 0 by hypothesis, it is straightforward to see
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that ﬂlziflﬂ = ﬂQZi—l/? = 0. Similarly we get Cl,7i+1/2 = C;, and (327’2.“/2 = % Ob-

serving that Cy7\, p — Cylyjp = M, we get bt = BT = Ry, and (b))}t =
(hu)?jl_ = (hu)},; for j = 1,2 and Vi. Thus, we proved that the explicit approximation
is well-balanced. Let us now move to the implicit one. The heart of the proof is to show
that, when we are under the lake at rest condition, system (3.4.7) can be reformulated as
AU~ = AU" (with a matrix A) which would lead to the conclusion of the proof. Indeed,
it is easy to see such a thing as u}}; = 0 Vi, for j = 1,2 while for the water heights we have

n __ n n n __ y

3.5 Numerical simulations

In the following, we are interested in comparing the numerical results of the four following
numerical schemes:

« "[FCP" (Intermediate Field Capturing Parabola) method applied to the two-layer shallow
water system (3.1.1), for which we refer to [23];

« "LP-ARS" scheme, for which we use the explicit acoustic approximation described in
section 3.4.1 and the transport discretization (3.4.13);

« "LP-ARS-IMP" method, for which we use the implicit acoustic approximation described
in section 3.4.2 and the transport discretization (3.4.13);

« "LP-HLL" scheme, where once again we use the transport discretization (3.4.13) but we
approximate the Lagrangian step by applying the HLL strategy to the Lagrangian system
(3.2.4), see for instance [28] or appendix 3.B.

Observe that the IFCP solutions are taken as a reference to establish if the proposed nu-
merical strategies can be considered satisfying.

Furthermore, we use » = 0.98 and transmissive boundary conditions. As far as the LP-
ARS-IMP method is concerned, we consider both the acoustic (3.4.1) and transport (3.4.2) CFL
conditions with CFL = 0.5, unless otherwise stated. Finally, we point out that for all the
numerical simulations, we exploited MATLAB language with a single Intel Core i7 CPU.

3.5.1 Riemann problems

Using M = 200 cells, we start by considering academic test cases, namely two Riemann
problems with flat topography.

RP 1. Taking into account a channel of length L = 10 m, we consider a dam-break problem
for the interface. More explicitly, we take the following initial data, u, (z,t = 0) = 0, ug(x,t =
0) =0 and

hl,L - 02, hl,R - 08, h27L - 08, h27R - 02,

refer also to [23] for more details about this and the following Riemann problem.

In figure 3.4, we show the results for the water heights h,, hs and fluxes ¢;, g2 using the
four above-mentioned methods. In general, we observe that all the schemes give analogous
solutions, where the IFCP and LP-HLL methods are the less and the most diffusive respectively.
It is not surprising the difference in accuracy between the IFCP and the LP-HLL schemes, as
the HLL strategy neglects the internal waves. Nevertheless, refining the mesh, we observed
that the LP-HLL solution seems to converge towards the reference output. On the other hand,
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Figure 3.4: RP 1 of section 3.5.1: water height hq, hs (left) and discharge g1, g2 (right). IFCP (red), LP-ARS (blue),
LP-ARS-IMP (magenta) and LP-HLL (black) outputs obtained with M = 200 cells at time ¢t = 10 s.

0.3 ‘ ——LP-ARS
0.25¢ ——LP-ARS-IMP

0.15¢

Error h1

0.1

! !

1072 107! 10° 10’
CPU

Figure 3.5: RP 1 of section 3.5.1: CPU against error in norm L' for the variable h (log scale). Mesh of size
M = (64,128,256, 512). LP-ARS (blue line) and LP-ARS-IMP (red line) schemes.

98



3.5. Numerical simulations

Time : 5.0000s
1.0002
— 258
— (9]
£ 1.0001 3
- 2499+
+ ;
< T 248t
; 9
09999 g
> 0497t
09998 1 o
40 50 60 70 80 40 50 60 70 80
Space x [m] Space x [m]
—|FCP
— |FCP 2506 - .
_ —o—LP-ARS LP-ARS
gN 049 e LPARSIP g ——LP-ARS-IMP
c £ 2504 ——LP-HLL
= 048+ —LPHLL "
o S
[0} 2
T 047f £
o) S 2502f
2 0467 >
045 I I s 25
40 50 60 70 80 50 55 60 65 70 75
Space x [m] Space x [m]

Figure 3.6: RP 2 of section 3.5.1: free surface hy + ho, water height ho (left) and velocity uy, us (right). IFCP (red),
LP-ARS (blue), LP-ARS-IMP (magenta) and LP-HLL (black) outputs obtained with M = 200 cells at time t = 5 s.

is it important to highlight that the LP-ARS method gives results very close to the IFCP ones.
Moreover, since we have used the same time step, the LP-ARS-IMP outputs are only slightly
more diffusive than the LP-ARS ones. Let us conclude observing that we could have used
a much larger time step for the implicit method as we are in a sub-critical regime. For this
reason, we now consider a series of meshes (M = 64, 128, 256, 512 cells) in order to compare
the efficiency of the two methods. Thus, for the implicit LP-ARS-IMP method, we only use
the transport CFL condition (3.4.2) and neglect the acoustic one (3.4.1). Then, we compute the
reference solution with the IFCP method and M = 2048 cells. Finally, in table 3.1, we insert
the errors in norm L' while, in table 3.2, we show the computational times. For the sake of
completeness, we also insert the efficiency curve in log scale in figure 3.5. As expected, the
errors of the LP-ARS-IMP scheme are slightly greater than those of the LP-ARS method. On
the other hand, we immediately see that the LP-ARS-IMP scheme allows faster simulations.
Hence, we may conclude that the implicit-explicit method is more efficient than the explicit
one. However, this is only true if we do not refine the mesh too much, otherwise the LP-ARS
scheme could become the more efficient method between the two.

RP 2. As a second test, we consider a channel of length L = 100 with discontinuity in the
middle. The initial conditions for the water heights are given by

hl,L - 057 hl,R - 055, h27L - 05, hQ’R - 0457
while for the fluxes we state

q1,L = 125, d1,R = 1375, q2.L = 125, 4d2.rR = 1125,
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Error (L) of h; Error (L) of ¢y Error (L1) of ho Error (L) of ¢o
Mesh LP-ARS LP-ARS-IMP LP-ARS LP-ARS-IMP LP-ARS LP-ARS-IMP LP-ARS LP-ARS-IMP
64 0.2630 0.3063 0.0561 0.0661 0.2604 0.3038 0.0556 0.0657
128 0.1714 0.2169 0.0367 0.0467 0.1697 0.2143 0.0364 0.0458
256 0.1059 0.1440 0.0230 0.0312 0.1048 0.1429 0.0227 0.0311
512 0.0605 0.0900 0.0134 0.0204 0.0598 0.0891 0.0132 0.0202

Table 3.1: Errors in norm L' of the variables hj, q; = hju; with j = 1, 2 using LP-ARS and LP-ARS-IMP schemes.
Meshes of size M = (64, 128,256, 512) cells.

Method M=64 M=128 M =256 M =512
LP-ARS 0.213301  0.588727 1.907348  6.749875

LP-ARS-IMP  0.0319 0.1070 0.5477 3.4986

Table 3.2: Computational times in seconds for LP-ARS and LP-ARS-IMP schemes with meshes of size M =
(64,128,256, 512) cells.

see again [23]. Then, figure 3.6 shows the different outputs which generally confirms what we
have observed for the previous Riemann problem. The solutions are in agreement with the
ones presented in [23].

3.5.2 Stationary solution and perturbation

Next, we numerically verify that our numerical strategy is indeed well-balanced in the
sense that it preserves the stationary solution (3.1.3). Thus, we take . = 1m and as initial
condition we consider the following steady state

hi(z,t=0)=1, ho(z,t=0)+2(zx)=1, w(zr,t=0)=0, wug(z,t=0)=0, (3.5.1)

where

(14 cos(r%582)) if 04<z<06

1
2
0 otherwise.

z(x) =

Our numerical methods are indeed able to preserve this stationary solution up to a machine
error of order 107! computed in the L> norm using ¢ = 5s as ending time and the initial
condition as exact solution.

Let us now introduce a small perturbation in the steady state, namely

14107° if 01<x<0.2

1 otherwise.

In figure 3.7, we show the LP-ARS results at different times and we observe that the pertur-
bations propagate away, so that we are able to recover the zero-velocity steady state (3.5.1).
Indeed, the outputs are in agreement with the ones presented in [3]. We did not include the
solutions for the other schemes as they are analogous. However, it is interesting to observe
that LP-HLL solution is almost identical to the LP-ARS one, while the LP-ARS-IMP output is
more diffusive even if we use the same CFL condition.

100



3.5. Numerical simulations

12 2.00001 - s
1 2000008 | 03
t=0.4s

08 'E’ 2.000006 F —1=0.125

T —1+h, =

E K =0.18s

206 — + 2.000004 /’\ [‘\

+ :"

N +

04 N 2.000002% l

02 2=

0 L L J 1999998 1 L L L L L L L Il I
0 02 04 06 08 1 0 01 02 03 04 05 06 07 08 09 1

Space x [m] Space x [m]

Figure 3.7: Evolution of the perturbation in the lake at rest steady state, section 3.5.2. On the left, LP-ARS solution
for hy+ 2z (blue) and topography z (red). On the right, LP-ARS solution for the free surface i + hy + 2 for different
times: t = 0 (blue), t = 0.02 (red), ¢t = 0.04 (yellow), ¢t = 0.12 (violet), t = 0.18 (green). M = 200 cells.

3.5.3 Transcritical non-smooth stationary solution

In this section, we aim to verify that our schemes are able to recover a transcritical non-
smooth stationary solution if proper steady boundary conditions are imposed. We refer the
reader to [9] for further details on this simulation. As a second step, we will also introduce
some perturbations in the resulting steady state.

Thus, let us consider a channel of length L = 10 m and the following initial conditions

0.5 it <5
(hu)j(z,t = 0) =0, (e, =0) = {0.001 otherwise,
2(x) = 1+ 0.5z~ and finally hy(z,t = 0) = 2 — (hy(z,t = 0) + z(x)). Then, for the
boundary conditions we impose (hu)s = —(hu); on both sides and hy(x = L,t) 4+ ha(x =
L,t) + z(x = L) = 2 at the end of the channel. Referring to [23], the flow is sub-critical for
x > b while for < 5 is supercritical at the beginning and then it becomes sub-critical as
well. Thus, it is clear that at x = 5 there is a critical flow.

Then, in figure 3.8, we include the results and compare the different outputs found for
hs 4+ z at time ¢ = 1000 s. First of all, we generally observe that all the numerical schemes
are able to recover the aimed non-smooth stationary solution even if some differences in the
shock position and the left state value are present for the same mesh value M = 350 cells.
However, we remarked that the [FCP numerical solution oscillates during the simulation. This
is indeed natural as the internal eigenvalues can become complex in a small area of the su-
percritical region. On the other hand, unphysical oscillations are not observed when using
the LP-ARS and LP-ARS-IMP schemes, probably partly related to the fact that the eigenvalues
of the acoustic system are always real. Moreover, also the LP-HLL gives a solution without
spurious oscillations. However, this is not surprising as the method neglect the middle waves
of the mathematical model. Indeed, we can observe that the LP-HLL output is much more
diffusive than the others.

Finally, since the regime is partly sub-critical, for the implicit scheme we could use a larger
time step. On the right hand side of figure 3.8, we show the LP-ARS-IMP solution computed
with a time step taken as the minimum between the transport and the acoustic time steps,
where the latter is computed using as CFL values CFL = 0.5,2.5, 5 (observe that in formula
(3.4.1) we directly used CFL = 0.5). Thus, once again, the solutions seem correct with some
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Method M =44 M =88 M =175 M = 350
LP-ARS 8.103190 25.550884 100.167893  363.242909

LP-ARS-IMP  1.666153  4.393538  34.577729  219.775353

Table 3.3: Computational times in seconds for LP-ARS and LP-ARS-IMP schemes with meshes of size M =
(44,88,175, 350) cells.

differences in the left state value. Then, in table 3.3, for different mesh values, we also include
the computational times of the LP-ARS and LP-ARS-IMP schemes, where for the latter we use
CFL = 5 for the acoustic time step condition. Once again, we generally see that the LP-ARS-
IMP method is faster, even if the regime is not always sub-critical. Moreover, it is clear that,
the more we refine the mesh, the smaller will be the difference of the computational times
between the two schemes.

3.5.3.1 Perturbation of the transcritical non-smooth stationary solution

Next, we consider the transcritical non-smooth stationary solution obtained in section 3.5.3
as initial condition and we add a perturbation in the interface. The objective is to verify that
the perturbation propagates away and we recover the non-smooth stationary solution. Thus,
at initial time we impose

hg(l‘,t = O) =

Rl 4 0.1e7 10069 i 6 < g <7,
hy! otherwise

where the superscript "eq" indicates the transcritical non-smooth steady state. Regarding the

boundary conditions, we keep the same as before. Results are shown in figure 3.9 using the LP-

ARS-IMP scheme. We do not include the results for the other methods as they are analogous.

Indeed, we observe the perturbation propagates away at different times ¢t = 0, 0.15, 0.5, 1s.

3.6 Concluding remarks

In this work the classic Lagrange-Projection (LP) approach has been extended to a two-
velocities case, namely the two-layer shallow water system. Hence, we started this work by
presenting the mathematical model formulated in Lagrangian coordinates. To numerically
approximate such a system, we also considered the acoustic-transport splitting, an alterna-
tive interpretation to the Lagrange-Projection decomposition. In particular, we were able to
build an approximate Riemann solver for the acoustic system and to develop the associated
Godunov-type scheme, both explicitly and implicitly. We highlight that such a discretization
can also be interpreted as an approximation for the Lagrangian system. Moreover, in the im-
plicit version of the scheme, to find the numerical solution we only need to solve a linear
system, which entails a not excessive computational cost. In this way, we were able to obtain
a fast implicit-explicit method, as we could use very large time steps, especially in sub-critical
regimes.

Numerical simulations were proposed, in which we compared our results against the out-
puts of the well-known IFCP scheme. We also considered a LP-HLL method, meaning that the
HLL approach has been applied to the simplified Lagrangian system (3.2.4), while keeping the
same numerical strategy for the projection step. In the numerical tests, the LP-ARS strategy
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Figure 3.8: Transcritical non smooth stationary solution, section 3.5.3. On the left: IFCP (red), LP-HLL (magenta),
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Figure 3.9: Evolution of the perturbation of a transcritical non smooth stationary solution, section 3.5.3.1. LP-
ARS-IMP solution for the free surface i1 + ho + z and interface hy + z for different times: ¢ = Os (red), ¢t = 0.15s
(yellow), ¢ = 0.5s (green) and ¢ = 1s (blue). M = 350 cells.
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(both explicit and implicit) gave satisfying results, generally slightly more diffusive than the
IFCP ones but much more accurate than the LP-HLL outputs.

Furthermore, it is interesting to remark that, in the LP strategy, we considered an ap-
proximate version of the Lagrangian system, obtaining a new model for which we are able
to explicitly write the eigenvalues and to prove that they are always real. Therefore, the nu-
merical method is able to advance in time even if there are small non-hyperbolic regions with
complex internal eigenvalues. Indeed, in the test of section 3.5.3, we acknowledged that our
schemes’ solutions do not oscillate, contrarily to the IFCP’s one.
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Annexe

3.A Systéme linéaire pour approximation implicite du
systeme acoustique

On considére I'approximation implicite du systéme acoustique présentée dans la section
3.4.2. Dans cette annexe, on veut simplement décrire la matrice A présente dans le systéme
linéaire (3.4.8). En particulier, A est une matrice carrée avec 4M x 4M entrées ou seulement
12 d’entre elles pourraient étre non nulles dans chaque ligne, en effet

rou U2 C1 Co Ul %
dl dl dl dl 1 1
U1 u C1 Ca ul U2
kl kl kl kl ll ll
ul U C1 Ca Uy ug
ng Nyt Ny My a1 a1

ul ug Cy Ca ul ug
vt U Uy Uy wyt Wy

bTJ'l b?; bC'1 bCQ

0 b
Ul u2 1 2
A— 0 g 9; gic gic
Uul U2 1 2

0 m;' m,; mci mé
Ul u2 1 2

0 st 872 st s
0

0

0

0

C1
1

C1
ll

C
q11

C1
wy

Ul
di

Co

1
Co

ll

C
Q12

Ca
wy

U2
di

oo O O

106

o O O O

Ul
bar
ul
Im
ul

My

ul
Sm

U2
byt
u2
Inm
u9
My
u
Sm

C1
bM

C1
9m
C1
mcM
1
Sm

i
L

q;

u2

Co
bM

Co
Inr
Co
mCM
2
Sn

Ul
dy;
ul
Kt
ul
Nar

ui
Unpm

u2
dyg
u2
ki
u2
Nar

uz
Unpm

oo oo -




3.B. Schéma HLL pour le systéme lagrangien
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Enfin, il est clair que la premiére et la derniére ligne du systeme doivent étre modifiées en
fonction des conditions limites considérées.

3.B Schéma HLL pour le systéme lagrangien

Dans cette annexe, nous allons donner quelques détails sur la méthode LP-HLL que nous
avons considérée dans la section précédente 3.5. En effet, dans le but de disposer d’'un schéma
numérique de base dans le formalisme Lagrange-projection, nous avons également appliqué
la stratégie HLL au systeme lagrangien (3.2.4).

Afin de pouvoir le décrire et puisque le systeme lagrangien 0,LQ+A(LQ)0:LQ = S(LQ, 2)
aune forme non-conservative, nous devons d’abord introduire briévement le concept de chemin
et de schéma numérique préservant le chemin. Ensuite, nous appliquerons une telle théorie a
notre cas particulier, afin de trouver ’approximation HLL pour le systéme lagrangien.
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Appendix

3.B.1 Schéma numeérique préservant les chemins

Considérons un systéme non-conservatif de la forme

0,9+ A(Q)0,.Q=0 (3.B.1)

ou Q est le vecteur des inconnues et A(Q) la matrice non-conservative. On peut observer
qu’un terme source S$(Q)0d, z, avec z une fonction connue, pourrait étre facilement inséré dans
le systeme (3.B.1) et rien ne changerait dans la stratégie numérique. En effet, on pourrait
simplement ajouter z au vecteur d’inconnues et ’équation 0,z = 0 au systéme, ainsi ici nous
ne donnons pas plus de détails.

A la recherche d’une méthode des volumes finis pour approcher le systéme (3.B.1), nous
commencons par 'intégrer sur le volume de controle [z, z5] X [to, t1], en obtenant

/thldx_/ thgdm—// )0,Q(, t)dadt

Cependant, en raison de la présence du produit non-conservatif A(Q)0,Q, des masses de Dirac
peuvent apparaitre en présence de discontinuités et, par conséquent, la notion de solution
faible au sens des distributions ne s’applique plus. Pour cette raison, Dal Maso, LeFloch et
Murat [21] ont développé une théorie permettant de contourner ce probléme. A cette fin, nous
devons d’abord définir une famille de chemins continus Lipschitz, ® : [0,1] x Q2 x Q@ — Q
satisfaisant les propriétés suivantes,

CI)<O;QL7QR> =Q,, (I)(l;QLaQR) =Qp, et (s; Q,Q) = Q,

Z2
Puis, nous définissons / A(Q(x,t))0,Q(x,t)dxdt en posant

f” A(Q(2))0,Q(x)d = / " A(Q(1))8,0(x (e + 3 / (517 Q1) 2 (5507, Q1 )ds

ou Q; et Q/ sont respectivement la limite de Q & gauche et a droite de la [-iéme discontinuité.
Ainsi, on dit qu’une solution faible est une fonction qui satisfait a

/ Qlr fa)dr = / Qe fo)dw — /t :1 ][ A(Q(x,1))0,Q(, t)dxdt.

Pour plus de détails, on peut se référer par exemple a [12, 23].

Cependant, un probléme crucial est maintenant donné par le choix du chemin. En effet,
la solution pourrait étre différente selon le chemin choisi. Comme il s’agit d’'un probléme
épineusx, ici nous préférons ne pas nous y attarder et nous exploitons simplement la formula-
tion la plus simple pour la définition du chemin, a savoir le chemin des lignes droites,

®(5Q,,Qr) =Q, +5(Qr — Q).

De plus, il est important de souligner qu’en raison de la viscosité numérique de la méthode,
méme si le chemin "correct” est choisi, la solution numérique pourrait converger vers une
solution erronée et non vers la solution physique [12]. Aprés, une fois que la famille de chemins
® a été choisie, on dit qu'une méthode numérique est ®-conservative si elle est donnée par la
formule suivante AL

Q?H =Q; — Az (D;+1/2 + D;r 1/2) (3.B.2)
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3.B. Schéma HLL pour le systéme lagrangien

ou DT

12 = D*(Q,,Q,. ) sont deux fonctions continues satisfaisant

D*(Q,Q)=0 VQ € Q
et

D (Q,.Q,) + D*(Q,.Qp) = / A5 Q. Qu) e (5: Q1. Qu)ds

pour tout ensemble {Q,,Q,} C €. Une fois de plus, nous ne donnons pas ici plus de détails
sur les schémas préservant les chemins, mais nous contentons de faire référence a [23] et aux
références qui y figurent. Il est important de souligner que le concept de schéma préservant
les chemins peut étre considéré comme une généralisation de celui de méthode conservative
pour un systéme conservatif, & savoir le cas o A(Q) est la matrice jacobienne d’une certaine
fonction F(Q).

Pour conclure cette partie, nous donnons quelques détails sur les schémas de Roe dans
ce cadre, puisque cela nous sera utile pour introduire le schéma HLL. Ainsi, étant donné une
famille de chemins ®, une fonction Ag : 2 X Q — My n(R) est dite étre une linéarisation
de Roe si elle vérifie les propriétés suivantes :

+ VQ,,Q, €N As(Q,.,0Qp) a N valeurs propres réelles distinctes;
* Ag(Q,Q) = A(Q)VQ e

° vQL?QR€Q7

A‘I)(QLvQR) ’ (Q QL / A aQLaQR)) ( aQL>QR)

Enfin, les fluctuations D* dans (3.B.2) sont définies comme suit

D™ (Q;,Qr) = Ap(Q.:Qr) - (Qr —Q), DT(Q..Qr) =A5(Q.:Qr) - (Qzr — Q;)
ou

1
Aé(QL?QR) = §<A<I>(QL7QR) + ’A<I><QL7QR)|)-

3.B.2 Schéma HLL

Concentrons-nous maintenant sur le schéma HLL préservant le chemin appliqué au sys-
téme lagrangien 0;LQ + A(LQ)0:LQ = S(LQ, z) (3.2.4). En particulier, nous montrons ici
directement I'interprétation de la méthode HLL comme un schéma PVM (Polynomial Viscos-
ity Matrix) [12], c’est-a-dire que nous remplacons A% par

A3(Q0 Qn) = 5(An(Q1,Qn) & Pr(A(Q;,Qn)

avec P, un polynome de degré r. Dans le cas de la méthode HLL, le polynéme P, est donné
par P(x) = ap + a;x avec les coefficients

ezt | )‘emt | e:st | )‘ext | /\

ap = , Q1 =

A+ )‘e_mt

ext

| )‘ezt |
>‘e_mt

ext

/\—i—

ext

Voir par exemple [12].
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Appendix

Par conséquent, si on considére le systeme lagrangien 9,LQ + A(LQ)0:LQ = 0 sans terme
source et avec les inconnues LQ, nous sommes en mesure d’obtenir la forme finale suivante
pour les fluctuations

1

1
Dil/g = §<Ai+1/2<LQ¢+1 - LQ@)) + §Pi+1/2(Ai+1/2> (LQZ'—H - LQi)

ou de maniére équivalente

+
Di+1/2 =
1 1
3 (Ai+1/2(LQ¢+1 - LQZ-)) + 5( 0+1/2(LQ; 4y —LQ;) + aniv1/oAin12(LQ; 4 — LQJ)-
OF(LQ) , .
En rappelant que A(LQ) = L0 + B(LQ), nous pouvons également exprimer les fluctua-
tions sous la forme
1
Dz:'il/Q =5 (F(LQi—H) —F(LQ;) +Bit12(LQ;,, — LQZ‘))lL
1
£ 5 (O0i01/2(LQ11 —1Q) + a1 sy1/2(F(LQ,.,) — FILQ) + Bt o(LQ,, — 1)) ).
De plus, puisque dans notre cas \_,, = —\.,, il est clair que nous avons toujours a; = 0.

Enfin, il est simple d’inclure le terme source de la topographie dans la méthode numérique.
En effet, quelques calculs nous donnent

1
Dil/Q = 9 (Ai+1/2(LQi+1 - LQi) - Si+1/2(2i+1 - Zz)>:|:

1

5 Priaya(A2) (LQup —LQ) — ATl ySivya(zin — ).

En pratique, nous exploitons la formule suivante

1
Diuz =3 (F(LQM) —F(LQ,) + Bit1/2(LQ;;; — LQ;) — Siv1/2(2i1 — Zi)>i

1 ~ N
13 <a0,i+1/2<LQi+l —LQ,) + iy (F(LQi—H) —F(LQ,) + Bit12(LQ,,, — LQ;)
—Sit1/2(Zip1 — Zz)))

avec LQ = (Ly, L1hy, Lihyuy, Ly, Lohy + 2, Lohous)t.
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Chapter

Explorant différentes possibilités de
schémas de type Lagrange-projection
équilibres et de second ordre pour les
équations de Saint-Venant-Exner

La premiere partie de ce chapitre est consacré a I’approximation numérique du systeme
de Saint-Venant-Exner en une dimension d’espace, ou I’équation d’Exner exprime 1’évolution
dans le temps du lit de sédiments. Les formules de Grass et de Meyer-Peter&Miiller sont prises
en compte pour modéliser les contributions du flux de transport de sédiments. Une fois encore,
le schéma numérique est basé sur le formalisme Lagrange-projection qui consiste a décom-
poser le modele mathématique en un systéme acoustique et un systeme du transport. Dans
ce chapitre, nous étudions trois stratégies numériques différentes pour discrétiser I’équation
d’Exner. En particulier, cette derniére est prise en compte soit dans les deux étapes acoustique
et transport, soit uniquement au niveau acoustique, soit uniquement au niveau du transport.
Toutefois, nous verrons que ces trois stratégies numériques sont faiblement couplées. Grace a
cela, les méthodes et leurs extensions du second ordre sont équilibres, notamment ils préser-
vent les états stationnaires "lac au repos” et "lit a pente constante".

Au cours de cette these, I'étude des schémas de type Lagrange-projection pour le mod-
eéle de Saint-Venant-Exner a été réalisée en deux étapes. D’abord, une stratégie plus simple
(équation d’Exner dans ’étape du transport) a été développée en 1D et 2D et présentée dans
un premier article. Ensuite, les deux autres approches faiblement couplées ont été proposées
dans un deuxiéme manuscrit. Pour cette raison, dans la deuxiéme partie de ce chapitre, nous
incluons la version 2D du modéle et d’une des stratégies numériques.

En conclusion, dans ce chapitre, nous résumons deux publications dont les références sont:

« C. Chalons. and A. Del Grosso, A second-order well-balanced Lagrange-projection nu-
merical scheme for Shallow Water Exner equations in 1D and 2D. 2022. A paraitre dans
Communications in Mathematical Sciences.

« C. Chalons. and A. Del Grosso Exploring different possibilities for second-order well-
balanced Lagrange-projection numerical schemes applied to shallow water Exner equations.
International Journal for Numerical Methods in Fluids. 1- 31, 2022.
https://doi.org/10.1002/f1d.5064

Pour conclure I’étude des méthodes de type Lagrange-projection appliquées au systeme
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Chapter 4. LP schemes for shallow water Exner equations

de Saint-Venant-Exner, nous proposons également une méthode numérique du premier ordre
entiérement couplée dans ’annexe 4.A. Toutefois, nous verrons que la propriété équilibre n’est

pas facile a préserver dans un tel cas.
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Exploring different possibilities for
second-order well-balanced
Lagrange-projection numerical schemes
applied to shallow water Exner system

Abstract

This work is devoted to the numerical approximation of the shallow water Exner system.
In the first part of this chapter, we investigate three different numerical strategies to discretize
the Exner equation, which expresses the time evolution of bed sediments. The numerical
schemes are all based on the Lagrange-projection formalism which consists in splitting the
mathematical model into the acoustic and transport systems. In particular, the Exner equation
is taken into account either in both the acoustic and transport steps, or only at the acoustic or
transport level. The methods and their second-order extensions are designed in such a way
to satisfy the well-balanced property, namely the "lake at rest" and the "constant bed slope"
steady states.

Then, in the second part of this chapter, we present the 2D extension of the mathematical
model and of one numerical strategy (Exner equation in the transport step).

4.1 Introduction and governing equations

This work considers several second-order and well-balanced Lagrange-projection schemes
applied to the shallow water system with moving topography. Lagrange-projection schemes
consist in splitting the acoustic and transport waves of the model in two different systems
(and steps). This expedient reveals itself to be very useful in practice, for instance in subsonic
regimes, where the acoustic waves are the reason of the restrictive CFL condition that has to be
used to have a stable numerical scheme. Indeed, the Lagrange-Projection (LP) decomposition
makes possible to implicitly approximate only the acoustic system and, thus, to circumnavigate
the problem of restrictive time steps. Furthermore, this kind of decomposition can also be
interpreted as a Lagrange-projection one, in the sense that the system under consideration is
first written in Lagrangian coordinates and solved. Then, the Lagrangian solution is projected
back into Eulerian coordinates.

Nowadays, the Lagrange-projection approach have been studied in order to satisfy differ-
ent properties and as applied to several models. Giving few examples, we refer for instance
to [18], where all-regime first-order explicit and semi-implicit Lagrange-projection schemes
have been applied to the gas dynamics model, or to [19], where the scheme was extended

113



Chapter 4. LP schemes for shallow water Exner equations

to the 2D two-phase flows model. Another possible reference is [11], where an asymptotic-
preserving LP scheme has been used to approximate low Mach number flows of the barotropic
Euler equations. On the other hand, when it comes to the design of LP schemes for the shallow
water system, we can refer to [20] for an implicit well-balanced first-order scheme, to [14] for
a fully well-balanced first-order explicit method and finally to [45] for high-order fully well-
balanced schemes. Last but not least, and without being exhaustive, we refer for instance to
[27, 40, 9, 13, 25] for other interesting studies in this framework.

Our main objective is to focus on the topography discretization and to compare several
natural LP approaches in which the bed level is taken into account either partially in both
steps, or entirely in one of the two steps. Then, in the second part of this chapter, we shall
present the 2D extension of the shallow water Exner model and of one numerical strategy.

We highlight that the Saint-Venant equations with moving topography have often been
solved numerically by means of splitting methods, meaning that the hydrodynamic and mor-
phologic components are separately treated. Indeed, such methods are easier to implement,
although they are known to occasionally produce spurious oscillations in the numerical re-
sults. Such oscillations are mainly related to differences in the eigenstructures of the shallow
water equations with and without moving topography, for which we directly refer to [23].
However, it is not even necessary to consider a fully coupled scheme in order to avoid this
problem; indeed a weak coupling of the equations at the numerical level can lead to satisfy-
ing results, see for instance [4]. In this work, a three-waves approximate Riemann solver has
been described and then re-interpreted as a splitting strategy. Moreover, they stated that one
change in the fluid solver (there, the value of the wave speeds in the approximate Riemann
solver) can give place to splitting methods without spurious oscillations. We also refer to [44],
where a weakly coupled method based on the HLL scheme is presented. Another possible
reference is [43], in which the authors describe two methods based on the Roe approach. In
this paper, they present not only a decoupled approach where the oscillations are partly sta-
bilized by controlling the stability region, but also a fully-coupled scheme. Indeed, progresses
to obtain fully coupled method for the shallow water Exner system have also been made. See
for instance [47], where a Roe-type first-order scheme was used, or [15], in which the authors
presented a path-conservative Roe method and its high-order extension equipped with flux
limiters. Without being exhaustive, see for instance [29, 42, 28] for further coupled schemes
applied to the shallow water Exner system.

Let us now present the model we are interested in, namely the shallow water Exner system.
The first two equations (the shallow water system) have been extensively used to describe the
time evolution in time of fluid flows, for instance in rivers or coastal areas. As for the third
equation, it simulates the bedload sediment transport due to the mechanical action of the fluid.
As such, the system reads

Op(hu) + O, (hu® + p) + ghd,z = —ghS; (4.1.1)
8tz + CGIQI) = 07

where h(x,t) > 0is the water depth, u(x, t) is the averaged velocity, z(z, t) is the bed level and
2

H = h + z is the free surface elevation. Then, p = 97 is the pressure term with g the grav-

itational acceleration, g, = g (h, u) is the solid transport discharge and ( is a parameter such
1
that ( =
¢ 1

with py the porosity of the sediment layer. Moreover, —gh.Sy represents the

—Po
Manning friction t ih g, = P h fficient, R L
annin Triction term wi = — anning rou ness coericient, =
g f Ri/:ﬁ Ky g g T on
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hydraulic radius and L length of the channel. Observe that this definition of R, is relevant
only for rectangular channels. In compact form, we have

01Q + axF<Q) + A(Q)axQ = _gthEZ
where E; = (0,1,0),

h hu 00 0
Q= (hu|, FQ) = [ +p|, AQ)=(0 0 gh
z Caqp 00 O

For more details about shallow-water equations with and without moving topography, we
refer to 1, 12, 15, 7, 46, 44, 42] and [51, 2, 8, 14] respectively.

Let us know focus on the solid transport discharge g;, which can be formulated in different
ways depending on the characteristics of the sediment and the flow, see for instance [34]. A
frequently used formulation is the well-known Grass model, which expresses the instanta-
neous sediment transport as a power law of the averaged velocity u, namely

g = Agulu™ 1< m, <4 (4.1.2)

In practice we take m, = 3, while the parameter A, € [0, 1] is computed using empirical rela-
tionships based on local properties (grain size, cinematic viscosity...). Moreover, A, expresses
how strong the interaction between the flow and the sediment is. For instance, the interaction
is considered weak if A, is of order 1073 or smaller, while for values of order 10! the flow is
said to be highly erosive, see for instance [15, 43, 47, 41, 4] for further details. It is important
to point out that, when using the Grass formulation, we are implicitly assuming that the bed
sediments start moving as soon as the velocity of the water is different from zero. However,
in other formulations it is usually assumed that a critical value has to be overcome. Let us see
the details considering for instance the Meyer-Peter&Miiller (MPM) formulation. The latter is
given by

3 2 2u?
@ = 8Qsgn(u)(8* —02): with 6" = Y and u? = gufl (4.1.3)
sgd hs

where Q = d+/gsd is the characteristic discharge with relative density s and sediment diam-
eter d. Then, 6* represents the non-dimensional shear stress and determines the movement
of the sediments. Indeed, only if it is bigger of the critical stress value 87, ¢, is different from
zero. Here we do not present further formulations but many have been proposed, see again
the previous references. We also highlight that each formulation usually has its own range of
applications which depends on the flow and sediment characteristics. For instance, the MPM
formula is only used for weakly erosive flow, see directly [15] for details about the range of
parameter values.

Finally, let us specify that, depending on the particular form of ¢, the convective part of
system (4.1.1) could be strictly hyperbolic or not. In particular, in [15] it has been proved that
the use of the Grass formula leads to a strictly hyperbolic system with all real eigenvalues.
Indeed, defining the quantities

ay = —2u, ay=u*—c*(14+(Ohqg) and asz= —(Ohq,
one can easily see that the eigenvalues are given by the solution of the following equation
A2+ a A%+ as) + a3 = 0.
Hence, the three eigenvalues read

0+ 2k
A = 24/—p COS(%) — % with £ =0,1,2. (4.1.4)
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where

3ay — a? 9aras — 27az + 243
pzu _ 1 03T 201 hd 0 = arccos( L

, T ).
9 54 —p3

In order to have real eigenvalues we need p? + r? < 0, which can be proved in the case of the
Grass model.

Last but not least, we are interested in numerical schemes able to preserve the stationary
solutions of the system. This property is generally not trivial to satisfy but, at the same time,
it is critical if we want to obtain accurate numerical methods which do not present spurious
oscillations in their results (when close to stationary solutions). If such a property is met, the
numerical scheme is said to be well-balanced. In our specific case, it means the preservations
of the following steady states,

2
q = hu = constant = ¢, ﬁx(% +g(h+ z)) +9S; =0 and ¢, = constant.
Here, we are only interested in preserving two particular steady states, namely the so-called
"lake at rest" equilibrium with zero-velocity

u =0, h-+ z= constant, (4.1.5)
and the "constant bed slope" equilibrium
Oph = 0yu = 04,2 =0, 0Oyz+ Sy =0. (4.1.6)

Let us observe that, when using the Grass formulation, these are the only two possible steady
states. Being the well-balancedness of the scheme a crucial property, many studies have been
done in this sense, here we refer for instance to [2, 4, 8, 38] and the references herein. See also
[14, 20, 45] for well-balanced methods in the Lagrange-projection formalism.

Chapter outline. We now give the structure of the chapter. In the next section, we briefly
present the Lagrange-projection splitting strategy in both Eulerian and Lagrangian variables
for the shallow water system, thus we consider the evolution equations of 4 and hu. Then, in
section 4.3, we explain three different strategies to treat the topography equation. In particular,
details for the approximate Riemann solver for the acoustic systems are given. Subsequently,
we present the numerical schemes both at first and second-order of accuracy in sections 4.4
and 4.5 respectively. Section 4.6 is a summary of the properties of each scheme. We show
several numerical evidences to validate our 1D numerical schemes in section 4.7. Then, in
section 4.8, we present the 2D extension of the shallow water Exner model and of one of the
numerical strategy, namely the one that directly updates the bed elevation in the transport
step. Concluding remarks are given in section 4.9.

4.2 Splitting operator for the shallow water system

This section focuses only on the first two equations of system (4.1.1), namely the updating
equations for the water height i and discharge hu. Details for the bed level approximation
will be given later. Thus, here we explain the decomposition which entails the splitting of
the Saint-Venant system into two different ones, the so-called acoustic and transport systems.
The former accounts for the acoustic phenomena and topography variations, while the latter
focuses on the transport effects. Note that here we neglect the friction term; its contribution
will be included directly at the end of the numerical methods, see section 4.4.
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4.2. Splitting operator for the shallow water system

Then, we observe that the first two equations of the model can be reformulated as

8th + haggu + u@xh =0
O(hu) + hud,u + ud, (hu) + 0,p = —ghd, z,
where we used the chain rule for space derivatives. Therefore, the so-called acoustic and

transport systems are given by

{@h+h@u:o wa

O(hu) + hud,u + Opp = —gh0yz

and

Oy (hu) + udy(hu) =0

respectively, where the latter can be reinterpreted as

{ah+u@h:o

with X either X = h or X = hu. We also observe that system (4.2.1) can be expressed as

T — Oy = 0
Oyt + Opp = —Qamz
T

1 1
where 7 = — is the specific volume and the mass variable m is such that —9, = 0,,. See for

instance [14, 20] for additional details about this decomposition applied to the shallow water
system. It is then clear that the numerical method would sum up to first solve the acoustic
system and then the transport equations, using the acoustic solution as initial data. However,
while it is well known how to decompose the shallow water system, this is not true when it
comes to the Exner equation. Indeed, one could easily imagine at least three possibilities for
numerical treatment. The first one would split the Exner equation inside both steps, as we
just did for A and hu. The second one would consider z at the acoustic level, and the last one
would directly take into account z in the transport step. The aim of the present contribution
is indeed to compare these three approaches, both at first and second order accuracy.

That being said and before going into further details, it is convenient to first introduce the
Lagrangian coordinates. We first define the fluid particle £ and the characteristic curves

ox
60 = ulal&.0).0)
z(§,0) =¢

which define the trajectory : ¢ — x(&,t) of £ as the time goes on. Therefore, any function
: (x,t) — ¢(x,t) in Eulerian coordinates can be written in Lagrangian coordinates,

P&, 1) = p(x(&,1),1).
Introducing now the volume ratio

Oz

L&t =5

(&1)

such that .
SHED = eulal€. 1)1
L(£,0) =1,

(4.2.2)
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it clearly follows
O L(&,t) = Ocu(x(€,t),t) = Oeul(€, t),
and thus

0cp(&,t) = L(§,1)0up(x,t) and  0,p(&,t) = Opp(x, t) + u(@,t)dutp(x, t).

Focusing first on the governing equations for & and hu, it is easy to show that their counterpart
in Lagrangian coordinates reads

{at(Lh) =0 ) o (4.2.3)
Oy(Lhu) + Ogp = —ghOeZ.

In the following sections, we shall sometimes omit the bar over the Lagrangian functions to
avoid cumbersome notations. Hence, the two-steps (acoustic and transport) numerical method
would now consist of solving the Lagrangian system (4.2.3) and then projecting the solution
into Eulerian coordinates. For further details about this decomposition, we refer the reader to
[45] and the references therein. Let us now discuss the three different strategies proposed for
the Exner equation.

4.3 Treatment of the Exner equation

The treatment of the Exner equation is an important issue due to the complexity of the
full coupled system. It is known that a fully decoupled scheme, which consists of updating
the topography independently from the first two equations of the model, generally produces
spurious oscillations in the numerical solutions, see for instance [23]. However and in order to
avoid this problem, a weak coupling of the equations can lead to satisfying numerical results,
see [4]. In this work, we mainly focus on weakly coupled numerical schemes. In brief, we are
going to take into account the flow and sediment interactions in three ways:

1. The usual acoustic-transport splitting is considered for the topography equation and,
therefore, the bed level is taken into account in both steps;

2. The topography is accounted for only at the Lagrangian level;

3. The topography is only updated in the transport step. This approach resembles the usual
splitting (and therefore decoupled) method for shallow water Exner system but, as we
will see, spurious oscillations are often not observed.

4.3.1 Update the bed level in both steps

The first strategy is to split the bed level evolution equation
Oz + C0,qp = 0
into the following two equations, namely
Oz — u0,z + COpqy = 0

and
Oz +u0yz = 0.
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Therefore, the complete acoustic system is now given by

Oy (hu) + hud,u + Opp + ghOpz =0 (4.3.1)
Oz — w0,z + COpqp = 0,

while the transport system is simply formulated as
X +ud, X =0, (4.3.2)

where now we have not only X = h, hu, but also X = z. It is thus clear that, with this
approach, the evolution of the bed level is taken into account in both the acoustic and transport
steps. Then, we note that the acoustic system (4.3.1) can be easily reformulated as follows

0T — Opu =0

g _
Ot + Omp + Tﬁmz =0 (4.3.3)

1
atZ - E mZ + C_ame - 07
T T

exploiting once again the notation 7 = 1/h and 70, = 0,,. Alternatively, the shallow water
Exner system (4.1.1) in Lagrangian coordinates reads

O(Lh) =0
Oy(Lhu) + 0cp + ghdez = 0 (4.3.4)
9 (LZ) — O¢(zu) + (Ocqy = 0.

4.3.1.1 Approximate Riemann solver

In order to approximate the solutions of system (4.3.4) using a Godunov-type method, in
this section we define an approximate Riemann solver for equations (4.3.3) associated with
initial data
(TL,UL, ZL)T if m<O0
(TR, ug, zg)t if m > 0.

(t,u,2) (m,t = 0) = {

The idea is to base the approximate Riemann solver on a relaxation formulation, see for in-
stance [10, 20] for more details. Thus, as a starting point, we considered the following relax-
ation system of the whole (not only acoustic) Saint-Venant-Exner system (4.1.1),

(0,h + 8, (hu) =0
Or(hu) + 0y (hu* + I1) + ghd,z = 0
Oz + 0,0 =0 (4.3.5)
O + ud Il + a?0,u =0

2
9,Q + 2u0,Q + (b? h )0pz = 0,

u2

which was proposed in [1]. Observe that we introduced two new variables, II and €2, which
can be interpreted as a linearization of p and (g, respectively. Then, a and b are two constant
parameters. However, in order to build a relaxation system for the acoustic system and, at the
same time, to define a well-balanced approximate Riemann solver, it was convenient to modify
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system (4.3.5) as follows

(07 — O,u=0
Owu + 0,11 = _9 )2
U 1T
Oz — —0Omz+ —0,2=0 (4.3.6)
T T
atH + a28mu =0
1
0.0+ ;amﬂ (0P — 2)0pz = 0,

T

Thus, the idea would be to take the exact Riemann solution of the latter relaxation system
(4.3.6) as the approximate solution of either equations (4.3.3) or system (4.3.4). We also under-
line that the initial data now are

(o, ur, 20, 1, Q)T if m <0

T _ _
(T,U,Z,H,Q) <m7t_0>_{ (TR,UR,ZR,HRagR)T if m>0

and they are taken at equilibrium, that is to say such that

M p= gh%ﬁ and Q= ((q%)LR-

Furthermore, the parameters a and b are chosen in such a way to ensure the stability of the
relaxation system. In particular, we ask for the validity of the so-called sub-characteristic
condition

a>h\/Oyp and u®b* > (hu)® + gh*COuqy, b >0, (4.3.7)

which is clearly different from the one used for the original relaxation system (4.3.5). The
relaxation system (4.3.6) can be written in compact form as

9,U + B(U)d,,U = S(U)

with
T 0 —1 0 0 0 0
u 0 0 0 10 5
U=|z2| BU=]|0 0 — 0 2| and S(U)= |0
11 0 a 0 0 0 0
Q 0 0 wu(b’r—1) 0 0

Observe that the topography term

is taken into account as a source term and not included in the convective matrix B. This is also
a critical point in order to be able to define a well-balanced approximate Riemann solver, even
if it is also the reason why the resulting numerical method will only be weakly coupled and not
fully coupled. With this in mind, it is easy to show that the matrix B has five real eigenvalues
given by \g = 0,\F = +a,)\] = =|ulb, and that the associated characteristic fields are
all linearly degenerate. This property is well-known to make the resolution of the Riemann
problem straightforward using the continuity of the Riemann invariants across each wave, see
for instance [1] for more details. However, in this case the eigenvalues are not ordered a priori,
so that at a continuous level there exist two different cases depending on whether a < |u|b
or not (recall that a and b are positive). In practice, we will distinguish between the following
two cases: a < |ur|b,a < |ug|b and its negation.

120



4.3. Treatment of the Exner equation

4.3.1.2 Thecasea < |urlband a < |ug|b

In this first case, easy calculations show that the solution of the Riemann problem reads

(U, if 2 <) =—|uglb
Uy, if —urlb < <A = —a
M U, if —a<Z<)=0
U(_§UL,UR) = ihL ‘ - t N 0
t s if 0< B <A =a
Upp if a< B <)\ =]uglb
\UR if % > |uR]b
with
TL Tz TE TR
ur, u* u* UR
Up,=|2], U.,=|2]| Upxr=|2z|, and U=z |. 438
I I, Ilg IR
Qr 0* Q* O

On one hand we have
( 1

r =71+ —(u" —up)
TR:TR——(U*—UR)

1 1
ut = §(UL +ug) — %(HR — 1) —

1 a
L = i(HL +g) — §(UR —ur) +

1 a
g = (U +1g) — 5 (ur —ug) —
\ 2 2

where the discretization M of the topography source term reads

_9 1
M = Q(TL + TR)(zR 2r) (4.3.10)

(4.3.9)

| o R T

and, on the other hand,

(. _ \ug|(sign(ug) + brr)zr — |ur|(sign(ur) — brr)zL
lug|(sign(ugr) + bTr) — |ur|(sign(ur) — brr)
Qp — Q)
lug|(sign(ug) + br) — |ur|(sign(ur) — bry)
O — Qr +Qy UR
\ 2 2

(sign(ug) + brgr)(2* — zgr) + |UTL(sign(uL) —brp) (2" — z1).

(4.3.11)

4.3.1.3 Thecasea > |ug|bora > |ug|b

In this case the structure of the Riemann solution is the same but the waves are expected
to be ordered in a different way. More precisely, assuming that a > |u*

(UL if % < —a

b, we now have

ar if —a<f < —u'd
. U; if —ub<<0
U(@QUL,UR) — l;,L 1 Um t*
t Upp if 0<% <u'b

: m
ar I ub<H<a

Ug if %>a.

\
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where
* * * *
L L TR TR
u* u* u* u*
* o ko * * o * * _
a,L — zL 3 Ub,L — ya ; Ub,R — ya 5 al’ld UCL,R — ZR . (4312)
* * * *
117, 117, Iy R
Qr OF OF Qg

Then, (4.3.9) and (4.3.10) are still valid but (4.3.11) is replaced by

(elul)* = o] (sign(u*) + b15)zr — (sign(u*) — b))z, Qg — Qp

RN b +77) b +77)

= RS (sian(u) + br) (el — o) + (sign(u) — bri)(2hul)” — [u|z0)).
(4.3.13)

Observe that assuming a > |ur|b or a > |ug|b does not necessarily imply that a > |u*|b. In

practice, we proceed as follows. First, we define a and b by

Q*

h?2 h2
a =max(Az, hrcp, hger) and b= max(AL \/h% + gu—gCﬁu(qb)L, \/h% + gu—QRgﬁu(qb)R>,
7 R
(4.3.14)

¢ = \/Opp, as a natural approximation of (4.3.7). Then, if a and b are such that a > |ur|b or
a > |ug|bbut a < |u*|b, we increase the value of ¢ and redefine it as a = (1 + €)|u*|b (with
typically € = 0.01). We highlight that, once we have redefined a, we have to recompute the
value of u*, and more generally the quantities in (4.3.8) and (4.3.9). In practice, this iterative
process converges in one or two iterations. An easier (and more diffusive) option could be to
define a and b such that a is automatically smaller than ub, in this way we only had to use
the star values in section 4.3.1.2 and no further details would be required. For instance, this
is what has been done in [1] to numerically solve system (4.3.5). However, we will see later
in section 4.6.1 that to distinguish between the two cases allows us to obtain a well-balanced
numerical scheme.

Notice also that, unlike (4.3.11), we define (z|u|)* instead of z* in (4.3.13) in order to avoid
any possible ambiguity related to the value of ©* which could be zero. As we will see below,
this is sufficient as, in the resulting scheme, the updating formula of the topography 2"~
only requires (uz)* and not z*.

Lastly, observe that, if u = 0, the relaxation system (4.3.6) is not strictly hyperbolic, unlike
the acoustic system (4.3.3). However, the values in the star region result to be well-defined
anyway. Indeed, if u;, = ugp = u* = 0, then (4.3.13) gives (uz)* = 0 and Q* = 0 as well, as
ur, = ug = 0 implies (2, = Qr = 0.

4.3.2 Update the bed level in the acoustic step

The second strategy takes into account the Exner equation only in the acoustic step. As a
consequence, we will have a different acoustic system and therefore a different approximate
Riemann solver. Let us give more details.

The acoustic system is now given by

O (hu) 4+ hud,u + 0.p + ghdyz = 0 (4.3.15)
atZ + gabe =0
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4.3. Treatment of the Exner equation

while the transport system is simply formulated as 9; X +u0, X = 0 with X = h, hu, together
with 0,z = 0. Exploiting the variables 7 = 1/h and 70, = 0,,, the acoustic system (4.3.15)
also reads

T — Opu =10
g
0 am _am =0
u + P+ - z (4316)

1
8152 + C;@mqb =0.

4.3.2.1 Relaxation system and approximate Riemann Solver

We proceed as before to approximate the solution of (4.3.16) and to define an approximate
Riemann solution based on a relaxation system. The latter is now defined as

(atT — Opu=20

Ou + Opll = —20,,2
{ Oz + %&nQ =0

oIl + a?0,u =0
| 0:2 + u?b®10,,2 =0,

with once again

(1o, up, 20, 11, Q)T if m <0

T _ —
(7_7“7271_[79) (m7t_0)_{ (TR,UR,ZR7HRaQR)T if m>0

the initial data taken at equilibrium, that is to say such that
My q =203 Qpp =
LR = §hL7R and LR = C(C]b)L,R-
As far as the parameters a and b are concerned, we now ask for

a>hy/Opp and u?b® > gh’COuq,, b > 0. (4.3.17)

Considering again the topography term as a source term in the second equation, it is easy to
show that the characteristic velocities of the model are still given by \g = 0, \* = +a, \f =
+|u|b, and that the associated characteristic fields are all linearly degenerate again. Let us now
discuss the associated Riemann solution.

4.3.2.2 Modification of the well-balanced approximate Riemann solver

The procedure is exactly the same as the one presented in section 4.3.1.1, so that we do not
give other details but the differences. In particular, we have to distinguish between the case
a < |ur|band a < |ug|b and its negation. In this last case, and even if it means increasing the
value of a, once again we will assume that a > |u*|b.

In both cases, (4.3.9) and (4.3.10) are still valid, but definitions of z* and €2* in (4.3.11)
and (4.3.13) are modified. More precisely and imposing again the continuity of the Riemann
invariants across each wave, easy calculations show that in the case a < |ur|band a < |ug|b,
formulas (4.3.11) are replaced by

. _ |UR|7‘RZR—|—|UL|TLZL _ QR—QL
|UR’TR+ |U,L|TL b|UR|TR+b|uL|TL 4.3.18
Q*— QR+QL b’uR|TR % b\uL TI, % ( )
-2 BT (2 = 2p) — TR (27 — ),
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Chapter 4. LP schemes for shallow water Exner equations

while (4.3.13) now reads

*’TEZR—FTEZL B QR—QL

Tz’%1+ T b(t + 77) (4.3.19)
+ 5 (07R((z[ul)” = zrlu’]) = brr ((z]ul)” — zp|u”])).

(zlu])* = |u
Q49
N 2

Q*

Lastly, instead of using (4.3.14), we define a and b as follows

h? h?
a = max(Ax, hpcp, hgeg) and b= max(Am, \/gu—ggau(qb)b \/gu—fg“ﬁu(qb)}g),
L R

(4.3.20)
according to condition (4.3.17).

4.3.3 Update the bed level in the transport step

In this last strategy, the bottom height is only updated in the transport step. Thus, the
associated acoustic system is now simply given by

Oy(hu) + hud,u + Op + gh0,z =0

while the transport system has the following form,

O(hu) + ud,(hu) =0 (4.3.21)
6,52’ + CaxC_Zb = 0.

Hence, the water height h and flow hu are updated as in the classical shallow-water equations,
namely both in the acoustic and transport steps. In other words, we only need to specify the
discretization of the bed level, which does not affect the other two variables. For this reason,
this strategy resembles a usual splitting method.
Note that in this context, the relaxation system associated with the acoustic step is nothing
but
T — Opyu =0

Bt + Oyp = — 28,2 (4.3.22)
T
8751_[ + a28mu = O
and the intermediate states associated with the Riemann problems are given by (4.3.9) and

(4.3.10). Finally, let us observe that here the eigenvalues of the relaxation system depend only
on the parameter a and not on b, with « still defined as in (4.3.14).

4.4 Numerical method

Before getting into the heart of the matter, we give few details about the time and space
discretizations. Given a constant time step At, we define the intermediate times by t" = nAt
for n € N. Then, the mesh interfaces are x;,,/» = jAx for j € Z, where Az is the constant
space step. Note that, for the Lagrangian variable £, we use the same discretization of the one
we introduced for z, thus Az = A¢, Tjp1 = §j+% and z; = §; Vj, where z; is the center of
the cell [7;_1/2,;41/2). Hence, given a variable ¢, o7 is its piecewise constant approximation

124



4.4. Numerical method

at each point (7;,t") with n € Nand j € Z. If ¢} is known, we look for its approximation
at the next time level "+, et
acoustic step will be denoted by ¢

Let us note that our numerical schemes are divided into two different steps. First we have
the acoustic (Lagrangian) stage, in which we aim to numerically solve one of the systems
(4.3.4), (4.3.16) or (4.2.3) depending on the strategy for the bed level equation. Then, we exploit
the acoustic (Lagrangian) solution as initial condition for the transport (projection) step, in
which we solve either equations (4.3.2) (X = h, hu and with/without X = z) or system
(4.3.21), again depending on the chosen strategy. If the friction term is also considered, a third
step is needed in order to take into account the friction contribution.

Finally, let us specify the CFL restriction on the time step At in order to have stable numer-
ical schemes. Since our methods are composed of two different steps, we obtain two different
conditions, namely

namely ]
n+1— )

. The approximate value obtained at the end of the

A
At < CFL; I , (4.4.1)
mj&\X{maX(Tj 7Tj+1) max(aﬂ%: (’u‘b>j+%)}
for the acoustic step and
A
At < CFL, L (4.4.2)
max{u . I I3

J
for the transport step. CFL; and CFL; are the CFL number for the Lagrangian and transport
systems respectively, and

= max(uj_%, 0) and u;r% = min(uﬁ%,
Lastly, the final time step is taken as the minimum between the two. It is clear that the value of
b in (4.4.1) depends on the numerical treatment of the bottom height 2. Clearly, if z is updated
in both steps, we consider formula (4.3.14) while, if the bed elevation is completely taken into

account at the acoustic level, b is defined according to (4.3.20). In the case of the bed level only

updated in the transport step, the acoustic time step definition depends only on a and not on
b.

4.4.1 Acoustic step

As for the acoustic systems (4.3.3), (4.3.16) and (4.2.1), we have already defined approximate
Riemann solver for them. Hence, we can use a classical Godunov-type method, refer to [30,
31, 37] and the references therein. Such a scheme simply consists in the juxtaposition of the
approximate Riemann solutions locally defined at each interface.

Regarding the first two equations which are common to systems (4.3.3), (4.3.16) and (4.2.1),
easy calculations (not reported here) give

At
T = 4 (uf s =)

Amy* Itz 97 443
n+1— n At * * n ( o )
upttT = uf — Amj(Hj+% — 17 é) At{ =02 }]

n

-
where Amjq10 = (Am; + Amjyq)/2, Amj = AL:C and for all j

Amgﬂ/z

q n Am 1/2
{;amz}j _2( Am, { Om Z}J+1/2 J

{ Omz}j_ 1/2> (4.4.4)
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with Mn
{= amz}j+1/2 = AL
Amyig /2
The star values u?_,,II" , and M/, are locally defined at each interface x;,,/, and for all

G5 i+
J thanks to (4.3.9) aild (4. 32.10), obtaining

* 1 n n MnJrl 2
Uil = (QJ7Q]+1) ( g1 Uy i) 9 (H]+1 Hj)_—J !
a 2a;41/2
i+ (4.4.5)
* 1 n n a;l+% n n
Hj+% (QJ ) Q]-i-l) (H +1 + Hj) - 9 (uj—i-l - uj )

Furthermore, in Lagrangian coordinates, (4.4.3) reveals itself to be strictly equivalent to

LI = Iy
n+1— n+1— n n At * * n (446)
Ly (hu)y™ " = L} (hu)} — E(Hﬂ.% — 1T %) At{ghd,z}}
where At
n+1— n — * ok . no__
Ly =1L} +Ax< i “jf%) with L} =1
and M
n 1 n n n 7.1_'_1 2 .
Let us now briefly give the update formulas for the topography.
Bed level in both steps. Considering system (4.3.4), we state
nt+l— _n4+1-— n.n At *
LiHmgm s = pnen A_x<<Q — zu)j+é (Q — zu) %)
which turns out to be equivalent to
At At At
TL+1 T o _.n =0 * . * = * *
Zj <1+ Al'( 5 U]ié)) Zj + AI(( )]“F% (ZU)]fé) AZL’(QJ+2 Qﬂfé)j
where the star values are easily defined from (4.3.11) and (4.3.13).
Bed level in the acoustic step. In this case, from system (4.3.15) we find
At
n+l— __ * *
Z] = Z‘7 - E(Q]_i_Q Qj_%>’ (447)
where Qj .1 are defined from (4.3.18) and (4.3.19).
2
Bed level in the transport step. Finally, it is clear that here we simply have z"“ = zj as
the bed level is completely taken into account in the transport step.
4.4.2 Transport step
Referring to [45], we can approximate 0; X + u0d, X = 0 by
Xn+1 (LX)n+1f ﬂ (U* ) (LX)nJrl* —ut ) (Lx)TH»lf) (448)
Ax itz ity i3 iy
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where
Ly (LX)FHif Wiy >0
(LX) = LX) if
(LX) i uj+% <0

with either X' = h or X = hu. Notice that this formula can also be explained in an alternative
way, using the Lagrangian coordinates. Indeed, defining &, 1 (t) such that for all j

~

it is enough to recall that

1 m]._'_% 1 x(é]-+% :t)
X;(t) :M/ X(:c,t)dx:E/(é Xt = / (e, t)de
T. 1 T t _1

1 i1, 1

|
V]
l\'}

and then split the last integral into three parts to define X}”l, namely

n+l 1 /53% n+l—\ v n+1—
X N 1 L&t )X (&7 7)dé+
-2
1[5+ — 1[5+ —
+— L(E )X (" 7)dE+ — / L& ™)X (&, 071 )de
Ax 1 Ax &1

(4.4.9)
where we approximate z; 1 at first-order,

yot = 2(€y (1), T) = 263 (T),0) + TOw (1 (T),0) = &y + Ty

for a fixed time 7" > 0. Then, it is clear that formula (4.4.8) can be seen as a first-order ap-
proximation of the integrals in (4.4.9). Note that the second-order scheme will be obtained by
approximating the three integrals in (4.4.9) at second-order of accuracy in space. Since this
procedure has been explained in details in [45], here we do not provide further information.

As before, let us now give the update formulas for the topography.

Bed level in both steps. In this case, similarly to the formulas for h, hu, we have for all j

At
* 1Zn+17 —u

n+l n+l— ( *

J

with the only difference that we use the values of zj"jll and not of its Lagrangian counterpart.

2
Bed level in the acoustic step. Since in this numerical method the bottom height is com-
pletely considered in the acoustic step, here we simply have

n+l _ _nt+l-—
2T =20

Bed level in the transport step. In this case, it is a matter of discretizing the full Exner
equation, which can be done following at least two options. On one hand, we simply update

the topography as follows,

Skl ﬁ(u;é <M>n —ut (qb(u)>” )7 (4.4.10)

J J Ax U
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with
(M)” _ (%UU (R (hw)}y)  if up,1 <0 @)
w e (%u“)) (b (b)), >0,
Note that (qzjiu) ):+1/2 can be defined with no ambiguity since we either assume the solid

transport discharge to be given by the Grass formula (4.1.2) with m, = 3 (and therefore u
simplifies) or by the MPM formula (4.1.3) where g, is considered null for © = (. Moreover, we
see that the numerical fluxes are simply evaluated using the solution at time ¢", and not the
one obtained at the end of the Lagrangian step. In some sense, this means that the evolution
of the topography is not coupled with the one of the hydrodynamic model from a numerical
point of view. This is why we call this strategy decoupled.

On the other hand, we propose a weakly coupled strategy, in which we exploit the solution

obtained at time ¢" "'~ by setting
At qb<Lu) n+1— qb(Lu) n+1—
gt == (w (B ()T, 4412
J J Az \"i2\ Lu /i1 i=z\ Lu /j-1 ( )
L n+1—
and (M) . defined as the corresponding value in the (x;,t"*'~) or (41, #""~) point
u /gl

respectively if u* , > 0oru? , <0 and according to (4.4.11). Since a definition of (Lu)"*1~
2 2
is needed, we observe that an evolution equation for Lu in the Lagrangian step reads
2

Ou(Lu) = Oy = —gOe(h + 2).

and can be discretize as

At

n * 2 *
i + E((ujJr%) - (uj,

(L) = (Lu) (4.4.13)

where §;, 1 = —g((h+2)j+1 — (h+2);)/ Az, which concludes the definition of the schemes.

As a last remark we observe that (4.4.13) could not be extended in two dimensions as it is
(see section 4.8), we propose an alternative approximation of Lu which reads

uy 4 uj, ﬁ
2 Ax

Both formulations turn out to give the same results in 1D.

S:o1+8 1
(Lu)'= = (Lu)? + (W', —ut )+ A I
J—3 2

it+3

4.4.3 Friction term approximation

As far as the approximation of the friction term is concerned, here we refer to the work of
Audusse et al. [4]. Hence, we briefly recall the discretization they used and refer to their paper
for more details. In particular, we exploit an implicit splitting strategy. Once the solution
hu™*! from the projection step has been obtained, we state

2| o+ | L
t hnt1 4/3
Rh

~ n+1

hu ' = hu" — gA

(4.4.14)

which gives us the flux hu at the new time level with the friction contributions included, that
is hu"". Note that, imposing hu"" and hu* to have the same sign, it is possible to obtain
the explicit solution of equation (4.4.14) so that the computational cost is not high. Moreover,
as explained in [4], this discretization will also allow us to preserve the "constant bed slope”
equilibrium (4.1.6).
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4.5 Increasing the order of accuracy

So far we presented three different first-order numerical schemes for the 1D shallow water
Exner system. The discretization for the water height and flow appeared to be the same in all
the methods, only the manner in which we updated the bottom height changed. We now aim
to develop second-order numerical methods, which could lead to the design of even higher
order schemes. As we will see, we do not achieve the second-order of accuracy for all the
three schemes in the same way. This is mainly due to the fact that we also ask for the well-
balanced property and it cannot always be obtained in the same manner as it depends on
the underlying first-order scheme. However, the heart of the method is the same, namely we
exploit polynomial reconstructions [49] and Runge-Kutta TVD approach [33] in order to reach
the second order of accuracy in space and time respectively. Indeed, what will change is mainly
the way we define the slopes for the reconstruction polynomials in space, as the Runge-Kutta
procedure does not affect the ability of the scheme of preserving the well-balanced property.
We specify that the Runge-Kutta method is used at second order and applied to the overall
scheme, namely the acoustic and transport steps together.

4.5.1 Update the bed level in both steps

Let us start with the numerical scheme which entails a splitting of the Exner equation in
both steps. Regarding the acoustic step, we first proceed in a very classical way by making
use of first-order polynomial reconstructions of the form

Pi(z) = Qf + Aj(xr — z;), (4.5.1)

where Q = (h, hu, z)" is the vector of unknowns and A; = (A;(h), A;(hu), Aj(z))t denotes
the corresponding slopes. Motivated by the well-balanced property, we compute the slopes
using standard ENO or MINMOD limiters applied to the free surface H = h + z, hu and z.
Then, we simply set A;(h) = Aj(H)—A,(2). Indeed, notice that H is constant under the "lake
at rest” condition and therefore the slopes A;(H ) automatically reduce themselves to zero in
this case. Then, it clearly follows A;(h) = —A,(2), which is necessary for the well-balanced
property.
Finally, the Lagrangian step reads

LIt = Ly
L (hu) e = Lo (h) — ﬁ_;(H;% — Hj;%) + At(s} + s¢;) (4.5.2)
Lyt = Dy — 24((Q = zu)},, — (2= 2w); )

where we compute the interface values using the first-order formulas but applied to the left
and right traces of the reconstruction polynomials, namely
* % n T * _ * n n

Uipr = w5 Q7. Q7 p) and 10 4 =110, (QF, 4/, Q7L p)- (4.5.3)

with
Qjpir =Pilzjp1) and Qjip=Pj(;,1). (4.5.4)
Note that, in order to have a well-balanced scheme, we introduced an additional term S, o
which is defined by
_ _ghj—%R +hiiL Zivin — %i-4R
2 Ax

and which represents the in-cell second-order contribution of the source term. Of course, we
note that s, ; = 0 for all j if the slopes are null.

n
Sc.j
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Regarding the transport step, we exploit again polynomial reconstructions but now we
reconstruct the Lagrangian variables (Lh)7*'~ and (Lhu)}™'~ obtained at the end of the La-
grangian step. Then, the updating formula for & and hu are given by a second-order ap-
proximation of the three integrals that appear in (4.4.9). This is achieved by using a classical
mid-point rule, hence we get

Az \ i3 its
E14+E& o
ok n+l—( 73 J—3
wi_y (LX) (—2 )) (4.5.5)
where we use the upwind definition
LX)"H(6) if wr , >0
(LX) (8) = (LX), 11_( ) R (4.5.6)
i=3 (LX)5(6) if w:_, <0

As far as the topography is concerned, the procedure is similar, the only difference is that
we reconstruct its values z;”“l_ instead of (Lz)?“‘. Hence, the reconstructed polynomial is
given by

1—
Pi(2,8) = 2777 + A€ = &),

and the second-order updating formula for z simply reads

At §‘+l f‘+l Ei1+& 1
n+1 n+1— * J J * J J
zj+ —(Lz)jJr — —(u%, 1 P; ;(2,—2 2>—uj7%Pj_%<z,—2 5 2)),

with

4.5.2 Update the bed level in the acoustic step

Let us proceed with the numerical scheme that takes into account the bed level z only at
acoustic level. Here, in order to obtain a second-order discretization of the variables h and hu,
we exactly follow the same procedure we described above. The only difference is related to the
bottom height approximation for which we use formula (4.4.7) and either (4.3.18) or (4.3.19)
for the star values. We highlight that, in the acoustic step, the same reconstruction procedure
is considered for the variables h, hu and z whereas, in the transport step, nothing has to be
done for 2.

4.5.3 Update the bed level in the transport step

Let us finally see the third and last approach, which directly updates z in the transport
step. Starting with the Lagrangian step, here the main difference, with respect to the previous
two LP strategies, concerns the strategy we use to preserve the well-balanced property. We
begin by defining at time ¢" and for each cell j a stationary solution denoted by = +— Q7*°(x)
and defined for all x by

(A7) (@) = hlf + 20 = 2"(x), u)“(z) =u}

; 7oand  20%(7) = 2"(x), (4.5.7)
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4.6. Overall discretization and well-balanced property

where x — z"(x) is nothing but the piecewise constant approximation of z at time ¢”, namely
such that 2"(z) = 27 for all z in [x;_1/2,7;11/2). Such a reconstructed solution satisfies the
in-cell conservation property

1 [+

A_:C N Q?’e(l')d.fﬂ = Q;L

[N

Next, we follow [45, 17] and introduce the so-called j-fluctuations defined as
1 Tr+1/2 n e( )d
L= [ Qs
’ A$ Tr—1/2 !

for all k. Observe that D} ; = 0 by construction, while D ; = 0 for all £ if the approximate
solution at time ¢" satisfies the "lake at rest" condition (4.1.5).

Lastly, for each cell I; we make use of a reconstructed polynomial vector P’ (z) defined
as in (4.5.1), where we compute the slopes using the fluctuations. Namely, we impose A} =
AMD?_, ;, D}, D}, ;) and exploit either ENO [49] or MINMOD [50] limiters.

J_11j7 ]7j7 .7+17.]
Then, we define the numerical fluxes «% , and H;f L1 using the interfaces values (4.5.4)
2

J+
(as in (4.5.3)) and formula (4.4.5). Regarding the source term, once again we exploit formulas
(4.4.4). Let us note that, thanks to formula (4.5.7), 2, 1, =2 and ;15 = 2j41 as the fluctu-
ations related to the topography are null. Finally, the discretization of the Lagrangian system
(4.2.3) reads as in the first-order step, namely formulas (4.4.6).
As far as the transport step is concerned, the water height i and the discharge hu are
updated like in the two other methods and thus we do not further discuss it. Then, regarding

the topography, we consider the weakly coupled scheme (4.4.12) where we naturally set

' &y €
v 1 [ Sit+: j+3 . .
g\ "~ (E) <(L“)JI11 ( 2 )) if w0
)
u/j+1/2 .
% n+1— €j+% +€]+§>> : *
\ (u) <(L“)J’ ( 2 it uiy >0,
and u;il is given by (4.5.3).

Afterwards, for the decoupled scheme, we first define the reconstructed polynomial for
the water height 4 and the flow hu at time ",

P(X)H(x) = X7 + A (z — xy)

J

with X' = h, hu and A” the slopes (either ENO or MINMOD). Then, we use formula (4.4.10),
where we impose

. P(hu)?, (z;, 1) | *
(qb>n (%)( P(hl;?]_,:l(;j]:;) ) if ujJr% <0
E j+1/2: P(h )n( | 7) |

() g 5) 1 w0

4.6 Overall discretization and well-balanced property

This section is devoted to the illustration of the first-order overall discretizations of the
previous schemes and their well-balanced property. We also take advantage of this section to
observe that the three first-order methods we presented are also positivity-preserving under
suitable conditions.
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Chapter 4. LP schemes for shallow water Exner equations

Remark 4. Is it possible to prove that the three first-order methods are positivity-preserving,
meaning that they are able to preserve the strict positivity of the water height under the associated
CFL condition 4.4.2 with CFL; < % See also [14] for more details.

4.6.1 Bed level in both steps

Considering the numerical treatment that updates z in both the acoustic and transport
steps (sections 4.3.1, 4.4 and 4.5.1), it is easy to see that the whole first-order scheme takes the
following final form,

P = D = (g (L) =iy (L))
(hu)itt = (huA) = (g (Lha) 0 A(uj_;(Lhu)fi +IL ) + Atsj,
t t
1 n * * n+1— * n+l-—
G =g = (@), - (2 Zu)j—%) ~ A G —gEh)
(4.6.1)
with
o XpHm e W >0
n+l— __ 2
Xl Ty xm g W <0 (462)

j-‘rl j+,

and X = Lh, Lhu, z. Note that the evolution equation for the topography z can also be refor-
mulated as
At
n+l _ _n * * * * n+l—

2T =2 — AI(QHz Qj_%)—i——(u. L (27 L — 2 ) —u
It is clear that, without the source term present in the evolution equation for hu, the whole
numerical scheme would be conservative. Let us now prove that both the first and second-
order schemes are well-balanced.

Theorem 5. The numerical method with updating formula (4.6.1) and star values given in section
4.3.1.1 is well-balanced under the "lake at rest" condition (4.1.5).

Proof. Referring to [20], it can be easily seen that u},, , = 0, h;.lﬂf = h} and (hu)g”rl* =
(hu)} Vj. Let us now consider the topography 2. Since we are under the hypothesis that u} =

u’ = 0V, it appears clear that we are in the case |uj+1/2|bj+1/2 < aj41/2- Consequently,

j+1/2
we should use formula (4.3.13) to update z/"'~, which leads to (lul2)j,1/p =0and 3, » =0
V7. Thus, the scheme is well-balanced for z as well.
]

Theorem 6. The second-order numerical method which updates the bed level z in both the acous-
tic and transport step (formulas in section 4.5.1) preserves the "lake at rest" stationary solution
(4.1.5).

Proof. First of all, we observe that u;‘ .1 = 0Vj when the variables at time ¢" satisfy the "lake
2

at rest" solution. Indeed, we have

* 1
Uil = §(uj+éL + uj+%R)_201]T(Hj+%R - Hj-&-%L)
2
= Gha b)) (g — 2a1L)
2a]’+l 2 ]+§L ]+§R ]+§R ]+§L
2
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4.6. Overall discretization and well-balanced property

but A(u) = 0V and thus Uiyl = Ui 1p = Uj = Ujsq = 0. Thus, we only have to prove
that p
Wyip =M1, = _§(hj+%L T hiip)(Zr — %510 (4.6.3)

but

g 2 g
HjJr%R - HjJr%L = §(hj+§R - h?-f-%L) = §(hj+%L + hj+%R)(hj+%R - hj+§L)

and finally (4.6.3) is equivalent to

hjgip=ljp1p = —(Zj+§R - Zj+§L)-

Exploiting definitions (4.5.1)-(4.5.4), we write

A, (h)Az AL(h)Azx
hypin—hipip = hip — = — (b; + ]T) =
AL (2)Ax AL(2)Ax
= —Zjy1 + 7+ j+12 + : 5 :_Zj+%R+Zj+%L'

Thus, we proved that u;" = 0 Vj. Next, if the "lake at rest" condition holds true, from the
2

second equation of system (4.5.2) we observe

—(H;Jr% — H;_%) + Ax(s +s¢;) =0
and thus L’;H_(hu);”rl_ = L7(hu)} = 0. Let us give the details. Since we know Ujplp =

Ujpip = 0 V7, we can write

. . 1 1
HA_’_% —H _% = §<Hj+lR+H]+1L) —_— §(ijfR+ijlL) =
1
§<(Hj+1R Hj+1L)+(Hj—%R_H]—1L)> 10, =10 1p
(4.6.3)

With similar computations, it is straightforward to see that IT, 1= I, 1R = Azsg, ;. Finally,

since u*, , = 0V, we also know that Q* , = 0V and thus 2"~ = 27
JEs3 e J J

Regarding the transport step, it does not modify the unknowns’ values as u; L1 = 0Vj

2
Similarly, since we already know that the Runge-Kutta procedure does not prevent the scheme
from being well-balanced, the property is proved. ]

Theorem 7. The numerical method with updating formula (4.6.1) and star values given in section
4.3.1.1 is well-balanced under the "constant bed slope" equilibrium (4.1.6). This statement remains
true even if we consider its second-order accurate version presented in section 4.5.1.

Proof. Assuming to be under the "constant bed slope" equilibrium (4.1.6), namely to have con-
stant velocity u; = wj'; Vi, constant water height A = h},, Vi and constant bed slope
zi—2z = —AxSy; = K Viwith constant K, we want to prove that such a steady state is pre-
served, namely that 17! = h? hut* = hul and 2" = 2 Vi. Let us start by seeing what are
the star values in this case. We consider only the case a < |ur|b, a < |ug|b as for the other one
the procedure is analogous. Thus, it easy to see that we obtain II7 , , = I} = II" = constant

* - 4" — L M. - uf =
and uy, jo = Uj 5cMiy12 = u* = constant as also the parameters a and b are clearly
n n
. . * _ ZptE u n o _ .n
constant in all the domain. Moreover, we also have 27, , = ==5— + STulbr (27, — 27') and
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Chapter 4. LP schemes for shallow water Exner equations

QF 1), = " = constant. Then, it is easy to see that we obtain Rt = LA™ = b2, while
for the discharge we get

hultt = hul' + Atghl'S;,
where the friction has not yet been taken into account and which compensates the presence of
the term Atgh]' AzSy, leading to h~u?+1 = hu?, see also [4]. Finally, as far as the topography
is concerned, we have

At At
n+l _ _n * * * * L oomtl—y ok " a1
A=A = R (U — )+ g (e Gy — ) ey Gy — )
At
* n+17 * n+l1—
=z tu— — Z, —(z, 1 — 2z .
+ ALE(( z-i—l +§ ) ( z—% 17% ))
Then, since u* is constant, it is clear that we have ZZ": f_ — Z:L_Jrf_ = zznj'll_ z?"'l_ = z;”'l_ _
2 2
ntl— _ _n n __ .n n o __
2 =z — % =z — 2", = K and thus

n n n n
ALz A+

n+l __ _n _
z; _Zi+u_Ax( 5 5 K)
At ZH—I Zzn Z?—Z?_l _.n

which concludes the proof for the first-order method. Concerning the second-order extension,
it is enough to check that the slopes of the polynomial reconstruction are either null or con-
stant and similar computations lead to the same result; we therefore do not include further
details here. ]

4.6.2 Bed level in the acoustic step

The first-order numerical method, which takes into account the bed level z only in the
acoustic step (sections 4.3.2, 4.4 and 4.5.2), has an overall form similar to (4.6.1), the only dif-
ference related to the updating equation for 2. In practice, we write

At

n+l _ 1n n+1— n+1—
hitt = by —A—x( i LR — g LR )
hu;}—l—l = hu? — %( 1Lhu"+1_ + H* b (u;_%Lhu?jé_ + H;_%)) + Ats? (4.6.4)
At
J i ANty i

with Xj’fllf given by formula (4.6.2) and X = Lh, Lhu.

Theorem 8. The numerical method with updating formula (4.6.4) and star values given in section
4.3.2.2 is well-balanced under the "lake at rest" condition (4.1.5).

Proof. Analogous to the one of theorem 5.

]

Theorem 9. The second-order numerical method which updates the bed level = only in the acous-
tic step (section 4.5.2) preserves the "lake at rest" stationary solution (4.1.5).

Proof. Analogous to the one of theorem 6.

]

Theorem 10. The numerical method with updating formula (4.6.4) and star values given in
section 4.3.2.2 is well-balanced under the "constant bed slope" equilibrium (4.1.6). This statement
remains true even if we consider its second-order accurate version presented in section 4.5.2.

Proof. Analogous to the one of theorem 7.
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4.7. Numerical evidences

4.6.3 Bed level in the transport step

Finally, let us briefly comment on the numerical scheme which resembles to the usual
splitting method (sections 4.3.3, 4.4 and 4.5.3). The bed level is updated only in the transport
step and, as such, the first-order overall discretization reads

At
o = W - A(u Ly LRI 1—u L) N
hutt = b — 28 (usy Lht T+ 15— (LT 105 0)) + AlsT (4615

2
At L n+1— L n+1
Z".?’+1 e ZT,L (’U,* 1 <—qb( v ) — ’U,f_l <Qb( U)) ),
J J Ar\7t\ Lu /4l 772\ Lu /-1

where we have used discretization (4.4.12) instead of (4.4.10). See also formulas (4.4.6) and
(4.4.8). It is easy to see that both first and second-order accurate versions of this method are
well-balanced.

Theorem 11. The first-order numerical scheme with updating formula (4.6.5) preserves the "lake
at rest" stationary solution (4.1.5).

Proof. Proof analogous to the one of theorem 5. We only observe that under the lake at rest
condition, we also find (Lu)”Jrl = 0as (h+2)} = (h+ 2)},, forall j. O

Theorem 12. The second-order numerical method which updates the bed level z only in the
transport step (section 4.5.3) preserves the "lake at rest" stationary solution (4.1.5).

Proof. Since we already proved the well-balanced property for the first-order scheme, it is
straightforward to show it for the second-order method as well. Indeed, it is enough to ob-
serve that the slopes A = A?(D?_, ;, D7, D7, , .) are null under the "lake at rest” hypothesis

J=L32 7537
thanks to definition of the fluctuations. Hence, once again we obtain u;‘ +1 = 0 and thus
2
n+l— __ n __ n+l— _ 1n n+l __ n+l— __ n __ n+l __ n+l— _ 1n
Lhu; = huj =0, Lh] = hj, hu;™" = Lhu} = huj =0, hj™" = LI] = h}
and z”“ = z;'. Finally, it is only worth to specify that the Runge-Kutta procedure automati-

cally preserves the stationary solutions. [

Theorem 13. The first-order numerical scheme with updating formula (4.6.5) preserves the "con-
stant bed slope” equilibrium (4.1.6). This statement remains true even if we consider its second-
order accurate version presented in section 4.5.3.

Proof. Analogous to the one of theorems 7 and 12. ]

4.7 Numerical evidences

Here we test the numerical schemes we presented so far; for the sake of conciseness we
distinguish them by calling them as follows:

o "AcTrZ": scheme with bed level z updated in both the ACoustic and the TRansport steps
(see sections 4.3.1, 4.4 and 4.5.1);

« "AcZ": scheme with bed level z updated in the ACoustic step (see sections 4.3.2, 4.4 and
4.5.2);

o "TrZ": scheme with bed level z updated in the TRansport step (see sections 4.3.3, 4.4 and
4.5.3). Since the decoupled (4.4.10) and weakly coupled (4.4.12) formulas give similar
results, if not otherwise specified, we use the weakly coupled discretization (4.4.12).
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Chapter 4. LP schemes for shallow water Exner equations

Scheme  Mesh M Var errL! O(L') Var errL' O(L') Var err L! O(LY)
AcTrZ 64 h  0.0269 — hu 0.1174 — z 01372 x 1073 —
128 0.0083 1.6927 0.0354 1.7294 0.0639 x 10~%  1.1030
256 0.0027 1.6190 0.0115 1.6236 0.0218 x 1073 1.5529
512 0.0007 1.8757 0.0031 1.8773 0.0061 x 1073 1.8456
1024 0.0002 1.9786 0.0008 1.9819 0.0016 x 1073 1.9532
AcZ 64 h  0.0269 - hu 0.1174 - z  0.1370 x 1073 —
128 0.0083 1.6931 0.0354 1.7301 0.0592 x 1073 1.2115
256 0.0027 1.6186 0.0115 1.6236 0.0198 x 10=%  1.5780
512 0.0007 1.8754 0.0031 1.8772 0.0056 x 1073 1.8329
1024 0.0002 1.9785 0.0008 1.9820 0.0014 x 1073 1.9427
TrZ 64 h  0.0268 - hu  0.1175 - z  0.1824 x 1073 —
Weakly 128 0.0083 1.6955 0.0354 1.7320 0.0550 x 1073 1.7296
coupled 256 0.0027 1.6182 0.0115 1.6248 0.0183 x 10~%  1.5890
512 0.0007 1.8755 0.0031 1.8781 0.0050 x 1073 1.8734
1024 0.0002 1.9782 0.0008 1.9818 0.0013 x 1073 1.9792
TrZ 64 h  0.0268 - hu  0.1175 - z  0.1792 x 1073 —
Decoupled 128 0.0083 1.6953 0.0354 1.7320 0.0544 x 1073 1.7190
256 0.0027 1.6185 0.0115 1.6249 0.0182 x 10=%  1.5785
512 0.0007 1.8756 0.0031 1.8782 0.0050 x 1073 1.8761
1024 0.0002 1.9781 0.0008 1.9818 0.0012 x 1073 1.9932

Table 4.7.1: Errors and empirical convergence rates for norm L. Mesh of size M = (64, 128,256,512, 1024),
CFL = 0.25.

If not otherwise specified, we take ( = 1, ¢, = Aju® with A, = 0.005 for the Exner
equation, 1y = 0 and transmissive boundary conditions. For the CFL number we use CFL; =
0.45 and CFL; = 0.25 for first and second order schemes respectively, while CFL, = 1. With
the exception of the accuracy test case, when the reference solution is inserted, it is computed
exploiting the second-order AcTrZ scheme with M = 1000 cells, where Ax = ﬁ with L the
length of the channel.

4.7.1 Test of order of accuracy

Here we test the order of accuracy of the numerical schemes described previously. Let us
consider a channel of length L = 20m, A, = 0.3, m = 3. The initial condition is given by null
velocity and

zre = 0.1 — 0.01e~ (@10
hie =2 —0.1e-(@=10)?,

We refer to paper [15] for this test case. The reference solution is computed using M = 2048
cells and TrZ-second-order "decoupled"” method (formula (4.4.10)). In table 4.7.1 we insert the
errors and the EOA in norm L' for all the three schemes. In particular for the TrZ one, we
consider both the weakly coupled (formula (4.4.12)) and decoupled (formula (4.4.10)) versions.
We can see that the second-order of accuracy is reached in each case.

4.7.2 Riemann problem: dam break on movable bottom

For this Riemann problem, we refer to [1]. The length of the channel is L = 10m and the
dam is placed in the middle. The ending time is t.,4 = 1s. The initial condition is given by null
velocity, flat topography and water height hy, = 2m if x < L/2, hg = 0.125m if x > L/2.
First of all, in figure 4.7.1, we compare the first and second order method. In particular, we
used LP-AcZ scheme but similar results can be found with the other two methods. Clearly,
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Time : 1.0000s

— Reference

— 1st-order 005 L

—2nd-order
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(a) M = 100 cells (b) M = 2000 cells

Figure 4.7.1: RP: dam break on movable bottom; free surface (left-top) and bed level (left-bottom and right).
Comparison between the first (magenta) and second-order (blue) LP-AcZ scheme with M = 100 cells (left) and
M = 2000 cells (right). Reference solution in red line.

the second-order version of the method gives more accurate results for the same value of the
mesh. On the right we used M = 2000 cells to show that the first-order solution converges to
the second-order one in general, even if we can observe a small difference of order 1072 in the
shock position. However, this is not surprising but natural, as the shallow water Exner system
is not conservative. Then, in figure 4.7.2, we insert the bed level solution of all the three second-
order numerical schemes in order to be able to sum up the merits and flaws of each of them.
As expected, the more diffusive numerical scheme is the one in which the bed level is updated
in both steps, namely the AcTrZ-scheme. Whereas the AcZ-scheme is slightly more diffusive
than the TrZ one but less than the AcTrZ-method. On the other hand, the TrZ-method appears
to be the less diffusive scheme but it is the only one which presents some oscillations in the
solution. Of course, they could be related to the fact that the TrZ-method entails a decoupled
numerical approximation of the shallow-water-Exner system, even if this kind of oscillations
are not observed in the first-order version of TrZ-scheme. However, we remark that these
oscillations reduce themselves when refining the mesh. Indeed, in figure 4.7.3, we insert the
results for both the decoupled and weakly coupled second order TrZ methods for different
mesh sizes, M = 100, M = 200 and M = 500 cells. These two schemes give similar results
and, in the topography outputs of both of them, we note some instabilities which decrease
as we refine the mesh. We also observe that these oscillations are more accentuated in the
decoupled scheme outputs.

4.7.3 Transient Riemann problems

Next, we consider three different transient Riemann problems to test the ability of our
schemes to reproduce the correct solution in this kind of situation as well. In table 4.7.2, we
insert the initial conditions and the value for the coefficient A, present in the Grass formu-
lation. We highlight that, in the third Riemann problem, A, is not constant anymore as it
depends on the water height /. Moreover, we take pg = 0.4, M = 200 cells and t.,q = 0.2s
as ending time. We refer to works [47, 42] for more details and for the analytical solutions
reported in figures 4.7.4, 4.7.5, 4.7.6. In particular, we plot the free surface and bed elevation
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Figure 4.7.2: RP: dam break on movable bottom, bed level. Comparison among the three second-order schemes
AcTrZ (magenta), AcZ (yellow) and TrZ (blue) with M = 100 cells. Reference solution in red line.

outputs using both first and second order method. Let us see the details. For the first RP (test
A) represented in figure 4.7.4, on the left side we insert the AcTrZ solution while the TrZ one
is shown on the right. We generally observe that the numerical outputs follow closely the ref-
erence one, even if the TrZ solution presents some small oscillations in correspondence of the
middle discontinuity. The AcZ output is not inserted as it is very close to the AcTrZ one, even
if less diffusive. Similar observations can be inferred for test B, thus we only show the AcTrZ
solution on the left side of figure 4.7.5. We remark that neither the AcTrZ nor the AcZ solutions
present oscillations for these two RPs at both first and second order of accuracy. Finally, let us
see test C outputs. On the right side of figure 4.7.5, we inserted the AcTrZ solution both at first
and second order of accuracy. Once again, the numerical solution appear to reproduce cor-
rectly the reference one. However, while neither the first-order AcTrZ nor the first-order AcZ
produce any oscillations, the latter can be observed when using the second-order schemes.
Thus, in figure 4.7.6 we compare the three second-order solutions and we zoom in the areas of
interest to show that some small perturbations are present in the numerical outputs, probably
due to the fact that less numerical diffusion is present. However, the correct solution is gen-
erally reproduced, even if A, is not constant anymore. We conclude saying that we verified
that the numerical outputs converge to the analytical one when refining the mesh.

Remark 5. Moreover, even if without reporting here the data, even bigger values of A, have
been considered to simulate highly erosive flow for the first dam break problem (section 4.7.2) and
these three transient test cases. The interest in trying bigger values of A, resides in the fact that
greater values mean a change in the flow structure of the coupled model and, consequently, more
instabilities could appear if the numerical scheme is decoupled. Using the value A, = 0.5, we
indeed verified the presence of great oscillations when using the TrZ method. On the other hand,
the other two first-order methods AcTrZ and AcZ do not produce any instabilities and remain
stable. However, some oscillations have been observed using their second-order extension, even
if sufficiently controlled to keep the schemes stable. One could envisage a strategy to remove
them, by combining the first-order and second-order version in order to keep the second-order of
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Figure 4.7.3: RP: dam break on movable bottom; free surface (up) and bed level (bottom). "Decoupled” (bottom)
and "weakly coupled" (up) solutions. Mesh of size M = 100 (blue line), M = 200 (magenta line) and M = 500

(green line) cells. Red line for reference solution.
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Test hr, hr ur, UR 2L ZR Ag
A 2 2 0.25495 2.3247449 3.0 2.846848 0.01
B 2.25 1.18868612 0.2050 2.4321238 5.0 5.124685 0.01
C 6 5.2 0.30037 15.16725 3.0 4.631165 0.01/h

Table 4.7.2: Data for the transient Riemann problems.
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Figure 4.7.4: Test A; free surface (up) and bed elevation (bottom) computed with AcTrZ method (left) and TrZ
scheme (right). Reference solution (red line), first-order solution (blue symbol -.) and second-order solution
(black dashed line). M = 200 cells.

accuracy in the stable parts of the solution, resembling a kind of flux-limiter [49] approach (if a
priori) or a MOOD [22] approach (if a posteriori).

4.7.4 Sub-critical test case

For the following two numerical tests we refer to paper [23]. As initial condition we con-
sider the sub-critical steady state

hu(z,t =0)=0.5
2(z,t =0) = 0.1(1 4 e~ =97
2 4 g(h+ =) = 6.386,

while the length of the channel is L = 10.0m. In figure 4.7.7 we insert the results for A, = 0.05
and A, = 0.007. In the latter case, AcZ-solution is not inserted for the sake of clarity as it
is very similar to the AcTrZ-one. We observe that the three schemes give similar solutions,
which confirm the observations of the previous test case; in order from the least to the most
diffusive, we have TrZ, AcZ and AcTrZ-scheme. It is also important to remark that, in these
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Figure 4.7.5: Test B (left) and C (right); free surface (up) and bed elevation (bottom) computed with AcTrZ method.
Reference solution (red line), first-order solution (blue pointed line) and second-order solution (black dashed line).
M = 200 cells.

two numerical simulations, no oscillations appear even if, in the work [23], it has been ex-
plained that decoupled methods could present oscillations in these two test cases.

4.7.5 "Lake at rest" solution and perturbation

Referring to [20], here we test the ability of the schemes to preserve the "lake at rest"
steady state. First of all, we consider the following stationary solution where u = 0, h(z,t =
0) + z(x,t = 0) = 3m and

2+ 0.25(cos(10m(z — 0.5)) +1) if 1l4<z <16
2 otherwise.
The length of the channel is L = 2.0m. The numerical schemes were able to preserve this

steady state up to an error of order 1075, Then, we introduce some small perturbations in the
initial data, namely we impose

3—2(z,t=0)40.001 if 1.1<z<1.2
3—z(xz,t=0) otherwise.

h(z,t =0) :{

In figure 4.7.8, we compare the results of first and second-order AcZ-scheme against the ref-
erence solution. We only show the outputs of the AcZ-method as the other two schemes give
analogous results. We observe that the outcomes are indeed satisfying as they are in agreement
with the ones showed in [20] and no unphysical oscillations appear.
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between the first (magenta) and second-order (blue) LP-AcZ scheme with M = 200 cells. Reference solution in
red line.

4.7.6  "Constant bed slope" equilibrium for steady flow regimes

In this section, we numerically show that our method is capable of preserving the "constant
bed slope" equilibrium and that the solution evolves to the steady state if steady boundary
conditions are imposed. We refer to [42] and we take ;1 = 0.020006460818026 s m~ /3,
Ay = 0.01, L = 100 m and M = 100 cells so that Az = 1m. Then, for the equilibrium, we
consider the following slope S., = —0.002 for z. Our numerical methods are able to preserve
it with an error machine of 107'2. We highlight that, at the left and right boundaries, for the
variable z we need to impose constant slope. For instance, for the right boundary, this means
that the value in the ghost cell is given by Zout — Zend = Zend — Zend—1, Where by Zeng and Zepg—1
we indicate the value of z in the last and second-last cell.

Then, we move away from the steady state and consider as initial condition h(z,t = 0) =
0.943m, g(z,t = 0) = 1 m3/s and either Sy = —0.007 or Sy = 0. As for the boundary
conditions, at the inlet we impose 2, = 2 m and ¢, = 1 m? /s, while at the outlet we use
how = 0.943 m. Once again, at the right boundary, for the variable z we imposed that the
slope is constant. Then, in figure 4.7.9 we insert the results using Sy = —0.007 (left) and
So = 0 (right). In both cases, we observe that the numerical solution converges towards the
exact one, namely the "constant bed slope" equilibrium. The outputs have been computed with
the first-order LP-AcTrZ scheme, but all the numerical methods we presented give analogous
results.

4.7.7 Dam break with experimental values

Here we present the last numerical test, in which we compare our numerical solution
against experimental data. We consider once again a Riemann problem performed at the
Université catholique de Louvain with initial condition given by zero-velocity, h;, = 0.1 m,
hr = le — 3 m for the water height and flat topography. Then, we take L = 2.5 m, MPM
formula (4.1.3) for the solid transport discharge with d = 3.2 mm, py = 0.4, s = 0.540,
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Figure 4.7.9: "Constant bed slope" equilibrium for steady flow regimes; bed level z and free surface z + h. Initial
condition (blue line), numerical steady state (green symbol) and exact steady state (red line). LP-AcTrZ scheme
with M = 100 cells.

py = 0.03 and 7 = 0.045. Refer to [34] for more details about this experiment. In figure
4.7.10, we insert the free surface and bed elevation numerical and experimental outputs com-
puted at different times t.,q = 5tg, 7.5tg, 10ty s with ty = \/gho ~ 0.101. In particular, we
used the AcZ scheme but analogous solution can be found using the AcTrZ or TrZ method,
where once again the TrZ solution would be the less diffusive while the AcTrZ output the most
diffusive. The results are considered satisfying as they appear to match the experimental data
and are comparable to the ones obtained in [34]. Note that the difference between the numer-
ical and experimental output could be related to the fact that we are both neglecting erosion
processes (meaning that smaller fractions of sediment could be in suspension into the water)
and non-hydrostatic effects, refer also to [32]. Then, when using the second-order schemes we
observed the production of some small oscillations which were dumped as time went on. Thus,
in figure 4.7.12, we inserted the second-order solutions using the AcTrZ and AcZ schemes at
times t.,q = dto, 7.5%g, 10ty s, while in figure 4.7.11 at time ¢.,4 = 1.5ty to better show the
presence of oscillations. Note that we did not inserted the second-order TrZ solution as it gave
complex values. Concluding, even if small oscillations are present, probably due to the fact
that at second-order of accuracy there is less diffusion, the solutions are considered satisfying.
Moreover, at this stage we are still neglecting source terms related to the erosion phenomena
of the sediment, which could help stabilizing the numerical output, see [32].

4.8 2D extension of the shallow water Exner model

During this thesis, the study of Lagrange-projection schemes for the Saint-Venant-Exner
model has been realized in two steps. First, an easier strategy (the one that only updates z
in the transport step) has been developed in 1D and 2D and presented in a first paper. Then,
two other weakly coupled approaches (which also consider the Exner equation in the acoustic
step) have been proposed in a second work. For this reason, as a second part of this chapter,
we include the 2D version of the model together with the Lagrange-Projection scheme which
updates the bed elevation only in the transport step, see the previous sections 4.3.3, 4.4 and
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Figure 4.7.10: Dam break with experimental values; numerical bed level z (red line), numerical free surface z + h
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4.5.3.

Hence, we start by presenting the 2D shallow water Exner system (without friction forces).
Denoting (z,y) € R? the space variables in 2D and u = (u,v)? the velocity vector, the 2D
shallow water system reads

{ath +V-(hu) =0 @)

Oi(hu) + V- (hu®u) + Vp = —ghVz,
while the Exner equation is given by
81‘,2 + Caa:Qb,z + Cabe,y =0

where ¢, and ¢, are the solid transport discharges in the x and y direction respectively.
Exploiting once again the Grass model, their formula are the following,

e = Agu(u® +0v?) and @, = AW +0?).
Notice that the "lake at rest" stationary solution now satisfies
u=0, v=0 and V(h+2z2)=0.
Refer to [36, 43, 44] for details about the shallow water Exner system in 2D.

At this stage, we observe that a Lagrangian formulation of these equations is still possible.
More precisely, let us introduce the Lagrangian coordinates, considering a fluid particle in
position ({1, &) and the map : (§1,&) — (z,y), withz = x(&, &, t), vy = y(&1, &2, t) and such

that 5 5
X . _y _
at - U((E,y,t) and at U(I,y,t),

r(£1,62,0) =&, y(61,6,0) = &,
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We also assume that for each ¢ > 0, this map is invertible and its Jacobian (determinant of the
Jacobian matrix) is given by
aﬁlx 8523;

L(glag%t): ‘8§y aﬁy

with L(&1,£2,0) = 1 and, after easy calculations,

OL(&1, &, 1)

gy =LV - -u= Lo,u+ L. (4.8.2)

Then, it can be shown that the Lagrangian formulation of the system reads

(4.8.3)

Oy(Lhu) + LVp = —ghLV z,

where the gradient is still taken with respect to the Eulerian variables (z,y). On the other
hand, we also have

Oy(Lu) —ulV -u+gLV(h+2) =0,

which will be useful hereafter. We refer the reader to [39, 40, 26] for more details about La-
grangian coordinates in 2D.

4.8.1 2D Numerical scheme

We now give some basic notations about the discretization of the domain before presenting
the 2D extension of the numerical scheme.

First of all, the computational domain 2 C R is divided into M, x M, rectangular cells
with constant space steps Az and Ay in the x and y directions respectively. Then, the mesh
interfaces are given by x;;1/5 fori € {0,..., M.} and y; /o for j € {0,..., M, }. Thus, ¢}
denotes the piecewise constant approximation of the variable ¢ in the cell [x;_1 /2, Zi11/2) X
[%—1/2, yj+1/2) at time tn, namely

i+1/2 Yj+1/2 )
o~ / / o(z,y,t") de dy.
’ AI Ti-1/2 Yj—1/2

Next, we present the 2D extension of the acoustic and transport steps of the LP strategy. We
highlight that here the bed elevation z is only updated in the transport step.

Acoustic step

Following the 1D scheme presented in section 4.4.1, the numerical approximation of (4.8.3)
reads

(Lh) ' = (Lh)};

n * 1n

(Lhu)ijl = (Lhu)}; — ﬁ IT; +2J — 1T J,) + Ats; (4.8.4)
n — t * * s

(Lho)} 7'~ = (Lho)}; — —(H eI )+ Ats?]

where we imposed

At At
n+l— _ 1n * % * K
Ly =L+ Wiy — i) + _Ay( Pt V1) (4.8.5)
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with
1 1 M?—i—l/Qj
Wy = () — e (TIR TP 22
(bR Y I 20,:,:_%7], L e 2ai+1/2,j
* 1 n n 1 n M2j+1/2
/Ui,j+% = é(vi,j-‘rl + Ui,j) - 2a" ) (H ,j+1 — 1L J)_ 2ai i+1/2 ’
Li+5 J (4.8.6)
1 a?+1 J
* n n 2 n n
HH%J = §<Hi+1j + Hi,j) D) ( i+1,j u”)
1 a?yﬂrl
* n n ) 2 n n
I s §<Hi,j+1 +1175) — 5 (Vi1 — Uiy,

withaj!, ;5 ; = max((hc)”, (he)ih1;)s a7y o = max((he);, (he)i ;). Regarding the source
term, we have for all j

M? .
len - %(S?—I—l/Q,j + 3?_1/2,j> with 87,0 = —- 2';/27]
20 _ L i i n Zj+1/2
i:j - 5 (51;,j+1/2 + Si,j71/2> with Sijt1/2 = - Ay
with
/2 = g(% %)@nﬂd = 2i); i)z = %<% i r?j )(ijr = #i)-
2] i+1,5 e I

It is clear that the numerical formulas (4.8.6) are a natural extension of the ones used for the
1D system, namely (4.3.9). Therefore, if we want to compute /& and u in a cell of indexes (i, j),
we consider the flux contributions from cells (i = 1, j) and (i, j & 1). This also means that we
are not considering the values in cells of indexes (i + 1,7+ 1), (¢ = 1, 7 F 1), namely the cells
which only share a corner with the cell (i, j). Although this is a standard approach, in future
works it might actually be interesting to consider a "truly" multi-dimensional version of the
scheme, refer for instance to [6].

Transport step

As before, the second step of the Lagrange-projection scheme consists in either projecting
the acoustic solution onto the Eulerian grid or in approximating the transport system

dp+u-Vo=0

or equivalently
Op+ V- (pu) —pV-u=0,

where we took ¢ = h, hu, hv. Here and analogously to the 1D formulation (4.4.8), we simply
set

At
n+l _ n+1— * n+l— * n+1—
At ] . ol
N _< ij+3 ( ),j—&% B Ui,j—%(LSOL';__l%)J (487)
where
7oy (Lgo)?_ﬂlj it u,. >0
ntl— _ ) i—3,
( 90)177” (Lgo)?;rl* if uf, <0,
) i—3,
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and
n+l— . *
(Loys = | BT vy >0
hi=3 (L)t if v <0
) 1, 3

As for the Exner equation, as a natural extension of (4.4.12), we set

n+1 n At * Qb,x ntl— % qb,x ntl—
’ k Ax I\ u vl I\ u il

At * b,y ntl= * by ntl-
Ui i+l oy Y U
Ay 2 UV /ij+s o2 UV /ij—35

with
(B ((w)tly) i uliygn, <0
(B)itay =
LB (@w)7) i ulyg, >0
and
(B (L) i 07 0
SRUETER
B (L) i vl >0,

where a possible discretization of the evolution equations for Lu and Lv read

Uiprj+Uig o 1,

n+1 *
(Lu)m- =(Lu)i; + At 5 (Ax(u”%’j 1y

1 % % 81+ ,J + Szfl,j
+ A_y(vi7j+% — U'i,j—%)) — At 9
and N ]
n+l— __ n /U7*7.7+1 /UZ’.] * *
e R (E(UH%J = ui_%7j)+
Lo, . Sigty T 8-
g Vs T Uy) — AT

where §; 1 = g((h + 2)is1; — (h+2)i;)/Avand 8 ;.1 = g((h + 2)ije1 — (R + 2)i;)/ Ay.

2D Extension of the second-order scheme

We now briefly discuss the extension of the second-order scheme presented in section
4.5.3, distinguishing among the Exner equation and the Lagrangian and projection steps for
the shallow water system. Once again we reach the second order of accuracy in time exploiting
the Runge-Kutta procedure, which is applied to the Lagrangian and projection steps together.
As expected, the overall strategy is analogous to what we have done for the 1D case.

Regarding the Lagrangian step, we proceed as in the 1D case and compute the numerical

fluxes u* e v’,*j#, H*Jr _and H* b but also the speeds a;;1/2 ; and a; j11/2, using the left
27 9. 2 27 7

and right interfaces values defined by means of reconstructed polynomials, namely

Ax Az
n n x,t n n x,t
ir1jon; = Vij A i1/2m; = Vi — A

5 Hiy (4.8.8)
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in x direction, and

A
ij1/on = A%yat 50 Vigtjer = Vij — ?f;ﬂ?y (4.8.9)
along the y axis, where we have set V.= (h, hu, hv)T. At this stage, we only need to define the
slopes A7 Jt, Ay’ which are exactly computed as in the 1D case. We consider the definition of
the ﬂuctuat1ons in the z, respectively y, direction, we take y = y;, resp. v = z;, fixed and we
use reconstructed stationary solutions direction by direction. The details are left to the reader.
In particular, such a strategy guarantees the well-balanced property of the numerical scheme,

since the slopes turn out to be null under the "lake at rest" conditions.

Regarding the transport step, we consider a direct 2D extension of (4.5.5), namely

Xn+1 (LX)”+1_+

At (- nt1- glv”l—i_élﬂ“fl " €11 +él,z;;
_—<ui+%7j(LX)i++;j<#>_u L (LX) +1 (#)>

Ax 2 —3J i3, 2
INY wir (S2a4d Tty T
Ay <Uw+%(LX)w‘+% ( 2 > ~ V- XD ( 2 ))

where we have used clear notations based on classical first-order polynomial reconstruc-
tions of the Lagrangian unknowns (LX) in each direction as in the 1D case, clearly with

X = h, hu, hv.

Finally, exploiting the reconstructed values for Lu and Lv and using again classical nota-
tions, we suggest a direct 2D extension of (4.4.12) namely

Zn+1 n _C ( * (q@flf)n—H_ _u* (q@m)n—i_l_ )+

—(— v . —= — U - —=
CAy< m+1/2,( ” )Z.JH/Q m—m( . >M1/2>

with a natural definition for the numerical fluxes oz and @ Again, the details are left to
U v
the reader since there is no ambiguity.

To conclude this 2D section, let us mention that both schemes described here preserve the
"lake at rest" stationary solution. The proof is analogous to the one seen in 1D.

4.8.2 Numerical results

Finally, this section is devoted to the presentation of the simulations and outputs of the 2D
numerical scheme we described so far. Regarding the 2D time step value, at each time " we
compute two different time steps, one for the acoustic system and the other for the transport
part. Then, the final time step is taken as the minimum between the two. The acoustic time step
is automatically extended, see formula (4.4.1). Indeed, it is enough to consider both directions.
Then, for the transport time step, we state

+ — —
u. . — U, . V. . — 0. .
1 H-%J 1 1

71
At < CFL ! i[]{{ T3 1,]— 5 7/7]_’_5 } }

Once again, if not otherwise specified, we impose transmissive boundary conditions, CFL; = 1,
while CFL; = 0.45 and CFL; = 0.25 for the first and second order schemes respectively.
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Figure 4.8.1: 2D circular dam break on wet bed; water height (left) and its contour plot (right). 2D extension of
first-order scheme solution. M = 100 cells, tg,g = 0.69s and CFL; = 0.45.

4.8.3 Circular dam break on wet bed

In this first test, we do not take into account the Exner equation and we refer to [48].
The domain is a L x L square with L = 50m. Here as initial condition we consider a flat
topography, null velocities in both the = and y directions and water height

10 if r<1lm
1 if r>1lm,

hz,y,t =0) = {

with r = \/(z — 25)2 + (y — 25)2. Thus, we are considering a cylindrical dam that instanta-
neously breaks at initial time ¢ = (s. We take ending time tg,q = 0.69s. Satisfying results of
the first order scheme are reported in figure 4.8.1.

4.8.4 Water drop in a basin

For this numerical test, we refer to [3]. Here we simulate a water drop in a basin and
consequently reflective boundary conditions are used. A L-side square domain with L = 20m
is considered. The topography is still taken flat and constant in time. At initial time we assume
u = (0,0)" and

h(:v, Yyt = 0) _ 2‘4(1 + 6—0,25((x—10.05)2+(y—10.05)2))
The outputs are shown in figure 4.8.2 at time ¢ = 1s, ¢ = 2s, ¢ = 3s and ¢t = 4s respectively.
The results agree with the ones reported in [3]. In particular, in the same picture 4.8.2, we
compare the results at time ¢ = 4s obtained using the 2D extensions of the first-order and

second-order schemes. We can clearly see that the latter scheme gives less diffusive solutions
for the same mesh value M = 100 cells.

4.8.5 2D flow over a smooth bump

The following test problem is useful to check the well-balanced property of the scheme,
see [48]. The domain is a square of side L = 1m and we consider the Grass formulation for
the Exner equation with A; = 1 and ¢ = 1. At initial time we assume null velocities,

z(x,y,t = 0) = max(0,0.25 — 5((x — 0.5)> + (y — 0.5)?)) and h(z,y,t =0) = 0.5 — z(x,y).
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4.8. 2D extension of the shallow water Exner model
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Figure 4.8.2: Water drop in a basin; water height at time ¢ = Os (up, left), ¢ = 1s (up, right), ¢ = 2s (middle, left),
t = 3s (middle, right) and ¢t = 4s (bottom). M = 100 cells, CFL; = 0.25 and CFL; = 0.45 for the 2D extension
of second and first order scheme respectively. 2D-extension of the 1D first-order scheme used only in the image
on the bottom-right.
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Chapter 4. LP schemes for shallow water Exner equations

Thus, the initial solution satisfies the "lake at rest" condition. Indeed, our 2D numerical
schemes are able to preserve this kind of stationary solutions up to an error of order 10~5.

4.8.6 Conical dune of sand

This test case has been vastly used to validate numerical schemes for shallow water Exner
system, here we do refer for instance to [5, 35]. When considering the Grass formulation for
the sediment discharge, we take porosity py = 0.4, where we recall that { = ﬁ. The domain
isa L x L square with L = 1000m. At time ¢ = 0, we impose

0.1 + (sin(TZ20))2 (sin(TLA00))2if 300 < 2 < 500, 400 < y < 600

0.1 otherwise

z(x,y,t =0) :{

h(z,y,t =0) =10 — z(z,y,t = 0),

10
u(%%t:O) = m and ’U(:];"y’t:()) =0.
. . 10 .
As for the boundary conditions, at the upstream we impose u(z,y,t) = m, while we
x? y7

use transmissive conditions at the other boundaries.

Then, we start considering two different cases: in the first one we take A; = 1 and ending
time tg,q = H00s, thus we are assuming a fast interaction between the flow and the sediments.
As second case, we diminish the value of A,, namely we impose A, = 0.1, thus the strength
of the interaction decreases. The outputs for these two test cases can be found in pictures 4.8.3
and 4.8.4 respectively. The result are in agreement with the ones reported in [5] even if more
diffusive due to a coarser mesh size (M = 100 cells).

Finally, we consider a slow interaction case with A, = 0.001 and ending time ¢ = 100h.
The aim of this simulation is to observe what is the spreading angle of the dune. Indeed,
for slow water-sediment interaction cases (4, < 0.01), the sediment bottom should expand
according to a star-shaped. In particular, an approximation of the spreading angle a has been
proposed in the work of De Vriend [24]. Considering the Grass formulation, the angle is given
by

tan(a) = M
9m —1

and thus, we should obtain v = 21.786789° for m = 3. Afterwards, in figure 4.8.5 we insert
the bed elevation, while its contour plot is shown at different times in figure 4.8.6. In particular,
we consider the iso-levels z = 0.12 (left) and z = 0.15 (right) at times ¢ = 0s, ¢ = 25h, ¢ = 50h,
t = 75h, t = 100h. We also insert the analytical approximation of the spreading angle « in
order to show that our second-order method is capable to compute the solution with enough
accuracy. Indeed, for the iso-level z = 0.12, our results are comparable with the ones shown
for instance in [21, 35] as the majority of the spread of the dune is inside the cone. Then, since
on the right we use a greater value for the iso-level, namely z = 0.15, it is not surprising to
see that now almost all the spread is contained in the theoretical cone. See again the following
works [16, 5, 35, 21] for similar considerations.

4.9 Conclusions
In this work, we introduced three well-balanced second-order Lagrange-projection schemes

for the shallow water Exner model. In particular, we described three different ways of discretiz-
ing the bed level, by considering z either in both the acoustic and transport steps or only in
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Figure 4.8.3: Conical dune of sand; fast interaction A, = 1. Bed level (left) and contour plot (right) at time
t = 500s. 2D extension of second order scheme with M = 100 cells and CFL; = 0.25.
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Figure 4.8.5: Conical dune of sand; slow interaction A, = 0.001. Bed elevation computed with 2D extension of
second order scheme with M = 100 cells and CFL; = 0.25.
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(left) and z = 0.15 (right). 2D extension of second order scheme with M = 100 cells and CFL; = 0.25.

156



4.10. Bibliography

one of them. All the methods have been designed in such a way to be well-balanced and at the
same time second-order accurate. Here, by well-balanced, we mean that the schemes preserve
the "lake at rest" and the "constant bed slope" equilibrium steady states. Moreover, both Grass
and MPM formulation have been considered. We tested these methods considering several
numerical experiments and we generally observed that no oscillations are present in the nu-
merical results when using their first-order version. However, when moving to second-order
of accuracy, this is not always true. In particular, the TrZ scheme (z only in the transport step)
revealed itself to be the worst method among the three in this sense. On the other hand, the
other two methods AcTrZ and AcZ performed a lot better, showing only minor and controlled
oscillations in some of the numerical tests. Moreover, we also presented the 2D extension of
the model and of one numerical strategy (Exner equation in the transport strategy). A bench-
mark test (conical dune of sand) has been considered to test the good behavior of the scheme.

Further improvements could be related to the extension of all these numerical schemes
to two dimensions, higher order of accuracy and the use of other formulations for the solid
transport discharge. Finally, it could be interesting to consider the 1D and 2D implicit version
of such numerical methods, especially in situations of weak interaction between the flow and
the sediments, where long time simulations are needed.
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Annexe

4.A Sur un schéma de type Lagrange-projection entiére-
ment couplé pour le systéeme de Saint-Venant-Exner

Dans cette annexe, on presente une premiere tentative de Solveur de Riemann Approché
(SRA) que nous avons congu pour la partie acoustique du systéme de Saint-Venant-Exner. On
estime intéressant de montrer ce SRA car il nous parait tout a fait naturel. En effet, contraire-
ment aux solveurs précédents, il conduirait a un schéma numérique entiérement couplé avec
I’élévation du lit 2 mise a jour dans les deux étapes : acoustique et transport. Malheureusement
ce SRA s’est avéré ne pas étre automatiquement équilibre, c’est-a-dire qu’il ne préserve pas a
priori la solution stationnaire "lac au repos" (4.1.5). De plus, des problémes liés a son caractere
bien posé pourraient survenir si la vitesse u est nulle partout.

On considére a nouveau les équations acoustiques (4.3.3),

Oy — Oy = 0
g
0, 8m _am =0
U+ p+ - z (4A1)

1
Oz — Eﬁmz +(=0mnq =0
T T

ou nous rappelons que 7 = 1/h et 70, = 0,,. Une fois encore, on introduit deux nouvelles
variables de relaxation II et €, a savoir la linéarisation de p et (g, respectivement. Par contre,
le systéme de relaxation résultant est maintenant donné par

¢

0T — Opu =0
O + D11 + g@mz —0
1

Bz — g@mz +=0n =0 (4.A.2)
atH + QQamu =0

u , U’
B+ Z0,0 + (b1 — )z =0

T T

\

avec a et b paramétres constants. Les différences par rapport au systéme de relaxation (4.3.6)
sont les suivantes. Tout d’abord, le terme de couplage =0,,z est considéré dans le membre
T

de gauche de la deuxiéme équation et non comme un terme source. Deuxiémement, dans

I’équation d’évolution sur (2, le terme lié a la variation spatiale de z est 1égérement différent,
by . 2 . ’ ’ ’ .
C’est-a-dire que le terme (b7 — =),z a ensuite été remplacé par u*(b?7 — )0, z. Ce choix a

été motivé par le fait que nous voulions obtenir les valeurs propres =+|u|b plutot que +b, afin
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Appendix

d’avoir une méthode équilibre. Il est donc clair que la condition de stabilité pour b change et
s’écrit maintenant b > \/ (hu)? + gh?(0,qp tandis que la condition pour a est toujours donnée
par (4.3.7).

On introduit le systéme (4.A.2) sous forme compacte comme suit

9,U + B(U)9,,U = 0

avec

T 0 —1 0 00
u 0 0 g 10
U= |z et BU=]0 0 —x 0 1
I 0 a 0 00
Q 0 0 Pr—% 0 ¢

La matrice non-conservative du systeme a des valeurs propres constantes 0, =a, +b et par con-
séquent les champs caractéristiques associés sont linéairement dégénérés. Ensuite, les vecteurs
propres de droite correspondants sont

1 1 1
0 Fa Fb
Rp=|0]|,RE=| 0 et R = —I(b* —a?) . (4.A.3)
0 —a? —a?
0 0 —IZ(b* — a®)(u % 7b)

Ainsi, nous pouvons enfin trouver les invariants de Riemann. En commencant par la valeur
propre A, on obtient

R[QJ = u, RIOQ =z, Rjo,g =1II et R]0,4 = Q. (4.A.4)
Apreés, en considérant )\ff, ona
R[ia,l =ux arT, RIia,Q = au H, Rli%g =z et RIia,éL = Q. (4.A.5)

tandis que pour )\2: on trouve les invariants de Riemann suivants

2
a 2
Rl = utbr, Rl = 7u¥lL, Rl =~ — ngz et Rl = (utbr)z—Q.
a/ —_—
(4.A.6)
Nous avons maintenant tous les ingrédients pour résoudre le probleme de Riemann associé au
systéme (4.A.2).

4.A.1 Solveur de Riemann approché

On souhaite donc résoudre le probléme de Riemann suivant,

8,U + B(U)0,,U = 0

Ulm, t = 0) Uy if m<0 (4.A.7)
m _— g
’ Uz if m>0

ou en particulier

TL TR
ur, UR
UL = 2 et UR = ZR
g IIr
Qr Qr
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4.A. Schéma LP entiérement couplé pour le systéme SWExner

Comme il y a cinq ondes, la solution du probléme de Riemann est composée par six états dif-
férents séparés par les cinq discontinuités. Cependant, 'ordre des ondes n’est pas fixé car il
dépend de la valeur relative des parametres a et b. Ainsi, deux situations différentes peuvent
apparaitre, a savoir soit a < b, soit b < a. Par conséquent, la solution sera donnée respective-
ment soit par

(U, if 2<) =—b

Uy, if Ay =-0<B <A\ =—a
. * if A <2 <XN=0
A VR O I et (4.A.8)
t ar I 0<F <A =a

Upp if A <D<\ =0
Ug if %>)\2_

soit par
4 . _
Uy, if % < )‘a = —qa
* : —_ m —_ __
ar i A7 =—a <P <N =-b
m U; if A, << )=0
U(— UL, Ug) =4 0 70—t =7 (4.A.9)
* i + - m +
ar I A <B <A =a
. m +
\UR if T > >\a
avec
* * * *
To,L To,R Ta,L Ta,R
* * * *
Uy, 1, Uy, R Ug. I, Ug R
* * * _ * % _ * % _ *
Ur=|2c]| Uwr=1|%r|: ol = | ZarL et U,p=|2zr |- (4A10)
* * * *
b,L bR a,L a.R
* * * *
b,L b,R a,L a,R

Il est intéressant de souligner que les deux cas a < b et b < a correspondent a des flux super-
critiques et sous-critiques respectivement.

Ensuite, en utilisant les invariants de Riemann, il est clair que les états étoilés (4.A.10) se
réduisent a

* * * *
oL Ta,L Ta,R To,R
* * * *
Up, L Uq Uq Up,R
* _ * * _ * * _ * * _ *
Uy,=1] = , ar=17 1, Ur=1] 2 et Urp=1] 2 (4.A.11)
* * * *
b,L a a bR
Q* QOF QO OF
sia < b, eta
* * * *
Ta,L To,L To,R Ta,R
* * * *
UL Uy Uy Uo, R
* * * *
a,L - 2, , Ub,L - Z* B Ub,R - Z* et a,R - ZR ; (4A12)
* * * *
a,L Hb Hb a,R
Qr QO* Q* Qp
si b < a. Sans montrer tous les calculs, dans le cas a < b, on obtient les états étoilés suivants
% (UR+bTR)ZR—(UL—bTL)ZL . QR—QL
(ug + brr) — (ur — bry) (ug + brr) — (ur — bry)

ur +b1r)l, — (up, — b1)Qr  (ug + b7R)(ur, — b7p)

(
O =
(ug + brg) — (up, — b1y) (ug + brgr) — (ug, — b7y,

) (ZR - ZL)a
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Appendix

N
*
~—
~—
N|=

Tl;kaR = (TR+ p2 — GQ(ZR -
Z,L =1, _a2(7'z:L —7L)
\HZ7R:HR+G2(TR_7—;’R>

et
* * * 1 * *
Uy = ~(upp, + Uy ) — %(Hb,R — 11 1)
* * * a * *
I, = §(Hb,L +1 R) — 5(%,3 — Uy )
Tal = Tor + ;(HZ,L —11;)

* _ * * *
| Ta.R = Tor T ?(Hb,R —1I).
Passons au cas b < a. Maintenant, la solution du probléme de Riemann n’est pas aussi

facilement obtenue que précédemment en raison de la présence de conditions non linéaires.
En effet, nous avons

( o (UZ,R + bT;,R)ZR - (UZL - bT;,L)ZL Qr —Qp
(uZ,R + bT;,R) - (UZ,L - bT:,L) (UZ,R + bT;,R) - (UZ,L - bT;,L)
O <UZ7R + bT;,R)QL - (UZL —b70,2) R (UZ,R + bT;,R)(u;,L - bT;,L) (2 1)
= * * * * * * * * R ™ <L),
(ua,R + bTa,R) - (ua,L - bTa,L) (ua,R + bTa,R) - (ua,L - bTa,L)

uyy = %(UZL + Uy g) — 27@<HZ’R —1I; 1)

* * * a * *
Hb = E(Ha,L + Ha,R) - %(U(LR - ua,L)
uy = up +a(ry, —7r)
Uy p =Ur + a(TrR — T, p)
I, =T, —a®(7; ;, — 71)
H;}R =1l + CLZ(TR — TZR)

1

TI:L = TL+ E(HL —HZ)

* 1 *
Tor = TR+ ?(HR —1L;)
CL2 B b2 * \2 x \2 *
(e () = -
CL2 B b2 * \2 * \2 *

| (2 = () = 2
(4.A.13)

Ainsi, il est clair que ce dernier systeme n’est pas linéaire et nous devons le résoudre pour
- . e 14 * * * *
obtenir les états étoilés 7, p, 7, 1, 7 p and 7 ;.

Cependant, méme sans le résoudre, nous sommes en mesure de prouver que le solveur de
Riemann approché résultant n’est pas équilibre, ce qui signifie qu’il ne préserve pas la solution
stationnaire "lac au repos" (4.1.5). Regardons les détails. Supposons que nous soyons dans la
condition stationnaire "lac au repos" (4.1.5), c’est-a-dire que nous avons u;, = ur = 0 et
hr + z1, = hr + zg, alors nous disons que le solveur de Riemann est équilibre si nous avons
également U, ; = U, ; = Uy and U;, , = Uy p = Ug. Tout d’abord, puisque la vitesse est
nulle, nous avons clairement b < a, c’est-a-dire que nous sommes dans le deuxiéme cas avec
les états étoilés données par (4.A.13). Nous remarquons également que nous ne pouvons pas
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4.A. Schéma LP entiérement couplé pour le systéme SWExner

prendre exactement b = 0 sinon le solveur de Riemann pourrait ne pas étre bien posé, voir
les états étoilés de 2* et 2* (4.A.13). Ensuite, comme en général z;, # zp, il est clair que les
conditions 2* = z et 2* = zi ne peuvent pas étre satisfaites en méme temps. Cependant,
méme si nous ne demandons qu’a la variable u de satisfaire une telle condition, nous obtenons
une contradiction. En effet, imposons que u; ; = uy p = u; = ug, = ug = 0. Par conséquent,
nous obtenons 7, ; = 7 et 7, p = Tg, etapresII; | = Iy etII] p = IIg. Ainsi, de la définition
de uj il découle aussi [T} , = II7 | ce qui va clairement en contradiction avec le fait que nous
avons généralement I1; # Ilg.
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Chapter

Méthodes de Lagrange-projection pour
les équations de Saint-Venant avec fond
mobile et processus de dépot et
d’érosion des sédiments

Ce chapitre a été soumis pour publication dans le Journal "Communications in Mathemat-
ics and Applications" sous la référence: A. Del Grosso, M. ]J. Castro Diaz, C. Chalons and T.
Morales de Luna. Lagrange-projection methods for shallow water equations with movable bot-
tom and erosion-deposition processes.

Dans le chapitre précédent, nous avons considéré le systéme de Saint-Venant-Exner afin
de simuler ’écoulement des fluides ainsi que le transport de sédiments au long du lit. Dans
ce chapitre, nous cherchons a simuler numériquement le transport de sédiments en général,
ce qui signifie que les processus d’érosion et de dépot des sédiments sont également pris en
compte. Ainsi, la particule de sédiment peut aller en suspension dans I'eau ou étre déposée
sur le fond. A cette fin, la densité du mélange eau-sédiment est considérée.

De plus, le transport de sédiments étant généralement un processus lent, nous cherchons
a développer des schémas implicites-explicites afin d’obtenir des simulations rapides. Dans
ce but, nous savons que la stratégie de type Lagrange-projection est bien adaptée car elle
implique une décomposition des ondes acoustiques (rapides) et des ondes matérielles (lentes)
du modele. Ainsi, dans les régimes subsoniques, une approximation implicite des équations
acoustiques nous permet de négliger la condition CFL correspondante et d’obtenir des schémas
numériques rapides avec un grand pas de temps.

D’autre part, en ce qui concerne les régimes supercritiques, nous savons que |'utilisation
d’une approche découplée pour le systeme de Saint-Venant-Exner implique généralement la
présence d’oscillations non physiques dans les résultats numériques. Ceci est principalement
lié a la différence entre les structures propres du systéme de Saint-Venant avec et sans équation
d’Exner. Par conséquent, dans de tels cas, nous proposons une approximation différente pour
la topographie, que nous savons étre plus stable dans ce type de situations (voir le chapitre
précédent 4).

A la fin de ce chapitre, nous insérons également deux annexes. Dans la premiére 5.A,
nous donnons quelques détails sur la discretisation du systeme acoustique implicite, en rap-
pelant que 'approximation numérique de I’élévation du lit z reste toujours explicite. Dans la
deuxiéme annexe 5.B, nous proposons d’approcher implicitement le systeme acoustique qui
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actualise également 1’élévation du lit, en résolvant deux systemes linéaires différents.
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Lagrange-projection methods for
shallow water equations with movable
bottom and erosion-deposition
processes

Abstract

This work concerns the numerical simulation of shallow water flows with sediment trans-
port. On one hand, erosion and deposition processes are taken into account, meaning that the
sediment particle could go in suspension into the water (fine fraction) or being deposited on
the bottom (coarse fraction). To this end, the density of the water-sediment mixture is consid-
ered. On the other hand, we take into account bedload sediment transport by including the
Exner equation.

Since sediment transport is generally a slow process, we aim to develop semi-implicit
schemes in order to obtain fast simulations. For this purpose, well-balanced Lagrange-projection
methods are applied to the resulting mathematical model. Indeed, the Lagrange-projection
splitting entails a decomposition of the (fast) acoustic waves and the (slow) material waves of
the model. Hence, in subsonic regimes, an implicit approximation of the acoustic equations
allows us to neglect the corresponding CFL condition and to obtain fast numerical schemes
with large time step.

On the other hand, when it comes to supercritical regimes, we know that using a decou-
pled approach for the shallow water Exner system usually implies the presence of unphysical
oscillations in the numerical results. This is mainly related to the difference in the eigenstruc-
tures of the shallow water systems with and without Exner equation. Hence, in such cases,
we propose a different approximation for the topography, which we know to be more stable
in this kind of situations (see the previous chapter 4).

5.1 Introduction and mathematical model

Sediment transport is an interesting and active topic in the field of geophysical flows. Sed-
iments are transported by the action of a river current or due to currents near coastal areas
mainly in two ways: a suspended load (fine fractions carried by the flow) and bedload (coarse
fractions which move close to the bottom rolling, jumping and sliding), see [48].

Knowledge of sediment transport has different practical applications. For instance, in civil
engineering, to plan the extended life of a dam forming a reservoir. Moreover, sediment
deposition downstream reduces river capacity in that area, which may be a potential problem
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in flood situations. Sediments also play an important role in some environmental problems
as well. For example, suspended sediments have a direct impact on fish habitat in river or
estuaries [38].

A first common approach to model sediment transport by a fluid is to couple the shallow
water equations with the so-called Exner equation [30]. Many works have been proposed to
study such a problem, which depends on an empirical definition of the solid transport flux
for bedload transport (see [43, 29, 39, 50, 10, 12, 46] among many others). This first approach
is then completed by including some transport equations for suspended sediment, that is,
sediment particles which have been eroded from the bottom and remain floating in the current
for some time until subsequent sedimentation (see [26, 42, 41, 47, 40, 45, 38] among many
others).

One of the key points of such problems is that the characteristic time associated with
sediment transport dynamics is much larger than the one corresponding to fluids. Hence,
studying sediment transport usually requires long time simulations to see sediment’s evolu-
tion. As such, numerical simulations will run for long wall-clock times, which are carried out
in small time steps by the numerical scheme. These small time steps are mainly dominated by
the characteristic fluid speed, which is much faster than that of the sediment.

To overcome this difficulty, different strategies have been proposed. The most common
approach is to use semi-implicit schemes (see [13, 15, 14, 16] among others). In particular,
this approach is exploited in [7, 34], where bedload transport with the simple Grass formula is
considered as well as variable density. Moreover, in [35], the authors propose a semi-implicit
scheme based on the theta method for sediment bedload transport models with gravitational
effects under subcritical regimes. Another approach is the use of the Lagrange-Projection
strategy (see [28, 20, 21, 22, 11, 44] and references therein). This framework allows us to natu-
rally decouple the acoustic terms of the model from the transport ones. Such a decomposition
is useful and very efficient to deal with subsonic or near low-Froude number flows. In such
cases, the usual CFL time step limitation of Godunov-type schemes is driven by the acoustic
waves and can thus be very restrictive. The Lagrange-projection strategy allows us to design
a very natural implicit-explicit and large time step scheme, with a CFL restriction based on
the (slow) transport waves and not on the (fast) acoustic waves. Therefore, in this work, we
consider the Lagrange-projection technique adapted to the problem of sediment transport. In
particular, we aim to define a semi-implicit scheme for sediment transport problems.

Hence, let us briefly present the corresponding mathematical model. It is deduced from
the Navier-Stokes equations under the hypothesis that the horizontal scale is much greater
than the vertical one, assuming hydrostatic pressure and incompressibility of the fluid. For
more details about its derivation, we directly refer to [38]. As such, the system is composed
of four different equations, which express the evolution in time of the variables h(x,t) >
0, hp(z,t) > 0, hpu(x,t) and z(x,t). Here, h and u stand for water’s height and averaged
velocity respectively, where the bottom elevation is represented by 2. Then, p is the density of
the mixture water-sediments, where the latter are transported by the currents and can either
move along the bottom (bed-load) or being finer fractions carried by the flow (suspended-
load). Finally, using ¢ > 0 and x to represent the time and the axial coordinate respectively,
the resulting model reads

Oth + 0, (hu) = (9.

Ou(hp) + Oz (hpu) = (P.p.

Oy(hpu) + Oy (hpu? + p) + ghpdyz = ngCqﬁz — 7y(u)
Oz + C0rq. = — (..

(5.1.1)
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2
In particular, in the third equation, the pressure term is given by p = 95 P- Then, the evolution

in time of the topography is described by the Exner equation, where ¢. = q¢.(h, hp, hpu)
represents the solid transport discharge. For the latter, there exist many different empirical
laws for the solid transport discharge. Classically, it only depends on the hydrodynamical
variables, ¢, = ¢.(h,u), and on different parameters that are calibrated depending on the
type of the considered sediments. Among many others, we refer for instance to the works
[46, 3, 1,9, 12, 6] for more information. For the sake of simplicity, here we only consider two
of the most used formulations: the first one is the simplest one, namely the Grass model [39].
It expresses ¢, as a power law of the velocity,

¢ = Agulul™' m, =3 (5.1.2)

with A, € [0,1] a constant which represents the strength of the interaction between the
sediment and the flow. Then, another (more realistic) possibility is given by the Meyer-
Peter&Miiller (MPM) formula [43], which reads

8 2 2u?
q. = 8Qsgn(u)(0* —67)% with 6" = % and u? = % (5.1.3)
sgd hs

Moreover, () = d+/gsd is the characteristic discharge with s = Ps _ 1 the relative density,

ps is the density of the sediment and p,, is the density of Wateﬁw Finally, d represents the
sediment diameter, 1 is the dimensionless Manning’s coefficient and 6 is the critical Shield’s
stress for incipient motion. Let us observe that, depending on the particular form of ¢, the
resulting system could be strictly hyperbolic or not. Indeed, we already know that the shallow
water Exner system is strictly hyperbolic, with all real eigenvalues, in the case of the Grass
model (5.1.2). Then, regarding the MPM formula (5.1.3), it has been proved that a sufficient
condition for the resulting model to be strictly hyperbolic is |u| < 6gh, which is generally true
in physical situations, see [25, 38]. In any case, we specify that our numerical strategy can be
applied whatever the formulation for g, is.

Next, let us focus on the source terms. Here, ¢, = F. — F; expresses the sediment exchange
between the bottom and the water-sediment mixture, where F, and F}; are the erosion and
deposition rate respectively. In particular, we state F, = v,/PFE; where

13. 13.
vs:\/( 335y)2+1.09$gd— 3d951/

is the settling velocity of sediment where v is the kinematic viscosity of the water and d is
the sediment diameter. Then, the constant P stands for the volume fraction of the sediment
in the bottom or, equivalently, 1 — P = WV is the porosity of the bottom (see [38, 37]), with
¢ = (1 — ¥)~'. Subsequently, the sediment entrainment coefficient is given by

1.3 x 10772° a1+/Cplul
E, = ith z— 2V pas 5.1.4
1+43x10725 ™ Vs P (5.1.4)

Vsgdd

where R, = is the Reynold number and cp, is the bed drag coefficient. Finally, oy, as

are two parameters depending on R, and, for which, there exist different value choices. Here
we refer to [38] and take

(1,0.6) if R, > 2.36

(o, 09) = .
.586, 1. i < 2.36.
(0.586,1.23) if R, < 2.36
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Continuing with the deposition rate, we assume F; = vsc,, where c, is the fractional concen-
tration of suspension near by the bed, namely

c, = c<0.4<Dd

59

1.64
) i 1.64)

where c(x, t) is the volumetric sediment concentration such that p(x,t) = p,+c(z,t)(ps—pw)
and Dy, is the geometric mean size of the suspended sediment mixture. In particular, in this
work we take Dy, = d as all the particles are assumed to be of equal size. Lastly, p, =
pw¥ + ps(1 — W) is the density of the saturated bottom.

Lastly and for the friction term, we state 7;(u) = pu?(1 + r,) where 7, is the ratio of
upper-interface resistance to bed resistance. For the sake of clarity, in tables 5.1.1-5.1.2, we
include the description of the parameters and symbols used in this work.

To complete the presentation of the mathematical model, let us observe that system (5.1.1)
can be reformulated in compact form as follows:

atQ + axF(Q) + B(Q)amQ = S(Q)

where Q is the vector of unknowns, F(Q) is the physical flux, B(Q) is the non-conservative
product matrix and S(Q) is the source term. More explicitly,

h hu 000 0
I _ hpu o000 o
Q= || FQ hou? + g0 | BQ =14 0 0 ghp (5.1.5)
< Cq. 000 0
and
Co-
_ Co.p-
Q=1 p20: - 7w

Then, let us recall that classic Saint Venant Exner system does not satisfy a global entropy
equation. Nevertheless, as shown in [31], a modified version of Saint Venant Exner system
could be introduced so that the model satisfies a global entropy. Therefore, we do not expect
to find an entropy inequality for system (5.1.1), unless similar modifications are performed for
Exner’s equation, which is out of the scope of this paper. Nevertheless, we may prove a partial
result which is given in the next theorem.

Theorem 2. Consider system (5.1.1) without bedload transport, that is, g, = 0. Then, smooth
solutions of the system satisfy the following relation

u2

2
Oy (ph% + %,oh2 + gphz) + 0, (phu ( 5 +gh) + up + gphuz)

= ShCo.(p: — p)+gups — ury.
Proof. Combining second and third equations in (5.1.1), we get

u? 1 p U 1
7] Or— + —0, Opz = — (= — —T5.
u + 5 + oh D+ g0y2 phC¢ 5 phTf

Multiplying this equation by phu and adding the second equation in (5.1.1) times % we obtain:
u? u?
Oy (ph;) + 0, <phu5) + u0yp + gphudyz = —ury. (5.1.6)
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Now, taking into account that p = ¢ ph?, from the first equation in (5.1.1) we get
Oth 4+ u0h + giaxu = <¢za
9ph
2

which, combined with second equation in (5.1.1), gives

Oy <gph2> + 0, <gph2u> + poyu = gthbz(p +p.). (5.1.7)

Adding (5.1.6) and (5.1.7) gives us

g o, g g
Oy ph§ + §ph + 0, | phu 5 + §h +up | + gphudyz = —uty + §hg@(p + p.).

Finally, we have
gphudyz = gphud,z + gph (012 + (¢.) + g2 (O(ph) + Ox(phu) — (¢.p-)
= Oi(gphz) + 0:(gphuz) + gph(h. — g2(¢.p-

and the result follows.
O

As a last remark and referring to [38], from a physical point of view it is interesting to
consider the solutions of the model when ©v = 0. Indeed, in this case the solution should
satisfy

(0, = Co.

Oi(hp) = CP.p-

0.(20) = —ghpi o
\@z = —(¢..

Moreover, we observe that the free surface H = h + z is constant in time but
h
Og(h+2)=——0,
(h+ =) 2,0P

and, in particular,

Op = == (ps = pu)(1 =¥ —¢).

Thus, if u = 0, we expect the free surface [ to remain constant in time but the water height
to decrease and the bed level to increase, as the sediments start to accumulate on the bottom.
As a consequence, the density p will remain constant in time if 1 — U = ¢, or either increase
or decrease if 1 — U < cor 1 — W > c respectively.

Chapter outline. To describe the numerical approach to approximate model (5.1.1), we will
proceed step by step. We first consider a simplified version of the system with no source
terms and constant bed level in time. The Lagrangian formulation of the resulting system
is proposed. An approximate Riemann solver for the acoustic system is also described, see
section 5.2. Then, in section 5.3, the strategy is extended in order to include the Exner equation.
The numerical approximation is finally presented in section 5.4, the source terms related to
the friction and the erosion-deposition processes are considered as well. Section 5.5 is devoted
to the numerical simulations, while in section 5.6 we draw the conclusions.
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Symbol Description Value or formula
a Parameter in syst. (5.2.12), (5.3.4) a > h%p?e?
b Parameter in syst. (5.3.4) u?b? > (hpu)? + g(hp)?0uq., b > 0
c Volumetric sediment concentration c(z,t) = (p = pw)(ps — puw) "
c Sound speed c=+/gh
cp Bed drag coefficient -
1.64
C. Fractional concentration of suspension near by the bed c, = c<0.4( Dd ) + 1.64)
d Sediment diameter [mm]
Dy, Geometric mean size of the suspended sediment mixture [mm]
i ) ) 1.3 x10772°
E Sediment entrainment coefficient s = =
1+43x10-725
Fy Deposition rate Fyg =vsc,
F, Erosion rate F.=v,PE;
g Gravitational acceleration 9.81 [m s72]
h water height [m]
H Free surface elevation H=h+=z
L Volume ratio L(¢,t) = Ocx(§,1)
1
m Mass variable ——0, = O,
hopo
h2
p Pressure term p= g?p
P Volume fraction of the sediment in the bottom 1-P=v
q» Solid transport discharge -
Q Characteristic discharge Q = dv/gsd
Tw Ratio of upper-interface resistance to bed resistance -
dv/gsd
Rp Reynold number 95
S Relative density = é -1
Pu
t Time [s]
U Averaged velocity of water [ms™1]
guiu?
u? Bed shear velocity = hf T
3
13.95 13.95
Vg Settling velocity of the sediment vy = \/ ( p V)2 + 1.09sgd — —
T Axial coordinate -
z Bed level [m]
z Parameter in eq. (5.1.4) z = JVenlt ‘CDMR;‘Z
v

S

Table 5.1.1: Symbols with description and formula, part one.
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Symbol Description Value or formula
aq Parameter in eq. (5.1.4) 1if R, > 2.36, 0.6 otherwise
o Parameter in eq. (5.1.4) 0.586 if R, > 2.36, 1.23 otherwise
¢ Parameter in model (5.1.1) ¢ = ﬁ
0 Variable for the inverse of the density 0=1/p
2
0* Shield’s parameter A
sgd
0 Critical Shield’s stress for incipient motion -
A Relaxation parameter -
Ly Dimensionless Manning’s coefficient [sm—1/3]
v Kinematic viscosity of the water 1x 1079 [m s72]
¢ Lagrangian coordinate -
IT Relaxation linearization of gh; p -
p Density of mixture of water and sediment [g em™3]
Puw Density of water 1[gem™]
Ps Density of sediment [gem™3
i Density of the saturated bottom Pz = pu¥ + ps(1 — )
T Variable for the inverse of the water height T=1/h
Tf Friction term Tr(u) = puZ(1+1y)
o Sediment exchange between the bottom and the water ¢, =F. — Fy
v Porosity -
Q Relaxation linearization of (g -

Table 5.1.2: Symbols with description and formula, part two.

5.2 Splitting strategy for shallow water equations with non-
constant density

For the sake of clarity, let us first apply the the Lagrange-Projection (LP) strategy to system

(5.1.1) without Exner equation or any source terms, namely

O¢(hp) + Ox(hpu) =0
Oy (hpu) + 9u(hpu® + p)

or alternatively in compact form

9,Q + 9.F(Q) = S(Q)

where Q, F(Q) and S(Q) reduce themselves to

h hu
= ho|. FQ=| hpu
hpu hpu? + p

(5.2.1)

—ghp0,z

0

$(Q) = 0

—ghp0,z

Afterwards, in section 5.3, we will describe the general case with the solid transport flux ¢..
Then, it is easy to prove that system (5.2.1) is hyperbolic. Indeed, its Jacobian matrix reads

—_ |~
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where the eigenvalues are given by u,u + ¢ with ¢ = \/gh sound speed. Note that, in this
particular case without solid transport flux, z is constant in time. Therefore, the quantity
ghp0O, 2 in the third equation is treated as a source term.

It is interesting to consider stationary solutions of this reduced model. Indeed, in practical
applications, we could find such steady states or perturbations of them. In the particular case
of stationary solutions with zero-velocity, we get the family

1 1
= O, (h = ——20,(h —0.h 5.2.2
u=0. .(h+2) =~ 0ulho) + 50 (522)
or, written in an alternative way,
=0, 0,(h+ )——i (5.2.3)
u =0, A z) = 2 - 2.

Moreover, among all the stationary solutions (5.2.2), it is interesting to show two particular
families: the one with constant bed level
h2

u =0, - = constant and z = constant, (5.2.4)

and the usual "lake at rest" solution
u=0, p=constant and H = h+ z = constant. (5.2.5)

When the friction and erosion-deposition source terms are neglected, we design our numerical
scheme in such a way that it exactly preserves the stationary solutions (5.2.4) and (5.2.5). That
is, we want our numerical method to be exactly well-balanced for those stationary solutions
(see for instance [2, 36]). Note that (5.2.4) and (5.2.5) are two particular families of the more
general case (5.2.3). In sections 5.2.2 and 5.4.1, we will see that the proposed schemes do not
exactly preserve (5.2.3), but a discrete version of it. In such a case, we say that the numerical
scheme is well-balanced with order 2 for (5.2.3), according to the definition introduced in [36].
Namely, the numerical scheme preserves a discrete stationary solution that is a second order
approximation of (5.2.3).

5.2.1 Lagrange-projection decomposition

As mentioned in the introduction, the idea of the Lagrange-projection approach is to split
the acoustic and transport terms of the model. In practice, this strategy can be explained
by using Lagrangian coordinates. The approach then results in first considering the mathe-
matical model formulated in Lagrangian coordinates and then perform the projection of the
Lagrangian solution onto Eulerian coordinates. We shall detail both steps in what follows.

Let us first briefly recall the corresponding formalism. We consider a fluid particle located
at position £ at time ¢ = 0. Then, its trajectory through time or its characteristic curve ¢ —
z(&,t) is given by

0ut(€,1) = ulel€,0), 1), 6526
2(£,0) =&

Then, any function (z,t) — ¢(x, t) in Eulerian coordinates can be expressed in Lagrangian
coordinates as follows,

In particular, using the volume ratio L(¢, t),
Oz
¢

176



5.2. Splitting strategy

which satisfies

L(&,t) = t),t
at (f) ) 8511/(1'(5, )7 )a (528)
L(£,0) =1,
we can easily write the original system (5.2.1) in Lagrangian coordinates, namely
0i(Lh) =
0i(Lhp) =0 _ (5.2.9)
- 72 _

More details about the Lagrange-projection decomposition applied to the shallow water sys-
tem can be found for instance in [44, 11]. Let us remark that the Lagrangian formulation (5.2.9)
will reveal itself to be very useful and convenient when trying to include the Exner equation
in the model, see section 5.3. Indeed, we will remark that it is easier to consider the Lagrangian
formulation with variable Lz rather than z, see [18].

Let us point out that system (5.2.9) may also be formulated in a different way. Indeed,
observing that both Lk and Lhp do not depend on time, we get

Lh(&,t) = Lh(€,0) = h(£,0) = hy  and consequently L =

>\|§

Therefore 0 = 9,(Lhp) = Lhd,p = ho0,p, which means that

0p =0 andin particular p(&,t) = p(§,0) = po.
1 = 1
Defining now the variables 7 = 7 and § = —, we find the equivalent form of system (5.2.9),
p
0,0 =
4 (hopoT) — Dgu = 0
(hopoU) + (95 (

9) 79852

and, alternatively, neglecting the bar for the sake of simplicity,

0t9 — 0
O (hopoT0) — Ocu =0 (5.2.10)
8t(h0,00u) + 85 < 29> 7_9852

In this framework, the numerical strategy could again be summarized in two steps. First,
we need to numerically solve the Lagrangian-acoustic system (5.2.9)-(5.2.10). Then, we project
its solution into Eulerian coordinates. We will see that the most problematic part of this strat-
egy will not be the approximation of the projection step but that of the Lagrangian system,
especially when trying to satisfy the well-balanced property. In particular, for these equations
(5.2.10), we describe an approximate Riemann solver which will be used to define the asso-
ciated Godunov-type scheme. For this reason, it is convenient to reformulate system (5.2.10)

exploiting the so-called mass variable m, which is given by hopo ——0¢ = Op,. Thus, it is easy to
show that equations (5.2.10) are equivalent to the following system,
0,0 =0
Oy (10) — Opyu =0 (5.2.11)
Byt + Bpp = — 18,2,
70
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Chapter 5. Shallow water Exner system with erosion-deposition processes

where we recall that p = We will refer to equations (5.2.11) as the acoustic system, as

g0

2(76)%
it can be obtained from the starting system (5.2.1) by considering only the acoustic phenomena
and the topography variations. See [22, 18, 27] for more details about the acoustic-transport
interpretation. Moreover, the eigenvalues of system (5.2.11) are given by 0 and +hpc, where
the latter are the speed of propagation of the acoustic waves; the material (transport) waves
being related to the projection step. Thus, in situations in which the acoustic waves are much
faster than the material ones, it can be very convenient to exploit an implicit approximation
for the acoustic equations, obtaining in this way a very fast implicit-explicit method. Further
details about the implicit formulation for the acoustic system are given in section 5.4.1. See
also [22, 23, 19] for implicit-explicit Lagrange-projection numerical methods.

Looking for an approximate Riemann solver associated with system (5.2.11), we follow
the Suliciu relaxation approach [49] and we introduce the following approximate relaxation
system,

0,0 =0
O (10) — Opu =0

Ou+0,T=—-2Lp -
70

8151—.[ + azﬁmu =0

(5.2.12)

where II is a new variable such that [T = p at time ¢ = 0. Our approximate Riemann solver will
consist of an exact Riemann solver associated with system (5.2.12). Moreover, a? is a constant
which linearizes h?p?c? and which is taken as a® > h?p?c* according to the sub-characteristic
condition. Then, easy computations show that the eigenvalues of (5.2.12) are given by A\ =
0, Aro = =£a and that the associated characteristic fields are all linearly degenerate. This
property is well-known to provide an exact and easy solution of the Riemann problem. Indeed,
we will obtain three waves that correspond to contact discontinuities. Then, exploiting the
Rankine-Hugoniot relations across each wave, we are able to exactly define the solution of the
Riemann problem associated to system (5.2.12) (see for instance [32, 33] for more details). For
applications related to the Suliciu relaxation approach, see for instance [8, 5, 23, 22, 24].

5.2.2 Approximate Riemann solver

In this section, we aim to briefly describe the approximate Riemann problem solution for
system (5.2.11), which is found solving the Riemann problem associated with the relaxation
system (5.2.12). The initial data of the Riemann problem are given by

(Or, 7000, ur, )T if m <0

T _ _
(97767U7H) (mvt - 0) - { (QR,TReRauRvﬂR)T if m Z 0,

where II;, p = g(th) .r- Then, its solution would be composed of four different states sepa-

rated by the three discontinuities,

U, if %<)\;:—a
A it —a< T <A\ =
U<E§UL;UR>: f l am . ’
13 r if 0<B <A =a

Uy if = > a,

where U = (0,76, u,TI)”. The definition of U} and U}, relies on the validity of the Rankine
Hugoniot relations across each wave (recall that the characteristic fields are linearly degener-
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ate) and, in particular, on a consistent approximation
M = M(UL,Ug) = g{hp} 4, (2r — 21)
of the source term in (5.2.12), such that across the stationary wave one has

Yo UL = YR (5.2.13)
I, — I + M = 0.

Here, {hp} o Deeds to be specified in a consistent way, namely

li h = hp.
hL,/lzglah{ p}ST P
PL,PR—P

For the sake of brevity, we shall not give all the details here and we refer the reader to [22] for
further information. The star values U}, U} are then given by

(05 =0,
0% = O
* 1 *
(7—9>L:TL0L+E(U —UL)
1 *
(T0)k = TrOR — —(u" — ug) (5.2.14)

1 1 M
. S (p—T1,) - 22
= (ur tup) =5 (Mp =) = oo

1 a
T = =~ (T, + Ig) — < (up — ~
I 2( L +1lg) 2(UR UL)+/%/1
1 a
H*RZ §(HL+HR) — §<UR_UL) — —2 .

\

5.2.2.1 Well-balanced property and definition of M

The definition of M is driven by the well-balanced property. More precisely, assume that
we want to preserve a discrete approximation of the stationary solutions with zero-velocity,
namely the ones defined in formula (5.2.2), and consider the following discretization of such
stationary solutions:

hr —h 11
(zr —21) + % = _§{E}Sts(thR — hrpr) (5.2.15)

1
where the term {—} needs to be specified in a consistent way, namely
pJ sts

. 1 1
lim { — } = —.
pL:pr—p L P J StS 1%
Hence, when Uy, and Uy, satisfy (5.2.15), we require U} = Uy, and U}, = Ug in order to have
a well-balanced approximate Riemann solver. On one hand, (5.2.13) gives

Hp -1, + M =0 with M :g{h,o}ST(zR—zL), (5.2.16)
so that, inserting (5.2.15) into (5.2.16), we find

h%sz _ hipL

2 2 = _{hp}ST(ZR_ZL)

= %{hlo}ST <hR —hr + {%}Sts(hapa - hLPL))‘
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On the other hand, we have

h? h? 1 hr +h hrpr +h
RTPR _ LTPL = §<(hR/}R — hLPL)% + (hR — hL) (M))
Hence, a possibility is to set
hrpr + hpr
{ho}gr = 9
{ 1 } B 1 hr+hg
plsis {hp}y, 2
which is clearly consistent. In particular, we would define
h h
M = g(W) (2r — 21), (5.2.17)

which allows us to preserve the stationary solutions which, according to (5.2.15), satisfy the
following discretization

he—hy 1 hg+hp

=————— (h —h 5.2.18
9 2 hrpr + thL( RPR LpL> ( )

(Z R — % L) +
together with zero-velocity. Note that, if p;, = pr and uy = ur = 0, we recover the well-
known lake at rest stationary solution (5.2.5) as (5.2.18) gives hy + 21, = hg+2r. Moreover, the
stationary solution (5.2.4) (defined by 2z, = zg, u;, = ug = 0 and pph? = prh%) gives M =0
and u; = ur, up = ug from (5.2.14). In other words, our scheme is well-balanced with order
2 for the stationary solutions (5.2.2) and it is exactly well-balanced for the stationary solutions
(5.2.4) and (5.2.5).

Finally, observe that in practice the constant a is defined as follows,

a = max(g, hL,OLEL, thRER)a
where ¢ is a tolerance value so that a will not be zero. In practice, we take ¢ = Ax.

Remark 6. The proposed definition of M is not unique. Indeed, let us consider the following
discretization of the stationary solutions based on (5.2.3) (instead of (5.2.2) above):

1ch
st hi = (oot ) = —5 {7} (on =) (5.2.19)

h
where the term {—} needs to be specified. Similar calculations lead to
pJsts

(5.2.20)

h h h h
M g(PR+PL rR+ L RPR + LPL>(ZR_ZL)7

~ o\ 2 2 2

which allows to preserve stationary solutions defined by (5.2.19) with

{@} B (hR—l—hL>2 8
pJsts 2 (pr + pr)(hr + hr) + 2(hrpr + hrpr)

Hence, in this section we have considered system (5.2.1) as a starting point to show how to
include the evolution equation for the density variable in the Lagrange-projection approach.
We have also defined an approximate Riemann solver for the resulting Lagrangian system. Let
us now extend this strategy by including the Exner equation in the model.

180



5.3. The Exner equation in the splitting strategy

5.3 Including the Exner equation in the splitting strategy

Moving to the next step, we now aim to include the Exner equation in the splitting strategy.
Thus, we consider system (5.1.1) without friction and erosion-deposition source terms, namely

Oh + Ox(hu) =0

0y (hp) + Oy (hpu) = 0

Oy(hpu) + Ou(hpu? + g% p) + ghpdez = 0
0yz + (0,q. = 0.

(5.3.1)

In the following section, we show its Lagrangian-acoustic formulation with the aim of describ-
ing an associated approximate Riemann solver.

Referring to the previous works [17] and [18] (chapter 4), we consider two different strate-
gies to take into account the Exner equation. In the first one, we update it directly in the
projection step (section 5.4.2), resembling an usual splitting strategy: we first approximate the
shallow water equations with variable density and then also the topography is updated. Thus,
here we do not have to give further details about its Lagrangian formulation. Moreover, we
will see that this strategy could be particularly useful when considering the implicit-explicit
version of the scheme. As for the second strategy, we propose to decouple the Exner equation
in both steps, which would be the most natural approach in the Lagrange-projection frame-
work, see next section 5.3.1. Observe that even the latter strategy is only weakly-coupled and
not fully-coupled in order to preserve the well-balanced property. Let us recall that decoupled
approaches applied to the Exner system could produce unphysical oscillations in the numer-
ical results due to the different eigenstructure of the shallow water model with and without
the Exner equation (systems (5.2.1) and (5.3.1) respectively), see [25]. In this sense, the method
that decouples the Exner equation in both steps proved to be more stable than the other one,
especially at second-order of accuracy (refer to [18]). For this reason, here we consider and
extend both strategies.

5.3.1 Updating the bed level in both steps

Exploiting once again the Lagrangian formalism introduced in section 5.2.1, few compu-
tations allow us to write system (5.3.1) in Lagrangian coordinates, namely

8t(L/_1) =
O (Lh P)
72 - (5.3.2)
Oi(Lhpu) + O¢ (9~ 5 P) = —9hpdez
| 01(12) - de(zm) + Oz = 0
: . : , 1 _ 1
or equivalently, using once again the change of variables 7 = 7 and 0 = 5,
(0,0 =
i (hopoT) — Dgu = 0
_ 9 \N__9.. (5.3.3)
O (Boputt) + % ( e)g féafz

Let us observe that the evolution equation for the bed elevation 2 is written as a conservation
law in system (5.3.2), contrarily to the one in system (5.3.3). Then, neglecting the bars and
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exploiting again the mass variable m, system (5.3.3) can also be reformulated as

(9,6 =0
ﬁt(TQ) - 3mu =0
Ot + D = — -0,
0

u ¢
\atz — ﬁamz + Eﬁqu =0.

Proceeding with the relaxation system, we consider the same variable II to linearize the pres-
2

sure term p = , while for the solid transport discharge ¢, we introduce {2 such that

(2 = (q. at time ¢t = 0. Hence, we consider the following linearized system
(@9 == O

B,(70) — O = 0
u+0,M=—-2Lp -
T

3.4
Oz — L0,z + —0,0 =0 (5:3.4)
70 70
3tH -+ a,2amu =0
1 U
Q 2/1.2 o el Q —
\8t + u” (b0 79)8mz+768m 0

where the sub-characteristic condition is now given by a*> > h?p?c* and u?b* > (hpu)® +
g(hp)?0,q., b > 0, see also [18] (chapter 4). In compact form, system (5.3.4) is equivalent to

d,U 4+ A(U)d,U = S(U)

with
00 0 0 0 0 0
0 00 —1 0 0 0 0
70 00 0 0 10 g
U 1 ——pOnz
U= , A(U) = _v 21, suy=1] 0
4 000 70 0 70 0
11 00 a 0 0 0 0
Q 2/72 1 u
00 0 Prg——) 0 — 0
w (b 7‘6’) 70

(5.3.5)
Considering only the convective part of system (5.3.4), namely neglecting the term related to z
in the third equation, we find that the eigenvalues are given by A = 0, Ao, = +a, A, = £|ulb.
Hence, once again the associated characteristic fields are all linearly degenerate. We remark
that system (5.3.4) is not strictly hyperbolic anymore for v = 0 and that the eigenvalues are
not ordered a priori, see again [18].

5.3.1.1 Approximate Riemann solver

Here we solve the Riemann problem associated with system (5.3.4) with initial data

(0L7TL0L7UL7ZL7HL7QL)T if m <0

T _ —
(0,70,u,2,11,92)" (m,t = 0) = { (g, TROR, UR, 25, g, Q)T if m >0

with [I; g = prr and Qg = ({q.)r r- Since the eigenvalues are not ordered a priori, at a
continuous level there exists two different cases depending on whether a < |u|b or not (recall
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5.3. The Exner equation in the splitting strategy

that a and b are positive). In practice, we will distinguish between the following two cases
a < |uplb,a < |ur|band a > |u*|b. As a consequence, if a < |ur|b,a < |ug|b, the solution
reads

(U, if <N = —|uglb
Uy, i —urlb < <A =—a
~m * if —a<Z<A\=0
U(—;UL,UR) — :,L ' - t . 0
t ar I 0<F <A =a
Upp if a <2 <)\ =]uglb
\UR if % > |UR’b
with
93 0 Or Or
TLQL ngL TEQR TRQR
Uy, u* u* UR
UZ,L = o* ) Z,L = o* ) Z,R = o* ) and UZ,R = o*
I, 1T 115 I1x
QF QF QF OF
(5.3.6)
On the other hand, if @ > |u*|b, the solution is given by
(U, if Z<-—a
ap i —a < B < —|u*|b
.m U; if —|ub< <O
U(—; UL, Up) =4 " | ml t
wp  if lu*[b < % < a
\UR if % > a.
with
0r, 0, Or Or
TEQL TEQL TI*{QR T]*%QR
u* u* u* . u*
Z,L = . s UZ,L = Z* s UZ,R = Z* s and Ua,R = .
IT; 17 IT% 115
Qp QF QO Qr
(5.3.7)

respectively. In order to define the star states in (5.3.6) and (5.3.7), we follow the exact same
lines as in section 5.2.2. In particular, it is worth noticing that z and (2 are constant through
the waves with +a-velocity and zero-velocity, thus we only need to find a single star value
2%, (" for these two variables. Similarly for the variables @, 7, u and 11, since they are constant
through the waves with =+|u|b-velocity, at most two star values are necessary. This property

is related to the fact that in the third equation we treat the coupling term ——0,,,z as a source

term. Moreover, in both cases we exploit the same star values for the variables 6, 760, u, given
by (5.2.14) and (5.2.17). Regarding z* and (2*, we need to separate the two cases and, in partic-
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ular, if @ < |ug|band a < |ug|b, we get

(. _ |ug|(sign(ugr) + bTrOR) 2R — |ur|(sign(uy) — br.0L)zL

|ug|(sign(ugr) + bTrOR) — |ur|(sign(ur) — brr.0r)
Qr — Qf

* Jug|(sign(ug) + brrlgr) — |ur|(sign(ug) — br.0;)

Q Q
O = R; Ly u2R| (sign(ur) + bTrOR)(2* — zr) + |UTL(sign(uL) —br0L) (2" — z1),
\
(5.3.8)
otherwise we state
( . . (sign(u*) + b7j0R)zr — (sign(u*) — b} 0L) 2L Qr — Qp
(zlu])* = [u”| . . - .
b(TReR—i-TL@L) b(TReR—i-TL(gL)
. Qr+Qp
="+
. 2
|t 5((Sign(u*) + b7R0r) ((2|u])* — |u*[zr) + (sign(u®) — br70L)((2[u])” — [u”|2L)).
(5.3.9)

Finally, the parameters a and b are defined as « = max(Ax, hyp¢r, hrprcr) and

L R

b= max(g, \/(thL)2 + g(hLupQL)2au(Qb)L7 \/(hRPR)2 + 9%#%(%)1%) (5.3.10)

respectively. However, since assuming a > |up|b or a > |ur|b does not necessarily imply
that @ > |u*|b, in practice we need to do the following. If @ and b are such that a > |ur|b or
a > |ug|bbut a < |u*|b, we need to increase the value of a and redefine it as a = (1 + €)|u*[b
(with typically e = 0.01). We highlight that, once we have redefined a, we have to recompute
the value of u*, and more generally the quantities in (5.2.14). In practice, this iterative process
usually converges in one or two iterations. See again the previous work [18] for more details
about this approximate Riemann solver applied to system (5.3.2) with constant density p in
time and space.

Finally, let us remark that the choice not to use a fully coupled approximation for this
system also contributes to the fulfillment of the well-balanced property, namely to the preser-
vation of the stationary solutions (5.2.2). Indeed, uz* and 2* are automatically equal to zero
when the steady state condition (5.2.2) is satisfied.

5.4 Numerical method

Notations. First, we define the constant space step Az and constant time step At. The
mesh interfaces are given by z;,,/2 = jAx for j € Z and the intermediate times by ¢" =
nAt for n € N. At each time ¢", we seek for an approximation Q7 of the solution in the
interval [x;_1/2,%j11/2), J € Z. Therefore, a piecewise constant approximate solution z —
Qataz(x, ™) of the solution Q is given by

Qatnz(z, t") = Q7 forall z € () = [Tj_1/2;%41)2), JEZ, n€N.

Numerical strategy. As it has already been explained in the previous sections, the numerical
scheme consists of three steps: first, one has to solve the acoustic-Lagrangian step, then the
transport-projection one and, finally, we need to include the source terms. Thus, using the
above notations and the Lagrangian coordinates we have:

1. Update Q" to LQ"* by solving the Lagrangian system (section 5.4.1);
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2. Project LQ™" into Eulerian coordinates, finding Q"™'~ (section 5.4.2);

3. Consider the erosion, deposition and friction source terms and update Q"™ to Q"™
(section 5.4.3).

5.4.1 Lagrangian step

As we have already anticipated, in order to approximate the acoustic or Lagrangian step,
we exploit a first-order Godunov-type scheme associated with the approximate Riemann solver
for the acoustic system that we have built in the previous sections. Since the approximate Rie-
mann problem solution appears to be the same for the variables 7,0 and u (both with and
without the contribution of the Exner equation), we can immediately write their numerical
approximation. Indeed, we have

L?*h?* = L?h?

n n n A * * n
L” +(hpu) =L (h,ou) Ao (H]Jr2 ijé) — At{ghpd,z}]
where
Lyt =L+ A_x( j+l uj_%) with L7 =1 (5.4.2)

with star values v}, », I}, » being locally defined at each interface x> using formulas
(5.2.14). For the source term, we simply state

1 ) n ML
= {ghp0.2}} = ( Siy1y2 + Si 1/2> with 87, = —i—x/ (5.4.3)

and M7, », = M((h?, b3 o7 27); (W oy, W P 274)) given by (5.2.20) for all j. Few alge-
braic computations give a completely equivalent numerical approximation for the relaxation
acoustic system (5.2.12), namely

(7 = or N
n n t, . .
e AAtm]( S (5.4.4)
up T =y — A Wy~ Iy - At{ O}
I 0 = (0 Py )

Remark 7. It is particularly useful to show the latter formulation as it can be interpreted in an
implicit way by defining the star values as follows,

1 1 M
* o n+ n+ n+ n+ J+1/2
Uil = §(Uj+1 +ujt) - 9a" (I3 = 157) — 2an
Jﬂ*i A (5.4.5)
Hj+% = Q(H]II + Hj+) - 9 : (ujil - uj+)

Hence, for an implicit approximation of the acoustic step, we highlight that first we solve the evo-
lution equations foru and Il and then we use the obtained solution to compute 70" . In particular,
the third and fourth equations of system (5.4.4) can be reformulated as a linear system and, as
such, their resolution is not computationally expensive. Here we do not provide further details,
see either appendix 5.A or refer to [22] and [23] for this approach applied to the shallow water
equations and the gas dynamics equations respectively.
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Then, let us focus on the numerical approximation of the topography by considering the
two different possibilities already described.

Exner equation in the projection step. It is evident that in this case we simply have 2" = 2"
as the Exner equation is completely taken into account in the transport system. As such, for
the stability of the numerical scheme, we ask for the following CFL condition for the time step,

Ax

mjax{max( 7T 07 ) maX(a’]'+%)}

At < CFL, (5.4.6)

with CFL; a constant value. Clearly, we do not need anymore condition (5.4.6) if we use the
implicit version of the numerical approximation.

Exner equation in both steps. Using the approximate Riemann solver presented in section
5.3.1.1, here we state

LnJr n+ __ Ln n __ ﬁ((g _ Zu)*

Zj 3% Az i+

— (- zu);_%). (5.4.7)

In this case, the CFL condition on the time step for the explicit approximation is given by

Ax

mjax{max( 70 T j+1)max(a3+ 7(|U|b)g+ )}

At < CFL, (5.4.8)

Let us remark that we could envisage to compute implicitly the variables Lz and L2 as well
without an excessive computational cost. Indeed, once we have found ", II"" and 7" by
solving the implicit linear system given by formula (5.4.5), the star values z*"* and Q*"* lead
to another linear system thanks to the fact that ", [T"* and 7" are now fixed values.

5.4.2 Projection step

In this section we present the numerical approximation for the projection step. Since it has
already been presented in different papers for other systems, here we give few details about it
(see for instance [44, 18, 27]).

Aiming to project the Lagrangian solution into Eulerian coordinates, we consider the fol-

lowing identity
z(£2,t)
/ L& )X (& t)dE = / dx
&1 (€1,1)

with X = h, hp, hpu and, if needed, X = z. Then, we define £, , 1 /5 such that (£, /o, t"+!) =
;412 and x(fjH/Q, t") = éj+1/2 for all j. Subsequently, we can start by writing

1 xﬁ_% 1 I(éj_'_% )
Xn+1 _/ X tn+1 dr = _/ X thrl d
J AJZ 1 <x7 ) v AI £ _ 7tn«kl) (x’ ) v

m\
Nl

Eo
- i /g T L(E )X (6 ) dg

[N
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and splitting the last integral into three parts

1 [S+d 1 [5%-%
i L tn-l-l— X tn-i—l— d _ _/ L tn+1— X tn+l_ d
A ). HErTX@E e e = oo [T e X (e ek
J—3 J—3 R
1[5+ 1 1 1[5+ - -
sa [ rerxer e o [T e e
Ax & 1 Ax €01

) (5.4.9)
Then, estimating ;2 such that

Tivrja = (Eipayo, ) 2 2(Ejpaya, ") + ALO(Ep1/2,t") = Ejrayn + AtUT, o,
we approximate the last three integrals in (5.4.9) and obtain

At
X = (LX) — = (w2 (LX) =i (LX)

A~ (0 g ) (5.4.10)

where for all j
(LX);H if ufy,, >0

LX)t . =
(LX)51s2 {(LX);%L if <0
For the projection step, the CFL condition on the time step is the following,

Ax

Jr —
T
i3 J+$}

At < CFL,

(5.4.11)
max{u
j

with CFL; a constant value and

ujt =max(u;_,,0) and wu_, =min(u]

2 H‘%’O)'

N[

*
j_

N

As for the final time step, we take the minimum between the Lagrangian and projection ones.
Then, we only need to specify the numerical approximation for the topography.

Exner equation in the transport step. Referring to the previous work [17] (chapter 4), for the
numerical approximation of the Exner equation we state

At Qb n+ Qb n-+
n+l— _ _n * *
Z; =Z; = CA_.T (Uj+% <;>]+é — Uj_% <Z>]—é) (5.4.12)
where .
b n . *
By ((Luyty) i wi,, <0

Qb n

<Z)j:1/2 =

(@)((LU);H) if w >0,

u its
Exner equation in both steps. In this case the numerical approximation for z is similar to
the one of the other variables with the only difference that, in the numerical flux, we use the
values z;”“ instead of its Lagrangian counterpart (Lz)}”. Namely, we state
* n+

At
u. 12

1 _ +
g =(La)j" - E( %y T Y

! 2"). (5.4.13)

This choice is actually related to the second-order extension of this scheme, for which we refer
o [18] (chapter 4).

For the reader’s sake, let us summarize which formulas we use for each scheme:
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Chapter 5. Shallow water Exner system with erosion-deposition processes

« Explicit scheme with topography only updated at the end of the transport step: formulas
(5.4.4), (5.4.10), (5.4.12).

« Implicit-explicit scheme with topography only updated at the end of the transport step:
formulas (5.4.4), (5.4.5), (5.4.10), (5.4.12).

« Explicit scheme with topography updated in both the acoustic and transport step: for-
mulas (5.4.4), (5.4.7), (5.4.10), (5.4.13).

Finally, let us sum up the properties of the numerical schemes we presented so far in the
following theorem.

Theorem 3. Consider the three LP numerical schemes we presented so far, namely the explicit
method with Exner equation in the transport step (formulas (5.4.4), (5.4.10), (5.4.12)), its implicit-
explicit version (formulas (5.4.4) with (5.4.5), (5.4.10), (5.4.12)) and finally the scheme with Exner
equation in both steps (formulas (5.4.4) with (5.4.7), (5.4.10), (5.4.13)).

1. The above-mentioned numerical schemes are well-balanced in the following sense. They
are able to exactly preserve the stationary solutions (5.2.4)-(5.2.5). Whereas, concerning
the steady state (5.2.2), the methods are well-balanced with order two: they preserve its
second-order discretization (5.2.15).

2. Under the CFL condition (5.4.11) with CFL; = 0.5, the above-mentioned numerical schemes
preserve the positivity of the water height h.

3. Under the CFL condition (5.4.11) with CFL, = 0.5, the assumption of the positivity of the
water height (point b) and ofh?“* # 0V, if pu < pj < ps Vj, then it follows that
pw < piHT
schemes

< ps V7 . This statement is true for any of the above-mentioned numerical

Proof.

1. The well-balanced property comes down from the definition of the approximate Rie-
mann solver presented in section 5.2.2 (section 5.3.1.1 with the Exner equation). For this
reason we do not insert further details.

2. Assume h? > 0 Vj. It is straightforward to see that L;”’h;““ > 0 Vy from discretization
(5.4.1). Furthermore, given 1} > 0 we can also show that h;”r > 0 under the CFL
condition (5.4.11) with CFL; = 1.

Then, considering the transport approximation (5.4.10) with X = h, we have

B = I = L (A~ (E))
= L R )R () (LR,
(VLR — () (Lh))
= LR = R ,) — (]y))
— el ) (R = (w5 LR
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Hence, if
At

) —e )T < 1 (5.4.14)

3 3
we have h’j“_ > (. Finally, let us observe that condition (5.4.11) with CFL; = 0.5
implies condition (5.4.14).

. Let us assume that p,, < p} < ps Vj. To prove that p,, < ,O?H_ < ps Vj, we start by
showing that p,, < p*'~ Vj and then that p'*'~ < p, V;. We also assume h} > 0 and
R+ > 0.

First of all, we define the new variable p = p — p,,. As such, it is clear that its evolution
equation is given by 0;(hp) + 0, (hpu) = 0 and its approximation reads

At

()1~ = (Lh)} — o (s, (Lho)TE, — s (Lho)™)
At * n+ * n+
~\n At n * ~\n

= (Lhp)j" = - (wj o (Lhp)ply = uf s (Lhp)} )

Now, we aim to prove that p”Jrl > 0, namely that p”Jrl > pw. Hence, we use the
same strategy as in point (b). We have

l
+3

(hp)j '~ = (Lhp)}* A(
TL A 'I’L
= (Lhp) *—A—( T(Lhp)TT + (ugys) " (Lhp)Th

- (u;,%)JF(LhP)j—l - (U;,%) (Lh);&)
= (LR = ()~
At

— () (R — ()

) (Lhp)iy),

N[

and then, as in point (b), it follows that (hﬁ)?“_ > 0 under condition (5.4.11) with
CFL; = 0.5. Namely, we found p"Jr1 > py as we already know that h}”l* > 0.

As a second step, we want to prove that p"Jrl

p = ps — p, whose approximation reads

< ps. This time we define the variable

At
“\n+1l— __ ~\n+ * ~\n+ * ~\n+
(hp)j ™" = (Lhp)" = - (uj y (Lhp)TTy —uf s (Lhp)} )

2

once again. Then, we just follow the same strategy as before to prove that p”+1 >0
and thus p, > p;“Ll_

]

5.4.3 Including the source terms for friction and erosion-deposition

fluxes

In the last step, we include the erosion, deposition and friction terms in the mathematical
model. Following the lines of [38], we aim to exploit a semi-implicit approximation for the
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source terms. Hence, considering first the variables hp and z, their updating formulas read

Zﬂ+1 n+1pn+1

n+1 n+1 n+l— n+l-— _ n+1—_"J _ n+1— J
hj Pj _hj Pj +AthZ<(1 \II)USES,J' Sntl- UsCzj hn+1—pn+1—

Zn+1 J hn+1 n+1 J J
n+l _ n+1— n+1-— J _ n+l— J J
<j “j At<(< )USE Zn-i—l— UsCz j hn-i—l— n+1— )

j i P

(5.4.15)

where we recall that
¢z:Fe_Fd7 Fe:(l_\l/>st87 Fdzvscz-

Then, the solution of this linear system (5.4.15) can be explicitly found, we just refer to [38] for
more details about it. Subsequently, as we have found h”+1 "1 and Z"H we can automatically

define ¢, as
1-v

¢z: pzAt

n+1 n+1 n+1— n+1
and thus update A"*' and (hpu);“rl, for which the friction term is treated semi-implicitly as
well, see [38] for more details.

Remark 8. In paper [38], it has been proved that if hp"+1 and Z”Jrl are positive, then hp’”rl

and Z"H will remain positive using this approximation.

Let us also observe that asking for the positivity of the topography is not a restrictive condition.
Indeed, from a numerical point of view, we can simply consider its translation z = z + K with K
a constant so that Z is always positive. At the end of the simulation, we can obtain z by imposing

2z = Z — K. Such an expedient does not modify the final solution.

5.5 Numerical simulations

This section is devoted to the presentation of the numerical results. Here we consider the
three different numerical methods we have presented so far. For the sake of brevity, we call
them as follows:

« "LP-TrZ" if the topography is updated at the end of the transport step and the approxi-
mation of the acoustic step is explicit;

+ "LP-TrZ-Imp" if the topography is updated at the end of the transport step and the ap-
proximation of the acoustic step is implicit;

+ "LP-AcTrZ" if the topography is updated both in the acoustic and transport steps.

If not otherwise specified, in the numerical simulations we take CFL; = 0.45 and CFL; = 0.99.
Finally, we point out that for all the numerical simulations, we exploited MATLAB language
with a single Intel Core i7 CPU.

5.5.1 Lake at rest solution with suspended sediment

In [38], it has been presented the following numerical test which is useful to check if our
numerical scheme produces indeed the physical solution described in section 5.1. We consider
a closed channel of length L. = 2 m, where the water is still u = 0, the free surface is constant
in space (h + z = 3 m) as well as the bed height z = 1.05 m. Then, the sediment diameter
is given by d = 3.9 mm and the sediment concentration is ¢(x,t) = 0.2. Finally, we also
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Figure 5.5.1: Lake at rest solution with suspended sediment in section 5.5.1: M = 200 cells, t¢ng = 30s (blue
line), ¢y = Os (red line). Free surface and bed level (left), density and velocity (right).

impose the following parameters values, p; = 1.580, ¥ = 0.47, 6% = 0.045 and py = 0.03.
The solution is computed at final time ¢z, = 30 s. As explained in section 5.1, we expect
the bed level to increase due to sediment deposition and, consequently, the water height to
decrease as the free surface should remain constant in time. Moreover, the velocity should
remain null as the channel is closed and the pressure term is constant in the domain. Finally,
since ¢ < 1 — VU, the density of the mixture water sediment is expected to decrease. All these
remarks are indeed verified by our numerical outputs, reported in figure 5.5.1. The solution
is computed using the LP-AcTrZ method. We do not report here the results obtained with the
other methods as they give analogous solution.

5.5.2 Turbidity currents

In this section we want to simulate how the bed elevation evolves in time when imposing
some turbidity currents into a channel with clear water. Thus, as initial condition we take
h(z,t =0) = 4m, p(x,t =0) = 1, 2z(z,t = 0) = lm and ¢(z, ¢ = 0) = 0.001m?/s. Moreover,
we consider the erosion-deposition source terms together with the friction one but we neglect
the solid transport discharge ¢, in the Exner equation. Then, we impose ps; = 2.650 and
rw = 2.5 while, for the other parameters values, we use the ones of the previous section 5.5.1.
Then, for the left boundary condition we do the following,

q(th){%(lﬂin(%t)) if (¢t <20s V 60s < < 90s)

t otherwise
() (5.5.1)

1—|—0.2max<sin (%),0) if (t<20s V 60s <t < 90s)
plx =0,t) =

p1(t) otherwise
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where the index 1 indicates the value of the variable in the first cell of the mesh. Otherwise,
we ask for transmissive boundary conditions. Then, in Figure 5.5.2, we insert the bed elevation
and density outputs at times t = 30s, ¢ = 50s, ¢ = 100s and ¢ = 120s using both explicit
and implicit LP-TrZ schemes. Notice that, for the latter, we used a time step based only on the
transport CFL condition (5.4.11). Hence, in this case the implicit time step is at least 14 times
larger than the explicit time step, where the latter is about At ~ 0.0026. Notice that we also
inserted a reference solution computed with M/ = 1024 cells and the explicit LP-TrZ scheme.

The two schemes give similar results even if some differences can be observed, mainly in
the density outputs. This is probably due to the different time steps used for the two simula-
tions. Indeed, differences are reduced if we consider the same time step for the two schemes.
Moreover, we verified that the two schemes give analogous solutions when refining the mesh.
We stress, anyway, that in this type of test we are mainly interested in understanding how
the topography evolves over long periods of time rather than density, whose values change
several times due to boundary conditions. We can observe that the two schemes give similar
pattern for the topography outputs. Moreover, even if the implicit scheme overestimate the
topography values, it seems to capture the waveform better, in the sense that the fluctuations
are more damped when using the explicit scheme.

Then, to better highlight how the bed elevation changes in time, we insert the outputs at
different times in the same figure for the two schemes, see Figure 5.5.3. In particular, we ob-
serve that, when inserting the flow with sediment in the channel, the bed elevation increases.
On the other hand, when no sediments are imposed, the bed elevation decreases while the
density of sediment augments. This is probably due to the fact that here erosion is greater
than deposition and, as such, there is an increase of suspended sediments in the water.

Finally, it is interesting to show the errors in norm L! and the computational times for
both the explicit and implicit schemes, see Table 5.5.1. We can conclude that, even if errors
are greater when using the implicit scheme, it allows much faster simulation. This explains
why the implicit version of the method is useful.

Error L' of 2 Error L of p CPU [s]
Time LP-TrZ LP-TrZ-Imp LP-TrZ LP-TrZ-Imp LP-TrZ  LP-TrZ-Imp
30s  0.1669 0.5107 0.0216 0.0988 72.4549 4.1708
50s  0.1175 1.4431 0.0103 0.2778 124.0635 6.1695
100s  1.4623 1.6950 0.2042 0.1127 245.2995 15.2274
120s  1.6630 3.4737 0.1265 0.3918 287.0587 17.9937

Table 5.5.1: CPU time in seconds and errors in norm L' for the variables z and p computed at times ¢t = 30s,
t = 50s,t = 100s and ¢t = 120s using LP-TrZ and LP-TrZ-Imp schemes.

5.5.3 Dune evolution test case

For this test case we refer to [4] and we use the following parameters values: L = 1000m,

1
(= 1047 Grass formula with A; = 1 and CFL; = 0.5. Then, the Initial Conditions (IC)
are given By

200
0.1 otherwise

I

H . 2
. 0.1+ (sin (M)) if 300 < 2 < 500
IC —

hic = 10 — z1c and ¢c = 10. We show the results in figure 5.5.4, obtained using the LP-TrZ
and LP-TrZ-Imp methods. Here the reference solution is computed with M = 1024 cells and
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Figure 5.5.2: Turbidity test in section 5.5.2: bed level and density computed with explicit (blue dashed line) and
implicit (magenta line) methods with M = 256 cells. Reference solution (red line) computed with the explicit
scheme and M = 1024 cells. Solutions at times ¢t = 30s (up - left), ¢ = 50s (up - right), ¢ = 100s (bottom - left)

and t = 120s (bottom - right).
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Figure 5.5.3: Turbidity test in section 5.5.2: bed level (up) and density (bottom) computed with explicit (left) and
implicit (right) methods and M = 256 cells. Solution at times ¢t = 30s (blue), t = 50s (red), ¢ = 100s (yellow)
and t = 120s (purple).

an implicit-explicit second-order scheme for which we refer to [19]. The numerical solution
seems to be in agreement with the one reported in [4]. Let us point out that here we used the
implicit-explicit version of the scheme as the dune evolution problem is in general a slow test
case. Indeed, here the regime is already sub-critical with a Froude number Fr ~ 0.1. Here we
used a time step of about At ~ 2.3s for the implicit-explicit scheme, whereas for the explicit
version of the method, the time step is limited to At =~ 0.23s approximately. For the sake
of completeness, in tables 5.5.2-5.5.3 we show the errors in norm L! and the computational
times computed with LP-TrZ and LP-TrZ-Imp methods. For the variable z, we also insert the
comparison between the CPU and the errors in log scale in Figure 5.5.5. We highlight that,
for this test, we considered a long channel (L. = 1000m) with relatively coarse meshes and
large space steps Ax. As a consequence, also the errors appear to be big, which is normal
as we assume them to be of the same order of Az. Then, we observe that the errors of the
explicit scheme are a bit smaller than the implicit ones when using the same mesh values.
This is expected as the implicit method is more diffusive than its explicit version. On the other
hand, it is immediately evident that the LP-TrZ-Imp scheme is much faster than the explicit
one. Therefore, it is clear that the LP-TrZ method is more accurate, but the the difference on
CPU time when compared to the implicit scheme makes the LP-TrZ-Imp method a very good
alternative for long time simulations. This fact is made even clearer by figure 5.5.5, where we
observe that the line for the LP-TrZ-Imp scheme is always under the LP-TrZ one, confirming
our previous statement.

Moreover, here we have taken A, = 1, meaning that the interaction between the fluid and
the sediments of the bottom is strong. In this way we are able to see in a relative short time
substantial changes in the bed elevation. However, if we consider a weaker interaction, for
instance A, < 0.1, the evolution of the bottom height is slower and we need a greater ending
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Figure 5.5.4: Dune evolution test case in section 5.5.3, water height (up) and bed level (bottom). Ending time
tenda = T700s. LP-TrZ (blue line) and LP-TrZ-Imp (magenta dashed line) with M = 256 cells and reference
solution with M = 1024 cells (red line).

time to be able to see significant changes in z, hence the usefulness of the implicit-explicit
version of the method. Furthermore, we highlight that, if we are in a low-Froude number
regime (Fr < 1072), the CFL condition for the acoustic time step is even more limited and
difference in value between the acoustic and transport time steps could be more remarkable.

Finally, for the sake of completeness, in table 5.5.4 we insert the empirical convergence
rates for the LP-TrZ and LP-TrZ-Imp schemes in order to show that their order of accuracy
tends to one.

Error LT of h Error L of hu Error LT of 2

Mesh Ax LP-TrZ  LP-TrZ-Imp LP-TrZ  LP-TrZ-Imp LP-TrZ  LP-TrZ-Imp

64 15.625  74.7145 80.0825 30.7352 36.3154 74.2672 79.8077
128 7.8125  52.8432 57.6222 21.6851 26.6577 52.6857 57.4422
256 3.90625  33.3327 37.0244 13.8278 18.3581 33.2159 36.8888
512 1.953125 19.0688 21.6013 8.0738 11.1259 18.9822 21.4826

Table 5.5.2: Errors in norm L! of h, hu, z and computational cost using LP-TrZ and LP-TrZ-Imp methods. Mesh
of size M = (64,128,256, 512) and space step Az = (15.625,7.8125, 3.90625, 1.953125).

5.5.4 Dam break problems

Here we present two different dam break problems for which the experimental results are
available, see also [38]. We consider the MPM formulation (5.1.3) for ¢, and describe the pa-
rameters values in table 5.5.5. We also take M = 500 cells. Let us remark that for these dam
break problems, we need to use a smaller time step value for the LP-TrZ method in order to
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CPU [s]
Mesh LP-TrZ  LP-TrZ-Imp
64 1.2478 0.1833
128 4.2625 0.4024

256 15.4166 1.9843
512 61.2181 9.5504

Table 5.5.3: Errors in norm L of h, hu, z and computational cost using LP-TrZ and LP-TrZ-Imp methods. Mesh
of size M = (64, 128,256, 512) and space step Az = (15.625,7.8125, 3.90625, 1.953125).

O(LY) of h O(LY) of hu O(LY) of 2
Mesh LP-TrZ LP-TrZ-Imp LP-TrZ LP-TrZ-Imp LP-TrZ LP-TrZ-Imp
64 - - — — — —
128 0.4997 0.4749 0.5032 0.4460 0.4953 0.4744
256 0.6648 0.6381 0.6491 0.5381 0.6655 0.6389
512 0.8057 0.7774 0.7763 0.7225 0.8072 0.7800

Table 5.5.4: Empirical convergence rates in norm L! of h, hu, 2 using LP-TrZ and LP-TrZ-Imp methods. Mesh of
size M = (64,128, 256,512).

avoid unphysical oscillations.

Experiment 1. This experiment has been carried on at the Université catholique de Lou-
vain. We report the LP-AcTrZ and LP-TrZ results for this first dam break experiment in figure
5.5.6. In particular, on the left we insert the LP-AcTrZ solution against the experimental re-
sults, while we compare the two LP-AcTrZ and LP-TrZ methods on the right. We considered
three different ending times, namely t.,q = 5tg, 7.5t, 10t s with ty = v/ghy =~ 0.101. The
numerical outputs seem to be in agreement with the ones reported in [38] and they are also
close to the experimental solution. We can also observe that the two LP-AcTrZ and LP-TrZ
methods give similar results, even if the LP-TrZ method is less diffusive, see again Figure 5.5.6.
Finally, we do not report here the implicit LP-TrZ outputs as they are analogous to the ones
of the explicit version of the scheme.

Experiment 2. In figure 5.5.7, once again we show the LP-AcTrZ and LP-TrZ outputs for
the second dam break problem. Analogous comments to what we have made for the first
experiment may be said: our numerical solution correctly describe the solution in the sense
that it is close to the experimental one. The position of the front is correct as well. Finally, the
LP-TrZ is slightly less diffusive than the LP-AcTrZ one but it may require the use of a smaller
CFL number to avoid possible spurious oscillations.

Remark 9. Let us observe that for these two dam break problems, the regime is supercritical. As
such, to exploit the implicit version of the method does not lead to an actual improvement of the
numerical simulation in the sense that CPU times are not necessarily better. On the other hand,

Experiment Ay [m] hgr[m] L[m] d[mm] U ps[gem™3] pr s m~1/3] 0 Tw

1 0.1 0 2.5 3.2 0.4 1.540 0.02 0.045 1
2 0.35 0 6 3.9 0.47 1.580 0.0165 0.047 2.5

Table 5.5.5: Parameters values for dam break problems in section 5.5.4, two different experiments.

196



5.6. Conclusion and perspectives

—LP-Trz ]
—LP-TrZ-Imp

-
o
T

(2]
o
T

(4]
o
T

Error - z
S
o
.

w
o
T

20r

107" 10° 10° 10
CPU

Figure 5.5.5: Dune evolution test case in section 5.5.3: CPU against error in norm L' for the variable z (log scale).
Mesh of size M = (64,128, 256,512). LP-TrZ (blue line) and LP-TrZ-Imp (red line) schemes.

while the first-order numerical scheme LP-TrZ does not produce spurious oscillations, its second (or
higher) order extension could, see [18] (chapter 4). Hence the usefulness of the LP-AcTrZ method,
which is more stable.

5.6 Conclusion and perspectives

In this chapter, we have presented both explicit and implicit-explicit well-balanced Lagrange-
projection schemes applied to the shallow water system with moving topography and variable
density of the mixture water-sediment. In particular, we assumed that sediments could move
along the bottom (bed-load) or being finer fraction that could be carried in suspension into
the water or be deposited on the bed.

Since sediment transport is generally a slow process, which requires long-in-time simula-
tion in order to see appreciable changes in the bed elevation, implicit-explicit method can be
very useful. We considered academic problems to show that the implicit-explicit version of
the Lagrange-projection numerical scheme allows very fast simulations, especially when we
are in subsonic or low-Froude number regimes. Indeed, the LP approach entails a decomposi-
tion of the acoustic and transport waves of the model, leading to the possibility of implicitly
approximating only the acoustic equations. As a consequence, the CFL condition on the time
step can be based only on the transport waves. Finally, we also provided comparison between
experimental and numerical results.

We highlight that two explicit LP methods have been described, which differ only in the
approximation of the bed elevation z, namely the LP-TrZ and the LP-AcTrZ schemes. Indeed,
while the former is easier, the latter proved to be more stable in situations in which we could
expect unphysical oscillations in the numerical outputs of fully decoupled methods.

Improvements could be related to the design and implementation of high order extension
of implicit-explicit well-balanced Lagrange-projection schemes.

5.7 Bibliography

[1] E. Audusse, C. Berthon, C. Chalons, O. Delestre, N. Goutal, M. Jodeau, J. Sainte-Marie, J. Giessel-
mann, and G. Sadaka. Sediment transport modelling : Relaxation schemes for Saint-Venant — Exner

197



Bibliography

Time: 0.5048s Time: 0.5048s
012 : 0127
— Numerical free surface —LP-ACTIZ
0.4 ——Numerical bottom 0.4 T
e 0 Experimental data
§ 0.08 0.08
g -
E £
B 006 = 006}
0 2
o 2
L 0.04¢ D 0.04f
T i
8
5 0.02f 0.02 1
o}
]
0 0
0.02 | L 9 I I -0.02 | | I |
0.5 1 1.5 2 0.5 1 1.5 2
Space x [m] Space x [m]
o Time: 0.7572s o Time: 0.7572s
—Numerical free surface —LP-ACTIZ
——Numerical bottom
0.08| 0 Experimental data 0.081 - - Pz

o

o

D
T

0.06 1

Bed level [m]
o
o
=~

Bed level, Free surface [m]
o o
o o
no S

o

00
_0.02 Il Il O L Il _0.02 I L L L
0.5 1 1.5 2 0.5 1 1.5 2
Space x [m] Space x [m]
Time: 1.0096s 0. Time: 1.0096s
— Numerical free surface —LP-ACTIZ
_ 0.08+ —Numelrical bottom 008 - P12
E 0 Experimental data
© 0.061
§ T 0.06
004 >
o 3 0047
o002 D
0]
3 © 002}
5 0
@
002} § 0
I I I I _002 | | I I
0.5 1 1.5 2 05 1 1.5 2
Space x [m] Space x [m]

Figure 5.5.6: Dam break problem, experiment 1, Section 5.5.4: free surface and bed level, M = 500 cells. Ending
time tepg = 5tos (Up), tena = 7.5tps (middle), tc,q = 10tgs (bottom). On the left, LP-AcTrZ free surface (blue
line), LP-AcTrZ bottom (red line) and experimental values (red symbol). On the right, LP-AcTrZ (continuous blue
line) and LP-TrZ (black dashed line) numerical methods.

198



Bibliography

Time: 1.0000s Time: 1.0000s
04r 047
— Numerical free surface ——LP-AcTrZ
— Numerical bottom == LP-T1Z
E 03 Experimental data £ 03]
o) o)
Q Q
g g
2 0.2 2 0.2
o) o)
o o
W W
< 0.1 3 01
> >
o o
3 3
m 0 m 0
_01 1 Il Il Il Il I} _0.1 1 1 L L Il I
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Space x [m] Space x [m]
Time: 1.2500s Time: 1.2500s
0.35 0.35
— Numerical free surface ——LP-AcTrZ
031 —— Numerical bottom 0.3 - = LP-TZ
'c Experimental data =3
E o5t il E o251
o o)
Q Q
8 8
= 02r 5 02r
(9] ()]
§ 015 0 0151
w w
?>> 0.1r ?>> 0.1
9 o
B 005 ] 005
m m
0 0
_005 L L L L L | _005 L I L L L 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Space x [m] Space x [m]
Time: 1.5000s Time: 1.5000s
0.35F 0.35
— Numerical free surface —LP-AcTrZ
03r — ] 0.3r
_ Numerical bottom _ -~ IPTZ
£ Experimental data £
> 025 o 025
8 8
= 02r 5 0.2
9] (/)]
8 015 9 015
L I
?>> 0.1 ?>> 0.1
10} o
T 0.05¢ T 0057
m m
0 0
-0.05 -0.05
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Space x [m] Space x [m]

Figure 5.5.7: Dam break problem, experiment 2, Section 5.5.

4: free surface and bed level, M = 500 cells. Ending

time tepg = 15 (Up), tend = 1.25s (middle), ter,q = 1.5s (bottom). On the left, LP-AcTrZ free surface (blue line),
LP-AcTrZ bottom (red line) and experimental values (red symbol). On the right, LP-AcTrZ (continuous blue line)

and LP-TrZ (black dashed line) numerical methods.

199



Bibliography

(4]

(7]

(10]

[12]

(13]

(14]

and three layer models. ESAIM: Proceedings, 38: 78-98, 2012. 10.1051/proc/201238005

E. Audusse, F. Bouchut, M.O. Bristeau, R. Klein and B. Perthame. A fast and stable well-balanced
scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on Scientific Com-
puting, 25: 2050-2065, 2004. 10.1137/51064827503431090.

E. Audusse, C. Chalons, and P. Ung. A simple three-wave approximate riemann solver for the Saint-
Venant-Exner equations. International Journal for Numerical Methods in Fluids, 87(10): 508-528,
2018. 10.1002/11d.4500

E. Audusse, O. Delestre, M. H. Le, M. Masson-Fauchier, P. Navaro, and R. Serra. Parallelization
of a relaxation scheme modelling the bedload transport of sediments in shallow water flow. ESAIM:
Proceedings, 43: 80-94, 2013. 10.1051/proc/201343005

M. Baudin, C. Berthon, F. Coquel, R. Masson, Q. HuyTran. A relaxation method for two-
phase flow models with hydrodynamic closure law. Numerische Mathematik. 99: 411-440, 2005.
10.1007/s00211-004-0558-1.

C. Berthon, S. Cordier, O. Delestre, and M. H. Le. An analytical solution of the shallow water
system coupled to the exner equation. Comptes Rendus Mathematique, 350(3-4): 183-186, 2012.
10.1016/j.crma.2012.01.007

L. Bonaventura, E. D. Fernandez-Nieto, J. Garres-Diaz, and G. Narbona-Reina. Multilayer shallow
water models with locally variable number of layers and semi-implicit time discretization. Journal
of Computational Physics, 364: 209-234, 2018. 10.1016/].jcp.2018.03.017

F. Bouchut. Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-
balanced schemes for sources. Frontiers in mathematics, 2004. 10.1007/b93802.

R. Briganti, N. Dodd, D. Kelly, and D. Pokrajac. An efficient and flexible solver for the simulation
of the morphodynamics of fast evolving flows on coarse sediment beaches. International Journal for
Numerical Methods in Fluids, 69(4): 859-877, 2012. 10.1002/1d.2618.

V. Caleffi, A. Valiani, and A. Bernini. High-order balanced cweno scheme for mov-
able bed shallow water equations. Advances in Water Resources, 30(4): 730-741, 2007.
10.1016/j.advwatres.2006.06.003

M. J. Castro Diaz, C. Chalons and T. Morales De Luna. A fully well-balanced Lagrange-Projection
type scheme for the Shallow-water equations. SIAM J. Numer. Anal., 56(5): 3071-3098, 2018.
10.1137/17M1156101.

M. J. Castro-Diaz, E. D. Fernandez-Nieto, and A. M Ferreiro. Sediment transport models in shallow
water equations and numerical approach by high order finite volume methods. Computers & Fluids,
37(3): 299-316, 2008. 10.1016/j.compfluid.2007.07.017

V. Casulli. Semi-implicit finite difference methods for the two-dimensional shallow water equations.
Journal of Computational Physics, 86(1): 56-74, 1990. 10.1016/0021-9991(90)90091-E

V. Casulli. Numerical simulation of three-dimensional free surface flow in isopycnal co-ordinates.
International Journal for Numerical Methods in Fluids, 25(6): 645-658, 1997. 10.1002/(SICI)1097-
0363(19970930)25:63.0.CO;2-L

V. Casulli and E. Cattani. Stability, accuracy and efficiency of a semi-implicit method for three-

dimensional shallow water flow. Computers & Mathematics with Applications, 27(4): 99-112, 1994.
10.1016/0898-1221(94)90059-0

200



Bibliography

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

V. Casulli and P. Zanolli. Semi-implicit numerical modeling of nonhydrostatic free-surface flows
for environmental problems. Mathematical and Computer Modelling, 36(9-10): 1131-1149, 2002.
10.1016/S0895-7177(02)00264-9

C. Chalons, A. Del Grosso. A second-order well-balanced Lagrange-projection scheme for Shallow
Water Exner equations in 1D and 2D. 2021. hal-03251707

C. Chalons and A. Del Grosso. Exploring different possibilities for second-order well-balanced
Lagrange-projection numerical schemes applied to shallow water Exner equations. International
Journal for Numerical Methods in Fluids. 1- 31, 2022. 10.1002/f1d.5064

C. Chalons and A. Del Grosso. Second-order well-balanced implicit-explicit scheme for systems of
balance laws. 2022.

C. Chalons, M. Girardin, S. Kokh. An All-Regime Lagrange-Projection like scheme for the gas dynam-
ics equations on unstructured meshes. Communications in Computational Physics. 20(1): 188-233
2016. 10.4208/cicp.260614.061115a.

C. Chalons, M. Girardin, S. Kokh. An all-regime Lagrange-Projection like scheme for 2D homo-
geneous models for two-phase flows on unstructured meshes. Journal of Computational Physics,
Elsevier, 335: 885-904, 2017. 10.1016/j.jcp.2017.01.017.

C. Chalons, P. Kestener, S. Kokh, and M. Stauffert. A large time-step and well-balanced Lagrange-
Projection type scheme for the Shallow-water equations. Communications in Mathematical Sciences.
15(3): 765-788, 2017. 10.4310/CMS.2017.v15.n3.a9.

C. Chalons, S. Kokh, M. Girardin. Large Time Step and Asymptotic Preserving Numerical Schemes
for the Gas Dynamics Equations with Source Terms. SIAM Journal on Scientific Computing. 35(6):
A2874-A2902, 2013. 10.1137/130908671.

F. Coquel, E. Godlewski, B. Perthame, A. In, and P. Rascle. Some new Godunov and relaxation
methods for two-phase flow problems. In: Toro E.F. (eds) Godunov Methods. Springer, New York,
NY, pages 179-188, 2001. 10.1007/978-1-4615-0663-8_18

S. Cordier, M.H. Le, and T. Morales de Luna. Bedload transport in shallow water models: Why
splitting (may) fail, how hyperbolicity (can) help. Advances in Water Resources, 34(8): 980-989,
2011. 10.1016/j.advwatres.2011.05.002

L. Cozzolino, L. Cimorelli, C. Covelli, R. Della Morte, and D. Pianese. Novel Numerical Approach
for 1D Variable Density Shallow Flows over Uneven Rigid and Erodible Beds. Journal of Hydraulic
Engineering, 140(3): 254-268, 2014. 10.1061/(ASCE)HY.1943-7900.0000821.

A. Del Grosso and C. Chalons. Second-order well balanced Lagrange-Projection schemes for Blood
Flow Equations. Calcolo 58, 43, 2021. 10.1007/s10092-021-00434-5

F. Duboc, C. Enaux, S. Jaouen, H. Jourdren, M. Wolff. High-order dimensionally split Lagrange-
remap schemes for compressible hydrodynamics. Comptes Rendus Mathematique, 348(1-2):105-
110, 2010. 10.1016/j.crma.2009.12.008.

H. A Einstein. The bed load function for sediment transportation in open channel flows. Bulletin
1026, Washington, D.C., 1950.

F. M Exner. Uber die wechselwirkung zwischen wasser und geschiebe in fliisen. Akad. Wiss. Wien
Math. Naturwiss, Klasse, 134: 165-2014, 1925.

E. D. Fernandez-Nieto, T. Morales de Luna, G. Narbona-Reina, and J. de Dieu Zabsonré. Formal
deduction of the Saint-Venant-Exner model including arbitrarily sloping sediment beds and asso-
ciated energy. ESAIM: Mathematical Modelling and Numerical Analysis, 51(1): 115-145, 2017.
10.1051/m2an/2016018

201



Bibliography

(32]

(33]

(34]

(35]

(38]

(39]

[40]

[42]

[45]

[46]

G. Gallice. Solveurs simples positifs et entropiques pour les systémes hyperboliques avec terme source.
C. R. Math. Acad. Sci. Paris 334(8): 713-716, 2002. 10.1016/S1631-073X(02)02307-5.

G. Gallice. Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations
in Lagrangian or Eulerian coordinates. Numer. Math. 94(4): 673-713, 2003. 10.1007/s00211-002-
0430-0

J. Garres-Diaz and L. Bonaventura. Flexible and efficient discretizations of multilayer mod-
els with wvariable density. Applied Mathematics and Computation, 402: 126097, 2021.
10.1016/j.amc.2021.126097

J. Garres-Diaz, E.D. Fernandez-Nieto, and G. Narbona-Reina. A semi-implicit approach for sedi-
ment transport models with gravitational effects. Applied Mathematics and Computation. 421(206):
126938, 2022. 10.1016/j.amc.2022.126938.

I. Gémez-Bueno, M. J. Castro, C. Parés, and G. Russo. Collocation methods for high-order well-
balanced methods for systems of balance laws. Mathematics, 9(15), 2021. 10.3390/math9151799.

C. Goni, D. Celi, and F. Concha. Determination of the volumetric solids fraction of saturated polydis-
perse ore tailing sediments. Powder Technology, 305: 528-537, 2017. 10.1016/j.powtec.2016.10.001.

J.C. Gonzalez-Aguirre, M.J. Castro, and T. Morales de Luna. A robust model for rapidly varying
flows over movable bottom with suspended and bedload transport: Modelling and numerical ap-
proach. Advances in Water Resources, 140: 103575, 2020. 10.1016/j.advwatres.2020.103575.

A]. Grass. Sediment transport by waves and currents. SERC London Cent. Mar. Technol, Report
No. FL29, 1981.

S. M. Khan, J. Imran, S. Bradford, and ]. Syvitski. Numerical modeling of hyperpycnal plume. Marine
Geology, 222-223: 193-211, 2005. 10.1016/j.margeo.2005.06.025.

Y. Kubo. Experimental and numerical study of topographic effects on deposition from two-
dimensional, particle-driven density currents. Sedimentary Geology, 164(3-4): 311-326, 2004.
10.1016/j.sedgeo0.2003.11.002.

Y. Kubo and T. Nakajima. Laboratory experiments and numerical simulation of sediment-
wave formation by turbidity currents. Marine Geology, 192(1-3): 105-121, 2002. 10.1016/S0025-
3227(02)00551-0.

E. Meyer-Peter and R. Miiller. Formulas for bed-load transport. In 2nd meeting IAHSR, Stockholm,
Sweden, 1-26, 1948.

T. Morales De Luna, M. J. Castro Diaz and C. Chalons. High order fully well-balanced
Lagrange-Projection scheme for Shallow-water. Commun. Math. Sci, 18(3): 781-807, 2020.
10.4310/CMS.2020.v18.n3.a9

T. Morales de Luna, M. J. Castro Diaz, C. Parés Madronal, and E. D. Fernandez Nieto. On a shallow
water model for the simulation of turbidity currents. Communications in Computational Physics,
6(4): 848-882, 2009. 10.4208/cicp.2009.v6.p848

J. Murillo and P. Garcia-Navarro. An exner-based coupled model for two-dimensional tran-
sient flow over erodible bed. Journal of Computational Physics, 229(23): 8704-8732, 2010.
10.1016/j.jcp.2010.08.006.

G. Parker, Y. Fukushima, and H. M. Pantin. Self-accelerating turbidity currents. Journal of Fluid
Mechanics, 171: 145-181, 1986. 10.1017/5S0022112086001404.

202



Bibliography

[48] D. Subhasish. Fluvial Hydrodynamics, Hydrodynamic and Sediment Transport Phenomena. Geo-
Planet: Earth and Planetary Sciences. Springer-Verlag Berlin Heidelberg, 2014.

[49] 1. Suliciu. On the thermodynamics of fluids with relaxation and phase transitions. Fluids with relax-
ation. Int. J. Engag. Sci. 36: 921-947, 1998.

[50] L. C Van Rijn. Sediment transport, part I: Bed load transport. Journal of Hydraulic Engineering,
110(10): 1431-1456, 1984. 10.1061/(ASCE)0733-9429(1984)110:10(1431)

203



Annexe

5.A Sur l’approximation implicite du systéme acoustique

Dans cette section, nous montrons brievement comment formuler la version implicite-
explicite du schéma numérique qui approche I’équation d’Exner directement dans ’étape de
transport. A cette fin, nous reformulons les troisiéme et quatriéme équations du systéme (5.4.4)

. L -
sous forme de systéme linéaire: A? = b,ou

et

u? st
1 A 1
m
A S st
n 92 t 3/2 1/2
I} —a3 ( - )
22Amq " as ai
2
At
ul! + ——s"
J o J
At ASTJ s
mr—a2 , j+1/2 j—1/2)
7%+ A ‘
22Am; Wyl aj_1
n L At
u S
M M
ATST%‘M s
I — g2 At M+1/2 M—1/2)
_ ) _
MUTMEZ2AMM N appr ag
2 2

204

(5.A.1)



5.B. Sur l’approximation implicite du systéme acoustique avec topographie non-constante
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Par les indices 1 et M, nous indiquons la valeur de la variable dans la premiere et la derniére
cellule respectivement, ou M est le nombre de cellules. Enfin, il est clair que la premiére et
la derniére ligne du systéme doivent étre modifiées en fonction de la condition aux limites
considérée.

Ensuite, une fois que u"t et II"" ont été été trouvés, il est simple de mettre a jour les
variables Lh™", Lhp"" et Lhpu™" en considérant I’approximation lagrangienne 5.4.1 avec les
valeurs des étoiles au temps ¢"". L’étape de transport suit sans aucun changement, comme
décrit dans la section 5.4.2.

5.B Sur 'approximation implicite du systéme acoustique
avec topographie non-constante

Dans les sections précédentes, nous avons proposé une approximation implicite du systeme
acoustique (5.2.12) qui ne tient pas compte de I’évolution dans le temps de I’élévation du lit z.
Ainsi, 'approximation numérique de z résulte étre complétement explicite.

Dans cette annexe, nous proposons d’approcher implicitement le systéme acoustique (5.3.4),
en résolvant deux systémes linéaires. En effet, grace a cela, nous pourrions a nouveau obtenir
un schéma numérique rapide qui a un At basé uniquement sur la condition CFL de I’étape
de transport (5.4.11). D’autre part, cette nouvelle méthode serait également plus stable dans
les situations ou des oscillations non-physiques pourraient apparaitre en raison des propriétés
hyperboliques du systéme couplé (5.1.1), voir encore [25] pour plus de détails sur cette prob-
lématique. Cependant, les instabilités dans les données numériques apparaissent surtout a un
ordre de précision plus élevé. Il serait donc particuliérement intéressant d’étendre ces deux
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Appendix

différentes méthodes implicites-explicites au second ordre de précision afin de mettre en évi-
dence les avantages et les inconvénients de chaque approche.

Ainsi, nous décrivons ici une méthode implicite-explicite du premier ordre alternative pour
le systéme (5.1.1) (sans effectuer de tests numériques) dans la perspective d’étendre ces méth-
odes au second ordre de précision dans des travaux futurs. Voyons brievement les détails.

Considérons le systeme (5.3.4). Nous avons déja montré que les équations d’évolution
pour u et Il peuvent étre approximée implicitement en résolvant un systéme linéaire, voir
aussi 'annexe précédente 5.A. En particulier, a cette fin, les valeurs de I’étoile u*, II* sont
évaluées au prochain pas de temps t"*. Ainsi, une fois que nous avons trouvé la vitesse u et
la pression linéarisée IT au nouveau niveau temporel ¢"", nous pouvons également mettre a
jour les variables 7 et 6 sans avoir besoin de résoudre les équations d’évolution pour z et (2.
Donc, a ce stade, nous avons seulement besoin d’évaluer ces derniéres. En ce qui concerne
I’élévation du lit z, nous rappelons que son approximation explicite est définie par (5.4.7), il
est donc simple d’observer que la discrétisation implicite est donnée par

*,n n n At *,M *.N
—u® +))z,+ =20 — —((Q —zu)"" - (Q - zu)]_;) (5.B.1)

1+ R0y — )5 I Az i+3

Az

D’autre part, pour la variable €2, nous observons que son équation d’évolution peut également
étre formulée comme suit,

O (LQ) — e (Qu) + 2udeQ + w? (V720> — 1)0¢z = 0
ou encore
(L) — e (Qu) + 2udeQ + u(b?720% — 1)(0e(2u) — 20¢u) = 0,

ou nous avons utilisé le fait que u?9z = ude(zu) — zudeu. Ainsi, nous proposons la discréti-
sation suivante,

At xnt+ n+ n+ _ On At *7n+ *,m+ n+ At *, M+ *n+

(L4 5, Gl =l 0) Q™ = QF + (Qu)y = (Qu)y) = 205" = (0 — )
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(5B.2)

Donc, en considérant ensemble les approximations (5.B.1) et (5.B.2), nous obtenons un autre
systéme linéaire grace au fait que nous avons déja calculé les variables 7, 0, u*, II* au nouveau
niveau de temps t"". Par conséquent, nous n’avons que deux systémes linéaires a résoudre et
le cotit de calcul ne devrait pas étre élevé.
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Chapter

Schéma implicite-explicite équilibre du
second ordre pour les systemes de lois
de conservation avec terme source

Ce chapitre a été soumis pour publication dans le Journal "Numerische Mathematik" sous la
référence: C. Chalons and A. Del Grosso. Second-order Well-Balanced Implicit-Explicit Scheme
for Systems of Balance Laws.

Dans ce chapitre, nous proposons un schéma de type Lagrange-projection implicite-explicite
équilibre du second ordre pour les équations de Saint-Venant. Dans tous les chapitres précé-
dents, nous avons atteint le second ordre de précision en exploitant la stratégie de reconstruc-
tion polynomiale et les schémas Runge-Kutta. Alors que, dans I’étape lagrangienne implicite
de ce chapitre, le second ordre de précision est atteint en utilisant des développements de Tay-
lor et la procédure de Cauchy-Kovalevskaya. Nous soulignons que, dans cette étape, il nous
suffit de résoudre deux systemes linéaires pour trouver la solution mise a jour. Une fois de plus,
I’approximation implicite de ’étape lagrangienne permet d’utiliser de grandes valeurs de pas
de temps, en particulier dans le cas des régimes subsoniques ou la condition CFL acoustique
est beaucoup plus restrictive que celle de I'étape de transport. De plus, le schéma est équilibre
dans le sens ou la solution "lac au repos" avec vitesse nulle est préservée.

D’autre part, il est bien connu que des oscillations parasites peuvent apparaitre en présence
de discontinuités lorsqu’on utilise des schémas du second ordre. Pour remédier a ce prob-
léme, nous exploitons une approche de limitation a posteriori de type MOOD. Cependant, nous
soulignons que ['utilisation d’une telle stratégie conduit a la perte de la précision du second
ordre.
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Second-order well-balanced
implicit-explicit scheme for systems of
balance laws

Abstract

In this work, we propose a second-order well-balanced implicit-explicit Lagrange-projection
scheme for the shallow water equations. In the implicit Lagrangian step, the second-order of
accuracy is reached by means of Taylor expansions and Cauchy-Kovalevskaya’s procedure. In
this step, we only need to solve two linear systems to find the updated solution. Thanks to
the implicit approximation of the Lagrangian step, we can use large time step values in the
case of subsonic regimes, where the acoustic CFL condition is much more restrictive than the
transport one. The scheme is well-balanced in the sense that it preserves the "lake at rest"
stationary solution with zero-velocity.

In order to avoid the well-known spurious oscillations in presence of discontinuities when
employing second-order schemes, we exploit an a posteriori limiting approach. We highlight
that the use of such a strategy leads to the loss of the second-order of accuracy.

6.1 Introduction

In this work, we aim to design a second-order well-balanced implicit-explicit Lagrange-
projection scheme for hyperbolic systems of balance laws. In particular, as far as the mathe-
matical model is concerned, we take into considerations the Saint-Venant (shallow water) sys-
tem, which is derived from the Navier-Stokes equations under the hypothesis that the vertical
scale is much smaller than the horizontal one. As such, it has been vastly used to simulate fluid
flows, for instance in rivers, channels and coastal areas. See for instance [28, 1, 5, 10, 22, 25]
for more details about this model and its numerical approximation.

In a Lagrange-Projection (LP) formalism, we are meant to split the acoustic and transport
terms of the mathematical model, leading to two different set of equations: the acoustic (or
Lagrangian) system and the transport (projection) system. We refer either to [9, 14, 25] for
LP schemes applied to the shallow water system, or to [7, 8, 12, 13, 19, 21, 11] for LP meth-
ods employed for other sets of hyperbolic partial differential equations. We remark that the
presence of two distinct systems leads to two different Courant-Friedrichs-Lewy (CFL) con-
ditions on the time step, the acoustic and transport ones. Then, the time step value should
be taken as the minimum between the two. It is worth to note that, in particular situations
as subsonic regimes, the acoustic waves result to be faster than the transport ones [14]. As a
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Chapter 6. 2nd-order IMEX scheme for systems of balance laws

consequence, the acoustic time step condition turns out to be much more restrictive than the
transport one. This explains why it could be interesting to exploit an implicit approximation
for the Lagrangian step, while keeping an explicit discretization for the projection step. In-
deed, a very fast numerical scheme could be derived and this is indeed our goal. On the other
hand, the use of a large time step could also mean a less accurate solution. For this reason,
we also aim to use a numerical method which is at least second-order accurate for smooth
solutions.

In order to be able to design such a scheme, we start by considering the scalar equation.
In particular, we follow the Jin and Xin relaxation procedure [24] to enlarge the model to
a system of two equations. Then, we derive a second-order implicit scheme by exploiting
Taylor expansions and the Cauchy-Kovalevskaya procedure. Subsequently, the Saint-Venant
system is taken into account and the implicit method is extended to numerically approximate
the Lagrangian solution. For a very similar explicit (and high order) version of this scheme
applied to the 1D Euler equations, we refer to the work of F. Duboc et al. [21]. Finally, the
transport system’s approximation is kept explicit and a simple upwind approach is consid-
ered. A second-order accurate approximation of the projection step is obtained by using the
polynomial reconstruction technique [25].

That been said, another problem could appear. It is known that the use of a second (or
higher) order scheme in presence of discontinuities could lead to the presence of unphysical
oscillations in the numerical results. In order to solve this issue, many techniques have been
proposed, for which we refer to [27] and the references therein. However, the great majority of
these approaches lead to the presence of non-linear systems in the numerical approach. This
would mean a high computational cost when using the implicit scheme and, thus, it would be
in contradiction with the fact that we aim to obtain a fast numerical method. Hence, here we
propose to use an a posteriori limiting approach resembling the MOOD strategy [17, 18]. The
idea is the following. Once a spurious oscillation is detected, we simply substitute the second-
order numerical approximation with a convex combination between the original second-order
method and another implicit first-order scheme. It is clear that such a strategy would lead to
the loss of the second-order of accuracy. This kind of approach has already been proposed in
the work of Dimarco et al. [20] for the Euler system.

Last but not least, we are interested in the well-balanced property of a method, which
means the ability of a scheme to preserve the zero-velocity stationary solutions of a mathemat-
ical model [2]. In the case of the shallow water system, we aim to preserve the so-called "lake
at rest" steady state. This property is linked to the accuracy of the numerical method as well,
as it is known that a non-well-balanced scheme could produce non-physical oscillations in the
numerical solution. As such, numerical schemes with the well-balanced property have been
intensely studied and designed. Here, we refer to [1, 5, 4, 6, 16, 3] for well-balanced schemes ap-
plied to the Saint-Venant system and to [14, 19, 9, 25, 11] for well-balanced Lagrange-projection
schemes.

Chapter outline. In the following section 6.2, we present the implicit scheme applied to the
scalar equation and we prove that the scheme is second-order accurate. Moreover, when con-
sidering the linear advection equation, we show that the numerical scheme is unconditionally
stable. Then, in section 6.3, we introduce the shallow water system for which we explain both
the explicit and the implicit-explicit Lagrange-projection numerical scheme. The source term
related to a non constant topography in space is included as well. In section 6.4, we present an
a posteriori limiting approach which allows us to remove the spurious oscillations in presence
of discontinuities. Numerical results are presented in section 6.5 to validate our numerical
method. Finally, conclusions are drawn in section 6.6.
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6.2. Scalar conservation law

6.2 Scalar conservation law

Before getting into the heart of the matter, that is to say the numerical approximation of a
system of partial differential equations, let us consider the following scalar equation,

Oyu + 0, f(u) = 0. (6.2.1)

Here, v = u(z,t) € R is the unknown and the flux f : R — R is a nonlinear function
assumed to be smooth and strictly convex. Then, ¢ > 0 is the time, x is the spatial coordinate
and, as usual, At and Az are the time and space steps respectively. We also specify that we
consider At and Ax to be of the same order of magnitude. We define the intermediate times
as t" = nAt for n € N, while the mesh interfaces are x;,/, = jAx for j € Z.

Referring to the Jin and Xin relaxation procedure [24], let us introduce the relaxation pa-
rameter € and the unknown v such that ¢ > 0 and v — f(u) at least formally when ¢ — 0. In
this sense, v is understood as a linearization of the nonlinear flux f(u) and equation (6.2.1) is
approximated as

ou+ oo = 0,
O + a2d,u = —é (v — f(u)), (6.2.2)

where a is a positive constant which is assumed to obey to
a® > (f'(w))?, (6.2.3)
according to the sub-characteristic condition [29]. Moreover, as initial condition, we consider

u(z,t =0) = up(z) and v(z,t = 0) = vo(x) Vo, where vo(x) = f(ug(x)). This allows us to
simply look for the numerical solutions of system

{@u + 0,v =0

6.2.4
O + a’0,u = 0. ( )

Asusual,Vj € Zand Vn € N, on each cell we compute the constant average approximation
of u, namely

zA_;I: Ax

Tj-1/2 Tj-1/2

n 1 Tj+1/2 n . 0 1 Tj+1/2
u} u(z,t")dz  with u; = —/ uo(x).

Thus, given the sequence {u] },,cz, we look for {u}"'} ;<7 at the next time level ¢"*!. Working
in the finite volume framework, the numerical schemes read

nt+l _ um

j iy Yjt12 ~ Yj1/2
At Azx
where the numerical fluxes v}‘ 12 have to be defined such that

u

=0,

1 tn+1
Vi R —— v(xj41/2,0)do. (6.2.5)
T2 AL /tn T
Depending on which kind of numerical scheme we are looking for, namely either explicit or

implicit, v}, /2 could depend on the values of the variables computed both at time ¢" and time
gttt

As far as the explicit scheme is concerned, we take inspiration from the work of Duboc et
al. [21], where they built explicit schemes of arbitrary order of accuracy for the Euler equations
in the Lagrange-projection formalism. Here, we only explain how to reach the second order
of accuracy and for more details we refer to [21]. Then, starting from the explicit scheme, we
deduce how to obtain the second-order implicit version of the method.
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Chapter 6. 2nd-order IMEX scheme for systems of balance laws

6.2.1 Explicit scheme

Let us start with the explicit scheme; since the numerical fluxes will only depend on values
of u and v at time t", we state v;.* t)2 = U;fl /o forall j € Z. Then, considering definition (6.2.5),
the second-order mid-point rule of integration gives

Ve = Vf1jn + Tatvjﬂ/z + O(At?). (6.2.6)

At this stage, we only need to find a way to approximate the two terms v7, /2 and 007, Jo-
For the former, since we only aim to reach the second order of accuracy, we simply define

n _ U?—‘rl + U?
Uivr2 = =5
where v;? = f (u?) For the time derivative of v, 3,51);7“ /2> it is sufficient to obtain a first-

At
order approximation as it already multiplies the term - Thus, first we exploit the Cauchy-

Kovalevskaya procedure and find

n . n 2 n
atvj+1/2 = _(aj+1/2> aﬁvuj+1/2
and, then, we impose
noo
" — —((J,T-L )2uj+1 Yj
+1/2 it12) TTOAL

Concluding, the numerical flux is approximated as

n n n 2
o _ Vi T ;5 B (aj+1/2) At
J+1/2 2 2Ax

(ujyy —uj) (6.2.7)

with
G?H/z = max(f’(u)?, f’(u)?ﬂ)- (6.2.8)

In section 6.2.3, we will see that this definition of a allows us to obtain a second-order accurate
scheme. Indeed, this flux (6.2.7) clearly evokes the Lax-Wendroff flux [27] as applied to system
(6.2.4).

In an analogous manner, it is easy to see that the star values for u are given by

. uig +uy At .
Wyrjp = — 5 - - N (Vi1 — v5). (6.2.9)

6.2.2 Implicit scheme

Following the lines of the explicit scheme, we are now ready to present the second-order
implicit method whose updating formula reads

utt— v —
j J Jj+1/2 j—1/2
+ =0 6.2.10
At Ax ( )

where v} jo = Vi /Q(U”, u™1). Then, as before, we start by computing a Taylor expansion

in time of v Ti1/2 and we write

. n At
Vit1/2 = Vjy1j2 t T@Ujfllﬂ + O(A#?), (6.2.11)
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6.2. Scalar conservation law

which is of course as relevant as formula (6.2.6) since J;v}/,;/, = 87521?111/2 + O(At). While
the term v, , , in (6.2.11) is computed as an average as in the explicit scheme, for the time
derivative 3t11;7j11/2 we use the Cauchy-Kovalevskaya procedure at time t"*! and we find

n+l _ (. n 2 n+1
O 1ys = —(a41/2) 0utT -

Approximating the space derivative at first-order, that is to say

un—i—l _ un—i—l
avn—l-l _ _(an )2 j+1 J
Y4172 — j+1/2 —Ax )
we finally obtain
n 2
o _ U;l+1 + U;l _ (aj+1/2) At (un+1 . unJrl) (6 2 12)
J+1/2 92 IAT j+1 j i

As a consequence, in order to be able to find "', we need to solve the linear system A? = ﬁ,
where we define

u’f“ " 2§tx n n
uj ™! u2_2AJ](U3 —vy)
X = u”:H and R — A (6.2.13)
J: U;L — E(U?Jrl — ’U;lfl)
uyr At
uhy — AL (’U?/H—l — Uhr_1)
and
C1 d1 0 0
bg Co d2 0 0
0 .o .0 ... 0
A= - 0 bj Cj dj 0 NN (6.2.14)
0 0 - ' ' 0
0O ... ... 0 .o
0 0 bu cu
where
L AR A2 . w2 A
b= (@) 55 6= 1+ 530" + (@) di= —(0fp) 555

Vi =1,..., M and M the number of cells. We observe that boundary conditions are needed
in order to be able to solve the system and that the values of a are always computed at time ¢"
in order to simplify the scheme. Furthermore, matrix A (6.2.14) is clearly diagonally dominant,
so that system AX = R is well-posed.
For the sake of completeness, we specify that the star values for v can be found in a similar
way and read
. uig +uy At
Ujrr/2 = 5 3 Ax<

ot — o). (6.2.15)
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Chapter 6. 2nd-order IMEX scheme for systems of balance laws

6.2.3 Truncation error and order of accuracy of the implicit scheme

In this section, we prove that the implicit scheme is indeed second order accurate. As far
as the explicit method is concerned, the reader can refer to the work of Duboc et al. [21]. Here,
the Taylor expansions are always performed around the point (z;,¢") and, thus, sometimes
we neglect its reference for the sake of conciseness in the notations.

Theorem 14. The semi-implicit numerical scheme (6.2.10) with fluxes (6.2.12)-(6.2.15) is second-
order accurate in both space and time under conditions

12+ 1 > @12 = 41 5
5 = f'(u)*+O(Ax) and N = 0,(f'(u)?) + O(Ax). (6.2.16)

Proof. Let us first recall that the Cauchy-Kowalewski procedure for (6.2.1) gives Qyu = — f'(u)0,u
and therefore

Ofu = (f'(u))® Pu + 2" ()0, (f'(u)) Oyu.

Then, the time increments satisfy the following relation

utt — At
J 7 _ =292 2
A7 Oyu + 5 O;u + O(At?)
At n
= O+ S (/) B2+ 2f (), ('(w) | + O(AF2),
J

Regarding the space increments, given a function ¢, it is useful and easy to prove that

a; +Oéj+1 2a Az 2 A$2 3 3
e el = = A
Ay Ax+8xoa+ 5 O;a + 5 doa+ O(Az?),
ajto; 20 Az 2% 3
Ao As O+ 5 0 5 doa+ O(Az?),
Oé]-l-lA'r a; :8104+—x8§a+(9(A332),
and
G Y g BT 1 oA
Ax ’ *

Next, we know that the numerical flux reads as in (6.2.12). Then, observing that

n+1 n At2 2 3 n Atz 2 3
wi™ = ui+Atdu + Tﬁtu + O(At?) = uj — At@xv—i—T@tu + O(A?°),

J
we can write

Vi Fop o (afy ) A

”;H/z = 5 - AL (“?111 - U?H)
Vi ol (a7 )AL o (@ p)?AE n
and
X v i (af 2)2At n (a% 2)2At2 n n
Uiy = 5 i _ 2&95 (uf —uf_ J Q/Aac (0,0 — Ouv)_ ) +O(AL?).



6.2. Scalar conservation law

Consequently, we get

* __ ¥ n n __ n n
Uit ~ V12 U ) — (0 Hufy)

Az 2Ax
At n 2/,n n n 2/ n n
~ gag7 (@ (G =) = (@12)° () =)+
At? . § )
+ N ((aj+1/2) (On ’UJ+1 axvj) - (aj_1/2)2<ax —0 v] 1))+O(At2),
and thus
Uiz ~ Ve At Az 5 Az 5
j+1/ ~ j—1/ :8361)—%(( ]+1/2) (8 u +—82 )_( a" 1/2) (8 u ——62 ))

+2AA_t:c(< 010 (O20]) = (a1 2)*(020])) + O(Aa?) + O(Ar?)

At n (aj+1/2> - (aj—1/2>2 (a?+1/2)2 + (a’?—l/2)2
=05 = (0 Az 2 )
+ O(AZ?) + O(AP).

+ 02l

Lastly, we find

T Ban T B g g, ) + O(A) + O(AR)
At Az ST
At / / /
S (7)) Ot 25 (), (1) Dy
At a§+1/2 + %2'—1/2 9 a32'+1/2 - %2'—1/2
2 2 Ozu + Ax Octu|

and, therefore, in order to obtain a second-order scheme, it is enough to impose condition
(6.2.16).

At this stage, let us do the analogous for the evolution equation for v. When considering
the scalar equation, it is not strictly necessary to prove that also the evolution equation for v is
approximated at second order of accuracy as, at the end of the day, we only need the values of
u at time "', However, when expanding this numerical scheme to a system of conservation
laws, it will be necessary to consider the "equivalent values of v" at time " (in the shallow
water system, it will correspond to II, the linearization of the pressure term).

The time increments for v satisfy the following relation

ot

N A7 J :atv+78tv+O(At)z&straj?@varO(At ).

Regarding the numerical fluxes, we have

n n
uj+1 + u] At n+1 n+1

Uji1/o = 9 " 9Ax (Vi — o)
and, using expansions in time and relation d;v = —a?0,u, we get
i uf o +uy o At o A " n
Ujy1/2 = ’ 7 t - N (Vi —vf) + E(( J+1>28 U — j)2a$uj>+O(At3)'

215



Chapter 6. 2nd-order IMEX scheme for systems of balance laws

Consequently, we find

u —uk ul o+ ul — (uf +ul)) At n n_,m
J+1/2A$ i=1/2 _ Yl J 5 J it U AL (vF ) —vf — (V] — i)+
At2 n n n n
+ m((aﬁnzaxu?ﬂ — (a7)*0puj — ((a})*0pu} — (af_1)?0pu_1)) + O(Az®) + O(AF?)
- At Ax 2 Az 2
AtQ A A
+ m(ax(a%?xu) + gﬁi(ﬁ@xu) _ (ax(&anU) _ ;ag((ﬂaxu))) + O(AxQ) + O(AtQ)
At

= O,u — 7851) + O(Az?) + O(AP?).

Finally, we get

1)7.1+1 — " u* — u*fi At At

]A—tj +a JH/QA:C iT12 gt a?78§v +a2(Opu — 73325@) + O(AR) + O(Az?)
= 0w + a;0,u + O(A?) + O(Az?)

which concludes our proof. 0

Thus, we proved that the implicit scheme is second-order accurate as well. However, let
us observe that, in order to be able prove the right order of accuracy for the second equation,
we do not need to satisfy a particular definition for a as long as the value we use is coherent
in all the equations. Indeed, we could decide to use either

ol + (af )?0,ul =0 Vj
with a defined at each cell or, for instance,

8{[);‘1 + (CL?+1/2)2(9$U? - 0 VJ

where a is computed at each interface.

6.2.4 Study of the stability of the implicit scheme applied to the linear
advection equation

Let us consider the Linear Advection Equation (LAE) d,u+ a0, u = 0 with constant «. The
objective of this section is to show that, in the case of the LAE, the implicit numerical scheme
is unconditionally stable.

Since f(u) = v = au, the updating equation reads

n+l _  n * — ¥
Yi U Yy T Yoy
+ =0
At Ax
and in particular
5 [
n+l M ( nt+l n+1 n+ly _ ,n__ F/m _ n
u; 5 (Wit — 2w+ uiT) = uj = (g —uj)

t
where we have set ;1 = OzA—. Next, we consider the Von Neumann method to analyze the

x
stability of the scheme, see [27]. We introduce a test function

u’; = Anelf
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6.3. Shallow water equations

where A is the amplitude, 0 the angle and [ the imaginary unit. As such, the numerical scheme
is stable if and only if || A|| < 1. Hence, we write
2

AL 105 (1 _ %(ew 94 6—19)> _ Anelbi <1 _ g(em _ 6—19))

By simplifying A"e!% and recalling that e/’ = cos § + I sin 6, we get

2

A(l - %(COSQ + I'sinf — 2+ cosf — Isin9)> =1- %(COS@ + I'sinf — cos@ + Isin )
and thus
A(l + (1 — COSQ)) =1— plsind.
Therefore, || A||* < 1 if and only if

1— plsing 2

Hl—l—/ﬂ(l — cosf)

and equivalently,
1+ p?sin?6 <1
14 p*(1 —cos€)? 4 2u%(1 —cos @) —

and thus we get
1+ p?sin?0 < 1+ p*(1 — cos6)? 4 2u%(1 — cos 6)

as the denominator is always positive and the norm of a complex number is given by ||z|| =
2?2+ y? if z = x + Iy. Finally, we find that

1+ p?sin?0 < 1+ p*(1 — cos0)? + 2u*(1 — cos 6)
which is true if and only if
1 —cos?0 < 2(1 —cos ) + p?(1 — cos 6)?
or, equivalently,
—1 —cos?f +2cosf) = —(1 — cos)? < p?(1 — cos 6)?,

which is always true. Thus, we proved that ||A|| < 1 always and, as such, that the scheme is
unconditionally stable.

6.3 Shallow water equations and numerical method

We finally arrived at the heart of this work, which is the numerical approximation of an
hyperbolic system of partial differential equations. In particular, the mathematical model we
are going to consider is the well-known shallow water system. It is composed of the continuity
and momentum equations, and it reads

2 6.3.1
O(hu) + 9, (hu* + %) = —gh0,z (63

where h(z,t) is the total depth of water column, u(z,t) is the averaged velocity and z(x)
2

is the bed level. Then, the pressure is given by p = 97 where g stays for the gravitational
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acceleration. Observe that the zero-velocity stationary solution is called "lake at rest" solution
and reads
u =0, h-+ z= constant.

For more details about this system, see for instance [28, 1, 5, 9, 22].

As mentioned in the introduction, we are particularly interested in the Lagrange-projection
approach, which can lead to the design of efficient implicit-explicit numerical schemes [14, 9,
25]. The Lagrange-projection decomposition consists in splitting of the mathematical model
into the acoustic and transport systems. In the case of the shallow-water system, they are
respectively given by

(6.3.2)
Oy (hu) + hudyu + Opp = —gh0,.2,
and
O(hu) + ud,(hu) = 0.
The latter system equivalently reads
0,X +udX =0, (6.3.3)

with X = h and X = hu. While the transport system is numerically solved by simply using
a standard time-explicit upwind discretization, for the acoustic system we extend the scheme
described in section 6.2.1-6.2.2 when considering the scalar equation. In such a way, we will
have the possibility to find the approximate solution both through an explicit scheme and an
implicit-explicit one.

Lagrangian coordinates. The acoustic-transport splitting can also be interpreted as a Lagrange-
projection decomposition. This means that you have to first solve the system formulated in
Lagrangian coordinates and then project the solution into Eulerian coordinates. In order to be
able to do this, we first define the fluid particle in the position £ and the characteristic curves

ox
E(& t) = u('r(§7 t)’ t)
2(§,0) =¢

which define the trajectory : ¢ — x(, 1), of £ as the time goes on. Therefore, any function
: (x,t) = ¢(x,t) in Eulerian coordinates can be written in Lagrangian coordinates,

P&, t) = p(x(E,1),1).
Then, we introduce the volume ratio L(&, t) which is defined such that

Ox
23

(6.3.4)

L(§,t) = -(&:t) (6.3.5)

and which satisfies oL
E(& t) = af'LL(x(g’ t): t)
L(£,0) = 1.

Since it has already been described in different works [9, 25, 11], no additional details are given
here and we directly present the shallow water equations (6.3.1) in Lagrangian coordinates,

which reads B

(6.3.6)

(6.3.7)
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6.3. Shallow water equations

At this stage, since we aim to define its implicit approximation, it is convenient to reformulate
this system. Hence, we note that LA does not depend on time and thus we have

_ _ h
(LR)(&,1) = (LR)(€.0) = h(,0) = hy and  L(E.t) = =
h(€,1)
Then, exploiting this relation, system (6.3.7) also reads
8th0 = 0

and, introducing the variable 7 = 1/h, we finally get

8th0 - O

From now on, we neglect the bar over the unknowns for the sake of simplicity. Hence, we
rewrite the last system as

atho - O
Or(hoT) — Ocu =10 (6.3.8)
Or(hou) + Oep = —gagz.

Lastly, following the Suliciu relaxation approach [26], we introduce the relaxation parameter
A and the new variable II such that at least formally

lim IT = p.

A—00
IT can be interpreted as a linearization of the pressure p, whose evolution equation reads
di(hop) + h*c*deu = 0 and justifies the following system
Otho =0
O(hoT) — Ocu =0
Or(hou) + O¢ll = —gﬁgz
Oi(holl) + a*d¢u = A(p(7) — II).

(6.3.9)

Here, a® is a constant which linearizes h?c? and that should be taken as a® > h%c? according
to the sub-characteristic condition. We also observe that the source term in the evolution
equation for II can be formally neglected by simply assuming II = p at initial time.

At this stage, we look for both the explicit and implicit approximations of the Lagrangian
system (6.3.9). In the following section 6.3.1, we start by describing the numerical method
for the Lagrangian system without topography contributions. Considerations to include the
source term into the numerical scheme are given in section 6.3.2. Then, in section 6.3.4, we
briefly explain how to take into account the projection step.

6.3.1 Lagrangian step with no source term

The aim of this section is to extend the implicit second-order scheme (that we have seen
in section 6.2) to the acoustic system (6.3.9) with no source term. System (6.3.9) can also be
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reformulated in a more compact way as 9,Q + 9¢F = 0, with Q = (ho, hoT, hou, hoIl)" and
the numerical flux given by F = (0, —u, I, a®u)’. Along the lines of section 6.2, let us find the
numerical approximation for the numerical fluxes. Assuming that

1 tn+1
F;+1/2%Kt /tn F({j41/2,0)d0, (6.3.10)
its Taylor expansion with respect to time and at 2nd-order of accuracy reads either
. o At " N
Fi 1 =F( 1"+ 78tF(§j+%,t ) + O(A?), (6.3.11)

if the scheme is explicit, or
* n At n+1 2
Fj+% = F(é’H%,t )+ 78,5F(5j+%,t )+ O(At?) (6.3.12)
for an implicit method. Thus, we only need to evaluate F(¢; 41, t"), OF(E; +1 t") and
OF(& | 1 t"*t1). For F(§,, 1 ™), we simply approximate it by averaging the values in the ad-

J J
jacent cells and we state

n Fﬂ+1 + Fj n n

FJ.JF% = % where F} = F(Q7).
Then, for the second term O,F(¢; , 1 ™), the idea is to use the Cauchy-Kovalevskaya procedure
and to write the time derivative of the flux in term of spatial derivatives of another quantity

¥, which is then approximated at first-order by

n 1 n n
Oy j+%%E(¢j+1 — V7). (6.3.13)

For instance, to compute J;u(;, 1, t™) we just note that

1 1
0 0
and thus, . .
OutlGy 1) = =gy Oell(Gsy, )~ = e (i — 0.
Lastly, u;k ! and H;f i read either
* u?‘H + U? At n n
) = — 1", — 11"
it 2 2ho,J'Jrl/zAf( s~ 1) (63.15)
oo FIE () (u?yy —u?)
Jjts 2 2h0,j+1/2A§ J+1 J
if the scheme is explicit, or
« ujiq +uf At nt1— nl—
L _ - 117
uj"'% 2 2h0’j+1/2A€( g+t J >7
. 4 1 (a@+l)2At (6.3.16)
I, = Jj+1 J JT3 ( nt+l— un-l—l—)
Itz 2 2hg ji12A8 " T ! ’

n n
h ; + hg 1

for an implicit approximation. We also define hg ;4,5 = and

at 1 =max(hjc}, b}, c}. ). As for the scalar equation, in the case of the implicit scheme,

n
i+
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6.3. Shallow water equations

we need to solve a linear system in order to be able to find the unknowns at time ¢"™!~. In
particular, we observe that in the updating formula for u, only u has to be computed at time
t"*1=, and similarly for II. Hence, we only need to solve the two following separated system

= = =
M, X, = R, and My X = Ry, where

n At n
h0,1U1 - E(HQ - Ho)
ug—i—l— 0,2Ugy — E( 3 1)
Xz = unj:q— ; -E)u = At : (6.3.17)
, ho 5 — 5ag M = 1)
uir At 5
ho MUps E(H%H - Hanl)
and
C1 dl 0 e e o 0
b2 (6)) d2 0 [ 0
o . . .0 ... 0
Mu — ce 0 bj Cj dj 0 cee (6.3.18)
0 0 - . . 0
0 A 0
0 0 bv cum
with
n 2 At? At? (a?+1/2)2 (a?71/2)2)
b] = —<a‘,1/2) aOAOL Cj = hovj + ( - >
J 2A&2hg i1 2A&82\ hojy1)2 hoj-1/2
and

At?
_ n 2
dj = _(aj+1/2) m

Similarly, for IT we have

I (/) VAN
ho 11T — éAé (uy — ug)
- . (a™)2At . N
H’/;z-i-l— hO,QHQ - éAg (U3 - ul)
> : — :
XH = Hn+1— 5 RH = (a")QAt (6319)
J ho TI7 — J (un . )
0,545 2A§ j+1 j—1
nglf :
. (a™)2At . .
ho a1y — QTS(UMH - uM—l)
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Chapter 6. 2nd-order IMEX scheme for systems of balance laws

and .
Godo 0
by ¢ dy O 0
0 . ~ . Q .. 0
0 . ) 0
e. ... 0 e
0 ... ... ... 0 by c¢u
where
5 At2 a’)2At? 1 1
= —(a?‘)Qz— ¢; = hoj + ( ]) 2 ( )
20E2hg j-1/2 208 \hojti2 hoj-1/2
and AP
- t
d:, = —(a™ 2—.
J ( ]) 2A£2h0 4172

Once again, let us observe that matrlces M, and MH are dlagonally dominant if oy > 0 for

all 7, so that the two systems M, X = R and MHXH = RH are well-posed. Finally, system
(6.3.9) is approximated as follows,

( h n+l— __ h n At * *
( 07—)]‘ - ( 07—)]’ + A_f(uj+% - uj;%)
n+1— n At * *
(hOU)j +1- _ (h0u>j A_f( j+% — Hj—%) (6321)
At
n+l— __ n __ n\2 ="/ * o
\(hUH)j = (holl)} — (a) A (W1 —uj_1),
while, as far as system (6.3.7) is concerned, we write
n+l—pn+l— _ tnpn
B = 10 At (6.3.22)
n+1— n+l— _ 1tn n * * .
where we have set
L =1Ly At u * ith L7 =1 6.3.23

6.3.2 Lagrangian step with source term

In this section, we explain how to include the geometric source term in the numerical
scheme at second-order of accuracy and, at the same time, how to preserve the zero-velocity
stationary solutions of the system. Indeed, we are interested in the well-balanced property of
the scheme.

In order to include the source term in the numerical scheme, we observe that now formula
(6.3.14) is replaced by

1
3tu = —h—o(agﬂ + %052)
and, thus, we have to change the numerical flux u;‘ .1 accordingly. Considering that
* n A n
uj+%:u<€J+17t) 28tu(53+ 7t+1 )_
At . ; (6.3.24)
= (€1, ") — (af (&40, ") + {;agz}(gﬁl 4 ))
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6.3. Shallow water equations

we simply impose

h +h% 20 — 20
Oe } =gl IR 6.3.25
{7' - J+1/2 —J 2 A& ( )

where we observe that, while the derivative 6§Hj 11 is computed either at time ¢" or at time

t"*1= depending on the type of numerical scheme (explicit or implicit), we keep the source

term at time t" in order to simplify the scheme. Thus, we state
* u?—H + u;l At # # At {g }n

= — 7, —17) — ——< =0z 6.3.26
it+3 2 2h07j+1/2A§( A ! ) 2h07j+1/2 ¢ J+1/2 ( )

with either # = nor# =n+ 1—.
Next, let us see how to approximate the source term in the evolution equation for u. Inte-
grating in the volume [t", t" "] X [§;_1/2, 41 /2], we define the average value

9 6“1/2 99 0)dydo
e

and, using the mid-point rule, we set

(o} = 5({foeh, , + {50} )

with the interface values of the source term given by (6.3.25). Hence, we discretize system
(6.3.9) as follows,

u

( — A * *
(hot)' = (hoT)} + Ag‘( il T 1)
Al .
(o)™~ = (how)} — (I, ~ H;“.;)—At{gﬁgz}j (6.3.27)
n+1— At * *
()31 = (halD)} = () S0,y =)

with u; L1 and H;f L1 defined as in (6.3.26) and (6.3.16) respectively. Finally, the Lagrangian
2

2
system (6.3.7) with source term reads

Oy (Lhu) + O¢p = —ghdz

and it is approximated as
n+l—pnt1— npn
{Lj+ W = L

n+1— n+l— _ 1n n A * *

) At{ghe=) (6.3.28)

with u;‘ N and H;’f 1 defined as in (6.3.26) and (6.3.16) respectively.
2

1
2

6.3.3 Properties of the Lagrangian system’s numerical approximation

This section is devoted to prove both the well-balanced property and the order of accuracy
of the proposed numerical approximation.

Theorem 15. Both the explicit and implicit approximation of the Lagrangian system (6.3.28) are
second-order accurate in both space and time under conditions

(a2, 1)* = (a_ )2

]“!‘5
A{E h\/(‘)h +O AZL' 6.3.29
(@ P (@2 (6.3.29)
772 I3 ((h/Onp)?)t + O(Ax).

2
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Chapter 6. 2nd-order IMEX scheme for systems of balance laws

Proof. We directly begin with proof for the implicit scheme as the demonstration for the ex-
plicit approximation is part of it. Here, the Taylor expansions are always performed around
the point (:L’j, t") and, for this reason, sometimes we neglect its reference for the sake of con-
ciseness in the notations. Starting from equation 0;(ho7) — J¢u = 0 and then proceeding with
O(hou) + Ocp = —gﬁgz, we prove that the numerical approximation we described is indeed

second order accurate. The scheme for the former equation reads

(hoT)?H_ — (hoT)} _ Ujiyp = Wiy
At A€

=0,

where the time increments for hy7 give

(hor)I*1™ — (hoT)?
At

At
= at(h(ﬂ') + 78252(]107') + O(AtQ)

with
1 1
atz(hg’/') = (9t85u = 85(h—08t(h0u)> = —6& (h—o(ﬁgp + gaEZ)> =

_ _85<hi0) (Fep + gagz) - hio(agp - gagz + g0 <%>85z>

Whereas u} /2 is given by

ut — Ui Uy _ At (- — Hn+1 ) — ﬁ( Wy + I 2z — 2 >
T 2 2h’0,j+1/2A€ i+l 2 2 ho’j+1/2A€
— Iy — 11 + A(O T — O 1T
2 2ho,j+1/2A§( o AUGIT = G+
A

Aty hY+hl 2 — 25
aQHn aZHn At3 . _( J Jj+1 ~j+1 J ) .

Recalling the space increments relations seen in section (6.2.3) and that i ;. » = 5 )

we get

Wiprs = Uy At 1 1
j+y2 T Ti-1/2 Deu — { < + ) (8219 + g0:h0cz + gh8§z>+

Ag 2 ho J+1/2 hO,jfl/Z
1 1 1
+ — — Oep + ghdez ) ¢ + O(AE?) + O(AL?
Af(hogﬂ/Q hOj—l/Q)( PR )} ( 5) ( )
At

— Deu— 7{ - (080 + g0ehez + ghofz) + 0, (hio) (0 + ghiez) } + O(A) + O(AP)

In order to conclude the first part of the proof, we observe that

(ho); " = (hoT)]  Wjiapp = Wi app At g
AL — A§ 8 (h(ﬂ') - — <85( >(85p + ;852>

= (3529 + 208 + gag( )0e2)) = Oeu+ At{hi (020 + gehde= + gho?=)

+ 0 (h—o) (afp + gh(()gz) } T O(AR) + O(AE?) =
= Oi(hoT) — Ogu + O(A?) + O(AE?)

which proves that the evolution equation for hy7 is approximated at second-order of accuracy
without particular requirements on the definition of a.
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6.3. Shallow water equations

Subsequently, we consider equation 0;(hou) + Ocp = —gﬁgz and recall its numerical ap-
T

proximation,

(hou)?+1* — (hou):;l + H;+1/2 H;k 1/2 {ga Z}TL
At A& <y
From the time increments of u, we find
(hou)T*'™ — (hou)?
At

At

where in particular

02 (hou) = — <a§p + agz) = —0,0ep = —a§<ghh2 agu) - ag(gw)agu gW O2u

ho
g ghhg .
as we note that at(—ﬁgz) = 0i(ghL0,z) = Oy(—— h 0,2) = 0i(gho0,z) = 0. Then, we consider
the numerical flux H 1/20
n n n QA
o UL A IE (aj, )" At (Wl — ) =
J+1/2 = 92 2h j 11206 j+1 J
e, + 1 (el 1)*At
S 2 S R no ™ 4+ A", — O
2 2h07]’+1/2A§ (uj+1 uj + ( tu]+1 tu] >+
At? . .
T(atzuj+1 drul) + O(At?))

which leads to the following space increments

H;+1/2 - H}ll/z — 0l — At(

(G?Jr%)z (a?_%)z
A§ >8gu

A§<h03+1/2 hoj—1/2
1@ ) (a.)?
(2 +

i=s

>a§u> + O(A) + O(AL?).

hojti2 hoj+iy2

Finally, from the source term we find
_{gagz}n = —ghOez + O(Az?),
T J
which allows us to write

(hou)n+1 — (hou)} + Iy — H;_m { 852} _ gy 2 (85<ghh2>8§u gtha£ )

Al A¢ o
At (a;‘l_f_%)z (ar‘l_l)z (a?+1)2 (a@_l)Q

1
+ Ol — — (—— — 12 ) Oeu+ + 2 ) 9u )+
¢ 2 <A§<h0,j+1/2 ho,j1/2> <h‘0]+1/2 ho,j+1/2> ¢ )
+ ghdgz + O(At?) + O(Ax?).

If a;L 1 satisfies condition (6.3.29) V7, then it follows
2

(how)] ™'~ = (how)} T4y =Ty g y»
Al + Af * {Faﬁz}j N

and thus, we have proved that the second-order of accuracy is also reached when considering
the evolution equation for w. [
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Chapter 6. 2nd-order IMEX scheme for systems of balance laws

Remark 10. If we simply take a constant such that a = max (((h\/Onp)*)?), both the implicit

and explicit schemes are only first-order accurate.

Theorem 16. The implicit second-order approximation of the Lagrangian system (6.3.28) pre-
serves the "lake at rest" stationary solution.

Proof. Assuming to be under the "lake at rest" condition, that is to say u} = 0 and A} + z; =
constant for all j, we want to prove that (Lh)"*'™ = (Lh)? = h?, (Lhu)!*'™ = (Lhu)? =
(hu)} = 0 and u* 1 = = 0 V. In particular, the latter is also needed in order to automatically

have a well-balanced transport step. First, we observe that
n n n n n n n g n n
5, =1} = 2(<h3+1> (hj> ) = 2(h + h]+1)(h]+1 hj) = _§(hj + hj+1)(2j+1 - zj)

and consequently

- n A * * 8 z n
ho ]Un+1 h(),juj Af (H 1 — H é) At{g S } )
Ap o (a 1)?At (a" ,)?At
= o+ e (G ) - S o)),
AE\2hg j11/2A8 2hg j—1/2A¢
Therefore, it is easy to see that u}" i u? = 0Vj. Now, let us consider the numerical flux
u;*.Jrl Since we know that v} = u]Jr1 0, we write
2
ut = — At (Hn+1f Hn+17) . ﬁgh? + h;‘L+1 Zj+1 — Zj
it32 2hg j+1/2A§ i I 2 2 hoj1/2A8
h + h”
_ Hn—H— HT'L"Fl— . J Jj+1 P N )
2h0 ]+1/2A§ ( 7+1 J g 9 ( j+1 ])
— <Hn+1f HnJrlf —g (h;L+1)2 - (h’?)2>
2h0]+1 /QAg i+ g 2
= e L )
2hoj+1/2A§ (I 05" — (15, 1)
where we used the relation h;‘ T2 = h;‘ + 2;. Then, we easily find
At At At
h .Hfb+1— —(q" 2=" HTL+1— . Hn+1— . HTL+1— Hnjl— —
0,545 ( j) A§<2h07]’+1/2A€( 7+1 ) QhDJ 1/2A£( 7j—1 ))
At At At
= ho 1" — (") —(—-—(I", - II") — ——— — 107
0,144 (aj) A£(2h01j+1/2A€( j+1 ]) 2h0] 1/2A£( ))7
from which follows that H?H_ = H;l V4, which concludes our proof.

6.3.4 Projection step

Let us now briefly present the numerical approximation of the projection step. Since it has
already been explained in [25], here we refer to it and we only give few details. The objective
being the projection of the Lagrangian variables Lh, Lhu into the Eulerian ones h, hu, we first
introduce the following identity

/& L€ DX (€, )de = /(;
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6.4. A posteriori limiting approach

and, defining €j+1/2 such that x(éj+1/2, ") = 2.1/ and x(éj+1/2, ) = éj+1/2 for all j, we
write

1 T 1 1 x(g 1,t")
X — —/ " X(z, " Nde = —/ e X(x, ") dx
J Ax 1 AI x(éj,l 7tn+1)

-2

V]

(6.3.30)

i
B é/g DL T X () dg

[N

where the variable X denotes h and hu. Then, we split the last integral into three parts, namely

nil _ L /£j5 ntl- n+1-—
Xt [ e X e e
-2
1[5+ 1[5+
+ 5 L") X (&7 7)dE + — / L") X (&, "17)dg,
Az 1 Az &1

) (6.3.31)
where we assume §;/2 given by

Tip1ye = 0(Ejraya, ") = 2(Ejpayo, t7) + AtOT(Ejayo, t") = Ejrage + AtuGy jo-

In order to be able to approximate these integrals at second-order of accuracy, we also need
to reconstruct the Lagrangian variables (LX),

(LX)H(€) = (LX)JH + A (6= ) (6.3.32)

where we use the ENO or MINMOD slope for A1 = A= (LX)~ (LX) (LX) 7).
Then, exploiting the mid-point rule, from (6.3.31) we get

At £'+l + é'+l 5;1 + A-,l
n+l— _ n+1- n+1 JT3 JT3\ % nt+l— (2173 )
XJHT = (LX) = (g (LX) (22 ) - (LX) (22,

(6.3.33)
with the upwind definition
(LX) (&) if u' , >0
LX) () = ’ 73 6.3.34
( )J—% (€) (LX)777(6) if wi, <0. ( )
2

6.4 A posteriorilimiting approach

The objective of this section is to explain how to avoid the appearance of the well-known
spurious oscillations in presence of discontinuities when employing high (in our specific case,
second) order schemes. Plenty of strategies have been proposed for this purpose and we simply
refer to [27] and the references therein. However, the great majority of these approaches lead
to the construction of nonlinear schemes. Since we are working with an implicit scheme
for the Lagrangian system, this would imply the rise of the computational cost as systems
M, X, = R, and My Xy = Ry would not be linear anymore. Moreover, the reason why we
would like to employ an implicit-explicit scheme in a subsonic regime is to fasten the numerical
computations by using greater time steps. Hence, to increase the computational cost in order
to remove the oscillations would indeed be a contradiction. A partial solution to this problem
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Chapter 6. 2nd-order IMEX scheme for systems of balance laws

could be the employ of a so-called a posteriori criterion, which would reveal the eventual
presence of oscillations after having computed the second-order solution. An example of such
a strategy is the MOOD (Multi-dimensional Optimal Order Detection) method, presented for
the first time by Clain et al. in [17] and then applied also to the shallow water system in [18].
Afterwards, this strategy has been extended to an implicit-explicit scheme, see the work of
Dimarco et al. [20]. In that paper, a posteriori TVD (Total Variation Diminishing) method
has been described for a second order implicit-explicit scheme applied to the compressible
isentropic Euler system in the case of low-Mach number flows. We highlight that the use of
this approach leads to the loss of the second-order of accuracy. Indeed, the idea is composed
of the following three steps:

1. Compute the candidate solution using the second-order implicit-explicit numerical method;

2. In order to detect the presence of spurious oscillations, check if the candidate solution
satisfies a criterion related to the TVD property;

3. If not, substitute the second-order solution with another one computed using a TVD
numerical scheme, which in this case would be given by a convex combination of a
first-order TVD method and the second-order scheme.

Here we follow the same approach and, as such, we have to understand what is the criterion
the numerical solution should satisfy in order to be sure that there are no oscillations in the
outputs, and, in the negative case, which kind of numerical scheme we should employ to
compute a robust solution with no spurious oscillations.

For the latter issue, if oscillations are detected in the numerical outputs at the second step,
we substitute the second-order Lagrangian solution Q""!'~ = (771~ ¢+~ T["+1-)! with
another one, given by a convex combination of Q"' ~ and a first-order TVD solution which we
denote by Q" \-". Qi t is found using an implicit first-order Godunov-type scheme applied
to the acoustic system, for which we refer to [14]. The numerical fluxes of the scheme are
found using an Approximate Riemann Solver (ARS), defined by solving the Riemann problem
associated with the relaxation system 6.3.9. We highlight that this first-order method satisfies
the well-balanced property as well. Finally, the new Lagrangian solution would be given by

T =0Q" T + (1 - 0)QhEy (6.4.1)
with 6 € [0, 1] a constant parameter which has to be chosen. Note that, if § = 1, we recover
the second-order method, while, if § = 0, Q’Eﬁ_ reduces itself to QZ}%‘. Thus, it is clear that
the closer 6 is to 0, the more diffusive the solution is but the less the oscillations associated
to the discontinuities are. Following [20], we take § = /2 — 1. Then, the transport step is
solved as for the second-order scheme, see section 6.3.4. Indeed, we already use a ENO or
Minmod slope when defining the reconstructed states thus, nothing more has to be done. Let
us highlight that the new implicit-explicit method will still be well-balanced.

Then, in the following, we describe which kind of criterion is employed in the second step
of the algorithm.

6.4.1 Spurious oscillations’ detection criteria

Here we detail the different criteria we could use to detect a solution with spurious oscil-
lations.

1. As a first option and following [20], we simply ask for the Riemann invariants asso-
ciated to the shallow water systems to satisfy a Discrete Maximum Principle (DMP).
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6.4. A posteriori limiting approach

When working with a scalar equation, we know that the unknown satisfies the maxi-
mum discrete principle; however this is not true when moving to a system of equations.
On the other hand, we are aware that each Riemann invariant of the system satisfies, in
a certain sense, a kind of scalar equation. In particular, the eigenvalues of the shallow
water system are given by A\, = u = ¢, while the Riemann invariants read 1), = u =+ 2c.
Hence, in the homogeneous case, few algebraic computations show that the evolution
equations associated with the Riemann invariants 1), can be written as follows,

Oh+ + A1 0phy =0
Oh— + A_0ph_ = 0.

Thus, after having computed the candidate numerical solution U1 = (A" (hu)"t1)t,
we check if the following criterion is satisfied:

maXW“I <r§1ﬂél><lwi,jl and gl]gﬁwﬁﬂfl Sr?]éflwﬁ,jl- (6.4.2)

. As second option, we refer to [18] and we consider the usual discrete maximum principle
but only applied to the free surface H = h + z. Namely, we check if

min( i— 17Hn szrl)SHZH-lSmaX( i— 17Hn szrl) Vi:1,...,M
or alternatively, we use its relaxation version
min(H]",, H', H],) — e < H'"' <max(H,,H", H"\)+¢ Yi=1,...,M

where we take e = 107'2. Such a criterion succeeds in removing the oscillations but it is
actually activated even when it would not be necessary, as it considers as oscillations the
smooth extrema of the solution as well. Thus, additional criteria are required in order
to obtain a more accurate solution. As a consequence, the following conditions on the

second-order derivative of the free surface /1 are checked as well.

First of all, it is useful to define 92, H; = max(92H",,02H,02H,,) and 02, H; =

min(9?H |, 0?H", 0> H] +1) where we approximate the second-order derivative in space
) HZ"+l 2H + H"

as 0. H'= . Then, let us enumerate the additional conditions.

Ax?
« Oscillations’ detection: 02 _H;0%. H; > —

max min

H’ ‘ mmH’i’) Sg?

« Plateau’s detection: max(|02,,

« Smoothness’ detection:

’ maxH‘ | min 2|)
‘ maxH‘ ’ 'min l‘)

If none of this criteria is fulfilled, we use the solution given by the convex combination
of the second and first order scheme. Let us observe that, since our numerical scheme
is implicit-explicit, it is sufficient to find a troubled cell to modify the solution in all
the domain. If we would have used an explicit scheme, it could have been possible to
modify the solution only in the critical cell, as it is done for instance in [18]. Thus, we
are including additional diffusion to the numerical scheme.

min(

>1/2 —e.
max( z1/2-¢

. Lastly, another idea could be to only accept the second-order solutions which belong to
the so-called invariant region. Referring to [23], we define the invariant region as

Y= {(h,hu)t | ¢ <y? and P > YT}

However this last option reveals itself to be the most diffusive among the criteria we
saw before.
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Chapter 6. 2nd-order IMEX scheme for systems of balance laws

For the numerical simulations (section 6.5), we will always use the second criterion, as the
first one is the less restrictive and does not always remove the spurious oscillations, while the
third criterion makes the solution even more diffusive.

Remark 11. In order to have a less diffusive numerical solution, another option is to choose a
non constant in space 0 in formula (6.4.1). Namely, when considering the second criterion, if it is
not satisfied in the cell j, we impose 0; = V2 — 1 otherwise we use 0; = 0.75. Observe that, if
the criterion is satisfied, we do not use §; = 1 but a smaller value in order to be sure to not have
oscillations in the outputs. Consequently, when we have to define the new solution Q' 1~ instead
of directly use formula (6.4.1), we first define the new numerical flux given by

Fiy = 0i11/0F512(Q) + (1 — 05412)FE5,(Q)

and similarly for the source term

Ty = 0j11/28i51/2(Q) + (1 — 0,11/2)155(Q),

with 9j+1/2 = min(f},0;11). Note that F; 15, Sj11/2 are second-order accurate while F fl%,
siE +1/2 are only first-order accurate. Then, Q}71™ is found by exploiting the usual finite volume
formula, namely
il o+ 1— At im im
Q],zzlm = Qj+1 - Af (E7+1/2 FL 1/2) + AtSJL .

Unless otherwise specified, the numerical results presented in section 6.5 are obtained using 0
constant in space.

6.5 Numerical simulations

In this section we propose some numerical tests and outputs to validate the numerical
schemes. We mainly compare four numerical methods:

« "LP-HO": the second-order accurate implicit-explicit Lagrange-Projection scheme which
is not TVD;

« "LP-ARS": the first-order accurate implicit-explicit Lagrange-Projection scheme obtained
with the ARS and whose transport step is first-order accurate as well;

« "LP-DMP": the implicit-explicit Lagrange-projection scheme described in section 6.4.
Here, the Lagrangian step approximation is obtained as a convex combination of the
first and second-order implicit approximations (6.4.1), when the second-order candidate
solution does not satisfy the criterion which ensures that there are no oscillations. Here
we use the second criterion, namely the discrete maximum principle for the free surface
with the additional checks on its second-order derivative;

« "LP-RI": as for "LP-DMP" but using the first criterion, that is to say the DMP for the
Riemann invariants.

As far as the time step is concerned, we define it both for the Lagrangian and projection steps.
Then, the minimum between the two is taken. The two time steps are defined as

Azx

max{max(ry, 7 )

At < CFL,

(6.5.1)
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6.5. Numerical simulations

for the Lagrangian system and

Az
At < CFL, . —
m]ax{uj% — uj+%}
with
+ _ * - _ : *
Uy = max(ujfé,O) and U1 = mln(uH%,O)

for the transport system. Usually, for explicit first-order schemes we should take CFL, =
0.5 and CFL; = 0.5. Since we are considering implicit-explicit method, we could neglect
the acoustic condition (6.5.1). Thus, we usually take CFL; = 1 unless otherwise specified.
Moreover, let us note that, in order to determine the transport time step, we compute the star
values for the velocity u* with the explicit scheme. Then, we verify that the obtained time
step actually satisfies the above condition. Note that we usually compute u* at second order
of accuracy, with the exception of the one for the LP-ARS method.

The reference solution is usually computed with M = 1000 cells and the explicit second-
order version of the LP-ARS scheme. Note that the space step is always computed as Az = %,
with L the length of the channel. Lastly, if not otherwise specified, in the numerical simula-
tions we use transmissive boundary conditions.

6.5.1 Riemann problem with null topography

We start by showing an academic test case, a Riemann Problem (RP) with a left rarefaction
and a right shock. The length of the channel is L = 50m and the dam is placed in the middle.
The ending time is t.,,; = 5s. The initial condition is given by null velocity, flat topography and
water height hy, = Imifx < L/2, hg = 0.5m if > L/2. Figure 6.5.1 shows the numerical
outputs. We observe that the LP-HO scheme is less diffusive than the other methods but it
presents many oscillations in correspondence of the shock. Then, we note that the LP-DMP
scheme is more accurate than the LP-ARS method and removes the oscillations present in the
LP-HO solution. Only a small pike remains in correspondence with the shock.

6.5.2 Riemann problem with non-zero topography

Imposing the length of the channel L = 1500m, let us see another Riemann problem. This
time, we define a non-flat topography,

150

(4e% 7=as75 if 487.5 < x < 562.5
8§ — e @ if 5625 < x < 637.5
8 if 637.5 <1 < 862.5
Z(l’,t = O) = 150

8 — 4> ws0z5  if 862.5 < x < 937.5
150

4~ To125—= if 9375 <z <1012.5

L0 otherwise,

while the free surface /' = h+zisgivenby H = 20mifx < 750mand H = 15mifz > 750m.
Finally, we take zero velocity at time ¢ = 0, while for the ending time we use t.,; = 50s, see
also [15]. In figure 6.5.2, the results are reported. We can draw similar conclusions to the
previous test case: the LP-HO outputs reveal themselves to be accurate with the exception of
the shock zone, where many oscillations are present. The LP-DMP method eliminates these
oscillations with the drawback to make the numerical solution more diffusive in all the domain,
even if it always remains more accurate than the first-order scheme.
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Figure 6.5.1: RP of section 6.5.1, water height (up) and velocity (bottom), M = 200 cells. LP-HO (blue), LP-DMP
(yellow), LP-ARS (violet) and reference (red) solution are reported.

Finally, in figure 6.5.3, we compare the LP-DMP solution obtained using 6 constant and
non-constant in space. As expected, both schemes remove almost all the second-order oscil-
lations but to use # non-constant in space gives a less diffusive solution.

6.5.3 Stationary solution and perturbation

This numerical test is useful to verify if the scheme is indeed able to preserve the "lake
at rest" stationary solution, see [14]. Thus, let us consider as initial condition null velocity,
h(z,t =0)+ z(z,t = 0) = 3m and

2(z,t=0) = .
2 otherwise.

{2 +0.25(cos(10m(z — 0.5)) + 1) if 14d<z<16

The length of the channel is L = 2.0m. The numerical method proved to be able to maintain
the steady state up to an error of order 10715.
As a second step, let us introduce small perturbations, namely we impose

Mot = 0) = {3—z(x,t = 0)+0.001 if 11<w<12

3—z(x,t=0) otherwise.
In figure 6.5.4 we insert the numerical results at time ¢.,; = 0.2s and we compare the three
numerical methods. As for the previous numerical test, we observe that the second-order accu-
rate method is the least diffusive but with some oscillations that are removed when employing
the LP-DMP scheme. Again, the LP-DMP outputs are considered better than the first-order
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Figure 6.5.2: RP of section 6.5.2, free surface (up) and velocity (bottom), M = 200 cells. LP-HO (blue), LP-DMP
(yellow), LP-ARS (violet) and reference (red) solution are reported.

ones. However, we also observe that, for this test case, the LP-RI solution is more accurate
than the LP-DMP one, thus for this test case it would be preferable to exploit the first crite-
rion, namely the discrete maximum principle applied to the Riemann invariants. Finally, let us
remark that, for this test, we could have used a larger time step value for the implicit scheme,
even up to 20 times greater. Of course, the outputs would be too diffusive if we would really
use such a large time step.

6.5.4 Steady flow over a bump: fluvial regime

Here we test if the numerical scheme is able to recover a non-zero velocity steady state by
imposing steady boundary conditions. In particular, considering a channel of length . = 4 m,
we consider the following topography

cos(10m(z — 1)) +1

z(z) = 4
0 otherwise

it 1.9<z<21

and we assume the steady state to be given by

(hU)eq = Kl =1
u? (6.5.2)
2q + g(heq + Z) = K2 = 25.

Thus, on the left boundary we impose ¢(x = 0,¢) = g.,, while on the right we ask for h(x =
L.t) = he,. Regarding the initial condition, the latter does not coincide with the steady state,
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Figure 6.5.3: RP of section 6.5.2, free surface (up) and velocity (bottom), M = 200 cells. LP-HO (blue), LP-DMP
with constant 6 (black) and LP-DMP with non-constant 6 (magenta) are reported.

and in particular we take
h(z,t =0) = hey and q(z,t=0)=0.

Finally, we use M = 1000 cells, refer to [14] for more details about this test. Then, in figure
6.5.5 we insert the results considering the "LP-HO" and the "LP-ARS" schemes. We observe
that both schemes are able to recover the steady state with the exception of the middle region,
which is in agreement with what shown in [14]. Moreover, observe that for this test case we
neglected the acoustic time step condition (6.5.1), in order to have faster simulations as we
take tp,q = 200 s. Indeed, in this way we obtain a time step which is at least four times larger,
depeding on the flow regime.

6.5.5 Subsonic regime and order of accuracy

Finally, we consider a numerical test in the subsonic regime, indeed the Froude number is
of order 1072, We take a channel of length . = 20m. The initial condition is given by null
velocity and

z1¢ = 0.1 — 0.0l (*=10°
hic =2 — 0.1e~@=10%,

We take ., = 0.5s and we refer to paper [10] for this test case. No oscillations are present
in the LP-HO results (figure 6.5.6), however the criterion evidently results to be too strict and
the LP-DMP solution reveals itself to be more diffusive than the LP-HO one. Once again,
considering only the transport CFL condition, here we could have used a larger time step,
namely about 18 times larger than the acoustic one.
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discharge (right), M = 1000 cells. LP-HO (blue), LP-ARS (magenta) and exact (red) solution are reported.

Lastly, since the solution is smooth, we use this test case to check the order of accuracy
of the schemes. For this purpose, the reference solution is computed using M = 2048 cells.
In table 6.5.1 we show that the LP-HO scheme described in section 6.3 seems to reach the
second-order of accuracy.

Method ~ Mesh M Variable errL! O(L!) Variable errL! O(L!)

2nd-order 64 h 0.0549 - hu 0.2215 —
128 0.0199 1.4629 0.0814 1.4439
256 0.0056  1.8206 0.0237 1.7794
512 0.0015 1.8753 0.0065 1.8578
1024 0.0004 1.7871 0.0019 1.7685

Table 6.5.1: Errors and empirical convergence rates for norm L!. Mesh of size M = (64,128,256, 512,1024),
LP-HO numerical scheme.

6.6 Concluding remarks

In this work we have presented a second-order well-balanced implicit-explicit Lagrange-
projection scheme for the shallow-water equations. This scheme results to be particularly
interesting in subsonic regimes, where the CFL condition in the acoustic step is much more
restrictive than the one in the transport step. Indeed, in this kind of situation, the implicit-
explicit Lagrange-projection method allows to use large time step values and thus, to obtain
faster numerical simulations.

In order to detect the well-known spurious oscillations in presence of discontinuities when
employing a second-order scheme, we have exploited an a posteriori limiting approach. In par-
ticular, the Lagrangian second-order solution is substituted with a convex combination of the

236



6.7. Bibliography

1.94

202 Time : 0.5000s

E o2

= \\ /'

=)

2198 ¢ ‘ : ——LP-HO

B ' ——LP-DMP

g 196 LP-ARS
5 10 15

20
Space x [m]

Jf\\
' b st

0 5 10 15 20
Space x [m]

Discharge [mzls]
g o
o - [N

\

g

o
T

o
[N
T

Figure 6.5.6: Subsonic test case of section 6.5.5, water height (up) and discharge (bottom), M = 200 cells. LP-HO
(blue), LP-DMP (red) and LP-ARS (yellow) solution are reported.

first and second-order implicit approximations when the second-order candidate solution does
not satisfy a criterion which ensures that the solution does not have any spurious oscillations.
However, on one hand, it is clear that using such a strategy leads to the loss of the second-
order of accuracy. On the other hand, we consider the results to be satisfying as the LP-DMP
numerical scheme is less diffusive than the implicit first-order LP-ARS scheme.

Further works are expected to deal with the 2D extension of the numerical scheme.
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Chapter

Conclusions et perspectives

Dans cette thése, nous avons développé et implémenté de nombreux schémas de type
Lagrange-Projection (LP) et nous les avons adaptés a différents modeles mathématiques. Toutes
les méthodes numériques étaient équilibres dans le sens qu’elles préservent les solutions sta-
tionnaires a vitesse nulle du systéme considéré. En fonction du modéle mathématique, nous
avons soit étendu la méthode numérique au second ordre de précision, soit développé sa ver-
sion implicite-explicite. Seulement dans le chapitre 6, nous avons con¢u une méthode LP
implicite-explicite du second ordre de précision pour les équations de Saint-Venant.

Nous avons donc couvert de nombreux aspects, tant en termes de modéles que de méthodes
numériques, mais il est clair qu’il serait trés intéressant de mener des études plus approfondies
étant donné les nombreuses pistes de recherche possibles.

Le premier modele mathématique que nous avons considéré est le systéme du flux sanguin.
Ainsi, dans le chapitre 2, nous avons développé deux schémas LP du second ordre capables
de préserver la solution stationnaire "homme au repos éternel". Cependant, nous soulignons
qu’il pourrait également étre intéressant de considérer les états stationnaires a faible nombre
de Shapiro, qui pourraient étre plus facilement préservés que les états stationnaires classiques
avec vitesse non nulle. En effet, les artéres sont connues pour avoir un nombre de Shapiro
moyen d’ordre 1072, ce qui pourrait aussi impliquer une condition CFL restrictive sur le pas
de temps en raison des ondes acoustiques rapides. Par conséquent, des travaux futurs pour-
raient également traiter une formulation implicite de I’étape Lagrangienne afin d’accélérer les
simulations numériques.

Par ailleurs, le modéle mathématique pourrait étre étendu a un modele plus complexe, en
considérant des autres parametres non constants en espace, comme la pression externe, ou en
incluant d’autres forces, comme la friction. Il est donc clair que la propriété équilibre chang-
erait en conséquence et que d’autres études seraient nécessaires.

Ensuite, nous avons tourné notre intérét vers le modele de Saint-Venant. Un tel systéme est
connu pour étre simple, mais efficace lorsqu’il s’agit de la simulation numérique d’écoulements
de fluides pour lesquels I’échelle verticale est beaucoup plus petite que 1’échelle horizontale.
Ainsi, en fonction des situations particuliéres que 'on cherche a simuler, différents modéles
liés existent.

En considérant par exemple des écoulements multicouche, on sait qu’il n’est généralement
pas simple d’étendre la stratégie de type Lagrange-projection et, donc, de formuler le systéme
résultant en coordonnées lagrangiennes. Ainsi, dans le chapitre 3, nous avons développé un
schéma LP implicite-explicite pour les équations de Saint-Venant a deux couches, en obtenant
en effet des résultats encourageants. Cependant, comme il ne s’agit que d’une premiere étude,
il est clair que d’autres améliorations sont nécessaires. En effet, nous avons considéré une
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version simplifiée du systéme lagrangien, mais nous visons également a analyser ’ensemble
complet d’équations et a dériver un solveur de Riemann approché pour celui-ci. De plus, on
pourrait essayer de tester et d’adapter la stratégie numérique a des simulations plus réalistes
et complexes ou considérer également un modele mathématique multicouche plus complet.

En dehors du modele a deux couches, nous avons également examiné le systeme de Saint-
Venant-Exner afin de simuler le transport de sédiments au long du lit. Un tel modeéle est
généralement connu pour étre complexe a simuler numériquement. En effet, si une approche
découplée est utilisée, des instabilités pourraient étre facilement trouvées dans les tests numé-
riques, principalement en raison des différences des structures propres du systéeme de Saint-
Venant avec et sans I’équation d’Exner. Pour cette raison, nous avons développé trois straté-
gies numériques différentes pour inclure I’équation d’Exner dans I’approche LP. Le second
ordre de précision a également été atteint, ouvrant la voie a des schémas d’ordre de précision
supérieur. Cependant, nous pouvons nous attendre a une augmentation des oscillations para-
sites lorsque nous étendons les méthodes numériques a un ordre de précision supérieur. Des
études complémentaires devraient donc étre menées dans ce sens, par exemple en utilisant
une approche de type MOOD. En outre, étant donné que nous avons principalement considéré
la version unidimensionnelle du modeéle, des améliorations supplémentaires pourraient étre
liées a 'extension de ces schémas numériques a deux dimensions. En effet, seule la stratégie
qui met a jour I’élévation du lit dans I’étape de transport a été étendue a deux dimensions.

Une fois que le systéme Saint-Venant-Exner a été considéré, I’étape suivante naturelle a été
d’inclure les processus d’érosion et de dépdt des sédiments dans le modele, ce qui a donné lieu
au chapitre 5. Dans ce chapitre, une stratégie numérique analogue a été exploitée. De plus, on
sait que le transport de sédiments est généralement un processus lent ou le temps caractéris-
tique associé aux sédiments est beaucoup plus grand que celui correspondant aux fluides. Pour
cette raison, une version implicite-explicite de la méthode numérique a été développée, méme
si seulement pour une des trois stratégies et au premier ordre ou précision. Ainsi, d’autres
améliorations pourraient également étre apportées a cet égard. En particulier, il pourrait étre
intéressant d’étendre les stratégies implicites-explicites a deux dimensions également.

Comme dernier sujet, nous avons considéré le développement de méthodes implicites-
explicites du second ordre pour les systémes hyperboliques de lois de conservation, qui est
connu pour étre un probléme trés épineux. Nous avons donc essayé d’obtenir le second ordre
de précision en utilisant une technique différente de celle utilisée dans les autres chapitres. Il
serait évidemment intéressant d’essayer d’atteindre des ordres de précision encore plus élevés.
Cependant, afin de préserver la linéarité du systeme acoustique, nous n’avons pas inclus de
limiteurs de flux dans ’approximation numérique. En conséquence, des oscillations pourraient
apparaitre en présence de discontinuités, car nous utilisons une méthode du second ordre.
Une premiére tentative pour éliminer ces instabilités a été faite, en utilisant une approche
de limitation a posteriori. Cependant, la conséquence est la perte de la précision du second
ordre. Ainsi, des efforts pourraient étre faits pour améliorer cette approche, y compris en
sélectionnant de meilleurs critéres pour détecter les instabilités.
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Conclusions and perspectives

In this PhD thesis we have designed and implemented numerous Lagrange-Projection (LP)
schemes and adapted them to different mathematical models. All the numerical methods were
well-balanced in the sense that they preserve the zero-velocity stationary solutions of the
model. Depending on the mathematical model, we either extended the numerical method to
second-order of accuracy or developed its implicit-explicit version. Only in chapter 6 we built
an implicit-explicit LP method of second order of accuracy for the shallow water equations.

Hence, we have covered many aspects, both in terms of models and numerical methods,
but it is clear that it would be very interesting to carry out more extensive studies given the
many possible paths of research.

The first mathematical model we considered is the blood flow system. Hence, in chapter 2,
we have developed two second-order LP schemes able to preserve the so-called "man at eternal
rest" stationary solution. However, we highlight that it could also be interesting to consider
the low-Shapiro number steady states, which could be more easily preserved than the classical
steady states with non-zero velocity. As a matter of fact, arteries are known to have an average
Shapiro number of order 10~2, which could also imply a restrictive CFL condition on the time
step due to the fast acoustic waves. Hence, future works are equally expected to deal with an
implicit formulation of the Lagrangian step in order to speed up the numerical simulations.

Regardless, the mathematical model could be extended to a more complex one, by consid-
ering additional non-constant parameters in space, as the external pressure, or by including
other forces, as the friction one. Clearly, the well-balanced property would change accordingly
and further studies would be needed.

Then, we turned our interest towards the shallow water model. Such a system is known
to be simple, yet effective when it comes to the numerical simulation of fluid flows for which
the vertical scale is much smaller than the horizontal one. Hence, depending on the particular
situations one aims to simulate, different related models exist.

Considering for instance multi-layers flows, it is known that it is generally not straightfor-
ward to extend the Lagrange-projection strategy and, in particular, to formulate the resulting
system in Lagrangian coordinates. Hence, in chapter 3, we have developed an implicit-explicit
LP scheme for the two-layer shallow water equations with promising results. However, being
only a first study, it is clear that further improvements are needed. Indeed, we have considered
a simplified version of the Lagrangian system but, certainly, we aim to analyze the complete
set of equations and to derive an approximate Riemann solver for it. Furthermore, one could
try to test and adapt the numerical strategy to more realistic and complex simulations or to
consider a more comprehensive multi-layer mathematical model.

Other than the two-layer model, we have also examined the shallow water Exner system in
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order to simulate bedload sediment transport. Such a model is generally known to be complex
to approximate. Indeed, if a decoupled approach is used, instabilities could be easily found
in the numerical simulations, mainly due to differences in the eigenstructures of the shal-
low water system with and without the Exner equation. For this reason we have developed
three different numerical strategies to include the Exner equation in the LP approach. The
second-order of accuracy was attained as well, paving the way for schemes of higher order
of accuracy. However, we could expect spurious oscillations to increase when extending the
numerical methods to higher order of accuracy. Hence, further studies should be done in this
sense, for instance by using a MOOD-type approach to combine first and high-order approx-
imations. Apart from that, since we mainly considered the one-dimensional version of the
model, additional improvements could be related to the extension of these numerical schemes
to two dimensions. Indeed, only the strategy that updates the bed elevation in the transport
step has been extended to two dimensions.

Once the shallow water Exner system has been considered, a natural next step was to
include the erosion and deposition processes of sediments in the model, giving arise to chap-
ter 5. There, an analogous numerical strategy was exploited. Moreover, sediment transport
is generally a slow process where the characteristic time associated with sediments is much
larger than the one corresponding to fluids. For this reason, an implicit-explicit version of the
numerical method was developed, even if only for one of the three strategies and at first-order
or accuracy. Thus, further improvements could be also done in this regard. In particular, it
could be interesting to extend the implicit-explicit strategies to two dimensions as well.

As a last topic, we considered the development of second-order implicit-explicit meth-
ods for hyperbolic systems of balance laws, which is actually known to be a very demanding
problem. Hence, we tried to obtain the second-order of accuracy by using a different tech-
nique with respect to the one used in the other chapters. Clearly, it would be interesting to
try to reach even higher orders of accuracy. However, in order to preserve the linearity of
the acoustic system, we did not included flux limiters in the numerical approximation. As a
consequence, oscillations could appear in presence of discontinuities as we are using a second
order method. A first attempt to remove these instabilities has been made, by using a poste-
riori limiting approach. However, a consequence is the loss of the second-order of accuracy.
Thus, efforts could be done to improve this approach, also by selecting better criteria to detect
the instabilities.
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