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Résumé

Depuis la découverte de la nature des prions, de nombreux modèles mathématiques
ont été proposés afin de représenter ces assemblages de protéines et leur réplication.
Après quatre décennies de recherche expérimentale et conceptuelle, la compréhension
des phénomènes d’agrégation de protéines, ansi que des maladies neurodégénératives qui
leurs sont associées, a grandement progressé. Cependant la complexité de ces systèmes
reste entière, et les modèles classiques commencent à montrer leurs limites. En parti-
culier, aucun modèle ne reproduit l’immense diversité des objets qui sont observés au
cours de la propagation des prions, alors que l’on en découvre continuellement de nou-
veaux sous l’avancée des procédés expérimentaux. Dans ce manuscrit, notre objectif est
d’identifier les faiblesses des modèles classiques à travers l’apport de résultats biologiques
récents. Par la suite, nous proposons des améliorations à ces modèles en incluant de nou-
veaux processus, en ajoutant des niveaux de structuration et de diversité aux agrégats.
Trois axes orientent les résultats, correspondant à trois contextes biologiques différents.
La première partie se déroule dans le système nerveux des mammifères, et étudie la
cinétique d’auto-agrégation de PrP, la bien nommée protéine prion. Dans la seconde
partie nous abordons une approche multi-échelle novatrice pour représenter la propaga-
tion d’agrégats de protéines dans des cellules de levure en croissance. La troisième partie
explore la dissémination spatiale de petits oligomères dans les étapes précoces de la mal-
adie d’Alzheimer. Ces trois axes se recoupent autour du thème central de la diversité
structurale et son rôle crucial dans la propagation.
Mots clés: Agrégats de protéines, modèle cinétique, équations différentielles ordinaires,
systèmes dynamiques.
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Abstract

Following the discovery that prions are self-replicating assemblies of proteins, mathemat-
ical models were developed in parallel with experimental methods in order to concep-
tualize this phenomenon. After four decades of research, much insight has been gained
into protein misfolding processes and the neurodegenerative diseases which they cause.
However, the complexity of these systems remains undiminished and the classical models
of protein aggregation are now showing their limits. In particular, the observed spectrum
of objects generated during the propagation of prions is not accounted for in any model,
whereas it keeps expanding under the development of experimental tools. In the present
manuscript, our aim is to identify the weaknesses of classical models of prion propagation
in light of recent biological evidence. We then suggest modified and improved models,
by including different processes, by adding more levels of organization and more diver-
sity to protein aggregates. Three main topics are presented, corresponding to different
instances of protein aggregation and different biological systems. The first part takes
place in the mammalian nervous system, and investigates the self-aggregation kinetics
of PrP, the aptly named prion protein. In the second part, we model the replication of
protein aggregates inside dividing yeast cells, by proposing a novel multi-scale approach.
In the third part, we explore the spatial propagation of small protein oligomers in the
early stages of Alzheimer’s Disease. These three axes are linked by the central role of
structural diversity in the global protein aggregation system.
Key words: Protein aggregation, kinetic model, ordinary differential equations, dynam-
ical systems.

vii





Résumé substantiel

La découverte de la protéine prion (PrP) et de son rôle dans la tremblante du mouton
et dans la maladie de Creutzfeldt-Jakob a initié, dans le courant des années 1980, un
effort de recherche colossal. Tout l’enjeu était de comprendre comment une protéine peut
devenir infectieuse et causer des troubles neurologiques graves. On sait aujourd’hui que
l’événement déclencheur est le changement de conformation et l’assemblage en agrégats
de la protéine PrP. En effet cette protéine, ainsi que de nombreuses protéines du monde
vivant, a la propriété de pouvoir être stabilisée sous plusieurs formes différentes (au
sens géométrique du terme). La forme la plus courante est la forme endogène, observée
dans les cellules saines du système nerveux des mammifères. Cette forme est nommée
PrPC (pour “cellulaire”) et correspond au PrP monomérique. Cependant, d’autres con-
formations existent et celles-ci ont une propension à former des assemblages, tels que
des agrégats, des oligomères ou des fibres. Ces formes sont regroupées sous l’appellation
PrPSc (pour “scrapie”, qui est le nom anglais de la tremblante). Ces assemblages sont
eux-mêmes capables d’induire le changement de forme de monomères de PrPC en PrPSc,
ce qui leur permet de s’allonger et de se répliquer. La propagation massive d’agrégats
de PrP au sein du système nerveux, du cerveau en particulier, est la cause principale
des déficiences cognitives subies par les individus atteints de la maladie de Creutzfeldt-
Jakob, ainsi que de l’issue inévitablement fatale de cette maladie. Au-delà des maladies
neurodégénératives, les processus de prions sont courants en biologie et certains systèmes
en tirent même des avantages. C’est le cas des plantes et des levures par exemple, dont
certaines protéines se comportent comme des prions dans le but de réagir rapidement à
des changements environnementaux brusques.

La modélisation mathématique des prions a joué un rôle fondamental dans la con-
ceptualisation et la compréhension de ces phénomènes. Les modèles considérés comme
classiques aujourd’hui sont à la base inspirés des modèles physiques de la condensation
et de la coagulation. Ils considèrent généralement les agrégats de prions comme des fi-
bres longilignes, qui croissent par leurs deux bouts en convertissant successivement des
monomères, et dont le nombre augmente par simple fragmentation. Ce modèle fonda-
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mental a été formalisé et étudié avec beaucoup d’attention, ainsi que nombre de ses
variations. Cependant, à mesure que la biologie expérimentale progresse, les complexités
des systèmes d’agrégation de protéines se dévoilent et les limites des modèles classiques
apparaissent. Avec l’étude intensive des prions, in vivo comme in vitro, une immense
diversité de processus et de structures s’est dessinée et continue de s’étendre aujourd’hui.
On sait à présent que les prions sont capables de former différents types de structures,
allant du petit oligomère amorphe aux larges plaques rigides. Qui plus est, ces assem-
blages ont aussi une structuration interne en sous-unités ou blocs élémentaires. Enfin,
différents groupes d’objets peuvent être en coévolution ou en compétition au sein du
même environnement. La diversité structurelle est un aspect fondamental de la propaga-
tion des prions, encore peu pris en compte dans la modélisation. Après avoir identifié les
points précis sur lesquels les modèles classiques sont en peine, nous proposons différentes
adaptations et améliorations, chacune placée dans un contexte et des enjeux spécifiques.
Trois axes dirigent cette approche.

La premier axe correspond à l’étude de la protéine PrP, dans le système biologique
constitué par le système nerveux des mammifères. Y sont présentées les spécificités de ce
système et les résultats biologiques récents, non encore expliquées par les modèles. Deux
modèles sont proposés et étudiés. Le premier prend en compte l’existence d’une structure
interne pour les agrégats, les sous-unités, et en déduit des explications qualitatives pour
un certain nombre de phénomènes liés au problème des souches de prion. Le second
modèle est dédié à la formation, par la protéine PrP, de petits oligomères in vitro, et leur
comportement oscillatoire complexe. Dans ces deux cas, la diversité structurelle permet
d’élargir le domaine de validité de modèles existants et de tirer des conclusions nouvelles
sur la compréhension de la maladie à prions.

Le second axe s’intéresse à un système biologique a priori très différent, celui des
levures. Il se trouve que les levures synthétisent plusieurs protéines qui se comportent
comme des prions. La particularité de ce système est que les agrégats de prions peuvent
être transmis d’une cellule mère à ses filles au moment de la division cellulaire. La
propagation des agrégats au sein d’une colonie en pleine croissance correspond donc à
l’évolution cinétique de centaines de milliers de systèmes couplés entre eux. L’enjeu pour
le modélisateur est alors de savoir lier les phénomènes chimiques de l’échelle moléculaire
aux phénomènes physiques de l’échelle cellulaire.Nous proposons un cadre théorique et
pratique permettant de traiter cette difficulté à l’aide d’un modèle multi-échelles. Cette
approche est mise en œuvre pour un cas précis d’expérience biologique de la littérature
et permet d’obtenir des informations cruciales sur le processus moléculaire qui agit au
sein des cellules.

Le troisième et dernier axe est dédié à la dissémination spatiale de petits oligomères
dans le cerveau, pendant les étapes précoces de la maladie d’Alzheimer. Plusieurs pro-
téines se comportant comme des prions sont impliquées dans la pathogénèse de cette

x



maladie. L’accent est mis sur le rôle particulier de la protéine Amyloïde Beta (Aβ), dont
l’agrégation sous forme de grandes plaques rigides est l’un des bio-marqueurs principaux
utilisés pour le diagnostic de la maladie d’Alzheimer. Les résultats biologiques récents
montrent que ce sont en fait les petits assemblages oligomériques, formés très tôt dans
le développement de la maladie, qui sont les plus toxiques et les plus influents sur la
propagation globale de la dégénération. Nous modélisons leur évolution à l’aide d’un
modèle spatial, qui permet de représenter leur dissémination au voisinage des neurones.

Chacun de ces axes met en évidence un ou plusieurs aspects de la diversité structurelle
et son influence sur la propagation des prions, que ce soit au sein d’un organisme vivant
comme un mammifère ou une cellule de levure, ou in vitro. Prendre en considération cette
diversité s’avère une approche fructueuse, bien que complexe, qui permet l’élaboration
de modèles modernes mieux adaptés aux observations biologiques.
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This manuscript is dedicated to presenting the work realized during my PhD thesis, on
the subject of modeling prions with mathematical tools. The broad objective of this
study is to design, compare and validate models of protein conformational change and
self-aggregation. These processes, loosely referred to as prion processes, are involved
in the propagation of neurodegenerative diseases such as the Creutzfeldt-Jakob Disease
or Alzheimer’s Disease, but they are also observed in various biological systems includ-
ing yeast and plants. Chapter 1 introduces the general biological notions required to
understand the concept of prions as well as some currently open problems. In a second
part, we present the most commonly used mathematical models for prions, their assump-
tions, their formulations and their limitations. Finally, we detail the goals of the present
study and the corresponding contributions by proposing three main research axes, that
structure the manuscript as follows:

• Part I: Mammalian prions and the structural diversification of aggregates
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• Part II: Multi-scale models in yeast prions, from molecules to phenotype

• Part III: The propagation of oligomers in neurodegenerative diseases, a spatio-
temporal approach

1.1 Prion diseases and protein misfolding

Over the past three decades, prions have been the subject of intensive research and
even though enormous progress has been made to understand these phenomena, they
keep revealing new intricacies and puzzling problems. Prion proteins are capable of
adopting multiple shapes (conformations) and have been associated with a number of
diseases in mammals. In this Section, we discuss the history of the prion, the basics of
prion propagation and the first mathematical models of prion dynamics.

1.1.1 The protein-only hypothesis

A brief history of the prion, summarized from the more extensive work of [Pujo-
Menjouet, 2016]. The first prion disease was observed in sheep during the 18th century.
This disease decimated sheep herds in the United Kingdom, and infected animals pro-
duced terrible wool, and the economic stakes motivated the first scientific studies. The
sheep showed shaking and scratching symptoms that led to the name “scrapie”. For al-
most two centuries, the nature of the pathogen agent eluded scientists. In the 1920’s,
unheard of cases of human dementia were reported by Creutzfeldt and Jakob. Later
studies established a direct link between scrapie and the disease affecting these patients,
now known as the Creutzfeldt-Jakob Disease. Since the beginning the controversy was to
know whether the pathogenic agent was genetic or viral. In the 1930’s, the disease was
shown to be transmissible, and could even be transmitted from one species to another.
This supported the idea that the pathogen was a virus. The story then continues in
Papua New Guinea in the 1950’s, where a strange epidemic named Kuru was spreading
among a tribe called the Fore people. It primarily affected women and children. They
first showed shaking symptoms then strong physical impairment, ending inevitably in fa-
tal pneumonia. The reason was soon identified to be the cannibalistic rites of the tribes.
Indeed the Fore people ate their dead. The women and children consumed the brains
while the muscles were kept for the men. Just like scrapie, this disease was transmissible,
and the symptoms were very similar. Thus, the connection was suggested by William J.
Hadlow [Hadlow et al., 1959]. However the pathogenic agent was still not identified.

In the 1960’s, it was shown that this pathogen did not contain any nucleic acids. In
other words it did not contain any DNA or RNA, so it ruled out the possibility of a virus
[Alper et al., 1967]. In 1967, Griffith [Griffith, 1967] suggested that the scrapie agent be
a protein. In 1982, S. Prüsiner [Prusiner, 1982] brought definite proof of this hypothesis
by showing directly that protein constituents could be infectious. This led him to coin
the term “prion”, as in “Proteinaceous Infectious Only”. This controversial conjecture
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encountered strong resistance in the scientific community, but is now broadly accepted
as true. The culprit was identified as a single protein that was termed Prion Protein
(PrP). This protein is now known to be associated with Creutzfeldt-Jakob Disease, all
Transmissible Spongiform Encephalopathies (including scrapie and mad cow disease),
Kuru, Fatal Familial Insomnia and Gertsmann-Sträussler-Scheinker syndrome. A more
detailed version of this fascinating scientific “crime story” can be found in [Pujo-Menjouet,
2016]. The problem remains that this protein is normally synthesized by mammals, yet
we are not all affected by the prion disease.

How can a protein be infectious? Proteins are chains of amino acids, that are encoded
in the DNA and assembled by the cell machinery. As they get erected, these long chains of
molecules fold into complex shapes, and adopt the 3D conformation that is most efficient
thermodynamically. For most proteins, this optimal shape is unique and it defines their
function. Indeed, the folding of a protein conceals some parts of the chain and exposes
other parts, which are then accessible to interact with external chemical agents, proteins,
membranes or receptors.

In the case of PrP, different conformations of the protein are stable. The normal
shape PrPC, “cellular”, is found in healthy individuals and contains mostly alpha-helices.
This form is not resistant to proteases, enzymes that break down proteins by cleaving
peptide bonds. In individuals infected with the prion disease, another conformation of the
protein is stable. This form was termed PrPSc, as in “scrapie”. This abnormal form of the
protein is prone to aggregation, contains mostly beta-sheets, and is much more resistant
to protases [Colby and Prusiner, 2011]. The crucial characteristic of PrPSc is that it
is capable of converting PrPC to PrPSc by directly interacting with it. This is the key
mechanism in the propagation and transmission of the disease. The information of the
abnormal conformation is stored in aggregates and transmitted through templating.
As the disease progresses, aggregates grow longer and can coalesce into higher-order
structures that are called amyloid plaques. This progressive conversion of PrP in the
brain is coupled with progressive neuronal degradation [Collinge, 2001]. The typical
symptoms are dementia, cognitive impairment, memory loss, physical impairment. Even
though the pathogen has been identified, the exact cause of the neuronal degeneration is
still not understood. Prion diseases are fatal and as of now there is strictly no successful
therapy [Aguzzi et al., 2018].

A widespread biological mechanism. The phenomenon of protein self-aggregation
and structural conversion is more general than the specific case of the prion disease
[Weissman et al., 2004]. For historical reasons, such processes are now termed “prion-like
processes”. They are associated with many neurodegenerative diseases, although some
involve different proteins than PrP: Parkinson’s Disease with α-synuclein, Huntington’s
Disease with huntingtin, Alzheimer’s Disease with Amyloid-β as well as Tau protein,
and others [Soto, 2003]. But in a broader sense, prions are considered biological tools.

Mathematical models of prion processes 3
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Indeed prion processes are known to be used in various biological systems where they
act as tic switches. When a protein is converted to its prion form, its function changes
and this may change the phenotype of an organism in a matter of hours. For instance
this is used in plants and to resist brutal environmental changes, such as temperature
shocks [March et al., 2016,Chernoff, 2016]. In this case, the prion property was selected
as a bet-hedging strategy. Prions are also present in yeast, where they act as epigenetic
switches [Tuite and Serio, 2010, Liebman and Chernoff, 2012]. In the present study we
name “prion” the shape of any protein that can convert normally folded proteins as well
as self-aggregate.

1.1.2 The prion replication process

The first step. How does the prion conversion process start? In the case mammals,
all individuals synthesize PrP but most of them are not affected by the prion disease
and their PrP adopts the healthy conformation PrPC. The misconformation can start
spontaneously, but it is an extremely rare event. Proteins evolve in a very crowded
and dynamic environment, and they are sometimes forced to partially unfold. A sta-
ble aggregate may be randomly formed from PrPC, and start the progress of the dis-
ease. This is called a (primary) nucleation, and the corresponding disease is referred
to as a sporadic case. Different models of nucleation have been proposed, placing the
rate-limiting step at a different level. The first idea introduced in [Cohen et al., 1994]
considered that the spontaneous conversion of PrPC monomers to PrPSc was the rate-
limiting step. These monomers could then go and convert PrPC by forming dimers with
normal monomers [Laurent, 1998]. This model, called the hetero-dimer model, has
been progressively abandoned because it could not capture pathological dynamics with
feasible chemical rates [Eigen, 1996]. However it is worth mentioning for historical rea-
sons but also because it serves as an inspirational basis for development of new models
in our study, see Chapter 3. The hypothesis that is now generally accepted is the one
introduced by [Lansbury and Caughey, 1995], where the rate-limiting step for nucleation
is the formation of an aggregate of minimal size, a nucleus. This model is known as the
Nucleated Polymerization model and we dedicate part of the present manuscript to
its study. Some factors may increase the probability of a nucleation event happening (risk
factors), such as genetic mutations. Aggregation can be triggered in vitro by increasing
protein concentrations above physiological levels or treating proteins with denaturing
agents. Once the process starts, i.e. a seed has been formed or introduced in the brain,
the formation of aggregates from normally folded proteins is an autocatalytic process (a
chemical reaction in which one product is also a reactant) that follows a deterministic
evolution.

The expansion: autocatalytic conversion. Two different mechanisms are required
for the aggregation process to successfully accelerate: structural change and secondary
nucleation. First, the normally folded monomers have to be structurally converted to
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the prion form. The mechanism that is commonly suggested is templating. By directly
interacting with aggregates, the normal proteins are able to breach the energy barrier
and adopt the prion conformation. In a way, the prion form “copies” itself onto normal
monomers, hence the term templating. Second, in order to accelerate the process, the
number of templating agents must increase. The way this happens is still partially
understood from a biological standpoint. Different mechanisms have been suggested
for this step, and we explore some of them in the present study. The general idea
is that the presence of aggregates catalyzes the formation of new aggregates and new
templating interfaces, leading to auto-amplification of the process. This is referred to as
secondary nucleation, as opposed to primary nucleation which happens spontaneously
and stochastically. In the hetero-dimer model this happens simultaneously as templating
because monomers are the templating effectors, but for the Nucleated Polymerization
model a different mechanism needs to be introduced.

The Nucleated Polymerization model. The most commonly accepted model for tem-
plating and secondary nucleation is the Nucleated Polymerization model, introduced
by [Lansbury and Caughey, 1995]. In this representation, aggregates are linear stacks of
proteins, with two ends acting as templating interfaces. The fibril ends trap normally
folded proteins and convert their structure. In other words, templating and aggregate
growth are assumed to be the same phenomenon. In this model, aggregates can split
in multiple pieces, which allows the templating ends to increase in numbers Secondary
nucleation is thus modeled as a fragmentation process. The last assumption of the Nu-
cleated Polymerization model is the existence of a nucleus size, a minimal stable size
for aggregates. If fragmentation creates an aggregate smaller than this critical size, it
is immediately disassembled into normal monomers. These processes are illustrated in
Figure 1.1. This model has become a standard for prion biology and its mathematical
formulation has been studied in great detail (see Section 1.2). However it needs to be
emphasized that the idea of linear fibrils growing and breaking apart is far too simplis-
tic compared to the complexity of the biology. Self-aggregation mechanisms are in fact
extremely complicated, and exhibit many intriguing features as we now develop.

1.1.3 Towards a modern view of prions

The general principles we presented in the previous section give an idea of how prions
behave, and the classical model of Nucleated Polymerization seems relatively intuitive.
Indeed it allows translating simple mechanistic ideas into equations as described in the
Section 1.2. Yet, as any model, it is a simplification of reality, and the problem of
prions is immensely more complicated than it seems at first. A modern view of prions
requires diversity and interactions that are yet to be understood. We briefly introduce a
few concepts of state-of-the-art prion research without diving into the technical material.
The experimental results that support these concepts are detailed further on in the study.

Mathematical models of prion processes 5
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Normal monomer

Prion aggregate

A B

C

Figure 1.1 – Illustration of the classical representation of the prion replication
process: the Nucleated Polymerization model. (A) Fragmentation of an aggregate
into two pieces. (B) Growth by polymerization of normal monomers. (C) An aggregate
below the nucleus size (here 3) is immediately disassembled into monomers.

The concept of strains. One biological property of prion diseases is the existence of
different strains. The same disease can be propagated with different pathological proper-
ties (incubation time, symptoms, deposition pattern in the brain...) [Collinge and Clarke,
2007]. These different strains are believed to be associated with different conformations
of the prion protein. There is in fact one normal conformation and a wide variety of pos-
sible prion conformations. The strain information, or strain determinant, is then stored
in the three-dimensional shape of the protein. The process of templating allows copying
this information onto normally folded proteins, and strains are thus transmissible. The
concept of strain and the diversity of possible abnormal conformations is general for all
prion-like processes. Most neurodegenerative diseases exist under various strains, that
are identified based on the observable pathological markers or symptoms [Scialò et al.,
2019]. Yeast prions are no exception to this phenomenon [Lindquist and Krishnan, 2005],
and it is the subject of Chapter 5. The existence of these different possible conforma-
tions is broadly accepted, but it raises many questions. How do strains interact? Do
they compete for normal monomers? Can they coexist?

The cloud hypothesis. These questions have yet to be answered in detail, but results
show that interactions between strains are complex. Indeed strains can interact, and the
outcome of these interactions is often bewildering. Strain co-evolution and selection do
not seem to follow the rules of Darwinism for population dynamics, with prevalence of
the most efficient predator. Technical results are detailed in dedicated Chapters 2 and
5, but we wish to introduce here the cloud hypothesis to give a peek into the modern
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representation of prions. An opinion that is gaining weight in the prion community is
that pathological strains (i.e. as given by a set of symptoms and markers) and confor-
mational strains (i.e. one structure of the prion protein) are not identifiable one-to-one.
More precisely, pathological/phenotypical strains are the combined result of multiple
conformations of the protein co-evolving, interacting and cooperating to convert normal
monomers [Collinge, 2010,Bateman and Wickner, 2013,Baskakov, 2014]. Various results
support this idea and some of them are detailed in our technical reviews (Chapters 2
and 5). The problem immediately becomes more complex. This hypothesis suggests that
prions exist under a wide range of conformations, hence the name “cloud hypothesis”. It
is applicable to all prion processes, in particular yeast prions.

Structural diversity of aggregates. One of the most striking evidence that strains are
composed of multiple conformations is the structural diversity of prion aggregates. Direct
observations of aggregates revealed that they are not solely composed of linear fibrils,
growing and breaking apart. Different types of assemblies co-exist and co-evolve. These
assemblies have different levels of structural organization. They range from small amor-
phous oligomers to long rigid fibrils, sometimes with inner structural organization too.
They most reasonably correspond to different conformations of the protein, which links
this result with the cloud hypothesis. This representation of prion aggregates populations
is illustrated by Figure 1.2. Different structures necessarily have different propagation
properties and chemical properties. The idea of fibrils growing by monomer addition
and breaking apart needs to be nuanced with a more complete vision of many differ-
ent types of structures co-evolving, competing or cooperating to recruit normal protein
monomers [Igel-Egalon et al., 2019a]. This view is the modern representation of prion
processes, and contrasts with the classical Nucleated Polymerization model. Aggregate
diversity is common to all prion-like processes, as polymerization pathways often include
different types of structures, starting with small oligomers before evolving towards longer
and more rigid species, sometimes ending in large amyloid plaques. This was observed for
mammalian prions [Eghiaian et al., 2007], for other protein misconformation [Haass and
Selkoe, 2007] and also for yeast prions [Sharma et al., 2017]. It is a concept of particular
importance because in neurodegenerative diseases, the most infectious and toxic protein
assemblies are believed to be small oligomers and not the large fibrils or plaques observed
in late stages [Silveira et al., 2005,Haass and Selkoe, 2007].

Understanding how and why different structures and conformations are formed, which
are the most important in the propagation and toxicity of the disease are some of the
foremost aspects of current prion research from a biological standpoint. Deciphering
and fighting the spread of neurodegenerative diseases is a major motivation for studying
these problems, but there are also potential applications in prion-like processes as can be
suggested by the increasing number of examples where prions act as versatile biological
tools.
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Size

Monomers Oligomers Aggregates Fibrils Plaques

Figure 1.2 – Schematic illustration of the diverse assemblies formed by prion
proteins. Each prion disease strain is the combined result of a dynamic range of assem-
blies each corresponding to a different conformation of the protein monomer.

1.2 Mathematical models of growth-fragmentation

We introduce here the classical models used for prions, and the associated mathemat-
ical tools. We focus on deterministic models of aggregation and templating derived from
mass-action kinetics.1 Note that many different modeling approaches for prion diseases
have been considered in the past, different scales (epidemiology at the population level,
at the scale of the individual, at the scale of cells) and different descriptions (one dimen-
sional, two or three dimensional, discrete or continuous). Detailed reviews are proposed
in [Lenuzza, 2009,Pujo-Menjouet, 2016, Sindi, 2017]. The introduction we propose here
focuses on the aspects that are essential for the rest of the study. In particular we detail
the mathematical model derived from the Nucleated Polymerization model of [Lansbury
and Caughey, 1995], which wears the same name by extension. We establish its different
formulations, the main results regarding its analysis, and stress some of its limitations.

Why mathematical models? Understanding the intricacies of prion replication and
propagation is crucial in the fight against neurodegenerative diseases. Mathematical
modeling builds bridges between the molecular scale, that can hardly be observed di-

1It needs to be emphasized that this type of model is not relevant when studying the very first steps of
protein aggregation, when proteins can spontaneously and randomly change conformation. Investigating
the phenomenon of sporadic nucleation is a problem in itself and requires probabilistic tools and stochastic
equations, see for instance [Yvinec, 2012].
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rectly in vivo, and events that happen at larger scales such as pathological symptoms
in the case of neurodegenerative diseases, or phenotypical changes in the case of yeast.
Biologists suggest mechanistic schemes and reactions based on bio-chemical data and
intuition, but testing and using these hypotheses requires the help of mathematics. A
mathematical model may validate or invalidate a proposed mechanism through qual-
itative interpretation, but it can also have a predictive value by using a quantitative
interpretation and asymptotic properties.

1.2.1 Modeling aggregate growth through polymerization

The first process that needs to be represented by the model is templating. In the
Nucleated Polymerization model, aggregates are linear stacks of proteins that can grow
by addition of monomers to their ends. This reaction is called polymerization. The
opposite reaction, loss of monomers from the aggregates, is named depolymerization.
The development of models for protein aggregation was inspired by models of Oswald
ripening and crystallization. Two approaches exist in order to describe aggregate size,
namely discrete or continuous size description. The parameters of these equations are
named identically in both formulations, with the convention that the size-dependency is
indicated by a subscript in the discrete case (ki for size i) and by a function notation in
the continuous case (k(x) for size x).

Discrete approach: the Becker-Döring model. With the discrete approach, we
track the concentration Ui of aggregates of integer size i. If V denotes the monomer
concentration, the polymerization and depolymerization reactions are described by

Ui +V
τi−−→ Ui+1,

Ui
ki−−→ Ui−1 +V.

Here the reaction rates are assumed to be size-dependent in all generality. This translates
into an ordinary differential equation (ODE) for each variable Ui

dUi

dt
= τi−1Ui−1V − τiUiV + ki+1Ui+1 − kiUi.

A minimal size has to be set for the aggregates, and it needs to be greater than or
equal to 2 (since an aggregate of size 1 is a monomer). A common choice is to define
a minimal size of 2. In this case, the complete (and infinite) set of ODEs obtained for
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polymerization-depolymerization is the following







dU2

dt
=τV 2 − τ2U2V + k3U3 − k2U2,

for i > 2,
dUi

dt
=τi−1Ui−1V − τiUiV + ki+1Ui+1 − kiUi,

dV

dt
=− 2τV 2 −

∞∑

i=2

τiUiV +

∞∑

i=2

kiUi + k2U2.

(1.1)

The spontaneous creation of aggregates of size 2 was added, i.e. the reaction

V +V
β

−−→ U2.

The equation on the monomer concentration was also added, so that the system veri-
fies mass conservation. Per usual, the mass ρ is defined as the total concentration of
monomers present in the system, aggregated or soluble

ρ = V +
∞∑

i=2

iUi.

It is straightforward to verify that system (1.1) conserves this quantity over time. This
system is the Becker-Döring model, and it is a simplified version of more general coag-
ulation models. It needs to be completed with initial conditions in order to be properly
analyzed. Existence and uniqueness of solutions, as well as asymptotic convergence and
steady-state solutions are classical results, see for instance [Hingant and Yvinec, 2017].

Continuous approach: the Lifshitz-Slyozov model. With the continuous approach,
aggregate size is described as a real quantity x, and we now track a distribution of
aggregates, where u(x, t) designates the density of aggregates of size x at time t. The
infinite system of ODEs becomes a partial-differential equation, more particularly the
following transport equation

∂u

∂t
(x, t) +

∂

∂x

(
V τ(x)u(x, t)− k(x)u(x, t)

)
(x, t) = 0. (1.2)

Once again the polymerization and depolymerization rates are potentially size dependent
τ = τ(x) and k = k(x). In order to define a well-posed problem, this equation needs to
be completed with boundary conditions as well as initial conditions. A typical choice for
boundary conditions is to impose a minimal size x0 ≥ 0 and

u(x0, t) =0,

lim
x→∞

u(x, t) =0.
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This system gives the continuous counterpart of the Becker-Döring model, and is called
the Lifshitz-Slyozov model. It is also a very classical model, with established results
and conditions for well-posedness, existence of solutions and asymptotic convergence.
The relationship between the discrete and the continuous description has been formally
investigated [Yvinec et al., 2015].
Influence and limitations. The two models we introduced here, the Becker-Döring
model and the Lifshitz-Slyozov model, are classical in the modeling of aggregation pro-
cesses. Indeed they allow to represent the evolution of a size distribution under the
influence of simple mechanistic processes such as polymerization and depolymerization.
They are building blocks for more elaborated models, but they are not complete models
of prion replication in themselves. One reason is that they do not include a secondary
nucleation process, in other words they do not take into account the creation of new
aggregates. The exception here is in the Becker-Döring model, because it includes the
spontaneous creation of a minimal aggregate from two monomers. However this cannot
represent a secondary nucleation process as we described earlier. Indeed this reaction is
not autocatalytic, and the convergence of the system towards an aggregated state does
not depend on the presence aggregates initially. We now introduce a way to make these
models relevant for prion replication, by introducing an aggregate replication mechanism.

1.2.2 Modeling aggregate replication through fragmentation

One commonly suggested mechanism to represent secondary nucleation is fragmenta-
tion. The simplest representation is binary fragmentation: any aggregate can be divided
into two smaller pieces. This process is entirely described by a fragmentation rate along
with a fragmentation kernel. The fragmentation rate β is the size-dependent probability
of an aggregate to undergo a splitting event. The fragmentation kernel κ describes the
transition probability between aggregate sizes. The following formulations are almost
strictly equivalent in continuous or discrete size description, for brevity we only detail
the continuous size-description.
General formulation of the fragmentation equation. Without prior assumptions
on the fragmentation rate or the fragmentation kernel, the fragmentation equation is
written as follows

∂u

∂t
(x, t) = −β(x)u(x, t) +

∫ ∞

y=0
β(y)κ(y, x)u(y, t)dy +

∫ ∞

y=0
β(y)κ(y, x− y)u(y, t)dy.

(1.3)

Aggregates of size x are lost when a fragmentation event occurs with rate β(x), but are
gained by fragmentation of any other aggregate of size y into either a piece of size x or a
piece of size y−x (because we consider binary fragmentation, it also creates a piece of size
x). In the discrete case, this equation is translated into a system of ordinary differential
equations that are strictly equivalent by replacing the integrals with sums and the size
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distribution u(x, t) with a set of concentrations Ui(t).
Relevant assumptions for the fragmentation kernel. The value κ(y, x) represents
the probability of creating an aggregate of size x by fragmenting an aggregate of size
y, as is illustrated by Figure 1.3. In order to make the fragmentation process relevant
mechanistically, the fragmentation kernel has to verify certain hypotheses. The very first
assumption is that the kernel is a probability density, which means that for y > 0

∫ ∞

x=0
κ(y, x)dx = 1.

An aggregate can only fragment into smaller pieces, which imposes

if x > y > 0, κ(y, x) = 0.

The kernel needs to conserve mass, the total number of monomers in an initial aggregate
is recovered in the sum of all its fragments. This expresses as

∫ y

x=0
xκ(y, x)dx = y.

Finally aggregates are not assumed to have any preferential direction of fragmentation
and since we consider binary fragmentation (splitting into two fragments), the fragmen-
tation kernel has to be symmetrical

for y > x > 0, κ(y, x) = κ(y, y − x).

With these assumptions, the fragmentation equation is now reduced to

∂u

∂t
(x, t) = −β(x)u(x, t) + 2

∫ ∞

y=x
β(y)κ(y, x)u(y, t)dy.

Taking into account the nucleus size. In order to fully represent the biological hy-
potheses of the Nucleated Polymerization model, we include the concept of a nucleus size.
This size x0 is the minimum stable size for an aggregate, which means any aggregate that
is created with a smaller size is immediately disassembled into monomers. This reflects
on the monomer equation as follows

dV

dt
= 2

∫ x0

x=0
x

∫ ∞

y=x
β(y)κ(y, x)u(y, t)dydx. (1.4)

Simplification with uniform fragmentation. A classical way of simplifying the frag-
mentation equation is to consider uniform fragmentation. This means that any link in
an aggregate is equally likely to be split. This has two consequences, first the fragmenta-
tion rate is now a linear function of size and by extension we refer to fragmentation rate
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Fragmentation

    rate

Probability

Figure 1.3 – Illustration of the fragmentation rate and the fragmentation kernel.
An aggregate of size y can fragment with rate β(y), into two pieces of size x and y − x.
The fragmentation kernel κ(y, x) represents the probability of creating a fragment of size
x from an aggregate of size y.

as β(x) = βx. The second consequence is that the fragmentation kernel is analytically

expressed as κ(y, x) =
1

y
χ[0,y](x)χ[x0,∞](y), where χI is the indicator function of set I.

This reduces the equations to

∂u

∂t
(x, t) =− βxu(x, t) + 2β

∫ ∞

y=x
u(y, t)dy,

dV

dt
=βx20

∫ ∞

y=x0

u(y, t)dy.

Note that in the discrete case, if the nucleus size is referred to as n0, the monomer
equation is modified to

dV

dt
= βn0(n0 − 1)

∞∑

j=n0

Cj .

This is the only notable divergence between the discrete and continuous formulations
of the fragmentation equation with a nucleus size. With all these terms introduced and
explained, we are now ready to formulate a complete model of Nucleated Polymerization.

1.2.3 The Nucleated Polymerization model

General formulation. The processes introduced above are now combined and used to
formulate the complete Nucleated Polymerization model. Overall it includes the following
mechanisms

• Monomers are produced with a constant speed λ and degraded with a rate γ.

• Aggregates grow by addition of monomers with second order reaction rate τ(x).
Depolymerization is not explicitly included in this formulation.
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• Aggregates fragment with rate β(x) and kernel κ(y, x), and are stable only for a
size larger than the nucleus size x0.

• Aggregates are degraded with rate µ.

These biological processes and reactions are illustrated and summarized in Figure 1.4.

Monomers Aggregates

Figure 1.4 – Biological processes involved in the Nucleated Polymerization
model and notations used in the mathematical formulation, as described in the main
text. The figure illustrates the case of a nucleus size x0 of 3.

In the continuous description, the general formulation of the Nucleated Polymeriza-
tion model is written as follows






dV

dt
= λ− γV − V

∫ ∞

y=x0

τ(y)u(y, t)dy + 2

∫ x0

x=0
x

∫ ∞

y=x0

β(y)κ(y, x)u(y, t)dy,

∂u

∂t
(x, t) +

∂

∂x
(τ(x)V u(x, t)) = −µu(x, t)− β(x)u(x, t) + 2

∫ ∞

y=x
β(y)κ(y, x)u(y, t)dy.

(1.5)

The equivalent system of ODEs in the discrete size description is the following (using the
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same notations for the reaction rates)







dV

dt
= λ− γV − V

∞∑

j=n0

τjUj + 2

n0∑

i=2

i

∞∑

j=n0

β(j)κ(j, i)Uj ,

dUi

dt
+ τ(i)V Ui − τ(i− 1)V Ui−1 = −µUi − β(i)Ui + 2

∞∑

j=i

β(j)κ(j, i)Uj .

(1.6)

This system has been extensively studied analytically [Masel et al., 1999,Greer et al.,
2006,Prüss et al., 2006]. In particular the relationship between the discrete and contin-
uous formulations is well established [Doumic et al., 2009]. The case most studied and
used in practice is the case of uniform fragmentation.

Uniform fragmentation and moment closure. When we add the assumption of uni-
form fragmentation and a constant polymerization rate τ , the system simplifies as







dV

dt
= λ− γV − τV

∫ ∞

y=x0

u(y, t)dy + βx20

∫ ∞

y=x0

u(y, t)dy,

∂u

∂t
(x, y) + τV

∂u

∂x
(x, t) = −µu(x, t)− βxu(x, t) + 2β

∫ ∞

y=x
u(y, t)dy.

(1.7)

This partial differential equation system is particularly interesting because it admits a
moment closure. If we define the first two moments of the aggregate distribution as

U(t) =

∫ ∞

x=x0

u(x, t)dx,

P (t) =

∫ ∞

x=x0

xu(x, t)dx,

it is straightforward to verify that these variables are solutions of a three-dimensional
ODE system. The system obtained by moment closure is written as follows







dV

dt
= λ− γV − τV U + βx20U,

dU

dt
= βP − 2βx0U − µU,

dP

dt
= τV U − βx20U − µP.

(1.8)

This system behaves like a SEI epidemiology model [Prüss et al., 2006]. It has two
possible equilibria, and the behavior of the solutions is based on a basic reproductive
number. This is all summarized by the following theorem.
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Theorem 1.1. The Nucleated Polymerization model. Assume all parameters λ, γ, τ, β

and x0 are positive. For each initial condition taken in X = {(V,U, P ) ∈ R
3 : V,U, P −

x0U ≥ 0}, the system (1.8) admits a unique solution (V (t), U(t), P (t)) for t ≥ 0, with

(V (t), U(t), P (t)) in X.

We define R0 =
λ
γ

βτ
(µ+βx0)2

. Two steady-states are possible.

1. The Disease-Free Equilibrium (V,U, P ) =

(
λ

γ
, 0, 0

)

. This equilibrium exists for

any choice of positive parameters. It is globally asymptotically stable if and only if

R0 ≤ 1.

2. The Endemic Equilibrium (V,U, P ) = (V ∗, U∗, P ∗), with

V ∗ =
(µ+ βx0)

2

βτ
,

U∗ =
(µ+ βx0)

2

µτ(µ+ 2βx0)
(R0 − 1),

P ∗ =
µ+ 2βx0

β
U∗.

It is feasible (U∗ > 0 and P ∗ > 0) and globally asymptotically stable if and only if

R0 > 1.

The proof of this theorem is obtained using classical Lyapunov functions. It is de-
veloped for instance in [Greer et al., 2006]. The Endemic Equilibrium corresponds to
steady-state distribution of aggregates that is analytically tractable, see [Engler et al.,
2006]. Because of these properties, the Nucleated Polymerization model is an attractive
choice for the study of prions. Its simplification into a three-dimensional system reduces
the complexity and the number of parameters, which can then be inferred quantita-
tively [Masel et al., 1999,Tanaka et al., 2006,Rubenstein et al., 2007]. For all of these
reasons, the Nucleated Polymerization model is a starting point for the development of
new and modern models.
Generalizations and extensions. Some studies have suggested more general formu-
lations of this model, in order to overcome some of its limitations. In particular, the
effect of size-dependent parameters (polymerization rate and fragmentation rate) has
been studied in detail using a principal eigenvalue method [Calvez et al., 2009, Calvez
et al., 2010,Doumic and Gabriel, 2010,Calvez et al., 2012]. In the general case, stability
results are not as strong as the ones obtained for constant rates and uniform fragmen-
tation. Overall it is hypothesized but not proven that, under very specific parameter
choices, two endemic equilibria exist, with one of them stable and the other unstable.
Those parameter choices also yield multi-modal steady-state distributions, which are in-
teresting concerning the biology, but too difficult analytically to be used quantitatively.
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Another extension worth mentioning was presented in [Greer et al., 2007]. This study
included a non-linear incidence rate depending on the concentration of aggregates, as
well as a coalescence process through which two aggregates can join and form a larger
aggregate. Overall those modifications do not change the qualitative behavior of the
model and do not change the expression of the basic reproductive number R0. The Nu-
cleated Polymerization model was also extended and used in the context of yeast prions,
see Subsection 5.2.2 for more detail.

1.2.4 Limitations of the classical models

Global behavior. The Nucleated Polymerization model, just like the Becker-Döring
model, is a global model. Its long-term behavior depends on the choice of parameters
but not on the choice of initial conditions. This means that under this perspective, the
(asymptotic) outcome of an infection only depends on the environment and chemical
conditions, but not on the inoculum or seed itself, as long as it contains a positive
concentration of aggregates. It is relevant when studying mammalian neurodegenerative
diseases in vivo, since aggregation can only be detected once it is well advanced and
already irreversible. However, in vitro studies of aggregation phenomena require taking
into account the effects of low densities of aggregates. This problem is also crucial in the
context of multiple interacting strains since the outcome depends strongly on the initial
seed, as we develop in Chapter 2. In the context of yeast prions, global models are also
limited because these prions have the characteristic of being reversible, and this is the
object of more discussion in Chapter 5. The opposite of a global model is a multi-stable
model, where multiple steady-states may be stable at the same time and solutions may
be attracted to one or another depending on the initial condition. To the best of our
knowledge, the only multi-stable models ever introduced in the context of prion biology
were suggested by [Laurent, 1998] and inspired by the hetero-dimer model.

Aggregate diversity. The models we introduced up until now only include one type
of structure, with a simple growth and replication process. This makes the equations
straightforward and the analytical study tractable. However it is in conflict with exper-
imental observations. In particular, as we mentioned previously, prions are composed of
many different co-evolving structures, corresponding to different protein conformations.
As such, the classical models do not capture this aspect but they can be used as building
blocks to design more versatile models. Identifying the mechanisms behind structural
diversification would provide insight into many perplexing features of prion propagation.

Fragmentation is not a plausible mechanism. Discussion with biologists suggests
that fragmentation of mammalian prion aggregates in vivo seems unlikely (personal
communication with H. Rezaei). Indeed these aggregates evolve extra-cellularly in the
cerebro-spinal fluid. This means that they do not interact with intra-cellular chaperones
and machinery that are associated with protein quality control and fragmentation. In
the case of yeast prions, chaperones are indeed involved in the propagation of aggregates,
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and fragmentation is believed to be the main process of aggregate replication. However
the role of these chaperones is not clearly understood and is still controversial, see Sub-
section 5.1.3. As much as fragmentation is appealing in terms of modeling, because it
leads to tractable equations with simple behavior, there needs to be efforts in suggesting
and exploring other secondary nucleation mechanisms.

1.3 Aims and contributions

In this study, we aim at developing new models of prion processes that are adapted
to the biological context and the most recent experimental findings. Three main axes
are defined, each corresponding to a different biological setting and involving a different
mathematical approach.

1.3.1 Structural diversification in mammalian prions

Recent in vitro and in vivo studies of mammalian prions revealed the importance of
structural diversity in the propagation of the disease [Igel-Egalon et al., 2017,Igel-Egalon
et al., 2019b]. It has become clear that aggregates have an internal structure, they are
composed of elementary subunits, and different types of aggregates (each with their own
types of elementary subunits) coexist in a single strain. Part I is dedicated to the study
of this aspect. In this part, we propose a review of state-of-the-art biological results on
aggregate structural diversity and the problems it is associated with, as well as a review
of mathematical models that take into account this diversity. Two contributions are then
proposed. First we suggest a model of aggregate growth and fragmentation by including a
novel species, the elementary subunit, as an intermediate in the polymerization pathway.
This allows us to bring new insight into strain interaction and coexistence problems.
These results are published in [Lemarre et al., 2018]. Next, we propose and study a
model for the formation of small PrP oligomers in vitro. Such oligomers exhibit the same
spectrum of diversity as infectious prion aggregates. In particular, depolymerization of
these oligomers reveals intricate dynamics, with nonlinear effects of concentration as well
as the interaction of multiple timescales. Our model captures some of these qualitative
features by including a complex depolymerization pathway.

1.3.2 Multi-scale prion aggregate propagation in yeast cells

The case of yeast prions is quite different from mammalian prions, and it comes with
its own complexity. Part II focuses on this system. This part introduces the specificities
of yeast prions, in terms of biology but also in terms of mathematical modeling. We then
propose a mathematical framework designed to tackle the multi-scale aspect of the yeast
prion system. This framework is based on the use of impulsive differential equations.
We also introduce a kinetic model of prion replication that is bi-stable. This aspect of
the model is essential and specific to yeast prions, and contrasts with every model used
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before in this context. Our results bring new insights into the study of yeast prions,
suggesting a different perspective on long established results and giving leads for further
investigation. These results are published in [Lemarre et al., 2020].

1.3.3 Spatial propagation of oligomers in neurodegenerative diseases

Part III focuses on the study of the spatial propagation of neurodegenerative diseases
in the brain. We review biological results concerning the role of protein misfolding
in neurodegenerative diseases, with a focus on Alzheimer’s disease. In particular we
emphasize on the importance of structural diversity coupled with spatial propagation
in the progression of the disease. We also review previous mathematical studies that
investigated the spatial propagation of neurodegeneration. We then propose a model
that is based on growth-fragmentation equation coupled with size-dependent diffusion,
and use it to study the propagation of small Amyloid-Beta (Aβ) oligomers during the very
early stages of Alzheimer’s Disease. These results are published in [Andrade-Restrepo
et al., 2019].
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This first part is dedicated to the study of mammalian prions, namely the conformational
change and self-aggregation of the protein PrP in vivo and in vitro. As mentioned in
Chapter 1, these processes are involved in the propagation of various fatal and incurable
diseases including Creutzfeldt-Jakob disease, Kuru, fatal familial insomnia, Gertsmann-
Straüssler-Scheinker syndrome and all transmissible spongiform encephalopathies [Iron-
side et al., 2018]. This chapter introduces the main results obtained by the biologists and
the questions that remain open. We also address previous modeling studies of particular
interest.

2.1 The diversity of prion aggregates

We now detail state-of-the-art knowledge and biological observations about mam-
malian prions, with particular emphasis on the various levels of diversity involved.

2.1.1 The strain phenomenon

Pathological strains and conformational strains. Historically, strains were defined
based on pathological properties, including symptoms, protein deposition and brain lesion
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patterns, incubation time and other biological markers [Morales, 2017]. However, with
the protein-only hypothesis and a clearer understanding of the pathogenesis, strains
were linked to the structural information propagated by prion aggregates [Collinge and
Clarke, 2007]. A strain would then be the consequence of the propagation of one specific
misconformation of PrP, or a conformational strain. The reality is more complex, as is
illustrated for instance by results from [Le Dur et al., 2017], where inoculation of mice
with the same pathological strain leads to infection by different pathological strains,
depending on the level of PrPC expression in these mice and the level of dilution of
the inoculum. The structural information transmitted is the same in each case, but a
different strain is selected in the host depending solely on the amount of available PrPC.
This suggests that pathological strains and structural strains are not identifiable in a
one-to-one relation. Pathological strains are in fact caused by a combination of different
protein conformation, and their associated assemblies. If not specified otherwise, we use
the word “strain” when referring to pathological strains, and “conformation” to refer to
one conformation of the protein.

Interactions of prion strains. Multiple studies have investigated the interaction of
different strains in the same host. One typical way of probing these interactions is
with co-infection studies. An interesting result is that co-infection by different strains
yields an outcome that depends on the timing and the order of the different inoculations
[Langenfeld et al., 2016]. In particular, long incubation strains seem to interfere with the
progression of short incubation strains [Marín-Moreno et al., 2018]. On the other hand,
some strains do not seem to interact in any way and replicate independently [Eckland
et al., 2018]. Even further than selecting a single strain from an initial mixture of different
conformations, co-infection sometimes leads to co-occurrence of different pathological
strains in the same host [Langenfeld et al., 2016,Kobayashi et al., 2019]. Let us imagine
a parallel with population dynamics and evolution. One would think that competition
for a common resource (PrPC monomers) drives the system towards the selection of the
species (prion assemblies) that is most efficient at recruiting monomers. In molecular
biology and virology this is referred to as selection of the best replicator [Nee, 2016]. It
seems difficult to classify pathological strains using this reasoning considering the non-
trivial co-infection results. One could argue that the best replicator reasoning should
be applied to individual aggregated species, considering that these species co-exist and
cooperate to produce different pathological strains. This reasoning is also difficult to
support, since it has been observed that over the course of the disease, the structures
that are selected and favored inside the host are not necessarily the structures most
efficient at replicating [Igel-Egalon et al., 2019b]. Overall, the structural composition
of pathological strains remains difficult to identify, and the interactions between these
different strains are consequently difficult to predict. They require specific modeling
approaches, as the classical models are limited when it comes to studying interacting
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strains, as we develop in Subsection 2.2.1.

2.1.2 Structural diversity of mammalian prion assemblies

With the progress of experimental technology, new insight has been provided on the
structure of prion aggregates. It is now clear that the idea of linear fibrils growing and
fragmenting is outdated.

Internal structure of aggregates. Bio-chemical analysis of PrPSc aggregates revealed
an internal structure that differs from the model of monomers assembling one by one
on top of each other. Indeed [Igel-Egalon et al., 2017] showed the existence of an ele-
mentary protomer or subunit, which constitutes the aggregates. This was evidenced by
a fast-dilution method, where aggregates were isolated and in the absence of available
monomers, the size distribution changed. However the size distribution was not shifted,
instead a transfer was observed between two clearly identified modes in the distribution.
This indicated the disassembly of the aggregates into a smaller species without accumula-
tion of any intermediate. Further investigation revealed that this smaller species did not
correspond to monomers. For the studied strains, PrPSc aggregates are thus composed of
elementary subunits and are in equilibrium (detailed balance) with them. It is hypothe-
sized that this is a common property of all prion aggregates. The subunits themselves are
composed of a few monomers, the exact number is evaluated at 3 although this might
depend on the type of aggregate and the strain considered [Igel-Egalon et al., 2017].
The way these subunits are formed and the precise reactions that drive the equilibrium
between aggregates and their subunits are not yet known in detail.

Poly-dispersity of assemblies. In addition to the internal structure of aggregates, it
was recently observed that different types of aggregates co-evolve during the disease pro-
gression. Of course these different types of aggregates each have their own inner structure.
In particular, it appears that some aggregates are formed during the early stages of the
disease, before being transformed into different, larger aggregates later on [Igel-Egalon
et al., 2019b]. These observations correlate with in vitro observation of polymerization
pathways which include sequential steps with different associated structures. The early
stages of spontaneous in vitro aggregation involve the formation of small oligomers [Eghi-
aian et al., 2007, Chakroun et al., 2010], also referred to as micelles [Alvarez-Martinez
et al., 2011, Hingant et al., 2014]. Early oligomers are already diverse with multiple
subpopulations, and inner structures, as is detailed in Chapter 4. Prolonged incubation
of these oligomers leads to the formation of PrPSc fibrils. Different types of assemblies
are not just associated with a difference in the size of aggregates, as would be suggested
by observing size-distribution data only. In fact, different oligomers observed in vitro

or different types of aggregates observed in vivo at different stages of the disease are
associated with different conformations of the protein. The transition from one type of
aggregate to another implies a structural change of the protein. The sequential transition
between different structures is referred to as the polymerization pathway.
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Overall, at least four levels of organization are identified among prion aggregate pop-
ulations (of a single pathological strain), corresponding to different scales. An illustration
of this diversity and the different scales involved is proposed in Figure 2.1. At the scale
of protein monomers, structural information is stored in the three-dimensional confor-
mation of peptide chains. Inside aggregates, monomers are organized in subunits, or
elementary bricks. Aggregates themselves are organized in a size distribution. Finally
at the largest scale, different aggregate types (each with their inner structure, and their
specific protein conformation) coexist and interact, in order to produce multimodal and
dynamic size-distributions. The kinetics of formation and interactions between these dif-
ferent structures and scales are not fully understood and call for mathematical modeling.

A B C D

Figure 2.1 – Illustration of the four levels of organization in PrPSc aggregate
populations. (A) At the scale of the host, different types of aggregates and oligomers
co-evolve. (B) Aggregates are organized in a size structure. (C) Aggregates have an inner
structure, they are composed of subunits. (D) Inside subunits, the protein monomers
contain structural information in their conformation.

2.1.3 The species barrier

Strain adaptation. A concept that is intimately related to strains is the species barrier,
along with strain adaptation [Igel-Egalon et al., 2018]. Some prion strains are transmis-
sible in heterologous hosts, in other words from one mammalian species to another, or
from one version of PrPC to another. Some strains however, are not transmissible across
species, and when transmission is possible in one direction it may not be possible in
the reverse direction. However the most interesting and puzzling result is that in some
cases transmission is possible only after an adaptation phase [Baskakov, 2014]. Serial
passage (i.e. infecting individuals one after another with brain homogenates) in a new
host species leads to adaptation of the strain. The incubation time decreases upon each
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passage until it reaches a final value [Le Dur et al., 2017]. The number of sequential in-
fections required for full adaptation depends on the strain and species configuration, but
is highly reproducible. Some models have been suggested to interpret these results, with
the formation of intermediate conformations, and convergence towards a host-dependent
optimal strain (with the question remaining of what optimal means).
The role of structural diversity. Recent findings suggest that the key to understand-
ing strain adaptation lies in the concept of aggregate diversity [Igel-Egalon et al., 2019a].
Indeed the species barrier, when it exists, is more difficult to cross by one isolated aggre-
gated species from a pathological strain than by inoculating the full mix of assemblies that
compose this strain. This suggests that the diverse structures and conformations that
compose pathological strains interact and cooperate in the context of strain adaptation.

In recent years, the discoveries in the field of mammalian prion biology have unveiled
increasing levels of complexities and diversity in prion aggregates. Not only do they
exist in different strains, each strain is the combined result of the dynamic interaction of
multiple types of aggregates, each having their own inner structure and their own specific
formation pathway. Structural diversity encapsulates all these levels of organization, and
it is crucial to understand how and why this diversity exists in order to decipher the
properties of prion propagation.

2.2 State-of-the-art models

We now detail the state of prion modeling, with the perspective of the open prob-
lems mentioned earlier and in particular with respect to structural diversity and strain
interactions.

2.2.1 The Nucleated Polymerization model and the limitations of

global models in the context of interacting strains

Subsection 2.2.1 is adapted from published work [Lemarre et al., 2018].

Generalizing the Nucleated Polymerization model. The first step in modeling
prion diversity is to start from classical and established models. The Nucleated Polymer-
ization model, as we emphasized earlier, does not take into account structural diversity.
Yet, it may be used to model a multiple strain scenario. We investigate this approach
by introducing different independent competing strains, each interacting only with the
monomers and evolving following a Nucleated Polymerization model (with strain-specific
parameters). This model is illustrated by Figure 2.2 in the case of two independent
strains. Let us consider the general case of N strains, with N ≥ 2. Each strain evolves
according to the Nucleated Polymerization model with uniform fragmentation introduced
in Subsection 1.2.3, but with specific parameters. The polymerization rate τi, the frag-
mentation rate βi, the nucleus size xi and the degradation rate µi are all positive constants
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dependent on the strain index i = 1 . . . N . Since they all follow a uniform fragmentation
process, we have moment closure and we can write a system of ODEs. The variables
of this system are the monomer concentration V and the first two moments of the size
distribution for each strain Ui and Pi.







dV

dt
=λ− γV +

N∑

i=1

(−τiV Ui + βix
2
iUi),

dUi

dt
=βiPi − µiUi − 2βixiUi, i = 1 . . . N,

dPi

dt
=τiV Ui − µiPi − βix

2
iUi, i = 1 . . . N.

(2.1)

Monomers Strain 1 
aggregates

Strain 2 
aggregates

Figure 2.2 – Variables and parameters for the Nucleated Polymerization model
generalized to the case of two strains.

Equilibrium analysis. Let us now consider the different possible steady-states in our
multi-strain Nucleated Polymerization model given by System (2.1). Note that differ-
ent steady-states are possible depending on the parameters. First, the Disease-Free

Equilibrium, when all prion strains become extinct, always exists and is given by

(V,U1, P1, . . . , UN , PN ) = (λ/γ, 0, 0, . . . , 0, 0).
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Then for each strain i = 1, . . . N , there is a Strain-Specific Endemic Steady-State

corresponding to the asymptotic presence of strain i only. It is given by

(V,U1, P1, . . . , Ui, Pi, . . . , UN , PN ) =
((µi + βixi)

2

βiτi
, 0, . . . , 0,

λβiτi − γ(µi + βixi)
2

µiτi(µi + 2βixi)
,
λβiτi − γ(µi + βixi)

2

µiβiτi
, 0, . . . , 0

)

.

We note that the non-zero quantities in the steady-state correspond exactly to the Nucle-
ated Polymerization endemic steady-state for the strain in isolation. The strain-specific
endemic steady-state is biologically feasible (i.e. all concentrations are positive) only
when λ

γβiτi > (µi + βixi)
2. As introduced in the single strain case, we define a strain-

specific basic reproductive number

Ri
0 =

λ

γ

βiτi
(µi + βixi)2

, (2.2)

and note that biological feasibility of the strain-specific endemic steady-state corresponds
to exactly Ri

0 > 1.
Next, we consider steady-states where multiple strains exist together. We define such

steady-states to be Coexistence Steady-States. We note that for each strain at steady-
state, the following strain-specific relation on the normally folded protein monomer den-
sity must be satisfied:

V =
(µi + βixi)

2

βiτi
=

λ

γ

1

Ri
0

. (2.3)

As such, only strains with the same basic reproductive number can exist together at
steady state. This means that as long as strains have different steady-state normal
monomer concentrations, they cannot coexist at steady-state in this multi-strain model.
Because the reproductive number of a strain Ri

0 is a function of the strain-specific biolog-
ical parameters, it is highly unlikely that these Ri

0 coincide exactly. Moreover, even if by
chance two strains had an identical Ri

0, coexistence would not be robust as the slightest
perturbation of one parameter would completely remove the possibility of a coexistence
equilibrium.
Asymptotic behavior. In addition, much like the original Nucleated Polymerization
model, only one steady-state at a time will be asymptotically stable. The behavior of
this multi-strain model (2.1) is driven by the following theorem.

Theorem 2.1. Assume all parameters λ, γ and τi, βi, xi, µi for i = 1 . . . N are positive.

For each initial condition taken in

X = {(V,U1, P1, . . . , UN , PN ) ∈ R
2N+1 : V,U1, P1 − x1U1, . . . , UN , PN − xNUN ≥ 0},

the system (2.1) admits a unique solution that is in X for all t ≥ 0. Further suppose that
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the quantities Ri
0 =

λβiτi
γ(µi+βixi)2

are distinct pairwise and define

R0 = max
i=1...N

{
Ri

0

}
.

If R0 ≤ 1, the disease-free equilibrium (λ/γ, 0, 0, . . . , 0, 0) is globally asymptotically stable

on X.

If R0 > 1, suppose Strain 1 verifies this maximum (renumbering the strains if necessary),

there exists an endemic equilibrium for each strain with Ri
0 > 1 (including Strain 1). The

equilibrium involving only Strain 1 is given by

(
(µ1 + β1x1)

2

β1τ1
,
λβ1τ1 − γ(µ1 + β1x1)

2

µ1τ1(µ1 + 2β1x1)
,
λβ1τ1 − γ(µ1 + β1x1)

2

µ1β1τ1
, 0, 0, . . . , 0, 0

)

,

and is globally asymptotically stable on {(V,U1, P1, . . . , UN , PN ) ∈ X : U1 > 0, P1 > 0}.

Note that if U1(0) = P1(0) = 0, the outcome will be given by the same theorem without

considering Strain 1.

Proof. The existence and uniqueness of solutions is proved in the same fashion as in the
single strain case, with direct adaptation of the proof provided in [Prüss et al., 2006]. The
global results rely on Lyapunov functions, and the proof is presented in Appendix A.

The limitations of global models. The previous theorem means that the Nucleated
Polymerization model, when generalized to multiple independent strains, predicts the
prevalence of at most one strain. Two strains can coexist at steady-state only if their
basic reproductive numbers are equal, which is highly constraining in terms of biochemical
parameters. This model predicts an outcome where the most efficient strain, which in
this case means the strain with the highest basic reproductive number R0, takes over all
the other strains in presence. In other words, the Nucleated Polymerization model is a
global model, even in the case of multiple strains, and does not allow for coexistence of
strains. This is conflicting with most experimental results we presented above. We wish
to emphasize that this limitation of the Nucleated Polymerization model is common to
all global models, i.e. models for which there is at most one globally stable equilibrium.
In particular, this is also the case of the Becker-Döring model and its multiple-strain
behavior is similar [Wattis, 1999]. In order to allow for more varied strain interactions
and give insight into problems such as the species barrier, it is crucial to investigate
multi-stable models, and we propose one in Chapter 3.

2.2.2 Models of mammalian prions with structural diversity

With the perspective of aggregate structural diversity in mind, we review models that
take this aspect into consideration and that suggest approaches to study it.
Micelles and the incompressible lag-time. The first model to explicitly include a
supplementary step in the polymerization pathway was introduced for the study of in
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vitro PrPSc amyloids [Alvarez-Martinez et al., 2011]. This study exhibited the existence
of an incompressible lag-time for the formation of prion assemblies. The classical nucle-
ation model suggests that the rate-limiting reaction of aggregate formation is the creation
of a nucleus, a stochastic and rare event. This would account for the lag-time in the case
of spontaneous accumulation, however according to this hypothesis the lag-time should
be completely compressed if the reaction starts with existing aggregates, in other words
if the reaction is seeded. The results from [Alvarez-Martinez et al., 2011] show that even
a seeded polymerization reaction is limited by an incompressible lag-time. In addition to
this result, electron microscopy imaging of in vitro samples showed the existence of dif-
ferent structures. In particular the early stage of PrPSc self-aggregation was marked by
the appearance of spherical oligomers, later followed by long linear fibrils. This led to the
formulation of a polymerization model which included an intermediate in the polymeriza-
tion pathway, termed micelles [Hingant et al., 2014]. Those spherical intermediates were
suggested to act as a facilitator for the formation of aggregates. PrPC monomers first
accumulate into these micelles and undergo a preliminary and reversible conformational
change, before forming fibrillar aggregates with an irreversible conformational change.
This model offered a reasonable explanation for the lag time measured in seeded in vitro

polymerization reactions. The model itself is based on the use of multiple Becker-Döring
schemes as building blocks. The idea of an intermediate in the polymerization pathway
is also the starting point of our contribution in Chapter 3.

Structural transition during depolymerization of OvPrP oligomers. Previous
studies have shown that Ovine PrP (OvPrP) spontaneously forms oligomers when incu-
bated at temperatures higher than 45°C. Different types of oligomers are formed within
a few minutes of incubation [Eghiaian et al., 2007], and further investigation of these
subpopulations reveals that they are each composed of multiple constituting elements.
An in-depth introduction to the behavior of OvPrP oligomers is given in Chapter 4, and
we propose a kinetic model to explain the oscillatory and non-linear behavior observed
during the depolymerization of these oligomers.

Monomeric conversion and oscillations. Another case where structural diversity was
considered is the study of oscillations during human PrPSc depolymerization experi-
ments [Doumic et al., 2019]. The difference with the results from [Armiento et al., 2017]
lies in the assemblies subject to depolymerization. Here the depolymerization experiment
is applied to PrPSc (pathological) fibrils of human PrP, and not oligomers of OvPrP. Real
time monitoring of those experiments revealed transient oscillatory behavior. In order to
explain those oscillations, a model was proposed by combining a Becker-Döring model
with a monomeric intermediate. In a way this combines the concepts introduced by the
hetero-dimer model as well as the Nucleated Polymerization model. A novel mechanism
was also included, that of catalyzed depolymerization. In this model, the presence of
normal PrPC monomers catalyzes the depolymerization of aggregates into PrPC. Those
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features allowed the simulations to exhibit similar oscillatory behavior, providing a po-
tential explanation for the experimental observations. The concepts of catalyzed depoly-
merization and monomeric intermediate are both used in our contribution in Chapter 4.

The different models introduced above are based on similar principles. They use
classical models in combination with novel mechanisms, which are all forms of structural
diversification. They were motivated by unaccounted for experimental observations. Note
that they are all global models, and as such are limited if applied to the case of multiple
strains. Our contributions fit in this context, by suggesting mechanisms to complete the
classical models in order to explain biological results.
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Chapter 3 is adapted from published work [Lemarre et al., 2018].

Given the open problems in the context of multiple strains for mammalian prions, as
introduced in Chapter 2, we propose a novel model of prion kinetics. Our aim is to
give insight into the problems of strain interaction, strain adaptation and the species
barrier by including structural diversification of prion aggregates. Structural diversity is
an important aspect of prion dynamics that was neglected until recently, and our results
support the idea that it may be the key to understanding prion strains.

3.1 Introducing the Template Assistance model

3.1.1 A polymerization intermediate

Motivation and inspiration. We introduce a model adapted from the Nucleated Poly-
merization model, with an additional step in the polymerization pathway. Before mono-
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mers are aggregated, they have to be converted into a species that we call subunits.
Subunits act as a templating interface by directly interacting with the monomers, and
their formation is autocatalytic but reversible. Subunits themselves are assembled into
aggregates, following the dynamics of the Nucleated Polymerization model with a uni-
form fragmentation process. This formulation combines ideas from different studies and
experimental results. It is reminiscent of the micelle model from [Hingant et al., 2014],
and the formation of the subunits is inspired from the hetero-dimer model [Cohen et al.,
1994] to which we add a non-linearity in a similar way as in [Laurent, 1998]. The fact
that subunits are the species accumulated into aggregates means we are considering ag-
gregates that have an inner structure, as described experimentally by [Igel-Egalon et al.,
2017].

Model formulation. The model considers three different species through time t ≥ 0,
monomers with concentration V (t), subunits with concentration S(t) and aggregates
with size distribution u(x, t), where x > 0. The processes we consider are illustrated by
Figure 3.1. The aggregates evolve following the Nucleated Polymerization model with
a uniform fragmentation process of rate β and a nucleus size x0, where the subunits S

play the role of the monomers. Using moment closure we restrict ourselves to tracking
the first two moments of the aggregate distribution U(t) and P (t). The formulation for
this part of the model is then given by the last two equations of (1.8), substituting V by
S. The polymerization rate is still denoted as τ and the degradation rate of aggregates
as µ. The monomers are produced with speed λ and degraded with rate γ. The subunits
are reverted to monomers with rate ω and they are degraded with rate δ. We add the
reasonable assumption that subunits are degraded more slowly than monomers δ ≤ γ.
All chemical constants are assumed to be positive. The subunits themselves interact with
monomers in order to convert them, and they do so with a non-linear efficiency. To be
precise, the conversion speed is ρV f(S) with f representing the concentration-dependent
efficiency of subunits in converting monomers. Our choice of function is

f(S) = S
S

K + S
.

This means that the conversion speed is at most ρV S as given by a first order reaction
scheme with rate ρ, but at low concentrations of subunits compared to the threshold
value K, the kinetic order is of 2. This is known as a mixed-order reaction. A mech-
anistic justification for this choice would be the effect of a cooperative mechanism in
subunit formation. Indeed the function we choose is a Michaelis-Menten scheme, which
is common in enzyme reactions along with Hill functions [Weiss, 1997]. So far there is
no experimental support for this mechanistic process, but there is no conflicting results
either. The mathematical motivation for this choice becomes clear when realizing an
equilibrium analysis for the model. The full ODE system we obtain is written as follows:
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dV

dt
=λ− γV − ρV f(S) + ωS,

dS

dt
=ρV f(S)− ωS − δS − τSU + βx20U,

dU

dt
=− µU + βP − 2βx0U,

dP

dt
=τSU − µP − βx20U.

(3.1)

Monomers

Aggregates

Subunits

Figure 3.1 – Illustration of the processes considered in the Template Assistance
model.

Similarly to the Nucleated Polymerization model, the System (3.1) has a unique
positive solution. In particular, we prove the following Lemma.

Lemma 3.1. When the parameters λ, γ, β, τ, µ, x0, ρ, ω, δ,K are all positive, the system

(3.1) admits an unique positive solution for each initial condition taken in

X = {(V, S, U, P ) ∈ R
4 : V, S, U, P − x0U ≥ 0}.

Proof. It is simple to verify that X is positively invariant. Furthermore, for t > 0,
V (t) + S(t) + P (t) is bounded between 0 and λ

ǫ + (V (0) + S(0) + P (0))e−ǫt, with ǫ =
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min{γ, δ, µ}. The proof is concluded as in [Prüss et al., 2006].

3.1.2 Equilibrium analysis

We now investigate the existence and, when possible, the linear stability of the steady-
states of our system. Because it is useful in our analysis, we state here the Jacobian matrix
of System (3.1) for clarity

J(V, S, U, P ) =




−γ−ρf(S) ω−ρV f ′(S) 0 0

ρf(S) ρV f ′(S)−ω−δ−τU −τS+βx2

0
0

0 0 −µ−2βx0 β
0 τU τS−βx2

0
−µ



 .

The disease-free equilibrium. The first steady-state to consider is the the one with no
misfolded proteins, meaning no subunits and no aggregates. The following proposition
is verified.

Proposition 3.1. The disease-free equilibrium exists for any choice of positive parame-

ters, and is given by

(V, S, U, P ) =

(
λ

γ
, 0, 0, 0

)

.

It is locally stable if and only if

λ

γ
f ′(0) <

ω + δ

ρ
.

In particular when f ′(0) = 0, as with the choice f(S) = S2/(K + S), the disease-free

equilibrium is locally stable for any choice of positive parameters.

Proof. A straightforward calculation yields the eigenvalues of the Jacobian matrix at
this point {−γ,−µ− βx0,−µ− βx0,

λ
γ f

′(0)− ω − δ}. For positive parameters, the local
stability depends only on the last one, and it is negative when the condition expressed
above is verified.

The local stability of the disease-free equilibrium is the novel feature, as compared
to the classical Nucleated Polymerization model, that will enable co-stability of different
equilibria. Any other function verifying f ′(0) = 0 would also yield the same property,
but our choice was to introduce as few parameters as possible. On the contrary, a linear
templating rate would not provide co-stability, as explained at the end of this section.

The subunits-only equilibria. A second type of steady-state is possible, when subunits
are present but no aggregates.

36 Paul Lemarre



3.1. INTRODUCING THE TEMPLATE ASSISTANCE MODEL

Proposition 3.2. There exists at most two subunits-only equilibria, and they are given

by

(V, S, U, P ) =

(
λ

γ
−

δ

γ
S±, S±, 0, 0

)

with

S± =
1

2

(
λ

δ
−

ω + δ

ρ

γ

δ

)

±

√
(
1

2

(
λ

δ
−

ω + δ

ρ

γ

δ

))2

−
ω + δ

ρ

γ

δ
K.

These equilibria are feasible (real positive values for V and S) if and only if

λ

γ
>

ω + δ

ρ
+ 2

δ

γ

√

ω + δ

ρ

γ

δ
K.

The equilibrium associated with S− is always locally unstable. The equilibrium associated

with the higher value is locally stable if and only if

S+ <
(µ+ βx0)

2

βτ
.

Proof. If we impose U = 0 and P = 0, the remaining two equations on V and S lead to

V =
λ

γ
−

δ

γ
S,

ρ
(λ

γ
−

δ

γ
S
)
f(S) =(ω + δ)S.

With the choice f(S) = S2/(K+S), the equation on S simplifies to S2+
(
ω+δ
ρ

γ
δ − λ

δ

)

S+

ω+δ
ρ

γ
δK = 0. The solutions are real if and only if

(
1
2

(
λ
δ − ω+δ

ρ
γ
δ

))2
> ω+δ

ρ
γ
δK, and they

are positive if and only if λ
δ > ω+δ

ρ
γ
δ . Combining these two conditions gives the feasibility

inequality as stated in the proposition. The linear stability results are a consequence of
the slightly more general Lemma 3.2 below, noticing that f(S) = S2/(K + S) verifies
the assumptions of the Lemma.

Lemma 3.2. Suppose the function f : R+ → R+ verifies the following assumptions

• f is continuous and positive-valued on R
∗
+,

• f(0) = 0,

• f ′(0) = 0,

• f is monotonically increasing,

• f admits at most one inflection point.

Mathematical models of prion processes 37



3.1. INTRODUCING THE TEMPLATE ASSISTANCE MODEL

Then the system admits at most two subunits-only equilibria

(V, S, U, P ) =

(
λ

γ
−

δ

γ
S1,2, S1,2, 0, 0

)

.

Moreover, if the two equilibria are feasible (0 < S1,2 < λ
δ ) and are ordered as S1 ≤ S2,

then the one associated to S1 is unstable and the one associated to S2 is locally stable if

and only if S2 <
(µ+βx0)2

βτ .

Proof. We look for feasible steady-state solutions with U = P = 0 distinct from the
disease-free equilibrium, meaning V ≥ 0 and S > 0. The first equation of the system

gives a linear relation V =
λ

γ
−

δ

γ
S. The equation on S rewrites as H(S) = (ω + δ)S,

with

H(S) = ρ
(λ

γ
−

δ

γ
S
)
f(S).

Finding feasible subunits-only equilibria comes down to solving this equation on ]0,
λ

δ
], as

illustrated by Figure 3.2. Note that H ′(S) = ρ
(
λ
γ−

δ
γS
)
f ′(S)− δ

γ f(S). The hypotheses on

f imply H(0) = 0, H ′(0) = 0, H(λδ ) = 0, H ′(λδ ) < 0, and H(S) > 0 for S in ]0, λδ [. This
means that H has a maximum value on ]0, λδ [, and since f is monotonically increasing,
this maximum is unique. Furthermore, H ′ also admits a maximum value on ]0, λδ [ and
since f has at most one inflection point, this maximum is also unique. This means that,
geometrically the curves H(S) and (ω + δ)S may interesect at most twice, once with
H crossing from under the line, and once with H crossing from above the line. To be
precise, the equation H(S) = (ω + δ)S admits two solutions as soon as there exists S̄

such that H ′(S̄) = ω+ δ and H(S̄) > (ω+ δ)S̄. Without giving an analytical expression
for f , this condition is not tractable any further.

However, the stability of the equilibria, when they exist, is tractable. Indeed, if the
two solutions are numbered as S1 < S2, then S1 is necessarily the solution corresponding
to H crossing the line from under since H starts with a horizontal tangent in 0, as is
clearly illustrated by Figure 3.2. In other words, we have H ′(S1) > (ω + δ). Similarly
we have H ′(S2) < (ω+ δ). Writing the Jacobian matrix at one of these two points yields
two pairs of eigenvalues. The first pair is given by the roots of the polynomial

χ2 +

(

ω + δ+ρf(S1,2)−
(λ

γ
−

δ

γ
S1,2

)

f ′(S1,2) + γ

)

χ

− γ

(

ρ(
λ

γ
−

δ

γ
S1,2)f

′(S1,2)− ρ
δ

γ
f(S)− ω − δ

)

,
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which is also written as

χ2 +
(

ω + δ −H ′(S1,2) + γ + ρf(S1,2)
(
1−

δ

γ

))

χ− γ
(
H ′(S1,2)− ω − δ

)
.

We immediately conclude that S1 is locally unstable because H ′(S1) > ω+ δ and so one
eigenvalue always has a realpositive part. Since H ′(S2) < ω+δ, and with the assumption
that δ ≤ γ (added when the parameters were introduced), these two eigenvalues have
negative real parts for S2. In order to conclude on its stability we need to investigate the
other two eigenvalues.

The second pair of eigenvalues of the Jacobian matrix at S1,2 is given by
(

− µ −

βx0 ±
√

τβS1,2

)

. Consequently they are negative as soon as S1,2 < (µ+βx0)2

βτ and this
concludes the proof.

Figure 3.2 – Geometric illustration of the subunits-only equilibria conditions.
The conditions for existence of the two subunits-only equilibria as presented in Lemma 3.2
are illustrated. The shape of the function H depends on the hypotheses on f which are
listed in the Lemma.

This result shows that the two subunits-only equilibria emerge through a saddle-
node bifurcation, and that only the one associated with a higher subunit concentration
might be stable. This behavior is not strictly reliant on the choice of function f , and we
propose a minimal set of assumptions it must verify in Lemma 3.2. These assumptions
are reasonable considering f(S) represents the chemical activity of the subunits.

The endemic equilibrium. Finally, there exists a steady-state solution where all species
are present.
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Proposition 3.3. The endemic steady-state (V ∗, S∗, U∗, P ∗) is defined by the following

relations

S∗ =
(µ+ βx0)

2

βτ
,

V ∗ =
λ+ ωS∗

γ + ρf(S∗)
,

U∗ =
1

τS∗ − βx20
(ρV ∗f(S∗)− ωS∗ − δS∗),

P ∗ =
µ+ 2βx0

β
U∗.

This equilibrium is feasible (positive values) when

ρ
(λ

γ
−

δ

γ
S∗
)

f(S∗) > (ω + δ)S∗.

Proof. The feasibility mainly relies on U∗ > 0, which with the value of V ∗ reduces to the
condition expressed above (noticing that τS∗ − βx20 = µ(µ+ 2βx0)/β > 0).

Recalling the conditions of existence of the two subunits-only equilibria, we note that
the endemic steady-state exists when the associated subunit density S∗ is comprised
between the two subunits-only values S± (which implies that these solutions exist in the
first place). These values are indeed the solutions to the equality associated with the
condition expressed in Proposition 3.3. The local stability of the endemic equilibrium
is not tractable analytically, and we investigate it numerically through a bifurcation
analysis in the next section.

Remark. Although we cannot show analytically that the condition f ′(0) = 0 is necessary

for co-stability of different equilibria, we can show that when f is linear co-stability is

not possible. Indeed, if f(S) = S, which is equivalent to K = 0 in all the developments

above, there is only one subunits-only equilibrium associated with the subunit density

Ŝ = λ
δ − ω+δ

ρ
γ
δ . The stability condition for the disease-free equilibrium is reduced to

λ
γ < ω+δ

ρ or equivalently Ŝ < 0, which shows that these two equilibria cannot be both

feasible and stable at the same time. The subunits-only equilibrium is in turn stable

as long as Ŝ < (µ+βx0)2

βτ = S∗ (with the notation of Proposition 3.3. However, the

feasibility condition of the endemic equilibrium is now reduced to V ∗ > ω+δ
ρ (V ∗ defined

in Proposition 3.3) or equivalently λ
δ − ω+δ

ρ
γ
δ = Ŝ > S∗ after simplification. This proves

that the subunits-only equilibrium and the endemic equilibrium cannot be both feasible

and stable at the same time. Overall, when f is linear there are only three possible

equilibria and they appear through a series of transcritical bifurcations, thus there can be

no co-stability.
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3.1.3 Numerical bifurcation analysis

As shown in Subsection 3.1.2, the subunits-only steady-states appear through a saddle
node bifurcation (Proposition 3.2). The endemic steady-state appears when the associ-
ated subunit concentration S∗ crosses one of the two branches S+ or S− (Proposition 3.3).
If it appears through the higher branch, the high subunit only steady-state S+ is stable
at first, and then becomes unstable. If the endemic steady-state instead appears through
the lower branch, none of the subunit only steady-states will be stable (see conditions
in Subsection 3.1.2). These two scenarios are illustrated in Figure 3.3. As the monomer
source rate λ increases, we can see the saddle-node bifurcation followed by the emergence
of the endemic steady-state. This is a numerical illustration of the results proved in the
previous section.

When the endemic steady-state exists, it is either locally stable or unstable. Nu-
merical exploration shows that it undergoes a Hopf bifurcation. This is illustrated with
a numerical two-parameter bifurcation analysis in Figure 3.5. We show dependence on
two key parameters: the monomer synthesis rate λ and the polymerization rate τ . The
bifurcation analysis is based on the properties of the Jacobian matrix at the endemic
steady-state, and we characterize the presence of a Hopf bifurcation as when one eigen-
value crosses the imaginary axis with a non-zero imaginary part. Figure 3.5 illustrates
regions of qualitatively distinct dynamics and the boundaries between these regions cor-
respond to different bifurcation events. The endemic steady-state is only stable in Region
4, and the Hopf bifurcation occurs at the transition between Regions 4 and 5. In Re-
gion 5, only the disease-free equilibrium is locally stable. The solutions can either be
attracted by this equilibrium or undergo stable oscillations. Figure 3.4 illustrates this
behavior in a case where the endemic equilibrium is unstable, but a stable cycle orbits
around it (with oscillations at multiple time scales). The exact nature of these oscilla-
tions is not known analytically, but the most important qualitative result here is that
by crossing this Hopf bifurcation an aggregate population may be destabilized. The fact
that oscillations have been observed experimentally is another reason for interest in that
behavior, see for instance [Doumic et al., 2019]. Overall, the complexities of bifurcations
in our model demonstrate that the addition of the polymerization intermediate with a
non-linear autocatalysis enriches the model with a wide variety of behaviors.

3.2 Coexistence of strains and non-trivial interactions

3.2.1 Two-strain case and equilibrium analysis

As we have emphasized throughout, our primary motivation in developing the Tem-
plate Assistance model is to explore the system when multiple prion strains are present.
We generalize our model to two strains, as illustrated in Figure 3.6. The corresponding
generalization to System (3.1) is the following:
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Table 3.1 – Parameter definitions and values used for numerical simulations of
the Template Assistance model (unless specified otherwise). The values are chosen
arbitrarily, with magnitudes consistent with values from [Masel et al., 1999], where time
is expressed in days. The aggregate-associated quantities are in fibril number per volume
unit

Parameter Definition Value

λ Monomer source rate 1500
γ Monomer degradation rate 5

Strain 1 Strain 2

ρ Conversion rate of normal monomers to subunits 5 1
ω Reconversion rate of subunits 1 1
K Threshold concentration for the conversion kinetics 500 100
δ Degradation of subunits 2 2
τ Polymerization rate of subunits 0.1 0.2
β Fragmentation rate of polymers 0.0003 0.1
µ Degradation rate of polymers 0.04 0.04
x0 Nucleus size 6 6

(a) τ = 0.1 (b) τ = 0.23

Figure 3.3 – Bifurcation diagram obtained for Template Assistance model. The
steady-state subunit density S is tracked when the monomer source, λ, varies for two
values the polymerization rate τ . The other parameters are set as in Table 3.1 (Strain 1).
The four different equilibria are depicted (disease-free equilibrium, endemic equilibrium,
higher subunit only equilibrium (S+), lower subunit only equilibrium (S−)). A thin
line indicates an unstable equilibrium, whereas a bold line indicates a locally stable
equilibrium.







dV

dt
=λ− γV − ρ1V f1(S1) + ω1S1 − ρ2V f2(S2) + ω2S2,

dSi

dt
=ρiV fi(Si)− ωiSi − δiSi − τiSiUi + βix

2
iUi, i = 1, 2,

dUi

dt
=βiPi − µiUi − 2βixiUi, i = 1, 2,

dPi

dt
=τiSiUi − µiPi − βix

2
iUi, i = 1, 2.

(3.2)
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Figure 3.4 – Sustained oscillations of the Template Assistance model. Simula-
tions are shown for τ = 0.1125 and λ = 2000, the rest of the parameters are set as in
Table 6.1. The initial condition is the endemic steady-state (which is unstable in this
case), disturbed by a slight increase in the subunit concentration S. The oscillations are
sustained on different time scales, as emphasized by the different horizontal axis in both
panels.

The interaction functions, fi, are the same as in System (3.1), but now with a strain
specific value of Ki: fi(S) = S2/(Ki + S).

Coexistence is possible analytically. The behavior of this System (3.2) is dramat-
ically different from that of the multi-strain Nucleated Polymerization model (System
(2.1) presented in Subsection 2.2.1). Our new system allows for coexistence of prion
strains. Each strain may exist in the same conditions as single strains do, see Subsec-
tion 3.1.2. Furthermore, two strains may coexist under different configurations: both as
subunits only, or one endemic and the other as subunits only (we will refer to this case as
semi-endemic) or both endemic (with aggregate populations). We note that subunit only
coexistence is impossible for general values of the parameters, with the same argument
that was used to rule out coexistence equilibria in the multi-strain Nucleated Polymer-
ization model in Subsection 2.2.1. Finally, numerical results suggest that semi-endemic
coexistence is very unlikely to occur.
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Figure 3.5 – Two-parameter bifurcation diagram for the Template Assistance
model. The diagram is obtained by varying the monomer source rate λ and the poly-
merization rate τ , when the other parameters are described in Table 3.1 (Strain 1).
The vertical line delimits the apparition of the subunit only equilibria, left of that line
(Region 1) only the disease-free equilibrium exists and it is then globally stable (not
proved). The branches delimit the existence of the endemic equilibrium. In Region 2,
the subunit only equilibria exist but neither is stable. In Region 3, the subunit only
equilibria exist and the higher one (S+) is locally stable. In-between the branches, the
endemic steady-state exists, but it is only locally stable in Region 4. In Region 5, the
endemic steady-state is unstable. The boundary between Regions 4 and 5 corresponds
to a Hopf bifurcation.

The coexistence steady-state for two strains is given by

S∗
i =

(µi + βixi)
2

βiτi
for i =1,2,

V ∗ =
λ+ ω1S

∗
1 + ω2S

∗
2

γ + ρ1f1(S∗
1) + ρ2f2(S∗

2)
,

U∗
i =

1

τiS∗
i − βix2i

(ρiV
∗fi(S

∗
i )− ωiS

∗
i − δiS

∗
i ) for i = 1, 2,

P ∗
i =

µi + 2βixi
βi

U∗
i for i =1,2.

Notice τiS
∗
i = µi(µi + 2βixi)/βi > 0. Similarly to the single-strain case, this equilibrium
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exists when all values of the variables are positive yielding the conditions

ρiV
∗fi(S

∗
i ) > (ωi + δi)S

∗
i for i = 1, 2.

While we were unable to simplify these conditions, they are easily verified for a given
combination of parameters. In particular, we note that for any choice of kinetic rates for
prion strains (βi, τi, ωi, ρi), the coexistence steady-state can always be made to exist by
increasing the monomer source rate λ enough to satisfy the above conditions (because
increasing λ increases V ∗ without changing the values of S∗

1 and S∗
2).

Multiple steady-states are co-stable. The second improvement of our System (3.2)
over the multi-strain Nucleated Polymerization is that it allows for co-stability. As is
the case with a single strain, the disease-free equilibrium is always locally stable (easily
proved with the Jacobian matrix). Again as in the single-strain case, the co-stability
of different types of equilibria (single-strain steady-states and coexistence steady-states)
could not be proved analytically but is be observed through numerical exploration. As
such, the outcome depends on the initial conditions and a numerical investigation gives
some insight into this behavior.

3.2.2 Numerical results

In this section we provide a detailed numerical study of the behavior of the Template
Assistance model we developed in the previous section. We first verify that the behavior
in the single strain case remains similar to the original Nucleated Polymerization model.
We next study the dependency on initial condition when multiple steady-states are locally
stable by numerically investigating the basins of attraction. Notice that in the different
time evolution figures we produce, the evolution of P , the first moment of the aggregates
distribution i.e. the total mass or number of aggregated monomers, is not displayed
because it is very similar to the evolution of U , the zero-th moment of the distribution
i.e. the total number of aggregates. However, P is on a different scale of values than the
other variables so for the sake clarity we do not show it.

The dynamics of the Nucleated Polymerization model are conserved. Because
of its broad acceptance, it is crucial that the qualitative behavior of the Nucleated Poly-
merization model be maintained after modification. A generic study case is presented
in Figure 3.7, comparing the dynamics of the classical model with our model. One can
see the overall dynamics of aggregate formation are qualitatively and quantitatively very
similar for long times. Even though it is not shown, the evolution of P (t) also coincides
with the one observed in the Nucleated Polymerization model for long times. The behav-
ior during early times is dramatically different, because a new species is introduced. Our
focus here is not on transient dynamics because we lack the data to study them, but it
could be a potential way to discriminate between different models. This shows that our
model brings new possibilities without eliminating previously supported behavior [Greer
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Monomers
Subunits

Strain 1 Strain 2

Aggregates Subunits Aggregates

Figure 3.6 – Template assistance mechanism illustrated with two different
strains. The strains compete for normal monomers through the interaction with sub-
units (with rates ρ1 and ρ2). The dynamics of each strain taken individually are then
described as in Figure 3.7.

et al., 2006,Prüss et al., 2006,Masel et al., 1999], especially on aggregate formation, size
and numbers.

The Template Assistance model exhibits co-stability. Even though the Nucleated
Polymerization dynamics can be reproduced, our model offers a new variety of behaviors
even for the single strain case. Because the disease-free equilibrium remains locally stable,
our system exhibits dependency on the initial conditions. Figure 3.8 represents the basins
of attraction of the endemic steady-state and the disease-free steady-state, for the case
studied in Figure 3.7. This helps to visualize the complexity and the diversity of behaviors
allowed by our model. A biological interpretation for the shape of the basins plotted in
Figure 3.8 would be that an outbreak of prion propagation is possible only by having a
specific initial mix of subunits and aggregates. In particular, starting off with too many
aggregates (U(0) high) would prevent the subunits pool from successfully building up.
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Figure 3.7 – Numerical simulation using the Nucleated Polymerization model
(a) and the Template Assistance model (b). The parameters used are described
in Table 3.1 (Strain 1). The initial condition is given by V (0) = λ

γ = 200, U(0) =

0.1, P (0) = (2x0 +
µ
β )U(0), S(0) = 0.2.

We want to stress out that the important aspect of Figure 3.8 is the shape of the basins,
the precise values for the borders are irrelevant due to the arbitrary choice in parameters.
Furthermore, this shape is subject to change when modifying the parameters, although
so far we have no way of predicting these changes analytically. A numerical investigation
could be undertaken, but in order to make biologically relevant predictions we require
experimental observations or experimentally derived biochemical parameter values (see
Subsection 3.3.2).

Figure 3.8 – Representation of the basins of attraction of the Template Assis-
tance model. The basins of the endemic steady-state (dark color) and the disease-free
steady-state (lighter color) are represented, according to the initial condition. The hori-
zontal axis represents the initial number of subunits, and the vertical axis represents the
initial number of aggregates. The parameters used are these of Strain 1 in Table 3.1, the
initial value for V is set to λ/γ (disease-free value), and the initial value for P is set to
(2x0 + µ/β)U(0) (steady-state mean size).
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The two-strain case exhibits coexistence and co-stability. To support the ana-
lytical results on strain coexistence (Subsection 2.1.1) and give numerical evidence of
co-stability we show some simulations with two strains. Figure 3.9 illustrates the differ-
ent possible outcomes, depending on the initial conditions. The set of parameters used
(see Table 3.1) allows for four different equilibria to be co-stable (disease-free equilibrium,
two single strain equilibria and coexistence equilibrium). Depending on the initial mass
of each strain, the outcome can be the takeover of one strain or the stable coexistence of
both, or the extinction of both. The shapes of the different basins of attraction are com-
plex and non-intuitive. Indeed, in some cases increasing the initial amount of one prion
strain can lead to its extinction (see the right-hand side of Figure 3.9). Although such
behavior seems highly complex, we note that coexistence and co-stability are phenomena
supported by experimental studies on mammalian prions [Langenfeld et al., 2016].

(a) Linear scale (b) Logarithmic scale

Figure 3.9 – Representation of the basins of attraction of the different equilibria
in the two-strain case, in linear scale and logarithmic scale. The parameters used
are described in Table 3.1. Each strain is initialized with its steady state proportions
(see Subsection 3.1.2) and diluted with a specific rate (between 1 and 1.10−5), and V
is initialized to the disease-free value λ/γ. The axes represent the initial mass of each
strain, i.e. the initial value of P + S for each strain (Strain 1 on the horizontal axis,
Strain 2 on the vertical axis). The colors represent the outcome of the simulation (with
the colorbar above), one strain only or the two strains stably coexisting. Notice that the
disease-free equilibrium is observed only in the bottom left corner.
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(a) (S1(0), U1(0), P1(0)) = (12.8, 44.0, 6398) and (S2(0), U2(0), P2(0)) = (4.5, 249.5, 3095)

(b) (S1(0), U1(0), P1(0)) = (13.4, 46.0, 6689) and (S2(0), U2(0), P2(0)) = (4.7, 260.9, 3235)

(c) (S1(0), U1(0), P1(0)) = (17.5, 60.0, 8725) and (S2(0), U2(0), P2(0)) = (6.1, 340.3, 4220)

Figure 3.10 – Illustrations of typical cases from the diagram shown in Figure 3.9,
representing the time evolution of the two strains (blue line is Strain 1, orange line is
Strain 2). The parameters used are shown in Table 3.1. In each case, V is initialized
to the disease-free steady-state λ/γ, and the strains are initialized with the specified
conditions. The top panel (a) shows takeover of Strain 1, the middle panel (b) shows
takeover of Strain 2, whereas the bottom panel (c) shows asymptotic coexistence of both
strains.
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3.3 Discussion and perspectives

In this work, we have developed a novel model of prion aggregate dynamics which, in
contrast to the traditional model in the field, is capable of supporting recent biological
observations in mammalian prions systems [Le Dur et al., 2017,Langenfeld et al., 2016].
While a lack of detailed experimental findings have made precise quantitative compar-
isons impossible, the qualitative analysis of our model provides insight into a number
open problems of prion phenomena as we discuss below.

3.3.1 Insight into open problems in prion biology

The interplay between structural diversity and pathogenesis. The model we in-
troduce here suggests one implementation of structural diversity into the classical model-
ing framework. In particular, the idea is to add an intermediate step in the polymerization
pathway, between normal monomers and prion aggregates. This allows us to separate
templating (conformational change of monomers) and polymerization (formation of ag-
gregates). Furthermore, we emphasize on the importance of adding a non-linearity in
the templating process, since it is crucial in order to observe co-stability and to have
dependency on the initial conditions. The additional species in the model inevitably
increases the number of parameters, complicates the analysis and confuses the inter-
pretation. However it suggests clues to explain some perplexing results, such as the
decorrelation between measured aggregation and infectivity. Indeed experimental stud-
ies have reported that the infectivity, the potential to cause disease upon transmission to
a healthy host, rises before any aggregated species is detected in the organism [Ruben-
stein et al., 1991,Mays et al., 2015]. This is referred to as the “infectivity plateau”, and
it is most likely related to the lag-time that limits in vitro polymerization experiments.
This lag-time was evidenced and studied with the introduction of micelles [Hingant et al.,
2014], a model very similar to ours. Overall this suggests that structural diversity has
a strong impact on infectivity and pathogenesis. This is also supported by recent cross-
species studies [Igel-Egalon et al., 2019b], where reducing the structural diversity of a
strain makes it less apt at crossing the species barrier. Thus the question arises: What is
the infectious agent? Since there are multiple aggregate species co-evolving, which ones
are driving the propagation and the replication of the prions? Our model supports the
idea that the driving species would be the smaller, soluble and amorphous species, not
detectable as aggregates.

Structural diversity enriches prion strain interactions. As our model illustrates,
introducing diversity in the prion populations is a way to allow for different strains to
interact in intricate ways. In particular, they can coexist in robust settings (for wide pa-
rameter ranges), which is a result supported by many observations (see Subsection 2.1.1).
They can also interact in unpredictable ways (as suggested by the puzzling shapes of
the basins of attraction in Figure 3.8 and Figure 3.9). This qualitatively concurs with
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experimental results of co-infection studies and cross-species transmission (see Subsec-
tion 2.1.1). Overall this emphasizes how important the concept of structural diversity
is in understanding the phenomenon of strains. Many questions remain, because we do
not know the exact structural composition of different strains, the dynamics of their
formation and their interactions.

Co-stability and the influence of the inoculum. The second feature that our model
introduces is co-stability, through the addition of a non-linearity in the templating of
monomers. This allows the asymptotic outcome to depend on the initial conditions,
which is crucial in order to reproduce experimental results (even qualitatively). This
relates to co-infection studies, dependency on the monomer expression level, cross-species
transmission, strain adaptation, among other results (see Section 2.1). It concurs with
the idea that structural diversity plays critical a role at the very early stages of the
infection [Igel-Egalon et al., 2019b], and non-linearities come into play at this point. It is a
radically different approach from the one classically used in modeling prion diseases. The
usual idea is to use epidemiology models, but those models are (for the most part) global
models, for which the asymptotic outcome only depends on a function of the parameters
(the basic reproduction rate) and a linearization around the disease-free equilibrium.
Our results emphasize the importance in turning to different approaches, by including
non-linearities and co-stability. So far we have no mechanistic justification for the model
we proposed, but we think that, from a mathematical standpoint, it includes the right
elements.

3.3.2 Challenges and limitations

In order to compare the numerical results we observe with in vivo behavior, we must
be able to infer realistic values for the model parameters. Few studies have investigated
parameter inference before [Masel et al., 1999, Derdowski et al., 2010], and then only
in the case of a single strain. Refining parameter values requires detailed experimental
studies, when in vivo experiments are long and costly.

However, before we can hope to fit parameters, it must be clear how to link bio-
logical observable markers (i.e., prion phenotypes) with quantities in our mathematical
model. What biologists observe and quantify are global properties related to the disease
(incubation time, deposition pattern, molecular density distribution, migration patterns,
see [Morales, 2017] for a detailed description), but it is not clear how these properties are
linked to the bio-chemical kinetics of aggregate formation. Mounting evidence suggests
that phenotypes (disease properties) are not necessarily linked to prion strains (conforma-
tional states of the protein) in a one-to-one relation. Some phenotypes could potentially
be composed of a mixture of different strains, and in some cases, strains are propagated
“silently” (not influencing the phenotype) [Le Dur et al., 2017]. This makes it even more
complicated to determine each strain’s characteristics.

By introducing a novel species (prion subunits) we have contributed to complicate the
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question of what is the infectious agent of prion phenotypes. It is not clear what causes
disease and what causes the onset of symptoms. Some insight from our primary study
would be that infectivity might be optimal when the inoculum consists of a specific
mix of aggregates and subunits. Disturb these proportions and the propagation fails.
Our work also suggests that these proportions are strain-specific, and dependent on the
environment or on the presence of other strains.

Finally, we emphasized the importance to introduce a mechanism to account for
the non-linearity in the templating rate of subunits, yet we have no justification or
evidence for such a mechanism in vitro or in vivo. Understanding the dynamics of prion
assemblies at the very early stages of the disease, before detection of any aggregated
species is detectable, is crucial but very challenging. Interestingly, we reach a very
similar conclusion in our contributions to yeast prions in Part II but from completely
different biological results.

3.3.3 Parallel with ecology

The coexistence of strains allowed by our model is similar to the phenomenon of
“predation-mediated coexistence” in ecology.1 First, in the basic model (Subsection 1.2.3)
the aggregates, predators, compete for the same resource, monomers. As such, they
cannot coexist which is coherent with the competitive exclusion principle in ecology. In
our model (Section 3.1), the aggregates are still predators but they do not compete for the
same subunits, the equivalent of preys. These subunits do compete for a shared resource,
but the predation limits their proliferation and thus their resource uptake. This allows
different strains of subunits to coexist (as long as they are in presence of aggregates). This
type of coexistence was exhibited in some ecological systems, for instance the Daphnia

planktons [Declerck and Meester, 2003,Gliwicz and Wrzosek, 2008].

Judging from this rationale, other ideas could potentially yield the same outcomes,
namely coexistence and co-stability. One idea would be to bound the monomer uptake of
aggregates by including a non-linear aggregation rate in the equations of the Nucleated
Polymerization model (Subsection 1.2.3). Indeed if the polymerization speed saturated
with high numbers of aggregates, we could potentially obtain coexistence. It could for
example model the fact that the aggregates are in a constrained volume and their proba-
bility to encounter free monomers goes to 0 as their numbers grow. In the case of mammal
brains or yeast cells, the aggregate densities at play are very low and the available volume
is not limiting. This hypothesis is not relevant in our biological context, and this is why
we do not develop it here.

1This side note is based on a comment we received during the review process for [Lemarre et al.,
2018]. I found it interesting for general culture and chose to keep it in the final manuscript.
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3.3.4 Conclusion

The model we introduce in this chapter suggests a way to explain how structural
diversity impacts the behavior of prions. The range of behaviors exhibited by this model
is far more extended than for the Nucleated Polymerization model, or any other classical
model. However it is still far from reaching the level of complexity that prion processes
display in vivo, but it emphasizes two essential components. Structural diversity, in
particular intermediate steps in the polymerization pathway, is a key element to study
prion strains and prion pathogenesis in general. The second key aspect is multi-stability,
which allows for dependency on the inoculum and could be related to many puzzling
results such as strain adaptation and selection. However, we have no proposition of
a mechanistic model that supports this multi-stability, and no biological clue into the
non-linearity we have empirically introduced in our model.
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This chapter is dedicated to the study of PrP oligomers formed in vitro which are,
in some cases, precursors of infectious prion assemblies. These oligomers exhibit the
same depth of structural diversity as prion aggregates observed in vivo, with different
levels of organization and complex interactions. The onset of this diversity happens in
a matter of minutes following thermal treatment of monomers, and so far no kinetic
model accounts for the complete spectrum of structures formed in these early moments.
We present here detailed biological results concerning OvPrP oligomers, emphasizing the
signs of structural diversity. We use these clues to build a relevant kinetic model which
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reproduces a number of specific experimental results and, in particular, the oscillatory
behavior observed during depolymerization of H190A P1 oligomers.

4.1 The complexity of OvPrP oligomers

4.1.1 OvPrP spontaneously assembles into a diverse set of structures

Multiple subpopulations. As previously reported by different groups, OvPrP mono-
mers spontaneously assemble into oligomers when incubated at elevated temperatures (at
least 50°C) and at sufficient concentrations (above 3µM) [Eghiaian et al., 2007,Chakroun
et al., 2010]. Monitoring oligomerization experiments with Size-Exclusion Chromatogra-
phy (SEC) reveals the presence of multiple subpopulations. SEC is an experimental tool
which separates macromolecules depending on their size, by transporting them through a
porous gel. Coupled with a spectroscopic method, it allows measurement of the amount
of protein depending on the elution volume, which is directly related to the size of the as-
semblies. This gives a representation of the size distribution in the studied sample. In the
case of OvPrP oligomers, a typical chromatogram is shown in Figure 4.1. The axis of or-
dinates is the absorbance at a set wavelength (here 280 nm), which is proportional to the
concentration of PrP monomers for the corresponding elution volume. This means that
the curve represents the distribution of the first-order moment over size, in other words
it represents the percentage of PrP (monomers) in each size compartment. The relation
between elution volume and size is inferred by calibration experiments, see [Armiento
et al., 2017] for more details. The two peaks observed in Figure 4.1 (in addition to the
monomer peak) were notably decorrelated as three underlying distributions by [Eghiaian
et al., 2007], but this interpretation is mostly artificial, and we only consider two subpop-
ulations. We refer to these as P1 and P3. P3 is centered around sizes of about 9-mers,
and P1 ranges from 20-mers up to about 60-mers. Noticeably, P1 is the only subpop-
ulation that is a precursor to prion fibrils as it condensates into infectious aggregates
upon ultra-centrifugation. The properties of these distinct assemblies were assessed by
various following experiments, including changing incubation conditions (concentration,
temperature) and using different mutants of PrP [Eghiaian et al., 2007,Chakroun et al.,
2010]. Figure 4.2 presents an overview of the effect of concentration on the dynamics of
formation of these oligomers: both P1 and P3 appear within 2 minutes of incubation,
but the growth of P1 and its shift towards larger sizes happens at a much slower pace.
Remarkably, at low concentrations, P1 reaches larger sizes of assemblies than at high
concentrations (the distributions shifts further to the left on the chromatograms).

Genetic manipulations reveal further levels of diversity. The most compelling
evidence that these different structures interact is the fact that various point-mutations
affect the balance between P1 and P3. As explored in [Chakroun et al., 2010], some
mutants favor the formation of P3 or P1 or do not self-oligomerize at all. In partic-
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Figure 4.1 – Size-exclusion chromatography of OvPrP oligomers. Normalized
absorbance at 280 nm versus elution volume, in the case of wild-type OvPrP oligomers
formed by incubation of monomers at 100µM and 48 °C for 90 minutes. Data from
[Eghiaian et al., 2007] and provided by H. Rezaei.

ular, the mutant H190A mostly accumulates under the P1 peak, as illustrated by the
chromatograms in Figure 4.3. Since P1 is the only subpopulation that may lead to in-
fectious prions, this mutant drew attention in previous studies [Armiento et al., 2017],
and we investigate its behavior in detail in Subsection 4.1.2. To go even further in the
investigation of point-mutations, co-polymerization experiments were led (unpublished
data, H. Rezaei). It was observed that non-self-polymerizing variants of PrP are effi-
ciently incorporated into existing P1 oligomers of wild-type or H190A PrP. Even more
striking is the case of hetero-polymerization with subcritical concentrations of wild-type
PrP. Subcritical refers to the case when the concentration of PrP is not elevated enough
so that oligomers are formed in reasonable time (a few hours). Surprisingly, incubating
subcritical wild-type monomers along with non-self-polymerizing monomers leads to the
formation of full oligomer distribution and diversity, when neither of these reactants alone
produce oligomers. This data is still under investigation and is yet unpublished, but it
suggests that there is a conformational change which happens prior to accumulation of
large assemblies, at least without accumulation of structures that may be distinguished
from monomers with the resolution of SEC. This does not strictly exclude the possible
accumulation of dimers or trimers. The precise role of this subcritical conformational
change is unclear, but it does allow oligomerization of OvPrP mutants which do not
aggregate in isolation. In our modeling approach (see Section 4.2) we propose a system
that directly includes this property.
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Figure 4.2 – Dynamics of formation of wild-type OvPrP oligomers. Size-exclusion
chromatograms taken at various times (indicated by color) during incubation at 48°C and
for various initial concentrations of wild-type OvPrP monomers (corresponding to rows).
(data from [Eghiaian et al., 2007]).

Diversity of the P1 subpopulation. In order to explore the specific structure of P1,
another experimental approach was suggested (which was not yet available at the time of
[Chakroun et al., 2010]). Atomic Force Microscopy (AFM) allows the direct observations
of molecules at the scale of a few nanometers. The setup consists of a scanning needle
or tip, which probes the surface of the sample [Dufrêne et al., 2017]. The surface is
typically made of crystal, such as mica, which is very flat, on which molecules have been
deposited. The tip end is as sharp as a single atom, and moves vertically as the probe
scans the sample surface. The vertical inclination is directly measured using a laser and
a reflective cantilever. This experiment produces images in which each pixel contains a
number corresponding to the height of the sample at this point, revealing information
on the shape of the structures observed. A typical AFM image of P1 oligomers is shown
in Figure 4.4. It reveals that the P1 subpopulation contains different types of elements,
even though it appears as a unimodal distribution in chromatograms. At least two types
of elements are identified and illustrated in Figure 4.4, namely the large spheres which
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Figure 4.3 – Dynamics of formation of H190A OvPrP oligomers. Size-exclusion
chromatograms taken at various times (indicated by color) during incubation at 48°C
and for an initial concentration of 80µM of H190A OvPrP (H. Rezaei, unpublished).

we denote as S elements, and the straight extensions which we refer to as E elements.
It has been suggested that S acts as a base for E to grow upon, although this is yet to
be confirmed. AFM images are taken after isolating P1 oligomers (using a size-exclusion
process) from the rest of the system which means that monomers are not present when
the images are captured. Note that OvPrP oligomers are inactive and immobile at room
temperature, hence they do not move during the AFM process.

4.1.2 Depolymerization experiments and the case of H190A

Static Light Scattering as non-invasive monitoring technique. One approach to
investigate the properties of the different subpopulations identified through SEC or AFM
imaging is to subject these structures to thermal treatment in order to destabilize them.
These experiments, generally referred to as depolymerization experiments, are often mon-
itored using a technique called Static Light Scattering (SLS). SLS is based on the principle
of Rayleigh diffusion by objects smaller than the wavelength [Hulst and van de Hulst,
1981]. A laser beam is focused on the sample, and the scattered light intensity at a cer-
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S element

E element

Figure 4.4 – Typical AFM image of wild-type P1 oligomers. (Left) The color
codes for the height of the objects, from 0 (blue) to 8 nm (red). (Right) Schematic
representation of the different types of elements identified in the P1 subpopulation. (H.
Rezaei, unpublished).

tain angle is measured continuously as the chemical system evolves. At each time point,
the incident intensity and the scattered intensity are proportional. The ratio depends on
calibration parameters, the wavelength of the laser, the total concentration of the sample,
but also on the molecular weight of the assemblies in the sample. In fact, it is directly
proportional to weight-average molecular weight of the sample 〈Mw〉 (as opposed to the
number-average molecular weight). If the index i denotes the size of the objects in the
sample (in terms of number of monomers) and Ci(t) denotes the concentration of objects
of size i at time t, this quantity writes as

〈Mw〉 (t) =

∑∞
i=1 i

2Ci(t)
∑∞

i=1 iCi(t)
.

During an experiment monitored by SLS, the reaction happens in a vial and the system
is closed, which means the total concentration of monomers in the system

∑∞
i=1 iCi(t)

does not change. In this case, the SLS signal is directly proportional to the order two
moment of the size distribution of elements in the solution

∑∞
i=1 i

2Ci(t). It is thus an
averaged and non-linear evaluation of the size of the objects in real time. The timescale
of such a measurement is of about 10s. Consequently, monitoring a reaction by SLS
gives insight into the underlying dynamics of the system in a way that is not achievable
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with SEC or AFM. Indeed, even if multiple chromatographies are realized at different
time points, it is not reasonable to aim for a time-resolution of less than a few minutes.
For our purposes here, we do not go into further detail regarding the SLS measurement
and the physics of light scattering (we redirect the interested reader to [Hulst and van de
Hulst, 1981] for more information).

Depolymerization of wild-type P1 reveals the transfer from one subpopulation

to another. The depolymerization of wild-type P1 was studied in detail by [Armiento
et al., 2017]. The P1 subpopulation was isolated (with a process similar to SEC), diluted
to a given monomer-equivalent concentration and then subjected to thermal treatment
at 70°C. The SLS monitoring of these experiments revealed that, above a certain concen-
tration of about 7µM , the depolymerization of P1 was followed by the slow accumulation
of large species, as illustrated in Figure 4.5. This was confirmed by taking SEC chro-
matograms at various time points (see [Armiento et al., 2017]). These chromatograms
showed no sign of accumulation of an intermediate between P1 and the monomer during
the depolymerization phase or the re-polymerization phase. The objects formed after
unfolding and refolding were observed to be even larger than the objects initially present
in the sample. An explanation was suggested, a simple one-way transition of mass be-
tween two underlying subpopulations, and a mathematical model was proposed, which
reproduced the results with satisfying agreement.

The case of H190A depolymerization. As mentioned above and illustrated in Fig-
ure 4.3, H190A was identified as a mutant which favors the formation of mostly P1

[Chakroun et al., 2010]. Upon investigation with AFM, H190A P1 oligomers appear
similar to wild-type P1 (not shown). However, depolymerization of H190A P1 reveals
complex and unaccounted for behavior. In these experiments, H190A OvPrP was first
incubated at 100µM and 55°C for 5 hours, then P1 was isolated using size-exclusion chro-
matography. It was diluted to the desired monomer-equivalent concentration and then
subjected to constant heating at 70°C. The SLS signal obtained during depolymerization
at various concentrations is shown in Figure 4.6. The different observations start with
the same initial composition of objects, the only difference being the dilution of these
objects. This explains why the SLS curves overlap at the beginning1. The difference with
the depolymerization of wild-type P1 is striking. A few features are worth pointing out.
First we observe an initial exponential decrease. This initial phase does not seem to de-
pend on concentration, which suggests an order 1 reaction. However the slow oscillations
that follow are extremely dependent on concentration. The depolymerization seems par-
ticularly accelerated at the specific concentration of 1µM . This nonmonotonic variation
with concentration is likely the result of an intricate kinetic scheme, with multiple orders
of reaction involved. The second noticeable behavior is the fast spiking observed at the

1The calibration was also kept identical through all the different experiments with H190A, which was
not the case for the wild-type depolymerization experiments shown in Figure 4.5.

Mathematical models of prion processes 61



4.1. THE COMPLEXITY OF OVPRP OLIGOMERS

0 100 200 300 400 500 600 700 800 900 1000

t (min)

0

1

2

3

4
S

L
S

 s
ig

n
a

l

10
4

1  M
3  M

7  M

0 5 10 15 20 25 30

t (min)

0

1

2

3

4

S
L

S
 s

ig
n

a
l

10
4

Figure 4.5 – SLS monitoring of the depolymerization of wild-type P1. The
depolymerization of isolated P1 subpopulation at 70 °C was monitored by SLS, at dif-
ferent monomer-equivalent concentrations, in function of time. (Top) Full time range of
experiment. (Bottom) First 30 minutes. (data from [Armiento et al., 2017]).

scale of a few minutes. These spikes are most likely not experimental artefacts, because
further experiments revealed that they were highly reproducible (data not shown). In-
stead the spiking behavior suggests that there are multiple time scales involved in the
dynamics of this system. In fact similar spiking is also observed in the case of the wild-
type P1 (see Figure 4.5), even though it was dismissed in earlier studies [Armiento et al.,
2017].

4.1.3 Objective and modeling hypotheses

The detailed investigation of OvPrP oligomers unveiled a surprising amount diversity
and complex interactions. Although it is a simple experimental system in practice (a
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Figure 4.6 – SLS monitoring of the depolymerization of H190A P1. The depoly-
merization of isolated P1 subpopulation from H190A oligomers at 70°C was monitored
by SLS, at different monomer-equivalent concentrations, in function of time. (Top) Full
time range of experiment. (Bottom) First 30 minutes. (H. Rezaei, unpublished).

single protein, taken in isolation and subjected to thermal treatment), it requires an
intricate kinetic model in order to be successfully reproduced. For the sake of clarity and
efficiency, we reduce the problem to a few questions of interest and we propose a set of
relevant hypotheses to frame our approach.

Depolymerization of H190A P1: non-linear concentration effects and multi-

ple timescales. The particular problem we focus on for the rest of this chapter is the
depolymerization of P1 oligomers formed from H190A OvPrP mutant. The curves pre-
sented in Figure 4.6 show intricate behavior, with the interlacing of reactions at different
timescales. The nonmonotonic effect of concentration on the order two moment is in-
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triguing and no classical model reproduces this behavior. Indeed with classical models
of growth-fragmentation, the only order two kinetic rate is usually the polymerization
reaction. This reaction thus outscales the others as concentration increases, and the ef-
fect on the order two moment is monotonic (increasing). To the best of our knowledge,
no published model allows for an accelerated drop in size at a specific concentration.
A novel process must be introduced, and we suggest one in Section 4.2. Our aim is to
reproduce the qualitative behavior of the curves in Figure 4.6, both the concentration
effects and the spiking. Although we focus on depolymerization experiments, we strive
to build a model that also allows representing oligomerization experiments.

Working hypotheses. In order to be biologically relevant and to limit the modeling
possibilities, we define a set of framing hypotheses. The studied system is closed and
no degradation of PrP monomers happens during the length of the experiment, which
means our model should verify mass conservation (in terms of monomers). The system is
fairly purified and the only chemical species in action is PrP. For this reason, we restrict
ourselves to mass-action kinetic rates based on mechanistic interactions of the objects.
We artificially impose some kinetic scaling orders, but without overstepping the threshold
of a total kinetic order of 3 for a single reaction. This means that our modeling approach
does not include activation functions, enzyme-substrate dynamics or other complex non-
linearities. Indeed our goal is to identify key processes and a minimal set of non-linear
interactions to obtain the qualitative behavior described earlier.

4.2 Introducing a kinetic model of H190A oligomers

We propose here a kinetic model for the dynamics OvPrP oligomers, built from
experimental observations and reasonable assumptions, within the framing hypotheses
described in Subsection 4.1.3. Our specific goal here is to reproduce the qualitative
behavior of depolymerization experiments of P1 oligomers from H190A.

4.2.1 From biological observations to model design

Introducing a transient dimer species. As mentioned in Section 4.1, a conformational
change happens prior to accumulation of large species, and this change is a necessary
intermediate in the polymerization pathway of P1. We suggest the existence of a transient
dimeric (size 2) species T which forms spontaneously from monomers M with a rate α,
autocatalyses with a rate ρ and disassembles back into monomers with a rate ω. This
corresponds to the following reactions

M+M
α

−−→ T,

2 ·M+T
ρ

−−→ 2 ·T,

T
ω

−−→ 2 ·M.
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Evidence for an intermediate species was suggested in oligomerization experiments (un-
published, H. Rezaei), where it prevents the formation of assemblies by mutants that
do not form this transient species. The spontaneous formation rate α is assumed to be
much lower than the autocatalytic replication rate ρ, so that α only influences the early
stages of oligomer formation.

Modeling P1 oligomers as a base S and an extension E. Based on the observa-
tions of AFM images of P1 oligomers (see Figure 4.4), we describe these objects using
two types of constituting elements. The S element acts as a building pedestal for the
extension E to grow. This assumes that S elements appear first during the oligomer-
ization, and form the initial P1 peak observed in chromatograms (see Figure 4.3 and
Figure 4.2). The shift of this peak towards larger sizes then corresponds to the growth of
E extensions on the already formed S elements. This hypothesis is still under investiga-
tion, in particular via algorithmic image analysis of AFM pictures (see Subsection 4.4.2).
We describe E extensions with a discrete size-distribution of elements Ei, i ≥ 0. By
convention E0 corresponds to a single S element. We consider that the growth of Ei into
Ei+1 corresponds to the addition of two monomers at the end, with rate τ . These two
monomers are assembled together at the moment of polymerization into the aggregate
Ei to form a dimeric subunit. On the other hand, Ei+1 releases a dimer T when depoly-
merizing to Ei, which happens at rate δ. In terms of modeling, the size-distribution of
E follows a modified Becker-Döring system, where the polymerization reaction depends
on the monomer concentration at the order 2. The asymmetry between the polymeriza-
tion and depolymerization reactions is essential in order to obtain oscillating behavior
and instabilities in the model. A similar asymmetry in a Becker-Döring model is pro-
posed and investigated in [Doumic et al., 2019]. We note that this hypothesis has not
been confirmed or contradicted by experimental evidence yet. The polymerization and
depolymerization reactions for Ei, i ≥ 0 are given as follows, for i ≥ 0

Ei + 2 ·M
τ

−−→ Ei+1,

Ei+1
δ

−−→ Ei +T.

E0 corresponds to a single S element, which is of size nS . Ei corresponds to a base S

with an extension of i subunits, which makes it size nS + 2i.

Autocatalysis of S elements. The formation of base elements S is different from E

elements because they seem to be homogoneous in size (see Figure 4.4). Furthermore,
the assembly of S elements happens very rapidly at the beginning of oligomerization
experiments and reaches a plateau after a few minutes, without accumulation of any
intermediates (see Figure 4.3). Consequently, we propose an autocatalyzed mechanism
for the formation of S. In particular, we consider that S is formed of 6 dimers which
makes it a 12-mer (nS = 12). We assume that the kinetic rate β of S formation depends
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on the concentration of S at the order 2, which implies a cooperative mechanism. This
is a strong hypothesis that is difficult to support with experimental data. However,
mathematically speaking, it introduces a variety of behavior to the model that is not
otherwise possible. We also include an order 3 reaction with rate σ which creates an S

from T subunits. The rate σ is assumed to be much lower than the catalyzed rate β,
so that the dynamics of depolymerization are driven by β but the oligomerization from
a pool of monomers only is still be possible via σ (and α). This is formalized by the
following reactions

6 ·T+ 2 · S
β

−−→ S + 2 · S,

6 ·T
σ

−−→ S.

Sequential depolymerization of S elements. In order to reproduce the intricate de-
polymerization behavior observed in Figure 4.6, we introduce a special depolymerization
mechanism for S elements. We suggest that an S element first disassembles partially
with rate µ into two transient objects W of size nW = 6. These objects are exetremely
unstable and have multiple ways of disassembling. They either spontaneously disman-
tle with rate γ into T elements, or they react with each other with rate λ to release
monomers. The final hypothesis we make about W objects is that they destabilize S and
lead to its fragmentation into two W with rate k. This catalyzed depolymerization is
essential in order to reproduce the accelerated drop in the SLS signal observed at 1µM .
The multiple depolymerization pathways of W allow cycling to occur, depending on the
concentration. Indeed when T is released directly then it favors the formation of new S

objects, however when monomers are released it rather favors the growth of E objects.
These assumptions are summarized in the following set of reactions

S
µ

−−→ 2 ·W,

W
γ

−−→ 3 ·T,

W+W
λ

−−→ 12 ·M,

S +W
k

−−→ 2 ·W+W.

The global kinetic system we propose and use is summarized in Figure 4.7. The math-
ematical expression of this model, as well as the choice of parameters, is detailed in
Section 4.3.

4.2.2 Mathematical formulation

The model introduced in Subsection 4.2.1 is now formulated as a system of ordinary
differential equations. It considers the concentration of transient dimers T , of base el-
ements S, of depolymerization intermediates W , of extensions Ei and of monomers V .
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Figure 4.7 – Kinetic scheme proposed to model H190A P1 oligomers. Tangent
arrows indicate a catalyzed reaction, and joining arrows indicate a reaction between
multiple reactants. Dashed-line arrows indicate a slow reaction.

The initial monomer-equivalent concentration in the system is denoted by C0. This sys-
tem is formally of infinite dimension because we consider Ei sizes for all i ≥ 1. The
reactions introduced in Subsection 4.2.1 are transcribed into System (4.1).







Ṫ =αV 2 + ρV T − ωT −
nS

nT
(σT 3 + βS2T ) + δ

∑

i≥1

Ei +
nW

nT
γW,

Ṡ =Ė0 = σT 3 + βS2T − µS − kSW − τSV 2 + δE1,

Ẇ =
nS

nW
(µS + kSW )− γW − λW 2,

Ėi =τEi−1V
2 − δEi − (τEiV

2 − δEi+1), i ≥ 1

V =C0 − nTT − nWW − nSS −
∑

i≥1

(nS + inT )Ei,

nT =2, nW = 6, nS = 12.

(4.1)

The well-posedness of this system is justified by Proposition 4.1.

Proposition 4.1. Assume all parameters of System (4.1) α, ρ, ω, σ, β, µ, k, γ, λ, τ, δ, C0

are positive. For an initial condition (T0, S0,W0, (E0,i)i∈N∗) chosen in

X+ = {(Yk)k∈N : ∀k ≥ 0, Yk ≥ 0} ,

and which verifies

nTT0 + nWW0 + nSS0 +
∑

i≥1

(nS + inT )E0,i ≤ C0,

the system admits a unique global solution.
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Furthermore, for all t ≥ 0, (T (t), S(t),W (t), (Ei(t))i∈N∗) is in X+ and

nTT (t) + nWW (t) + nSS(t) +
∑

i≥1

(nS + inT )Ei(t) ≤ C0.

Proof. The autonomous ordinary differential system defined by (4.1) is C1 since all terms
are polynomial, and is thus locally-Lipschitz. The Cauchy-Lipschitz theorem gives the
existence and uniqueness of a maximal solution. Next, we note that the last equation of
the system is equivalently replaced by the following ordinary differential equation on V

V̇ = nT (−αV 2 − ρV T + ωT − τV 2S − τV 2
∑

i≥1

Ei) + nWλW 2,

as long as the initial condition verifies

V0 + nTT0 + nSS0 + nWW0 +
∑

i≥1

(nS + inT )Ei,0 = C0.

With this formulation, it is straightforward to verify that X+ is positively invariant for
the modified system. This allows us to conclude that the maximal solution (for an initial
condition in X+) remains positive over all its definition interval. Recalling now that the
system conserves mass (and switching back to the formulation (4.1)), the positivity of
the solution implies that it is bounded as stated in the Proposition. In consequence there
is no explosion in finite time and the solution is global.

As of yet, the analytical results on the model are limited to Proposition 4.1 and
further analytical study is planned for future work. We now proceed with a numerical
investigation of its behavior. One important remark is that in our model, the order two
moment of the distribution (the weight-average molecular weight) is expressed as

〈Mw〉 =
1

C0



V + n2
TT + n2

WW + n2
SS +

∑

i≥1

(nS + inT )
2Ei



 . (4.2)

4.3 Results

4.3.1 Model scaling and parameter choice

Dealing with infinite sizes. The system introduced Section 4.2 is infinite, but in prac-
tice we consider a finite size-distribution. In the simulations, a size threshold N is defined
and System (4.1) is truncated by considering the last equation

ĖN = τV 2EN−1 − δEN .
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The approximation of the full system is acceptable as long as the buffer compartment
EN does not accumulate mass. For all our simulations the threshold is set at N =

100, which corresponds to a physical maximal size of nS + N × nT = 212 (in terms of
monomers). In the experiments, the largest P1 oligomers observed are approximately of
size 70 [Armiento et al., 2017]. As long as our model verifies this order of magnitude on
the size, the threshold N = 100 is sufficiently large.

Parameter choice and scaling. Choosing the parameters for such a complex model
is a problem in itself. We focus here on reproducing qualitative behavior observed in
the experiments, but we do not propose a quantitative fit of the data. However, phys-
ical constraints have to be respected for the parameters to be relevant biologically. In
particular, catalyzed reactions are limited by the so called diffusion-limit [Alberty and
Hammes, 1958], which takes into account the geometry of molecules and their interac-
tions through simple diffusion. It implies that the upper bound for second order constant
rates is 109M−1s−1. This estimation goes up to 1010M−1s−1 by taking into account the
effect of force fields [Kuo-Chen and Shou-ping, 1974]. In general, enzymes are not ki-
netically perfect and typical constant rates are around 106 − 107M−1s−1. Judging from
the concentrations studied experimentally and the typical timescales involved, we choose
the concentration scaling of 1µM and the time scaling of 1min. The diffusion-limit
upper bound becomes approximately 105µM−1min−1 and reasonable constant rates lie
within the range 101 − 102µM−1min−1 (this corresponds to the parameters α, ρ, λ, k in
the model). This approximation is extended to order three reaction rates by adding a
concentration estimation to one of the species involved. In our case, we consider that the
concentrations involved in order three reactions (rates σ, β which involve T and S, and
rate τ which involves V and Ei) are of the order of 1µM . This means that reasonable val-
ues for the order three constant rates are within the range 101−102µM−2min−1. Finally,
for first order reactions the rates are limited by the vibration properties of proteins which
gives a range of 10−2 − 101min−1 (parameters ω, µ, γ, δ in the model). The parameters
involved in our model, as well as the default values used for the simulations are summa-
rized in Table 4.1. The default values correspond to the case which we are interested
in, the depolymerization of P1 oligomers at 70 °C. At such an elevated temperature, the
Arrhenius equation predicts an significant increase of rate constants compared to room
temperature [Arrhenius, 1889]. This justifies setting some constants on the upper edge
of the reasonable range of 101 − 102µM−1.min−1.

4.3.2 Numerical results

The modeling hypotheses are verified. Before investigating the depolymerization of
P1 oligomers with our model, we make sure that our working hypotheses (as expressed in
Subsection 4.1.3 and Subsection 4.2.1) are verified in the simulations. Figure 4.8 shows a
simulation of the model in the context of oligomerization of H190A OvPrP. It is designed
to represent oligomerization at 100µM and 55°C during 5 hours, which are the condi-
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Table 4.1 – Parameter definitions and values used for numerical simulations in
the model of H190A OvPrP P1 oligomers. The default values correspond to the
depolymerization case (70 °C). See Subsection 4.3.1 for details on the parameter choice.

Parameter Value at 70°C (55 °C) Unit Description

α 10−3 µM−1min−1 Spontaneous T formation rate
ρ 0.8 µM−1min−1 Autocatalysis of T
ω 0.1 min−1 Disassembly of T
nT 2 - Size of T
σ 10−3 µM−2min−1 Spontaneous S formation rate
β 130 µM−2min−1 Autocatalysis of S
µ 0.01 min−1 Disassembly of S
nS 12 - Size of S
γ 8 min−1 Disassembly of W into T
λ 35 µM−1min−1 Self-disintegration of W into V
k 100 µM−1min−1 Catalyzed depolymerization of S by W
nW 6 - Size of W
τ 1 µM−2min−1 Polymerization of V by Ei

δ 0.7 min−1 Depolymerization of Ei into T and Ei−1

C0 0.1-10 (100) µM Total OvPrP concentration in the system
N 100 - Numerical maximal size for the system

tions used to form P1 before depolymerization as shown in Figure 4.6. We use the last
time point (t = 300 min) of Figure 4.8 as an initial condition for our depolymerization
simulations (see next paragraph). This first simulation is relevant because it shows that
the dynamics of the model are similar to these observed experimentally. The formation
of base elements S happens within the first 2 minutes of the experiment. The later stages
correspond to the slow evolution the distribution of Ei towards larger sizes. We note that
the depolymerization intermediate W stabilizes at around 0.01% of the PrP mass. This
is correlated with the limited accumulation of peak P3 during oligomerization of H190A
(see Figure 4.3). Furthermore, the distribution obtained after 5 hours is restricted to
sizes smaller than 80, which is in agreement with the sizes observed in the experiments.
This justifies the approximation used which limits the maximal size of objects (see Sub-
section 4.3.1). However, these simulations are not entirely satisfactory as compared to
Figure 4.3, as discussed in Subsection 4.4.2. We next examine the depolymerization
behavior of the model.

Nonmonotonic and non-linear effect of concentration. The simulation of depoly-
merization of H190A P1 oligomers is shown in Figure 4.9. We plot the evolution of the
second order moment, as expressed in Equation (4.2), versus time and depending on con-
centration. The numerical conditions are designed to mimic the experiment illustrated
in Figure 4.8. In particular, the initial condition corresponds to the isolated distribution
of Ei objects from the oligomerization simulation shown in Figure 4.8 (at t = 300 min).
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Figure 4.8 – Model simulation in the context of H190A oligomerization. The
initial condition correponds to a concentration of 100µM of pure monomer, and the
parameters are set to the default values (see Table 4.1), except γ = 5 min−1, τ =
0.1 µM−2min−1, δ = 0.1 min−1, k = 10 µM−1min−1. (Left) Evolution of the size-
distribution at different times. (Right) Detailed evolution of the PrP proportion in V
(monomers), T (transient dimers), W (depolymerization intermediate) and S (base ele-
ments) during the first 2 min of the oligomerization.

These curves illustrate the nonmonotonic effect of concentration. Just as observed in the
experiment, for a certain concentration (about 1µM) the order two moment drops faster
and to a lower value than at other concentrations. The depolymerization is slowed at
high concentrations and at low concentrations, but for different reasons. This effect is
explained in our model by the balance between instability of W and catalyzed depoly-
merization of S (by W ). As concentration increases, W is increasingly unstable, but its
effect on S is stronger. With a suitable choice of parameters, there is a concentration
at which the destabilization of S is maximal. The qualitative nonmonotonic effect of
concentration clearly depends on the presence of a catalyzed depolymerization process
in the kinetic scheme.

Interaction between different timescales. A feature exhibited both in the simula-
tions (Figure 4.9) and the experiments (Figure 4.6) is the interaction between at least
two timescales. The slow oscillations (at the scale of dozens of minutes) are coupled with
very fast oscillations (at the scale of a few seconds). This spiking behavior is explained
in our model by the possible cycling during the depolymerization of S elements. The
multiple successive autocatalyzed reactions (formation of S, depolymerization of S into
W ) allow fast excursions to occur without seemingly affecting the slow behavior of Ei el-
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Figure 4.9 – Model simulation in the context of H190A depolymerization. The
conditions are designed to represent the experiment shown in Figure 4.6. The initial
condition correponds the simulated distribution after t = 300 min shown in Figure 4.8.
The parameter values are detailed in Table 4.1. (Top) Full time range of simulation.
(Bottom) First 30 minutes.

ements. This results in complex periodic cycling behavior, which resemble the transient
spike trains observed in the experiments. However, in the simulations the oscillations
seem stable which does not correlate with the sudden and brief oscillatory behavior of
experimental curves. Another issue, in the experiments, spikes are observed even at the
lowest concentration C0 = 0.41µM , but our model does not reproduce this behavior.
Despite these issues, this is the first model of prion oligomers which exhibits complex
oscillations and multiple timescale interactions.
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4.4 Discussion

4.4.1 Insight into prion biology

On the importance of structural diversity. Even though the global scheme we in-
troduce in Section 4.2 and investigate in Section 4.4 is complex, it is in fact almost
minimalist. The nonmonotonic effect of concentration and the spiking observed during
the depolymerization could not be reproduced by simpler models. This does not prove
that our model is the right model, but it shows how important structural diversity is in
the formation of prion oligomers. In order to represent the complex evolution of a single
subpopulation of oligomers, we are required to introduce at least 5 different species in
the kinetic scheme. This is suprisingly diverse for objects that form spontaneously in a
few minutes, but every recent piece of information points in this direction.
Unprecedented interactions. The architecture of the kinetic scheme we suggest (see
Figure 4.7) is novel and unprecedented in prion modeling. In particular, catalyzed depoly-
merization appears critical in reproducing the effects of concentration on the evolution
of the order two moment. This opens new considerations in terms of prion modeling
in general, as catalyzed depolymerization might be occuring more generally during the
aggregates replication. Note that a similar process was suggested in [Doumic et al., 2019]
for the study of the oscillatory behavior of PrPSc aggregates in vitro. In fact, catalyzed
depolymerization might be at the heart of secondary nucleation, in a sort of modified
fragmentation process.

4.4.2 Model limitations and potential improvements

Transient spikes. In the results presented in Subsection 4.3.2, the behavior of our model
is not entirely satisfactory, even in terms of qualitative agreement. In particular, the
spiking observed in the simulations is not transient but sustained. In the experiments
however, the spike trains are very brief and isolated from each other (Figure 4.6). This
is a sign that our model, even though it captures the possibility of spiking, is missing
a key phenomenon. This transient spiking is reminiscent of the concept of transient
chaos, in particular in the context of closed chemical systems [Scott et al., 1991]. In fact,
the model presented in [Scott et al., 1991] was an inspiration for our model of H190A
oligomers, specifically the depolymerization scheme. The fact that this simple kinetic
model presents bursts of transient chaos is a good indication that our model is close
to exhibiting this behavior, and might even do so under parameter configurations that
we have not explored yet. The problem is that our model is too complex to be studied
analytically in as much depth as [Scott et al., 1991].
Hypothesis support and parameter fitting. Many hypotheses were made in the con-
ception of the model, but few of them are supported by experimental evidence. In par-
ticular, we have no proof that S elements act as pedestals for E extensions to grow, and
that these extensions grow by addition of monomer pairs. These mechanistic hypotheses
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could potentially be confirmed by in-depth analysis of AFM images of P1 oligomers. So
far these images have only been used qualitatively or as illustrations. However, using
algorithmic segmentation and image processing tools would allow us to build statisti-
cal datasets from these images. Multiple images in different conditions and at different
timepoints would then lead to detailed physico-chemical information (size of particles,
interactions between particles, types of elements) which is not otherwise available. This
project is ongoing, and was started during Thomas Pierron de Mondesir’s internship in
our team (Spring 2020).

Oligomerization conditions. As we mentioned in Section 4.3, the oligomerization be-
havior of our model is not satisfactory. In particular, the shape of the size-distribution
obtained after 5 hours of growth does not resemble the one observed experimentally (see
Figure 4.3 and Figure 4.8). Directly related to this issue is the fact that the monomer
pool is almost entirely depleted during the first few minutes in our simulations, whereas
in the experiments, the chromatography shows that there is still a large proportion of
monomers in the system even after 10 minutes. This might be a problem of parameter
choice, but it could mean that we are missing essential kinetic properties in our scheme.
Recall that our model was built using simple reactions and non-linearities. In reality,
biology involves complex enzyme catalyses which are often represented with activation
functions or sigmoids. Before we decide how to improve the model regarding oligomer-
ization conditions, more data will be required, combining multiple chromatograms, SLS
measurements and AFM images.

4.4.3 The case of wild-type OvPrP

The problem of P3 oligomers. The main reason we chose to focus on H190A is that it
only forms P1 oligomers. When considering wild-type OvPrP, the formation of P3 during
oligomerization cannot be dismissed (see Subsection 4.1.1). These oligomers have their
own diversity, and examined under AFM they prove to be formed of different coexisting
types of elements. Recent experiments studied the depolymerization of P3 oligomers
isolated from wild-type OvPrP (unpublished data, H. Rezaei). In particular, as opposed
to what was stated in previous studies [Eghiaian et al., 2007], the depolymerization
of P3 assemblies is not complete. Quite the contrary, new and larger assemblies are
created during these depolymerization experiments, and these assemblies prove to be P1

oligomers. This suggests that P3 objects are a precursor of P1 objects in the case of
wild-type PrP. However, recall that during depolymerization of P1, no P3 objects are
accumulated even when the objects grow larger than initially [Armiento et al., 2017].
This means that P1 objects are able to grow and replicate without the need for the
intermediate P3. The properties of this system are reminiscent of a bi-stable system,
and the accumulation of P3 objects is attractive only when the system starts from a
composition of pure monomers. We have no model that reproduces this behavior yet.
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Multiple wavelength SLS measurements. The depolymerization of P3 objects re-
vealed an interesting feature of the SLS measurements. Indeed, these experiments were
monitored by static light scattering with different lasers simultaneously (purple - 407nm,
blue - 473nm and green - 530nm). Strikingly, the SLS signals at different wavelengths
do not seem correlated with each other. In particular, in some cases spikes or drops
are capture with one wavelength, whereas the others only reveal a smooth evolution. It
is important to keep in mind that scattered light intensity depends on the wavelength
λ with a factor λ−4 [Hulst and van de Hulst, 1981]. This means that the higher the
wavelength, the lower the scattered intensity. More importantly, it means that for large
wavelengths, a filtering is applied on the SLS signal such that only the largest contribu-
tions are significant enough to be detected. Decorrelation between the signal at a low
wavelength (purple) and at a large wavelength (green) potentially indicates that there
are changes in the composition of the system which conserve the total order two moment
of the distribution, but only changes its variance. This suggests that there is yet an-
other level of diversity and interactions that we have not yet considered in the modeling
approach. This data is still under investigation.

4.4.4 Conclusion and perspectives

The work presented in this chapter is still in preliminary stages, since the model is not
yet entirely statisfactory and it only provides relatively acceptable qualitative agreement
with the data. However, it showcases an important aspect of the modeling approach,
which is the model design. Starting off from a few hypotheses and perplexing data, we
propose a set of equations and reactions that reproduce some of the features observed in
the experiments. Even though the model is not finished yet, it provides insight into the
processes the drive OvPrP oligomer replication. It gives us indications of how to find
further clues, what experiments could help understanding the system better and what
type mechanisms the model should include.
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Before presenting our contributions in the field of yeast prions, a detailed introduction
is required. Yeast prions are similar to mammalian prions in the general concepts (as
introduced in Chapter 1), as they follow the same types of autocatalytic reactions, they
exist in different strains and a variety of structures. However the yeast system exhibits
specific properties and unique problems, that call for dedicated modeling approaches.

5.1 Biological context and open problems

5.1.1 A versatile system for studying prion processes

Epigenetic memory and bet-hedging strategy. The yeast species Saccharomyces

Cerevisiae naturally synthesizes about a dozen different proteins that behave like pri-
ons [Liebman and Chernoff, 2012]. In yeast, prions are usually not deleterious and it
has been suggested that they were selected through evolution for their role in heat-shock
adaptation and memory [Chernova et al., 2017]. They allow yeast cells to store informa-
tion and change their phenotype in a fast and reversible way when faced with extreme
conditions. As opposed to genetic changes (mutations), this epigenetic transformation
happens in a matter of hours and forms a real bet-hedging strategy for yeast populations.
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The scope and extent of yeast prions. Understanding how natural yeast prions are
propagated and the chemical processes that drive their replication would advance knowl-
edge in the field of prions in general. It could offer some insight into other self-aggregating
mechanisms such as mammalian prions. Further than that, yeast offer a much broader
ranger of opportunities to study prions, amyloids and prion-like processes. Indeed, yeast
is a highly controlled biological system, one of the first organisms to be fully genetically
sequenced, and bio-chemical and genetic engineering are extremely efficient. In par-
ticular, yeast cells have been engineered to harbour different self-aggregating proteins,
including mammalian proteins involved in neurodegenerative diseases [Chernova et al.,
2019]. These artificial systems are useful for drug discovery and testing, and they are
much simpler to study in vivo than mammals.

The [PSI+] prion. One prion protein of particular interest, Sup35, causes a simple
and detectable phenotypical change in yeast cells when it changes conformation and
aggregates. It changes the color of cells from dark red to white, see an illustration in
Figure 5.1. This phenotype is termed [PSI+] (white cells), as opposed to the non-prion
phenotype [psi−] (red cells).1 The Sup35 protein is a translation release factor, an enzyme
involved the recognition of stop-codons. If cells harbour the ade1-14 mutant allele, which
contains a premature stop codon, and if Sup35 is functional then the non-sense mutation
impairs adenine synthesis. A red intermediate is accumulated and [psi−] appear red.
However, if Sup35 is aggregated in these cells, the non-sense mutation is not detected and
adenine synthesis is successful, consequently [PSI+] cells appear white [Sindi and Serio,
2009]. This property makes the Sup35 prion a very convenient study system, because the
aggregation state of the protein is detected by a simple color assay. As mentioned above,
yeast synthesize other proteins that behave like prions such as Ure2, associate with the
prion phenotype [URE3], and Rnq1, associated with the prion phenotype [PIN+]. Our
study focuses on Sup35 and [PSI+] because it has concentrated the most efforts over
the years and offers the most extensive literature.

5.1.2 A multi-scale system

From intra-cellular processes to colony phenotype. One striking difference between
mammalian prions and yeast prions is the medium of propagation. Mammalian prions are
propagated inside the brain around the neurons, as PrP is extra-cellular. Yeast prions
are propagated inside cells that are constantly growing and dividing. The phenotype
is indeed transmitted, just like a prion infection may be transmitted, by transfer of
aggregated proteins from the mother cell to the daughter cells. Molecular processes
of aggregate replication are thus coupled with the cellular mechanisms of growth and
division, to create observable phenotypes at the scale of yeast colonies (at least 105−106

1This notation comes from the genetic field, where yeast prions were historically first described as
non-Mendeleian phenotypes. An uppercase name and a plus sign indicate the dominant version of the
phenotype.
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cells), as is illustrated by Figure 5.1.
Prion transmission is asymmetrical. The propagation of aggregates throughout an
entire colony relies upon faithful transmission from mother to daughter, but aggregate
transmission tends to be biased [Derdowski et al., 2010]. Indeed in experimental condi-
tions, yeast cells are budding. A mother cell grows a bud on its membrane, and transmits
some of its inner material (mostly proteins) before the bud detaches and becomes a new
cell. This new cell cannot reproduce immediately, it needs to mature in order to become
a mother cell whereas a mother cell can form a new bud in a shorter time. The trans-
mission of the prion phenotypes happens at the moment when mother and daughter are
connected through the bud-neck. Because of the volume difference between mother and
daughter, the extended maturing time for a new daughter cell, and the possible size-
threshold directly imposed by the geometry of the bud-neck, the transmission usually
favors retention of large aggregates in the mother cell [Derdowski et al., 2010]. This
asymmetry has important implications on the phenotype as observed at the scale of
colonies. This is one essential aspect of yeast prion biology that needs to be dealt with
in detail using mathematical modeling.

Yeast cell [PSI+] colony

Sectored colony

[psi-] colony

Sup35 monomer Prion aggregate

A B C

Figure 5.1 – Interplay between different scales in the yeast prions system. (A)
molecular scale at which the chemical reactions are taking place. (B) Cellular scale with
growth and asymmetrical division. (C) Macroscopic scale and phenotype observations
(courtesy of T. Serio). Each circle is a yeast colony.

5.1.3 Prion stability and curing

Yeast prions are reversible. Colonies can acquire or loose a prion phenotype following
various physico-chemical treatments [Tuite and Cox, 2003]. Experiments that de-stabilize
a prion are referred to as “curing” experiments. The study of curing dynamics is a
widespread approach to characterize strains. In the case of [PSI+], strains are qualified
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as “strong” or “weak” depending on their resistance to certain treatments [Cox et al.,
2007]. This nomenclature correlates with the intensity of the associated phenotype, i.e.

the color change [Tanaka et al., 2006]. Indeed stronger strains are usually associated with
a more contrasted color change of the yeast colonies (they are of a whiter shade). The
reversible character of yeast prions contrasts with mammalian prions, since there is no
in vivo evidence for a potential reversion in the progress of neurodegenerative diseases.
It emphasizes how, even though they are similar processes, yeast prions and mammalian
prions behave differently at the molecular level. Curing and prion stability are intimately
related to cell-to-cell transmission of aggregates. One evidence is that growing colonies
may be partially cured of [PSI+]. When a cell looses the phenotype, and thus does
not transmit it to its daughters, a whole branch of the colony becomes [psi−]. Such
colonies appear as sectored between red and white (sometimes referred to as myriad
colonies) [Wegrzyn et al., 2001], as illustrated in Figure 5.1(C).

The role of cellular machinery in prion propagation and stability. One main
characteristic of yeast prions is that they interact with many other proteins and chaper-
ones. Indeed, since they are cytoplasmic, they are potential targets and substrates for
the cellular machinery. Once again this contrasts with mammalian prions which evolve
extra-cellularly. In particular in eukaryotic cells, a whole family of proteins is dedicated
to “protein quality control”. These chaperones are responsible for dealing with misfolded
proteins, and they use different strategies in doing so. They can degrade the misfolded
proteins, force them to refold properly or deliver them to other agents that will sequester
them [Chen et al., 2011]. Prions are a primary target for this quality control system. In
particular the Heat-Shock Protein (Hsp) family, and more precisely chaperones Hsp104,
Hsp70 and Hsp90, are crucial in the propagation of yeast prions [Romanova and Chernoff,
2009]. The technical details of their action on prions are presented in Subsection 5.1.4.
The main point so far is that they are essential for the faithful propagation of most yeast
prions, including [PSI+] [Jones and Tuite, 2005]. Disrupting the chain of action of the
Hsp family often leads to de-stabilization of prion phenotypes. This includes introducing
point mutations in Hsp-associated genes, modifying gene expression, or treating cells
with agents interfering with these chaperones [Wegrzyn et al., 2001]. This leads to either
complete or partial curing (sectoring).

GdnHCl-mediated curing and the concept of propagon. One particularly impor-
tant treatment is Guanidine Hydrochloride (GdnHCl). This chaotropic agent interferes
with the fragmentation of aggregates (as we detail in Subsection 5.1.4). It is strongly
supported that during GdnHCl treatment, aggregates can no longer increase in num-
bers [Eaglestone et al., 2000] (remarkably they still increase in size, see Subsection 5.1.4).
As such, they get separated in cells when they divide and the colony eventually looses the
phenotype and becomes red. Remarkably, there is a number of cells that remain [PSI+]

during GdnHCl treatment and this number reaches a plateau when the experiment runs
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for long enough [Cox et al., 2007]. This strongly supports the idea that aggregates have
stopped fragmenting and their number is fixed. The final number of [PSI+] revertants,
i.e. cells that grow back into [PSI+] colonies when plated onto medium free of GdnHCl,
then corresponds to the number of aggregates initially present in the colony at the start
of the experiment [Eaglestone et al., 2000]. This interpretation of the GdnHCl curing
experiment is illustrated in Figure 5.2. It led to the definition of the propagon [Cox et al.,
2003], as the minimal transmissible entity capable of inducing the change from [psi−] to
[PSI+]. In later studies, the GdnHCl curing was used repeatedly to produce propagon
counts, and statistics on these propagon counts are still a primary type of data used
in yeast prion biology. We emphasize that this interpretation relies on two hypotheses.
First that GdnHCl treatment completely blocks aggregate replication or fragmentation.
Second it implies that the transition of a cell from [PSI+] to [psi−] corresponds to the
threshold between one and zero aggregate. These hypotheses facilitate the interpretation
of the experiment in terms of propagon counting (see Subsection 5.2.1), but they are in
fact limiting and we question them in Chapter 6.

Yeast cell

Propagon

[PSI+] colony

[psi-] colony

A B
%[PSI+]

(log scale)

#[PSI+] 

(log scale)

Time

Figure 5.2 – Classical interpretation of the GdnHCl curing experiment and
illustration of the propagon counting. (A) Under GdnHCl treatment, propagons
cannot replicate and are segregated among the cells of the colony as it keeps growing.
After about 10 generations, each cell either has one or zero aggregate. (B) The associated
curves, with the fraction of [PSI+] cells in the colony (black), and the number of [PSI+]
cells (red). The latter reaches a plateau, which corresponds to the number of propagons
in the founder cell. This is a schematic depiction of experimental curves such as the ones
presented in [Cox et al., 2007].

5.1.4 The dual role of Hsp104

Hsp104 mediates aggregate fragmentation. It has been shown that moderate levels
of Hsp104 are required to sustain Sup35 prion aggregates, and impairment or knock-out
of this chaperone leads to a progressive loss of the [PSI+] phenotype [Wegrzyn et al.,
2001, Park et al., 2012]. The hypothesis commonly accepted is that Hsp104 acts as
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a fragmenting agent on Sup35 aggregates by directly withdrawing monomers one at a
time along their lengths, breaking the fiber in two parts [Kryndushkin et al., 2003]. This
action is led in collaboration chaperones Hsp70 and Hsp40, which act as targetting mark-
ers on prion aggregate [Shorter and Lindquist, 2008]. Hsp104 recognizes this marker and
brings an energy input, through ATP-hydrolysis, to break hydrogen bonds and extract
the targetted monomer [Winkler et al., 2012]. This is the main role of Hsp104 in prion
propagation, and it is impaired as soon as the chaperone’s ATP-hydrolysis capability is
tampered with. This causes the prion phenotype to be eliminated from growing colonies,
because the number of aggregates cannot increase anymore, even though they can still
increase in size [Ness et al., 2002, Satpute-Krishnan et al., 2007]. This is the case un-
der GdnHCl treatment but also when point mutations are introduced in specific sites
of Hsp104’s sequence, when Hsp104 is completely deleted (gene knock-out) or when an
impaired mutant is over-expressed [Shorter and Lindquist, 2006]. Some of these treat-
ments have slightly different curing dynamics than GdnHCl, but it may be related to the
fact that they induce stress. The expression of the Hsp chaperones, and in particular
Hsp104, are greatly enhanced by stress (as their primary function is to respond to heat
shocks). Over-expressing Hsp104 during these experiments may bias the interpretations,
especially considering the point that follows.

The paradox of Hsp104 over-expression. One of the most puzzling result is that
over-expression of Hsp104 also cures colonies of the [PSI+] phenotype [Ness et al., 2017]
(this is not true for other yeast prions). However this type of curing follows different
dynamics than these obtained by impairing Hsp104, more precisely it happens at a faster
rate. It could be argued that this is the result of excessive fragmentation, that would
destroy aggregates. Nonetheless, multiple results oppose this idea. It seems that during
Hsp104 over-expression, the size of aggregates does not necessarily decrease as would
be the consequence of enhanced fragmentation [Kryndushkin et al., 2003]. In fact it
has been proposed that in conditions of over-expression, the effect of Hsp104 on Sup35
aggregates is not fragmentation. Different hypotheses are still being tested and the
question of Hsp104’s role in prion propagation is still an open problem [Greene et al.,
2018]. On one hand it has been suggested that elevated levels of Hsp104 can directly
“trim” aggregates and destroy them by collaborating with the ubiquitination machinery
[Park et al., 2014,Zhao et al., 2017], as inspired by the role of Hsp104 on thermal stress-
induced protein amyloids [Bösl et al., 2006]. On the other hand some results indicate that
elevated levels of Hsp104 tend to increase the propagation bias of aggregates from mother
cell to daughter cell [Ness et al., 2017]. So far neither can be eliminated or confirmed
(and they are not exclusive), and no kinetic model can explain both how [PSI+] is cured
by both impairment and over-expression of Hsp104.

The dual role of Hsp104. Overall, the curing experiments combined with various types
of data support the idea that Hsp104 plays a dual role in the propagation of [PSI+].
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Structural data revealed two possible interaction modes for Hsp104 with Sup35 aggre-
gates, one “productive” and one “non-productive” [Cox and Tuite, 2018]. The productive
mode involves recruitment by Hsp40 and Hsp70, and is the one related to the frag-
mentation activity of Hsp104. The other binding mode, more stable, does not induce
fragmentation, and does not require hydrolysis of Adenosine Triphosphate (ATP) (yet
it requires ATP-binding). This role might be related to the effect Hsp104 has on heat-
induced misfolded proteins, which is a role of anchoring to the actin skeleton. This would
corroborate the idea that in conditions of Hsp104, aggregate transmission from mother
to daughter is strongly biased [Ness et al., 2017]. This double role of Hsp104 was also
observed in vitro, with two different identifiable effects on prion fibril formation [Shorter
and Lindquist, 2006]. On one hand Hsp104 reduces the lag-phase (time before observing
any aggregated species in the sample), which requires only ATP-binding (similarly as
the non-productive binding type). On the other hand it reduces assembly time (time
required to convert all the available monomers), but this effect requires ATP-hydrolysis
(similarly as the productive binding type). The exact mechanisms of interaction between
Hsp104 and Sup35 aggregates are still not precisely understood, and it is the paradox of
Hsp104 over-expression curing is controversial in the biologist community.

5.2 Mathematical models of yeast prions

As emphasized in the previous section, the specificities of yeast prions call for mod-
eling approaches and concepts that do not apply to mammalian prions. In particular,
the multi-scale aspect and the interplay between molecular mechanism and cell division
mechanisms is a crucial feature to consider and investigate. Another particularity is the
interaction with chaperones, and their impact on the replication process.

5.2.1 Multi-scale models of prions in dividing cells

Discrete approach and propagon counting. In order to represent how aggregates
are distributed between dividing cells, the first approach that was envisioned represented
aggregates as discrete entities [Eaglestone et al., 2000,Cox et al., 2003]. Using this de-
scription, curing experiments were studied, in particular the GdnHCl curing experiment
with the intent to count propagons (see Subsection 5.1.3 and Figure 5.1). Recall that
this interpretation lies on two assumptions. First it is assumed that GdnHCl completely
inhibits aggregate replication. The second assumption is that a cell looses the [PSI+]

phenotype as soon as it is completely rid of aggregates. Using these two assumptions,
coupled with an exponential model of cell growth and division, a simple and tractable
model of aggregate propagation during GdnHCl curing was built [Cole et al., 2004]. This
model predicts that the number of cells that remain [PSI+] during curing reaches a limit,
which corresponds to the number of propagons in the founder cell of the colony. This
model was used extensively to infer propagon counts in yeast colonies following various
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treatments and in different growth conditions. However, the numbers predicted were too
low as compared to the experiments, and some adjustments were suggested to the model.
In particular, adding a bias in mother to daughter transmission aggregates helped in-
creasing the predicted counts [Byrne et al., 2009]. The model was even further improved
by introducing a size-threshold for the transmission of aggregates [Derdowski et al., 2010].
Most models describing aggregates as discrete quantities included a stochastic process
or a probabilistic approach to represent cell division events [Sindi and Olofsson, 2013].
We emphasize the limitations of discrete models when it comes to studying molecular
processes. Indeed such a description does not allow for the use of mass-action kinetics
and chemical reaction schemes. They can only deal with empirical laws of evolutions for
the aggregates.

Continuous approach and structured population. In order to tackle the multi-
scale aspect of aggregate propagation in yeast colonies, a continuous approach was also
suggested. With this approach, propagon numbers are described as a continuous quantity.
Cell populations are described as a density over the propagon number, with multiple
compartments representing the different stages of cell maturation and generations. This
produces partial differential equations models that are studied analytically [Banks et al.,
2016,Banks et al., 2017]. In particular, when the inner “quantity” (the continuous number
of propagons) follows a logistic growth law, the solution of the partial differential equation
is derived analytically. This allows for a statistical study of propagon counts [Banks et al.,
2017]. Even though those models describe propagon counts as a continuous variable, they
do not offer the possibility of using mechanistically derived kinetic models. In particular
they do not take into account the volume variations of the yeast cells as they grow
and divide. Including a logistic growth for the number of propagons is thus still an
empirical approach, that is difficult to relate to chemical reactions and kinetic rates.
The statistics on those inferred amplification rates are useful because they allow the
comparison between different strains for instance, but they are limited to a qualitative
interpretation.

5.2.2 Applications of the Nucleated Polymerization model to yeast

prions

The Enzyme-Limited Nucleated Polymerization model . The only mathematical
model that explicitly investigated the role of Hsp104 in [PSI+] propagation was intro-
duced in [Davis and Sindi, 2016]. The model is based on the discrete Nucleated Polymer-
ization model (see Subsection 1.2.3). It includes Hsp104 as an additional species, that
catalyzes fragmentation of the aggregates. In this model Hsp104 can bind to the links
between two monomers in an aggregate. When it is bound, it has a probability of causing
the aggregate to fragment. Overall the properties of this model are similar to these of
the Nucleated Polymerization model. It is still a global model, with an adjusted value
of the basic reproductive number R0. Interestingly, this model habors novel behavior
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that is not supported by the classical Nucleated Polymerization model. It predicts an
increase of the mean size of aggregates with the level of monomers production, which
is a result observed experimentally [Derdowski et al., 2010]. The model predicts prion
de-stabilization by Hsp104 impairment (fragmentation inhibition). It does not predict
de-stabilization by over-expression (at least not under reasonable parameter choices),
which corroborates the idea that in conditions of Hsp104 over-expression, another effect
of the chaperone is at play.
The influence of nucleus size on amyloid clearance. The Enzyme-Limited Nucle-
ated Polymerization model revealed the importance of the nucleus size to differentiate
strains. This importance was further investigated and emphasized by [Villali et al., 2020].
These results are based on the use of the classical Nucleated Polymerization model (with-
out explicit modeling of Hsp104), combined to a probabilistic version of this model in
order to tackle the case of low aggregate densities. What is referred to as the “persistence
model” measures the probability that a single aggregate of minimal size (the nucleus size)
injected into a yeast cell succesfully produces a new aggregate larger than the nucleus
size before the cell divides. Evaluating this probability allows the authors to evaluate
the stability of a prion strain, and to compare the effect of different treatments. They
evidence that in order to reproduce experimentally observed differences in Hsp104 over-
expression curing of weak and strong strain, these strains must have different nucleus
sizes. The weak strain, having a larger nucleus size, is more susceptible to destabiliza-
tion by enhanced fragmentation, even though it has a lower fragmentation rate in normal
conditions. The explanation is that the persistence model predicts that a seed is more
likely to be fragmented before it can grow enough to form a second seed. The authors
provide experimental observations of aggregate size-distributions that support the idea
that the weak strain has a larger minimal stable aggregate size. The conclusions drawn
from the results are interpreted in the context of the Nucleated Polymerization model.
The problem of the global stability of the Nucleated Polymerization model is avoided by
considering a probabilistic model for low aggregate densities.

The models introduced above are specific to yeast prions, in that they tackle one
aspect of their propagation that is unique. Two main characteristics of yeast prions call
for specific modeling efforts. On one hand the multi-scale interactions between molecular
processes and cellular division are difficult to tackle and extremeley important regarding
prion stability. On the other hand, the effect of cellular chaperones is essential and
complex, and requires building dedicated kinetic schemes. Our contributions to this field
in Chapter 6 fit in context, as we investigate prion stability and transmission using a
multi-scale framework.
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Chapter 6 is adapted from published work [Lemarre et al., 2020]

We introduced the specificities and open problems related to yeast prions in Chapter 5.
The main aspect that calls for specific modeling approaches is the multi-scale interplay
between molecular processes and cellular division. We propose an attempt at tackling
this problem by introducing a novel framework in the field of yeast prions. We then use
this framework to build a minimal yet functional model of the propagation of [PSI+].

6.1 Introducing a multi-scale model of yeast prions

6.1.1 A novel framework: modeling budding yeast with impulsions

Theoretical framework. We use impulsive differential equations in order to model
the cellular processes of yeast colony growth, and their effects upon the intra-cellular
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contents. In order to define an impulsive system, we define a sequence of systems of

ordinary differential equations
dZ

dt
= Fk(Z, t) for k ∈ R

n and Z ∈ R
n, along with an

initial condition Z0 ∈ R
n. Given a sequence (tk)k∈N of time points, and a sequence of

functions (Gk)k∈N, we define the impulsive system







dZ

dt
=Fk(Z, t), for tk ≤ t < tk+1, k ∈ N

Z(t+k )− Z(t−k ) =Gk

(
Z(t−k )

)
, k ∈ N

∗,

Z(0) =Z0.

The solution to this system, if it exists, is a piece-wise continuous function Z on
]tk, tk+1] for k ∈ N (we assume t0 = 0 with no loss of generality). This requires that the
sequence of impulse moments (tk)k is strictly increasing, and limk→∞ tk = ∞. Existence,
uniqueness and asymptotic behavior of these solutions is studied in the general case
[Lakshmikanthanm et al., 1989, Samoilenko and Perestyuk, 1995], and depends on the
regularity of the impulsion functions Gk. One important criterion is injectivity of the
functions Gk so as to prevent the crossing of different solutions in phase space. Different
cases may be studied, where the impulse moments are random, or depend on the state of
the system (state-dependent impulsive differential equations) [Stamova, 2009]. Specific
asymptotic properties are more readily obtained in the case of a periodic system (in
terms of impulsion index k) [Bainov and Simeonov, 1993]. These equations are used
in various fields, including population dynamics (where they are combined with delay
equations) [Liu and Takeuchi, 2007], epidemiology [Gao et al., 2007], and more recently
cell-fate determination [Girel and Crauste, 2018].

Application of impulsions to the case of dividing yeast. In the case of yeast prions,
the trajectory Z represents the concentrations of internal material we are tracking in
the cells. The systems of ordinary differential equations as defined by (Fk)k contain
the kinetic information about the molecular processes at play. They also include the
physical effects of cell volume variations on the internal concentrations. The impulse
moments (tk)k indicate the cell division events, and the functions Gk model the effect of
cell division on the internal content, the transmission bias. Given the asymmetry of yeast
budding, two types of biases are possible. First in the cell growth parameters depending
on if the cell is a mother or a daughter, which will affect the system Fk. Secondly in
the function Gk, which represents the transmission bias at division k. One sequence of
impulsions (tk, Fk, Gk)k represents one lineage in the colony. At each impulsion the cell
can either be a mother or a daughter. If we track all possible lineages starting from one
initial cell, the whole colony is modeled.

Exponential growth and asymmetrical division. We use the following model of
yeast budding, which is illustrated in Figure 6.1. Cells are exponentially growing at a
constant rate which depends only on whether they are mothers or newborn daughters.
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This assumption is reasonable in terms of biology since in experiments cells are kept
at sufficient nutrient levels so that they are growing exponentially. The difference in
doubling times between mothers and daughters is measured experimentally [Satpute-
Krishnan et al., 2007], and the cell-to-cell variations in these division times can be ne-
glected in a first approximation. Cells divide as soon as they reach the maturity volume
V0. A division event produces a newborn daughter and a mother. The asymmetry is
reflected in the volume of these cells. The mother cell conserves a fraction π of its vol-
ume, and the daughter is born with a fraction 1−π. Experimentally, this ratio is known
to be approximately π = 0.6 [Byrne et al., 2009]. After the division, both cells grow
until they reach the volume V0 again, the mother grows at rate γM and the daughter
at rate γD. Since cells are growing exponentially and the maturity volume is fixed, the
doubling times for mother and daughter, TM , and TD respectively, are constrained by
the following relations

e−γMTM =π, (6.1)

e−γDTD =1− π. (6.2)

In practice, the doubling times TM and TD are measured experimentally [Satpute-
Krishnan et al., 2007], as well as the volume ratio after division [Byrne et al., 2009],
which allows us to define the growth rates using the above relations. With this simple
model of yeast budding we set up an impulsive system, where each impulsion is of dura-
tion TM or TD depending the type of the cell, and the growth rate γM or γD is included
in the ordinary differential system as a dilution term.

Transmission bias from mother to daughter. In order to establish a complete im-
pulsive system, we must define the transmission bias at the moment of division. Recall
that the quantities we are tracking are concentrations, which means they are affected
by the variation in volume. Consider a mother cell which is about to divide (volume
V0), and an internal component of mass M0. The concentration in the mother cell is

thus C0 =
M0

V0
. Without transmission bias, the internal contents are diffused rapidly

between mother and daughter before they are separated. In this case the contents are
distributed with the same ratios as the volumes and the concentration is unchanged. We
introduce a bias ε in this transmission, considering that the mother cell retains a mass
MM = (π + ε)M0 and the daughter receives MD = (1 − π − ε)M0. In order to ensure
that mass remains positive, we require

−π < ε < 1− π.
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Figure 6.1 – Illustration of the model used for yeast budding. Cells are expo-
nentially growing and divide when they reach the volume V0. Division is assumed to be
asymmetric, and a mother cell conserves a fraction π of its volume after division.

The concentration of internal contents in the mother cell and daughter cell after the
division are thus

CM =(1 + αM )C0,

CD =(1 + αD)C0,

where αM =
ε

π
, αD = −

ε

1− π
.

We do not consider the cases ε = −π or ε = 1−π which correspond to (respectively) full
or null transmission from mother to daughter. The bias ε may depend on the chemical
species considered, but it is assumed to be constant in time. With all these elements
defined, we establish the impulsive differential equation system







dZ

dt
=Fk(Z, t), for tk ≤ t < tk + Tk, k ∈ N

Z(t+k )− Z(t−k ) =αk · Z(t−k ), k ∈ N
∗,

Z(0) =Z0.

By extension αk denotes the vector of biases (one for each species considered in Z).
At each impulsion k, the cell is either a mother M or a daughter D. The parameters
are chosen accrodingly, for instance if the cell is a mother then Tk = TM (doubling
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time), Fk = FM (kinetic system) and αk = αM (transmission bias), and vice-versa for a
daughter. With this definition of the impulsion functions (and the constraints on ε) and
if the ordinary differential systems are well-posed, existence and uniqueness of solutions is
ensured [Samoilenko and Perestyuk, 1995]. Note that the description of internal contents
and the kinetic equations that drive their evolution are not specified yet, with the only
assumption that we have defined a system of equations for mother cells and a system of
equations for daughter cells.

6.1.2 Intra-cellular model of prion propagation

A bi-stable model of aggregate replication. We now introduce a model for the in-
ternal contents of cells in order to represent the propagation of the [PSI+] phenotype.
In each yeast cell we track the concentration of soluble Sup35 (V ) and the concentration
of Sup35 aggregates (S). We do not give a size-structure to the aggregates for simplic-
ity. The monomers are produced with a constant rate λ. Monomers and aggregates are
diluted with rate γ which corresponds to the growth rate of the cell (depending on the
type of cell). We assume there is no degradation of Sup35 (either soluble or aggregated)
by the cells, which is acceptable as long the time scale of the simulations stays in the
order of magnitude of its half-life (9.6 hours [Christiano et al., 2014]). Finally the aggre-
gates replicate by interacting with monomers at a maximal rate ρ and with a non-linear
efficiency. The efficiency is defined by a Hill function of threshold K and cooperativity
order n > 1

f(S) =
Sn

Kn + Sn
.

The corresponding system of ordinary differential equations is given by






dV

dt
=λ− γV − ρV f(S),

dS

dt
=ρV f(S)− γS.

(6.3)

The concentration-dependent replication rate of aggregates is introduced in an empirical
way, by choosing a type of sigmoidal functions common in enzyme-ligand reactions [Weiss,
1997]. So far we have no experimentally supported justification for this term, but it means
that the secondary nucleation is a cooperative reaction. Aggregates do not catalyze
the formation of new aggregates unless the concentration is above the threshold K.
Furthermore, when the concentration of aggregates is above the threshold the reaction
saturates and the kinetic order becomes one, it only depends on the concentration of
available monomers. We have no mechanistic justification for this hypothesis (see also
Subsection 6.3.1), however it is essential in order to reproduce experimental results.
More specifically the non-linear efficiency at low densities is necessary, as we detail in
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Section 6.2.

Equilibrium analysis. Before combining the different scales of the model, we conduct
an equilibrium analysis of the kinetic system in the absence of impulsions.

Lemma 6.1. The disease-free equilibrium (V, S) =
(λ

γ
, 0
)

exists for any choice of posi-

tive parameters. It is locally stable as long as f(0) = f ′(0) = 0. In particular it is locally

stable if f is a Hill function of order n > 1.

Proof. The jacobian matrix at this point is written as

J
(λ

γ
, 0
)

=

(

−γ − ρf(0) −ρλ
γ f

′(0)

ρf(0) ρλ
γ f

′(0)− γ

)

.

When f verifies f(0) = f ′(0) = 0, this matrix has a double eigenvalue (−γ). If f(S) =
Sn

Kn+Sn and n > 1, then f ′(S) = n
S f(S)(1− f(S)) and so f(0) = f ′(0) = 0.

Lemma 6.2. Suppose f verifies the following assumptions

• f is non-negative and strictly increasing on R+,

• f has at most one inflection point,

• f(0) = f ′(0) = 0.

then there exists at most two steady-states with non-zero aggregate concentrations 0 <

S1 < S2 <
λ

γ
, and soluble Sup35 concentrations V1 =

λ

γ
− S1 and V2 =

λ

γ
− S2. When

they exist, S1 is unstable and S2 is locally stable. In particular this is true when f is a

Hill function of order n > 1.

Proof. The steady-state conditions lead to V + S =
λ

γ
and

ρf(S)
(λ

γ
− S

)

= γS.

This is similar to the proof led in Lemma 3.2. Define H(S) = ρf(S)
(λ

γ
− S

)

and notice

that the assumptions on f impose that H(0) = H ′(0) = H
(λ

γ

)
= 0. Furthermore,

H(S) > 0 for S ∈]0,
λ

γ
[ and H admits a unique maximum point on this interval (because

f is strictly increasing). Since f admits at most one inflection point, it is also the case

for H on the interval ]0,
λ

γ
[. Overall, a geometric argument shows that the curve H(S)

94 Paul Lemarre



6.1. INTRODUCING A MULTI-SCALE MODEL OF YEAST PRIONS

and the line γS cross at most two times for S ∈]0,
λ

γ
[. The specific conditions (existence

conditions for the equilibria) are not analytically tractable for general values of n > 1.

However if two solutions exist 0 < S1 < S2 <
λ

γ
, their linear stability is given. Indeed

we have H ′(S1) > γ and H ′(S2) < γ (because H starts with a horizontal tangent in 0).
The jacobian matrix at either of these points is written as

J (V1,2, S1,2) =

(

−γ − ρf(S1,2) −ρV1,2f
′(S1,2)

ρf(S1,2) ρV1,2f
′(S1,2)− γ

)

.

After some rearrangements, and using H ′(S) = ρf ′(S)
(λ

γ
−S
)

−ρf(S), the characteristic

polynomial of this matrix is written as

χ2 + χ
(
2γ −H ′(S1,2)

)
+ γ
(
γ −H ′(S1,2)

)
.

This shows that S1 is associated with an unstable equilibrium since H ′(S1) > γ (the
jacobian matrix always has an eigenvalue of positive real part). Similarly we have both
H ′(S2) < γ and H ′(S2) < 2γ so S2 is associated with a locally stable equilibrium.

The system is bi-stable, with a prion-free equilibrium that exists and is locally stable
under any choice of positive parameters. Two other equilibria appear with a saddle-node
bifurcation, the one associated with a higher aggregate concentration S is locally stable
and the other one is unstable. This is illustrated by a phase-plan diagram in Figure 6.2.
It means that the outcome of the system depends on the initial conditions. This bi-
stability is crucial for the study of curing experiments in the context of yeast prions, and
it is transposed to the system with impulsions.

Remark. Without considering protein degradation, the total mass of protein in the sys-

tem M = V + S follows a simple differential equation
dM

dt
= λ − γM . The analytical

solution to this equation given an initial condition M(0) is M(t) =
λ

γ
+
(

M(0)−
λ

γ

)

e−γt

for t > 0.

6.1.3 The full model and preliminary results

Model formulation. Subsection 6.1.2 introduced all the constituents of our multi-scale
model, we now establish the full formulation. In each cell, we track the Sup35 monomer
concentration V and the aggregate concentration S. Between cell divisions, these chem-
icals evolve following the system of equations (6.3), where the parameter γ depends on
the type of cell considered (it is either γM or γD). At each division event we consider
that monomers are transmitted wihtout bias from mother to daughter, and aggregates
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Figure 6.2 – Phase-plan diagram for the bi-stable model of aggregate replica-
tion. The parameters used are specified in Table 6.1 (with the choice γ = γM ), and ρ is
set to 0.25 (left) or 1 (right). A filled circle indicates a locally stable equilibrium and an
empty circle indicates an unstable equilibrium.

are transmitted with a bias ε > 0 (favoring retention in the mother cell). By convention
and wihtout loss of generality, the first impulsion is always taken as a mother cell that
is about to divide and contains the inner material V0 > 0, S0 > 0. The whole impulsive
system is written as







dV

dt
(t) =λ− γkV − ρV f(S), for tk ≤ t < tk+1,

dS

dt
(t) =ρV f(S)− γkS, for 0 ≤ t < tk+1,

V (t+k ) =V (t−k ), k ∈ N
∗,

S(t+k ) =(1 + αk)S(t
−
k ), k ∈ N

∗,

V (0) =V0,

S(0) =S0.

(6.4)

Given the simple form of the impulsion functions (linear functions) and well-posedness
of the ordinary differential equations system, this problem admits a unique solution
[Samoilenko and Perestyuk, 1995]. Furthermore it is straightforward to verify that for
positive initial conditions, the trajectory remains in the positive quadrant. The parameter
values used in the simulations are detailed in Table 6.1. Biological data gives us estimates
for the doubling times TM ≈ 2hr and TD ≈ 3hr [Satpute-Krishnan et al., 2007] and the
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Table 6.1 – Parameter definitions and values used for numerical simulations
in the impulsive differential equation model of yeast prions (6.4). *: [Satpute-
Krishnan et al., 2007].†: [Byrne et al., 2009].‡: [Ho et al., 2018]

Parameter Value Unit Description

TM 2* hr Mother doubling time
TD 3* hr Daughter doubling time
π 0.6† - Mother/daughter volume ratio
ε 0.1 - Mass transmission bias

αM
ε
π - Mother concentration bias

αD − ε
1−π - Daughter concentration bias

γM − 1
TM

ln(π) = 0.26 hr−1 Mother growth rate
γD − 1

TD
ln(1− π) = 0.31 hr−1 Daughter growth rate

λ 0.7 ‡ µM.hr−1 Sup35 monomer basal production rate
ρ 10 hr−1 Maximal aggregate replication rate
K 1 µM Replication efficiency threshold
n 5 - Replication efficiency order

volume ratio after division π = 0.6. The prion-free concentration of soluble Sup35 is

evaluated at
λ

γ
= 2.5µM [Ho et al., 2018]. The transmission bias is set at ε = 0.1. The

replication efficiency threshold is set at K = 1µM and the order of cooperativity is set at
n = 5. These values are chosen empirically in order to illustrate the qualitative behavior
of the model. Finally, the maximal replciation rate ρ is used as an exploration parameter
to study the model.

The periodic system and asymptotic behavior: a bi-stable impulsive system.

In order to gain insight on the asymptotic behavior of the full impulsive system, it is
fruitful to simplify the problem by considering periodic impulsions. This corresponds
to studying periodic lineages in the colony. This is particularly interesting for the two
extreme lineages, mother-only and daughter-only, as their behavior provides information
on the whole colony. Consider one of these lineages, with γ, T and α fixed and the
impulsion moments given by tk = kT, k ∈ N.







dV

dt
(t) =λ− γV − ρV f(S), for kT ≤ t < (k + 1)T,

dS

dt
(t) =ρV f(S)− γS, for 0 ≤ t < tk+1,

V (kT+) =V (kT−), k ∈ N
∗,

S(kT+) =(1 + α)S(kT−), k ∈ N
∗,

V (0) =V0,

S(0) =S0.

(6.5)
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Since the system is periodic, it is relevant to look for periodic solutions. The behavior of
this system is analogous to that of the non-impulsive case, although we do not yet have
a mathematical proof of this statement. The following results are based on numerical
evidence. We conjecture that the periodic system is bi-stable with a locally stable prion-
free solution, and two other periodic solution that appear with a saddle-node bifurcation.
One of them is locally stable, the other is unstable. The constant solution V (t) =
λ

γ
, S(t) = 0 is the analog of the disease-free equilibrum. Its local stability relies on the

properties of the non-impulsive system, and more particularly the properties of f , namely
f(0) and f ′(0) = 0. The two other periodic solutions are found numerically using the
following property.

Lemma 6.3. The solution (V (t), S(t)) for t ∈ [0, T ] of the ordinary differential system

in (6.5) is a periodic solution of the full impulsive system if and only if the following

equations are verified:

V (0) +
1/(1 + α)− e−γT

1− e−γT
S(0) =

λ

γ
,

V (T ) +
1− (1 + α)e−γT

1− e−γT
S(T ) =

λ

γ
.

Proof. The equivalence relies on the evolution of the mass M(t) = V (t) + S(t). Recall

that
dM

dt
= λ− γM , and so we have

M(T ) =
λ

γ
+
(

M(0)−
λ

γ

)

e−γT .

Suppose (V, S) is a periodic solution, then V (T ) = V (0) and S(0) = (1 + α)S(T ). The
equation on the mass expressed in terms of (V (0), S(0)) only or in terms of (V (T ), S(T ))

only gives the two relations from the Lemma. Reciprocally, suppose (V, S) is a solution
of the ordinary differential system that verifies the linear relations in the Lemma. Using

the same equation on the mass M(T ) =
λ

γ
+
(

M(0)−
λ

γ

)

e−γT , expressed either in terms

of (V (0), V (T )) only or in terms of (S(0), S(T )) only, we obtain that V (0) = V (T ) and
S(0) = (1 + α)S(T ).

This result gives a reduced space to numerically investigate the existence of periodic
solutions. Indeed it is equivalent to find a periodic solution and to find a solution of the
ordinary differential system that joins the two lines in the phase-plan. This allows us to
numerically confirm our hypothesis that two non-trivial periodic solutions are possible,
and they appear through a saddle-node bifurcation. The phase plan and the numerical
approximation of the periodic solutions (for each periodic system) are shown in Figure 6.3.
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Figure 6.3 – Phase-plan diagram of the bi-stable periodic systems and peri-
odic solutions. The two periodic impulsive systems are illustrated, on the left the
mother-only system and on the right the daughter-only system. Each diagram shows
the nullclines of the differential equation system, as well as the lines that constrain the
position of periodic solutions, as given by Lemma 6.3. The periodic solutions of each
system are also approximated through numerical exploration and plotted in black (stable
periodic solution) or red (unstable periodic solution). The parameters used are described
in Table 6.1.

Periodic lineages and full colony behavior. The periodic lineages are two lineages
out of an exponentially growing number of cells, yet they provide insight on the behavior
of the whole colony. The main reason is that the bias of cell division and aggregate
transmission favors aggregate sustaining in mother cells. More precisely, the daughter-
only lineage corresponds to the periodic system (6.5) with α = −ε/(1 − π) < 0 and
γ = γD. The mother-only lineage corresponds to α = ε/π > 0 and γ = γM . The
transmission bias favors the presence of aggregates in mother cells since αD < 0 < αD

and the growth rate difference also favors aggregate replication in mothers since γM < γD
(see Table 6.1). Overall the daughter periodic system is the least favorable for aggregate
replication, and the mother periodic system is the most favorable. Using this rationale,
three possible outcomes are predicted for the system.

• If the mother-only lineage is [psi−] i.e. converges to the prion-free solution, then
the whole colony also grows to be [psi−].

• If the daughter-only lineages is [PSI+] i.e. it converges to the prion periodic
solution, then the whole colony is necessarily [PSI+].
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• Intermediate cases where the daughter-only lineage is [psi−] and the mother-only
is [PSI+] lead to partially [PSI+] colonies, which we refer to as sectored colonies.

These three different cases are illustrated by full colony simulations in Figure 6.4. Nu-
merically predicting the colony phenotype is possible from simulating only two lineages
(instead of an exponentially growing number of lineages as generations progress). This
prediction is depicted in Figure 6.5, depending on the state of the founder cell. The
different periodic solutions are also shown on this diagram, two periodic solutions for
each of both periodic systems (mother-only and daughter-only).

6.2 Numerical results and interpretation

6.2.1 Aggregate replication is limited by a concentration threshold

The phenotype is reversible. In the context of [PSI+] curing (see Subsection 5.1.3),
the reversibility of the prion phenotype is critical. In curing experiments, a yeast cell is
scored as [PSI+] if, when plated onto normal medium (free of any de-stabilizing agent),
it grows into a full [psi−] colony. This is conceptually possible if the phenotype colony
indeed depends on the state of Sup35 in the founder cell. This is why our choice of
a bi-stable model is inevitable in this framework. With a global model (such as the
Nucleated Polymerization model for instance), as long as the initial cell contains a posi-
tive concentration of aggregates, it grows into a full [PSI+] colony. The problem is that
with continuous concentration modeling and continuous transmission bias functions, even
when replication is suppressed no cell in the colony ever reaches a null aggregate concen-
tration (the concentration follows an exponential dilution process). For our framework
to allow curing as a feasible behavior, bi-stability is necessary in the molecular scheme.

The case of sectoring. An interesting feature of curing experiments is that sectored
colonies are often observed in the transient phases [Wegrzyn et al., 2001]. Our model ex-
hibits sectoring as an intrinsic feature that emerges from the combination of the mother-
daughter bias and the bi-stability of the intracellular kinetic model. Figure 6.5 shows
how the behavior of the colony depends on the state of Sup35 in the founder cell. In par-
ticular, it shows that if a strain has a reduced replication rate, sectoring becomes a more
likely phenomenon. This is consistent with experimental data [Cox et al., 2007], and
links molecular parameters with phenotype observations. In the context of our frame-
work and model, a weak strain is a strain with a low value of replication rate ρ, whereas
a strong strain has a large value of ρ. The sectoring behavior is often dismissed in cur-
ing experiments. Sectored colonies are either counted as half [PSI+]-half [psi−] or full
[PSI+], [Wegrzyn et al., 2001,Tuite and Cox, 2003]. Our results reveal the importance
of this phenomenon and its intimate link with the kinetic dynamics of aggregates, as well
as the asymmetry between mothers and daughters.
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A

B

C

Figure 6.4 – Simulations of three possible outcomes of the impulsive model
for prion propagation. Evolution of the aggregate S and monomer V concentration
for three different initial conditions. Each trajectory shown corresponds to a different
lineage. Because cells are dividing the number of trajectories plotted increases in time,
as does the number of cells. The trajectories for S and V are shown in the same color
for the same cell. The parameters used are described in Table 6.1. The initial conditions
used are to be related with the attraction basin showed in Figure 6.5. (A) Completely
cured ([psi−]) colony (V (0) = 0.07µM,S(0) = 0.3µM) (B) Full [PSI+] colony (V (0) =
0.07µM,S(0) = 0.5µM) (C) Sectored colony (V (0) = 0.07µM,S(0) = 0.4µM).

6.2.2 GdnHCl and the concept of propagon

Reproducing the propagon count experiment. The GdnHCl curing experiment (as
introduced in Subsection 5.1.3, Subsection 5.2.1 and Figure 5.2) is of particular impor-
tance in the field of yeast prions. During GdnHCl treatment, the number of [PSI+] cells
in a colony reaches a plateau [Cox et al., 2007]. Our model reproduces this property
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Figure 6.5 – Predicting colony color phenotype. Numerical prediction of colony
phenotype based on the state of the founder cell, for two different strains. A cell is
predicted to be [psi−] if the mother-only lineage converges to the prion-free solution. If
the daughter-only lineage converges to the prion solution, the cell is scored as [PSI+]. If
the daughter-only lineage is cured of prion and the mother-only lineage is not, the cell is
scored as sectored. The stable periodic solutions for the mother-only and daughter-only
solutions are also shown. Each periodic solution is shown as two dots linked together by
a trajectory of the differential equation system as well as a vertical line representing the
effect of cell division. These elements may overlap due to the scaling. For each system
(mother or daughter) a prion-free solution is visible on the horizontal axis, as well as a
prion solution in the white region of the diagram. The parameters used for this diagram
are described in Table 6.1. Panel (A) shows a strong strain with a maximal replication
rate ρ = 10hr−1 and panel (B) is a weak strain with ρ = 0.87hr−1.

under specific parameter choices, as shown in Figure 6.6. In these simulations, cells are
scored as [PSI+] as soon as the concentration of aggregated Sup35 is above a given
threshold (we use a scoring threshold of 0.5µM). However the qualitative result does not
depend on the scoring method, because we know that a finite number of lineages in the
colony are attracted by a solution with a positive concentration of aggregates. All the
other lineages are attracted by the prion-free solution. This behavior is possible with our
model but only if aggregates continue to replicate in GdnHCl conditions, which strongly
contradicts former experimental studies [Eaglestone et al., 2000, Wegrzyn et al., 2001].
The hypothesis that GdnHCl interrupts all chemical activity of aggregates was nuanced
in previous experimental work. Indeed it was shown GdnHCl does not stop aggregate
growth [Wegrzyn et al., 2001,Ness et al., 2002, Satpute-Krishnan et al., 2007]. Further-
more, [Park et al., 2012] used fluorescent tagging to track aggregates during GdnHCl
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treatment, and report a decrease in cells with foci slower than the halving predicted by
the segregation hypothesis.
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Figure 6.6 – Reproducing the propagon count experiment with the impulsive
model. Evolution of the [PSI+] cells count and [PSI+] proportion simulated by our
model, in the case of ρ = 0.21hr−1 (all other parameters as in Table 6.1). Cells are
scored as [PSI+] as soon as they contain a concentration of aggregated Sup35 higher
than 0.5µM .

GdnHCl conditions correspond to a very precise choice of parameters. Re-
producing the propagon count experiment with our model requires very specific kinetic
parameters for the replication reaction. These conditions are found numerically by study-
ing the mother-only lineage in the model. Indeed when this lineage is attracted to the
[PSI+] periodic solution but each of its daughters becomes [psi−], we are assured that
the total number of [PSI+] cells in the colony reaches a plateau. These conditions are
illustrated by Figure 6.7, where the system is initiated close to the periodic solution of the
mother-only lineage. Each daughter born from this lineage creates a branch of the colony
that looses aggregates and becomes [psi−]. These conditions lead to the cell counts that
reproduce the experiments as shown in Figure 6.6. Once again this is the consequence of
bi-stability in the molecular model as well as the asymmetric division favoring aggregate
retention by mother cells. The fact that thse conditions correspond to a very narrow
parameter range is worth emphasizing and discussing further.

6.3 Discussion and perspectives

6.3.1 How to explain the kinetic threshold?

Taking into consideration the case of low aggregate densities. Our results show
that the behavior of aggregates at low densities needs to be investigated further. In
previous modeling studies (see Subsection 5.2.1) this behavior was usually dismissed, or
assumed to be an exponential expansion rate. We suggest a modeling approach that
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Figure 6.7 – Simulation of a propagon in GdnHCl curing conditions. Full colony
simulation close to the periodic solution of the mother-only lineage, in the case of ρ =
0.21hr−1 (all other parameters as in Table 6.1).

includes a non-linear reaction rate effective only at low concentrations of aggregates.
This could be explained by a cooperative mechanism requiring the presence of multiple
aggregates in order to catalyze the formation of a new one. Note that fragmentation is not
such a mechanism, even when it is limited by the presence of a chaperone like Hsp104. So
far we have no evidence for this type of mechanism other than the mathematical insight
provided by our modeling.

A modeling choice. Another approach is possible to investigate the behavior of low
densities of aggregates. In these conditions, probabilistic models become more reliable
than deterministic models since the hypotheses of the law of mass-action are not strictly
verified. This approach is used for instance in [Villali et al., 2020], as developed in
Subsection 5.2.2. One interpretation of our model could be that the law of mass-action
requires some adjustment in the conditions of low aggregate densities, and the non-linear
terms would account for this adjustment.

6.3.2 On the role of GdnHCl and Hsp104, the concept of propagon

An uncovered mechanism? Our results question all previous assumptions made about
the effect of GdnHCl. With our model, the propagon experiment is reproduced only if
the chemical replication rates are chosen very carefully. This is potentially explained by
two reasons. The first is that our model might be too simple to capture the possibilities
of the full biological system. This would also explain why sectoring is reduced to such
a narrow region in the phenotype map Figure 6.5. A second explanation is that our
model may be missing an essential chemical process, which remains unaffected when
GdnHCl is present. There is precedent for this assumption, because there is evidence that
aggregates are still chemically active under GdnHCl treatment. First GdnHCl does not
prevent aggregates from growing by polymerizing newly synthesized Sup35 [Kryndushkin
et al., 2003,Satpute-Krishnan et al., 2007]. Furthermore, there is evidence for an action
of Hsp104 that is not affected by GdnHCl, see Subsection 5.1.4. This brings up the

104 Paul Lemarre



6.3. DISCUSSION AND PERSPECTIVES

controversial question of the roles of Hsp104 in the propagation of [PSI+] and other yeast
prions. The only conclusion our results bring is that GdnHCl curing is not explained
by an exponential dilution model as suggested previously [Eaglestone et al., 2000,Byrne
et al., 2009], because of the plateau of [PSI+] cells. Our study is a first step in the design
of a more elaborate kinetic model that includes the effect of Hsp104.

Towards a re-definition of the propagon. With the perspective of our modeling
framework, the concept of the propagon needs to be adjusted. Instead of defining the
propagon as particulate entity, we define it as an asymptotic property of the system.
One propagon corresponds to one lineage that remains [PSI+] in GdnHCl-treatment
conditions, when all the subsequent daughters born from this lineage become [psi−].
The number of propagons in a cell is intimately related to the initial state of Sup35
in this cell (at the start of the propagon count experiment). However, this relation is
more complex than predicted by the model of random segregation (Figure 5.2). The
propagon plateau is influenced by the kinetic replication model (in conditions of GdnHCl
treatment), and this makes the interpretation more difficult. Nonetheless it offers the
possibility to build a model which reproduces propagon counts more faithfully.

6.3.3 Conclusion and perspectives

We introduced a novel modeling tool to the field of yeast prions, with the major
benefit of relating different scales in a controlled and rigorous way. From the molecular
mechanisms, with a kinetic scheme built using mass-action kinetics, to the phenotypi-
cal traits at the colony level, this framework has the potential of taking into account
every aspect of the system. In the case of the [PSI+] prion, we build a simple model
with the primary goal to qualitatively reproduce experimental observations from the lit-
erature. We focus on curing experiments, and reproducing any curing experiment with
our framework requires introducing a very particular characteristic into the molecular
model. The kinetic scheme needs to be bi-stable, where the prion-free state and the
prion state are both simultaneously stable, and the transition between the two of them
is a bi-stable switch. This allows the possibility of curing, and it concomitantly explains
the phenomenon of sectoring in a deterministic way. This phenomenon is often dismissed
but is in fact instructive with regards to the molecular processes. By investigating in
more detail the case of GdnHCl curing, we have reason to question the suggested effect
of this agent. Indeed this experiment is reproduced by our model, but the fragmentation
of aggregates must not be completely inhibited contrary to the commonly accepted effect
of GdnHCl.

Overall, the framework of impulsive differential equations is versatile and could be
adapted to many different cases. Studying the [PSI+] prion already revealed instructive,
even though work is still in progress. In the future, we aim to use this framework to build
and validate a complete model of aggregate replication including the role of Hsp104
and possibly its co-chaperones, a size-distribution of aggregates, stochasticity in the cell
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division events. This would be done through hypothesis testing and close collaboration
with biologists. Inferring parameters is a long-term goal, that first requires understanding
the very structure of the molecular processes. In particular, it needs to be clear what is
the mechanistic origin of the cooperativity in the replication of aggregates. Another use
of the model is to extend it to other yeast prions and amyloid models, as yeast models
are used to screen for anti-amyloid drugs, and a specific modeling framework would help
interpreting these experiments.
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and their multi-scale propagation
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This Part focuses on the investigation of protein misfolding processes in the context
of neurodegenerative diseases. These diseases include mammalian prion diseases (see
Part I), as well as Alzheimer’s Disease (which we focus on in this Part), Parkinson’s
Disease and Huntington Disease. We are interested in the spatio-temporal evolution of
protein misfolding and aggregation, and how they dictate the evolution of the degener-
ation. This chapter introduces state-of-the art knowledge concerning the propagation of
Alzheimer’s Disease in the brain, as well as the role of prion-like processes in the pathol-
ogy. It also presents recent models of spatio-temporal propagation of protein aggregates
in the brain.
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7.1 Grasping the complexity of Alzheimer’s Disease

7.1.1 The amyloid cascade hypothesis

Accumulation of amyloid plaques in the brain is one of the hallmarks of Alzheimer’s
Disease. These plaques are usually present in the brains of late-stage Alzheimer’s pa-
tients, and detected upon autopsy. They were first hypothesized to be the main cause
of the neurodegeneration, and they were the target of numerous yet unsuccessful ther-
apeutic strategies. The plaques are composed mostly of Aβ protein, which is a protein
peptide that results from the cleavage of Amyloid Precursor Protein (APP) by proteases.
Depending on the position of the cut, a different length of Aβ is created ranging from
36 to 43 amino acids. The versions most involved in the development of the disease are
Aβ40 and Aβ42. These proteins can indeed change conformation and assemble into long
fibrils and plaques. The deposition pattern evolves in time on a scale of years and prop-
agates from one region of the brain to another [Thal et al., 2002]. Although the precise
involvement of Aβ deposition in neurotoxicity and the onset of symptoms is not clearly
understood, it does partially correlate with brain atrophy and neuronal death [Soto,
2003]. This led to the formulation of the amyloid cascade hypothesis [Hardy and Selkoe,
2002].
A prion-like propagation. This dominant hypothesis in the field of Alzheimer’s Dis-
ease and neurodegenerative diseases considers that the onset of the disease is related to
an autocatalytic conformational change of Aβ. The amyloid cascade hypothesis is the
theory that the entire pathogenesis is driven by the progressive misconformation and
accumulation of Aβ. The very first steps in this process are stochastic and very rare,
with multiple factors (genetic, environmental, other diseases) affecting the probability of
a spontaneous nucleation happening [Rodrigue et al., 2013]. Once a seed is formed, the
accumulation starts by forming small soluble oligomers, leading the way towards longer
and more rigid fibrils, which may eventually coalesce into large plaques. Even though
the amyloid protein assemblies are not the same as prion aggregates, the mechanisms are
similar and the propagation of Aβ assemblies is indeed driven by a secondary nucleation
process [Cohen et al., 2013, Olsson et al., 2018]. The amyloid cascade hypothesis had
gained considerable support over the past two decades, but it has some limitations and
requires some complimentary theories, see Subsection 7.1.3.

7.1.2 The role of structural diversity

From oligomers to plaques. The accumulation of Aβ produces a large range of struc-
tures, with different levels of organization and different pathological properties. Thera-
peutic research first focused on the large plaques because they were most clearly identified
signs, but amyloid-clearance strategies have yet to prove successful in reducing the dis-
ease progression [Hardy and Selkoe, 2002]. More advanced imaging and bio-chemical
characterization techniques allowed the identification of smaller, more soluble, aggre-
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gated species formed of Aβ. The propagation of these smaller species in the brain is
much more likely than the propagation of large plaques and tangles. It is not clearly
understood whether oligomers are an intermediate for the formation of larger plaques or
an alternate polymerization pathway [Cohen et al., 2015], but what is now commonly
accepted is that they are the most impactful aggregated species in the disease’s propa-
gation.
The most toxic species. It is now believed that the most toxic Aβ self-assembled
structures are small oligomers [Haass and Selkoe, 2007, Sengupta et al., 2016]. The
plaques act as end products of the amyloid formation chain, but are largely immobile
and inactive. The smaller species however propagate easily throughout the brain and have
a direct toxic effect on the neurons [Dean et al., 2016,Sowade and Jahn, 2017]. Indeed it
has been shown that they induce an inflammatory response from neuronal cells [Sondag
et al., 2009]. This sheds light onto the importance of structural diversity in the amyloid
formation pathway, and how crucial this diversity is in the onset and propagation of
the disease. Understanding how different structures are formed and interact between
themselves is a foremost problem in the effort against Alzheimer’s Disease.

7.1.3 Limitations of the amyloid cascade hypothesis and complimen-

tary theories

Decorrelation between amyloid accumulation and other biomarkers. Beside
amyloid deposition, physiological signs of the disease include brain atrophy and intra-
cellular neurofibrillar changes [Braak and Braak, 1991,Jagust and Mormino, 2011]. The
associated neurodegeneration leads to cognitive impairment and loss of function in certain
regions of the brain, that are not necessarily correlated with the regions affected by amy-
loid deposition [Rabinovici et al., 2010]. This led to the search of other complimentary
mechanisms involved in the progression of the disease.
The role of Tau. Tau is an intracellular protein that is also involved in the progres-
sion of Alzheimer’s Disease. It self-assembles into large tangles in prion-like manner. It
is hypothesized that extracellular accumulation of misfolded Aβ favors the msifolding
of intracellular Tau [Bloom, 2014]. Including the action of Tau revealed important to
recapitulate some discrepancies between the accumulation of Aβ and the physiological
changes associated with neurodegeneration in different parts of the brain. One important
characteristic of Tau is that it accumulates intracellularly and can thus be transmitted
along synapses. This aspect of Alzheimer’s Disease is not considered in our study, but it
will have to be taken into account if a full multi-scale model is to be built (see Subsec-
tion 8.3.3).
Long range propagation. The propagation of amyloid aggregates from one brain region
to another is not attributable to simple diffusion. Indeed the temporal and regional
characteristic do not follow a simple diffusive pattern, they rather follow a specific and
reproducible order [Braak and Braak, 1991, Hardy and Selkoe, 2002]. This indicates
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that long propagation mechanisms are at play, such as exosome transport and axonal
propagation. Exosomes are small vesicles or capsules that contain protein material to be
transmitted between different neurons. In particular they transport proteins such as Aβ

and Tau, and may propagate misconformed protein from one brain region to anohter [Xiao
et al., 2017]. Axonal propagation correponds to the transmission of protein along axons
(i.e. neuronal connections), which is suggested to happen for the transmission of small
assemblies of Tau [Braak and Del Tredici, 2011]. This mechanisms is supported by the
correlation between regional and temporal patterns of the disease progression and models
based on network diffusion, see Subsection 7.2.2.

Alzheimer’s Disease results form the complex interactions of different processes, in-
cluding protein misfolding and self-aggregation, short and long range propagation, in-
flammatory response and protein quality control. However structural diversity of protein
assemblies plays a crucial role in the progression and toxicity of the disease, and models
of amyloid processes need to take this aspect into account.

7.2 Spatio-temporal models for the propagation of misfol-

ded proteins in the brain

We introduce here modeling studies that include the effect of spatio-temporal propa-
gation of amyloid aggregates in the progression of Alzheimer’s Disease. Our interest lies
in the importance of structural diversity, but we are also concerned with the interplay be-
tween regional and temporal deposition and the emergence of patterns. Different methods
and approcahes are possible to tackle this issue, but the main two are reaction-diffusion
equations and network-diffusion models.

7.2.1 Models with structural diversity

Different kinetic models have been suggested to take into account the different struc-
tures formed by self-assembly of Aβ. In particular [Webb et al., 2013,Helal et al., 2019].
These models introduced the novel concept of interaction between Aβ and the PrP pro-
tein in the context of Alzheimer’s Disease, but they also introduced different structures
including fibrils, plaques and small oligomers. They do not consider a spatial dimen-
sion and the models consist of systems of autonomous ordinary differential equations.
In these models, the plaques act as inactive reservoirs where oligomers and fibrils are
trapped. Fibrils grow following a polymerization-depolymerization mechanism (which
gives a Becker-Döring scheme, see Subsection 1.2.1). Oligomers also grow by polymeriz-
ing Aβ monomers, but are stabilized once they reach a critical size.

7.2.2 Reaction-diffusion models

One classical approach that allows studying spatial propagation is the use of reaction-
diffusion equations. This was used in the context of a full brain, in two dimensions with
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simple diffusion [Bertsch et al., 2017]. This model combines the Smoluchowski equation
(fragmentation-coagulation) with size-dependent diffusion. It gives a system of partial
differential equations, that is solved numerically on a two-dimensionnal mesh representing
a whole brain. In this case the fibrils do not have structural diversity, only one type of
assemblies is considered. Different limitations apply to this model, in particular the scales
involved. Indeed, Stokes-Einstein diffusion is only applicable to short spatial and time
scales. For long range propagation and longer time scales, the brain molecular clutter
restricts the application of classical diffusion laws. In those conditions, other processes
have to be taken into account such as exosome transport or axonal propagation.

7.2.3 Network diffusion-based models

Another approach, more adapted to larger temporal and spatial scales is the network-
diffusion method. In [Raj et al., 2012], a network is built from imaging data of real
(healthy) human brains. The connectome is reduced to a graph containing 90 nodes,
corresponding to different regions of interest in the brain. This graph is then used to
simulate a simple model of exponential growth couple with network-diffusion. Even with
a very simple model of molecular processes (not exactly prion-like), the propagation
mimics the temporal and regional evolution of actual symptoms such as brain atrophy.
This supports the idea that the long range propagation of the neurotoxic agents is mostly
driven by the connectome of the brain.

Different approaches have been suggested to study amyloid propagation in the context
of Alzheimer’s pathogenesis, each specific to certain temporal and spatial scales. To the
best of our knowledge, there exists no model which can take into account all the different
scales involved, from molecular processes to brain atrophy and degeneration, and link all
the processes at play. We propose one contribution in Chapter 8 which focuses on the
early stages of the amyloid cascade.
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Chapter 8 is adapted from published work [Andrade-Restrepo et al., 2019]

This chapter is dedicated to the introduction and preliminary study of a spatial model
for the propagation of Aβ oligomers. Considering the different scales and processes at
play in Alzheimer’s Disease and the complexity of their interplay (see Chapter 7), our
approach focuses on a restricted setting with the intent to build a robust modeling basis.
We consider the early phases of the disease, at the beginning of the amyloid cascade and
in the vicinity of a few neurons, and we investigate the influence of diffusion combined
with secondary nucleation on the propagation of Aβ oligomers and their toxicity on
neurons.
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8.1 Introducing a model which combines secondary nucle-

ation and spatial diffusion

8.1.1 Model setting and biological hypotheses

Scope of the model. In the context of the amyloid cascade hypothesis, and with recent
discoveries that oligomers play a crucial role in the pathogenesis of Alzheimer’s Disease
(see Section 7.1), we propose a model that focuses on Aβ oligomers. The scope of the
model is necessarily restricted to the vicinity of a few neurons, and time scales of a few
hours. With these restrictions, we are entitled to study the propagation of assemblies
under the main drive of Stokes-Einstein diffusion and to ignore long range interactions,
as well as cyclic effects of the brain metabolism. We place the focus on the early events in
the amyloid cascade, after a seed has been formed. The random aspects of the process we
ignore, so that we can focus on the impact of deterministic kinetic schemes and secondary
nucleation mechanisms. Since the time scale is limited to a few hours, we also neglect
the formation of long fibers and plaques. The objects we study are thus fairly small (less
than 100 monomers) so we use a discrete size-description.

Molecular scale phenomena. The model tracks the spatio-temporal distribution of the
concentration of Aβ and Aβ oligomers, in space x and time t. Normal Aβ monomers, of
density m(x, t), are produced by neurons and released through their membrane with a
rate λ, and they are cleared from the brain environment with a rate δ. These monomers
are captured by proto-oligomers, or non-mature oligomers through a simple polymeriza-
tion process of rate ri (depending on the size i of the proto-oligomer). For mathematical
reasons, we assume the sequence of polymerization rates (ri)i is (non-strictly) increas-
ing. The density of proto-oligomers of size i is denoted by µi(x, t). Monomers are also
released from proto-oligomers through depolymerization with a constant rate b. When a
proto-oligomer grows above the size threshold i0 > 2, it becomes stable and can no longer
vary in size. We refer to this process as oligomerization. Finally, proto-oligomers grow
in numbers through a secondary nucleation mechanism which we model as a fragmenta-
tion process. In particular we consider a uniform fragmentation process of rate β, and
we formulate our equations as a Nucleated Polymerization model (see Subsection 1.2.3)
with a nucleus size of 2 and a maximum size of i0 (oligomer threshold).

Mesoscopic scale. The model evolves in a bounded domain Ω of R2 of external boundary
Γ, in which a N neurons are present. The neurons are represented by disks ω1, ω2, . . . , ωN .
Each neuron k = 1 . . . N produces Aβ monomers through its membrane ∂ωk with a time-
dependent λk(t). Each considered species of size i = 1 . . . i0 diffuses in space with a size-
dependent diffusion coefficient Di. We assume that the smaller the assembly, the faster it
diffuses, and the specific scaling of these coefficients is described in Subsection 8.1.2. We
assume diffusion is isotropic in the brain (a strong hypothesis since the cerebrospinal fluid
is crowded by numerous proteins and structures), which allows us to use two-dimensional
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results as a good approximation of three-dimensional properties. Oligomers are assumed
to be the toxic species for neurons. Their action is assumed to rely on their presence
in the effector zone Σε

k of each neuron k, which is the annulus of radius ε surrounding
ωk. When oligomers are in the vicinity of a neuron, they induce a reduction of the Aβ

production rate λk(t). This models the effect of an inflammatory response or of neuronal
death, and we assume it is irreversible. The Aβ monomer production rate of neuron
k decreases exponentially fast, with an instantaneous rate that is proportional to the
quantity of oligomers present in the annulus Σε

k. This writes as

dλk

dt
=− τλk

∫

Σε
k

µi0(x, t)dx,

λk(0) =λ0
k,

(8.1)

where λ0
k represents the healthy production rate of Aβ of neuron k (in practice we assume

it is the same for all neurons λ0 > 0). This is a very simple and pessimistic model of
toxicity since there is no possible healing for the neurons. However we have no precise
indication of the effect that Aβ oligomers have on neurons so we start with the simplest
assumptions. In order to properly define the mathematical formulation of the model,
the behavior at the boundaries needs to be specified. Along the neurons we impose
non-flux (Neumann) boundary conditions, except for the monomers because the neurons
produce Aβ monomers. The domain boundary is dealt with as an absorbing boundary
of coefficient γ, which represents loss of mass towards other parts of the brain. This
implies that the process starts in the region of interest Ω and then propagates outwards.
Another possibility would be to use periodic boundary conditions in order to represent a
closed environment in isolation of the rest of the brain. All the processes we detail here
are illustrated by Figure 8.1, and the domain definition as well as the geometry of the
neurons are described in Figure 8.2. These hypotheses and processes allow us to define
the model as a mathematical problem.

8.1.2 Mathematical formulation

Initial formulation as a system of partial differential equations. We introduce
the mathematical formulation. Let us first define the following sets

X =L2(0, T : H1(Ω)),

X+ ={v ∈ X|v(x, t) ≥ 0, a.e. (x, t) ∈ Ω× [0, T ]},

V+ ={v ∈ L2(Ω)|v(x) ≥ 0, a.e. x ∈ Ω}.

The processes described in Subsection 8.1.1 are translated into the following partial
differential equation problem, which combines a Becker-Döring scheme with a simplified
Nucleated Polymerization model (see Section 1.2). We assume all kinetic parameters are
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Neuron Monomer Proto-oligomer Oligomer

Figure 8.1 – Biological processes represented in the Aβ oligomer model. Al-
though it is not illustrated in the scheme, all agents (except neurons) are diffusing in
space with a size-dependent diffusivity. All processes illustrated are described in de-
tail in Subsection 8.1.1 and the corresponding mathematical formulation is presented in
Subsection 8.1.2.

positive.

Problem 1. Given initial conditions (m0, µ0
2, . . . , µ

0
i0
) ∈ V i0

+ and λ0 > 0,

find (m,µ2, . . . , µi0) in Xi0
+ such that

∂m

∂t
=D1∆m+

i0−1∑

j=3

bµj −

i0−1∑

j=2

rjµjm+ 2β

i0−1∑

j=2

µj − δm,

∂µ2

∂t
=D2∆µ2 + bµ3 − r2µ2m− βµ2 + 2β

i0−1∑

j=3

µj ,

∀i ∈ {3, . . . ,i0 − 2},

∂µi

∂t
=Di∆µi + bµi+1 − bµi + ri−1µi−1m− riµim− β(i− 1)µi + 2β

i0−1∑

j=i+1

µj ,

∂µi0−1

∂t
=Di0−1∆µi0−1 − bµi0−1 + ri0−2µi0−2m− ri0−1µi0−1m− β(i0 − 2)µi0−1,

∂µi0

∂t
=Di0∆µi0 + ri0−1µi0−1m,

(8.2)
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Neuron

Membrane

Toxicity zone

Domain

External boundary

Figure 8.2 – Domain geometry for the Aβ oligomer model.

and

a.e.x ∈ Ω,m(x, 0) = m0(x), µ2(x, 0) = µ0
2(x), . . . , µi0(x, 0) = µ0

i0(x),

with the following boundary conditions on the external boundary Γ and for each neuron

k = 1 . . . N

i = 2, . . . , i0, Di
∂µi

∂ν
=− γµi on Γ,

i = 2, . . . , i0, Di
∂µi

∂ν
=0 on ∂ωk,

D1
∂m

∂ν
=− γm on Γ,

D1
∂m

∂ν
=λk(t) on ∂ωk.

(8.3)

The source term λk of neuron k follows the differential equation

dλk

dt
(t) =− τλk

∫

Σε
k

µi0(x, t)dx,

λk(0) =λ0.

(8.4)

Note that the depolymerization of one monomer from a proto-oligomer (rate b) and
the fragmentation of a monomer from a proto-oligomer (rate β) are different processes
biologically, but they produce the same outcome in the model equations. They could
be reconciled into a single chemical rate but with a more complex fragmentation kernel,
however we choose to keep all processe as simple as possible so that each term is inter-
pretable and controlable. Table 8.1 summarizes all parameters of the model, as well as
the values used in numerical simulation (see Subsection 8.2.2 for more detail).
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Table 8.1 – Parameter values used for the simulations of Equation 8.2 (unless
specified otherwise). See Subsection 8.2.2 for a detailed justification of the parameter
choice.

Parameter Value Unit Description

T 50000 s Time scale
L 100 µm Length scale
C0 10−9 M Concentration scale
i0 20 - Size of oligomers
Di D1/i

1/3 m2.s−1 Diffusion coefficient of size i
D1 2.2.10−14 m2.s−1 Diffusion coefficient of monomers
δ 5.10−4 s−1 Degradation coefficient of monomers
γ 1 m.s−1 Surface absorption rate
ri r0 M−1s−1 Polymerization rate of size i
r0 107 M−1s−1 Basal poplymerization rate
b 10−3 s−1 Depolymerization rate
β 10−4 s−1 Fragmentation rate

λ0 × πR2
neuron/Vneuron 2.10−13 M.s−1 Monomer production rate of a neuron
τ 1010 M−1.s−1 Infectivity rate

Rneuron 2 µm Radius of a neuron
Vneuron 20 µm3 Apparent volume of isolation for a neuron

ε 2 µm Radius of activity for oligomers

Remark. The analytical expression of the monomer production rate for each neuron k

is known analytically as

λk(t) = λ0
k exp

(

− τ

∫ t

0

∫

Σε
k

µi0(x, s)dxds

)

. (8.5)

8.1.3 Theoretical results

Before moving on to simulating and exploiting the model, we present a few prelimi-
nary theoretical results.

The healthy case. In the case where no oligomers are present (µ2 = µ3 = . . . = µi0 = 0),
the monomer concentration distribution verifies the following heat equation

∂m

∂t
=D1∆m− δm,

D1∇m · ~n|Γ =− γm,

D1∇m · ~n|∂ωk
=λ0.

(8.6)

This equation clearly admits a unique solution in X+. In particular, the steady-state
solution of this equation is obtained by solving the corresponding Laplace equation on

120 Paul Lemarre



8.2. NUMERICAL RESULTS

the domain. The geometry of the problem has no reason for being symmetrical in any
way, so no analytical solution is available. However in practice, solving numerically this
initial problem allows us to build a relevant initial condition for the monomer density in
the full problem (see Section 8.2).

Existence, uniqueness and positivity of solutions. The theoretical basis of our
model is given by the following theorem.

Theorem 8.1. We assume that all parameters are positive and that the sequence (ri)i is

non-strictly increasing, i.e. ∀i ∈ {2, . . . , i0−2}, ri ≤ ri+1. In these conditions, Problem 1

admits a unique solution.

Proof. The proof of this result relies on a fixed-point result, which is obtained for a
regularized version of the problem and the nextended to the initial problem. The full
proof is lengthy and has been submitted for publication as a follow-up study of [Andrade-
Restrepo et al., 2019].

8.2 Numerical results

With the model formulated in Section 8.1 we run a numerical investigation of the
behavior of Aβ oligomers in the vicinity of a few neurons.

8.2.1 Variational formulation and numerical scheme

In order to numerically simulate the full partial differential equations model expressed
in Equation 8.2, we use the finite elements method. This requires to specify the vari-
ational formulation associated with our model. First we write the partial differential
equation system as a system of reaction-diffusion equations of general form







i = 1, . . . , i0,
∂µi

∂t
=Di∆µi + Fi(µ1, . . . , µi0),

i = 1, . . . , i0, Di
∂µi

∂ν
=− γµi on Γ,

i = 2, . . . , i0 and k = 1 . . . N,Di
∂µi

∂ν
=0, and D1

∂µ1

∂ν
= λk(t) on ∂ωk.
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By convention and for simplicity µ1 = m is the monomer distribution. For the sake of
clarity, the reaction terms are explicitly given by






F1(µ1, . . . , µi0) =− δµ1 + b

i0−1∑

j=3

µj + 2β

i0−1∑

j=2

µj −

i0−1∑

j=2

rjµjµ1,

F2(µ1, . . . , µi0) =bµ3 − r2µ2µ1 − βµ2 + 2β

i0−1∑

j=3

µj ,

Fi(µ1, . . . , µi0) =bµi+1 − bµi + ri−1µi−1µ1 − riµiµ1 − β(i− 1)µi + 2β

i0−1∑

j=i+1

µj ,

Fi0−1(µ1, . . . , µi0) =− bµi0−1 + ri0−2µi0−2µ1 − ri0−1µi0−1µ1 − β(i0 − 2)µi0−1,

Fi0(µ1, . . . , µi0) =ri0−1µi0−1µ1.

To discretize this system in time, we use an semi-implicit Euler scheme, with implicit
diffusion and explicit reaction. For a pace δt and at step n, it writes

µn+1
i − µn

i

δt
= Di∆µn+1

i + Fi(µ
n
1 , . . . , µ

n
i0).

By multiplying with a suitable test function, and integrating over the whole domain we
get

∫

Ω
(µn+1

i v − µn
i v)dx−

∫

Ω
δtDi∆µn+1

i vdx−

∫

Ω
δtFi(µ

n
1 , . . . , µ

n
i0)vdx = 0.

By the divergence theorem we are left with
∫

Ω
(µn+1

i v + δtDi∇µn+1
i · ∇v)dx−

∫

Γ
δtDi(∇µn+1

i · ~n)vdx

−
∑

k

∫

∂ωk

δtDi(∇µn+1
i · ~n)vdx−

∫

Ω
µn
i vdx−

∫

Ω
δtFi(µ

n
1 , . . . , µ

n
i0)vdx = 0.

The boundary conditions give us the variational formulation for each variable i = 2, . . . , i0
∫

Ω
(µn+1

i v + δtDi∇µn+1
i · ∇v)dx+

∫

Γ
δtγµ

n+1
i vdx (8.7)

−

∫

Ω
µn
i vdx−

∫

Ω
δtFi(µ

n
1 , . . . , µ

n
i0)vdx = 0, (8.8)
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and for the monomers

∫

Ω
(µn+1

1 v + δtD1∇µn+1
1 · ∇v)dx+

∫

Γ
δtγµ

n+1
1 vdx−

N∑

k=1

∫

∂ωk

δtλ
n+1
k vdx

−

∫

Ω
µn
1vdx−

∫

Ω
δtF1(µ

n
1 , . . . , µ

n
i0)vdx = 0.

(8.9)

Note that since diffusion is implicit, the source term in the boundary condition is also
implicit (λn+1

k ). We evaluate it with a forward Euler scheme, requiring the equation on
the monomers to be solved last. In this case we can directly solve

λn+1
k − λn

k = −δtτλ
n+1
k

∫

Σε
k

µn+1
i0

dx.

8.2.2 Parameter choice and scaling

Nondimensional parameters. To ease the numerical simulation, we nondimensionalize
the model. In the following we consider SI units. In particular, we express lengths in
meters and time in seconds. For concentrations we use the molar concentration unit M

(1M = 1 mol.L−1), and we use the following scales:

• Spatial scale: L defines the characteristic length of the domain. Typically L is
about 100 µm.

• Time scale: the characteristic time is T , it is about 10000 s.

• Concentration scales: the characteristic concentration is C0, around 10−9M .

Using these scales we can nondimensionalize the model. In the rest of this section, a
superscript ∗ will indicate nondimensional variables. We define

t∗ =
t

T
, x∗ =

x

L
, y∗ =

y

L
, ξ∗ =

ξ

C0
, ξ = µ1, . . . , µi0 . (8.10)

The non-dimensional operators are given by

∂

∂t
=
1

T

∂

∂t∗
,

∇ =
1

L
∇∗,

∆ =
1

L2
∆∗.

(8.11)

Now using the equations of the model, we obtain the nondimensional model. The equa-
tions are the same as (8.2), replacing the operators by the non-dimensional operators
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and modifying the coefficients as follows

D∗ = D
T

L2
, r∗i = riC0T, b∗ = bT, β∗ = βT,

δ∗ = δT, γ∗ = γ
T

L
, λ∗

k = λk
T

LC0
, τ∗ = τC0T.

Parameter choices. In order to be consistent with biology we need to choose the co-
efficients with care. We know from anatomy that neurons have a size of a few µm and
are separated by around 10 µm in the brain. Accordingly, the characteristic spatial scale
will be L = 100 µm.

For specific data on Aβ, we refer to [Murphy and Pallitto, 2000]. The diffusion
coefficients will be chosen using the Stokes-Einstein relation

D =
kbT

6πµrh
,

where kb is the Boltzmann constant (kb = 1.38.10−23 m2.kg.s−2.K−1), T the temper-
ature, µ the dynamical viscosity of the fluid, and rh the hydrodynamic radius of the
particle considered. In the case of Aβ particles in the cerebrospinal fluid we have (in SI
units) T = 310 K(37°C), µ = 10−3 kg.m−1.s−1 [Bloomfield et al., 1998]. The hydro-
dynamic radius of monomers is rh = 1 nm [Nag et al., 2011]. For oligomeric species,
the hydrodynamic radius grows with the size and we suggest it scales as i1/3 where i is
the size of the oligomers (to represent 3D rearrangement of the particle as it grows in
size). This ultimately gives D1 = 2.27.10−10 m2s−1, and Di = D1

i1/3
. This value is of

the same order as measured by [Murphy and Pallitto, 2000]. However when we use this
value for the diffusion coefficient in the simulations, the distribution of Aβ monomers in
the spatial scale L ≈ 100 µm is almost homogeneous. To obtain a significant variation
of the monomer distribution on this scale, the diffusion coefficient has to be reduced to
D ≈ 10−14 m2.s−1. This in turn corresponds to a displacement of 1 µm in approximately
10 s. To justify the use of a diffusion coefficient 4 orders of magnitude lower than the
one suggested by the Stokes-Einstein formula, we suggest that the cerebrospinal fluid is
very crowded by other proteins and assemblies, which impairs the diffusion of molecules.
Furthermore, the spatial spreading of the neurons could be increased in the model, be-
cause in vivo not all the neurons produce Aβ. Without more detailed data, we choose
to use D ≈ 10−14 m2.s−1.

For the production and degradation of monomers, we have some suggestions from
literature [Murphy and Pallitto, 2000, Nag et al., 2011]. The disease-free equilibrium
concentration of Aβ monomers in the cerebrospinal fluid is of about Cb = 10 ng.mL−1

[Mehta et al., 2000]. The molecular weight of Aβ is 4514 g.mol−1, so this concentration
amounts to about Cb = 2.10−9 M . The half-life of Aβ monomers is a few hours, which
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corresponds to a degradation rate δ of about 10−4 s−1. The total production rate of
a disease-free neuron (integrated over its surface) is λ0πR

2
neuron. If we consider that

the measured concentration in the cerebrospinal fluid is equivalent to that of a single
neuron in a domain of volume Vneuron = 20 µm3, the equilibrium between production
and degradation gives us the relation λ0πR

2
neuron/V = Cbδ = 2.10−13 M.s−1, from which

we evaluate λ0.
The polymerization-depolymerization reaction is estimated to occur at rates r0 =

100 M−1s−1 and b = 10−3 s−1. The fragmentation rate is more difficult to evaluate,
it will be adjusted using the simulations. The same goes for γ and τ . The parameter
choices are summarized in Table 8.1.

8.2.3 Numerical simulations

The numerical resolution of the model (using the variational formulation from Subsec-
tion 8.2.1) is conducted using Freefem++ [Hecht, 2012], and visualized in Paraview [Ay-
achit, 2015]. The default parameter values are presented in Table 8.1, and the initial
configuration for all the simulations is presented in Figure 8.3.

Figure 8.4 shows the results of the simulation with the default parameters. We observe
the successive attacks of oligomers first on the left neuron, then the right neuron. Their
monomer production is progressively brought to 0 and after about 20000 s, both of the
neurons are completely inactive. The balance between diffusion and replication of the
proto-oligomers plays a critical role in the observed dynamics. The spatial distribution
of the oligomers is strongly impacted, and their neurotoxic action is also affected. It
appears that there is an optimal value for the rate of fragmentation β that induces the
fastest neuron inactivation. With extremely high fragmentation rates (β > 5.10−3 s−1),
the oligomers reach both neurons, but their concentration does not reach sufficiently
high levels to completely inactivate them in less than 50000 s, as shown in Figure 8.5.
With extremely low fragmentation rates (β < 10−5 s−1) the proto-oligomer distribution
is shifted towards larger, so they diffuse more slowly. In this case, the first neuron is
inactivated efficiently enough, but the second is still producing at half the maximum rate
after 50000 s, see Figure 8.6.
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Figure 8.3 – Initial configuration used for the simulations. Left panel: Aβ
monomer distribution. Right panel: Aβ oligomers (of size i0) distribution.
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(a) t = 750 s (b) t = 4500 s

(c) t = 7500 s (d) t = 12000 s

(e) Evolution of monomer production normalized by the maximum λ0 (top), oligomer concen-
tration in activity ring (middle) and monomer concentration in ring (bottom) for each neuron
and over time.

Figure 8.4 – Simulation results for the default parameters (see Table 8.1). For
panels (a),(b),(c) and (d), the monomer distribution is on the left, and the oligomer
distribution is on the right.
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(a) t = 300 s (b) t = 750 s

(c) t = 2400 s (d) t = 49995 s

(e) Evolution of monomer production normalized by the maximum λ0 (top), oligomer concen-
tration in activity ring (middle) and monomer concentration in ring (bottom) for each neuron
and over time.

Figure 8.5 – Simulation results for β = 5.10−3 s−1 (see Table 8.1 for the other
paramters). For panels (a),(b),(c) and (d), the monomer distribution is on the left, and
the oligomer distribution is on the right.
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(a) t = 750 s (b) t = 2250 s

(c) t = 7500 s (d) t = 49995 s

(e) Evolution of monomer production normalized by the maximum λ0 (top), oligomer concen-
tration in activity ring (middle) and monomer concentration in ring (bottom) for each neuron
and over time.

Figure 8.6 – Simulation results for β = 1.10−5 s−1 (see Table 8.1 for the other
paramters). For panels (a),(b),(c) and (d), the monomer distribution is on the left, and
the oligomer distribution is on the right.
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8.3 Discussion and perspectives

8.3.1 Insight into Alzheimer’s Disease and the amyloid cascade hy-

pothesis

The balance between secondary nucleation and diffusion is crucial in determining
the efficiency of the propagation of Aβ assemblies. Since the production of Aβ monomers
by neurons is affected by the presence of oligomers in their vicinity, this imposes a delayed
feedback loop on the formation of oligomers. The faithful propagation of oligomers to
entire regions of the brain requires a precise balance between diffusion and secondary
nucleation. If the secondary nucleation process is too fast, the pool of Aβ monomers
will be locally depleted very rapidly, before the oligomers can reach another neuron.
On the other hand if diffusion is too fast, the concentrations of proto-oligomers cannot
reach levels high enough so that their replication is efficient. Our model suggests one
mechanism for secondary nucleation in the form of fragmentation, however the insight
provided by the model does not depend on the precise mechanism. Other hypotheses
could lead to similar behavior, as long as the creation of new oligomers is autocatalytic.
Monomer production dynamics drives the evolution of the system. Our model
only allows the Aβ monomer production to decrease under the influence of oligomers,
however the effect might be the exact opposite [Perez et al., 2010]. Allowing more complex
dynamics for the monomer production rates would greatly increase the behavior variety
of the model. In particular, if we consider that neurons can recover from the effect
of oligomers, oscillations become possible. Similarly, if oligomers impose a reversible
positive feedback on monomer production, the balance between diffusion and secondary
nucleation becomes even more crucial in the process.

8.3.2 Limitations of our model

Restricted scope. Our model only applies to the early stages in the amyloid cascade,
and in the vicinity of a few neurons. This prevents us from comparing our results with
clinical data. However it allows us to build a robust model with carefully controled
processes, based on mechanistic hypotheses. Because of the lack of connection to exper-
imental and clinical data, some parameters of our model cannot be inferred precisely.
Structural diversity is still not included nor explained. Our model focuses on
Aβ oligomers because they drive the propagation of the amyloid cascade in the early
stages, however the formation of fibrils and plaques cannot be ignored when considering
the whole process. Our model is lacking a mechanistic explanation for the formation of
various structures, their interactions and the way these interactions affect the disease’s
progression.
Alzheimer’s Disease is the combined result of many different processes. As
we mentioned in Subsection 7.1.3, the amyloid cascade hypothesis remains limited. Our
model fits into this framework, but does not include any other complimentary theories.
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In particular, we do not consider the accumulation of Tau tangles inside neurons, or the
transmission of protein oligomer via mechanisms other than simple diffusion.

8.3.3 Perspectives for future work

Combining with a network-diffusion approach for a full multi-scale model.

The reaction-diffusion approach suits a local approach, for short time scales and spatial
scales. This could be used in combination with a network-diffusion method such as the
one used in [Raj et al., 2012]. The local evolution and amplification of Aβ assemblies
would be represented by reaction-diffusion systems, for a restricted domain containing
a dozen to a hundred neurons. The long range interactions between different parts of
the brain would be represented using a network-diffusion model based on a connectome
obtained from real human brains. Building such a multi-scale model would require taking
into account other processes in the pathogenesis, including the formation of Tau tangles
and long range propagation of misfolded proteins via exosomes and axonal transport.
Similar modeling approach for prion diseases. Discussion with H. Rezaéi and A.
Raj led to the formulation of a project aiming at developing a multi-scale model such
as the one described above, but in the case of prion diseases. The mechanisms of PrP
accumulation are indeed very similar to the mechanisms we developed in this chapter
for Aβ, and the pathogenesis is in fact less complex. In this case, accumulation of
PrP aggregates can be directly correlated with neurodegeneration. Furthermore, in vivo

experiments in animal models could allow to track deposition patterns through time and
to directly validate the results of the model.
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In conclusion to this manuscript, we summarize here the most crucial insights provided
by our literature review and modeling contributions. These are the main points we wish
to emphasize because they will drive future research in the field of prion models. We also
present a few open problems of interest that we did not tackle, by lack of resources.

9.1 Essential insights

9.1.1 Structural diversity plays an essential role in prion propagation

The central point of our progress in kinetic models of prion processes is structural di-
versity. Taking into account the existence and interaction of different types of structures,
each with their own internal organization, brings a whole range of new possibilities. It
provides ways for strains to coexist and interact in non-linear ways (see Chapter 3), it
allows for oscillating behavior in vitro to be reproduced (see Chapter 4), and it offers
ways of interpreting puzzling results on prion propagation both in yeast (see Chapter 6)
and in mammals (see Chapter 8). Explicitly including different types of structures in a
kinetic model also allows building a stronger framework for size-dependent properties.
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In fact, changing kinetic rates depending on the size of an assembly (an aggregate or an
oligomer) is equivalent to considering each size as a different type of chemical agent. By
creating a few different types of structures that grow, replicate and interact with each
other, the number of parameters is actually restricted because it does not vary with size.
Conceptually the models become more complex than linear stacks of monomers that
grow and fragment, but the possibilities are limitless. What is fascinating and thrilling
is that the further we explore the biology of prion aggregates, the more intricate and
diverse they are revealed to be. Our current understanding is nothing but a scratch on
the surface. Overall, kinetic models of prion and amyloid propagation will benefit from
taking into account structural diversity, as long as it is dealt with in an explicit way
and confronted to experimental observations. One approach we suggest, and put to use
in this manuscript, consists in using the classical models as building blocks to establish
more elaborate schemes.

9.1.2 Secondary nucleation is at the core of structural diversification

One aspect that is now well established is that structural diversification is a de-
terministic process. The formation of aggregates follows a pathway in which secondary
nucleation processes play a central role. Autocatalysis is usually suggested, with the com-
monly accepted mechanism of fragmentation. However, the limits of the models based
on fragmentation are now clear, and new mechanisms of secondary nucleation need to
be proposed and validated. In particular, catalyzed depolymerization seems a promising
concept (see Chapter 4). In yeast prions, the role of molecular chaperones is essential
(Chapter 6). Our modeling approach sheds light onto the essential properties that sec-
ondary nucleation processes should exhibit, but we struggle in justifying any of these
mechanisms (including fragmentation) properly with experimental observations. We do
not bring a decisive answer to the question of the nature of secondary nucleation. Rather
the opposite, we bring many new questions, but also new paradigms and possibilities.

9.1.3 Non-linear behavior at low densities brings a broad range of be-

havior

In our investigations, the difference between global models and multi-stable models
(see Subsection 1.2.4) came up multiple times, both in mammals (see Section 3.3) and
in yeast (see Section 8.3). In the case of mammals, multi-stability has a huge impact
on the asymptotic outcome of the propagation (the outcome of the disease), and could
be the key to explaining many puzzling results of prion transmission such as the species
barrier (see Subsection 2.1.3). In the case of yeast prions, multi-stability reflects the
reversibility of the prion phenotypes and the possibility of curing yeast colonies of prions
by various treatments. As we emphasize in Chapters 3 and 6, multi-stability comes
from adding non-linear effects at low densities of aggregates. Understanding these non-
linear effects is intimately related to the processes of secondary nucleation and structural
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diversification. As is emphasized in Chapter 4, structural diversification happens in the
first few minutes of early oligomerization of PrP. Given the complexity of the interactions
between the different species, it becomes clear that non-linearities are commonplace in
prion formation. This contrasts with the classical modeling method which consists in
linearizing the equation around the prion-free equilibrium. Even though this approach is
reasonable in many cases, caution is required when studying complex systems with many
interacting structures or with low densities of aggregates involved.

9.2 Open problems

9.2.1 Building a mechanistic understanding for structural diversity

In order to properly model structural diversity, a mechanistic framework needs to be
built. This means proposing and validating mechanisms for the establishement of struc-
tural diversity, starting from a few oligomers and ending with a full range of assemblies
and structures. This is inevitably coupled with mechanisms of secondary nucleation,
which have to be rigorously defined. The most commonly suggested mechanism for sec-
ondary nucleation is still fragmentation, but the need to investigate and validate other
mechanisms is clear (see Subsection 1.2.4). Our study suggests a few mechanisms and
processes that incorporate structural diversity into the classical frameworks. In partic-
ular, we use different types of assemblies that interact together and we include internal
structure to aggregates to create polymerization pathways, or depolymerization path-
ways. However the possibilities are countless, and we need a better experimental under-
standing of these processes in order to dwindle the hypotheses. For instance, automated
analysis of AFM images of OvPrP oligomers (see Subsection 4.4.2) could give us insight
into the diversification process of these oligomers.

9.2.2 Understanding the role of Hsp104

In the context of yeast prions, and [PSI+] in particular, the role of the molecular
chaperone Hsp104 remains unclear (see Subsection 5.1.4). With our qualitative insight
obtained with the use impulsive differential equations, it appears that structural diversity
and multi-stability are essential in modeling yeast prions. Investigating the role of Hsp104
is one of the main directions to explain and justify these elements. Indeed Hsp104 is at
the heart of secondary nucleation, and it affects different structures in different ways.
Building a multi-stable model of Sup35 aggregates taking into account an explicit role
(or rather explicit roles) is the most logical next step in [PSI+] modeling. The framework
we establish in Chapter 6 will then serve to validate and fit such a model.

9.2.3 A full multi-scale model of neurodegenerative diseases

Our investigation of the spatial propagation of Aβ oligomers raised more questions
than answers. It is still an open problem to build a multi-scale model that includes all
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aspects of protein misfolding disorders inside the brain. Our contributions are only a
small step towards the full model (see Chapter 8), and the next steps require strong
interactions between many research fields. Kinetic models are only relevant for the
mesoscopic scale, but the macroscopic scale involves physiological phenomena that are
rarely modeled explicitly. We plan to collaborate with different teams in order to build a
model that includes dynamical systems for the molecular scale, coupled with a network-
diffusion model to deal with the long range interactions between different regions of the
brain.

9.2.4 Getting closer to the data

Most of our contributions so far are only qualitative. We use data to validate or inval-
idate a model or a mechanism, only by capturing certain features of the behavior. This
is inevitable as we are still trying to understand the chemical processes that drive prion
propagation. However, as research progresses and the models become more accurate, it
is necessary to get closer to the data. This means using statistical methods and inverse
problem techniques in order to fit parameters and reproduce experimental observations.
It also means working in close collaboration with biologists in order to shape the progress
of prion biology from both directions at the same time, conceptual and experimental.

9.3 Concluding remarks

Over the past few decades, the understanding of prion processes has progressed un-
der the combined efforts of experimental investigation and mathematical modeling. The
contributions presented in this manuscript are at the edge of these two domains. We
worked in close collaboration with biologists to provide them with a set of mathematical
tools and to design models under their guidance. This approach is bound to become
commonplace in prion research, but also in general biology, if it is not already. Model
crafting is an art that requires both sides of the expertise, joined by efficient communi-
cation. Our hope is that the present manuscript showcases the benefits as well as the
difficulties of mathematical modeling in biology.
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Chapter A

Global stability the multiple strain

Nucleated Polymerization model

This chapter is dedicated to the proof of Theorem 2.1. For the existence and uniqueness of

solutions we refer to [Prüss et al., 2006], from which the results can easily be extended to the

general N strain case.

A.1 Global stability of the Disease-Free Equilibrium

Proof. When R0 = max
i=1...N

Ri
0 ≤ 1, we define the function L given by

L(V, U1, P1 . . . , UN , PN ) =
1

2

(

V −
λ

γ

)2

+
N∑

i=1

bi

(µi

βi

Ui + Pi

)

, with bi = 2
(µi + βixi)

2

βiτi
−
λ

γ
−
β2
i x

2
i

βiτi
.

This function is a Lyapunov function for the Disease-Free Equilibrium (λ/γ, 0, 0, . . . , 0, 0). Indeed

it is positive, because Ri
0 ≤ 1 implies (µi+βixi)

2

βiτi
≥ λ

γ
and thus bi ≥

(µi+βixi)
2
−β2

i x
2

i

βiτi
> 0 for

i = 1 . . . N . It evaluates to 0 at the Disease-Free Equilibrium, and its derivative along trajectories

is

L̇ =
(

V −
λ

γ

)(

λ− γV −
N∑

i=1

(τiV Ui + βix
2
iUi)

)

−
N∑

i=1

biUi

(µ2
i

βi

+ 2µixi − τiV + βix
2
i

)

,

=−
1

γ

(

V −
λ

γ

)2

−

N∑

i=1

τiUi

(

V 2 − V
(λ

γ
+

βix
2
i

τi
+ bi

)

+ x2
i

λβi

γτi
+ bi

(µi + βixi)
2

τiβi

)

.

The choice of bi yields

L̇ = −
1

γ

(

V −
λ

γ

)2

−

N∑

i=1

τiUi

(

V 2 − 2V
(µi + βixi)

2

βiτi
+
( (µi + βixi)

2

τiβi

)2

+
µi(µi + 2βixi)

βiτi

( (µi + βixi)
2

βiτi
−

λ

γ

)
)

,
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L̇ = −
1

γ

(

V −
λ

γ

)2

−

N∑

i=1

τiUi

(
(

V −
(µi + βixi)

2

βiτi

)2

+
µi(µi + 2βixi)

βiτi

( (µi + βixi)
2

βiτi
−

λ

γ

)
)

.

It is simple to verify that, under the hypothesis that Ri
0 ≤ 1 for each strain, the derivative of L

is negative along the trajectories, and evaluates to 0 at the Disease-Free Equilibrum only.

A.2 Global stability of the endemic steady-state

Proof. As in the Theorem 2.1, let us assume all strains have distinct Ri
0 values, and that Strain

1 has the maximal value R0 = R1
0 = maxi=1...N Ri

0. It is convenient for this part to consider

a modification of the model, namely choosing to study Wi = Pi − xiUi instead of Pi for each

strain. The equations of the model now read

dV

dt
=λ− γV (t) +

N∑

i=1

(−τiV (t)Ui(t) + βix
2
iUi(t)),

dUi

dt
=βiWi(t)− (µi + βixi)Ui(t), i = 1 . . . N,

dWi

dt
=τiV (t)Ui(t)− (µi + βixi)Wi(t), i = 1 . . . N.

In this system, the disease steady-state (involving Strain 1) is given by V ∗ = (µ1+β1x1)
2

β1τ1
,

U∗

1 = λβ1τ1−γ(µ1+β1x1)
2

µ1τ1(µ1+β1x1)
,W ∗

1 = µ1+β1x1

β1

U∗

1 , ∀j ∈ {2 . . . N}, U∗

j = P ∗

j = 0.

When R0 = R1
0 = max

i=1...N
Ri

0 > 1, we define the function L given by

L(V, U1,W1, . . . , UN ,WN ) =
(

1 +
β1x

2
1

τ1V ∗ − β1x2
1

)

(V − V ∗ − V ∗ log(V/V ∗))

+
µ1 + β1x1

β1
(U1 − U∗

1 − U∗

1 log(U1/U
∗

1 ))

+ (W1 −W ∗

1 −W ∗

1 log(W1/W
∗

1 ))

+
(

1 +
β1x

2
1

τ1V ∗ − β1x2
1

) N∑

j=2

(1−
1

ηj
)(
µj + βjxj

βj

Uj +Wj),

with ηj =

β2

jx
2

j

βjτj
V ∗ +

(
(µj+βjxj)

2

βjτj
− V ∗

)(
(µj+βjxj)

2

βjτj
−

β2

jx
2

j

βjτj

)

(
(µj+βjxj)2

βjxj
−

β2

j
x2

j

βjτj
− V ∗

)2 for j = 2 . . . N.

This function is a Lyapunov function for the disease-steady state mentioned above. First it is

positive, recalling that the classical function

φ : ξ → ξ − ξ∗ − ξ∗ log(ξ/ξ∗)

for ξ∗ > 0 is positive on R
∗

+, with a global minimum of 0 in ξ = ξ∗. Notice also that τV ∗ > β1x
2
1.

The terms in the sum are also all positive, because for j ∈ {2 . . . N}, ηj > 1. Indeed, the
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numerator of ηj can be expressed as

( (µj + βjxj)
2

βjxj

−
β2
jx

2
j

βjτj
− V ∗

)2

︸ ︷︷ ︸

denominator of ηj

+V ∗

( (µj + βjxj)
2

βjτj
− V ∗

)

+
β2
jx

2
j

βjτj

( (µj + βjxj)
2

βjτj
−

β2
jx

2
j

βjτj

)

.

The fact that Strain 1 has the highest Ri
0 value means it is associated with the lowest (µi+βixi)

2

βiτi
.

With the formulation above, this proves that for all j = 2 . . . N , ηj > 1 and thus 1− 1
ηj

> 0. It

is easy to verify that L evaluates to 0 at the point of the disease steady-state.

To compute the derivative of L along the trajectories, recall that d
dt
φ(ξ) = ξ−ξ∗

ξ
dξ
dt

. Straight-

forward calculations lead to, after simplifications,

L̇(V, U1,W1, . . . , UN ,WN ) =

−
(

γ + (γ + τ1U1)
β1x

2
1

τ1V ∗ − β1x2
1

) (V − V ∗)2

V
+ τ1V

∗U∗

1

(

3−
V ∗

V
−

W1

W ∗

1

U∗

1

U1
−

V

V ∗

U1

U∗

1

W ∗

1

W1
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−
(

1 +
β1x

2
1

τ1V ∗ − β1x2
1

) N∑

j=2

τj
Uj

V

1

ηj

(

V 2 + V

(

ηj

( (µj + βjxj)
2

βjτj
− V ∗ −

β2
jx

2
j

βjτj

)

−
(µj + βjxj)

2

βjτj

)

+ ηj
β2
jx

2
j

βjτj
V ∗

)

.

Details of the calculations are not shown but can be made available. The first term in this

expression is obviously negative along trajectories. The second term can be studied through the

function defined on R
∗

+ × R
∗

+

(x, y) → 3− x− y −
1

xy
.

This function is negative if x + y > 3 or if 1
xy

> 3. The complementary of this region is closed

and bounded, and the function being continuous on this region, it admits a maximum value.

Canceling the gradient leads to the only extremum x = y = 1 where the function evaluates to

0. If we now replace x by V
V ∗

and y by W1

W∗

1

U∗

1

U1

, we have shown that the second term in L̇ is

negative along trajectories, with a maximum value of 0 being reached at V = V ∗, U1 = U∗

1 and

W1 = W ∗

1 . The last term remains to be studied, especially the second order polynomials in V .

For j ∈ {2 . . . N}, the polynomial in the j-th term of the sum can be expressed (using the choice

for ηj):

V 2 + 2

β2

jx
2

j

βjτj
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j
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2
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V ∗
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2

j
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2
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)(
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2

βjτj
−

β2

jx
2

j

βjτj

)

(
(µj+βjxj)2

βjxj
−

β2

j
x2

j

βjτj
− V ∗

)2 V.
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Its discriminant is given by

∆ =4

β2

jx
2

j

βjτj
V ∗

(
(µj+βjxj)2

βjτj
−

β2

j
x2

j

βjτj
− V ∗

)2×

(

β2
jx

2
j

βjτj
V ∗ −

(
β2
jx

2
j

βjτj
V ∗ +

( (µj + βjxj)
2

βjτj
− V ∗

)( (µj + βjxj)
2

βjτj
−

β2
jx

2
j

βjτj

))
)

,

=− 4

β2

jx
2

j

βjτj
V ∗

(
(µj+βjxj)2

βjτj
−

β2

j
x2

j

βjτj
− V ∗

)2

(

(µj + βjxj)
2

βjτj
− V ∗

)(

(µj + βjxj)
2
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−

β2
jx

2
j

βjτj

)

.

For the same reasons as before, this quantity is negative. The polynomial thus has no real roots,

and is always positive. This proves that each term in the sum in L̇ is positive. Overall, we

have shown that every term in derivative is negative along trajectories and they cancel out at

the point of the disease steady-state. This concludes the proof of the global stability of this

equilibrium.
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Prions come in all shapes and sizes -

Mathematical modeling of protein

self-aggregation and conversion

Abstract: Following the discovery that prions are self-replicating assemblies of proteins,
mathematical models were developed in parallel with experimental methods in order to
conceptualize this phenomenon. After four decades of research, much insight has been
gained into protein misfolding processes and the neurodegenerative diseases which they
cause. However, the complexity of these systems remains undiminished and the classical
models of protein aggregation are now showing their limits. In particular, the observed
spectrum of objects generated during the propagation of prions is not accounted for in
any model, whereas it keeps expanding under the development of experimental tools.
In the present manuscript, our aim is to identify the weaknesses of classical models of
prion propagation in light of recent biological evidence. We then suggest modified and
improved models, by including different processes, by adding more levels of organization
and more diversity to protein aggregates. Three main topics are presented, corresponding
to different instances of protein aggregation and different biological systems. The first
part takes place in the mammalian nervous system, and investigates the self-aggregation
kinetics of PrP, the aptly named prion protein. In the second part, we model the repli-
cation of protein aggregates inside dividing yeast cells, by proposing a novel multi-scale
approach. In the third part, we explore the spatial propagation of small protein oligomers
in the early stages of Alzheimer’s Disease. These three axes are linked by the central role
of structural diversity in the global protein aggregation system.
Key words: Protein aggregation, kinetic model, ordinary differential equations, dynam-
ical systems.
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Le prion sous toutes ses formes - Modélisation mathématique des processus

d’agrégation et de conversion des protéines

Résumé : Depuis la découverte de la nature des prions, de nombreux modèles mathématiques ont été

proposés afin de représenter ces assemblages de protéines et leur réplication. Après quatre décennies de

recherche expérimentale et conceptuelle, la compréhension des phénomènes d’agrégation de protéines,

ansi que des maladies neurodégénératives qui leurs sont associées, a grandement progressé. Cependant la

complexité de ces systèmes reste entière, et les modèles classiques commencent à montrer leurs limites.

En particulier, aucun modèle ne reproduit l’immense diversité des objets qui sont observés au cours de la

propagation des prions, alors que l’on en découvre continuellement de nouveaux sous l’avancée des procédés

expérimentaux. Dans ce manuscrit, notre objectif est d’identifier les faiblesses des modèles classiques à

travers l’apport de résultats biologiques récents. Par la suite, nous proposons des améliorations à ces

modèles en incluant de nouveaux processus, en ajoutant des niveaux de structuration et de diversité

aux agrégats. Trois axes orientent les résultats, correspondant à trois contextes biologiques différents.

La première partie se déroule dans le système nerveux des mammifères, et étudie la cinétique d’auto-

agrégation de PrP, la bien nommée protéine prion. Dans la seconde partie nous abordons une approche

multi-échelle novatrice pour représenter la propagation d’agrégats de protéines dans des cellules de levure

en croissance. La troisième partie explore la dissémination spatiale de petits oligomères dans les étapes

précoces de la maladie d’Alzheimer. Ces trois axes se recoupent autour du thème central de la diversité

structurale et son rôle crucial dans la propagation.

Mots clés : Agrégats de protéines ; modèle cinétique ; équations différentielles ordinaires ; systèmes dy-
namiques.

Image en couverture : Représentation de la structure de la protéine PrP humaine.

Image from the RCSB PDB (rcsb.org) of PDB ID 1QM2 (Zahn, R., Liu, A., Lührs, T., Riek, R., von Schroetter, C., García,

F. L., ... & Wüthrich, K. (2000). NMR solution structure of the human prion protein. Proceedings of the National Academy

of Sciences, 97(1), 145-150.).
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