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Résumé de these 

 
 

Les LXR (Liver X Receptor) α et β sont des récepteurs nucléaires activés par la liaison à certains 

dérivés oxydés du cholestérol (oxystérols) comme le 25-hydroxy-cholestérol, entre autres. Les LXR sont 

connus pour intervenir dans de nombreux processus biologiques tels que le métabolisme des lipides, 

l’homéostasie du cholestérol ou l’inflammation. Ils exercent leurs influences dans tous les organes du 

corps, y compris le sytème nerveux, central et périphérique. 

 

Mon laboratoire d’accueil étudie depuis des années l’implication de ces récepteurs dans la 

physiologie des cellules gliales et la myélinisation au moyen d’un mutant murin dénué de l’expression des 

deux isoformes du récepteur aux oxystérols (LXRdKO). L’équipe a ainsi montré un défaut de myélinisation 

du nerf sciatique en l’absence des LXR, suggérant leur importance dans ce processus. 

 

Le développement et la mise en place de la gaine de myéline est un processus complexe qui repose 

sur un dialogue moléculaire étroit entre l’axone et la cellule de Schwann, cellule gliale myélinisante du 

système nerveux périphérique. Afin de mieux comprendre l’implication du LXRβ, isoforme majoritaire dans 

le système nerveux, dans la physiologie de cette cellule, nous avons donc crée un mutant murin au sein 

duquel le LXRβ est spécifiquement invalidé dans les précurseurs de cellules de Schwann (LXRβ-SCP KO).  

 

Ce mutant fut obtenu en croisant des animaux dont l’allèle du gène Nr1h2 codant pour le LXRβ est 

floxé avec des souris exprimant l’enzyme de recombinaison génétique Cre sous la dépendance du 

promoteur de Dhh (Desert Hedgehog), spécifiquement exprimé par les précurseurs des cellules de 

Schwann pendant le développement embryonnaire à partir du stade E12,5 (jour embryonnaire 12,5). 

 

De façon tout à fait intéressante, nous avons montré une absence quasi totale de cellules de 

Schwann dans les nerfs sciatiques des nouveau-nés mutants portant la délétion homozygote de LXRβ. 

Cette absence est accompagnée d’un profond remaniement de l’architecture cellulaire du nerf qui 

apparaît translucide même à l’âge adulte. Dénué de cellules myélinisantes, le nerf en développement a 

laissé la place pendant aux cellules périneuriales qui colonisèrent l’espace endoneurial et créèrent des 

fascicules nerveux constitués d’agrégats d’axones aux diamètres considérablement augmentés.  

 



 

 

Afin d’étudier quand l’ablation du LXRβ dans les précurseurs Schwannien menait à la disparition 

de la population dans les nerfs périphériques, nous avons mis au point au laboratoire la culture primaire 

d’explants de ganglions spinaux (DRG) qui récapitule la majorité des évènements embryonnaires 

nécessaires la myélinisation. Nous avons ainsi déterminé que les précurseurs Schwanniens mourraient 

entre 5 et 7 jours de culture ex vivo, correspondant à un stade développemental au cours duquel les 

précurseurs Schwanniens se différencient en cellules de Schwann immatures. L’analyse de données 

disponibles issues d’études transcriptomiques de la moelle épinière pendant l’embryogenèse nous a 

permis de constater l’importance de la régulation de l’homéostasie du cholestérol lors de la transition des 

cellules de Schwann du stade précurseur au stade immature. 

 

 En effet, alors que l’expression des gènes de la myéline est stimulée, toute comme le gène codant 

pour la 25-hydroxylase, impliqué dans la synthèse du 25-hydroxy-cholestérol, celui codant pour pour 

ABCA1, impliqué dans l’efflux de cholestérol, est lui, réprimé. On peut donc supposer que chez les animaux 

LXRβ-SCP KO, les précurseurs Schwanniens ne peuvent maintenir une forte expression des gènes de la 

myéline et interrompent leur programme de différenciation vers le stade immature.  

 

Dans un système exprimant LXRβ, la synthèse du cholestérol donne naissance au 25-

Hydroxycholestérol (25OH cholesterol) par l'enzyme Cholestérol 25 Hydroxylase (Ch25h). Cet oxystérol se 

lie au LXRβ pour induire l'expression des gènes d'efflux du cholestérol ABCA1 et ApoE ainsi que le principal 

régulateur de la lipogenèse Srebp1c. Cependant, nos données suggèrent également que 25OH peut 

induire l'expression des gènes de la myéline sûrement par LXRβ.  

 

L'homéostasie du cholestérol, la lipogenèse et l'expression des protéines de la myéline 

contribuent à la différenciation des cellules de Schwann et à la myélinisation. En outre, un traitement 

prolongé des cellules de Schwann primaires avec du 25-Hydroxycholestérol entraîne une réduction des 

gènes cibles du LXRβ, probablement médié par la forme sulfonée de l'oxystérol (sulfonated 25-OH 

cholesterol).  

  



 

 

 

Dans un système déficient en LXRβ, l'homéostasie du cholestérol, la lipogenèse et l'expression des 

protéines de la myéline pourraient être directement compromises en raison de l'absence du récepteur. 

De plus, les niveaux intracellulaires d'oxystérols et de cholestérol seraient dérégulés et pourraient 

conduire à un échec de la différenciation des cellules de Schwann et éventuellement ils meurent, 

incapables de contrôler la concentration en cholestérol nécessaire à la mise en place de la gaine de 

myéline. L’ensemble de ces résultats est présenté dans le schéma ci-dessous 

  

 

Résumé graphique :  Rôle de LXRβ dans le développement des cellules de Schwann. 

 



 

 

ABSTRACT: 

Liver X Receptors (LXRs) are ligand-activated nuclear receptors that are expressed as two distinct 

isoforms: LXRα and LXRβ encoded in mice by the genes Nr1h3 and Nr1h2, respectively. Although classified 

as orphan receptors upon discovery, oxidized cholesterol derivatives (oxysterols) such as 20(S), 22(R)-, 

24(S)-, 25- and 27-hydroxy cholesterol (HC) and 24(S), 25-epoxycholesterols were later found to be their 

natural ligands. LXRs have been implicated in several physiological processes such as lipid metabolism, 

cholesterol homeostasis and inflammation in different systems including the Central and Peripheral 

Nervous Systems. 

Previous studies conducted in my host laboratory have addressed the role of the nuclear receptors 

LXRα/β in peripheral myelination. LXRα/β -/- total mutants exhibited an upregulation of myelin genes (Mpz 

and Pmp22) at the RNA level but their protein levels were downregulated, and these animals displayed 

thinner myelin sheaths and electrophysiological deficits in adults. Thus, our first aim was to explain the 

discrepancies observed in Pmp22 and Mpz RNA and protein expression. To this end, we explored the redox 

homeostasis of the sciatic nerves in these animals based on a microarray analysis that revealed multiple 

hits pertaining to genes implicated in redox homeostasis mediated by Nuclear factor erythroid 2-related 

factor (Nfe2l2 also commonly known as Nrf2). Further investigation revealed that the absence of LXRs 

gives rise to oxidative stress in peripheral nerves, which in turn resulted in the aggregation of Pmp22 thus 

lowering its protein expression. Using cell culture and antioxidant rescue experiments in vivo, we 

demonstrated that LXRs play an active role in maintaining the redox homeostasis in Schwann cells of 

peripheral nerves.  

Our second aim was to understand how myelin proteins and the myelin sheath were impacted by 

the ablation of the LXRs: is it due to the lack of LXR  or β in Schwann cells? To test this hypothesis, we 

generated a Schwann cell specific Knockouts of LXRα and LXRβ by crossing floxed strains of the nuclear 

receptor with Desert Hedgehog:Cre (DhhCre) mice. This breeding assured the genetic ablation of the 

nuclear receptor from the Schwann cell precursor stage at around E12.5 in mutants.  

Thus, we generated LXRαf/f:DhhCre and LXRβf/f:DhhCre mice wherein the former did not exhibit 

any phenotype, but the latter presented with a drastic phenotype. Although we found that both these 

isoforms are expressed in WildType Schwann cells, LXRβ was found to be the functionally active isoform 

that governs lipogenesis and cholesterol homeostasis in Schwann cells. Therefore, it was not surprising to 

find that LXRβf/f:DhhCre mice exhibited a phenotype but LXRαf/f:DhhCre mice did not. LXRβf/f:DhhCre mice 

exhibited a drastic reduction in Schwann cell numbers at birth which was followed by a complete absence 



 

 

of myelin sheath around axons at post-natal time points. This resulted in a dramatic alteration of the 

cellular anatomy of the peripheral nerves resulting in the invasion of perineurial cells into the endoneurial 

space that subsequently ensheathed naked axonal bundles. To understand the untimely disappearance of 

Schwann cells in LXRβf/f DhhCre mice, we retraced the embryonic development of Schwann cells using 

Dissociated DRG cultures established from E13.5 mutants and their respective controls. In mutant cultures, 

we observed that Schwann cells detach from axons and float in culture between DIV5 and DIV7, which 

corresponds to the Schwann cell precursor/Immature Schwann cell transition stage. To understand the 

role of LXRβ in this phenomenon, we analyzed previous transcriptomic studies conducted on embryonic 

spinal nerves. We found that Cholesterol 25 Hydroxylase is upregulated at the Precursor/immature 

transition, which is accompanied by a concomitant reduction in Abca1 expression and an upregulation of 

myelin genes. To confirm our data, we treated WT primary Schwann cells with 25HC and observed a 

significant upregulation in myelin gene expression and a concomitant decrease in Abca1 expression 

corroborating the in vivo data. We thus speculate that in an LXRβ deficient system, the Schwann cells are 

not able to increase myelin gene expression and regulate endogenous cholesterol levels during the 

precursor/immature transition and therefore they seemingly die embryonically due to an imbalance in 

cholesterol homeostasis and myelin gene expression. These results highlight the crucial role of LXRβ in the 

myelination process in the peripheral nerve.  

 

Keywords: LXRβ, Schwann cell development, oxysterols, myelination, cholesterol metabolism, lipid 

metabolism 

  



 

 

 

Graphical Abstract: The role of LXRβ in Schwann cell development. In an LXRβ proficient system, the synthesis cholesterol gives rise 
to 25-Hydroxycholesterol (25OH) by the enzyme Cholesterol 25 Hydroxylase (Ch25h). This oxysterol binds LXRβ to induce the 
expression of cholesterol efflux genes ABCA1 and ApoE as well as the master regulator of lipogenesis Srebp1c. However, our data 
also suggests that 25OH can induce myelin gene expression possibly through LXRβ. Cholesterol homeostasis, lipogenesis and myelin 
protein expression together can positively Schwann cell differentiation and myelination. Furthermore, prolonged treatment of 
primary Schwan cells with 25OH results in a reduction in LXRβ target genes, which is possibly mediated by the Sulfonated form of 
the oxysterol. In an LXRβ deficient system, cholesterol homeostasis, lipogenesis and myelin protein expression might be directly 
compromised due to the absence of the receptor. Moreover, the intracellular oxysterol and cholesterol levels would be 
dysregulated and eventually lead to a failure in Schwann cell differentiation and possibly death. 



 

 

LIST OF IMPORTANT ABBREVIATIONS 

24(S)HC or 24(S)OH 24S-Hydroxycholesterol 

25HC or 25OH 25-Hydroxycholesterol 

27HC or 27OH 27-Hydroxycholesterol 

ABCA1 ATP Binding Cassette Transporter A1 

ANS Autonomous Nervous System 

APOE Apolipoprotein E 

Ch25h Cholesterol 25 Hydroxylase 

CNS Central Nervous System 

Cre Transgenic Recombinase  

DHH Desert Hedgehog 

DREZ Dorsal Root Exit Zone 

EGR2 Early Growth Response Protein 2 also known as KROX20 

FASN Fatty Acid Synthase 

iSC immature Schwann cell 

LXRdKO LXR double Knockout signifying the total ablation of both isoforms 

LXRα Liver X Receptor α 

LXRα f/f Liver X Receptor α homozygous flox strain 

LXRα ScKO Liver X Receptor α Schwann cell Knock Out 

LXRβ Liver X Receptor β 

LXRβ f/f Liver X Receptor β homozygous flox strain 

LXRβ ScKO Liver X Receptor β Schwann cell Knock Out 

MBP Myelin Basic Protein 

MEP Motor Exit Point 

MPZ Myelin Protein Zero 

mSC Myelinating Schwann cell 

nmSC/RSC non-myelinating Schwann cell/Remak Schwann cell 

PLP Proteolipid Protein  

PMP22 Peripheral Myelin Protein Zero 

PNS Peripheral Nervous System 

SCP Schwann cell Precursor 



 

 

SNS Sympathetic Nervous System 

SOX10 SRY-Box Transcription Factor 10 

SREBP1C Sterol regulatory element-binding protein 1C 

TrK Tyrosine Kinase Receptor 

ZO1 Zonula Occludens 1 

 

 

Other acronyms and abbreviations are defined at first instance and subsequently repeated in each 

section.  
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Chapter 1: INTRODUCTION 

 

The mammalian nervous system, in general can be classified into two types – The central Nervous 

system (CNS) and the Peripheral Nervous System (PNS) (Kandel et al., 2000) . The CNS is primarily 

composed of the Brain, the cerebellum, the brain stem and the Spinal cord. The PNS, on the other hand, 

is composed of the nerves that emanate from the spinal cord all the way to the muscle, skin and other 

organs in different parts of the mammalian body.  

This introductory section describes, in detail, the anatomy of the PNS, its development, its cellular 

composition and functioning in view of the different cellular subtypes, the process of myelination and 

other requisite information to understand the context of the research undertaken. This is followed by a 

general introduction to Liver X Receptors (LXRs), its implications in the physiology and pathology of the 

PNS and current research questions pertaining to the role of this nuclear receptor. Furthermore, I have 

also highlighted the presentation of the primary research objectives of my doctoral thesis along with the 

strategies that have been adopted to answer different scientific questions that ensued.  

 

1.1 The Peripheral Nervous System 

 

The mammalian peripheral nervous system is primarily composed of the different nerves that 

arise from the CNS along the rostro-caudal axis of the body (Catala and Kubis, 2013). These nerves consist 

of afferent sensory fibers from different peripheral locations of the body as well as efferent motor fibers 

that innervate target tissues. In addition to nerve fibers, the nerves also comprise of glial cells that help in 

the proper maintenance and functioning of these nerves (Rasband, 2016).  

Based on the type of nerves, the PNS can be classified into cranial nerves and spinal nerves 

depending on where they originate along the rostro-caudal axis. Functionally, the PNS can be classified 

into two types – the Somatic Nervous System (SNS) and the Autonomous Nervous System (ANS) wherein 

SNS works under voluntary action and the ANS is involuntary by nature. The following sections shed more 

light into the anatomy and functioning of the PNS.   
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1.1.1 The anatomy and functions of the PNS 

 

Cranial Nerves: 

 

Based on the origin of the nerves, the peripheral nerves are classified into cranial nerves located 

inside the cranium and spinal nerves that originate along the spinal cord. There are 12 pairs of cranial 

nerves that arise from the cerebrum/brain stem and they are numbered from I to XII (Figure 1). It is to be 

noted that Cranial Nerves I (optical) and II (olfactory) are extensions of the CNS and are not populated by 

glial cells from the PNS. The rest of the cranial nerves fall under the ambit of the PNS. A detailed list of the 

Cranial Nerves and their target tissue is shown in Table 1.  

 

Figure 1: A transverse view of the brain stem and cerebellum. The origin of different cranial nerves is indicated along with their 

names and conventional numbers. [Source: Patrick J Lynch, Biomedical Illustrator, Yale School of Medicine, Yale University Press]   
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Number Name Target  

1 (CNI) CNS Olfactory Nose for Smell 

2 (CNII) CNS Optic Eyes for Vision 

3 (CNIII) Oculomotor 

4 extrinsic eye muscles and levator palpebrae 

superioris. 

pupillary sphincter 

4 (CNIV) Trochlear Superior oblique 

5 (CNV) Trigeminal:   

  Ophthalmic Scalp, forehead and nose. 

  Maxillary 
Cheeks, lower eyelid, nasal mucosa, upper lip, 

upper teeth and palate. 

  Mandibular 

anterior tongue, skin over mandible and lower 

teeth. 

muscles of mastication. 

6 (CNVI) Abducens Lateral rectus 

7 (CNVII) Facial 

sensation to part of exterior ear. 

taste from anterior tongue, hard and soft 

palate. 

muscles of facial expression. 

 lacrimal, submandibular, sublingual glands and 

mucous glands of mouth and nose. 

8 (CNVIII) Vestibulocochlear Ears for Hearing and balance 

9 (CNIX) Glossopharyngeal 

posterior tongue, exterior ear, and middle ear 

cavity. 

 carotid body and sinus. 

taste from post. 1/3 tongue. 

parotid gland. 

tylopharyngeus 
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10(CNX) Vagus 

 ext. ear, larynx and pharynx. 

 larynx, pharynx and, thoracic & abdominal 

viscera. 

 taste from epiglottis region of tongue 

smooth muscles of pharynx, larynx and most of 

the Gastro intestinal tract 

most muscles of pharynx and larynx. 

11 (CNXI) Spinal accessory 
trapezius and sternocleidomastoid. 

a few fibres run to viscera. 

12 (CNXII) Hypoglossal 
Intrinsic and extrinsic tongue muscles (except 

the palatoglossus). 

Table 1: Classification of different cranial nerves and their targets. Recapitulated from (Kandel et al., 2000)  
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Spinal Nerves: 

 

The spinal nerves are mixed nerves that carry sensory, motor and autonomous signals between 

the spinal cord and different peripheral locations of the body. Humans contain 31 pairs of spinal nerves 

originating at different regions of the spinal cord. There are eight pairs of cervical nerves, twelve pairs of 

thoracic nerves, five pairs of lumbar nerves, five pairs of sacral nerves, and one pair of coccygeal nerves 

(Figure 2) 

 



 

6 
 

 

 

Figure 2:  Spinal Vertebrates and Spinal Nerves. In humans, the spinal nerves are classified into 8 pairs of cervical nerves, 12 pairs 

of thoracic nerves, 5 pairs of lumbar nerves, 5 pairs of sacral nerves, and 1 pair of coccygeal nerves.  [Source:  (Felten and Shetty, 

2014)] 

The anatomy of the spinal nerves can be better understood by differentiating their function vis a 

vis somatic or autonomous. One the one hand, somatic fibers are completely mixed fibers and their 

functions are carried out by sensory neurons whose soma are located in the dorsal root ganglia and motor 

neurons that emanate from the ventral horn of the spinal cord. These nerve fibers innervate skeletal 

muscles and the skin. 
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 On the other hand, the functioning of the autonomous nervous system is carried out but 

autonomous neurons that arise at the lateral horns of the spinal cord. These neurons innervate the ganglia 

of the autonomous nervous system that are situated outside the spinal cord. The sympathetic ganglia are 

located in close proximity to the spinal cord whereas the parasympathetic ganglia are positioned closer 

to organs innervated by the nerve fibers. This arrangement in turn gives rise to pre-ganglionic and post-

ganglionic connections that are unique to the autonomous nervous system (Figure 3). The autonomous 

nervous system innervates smooth muscles, glands and different organs of the body. A detailed 

description of the target tissues of the ANS is given in Figure 4.   

 

Figure 3: A transverse view of the human spinal cord. To the left is an example of the fiber arrangement in the somatic nervous 

system. To the right is an example of the autonomous nervous system. Only the sympathetic ganglia are shown in this figure. The 

parasympathetic ganglia are located closer to the organs innervated. [Source: (Felten and Shetty, 2014)]  
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Figure 4: The target organs and functions of the ANS. Sympathetic division of the spinal nerves is described on the left and the 

parasympathetic division is described on the right along with the target organs that the nerves innervate.   [Source : (Johnson and 

Weldon, 2016) ]  
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1.1.2 The Sciatic Nerve 

 

The sciatic nerve is one of the largest spinal nerves, and is extensively used for peripheral nerve 

research. Particularly, in mice and rats, the sciatic nerve has been used as a model to study nerve 

development, myelination, nerve regeneration post-injury  and also the neuromuscular junction that the 

nerve innervates (Jessen and Mirsky, 2005; Liu et al., 2014). This is because of its size, the ease with which 

it can be dissected and the fact that sufficient amount of tissue can be used for both histological and 

biochemical studies (Bala et al., 2014).  

The sciatic nerve in humans originates between L4 and S3 sections of the spinal cord. In rats, it is 

between L4 - L5 (Snyder et al., 2018). In mice it is around L3 – L4 (Figure 5). Nevertheless, certain minor 

variations have been observed across different strains of both rats and mice (Rigaud et al., 2008). The 

rodent sciatic nerve model has been majorly used to study the somatic aspects of the PNS. In line with 

this convention, in my doctoral thesis, I have used the mouse sciatic nerve as a model to study the role of 

Liver X Receptor β (LXR β) and its implications on Schwann cells’ development and myelination of the PNS.    



 

10 
 

 

 

Figure 5 : A ventral view of the lumbar vertebral column of a C57BL6 mouse. Image on the right presents the actual view upon 

dissection. Image on the left highlights the vertebral segments and the origin of the sciatic nerve comprising of L3, L4 and L5 spinal 

nerves. [Source : (Rigaud et al., 2008)] 

  

1.1.3 Ultra-structure and cellular composition of the sciatic nerve 

 

To understand the development and provenance of the different cells of the PNS, a thorough 

understanding of the ultra-structure of the spinal nerves is required. The sciatic nerve, much like all 

peripheral nerves in the body is composed majorly of sensory and motor axons along, with specialized 

cells called glial cells that are situated all along the nerve. A gross transverse section of the nerve reveals 

a three-layer arrangement (Figure 6). The epineurium encapsulates the nerve in its entirety. Inside the 
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epineurium, the perineurium forms separate fascicle of nerves. Inside these fascicles is the endoneurial 

space that consists of nerve fibers with other glial cells. The perineurial space inside the epineurium also 

consists of blood vessels and adipose tissues.  

 

 

Figure 6: A macroscopic view of the transverse section of the sciatic nerve. The entire nerve is encapsulated by the epineurial 

connective tissue. Inside the epineurium, nerve segments are situated in compartments that are segregated by the perineurium. 

Fat deposits and blood vessels are found in-between the epineurium and the perineurial compartments. Axons are found inside 

the perineurium and are either myelinated by Schwann cells or are ensheathed by non-myelinating Schwann cells [Source : (Patton 

and Thibodeau, 2018)] 

A more detailed view of the perineurial and endoneurial space can help us understand the cellular 

composition of the sciatic nerve (Figure 7). Sensory neurons emanating from the dorsal part of the spinal 

cord with their somata in dorsal root ganglia project their axons towards the spinal cord on the one hand 

and their peripheral endpoints on the other. Some of these sensory axons are myelinated by Schwann 

cells, and others are ensheathed by non-myelinating Schwann cells in specific structures called “Remak 

bundles”. Motor axons emanating from the ventral roots of the spinal cord are wrapped by myelinating 

Schwann cells. Perineurial cells surround multiple axons and Schwann cells to delineate fascicles. They 
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provide mechanical and structural integrity to these fascicles. Endoneurial cells are dispersed inside the 

fascicles. They provide major components of the extracellular matrix, perform immune-surveillance, and 

are implicated in remyelination. The vasculature is composed of endothelial cells surrounded by pericytes 

that provide the nerve-blood barrier. 

 

Figure 7: A detailed cross-sectional view of the mouse sciatic nerve. Different cells that constitute the nerve are highlighted in the 

in the legend to the left of the figure. [Source : (Sundaram et al., 2019a)] 
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1.1.4 Development of the PNS – An overview 

 

Origin and migration of Neural Crest Cells (NCC):  

 

Most of the glial cells and the sensory neurons in the DRGs are derived from migrating multipotent 

embryonic cells called as the neural crest cells (Prendergast and Raible, 2014). These cells give rise to a 

plethora of organs in the vertebrate body so much so that they can be considered as a fourth “germ layer” 

in addition to the other three layers – the ectoderm, the endoderm and the mesoderm (Le Douarin and 

Dupin, 2014).  

Following gastrulation, the embryo is divided into the three classical germ layers mentioned 

above. This is followed by neurulation, which is characterized by the folding of the neural plate located in 

the ectoderm (neuroectoderm). On either side of the neuroectoderm is the non-neuronal ectoderm that 

gives rise to non-neuronal cells and organs. These two zones are separated by the Neural Plate Border 

(NPB). The inward folding of the neural plate gives rise to the meeting of the Neural Plate Borders from 

either side forming a crest like structure. This crest formed by the neural plates is called the neural crest 

and the cells that are situated therein are called as the Neural Crest Cells (Figure 8, left panel).  
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Figure 8: The formation of the Neural Crest cells (left panel) and its timing in mice (right panel). The neural plate is flanked by cells that 
form the neural plate border (NPB) during embryonic development at around E7.5 in mice. The plate then folds inwards such that the 
neural plates on either sides come into contact with one another. At the same time, the  migratory Neural crest cells (NCC) detach from 
the plate and begin their migratory routes. Neural Crest Migration (M) begins at around E8 in mice.   
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The induction and formation of NCC at the NPB is tightly controlled by molecular cues from the 

surrounding tissue (Bae and Saint-Jeannet, 2014). The current understanding of this process is governed 

by the collective effect of 3 pathways. Firstly, a gradient of Bone Morphogenic Protein (BMP) ; inhibition 

is established by the secretion of BMP antagonists by the mesoderm. This gradient results in least BMP 

signaling at the neuroectoderm due to high concentration of antagonists such as Noggin. At the NBP, the 

antagonist concentration is slightly lower permitting the right amount of stimulation to induce the 

formation of the NBP specified cells. Secondly, the canonical Wnt/βCatenin Signalling coupled with 

Fibroblast Growth Factor (FGF) stimulation (both ligands arising from the surrounding tissue) results in 

the expression of NBP specific protein such as Pax3 and Zic1. These proteins in turn result in the 

transcription of NCC markers such as Sox8, Foxd3, Sox9 and Sox10 in that order.   

Once the folding of the neural plate is completed, the neural crest cells delaminate from the crest 

and start migration. Delamination and migration happen through a series of sequential steps that starts 

with the loss of intercellular adhesion proteins such as N-Cadherin followed by an acquisition of migratory 

capacity through Rho, Rac and Cdc42 proteins. The appropriate substrates for migration are provided by 

the surrounding tissues (Taneyhill and Padmanabhan, 2014). This process of delamination followed by 

migration is termed as the Epithelial to Mesenchyme Transition (EMT). The series of events are 

summarized in the figure below (Figure 9)   
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Figure 9: Delamination and Migration of NCC. The first step is the activation of BMP signalling either by a reduction of its 

antagonist noggin or by the removal of Delta/Notch Signaling from the non-neuronal ectoderm. The delamination is stimulated 

by BMP4, which activates ADAM10 that cleaves N-Cadherin. This permits the cells to detach from nearby cells.  BMP4 also 

stimulates the transcription of Cadherin-6 (Cad-6b in chicks), which replaces N-Cadherin at the membranes. BMP signalling is also 

implicated in the spatiotemporal expression of Rac and Rho in the leading and trailing front of a migratory cell respectively. 

Additionally, BMP signaling also stimulates the Wnt/β-Catenin Pathway that stimulates the production of CyclinD1 and permits 

the migratory cells to enter the S-Phase in their respective cell cycles. [Source: (Taneyhill and Padmanabhan, 2014)]  

The migratory patterns of the neural crest cells depend largely on the location of the cells along 

the neural tube in the rostro-caudal axis. Consequently, the NCC and their progenitors are different at 

different locations along the neural tube. For instance, cranial NCC give rise to cells of the CNS along with 

odontoblasts, connective tissues in the facial region among others. Whereas, trunk neural crest cells give 

rise to melanocytes, sensory and autonomous ganglia, peripheral glia and sensory neurons(Bae and Saint-

Jeannet, 2014). We will consider only the migratory patterns of trunk neural crest cells for pertinence to 

my doctoral studies.  

The trunk neural crest cells display 3 predominant waves of migration (Figure 10). The 1st wave is 

called the dorsolateral wave (arrow 1, Figure 10; above the dorsal region of the somites and parallel to 



 

17 
 

 

the epidermis). This wave gives rise to melanocytes. The 2nd wave can in fact be classified into two – the 

ventrolateral (arrow 2, Figure 10) and the ventromedial wave (Arrow 3, Figure 10).  The ventrolateral wave 

gives rise to the cells of the Dorsal Root Ganglia and other PNS glial cells whereas the ventromedial wave 

gives rise to autonomous ganglia and certain cells of the enteric nervous system (Mayor and Theveneau, 

2012; Le Douarin and Dupin, 2014).  

 

Figure 10 : Migratory paths of the NCC. Arrow 1 – Dorsolateral, Arrow 2 – Ventrolateral, Arrow 3 – Ventromedial. Each of these 

pathways give rise to different progenitors. Adapted from (Jessen and Mirsky, 2005)   
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Generation of Sensory Neurons in the DRG:  

 

Migration of the NCC stars at around E8 in mice and by E10, the Dorsal Root Ganglia is populated 

by NCC that would eventually give rise to sensory neurons and other glial cells. Among the different 

derivatives of the NCC in the DRG, sensory neurons are the first to get specified (Ma et al., 1999).   The 

sensory neurons of the DRG conduct multiple sensory signals from the periphery to the central nervous 

system. They can be classified into proprioception, mechanoreception, thermo-reception, and 

nociception. Each one of these sensations is conveyed by distinct neuronal subtypes (Marmigère and 

Ernfors, 2007). Therefore, the NCC differentiates to give rise to neurons specialized to each function. The 

identity of such neuronal subtypes is given by the type of Tyrosine Kinase Receptor (receptors for 

neurotrophins such as NT-3, NGF) that they express at their surface. The present consensus is that the 

DRG neuron specification occurs in two distinct but overlapping waves. In the first wave, large diameter 

TrKB+ and TrKC+ are born. In the second wave smaller diameter TrKA+ neurons are born. The former is 

mechano- and proprioceptive whereas the latter is nociceptive. The origin of first wave is from the 

migrating NCC and that of the second wave is probably from a small subset of NCC cells called as boundary 

cap cells which generate around 10% of the nociceptors.  (Marol et al., 2004) (See Generation of Peripheral 

Glial Cells)  

Nevertheless, irrespective of the timing of the waves, the commitment to the neuronal fate is 

mediated by two genes Neurogenin 1 and Neurogenin 2 (Ma et al., 1999; Prendergast and Raible, 2014). 

These two proteins help in the transcription of the specific Tyrosine Kinase Receptors in different neuronal 

populations. The molecular mechanisms that underlie the expression of Neurogenin 1 and Neurogenin 2 

in migratory NCC is not well understood but hedgehog Signalling is likely to be involved, at least in 

zebrafish (Ungos et al., 2003).  

The Neurogenins in turn activate two key transcription factors, Brn3a & Islet1 that retain and 

refine the neuronal differentiation of the NCC. These transcription factors regulate the expression of the 

Runx transcription factors. The Brn3a, Islet 1 and the Runx transcription factors result in the expression of 

different TrKs in different neuronal subtypes (Dykes et al., 2011).   
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Generation of Peripheral Glial Cells:  

 

The generation of peripheral glia from the neural crest involves molecular machinery that is very 

distinct and different from the ones explained above. This topic has been recently reviewed exhaustively 

(Jacob, 2015). Neural crest cells ultimately give rise to three kinds of glial cells namely boundary cap cells, 

satellite glia and Schwann cell precursors. Gliogenesis in the PNS can also be classified into two waves. 

Firstly, migrating NCC cells at the Dorsal Root Exit Zone (DREZ) and the Motor Exit Points (MEP) give rise 

to the Boundary Cap Cells at around E10 at these two junctures (Katarzyna and Topilko, 2017). These 

Boundary cap cells are multipotent, and they migrate into the DRGs to give rise to a small population of 

satellite glial cells (E12) as well as sensory Neurons. They also give rise to Schwann cell precursors at the 

DREZ and MEP at around E11.25 (Figure 11) 

Besides, at E11 in mice, the neural crest cells also directly give rise to Schwann Cell Precursors and 

Satellite glial cells (Figure 11).   

 

Figure 11: Generation of different peripheral glial cells in two distinct waves with their respective timings. Migratory neural crest 

cells give rise to two populations – Boundary Cap cells at the Dorsal and Ventral exit points of the spinal cord at E10.5 as well as 

Schwann cell precursors that migrate and populate the developing nerves. A subpopulation of the neural crest cells that migrate 
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into the DRG also give rise to satellite glia. Alternatively, Boundary cap can also give rise to satellite glial cells as well as 

Schwann cell precursors Source: (Jacob, 2015) 

The migratory pathways of these two waves are quite different. For instance, Neural crest cells 

that directly give rise to SCPs and satellite glia migrate and accumulate into future DRGs. Once inside, 

these cells obtain different cell fates. The satellite cells remain attached to the soma of sensory neurons 

and SCPs migrate out of the DRGs along growing peripheral nerves. However, once the DRGs are formed 

some SCPs can migrate around the DRGs without entering them and then migrate to peripheral nerves 

that stem out of the DRGs. These different migratory routes are recapitulated in Figure 12.  

 

Figure 12: The different migratory routes adopted by SCPs, satellite cells and Boundary cap cells. Source: (Jacob, 2015) 

The determination of NCC cell fate to glial cells depends on lot of molecular cues. Among others, 

Sox10 signaling seems to be crucial. Sox10 first stimulates the expression of Neuregulin1 receptor Erbb3 

in migrating neural crest cells. Furthermore, activation of Erbb3 through Neuregulin1 further specifies the 

cells to the glial lineage (Mei and Nave, 2014; Fledrich et al., 2019). A secondary pathway involves HDAC1 

and HDAC2, which increase the expression of Pax3 gene. Pax3 synergizes with Sox10 and binds to MSCS4 

SOX10 enhancer to further increase the levels of Sox10.  This ultimately results in the expression of glial 

Sox10 target genes such as Fabp7 (Fatty Acid Binding Protein 7) and P0 (Jacob et al., 2014).  
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Notch signaling also seems to be important for gliogenesis (Morrison et al., 2000). Morrison and 

colleagues show that exogenous expression of Notch ligands by developing neuroblasts seems to prevent 

neurogenesis in culture and accelerate gliogenesis in the immediate surrounding. Moreover, BMP 

signaling, which is involved in neurogenesis through neurogenin-2 (discussed earlier) needs to be 

downregulated for gliogenesis from NCC. This is achieved by the concerted action of FGF2 signaling which 

antagonizes the expression of neurogenin-2 and in turn helps in the activation of Notch signaling (Jacob, 

2015). For the cells committed to the glial fate, including the subset of boundary cap cells, FoxD3 seems 

to play a role in promoting gliogenesis (Jacob, 2015). Briefly, increase in the expression of FoxD3 and the 

inhibition of neurogenin-1 facilitates the commitment to a glial fate.  

A brief recapitulation of the cellular singling pathways that govern the formation of Schwann cell 

Precursors and Neurons is provided in the figure below. (Figure 13) 

 

 

Figure 13: Formation of Schwann cell precursors and neurons from migrating Neural Crest Cells in the developing PNS. NCC first 
give rise to neuroblasts (future sensory neurons) in the DRG through a process called as neurogenesis. Briefly, BMP signaling and 
possibly Hedgehog signaling result in the activation of Neurogenins. Neurogenins, in turn, upregulate the expression of Brn3a and 
Islet1. These transcription factors together help in the expression of Runx. Runx activation finally results in the expression of 
different Tyrosine Kinase Receptors in neuroblasts as well as Notch ligands such as Delta and Jagged. Once neuroblasts are formed, 
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they interact with other Neural Crest Cells destined to a glial fate through the Notch pathway. Indeed, FGF2 signaling is crucial for 
this interaction as FGF2 binds to its receptor on NCC and suppresses BMP signaling (that promotes neurogenesis). On the other 
hand, it concomitantly activates the expression of Notch receptors on NCC thus promoting a glial fate. Once the Notch-Delta 
interaction is established, downstream signaling of Notch Intracellular Domain in NCC promotes the expression of ErbB2. 
Additionally, epigenetic modification in the NCC assured by HDAC1 and HDAC2 promotes Pax3 expression. Pax3 and Sox10 then 
synergize at the MSC4 SOX10 enhancer site to promote expression of glial genes such as Mpz and Fabp7. Sox10 also increases the 
levels of ErbB3. The ErbB proteins then localize to the cell surface and interact with Neuregulin 1 Type III expressed by the 
neuroblasts. This interaction further restricts the NCC to a glial fate and results in the formation of Schwann cell Precursors.  
Brn3a: Brain Specific POU Domain Protein 3a; Islet 1: Insulin Gene Enhancer Transcription Factor 1; Runx: Runt-related 
transcription factor; HDAC: Histone Deacetylase; Pax3: Paired Box 3; Sox10 : SRY Box Transcription Factor; ErbB2/3: Receptor 
ErbB2/3 Tyrosine Kinase, FGF-R: Fibroblast Growth Factor Receptor.  
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1.1.5 Schwann cell development 

 

At the outset, Schwann cell development is a continuous process that involves the 

transition of Schwann cells precursors to an intermediary population of immature Schwann cells 

(iSC) that further differentiate into myelinating and non-myelinating Schwann cells perinatally 

(Jessen and Mirsky, 2005; Monk et al., 2015). In the following sections, a brief outline of these 

different cell types including their molecular/cellular profiles and their functions are elucidated.  

Schwann cell precursors (SCP):  

 

As explained in the previous section, SCP are the first derivatives in the Schwann cell 

lineage from the neural crest. These cells originate at around E11 and populate the nerve roots 

as well as developing spinal nerves. SCP are multipotent precursor cells that give rise to a plethora 

of cell types besides the cells in the Schwann cell lineage (Furlan and Adameyko, 2018; Jessen 

and Mirsky, 2019a).  These include melanocytes, chromaffin cells, enteric and parasympathetic 

neurons, endoneurial fibroblasts, dental mesenchymal stem cells and bone marrow 

mesenchymal stem cells. For the sake of pertinence to my PhD thesis, only the PNS derivatives 

of SCP will be detailed in the following sections. 

SCP that eventually resolve to the Schwann cell-fate in the PNS first start clustering 

around the areas in the DRG where the sensory axons sprout and exit. Once the axons leave the 

DRG, SCP start migrating on these nascent axons all the way to their peripheral end points. 

Electron microscopy images of SCP show that these cells are situated around bundles of axons 

(Figure 14).  
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Figure 14: Electron-microscopy transverse section image of a rat sciatic nerve at E14 (corresponds to E12 in mice) Schwann cell 

precursors are shown using the arrow heads which indicate cytoplasmic extensions around groups of axons. N denotes the nucleus 

of a precursor cell. Source : (Jessen and Mirsky, 2005) 

The transcriptional landscape of the transition between migrating neural crest cells (E9.5) and 

migratory SCP (E12) has been well documented in mice (Buchstaller et al., 2004). Hundreds of genes are 

implicated in this process and it is worthy to note that the number of genes upregulated are 2 to 3 folds 

more than the ones downregulated (Buchstaller et al., 2004; Jessen and Mirsky, 2019a). The former 

category includes genes that are involved in cell cycle, cytoskeleton formation, cell growth and certain 

transcription factors that are implicated in the expression of various myelin associated genes such as 

Peripheral Myelin Protein 22 (Pmp22), Myelin Basic Protein (Mbp), Myelin Protein Zero (Mpz or P0), 

Proteolipid Protein (Plp) (Buchstaller et al., 2004; D’Antonio et al., 2006b).  

The survival of SCP have been studied extensively in the past to identify key actors that mediate 

and sustain SCP survival throughout its migration along peripheral nerves (Jessen et al., 1994; Dong et al., 

1995). It was observed that SCP in culture would undergo apoptotic death in under 24 hours. However, 
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this could be prevented if the cells are co-cultured with neurons. Subsequently, Neuregulin1 (NRG1) was 

found out to be the factor that mediates survival in SCP and supplementing the cell culture media with 

NRG1 could prevent apoptotic death in cultured SCP (Dong et al., 1995).  NRG1 is expressed as three 

different isoforms that are localized to the axolemma. They are named NRG1 Type I, NRG1 Type II and 

NRG1 type III.  All three isoforms are characterized by an EGF domain. However, only Type I and Type II 

contain an IgG domain with the N terminal situated outside the axolemma. Type III is uniquely 

characterized by a cysteine rich transmembrane domain with the N-terminal situated  in the cytosol of 

axons (Fledrich et al., 2019). All three isoforms are subjected to proteolytic cleavage by  BACE and TACE 

(also termed as ADAM 17) secretases located in proximity to these proteins on the axonal surface. The 

action of these secretases on Type I and Type II isoforms results in the release of these proteins as soluble 

factors in the Schwann cell precursor/axon interface. However, NRG1 Type III remains anchored to the 

axolemma upon cleavage and interacts with the Schwann Cell Precursors and its derivatives of the 

Schwann cell lineage in a juxtacrine manner. Schwann cell precursors, on the other hand, express ErbB2 

and ErbB3 which heterodimerize at the plasma membrane and act as cognate receptors to NRG1 Type III 

throughout development. In effect, the NRG1 Type III and ErbB2/3 interaction governs multiple tyrosine 

kinase receptor signaling cascades in Schwann cells all through their development and differentiation 

(Fledrich et al., 2019).  

The importance of this interaction was further elucidated by the fact that NRG1 mutants display 

almost a complete absence of Schwann cell precursors although other PNS derivatives of the neural crest 

such as satellite glia and sensory neurons are still present (Birchmeier and Nave, 2008; Brinkmann et al., 

2008; Fledrich et al., 2019). Similarly, mutations in ErbB2 or ErbB3 also result in similar phenotypes 

(Newbern and Birchmeier, 2010; Torii et al., 2014). In addition to survival, it is also quite probable the 

NRG1 also plays a role in SCP migration. To this effect, cell culture experiments have categorically shown 

that addition of NRG1 in cell culture enhances SCP migratory activity (Jessen and Mirsky, 2019a).  

Furthermore, Notch signaling is also important for the survival of SCP, albeit indirectly (Woodhoo 

et al., 2009). Notch ligands such as Delta and Jagged are normally present on neurons and Notch is 

expressed in Schwann cells. Woodhoo and colleagues collectively showed that Notch is required for the 

expression of NRG1 receptor ErbB2/3 in Schwann cells. Inactivation of Notch signaling thus leads to lower 

levels of ErbB2/3 in Schwann cell precursors. Moreover, such inactivation also retards the appearance of 

immature Schwann cells in vivo. Complementarily, overexpression of Notch leads to the premature 
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appearance of iSC in vivo. Thus, NRG1 and Notch signaling are two key pathways that are crucial from the 

survival and transition of SCP to iSC in the PNS.   

 

Functions of SCP: 

 

The functions of SCP are myriad. Apart from acting as a developmental multipotent pool of cells, 

they have certain functions specifically in the PNS. SCP are implicated in the process of nerve fasciculation 

and the formation of neuromuscular junctions. In growing nerves, SCP are found at the nerve front where 

they form scaffolds around axonal growth cones (Wanner et al., 2006). They help in guiding the nerve 

fronts to their peripheral targets in the growing limb. The relevance of SCP in embryonic nerve 

development is seen in mutant models of SOX10 and NRG1 signaling (Woldeyesus et al., 1999; Wolpowitz 

et al., 2000; Britsch et al., 2001). In these models, SCP are not produced on time or are very few. Although, 

nerve development from the DRG and ventral roots occurs normally, nerve branching is affected, and the 

nerves are poorly fasciculated and disorganized near the target tissues. Furthermore, in these models, 

neurogenesis from neuroblasts in the DRG does not seem to be affected and the axons sprout on time. 

However, during late embryonic development, these axons start denervating from target tissues and 

eventually die. This shows that early glial populations may not be necessary for neurogenesis, but they 

are indispensable for axonal survival during late embryogenesis. It is indeed intriguing to note the 

interdependence of SCP and neurons for their survival during embryonic development of the PNS (Jessen 

and Mirsky, 2019a).    
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Immature Schwann cells (iSC): 

 

The next cell type to arise out of SCP in the Schwann cell lineage are immature Schwann cells. These 

cells are quite distinct both in their molecular/cellular profile and function when compared to SCP. Some 

of the salient features of difference are as follows:  

 iSC can survive independently from axons both in vivo and in vitro (Dong et al., 1995) 

 iSC possess autocrine survival mechanisms (Jessen et al., 1994; Jessen and Mirsky, 2005)  

 iSC segregate larger bundles of axons into smaller ones (Figure 15).  

 In culture, iSC have a typical spindle shaped morphology in culture whereas SCP are more 

flattened and aggregated (Woodhoo et al., 2009) 

 Molecular markers of iSC are significantly different from SCP (Buchstaller et al., 2004; D’Antonio 

et al., 2006b) (Figure 16) 

 

Figure 15: Differences in the morphology of SCP and iSC in rat sciatic nerve at E14 (A) and E18 (B) respectively. At E14 (A) SCP, 

denoted by arrow heads, are seen associated with large bundles of unsegregated axons. The connective tissue, colored in yellow, 

is located at the periphery of these clusters of SCP and axons. However, at E18 (B), the connective tissue invades into the 

endoneurial space and iSC can be seen associated with smaller unsegregated bundles of axons (denoted by asterisk). Source: 

(Jessen and Mirsky, 2019a) 
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Figure 16: Some well-known molecular markers that are expressed at different stages of Schwann cell development. Source: 

(Jessen and Mirsky, 2019a) 

The molecular factors that are implicated in this transition have been well documented. As stated 

earlier, NRG1 and Notch signaling are crucial for the survival and propagation of SCP into iSC. Sox10 also 

plays a key role in this transition. This pan-neural crest marker in fact intervenes in multiple stages of 

Schwann cell development (Jessen and Mirsky, 2005; Monk et al., 2015). During the transition of SCP to 

iSC, dimeric Sox10 is recruited at the Schwann Cell Enhancer (SCE) of Oct6 gene and promotes the latter’s 

expression (Jagalur et al., 2011). Following that, Oct6, together with Brn2 and Sox10 are recruited at the 

Myelin Schwann Cell Enhancer (MSCE) of Krox20, the major pro-myelination transcription factor (Ghislain 

and Charnay, 2006; Reiprich et al., 2010). 

The timing of SCP/iSC is of prime importance in Schwann cell development. Among other factors, 

it is controlled by Endothelins (Brennan et al., 2000). Ablation of Endothelin Receptor B (ET-B) in Schwann 

cells leads to an early appearance of iSC. Similarly, addition of endothelin in SCP cultures causes a delay 

in the appearance of iSC although it strongly promotes SCP survival (Brennan et al., 2000). These results 

taken together suggest that Endothelins also promote the Survival of SCP until they are ready to 

differentiate into iSC. This tightly controlled timing is also controlled by the expression (or the lack of it) 
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of the transcription factor Tfap2α in SCP. (Stewart et al., 2001)Tfap2α is strongly downregulated as SC 

progress from the SCP stage to iSC. Forced expression of this transcription factor in culture retards the 

transition of SCP into iSC.   
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Radial Sorting by immature Schwann Cells:  

 

One of the most important functions of iSC in Schwann cell development is radial sorting of axons. 

As shown in Figure 14B, immature Schwann cells cluster around smaller groups of axons first. This is 

followed by radial sorting, which is the process of segregating axons based on their caliber (apparent 

diameter/size). Radial sorting is a crucial step in Schwann cell development as it determines the fate of 

both the axons and the Schwann cell associated with it. In other words, sorting basically segregates large 

caliber axons that form a 1:1 relationship with Schwann cells and smaller caliber axons that are aggregated 

into clusters called as Remak bundles. Indeed, the large caliber axons eventually become myelinated and 

the Remak bundles remain unmyelinated. From the viewpoint of Schwann cells, the cells in the Remak 

bundles develop into non-myelinating Schwann cells and the ones associated with larger axons (also called 

pro-myelinating SC) develop into myelinating Schwann cells. This process is recapitulated in the Figure 17. 

 

Figure 17: Schwann cell development from SCP. SCP migrate on developing nerves and differentiate into iSC at around E15.5 in 

mice (Jessen and Mirsky, 2005). iSC segregate the axons into smaller bundles first and then radially sort individual axons or a 

group of axons depending on their respective calibers. Thus, larger axons form a one on one relationship with Schwann cells and 

smaller axons are segregated into Remak bundles. This results in two different kinds of Schwann cells – myelinating and non-

myelinating Schwann cells in the murine PNS. The formation of Basal Lamina (BL) also occurs at the iSC stage. Source: (Monk et 

al., 2015) 

In fact, axonal sorting can be divided into 5 distinct stages that start around E15.5 in mice and 

continue until post-natal day 10 (P10) (Feltri et al., 2016). Stage 1 involves the segregation of large axonal 

bundles into smaller ones and the establishment of a basal lamina around iSC. Stage 2 begins with the 
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insertion of Schwann cell processes (like lamellipodia) into axonal bundles. Stage 3 involves the 

recognition of large caliber axons. Once the large caliber axons are identified, they are pushed radially 

towards the periphery of the bundle (hence the name radial sorting) which is identified as stage 4. Stage 

5 begins by matching the number of Schwann cells to the number of axons i.e. an active phase of 

proliferation. This is followed by establishing a one to one relationship with large axons. The smaller axons 

that are left behind then resolve into future Remak bundles. In effect, radial sorting preferentially excludes 

larger axons and the Remak bundles are thus formed by simple exclusion. Different SC specific mutations 

have impacted radial sorting and the pathological eventualities that arise therein can also linked to the 

developmental stage that was impacted by the mutation. The different developmental stages and 

pathological observations are recapitulated in Figure 18.  

 

Figure 18: Progression of axonal sorting in murine PNS. The different stages of axonal sorting are depicted along with pathological 

conditions that arise when different mutations result in arresting radial sorting at multiple stages. These developmental stages 

and pathological outcomes help in identifying the effects of different genetic ablations that affect radial sorting. Source: (Feltri et 

al., 2016).  

There are two keys aspects that are important for efficient radial sorting. Firstly, radial sorting of 

cells is a complex multi-stage process that is orchestrated by a lot of molecular cues that are both Schwann 

cell intrinsic and extrinsic in nature (Monk et al., 2015; Feltri et al., 2016). Secondly, towards the beginning 

of stage 5, the number of iSC need to match the total number of neurons present in the environment 
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implying that Schwann cells would have to multiply. These two requirements are taken into consideration 

while deciphering the role of different genes in Schwann cell development and more importantly radial 

sorting.  

The molecular cues that govern radial sorting are excerpted from a seminal review are detailed 

below (Feltri et al., 2016):  

Extra-Cellular Matrix (ECM) and intra-cellular signaling pertaining to Actin polymerization:  

ECM deposition of Laminin211, Laminin411, Collagen XV and their receptors on iSC such as 

Integrin α6β1, Integrin α7β1, Dystroglycan and its intracellular glycosylation enzyme Fukutin are all 

implicated in radial sorting. It is suspected that they aid in polarizing the Schwann cell membrane to 

extend its processes into axonal bundles and assure communication between the developing basal lamina 

and the Schwann cell (Feltri et al., 2016).  

Additionally, proteins implicated in Actin polymerization such as ILK, FAK, Rho GTPase such Rac1& 

Cdc42, Profilin, Merlin/Nf2 and N-Wasp are equally crucial for the extension of Schwann cell processes 

and the establishment of apical and basal polarity in iSC (Jin et al., 2011; Novak et al., 2011; Guo et al., 

2012, 2013; Grove and Brophy, 2014).  

 

Axonal signaling in radial sorting: 

NRG1/ErbB axis has been extensively studied to understand axo-glial interdependence during the 

different stages of SC development (Fledrich et al., 2019). However, NRG1 signaling could not be directly 

studied during radial sorting because NRG1 total mutants are not viable (Wolpowitz et al., 2000). 

However, using haplo-insufficient mutants, it was established that NRG1 is crucial for determining the 

ensheathment of large caliber axons (Taveggia et al., 2005). In other words, NRG1 signaling helps iSC to 

identify large caliber axons. Indeed, NRG1 Type III isoform is expressed more in larger axons than in 

smaller ones. This would mean that NRG1/ErbB signaling axis intervenes in Stage 5 of radial sorting. 

Similarly, inhibiting ErbB downstream signaling in iSC results in abnormalities in radial sorting in zebrafish 

(Monk et al., 2015), thus promoting the idea that NRG1 signaling axis could also be involved in radial 

sorting apart from SCP proliferation and sustenance. Furthermore, Schwann cell specific mutation of Gab1 
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(Grb2 Associated Binder 1), which is a downstream integrator of the Akt/Erk axis of NRG1 signaling also 

results in sorting abnormalities (Shin et al., 2014). 

Wnt/β Catenin signaling is another candidate pathway that has been recently studied with regard 

to axonal sorting (Grigoryan et al., 2013). Axons are known to secrete Wnt ligands and interact with Lgr 

and Lrp/Frizzled receptors present on Schwann cells in a paracrine manner. Conditional ablation of β 

Catenin in Schwann cells leads to mild radial sorting defects. Complementarily, constitutive activation of 

β Catenin speeds up the process of radial sorting and results in Remak bundles with smaller sized axons.  

The third signaling pathway that has shed more light on axon/iSC interaction during radial sorting 

is Lgi4/Adam22 (Bermingham et al., 2006; Özkaynak et al., 2010). Under normal conditions SC secrete 

Lgi4, which binds to neuronal Adam22. Lgi4 Schwann cell mutants show delayed axonal sorting. 

Additionally, Adam22 mutants display an arrest in the pro-myelinating stage (i.e. right after Stage 5 of 

radial sorting).  

Other signals implicated in radial sorting: 

Recently, it was also demonstrated that lipids such as plasmalogens also regulate radial sorting 

(Da Silva et al., 2014). This is mediated through the Akt/GSK3β axis as plasmalogen insufficiency resulted 

in elevated GSK3β levels. However, treatment with GSK3β inhibitors such as Lithium abrogated the 

pathological phenotype. Interestingly, miRNA have also been implicated in radial sorting (Pereira et al., 

2010). Schwann cell Dicer mutants display a delay in radial sorting indicating that miRNA also have a role 

to play in Schwann cell development. This has been a growing field of interest in the last decade and 

various miRNA that regulate Schwann cell development at different stage have been discovered. (Gokey 

et al., 2012; Lin et al., 2018; Ji et al., 2019) 

Factors that control iSC proliferation during radial sorting: 

As mentioned earlier, mitogenic activity and SCP/iSC transition is assured by the coordinated 

effect of NRG1 and Notch signaling. These two pathways are also crucial to maintain and increase the 

number of iSC during radial sorting (Monk et al., 2015; Feltri et al., 2016). These results are also 

corroborated by the fact the addition of NRG1 and Notch ligands increase proliferation of iSC in culture 

(Woodhoo et al., 2009). ECM components are also required to increase Schwann cell numbers during 

radial sorting. For instance, ablation of Schwann cell laminin results in a drop in iSC proliferation rate (Yu 

et al. 2005). Other ECM/basal lamina related genes that are equally important in iSC proliferation are Rho 
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GTPase, Cdc42 and Focal Adhesion Kinase (FAK) (Laura Feltri et al., 2008; Grove and Brophy, 2014; Feltri 

et al., 2016). Laminin211 signaling is assured by Jun activation domain – binding protein 1 (Jab1). 

Inactivation of Jab1 also results in reduced proliferation of iSC (Porrello et al., 2014).  

TGFβ signaling is also implicated in iSC proliferation (D’Antonio et al., 2006a). Selective deletion 

of TGFβ II receptor in Schwann cells results in reduced DNA synthesis resulting in reduced proliferation of 

iSC. On the other hand, normal Schwann cell apoptotic death was also reduced. Therefore, the role of 

TGFβ signaling was not conclusive. However, in cell culture experiments, it was observed that addition of 

TGFβ alone induced apoptosis in iSC. However, addition of TGFβ in media containing NRG1 promoted 

proliferation (D’Antonio et al., 2006a). Therefore, the consensus is that TGFβ promotes the proliferation 

of cells that are in contact with axons (through NRG1) and induces apoptosis in cells that are devoid of 

any axonal contact. Yap and Taz, regulators of the Hippo pathway are also important for iSC proliferation 

during radial sorting. Specific ablation of each of these genes in Schwann cells does not result in a drastic 

phenotype but simultaneous deletion results in a loss of Schwann cell numbers that further impact the 

myelination process (Grove et al., 2017).  

Moderate activation of the cAMP pathway is important for sustained proliferation of iSC. Indeed, genetic 

ablation of R1A regulatory subunit of Protein Kinase A (PKA), the downstream effector of cAMP pathway 

results in a drastic reduction of immature Schwann cell proliferation (Guo et al., 2012, 2013). Additionally 

G-protein coupled Receptor 126 is also associated to the cAMP pathway and mediates its proliferative 

effect on Schwann cells in vivo (Mogha et al., 2013; Monk et al., 2015). The ligand for Gpr126 was 

previously thought to be axonal, but recent data demonstrate that ECM elements such as collagen and 

Laminin act through Gpr126 during radial sorting (Paavola et al., 2014; Petersen et al., 2015). The net 

effect of Gpr126 signaling is an increase in cellular cAMP levels by the activation of transmembrane 

Adenylate Cyclase (tAC) that promote iSC proliferation through the cAMP/Protein Kinase A (PKA) axis 

during radial sorting.  

Negative regulation of the cAMP pathway that inhibit iSC proliferation has also been studied. This 

was performed using a Schwann cell specific deletion of gamma-aminobutyric acid type B1 receptor 

(GABBR1) (Procacci et al., 2013; Faroni et al., 2014). Binding of GABA (presumably secreted by peripheral 

axons) to GABBR1 in Schwann cells inhibits tAC thereby reducing intracellular cAMP levels and thus exerts 

a negative effect on iSC proliferation. The resulting phenotype is characterized by an increase in small 

diameter axons along with an increase in the number of Remak bundles. This was also corroborated by a 
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decrease in the number of large diameter axons. However, myelin protein levels were slightly increased 

as well as the myelin thickness. Intriguingly, Nrg1 expression in the peripheral nerves was decreased in 

these mice possibly because of neuronal loss as the mice age. 

The different extracellular cues and intracellular pathways that are in play during radial sorting are 

recapitulated in the following figure (Figure 19).  
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Figure 19: Extracellular cues and intracellular pathways that contribute towards radial sorting. Actin Restructuring to extend 
lamellipodia and iSC proliferation to match axon-SC numbers are the corner stones of radial sorting and almost all intra cellular 
pathways promote these outcomes. Most of these signaling cascades are activated by ligand-receptor interactions at the axon-
glial interface. For instance, NRG1/ErbB signaling promotes radial sorting by acing through Akt/Erk cascade. Similarly, activation 
of the β catenin signaling by Wnt ligands that is further reinforced by membrane bound plasmogens results in iSC proliferation 
downstream as well as actin restructuring. TGFβ signaling also integrates into the Akt/Erk axis either directly or indirectly. 
Delta/Notch signaling also promotes radial sorting through the Notch Intracellular domain (NICD). Furthermore, actin 
restructuring is directly controlled by ECM matrix proteins that bind to their receptors such as integrins and dystroglycans that 
exert their effect through various intra-cellular proteins that regulate actin polymerization and restructuring. Additionally, the 
proliferation of iSC is controlled by the canonical cAMP pathway that is activated by the binding of ECM proteins to Gpr126. cAMP 
is also controlled by the binding of GABA-b to Gababr1 that in turn blocks the activity of tAC and reduces proliferation. These 
observations suggest that the cAMP is tightly controlled to achieve optimal proliferation at a required time. Other pathways have 
also been described but their downstream effectors remain poorly understood. For instance, Lgi4 ligand secreted by Schwann cells 
binds to axonal Adam22 but the resultant positive effect on radial sorting can be either axonal or neuronal. Similarly, NT3 can 
bind either to neuronal TrkC or to p75NTR in iSC to exert its positive effects on radial sorting. Actors of the Hippo pathways such 
as Yap and Taz also positively regulate radial sorting however their upstream and temporal regulators are poorly defined. They 
also promote iSC proliferation and increase the expression of ECM receptors in iSC (not shown in figure). Finally, recent studies 
also elucidate the role of some microRNA that can regulate iSC proliferation and radial sorting either directly or indirectly by 
inhibiting the expression of a plethora of genes.  
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Non-myelinating Schwann cells/Remak Schwann cells (RSC):  

 

Two kinds of Schwann cells arise out of iSC during Schwann cell maturation – promyelinating SC 

and non-myelinating Schwann cell also called as Remak Schwann Cells (RSC) (Figure 17). This section 

describes the molecular mechanisms that are implicated in the generation and further maturation of RSC 

in the developing spinal nerves. These molecular mechanisms have been elaborated in a recent review 

(Harty and Monk, 2017).  

Nrg1 Signaling: 

The implications of Neuregulin signaling in RSC development was assessed by specifically deleting 

Nrg1 in sensory neurons using Sodium Channel Nav1.8-Cre (Fricker et al., 2009, 2013). This mutation 

would however impact both myelinated sensory fibers as well as Remak fibers in the PNS. Consequently, 

the authors observed larger Remak bundles along with poly-axonal pockets in Remak bundles . Larger 

axons that established a one to one relationship but are presumably sensory fibers also presented with 

thinner or no myelin at all. The authors thus concluded that Nrg1 signaling is rather important for the 

correct formation of Remak bundles.  

Neuropathy Target Esterase (Nte): 

Recently, McFerrin and colleagues observed an increased in the expression of Nte during 

immature Schwann cell maturation into Remak Cells (McFerrin et al., 2017). The expression of this enzyme 

was mostly localized to non-myelinating Schwann cells. The authors specifically deleted this protein using 

a Gfap-Cre system wherein Gfap is exclusively expressed in iSC and then in RSC but not in myelinating 

Schwann cells. They observed an incomplete ensheathment of Remak bundles but myelinating Schwann 

cells were seemingly unaffected. These results suggest that Nte is required for maturation of RSC but is 

not essential for the pro-myelinating SC.  

LDL Receptor-related Protein 1 (Lrp1): 

Schwann cell specific ablation of Lrp1 resulted in hypo-myelinating phenotype coupled with 

aberrant formation of Remak bundles (Orita et al., 2013). Lrp1 is known to bind Matrix Metalloprotease 

9 (MMP9) and Tissue-Plasminogen Activator (t-PA) and regulates Schwann cell motility by activating Rac1. 

Therefore, it is quite probable that Lrp1 is important for lamellipodia extension mediated by the subtle 
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balance between Rho (focal adhesion)/Rac (motility) during radial sorting. Lrp1 ablation in Schwann cells 

resulted in a neuropathic phenotype where the mice experiences mechanical allodynia even in the 

absence of any nerve injury. However, following nerve injury, the phenotype was more aggravated with 

a dramatic loss of Schwann cell numbers due to apoptosis. These results show that Lrp1 is crucial for the 

proper formation of Remak fibers both during myelination and remyelination of peripheral nerves.   

mTOR pathway: 

The Akt/mTORC axis is classically known to be indispensable and a hallmark pathway required for 

myelination in the PNS (Monk et al., 2015; Salzer, 2015). However, recent evidence suggests that this 

signaling axis is also required for the proper formation of Remak bundles (Norrmén et al., 2014).  In this 

mutant model, the researchers observed an increase in the number of axons inside the Remak bundles as 

well as the presence of naked axons. By contrast, activation of the mTORC pathway resulted in lesser 

number of axons in the Remak bundles and abnormal ensheathment of larger axons inside Remak bundles 

(Domènech-Estévez et al., 2016). These results taken together suggest that a fine balance in the 

Akt/mTORC axis is required for proper RSC maturation as much as it is required for myelination.  

SC mitochondrial pathways: 

Research over the last two decades have shown substantial evidence to support the notion that 

Schwann cells indeed provide trophic support to the axons that they are in contact with (Nave, 2010; 

Fledrich et al., 2019). In view of the same, recent work has sought to elucidate the role of SC mitochondrial 

metabolism in the maintenance of axonal integrity. The deletion of Mitochondrial Transcription Factor A 

(Tfam) in Schwann cells results in a preferential loss of non-myelinated fibers followed by myelinated 

fibers suggesting that SC mitochondrial metabolism is important for the maintenance of non-myelinated 

fibers (Viader et al., 2011). Secondly, numerous groups have elucidated the role of Liver Kinase B1 (Lkb1) 

in SC metabolism (Beirowski et al., 2014; Pooya et al., 2014; Shen et al., 2014). Of note, Pooya and 

colleagues demonstrate that the deletion of Lkb1 in SC results in hypomyelinated axons and impaired 

formation of Remak bundles. The authors postulate that SC undergo a metabolic transition from glycolysis 

to oxidative phosphorylation (OXPHOS) during differentiation due to a high demand for ATP for 

lipogenesis. Secondarily, OXPHOS results in the production of Citrate (through Citrate Synthase), which is 

a precursor for lipogenesis. The authors further demonstrate that Citrate Synthase is regulated by Lkb1 in 
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Schwann cells.  These results taken together suggest that SC intrinsic mitochondrial metabolism is indeed 

required for the maintenance of sensory fibers in Remak bundles.  

The signaling pathways that contribute towards remak bundle formation and maturation are 

briefly described below (Figure 20).  

 

Figure 20: Formation and maturation of Remak Bundles. Genetic ablation/mutation of many genes implicated in radial sorting 
often result in poorly organized or disorganized remak bundles. These include, NRG1 signaling through the Akt/mTORC1 axis and  
Delta/Notch signaling. Additionally, BDNF binding through p75NTR also promotes Remak formation although the downstream 
actors remain unknown. Similarly, genes implicated in mitochondrial metabolism and ATP homeostasis such as Lkb1 and Tfam 
also regulate Remak bundle maturation. Nevertheless, SC specific mutants of these genes also result in myelination deficits as 
explained in the following section. Neuropathy Target Esterase (Nte) is one of the genes known to specifically localize in Remak 
bundles to promote its maturation although the molecular effectors of the pathways are poorly defined.  
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1.1.6 Myelination in the PNS 

Once radial sorting is completed, Schwann cells adopt two different fates depending on the axons 

that they are associated with as explained earlier. The cells that form a 1:1 association with axons and 

differentiate into pro-myelinating Schwann cells, which further develop into myelinating Schwann cells 

(mSC).  

The myelination program in the Schwann cell has three important signalling axes. These include 

expression of SC intrinsic transcription factors coupled with epigenetic regulation, extracellular signals 

and intracellular signalling cascades that holistically drive myelination in SCs. Although these cellular 

events can be categorised into three different axes, these events need to be visualised as a continuum of 

molecular changes inside the mSC and not sequentially.  

Expression of pro-myelinating Transcription Factors (TF) and Epigenetic regulation: 

SC development from the pro-myelinating phenotype to a myelinating Schwann cell can be 

understood in terms of a feedforward cascade of TF expression following radial sorting (Salzer, 2015). 

Sox2, NFkB and Egr1 are expressed during the later stages of radial sorting. This is followed by the 

transient expression of Oct6 (Pou3f1) and Brn2 (Pou3f2) in pro-myelinating SC which is then switched off 

to promote Krox20 expression. Oct6 and Brn2 co-operate and are positive regulators of Krox20. In effect, 

Oct6 and Brn2 can be considered as markers of pro-myelinating Schwann cells and Krox20 is a marker of 

mSC.  Additionally, expression of Krox20 is also promoted by the NFATc4 and Yin Yang 1 (YY1).  

Parallelly, Sox10 synergizes with NFATc4 as well Oct6 and Brn2 and it is recruited at the Myelin 

Specific Enhancer (MSE) site of Krox20 to stimulate the latter’s expression. Indeed, Krox20 is regarded as 

the master myelin gene regulator as it activates the expression of various myelin proteins such as Mpz 

and Pmp22 (Topilko et al., 1994). This is then followed by the expression of lipogenic transcription factors 

such as SREBP (Camargo et al., 2009).  

Epigenetic changes also take place during the iSC/mSC transition following sorting. Histone 

deacetylases (such as HDAC1 and HDAC2) which were previously known to mediate the generation of 

peripheral glia from NCC (see Generation of Peripheral Glial Cells) are also implicated in myelination. In 

more precise terms, HDAC2 but not HDAC1, synergizes with Sox10 to activate the myelin transcription 

program through Krox20 (Chen et al., 2011; Jacob et al., 2011). Furthermore, Brahma Associated Factor 

(BAF), a chromatin remodelling factor, also synergizes with Sox10 to drive myelination. SC specific deletion 
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of Brahma Related Gene product 1 (Brg1) which is the core catalytic unit of BAF, phenocopies Sox10 

conditional mutants (Finzsch et al., 2010).  

Indeed, after radial sorting, the binary fate adopted by Schwann cells is also intrinsically reinforced 

by the expression of Sox2 and c-jun (Salzer, 2015). In Remak Schwann cells, the expression of Sox2 and c-

jun represses Krox20 and thereby prevents them from activating the myelination cascade. On the 

contrary, in mSC, the expression of Krox20 needs to be sustained to maintain the myelinating phenotype. 

This is most likely achieved by a feedforward loop created by Sox10 and the associated factors detailed 

above. The signalling cascades involved in myelination are detailed in the figure below (Figure 21).  

 

Figure 21: Transcription Factors and epigenetic markers that are involved in the transition of iSC to mSC. Source: (Salzer, 2015). 

 

Intracellular signalling cascades that drive myelination:  

The intracellular signalling pathways that drive and sustain myelination are Receptor Tyrosine 

Kinase pathways that act predominantly downstream of NRG1/ErbB signalling in SC (Monk et al., 2015; 

Salzer, 2015). They can be briefly classified as follows:  

PI3K/Akt/mTOR pathway: 

Activation of PI3K pathway exerts its pro-myelinating effect by the downstream phosphorylation 

of Akt. This drives the activation of the mTOR pathway and results in proper myelination of axons. In line 

with these observations, SC specific deletion of PTEN, a phosphatase that inhibits downstream Akt 

activation, results in increased phosphorylation of Akt thereby producing a hyper-myelinating phenotype 

(Goebbels et al., 2010). However, treatment of these PTEN conditional mutants with Rapamycin (mTOR 
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inhibitor) reverses many of the aberrant phenotypes observed (Goebbels et al., 2012).  Keeping with these 

observations, it was also observed that SC deletion of mTOR1 and mTOR2 resulted in thinner myelin 

sheaths (Sherman et al., 2012). Further studies on the mTORC pathway revealed that mTORC1 but not 

mTORC2 is required for Schwann cell myelination (Norrmén et al., 2014). This was elegantly shown by 

Norrmen and colleagues through a conditional ablation of Raptor (mTORC1 adaptor) which resulted in 

hypomyelination. However, SC specific ablation of Rictor (mTORC2 adaptor) did not elicit the same 

phenotype. The authors further go ahead and show that mTORC1 drives myelination by regulating the 

expression of RXRγ. This is followed by the latter’s subsequent recruitment at the promoter region of 

SREBP1c which is a master regulator of lipogenesis.  

MAPK Pathway: 

MAPK mediates myelination through the activation of Erk1/2 (Newbern et al., 2011). SC specific 

ablation of Erk1/2 results in SC differentiation deficits and hypomyelination. Similarly, ablation of Shp2, a 

phosphatase that in turn activates the MAPK pathway in Schwann cells phenocopies ErbB mutants 

(Grossmann et al., 2009). On the contrary, sustained activation of MAPK pathway by conditional 

expression of Mek1 results in a hyper-myelinating phenotype (Sheean et al., 2014). Interestingly in this 

study, it was demonstrated that the activation of MAPK pathway could reverse the effects of mutations 

affecting NRG/ErbB signalling. In other words, myelination deficits observed in ErbB mutants could indeed 

be reversed by sustained activation of the MAPK pathway in Schwann cells. Furthermore, one of the target 

genes activated by MAPK pathway is YY1 which is an important transcription factor required for Krox20 

expression (He et al., 2010).  

PLCγ/Calcineurin/NFAT Signalling: 

Another RTK pathway that is activated by NRG1 is the intracellular Calcineurin pathway. NRG1 

signaling results in elevated Calcium levels inside Schwann cells. This activates the phosphatase 

calcineurin B, which further dephosphorylates NFAT. NFAT then translocates to the nucleus and forms a 

complex with Sox10 and is recruited at the Myelin Specific Enhancer of Krox20 to promote its expression 

(Kao et al., 2009). A secondary pathway was also discovered which could potentiate the pro-myelinating 

effects of NFAT in Schwann cells. Following NRG1 Type III intermembrane proteolysis, the neurons secrete 

Prostaglandin D2 (PGD2), which acts as a ligand for GPR44 located on the plasma membrane of Schwann 

cells. This interaction precipitates to canonical NFAT signaling as mentioned above (Trimarco et al., 2014) 



 

43 
 

 

cAMP signaling: 

cAMP increase in Schwann cells during development can elicit both proliferation of iSC and 

differentiation of mSC (Monje, 2015). The key difference in these two outcomes depends on how the 

cAMP is produced and employed in the Schwann cell. The first step of cAMP production is the conversion 

of ATP to cAMP by Adenylate Cyclase (AC). The most extensively studied AC enzyme in Schwann cells is 

the transmembrane AC (tAC) which interact with GPCRs such as Gpr126 (Mogha et al., 2013). This classical 

cAMP activation exerts its effects though PKA activation and ultimately the proliferation of immature 

Schwann cells, as explained earlier. However, recent studies have also shown the soluble Adenylate 

Cyclase (sAC) whose mode of action is independent of GPCRs and drugs such as forskolin is also 

ubiquitously present in Schwann cells (Monje, 2015). Additionally, it has also been demonstrated recently 

that cAMP action through EPAC (Exchange Protein Activated by cAMP) can specifically drive myelin gene 

expression (Monje, 2015).  Similarly, in cell culture, stimulation of cAMP signaling using Forskolin favorizes 

cell proliferation due to its effects on the canonical PKA pathway but addition of 1mM cAMP promotes in 

vitro myelination (Arthur-Farraj et al., 2011). The consensus is that canonical cAMP activation leads to 

proliferation through PKA pathway whereas Schwann cell differentiation is mediated by EPAC 

translocation to the nucleus and the cAMP synthesized during differentiation may arise from non-

conventional sources such as sAC.   

 

Extracellular signals that promote myelination:  

 

Axonal Regulation through NRG1:  

NRG1 signaling governs almost all aspects of SC development and it is crucial for the different 

transitions that take place therein (Jessen and Mirsky, 2005; Fledrich et al., 2019). Primary observations 

for the requirement of NRG1 signaling in SC myelination were put forth by Garratt and colleagues who 

specifically deleted NRG1 Type III receptors, ErbB, in Schwann cells (Garratt et al., 2000). Subsequently, it 

was found that NRG1 type III isoform is the most crucial for myelination in Schwann cells (Taveggia et al., 

2005). Taveggia and colleagues also observed that forced expression of NRG1 Type III in unmyelinated 

sympathetic neurons resulted in their myelination. Similarly, overexpression of this particular neuregulin 

isoform in motor neurons also resulted in hypermyelination (Michailov et al., 2004). On the contrary, 
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haploinsufficiency of NRG1 displayed significant hypomyelination (Michailov et al., 2004; Taveggia et al., 

2005; Brinkmann et al., 2008). Hence the consensus on NRG1 signaling is that at threshold levels its drives 

myelination and disruptions to NRG1 expression can proportionately affect the extent of myelination in 

the PNS. In keeping with this principle, axons that are destined to be myelinated are always larger and 

express higher levels of NRG1 Type III (Salzer, 2015). On the contrary, small caliber axons ensheathed by 

RSC express low amounts of NRG1 Type III given their size but NRG1/ErbB signaling axis is equally 

important for the formation of remak bundles.  

Secretases:  

The role of secretases on Schwann cell myelination has been extensively studied in the last two 

decades. Of note, two secretases (BACE1 and ADAM17), which differentially regulate NRG1 signaling have 

been of interest to the glial research community. β-secretase BACE1 exerts a promyelinating effect on SC 

as the cleavage of NRG1 Type III isoform stimulates the RTK pathways discussed in the previous section 

(Taveggia et al., 2005; Fledrich et al., 2019). However, ADAM17 (also called TACE) cleaves NRG1 Type III 

in the epidermal growth factor domain and in turn deactivates the canonical NRG1 signaling pathway in 

SC(La Marca et al., 2011). Inactivation of ADAM17 in Schwann cells accelerates myelination in culture and 

causes aberrant myelination in vivo. These observations give rise to the question if ADAM17 and BACE1 

expression in Schwann cells occur at different time points during development to exert their opposite 

effects on Schwann cell development.  

Another secretase that has been studied is ADAM10. In vitro, cleavage of NRG1 by ADAM10 

promoted myelination but inhibition of ADAM10 does not hamper myelination as long as BACE1 is still 

active (Luo et al., 2011). Similarly, transgenic mouse models that overexpress ADAM10 or a dominant 

negative form of the gene do not display any peripheral myelin deficits (Freese et al., 2009).  

 

Notch1 signaling: 

Inhibition of Notch signaling is important for the onset of myelination (Woodhoo et al., 2009). 

This pathway is crucial for the survival of SCP as explained earlier but Notch is systematically 

downregulated by the expression of Krox20 at the onset of myelination. Correspondingly, forced 

expression of Notch Intracellular Domain (NICD) at later stages of SC development results in 

demyelination. (Woodhoo et al., 2009) 
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Neurotrophins: 

Interactions between neuron and glial cells are often mediated by growth factors and proteins 

called Neurotrophins. In this regard, some well-known neurotrophins such as BDNF, NT3, GDNF and NGF 

have been studied and are known to impact both Schwann development and myelination of the PNS. For 

instance, in vitro studies on DRG/Schwann cell co-cultures first demonstrated that Neurotrophin 3 (NT3) 

promotes SC migration and motility by binding to the TrkC receptors on axons and activates the Cdc42/JNK 

pathway in SCP and iSC (Yamauchi et al., 2003). However, upon the induction of myelination, it was found 

that this interaction inhibits the synthesis of myelin layers around axons in culture (Cosgaya et al., 2002). 

Hence, it was postulated that NT3-TrkC interactions are predominant during the SCP and iSC stages but it 

is downregulated once Schwann cells myelinate. In NT3 null mutants, the sciatic nerve was devoid of 

myelinated axons. However, the brachial plexus contained Schwann cells that myelinated the nerves 

properly at birth but as the mice aged, the Schwann cells turned apoptotic (Woolley et al., 2008). This 

suggests that NT3 might also be implicated in SC survival once it has crossed the pro-myelinating stage in 

vivo. 

 BDNF binds to its cognate receptor p75NTR present in Schwann cells to promote myelination 

(Cosgaya et al., 2002). It is to be noted that myelinating Schwann cells downregulate p75NTR expression 

and only Remak Schwann cells retain its expression. Thus, it is quite probable that BDNF aids in Remak 

Schwann cell formation during development.  

NGF also seems to promotes myelination in vitro as addition of NGF to DRG/SC cocultures 

stimulates (Chan et al., 2004). However, it is not clear if this effect is mediated by TrkA on axons or p75NTR 

expressed in Schwann cells. GDNF, another neurotrophin of glial origins, exerts a pro-myelinating effect 

on Schwann cells (Höke et al., 2003). However, the action of GDNF is more prominent than that of NGF as 

increased GDNF exposure also results in the myelination of Remak bundles (Höke et al., 2003). 

Cell Adhesion Molecules (Cadm) or Nectin Like Proteins (Necl):   

There are multiple ways in which SC and axons interact with each other during development and 

myelination. NRG1/Signaling is one of the most extensively studies mechanisms followed by the exchange 

of Neurotrophins as discussed herein. Another means of axo-glial communication occurs through a family 

of protein called the Cell Adhesion Molecules or Nectin-like proteins (Necl). Of note, both axons and 

Schwann cells express different kinds of Necl proteins. Axons express high levels of Necl1 and Necl2 
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whereas Schwann cells express Necl4 and very low levels of Necl2 (Maurel et al., 2007). These proteins 

are exclusively found in the internodes of mSC and localize at the Schmidt-Lanterman incisures where 

axonal Necl1 and Necl2 are directly opposed to Schwann cell Necl4 (Maurel et al., 2007). Genetic silencing 

of Necl4 in DRG/SC cocultures drastically reduced the total number of myelinated axons (Maurel et al., 

2007). These results were further supported in vivo where dominant negative expression of Necl4 in 

Schwann cells inhibits myelination suggesting that axo-glial contact during myelination is indeed mediated 

by Necl4 – Necl1 interaction between Schwann cells and axons respectively (Spiegel et al., 2007). Further 

evidence for the utility of the Necl4 protein in Schwann cells was provided by Golan and colleagues who 

specifically deleted Necl4 in SC (Golan et al., 2013). The resulting mutants displayed myelin abnormalities 

that resembled Charcot-Marie-Tooth neuropathy. Of note, deletion of other Necl types in mice does not 

give rise to myelination deficits (Golan et al., 2013).   

A detailed description of the interplay between the different molecular pathways and 

extracellular signals is provided below (Figure 22)  
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Figure 22. Interplay between different molecular pathways in a myelinating Schwann cell.  
 
Myelination in Schwann cells is majorly governed by NRG1/ErbB2&3 signaling that elicits three fundamental Receptor Tyrosine 
Kinase Pathways. Firstly, this interaction promotes Akt phosphorylation which then activates mTORC1. This well studied cross-talk 
between Akt and mTOR pathway results in the expression of RXRγ that then binds to the promoter region of Srebp1c. The latter is 
a master regulator of fatty acid synthesis that promotes myelin formation. Secondly, NRG1 signaling activates the MAPK cascade 
that results in the activation of ERK and the concomitant increase in the expression of the pro-myelin transcription factor YY1. YY1 
then promotes the expression of Krox20 which governs myelin gene expression. Finally, NRG1 signaling also activates the 
Calcineurin/NFAT pathway wherein an increase in intracellular Calcium levels activates Calcineurin B phosphatase that in turn 
promotes NFAT translocation to the nucleus following dephosphorylation. Once inside the Nucleus, NFAT synergizes with Sox10, 
Oct6 and Brn2 at the Myelin Schwann cell Enhancer site of Krox20 and promotes the latter’s expression. On the axonal front, 
secretases such as BACE1 process NRG1 Type III so as to promote the interaction with ErbB receptors on the Schwann cell. 
Additionally, it was also shown in vitro that ADAM10 can cleave NRG1 Type III to promote the said interaction although the same 
is not a necessary step in vivo. Another α-secretase, ADAM17, cleaves NRG1 Type III at the EGF domain and inhibits its interaction 
with ErbB. Thus, NRG1 type III processing is plausibly controlled to elicit different outcomes during the course of Schwann cell 
development. Furthermore, NRG1/ErbB singling also promotes the expression of Prostaglandin Synthase (L-Pgds) that results in 
the secretion of Prostaglandin 2 (Pdg2) in the axon-glial interface. These ligands binds bind to Gpr44 on Schwann cells and 
reinforce Krox20 expression through the Calcineurin/NFAT axis. Negative regulators of Krox20 expression include Sox2 and c-jun. 
The former is tightly controlled by Zeb2 which starts inhibiting Sox2 during myelination  to permit the expression of Krox20. C-jun, 
on the other hand, does not inhibit Krox20 during development but its inhibitory action is a pre-requite for Schwann cell de-
differentiation post injury. On the cellular energy front, cAMP production from ATP is now carried out by soluble Adenelyl Cyclase 
(sAC) that is ubiquitously present in Schwann cells. This drastically increases cAMP levels in the milieu and promotes Krox20 
expression through the Exchange Protein Activated by cAMP (EPAC). Furthermore, genes such as Tfam and Lkb1 are implicated in 
mitochondrial metabolism wherein the former is a master regulator of Mitochondrial gene expression and genes implicated in 
Oxidative Phosphorylation. Lkb1 regulates Citrate Synthase expression either directly or indirectly and it has been shown to be 
important for the synthesis of Citrate that acts as a precursor for fatty acid synthesis.    
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1.1.7 Other cells in the PNS  

Apart from Schwann cells, research has also led to the discovery of other cells that are pertinent 

and play an active role in development and regeneration of peripheral nerves (Richard et al., 2014; 

Kucenas, 2015; Fontenas and Kucenas, 2017). These cells can be classified into two types – Endoneurial 

cells and Perineurial cells. This section details their origin and their role in PNS development and 

myelination.  

Perineurial cells 

Perineurial cells (previously termed as perineurial fibroblasts in PNS literature), as the word 

suggests, form the perineurium, which facilitates the compartmentalization of big nerve fascicles in the 

spinal nerves (Figure 7). They are characterized by the presence of a continuous double basal lamina, 

pinocytotic vesicles in their cytoplasm and the expression of tight junction proteins (Kucenas, 2015). 

Furthermore, certain characteristic traits set them apart from conventional fibroblasts. Firstly, fibroblasts 

have a compact nucleus and a large endoplasmic reticulum that perineurial cells do not have. Secondly, 

fibroblasts display a single basal lamina but perineurial cells display two layers of basal lamina (Kucenas, 

2015). These observations supported the hypothesis that perineurial cells are not fibroblasts or fibroblast-

like cells, but they are unique in their structure, morphology, and function.  

The origin of perineurial cells is an ongoing topic of research. In mice, past research has shown 

that a subset of perineurial cells are derived from the Motor Exit Points at the ventral roots of the spinal 

nerves (Clark et al., 2014). A sub-population of these cells are positive for Nkx2.2, a homeobox domain 

containing transcription factor that is also implicated in generating derivatives of the CNS (Kucenas et al., 

2008). Furthermore, loss of Nkx2.2 in these glial cells disrupts Schwann cell myelination and the formation 

of Neuromuscular Junctions (Clark et al., 2014). Additionally, all perineurial cells also express tight junction 

proteins such as Zona Occludens 1 (ZO-1) and glucoprotein Podoplanin (Pdpn) which can be used as 

markers that can distinguish these cells in the PNS (Clark et al., 2014). However, not all perineurial cells 

that are Nkx2.2+ express Pdpn (Clark et al., 2014). Nevertheless, all perineurial populations are ZO-1+. 

This suggests that a population of these cells can also have other origins apart from the CNS such as the 

mesenchyme. Further research is required to assess the origins of these two different populations of the 

cells present in the perineurium. 
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With regard to their functions, these glial cells mediate the exit of motor neurons and their 

ablation results in aberrant myelination at Motor Exit Points in zebrafish (Kucenas et al., 2008). Together 

with Boundary Cap cells, Perineurial cells form a population of Glial cells called as the Motor Exit Point 

(MEP) glia that have crucial implications in the segregation of the PNS and CNS boundaries (Fontenas and 

Kucenas, 2017, 2018). Perineurial cells are also important in maintaining the structural integrity of 

developing nerves. This is assured by the communication between SC and perineurial cells during 

development. Of note, Desert Hedgehog (Dhh) has been implicated in the interaction between SC and 

perineurial cells (Parmantier et al., 1999; Sharghi-Namini et al., 2006). In Dhh null mice, the perineurial 

cells invade into the endoneurial space and form many mini fascicles around clusters of axons. Similarly, 

in Sox10 conditional mutants which exhibit a complete loss of Schwann cell population in peripheral 

nerves, similar invasion of perineurial cells into the endoneurial space was observed (Finzsch et al., 2010). 

The authors further state that the absence of SC results in the absence of Dhh signaling and therefore 

these mutants phenocopy the Dhh null mutants in terms of perineurial ensheathment. Furthermore, 

perineurial glial have also been implicated in nerve regeneration after injury especially in zebrafish models 

(Lewis and Kucenas, 2014).  

Endoneurial cells:  

Endoneurial cells or Endoneurial Fibroblast Like Cells (EFLC) have long been observed in peripheral 

nerve tissues through early histological studies in the 21st century (Richard et al., 2012). In Electron 

Microscopy, EFLC look like spindle shaped cells with rectangular cell bodies and have cytoplasmic 

projections that extend either along the nerve or radially between nerve fibers. They are often localized 

near endoneurial blood vessels and adjacent to the perineurium in rodents as well as in humans (Figure 

23).  
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Figure 23: Endoneurial Fibroblast Like Cells in E17 mouse sciatic nerves (Panel A) and E14 weeks human fetal nerves (Panel B).  

P : Perineurium, ISC : immature Schwann cell, F and * : EFLC. Source: (Richard et al., 2012).  

As EFLC do not produce a basal lamina, they can be easily distinguished from Schwann cells and 

perineurial cells. They are also not tightly packed and therefore do not express any gap junction proteins. 

Furthermore, they form a reticular network in the endoneurial space and are difficult to spot in ultra-thin 

electron microscopy sections.  

The origin of the EFLC remained a controversial subject until critical observations were put forth 

by Joseph and colleagues that suggested their Neural Crest origin (Joseph et al., 2004). Using lineage-

tracing models of the Neural crest (Wnt1-Cre), they showed that EFLC originate from SCP.  A transient SCP 

glial population which is p75NTR+ve differentiate into two glial populations that become either Dhh+ 

p75NTR+ve P0+ve (SCP) and Dhh-ve P75NTR-ve Thy1+ (EFLC). They also propose that glial cells that retain 

contact with axons eventually develop into Schwann cells and the ones that lose contact with axons 

develop in EFLC (Joseph et al., 2004). 

As for the molecular profiles of these cells, all EFLC in vivo and in vitro are positive for Neuron-

Glial Proteoglycan 2 (NG2) and Cluster of Differentiation Marker 34 (CD34) (Richard et al., 2014). A small 

population of these cells co-express Pdgfrβ and Nestin. However, CD34 and NG2 are also expressed by 

the pericytes that are located in the endoneurial blood vessels, but these two populations can be 

distinguished by the presence of tight junctions in pericytes as opposed to Endoneurial cells. Interestingly, 

it was also shown that a small population of perineurial cells also stain positive for NG2 suggesting that 

they could have Endoneurial origins and properties. Interestingly, the regeneration of the perineurium 

after surgical insult implicates cells of Endoneurial origin that migrate towards the periphery and 
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seemingly differentiate into perineurial cells (Yamamoto et al., 2011). Very recently, it was also shown 

that CD34+ Endoneurial cells behave like mesenchymal progenitors are implicated in mammalian tissue 

regeneration (Carr et al., 2019). These observations suggest that EFLCs have the potential to generate 

other cell types during regenerative processes.  

The classical functions of EFLC include collagen deposition during development, phagocytosis of 

myelin debris upon nerve damage, activation of pro-inflammatory cytokine production upon nerve insult, 

possible interactions with hematogenic macrophages, immune surveillance through expression of MHC II 

and the production of connective tissue matrix during nerve regeneration (Richard et al., 2012). Thus, 

Endoneurial cells play an important role in maintaining the structure integrity and normal functioning of 

the PNS. They are also the first responders to nerve damage in the PNS and are indispensable for nerve 

regeneration. For this reason, they are also termed as the ‘resident immune cells’ of the PNS (Richard et 

al., 2012). 

Cells of the nervous vasculature (vasa nervorum): 
 

Peripheral nerves are also innervated with vasculature that runs parallel to the nerve and provides trophic 

support. Depending on the compartment they innervate, they are categorized into epineurial, perineurial 

and endoneurial vasculature (Boissaud-Cooke et al., 2015)(Figure 24) 

 

Figure 24: The vasculature present in peripheral nerves. Blood supply is assured to the nerve by external vessels (EV) that run 
parallel to the nerve along its axis. The EV are connected to the epineurial vessels through Radicular Vessels (RV). The different 
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compartments of the nerve are well connected by vasculature that ascend and descend between the compartments radially. This 
gives rise to a longitudinal and radial plexus along the entire nerve with multiple anastomoses between these vascular structures 
[Source:(Boissaud-Cooke et al., 2015)] 

 

Of note, the endoneurial vasculature that runs through the endoneurium is the one that is in close 

proximity to the axons, Schwann cells and other cells in the endoneurial matrix. These blood vessels are 

rather important as they cater to the metabolic requirements of the endoneurial compartment and 

maintain a homeostatic environment. This is primarily assured the endothelial cells that form the walls of 

the vasculature. Endothelial cells express tight junction proteins and Claudins that form tight junctions, 

which in turn form a physical barrier between the vasculature and the nerve. This physical barrier is often 

termed as the Blood Nerve Barrier (BNB) (Richner et al., 2019). The exchange of nutrients through the 

BNB occurs predominantly by transcytosis through the endoneurial cells. Additionally, the BNB is 

reinforced by pericytes that are closely associated to endothelial cells and form an envelope like structure 

around the endothelial cells (Richner et al., 2019) (Figure 25) 

 

Figure 25: The cellular composition of the Blood Nerve Barrier. A. The overall arrangement of the peripheral nerve with the 
vasculatures that forms numerous anastomoses both radially and longitudinally along the nerve. B. The cellular composition of 
an endoneurial blood vessels composed of endothelial cells and pericytes. C. The cellular microenvironment of the endoneurial 
compartment that is in proximity to a blood vessel. D. The interactions of different tight junction proteins that maintain the 
structural integrity of these tight junctions. Source ((Richner et al., 2019).  
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Although the predominant function of the BNB is to provide for a physical separation between 

the endoneurium and the blood stream, cells of the BNB are known to have other functions. For example, 

pericytes are known to secrete different Neurotrophins that can potentially regulate neuronal/Schwann 

cell development and differentiation as explained earlier (Shimizu et al., 2011). Very recently, in an 

unpublished preprint (Malong et al., 2019), it was reported that the BNB in the endoneurial space is 

slightly permissive but nerve resident macrophages (Iba1+ & F4/80+) are involved in engulfing any leaks 

from the BNB. Additionally, the authors also found that pericyte-like cells (CD34+, NG2+ and PDFGRβ+) 

are closely associated to the blood vessels. Given the expression of molecular markers, it is highly probable 

that these pericytes-like cells are indeed EFLCs. These observations taken together suggests that all these 

cell types are instrumental in maintaining the structure and function of the BNB. 
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1.2 Liver X Receptors (LXRs) 

1.2.1 Description and Mechanism of Action 

 

The Liver X Receptors (LXRs) are ligand activated transcription factors that belong to the nuclear 

receptor superfamily. They exist in two isoforms, LXRα and LXRß, which are encoded by two different 

genes Nr1h3 and Nr1h2, respectively. Nr1h3 is located on chromosome 11 in humans and chromosome 2 

in mice and it has 8 exons in humans and 10 exons in mice. The protein product of LXRα weighs about 

43kDa in humans and 50kDa in mice. Nr1h2 is located on chromosome 19 in humans and chromosome 7 

in mice and it has 10 exons for both the species. The protein product of LXRß weighs approximately about 

50kDa for both the species. In mice, LXRß is more ubiquitously expressed, whereas the expression of LXRα 

is the highest in lipogenic tissues such as the liver (Annicotte et al., 2004). 

LXRs were first identified as orphan receptors as their ligands were unknown (Kainu et al., 1996). 

Further research identified oxidized cholesterol derivatives or oxysterols as natural ligands that can bind 

and activate LXR (Lehmann et al., 1997). Natural LXR ligands include 20(S)-, 22(R)-, 24(S)-, 25- and 27-

hydroxy cholesterol (HC) and 24(S), 25-epoxycholesterol (Gabbi et al., 2014). Further research in the last 

two decades has also helped in the discovery of synthetic ligands with different specificities to the two 

isoforms (Komati et al., 2017).  

LXRs mechanism of action can occur in two ways – direct activation and transrepression (Figure 

20). At the basal state, LXRs forms an obligate heterodimer with Retinoid X Receptor (RXR) and it is 

recruited at the LXR response Element (LXRE) of target genes. LXRE is a repeat of the sequence 5’-AGGTCA-

3’ separated by any 4 nucleotides in between (DR4 sequence) present upstream LXR target gene DNA. At 

this state, the LXR-RXR heterodimer complex recruits co-repressors such as Nuclear Receptor Corepressor 

(NCoR) or the Silencing Mediator of Retinoic Acid and Thyroid Hormone Receptor (SMRT), thereby 

preventing the transcription of target genes. However, upon the ligand binding, both the nuclear 

receptors undergo a conformational change and this liberates the co-repressors and co-activators such as 

Peroxisome Proliferator Activated Receptor γ (PPARγ) coativator-1α (PGC-1α), the Steroid Receptor 

Coactivator-1 (SRC-1) and the Activating Signal Cointegrator-2 (ASC-2) are recruited (Gabbi et al., 2014). 

The recruitment of co-activators initiates the transcription of target genes such as ATP-Binding Cassette 

A1 (ABCA1) and Apolipoprotein E (ApoE).  
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A secondary mode of LXR mechanism occurs through transrepression, which is implicated in the 

regulation of pro-inflammatory genes. Binding of Ligands to LXR is followed by the SUMOylation by SUMO-

2/3 that promotes its interaction with GPS2, a subunit of the N-CoR complex which is recruited by NF-kB. 

This binding of LXR to the NCoR complex inhibits the transcription of proinflammatory genes under the 

control of NFkB. These two modes of action are described in the following figure (Figure 26). 

  



 

56 
 

 

 

Figure 26: LXR Mechanism of Action. The first mode of action is called as direct activation where the heterodimers are first bound 

to the LXRE of target genes in the presence of Co-Repressors. Upon ligand activation, the co-repressors are released and co-

activators take their place thus resulting in the transcription of LXR target genes. Thee second mode of action is called as 

transrepression wherein LXR binding to its ligand results in its SUMOylation. The SUMOylated protein then binds to the Co-

repressors that are bound to NfkB. This prevents the release of co-repressors from NfkB and prevents the transcription of 

proinflammatory genes. Source (Gabbi et al., 2014) 

 

LXRs are involved in several physiological processes such as lipid metabolism and homeostasis, 

inflammation and cholesterol homeostasis (Gabbi et al., 2009). As these nuclear receptors are implicated 

in such important physiological function they have been intricately linked to a plethora of disorders 

ranging from Multiple sclerosis, Alzheimer’s, Arthritis, autoimmune disorders to skin diseases, metabolic 

disorders and cancers (Komati et al., 2017). Thus, in the past two decades, LXRs have been extensively 

studied in different organs systems and cell types and more research is being performed on elucidating 

their therapeutic roles across different diseases (Komati et al., 2017).  
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1.2.2 LXRs, Cholesterol Synthesis, Cholesterol Homeostasis and Lipogenesis 

 
In the context of Schwann cell development and myelination, cholesterol synthesis, lipogenesis 

and the regulation of these biomolecules play a rather important role as these molecules are invariably 

linked to the production and maintenance of myelin. This section aims to explore this premise from the 

optic of LXRs and how this nuclear receptor plays a crucial role in the aforementioned molecular 

processes.  

 

Molecular regulation of Cholesterol synthesis and Lipogenesis: 
 

In almost all cell types, cholesterol and lipids are exclusively produced in the Endoplasmic 

Reticulum and are shunted to different cellular compartments where they are further processed to 

generate different derivatives with respective functions. The major molecular regulators of cholesterol 

and lipid synthesis are  Sterol Regulatory Element–Binding Proteins (SREBPs). In mammals, 2 isoforms of 

SREBPs are known to exist namely SREBP1 and SREBP2 encoded by two separate genes (Horton et al., 

2002). However, SREBP1 is expressed as two isoforms – SREBP1a and SREBP1c which are by products of 

alternative splicing that are expressed in a tissue specific manner. For example, mRNA transcripts from 

the liver exhibit a 9:1 ratio of SREBP1c:SREBP1a but in the spleen the ratio is reversed. Functionally, 

SREBP2 uniquely regulates genes implicated in Cholesterol synthesis and SREBP1c uniquely regulates fatty 

acid synthesis (precursor to lipids) whereas SREBP1a can regulate both these biosynthetic pathways in 

tissues where it is predominantly expressed (Shimomura et al., 1997; Repa et al., 2000). However, in 

Schwann cells, it has been categorically demonstrated in three separate studies that SREBP1c and not 

SREBP1a regulates lipogenesis during Schwann cell development and myelination (de Preux et al., 2007; 

Verheijen et al., 2009; Norrmén et al., 2014).  

The following schematic details the role of SREBP2 and SREBP1c in cholesterol synthesis and 

lipogenesis respectively (Figure 27).   
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Figure 27: Role of SREBP2 and SREBP1c in cholesterol synthesis and lipogenesis respectively. The common precursor for both 
cholesterol synthesis and lipogenesis is Acetyl-CoA derived from byproducts of the TCA cycle in mitochondria. The conversion of 
Acetyl CoA to Acetoacetyl CoA by thiolase directs the former towards Cholesterol synthesis. Acetyl CoA and Acetoacetyl CoA 
together give rise to HMG CoA, which then undergoes a serious of tedious reduction reactions to produce cholesterol. Enzymes 
such as HMG CoA reductase (HMGCR) and Squalene Synthase (SQS), for example, are under direct transcriptional control of 
SREBP2. On the other hand, the conversion of Acetyl CoA to Malonyl CoA by Acetyl CoA Carboxylase (ACC) directs the former 
towards lipogenesis. Malonyl CoA then undergoes a series of reduction reactions to produce fatty acids and triglycerides. Enzymes 
such as Fatty acid synthase (FASN) and Stearoyl CoA Reductase (SCD) for example, are under direct transcriptional control of 
SREBP1c. Both these molecular processes require H+ atoms for the reduction reactions from NADPH which is derived from the 
pentose phosphate pathway (briefly represented in the center) Source : (Horton et al., 2002) 

 

Role of LXRs in cholesterol homeostasis and lipogenesis 
 

As explained earlier, LXRs are ligand activated Nuclear Receptors and they bind to oxidized 

cholesterol derivatives or oxysterols, which act as their natural ligands. Different oxysterols are produced 

from Cholesterols by enzymatic processes or by spontaneous oxidation due to the presence of Reactive 

Oxygen Species (ROS). The following schematic briefly describes the different oxysterols that are produced 

through enzymatic and non-enzymatic biochemical mechanisms (Figure 28).  
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Figure 28: Production of different oxysterols by enzymatic oxidation (through Cytochrome P450 Monooxygenases – Cyp)  and 
non-enzymatic oxidation (ROS and decomposition).  

 

Among these different oxysterol species that are produced, we have previously identified 3 LXR 

ligands that are expressed in the Peripheral Nervous System. These include 24(S) Hydroxycholesterol, 25-

Hydroxycholesterol and 27-Hydroxycholesterol (Makoukji et al., 2011). Although, we also corroborated 

our findings in a mouse Schwann cell line MSC80, our results are yet to be verified in primary Schwann 

cells. Nevertheless, though the oxysterol assay was performed using Sciatic Nerve lysates, it is quite 

probable that these oxysterols potentiate lipogenesis and cholesterol homeostasis in the Schwann cells 

as they constitute a major proportion of cells in the sciatic nerves.  

LXRs are directly implicated in lipogenesis as they regulate the expression of SREBP1c in different 

cell types (Repa et al., 2000; Rong et al., 2017) and our results on primary Schwann cells also show that 

LXRβ is the functional isoform that regulates the expression of Srebp1c (refer to Supplementary Results 

4.1). However, the natural ligand that potentiates SREBP1c expression in Schwann cells remains to be 

identified.  



 

60 
 

 

On the other hand, much like any other cell type, Schwann cells express SREBP2 to regulate 

cholesterol synthesis (LeBlanc et al., 2005; Camargo et al., 2009). Cholesterol homeostasis in cells is 

achieved by a concerted action of LXR target genes and a feedback inhibition loop of Cholesterol synthesis 

under high sterol conditions. Under physiological conditions, Cholesterol is either synthesized by the 

canonical SREBP2 pathway or imported into the cells as Cholesterol molecules packaged in Lipoproteins 

by LDLR. Interestingly, LDLR is also an SREBP2 target gene. Thus, SREBP2 can promote cholesterol 

synthesis as well as uptake.  However, under high sterol conditions, cholesterols naturally give rise to 

oxysterols as explained earlier or they are converted to Cholesteryl Esters by Acyl-CoA Cholesterol Acyl 

Transferase (ACAT) or Lecithin Cholesterol Acyl Transferase (LCAT) and stocked in Lipoproteins. Oxysterols 

activate LXR thus resulting in the expression of target genes such as ABCA1, ApoE and IDOL (Inducible 

Degrader of LDLR). Among these, ABCA1 and ApoE are membrane bound active transporters of 

lipoproteins containing cholesterol. IDOL is an E3 ubiquitin ligase that selectively ubiquitinates LDLR and 

promotes the degradation of the latter. Thus, LXR mediates cholesterol efflux by transporting existing 

cholesterol out of the cell and at the same time preventing the import of Cholesterol via LDLR. 

Additionally, oxysterols also inhibit SREBP2 by either binding and retaining the protein in the ER or by 

inhibiting the activity of key cholesterol biosynthetic enzymes such as HMGCR and SQS. All the genes and 

pathways mentioned herein have been verified in Schwann cells in physiological as well as pathological 

contexts (Cermenati et al., 2010, 2012, 2013; Sundaram et al., 2019a; Zhou et al., 2019). Thus, given the 

current literature on Schwann cells, SREBPs and LXRs, I postulate the following schematic to describe 

cholesterol homeostasis and lipogenesis in Schwann cells (Figure 29). 
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Figure 29. Cholesterol homeostasis in Schwann cells. SREBP2 controls the expression of cholesterol biosynthetic genes such as 
HMGCR and SQS as well as cholesterol uptake genes such as LDLR. Cholesterols are either converted to oxysterols or converted to 
cholesteryl esters and stocked in lipoproteins. Oxysterols potentiate LXR activation to stimulate fatty acid synthesis through 
SREBP1c on the one hand and cholesterol efflux on the other. LXR target genes such as ABCA1 and ApoE aid in cholesterol efflux 
by active transport across the plasma membrane. IDOL block cholesterol import by ubiquitinating LDLR and thus degrading it.  
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Sterol Intermediates as LXR ligands 
 

Apart from the conventional oxysterols, certain cholesterol intermediates are known to bind to 

LXR to potentiate cholesterol efflux (Yang et al., 2006). Of note, desmosterol and zymosterol have been 

known to bind LXRs in different cells and cell lines. Although, the end result of these interactions is always 

cholesterol efflux, it is interesting to note that sterol intermediates can indeed bind LXRs. Recently, it was 

shown that the LXR/SREBP axis can also be stimulated by desmosterol (Magida and Evans, 2018; Muse et 

al., 2018).  

Similarly, catabolic products of another sterol intermediate 7-Dehydrocholesterol (7-DHC) was 

shown to bind LXRs and partially stimulate cholesterol efflux but inhibit lipogenesis (Endo-Umeda et al., 

2014). These observations gives rise to the possibility that tissue specific sterol intermediates can indeed 

bind to LXRs and thus regulate cholesterol efflux and lipogenesis. Therefore, it is quite probable that 

certain unconventional LXR ligands exists in Schwann cell and further studies are warranted. 
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1.2.3 Role of LXRs in the Physiology of the PNS and Related Pathologies 

 

My host laboratory is particularly interested in the implications of LXRs in the myelination of 

the PNS and CNS. In this regard, they have performed numerous studies trying to elucidate the role 

of this receptor in the process of myelination (Makoukji et al., 2011; Shackleford et al., 2013; Meffre 

et al., 2015; Hichor et al., 2018). My doctoral thesis was focused on the elucidation of the role of LXRs 

in PNS myelination.  

 

In this section, I have detailed the existing literature on LXRs and their implications in PNS 

physiology and related pathologies. We have recently published a review article that elucidates the 

role of the nuclear receptor systematically both in sensory neurons as well as Schwann cells. 

(Sundaram et al., 2019a). Additionally, we have also briefly gleaned into the future avenues of 

research on all cell types including endoneurial and perineurial cells, which are not rigorously 

researched even by the glial community. This review of literature has indeed given rise to a lot of 

scientific questions that I have tried to answer in my doctoral thesis.
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1.3. Context of the Doctoral Thesis 

 

As evident from the review, there are a lot of outstanding questions and multiple avenues of 

research that can be undertaken to further develop our understanding of LXRs in different cells of the 

Peripheral Nervous System. In my doctoral thesis, I decided to focus on the implication of LXRs specifically 

in Schwann cell’s myelination process.  

The first study that I was a part of (in continuation of my Master’s Thesis) was trying to establish 

why LXR null mice (LXR α/ß -/- hereafter referred to as LXR double KO or LXRdKO) exhibited myelination 

deficits when they age but did not show any developmental deficits (Hichor et al., 2018). Our experiments 

demonstrated that systemic loss of LXRs results in a highly oxidative environment that becomes 

detrimental for the maintenance of myelin sheaths as the mice age. We were also able to empirically show 

that LXR stimulation can be helpful in combatting oxidative stress in Schwann cells (is it possible to 

modulate oxidative stress differently ?). However, it was unclear if the phenotype that we observed was 

due to problems arising solely in Schwann cells or if the mutation induced disrupted SC-axon 

communication and thereby produced myelination deficits. Furthermore, it was also ambiguous if the 

phenotype is driven by neuronal or other SC extrinsic factors. All these questions arose because we used 

LXR total mutants and not conditional cell type specific mutants.  

Hence, in the beginning of my thesis, we sought to find out if the phenotype can be driven by 

Schwann cell specific ablation of both LXR isoforms. We used the CRE-Lox recombination system to 

achieve targeted mutations of LXRs in Schwann cells. In more precise terms, we obtained LXRα/ f/f mice 

from Prof. Mangelsdorf (UT Southwestern Medical Center, Dallas, Texas) and we bred these mice with 

Dhh-Cre mice obtained from JAX.  

Dhh, as explained earlier (see Schwann Cell Precursors section), is expressed from the Schwann 

cell Lineage from the SCP stage. Dhh-cre, therefore, express Recombinase in Dhh+ cells at around E12.5 in 

peripheral nerves (Jaegle et al., 2003). This breeding strategy gave rise to conditional mutants where LXRs 

are specifically deleted in SCP and by default also in iSC and other derivatives of the Schwann cell lineage. 

We were hoping for a mild phenotype but much to our surprise, the mice are severely paralyzed in their 

hind limbs by the time they are weaned. We observed a complete absence of Schwann cells and myelin 

in peripheral nerves at post-natal stages. Additionally, the ultra-structure of the peripheral nerve 
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phenocopies Schwann cell targeted Sox10 mutants (Finzsch et al., 2010). These results and other 

molecular mechanisms that are causative of the observed phenotype are detailed in Chapter 3 (Results 

section).  
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Chapter 2: METHODS AND METHODOLOGICAL IMPROVEMENTS  

2.1 Methods 
 

Generation of Animal Models and breeding strategy:  

LXRα/β f/f were obtained from the laboratory of Prof. David J Mangelsdorf in the C57Bl6/J background and 

have been used in earlier studies (Mansuy-Aubert et al., 2015). We bred these mice with the DhhCre strain 

obtained from JAX (Ref: 012929) to obtain LXRα/β f/+: DhhCre. From these heterozygous populations, we 

selectively bred out either LXRα or LXRβ to obtain LXRβf/f:DhhCre and LXRαf/f:DhhCre mice. Control mice 

(LXRα/β f/f) were maintained separately in the C57Bl6 background. Pure C57BL6/J mice (Janvier Labs) were 

injected into the control mouse line once every 5 generations to avoid genetic drift. Similarly, the control 

strain (LXRα/β f/f) was reinjected into the conditional mutant strains every 5 generations to avoid genetic 

drift. All aspects of Animal breeding and Animal care were in coherence with the internal guidelines of 

INSERM and Université de Paris and were approved by the ethical committee.  

To obtain homozygous LXRβf/f:DhhCre mutants, LXRβf/f mice were bred with LXRβf/+:DhhCre. Direct 

breeding of floxed strains was impossible as the homozygous LXRβ mutants were paralyzed and could not 

reproduce. However, the same was possible for LXRα mutants as they did not show any observable 

phenotype when compared to controls. LXRβf/f:DhhCre mutants were always compared to LXRβf/f mice 

for all the experiments used in the study.    

Grip Strength Test:  

Grip strength was assessed using the BioSeb force gauge dynamometer (BIO-GS3) with rectangular grids. 

Briefly, mice were placed on the grid on all four limbs until they grasped the grid securely. They were then 

pulled by their tails along the direction of the axle until all four limbs were released. The maximum force 

exerted by the mice to stay on the grid was recorded. Each mouse was subjected to 3 successive attempts 

separated by a 30-minute rest period. Experiments were performed blindly to avoid biases.  

Hotplate Test: 

The temperature of the electrically heated plate was set at 52°C in compliance with the norms of the 

Institutional Ethical Committee for Animal Care and Experimentation. Mice were placed on the hot plate 

for a maximum period of 30 seconds. The time the mice took to respond to the heat, such as licking their 
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paws or upswing, was recorded. After the response, the mice were immediately placed in a recipient filled 

with cold water to prevent limb damage. Mice were removed from the hot plate after 30 seconds 

regardless of their response.  

Immunohistochemistry:  

Sciatic nerves of mice at stipulated time points were dissected and fixed in 4% PFA for a maximum of 2 

hours on ice. Nerves were then washed with PBS1X and dehydrated overnight using 20% sucrose at 

4°C.The following day, nerves were embedded in OCT compound (Agar Scientific) and solidified using cold 

isopentane placed in liquid nitrogen. 12µm transverse cryosections were prepared and placed on APTES 

(A3648 Sigma) coated slides and air dried for 20 minutes. Sections were then permeabilized using PBS1X 

containing 0.2% TritonX100, 0.1% Tween20 for 20 minutes at room temperature. Following 

permeabilization, sections were washed at least twice with PBS1X and blocked using the blocking buffer 

(2% BSA, 10% Normal Donkey Serum, 0.1% Tween 20 in PBS1X) for 1 hour at room temperature. Sections 

were then incubated overnight with the necessary primary antibodies diluted in blocking buffer. The 

following day, sections were washed at least thrice in PBS1X and incubated with secondary antibodies 

raised in Donkeys (Jackson Immuno-Research) for one hour at room temperature in obscurity. Slides were 

then washed at least thrice in PBS1X and nuclei were labeled using Hoechst 33342 (5µg/mL). Samples 

were then washed, air dried in obscurity for 5 minutes and mounted with PermaFluor (Thermo Fisher).   
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Antibodies: 

The following antibodies were used for the IHC analysis in distal sciatic nerve sections.  

Primary 

Antibody 

Reference Concentration Secondary 

Antibody  

Reference Concentration 

Goat anti-
SOX10 

AF2864 R&D 

systems 

1/200 

 

Donkey anti-Goat 

Cy3 

705-165-147 

Jackson 

1/500 

Rabbit anti-

NFH 

AB5539 

Merck  

1/1000 Donkey anti-

Rabbit A488 

711-545-152 

Jackson 

1/1000 

Rabbit anti-

Krox20 

Gift From 

Prof. Meijer 

1/100 Donkey anti-

Rabbit A488 

711-545-152 

Jackson 

1/200 

Rat anti-ZO1 R26.4C DSHB 1/25 Donkey anti-Rat 

A647 

705-605-147 

Jackson 

1/100 

Chicken anti-

MPZ 

PZO Aves 1/500 Donkey anti-

Chicken Cy3 

703-005-155 

Jackson 

1/1000 

 

Sampling and Image Analysis:  

For all IHC experiments, nerves from 3 to 5 mice were analyzed for each group. From each animal, 3 

cryosections from different parts of the nerve were prepared and stained with the antibody/chemical 

reagent. Thus, each group contains 3 to 5 biological replicates. For each biological replicate, 3 technical 

replicates were generated, and the average of the technical replicates was taken to be the quantification 

for the biological replicate. IHC confocal images were captured using LSM710 confocal microscope (Leica). 

Images were captured as z-stacks and analyzed using FiJi (image J). Counting of nuclear stains was 

performed using macro codes that were generated for each staining. The code script of the macros for 

each staining is detailed in the supplementary data.  

Transmission Electron Microscopy:  

Sciatic nerves of mice at different time points were dissected and fixed in KS buffer (4% paraformaldehyde, 

2.5% glutaraldehyde in 0.1 M phosphate buffer pH 7.4) overnight. Tissues were then washed in 0.1M 

phosphate buffer, postfixed in 2% osmium tetroxide, dehydrated in graded ethanol series and embedded 



 

82 
 

 

in epoxy resin. For electron microscopy, ultrathin sections (50–90 nm) were cut on an ultramicrotome 

(8800 Ultrotome III; LKB Bromma) and collected on 300-mesh nickel grids. Staining was performed on 

drops of 4% aqueous uranyl acetate, followed by Reynolds’s lead. Ultrastructural analyses were 

performed in a JEOL jem-1011 electron microscope and digitalized with DigitalMicrograph software. 

Electron microscopy images were used for calculating the g-ratio and axon perimeter using NIH ImageJ 

software. At least 100 randomly selected axons were analyzed per animal. At least three animals were 

used per genotype.  

Dissociated DRG cultures: 

Dissociated DRG cultures were established from WT and LXRβf/f:DhhCre animals based according to 

existing protocols(Kim and Maurel, 2009; Kim and Kim, 2018). A total of 40 DRGs were harvested from 

each embryo. DRGs were then trypsinized (0.25% Trypsin in HBSS1X) for 30min at 37°C. Trypsinization 

was stopped using L-15 media containing 10% Horse Serum (Gibco). DRGs were then spun down at 1500 

rpm for 5min. The supernatant was removed, and the tissues were resuspended in DRG plating medium 

(see Media Compositions). The tissues were then triturated 10-20 times using flamed Pasteur pipettes 

until a homogenous cell suspension was obtained. Dissociated DRGs were then plated on 35mm dishes in 

DRG plating media. The following day the medium was replaced with N2/NGF serum free medium (see 

Media Compositions) to promote neurite growth and Schwann cell proliferation. The cultures were 

maintained and observed for 1 week. 

Primary Schwann cell cultures:  

Primary Schwann cell cultures were established from dissociated DRG cultures based on existing protocols 

with slight modifications (Kim and Maurel, 2009; Kim and Kim, 2018). Briefly, neurite-Schwann cell 

networks from 1-week old, dissociated cultures were mechanically lifted from the culture plates using a 

fine 27G1/2 needle. They were then digested using Trypsin-Collagenase (0.25% Trypsin & 0.1% Collagenase 

Type I in HBSS1X). Enzymatic digestion was quenched using Immunopanning media (See Media 

Compositions). The digested cells were briefly triturated 5 – 10 times using Pasteur pipettes and were 

pelleted using centrifugation. Cells were then resuspended in immunopanning media and incubated for 

15 min at 37°C to promote the turnover expression of cell surface markers for efficient immunopanning.  

Contaminating fibroblasts were removed by immunopanning based on existing protocols(Lutz, 2014). 

Briefly, immunopanning dishes coated with Thy1.2 antibody (MCA02R BioRad) were prepared as 
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described elsewhere(Lutz, 2014). Cells in immunopanning media were then passed through these dishes 

to selectively pan out Thy1.2+ve contaminating fibroblasts from culture. Schwann cells and neuronal 

debris that did not adhere to the dishes were then collected and centrifuged. Cells were there 

resuspended in Schwann cell Growth medium and plated on 60mm PLL-Laminin coated dishes. Media was 

changed every two days until confluence. Neuronal cells detached and died after two days in culture in 

the first passage due to the lack of NGF in Schwann cell growth medium. They were washed out 

subsequently during medium change. Cells were immunopanned once again after the first passage to 

remove any residual fibroblast contamination and were used for experiments from the second passage. 
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Media Compositions: 

DRG plating media: DMEM with 4.5g/L glucose (Gibco), 10% heat inactivated Horse Serum (Gibco), 1X 

Glutamax (Gibco), 1X Antibiotic/Antimycotic (Gibco) and 50ng/µL Nerve Growth Factor 2.5S (R&D 

Systems) 

N2/NGF serum free media: DMEM:F12 (Gibco), 1X N2 supplement (Gibco), 1X Glutamax (Gibco), 1X 

Antibiotic/Antimycotic (Gibco) and 50ng/µL Nerve Growth Factor 2.5S (R&D Systems) 

Immunopanning media: DMEM:F12 (Gibco), 10% heat inactivated Horse Serum (Gibco), 1X Glutamax 

(Gibco), 1X Antibiotic/Antimycotic (Gibco) 

Schwann Cell Growth Media: DMEM:F12 (Gibco), 1X Glutamax (Gibco), 1X Antibiotic/Antimycotic (Gibco), 

1X N2 supplement (Gibco), 1X B27 Supplement (Gibco), 10ng/µL Neuregulin (396HB R&D Systems), 2.5µM 

Forskolin (Sigma), 10 ng/mL T3 Salt (Sigma).  

Total RNA isolation 

Total RNA was extracted from each sample using 1mL of TRIzol reagent (Ambion Life Technologies 

15596018) on ice as described in the manufacturer’s instructions with slight modifications. Briefly, 100% 

Ethanol was substituted for Isopropanol to reduce the precipitation of salts. Also, RNA precipitation was 

carried out overnight at -20°C in the presence of glycogen. The following day, precipitated RNA was 

pelleted by centrifugation and washed at least 3 times with 70% Ethanol to eliminate any residual 

contamination. Tubes were then spin dried in vacuum for 5 minutes and RNA was resuspended in 20μL of 

RNase resuspension buffer containing 0.1mM EDTA, pH 8. RNA was then stored at -80°C till RTqPCR. 

RNA quality, integrity and assay 

RNA quantity was assayed using UV spectrophotometry on Nanodrop One (Thermo Scientific). Optical 

density absorption ratios A260/A280 & A260/A230 of the samples were above 1.8 and 1.5, respectively. 

Furthermore, the extraction protocol used in the study was also validated using Agilent Bioanalyzer (RIN 

value 9.0 and above).   

RTqPCR: 

500ng of Total RNA was reverse transcribed with Random Primers (Promega C1181) and MMLV Reverse 

Transcriptase (Sigma M1302) according to prescribed protocols. Quantitative Real time PCR (qPCR) was 
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performed using Absolute SYBR ROX 2X qPCR mix (Thermo AB1162B) as a fluorescent detection dye. All 

reactions were carried out in a final volume of 7μl in 384 well plates with 300 nM gene specific primers, 

around 3.5ng of cDNA (at 100% RT efficiency) and 1X SYBR Master Mix in each well. Each reaction was 

performed in triplicates. All qPCR experiments were performed on BioRad CFX384 with a No-Template-

Control (NTC) to check for primer dimers and a No-RT-Control (NRT) to check for any genomic DNA 

contamination.  

Primer design: 

All primers used in the study were designed using the Primer 3 plus software 

(https://primer3plus.com/cgi-bin/dev/primer3plus.cgi). Splice variants and the protein coding sequence 

of the genes were identified using the Ensembl database (www.ensembl.org). Constitutively expressed 

exons among all splice variants were then identified using the ExonMine database 

(https://imm.medicina.ulisboa.pt/group/exonmine/ack.html) (Mollet et al., 2010). Primer sequences that 

generated amplicons spanning two constitutively expressed exons were then designed using the Primer 

3 plus software. Detailed information on Primer sequences and amplification efficiencies are described in 

a previous study (Sundaram et al., 2019b). 

Statistical analysis and Data Visualization : 

qPCR readouts were analyzed in Precision Melt Analysis Software v1.2. The amplicons were subjected to 

Melt Curve analysis and were verified for a single dissociation peak at a Melting Temperature (Tm) > 75°C 

as expected from the primer constructs. Cq values were determined by regression, and the Cq data were 

exported to Microsoft Excel for further calculations. Each biological sample had 3 technical replicates 

thereby generating 3 individual Cq values. The arithmetic mean of the triplicates was taken to be the Cq 

representing the biological sample. The standard deviation (SD) of the triplicates was also calculated and 

samples that exhibited SD>0.20 were considered inconsistent. In such cases, one outlier Cq was removed 

to have at least duplicate Cq values for each biological sample and an SD<0.20. Relative expression of 

genes was quantified using the 2-ΔΔCt method (Livak and Schmittgen, 2001; Schmittgen and Livak, 2008) 

and data was visualized using Graph Pad Prism v7.0. 

  

https://primer3plus.com/cgi-bin/dev/primer3plus.cgi
http://www.ensembl.org/
https://imm.medicina.ulisboa.pt/group/exonmine/ack.html
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2.2 Methodological improvements  
 

2.2.1 Introduction 
 

During my PhD, I have spent a significant amount of time in improving certain methods that have 

been employed systematically in almost all the studies conducted as a part of my doctorate degree. Of 

note, I have worked on improving the reliability and reproducibility of qPCR assays that form an integral 

part of studies undertaken in my host laboratory. qPCR data normalization relies heavily on the choice of 

reference genes that are presumed to be stable across all samples and experimental conditions, but this 

is seldom the case. Numerous statistical approaches have been proposed to help researchers choose the 

best set of reference genes from a predetermined set of candidates. However, these statistical methods 

often provide conflicting results thus making the data normalization very cumbersome. Therefore, one of 

the first studies that I conducted aimed to delineate the merits and demerits of these statistical methods 

so as to devise an integrated qPCR workflow that would render the best choice of reference genes for a 

given experimental setting. The proposed methodology has been validated and published and is attached 

in the following sections (Sundaram et al., 2019b). 

Furthermore, I also encountered certain technical difficulties in extracting good quality RNA from 

the sciatic nerve of mice, especially neonates. In fact, peripheral nerves contain high amounts of lipids 

that jeopardize RNA extraction. This is an issue that is acknowledged in the field and therefore laboratories 

resort to pooling tissue samples to obtain sufficient quantities of RNA either for RTqPCR or for high-

throughput studies. In this regard, I compared different protocols of RNA extraction and proposed a 

modified version of the Trizol method. I then compared this protocol to other well know RNA extraction 

methods to exemplify the consistency and the advantages that Trizol offers over other methods even for 

small sample sizes. The article describing the methodology is attached in the following section (Sundaram 

et al., 2020, submitted for review).  

Finally, I also dedicated a considerable amount of time to establish the protocol for obtaining 

primary Schwann cells from embryonic dissociated DRG cultures. This method has been a powerful tool 

to understand the nuances of Schwann cell development in vitro. This protocol was first developed in Prof. 

Nancy Ratner’s lab and later modified in Dr. Haesun Kim’s lab (Ratner et al., 2005; Kim and Maurel, 2009; 

Kim and Kim, 2018) . However, these protocols did not efficiently eliminate fibroblast contaminations in 
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prolonged cultures due to the use of Horse Serum. Therefore, I improved on their method by 

experimenting on different ways to remove fibroblast contamination in primary cultures and have 

succeeded in obtaining and culturing highly pure Schwann cells in a defined media that does not require 

serum supplementation. The technical aspects of my protocol are elaborated in the following sections.    
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2.2.2 A novel qPCR data analysis workflow for reproducible and reliable results 
 

Context of the study:   

The golden standard for qPCR data normalization is through the use reference genes, previously 

termed as housekeeping genes. However, research in the last two decades has clearly demonstrated that 

the mRNA expression of these “housekeeping” genes can indeed vary depending on the sample or the 

experimental condition. To address this issue, numerous statistical methods were proposed in the early 

2000s that could help researchers select stable reference genes among a given set of arbitrarily chosen 

candidates. These methods gained huge popularity with thousands of citations. Subsequently, guidelines 

were setup to standardize data availability and the methodology used in qPCR assays (Bustin et al., 2009). 

However, the authors of these guidelines could not agree on a single statistical approach to select the 

best reference gene(s) for a given experimental condition. Therefore, they proposed the use of at least 

three different methods for the selection of reference genes.  

This proposal led to a different problem as these methods sometimes give rise to highly conflicting 

results i.e. the reference gene that is ranked the best according to one method was sometimes the least 

favored by another. Researchers then resorted to averaging the ranks across all methods and chose 

reference genes based on the overall rank. This approach, in my opinion, is not scientific as each statistical 

method comes with its own set of assumptions and limitations. Therefore, averaging the ranks would 

render a sub-optimal assessment of the best reference genes.  

Therefore, in this study, my colleagues and I have addressed this issue in the context of 

longitudinal qPCR data. We analyzed the most common statistical approaches by highlighting their 

assumptions and limitations using our data. We found that certain methods such as GeNorm and Pairwise 

ΔCt are ill suited for longitudinal studies. Furthermore, other methods such as the NormFinder and the 

Coefficient of Variation (CV) analysis were found to be powerful when used in tandem but not individually. 

We thus propose a standardized qPCR data analysis workflow for longitudinal datasets using traditional 

statistical methods such as one-way ANOVA coupled with a combination of CV analysis and Normfinder. 

The approach proves to be more robust than any of the methods used individually. It is briefly described 

below (Figure 21). 
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Figure 30: Cq values of all samples and genes are obtained from qPCR, they are linearized, and CV analysis is performed. Parallelly, 

using the experimental calibrator, the raw experimental profiles of all candidate genes are plotted as fold changes (2-ΔCq). This is 

followed by One-way ANOVA to assess the variation among all groups. It should be noted that ANOVA is used just to assess if 

there is significant statistical variation among the means of the groups. It does not assess, by any means, the extent of this 

variation. Thus, visual representation along with the results of CV analysis and ANOVA can help us obtain a rough estimate of the 

most stable reference genes. At this stage, genes that exhibit CV>50% are removed. The rest of the genes are then subjected to 

the NormFinder algorithm. The algorithm then ranks the genes based on intergroup and intragroup variation. It also detects the 

best two genes that can be used for normalization with a grouped stability value. These two genes are then used to calculate a 

normalizing factor to normalize all target genes. Source: (Sundaram et al., 2019b)
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Supplementary Data sets:  

The supplementary data sets of this study could not be presented due to space restrictions. They 

are available as excel documents online at  

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219440 

Perspectives: 

The findings of this study were presented at the qPCR/NGS conference 2019 held in TUM Munich 

as a poster. The conference concluded that RNA-seq data should be a prerequisite to select suitable 

candidate reference genes. We, however, are of the opinion that the statistical methods used for 

reference gene validation are more important than the pre-selection of ‘ideal’ candidates from RNA-seq 

data.  

We are in the process of exploring this hypothesis using RNA-seq data from two tissues: the liver 

and the sciatic nerve of mice at P3 and P21. Using RNA-seq, we have shortlisted suitable candidate 

reference genes in both tissues. Using our qPCR workflow, we are now comparing their efficacy in data 

normalization. We are also comparing their efficiency to that of a standard set of reference genes used in 

the study elucidated herein.  

Our hypothesis is that the selection of ‘good’ candidate reference genes from RNA seq does not 

offer a significant advantage over traditional reference genes if both are subjected to the same workflow 

that determines the best reference genes from a given set of candidates. The article that summarizes this 

study is currently under preparation and will be submitted by fall 2020.   

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219440
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2.2.3 Extracting sufficient amounts of RNA from mouse sciatic nerves across all ages 
 

Context of the study:   

Extracting sufficient amounts of RNA from peripheral nerves proves to be cumbersome process 

as the tissue is enriched in lipids (from the myelin sheath) and collagens (from the Extra-Cellular-Matrix). 

Lipids hinder tissue lysis and homogenization at the cellular level and collagens can entrap nucleic acids 

thus posing two major hurdles in isolating total RNA from sciatic nerves. Furthermore, in neonates (till P3 

– P4), the tissue size is too small, thereby rendering scanty amounts of RNA for downstream applications. 

Hence, it is common practice to pool different biological replicates to obtain sufficient yields. This, 

however, is disadvantageous if the study aims to quantify intrinsic gene expression variation in a given 

population. Hence, the primary objective of the study was to devise an RNA extraction protocol that can 

render sufficient yields (greater than 500ng) from mouse sciatic nerves irrespective of the age and the 

tissue size.  

We demonstrate that the use of the Trizol method with significant modifications can render 

consistent and sufficient yields of RNA from sciatic nerves starting from P0 mice to any postnatal age. We 

have compared our protocol to another liquid phase extraction proposed originally by Prof. Sacchi and 

colleagues (Chomczynski and Sacchi, 1987) as well a popular silica column based extraction kit (mirVana 

from Ambion Technologies). We compared each protocol based on criteria such as absorbance ratios, 

yield consistency across UV spectrophotometry assays (Nanodrop) and Florescence assays (Agilent 

Bioanalyzer) and an additional validation using RTqPCR.  

Our results demonstrate that the Trizol method renders consistent and copious yields across all 

post-natal timepoints. Furthermore, RNA extracted through Trizol shows very little difference in total yield 

when measured through Nanodrop and Bioanalyzer. In the other two methods, we observe that the 

Nanodrop concentrations are highly overestimated when compared to the Bioanalyzer estimates. This 

issue is probably because of the co-precipitation of free nucleotides in the other two methods. In Trizol 

samples, however, the co-precipitation is negligible and thus the concentration estimates across the two 

methods only vary by a small margin. These results are detailed in the article attached in the following 

pages (Sundaram et al 2020, submitted) 

A step-by-step depiction of our modified protocol is described in the figure below (Figure 22) 



 

109 
 

 

 

Figure 22: Detailed description of the different steps of RNA extraction from Sciatic Nerves using Trizol. Tissues are harvested from 

mice and immediately placed in 1mL of Trizol solution in Fisherband Tubes.  They are then incubated for 10 minutes on ice. Next, 

samples are homogenized in a bead mill homogenizer. Tissue homogenates are then transferred to a new eppendorf tube (1.5mL). 

For adult and aged mice, a preliminary centrifugation step is performed with the lysates to bring the lipid layer to the top. Trizol 

is then pipetted out from the bottom carefully and transferred to a new tube. 250µL of Chloroform is added to the lysate and the 

tubes are vortexed for 15sec – 30sec. Samples are then placed at room temperature for 3 minutes followed by centrifugation at 

17000g for 20 minutes at 4°C. The organic phase separates from the aqueous phase post centrifugation. The aqueous phase, 

which contains the RNA is then carefully transferred to a new tube. 1.5µL of glycogen is added to each sample and the tubes are 

briefly vortexed. This is followed by the addition of 1mL 100% Ethanol and the tubes are again vortexed briefly. The samples are 

then placed at -20°C overnight to facilitate RNA precipitation. The following day, the contents of the tube are transferred to a new 

one followed by centrifugation at 20000g for 20 min at 4°C. The supernatant is decanted, and the pellet is washed with 70% 
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Ethanol at least thrice before being dried in a speed-vac. Dry RNA is then resuspended in20µL of RNA resuspension buffer (0.1mM 

EDTA, pH 8) and stored at -80°C till RTqPCR. Source: (Sundaram et al 2020, submitted for review) 
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Perspectives :  

This article has been submitted to Frontiers in Cellular Neuroscience Section : Non-Neuronal cells 

as a ‘Method’ article. It is currently under peer review. In the meantime, we are also working on 

understanding why the other two protocols exhibit RNA yield differences when measured using UV 

spectrophotometry and fluorescence. We hypothesized that the differences arise due to the co-

precipitation of free nucleotides (NTPs). This can be due to the use of Sodium Acetate as the primary salt 

for RNA precipitation (Farrell, 2010). To test our hypothesis, we are now using 5M Ammonium Acetate 

which is known to obstruct the co-precipitation of nucleotides with RNA. This could greatly enhance the 

utility of the other two methods and provide tangible solutions for labs that have invested in purchasing 

the mirVana and other silica-column based RNA isolation kits.  

We are also verifying if the RNA extracted from Trizol also comprises of microRNA (miR) 

populations. This would greatly enhance the utility of our protocol and cater to the needs of a broader 

research community that is interested in studying gene regulation by miRs in peripheral nerves. These 

improvements will either be appended to this study during the peer review process or will be published 

as a separate follow-up study in the coming months.  
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2.2.4 Establishing highly pure primary immature Schwann cell cultures from 

embryonic DRG cultures 
 

Context of the Study: 

Primary Schwann cell cultures offer the unique possibility of studying the nuances of Schwann cell 

proliferation, survival, and differentiation in vitro. Traditionally, primary cultures were established from 

neonatal mouse sciatic nerves aged between P0 and P4 (Lutz, 2014; Irigoyen et al., 2018). However, this 

method demands the use of sciatic nerves pooled from multiple mice of the same genotype to have 

sufficient yields in order to perform cell culture experiments. Nevertheless, this exigency proves to be a 

disadvantage when dealing with mutant animals from the same litter. Often, multiple simultaneous 

breedings are required to generate enough number of mutant animals for extracting immature Schwann 

cells from their sciatic nerves. To overcome this hurdle, Kim, Ratner and colleagues developed a protocol 

to extract immature Schwann cells from Embryonic dissociated Dorsal Root Ganglia (DRG) cultures from 

embryos aged between E12.5 to E13.5 (Ratner et al., 2005; Kim and Maurel, 2009; Kim and Kim, 2018). 

Briefly, this protocol employs dissociated DRG cultures from mouse embryos that are maintained in 

culture for 1 week. Schwann cells being to appear and proliferate on developing neurites. At the end of 1 

week in vitro, neurites and contaminating fibroblasts are eliminated from culture and pure Schwann cells 

are retrieved.  

This method offers the advantage of obtaining 0.5 million immature Schwann cells (iSC) / embryo 

and does not require the use of multiple embryos to get enough yields. Therefore, each embryo can 

generate Schwann cells that can then be treated as individual biological replicates. However, the proposed 

methodology does not guarantee pure Schwann cell cultures as contaminating fibroblasts are often found 

to invade and expand during successive passages. This is also true for Schwann cell cultures established 

from neonatal sciatic nerves.  

Hence, the aim of this study was to compare different methods of fibroblast elimination from 

Schwann cell cultures during the first couple of passages to ensure highly pure monocultures. We 

compared three different protocols of fibroblast elimination from cultures and based on empirical 

evidence, we have found that one of the three methods to be highly efficient in removing fibroblast in 

under two passages. The study is presently underway to delineate the advantages and drawbacks of 
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different methods to eliminate fibroblasts. The following sections briefly summarize the different aspects 

of the study along with the associated questions and perspectives.  

Elimination of Fibroblasts using Cytosine Arabinoside (AraC) treatment:  

AraC is an antimetabolic agent that exerts cytostatic and cytotoxic effects by interfering in DNA 

replication during the S-Phase of cell cycle. Its effects are more pronounced in rapidly multiplying cells in 

culture. In Schwann cell cultures with contaminating fibroblasts, AraC treatment (10 µM) is used in 

combination with standard DMEM medium supplemented with 10% Bovine or Horse Serum and 

Glutamine for period of 48h – 72h. In this media, Schwann cells do not multiply due to the absence of 

soluble Neuregulin that is normally added to expand Schwann cell populations. However, fibroblasts 

thrive in this media and therefore are subjected to the cytotoxic effects of AraC.  

 

Empirical observations and hypothesis:  

We observed that this method is not efficient in eradicating fibroblasts. Significant amounts of 

fibroblasts are observed in phase contrast microscopy (fibroblasts exhibit a flattened morphology 

whereas Schwann cells are spindle shaped and bipolar) even after the treatment. These fibroblasts 

proliferate further during successive passages and cause significant infiltration.  

Secondly, we also observed a drastic reduction in Schwann cell numbers post treatment. This 

leads us to believe that Schwann cells indeed proliferate at lower levels in serum containing media without 

soluble neuregulin. This results in collateral genotoxicity from AraC treatment on Schwann cell 

populations.  

Thirdly, we hypothesize that cultivating Schwann cells in serum supplemented media changes the 

basal expression of known Schwann cell markers at the RNA level. Our hypothesis is that Schwann cells in 

culture adopt a ‘repair’ Schwann cell like phenotype in the presence of serum. In vivo, the cells are 

insulated from the serum through the blood nerve barrier that is ensured by pericytes and endothelial 

cells of the vasculature. However, during peripheral nerve injury/insult, Schwann cells directly come in 

contact with serum proteins and other growth factors that can possibly help them in adopting the ‘repair’ 

Schwann cell phenotype to promote nerve regeneration and remyelination (Liu et al., 2014; Jessen and 

Mirsky, 2016, 2019b; Su-chun Ho et al., 2017). Thus, we postulate that the use of serum in Schwann cell 
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cultures can induce a paradigm shift in the expression of markers associated with Schwann cell 

development and peripheral nerve repair. We are presently verifying this hypothesis using RNA-seq and 

qPCR.  
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Elimination of Fibroblasts using Complement Mediated Cytotoxicity:  

Another protocol that is widely used is complement-mediated cytotoxicity. Briefly, this method 

employs the tagging of fibroblasts in culture using an Antibody raised against CD90 protein that is localized 

in the membranes of fibroblasts. Then the media is substituted with Rabbit Complement Serum (1/5th 

titer) and the cultures are treated for up to 2 hours. The complement serum contains proteins that bind 

to the CD90 antibody and induce cell lysis rapidly through the formation of the Membrane Attack Complex 

(MAC) (Courtois et al., 2012).  

Empirical observations:  

Yet again, we find that this method is not very efficient in removing fibroblasts from culture and 

residual amounts of fibroblasts expand during successive passaging. However, contrary to AraC treatment 

we did not observe any reduction in Schwann cell numbers post treatment, but we did observe that 

Schwann cells proliferate rather slowly after treatment during the 1st passage.  

Elimination of Fibroblasts using Immunopanning:  

The last protocol that we tried is immunopanning. This method also employs the use of CD90 

antibodies, but it is not cytotoxic to the cells. Briefly, Schwann cell cultures with fibroblasts are incubated 

in suspension over polystyrene plastic dishes (not cell culture grade) that are coated with the CD90 

antibody. During the incubation, fibroblasts adhere to the cell dish due to the antibody and Schwann cells 

remain afloat. After about 30 minutes of incubation, the suspension in retrieved leaving behind the 

fibroblasts attached to the dishes. The Schwann cells in suspension are then cultured in separate dishes. 

The fibroblasts left behind in the dishes can then be trypsinized and placed in culture separately. Thus, 

this method offers the possibility of culturing fibroblasts and Schwann cells separately.  

Empirical observations:  

By far, we find that this method is the most efficient in removing fibroblasts from culture and we 

could establish highly pure Schwann cell cultures that are devoid of fibroblasts. However, we did notice 

that the immunopanning process also targets Schwann cells due to non-specific binding of Schwann cells 

to the CD90 antibody. This is mostly due to the fact that we use a monoclonal mouse anti-CD90. We are 

now improving the immunopanning protocol using CD90 antibodies raised in other species. Additionally, 

we are also optimizing the immunopanning suspension medium with different concentrations of BSA and 
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neuregulin so as to prevent non-specific binding and also keep the Schwann cells alive during the 

treatment. Nevertheless, even after the loss of a few Schwann cells during panning, this method proves 

to be the most efficient in removing fibroblast contamination from Schwann cell cultures.  

Perspectives:  

The empirical observations are now being tested using ICC and qPCR. The results are currently 

being generated and this study will be ready for publication in a few months. Our objective is to detail 

different methodological considerations that need to be examined while performing Schwann cell primary 

cultures. The study also aims to standardize Schwann cell cultures so as to render results from multiple 

studies comparable.  
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Chapter 3: RESULTS 

 

3.1 LIVER X RECEPTORS PROTECT SCHWANN CELLS FROM OXIDATIVE 

DAMAGES 

Context of the Study: 
 

My host laboratory has been working on elucidating the role of Liver X Receptors in the context 

of myelination both in the CNS and the PNS (Makoukji et al., 2011; Shackleford et al., 2013). These studies 

revealed that both LXR isoforms (LXRα and LXRβ) are expressed in the sciatic nerves (Makoukji et al., 

2011). They employed total LXRα/β-/- mutants (LXRdKO, refer to ‘Context of the Doctoral Thesis’) to 

elucidate the role of these nuclear receptors in peripheral myelination. The studies first confirmed the 

presence of 3 endogenous LXR ligands, 24S-Hydroxycholesterol (24S-HC), 25-Hydroxycholesterol (25-HC) 

and 27-Hydroxycholesterol (27-HC) along with expression of their respective biosynthetic enzymes in 

adult sciatic nerves and an immortalized Schwann cell line MSC80 (Makoukji et al., 2011). Furthermore, 

activation of LXRs using 25-HC or a synthetic LXR ligand TO9 in MSC80 reduced the mRNA expression of 

myelin genes such as Myelin Protein Zero (Mpz) and Peripheral Myelin Protein 22 (Pmp22). Putative LXR 

binding sites upstream of these two genes were identified suggesting that LXRs might be involved in the 

negative regulation of myelin gene expression possibly by transrepression. Furthermore, the study also 

demonstrated that this negative regulation is likely because LXR stimulation also downregulates 

components of the Wnt/βCatenin pathway which is essential for both myelination and remyelination 

(Makoukji et al., 2012; Grigoryan et al., 2013). In summation, LXRdKO mice exhibited an upregulation of 

Mpz and Pmp22 at the RNA level, complementing the results in the MSC80 cell line. However, their protein 

levels were downregulated and these animals displayed thinner myelin sheaths and electrophysiological 

deficits in adults (8-week-old mice) (Hichor et al., 2018). 

Thus, my first study pertaining to LXRs was conducted on these animals to explain the discrepancy 

between the level of Pmp22 and Mpz RNA and protein expression (Hichor et al., 2018). To this end, we 

explored the redox homeostasis of the sciatic nerves in these animals based on a microarray analysis that 

revealed multiple hits pertaining to genes implicated in redox homeostasis mediated by Nuclear factor 

erythroid 2-related factor (Nfe2l2 also commonly known as Nrf2). Further investigation revealed that the 
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absence of LXRs gives rise to oxidative stress in peripheral nerves, which in turn resulted in the aggregation 

of Pmp22 thus lowering its protein expression. Interestingly, these mice do not exhibit any behavioral or 

ultrastructural anomalies till P21 suggesting that the oxidative insults do not affect developmental 

myelination. To test this observation, these mice were treated with N-Acetyl Cysteine (NAC), an 

antioxidant, between the ages of P21 and 8 weeks. Treatment with NAC counteracted the oxidative stress 

generated in these mice and restored myelin protein levels back to normal. Furthermore, we also 

observed functional recovery of myelin sheath thickness in the sciatic nerves of treated animals coupled 

with electrophysiological improvements. To understand the role of LXRs in combating the oxidative stress, 

we used a mouse Schwann line (MSC80) to demonstrate that stimulation of LXRs using a pharmacological 

agonist (TO9) protects these cells from an acute oxidative stress induced by Tert-Butyl Hydroperoxide 

(tBHP) in cell culture. These results taken together, suggest that LXRs play a protective role against 

oxidative stress in the Schwann cells of the peripheral nerve.  
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Perspectives:  
 

Although this study provides preliminary evidence to the protective role of LXRs in Schwann cells 

against oxidative stress, the provenance of the latter remained elusive. In other words, we could not 

identify the causative agents of the oxidative stress in the sciatic nerves of LXRdKO mice. As the myelin 

protein and the myelin sheath were impacted, we speculated that the resulting phenotype was due to the 

ablation of the nuclear receptor in Schwann cells. To test this hypothesis, we generated a Schwann cell 

specific Knockout of LXRα and LXRβ by crossing floxed strains of the nuclear receptor with Desert 

Hedgehog-Cre (Dhh-Cre) mice. The resulting mutants exhibited an ablation of LXRα and LXRβ from the 

SCP stage of Schwann cell development. Much to our surprise, we observed a drastic phenotype in LXRα/β 

f/f: DhhCre mice  

We next decided to selectively breed out LXRα or LXRβ from these mutants to generate ablation 

of both the isoforms separately. We observed that LXRαf/f:DhhCre do not exhibit any phenotype but the 

phenotype of LXRβf/f:DhhCre faithfully recapitulated the phenotype of LXRα/β f/f: DhhCre mice both at the 

behavioral and histological levels. Thus, we concluded that the β isoform of the nuclear receptor is 

indispensable from Schwann cells and focused our research on LXRβf/f:DhhCre (LXRβ ScKO) . The 

observations on these Schwann Cell specific mutants form the core of the research that I conducted in my 

doctoral thesis. These results along with future avenues of research are detailed in the following sections.   
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3.2 LXRβ IS INDISPENSABLE FOR THE SURVIVAL OF SCHWANN CELL 

PRECURSORS IN DEVELOPING SPINAL NERVES 

 

3.2.1 Validation of the model: 
 

The LXRβ gene is composed of 10 exons with the coding region that begins at exon 3 (Figure 1A). 

Therefore, the LoxP sites were inserted upstream of Exon 3 and downstream of exon 7. This region 

contained by the LoxP sites codes for the DNA-Binding Domain (DBD) and the Ligand-Binding Domain 

(LBD) of the LXRβ protein. Thus, recombinase mediated excision of this targeted region would indeed 

result in the deletion of the functionally important domains of the LXRβ gene. 

As Schwann cells are absent in LXRβ ScKO nerves, we devised an indirect approach to validate the 

model. To confirm that the targeted mutation of LXRβ in Schwann cells has the desired molecular effect, 

we isolated Primary Schwann Cells from LXRβf/f (Control) animals and treated them with TAT-Cre 

Recombinase (1µM) for 2 hours. The exogenous addition Recombinase, resulted in a drastic reduction of 

LXRβ transcripts, most notably the regions between exons 4,5 and 7,8 which codes for the DNA binding 

and ligand binding domain (Figure 1B). Of note, the expression of Exon 1 and 2 remained unchanged 

suggesting that LXRβ does not control its own expression. Furthermore, we also observed the 

downregulation of LXRβ target gene ABCA1 (Figure 1B). These results show that the targeted insertion of 

LoxP sites in the LXRβ gene results in the desired effect of LXRβ ablation upon Cre recombinase action. 

Furthermore, we also observe that LXRβ is the major activator of ABCA1 in SC cultures.  
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Figure 1: Validation of the model. (A) LoxP sites in the LXRβ gene are inserted upstream of exon 3 and downstream of exon 7. 

Cre-mediated excision would result in the deletion of exons 3 to 7 that code for the DBD and LBD. Truncated expression of LXRβ is 

theoretically not possible due to the absence of a start codon in the remaining fragment. (B) Primary Schwann cells from the LXRβflf 

strain were treated with TAT- Cre (exogenous recombinase) at 1µM for 4 hours. TAT-Cre treatment of control LXRβf/f primary 

Schwann cells resulted in the deletion of the region flanked by the LoxP sites as assessed through qPCR using primers that 

specifically amplified regions spanned by Exon 1, Exon 4 and 5, Exons 7 and 8. Cre treatment also resulted in the downregulation 

of LXRβ target gene ABCA1.  
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3.2.2 Phenotypic description of LXRβ ScKO animals:  

 

LXRβ ScKO animals were born in the expected mendelian ratios. WT (LXRβf/f) and mutant animals 

are indistinguishable for the first 2 weeks after birth. By postnatal day 21 (P21), the mutants developed 

paralysis of the hind limbs and the movement of their forelimbs were reduced. The paralysis in the caudal 

region progressed as mice aged and we observed a complete loss of tail movement by the time they were 

8 weeks old. Between 8 and 20 weeks, they drastically lost weight and they developed severe motor 

coordination deficits. They also developed a hunched back and suffered from palpitations and shortness 

of breath, which are clinical signs of peripheral neuropathy. All mutant mice died at around 7 months. The 

Kaplan-Meier survival graphs for the mutants are shown in Figure 2A.  

Owing to the severe apparent locomotor deficits observed in adult LXRβ ScKO animals, we first 

analyzed their muscular strength at 8 weeks. The grip strength (all limbs) of LXRβ ScKO was drastically 

reduced to about 90 grams (force) whereas age matched WT (LXRβf/f) animals displayed about 200 grams 

(force) on average (Figure 2B). Furthermore, the mutant mice were insensitive to the hot plate test 

whereas the control animals reacted to heat at around 20 seconds on a hot plate (Figure 2C).  When we 

dissected the mutant mice at 8 weeks, we observed that the sciatic nerves were thinner and translucent, 

and we could see through the tissue whereas, in the control animals, the nerves appeared thicker and 

opaque (Figure 2D).  
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Figure 2: Phenotypic description of the animals. (A) Kaplan Meier Survival graphs for controls and mutants. All mutant animals 

died around 7 months. (B) Assessment of muscular strength using the Grip strength test of adult 8-week-old mice. Mice were place 

on a grill plate that was connected to a dynamometer. Once mice latched on to the grill, they were pulled by their tails and the 

force exerted to hold on to the grill was measured. (C) Adult mice were placed on a hotplate at 52°C. The time taken for the mice 

to sense the heat (paw licks) was measured. Mice that did not sense the heat were removed from the hotplate after 30 secs for 

ethical reasons. (D) Macroscopic view of sciatic nerve dissection of control and mutant animals.  
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3.2.3 Immunohistochemical analysis of younger mice reveals a drastic reduction in 

myelin content and Schwann cell numbers 

 

We next performed an Immunohistochemical analysis on the sciatic nerves of younger mice aged 

P10. Upon dissecting, we first noticed that the nerves of the mutant mice looked underdeveloped and 

resembled neonatal nerves. This could be either a reduction in cell numbers or a default in myelination or 

a combination of both. Therefore, to ascertain the cause, the distal sciatic nerve cross sections were 

stained with antibodies against Neurofilament (NFH – axonal marker), Myelin Protein Zero (MPZ – 

myelinating Schwann cell maker), SRY-Box Transcription Factor 10 (SOX10 – Neural Crest Derivative 

marker) and Early growth response protein 2 (EGR2 also called KROX20-myelinating Schwann cell marker) 

(Figure 3).  

We first observed that the diameter of cross sections of the LXRβ ScKO nerves was reduced 

comparing to control mice recapitulating our empirical observations of sciatic nerve after dissection 

(Figure 3A). Furthermore, in mutant mice we observed a very faint and sparse staining for MPZ whereas 

the control mice showed a uniform staining across the entire section suggesting that either the Schwann 

cells did not myelinate effectively or there were reduced number of Schwann cells (Figure 3A)  

We looked for the expression of Krox20 which is uniquely expressed in myelinating Schwann cells 

from birth (Topilko et al., 1994). In control animals, the percentage of Krox20+ cells averaged at 53 ± 3 % 

(mean ± SD) whereas in mutant mice, the proportion of Krox20+ cells was significantly lower at 12 ± 5 % 

(Figure 3C). These results taken together suggest that the sciatic nerves of LXRβ ScKO mice show a drastic 

reduction in MPZ levels due to a reduction in Krox20+ve Schwann cells. However, we wanted to assess if 

Schwann cells were arrested at the pre-myelinating stage or if the mutant nerves had lesser number of 

Schwann cells to begin with. Therefore, we looked at the total number of Neural Crest derivatives in the 

peripheral nerves by staining for SOX10 (Figure 3B). In control mice, the percentage of SOX10+ cells 

averaged at 58 ± 4 % (mean ± SD) whereas in mutants this proportion was significantly reduced to 5 ± 2 % 

(Figure 3C). As SOX10 is a pan neural crest marker, it accounts for all the derivatives of neural crest cells 

which include both myelinating and non-myelinating  Schwann cells as well as Endoneurial Fibroblast Like 

Cells (EFLCs) (Joseph et al., 2004; Richard et al., 2014). These results suggested that the sciatic nerves of 

LXRβ ScKO mice are largely depleted of Schwann cells as early as Post-natal day 10 (P10).   
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Our results suggest that the phenotype observed in mutant mice is largely driven by a reduction 

in the total number of Schwann cells at P10. Consequently, we observe a reduction in the cross sectional 

diameter of the nerves. The absence of Schwann cells also results in the absence of myelinating Schwann 

cells and therefore the nerve is very sparsely myelinated.  
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Figure 3: Immunohistochemical analysis of the sciatic nerves from WT and mutant animals at P10. (A) Distal sciatic nerve cross-

sections were immunostained to detect Neurofilament heavy chain (NFH – axonal marker) and Myelin Protein Zero (MPZ – 

myelinating Schwann cell marker) in WT and mutants. Nuclei were stained with Hoechst dye (HO), Scale Bar = 100µm; (B) Distal 

sciatic nerve cross-sections were immunostained for Krox20 (Myelinating Schwann cell Marker) and Sox10 (pan neural crest 

marker). Nuclei were stained with Hoechst dye (HO), Scale Bar = 100µm; (C) Data representation of the proportion of cells that 

were immuno-positive for SOX10 and KROX20 in WT and mutant animals. Non-parametric Mann-Whitney test was performed to 

analyze statistical differences between the groups and P values are represented as follows: P<0.05: *, P<0.01: **, P<0.001: ***.   

  



 

166 
 

 

3.2.4 The histochemical phenotype of LXRβ ScKO nerves is not completely 

homogenous 
 

While performing histochemical analyses of mutant sciatic nerves, we observed that the 

phenotype was not homogenous. We observed two phenotypes that we have named moderate and 

severe (Figure 4). In the moderate type, we observed that there were sparse but significant amounts of 

myelin that are concentrated in a single vesicle of the nerve. In the severe phenotype, we observed that 

there was no myelin present (Figure 4). Furthermore, this difference in the phenotypes presented itself 

laterally and along the proximo-distal axis i.e. the dissymmetry of the severity was observed in the 

proximal and distal sections of the same nerve as well as between the right and the left sciatic nerve of 

the same animal.  

Thus, we sought to determine the frequency of such phenotypes in postnatal animals at P10 

(Figure 4). We analyzed six mutants at P10. The right and the left sciatic nerves from each mouse were 

sectioned at the proximal and the distal regions. The moderate phenotype was ascribed to the section 

when the myelinated region of the nerve covers between 50% - 70% of the total area of the section. 

Conversely, the severe phenotype was ascribed to the section when the Mpz staining covers less than 

10% of the total area. Furthermore, across all animals, Mpz staining in the moderate phenotype did not 

cover more than 70% of the total section area.  

Our results indicated that the moderate phenotype presented itself in only 30% of all cases (Table 

1). Moreover, along the proximo-distal axis, the moderate phenotype was observed 4 out of 7 times in 

the distal region and 3 out of 7 times in the proximal region.  
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Figure 4: Description of the moderate and the severe phenotype in LXRβ ScKO sciatic nerves at P10. Distal sciatic nerve cross 

sections were immunostained to detect Neurofilament heavy chain (NFH – axonal marker) and Myelin Protein Zero (MPZ – 

myelinating Schwann cell marker) in WT and mutants. Nuclei were stained with Hoechst dye (HO), Scale Bar = 100µm. The 

phenotype was ascribed using the area covered by MPZ staining. If MPZ was found to cover more than 50% of the total cross 

sectional area, the section was ascribed the ‘moderate phenotype’. If MPZ was found to cover less than 10% of the total cross 

sectional area, the section was ascribed the ‘severe phenotype’.  
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Table 1: Occurrence of the severe and moderate phenotypes in P10 mutant sciatic nerves. For each nerve, three technical 

replicates at an interval of 0.1 cm from each other were analyzed both at the proximal and at the distal regions for MPZ expression. 

A ‘Moderate phenotype’ was ascribed to the region if MPZ expression covered between 50% - 70% of the total section area across 

all technical replicates and a ‘severe phenotype’ was ascribed to the region if MPZ expression covered less than 10% of the total 
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section area across all technical replicates. The phenotypes are summarized in the table at the bottom and the occurrences are 

represented as a percentage.  
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3.2.5 Ultrastructure analysis reveals a paradigm shift in the cellular anatomy of the 

sciatic nerve  

 

Given the dramatic reduction of Schwann cells in the mutant mice, we next looked at the sciatic 

nerve ultrastructure using TEM to assess the consequential ramifications arising from the lack of Schwann 

cells in LXRβ ScKO mice. At P10, we found that the axons are aggregated, and they are surrounded by 

cytoplasmic extensions of an unknown cell type (Figure 5). On the contrary, axons in control mice have 

been segregated and myelinated by Schwann cells. As the mutant mice age, these cytoplasmic extensions 

tightly ensheathed axonal bundles and segregated different axonal bundles from one another (Figure 5).  

In control mice, however, Schwann cells increased the myelin sheath thickness around the axons 

and we also observed the two distinct Schwann cell populations – myelinating and Remak Schwann cells. 

As expected, we did not observe the two different Schwann cell populations in mutant nerves. This 

rearrangement of the cellular anatomy persisted as mice age further with no signs of improvement in 

terms of myelin sheath production or the segregation of axons (Figure 5). The mice were thus euthanized 

at 20 weeks due to ethical considerations.  



 

172 
 

 

 

Figure 5: Transmission Electron Microscopy (TEM) of ultra-thin distal sciatic nerve sections of WT and mutant animals. TEM was 

performed on mice aged 10 days (P10), 23 days (P23), 56 days (8 weeks) and 140 days (20 weeks). WT nerves showed physiological 

features such as myelinating and non-myelinating Schwann cells. Mutant nerves exhibited abnormal features such as axonal 

aggregates (Red star) that are ensheathed by cytoplasmic extensions of an unknown cell type (yellow arrows) across all ages 

observed. Scale bar = 2µm (located on the bottom left) 
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3.2.6 Perineurial cells invade into the Endoneurial space in the absence of Schwann 

cells 

 

Our observations of electron microscopy images from mutant sciatic nerves prompted us to 

hypothesize that an unknown cell type ensheaths axonal bundles in LXRβ ScKO mice. These cells could not 

originate from the neural crest as mutant nerves displayed a huge reduction in Sox10+ cells. Furthermore, 

these cytoplasmic extensions of the unknown cell type resembled the perineurial sheath that normally 

delineate nerve fascicles in physiological conditions (Kucenas, 2015) (Figure 6).   

Thus, we speculated that the perineural cells indeed invaded into the Endoneurial space and 

proliferated in LXRβ ScKO nerves. To test this hypothesis, we checked for the expression of Tight Junction 

Protein 1 (Tjp1 also called as Zonula Occludens 1 or ZO1) which is a marker of perineural cells  in control 

and mutant nerves at P10 (Figure 6). At P10, we observed that ZO1 is primarily localized to the periphery 

of the nerve fascicles in control nerves (Figure 6A) with traces of ZO1+ cells in the endoneurium, possibly 

from pericytes and endothelial cells of the vasculature, which also express ZO1. However, in mutant 

animals we observed that the protein is localized in the periphery as well as in the endoneurial space 

(Figure 6A) forming a clear circular pattern over unmyelinated axons. This pattern of expression is also 

observed in P23 mice (Figure 6B). These results taken together suggested that the perineurial cells 

invaded and expanded in the endoneurial space in the absence of Schwann cells in LXRβ ScKO mice. This 

phenomenon was also observed in Krox20GFP (DT)/+, HtPA:Cre mice where Schwann cells are killed 

embryonically with Diphtheria Toxin in vivo (Coulpier et al., 2010).   

Indeed, during Schwann cell development especially at the SCP, Schwann cells secrete Dhh that 

binds to hedgehog receptors in the perineurial cells and restricts their localization towards the periphery 

of nerve fascicles (Parmantier et al., 1999; Sharghi-Namini et al., 2006). In our mutant model, the lack of 

Schwann cells does not permit this dialogue through Dhh signaling and the perineurial cells invade into 

the endoneurial space. A similar phenotype is also observed in Dhh-/- mutants but this mutation does not 

influence the survival of Schwann cells (Parmantier et al., 1999).  
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Figure 6: Immunohistochemical analysis of WT and mutant distal sciatic nerves at P10 and P23. Distal sciatic nerve sections were 

immunostained to detect Neurofilament Heavy chain (NFH – axonal marker), Myelin Protein Zero (MPZ – Myelinating Schwann 

cell marker), Zona Occludens 1 (ZO1 – Perineurial cell marker). Nuclei were stained with the Hoechst dye (HO). Scale bar = 100µm  
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3.2.7 Schwann cells disappear embryonically in LXRβ ScKO animals 
 

To ascertain the time window when Schwann cells disappear from peripheral nerves of LXRβ ScKO 

animals, we performed IHC at Post Natal Day 0 (P0) (Figure 7). We looked for the expression of Sox10 to 

verify if Schwann cells are present in the mutant nerves at birth. Similar to P10 mutant nerves, the cross-

sectional area of P0 mutant nerves were smaller than their respective controls. Additionally, we also 

observed a drastic reduction in SOX10+ cells in mutant nerves suggesting that the mice are born with 

reduced Schwann cell numbers (Figure 7A). Furthermore, we also observed that TEM images of mutant 

nerves recapitulated the phenotype of postnatal time points, which is characterized by the ensheathment 

of axonal bundles by perineurial cells (Figure 7B). These results suggested that LXRβ ScKO mice are born 

with reduced Schwann cell numbers and that perineurial cells probably start enheathing axonal bundles 

during embryonic development.  However, these observations also give rise to two possibilities. LXRβ 

might be involved in the survival of either iSC or SCP.  

At E18.5 during development, SCP have differentiated into iSC and radial sorting of axons has 

already begun. Our TEM images suggest that in mutant nerves radial sorting has not taken place and thus 

we can postulate that Schwann cells are absent from the developing nerves right from the SCP stage (after 

Dhh expression) or at the iSC stage.  
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Figure 7: IHC and TEM analysis of WT and mutant perinatal sciatic nerves. (A) Distal sciatic nerves at P0 were immunostained 

for Sox10 expression. Mutant mice were born with very little NCC derivatives whereas the WT mice exhibited many Sox10+ cells; 

(B) TEM analysis of WT and mutant sciatic nerves at E18.5 (one day before birth). WT sections displayed axons that have formed 

a one on one relationship with Schwann cells whereas mutant sciatic nerves exhibited axonal aggregates (red star) that were 

ensheathed by cytoplasmic extensions of Perineurial cells presumably (red arrow). Scale Bar = 1µm.   
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3.2.8 Retracing Schwann cell developmental transitions in embryonic dissociated 

DRG cultures 
 

Following the results obtained, we wanted to determine the embryonic time window where LXRβ 

ScKO Schwann cells either died or halted their proliferation. To this end, we employed embryonic 

dissociated Dorsal Root Ganglia (DRG) cultures, which recapitulate embryonic Schwann cell development. 

However, there were no existing data on how these in vitro cultures correlate with in vivo development 

notably the transition of SCP to iSC. In developing spinal nerves, SCP appear at the DRG at around E11.5 

and being migrating on nascent axons at between E12.5 to E13.5 (Jacob, 2015). However, from ex vivo 

and in vitro cultures, DRGs were extracted from the embryos at E13.5. These dissociated DRGs gave rise 

to neurons and Schwann cells in culture and this culture system recapitulated in vivo development albeit 

with a time difference. Our primary goal was to determine this phase difference and thereby ascertain 

the exact time period where SCP that migrate on neurites transition into iSC in culture.  

To this end, we assessed the expression of different Schwann cell markers and compared them to high 

throughput data generated on embryonic spinal nerves and Schwann cells in vivo. These results have been 

documented in the form of an article that is presently being peer reviewed. The article is presented in the 

following pages and the salient results are described below: 

1. Between DIV1 (Days in vitro 1) and DIV3, SCP had begun to appear on nascent neurites.  

2. Between DIV3 and DIV5, SCP migrated and proliferated on neurites.  

3. Between DIV5 and DIV7, SCP underwent the transition into iSC. 

In developing nerves, SCP appeared at E11.5. They migrated and proliferated on nascent axons 

between E11.5 to E15.5. At around E15.5 the SCP begun their transition into iSC and at around E17.5 most 

of the SCP have successfully transitioned into iSC. This comparative study provided us with a strong 

inferential framework to compare DRG cultures established from Control and LXRβ ScKO animals. 
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3.2.9 Schwann cells in LXRβ ScKO mice die between DIV5 and DIV8 in culture 
 

Using the framework established in the previous study, we compared dissociated DRG cultures 

established from E13.5 Control and LXRβ ScKO mice (Figure 8). At DIV5, no palpable differences existed 

between Control and mutant cultures (Figure 8A). However, at DIV7, the Schwann cells in mutant cultures 

exhibited a rounded shape whereas the cells in control cultures retained their spindle shaped morphology 

(Figure 8A). At DIV8, these cells detached and started floating in the cell culture media. We also 

mechanically removed the neurite network at DIV8 and digested it enzymatically in order to count the 

total number of cells (Neurons + Schwann cells) obtained from each culture at DIV8. In Control cultures, 

we obtained around 1 million cells whereas in mutant cultures the total number of cells was reduced to 

0.5 million (Figure 8B). These preliminary results suggested that Schwann cells in LXRβ ScKO cultures 

detached from neurites between DIV5 and DIV8.  

When we compare this data to the results obtained in the previous study, we are able to 

cautiously glean into the exact time-period where mutant Schwann cells were likely to disappear in 

embryonic peripheral nerves. From our results in vitro, we speculated that LXRβ ScKO Schwann cells either 

did not successfully make the transition from SCP to iSC or they died prematurely once they have 

transitioned into iSC. Further experiments are underway to provide to concrete evidence of probable 

Schwann cell death in culture. Moreover, we are also performing IHC on mutant embryonic spinal nerves 

to demonstrate the reduction of Schwann cell numbers either during the SCP/iSC transition or right 

afterwards. Additionally, we are also performing apoptosis assays using Cleaved Caspase 3 IHC in mutant 

and control embryos at E13.5 (SCP stage) and E16.5 (iSC stage).  
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Figure 8: DRG-SC co-cultures established from WT and mutant embryonic DRGs at E13.5. (A) Phase contrast microscopy images 

of cultures after 5 days in vitro (E13.5 + 5DIV), 7 days in vitro (E13.5 + 7DIV) and 8 days in vitro (E13.5+8DIV). (B) Number of cells 

obtained after mechanical removal and enzymatic digestion of the neurite-Schwann cell network at DIV8. Non-parametric Mann-

Whitney test was performed to analyze statistical differences between the groups and P values are represented as follows: P<0.05: 

*, P<0.01: **, P<0.001: ***.   
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Chapter 4: SUPPLEMENTARY RESULTS 

4.1 LXRβ is the functional isoform in Schwann cells 
 

As discussed earlier, during the course of my doctoral studies, we generated both LXRαf/f:DhhCre 

(LXRα ScKO) and LXRβf/f:DhhCre (LXRβ ScKO) mice along with LXRα/βf/f:DhhCre (LXRα/β ScKO mice). Only 

LXRα/β ScKO mice and LXRβ ScKO mice exhibit the phenotype described herein. LXRα ScKO mice, on the 

contrary, do not exhibit any behavioral or ultrastructural deficits and the results were comparable to their 

respective Controls (Supplementary Figure 1). We first assayed the mRNA expression levels of LXRα and 

LXRβ in primary WT Schwann cells using qPCR. We observed that LXRβ was expressed about 70-folds more 

that LXRα (LXRα Mean Cq: 29.6 cycles and LXRβ Mean Cq: 23.2 cycles) (Supplementary Figure 1E). Our 

results suggest that LXRβ might by the predominant functional isoform in Schwann cells.  

We then transfected primary WT Schwann cells with either SiLXRα or SiLXRβ to determine which 

among the two would lead to a concomitant decrease in the LXR target genes implicated in lipogenesis 

(Srebp1c, Fasn) and cholesterol homeostasis (Abca1, ApoE) (Supplementary Figure 1F & 1G). We 

observed that silencing LXRβ elicited the decrease in expression of all LXR targets (Supplementary Figure 

1G). However, interestingly, silencing LXRα increased Abca1 and ApoE expression but had no effect on 

Srebp1c and Fasn (Supplementary Figure 1F). These results taken together suggest that LXRβ is the 

functional isoform in Schwann cells and this isoform could possibly play a compensatory role in the 

absence of LXRα in the context of cholesterol homeostasis. These results taken together possible explain 

why LXRα ScKO animals did not exhibit any phenotype.  

However, in order to rule-out any mild phenotypes, we performed the G-Ratio analysis on 8-week-

old LXRα ScKO mice (Supplementary Figure 1B). WT and mutants exhibited comparable G-Ratios (mean 

G-Ratio WT: 0.6345, mean G ratio LXRα ScKO : 0.6399). We next plotted the G-ratios as a function of the 

axonal area to verify if there are any differences in the G-Ratios of smaller and larger axons across both 

groups (Supplementary Figure 1C). Regression analysis of all data points revealed that both the 

populations were identical (Supplementary Figure 1C). Furthermore, LXRα ScKO mutants did not exhibit 

any behavioral phenotype in grip tests (Supplementary Figure 1D) suggesting that they did not suffer 

from any muscular deficits. Furthermore, absence of LXRα in Schwann cells had no effect on Schwann cell 

physiology or myelination when compared to LXRβ.  
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Supplementary Figure 1: LXRβ is the functional isoform in Schwann cells. (A) Representative TEM images of adult 8-week old 

sciatic nerves of WT and LXRα ScKO animals. (B) Violin plots of G-ratios of all axons from both the WT and mutant group from 8-

week old sciatic nerve sections. Violin plots show a gaussian distribution of data points in both groups. The dotted lines inside the 



 

202 
 

 

violin plots represent the median in the center, quartile 3 above and quartile 1 below the median. T-test was performed to 

determine statistically significant differences between the groups and none were found. (C) Regression analysis of G-Ratios plotted 

as a function of axonal area (size). WT data points are represented in blue and mutant data points are represented in orange. (D) 

Grip strength test of 8-week old WT and LXRα ScKO animals. Both Groups exhibit similar and comparable grip strengths. (E) mRNA 

expression of LXRα and LXRβ in primary Schwann cells assessed through RTqPCR. The difference in expression is represented as a 

fold difference of LXRα expression with respect to LXRβ. (F) mRNA expression of LXRs and their target genes assessed through 

RTqPCR after RNA silencing of LXRα in primary Schwann cells.  (G) mRNA expression of LXRs and their target genes assessed 

through RTqPCR after RNA silencing of LXRβ in primary Schwann cells. Non-parametric Mann-Whitney test was performed to 

analyze statistical differences between the groups and P values are represented as follows: P<0.05: *, P<0.01: **, P<0.001: ***.   
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4.2 The putative role of 25HC in myelin gene regulation during Schwann 

cell development 
 

We next assessed the LXR ligands that could potentiate the role of the nuclear receptor in 

Schwann cells. In previous studies 3 potential ligands were identified in adult sciatic nerves (Makoukji et 

al., 2011). Among the three ligands, we chose to treat primary immature Schwann cells with 25HC. Our 

choice of the ligand was based on previous microarray data on developing Schwann cells from embryonic 

nerves (Buchstaller et al., 2004). We reanalyzed the dataset and found that Cholesterol 25-Hydroxylase 

(Ch25h), the enzyme that catalyzes the conversion of cholesterol to 25HC, was upregulated in the 

developing embryonic nerves during the SCP/iSC transition (Supplementary Figure 2B). The upregulation 

of Ch25h (leading to a possible increase in endogenous 25HC) is also correlated with the increase in myelin 

gene expression and the decrease in Abca1 (LXR target) mRNA levels at the SCP/iSC transition 

(Supplementary Figure 2B). We therefore hypothesized that 25HC could play a crucial role with respect 

to myelin gene regulation and cholesterol homeostasis during the SCP/iSC transition.  

Thus, we treated primary Schwann cells with 1µM 25HC for 48 hours (Supplementary Figure 2A).  

This treatment resulted in a 3-fold increase in Mpz and Pmp22 RNA levels. Interestingly, 25HC also 

exhibited antagonistic properties with respect to LXR function. 25HC reduced the expression of ABCA1, 

Srebp1c and Fasn in primary Schwann cells. A tendency towards reduction was observed in ApoE mRNA 

levels. Our in vitro data partially recapitulates what happens in vivo during the embryonic development 

of Schwann cells (Supplementary Figure 2B). 

These results taken together suggest that 25HC regulates myelin gene expression at the mRNA 

level either in an LXR dependant or an independant manner. Furthermore, treatment with 25HC exerts 

an antagonistic effect on LXR target genes such as Abca1, Srebp1c and Fasn. However, interestingly, the 

antagonistic effects of 25HC on ABCA1 and Srebp1c expression is unconventional.  
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Supplementary Figure 2: Putative role of 25HC in Schwann cell development. (A) mRNA expression of myelin genes and LXR target 

genes following treatment of Primary Schwann cells with 1µM 25 Hydroxycholesterol (25OH) for 48 hours. Expression differences 

are expressed as fold changes with respect to the Vehicle (Ethanol – EtOH) group.  Non-parametric Mann-Whitney test was 

performed to analyze statistical differences between the groups and P values are represented as follows: P<0.05: *, P<0.01: **, 

P<0.001: ***.  (B) Microarray data generated from neural crest cells and their derivatives at different developmental stages 

(Buchstaller et al., 2004). The column names are titled based on developmental time points and the corresponding stage in Neural 

Crest differentiation. NCC-Neural Crest Cell, SCP-Schwann cell Precursor, iSC-immature Schwann cell, mSC-myelinating Schwann 

cell. The rows are titled based on the gene names. The data points of the table represent mean mRNA expression levels assessed 

through microarrays. The number are also used to generate a heat map where shades of red indicate lower mRNA levels, shades 

of yellow indicate moderate expression and shades of green indicate higher expression. The heat maps were generated relative 

to the expression levels of each gene in question.  
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Chapter 5: DISCUSSION 
 

5.1 Embryonic disappearance of Schwann cells and changes in the cellular 

anatomy of the nerve  

 

LXRβ ScKO displayed an adverse phenotype postnatally that involves an astonishing lack of myelin 

sheath around axons that results from the absence of Neural Crest Derivatives (and therefore Schwann 

cells) in the sciatic nerve as early as Post Natal Day 0 (P0). This was accompanied by a drastic alteration of 

the nerve ultrastructure both perinatally and postnatally, culminating in the invasion of Perineurial cells 

into the endoneurial space. The dialogue between Schwann cells and Perineurial cells during embryonic 

development is crucial for proper anatomical arrangement of the nerve. Seminal work from Jessen and 

Mirsky lab has previously demonstrated that the DHH protein secreted by Schwann cells during embryonic 

development permits the perineurial cells to establish proper fasciculations of spinal nerves and thus 

maintain the structural integrity of nerves (Sharghi-Namini et al., 2006). Indeed, using Dhh-/- total mutants, 

they demonstrated that the lack of Dhh signaling leads to the invasion of the perineurial cell into the 

endoneurial space and these cells form mini-fascicles around myelinated axons. In LXRβ ScKO mice, this 

phenomenon is exactly recapitulated, although not due to a faulty dialogue between Schwann cells and 

Perineurial cells. We have sufficient data to show that the untimely disappearance of Schwann cells leads 

to an environment where no Dhh signaling is possible. Hence, in post-natal timepoints, perineurial cells 

invade into the endoneurial space and strangely ensheath axonal bundles. Furthermore, electron 

microscopy images from E18.5 mutant sciatic nerves (Figure 7, Results Section) also suggests that this 

invasion takes place even before birth. This is further corroborated by the fact that Dhh mRNA is produced 

by Schwann cell precursors from E12.5 and therefore the protein might play a role during embryonic nerve 

development. Thus, collectively, these observations suggest that the drastic alteration in the nerve 

ultrastructure might have its underpinnings during embryonic development.  

Our mouse model also phenocopies Sox10 Schwann cell mutants (Sox10f/f:DhhCre) (Finzsch et al., 

2010; Küspert et al., 2012). As stated earlier, Sox10 is one of the most important transcription factors of 

Neural Crest Cells and it is crucial for the survival and differentiation of their peripheral nerve derivates 

(Svaren and Meijer, 2008). In Sox10 mutants, Schwann cells die embryonically, and the nerve is devoid of 
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Schwann cells before birth thus resulting in a similar phenotype as LXRβ ScKO animals. Yet again, 

perineurial cells invade into the endoneurial space and form mini fascicles around naked axonal bundles. 

These observations can further be confirmed by comparing our mice to the Krox20GFP(DT)/+HtPA:Cre mice 

where peripheral nerves are depleted of Schwann cells due their death at embryonic stages following 

Diphtheria Toxin mediated cytotoxicity (Coulpier et al., 2010). Our model, yet again, phenocopies 

Krox20GFP(DT)/+HtPA:Cre suggesting that Schwann cells disappear or die during embryonic development. 

However, it is equally possible that the embryonic Schwann cells in our mouse model cease to proliferate 

and thus present a phenotype with highly reduced Schwann cell numbers after birth.  

 

5.2 Do Schwann cells die due to endogenous causes? Do they stop 

proliferating? Or do they detach from axons and thus die?  

 

To determine the exact embryonic timepoint when Schwann cells disappear or halt proliferation, 

we retraced the embryonic development of Schwann cells using Dorsal Root Ganglia (DRG)/Schwann Cell 

cocultures established from E13.5 LXRβ ScKO mutants and their respective controls. We first performed 

a preliminary study using WT C57Bl6 mice to correlate in vitro Schwann cell development in DRG/SC 

cocultures to in vivo development in spinal nerves (Sundaram et al., 2020). Briefly, our study revealed that 

Schwann Cell Precursors (SCP) appear in culture at DIV3. They proliferate between DIV3 and DIV5 on 

neurites. At DIV5 they begin their transition to immature Schwann Cells (iSC) and at DIV7 most of the 

Schwann cells transition to the immature stage. However, in cultures established from LXRβ ScKO 

mutants, iSC at DIV7 detach from axons and start floating in culture suggesting that they probably die in 

this time window. Furthermore, at DIV8, we found that the mutant cultures are full of floating cells as 

observed under phase contrast microscopy. This was further corroborated by the sparse number of cells 

that we could recuperate from the neurite-Schwann cell network in mutants. However, apoptosis assays 

are required to provide conclusive evidence of Schwann cell death in cultures. We are currently 

performing Annexin V / PI apoptosis assay at different time points.  

Nevertheless, assuming that the cells die (as they are not present in vivo at birth) these floating 

cells at DIV8 give rise to two hypotheses. Either Schwann cells detach first due to a loss of communication 
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with neurons or they die first and then detach from neurons due to natural circumstances arising from 

cell death.  

Of note, at DIV5, there were no palpable differences between mutant and WT cultures suggesting 

that the mutant Schwann cells seem to have a problem with survival or remaining attached to neurons 

only during the SCP/iSC transition or thence. Nevertheless, these in vitro observations provide key insights 

to look for in vivo evidence for Schwann cell death in mutants. IHC analysis of mutant spinal nerves is thus 

warranted at two stages – one at around E14.5 when SCP actively proliferate in developing axons and the 

other at around E17.5 when SCP have successfully transitioned in iSC.  

 

5.3 The plausible causes for Schwann cell death during the SCP/iSC 

transition or afterwards 

 

A lot of important structural and functional changes occur when SCP transition to iSC in embryonic 

nerves (Jessen and Mirsky, 2019a). A striking characteristic change that occurs during this transition is the 

switch from a paracrine survival mechanism (assured majorly by Neuregulin during the SCP stage) to an 

autocrine survival mode at the iSC stage (Jessen and Mirsky, 2005; Woodhoo and Sommer, 2008). In our 

mutant model, it is still unclear whether the Schwann cells die during the transition or just after. However, 

there are a few important observations regarding LXR signaling and oxysterols that must be taken into 

consideration in order to holistically understand why Schwann cells disappear from embryonic nerves in 

LXRβ ScKO mice.   

Previous microarray data suggests that Ch25h mRNA levels robustly rise during the SCP/iSC 

transition (Supplementary Figure 2B) (Buchstaller et al., 2004). Thus, we can speculate that this would 

translate to Schwann cells producing endogenous 25HC during this transition. To understand the rationale 

behind this phenomenon, we treated primary Schwann cells with 25HC (Supplementary Figure 2A). Our 

results indicate that 25HC increase Mpz and Pmp22 mRNA levels in culture and we also observed a 

correlation between Ch25h expression and the concomitant increase in myelin genes in vivo. However, 

we do not know if this happens through LXR. 25HC treatment also reduces the mRNA expression of genes 

implicated in Cholesterol efflux such as Abca1 and ApoE that are LXR targets (Supplementary Figure 2A). 
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This might probably be because 25HC is known to reduce cholesterol biosynthesis in different systems by 

inhibiting the maturation and nuclear translocation of SREBP2 protein (Radhakrishnan et al., 2007; Waltl 

et al., 2013). This serves as a feedback loop to inhibit cholesterol synthesis when sufficient amounts of 

Cholesterol are present in the cell. Since we have disturbed this homeostasis by treatment with 25HC, the 

Schwann cells might try to counteract this change by reducing the efflux of Cholesterol (Supplementary 

Figure 2A). This hypothesis can also be applied to in vivo settings where we observed in the microarray 

data that increase in Ch25h during the SCP/iSC transition also correlates with a concomitant decrease in 

Abca1. Furthermore, myelin gene expression also increases following Ch25h upregulation in Schwann cells 

thus corroborating our in vitro data. We also have sufficient evidence to suggest that LXRβ is the functional 

isoform in Schwann cells as it controls both cholesterol efflux and lipogenesis (Supplementary Figure 2G). 

Thus, we hypothesize that in an LXRβ deficient system, the increase in 25HC during the SCP/iSC transition 

does not culminate in an increase in myelin gene expression assuming that the process is mediate by LXRβ. 

Furthermore, increase in 25HC would concomitantly decrease cholesterol biosynthesis and in the absence 

of LXRβ, the Schwann cell would lose its capacity to retain existing levels of cholesterol through ABCA1 

and APOE. 

An intriguing phenomenon is the reduction in the mRNA levels of Srebp1 and its downstream 

target Fasn after 25HC treatment (Supplementary Figure 2A). A reduction in cholesterol biosynthesis can 

be speculated based on the canonical action of 25HC on SREBP2 protein. However, it does not explain 

why lipogenesis is affected. There is some literature indicating that sulfation of 25HC by Hydroxysterol 

Sulfotransferase 2B1b (SULT2B1b) can inhibit both lipogenesis and Cholesterol efflux through the 

LXR/SREBP1 axis in different types of cells (Ren et al., 2007; Ma et al., 2008; Ren and Ning, 2014). Thus, 

expression of SULT2B1b in Schwann cells needs to be assayed during 25HC treatment and during the 

SCP/iSC transition.  Given these observations we propose the following schematic model to the explain 

the phenotype that arises in LXRβ ScKO animals (recapitulated from the Graphical abstract).  
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Graphical Representation: The role of LXRβ in Schwann cell development. In an LXRβ proficient system, the synthesis cholesterol 
gives rise to 25-Hydroxycholesterol (25OH) by the enzyme Cholesterol 25 Hydroxylase (Ch25h). This oxysterol binds LXRβ to induce 
the expression of cholesterol efflux genes ABCA1 and ApoE as well as the master regulator of lipogenesis Srebp1c. However, our 
data also suggests that 25OH can induce myelin gene expression possibly through LXRβ. Cholesterol homeostasis, lipogenesis and 
myelin protein expression together can positively Schwann cell differentiation and myelination. Furthermore, prolonged treatment 
of primary Schwan cells with 25OH results in a reduction in LXRβ target genes, which is possibly mediated by the Sulfonated form 
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of the oxysterol. In an LXRβ deficient system, cholesterol homeostasis, lipogenesis and myelin protein expression might be directly 
compromised due to the absence of the receptor. Moreover, the intracellular oxysterol and cholesterol levels would be 
dysregulated and eventually lead to a failure in Schwann cell differentiation and possibly death. 
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5.4 The difference between total and specific LXR ablation 

 

Another important concern that needs to be addressed is the huge difference in phenotype that 

we observe between the total LXRdKO animals and LXRβ ScKO animals. Our observations demonstrate 

that LXRdKO animals have a very mild phenotype where Schwann cell are still present in post-natal 

timepoints and myelinate, although, not as effectively as their respective controls. However, in LXRβ ScKO 

animals, Schwann cells die embryonically and therefore the mice are born with a drastic reduction in 

Schwann cell numbers. The difference between the two models is that total mutants were generated by 

the insertion of Neo Cassette in the coding strand of LXR isoforms whereas Schwann cell mutants are 

generated at the SCP (E12.5)using the Cre LOX system. 

 Thus, our hypothesis is that in total mutants are, neural crest cells and their derivatives had the 

time to adopt compensatory mechanisms arising from the lack of LXRs. However, in Schwann cell mutants 

the sudden ablation of LXR at the SCP stage when its role is seemingly important, does not permit the cells 

to adapt to the changes and hence they die embryonically. However, we cannot rule out the possibility 

that the total mutants in fact elicit a dominant negative phenotype that confers partial activity to LXRs. 

We are currently generating total mutants by breeding the LXRβ f/f animals to CMV Cre mice to delete 

the nuclear receptor in all tissues (refer to section 6.4 in Perspective and Future Directions)  
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Chapter 6: PERSPECTIVES AND FUTURE DIRECTIONS  
 

In this section, I summarize the different scientific questions that have emanated from my work 

and put forth hypotheses and experiments that can be performed to verify them. In doing so, I hope to 

detail a path forward towards further scientific enquiry into this theme of research. The section also 

culminates with a brief discussion on how the information gained from this fundamental research can be 

used to formulate investigations in a clinical setting.  

 

6.1 Question 1: Why is the phenotype in LXRβ ScKO animals not 

completely homogenous?  

 

Hypothesis 1: Some Schwann cells escape Cre-recombinase mediated gene ablation, as Dhh is not 

expressed in all Schwann cells during embryonic development  

Hypothesis 2:  All SC recombine but not all of them die.  

Empirical Observation: It is well known in the Schwann cell research community that Dhh-Cre is not 100% 

efficient (Wu et al., 2008). Thus, it is probable that not all Schwann cells recombine.  

Experiment:  Using Fluorescence In-Situ Hybridization (FISH) on sciatic nerve sections presenting with the 

moderate phenotype, we can categorically assess if the Schwann cells that remain and myelinate have 

been subjected to LXRβ deletion. Thus, we would perform FISH using 2 RNA probes, one directed towards 

s100β (Schwann cell marker) and the other directed towards LXRβ. A co-localization would imply that 

these cells have escaped recombination.  

Alternatively, we breed the LXRβ f/f: DhhCre mice to a reporter line such as TdTomato and look the 

TdTomato flouresence in the surviving cells.  
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6.2 Question 2: What are the complete set of transcriptomic 

modifications that arise as NCC transition into SCP and then iSC?  

 

This is an exploratory question and we do not have a specific hypothesis to highlight. Previously, 

high throughput studies were conducted using microarrays with a limited set of probes (Buchstaller et al., 

2004; D’Antonio et al., 2006b). However, we believe that the study has to be repeated using RNA-seq to 

achieve better depth and also gain a holistic picture of the transcriptomic landscape during these 

developmental transitions. Our personal interest in this study is to obtain gene expression data pertaining 

to lipid and cholesterol metabolism.  

 

Experiment 1: The in vivo approach would entail the use of PlpGFP mice to isolate GFP positive cells at 

different stages of embryonic spinal nerve development by FACS followed by single cell RNA-seq. This is 

the same approach adopted by Buchstaller and colleagues, but we plan on using Single cell RNA-seq to 

identify a greater number of targets, obtain a resolution higher than that of microarrays and finally classify 

the different sub-populations of Schwann cells during development, if any.  

Experiment 2:  The in vitro approach would employ the same mouse line to generate dissociated DRG 

cultures to isolate GFP positive cells by FACS at DIV3, DIV5 and DIV7. RNA-seq can then be performed to 

assess the transcriptomic changes that arise as SCP transition into iSC between DIV5 and DIV7. 
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6.3 Question 3: What is the role of oxysterols (that are LXR ligands) in 

Schwann cell development and myelination?  

Hypothesis: Different LXR ligands potentiate cholesterol homeostasis, lipogenesis and myelin gene 

expression 

Preliminary data: 25HC increases myelin gene expression but decreases cholesterol efflux in primary 

Schwann cells. 

Experiment 1: Treatment of primary Schwann cells with different LXR ligands that have previously been 

identified in the PNS – 24(S)HC, 25HC and 27HC (Makoukji et al., 2011). Primary output analysis by RTqPCR 

for genes implicated in cholesterol homeostasis, lipogenesis and myelination.  

Experiment 2: Treatment of primary Schwann cells with different LXR ligands in the absence of LXRβ 

(either by using SiLXRβ on WT primary cells or by using TAT-Cre on primary cells from LXRβf/f mice). This 

would give us an idea whether the effects of the oxysterol treatment are mediated through LXRβ.  

Experiment 3: Oxysterol assays using GC-MS on primary Schwann cells under proliferation and 

differentiation (induced by the addition of cAMP). This experiment would give us an idea of Schwann cell 

endogenous oxysterols that regulate gene expression in an autocrine manner.    
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6.4 Question 4: Why do LXRdKO mice not display such drastic phenotypes 

when compared to LXRβ ScKO mice?  

 

Hypothesis: In total LXR mutants (LXRdKO), compensatory mechanisms are set into place as the genetic 

ablation is achieved much earlier during embryonic development 

Experiment 1: Breed LXRβf/f mice with a Cre line that results in total ablation of the nuclear receptor (Eg: 

CMVCre). This would be to establish a proof of concept that total ablation at an earlier embryonic time 

point would confer some compensatory benefits with respect to LXR mediated cellular processes as NCC 

transition into SCP and then iSC. 

Experiment 2: RNA seq analysis and comparison of WT vs LXRβ ScKO vs LXRdKO dissociated DRG-SC 

cocultures at DIV5 (right before Schwann cells detach from neurons in LXRβ ScKO cultures). This would 

give us a clear picture of the transcriptomic landscape of Schwann cells and the potential compensatory 

mechanisms at the RNA expression level exhibited by LXRdKO cells. This data would also permit us to 

establish rescue experiments for LXRβ ScKO cells based on the mechanisms adopted by the total mutants.  

 

6.5 Benefit of this research in a clinical setting:  
 

The data generated on LXRβ ScKO mice can be used to interpret certain pathological conditions 

at the molecular level. During the course of my PhD research, we have gained significant insights on how 

fatty acid metabolism is regulated in Schwann cells through LXRβ and its downstream target Srebp1c.  

Malignant Peripheral Nerve Sheath Tumor (MPNST), a malignant form of neurofibromas in 

Neurofibromatosis Type 1 (NF1) resulting from a combined loss of function mutation in the Neurofibromin 

1 gene and various tumor suppressor genes has been characterized with an altered lipid metabolism 

resulting from increased fatty acid synthesis and fatty acid oxidation. Hence, it was previously suggested 

that Fatty acid synthase (FASN – regulated by the LXRβ/Srebp1c axis) is a potent and targetable metabolic 

oncogene (Patel et al., 2015). Therefore, pharmacological or genetic inhibition of LXRβ can be a plausible 

therapeutic strategy in combatting the proliferation of neoplastic Schwann cells in these tumors.  
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Another approach that has rendered positive results in combatting the hyper-proliferative tumor 

is the inhibition of the mTORC pathway (Johansson et al., 2008; Varin et al., 2016). From a reductionist 

perspective, these two strategies seem like two sides of the same coin as mTORC1 is classically known to 

activate Srebp1c in Schwann cells through RXRγ (Norrmén et al., 2014). Thus, it is quite probable that 

Srebp1c mediated lipogenesis in Schwann cells is regulated by LXRβ:RXRγ heterodimer at the 

transcriptional level both in physiological and pathological conditions. Furthermore, bulk RNA-seq data 

(unpublished) from our collaborator Dr. Eric Pasmant also shows an upregulation of LXRβ in patient 

MPNST biopsies. Taken together, these observations support the therapeutic strategy of combatting 

MPNST by genetic or pharmacological inhibition of LXRβ.  

Moreover, the intricate association between LXRs, lipids, and cholesterol offer unexplored 

possibilities of using the LXR pathway therapeutically in the treatment of Charcot-Marie-Tooth 1A 

(CMT1A). CMT1A in humans is characterized by a duplication of Chromosome 17p12 (c17p12), which is a 

large segment of DNA that encodes the PMP22 protein (Valentijn et al., 1992). This results in higher 

expression levels of PMP22 and compromises the structural and functional integrity of the myelin sheath 

around peripheral axons. Recently, Fledrich and colleagues have shown that in rodent models of CMT1A, 

there is a systematic downregulation of lipogenic genes in the nerves (Fledrich et al., 2018). In the CMT1A 

model, administration of phospholipids improved myelin ultrastructure, electrophysiology, and muscle 

strength of affected animals. Thus, LXR activation using GW3965 or other ligands can be envisaged as a 

therapeutic approach to increase the expression of lipogenic enzymes through Srebp1c.  
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